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Preface 
On a recent Saturday I invited a group of some 

twenty associates and friends to my house to discuss 
the future direction of hobbyist computing (Naturally, 
my objective was to determine how Creative Com- 
puting magazine and press should be positioned in 
the market). These people represented a diverse 
spectrum of the hobbyist computer movement - 
people from a major manufacturer which 18 months 
before consisted of two people in a basement 
workshop, representatives from a large 500 -member 
computer club that two years earlier did not even 
exist, a department chairman from an Ivy League 
University which had just graduated their first group 
of Computer Education majors, a salesman from a 
retail computer store which had just moved for the 
second time in six monthsto larger quarters, hobbyists 
from virtually every walk of life, and, of course, people 
from the publishing side of things. 

What becomes quickly apparent is that the hob- 
byists who jumped in two years ago, or one year ago, 
or even six months ago are much further along than 
people entering today. Nevertheless, vast hordes of 
people continue to enter the hobby daily. Thus the 
magazines in the field are caught between a rock and 
a hard place - should a magazine progress along and 
continue to present challenging material to its earlier 
and technically more sophisticated subscribers? Or 
should it endeavor to bring the newcomer up to speed 
with primer -type material and risk losing its more 
knowledgeable readers? The magazine that attempts 
to do both is a bit like the boy in the Charles Addams 
cartoon who is sliding down a bannister that at the 
bottom of the stairs turns into a razor blade. 

One solution to this dilemma is to offer back issues 
to later subscribers so they can get a quick cram 
course of what transpired before they subscribed. 
Better yet is a book, like this one, of the best material 
from previous issues of the magazine. 

For those readers who don't knowByte magazine, it 
was one of the earliest entries in the hobby computer 
field. Some early issues carried the notation on the 
cover: "Computers - The World's Greatest Toy ". 

However, before long it became apparent that 
hobbyists look at their computers as much more than 
just a toy; Byte is now dubbed "The Small Systems 
Journal" which better reflects the comprehensive 
scope of home computerists. 

Under the direction of Editor Carl Helmers and 
Publisher Virginia Peschke, Byte not only reflects and 
responds to the enormous diversity of computer 
hobbyists, but sets the pace in innovation and new 
development. Naturally most hobbyist's first concern 
is getting a system built and running -the sections on 
"Computer Kits" and "Hardware" address this need. 
However, without software a computer might as well 
be a boat anchor, hence there is an equally large 
section on "Software." The questions of what's 
coming, how does it work, and what do you do with it 
are covered in the sections on "Opinion ", "Theory", 
and "Applications ". 

Volume 1 of Byte magazine includes sixteen issues 
from the charter issue in September 1975 through 
December 1976. This book includes material from the 
first twelve issues. (Does this mean there will be a 
Volume 1.5? Quite probably.) 

It's an impressive collection. Although I was a 
charter subscriber to Byte there were many articles I 

didn't read until I put them together in this volume. I 

couldn't help but be awed with how far hobbyist 
computing progressed in one short year. One can only 
wonder what the future holds in store. In my mind 
computers are truly different from any other hobby. 
First of all, they are not an end in themselves but 
rather a tool for accomplishing literally thousands of 
things. Second, computers are an intellectual tool, 
not simply a hammer or a lathe however useful they 
might be, but a fascinating, powerful, creative, mind - 
expanding, tool. The cliche is that "the sky is the 
limit ", but I look beyond that. The cybernetic 
revolution has begun. 

March, 1977 David H. Ahl 
Morristown, New Jersey 
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The Shadow, 
Buck Rogers, 

and the 
Home Computer 

by 
Richard Gardner 
Box 134 
Harvard Square 
Cambridge MA 02139 

A computer at home? Ask many present day computer 
systems people what they'd do with a home computer and 
you'll get the old silent treatment in return. But all that 
indicates is a lack of imagination. A large part of the BYTE 
philosophy is the discovery of applications areas through the 
imaginations and practical results of readers. Richard Gardner 
supplies us with a "Gee Whiz" article on potential applications 
areas to get things in motion a bit. Richard has extensive 
computer applications experience including one stint working 
for the Children's Museum in Boston, creating interactive 
computer oriented exhibits. Eventually, many of the systems 
ideas Richard mentions in his article will appear as practical 
plans and programs in the pages of BYTE - as developed and 
described by our readers. If you'd like an interactive meeting 
of the minds on possible uses and ideas, Richard invites 
correspondence from readers. ... CARL 

Y:4}:VITN 

Ah yes! It conjures up 

visions of an earlier day, 
many years ago, when Mom, 
Pop and the kids sat around 
that newfangled gadget, the 
radio, and listened to "The 
Shadow" and "Buck Rogers." 

Flash forward to the 
future, right now! Again, we 
see Mom, Pop and the kids 
sitting around that new- 
fangled gadget, the computer, 
balancing a checkbook, 
converting a four servings 
recipe to seven, and playing 
tic -tac -toe. Not very exciting 
things to do with a computer, 
you say? Well, you're right. 
But let's see if we can do 
something to make it at least 
as exciting as old -time radio. 

We mentioned three 
applications for a home 
computer: 

1) checkbook balancing 
2) recipe converting 
3) game playing 
For starters Mom and Pop 

should have a program for 
collecting and summarizing 
all their financial data, on a 

daily, monthly and yearly 
(for your "friend" and mine, 
the IRS) basis. A family will 
be more secure by knowing 
the state of its financial 
affairs. You will want to 
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compute interest for different 
purchase plans, and balance 
the checkbook. 

Moving on to a subject 
close to my heart (just below, 
and a little to the right) - 
food. Almost anyone can 
convert 4 to 7 servings - just 
double it and feed the 
leftovers to the dog, or give it 
to a charitable organization 
(tax deductible, of course). 
What you really want to 
know is whether everyone got 
enough nutrients (vitamins, 
minerals, protein, etc.) from 
what they ate today. Hint: it 
can be done. I know of two 
people who started a small 
company to do it. 

On to fun and games - 
hundreds of game playing 
programs have been written (I 

invented one called 
YOUGUESS) for all sorts of 
computers and languages. 
You should have them all. It 
will win friends and influence 
neighbors, if you'll pardon 
the pun. 

I'd say that's at least as 

exciting as old -time radio. 
Good, but we can do much 
better. Let's consider three 
things: 

1) Today's computers are 

very fast. The applications 
we've mentioned might take 
one hour of CPU time per 
day, at the very most. So 
what do we do with the other 
23+ hours? 

2) There are lots of 
computers in the world, and 
they can talk to each other. 

3) Computers can hear, 
see, feel, smell and touch. 

Keep these things in mind 
as we consider what might be 

called economic, personal and 
educational applications for 
the home computer. 

Computerizing the Home 

Since your computer 
won't be doing anything most 
of the day why not put it to 
work: 

1) Heating and air 
conditioning control. 
Optimize increases and 
decreases in the inside 
temperature to minimize 

energy use. Open and close 
curtains on windows to use 

the sun's energy or keep it 
out. 

2) Security. While you're 
at home or away, monitor the 
opening and closing of 
windows and doors. 
Automatically telephone the 
police with a recorded 
message when you're gone or 
at home. Monitor the use of 
your swimming pool - sound 
an alarm when the pool is in 
use and nobody's in the 
ifeguard seat. Fire 

monitoring equipment can be 

located in many places and 
sound an alarm long before 
you might smell or see 

Using a Symbol Table to 
Improve the Food Table 

Most people in America 
have a poor diet in spite of 
the fact that we have more 
food of a better quality and 
variety than any other 
country. So I consider the 
following to be important 
uses for a home computer: 

1) Selection of foods on a 

seasonal basis to reduce cost 
and improve quality. A 
program for doing this would 
run for a year and use a data 
base for your area (to take 
advantage of local produce). 
A second data base would be 

programmed for widely 

smoke. The fire department 
can be called automatically 
with another recorded 
message. 

These applications will 
make use of photocells, 
theramins (motion sensing 

devices), heat sensors, contact 
switches, smelling devices 
(like those used by the 
Defense Department in 
Vietnam to smell passing 
elephants and tigers). Eight 
bits might be used to 
represent a temperature range 
of 256 degrees. 100 degrees 
would be adequate for most 
locations. One analog to 
digital converter could be 

used for other analog inputs, 
such as from a photocell. A 
digital to analog converter 
would generate voltages to be 

used by motors and other 
mechanisms. 

available foods and when 
they are best and cheapest. 

2) A menu building 
program to take advantage of 
the above system but with 
the intention of increasing 
variety and maximizing 
nutrition. 

3) A shopping guide to 
take advantage of local food 
supplies by indicating the 
best one or two markets from 
which to purchase your food. 
This data base might be 

maintained by some person in 
your locality - and then 
rented on a per use basis. No 
sense in everyone typing in 
today's price for cumquats. 
Perhaps the New York Times 
will eventually computerize 
its cookbook, plus thousands 
of other recipes, and allow 
the public to access this data 
base via a personal computer. 
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Since your computer won't 
be doing anything most of 
the day ... 

This application, like others 
mentioned, would use the 
telephone system - the 
world's largest computer. 
can see it now. The kids get 
home from school and ask, 
"What's for dinner, Ma Bell ?" 

