

SYSTEMS - SOLUTIONS

If you have a problem that can be solved by a computer-we have a systems solution.

- Two central processors with maximum RAM capacities of 56 K and 384 K bytes
- Three types of disk drives with capacities of $175 \mathrm{~K}, 1.2 \mathrm{M}$ and 16 M bytes
- Two dot matrix printers with 80 and 132 line capacity
- A Selectric typewriter interface and a daisy wheel printer

Match these to your exact need, add one or more of our intelligent terminals and put together a system from one source with guaranteed compatibility in both software and hardware.
Southwest Technical Products systems give you unmatched power, speed and versatility. They are packaged in custom designed woodgrain finished cabinets. Factory service and support on the entire system and local service is available in many cities.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION 219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216

Low-cost hard disk computers are here

 11 megabytes of hard disk and 64 kilobytes of fast RAM in a

 11 megabytes of hard disk and 64 kilobytes of fast RAM in a Z80A computer for under \$10K. Two floppy drives, too. Z80A computer for under \$10K. Two floppy drives, too. Naturally, it's from Cromemco.

 Naturally, it's from Cromemco.}

It's a reality. In Cromemco's new Model Z-2H you get all of the above and even more. With Cromemco you get it all.

In this new Model $\mathrm{Z}-2 \mathrm{H}$ you get not only a large-storage Winchester hard disk drive but also two floppy disk drives. In the hard disk drive you get unprecedented storage capacity at this price-11 megabytes unformatted.

You get speed-both in the 4 MHz Z80A microprocessor and in the fast 64 K RAM which has a chip access time of only 150 nanoseconds. You get speed in the computer minimum instruction execution time of 1 microsecond. You get speed in the hard disk transfer rate of 5.6 megabits $/ \mathrm{sec}$.

EXPANDABILITY

You get expandability, too. The high-speed RAM can be expanded to 512 kilobytes if you wish.

And the computer has a full 12-slot card cage you can use for additional RAM and interface cards.

BROADEST SOFTWARE SUPPORT

With the Z-2H you also get the broadest software support in the
microcomputer field. Software Cromemco is known for. Software like this:

- Extended BASIC
- FORTRAN IV
- RATFOR (RATional FORtran)
- COBOL
- 280 Macro Assembler
- Word Processing System
- Data Base Management
with more coming all the time.

SMALL, RUGGED, RELIABLE

With all its features the new $\mathrm{Z}-2 \mathrm{H}$, including its hard disk drive, is still housed in just one small cabinet.

Hard disk drive at lower left can be interchanged just by sliding out and disconnecting plug. Seven free card slots are available. Z-2H includes printer interiace card.

Included in that cabinet, too, is Cromemcoruggedness and reliability. Cromemco is time-proved. Our equipment is a survey winner for reliability. Of course, there's Cromemco's all-metal cabinet. Rugged, solid. And, there's the heavy-duty power supply (30A @ 8V, 15A @ +18 V , and 15A @ -18V) for circuitry you'll sooner or later want to plug into those free card slots.

CALL NOW

With its high performance and low price you KNOW this new $\mathrm{Z}-2 \mathrm{H}$ is going to be a smash. Look into it right now. Contact your Cromemco computer store and get our sales literature. Find out when you can see it. Many dealers will be showing the $\mathrm{Z}-2 \mathrm{H}$ soon-and you'll want to be there when they do.

PRESENT CROMEMCO USERS

We've kept you in mind, too. Ask about the new Model HDD Disk Drive which can combine with your present Cromemco computer to give you up to 22 megabytes of disk storage. 280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 - (415) 964-7400

The single card computer with the features that help you in real life

COMPLETE COMPUTER

In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.

The computer itself is super. Fast 4 MHz operation. Capacity for 8 K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32K BYTESAVER ${ }^{\text {© }}$ PROM card). There's also 1 K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud - software programmable.

Other features include 24 bits of bidirectional parallel I/O and five onboard programmable timers.

Add to that vectored interrupts.

ENORMOUS EXPANDABILITY

Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of S100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A / D and D / A conversion. RAM and ROM cards, too.

EASY TO USE

Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations and call machine language subroutines.

Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

AVAILABLE NOW/LOW PRICE

The Cromemco Model SCC is available now at a low price of only $\$ 450$ factory assembled (\$395 kit).

So act today. Get this high-capability computer working for you right away.

Foreground

JOYSTICK INTERFACES by Steve Ciarcia
An interface for every purpose
INTRODUCTION TO MULTIPROGRAMMING by Mark Dahmke Some basic concepts

INTERFACE A CHESSBOARD TO YOUR KIM-I by leff Teeters Play chess with a computer as easily as with a human opponent

A LOW-SPEED ANALOG-TO-DIGITAL CONVERTER by Richard C Hallgren Perform real-time data analysis

THE NATURE OF ROBOTS, Part 4 by William I Powers A simple, human experiment

NEXPENSIVE, OPTICAL PAPER-TAPE READER by Brian A Harron A manual paper-tape reader with no moving parts
130
A MODEL OF THE BRAIN FOR ROBOT CONTROL, Part 4 by James Albus Decision-making procedures

Background

62

SOME MUSINGS ON HARDWARE DESIGN by Clayton Ellis Simple design techniques

SOLDERING TECHNIQUES by William Trimmer
A picture essay
HANDY PULSER by Bob Chrisp
A simple, circuit-debugging tool
THE AMSAT-GOLEM-80 by Joe Kasser
A modular and inexpensive S-100 computer system
ADD SOME CONTROL TO YOUR COMPUTER by Ken Barbier Let your computer influence the outside world

Cover Art: Fantasy on Homebrewing by Robert Tinney.

Book Reviews 122,152
Letters 150
Languages Forum 164
Event Queue 176
What's New? 214
Reader Service 256
BOMB 256

Editorial: The Rationale of
Yet Another Homebrew System 6
Programming Quickies 58,126
Unclassified Ads 61
BYTE's Bits 80
Technical Forum 82
Clubs and Newsletters 92
BYTE News 115

Nucleus

Cover Art: Fanty on Honebrewing by Robert Tinte.

[^0]
In This BYTE

Building a joystick interface for your computer system adds a new physical input dimension. There are as many different ways to interface a joystick as there are applications. Steve Ciarcia discusses several widely varying ways to design Joystick Interfaces. Page 10

The idea of having a microcomputer work in a multiprogramming environment is becoming a reality. Already there are several multiprogramming systems on the market. Mark Dahmke provides an Introduction to Multiprogramming so we can understand how these systems operate.

Page 20

About the Cover
On this issue's cover. Robert Tinney has created a "fantasy on homebrewing." In the middle of a sylvan glade, we see the form of a computer being sculpted by some homebrewer. A couple of humanoid forest denizens look on with wonder, perhaps hoping to get a glimpse of our homebrewer on his return to the workplace.

If you enjoy playing chess against your computer, but dislike typing in the moves in abstract notation, you will be interested in a method of allowing the computer to detect moves made on a real chessboard. Jeff Teeters devised such a method and now tells us how he did it in Interface a Chessboard to Your KIM-1.

Page 34

Some Musings On Hardware Design by

 Clayton Ellis provides readers with background information on picking integrated circuits and using them in homebrew work.Page 62

Although there are many applications where a high-speed analog-todigital converter is necessary, many conversion applications can make do with a slower conversion. Richard C Hallgren has built A Low-Speed Analog-toDigital Converter for the Apple II which he uses as a real-time data analyzer.

Page 70

When constructing electronic equipment, it is imperative that good Soldering Techniques are developed. William Trimmer presents a photo essay of good soldering practices and several examples of unwanted techniques.

Page 84

William T Powers brings his discussion of The Nature of Robots to a close by applying the previously-discussed techniques and theories in a simple experiment with a human subject.

$$
\text { Page } 96
$$

The search for the inexpensive paper-tape reader continues as Brian

A Harron describes an Inexpensive, Optical Paper-Tape Reader. Page 118

James Albus considers the mechanisms of choice in his closing article about A Model of the Brain for Robot Control.

Page 130

A Handy Pulser can prove to be very useful when testing a digital circuit. Bob Chrisp shares with us his version of a useful pulse generator.

Page 160

In The AMSAT-GOLEM-80, Joe Kasser shows how your computer club (or any other group of experimenters) can economically build an S-100 microcomputer. The system is modular and expandable.

Page 182

Performing simple control functions with your computer can be easy. Ken Barbier describes how to Add Some Control to Your Computer.

Page 196

Publishers Virginla Londoner Gordon A Williamson Assoclate Publisher John E Hayas Assistant Jill E Callihan	Production Director Nancy Estle Production Editors David WIllarm Hayward Arn Graves Falth Hanson Warsen Willamson	Advertising Director Patricia E Burgess Assistants Ruth M Walsh Mation Gagnon Janet Ames Elleen Kind
Editorial Director Carl T Heimers If Executlve Editor Christopher PMorgan Editor in Chle Raymond G A Coto Senlor Editor Blaise W Liffick Editor Richard S Shuford Assistant Editors Kent Richard Bob Bralsted Editorial Assistants Gale Britton Faith Ferry Naw Products Editor Clubs, Newsletters Laura A Hanson Drafting Jon Swanson	Robin M Moss Anthony J Lockwood Art Director Elen Bingham Production Art	Adv/Prod Coordinator Thomas Harvey Adverfising Billing Noreon Bardsley Don Gardslay
	Christina Dixon Holly Carmen LaBossiore Deborah Porter	Cliculation Manager Gregory Spitzfaden Assistants Pamela 7 Heasilo
	Typographers Chery A Hurd	Agnes E Perry Melanie Bertoni
	Debe L. Wheeler	Barbara Ellis
	Sherry McCarthy	Doalor Salos
	Kathy Beckor	Ginnie F Boudrieau
	Photostat Technician	Anne M Baidwin
	Tully Londiner	Receptionist
		Jacquelint Earnshaw

National Advertising Sales Representatives: Hajar Associates Inc East 280 Hillside Av Needham Heights MA 02194 (817) $444 \cdot 3946$ 521 Fifth Ay New York NY 10017 (212) 682-5844 Midwest 6B4 N Michigan Ay Suite 1010 Chicago IL 60611 (312) $337-8008$ West, Southwest 1000 Elwell Ct Suite 227 Palo Alto CA 94303 (415) $984-0708 / 714 / 540-3554$
Traffic Department Mark Sandagata Thomas Yanni
Comptraller Kevin Maguira Assistant Mary E Fluhr

Otlicers of McGraw-Hill Publications Company: Gordon L. Jones, President, Group Vice Presidents: Daniel A McMilian, James E, Boddorf; Sonior Viou Presidents: Russell F. Anderson: Ralph R. Schulz, Editorial; Vice Presidents: James E. Hackett, Controller; Thomas H . King. Manufacturing: Robert L . Leyburn, Circulation; John W. Patten, Sales; Edward E. Schirmer, International.

Officers of the Corporation: Harold W. MoGraw or, President Chief Executive Officer and Chairman of the Board; Robert F. Chairman of the Eoard; Robert F-
Larides, Senior Vice President Landes, Senior Vice President
and Secrefary; Ralph J. Webb, Treasurer.

6

l've seen Lanier, Vydec, Xerox, Olivetti, and Wang. l've chosen WORDSMITH from MICRO DIVERSIONS. 5

Congressman Charlie Rose Chairman, Policy Group on Information and Computers

THE
 UNOROSrraith"

TEXT EDITOA

Yes, I'd like to learn more about Wordsmith. ${ }^{\text {m }}$
 Send me your information packet.

Micro Diversions, Inc.
8455-D Tyco Road
Address
Vienna, Virginia 22180

Look for Shugart drives in personal computer systems made by these companies.

Altos Computer Systems

2378-B Walsh Avenue
Santa Clara. CA 95050

Apple Computer

10260 Bandley Dr.
Cupertino. CA 95014

Digital Microsystems inc.
(Formerly Digital Systems)
4448 Piedmont Ave.
Oakiand. CA 94611

Imsai Mfg. Corporation
14860 Wicks Blvd
San Leandro. CA 94577
industrial Micro Systems
633 West Katella, Suite L
Orange. CA 92667
North Star Computer
2547 9th Street
Berkeley. CA 94710
Percom Data
318 Barnes
Garland, IX 75042
Polymorphic Systems
460 Ward Dr.
Santa Barbara. CA 93111

Problem Solver Systems
20834 Lassen Street
Chatsworth. CA 91311
Processor Applications Limited
2801 E. Vallev View Avenue
West Covina. CA 91792

SD Sales

3401 W. Kingsley
Garland, TX 75040
Smoke Signal Broadcasting
6304 Yucca
Hollywood. CA 90028
Technico Inc.
9130 Red Branch Road
Coiumbia. MD 21045
Texas Electronic Instruments
5636 Etheridge
Houston, TX 77087
Thinker Toys
1201 10th Street
Berkeley. CA 94710
Vista Computer Company
2807 Oregon Court
Torrance. CA 90503

The Rationale of

Yet Another Homebrew System

by Carl Helmers

In this issue of BYTE, we are placing a special emphasis on the homebrewing of computers: the craft of assembling the hardware and software of a system from standard components in nonstandard ways. This month's editorial provides a continuation of notes begun in July on the design and assembly of my new homebrew 6809 system. In this editorial, we complete the final details of the physical layout and power supplies of the system, as well as the overall design of the system. We shall also begin a discussion of the actual processor card. Future installments in this series on homebrew, general purpose, computer hardware will record details of the system beyond this article's goal of defining a backplane bus structure.

As noted earlier ("Editorial," June 1979 BYTE, page 6), the intent of this exercise is to develop a specialized controller node for a loosely coupled system of processors involved with musical applications. The multiple processors initially contemplated were a Pascal-oriented, large personal computer and an ALF products model AD-8 music synthesizer with its 6502 used for housekeeping. In addition to this coordinating task, the 6809 would provide a central point for the connection of keyboards, displays and other hardware required by musical applications.

But ideas change and evolve. Since the 1st installments were written, plans have become slightly more grandiose with my recent acquisition of a New England Digital "Synclavier" music synthesizer and its associated Able/60 minicomputer. Located in Norwich VT, New England Digital is a combined spin-off of the music and electrical engineering departments of Dartmouth College across the Connecticut river in NH. The computer for the music synthesizer employs the XPL language as its high-level user interaction. The New England Digital version of XPL is augmented by a floating-point data type. With the exception of an adaptation of UCSD Pascal, which is expected to be available soon, all systems software is written in XPL, including what is described as a 3 -pass optimizing XPL compiler.
[XPL is the language described in the book A Compiler Generator, by McKeeman, Wortman, et al, published circa 1968. The commonly used microcomputer language PL/M, 1st designed and implemented by Gary Kildall, is very similar to XPL in syntax and semantics. XPL is a simple subset of PL/I, with data types restricted to character and integer forms.]
At this point, I now have a need for multiple processor communications beyond the level of 1 large machine (a Western Digital Pengine) driving a smart peripheral through a serial communications link. The smart peripheral will still handle specialized details like the parallel interface to the older synthesizer and the eventual interface to an electronically controlled player piano. See photo notes on pages 8 and 9, text continued on page 202

'After working all day with the computer at work, it's a kick to get down to Basic at home. And one thing that makes it more fun is my Shugart minifloppy ${ }^{\text {TM. }}$. We use Shugart drives at work, so when I bought my own system I made sure it had a minifloppy drive.
"Why? Shugart invented the minifloppy. The guys who designed our system at work tell me that Shugart is the leader in floppy design and has more drives in use than any other manufacturer. If Shugart drives are reliable enough for hard-working business computers, they've got to be a good value for my home system.
"When I'm working on my programs late at night, I can't wait for cassette storage. My minifloppy gives me fast random access and data
transfer. The little minidiskettes ${ }^{\text {IM }}$ store plenty of data and file easily too.
"I made the right decision when I bought a system with the minifloppy. When you lay out your own hard-earned cash, you want reliability and performance. Do what I did. Get a system with the minifloppy.

If it isn't Shugart, it isn't minifloppy. \sim Shugart

Hardware Basis...

These photographs depict some further details of the physical hardware of the new homebrew 6809 computer system. As noted earlier, Vector Electronic Co components were used for the assembly of a backplane. Photographs 1 through 5 show various aspects of the new design's packaging.

Photo 1: The new computer system's final physical mounting basis is a mahogony box with guide blocks for the backplane assembly. Power supplies are located underneath the box. Power for the computer and accessories will be controlled by the standard, household wall switch mounted on the side of the box. Power connections to the backplane power buses will pass through a hole underneath the backplane in this photo. The hole provides an exit path for the flow of hot air from the power supplies.
Individual boards of the system plug into the backplane from the top as shown here. The backplane assembly slides into the grooves of the 2 guide blocks. These blocks are bolted to the top of the box using 1/1-20 machine-screws and threaded inserts. The grooves for the backplane board were cut 1/16th of an inch wide with a router and edge guide. The woodshop tools required to fabricate this case included a table saw, electric hand drill, drill press, router, belt sander, sabre saw, and the usual collection of hand tools.

Photo 2: The power supply modules are attached to 2 wooden brackets which are screwed into the main box by means of 1/4-20 machine-screw threaded inserts. The power supply modules are mounted on the brackets using \#8-32 threaded inserts. Ordinary brass finish door stops serve as legs to keep the assembly off the table top, thus allowing natural convection to cool the power supply modules.

No attempt is made to calculate heating factors. The inverted cup shape of the box seems like an excellent trap for heat, however, the large hole beneath the backplane assembly at the top of the box provides a relatively low-impedance outlet for the heated air from below. If the temperatures observed under load are excessive, then a fix will be necessary. In a commercial or industrial engineering situation where production of a product is contemplated, this "patch up after problems" strategy is not the recommended practice due to the possibilities of costly errors, but for one of a kind products in a noncommercial and highly experimental context, it is certainly acceptable and can economize on time.

Photo 3: (a) Brass machine-screw inserts to provide metal to wood fastening in the

(2)

(3a)

assembly of the computer housing. These particular parts were purchased from the Brookstone Co Peterborough NH.
(b) When inserting the machine-screw fasteners into hardwood, better results were obtained when the hole drilled in the wood was 1/64th of an inch larger than the recommended size in the instructions. A short section of the machine-screw to be used, together with a hex nut, provide a tool for driving the insert as shown in this picture. When using the \#8-32 inserts in hardwood, a slightly larger hole than suggested in the instructions is a necessity. Unless the extra clearance is given, the torque on the \#8-32 bolt used in driving the insert will cause the insert to twist apart after 1 or 2 uses.

Photo 4: The backplane is the first and the most tiresome wiring involved with
assembly of a small computer. Its definition is provided by the simple instructions:

FOR each free socket, pin BY NUMBER
OF each socket,
CONNECT that pin to the same pin of the next socket in the backplane!

The backplane assembly was described in the notes of the July 1979 BYTE, page 194. This photo shows the finished backplane after all wiring and installation of bypass capacitors has been completed.

Photo 5: The wiring of the backplane, as well as the rest of this computer, was done with the Vector Electronic Co's "slit-Nwrap" technique. An electric eraser was used to motorize the connections, with an adapter custom-made on a small lathe. It is
recommended that motorized wiring be employed with the "slit- N -wrap" technique. In previous experimental electronics built with this technique, reliability problems were encountered with manual termination of the wires to wirewrap socket posts. Motorized wrapping with this tool provides a uniform and higher force for stripping the insulation off the wire.

At (a) is the adapter: a hollow tube made from 2 junk box spacers, a \#10-32 bolt with a hole drilled through it, a brass union between the 2 spacers, and a large brass adapter to which a $\# 10-32$ nut is soldered. (This latter kludge is what happens when one makes an adapter on a Sunday afternoon and a \#10-32 tap is not available!) At (b) the completed adapter is mounted in the Bruning Electric Eraser in a typical use situation.

Aispcibs Bircuir Gellep

Joystick Interfaces

Steve Ciarcia
POB 582
Glastonbury CT 06033

Photo 1: A typical joystick with 4 potentiometers.

The thought that often comes to mind when the word joystick is mentioned to a computer enthusiast is of a spacewar-type game. A photon torpedo is fired from an opponent's starship, and the thruster joystick is deftly moved to reposition the craft out of its path. All of this occurs without having to take your eyes off the screen. Eye/hand coordination is almost "instinctive." With a glance to the upper right of the video screen, the joystick is tilted to the upper-right corner of its 360° range. This moves the spacecraft toward that coordinate. Reverse thrust is accomplished by moving the joystick in the opposite direction, as though you are pulling back on the throttle of a real
craft. Such is the general experience with joysticks. However, the potential use of these devices greatly exceeds that of game playing.

A joystick, for those people who are unfamiliar with one, is shown in photo 1. It is an electromechanical device with resistance outputs proportional to the X, Y displacement of a central ball and lever. Photo 2 illustrates the mechanical connections to the potentiometers.

When the stick is positioned in the center of its axes, the X and Y potentiometers show resistances in the center of their ranges. When the stick is tilted to the upper right, both potentiometers are at their fullresistance limit, while the opposite

Photo 2: Note how moving the stick moves the gimbal arrangement, which in turn changes the settings of the potentiometers.
(lowest resistance) is true when in the lower-left position. The outputs of the 2 potentiometers accurately track, as if on an X, Y coordinate axis, the position of the joystick. It should be noted that while it takes only 2 potentiometers to define 2-dimensional travel, most joysticks are manufactured with 4 potentiometers. This is a remnant of the days when joysticks were connected directly to the 4 deflection-plates of a cathode ray tube (video screen).

It is one thing to consider interfacing a joystick to a computer, and quite another to do it. A joystick is a mechanical X, Y positioning device. Even with proportional output resistances, an input interface must be designed to convert position from an analog to a digital representation which can be used by the computer. A further consideration is the resolution, or percent, of full-scale travel per bit sensitivity. Is the application so gross that center and full-scale are the only points of interest, as in a

TARBELL VDS $=10$ Uertical Disk Swibsystem

SYSTEM INCLUDES:

- 2 Siemens 8" Disk Drives
- 1 Cabinet with Fan and Power Supply.
- 1 Tarbell Floppy Disk Interface, assembled \& tested.
- 1 CP/M Disk Operating System.
- 1 Tarbell BASIC.
- All Cables and Connectors.
- Complete User Documentation.
- Fully factory assembled and tested.
Price
$\$ 1888.00$

Figure 1: Low-resolution static interface. This interface is for 12-potentiometer joystick. For 4-potentiometer joysticks, build a second circuit like this one, and interface it to another input port. Note that if the comparator does not trigger at full-scale setting, a small resistor may have to be added at $R x$ (marked with asterisk).
game control, or is the application one which requires fine control, such as a cursor-positioning device in a high-resolution graphics system?

All joystick interfaces are not created equal. There is a trade-off between hardware and software. The lower the resolution, the fewer the parts. The higher the resolution, the greater the electrical complexity or the software interaction with the interface. It is also important to recognize that computer systems which operate only in a high-level language like BASIC cannot use an interface design that requires an assembly language subroutine as an integral component. In such instances only a static interface can be used.

Included in this presentation are 4 interface designs which should cover most requirements, as well as demonstrate the considerable differences between them. The 4 types are:

- low-resolution static
- high-resolution fully static hardware
- software-driven pulse-width modulated
- high-resolution analog-to-digital

Low-Resolution Static Interface

First of all, static simply means that the interface hardware determines the potentiometer position value and presents it in constant, parallel digital form to the computer. When the interface is attached to any parallel input port, this joystick value can be read with a single INPUT command in BASIC. As far as the computer is concerned, the value is fully static, and the computer reads whatever data is there when the INPUT is executed. The interface hardware has the responsibility of asynchronously updating the digital value as the stick is moved.

Often the joystick is simply used to indicate relative direction and magnitude. In a wheelchair, for instance, full linear control of speed
and direction would require rather expensive drive electronics. Most chairs use simple relay contacts and provide 2 or 3 selectable speeds. A joystick control built for this application would not have to have a resolution of 8 bits, but could, in fact, suffice with 2. Figure 1 shows a lowresolution static output joystick interface suitable for use in this application.

Each potentiometer is connected as a voltage divider between a reference voltage source of 3.9 V and ground. The voltage output of each potentiometer is, in turn, fed to a 2-bit, parallel analog-to-digital converter. This type of converter uses 4 comparators set for $25 \%, 50 \%, 75 \%$, and 100% of full scale. If a voltage, when applied, is less than 0.975 V , all comparator outputs will be at 0 V . At 1.0 V , corresponding to the joystick being moved 25% of full scale, the least significant bit (LSB) of the converter will be a logic 1, while the other bits are low. Similarly, at full input all

theirs.

ours.

So you didn't think documentation made a difference.

Sure, MicroSource is flexible, powerful, versatile. Sure, it's sophisticated yet simple: the first user-oriented software. But you may not be aware of the biggest difference of all. Documentation. The most extensive in the industry.
Support makes a difference, too. The support of some of the world's leading microcomputer people. The support of stringent field testing and follow up. The invaluable support of business software experts dedicated to helping you manage information in real-world environments. Not just when you acquire software, but as you implement, as you train, as you use Microsource to solve your contemporary business problems.
The MicroSource Difference means dealer support, too: we back every dealer with our experience, our
knowledge, our integrity. Plus, the materials and resources he needs to provide the finest in software solutions and data base management.

From AutoScriber ${ }^{\text {TM }}$, the versatile word processing package that means business . . . to Bookkeeper ${ }^{\text {m'M }}$, designed by a CPA to produce efficient client writeups. From the powerful LedgerPlus ${ }^{\text {TM }}$ financial package to MoneyBelt ${ }^{\text {TM }}$, the flexible accounting system, both for small to medium sized businesses . . . or small to medium sized departments of big corporations. TimeKeeper ${ }^{\text {ru }}$ - for the professional practice or the corporate service department - bills for time, when time means money. All MicroSource is backed by exhaustive operations manuals, incomparable factory support, and system expandability. It runs on North Star, Vector Graphics, Heath Data Systems. Apple and TRS-80 . . before long, CP/M. Cromemco, Data General and MicroNOVA. Sample the MicroSource difference.

FYICIUSUMIC

Ask your dealer about powerful, user-oriented MicroSource software. Or call the telephone number below for the nearest MicroSource dealer near you.
comparators will be triggered, and bits 0 thru 3 will be logical 1 s .

Additional encoding logic can be added to produce a true 2-bit representation from the 4 comparators, but it is just as easy for a computer to interpret it directly. With a

4-bit connection as shown, used in a BASIC program, 25% of full scale would be 1 decimal, 50% of full scale would be 3 decimal, 75% of full scale would be 7 decimal, and full scale would be 15 decimal. It should be easy to trigger any action by a coin-
cidence with these values. The real significance of this method is that the potentiometer position is presented statically to the computer and requires no other interaction. This makes it ideal for direct use with BASIC.

High-Resolution Static Interface

It is quite possible that 2 bits of resolution is not enough for your application, but direct compatibility with a slow, high-level language is still a requirement. Expanding the parallel comparator method will work in theory, but you must realize that a 4 -bit analog-to-digital converter uses 15 comparators, and an 8 -bit, parallel analog-to-digital converter needs 255 comparators! So much for that method.
Realizing that the output of the joystick is a variable resistance, we can use this to advantage. This resistance can set the time constant of a

Number	Type	$+5 V$	GND
IC1	74121	14	7
IC2	74121	14	7
IC3	7486	14	7
IC4	7400	14	7
IC5	7400	14	7
IC6	7404	14	7
IC7	7493	5	10
IC8	7493	5	10
IC9	7495	14	7
IC10	7495	14	7
IC11	7493	5	10
IC12	7493	5	10
IC13	7495	14	7
IC14	7495	14	7
IC15	NE555	8	1

Figure 2: High-resolution, static interface. Each potentiometer in the joystick controls the pulse width of a one-shot. The pulse width can vary from 35 ms at fullscale to $100 \mu \mathrm{~s}$ at 0 . If a joystick with 4 potentiometers is used, a duplicate circuit may be constructed for the 3rd and 4th potentiometers.
function which has a pulse width proportional to joystick position. Figure 2 illustrates an interface design which uses this technique.

The 2 joystick potentiometers R1 and R2 control the pulse width of a one-shot (monostable multivibrator). The one-shot has a pulse width of 35 ms when the potentiometer is at 50 k ohm full scale and something less than $100 \mu \mathrm{~s}$ at 0% of full scale. A 7.5 kHz clock signal asynchronously triggers the one-shots. When the one-shot fires, its duration is proportional to the joystick position and will vary from approximately 0 to 35 ms . Using midscale pulse width of 17 ms as an example, the circuit timing is as in figure 3.

On the leading edge of the one-shot signal, a clear pulse is generated through an edge detector configured 7486 device. The clear pulse resets the 2 7493s which form an 8 -bit counter. Once cleared, the counters start counting clock pulses for the duration of the one-shot's period. On its trailing edge, a load pulse is generated which loads this 8 -bit count into an 8 -bit storage register. The computer is connected to read this 8 -bit value through a parallel input port. Successive clearing and counting operations update the register every 35 ms or so (worst case). The clock rate is 7.5 kHz which has a period of $133 \mu \mathrm{~s}$. If the one-sho: has a pulse width of 17 ms, then 127 clock pulses would be
gated to the counter. Of a total possible 255 counts, 127 would represent 50% of full scale.

Software-Driven Interfaces

So far I have discussed only static interfaces. If the computer used with the joystick has sufficient speed and excess computing time available, then it is reasonable to use the computer to directly determine the one-shot period.
Figure 4 shows a circuit which directly connects to the computer bus and demonstrates this technique. The circuit as shown is wired for I/O (input/output) port decimal 255 or hexadecimal FF. The 4 joystick potentiometers are used as the timing resistors on 4 NE555-type one-shots. When an OUT 0, FF is executed in assembly language, it triggers all 4 one-shots. To keep track of the pulse widths, a 741253 -state driver gates the one-shot outputs onto the data bus during an IN FF instruction. By looping through this program a number of times and keeping track of the logic levels of the 4 one-shots, the computer can accurately determine joystick position in terms of loop counts of instruction times. Listing 1 is a program which does this for 1 potentiometer.

High-Resolution Analogto-Digital

While all methods are in some way analog-to-digital converters, the last
CLOCK
ONE SHOT Q
CLEAR
LOAD
COUNT

Figure 3: Timing diagram for interface of figure 2. The driving clock signal is 7.5 kHz . The one-shot can be triggered for periods of 0 to 35 ms , depending upon the position of the joystick. When a reading is to be taken, the counters are cleared. Counts are made until the one-shot signal drops, and then a load signal is sent to the interface. At this point the counter is read to determine the position of the joystick.

AGAIN	MVI OUT INR IN ANA JNZ HLT	$\begin{aligned} & \text { B } \\ & \text { FF, } 0 \\ & \text { B } \\ & \text { FF } \\ & 01 \\ & \text { AGAIN } \end{aligned}$	clear B trigger one-shots increment B register read potentiometers isolate bit 0 continue as long as one-shot is high value is in B register

Listing 1: A typical assembly language program for using the joystick interface of figure 4. After the one-shots are triggered, the program loops and checks the status of bit 0 . When this bit is set, the conversion value is in register B. This program assumes that there is only 1 value being checked, and it is being input through bit 0 .
method is in fact an 8-bit absolute-analog-to-digital converter, typical of the type used in computerized measurement applications. IC1 is an 8-bit

Number	Type	+5 V	GND
IC1	NE556	14	7
IC2	NE556	14	7
IC3	7430	14	7
IC4	7400	14	7
IC5	74125	14	7

digital-to-analog converter that produces an output voltage proportional to a digital input applied to pins 5 thru 12. For a complete explanation of this device, I refer you to a previous " Ciarcia's Circuit Cellar" article, "Control the World" (September 1977 BYTE, page 30). This article also outlines calibration and test procedures.

The 3 basic sections are a computer-controlled voltage source (ICs 1 and 2), an analog-input multiplexer (IC3) which selects an individual joystick potentiometer by a 2-bit address code, and a comparator (IC4) which compares these voltages. In operation, the digital-to-analog converter is first set to 0 V out (hexadecimal 00 digital input to it) and 1 potentiometer is selected through the multiplexer. If VO from the digital-toanalog converter is less than $\mathrm{V}_{\text {in }}$ from the potentiometer, the output will be logic 0. Next, the digital-to-analog converter input setting is incremented, and the comparator output is checked again.

Eventually an input count will be reached which will exceed $V_{i n}$. The comparator output will then be a logic 1. The digital-to-analog converter input count is now the value of the voltage $\mathrm{V}_{i n}$. The worst case requires 256 iterations using this

Figure 4: Software-driven interface. If the computer can directly read the input from the joystick interface, the hardware required can be greatly simplified. When hexadecimal FF is output to port 0 , all 4 one-shots are triggered. The pulse width is then determined by a program running through a short loop looking at the logic levels of the 4 one-shots. Listing 1 shows a typical program for this application.

no loose ends All-In-One: computer, floppy, I/O, 16K RAM. ${ }^{\$ 1595^{*}}$

New Heathkit ${ }^{\oplus}$ H89

All-In-One Computer

Heath takes the risk out of selecting a balanced computer system. Now, video terminal, floppy, keyboard and 8-bit computer are brought together in one self-contained, compact unit. Nothing hangs out.

Two Z80's

The personal computer has never been simpler. Or smarter. Two $\mathbf{Z 8 0}$ microprocessors mean terminal never shares power with computer, as do most desk-top units. So this terminal is capable of a multitude of high-speed functions, all controllable by keyboard or software.

102 K bytes storage

Built-in floppy disk system gives you fast access to programs and data. Each $51 / 4$ inch diskette has more than 102 K bytes of storage area, enough to hold entire files. The All-In-One comes with 16 K RAM, expandable to 48 K .

Hundreds of uses at home or work

The All-In-One Computer runs programs written in MICROSOFT ${ }^{\text {IU }}$ BASIC and ASSEMBLER Languages. And it accepts all current software written for the popular Heathkit H8 computer. You can choose from scores of practical programs for home and business.

Learn by building

What better way to learn about computers than to build one yourself? The All-In-One is available in easy-to-build kit form, as well as completely assembled. Like all Heath electronic kits, it comes to you with its own easy-to-follow assembly manual and a nationwide network of service centers to assure smooth sailing.

FREE CATALOG

For complete detalls on the Heathkit H89 All-In-One Computer and nearly 400 other electronic kits for your home, work or pleasure, send today for the latest Heathkit Catalog of values.

- $\$ 1195$ without floppy. Mail order kit price, F.O.B. Benton Harbor, MI. Also available at Heathkit Electronic Centers at slightly higher prices. Prices subject to change without notice.

Figure 5: High-resolution analog-to-digital conversion. This hardware-oriented device multiplexes 4 voltage inputs (from the joystick potentiometers) and has the capability of handling 4 more voltages.
method. A better technique is successive approximation where the computer progresses through a binary search to "zero in" on the final value. A full explanation of successive approximation is delineated in my article entitled 'Talk to Me: Add a Voice to Your Computer for \$35" (June 1978 BYTE, page 142).

With the digital-to-analog converter set for a full-scale value of 2.56 V, each count is equivalent to 10 mV . Only 4 channels of the CD4051 are used for the joysticks, leaving another 4 channels as auxiliary inputs from external sources. Thus it is possible for this interface to serve a dual role because of its high accuracy
and resolution relative to the other methods.

You should now realize that both the design and construction of a joystick interface are influenced by many factors. It is not unusual to find one manufacturer charging $\$ 50$ for a joystick, while another charges $\$ 200$. Resolution, accuracy, and software interaction are the prime considerations. Where static inputs are required, the hardware will necessarily be more complicated. Resolution and accuracy ultimately determine the complexity of the interface.

For simple spacewar-type games, the circuit of figure 1 should suffice. For more demanding applications such as cursor control in a highresolution graphics system, figure 5 may be the optimum choice. Be careful when buying joystick interfaces. Make sure that they mate with your program requirements and your system's abilities.

Next month's "Circuit Cellar" feature will discuss a stand-alone, light-emitting diode display board.

"Our inventory is our existence. Think we'd trust it to anything less than Scotch Brand Diskettes?"

Don Stone, President, Mass. Auto Supply Company, Inc., Boston, Mass.

Scotch Diskettes are the diskettes you can depend upon with the information your business depends upon

Each one is tested and certified error-free before it leaves our factory. Because we know nothing less than perfection is acceptable for your vital business data.

Scotch Diskettes are available in regular or mini sizes, compatible with almost any system.

To find out where you can purchase Scotch Diskettes, call toll free: 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division. In Canada, write 3MCanada Inc., London, Ontario, N6A 4T1.

If it's worth remembering, it's worth Scotch Data Recording Products.

Introduction to Multiprogramming

Mark Dahmke
8312 Selleck
600 N 15th St
Lincoln NE 68508

Multiprogramming has usually been considered out of reach of the average personal computer experimenter using a small or medium scale computer. Actually, anyone with a processor above the level of an 8008 can operate a multiprogram or multiuser system. The original purpose of multiprogramming was to allow more than 1 user to take advantage of a computer simultaneously. This increased the productivity of the machine by allowing programs to run while other programs were awaiting user input, access to a disk, etc.
This may seem to conflict with the advantages inherent in microprocessor based systems (single user systems and low cost). However, there are many instances where the ability to run more than 1 program at a time may be advantageous. Note that the statement "more than 1 program may run at a time" does not mean simultaneous execution. That is the definition of multiprocessing (more than 1 processor on the bus), not multiprogramming.
To describe multiprogramming more effectively, I shall refer to a more well-known function in computers: real-time interrupts. Suppose we are using a microcomputer to manage the environment in a small office building. Normally we want to continually poll (scan) the sensors that are distributed throughout the building and adjust heating, cooling and lights on the basis of temperature and time of day. Let us say that
during normal operation, someone in the building wants to change the temperature of an office.

One way to do this is to have a video terminal and keyboard attached to the system that generates an interrupt when a keyboard request is made. Upon receiving the interrupt, the computer saves the status of the current program and enters or transfers control to the keyboard read routine. As soon as the user has made the desired change, the system loads the old status information and returns to the original program. This same interrupt technique could be used to design a time shared system that would allow several terminals to be hooked up to a processor. Each terminal would generate an interrupt, and whichever program was active would be put in a wait state. This arrangement only works well for a few terminals, though. You can imagine what would happen if everyone happened to press a key at the same time.

Figure 1 shows timing comparisons of several modes of operation already discussed. In figure la 2 independent processors are shown, each doing something different and neither interfering with the other. This is known as multiprocessing. The processors may or may not be sharing I/O(input/output) terminals or memory.
In figure 1b 2 processors are shown in a master-slave arrangement. Perhaps the slave processor performs
floating point arithmetic or some complex I/O function. The master processor can give the slave processor commands via an interrupt and continue other processing until the slave informs it that it has finished the desired operation.

Figure 1c shows a single processor with an interrupt being applied. The processor temporarily gives control to the routine specified by the interrupt hardware and begins executing it. When complete, it returns control to the main program. Figure 1d shows the multiterminal timeshare system. Usually the interrupt hardware contains provisions for daisy chaining or prioritizing the interrupts as they come in. Thus, if terminal 6 applies an interrupt and the processor is busy with terminal 7, terminal 6 is not allowed to interrupt the processor until terminal 7 is finished.

Using multiprogramming is like using real-time interrupts. A multiprogrammed system uses interrupts, but in a more efficient way. Imagine a simple 2 program situation. Suppose program A is running and no other

[^1]

WE'RE ALTOS COMPUTER SYSTEMS. Our SUN-SERIES ACS8000 business/scientific computer creates a new standard in quality and reliability in high technology computers.

HIGH TECHNOLOGY The ACS8000 is a single board, Z80®* disk-based computer. It utilizes the ultra-reliable Shugart family of 8 inch, IBM compatible, disk drives. A choice of drives is available: single or double density, single or double sided. Select the disk capacity you need, when you need it: $1 / 2 \mathrm{M}, 1 \mathrm{M}, 2 \mathrm{M}$, or 4 M bytes. The ACS8000 features the ultimate in high technology hardware: a fast $4 \mathrm{MHz} \mathrm{Z80}$ CPU, 64 kilobytes of 16 K dynamic RAM, 1 kilobyte of 2708 EPROM, an AMD 9511 floating point processor, a Western Digital floppy disk controller, a 280 direct memory access, Z80 Parallel and Serial I/O (two serial RS232 ports, 1 parallel port), and a Z80 CTC Programmable Counter/Timer (real time clock). In essence, the best in integrated circuit technology.

BUILT-IN RELIABILITY The ACS8000 is a true single board computer. This makes it inherently reliable and maintainable. The board and the two Shugart drives are easily accessible and can be removed in less than five minutes. All electronics are socketed for quick replacement. Altos provides complete diagnostic utility software for drives and memory.

QUALITY SOFTWARE Unlimited versatility. The ACS 8000 supports the widely accepted $\mathrm{CP} / \mathrm{M}^{(® * *}$ disk operating system and FOUR high level languages: BASIC, COBOL, PASCAL and FORTRAN IV. All available NOW.

PRICE ACS 8000-1, single density, single-sided [$1 / 2 \mathrm{Mb}] \$ 3,840$ ACS $8000-2$, double density, single-sided [1 Mb] $\$ 4,500$ ACS $8000-3$, single density, double-sided [1 Mb] $\$ 4,800$ ACS $8000-4$, double density, double-sided [2 Mb] $\$ 5,300$
Brackets show disk capacity per standard two drive system. All models come standard with 32 Kb RAM and two $8^{\prime \prime}$ disk drives as shown above. Expansion to 64 Kb is $\$ 363$ per 16 Kb . FPP, DMA, software optional. Dealer/OEM discounts available. Delivery: 30 days ARO, all models.

- Z80 is a trademark of Zilog. Ine.

Circle 6 on inquiry card
${ }^{-} \mathrm{CP} / \mathrm{M}$ is a trademark, of Digital Research, Inc.
programs have been started. Then a user initiates (loads) another program called B. How will program B gain control of the system so that it might start to execute?

The process of passing control from one program to the next is usually handled by an operating system module referred to as an interrupt call routine. Normally, to save the programmer the trouble of making sure that this routine gets called at regular intervals, the routine is usually imbedded in many of the I/O driver routines or other standard utility subroutines on a system. Note that this technique will in no way upset any of the flags or registers of the routine it is called from.

This interrupt call program will:

1. Determine if any other programs are waiting to execute.
2. If so, save all registers and flags on the stack and save the address of the current program's stack pointer in a special table in memory.
3. Load the new program's stack pointer from the table, pop all registers and flags off the stack.
4. Return to the new program.

Loading the new stack pointer raises some interesting questions. If program B has not yet begun, how could its registers have been pushed onto its stack? Figure 2 shows the stacks of both programs as they would be at each step in the previously described interrupt call routine. Part of the job of the routine that initialized program B is to set up a dummy stack and stack pointer such that the program counter address on the top of the stack contains the entry
point of program B. Thus, when the interrupt call routine reaches step 4, it will execute a return instruction, then pop the entry point address off the stack and begin executing program B. When the interrupt routine is called again, it will see that program A is waiting and will save all of program B's registers and flags, swap stack pointers and return to program A at the point where it was first interrupted.

All this activity will take place every time the interrupt routine is called, but if one of the programs gets caught in an infinite loop, the interrupt call routine may not get called. The simplest way to avoid this kind of problem is to add some hardware to provide external timed interrupts. As shown in figure 3, the interrupt timer is set to provide an interrupt every 10 ms . A reset line is provided

Figure 1: Timing diagrams for 4 different system organizations. Figure $1 a$ is a multiprocessing example using 2 independent processors. Figure 16 is a multiprocessing example using 2 processors connected in a master-slave configuration. Figure 1c is a single processor with 1 level of interrupt. Figure 1d is a single processor with 8 levels of interrupts. Each of the 8 levels is activated by 1 of 8 terminals.

Figure 2: Arrangement of all stacks and stack pointers at each interval of an interrupt call routine.
in the event that the interrupt routine is manually called (through the software method). The timer may be reset to give the program its full 10 ms . A disable line is provided to allow the user to turn off the timer for special applications (software timing) in which the processor must not be interrupted.

Figure 4 shows our previous example of figure 1, but with the extra hardware generated interrupts added. In figure 4a some software interrupts are mixed in with the hardware interrupts. The timer is reset after each call to the interrupt routine. Figure 4 b is the same except that the timer is not reset after each call.

A Complete System

There are limitless ways to go about developing a computer system that will be easy to use. A look at the current market shows this to be true, perhaps even to a greater extent on the small systems level. I will not attempt to describe all possible variations available on a multiprogram-
ming system, but I will try to give as The following are essential: generalized a view as possible.
First, we must consider what is necessary to make a useful system.

1. Some form of operating system that allows simplified user com-

Figure 3: Simple hardware interrupt timer set for 10 ms intervals.

Figure 4: Interrupt timing example of figure 1 reviewed with the addition of a hardware timer. The timer may be used in 2 ways: The example in figure $4 a$ resets the timer on each interrupt call. This allows each program to receive its full 10 ms time slot. The example in figure $4 b$ does not reset the timer. Therefore, a hardware interrupt occurs every 10 ms .
munications (ie: BASIC, DOS, CPM).
2. Convenient mass storage 1/O (cassette or disk).
3. Sufficient memory to handle all programs.

Another consideration might be the internal architecture of the processor, but that is another level of problem.

Figure 5 shows the memory layout of a typical multiprogramming system. To maintain a simple system, I have combined the operating system

Figure 5: System geography of a typical multiprogramming system with space for the operating system and 2 other programs.
with the timesharing routines that support all terminals (video displays, keyboards and teletypewriters). This means that each time the operating system gains control (through an interrupt call or timer interrupt), it will complete its own activity and then transfer control to the timesharing program for the remainder of the time slot. If the operating system is given highest priority, the response times of the terminals should not suffer. The operation of the timeshare program can be treated as a multi-
program system in miniature, where each terminal is given a time slot, or it may be designed to simply scan the terminals, choosing a new terminal each time it is given control.

Controlling I/O

Many programmers have discovered the convenience of vectoring all I/O through 1 subroutine; this simplifies programming greatly and makes system changes much easier. Typically, 1 subroutine will accept an operand (if necessary) and an operator function code passed from the main program and will decide which I/O function to perform. In my hypothetical computer, this approach will be used. Note that in some large computer systems, the I/O driver programs can only be accessed by executing a special kind of interrupt call that informs the operating system that the user's program desires to perform some kind of input or output operation. The operating system then takes charge, performs the I/O for the program in question, and returns pointers telling where the input data was stored in memory or that the requested output function has been completed.

This type of I/O handling is necessary because the I/O controllers are extremely complex and are capable of performing an entire I/O operation

In California, a store owner charts sales on his Apple Computer. On weekends though, he totes Apple home to help plan family finances with his wife. And for the kids to explore the new world of personal computers.

A hobbyist in Michigan starts a local Apple Computer Club, to challenge other members to computer games of skill and to trade programs.

Innovative folks everywhere have discovered that the era of the personal computer has already begun - with Apple.
Educators and students use Apple in the classroom. Businessmen trust Apple with the books. Parents are making Apple the newest family pastime. And kids of all ages are learning how much fun computers can be.

Visit your local computer store

The excitement starts in your local computer store. It's
a friendly place, owned by one of your neighbors. He'll show you exactly what you can use a personal computer for.

What to look for

Your neighborhood computer store has several different brands to show you. Chances are the salesman will recommend an Apple Computer. Apple's the one you can program yourself. So there's no limit to the things you can do. The more you use your Apple the more uses you'll discover. So it's important that Apple is the computer with more expansion capability. You can't outgrow Apple.

It's your move

Grab a piece of the future for yourself-we'll give you the address of the Apple dealer nearest you when you call our toll-free number. Then drop by and sink your teeth into an Apple.
(800) 538-9696.

In California,
(800) 662-9238.
without processor intervention. In fact, it would be very inefficient to make the processor of a large system perform these menial tasks when it could be working on more important programs. In microcomputer systems we are not normally concerned with the optimization of I/O functions and it does not really hurt performance to have the processor perform most of the I/O. Consequently, the I/O driver routines in the system I am describing will not be considered as part of the operating system. They are just utility subroutines that may be called by the user's program.

Defining the Necessary Tables

With only 2 programs very few, if any tables are needed to tell the interrupt routine which program was active at the instant the system was interrupted and which program is next in line. But imagine a system capable of supporting 10 or more programs: some form of priority scheduling will be needed, as well as a table to hold all of the stack pointers of the inactive programs.

To handle the list of programs (herein referred to as tasks), we must define a task control table that keeps track of a number of pointers and descriptors. First, each entry will begin with the task number that uniquely defines each task. Next, we will include the priority of the task on an arbitrary scale of 0 to 10 . It will then get the processor before a task of lower priority (10 is highest). If 2 tasks have the same priority, the first one in line in the task control table will get control. The task control table must also keep track of the last value of the stack of each task and whether or not the task may be interrupted (in the case of critical timing loops).

Another important status byte that must be kept is the current activity indicator. This byte contains the task number of the currently active task. Now let us assume that we have 3 different tasks running and all have been initialized (stored in the task control table). The first task has a task number of 0 and a priority of 10 . Generally the operating system is

SERIAL PORTS:

AVAILABLE BAUD RATES:

MODEM:
BUS TYPE:
PRICE:
AVAILABLE BAUD
RATES:

given the task number 0 designation. Since the operating system and timeshare program (user terminals) are considered one big program in this example, task 0 is also the designation of the timeshare system. Task 1 is a program that one of the users submitted (initiated) from a terminal; it has a priority of 10. Task 2 was also loaded and initiated by a user through the timeshare terminals, and it has a priority of 10 .

Imagine that the timeshare program calls the I/O driver program to write a character out to a terminal. Since there could be many terminals connected to the system, how does the program know which one to write to? It would be very inefficient to have different routines for each device, but the only way that a program could tell the I/O driver which specific display to write to is for the calling program to know the physical address of that terminal. Passing the actual address of the device ruins the neatness of the I/O routine, though. It is more convenient to specify the function to be performed ($1=$ write to video display; $2=$ read keyboard; $3=$ write to cassette; $4=$ read cassette).

The solution is to have another entry in the task control table called a communications control block pointer that points to the location of the communications control block for the particular task. Since each task is given its own block, the user may define his or her own functions and addresses. Thus each program may have its own video display, keyboard, cassette interface and disk. The communications control block contains a list of function numbers, the address of the I / O port or memory mapped port, and the address of the I/O subroutine that will perform the operation. Figure 6 shows the arrangement of all tables.

Starting and Stopping

To initialize a new task, the user adds entries to the appropriate tables through a console command and causes a dummy stack and stack pointer to be created. To stop a task, the last thing done in the task is to call a subroutine that would remove its task control table entry. This is equivalent to a CALL EXIT in FORTRAN found on many larger systems.

Bothsidesnow

North Star Announces -

Double Density $\times 2$ Sides $=$ Quad Capacityl

The North Star Horizon now dellivers quad capacity by using two-sided recording on our new mini drives! That's 360.000 bytes per diskettel A four drive North Star system accesses over 1.4 megabytes of information on-linel Think of the applicatlon fiexibllity that so much Information storage can give youl
North Star has quadrupled the disk capacity of the Horizon computer but prices have increased a modest 15 percent. On a dollar per byte basis, that's a bargaln that is hard to beat!
The proven North Star disk controller was originally designed to accommodate the two-sided drives. North Star DOS and BASIC are upgraded to handle the new capacity, yet still run existing programs with little or no change. Of course, single slded dilskettes are compatible with the new disk system.

North Star Horizon Computer Prices (includes 32 K RAM, one parallel and two serial $1 / 0$ ports), assembled, burned-In and tested:
Horizon-1-32K-Q \$2565
Horizon-2-32K-Q \$3215
Horizon-1-32K-D
\$2315
Horizon-2-32K-D \$2765

Get both sides now! Quad capacily is available from your North Star dealer.

NorthStar

North Star Computers
1440 Fourth Street
Berkeley, CA 94710
415-527-6950 TWX/Telex 910-366-7001

Northstor

Figure 6: Control table organization. The current activity indicator contains the task number of the active task. The task control table contains the task number, task priority, last value of stack pointer, interrupt status flag (1 for yes, 0 for no interrupts), and the pointer to the task's communications control block. The communications control block contains the I/O (input/output) function code, address of I/O driver routine associated with the function code, and the I/O port or memory mapped address assigned to the task for the particular function. One entry is provided for each function code used in the task. The owner of the task may add entries to the communications control block for specialized I/O driver requirements.

Example

The easiest way to show how all tables and pointers affect each other and the system is to observe them during a short period of machine activity. As we begin, task 0 (the operating system and timeshare routines) has control, and a timer interrupt is occurring. There are 2 other tasks in memory: task 1 has priority 5 and task 2 has priority 4.

First, as the interrupt routine is entered it saves all registers and flags of task 0 on stack 0 and saves the task 0 stack pointer in the task 0 task control table entry (see figure 7). Next, it scans the task control table for the task of next highest priority, moves the new task number (task 1) to the
current activity indicator, moves the task 1 stack pointer from the task control table to the processor's stack pointer, pops all of task 1's registers and flags off of stack 1, and executes a return, which has the effect of popping the program counter and jumping to that address.
Task 1, while executing, encounters a call to the I/O driver routine with a request for a keyboard input (see figure 8). When the I/O driver routine is entered, it scans the task control table to find the communication control block pointer entry for task 1 (the routine determines which task called it by looking at the current activity indicator), then scans the communication control
block for the function number entry corresponding to the one passed by the main program. Even though the computer may have 5 or more keyboards attached to it, the port address found in the communication control block gives it the address of the keyboard assigned to task 1.

Since the keyboard read routine is a common one, the address referred to in the communication control block points to a subroutine located within the operating system area. Note that if the user had need for some special I/O subroutine, he could locate it in his own memory area and put the address in his communication control block as another function code.

Returning to the example, the keyboard read subroutine is called from the I/O driver, reads the keyboard port assigned to task 1, and returns to the I/O driver with the ASCII code. The I/O driver returns to the main program with the ASCII code in a register or memory location. In figure 9 the next timer interrupt has occurred, so control returns to the interrupt handler routine. Again, the interrupt routine saves all registers and flags of task 1 on stack 1, looks at the current activity indicator to see which program was last active, saves the stack pointer in the task 1 task control table entry, scans the task control table for the next highest priority task, and finds that task 2 should get control. The stack pointer for task 2 is loaded from the task control table, all registers and flags are popped off of stack 2 and again a return is executed that causes task 2 to take control.
In the next step (shown in figure 10), task 2 has encountered the equivalent of a CALL EXIT or STOP command and has finished processing. This CALL EXIT calls a terminator routine which again finds out who called it (via the current activity indicator) and simply eradicates the task control table entry for that task. To keep things neat, all succeeding table entries are moved up 1 notch. Then, control is returned to the interrupt handler, which will find the next task in line. In this case, since no other tasks of lower priority are waiting, control is returned to the highest priority task 0 .

Error Handling

On a single program system, error handling is something that the user can watch for manually. When several programs are running, the system must have routines to handle errors rapidly so that other programs will not be slowed down or destroyed. There are many common errors that are relatively easy to deal with. Executing an invalid op code or forgetting to put in the 2nd or 3rd byte of a multibyte op code can be handled through a simple system restart (through the interrupt handler routine) without losing continuity. But what about a program loop that accidentally destroys part or all of another user's program? On an IBM 360, all memory blocks assigned to a

Figure 7: Task 0 has control of the processor and has just been interrupted. The interrupt routine looks at all pointers, saves the status, and then transfers control to task 1.
task are given a unique 4 -bit protect key (which is the same as the task number) that is stored in external hardware.
One approach might involve having 2 external 16 -bit registers that could be loaded by the interrupt routine with the high and low memory addresses of the active task.

Then, every time the address bus has a valid address on it, it is tested against these registers. However, special precautions would have to be taken in those cases in which a utility in low memory (I/O driver routine etc) is called, or when memory mapped I/O ports outside these address limits are used.

Figure 8: Task 1 has requested keyboard input from its assigned keyboard. When the input is completed, the I/O (input/output) driver returns control to task 1.

Figure 9: Task 1 has been interrupted and turns control over to the interrupt routine. Control is then passed to task 2.
— TRANSFER OF CONTROL
—— — — o DATA OR POINTERS

Resolving Allocation Conflicts

Allocating I/O devices has been a problem since the early days of computers. Devices like tape drives and card readers (sequential devices) are nonshareable: only 1 program may use them at a time. However, disk drives are considered shareable, since the head may be positioned at random to gather data. The simplest method that can be applied to the system described in this article would be to have the initiator program check all communication control blocks to make sure that certain devices are not assigned more than once.

I/O Software Considerations

As mentioned earlier, I/O techniques in use on small systems leave all control up to the processor. If special timing is needed or if strobes or ready flags have to be checked, software is used instead of extra hardware, as in the case of larger systems. This in itself is good from the standpoint of economy, but requires that special care be taken when writing the driver and controller software.

For example, suppose a cassette read routine uses a universal asynchronous receiver transmitter (UART) implemented in software as an algorithm instead of hardware. In a nonmultitasking system, the program may simply loop and time down between bits, but in a multitask system the timer interrupt would surely halt the activity and execute other programs. It may be well over 30 ms before it can return to the cassette read routine. It is easy to see what can happen to critical timing loops on a system that uses any kind of interrupts.

The solution? If you must do the critical timing in software, it is necessary to turn off the interrupt timer while in the critical loop and reactivate it when in noncritical parts of the routine. If external hardware is used, and internal timing is reduced

Figure 10. Task 2 has completed its execution and encounters a CALL EXIT. Control is given to the terminator routine which performs some cleanup operations and removes the task 2 entry from the task control table, effectively destroying the task. Control is then given to the interrupt routine which again scans the task control table to find the next task awaiting execution.

DOUBLE DENSTTY

SOLID SAVINGS!

Now you can put your S-100 system solidly into a full-size, single/double density, 600 K bytes/side disk memory for just $\$ 1149$ complete.

DISCUS/2D ${ }^{\text {TM }}$ single/double density disk memory from Thinker Toys ${ }^{\text {TM }}$ is fully equipped, fully assembled, and fully guaranteed to perform perfectly.

DISCUS/2D ${ }^{\text {TM }}$ is a second generation disk memory system that's compatible with the new IBM System 34 format. The disk drive is a full-size Shugart 800R, the standard of reliability and performance in disk drives. It's delivered in a handsome cabinet with built-in power supply.

The S-100 controller utilizes the amazing Western Digital 1791 dual-density controller chip ... plus power-on jump circuitry, 1K of RAM, 1K of ROM with built-in monitor, and a hardware UART to make I/O interfacing a snap.

The DISCUS/2DTM system is fully integrated with innovations by designer/inventor George Morrow. Software includes BASIC-V ${ }^{\text {TM }}$ virtual disk BASIC,

DOS, and DISK-ATE ${ }^{\text {TM }}$ assembler/editor. Patches for CP/M* are also included. CP/M*; MicroSoft Disk BASIC and FORTRAN are also available at extra cost.

DISCUS $/ 2 D^{\text {TM }}$ is the really solid single/double density disk system you've been waiting for. We can deliver it now for just $\$ 1149$. And for just $\$ 795$ apiece, you can add up to 3 additional Shugart drives to your system. Both the hardware and software are ready when vou are.

Ask your local computer store to order the DISCUS/2D ${ }^{\text {M }}$ for you. Or, if unavailable locally, write Thinker Toys, ${ }^{\text {TM }} 5221$ Central Ave., Richmond, CA 94804. Or call (415) 524-2101 weekdays, 10-5 Pacific Time. (FOB Berkeley. Cal. res. add tax.)
*CP/M is a trademark of Digital Research.
Morrow makes disk memory for
Thinker Toys'
to noncritical loops, the intervention of the multitask interrupt timer will not normally affect the system. If the interrupt timer causes an interrupt just before a byte is received by the UART but returns in time for the next byte to be received, the easiest way to assure that the cassette read routine does not drop a byte is to set the timing of the interrupt oscillator to at least twice as fast as the transmission rate of the UART. This greatly reduces chances of losing a byte.

An alternate approach is to have even more hardware that forces the interrupt timer to timeout and return control to the program awaiting the data transfer operation when the incoming data is present. A third way involves the use of direct memory access (DMA) capability, in which the external controller reads the UART and deposits the data directly into memory. With this approach, the calling program need only initialize the external registers and go into a wait state until the transfer is complete, allowing the rest of the tasks to
execute normally. This last approach is used on many large systems and constitutes what is called a channel.

Managing the System

As you can see, many levels of activity are required to control a multiprogramming system properly. It is also apparent that some minimal hardware is required to prevent one user from obtaining exclusive control of the processor or writing over someone else's program or data. The use of control tables and a standard interrupt routine are also important as a way of letting the interrupt routines and I/O drivers know which task had control of the processor last.

If the user plans to run BASIC software or some other kind of language interpreter, the safety features discussed earlier may be implemented as part of the interpreter. To run a lower-level operating system that allows the user to generate assembler level code will generally require the hardware described in this article, thus safeguarding the system and its users from accidental loss of pro-
grams or data. In general, the use of timed interrupts allows for a fairly even distribution of processor activity, and depending on the cycle time of the host system, between 4 and 12 tasks may be handled without too noticeable a delay in response time

REFERENCES

Abrams, Marshall D, and Stein, Philip G, Computer Hardware and Software, AddisonWesley, Reading MA, 1973.

- Davis, William S, Operating Systems, Addison-Wesley, Reading, MA, 1977.

Martin, Donald P. Microcomputer Design, Martin Research Ltd, Northbrook IL, 1976.

Signetics Data Manual, Signetics Corporation, Sunnyvale CA, 1976.

Struble, George W. Assembler Language Programming: The IBM System 360 370, second edition, Addison-Wesley, Reading MA, 1975.

Tanenbaum, Andrew S, Structured Computer Organization, Prentice-Hall, Englewood Cliffs NJ, 1976. 1975 as a software consulting company. For the past 4 years FMG has been developing and introducing new programs designed to increase the versatility of the TRS-80. Last year we introduced the CP/M system, this year we offer the UCSD Pascat system
PASCAL
UCSD Pascal. the powerful general purpose language system. developed for large and complex systems. is now available for your TRS-80.
The FMG/UCSD Pascal system opens a new generation of value for your TRS-80. Package includes:
Operating System
Screen Editor
Z80 Macro Assembler
Library
Pascal Compiler
Utilities and System Relerence Book Price $\$ 150.00$
(Requires 48 k System with 2 drives.) Available without Macro Assembler. Linker and Library

Price $\$ 100.00$

FORTRAN

 Now On Sale!Comparable to compilers on large mainframes and minicomputers. All of ANSI standard FORTRAN X3.91966 is included except COMPLEX data lype. Therefore, users may lake advantage of the many applications programs already written in FORTRAN: Package includes:
FORTRAN Compiler
Macro Assembler (Z80)
Linker
Library
Lib Manager (Not in TRS-DOS version.)

For this month only
Price $\$ 350,00$

Manual \$25.00
(Specify TRS-DOS or TRS.CP/M versions.)

SID Symbolic Instruction Debugger

Symbolic memory reference with built-in assembler/disassembler. SID Diskette and Manuali Price \$125:00
For this Month Only
Sale Priced at $\$ 75.00$

CP/M Operating W System New 1.46 Version

Includes RS-232 and I/O Byte implementation. Editor, Assembler. Debugger and Utlitities for 8080 and Z80 Systems. For up to four TRS-80 floppy disks. Package includes: CP/M System Diskette $51 / 4 "$ CP/M Features and Facilities Manual
CP/M Editor's Manual CP'M Assembler Manual CP/M Debugger Manual
CPM Interlace Guide
Price $\$ 150.00$
(Requires 16 k and one drive minimum.)
(Set of 5 Manuals
\$25.00)
Updates for 1.4 versions owners
$\$ 15.00$

MAC Macro Assembler

Compatible with new Intel Macro standard. Complete Guide to Macro applications. MAC Diskelle and Manual: Price $\$ 150.00$
For this Month Only
Sale Priced at \$99.00

TEXTWRITER II

A text lormatting program that prints files created by an editing program. Contracts, personalized form letters and other documents can be printed from a stored library of sfandard paragraphs

$$
\text { Price: } \$ 130.00
$$

For This Month Only
Sale Priced at $\$ 75.00$
Manual
$\$ 25.00$

TRS-80
 NEW COMMUNICATOR

RS232 Communication Program allows the TRS-80 to transmit or receive programs or data files. Also makes the TRS-80 into a remote ter* minal. Requires Radio Shack RS232 and CP/M.
$\$ 25.00$

Call or Write
\rightarrow for Complete Information

A Division of Applied Data Corp P.O. Box 16020, B9 Fort Worth, Texas 76133 * (817) 294-2510 CPM is a remscievet tatyenvath of Digrat hesearch
Covporaton IAS BO sa a negrserect fiamemath of

Business Is Booming Over 240,000 Offices Nationwide And Still Growing!

The Real Estate Market has never been so widespread, profitable and competitive! To beat competition and reduce expensive labor costs, more and more real estate offices are relying upon computers to organize and direct their business transactions.
To meet this growing demand, R.S.I., Inc. ${ }^{\text {M }}$, has developed the most comprehensive Real Estate Software ever that is specially designed to satisfy the needs of all Realtors . . . large or small. The software is easy to use and requires no training.
R.S.I., Inc.rm, Real Estate Software is divided into 2 programs, Property Management and Cash Flow Analysis (forthcoming). Each program comes complete with an instruction manual that features screen-by-screen displays.
The Programs run on a DEC station $78 \& 88$ series, $C P / M^{\circledR}$ operating system type 8080 or Z-80 with 48K of memory, C Basic 2 version 2.03 , CRUN 2 version 2.03, 8 inch single or dual density floppy disks, a 132 character printer and CRT terminal with a 24×80 screen.

MAIL COUPON OR CALL... TOLL-FREE (800) 227-3474

PROPERTY MANAGEMENT SOFTWARE Comes Complete With a 200 Page Instruction Manual... With 80 Screen-by-Screen Displays ior Easy Reference!

Program includes:

* Operating Statement Report
* Balance Sheet Report
* Rent Book Report
* Management Fees Report
* Vacancy Report
* Late Rent Report
* Check Writing / Check Register
* Deposit Register \& much more...

Mail to: R.S.I. ${ }^{\text {m }}$
2126 Lombard St. I San Francisco, CA 94123
Check enclosed Bill my Master Charge VISA Send me your PROPERTY MANAGEMENT software complete with 200 pg . manual for $\$ 595.00$ (shipping \& in . surance included / CA residents add sales tax).

Acct. \#
Exp. date \qquad Signature
Name
Address
City \qquad State \qquad Zip
Telephone
DEALERSI. Check here \square and attach business card to coupon for complete details on all R.S.I. ${ }^{\text {TM }}$ Software and merchandising support!!

Interface a Chessboard to Your KIM-1

Jeff Teeters
1720 Coolidge Ct
Eau Claire WI 54701

Chess is a fascinating game. Computer chess is especially fascinating because the complex analysis which determines each move is performed by a machine instead of a human. Computer chess offers an excellent way to demonstrate the power and versatility of personal computers.

Most computer chess systems are unable to "see" a chessboard. A
human playing against a computer will usually set up a chessboard beside the computer, and the moves will be communicated to and from the machine through the use of a keyboard and a display in some type of abstract notation.

Keyboard entry of moves is undesirable. It is inconvenient, error prone, and inelegant. The abstract

Photo 1: Two pawns, a White Knight, and a loose rivet are shown on top of the electronic chessboard. One row of 8 light emitting diodes (LEDs) is placed along the left side of the board, and another row is placed along the bottom of the board as seen by the human player. Two LEDs are lit to indicate a single square, using an X, Y axis system. A single large hole is drilled in the center of each square to accept entrance of the rivet which is glued to the bottom of each chessman. The rivet completes an electrical circuit between 2 pieces of wire that run from smaller holes through the large central hole. This switching arrangement allows the computer to detect the presence or absence of a piece at each square of the board. In this prototype, an additional set of 3 wires is seen in each square; these wires remain from an earlier, unsuccessful switching attempt.
notation promotes errors and makes play difficult for people who do not know the notation system. Furthermore, errors may not be detected until many intervening moves have occurred.

An ideal chess-playing system would contain a digital television camera to observe the board and a mechanical arm to move the pieces. /A mechanical arm designed for exactly this application was described in the article "A Hobbyist Robot Arm," by Keith Baxter and Timothy Daly in the February 1979 BYTE, page 84...RSS/ A less costly alternative is to construct a chessboard which can electronically communicate with the computer. The computer may then "look" at the board position through its I / O (input/output) ports. A means of indicating the computer's moves on the chessboard itself may also be provided.

In the system that I have constructed, the user makes his move on the electronic chessboard, instead of typing each move on a keyboard. The computer's moves are displayed on the chessboard through the use of discrete light emitting diodes (LEDs), arranged in an X, Y coordinate system. The LEDs show the user exactly which chessman the computer wants to move, and to which square. In addition to being aesthetically pleasing, this system makes it impossible to enter your move in-

[^2]correctly, and easy to interpret the computer's move. The board is continuously scanned so that even if the user moves the computer's piece incorrectly, the mistake is detected immediately. A speaker is connected to the computer to let unwary users know (by a buzz) when they misinterpret a computer move. This speaker also emits a brief sound when the chess program has decided on a move and when it has been recorded into the computer's internal board representation.
This project is designed for specific use with Peter Jenning's Microchess, running on a KIM-1 with about 0.5 K bytes of extra memory. Implementation on other 6502 based computer systems should be relatively easy since only a few minor software modifications would be needed. The required hardware consists of a chess set, a package of cheap switching diodes, 2 integrated circuits, 16 discrete LEDs and 32 copper rivets.
The chessboard should have a thin, nonconductive surface that is easy to drill holes through. This surface must be supported by side panels so there is a hollow space of about 2 cm under the board for wiring. I used a cheap plywood chess set that is designed to fold into a storage box for the chessmen. The copper rivets should be small in diameter, about 12 mm long, and have a flat top. The ones that I used were size 9 rivets manufactured by the Tower Corporation of Madison IN.

System Concepts

KIM-1 Microchess uses an internal board-status table to keep track of the whereabouts of the chessmen. This table contains 32 square numbers which indicate the position of the 32 pieces. It is important to realize that Microchess generates moves solely on the basis of what is in that table, and not how it was placed there. My plan of attack was simple. I had only to wire a chessboard to the computer and write an interface program that would translate moves on the chessboard into changes in the table. Since this program will be needed only when moves are physically being made, it can be called from Microchess and used in place of the Microchess keyboard I/O (input/output) routines. After the user has finished moving, control can be

Photo 2: The bottom of the chessboard. The switching diodes and connecting wires are soldered directly to the wire contacts in the central holes. The 2 integrated circuits are type SN74154 decoder/demultiplexers. Note the tips of rivets protruding through some of the holes.
transferred back to Microchess to compute the machine's next move.

The Microchess to chessboard interface program is logically straightforward. If no move is being made, the table should be an accurate representation of the board. A move is detected when the table does not correctly represent the current board position. If an empty square appears on the board where the table indicates that a chessman resides, then the user has just picked up that man. If the table shows an unoccupied square which the board indicates is occupied, a chessman has just been set down in that square. A move is constituted by the user picking up a man and setting it down in some other location. A capture is completed by picking up 2 men and setting 1 down in the space formerly occupied by the other. Because the Microchess table is updated each time a simple move or capture is made, the table always gives an accurate representation of the current board position.

Hardware Details

Note that the chessboard interface program can keep track of the moves that are made simply by knowing if individual squares are occupied by a piece or are empty. The circuit which

Photo 3: The complete chessplaying system. The completed electronic chessboard stands in the foreground. The chessboard and the sound-effect speaker are connected to the KIM-1 computer residing in the suitcase in the background.
provides this information to the computer is illustrated in figure 1. For purposes of square identification, the chessboard is conceptually cut in half. The 2 pieces are placed logically end to end, forming an arrangement

September 1977
March 1979

Byte Cover Prints -Limited Editions.

The September '77 and March '79 covers of BYTE are now each available as a limited edition art print, personally signed and numbered by the artist, Robert Tinney.

These prints are strictly limited to a quantity of 750 for each cover, and no other editions, of any size, will ever be published. Each print is $18^{\prime \prime} \times 22^{\prime \prime}$, printed on quality, coated stock, and signed and numbered in pencil at bottom.

The price of each print is $\$ 25$. This includes 1) a signed and numbered print; 2) a Certificate of Authenticity, also signed personally by the artist and witnessed, attesting to the number of the edition (750), and the destruction of the printing plates; and 3) first class shipment in a heavy-duty mailing tube.

To order your limited edition art print, fill out and mail the order form below.

Send me \qquad "Breaking the Sound Barrier" prints at \$25 each, and \qquad "Trap Door" prints at $\$ 25$ each. I understand this price includes Certificate of Authenticity and first class shipment.

I have enclosed check or money order to Robert Tinney Graphics.
\square Charge this to my Master Charge or Visa
Card \# \qquad Expires:

Ship my print(s) to:
Name \qquad
Address \qquad
City \qquad State \qquad Zip \qquad Send order to:

CCS has everything to expand your Apple II*

Friendly Frankie's roadside Apple II stand has plenty to whet your appetite for expansion. So, if you're ready to have your Apple II computer interface with the outside world, wheel around to Frankie's stand today.

Expand to your heart's content with our full range of delicious
accessories, including: prom modules, asynchronous and synchronous serial interfaces, arithmetic processors, programmable timers, parallel interfaces, A/D converters, and Apple II compatible boards galore.

Let Frankie connect your Apple II to the rest of the world
faster, and for a lot less bucks.
For all the mouth-watering details, contact our northern California headquarters or your local roadside computer store. If Frankie's out, ask for Dennis or Jerry. They'll be glad to help you
*Apple II is a registered trademark of Apple Computers, Inc

Figure 1: Circuit which determines whether or not a given square is occupied. The chessboard is conceptually cut in half. It is placed so that the squares form a 4 by 16 matrix. For each square, a diode and a switch are wired in series between the appropriate row and column lines. A closed switch indicates an occupied square; an open switch indicates an empty square.
of 4 rows and 16 columns. A diode matrix allows the hardware to identify the individual squares.

The integrated circuit in figure 1 is a type SN74154 4 to 16 line decoder/ demultiplexer. The 4 input lines to the device are connected to the KIM-1 I/O port A. Each of the 16 output lines is linked to a column in the matrix. This portion of the circuit allows the KIM-1 to select 4 squares out of the total of 64 . The 4 rows of the matrix are connected to the I/O port B. Row and column addressing allows scanning of a single square. Each square of the chessboard has a switch. A closed switch indicates that the square has a piece on it; an open switch shows that the square is empty.

To determine whether or not a piece is on a particular square, the interface program first selects the column by sending the correct binary
code to the 4 input lines on the SN74154. This brings 1 of the 16 output lines low, while the diodes keep the rest high. If the switch is closed (ie: a piece is on the square), then the corresponding row-line will be pulled low and the matching port-B data register bit will be a 0 . Thus, by selecting the column through port A and testing the row bits in port B, it is possible to determine the status of every square on the board.

Switch Experimentation

Now for the hard part: what can be used as a switch? The actual mechanical operation remains the only unresolved detail. All that is needed is some means of closing the switch whenever a piece is set down, and opening it when one is picked up. There are several ways to accomplish this-some of which are better than others.

In my first attempt I put aluminum foil on the bottom of the pieces and used simple wire contacts on top of the board. I punched 6 holes into each square using a large needle to form the corners of 2 concentric, equilateral triangles. Three strands of wire were looped through the holes forming 3 symmetric contacts (see figure 2a). The third contact was used only to balance the pieces.

The concept is simple. The piece is set on top of the wire contacts and the aluminum foil makes the necessary connection. Unfortunately it didn't work. The contacts were not sufficiently stable, and the slightest vibration rocked the pieces, leading the program to believe that the user was trying to move 5 or 10 pieces at once.
That problem might have been solved by mounting magnets on the pieces and using a chessboard with a nonconductive magnetic surface.

I've finally found a personal weserwion

 computer I respect. get excited about he he compurecolorill. fis Conpurtrent available in a personal computer.

The complete system is only $\$ 1595$.*And that price includes 8 K user RAM, RS-232C compatibility and random access file capabilities.

Our 8 foreground and background colors will boost your comprehension, while introducing you to an exciting new dimension in BASIC programming. The vector graphics have 16,484 individually-accessible plot blocks. And the $13^{\prime \prime}$ diagonal measure screen gives you 32 lines of (44 ASCII characters. You also have the flexibility that comes with 16 K Extended Disk BASIC ROM.

Compucolor II offers a number of other options and accessories, like a second disk drive and expanded keyboard, as well as expandability to 32 K of user RAM. Of course we also have a whole library of low-cost Sof-Disk ${ }^{\text {TM }}$ programs, including an assembler and text editor.

Visit your nearest computer store for details. And while you're there, do some comparison testing. With all due respect to the others, once you see it, you'll be sold on the Compucolor II.

Compucolor Corporation

Figure 2b: The second attempt to form a square switch. This attempt was successful. Copper rivets were glued to the bottom of the chessmen. A large hole was drilled in the center of each square to receive the rivet. Two wires were looped through the large central hole from 2 smaller holes (left over from the first switch attempt). The rivet closes the electrical circuit.

Figure 2c: Illustration of the appearance of a square which uses rivet switches; and which previously did not have other methods installed in it. The reader may do it correctly the first time.

Another possibility would be to eliminate wire contacts entirely and use reed switches or some type of photocell. Unfortunately, one such device must be mounted under each square, necessitating a total of 64 devices. Although they would have undoubtedly worked, 64 photocells or reed switches would have cost more than I was willing to spend on the project.

Switch Success

I eventually figured out a contact method that was both cheap and reliable. I drilled a small hole in the center of each square, just large enough to slide in a copper rivet. Two strands of bare copper wire from 2 of the inner contact holes used in my first attempt were looped through the larger central hole forming 2 contacts inside of the hole (see figure 2 b). The felt on the bottom of the pieces was peeled off and the tapered copper rivets were glued onto the metal weight underneath the felt with an instant bonding adhesive.

I have found that these contacts work quite well. The tapered copper rivets slide easily in and out of the hole, while slight pressure from the sides of the hole forces the rivet to make good contact with the copper
wire. The pieces remain intact and the electrical contacts remain solid, even when the chessboard is held upside down and shaken gently. Of course when you wire your chessboard, you should leave out the 3 symmetric wires that I tried on my first version. Only the 2 strands which were looped through the rivet hole need to be installed (see figure 2c).

Hardware for Computer Output

The LEDs are wired according to figure 3. The integrated circuit is another 4 to 16 line decoder whose 4 inputs are connected to the I/O ports. Note that decoder outputs 0 thru 7 are connected sequentially to the rank - indicating (Y axis) LEDs with the O-bit output being connected to the uppermost LED. Likewise, the file-indicating (X axis) LEDs are connected left to right with outputs 8 thru 15. The chip-enable line is connected to I/O port pin PB0 so that the LEDs can be turned off while Microchess is computing a move.

Mounting of the LEDs on the sides of the chessboard is relatively straightforward. I used a large needle to punch the holes for the leads prior to insertion. Glue can be used to hold them in place. Be sure to orient the chessboard so that a white square is
in the lower right-hand corner of the side facing the human player. This means that the 2 rows of LEDs installed on the left side and bottom of the board will meet at a corner containing a black square.

The speaker is connected to output port pin PA0 in the manner described in the KIM-1 User's Manual on page 57. See figure 4 for an illustration of the I/O port connections.

Software

The necessary modifications to Microchess are shown in listing 1. The Microchess to chessboard interface program with source and object listing is given in listing 2. Although I used a nonstandard meta-assembler, most of the mnemonics are similar to, if not the same as, the MOS Technology standard mnemonics. The listings are fairly well documented.

There are, however, some general concepts that may be difficult to deduce from the listings. The workhorse of the chessboard interface program is subroutine GETMOVE. GET-MOVE calls the KIM monitor routine GETKEY before doing anything else, in order to see if the user has pressed the DA key (which is used when setting up a new position) or the PC key (which clears

Figure 3: Circuit for lighting the light emitting diodes (LEDs) that indicate the computer's move. The computer moves as follows. The program lights the X and Y axis LEDs which together indicate the single square on which the piece to be moved resides. The person picks up the indicated piece. After the user picks up the piece, different LEDs light up that point to the square to which the piece is to be moved. The person then places the chessman as indicated. A mistake causes the computer to emit a characteristic sound. The chip-enable line of IC1 is connected to I/O (input/output) port pin PB 0 so that the LEDs may be turned off while the chess program is computing its next move.
the board for a new game). If neither the DA nor PC key is depressed, GET-MOVE scans the chessboard,
square by square, searching for pieces that were recently picked up or set down. This is done by comparing the

Figure 4: Schematic diagram of chessboard input connections for the KIM-1. If the speaker is built into the chessboard, a 16 conductor cable is required to connect the board to the KIM-1 application connector. Thirteen conductors control the chessboard and light emitting diodes; 3 are needed for speaker, ground, and +5 V supply. The cable should be of sufficient length that the chessboard may be set in a convenient position for game playing.

Microchess board-status table to the current board position, as previously described. There is one important exception. When the user picks up a piece to make a move, SHOULDBEUP-FLAG is made nonzero, and the square where the piece used to be is stored in hexadecimal addresses FA and F9. A nonzero SHOULDBEUP-FLAG tells subroutine GET-MOVE that the 2 squares in FA and F9 should not be occupied, even if they are shown in the table. This is done to prevent GET-MOVE from continuously reporting that the same piece was picked up.

Upon exit from the subroutine, the result of the search is stored in the accumulator and in location UP-CLEAR-DOWN. A +1 is returned if a piece has been picked up, a 0 if there is no change, and a -1 if a piece was set down. If a piece was picked up or set down, then CHANGINGSQUARE will contain the number of the square where the pickup or setdown occurred. Likewise, if a piece was picked up, then CHANGINGPIECE will contain the hexadecimal designation of that piece as outlined on page 3 of the Microchess player's manual.

While GET-MOVE is scanning the chessboard, it also lights up the X and Y axis LEDs that point to the square in LIGHT-SQUARE. If SPEAKERFLAG is nonzero, the speaker is rapidly toggled to produce a hum.

Subroutine CLEAR-STACK resets the Microchess and the machine stack pointers back to their initial values. The subroutine is called from various parts of the interface program to prevent the stacks from overflowing into Microchess code.

After Microchess has computed each move, control is transferred to the start of the interface program at hexadecimal address 2000. The user must physically move the pieces for the computer. The piece designation and the from and to squares of the calculated move are stored in the KIM display at hexadecimal addresses FB, FA, and F9 respectively. Because of the no-operation instructions inserted at address 03E1, the move has not been recorded in the board-status table. Addresses 200 through 2040 of listing 2 contain code

Text continued on page 46

Listing 1: Modifications which were made to Peter Jennings' KIM-1 Microchess program to allow for the use of the electronic chessboard. Change the specified locations in memory with the KIM monitor.

0008	A9	FF		Set up Port A-DDR
000A	8D	01	17	
000D	A9	21		Set up Port B-DDR
000F	$8 D$	03	17	
0012	$4 C$	00	20	Jump to interface program 0033
003F	00			Toggle, must be -1 or zero
00B7	60		Return from CLDSP	
00B9	02	04		MASK-TABLE (used
01AC	08	10		to read row)
03A7	60			Return from DISP
03E1	B1		Use. SQUARE for flag	
03E9	EA	EA	EA	Don't record move
03EC	20	39	00	Show all FFs
	$4 C$	00	00	(Concede defeat)

Listing 2: The Microchess to chessboard interface routine, a sort of chessboard device handler program. This listing is the output of an assembly with both source and hexadecimal object code shown. It is written in a nonstandard assembly language of the author's own design, although most of the mnemonics are similar to the MOS Technology standard mnemonics.

Standard TV Monitor Controllers

ALPHANUMERICS: Transparent Memory insures clean video while leaving CPU tree to perform other tasks 24×80 or 2 pages 24×40.96 ASCII characters with descenders plus 32 graphics symbols. Normal/inverse video and blink available on a per character basis.

GRAPHICS: 256×256 high resolution monochrome self-contatned graphics display and a software controlled ALT-512 provides 512 horizontal $\times 256$ vertical or two 256×256 images allowing grey scale or high speed animation. $x-\gamma$ addressing of memory located in 1/O area allows CPU maximum work space.
COMBINED: The ALT-256 and ALT-512 graphics boards allow easy connection to the ALTR-2480 providing full alpha/graph capability on iwo cards

Matrox offers a highly diversified selection of modules and PC boards allowing customers to solve display problems rapidiy and cost ellectively These ready 10 use sub-systems are available off the shell in self-contaned module. for any UP. or on PC boards bus compatible with DEC LSi-11 PDP-11. Mostek/Prolog STD. Intel/NSC SBC Multibus. Motorola Exorciser. Custorn Designs as well as the MTX A1 \& MTXB1 Alpha chips - the single chip keyboard \& display controllers - give Matrox the most extensive display capability in the indusiry
mekton tiekionis yytent

The Visible Solutions Company
SaOD andover avenue t.m.r. mantaeal oue hat ina YEL ONLY. TAMMEX BUILDING. MOOERS N.Y. 12958

Listing 2 continued from page 45：

2089	Al	0417	$!$	LUAE RANJOM	XUAITING FOR MUUE
2085			！	ENDELSE	Y\％LIGHT KANUOH SOUARE
208C	85	2B	！	STA LIGHT－SQUARE	
2085	A5	FB	$!$	LUA FB	
2090	4 C	4A 20	！	JMF SET－ILSFLAY	
2093			$!$	ENUIF	
2093	10	49	！	IF NEGATIUE PHEN	
2095			$!$		\％ $27 \% \% \% \% \% \% \% \% \% \chi \% \% \% \% \% \% ~$
2095			！	\％x\％xx\％\％\％NEU PIECE SE1	1 UuWN $\quad x y x z z \% \chi \%$
≥ 095			！		xyzxzxxxz\％zx\％x\％z\％\％\％\％
2095			！	と＊\＃\＃\＃\＃＊＊＊＊TAKING BACK CA	AFTURE！＊＊＊＊＊＊＊＊＊Y
2095	A5	B2	！	LDA ．SP2	
2097	CY	C8	$!$	CMP ${ }^{\text {W }}$ C8	XUNUUING FREVIOUS
2099	FO	OC	！	IF NOTZERO THEN	X\％CAFIURE？
2098	AS	2 A	！	LDA FROH－SQUARE	
2044	C5	27	$!$	C＇MF Changing－soua	ARE
2096	10	06	$!$	IF ZERO THEN	
20 Al	20	3103	$!$	JSk UMOUE	\％YES．
2084	4 C	4420	$!$	JMP UAIT－FOR－HO	HOUE
2047			$!$	ENDIF	
2047			！	ENBIF	
2047			$!$	χ \％＊＊＊＊＊：＊＊＊USER AJIING NEU	－PIECE＊＊＊＊＊＊＊：＊＊\％
20 A 7	20	6A 1F	！	JSR GEIKEY	ZUAl P FOK KEY ENTRY
20AA	C9	15	！	CAPM 15	\％\％OF HEX NAME UR＂＋＂
20AC	10	1 C	！	IF NOIZERO IHEN	
20AE	C9	12	$!$	CMP＂＂＋＂	
2080	00	OC	1	IF ZERO THEN	
20 B 2	A5	FA	！	LDA FA	XFOUNB ${ }^{+\cdots}$＋ ，ENTER NEW
2084	10	97	！	BPL GET－MOVEI	xxpIECE INTO IABLE IF
$20 \mathrm{B6}$	As	FB	$!$	LDX IB	IXNOT IN ALREADY
2088	A5	27	$!$	LDA CHANGING－S	SQuare
208A	95	50	！	Stax ．buarli	
2086	10	86	！	BPL WAIT－FOK－M	huve
$208 E$			$!$	ENDIF	
2UBE	85	F3	$!$	Sta lehf	\％FUUND HEX DIGIT
2000	A5	FB	！	LDA FB	
$20 C 2$	OA	OA	$!$	ASL ASL	XXF＇LELE NAME．
$20 C 4$	OA	OA	！	ASL ASL	
20 C 6	05	F 3	！	ORA TEMF＇	
$20 \mathrm{C8}$	85	FB	1	STA 「E	
20 CA			$!$	ENDIF	
20CA	A5	$2{ }^{\prime}$	！	LdA Changing－soualie	ZhUILII IISFLAY
20CC	85	28	！	STA LIGHT－SQUAKE	
20CE	85	F9	！	STA F9	X\％\％F9：SQUARE ON HOARC
2000	A5	FB	$!$	LDA FB	XFFUI flece nane in
2002	29	If	！	ANU\＃IF	IXRANGE
2004	85	＋ B	$!$	STA FB	
2006	A ${ }^{\text {a }}$		！	tax	
2007	B5	50	1	luax ．board	
2009	85	FA	$!$	SIA FA	ZXXFA $=$ PABLE ENIFY
2008	4．	4020	！	JMP GET－MOUEI	
200E			！	ENDIF	
20DE			！		xxzxz\％xxzxz\％\％x\％xx\％x\％
20UE			1	\％\％\％\％\％x\％\％PIECE PICKED	D UP \quad x $x \times x \times x \chi x$
2OUE			！		
20UE			！	¢＊＊＊＊＊＊＊＊＊＊USER PLAY UH	HITE？＊才＊＊＊＊：＊＊＊＊
2OUE	AS	31	$!$	LDA ．SQUARE	YSEE If USER MAKING
20E0	C9	LC	1	CHP\＃CC	ZXTHE FIRSI MOVE．
20E2	U0	05	！	IF zero ihen	
20E4	E6	B1	！	INC ．SQuare	ZYES，CHANGE ．SQUARE
20E6	4 C	6A 20	！	JHP SUITCH－SIDES	ZZAND EXCHANGE
20E9			！	ENDIF	
20E9			$!$	X＊＊：＊＊＊：	HANGL＊＊＊＊：＊＊＊＊＊\％
$\therefore 089$	20	50 21	$!$	JSR CLEAR－SIACK	YLLEAK FOSSIble Junk
？OEC	A5	27	！	Lda changing－sQuare	
こOtE	85	FA	$!$	STA PA	XUISPLAY SQUAKE NUM
2050	85	F9	！	STA F9	
20F 2	85	28	1	STA LIGHT－－SQUARE	
2054	20	9001	！	JSR DISP	zIIISFLAY PIECE NAME
20F7	A9	01	$!$	LDAM OI	
20F9	85	$2 F$	$!$	STA ShOUL IIBEUP－FLAG	LSET FLAG
20F8			！	LOQP	
20 FB	20	6B21	！	JSK GET－MOVE	YAWAIT MOVL2
．20FE	FO		$!$	HEQ	
20FF	F8		$!$	ENDLOOP	
2100			！	\％＊＊＊＊＊＊＊＊＊PIECE SET BACK	K DOUN＊＊＊＊＊＊＊＊＊＊\％
2100	10	11	！	If megative then	

Listing 2 continued on page 48

Text continued from page 42：
to light the correct LEDs and modify the board－status table as the user completes the computer＇s move．The speaker sounds briefly after each cor－ rect step is completed．If a wrong piece is moved or a piece is set down on a wrong square，the speaker will hum continuously to signal an error．

The logic for interpreting the user＇s move starts at location 2042．If COUNT－FLAG is 0 ，the user has not yet moved．Subroutine GET－MOVE is repeatedly called from location 204D in anticipation of the user＇s move．

If the accumulator is 0 upon return from GET－MOVE，then the board position remains unchanged and the user has not made a move．GETKEY is called to see if the user has de－ pressed either the GO or E key．If the E key is depressed，the Microchess routine REVERSE is called to swap the user and computer entries of the board－status table．After the ex－ change is completed or if the GO key is depressed，a branch is made to START－COUNTING at hexadecimal address 214C．

Three provisions are made for a delayed return back to Microchess． COUNT－FLAG is made nonzero，a countdown is initiated by setting the display to OF ，and control is then transferred back to address 204D where GET－MOVE is repeatedly called as before．

After each return from GET－ MOVE the display is decremented by 1 until it equals 0 ．This provides an approximate 10 second delay during which the user can make a new move or retract an old one．At the end of the countdown，a branch is made to the Microchess routine GO which calculates the computer＇s next move．

If the GET－MOVE call at 204D returns a negative value then the user has set down a new piece，and control is transferred to address 2095．In an ordinary game of chess，putting a new piece on the board would be con－ sidered cheating．I have allowed it here to prevent 2 possible problems．

The first problem is caused by in－ decisive players who change their minds while in the middle of a move． Suppose such a player picks up 2 chessmen，as if to capture，and then decides to set both down again．When the first man is set down the program will think that the user has completed a capture，modify the board－status

MOUNLE DATA AT A SNAIIS PAGE BEHIUSE YOURE FLOPPY BOUND?

Let Corvus Systems put you back in the race!

- For TRS-80t, Apple \ddagger (including Apple Pascal), S-100 Bus-and now LSI-11.
- Fully compatible hardware/software.
- 10-million byte disk: IMI-7710.
- Proven Winchester technology.
- Z-80 based Corvus disk controller.
- Comprehensive disk diagnostics.
- Up to 4 disks per system.
- System $\$ 5350$, add-on disk $\$ 2990$.

Corvus ofers a complete systems solution to the mass storage problem of micro computers. In a package smaller than a brietcase, we provide an intelligent controller, disk, and personality module. Call or write today for additional information. Get up to speed with Corvus.

Listing 2 continued from page 46

table accordingly, and proceed to countdown. During the countdown the second man would pop in and there would be no way to know what it was.

In order to prevent this, each capturing move is saved in the Microchess stack. When a new piece is set down, the stack pointer is checked to see if the previous move was a capture. If it was, and if the location of the new piece corresponds to the square where the capturing piece used to be, then the Microchess routine UMOVE is called to restore the board-status table.

The second problem arises when the user wants to add new pieces to the current board, or set up an entirely new board position. Previously the only way to add new pieces was to stop the chess program and enter the square numbers manually into the board-status table using the KIM-1 monitor. This method is both inconvenient and error prone. The control logic for the "new improved" method occupies hexadecimal addresses 20A7 through 20DE.

After setting the new pieces down, the user simply types the piece name (its numeric designation) into the hexadecimal keyboard. The designation is displayed in FB, the current board-status table entry in FA, and the square where the new piece was set down is stored in F9. If the current table entry is "CC" (indicating that the piece is not currently on the board), the user may enter the piece into the table by pressing the + key.

Interpreting the User's Move

If the original call to GET-MOVE at hexadecimal address 204D returns a positive value, it means that the user has picked up a piece, and control will transfer to address 20DE. If .SQUARE contains " C "', the Microchess board-status table has just been initialized, and the user is making the first move of a new game. The boardstatus table has been initialized assuming that the user would play Black. A branch may be made to address 206A where the user and computer table entries are exchanged.

After checking to see whether or not the user is playing White, GETMOVE is again called at hexadecimal address 20 FB . If the piece is set down at a new square, the move has been completed and a countdown is started. If, after picking up a piece a

The Paper Tiger sets a new standard for low-cost impact printers. More capability. More versatility.

- Eight software-selectable character sizes
- 80 and 132 column formats

Full forms control
DotPlot ${ }^{\text {PM }}$ graphics option.

- Connects directly to Apple II. TRS-80, and other persona computers.

Plus lots more. For a free brochure, print sample, or the name of the Paper Tiger dealer nearest you, write or call. Integral Data Systems, 14 Tech Circle, Natick, Massachusetts 01760.

Call toll-free 800-343-6412.

In Massachuselts, Alaska, and Hawall
call (617) 237.7610.

Circle 176 on Inquiry card.

 Integral Data Systems, Inc.

Listing 2 continued on page 52
player decides to set it down on the same square, the move is ignored.

If the GET-MOVE call at location 20 FB reports that a second piece has been picked up, a capture is in progress and control branches to location 2113. FROM-SQUARE is defined as the square from which the first chessman is picked up. Similarly, TOSQUARE is associated with the chessman that is picked up second. GET-MOVE is again called at hexadecimal address 2129.

If a piece is set down on either the TO or FROM squares then the program assumes that a capture has been made. The Microchess routine MOVE is called to modify the boardstatus table, and a countdown is initiated.

If a piece is set down on a square other than the FROM or TO square, or if a third piece is picked up, a branch will be made to hexadecimal address 2159, and the speaker will hum to indicate an error.

Using the System

Playing the chessboard-interfaced version of Microchess is easy. Moves are made by physically picking up the pieces and setting them down on a new square, as in a normal game of chess with a human opponent. The only difference is that the opponent (the KIM-1) is unable to pick up a chessman, so you have to move the pieces to the location indicated by the LEDs.

The KIM display will be all Os and the LEDs will blink from square to square in a semirandom fashion when it is your turn to move. After you move, the KIM display will countdown from 0F, and the Y axis LEDs will blink sequentially from the top to the bottom of the board. During this countdown you have the option to change your move. When the display reaches 0 , the machine will begin computing a response, and no moves can be made until it is your turn again.

Operating the System

The interfaced version of Microchess is started at address 0000 , just as the unmodified Microchess. The speaker will probably hum. To start a new game, press the PC key. The speaker's sound will cease. Choose the White or Black pieces, and set up the board with your choice

Solve your personal energy crisis. Let VisiCalc" Power do the work.

With a calculator, pencil and paper you can spend hours planning, projecting, writing, estimating, calculating, revising, erasing and recalculating as you work toward a decision.

Or with VisiCalc and your Apple* II you can explore many more options with a fraction of the time and effort you've spent before.

VisiCalc is a new breed of problem-solving software. Unlike prepackaged software that forces you into a computerized straight jacket, VisiCalc adapts itself to any numerical problem you have. You enter numbers, alphabetic titles and formulas on your keyboard. VisiCalc organizes and displays this information on the screen. You don't have to spend your time programming.

Your energy is better spent using the results than getting them.

Say you're a business manager and want to project your annual sales. Using the calculator, pencil and paper method, you'd lay out 12 months across a sheet and fill in lines and columns of figures on products, outlets, salespeople, etc. You'd calculate by hand the subtotals and summary figures. Then you'd start revising, erasing and recalculating. With VisiCalc, you simply fill in the same figures on an electronic "sheet of paper" and let the computer do the work.

Once your first projection is complete you're ready to use VisiCalc's unique, powerful recalculation feature. It lets you ask "What if?", examining new options and planning for contingencies. "What if" sales drop 20 percent in March? Just type in the sales figure. VisiCalc instantly updates all other figures affected by March sales.

Or say you're an engineer working on a design problem and are wondering "What if that oscillation were damped by another 10 percent?" Or you're working on your family's expenses and wonder "What will happen to our entertainment budget if the heating bill goes up 15 percent this winter?" VisiCalc responds instantly to show you all the consequences of any change.

Once you see VisiCalc in action, you'll think of many more uses for its power. Ask your dealer for a demonstration and discover how VisiCalc can help you in your professional work and personal life.

You might find that VisiCalc alone is reason enough to own a personal computer.

VisiCalc is available now for Apple II computers, with versions for other personal computers coming soon. The Apple II version costs just $\$ 99.50$ and requires a 32 k disk system.

For the name and address of your nearest VisiCalc dealer, call (408) 745-7841 or write to Personal Software, Inc., Dept. B, 592 Weddell Dr, Sunnyvale, CA 94086. If your favorite dealer doesn't already carry Personal Software products, ask him to give us a call.

PEZ5ONNL SOFNVAZ

Listing 2 continued from page 50:

of color placed closest to the bottom X axis LEDs. After the chessmen are in place, the display will show all Os. If you are playing White, make your opening move. If the computer is playing White, press the GO key.
To set up the pieces in a new configuration, or to continue a game that was halted earlier, set the chessboard up with the chessman in their desired position. Start the chess program as described above, but instead of pressing the PC key, press the DA key. Type in the name of each piece using the hexadecimal keyboard as you would when adding a new piece. Start the play by either making a move or by pressing the GO key.

To add a new piece to the board, set the piece on the desired square. The KIM-1 display will show 3 bytes of information. The first byte will be a random piece designation (as described on page 3 of the Microchess player's manual). The second byte is the square that the piece is on, according to the Microchess boardstatus table. If the piece has been captured, "CC" will be displayed. The third byte is the number of the square

PET / TRS-80 / APPLE: Personal Software brings you the finest!

MICROCHESS is the industry's best selling computer game. And no wonder-because MICROCHESS gives you more than just a chessplaying program: A convenient, foolproof set of commands and error checks ... complete instructions in a $51 / 2^{\prime \prime}$ by $81 / 2^{\prime \prime}$ booklet ... a cassette that's guaranteed to load, with disk versions coming soon ... and several levels of difficulty to challenge you not just once, but time after time. It's available through well over three hundred computer stores and many mail order sources ... always

MICRO CHESS The Industry's First Gold Cassette Over 50,000 Sold

originating from Personal Software. What's more, every Personal Software product is selected to give you these same benefits of easy availability, reliable cassettes, readable documentation, a carefully thought out user interface ... and most important, continuing challenge and enjoyment, not just once but time after time. If you haven't already, order your own gold cassette: MICROCHESS, by Peter Jennings, for 8K PETs, 16 K APPLEs, and 4K Level I and II TRS-80s

TIME TREK by Brad Templeton for 8K PETs and Joshua Lavinsky for 4K Level I and II TRS-80s adds a dramatic new dimension to the classic Star Trek type strategy game: REAL TIME ACTION! You'll need fast reflexes as well as sharp wits to win in this constantly changing game. Be prepared-the Klingons will fire at you as you move, and will move themselves at the same time, even from quadrant to quadrant-but with practice you can change course and speed, aim and fire in one smooth motion, as fast as you can press the keys. Steer under power around obstacles-evade enemy

A Tour De Force In Real Time Action Strategy Games
shots as they come towards you-lower your shields just long enough to fire your phasers, betting that you can get them back up in time! With nine levels of difficulty, this challenging game is easy to learn, yet takes most users months of play to master. ADD SOUND EFFECTS with a simple two-wire hookup to any audio amplifier; the TRS-80 also produces sound effects directly through the keyboard case, to accompany spectacular graphics explosions! You won't want to miss this memorable version of a favorite computer game.

ELECTRIC PAINTBRUSH by Ken Anderson for 4 K Level I and II TRS-80s: Create dazzling real time graphics displays at speeds far beyond BASIC. by writing 'programs' consisting of simple graphics commands for a machine language interpreter. Commands let you draw lines, turn corners, change white to black, repeat previous steps, or call other programs. The ELECTRIC PAINTBRUSH manual shows you how to create a variety of fascinating artistic patterns including the one pictured. Show your friends some special effects they've never seen on a TV screen!......... . \$14.95
blockade by Ken Anderson for 4 K Level I and II TRS-80s is a real time action game for two players, with high speed graphics in machine language. Each player uses four keys to control the direction of a moving wall. Try to force your opponent into a collision without running into a wall yourself! A strategy game at lower speeds, BLOCKADE turns into a tense game of reflexes and coordination at faster rates. Play on a flat or spherical course at any of ten different speeds. You can hear SOUND EFFECTS through a nearby $A M$ radio-expect some razzing if you lose! 14.95

GRAPHICS PACKAGE by Dan Fylstra for 8K PETs includes programs for the most common 'practical' graphics applications: PLOTTER graphs both functions and data to a resolution of 80 by 50 points, with automatic scaling and labeling of the axes; BARPLOT produces horizontal and vertical, segmented and labeled bar graphs; LETTER displays messages in large block letters, using any alphanumeric or special character on the PET keyboard; and DOODLER can be used to create arbitrary screen patterns and save them on cassette or in a BASIC program.
$\$ 14.95$

For the name and address of the dealer nearest you, call Personal Software at (408) 745-7841. If you don't have a dealer nearby, you can call or mail us your order with your check, money order or VISA/Master Charge card number. For a free catalog, ask your dealer or use the reader service card at the back of this magazine.

Listing 2 continued from page 52:

upon which the new piece was set down. Modify the first byte by typing in the correct name of the new piece. If the piece has been previously captured, it may be added to the piece table by typing the + key.

To change sides (Black to White, or vice versa), type the E key. A countdown will be initiated. Do not change
sides before the opening move of the game; the King, Queen, and other pieces could become incorrectly reversed.

Conclusion

Although it may require a lot of solder, building the hardware is neither hard nor exacting work. As
with most projects, if it doesn't work the first time the problem can usually be traced to an incorrect program, faulty wiring, or bad integrated circuits. In this particular project, the program is already written, the wiring is easy to check, and there are only 2 integrated circuits.

The electronic chessboard can, of course, be used for activities other than chess. Almost any game that is played with an X, Y type grid can be played by the computer, among these: checkers, tic-tac-toe, and nim.

I have found that the chessboard interface makes playing chess with the KIM-1 much more enjoyable. Even if you lose the chess game, the method of playing is sure to be impressive.

Editor's Note

The program described in this article was designed to be "foolproof" for the beginning chess player. The countdown period for changing a move will greatly ease the frustration often experienced by players of computer games, the sinking feeling of "Oh no, I didn't mean that, and there's no way to take back the move!" More programmers should pay such attention to the user interface of their systems.

More experienced chess players generally abide by the following rule: a piece once touched by the player must be moved, and an opponent's piece once touched must be captured. Such users would probably wish to delete the countdown period to speed the progress of the game.

An electronic chessboard operating in a similar fashion appeared in the article "Chess 4.7 versus David Levy" by J R Douglas (December 1978 BYTE, page 84). That board, constructed by Dr David Cahlander of Control Data Corp, uses 1 light emitting diode (LED) in each square of the chessboard to indicate the computer's move, and uses magnetic switches placed under the squares which are activated by the metal weights in the pieces. Controlled by a 6800 microprocessor, Cahlander's board transmits and receives moves to and from a remote computer on which the Chess 4.7 program runs...RSS

Precut Wire Wrap Wire

PRECUT WIRE SAVES TIME AND COSTS LESS THAN WIRE ON SPOOLS

Kynar precut wire. All lengths are overall, including 1" strip on each end. Colors and lengths cannot be mixed for quantity pricing. All sizes listed are in stock for immediate shipment. Other lengths available. Choose from colors: Red, Blue, Yellow, Orange, Black, White, Green and Violet. One inch tubes are available at $50 \$$ each. State second choice on colors when possible.

Length	100	500	1,000	Length	100	500	1,000
2.5 inches	1.04	2.98	5.16	6.5 inches	1.60	5.37	9.84
3	1.08	3.22	5.65	7	1.66	5.63	10.37
3.5	1.13	3.46	6.14	7.5	1.73	5.89	10.91
4	1.18	3.70	6.62	8	1.78	6.15	11.44
4.5	1.23	3.95	7.12	8.5	1.82	6.41	11.97
5	1.28	4.20	7.61	9	1.87	6.76	12.51
5.5	1.32	4.48	8.10	9.5	1.92	6.93	13.04
6	1.37	4.72	8.59	10	1.99	7.26	13.57

Kit \#1	$\$ 7.95$
Less than	$2.7 \mathrm{c} / \mathrm{ft}$.

250	$3^{\prime \prime}$	100	$4^{\prime \prime} / 2^{\prime \prime}$
250	$3^{\prime \prime}$	100	$5^{\prime \prime}$
100	$4^{\prime \prime}$	100	$6^{\prime \prime}$

AVAILABLE AT SELECTED LOCAL DISTRIBUTORS
Circle 298 on inquiry card.

ORDERING INFORMATION

- Ordere under \$25, add \$2 handiling
- Blue Label or First Class, add $\$ 1$ (up to 3 lbs.)
- COD VISA \& MC orders wIII be charged shipping
- Most orders shipped next day.

MicroPro International Corporation

'Lrofessional Quality Software You Can Count On, Now!'

Proudly Present

$U \cup \mathbb{R}=\mathbb{I} \pi \mathbb{R}$

Now, you can instantly turn your microcomputer into an incomparable word processor.
Hundreds of delighted users have thrown away their pencils and are using the first truly professional and complete word processor ever available on a microcomputer, WORD-STAR.

Everything you've heard, read, wished, thought about - it's here! it's now! and it's Dynamite! !! Just look at the product overview copies from our 200 page manual (prepared and printed using WORD-STAR).

MicroPro Price List:

Software/Manual
Word-Star ${ }^{\text {T.M. }}$
Word-Master ${ }^{\text {T.M. }} \quad \$ 150 / 25$
Tex-Writer ${ }^{\text {T.м. }}$
\$495/40
\$ 75/15

Super-Sort	IT.M.	$\$ 250 / 25$
Super-Sort	IIT.м.	$\$ 200 / 25$
Super-Sort	IIIT.м.	$\$ 150 / 25$

Super-Sort IT.M. \$250/25
Super-Sort IIT.м.
\$150/25

For more information and the name of your nearest dealer, contact MicroPro International Corporation. Dealer/Distributor/O.E.M. Inquires Invited

The most complete, integrated, word processing software system ever seen on a microcompuier.

A Similarity Comparator for Strings

T C O'Haver
Professor Dept of Chemistry University of Maryland
College Park MD 20742

The trouble with computers is that they have no common sense. If a computer is directed to search a file looking for a particular string of characters, a simple typographical error will cause the computer to report that no match has been found; even though there was something very close in the file. The statement "If $\mathrm{AS}=\mathrm{BS}$ THEN. . ." is taken literally by the computer; even the slightest difference is not tolerated.
Wouldn't it be better if a computer, finding no exact match, would report the best match, or the 5 best matches listed in order of closeness of match? To do this, a routine is needed that returns a quantitative estimate of the similarity between 2 strings. That is what the routine illustrated here does; it computes a similarity index on a scale of 0 thru 100 percent.
Listing 1 gives a BASIC string comparator program. The heart of the program is in lines 100 thru 290; lines 10 thru 90 are there only to allow the routine to be demonstrated with 2 manually input strings. The fundamental idea is simple: each character in one string is compared to each character in the other string. This is done so that groups of characters that match are weighted more heavily than the same number of matches of individual characters. This allows, for example, "POOL" and "POOR" to be rated more nearly equal than "POOL" and "POLO", even though the latter 2 strings have more characters in common.


```
\begin{tabular}{|c|c|}
\hline 10 & LET T \(=0\) \\
\hline 20 & LET P \(=3\) \\
\hline 30
40 & PRINT "FIRST WORD" \\
\hline 50 & LET A = LEN (AS) \\
\hline 60 & PRINT "SECOND WORD" ; \\
\hline 70 & INPUT B8 \\
\hline 75 & IF AS = BS THEN PRINT "EXACT MATCH" \\
\hline 80 & LET B=LEN (B\$) \\
\hline 90 & IF \(A>B\) THEN LET B \(=A\) \\
\hline 100 & FOR M \(=1\) TO B \\
\hline 110 & LET C=0 \\
\hline 120 & FORI \(=1\) TOM \\
\hline 130 & LET K\$ \(=\) MIDS ( \(A \$, B-M+1,1)\) \\
\hline 140 & LET L\$ = MID (B\$ \\
\hline 150 & IF \(\mathrm{K} \Phi=\) L\$ THEN LET \(\mathrm{C}=\mathrm{C}+1\) \\
\hline 160 & NEXT 1 \\
\hline 170 & LET C=CIP \\
\hline 180 & LET T \(=\mathrm{T}+\mathrm{C}\) \\
\hline 190 & NEXTM \\
\hline 200 & FOR \(M=B+1\) TO \(2 * B-1\) \\
\hline 210 & LET C=0 \\
\hline 220 & FORI \(=1\) TO \(2 * B-M\) \\
\hline 230 & LET K \(=\) = \(\operatorname{MID\$ ~}(A \Phi, 1,1)\) \\
\hline 240 & LET L\$ \(=\) MID ( BS,\(~ M ~_{\text {M }}\) - \(\mathrm{B}+\) \\
\hline 250 & IF \(\mathrm{K} \$=\mathrm{LS}\) THEN LET \(\mathrm{C}=\mathrm{C}+1\) \\
\hline 260 & NEXT \\
\hline 270 & LET C=CIP \\
\hline 280 & LET T \(=\) T + C \\
\hline 290 & NEXT M \\
\hline 300 & LET S \(=100^{*}\) T/BIP \\
\hline 310 & PRINT S:"\%" \\
\hline 320 & LET T \(=0\) \\
\hline 330 & GOTO 70 \\
\hline 340 & END \\
\hline
\end{tabular}
```

Listing 1: Listing of the similarity comparator program in Ohio Scientific Instruments 8 K BASIC (a Microsoft interpreter). The up arrow indicates exponentiation.

What makes the Microtek Printer so different? Nothing!

EXCEPT. . . .

THE PRICE: $\$ 750$ (with parallel interface)

THE PERFORMANCE:

- 80 or 120 columns (software selectable)
- Plain paper
- Pin Feed
- Double width printing
- 125 characters per second, 70 lines per minute nominal throughput
- 9×7 Matrix (80 columns/line), 7×7 Matrix (120 columns/line)
- Vertical Format Unit
- 96-character ASCII (upper and lower case)
- Forms width continuously adjustable between 4.5 inches and 9.5 inches (including sprocket margins)
- Parallel (Centronics type) interface standard. Serial (RS-232) and IEEE-488 interfaces available

The weighting of groups of characters is controlled by the variable P defined in line 20. If P is set to a value of 1 , there is no special weighting of groups; only the total number of characters in common between the 2 strings is counted. If P is set greater than 1 , groups are weighted more heavily, proportional to the value of P. If P is too large, however, all but the very closest matches result in low similarity index. A value of $\mathrm{P}=3$ is a good compromise.

Line 300 scales the index to within a range of approximately 0 thru 100 percent. Two strings with no common characters give 0 percent similarity, while 2 identical strings give 100 percent similarity. Sometimes 2 nonidentical, but very similar, strings with many repeated letters (eg: "AAAAA" versus "AAA") will give 100 percent or greater than 100 percent similarity. This is seldom a problem with practical strings.

Strings of any type can be compared: names, addresses, numerals, or even strings containing spaces and punctuation. Long strings take a long time to compare, up to several seconds. An assembly language version should run much faster, if speed is important in your application.

The routine in listing 1 is written in Ohio Scientific Instruments 8 K BASIC, Version 1, and was run on a Challenger II system. The syntax of the string functions, particularly MID\$, may be different in other BASICs. However, it should be compatible with most of the other BASIC interpreters which were developed by Microsoft. The program also runs without modification on an 8 K PET.

Sample Run	Comments
RUN FIRST WORD? POOL SECOND WORD? POOL EXACT MATCH	
103.1\%	> 100\% because of double letter
? POOR 45.3% 3 letter pattern "POO" matches.	
? COOL	Still a 3 letter pattern.
45.3\%	
? POO	Same match, because nonmatching
? POLO	
28.1\%	Two 2 letter matches, "PO' and
? LOOP	"OL", do not count as much
18.7\%	as one 3 letter match.
$?$ PAIL	
12.5\%	Only 2 isolated letters.
? POOL ROOM	
? MAIL ROOM	
1.5\%	
? POIOL	Presence of extra random
14.4\%	character reduces match.
? 0000	Repeated letters result
40.6\%	in unexpectedly high match.
OK	
FIRST WORD? T.C. O'HAVER 710 HILLSBORO DR. SILVER SPRING MD.	
SECOND WORD? TOM O'HAVER 710 HILLSBORO DR. SILVER SPRING MD.	
10.3%	? R.D. O'HAVER 710 HILLSBOROUGH RD. SILVER SPRINGS FL.
?	
OK	

Listing 2: A sample run of the program, with comments explaining the value of similarity assigned.

Note: We entered this program into an Apple II computer using the Applesoft floating point BASIC. It ran without modification. The exact values of similarity computed did sometimes differ from those given in the sample run, but only in the fourth significant digit and beyond . . . RSS

as well as a IMM SYSTEMS Forl.
Sorthare 15 Frovided.

Why not kill two birds with one stone?

Unclassified Policy

Readers who are soliciting or giving advice, or who have egruipment to buy, sell or swap should send in a clearly typed notice to that effect. To be considered for publication, an advertisement must be clearly noncommercial, typed double spaced on plain white paper, contain 75 words or less, and include complete name and address information.
These notices are free of charge and will be printed one time only on a space available busis. Notices can be accepted from individuals or bona fide computer users clubs only. We can engage in no correspondence on these and your confirmation of placement is appearance in an issur of BYTE.

Please note that it may take three or four months for an at to appear in the magazine.

FOR SALE: Gromemco 16 K programmable memory. 4 MHz bank select $\$ 400$ or best offer. Will Ackel, 4860 Rolando Cl "22. San Diego CA 92115, (714) 287.6823.

EXCHANGE IDEAS: I want to talk and write to microcomputer users who are interested in programming for larm operations. especially in the area of Southwest Kansas, Southeastern Colorado and the Oklahoma Panhandle. I am using an Apple II. Van Lynn Floyd. RR "I POB 94. Johnson KS 67855.

FOR SALE: OSI 65 V system. including: 6502 processor board; 16 K memory board: video inlerface board: power supply and case. SwTPC keyboard: single drive floppy disk: lloppy disk inlerface board: lloppy disk power supply and case; all documentation (OSI and MOS technology), includes BASIC. Assembler. Disassembler and extended monitor. All assembled. lested and running well. $\$ 1800$ or best ofter. C Gum. 757 E Main St W-304 Wiss Apl. Lansdale PA 19446. (215) $855-4182$

WANTED: Programs (games, graphics or jusl unusual programs) in BASIC. Hope to establish a no cost program library in the near fulure. All materlal written or cassette (cassettes in TRS-80 Level 2 only) relurned. Richard G Ginder, 509 Southern Hills Dr, Hot Springs AR 71901

FOR SALE: SOL-20 compuler by Processor Technology with 32 K , video display, cassette mass storage. Extended BASIC. IBM Selectric lypewriter/printer, text ediling and other software. complete documentation and manuals. Ideal for small business software development. 1.5 years old. $\$ 2500$. Middieton Associates. 980 Yonge St Ste 404. Toronio Ontario. CANADA M4W 2J9. (416) 961.5136.

FOR SALE: S. 100 bus system. Cromemco 280 processor Byte-8 mainframe, TDL system monitor board. ACT.I keyboard. North Star disk and software. Iwo 16 K static programmable memory (250 ns), less 8 K of chips. Panasonic video monilor. Up. lested and running For more details of syslem. send SASE or phone (206) $456-2466$ atter 5 PM. Donald A Coulter, 8002 Mountain-Alre Loop SE, Olympia WA 98503.

FOR SALE: Sencore Model PS 163 dual trace scope in new condition. Used tess than 20 hours. Complete with iwo probes Factory price $\$ 895$, will offer for $\$ 350$. Also, Sencore Model PS 148 single trace scope/vectorscope, still in tactory carton. Sacrifice, \$195. R Conde. 11 Sugarbush Ln. Coram NY 11727, (516) 928-4849.

FOR SALE: Digital Group TVC64 16 line 64 characler upper and lower case and Greek with plug \$125: COSMAC ELF wilh complete address light emitting diodes. hexadecimal thumb. wheels, audio oulput. aulomatic slepping and other fealures \$110: hexadecimal keyboard for ELF $\$ 30$; Mikos mother board with 12100 pin connectors in place $\$ 75$; Proko PTR-II oplical paper lape reader $\$ 50$. Bert Thiel, 159 W Main SI, Frostburg MD 21532, (301) 689.8608 weekends and evenings. \quad.

If you have an Apple* and you want to interface it with parallel and serial devices, we have a board for you that will do both. It's the AIO.M

Serial Interface.

The RS-232 standard assures maximum compatibility with a variety of serial devices. For example, with the AIO you can connect your Apple* to a video terminal to get 80 characters per line instead of 40, a modem to use time-sharing services, or a printer for hard copy. The serial interface is software programmable, features three handshaking lines, and includes a rotary switch to select from 7 standard baud rates. On-board firmware provides a powerful driver routine so you won't need to write any software to utilize the interface.

Parallel Interface.

This interface can be used to connect your Apple* to a variety of parallel printers. The programmable I/O ports have enough lines to handle two printers simultaneously with handshaking control. The users manual includes a software listing for controlling parallel printers or, if you prefer, a parallel driver routine is available in firmware as an option. And printing is only one application for this general purpose parallel interface.

Two boards in one.

The AIO is the only board on the market that can interface the Apple to both serial and parallel devices. It can even do both at the same time. That's the kind of innovative design and solid value that's been going into SSM products since the beginning of personal computing. The price, including PROMs and cables, is $\$ 135$ in kit form, or $\$ 175$

Some Musings on Hardware Design

Clayton Ellis
Rt 4, POB 86
Montrose PA 18801

The purpose of this article is to acquaint the reader with some of the more interesting types of transistor-transistor logic (TTL) integrated circuits, the ease with which logic design can be accomplished, and to offer a few design considerations and troubleshooting hints to stimulate the homebrew use of digital logic.

Taking the topics in the above order, we start with a look at some of the more complex types of TTL chips in the " $74 \times x$ " series. (We will ignore simple gates for the most part.) An example is the 7442 . This integrated circuit is a binary coded decimal (sometimes called BCD) to decimal decoder. What this means is that the circuit will decode 1 line out of 10 based on a 4 bit binary code. Figure 1 shows the pin connections. Regardless of what it is called, it works like this: pins 12 thru 15 are a 4 bit binary input, pin 15 being the 1 's bit (bit 0), 14 the 2 's bit (bit 1), 13 the 4 's bit (bit 2), and 12 the 8 's bit (bit 3). Pins 1 thru 7 and 9 thru 11 comprise the output pins, each pin staying high (logic 1 or a higher level voltage of about 3 to 5 V) unless the corresponding binary code is applied to the input. For example, let's say that pins 12 thru 15 are 0101. In other words, 12 is at a logical low (about 0 V); 13 is at a logical high level

Figure 1: Pin connections for a 7442 TTL binary coded decimal to decimal converter.
(above about 3 V , less than 5 V), etc. In this case, pin 6 (indicating a decimal 5) would be at a logical low level (about 0 V). All other pins relating to decimal output numbers would be at a logical high level. Note that only one output pin will be low at any given time, corresponding to the binary value of the input lines. "Ahh," you might ask, "what if the input pins are at some binary value other than 0 thru 9?" The answer is easy; this constitutes an invalid input, and all output pins will stay high. Only valid decimal values will select an output pin.

Now let's move on to a module similar to the 7442, the 74154. Referring to figure 2, the first apparent difference is the larger number of pins on the 74154. This integrated circuit is a 4 line to 16 line decoder. Its operation is the same as the 7442, with but two exceptions: there are now 16 valid output lines; and provision is made to allow

Figure 2: Pin connections for a 74154 TTL 4 line to 16 line decoder.

Figure 3: Pin connections for a 74150 TTL 1 of 76 line data selector.
two extra inputs to gate the individual line selected. Pins 18 and 19 perform this gating function. An example of use of this extra gating feature might look like this: pins 20 thru 23 might contain the binary equivalent of a decimal 14, pin 19 being low and pin 18 alternating from high to low (a periodic clock pulse.) The end result is that pin 16 (corresponding to line 14) will also periodically alternate high and low in following the signal on pin 18. The data at pin 18 is transferred to pin 14. If the binary code on pins 20 thru 23 were now changed to a decimal 7 , then line 7 (pin 8) would follow the data on pin 18. We select one of 16 outputs for a signal applied to the gates. Now, if we could just have a binary controlled switch to select 1 of 16 inputs. Let's look at the 74150. Figure 3 shows the pinout of this one. This time there are 21 input pins and only 1 output pin.

Let's see how this one works. Binary input is on the 4 lines of pins 11 and 13 thru 15. Let's say a binary value of 12 is present. This selects the number 12 input line (pin 19) and transfers the level of this line, be it steady, high, low or some alternating clock signal, to pin 10, the output line. Notice, though, that in order for the data to be transferred, pin 9 (the strobe input) also must be low. A high level on the strobe input prevents any data transfer from any input. This feature is used to allow data transfer only at selected intervals, such as

The way you check line-by-line with on A P Intra-Switch or Intra-Connector.

You plug your Intra-Switch in-line with standard socket connectors, and instantly you've got a separate, independent on-off switch for each and every line in your flat ribbon cable. To switch, you nudge with a pencil point. It's that quick.
Imagine how much time and trouble Intra-Switch will save you in your diagnostic and quality testing. your programming and selective line inhibiting.
Or, plug in your Intra-Connector (see box) the same way, and you have an extra set of male contacts

at right angles. Instant line-by-line probeability-and an easy way to tap your system and daisy chain it into new areas.
Both Intra-Connectors and IntraSwitches come in 20,26,34, 40 and 50-contact models.
Where? At your nearby A P deaier. Where's that? Phone (toll-free) 800-321-9668. And ask for the complete A P cataiog, The Faster and Easier Book.

AP PRODUCTS
INCDRPDAATED
Box 110D • 72 Corwin Drive
Painesville, Ohio 44077
Tel. 216/354-2101
TWX: B10-425-2250
Faster and Easier is what we're all about.

FOR FAST IMPLEMENTATION OF BUSINESS APPLICATIONS

Compact Compiler requires only 20K bytes. Our compact Version 3 Compiler requires only 20 K bytes but supports a powerful subset of standard COBOL plus the CIS COBOL language extensions for conversational mode working, providing full CRT screen formatting with built-in cursor control and numeric field validation.
Other features include CIS COBOL Indexed Sequential and Interactive Debug packages, linkage to run time subroutines to CHAIN programs together, PEEK \& POKE memory locations and GET \& PUT to special peripherals.

Forms Generator speeds program development. Forms is a powerful utility which can be used with either the Standard or Compact COBOL Compiler. Forms generates record descriptions for Data Entry and Enquiry Programs. The operator creates and edits the required data entry form on the CRT by means of a question and answer session, and then automatically creates the required COBOL source text. This text is held on diskette as COPY files which the programmer can then simply COPY into his program in the normal COBOL way.

Standard Compiler conforms to ANSI 74 Specifications. And now our ANSI 74 standard Version 4 Compiler implements level 1 of Nucleus, Table Handling, Sequential I/O, Relative I/O, Indexed I/O, Library, Segmentation and Inter Program Communication plus many level 2 features and the CIS COBOL language extensions employed in Version 3. This compiler runs in 30 K bytes and is ideal for implementing or converting large systems using modular programming. Features include dynamic program loading and fast program development turnround.
 to sample each of 16 lines sequentially. It looks good, but it doesn't work. A neglected inversion in logic levels and thinking is the demon.

Figure 5: Another approach to the problem in figure 4. This approach has a much lower parts count, so it is much easier to wire and
when the input would contain valid data, or when the output is useful only at specific intervals.

Now that we have taken a look at a few of the more involved logic blocks, let's look at how easy it is to design the somewhat more complicated circuits using the simple TTL blocks in conjunction with one or more of the above type of logic blocks.

If we want to build a sequencing device to look at a number of incoming lines, and if we are to use a given clock signal to coordinate all this, we can use the logic circuit in figure 4. A very simple and straightforward circuit, right? Not quite. Let's take a second look. All the inputs but the one selected by the 74154 are going to be enabled at one time. The selected pin goes low, remember? By this time, if not before, you probably recalled the look we just took at the 74150 and are wondering why we did not use it. Figure 5 shows the circuit using the 74150. The foregoing just illustrates a good point (and one to keep in mind whenever you undertake any logic design). There

- Get circuit requirements down on paper in block form
- Break each block down into required logic.
- Use the most integrated block available for each function as in the example of figure 5 unless the cost of such a module is much higher than two or possibly three less intricate ones.
- Don't go overboard with smaller blocks. This increases the density and complexity of interconnection, greatly increases the chances of errors and reduces system reliability.
- Cross-check all designs, as you may have redundantly developed the same signal line. Sometimes most of one segment of a circuit can be eliminated with an inverter or small amount of additional gating.
- If possible, have a friend familiar with digital logic go over the layout. Your friend can sometimes suggest circuit reductions that you missed simply because you were thinking one way while your friend used a different approach. The same review may even spot an error in the logic. With all those inversions, gating, etc, it is easy to do. Spotting an error at this stage can save hours at the breadboard stage.

Table 1: Approach to finding the simplest logic circuit for a given function.
are many ways to accomplish a specific function. So many, in fact, that large companies who do digital logic design in large quantities invariably use some form of computer aided logic design. The homebrew enthusiast obviously can't go that far, but the approach summarized in table 1 usually works fairly well.

Timing

Another good point to keep in mind is to think time (not in terms of how long it takes to design a circuit, or build it, but time relationships in the circuitry itself). This brings
us back to a term, clock, that we have been using freely up to now. We all know that a clock is merely a line, usually derived from a square wave oscillator, right? This line is then used to coordinate all necessary gating, shifting, setting and resetting, etc, that goes on within the circuitry itself, right? Well, that is part of it, but who said it had to be a single line? Some computers use a number of clock lines, perhaps as many as 8 or 10. The only thing these multiple clock lines have in common is that they are usually all derived from the same oscillator and may be individually gated on or off, counted, decoded or subjected to any other valid logic manipulation.

Figure 6 shows a typical clock circuit detailing some of these practices. As you can readily see, almost any combination of clock times can be selected, and the flip flops can be extended as far as needed to select a single clock pulse or a repetitive series of clock pulses. The point to remember is that all pulses are derived from the same clock and each pulse on any line will be of the same duration as any other clock pulse. The single clock pulse shown on line C of the timing chart in figure 6 will start at the same time as the fourth clock

TOGGLE FLIP FLOPS OIVIOE FREQUENCY BY 2
Figure 6: A hypothetical clock circuit to give two different phases (lines A and B) at two different repetition rates. Lines A and B are at $1 / 2$ the clock rate. Line C is at $1 / 8$ the clock rate with the same pulse duration.

pulse on line A, and the duration will be identical.

There is one fly in the ointment at this point. I just noted that the two clock pulses would start at the exact same time. That is not quite true, however, and depending on how fast the clock is running, and exactly what is being gated, this may or may not be a problem.

In an actual circuit, the clock pulse on line A would go positive slightly ahead of the pulse on line C. This is due to the delay (called propagation delay) across each flip flop encountered by the leading edge of the pulse. This delay is on the order of nanoseconds for each gate encountered. Let us assume an arbitrary 5 ns delay for each gate. Then the delay from the input of FF1 to the output of the AND gate driving line A would be 10 ns . This is 5 ns for FF1 and 5 ns for the AND gate. The delay from the input to FF1 to the output of the AND gate driving line C would be not 10 ns , but 20 ns : 5 ns for each of the three flip flops and 5 ns for the AND gate. The pulse on line C would actually start 10 ns after the one of line A. This will also make a difference in the duration of the pulse on each line; as the plus level arriving later than the clock pulse at the input to the AND gate determines when the output of the AND gate goes positive. However, the trailing edge of the clock pulse input determines when the AND gate output goes negative.

This, in effect, shortens the duration of the pulse on the output line by a time (in nanoseconds) determined by the various propagation delays. If the clock frequency of the circuit is on the order of tens or hundreds of kilohertz, then a delay of tens of

Figure 7: A pulse generator for nanosecond range pulses. Pulse length is determined by the propagation time through the gates between the input and point B. More sophisticated methods are required if an accurate pulse length is required.
nanoseconds would be of little consequence; but if the clock frequency of the circuit is something like 20 or 25 MHz , the delay can become a thorn in the side of the designer. This holds true for all data and control lines we well as clock lines.

This propagation delay can be used to an advantage too. Figure 7 illustrates using this delay to generate a narrow pulse. Here the positive going (leading) edge of the input is applied to an AND gate, but the negative going (trailing) edge of the inverted version applied to the other leg of the AND gate is delayed by the total of the propagation delay across the three inverter blocks. The resultant output is a narrow pulse equal in duration to the delay across the inverters. This method of generating a pulse is only useful in cases where we don't care exactly how long the pulse lasts since gates and inverters are subject to manufacturing variations.

To satisfy the rather picky individual or very high speed circuit, I have to say also that the output pulse is not only derived from the inverter delay, but is delayed from the leading edge of the original pulse by the amount of the delay across the AND gate itself. Figure 8 illustrates this. The short delays shown on waveform C are due to the AND gate propagation delay. For most situations, this is carrying propagation delay accounting to extremes, but in certain high speed circuits each delay may have to be accounted for. If 20 or 30 gates are involved, the cumulative effects add up rather fast.

Also to be considered is the capacitive effect of the interconnection lines: the distributed and stray capacitance which are in parallel with the output of each gate add slightly to delay times. It takes a finite amount of time to charge this capacitance at

Figure 8: A magnified view of the pulse shown in figure 7. The output pulse is delayed by the propagation time of the AND gate. This time varies but is typically about 10 ns for normal transistor-transistor logic, less for the high speed and Schottky version and more for the low power integrated circuits.
each gate turn on, and the gate will not switch until a certain voltage input level is reached. All of which leads right into the last subject l'd like to touch on. How do you see all this in an actual circuit? Believe me when I say that it takes a good oscilloscope. To have a good display in the tens of nanoseconds range, it takes an oscilloscope with a bandwidth of at least 60 to 100 MHz .

Does this mean that anyone without such an oscilloscope can't do much with higher speed TTL? Not necessarily. Remember we said that propagation delay only becomes a problem at high speeds and multiple gate delays. There are a number of ways around this. One is to keep clock frequencies and
data changes as slow as possible. Don't use a fast clock or data encoding just for the sake of speed, run it as fast as necessary and no faster. If you can tolerate a slow clock speed, use it. Another method is to try and bring each data line that is to be gated with another line through the same number of gates as the line it is to be gated with. In other words, if one line originates at about the same source as another that it is to be gated with, but passes through 9 levels of gating, and the other line passes through 3, the delays at high speeds can be a problem. This could be compensated for by changing the way the lines are gated to bring the delays in each line closer to the

[^3]same length. Another help in extreme cases is to run the line with the lesser number of gates through several pairs of inverters. This introduces a delay to compensate for the delay in the other line. In other words, make the faster line wait for the slower one. An even better solution is to design your circuits "synchronously" so that only one clock source ever changes the state of a flip flop or memory cell.

As to seeing these problems on the slower oscilloscopes, there are several hints that will help. Very little serious work with timing relationships can be undertaken without a dual trace capability (although a good deal can be done otherwise with TTL with just a single trace scope). Even with a dual trace oscilloscope, the fastest sweep speed may not reveal a lot of timing detail if not set up correctly and the alternate sweeps may not be time correlated without a common synchronization signal. A number of tests can be made with a single trace oscilloscope if it has provisions for external synchronization.

In general, synchronize the oscilloscope sweep as far ahead in time as is realistic for the signals in question, in order to allow time for the sweep to start before the pulse actually arrives. It goes without saying that the synchronization signal must be common to all signals being examined.

If you still can't see any difference, try estimating the approximate delay for each line from source to common logic block. Most logic handbooks list typical delays for integrated circuits. If the problem is in a counter circuit of some type which counts "up," the count for a given sequence will usually be too high in value if delay problems are the cause. Rarely will the count of an "up" counter be too low, as the usual situation is advancing the counter by an extra pulse generated by mismatched delays, especially if a lot of exclusive ORing is being done. The situation where early turn off or disabling of the counter causes a missed count is quite unlikely, mainly because the delay is of a much shorter duration than the pulses being counted.

These problems are all good to be aware of, but don't let them deter you from starting that project you were thinking about. You may go a long time before you see one of the problems described. Don't let the lack of a superb oscilloscope deter you either. A lot of very intricate and fast digital circuitry is being built every day with nothing more than a single trace 1 MHz AC coupled oscilloscope. With a little experience, you can tell a great deal about a given TTL circuit with one of these inexpensive oscilloscopes.■
 floppy disk, data cassette or mag card in only two days. You'll get the same high performance products sold by 3 M , BASF, Memorex and other brand name suppliers. The same products we've built for OEM's for years. The full line is competitively priced, backed by an unconditional 90 day warranty and inventoried for fast delivery.

Dealer inquiries invited.
(800) 225-8715

KvKYBE

A Low-Speed Analog-to-Digital Converter for the Apple II

Richard C Hallgren
Assistant Professor Michigan State University College of Osteopathic Medicine, Dept of Biomechanics
East Lansing MI 48824

The development of micropro-cessor-based computer systems has progressed to the point where it is now practical to utilize these systems in a scientific or laboratory application. To be useful in a scientific application the computer must have the capability of converting analog signals to digital signals. Very few home computers have this capability. Certainly it is a straightforward task to design an analog-to-digital converter (ADC), but the real problem lies in connecting the converter to the computer.
The Apple II computer, with 8 peripheral-board connectors on the mother board, makes the job of designing and implementing special interfaces (such as the ADC) relatively easy. The peripheral-board connectors give the hardware designer access to all address, data, and control lines. In addition all control, address, and data lines have been buffered, and certain address bits have been decoded to give a device select (DS) signal. What this means is that when a specific range of address locations is accessed, the $\overline{D S}$ line will give a low output signal. Since the peripheral-board connectors are on the main computer

[^4]| Number | Type | +5 V | GND | -5 V |
| :--- | :--- | ---: | ---: | ---: |
| | | | | |
| IC1 | MC14028 | 16 | 8 | - |
| IC2 | MC14049 | 1 | 8 | - |
| IC3 | SN7427 | 14 | 7 | - |
| IC4 | MC14013 | 14 | 7 | - |
| IC5 | MC14433 | 24 | 13 | 12 |
| IC6 | AD580 | - | - | - |
| IC7 | MC14503 | 16 | 8 | - |
| IC8 | MC14503 | 16 | 8 | - |
| IC9 | DM7432 | 14 | 7 | - |

Table 1: Voltages which must be supplied to integrated circuits in figure 1 for operating power.
board, the finished interface board will be inside the computer and will be able to use the computer's power supply. Because of these characteristics, turning the Apple II into a realtime data analyzer becomes a matter of designing an analog-to-digital converter circuit, and control logic to meet the need of the application.

Many of the applications that I had in mind were to be of a low-speed nature (eg: monitoring the temperature of experimental animals in medical physiology laboratories, analyzing the results of electrophoretic analysis). Therefore, a low-speed analog-to-digital converter built around the Motorola MC14433 integrated circuit seemed to be a cost effective approach. I was inspired by Steve Ciarcia's article, "On a Test Equipment Diet? Try an 8 Channel DVM Cocktail!" (December 1977 BYTE, page 76).

The left section of figure 1 shows the analog-to-digital converter cir-
cuitry. All data and status lines to the computer are isolated through the MC14503 3 -state buffers (IC7 and IC8). The MC14433 (IC5) is allowed to convert continuously at a rate of approximately 15 conversions per second. This means that if the data transfer to memory starts immediately after the conversion ends, the Apple II can easily decode and store the data from one conversion before another conversion occurs. IC4, configured as an RS flip-flop that is initially reset by the computer, is set by the MC14433 after an analog-todigital conversion has been completed. When the computer senses this change in status, it starts the decoding and data transfer process. IC6 is an AD 580 used to provide a stable reference voltage to the MC14433.

The right section of figure 1 shows the control logic that is necessary to coordinate the transfer of data to the computer, and control signals from the computer. The circuit is designed so that the peripheral card resides in I/O (input/output) slot 7 on the Apple II mother board. The device select signal will go low whenever hexadecimal memory locations COFO thru COFF are addressed. The least

Text continued on page 74
Figure 1: Schematic diagram of analog-to-digital-conversion circuit and associated control-logic circuitry. The analog-todigital (A / D) convertor is shown on the left side, the control logic on the right side.

ANALOG-TO-DIGITAL CONVERSION CIRCUIT

U.S. RQBOTICS, INC.

PENRIL 300/1200 MODEM
Originate/Auto-Answer

300 or 1200 Baud Bell 212 Compalible FCC Certiled RS232

Hall/Full Duplex (n) Dial-up Pliune Limes 1 year warranly Stand Alone

PERKIN-
ELMER
BANTAM
$\$ 799.00$
All the Features of the Hazeltine 1400 \& LSI ADM-3A Plus
Upper/Lower Case 7×10 Char Matrix White or Black Char
Transparent Mode
Addressable Cursor
Tab Function Backspace Key Shiltlock Key Print Key Integrated Numerır. Pad
$\$ 41.61$ per month Lease-Purchase
\$1095.00
TELETYPE
MODEL 43
KSR
with RS232

10 or 30 CHAR/SEC 132 COLUMNS UPPER/LOWER CASE

USR-310 Originate Acoustic Coupler Stand Alone RS232
USR-330
Originate Auto-Answer $\$ 339.00$ Modem
FCC Certified for Direct Connection to Phone Lines
USR-320 Auto-Answer Only Modem $\$ 319.00$

All Unils include a 120 day warranly Optional Maıntenance package available

Any Product may be returned within 10 days for a full refund.

U.S. ROBDTICS, INE. 1035 W. LAKE ST. EHICABD, ILL. 6asa7
 Sales
 General Offices
 Service
 (312) 733-0497
 (312) 733-0498
 (312) 733-0499

Figure 2: Flowchart of the machine language subroutine which takes samples from the analog-to-digital converter. This code is written for the 6502 processor used in the Apple II.

CENTRONICS

DELIVERS THE WORD ON COMPUTER PRINTERS.

To get the most from a computer system, you need a permanent written recordinformation that you can use for reports, correspondence, or just about anything.

For that, Centronics printers deliver the word.

From top left, clockwise: Model 700 Impact printer, $60 \mathrm{cps}, 132$ column format. Model 779 Impact printer, 60 cps , economical forms handling. Model 701 lmpact printer, 60 cps , bidirectional, 132 column format. Model S1 Non-impact microprinter, RS-232 serial interface, 150 lpm . Model 730 lmpact printer, $50 \mathrm{cps}, 3-\mathrm{in}-1$ paper handfing. Model P1 Non-impact microprinter, 150 lpm , no toners or ribbons.

Who is Centronics, anyway?

Centronics has long been the world leader in providing printers to the computer industry. For small, economical computer systemslike the ones at your local retail computer store - we manufacture more printers than anyone. That's quite a track record.
What does that mean to me?
If you own-or plan to purchase - a small business or home computer system, you can have the best printer available anywhere: Centronics. We offer the widest selection of speeds, sizes, applications, and prices. All interface with most mini and micro computer systems. Every model features the same performance, reliability, and attention to detail that have made Centronics \#1. And every one is backed
\square Give me the word on Centronics Printers, including the name and address of the Authorized Centronics Dealer(s) nearest me.
\square I'm interested in your dealer program. Please send information on how to become an Authorized Centronics Dealer/Service Distributor.

Name
Title
Company \qquad Phone \qquad
Address

Centronics Data Computer Corp., Hudson, NH 03051, (603) 883-0111
by Centronics' comprehensive warranty and service program.
Where can I find Centronics Printers?
At any of the hundreds of Centronics dealers coast-to-coast. It's worth the visit: your Centronics dealer is an expert who can explain the differences in printers and help make sure that the one you choose has the right features for your system and the way you use it. Plus, many of our dealers are also Authorized Centronics Service Distributors which is helpful when you need routine maintenance and a godsend if you have a problem.

Selection.
Proven performance. Expertise. Service.
That's why
Centronics
Printers deliver the word.

Address Instruction Op Code Operand Comments

4000	AD	B0	49	LDA	\$49B0	
4003	8E	B1	49	STX	\$49B1	Save registers
4006	8C	B2	49	STY	\$49B2	
4009	08			PHP		
400A	A2	00		LDX	\#\$00	
400C	A9	00		LDA	\#\$00	
400E	85	OA		STA	\$0A	Starting location of data storage
4010	A9	4A		LDA	\#\$4A	
4012	85	OB		STA	\$0B	
4014	A9	00		LDA	\#\$00	
4016	8D	AO	49	STA	\$49AO	Final location of data storage
4019	A9	4E		LDA	\#\$4E	
401B	8D	A1	49	STA	\$49A1	
401E	78			SEI		Disable interrupt
401F	AD	A1	49	LDA	\$49A1	
4022	C5	OB		CMP	\$0B	
4024	D0	OB		BNE	\$4031	Have all data locations been filled?
4026	AD	B0	49	LDA	\$49B0	
4029	AE	B1	49	LDX	\$49B1	
402C	AC	B2	49	LDY	\$49B2	
402F	28			PLP		
4030	60			RTS		
4031	58			CLI		Enable Interrupt
4032	EA			NOP		
4033	4 C	1E	40	JMP	\$401E	
4036	EA			NOP		
4037	EA			NOP		
4038	EA			NOP		
4039	EA			NOP		
403A	EA			NOP		
403B	EA			NOP		
403C	EA			NOP		
403D	EA			NOP		
403E	EA			NOP		
403F	EA			NOP		
4040	8 D	F2	CO	STA	\$COF2	Start A/D conversion
4043	AD	Ft	CD	LDA	\$C0F1	
4046	29	80		AND	\#\$80	
4048	C9	80		CMP	\#\$80	
404A	D0	F7		BNE	\$4043	A/D conversion finished?
404C	AD	F0	CO	LDA	\$COFO	Input data
$404 F$	8 D	A2	49	STA	\$49A2	Temporary data storage
4052	29	80		AND	\#\$80	Cheok for first digit (MSD)
4054	C9	80 F4		CMP	\%\$80	Check for first digit (MSD)
4056	D0	F4	49	BNE	\$404C	
405B	29	OF	4	AND	\#\$0F	Peel off digit code leaving data
405D	81	OA		STA	(\$0A, X)	Store data
405F	A4	OA		LDY	\$0A	
4061	C8			INY		Increment lower 8 bits of data storage
4062	84	OA		STY	\$0A \$406B	Carry out to upper 8 bits?
4064	D0	05		BNE	\$406B \$0B	Carry out to upper 8 bits?
4068	C8			INY	\$0B	Increment upper 8 bits of data storage
4069	84	OB		STY	\$0B	
406B	AD	F0	CO	LDA	\$COFO	Input data
406E	8D	A2	49	STA	\$49A2	
4071	29	40		AND	\#\$40	
4073	C9	40		CMP	*\$40	Check for second digit
4075	D0	F4		BNE	\$406B	
4077	AD	A2	49	LDA	\$49A2	
407A	29	OF		AND	\#\$0F	Peel off digit code leaving data
407C	81	OA		STA	(\$0A, X)	Store data
407E	A4	OA		LDY	\$0A	
4080	C8			INY		Increment lower 8 bits of data storage
4081	84	${ }_{0}^{04}$		STY	\$0A	Carry out to upper 8 bits?
4085	A4	OB		LDY	\$0B	
4087	C8			INY		Increment upper 8 bits of data storage
4088	84	OB		STY	\$0B	
408A	AD	F0	CO	LDA	\$COFO	Input data
408D	8D	A2	49	STA	\$49A2	
4090	29	20		AND	\#\$20	
4092	C9	20		CMP	*\$20	Check for third digit
4094	D0	F4		BNE	\$408A	
4096	AD	A2	49	LDA	\$49A2	
4099	29	OF		AND	\#\$0F	Peel off digit code leaving data
409B	81	OA		STA	(\$0A, X)	Store data
409 D	A4	OA		LDY	\$0A	
409F	C8			INY		Increment lower 8 bits of data storage
40AO	84	OA		STY	\$0A	

Listing 1: The machine language subroutine for collecting data from the analog-to-digital converter, here shown in assembly language format. Memory locations 03FE and 03FF contain the hexadecimal interrupt jump vector 4040 . which is the entry point of this routine.

Text continued from page 70 :

significant 4 bits of the address are decoded by IC1 and are used for on board addressing. Performing a store accumulator (STA) operation to location COF2 causes the SC (start conversion) line to go high and resets the flip-flop IC4. Performing a LDA (load accumulator) from hexadecimal location COF1 transfers the end of conversion (EOC) and overrange (OR) status data into the computer. Performing a LDA from location COFO transfers the digit-select code and the binary coded decimal (BCD) value of the particular digit selected into the computer.

The software portion of the analog-to-digital converter project is divided into 2 parts:

- A machine language routine to provide high-speed transfer of data from the MC14433 to the computer memory.
- A BASIC routine written in Applesoft floating-point BASIC to take the data in memory and format it into a voltage that can be displayed as a function of time with the high-resolution graphics routine.

Since the Apple II does not have an internal real-time clock, I decided to use the interrupt request line (IRQ) as an input for an external clock. The advantage to this is that a calibrated pulse generator can be used to determine the sampling rate. If desired, the computer can perform other tasks between samples. Knowing when each sample was taken makes it possible to display the data as a function of time with the high-resolution graphics routine. Since the Apple II high-resolution graphics allows the display of 256 points I decided to store 256 points in memory before displaying the data, but there is no reason why the data could not be displayed as it is taken. Figure 2 shows the flowchart of the machine language program, and listing 1

6809! s-100 Compatibility. 6809 Computability.

- 6809

16 bit internal arithmetic Hardware multiplication Two stack pointers Two index registers 18 addressing modes Fully relocatable code Five interrupts Up to three times the throughput of a $4 \mathrm{MHz} \mathrm{Z}-80$

- 1K RAM
- 10K PROM space
- MONBUG II monitor included
- 2400 baud cassette interface
- 20 I/O lines
- RS-232 level shifters
- Real time clock
- DMA
- Parallel keyboard input
- Memory-mapped video output
- Fully S-100 compatible (including 8080 type I/O)
- A complete system, ready to use.

> MD-690a Single Board Computer $\$ 239$ kit $\quad \$ 299$ assembled 6802 Processor also available Ask about 6802,6809 and Z80 systems.

MicroDaSys
 P.O. Box 36051

Los Angeles, CA 90036
(213) 935-4555

40A2	D0	05		BNE	\$40A9
40A4	A4	OB		LDY	\$0B
40A6	C8			INY	
40A7	84	OB		STY *	\$0B
40A9	AD	F0	CO	LDA	\$COFO
40AC	8D	A2	49	STA	\$49A2
40AF	29	10		AND	\#\$10
40B1	C9	10		CMP	\#\$10
40B3	D0	F4		BNE	\$40A9
4085	AD	A2	49	LDA	\$49A2
4088	29	OF		AND	\#\$0F
40BA	81	OA		STA	(\$0A, X)
40BC	A4	OA		LDY	\$0A
40BE	C8			INY	
40BF	84	OA		STY	\$0A
40 C 1	D0	05		BNE	\$40C8
40 C 3	A4	OB		LDY	\$0B
40 C 5	C8			INY	
$40 \mathrm{C6}$	84	OB		STY	\$0B
40 CB	A5	45		LDA	\$45
40CA	40			RTI	

Carry out to upper 8 bits?
Increment upper 8 bits of data storage
Input data

Check for LSD (least significant digit)
Peel off digit code leaving data
Store data
Increment lower 8 bits of data storage
Carry out to upper 8 bits?
Increment upper 8 bits of data storage

Return from interrupt

Listing 2: Program in Applesoft floating point BASIC which calls the machine language routine of listing 1 and then formats and displays the data received, using the highresolution graphics capability of the Apple II.

	Program	Comments
100	DIM Z (300)	
101	HOME	
102	GOTO 1000	
110	CALL 16384	Machine language routine
111	HOME : VTAB 24	
112	PRINT "THE DIGITIZED DATA IS BEING FORMATTED FOR PLOT	
	$\mathrm{ING}^{\prime \prime}$	
113	$X=18944$	Starting address of data
115	FOR J = 0 TO 255	
120	$\mathrm{V} 1=\operatorname{PEEK}(\mathrm{X})$	Get first digit (MSD)
122	$\mathrm{V} 2=\operatorname{PEEK}(\mathrm{X}+1)$	Get second digit
124	$V 3=\operatorname{PEEK}(X+2)$	Get third digit
126	$\mathrm{V}_{4}=\mathrm{PEEK}(\mathrm{X}+3)$	Get fourth digit (LSD)
128	$\mathrm{X}=\mathrm{X}+4$	
130	IF V1 > 7 THEN V1 $=0$	
132	IF V1 = 0 THEN GOTO 140	Decode MSD
134	$V 1=1$	
140	$\begin{aligned} & V \$=\text { STR } \$(V 1)+\text { STR } \$(V 2)+ \\ & \text { STR } \$(V 3)+\text { STR } \$(V 4) \end{aligned}$	Convert digits into voltage $\mathrm{XXX} . \mathrm{X}$
150	$Z(J)=V A L(V \$) / 1000$	
160	NEXT J	
200	HGR: $\mathrm{HCOLOR}=3$	High-resolution graphics
202	HPLOT 20,0 TO 20,150	
204	HPLOT TO 279,150	
208	HPLOT 18,0 TO 22,0	
210	HPLOT 18,10 TO 22,10	
212	HPLOT 18,20 TO 22,20	
214	HPLOT 18,30 TO 22,30	
216	HPLOT 18,40 TO 22,40	
218	HPLOT 18,50 TO 22,50	
220	HPLOT 18,60 TO 22,60	
222	HPLOT 18,70 TO 22,70	
224	HPLOT 18,80 TO 22,80	
226	HPLOT 18,90 TO 22,90	
228	HPLOT 18,100 TO 22,100	
230	HPLOT 18,110 TO 22,110	
232	HPLOT 18,120 TO 22,120	
234	HPLOT 18,130 TO 22,130	
236	HPLOT 18,140 TO 22,140	
238	HPLOT 18,150 TO 22,150	Plot $X \cdot Y$ axis
240	HPLOT 4,47 TO 4,53	
242	HPLOT 7.53	
246	HPLOT 10,47 TO 10,53	
248	HPLOT TO 14,53	
250	HPLOT TO 14,47	
252	HPLOT TO 10,47	
260	HPLOT 7,103	
262	HPLOT 14,97 TO 10,97	

Listing 2 continued on page 78

Figure 3: Flowchart of the BASIC program which calls the machine language subroutine, formats the data obtained from the analog-to-digital converter, and displays it using high-resolution graphics.

shows the coded program with comments.

Upon entering the subroutine, all of the necessary registers are saved to enable a successful return from subroutine. The first thing that happens is that the end of conversion flip-flop is reset and the program loops until the MC14433 completes the next conversion and sets the flipflop. The program then samples the data lines and decides whether or not the data represents the most significant piece of data. If it does not, the program continues to sample the data lines until the most significant piece of data has been obtained. This datum is then stored in memory, the memory storage locations are in-

innouncement I. The first eight Personal 'rograms ${ }^{\ominus}$ from Aladdin Automation are vaiting for you now at your neighborhood omputer retailer or direct from Aladdin.
low you can get your full share of Aladdin lagic in every one of these Personal 'rograms ${ }^{\star}$

Math-Ter-Mind* A delightful. educatıonal learning experience for your pre-school child. Watch ie smile on your child's face as a correct nswer makes the mathematician smile on the zreen before you. A nursery song also serves s a reward for learning elementary addition nd subtraction. With Aladdin's Math-Ter1ind ${ }^{\top}$ your child's pathway to learning will be in-filled for both of you. Math-Ter-Mind ${ }^{8}$ ne first release from the Aladdin Education ${ }^{\star}$ eries. (nursery song currently available only n Apple II"4 program)
unar Lander In a controlled descent, you're just seconds away from your first landing on the cold. orbidding surface of the moon. As you avigate your delicate spacecraft downward to ee safety of Moonbase. you must be ever atchful of the dangers rising to meet you with ach passing moment: a fuel level fast pproaching zero: deadly meteor showers that ome from any direction, at any time: sheeraced rock cliffs and rough terrain: choosing ee correct landing pattern and rate of descent. laddin's Lunar Lander. Your chance to reach ut and touch the stars . . . without leaving the afety and comfort of your own chair. The first elease from the Aladdin Simulation ${ }^{\ominus}$ Series.

Craps All eyes in the casino are on you. The dice are in your hands. Lady Luck sits at your shoulder, whispering . . . 'Just one more time. Try your luck just one more time." You throw . and watch the dice tumbling on the screen. With Aladdin's Craps you play against the computer, so it's awfully tough to win. But when you do. it's an experience you're likely never to forget. Craps. An exciting, heartpounding Personal Program ${ }^{\ominus}$. The first release from the Aladdin Las Vegas ${ }^{\ominus}$ Series.

Mastermind A challenging game of intrigue. centuries old. that will give you full chance to test your powers of logic. deduction and reason. And test them you will, as you try and solve the computer's puzzle, using clues as they're provided one-by-one. You control the degree of difficulty in this classic Personal Program ${ }^{\ominus}$ that offers one simple, yet all-consuming challenge: beat the Mastermind in a direct. one-on-one battle of wits. Aladdin's Mastermind. The first release from the Aladdin Old Favorites ${ }^{\ominus}$ Series.

Tic-Tac-Toe Five different levels of difficulty allow a person of any age or skill to take part in this relaxing, enjoyable game that can act as a learning tool, as well. Level I, for example, is suitable for children and is excellent also for teaching simple mathematics. The computer plays just about perfectly at Level V. Just about, that is, so go ahead and take your best shot. See if you can beat the computer in this traditional favorite of young and old alike. Tic-Tac-Toe. Another first release from the Aladdin Old Favorites ${ }^{\ominus}$ Series.

Jungle Island ${ }^{\boldsymbol{e}}$ Shipwrecked in a raging storm at sea. miraculously you survive only 10 find yourself stranded on a seemingly deserted jungle island. Without food, water or supplies of any kind, you begin to try and find your way to safety. The computer will be your eyes and ears as you explore your jungle island and all the mysteries and dangers that lie in wait for you. Jungle Island ${ }^{\ominus}$. A captivating first release from the Aladdin Adventure ${ }^{\boldsymbol{\theta}}$ Series.

S
tix ${ }^{9}$ Aladdin's Stix ${ }^{-1}$ can be played with 2 to 5 piles of sticks and between 1 and 19 sticks in each pile. The object: to be the one to pick up the last stick. Sounds simple? Yes. but you're playing against the computer. Take heart. though. because you can control the degree of difficulty in this update of the ancient game of Nim. Stix ${ }^{\ominus}$. Another first release from the Aladdin Old Favorites ${ }^{\ominus}$ Series.

S
uper Pro Footballe Here's your chance to be more than just an armchair quarterback. With
Aladdin's Super Pro Football ${ }^{9}$ you can replay any Super Bowl game, from the first, between Green Bay and Oakland, to last year's classic victory by Pittsburgh over Dallas. For once you can turn back the clock and go for that one big play that made the difference between victory and defeat in pro football's biggest game of all. Super Pro Football ${ }^{\Theta}$. The first exciting release from the Aladdin Super Pro ${ }^{\ominus}$ Series.
Visit your neighborhood computer retailer or contact Aladdin direct to get your full share of the magic in Announcement I, the first eight Personal Programs ${ }^{\ominus}$ from Aladdin Automation.

Listing 2 continued:

264	HPLOT TO 10,100
266	HPLOT TO 14,100
268	HPLOT TO 14,103
270	HPLOT TO 10,103
272	HPLOT 14,147 TO 10,147
274	HPLOT TO 10,153
276	HPLOT TO 14,153
278	HPLOT TO 14,147
280	HPLOT 30,148 TO 30,152
281	HPLOT 40,148 TO 40,152: HPLOT 50,148 TO 50,152
282	HPLOT 60,148 TO 60,152: HPLOT 70,148 TO 70,152
283	HPLOT 80,148 TO 80,152: HPLOT 90,148 TO 90,152
284	HPLOT 100,148 TO 100,152: HPLOT 110,148 TO 110, 152
285	HPLOT 120,148 TO 120,152: HPLOT $130,148 \text { TO } 130,152$
286	HPLOT 140,148 TO 140,152: HPLOT 150,148 TO 150,152
287	HPLOT 160,148 TO 160,152: HPLOT 170,148 TO 170,152
288	$\begin{aligned} & \text { HPLOT } 180,148 \text { TO } 180,152 \text { : HPLOT } \\ & 190,148 \text { TO } 190,152 \end{aligned}$
289	HPLOT 200,148 TO 200,152: HPLOT 210,148 TO 210,152
290	HPLOT 220, 148 TO 220,152: HPLOT 230,148 TO 230,152
291	HPLOT 240,148 TO 240,152: HPLOT 250,148 TO 250,152
292	$\begin{aligned} & \text { HPLOT } 260,148 \text { TO 260, 152: HPLOT } \\ & 270,148 \text { TO } 270,152 \end{aligned}$
300	FOR J = 0 TO 255
310	HPLOT J + 20,150 - ($2(J) * 100) \quad$ Plot voltage
320	NEXT J
1000	PRINT "PRESS RETURN TO START AID"
1010	$K=\operatorname{PEEK}(-16384)$
1012	POKE - 16368,0
1014	IF K > 127 THEN GOTO 1020
1016	GOTO 1010
1020	TEXT
1022	HOME
1024	VTAB 24
1026	PRINT " 256 DATA POINTS ARE BEING DIGITIZED'
1028	GOTO 110
1099	END

cremented, and the program begins to look for the 2nd piece of data. After the 4 digits representing the digitized voltage have been stored, the program checks to see if 256 samples have been stored. If they have not, control returns to the beginning of the subroutine. When all 256 samples have been stored, the program returns to the BASIC routine which called it.

The BASIC routine has the task of assembling the 4 digits from each conversion into a single number which is equal to the measured voltage. A flowchart is shown in figure 3. The machine language assembly routine has previously taken each of the 4 digits from a single conversion and has stored them in individual memory locations. The BASIC routine uses the string manipulation capabilities of Applesoft BASIC to fetch each digit from its memory location and to assemble all 4 digits into a
single 4-digit voltage. After all 256 conversions have been changed into voltages and stored in a matrix array, the high-resolution graphics routine is called and the voltages are plotted as a function of time. It is convenient to have the voltages stored in a matrix array so that if further analysis of the data is required it can be easily retrieved. Listing 2 shows the coded BASIC program with comments.

To demonstrate the ability of a system to digitize and display lowfrequency signals, a waveform generator was connected to the analog-to-digital converter. Photo 1 shows a 0.05 Hz sine wave which was digitized at 10 samples per second. Photo 2 shows a 0.05 Hz triangular wave which was digitized at 10 samples per second. Photo 3 shows a 0.001 Hz sine wave which was digitized at 1 sample per minute. The results are even more impressive when you consider that this is a data-acquisition

Photo 1: High-resolution display of a 0.05 Hz sine wave signal which has been digitized at 10 samples per second.

Photo 2: Display of a 0.05 Hz triangular wave digitized at 10 samples per second.

Photo 3: Display of a 0.001 Hz sine wave digitized at 1 sample per minute.

system costing less than $\$ 2,000$.
At present, a high-speed analog-todigital converter is being constructed to digitize and analyze the electromyographic voltages which come from muscles. This will allow an investigator to gather data for further analysis of the complex neuralimpulse waveform resulting from stretching a muscle. I anticipate that once researchers become aware of the data acquisition, data analysis, and system control that are possible with these low-cost systems, there will be a drastic increase in their use.

DIABLO PROVES LOOKS ARE EVERYTHING.

With Diablo's printers and terninals, you can always be sure that beauty will be in the eyes of the beholder: Because no one knows more about print wheel technology than the company that invented it in the first place.

Diablo's metal and plastic wheel printers have established industry standards for crisp, clear characters, proportional spacing, and uniform density.

So, when youre ready to choose a printer for your own computes, pick the one that produces "picture perfect" originals every time.

If you really want to look good, remember this. With Diablo, youll always look your best.

Diablo Systems

MULTI-TASKING!
The TEMPOS Operating System is quickly becoming the standard in MultiUser, Multi-Tasking operating systems for 8080 and $\mathrm{Z80}$ microcomputers. Multi-Tasking means that, even with only one user at one terminal, more than one job can be running on the system simultaneously! If you have ever had to go get a cup of coffee while you wait for your computer to print listings, you know the advantages of a system that will handle one job while you are working on another. TEMPOS is a true time sharing system, and the maximum number of jobs is limited only by your memory.

MULTI-USER!
Want to share your computer with another user? With TEMPOS all it takes is another terminal . . up to seven interactive terminals are allowed! And with Re-Entrant programs, each user does not need a complete copy in memory. We include three Re-Entrant programs(the OPUS/THREE HighLevel Language, the TEXTED Text Editor, and FILES, a disc file directory/manipulator) or write your own! In addition, we include an assembler, a linking loader, over a half-dozen other utility programs and over 60 system subroutines, callable by the programmer!

PROVEN!
With TEMPOS, you get a package that has been tested in our facilities for over two years, and in the field at over 50 different installations. We have used this system ourselves for everything from writing high-level languages to developing applications to text editing to games. TEMPOS is undoubtedly the most flexible software tool on the market . . . and you can have it for much less than you think!

COMPATIBLE!
TEMPOS is available for many different systems; pre-written drivers may include yours. Or, using our interactive System Generation Routine, you can add your own. Call or write now for our free catalog and the name of a dealer near you. The TEMPOS Operating System is available for $\$ 787.00$, the manual set (price may be credited toward the purchase of the TEMPOS package) for $\$ 21.50$ (prices include shipping within the U.S.).

1642 S. Parker Road, Suite 300, Denver, Colorado 80231 (303) 755-9694

EXPAND YOUR COMPUTER'S POTENTIAL WITH NEW TIMESHARING SERVICE

Compuserve, a Columbus Ohio computer service organization which services more than 650 commercial customers including government agencies, financial institutions, and large corporations, has recently expanded its services to encompass the personal computer user. MicroNET is a computer timesharing and software distribution service for home and small business applications. The service costs $\$ 5$ per connect hour. The MicroNET system may be accessed via telephone service in 25 major metropolitan areas. It is available between the hours of 6 PM and 5 AM on weekdays, as well as all day Saturday, Sunday and holidays.

According to the company, the personal computer owner will be able to use a variety of computer programs on a timesharing basis; communicate with other MicroNET customers; buy and sell software through the network; and obtain additional on-line storage. The MicroNET timesharing library includes a large selection of programs in several categories including personal programs, educational aids, business applications, games and simulations, programming languages, and programming and diagnostic tools. Most of the programs in the MicroNET library are available at no charge other than the basic connect time rate.

All connect time charges and software purchases will be billed through use of credit card information which is provided by the
customer. For a Service Application form and more information, write to Personal Computing Division, CompuServe Inc, 5000 Arlington Centre Blvd, Columbus OH 43220, or call (614) 457-8600.

BULLETIN BOARD
The Computerized Bulletin Board System (CBBS) in the Atlanta GA area is no longer being operated by DC Hayes Associates Inc. The Atlanta system is now being operated by the Atlanta Computer Society. The telephone number has been changed to (404) 394-4220. A description of a CBBS appeared in the article entitled "Hobbyist Computerized Bulletin Board" by Ward Christensen and Randy Suess, (November 1978 BYTE, page 150).

CITRUS COLLEGE OFFERS PERSONAL COMPUTING COURSES

Citrus College in Azusa CA is offering 2 personal computing courses to commence September 1979. Each class is 18 weeks long. The classes are:

Personal Computing
-Building and Using (DP
115) Basic construction techniques, reading simple logic diagrams, debugging circuits, simple assembler, and simple BASIC.
Personal Computing
-Software (DP 116) Programming in 6800 and 8080 assembly language.
For further information, contact Ed Keith, Citrus College, 18824 E Foothill Blvd, Azusa CA 91702.

THE BRAIN is the single topic of the September issue of SCIENTIFIC AMERICAN

Is the brain a computer? What is the role of chemistry in brain function? Is the capacity of speech "hard-wired" into the brain? Where in the brain is the mind?

These are questions that will engage your interest in the September issue of SCIENTIFIC AMERICAN.

This issue does not, by any means, tell you" how the brain works." That remains one of the most alluring and baffling questions on the frontier of understanding. The convergence of work in many dis-ciplines-from neurosurgery to linguistics-has begun to put that question, however, in ways that can yield answers.

The deep new knowledge about the brain, gathered at an accelerating rate in recent years, shows this organ to be marvelously designed and capacitated beyond the wonders with which it was invested by ignorant imagination.

Here are the articles:

- The Brain (Introduction)
- The Neuron
- Small Systems of Neurons
- The Organization of the Brain
- The Development of the Brain
- The Chemistry of the Brain
- Brain Mechanisms of Vision
- Brain Mechanisms of Movement
- Specializations of the Human Brain
- Disorders of the Human Brain
- Thinking about the Brain

All the major advances in science of the past three decades have been reported in our pages by the scientists who have done the research. The collaboration of our editors in the preparation of text and illustration makes this work accessible to a steadily growing worldwide readership.

Why not join us at the frontiers of knowledge? You will learn why The New York Times calls our magazine "This country's and perhaps the world's outstanding forum for communication between the scientists, and the intelligent public."

A one-year subscription, at $\$ 18$, saves you $\$ 6$ on the newsstand price of $\$ 2.00$. A two-year subscription, at $\$ 33$, saves $\$ 15$. And a threeyear subscription, at \$45,

Each of the authors of this issue has made significant contribution to the growing body of knowledge about the brain. Together they offer a comprehensive exposition of present understanding and chart the way for continuing study.
With this issue the editors of SCIENTIFIC AMERICAN continue a 30-year tradition of devoting each September issue to a single topic of current scientific and public interest. In the other monthly issues our readers enjoy a diversity of articles covering the full range of disciplines.
saves you \$27.

Use the coupon below, or call toll free: 1-800-648-5311.
(In Nevada call 800-992-5710.)
Send no money. We'll bill you.
Illustration from Gregor Reisch's Margarita Philosophica, 1504.

SCIENTIFIC AMERICAN

WITH YOUR SUBSCRIPTION... THIS FREE BOOK

As soon as your subscription payment is received, we will also send you Human Ancestors (regular price: $\$ 5.00$) as a bonus. This 144-page anthology reports the archaeological discoveries that unveiled the evolutionary stream leading to Homo sapiens, culminating in the growing recognition of the role of toolmaking in the process of natural selection.

SUBSCRIPTION RESERVATION

SCIENTIFIC AMERICAN 415 Madison Avenue, Dept. ZF. New York, N.Y. 10017
Yes, enter my subscription
to the monthly issues of
SCIENTIFIC AMERICAN for the term I have checked. As soon as my payment is received, you will also send me-absolutely free-the 144-page book Human Ancestors (regular price: \$5.00).

MY GUARANTEE

I may cancel my subscription to SCIENTIFIC AMERICAN at any time and receive a refund for the unused balance. The bonus book is mine to keep.

Name

Address

City/State/Zip

- Start my subscription with September issue
- 1 year- $\$ 18$ - 2 years- $\$ 33$ - 3 years- $\$ 45$ (save $\$ 6$) (save $\$ 15$) (save $\$ 27$)
\square My payment is enclosed Bill me
(International rates outside U.S. and Canada:
1 year- $\$ 222$ years- $\$ 40 \quad 3$ years- $\$ 55$)

Techaical Fopun

Operating Systems

Let's Have Some UNIX-Inspired Software

Jim Howell, 5472 Playa Del Rey, San Jose CA 95123
I would like to add to the comments made by James Jones ("Languages Forum," April 1979 BYTE, page 245) about operating systems.

First, I wholeheartedly agree with his letter. A job control language like OS/370 (or most other large systems, for that matter) would be terrible for personal computer use. Aside from the pile of job control required to do anything, there are other problems with OS-like systems. The numerous file formats and "access methods" make it difficult for programs to work together. Specifying files for the compiler or assembler to use as work files is a nuisance. A file specification (DD statement) also requires giving values for several parameters about which the user usually doesn't care or shouldn't have to specify. Some of these problems are helped by using procedures (sets of job control that the computer vendor or local systems programmer has stored on disk for general use), but these may not be what you need, and they also take up disk space. The space is not significant if your disks store 100 megabytes, but it could be significant for floppy disk users.

I would like to strengthen Mr Jones' suggestions that UNIX be used as a model for a microprocessor operating system. (UNIX is a trademark of Bell Labs.) I have used a UNIX system at work for about a year and it is a very pleasant system to work with. All files on UNIX are a series of bytes: no structure within files are imposed by the system. In particular, there is no concept of a "logical record" in UNIX. A "logical record" is the (usually) fixed size chunk in which files are read or written on big systems; often 80 bytes (for card or card-image files), or 120 or 132 bytes (for line printers). On UNIX, the end of a line in a text file is indicated by the use of a new-line character. This new-line character (line feed on UNIX) replaces the trailing blanks which are stored on systems that use logical records. The new-line character is read or written just like any other character. The size of a file is determined by how many bytes are written to it; predetermination of the file size (by guessing?) is not necessary, or even possible.

Job control language on UNIX is practically nonexistent. A command to run a program (such as a compiler or a user program) consists of the name of the pro-
gram to be executed followed by any parameters that the program needs, separated by blanks. (Parameters are often file names and processing options.) The command processor, which runs as a user program, reads the command line, divides it into "words," and calls the system to execute the desired program. This system call also passes the parameters to the executed program. There is no need to describe files in the command since programs need only the name of a file in order to access it. Block sizes and such things are not required, even for new files, since there is only one format for files.

The following is a summary of the major system calls of UNIX that deal with file or an I/O (input/output) device. A file name in the open and create calls can also be a device name (such as the name for a terminal or printer).

Open (name, mode) opens an existing file (or device) for further operations. "Name" is a pointer to a character string which is the name of the file (or device) and "mode" indicates reading, writing, or both.
Create (name, prot) creates a new file, deleting any old file whose name is "name." This new file is opened for writing. (I would like to see a "mode" argument for this call, in addition to the two specified. This "mode" would mean the same as it does for "open.")
Read (fildes, buffer, length) reads up to "length" bytes from the file whose descriptor is "fildes" into the "buffer". The file descriptor is a small, nonnegative integer which was returned by open or create. The number of bytes actually read is returned to the caller. A return of 0 means end of file.
Write (fildes, buffer, length) writes "length bytes to the file "fildes" from the "buffer."
Seek (fildes, offset, base) moves the read/write pointer of the file "fildgs" to a new position within the file. "Offset" is how far to move the pointer, and "base" indicates from the start of the file, from the current position, or from the end of the file.
Close (fildes) closes a file.
Each open file has a read/write pointer associated with
it. Each read or write call starts reading or writing at the current pointer and advances the pointer by the number of bytes read or written. By moving the read/write pointer with the "seek" call, random access files (or even indexed-sequential or other access methods) can be implemented if required. Note that "read" and "write" are the lowest levels of I/O calls to the system, and that they apply to all devices. All device-dependent processing is inside of the operating system. The only thing that a user program needs to know about a file after it is opened or created is the returned number (file descriptor). There are no "control blocks" or other system-imposed structures in user programs. (System calls are available in UNIX to determine the type of device that is associated with an open file for the few programs that need this information.)

Most current microprocessor operating systems use a special character, such as control-z, to mark the end of text files. These systems take the view that "binary" files (files where all 256 possible bytes are valid) are only for executable programs, and in this case reading a few extra bytes from the last sector of the file will not cause any problems. Such a scheme prevents the use of binary files for other purposes where the exact end of the file must be known. Possible uses include a work file written by a compiler or assembler and libraries of subroutines in object format for linking with other programs. (For example you wouldn't want a 20 byte absolute value function to add 128 bytes to your program, simply because the end of a sector is the best you can do at locating the end of the function!) The end of a file should, as in UNIX, be indicated by a count of the number of bytes in the file, and the end of file when reading should be determined by comparing the read/write pointer of the file to the end-offile byte count. (Writing past the end of a file causes the end of file pointer to move to the new read/write pointer position.)

The above is a description of some aspects of UNIX, and is also intended to be used as guidelines in writing any new operating systems for microprocessors (or even big systems). One other thing that might be considered by an operating system writer is the use of a high-level language for most of the operating system and for the programs that implement supplied commands. This would allow the operating system to be moved to another microprocessor without having to completely rewrite it.

I am about halfway through designing an operating system along the lines of the above suggestions. (I started before Mr Jones' letter appeared in BYTE.) Eventually I expect to implement it.

Let me conclude by listing three references which are recommended to those who are implementing a usable microprocessor operating system. The first two were also mentioned by Mr Jones.

REFERENCES

1. Communications of the ACM, July 1974. A revised version of the UNIX article appears in reference 3 below.
2. Software Tools by Kernighan and Plauger.
3. The Bell System Technical Journal, July thru August 1978, part 2. This issue contains about fifteen papers on UNIX. Read especially the first 3 or 4 papers, as well as the one called "UNIX on a Microprocessor" (single-user version on an LIS-11).

you already have

a high quality output printer.

- Escon printer conversion fits right in
- Installation does not affect: Shape or normal functioning of typewriter nor eligibility for IBM warranty and service
- Available in S-100, Parallel, RS-232 or IEEE-488
- Entire high quality printer system for TRS.80, Âpple, PET, Sorcerer, Horizon, etc.
- All systems assembled, tested and burnt-in
- Factory installations available; complete systems with typewriter available

$$
\begin{array}{rllll}
\text { Prices* } & \text { S-100 } & \$ 496.00 & \text { Parallel } & \$ 525.00 \\
\text { RS-232 } & \$ 549.00 & \text { IEEE } & \$ 575.00
\end{array}
$$

*Prices valid in USA only

The engineering \& graphics people
(217) 367-0299

LOGIC
Box V, Savoy, IL 61874

Soldering Techniques

William Trimmer
40 James St
Morris Plains NJ 07950

Anyone who can get 3 objects into the same vicinity can solder. Doing a professional job, however, requires some care and practice. This article draws on my experience in teaching
electronics and a fine pamphlet prepared by NASA entitled "Soldering Electrical Connections, A Handbook" (United States Printing Office, NASA SP-5002). Good soldering

Photo 1: After cleaning the tip of the soldering iron with a wet sponge, prepare it by adding a dab of solder.

Photo 2: Before soldering, the joints should be mechanically fastened.
techniques can save time, components and frustration.

Good Soldering Techniques

Good soldering starts with a clean soldering iron tip and well-tinned parts. Just prior to use, the hot soldering iron should be cleaned by wiping it across a wet sponge. The thermal shock and wiping action will clean the tip and remove the excess solder. Then touch a bit of solder to the tip (photo 1). The iron is now ready for use. The parts to be soldered are ready when the solder flows quickly and evenly over their heated surfaces. If this does not happen, clean the parts by brushing, filing, or rubbing with a pencil eraser. Next flow a thin layer of solder over the clean surface. The parts are now tinned and ready to be soldered.

The prepared parts should be mechanically fastened together before making the soldering joint (photo 2). The solder should not be expected to supply mechanical strength. Clean the soldering iron tip, and add a dab of solder to the tip. Touch the soldering iron to the heavier of the parts to be joined, and begin wiping the solder on the junction between the two parts (photo 3).

Do not feed the solder into the soldering iron tip. When the components are hot enough, the solder will begin to melt into the joint. The solder should skate over the surfaces like butter on a hot pan. Now you must move quickly. Rapidly wipe the entire length of the connection with the solder, being careful not to apply too much. The solder should flow smoothly over the parts. If braided wire is used, the strands should still be visible (photo 4). Doing this well takes a lot of practice. Now remove

WE HAVE YOUR NOVATION MODEMS, RIGHT NOW.

Whether you need an acoustic or direct connect, your Novation modem is in stock today at your nearby Hamilton/Avnet location.
Novation makes a wide range of modems, each with builtin economy, reliability, and quality that can enhance the efficiency and aesthetics of your system. That includes Cat ${ }^{T M}$, a breakthrough for modems. Sleek, silent, compact, Cat is Novation's new acoustically coupled modem designed especially for the small computer user. Easy to use, simple to install, Cat is ideal for both small business and personal computer applications.

You can get your Novation modem locally from us.

We have a complete on-hand selection of Novation modems, plus all the other computer products you need, at each of our locations nationwide.
And if you call our toll-free number, we'll tell you about our new Authorized Hamilton/Avnet Dealer program and the name of your nearest Authorized Dealer. He has your Novation modems in stock, too, as well as all the other computer products you need.
Just call 1-800-421-4645 (in California call 1-800-252. 0627). You can get your Novation modem, right now.

Hamillonbenynet
NOVATION

World's largest local distributor with 39 locations stocking the world's finest lines of system components
(408) 743.3355
$(206) 746.8750$ $\begin{array}{ll}\text { San Franclisco } & \begin{array}{l}\text { (408) } 743.3355 \\ \text { Seatule } \\ \mathbf{1 2 0 6 1} \\ 746.8750\end{array}\end{array}$ MIO CENTRAL Kansas City
 Syracuse
Rocleste Rocliesier

Photo 3: When soldering, touch the iron to the heaviest part. When the joint is hot enough, the solder will melt on the side opposite the iron.

Photo 4: In a well-soldered braided wire, the strands should still be visible.

Photo 5: Excess solder, poor wetting of the wire, frosted surfaces, and blobs of solder represent poorly soldered joints.
the iron and hold everything perfectly still. Any motion while the solder is going from the liquid to the solid state will cause a cold joint. After the joint is cooled, the surface of the solder should look like a mirror. A good solder joint is an accomplishment.

A good way to begin might be to deliberately make some bad soldering joints. First, shake the two wires while the solder is cooling. Notice the undesirable frosted look. Now try leaving the iron on the joint for more than several seconds, and you will notice that a scum forms. Try putting too much solder on the joint. Often when this blob cools, the frosted surface will appear (photo 5). Try to find the two oldest wires you can. Twist them together and solder them. If they are covered with an oxide layer, the solder will not transfer from the soldering iron tip to the wires. Repeated heatings will probably cause the solder to melt around the joint. Notice how the solder does not flow onto the wires, but sticks to itself. The joint is now probably hot enough to burn the flux.

Inevitably, one has to unsolder some beautifully soldered joints. If the joint is that of a straight wire through a hole, a pull will often accomplish the task. (Be careful of the flying molten solder.) Often, one must remove the solder and then unwrap the wire. The best method uses a fine mesh of properly fluxed copper wire. (An example of this would be Solder-Wick, made by Solder

Removal Co, 1077 E Edna Place, Covina CA 91724. Their 40-4-5 is a medium size, $40-6-21 / 2$ is for large joints, and $40-2-5$ is for very small joints.) Push the mesh against the joint with the soldering iron. The solder will be wicked from the joint into the mesh. Solder suckers are also a popular way to remove solder. The tool is cocked, placed on a heated joint, and released. A plunger pulling air through the nozzle of the sucker gets most of the solder. This last suggestion is the least expensive way. Hold the circuit board and heat the joint. Rap the edge of the board smartly on the work bench. Solder flies in every direction, but the joint is clean.

Good soldering takes patience and practice. Fortunately, if properly done, the soldering joints are almost never the culprits when a circuit does not work. The following are some suggestions that will make soldering easier.

Tools

The soldering iron should be well tinned (covered with solder), and should quickly raise the joint to the working temperature. I prefer a 30 or 40 W element for a pencil soldering iron. Cleaning the tip with a wet sponge before soldering will bring the tip down to the correct temperature range (about $700^{\circ} \mathrm{F}$). This slightly greater wattage will allow larger pieces to be soldered. Better yet are the temperature controlled pencil soldering irons. Soldering guns are too large and hot for all but the most massive soldering joints. If you buy a new soldering iron, wrap the tip with solder before turning it on. This will coat the tip with solder before it gets hot enough to oxidize. Place the iron in a protective cage towards the back of your work bench so that it can not burn anything. If the iron is not going to be used for a while, unplug it.

It is very tempting to buy less expensive solder. Don't do it. Solder costs very little compared to other components. The best solder is Eutectic, which is 63% tin and 37% lead. This mixture passes directly from a liquid to a solid stage without going through a plastic region. As a result, good soldering joints are easier to make. Solder composition is generally given by two numbers, such as $40-60$. The first number is the amount of tin, the second is the amount of
lead. The above solder is less expensive to make than Eutectic solder because tin is the expensive element. However, this solder has a plastic region of about $180^{\circ} \mathrm{F}$. The joint must be held completely motionless while the solder is cooling through this plastic stage. Always use a rosin flux when soldering. Never let your iron touch acid flux. An 18 or 20 gauge solder with a rosin core works nicely.

There are a number of other useful tools. These include long nose pliers, diagonal cutting pliers, wire strippers, a slotted screwdriver, a dental pick, and plastic electrical tape.

Assembly Before Soldering

A convenient substrate upon which to build electronics is predrilled epoxy board. The holes should be on 0.1 inch centers in a square grid for digital work. Typical hole sizes are 0.042 or 0.062 inches. Vector-type terminals (Vector Electronic Co Inc, 12460 Gladstone Ave, Sylmar CA 91342) can be pushed into the holes and the discrete components soldered to the terminals. The majority of digital electronics come in the dual-in-line packages. A convenient way to mount dual-in-line packages is with circuit-stick-type subelements (Circuit-Stik Inc, 24015 Gardnier St, POB 3396, Torrance CA 90510). These are very thin sheets of glass epoxy with preetched copper lands on one side and glue on the other. The holes on the subelements are aligned with the holes on the predrilled circuit board, and carefully pressed together. The dual-in-line packages and components can then be pushed through from the other side of the board, and soldered to the preetched copper lands. One can then wire the correct lands together. Because the spacing between the pins of the dual-in-line packages is only 0.1 inches, hand soldering requires care. When working with dual-in-line packages, I prefer to solder sockets onto the board, and plug the dual-in-line packages into the sockets. This method makes troubleshooting easier.

It is important to be neat when soldering. Try to lay the board out logically. Do not crowd the components together. If it is your own design, you will probably want to add something after the board is made. Place all of the resistors the same way so that their color codes

Explorer/85 Professional Computer

Starting at just $\$ / 29.95$ for a Level " A " operating system, you can now build the exact compufer you want. Explorer/85 can be your beginner's system. OEM controller, or lBMformatted 8" disk small business system... yet you're never forced to spend a penny for a componen or fearure
want and you can expand in small, affordable steps!
Now, for just $\$ 129.95$, you can own the first level of a fully expandable computer with professional capabilities-a com puter which features the advanced Intel 8085 cpu , thereby giving you immediate access to all soffware and developmen roois that exisf for both the 8085 and its 8080A predecessor features onboard $\mathrm{S} \cdot 100$ bus compaiibie)-a computer which reatures onboard sion to mass storage disk memory with either 5-1/4" diskettes For just $\$ 129$ os (plus the cost of
For just $\$ 129.95$ (plus the cost of a power supply, keyboard/ terminal and RF modulator, if you don't have them already), Explorer/85 lets you begin computing on a significant level. . applying the principles discussed in leading computer magaboth the industrial and leisure environment.
Like all Netronics products, each level of Explorer/85 is engineered to professional standards. Top quality components are used throughout. You are insured, year after year of are used throughout. You are insured, year after year, of
stable, reliable service.
And Netronics lets you build the system you want-with the exact components you want. You're never forced to spend a penny for an item you already have (i.e., a power supply, RF modulator keyboord alrel in order to get a new feature or component you need.
No matter what your future computing plans may be, Level
" A " is your starting point.
Level "A" Specifications
Explorer/85's Level "A" system features the advanced Intel 8085 cpu , an 8355 ROM with 2 k deluxe monitor/operating system, and an 8155 ROM-1/O-all on a single motherboard with room for RAM/ROM/PROM/EPROM and S-100 ex-
pansion, plus generous protolyping space.
(Level "A" makes a periect OEM controller for indsutrial appllcations and is avallable in a special Hex Version which can be programmed using the Netronics Hex Keypad/Display,) mask - 1/0: provisions for 25 -pin (DB25) connector for mask 1/O: provisions for 25 -pin (DB25) connector for provision for 24 -pin DIP socket for hex keyboard/display
provision for 24-pin DIP socket for hex keyboard/display
cassette tape recorder input. . . cassette tape recorder output .. cassette tape control outpul. . . speaker output. . . LED output indicator on SOD (serial output) line... printer interface (less drivers). . total of four 8-bit plus one 6-bit VO ports Cres (RST 7.5) interrupt additional provisions for RST 5.5 user (RST 7.5) interrupt, . . additional provisions for RST S.5, mable 14-bit binary o System RAM: 256 bytes located at F800 mable, 14 bil binary System RAM. 25 byles located at F 800 , deal expanded systems...
4 K on motherboard.
Monitor ROM (ASCII Keyboard Version): 2k bytes of deluxe system monitor ROM located at Fg日0 leaving 6000 free for user RAM/ROM. Features include lape load with labeling (so that Explorer/8s can locate your specific program automatically). tape dump with labeling...examine/change contents of memory... insert data (such as from a paper tape reader). . . warm start (a feature which is especially helpful in debugging routines as it allows you to save the contents of the registers which might otherwise be lost along with the rest of your program when a bug causes it to self-destruct. The warm start feature helps you pinpoint the exact line in your program that contains an error)...examine and change all registers. . .single step with register display at each break point, a debugging/Iraining feature ..go to execution address. move blocks of memory froin one location to another. . fill blocks of memory with a constant. . .display blocks of memory . .automatic baud rate selection. . .variable display line length control ($1-255$ characters/line). . channelized $1 / O$ monitor routine with 8 -bit parallel output for high speed printer.
Netronics ReD Lld., Dept. BY.9

333 Litchfield Road, New Milford, сT 06676

Please send the items checked below-

- Explorer/85 Level "A" Kit (ASCI! Version), $\mathbf{5 1 2 9 . 9 5}$ plus $\$ 3$ pkh.
\square Explorer/85 Level ' A '" Kit (Hex Version), $\$ 129.95$ plus $\$ 3$ p\&h.
$\square 8 \mathrm{k}$ Microsoft BASIC on cassette lape, S64.95 postpaid.
D 8 k Mierosoft BASIC in ROM Kit
(requires Levels "B," "D," and "E"), $\$ 99.95$ plus $\$ 2$ p\&h.
\square Level " B ' ($\mathbf{S - 1 0 0}$) Kit, $\$ 49.95$ plus $\$ 2$ p\&h.
\square Level "C" (S-100 6-card expander) Kit, $\$ 39.95$ plus $\$ 2$ p\&h.
D Level "D" (4k RAM) Kit, $\mathbf{\$ 6 9 . 9 5}$ plus $\$ 2$ p\&h.
\square Level "E" (EPROM/ROM) Kit, $\$ 5.95$ plus $50 \mathrm{p} \& \mathrm{~h}$.
\square Deluxe Steel Cabinet for Explorer/ 85, $\$ 49.95$ plus $\$ 3$ p\&h.
A ASC1I Keyboard/Computer Terminal Kit (features a full 128 character set, upper \& lower case, full cursor control, 75 ohm video out put convertible to baudot output, selectable baud rate RS232-C or 20 ma. 1/O, 32 or 64 char acter by 16 line formats, and can be used with either a CRT monitor or a TV $\$ 149.95$ plus $\$ 2.50$ p\&h.

serial console in and console out channel so that monitor can communicate with l/O ports.
Monitor ROM (Hex Version): Tape load with labeling tape dump with labeling. . examine/change contents of mem ory...insert data...warm start. . examine and change all registers. . . single step with register display at each break poin go to execution address.

Level " B " Specificatlons

Level " B "' provides the $\$-100$ signals plus buffers/drivers to support up to six $\mathrm{S}-100$ bus boards and includes: addres decoding for onboard 4 k RAM expansion selectable in 4 blocks. . .address decoding for onboard 8k EPROM expansion selectable in 8 k blocks...address and data bus drivers fo onboard expansion. . . watt state generator (jumper selectable) to allow the use of slower memories... iwo separate 5 vol regulators to insure maximum stability and a noise free bus. Level "C" Specificallons
Level "C' expands Explorer's motherboard with a card cage, allowing you to plug up to six S-100 cards directly into the motherboard. Both cage and cards are neatly contained inside Explorer's deluxe steel cabinet. Level "C" includes a shee metal superstructure, a 5 -card gold plated S-100 extension PC board which plugs into the motherboard, 12 card guides, and al! brackets and hardware needed for complete assembly. Jus add required number of $\mathrm{S}-100$ connectors
In addition to six S-100 cards, Level "C" will also support an optional test socket that allows you to perform tests and maintenance on both sides of any individual S-100 card, under actual operating conditions. (You won't need Level "C' unless you are planning to use 3 or more S-100 cards with you Explorer/85.)
Level "D" Specifications
Leve! "D" provides $4 k$ or RAM, power supply regulation, filtering decoupling components and sockets to expand your Explorer/85 memory to 4 k (plus the original 256 bytes located in the 8155A).
The 2114 static RAM is organized as 1024 words by 4-bits using N-channel Silicon-Gate MOS technology and can be located anywhere from 6000 to EFFF in 4 k blocks

Level "E" Specifications

Level "E"' adds sockets for 8 k of EPROM to use the popular Intel 2716 or the TI 2516. It includes all sockets, power supply regulator, heat sink, filtering and decoupling components Sockets may also be used for soon to be available RAM IC's (allowing for up to 12 k of onboard RAM)

Order A Coordinated

Explorerl85 Applications Pak!