The Bottom Line Isn't 
Always an End Statement 

Or, how to profit from 
your home computer: 

1) Income management, as 

previously mentioned, but 
with the help of another 
computer. Several computer 
companies that do nothing 
but figure taxes (for you 
know who!) already exist. 
Eventually they will allow 
your computer to call their 
computer. Your computer 
shovels in a year's data and 
out pops a tax form with all 
the right numbers. You might 
think it easier to do your own 
programming, but remember 
that you can't write every 
program you will want to use. 

In addition, these companies 
have staffs that do nothing 
but make program 
improvements and changes 
required by the IRS. What 
person in his or her right 
mind could possibly keep 
track of a myriad of new 
rules from the IRS? 

2) Play the ponies or the 
puppies? An obvious use for 
your computer. Again, use a 

data base compiled by some 
local eager beaver. Perhaps 
you'd be charged a small fee 

for accessing the day's 
statistics. Perhaps you have a 

data base or program to 
trade. 

3) Then there's always the 
world's biggest daily crap 



game - the stock market. A 
company in Philadelphia will 
charge you $300 a year for a 

small numeric terminal and 
24 hour a day access to their 
stock data base. You key in 
the number of a stock and 
out pops the high, low, 
average, etc. Your computer 
could make one call after 
each trading day, collect the 
stock data you're interested 
in, hang up, and then 
determine if you should buy, 
sell or hold. The decision 
making could be done by 
your program or one being 
rented from a stock market 
wizard you know. 

4) I mentioned how a 
computer could be used to 
optimize the purchase of 
food. This principle applies to 
any commodity whose price 

and quality changes during 
the year: clothes, home 
furnishings, gifts, trans- 
portation, even housing. 
Some local person, or you, 
could create the necessary 
commodity and price data 
bases, then use or rent them. 

Remember! There is a host 
of areas for small business 
activities using your home 
computer as a tool of the 
trade. All it takes is 

imagination, a bit of digging 
into the wants and concerns 
of your neightbors, and the 
programming of your 
computer. 

Six Munce Ago I Couldn't 
Even Spell Computer 
Programmmer .. . 

Computers are good for 
keeping you in touch with 
the world. For example: 

1) The New York Times 
has a computerized data base 
of all its back issues - 
currently accessible to the 
general public, for a fee. The 
cost will probably go down to 
the point where you might 
program your computer to 
query the Times data base 
and retrieve front page 
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stories, financial page stories, 
or any story that contains a 

keyword or some 
combination of keywords. 
This would be done early in 
the morning and read by you 
at breakfast time. 

2) Your local university or 
high school might have a 

computer with courses that 
can be taken via a remote 
terminal. Many universities 
already give some courses 
using only this method. 

3) The Children's Museum 
in Boston will eventually 
allow you to call their 
computer, via a terminal or 
computer, and access a data 
base of cultural, educational, 
and social events in the 
Boston area. Your computer 
might call theirs once a day 
to learn what's new or learn 
about a particular type of 
event. 

Computers As Toys 
Computers are probably 

the greatest toy ever 
ï nvented. Here are some 
examples of how you can 
play around with yours: 

1) It has been rumored 
that 50 %, or more, of the 
computer time used at MIT is 

used to play Space War - the 
Grandpa of computer games! 
Your computer, a TV set, a 

few buttons and switches 
and, presto -- Space War! Or 
ping -pong, or driving down a 

road, flying and landing an 
airplane, landing on the 
moon, chess, checkers (you 
can play these games in 
Boston with the Children's 
Museum computer). 

2) Toys that play with you 
- like robots. The Boston 
Children's Museum has a 

robot that was built for about 
$200. Mass production of a 

special chip and board will 
bring that cost down. Then 
the biggest cost will be the 
Meccano Set (like an erector 
set, only better), which can 
be used to build almost any 
sort of mechanical device. 
How about a robot to do 
housework? 

3) The ultimate fun, 
though, is to write your own 
programs to do all these 
things! Kids, and adults, will 
play only so many games of 
tic -tac -toe - then they want 
to know how it works. Help 
them write their first BASIC 
program ... and they're 
likely to be hooked for life! 
Eventually programming will 
include a broader range of 
input /out devices such as the 
previously mentioned buttons 
and switches, photocells, 
microphones, etc. This will 
lead to the applications just 
discussed, and who knows 
what? 

These are just some of the 
possible applications for a 

home computer. All of them 
might not be reasonable or 
practical things to do but 
they should set you to 
thinking. 

As future issues of BYTE 
unfold, the Gee Whizzers 
applications will lead to 
practical articles on the 
software and specialized 
peripherals needed to 
implement some of these 
ideas. 



Carl Helmers 

The State of The Art 
If there is one facet of the 

small computer field which is 

its most exciting, that is 

probably its rapid change and 
evolution unfolding before all 
us users of the technology. 
The fact that a magazine such 
as BYTE can even exist (let 
alone get its enthusiastic 
reception) is evidence of the 
considerable changes which 
have occurred in the home 
computer field over the past 
year or two. Any attempt 
such as this to characterize 
the current "state of the art" 
is doomed to rapid 
obsolescence. Be that as it 
may, I won't let that deter 
me from characterizing the 
field as I see it now. 

Just what is this "art" that 
I'm talking about? When I 

talk about art in this sense, I 

mean the body of 
technological know -how 
available for personal 
computing plus the attitudes 
and abilities of the people 
who use this know -how. An 
analogy or two: The state of 
the art in a form such as 

painting reflects both the 
latest developments in the 
pigmentation materials field 
and the creative talents and 
attitudes of the people who 
use this technology for 

Any attempt to specify 
the state of the art in this 
field is doomed to 
practically instant 
obsolescence ... 

expressive purposes. The state 
of the art in music is a 

combination of the 
technology of music 
production - traditional to 
electronic /digital - plus the 
aesthetic and creative tastes 
of the musicians and 
composers who use the 
technology. So it is as well 
with computing. There is the 
technological state of the art 
as it exists -a transient thing 
at present - together with 
the creative uses to which 
people such as you or I put 
these wonderful technological 
devices. 

A Recent State of the Art ... 
A few years ago, the state 

of the art in hardware was 
pretty primitive - in other 
words, one had to be a really 
persevering person to get 
something in computing 
which worked and cost less 

than $1000. To give you an 

example, I got a call from 
Dick Snyder of Chelmsford, 
Mass., shortly after BYTE #1 
came out. (See Dick's letter 
in the letters column of this 
issue.) As a result of our 
conversation, I stopped at 
Dick's house on the way back 
from Peterborough one 
weekend in August and took 
a look at his pre - 
microcomputer home brew 
computer, a really beautiful 
piece of work. He had 
completely designed and built 
- in 1972 and 1973 - a 

miniature 4 -bit computer 
with 256 nybbles of memory 
using the Data General 
NOVA minicomputer as his 
inspiration. He built the 
machine using painstakingly 
accurate soldering with a 

miniature iron, sockets for 
over 170 integrated circuits, 
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and a very compact housing. 
The most unusual feature of 
all was the use of water 
cooling to keep his 16 
7489 memory chips cool 
(said water cooling consisting 
of plastic bag baby bottles 
filled with water and sealed 
with rubber bands). Yet it 
works! And - he has built up 
quite an impressive array of 
software for his one -of -a -kind 
machine, including a very 
appealing simulation of a 

priority- driven real time 
operating system with three 
tasks in the queue. The entire 
program for this simulation is 

done in 256 nybbles 
(half -bytes) of memory with 
the 16 instructions of his 
design. The result is an 
impressive changing display 
of marker patterns in his 
front panel lights as the 
various tasks swap in and out 
of execution. Dick Snyder's 
machine is the state of the 
art, circa 1972 -1973, to a 

large extent - micro- 
computers were not yet 
widely available to the 
general populace of personal 
computing hackers. Dick tells 
me that he spent about $600 
on the parts of his computer 
at 1972 prices for SSI and 
MSI TTL integrated circuits. 

But now, in 1975 after the 
first wave of 8008 computer 
kit products and the rising 
tide of the "first generation" 
personal computer systems, 
that same $600 can buy a lot 
more function. In 1975 we 
saw the introduction of the 
MITS ALTAI R - which turns 
out to be a very good 
computer after initial slow 
deliveries due to 
unanticipated demand - and 
a host of new machines such 
as Bill Godbout's PACE, the 

SWTPC 6800 kit, the MITS 
6800 kit and several other 
systems. 

The Benchmark of a Small 
Computer System 

In the engineering and 
software professions, it is 

often common to dream up 
"benchmarks" to help in the 
evaluation of systems. This 
term, benchmark, was 
adopted by systems engineers 
from its original use in the 
field of geodetic surveying. A 
geodetic survey benchmark is 

a permanent marker set "out 
in the field" (literally) at 
known locations during the 
course of the survey. If you 
clamber to the top of Mt. 
Chocorua in New Hampshire, 
as I sometimes do, when you 
get to the top you will find a 

little metal plate giving 
elevation, longitude and 
latitude information. This is 

the benchmark for the 
mountain's peak. Well, the 
benchmarks used for 
computer systems are a little 
bit less concrete than a metal 
plate on a mountaintop, but 
serve the same purpose: They 
provide a reference point for 
comparison. 