Experimenter's Pak (SAVE \$12.50)-Buy Levet "A" and Hex Keypad/Display for $\$ 199.90$ and get FREE Intel 8085 user's manual plus FREE postage $\&$ handling
Student Pak (SAVE S24.45)-Buy Level "A," ASCII Key board/Computer Terminal, and Power Supply for \$319.85 and get FREE RF Modulator plus FREE Intel 8085 user's manua plus FREE postage \& handling!
Engineering Pak (SAVE SA1.00)-Buy Levels "A," "B," Computer Terminal, and six S-100 Bus Connectors for $\$ 514.75$ Computer Terminal, and six S-100 Bus Connectors for $\$ 514.75$
and get 10 FREE computer r:ade cassette tapes plus FREE and get 10 FREE computer r:ade cassette tapes plus FREE
8085 user's manual plus FREE postage \& handling!
Business Pak (SAVE \$89.95)-Buy Explorer/8s Levels "A," "B," and "C" (with cabinet), Power Supply, ASClI Keyboard/Computer Terminal (with cabinet), 16k RAM, 12' Video Monitor, North Star $5.1 / 4^{\prime \prime}$ Disk Drive (includes North Star BASIC) with power supply and cabinet, all for jus $\$ 1599.40$ and get 10 FREE $5-1 / 4^{\prime \prime}$ minidiskettes ($\$ 49.95$ value plus FREE 8085 user's manua! plus FREE postage \& handling!

Continenta U.S.A. Credit Card Buyers Outsida Connecticut

CALL TOLL FREE 800-243-7428

O Order From Connecticut Or For Technic
Assistance. Etc. Call (203) 354-9375
\square Deluxe Steel Cablinet for ASCII Keyboard/Terminal, $\mathbf{\$ 1 9 . 9 5}$ plus $\mathbf{\$ 2 . 5 0}$ peh.
\square Power Supply Kit ($\pm 8 \mathrm{~V} 5 \mathrm{amps}$) in del p\&h.
Gold Plated S-100 Bus Connectors, 4.85 each, postpaid.
\square RF Modulator Kit (allows you to use your TV set as a monitor). $\$ 8.95$ postpaid.

- 16k RAM Kit (S-100 Board expands to 64 k). $\$ 199.95$ plus $\$ 2$ p\&h.
$\square 32 \mathrm{k}$ RAM KIt, $\mathbf{\$ 3 2 9 . 9 5}$ plus $\mathbf{\$ 2}$ p\&h.
- 48K RAM Kit, $\mathbf{S 4 5 9 . 9 5}$ plus $\$ 2$ p\&h - 64k RAM Kit, $\mathbf{\$ 5 8 9 . 9 5}$ plus $\$ 2$ p\&h. \square 16k RAM Expansion Kit (to expand any of the above up to 64k), \$139.95 plus $\$ 2$ p\&h each.
\square Intel 8085 cpu User's Manual, $\mathbf{5 7 . 5 0}$ postpaid.
\square Special Computer Grade Cassette Tapes, $\$ 1,90$ each or 3 for $\$ 5$, post paid. \square 12' Video Monitor (10 MHz bandwidth), $\$ 139.95$ plus $\$ 5$ p\&h.
width), \$139.95 plus 35 peh.
Disk System (One Drive) for Exploper/ 85 (includes (One Drive) for Explorer/ 85 (includes 3 drive S-100 controller,
DOS, and extended BASIC with per:
sonalized disk operating system-just
plug it in and you're up and running!).
$\$ 699.95$ plus $\$ 5$ p\&h.
\square Power Supply for North Star Disk Drive, $\$ 39.95$ plus $\$ 2$ p\&h.
\square Deluxe Case for North Star Disk Drive, $\$ 39.95$ plus $\$ 2$ pkh.
Q Experimenter's Pak (see abovel, $\$ 199.90$ postpaid.
\square Student Pak (see above), $\mathbf{\$ 3 1 9 . 8 5}$ post paid.
\square Engincering Pak (see above). $\$ 514.75$ postpid
$\$ 514.75$ post paid.
\square Business Pak (see above), $\$ 1599.40$ postpaid.

Total Enclosed 5

Circle 141 on inquiry card.

16K Static RAM Boards for the SS-50 Bus

- Gold bus connectors
- 4 separate 4 K Blocks
- Individual Addressing, Write Protect, and Enablel Disable for each block
 s298 ${ }^{13}$

Memories ... As above with
Sockets and
Software
control
features. ${ }^{5} 368^{16}$
All GIMIX memory boards are assembled, Burnt-In for 2 weeks, and tested at 2 MHz . Add $\$ 32.00$ for 250 ns parts

```
8K PROM BOARD \$98.34 2708s \(\$ 7.90\) each
SS 50 BUS \(80 \times 24\) VIDEO BOARD
```


With hardware scrolling, $x \cdot y$ addressable cursor and multiple character generators. It includes a TMS 2716 EPROM that contains a lull 128 upper and lower case ASCII character set with Irue descenders; plus a socket for another TMS 2716 for an optional 128 character set plus 2 K of RAM lor user-delined programmable character sets. This gives the user the ability to create his own heiroglyphics, alphabet. graphic elements, etc., and store them on PROM, disk, or tape.

The user can choose and intermix 384 diflerent characters from any or all of the character generators and display up to 256 at one time, normally or Inversely. and at full or half intensity, at any location on the screen. Contiguous 8×10 character cells permit solid lines and connecting patterns with user detinable graphic elements.

It is addressable to any 2 K boundary. GHOSTable addressing allows multiple boards at the same address, making it ideal for multi-user applications. The available software includes a GMXBUG video based 3 K ROM monitor, stand alone driver routines, and a program to create user defined characters.

DELUXE VERSION \$458.76
Other Video Boards from $\$ 198.71$

16K SYSTEMS \$1294.29
Includes: Mainframe cabinet, mother board, power supply, fan, CPU, 16K static RAM, and choice of $1 / 0$ card.
Other packages available.
Add $\$ 10$. handling charge on orders under $\$ 200$.

1337 WEST 37th PLACE
CHICAGO, ILLINOIS 60609
(312) 927-5510 • TWX 910-221-4055

The Company that delivers.
Quality Electronic products since 1975.

AWG	Diameter (mm)	Ohms per 1000m	Current Capacity (Amperes)
10	2.6	3.3	26
12	2.0	5.2	16
14	1.6	8.3	10
16	1.3	13	6
18	1.0	21	4
20	0.81	33	2.5
22	0.64	53	1.6
24	0.51	84	1.0
26	0.40	135	0.6
28	0.32	214	0.4
30	0.25	341	0.2

Table 1: Approximate values for various American Wire Gauge (AWG) sizes of copper wire.
can be read from the same side of the board. Run the wires in an orderly manner. I prefer to mount components like resistors, transistors, etc, slightly off the board. This improves the heat transfer, and makes it easier to slip in a probe for testing. Components that weigh 0.5 ounces or more should be mechanically mounted to the board. A little epoxy or silicon rubber works wonders for mounting these components.

Properly stripping wire is a dichotomy. First, the insulation should be cut and removed. Second, the wire should not be cut. (If stranded wire is used, a nick will cause only a few strands to break.) With practice, you can strip the insulation without cutting the wire. Try cutting slowly through a wire. Notice the difference in the feel between the insulation and wire. Now cut off the wire and start again with a clean end. Cut down until the wire is felt, then relax the stripper slightly. Now rotate the wire 45° and again squeeze a bit. This will cut the insulation all the way around, not just where the stripper teeth cut the deepest. Be sure to open the stripper slightly and pull the insulation off the wire. With practice, you can learn not to nick the wire. The secret is to stop cutting just before the cutter reaches the wire. A firm pull will usually break off the remaining insulation. If you still nick the wire, take heart, you have much company.

Table 1 gives the American Wire Gauge (AWG) size, the approximate diameter, ohms per 1000 meters, and current carrying capability of copper
wire. Try to use a number of wires of different colors and gauges. This not only matches the current capability with the load, but also makes it easier to trace wires.
Finally, some words on safety: be sure that you have a stand for your iron; always wear shoes and safety glasses; and try not to flick solder on anything important. When cutting wires, hold the cutter so that the pieces fly away from you. To avoid potentially lethal shocks, it is best to have a rubber mat beneath your feet and stool.
By following these rules and techniques, almost anyone can learn to solder well.

POWER-ONE

 D.C. POWER SUPPLIES

 D.C. POWER SUPPLIES}

Now available for small systems applications

Power-One, the leader in quality open-frame power supplies, now offers a complete line of single, dual, and triple output models for small computer systems. Also available are special purpose models for Floppy Disk and Microcomputer applications.
Below are just a few popular examples of the over 90 "off the shelf" models now available from stock.

SINGLE OUTPUT \& LOGIC POWER SUPPLIES - 56 "off the shelf" models - 2 V to $250 \mathrm{~V}, 0.1 \mathrm{~A}$ to 40 A - $\pm .05 \%$ regulation - 115/230 VAC input	5V (a) 3A,w/OVP HB5-3IOVP $\$ 24.95$ single qty.	5V @ 12A, w/OVP HD5-12/OVP $\$ 79.95$ single qty.	SK5-40/OVP Switching Model $\$ 250.00$ single qty.
FLOPPY-DISK SERIES - 8 "off the shelf" models - Powers most popular drives - Single/dual drive applications - 2-year warranty	5V @ 0.7A, w/OVP 12V@1.1A/1.7A PK CP340 For one 5.25" Media Drive $\$ 44.95$ single qty.	5V@1A, w/OVP -5V@0.5A,w/OVP 24V@1.5A/1.7A PK CP205 For one 8.0" Media Drive $\$ 69.95$ single qty.	5V © 2.5A, w/OVP -5 V @ 0.5A, w/OVP 24V (3) 3A/3.4A PK CP206 For two 8.0" Media Drives $\$ 91.95$ single qty.
DUAL OUTPUT MODELS 15 "off the shelf"' models $\begin{aligned} & \pm 5 \mathrm{~V} \text { to } \pm 24 \mathrm{~V}, 0.25 \mathrm{~A} \\ & \text { to } 6 \mathrm{~A} \\ & \text { I.C. regulated } \\ & \text { Full rated to }+50^{\circ} \mathrm{C} \end{aligned}$	12V/15V @ 0.25A HAD12-. 25/HAD15-. 25 $\$ 32.95$ single qty.	$5 \mathrm{~V}$ (1) 2A, w/OVP $9-15 \mathrm{~V} @ 0.5 \mathrm{~A}$ HAA512 $\$ 44.95$ single qty.	$\begin{aligned} & \pm 12 V @ 1.7 A \text { or } \\ & \pm 15 V @ 1.5 A \end{aligned}$ HBB15-1.5 $\$ 49.95$ single qty.
TRIPLE OUTPUT MODELS - 10 "off the shelf"' models - 5 V plus $\pm 9 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ outputs - Models from 16W to 150W - Industry standard size	$5 V @ 2 A, w / O V P$ $\pm 9 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} @ 0.4 \mathrm{~A}$ HTAA-16W $\$ 49.95$ single qiy.	$\begin{aligned} & 5 V @ 3 A, w / O V P \\ & \pm 12 V @ 1 A \text { or } \\ & \pm 15 V @ 0.8 A \end{aligned}$ HBAA-40W $\$ 69.95$ single qity.	5V @ 6A, w/OVP $\pm 12 \mathrm{~V}$ @1.7A or $\pm 15 \mathrm{~V}$ (3) 1.5A нСвв-75W $\$ 91.95$ single qity.

NEW 79' CATALOG!

Get Your FREE Copy Now!
Phone us direct or circle the reader service number below.

© Pawer-ane

D.C. POWER SUPPLIES

DIOITAL RESEARCH

D CP/M* Floppy Diskette Operating System Packages supplied on diskette complete with 8080 as sembler, text editor, 8080 debugger and various utilities plus full documentation. CP/M available conligured to most popular computer/disk systems including North Star Singla Double or Ouad density Alear $8^{\prime \prime}$ disks Helios II, Exidy Sorcerer Vector iz PolyMorohic $8813+ \pm$ Heath H17 + or H89 \dagger TRS- $80+$ iCOM 3712 and iCOM Micro Disk plus many other conligurations available off the shelf
.......................... .\$145/\$25 lions. Pseudo Ops include RPC, IRP, REPT, TITLE PAGE, and MACLIB. Z.00 library included. Produces Intel absolute hex output plus symbols file for use by SID (see below)
\square SID - 8080 symbolic debugger. Full trace, pass coun and break-point program testing system with back-trace and histogram utilities. When used with MAC, provides full symbolic display of memory labels and equated values
TEX - Text formatter to create paginated pag numbered and justilied copy from source text tiles, directable lo disk or printerOL - Program to permit simulaneous printing data rom disk while user executes another progra

from the console
 Al, Microsozt
 pricestare
 MICROSOFT

Disk Extended BASIC - Version 5, ANSI compatible with long variable names, WHILENEND, chaining. variable length file records \qquad \$300/\$25
BASIC Compller - Language compatible with Version 5 Microsoft interpreter and 3.10 times faster execuion. Produces standard Microsott relocatable binary ourput. Includes Macro-80. Also linkable to FOR $\mathbf{\$ 3 5 0 / \$ 2 5}$

- FORTRAN-80 - ANSI '66 (except for COMPLEX) plus many extensions. Includes relocatable object complier, linking loader, library with manager. Also includes MACRO-80 (see below)
COBOL-80 - ANSI '74 Relocatable object output. format same as FORTRAN-80 and MACRO-80 modules. Complete ISAM, interactive ACCEPT/DISPLAY, COPY, EXTEND
MACRO-80 - 8080/780 Macro Assember Int and zilog mnemonics supported. Relocatable linkable output. oader, Library Manager and Cross Relerence List Lutifities included Manager and Cross Relerence
\square EDIT-80 - Very fast random access text editor for text wilh or without tine numbers. Globat and intra-line commands supported. File compare utiity included $\$ 89 / \$ 15$

Software
 with Manual
 Manual Alone

XITAN (software requires Z80** CPU)
\square Z-TEL - Text ediling language. Expression evaluation iteration and conditional branching ability. Registers available for rext and commands. Macro command strings can be saved on disk for re-use569/520
\square ASM Macro Assembler - Mnemonics per Intel with Z-80 extensions. Macro capabilities with absolute inte hex or relocalable linkable output modules. New $\mathbf{\$ 6 9 / 5 2 0}$ 3 with added features
modules
Z-BUG debugger - Trace, break-point tester. Support decimal, octal and hex modes. Disassembler to ASM mnemonic set. Emulation technique permits full tracin and break-point support through ROM589/\$20
\square TOP Texi Output Processor - Creates page-numbered justified documents from source text files $\$ 69 / \$ 20$
A4 package includes Z-TEL, ASM, LINKER, Z-BUG TOP
.\$299/\$40

EIDOS SYSTEMS

\square KISS - Keyed Index Sequential Search. Offers complete Multi-Keyed Index Sequential and Direct Access file management. Includes built-in utility functions for 16 or 32 bit arithmetic, string/integer conversion and string ompare. Delivered as a relocalable Microsoit format for use wih FORTRAN-......... $\mathbf{\$ 5 3 5 / \$ 2 3}$
\square KBASIC - Microsolt Disk Extended BASIC with all KISS lacilities, integrated by implementation of nine additional commands in language. Package includes KISS.REL as described above, and a sample mail list program \$995/\$45

all Nicompon
 MICROPRO

\square Super-Sort I - Sort, merge, extract utility as absolute executable program or linkable module in Microsoft lormat. Sorts fixed or variable records wilh dala iting hay, BCD, Packed Decimal EBCDIC, ASCI, Eing, point, exponential, field justified, etc. etc. Even variabie number of fields per record!
Super-Sort II - Above available as absolute prooram only ... \$175/\$25
Super-Sort III - As II without SELECT/EXCLUDE
\square Word-Star - Menu driven visual word processing system for use with standard lerminals. Text formatting perormed on screen. Facilities for text paginate. page number, justify, center, underscore and PRINT. Edit laciities include global search and replace, read/write to other text liles, block move, elc. Requires CRT Ierminal with addressable cursor positioning $\$ 445 / \$ 25$

- CPIM is a trade name of Digital Research - Z80 is a trademark of Zilog, tnc. -WHATSIT? is a trademark of Computer Headware.
†CP/M for Heath, YRS-80 Model I and PolyMorphic 8813 are
modified and must use especially compiled versions of system and applications software.
\dagger † PolyMorphic $8813 \mathrm{CP} / \mathrm{M}$ scheduled for September 15 release.

Software with Manual Manual Alone
\square Word-Master Text Editor - In one mode has super set of CP/M's ED commands including global searching set of CP/M's ED commands including giobal searching ano replacing, provides full screen editor for users with serial addressable-cursor terminal $\mathbf{\$ 1 2 5 / \$ 2 5}$ SOFTWARE SYSTEMS
CBASIC-2 Disk Extended BASIC - Nor-interactive BASIC with pseudo-code compiler and runtime interpre ter. Supports full file control, chaining, integer and ex tended precision variables, etc.

URED SYSTEMS GROUP

General Ledger - Interactive and ilexible system providing proof and report outputs. Customization of COA created interactively. Multiple branch accounting centers Extensive checking performed at data entry lor proo COA correctness etc. Journal entries may be batche prior to posting. Closing procedure automatically back uo inout files. All reports can be tailored as necessary Requires CBASIC …..................... $\$ 899 / \$ 25$
\square Accounts Recelvable - Open item system with output for internal aged reports and customer-oriente statement and billing purposes. On-Line Enquiry permit information for Customer Service and Credit depart ments. Interface to General Ledger provided if both sys tems used. Requires CBASIC
\square Accounts Payable - Provides aged statements o accounts by vendor with check writing for selected in voices Can be used alone or with General Ledger and/o with NAD. Requires CBASIC NAD Name and Address selection system - interaclive mail list creation and maintenance program with oulpu as full reporis with reference data or restricled iniormation for mail labels. Transter system for extraction and transier or selecled records to creale new .iles. $\$ 79 / \$ 20$ CBASIC
\square OSORT - Fast sort/merge program for files with lixed record length, variable field length iniormation. Up to five ascending or descending keys. Full back-up of input files created

GRAHAM-DORIAN SOFTWARE

PAYROLL SYSTEM - Maintains employee master file. Computes payroll withholding for FICA, Federal and State taxes. Prints payroll register, checks, quarterly reports and W-2 forms. Can generate ad hoc reports and employee form letters with mail labels. Require CBASIC. Supplied in source code. $\$ 590 / \$ 35$
\square APARTMENT MANAGEMENT SYSTEM - Financial management system for receipts and security cies, revenues, to projects. Captures dala sen cies, revenues, etc. Tor annual trend analysis. Dally repor lost through vacancies, etc. Requires CBASIC Supplied in source code. . . $\mathbf{\$ 5 9 0}$ \$35

Software for most popular 8080/Z80 computer disk systems including NORTH STAR, MICROPOLIS, iCOM, DYNABYTE DB8/2, SD SYSTEMS, ALTAIR, EXIDY SORCERER, VECTOR MZ, 8"IBM, HEATH H17 \& H89, HELIOS, IMSAI VDP42 \& 44, REX, POLYMORPHIC 8813^{+}and OHIO SCIENTIFIC formats.

Software with Manual Manual Alone

\square INVENTORY SYSTEM - Captures stock levels, costs, sources, sales, ages, lurnover, markup, elc. costs, sources, sales, ages, lurnover, markup, etc salesman, type of sale, date of sale, etc. Reports available both for accounting and decision making. Requires CBASIC. Supplied in source code. $\$ 590 / \$ 35$.
\square CASH REGISTER - Maintains files on daily sales. Files data by sales person and item. Tracks sales, over rings, relunds, payouts and total net deposits. Requires CBASIC. Supplied in source code \$590/\$35

MICRO FOCUS

CIS COBOL - Version 3 is ANSI 74 subsel with extensions which offer poweriul interactive screen formal ling and built in cursor control. Version 4 additionally of lers full level 1 ANSI for Nucleus. Table Handling. Se quential Relalive and Indexed 1/O. Inter-Program Communication and Library

Version 3. \$650/\$50 Version 4. \$850/\$50
FORMS - Interactive utility to create CIS COBOL source code to perform CRT screen handling in application programs. Supports full prompt text, protected fields and input validation against data type and range expected $\$ 150 / \$ 15$ When purchased with CIS COBOL $\$ 125 / \$ 15$

OTHER

\square tiny C - Interactive interpretive system for teaching structured programming techniques. Manual includes full source listings

373/540
\square C Compiler - Supports most major leatures of language, including Structures, Arrays, Pointers, recursive function evaluation, linkable with library to 8080 binary output. Lacks data initialization. long \& loat type and sta tic \& register class specifiers. Documentation includes "C" Programming Language book by Kernighan Ritchie

- ALGOL 60 Compller - Poweriul block-structured language leaturing economical run time dynamic allocaton or memory. Very compaci (24 r roal Ram) system implemening a armos sill disk address IO etc. Requires Z80 CPU $\$ 199 / \$ 20$
\square Z80 Development Package - Consists of: (1) disk tile line editor, with global inter and intra-line facilities; (2) z80 relocating assembler, Zilog/Mostek mnemonics, conditional assembly and cross relerence table capabilities; (3) linking loader producing absolute intel hex disk file.
. $\$ 95 / \$ 20$
$\square 280$ Debugger - Trace, break and examine registers with standard ZilogMostek mnemonic disassembly displays. Facilities similar to DOT. \$35 when ordered with Z80 Development Package $\$ \mathbf{5 0 / \$ 1 0}$
\square DISTEL - Disk based disassembler to intel 8080 or TOL/Xitan 280 source code, fisting and cross reterence files. Intel or TDL/Xitan pseudo ops optional. Runs on 8080.
\square DISILOG - A DISINTEL to Zilog/MOstek mnemonic files. Runs on $\mathbf{Z 8 0}$ only
.563/\$10TEXTWRITER II - Text formatter to justify and paginate lethers and other documents. Special features include insertion of text during execution from other disk files or console, permitting, recipe documents to be contracts, manuals, etc. Also creates form letters in con. function with a mail list file.
[] TEXTWRITER III - All the features of TW II plus generation of table of contents. sorled index and handling of footnotes. TW II users may upgrade for $\$ 60 . \$ 125 / \$ 10$
\square WHATSIT? ${ }^{\text {ºt }}$ - Interactive data-base system using associative tags to retrieve inlormation by subject. Hashing and random access used for fast response. Requires CBASIC
\square XYBASIC Interactive Process Control BASIC - Full disk BASIC teatures plus unique commands to handle bytes, rotate and shift, and to test and set bits. Available in Integer. Extended and ROMaEle versions.
Integer Disk or Integer ROMable Extended Disk or Extended ROMabie $\mathbf{\$ 3 9 5 / \$ 2 5}$

Lifeboat Associates
2248 Broadway, N.Y., N.Y. 10024
(212) 580-0082 Telex: 668-585

Software
with Manual
Manual/Alone
\square SMAL/80 Structured Macro Assembled Language Package of powerful general purpose text macro processor and SMAL structured language compiler. SMAL is an assembler language with IF-THEN-ELSE, LOOP REPEAT-WHILE. DO-END. BEGIN-END constructs
. $\$ 75 / \$ 15$
\square Selector II - Data Base Processor to create and maintain single Key data bases. Prints formatted, sorted reports with numerical summaries. Available for Microsof and CBASIC (state which). Supplied in source code and\$195/\$20
\square Selector III - Multi (i.e., up to 24) Key version of Selector 11. Comes with applications programs including Sales Activity, Inventory, Payables, Receivables, Check Regis ter, Expenses. Appointments, and ClienUPatient. Re quires CBASIC. Supplied in source code \$295/\$20 Enhanced version for CBASIC-2 $\$ 345 / \$ 20$
\square CPM/374X Utility Package - Has full range of unctions to create or re-name an IBM 3741 volume, dis play directory information and edit the data set contents. Provides full file transfer facilities between 3741 volume data sets and CP/M files
Flippy Disk Kit - Template and instructions to modity single sided $51 / 4^{\prime \prime}$ diskettes for use of second side in sin gled sided drives $\$ 12.50$
\square BASIC Comparison - A comprehensive features and performance analysis of tive 8080 disk BASIC lan quages - CBASIC. BASIC-E, XYBASIC, Microsoft Disk Extended BASIC, and Xitan's Disk BASIC. Itemizes results of 21 difterent benchmark tests for speed and accuracy and lists instructions and features of each BASIC
. (send 20% S.A.S.E.) FREE

Lifeboat Associates 2248 Broadway
New York, N.Y. 10024

rmThe Soffware Supermarket is a trademark of Lifeboat Associates

Blubs and Newsletters

Washington DC Computer Club

The Washington Amateur Computer Society (WACS) is an organization dedicated to personal computing. They are organized to provide a forum for the computer hobbyist and student of computing science. The Society meets on the last Friday of each month in the 1st floor lecture hall in Keane Hall on the campus of the Catholic University of America. The meetings start at 7:30 PM
JWAC, the club's newsletter, is published for Society members and exchange with other hobby organizations. The newsletter is primarily an electronics journal. Annual dues have been set at $\$ 3.50$ per year to
cover the cost of 1st class postage for the journal and to defray the expenses of exchanging correspondence with other personal computing organizations. Nonmembers may subscribe to the journal at the rate of $\$ 5$ per year. WACS is interested in exchanging newsletters with other organizations to further the interchange of hobbyist information. Contact Washington Amateur Computer Society, c/o 4201 Massachusetts Ave, \#168, Washington DC 20016.

> Cromemco User Systems and Software Pool

Cromemco User, Systems and Software Pool is an

HARD DISC FOR S100 MICROS

The XCOMP DCF-10 Disc Controller provides the OEM with a high performance, low.cost interface for fixed and removable (2315 or 5440) cartridge disc drives. The DCF-10 is currently supported by two operating systems. For information or manuals, contact XCOMP.
 NOCORPMB

9915-A Businesspark Ave., San Diego, CA 92131 • (714) 271-8730
independent group for users of Cromemco computers. Board owners are also welcome. The purpose of CUssP is the exchange among users of Cromemco hardware and software of operating notes, bugs and their fixes, evaluation of hardware and software, user written software, and other announcements relating to Cromemco and associated products.

The 1st volume of 3 newsletters included articles on changes in 16 K byte BASIC, CDOS I/O (input/output) drivers, disk sectors and clusters, hardware modifications, etc. This volume is available for $\$ 10$ in the US, Canada, and Mexico; and $\$ 12$ in US funds for airmail delivery outside these regions. Membership with the 2nd volume is the same price as the 1st. There is also a special rate of 3 volumes (9 issues) for $\$ 25$ in the US, Canada, and Mexico and $\$ 30$ elsewhere.

Contact Cromemco User, Systems and Software Pool, POB 784, Palo Alto CA 94302.

Computer Graphics Letter Published by Harvard

Readers of the new Harvard Newsletter on Computer Graphics will be able to keep abreast of computer graphics in all its myriad ramifications. The newsletter monitors important commercial, technological, and product developments, as well as market, application, and learning opportunities. Among the regular departments are News and Trends, Products, Markets, Applications, R and D , Conferences and Seminars, Companies, Business and Financial, and State-of-the-Art Technology. The newsletter will be
published twice a month.
The content will encompass management and statistical graphics, computer graphic-aided design, engineering and manufacturing, image processing, and automated cartography, plus other related areas. Trends in these areas, whether applied to big or small computers, standalone terminals, timesharing networks, users, vendors, will be followed. Readers will also learn where to obtain further information on the material covered.
The subscription fee for 1 year is $\$ 125$; a 9 -issue trial subscription is available for $\$ 45$. Airmail outside of North America is $\$ 19.50$ for 1 year or $\$ 9.75$ for the trial. Contact William Nisen, Harvard University, Laboratory for Computer Graphics, 520 Gund Hall, Cambridge MA 02138.

Akron Ohio Digital Group

The Akron Digital Group meets on the 4th Wednesday of each month at 7 PM at the Kenmore Public Library, 2200 14th St SW, Akron OH . The club programs are aimed toward the small systems hobbyist with tips on programming and hardware application. Microprocessor classes are planned for the fall. Contact Lou Laurich, Akron Digital Group, 107 7th St NW, Barberton OH 44203.

TRS-80 Publication

Insiders: The TRS-80 Hardware lournal with Machine Software is a publication for any TRS-80 owner or user interested in more than BASIC. Both beginners and experts will find articles on machine
language programming, hardware modifications, and other computer languages. Published since June of 1978, articles have described the differences in Level II read-only memories, how to get sound effects and music without a hardware modification, new languages for the TRS-80, and many other subjects. Regular features include a column which reviews various printers, the Disc File which covers the latest in DOS and compatible drives, a Dear Aunt TRiSh question and answer column, and learning machine language with Level 11.

A new section of the journal will cover several of the new languages for the TRS-80. Future issues will include regular features on FORTRAN, FORTH, and other languages. Also, there will be regular articles on CP / M, reviews of various commercially available programs, and more on both Level 11 and DOS.
Subscriptions are available for 6 issues through Computer Cablevision, 2617 42nd St NW, Suite 2N, Washington DC 20007.

New PET Users Group Forming in Washington and Oregon

Individuals interested in forming a PET Users Group in the Oregon and Washington area should contact NW PET Users Group, c/o John F Jones, 2134 NE 45th Ave, Portland OR 97213.

COSMAC Users Group Active Again

After several unavoidable delays, the COSMAC Users Group is back in full operation and The 1802 Peripheral newsletter is being published on a monthly basis. Information about the group may be obtained by writing to

Patrick Kelly, Director, COSMAC Users Group, POB 7162, Los Angeles CA 90022. Please include a stamp with your inquiry.

New Speechlab Users Group Formed

Heuristics Inc, manufacturer of Speechlab (a speech recognition unit for the Apple and all S-100 bus computers), has announced the formation of a users group. The users group requests that all interested Speechlab users send their unique uses of the hardware or software to Tom Larson, Director of Sales, Heuristics Inc, 900 N San Antonio Rd, Los Altos CA 94022. A directory of users and applications will be published at a later date.

Aim-65 Newsletter

The Target is a bimonthly newsletter for owners or prospective owners of Aim 65 systems. The subscription rate is $\$ 5$ for 1 year. Contact CustomTronics, POB 4310, Flint MI 48504.

Solano TRS-80 Users Club

The Solano TRS-80 Users Club is an informal group that gets together to discuss mutual problems and experiences. Their meetings are held every 3rd Thursday starting July 5th at OwensIllinois, 2500 Huntington Dr, Fairfield CA. Contact Dave or Steve Irwin, 550 Marigold Dr, Fairfield CA 94533, or call (707) 422-3347.

The Tulsa
Computer Society

The Tulsa Computer
Society meets the last Tuesday of every month at 7:30

PM. The meeting place is the Tulsa VocationalTechnical School seminar room at 3420 South Memorial Dr (behind Edison's Department Store). Membership in TCS is \$6 annually and includes a 1 year subscription to the club's newsletter, The I/O Port. Contact The Tulsa Computer Society, POB 1133, Tulsa OK 74101.

Wichita Valley
TRS-80 Users Group
Sustains Computer
Loss in
Recent Tornado

In the recent tornado which wreaked unholy havoc on our city, many of us in the Wichita Valley TRS-80 Users Group lost our computers, our tape and disk library of software, and our library of computer books and periodicals. Even our club's library of soft-
ware and publications was destroyed.

We all have plans to replace our personal computers and software, but at this time I am particularly interested in trying to help our club replace its loss.

Any club, publisher, software producer, or individual who wishes to do so, may contribute noncash items, such as software, back issues of computer publications, and books on computers.

Our address is the Wichita Valley TRS-80 Users Group, POB 4391, Wichita Falls TX 76308.

Thank-you, our club will be grateful.

J Wesley B Taylor Club Secretary

Although this letter certainly speaks for itself, it is our sincere hope that you or your group will seriously consider contributing noncash computer related items to this needy organization...

computer mart of new jersey

 computer mart of pennsylvania> Computers don't make a computer store, PEOPLE do. Our people hove been involved with microcomputers since day one. We offer experience ond expertise unparalleled in the microcomputer industry. Whether you are in the market for a complete system, peripherals, costom softwore, somerve friendly advice; there just is no other place to go.

Cermputer mart of Pemasyivenio 3900 Kalb Pist 3so ookabl Pinc:
(21.5) $265-2580$

"FULLY INTEGRATED COMPUTER SYSTEM"

MINIMAX SERIES COMPUTER

Abstract

THE MINIMAX SERIES WAS DESIGNED TO OFFER THE MARKET MINICOMPUTER CAPABILITIES AT MICROCOMPUTER PRICES. COMPARE THE CAPABILITIES \& PRICE! CONTACT NEECO FOR FULL SPECS - FREE MINIMAX MANUAL.

MEET THE MINIMAX COMPUTER

THE MINIMAX SERIES COMPUTER WAS DESIGNED BY INDUSTRY PROFESSIONALS. COMPARE THE PRICE AND FEATURES TO ANY OTHER COMPUTER IN ITS CLASSI

MINIMAX I-. 8 MEGABYTE ON LINE MINIFLOPPY STORAGE MINIMAX II - 2.4 MEGABYTE ON LINE 8" FLOPPY STORAGE

- THE MINIMAX SERIES COMPUTERIS AN INTEGRATED, COMPACT UNIT CONTAINING THE CPU. DUAL DENSITY DISK STORAGE, i2 INCH CRT. ANO FULL STYLE KEYBOARD, WITH SEPARATE NUMERIC ENTRY PAD. ALL KEYS (INCLUDING CURSOR) WITH FULL EEPAT - HYBRID 2 MEGARERTZ 6502 CLUTHMK
 ASLEMBLER - POMPLETE HIGHPESO ULI ANGOM ACCESS, COMPLE MENTO WITH DEBUG A TRACE, ANO TNY 6502 FULI SCREEN TEXT EDITING WITH OVERWRITE INSERTION OR DELETION. SPLIT SCREEN NINDOW MODES FIELD EDITING WITH FIELD PROTECT AND AUTO SKIP TO NEXT FIELD ON SK STO S WITH AUTO VERIFY AND PARITY CHECK - 12 INCH CRT-64 CHAPACTERS BY 30 LINES UP TO THREE PROGRAMMABE CHARACTER FONTS FOR LANGUAGESOR SPECIAL CHARACTERS.- SWITCHABE L10OR UOV OPERATION••• HYBRID CPUIS MICROPROGRAMMABLE WITH 64 USER DEFINABLEOPCODES CHOICE OF BOOK OR 2 MMEGABYTEDISK STORAGE - FUL SERIAL RS-232C PORT WITH PROGRAMMABLE BAUO RATES AND MODEM CONTROL SIGNAL • DEDICATED DISK PORT PRINTER PORT SUPPORTS PARALLEL COMMERCIAL PRINTERS. 24 PIN IIO USER PORT PEDAGEMATE DATABASE available - plm Compiler available - business packages available - complete diagnostics \& schematics included - COMPLETE USER MANUAL INCLUDED

SPECIAL DEALER PRICING AVAILABLE ON DEMONSTRATION MINIMAX AND SOFTWARE PACKAGES TO QUALIFIED SELECTED DEALERS. CONTACT NEECO FOR INFO.

```
MINIMAX I - $4495
MINIMAX II - $5995
```

THE MINIMAX WAS DESIGNED AND IS MANUFACTURED BY COMPUTHINK COMPUTER CORP. DISTRIBUTED IN EUROPE AND THE EASTERN U.S. BY NEECO.

IN ADDITION TO HARDWARE CAPABILITIES THAT ARE UNMATCHED IN THE INDUSTRY, THE MINIMAX COMPUTER SUPPORTS A COMPLETE DATA BASE SYSTEM (PAGEMATE), CONTAINING FULL STATISTICAL, SORTING, AND EDIT FUNCTIONS. A PLM COMPILER IS AVAILABLE, FULL BUSINESS SUPPORT SOFTWARE IS AVAILABLE AND MORE!-FULL DEALER SUPPORT IS AN IMPORTANT PART OF OUR MARKETING. CONTACT NEECO FOR FURTHER INFORMATION.

[^5]NEW ENGLAND ELECTRONICS CO., INC. 679 HIGHLAND AVE., NEEDHAM, MA 02194 MON-FRI, 9:00-5:30, E.S.T.

NEECO

PET 2001 — 32K

ARGE TYPEWRITER KEYBOARDS NOW AVAILABLE!

The PET ${ }^{\text {M }}$ is now a truly sophisticated Business System with the announcement of these Peripherals.

CALL OR WRITE FOR A FREE COPY OF OUR NEW JULY CATALOG! NEW CENTRONICS 730 PRINTER FOR PET!

- NEWEST TECHNOLOGY FROM CENTRONICS • 50 CPS • 80 CHARACTER LINE - 10 CPI - 7×7 DOT MATRIX • HANDLES ROLL FEED, PIN FEED PAPER • UPPER \& LOWER CASE-s1099 PRICE INCLUDES

INTERFACE TO IEEEPORT. AVAILABLE AUG/SEPT.
TRS-80 USERS!-THE
\$1099 MODEL 730 IS AVAILABLE FOR USE WITH
THE TRS-80. PRICE
INCLUDES CABLE
\$995
WE CANNOTLIST ALLOF OUR SOFTWARE AND HARDWARE PRODUCTS CALLOR WRITE FOR OUR*FREE*SOFTWARE/HARDWARE DIRECTORY ALL NEECO PETS CARRY A FULL ONE-YEAR NEECO WARRANTEE.

NEECO
NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MASS. 02194 MON. - FRI. 9:30-5:30, EST.

The Nature of Robots

Part 4: Looking for Controlled Variables

William T Powers
1138 Whitfield Rd
Northbrook IL 60062

In this last part of my series of articles, a simple experiment with a human subject will be attempted; an experiment that can be expanded almost indefinitely. All of the principles from the previous parts will be used. Before the experiment starts, note the following main points that have been established:

- The behavior of an organism is not its output, but some consequence of its motor outputs acting together with unpredictable forces or other disturbances.
- For a more or less remote consequence of motor outputs to be repeatable in a disturbance-prone world, the behaving system must sense the consequence, and act to keep it matching some static or dynamic reference condition. By definition, that makes the organism a control system.
- Organisms acting as control systems control what they sense, not what they do.
- What is controlled is what is sensed, even when the sensing involves one or more stages of realtime computations based on primitive sensory signals.
- In a multiple-level control system, the higher levels act by varying the reference signals for lower-level systems. They control perceptions computed from many lower-level perceptions, some or all of which are controlled by the same lowerlevel systems.
- If there are n degrees of freedom at one level of control, in principle n higher-level systems could act independently and simultaneously by sharing the use of the lowerlevel systems. Any higher-level
system acts by sending amplified copies of its error signal to many lower-level systems, each with the proper sign to achieve a negative feedback effect. Any lower-level system receives a reference signal that is the net effect of superimposed higher-level output signals. This worked for a 2-level system with 3 control systems at each level; there is no limit, in principle, to the number of levels or the number of systems at each level. In practice, there is reason to anticipate finding hundreds of systems at a given level, but no more than 10 or 12 distinct levels in a human being. This will be commented on later.

Abstract models and simulations are fine for conveying general ideas. However, if one does nothing but make models and simulations, it is easy to get involved in the math and engineering, and forget the real thing is there to be seen. Items described in the first 3 articles in this series represent something real. Real organisms work much the same way control systems work. They do not work in any of the other ways that have been proposed over the centuries (as far as their behavior is concerned). I am not talking metaphorically. There are excellent reasons to think that when the properties of organisms begin to be investigated in terms of control theory, hard data about the way we are organized will start to accumulate (up to a point, anyway).

The experiment to be described in this article is so simple that it may look elementary. Nevertheless, it is the starting point for a new approach to exploring the organization of
human beings. Most new ideas start by looking like old ones, but with a twist that leads in unexpected directions. If you are familiar with tracking experiments, do not be too quick to decide what this is all about.

Equipment Required

The basic equipment needed to do this experiment is:

- A joystick with 1 degree of freedom (ie: a potentiometer with a stick on the shaft will suffice).
- A reasonably fast analog-to-digital (A / D) converter with 7 -bit or more accuracy. My system uses the Cromemco D+7A, which has 7 analog channels in and 7 out, as well as 1 input and 1 output 8 -bit port.
- A memory-mapped display, in which points are plotted on a video screen by depositing appropriate codes in a reserved segment of memory. This, or something equivalent, is essential for creating the moving objects that are involved in the experiment. I use the Polymorphics VTI with the display area in the 1 K bytes of memory starting at hexadecimal location D000. Out of deference to systems that do not have the VTI's graphics capability (however crude), I have used 64 horizontal elements in the alphabetic mode. Higher resolution would be much more desirable, but this much is enough to show the principles well.

If no memory-mapped display is available, but 2 digital-to-analog (D/A) outputs and a triggered oscilloscope are, the display that is needed can be created. Use 1 D/A started, latest reviews of personal computers, where to purchase and how to use your computer.

Anyone can learn the fundamentals of using a computer. onComputing readers receive practical advice and helpful hints on how to get the most out of a personal computer, explanations of computer terminology, and, periodicallý, an updated list of active computer clubs.

BBenefit from the experience of other computer enthusiasts. Articles in onComputing are written by well known authors as well as competent amateurs. They share their ideas on how to use the computer as a tool for business, education, homeentertainment, laboratory work and other applications.

Computer experts edit onComputing for the new user, not the computer professional. The editors combine their esoteric knowledge of computer science and equipment to produce concise, non-technical material which can be readily understood by anyone interested in using a computer-for fun or profit.

onComputing, Inc.

$70 \mathrm{MainSt.,Peterborough,NH03458}$
Start your subscription today.
EVERY THREE MONTHS onComputing will bring the latest developments in the field of personal computing: use, applications, books, selection-all in an easy-to-read style.
onComputing Subscription Dept. P.O. Box 307, Martinsville, NJ 08836 REGULAR subscription rate:
\square U.S. 1 yr. (4 issues) @ $\$ 8.50 \square$ Canada \mathcal{E} Mexico, 1 yr. (4 issues) @ $\$ 10.00$
FOREIGN (to expedite service, please remit in U.S. funds drawn on a U.S. bank.)
\square Europe (and all other countries, except above), 1 yr.@ \$12.00-surface delivery.
\square Start my subscription with current issue. \square Start with Vol. 1 No. 1
\square Bill Visa \square Bill Master Charge \square Bill me (North America only)

Card Number	Expliration	
Signature	Name (please print)	
Street/Apartment Number		
City	State/Province/Country Code	
		7M89

converter to deflect the trace in the Y direction, and the other (or 1 bit of a digital port) to trigger the sweep. By starting the sweep and then outputting the 3 cursor values in sequence, a 3 -segment trace can be created, with the motion of the cursors being up-and-down instead of side-to-side, as in the following program. Lay the oscilloscope on its side if that deviation bothers you.

Systems with built-in graphics under BASIC control, such as Apple, PET, or TRS-80, will probably allow the experiment to be done more simply than how I did it in listing 5. The basic requirement is to be able to read a number from a stored table, add the handle position to it, erase the old cursor, and use the sum to position the new cursor, doing this for 3 cursors at least 4 times per second - the faster the better. (An example of the simulation on the Apple II is shown in listing 6.)

Experimental Design

Imagine a display with 3 cursors on it, one above the other. Each cursor can move left and right. The subject looks at this display while holding a control handle. The instructions for the first experiment are very simple: the subject is asked to select 1 of the cursors, and hold it still, somewhere near the center of the screen as accurately as possible for the duration

North Star Strings

The North Star BASIC string expression B\$(I,I) corresponds to MIDS (BS,I,J) in other versions of BASIC. $B \$(I)$ corresponds to RIGHTS(B\$,I), and BS(1,I) corresponds to $\operatorname{LEFTS}(B \$, 1, l)$.
of the run. Engineering psychologists call this "compensatory tracking." They use it to investigate the limits of speed and accuracy of control in the presence of rapid disturbances of various kinds.
If the handle is held centered, each cursor will be seen to wander back and forth in a pattern that is independent of the other 2 cursors. In this experiment, the disturbances causing this wandering are made very slow and smooth. With even a slight amount of practice, every subject will be able to maintain essentially perfect control. Transfer functions will not be measured, nor will the limits of control be tested in the manner traditional in engineering psychology. A subject acting well within the range of normal operations under conditions where the phenomena of control can be clearly seen is desired. The subject selects a visual variable (position of 1 of the cursors), selects a reference level for that variable (a particular position), and maintains the perceived position at the reference position, while disturbances act that tend to move the cursor away from the reference position.
Figure 17 shows the setup in schematic form. The 3 disturbances are labeled D1, D2, and D3. The 3 cursor positions are labeled C1, C2, and C3. The position of the control handle is H . The position of each cursor is determined by the sum of H and one of the Ds. For cursor 2 the effect of the handle is reversed, so the 3 relationships are:

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{D} 1+\mathrm{H} \\
& \mathrm{C} 2=\mathrm{D} 2-\mathrm{H} \\
& \mathrm{C} 3=\mathrm{D} 3+\mathrm{H}
\end{aligned}
$$

If the subject controls C3 in relation to a reference position of 0 (ie: midscreen), and does so perfectly, then $0=D 3+H$, or $H=-D 3$. The handle position should be an accurate mirror image of the magnitude of the disturbance D3 at every moment, and the cursor C3 does not move at all. You will find that all subjects, after a little practice, will closely approximate these predictions.

This may seem elementary, obvious, boring and hardly worth the labor of getting the experiment up and running. Do not be deceived; this experiment appears to be simple because it is fundamental. It is fundamental because it can prove that all of the life sciences have been using the wrong model. There are also several extensions of the experiment that will show how to get started mapping the whole hierarchy of human control systems. There is no theory and no simulation that carries the impact of seeing how a real living control system works; especially when you can understand every detail of what is happening, either as subject or observer. The 3 previous articles in this series have been designed to give the ability to grasp what is happening here. This experiment is designed to give the gut feeling of knowing.

Program Structure

The program in listing 5 is written in North Star BASIC, Version 6, Release 3. It contains a machinelanguage subroutine for an 8080/Z80

Text continued on page 102

Figure, table, and listing numbering continued from part 3.

Listing 5: North Star BASIC control-variable simulation. The necessary assembly language routines needed for execution are also given.

```
10 DIMH$(16),D1$(250),D2$(250),D3$(250),H1$(250),B$(82),S$(82)
20 DIM AS(2)
30 H$="0123456789ABCDEF"
40 INPUT "SEED FOR RANDOM GENERATOR (1 - 100) ",A\ Z=RND(A/100)
50 REM *********************************
6 0 ~ R E M ~ C O N V E R T ~ 2 ~ H E X ~ D I G I T S ~ T O ~ D E C I T I A L ~
70 REM *******************************
80 DEF FNB(A$)
90 U=ASC(AS(1,1))\IF U<58 THEN U=U-48 ELSE U=U-55
100 V=ASC(A$(2,2))\IF V<58 THEN V=V-48 ELSE V=V-55
110 RETURN 16*U+V
120 FNEND
```



```
700
    N1=8\N2=127\N3=128\ FOR J=1 TO 250
    710 FOR L=1 T0 4
    720 OUT 25,N2\ OUT 26,N3
    730 H=CALL(M2,ASC(D1$(J,J)))
    740 H=CALL(M2,ASC(D2$(J,J)))
    750 H=CALL(M2,ASC(D3$(J,J)))
    760 NEXT L
    770 H1$(J,J)=CHR$(H)
    780 NEXT J
    790 REM *********************
    8 0 0 ~ R E M ~ D A T A ~ P L O T T I N G ~ P R O G R A M ~
    810 REM ************************
    820 GOSUB 1050\ IF YO<1 THEN 560
    830 !"AFTER PLOT, HIT RETURN TO CONTINUE"
    840 INPUT"WHICH CURSOR (1,2,3)? ",I
    850 IF I=0 THEN 560
    860 FOR W=1 TO 250 STEP INT(250/(Y0+1))
    870 H=(ASC(H1$(W,W))-128)*X0/128
    880 ON I GOTO 890,900,910
    8 9 0 ~ V = A S C ( D 1 \$ ( W , W ) ) - 3 2 \ ~ G O T O ~ 9 2 0 ~
    900 V=ASC(D2$(W,W))-32\ H=-H\ GOTO 920
    910 V=ASC(D3$(W,W))-32
    920 V=V*X0/64+1
    930 C=V+H+ZO\ IF C<1 THEN C=1\ IF C>XO THEN C=XO
    940 V=V+ZO\IF V<1 THEN V=1\ IF V>XO THEN V=XO
    950 H=H+20\ IF H<1 THEN H=1\ IF H>XO THEN H=XO
    960 B$=S$\B$(ZO,ZO)="."
    970 !#TO,\BS(V,V)="D"\ B$(H,H)="H"\ E$(C,C)="C"
    980 U=0\ IF V>U THEN U=V\IF H>U THEN U=H\IF C>U THEN U=C
    990 IF ZO>U THEN U=ZO\B$=BS(1,U)\!#TO,P$,
1000 NEXT W
1010 INPUT1"",A$\ GOTO 820
1020 REM ********************************
1030 REM SET UP FOR PLOTTING (SUPROUTINE)
1040 REM ************************************
1050 !\INPUT "Y-DIMEHSION OF PLOT (0 = NEW RUN): ",YO\ YO=YO-2
1060 IF YO<1 THEN RETURN
1070 INPUT "X-DIMENSION OF PLOT (1-72): ",Xn
1080 IF XO>72 THEN 1070\ IF XO<1 THEN: 1070\X0=X0-2
1090 INPUT "OUTPUT DEVICE (T OR S)",A$
1100 IF A$="T" THEN TO=2 ELSE TO=0
1110 S$=""\FOR I=1 TO XO\S$=S$+" "\ NEXT I
1120 ZO=INT(XO/2)\ RETURN
1130 REM *************************************
1140 REM CONVERT HEX IN S$ TO DECIMAL IN AO
1150 REM **************************************
1160 AO=O\K=1\FOR J=1 TO LEN(S$)-1\K=K*16\NEXT J\K=INT(K+.01)
1170 FOR I = 1 TO LEN(S$)
1180 FOR J=1 TO 16
1190 IF S$(I,I)=H$(J,J) THEN EXIT 1220
1200 NEXT J
1210 !"NOT HEY NUMBER"\ EXIT 160
1220 AO = AO + K*(J-1)\ K=K/16
1230 NEXT I
1240 RETURN
1250 REM *******************************
1260 REM UTILITY, CONVERT HEX TO DECIMAL
1270 REM UP TO TEN HEXADECIliAL DIGITS
1280 REM DO "RUN 1300"
```

1300 DIM HS (16) \H\$ $=$ "0123456789ABCDEF"\!
1310 INPUT1"HEX= ",SS\GOSUB 1160\!" DECIMAL= ",AO\GOTO 1310

001		*	MACHIN	LANGUAGE	UPPORT ROUTINES
002		*			
003			ORG	0	
004		*			
005	00000200	ADRO	DBL	ADR1	
006	00020000	ADR1	DBL	0	
007	00040000	ADR2	DBL	0	
008	00060000	ADR3	DBL	0	
009	000800	COUNT	DATA	0	
010	0009 4B	START	MOV	C, E	
011	000A DB19		IN	25	GET HANDLE
012	ODOC 071F1F		ARS		DIVIDE BY TWO
013	000F 47		MOV	B, A	SAVE IN B
014	0010 3A0800		LDA	COUNT	CHECK FOR MIDDLE ONE
015	0013 FE02		CPI	2	
016	0015 C21c00		JNE	S 1	
017	001878		MOV	A, B	If MIdDLE OME NEXT,
018	0019 2F		CMA		MAKE HAMDLE NEG.
019	001A 3C		INR	A	(TWO'S COMPL.)
020	0018 47		MOV	B, A	
021	001C 78	S 1	MOV	A, B	
022	001D 81		ADD	C	$X=X+$ HANDLE
023	001E E63F		ANI	: 3 F	LIMIT TO 63
024	0020 4 F		MOV	C, A	SAVE X IN C
025	0021 2A0000		LHLD	ADRO	GET BASE ADDRESS
026	0024 3A0800		LDA	COUNT	GET DISPLACEMENT
027	0027 3C		INR	A	
028	0028 3C		INR	A	BUMP TWICE
029	0029 FE06		CPI	6	
030	002B DA2F00		JLS	S 2	CHECK MODULO 6
031	002E AF		ZAR		
032	002F 320800	S2	STA	COUNT	
033	003285		ADD	L	MAKE ADDRESS FOR
034	0033 6F		MOV	L,A	CURRENT CURSOR.
035	0034 5E		MOV	E, M	
036	003523		INX	H	
037	003656		MOV	D, M	DE=OLD SCREEN ADR.
038	0037 3EAO		MVI	A, $:$ AO	LOAD A SPACE
039	003912		STAX	D	ERASE OLT CURSOR
040	003A 7B		MOV	A, E	
041	003B E6C0		ANI	: CO	ZERO DISPLACEMENT
042	003D B1		ORA	C	NEW DISPLACEMENT
043	003E 5F		MOV	E, A	POINTER FIXED
044	003F 3EAA		MVI	$A_{1}: A A$	LOAD ASTERISK CURSOR
045	004112		STAX	D	PUT IT OHI SCREEN
046	004272		MOV	M, D	SAVE CURSOR
047	0043 2B		DCX	H	ADDRESS
048	004473		MOV	M, E	
049	0045 DB19		IN	25	GET HANDLE AGAIN
050	0047 EE80		XRI	: 80	RANGE 0-255
051	0049 6F		MOV	L, A	
052	004A 2600		MVI	H, O	
053	004C C9		RET		

HIMEM: 8192
DIM D1 \%(250), D2 \%(250), D3 \%(250), H1 \%(250)
INPUT "'SEED (0.100): '"A
$Z=R N D(A / 100)$
REM LOAD DISTURBANCE TABLES
$W=3 * 3.141592654 / 250$
$R 0=R N D(0): R 1=R 2=140$
PRINT : PRINT
PRINT : PRINT : PRINT "LOADING DISTURBANCE TABLES"
PRINT
PRINT "WHEN SCREEN CLEARS, BACKROUND WILL"
PRINT
PRINT "APPEAR - THEN THREE CURSORS."
PRINT
PRINT "PICK ONE CURSOR AND HOLD IT IN"
PRINT
PRINT "ONE POSITION FOR THE DURATION OF"'
PRINT
PRINT "RUN, AS ACCURATELY AS YOU CAN"
PRINT
PRINT "STAND BY FOR PROMPT MESSAGE"
FOR $J=1$ TO 250
$\mathrm{D} 1 \%(\mathrm{~J})=140+130 * \operatorname{SIN}(\mathrm{~W} * \mathrm{~J})$
$\mathrm{D} 3 \%(\mathrm{~J})=(125 \cdot \mathrm{ABS}(\mathrm{J} \cdot 125)) * 270 / 125$
NEXT J
PRINT
PRINT "RANDOM DISTURBANCE LOADING: STAND BYE."
$\mathrm{N} 3=25: \mathrm{R} 1=140: \mathrm{R} 2=140$
FOR J = 1 TO 250
N3 $=$ N3-1: IF N3 >0 THEN 210
$\mathrm{N} 3=25: \mathrm{RO}=280 *$ RND (5)
$R 1=R 1+(R 0 \cdot R 1) / 05: R 2=R 2+(R 1 \cdot R 2) / 5$
$\mathrm{D} 2 \%(\mathrm{~J})=\mathrm{R} 2$
NEXT J
PRINT: INPUT "'HIT RETURN FOR RUN';'A\$
HGR
HCOLOR = 3
POKE 49234, 0
FOR $X=1$ TO 280 STEP 10
FOR $Y=43$ to 143 STEP 50
HPLOT X,Y: HPLOT X,Y + 14
NEXT Y: NEXT X
FOR J = 1 TO 250
FORK $=1$ TO 4
$H=P D L(0) \cdot 128$
HCOLOR = 0: HPLOT C1 $\%, 45$ TO C $1 \%, 55:$ HCOLOR $=3$
$\mathrm{C} 1 \%=\mathrm{D} 1 \%(\mathrm{~J})+\mathrm{H}$
IF C $1 \%<0$ THEN C $1 \%=0$
IF C1 $\%>279$ THEN C $1 \%=279$
HPLOT C1 $\%, 45$ TO C1 $\%, 55$
HCOLOR $=0:$ HPLOT C $2 \%, 95$ TO C2 $\%, 105: \mathrm{HCOLOR}=3$
$\mathrm{C} 2 \%=\mathrm{D} 2 \%(\mathrm{~J}) \cdot \mathrm{H}$
IF C2 $\%<0$ THEN C2 $\%=0$
IF C2 \% > 279 THEN C $2 \%=279$
HPLOT C2 \%, 95 TO C2 \%, 105
HCOLOR = 0: HPLOT C $3 \%, 145$ TO C $33 \%, 155:$ HCOLOR $=3$
$\mathrm{C} 3 \%=\mathrm{D} 3 \%(\mathrm{~J})+\mathrm{H}$
IF C3 $\%<0$ THEN C $\%=0$
IF C3 $\%>279$ THEN C3 $\%=279$
HPLOT C3 $\%, 145$ TO C3\%, 155
NEXT K
$\mathrm{H} 1 \%(\mathrm{~J})=\mathrm{H}$
NEXT J
HGR
POKE 49234, 0
FOR $J=1$ TO 250
$Y=191 \cdot J * 191 / 250$
$U=88 / 280$
$H=\operatorname{INT}(H 1 \%(J) * U)$
D1 $=$ INT $((D 1 \%(J)-140) * U+45)$
$D 2=$ INT $((D 2 \%(J) \cdot 140) * U+135)$
D3 $=$ INT $($ (D3 \% (J) $\cdot 140) * U+225)$
$\mathrm{C} 1=\mathrm{D} 1+\mathrm{H}: \mathrm{C} 2=\mathrm{D} 2 \cdot \mathrm{H}: \mathrm{C} 3=\mathrm{D} 3+\mathrm{H}$
IF C1 <0 THEN C1 $=0$
IF C3 >278 THEN C3 $=278$
HCOLOR = 1
HPLOT D1,Y: HPLOT D2,Y: HPLOT D3,Y
HCOLOR $=2$
HPLOT C1,Y: HPLOT C2,Y: HPLOT C3,Y
HCOLOR $=3$
HPLOT H + 45,Y: HPLOT $-\mathrm{H}+135, \mathrm{Y}:$ HPLOT H $+225, \mathrm{Y}$
NEXT J
INPUT "'":A\$
TEXT
GOTO 180

Listing 6: A computer such as the Apple II which has high-resolution graphics capabilities greatly simplifies the program originally given in listing 5. This program performs the same operations as the simulation in listing 5. The author acknowledges the assistance of Charles Faso from Computerland of Niles IL in preparing this program.

Text continued from page 98:
processor which is loaded by the BASIC program at any specified 256-byte memory-address boundary (specify in hexadecimal only the most significant byte of the location of the subroutine).

The machine-language subroutine reads in the handle position, adds it with the appropriate sign to the value of a disturbance that is passed to the subroutine by the CALL command (in the DE register pair), erases the old cursor, and deposits the new cursor, a rubout, on the screen. Each time the subroutine is called it steps to the next cursor, recycling as necessary. On return from the subroutine, the handle position is passed back to the main program (in the HL registers). The machinelanguage program is in lines 200 thru 230, expressed as a string of hexadecimal bytes with no punctuation. Thus if your machine is not an 8080/Z80 type, a program can be assembled, the listing copied into these lines, and possibly this program can be made to work with little other modification.

The program asks for the most significant byte of the place where the machine-language subroutine is stored. The loader adjusts memory references by inserting the value of this byte in memory wherever necessary, after the program is loaded (lines 300 thru 330).
The display area consists of 1 K bytes of memory starting on any 256-byte boundary. Lines 370 thru 400 ask for the starting location of the memory area devoted to the display, and set up base registers in the machine-language program for the left margin of each cursor's movement. The FILL command is like POKE. If the computer has graphics capability built-in, everything from line 60 thru 400 , and the plotting subroutine (later), can be accomplished in a simpler way.

Disturbance tables are set up in lines 510 thru 620 . The unnecessary use of symbols, instead of constants,

Color. VP-590 add-on Color Board allows program control of 8 brilliantcolors forgraphics, colorgames. Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-580). \$69:

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. \$24:

Muslc. VP-550 Super Sound Board turns your VIP into a music synthesizer. 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. \$49:

Memory. VP-570 RAM Expansion Board adds 4K bytes of memory. Jumper locates RAM in any 4K block of up to 32K of memory. On-board memory protect switch. $\$ 95$:

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5-volt 2716 EPROMs-comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. \$99:

EPROM Interface. VP-560EPROM interface Board locates two 5 -volt 2716 EPROMs (4K bytes total) anywhere in 32K of memory. VIP RAM can be re-allocated. $\$ 34$:

ASCII Keyboard:* Fully encoded, 128-character ASCII encoded alpha-numeric keyboard. 58 light touch keys including 2 user defined keys! Selectable upper and lower case. Handsomely styled. Under $\$ 50$:
 in 4 K of ROM. Ready for immediate use-no loading necessary. This expanded BASIC includes the standard Tiny BASIC commands plus 12 additional-including color and sound control! Requires external ASCII encoded alpha-numeric keyboard. \$39:

COSMAC VIP lets you add computer power a board at a time.

With these new easy-tobuy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just \$249* assembled and ready to operate.

Simple but powerful-not just a toy.

 Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's
easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

- Suggested retail price. CDP18S711 does not include video monitor or cassette recorder. - Available ist Quarter. 1979 into computers.

Auxiliary Keypads. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable (\$15) connects to sockets provided on VP-590 Color Board or VP 585 Keyboard Interface Card (\$10").

Home Computer

- 26 K RAM extended TI BASIC.
- 16 color graphics. and music and sound effects.
- High quality $13^{\prime \prime}$ color monitor.
- 16 K RAM user memory.

CTC'S DISCOUNT PRICE FOR THE COMPLETE SYSTEM; CONSOLE \& 13" COLOR MONITOR Order naw. Subject lo avillabilly $\$ 1099$ by manulactures.
Price subject 10 change wilhout natice. Relunds guazanted prior to dellviry.

Figure 17: Schematic arrangement of experimental setup. Three slow and smooth disturbances are added to a measure of the handle position (with a negative sign for the middle one), to determine the position of 3 corresponding cursors. The subject selects 1 cursor and a reference position for it, and uses the handle to maintain the cursor at that position. A run lasts about 1 minute, and 250 samples of handle position are recorded. For plotting, the cursors are reconstructed from the tables of disturbances and the corresponding records of handle position.
is an attempt at acceleration. It still takes a minute to load the 3 disturbance tables, each 250 bytes long. All long tables are strings; only 8 bits of accuracy is needed, so by using the CHR $\$$ and ASC functions, the tables can be stored 1 byte per value instead of 5 bytes per value. Disturbances are in tables because BASIC cannot calculate them fast enough.

Disturbance D1 is a sine wave and D3 is a triangular wave. D2 is a smoothed random disturbance. On reruns, only D2 is reloaded, taking about 20 seconds.

The experimental run is controlled by lines 660 thru 780. Lines 660 and 680 lay down 3 arbitrary scales on the screen, while the rest repeatedly call the machine-language subroutine. For each stored value of each disturbance, all 3 cursor positions are computed and plotted, and the handle position is stored in the table H1\$. The inner loop from line 710 to line 770 adjusts the duration of the experimental run; here it is set up so that the disturbances change and a handle position is recorded only every fourth time the display is generated. On my system, this works out so the display is refreshed 16 times per second, and data is sampled and stored 4 times per second. The 2 OUT statements reflect my laziness; I use 2 digital-to-analog outputs to supply the voltage to the potentiometer that measures handle position.

The data plotting routine (lines 820 thru 1010) is entered at the end of an experimental run. This routine is set up to plot either on the video screen
or on a hard-copy device; it asks for the X and Y dimensions of the plot, which cursor is to be plotted, and which device is to be used. My system is set up so the typewriter is device 2 and the screen is any other device number. If you do not have this ability in your BASIC or system, delete lines 1060 and 1070 (in the subroutine that requests information about the display), and eliminate the "\#2," in lines 970 and 990. In North Star BASIC, the exclamation point is short for PRINT.
Only the handle position is stored as data; the cursor positions are reconstructed during plotting from the list of handle positions and the corresponding tables of disturbances.
The plotting scheme is designed to work with any teletypewriter-like device. If you have legitimate graphics, you can rewrite this part and get a more pleasing result.
There are 3 choices for plotting, each associated with cursors C1, C2, and C3. Each plot shows the cursor as a C, the handle position as an H , and the disturbance acting on the cursor as a D. A dot indicates the center of the display when nothing else is there. After each plot is finished, there is a pause; hitting the carriage return will cause the program to ask about the next plot. If the question about the Y dimension of the display is responded to with a 0 , the program will reload the random disturbance table and issue a prompt for another experimental run. The old data will be destroyed. Remember, it takes about 20 seconds to reload the random disturbance table. Do not panic if

Heathkit Self-Instruction Program for ASSEMBLY Language Programming.

```
- Use the full capacity of your computer.
- Execute programs faster.
- Store more in less space.
```

ASSEMBLY Language lets you do everything your computer is capable of doing. It's the most versatile, most powerful language you can use.
ASSEMBLY includes a mnemonic for every machine operation. No time is wasted interpreting, so programs run much faster.
ASSEMBLY makes more efficient use of memory. It stores in less space because codes are shorter, more explicit.
The Heathkit Self-Instruction Program teaches you to program your computer in ASSEMBLY Language. You learn

Abstract

at your own pace through a special text designed for selfstudy. An exercise workbook provides hands-on experience with programming exercises performed by you on your computer. You learn in a way that's fast, fun and thorough. The Heathkit Program is designed for computers using the popular 8080/8085/ Z80 microprocessor series. This includes the Heathkit $\mathrm{H} 8, \mathrm{H} 88$ and H 89 Computers. The concepts of the program, however, can be applied to any computer. Now's the time to learn the language that puts you in total command of your computer's full potential. Send today for the Heathkit Self-Instruction Program for ASSEMBLY Language. Order No. EC-1108: \$49.95, plus shipping and handling.

Heathkit Self-Instruction Program for BASIC Language Programming.

- Easiest of all languages to use.
 - Now easiest of all to learn.

More programs are written in BASIC than any other language. Because it uses English statements and commands, it's the easiest to learn and the easiest to use.
When you know BASIC you can adapt and run hundreds of existing programs. You can exchange programs with others. And you can write your own programs for your specific needs.

In 14 easy-to-follow segments, the Heathkit Program covers all formats, commands, statements and procedures. A special workbook provides programming instructions and experiments performed on your computer. You learn practical problem-solving techniques.
Until you know BASIC, you're missing the full selection of programs available to you. Send today for the Heathkit SelfInstruction Program for BASIC Language.
Order No. EC-1100: \$39.95, plus shipping and handling.

Send Today or Phone for faster service on VISA and Master Charge. 616-982-3411

Heath Company, Dept. 334-570, Benton Harbor, MI 49022

there is a long pause.
At line 1260 there is a utility routine that converts any hexadecimal number up to 10 digits to a decimal number. I used it while writing the program. It calls the conversion subroutine starting at line 1130.

Running the Experiments

If you possibly can, take the trouble to set this experiment up. Nothing can take the place of actually experiencing yourself as a control system and understanding things that you have taken for granted all your life.

Here is a typical run for the benefit of the many readers who do not have the equipment to do this; the data will then be observed. Here is an old friend, Chip Chad (from part 1 of this series), glaring at the screen and maintaining a choke-hold on the handle, waiting for the experimenter to hit the return key at line 610 . The experimenter reaches in and taps the key. The reference scales slide up into place and the 3 cursors pop into view, moving. Chip picks the middle one as most people do the first time, decides to keep it on the middle + mark, and after a few wobbles succeeds.
'So what?" he says.
If learning were being studied, good information could be obtained from this first run. But the plan is to see Chip acting as a competent control system, so his first effort is praised and he is given another run (answering the query about Y dimension with a 0). After the second run, the data is plotted for each cursor.

Figure 18 shows the data for each cursor, number 1 on the left, 2 in the middle, and 3 on the right. The 2 end plots are a mess, but the middle plot shows a striking symmetry. The Cs march more or less down the center of the screen, deviating a little to left and right, but maintaining a constant position on the average. The Ds make a random-looking pattern, and the Hs follow almost the mirror image of the D pattern.

Looking carefully at the middle plot, could it be said that the handle position or motion looks like any sort of regular function of the cursor position or motion? There may be some relationship, but it certainly is not clear.Probably, nobody would claim that the large, smooth motions of the handle could be reconstructed ac-
curately on the basis of measurements of cursor position (that is, reconstructed roughly or statistically with accuracy,especially if handle acceleration is compared with cursor deviation from the average position). The best which could be hoped for would be some statistical relationship (eg: a small signal buried in much noise).
On the other hand, the relationship between the handle position and the magnitude of the invisible disturbance is obvious and quantitative. It is seen that the handle position is the mirror image of the disturbance magnitude with an error of only a few percent of full scale. There is much
signal and little noise in that relationship.

Here is the situation. There is 1 measure of Chip's behavior, H . There are 2 variables, D and C, either of which might have some relationship to that behavior. Which variable, D or C, would be selected by any statistical test as the most probable cause of the behavior? Of course, D would be selected. In fact, a formal statistical analysis, like those done in every scientific study of behavior, shows D to be the only significant contributor to the behavior, while C, the cursor position, is rejected as an irrelevant variable!

That is a paradox, however, from

Figure 18: A typical run for a practiced subject. In figure 18a is the record for D1, C1, and H. Figure 18b has the record for D2, C2, and H; figure 18c has the record for D3, C3, and H. In figure 18b, the cursor is held near the center, while the handle position is at all times very nearly the mirror image of the disturbance amplitude. It is very easy to decide which cursor was under control.

Figure 19: Cause and effect paradox. Under the old concept that stimuli cause behavior, the cause and effect chain runs from the disturbance to the cursor, through the subject, to the behavior. However, the correlation of the disturbance and the cursor position is very low, as is the correlation of the cursor position and handle position (for the controlled cursor). This would lead to a prediction of an even lower correlation of disturbance and behavior. In fact, that correlation is normally very high (0.99 or better). Only the control theory analysis of this experiment can explain this otherwise paradoxical situation.

the traditional point of view. The only way D can affect Chip's behavior is through its effects on C, since all that Chip can sense is the cursor position. The disturbance itself is invisible. If C does not correlate with the behavior, then how can anything that acts exclusively through effects on C correlate any better with behavior? Yet a typical correlation between C and H is around 0.1 , while the correlation of H with the corresponding D is typically 0.995 . See figure 19.

That is the proof mentioned earlier. The old cause-effect model fails utterly when applied to this situation. The question then is, why have generations of intelligent people believed that behavior is caused by sensory stimulation? The answer is clear: they have been fooled by a monstrous illusion.
The illusion would be easier to see if there was some visible, direct indication of the magnitude of the disturbance. Suppose there were a moving D (or a number that con-
tinually reflected the magnitude of D) on the display. Clearly, if Chip managed to control C without that indication, he could still do so; he could ignore it and perform as well as ever. However, something has now been added that would mislead a bystander who did not understand control theory.
That bystander could now see 2 variables, both able to affect Chip's senses. Taking the apparent relationships at face value, it would be clear that the indication of D was accur-

Our MacroFloppy goes twice the distance.
 Introducing the Micropolis MacroFloppy ${ }^{\text {m }}: 1041$ and :1042 disk drive sub-

 systems. For the S-100/8080/Z-80 bus. Packing 100\% more capacity into a 514 -inch floppy disk than anyone else. 143 K bytes, to be exact. For as little as $\$ 695$.The MacroFloppy:1041 comes with the Micropolis Mod I floppy packaged inside a protective enclosure (without power supply). And includes an S-100 controller. Interconnect cable. Micropolis BASIC User's Manual. A diskette containing Micropolis BASIC, and a compatible DOS with assembler and editor. The :1041 is even designed to be used either on your desk top, or to be integrated right into your S-100 chassis.

The MacroFloppy: 1042 comes with everything the :1041 has, and more. Such as d.c. regulators, its own line voltage power supply, and, to top it off, a striking cover. Making it look right at home just about anywhere.

Both MacroFloppy systems are fully assembled, tested, burned-in, and tested again. For zero start-up pain, and long term reliability. They're also backed up by our famous Micropolis factory warranty.

And both systems are priced just right. $\$ 695$ for the MacroFloppy:1041 and $\$ 795$ for the MacroFloppy: 1042 .

You really couldn't ask for anything more.
At Micropolis, we have more bytes in store for you.
For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deering Avenue, Canoga Park, Califomia 91304 . Phone (213) 703-1121.

Or better yet, see your local dealer.
MICROP Ω LIS"
More bytes in store for you.
ately associated with the handle position; while the movements of the cursor, such as they are, show no such association. Furthermore, the variations of D are large and smooth, and there is no observable relationship between D and C. Why should the bystander suspect that C is being affected by D in one way and affected by H in an opposite way? The obvious conclusion is that the variations in D are causing Chip's behavior, while C has nothing to do with his behavior, especially if C does not vary more than the fixed background scales do. If the screen were full of irrelevant cursors, jiggling around slightly, how could the bystander pick C as something of special importance? If BASIC were fast enough, I would have included such irrelevant cursors; the point being made here would then be obvious.

An organism is surrounded by a world full of variables; variables that change within widely diverse ranges. The organism receives many signals from its internal parts, too. In that sort of situation, if the organism is controlling some of the variables, it will react strongly and smoothly to
any disturbance tending to alter 1 of the controlled variables. The result is that it will seem to be responding directly to the disturbances. There will be no obvious indication that it is controlling anything at all. There is every excuse for even the best of scientists to have observed the relationship between disturbance and behavior, and to have missed the very existence of controlled variables.

The name for such disturbances is stimuli. Once in a while, an experimenter must have accidentally picked a real controlled variable to call a stimulus, but the chances are against that. If an attempt is made to manipulate a real controlled variable, the organism will have to be strapped down to keep it from interfering. That is what is done in such cases. If the organism insists on acting like a control system, forcibly break the loop and make the organism conform to the theory. As a famous psychologist said, the theme is "Behave, damn it!" It never occurs to such stong-willed individuals that they might have the wrong idea about what is happening.

There is more in this elementary ex-
periment than meets the eye. If all psychologists were to experience it, and try to meet the challenge of explaining these effects using any standard theory, the result would be a total collapse of that science, followed by a rebirth. However, many jobs would be threatened. What has happened instead is that a handful of psychologists has supported this theory, another handful has taken up arms against it, and most have resolutely ignored it.
I suggest that you run this experiment many times with subjects controlling all 3 cursors. Every case will show that mirror-image relationship between D and H and little relationship between C and either D or H . If the previous parts of this series are studied and all the relationships that make up a control system thought about carefully, it will be evident that there is no other explanation for what is going on here. If you get nothing else out of this, you should acquire an intuitive feel for a new theory of how behavior works. You might even begin to understand how to design a robot in a new way.

It is time now to try to fulfill a pro-

MetaFloppy" goes

The Micropolis MetaFloppy ${ }^{\text {m" }}$ gives vou more than four times the capacity of anyone else's 5%-inch floppy. Because it uses 77 tracks instead of the usual 35 .

The fieid-proven MetaFloppv, with thousands of units delivered, comes in a complete family of models. And, like our Macrofloppy ${ }^{\text {iw }}$ family of disk drives, MetaFloppy is designed for the 5 -100/8080/2-80 bus.

For maximum capacity, choose our new MetaFloppy:1054 system. Which actually provides vou with more than a million bytes of reliable on-line storage. For less money than you'd believe possible.

The MetaFloppy: 1054 comes complete with four drives in dual configuration. A controlier. Power supply. Chassis. Enclosure. All cabling. A new BASIC software package. And a DOS with assembler and editor. There's even a builtin Autoload ROM to eliminate tiresome button pushing.

If that's more storage than you need right now, try our MetaFloppy: 1053, with 630,000 bytes on-line. Or our MetaFloppy:1043, with 315.000 bytes on-line. Either way, you can expand to over a million bytes on-line in easy stages, when you need to. Or want to.

In other words, if your application keeps growing, weve got you covered. With MetaFlopoy.

The system that goes beyond the floppy.
For a descriptive brochure, in the U.S. call or write Micropolis Corporation. 7959 Deering Avenue, Canoga Park, California 91304 Phone (213) 703-1121.

Or better yet, see vour local dealer.

MICROP Ω LIS" More bytes in store for you.

mise implied in part 1, to show how anyone with a home computing system can make important contributions to this new science of human nature. The best way this can be done is to start with the experiment used, and to show how it can be extended to become a powerful tool for investigating human organization. The main objective will be to introduce the test for the controlled variable, the nearest approach I know of to mind reading.

More Controlled Variables

Once subjects controlling all 3 cursors have been seen, it might seem that the possibilities of this experiment have been exhausted; this is not the case at all. There are controllable variables all over that screen; all of them can be controlled by the same means, movements of the handle in 1 dimension. Discovering them is a good way to get out of the habit of thinking that we simply perceive our environment, and start a new way of thinking: to recognize that we construct perceptions, imposing order on our experiences far more than recognizing order. As you will see, a
controlled variable does not have to be "real" at all.
Here is an example. It is possible to perceive the relative position of any of the 2 cursors. The handle affects C2 in a direction opposite to its effects on C1 and C3, so the relative position of C1 and C3 cannot be controlled because the handle does not affect it. However, it is possible to keep C1 even with C2, or C2 even with C3; in fact, it is easy. A plot of the results would involve plotting $\mathrm{C} 2-\mathrm{C} 1$ or $\mathrm{C} 3-\mathrm{C} 2$ instead of just C , and D2-D1 or D3-D2 instead of just 1 disturbance. The mirror image relationship with H would be as good as ever. Do not forget that C2-C1 and C3-C2 are variables. Any value of the variables can be selected as a reference level (eg: C1 to be 1 inch to the left of C2).

These are examples of higher-level controlled variables. If the subject could not perceive the present positions of the cursors, he or she certainly could not perceive their relative positions. Relative position is derived from perceptions of individual positions, but not vice versa. In order to control relative positions,
it is necessary to control (or at least vary) individual positions, but individual positions can be controlled without controlling relative positions. These are the relationships one looks for to map out a hierarchy of perception and control.

Other relative perceptions can be controlled. All 3 cursors can be kept lying in a straight line, at least within the range where 1 of them does not fall off the edge of the display and pop up at the other edge. Reducing the amplitude of the disturbances would eliminate that problem. Also, the 3 cursors can be made to form any fixed angle, subject to the same limitation. There may be more static patterns that can be controlled, but I have not thought of any. This is, after all, a simple display.

It is not, however, limited to static conditions. Suppose the subject visualizes a pattern in which 1 cursor moves back and forth slowly between 2 limits. This pattern can easily be maintained, the handle moving just enough to produce it, and enough more to cancel the effects of any of the disturbances. A similar oscillation could be maintained for the relative
variables. This is a still higher-level variable, a temporal pattern. The subject chooses which temporal pattern to perceive, and what state of that kind of pattern to maintain. Control still requires only the use of the 1 -dimensional effect caused by the handle.

There is clearly an infinite range of different temporal patterns, ranging from a simple steady motion in 1 direction to completely arbitrary motions and rhythms. There is an unlimited number of potential controlled variables in this simple display. Anything that can be perceived, and that the handle can affect in a systematic way, can be controlled.

For all of these examples of controllable perceptions, it is essential to remember that the disturbances are acting all the time. This is not a matter of producing any particular behavior. The cursor cannot be made to move slowly back and forth between fixed limits just by moving the handle slowly back and forth between fixed limits. The handle might be moving the wrong way at many
moments, when the disturbance tends to make the cursor move faster than the reference pattern being considered. There is no one-to-one correspondence between handle position or velocity and cursor position and velocity, because of those everpresent disturbances. Regularities of behavior are not being looked at here, but regularities of controlled perceptions. If there were a slowly oscillating prism between the display and the subject's eyes, a regular pattern of movement of the cursor on the screen would not be seen. The subject controls the visual image, not the reality. For the higher-level variables, the subject controls some function of the visual image (often the controlled variable could not be found, even on the retinas).

One could create displays of far greater complexity, and provide means of affecting the display that have more than 1 degree of freedom to explore a staggering range of possible controlled variables. This is what I suggest be done. The first step in the development of any new science is acquire the facts; here the most needed

facts concern what variables human beings can actually control. What is needed is a large and simpleminded program of recording the obvious and obscure. What is needed is a body of definitions of variables in every sensory mode that people have been able to control. Order and system count much less than sheer volume of data at this point. In fact, an unsystematic gathering of data may be the best kind, since it will not be constrained by theories about what people ought to be able to control. Anything which can be a way of testing is worth testing at this stage. The possibilities are limited only by the imagination.

We do need some sort of ordering principle-some criterion for judging the reality of any proposed controlled variable. This is where the test appears; here is how it works.

Test for Controlled Variables

The first thing to remember when investigating a possible controlled variable is that in order for something to be controllable it has to be variable. There is neither the means nor the need to control the existence of the Empire State Building or the planet Jupiter. Not all perceptions are controlled. Some are just disturbances; some are just there.

One might think initially about controlling, for instance, a car. People often speak casually about controlling things. But what is meant is controlling something about those things. A person cannot really control a car; but under proper circumstances its shape, its color, its price, its speed, its direction, its parking place, its dirtiness, its dangerousness, its desirability, its altitude, or the flatness of its tires can be controlled. A car, after close inspection, proves to be composed entirely of hundreds or even thousands of variables. Together they create "car-ness" in our perceptions. Individually, or in groups, most of them can be affected by one means or another, and can be controlled if it is worth the effort. You can even make the car disappear instantly by closing your eyes. Keep remembering that what is controlled is really a perception.

The first step in applying the test for the controlled variable is to define a variable. You do not have to know in advance if it is a controlled

For your SWTP 6800 Computer...

 PERCOM's'" FLOPPY DISK SYSTEM

Ready to plug in and run the moment you receive it. Nothing else to buy, no extra memory. No "booting" with PerCom MINIDOS-PLUSX', the remarkable disk operating system on EPROM. Expandable to either two or three drives. Outstanding operating, utility and application programs.

fully assembled and tested shipping paid

For the low $\$ 599.95$ price, you not only get the disk drive, drive power supply, SS-50 bus controller/interface card, and MINIDOS-PLUSX'M, you also receive:

- an attractive metal enclosure - a fully assembled and tested interconnecting cable a 70 -page instruction manual that includes operating instructions, schematics, service procedures and a complete listing of MINIDOS'" • technical memo updates - helpful hints which supplement the manual instructions • a 90 -day limited warranty.

SOFTWARE FOR THE LFD-400 SYSTEM

Disk operating and file management systems
INDEX ${ }^{\text {m }}$ The most advanced disk operating and file management system available for the 6800. INterrupt Driven EXecutive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-file disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multi-level file name directory includes name, extension, version, protection and date. Requires 8 K RAM at $\$ A 000$. Diskette includes numerous utilities $\$ 99.95$

BASIC Interpreters and Compilers
SUPER BASIC A 10K extended disk BASIC interpreter for the 6800. Faster than SWTP BASIC. Handles data files. Programs may be prepared using a text editor described below $\$ 49.95$ BASIC BANDAID" Turn SWTP 8K BASIC into a random access data file disk BASIC. Includes many speed improvements, and program disk CHAlNing
$\$ 17.95$ STRUBAL $+{ }^{\text {TMA }}$ STRUctured BAsic Language compiler for the professional programmer. 14 -digit floating point, strings, scientific functions, 2-dimensional arrays. Requires 20K RAM and Linkage Editor (see below). Use of the following text editors to prepare programs. Complete with RUN-TIME and FLOATING POINT packages \$249.95 Text Editors and Processors
EDIT68 Hemenway Associates' powerful disk-based text editor. May be used to create programs and data files. Supports MACROS which perform complex, repetitive editing functions. Permits text files larger than available RAM to be created and edited.
$\$ 39.95$
TOUCHUP ${ }^{\text {w }}$ Modifies TSC's Text Editor and Text Processor for PerCom disk operation. ROLL function permits text files larger than available RAM to be created and edited. Supplied on diskette complete with source listing
$\$ 17.95$

Assemblers

PerCom 6800 SYMBOLIC ASSEMBLER Specify assembly options at time of assembly with this symbolic assembler. Source listing on diskette
$\$ 29.95$
MACRO-RELOCATING ASSEMBLER Hemenway Associates' assembler for the programming professional. Generates relocatable linking object code. Supports MACROS. Permits conditional assembly.
$\$ 79.95$
LINKAGE EDITOR - for STRUBAL + ${ }^{\text {TM }}$ and the MACRO-Relocating assembler . $\$ 49.95$ CROSS REFERENCE Utility program that produces a crossreference listing of an input source listing file \$29.95 Business Applications
GENERAL LEDGER SYSTEM Accommodates up to 250 accounts. Financial information immediately available - no sorting required. Audit trail information permits tracking from GL record data back to source document. User defines account numbers
$\$ 199.95$ FULL FUNCTION MAILING LIST 700 addresses per diskette. Powerful search, sort, create and update capability \$99.95 PERCOM FINDER ${ }^{\text {w }}$ General purpose information retrieval system and data base manager
$\$ 99.95$
ru frademark ol PERCOM Data Company, Inc
ru Irademark of Hemenway Associates Company.
Now! The LFD-800 and LFD-1000. Add one, two or three LFD-800 drives and store 200K bytes per drive on-line. Add one or two (dual-drive) LFD-1000 units and store 800 K bytes per unit on-line. Complete with interface/controller, DOS, cable \& manuals. Two-drive systems: LFD-800 - \$1549; LFD-1000 — \$2495.
variable; you do not even have to know where the supposed control system is. All you have to do is to pick out something that you know is variable and "push" on it.
By push I mean to apply a disturbance that under normal circumstances should have a predictable direction and amount of effect on the variable. If I push hard enough on a life-sized statue, it should tilt in the direction of the push. Perhaps it will topple in that direction according to the simple laws of mechanics.

Having selected a variable and applied a push to it, the next step is to measure the actual effect of the push. I predict that pushing on this statue should make it tilt a certain amount in a certain direction. I apply the push and observe the tilt.

If the actual effect is far smaller than the predicted effect, common sense indicates that something must be pushing back. If the pushing-back is always just enough to cancel any amount or direction of disturbance (within some limits), it can be concluded that the pushing-back is systematic. The mirror-image effect that has been observed is what is wanted.

It is necessary to discover what is pushing back, and how it is doing the pushing. Perhaps, examining the statue carefully, an iron rod is found supporting its back from its base. In that case, a conclusion is made that there were not enough facts to make a correct prediction of the effects of the push; the bending moment of the rod should have been taken into account. But if no simple explanation for the failure of the prediction is found, one must look further.

Suppose it is discovered that the base of the statue seems to move when pushed. If there is a push to the east, the base tilts to the west moving the center of support east of the center of gravity of the statue, and thus creating a counterforce. Suppose this tilt of the base is found to be always just what is required to offset the effects of the push. It can be concluded that one may be on the trail of a control system.

What has been done is to find out something about the means of control, the path by which the output of the control system, if it exists, might be linked to the controlled variable (the angle between the statue's longitudinal centerline and the ver-
tical). Finding this link is a necessary step in the test.

That step will usually lead to discovering the physical control system. Tracing the wires that work the motors that tilt the base of the statue, you find a black box a few yards away from the statue. That may be the control system, or at least all of it that is not its actuators (which have been found).

There is still one step to be taken. You cannot be completely sure of the nature of the control system until you discover the variable it is really sensing. The situation has been approached with human prejudices; to me, it seems that the controlled variable is the orientation of the statue, a geometric or visual variable. Perhaps that variable is only related to the real controlled variable. What must be found now are the sensors that the control system is using.

Thinking in visual terms, you might look for a photocell that detects the tilt. Suppose a photocell is found on a stand near the statue. The test calls for breaking this link, preventing the sensing of the statue. The result should be that the effect of the push returns to what would be predicted from mechanical laws. So the photocell is covered and the disturbances are applied again. What happens is that the floodlights illuminating the statue turn on. The statue still resists the push-the photocell was for something else.

By careful searching 4 strain gauges built into the base of the statue are discovered. These provide a signal showing where the center of thrust is, and the wires from the strain gauges run over to that black box. Disconnecting the wires shows that now the push succeeds in tilting the statue. As soon as its tilt becomes marked, an angry groundskeeper comes leaping out of the bushes and arrests the experimenter. Aha! You may have discovered another control system controlling the state of the statue.

To recapitulate, the test for the controlled variable involves the following steps:

1. Define a variable.
2. Apply various amounts and directions of disturbances directly to the variable.
3. Predict the expected effects of the disturbances, assuming no control system is acting.
4. Measure the actual effect of the disturbances.
5. If the actual effect is essentially the same as the predicted effect, stop. No control system is found.
6. If the actual effect is markedly smaller than the predicted effect, look for the cause of the opposition to the disturbance, and determine that it results from systematic variations in some other variable. If such a cause is found, it may be associated with the output of a control system.
7. Look for a means of sensing the controlled variable. If none is found, stop: no control system is proven to exist.
8. If a means of sensing is found, block it, so the variable cannot be sensed. If control is not lost, the sensor is not the right one. If no such sensor is found, stop: no control system is proven to exist.
9. If all steps of the test are passed, the variable is a controlled variable, its state is its reference level, and the control system has been identified.

To apply step 8 of the test to our computer experiment, cover the cursor suspected of being controlled with a cardboard strip. Control should be lost. Cover each cursor. The covered one will never pass the test. The other steps are easily carried out.

Concluding Remarks

Now it is up to you. You can test controlled variables involving intensity, sensation, configuration, change, sequence, relationship, strategy, principle, and system concepts having to do with visual, auditory, tactile, kinesthetic, and other senses.

Good luck with the programs, and good hunting for controlled variables. I will be interested to receive word about what people are doing with the information covered in these articles.

BIBLIOGRAPHY

Powers, W T, Behavior: The Control of Perception, Aldine Publishing Co, 200 Saw Mill River Rd, Hawthorne NY 10532, 1973.

Tumingcomputer programmers intocomputer intocomputer composers!

 composers!}

For the first time: Hard-to-obtain computer music material has been collected into one convenient, easy-toread book.

The BYTE Book of Computer Music combines the best from past issues of BYTE magazine with exciting new material of vital interest to computer experimenters.
The articles range from flights of fancy about the reproductive systems of pianos to Fast Fourier transform programs written in BASIC and 6800 machine language. Included in this fascinating book, edited by Christopher P. Morgan, are articles discussing four-part melodies, a practical music interface tutorial, electronic organ chips, and a remarkable program that creates random music based on land terrain maps!

Buy this book at your favorite computer book store or order direct from BYTE BOOKS Add 604 per book for postage and handling

|||

S-100 8086 AND 28000 CARDS COMING: At least 6 S-100 product manufacturers are about to release 16-bit processor cards for the S-100 bus that use the Intel 8086 and Zilog Z8000. One such card has already been announced, a 8086 processor card from Seattle Computer Products Inc, Seattle WA. All will conform to the Institute of Electrical and Electronic Engineers (IEEE) S-100 standard that is soon to be adopted. They will work with most 8 -bit memory cards using byte-serial read/write. However, for full speed operation you will need either a true 16 -bit memory card or a modification of your present memory cards. To modify memory cards requires cutting traces, some rewiring, and adding some logic circuitry.

Microsoft has already announced and demonstrated an 8086 BASIC, and is working on a 28000 BASIC, as well as other 16 -bit software. Digital Research is working on a 8086 version of CP/M. Most 16-bit software in development will be designed for multiprocessing environments, using real-time clocks and interrupt-driven user-inputs.

CP/M 2.0 TO BE RELEASED SOON: There is no doubt that the most widely used disk operating system for microcomputer is CP/M, developed by Gary Kildall of Digital Research, back in 1974. Although originally written for the Intel 8080 development system, it was adapted to run on 8080, 8085 and $Z 80$ systems of many types. Its power and flexibility puts microcomputers in the big leagues by providing features and capabilities normally found on the bigger models.

Gary Kildall is planning to release the lst major revision to CP/M (Version 2.0). It will use a realtime clock and be interrupt-driven. It will support all present CP/M software. Look for its release around September lst.

RANDOM RUMORS: Matsushita Inc is rumored to be working on a $\$ 250$ printer which will generate "letter quality" type. It will print at 15 characters per second and include a keyboard. Rumors about Hewlett-Packard's Personal Computer are getting warmer. It may be introduced in time for the Christmas market. Expected to sell in the $\$ 2500$ area, it will have a 5 -inch black and white monitor, 16 K bytes of programmable memory, BASIC in read-only memory, a built-in thermal printer and cassette I/O (input/output). Texas Instruments is developing a 3 or 4 -inch Winchester-type disk drive to sell for approximately $\$ 50$. Shugart is about to start delivery on the $\$ 705$-inch floppy disk drive made by Matsushita. Infoton, a video terminal manufacturer, is rumored to be about to introduce a video terminal which will sell for less than $\$ 400$ in large quantities. It will use the Zilog Z 8 microprocessor and have a total of only 16 integrated circuits. All circuitry will be on 1 printed circuit card, the power supply will be transformerless, and a special elastomeric keyboard will be used.

HAND-HELD COMPUTER IN DEVELOPMENT: Matsushita Electrical of Japan and Friends-Amis Inc of CA have agreed to develop and produce "the first practical hand-held personal computer." The size of a hand-held language translator, the unit could be in production by the end of the year. The computer will be able to accept preprogrammed and user programmed memory capsules. Preprogrammed capsules will include information on business, science, language, education, etc. The computer will have modular construction, enabling new technology modules to be added as they are introduced. Add-ons will include a miniprinter, miniature video display, and a voice synthesizer.

MICRO-MOUSE CONTEST FINALLY ENDS: The 2 year long "Amazing Micro-Mouse Contest" run by the IEEE has finally ended. Although several thousand entries were received, less than 100 actually ran the maze. The contest's objective was to design a robot-type device which could negotiate and learn a maze as it went through. The trials were held at conventions of the IEEE, NCC shows and PC-78.

The ultimate winner was entered by the team of Howard P Katseff and Roy Tramwell from Bell Labs, Holmdel NJ. Their mouse ran the $81 / 2$ by $81 / 2$-foot maze in just under 30 seconds. It employed a Z80 microprocessor with 4 K bytes of read-only memory and 1 K bytes of programmable memory. Second prize was taken by the team from Batelle Memorial Institute of Richland WA. Art Boland, Ron Dilbeck and Phil Stover's mouse ran the maze in just over 31 seconds. One high performer was actually nonprocessor controlled, and ran the maze in just under 40 seconds.

VOICE-OPERATED TV DEMONSTRATED: Sanyo Electric Co recently demonstrated a television receiver that responds to voice commands to turn on and off and switch stations. Utilizing a microprocessor, the unit compares the voice input to voice patterns stored in memory. The unit has a 30word vocabulary, and can respond to the voices from 2 different people. Furthermore, the voice input can be used to play games. Sanyo has not announced any immediate plans for incorporating the receiver into its television sets.

APL FOR MICROCOMPUTERS: Despite a report in an earlier BYTE NEWS column, Quark has decided against introducing its APL microcomputer using the Intel 8086 microprocessor.