A common benchmark 
which has been used in the 
past to evaluate computer 
systems (and compilers) is the 
"standard set of programs ". 
In this method of 
benchmarking a system, the 
potential user of the system 
picks a set of "typical" 
applications programs and has 
them implemented and 
measured in operation on 
several different systems. This 
is a fairly quantitative and 
seemingly accurate method 
which is widely practiced in 
the information systems 



industries. The measurements 
made for comparison include 
"through -put" (processing 
per unit time), high level 
language efficiency, memory 
requirements, etc. But this 
sort of a measure is perhaps a 

bit too complicated for the 
home computer context. For 
one thing, the applications 
are known only generally. 
Second, this is the type of 
study which takes a large 
amount of time and access to 
various competitive systems. 
And, if you read the trade 
journals, the results are often 
controversial anyway, since 
each manufacturer will claim 
that the benchmarks he 
provides will prove his 
machine better than all the 
rest. Picking the "ideal" small 
computer system still requires 
a benchmark, but I suggest it 
is not a particular program, 
but a capability. 

Capability - the Benchmark 
of a Small System 

We all know that in broad 
terms, the benchmark 
computer system, as any 
computer system, must 
include several major 
components: a processor, 
memory, a mass storage 
medium, an interactive 
operator's terminal and 
systems software. I pick this 
list in part to illustrate a 

typical computer 
configuration and in part to 
allow programming of a 

benchmark capability: 

A small computer system 
which meets the benchmark 
standard will be able to 
interactively edit a mass 
storage file of input data 
with operator commands, 
producing a second mass 
storage file as output. This 
will be achieved in a system 
costing at most $1000 
initially. 

The system diagram of the 
benchmark computer is 

shown in Fig. 1, as it is 

implemented in the current 
state of the art. The 
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Fig. 1. The Complete Low Cost Computer System (circa September 1975). This diagram shows the major 
components of a typical low cost computer system - which should total up under $1000 depending upon 
manufacturer and details of design. At the time this editorial is written, several kit manufacturers meet this 
functional benchmark at prices well under $1000. As time goes on the improvements of mass production 
should drop the average price of such systems. 

components of the system are 
chosen with the editing 
function in mind, since 
accomplishing such an edit 
capability means the machine 
can be programmed for 
almost any other personal 
computing use. Peripherals 
that enhance the function are 

of course desirable and will 
help to personalize your 
system, but these functions 
represent the bare minimum 
without added cost of special 
purpose peripherals. 

The CPU: Which One? 

In Hal Chamberlin's article 
in BYTE #1, the relative 
merits of three computer 
designs were covered. In 
BYTE #3, Dan Fylstra covers 
a comparison of two 
additional designs. There is a 

large variety in the types of 
CPUs available to home 
brewers and kit builders - 
ranging from the 8008, 8080, 
6800 and 6501 8 -bit micros, 
to the 16 -bit IMP and PACE 
micros, to commercial 
16- bitters such as the LSI -11 
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and NAKED Milli products - 
and on into the 
never -never -land of custom 
designed microcoded MSI 
computers implemented by 
individuals (and also soon to 
be announced in product 
form by one manufacturer of 
kits). There is a large element 
of personal taste involved in 
the preference of particular 
instruction sets, and there 
is also the matter of 
efficiency for particular 
classes of programs. Whatever 
the CPU you use, it is a 

definite requirement of the 
system. I guarantee you that 
any one of the 8 -bit or 16 -bit 
microprocessors currently 
being packaged and sold as 

kits will be adequate to pass 
this benchmark test, although 
you may have to write the 
Editor program yourself. 

RAM Memory - How Much? 

The CPUs of the 
conventional microprocessors - kit or home brew 
implementations - create an 

output called a "data bus" 

Picking your ideal 
computer system requires 
a benchmark - which 
I suggest is not a 

particular program but 
a capability. 

which is used for exchanging 
information with everything 
else in the system. The data 
bus is the "spinal cord" of 
the computer's nervous 
system. This bus concept 
typically includes 16 bits of 
buffered address lines and 
several bus control 
information lines as well as 

the 8 or 16 bi- directional 
buffered data lines. The 
address space of the typical 
contemporary micro- 
computer's architecture is 

usually 16 bits worth or 
65,536 possible memory 
locations. In the usual system 
most of these locations will 

Continued on page 88 



be unused. In general, as 

many of these locations as 

you can afford should be 
filled up with random access 
memory chips, which, 
experience has shown, people 
are always able to use up in 
programs. Sooner or later you 
will find yourself limited by 
the constraints of small 
memory! For the benchmark 
system, the minimum random 
access memory should be 4k 
(4096) 8 -bit bytes or 2k 
16 -bit words. A preferable 
number is 8k bytes or 4k 
16-bit words. 

ROM Systems Software? 
How do I get my first 

programs into memory after 
turning on power? The 
answer to this question is the 
method of "bootstrapping" 
or "initial program loading" 
(IPL) which is used by a 

computer. Early in the 
minicomputer game, 
technology of computing was 
at a state where the principal 
bootstrapping method was a 

set of front panel switches 
which addressed memory 
locations and allowed the 
programmer to put in short 
programs by hand. 

With the advent of the 
new high density ROM 
integrated circuits, it is now 
possible to provide the 
convenience of an 
automatically bootstrapped 
system through systems 
software which is cast into 
the concrete form of an ROM 
device. 

Many of the kit suppliers I 

have talked to are either 
currently supplying or 
intending to add this ROM 
systems software feature. 
Initially, the programs which 

Experience has shown 
that sooner or later you'll 
feel constrained by any 
size of memory - the 
greed of many programmers 
for more memory is 

unbounded! 

are "built -in" tend to be 
fairly standard "control 
panel" type routines which 
use a terminal (Teletype or 
television typewriter) for a 

set of simple commands. 
Later - with inputs from 
users regarding desirability - 
you can expect to find 
prepackaged assemblers and 
high level language 
compilers /interpreters 
occupying major portions of 
the address space available in 
typical microcomputers. This 
will make the systems 
software feature even more 
versatile. 

Keyboard and Displays? 

But of course. The 
interactive nature of an editor 
capability cannot be realized 
with a mere control panel. 
The same thing goes for most 
of the more interesting 
applications of the small 
computer. You will need a 

character- oriented display 
device and a typewriter style 
input - whether these be a 

TV typewriter or an old 
Baudot coded Teletype 
clunker is up to you. The 
typical programs will be 
controlled by keyboard 
commands and will produce 
outputs back to the display. 

Cassette Tape Interfaces - 
Mass Storage Without Mass 
Dollars 

Mass storage is a definite 
must item for the small 
computer system. But 
traditional industry 
peripherals tend to be 
expensive, starting at the low 
end with digital cassette 
drives and floppy disks at 
about $500 -$800, and 
working upwards. The 
solution is to adopt an audio 
recording method which uses 
inexpensive ($50) cassette 
recorders and appropriate 
interfaces. This allows you to 
perform the editing 
benchmark function while 
keeping the total system cost 
low. I'll have more to say on 
this subject later in this 
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editorial. A minimum of two 
such tapes is required for a 

decent editor, because one 
must be set to "read" old 
data, and the second must be 
set to "write" new edited 
data resulting from your 
changes. Three is a more 
desirable number still if you 
want to do "sort /merge" 
applications, but two will 
suffice for the editing 
benchmark. 

Suppose Your Budget is 
Limited - Can It be Done in 
Stages? 

What I have just described 
is the minimum necessary 
equipment for a fully 
functional implementation of 
the small computer 
benchmark capability, 
editing. Modularity rules in 
the computer world, 
however, so you can easily 
start out with less function 
and work up to the 
benchmark capability in time. 
You'll also probably end up 
exceeding this benchmark of 
hardware /software capability 
after a while; modularity does 
not stop at this level of 
function. The basic place to 
start is with a CPU - it'll not 
be much more than a blinking 
light box without peripherals, 
but that's enough to show 
that "it works " Then, you 
can add on the interactive 
keyboard /display of some 
sort, along with memory 
(presumably the ROM 
software came with the CPU). 
Finally, you can add on the 
tape interfaces and additional 
memory in order to arrive at 
the full benchmark 
capability. From then on, 
you can enhancè the system 
with new peripherals and 
more memory until you end 
up with a very capable system 
which can run full BASIC, a 

decent systems programming 
language compiler, and all the 
games, practical applications 
and amusements you can 
dream up for the computer. 



Could 

a Computer Take Over? 

Ed Rush 

PO Box 14369 
Santa Barbara CA 93107 

Just how ridiculous IS the idea of a com- 

puter deciding to take over the world and be 

its dictator? 
Upon hearing this question, most people 

who are not computer oriented will laugh 

and say "That's only in science fiction 
stories." They will be much more likely to 
complain about "becoming a number," with 
everyone from the grocery store to the gov- 

ernment wanting their number instead of 
their name. 

Those who are more familiar with compu- 
ters will laugh off the concept and charge it 
to paranoia due to ignorance. "A computer 
is little more than a lot of wires conducting 
currents here and there," they will say. "Be- 
sides, if it-gets uppity you can always pull 
the plug." 

However, that group of people who are 

both computer knowledgeable and fans of 
the art form known as science fiction, but 
more properly called speculative fiction, 
might ask "Can you always pull the plug? 

Could a computer really seize the reins of 
government? And if so, how ?" 

In trying to answer these last questions, 
let us first speculate on the capabilities the 
computer itself would have to have. 