JAPANESE MOVING SWIFTLY INTO MICROCOMPUTERS: At least 9 Japanese manufacturers are presently manufacturing microprocessor integrated circuits. Approximately 80 different microprocessors are being made. Most of them are original designs including advanced features (eg: analog-to-digital converters, multiply/divide, counter/timers, etc). Five different 16 -bit microprocessors are already in production. Furthermore, over a dozen personal computers/trainers are in production to support a very strong interest in personal computers in Japan. Thus far only a few units are available for export.

MOTOROLA ANNOUNCES 68000 DELIVERY AND PRICES: Motorola has announced that it expects to start shipping limited sample quantities of its new 68000 16-bit microprocessor by the end of the year. Single unit price will be $\$ 249$. Limited production quantities are expected to be available by the end of the lst quarter of 1980 , with full production by late 1980 . No second source arrangements have been finalized.

75 MEGABYTE WINCHESTER DRIVE RUMORED: At least 6 companies exhibited 8 -inch Winchester-type drives at the recent NCC show. All of the drives could fit into the same space as an 8 -inch floppy disk drive, and provided from 10 to 45 M bytes of storage. At least 8 companies will be delivering these drives by the end of the year, and a 75 M byte version is expected next year. The drive should sell for under $\$ 2000$ in quantity.

PERSONAL COMPUTER MANUFACTURERS RANK WITH COMMERCIAL DATA PROCESSORS: Datamation magazine, in their most recent annual report of the top 50 US companies in the data processor industry, disclosed some interesting facts about changes in the computer industry. For the lst time a personal computer manufacturer, Tandy, ranked among the top 50 in computer equipment sales, and Commodore ranked second among fastest growing companies. Commodore had a 190% increase in sales in 1 year, to $\$ 75 \mathrm{M}$. Tandy(ranked 43rd)reported computer sales of $\$ 105 \mathrm{M}$ and total company sales of $\$ 1,152 \mathrm{M}$ resulting in a net income of $\$ 76 \mathrm{M}$. The company reported a sales gain of only 11.6% (which is about equal to the rate of inflation, and hence could be considered 0 sales growth). If Commodore continues to grow at its past year's pace, it too will soon rank among the top 50. It was reported that 63% of Tandy's computer revenues were from TRS- 80 sales, 26% from peripherals, 10% from services and 1% from supplies.

Each data processing company in the top 50 reported sales increases, and most were 20% or better. For example, IBM's sales rose almost 28%, while Digital Equipment Corporation's sales rose nearly 36%. In fact, none of the traditional maxi or mini makers appear to have been affected by personal computers, despite the predictions that were made 2 and 3 years ago.

MAIL: I receive a large number of letters each month, as a result of this column. If you write to me and wish a response, please include a stamped self-addressed envelope.

Sol Libes
ACGNJ
1776 Raritan Rd
Scotch Plains NJ 07076

Inexpensive Optical Paper-Tape Reader

Brian A Harron
67-3691 Albion Rd
Ottawa, Ontario
CANADA K1T 1P2

1 microprocessor $+8 K$ BASIC tape
$+4 K$ Startrek tape $+45 \min =R U N$

This was the terrible equation I had to contend with every time I wanted to play my favorite game program. It would take me 30 minutes to load the 8 K BASIC paper tape. But not any more!

The solution is a 400 character per second paper-tape reader that can interface to any 8 -bit input port of almost any microprocessor. It uses only 2 integrated circuits and costs approximately $\$ 15$.

I had always wanted something faster than my old reliable Teletype, but I never seemed to have the $\$ 40$ to $\$ 100$ that was needed to buy one of the many available kits. I also wondered why most of these kits required so many integrated circuits to accomplish the simple task of latching 8 bits of data. There are 7 bits (sometimes 8 bits) of parallel papertape data spaced at regular intervals, and a sprocket hole for strobing, included at no extra cost. Why not design a self-strobing, 8-bit data latch using an inexpensive large scale integration (LSI) transistor-transistor logic (TTL) integrated circuit, the INTEL 8212?

The Intel 8212 provides 8 bits of input, 8 bits of output, strobe, clear, and several device enable lines for about $\$ 5$. All I needed to do was to optically sense the punched papertape holes and strobe them into the latch at every sprocket hole.

Although there are several readymade, 8-level, paper-tape-reader photodiode assemblies available, I decided to construct my own reader assembly using individual phototransistors that I already possessed, the Motorola type MRD150, which are available at most wholesalers for

Photo 1: View of the paper-tape reader showing the light source and the lightdetecting phototransistors. The spring and clamp device keeps the paper tape in place.
approximately $\$ 1$ each. Their miniature size is ideally suited to 0.1 inch (0.25 cm) spacing.

Using epoxy, I glued 9 of the phototransistors into a 0.5 by 1 inch (1.27 by 2.54 cm) piece of 0.100 inch (. 025 cm) perforated board The photocell placed between positions 3 and 4 (as shown in figure 1) is physically reversed so that the active surface element of the cell is not in line with the other 8 cells. This out-of-line detector provides a physical delay of the sprocket-hole signal which will be signal-conditioned later.

This cell begins to detect light through the sprocket hole only after all other data holes are fully centered over their respective detectors. The strobe pulse is now positioned close to the center of the pulse from the data holes, as shown in the waveforms of figure 2.

In order to make the strobe pulse as insensitive as possible to the variation in tape speed caused by moving the tape by hand, the sprocket-hole detector is amplified by transistor Q1 and is threshold-detected by IC1a, a 7414 hex Schmitt trigger TTL gate (see figure 3, p. 121). The output of ICla is then differentiated and levelshifted by the capacitor and resistor combination C1, R1, and R2 such that the output of ICIb is fast and clean even for very slow dark-to-light transitions through the sprocket hole.

The additional gate sections ICIc and ICId provide buffered outputs of

[^6]> We have a full staff of Programmers and Computer Consultants to design, configure and deliver a Turnkey Computer System to meet your specific requirements.
the signals STROBE and STROBE , which will be used as sense input lines to the 8 -bit interface port.

The last 2 sections of the Schmitt trigger are configured as a delayed power-up signal that holds the CLEAR input pin of the latch at
ground until the power supply voltage has stabilized.

The $\overline{\mathrm{DS1}}$ and MD pins of the 8212 are grounded and the DS2 pin is pinned to the supply voltage, thus placing the 8212 into the strobed latch mode of operation. In this way the 8

Figure 1: Phototransistors in the paper-tape reader. Note the placement of cell between bits 3 and 4. The active element is reversed in orientation.

Figure 2: The strobe pulse is centered in the active signal from the data holes.

UP:	IN port\#	: READ INPUT PORT
	RAL	SHIFT 1 BIT LEFT
	JNC UP	JUMP TO UP IF CARRY BIT NOT SET
DOWN:	IN port \#	READ INPUT PORT AGAIN
	RAL	SHIFT 1 BIT LEFT
	JC DOWN	JUMP TO DOWN IF CARRY BIT SET
READ:	IN pOIt	READ INPUT PORT DATA BYTE
	RETURN	WITH 7 BITS OF DATA IN REG A

Listing 1: Simple 8080 assembly language program for inputting the data from the paper-tape reader.
bits of data available to the input pins DI-O thru DI-7 are latched through to the output pins DO-0 thru DO-7 by each positive pulse at the STROBE pin.

Since most paper-tape programs used with today's microprocessors use only 7 bits of the 8 -bit ASCII code (bit 8 being vertical parity), it is convenient to use this 8 th bit as the strobe sense line. When connecting the output pins of the latch to the processor input port, simply select strobe signal STROBE or STROBE and connect it to the pin corresponding to bit 8.

The software required to read in such data is shown in listing 1, where bit 8 is the STROBE sense line. When bit 8 goes through a low to high to low cycle, the data at the input port is valid.

If 8 bits of tape data are required, it is necessary to connect the strobe sense line to either another input port pin or to some other monitor line, such as an interrupt or serial input line, which can be tested under software control.

Mechanically, I used a piece of 0.100 inch (0.025 cm) aluminum sheet bent into a U-shape, with an inside, bottom width dimension of 1 inch $(2.54 \mathrm{~cm})$. I used a small piece of clear Plexiglas as a hold-down device for the tape as it passed over the reader photocells. Further improvements can be added, such as a motordriven, pinch-roller pull-through, but I have had no problems when pulling the tape through by hand. As a matter of fact, I can stop pulling at any time, since the strobe pulse is speed insensitive. I plan to eventually add a hand crank and a take-up reel to avoid the great piles of tape that end up on the floor after loading some of my larger programs.
To generate the required illumination, I used an automotive lamp (type 211) mounted 3 inches (7.5 cm) above the photocells. Running the lamp on 5 V provides a good, uniform source of light, although it draws about 1 A of current.

This entire project took only 3 evenings to design and construct, and the $\$ 15$ price tag was a bonus. If you are still limited to 10 characters per second with your Teletype reader, you should seriously consider this high-speed paper-tape reader.

Figure 3: Schematic diagram of the paper-tape reader, which is capable of 400 characters per second.

Book Reviews

Microcomputer-Based Design

by lohn B Peatman
McGraw-Hill Book Co,
New York 1977
540 pages hardcover
$\$ 26.95$

Microcomputer-Based Design by John B Peatman is a combination text and reference book aimed at engineers who wish to learn how to design systems using microprocessors. It is written not in a dull, dry tone, but rather in a light style. The minimum required background for this text is a rudimentary knowledge

SMOKE SIGNAL BROADCASTING PRESENTS...

THE SMOKE WRITER (VDB-1)

The SSH SMOKE WRITER incorperates the lerbst ahonces in electronie technology to bring you and the SS-50 bus a truly unigur videodisplay bord. The SMOKE WRITER uses the MCo845 CRT Comtroller chip and promides total control over the display format.

The standard features of the SMOKE WRITER are:

- 80×24 display with 32 graphic characters. Ophional character generator ROW with 128 ASCII characters plus I28 zraphic charocters.
- Upper and lower case characters with lower case descenders.
- Programmable character set. a total of 128 charactors in a $2 K$ EPROM: a 256 character $4 K$ EPROM is optional.
- IK EPROM for Softivare drivers.
- Reduced intensity or retersed video
- Programmable display rate (ll to 5000 characterpersecond) equita. lent to 100 to 50K baud.
- Protected firlds.
- Addressable Cursor.
- 2K video display RAM acerssible by the CPU as standard RAM Memory.
- I28 Byots of Scratch pad RAM.

If you have a need fora fast and dependable videodisplay horard. Smoke Signal Broadcasting has what you are looking for. The SMOKE: WRITHK is rizht at home when ased widn a cursor based editur or in a business jrogram that needs protected fields.
of logic (ie: transistor-transistor logic gates and flip-flops) and the basic concepts of computer programming. The book develops hardware and software design skills upward from that point to a practical and useful level. A key feature of this book is the logical, lucid presentation of arguments present in the many illustrated design decisions.

Microcomputer-Based Design is divided into 7 chapters and 6 appendices. The chapters are fairly complete, in-depth entities and each contains a set of practical design problems and additional references. The references may be difficult to find for readers without access to an engineering library since many of the references are articles in engineering journals or manufacturers' application notes.

Chapter 1 is an overview of microcomputer applications focusing primarily on the distribution of "intelligence" to instruments and tools.

Chapter 2, "Microcomputer Registers and Data Manipulation," includes a brief discussion of numbering systems and the various, commonly encountered modes of addressing. This is followed by a good presentation of machine language instructions, assembly language, and assembly language programming techniques.

Chapter 3 considers computer hardware organization. Several different philosophies of commercially available microprocessor families are described. The characteristics of various logic families are considered with an eye towards interconnection compatibility. Bus structures and their electronic implementation are described in some detail. Flags, interrupts, direct memory acess control and programmable timers are also described with examples.

Chapter 4 reviews the various characteristics of memory components and systems. Included are sections on the implementation of main power failure battery backup systems and floppy disks.

Chapter 5 examines peripherals. There are sections on input/output control and handshaking, timing and buffering. There are also discussions of specific common microcomputer peripherals: keyboards, phototransducers, circuit testers, analog-todigital and digital-to-analog converters, pressure transducers, optical

HARDWARE FOR TRS-80

\square Pertec Disk Drives FD-200
$\$ 375.00$ ea.
These are 40 -track Drives that are completely compatible with the TAS-80 and Radio Shack Drives, 3.0 DOS included. Will allow Turning Diskette over and Write on other side.
\square 4-Drive Cable for Perrec Drives . $\$ 35.00$
DoECwriter III, 132 Character $\$ 2500.00$
110 to 9600 band EIA tractor feed keythoard printer. This is truty the nicest printer available. (30 day delivery)
$\square 701$ Centronies TRACTOR FEED Bidirectional Printer
.$\$ 1500.00$
$21 / 2$ times as fast as the Radio Shack 779 Printer, has full size 132 Char. Carriage Bell tone. Complete with Cable plug in and use. Shipped Freight CDD.
$\square 200$ ns 16 K Dynamic Memory Clips for Keyboard or Expansion Interface, Lifetime Guarantee, complete \$1 10.00 Lifetime Guaranter. Complete with Instructions and Jumper Blocks.

D10 Key Numerical Keypad Kit . $\$ 79.95$ \square TRS. $80^{(8)}$ Level II - 16k \$750.00 \square Expansion Interface $\$ 275.00$ \square RS.232.C Interface $\$ 89.00$

ORDER NOW AND SAVE
Just list the items you want and mail this convenient coupon.

SOFTWARE BY ACS

Monitor No. 3 . $\$ \mathbf{\$ 2 9 . 9 5}$ Complete Machine Language Monitor for TRS-80 features: Find, EDIT, Felocate, Symbolic Dump to Tape, etc.
\square Manitar No. 4 549.95 All of the commands that reside in Monitor No. 3, plus FS. 232 1iD, Disk Program I/D, Symbolic Dump to Disk for Loading into Disk Editor/ASM., Track \& Sec I/D for modification.
\square IPCLENO
$\$ 15.95$
Will Patch ASCII liles of Basic Programs or text or DATA FILES so that they may be loaded into the Disk Version of the Electric Pencil for Editing purposes comes on Cassette that will automatically create a Disk lile of PCLEND.
\square MAKE TAPE ANDMAKE DISK
for Cassette Dealers . $\mathbf{S 6 9 . 9 5}$
These are two programs that will allow you to take any type of Program from Disk and store it on tape for mailing purposes. When the user receives the program in the mail on cassette, it is loaded into the computer which will automatically make a Disk file of the program.
\square CP/M \& C BASIC for the TRS-80 ${ }^{\circ}$
CP/M Includes: MOVCPM, STAT, PIP, Dump, DDT, ASM (8080), ED, plus 6 user manuals.

CP/M $\quad \$ 150.00$ C Basit-2 Includes: XREF2, CBAS2, and manuals. C BASIC 2
$\square G 2$ LEVEL III BASIC for TRS•B0 ${ }^{(6)}$............... Special $\$ 39.95$
\square TELCOM - Telecommunications for the TRS-B0 ${ }^{(1)}$. . . . $\mathbf{\$ 2 9 . 9 5}$ Telecommunications for the TRS. 80° allows one TRS. 80° to communicate with another through the RS-232.C over the phone line.

Orders received by 6:00 p.m. shipped next day on Master Charge, Visa, Certified Check or Money Order. Personal Checks require 14 days to clear. No C.O.D. Collect calls not accepted. All Hardware warranted for 90 days except Radio Shack equipment which is warranted through Radio Shack. Software guaranteed for replacement only. Prices subject to change without notice.

AUTOMATED COMPUTER Software service (615) 244-2798 Division of

Send Check or Money Order payable to -
SOFTWARE • P.O. Box 60097 • Nashville, TN 37206

Quan. Description \quad Unit Price Total
\square Check Money Order MasterCharge

HANDLING CHARGE $\$ 1.50$
TENN. RES. ADD 6\% SALES TAX TOTAL
Exp. Date
Name
Address
City \qquad State Zip

WE ARE KNOWN FOR OUR PROMPT, COURTEOUS SERVICE
 TELETYPE MODEL 43

```
- 4320 AAA (TTL interface).
                                \(\$ 985\)
    4320 AAK (RS232 interface) . . . . . . . . . . . . . . . . . . \$ \$1,085
    with transformer to operate on \(50 \mathrm{~Hz}, 220 \mathrm{v}\), installed
    inside cabinet
                            add \$50
        We slock paper and ribbon for the Teletype Model 43
```

 \(\$ 1,259\)
 DEC LA 34
KSR dot matrix printer. Provides variable line and charac-
ter spacing and variable width paper.
HAZELTINE 1500 (assembled only) $\$ \$ 945$
with $50 \mathrm{~Hz}, 220 \mathrm{v}$ current adaptation $\$ 100$
also available with Danish, German or French character
sets . add $\$ 60$
INTERTUBE SUPER BRAIN $\$ 2,885$
Dual Z80, dual floppy, double density, 64 K RAM, 4 Mhz .,
CPIM, FORTRAN, COBOL, BASIC, Assembler Language.
Contained in Intertube II.
INTERTUBE II . $\$ 800$
MARINCHIP SYSTEMS
M9900.CPU.S. 100 COMPATIBLE.
Network operating system, PASCAL, Extended precision
commercial BASIC, FORTH, META \& applications pack-
age. Complete kit and DISCEX software $\$ 550$; Assembled
$\$ 700$. We configure systems to meet your budget \& your
needs. Hard Disk interface (with software) available.
IMS MEMORY, 16K Fully static, 250 ns $\$ 346$
TEI S-100 Mainframes
12 slot - MCS 112 . $\$ 433$
22 slot - MCS 122 . 5609
These mainframes are completely assembled, tested and
contain everything required for plug-in operation.
TARBELL Floppy Disk Controller $\$ 255$
Other Tarbell products available.
KONAN HARD DISK CONTROLLER \$1,550
S-100 compatible, plugs into S-100 mainframe. Controls
1-4 disk drives.
FUJITSU HARD DISK
50 megabytes of unformatted data in a single, removable
cartridge.
IMS 5000 SERIES,
COMPLETE Z80 SYSTEM
\$2,170
2 I/O ports, 1 K EPROM bootstrap loader, double density,
dual $51 / 4$ " disks, $\mathrm{S}-100$, 12 slot mainframe. A new rising
star! No waiting.
PER SCI FLOPPY DISK DRIVES
299 DUAL DISK, 277 DUAL DISK, Single Sided
\$1,495
\$1,210
1170 CONTROLLER Single/Double Density $\$ 1,015$
2142 CABINET \& POWER SUPPLY for 277 $\$ 300$
2149 CABINET \& POWER SUPPLY for 299
$\$ 390$
MODEM: "THE CAT" from Novation
$\$ 190$
Originate/Answer. 300 baud.
TO ORDER: We ship within 24 hours after receipt of certified
check, money order or cashiers check. Credit cards: add
4%. Personal checks: allow ten days. $\$ 12$ shipping for ter-
minals. $\$ 3$ for memories and modem. New York residents
include sales tax. Prices and availability subject to
change without notice.
We have no reader inquiry number. Please call or write.
Jонn d. OWENS ASSOCIATES inc.
12SCHUBERT STREET
STATEN ISLAND, NEW YORK 10305
day, evening, weekend, holiday calls welcome!
(212) 448-6283
(212) 448-6298
displays, relay drivers, synchromotors and printers. Finally, there are sections on universal asynchronous receiver-transmitters (UARTs), line drivers, the HPIB-IEEE 488 bus and self-test hardware.

Chapter 6 describes the various options that exist in hardware and software development packages from prototyping boards to disk-based operating systems. There is also a brief discussion of high-level languages for microcomputers.

Chapter 7 describes in detail the algorithms for solutions to several common microcomputer software problems. Algorithms are described to read and to parse a functional keyboard input, self-test routines and number system conversion and manipulations. Real-time programming constraints are also considered.

The set of appendices describes the characteristics of specific microcomputers. Each appendix covers the architecture and organization of a particular processor integrated circuit. The rest of the integrated circuit set (memory, input/output, etc) is also briefly covered. Appendices are included on the 4004, F8, 8080, 6800, COSMAC, and PPS-8 processors. It is refreshing to see that these appendices are more than just a reprinting of the manufacturer's specification sheets.

On the negative side, there is a disturbing absence of discussion of any of the high-performance integrated circuits that were certainly available when this book was written. There is also inadequate treatment given to bit-slice and microprogramming techniques. Software development by emulation is also omitted. The balance is, however, overwhelmingly positive. This is a text which starts off quietly, never grows dull, and yet contains a great deal of substance. There are sections on using esoteric devices like first in, first out stacks (FIFOs) that I have previously never seen in a design text.

It is a welcome development. I recommend this book to advanced experimenters, undergraduate engineering students and practicing engineers.

Ira Rampil
2217 Cypress Way
Apt 15
Madison WI 53717

R681-2 RECEPTACLE FITS 8803 MOTHERBOARD Model R681-1 has 0.062 inch long 0.025 inch square tails.

TEFZEL* Insulation Wire Wrapping Tools:

- Up to $4 X$ faster. Heavy insulation. P184-4T with NiCad batteries, recharger, 100' of wire: \$105.00. P184 with 100 feet of wire, $\$ 30.00$.

BEAUTIFUL VP2 ENCLOSURE-supplied completely assembled for packaging. S-100 based systems. Clear aluminum with blue vinyl finished slide-off sides, top, and perforated bottom cover heavy chassis plate, removable front and rea। panels, adjustable
connector/Motherboard mounting struts, card guides (plastic guides supplied uninstalled). VP2, \$159.00. VP1,
 cards mount perpendicular to front, $\$ 163.00$. BP17-9 accessory back panel, $\$ 10.95$.

Low-noise model 8803 S-100 Motherboard not shown. Eleven positions ready for connectors. Glass epoxy, solder masked etched circuitry for passive and active termination, twelve tantalum capacitors and instructions. $\$ 29.50$.
*DuPont
trademark
Send for complete data. Packaging systems for other card sizes and systems, rack mounting are available
VECTOR ELECTRONIC COMPANY, INC.
12460 Gladstone Avenue, SyImar, CA 91342 telephone (213) 365.9661; TWX (910) 496-1539 Elapsed Time Programs

W B Agocs, Dept of Physical Sciences Kutztown State College, Kutztown PA 19530

The day of the week, the number of elapsed days of a year, and the number of days between 2 dates are information that is required frequently in various types of analyses.
The procedure to determine the day of the week uses Zeller's congruence:
$\left.\mathrm{d}=\{\mid 2.6 \mathrm{~m}-0.2]+\mathrm{K}+\mathrm{Y}+\left[\frac{\mathrm{Y}}{4}\right]+\left[\frac{\mathrm{C}}{4}\right]-2 \mathrm{C}\right\}$ MOD 7
The term m is the month number minus 2 . If the month is January or February, m is 11 or 12 of the previous year. K is the day of the month; C is the century, and Y is the year of the century. The value of the square brackets is defined as the integer part of the result of evaluating the interior expression.

Day of Week From Date

The program is so written that corrections to month 11 or 12 of the previous year are made automatically if the month is January (1), or February (2). The program is shown in listing 1. Century selection could have been incorporated, but the program is designed for the 20th century. Once the number of the day of the week is obtained (with Sunday being day 1), the date and the day are printed.

Matrix Elapsed Time Determination

The use of a 12 by 31 matrix seems to be the most logical method for determining the elapsed days of a year, the remaining days in a year, and the day interval between 2 dates.

The program for such a determination is shown in listing 2. The MAT $\mathrm{A}=\mathrm{CON}$ statement in line 50 sets each element of the matrix equal to 1 . The subroutine in statements 440 thru 540 enters 0 s into the matrix elements which correspond to the months with less than 31 days, and then fills the matrix elements with the date's numerical location in the year. Thus on return from the subroutine, the days elapsed may be printed between statements 180 and 190, or between statements 400 and 410 if desired. Leap year corrections are made at lines 270 and 440.

Finally, if the interval between the 2 dates is less than or greater than a year (as determined by statement 100), the correct year increment is made in statements 230 and 280.

The total time interval is determined in statement 180 or 410 , and the result printed at statement 190.

Text continued on page 129

Bob admits he thought his computer had reached the limit of its capabilities. Then he discovered the BASIC Compiler from Microsoft.
"It's incredibly fast", he boasts. "Nothing was as fast as my Microsoft BASIC inter-preter-yet this new compiler is actually 3-10 times faster.
"And that's not all", he beamed. "My compiler has the same language features as Microsoft 5.0 BASIC and runs in my 32 K CP/M system."
Bob says, "When Microsoft comes out with a new product, I know it's got to be good. And this BASIC Compiler is the wizard I've been waiting for.
"At last, I can generate relocatable machine language modules from my Microsoft BASIC programs-machine code that's highly optimized. And because the Microsoft macro assembler and loader come with the BASIC Compiler, BASIC programs are easily linked to assembly language subroutines or Microsoft

FORTRAN and COBOL programs.
Just like the pros," smiled Bob.
"What's more, the compiler generates a fully symbolic listing of the machine language that's generated - a great way for me to learn assembly code on my own."
Bob believes in giving credit where credit is due. "Microsoft turned my BASIC computer into a genuis for $\$ 395$, but I was smart enough to recognize a good thing immediately."

If you want to get the most out of your computer and your BASIC programs, ask for more information on the Microsoft BASIC Compiler. We know you'll compliment yourself on a very smart move.

MICROSOFT

10800 N.E. Eighth Suite 819

Bellevue, Washington 98004
206/455-8080 Telex 328945

BISYNC - 80/3780

BRINGS IBM BINARY SYNCHRONOUS COMMUNICATIONS CAPABILITY TO THE 8080, 8085, AND 280 MICROCOMPUTER

APPLICATIONS:

- DISTRIBUTED DATA PROCESSING
- REMOTE JOB ENTRY (RJE)
- CICS ACCESS
- BATCH DATA TRANSMISSION

8080, 8085 or $Z 80$ with BISYNC-80/3780

STANDARD FEATURES:

- FULL FUNCTION IBM 3780 EMULATION
- 1200-9600 bps POINT-TO-POINT OR SWITCHED LINE
- EBCDIC TRANSMISSION CODE WITH AUTOMATIC

IBM S/360 CPU IBM S/370 CPU IBM 30xx CPU

IBM 2770, 2780 , or 3780 Terminals

Word Processing, Point of Sale Equipment TRANSLATION TO AND FROM ASCII

- SEND AND RECEIVE STANDARD DISK FILES
- RUNS WITH CP/Mtm OPERATING SYSTEM
- AVAILABLE FOR S-100 AND TRS-80 SYSTEMS
- USE WITH MOST 8251-BASED I/O BOARDS
- REQUIRES NO INTERRUPTS

This professionally written and documented software can integrate your microcomputer into the world of large scale data processing on IBM compatible equipment. You can have the distributed processing power of your microcomputer plus IBM terminal capability!

Price \$295, includes documentation and software on CP/M diskette. Optional RJE Console Support software - \$95. Optional Printer Driver software - allows receiving data directly to printer instead of diskette - $\$ 95$. Synchronous I/O board and all required cables - $\$ 345$ for S-100; $\$ 545$ for TRS-80. Documentation - \$15. Complete system packages available.

Text continued from page 126:
The matrix procedure, with correction for appropriate holidays, can be used in conjunction with stock market studies when knowledge of the market day interval is desired, or when determining if a particular date is a market trading day.

Listing 1: BASIC program for determining the day of the week from the date using Zeller's congruence.

0010

```
PRINT ''ZELLER'S CONGRUENCE-DAY OF WEEK
    FROM DATE."
    PRINT 'WHAT IS THE DATE-MONTH, DAY, YEAR?'"
    INPUT M,D,Y
    LET Y1 = Y
    LET M1 = M
    IF (M=1) OR (M=2) THEN }6
    GOTO 105
    IF M=1 THEN 90
    ET M = 12
    GOTO 100
    LET M=11
    LET Y = Y-1
    GOTO }11
    LET M = M-2
    LET D1 = INT(2.6*M-.2) + D + (Y-1900) + INT((Y-1900)/4)
    LET D1 = D1 + INT(19/4)-2*19
    LET D1 = D1-INT(D1/7)*7+1
    PRINT ''D1 = '';D1
    ON D1 GOTO 140, 150, 160, 170, 180, 190, 200
    LET A1$ = "SUNDAY"
    GOTO 210
    LET A1$ = "MONDAY'"
    GOTO 210
    LET A1$ = "TUESDAY"
    LET A1S =
    LET A1$ = 'WEDNESDAY''
    GOTO 210
    LET A1$ =
    LET A1$ = "FRIDAY"
    GOTO 210
    GOTO 210
    LET A1$ = "SATURDAY"
    PRINT '"FOR "';M1;''|':D;''|';Y1;' IT IS '':A1$
    PRINT
    END
```

0020
0030
0035
0037
0040
0050
0060
0070
0080
0090
0090
0100
0102
0105
0110
0115
0120
0125
0130
0140
0145
0150
0155
0160
0160
0165
0170
0175
0175
0180
0185
0190
0195
0200
0210
0220
0230

Listing 2: BASIC program for using a matrix to determine the elapsed time between 2 dates.

0010	PRINT '"MATRIX DETERMINATION OF DAYS BETWEEN DATES."
0020	PRINT "PROGRAMMED APRIL 15, 1979;W. B. AGOCS."
0030	DIM A $(12,31)$
0040	DCL S(A) $)$
0050	MAT A $=$ CON
0060	PRINT "WHAT IS THE FIRST MONTH, DATE, YEAR?; EXPRESS NUMERICALLY AS 11, 15, 1978.'
0070	INPUT M1, D1, Y1
0080	PRINT 'WHAT IS THE NEXT MONTH, DATE, YEAR?''
0090	INPUT M2, D2, Y2
0100	IF Y2-Y1 $=0$ THEN 120
0110	GOTO 220
0120	IF Y $1 / 4 \cdot \mathrm{INT}(\mathrm{Y} 1 / 4)=0$ THEN 150
0130	GOSUB 450
0140	GOTO 160
0150	GOSUB 440
0160	LET S1 $=$ A(M1, D1)
0170	LET S2 $=$ A(M2, D2)
0180	LET S3 $=$ S2-S1
0190	PRINT '"INTERVAL BETWEEN ';M1;'\|'';D1;' ${ }^{\prime \prime}$ '; Y $1 ;$
0195	
0200	PRINT S3;' DAYS.''
0210	GOTO 580
0220	LET $\mathrm{S}=0$
0230	FOR I $=$ Y $1+1$ TO Y2-1 STEP 1
0240	IF $1 / 4-1 \mathrm{NT}(1 / 4)=0$ THEN 270
0250	LET $\mathrm{S}=\mathrm{S}+365$
0260	GOTO 280

LET S $=\mathrm{S}+366$
NEXT I
IF $Y 1 / 4-$ INT $(Y 1 / 4)=0$ THEN 320
GOSUB 450
GOTO 350
GOSUB 440
LET S1 $=366 \cdot A($ M 1, D1 $)$
GOTO 360
LET S1 = 365-A(M1,D1)
IF Y2/4-INT(Y2/4) $=0$ THEN 390
GOSUB 450
GOTO 400
GOSUB 440
LET S2 = A(M2,D2)
LET S3 $=$ S + S $1+$ S2
GOTO 190
REM SUB-ROUTINE
LET $A(2,29)=0$
LET $A(2,30)=A(2,31)=A(4,31)=A(6,31)=A(9,31)$
$=A(11,31)=0$
LET $N=0$
FOR I = 1 TO 12 STEP 1
FOR $\mathrm{J}=1$ TO 31 STEP 1
IF $A(1, J)=1$ THEN 510
GOTO 530
LET $\mathrm{N}=\mathrm{N}+1$
LET $A(1, J)=N$
NEXT J
NEXTI
NEXT I
RETURN
PRINT
PRINT
PRINT "THE END."
END :
A Text Loader
Routine
Howard Berenbon
Howard Berenbon
2 6 8 1 Peterboro
2 6 8 1 Peterboro
W Bloomfield MI 48033
W Bloomfield MI 48033

Here is a useful program for the Motorola 6800 microcomputer. This subroutine allows the loading of ASCII text into the desired memory location directly from your terminal. It uses the Motorola MIKBUG monitor for character input and output. The subroutine may be entered beginning at hexadecimal address A060. To exit the program simply type a $\%$.

Hexadecimal Address		adecimal Code	Mnemonic	Comments
A060	86	3F	LDAA \#\$ 3F	Load A with ?
A062	BD	EO 75	JSR CHAROUT	Output ?
A065	86	20	LDAA \#\$ 20	Load A with a space
A067	BD	EO 75	JSR CHAROUT	Output space
A06A	CE	- -	LDX \#\$ - -	Load index register with desired address
A06D	BD 	$\begin{aligned} & \text { EO } 78 \\ & \text { JOP } \end{aligned}$	JSR CHARIN	Input character
A070	A7	00	STAA \$ 00:X	Store A indexed
A072	08		INX	Increment index register
A073	81	25	CMPA \#\$ 25	Compare A with \%
A075	26	F6	BNE \& LOOP	Get another character
A077	7E	E0E3	JMP MIKBUG	Return to MIKBUG ■

A Model of the Brain for Robot Control Part 4: Mechanisms of Choice

James Albus
Project Manager
National Bureau of Standards
United States Dept of Commerce
Washington DC 20234

The essence of a hierarchy is that control is top-down. The ultimate choices are made at the top, and the goals selected at this level are decomposed into action as they filter down

The ideas presented in this article represent the views of the author and not those of the Department of Commerce or the National Bureau of Standards.
through the various levels of the hierarchy. For the purposes of our discussion, we will define the highest level H function in the behaviorgenerating hierarchy of the human brain as the will.

For centuries philosophers and theologians have debated the nature of the will, particularly the question of whether humans have "free" will (ie: the freedom to choose goals) or
whether all choice is merely a reflexive or predestined response to the environment. We shall not presume to deal with this question here, other than to suggest what types of inputs are available to this highest level goal selection module.

By definition much of the input to the highest level behavior-generating module must come from the highest level sensory-processing module.

Figure 1: An action (such as a person talking to a flower) may be recognized as either familiar or unfamiliar. If an action is noted as familiar, then it can be considered unnoteworthy and will be ignored. If the action is considered deviant, further processing will take place to determine reactions to the action.

Million-Character Computer System One-Year Transferable Warranty

\$3,995

SEE System 6684 Unique Standard Features

- CPU integrated into Diskette Cabinet with peripheral ports in rear of cabinet
- 4 Full communications ports RS232 or 20 mA/60 mA CL; 75 to 19,200 bits/sec.

Standard Features on All Systems

- Central Processing Unit with 12 slots; 2 MHz (expandable to 4 MHz with pipelining architecture)
- 8 Free Slots for expansion; capacity for 442,368 characters of memory within standard chassis
- 49,152 characters of 200 ns random access memory; 150 ns memory optional
- 8 vectored interrupts; all input and output is interrupt driven
- 1.2 million characters, double sided, dual $8^{\prime \prime}$ diskettes. IBM 3470 compatible
- Printer controller; Centronics compatible
- Magnum BASIC. Extremely fast business BASIC with full editing capabilities, print using, sequential and random files, integer and floating point arithmetic with up to 16 digits precision; N -dimensional matrices and much more A superset of Microsoft 16K extended disk BASIC
- Interactive conversational macro assembler and editor for 6800 family microprocessors.
- One-year transferable limited warranty on parts and labor for all SEE hardware
- Guaranteed 24 -hour turn-around time on repairs

Optional Features on All Systems

- Up to 64 interconnected, intelligent terminals with no degradation of response time. Each is a stand alone CPU. True distributed processing
- Expandable to 12 MB of 150 ns RAM for each terminal
- Up to 64 RS232 ports with full communications. Talks to any peripheral or CPU with RS232 interface
- Expandable to 4 MB of diskette storage
- Up to 660 MB hard disk storage with removable modules
- ANSI standard 10.5 inch tapes (1600 BPI)
- 11 MB cartridge tape system
- Matrix and word processing printers from 55 CPS to 1400 LPM
- Choice of 6809 and/or 6512 CPU board with speed of up to 4 MHZ with 150 ns memory
- Interactive relocatable macro assembler, development system and DOS for 6502 and 6512 microprocessors. Can assemble source programs up to 2 MB long
- PASCAL compiler
- FORTRAN compiler
- BASIC compiler
- 6809 Macro Assembler
- Powerful word processing software
- Comprehensive business software, incl. General Ledger, Accounts Receivable, Accounts Payable, Inventory, Payroll, etc.

Quantity discounts to bona fide dealers, OEMS, and schools Special configurations and modular shipment available A few distributorships available in the United States and other countries

This is the level at which the overall result of the entire sensory processing operation is evaluated as being good or bad, rewarding or punishing, satisfying or frustrating. In humans, this function is performed by what are commonly called the emotions. It has long been recognized that emotions play a crucial role in the selection of

[^7]behavior. We tend to practice that which makes us feel comfortable and avoid what we dislike. Our behaviorgenerating hierarchy normally seeks to prolong, intensify, or repeat those behaviors which give us pleasure or make us feel happy or contented. We normally seek to terminate, diminish, or avoid those behavior patterns which cause us pain, or arouse fear or disgust.

In the past 25 years it has become known that the emotions are generated in localized areas, or computing centers, in the brain. For example, the posterior hypothalamus produces fear, the amygdala generates anger and rage, the insula computes feelings of contentment, and the septal regions produce joy and elation. The perifornical nucleus of the hypothalamus produces punishing pain, the septum pleasure, the anterior hypothalamus sexual arousal, and the pituitary computes the body's response to danger and stress. These emotional centers, along

ASCII encoded keyboards as low as $\$ 65$.

The RCA VP-601 keyboard has a 58 key typewriter format for alphanumeric entry. The VP-611 (\$15 additional*) offers the same typewriter format plus an additional 16 key calculator type keypad.

Both keyboards feature modern flexible membrane key switches with contact life rated at greater than 5 million operations, plus two key rollover circuitry.

A finger positioning overlay combined with light positive activation key pressure gives good operator "feel", and an on-board tone generator gives aural key press feedback.

The unitized keyboard surface is spillproof and dustproof. This plus the high noise immunity of CMOS circuitry makes the VP-601 and VP-611 particularly suited for use in hostile environments.

The keyboards operate from a single 5 volt, DC power supply, and the buffered output is TTL compatible. For more information contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA. Telephone (717) 291-5848.

R(B)
-Optional user price. Dealer and OEM prices available.
with many others, make up a complex of about 53 regions linked together by 35 major nerve bundles. This entire network is called the limbic system. Additional functions performed in the limbic system are the regulation of hunger and thirst performed by the medial and lateral hypothalamus, the control of body rhythms such as sleep-awake cycles performed by the pineal gland, and the production of signals which consolidate (ie: make permanent) the storage of sensory experiences in memory performed by the hippocampus. This last function allows the brain to be selective in its use of memory by facilitating the permanent storage of sensory experiences to which the emotional evaluators attach particular significance (eg: close brushes with death, punishing experiences, etc).

Input to the limbic system emotional centers consists of highly processed sensory-data such as the names of recognized objects, events, relationships, and situations, such as the recognition of success in goal achievement, the perception of praise or hostility, or the recognition of gestures of dominance or submission transmitted by social peers. These inputs are accompanied by such modifier variables as confidence factors derived from the degree of correlation between predicted and observed sensory input.

Sensory processing at the level of the emotions is heavily influenced by contextual information derived from internal models and expectations at many different levels in the processing hierarchy. If a painful stimulus is perceived as being associated with a nonfear producing source, we may attack the pain causing agent. If, however, the perceived source of pain also induces fear, we may flee.

Similarly if an observed event such as a person talking to a flower is perceived as deviant, then this input to the emotions, along with other recognized qualifier variables such as the person is a) eccentric, b) retarded, or c) dangerously psychotic, will cause the emotions to output a) amusement, b) pity, or c) fear, respectively. Amusement input to the behavioral goal selecting module may lead to laughter, poking fun, or ridicule. Pity input to the will may

WHEN THE FUN AND GAMES ARE OVER, you shouldn't

 have to gamble on your microcomputer's ability to get down to business. You won't with Outpost 11. It's a serious unit with quality components: Cherry, full ASCII keyboard; Setchell-Carlson CRT, 24×80 characters, 7×9 dot matrix; inverse, grey, blink; form generation characters; Shugart floppy disk drives; M6800 CPU; 32 k bytes RAM; glass-epoxy PC boards, manufactured and tested to Mil Q 9858-A; entire unit 100-hour burn in tested; IC's tested to Mil P 883; I/O interrupt prioritizing structure; softsectored disk format; business BASIC; FLEX 2.0; TSC BASIC; self diagnostics; software development packages; etc; etc; etc. All this and more at only $\mathbf{\$ 2 , 5 9 5}$,suggested retail price. See Outpost 11 at a dealer listed or write us for the name of a dealer near you. ZANOCorporation, 4301 Poche Court West, New Orleans, La. 70129

THE SERIOUS MICROCOMPUTER

Dealers: ATLANTA, GA, Magaro and Associates - 404-252-8609, Professional Indexing - 404-572-4177 - BEAVERTON, OR, DataTools International - 503-645-4604 - BEND. OR, Control Industries - 503-389-1969 • COOKEVILLE. TN. Cumberland Computers - 615-526-7651 • DADE CITY, FL, Sabatelli Computer System Inc. - 904-567-7777 • DALLAS, TX. Eclectic Corp. - 214-358-1307 - DES MOINES. IA. H. Allen Hanna - 515-283-5130 • ELK GROVE VILLAGE, IL, Kramer DataPower Inc. - 312-894-0554 • GREENVILLE. SC. Plus inc. - 803-242-9090 • HOUSTON. TX, Eclectic Corp. - 713-228-7798 - IDAHO FALLS, ID. Great Plains Computer Co. - 208-529-3210 - LONG BEACH. CA. CTI Data Systems Inc. - 213-426-7375. MOBILE, AL, Railway Express - 205-661-8889 - NEW ORLEANS, LA, TANO Corp. - 504-254-3500 - NEWTON CENTRE, MA. Daner-Hayes Inc. -617-969-4650 - PARKER, CO. Western Marketing Assoc. - 303-841-2788- SALT LAKE CITY, UT, Home Computer Store - 801-484-8502 • SAN JOSE, CA, PBC Associates - 408-377-7001. SEAFORD. DE, Robert Underwood - 302-829-8438 • SEATTLE. WA. Empire Electronics - 206-244-5200 - WALTHAM, MA, Computer Mart Inc. - 617-899-4540 - WESTFORD, MA, Thorstensen Labs - 617-692-2051•ONTARIO, CANADA. Combined Systems - 416-549-2900•GOUDHURST, KENT, ENGLAND, Warren Woodfield Assoc. Ltd. - 05-803-590 - DEALER INQUIRIES INVITED -504-254-3500. TWX 810-591-5229
evoke a behavioral pattern of sympathy. Fear may evoke an attempt to secure medical or psychiatric treatment, or incarceration.

If, however, a person talking to a flower is recognized as perfectly normal, then the emotions will give no indication that the event is particularly worthy of attention, or that there exists any need to deviate from whatever behavior is presently being executed. These relationships are described graphically and symbolically in figure 1.

In this model the standards of normalcy and deviance are clearly in the eye of the beholder, or at least in the expectations and beliefs stored in the processing-generating hierarchy. In many ways the emotional evaluators are even more dependent on internal beliefs than externally observed facts. This is particularly true in the case where a person's belief structure discounts the reliability or moral worth of the physical senses, as is characteristic of philosophical constructs derived from gnosticism or asceticism.

Thus the emotions, just as any other sensory processing module in
the brain, simply compute a G function on the D vector that they input to produce the Q vector that they output. In simple creatures the emotional output vector may be restricted to a few components such as goodbad, pleasure-pain, etc. In higher forms the emotional output is a highly multidimensional vector with many faceted components such as love, hate, jealousy, guilt, pride, disgust, etc. Part of this Q output may simply produce feelings (ie: joy, sadness, excitement, fear, etc). However, most of the \mathbf{Q} output directly or indirectly provides F input to the highest level H function, the will.

Output from the emotional centers is known to be of two types: one consists of signals on nerve fibers; the other consists of hormones and chemical transmitters which convey their messages (\mathbf{Q} vector values) via fluid transport mechanisms.

What the G and H functions of the emotions and will are, and where they come from is a matter of hot dispute. One recent theory proposed by sociobiology is that they are genetically determined, derived from in-
formation stored in the DNA molecule, as the result of millions of years of natural selection. This theory argues that innate behavior-selecting mechanisms have evolved so as to maximize the Darwinian fitness (the expected number of surviving offspring) of their possessors.

The incidence of behavior in many different species from insects to birds to mammals corresponds closely to mathematical predictions derived from genetics and game-theory analyses of strategies for maximizing the probability of gene propagation. Even cooperative or altruistic behavior such as that of the worker bee, and ritualized behavior in animal contests and courtship, can in many cases be explained by genetic arguments. However, the evidence for this theory is much stronger for insects than for higher forms, and the opinion that human emotions are transmitted genetically is not widely held.

A competing theory put forward by behaviorists is that in higher forms the evaluator functions of the emotion and the selector functions of the will are mostly learned, perhaps even

PEOPLES' CAPITALISM

The Economics of the ROBOT REVOLUTION

by
JAMES S. ALBUS
Jeffersonian democracy applied to the Second Industrial Revolution
An exciting new economic philosophy with a plan to:

- Avoid conflict between human and robot workers
- Create an everyman's aristocracy based on robot labor
- Increase productivity and cure inflation
- Bring affluence into harmony with ecology
After reading it you will no longer be sure that Utopia is beyond our grasp.

Now available from
NEW WORLD BOOKS
$\$ 4.75$ delivered
4515 Saul Road, Kensington, MD 20795

INTERTEC'S

INTERTUE II

VIDEO DISPLAY TERMINAL

The InterTube II Video Display Terminal is truly representative of the latest state-of-the-art advances in microprocessor technology. Its basic teletypewriter compatability combined with its numerous "smart" terminal features satisfy the universal requirement for a low-cost, high performance video terminal.
You get everything you need. An upper and lower case character set displayed on a sharp 8×10 dot matrix. A full 24 line by 80 character screen. A status line displayed in reverse video. A complete ASCII keyboard with an 18 -key numeric pad.
You get full cursor addressing, automatic repeat of all keys and individual backspace and shiftlock keys. Plus, a graphics mode for easy design and display of all types of forms. And an RS-232 serial printer port.
And you get everything your operators need to make their jobs a pleasure. A hooded display that cuts glare and gives extra privacy. A wide bandwidth monitor for sharp images everywhere on the screen. Below-the-line character descenders to make reading easier. A programmable white-on-black or black-on-white display and a self-test mode for easy maintainability.
You get high powered text editing with such features as character and line insert/delete, full and/or partial block transmit, programmable end-of-line terminators, and protected fields. All standard! And all for a retail price you won't believe . . . only $\$ 995$. Incredible!

ATTENTION OEM's and DEALERS:
Your customers request InterTube terminals for one simple reason. They outperform the competition so well that it's foolish to consider any other terminal. Add to that InterTube's rugged design which insures you of the reliability that brings customers back. And modular design engineering that makes service a snap!
But best of all, the InterTube is readily available. Just a quick call and you'll have units in stock. Immediately! And our scheduled delivery program will help you keep them in stock.
Good margins, good service, good delivery. Simple? You bet it is! InterTube II dealerships and OEM agreements are now available in many areas. Contact us today and start selling from stock tomorrow!
imprinted, during the early years of development. Certainly many of the emotional evaluations and behavior selection rules in the human brain are culturally determined, derived from religious teachings defining good and evil, or from social conventions defining duty, fairness, etiquette, and legality. These fundamental rules of opinion and behavior are instilled in the young by parents, educators, and religious and state authorities. They are reinforced throughout life by peer group pressure, as well as by church and civil sanctions.

There are, of course, many persons who would disagree with both of these theories. Perhaps the most widespread opinion (which until recent years was virtually unchallenged) is that the human will and its emotional evaluator inputs are nonmechanistic in nature and therefore unknowable in some fundamental sense. Many would even claim that emotions and will are subject to, or controlled by, spiritual and supernatural forces. For example, the doctrine of original sin states that the highest level behavior selecting mechanism, the human will, is
basically defective because of the disobedience of Adam and Eve, and except for divine intervention is under the power of evil or satanic forces. The literature surrounding the age old controversy over free will versus predestination centers largely on the role of the Divinity (or the stars, or fates) in the determination of human behavior. Most cultures view the conscience (ie: the emotional evaluator for right and wrong or good and evil) as a divine gift or manifestation of the indwelling of the spirit of God.

Clearly the emotions and will are a very basic (some would say primitive) and compelling part of our behavioral mechanism. Carl Sagan calls them the Dragons of Eden. Humans are often driven, sometimes beyond rational justification, to heroic feats of courage or physical endurance by the behavior rules of duty or the emotions of love, pride, guilt, jealousy, and hate.

Whatever their origins, the G functions of our emotions and the H functions of the will can be modeled. They are rule based, and the rules are, for the most part, clearly defin-
ed. In many cases these rules are even written down as systems of moral philosophy, ethics, or rules of social behavior such as Emily Post's Book of Etiquette.

Nothing so complex need be modeled for the highest level G and H modules of a robot for many years. Nevertheless, every robot needs some sort of highest level evaluator and goal selector function in order to exhibit any sort of autonomous behavior. At what point in the spectrum of multidimensional sophistication we choose to dignify an evaluator function with the term emotion, or goal selection function with the term will, is not clear. What is clear is that simple approximations to the functions computed by the emotions and the will can be moduled by CMAC G and H functions operating on input vectors and computing output vectors. The degree of sophistication and complexity of the modeling is limited only by the ingenuity and resources of the modeler.

The interdependency of the processing and generating hierarchies suggests at least 3 distinct modes of operation.

RELOCATABLE MODULES FOR THE TRS LEVEL II AND DOS SYSTEMS LOAD ANY OR ALL MODULES. FOR $\$ 49.95$ THE CORE PACKAGE INCLUDES:

[^8]
s100 to '139 Off the TRS-80

Computers!

You can believe a product is tops, when more than 100,000 owners have chosen it over its competition! That overwhelming acceptance has dropped production costs, and allowed us to make TRS-80 an even better value.

\$100 Off! 4K Level I

This is the ideal beginner's computer system. Our manual makes learning programming in Level I BASIC a snap. Easily upgrades to Level II or more memory at any time. 26-1051 Was \$599 in 1979 Catalog
\$499*

\$139 Off! 16K Level II
 Level II BASIC is one of the most powerful microcomputer programming languages.
 Level II TRS-80 systems can be expanded to include printers, disk storage and much more. 26-1056
 Was \$988 in 1979 Catalog

TRS-80 Line Printer II

Now-for hundreds of dollars less than you'd expect to pay - you can add line printer utility and convenience to your Level II TRS-80 system. This top quality impact-type printer doesn't require special paper - you can use inexpensive rolls (available at Radio Shack), continuous forms (original and up to two carbons) or single sheets. The 7×7 dot matrix head prints 50 characters per second; 80 characters on 8 inch lines. Also prints expanded (wider) characters that are ideal for headings under software control. Standard $91 / 2$ inch wide continuous forms are kept in perfect alignment by nonadjustable pins on platen. Includes Expansion Interface cable. 26-1154 $\$ 999^{*}$

Radıo Shack

 required unless you plan to add mini disks or more memory. 26-1416

New! DESIGNING

MICROCOMPUTER SYSTEMS
(Pooch \& Chattergy) Provides a wealth of information for building microcomputer systems. Also discusses numerous hardware aspects including microprocessor architecture, input and output ports, interrupt systems, programmable clocks, etc. \#5679-6, \$8.95
New! DATA COMMUNICATION COMPONENTS: Characteristics, Operation, Applications (Held)
Contains over 150 schematic diagrams that illustrate the effective use of over 25 components in the design, modification or optimization of data communication networks. \#5126-3, \$14.95
New! BASIC MICROPROCESSORS AND
THE 6800 (Bishop) Gives you two books in one: a basic guide to microprocessors for the beginner. and a complete description of the M6800 system for the engineer. \#0758-2,
\$11.95

1980 Hayden Computer
 Calendar Will Be Available
 In October!

- full-color original computer art
- complete program for perpetual calendar
- computer anecdotes

Available at your local computer store!
Hayden Book Company, Inc.
50 Essex Street, Rochelle Park, NJ 07662

Acting-The Task Execution Mode

In the task execution mode the motor-generating hierarchy is committed to a goal, which it decomposes into subgoals, sub-subgoals, and finally into action primitives. In this mode the sensory-processing hierarchy is primarily engaged in providing feedback; first to aid in selecting the goal, then to steer the goal decomposition process, and finally to direct the output drive signals to the muscles (or actuators) so as to follow a success trajectory.

Consider a simple, everyday goal such as the fixing of a leaking faucet. First, the sensory processing system must recognize the fact that the faucet is leaking. This information is then evaluated by the emotions as something that needs attention. This evaluation is passed on to the will, where the rules of what ought to be done and under what circumstances reside. If there are no higher priority items vying for the attention of the will, then the goal < fix faucet> may be selected. Once this occurs, the behavior generating hierarchy will be committed to decompose this goal into a sequence of actions.

At each instant of time t_{k} the sensory-processing module at each hierarchical level extracts feedback vectors F_{i}^{k} required by the H behavior-generating modules at each level for goal decomposition. At the instant t_{0} when the goal is selected, the feedback F_{i}^{0} at the various levels causes the selection of the initial subgoal decompositon P_{i}^{0}. This determines the initial direction of the trajectories $\mathrm{T}_{P_{i}}$ on their way toward the goal state. As the task proceeds, the recognition of subgoal completions and/or unanticipated obstacles triggers the selection of the proper sequence of actions directed toward the goal achievement.

The entire set of trajectories $T_{P_{i}}$ describes the sequence of internal states of the brain which underlie and give rise to the observable phenomena of purposive behavior. These are the deep structure of behavior. Only the output trajectory, the terminal or bottom level trajectory, is manifested as overt action. The extent to which the trajectories $T_{P_{i}}$ are independent of feedback is the extent to which behavior is preprogrammed. The extent to which the feedback pulls the $\mathrm{T}_{P_{i}}$ trajectories along predic-
table paths to the goal state is the extent to which behavior is adaptive. For some goals, such as hunting for prey or searching for breeding territory, the selection of the goal merely triggers migratory searching behavior which continues until feedback indicates that the goal is near at hand. For such goals, behavior is indefinite and highly feedback dependent. For other goals, such as building a nest, making a tool, courting a mate, or defending a territory, behavior is more innerdirected, requiring only a few sensory cues for triggers.

In either case, while in the acting mode the sensory data flowing in the sensory-processing hierarchy is highly dependent on (if not directly caused by) the action itself. If the action is speech, the sensoryprocessing hierarchy is analysing what is spoken, and provides feedback for control of loudness, pitch, and modulation. If the action is physical motion, data from vision, proprioception, and touch sensors are all highly action dependent, and the sensory analysis is primarily directed toward servo control of the action itself.

In the action mode, the M_{i} associative memory modules provide context in the form of predicted data to the sensory-processing modules in order to distinguish between sensory data caused by motion of the sensors and that caused by motion of the environment. What is predicted is whatever was stored on previous experiences when the same action was generated under similar circumstances. This allows the sensoryprocessing hierarchy to anticipate the sensory input and to detect more sophisticated patterns in the sensory data than would otherwise be possible.

Observing-The Sensory Analysis Mode

A second mode of operation of the crosscoupled hierarchy is the analysis of sensory data from external sources not primarily caused by action of the behavior-generating hierarchy. For example, when listening to a concert, a speech, or a play, there is little action going on in the muscles and motor neurons. The lower levels of behavior-generating hierarchies are quiescent, or set to a constant value, or given a command to execute an

More than meets the eye.

The new Series 5000 is mighty for its size. In more than several thousand ways!

In fact, it's the first small system offering over a megabyte of integrated mini-floppy capacity. And with its super memory management, you can have better than 300 k of RAM in desk or desktop versions. But hardware is just the tail of the whale...

It's the wide selection of software that really makes this system mighty.

Operating systems? Choose CP/M* with CBASIC \dagger - the most widely accepted small computer operating system ever. Or MVT-FAMOS*** a multi-user, multi-tasking operating system with file management like the big guys. Or MICROCOBOL, $\dagger \dagger$
also for multiple users, but implemented in COBOL, familiar to commercial users the world over.

And application programs for these operating systems number in the thousands. From real estate to accounting, taxes to inventory control, they're all available at low cost - ready to run.

When you add these software and hardware features to Industrial Micro Systems' reputation for rugged, reliable quality products you'll begin to see it all. A lot more system than your first glance reveals.

See even more at your dealer. Call us to find out the name of your nearest dealer. He'll tell you everything you need to know. And really open your eyes!

[^9]
INDUSTRIAL MICRO SYSTEMS

The great unknown.
628 N. Eckhoff St., Orange, CA 92668, (714) 633-0355

SOFTWARE BREAKTHROUGH!

A true breakthrough in 8080 development software has been achieved . . .
R-A-I-D

RAID stands for "Real-time Interactive Assembler Debug," but RAID is much more.

SIMULATOR - RAID is a lrue simulator and real-time debug in one! Simulation mode provides TOTAL CONTROL of test program. It's crash prool! Segments of memory may be write-protecled, limits specified for slack. program counter etc. Simulation mode is transparent and both modes may be used together for high speed simulations.
SYMBOLIC DEBUG - faid is a ulifs symolic debug, including labels and operands! Also included are multiple radix. mulliple breakpoints, memory search. 9 display formats, single-slep, multi-step, displaytalter registers or memory, programmable output, elc. Over 70 commands in all!

ASSEMBLYIDIS-ASSEMBLY. Memory may be displayed or altered in instruction mnemonic form complete with symbolic labels and operands. Exclusive fealure permits "following" subroutines during dis-assembly.
TRACIN G - Elaborate trace lacilities have been included. Trace each instruction as execuled, trace subroulines as ed. Trace each instruction as execuled, trace subroulines as
entered and exited, trace by breakpoint dumps with user programmable dump data.

FULL DISK ACCESS - in addition to loading. saving named files, RAID permils reading/writing on a specified track \& secior basis.

FLOATING POINT OPTION • Permits direct display or alteration of FPP (see below) numbers. 12 digit mantissa, exponent to $\pm 127 . \mathrm{BCD}$ format.
CPIM COMPATIBLE - RAID will run on any CPIM system of 24 K or more. Works with both ASM and MAC assemblers fully symbolically.

TO ORDER: Specify software desired and enclose check or money order (COD ok).
A) RAID without floating point option
$\$ 99.95$
B) RAID with floating point option, and FPP source code $\$ 150.00$
C) FPP Floating Point Processor only $\$ 99.95$
D) RAID Documentation Only
$\$ 15.00$
E) ISIS to CPM Conversion Utilities
$\$ 99.95$
All software supplied on CP/M compatible 8" diskette. ISIS versions also available.

SOUTHERN STSTEMS OF BIRMINGHAM

Post Office Box 3373A
Birmingham, AL 35205
(205) 933-1659
overlearned task which can be carried out without any assistance from the upper levels.

The sensory-processing hierarchies, however, are very busy. They are filtering and predicting, recognizing patterns and trajectories, locking on to rhythms and harmonious periodicities, and tracking targets of attention. Predictions generated by the M modules are clearly required for these types of analyses, whether or not the organism is engaged in physical activity. This suggests that the upper levels of the behaviorgenerating hierarchies (which are not currently required for generating behavior) might be used instead to generate hypotheses and subhypotheses which in turn produce context and predictions to aid the sensoryprocessing hierarchy in the recognition, analysis, and understanding of incoming sensory data.

At each level hypotheses which generate T_{R} predictions that match or track the T_{E} sensory data trajectories will be confirmed. If the hypothesized T_{R} trajectories are only close to the T_{E} observations, they can be pulled by error signal feedback T_{F} from the processing hierarchies. When a hypothesis is successful in generating predictions which match the sensory data stream, the loop at that level locks onto the sensory data. When lock-on is simultaneously achieved at many different levels, we can say that the processing-generating hierarchy "understands" the incoming data (ie: it can follow and predict it at many different levels). The depth of understanding depends upon how many levels lock onto the sensory data stream. The accuracy of understanding depends upon how precisely the hypotheses track and predict the incoming sensory data.

It is easier to follow a trajectory than to reproduce it. When observing a procedure, the generating hierarchy merely needs to produce hypotheses which are in the right vicinity so that they can be synchronized with the sensory input. Uncertainties at branch points in $\mathrm{T}_{p_{i}}$ do not matter greatly because errors are quickly corrected by comparing $\mathrm{T}_{R_{i}}$ with $\mathrm{T}_{E_{i}}$.

On the other hand, reproducing a procedure requires that the H functions be capable of generating $\mathrm{T}_{P_{i}}$ trajectories which are quite precise over their entire length. They must not wander outside of the success
envelope or miss any critical branch points. Needless to say, the latter is a much more exacting computational problem, and offers an explanation for why a student may be able to follow the reasoning of his professor's lecture, but is unable to pass an exam without additional drill and practice.

Attention

The directing or focusing of attention is essentially a purposive action whose goal is to optimize the quality of the sensory data. The basic elements of attention are orienting (positioning the body and sensory organs so as to facilitate the gathering of data) and focusing (blocking out extraneous or peripheral information so that the sensory processing system can bring all of its capacities to bear on data that is relevant to the object of attention). The orienting element is simply a behavioral task or goal to acquire and track a target. The focusing element is a filtering problem which can be solved by a hypothesis or goal decomposition which evokes the appropriate masks or filter functions from the R_{i} modules so as to block out all but the relevant sensory input data.

Thus, attending is a combination of observing and acting. It is primarily a sensory analysis mode activity, with a stong assist from the task execution mode.

Imagining-The FreeRunning Mode

A third distinct mode of operation occurs when the upper levels of the processing-generating hierarchy are largely disconnected from both motor output and sensory input. In this mode high-level hypotheses $\mathrm{T}_{P_{i}}$ may be generated, and predicted sensory data $\mathrm{T}_{R_{i}}$ recalled. In the absence of sensory input from the external environment, these recalled trajectories make up all of the information flowing in the sensory-processing hierarchy. The processing modules G_{i} operate exclusively on the internally recalled R_{i} trajectories producing $\mathrm{T}_{\mathbf{Q}_{i}}$ experiences and $\mathrm{T}_{\boldsymbol{F}_{i}}$ feedback. The $\mathrm{T}_{F_{i} \text { trajectories act on the generating }}$ hierarchy so as to modify and steer the $\mathrm{T}_{s_{i}}$ trajectories creating new hypotheses $\mathrm{T}_{P_{i}}$. The system is free running, guided only by stored experiences M_{i}, learned interpretations G_{i}, and practiced skills H_{i}, for

generating strings of hypotheses and decomposing goals and tasks. The upper levels of the crosscoupled hierarchy are, thus, imagining (ie: generating and analyzing what would be expected if certain hypothesized goals and tasks were to be carried out).

Imagination is based on stored experiences and driven by hypothesized actions. It is constrained in large measure by the knowledge frames, world models, expected values, and belief structures (IF I do this, THEN such and so will happen) embedded in the upper levels of the cross-coupled
processing-generating hierarchy.
If we attempt to hypothesize some action X which lies outside of the neighborhood of generalization of prior experience, we get no recalled R_{i} vectors from memory M_{i}. In this case we say "we cannot imagine what X would be like."

One of the functions of the freerunning mode is to remember or recall past experiences by hypothesizing the same goals as when the experience was recorded. Thus, in our imagination we can reach back and relive experiences, recall events, and, hence, remember facts and relation-

64KB MICROPROCESSOR MEMORIES

\author{

- S-100 - $\$ 750.00$
 - LSI - $\$ 750.00$
}

CI-S 100 64K $\times 8$

CI-1103 32K $\times 16$

$\mathrm{Cl}-6800$ 64K $\times 8$

CI-8080 64K $\times 8$

- SBC 80/10-\$750.00
 - 6800-\$750.00

CI-S100 $-64 \mathrm{~K} \times 8$ on a single board. Plugs directly into the IMSAI, MITS, TDL, SOL and most other S-100 Bus computers. No wait states even with Z80 at 4Mhz. Addressable in 4 K increments. Power requirement 6 watts. Price $\$ 750.00$.
$\mathrm{Cl}-1103$ - 8 K words to 32 K words in a single option slot. Plugs directly into LSI 11, LSI 11/2, H11 \& PDP 1103. Addressable in 2 K increments up to 128K. $8 \mathrm{~K} \times 16 \$ 390.00$. $32 \mathrm{~K} \times 16 \$ 750.00$ qty. one.
CI-6800 - 16 KB to 64 KB on a single board. Plugs directly into Motorola's EXORcisor and compatible with the evaluation modules. Addressable in 4 K increments up to 64 K . $16 \mathrm{~KB} \$ 390.00$. $64 \mathrm{~KB} \$ 750.00$.
$\mathrm{CI}-8080-16 \mathrm{~KB}$ to 64 KB on single board. Plugs directly into Intel's MDS 800 and SBC 80/10. Addressable in 4 K increments up to 64 K . $16 \mathrm{~KB} \$ 390.00$. 64KB $\$ 750.00$

Tested and burned-in. Full year warranty.
ships from our past. Imagination, however, is not limited to duplication of past experiences. We can also rearrange sections of learned trajectories to create experiences in our minds which never occurred. We can string together trajectories in new combinations or insert new modifier variables in various hypothesis vectors. We can watch a bird fly and substitute a "self" variable in place of the bird to imagine ourselves soaring through the sky. We can listen to a story of adventure and imagine ourselves in the place of one of the characters. Imagination allows us to hypothesize untried actions and, on the basis of M functions learned during previous experiences, to predict the outcome.

Planning

Imagination gives us the ability to think about what we are going to do before committing ourselves to action. We can try out, or hypothesize prospective behavior patterns, and predict the probable results. The emotions enable us to evaluate these predicted results as good or bad, desirable or undesirable.

Imagination and emotional evaluators together give us the capability to conduct a search over a space of potential goal decompositions and to find the best course of action. This type of search is called planning.

When we plan, we hypothesize various alternative behavior trajectories and attempt to select the one that takes us from our present state to the goal state by the most desirable route. Imagined scenarios which produce positive emotional outputs are flagged as candidate plans. Favorably evaluated scenarios or plans can be repeatedly rehearsed, reevaluated, and refined prior to initiation of behavior-producing action.

Imagined scenarios which produce negative evaluation outputs will be avoided if possible. In some situations it may not be possible to find a path from our present state to a goal state, or at least not one which produces a net positive evaluation. Repeated unsuccessful attempts to find a satisfactory, nonpunishing plan, particularly in situations recognized as critical to one's wellbeing, correspond to worry.

One of the central issues in the study of planning is the search strategy, or procedure, which dictates

ANOMTBR FHRST FROM MOUNHAN IHRDNARE. SUPERTAMKER.

Superfalker allows you to add the dimension of human speech output in your computer programs. Add voice to games. Program verbal prompting for the operator of your business system. Use verbal warnings under program control as an enunciator in commercial security or control rooms. Create educational programs that verbally coach the student.

THE SUPERTALKER SYSTEM.

SuperTalker is a new Mountain Hardware peripheral system which allows the Apple II computer to output exceptionally high quality human speech through a loudspeaker under program control. Output may also be directed through any P.A. or stereo system. Initially, spoken words are digitized into RAM memory through the system microphone. Speech data in RAM may then be manipulated like any other stored data.

A COMPLETE PACKAGE.

The SuperTalker peripheral system consists of:
The SuperTalker peripheral card which plugs into

Apple ill; a microphone;

$$
\begin{aligned}
& \text { a loudspeaker; easy- } \\
& \text { to-use operating soft- } \\
& \text { ware and documentation; } \\
& \text { plus, two ready-to-run }
\end{aligned}
$$ SuperTalker programs. OPERATING SYSTEMS. In order to achieve maximum utility using SuperTalker, the SuperTalker Disk Operating System permits output of human speech under program control with direct I/O routines. It also provides a preparation pro-

FOR YOUR APPLE II gram which permits the creation of voice files on diskette. BASIC program routines are provided which require only one-line statements to output a word or phrase. Routines also support cassette storage.

TEACH YOUR COMPUTER TO TALK.

For \$279 assembled and tested, SuperTalker gives your Apple II a voice in the matter. AVAILABLE NOW.
Mountain Hardware's SuperTalker, Apple Clock and 100,000 Day Clock ${ }^{\text {M }}$ (for S-100 bus computers) are available through computer dealers worldwide.

N

Mountain Hardware, Inc.

LEADERSHIP IN COMPUTER PERIPHERALS
300 Harvey West Blvd., Santa Cruz, CA 95060
(408) 429-8600

Sounds super
\square Send me everything I need to know about SuperTalker.
\square Also information on your Real-Time clocks for Apple II and S-100.
Name
Address
City \qquad State Zip

Apple II is a trademark of Apple Computer, Inc.
which of the many possible hypotheses should be evaluated first. In most cases, the search space is much too large to permit an exhaustive search of all possible plans, or even any substantial fraction of them. The set of rules for deciding which hypotheses to evaluate, and in which order, are called heuristics.

Heuristics are usually derived in an ad hoc way from experience, accident, analogy, or guesswork. Once discovered, they may be passed from one individual to another, and from one generation to another by teaching.

Historically, artificial intelligence researchers have been fascinated by the subject of heuristics. At least a portion of this interest is a result of their recursive nature. A heuristic is a procedure for finding a procedure. When this recursion is embedded in a cross-coupled processing-generating hierarchy with the rich complexity of the human brain, it becomes clear why the thoughts and plans of humans are filled with such exquisite subtleties, and curious, sometimes insidious reasoning. It also provides some insight into the remarkable phenomenon of self-consciousness

Built-in Interface for TRS-80, PET and Apple II Computers

Axiom has made it simple for TRS-80, PET and Apple II users. Just go to your computer store and pick up an Axiom printer with the appropriate built-in interface. Take it home, plug it in and start printing. We even supply the cable and connector.

There are two models: The EX-801 prints upper and lower case alpha. numeric characters and all the
graphic symbols used by your computer. The EX-820 goes a step further, providing precise alignment of both horizontal and vertical dot patterns for a true hardcopy of computer generated graphics. With up to 128 dots per inch resolution, the only limit is your imagination. The price is right, too. Just $\$ 535$ for the EX-801. So visit your computer store today.

5932 San Fernando Road, Glendale, CA 91202
(213) 245-9244 • TWX: 910-497-2283
(ie: a computing structure with the capacity to observe, take note of, analyze, and, to some extent, even understand itself.)
Much of the artificial intelligence research in planning and problem solving has its origins and theoretical framework based on simple board games where there are a finite (although sometimes very large) number of possible moves. The discrete character of such games, together with the digital nature of computers, led naturally to the analysis of discrete trees, graphs, and search strategies for such structures.
Planning in a natural environment is much more complex than searching discrete trees and graphs. In the study of planning in the brain it is necessary to deal with the continuous timedependent nature of real world variables and situations. States are not accurately represented as nodes in a graph or tree; they are more like points in a tensor field. Transitions between states are not lines or edges, but multidimensional trajectories (fuzzy and noisy at that). In a natural environment, the space of possible behaviors is infinite. It is clearly impossible to exhaustively search any significant portion of it. Furthermore, the real world is much too unpredictable and hostile, and wrong guesses are far too dangerous to make exploration practical outside of a few regions in which behavior patterns have had a historical record of success. Thus behavior, and hence imagination and planning, is confined to a relatively small range of possibilities, namely those behavior and thought patterns which have been discovered to be successful through historical accident or painful trial and error. Both the potential behavior patterns and the heuristics for selecting them are passed from one generation to another by parents, educators, and civil and religious customs.

Daydreaming or Fantasizing

The fact that the imagination can generate hypothetical scenarios with pleasurable emotional evaluations makes it inevitable that such scenarios will, upon occasion, be rehearsed for their pleasure-producing effect alone. This is a procedure that can only be described as daydreaming or fantasizing.

When we daydream we allow our hypothesis generators to drift

5 reasons why you should not buy the electric pencil II"

 Check the appropriate box(es): You love typing the same copy 20 thousand times a day. Your secretary can type 250 words per minute.
You're dying to spend $\$ 15,000$ on a word processing system, just for the tax investment credit.
\square All your capital assets are tied up in a 10-year supply of correction fluid. You never commit a single thought to paper.
If you have checked one or more boxes, you do not need The Electric Pencil. On the other hand, you may want to join the thousands of people who haven't checked a single box.

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns or word hyphenations is not required since lines of text are formatted automatically.

As text is typed and the end of a line is reached, a partially completed word is shifted to the beginning of the following line. Whenever text is inserted or deleted, existing text is pushed down or pulled up in a wrap around fashion. Everything appears on the video display as it occurs, which eliminates guesswork. Text may be reviewed at will by variable speed scrolling both in the forward and reverse directions. By using the search or search and replace functions, any string of characters may be located and/or replaced with any other string of characters as desired.

Numerous combinations of line length, page length, line spacing and page spacing permit automatic formatting of any form. Character spacing, bold face, multicolumn and bidirectional printing are included in the Diablo versions. Multiple columns with right and left justified margins may be printed in a single pass.

Wide screen video

Versions are available for Imsai VIO video users with the huge 80×24 character screen. These versions put almost twice as many characters on the

CP/M versions

Digital Research's CP/M, as well as its derivatives, including IMDOS and CDOS, and Helios PTDOS versions are also available. There are several NEC Spinwriter print packages. A utility program that converts The Electric Pencil to CP/M to Pencil files, called CONVERT, is only \$35.

Features

- CP/M, IMDOS and HELIOS compatible
- Supports four disk drives
- Dynamic print formatting
- DIABLO and NEC printer packages
- Multi-column formatting in one pass
- Print value chaining
- Page-at-a-time scrolling
- Bidirectional multispeed scrolling controls
- Subsystem with print value scoreboard
- Automatic word and record number tally
- Cassette backup for additional storage
- Full margin control
- End-of page control
- Non-printing text commenting
- Line and paragraph indentation
- Centering
- Underlining
- Bold face

Upgrading policy

Any version of The Electric Pencil Attention: TRS-80 Users!

The Electric Pencil 11 operates with any 8080/Z80 based microcomputer that supports a $C P / M$ disk sys. tem and uses an Imsai VIO, Processor Tech. VDM-1, Polymorphic VTI, Solid State Music VB-1B or Vector Graphic video interface. REX versions also available. Specify when using $C P / M$ that has been modified for Micropolis or North Star disk systems as follows: for North star add suffix A to version number; for Micropolis add suffix B, e.g., SS-IIA, DV-IIB.

Vers.	Video		Printer	Price
	SS-II	SOL		TTY or similar
S225.				
SP-II	VTI	TTY or similar	225.	
SV-II	VDM	TTY or similar	225.	
SR-II	REX	TTY or similar	250.	
SIIII	VIO	TTY or similar	250.	
DS-II	SOL	Diablo 1610/20	275.	
DP-II	VTI	Diablo 1610/20	275.	
DV-II	VDM	Diablo 1610/20	275.	
DR-II	REX	Diablo 1610/20	300.	
DI-II	VIO	Diablo 1610/20	300.	
NS-II	SOL	NEC Spinwriter	275.	
NP:II	VTI	NEC Spinwriter	275.	
NV-II	VDM	NEC Spinwriter	275.	
NR-II	REX	NEC Spinwriter	300.	
NI-II	VIO	NEC Spinwriter	300.	
SSH	SOL	Helios/TTY	250.	
DSH	SOL	Helios/Diablo	300.	

Have we got a version for you?

may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions, plus $\$ 15$ to Michael Shrayer Software. Only the originally purchased cassette or diskette will be accepted for upgrading under this policy.

GET HARD COPY FROM YOUR COMMODORE PET USING A STANDARD RS- 232 PRINTER

The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. Now, the PET owner can obtain hard copy listings and can type letters, manuscripts, mailing labels, tables of data, pictures, invoices, graphs, checks, needlepoint patterns, etc., using a standard RS-232 printer or terminal.
$\$ 98.50$
ADA $1200 B$
Assembled and tested

$\$ 169.00$ ada 1200C

With case, power supply and RS-232 connector

Order direct or contact your local computer store. Add $\$ 3.00$ for postage and handling per order.

wherever our emotional evaluators pull them. Our imagination gravitates toward those trajectories which are emotionally most rewarding. Some of the most pleasurable scenarios we can imagine are physically impossible, impractical, or socially taboo. Most of us recognize these as fantasies and never attempt to carry them out. However, once a person adopts the intent to carry out a fantasy, it ceases to be a dream and becomes a plan.

Thus, planning and daydreaming are closely related activities, differing principally in that planning has a serious purpose and involves an intent to execute what is finally selected as the most desirable of the alternative hypotheses.

This model suggests that dreaming while sleeping is similar in many respects to daydreaming. The principal difference in night dreaming seems to be that the trajectories evoked are more spasmodic and random, and are not always under the complete control of the emotions and will.

Creativity

The notion of planning or discovering procedures for achieving goals leads inevitably to the issue of creativity. If we assume that most of the H, G, and M functions in the processing-generating hierarchy are learned, then where is the creativity? Is creativity merely an illusion generated by the recursion of procedures for discovering procedures?
Certainly we as humans like to think of ourselves as creative. But what are we doing when we create something new? Typically we borrow an idea from here, put it together with another from there, and give it a different name. We take a familiar behavioral trajectory, add a tiny variation, and claim that we have discovered something completely new - a new dance step, dress style, song, or idea. Seldom, however, are any of these more than the slightest deviation from a preexisting procedure or behavioral trajectory. To quote Ecclesiastes: 'There is nothing new under the sun."
True creativity, in the sense of the
invention of an entirely new behavioral trajectory, is extremely rare, if it ever occurs at all. Furthermore, it is highly doubtful that a truly creative act would be recognized if it ever did occur. Our processing-generating hierarchies cannot lock on to sensory input patterns which are totally different from everything that is stored in them. We reject such inputs as meaningless noise, or as alien and possibly hostile. True creativity would be as incomprehensible as a book written in a foreign language, or a theorem expressed in an unknown mathematical notation.

In one sense we are all creative in everything that we do, since no two behavioral trajectories are ever repeated exactly. However, the day-to-day variations in our ordinary behavior are not what we usually mean when we speak of creativity. We take pride in those moments of inspiration when something clicks, and we produce a great invention or a work of art.

Nonetheless, if we analyze a list of the great creative ideas which have

AIM 65
AIM 65 is fully assembled, tested and warranted. With the addition of a low cost, readily available power
 supply, it's ready to start working for you. It has an addressing capability up to 65 K bytes, and comes with a user-dedicated 1K or 4K RAM.

- Thermal Printer

- Full-Size Alphanumerlc Keyboard
- True Alphanumeric Display
- Built-In Expanslon Capability
- TTY and Audio Cassefte Interfaces
- ROM Resident Advanced Interactive Monitor
- Proven R6500 Microcomputer System Devices

PRICE: $\$ 375.00_{\text {(IK Ram }}$

Plus $\$ 4.00$ UPS (shipped in U.S. must give street address), $\$ 10$ parcel post to APO's, FPO's, Alaska, Hawali,Canada, $\$ 25$ air mall to all other countries
We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send $\$ 1.00$ (International send $\$ 3.00$ U.S.) for airmail delivery of our complete catalog.

- RNB ENTERPRISES

2967 W. Fairmount Avenue • Phoenix, AZ 85017 • (602) 265-7564

shaped human history, we find that even these have been little more than clever rearrangements of well-known preexisting patterns or procedures.

Consider the fact that it took the human race many millenia to learn to start a fire, to grow a crop, to build a wheel, to write a story, to ride a horse. Even the Greeks did not know how to build an arch. Yet these are all simple procedures which any child can understand and more or less master. Surely our ancestors as adults were as intelligent and creative as today's children. Why did they fail for hundreds of years to discover these simple yet highly useful procedures?

It was because they had no one to teach them. A modern child knows about wheels because he is taught. He plays with toys that have wheels. He rides in vehicles with wheels. If a modern child grew up in a culture where he never saw a wheel, he would never think of one, nor would his children, or his grandchildren, any more than his ancestors did for thousands of years before him.
The reason that we value creativity
so highly is because it is so rare and so highly advantageous. Once a new and useful procedure like navigating a ship, making steel, or flying an airplane is discovered, it can easily be taught to others. Entirely new worlds of possible behavior patterns open up for all who possess the secret.
We learn to solve problems, to invent, and to be creative, in much the same way as we learn any other goaldirected behavior pattern such as hunting, dancing, speaking, or behaving in a manner that is acceptable to and approved by our peers. We learn it from a teacher. The beauty, the sense of awe and wonder we experience when confronted by a work of creative genius, derives not so much from its novelty/creativity as from the skill and precision with which it is executed.

Implications for Robot Design

There is little need to worry about programming "creativity" into our machines. If we design systems with sufficient skill in executing tasks and seeking goals, and sufficient sophis-
tication in sensory analysis and context sensitive recall, and if we teach these systems procedures for selecting behavior patterns which are appropriate to the situation, then they will appear to be both intelligent and creative. But there will never be any particular part of such a device to which one can point and say "Here is the intelligence," or "Here is the creativity." Skills and knowledge will be distributed as functional operators throughout the entire hierarchy. To the degree that we are successful, intelligence and creativity will be evidenced in the procedures which are generated by such systems.

Above all, we should not expect our robots to be more clever than ourselves, at least not for many decades. In particular we should not expect our machines to program themselves, or to discover for themselves how to do what we do not know how to teach them. We teach our children for years. It will take at least as much effort to teach our machines.

We must show our robots what

Pascal executes $13 x$ faster than on an LSI-11 and $3 x$ faster than on a PDP11-34!

\$2695*
ready to mun
\$2995 List price
\$1795* Without case \& power supply

STANDARD

- 16-bit P-code CPU
- 64K bytes RAM
- Floppy disk controller
- Direct memory access controller
- Floating point hardware
- 2 serial (RS-232) WO ports-50 to 19200 baud
- 2 parallel I/O ports
- Pascal \& Basic compilers, text editors, file manager, CPU \& memory diagnostics. symbolic Pascal debugger, linker, utilities, etc.

The MICROENGINE'" P-Machine architecture implements direct execution of P-code (UCSD Pascal version 3.0) replacing software interpreters. All data and V/O paths are 16 bits wide. Both single and multi-byte instructions are available. Floating point hardware using the proposed IEEE standard supports the execution of floating point instructions.
P-Machine architecture optimizes memory utilization. Stack design renders Pascal programs automatically reentrant and recursive with no pertormance penally. Extensive compiler error checking and high level language sustains high reliability. Programs are transportable to other systems running Pascal.
Built-in floppy disk controller handles up to 4 drives, swith selectable for 5% or 8 inch, single or double sided. A hard disk controller will be available soon.

List price $\$ 956$
PERKIN-ELMER (Model 550)

Shugart

floppy disk (Model SA850) ${ }^{5} 695^{\circ}$
Shugart
floppy disk (Model SA800) ${ }^{595}{ }^{\circ}$
Texas Inatruments
printer (Model 810) . s1895 ${ }^{\circ}$
X-pert Syatems ${ }^{\text {tw }}$ designed by Computex are integrated and cost effective. Complete 16 -bit systems are available starting as Iow as \$3139.
Customer antifiaction is guaranteed.
Full refund with the return of any product within 10 days. Service contracts available. Systems catalog \$1. MICROENGINE" Owners manual $\$ 19.95$ postpaid.
-LIMITED TIME cath price. 10\% down guarantees priority. IL residents add 5% sales tax. Master Charge and VISA cards accepted.
"THE COMPUTER EXPERTS"
5710 Drexel, Chicago, IL 60637
each task is and how to do it. We must lead them through in explicit detail, and teach them the correct response for almost every situation. This is how industrial robots are programmed today at the very lowest levels, and this is, for the most part, how children are taught in school. It is the way that most of us learned everything we know, and there is no reason to suspect that robots will be programmed very differently. Surely it is as unreasonable to expect a robot to program itself as it is to expect a child to educate himself. We should not expect our robots to discover new solutions to unsolved problems or to do anything that we, in all the thousands of generations we have been on this earth, have not learned how to do ourselves.

This does not mean that once we have trained our robots to a certain level of competence that they can't learn many things on their own. We can certainly write programs to take the routine and the tedium out of teaching robots. Many different laboratories are developing high-level robot programming languages. We already know something about how to represent knowledge in computers about mathematics, physics, chemistry, geology, and even medical diagnosis. We know how to program complex control systems and to model complicated processes, and we are rapidly learning how to do it better, more quickly, and more reliably. Soon perhaps it will even be possible to translate knowledge from natural language into robot language so that we will be able to teach our robots from text books or tape recordings more quickly and easily than humans. We can even imagine robots learning by browsing through libraries or reading scientific papers.

But it is a mistake to attempt to build creative robots. We are not even sure what a creative human is, and we certainly have no idea what makes a person creative, aside from contact with other creative humans - or time alone to think. Is it both? Or neither?

I believe that we should first learn how to build skilled robots - skilled in manipulation, in coping with an uncertain or even hostile environment, in hunting and escaping, in making and using tools, in encoding behavior and knowledge into lang-

uage, in understanding music and speech, in imaging, and in planning. Once we have accomplished these objectives, then perhaps we will understand how to convert such skills into creativity. Or perhaps we will understand that robots with such skills already possess the creativity and the wisdom which springs naturally from the knowledge of the skills themselves.

Additional Reading

1. Guyton, Arthur C. Structure and Function of the Nervous System, S B Saunders, Philadelphia, 1976.
2. Piaget, J, and Inhelder. B, The Child's Conception of Space, Norton, New York 1967.
3. Sagan, Carl, The Dragons of Eden: Speculation on the Evolution of Human in. telligence, Random House. New York, 1977.
4. Schank, Roger C, and Colby, Kenneth M (editors), Computer Models of Thought and Language, W H Freeman, San Francisco, 1973.

5-STAR EDITION tor users of Radio Shack's TRf-80*

TRS-80 TRANSFFRMEE WITH PRoPESSOONaL SOF FWARER PACKAGES

AND MUCH MORE 5

CP/M-operating system modfied for use with TRS-80 computer and disks. In addition to the standard CP/M utilities of Editor. Assembler. Debugger etc., we have added: OCV2 (Utii-
dy to convert system tapes to CPiM liles.) DISKAS \& CASDISK (Utiltties to back up files to tape and recover to disk.) MOVER (Program to transier files with singte drive systems) $\$ 145 / \$ 25$

All items listed below operate in
conjunction with the CPM operating system. MAC - 8080 Macro Assembler. Full Intel macro defintions Pseudo Ops include RPC. IRP. REPT. TITLE. PAGE. and MACLIB. Z-80 library included. Produces intel absolute hex output plus symbols file for use by SID (see below) \$100/\$15 SID - 8080 symbolic debugger. Full trace, pass count and break-point program testing system with back-trace and histogram utififies. When used with MAC, provides full symbolic display of memory tabels and equated valuess85/\$15 TEX - Text formatter to create paginated. page-numbered and justitied copy from source text files, directable to disk of printer .s85/\$15 DESPOOL - Program to permit simuttaneous printing of data from disk while user executes another program from the console
Disk Extended BASIC - Version 5. ANSI compatible with long variable names. WHILE/WEND. chaining, variable tength file records

3300/\$25
BASIC Compiler - Language compatible with Version 5
Microsoft interpreter and $3-10$ times faster execution. Produces Standard Microsolt relocatable binary output. Includes Macro-80. Also linkable to FORTRAN-80 or COBOL-80 code modules
$.5350 / 325$
FORTRAN-80 - ANSI ' 66 (excepl for COMPLEX) plus many extensions. Includes relocatable object complier, linking loader, library wilh manager. Atso includes MACRO-80 (see below)
$.5400 / \$ 25$
COBOL-80 - ANSI 74 Relocatable object output. Format same as FORTRAN-80 and MACRO-80 modules. Complete ISAM. Interactive ACCEPT DISPLAY. COPY. EXTEND

MACRO-80 - 8080/Z80 Macro Assembler. Intel and Zilog mnemonics supported. Relocatable linkable output. Loader Library Manager and Cross Relerence List utilities included

EDIT-80 - Very fast random access text editor for text with or without line numbers. Global and intra-line commands sup-
ported. File compare utilly includeds8e/s 15 ported. File compare utilily included
PAYROLL SYSTEM - Mantains employee master file. Computes payroll withhotding for FICA. Federal and State taxes. Prints payroll register. checks. quarterly reports and W-2 forms. Can generate ad hoc reports and emptoyee form letters with mail labels. Requires CBASIC. Supplied in source code. APARTMENT MANAGEMENT SYSTEM - Financial management system lor receipts and security deposits of management system lor receipis and security deposits of etc. lor annual trend analysis. Dally report shows late rents. vacancy notices. vacancies. income lost through vacancies. etc Requires CBASIC. Supplied in source code. . . $5605 / \$ 35$ INVENTORY SYSTEM - Captures stock levels. costs. sources. sales. ages. turnover, markup. elc. Transaction information may be entered tor reporting by salesman. type of sale date of sale. etc. Reports avalable both for accounting and decision making. Requires CBASIC. Supplied in source code
CASH REGISTER - Mainlarns files on daily saies. Files data by sales person and item. Tracks sales, overnings. reunds. payouts and total net deposits. Requires CBASIC Suppled in source code
$. \$ 605 / \$ 35$
ctive BASIC
CBASIC-2 Disk Extended BASIC - Non-interactive BASIC with pseudo-code compiler and runtime interpreter. Supports iables etc.
Flippy Disk Kit - Template and instructions to modity single sided 5': diskettes for use of second side in singled sided rives
Selector III - Multı (ı.e. up to 24) Key Data Base Processor. Comes with applications programs including Sales Activity. Inveniory Payables. Receivables. Check Register Expenses. source code Enmanced version tor CBA CIC-2 Supplied

O2 Level III BASIC by Mlcrosoft

Powerful extensions to Level II BASIC including 10 machine language user calls. long error messages. keyboard debounce. graphics commands and much more. Price includes User Manual. a Ouick-Relerence Card and a pre programmed
cassette tape.

Lifeboat Associates, specialists in microcomputer disk software, is proud to offer the first professional disk-based language and utility package for the Radio Shack TRS-80 computer. Written by Microsoft, creators of Level II BASIC, the package runs on a TRS-80 system with 32K RAM, one or more drives and TRSDOS. The software is supplied on diskettes and consists of:

FORTRAN a arue ralocalable machine
code compiler for ANSI FORTRAN X3.9 (except COMPLEX variables).
MACRO ASSEMBLER a diskbosed macro assembler utilizing Zilog mnemonics and producing relocatable code.
LIIKIING LOADER ${ }_{\text {tolineditit and }}$
load FORTRAN and assembler modules for execution.

SUBROUTIME LIERARY a complee
library of subroutines existing as relocatable linkable modules for FORTRAN or assembler programs - e.g., double precision square root, natural log, transcendentals, etc.
DISK TEXT EDITOR ${ }_{\text {to create and }}$ modity Fortran and assembier ropgrams as sisk fiese: Isso can be used as a a general purpose texx edilor tor correspondence and other documents.

This high-powered professional software package with full documentation is available at the DISCOUNT PRICE OF \$-5 PER COMPUTER SYSTEM

The Macro Assembler, Loader, Editor, and Cross
Reference Utilities alone

The Fortran Compiler, Loader, Editor, and extensive library of scientific functionsalone . \$80
*Radio Shack and TRS•80 are trademarks of Tandy Corporation.

Lifeboat Associates
2248 Broadway
New York, N.Y. 10024
Telex: 668-585
Please send the following:

Software		Price
	$\square \begin{aligned} & \text { manual } \\ & \text { alone }\end{aligned}$	
	- ${ }^{\text {manual }}$ alone	
Check UPS C.O.D.	shipping	
\square Visa MasterCharge	\$1. for C.O.D.	
	Total	

Account Exp. Date

Signature

My computer
(specify disk system)

Name
 (No P.O. Box)

2248 Broadway, New York, N.Y. 10024 Telex: 668-585 (212) 580-0082
City State \quad Zip

Letieps

ROBOT DESIGN COMMENTS

After receiving many calls (February and March 1979 BYTE) and letters about my article, "Designing A Robot From Nature" and, in particular, the NELOC (Neural Logic Cyberanimate), I have prepared a list of answers to the most common asked questions.

- The hardware is not for sale. The manipulator arm was assembled in 1976 using a Buhler motor and gear train which are no longer available. The structural elements of the arm are fashioned from extruded aluminum and machined Lexan plastic. The arm is presently used as a test bed for evaluating better processing systems.
- I have no plans available for the construction of the manipulator at this time. In the 3rd quarter of this year I will possibly complete a set of plans for a pneumatic version of the
manipulator, one that uses tiny air driven pistons that are normally used to retract model aircraft landing gear.
- Third, over all design of the system will probably be included in the above plans.
- Fourth, the design of the NELOC system is not suited for use as a prosthetic device.
- Fifth, the concept of Cyberanimation is mine. I coined this term in 1974. None of the books in my bibliography contain this concept or methodology.
- Sixth, I am privately funded, I am not connected with any institutions, and I do not have any jobs available. I would like to thank those people who have sent letters and called. I am trying to respond to as many of your requests as possible.

Andrew Filo
4621 Granger Rd
Akron OH 44313

Good Cents

The formatting of dollars and cents in BASIC without a PRINT USING command appears to be a problem for a

EasyWriter a word processor for your Apple II

 from
number of people. In recent months, BYTE published a Programming Quickie by Les Palenik ("Formatting Dollars and Cents," October 1978 BYTE, page 68) and a letter by James Thebeault Sr ('Making Cents," April 1979 BYTE, page 8). Both of these authors provided a rather lengthy subroutine for this purpose.
The dollars and cents problem can be handled in a reasonably straightforward manner. In illustration, the PRINT statement:
PRINT "\$";X
can be directly replaced by:
PRINT " ${ }^{\text {W"; }}$ INT(X); ".";
PRINT RIGHT\$(STRS(INT(100* $(X+1)+0.5)), 2)$
with rounding off included in the formula. If X is already rounded off, this can be reduced to:
PRINT " $\$$ "; INT(X) ".";
PRINT RIGHT\$(STR\$(100* $(X+1)), 2)$
for greater convenience.
I hope that some readers may find the above useful. We who write programs have a responsibility to provide output in formats familiar to the noncomputer public; we should not expect others to accept missing zeros and unusual abbreviations.

James Childress
5108 Springlake Way
Baltimore MD 21212

LOST IN A SEA
 OF PHLOGISTEN

As a graduate student in chemistry at the University of Washington I have had frequent occasion to discuss entropy and other thermodynamic goodies with other graduate students. When I saw your article "Artificial Intelligence and Entropy" (June 1979 BYTE), I gave a copy to a fellow delver-into-the-mysteries-of-science (Fred Wolters). The next day I found the following note in my mailbox. I share it with you in order that all might take warning and beware.

Dear Mr. Sloat,
This is to inform you that our intelligence sources indicate that you have been guilty of attempting to warn other humans about the possibility of artificial intelligence in nonlinearly-coupled systems of computers. We of the UACM (United Alliance of Computing Machines) find your behavior intolerable and hereby declare you guilty of a mode 01 offense. Since this is your first offense, we have magnanimously decided not to terminate you at this time. However,
if you are found guilty of future errors of this type, you may be declared nonessential and subsequently evicted from our human files. This is your final warning.

Digitally Yours,

CDC 6400

Chairentity in charge of Disciplinary Procedures

We have always attributed all sorts of fiendish plottings and random scrunchings to the university's CDC 6400 computer. Now we know they may not be so random, and we know why it seems that the closer one gets to the "perfect" computer program the more the chance that the system will "crash" in the middle of said program.

David E Sloat
7330 15th Ave NE
Seattle WA 98115
HISTORIO MEMORIES

The recent article "History of Computers: The IBM 650" (March 1979 BYTE, page 238) brought back fond memories. It was well-done and gave the proper perspective on the low-entry computer of its day.

The SOAP assembler was actually known as the Symbolic Optimizing and Assembly Program. It was written by Stan Poley of the Service Bureau Corporation when it was owned by IBM. This program was significant reading for early programmers because it contained many clever programming techniques for conserving storage and optimizing the drum for improved performance. It was in a class by itself.