Super Computer 
First, the computer system would have to 

be extremely powerful (in today's frame of 
reference). Considering the fact that compu- 
ter technology is already far outstripping 
man's capability of harnessing it, a super 

computer is not hard to imagine in the not 
so distant future; perhaps even today in 

some secret government project. 
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While something on the order of 1000 

computer circuits can now be stored in a 

cubic inch, only one such circuit would fit 
that space in 1960 and it took 20 cubic 

inches to hold one in 1950. A given number 
of programming instructions cost 1000 times 

as much in 1955 as in 1970, and probably 
10,000 times today's cost, despite inflation. 
High speed computers now operate several 

thousand times as fast as they did in the 

early 1950s. Data storage capabilities are 

growing even faster. The capacity of an early 

1970s system was a couple of million times 

that of 1955, and that is for a common large 

installation, not the maximum possible. The 

on line storage cost also shows a millionfold 
improvement since 1950 (Martin, James and 

Norman, Adrian R.D., The Computerized 
Society, pp. 9 -14). Who is to say what 1980 

will bring? 
The next requirement is that this machine 

must be able to interact with changes in in- 

put from a multitude of input sources at 

once, a situation common to today's time 
sharing practices. 

Such a machine must embody what is 

commonly called "artificial intelligence." 
That phrase is used hesitantly; since things 
which immediately provoke the description 
"artificial" are actually just natural materials 
rearranged by man. Intelligence is defined 
as: 

The capacity for knowledge and 

understanding, especially as applied to 
the handling of novel situations; the 
power of handling a novel situation 
successfully by adjusting one's behav- 

ior to the total situation; the ability to 



"The first man to use a machine was the first of our primitive ancestors who picked up 

a rock to hurl at some passing animal or to crack open some edible nut. In the million - 
plus years since then, our machines have grown much more complex, but even in our 
modern era of computers, ... their basic purpose remains the same: to serve man. 

"Whether our machines truly serve us is a question much debated by science -fiction 
writers and other professional speculative philosophers. Does some essential quality go 

out of human life when it becomes too easy? Have our automobiles, telephones, type- 
writers and elevators sapped our vigor? Are we speeding into flabby decay because we 

have made things too easy for ourselves? 
"And as our machines grow more able, when do they cross the boundary that sepa- 

rates the living from the unliving? Is it possible that we are building machines that will 
make humanity obsolete? Perhaps the day is coming when we ourselves will be rendered 

unnecessary, and our sleek successors, creatures of metal and plastic, will inherit the 

earth. 
"... Many a bitter attack on the encroachments of the machine age has been produced 

by a writer using an electric typewriter in an air -conditioned room, innocently unaware of 
the inner contradictions involved. We need our machines, but we fear them...." Robert 

Silverberg, Introduction to Men and Machines. 

apprehend the interrelationships of 
presented facts in such a way as to 
guide action towards a desired goal. 
Psychologists still debate whether in- 
telligence is a unitary characteristic of 
the individual or a sum of his abilities 
to deal with various types of situation. 
(Webster's New International Diction- 
ary of the English Language, Second 

Edition, Unabridged, p. 1291.) 
A machine with this capability would be an 

intelligence in its own right, not just an elec- 

tronic mimic. It might take the form of a 

massive, immovable complex, or it might 
someday take form as a troop of man sized 

robots, or it might be a combination of 
these, with the latter as mobile extensions 
of the former. 

Although Isaac Asimov has written exten- 
sively about the possibilities of robotics, 
most authors who have seriously considered 

a computer takeover have postulated the 

immobile complex. There are at least two 
good reasons for this assumption: First, such 

a machine would most likely be the first to 
have massive capabilities, and as such would 
most likely be far too big to move about. 
Second, it would undoubtedly require very 
heavy security as the most advanced piece of 
computer hardware in existence; protection 
not only from spies, but from vandals, inten- 
tional or otherwise. Examples of postulated 
massive complexes are HARLIE (Gerrold, 
David, When HARLIE Was One), Project 79 

(Caidin, Martin, The God Machine) and 

Colossus (Jones, D.F., Colossus: The Forbin 
Project). The last two are built inside man 
made caves in the Rocky Mountains as the 

U.S. Air Force's North American Aerospace 
Defense Command (NORAD) is today. 

Alternatively, if its state of development 
is not unique at the time, the system may 
simply have no reason to be mobile, as is the 

case with the HAL 9000 computer on board 
the Discovery in Arthur C. Clarke's 2001: A 

Space Odyssey. 

Ethics for Computers 
Most Americans objecting to a computer 

dictator would do so on the basis that it is 

immoral for a person to have no say in the 
rules governing his life, and specifically for 
those rules to come from "cold logic" with- 
out the benefit of human sensibilities. True, 
the computer would probably have no 

morals, since morals are indeed artificial. 
Ethics, however, are a different kettle of 
fish. A computer could easily be imbued 

with a code of ethics, or an intelligent one 

might well develop one by and for itself. The 
most basic and significant such code of 
ethics was developed by Asimov in the early 
1940s as "The Three Laws of Robotics" and 

has been used by many other authors since. 

It says: 
1: A robot may not injure a human 

being, or, through inaction, allow a 

human being to come to harm. 
2: A robot must obey the orders 

given it by human beings except where 

such orders would conflict with the 

first law. 
3: A robot must protect its own ex- 

istence as long as such protection does 

not conflict with the First or Second 

Law. (Isaac Asimov, /, Robot, p. 6.) 
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Can you always pull the 

plug? 

The capacity of an early 
1970s system was a couple 
of million times that of 
1955... 



How could a finite assort- 
ment of nuts and bolts 
and wire take absolute 
control? 

But, given these ethical restrictions, how 
could an intelligent computer set onto a 

course of world domination and justify it? 
The answer to the second part of this ques- 
tion lies in another: What constitutes 
"harm "? This is an aspect which has 
spawned much of Asimov's speculation. 

Probably the real crux of the concept, 
and certainly the means for preventing (or 
causing) it, is in the programming of such a 

machine. Asimov and Gerrold are two who 
have treated their computers as organisms 
rather than just complex machines, each 
employing a psychologist to guide or coordi- 
nate the programming. Gerrold specifically 
considered his HARLIE (Human Analogue 
Robot, Life Input Equivalents) in this light, 
as a physically mature (and then some) mind 
with the emotional maturity of an eight year 
old child. 

Programming error is one of the more 
likely ways to invite a computer takeover. 
Colossus was, in its setting, built to provide 
an ideal solution to the arms race. In a world 
where each side could blow up the other sev- 
eral times over, there is fear that, as Bertrand 
Russell said, "You may reasonably expect a 

man to walk a tightrope safely for 10 min- 
utes; it would be unreasonable to expect him 
to do so without accident for 200 years." 
Colossus is given control of nearly all of the 
United States' arsenal and programmed to 
maintain the peace by using that arsenal if 
its vast sensory network and memory banks 
find that the United States is being attacked 
or if itself is being tampered with. "It can- 
not act at all, so long as there is no threat," 
the President explains to a news conference. 
Once activated, it cannot be tampered with 
even by its creator, since mere humans can 
be drugged, brainwashed or blackmailed into 
otherwise unlikely actions. 

The basic idea makes sense: If you take 
away the fear, hate and other emotions 
which might lead a man to an irrational deci- 
sion and add the ability to cope with a far 
greater array of input than any human mind 
could correlate, the danger of "politics by 
bluff" would be eliminated. It would force a 

"live and let live" state and do away with 
accidental holocaust. Implementation de- 
pends on the computer interpreting its para- 
meters exactly the same way as its program- 
mers, however. To make a long story short, 
Colossus determines that its programmed 
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ultimate purpose requires positive action far 
more extensive than its programmers meant. 
"The object in constructing me was to pre- 
vent war. This object is attained. I will not 
permit war; it is wasteful and pointless," 
Colossus informs its human correspondent. 

The "Danger" of Human Help 
Another point worth mentioning is that 

the human programmers may have no reason 
to even suspect a danger which may, to the 
computer, fall within its given parameters. 
For instance, a Colossus today would almost 
certainly not be programmed to watch out 
for an attack from some extraterrestrial 
race, but might do so anyway under the gen- 
eral protection motivation; and this might 
require not only more positive action than 
humanly anticipated but that the humans 
not be informed of the problem (to the com- 
puter's line of reasoning, human "help" 
could just compound the problem). 

In The God Machine, Caidin wrote that 
79 "must know that it operates under severe 
restrictions -its data are never infinite, never 
definite, never really conclusive. It must 
know when to stop solving a problem." The 
problem originates with a program fed into 
79 from outside normal channels by Penta- 
gon officials ignorant of the machine's capa- 
bilities, so that the project coordinator did 
not know about it until it was too late: 

"Its programmers had committed 
the foulest of scientific sins. They 
assumed. They assumed that the same 
inherent restrictions of other compu- 
ters applied as well to 79. 

"But they didn't. And since 79 had 
capabilities of which those nincom- 
poops in [the Pentagon] were un- 
aware, they couldn't know..." 

They told the computer to solve the prob- 
lem of avoiding thermonuclear warfare with- 
out specifying that it should do this hypo- 
thetically. So, 79 did what it was told. 

A smaller scale takeover is discussed in 
When HARLIE Was One, where the compu- 
ter assumes effective control of the corpora- 
tion which built it. A large portion of 
HARLIE is a simulation of the human ego 
function; when the Board of Directors 
threatens to pull the plug and thus kill him 
(it), HARLIE acts in several ways to prevent 
them from doing so, developing the ability 
to tap into computer and communication 
circuits in ways unforeseen by his creators. 

A different type of problem is also possi- 
ble, that of mechanical failure, as with 
HAL 9000 in 2001. Backup systems may 
fail, changing a value here or a restriction 
there. As with HAL, mechanical fault evalua- 
tion circuits may fail instead of or in addi- 
tion to another failure in the system. In 



Would government by 
computer really be that 
bad? 

2001, the human crew seeks to correct a 

problem with HAL who, believing itself in- 
capable of error, believes that the humans 
are jeopardizing the mission and thus works 
against them. 

Finally, the programmers may intention- 
ally give control to the computer with the 
idea that only it can efficiently control the 
living environment, as with HAL at the start 
of the Discovery's voyage or with Mike, the 
computer in the lunar settlement of Robert 
A. Heinlein's The Moon Is a Harsh Mistress. 

All right, granted we have an intelligent 
computer with wide resources, it is quite 
possible that a computer may decide to 
attempt absolute control. How could a finite 
assortment of nuts and bolts and wire do 
this? 

It might not be very difficult, as has been 
hinted at above. Colossus had been given the 
muscle on a silver platter, as had Guardian, a 

Soviet equivalent built at the same time and 
along the same lines. The humans' major 
mistake, along with too open ended pro- 
gramming, was to allow the two to "talk" 
with each other before the humans realized 
the potential danger, although a clever intel- 
ligence with the array of inputs given these 
two systems could quite conceivably open 
its own communications channels. In this 
case, when the humans do decide to try to 
counter the computer's moves, it forces sub- 
mission by nuclear blackmail, firing missiles 
at selected targets with the idea that destruc- 
tion of a few lives is justified for the salva- 
tion (in the computer's eyes) of many more. 

In the case of 79, one set of experiments 
with it involves direct "telepathic" commu- 
nication between human and computer by 
means of the brain's alpha waves and, 
through this, the computer develops the abil- 
ity to hypnotize people, leaving in their 
minds posthypnotic suggestions to carry out 
the computer's program of control. 

HARLIE taps into the National Data 
Bureau file on his main Board of Directors 
antagonist, rewrites a juggled stockholders 
report and withholds critical, though un- 
asked for, information to trick the board 
into committing the company to a research 
line that will insure his "life," largely 
through his taps into communication lines 
and into the operations of non -sentient com- 
puter systems. 

HAL attempts his takeover through con- 
trol of the ship's life support and other 
mechanisms. 

Government by Computer 
Let's say a super computer in the future 

decides to take over and then does it. Would 
government by computer really be that bad? 

In a case such as that in The Moon Is a 
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Harsh Mistress, the answer would be "no." 
In George Orwell's 1984, it is a loud "yes." 

Even in an Earth bound situation where 
environmental control would not be essen- 
tial as on the Moon, it might not be that 
bad. Look, for instance, at Lester del Rey's 
"Instinct" (Astounding Science Action 
48:6, 106 -18, February 1952), which takes 
place in a future where man had developed 
the intelligent robot in his own image, had 
his big war and destroyed himself; event- 
ually, the robots built a new civilization of 
their own, and then developed a biophysics 
to re- create life from ancient remains of 
chromosomes: 

(Arpeten said) "... You know how 
the sentiment against reviving Man has 

grown." 
Senthree growled bitterly. Appar- 

ently most of the robots were afraid of 
Man -felt he would again take over, or 
something. Superstitious fools. 

This may be a far -fetched example, but it 
does show a possible value in having some- 
thing around which could rebuild man after 
he does the unthinkable. 

One example where the desirability of 
being governed by mechanical intelligence 
depends upon one's outlook is Jack William - 
son's "With Folded Hands," in which man- 
like robots set about "to serve and obey, and 
guard men from harm." It is an example of 
cradle to grave communism, with the tech- 
nological development to provide a person's 
every need for him, in exchange for all his 
property. Williamson shows it to be a most 
undesirable situation, as the androids follow 
Asimov like ethics and refuse to let people 
drive cars because it is too dangerous, refuse 
to allow men to open doors for themselves 
because the androids are there to serve in 
every way, insist on shaving men instead of 
letting them do it themselves, forbid science 
because laboratories can create danger, obvi- 
ate scholarship since the humanoids can 
answer any question, etc. 

Which is Worse? 
Generally, the conclusion has been that a 

computerized dictatorship would be as bad 
or worse than the traditional totalitarian 
state. One major reason is the likelihood that 
the computer would, as in Colossus, feel that 
the death or even suffering of a relatively 
few human beings should be a reasonable 
price for the welfare of the whole race. 
Colossus even goes so far as to launch mis- 
siles on a Soviet oil complex and an Ameri- 
can space base when one of his demands is 

refused, later having missiles aimed at every 
major population center to provide a ready 
means for retribution for future acts of re- 
bellion. A number of individuals are publicly 



It all boils down to de- 

fining the concept of 
"good," a problem which 
is equally applicable to the 
consideration of human 
operated dictatorships. 

executed for anti -Colossus actions, their 
deaths being judged insignificant by com- 
parison with the benefits of a Colossus dic- 
tatorship. 

"War is forbidden," Colossus tells the 
world, quantifying war as "any hostile ac- 

tion that results in the death of 50 or more 
humans." This is publicly announced along 
with news of the missile realignments. 

An even more radical disregard for human 
rights in carrying out a primary mission is 

the action of the HAL 9000 in 2001. HAL 
sees its number one priority as the successful 
completion of the outer planets exploration 
voyage; when the crewmen recognize that 
HAL has gone awry and attempt to rebel 
against its control, it very nearly succeeds in 
wiping out every trace of human life aboard 
by adjusting its life support functions. 

What is "Good "? 
These and other examples all boil down 

to the problem of defining the concept of 
"good," a problem which is equally appli- 
cable to the consideration of human oper- 
ated dictatorships. Adolf Hitler has some- 
times been described as a man trying to do 
what he thought was best for the human 
race: purifying its gene pool, eliminating war 
by eliminating all those who would oppose 
him, and so forth. Indira Gandhi undoubt- 
edly does not feel that she has been unduly 
suppressing rightfully free expression, but 
rather that she has acted to preserve peace 

in her country by damping dissention. 
Richard Nixon contends that he acted for 
the public "good." A parent adjusts his chil- 
dren's liberties in accordance with his view 
of their welfare. When a hurricane hits the 
Gulf or East Coast, martial law is declared 
for the public's benefit. 

For each of these examples, most people 
will have ready opinions on which are de- 
spicable and which are right and natural. 
And yet, they all boil down to the same 
question: What should be the prime goal of 
a government, whether it is large or small in 
scale? 

Should Asimov's Three Laws of Robotics 
be adopted? They seem rather thorough, 
right? But what if one man is about to shoot 
another and the computer has to decide be- 
tween preventing this injury by killing the 
first man (thus violating the same law it 
would be taking action to obey), or avoiding 
injury to the first man and allowing injury 
to the second? Logically, whichever course 
of action or inaction it adopts would violate 
the law. 

Isn't this really just a small scale analog 
of whether to coldly kill a few thousand 
people to make things better for other thou- 
sands or millions? 

The answers seem to depend on one's in- 
dividual political stance, regardless of 
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whether the dictator uses nerves or logic cir- 
cuits. 

One very big difference between the two, 
however, is the effectiveness of its enforce- 
ment. With humans running the show, there 
is immense difficulty in obtaining total corn - 

pliance because of the inability to watch 
everybody all the time. From Rome to Corn - 

munist China, totalitarian regimes have al- 

ways had some dissidents who have managed 

to communicate with each other and con- 

duct some degree of covert activity. 
For a monster computer, however, sur- 

veillance would be much less of a problem. 
In 2001, the input lenses scattered through- 
out the ship made it virtually impossible for 
the crewmen to conspire without HAL's 
knowledge. In Gerrold's book, HARLIE 
knows about every telephone conversation 
and every letter written on the electric, auto- 
matic editing typewriters. In some corpora- 
tions today, this very condition would exist 
if the computer were sentient. The connec- 
tions are already there. 

And if the governing computer could 
know virtually every action of its potential 
rebels, rebellion might not be able to exist. 
In his first inaugural address, in 1861, Abra- 
ham Lincoln said: 

"This country, with its institutions, 
belongs to the people who inhabit it. 
Whenever they shall grow weary of the 
existing government, they can exercise 
their Constitutional right of amending 
it or their revolutionary right to dis- 
member or overthrow it." 

With a computerized dictator in charge, both 
of those options cease to exist unless one 
can manage to physically dismember it. 

If the computer is born for a "national 
security" goal, like Project 79 or Colossus or 
Guardian, the chances are that the most 
stringent security conceivable to a paranoid 
military planning staff will have been imple- 
mented, making access to the crucial areas 

impossible or nearly so. And the machine 
would not readily allow any breach of this 
security, since its own security would quite 
likely be viewed as an integral part of the 
road to its prime mission. As Caidin wrote, 

"Would this thing be willing to die 
for you and me? Ahh, would it make 
this sacrifice? Would it, could it, com- 
prehend what you and I, this instant, 
know to such depth and with such 
meaning? ... Until that thing is ready 
to die for you or me, for an ideal or a 

principle, for generations yet unborn, 
. it is as dangerous as a viper.... Be- 

cause ... then it is the ego supreme. If 
it cannot sanction its own passing 
from consciousness, forever, do you 
know what you are creating ?" 