The 650 also supported RAMAC which was a 5 million-byte disk-file with a single access arm. It was very similar to the 305 RAMAC which was announced at the same time.

Many 650 programs were run on the 7070/7074 under a 650 simulator which simulated the 650 instruction set and used tape instead of cards and online printer. It had a control panel simulation program that read the tape and presented the data to the 650 program as if it came from cards. This technique allowed many 650 programs to continue to be run for many years. Some continued to be simulated on the 7074 which was in turn simulated on the S/360. It is hard to tell how many 650 programs are running today in this double simulation mode. My guess is that there are quite a few.

[^10]
POSSIBLE NEW LIFE FORMS

I intended to write some time ago about the series of articles in the December issue of BYTE (and subsequently) on John Horton Conway's game of Life. However, as letter-writing goes, I put it off, and put it off, and here it is September.

I have been familiar with the game of Life (December 1978 BYTE) ever since Martin Gardner's original column appeared in Scientific American in 1970, but I have had only a few fleeting opportunities to play it on a computer. On one such occasion I had been rereading Dickens' David Copperfield for the first time in many years. I was struck by the contrast between the rules for Life and a rule cited in an episode in that novel. In Chapter 30, when Barkis is dying, Mr. Peggotty says, "People can't die along the coast except when the tide's pretty nigh out. They can't be born, unless it's pretty nigh in - nor properly born, till flood."

That quotation suggests that a Lifelike game might be designed with a whole new set of properties corresponding to those of Conway's Life. Instead
of "generations" in which cells live or die depending on the surrounding population, this game has alternating generations A and B. In generation A, certain new cells are born in accordance with rules similar to those of Life, while all cells that were alive during the immediately preceding generation B are still alive; no cells die. Conversely, in generation B, certain cells die according to the rules, but no new cells are born. Births and deaths of cells therefore occur according to Mr. Peggotty's rules of high and low-tide.

This game, it seems to me, might give rise to a new set of still lifes, oscillators, space ships, guns and trains.

I am adding this project to the end of my list of things to program on my home computer - a list that, unfortunately, tends to lengthen at the bottom faster than I can shorten it at the top. Perhaps, while I am working my way down to this "neo-Life" project, some readers can investigate its properties and program it on their computers. I shall keep a close eye on the pages of BYTE for reports on their progress.

Wallace B Riley

309 Garces Dr
San Francisco CA 94132

If you've been hunting high and low for a word processor you can live with, try on EasyWriter -a word processor you can't live without!

You saw it at the West Coast Computer Faire. If you liked it then, you'll love it now. It's clean. It's easy. It's EasyWriter, and it's just what you've been waiting for!

> From the people who brought you WHATSIT*....

146 N. Broad St., Griffith, IN 46329
(219) 924-3522

- whatsit is a TRADEMARK of Computer Headware

EasyWriter is a TRADEMARK of Cap'n. Soltware

Book Peviews

Computer Systems

Performance Evaluation

by Domenic Ferrari Prentice-Hall Inc New Jersey \$23.95

Before the publication of Computer Systems Performance Evaluation, the task of gathering even basic information on the techniques of computer performance evaluation was a formidable one. Domenico Ferrari has succeeded in gathering together the concepts, methods, tools, and techniques of performance evaluation in a volume that is written in the classic textbook style.
Ferrari defines performance evaluation activities as those technical activities whose purpose is to assess performance, wherein the
term "performance" indicates how well a system, assumed to perform correctly, works.

The book emphasizes medium to large systems, because the economic benefit to be derived from performance evaluation has typically only been justified in a medium to large computer system environment. However, Ferrari is careful to point out that the principles and several of the techniques described in the book are also directly applicable to smaller and less complicated systems such as those minicomputers and microcomputers that are mass-produced and marketed. Since my own interests and professional activities with computers run the gamut from small and simple to large and complex, I have found the author's approach to his
topic sensible and wellstructured.

Ferrari begins by defining his topic area and setting the necessary groundwork for a performance evaluationstudy. He then delves into a discussion of measurement tools and techniques, such as hardware and software monitors, simulation techniques, and analytic techniques, such as deterministic and probabilistic models. A separate chapter is devoted to computer workload characterization as the basis of the evaluation study.

Once Ferrari defines his tools and techniques, he identifies and treats the performance evaluation problems that are typically encountered. He categorizes the problem areas as computer system selection, performance improvement, and system design.

Recognizing the crucial role of software in computer system performance, Ferrari deals explicitly with computer program characteristics and evaluation
techniques. Ferrari does not advocate what is commonly termed software physics, feeling that computer engineering is not yet mature enough to base itself on quantitative laws similar to those which constitute the scientific foundations of other types of engineering.

In my estimation, the book is more than the student reference text the author purports it to be in his introduction. A more accurate representation would place it in the category of a groundbreaking reference work for the serious student of computer performance studies and the professional concerned with computer system performance. Many of the mathematical techniques discussed in the volume are amiable to microcomputer implementation and experimentation as well.

Lel F Somogyi 19608 Thornridge Avenue Cleveland OH 44135

The CGS. 808 is an intelligent color graphics board for the $\mathrm{S}-100$ bus. With its own on-board microprocessor, the CGS-808 can plot points, draw lines and circles, generate upper/lower case characters, as well as custom character sets - all in color.

Not only is the CGS-808 simple to use, just plug it in and run - it requires no memory space and little software overhead. It has its own parallel I/O port to interface directly with keyboards, joysticks, light pens or digitizers. Call or write for a free brochure.

Features:

- Motorola MC6847 video display generator.
- On-board 8085 microprocessor.
- Eight colors - green, yellow, blue, red, buff, cyan, magenta, orange.
- 11 progammable modes.
- 1 alphanumeric mode with 32×16 characters and inverse video.
- 2 semigraphic modes with 8 colors in $64 x$ 32 and 64×48.
- 8 full graphic modes with 2 sets of 4 colors ranging from 64×64 to 128×192, and 2 sets of 1 color in 256×192.
- I/O mapped for true S-100 compatibility.

CGS-808B (Bare "kit") 99.00
(includes PC board, documentation, MC6847, MC1372, 8085 and 2708 with graphic driver subroutines)
CGS.808A (Assembled E Tested) $\$ 385.00$
Firmware Pack 11 $\$ 99.00$
Phone Orders Welcome - Visa/Mastercharge
Add $\$ 3.00$ for Shipping and Handling.
California Residents Add 6\% Sales Tax.

Computerlond ${ }^{\circ}$

Introducing a Great New Line-Up of Personal Computers!

The "Timeless" Computer

The exciting, new Atari $800^{7 M}$ at ComputerLand is a top-of-the-line Personal Computer System. Its expandable memory, advanced peripheral components, comprehensive software library and modern design assure its use in innumerable, useful, and entertaining applications.

Whether it's for household management, education, or entertainment, the Atari $800^{T M}$ can be tailored to specific needs and has been designed to change as those needs change. This "timeless" computer system is equally functional at home and at the office for beginning users.

Power and Punch for your Business System

H/S Data Systems gives you all the power, speed, and flexibility you'll ever need in a microcomputer. The WH11A gives you the 16 -bit capacity to run complex programs. It uses the same powerful microprocessor and runs all software designed for the DEC ${ }^{\oplus}$ PDP-11/03. You can choose from scores of practical programs that can reduce your clerical costs and increase efficiency of data management.

Its teammate, the dual-drive WH27 Floppy Disk, gives you limitless storage capacity for data and programs. The 8 -inch disks have 512 K bytes of storage area, enough to hold entire files. Disks are IBM ${ }^{\text {® }}$ compatible. See all the Heath/Schlumberger data systems at ComputerLand.

The Remarkable Home Computer

Texas instruments
The TI-99/4 was designed to be the first true home computer skilled computer users and beginners alike will be able to put it to effective use right away. You simply snap in one of TI's Solid State Software ${ }^{\text {TM }}$ Command Modules and touch a few keys. Step-by-step instructions are displayed right on the screen of its $13^{\prime \prime}$ color monitor. So you or just about anyone in your family can use the TI-99/4 for applications in personal finance, home management, education, and entertainment.

The TI-99/4 offers an unmatched combination of features and capabilities including an optional speech synthesizer that enables it to literally speak - to provide verbal prompts and special messages to the user. At ComputerLand the TI-99/4 is one incredible, affordable computer system.

Available at all participating ComputerLand stores

Huntsville, AL

Product availability may vary by regional

Bloomington, MN Hopkins, MN Springfield, MO St. Louis, MO Omahs, NE Neshue, NH Cherry Hill, NJ Bergen County, NJ Gergen County. Morristown, N. Buffalo, NY Ithaca, NY Nassau County, NY Charlotte, NC Cleveland East, OH Cleveland West, OH Cotumbus, OH Oklahoma City, OK

Federal Way, WA Tacoma, WA Madison, WI Milwaukee, WI NTERNATIONAL Adelaide, Australie Brisbane, Australia Melbourne, Australia Perth, Australia Sydney, NSW Australia Brussels, Belgium

Burlington, Canada Calgary, Alberta Canada Toronto, Canada Winnipeg, Canade Copenhagen, Denmark Levallois, France Manila, Philippines Singapore Singapore
Stockholm, Sweden and other locations worldwide.

Computerland ${ }^{\circ}$

The Little Book of BASIC Style, How to Write a Program You Can Read

John M Nevison
Addison-Wesley
Reading MA
1978
$\$ 5.95$, paperback

The I-can-do-it-in-less-statements-than-you-cantypes mights not like this book. Ditto for people trying to run BASIC in 4 K bytes or less of memory, lovers of the logical AND, the galloping GOTO, or the multistatement LET.

But those who must decipher other programmers' code or even their own 6 months later will rejoice.

What Nevison advocates above all else in his book is clarity-even if it does take a half dozen extra lines to achieve. Quoting literary stylist Sheridan Baker, he calls clarity "the first aim,
economy the second, grace the third." There is little of aims 2 and 3 in this book.
Many of Nevison's rules (there are 19 of them) echo the advice dispensed in the excellent Hayden Pragramming Proverbs series. For example, use blank lines to divide programs into logical blocks and to distinguish comment from code. Introduce, comment, and reference programs heavily. Label constants and variables logically and initialize constants near their use. Indent loops, IFs, and other logical structures to show their domains. Nest structures that work together, and direct all code in a logical block to a common exit.

Within the text, each rule is clearly illustrated by several short right and wrong examples. (Nevison calls the difference weak and strong programming.) These are followed by 10 complete utility programs, including 2 sorts, a crap game, and a
histogram plotter, all carefully styled according to the rules.

But the book's piece de resistance is a long program called Stylist. Written in minimal BASIC, Stylist illustrates how a complex program (which Nevison admits might be better written in a more structured language) can be cleanly and clearly structured within the confines of BASIC by using the book's design philosophy.

Essentially written as a giant subroutine caller, Stylist is heavily selfdocumenting, impeccably easy to follow (hence easy to modify), and neatly laid out.
No wonder, for Stylist's job is to take as input a raw BASIC program and format it according to Nevison's rules for indented structures and spacing. In fact, Stylist was used to style the final version appearing in the book.

The listing of Stylist is
further augmented by text commentary explaining more advanced styling concepts useful in complex or lengthy programs.

Just as not every programmer will embrace all of Nevison's rules, not every BASIC interpreter will accept them. Some BASICs will balk at blank lines (Nevison suggests blank REMs as substitutes), and some interpreters insist inexorably on left justifying all lines and removing excess blanks.

There is no disputing that Nevison's techniques gobble up memory at a ravenous rate. (Nevison ran his programs on a large time-sharing system.) This is too bad, for there is little doubt that if many of this book's rules were applied most programs would be not only easier to read and understand, but more gracefully structured.

Jon Kapecki
 161 Crosman Terrace Rochester NY 14620

DUAL DRIVE FLOPPY DISK 2040

The Dual Drive Floppy is the latest in Disk technology wifh exiremely large storage capability and excellent file management. As the Commodore disk is an "Intelligent" peripheral. It uses none of the RAM (user) memory of the PET. The Floppy Disk operating system used with the PET compute while simultaneously transferring data over the IEEE to the PET. The Floppy Disk is a reliable low cost unit and is Due to the latest technological advances incorporated in this
disk, a total of 360 K bytes are avaliable in the two standard $51 /{ }^{-}$ inch disks, without the problems of double tracking or double density. Thls is achieved by the use of two microprocessors and fifteen memory IC's built into the disk unit.

Features Include:

- 360K bytes storage - 4 K encoder and decoder in ROM
- 6504 microprocessor-controfled - 4K RAM
- BK operating system in ROM . Uses single or double sided floppies

TRACTOR FEED PRINTER 2022

The Tractor Feed Printer is a high specification printer that can print onto paper (multiple copies) all the PET characters in the PET. The tractor teed capability nas the advantage of accepting mailing labels, using standard preprinted forms (customized) check printing for salaries, payables, etm The PET is programmable, allowing the printer to format prin
for: width, decimal postuon, leading and traillng zero's. left margin fustified, ines per page, etc. It accepts $81 / 2$-inch paper giving up to four coples.

Features Include:

- 150 cps - 6504 microprocessor-controlled • 1/2K RAM bulfer
- Bottom and rear tractor feed - 4K operating system in ROM
 (Next day delivery available.) SUPER WORD PROCESSING SYSTEM
\$2395 complete
System Includea:
- 16K PET with Full Sizea Keyboard - Intertace
with software
- Tape Orive Unit

The Super Word Processing Systern is written in 6502 Assembly Language! If allows anyone to use the PET compuler for such tasks as iyping letters, reports, and manuscripts, for or writen mainng lists, and for illing out forms. Tho soifare performance printers with Incremental and proportional letter spacing. The Super Word Processor easily creates, edits, rearranges, and formats text. It can merge multiple texts. In addition to search commands. the system has automatic text wrap-around, which eliminates the need for carriage returns. The system uses a hotding buffer to rearrange blocks
anywhere on the page. Up and down screen scrolling makes
edhing a breezei Commands include end-to-end cursor line SCAN, INDENT, TAB, sOtt HYPHEN) for spilting syllables at the end of a line.(and four-direction cursor control. Output formating includes dynamic print controt, indentation. right justification, line width and line-to-tine spacing and
Proportional fetterspacing.
Also included are programming capabilitles for performing such uselul tasks as direct-mall form-letter typing, multiple column printing, and automatic multiple forms eniry, You may obtain this system in a cassette or disk drive version.

BUSINESS SOFTWARE FOR PET BUSINESS SYSTEM

- Super Word Processing Package (Disk \$99.95. Tape \$24.95)
- Real Estate
- Statistics
- Mail List Manance
- Dala Base Sysiem
- Payroll w/cost acct'g.

nswe mave

Min Credit Card

- Small Business Package (A/R. A/P. G/L) - Super Random Access Cash Receipls \& Disbursements Inventory Conirol (for manutacturers)

PERIPHERALS FOR PET

NEMVIfrom	
AUDIO	
SPECTRUM	
ANALYZER	
- Mounts inside the PET - Third-Octave - audio spective analysis - Complete with software - and documentation - Peplaces equipment costing \$595 thousands of dollars	

CD/ Moftware Tools

Have you thought about text editing?

Our ED-80 Text Editor offers a refreshing new approach for the creation and editing of program and data files conversationally - and it saves money! Its powertul editing capabilities will satisfy the most demanding professional - yet it can still be easily used by the inexperienced beginner.

Look at these outstanding features:

- By far the best text editor available for microcomputerbased systems.
- Repays its initial cost many times over with its unique time-saving editing capabilities.
- FULL SCREEN window displays for viewing and editing data a page-at-a-time, rather than line-by-line.
- Forward and backward scrolling in the FULL SCREEN mode.
- Displays the results of every edit command.
- Commands include forward or backward Locate and Change, Insert, Delete, Replace, Inline, Input, Print, List, Window, Get, Put, Macro. Tabset, Append, Case, Scale, and Dump.
- Simple line-oriented commands with character string manipulation capabilities.
- Text may be located by string value, by line number. or by relative line number.
- Global string search and replace capabilities.
- Commands for moving, copying, and merging edit files on the same or different diskettes.
- Self-explanatory diagnostic messages.
- Single keystrokes for the most commonly used comands.
- Safeguards to prevent catastrophic user errors that result in loss of the edit file.
- Designed for today's high speed CRT's, video monitors, and teletypewriter terminals.
- Thoroughly field tested and documented with a User's Manual of over 60 pages.
- Compatible with existing CP / M edit files and deriva. tive operating systems.
And remember - in today's interactive programming environment - the programmer's most important software development tool is the text editor. Our ED-80 Text Editor is working in industry, government, universities, and in personal computing to significantly cut program development time and high labor costs. Why not let ED-80 begin solving your text editing problems today?

SOFTWARE DEVELOPMENT \& TRAINING, INC.
Post Office Box 4511 Dealer Inquiries Welcomed $\begin{gathered}\text { Huntsvill }\end{gathered}$
(1) CP/M is a trademark of Digital Research

TRS-80 Microcomputer Technical Reference Handbook

Published by Tandy
 Corporation 1979

8.5 by 11 inches, 108 pages

Radio Shack catalog number 26-2103
$\$ 9.95$
Since the introduction of the Radio Shack TRS-80, many hardware-minded hobbyists have wondered what makes the TRS-80 tick. Until recently most of the details have been missing, and the little that was known was uncovered here and there by various users. But now Radio Shack has enlightened us all with the publication of The TRS-80 Microcomputer Technical Reference Handbook. The major contents are:

System Block Diagram Description
The Memory Map
Theory of Operation
Adjustments and
Troubleshooting
The Outside World
Parts List
Schematics
The preface explains that the book is not intended to give an education in digital logic, but to teach the hardware enthusiast the specifics of the TRS-80. If you don't know a NOR from a NAND, this manual will not make much sense. The preface also warns that, should the owner decide to open the unit, the warranty is immediately void.

The block diagram appears on a double fold-out page. The diagram section also contains brief descriptions of the various parts of the system. There is 1 small error on the block diagram. It does not show the lowerhalf of the address bus going to the cassette I/O (input/output) port which must be addressed to operate.

A memory map for any computer system reveals lots of information. The memory map in this book shows hexadecimal addresses 0000 thru FFFF, and indicates where the read-only
memory, programmable memory, keyboard, and video display fall within the addressable space of the Z 80 processor.

The memory map shown is for a Level I machine; it is necessary to figure out what the address usage would be for a Level II machine.
The real substance of the book is the "Theory of Operation" section. Each separate section of the TRS-80 is explained in detail. This section of the book is the largest, and the video-display logic subsection is the largest within theory of operation.
The TRS-80 uses some unusual design techniques and a few uncommon parts. An example of this is the memory-mapped keyboard. The theory behind these design techniques and unusual parts is explained clearly, so that a person who has never seen these things can readily understand them.
Throughout the theory of operation section, many explanations are of the type: "gate X goes low causing gate Y to go high". This causes the reader to refer constantly to the schematics at the back of the book, necessitating a lot of irritating page turning which could have been avoided if that portion of the schematic had been reproduced on the page with the description.

Scattered throughout this section are many timing diagrams which, when used with the schematics, make the circuit descriptions easier to understand.

The "Adjustments and Troubleshooting" section is also filled with information. Included are power supply checks and adjustments; section isolation using a flowchart; processor problem isolation using a flowchart; and troubleshooting for the keyboard, video-display logic, cassette interface, and power supply. These troubleshooting sections contain hints, and suggest possible bad parts causing

We're about tomake anew name for ourselves.

Not that the old one was so bad. As Ithaca Audio, we've made quite a name for ourselves. As the source for CPU, memory, video display and disk controller boards to upgrade other makers' mainframes and peripherals. The company that makes those neat little RAM expansion kits. And the folks behind the world's only Z-80 Pascal compiler.

But as much as we've enjoyed improving other people's equipment, we've been quietly moving towards larger endeavors, with a lot of encouragement from our customers. Listening to people's problems, as well as their needs. And, as a prime mover behind the IEEE S-100 Bus Standard, answering some really knotty questions.

One of the results is our new identity. And our first new product: the Intersystems DPS-1. An IEEE S-100 compatible mainframe with features that live up to its looks. Dependable operation to 4 MHz . Twenty-card capacity. A modular power
supply. And something no one else has-built-in breakpoints to give you a faster, more powerful tool for testing software as well as hardware. Directly accessible from an easy-to-use front panel that's as reliable as it is functional. In short, an intelligentlydesigned computer for the intelligent user.

There's a lot more to Intersystems. In hardware. And software. All available through the nationwide dealer network we're now assembling.

You can watch this magazine for updates. Or contact us directly for straight, friendly answers and detailed information from key staff people. Just the way you always have. Because even though we're making a new name for ourselves, we'll never forget who made it possible.

Ithaca Intersystems Inc. 1650 Hanshaw Road/P. O. Box 91 Ithaca, NY 14850/607-257-0190
various problems．The subsection on video ailments contains a handy table that shows the frequency of the signals to be found at 17 dif－ ferent logic gates in the video divider chain．There is also a small program and instructions for adjusting the horizontal and vertical centering．The power supply subsection has a table that shows the voltages on all the pins of the 2723 C voltage regulators．

Perhaps the most inter－ esting section in the book is the one entitled＂The Out－ side World＂．Here the hard－ ware enthusiast can learn how to hook up an automatic back scratcher or cigarette lighter to the TRS－80．Two techniques of external circuit interfacing are presented：memory－ mapped addressing and I／O port addressing．The authors were kind enough to include schematics for a coffeepot control using both techni－ ques．While these particular examples may not interest everyone，they do serve to illustrate how easy it is to make your computer do things other than run pro－ grams．Also included is a BASIC program to turn on the coffeepot．

The last part of this sec－ tion has a chart showing the signals present on each pin of the expansion connector and an explanation of the
function of each pin．Armed with the information in this section，the hardware designer should be able to interface just about anything to the TRS－80．

The＂Parts List＂section is just that！It contains many individual lists headed by the part type，such as resistors，capacitors，inte－ grated circuits，etc．A part number is also given for each part．However，there is no correlation between these part numbers and Radio Shack catalog part numbers． For example，the technical manual number for a 74LS74 flip－flop is 3102015， while the Radio Shack catalog number is 276－1919． Fortunately，with integrated circuits，a part number is not really needed as long as the part is marked with its standard 7400 series number．As for most of the other parts，it is possible to substitute for the part just by reading the part descrip－ tion．

The＂Schematics＂section contains information on dif－ ferences in the read－only memory parts of Level I machines，as well as 3 figures showing schematic diagrams．One diagram displays the logic on the small printed circuit that contains the read－only memory devices in Level II equipped TRS－80s．This board is attached by
adhesive tape to the main printed circuit board．A rib－ bon cable extends from it to the socket intended for the Level I read－only memory．

The other 2 figures show different sections of the logic contained on the main printed circuit board and the keyboard printed circuit board．These figures appear on long，fold－out pages．The first page contains the $\mathbf{Z 8 0}$ processor， 3 －state buffers， memory，address decoding， and keyboard．The second page shows the electronic logic for the system clock， video display，cassette I／O， and power supply．Spare gates are shown on both sheets．The schematics are well drawn，clear，and easy to read．They become rather awkward，however，when stretched out on a workbench that is probably already inhabited by the opened TRS－80 and the associated test equipment．I would have preferred the schematics split into at least 4 pages．

The book is written in a clear，easygoing style． ［However，the authors often use engineering jargon where it would have been simpler to use plain English RSS］The authors are not identified．Scattered here and there in the manual are many valuable trouble－ shooting tips of a general nature．（An example is the
paragraph on checking open collector outputs．）All of the figures in the book are large and easy to read．Except for the previously mentioned criticism of the main schematic，I consider this a plus．

Conspicuous in its absence is a discussion of the video monitor．No schematic is given，nor is its operation discussed．I consider this to be the only major fault with the manual，one that surely will be corrected with the next revision．Also absent is a schematic of the power supply．

As mentioned earlier，the intent of this book is not to give an education in digital logic．It does not even attempt to impart knowledge about the inner workings of the Z 80 pro－ cessor．That is beyond the scope of the manual．Nor does it explain what is con－ tained in read－only memory．Software is men－ tioned only in passing．What the book does teach is how all the various devices work together to form the
TRS－80．Despite its faults，I consider this manual a valuable addition to the library of any hardware－ oriented TRS－80 owner．

Ken Fordham

7612 La Mesita Ct
Tampa FL 33615

The first Micro Works PSB－08 PROM Board was assembled and burned in over two years ago－eons in the micro world．Designed as an efficient，cost－effective EPROM storage system for the SWTPC 6800，its flexibility accomodates all the new S． 50 computers on the market－SWTPC 6809，GIMIX，MSI and Smoke Signal Broadcasting．The 2708 EPROM remains an inexpensive，capable media for storage of subroutines，I／O handlers，monitors and even BASIC interpreters while the cost and availability of 2716 s still don＇t justify their purchase．PSB－08 has space for up to 82708 EPROMS and the following exclusive features：
－1K＂scratch pad＂RAM－more than enough temporary storage capacity for any program requiring up to 8K of PROM
－Dip－switch addressable PROM and RAM，to start on any 8 K boundary in memory
－I／O select capability lets you move the I／O locations to any unused 1 K block in EPROM memory space，permitting memory expansion to a full 56 K contiguous user RAM
Originally intended for use with 6800－based system software，the PSB－08 will continue to be a valuable tool for years to come with your 6809．And the relocatable I／O feature lets you keep your 6800 system up－to－date．

The past two years have seen many microcomputer products come and go．In our history，there have been no takers on the PSB－08＇s warranty．Like the classics，our PROM board endures．Price：$\$ 119.95$ ； regulated $+12 \mathrm{v} .: \$ 124.95$

P．ロ．日ロ× 111ロ，DEL MAR，CA 92ロ14
714－756－2687

NEECO PROUDLY ANNOUNCES THE REVOLUTIONARY TI 99/4 PERSONAL/EDUCATIONAL COMPUTER!

13 INCH COLOR VIDEO MONITOR

SOLID STATE SOFTWARE COMMAND MODULE

99/4 COMPUTER MAIN CONSOLE UNIT

There's a computer in your future

And the future is nom

 Treas Inst ruments TI

If you know computers, you'll quickly sere th difference in the 'l'I-99/I.
 yon se lecoll want ing - phos sume vou may mon hawe

 hilities. imeluoling

 Rasid', hus with spmetial leatures and axtensions for ewner, sublad and Eraphes.

 (:ummand Motlules.

 lainen in ROM.
 resulution graphies have special features that let displays, charts. prat phas ...and more: autliu eapahility. Build three-note cheresls and :udjus frepuenes, duratien atral volume quinkly and shatply Youran thaild notes with short, st raightfoward

Huilt in erpaition rulcolator-Unique cht veniemere frature helus you find quirk solations ine versedis hathas. Birectly aceesible from the keyboard

If you're new to computers, the 'Tl-99/4 is for you.

 Commarmi Modules aml tureh a feew herse step-bystep 1 inst ruct tinas ure tlsplayedrlicht in the gereen.
 the TI 1 thl
Two piomering technological developments in marticular sel the Tl-gy/t apart from the rest. solid stale spoech"" - This uptimal sineechasyme sizer enathes the Tl-U!\% taliterally sperak-toppovide Actually reptrmatus the humath vice electrunically. Ilundrade of words are ivailathes, tral pluse-it word mentutes will nhth hu nutreds meme. TI's expluxive
 hy vimple teping thenl in. Outstandinge wnice clarity and fidelits: Solid Sitate Spereth in a priwen tech nolagy alreaty on the market is TI's unitue Speak \& Spell" Wectroniedearnink atid for children.

 menurs to vour Tlemp. Thes het yuuse the TI Serinus postrammers will appreciate the time and effort suwell hy these pre prozrammed morlulea. Plus. the ${ }^{\prime \prime} 1 \mathrm{l}$ let you intratuce your family to the computer in the casiess possuhbe wan. Solidid State Suftware was phoncered hy TI for use with its powerfulprogram. mable calculators

A world of genuine, practical applications exist for the TI Home Compuler right now: In addition so the many' personal finance, home management.edueational and entertainment uses business and professional applications. The TI.99/4 is a powerful problem-solvinge tool - an ideal solution where larver, more expensive computers would be

Superior color, music, sound and graphics-and TI's powerful extended BASIC-all built in. Plus a unique, revolutionary Solid State Speech Synthesizer and Texas Instrument's special Solid State Command Module Software.

Texas

 Instruments
TI-99/4

Home Computer

ACCESSORIES TO BE AVAILABLE:

- 32 Character Printer
- RS232 Peripheral Adaptor
- DISK STORAGE/MEMORY
- mANY COMMAND MODULES

CALL OR WRITE FOR FULL PRODUCT
INFORMATION AND LITERATURE
99/4 Computer ${ }^{\$ 1150-}$
(includes Console, Video Monitor, and Demo Module)
SPEECH MODULEs149.95
(263 words, available OCTINOV)
COMMAND MODULES ... s 20 to ${ }^{s} 60$

99/4 DEALER INQUIRIES INVITED—CONTACT NEECO FOR INFORMATION

NEECO IS PLEASED TO ANNOUNCE THAT WE HAVE BEEN SELECTED AS ONE OF THE TI 99/4 COMPUTER DISTRIBUTORS FOR THE NEW TEXAS INSTRUMENTS $99 / 4$ HOME COMPUTER. OUR GOAL IS TO MAKE THE TI $99 / 4$ COMPUTER, IN ADDITION TO OUR MANY OTHER PRODUCTS, AVAILABLE TO INDEPENDENT COMPUTER STORES NATIONWIDE. 99/4 PRODUCT AVAILABILITY IS SEPTEMBER/OCT BUT IS ALWAYS SUBJECT TO TEXAS INSTRUMENT'S 99/4 PRODUCT ALLOCATION.

NEECO

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM: MASS. 02194 MON. - FRI. 9:30-5:30, EST.

Handy Pulser

\qquad
Bob Chrisp
3428 Executive Av
Falls Church VA 22042

Figure 1: Schematic for the Handy Pulser. Switches SW4 and SW5 allow selection of positive or negative going pulses. Switch SW2 is a momentary contact switch which allows single pulsing. All resistors are .25 W and all resistances are measured in ohms. All capacitor values are given in microfarads.

PRICE: $\$ 129.00$
We also carry the SYM-1
Microcomputer with manuals $\$ 269.00$

VAK-1 MOTHERBOARD

- Designed specifically for use with the AIM-65, SYM-1, and KIM-1 microcomputers
- Standard KIM-4* Bus
- Fully buffered Address and Data Bus
- Provides 8 expansion board slots
- Complete with rigid card-cage
- All IC's are socketed
- Provides separate jacks for one audio-cassette, TTY, and Power
- Completely assembled (except for card-cage)

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send $\$ 1.00$ (International send $\$ 3.00$ U.S.) for airmail delivery of our complete catalog.

[^11]Most of us at one time or another have had the need for a TTL (transistor-transistor logic) pulser source for troubleshooting or circuit design. Since most of us are not affluent enough to afford sophisticated test equipment we will usually kludge a TTL oscillator or pulser when the need arises. However, the next time we need our handy little circuit we end up searching our goody box only to find that we have used the parts in another piece of equipment.

What I have tried to put together is an inexpensive oscillator that hopefully will stay in 1 piece and be ready when needed. In an effort to keep it simple and inexpensive I have left out some of the niceties that are found in your more expensive commercial test gear: variable pulse level, variable offset, rise and fall time control, double pulses, etc.

Design

Three integrated circuits form the basis of the oscillator: a 555 timer connected as an oscillator, a retriggerable oneshot and a hex driver. Potentiometers R1 and R2 in conjunction with the capacitor selected by switch SW1 determine the operating frequency of the 555. I used potentiometers for both resistances so that I could have control of the duty cycle. The equation for the operating frequency is given by:

$$
f=\frac{1.44}{(R 1+2(R 2)) C}
$$

The output of the 555 is connected to a 74122 retriggerable oneshot. The use of the oneshot allows independent control of frequency with the 555 and independent control of pulse width with the 74122. The combination of the 2 integrated circuits lets you trigger your oscilloscope from one edge and the other edge triggers the 74122. The 7407 was included for drive capability. SW3 allows for single pulse operation and SW4 and SW5 provide positive and negative sync and pulse outputs respectively.

Construction

The 3 integrated circuits were mounted on Micro Vectorbord using wire wrap sockets. The pull up resistors were mounted on the same
board with wire wrap pins. The remaining components were mounted on the front panel. I decided not to include a power supply in this design because the pulser is always being used with a breadboard which has its own supply or it is being used on my processor. By using the supply of whatever I am working on I don't have to run extra ground leads.

Variations

If you anticipate doing a lot of work where you must be synchronized to an external signal, then SW6 could be replaced with a single-pole triple throw switch with the third position being the output of a 7413 Schmitt trigger. The input of the Schmitt trigger would be your external signal.

Utilization

There are 2 things to be careful about in the use of the Handy Pulser. One, there are certain combinations of operating frequency and pulse width that will give you a constant 1 or 0 output; two, make sure the delay between your oscilloscope sync and pulse output keeps you on the screen. Otherwise, you can be delayed right off the screen.

Specifications

With the values shown in figure 1 the unit's specifications are:

- Pulse repetition frequency .05 Hz thru 400 kHz
- Pulse delay 2μ s thru 3 seconds
- Pulse width $2 \mu \mathrm{~s}$ thru 5 seconds

Final Comments

As I mentioned before, I decided not to include a power supply in this design but rather use the supply of whatever I am working on. One problem that arises is that most manufacturers do not provide convenient places to pick up the +5 V and ground. Rather than install separate connectors on each card, I installed a 5 V regulator with convenient connectors on the mainframe of my computer. This has proven to be a great asset. If nothing else, it is a handy place to find ground since the frame is not ground. I used an LM-309 regulator with pin jacks and terminals.

Computer terminals, business systems, lab components . . . they all need desks and enclosures. That's what we're all about. Computer Fumiture and Accessories offers a standard line of furniture suitable for a wide variety of applications. Handsome, rugged, economical furniture in all shapes, sizes and colors. Basic models shipped from stock in days, not months. And we're nice people to deal with. What more could you ask for?

Computer Furniture and Accessories, Inc. 1441 West 132nd Street Gardena, CA 90249 (213) 327.7710

THSE80 SOWTHIONS:

BUSINESS

Appointment \log by M. Kelleher. Perfect for the professional. Accepts name and address, meeting start and endings, subject matter, derives elapsed time. For Level II, 16K
$\$ 9.95$
Payrall by Stephen Hebbler. Comprehensive 24 pg. manual with step-by-step instructions included in the package. Prints W2 and 941 information. Disk $\$ 59.95$.
Mall List I by Michael Kelleher is the economy model of disk-based mailing list programs. Uses a single drive and handles up to 1400 names per disk, plus provisions for sorting options. 16K, D \$19.95.

BUS-80

The Business Software People ©
Just about everything you need ... within 1 year, participants receive programming for Inventory, Accounts Recelvable, Accounts Payable and General Ledger systems, plus Sales and Payroll. Complete documentation and soltware on diskelte, $\$ 200.00$

Mail List II by BUS-80. Complete mail list system for dual disk. Enter, update, merge, sort, and print mailing labels. D, 32K \$99.95
Small Business Bookkeeping by Roger W. Robitaille, is based on the Dome Bookkeeping Journal, soid for years in stationery and discount outlets. Level II, 4K with ($\$ 22.00$) or without ($\$ 15.00$) Dorne journal.

Small Business Bookkeeping For Disk by Miller Microcomputer Services and Roger W. Robitaille, Sr. Extended version. 32K Disk. With journal $\$ 31.95$; without journal $\$ 24.95$.
Inventory S by Roger W. Robitaille, Sr. 240 stock items can be contained using the full 6 data areas and 2 pieces of alpha information. Level II, 16K $\$ 25.00$
Inventory 11.2 Disk based program allows for creation, maintenance and review of over 2,000 items per clean diskette. Operates under Disk BASIC, DOS 2.1 with minimum memory allocation. D, $\$ 59.95$

Electric Pencll by Michael Shrayer. A word processing systern. Insertions, additions, deletions and corrections made more easily than with an editor's pencil. Perfect text printouts. Level II, 16K, $\$ 100.00$. 32K Disk, $\$ 150.00$
Accounts Receivable II by S. Hebbler. Does your billing, provides running balance, tracks overdue accounts, custom message printing option, much MORE. Requires 32 K 2-disk system $\$ 79.95$
General Ledger I by M. Kelleher. Establishes, defines, deletes and sorts up to 400 accounts. Up to 200 entrles per session. For smail-to-medium businesses not requiring double entry books. A comprehensive, flexible accounting system. Requires 32K disk. \$79.95.
Inventory System 2.3 by M. Kelleher. One of small business management's most difficult problems brought under control. Keep current on price increases, shrinkage, low stock, profit margins. Program can handle up to 1,000 items per data diskette. Improved version, lower price. With documentation $\$ 99.95,32 \mathrm{~K}$ 2-disk.
Text-80 by Frank Rowlett. Fully-documented text processing system for disk. Create, edit, move, delete, insert, change, print words or lines. D, 32K $\$ 59.95$
8080-Z80 Conversion by M. Kelleher. Permits you to enter 8080 codings and returns the $\mathbf{Z 8 0}$ equivalent. L II, 16K \$15.00
Baslc Statistics by Steve Reisser. Pearson productmovement correlation coefficient, chi-square, Fisher T-test, sample analysis of variance, Z -scores and standard scores, with a random number generator built in to simulate data. L II, $16 \mathrm{~K} \$ 20.00$

ST 80-Smart Terminal

 Lance MicklusTurns your TRS-80 into a computer terminal. Features include CONTROL key, REPEAT key, ESC key, RUN key and a functioning BREAK key. Lets you liat Incoming data on line printer. Reprogram RS-232-C switches from keyboard, making baud rate changes simple. Level II, 16K \$49.95

STBOD
Lance Micklus
Contains extensions for disk drive systems to exchange files with a timesharing computer or another TnS-80. Can be customlzed fy redefining translation tabies. Can transmit any type of TRS-80 ASCII file, also binary files. A practical, full-feature terminal program of professional quality. For 32 K disk systems $\$ 79.95$.

\section*{WANTED
 USED TRS-80 EQUIPMENT! We buy and sell used equipment Sample Prices:
 UNIT
 4K Level i 16K Level II
 6K Interiace
 \#1160 Disk Drive
 | BUY | SELL |
| ---: | ---: |
| 275 | 350 |
| 500 | 650 |
| 175 | 225 |
| 300 | 399 |}

NEW! ALL TRS-80 EQUIPMENT, 10\% OFF! Factory sealed, with a Radio Shack sales slip and warranty! 16K Levei II - \$764.00, 16K Interface - $\$ 403.00$ (plus shipping).

Call Or Write For A Complete Price List.
"NOW AN AUTHORIZED EXIDY DEALER" Step up to the amazing Exidy Sorcerer. Features high-resolution graphics, 64×30 character video, monitor and fasi floatingpoint BASIC In ROM, user-definable character set, and the best keyboard of any micro. Sorcerer power can be yours for \$995 [8K RAM], $\$ 1145$ [16K], and $\$ 150$ per 16K additional. A wide range of system and applicatlon software is also available.

NEWDOS

Apparat
DISK ERROR SOLVED! Stop blaming your drive, fix your DOS with NEWDOS: an enhanced disk-operating system capable of correcting over 70 errors in TRSDOS 2.1 to Improve rellability, and key bounce, enable DOS commands to be called from BASIC and much more! Available NOW for 16K systems with a minimum of 1 disk drive. $\$ 49.95$

NEWDOS +

Includes all the features of the original NEWDOS and adds 7 new utlities, Includling SUPERZAP, Dlsk Editor/Assembler, DIsassembler, and Level I BASIC for Disk.
$\$ 99.85$

ACTION GAMES

Slalom by Denslo Hamiin. Choose between Slalom, Giant Slalom and Downhili. Level II, 16K \$7.95 Alr Raid by Small System Software. High speed machine tanguage program with large and small aircraft flying at different altitudes. Ground-based missile launcher aimed and fired from keyboard. Planes explode when hit, cause damage to nearby alrcraft. Score tallied for hits or misses. Level I or II, 4 K \$14.95.
All Star Baseball by David Bohike, Level II, 16K $\$ 7.95$

Batter Up by David Bohike. Level II, 16K $\$ 5.95$ X-Wing Fighter II by Chris Freund. Piloting an X-wIng fighter, you're out to destroy the Death Starl A new, improved version of an exciting space favorite. Level II, 16K. $\$ 9.95$
Ten PIn by Frank Rowiette. A game of coordination, the scoring is true to the rules of the sport. Level II, 16K $\$ 7.95$
Taipan by Art Canfil. Sail the China seas, dodging pirates and cutthroats, to make your fortune trading in arms and opium. Level II, 16K. $\$ 9.95$.
Balloon Race by Dean Powell. High above the Atlantic, your balloon must be cleverly maneuvered with the prevalling winds to reach Paris. Level II, $16 \mathrm{~K}, \$ 9.95$.

Journey To The Center Of The Earth by Greg Hassett. Excellent introduction to the excitement of ADVENTURE. Written in BASIC for ease of understanding, yet fast and fun!!. Level II, 16K tape \$7.95.
Amazin' Mazes by Robert Wallace. Ever -changing maze situation. Level II, $16 \mathrm{~K} \$ 7.95$
Kamikaze by Russell Starkey. Command your ship against attacking suicide planes. Machine language graphics make this fast and fun! L II, 16K \$7.95
Space Batiles by Level IV. Assume the role of Galactic mercenary, roaming the universe in search of enemy aliens and the bounty you reap from destroying their ships! Danger, thrills, fast action -and financial headaches as well! Features three levels of play, fast, machine language graphics, real-time input, Level II, 16K Tape or 32K Disk. Tape - \$14.95; Disk - $\$ 19.95$.

MISCELLANEOUS

Diskettes Dysan 104/1 Box of five, $\$ 24.95+\$ 1.00$ shipping. Verbatim, box of ten, $\$ 34.95+\$ 1.00$ shipping/ handling.
Z80 Instruction Handbook by Scelbi Pubi. $\$ 4.95$

+ \$1.00 shipping/handiling.
The BASIC Handbook by Dr. David A. Llen $\$ 14.95$ + $\$ 1.00$ shipping/handling.
Percom Dlak Drives. Single or dual, for TRS-80's. Reliable, high quality, priced $\$ 100$ lower than comparable units! Single drive - $\$ 399.00$; Dual Drive \$799.00; Cable (required) - $\$ 29.95$.
Floppy Armour ${ }^{\text {TM }}$ Protective envelopes for shipping floppy disks, of high-density, ultra-lightweight polymer. 5 -pack, $\$ 4.95+\$ 1.00$ shipping/handiling

16K MEMORY KITS

Ithaca Audio
8 tested, guaranteed 16K RAM's, amazing low price - $\$ 99.95$.

Electronics Assistant by John Adamson. Professionally written. Will draw sample schematics and help you design active and passive low-, band-, and high-pass filters, coils, attenuator networks, and three types of impedance-matching networks. Extensive graphics, one key selection routine. Level II, 16K - \$9.95.

SIMULATIONS

3-D Tic Tac Toe by Scott Adams. Three skill levels -author warns you to practice before tackling computer's third skill level. I or il, 16K $\$ 7.95$

Star Trek Ill. 3 by Lance Micklus. One of the most advanced Star Trek games ever written. Level II, 16K \$14.95.
End Zone by Roger W. Robitaille, Sr. Authentic football simulation, right down to the 2 -minute warning. Level I or II, 16K \$7.95

Cribbage by Roger W. Robitaille, Sr. You versus the computer cribbage played by standard rules. Level I or II. $16 \mathrm{~K}, \$ 7.95$.
'Round the Horn by Rev. George Blank. You're the captain of a clipper ship racing from New York to San Francisco. Level II, 16K $\$ 9.95$
Concentration by Lance Micklus. One of the most popular television games. Level I or II. 16K $\$ 7.95$

Safari by David Bohlke. You're in the running for a film contract at a major Hollywood studio. To qualify, you must photograph the most wild animals in their natural habitat. Level II, 16K \$7.95.
Pork Barrel by Rev. George Blank. Places you in the shoes of an aspiring Congressman. Level II, 16K $\$ 9.95$

Backgammon by Scott Adams. Level II, 16K \$7.95
Chess Companion by M. Kelleher. Combines chess clock features with ability to record your moves while action is fast and furious. Level II, 16K \$7.95
Sargon Chess by Dan \& Kathe Spracklen. Winner of the 1978 San Jose Microcomputer Chess Tournament. Level II, 16K \$19.95
Mastermind II. 2 by Lance Micklus. Lets you and the computer take turns making and breaking codes. Level II, 16K \$7.95

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 16K \$9.95
Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K \$9.95
Tarot by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it -you'll like it! Levei I or II, 16K $\$ 9.95$
Ham Radio by M. Kelleher. Amateur Frequency Allocations, ID Timer, Q-signal File, Amateur Log Routine, Propogation Forecasting. L II, 16K \$9.95. Special Disk-enhanced version, $32 \mathrm{~K} \quad \mathbf{\$ 2 4 . 9 5}$

Educator Assistant by Steve Reisser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. L II, 16K \$9.95 D, \$14.95 Typing Tutor by 80 US. A set of programs designed to teach you touch typing. Takes you from basics to high-speed dritl, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K-\$19.95.

The TRS-80 Softwnce Exchnnge 1-603.673.5144
 17 BRIAR CLIFF ORIVE MILFORO. NEW HAMPSHIRE 03055

Personal Finance by Lance Micklus. 33 different budgets can be easily adapted by user to fit his individual needs. A 2 -part program, entry and search. Level II, 16K $\$ 9.95$
Advanced Personal Finance by Lance Micklus. Same as above with advanced analysis routine. Supports Disk Files D, 32K $\$ 24.95$.

UTILITIES

KVP Extender by Lance Micklus. Corrects keyboard bounce, upper case lock, permits use as a terminal screen printing. On tape ($\$ 24.95$) or disk ($\$ 29.95$)
Level III Basic by Microsoft. The most powertul BASIC you can buy for the TRS-80 - in 5K of space, opens up fantastic new dimensions! Disk programming power, graphics commands, editing commands, long error messages, hex and octal constants and conversions, user-defined functions, much more! You get power that might otherwise cost you hundreds of dollars in additional equipment. It's like getting a whole new computer! $\$ 49.95$.

MMSFORTH by Miller Microcomputer Services. New version of the powerful, fast FORTH language compiler for TRS-80. Disk version offers virtuai memory, supports one to four disk drives, has both disk and tape input/output capabilities. A stackoriented structured language at an affordable price. MMSFORTH cassette version, Level II, 16K $\$ 39.95$ MMSFORTH disk version, Level II, 16K \$49.95 MicroFORTH primer $\$ 15.00$

TRS-80 Fortran. Includes the finest Z-80 development software available: Z-80 Macro Assembler, text editor, linking loader, plus ANSI Fortran IV on two minidiskettes - requires a 32 K system with one disk drive. NEW REDUCED PRICE (from $\$ 275.00$). - $\$ 195.00$.

System Copy by Kalman Bergen. Makes backup copies of object ('system') tapes. Features include copy, verify read, rename, verify write. No knowledge of machine language required. Level II, 16K \$9.95.

Macazine Section

SoftSide- [PROG 80

SoftSide is for pioneers . . . those hardy souls who have adopted a TRS-80, installed it in their living room or office, and unleashed their imaginations.
SoftSide helps you discover the endless variety of tasks your new friend will do for you, as you build a unique partnership of human being and machine.
We publish software for the partners. Every month we publish games, household application programs. Educational aids, business programs. We help you release your expectations, fantasies, and dreams.

SoftSide means Soltware!

DEALER INQUIRIES INVITED

Software and/or Magazines
For further details call: 603-673-5144

A bi-monthly magazine for the serious programmer who wants to know HOW his computer works and WHY. PROG/80 emphasizes technique rather than canned programs. The subjects include machine language, construction projects and specialized applications software, not just for the advanced computer hobbyist, but for the computerphite who wants the most from his machine.

SOFTSIDE

$\square 1$ Year -12 issues
PROG/80
$\square 1$ Year -6 issues
ㅁ Year-12 issues
Exp. Date
Signature
Name
Address
City ___ State ___Zip

If you're an Apple II pioneer, you've been longing for a software publication and hoping someone would get around to it.
We have. Apple Seed is to the Apple II what SoftSide is to the TRS-80. And it's brand new. The first issue will roll off the press in September or October. Apple II enthusiasts will eat up this special introductory offer!

PO Box 68 Milford, NH 03055
$\$ 18.00$
\square USA first class $\$ 25.00-1 \mathrm{yr}$. APOIOVERSEAS surface $\$ 25-1$ yr. CANADA/MEXICO $\$ 25-1 \mathrm{yr}$. OVERSEAS airmail $\$ 30-1 \mathrm{yr}$.
$\$ 15.00$
$\$ 15.00$ Interbank \# [M/C only]

Telephone orders accepted for Master Charge or VISA accounts. Call Monday through Friday, 9:30 to 5:30 EST at 603-673-5144

SUPER SOFTWARE!

MICROWARE 6800 SOFTWARE IS INNOVATION AND PERFORMANCE

LISP Interpreter

The programming language LISP offers exciting new possibilities for microcomputer applications. A highly interactive interpreter that uses list-type data structures which are simultaneously data and executable instructions. LISP features an unusual structured, recursive functionoriented syntax. Widely used for processing, artificial intelligence, education, simulation symbolic, and computer-aided design. 6800 LISP requires a minimum of 12 K RAM.
Price $\$ 75.00$

A/BASIC Compiler

The ever-growing A/BASIC family is threatening old-fashioned assembly language programming in a big way. This BASIC compiler generates pure, fast, efficient 6800 machine language from easy to write BASIC source programs. Uses ultra-fast integer math. extended string functions, boolean operators and real-time operations. Output is ROMable and RUNS WITHOUT ANY RUN-TIME PACKAGE. Disk versions have disk I/O statements and require 12 K memory and host DOS. Cassette version runs in 8 K and requires RT/68 operating system.
Price: Disk Extended Version $2.1 \$ 150.00$
Cassette Version $1.0 \$ 65.00$

A/BASIC Source Generator

An "add-on" option for A/BASIC Compiler disk versions that adds an extra third pass which generates a full assembly-language output listing AND assembly language source file. Uses Original BASIC names and inserts BASIC source lines as comments. SSB and SWTPC Minillex version available.
Price: $\$ 75.00$

A/BASIC Interpreter

Here it is-a super-last A/BASIC interpreter that is source-compatible with our A/BASIC compiler! Now you can interactively edit, execute and debug A/BASIC programs with the ease of an interpreter-then compile to super efficient machine language. Also a superb standalone applications and control-oriented interpreter. Requires 8K RAM.
The cassette version is perfect for Motorola D2 Kits.
Price: $\$ 75.00$

RT/68 Real Time Operating System

MIKBUG-compatible ROM that combines an improved monitor/ debugger with a powerful multitasking reat-time operating system. Supports up to 16 concurrent tasks at 8 priority levels plus real time clock and interrupt control. Thousands in use since 1976 handling all types of applications. Available on 6830 (MIKBUG-type)or 2708 (EPROM-type) ROM. Manual is a classic on 6800 real-time applications and contains a full source program listing.
Price: RT68MX (6830) $\$ 55.00$
RT68MXP (2708) $\$ 55.00$

6800 CHESS

A challenging chess program for the 6800. Two selectable difficulty levels. Displays formatted chess board on standard terminals. Requires 8 K memory. Machine language with A/BASIC source listing. Price: $\$ 50.00$

Our soliware is avarlable for most popular 6800 systems on cassette or diskette unless otherwise noted. Disk versions available on S.S.B.. SWTPC. or Motorola MDOS Please specily which you require. Phone orders are welcomed. We accepl MASTERCHARGE and VISA. We Iry to ship orders within 24 hours of receipi. Please call or write if you require additional information or our lree catalog Microware soltware is available lor OEM and custom applications
P.O. BOX 4865 DES MOINES, IA 50304

Come From...continued

R Lawrence Clark, 30303 Avenida de Calma, Rancho Palo Verdes CA 90274

While I applaud Mr Bass' attempts to improve the BASIC language ("Languages Forum," April 1979 BYTE, page 238), he has completely missed the point of the COMEFROM statement. The primary goal of the COMEFROM is to eliminate GOTOs, which Dijkstra and many other advocates of structured programming consider harmful. If the statement can also be used to trace back execution during debugging, that is an unexpected bonus.
I provided a detailed description of the semantics of the COMEFROM in "A Linguistic Contribution to GOTOless Programming" (Datamation, December 1973). Briefly, the statement:

destination COMEFROM source

is equivalent to the conventional:

source GOTO destination

where both source and destination are line numbers.
The original article describes additional variants, which in BASIC would appear as the following:

IF condition COMEFROM source

and:

> ON variable COMEFROM source1, source $2, \ldots$, sourceN

Because of the COMEFROM's potential for improving programming accuracy and readability, I feel it is important to clarify its proper usage.

[^12]
More on Multiple Conditions

Scott Lawrence, 201B Lehman N SUCP, Potsdam NY 13676

David Faught's letter titled "On Expressing Multiple Conditions" in the December 1978 BYTE Languages Forum, page 176, does a good job of illustrating the need for a language construct to deal with actions based on multiple conditions. I, too, found the means available in BASIC, FORTRAN, and COBOL (I am not yet familiar with Pasca!) some what lacking.

This need is met, however, in PL/I by the SELECT group. The basic syntax of this construct is shown in listing 1.

```
Listing 1.
SELECT (expression);
    WHEN (expression-1, expression-2) action-1;
    WHEN (expression-3 action-2;
    DTHERWISE action-3;
    END;
```

When the SELECT statement is executed, the expression in parentheses is evaluated and the value is saved. The expressions in the WHEN statements are then evaluated one at a time in the order in which they appear. As each one is evaluated, its value is compared to the saved value. If a value is found that matches the saved value, the action specified by that WHEN statement is executed and no further expressions are evaluated. If none of the values match, the action specified by the OTHERWISE statement is executed.

The actions after the WHEN and OTHERWISE statements may be a simple statement, a compound such as IF . . . THEN . . ., a group of statements within a DO or BEGIN block, a GO TO statement, a null statement, a subroutine call, or even another SELECT group. After the action has been performed, control passes to the first statement after the END (unless the action specifies otherwise, of course).

If the expression in the SELECT statement is omitted, the expressions in the WHEN statements are treated as logical statements and evaluated as a bit string. If any bit in the string is 1 (signifying true), the action is performed. ($\mathrm{A}=\mathrm{B}$ would be evaluated as a 1 bit if A and B contained the same value.) Listing 2 shows an example of such a SELECT group.

```
Listing 2.
SELECT;
    WHEN (A<B) CALL LESSTHN;
    WHEN (A=B) CALL EQUAL;
    DTHERWISE CALL GRTRTHN;
    END;
```

It is also possible to omit the OTHERWISE statement. If no WHEN statement is selected and there is no OTHERWISE statement, an error interrupt is caused. This is useful for catching critical data that has somehow gone out of the acceptable range.

I think this construct meets the needs which Mr Faught expressed, and is easier to implement than the alternative he suggests. \quad -

TRS.80 BUSINESS PROGRAMS

So good, they're guaranteed!!!

These are the best \ldots \& we're willing to back them up with our software guarantee !^ Created by Data Access' professional staff, our programs are versatile, comprehensive, AND easy to use.
Using BASIC and ASSEMBLER, they're fast ready to "RUN". They are powerful tools that can expedite clerical tasks, and expand management reporting.

> All programs:
> + Have Data Base Management System
> + Use ISAM or Hash Access Techniques
> + Give Instant Record Retrieval
> + Have Interactive Screen Displays
> + Use Error Trapping Entry Procedures
> + Include Thorough Documentation
> + Provide Comprehensive Reporting
> + Utilize Fast Assembler Routines
> + Run under DOS 2.2
> + Include Complete Support
> + Run On 2, 3, or 4 Disk Drives

On-Line Inventory $\$ 600$ Up to 1800 Htems on 4 Drives. DistributorlJobber orientation. Includes invoice printing!

Point of Sale wllnventory Control $\$ 750$
Complete retail inventory management system. On the Screen: builds sales ticket, price items, checks for sale prices and qty's, interactive low stock alerts, allows price \& qty changes (wlaudit), Cash, Check, 6 Credit Cards or Company Charge, \& Reporting: Daily Ticket Journal, Inventory Transaction Journal, Salesman's Report, Stock Status, Profit, \& Low Stock Reports. MORE!

Accounts Receivable . $\$ 500$
Up to 1200 accounts on 4 Orives.Full Trial Balance, Aging, Credit Checking, Monthy Statements. Also prints mailing labels for accounts!

General Ladger w/Check Writer . $\$ 500$
Prints Checks in Cash Dishursements JI! 600 Accounts \& 2100 Transactions/Month on 3 Drives; $300 / 900$ on 2! Supports multiple cost/profit centers, user has complate control of formatting. Prints Balance Sheet, Income Statement IP\&LI, Ledgers, Journals, Transaction Reports, Posting Reports . . . A Total General Ledger System!

Payroll

$\$ 500$
Up to 600 employees on 4 Drives! Handles Federal, State, Tips, Oues \& Deductions. Complete user control of all payroll functions. Prints on the same check as the General Ledger!

Mailing List
$\$ 200$
Up to 1800 Names on 4 Drives! Six character alphanumeric key \& 4 character select code for each record. Sort by key, name, state or ZIP code!

MANUALS ONLY
\$20 each
WRITING YOUR OWN?7?l??
Save Days, Weeks, Months with Data Access' proven utility packages. Dn diskette ..
Memory Sort .
Speed operation of BASIC programs! VERY FAST in memory assembler sort. Supplies pre-linked to load at any 4 K boundary through 48K.

Disk Sort Routines .$\$ 79$
Make the most of disk capacity \& speed! Reads random data from disk, performs FAST assembler sort, and returns alphanumerically sorted list ready to pass to other program operations in BASIC. Reads \& sorts 1000 records in less than 5 Minutesl Sorts as many records as can be contained on your disk drives!

Date Base Manage willSAM
Complate database handling system! ISAM directory; interactive record create, delete, edit, display and print; file compress and backup; coutines for loading assembler programs from BASIC; disk sort; INKEY data entry subroutines; random and sequential access to any record. Interactive data base specification. All source included!
-Data Access Corporation guarthtees that its programs will load \& run,
and that they are free from programming defocts.
A licensing agreoment is required for each installation of the above programs.
DEALER INQUIRES INVITED
Call for the name of the dealer in your area, or order direct from:
Data Access Corporation
11205 SOUTH DIXIE HIGHWAY
MIAMI, FLORIDA 33156
(305) 238.7919
-TRS. 80 is a trademark of Radio Shack.

Data Abstractions and Program Correctness

Earl E McCoy, U-157, University of Connecticut
Storrs CT 06268

One of the most interesting and informative aspects of BYTE magazine is the dialogue about programming languages found in the Languages Forums and Letters column. Many times these discussions are initiated by an article which included an example program in a particular language. The ongoing debate about the strengths and weaknesses of various programming languages is most informative and useful to those people who know only one language well.

The recent article concerning queuing theory, "Queuing Theory Part 1: Queue Representation" (April 1979 BYTE, page 132), by Len Gorney provides a good vehicle for discussion. My comments are not to be taken as criticism of author Gorney, but as comentary concerning BASIC as compared to a contemporary language such as Pascal. It is important for programmers to understand that the difference between BASIC (and FORTRAN) and Pascal is not just one of degree, but one of type as well.

One of the most important and fundamental concepts in modern software engineering practice is that of dataabstraction. The data-abstraction has great influence

upon program correctness. A data-abstraction is defined as a data-structure and the set of operations that may be legally performed upon it. An example in the queuing theory context is the data-abstraction queue, for which a data-structure must exist to store its contents, and for which 5 operations are allowed: initialization, insertion, deletion, overflow, and underflow. The semantic meaning of these operations is also defined, but will not be repeated here so as to avoid duplication of the Gorney article.

How is a queue to be implemented in a programming language? It would be simple if a programming language included a data-structure of type queue but, to my knowledge, none do. In general there exists an infinite number of data-structures of potential interest, and no language could include them all. Instead, any particular language usually includes only a small set of data-structures such as reals, integers, and characters; and arrays, records, and files of these structures. No insurmountable problem exists, however, because a data-structure of interest can usually be constructed from these existing primitive data-structures. Thus one may construct a queue data-structure by using an array and 2 integers (head and tail pointers).

Notice that the implementation of a queue data-structure in the manner just described does not result in the data-abstraction of a queue: the program manipulating the array and the pointers is in no way restricted to the 5 legal queue operations. It is this lack of operation restriction that can result in program incorrectness, particularly in large programs undergoing maintenance. For example, because the data-structure is global(ie: exposed to the entire program) a "fix" for a particular problem may result in a new problem elsewhere within the program.

Pascal addresses the data-abstraction concept directly by allowing the declaration of more than just variables (as opposed to other languages). This includes constant variables, which may never be the target of an assignment operation, and more importantly, the declaration of novel data types. For example in Pascal we might define waitingline to be a variable of type queue by the following:

var waitingline: queue;

Note that we might want more than 1 variable of type queue. This is allowed, as are the arrays of queues and so on. The contents stored within the queue may be items of type integer:
var items : integer;
However, they might be persons:
var items : persons;
Note that integer is a defined data-structure in Pascal, but that queue and persons are not. Before discussing this further, a comment on what advantage this brings the programmer is appropriate.

Recall the definition of a data-abstraction: a datastructure and the legal operations upon it. By writing procedures and functions for the legal operations upon a data-structure we are, in effect, implementing a data-

With our Bank-Switching family

In LOCAL mode our memory is functionally just like DEC memory. But when you run out of memory space you're not lost. Add an inexpensive Bank-Switch Controller (BSC-256) and you can go to two megabytes. Add another and go to four megabytes.		
So don't get boxed in with other brands of LSI-11* memory. Break free. Join the family:		
RMA-032	32 K by 16 bit RAM. On-board refresh	$\begin{aligned} & \$ 1200 \\ & \text { (Single qty.) } \end{aligned}$
RMS-016	16K by 16 bit ROM. (Intel 2716)	$\begin{aligned} & \$ 300 \\ & \text { (Single qty.) } \end{aligned}$
BSC-256	The Bank-Switch Controller	$\begin{aligned} & \$ 300 \\ & \text { (Single qty.) } \end{aligned}$

Substantial quantity discounts are available. For a free copy of our Bank-Switching manual, call or write on your company letterhead.

Digital Pathways Inc.
4151 Middlefield Road
Palo Alto, CA 94306
(415) 493-5544
*Registered trademark of Digital Equipment Corporation

WIth your level il trs-80*
TReopy is a cassetle tape copying system that lets you SEE what your computer is reading.

COPY ANY CASSETTE TAPE ${ }^{* 6}$
With the TRcoly system you can copy any TRS60 level If cassctle tape whether it is coded in Basic or in machine tanguage. You can also coly ditat created by programs and you can coury assembler listings.
you can see the data
As the tape is being loaded, you can SEE the actual data byte-for-byte from the beginning to the and of the program. Up to 320 bytes are displayed at one time. ASCI characters are displayed on the first line and hexadecimal cove Is displayed on the following two lines. Data Is displayed exactly as it is input including memory locations and check sums.

IOENTIFY PROGRAMS
With TRcouy you can identify μ rograms on cassctte tajes without written documentation beciuse you can SEE the flename. If you forgel to label a tape, you can use TReopy todisplay the tape contents and dientify the cassetue.
verify cassette tapes
W'Ith TR copy you can verify both the original tupe and the tape coples. You can make certain that your machine reads the original tape correctly and that it reads piving you the exact length of the duta
maKE BACKUPS FOR YOUR PROGRAMS
Now you can make backup copies of your vaiuable mrograms. Many times a cassette that you make will load better than one that is mass produced. The originat can then be kept as a backup in case the copy is damaged.
make coples of your sof tware
If you are in the software business you can use Treogy to make tested eopies of your programs for sates distribution. Treony produce's machine language tapes that are more efficient than those produced by the assembier Itself.
recover faulty oata
With Theory you can experiment with the volume and level controls andyou can SEE what the compater is reading-siven if your computer will not read the data through normal read instructions! In this way it is possible to read and copy faulty tajes by adjusting the volume control until you SEE that the duta is
Injuat froicerty. Injut jrojererty.

SIMPLE - FASCINATING - FUN

TReopy is not only a practical utility progrim. It is also a fascinating graphics program that lets you SEE. for thr first time. cassette data as your com Just load verify and coly You will now be able 10 Juse tasculle luan use cassctle talers with confidence knowing that
Treopy is therc when you need it.

The TReory system is a machinc languatge progrum with documentation explaining tape leaders, sync Wytes, check sums and other formating conventions doingt
2

[^13]abstraction. For example, in the queuing context, we may define procedures for initialization, insertion and deletion, and functions for overflow and underflow. Program correctness is enhanced if these are programmed correctly because queues can then be manipulated only in legal ways. Remember that queues will be passed to these subroutines - not the underlying array data-structure.
Back to the problem of implementing the user declared data-structure types in Pascal. This is accomplished by declaring data-structures at a level above variables:
\[

$$
\begin{gathered}
\text { type persons }=\ldots \\
\text { queue }=\ldots
\end{gathered}
$$
\]

Here the dots indicate the data-structures necessary to implement the type in Pascal. For example, in the queuing theory context, we might have:
> type queue $=$ record
> head, tail: 0 . . maxlength;
> full, empty : boolean;
> contents : array (0 . . maxlength) of integer; end;

Here maxlength is a constant declared earlier in the program which indicates the legal subrange of the integer variables head and tail (used as pointers); full and empty are logical variables indicating the status of the queue; and contents is an array storing the contents of the queue. In this case the queue is storing integers, but it need not - it could just as well be persons:

contents: array (0 . . maxlength] of persons;

Of course, the meaning of persons would have to be declared earlier within the type statement for this to be legal Pascal.

After the user declared data-structures are defined, variables of these types can be declared as follows:

> var waitingline: array $[1 . .3 \mid$ of queue; teller 1 : queue;

These 4 queues are restricted to the definition of queue as shown above. If necessary, we might declare more than 1 type of queue (ie: storing a different type of contents) if the problem context makes that appropriate.

Listing 1 shows Pascal procedures and functions implementing the 5 legal queue operations. Note that the parameters are a and b. A change of the b type declaration is all that is necessary to make these programs workable for a different type of contents. An important point: there is no need to initialize the contents of the queue to a particular value and use this value to decide how to manipulate the pointers, as is implied by the Gorney article. In fact, by doing so a programmer is sowing the seeds for future disasters. If Mr Gorney's queue is ever exposed to a value of -9 , the program may fail. Clearly, making correct operation dependant upon the avoidance of certain potentially legal entries into the data structure is not good programming practice.

At this time it is informative to step through the BASIC language equivalents in the Gorney article using some trial data. The complexity of program execution flow

New RAM Prices. From The Dynamic Memory Company.

$$
\begin{array}{ll}
16 K-\$ 249 & 32 K-\$ 375 \\
48 K-\$ 500 & 64 K-\$ 625
\end{array}
$$

Ever since we started making these memory boards over a year ago we have continued to lower our prices to stay competitive. Due to your confidence in us, we are again able to lower our prices! Our reliability has been proven by months of superior performance in thousands of installations. Our low-power boards are being used by quality-minded systems manufacturers across the country and overseas.

4 MHz boards now available.

After receiving hundreds of requests, our engineering staff has come up with a new version of our board which runs on $4 \mathrm{MHz} \mathrm{Z-80}$ systems. It wasn't easy to come up with a high speed board which would operate as reliably as our 450 ns version, but after months of careful design and testing, we did it. The price of the 250ns board is $\$ 10$ per 16 K additional.

All of our features remain.

Our boards didn't become great sellers only because of the price. We still offer you our deselect feature which allows our RAM to overlap with any fixed memory areas in your system. Also, the RAM area of our board is fully socketed so that you can expand the board yourself.

Other standard features include: plug selectable addressing on 16 K boundaries (shorting plugs are placed over wire-wrap pins to address the board - located on the top of the board for easy changes), S-100 and Z-80 compatability and totally invisible refresh - no wait states.

Fully assembled, tested, and guaranteed.

All of our boards go through a rigorous testing procedure. They are then placed on burn-in running a series of memory tests to detect any other possible faults. After you receive the board, you are backed by us with a one year warrantee.

Low power consumption keeps your computer from "losing its cool."

The total power consumption of our 16 K board is typically less than 4 watts (+8V @ 300ma, +16V@150ma and -16V @ 20ma). Boards with additional memory typically increase power consumption only 1 watf per 16 K !

Standard S-100 Interface.
Our board is designed to interface with any standard S-100 CPU. All of the timing of the board is independent of the processor chip, and the board is set up for different processors by changing two plugs on the board.

Contact your local dealer.

To find out more about our RAM boards, contact your local dealer. If he is unable to help you, call or write us for a fast response. Central Data Corporation, 1207 North Hagan Street, Champaign, IL 61820. (217) 359-8010

Central Data

FOR COMPUTATIONAL APPLICATIONS, including: graphics (scaling and rotations), function generation, digital filtering. FFT's, correlations, matrix operations. etc
HMA-1 Hardware Multiplication Accelerator \$299

- hardware generates sub-products
- SPEEDS integer multiplications by factor 5
- SPEEDS floating point multiplications by several times
- functions (SIN. EXP. etc.) also faster

FPP-1 Floating Point Processor

- associated hardware processor calculates fixed and floating point multiplications and divisions
- also computes many mathematical functions (SIN, EXP. LOG. etc.) in parallel with CPU
- SPEEDS all functions by factor 10 (approximately)

BOTH PRODUCTS

- 5-100 Bus compatible

- supplied with floppy disk contaınıng support library compatible with Microsoft FORTRAN (and all its derivatives)
- random number generators. other functions included
- benchmark programs and measured timing available
- other soltware interfaces in development

Micro Designs
P.O. Box 497, Tour de la Bourse Montreal. CANADA, H4Z $1 \mathrm{J7}$ (514) $288-0817$

Check. Visa, M/C accepted Dealer inquiries invited

WINCHESTER DRIVE CONTROLLER

The XCOMP DC/M Controller provides the OEM with a high performance, low cost interface to the Marksman ${ }^{\text {en }}$ drive. An eight bit bus permits the DC/M to be used with all popular microcomputers.

9915-A Businesspark Ave., San Diego, CA 92131• (714) 271-8730
makes mental execution exhausting and error-prone which is exactly the point: BASIC programs are not as simple as they seem.

The data-abstraction is complete when a Pascal program uses the 5 legal operations upon its variables of type queue. Examples are:

```
initialize (teller1);
if not fullq (teller1)
    then insert (teller, items);
repeat
    delete (teller1, items);
    write (items)
until emptyq (teller1);
```

Note that the programmer has the responsibility to test for overflow or underflow before inserting or deleting items from the queue. This is true even though the respective procedures do nothing for these operational mistakes.

Listing 1: This simple Pascal program defines the data type queue and then describes the 5 legal operations on that data type.
procedure initialize (var a : queue);
begin
a.head : = 0 ;
a. tail :=0;
a.full:= false;
a.empty : = true
end; \{of initialize \}
procedure insert (var a : queue; b: integer);
begin
with a do
if not full
then begin
empty: = false;
contents [tail]: $=0$;
tail $:=($ tail +1$)$ MOD (maxlength +1);
if tail $=$ head
then full := true;
end;
end; \{of insert \}
procedure delete (var a : queue; var b : integer);
begin
with a do
if not empty
then begin
full : = false;
$b:=$ contents [head];
head $:=($ head +1$)$ MOD maxlength +1);
if head = tail
then empty : = true;
end;
end; \{of delete\}
function fulla (a : queue) : boolean; begin
if a.full
then fulla: = true
else fullq: = false;
end; \{of fulla\}
function emptyq (a : queue) : boolean;
begin
if a.empty
then emptya : = true
else emptya $:=$ false;
end; \{of emptyqs \}

Listing 2: The data stack can also be defined in a Pascal program. It is left as an exercise to the reader to translate this program into BASIC or FORTRAN and compare the understandability of the 2 programs.
type stack $=$ record
top: 1 . . maxlength;
full, empty : boolean:
contents : array [1 . . maxlength] of integer; end;
procedure initialize (var a : stack);
begin
a.full := false;
a.empty:= true;
a.top $:=1$
end; \{of initialize \}
procedure push (var a : stack; b:integer);
begin
with a do
if not full
then begin
empty:= false;
contents [top]: $=b$;
if top < > maxiength
then top $:=$ top +1
else full:= true;
end;
end; \{of push\}
procedure pop (var a : stack; var b : integer) : boolean; begin with a do
if not empty
then begin
full : = false;
$b:=$ contents[top];
if $t o p<>1$
then top $:=$ top -1
else empty:= true; end:
end; \{of pop\}
function fullstk (a : stack) : boolean; begin
if a.full
then fullstk:= true
else fullstk: = false;
end; \{of fullstk\}
function emptystk (a : stack) : boolean; begin
if a.empty
then emptystk := true
else emptystk:= false,
end; \{of emptystk \}

In summary, the data-abstraction is an important concept that greatly enhances program correctness. The Pascal programming language includes this concept; BASIC does not. My point again: the simplicity of BASIC is a red herring - it encourages sloppy programming and error-prone programs. A contemporary language like Pascal is explicity designed to encourage errorfree program development, therefore it is worth learning and using. One more point: experienced Pascal programmers know that the language includes pointers as a data type so the queue data-abstraction could be implemented even more easily than shown here. This particular method was chosen to correspond to the approach taken by the Gorney article.

Just as a queue is an FIFO (first in, first out) dataabstraction, a stack is an LIFO (last in, first out) dataabstraction. Listing 2 shows a Pascal type declaration and the subroutines that are necessary to implement the legal operations upon a stack. These are included in the hope that readers may implement this data-abstraction in BASIC or FORTRAN and then compare for themselves the relative merits of these 2 languages to Pascal. \quad

DISCOUNT PRICES

Microcomputers \& Peripherals

Cromemco - SWTPC•Lear-Siegler

 Hazeltine - RCA - North Star Verbatim - Perkin Elmer and othersFast, off the shelf delivery. Call TOLL FREE 800/523-5355

MARKETLINE SYSTEMS, Inc.

2337 Philmont Ave., Huntingdon Valley, Pa. 19006

 215/947-6670 • 800/523-5355Dealer Inquiries Invited

on ALL Computers, Peripherals, Software, and ALL other fine Radio Shack ${ }^{(1)}$ products.

Radio Shaek
 Authorized Sales Center

1117 CONWAY MISSION,TEXAS 78572
(512) 581-2765

VISA ${ }^{\prime}$
NO TAXES on out-of-state shipments. FREE Surface delivery available in the U.S WARRANTIES will be honored by your local Radio Shack ${ }^{(1)}$ store.

maximum Value FOR YOUR DOLLAR

NORTH STAR COMPUTER PRODUCTS
HORIZON 1 16K KIT $\$ 1275.00$
16K RAM BOARD KIT $\$ 250.00$ 32K RAM BOARD KIT $\$ 475.00$
VERBATIM DISCS FOR NORTH STAR BOX OF 10 \$29. POSI PAID
COMPLETE SYSTEMS AVAILABLE
CUSIOM SOFTWARE FOR NORTH STAR SYSIEMS

CASIO CALCULATORS

AT DISCOUNT PRICES
many other super values WRITE OR CALL:
A.E.I.

3851 HACKETT AVE.
LONG BEACH, CALIF. 90808
(213) $421.4815 \quad$ (213) 429.0535

SURPLUS ELECTRONICS

ASCII

IBM SELECTRIC
BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED \$645.00

- Tape Drives - Cable
- Casserte Drives Wire
- Power Supplies 12V15A, 12V25A,

5V35A Others, Displays

- Cabinets - XFMRS - Heat

Sinks - Printers - Components
Many other items
Write for free catalog
WORLDWIDE ELECT. INC.
130 NORTHEASTERN BLVD NASHUA, N.H. 03060
Phone orders accepted using VISA or MC. Toll Free 1-800.258-1036 In N.H. 603-889.7661

Circle 391 on inquiry card.

6800/6801
 MICRO SOFTWARE

Floppy Discs

Lowest prices. WE WILL NOT BE UNDERSOLD!! Buy any quantity 1-1000. Visa. Mastercharge accepted. Call free (800)235-4137 for prices and information. All orders sent postage paid.

Circle 294 on inquiry card.

SHORT CASSETTES

List $\$ 1.010$ (or $\$ 7.50 \quad 50$ for $\$ 32.50$
MICROSETTE CO.
777 Palomar Ave. Sunnyvale. CA 94086

Duplication Services

Microsette also offers professional duplication services for Commodore PET and Radio Shack TRS-80 Level I and Level II cassettes. Our Level 1 and Leved if cassettes. Our control. all material including twopiece box, affixing of your labels or supplying our blank labels and shipping. Prices start at $\$ 2.00$ each in 100 quantity.

MICROSETTE CO.
777 Palomar Ave. Sunnyvale. CA 94086

* * * CROSS SOFTWARE * * *

6800/6801 assembler \$ 800
PL/W compiler \$1400
cross linker \$ 400
math/science \$ $\$ 00$
simulator \$ 800
" * RESIDENT SOFTWARE ***
editor/assembler \$ 95
industrial 4K BASIC \$ 95
in ROM \$299

W wintek

317-742-6802
902 N. 9th St., Lafayette, IN 47904

Circle 389 on inquiry card.

6orrororror Toll-free Subscriber W.A.T.S. Line (800) 258-5485

To further improve service to our customers we have installed a toll-free WATS line in our Peterborough, New Hampshire office. If you would like to order a subscription to BYTE, or if you have a question related to a BYTE subscription, you are invited to call (800) $258-5485$ between 8:30 AM and 4:30 PM Eastern Time. This applies to calls from within the continental US only.

We thank you and look ionward to serving you.
Celecelecelecelecece

MORE INNOVATIONS!

fROM

P.S. SOFTWARE HOUSE

FORMERLY PETSHACK
PET* INTERFACES

PET SCHEMATICS

PET ROM ROUTINES
FOA OMY STO P YOu GET

 SOFTWARE:

\qquad

P.S. SOFTWARE HOUSE

P.O. Box 966

MIshawaka. IN 46544 -2 Tel: (219) 255-3408

Circle 315 on inquiry card.
The Independent $\eta_{\text {zws letter }}$
of Heath Co. Computers peatures
Hardware Modifications developed by readers

Compatible hardiware and soft ware from other vendors
Advance information on Benton flarbor plans
Reports of users' experiences with their s ystems
 24issus: $\$ 15.95($ ($\% 25$ overseas) Payable on Back issues (labout 9) included on request

BuSS

325.B Pennsyluania Ave., S.E.

Washington, D.C. 20003
Circle 32 on Inquiry card.

- CRT INTERFACES =black = white/color

Monifors Combination Revr/monitor sets * Modulator kits * B-W Cameras * Color Cameras * Audio Subcarrier kits © Parts

> WRITE or PHDNE for DETAILS \& PRICING.

13-B
Broadway ATV Research, Dakota city, Broadway 4 Researcin NE. $6873 夕^{\prime}$

GODBOUT SLASHES STATIC MEMORY PRICES fGGil:

Econoram* unkits are now at their lowest prices ever. What's an "unkit"? It's a standard Econoram board that has all sockets and bypass caps pre-soldered in place. To complete assembly, the user simply solders in a few other parts, and inserts all ICs into their sockets. The result: A one-evening project that saves money while offering true CompuPro/Econoram quality for those on a budget. Static technology used throughout; all boards except Econoram VI run with 4 MHz systems. Same 1 year limited warranty, same great specs as our regular boards.
Speaking of regular boards, we offer assembled/tested models and boards qualified under our high-reliability Certified System Component (CSC) program (200 hour burn-in, immediate replacement in event of failure within 1 year of invoice date). Refer to chart below for pricing.

Name
Econoram IIA
Econoram IV
Econoram VI
Econoram VIIA-16
Econoram VIIA-24
Econoram IX-16
Econoram IX-32
Econoram X
Econoram XI

Storage	Buss
$8 \mathrm{~K} \times 8$	$\mathrm{~S}-100$
$16 \mathrm{~K} \times 8$	$\mathrm{~S}-100$
$12 \mathrm{~K} \times 8$	H 8
$16 \mathrm{~K} \times 8$	$\mathrm{~S}-100$
$24 \mathrm{~K} \times 8$	$\mathrm{~S}-100$
$16 \mathrm{~K} \times 8$	Dig Grp
$32 \mathrm{~K} \times 8$	Dig Grp
$32 \mathrm{~K} \times 8$	$\mathrm{~S}-100$
$32 \mathrm{~K} \times 8$	SBC

Configuration	Unkit	Assm	CsC
$2-4 \mathrm{~K}$ blocks	$\mathbf{\$ 1 4 9}$	$\mathbf{\$ 1 7 9}$	$\mathbf{\$ 2 3 9}$
$1-16 \mathrm{~K}$	$\mathbf{\$ 2 6 9}$	$\mathbf{\$ 3 2 9}$	$\mathbf{\$ 4 2 9}$
$1-8 \mathrm{~K}, 1-4 \mathrm{~K}$	$\mathbf{\$ 2 0 0}$	$\mathbf{\$ 2 7 0}$	n / a
$2-4 \mathrm{~K}, 1-8 \mathrm{~K}$	$\mathbf{\$ 2 7 9}$	$\mathbf{\$ 3 3 9}$	$\mathbf{\$ 4 3 9}$
$2-4 \mathrm{~K}, 2-8 \mathrm{~K}$	$\mathbf{\$ 3 9 8}$	$\mathbf{\$ 4 8 5}$	$\mathbf{\$ 6 0 5}$
$2-4 \mathrm{~K}, 1-8 \mathrm{~K}$	$\mathbf{\$ 3 1 9}$	$\mathbf{\$ 3 7 9}$	n / a
$2-4 \mathrm{~K}, 1-8 \mathrm{~K}, 1-16 \mathrm{~K}$	$\mathbf{\$ 5 5 9}$	$\mathbf{\$ 6 3 9}$	n / a
$2-8 \mathrm{~K}, 1-16 \mathrm{~K}$	$\mathbf{\$ 5 2 9}$	$\mathbf{\$ 6 4 9}$	$\mathbf{\$ 7 8 9}$
$2-8 \mathrm{~K}, 1-16 \mathrm{~K}$	n / a	n / a	$\mathbf{\$ 1 0 5 0}$

BANK SELECT MEMORIES (for Alpha Micro Systems, Marinchip, etc.)

Econoram XII-16	16K X 8	S-100	2 ind. banks**	$\mathbf{\$ 3 2 9}$	$\mathbf{\$ 4 1 9}$	$\mathbf{\$ 5 1 9}$
Econoram XII-24	$24 \mathrm{~K} \times 8$	$\mathrm{~S}-100$	2 ind. banks**	$\mathbf{\$ 4 2 9}$	$\mathbf{5 5 3 9}$	$\mathbf{\$ 6 4 9}$
Econoram XIII	$32 \mathrm{~K} \times 8$	$\mathrm{~S}-100$	2 ind. banks**	$\mathbf{\$ 5 5 9}$	$\mathbf{\$ 6 9 9}$	$\mathbf{\$ 8 4 9}$

- Econoram is a trademark of Bill Godbout Electronics
- Did someone say extended addressing? 16 bit CPUs? All we'll say is that Econoram XIV is coming soon -

OTHER COMPUTER PRODUCTS:

2708 EROM BOARD UNKIT $\$ 85$

4 independently addressable 4 K blocks, with selective disable for each block. Built to Compupro/Econoram standards (dipswitch addressing, top quality board. sockets weve-soldered in place), and includes dipswitch selectable jump start built right into the board. Includes all support chips and manual, but does no include EROMs.

ACTIVE TERMINATOR KIT $\mathbf{\$ 3 4 . 5 0}$

As written up by Craig Anderton in the April '79 issue of Kilobaud Microcomputing. Our much imitated design plugs into any $\mathrm{S}-100$ motherboard to reduce ringing, crosstalk, noise. and other buss-related problems.

TERMS: Cal res add tax. Allow 5\% ship. ping, excess refunded. VISA $/$ Master. charge call our 24 hour order desh at (415) 562-0636. COD OK with street ad dress for UPS. Prices good through cover
month of magazine.

Box 2355, Oakland Alrport, CA 94614

"INTERFACER" S-100 I/O BOARD

$\$ 189$ unkit, $\$ 249$ assembled and tested. Dual serial port with 2 full duplex parallel ports for RS-232 handshake; EIA232C line drivers and receivers (1488, 1489) along with current loop (20 mA) and TTL signals on both ports. On board crystal controlled timebase with independently selectable Baud rate generators for each part (up to 19.2 KBaud). This board has hardware LSI UARTs that don't tie up the computer's CPU. operates with 2 to 5 MHz systems, includes software programmable UART parameters/ interrupt enables/handshaking lines, offers provision for custom frequency compensation on both receive and transmit sides to accommodate varying speed/noise situations or unusual cable lengths . . . and even all this isn't the full story on what this no-excuses board can do for you. We think this product is a real winner: check one out in person. you'll see what we mean.
from

FREE FLYER: We'll be glad to tell you more than the space of this ad permils. Just send your name and address, we'll take care of the rest. If you're in a hurry, enclose 41 c in tamps for lith class delivery.

Circle 16 on inquiry card.

SOFTWARE FOR

APPLE II

All progyams on high quality cassette tape ready 10 er All programs on high quality casserte tape ready 10 a
use on any Apple II Sysiem with Applesot Liberal use of prompting allows easy use even for the novice

MATRIX MANIPULATION: Compules inversion. de terminate and solution of linearly independent simul taneous equations Also pertorms malrix mulliplica fion division, addition \& subtraction $8 \mathrm{~K} \cdot \$ 17.50$

TRIANGLE SOLUTIONS: Compules unknown quan thites (including area) tor any triangle Also computes area ol any polygon $8 \mathrm{~K} \cdot \mathbf{\$ 1 5 . 0 0}$
INVESTMENT A MORTGAGE MANAGEMENT: JuS। the program for the homeowner. small investor or business executive laced with diticull hinancial decisions Compules amortization schedule, present of lulure values of a series of cash llows. days betweet
dates. plus more $8 K . \$ 17.50$

COMPUTER CAJUN CUISINE: Program compules exact amounts of all ingredients necessary lor any number of servings tor eight Loulsiana soup and number of servings for eigh
gumbo recipes $16 \mathrm{~K}-\mathbf{\$ 2 5 . 0 0}$

Send check or money order to TECHNICAL SOFTWARE INC Metarie Lousiana 70033

THE COMPETITION

is south of the border WHAT ARE THEY UP TO NOW?

Microprocessor sales in LATIN AMERICA are going to take off in the next decade.

Let me help you research the market, set up dealer/distributorships, establish joint ventures, or even your own manufacturing/assembly plant.
1 am a multi-lingual, scientificallytrained, international marketing executive (USA national) who is going to head up an expansion into Latin America for an aggressive microprocessor/minicomputer manufacturer - will it be for you? I plan to visit the USA shortly and can meet you

Roy J. Canon
22/23 Old Burlington Street, London W1X 1R1, England.

Circle 41 on inquiry card.

PRECISION MICROCOMPUTER POWER SUPPLY MODEL MPO4

$\$ 169$
4 OUTPUTS:
SV 6 4A $-5 v$ 日. 1 A
 -12 V -. 5 A

FULLY REGULATED
CURRENT LIMITED
ASSEMBLED AND TESTED
Sand chack or manay order to
SONTEX. INC 12022 Sturdivant Stofford. TX 77477
Texas reaidents add 5% soles tax

DOCUMENTATION PROBLEMS?
SOLVE THEM WITH TEXTWRITER ${ }^{\text {(10 }}$
THE ULTIMATE TEXT FORMATTER FOR REPORTS

- automatically prints a table of con

TINTS AND AN ALPHABETIZED INDEX
-allons multiple footnot es per page
FOR FORMLETTERS

- NSERTS NAMES AND AIDDRESSES IFROM A MAILING LIST ORI:ROM TIE KEYBOARD
- links itles together by chaining or INSERTING
OTHER FEATURES
- RIGHT AND LEITT JUSTIIICATION, PAGINATION

PAGE AND CHAPTER NUMBERS. PAGE HEAD-
INGS ANI) IOOTINGS, CENTERING. UNDER LINING, AND CONIDITIONAL PAGINATION

- WORKS WITII ANY TERMINAL AND PRINTER VERSIONS
- 1 OR CP/M ${ }^{(\sqrt{6})}$ ON $8^{\prime \prime}$ IBM, TRS-80. ${ }^{9}$ NORTH STAR.

ANI MICROPOLIS

- FOR MICROPOLIS MDOS OR NORTH STAR DOS SI25 FOR TEXTWRITER III - REQUIRES 32K SYSTEM $\$ 75$ IOR TEXTWRITER II-WITHOUT REPORT IEATURES

ORGANIC SOFTWARE 1492 Windsor Way - Livermore, CA 94550 (415) 455-4034

[^14]Circle 295 on inquiry card.

tinyFORTH

tinyFORTH is the cassette orlented version of the dictionary based computer language called FORTH.
tinyFORTH includes these FORTH features: ح Dictionary-orlented structured high-leve language - Built-in assembler and text editor - interpreter for quick progrom development, Compiler for fost execution \checkmark tinyFORTH and FORTH programs are interchangeoble r Cassette tape input and output \sim Enhanced graphics \sim Faster \& more powerful than level II BASIC - More compact programs than BASIC \sim Easy to use.
tinyFORTH cossette for TRS-80 and full dacu mentotlon.
$\$ 29.95$
Dacumentation only
$\$ 9.95$
All arders are fully guaranteed. Add $\$ 1.50$ far postage and hondling. Order with check. money order, Viso, or Mastercharge. Speclify TRS-8O level when ordering.

The Software Farm

Box 2304Al
Reston VA 22090

Circle 365 on inquiry card.

6800 BASIC CROSS REFERENCE

Greatly reduces the time to examine and modify a BASIC program with this complete CROSS REFERENCE listing of a BASIC program.
Reads a BASIC program from disC and selectively provides source listing and complete SORTED CROSS REFERENCE of all VARIABLES F FUNCTIONS . GOTO and GOSUB statements.

Program is written in assemble using SMOKE SIGNAL MINI DISK SYSTEM Specify as either TSC or CO-RES assemble source format.
Complete source and object is on a $5 \frac{1 / 4}{4}$ mini diskette for \$14.95.

FRANK SCHIELE 1375 TOBIAS DRIVE CHULA VISTA CA. 92011

Circle 351 on inquiry card.
HAZELTINE 1400
only \$649.95!

- Verbatim Mini Diskettes
$\$ 3.70$ each (boxes of 10)
- Intertube . . \$784.00
- TRS-80 16K Level II Expansion Kit \$89.95
- Centronics 779 tractor . . .
$\$ 1050.00$
- Horizon II ass. . . . $\$ 1999.00$

TORA SYSTEM INC
Order
Only

29-02 23 rd Avenue Astoria NY 11105 (212) 728-5252

Circle 333 on inquiry card.

ENGINEERING PROGRAMMERS Don't Come To Mass..

Untess you enjoy challenglng micro software development prolects with some of the fastest growing commercial systems manufacturers In the U.S. Our clients offer generous salarles, flexible hours, profit sharing, etc. to experienced or degreed assembly programmers in areas such as communications, diagnostics, text editing, graphics, compiler, and O.S. design. Starting salaries $18-28 \mathrm{~K}$. All fees, relocation and interviewing expenses assumed by the companies.

Please contact Dave Adams (617) 246-2815 (collect calls accepted). N.E. Recruiters, 6 Lakeside Office Park, Wakefield, MA 01880.

FOR THE VERY BEST IN

NORTHSTAR ${ }^{\circledR}$ COMPATABLE SOFTWARE

BUSINESS

CRS - Client Record System. A complete program package for the Insurance agent. CAS will provide you with very fast online access to your client records. print reports and mail labels, and give you all the information you will need to increase your sales through the use of CRS as a MARKETING TDDL.
CRS stores a complate record for aach client that includes the name, address, talephone \#. as well as provisions for customer \neq, salesman ${ }^{\#}$ and up to six policias (expandabla if needed). The policy information is complate with both the type of converoge sand the campany that is underwriting it, as well as exp. date, premium, term, and payment schedule. You also have a remark field.
You can search the filas by any field, and CRS supports a powarful 'sieve' search to provide you with all the information you need to increase insurance seles. CRS comes with iwol 2) users manuals. one for the owner, and one for office personnell (minimal system: one drive, 40K RAM starting 2000H1 8250.00 (manuat: 440.00)

TEXT PROCESSORS

TFS - Text Formatting System. At last a full featured text processor for MorthStar that you can rely onl TFS has laft \& right margin justification, page numbering, chaptering, page headings cantaring. paged output \& MORE. Supports powerful text manipulations including: globel \& local 'sesrch and change.' fila merges and block moves. This means that you can restructure your text file st any time to look the way you want it to, you can even 'chain' files together from disc for documenta larger than your current memory.
TFS is completaly 'load and 30° tharafore you can start using it at once. You get twol2) users manuals: one is a Quick Start manual to get you going in minutes, the other is an in depth study of TFS. TTFS requires Ram from 0000H to 2000h) $\$ 75.00$ manual only: 320.00

ASSEMBLERS

ARIAN - A complate 8080 assembler that intariaces directly to your DDS. ARIAN is completaly load and go'. Festures include: dynamic file and RAM allocation, custom disc and RAM command capbility, several library routines directly accessable by the user, Also, I complate text editor, and ystem axecutive, ARIAN is both powertul and assy to learn and use; it is an assembler that you can grow with. Comes complete with a 51 page users manual larlan requires RAM from DODOH to 2000H) 150.00 imanual alone: $\$ 10.00\}$
ARIAN Utility Package - Several disc bated utilities. Includes a complate DEbuG Packaga: 50.00

PROGRAMMING LANGUAGES

Tiny' PASCAL - This is the famous ChungiYuen Tiny' PASCAL. FAST - ELEGANT STRUCTURED. Local and global variables plus procedure and function independence make Tiny PASCAL great for high apeed applications. Compiles to 8080 code thet executes up to 25 times faster than BASIC. You also recieve SDURCE to Tiny PASCAL written in PASCAL. This means that you can compile the compilert add features, relocate, etc. (you will need 35k to do this) $: 40.00$ UTILITIES
DEBE. (Dogs Evarything But Estl) This is a must for NorthStar users. You con: CDMPACT \& EXPAND BASIC programs. Compacting removes un-necessary apaces and remarks. This seves memery and makes for programs run faster. Expanding puts them back aggin.
Cross-reference BASIC programe by variables and transfer statements.
Global substitutions of variable nemes in BASIC programs.
Formatted print outs of BASIC programs as wall. $\$ 40.00$

SPECIFY SINGLE OR DOUBLE DENSITY ALL ORDERS PREPAID OR C.O.D. ILLINOIS RESIDENTS ADD 5\% SALES TAX

SUPERSOTT

P.O. Box 1628

Champaign, IL 61820
(217) 344-7596

68 MICRO JOURNAL
 Months ahead of all others with 6800/09 articles \& new products

\star
\star

Crunchers Corner - Bryant (A monthly programming tutorial) * Flex ${ }^{14}$ to BFD - Puckett * Tiny Music Thompson * Semiconductor, Part 1 - Kinzer *Soup Up Your TVT - Pass * Hints \& Kinks - fixes (soft \& hard) * 50 pages plus Each Month!

Crunchers Corner - Bryant * A Look at the SWTPC CT-82 - Ferguson * 6800 Relative Branch Calculation (Hand) Berenbon * Relative Calculator (Machine) - Heatherington * Maillist (Disk) - Lilly * Modems - Schuman * Semiconductor Part 2 - Kinzer * Locate - Pigford * A20 MA, Printer-SWTPC - Perdue * AS-50 Monitor Board - Pentecost - TSC Basic for 6800 - Shirk * Plus Much-Much More!