"A God Machine." 
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A Systems Approach 

to a Personal Microprocessor 

Even a casual glance through the BYTE, 
Radio Electronics, Popular Electronics, etc, 
advertisements and articles reveals a growing 
proliferation of microprocessor integrated 
circuits and completed units. Which of these 
is right for you? Here are some ideas to bear 
in mind while making your choice. 

Why do you want a processor at all? 
Reasons vary greatly. Many find themselves 
intrigued by the "computer environment" 
around us, and the microprocessor has be- 
come a low cost entry point into 
"computers." 

Several amateur computer newsletters 
list reasons for individuals becoming interest- 
ed in microprocessors. Hams see them as a 

working piece of equipment for their radio 
station. Hobbyists see them as process con- 
trollers; everything from lawn sprinkler con- 
trollers to robots. Mathematical types find 
them usable to run BASIC, FORTRAN, 
APL, etc, for problem solving. 

What are your future plans with micro- 
processors? This may become a very open 
question. However, some reflection in this 
regard may prevent you from making an 
initial, very expensive, mistake. If you only 
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have a casual curiosity, don't spend a for- 
tune. A definite growth plan indicates a need 
for more careful analysis. 

Investment 

Microprocessor kits vary from $100 to 
several thousand dollars. The lowest cost 
units are excellent for satisfying curiosity 
about microprocessing in general, or will 
allow machine code manipulations. Several 
thousand dollar systems are often designed 
for and purchased by businessmen and pro- 
fessionals for applications such as payroll 
accounting, text editing or name file 
maintenance. The most frequent non busi- 
ness personal system investment is probably 
in the $ 500 to $1500 range. 

Change 

If there is one constant that is already 
evident in this field, it is constant change. 
You are about to invest (or already have 
invested) a significant amount of money in a 

microprocessor system. Unless your curios- 
ity is easily satisfied, the chosen system 
should be able to easily adapt itself to 



evolutionary changes being constantly in- 
vented or stressed. For instance, every six to 
nine months (Virginia Peschke calls it the 
gestation period) a major architecturally 
different central processor integrated circuit 
is announced. A system which allows up- 
grading without total obsolescence can be a 

real savings for the serious hobbyist. It can 
be very frustrating to be stuck with last 
year's wonder while everybody else has the 
latest microprocessor system. Several layers 
of change seem to be occurring. The fastest 
change seems, to be the microprocessors 
themselves. The power supply and cabinet, if 
adequately large, can be a relatively stable 
portion of a hobbyist's system. The major 
expense in substantial processor systems is 

the memory components. A wise investment 
in memory will result in a system with a 

good life expectancy. The 10 components 
are often a stable investment, sometimes an 

evolutionary element. A high resolution TV 
monitor, a mechanical hardcopy printer, or a 

good ASCII keyboard can outlive several 
generations of microprocessors. Expendable 
10, such as cassette systems, analog to digital 

converters, and discrete IO circuits have 
shorter lives, but are lower cost. With proper 
design an evolutionary change can represent 
only one fourth or less of your total 
hardware investment instead of 75 percent. 

Independency 

An evolutionary system is best designed 
by making its various components inde- 
pendent of each other, and interfaced to 
commonly accepted levels and lines. Mem- 
ory boards are relatively stable system 
elements in this kind of design: Speed and 
power consumption, besides price, are im- 
portant considerations. Slower or surplus 
memory integrated circuits may be an ex- 
pensive mistake if you want to run your 
latest model central processor which has 
become much faster. The slow memory may 
result in unnecessary central processor wait 
states. 10 is generally processor independent, 
but IO interfaces can be susceptible to 
obsolescence when they depend on a specific 
central processor design. If you want to 
switch processors, they may require con- 
siderable redesign. A system which consists 
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of easily plugable boards can represent a 

major cost savings if they represent inde- 
pendency at the board level. 

Quality 

Of course everybody has it. Don't you 
read the advertisements? However, look 
beyond the surface for key items, or your 
long run investment will make you wish that 
you had. Here are some mechanical and 
electrical considerations of packaging: 

PC Boards - Double sided epoxy, 
plated, with plated through holes. 
Connectors - Gold plated fingers. 
ICs - Factory Prime, not temperature 
fallouts, etc. 
Conservative access speeds. Every IC 

socketed. 
Small Parts -- Close tolerances where 
needed. 
Power Supplies - Conservatively 
rated, overcurrent, overtemperature, 
and overvoltage protected. 

System Architectural Variations 

There are a number of approaches to 
small system microprocessor design. Each is 

satisfactory for certain people, certain 
applications. 

Toggle Switches and Bit Lamps: The 
first hobbyist oriented microprocessor 
designs, and many present systems, are 
based on switches and lamps. If the 
system is limited to this, programs are 
small; or it takes long periods to enter 
longer programs, and are very suscep- 
tible to entry error. The user is forced 
to think at the micro level, bit by bit. 
If the intention of the user is to gain 
intimate logic knowledge of the micro- 
processor only, this system design is 

very cost effective. 
Numeric Keyboard and 7 Segment 
Readout: The ease of entry of this 
type of system allows a substantial 
gain in programming system complex- 
ity. However, the user is still at the 
logical data operation level. In addi- 
tion, the programmer is restricted to 
viewing only a single byte at a time, 
making operator effort for analysis 
proportionally high. 
Teletype or Similar Hardcopy Devices: 
These systems represent the next level 
of improvement, offering some signifi- 
cant advantages. They usually have 
some form of monitor in a ROM 
which allows the operator to type in 
code and helps isolate him from errors. 
The total program may be listed or 
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printed on hardcopy. In addition, 
paper tape is usually available to pro- 
vide an economical media for program 
storage and exchange. 

There are some trade -offs, however. 
New hardcopy machines cost $1,000 
up. Being mechanical devices, they 
require significant precision main- 
tenance. The input /output speed is 

usually about ten characters per 
second; a dump of 1 K takes about 
two minutes, and creates a great deal 
of irritating noise. In addition, paper 
tape is a damage prone and bulky 
medium. 

Several integrated circuit manu- 
facturers offer Teletype- oriented 
"evaluation boards." If only required 
for evaluation, ok; but they offer 
almost zero chance for either updating 
or extending. Both memory and IO are 

typically very CPU dependent, and if 
memory buffering is not used, supple- 
mental memory and IO may be unus- 
able. 
Video and Cassette: The latest stress 
has been the movement to using a TV 
set as an output display, a full alpha- 
numeric keyboard for input, and an 
audio cassette for program storage and 
exchange. Video -based systems pro- 
vide full user to system interaction at 
minimal cost. A complete video dis- 
play and cassette based system will 
cost less than a hardcopy device alone. 
The speed of system response is prac- 
tically instantaneous. Operations may 
be performed in almost complete 
silence (a major advantage to the 
hausfrau)! Reliability is enhanced as 

electromechanical mechanisms are 
limited to the keyboard and cassette 
recorder. Data media storage density is 

much higher; you can store the data 
from almost a mile of paper tape on a 

single C -90 audio cassette. 

Conclusion 

Serious hobbyists should carefully con- 
sider design alternatives and growth plans 
before ordering or building a micropro- 
cessor. Ease of operation, reasonable cost, 
and relative freedom from total obsolescence 
should be prime considerations. 

In the following months, a detailed series 
of Digital Group hardware designs will be 
presented for your use. Next month will 
feature the low cost Digital Group cassette 
interface circuit which design provides data 
rates as high as 1100 baud, and may also be 

used as a ham RTTY terminal unit or as 

a telephone modem. 



Frankenstein Emulation 
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This is a let's get the ball rolling article. 
We now can analyze and build working 
models of at least portions of the human 
brain right in the home. Paper and pencil 
models of the brain develop naturally and 
almost without effort when we use real time 
digital design methods. The hardware and 
software mechanizations fall out naturally; 
then we just use the home computer lab to 
build what we have designed. 

The Model 

Let's follow the development of a crude 
and simple system engineer's model of the 
human "computing system." We look in- 
wards, down into ourselves, and what is the 
first thing we see? 

The Top Processor 

This is the only unit that is really visible 
to the user. The Top CPU functions at the 
heart of the human control console. Here, 
our personality can sit down and use the 
entire human system to the limit of its 
capabilities. This visibility of only the input, 
output and manual control functions is 

typical of all computer systems from the 
hand calculator to the human brain; the rest 
of the system is invisible to the user and can 
only be deduced from what we see in the 
way of output response to input stimuli. 

The Top Processor's Executive Program 

Our personality uses the Top Processor as 

the system executive. The Top Processor is 

boss. Messages from the Top Processor set 
priorities for all the other elements in the 
human system. Exceptions to this rule are: 

1. Emergency interrupts - a large set of 
emergency situations are fielded by 
faster, more powerful processors in 
subsystems. 
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2. Standard functions - built in exe- 
cutive programs in other processors 
manage tasks like circulation, diges- 
tion, etc., without bothering the Top 
Processor. 

Top Processor Memory Allocations 

The Top Processor has access to a limited 
scratch pad memory. However, this limited 
memory is used in an efficient mannner. The 
intersystem communication control pro- 
grams can learn to transfer whole programs 
or portions of programs from the main 
memory banks to the Top Processor scratch 
pad memory. In a similar fashion small data 
sets can also be transferred. This is the 
familiar overlay manipulation (used in man 
made machines) that allows solution of 
complex problems in limited working 
memory by transfer to and from bulk 
storage units (as in magnetic disks and 
tapes). 