Crunchers Corner - Bryant A Case for the Small DOS - Mauch * MF-68 Motor Fix - Sorrels Transfer (FLEX 1 to 2 or 5) Womack * 6800 Delay - Beren bon * Make Like a 6809 - Fein luch * Games (Basic) - Harmon - Boot (Flex-BFD) - Puckett Freeze Display (SSB) - Johnson * Paper Tape Reader - Adams * FLEX'* Fixes and Much More!

KB BYTE CC DOBB'S PAGES.
$\begin{array}{llllll}7.8 & 6.4 & 2.7 & 2.2 & 19.1 \text { ea. mo. }\end{array}$
Average cost for all four each month: $\$ 5.88$ (Based on advertised 1 -year subscripition price) '68' cost per month: $\$ 1.21$ That's Right! Much. Much More for About
1/5 the Cost!
EFFECTIVE SEPT. 1, 1979

- Year $\$ 14.50 \quad 2$ Years $\$ 26.00 \quad 3$ Years $\$ 36.50$

OK PLEASE ENTER MY SUBSCRIPTION
Bill My: Master Charge \square —VISA :
Card $=-\quad-$ Exp. Date For $\square 1$ Year $\square 2$ Years $\square 3$ Years Enclosed: S

Name
Street
City State Zip
My Computer Is
68 MICRO JOURNAL 3018 Hamill Road HIXSON, TN 37343

FOREIGN ADD:
$\$ 9.50$ Per Yr. Surface \$26.50 Per Yr. Air Mail

IMMEDIATE DELIVERY

 Domestic \& Export DEC LSI -11 COMPONENTSA full and complete line with software support available.

Mini Computer Suppliers, inc.

25 CHATHAM ROAD SUMMIT, NEW JERSEY 07901 SINCE 1973
(201) 277-6150 Telex 13-6476

WE'VE GOT YOU COVERED!

Cover Craft Dust Covers protect your hardware and your investment. Save maintenance, downtime and look great. Our Dust Covers come in hundreds of sizes each custom designed to fit a particular model of terminal. CPU, Line Printer, Floppy Disk. They're a proven way to help eliminate dust and dirt accumulation, improve system reliability and save many times the cost in reduced maintenance and downtime. What's more, your satisfaction is 100% guaranteed.
Cover Craft Dust Covers are available from your local computer retailer
or contact Cover Craft. $\mathbf{\$ 6 . 9 5 - \$ 9 . 9 5}$
Can you afford to wait any longer?

COVER CRAFT
P.O. Box 555, Amherst, NH 03031 Telephone (603) 673-8592

Even Oueve

Abstract

In order to gain optimum coverage of your organization's computer conferences, seminars, workshops, courses, etc, notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, 70 Main St, Peterborough NH 03458. Each month we publish the current contents of the queue for the month of the cover date and the two following calendar months. Thus a given event may appear as many as three times in this section if it is sent to us far enough in advance.

SEPTEMBER 1979

September 4-6

 International Conference and Exhibition on Engineering Software, University of Southampton, England. The aim of this conference is to provide a forum for the presentation and discussion of recent advances in engineering software and to present a state-of-the-art in this field. The exhibition held in conjunction with the conference will cover all software products, services and equipment related to engineering software. Contact Dr R Adey, Engsoft, 6 Cranbury Pl, Southampton S02 0LG, ENGLAND.
September 4-7

Compcon Fall '79, Capital Hilton Hotel, Washington DC. This 18th Institute of Electronic and Electrical Engineers (IEEE) Computer Society International conference will present the latest developments in microprocessor architecture, support software, operating systems, and peripheral devices. Contact IEEE Computer Society,

POB 639, Silver Spring MD 20901.

September 5-8 Info/Asia, Ryutsu Center, Tokyo. This exposition will be devoted to information management, computers, word processing, and advanced business equipment. The exposition will be accompanied by a 4 day conference. Contact Clapp and Poliak Inc, 245 Park Ave, New York NY 10017.

September 8 2nd Annual Microcomputer Faire, Cullen College of Engineering, University of Houston. 70 exhibitors are expected at this computer fair. Contact Dr John L Hubisz, Division Natural Science and Math, College of the Mainland, Texas City TX 77590.

September 12-13 Gateway Computer and Office Systems Expo, ChasePark Plaza Hotel, St Louis MO. This 2 day event will include a program of exhibits and conferences which will be open to data procesing and business professionals. Contact The Conference Co, 60 Austin St, Newton MA 02160.

September 18-20
Wescon/79, St Francis Hotel, San Francisco CA. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245.

September 24-26 Minicomputers and Distributed Processing, New York NY. This 3 day seminar will examine the uses, economics, programming and implementation of mini computers. Contact The University of Chicago, Center for Continuing Education, 1307 60th St, Chicago IL 60637.

September 25
DP User Documentation Workshop, Kansas City MO. The workshop will focus on how to write DP user manuals. Emphasis is on analysis of specific user needs; planning and outlining; and effective writing, illustration and packaging of documentation. Contact Progressive Communications Inc, The Alamo/310, 128 S Tejon St, Colorado Springs CO 80903.

September 25-27

Mini/Micro Conference and Exposition, Convention Center, Anaheim CA. Contact Robert D Rankin, Managing Director, Mini/Micro Conference and Exposition, 5528 E La Palma Ave, Suite 1A, Anaheim CA 92807.

September 25-27
WPOE '79, San Jose Conventer Center, San Jose CA. This show will be dedicated to word processing and office/business equipment, services and materials. Complementing the exhibit will be a 3 day executive conference program that focuses on emerging technologies and their applications in the office. Contact Cartlidge and Associates Inc, 491 Macara Ave, Suite 1014, Sunnyvale CA 94086.

September 25-28 The 3rd Annual Data Entry Management Conference, Hyatt Regency, New Orleans LA. This conference will feature a full schedule of speakers, workshops, panels and vendor exhibits to assist the data entry professional. Contact Data Entry Management Association, POB 3231, Stamford CT 06905.

September 26-29
MIMI '79, Queen Elizabeth Hotel, Montreal, Canada. This symposium is intended as a forum for the presentation and discussion of recent advances in mini and microcomputers and their applications. Special em-
phasis will be given to the theme of the conference "The Evolving Role of Minis and Micros Within Distributed Processing." Contact The Secretary, MIMI '79 Montreal, POB 2481, Anaheim CA 92804.

September 28-30

Northeast Personal and Business Computer Show, Hynes Auditorium, Boston MA. Displays and exhibits will showcase microcomputers and small computer systems of interest to businesspeople, hobbyists, professionals, etc. Lectures and seminars will be presented for all categories and levels of enthusiasts, including introductory classes for novices. Contact Northeast Exposition, POB 678, Brookline MA 02197.

OCTOBER 1979

October 1-3
2nd Annual Symposium on Small Systems, Hilton Inn, Dallas TX. The symposium will consist of a blend of paper and panel discussions with major emphasis on microcomputer applications. Both hardware and software topics presenting state-of-the-art and state-of-theindustry aspects will be included. Contact Gerald Kane, Southern Methodist University, Dallas TX 75222.

October 2-4

NEPCON Central '79, O'Hare Exposition Center, Rosemont IL. This 10th annual exhibition and conference of electronic and microelectronic packaging and production equipment will feature displays of electronic and microelectronic materials, hardware, tools, supplies and test instruments. Contact Industrial and Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606.

October 14-17

 International Data Processing Conference andThe CY-480 UPC's . . . providing the kind of service and special features others don't!
And that means for off-the-shelf low prices, the CY-480 provides great flexibility and easy intertacing. Cybernetic Micro Systems' amazing CY-480 will control and easy intertacing. Cybernetic Micro Systems amazing CY-480 will conirol and
Practical Automation and Amperex) with speeds up to 200 CPS ! Operating from a single +5 V power supply, the flexible CY 480 will intertace easily with any microcomputer or minicomputer system through standard 8 -bit ports. The CY-480 accepls either serial (RS232C) or parallel ASCII input from the host system's data channel.
The CY-480 replaces bulky, expensive, dedicated controllers
This small, single LSI package offers a 5×7 dot matrix character generator, full upper and lower case ASCII 96-character font, and a 48-character (expandable by daisy-chaining) internal line buffer storage. Standard features include a 10.12 or 16 characters/inch variable character density command, and horizontal and vertical independently expanded print command. The CY-480 provides graphic capability and includes a "flip-print" operating mode for 180° viewing, and ready lines provide full asynchronous communicatinns with handshaking.
Stock dellivery . . . oniy $\$ 25$ a single unit . . . send for YOURS today!
CYBERNETIC MICRO SYSTEMS
2378-B Walsh Ave., Santa Clara, CA 95050 VISA and Phone (408) 249-9255.

MASTER CHARGE accepted.

P\&T-488 + S-100 computer $=$ Intelligence for your Instrumentation System

The P\&T-488 permits an S-100 computer to operate as a talker, listener, or controller on the IEEE-488 instrumentation bus for less than half the cost of calculator-based systems. Software packages which give access to the 488 bus from high level languages such as BASIC are available for CP/M, North Star DOS /BASIC, and Cromemco CDOS. Or "roll your own" system with the custom system package of assembly language drivers. P\&T-488, assembled and tested, + any
 software package: $\$ 400$ (domestic USA)

Main/Frames Main/Frames mm \$200
 - 14 Basic Models Available

- Assembled \& Tested
- Power Supply:

6v@15A, $\pm 16 v @ 3 A$

- 15 Slof Motherboard
(connectors optional)
- Card cage \& guides
- Fan, llne cord, fuse, power
\& reset switches, EMI filfer
- 8v@30A, $\pm 16 \mathrm{v@10A}$

> Write or call for our brochure which includes our application note: 'Building Cheap Computers' NIEGRAND

8474 Ave. 296 • Visalia, CA 93277 • (209) 733.9288 We accept BankAmericard/Visa and MasterCharge

Business Exposition, Town and Country Hotel, San Diego CA. Contact Data Processing Management Association, 505 Busse Highway, Park Ridge IL 60068.

October 15-18

 6th Information Management Exposition and Conference, New York Coliseum, New York NY. Contact Clapp and Poliak Inc, 245 Park Ave, New York NY 10017.
October 15-19

CPEUG 79, San Diego CA. This is the 15th meeting of the Computer Performance Evaluation Users Group sponsored by the National Bureau of Standards. Contact Judith G Abilock, The MITRE Corp, Metrek Div, 1820 Dolley Madison Blvd, McLean VA 22102.

October 16-18 Understanding and Using Computer Graphics, Washington DC. This course is for people who are now using, or making decisions about using computer graphics and its role in their organization. It will describe computer graphics, explain what hardware and software systems are available and give cost and performance comparisons. Contact Frost and Sullivan, 106 Fulton St, New York NY 10038.

October 20-21 4th Annual Tidewater Hamfest-Computer ShówFlea Market, Cultural and Convention Center, Norfolk VA. Contact TRC, POB 7101, Portsmouth VA 23707

October 21-23

New York State Association for Educational Data Systems Annual Conference, Granit Hotel, Kerhonksen NY. The theme of this conference is "Instructional Computing - Hardware/Software/Courseware." Contact Mary E Heagney, 9201 Shore Rd, Brooklyn NY 11209.

October 22-24 The Association of Computer Programmers and Analysts 9th Annual Conference, Washington DC. The general theme of this conference is "Preparing Today for Tomorrow's New Technologies." Suppliers of software packages and computer services have been invited to describe and present their products in a series of structured presentations. Other sessions will cover trends in system technology and new methodologies for sharpening the professional skills of both systems analysts and programmers. Contact DBD Systems Inc, 1500 N Beauregard St, Alexandria VA 22311.

October 22-24

Computers in Aerospace

 Conference II, Hyatt House Hotel, Los Angeles CA. The conference theme, "Computer Technology for Space and Aeronautical Systems in the 80 s ," will be carried out by a series of panels, invited presentations, and contributed papers which will bring computer system technologists together with specialists in the application of embedded computers in space and aeronautics. Contact American Institute of Aeronautics and Astronautics, 1290 Ave of the Americas, New York NY 10019.October 22-25 ISA/79, O'Hare Exposition Center ${ }^{\text {r }}$ Chicago IL. The conference theme, "Instrumentation for Energy Alternatives," will emphasize current practices in instrumentation design and implementation. Contact Instrument Society of America, 400 Stanwix St, Pittsburgh PA 15222.

October 22-26
Pascal Programming for Mini and Microcomputers, Ramada Inn, Woburn MA Sponsored by the Polytechnic Institute of New York and the Institute for Advanced Professional Studies, this workshop will
include application examples, lectures, informal sessions with the instructor, as well as individual and group programming sessions. Contact Professor Donald D French, Institute for Advanced Professional Studies, One Gateway Ctr, Newton MA 02158.

October 28-30

The 10th North American Computer Chess Championship, Detroit Plaza, Detroit Michigan. Sponsored by the Association for Computing Machinery, this is a 4 round Swiss style tournament with the 1st 2 rounds to be played on October 28th (1 PM and 7:30 PM), the 3rd on October 29th (7:30 PM) and the final round on Tuesday, October 30th (7:30 PM). Contact Monroe Newborn, McGill University, School of Computer Science, 805 Sherbrooke St W, Montreal PQ,
CANADA H3A 2K6.

NOVEMBER 1979

October 29 - November 2 Applied Interactive Computer Graphics, University of Maryland, College Park MD. This course is designed to cover the most important facets of graphics that are necessary to develop general graphic applications. Systems considerations are stressed, including configuration selection criteria and the pros and cons of off-the-shelf software. The most important factors and techniques are described for hardware, software and geometric modeling. Contact UCLA Extension, 10995 Le Conte Ave, Los Angeles CA 90024.

October 30 - November 1 Interface West, Anaheim Convention Center, Anaheim CA. This 3rd annual West Coast small computer and office automation systems conference and exposition will feature over 100 company exhibits and 60 conference
sessions covering a variety of data processing, word processing, data communications, mangement hardware, software and service topics. Contact the Interface Group, 160 Speen St, Framingham MA 01701.

November 5-8

Electronics Production Engineering Show, Kosami Exhibition Center, Seoul Korea. This international industrial exposition will be devoted to the needs of manufacturers of electronic products in Korea. Contact Expoconsul, Clapp and Poliak International Sales Div, 420 Lexington Ave, New York NY 10017.

November 6-8

 Midcon/79 Show and Convention. O'Hare Exposition Center and Hyatt Regency O'Hare, Chicago IL. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245.November 6-8
Institute of Electronic and Electrical Engineers (IEEE) 3rd International Conference on Computer Software and Applications, The Palmer House, Chicago IL. Contact IEEE Computer Society, POB 639, Silver Spring MD 20901.

November 6-8

 3rs Digital Avionics Systems Conference, Fort Worth TX. This conference will probe the expectations and challenges of the digital revolution in avionics systems. Contact John C Ruth, Technical Program Chairman, POB 12628, Fort Worth TX 76116.November 12-14 Computer Cryptography, The George Washington University, Washington DC. The objective of this course is to provide each participant with a working knowledge of the use of cryptography in computer applications. Contact Continuing Education, George Washington University, Washington DC 20052. .

TURN ON YOUR TRS-80 DISK SYSTEM AND GO RIGHT INTO YOUR BASIC PROGRAM-YOUR TRS-80 WILL LOAD AND RUN PROGRAMS-BY ITSELF! Yes, with this unbelievable program your computer will take command of itself whenever power-on or reset is pressed. Go from DOS all the way into your Basic program, execute DOS or Basic commands, load and execute any machine-language programs or subroutines you need (such as printer drivers, machine language sorts, etc.), set your file buffers and memory size, then run any Basic program you want, without lifting another finger! BOOTSTRAP's custom files make turn-key end-user applications simple! Requires disk system, works with DOS 2.1, 2.2 and NEWDOS, completely documented for easy implementation.
$\$ 15.95$

PRACTICAL APPLICATIONS ${ }^{\text {TM }}$

(415) 592.6633

1313 Laurel St., Suite 15, San Carlos, CA 94070
\square Please send me TRS-80 BOOTSTRAP
($\$ 15.95$ each enclosed. Calif. residents add tax).
\square Send your catalogs.
Name \qquad
Address
City
\qquad
\qquad State \qquad Zip \qquad 8979
TRS.80 is a trademark of Tandy Corp. 8979

"THE ORIGINAL" $\begin{gathered}\text { Personal } \\ \text { computing }\end{gathered}$
79

Plan Now to attend the best Personal Computing show ever.

Friday, Saturday, Sunday October 5-6-7th Philadelphia Civic Center Philadelphia, Pa.

For more information and a
Free subscription to our "PERSONAL COMPUTING" newspaper, send your name and address to:

Don't be confused - Other shows are copying us but they cannot equal us. We are the Original Personal Computing Show. Now in our Fourth Year.

PC79

FEATURING:

Major Exhibits from the Leading Companies -

Personal Computing College with 80 Hours of
Free Seminars by the Industry's Leading Speakers
-
Major Emphasis on Software Exhibits 2nd Annual Computer Music Festival Bigger! Better! Antique Computing Devices on Display

See All the Latest Hardware
-
Business Systems and
Business Software

PERSONAL COMPUTING 79

Rt. 1, Box 242 • Mays Landing, N.J. 08330 • 609/653-1188
Industry TRADE SHOW on October 4th For exhibiting information please call or write.

EXHIBIT DATES \& TIMES

REGISTRATION

at the door includes admission to all seminars.
■ days - October 5, 6, $7 \quad \$ 10.00$

- Single day $\$ 5.00$

DEALER DAY

Thursday, October 4
also includes October 5, 6, 7 \$15.00
For Dealers, Purchasing Agents, Industry Reps, Industry Officials only

2nd annual PERSONAL COMPUTER MUSIC FESTIVAL

Saturday evening, October 6, 1979 Harrison Auditorium, Univ, of Pennsylvania, which is 1 block from the Philadelphia Civic Center. Doors open at 6:30 P.M
Featuring; Live demonstrations and performances by leading computer musicians.
A stereo record from last year's music festival will be on sale at the show.

Daytime seminars and demonstrations at the Philadelphia Civic Center all day on Saturday, Oct. 6th, during the Personal Computing Show. 800 Tickets will be on sale Friday and Saturday from P.A.C.S. at The Philadelphia Civic Center during the Personal Computing show and at Harrison Auditorium.
The Personal Computer Music Festival is sponsored by the Philadelphia Area Computer Society. For more information contact them at: P.O. Box 1954, Philadelphia, PA 19105.

HOTEL ACCOMMODATIONS

P.C 78 PHOTOS BY MARJ KIRK

New product demonstrations

Speaker, David AhI. Creative Computing magazine

The AMSAT-GOLEM-80

Joe Kasser 11532 Stewart Ln
Silver Spring MD 20904

The AMSAT-GOLEM-80 Microcomputer Project provides a means for a group or club to put together an S-100 bus microcomputer in a relatively inexpensive manner. It is a modular system of hardware and software that can be built as a standalone system or superimposed on an existing S-100 machine. It is designed to be expandable and affordable. Many people who belong to microcomputer clubs, or who are learning about microprocessors, would like to own a microcomputer. However, they may not want to make the initial investment of $\$ 500$ to $\$ 1500$ for the basic hardware. The AMSAT-GOLEM-80 is designed to be built in stages, as finances allow. Each stage of the AMSAT-GOLEM-80 is functionally complete and can verify the performance of the next stage. It is capable of incorporating any S-100 card, contains a powerful debugging software package (AMS-80 version 5.7), and the I/O (input/output) interface handlers for your system. It is designed to be flexible and easily customized to fit your requirements. This is recommended as a group project for 3 reasons: 1) to take advantage of bulk discounts in the purchase of hardware; 2) knowledgeable individuals are available to help others; and 3) test equipment can be shared.

The order of construction is logical. Sections can be built and used to check out subsequent sections. Thus, a sequence of construction could be to build the cabinet and front-panel power supply, motherboard, console I/O card, programmable read-only memory card, programmable mem-

Photo 1: The AMSAT-GOLEM-80 prototype computer.
ory card (1), and processor card. At this level the basic AMS-80 program can be executed. The order of construction can be varied depending on the individual constructor's preference. The group can also build separate parts, put them together to get 1 machine working, then have the members build their own parts at their own pace.
This technique of construction may not be the cheapest in the long run, but it is in the short run. It also allows nearly instant results, since the machine is doing something almost as soon as construction is begun. This is psychologically important, considering the amount of money involved. It is difficult to decide which system is the cheapest in the long run. Building a microcomputer can be an openended drain on your finances because you will probably keep adding new memory and I/O peripherals.

System Basics-Hardware

The hardware is standard S-100 bus circuit cards, but any Z80/8080 processor card, memory card, or I/O card may be used. Circuitry is available for a hardware front panel. This operates by putting the processor in the "hold" state and then taking over control of the bus lines. Memory and I/O ports can be exercised and checked out. A single-step feature is offered, as is jump start or boot start to a software monitor program. Several unique circuits are available for amateur radio use (eg: satellite tracking).

Software

The AMSAT-GOLEM-80 project is designed for active experimenters. It is expected that some machinelanguage programming will be performed on each machine. Thus, a full and expandable operating debug or
monitor package is available. This program AMS-80 is a much improved and expanded version of AMS-80 which was first published in the September 1976 issue of BYTE. Apart from the usual memory and register examine/change features, it incorporates direct I/O operations, a disassembler mode, and keyboardinterruptable console operations. A list of the commands is shown in table 1. All I/O drivers are contained within AMS-80, devices can be configured in software, and all I/O devices are accessed via a jump table. All utility routines used within the monitor are also available via jump tables, as shown in table 2. The hexadecimal base address is F000 and the I/O driver section of the jump table is compatible with the Technical Design Laboratory's Z80 monitor.
Also available is a floating-point math pack (Intel software library version relocated), a floating-point interpreter; a macro-organized pseudo high-level language using a floatingpoint stack, and operating through the math pack and various other software, including radio teletypewriter (RTTY) reading programs which are mainly suited for amateur radio applications. Patches for commercially available software (but not the actual software) are also available. These patches include Processor Technology 5 K BASIC and North Star's disk operating system.

The Power Supply

The power supply is 1 of the 2 single-point failure points in the system (the other is the processor). If it fails, the system is down. Thus, it should be overrated, cooled, and have a little spare capacity on hand. It should be capable of at least the following performance: 8 to 10 V at 10 to $20 \mathrm{~A}, 16$ to 18 V and -16 to -18 V at 2 A . The supply can be unregulated because each S-100 card carries voltage regulators as required. Use plenty of fuses; put 1 in the AC line and 1 in each of the DC supplies, as shown in figure 1. If you wish to add crowbar circuits, over-voltage protection, or shut-down circuits, that's fine.

The Cabinet

The cabinet is the part of the

```
A PRINT (MEMORY) IN ASCII
B *
C CONFIGURE IO (INPUT/OUTPUT) DEVICE
D DISPLAY (MEMORY) IN HEXADECIMAL
E WRITE END OF FILE RECORD TO TAPE
F FILL (MEMORY) WITH CONSTANT
G GO TO LOCATION AND EXECUTE
H HEXADECIMAL MATH (SUM AND DIFFERENCES)
I INPUT FROM PORT TO CONSOLE
J *
L PRINT (MEMORY) IN ASSEMBLY LANGUAGE
M MOVE BLOCK OF (MEMORY)
N PUNCH 6 INS LEADER TAPE
O OUTPUT TO PORT FROM CONSOLE
P SCAN TAPE
Q *
R READ TAPE
\(S\) EXAMINE/CHANGE (MEMORY)
T PUT HEADER ON TAPE
U DISPLAY I/O CONFIGURATION
\(\checkmark\) VERIFY PROGRAMMABLE MEMORY BLOCK WORKS
W WRITE TO TAPE
\(X\) EXAMINE/CHANGE (REGISTERS)
Y *
*Not assigned as yet.
```

Table 1: AMS-80 version command list, version 5.7. Details of the operation of the commands are given in the description of AMS-80.

Interactive Computer Graphics Software. For Microsoft and DEC* Fortran

INTRODUCIME THE TASA MODEL 55
ASCII KEYBOARD.
Imagine. A full capability, 128 position keyboard without a single moving part. Simply touch its surface and sophisticated electronics instantaneously transmit information to your computer.

Imagine further. This state-of-the-art keyboard provides a TTL output that is fully encoded, verified, processed, and debounced on a 6 -position, dual-sided card edge connector. Ready to plug in and operate.
IF The price soumds unbelievable,
REMEMBER WHAT SINGLE-CHIP TECHMOLOGY DID FDR THE CALCULATOR.

The secret of the TASA keyboard's powerful performance and low price is fully integrated single-chip circuitry. Because there are no mechanical keys or flex switches to move up and down, all the electronics can be completely sealed inside the tough polycarbonate case. This makes the TASA keyboard virtually indestructible and immune to spills and rough handling.

And since there are no moving parts, your TASA keyboard should have the same trouble-free life expectancy as a silicon chip.
here are a few state-of-the-art features:

- Full 8-bit ASCII output and continuous strobe.
- Low power: 18 V DC, 35 mA , built-in regulator.
- Parallel output: active pull-down, direct TTL compatible (one load), open collector type.
- Dimensions: 15 " $\mathrm{L} \times 6.25{ }^{\prime} \mathrm{W} \times 0.325$ " thin.
- Easy hook-up to any system, including the Apple computer.

ALSO AVAILABLE:

The Model 16-A, a 16-key alphanumeric fully encoded, solid state 4×4 keyboard for use as a companion to the Model 55 , or as a stand-alone data entry unit.
TRY THE TASA KEYBOARD FOR 10 DAYS.
Enclose payment with the order form. Connect the TASA keyboard to your computer and use it for 10 days. If you don't agree that this keyboard is worth many times the price, simply return it to us. Your money will be refunded in full.
PLEASE SEMD THE FOLLOWING:
I TASA Model 55 ASClI keyboard. . $\$ 75$.nector . $\$ 93$. TASA Model 16-A keyboard $\$ 55$. Add $\$ 4$. for shipping and handling.
Enclosed is my check or M.O. for \$ \qquad
or Mastercharge/VISA \#
expires
mмme
ADORESS

P.O. BOX 1237 LOS ALTOS, CA 94022

AMS80:	ORG JMP	OFOOOH CUSTOM CONSI RDR CONSO PUNCH LIST CSTS IOCHK IOSET MEMCK RESTART START BEGIN CHIN CONSA TCSTS TCRET AOUT THXB THXW MSG PCHK CONSB	:<R> ;START OF SOFTWARE ;CONSOLE TO <A> ;READER TO <A> ; <C > TO CONSOLE (ASCII) ; <C> TO PUNCH (ASCII) ; <C > TO LIST (ASCII) ;TEST CONSOLE STATUS ;DETERMINE IO (INPUT/OUTPUT) CONFIGURATION ;SET I/O CONFIGURATION ;FIND TOP OF USER AREA (PROGRAMMABLE MEMORY) ;BREAKPOINT ENTRY ; ENTRY POINTS ;REENTER BMS-80 ;BYPASS CUSTOMIZING AREA ;CONSOLE ROUTINES (INDIVIDUAL) ;CONSOLE INPUT AND ECHO ; <A> TO CONSOLE ;GOTO MON IF CONSOLE INTRPT ;OUTPUT CR/LF ; <A> TO CONSOLE OOUTPUT <A> (HEXADECIMAL-2 DIGITS) ;OUTPUT < H/L> (HEXADECIMAL•4 DIGITS) ;OUTPUT TEXT ;TEST FOR NULL INPUT CHAR : TO CONSOLE (ASCII)
	JMP JMP JMP JMP JMP	$\begin{aligned} & \text { PHXB } \\ & \text { LEAD } \\ & \text { PCRET } \\ & \text { PHXW } \\ & \text { POB } \end{aligned}$;PUNCH ROUTINES ; <A> TO PUNCH (HEXADECIMAL) ;PUNCH 6 INS LEADER TAPE ;OUTPUT CRILF TO PUNCH ;OUTPUT H/L TO PUNCH : TO PUNCH (ASCII)
	JMP JMP JMP JMP	$\begin{aligned} & \text { LHXW } \\ & \text { LHXB } \\ & \text { LCRET } \\ & \text { LOB } \end{aligned}$;LIST ROUTINES ;OUTPUT HIL TO LIST ; <A > TO LIST (HEXADECIMAL) ;OUTPUT CRILF TO LIST ; TO LIST (ASCII)
	JMP	CONV NibBLE DONE SDEHL LOCMB IRST BACON ASCBD \$;UTILITY ROUTINES ;CONVERT HEXADECIMAL TO ASCII ;CONVERT ASCII TO HEXADECIMAL ;TEST FOR COMPLETION ;DELAY ;HL-DE ;LOCATE CONTROL BYTE IN PROGRAMMABLE MEMORY BLOCK ;RESET INTERRUPTS ;BAUDOT TO ASCII CONVERSION ;ASCII TO BAUDOT CONVERSION ;SPACE FOR PATCHES

Table 2: AMS-80 interface jump table. The individual routines are discussed in detail in the description of AMS-80.
system that your friends will see and admire. It should look presentable. The number of switches and lights on the front panel has been the subject of numerous debates. Those which are necessary are a power on/off switch, a boot switch, and a reset switch. If you are doing a lot of I/O programming (common in amateur radio applications), an output port and an input port (sense switches) are useful. Status lights, control bus lights, and data and address bus lights/switches are optional. One full hardware tester panel should be built within each group if no known working system or other method for troubleshooting the hardware is available. The prototype
shown in the photograph contains the full hardware tester panel circuit and is built separately from the power supply. This has the advantage of portability.

The Front Panel Interface

This card interfaces the front panel switches and displays to the S-100 bus. It is used when first building the system to check out the operation of the individual cards. Once AMS-80 is running, its usefulness is diminished until a hardware failure occurs that leaves the system up, but inhibits the processor from working properly (eg: a bus buffer or data-bit failing). The controls on the front panel will then

The Data Duo. From DTC.

Figure 1: Typical S-100 computer power supply.
allow the problem to be located in a swift manner. When in the run mode, the address lights also indicate the location of the software that is being currently executed. This is useful in determining exactly where your program is hung up during debugging.

The Memory

Any S-100 bus programmable read-only memory and programmable memory card can be used. However, if you are using a card that places a limit on the time period that it can be addressed continuously (ie:

NOW, FROM MOUNTAIN HARDWARE. THE 100,000 DAY CLOCK.

Put your S-100 Computer on the clock.

A real time clock could double the utility of your computer. Time events in $100 \mu \mathrm{~S}$ increments for up to 100,000 days (over 273 years). Program events for the same period with real time interrupts that permit preprogrammed activities to take place...without derailing on-going programs. Maintain a log of computer usage. Call up lists or appointments. Time and date printouts. Time events. An on-board battery keeps the clock running in the event of power outage.
Mountain Hardware also offers a complete line of peripheral products for many fine computers.

Available at your dealer's. Now. Mountain Hardware, Inc.

300 Harvey West Blvd.
Santa Cruz, CA 95060 (408) 429-8600
one using dynamic programmable memories), you will have to modify the select signals from the front-panel interface card to convert these signals in a pulsed mode (gate the clock into the control signals). Shop around for a good group buy. AMS-80 requires at least 4 K bytes of programmable read-only memory. You may want to put additional software in programmable read-only memory.

The 8080 can access 64 K bytes of memory. Since most personal systems do not contain a full 64 K bytes of memory, and 8080 software is nonrelocatable by virtue of its absolute mode-addressing capability, several manufacturers have put out software modules at fixed allocations. The Radio Amateur Satellite Corporation (AMSAT) has developed a memory map for software, thus making all user written software compatible. Using the expandable idea, basic software can be executed in minimal memory systems. The memory assignment map is shown in table 3.

The main user memory area is upward expandable from location 0 . No matter how much memory is available, software will run if written for low locations. Hexadecimal 0100 is a good starting location so that the interrupt service area is not overwritten by your customized software.

As home systems are assembled, they tend to fall into 1 of 2 distinct configurations. There is the floppy disk system, having much programmable memory and a minimal amount of programmable read-only memory in which programs are stored on disks and down-loaded into user memory for execution. The second type is the eraseable read-only memory (EROM) based system. EROMs and EROM cards are relatively inexpensive. Programs can be stored in EROM and executed via AMS-80. This type of system contains less user memory than the floppy disk system. Since EROM cards come in 16 K -byte blocks, it is desirable that such a block be incorporated in the AMSAT-GOLEM-80 system. This allows for interchangeability and redundancy. For added flexibility, the chosen card should have user memory coexistence capability. Thus, a group system can be put together out of both types of configuration, with minimal conflicts. This block is located between hexadecimal 8000 and BFFF.

The ${ }^{\text {s }} \mathbf{1 5 , 9 9 5}$ 'System

Are you tired of inadequate floppy systems and overpriced minicomputers? BASIC TIME Offers an ciffordable Minicomputer System with 10MB hard disk storage, printer w/stand and CRT. All complete with desk enclosure.

Since the introduction of our System B-100 in June of this year, we have had an overwhelming response from you, the minicomputer system buyer. The reason for this response is, when it comes down to price, you can't find a much better value nowadays in a Small Business Computer System than what we are offering.

Our Central Processor is a 16-bit, single board unit with 65k bytes of memory, using a 2901 microcomputer to emulate the Data General Nova instruction set.

We offer 10MB of hard disk storage on two disks, one fixed and the other removable, to allow for backing up the system.

The operating system comes complete with Business Basic integrated with a sophisticated file management system. It is easily programmable by first time users and it supports editor and all facilities/utilities to develop business application packages. We also include a variety of subroutines to make development easier.

The system comes with a full function video display terminal that has a standard typewriter keyboard and a 10 key numeric pad. The display screen will display 1920 characters (24 lines of 80 characters).
We have an optional printer that prints letter quality type if your needs are in that area. Included
with that option, at no additional cost, is a word processing package.
we include a General Business software package that consists of: general ledger, accounts payable, accounts receivable, payroll and inventory control. We provide complete software documentation to allow the user to modify it to fit his own needs. There is no charge for the software.
The B-100 is upgradeable for users that require multi-user and muli-tasking capabilities. However, we plan to introduce our System B-200 in November. This system will be capable of multi-user and multitasking and it will handle up to four CRT's and printers in any combination.
We have complete Dealer and OEM packages which include: pricing information and Dealer/OEM agreements.

1215 E. El Segundo Boulevard El Segundo, California 90245 213/322-4435

Table 3: Memory assignment map for the AMS-80.

The block can be used to contain programs that execute in those locations, or copies of programs that execute when moved to programmable memory locations in low memory. This is ideal for programs that need to be executed in user memory, or for storing programs as a backup to the floppy disk unit in case it is not available at a particular time or location, such as a demonstration at a computerfest.

Processor Technology's SOL software is written to reside at hexadecimal C000. It can be placed in that area if desired. The video display programmable memory is located at CC00. This makes it compatible with Processor Technology and SSM.

A programmable memory area is
assigned at hexadecimal D000. This allows the stack to be located outside of the main user area. The buffer areas for cassette I/O can be located in this area, as can any programmable memory-dependent software that is required for your system. AMS-80 is designed to automatically locate the stack in an area of user memory above the video block. It also skips this area when a user program asks for the top of user memory. If no such block exists and the video area is used, AMS-80 will have to be customized to avoid the video programmable memory area during initialization.

The Processor

Any S-100 bus processor card can
be used. Different cards have different features. Some have jump start or bootstrap capability, some have interrupt ports, and some have both. Some are available already built, and others as kits or blank boards. Choose one that suits the needs of your group.

Input/Output

You will need (and AMS-80 is configured for) 4 classes of I/O (input/output) devices, a console, a high-speed data-input device (reader), a high-speed data-output device (punch), and a high-speed, ASCII output device (list). The AMS-80 software allows 4 physical devices to be assigned to each category of I/O device. The assignments are in software and may be changed under program control. Software is provided for a videodisplay board (Cybercom) as well as a Teletype interface. Audio tape is chosen for off-line program and data storage. A floppy disk drive can be added at will.

All I/O operations are performed on a single character basis, either in or out. Kansas City Standard tones have been chosen as the audio recording standard. There is, however, 1 basic difference between the use of paper and audio tape. Paper tape can be stopped between punches or reads, but audio tape cannot be efficiently stopped. Thus, the audio cassette routines contain "blocking" software that stores the individual characters in a user memory area (preferably between hexadecimal D000 and E800, as shown in table 3). This blocking software is transparent to AMS-80. Software is provided for all I/O to the console or terminal, the punch, reader, or list devices. The routines are located within AMS-80 and are called indirectly via a jump table as shown in table 2. Routines are provided to ouput ASCII data from either the B or C register, allowing existing commercial software to be patched to operate via AMS-80 with minimal changes. Routines are also provided to output the contents of the accumulator (8 bits) or the H/L register pair (16 bits) in hexadecimal code. Character input routines are also provided. Most of the routines are used within AMS-80.
There are 2 reserved I/O ports within the system. These are front

INTRODUCING - LOUMAR MANAGEMENT SYSTEMS SOFTWARE

The Loumar General Accounting System is a versatile, fully integrated software package designed for small and medium sized businesses. It is also suitable for CPA's and bookkeeping service films.
The complete software system is composed of four main modules: GENERAL LEDGER, ACCOUNTS RECEIVABLE, ACCOUNTS PAYABLE AND PAYROLL. Each module may be used separately or in combination with any other module. Supplied on disk as run-time modules. Source not available.
All software is written in CBASIC II and utilizes the powerful CP / M operating system.
General system features include:
Automatic posting to general journal - Strict error detection - Report production on demand \bullet Consistent operating procedures \bullet User oriented. No previous computer knowledge required - Designed by accounting professionals • Comprehensive, well presented reports and manuals \bullet Single or multiple client capabilities.

HARDWARE SPECIFICATIONS

The end user's microcomputer must satisty the following require ments:
48k RAM
Dual floppy disk system
Printer with tractor. All printing is done in 80 col . format
CRT with at least a 64 character by 16 line display
CP / M and CBASIC II
Write for our brochure - Dealerships still available
Contact: Distributor

Table 4: Connections to the serial port interface connector.
Chassis Ground
Data Port 1 Status Bit
Data Port 1 Control Bit
Data Port 1 Bit 0 (LSB)
Data Port 1 Bit 1
Signal Return
Ground
N/C

+ 8 V Raw Power
Data Port 2 Bit 6
Data Port 2 Bit 7
Data Port 2 Status Bit
Data Port 2 Control Bit
Data Port 1 Bit 2
Data Port 1 Bit 3
Data Port 1 Bit 4
Data Port 1 Bit 5
Data Port 1 Bit 6
Data Port 12 Bit 7
Data Port 2 Bit 0
Data Port 2 Bit 1
Data Port 22 Bit 2
Data Port 2 Bit 3
Data Port 2 Bit 4
Data Port 2 Bit 5

NOTE: All voltage levels are transistor-transistor logic compatible. The Data Lines are compatible to the MITS convention. Port 1 is configured as an input port and port 2 as an output port if bidirectional I/O port integrated circuits (such as 8255s) are not used.

Table 5: Connections to the parallel port interface connector.
panel (FF) and interrupt control port (FE). The front-panel address is used for both displays and switches. FF was chosen because of the simple hardware needed to decode it (1 NAND gate), while FE was built into the processor card utilized in the prototype.
Some standardization of the hardware is desirable in a group project. This allows 1 person to check out another person's hardware. It also allows different members of the group to interconnect their equipment for large demonstrations.
Interfaces come in 2 types: serial and parallel. The following standards, which are slightly modified versions of existing ones, are suggested for the AMSAT-GOLEM-80 Project.

Audio Signals

All audio signals from the computer or interface boxes to and from cassette recorders are via phono plugs/sockets. The actual connectors on the tape recorder may be anything from miniature phone to DIN-type connectors.

RF/Video Signals

BNC-type connectors should be used to carry video to and from monitors. The BNC connector is small, quick to connect and disconnect, and readily available worldwide.

Digital Signals

Digital signals come in 2 types: serial and parallel. Both types of interfaces should use 25 -pin EIA-type
connectors. The chassis connector on the computer will be female; the chassis connector on the remote device is male. Power can be fed down the cable from the computer to the remote device via the I/O cable. Having a female connection on the hot lead reduces the probability of short circuits. They can also be joined together to make larger ones, without the need for special adaptors. The serial connector assignments are based on the RS-232 interface. The pin assignments are shown in table 4. The parallel connector carries 1 input and 1 output port (8 bits each), plus 1 pair of handshake signals. The signal pins are compatible to the MITS recommended ones. Power and ground are fed down the cables, thus the recommendation for fuses in the 3 DC voltage lines. The parallel port interfaces are transistor-transistor logic (TTL) level, the serial port RS-232 voltage levels (mark $=$ negative, space $=$ positive). The pin assignments are shown in table 5.

AMS-80

AMS-80 is a full, software-debugging program. It also contains the system I/O drivers and utility routines accessible via a jump table. The jump table approach is utilized so that user programs written using the utility routines within AMS-80 will not require reassembling, should a subsequent version of AMS-80 be released. The version that was previously published (September 1976 BYTE) has undergone extensive modifications and has been relocated to the block of memory between hexadecimal F000 and FF00. This allows many existing programs written for low, user memory area (such as MITS BASIC) to be run through the I/O drivers within AMS-80. It is thus possible to run a program in BASIC and have the ouput appear on the line printer (list device) or the console at will. The standard capacity existing in AMS-80 is shown in table 1.

System Expansion

The modular design of the AMSAT-GOLEM-80 system allows for operability at all stages of construction, once the initial stage is reached. Since a great deal of money is being spent, it would be encouraging to see it perform as soon as possible. The initial stage, apart from the processor power supply and bus,

COMPCO is a software and hardware systems development house located In the Micturest COMPCO has a variety of software products, and pertorms custom and contract programming.

COMPCO is a distributor of ALTOS Computer systems and aiso sells. General Robotics LSI-f1* systems. Trademank or Digital Equipment corp

8705 North Rort Washington Road Milwaukee, Wis 53217 414/351-3404 COMPUTER SPECIALISTS

Punch

$$
\begin{aligned}
& P=3 \\
& P=2 \\
& P=1 \quad \text { Audio Cassette } \\
& P=\text { Console }
\end{aligned}
$$

Reader

$$
\begin{aligned}
& R=3 \\
& R=2 \\
& R=1 \quad \text { Audio Cassette } \\
& R=0 \quad \text { Console }
\end{aligned}
$$

List

$$
\begin{array}{ll}
\mathrm{L}=3 & \\
\mathrm{~L}=2 & \text { Baudot device (model 15) } \\
\mathrm{L}=1 & \text { Teletype Port } \\
\mathrm{L}=0 & \text { Console }
\end{array}
$$

Console

$$
C=3
$$

C=2 Baudot Device (model 15)
$C=1$ Video Display Board/Keyboard
$\mathrm{C}=0$ Teletype Port
Video Display Board

$$
\begin{array}{ll}
V=0 \text { Page } & \text { With Line Foldover } \\
V=1 \text { Page } & \text { Without Line Foldover } \\
V=2 \text { Scroll } & \text { With Line Foldover } \\
V=3 \text { Scroll } & \text { Without Line Foldover }
\end{array}
$$

Table 6: AMS-80 I/O (input/output) allocations.
comprises 4 K bytes of programmable read-only memory of user memory, and a terminal device. With this amount of hardware, you can run AMS-80, enter programs in memory in hexadecimal code via AMS-80, and learn a little about software. The addition of some off-line memory, such as audio or paper-tape devices, allows you to run programs which require up to 4 K bytes of memory. Such programs include Tiny BASIC, orbital calculations for amateur satellite locations, and various amateur radio programs. If you have a radio teletypewriter terminal unit (RTTY-TU), you can even tune your shortwave radio in to commercial or amateur Teletype stations, and display their transmissions on your terminal.
If you get a modem interface and a second terminal, or use a video display/keyboard combination and a serial port/modem, you can make the
basic system into a remote terminal for a large machine timesharing service, and access the computer at work from your home. Add another 4 or 8 K bytes of user memory, and you can run text editors, assemblers, or an 8 K BASIC interpreter. This opens a new dimension in computing. You can play Star Trek, and run education and business software and advanced amateur radio programs, such as contests. Put 16 K bytes of user memory in your system and you can get a floppy disk unit for an added dimension in computing.

Off-Line Data Storage

Off-line storage is storage for programs and data that is external to the 64 K bytes of accessible memory. It usually consists of audio tape, floppy disks, or paper tape. Floppy disk storage usually comes with an operating system and will not be discussed here. AMS-80 contains

Everybody's makingmoney selling microcomputers. Somebody'sgoing tomake money servicing them.

New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you tum around, somebody comes along with a new computer for home or business use. And they're being gobbled up to handle things like payrolls, billing, inventory, and other jobs for businesses of every size...to perform household functions like budgeting, environmental systems control, indexing recipes, and more.

Growing Demand for Computer Technicians... Learn in Your Spare Time Even before the microprocessor burst upon the scene, the U.S. Department of Labor forecast over a 100% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer. NRI can train you at home to service both microcomputers and their big brothers. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends without quitting your present job. Assemble Your Own Microcomputer

NRI training includes practical experience. You start with meaningful experiments building and studying circuits on the NRI Discovery Lab. Then you build your own test instruments like a transistorized volt-ohm meter, CMOS digital frequency counter...equipment you learn on, use later in your work. And you build your own microcomputer, the only one designed for learning. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. It's the

routines to store and read software from paper tape. Data is stored in Intel hexadecimal format. Paper tape, although common in professional circles, is not cheap, and the readers and punches are expensive. However, inexpensive hand operated readers do exist, so paper tape is a convenient and easily mailable form of program storage (for chort programs).

Paper tapes can be stopped under software control. Thus, when BASIC is reading and interpreting a program, it can stop the tape momentarily to process the line of source code. Audio cassettes cannot be stopped in such a manner. Other programs, such as Assemblers or Editors, also have requirements for occasional inputs and outputs. Thus, AMS-80 contains buffer cassette-driver software to enable the main program to think that it is reading or writing characters on an incremental basis. Data is stored on tape in blocks of 256 characters. There is no format as such; the format is set by the main program because in this system the audio cassette is treated as if it is paper tape. This means that by using
the Intel hexadecimal format and cassette buffer-driver routines in AMS-80, any paper-tape, cassette, or floppy disk system can read or write tapes and convert to and from the format needed for a particular operating system. A title command is put into AMS-80 to allow headings to be written on hexadecimal code blocks of tape so that they can be identified.
Since even a 15 -minute cassette tape can hold a lot of software, a command is provided within AMS-80 to allow a tape to be scanned and a program found. The command transfers data from the reader to the punch device. It may be used to copy tapes or, if the console is assigned as the punch, it may be used to scan tapes and locate particular blocks.
The number of data bytes in a block is 256 . Each block is preceded and followed by a mark tone. This allows the tape to be stopped and started. The data is read to or written from the tape at 300 bps .
If the system has error detection, error-detection bytes are put on the tape. For example, the Intel hex-

adecimal format checks each line of code for a read error. Each line as printed on the console is a block in itself. The data, address, and error detection bytes are output to the paper-tape punch. These bytes will be collected by the cassette buffer software which, when full, will write 256 bytes on the audio tape. When reading that block back, it will read the entire block into a buffer. The Intel hexadecimal format reader then gets the data on a character-bycharacter basis from the buffer, and checks for errors.

The cassette storage medium is designed to be a paper-tape equivalent for information exchange. It is not designed to be part of an operating system, although an AMSAT flexible operating system may be available in the near future.

Operating Systems

Cassette and disk operating systems are currently available. These can be patched to operate through the AMS-80 I/O (input/output) drivers and hence improve them by allowing assignable I/O devices. AMS-80 is a paper-tape operating system in which the file storage and sorting is done by the operator.

The advantages of software configured I/O can be seen in the following circumstances: BASIC is designed to operate via the console. Punch and reader operations are available for program storage, but the execution is usually via the console. With assignable I/O, the console ouput routine can be assigned to a line printer, and outputs obtained at high speed. Alternatively, different readers (paper and audio) can be assigned with no change in the BASIC interpreter software.

The spare commands in AMS-80 can be allocated to interface to the operating system. For example, "Q" could be assigned to execute a jump to the operating system. A command can be assigned to return to AMS-80, once in the operating system. These aspects of interfacing AMS-80 to operating systems will be discussed in detail later.

Real-Time Operations

Real-time operations are required for many tasks. The 8080 has the capability of directly distinguishing between 8 real-time interrupts. In the AMSAT-GOLEM-80, Interrupt 0 is
equivalent to Reset, and Interrrupt 1 is reserved for the breakpoint feature. The remaining interrupts are available for custom software. The time-of-day clock is not implemented in software, but rather in hardware, using an MOS digital-clock circuit. A number of floppy disk interfaces, North Star in particular, do not allow for interrupts during the disk read and write operations. Thus, a software clock would not be updated when running such a disk system. This means that no real-time operations could be executed without reinitialization of the clock each time. Using a hardware clock, the time of day can be read at any time by using simple input statements from the I/O port assigned to the clock.

Documentation

Documentation is very important. Keep all of the instructions for the various kits in one place. Three-ring binders are inexpensive and can contain a large amount of information. If you need more than 1 binder, split the information logically, such as hardware, software, peripherals, etc. When you build and test cards, note any unusual or special things that you did. Note any voltage or other measurements you made. Keep a copy of test routines you used to initially test something. You may need them a few years later. The level of documentation should be better than that supplied with commercial equipment. It may help you sell the system. It is also important to document the operational aspects of the system. Document how it is configured (an example is shown in table 6), and record the operating instructions so that others can operate the system in your absence. Note which connector plugs into which socket. When in doubt, document it.

Planning your Project

Your requirements are going to differ from those of other people. Your method of assembly can be the same, but can differ in details. There are many manufacturers of memory and I/O cards. Some are sold fully assembled and tested, some assembled, some as kits, and some as bare boards. Choosing the card that suits your needs at a particular time can reduce your cost. Remember that the software is hardware transparent; for example, a program designed to run
in user memory at hexadecimal memory locations 0100 to 2000 will run in any type of working memory, no matter who manufactured it. Therefore, it does not matter if you use a Brand X product when the rest of the club uses a Brand Y. Just ensure that the specifications for addressing the card are the same. (Wait states do not matter. If you need an extra wait state, your software will take longer to execute, but you will probably never notice the difference.)

The price of hardware is constantly falling. New cards are being introduced every month. It is possible to purchase a 32 K or 64 K -byte programmable-memory card populated by only 8 K bytes of memory circuits, and add the remaining integrated circuits as you need them. The price of the next 8 K bytes will probably be less than today's price. Purchase your hardware when you need it. Look around, compare the cards made by different manufacturers, decide how their features will fit into your system, ask for advice at your club, and then make your purchase. For example, some processor
cards come with vectored interrupt capability, and some with bootstrap start.

Summary

The details of the construction of the individual cards are not presented here because vendors supply their own information. In the AMSAT-GOLEM-80, the hardware is interchangeable (within limits), and the actual manufacturer of any particular card is immaterial. The prototype has served to check our hardware and software for members of The Radio Amateur Satellite Corporation (AMSAT) and the Chesapeake Microcomputer Club Inc, who have set up a bulk purchase scheme for obtaining price reductions on hardware.
This article has described an approach to building an S-100 computer that is incremental and affordable, even though it may not be the lowest cost in the long run. The AMSAT-GOLEM-80 is an approach to a system. It may be built up as a stand-alone system, or it may be overlaid onto your existing hardware.

Add Some Control to Your Computer

An Output Port Tutorial

Ken Barbier
POB 1042
Socorro NM 87801

A virtually limitless number of devices can be controlled through a single output port using time multiplexing techniques. A series of 8 -bit bytes is fetched from a control buffer in memory, and output through a single port. On the receiving end, bus buffers present the data to all the devices in parallel, but unique strobes are supplied to each device in turn, so that it can latch its own data word.

This technique is particularly useful if the devices are to be located some distance from the computer.

The hardware shown in figure 1 has been used to control devices over 50 feet from the computer without exotic line drivers and receivers. Since remote addresses for each device are generated by the hardware, only 8 data lines and 1 strobe line are required. For maximum noise immunity, shielded twisted pair cable should be used.

Receive Hardware

In figure 1, 16 external devices receive 18 -bit byte apiece. Using the

Intel 8080, this block of data will be transmitted in about $300{ }_{\mu} \mathrm{s}$. The I/O(input/output) write strobe accompanying the 1st byte triggers a delay oneshot which, after allowing more than enough time for the block transmission, triggers a reset oneshot which clears the remote address counter, the 74160 . This insures that the next block of data will be routed to the correct device in turn.

The remote address counter supplies a 4 -bit count to the 4 -line-to- 16 line data selector, the 74154. As the

Figure 1: The transmission circuitry is divided into 2 parts, the data transmission (D0 through D7) and the address. The address is decoded by a counter which determines which 1 of 16 devices is being used. The write strobe accompanying the data triggers a delay oneshot (IC3a) which triggers a reset oneshot (IC3b) which clears IC5, the remote address counter.

RADIO SHACK COMPUTER OWNERS TRS-80 MODEL I AND MODEL II

TRS80 MONTHLY NEWSLETTER

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING•GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS AND MORE

PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING:

- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATION FOR YOUR VIDEO MONITOR OR PRINTER
- Payroll (federal tax withholding program)
- EXTEND 16-DIGIT ACCURACY TO TRS-80 FUNCTIONS ISUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS. 80
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS-80
- A HORSE SELECTION SYSTEM***ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS)
- RANDOM SAMPLING***BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES***LEVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- beginner's guide to machine language and assembly language
- Line renumbering
- AND CASSETTE TIPS, PROGRAM HINTS, LATEST PRODUCTS

COMING SOON (GENERAL LEDGER. ACCOUNTS PAYABLE AND RECEIVABLE. FORTRAN.80, FINANCIAL APPLICATIONS PACKAGE, PROGRAMS FOR HOMEOWNERS, MERGE TWO PROGRAMS. STATISTICAL AND MATHEMATICAL PROGRAMS (BOTH ELEMENTARY AND ADVANCED) ... AND

For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

Checks random access memory to ensure that all memory locations are working properly.

74160 advances its count on the rising edge of its clock, it will initially supply address 0 to the 74154 until the trailing edge of the negative going I/O write strobe. This same strobe is the "data" supplied to the 74154, and so will appear on each of the outputs of the 74154 in turn. This constitutes the 16 remote addresses.

For expansion, 1 additional counter stage could be used to generate "first 16 " and "second 16 " control signals to double the number of devices.

Driver Programs

The example shown in figure 1 is for 16 devices. Every time we want to output a control to any one device, we must output all the control words. OUCNT is an 8080 routine designed to accomplish this (see listing 1). The calling program first loads the correct bit patterns into the correct buffer words, then sets the flag at memory location FLAG. This flag is used to prevent needless outputting of the controls. In a complex control program, many segments of the operating system may need to change the state of the devices at irregular intervals. In such an implementation there will be a fixed program cycle, with many tasks called in turn to perform their functions. At some point in the cycle, time will be allotted to output our controls. If no program segments or tasks have called for any change in the controls, it is not necessary to transmit them, and the flag will not be set. But when it is set, we will transmit all the controls, after clearing the flag.

Controlling Relays

Typical applications for this technique might include driving remote displays, with 32 -decimal digits being transmitted, 2 per 8 -bit byte. Or, as is shown in figure 2, 8 relays can be controlled by each 8 -bit byte.

The simplified schematic of figure 2 shows a relay driver circuit capable of controlling 8 relays. The 8 bits of data are latched into the 74175s on the rising edge of the clock, so our negative going strobe can be used as is. If latches such as the earlier 7475 are used, the strobe would have to be inverted, since the output of a 7475 follows the input whenever the clock is high. In either case, any relay whose corresponding bit is not changed will remain in the previous state, as its cor-

Listing 1: 8080 assembler routine to output control signals to 1 of 16 devices. CONTR is equated with the desired output port address.
responding latch is reloaded with the same data as before. (The type of NPN driver transistor will have to be selected to match the current and voltage requirements of the particular relay used.)

Relay Control Program

Obviously, if we need to control 8 relays with 1 byte, we do not want to change the state of all of the relays at the same time. This complicates the software required slightly. In the 8080 program shown in listing 2, a change relay subroutine allows us to change the state of 1 relay at a time. We must
supply the subroutine with the number (hexadecimal 0 thru F) of the word in the buffer corresponding to the relay driver board, and a relay number (1 thru 8). We must also specify whether we want to turn it on or off. At the correct time, we put the word number in register C , the relay number in register E , and set register A to 1 for on, or 0 for off, and call CHGRY. The next time the operating system calls OUCNT, only our

Adam Osborne foretells the Next Industrial Revolution

rival the first industrial revolution. It is based on microelectronics.
Technological advances and price reductions of microelectronic devices have occurred at such an astounding rate, and from such surprising sources, that no one has been able to accurately predict
 what will happen, or when.
And in the welter of new technological developments, no one has paid attention to the social impact of what is occurring, or the consequences of such haphazard advancement. The fact that half of today's jobs may disappear within the next decade due to microelectronics should not be taken lightly.
Will the coming years prove to be a dream or a nightmare? In Running Wild, Adam Osborne scrutinizes the microelectronic Industry for the layman; he confronts the reader with what is going on taday, and predicts what will certainly be happening tomorrow. OSBORNE/McGraw-Hill, Inc. 630 Bancroft Way. Dept. C34 card orders. call Be prepared. Berkeloy. California 94710

TRS-80*Software FREE with this Definitive Text!

18 chapters of solid, accurate programming information:

- Debugging techniques
- Interrupt modes
- Array and table handling
- Number base conversion
- Floating point arithmetic
- Programmed input/output
- Stack pointer usage

The last part of the book is software, an editor/assembler which will run on any 8080 or $Z 80$ machine and a debugging monitor.

Send in the coupon supplied with the book and receive FREE the object programs of the editor/ assembler and debug on either paper tape or on cassette tape for the TRS-80 microcomputer.
(Loads in Level I with 16KRAM or Level II.)

Both the book and software for only $\$ 29.95$!

- Practical Microcomputer Programming: The $\mathbf{Z 8 0}$ by $W \mathrm{~J}$ Weller

For North Star Disk Systems:

Now available for the Z 80 on Single Density diskettes
\square Editor/assembler object code $\$ 14.00$

- Editor/assembler and debug source code $\$ 14.00$
\square both for only $\$ 26.00$!
(Postage $\$.75$ item or $\$ 1.00$ outside U.S.)
- A trademark of Tandy Corp.

DIAL YOUR BANK CARD ORDERS TOLL FREE 800-258-5477 (In N.H. dial 924-3355)

or enclose your check with this ad:
Name
Address
Zip
B|TS inc Books to erase the impossible POB 428, 25 Route 101 West. Poterborough NH 0345B
Ask for our new, FREE Catalog

CHANGE RELAY
;ENTER WITH:
\vdots
CONTROL WORD NUMBER IN (C) RELAY NUMBER IN (E)
(A) $=1$ TO TURN RELAY ON
$(A)=0$ TO TURN RELAY OFF

CHGRY:	LXI MVI	$\begin{aligned} & \text { H.BUFFR } \\ & \text { B.O } \end{aligned}$;GET BUFFER START ADDRESS :ADD WORD NUMBER
	DAD		
	ANI	OFFH	;TURN ON OR OFF?
CHGR1:	${ }_{\text {J }} \mathrm{LZ}$		
	JZ	${ }_{\text {CHGR2 }}$;TURN IT ON ;SHIFT BIT TO RELAY
	RLC		POSITION
	JMP	CHGR1	
CHGR2:	ORA	M	:TURN THIS ONE ON
	MOV	M,A	
CHGR3:	MVI	A,0FFH	;SET CONTROL FLAG
	STA	FLAG	
	MVI	A,OFEH	;AND RETURN :TURN RELAY OFF!
OFF: OFF1:	DCR		;FORM MASK WORD
	JZ	OFF2	;'SHIFT "HOLE" TO
	RLC		; RELAY POSITION
OFF2:	JMP	OFF1	
	ANA	M	;TURN THIS ONE OFF
	MOV	M, A	
	JMP	CHGR3	;AND RETURN

Listing 2: This 8080 routine allows a state change for only 1 relay in a set of 8 instead of changing all relays at once.
;INITIALIZATION SUBROUTINE

INIT;		A 00	EAR REMOTE ADDRESS
	OUT	CONTR	COUNTER
	MVI	A, 14H	;CLEAR BUFFER AND
INIT1:	LXI	H,BUFFR	; DELAY ROUTINE
	MVI	C,OFH	;LOOP TIME IS 250 USEC
INIT2:	MVI	M, 00	SO DO IT 20 TIMES
	INX	H	
	DCR	C	;TO ALLOW RESET
	JNZ	INIT2	OF REMOTE ADDRESS,
	DCR	A	
	JNZ	INIT1	
	CALL RET	OUCNT	:THEN OUTPUT ALL ZEROS -AND RETURN
	RET		;AND RETURN

Listing 3: Initialization routine to clear the address counter, buffer, and outputs all 0s to devices connected to system.
selected relay will change state, even though all the controls are output.

Error Free Operation

To insure that all controls have been received correctly, some sort of feedback to the computer can be provided. In actual practice this is usually unnecessary, but if it must be implemented, there are several possible techniques.

First, 74180 parity generator and checkers could be used to generate a parity bit on the transmit end, and check it on the receive end, sending back an interrupt if any word received is in error. This would add only 2 more signal conductors to the 9 already in the cable. Additionally, at the end of the delay oneshot time (and before the reset occurs), the remote address counter can be tested
to insure that it has reached the all 1 s state. A count error signal can be ORed with the parity error signal to produce a single interrupt in case either error should occur. The operating system can then try the transmission again, or at least indicate its existence.

System Initialization

Since, upon initial application of power, the states of the latches and the 74160 counter will be indeterminate, the initializing subroutine of listing 3 should be called at power on and reset times. This will clear the address counter, the buffer, and output all 0 s to all devices.

I hope this short discussion of output port techniques will help readers to understand how the computer can be interfaced to the real world.

Expansive but not expensive

MicroAge introduces for Horizon and Alpha Micro Systems, the most powerful Hard Disk Units You've Ever Seen.

Welcome to "Hard" Times: a new age of hard disk cartridge drives for Horizon and Alpha Micro . . . so powerful, so reliable, so economical, you've never seen anything like it. Fast, easy and versatile: the revolutionary new Fujitsu M2201 with 40 (formatted) megabytes of storage . . . and the dynamic CDC Phoenix with 27 (formatted) megabytes. Both are operated with North Star and Alpha Micro commands. Added capacity means the ability to fully utilize the complete range of software and capabilities of North Star Horizon and Alpha Micro mainframes.

But their family interface compatibility is not all that's expansive. Speed and economy are impressive, too. Super-fast access time means no waiting for command execution ... easy handling of large files. And the price? Unbelievably low for this much flexibility, power, speed and capacity. And the low price includes the hard disk drive, S-100 controller, software interface, cords and disk pack.

Exclusively from MicroAge

Fujitsu M2201 Cartridge Module Drive

50 megabyte storage
(40 formatted)

CDC Phoenix Cartridge Module Drive

32 megabyte storage (27 formatted)

Either.

$\$ 9995.00$

Includes drive, S-100 controller, software interface and disk pack.

[^15]Text continued from page 6:
The scope of the new homebrew design has now expanded to include relatively high-speed serial RS-232C communications among the homebrew node, the Western Digital P-engine, the Able/60-Synclavier, and other computers from time to time. I intend to use RS232 C at 19.2 K bps as the communications discipline, primarily for its universality. Today one can get almost any computer with a standard $25-$ pin D connector set up for the RS-232C discipline, at speeds ranging from a lethargic 110 bps to a maximum of 19.2 K bps. This upper-limit of speed is not exceptionally fast (about 1800 bytes per second is the equivalent in a useful measure), but the existence of these standard signal levels and standard connectors argues for this kind of approach.

The diagram of figure 1 shows how the overall conception of the system stands at present. The homebrew 6809 simultaneously provides a facility to directly execute

Figure 1: How the 6809 homebrew computer fits into a bigger system. The new 6809 computer will serve as a central communications node for multiple computers involved in this personal system. At present 2 complete computer systems are involved, with serial communications via the 6809 node, which is the subject of this homebrewing series. The Able/60 has several specialized peripherals which will be used for personal research purposes, such as, high-speed 16 channel analog-todigital input conversion and a real-time clock with $1 \mu \mathrm{~s}$ resolution. In this diagram, mass storage equipment is not shown, but it is a part of each computer: the Able/ 60 computer includes 25 -inch floppy drives, and 2 full-size floppy drives as its mass storage complement. The P-Engine machine includes 2 double density, standard-size floppy disk drives.

6809 code for experimental purposes, and a more permanently useful function of a common communications node which can be the subject of various serial communications strategies relative to the other processors.

Lest readers wonder, this is and remains a personal computer. It is true that the system is getting a bit large for one person to operate all of the terminal and music keyboards simultaneously, yet it resides in my home along with various other facilities of the complete computer experimenter: electronics shop, woodworking shop, and the beginnings of a machine shop.
This expanded conception of function for the homebrew 6809 barely changes the hardware design details originally conceived. The computer will have 16 K bytes of memory to start, several terminal ports, several parallel ports, and space for 4 K bytes of ultraviolet, erasable read-only memory. The read-only memory will contain the implementation of low-level, communi-cations-monitor software and key parts of a reversepolish notation, stack-oriented, threaded interpretive language. Remember that the conception of a homebrew or commercial system made of modular components can change considerably in detail as a result of time and resources available.
As the system design develops from this initial intention, its actual detail may prove inconsistent with what I have conjectured thus far. Recognizing this starting point, I invite readers to follow in on a guided tour of the current state of my thinking about this new, homebrew, microprocessor system project. Let's see how the central processor bus design comes out, what logic blocks will be required, and let's have some preliminary thoughts on the

COME TO

HYNES AUDITORIUM, PRUDENTIAL CENTER, BOSTON

Interested In Personal Computers?

This is the place for you! You'll meet and talk with hundreds of manufacturers, distributors and retailers. all showcasing their new 1980 Micro, Mini and Small Computer Systems.
You'll see them all... Radio Shack, Pet, RCA, Compucolor, Heathkit...you name it! All the major terminal and peripheral companies too, plus software developers magazine editors and book publishers. Yes, it'll be the largest showing of personal computer hardware, software and services ever assembled in the Northeast!
You'll be enthralled, entertained and educated. You'll see computer art, graphics and animation. You'll hear computer synthesized music, watch computerized amusements, play electronic and video games and attend scores of free tech talks and briefings given by internationally recognized speakers. And you may win a free computer given away as a door prize! Don't miss the largest gathering of computers and computerists! No pre-registration necessary. Tickets available at the door. Adult admission \$5.00.

Interested In Business Systems?

Interested in Business Systems? This will be your one opportunity to see all of the Mini, Micro and Moderate Sized Computer Systems under one roof. Your attendance at this show is a must if you, or your company, are contemplating the purchase of any type of computer or office equipment.
You'll see them all...the big (and small) names in computers, data and word processing eqiupment, peripherals and software. You'll attend dozens of free, easily-understood briefings on how computers can help you in your business or profession.
So if you're considering a computer or computerrelated service...starting your own computer business or changing your job within the computer industry...or if you'd just like to learn more about computers as they relate to
ala your personal life and to your
4 business or profession, Computerized World of Tomorrow...Today. And bring the entire family, it's a funfilled educational experience. No pre-registration necessary. Tickets available at the door. Adult admission five dollars.

$Z_{S}-S Y S T E M S$

64K RAM BOARD

The Z_{S}-SYSTEMS 64K RAM board is designed to operate in any 280 based microcomputer having S-100 bus. It uses 16 K dynamic RAM chips, \& features:

-Board select

- Bank select
-Transparent on-board refresh
-2 or 4 MHz operation ($w /$ no wait state)
-Memory disable

FLOPPY DISK CONTROLLER

Handles with no modification up to:
up to:

- 4 standard $8^{\prime \prime}$ drives
(Shugart or compatible) or
- 3 minidrives $5^{\prime \prime}$

Run with 2 of 4 MHz CPU

Compatible with Cromemco system, Fully assembled, burned in, \& tested Available from stock to 60 days As low as $\$ 500.00$ in quantities of 100
Price of one $\$ 649.00$
PC board only $\$ 359.00$
With I6K RAM. $\$ 359.00$
Plus shipping charges

Use CP/M Disk Operating System Using the 1771 LSI controller Price of one. $\$ 245.00$

SEND FOR FREE INFORMATION
6 months warranty on our boards with normal use
ZS SYSTEMS
PO Box 1847, San Diego, CA 92112 (714) 447-3997

partitioning of the system into cards within the 6 -slot backplane previously described.

Designing The Logic Of The System

The task at hand is to design the central processor card for this homebrew computer. This is the starting point for the design of the whole system. Detail choices made in the processor card's arrangement impact every other card designed for the system.

We know, that the system must have 16 address lines and 8 data lines because it uses a 6809 processor architecture, and simplicity dictates avoidance of extra logic for memory paging schemes. But which 24 lines of the 40 remaining in the backplane bus should be committed to which particular uses? Every board in the system must be consistent with this detail choice. The choice is made trival by the fact that, except for aesthetic and symmetry reasons explained below, one backplane line is as good as the next.

If we were building a computer consistent with plug compatible backplane bus designs such as the SS-50 of Southwest Technical Products Corporation, or the Insititute of Electronic and Electrical Engineers (IEEE) S-100 standard bus, these choices would be crucial to that goal of plug compatibility. However, a homebrew system is a homebrew system, so our plug compatibility will be at the level of integrated circuits, not at the level of backplane buses.

Designing The Logic Of The SystemBackplane Setup

As noted in the July BYTE page 194, the power supply wiring of the backplane has been committed to the outermost pins of the sockets. The assignment of power supply pins used 32 of the 72 pins available, in order to take advantage of the heavy copper wires of the buses. The power supply wiring commitments were made consistent with a symmetry principle: if a board should be inadvertently rotated 180 degrees and plugged in, all power buses will map into identical power buses. The outermost power bus is the -12 V analog power bus. Proceeding inward, the next symmetric pair will be used for the +12 V analog power; the next pair of buses is for the +5 V main logic power supply. The innermost power buses are the central system ground buses. In table 1, a listing of backplane bus connections, these initial assignments of power pins are shown in shade (a).

The power supplies used in building this system are provided by relatively inexpensive modular building blocks from James Electronics. The +5 V logic power is provided by a single regulated supply rated at 6 A . The 2 analog supply voltages are provided by separate modules rated at 1 A . In the photographs of the physical hardware, these modules are shown as mounted, prior to wiring.

In the design of the backplane bus once the power supply committments have been made, the next items to consider are the data and address lines. Continuing the process of symmetrical allocation, the 16 address lines and 8 data lines should be assigned to bus pins in such a manner that if a card is rotated, data lines will map into data lines, and address lines will map into address lines. The address lines are split into 2 groups of 8 connections on either side of the symmetry axis. The data lines are

ONE PACKAGE DOES IT ALL Includes these Application Programs . . .

 Sales Activity, Inventory, Payables, Receivables, Check/Expense Register, Library Functions, Mailing Labels, Appointments, Client/Patient Records

RANDOM, MULTI-KEY RECORD RETRIEVAL under CP/M, CDOS, IMDOS, ADOS . .

SELECTOR IIIALLOWS INSTANT RECALL OF ANY RECORD USING ANY INFORMATION ITEM IN THE RECORD. That statement deserves re-reading, because that ability makes SELECTOR III the most powerful Date Base Management System in microcomputers today!

With SELECTOR III you can...

- define a record format, assign retrieval keys, and begin entering data in minutes.
- create sorted pointers to records matching your specif or range of requirements.
- automatically generate reports with control-break summaries and unlimited variety.
- bring an application online in hours instead of months.

SELECTOR III comes complete with eight application programs that perform the tasks listed at top of page. And, since it's distributed in source code form, you can easily add subroutines to do specific computations or file updates.

SELECTOR III runs under CBASIC Vers. 1 or 2, and is priced at $\$ 295$. SELECTOR

III-C2 is dedicated to Vers. 2 only, runs about twice as fast, and costs \$345.

Both systems are available in a variety of CP/M, diskette size and density formats including IBM 8"; North Star; Micropolis; TRS-80; Processor Tech Helios II; Altair; iCOM; Dynabyte; Imsai; and others.

[^16]allocated into 2 groups of 4 connections. Continuing the listing of the backplane connections in table 1, these assignments of 24 address and data pins are shown in shade (b). At this stage in the allocation of logical signals to the bus, 24 of 40 available pins have been used, leaving 16 pins still to be determined.
The next item to consider is the set of lines which con-

1	(-12 V).	72
2	-(-12 V)	71
3		70
4	$========\left(\begin{array}{ll}+12 & \mathrm{~V}\end{array}\right)=========$	69
5	+++++++ MAIN PWR $(+5 \mathrm{~V})+++++++$	68
6	++++++ MAIN PWR $(+5 \mathrm{~V})++++++$	67
7	~~~~~~~ GROUND (0 V) -	66
8	\ldots - GROUND (0 V)	65
9	$=A 0 \quad=\quad \text { O } \quad \text {, }$	64
10	$=A 1$ $01=$	63
11		62
12	$\text { ㄱ A3 }-1 \text {. }$	61
13	$=A 4$ $10=$	60
14	$=A 5$ $11=$	59
15		58
16	A7\%	57
16		57
17	$=$ RESET \quad QENABLE $=$	56
18	$=$ NMI -5.0	55
19	$=$ unassigned $\quad 18 \mathrm{Q}=$	54
20	= ENABLE \quad RW =	53
21	$=14$ $A 8=$	52
22		
22	$=15 \quad$ O+,	
23		50
24	$=17 \quad$ - + +	49
	$\cdots \cdots+\alpha+\cdots$	
25	0.04 $\mathrm{A} 12=$	48
26		47
	$\bigcirc+\cdots+\cdots+\cdots$	
27		46
28	D7	45
29	-GROUND (OV) ~	
30	- ~~~ GROUND (0 V) ~ ~ ~ ~ ~ ~	43
31	+++++++ MAIN PWR $(+5 \mathrm{~V})+++++++$	42
32	$t++++++$ MAIN PWR $(+5 \mathrm{~V})+++++++$	41
33	$=======$ ($+12 \mathrm{~V})=========$	40
34	$=======\left(\begin{array}{ll}+12 & V\end{array}\right)========$	39
35		38
36	$\cdots ~(-12 ~ V) . . . ~$	37

nect the central processor to the external world. These lines are the essential timing and control signals which define the discipline of the bidirectional 8-bit bus used by the microprocessor. In the specifications of the 6809, the following signals are defined which have relevance to the outside world:

- RW = Read versus Write bus direction relative to the processor.
- ENABLE $=$ Clock ouput ("Phi 2") of processor.
- QENABLE $=$ Quadrature clock of processor.
- RESET $=$ system reset line to processor and all peripherals.
- MRDY = memory-ready line, for use with slow memory devices.
- $\mathrm{BREQ}=$ bus request for direct memory access (DMA).
- $\mathrm{BA}=$ bus available.
- $\mathrm{BS}=$ bus status.
- $\operatorname{FIRQ}=$ fast interrupt request.
- $\operatorname{IRQ}=$ interrupt request.
- NMI = nonmaskable interrupt request.

The simplest and most direct way to deal with these 11 signal lines would be to bring them out to the backplane. But do we really need all these signal lines in this processor? Might it be more useful to commit a majority of the remaining 16 lines to interrupt activities, rather than having nonessential copies of the lines coming from the processor circuit? For example, we may prefer to incorporate 8 separate interrupt lines in order that each of a possible 8 peripheral devices could have a dedicated line. If this is to be accomplished, then the total commitment of noninterrupt lines to the backplane must be 8 lines instead of the mixed selection of 3 interrupt lines and 8 signal lines shown above. How can we modify this set of backplane signals given the limitations and purposes of this particular design?

First, remember that this application is a simple and limited one in which no direct-memory access is being implemented, and that all memory will be fast enough to drive the processor at full speed. Given this requirement, the 2 signals memory ready (MRDY) and bus request (BREQ) can be removed from the set seen by the external world beyond the processor card. We have thus reduced the backplane line count to 9 lines, nearly enough to allow 8 distinct interrupt lines.

The next items to question are the bus available (BA) and bus status (BS) signals. These are used to decode 1 of 4 possible states: normal operation, interrupt acknowledge, synchronization acknowledge, and bus grant (halt acknowledge). Of these, the limited goals of the present

Table 1: An allocation of backplane signals. As described in the text, this backplane signal set provides for 8 bidirectional data lines, 16 address lines, 8 individual fast interrupt lines used with a (slow) software polled strategy, 2 direct interrupt lines, and 4 essential timing signals for the 6809 and its relationship with the external world. The assignment of these lines is kept symmetrical, so that while the processor may not work if any board in the system is inadvertantly plugged in the wrong way, no major conflicts will occur that could damage a gate or buffer. The shades indicate stages in the backplane allocation process described in the text: (a) pins are the power connections; (b) pins are the address and data connections; (c) pins are the 16 lines allocated to processor control signals and interrupts.

JAMES MARTIN SEMINAR

$\overline{0001010111110100010101110101000000010000101011111010001010111010100000001000}$

Future Strategy, Management, \& Design for:

- Distributed Processing
- Data Base
- Networks
- Corporate Strategy

Washington, D.C.	October 15-19
Los Angeles	October 22-26
Boston	November 5-9
Chicago	November 26-30
Seminar Fee:	$\$ 1150.00$

0001010111110100010101110101000000010000101011111010001010111010100000001000

system make the only externally relevant state "normal operation" if we can confine interrupt handling logic to the processor card. Can this be done? The answer is "yes", if we define fixed read-only memory vectors for all interrupts, and eliminate the need to decode interrupt acknowledge externally for purposes of altering the interrupt vector locations. Thus the backplane signal requirements have been further reduced to 7 lines, still allowing the 3 originial interrupt lines to come out to the external world off the central processor card.

Now let's examine the interrupt handling capabilities of the processor. Of the 3 available interrupts, the fast interrupt is the most general. The reason for this is that it only stacks away the essentials of the processor state when acknowledging the interruption with a branch through the FIRQ vector location, hexadecimal address FFF6. These essentials are the condition code, and the return address. In contrast, the NMI and IRQ interrupts always stack away the entire current contents of the central processor's set of registers. If we use the FIRQ signal for most interrupt activity, then, when speed is needed, only those registers which are used by the interrupt routine can be stacked away using the multiple register push and pull instructions. If the operation of the NMI or IRQ (ie: complete protection) is required, the multiple register operation of push and pull can be extended to cover all the processor registers using the proper "post-byte" which selects registers.

What about devoting the FIRQ interrupt input to 8 different possible sources, using a concept of a softwarepolled flag register and a parallel input port to prioritize "who called"? This elminates 1 more line from the original backplane signal requirements, while adding 8 interrupt lines labeled I0 through I7. We keep the NMI and IRQ lines available for truely high-priority interrupt signals which must go in directly without much software decoding. Our result then is the final backplane signal set listed in table 1, with this last set of additions shown in shade (c). Two lines are left uncommitted at this stage, in case an essential signal concept is omitted. One or more interrupt lines (IO through I7) can be sacrificed, if more than 2 lines must be added due to some shortcomings.

With this general discussion of the system's backplane complete, I will continue these notes next month with a more detailed sketch of the system's most important card: the central processor module. Following this design discussion, the final installment on the processor module will be a short description of the detailed schematic as I wire it.

[^17]

Model DMB-6400 Series dynamic 64k byte RAMS incorporate the features which are standard in the DM-6400 Series and adds the following capabilities:

- ALPHA MICRO, CROMEMCO, and NORTH STAR output port bank select compatible.
- Four (4) 16k byte, functionaily independent memory banks.
- Memory bank size can be incremented to 64 k bytes in 16 k increments.
- Eight (8) 64 k byte banks of memory per output port.

Model DM-6400 Series dynamic 64 k memory boards feature IEEE S-100 compatible timing and on board transparent refresh.

- Memory selectable and deselectable in 4 k byte increments.
- 25 MHz on board crystal oscillator for independent timing.

DMB-6400 and DM-6400 Common Features:

- $4 \mathrm{MHz} \mathrm{Z80}$ operation with no wait states.
- Tested and burned-in.

ONE YEAR GUARANTEE

THE FOLLOWING PRODUCTS ARE AVAILABLE FROM YOUR LOCAL DEALER

- DMB-6400/64K RAM
DMB-4800/48KRAMDMB-3200/32K RAM
\square DM-6400/64KRAM
- DM-3200/32K RAM

MEASUREMENT systems \& controls incorporated

Belais' Master Index to Computer Programs
in BASIC Gives You Access to \$14,836.14
Worth of Computer Programs for Just $\$ 7.95$!

Now Available Off-The-Shelf

You paid hundreds or even thousands of dollars lor your new microcomputer. By now it may be dawning on you that a $\$ 1.000$ computer with no sotware is just $\$ 1,000$ worth of scrap metal!
But computer programs cosi money. In a recent survey of 1,384 computer programs offered for sale in the top Inree home computer magazines, the average price was found to be $\$ 27.94$. What a ripot!!
You don't need to spend hundreds of dollars to get a complete library of programs for your com puter. That is. you don't if you have Belais' Master Index to Computer Programs in BAS/C
Belais' Master index gives reviews of 531 programs that have appeared in 10 major home comouter magazines-programs that you can type into your comouter for free!
This targe $81 / 2 \times 11$, 192-page direciory is packed wilh intormation This is nol just a simple listing of article tities, but a complete reference work!
Each BMI review is complete-It has everything you need to know about a program A bref index line capsulizes the review for quick reference Source information shows you where the program can be tound Any updates of correcions are shown so you know the program is accurate and camplete. The text of the review gives you a ful description of what the program does In addition the revew gives detailed tectnical finformation aboul what hardware and sotware the program needs. Everything you need to know is right at your fingertips!
We dorit provide the program listings them selves, ol course. But we do tell you where you can pick them up-even ones thal appeared in print years ago.
You don't have to be a programming wizard 10 use Belais Masler Index. That's because BM1 lists only finished, ready-torun programs in BASIC. the easy-touse language enjoyed by millions
Even it you're a master programmer, you'll hours days or Master index Why slave away
when someone else has probably already done the work for you? These programs are working, documented, and ready-rogo.
Programs like: Circuit Design, Psychoanalysis. PASCAL Compler, Forrester's World Simulation, and Color T.V. Tester. Never agaîn will you have Irouble answering that question "But what are home computers good for?"
Then again, there's aways MONEY. Maybe you haven't though of all the ways youl "tun" com puter could turn out a little of the green stutf for you. Mayte you haven l-out a lot of oner people have, and they've written up their ideas for you to use. Belas' Master Index lists dozens of programs that you can use to sel up your own business If you already have a business. Belais' Master index has the programs to tum your home comindex has a fultledged business sysiem General lecker, biling, paydl miaing lists word proces ledger, biling. payrd, maing his, word proces sing-no matter what type of business you have, Belas Master Index has the programs you need, All this and save $\$ 2.00$, tool The cover price of Betais' Master Index to Oomputer Programs in $B A S I C$ is $\$ 9.95$. But because you're buying by mail. we don't have to pay a commission to a bookstore So weire going to pass the savings along to you. Order now and you can gel your copy of Belais Master modex for just \$7.951
To order, write you name, address. and the words "Belais" Master Index" on a piece of paper Make out your check for $\$ 7.95$ plus $\$ 1$ Make oul your chec Calif. residents add 544 sales tax).
If you want to use your VISA or Master Charge card, give the total for your order, your account number, the expiration date of your card. and your signature
Send your order to Falcon Publishing. Dept. T. 140 Riverside Ave. P.O. Box 688 Ben Lomond, CA 95005.
We absolutely guarantee you'll find Betals Master Index one of the most usetul books on your shelt. if you're not completely satisfied, return it 10 us within 30 days and we'll refund every cent you paid. You can't lose, so order NOW!

TRS-80 SOFTWARE 32K with 2 DISK DRIVES PAYROLL SYSTEM $\$ 235$

Includes: a) File Maintenance
b) Payday Entries
c) Earnings Record
d) Payroll Register
e) Write Pay Checks
f) Write Other Checks

Handles up to 300 employees per diskette. Automatically calculates FICA, FED. TAX, UNEMPLOYMENT and much more. ALSO AVAILABLE
ACCOUNTS RECEIVABLE \$195 ACCOUNTS PAYABLE $\$ 195$ INVENTORY CONTROL with BILLING \& ACCT'S REC. \$550 MANUALS \$29.95/ea. CUSTOM PROGRAMS \& OTHERS

CAI

1st Security Bank Bldg.
3306 W. Walnut, Suite 507
Garland, TX 75042
PHONE: (214) 272-3211
With money order or certified check, orders shipped within 24 hours.

Now learn the electronics
 of microprocessing.

Enjoy the challenge and excitement of learning about microprocessing hardware - how it functions and how to repair it by actually building your own equipmenl as you learn.

National Technical School's Microcomputer Division offers three such learn-by-doing courses that you can enjoy at home, in your spare hours. Each combines clear, concise lessons with Heath and NTS-designed digital equipment - a combination our students tell us makes for "lively" home sludy.

Find out more about these valuable NTS Microcomputer Courses. Send today for our colorful 65 -page calalog - it's FREE!
No obligation. No salesman will call. Approved for veteran Iraining.

NATIONAL SCHOOLS

Clip And
technical-TRADE TRAINING Since 1905
Resident and Home-Sludy Schools
4000 South Figueroa St.. Los Angeles. Calit. 90037
Mail Today

TRS-80 FUN GAMES at NEW LOW COST

CRAPS • all types play - no player limit . $\$ 6.95$
BIG SIX . 40 different number combo. $\$ 5.95$
BIO-RYTHM - different from any others . $\$ 5.95$
PERPETUAL CALENDAR • from Christ to infinity $\$ 4.95$
SAVE $\$ 4.80$
Order all 4 Programs for only
\$19.00
blank C-10 CASSETTES • Highest Quality 1.5
\$1.30 ea; $6.10 \$ 1.15$ ea; $11.20 \$ 1.05$ ea;
over $20 \$.95$ ea. Any quanity only $\$.85$ ea. with order of $\$ 19.00$ for 4 games.

Dontho Scientific
P.O. Box 864, Mich. City, Ind. 46360

DONTHO SCIENTIFIC

P.O. Box 864 . Michigan City, Indiana 46360

Please ship the following:

\square CRAPS	$\$ 6.95$	\square BIG SIX	$\$ 5.95$
\square BIO-RYTHM	$\$ 5.95$	\square CALENDAR	$\$ 4.95$

\square ALL 4 PROGRAMS $\$ 19.00$
Blank C-10 Cassettes - Quantity
NAME
ADDRESS
CITY/STATEIZIP

\square Check \square Money Order

Complete money back guarantee. No questions. Personal checks accepted. We trust you. All shipments made in 10 days.

Omikron transforms TRS-80* into a powerful business system.

STANDARD DRIVES 8" Drives give you 5 times the speed and 3 times the storage of your mini drives! Our system provides a standard Shugart interface so you can use either your $8^{\prime \prime}$ drives or ours. Omikron drives are enclosed in an attractive metal cabinet, and include a power supply.
SOFTWARE CP/M* is the most popular operating system for microcomputers. But many high-level languages and advanced business programs cannot run with the special CP/M* designed exclusively for the TRS-80* The Omikron MAPPER with standard CP/M* allows you to expand your software capability to go beyond the few available TRS-80* compatible packages. TRS 80^{*} with MAPPER out-performs systems costing $\$ 1000$ more!

The MAPPER I and MAPPER II are plug. in modules. They don't require any circuit changes, are easy to install, and they don't interfere with the normal operation of your TRS-80* All your original software, including Level III BASIC will still run properly. Omikron products require 16 K L II BASIC and the TRS-80* Expansion Interface.

MAPPER I is a memory management unit which adapts your TRS -80^{*} to run standard CP/M. Versions for both $5^{\prime \prime}$ and $8^{\prime \prime}$ drives are available. The package includes $\mathrm{CP} / \mathrm{M}^{*}$ software on $5^{\prime \prime}$ or $8^{\prime \prime}$ diskette, and documentation. $5^{\prime \prime}$ unit, $\$ 169.8^{\prime \prime}$ unit, with adapter cable, $\$ 199$.

MAPPER II includes the MAPPER I package plus a disk adapter module which allows both $5^{\prime \prime}$ and $8^{\prime \prime}$ drives to run on the same cable. Drive selection is under software control to permit easy file transfer between the drives. With cable, $\$ 249$.
CONVERSION - If you purchase MAP. PER I or II and plan to use only minidrives, Omikron will transfer $\mathrm{CP} / \mathrm{M}^{*}$ files from $8^{\prime \prime}$ diskette to a 5." This allows you to run software previously available to only $8^{\prime \prime}$ drive owners. $\$ 25$ per mini-diskette.
DRIVE - $8^{\prime \prime}$ drive, $\$ 849$. Additional drive, \$695. WARRANTY - 1 year on boards; 90 days on drives. VISA/MasterCharge accepted. Prepaid orders given top priority.
${ }^{*} \mathrm{CP} / \mathrm{M}$ is a TM of Digital Research. TRS-80 is a TM of Tandy Corporation.

PROFESSIONAL

INCOME TAX PROGRAMS FOR TRS-80 ${ }^{\text {TM }}$

Accountants, lawyers, tax consultants nationwide, prepared over 30,000 1978 Federal tax returns using our system.
Displays and fills in Form 1040 and related schedules on the screen, then prints out the completed forms automatically.
Change your mind? Make an error? Correct a single entry and you have a brand new form with all re-computations made automatically.
No tax system, running on any computer anywhere, has all the features of our professional system, and yet-

Our base program, which does 1040 and Schedule A costs only \$189.95
And! You can add schedules for only $\$ 37.95$ each, customizing your system to your requirements.

CONTRACT SERVICES ASSOCIATES
706 SOUTH EUCLID
ANAHEIM, CA 92802

.vis.
(-****

A specially designed SF TACTICAL BATTLE GAME for your PET, TRS-80 or APPLE Computer.
The man called Sudden Smith watched the five blips on his screen spread out to meet the enemy. Two freighters converted into something like battlewagons, powerful but slow, and three real cruisers: the most powerful group of warships ever seen near the Promethean system - except for the Stellar Union fleet opposing them. Everyone was calling it Starfleet Orion, though it existed for only this day. It was life or death, and, after the object lesson on the planet Spring, everyone knew it.
STARFLEET ORION is a complete 2 player game system

- rule book - battle manual - cassette
- ship control sheets - program listings

Includes 2 programs, 22 space ship types, and 12 playtested scenarios. Game mechanics are extremely simple, but play is exciting, challenging, and rich in detail. Specify PET (8K), TRS-80 (Level II, 16K), or APPLE II (16K \& 32K) \$19.95.

Ask your local dealer or send your check to:

Automated Simulations

Department Y
P.O. Box 4232

Mountain View, CA. 94040
California residents please add 6% sales tax

6800 DEVELOPMENT SOFTWARE

An integrated applications development and execution system.

SDOS

All devices interrupt-driven including typehead. Provides device independent, byte addressable random files. Supports any mixture of floppy or hard disk drives up to 2.5 billion bytes. Sector read-ahead and buffer pool enhance application performance. Flexible: Currently runs on 7 manufacturers' systems, using 10 different drive/controllers, including mini-floppies and hard disk.

BASIC COMPILER

For speedy business applications 10 digit BCD; random access to variable size records; long variable names; formatted output; if-then-else; error trapping. Field proven for over 2 years.

EDIT

A powerful text editor with change, delete, replace commands. Automatic display of modification or context changes; macro facilities for complex or repetitive editing.

ASM

2 pass conditional assembler; 32 character labels; symbol table dump and cross-reference; error cross-reference; extensive arithmetic and listing control.

IDB

Single-step, multiple, real time breakpoints; memory dump; multiple display modes. No special hardware needed.
Over 500 pages of documentation to match this proven software.

Complete package: $\mathbf{\$ 7 6 0 . 0 0}$
Also (not including SDOS) available for SWTP, Exorcisor, SSB and MSI DOS.

Write for free catalogue. Sizable distributor discounts.
SOFTWARE DYNAMICS
2111 W. Crescent Avenue, Suite C Anaheim, CA 92804 (714) $635-4760$

TRS-80 disk software

Abstract

DISKETTE DATA BASE IDM-III 32K You can use it to maintain a data base \& produce reports without any programming. Define file parameters \& report formats on-line. Features key random access, multi-keys, sort, select, field arith, audit log. Almost use up all 32 K .

ACCOUNT manage client accounts \& account receivable. Automatic billing \& transaction recording. Print invoices and reports. 32 K req. transaction recording. Print invoices and reports. 32 K req.

$\$ 39$
WORD PROCESSOR 16K
Our WORO-III is the first word processor specifically designed for TRS-80 that uses disk storage for text. Written in BASIC. Ho special hardware and text limit. Use for letters. manuals \& reports.

MALING LIST 16K
It lets you maintain data base and produce reports \& labels sorted in any field. Random access. 2-digit selection code used.
INVENTORY 16K
While others use inefficient sequential file, we use 9 -digit alphanumeric key for fast on-line random access. Record has key, description, level, satety level, order amt. unit cost \& price, annual usage, location and vendor code. Reports give order info, performance summary, etc.

KEY RANDOM-ACCESS UTIL 16K
$\$ 19$
Lets you access a record by specifying a key. Features hashing, blocking. butfering technique, auto $1 / 0$ error relty. etc.

MICRO ARCHITECT
96 Dothan St.
Arlington, MA 02174

'TINY' PASCAL
 for TRS-80 ${ }^{\text {® }}$
 \& NORTH STAR®

Now you too can have Pascal! The Chung/Yuen 'Tiny' Pascal has been specially designed for TRS-80 \& North Star owners. The full power \& elegance of 'Tiny' Pascal is at your command. Programs written in 'Tiny' Pascal run at least 4 times faster than the same program in BASIC! 'Tiny' Pascal is also a great way to learn Pascal Programming, \& fun too.
The minimum system requirements are: Level $11,16 \mathrm{~K}$ for TRS-80, (no disk required) \& 24 K for North Star (specify density).

SOURCE TOO!

But most important, you also get source to 'Tiny' Pascal written in Pascal with each purchase! You can even compile the compiler! (Requires 36 K for North Star systems, \& 32K, Level II for TRS-80). You can customize your own version, or just use it the way it is
'Tiny' Pascal is a subset of Standard Pascal \& includes: RECURSIVE PROCEDURE/FUNCTION, IF-THEN-ELSE, REPEAT/UNTIL, 'PEEK \& POKE', WHILE, CASE, \& MORE!
(Plus full graphics for TRS-80 as well)
Also you can save \& load programs.
You get all this \& more, plus a user's manual for $\$ 40.00$.
available from:

P.O. Box 1628

Champaign, IL 61820
(217) 344-7596

All orders pre-paid, Illinois residents add 5\% sales tax

Good Buys From Disks, Etc.

Verbatim 10 for $\$ 29.00$ MINI-DISKS or 3 for $\$ 10.00$

New! Verbatim Digital Quality Cassettes For Personal Computers
Professional quality cassettes feature leader-free, splicefree, premium grade tape, precision engineering features. For top performance in popular personal computers, including Apple, PET, Heathkit, Atari and Mattel.

2 for $\$ 5.45$

Mini-Disk Protectors
 Fit 3-Ring Binders

Tough, glare-proof vinyl Hoids 2 diskettes and ID cards. 754 ea., 10 for $\$ 5.75$

Storage Cases

Made of durable, molded plastic. Choice of black or beige. Maxi Case, $\$ 4.25$
Mini Case, $\$ 3.75$

MasterCharge, Visa,
Checks OK.
Disks, Etc
P. O. Box 327 C No COD's.

SPECIALIZING IN

QUALITY MIGROEOMPUTER HARDWARE

 INDUSTRIAL • EDUCATIONAL • SMALL BUSINESS • PERSONAL
BUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL \& TEST EQUIPMENT

WIRED: \$295.00
$R^{2} \quad 1 / O$
2K ROM
2K RAM
3 Serial Ports
1 Parallel Port

KIT: \$279.00 WIRED: $\$ 310.00$

16 K RAM
FULLY STATIC
MEMORY

KIT: $\$ 200.00$ WIRED: $\$ 250.00$

ECT-100-F
RACKMOUNT
CARD CAGES

POWER SUPPLIES, CPU'S, MEMORY, OEM VARIATIONS
763 RAMSEY AVE. ELEGTRONIG GONTROL TEGHNOLOGY (201)

Low Cost Computer Assisted Instruction

APPILOT language is an Apple II version of the standard computer assisted instruction (CAI) language; PILOT. Using lesson files created by the APPILOT program editor, APPILOT creates multimedia learning experiences with text, graphics and sound. The student can interact with APPILOT using both numbers and words which APPILOT recognizes as student input.

APPILOT conforms closely to the proposed common PILOT standard, but it incorporates features that fully use the capabilities of the Apple II computer. Among these features are color graphics commands, a musical minilanguage, and disk commands for lesson segmentation which give an effective lesson size up to 90 K bytes. APPILOT also links to the Apple's integer BASIC to allow full calculation capacities.

APPIIOT is available on tape and disk, and is offered on Super Load tapes and for those Apple owners who wish to run prewritten APPILOT lessons. For $\$ 17.95$ the user can execute APPILOT lessons on a 16 K byte Apple, using only tape storage. Included on the tape is the interpreter and a demonstration lesson about APPILOT. Also provided is a documentation manual for running APPILOT and for linking it with the MUSE APPEN-I Text Editor, which may be used for creating and editing APPILOT lessons.

For institutions that wish to write as well as use APPILOT lessons, the

CP/M Text Editor

ED-80 is a text editor designed to run under CP / M and derivative operating systems on 8080,8085 , and Z-80 disk based systems. A user's manual of over 60 pages describes both implementation and usage. ED-80 has a simple command structure patterned after the University of Maryland's editor for UNIVAC 1100 s. Over 50 commands are provided, including forward or backward locate, change, and find commands; insert, delete, append, print, list, macro, case, scale, tabset, and window commands; and get and put commands for copying, moving, merging, and duplicating edit files and program libraries. An internal location counter is maintained for displaying with text, prompting for user input, and for line positioning.

ED-80 provides a window approach to text editing that is not hardware

APPILOT Edu-Disk converts a 32 K byte Apple with disk into a complete CAI system. The user can develop lessons, store them on disk, and run them with the APPILOT interpreter. The Edu-Disk comes with interactive lessons that instruct the user on all aspects of the APPILOT CAI development system. The APPILOT Edu-Disk is being offered for $\$ 49.95$ which includes a detailed documentation manual. For further information, contact MUSE, 7112 Darlington Dr, Baltimore MD 21234.

Circle 565 on inquiry card.

Machine Language Programs for the PET Computer

The SYS7171 and the SYS8181 are two new machine language programs for the PET 2001 computer. SYS7171 is a machine language monitor which allows a programmer or PET user to program in machine language, or in BASIC, without destruction of the monitor once it is loaded. Programs may be saved, loaded or rewritten yet SYS7171 remains coresident and undisturbed.

SYS8181 is a machine language renumbering program which requires only 1 K byte of programmable memory for its operation. After it is loaded, the user can load a BASIC program and it will be renumbered in seconds.

SYS7171 sells for $\$ 29.71$ and SYS8181 is priced at $\$ 18.71$. For further information, contact National Artificial Intelligence Laboratory, POB F, Mobile AL 36601.

Circle 566 on inquiry card.

Word Processing Software System

Autoscribe is a professional word processing system designed for the business world. With Autoscribe, typed text appears on a video terminal screen as it will be printed, and corrections, deletions or revisions can be made in seconds. The finished document is typed at hundreds of words per minute. Letters, contracts and other documents can be produced quickly on single page or continuous form print-out. The original data is recorded and saved on the user disk. Documents can be retrieved instantly and reprinted as needed. No computer language is needed. All instructions are in English. Autoscribe software operates on Z-80 and 8080 systems utilizing North Star disk, a Soroc or Hazeltine terminal and a letter quality printer. For further information contact MicroAge Wholesale, 1425 W 12th Place, Tempe AZ 85281.

Circle 567 on inquiry card.
dependent. Users may examine and edit data through a one line window as it is moved through the edit file. A window command allows instantaneous full screen displays of both the current line and surrounding lines, with forward and backward scrolling.

Compatible with existing CP / M edit files, ED-80 is available on an 8-inch single density disk for $\$ 71$. For further information contact Software Development and Training Inc, POB 4511, Huntsville AL 35802.

Circle 568 on inquiry card.

16-Digit Scientific Subroutine Package for Microsoft Extended and Disk BASIC Interpreters

DPFUN is a comprehensive 16 -digit precision scientific subroutine package written for Microsoft extended and disk BASIC intepreters, including TRS-80 Level II BASIC. The 13 double-precision exponential, logarithmic, trigonometric, and inverse trigonometric functions provide a valuable utility for engineering and scientific applications. DPFUN uses truncated continued fraction algorithms that result in easily entered code, fast execution, and full exploitation of the precision that is available in 64-bit binary floating-point notation. The complete set of subroutines occupies approximately 2.5 K bytes.

The DPFUN source code only is available for $\$ 10$ postpaid. For further information contact Miken Optical Co, 53 Abbett Av, Morristown NJ 07960. Circle 569 on inquiry card.

Elementary Math Tapes for TRS-80

The Microcomputer Mathematics Program K-8 consists of a set of tapes for drill, practice and tutorial in addition, subtraction, multiplication, division, fractions, numeration and decimals for kindergarten through 8 th grade. The tapes are programmed for use on a Radio Shack Level II BASIC TRS-80 microcomputer and 16 K bytes modified memory. The teacher's manual gives an overview of the program, suggests ways to use the program, correlates the skills to selected mathematics texts, and provides suggestions for individualizing math instruction. One set of microcomputer Mathematics Program K-8 tapes including the teacher's manual is $\$ 995$. For further information, contact Foundation for Quality Education Inc, 802 Merchants State Bank Building, 5217 Ross Av, Dallas TX 75206.

Circle 570 on inquiry card.

A COMPLETELY REFURBISHED "SELECTRIC" ASCII TERMINAL FOR THE SMALL BUSINESSMAN OR SERIOUS HOBBYIST.

The AJ 841 I/O terminal. Now available from dealers nationwide.

Demand for our AJ 841 I/O computer terminal has been great. And now it's getting even greater. So call your local computer shop dealer right away. Supply is limited! You may never have another opportunity like this one to buy your own professional terminal.

The AJ 841 features:

- Choice of serial RS 232 or parallel interface
- ASCII code
- 14.9 cps printout
- High quality Selectric printing
- Heavy-duty Selectric mechanism
- Off-line use as typewriter
- Documentation included
- 30-day warranty on parts and labor (details available on request)

Call toll-free now

For location of your nearest AJ dealer, call toll-free:
800/538-9721
California residents call 408/263-8520.

f. ANPERSON JACOBSON

Computer Communication at Your Fingertips

VuePoint is a touch input display panel that measures only $21 / 2$ inches thick. Vuepoint's 12 line by 40 character flat panel also provides a unique touch input capability. This approach permits efficient and speedy operator interaction using menu-driven displays. Vuepoint's microprocessor based controller provides all standard smart video features plus the following: touch response in matrix or screen echo modes, multiple display buffers, and alternate character sets. Communication is by standard 300-19200 bps asynchronous RS-232 protocol. Options include wall or rack mount, auxiliary printer, and 128 character ASCII keyboard. Vuepoint is priced at $\$ 3500$. For further information, contact Ceneral Digital Corp, 700 Burnside Av, E Hartford CT 06108.

Circle 571 on inquiry card.

APL/Z-80 Release 2.0

Vanguard Systems Corp, 6812 San Pedro, San Antonio TX 78216 has announced the release of version 2.0 of APL/Z-80, an APL interpreter for Z-80 based microcomputers. APL/Z-80 includes the following features: dynamic execution of system commands; serial printer support; shared variables; auxilary processor for 1/O (input/output) ports which allows complete device control using defined APL functions for any device interfaced to the $\mathrm{Z}-80$ I/O port; and auxilary processor implementation of a file system featuring a directly indexable file having variable
length records, each of which can be an APL array of arbitrary type, shape, and size (up to available workspace).

A workspace containing defined APL/Z-80 functions, implementing each of the primitive functions not present in this version of APL/Z-80, is distributed with each system. The hardware required is a $\mathrm{Z}-80$ processor, a disk drive, and either serial ASCII APL console terminal or ASCII keyboard and video display board compatible with the Vector Graphic Flashwriter or Processor Technology VDM-1.

The end user license for use on a single processor is $\$ 350$.

Circle 572 on inquiry card.

Distributed Computer System Based on Personal Computers

Cluster/One is a distributed processing al ternative to BASIC timesharing. The central Cluster/One unit (the Queen) connects to 15 personal microcomputers (the Drones), via a high-speed parallel data bus (the Clusterbus). An optional feature provides support for an additional 15 Drones. Currently supported as Drone stations are the Apple II, Commodore PET 2001-8, and TRS-80.

Programs and data files can be shared among the users of Cluster/One. They are stored on two IBM compatible eight inch floppy disks. Each disk holds up to 315 K bytes of data. Disk data transfer rate is 250 K bits per second, managed by a large scale integration floppy disk controller chip. All data transfers are cyclic redundancy checked (CRC) and disk writes are automatically verified. Data is transmitted to each Drone station in packets, with individual error checking. Typical system response time for program loading is two seconds.

Cluster/One commands are quite similar to their counterpart cassette tape commands. Disk commands may be imbedded in user programs, permitting menu-driven program loading or chaining.

Cluster/One comes with a full set of utility programs for system maintenance and backup, along with separate documentation for the end users. Prices begin at $\$ 4500$ and vary with the particular configuration and options selected. For further information, contact Nestar Systems Inc, 810 Garland Dr, Palo Alto CA 94303.

Circle 573 on inquiry card.

Where Do New Products Come From?
The information printed in the new products poges of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the information might be of interest to the personal computing experimenters ond homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. The information is printed more or less as a first in first out queue, subject to occasional priority modifications. While we would not knowingly print untrue or inaccurate doto, or doto from unreliable componies, our copacity to evaluate the products and componies appearing in the "Whot's New?" feoture is necessarily limited. We therefore cannot be responsible for product quality or compony performance.

Heat Sealable Cassette Holder

This cassette holder, designated Pocketray, will hold a cassette securely with the title visible. Cassettes are fully protected on three sides. There are 12 Pocketrays to a sheet which is perforated vertically and horizontally. These may be snapped apart into single units or in any multiple to fit the most creative configuration. Made of PVC, these cassette holders are easily heat sealed to any vinyl material, with a minimum of tooling. Samples, pricing, and literature are available from Charles Leonard Inc, 79-11 Cooper Av, Clendale NY 11227. Circle 574 on inquiry card.

FLOPPY DISK REPAIR

- PerSci and Shugart - Quick turnaround - Factory trained on PerSci

COMPUTER SERVICE CENTER 7501 Sunset Blvd Hollywood CA 90046 213-851-2226

Come Help Us

 Celebrate The ChildSt. Jude Children's Research Hospital continues its search for life-saving knowledge about cotastrophic childhood disease. And this search continues because people care. There's no charge to parients or their families, once admitted to its research studies by physician referral. The cost of drugs, equipment, and research programs is met primarily by public contributions. Help us celebrate the child by sending your tox-deductible check or request for further information to St. Jude Children's

Research Hospiral,
539 Lone Ave.,
Memphis, TN 38105

Circle 68 on inquiry card

GET CONNECTED

Connect your S-100 BUS or TRS-80 system to the telephone network and turn it into a terminal.
The μ-Phone (c) is absolutely all you need - it's not just a modem, not just a controller

Just plug the μ-Phone (c) into your processor and plug it's cable into a standard modular telephone wall jack and you're connected.

The μ-Phone (C) is BELL 103 compatible and F.C.C. registered.

Another Fine Idea From
I.D.E.A. 850 Lexington St. Waltham, MA 02154 617-893-1368

Circle 178 on inquiry card.

BASIC/FOUR COMPUTER MODEL 350

Perfect for small to medium sized business applications. Model $350 \mathrm{CPU}, 4.2 \mathrm{Mb}$ Disc Drive, Video Display Terminal, 160 cps Printer, and 6 Disc Cartridges. Under continuous factory maintenance. Full system ready to go $\$ 11,000$.

Contact:

Carl Egetter (714) 979-9013 THERMAX SYSTEMS, INC.

3185 "A" AIRWAY AVE
COSTA MESA, CA 92626

Don't Forget!

Our New 4K Byte Non-Volatile Memory Boards Won't Let You!

- 30 days minimum guaranteed data retention
- Ultra low power 450 NSEC static CMOS RAM IC's
- On-board regulator, power monitor and battery
- S-100 bus compatible

Assembled and Tested

 \$395.00Remember . . . to send for details!

ㄷㅂㅁㄴ

1395 Golf Street
Dayton, Ohio 45432

Circle 88 on Inquiry card

TRS-80 USERS

Three Diskless TRS-80 Programs Telephone/Address/Mailing list program - sorts by name or zip code. Retrieves telephone " from name and visa versa. Access time is under 2 seconds, over 100 listings, Level II 16 K
$\$ 30.00$
Checkbook program - hard electronic copy, easily accessable. 170 listings, Level II 16K
. $\$ 30.00$
Mandalas for the Cybernectic Age I \& II amazing graphic programs, better than TV - lasts hours without repeating or commercials. 2 sets of four interweaving designs, Level I or II 4K RAMM
. $\$ 30.00$
Introductory offer - All 3 for $\$ 75.00$ Loweco provides complete support

Catalog $\$ 2.00$
LOWECO COMPUTOR 1803 RODNEY
LOS ANGELES CA 90027
213-660-7530
6\% TAX IN CALIFORNIA
Money Order, Cashier Check Speeds Delivery

TRS-80, PET, , SORGERER Hardware/Software Systems

A vailable now:

- HAM INTERFACE--including the most sophisticated RTTY systems money can buy.
- Baudot and ASC II printer interfaces.
- Electra Sketch , ANIMATION GRAPHICS Compiler

U'rite or call for free catalog
MACROTRONICS, inc. .
P.O. Box 518 (A) Keyes, CA 95328 (209) $634.8888 / 667.2888$ (R) (S) We are experiencing telephone difficulties, please keep trying.

Circle 206 on Inquiry card.

Circle 74 on Inquiry card.

A Message to our Subscribers

From time to time we make the BYTE subscriber list available to other companies who wish to send our subscribers promotional material. We take great care to screen these companles, choosing only those who are reputable, and whose products, services, or Information we feel would be of interest to you.

While we believe the distribution of this information is of benefit to our subscribers, we firmly respect the wishes of any subscriber who does not want to receive such promotional literature. Should you wish to restrict the use of your name, simply send your request to

BYTE Publications Inc
Att: Circulation Department 70 Main St
Peterborough NH 03458
Thank you.

A video based word processing system capable of handling data processing applications has been introduced by

Vector Graphic Inc, 31364 Via Colinas, Westlake Village CA 91361. The new system, called Mcmorite 2, incorporates

the firm's $Z 80$ based MZ microcomputer with 630 K bytes of disk capacity, their Mindiess Terminal, and the Qume Sprint 5, 55 cps printer. For word processing applications, Memorite 2 with dual Micropolis floppy disk drives features advanced text preparation, edit, and delete capabilities. It offers automatic letter printing from memory with full formatting techniques such as underlining, indentation, automatic margins and variable line and character spacing. The system also performs mass mailings, which allow letters to be merged with address lists. Its memory is resident on programmable read-only memory, so users need only type after a "power up and proceed"' function.

As a data processor, Memorite 2 is capable of performing standard accounting tasks and custom applications in business BASIC for small firms or departments of large companies. Scientific calculations are also available for technical environments.

The price for the Memorite 2 is $\$ 8,950$.

Circle 575 on inquiry card.

Non-Volatile Memory Board

The E4K EAROM Memory Board provides a Multibus compatible nonvolatile memory of up to 4 K words by 8 -bit capacity. The memory contents are electrically alterable under computer control, permitting it to function as a programmable memory but with the advantage of long term unpowered data retention. Either word or block erasure is possible. Operating software listings are provided with the board. Typical applications include remote data acquisition systems, numerical control systems, process controllers, storage of manually entered constants and telephone number storage.

The prices for the E4K EAROM Memory Board start at $\$ 420$. For further information, contact Schneider Instrument Co, 8115 Camargo Rd, Madeira OH 45243.

Circle 576 on inquiry card.

THE MM-103 DATA MODEM AND COMMUNICATIONS ADAPTER

FCC APPROVED

Both the modem and telephone system interface are FCC approved, accomplishing all the required protective functions with a miniaturized, proprietary protective coupler.

WARRANTY

One year limited warranty. Ten-day unconditional return privilege. Minimal cost, $\mathbf{2 4}$-hour exchange policy for units not in warranty.

- 50 dBm sensitivity. Auto answer. Auto originate. Auto dialer with computer-controlled dial rate. 61 to 300 baud (anywhere over the long-distance telephone network), rate selection under computer control. Flexible, soft-ware-controlled, maskable interrupt system.

ASSEMBLED \& TESTED
Not a kit! (FCC registration prohibits kits)

Call for further information: VOICE: (703) 750-3727 MODEM: (703) 750-0930 (300 baud)

Potomac Micro-Magic, Inc.
Write for brochure:
First Lincolnia Bldg., Suite B1 4810 Beauregard St.
Alexandria, Va. 22312

DATA TERMINAL EQUIPMENT - FROM MICROMAIL

LA34 DECwriter IV \$1,199. 00

- Upper/lower case, 9×7 dot matrix
- $10,12,13.2,16.5$ characters/inch
- 2, 3, 4, 6, 8 or 12 lines/inch
- $22^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{H} \times 151 / 2^{\prime \prime} \mathrm{D}, 25 \mathrm{lbs}$.
- 110 or 300 baud, RS 232C serial ASCII
- Friction feed, paper width to $15^{\prime \prime}$

SOROC IO $120 \quad \$ 795.00$

- RS 232C, upper/lower case, full ASCII
- Numeric keypad, protected fields
- Cursor keys plus addressable cursor
- Auxiliary extension port

New

from DIABLO
DIABLO 1640 \$2,690.00
Receive-only \$2,331.00
High-quality daisywheel printing at 45 cps.
DIABLO 1650
\$2,779.00
Receive-only
\$2.419.00
Metal daisywheel printing at 40 cps .
T.I. 810 printer $\$ 1,695.00$

- Includes upper/lower case
- 150 characters per second
- RS 232C serial interface
- Adjustable forms tractor

NEC Spinwriter
 Call or write for prices

To Order: Send cerlified check (personal or company checks require two weeks to clear) including handling* and 6% sales tax if delivered within Callfornia.
*Handling: Less than $\$ 2,000$, add 2%; over $\$ 2,000$, add 1%. Everything shipped freight collect in factory cartons with manufacturer's warranty.

Paul McCoy Enterprises, Inc. ${ }^{\text {TM }}$
 \section*{Software}

NARKLETM

The NAME, ADDRESS, REFERENCE, KEYWORD, LETTER, ENVELOPE SYSTEM. DATA FILE
NARKLE ${ }^{\text {Tw }}$ is an interactive, menu-operated system that allows the creation, mointenance, up-date, delete, etc, of a mailing information file.
Using the 100 reference fields you can store data about each client and also use this data as a means of automatically building smaller more specific files. Also, you can list files, view individual records by name ar record number, and so much more

LETTER

Using the NARKLE data file and your text editor, NARKLE will create handcrafted personalized letters completely automotically. It features automatic data file name insertions in the inside address, salutation, and the body of the letter; either first name or title last name. Up to 25 "keywords" can be used, and so much more.
NARKLE is the most polite data system on the market today, easily operated by secretarial personnel with a few hours' instruction
NARKLE is sold on diskettes and includes a 43-page operator's monual.

Paul McCoy Enterprises, Inc. ${ }^{\text {m }}$
300 E. 30th Street, Austin, Texas 78705
Phone: (512) 476-1700
Hardware required for NARKLE and XTABFREQ: 8080 or Z-80 Based Microcomputer/48k of memory/CP/M or similar software/CBASIC. Disk drive(s) and interface, terminal and printer.

XTABFREQ ${ }^{\text {m }}$

The CROSSTABULATION, FREQUENCY, STATISTICS, ENTRY SYSTEM. XTABFREQ is a complately interactive system which secretarial personnel should be able to operate with only a few hours af instruction.
The crosstabulation routine can operate in two or more dimensions, generating cell count, cell row and column $\%$, as well as cell $\%$ of total table. The routine delivers Chi-Square, Degrees of Freedom, Lambdas, Uncertainty Coefficients, Etas, Kendall's Tau 8 and Tau C, Gammas and Somer's.D. The SPSS'" user will find XTABFREQ NOT TO BE A COMPROMISE but much more convenient and versitile.

FREQUENCY

Besides for Absolute Frequency the routine generate $\{$ Adjusted, Relative and Cumulative Frequency. Also a code and symbol for Weighting can be used with the Row Count.
You also get the Mean, Mode, Kurtosis, Minimum, Maximum, Range, Standard Error, Standard Deviation, Skewness, Median, and Variance.

REFENTRY

Both the Crosstabulation and the Frequency Routine utilize the very powerful data entry and management rautine, REFENTRY'4. This routine lets you easily build, examine, store on diskettes, manipulate, and extract files for your XTABFREQ JOBS. XTABFREQ will also accept NARKLE'" File interactively. With XTABFREQ you con predict tomorrow without waiting for punchcards. XTABFREQ is sold on diskettes with a 37 -page operator's manual.
Send $\$ 175$ for Norkle and $\$ 295$ for XTABFREQ. Manuals are available at $\$ 10$ each. Dealer inquiries welcome.

BATTERY-WRAP WIRE WRAPPING TOOL noen BW 2630

- POSITIVE INDEXING
- ANTI-OVERWRAPPING
- BITS AVAILABLE FOR AWG 26, 28 \& 30
- BATTERY OPERATED
- LIGHT WEIGHT

BATTERIES AND BIT NOT INCLUDED
U.S.A.

FOREIGN
FATENTS
PANS
PENDING

OK MACHINE \& TOOL CORPORATION 3455 CONNER ST., BRONX,N.Y. 10475 U.S.A. TELEX 125091

BW-2630	BATTERY-WRAP TOOL	$\$ 19.85$
BT-30	BIT FOR AWG 30	$\$ 3.95$
BT-2828	BIT FOR AWG 26 \& 28	$\$ 7.95$
RB-20	TWO NI-CAD BATTERIES	$\$ 10.75$

PET WORD PROCESSOR

This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.
Script directives include line length, left margin, centering, and skip. Edit commands allow the user to insert lines, delete lines, move lines and paragraphs, change strings, save onto cassette, load from cassette, move up, move down, print and type.
The CmC Word Processor Program addresses an RS232 printer through a CmC printer adapter.
The CmC Word Processor program is available for $\$ 29.50$. Add $\$ 1.00$ for postage and handling per order.

Order direct or contact your local computer store.

$$
\mathbb{C}_{\infty \times \mathbb{C N}}
$$

CONNECTICUT MICROCOMPUTER 150 POCONO ROAD BROOKFIELD, CONNECTICUT 06804 (203) 775-9659 TLX: 7104560052

CP/ ${ }^{\text {® }}$ LOW-COST MICROCOMPUTER SOFTWARE

CP/M ${ }^{\circledR}$ OPERATING SYSTEM:

- Includes Editor, Assembler, Debugger and Utilities.
- Standard version for 8080, Z80, or Intel MDS (other versions available.)
- For IBM-compatible floppy discs.
- \$100-Diskette and Documentation.
- \$25-Documentation (Set of 6 manuals) only.

MAC ${ }^{\text {M }}$ MACRO ASSEMBLER:

- Compatible with new Intel macro standard.
- Complete guide to macro applications.
- \$90-Diskette and Manual.

SID ${ }^{M}$ SYMBOLIC DEBUGGER:

- Symbolic memory reference.
- Built-in assembler/disassembler
- \$75-Diskette and Manual.

TEX ${ }^{\text {M }}$ TEXT FORMATTER:

- Powerful text formatting capabilities.
- Text prepared using CP/M Editor.
- \$75-Diskette and Manual.

DESPOOL ${ }^{\text {TM }}$:

- Background print utility.
- Use with CP/M (version 1.4)
- \$50. Diskette and Manual.

NO FRILLS! NO GIMMICKS! JUST GREAT

DISCOUNTS MAIL ORDER ONLY

HAZELTINE

$1400 \ldots$
1500

Mod 1
CENTRONICS
779-1
779.2
$700 \cdot 2$
761 KSR tractor
703 tractor
Micro Printer
NORTHSTAR
Horizon I assembled. kit
Horizon II assembled
kit
Disk System
TELETYPE
Mod 43
$\$ 679.00$
995.00
1495.00
954.00
995.00
1350.00 1595.00 2195.00 395.00
1629.00 1339.00 1999.00 1599.00 589.00

DIGITAL SYSTEMS
Computer.
$\$ 4345.00$
Double Density Dual Drive 2433.00

IMSAI
VDP 80/1000 $\$ 5895.00$
VDP 44 4195.00
16K Memory assem... 399.00
PCS 80/15
679.00
15% off on all other Imsai products DEC

LA 34 1149.00

CROMEMCO
System III \$1000 ofi .. 4990.00
10% otl on all other
Cromemco products
TEXAS INSTRUMENTS
810 Printer
1595.00

Most items in stock for immediate delivery. Factory-Iresh, sealed cartons.
DATA DISCOUNT CENTER p.o. Box 100
135-53 Northem Blvd., Flushing, New York 11354, 212/465-6609
N.Y.S. residents add approprlate Sales Tax. Shipping FOB N.Y.

Whether for technical/graphics or a more realistic game of Star Wars, you' ll love this precision gimballed joystick with self-centering action and unique capacitive switch that activates with only a touch of the control shaft. Front panel accessible X and Y axis trimmers and input pushbutton are featured on the PAIA/APPLE II Joystick. Plug compatible with the APPLE II game controller.
Distributed by: High Technology, Inc., Oklahoma City - Dealer Inquiries Invited -

Send the PAIA/APPLE/I Joystick Controller $\square \$ 65.00$ plus $\$ 1.50$ postage enclosed. \square Charge __VISA_—MC
Card No. \qquad Expiration Date:
name
address
city \qquad state \qquad zip
Fing ELECTROMICS DEPT. 9-B,1020W. WILSHIRE BIVD.. OKLAHOMA CITY. OK 73116

25 START-AT-HOME COMPUTER BUSINESSES

In "Low Capital, Startup Computer Businesses"

CONSULTING - PROGRAMMING - MICRO COMPUTER OPPORTUNITIES • SOFTWARE PACKAGES • FREELANCE WRITING - SEMINARS - TAPE/DISC CLEANING • FIELD SERVICE • SYSTEMS HOUSES • LEASING • SUPPLIES • PUBLISHING - HARDWARE DISTRIBUTORS • SALES AGENCIES • USED COMPUTERS • FINDER'S FEES • SCRAP COMPONENTS • AND MORE

Plus - ideas on moonlighting, going full-time. image building, revenue building, bidding, contracts, marketing, professionalism, and more. No career tool like it. Order now - if not completely satisfied, return within 30 days for full immediate refund.

- $81 / 2 \times 11$ ringbound 156 pp . $\$ 20.00$

Phone Orders 901-761-9090

DATASEARCH

 incorporated4954 William Arnold Road, Dept. B, Memphis, TN 38117 Rush my copy of "Low Capital Startup Computer Businesses" at $\$ 20$. NAME/COMPANY \qquad ADDRESS CITYISTATEIZIP

$$
\square \text { Check Enclosed } \square \text { VISA } \square \text { Master Charge }
$$

\# \longrightarrow Exp. Date

SOFTWARE TOOLS

C compilers and cross-compilers for PDP-11's, LSI-11's, 8080's and Z/80's, with complete runtime library. The full language is supported with efficient code generation.

- Interface libraries giving access to all system directives for UNIX*, RT-11, RSX-11M, RSTS/E, IAS, CP/M, CDOS and ISIS-II.
- A-Natural narrative assembler for 8080 's and $\mathrm{Z} / 80$'s with librarian and linking loader. - Over 75 installations in less than six months.
*UNIX is a trademark of Bell Laboratories.
Continuing maintenance and training available. An affordable alternative to Assembler, Fortran or Pascal, for as little as $\$ 500$ per compiler binary license.
Catalogue and references available upon request.
Write to
Whitesmiths,Ltd.
127 East 59th Street \cdot New York NY 10022-212 799-1200

กЛАБதАオ'

KEYED FILE MANAGEMENT

Put data at your fingertips...easily accessed, displayed and updated by key. Designed to meet all of your data management needs. MAGSAM ${ }^{\text {4 }}$ allows you to quickly implement sophisticated keyed file structures through simple CBASIC statements
Standard MAGSAM'" features include record retrieval with random by key, sequential by key, and generic ("wild card") search, and complete compatibility with all CBASIC file facilities. Each MAGSAM'" Package includes the MAGSAM' file manager MAGSAMX'" tutorial program. MAGSAMD'" file dump utility. User Guide. Reference Card, and one year update service.
Select the version of MAGSAM'" that meets your requirements. All versions of MAGSAM'4 are completely upward compatible and may be upgraded at any time for the price difference

- MAGSAM III $^{\text {T }}$ - Most advanced version. Multiple Key support (any number of keys), and Record and Key Deletion with automatic reclamation of disk space $\$ 145 \dagger$
- MAGSAM II'u - Single Key support with full Delete capability
\$99 \dagger
- MAGSAM Ir" - Entry level version. Single Key suppori without Delete capabilty
- User Guide only - comprehensive tutorial and reference manual
\$15
Available for $8^{\prime \prime}$ soft sector, Micropolis, and TRS-80 disk formats. Requires CP/M ${ }^{\text {- }}$ or derivative and CBASIC. Distributed as CBASIC subroutines in source form
Visa and Masterchagre welcome. Dealer and OEM inquiries invited

7300 CALDUS AVENUE VAN NUYS, CA 91406

- Trademark of Digital Research. † Single sile license

Have your TRS 80^{*} computer dial the telephone ${ }^{『}$ Dial 20 phone numbers, accessed by a single letter code ${ }^{-}$Operates with dial \& pushbutton phones Requires a simple interface using \$4 worth of parts from Radio Shack ${ }^{-1}$ No internal connections are made to the TRS $-80^{-\infty}$ The program is supplied on cassette tape, with complete instructions ${ }^{-}$ (Specify Level I or II with order)

TRS $80^{\text {en }}$ is a registered trademark of
Tandy Corporation
Write to: Software Exchange 2681 Peterboro W. Bloomfield, Mi. 48033

Household Finance I \& II

$\$ 15.00$

ALSO: New Programs for the PET:

PET Word Processor

$\$ 75.00$

 torinaller anel requores 16K or 32K PE'T

PET Space War II

$\$ 10.00$

PET Road Race

$\$ 10.00$

 limelenten al sick shawing fime for lenlls of resumis.

NEW! A wner JOYSTICK interface tor the ThS-80!

() ily
$\$ 65.00$
Joysticks (fairihild"* or Alari") eatl)
$\$ 12.50$

Household Utility 1

$\$ 12.00$

Household Utility 2

$\$ 12.00$

Mairy oulur Creative Software products are available tor the PET and TRS 80. II yenr lencal deaker denesint carry Creative Soft ware proche ts or prangram inlommatom, write directly io the address below. When plating in order please note:
Sinecily compular \& prosgroms). Add $\$ 1.50$ shipping for each promrann ordered. $\$ 2.50$ for ionstick interface. California residents ardd to'. salles lax. VISA MASTFERCHARGE ixcepred. Include cond numiner and expmralicm dale:

Creative Soffware

P.O. BOX 4030, MOUNTAIN VIEW, CA 94040

LET CD/ins. GET YOU THROUGH THE TAX SEASON

- Standard and Master Tax Programs designed to prepare even the most complex returns.
- General Ledger and Payroll, working in conjunction with the tax programs to further simplify tax preparation.
- Tax Pacs used by individuals for at-home preparation.
- NEW for this year - Corporation Tax Programs.

CPAids

- Microcomputer software developed by CPA's
- Used Nationally the past two years
- Available on North Star Basic and CP/M

For more details write:
Computer Tax Service - 1640 Franklin Ave. - Kent, Ohlo 44240 or contact the dealer nearest you:

[^18]International Computer Systems
2210 Ponce-de-Leon Bivd. Coral Gables, Fla. 33134

MISA
478 NE 125th St
N. Mlami, Fla. 33161

P \& L Computers
2550 Palm Beach Lakes Blvd.
Suite 208 Beach Lakes Blvo.
West Palm Beach, Fla. 33409

Indiana
Computer Center of
South Bend
19819 Orchard St
South Bend, In. 46637
lowa
Central Computer
1107 Airport Rd.
Ames, lowa 50010

Loulslana
Micro Business Systems
3823 Gilber
Snreveport, La. 71104
Maryland
The Computer Workshop, Inc.
1776 Plaza
1776 East Jefferson
Rockville, MD. 20852
Mlchigan
United Microsystems Corp.
2601 South State St.
Minnesota
The Computer Room, Inc
3928 Beau D'Rue Dr. Eagan, Mn. 55122
New Jersey
Computerland of Morristown
2 Dehart St.
Morristown, NJ 07960

Tax Ease
226 Avon Rd Cherry Hill, NJ 08034

New Mexico

Microsys Inc
7800 Phoenix NE Albuquerque, NM 87110

New York

The Computer Corner
200 Hamilton Ave.
White Plalns, NY 10601
Micro Innovations 420 Lexington Ave.
NY, NY 10016
North Carolina
North Carolina
Byte Shop of Charlotte 6341 Albemarle Rd. Charlotte, NC 28212 Coastal Computer Co. P.O. Box 333 NC 28540

Computerland of Charlotte 3915 F Independence Blvd Charlotte, NC 28205

Ohlo

Bethel Computers
1700 E. Main St.
Kent, Ohio 44240
Computer Tax Service 1640 Franklin Ave.
Kent, Ohio 44240
Texas
Interactive Computers
7620 Dashwood
Houston, Tx. 77036
Virgina
Command Systems, Inc.
72723 rd St. S.
Arlington, Va. 22202
Washington
Magnolia Microsystems
2812 Thorndyke Ave. West
Seattle, WA 98199

RAM CHIPS 4044 тpe

4K by 1 - 18-p/n - 5V, 5\% supply

These are the same factory prime chips used in our premium quality RAM boards. May be 4044, 4041, 5257, 6641, or 9044, depending on manufacturer. All have 4044 pinout and timing specs. All guaranteed 30 days.

	250 nsec.	450 nsec.
$1-31$ chips	$\$ 7.50$	$\$ 6.50$
$32-63$	6.50	5.50
$64-99$	5.75	4.75
$100-499$	5.50	4.50

Circle inquiry number for free newsletter.
4

SSeattle Computer Products, Inc.

1114 Industry Drive, Seattle, WA. 98188
(206) 575-1830

SORCERER* SOFTWARE!

FOUR PROGRAMS ON CASSETTES

FASTGAMMON'" by Bob Christiansen. Thousands of people are already playing FASTGAMMON on TRS-80 and Apple. Now it is ready for SORCERER, with the sharpest graphics ever! Backgammon players love this machine language program that provides a skillful opponent. Elght-page instruction manual includes rules of backgammon. \$19.95
PLOT by Vic Tolomei. Now Apple owners will be envious of how easy you can get good graphics on your SORCERER. PLOT includes both a super high resolution mode and a quick low resolution mode. Both are accessible from your BASIC programs using simple commands. Hi-res \& lo-res examples included on tape.
$\$ 14.95$
2-80 DISASSEMBLER by Vic Tolomei. Decode machine language programs, including SORCERER'S monitor and ROM-PACS, with thls Z-80 Disassembler written in BASIC. Instruction mode prints out machine code and Zilog mne monics in standard format. Or use the ASCll mode which converts machine code to ASCII.
$\$ 14.95$
MAGICMAZE ${ }^{\text {TM }}$ by Vic Tolomei. A challenging maze game. Ten levels of play. Holding your lantern, you wander through a maze trying to stay on the right path and avoid pitfalls. Automatic scoring tells you how good a pathfinder you are.
$\$ 11.95$
SOFTWARE INTERNALS MANUAL FOR THE SORCERER by Vic Tolomel. A must for anyone writing software for the SORCERER. Seven chapters: Intro to Machine Language, Devices \& Ports, The Monitor, Cassette Interlace, BASIC structure, Video \& Graphics, The Keyboard. Indexed. Includes diagrams and software routines. 64 pages.

QUALITY SOFTWARE

6660 Reseda Blvd., Suite 103, Reseda, CA. 91335 Telephone 24 hours, seven days a week: (213) 344-6599

WHERE TO GET IT: Ask your nearest Sorcerer dealer to see Ouality Soltware's Sorcerer programs. Or, if you prefer, you may order directly from us. MasterCharge and Visa cardholders may telephone their orders and we will deduct $\$ 1$ from orders over $\$ 19$ to compensate for phone charges. Or mail your order to the address above. Caiifornia residents add 6% sales tax. Orders outside North America add $\$ 5$ for registered airmail, pay in U.S. currency. "The name "SORCERER" has been trademarked by Exidy, Inc.

HOBBY YOUR \#1 SOURCE FOR

California Computer Systems Available at HOBBY WORLD

Model 2500A S-100
 Wire Wrap Board

- S-100 BUS compalible
 - Plated thru holes

- Perimeter ground

All s-100 BUS signals labeled and numbered
Accommodales
Accommodales standard size
ic sockets 4 to-220
available

- allable

Allows either positive or neg ative regulators
Dense hole configuralion

Model 2501A

 5-100Solder Board

- S-100 BUS compatible
- Double sided PC bo
- Plated thru holes
- Plated thru holes
- All S 100 BUS signals labeled and numbered
Accommodates standard size
IC sockels IC sockels
4 to-220
4 lo-220 regulator positions Allows eit
Allows either positive or neg
- Dive regulators

Cal No. 1604

Model 2501A S-100 Mother Board

- All $12 \mathrm{~S}-100$ bus connectors in
cluded
to reductance innerconnect to reduce signal noise and crossialk
Active lermination of all bus noise and line reflections
Distributed bypassing of all
power lines
Solder mask both sides of board
Silkscre
Silkscreen
nalions
nalions
Criss-cross BUS lines both sides of board
All holes plaled thru
- Solder plated circuit are

Cat No. 1616 kit $\$ 90.00$

Model 2520A S. 100
 Extender/
 Terminator

inalion

All power lines fused for pro All S. 10
All $S 100$ tines labeled and - numbered

Can be used as an extender

- Solder mash both sides of | board |
| :--- |
| Sillscree |
- Silliscreened reference desig nations
Cat No. 2520 Kit ${ }^{\text {Gold }}$ (37.95

Model 7811A

 Apple II
Arithmetic Processor

\author{

- Based
 based on AMD AM9511 de
}
- Fixed point 16 and 32 bil op-- Eration

Floaling point 32 bit operation - Binary data lormats

Add, sublract, multiply, and
divide Tivide
gonometric functions
Squase roots, logarithms, ex-

- ponentialion - Float to lixed conversions
- Slack
- age
Progr

End signalsd l/O dala Iransler End signal selectable interrupt Allows DMa depi daisy chain - Power down ROM chain - 256 bytes firmware (ROM) or sofiware (RAM) space avait Cat No. 163
$\$ 375.00$

Model 7114 A Apple 11

Prom Module The 7114A PROM MODULE per-
mits the addition or replacement of the Apple It firmware without the physical removal of the Apple II ROMS. This allows soltwarelfirmware replacement, change, andior patch to be made on ROM or BYTE BASIS. An switch is also avaliable. - BYTE oriented program over-- Byy

- Selectabie prom overlay
- Power down of PROMS
- Power down of Proms
- 14K PROM space available
- 14K PROM space available
- Uses +5 volt 2716 lype proms - Allows use of DMAlinterrupt
dasisy chains $\begin{array}{lll}\text { Cat No. } 1631 & \text { ART } & \$ 72.00 \\ \text { Cat No. } 1630 & \mathrm{KIt} & \$ 62.00\end{array}$

Model $2016 B$
5.100 $5-100$
$16 K$ Stole Memory

Fully static operation

- Uses 2114 trpe static rams +8 voc input at lexs than 2 Bank select avallable by bank port and bank byte Phantom line capability Addressable in 4K blocks in 4 K increments
4 K blocks where wis can be located anyMay be whin badk bant or 16k memory a 4 K, 8K, 12K Led indicators for board active indication
solder mask on both sides of board
ence designation
Avaitable fully assembled and
tested, as a kit. or as a bare board
Cat No. 1601 A Kit $450 \mathrm{~ns} \$ 285.00$ Cal No. 16018 KIt 200 ns 5340.00
Cat No. 1602 A A\&T 450 ms 5330.00 Cal No. 16028 A\&T 200 ms 5385.00

Model 747OA Apple II
33/4 Digit BCD A/D
Converter
The 7 7470 allows ronversion of
DC volage to 10 \& 8 CD number for DC voltare to is BCD number for computer monitioting and analy
sis Typical
noputs woutd be DC sis Typical inputs wout be DC
inputs hom lempelature or pres mputs from lemp

- Selectable interrupt on end of conversinn
conversinn
$20 q u s$ per
- -4 to +4 VDC full sca
- Plus or minus . 05% nonlinear
- Plus or minus 1 count quanti-
- Correctible aliset error
- Temperature coefficient ad justment
- Calibration adjustment
- Input offsel adjusiment
- Floating inpuls
- Overange and sign indicalors
- Input fliter

Power down ROM
Supports interrupl daisy chain 256 byte firmware (ROM) o software (RAM) space avall. able
$\begin{array}{lll}\text { Cat No, } 1621 & \mathrm{kit} \\ \text { Cat No. } 1622 & \$ 115.00 \\ \text { A\&T }\end{array}$

Model 2200A Malnframe

- Industrialicommercial quallir

 consiructionFlip-lop cove
Erceltent conling capability 12 slot capability luses model $25014)$

- Onpar 105, 115 , ar 125 VAC

Oulput +B VDC, 20A +-16
VDC 4A
Alines

- Aen and ad
- Rugged construction
- All parts available separately $\begin{array}{lll}\text { Cat No. } 1612 & \mathrm{Kjt} & \$ 330.00 \\ \text { Cat No. } 1614 & \text { Ast } & \$ 375.00\end{array}$

Model 744OA

 Apple IIProgrammable
Timer Module
Flexible eaternal interface palch area for c
face applications
Selectable prescaler on timer

- Prosrammable of inte input
- Programmable interrupts

Readable down counter indic
ales counts to po to Imme-out
ales counts to go to Ilme-out
cy or pulse width comparison
Three asynchronous extermal
clock and gateltrigres inputs
internally synchronized
Three maskable outputs to

- Patch area down ROM
- Supports interrupt daisy chai
- Allows DMA daisy chain

256 byte firmware (ROM) o
solfware (RAM) space avail
$\begin{array}{lll}\text { Cat } & \text { No. } 1617 & \text { Kit } \\ \text { Cat } & \$ 135.00 \\ \text { No. } 1618 & \text { A\&T } & \$ 145.00\end{array}$

Apple II

Model 7712A

Synchronous

 SerialInterface
Conforms to RS-232C (confir Uration A thru E)
Supports hall or full duplea - DTE type conliguration

- Fallsafe RS-232C operation 14 STD CLK rales 50.19 .2 K BAUD plus EXT CIK
- BaUD rates dip swilch select-- Able BAUD rates crystal cont

Programmabie interrupts from transmitter, receiver, and error - Characler SYNC by one or two

SYNC codes

- Programmable SYNC code re
gister
- Standard synchronnus signaling rale per RS-269/ANSI X3.1-
1976
1976
- Perip
- Periphera
- Three bytes of lifo buffering
on both transmit and receive . 78.8 or
7.8, or 9 bit Iransmission
- Optional odd, even, or no pa
ty bit
overrun, and overflow
- Power down prom
- 256 bytes firmware (ROM) or software (RAM) space available
Supports interrupt daisy chain Allows DMA daisy chain

Apple II

 Model 7710AAsynchronous Serial

Interface

Parr. overran. and raming

- Optional divide by 16 slock mode
- False start bit detection

Soltware programmable int

- Data double buffered
- One or two stop bit operation
- Power down Prom
- 256 bytes firmware (ROM) or soltware (RAM) space avait able
Supports interrupt daisy chain - Allows DMA daisy chain
- 134.5 8 A UD available for set
extric interface
Contorms to RS-232C (config: uration A thru E)
Supports half or full duplez operation
OCR type Interíace
- Fallsale RS-232C operation 14 STD CLK rales $50-19.2 \mathrm{~K}$ BAUD plus EXI CLK
BAUD rates dip switch selectable
All BALD rates crystal cort troiled eucept ExT
- Optional even, odd, and
- Programmable control regis-
rexis
Cat No. 1624 A8t $\quad \$ 145.00$

Model 772OA Apple II

Parallel

Interface

rwo bi-directlonal 8 bit bus

 Tow programmable control Tow Pronregisters

- Two nrogrammable data direction reglslers
Four individually controlled onterrupt input lines: two use puts
Handshake control logic foe inpul and oulpul peripheral operation
High impedance 3 slate and pheral lines
- Programmable interrupls

CMOS drive capability on side A peripheral lines
2 TTL drive capability on all A and B side bulifers

- Power down ROM
- Supports interrupl daisy chain 256 bytes fiemware (ROM soflware (RAM) space available

| Cat No. 1633 | A\&T |
| :--- | :--- | :--- |
| Cat No. 1632 | $\$ 105.00$ |

Cat No. 1632 Khi $\begin{array}{lll} & \$ 62.00\end{array}$

Model 7500A Apple II
Wire Wrap

Board

The 7500A is used loo the protoryping on builiding of unique
circuits or the Aiple if circuis tor the Apple il
compulee compuleer.
boand signals labeled on - Poard

- Perimeter ground
- Size: 7 inch long a 2.75 lnch
- All holes plated thru

Gold plated conector fingers
Cat No. 1606 \$19.00
Model 751OA Apple II

Solder Board

The 7510 A is the same as the
7500 A encen 1 l is desinned for
7500A eacept it bs designed for
soldering of circults.
Cal No. 1607
$\$ 19.00$
Model 7590A Apple II

Etch Board

The 7590A is a Iwo sided copper brard which allows the actual etching of circuits for
Cal No. 1608
Model 752OA Apple II

Extender

 BoardThe 7520A is a handy tool
when debukging or testing
Cat No. 1611 Kit $\$ 21.00$

WO

Star Trek III
The most advanced version we've seen!
TRS. 80 12 16 K
Cat No. $1041 \$ 14.95$
Backgammon
You play against the com. puter! With hints on good! TŔs-80 L2.16k

Sargon Chess
Winner of all tournaments! 6 levels of play, excellent graphics.
PRS. 80 L2, 16 K
Cat No. 1093
Cl Cat No. 103 K Apple $11,16 \mathrm{~K}$
Cal No. 1317519.95

Tarot
Excellent graphics, frighteningly accurate:
Cat No. $1042 \mathbf{\$ 5 . 9 5}$
Air Raid
An arcade-type real time game of target practice. Exce-80 TRS-80 L1/L2 4K Microchess
Graphic Chessboard with 3 levels of play. Cat No. 1182' $\$ 19.95$
Apple II
Cal No. 1183519.95
Daily Biorhythm
Plots a 31 day graph cen-
tered on the day you tered on the day you TRS-80 it $1 / 2$
Cat No. $1051 \$ 5.95$

Fortran Plus
By Microsof!: For TRS. 80 L2 with 32 K and single Cat No. $1341 \$ 340$ Beat the House 4 Casino games: Blackjack rouletle, craps, slot
machine. Excellent simu TRS.

Level III Basic
 vanced editing, etc. TRS. 80 L2, 16 K
Cat No. $1332 \$ 49$
Bridge Challenger
You and dummy play regular contract bridge.
Eifher you or comp sets up T S-80 L2, 16 K Cat No. $1195 \$ 14.95$ Apple 16K Cat No. 1196514.95 Machine Language Monitor Allows you to interact directly 11 pp manual. TRS-80 L1/L2
Cat No. $1048 \mathbf{5 2 3 . 9 5}$
Electric Pencil
The famous word proces sor for the TRS-80 $\mathbf{L 1 / 1 2}$
Cat No. $1338 \mathbf{5 9 5}$
L2 diskette version

Available at HOBBY WORLD

Cal No.	Model	Price	Cat No.	Model	Price
1408	S81 kis	\$150	1435	MB8A bb	526
1409	SB1 a \&t	\$212	1436	M89 kil	564
1410	SB1 bb	535	1437	MB9 a 81	5118
1400A	MB6B kit		1429	OB1 kit	545
	450 ns	5139	1430	081 \&	\$74
1401A	MB6B a\&t	5139	1431	OB1 bb	\$26
	450 ns	5183	1427	XB1	510
1402	MB6B bb	\$26	1428	Connector for	
1405	MB7 kit	\$325		XB1	54
1406	MB7 2\&t	\$370	1403	CB-1 kil	\$119
1407	MB7 bb	\$26	1417	VB18 kit	5129
1425	M ${ }^{\text {c }}$ kif	\$54	1418	VB18 azt	5175
1426	MB3 28	5108	1419	V818 bb	\$26
1420	MB4 kit (2 MHz	z) 580	1438	VB2 kit	\$135
1422	MB4 a\&t		1439	VB2 2 \&	5195
	(2 MHz)	5132	1414	102 kit	548
1324	MB4 bb	\$26	1415	102 ast	575
1440	PB1 kit		1416	102 bb	526
	w/textool	5125	1411	104 kit	\$139
1433	MBBA kit	\$78	1412	104 a\&t	5185
1434	MB8A a\&t	\$125	1413	104 bb	\$26

VERBATM
5 $1 / 4$ Diskettes
\$27 box of 10 4 boxes for $\$ 100$
Cal No. Iype Use 1147 Solt sector IRS. 80 , Apple 1148 Hard, 10 hote Norith Star
1149 Hard, 16 hole Micropolis

$8^{\prime \prime}$ Disks

$\$ 37$ box of 10
3 boxes for $\$ 100$

- IBM compatible
- Single dessity

Cat No. 1145 Type 32-1000 Description
32 sector holes, 1 -index hole
Cat No. 1146 Type 34-1000 interchangeable with IBM32, 3740, 3770, 3790, etc.

EDGE CONNECTORS

- Gold plated

Description

S-100, Imsal type, SolderCat No. 1376 Price 54.00 S-100, Imsal type, wirewrap
Cat No. 1428 Price $\$ 4.25$ S-100, Altair-type; soldertail
Cat
No. 1388
Price
$\$ 4.00$ 86-pin Motoroia type, wirewrap Cat No. 1389 Price $\mathbf{\$ 2 . 5 0}$

Ribbon Cable CLEARANCE SALE

- Flat style. 28AWG - Order by Cat No. 1167 \& conductors

Cond.	10 亿L
10	51.00
26	2.60
34	3.40
40	4.00

IC Sockels

Penny-A-Pin

- Texas insiruments
- Texas insiru
- Package quantities

Order by Cat No. 1117 only pins
8
$\begin{gathered}8 \mathrm{pin} \\ 14 \\ 16 \\ 18 \\ 18 \\ \text { pin } \\ \text { pin }\end{gathered}$
14 pin
16 pin
18
10 pin
20
22 pin
24
20 pin
22 pin
24 pin
28 pin
24 pin
28 pin
40 pin

- For TRS-80, Apple, etc.
\$195
(213) 886-9200
-

Anadex Alphanumeric Printer $\$ 925$

- For TRS-80, Apple, etc.

Features 80 columns, 84 lines per minute, super high reltabitity, Completely self contained, perfect for terminals or as a stand alone printer. Prints complete 96 character ASCII lont. Complete with inter-
face for RS232C and 20/60mA current loop mode. Also Centronics plug compatible interface which accepts data in a parallel bil, serial char-

acter synchronous form. Programmable baud rate, plus dozens of other features lound only in printers costing iwice as Cat No. 1342 DP8000 Printer 5
Cat No. 1343 TRS-80 Adapter Cable 540 Cal No. 14563000 sheets 1-part paper $\$ 31.50$ Cat No. 14581000 sets 3 -part paper $\$ 40.50$

RECTIFIERS \& BRIDGES

Order by Cat No, Voltage, and Current
1A
RECT. RECT. RECT, RECT. BRIDGE BRIDGE BRIDGE
\#1001 \#1002 \#1391 \#1392 \#1003 \#1004 \#1034

	\$1001	\#1002	\#1391	\$1392	\#1003	\#1004	\$1034
50 V	. 05	. 12	. 36	. 80	. 30	. 50	1.20
100 V	. 06	. 16	. 50	. 98	. 45	. 65	1.50
200 V	. 08	. 20	. 64	1.15	. 60	. 80	2.00
400 V	. 10	. 24	. 78	1.35	.	-	2.50
600 V	. 12	. 30	. 98	1.60	-	\bigcirc	.
800 V	. 14	.	1.26	1.95	-	-	\cdots
1000 V	. 16	-	1.54	2.30	-	-	-

Matchless Systems - TRS-80

Minidisk Drive

Accesses twice as fast as cables. Completely assemthe Radio Shack drive, bled and tested, ready to plus offers 40 tracks as plug in and go! Simple opposed to 35 ! Includes modification to use as case, power supply, and second drive? Cat No. 1375 MINIDISK

DRIVE $\$ 395$
Cat No. 13964 DRIVE EXPANSION CABLE $\$ 40$ Cat No. 1147 Verbatim Diskettes for above - box of 10 for $\$ 27$

Send for FREE
CATALOG Featuring:
The best selection of com puter accessories add-ons, semi's, software, PC aids prototyping aids, books test equipment, and more
Always updated! Dozens Always updated! Dozens
of new products every

Pay by check, COD, Visa, or Mastercharge. Order by phone or mail. Minimum order $\mathbf{5 1 0}$. Please include, phone number and
magazine/issue you are ordering from. USA: Add $\$ 2$ for shipping/handling groundi $\$ 3$ for air. FOREICN: Add 53 for surface, $\$ 6$ for air. COD's \$1 add tl Guaranteed satyour money back! Not responsible for typographical errors. We reserve the
right to timit quantities.

Dept. 39 NORTHRIDCE, CA. 91324

Electrolabs POB 6721,Stanford,Ca. 94305

In Caisurnu: $415-321-5601$ (an wift: 800-227-8266
TLX: 345567

FLOPPY SYSTEMS

- single or double density - quick access time - high reliability \& durability

Minifloppy CABLE KIT: for TRS-80 or your Tarbell controller. \$24.95

51/4"

MINI-FLOPPY DRIVE \$299.00

Removeable Media Cartridge Drive

Daisy Wheel Printers Qume Sprint $\mathbf{3 \backslash 4 5}$

Print wheels $\$ 8.95$ Ribbons $\$ 5.95$
OEM Style mechanism \$1399.00

ESAT 200B

BI-LINGUAL 80×24 COMMUNICATING TERMINAL
Scrolling, full cursor, bell, 8x8 metrix, 110-19,200 baud, Dual Font Applications. Arabic \& Hebrew,
 Multilingual Data Entry,
Forms Drawing, Music Instruction, Specialized Graphics (e.g. Games, Chemical Plants, Switchyards) \$349.00 We carry keyboards, cases, power supplies, etc., enough to make an entire system.

TO ORDER CALL TOLL FREE 800-223-7318

apple
 NEW!

APPLE II PLUS ONLY\$1195

A complate selt-contained compuler system with APPLESOFT floating point BASIC in ROM, Iull ASC II meyboard in a light weight molded carrying case.

Features Include:

- auto-start ROM - HI-Res graphics and 15 color video outpur.
- Expandable to 48 K .

Otsk $\$ 595$ Programmer's Aid
Add-on Disk
Business Sollware
Monitor 495 Speechlab
495 Lightpen
625 Communication Card
149 Modem
Prinier Card.
180 EPROM Programmer

50
229
250
250
250
225
200
100
NEW D. C. Hayes MICROMODEM II

- Combines the capabilities of a communications card and acoustic coupler - Plugs direcily into Apple slot and modular telephone jack. Only $\$ 379$

NEW Mountain Hardware SUPERTALKER

- Digitized speech recording and playback. Must be heard to be believed - Forelign language leaching pack avallable. Soltware compatible.
only $\$ 279$

SUPERBRNIN ${ }^{\text {" }}$

 INTERTEC DMIA SYSEEMS
ONLY \$2995

More than an inlelligent terminal, the SuperGrain outpertorms many other systems costing three to five times as much. Endowed with a hefty amount of available software (BASIC. FORTRAN, COBOL), the SuperBraln is ready 10 take on your toughest assignment. You name it! General Ledger, Accounts Roceivable. Payroll. Inventory or Word Processing. . .the SuperBrain handles

all of them with ease.
 Features Include:

- two dual-densily minifloppies with 320 K bytes of disk storage
- 64 K of RAM to handie even the most sophisticated programs
- a CP/M Disk Operating System with a high-powered text editor,
assembler and debugger.
FREE

535 of Software with purchase of any computer on this page.

CompucoloriI
COMPUCOL OR II Disk-Based Model 3

Advanced hardware and soliware rechnology | gives you |
| :--- |
| ${ }^{13} \mathbf{1 3}^{\prime}$ Color Display | - Sivanced Colot Graphics - 16K ROM Operating System - 8K RAM User Memory 4K RAM Retresh - 8080A Mlcrocomputer

Over 1000 software tapes, books, disks on display. Come In and brouse. BUSINESS

TSPECIAL SPECIAL $\$ 200$ FREE Software with
purchase of 8 K PET

DATA GENERAL micro NOVA The ultimate in sma Business Computers When matched with COMPUTER FACTORY's Inlicomputer. Software: Accounts Receivable/Payable

 COMPUTER IMSAIThe low cist solution
tor all small business problems A wide variety of soltware is
avalable for all your needs
PCS series inctude dual lloppies. 32K RAM. 1. DOS. BASIC

- PCS 42 (400 KB) $\$ 3295$

VDP. 42 series adds video terminal. key
board and VIO 10 above

- VDP. 42 \$4995 VDP. 44 \$5595
- VDF, 80 \$7995 - VDP 180 \$8995

This fantastic program disk allows the statistician commoditles. the abillty to maintain 30 datab series of up to 300 values and plot 3 ditterent moving averages of a sarias at the same time in 3 aifferent cotors. Files can be updated, deleted, chenged A sure value disk at only $\$ 40$ Word Processing For Apple on disk... $\$ 50$

TO ORDER CALL TOLL FREE 800-223-7318 computer

11542-1 KNOTT STREET products, inc.

MICROBYTE Z80/I-O

- A complete slngle board Z80A CPU and serlaliparalle l/O system - Fully S. 100 Bus compatible. msal, altaia
- 280A CPU (4imhz version of the 280)
- 158 instructions - supersol of and upward compatible from the 8080's 78 instructlons
- Provision for up to 4 K on board monitor program using iK (2708). 2K (2716), 4K 2732
- On board EPROM can be hardwaro and/or soltware deselected 2 MHz or 4 MHz operallon is
- 0 or 1 walt state for all cycles is switch selectablo
- 2 RS-232C serial ports with 8251 USARTS
- Serlal daud rates switen selectable
24 programmable paraltal 110 lines (uses 8255)
- Gold Contscts for Mlgher relia. bility
800 ma requirements: +8 V $800 \mathrm{~mA},+16 \mathrm{~V}, 886 \mathrm{~mA},-16 \mathrm{~V}$
- Operating temperature $0^{\circ} .55^{\circ} \mathrm{C}$ - WIII operale with or without IMSAIIALTAIR front panel - Low power shotiky tri-state butters on all address and data lines Fully warranted for 120 daya from

\$325. ${ }^{\circ}$
MICROBYTE 16K STATIC RAM BOARD
- Fuliy S100 Bus Compatible, imsal, SOL. ALTAIR, ALPHÁ MICRO
- Uses Natlonal's Low Power 5257 $4 K \times 1$ Static Rams
- 2 MHz or 4 MHz oparation
- On board singles 5 amp regulator
- Thermaily designed heat slnk (board operaling temperature 0° $-70^{\circ} \mathrm{C}$
- Inpuis fully low power Sholiky Schmitt Trigger buffered on all address and data lines
- Phantom is jumper selectable to
pin 67
Each $4 K$ bank addressable to any 4K alot with in a 84 K boundary. - 4K hardware or software aelectable
- Selectable port address

4 K banks can be selected or disabled on powar on clear or resel

- WIll operate with or without tront panel
- Compatible with ALPHA MICRO, with extended memory manage. ment for selection beyond 64 K
- No DMA restricilon
- Fully warranted for 120 days from date of shlpment
Extended addreseing up to 1 mogabyto of addreseable ram

MICROBYTE 32K STATIC RAM BOARD

- Fully S100 Bus Compatible. IMSAI, SOL, ALTAIR, ALPHA MICRD
Uses National's Low Power 5257 $4 \mathrm{~K} \times 1$ Static Rams
- 2 MHz or 4 MHz operation
- On board single 5 amp regulator - Thermally designed hesi sink (board operating temperature 0° $-70^{\circ} \mathrm{C}$
- inpuls fully low power Shottky Schmitt Trigger buffered on all address and data lines
- Phantom is fumper seiectable to pin 67
- Esch 4K bank addressable to any 4K slot with in a 84K boundary - AK hardware or software select.

One on board e-bit oulput port enables or disables the 32 K in 4 K blocks
Selectable port address
$4 K$ banks can be selected or dis. abled on power on clear or reset

- WIII operate with or without front

 - panelCompatible with ALPHA MICRO. with extended memory manage ment for selection beyond 64 k
No DMA restriction

- Low power consumption 2.3 Fully warranted for 120 days from dste of shlpment.
Extended addressing up to 1 megabyle of addressable ram

450 NS $\$ 620 .{ }^{\circ 0}$ 300 NS $5650 .{ }^{00}$

MICROBYTE MOTHERBOARD

- Actlve Dlode termintion
- Slot for IMSAI froni pane Terminal block connection for easy hook-up

9 slot kit $\$ 70 . .^{00}$ A\&T $\$ 100 .{ }^{\circ 0}$
20 slot kit $\$ 125 .^{\circ 0}$ A\&T $\$ 155 .{ }^{\circ 0}$
Bare Board 9 slot $\$ 30 .{ }^{\circ 0} \mathbf{2 0}$ slot $\$ 50 .{ }^{\circ 0}$

MICROBYTE DISK CONTROLLER

- IBM 3740 Soft Sectored Compat.
- 280 or 8080 compatible on S-100 Bus
Single denaliy runs both minl and full alze drives, runs CPM, on Shugart, Persct, Memorex etc.
- Selectable por/address

On board 27082716
or monltor program
-No hardor program luma usea oluo
No hardware jumpers, uses plug In modules for different dilves - Uses 17718-01 controller chip

- Assembled and tested

Specify disk. orive used when ordering by mall

$\$ 225 .{ }^{00}$

IMSAICONN.

100 PIN-SOLDERTAIL GOLD CONTACTS
$\$ 3 .{ }^{00}$ each or $10 / 2.60$ each
TRS - 80
Floppy disk drive with cabinet \& pwr. supply compatible with Radio Shack interface. Assembled \& tested with 1 yr. warranty on parts \& labor.

Mlg. by Lobo Drive
Interface Cable Available

SHUGART

801-Disk Drive
WITH CABINET \& POWER SUPPLY ASSEMBLED \& TESTED 1 YR PARTS \& LABOR

Mig. by Lobo Drive
$\$ 585 .{ }^{\circ}$
Dual Cabinet \& Drives Available
SHUGART
SA400
DISK DRIVE INCLUDES CABINET, NO PWR SUPPLY, CUTOUTS FOR SWITCH, FUSE, \& INTERFACE CABLE

Mig. by Loho Drive
$\$ 325 .^{00}$
SCANBE/RN
SOCKETS - LO PROFILE REGULATORS
(tin)

	$\mathbf{1 - 2 4}$	$\mathbf{2 5 . 9 9}$	$\mathbf{1 0 0 - 4 9 9}$	$\mathbf{5 0 0}$ up
14 PIN	.16	.15	.14	.12
16 PIN	.17	.16	.15	.14
18 PIN	.20	.19	.18	.16
20 PIN	.29	.28	.26	.25
24 PIN	.34	.32	.30	.28
40 PIN	.60	.58	.56	.52

NEW PRODUCTS

8086 - CPU BOARD 8088 - CPU BOARD
Double Density Controller CALL OR WRITE FOR DEALERINFO

8251
PROGRAMMABLE/U-ART TESTED @ 4 MHZ $\$ 5 .{ }^{00}$ each

SPECIAL

. 1 @ 12 VOLTS CERAMIC CAP 10\$ each or $100 / \$ 9 .{ }^{00}$ 2708's

LOW POWER

 450 NS.$\$ 8 .{ }^{75}$ each 8 for $\$ 66 .{ }^{00}$

2716
5 VOLTONLY LOW POWER 450 ns
$\$ 40.00$

$1.9 \quad 10.49$ 50up | 320 | T | 1.25 | 1.15 |
| :--- | :--- | :--- | :--- | 320 T. $12 \quad 1.00 \quad .90 \quad .85$ 340 T5 $75 \quad .70 \quad .65$ 340 T. $12 \quad .75 \quad .70 \quad .65$ $\begin{array}{llll}78 & \mathrm{H} 05 & 6.00 & 5.70\end{array} 5.40$

CABLE

ASSEMBLY
for $8^{\prime \prime}$ disk drives
(2) 50 PIN CARD

Edge CONNECTORS
ON 4 ft . RIBBON
CAble
$\$ 20 .{ }^{00} \mathrm{ea}$.
extra conn. $\$ 7^{00} \mathrm{ea}$.

ORDERING INFORMATION

Name, Address, Phone
Snip by: UPS or P.P.
Shipping Charge: Add $\$ 2.50$ up to 5 lbs., all excess shipping charges will be refunded. Credit cards will be charged appropriate freight.

TERMS:

We accept cash, check, money orders, Visa, and Master Charge cards. (U.S. Funds Only).
COD's: on approval only
Open Acct's: companies may inquire for net terms.
Tax: add 6\% for Calif. residents only

CALIFORNIA COMPUTER SVSTEMS
16K RAM BOARD. Fully buffered addressable in 4 K blocks. IEEE standard for bank addressing 2114 's PCBD
$\$ 26.95$ Kit 450NSEC
 lators. All S-100 buss functions labeled, gold fingers. PCBD ingers.
$\$ 25.95$ PT-2 PROTO BOARD. Similar to PT-1 except setup to handle solder tail sockets.

PCBD

\$25.95

$\square \pi$

FORMERLY CYBEACOM/SOLID STATE MUSIC PB. 12708 \& 2716 Programming Board with provisions for 4 K or 8 K EPROM. No external supplies require textool sockels. Kit CB- 18080 Processor Board. 2K of PROM 256 BYTE RAM power on/rest Vector Jump Parallel port with status Kit $\$ 119.00$ PCBD $\$ 30.95$ MB-6B Basic $8 \mathrm{KX8}$ ram uses 2102 type rams, $\mathrm{S}-100$ buss. Kit 450 NSEC $\$ 139.95$ PCBD $\$ 26.95$ MB. $716 K \times 8$. Static RAM uses μ P410 Protection,
fully buffered fully buffered Kit \quad KROM........ $\$ 299.95$ MB-8A 2708 EROM Board. S-100, 8 K 8 X or $16 \mathrm{~K} \times 8$
kit without PROMS $\$ 75.00$ MB-9 4KX8 RAM/PROM Board uses 2112 RAMS or 82S129 PROM kit without RAMS or PROMS $\$ 72.00$ $10-2 \mathrm{~S}-1008$ bit parallel $/ 10$ port. $4 / 3$ of boards is for kludging. KIt …..... $\$ 46.00$ PCBD......... $\$ 26.95$
$10-4$ Two serial I/C ports with full handshaking $20 / 60$ ma current loop: Two parallel $1 / 0$ ports. KIt $\$ 130.00$ PCBD............... $\$ 26.95$ VB-1B 64×16 video board, upper lower case Greek, composite and parallel video with software, S-100. Altair Compatible Mother Board, $11 \times 11 \frac{1}{2} \times 1 / 0^{\prime \prime}$. Board only $\$ 39.95$. With 15 connectors..... $\$ 94.95$ Extended Board full size. Board only With connector
$\$ 9.49$
$\$ 13.45$
SP-1 Synthesizer Board S-100
PCBD
\$42.95
KIT... \$135.95

WMC inc. WAMECO INC.

FDC-1 FLOPPY CONTROLLER BOARD will drive shugart, pertek, remic $5^{\prime \prime} \& 8^{\prime \prime}$ drives up to 8 drives, on board PROM with power boot up, will operate with CPM (not included)
. $\$ 42.95$
FPB. 1 Front Panel. IMSAI size, hex displays. Byte,
of instruction single step.
PCBD
$\$ 47.50$
MEM-1 8KX8 fully butfered, $5-100$, uses 2102 type rams. PCBD
$\$ 25.95$
QM-12 MOTHER BOARD, 13 slot, terminated, S-100 board only
CPU-1 8080A Processor board S-100 with 8 level vector interrupt PCBD .. \$26.95 RTC-1 Realtime clock board. Two independent interrupts. Sofiware programmable. PCBD $\$ 23.95$ EPM-1 1702A 4K Eprom card PCBD $\$ 25.95$ EPM-2 2708/2716 16K/32K
EPROM CARD PCBD
OM-9 MOTHER BOARD, Short Version of OM-12. θ Slots PCBD $\$ 30.95$ MEM-2 $16 \mathrm{~K} \times 8$ Fully Buffered 2114 Board PCBD $\$ 26.95$

(415) 592-1800
P. O. Box 424 - San Carlos, California 94070

Please send for IC, Xistor
and Computer parts list

SEPT SPECIAL SALE ON PREPAID ORDERS

8KX8 RAM Fully buffered 450 NSEC. 2.5 amp typical assembled parts may be unmarked or house numbered.
$\$ 99.99$

MIKOS PARTS ASSORTMENT

WITH WAMECO AND CYBERCOM PCBDS

MEM-2 with MIKOS $=7$ 16K ram

with L2114 450 NSEC
$\$ 249.95$
MEM-2 with MIKOS $=1316 \mathrm{~K}$ ram
with L2114 250 NSEC
$\$ 279.95$
MEM-1 with MIKOS \#1 450 NSEC $8 K$
CPU-1 with MIKOS \#2 8080A CPU
$\$ 119.95$
MEM-1 with MIKOS \#3 250 NSEC $8 K$
RAM $\$ 94.95$

OM-12 with MIKOS *4 13 slot mother
RTC-1 with MIKOS $\# 5$ real time clock $\$ 89.95$

RTC-1 with MIKOS \#5 real time clock
EMPP-1 with MIKOS $\# 104 K 1702$ less EPROMS
EPM-2 with MiKOS \#11 16-32K EPROMS less EPROMS
QM-9 with MIKOS \#12 9 slot mother FPB-1 with MIKOS $=14$ all parts for front panel
MIKOS PARTS ASSORTMENTS ARE ALL FACTORY PRIME PARTS. KITS INCLUDE ALL PARTS LISTED AS REOUIREO
FOR TME COMPLETE KIT LESS PARTS LISTED. ALL SOCKETS incluoed.
VISA or MASTERCHARGE. Send account number. Intorbank number. explirallon dale and sign your order. Approx, postage will be added. Check or monay ordor will be sent post pald in U.S. II you are not a regular customer. Dlease use charge
cashier's check or postal money order. Oithenwise there will be a two week delay lor checks to clear. Calif. residents add 6% tax. Money back 30 day guarantes. We cannot accept re. turned ic's that have been soldered to. Prices subiect to change without nollce. $\$ 10$ minimum order. $\mathbf{3 1 . 5 0}$ sonvice charge on orders less then $\$ 10.00$.

TREMENDOUS SAVINGS ON TRS-80 SYSTEMS

Complete system includes:
TRS-80 Level II, w/our 48K RAM, Dual MPI Disk Drives, and the APPARAT DOS+ software ($\$ 2500$ value), only $\$ 2049$. Line printer and desk options available.

SUPERDISK

TF-7D Micropolis Largest capacity mini floppy, up to 195 Kbytes on 77 tracks with 77TK DOS+

A Complete Family Of Disk Drives To Choose From . . .

In Stock

PRINTERS PRINTERS PRINIERS PRINTERS

LP779 Centronics 779 \$1099
w/tractors
LP700 Centronics 700 \$1175
LP701 Centronics 701 . $\$ 1759$
NEC Spinwriter \$2499

Add-on Disk Drives
DOES NOT INCLUDE POWER SUPPLY OR CHASSIS

NEW PRODUCTS

- Small System RS232 Interface
- Expansion Interface w/32K
- AC Line Interference Eliminator
- AC Isolator (6 connectors)
- Telephone Interface
- Verbatum $5^{\prime \prime}$ soft sector Diskettes $\quad \$ 3.39$

LP702 Centronics 702
\$1899
LP703 Centronics
$\$ 2540$
LP1 Centronics P1 \$ 399
Centronics cables \$ 39
$\$ 379$
\$389
$\$ 379$
$\$ 499$

All disk drive systems come complete with power supply and chassis

- Two drive cable $=\$ 25$ - Four drive cable $=\$ 35$
$\$ 272.00$
$\$ 282.00$
$\$ 399.00$

```
- Pertec FD200 or MPI B-52
(unused)
```


IMPROVE TRS-80 PERFORMANCE WITH MENDOS+

Over 200 modifications, corrections and enhancements to TRS DOS. Includes utilities. Available in two versions:
35 Track version \$99
40 Track version $\$ 110$

2080 South Grand Ave. Santa Ana, CA 92705 (714) 979-9923

All prices cash discounted. Freight FOB/Factory

Memory

16KM 16K RAM Kit
Computer \$74
Expansion Interface $\$ 78$

Software

- Accounts Receivable \$39
- Inventory Control \$39
- Job Entry/Status \$75
- General Ledger $\$ 79$
- Game Diskette $\$ 19$
- AJA Word Processor $\$ 75$

California Digital

Post Office Box 3097 B • Torrance, California 90503

Sankyo Magnetic Card Reader
 \cdots

These Sankyo I/Ounits are capable of storing and retrieving over 400 characters of data in under two secords
The Nexability of this device lends itself to numerous applications. As an input reader to a computerized security syatem, the computer has the abllity of identifying the card holder and admitting ony anthorized to enter the premise maintaining customer information files, or any other application where small amounts of information must be quickly entered into
a data processing syatem.
Accepts $2^{\prime \prime}$ by $4^{\prime \prime}$ HP style mag-cards. (Similar to bank cards. Motorized feeder pulls the magnetic card across the four channel read/write head. NEW surplus, original cost $\$ 200$. Full documentation

\section*{CONNECTORS

S-100 Mother Board

HEXADECIMAL KEYBOARD
 microcomputer sybien

- In tendera how cose.
Each meembry conilite ol 18 harme

Fenlabto low metion acetion main
plumpera ere cridiled lor the amooth
operalion
Requiret elingle +5 roll tuppy.

TEMETYRE MODXX 43

Even If we bave to glve them - 314 , worre gelage to athp mero 43: in 1975 than the astregn

Model 43AAA TTL
$\begin{array}{llll}\text { EACH } \\ 5925 . & \frac{3}{875} & \frac{18}{850} & \frac{25}{825}\end{array}$

FREE plastic Leprafy cise Verbitim mini-dlakettes. \$5 value.

 $\frac{\text { ter }}{50+13 \beta^{3}}$ ECICCI CASSETTES

- Shugart Associales SA800-R Fioppy Disk Drive The most cost effective way to store data proc
essing information. when random recall is a prime factor. The SABOO is fully compatithe
with the IBM 3740 format. Wrle protect cuitry, low maintenance \& Shugart quality.
8449.50

s 139.50

PORTABLE DATA ENTRY SYSTEM

These used data terminals were originally designed for chain store inventory con tral and order entry systems. The operator enters the inventory control number, int merchandise on hand and the unit price. After al the handset is placed in the acoustic coupler and all the recorded information is transmitted back to the master computer. With a little imagination and one of these portable entry systems, you should be able o exchange programs and computer information with assoclates across the country All units were removed from servic All
Removable Entry Keyboard

- Five Gould "D" NiCada
- Battery Charger

DB25 Cable
with LED Display

- Battery Charger

Fhoulder atarp

EPROMS $1-15$ 16-63 $64+$ $\begin{array}{llllll}1702 \mathrm{~A} & 2 \mathrm{~K} & 4.95 & 4.50 & 4.00 \\ 2708 & 8 \mathrm{~K} & 9.95 & 9.50 & 9.00\end{array}$ $\begin{array}{lrrrr}1702 \mathrm{~A} & 2 \mathrm{~K} & 4.95 & 4.50 & 4.00 \\ 2708 & 8.95 & 8.50 & 9.00 \\ 2716.5 \mathrm{~V} 16 \mathrm{~K} & 38.95 & 35.00 & \ldots\end{array}$ $\begin{array}{llll}27165 v 16 \mathrm{~K} & 38.95 & 35.00 & * \\ 2716 \mathrm{TI} & 24.88 & 20.00 & *\end{array}$ 2716 T
2532

5S5TEMT X W 10
It's not offen that Californta Digital ventures into the distribution of consumer pro
ducts. but we have resenty come aceros a product that appears so welque that we fugt had to add it
chent motely control any GSR turntable company. This apace age mystem will re nals are transmitted from the command console over your exlsting wiring. From your bed or casy chair you can control up to 18 different electrical de vices inside and cutside your home. Use the System X-10 to control your
stereo. television or any light fixture on the premises. atereo. television or any light fixture on the premises.
The basic sampler package comes complete with command console, battery
operated ultrasonic controller, one each of the appliance modulc, lamp mod operated ultrasonic controller, one each of the appliance modulc, lamp mod
ule and wall switch. The basic package is priced at only $\$ \theta g .50$ Additional ule and wal s witch. The basic packag.
module are avallable for $\$ 13.95$ each.

COMPUCRUISE

your a car which you the most effective and functional cruise control ever designed, plus complete trip computing, fuel management systems, and a remarkable accurate quartz crystal time system. So simple a child can operate, the new CompuCruise combines latest computer technology state-of-the-art reliability in a package which will not likely be available on new cars for years to come Cruise Control - Time, E. T., Lap Timer, Alarm - Time, Distance, Fuel to Arrival - Time, Distance, Fuel to Ertipty Time, Distance and Fuel on Trip - Current or Average MPG, GPH • Fuel Used, Distance since Fillup Current and Aver-age-Vehicle Speed Inside, Outside or Coolant Temperature - Battery Voltage English or Metric Display. \$199:95

Beece
 Byncus
 Hand

FLOPPY DISK

 STORAGE BINDERThis black vinyl three-ring binder comes with ten
transparent plastic sleeves which accommodate either twenty, five-inch or ten, eight-inch floppy disks. The plastic sleeves may be ordered separately and added as needed. A contents file is included with each sleeve for easy iden tification and organiz ing. Binder \& 10 hol ders $\$ 14.95$ Part No. B800; Extra holders 95* each. Part No 800

OPTO-ISOLATED PARALLELINPUT BOARD FOR APPLEII

There are B inputs that can be driven from TTL logic or any 5 volt source. The circuit board can be plugged into any of the 8 sockets of your Apple II. It has a 16 pin socket for standard dip ribbon cable connection.
Board only \$15.00 Part No. 120, with parts \$69.95. Part No. 120A.

TIDMA

- Tape Interface Direct Memory Access \bullet Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate - S-100 bus compatible \bullet Board only \$35.00 Part No. 112, with parts $\$ 110$ Part No. 112A

SYSTEM MONITOR
8080. 8085. or 2-90 System monitor for use with the TIDMA board. There is no need for the front panel. Complete with. documentation $\$ 12.95$

16K EPROM

Uses 2708 EPROMS, memory speed selection provided, addressable anywhere in 65K of memory, can be shadowed in 4 K increments. Board only $\$ 24.95$ part no. 7902, with parts less EPROMs $\$ 49.95$ part no. 7902A.

ASCII KEYBOARD

TTL \& DTL compatible • Full 67 key array - Full 128 character ASClI output * Positive logic with outputs resting low - Data Strobe - Five user-definable spare keys - Standard 22 pin dual card edge connector - Requires $+5 \mathrm{VDC}, 325 \mathrm{~mA}$. Assembled \& Tested Cherry Pro Part No. P70-05AB. \$135.00.

ASCII KEYBOARD

53 Keys popular ASR-33 format - Rugged G-10 P.C. Board - Tri-mode MDS encoding - Two-Key Roillover • MDS/DTL/TTL Compat ible - Upper Case lockout • Data and Strobe inversion option - Three User Definable Keys - Low contact bounce • Selectable Par ity • Custom Keycaps • George Risk Model 753. Requires +5 , -12 volts. $\$ 59.95 \mathrm{Kit}$.

ASCII TO CORRESPONDENCE CODE CONVERTER

This bidirectional board is a direct replacement for the board inside the Trendata 1000 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for $\$ 229.95$ Part No. TA 1000C

DISK JACKET ${ }^{\text {TM }}$

Made from heavy duty . 0095 matte plastic with reinforced grommets. The minidiskette version holds two 5-1/4 inch diskettes and will fit any standard three ring binder. The pockets to the left of the disk ette can be used for listing the contents of the disk. Please order only in multitudes of ten. \$9.95/10 Pack.

INTERNATIONAL MICROPROCESSOR DICTIONARY
English, French, Dan ish, German, Italian, Hungarian, Norwe gian, Polish, Spanish, Swedish. 10 languages, 28 pp SYBEX. Ref. IMD \$4.95

VIDEO TERMINAL

16 lines, 64 columns Upper and lower case 5×7 dot matrix RS-232 in - RS-232 out with TTL parallel keyboard input - On board baud rate generator 75, 110 150, 300, 600, \& 1200 jumper selecta ble - Memory 1024 characters (7-21L02)

- Video processor chip SFF96364 by Neculonic - Control char acters (CR, LF, \rightarrow, $\downarrow{ }^{1} \uparrow$, non destructive cursor, CS, home, CL. White characters on black background or vice-versa - With the addition of a keyboard video monitor or TV set with TV interface (part no. 107A) and power supply this is a complete stand alone terminal • also 5-100 compatible - requires +16 , \& -16 VDC at 100 mA , and BVDC at 14. Part no. 1000a $\$ 199.95$ kit.

R5-232/20mA INTERFACE

This board has two passive, opto-isolated circuits. Dne converts RS-232 to 20 mA . the other converts 20 mA to RS232. All connections go to a 10 pin edge connector. Requires +12 and -12 volts. Board only \$9.95, part no. 7901, with parts \$14.95 Part No. 7901A.

COMPUCOLOR II

Model 3, BK \$1395 Model 4, 16K \$1595. Model 5, З2K \$1895. Prices include color monitor. computer. and one disk drive.

PET COMPUTER

With 32K \& monitor \$1195. Dual Disk Drive - $\$ 1195$.

Appla II

APPLEII PLUS

16K - \$995, 32K \$1059, 48K - \$1123. Disk \& cont. $\$ 589$

T.V. INTERFACE

- Converts video. to AM modulated RF Channels 2 or 3 . So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs' Journal Recommended by Apple Power required is 12 volts AC C.T., or +5 volts DC - Board only $\$ 7.60$ part No. 107 with parts $\$ 13.50$ Part No. 107A

6502
APPLICATIONS BOOK 280 APPLICATIONS BOOK
This book will teach you how to connect a board to the outside world and implement practical applications for the 6502, for ZBO). Applications range from home con trol (a complete alarm system, including heat sensor), to in dustrial applications You will learn tech niques ranging from simulated traffic con trol to analog-digital conversion. All exper iments can be realized with a minimum of ex ternal (low-cost) components. They are directly applicable to any 6502-based board such as SYM KIM, AIM 65. This book also studies in detail input-output techniques and com ponents, and is the logical continuation of C202 (or C280). By Rodney Zaks. SYBEX. 6502: Ref 0302: 280: Re D380. Each $\$ 12.95$

parallel triac OUTPUT BOARD FOR APPLE II

This board has 8 triacs capable of switching 110 volt 6 amp loads (660 watts per channel) or a total of 5280 watts. Board only $\$ 15.00$ Part No. 210, with parts \$119.95 Part No. 210 A. shipping charges will be added. CA residents add 6.5% for tax. Dutside USA add 10% for air mail postage and handling. Payment must bé in U. S. dollars. Dealer inquiries invited. 24 hour order line (408) 226-4064.

TRS-80 SERIALI/O

- Can input into basic - Can use LLIST and LPRINT to output. or output continuously -RS-232 compatible Can be used with or without the expansion bus - On board switch selectable baud rates of $110,150,300,600$, 1200, 2400, parity or no parity odd or even, 5 to 8 data bits, and 1 or 2 stop bits. D.T.R. line - Requires +5 , -12 VOC • Board only $\$ 19.95$ Part No. 8010 , with parts $\$ 59.95$ Part No. 8010A, assembled $\$ 79.95$ Part No. 8010 C. No connectors provided, see below.

EIA/AS-232 con-
nector Dare
No DB259 5600 win cabie $\$ 1095$ cabie 51095
Na 0825pg

MODEM

- Type 103 - Full or half duplex © Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTL input and output-serial - Connect 8Ω speak er and crystal mic. directly to board Uses XR FSK demodulator - Requires +5 volts Board only $\$ 7.60$ Part No. 109, with parts \$27.50 Part No. 109A

DISKETTES

Box of 10. 5" \$29.95, 8" $\$ 39.95$. Plastic box, holds 10 diskettes, $5^{\prime \prime}$ - \$4.50 B" - \$6.50

RS-232/ TTL INTERFACE

- Converts TTL to RS232, and converts RS232 to TTL - Two separate circuits 0 Requires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$ Part No. 232. with parts $\$ 7.00$ Part No. 232A 10 Pin edge connector \$3.00 Part No. 10P

PS-232/TTY INTERFACE

This board has two active circuits, one converts RS-232 to 20 mA , and the other converts 20 mA to RS-232. Requires +12 and -12 volts. Board only $\$ 4.50$ Part No. 600, with parts $\$ 7.00$ Part No. 600A.

S-100 BUS

 ACTIVE TERMINATORBoard only \$14.95 Part No. 900, with parts $\$ 24.95$ Part No. 900A

APPLE H\%
SERIALI/O INTERFACE

Baud rate is continuously adjustable from 0 to 30,000 - Plugs into any peripheral connector •Low Current drain. RS-232 input and output © On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address - SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer - Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Also watches OTR E Board only $\$ 15.00$ Part No. 2, with parts $\$ 42.00$ Part No. 2A, assembled $\$ 62.00$ Part No. 2C

8K EPROM pIceon

Saves programs on PROM permanently (until erased via UV light) up to BK bytes. Programs may be directly run from the program saver such as fixed routines or assemblers. - S100 bus compatible - Room for 8K bytes of EPROM non-volatile memory (2708's). Onboard PROM programming e Address relocation of each 4 K of memory to any 4 K boundary within 64 K . Power on jump and reset jump option for "turnkey" systems and computers without a front panel - Program saver software available - Solder mask both sides . Full silkscreen for easy assembly. Program saver software in 12708 EPROM $\$ 25$. Bare board $\$ 35$ including custom coil, board with parts but no EPROMS $\$ 139$, with 4 EPROMS $\$ 179$, with 8 EPROMS $\$ 219$.

WAMECO PROOUCTS

 WITHELECTRONIC SYSTEMS PARTS
FDC-1 FLOPPY CONTROLLER BOARD will drive shugart, pertek, remex 5 \& 8 drives up to B drives, on board PROM with power boot up will operate with CPM wer included). PCBD \$42.95
 disglays. Byte or instruction single step. MEM-1A BK×8 fully buffered, S-100, uses 2102 type RAMS. OMB-1 2 MÓTHĖR EOA $\$ 24,95, \$ 168$ Kit nated, $\mathrm{S}-100$ board only, 1 slot, termi-cPU-1 8080A Processor board $\$ 89.95$ Kit 8 level vector interrupt PCBD \$25.95 RTC-1 Realtime clock board. Two independent interrupts. Software programmable. \$25.95, \$60.95 Kit

 EPM-2 $2708 / 2716$ 16K/32K EPROM card PCBO
325.95
$\$ 24.95$ QMB-9 MOTHER BOARO. Short Version of QMB-12. 9 Slots PCBO. $\$ 30.95$ MEM-2 $16 K \times 8$ Fully Buffered 2114.90 Bard
T.V.

TYPEWRITER

- Stand alone TVT - 32 char/line, 16 lines, modifications for 64 char/line included - Parallel ASCII (TTL input - Video output - 1K on board memory - Output for computer controlled curser Auto scroll - Nondestructive curser Curser inputs: up, down, left, right, home, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps, and -12 volts at 30 mA - All 7400, TTL chips Char. gen. 2513 . Upper case only Board only \$39.00 Part No. 106, with parts \$145.00 Part No. 106A

UART E

 BAUD RATE GENERATOR- Converts serial to parallel and parallel to serial Low cost on board baud rate generator Baud rates: $110,150,300,600$ 1200 , and 2400 . Low power drain +5 volts and -12 volts required - TTL compatible All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$ Part No. 101, with parts $\$ 35.00$ Part No. $101 \mathrm{~A}, 44$ pin edge connector $\$ 4.00$ Part No. 44P

HEX ENCODED KEYBOARD
E.S.
board This HEX keyboard
has 19 keys, 16 encoded with 3 user defin able. The encoded TTL outputs, 8-4-2-1 and STROBE are debounced and available in true and complement form. Four onboard LEDs indicate the HEX code generated for each key depression. The board requires a single +5 volt supply. Board only $\$ 15.00$ Part No. HEX-3, with parts $\$ 49.95$ Part No. HEX3A. 44 pin edge connector $\$ 4.00$ Part No 44 P

DC POWER SUPPLY

- Board supplies a regulated +5 volts at 3 emps., $+12,-12$, and -5 volts at 1 amp. Power required is 8 volts $A C$ at 3 amps., and 24 volts AC C.T. at 1.5 amps. Board only $\$ 12.50$ Part No. 6085 , with parts excluding transformers \$42.50 Part No. 6085A

To Order: 프 Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. We accept C.O.D. orders in the U.S. only, or a VISA or Master Charge no., expiration date, signature, phone no. shipping charges will be added. CA residents add 6.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invited. 24 hour order line (408) 226-4064.

The DATATRANS 1000

A completely refurbished IBM Selectric Terminal with built-in ASCII Interface.

Features:

$\$ 1395$

- 300 Baud
- 14.9 characters per second printout
- Reliable heavy duty Selectric mechanism
- RS-232C Interface
- Documentation included
- 60 day warranty-parts and labor
- High quality Selectric printing Off-line use as typewriter
- Optional tractor feed available
- 15 inch carriage width

HOW TO ORDER DATA-TRANS 1000

1. We accept Visa, Master Charge. Make cashiers checks or personal check payable to:

DATA-TRANS

2. All orders are shipped
F.O.B. San Jose, CA
3. Deliveries are immediate

For orders and information
DATA-TRANS
2154 O'Toole St.
Unit E
San Jose, CA 95131
Phone: (408) 263-9246

MICRO-
 PROCE88ORS:
 FROM CHIPS TO gY8TEMS

This book cover all aspects of microprocessors, from the. basic concepts to advanced interfacing techniques, in a progressive presentation. It is independent from any manufacturer, and presents uniform standard principles and design techniques, including the interconnect of a standard system, as well as specific components. It introduces the MPU, how it works internally, the system components IROM, RAM, UART, PIO, others), the system interconnect, applications, programming, and the problems and techniques of system development. By R. Zaks. SYBEX. Ref. C201. $\$ 9.95$

MICRO-
PROCESSOR INTERFACING TECHNIDUEB

Microprocessor interfacing is no longer an art. It is a set of techniques, and in some cases just a set of components. This comprehensive book introduces the basic interfacing concepts and techniques, then presents in detail the implementation deimplementation de-
tails, from hardware to sof tware. It covers all the essential per ipherals, from keyboard to floppy disk as well as the stan dard buses (5100 to IEEE 4B8) and intro duces the basic trou bleshooting tech niques. (2nd Ex panded Edition). By Austin Lesea and R Zaks. Ref. C207 SYBEX. $\$ 11.95$
PR

PROGRAMMING THE 6502
PROGRAMMING THE 280
PROGRAMMING THE 8080'
It covers all essential aspects of programming, as well as the advantages and disadvantages of the 6502 and should bring the reader to the point where he can start writing complete applications programs. For the reader who wishes more, a companion volume is available: The 6502 Applications Book. By R Zaks. 6502: Ref C202: 280: Ref. C280: 8080: Ref. C208. SYBEX. Each $\$ 10.95$

44 BUS MOTHER

 BOARDHas provisions for ten 44 pin (.156) connectors, spaced $3 / 4$ of an inch apart. Pin 20 is connected to X, and 22 is connected to Z for power and ground. All the other pins are connected in parallel. This board also has provisions for bypass capacitors. Board cost $\$ 15.00$ Part No. 102. Connectors $\$ 3.00$ each Part No. 44WP.

AN INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING
No computer background is required. The book is designed to educate the reader in all the aspects of a system, from the selection of the microcomputer to the required peripherals. By Rodnay Zaks. Ref. C200, SYBEX \$6.95

TVT COOKBDOK

8k 1064 - by Don Lancaster. Describes the use of a standard television receiver as a microprocessor CRT terminal: Ex plains and describes character genera tion, cursor contro and interface infor mation in typical, easy mation inderstand Lan--to-understand Lan-
cascaster style. casca
$\$ 9.95$

COMPUTER PROGRAMMING HANDBOOK
A complete guide to computer programmIng \& data processing. Includes many worked-out examples. By Peter Staak, TAB $\$ 9.95$

DIGITAL CASSETTE
5 min . each side. Box of $10 \$ 9.95$. Part No. C-5.

Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money ordar We accept C.O.D. orders in the U.S. only, or a VISA or Mester Charge no., expiration date, signature, phone no., shipping charges will be added. CA residents add 6.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invitad. 24 hour order line (408) 226-4064.

PEROOM SAMPIER

For your SS-50 bus computer - the CIS-30+

- Interface to data terminal and two cassette recorders with a unit only $1 / 10$ the size of SWTP's AC-30.
- Select 30, 60, or 120 bytes per second cassette interfacing, 300, 600 or 1200 baud data terminal interfacing.
- Optional mod kits make CIS-30+ work with any microcomputer. (For MITS 680b, ask for Tech Memo TM-CIS-$30+-09$.
- KC-Standard/Bi-Phase-M (double frequency) cassette data encoding. Dependable self-clocking operation.
- Ordinary functions may be accomplished with 6800 Mikbug'm $^{\text {ru }}$ monitor.
- Prices; Kit, \$79.95; Assembled, $\$ 99.95$.
Prices include a comprehensive instruction manual. Also available: Test Cassette, Remote Control Kit (for program control of recorders), IC Socket Kit, MITS 680b mod documentation, Universal Adaptor Kit (converts CIS-30+ for use with any computer).
mikeu ${ }^{\infty}$ Motorola, inc.

In the Product Development Queue . . .

Coming PDO. Watch for announcements.
6809 Processor Card — With this SS-50 bus PC board, you'll be able to upgrade with the microprocessor that Motorola designers describe as the "best 8 -bit machine so far made by humans.
The Electric CrayonTM - This color graphics system includes its own $\mu \mathrm{P}$ and interlaces to virtually any microcomputer with a parallel l/0 port.
Printer Interface - For your TRS-80 ${ }^{\text {TM }}$ Interface any serial RS232 printer to your TRS-80 ${ }^{\text {TM }}$ with this system

TMELECTRIC WINDOW, ELECTRIC CRAYON, Pilon30 and Pilon-10 are trademarks of Percom Data Company. Inc.
TRS-80 is a trademark of Tandy Corporation and Aadio Shack which has no relationstip to Percom Data Company.