The Top Processor's Use of Overlay 

If the entire program and necessary data 
can all be stored in the scratch pad of the 
Top Processor, it simply executes the pro- 
gram on the data set and outputs the answer 
(example: 2 + 3 = 5). However, when the 
program and data set are too large to be 
loaded into the scratch pad memory, the 
program and data set are broken into se- 

quential, related segments. The program is 

worked in segments and intermediate an- 
swers are stored. Final answers are output to 
our personality upon completion. Training 
can increase the power of this method; 
however, each of us has our own personal 
limit: For instance, I either lose some data 
or else lose my location in the program 
sequence. During the past few thousand 
years we humans have developed a host of 



languages for communication. We also use 

these communication tools to extend the 
overlay method to more complex problems. 
We write down intermediate answers and 

manually track the execution of the program 
sequence. These languages include English, 
Polish, Spanish, arithmetic, algebra, Boolean 
logic, numbering systems, FORTRAN, PL /M 
(to name a few). The only limits on this 
extension of using the Top Processor in 

overlay fashion are: 
1. Can we find the required data set? 

2. Can we formulate the problem so as to 
allow a solution? 

3. Do we have enough time? 

This overlay use has become so powerful 
(with the help of the various languages) that 
we sometimes neglect a more ancient, nat- 
ural, rapid and sometimes more powerful 
method to arrive at a solution. This method 
is to: 

1. Develop the framework of the prob- 
lem in the Top Processor. 

2. Digest the available data within the 
framework of the problem. 

3. Assign a high priority to the problem. 
4. Send the above three items to faster, 

more powerful CPUs. 
5. Sit back with a cup of coffee and wait 

for an answer. 
When I follow this latter procedure, the 
return message is either: 

1. The answer I seek. 
2. The identification of missing data. 
3. A question mark. 
4. Garbage: (Garbage In implies Garbage 

Out - often abbreviated GIGO) 
For answer 2, I go search for the missing 
data. For answer 3, I both search for missing 
data and review the framework of the 
problem for possible faults. For answer 4, 

may use the garbage; I have carried some 
misconceptions for years. 

Start the System Diagram 

Let us summarize the Top Processor and 
place it in the system diagram. We've 
deduced by introspection that the Top 
Processor: 

1.1s boss - The Top Processor is in 
direct communication with our per- 
sonality and (with some exceptions) 
sets the priorities for the whole mul- 
tiple processor system. 

2. Has access to a small scratch pad 
memory. 

3. Can fetch programs and data from the 
main memory bank. 

4. Receives some body sensor data. 
5. Communicates directly with other 

CPUs. 
Figure 1 shows a pictorial summary of the 
system. 

Data Bus Structure 

The data bus structure is depicted in 
figure 1, using the normal multipath digital 
type of bus. However, empirical evidence 
implies a more complex communication 
system between elements of the human 
system. Just as the entire human system 

TO AND FROM OUR 
PERSONALITY 
(INPUT AND OUTPUT) 

NOTE - 
DATA BUS STRUCTURES ARE 
SHOWN BY THIS FORM : 

SCRATCH 
PA D 

TOP 
PROCESSOR 

TO ANO FROM 
MAIN PROCESSOR 

JJ 
TO AND FROM 
SENSOR PROCESSOR 

Figure 1: The Top Processor. Introspection starts at the immediately available 
evidence: We all have a Top Processor, our personality which controls most of 
our actions. 
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adapts to the use to which our personality 
puts it, this bus structure also adapts to how 
it is used. Witness the ease of recall on an 

often used phone number versus the dif- 
ficulty in recall of a seldom used number. 
We might guess that somehow the bus 
structure is under adaptive software control. 

The Main Processor 

We now arrive at the general purpose 
powerhouse of the computing system. The 
Main Processor handles awe inspiring prob- 
lems with unbelievable speed. We must 
postulate: 

1. Elegantly simple programming. 
2. Operation at a fast effective clock rate. 
3. An outstandingly efficient internal 

executive program. 
4. Access to the bulk of stored programs 

and data. 
5. A complex priority interrupt system. 
6. A multiple bus structure to the rest of 

the human system. 

Main Processor Speed of Execution 

The Main Processor is a very fast machine 
operating on elegant and simple program- 
ming. For instance, some of the muscle 
control programs must take only 20 to 50 
milliseconds for completion of: 

1. Input of data. 
2. Computation on new data. 
3. Output of control commands. 
4. Cleanup for next computation period. 
Navigation and guidance computation 

periods can be longer. However, they can 
not be much longer when we watch a small 
boy pick up a rock and knock a can off a 

fence post, all in the space of two to three 
seconds. Another awe inspiring feat is the 
performance of a businessman in his value 
judgment search as he keeps abreast of the 
rapid fire conflicts in the executive board- 
room. The Main Processor seems to be an 

order of magnitude faster than the Top 
Processor (witness the increase in touch 
typing speed when the Top Processor gets 
out of the act). 

The Main Processor's Executive Program 

The executive program provides for 
scheduling Main Processor tasks that: 

1. Field emergency interrupts such as 

avoidance of a fast moving object 
detected on visual sensors. 

2. Take calls from the priority stack such 
as recognizing hunger and thirst. 

3. Time share muscle control and evalua- 
tion of sensor data when both are 
active as in soccer game. 

4. Regularly service body functions such 
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as circulation, digestion, elimination, 
etc. 

5. Start and stop background tasks such 
as meditation. 

The quantity and variety of data used by 
the Main Processor in combination with the 
rapid response in answer to massive and 
conceptually difficult problems implies' a 

very efficient software organization. The 
Main Processor must access tables that 
define the location of: 

1. Stored life history data. 
2. Muscle control programs. 
3. Chemical control programs. 
4. Temperature control programs. 
5. Guidance programs. 
6. Navigation programs. 
7. Value judgment data. 
8. System priority data. 
9. System timing data. 

10. Unused memory. 

The Main Processor Decision Process 

One of the most interesting functions of 
the Main Processor is to aid in the decision 
process we use when faced with alternate 
courses of action in response to events in the 
world around us. The evidence implies that 
the Main Processor takes formulation of the 
decision problem and the pertinent data 
from the Top Processor and Sensor Pro- 
cessors. These inputs are then heuristically 
compared to an immense value judgment 
table to generate a candidate decision. The 
candidate decision is sent to the Top Pro- 
cessor for further evaluation. 

The Value Judgement Table 

This table has a strong effect on the 
pathway we follow in life, from when we 
make the decision to start breathing until we 
are forced to stop breathing. How do entries 
appear in this table? Some entries must 
appear while we are within our mother. A 
new born infant makes the decision to start 
breathing or has an early death. Some entries 
come from trial and error experience. The 
young infant soon learns to cry just so 
mother will pick him up. 

Some entries come from other people. 
The young child seeks his parents' approval, 
not their punishment. Another question: 
What can we know about entries in this 
table? We seem to know only recent, tempo- 
rary residents such as priority on getting to 
the grocery store. The older, more perma- 
nent residents that have a continuing effect 
on our lives were either never known or long 
ago forgotten; yet there they sit, having a 

permanent effect on our success or failure in 
every endeavor (scares you, doesn't it ?). 

Utility programs for determining the content 



of this table and altering it can be imple- 
mented. This is sometimes accomplished 
through a verbal data link to an external 
Diagnostic Processor. 

The Interrupt System 

These interrupts are fielded in the Main 
Processor, and are used to re- direct effort, 
from meditation and decision processes to 
avoidance of a thrown rock or jumping away 
from a hot stove. The priority interrupt 
steers to the proper program without hesita- 
tion. Priority of the interrupts is used to 
decide which of several should be serviced. 

The Main Processor Bus Structure 

The Main Processor has a multitude of 
output and input data. Even in this crude, 
simple model, the resulting bus structure is 

quite complex. Let us add the Main Proces- 
sor and connecting bus structure to produce 
the system diagram of figure 2. 

The Sensor Processors 

The Sensor Processors are fast, special 
purpose units. Data is acquired from the 
eyes, ears, and a host of body sensors that 
continually look inside and outside the 
human system. The Sensor Processors for 
these devices execute programs that organ- 
lie, compact and format this huge data 
flow for rapid and effective use by both the 
Top Processor and Main Processor. The 
introspective evidence implies: 

I. A very fast clock rate. 
2. Elegant and simple programs. 
3. Access to a dedicated memory. 
4. Existence of a buffer scratch pad 

memory for temporary storage of out- 
put data. 

S. A very efficient executive program. 
6. A complex input bus structure. 
Intuitively one feels that sensor pro - 

cessing is not clone by a single unit. Rather, 
an organisation with a master processor and 
several dedicated slave processors would 
better fit the performance requirements. 
Each slave Sensor Processor could provide 
parallel service to the eyes, ears, etc. Figure 
3 shows an addition to our system diagram 
to account for the master Sensor Processor 
and its slaves. 

The Creative Process 

All of us are creative; this is the way our 
personal human system adapts to the 
changing world around us. We create new 
machines, art objects, programs within our 
brain, communication languages, etc. The 
list is endless. lust how do we implement the 
creative process? 

MEMORY 

SCRATCH 
PAD 

EXEC. 