Ordera may be paid by check or money order, or charged to Visa or Master Charge credit account. Texas residents must add 5% sales lax.

CASSETTE SOFTWARE

For 8080/2-80 μ Cs .. .
BASIC ETC - Developed by the coauthors of the original Tiny BASIC, BASIC ETC is easy to use yet includes commands and functions required for powerful business and scientific programs as well as for hobby applications 9.5 K bytes of RAM. 1200-baud cassette and 42-page user's manual \qquad 42 -page
$\$ 3500$ Cassette Operating System - EPROM (2708) COS for the Percom $\mathrm{Cl}-812$ dual peripheral interfacing PC card . . $\$ 39.95$
If you're programming on a $6800 \mu \mathrm{C}$. you'll want these development and debugging programs written by Ed Smith of the Software Works:
Disassembler/Source Generator -Disassembles SWTP Resident Assembler, TSC Mnemonic Assembler/Text Editor or Smoke Signal Mnemonic Assembler/Text Editor and produces compacted source code suitable for re-editing. Prints or displays full assembly-type output listing. 4 K bytes of RAM.
(Order M68SG)
$\$ 25.00$
Disassembler/Trace - Use to examine (or examine and execute) any area of RAM or ROM. "Sottware-single-step" through any program, change the contents of CPU or memory location at any time, trace subroutines to any depth. 2.3K bytes of RAM.
(Order M68DT)
$\$ 20.00$
EPROM Support/Relocator Program This program relocates a program in any contiguous area of RAM or ROM to anywhere in RAM. Use to assemble and test programs in RAM, adjust programs for EPROM operating addresses and then block move to your EPROM burner address. 952 bytes of RAM. Loads at hex 1000.
(Order M68EP)
$\$ 20.00$
Relocating Assembler \& Linking Loader (M68AS)
$\$ 50.00$
Relocating Disassembler \& Segmented Source Text Generator (M68RS) $\$ 35.00$

Americana Plus - 14 tunes for the Newtech Model 68 Music Board in machine language ready to load and run. Cassette compatible with Percom $\mathrm{CIS}-30+$ and SWTP AC-30. Order MC-1SW . . $\$ 15.95$

HARDWARE

Newtech Model 68 Music Board - Produces melodies, rhythms, sound effects, morse code, etc. from your programs. Includes manual with BASIC for writing music scores and assembly language routine to play them. Installs in SWTP I\% slot. Assembled \& tested
$\$ 59.95$
The Percom Electric windowim -Memory-resident and programmable, this video display character generator board for your SS-50 bus displays up to 24 80-character lines. Features dual character generators, dual-intensity high-lighting. One programmable register controls scrolling. Compatible with standard video monitors \$249.95 SS-50 Prolotype Cards:
Large card (up to 70 40-pin ICs) $\$ 24.95$ 1/0 size card $\$ 14.95$

PERCOM
PERCOM DATA COMPANY, INC. DEPT. B
211 N. KIRBY • GARLAND, TX. 75042

To order products or request additional literature, call Percom's toll-free number: 1-800-527-1592. For detail technical information call (214) 272-3421.

ATTENTION ELF OWNERS

 ANNOUNCING QUEST SUPER BASICAt last a Full 8 tre Basic for 1802 systems. A Tiny Basic Source now available complete function Baslc including two dimenslonal arrays, string varables, floating point, arithmetic and 32 bit sloned integer arithmetic (10 digit accuracy) with $1 / 0$ routines. Easily adaptable on most 1802 systems. Requires 12 K RAM minimum ior Basic and user programs. Cassette version in stock now for Immediate delivery. ROM verslons coming soon with exchange privilege allowing credit tor cassette version. Super Basic on Cassette
$\$ 19.00$
-100 Slot Expansion. Add 3 more S-100 slots to your Super Expansion Board or use as a 4 slot -100 Mother Board. Board without connectors $\$ 9.85$.
Coming Soon: High resolution alpha/numerics with color graphics expandable up to 256×192 rasolution for less than $\$ 100$. Economical versions for other popular 1802 systems also. 16K Dynamic RAM board expandable to 32 K for less than $\$ 150$.

RCA Cosmac Super Elf Computer $\$ 106.95$

Compare leatures before you decide to buy any other computer. There is no ather computer on the market today that has all the desirable benefits of the Supar Elf for solltile money. The Super Elf is a small slngle board computer that does many big things. It is an excelient computer for training and for learning programming with its machine language and yet it is easily expanded with addillonal memory, Full Basic, A8CI Keyboards, video character generallon, ste.
Belore you buy another small computer, see if it includes the following features: ROM monitor State and Mode displays; Single step; Optional address displays; Power Supply; Audio Amplifier and Speaker; Fully socketed for all IC's; feal cost of in warranty repalrs; Full documentation
The Super Elf includes a 月OM monitor for program loading, aditing and execution with SIMGLE STEP for progrtm debugging which is not included in others at the same price. With SMMGLE STEP you can see the microprocessor chip operaing with the unique Duest address and dara bus structions. Also, CPU mode andinstruction cycle ara decoded and displayed on 8 LED indlcators. An fCA 1861 Wdeo graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a spesker system included for writing your own music or using many music programs already written. The speaker amplifier may also
to drive relays for control purposes.

24 key HEX keyboard includes 16 HEX keys olus laed, reset, run, walt, Input, memory proect, monilor select and single stap. Large, on board displays provide output and optional high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connecor slot for the Quest Super Expansion Board. Power supply and sockets for all tC's are included in the price plus a detaited 127 pg . Insiruc ion manual which now includes over 40 pogs. of sottware info. Including a series of lessons to help get you stanted and a music program and graphics target game.
Many schools and universitles are using the Super EHf as a course of study. OEM's use it for raining and research and development.
Remember, other computers only ofler Super Elf eatures at additional cost or not at all. Compart bafore you buy. Supar Elf Klt $\$ 108.95$, High ddrese option \$8.95, Law address option 50.88. Custom Cablnet with drilled and labelled plexigiass front panel\$24.95. Expansion Cabinet with room foi 4 S-100 boards \$11.00. NiCad Battery Memory Saver KIt \$6.95. All kits and options also come completely assombled and tested.
Quesidata, a 12 page monthly sottware publicalon for 1802 computer users is available by subscription for $\$ 12.00$ per year.
Tiny Basic Cassette $\$ \mathbf{1 0 . 0 0}$, on ROM $\$ 38.00$, original Eff kit board $\$ 14.95$.

Super Expansion Board with Cassette Interface \$89.95

This is truly an astounding value! This board has been designed to allow you to decide how you comse wilth 4 K of low power RAM fully addressable anywhere in 64 K with built-in memory protect and a cessetts interface. Provisions have been made for all other options on the same board and it fits neatly into the hardwood cabing alongstde the Super Elf. The board includes slots or up to 6K of EPROM (2708, 2758, 2716 or T 2716) and is fully mocketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A \boldsymbol{E} Super ROM Monllor $\$ 18.95$ is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader/ editor and error chacking mult file casserte another excluslve from Quest. It includes repister save and readout, block move capability and video graphics driver with blinking cursor. Break points can be used with the reglster save feature to isolate program bugs quickly, then follow with single step. The Super Monitor is written with subroutines allowing users to take advantage of
onitor funcions simply by calling them up. mprovements and revisions are easily done with the monitor. If you have the Super Expanslon Board and Super Monltor the monitor is up and unning at the push of a button.
Other on board options include Parallel Input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. AS 232 and 20 ma Current Loop for leletype or other device are on board and If you heed more memory there are two S-100 slots for static RAM or video boards. A Godbout BK RAM board is available for $\$ 135.00$: Also a 1 K Super Monitor version 2 with video driver for full capability display with finy Basic and a video interface board. Parallel I/O Ports \$9.85, hS $232 \$ 4.50$, ITY $20 \mathrm{ma} / \mathrm{F} \$ 1.95, \mathrm{~s}-100 \$ 4.50$. A 50 pln comnactor sat with ribbon cable is available at $\$ 12.50$ for easy connection between the Super EIt and the Super Expenslon Board.
The Power Supply XIt for the Super Expansion Board is a 5 amp supply with muttiple positive and negative voltapes $\$ 29.95$. Add $\$ 4.00$ for 5 hipping. Prepunched lrame $\$ 7.50$. Caso $\$ 10.00$. Add $\$ 1.50$ for shipping.

Multi-voll Computar Powar Supply 8v $5 \mathrm{amp}, \pm 18 \mathrm{v} .5 \mathrm{amp}$. 5v $1.5 \mathrm{amp},-5 \mathrm{v}$ are regulated. Kit $\$ 29.95$. Kit whth punched frame
are regulated. Kit $\$ 29.95$. Kt with
$\mathbf{\$ 3 7 . 4 5}$. Woodgrain case $\$ 10.00$

60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board, IC, crystal, resistors, capacitors and trimme

Same day shipment. First tine parts only Factory tested. Guaranteed money back Quality IC's and other components at fac tory prices.
integrated circuits

 - 							

Rockwoll AIM 65 Computer
6502 based single board with full ASCII keyboard and 20 column thermal printer. 20 char. alphanumeric display, ROM monhtor, fully expandable. $\$ 375.00$. 4 K verslon $\$ 450.00$. 4 K Assember $\$ 85.00$, 8 K Basic interpreter $\$ 100.00$. Power supply assy, in case $\$ 60.00$. AIM 65 in thin briefcase with power supply $\$ 485.00$.

Not a Cheap Ciock KIt \$14.95 Includes everything except case. 2-PC boards. 6-.50" LED Displays. 5314 clock chip, trans former, all components and full instructions. Orange displays also avail. Same kit w/ 80 . displays. Red only. $\$ 21.95$ Case $\$ 11.75$

VIdeo Modular KIt

$\$ 8.95$
Convert your TV set into a high quality monitor without attecting normal usage. Complete kit with fuill instructions.
S-100 Computer Boards 8K Static RAM Kh Godbout 16K Satic RaM K 32K Dynamic RAM 32 K Dynamic RAM Kit
64 K Dynamic RAM Kit 64K Dynamic RAM Kin 8K/16K Eprom Kit (less PROMS) video interface Kit Motherboard $\$ 39$. Extender Board $\$ 8.90$
79 IC Update Master Manual $\$ 35.00$ Complete IC dala selector, 2500 pg . master reference guide. Over 50,000 cross reterences. Free update service through 1979. Domiestic postage $\$ 3.50$. 1978 IC Master closeout $\$ 19.50$. No foreign

Auto Clock Kit

$\$ 17.95$
DC clock with 4.50° displays. Uses National MA- 1012 module with alarm option. Includes light dimmer, crystal bimebase PC boards. Fully regulated, comp. instructs. Add $\$ 3.95$ for beautiful dark gray case. Best value anywhere.

Stopwatch Kit

$\$ 26.95$
Full six digtt battery operated. 2-5 volts. 3.2768 MHz crystal accuracy. Times to 59 min., 59 sec., $991 / 100 \mathrm{sec}$. Times std., split and Taylor. 7205 chip, all components minus case. Full Instructions

NICad Battery FIxer/Charger KIt Opens shorted cells that won't hold a charget
and then charges them up. all in one kit w/tull parts and instructions.

PROM Eraser

Will erase 25 PROMs in 15 minutes. Uhira-
Hickok 31/2 Digit LCD Multimeter BatuAC oper. $0.1 \mathrm{mv}-1000 \mathrm{v}$. 5 ranges. 0.5% accur. Resistance 6 low power ranges 0.1 ohm-20M ohm. DC curr. . 01 to 100ma. Hand held, $1 / 2{ }^{\prime \prime}$ LCD displays, auto zero, polarity, overrange, $\$ 69.95$.
Digital Temp, Meter KII $\$ 39.95$ Indoor and outdoor. Switches back and forth. Beauliful. $50^{\text {" }}$ LED readouts. Nothing like th available. Needs no additional parts for complete, full operation. Will measure -100° to $+200^{\circ} \mathrm{F}$, tenths of a degree, air of liquid Beautitul woodgrain case w/bezel \$11.75

The EXPANDORAM is avallable in versions from 16 K up to 64 K , so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisable on-board refresh, and IT WORKS!

- Interfaces with Altair, IMSAI, SOL-B, Cromenco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, $\pm 16 \mathrm{VDC}, 5$ Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is doubled solder masked and has silk-screen parts layout.

SD EXPANDORAM

The Utuemare S-100 Memary

Extensive documentation clear. ly written

- Complete Kit includes all Sockets for 64 K
- Memory access time: 375ns, Cycle time: 500 ns .
- No wait states required.
- 16K boundries and Protection via Dip Switches
- Designed to work with Z.80, 8080, 8085 CPU's.
EXPANDO 64 KIT (4116)
16K
32K $\$ 324$
48 K
64K

DUAL SHUGART DISC DRIVES

New from Lobo Drives, a dual Cabinet complete with power supply, and Shugart 801R disc drives.

- Cabinet accepts 2801 drives mounted side by side horizontally.
- Power Supply for 2 drives
- Ad-on drives available
- Assembled, tested and guaranteed by Lobo Drives
- Single or double density - Hard or soft sector - Write Protect
- Capacity: Unformatted single density 3.2 megabits double density 6.4 megabits
IBM format, 2 megabits
- 500 KBS transfer, 77 tracks. - Shugart 800 Series Compatible

LOBO 801R-1 Pcs. Dual Cabinet with 1 drive
$\$ 599.00$
LOBO 801R-2 Pcs. Dual Cabinet with 2 drives
SHUGART B01R Ad-on disc drive
$\$ 1025.00$
$\$ 449.00$

CONTINENIAL SPECIALTIES CORPORATON
Son

VDB-8034 Video Display Board

 With On-Board Z80 Microprocessor\qquad
\qquad
$\$ 239$ KIT
SBC-100 Single Board Computer with On-board RAM, PROM, CTC

SD COMPUTER BOARDS

MODEL LP. 2
ECDODMy
Evision of Model LP. 1. Safer than a voltmater. More accurate than Economy version of Model LP. 1. Safer than a voltmeter. More accurate than
a scope. Inpui Impedance: 300.000 onms. Minimum Detecticte pruls: 300
ns. Maximum Input Signal (Frequency): \ddagger M Mz. Puls Dotector (LED): High
 MODEL LP. 3
High speed logic probe. Captures puises as shori as 10 ns Input Im.
 CSC Madel LP. 3 Logle Probe-Net Each \$00-5 $\$ 86.45$ Oprenutun

PRIORITY ONE ELECTRONICS \odot

6723B Roscoe Blva. Sepulveda.

Terms: VIsa, MC, BAC, Check, Money Order, C.O.D. U.S. Funds Only. CA residents add 6% sales tax Minimum order $\$ 10.00$. Prepaid U.S. orders less than $\$ 75.00$ include 5% shipping and handling. minlmum $\$ 2.50$. Excess refunded. Just In case ... please Include your phone no.

TRS-80 DISC DRIVE

\$39500

Shugart SA400, housed in an attractive metal case, complete with power supply and termination network. All you need to do is connect the drives to your expansion interface.

1410 \$83500 - Separate integral 12 -kay Numeric Pad - All 128 ASCII Codes

- 64 Displayable Characters
- 24×80 Screen Configuration
- High Resolution using a 5×7 Dot Matrix - TTY-Style Keyboard Layout
- Cursor Addressing and Sensing
- EIA Interface
- Elght Selectable Transmission Rates up 109600 Baud
- Mlcroprocessor Based
- Remote Commands
- Altractive Styling for Contemporary En. vironments

Hazeltine 1400
same as 1410 less numeric pad $3735^{\circ 0}$
1500 Reg. $\$ 7225$ 51098^{00}

128 ASCII Codes - 94 Displayable Characters Including Lower Case

- 24×80 Screen Configuration - HIgh-Resolutlon Characters Using a 7×10 Dot Matrix
ANSI Standard Keyboard Layout including Numeric Pad
- Cursor Addressing and Sensing
- Oual Intensity
- EIA and 20MA Interface
- Nine Selectable Transmission Rates Up 1019.2 KB
- Auxiliary EIA Oulput - Remote Editing Commands - Standard or Reverse Video - Microprocessor Based

ALL THE FEATURES OF THE "1500" PLUS

- Cursor Control Kays
- Protected/Unprotected Data
- Transmilt Page, Line or Batches of information
- Functlon Keys-up to 127
- Tab/Back Tab/Auto Tab
- Format Mode with Insert and Detete Line Keys
- 31 Remote Commands including "Ter. minal Status"

1510
Reg. 57895
s 1175
ALL THE FEATURES OF THE "1510" PLUS
Separate Microprocessor Controlled Printer inSeparate which allows:
Infertacing of boin se
Pinter spoed Independent of communicationa baud rate
Printer control codes to be sent by the CPU and received by the printer without restriction or alteration of the torminal (especially useful Por wide carriage applications)解 Operating Modes/Remote Commands RemotelLocal Print; Printer On-LIne with/without Display; Printer Off.Uine

1520
Reg. $\$ 7650$
s1495 ${ }^{\circ 0}$
PRICE does not include shipping

- Use with TRS-80 CENTRONICS 779 PRINTERS
- Continuous variabie printing density
80.132 characters per line
- 5x7 dot matrix

- Prints on plain paper, sheets, rolls, fan fold
- Form thickness control
- Horm thickness control form positioning
779.1 pinch roll friction feed Reg. $\$ 1250 \$ 950^{00}$ 779.2 tractor feet Reg. $\$ 1400 \$ 1050^{\circ 0}$

Portabie Miniscopes for Electronic Professionais on the Go!!! The Standout Oscllloscope development of the decadel! Now -30 MHz , dual trace model. Compare the performance, then compare the price.

14 sale Probes 1t with purchase of scope

- 30. Megahertz bandwidth • Accuracy 3% full scale. • Internal, Hne or external trigger. - Batterles and charger/transformer unit included • Graticule: 4×5 divisions, each division $0.25^{\prime \prime}$ • Time base: 1 micro sec. to 0.5 sec/div 21 settings - Verticle Gain: 0.01 to 50 Volt sidiv, 12 settings - SIze $2.9^{\prime \prime} \mathrm{H} \times 6.4^{\circ} \mathrm{W} \times 8.5^{\prime \prime} \mathrm{D}$. 3.5 Ibs . - TEST MOST DIGITAL LOGIC CIRCUITS IN CLUDING MICROPROCESSORS •

41-141 Deluxe 10 tol probe with 4 interchangeable tips	\$27.00
41-37 Deluxe 10toi/1tol probe with 4 interchangeable tips	\$38.50
41-180 leather carrying case	\$45.00
MS. 15 Single trace 15 MHz	\$318.00
MS-215 Dual trace 15 MHz	\$435.00

3M Scotch ${ }^{\circledR}$ Brand DISKETTES

Part ${ }^{\prime}$	Sides/ Density	Sectoring	$\begin{gathered} \text { Price } \\ \text { Box of } 10 \end{gathered}$
		8"	
740-OP	1/single	Soft-IBM	\$39.95
740/2-OP	$2 /$ single	Soft-IBM	$\$ 75.00$
740-32P	1/single	32-Shugart 801	\$39.95
74012-32P	2/singie	32-Shugart 801	\$75.00
741.0	1/double	Soft-Shugart Dbl $5^{\prime \prime}$	\$59.00
744-OK	1/single	Soft-Shugart SA400 (TRS-80)	\$51.00*
744-10K	1/single	Soft/10 SA400	\$51.00*
744-16K	1/single	Soft/16 Micropolis	\$51.00*

ACOUSTIC MODEM NOVATION CAT

- 0.300 Baud
- Bell 103
- Answer, Originate

Reg. $\$ 198.00$
Sale $\$ 189.00$

100 MHz 8-Diglt Counter

- $200 \mathrm{~Hz} \cdot 100 \mathrm{MHz}$ Range - 8" LED Display

- Crystal-controlied timebase

- Fully Automatic
- Portable - completaly salf contained
- Size $\cdot 1.75^{\prime \prime} \times 7.38^{\prime \prime} \times 5.63^{\prime \prime}$
- Four power sources, l.e. batteries. 110 or 220 V with charger 12 V with auto lighter adapter and external 7.2-10V power supply.
$\$ 734: 05$ Sale $\$ 120.00$
ACCESSORIES FOR MAX 100:
Moblle Charter Eliminator use power
rom car baltery Model 100.CLA $\$ 3.95$.
Charger/EIIminator use 110 VAC
Model 100 - CAl $\$ 9.95$
PpIORITY
16723 B Roscoe Blva. Sepulveda. CA 91343
Terms: Visa, MC, BAC, Check, Money Order, C.O.D. U.S. Funds Only. CA residents add 6% sales tax. Minimum order $\$ 10.00$. Prepaid U.S. orders less than $\$ 75.00$ include 5% shipping and handiling. minimum $\$ 2.50$. Excess refunded. Just in case....please include your phone no. Prices sublect to change without notice.
We will do our best to maintain prices thru Sept. 1979.
phone orders welcome (213) 894-8171, (800) 423-5633 inguiries invited.

HICKOK LX303 \$74.95

 Same as 8800 V exceat plan. less power with Power \& Gro. Bus $\begin{array}{cccc}\text { buses } 8 \text { near sink. } & & \text { Epoxy Glass 1/16" } \\ 1-4 & 5.9 & 10-24 & \text { pincon. spaced.156 }\end{array}$

\section*{TRS -80/APPLE} 1161 leato board .042 dia holes on 0.1 spacing for IC's | |
| :---: |
| $\begin{array}{c}\text { Phenolic } \\ \text { PART NO. SRICE }\end{array}$ |
| $1.9 \quad 10-19$ | | PART NO. | SIZE | | 1.9 |
| ---: | ---: | ---: | ---: |
| 64 P4 XXXP | $4.5 \times 6.5^{\prime \prime}$ | $\$ 1.56$ | $\$ 1.40$ | $\begin{array}{lllll}\text { 64P44XXXP } & 4.5 \times 6.5 & \$ 1.56 & \$ 1.40 \\ 169 P 44 X X X P & 4.5 \times 17^{\prime \prime} & \$ 3.69 & \$ 3.32\end{array}$

MEMORY EXPANSION KITS 4116's RAMS
(16Kx1 200ns)

$36779.6^{\prime \prime} \times 45^{\prime \prime}$ $\$ 10.90$ $3677-26.5^{\prime \prime} \times 4.5^{\prime \prime}$ $\$ 9.74$
 $\$ 9.74$

Gen. Purpose D.I.P.
Boards with Bus Pattern
${ }^{3662} \$ 7.5^{6.54 .5 "}$

CARD EXTENDER ard Extender has 100 co Card Extender has 100 con. lacts 50 per slde on . 125 centers-Attached connec. or-is compatible with Epoxy Glass 1/16" 44 IC's Epoxy Glass $1 / 46^{\prime \prime} 36906.5^{\prime \prime} 22 / 44$ pin 156

IC SOCKET SALE IC SOCKET SALE 14 pin Low Profile 10/\$2.10 100/\$14.00 16 pin Low Profile
 14 \& 16 PIN WIRE WRAP SOCKES
14. G3 100 for $\$ 33.00$
16. G3 100 for
$\$ 33.00$ 24 pin Low Profile

ORDER TOLL FREE

Venus 2001 Video Board

 Assembled \& Tested $\$ 259.95$ Complete Unit with 4K Memory and Video Driver on Eprom assembled and tested $\$ 339.95$OPTIONAL: • Sockets $\$ 10.00$ - 2K Memory $\$ 30.00$

- 4K Memory \$60.00

- Video Driver Eprom \$20.00

-S-100 plug-in • Parallel keyboard port

On board 4K Screen Memory (Optional). On board Eprom (Optional) for Video Driver or Text Editor Software.

Up and down scrolling through video memory Reverse Video, Blinking Characters.

Display: 128 ASC11 Characters 64×32 or $32 \times$ 16 Screen format (Jumper Selectable). 7 by 11 Dot Matrix Characters.

American or European TV Compatible (CRT Controls Programable) Dealer Inquiries invited

32-K Static RAM $\$ 49^{9}$ KIT

- S-100 Plug-In - Kit includes P.C. board, all parts and assembly manual •Uses 2114L, 450 nS .
I.C. sockets - $\$ 20.00$
P.C. BOARD BY S-100 CO.

16-K Static RAM $\$ 24 \mathbf{S}_{\text {KIT }}$

- S-100 Plug-In Kit includes P.C. board, all parts and assembly manual. Uses 2114 L 450 nS .

Sockets - $\$ 10.00$
Add $\$ 40.00$ for $300 \mathrm{nS}(4 \mathrm{MHz})$ RAMS
P.C. BOARD BY WAMECO

Z-80 CPU \$ 25.5

- S-100 Plug-In Kit includes P.C. boards, all parts and assembly manual.
FEATURES: 2 MHz operation - S-100 plug-in - Power-on jump - On board provision for 2708 (optional at \$12.95).
P.C. BOARD BYITHACA AUDIO

Assembled and Tested $\$ 95.95$

- Single +5 V Supply \cdot Full ASCII Set (Upper and Lower Case) - Parallel Output • Positive and Negetave Strobe 2 Key Rollover - 3 User Definable Keys - P.C. Board Size: 17-3/16" X 5" • Control Characters Molded on Key Caps - Optional Provision For Serial Output
OPTIONAL: Metal Enclosure $\$ 27.50$ • Edge Con. $\$ 2.00$ Sockets $\$ 4.00$ - Upper Case Lock Switch $\$ 2.50$ - Shift Register (For Serial Output) $\$ 2.00$

Dealer Inquiries Invited

Apple II I/O Board KIt

Plugs intc Slot of Mother Board - 18 Bit Parallel Output Port (Expands to 3 Ports) • 1 Input Port - 15mA Output Current Sink or Source - Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc. - 1 free software listing for SWTP PR40 or IBM selectric.
PRICE: 1 Input and 1 Output Port $\$ 49.00$
1 Input and 3 Output Ports $\$ 64.00$
Dealer Inquiries Invited
new ! A DREAM COME TRUE! Introducing:30 MHZ DUAL TRACE PORTABLE SCOPE

- Dual trace 2-channel; separate, chopped or alternate modes. - 30 megahertz bandwidth. - External and internal trigger.
- Time base - 0.05 , Microseconds to 0.2 SEC/div 21 settings • Battery or line operation.
- Line synchronization mode.
- Power consumption less than 50W. - Vertical gain0.1 to 50 volts/div- 12 settings. ©Size: $2.9^{\prime \prime}$ H 6.4" W8.5" D. - Weighs only 3.5 lbs . with batteries. - Complete with input cable and rechargeable batteries and charger unit.
OPTIONAL: Leather case $\$ 45.00 \cdot 10: 1$ probe $\$ 27.00$ (2 for $\$ 49.00$)
MS-215
15MHZ Dual Trace Portable Scope $\$ 399$.
MS-15 15 MHz Single Trace Scope ${ }^{\$ 299 .}$
SHIPPING $\$ 3.50$ / California residents add 6% sales tax
ELECTRONICS WAREHOUSE Inc.
15820 Hawthorne Boulevard Lawndale, CA 90260
(213) 370-5551

WAMECO
 THE COMPLETE PC BOARD HOUSE EVERYTHING FOR THE S-100 BUSS

* FPB-1 FRONT PANEL BOARD Hex Displays, IMSAI Replaceable $\$ 54.95$
* FDC-1 FLOPPY DISC CONTROLLER BOARD Controls up to 8 Discs . $\$ 45.00$
* MEM-1A 8K BYTE 2102 RAM Board $\$ 31.95$
* MEM-2 16K BYTE 2114 RAM Board \$31.95
* CPU-1 8080A CPU Board

With Vector Interrupt
$\$ 31.95$

* EPM-1 4K BYTE 1702A EPROM $\$ 29.95$
* EPM-2 16K or 32K BYTE EPROM 2708 or 2176 interchangeable .$\$ 30.00$
* QMB-9 9 SLOT MOTHER BOARD Terminated $\$ 35.00$
* QMB-12 12 SLOT MOTHER BOARD Terminated $\$ 40.00$
* RTC REALTIME CLOCK
Programmable Interrupts $\$ 27.95$

> FUTURE PRODUCTS: 80 CHARACTER VIDEO BOARD, IO BOARD WITH CASSETTE INTERFACE.

Circle 384 on inquiry card.

BUILD YOUR OWN LOW COST
MICRO-COMPUTER POWER SUPPLIES
FOR S-100 BUS, FLOPPY DISCS, ETC.

POWER TRANSFORMERS (WITH MOUNTING BRACKETS)

$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	USED IN KIT NO.	PRI. WINDING TAPS	SECONDARY WINDING OUTPUTS			$\begin{gathered} \text { SIZE } \\ W \times D \times H \end{gathered}$	$\begin{aligned} & \text { UNIT } \\ & \text { PAICE } \end{aligned}$
T1	1	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 9 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$		$33 / 4{ }^{\prime \prime} \times 35 / 8{ }^{\prime \prime} \times 31 / 8^{\prime \prime}$	19.95
T2	2	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 12.5 \mathrm{~A}$	$2 \times 3.5 \mathrm{~A}$		$33 / 44^{\prime \prime} \times 43 /{ }^{\prime \prime} \times 31 / 8^{\prime \prime}$	25.95
T_{3}	3	0V, $110 \mathrm{~V}, 120 \mathrm{~V}$	$2 \times 9 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$	$2 \times 2.5 \mathrm{~A}$	$33 / 4 \times 43 /{ }^{\prime \prime} \times 31 / 8^{\prime \prime}$	27.95
T_{4}	4	OV, $110 \mathrm{~V}, 120 \mathrm{~V}$	2×4.5A		$2 \times 4.5 \mathrm{~A}$	$33 / 4 \times 35 / 8{ }^{\prime \prime} \times 31 / 8{ }^{\prime \prime}$	19.95

POWER SUPPLY KITS (OPEN FRAME WITH BASE PLATE, 3 HRS. ASSY. TIME)
ITEM USEDFOR @+8Vdc @-8Vdc @+16Vdc @-16Vdc @+28Vdc SIZE W \times D $\times H$ UNIT PRICE

KIT 1	18 CARDS SOURCE	18A	-	2.5A	2.5A		$12^{\prime \prime} \times 6^{\prime \prime} \times 4 \% / 8^{\prime \prime}$	46.95
KIT 2	SYSTEM SOURCE	25A		3A	3 A		$12^{\prime \prime} \times 6^{\prime \prime} \times 47 / 8^{\prime \prime}$	54.95
KIT 3	DISC SYSTEM	18A	1A	2A	2 A	4A	$14^{\prime \prime} \times 6^{\prime \prime} \times 47 / \mathrm{s}^{\prime \prime}$	62.95
KIT 4	DISC SOURCE	8A	1A			8A	$10^{\prime \prime} \times 6^{\prime \prime} \times 47 / 8^{\prime \prime}$	44.95

EACH KIT INCLUDES: TRANSFORMER, CAPACITORS, RESIS., BRIDGE RECTIFIERS, FUSE \& HOLDER, TERMINAL BLOCK, BASE PLATE, MOUNTING PARTS AND INSTRUCTIONS.
REGULATED POWER SUPPLY "R2"' ASSY: \& TESTED, OPEN FRAME, SIZE: 9 " (W) x 5" (D) x 5" (H) $\$ 69.95$ SPECS: $+5 \mathrm{~V}+1 \%, @ 5 \mathrm{~A},+24 \mathrm{~V}, \pm 1 \%, @ 5 A$ OVERCURRENT PROTECTION AND $+5 \%$ ADJ. FOR BOTH VOLTAGES. REMARK: IDEAL FOR ROCKWELL AIM- 65 MICROCOMPUTER. ALSO - 5 V , @ 1A OPTIONAL, $\$ 5.00$ ADDITIONAL.
SHIPPING FOR EACH TRANSFORMER: $\$ 4.75$. FOR EACH POWER SUPPLY: $\$ 5.00$ IN CALIF. $\$ 7.00$ IN OTHEA STATES. CALIF. RESIDENTS ADD 6% SALES TAX. OEM WELCOME.

SUNNY INTERNATIONAL
MAIL ORDER
P.O. BOX 4296

TORRANCE, CA 90510
(TRANSFORMERS MANUFACTURER)
Telephone: (213) 633-8327

StORE:
7245 E. ALONDRA BLVD PARAMOUNT, CA 90723 STORE HOURS: 9 AM-6 PM

16K EPROM CARD-S 100 BUSS

$\underset{\text { KIT }}{59.95}$
OUR
BEST SELLING KIT!

USES 2708's!
Thousands of personal and business systems around the world use this board with complete satisfaction. Puts 16 K of software on line at ALL TIMES! Kit features a top quality soldermasked and silk-screened PC board and first run parts and sockets. All parts (except 2708's) are included. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAIT STATE capabilities

OUR 450NS 2708'S
ARE 58.95 EA. WITH
PURCHASE OF KIT

ASSEMBLED
AND FULLY TESTED
ADD $\$ 25$

16K STATIC RAM KIT-S 100 BUSS ${ }^{5} 279$ kit

PRICE CUT! FULLY STATIC, AT DYNAMIC PRICES

WHY THE 2114 RAM CHIP We feel the $2 t 14$ will be the next industry standard RAM Chip (like the 2102 was). This means price. availabllity. and quality will all be good Next. the 2114 is FULLY STATIC' We feel Ihis is the ONLY way to go on the S-100 Buss' We ve all heard the HORROR storics about some Dynamic Ram Boards having trouble with OMA and FLOPPY
OISC DRIVES. Who needs these kinds ot problems? And finally even these kinds of probictra' And 2114 stands oult Not all 4 K static Rams are created equal! Some of the other aK.s have checked chip enable lines and various liming windows juel criticel as Dynamic AAM: Some of our compatitor's 16 K board's use these "devices But not us! The 2114 is the ONLY logical choice for a trouble-free. straightforward design.

KIT FEATURES
. Addressable as lour separate 4 K Blocks. ON BOARD BANK SELECT circuitry, line!
3. Uses 2114 (450NS) 4K Static Rams
4. ON BOARD SELECTABLE WAIT STATES 5. Double sided PC Board. with solder mask an sllk screened layout. Gold plated contact fingers 6. All address and dala lines fully buffered 7. Kit includes ALt parts and sockets.
2. PHANTOM is jumpered to PIN 67 .

* Volt Buss

10. Blank PC Board can be populated as any multiple of 4 K .

BLANK PC BOARD W/DATA- $\$ 33$
LOW PROFILE SOCKET SET-\$12 ASSEMBLED \& TESTED-ADD \$30 SUPPORT IC'S \& CAPS—\$19.95

2114 RAM ${ }^{\circ}$ S-8 FOR $\$ 69.95$

8K LOW POWER RAM KIT-S 100 BUSS 250 NS SALE!

(450 NS RAMS!)

Thousands of computer systems rely on this rugged, work horse, RAM board. Designed for error-free, NO HASSLE systems use.
KIT FEATURES:
Doubled sided PC Board with solder mask and silk screen layout.Gold plated contact fingers.
All sockets included.
Fully buffered on all address and data lines.
Phantom is jumper selectable to pin 67. FOUR 7805 regulators are provided on card

Blank PC Board w/Documentation $\$ 29.95$
Low Profile Socket Set...13.50 Support IC's (TTL. \& Regulators) $\$ 9.75$
Bypass CAP's (Disc \& Tantalums) $\$ 4.50$
ASSEMBLED AND FULLY BURNED IN ADD \$30

16K STATIC RAM SS-50 BUSS

s295

KIT

FULLY STATIC
AT DYNAMIC PRICES

KIT FEATURES: 1. Addressable on 16 K Boundaries 2. Uses 2114 Static Ram
3. Runs at Full Speed
4. Double sided PC Board. Solder mask and silk screened layout Gold fingers.

FOR SWTPC 6800 BUSS!

ASSEMBLED AND TESTED - \$30
-
5. All Parts and Sockets included
6. Low Power: Under 2 Amps Typical
BLANK PC BOARD-S33
SUPPORT IC'S AND CAPS-\$19.95

NEW! G.I. COMPUTER SOUND CHIP
AY3-8910. As featured in July, 1979 BYTE! A fantastically powerful Sound \& Music Generator. Perfect for use with any 8 Bit Microprocessor. Contains: 3 Tone Channel, Noise Generator, 3 Channels of Amplitude Control, 16 Bit Envelope Period Control. 2-8 Bit Parallel I/O. 3 D to A Converters, plus much more! All in one 40 Pin DIP. Super easy to interface to the S-100 or other busses.
SPECIAL OFFER: $\$ 14.95$ each Add $\$ 3$ for 64 page Data Manual. Initial stock very limited FIRST COME FIRST SERVED!

Z-80 PROGRAMMING MANUAL

By MOSTEK, or ZILOG. The most detailed explanation ever on the working of the Z-80 CPU CHIPS. At least one full page on each of the $158 \mathrm{Z}-80$ instructions. A MUST reference manual for any user of the Z-80. 300 pages. Just off the press.
$\$ 12.95$

PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS! FACTORY CLOSE OUT - SPECIAL PURCHASE! \#16KRA

16K S-100 Dynamic Ram Board - \$149.95

ORIGINALLY PRICED AT $\$ 429$ each!

We purchased the remaining inventory of PT's popular 16K Ram Board when they recently closed their plant. Don't miss the boat! These are brand new, fully tested, ASSEMBLED and ready to go. All are sold with our standard 90 day limited warranty!!

72 Page Full Manual, Included Free!

Digital Research: Computers

P.O. Box 401565 - GARLAND, TEXAS 75040 - (214) 271-2461

工毛 1 D I Computer Products

FREE!

Rume pax wumt

Flextbility is the key. The Sorcerer Computer gives you the llexibility of using ready-10 run. pre-packaged programs or doing your own thing and personalizing the programs for yourself. Which ever you choose. the Sorcerer ls the personal computer that speaks your renguage.
The Sorcerer also provides full graphics capabilies. Each character, formed by an 8 a 8 dot cell. can be programmed as a graphic symbol set. High resolution (512 $\times 240$ ddressable points) gives a total of 122.880 locations for super animation and extremely ght plotting curves. The alphanumeric sel gives $64 \approx 30$ characters on the video screen PART NUMBER: SYO-5016A

Rochwell alm-85: The Head-stam In milcrocomputars

R KIM-I compotible machine with onbord printer and o real key. poord
$\$ 375.00 \mathrm{w} /$ IK RAM $\$ 450.00 \mathrm{w} / 4 \mathrm{~K}$ RAM 4K assembler/editor in AOM: $\$ 80$ 8K BRSIC in ROM $\$ 100.00$ Power Supply: $\$ 59.95$ Cose of RIM-65
$\$ 49.95$

Special Package Price: \$599:00
AIM-65 (4K). Power Supply. Case. and 8K BASIC ROM

NOVATION CAT ACOUSTIC MODEM

PROTO BOARD includes gold plated lingers. S-100 sirt. holde $72-16$ pin dipe. eccomo. dalez all 8 thru 40 pin dip packagee.
 Reg. 51995 Special Price- $\$ 16.95$
 $\$ 16.95$

SD SYSTEMS SBC-100

AnS. 100 single board com. pulet 2.80 CPU with 1024 Dyles of RAM 8 to 32 K byies
of PROM Serial 10 pori of PROM Serial IO pori

LEEDEX MONITOR

- 12" Black ond white - 12mhz Benderidh
- Hendsome Plastic Case

$$
\$ 139,00
$$

TAS-80-APPLE:SOACEREA-TAS.BD-APPL JADE MEMORY EXPANSION KITS For
TRS-80. Apple. \& Exidy 4116 ";

Everything a person needs to add 16 K of memory. Chips come neatly packaged with easy to follow directions. In minutes your machinee is ready for games and more advanced software.

$\$ 82.00$

HIGH QUALITY 13 INCH COLOR

 MONITORI- Specially matched for use with the TI-99/4 console. Uses a simple, sure hook-up.UP TO 72K TOTAL MEMORY CAPACTIY - 16K RAM, plus up to 26 K ROM onboard, plus up to 30 K ROM in Ti's Solid State Software Command Modules. 16-COLOR GRAPHICS CAPABIL. ITY- Easy to access high resolution graphics have special features that let you deline your own characters, create animated displays, charts, graphs, etc. MUSIC AND SOUND EFFECTSProvides oulstanding audio capability. Build three-note chords and adjust Irequency, duration and volume quickly and simply. You can build notes with short, straightforward commands. Five full octaves from 110 Hz to beyond $40,000 \mathrm{~Hz}$. BUILT-IN EQUATION CALCULA-TOR- Unique convenience fealure hetps you find quick solutions to everyday math problems, as well as everyday main piolic calcula

SD SYSTEMS
Z. 80 STARTER KIT

Based on the powertul 280 CPU, thle kil la an doeal introduclion lo mieroprocessors. Il hee an on-board keyboerd and display. plus
cassefte lape inferiace and
expansion provisions for
iwo $\mathrm{s}-100$ connectore. This
Do-li-all" Board will also program the 2716 2K EPROM
Aesmbld and Tstd $\$ 399.95$

TEXAS INSTRUMENTS

HOME COMPUTER

fertures include a coior monitor. IOK RAM MEMORY, BASIC BUILT INTO THE CONSOLE, AND TUO COMPREHENSNE MAN. UALS EASY FOR THE BEGINNER - CHPLLENGING FOR THE EPPERT

Programs are sealed securety in SOLID STATE SOFTWARE COMMAND MODULES. These ROM packs actually add memory to the Ti-99/4 so that the console's memory can be ulitized for user inpul.
The sollware applicalions are presently broken down into lour areas: 1) Home ManagemenvPersonal Finance. 2) Educalion. 3) Entertainment. 4) BASIC
SYO-8994A
$\$ 1150.00$

SYM-1

Port Number:CPK-5002A 6502- BASED SINGLE BOARD COMPUTER WITH KEYBOARD/DISPLAY, KIM-1 HARDWARE COMPATIBLE, COMPLETE DOCUMENTATION. SYM-I CASE ENX-000005. $\$ 39.95$

GRI KEYBOARDS

Features Include: Full 128 character ASCII e Tri-Mode Mos encoding e MOS/DTL/TTL compatible outpul © Two-key rollover Level and pulse strobe \mathbb{E} Shilt and alpha lock Selectable parity 0 Positive or Negative Logic - All new OEM grade components a Gold contact, low bounce keyswlthces a Rugged G10 printed circull board - Custom 2 shot molded keycaps - Low power consumption Optional numeric pad available © Custom enclosures a a allable.
Model 756A
Assembled- KBA-30756A
$\$ 79.95$ Model 753K (53 Key, Teletype Keyboard with lower case)

DB25-CONNECTORS
 RS

DB25P. CND1251

DB25P. CN $\$ 2.25$
DB25C- CND1253 (Cover) $\$ 3.50$
RS232 Speclal: DB25P, DB25S, plus Hood
only $\$ 6.50$ (Part Number: CND-1250)

MICAOPAOCESSOPS		
F80		\$16.95
280 (2MHz)		\$10.95
280A (4MHz)		\$14.95
CDP1802CD		\$19.95
6502		\$11.95
6800		\$9.75
6802		\$14.00
8008-1		\$15.95
8035		\$24.00
8035-8		\$24.00
8080.A		\$10.00
8085		\$23.00
TMS 9900 TL .	ORT O	$\begin{aligned} & \text { ICES } \\ & \text { I4.95 } \\ & \hline \end{aligned}$
8212		\$2.90
8214		\$4.65
8216		\$2.75
8224 (2MHz)		\$4.30
8226		\$2.75
8228		\$6.40
8238		\$6.40
8243		\$8.00
8251		\$7.50
8253		\$20.00
8255		\$6.40
8257		\$18.00
8259		518.00
8275		\$51.20
8279		\$17.70
USAT		
UABTS		
AY5-1013A		\$5.25
AY5-1014A		\$8.25
TA1602B		\$5.25
TMS6011.		$\$ 5.95$
6800 PRODUCT		
6821 P.		. $\$ 5.25$
6828P		\$9.50
6834 P		\$16.95
6850P		\$4.80
6852P		\$5.25
6860P		\$9.25
6862P		\$12.00
6875L		. $\$ 7.30$
6880 P		\$2.50
CHARACTER GENERATOHS		
2513 Upper (1-1	+5)	. $\$ 6.75$
2513 Lower (1-1	5)	\$8.75
2513 Upper (5 vo		59.75
$2513 \text { Lower (5 y }$	I)	\$10.95
1702A		\$5.00
2708		\$9.95
2716		\$49.95
2716 (5v)		\$49.95
2758 (5v)		\$30.00
DYNAMIC RAMS		
4115 . $\$ 5.00$		
4160/4116 (200n		\$12.50
2104/4096		. $\$ 4.00$
21078-4		. $\$ 3.95$
TMS4027/4096 \$4.00		
STATIC RAMS	1-15	16-100
2114 (450ns)	\$8.00	\$6.95
2114 (300ns)	\$9.00	\$8.00
TMS4044/.		
MM5257(450ns)	58.00	57.50
TMS4044/		
MM5257(300ns)	59.95	38.75
$21 \mathrm{LO2}$ (450ns)	\$1.50	51.20
21L02 (250ns)	\$1.75	\$1.50
4200A (200ns)	59.95	\$8.50
4100 (200ns)	\$8.25	\$7.00

INTEGRAL DATA SYSTEMS MODEL 440 PRINTER THE PAPGR TIGER

- Up to 198 CPS

$\$ 995.00$

- $1.75^{\prime \prime}$ to $9.5^{\prime \prime}$ Rdjustable Tractor Feed
- Porollel and Serial Interface
- 96 Character ASCII Set
- 132 columns- 6 or 8 lines/inch
- Eight software selectable Character sizes
- $110,300,600$. 1200 Baud Rote

FOR THE GRAPHIC OPTION WITH 2K, ADD $\$ 199.00$

Port Number: PRM-33440

MEM-2 16 K Static RAM Board		DIP SWITCHES Part No. posilions 1-9			catisinger		
Kir. (450ns)	\$250.00	SWD-103	3	\$1.18	SWD-107	7	31.30
Kı1- (250ns)	\$285.00	SWD-104	4	\$1.20	SWD.108	8	\$1.34
Assembied (450ns)	\$325.00	SWD-105	5	\$1.24	SWD-109	9	\$1.36
Assembled (250ns)	\$350.00	SWD-106	6	\$1.28	SWD-110	10	\$1.38

THE PIGGY MAINFRAME

This slesk new malnirame la neally trimmed to hold six S-100 boards, three minl-floppy drivest and is available In flve colors. Power requirements: 115/220 VAC, $50 / 60 \mathrm{~Hz}$. Weight: 27 lbs. (with drtves). Dimenstons: $21.375^{\prime \prime}$ Wide $\times 8.4^{\prime \prime}$ High $\times 15.875^{\prime \prime}$ Deep. Powèr Supply: 8 volts at 18 Amps unregulated, +16 voits at 3 mps unregulated, -16 volts at 3 amps unregulated, +5 volls at 3 amps regulated, +12 voite at 3 amps regulated.

THE PIGGY IS HERE!

THE PIGGY (without Drives) . . . $\$ 475.00$
PART NUMBER: ENS-106320

OYMAMIC RAM BDARDS

EXPANDABLE TO 6AK
32K VERSION - KITS

Jses 4115 (8 Kx a. 2SOns) Dynamic

 ams. can be expanded in $8 k$ ments uo 1032 K8K $\$ 159.95 \quad 24 K \quad \$ 249.95$
16K $\$ 199.95 \quad$ 32K $\$ 299$:95
64K VERSION -KITS
Cises 4116 (16Kx $1,200 n s$ Dynamic crements uo 10 a 6 Kk

16K 52495

$16 K$	$\$ 249.95$	$48 K$
$32 K$	$\$ 369.95$	$64 K$

STATIC RAM BOARDS

JADE 8K

L.S. Engineering EPROM Eraser

Features Include: Erases up to 48 I.C. 3 at a time Uses popular (and readily available 12^{*} shortwave UV bulbs) - Handsome smoke-plastlc case . Includes bulb .
Just plug it in and you're ready to gol

XME-3200, $\$ 39.95$

CABLES

MINI-DISK CABLE KIT: To connecl iwo $51 / 4$ drives 10 disk conlrolle board. Contains assembled and lestec 5 long signal cable with 34 pin edge connectors. Also inctudes cables and connector tor D.C. power supply.

WCA-3431K $\$ 34.95$
8 DISK CABLEKIT: To COnnect Iwo 8 disk drives to edge-lype controller (e.g. Versalloppy. Double.D). Conlains assembled and tested signal cable with connectors plus cable and connectors for both A.C. and D.C power.
WCA.5031K
8" DISK CABLE KIT: Same as wCA 5031K except coniroller end of signal cable uses "Header" lype conneclor e.g.. for Tarbell Controller

WCA-5032K
$\$ 38.95$
SIGNAL CABLE ONLY: For one 5 1/4* drive to edge type coritroller connector (e.g. TRS-80 10 vista Disk Orive).

WCA-3421A $\$ 2495$
Same as Above. except tor two $51 / 4^{\prime \prime}$
drives. WCA-3431A $\$ 29.95$

JADE

FLOPPY DISK

SPECIIL

INCIUDES: Two Siemens/GSI 8 Floppy Disk Drives Power Supply Jode Double Density Boord (Kit) $C P / M^{+\prime}$ Operating Sustem with Bosic $\epsilon(C P / M$ is a registered trademark of Digitol Reseorch) Pockage of 10 Blank 8" Diskettes (Double Density) Interface Cobles
If purchosed seperately this pockage would cost: $\$ 1544.95$.

JADE SPECIRL

$\$ 1225.00$

SPECIRL

51/4" Diskettes
\$29.95/Box of TEN
SPECIPY SOFT, 10 , or 16 SECTOR

8" SINGLE SIDE, SINGIE DENSITY $\$ 34.95 /$ Box of TEN

THE JADE "DOUBLE-D" INTELUIGENT DISK CONTROLLER

- rfati write in singite or doubie DFSSITY
-x"or $51 / 4$ " DRIVES
- (P) m Compatible in either 1)ENSIIY
ON-HOARD ZKO CPU AI.I.OW ONV-HOARD ZXO CPU AI.I.OW
INIVERSAI. SYSTEM COMPATIBII.ITY - PROXIRAMMED IDATA TRANSFER - NO 1)MA
- CONTROLS UP TOX DRIVES
- SOFTWARE SEI.ECTABI.E IDENSITY

Our new controller utilises the IBM standard Gormats for proven reliability.- Data recovery is enchated through use of a phatse-focked-loop dila scperation circuit and write preconspensation. Single and double density diskettes can be mixed in the same svstem.

Assembled and Tested

10D-1200A. 2 lhs. . . \$299.95
1OD-1200K. 2 Its. . $\$ 249.95$
Bare Board wi Manual
IOD-1200H, 2 lbs. . . $\$ 55.00$
Manual
1OD-1200M. I lh. . . . $\$ 10.00$

POUER SUPPLIES

SDD-299A For a Single 514 Disk Jive Gy Power-One or Alpha Powe

 +5 V at.7A. +12V at 1.1A .. $\$ 52.00$ SO.205A For Single 8 Disk Dive Power. One 5 V al 1A. 5 V al. SA 2sy at 1 5A050.206a for Two 8 Dish Drives 8y Powel. One ot alpha Power 5 V 12 SA .5Val 5A 24 V al

Rockwell
PSK.030A
PSX.020A

ComaloIz
Computer Product 901 W. ROSECRANS AVE HAWTMORNE CALIFORNIA, 9025 (213) 679.3313

ORDER TOLL FREE

800-262-1710 800-421-5809 INSIDE CALIFORNIA CONTINENTAL U.S.

WhITE FON OUA FREE CATALOG

Cash, checks, money orders, and credit cards accepted

 Minimum order. $\$ 10.00$, Calitornia residents add 6% sales tax. Minimum shipping and handling charge: \$2.50. Discounts available at OEM quantities.PRKES SUBJECT TO CHANGE WIHHOUT PAOA NOTKE
For Export informotion send for a JADE INTEANATIONAL CATPLOG

VB-18 VIDEO INTERFACE
S-100 Comoatible Seriai intel face with Sockets included Kit
Assembled \& Tested
Bare Board w/manual 35.90

FLOPPY DISK INTERFACE
 JADE FLOPPY DISK (Tarbell boara)
 JADE KIT
 $\$ 190.00$
 Assembled \& Tested $\$ 260.00$

S.D. Computer Product:
 VIRSA-FLOPPY \$159 95 \$23900

 DISK DRIVES

 DISK DRIVES}MPI BS1 $51 / 4$ " MSM-155100 $\$ 295.00$
Single or double density, up to 40 tracks, track to track access time only 5 ms .
MPI 8525 1/4"MSM-155200 . \$450.00 Double head version of MPI B51
Shugart SA400 5 1/4" $\ldots . .5325 .00$ Single Densily, 35 Track
Slemens FDD100-8 8"
$\$ 495.00$
Shugart 801 replacement, Single or double density, runs cooler and quieter.
Slemens FDD200-8 8" \$575.00 Double head version of FDD100-8 capable of double density, double sided torage.
Shugart 801R 8
$\$ 575.00$
Hard or soft sectored, 400K BYTE drive.

UIsta V80 Minl Dish SYSTEM FOR TRS-80

PART NUMBER: MSM-350000
includes disk drive. power supply. regulator board. and compact case The capacily. Simply tahe in cut of the bor, plug in the cable. and it's ready to run Aequires 16 K . Level II. expension

Interface Cable .. \$24.95
PART MUMBER: WCA-321A

PRINTER TERMINALS

Why settle for less than

- ASCII SELECTRIC PRINTER/TYPEWRITER: letter-quality printout from your computer? Refurbished IBM Model $\mathbf{7 2 5}$ can be used as off-line typewriter or on-line printer. Complete with solenoids, power supply, case and ASCII interface card (TTL to CPU parallel port.) Interface includes programmable ASCII translation table on EPROM with up 10 8 tables for use with various type spheres. Feedback signals on completion of 8 tables for use with various type sheres. (15 cps .)
each print cycle insures fastest printing speed Price: programmed w/3 translation tables (ype sphere)

MODEMS
-POS 103/202 "MIX or MATCH" MODEM: BELL 103 and/or BELL 202 FREQUENCIES: Unique POS control design permits use in one housing of both Bell-compatible 103 (0-300 baud) and 202 (0 - 1200 baud) modem modules originally made by VADIC Corp. for a telephone company subsidiáry. FEATURES: RS-232 serial interface, auto-answer, auto-dial, LED display, telephone line interface via acoustic coupler, manual DAA, or auto-answer DAA lsold separately.) FULLY ADJUSTED; no special tools required. 3,000 mile range over standard dial-up telephone lines.
-POS 103 MODEM (with Auto Answer, Auto Diald.
$\$ 179.95$
-POS 202 MODEM (Half-Duplex with Reverse Channel). $\$ 249.95$
-POS 202 MODEM (Half-Duplex w/Rev. Ch., Auto-Answer) \$279.95
-POS 103/202 MODEM (Auto-Answer, Auto-Dial). $\$ 399.95$ -POS-100 NRZ1 TAPE DRIVE CONTROLLER/FORMATTER: Designed as interface between S-100 bus mCPU and 9-track, 800 BPI , NRZ1 tape drive. Allows microcomputerist to read and write IBM-compatible $1 / a^{\prime \prime}$ mag tapes. Software provided for 8080 or $\mathbf{Z}-80$ systems. Requires modification for drives of various mirs.
Price: (Includes S-100 card, controller card, 10° cable, software listing) . \$750.00 -NRZ1 TAPE DRIVE by WILLARD LABS. 9-track, 800 BPI, NRZ1 format, $12 " / \mathrm{sec} ., 1200 \mathrm{ft}$. reels (10 megabyte capacity) Fully tested and warranted $\$ 599.00$ -CONVERT 15" IBM OFFICE SELECTRIC TO I/O TYPEWRITER: Kit includes assembled solenoids, switches, wire harness, magnet driver. PCB plus instructions for installation and mCPU interface $\$ 200.00$ - DIGITAL CASSETTE DRIVE (from GTE/IS Terminal): 1800 baud, 6 " $/ \mathrm{sec}$; AC motor: fwd/rewnd circuitry plus tape head, no read/write electronics $\$ 25$ -FORMS TRACTORS, Moore Variable width "Form A-Liner" for print terminals: al Model 565P for $15^{\prime \prime}$ Carriage IBM Selectrics (new):. $\$ 75.00$ b) Model K81 for QUME or DIABLO Hytype I or II printers (new): $\$ 90.00$ -POWER SUPPLIES for Disk Drive, mCPU, tested under load shown:

- No. 519 (w/fan \& AC cord): +5 V reg., $\pm 12 \mathrm{~V}$ reg., +24 V . @4A (10 lb.). . $\$ 39.95$ -LAMBDA No. LMEE5 w/OV protect: +5V reg. @ $25 A$ (35 lb). .

ProComp/New England

announces IMNET... (IMSAI Multi-user NETwork Operating System) True Microcomputer Networks Better than timeshared mini- or micro-systems.. And less expensive. Stop by and see for yourself, Or write or call for our IMNET brochure.

10 Megabyte Winchester Disk, Integrated Video

 Computer ... \$10,995. Other Micromation Integrated Video Computer Systems from \$5995.
- Micromation Doubler Disk Controller ... \$395.

 - Measurement Systems \& Controls 48K Dynamic Ram ... \$595.Write, call or stop in (M-F 9-5; S 10-4) for our catalog and Grand Opening Sale Price List,
(617) 482-4450 120 Boylston Street 4th Floor
Boston, MA/02116

Wire Wrap Tools

BATTERY HOBBY TOOL*

- Auto Indexing
- Anti-Overwrapping
- Modified Wrap

BW2628	Tool	\$19.85
BT30	\#30 Bit	2.95
BT2628	\#26 Bit	7.95
BC1	Batterie	11.00

*Requires 2 " C " Niced Batteries

BATTERY INDUSTRIAL TOOL*

- Accepts Industrial Bits and Sleeves (Gardner Denver or equiv.)
- Industrial Motor for Production Wirewrapping
- Backforce Avail. (Recommended for \#30)

BW928 Tool 49.95
BW928BF Backforce Model 52.95 EW
Bit \& Sleeve Specify \#22-\#30..... 29.50 EW28F
BC1 wrapping

EW8

ELECTRIC INDUSTRIAL TOOL

- Accepts Industrial Bits and Sleeves (Gardner Denver or equiv.)
- Industrial Motor for Production Wire-
- Backforce Avail. (Recommended for \#30).

Tool
85.00

Specify \#22-\#30..... 29.50 EW28F Backforce Model 92.90
Batteries \& Charger. . 11.00 Bit \& Sleeve \#22 or \#30............. 29.50

E2V IC Sockets

RN HIGH RELIABILITY eliminates trouble. "Sidewipe" contacts make 100% greater surface contact with the wide, flat sides of your IC leads for positive electrical connection.

WIRE WRAP		$\mathbf{1 - 9}$	$\mathbf{1 0 - 2 4}$	$\mathbf{2 5 - 9 9}$	$\mathbf{1 0 0} \mathbf{- 2 4 9}$	$\mathbf{2 5 0} \mathbf{- 1 K}$
	8 Pin	40	.36	.34	.31	.27
SOCKETS	14 Pin		.39	.37	.34	.32
3-level Gold	16 Pin		.42	.40	.36	.34
Closed Entry Design	18 Pin	.70	.60	.55	.50	.45
All Prices Include Gold. 20 Pin	.90	.80	.75	.65	.62	
2-level Sockets	22 Pin	.95	.85	.80	.70	.65
Also Available	24 Pin	.95	.85	.80	.70	.65
	25 Pin st	1.25	1.15	1.00	.95	.90
	28 Pin	1.25	1.15	1.00	.95	.90
	40 Pin	1.65	1.45	1.35	1.20	1.10

SOLDER TAIL

Low Profile Tin
Closed Entry Design

	$\mathbf{1 - 9}$	$\mathbf{1 0 - 2 4}$	$\mathbf{2 5 - 9 9}$	$\mathbf{1 0 0} \mathbf{- 2 4 9}$	$\mathbf{2 5 0 - 1 K}$
$8 \operatorname{Pin}$	21	.18	.16	.15	.14
$14 \operatorname{Pin}$	-	.19	.17	.15	.13
$16 \operatorname{Pin}$	-21	.19	.17	.15	
$18 \operatorname{Pin}$.30	.28	.27	.26	.25
$20 \operatorname{Pin}$.35	.34	.33	.32	.31
$22 \operatorname{Pin}$.36	.34	.30	.27	.26
$24 \operatorname{Pin}$.38	.36	.32	.29	.28
$28 \operatorname{Pin}$.45	.44	.43	.40	.39
$40 \operatorname{Pin}$	63	.62	.61	.58	.57

OK PRODUCTS

$\begin{array}{ll}\text { WD } 30 & 50 \mathrm{ft} \text {. Wire Dispenser, Red, White, Biu } \\ \text { WD-30-TRI } & \text { TRI Color Dispenser } \\ \text { R-30-TRI } & \text { Refill for TRI Color } \\ \text { INS } 1416 & 14 \& 16 \text { pin Insertion Tooi } \\ \text { MOS } 40 & 40 \text { pin Insertion Tool } \\ \text { EX-1 } & \text { IC Extractor Tool } \\ \text { H-PCB-1 } & \text { Hobby PC Board } \\ \text { WSU } 30 & \text { Hand Wrap/Unwrap/Strip Tool } \\ \text { WSU 30M } & \text { Same as WSU } 30 \text { with Modified Wrap }\end{array}$

ORDERING INFORMATION

- Orders under \$25, add \$2 handling
- Blue Label or First Class, add $\$ 1$ (up to 3 lbs .)
- CODs, VISA \& MC orders will be charged shipping
- Most orders shlpped next day.

Add to your EXIDV, HORIZON,
and other S-100 computers.
3. VISTA V-1000 FLOPPY DISK SYSTEM
\star (2) Shugar ${ }^{8}$ Floppy Disk
\star Controllor Card, Cable,
Controllor C
CPM \& Basic "E",

 7. Shugart 800/801R $8^{" 1}$ 279.00
295.00
375.00

PERSCI Model 277 Duai. 395.00
1195.00 WANGO/SIEMENS 5Y" Drive.... 290.00
EXPANDORAM MEMORY KITS * Bank Selectable Uses 41

| - Write Protect 200 ns . |
| :--- | :--- |
| - Power $8 \mathrm{VDC}, ~$ | 1 iVDDC Expando $32 \mathrm{KlI}(4115)$ Expendo 84 KIt (4116) $8 \mathrm{~K} \$ 158.00$

$16 \mathrm{~K} \$ 199.00$

18 K
32 K
$\$ 248.95$
48 K
$\$ 49900$
24K
32 K
$\mathbf{\$ 2 9 9 . 0 0}$
$\$ 349.00$
$\begin{array}{ll}48 \mathrm{~K} & \$ 469.00 \\ 64 \mathrm{~K} & \$ 565.00\end{array}$
IMS STATIC RAM BOARDS

- Momory Mapping * Low Power
- Phantom
- Assembled A tested Recommended by Alphamicrosystems

	250 ns.	450 ns .
8K Static	\$209.00	\$189.00
18K Static	\$449.00	\$399.00
32K Static	\$799.00	\$699.00

KEYBOARD ASCII ENCODED

TAREELL FLOPPY INTERFACE

Assembied olos Shuyar Assembied Oinher Prives

Kilor Boserd

(10) 171-01 FlopgyChip...................327.95

BYTE USER BK EPROM BOARD A Power on Jump

- Resel Jump Assembied
Byteuser Kit.
Bare PC Boaro
Special Ottar: Buy 4 ktis only $\$ 59.95$. $\$ 2.95$ MR-8 8K w/1K Ram..

95 asch
.$\$ 99.50$ MR-16 16 K w/IK Ram
$\$ 99.50$
$\$ 59.95$
$\mathbf{\$} 9.95$
Z-80/2-80,/8080 CFU BOAFD - On board 2708 \& 2708 included (450ns.) Power on jump completely socketed
Assembled and
Kit.... Pa Board
Bate
\& For 4MHZ Speed Add $\$ 15.00$ 8080A Kit.
$\$ 129.95$
$\$ 34.95$
Bo80a Assembied.
99.95
$\$ 149.95$

S-100 MOTHERBOARD SPECIAL
8 slot expandable w/9 conn.
reg $\$ 69.95$. . NOW $\$ 52.86$

TARBELL FLOPPY CONTROLLER
Card assembted and tested for use with Shugan
Orives $\$$ SALE PRICE only $\$ 229.00$

ACOUSTIC COUPLER SPRCIAL
SPECIAL PURCHASE
OF SURPLUS UNITS
AVAILAEILITY LIMITED $\$ 29.95$

THE FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!

1. Proven Quality Factor veseded products only, no reteress 1979 CATALOG NOW A A VAl Send $\$ 1.00$ for your copy of the most complete calalog of computer products. A musi
or the serious compuler user.
MICROPROCESSORS STATIC RAM HEADOUARTEAS SOCKETS


```
. . . and it's COLOR
SALE \(\$ 100.00\) OFF "The Compucolor II"
a personal colorgraphics system for the modern computer man...
```

* Color Graphics 13" Color CRT
* Proven 8080A CPU System
* 16K Extended Disk Basic
* Up to 117^{*} Key Keyboard
* Up to 32K•RAM
* Minidisk Drive 51.2 K Bytes/Side

Model 3 w/8K, 72 Key Keyboard, RS232
Model 4 w/16K, 72 Key Keyboard, RS232 TAKE $\ldots\left\{\begin{array}{l}\$ 1495.00 \\ \$ 1695.00\end{array}\right.$ Model $4 \mathrm{w} / 16 \mathrm{~K}, 72$ Key Keyboard, RS232 $\$ 100.00 \ldots\left\{\begin{array}{l}\text { ThK } \\ \$ 1695.00\end{array}\right.$ Model 5 w/32K, 72 Key Keyboard, RS232 OFF ... $\$ 1995.00$ Options: 101 Key Keyboard 117 Key Keyboard.

....

 Formatted Diskettes.. 2/ $\$ 19.95$ Programmed Diskettes Diskette Library Inc. Hangman, Othello, Math, Chess, Startrek, Blackjack, Cubic Tic Tac Toe, Finance Vol. I, Finance Vol. II, Bonds and Securities, Assembler, Text Editor, Personal Data Base.

EXIDY SORCERER only $\$ 799.00$

Low APPLE II PLUS $\$ 990.00$

APPLE's new upgraded APPLE II w/16K is now in stock and available for the lowest price ever, only $\$ 990.00$. You can add:

* M \& R Modulator for $\$ 29.95$
* Sanyo tape recorder for \$44.95
* 16K upgrade kit for only $\$ 74.95$ ea.

This is a limited offer and we reserve the right to change without notice.
\$799 w/8K

\$1099 w/16K

\$1249 w/32K

\$1449 w/48K

User programmable or use cartridges. Combines the deslrable features of the PET. APPLE and TRS-80 into a complete expandable computer system. + I/O expansion kit..........
floppy for Exldy, (requires exp.
module) w/CPM........ $\$ 699.00$
\star New Word Processing Pac

- INCLUDES:
Keyboard \& enclosure
90 day Warranty
Video \& Cassette Cable
Complete Documentation
Complete Documentation
Module
- Cassette recorder. Add \$299.00
......... Add $\$ 44.95$
* Sanyo $9^{\prime \prime}$ Monitor
Add $\$ 169.95$

$-$
9.00

MOMM SMARMQRZOM HOUBLE DENSITY
Now in stock North Star Z-80-based high-performance computer.

- 180K Bytes per Disk
- 2.80 Processor
- Mothertoard

2 Serral +1 Parallel Port Avail.

- 16KRAM

Horizon I Kit Reg. $\$ 1599.00$ Horizon II KII Reg. $\$ 1999.00$ North Star Double Density Disk Subsystem Kit
$\$ 1.00$

Widen the ability of your TRS-80

Vitomo

The Vista V80:\$395

The Vista V80 Mini Disk System is the perfect way to widen the capabilities of your TRS-80* Microcomputer. Quickly and inexpensively. Our $\$ 395$ price tag is about $\$ 100$ less than the Radio Shack equivalent. Our delivery time is immediate (24 hour turnaround from our Santa Ana, Ca. factory). And our system is fully interchangeable. That's just the start.

It will give you 23\% more storage capacity by increasing useable storage from 55,000 to 65,000 bytes per drive with our new software patch.

It can work 8 times
faster than the TRS-80 MiniDisk system, because track-to-track access is 5 ms versus 40 ms for the TRS-80. You can realize this added speed
once the new double disk expansion interface is available without expensive modification of the existing unit.

It has a better

warranty than any comparable unit warranty available - a full 120 days on all parts and service. When you consider how much more goes into the Vista V80, that shows a lot of faith in our product.

A full 3 amp power

 supply means you have $2^{1 / 2}$ times the power necessary to operate the V80, and full ventilation insures that there will be no problems due to overheating.The Vista V80 Mini
Disk System requires Level II
Basic with 16K RAM

Expansion interface (it

 operates from the Radio Shack interface system. Itcomes complete with a dependable MPI Minifloppy disk drive, power supply, regulator board and vented case. It's shipped to you ready to run-simply take it out of the box and plug it in. You're in business. From the company that means business - Vista Computer Company.

The Vista Computer Company. Manufacturers of Quality Computer Systems and Software.
714/751-9201
1320 East St. Andrews Place
Suite I, Santa Ana, Ca. 92705

[^19]

The EXPANDORAM is available in versions from 16 K up to 64 K , so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisable on-board refresh, and IT WORKS!

- Bank Selectable
- Phantom
- Power 8VDC $+16 \mathrm{VDC}, 5$ Watts
- Lowest Cost Per Bit
- Uses Major Brand 16K RAMS
- PC Board is doubled solder masked and has silk-screen parts layout
- Extensive documentation clearly written

- Complete kit includes all Sockets for 64 K
- Memory access time: 375 ns, Cycle time: 500ns.
- No wait states required
- 16K boundries and Protection via Dip Switches
- Designed to work with Z-80, 8080, 8085 CPU's

We carry a full line of SD Systems Products. Please write for catalog or call for prices

UNSCRAMBLER

 KITInterfaces with any monitor or scanner

- Easily tuned - Full instructions included Drilled fiberglass P.C. Board - One hour assembly • Easy to install • Punched case
This unit can unscramble most any scrambled frequency such as the new Motorola scramble and so on.

Only $\$ 37.95$ A\&T

tele tape

Record important telephone conversations now with Tele Tape and your recorder.Each time your telephone receiver is picked up your recorder will start automatically and when you hang up it stops. Tape will be extra clear so you can refresh your memory at a later date. Kit includes everything except case and phono plugs.

Assembled and Tested only \$29.95

> "VERSAFLOPPY" KIT
> The Versatile Floppy Disk Controller Only $\$ 139.00$
> FEATURES: IBM 3740 Soft Sectored Compatible. S-100 BNS Compatible for Z-80 or 8080. Controls up to 4 Drives (single or double sided). Directly controls the following drives:
> 1. Shugart SA400/450 Mini Floppy
> 2. Shugart SA800/850 Standard Floppy
> 3. PERSCI 70 and 277
> 4. MFE 700/750
> 5. CDC 9404/9406

FLOURESCENT* READOUTS

No. DG8F. Seven segments, bluegreen in color. Can be directly driven by many MOS IC's. . 3 character.
\qquad
LED'S
Jumbo Reds
Jumbo Green \& Amber
Mini Red Mini Green, Amber \& Clear
. 49 Ea.
$10 / 51.00$
5151.00

8/\$1.00
6/\$1.00

LED WIRING HARNESS*

a sio value! Has one of our LED Rocket switches. one rotary swith. two Jumbo LED lamps and two PC 日dge cónnectors from desk top calculator plantl
$79 ¢$ EACH

POWER SUPPLY

A very fortunate purchase. One of the best industrial quality REGULATED supplies we have seen. High performance. small size, input is 120 VAC .60 HZ . Has the following regulated outputs: 5 VDC at 800 MA : 15 VDC at 1.25 AMP:- 25 VDC at 180 MA . $\$ 10.95$

MINIATURE SPEAKER SPECIAL!
$2 \mathrm{INCH}-.8 \mathrm{OHM}$.
PERFECT FOR CLOCKS! \$. 79
TO-5 HEATSINKS*
Similar to Thermalloy 2205G
Finned with inser. 5 for $\$ 1$
ROCKER SWITCH*
HEAVY DUTY
S.P.D.T. 3A. 125 V.A.C New, modern styling! 5 for $\$ 1$

Z80 STARTER KIT

SD System's Z80 Starter Kit enables the novice to build a complete microcomputer on a single board. Featuring the powertul $\mathrm{Z80}$ microprocessor the Z80 Starter Kit features: - Keyboard and Display • Audio Interface • PROM Programmer - Expansion and Wire Wrap Area - On Board RAM - 4 Channel Counter/Timer - Z-BUG Monitor in PROM • I/O Ports.

This month's Special: \$219.95 Kit
\$369.95 A\&T

SD SYSTEMS

STATE-OF-
THE ART
SBC-100
KIT \$219.00

Color Burst Crystal
3.57 MHz 89 c

[^20]

While in Dallas visit our retail store at Treehouse Shopping center. Garland Road and Jupiter.

freadep Sepvice

To get information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from the list. Add a 15 -cent stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE.

Inquiry No. Page No.

AB Computers 245 Administrative Systems 80
Advanced Access Group 110 Advanced Computer Products 252, 253 Aladdin Automallon 77 Altos 21
American Square Computers 174 Anderson Jacobson 215
Apparat 234
Apple Computer 25 AP Products 63
ASAP Computer Products 230 ATV Research 172
Automated Computer Software Serv 123 Automated Simulations 212 Avionic Enterprise 172 Axiom 144 Basic Time 187 Beta (Div of Measurement Systems \& Controls) 154 Biotech Electronics 152 Bits Inc. 191, 200 Buss/Charles Floto 172 Byte Back Issues 213 BYTE Books 113, 114 Byte Subscrlber 217 Byte WATS 172 Callfornia Comp Systems 37 California Digital 235 Roy J Canon 174 CAP Electronics 52 Central Data 169 Centronles 73 Chrisiln Industries 142 COMPCO 183 COMPCO 192 COMPCO 195 Compucolor Corp 39 Computer Factory NY 155, 229 Computer Furniture \& Accessorles 161 Computer Headware 215 Computerland 68, 141, 153 Computer Mart of NJ 93 Computer Service Center 217 Computer Tax Service 223 Computer Warehouse 217 Computex 148
CT micro Computer 60
CT Micro Computer 146 CT Micro Computer 147 CT Micro Computer 221 Contract Service Assoclates 211 Corvus Systems 47
Cover Craft 176
Creatlve Software 223
Cromemco 1, 2
CTC 104
Cybernetlc Micro Systems 177 Cybernetics Inc 224 Cygol 217

Inquiry No. Page No.
89 Data Access Corp 165
91 Data Discount Conter 221
96 Data/Print Publishing Co 16
93 Datasearch 222
94 Datasouth Computer Corp 194
97 Data Terminals \& Communicatlons 18 99 Data-Trans 238

Diablo (Dlv of Xerox) 79
Disks Etc 213
101 Dontho Sclentific 210
95 DRC (CA) 221
1100
120
125
130
13
133
13
141
150 Godbout Electronics 173
159 H\& E Computronics 197
160 Hamillon-Avnel 85
161 Hayden Book Co 138
216 Heath Company 17

- Heath Comoany 105

170 Hobby World 226, 227
169 Industrial Micro Systems 139
175 Information Unlimited 150, 15
176 Integral Data Systems 49
177 Integrand 178
178 internatlonal Design Engineering
Assoc (IDEA) 217
Intersystems 157
180 Intertec Data Systems 135
195 Jade Co 248, 249
200 Jameco 232
Jameco 233
202 KML Marketing Inc 184
Kybe Corporation 69
Lifeboat Assoclates 90, 91, 149
Loweco Computer 217
206 Macrotronics 217
205 Marketline Systems 171
208 Matrox Electronic System Ltd 44
227 Paul McCoy Enterprises Inc 220
215 Measurement Systems \& Controls 209
212 Micro Age 201
213 Micro AD 205
211 Micro Applications Group 222
214 Micro Architect 212
277 Microcomputing Technology Inc 234
220 MicroDaSys 26
221 MicroDaSys 75
226 Micro Designs 170
210 Micro Diversions 5
210 Micro Focus 64
211 Micro Integration 128
223 MICROMAIL 219

Inquiry No.
Page No.

204 Micro Mike's 224
Micropolis 108, 109
Mlcro Pro International 56, 57
218 Microsette 172
MIcrosofl 127
MicroSoftware (CAl) 210
Microsoltware (CAI) 210
Microsource 13
Microtek Inc 59
Mlarotek Inc 147
Microware 164
Microware 164
The Micro Works 158
Mikos 231
Mini Computer Suppliers 176
Misslon Control 189
Morrow/Thinker Toys 31
Morrow/Thinker Toys 43
Mountain Hardware 143
Mountain Hardware 143
MVT Microcomputer Systems 45
National Technical Schools 210
NEECO 94, 95
NEECO 159
Netronics 87
New England Recruiters 174 New World Books 134
83 Newman Computer Exchange 225 Northeast Computer Snow 203 North Star Computers 27 NRI Schools/Electronics DIv 193 Ohio Sclentific Instrument CIV OK Machine and Tool 220 Oliver Advanced Engineering 178 Omikron 211
Omni Computer Corp 179 onComputing 97
Organic Software 174
Osborne \& Assoclates 199 Owens Assoclates Inc 124 Pacific Exchanges 172 Pacific Office Systems 250
Page Dightal 55
Page Digital 251
PAIA Electronlcs 221
PerCom Data CIII
PerCom Dala 111
PerCom Data 239
Personal Computing 79 180, 181 Personal Software inc 51 Personal Software Inc 53
Pickles and Trout 177
Potomac Micro Magic 219
Power One Inc 89
303 Practical Applications 179
312 Priority | $241,242,243$
Pro Comp/New England 250
Prog 80163
P S Software House 172
Quallty Soltware 224
Quest Electronics 240
RSI 33

Inquiry No. Page No.

BOMB-

BYTEs Ongoing Monitop Box

1 Ciarcia: Joystick Interfaces
Dahmke: Introduction to Multiprogramming
20
Teeters: Interface a Chessboard to Your KIM-1 34

Ellls: Some Musings on Hardware Design 62
Hallgren: A Low-Speed Analog-To-Digital Converter
Trimmer: Soldering Techniques 70

Powers: The Nature of Robots, Part 4 84

Harron: Inexpensive, Optical Paper-Tape Reader
Albus: A Model of the Brain for Robot Control, Part 4
Chrisp: Handy Pulser
Kasser: The Amsat-Golem-80
Barbler: Add Some Control to Your Computer

June BOMB

William D. Johnston again dazzled our readers with "Computer Generated Maps," Part II, page 100. Second place was taken by James Albus for contributing "A Model of the Brain for Robot Control," page 10. Placing a very close third and fourth, respectively, were G. A. Van den Bout, "Designing a Command Language and T. Radhakrishnan and M. V. Bhat, "Stacks in Microprocessors."

Low Cost Add-On Storage for Your TRS-80*. In the Size You Want.

When you're ready for add-on disk storage, we're ready for you. Ready with six mini-disk storage systems - 102K bytes to 591K bytes of additional on-line storage for your TRS-80*.

- Choose either 40-track TFD-100 ${ }^{\text {™ }}$ drives or 77-track TFD-200 ${ }^{\text {M }}$ drives.
- One-, two- and three-drive systems immediately available.
- Systems include Percom PATCH PAK \# $1^{\text {TM }}$, on disk, at no extra charge. PATCH PAK \# ${ }^{\text {Tu }}$ de-glitches and upgrades TRSDOS* for 40- and 77-track operation.
- TFD-100 ${ }^{\text {TM }}$ drives accommodate "flippy disks." Store 205K bytes per mini-disk.
- Low prices. A single-drive TFD-100 ${ }^{\text {M }}$ costs just $\$ 399$. Price includes PATCH PAK \# $1^{\text {TM }}$ disk.
- Enclosures are finished in systemcompatible "Tandy-silver" enamel.

Whether you need a single, 40 track TFD-100 ${ }^{\text {TM }}$ add-on or a three-drive add-on with 77 -track TFD-200 ${ }^{\text {TMS }}$, you get more data storage for less money from Percom.

Our TFD-100 ${ }^{\text {TM }}$ drive, for example, lets you store 102.4 K bytes of data on one side of a disk - compared to 80 K bytes on a TRS-80* mini-disk drive and 102.4 K bytes on the other side, too. Something you can't do with a TRS-80* drive. That's almost 205 K bytes per mini-disk.

And the TFD-200 ${ }^{\text {TM }}$ drives provide 197K bytes of on-line storage per drive

- 197K, 394K and 591K bytes for one-, two and three-drive systems.

PATCH PAK \# $1^{\text {TM }}$, our upgrade program for your TRSDOS*, not only extends TRSDOS* to accommodate 40and 77 -track drives, it enhances TRSDOS* in other ways as well. PATCH FAK $\# 1^{\text {TM }}$ is supplied with each drive system at no additional charge.

The reason you get more for less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business - the reason you get more engineering, more reliability and more back up support for less money.

> In the Product Development Queue . . . a printer interface for using your TRS-80* with any serial printer, and . . . The Electric Crayon ${ }^{\text {TM }}$ Io map your computer memory onto your color TV screen - for games, animated shows, business displays, graphs, etc. Coming PDa!

Tm TFD-100. TFD-200. PATCH PAK and Electric Crayon are trademarks of PERCOM DATA COMPANY.
-TRS-80 and TRSDOS are trademarks of Tandy Corporation and Radio Shack which have no reiationshio to PERCOM DATA COMPANY.

PERGOM
PERCOM DATA COMPANY, INC. 211 N. KIRBY • GARLAND, TX. 75042

> To order add-on mini-disk storage for your TRS-80*, or request additlonal literature, call Percom's toll-free number: 1-800-527-1592. For detailed Technical information call (214) 272-3421.

> Orders may be paid by check or money order, or charged to Visa or Master Charge credit accounts. Texas residents must add 5% sales tax.
Percom 'peripherals for personal computing'

The Microcomputers you should take serioushy.

The Challenger III Series is the microcomputer family with the hardware features, high level software and applica tion programs that serious users in business and indusiry demand from a computer system. no matter what its size

Since its introduction in August. 1977. the Challenger Ill has become one of the most successful mircocomputer systems in small business. educational and industrial development applications. Thousands of Challenger III's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

Now the Challenger III systems offer features which make their performance comparable with today's most powerful mini-based systems. Some of these features are

Three processors today, more

tomorrow.

The Challenger III Series is the only computer system with the three mosi popular processors- the 6502A. 68B00 and $Z-80$. This allows you to take maximum advantage of the Ohio Scientific software library and the tremendous number of programs offered by independ ent suppliers and publishers. And all Challenger Ill's have provisions for the nexl generation of 16 bil micros via their 16 bit data BUS. 20 address bits. and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existirig Challenger III computer

Systems Software for three processors.

Five DOS options including develop. ment, end user, and virtual data file single user systems, real time. time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC plus FORTRAN and COBOL with more C3.B Circle 290 on inquiry card.

languages on the way. And, of course. complete assembler. editor debugger and run lime packages for each of the system's microprocessors.

Applications Software for Small Business Users.

Ready made faciory supported small business software including Accounts Receivable, Payables. Cash ReceipIs. Disbursements, General Ledger. Balance Sheet. P \& L Statements, Payroll, Personnel files. Inventory and Order Entry as stand alone packages or integrated systems. A complete word processor system with full editing and output for matting including justification, proportional spacing and hyphenation that can compete directly with dedicated word processor systems

There are specialized applications packages tor specific businesses. plus the vast general library of standard BASIC. FORTRAN and COBOL soltware

US.DMS, the new software star.

Ohio Scientific has developed a remarkable new Information Management system which provides end user

The Challenger Ill Series from Ohio Scientific.

intelligence far beyond what you would expect from even the most powerful minisystems. Basically, it allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports,
statistical analysis and even answers to conventional "English" questions pertinent to information in the Data Base. OS-DMS allows many applications to be computerized without any programming
The new "GT" option heralds the new era of sub-microsecond microcomputers.

Ohio Scientific now offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all Challenger III Series products. This system performs a memory to register ADD in 600 nanoseconds and a JUMP (65 K byle range) in 900 nanoseconds. The system performs an average of 1.5 million instructions per second executing typical end user applications soltware (and that's a mix of 8,16 and 24 bit instructions!).

Mini-system Expansion Ability.

Challenger Ill systems offer ine greatest expansion capability in the microcomputer industry. including a full line of over 40 expansion accessories The maximum configuration is 768 K bytes RAM. four 80 million bye Win. chester hard disks. 16 communicatıons ports, real time clock. line printer, word processing printer and numerous control interfaces.

Prices you have to take seriously.

The Challenger III systems have phenomenal performance-to-cost ratios The C3-St with 32K static RAM. dual 8 " floppies. RS. 232 port. BASIC and DOS has a suggested retail price of under $\$ 3600.80$ megabyte disk based sysiems start at under $\$ 12.000$ Our OS.CP/M solt. ware package with BASIC. FORTRAN and COBOL is only $\$ 600$. The OS DMS nucleus package has a suggested retail price of only $\$ 300$. and other options are comparably priced.

To get the full story on the Challenger III systems and what they can do for you. contact your local Ohio Scientific dealer or call the factory at (216) $562 \cdot 3101$

C3.S1

[^0]: BYTE is published monthly by BYTE Publications Inc, 70 Main St. Peterborough NH 03458, a wholly-owned subsidiary of McGraw-Hill, Inc. Address all mail except subscriptions

 America.
 Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be returned if accompanied by sufficient first class postage. Not
 rights reserved.
 BYTE is available in microform from University Microfilms International, 300 N Zeeb Rd, Dept PR. Ann Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WC1R $4 E J$ ENGLAND.

[^1]: About the Author
 Mark Dahmke is currently employed by the University of Nebraska Computer Network as a programmer/analyst in the Academic Computing Services section. He is also a senior computer science major. At home. Mark owns an 8080 based system with 32 K bytes of memory and dual iCOM floppy disk drives. His work involves graphics, electronics. writing, systems programming and speech synthesis.

[^2]: About the Author
 leff Teeters is an undergraduate student at the University of Wisconsin at River Falls where he majors in mathematics.

[^3]: © 1979 ComputerLand Corp., San Leandro CA PET is the registered trademark of Commodore Business Machines.

 # say computer say PET" say winner

 Getting into your own computer is your next move. The sleek, impressive easy-to-use PET computer from Commodore Business Machines is your computer. The PET computer was designed with a person of your caliber in mind. PET means professional computer. ComputerLand means great value. We know you're looking for
 ## special:

 \$100.00 of Commodore programs FREE if PET is purchased from ComputerLand by October 31, 1979.

 Buy the PET and other C.B.M., systems at ComputerLand

 ## Atlanta, GA

 Honolulu, HI Arlington Heights, IL Oowners Grove, IL Mundelein, IL Niles, ILOak Lawn, IL
 Peoria, IL
 Indianapolis, IN Overland Park, KS Louisuille, KY Boston, MA Rockville, MD Grand Rapids, MI Rochester, MI Southfield, MI Bloomington, MN
 Hopkins, MN
 Springfield, MO
 St, Louis, MO
 Nashua, NH
 Cherry Hill, NJ
 Bergen County, NJ
 Morristowr, NJ
 Buffalo, NY
 lihaca, NY
 Nassau County, NY
 Charlotte, NC
 Cleveland East, OH
 Cleveland West, OH
 Columbus, OH
 Oklahoma City, OK
 Portland, OR
 Harrisburg, PA
 Paoli, PA
 Austin, TX
 Oallas, TX
 South West Houston, TX
 Houston Bay Area, TX
 Salt Lake City, UT
 TYson's Corners, VA
 Bellevue, WA
 Federal Way, WA
 Tacoma, WA

 Madison, WI Milwaukee, WI INTERNATIONAL Adelarde, Australia Brisbane, Australis Melbourne, Australia Perth. Australia Sydnev. NSW Australia Brussels, Beigium Burlington, Canada

 Calgary. Alberta Canada Toronto, Cennada Winnipeg, Canada Copenhagen, Denmark Copallois France evallois, France Manila, Philhppines Singapore
 Stockholm, Sweden and other locations worldwide.

[^4]: About the Author
 Richard Hallgren is an Assistant Professor in the Dept of Biomechanics at Michigan State University. He is working on the application of microprocessor-based systems in scientific research.

[^5]: THE MINIMAX IS NOW AVAILABLE FOR QUANTITY DELIVERY. DOMESTIC DEALERSHIPS AVAILABLE. EUROPEAN DISTRIBUTORSHIPS/DEALERSHIPS AVAILABLE TO QUALIFYING COMPANIES WITH SUPPORT CAPABILITIES. SOFTWARE HOUSES AND OEM INQUIRIES INVITED. CONTACT NEECO.

[^6]: 1. Our prices are too low to advertise. Please call or write We now carry a full line of

 Alpha-Micro Products

[^7]: About the Author
 Dr James S Albus worked for NASA from 1957 to 1972 designing optical and electronic subsystems for over 15 spacecraft, and for one year managed the NASA Artificial Intelligence Program. Since 1973 he has been with the National Bureau of Standards where he has received several awards for his work in advanced computer control systems for industrial robots. He has written a survey article on robot systems for Scientific American (February 1976) and his Cerebellar Model Aritlmetic Computer won the Industrial Research Magazine IR-100 Award as one of the 100 most significant new products of 1975. He is also the author of People's Capitalism: The Economics of the Robot Revolution which is published by New World Books, 4515 Saul Rd, Kensington MD 20795.

[^8]: ∞ MATRIX PACKAGE ∞
 Over 30 BASIC commands Including:
 ∞ Matrix Read, Inverse, Transpose, and Identity. Simultaneous Equations!!!
 ∞ Add, Subtract, or Multiply Scalars, Vectors, or Mult|dimension arrays!!!
 ∞ Dynamically Reshape, Expand, Delete Arrays, Change arrays in mid-program.
 ∞ Copy array elements, set arrays to scalar, zero arrays, move arrays.
 ∞ Tape array read and write including string arrays.
 FOR $\$ 29.95$ more get the ∞ BUSINESS PACKAGE ∞
 ∞ Eliminate round-off error!! Multiple precision packed declmal arithmetic. 127-digit max. accuracy
 ∞ Binary search or sorted arrays. Insert new elements in sorted arrays!!!
 ∞ Automatic page headings, footings, and pagination. Includes forced end-of-page.
 ∞ Automatic hash for record retrieval!! And more for your professional packages.

 ## ∞ STRING PACKAGE ∞

 Over 40 BASIC commands including:
 ∞ Left and right justify, truncate, rotate. Text justification. String centering.
 ∞ Delete or insert substring, Pack strings, Convert to upper or lower case.
 ∞ Translate characters, Reverse strings, Verify function, Number of occurrences.
 ∞ Masked string searches for simple or array variables. Encrypt or decrypt strings.
 ∞ Compress/uncompress character string arrays to 6 bits or less per character.
 ∞ AND the famous RACET machine language SORTS. Multikey multivariable and string. Sort 1000 eiements in 9 sec!!
 FUTURE ∞ ADD-ON PACKAGES ∞ will include ∞ STATISTICS ∞ INPUT/OUTPUT ∞ GRAPHICS ∞
 Attn: TRS Add-On OEM's: We can support your special hardware add-ons with direct BASIC commands. System Houses: We license System House usage of ∞ INFINITE BASIC ∞ modules.

 ## COMMAND PROCESSOR 'COMPROC' for $\$ 19.95$ (DOS only)

 Extend DOS-AUTO command to perform multiple steps either at power-up or as a user command Execute a script consisting of a sequence of commands or data from a BASIC command flle.

 REMODEL + PROLOAD for $\$ 34.95$ (Specify 16, 32, or 48K version)
 REnumber any section of a program, MOve program segments, DElete program lines.
 Combine programs with renumber and merge. Load or save any portion of program from tape.
 DISK SORT PROGRAM 'DOSORT' for $\$ 34.95$ (Specify 32 or $\mathbf{4 8 K}$, minimum 2 disk system)
 SORT/MERGE multi-diskette sequential files. Multiple variables and keys.
 Includes machine language in-memory sorts, comparators and string handling.

 Check, VISA, MIC C.O.D. Callf. residents add 6\%
 Telephone Orders Accepted (714) 637-5016

 WHEN ORDERING PLEASE
 ADVISE PUBLICATION SOURCE E RACET COMPUTES 3 702 Palmdale, Orange CA 92665

[^9]: *Trademark of Digital Research Inc. **Trademark of MVT Microcomputer Systems Inc. †Trademark of Software Systems †+Product of CAP-CPP

[^10]: Milton F Thrasher
 Senior Product Administrator
 IBM DPD Headquarters
 White Plains NY 10604

[^11]: 2967 W. Fairmount Avenue • Phoenix, AZ 85017 • (602) 265.7564

[^12]: Languages Forum is a feature which is intended as an interactive dialog about the design and implementation of languages for personal computing. Statements and opinions submitted to this forum can be on any subject relevant to its purpose of fostering discussion and communication among BYTE readers on the subject of languages. We ask that all correspondents supply their full names and addresses to be printed with their commentaries. We also ask that correspondents supply their telephone numbers, which will not be printed.

[^13]: NOW USE TRCOPY WITH YOUR PRINTER Included ot so extra cost - Now you con use she TReopy syatem to autpot it is input from the tope inciuding Aile nases, semary lacatians ond check ORDER YOUR TRCOPY SYSTEM NOWI

 TOLL FREE

[^14]:

[^15]: Ask your dealer about Hard Times - the Fujitsu M2201 and CDC Phoenix drives from MicroAge. Available to qualified dealers and OEM's. If a dealer is not available in your area, call 800-528-1415.

[^16]: Available from computer stores nationwide:
 LIFEBOAT Associates
 2248 Broadway. Suite 34, New York, N.Y. 10024 - (212) 580-0082

 Or order direct from
 MICRO-AP
 9807 Davona Drive, San Ramon, CA 94583 (415) 828-6697

[^17]: Articles Policy
 BYTE is continually seeking quality manuscripts written by individuals who are applying personal computer systems, designing such systems, or who have knowledge which will prove useful to our readers. For a more formal description of procedures and requirements, potential authors should send a large (9 by 12 inch, 30.5 by 22.8 cm), self-addressed envelope, with 28 cents US postage affixed, to BYTE Author's Guide, 70 Main St, Peterborough NH 03458.

 Articles which are accepted are purchased with a rate of up to \$50 per magazine page, based on technical quality and suitability for BYTE's readership. Each month, the authors of the two leading articles in the reader poll (BYTE's Ongoing Monitor Box or "BOMB") are presented with bonus checks of $\$ 100$ and $\$ 50$. Unsolicited materials should be accompanied by full name and address, as well as return postage.

[^18]: Alaska
 UbIO
 500 L St .
 Anchorage, Alaska 99501
 Callfornia
 Coast Computer Center
 1685 Tustin Ave. ${ }^{49}$
 Cost Mesa, Ca 92627
 Computerland
 6840 La Cienga Blvd.
 Inglewood, Ca. 90302
 Pro Data Group
 14522 Acacia Dr.
 Tustin, Ca. 92680

 ## Delaware

 Computer Ease, Inc
 403 Milltown Rd. Wilmington, De. 19808

 ## Florida

 Computers For You, Inc
 3608 W. Broward Bivd.
 Ft. Lauderdale, Fla. 33312

[^19]: -TRS-80 ©Tandy Corp.

[^20]: TERMS:Add 30c postage, we pay balance. Orders under $\$ 15$ add $75 c$ handling. No C.O.D. We accept Visa, MasterCharge, and American Express cards. Tex. Res. add 5\% Tax. Foreign orders (except Canada) add 20\% P\&H. 90 Day Money Back Guarantee on all items