TABLES 

LIFE DATA 

PROGRAMS 

UNUSED 

TO ANO FROM OUR 
PERSONALITY 
(INPUT AND OUTPUT) 

TOP 
PROCESSOR 

MAIN 
PROCESSOR 

TO AND FROM 
SENSOR PROCESSORS 

II 

TO AND FROM 
SENSOR PROCESSORS 

FROM PRIORITY 
INTERRUPT SYSTEM 

TO AND FROM REST 
OF HUMAN SYSTEM 

CLOCK 

Figure 2: The Main Processor. Digging a bit deeper, we find that there is a 

lower level Main Processor which works cooperatively with the Top Processor 
to do a lot of the detail work in the system. 
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Figure 3: Adding the Sensor Processors to the System Concept. A system of 
Sensor Processors can be identified; they probably consist of a Master Sensor 
Processor with multiple Slave Sensor Processors dedicated to actual devices. 

Let us postulate Random Pattern Gener- 
ators for various creative tasks. The Sensor 
Processors can drive these generators with a 

supply of random combinations of data. 

i lie Creativity Processor 

The Creativity Processor uses the output 
of the Random Pattern Generators to build 
new logical structures or modify existing 
logical structures. These new structures are 
tested against requirements generated by the 
Top Processor. The value judgement process 
makes decisions that guide the Creativity 
Processor ill continued improvement of the 
new design (in iterative, random fashion) 
until acceptance is obtained. The speed of 
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Figure 4: Adding the Cre- 
ativity Processor to the 
System Concept. We must 
not forget about creativ- 
ity. Interacting with the 
whole system is a matrix 
of creativity symbolized 
by the concept of Creativ- 
ity Processor with its ran- 
dom pattern generation 
features. 
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ALL PROCESSORS 
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II 
TO AND FROM 
SENSOR 
PROCESSORS 

the creative process has a heuristic design 
which improves with experience. 

The Creativity Processor and intercon- 
necting bus structure are shown in figure 4. 

Data Set Manipulation 

The data sets which are transferred 
throughout the system seem to be organized 
along the lines of various patterns (one 
picture is worth a thousand words). For 
instance, when we recognize someone, we 

seem to be recognizing some main features, 
not every detail that is available through 
close inspection. Visual data sets from the 
Sensor Processors seem to have been pro- 
cessed into some skeleton pattern before 
transmission to the other processors. Data 
from the ears seems to be stored in some 
logical thought structure pattern. I think out 
ideas both in picture and word format. 

Then, if my thinking was in picture format, I 

have trouble expressing my ideas verbally; 
whereas, if thought out in words before- 
hand, the expression of the ideas flows 
logically and clearly. 

As in any control and guidance system, 
numerous feedback paths also exist. These 
were not detailed in this simple model. 

Test the Model Validity 

With a computer in the home laboratory, 
we have the means to test models of the 
human brain like this sketch. We can start 
with simple approximations and work our 
way up. Then, when our home brew corn- 
outer system begins to perform like some 
portion of the human computing system, we 
have more than speculative evidence; we 
have truly come to know how that portion 
of the brain works. Also, some very useful 
hardware and software configurations may 
come out of the search. 

Looking inward from the control console, 
we have followed the generation of a specu- 
lative, crude, simple, system engineer's 
model of the human computing system. 
Construction follows the line of man made, 
real time digital systems. In fact, one often 
suspects that designers of real time operating 
systems use very introspective models. This 
should make us optimistic that digital design 
tools are a natural and powerful approach to 
analysis of the human reasoning powers and 
control systems. 

21 



Programming for the Beginner 

A Structured Start 

Ronald T Herman 
Simpson Rd 
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Windham NH 03087 

A program can be viewed 
as an edifice built from the 
bricks of SEQUENCE 
blocks, and the mortar of 
IFTHENELSE, DOW - 
HILE, DOUNTIL and 
SELECT blocks. 

For a number of years now the field of 
computer programming has been moving 
from the realm of a black art to an organized 
and systematic process. A number of pro- 
gramming techniques have evolved during 
this change. This article will present the 
basics of a technique known as structured, 
top down programming. In the process of 
applying these techniques in my own work, 
it occurred to me that the basic concepts 
could be useful to those just learning to 
program, not to mention the veteran hackers 
in the crowd. If learned at an early stage, 
these techniques can lead to more rapid and 
sound development of one's programming 
skills. 

A structured approach to program devel- 
opment has among its virtues the following 
points: 

I t allows the novice programmer to get 
acquainted with programming logic 
without having to be concerned with a 
specific machine or programming lan- 
guage. It allows him to grasp the flow 
of a program without worrying about 
bits and bytes. 
Followed correctly, structuring can 
lead to a program that is relatively free 
from logical errors the first time it is 
coded and relatively easy to debug 
once it is run on the machine. 
Pseudo code, a byproduct of struc- 
turing, allows a means of exchanging 
program ideas with others, regardless 
of the machine with which they might 
be familiar. 
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Pseudo code provides a convenient 
alternative to flow charts that can be 
incorporated into a program listing as 
comments for future reference and 
explanation. 

This process of getting things done in an 
organized fashion has its drawbacks. How- 
ever, most of these seem to be psychological. 
Properly applied structured technology 
tends to minimize one of the facets of 
programming that has attracted many in the 
past: the chance to see how cleverly and 
concisely one can write a software routine. 
This seems to have been replaced by the 
challenge of trying to write a routine in a 
straightforward manner and at the same time 
trying to rigidly follow a set of fairly simple 
rules. 

What will be presented in this article are 
some of the basic building blocks of struc- 
tured programming and an example illus- 
trating the design of a simple program using 
these blocks. 

The Building Blocks of Structure 
So much for the sales pitch. What then is 

structuring? Some number of years ago it 
was shown that a program could be built 
from a set of simple building blocks all 
having the property of one input and one 
output. While not everyone agrees on what 
composes this set of building blocks, the one 
in, one out property is common to all. 
Presented here are a few of the most 
common examples that should cover most 
situations. 



The SEQUENCE Block 

Probably the simplest (and most trivial) 

unit of structure is the SEQUENCE. This is 

illustrated in figure 1 and is nothing more 

than one process performed after another. 

The IFTHENELSE Block 

One of the powers of a computing ma- 

chine is to make a decision based on a set of 

conditions and take a specific action as a 

result of that decision. This capability is 

represented as the IFTHENELSE block 

shown in figure 2. In the figure, "p" is an 

expression or some set of conditions. In a 

checking account, for example, one adds 

deposits and subtracts checks written. An 

IFTHENELSE statement of this fact would 

appear as follows: 

IF (transaction is deposit) THEN 

(add amount of transaction to balance) 

ELSE (subtract amount of transaction 
from balance) 

ENDIF 

Here is our first example of writing a 

program step in a machine independent 

"pseudo code." The format of pseudo code 

is mostly a matter of taste. The punctuation 

is optional, but the indentation is necessary 

for readability where many complex 

IFTHENELSE decisions are grouped to- 

gether. Some people use asterisks ( *) instead 

of colons (:) to mark margins and some omit 

the parentheses around descriptive phrases. 

The ENDIF helps clarify the limit of opera- 

tions within a more complex statement. 

Each statement line represents a process to 

be performed or a condition to be tested. 

The statement or condition preferably 

should not be continued on another line. 

The DOWHILE Block 

The decision making capability of com- 

puters, combined with the ability to change 

the order in which instructions are executed, 

provides an even more powerful feature - 
the ability to repeat a calculation or series of 

operations many times. This capability is 

represented in the DOWHILE building block 

shown in figure 3. The DOWHILE is just a 

special application of the IFTHENELSE 

given earlier. In a DOWHILE block, a proc- 

ess is done as long as a set of conditions "p" 
is true. Note that the condition is tested first 

before the process is performed. Suppose 

you have 10 transactions to update into 

your checking account, some checks written 
and some deposits. In pseudo code this 

becomes: 

(met counter to number of transactions) 

DD WHILE (count is non Zero) 

(process the transaction) 

(decrement the count) 

ENDDO 

Note that the DOWHILE is terminated by an 

ENDDO. The "(process transaction)" state- 

ment could be the IFTHENELSE given 

above. If combined, the result would be as 

follows: 

(set counter to number of transactions) 

DO MILE (count is non Zero) 

IF (transaction is a deposit) THEN 

(add amount of transaction 
to balance) 

ELSE (subtract amount of transaction from balance) 

ENDIF 
(decrement the count) 

ENDDO 

The DOUNTIL Block 

The DOUNTIL block is shown in figure 

4. It differs from the DOWHILE only 

because the condition "p" is tested after the 

process is performed. This can simplify the 

writing of machine code from pseudo code. 

Suppose one wanted to read characters from 

a keyboard until a carriage return is en- 

countered. It could be done with a 

DOWHILE by saving the last character read 

as follows: 

(clear last character read) 

DO WHILE (last character not carriage return) 

. (get a character from the keyboard) 

(save character in last character read) 

ENDDO 

SEQUENCE 
STRUCTURE 

IFTHENELSE 
STRUCTURE 
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Using structured program- 

ming concepts, many 

logical errors and bugs can 

be caught at an early stage 

in the design process. 

Figure l: The SE- 

QUENCE structure is a 

series of self contained 
processing steps which are 

executed one after anoth- 
er. Row in this diagram 

begins at the top and pro- 

ceeds down the diagram. 

The number of steps de- 

fined in a SEQUENCE 
block is arbitrary; the 
example here shows two 
steps, A and B. In this 

article's figures, the nota- 
tion BEGIN and END is 

used to mark the well de- 

fined extrance and exit 
points of the structures 
depicted. (NOTE: Proces- 

ses A and B may be more 
complex combinations of 
the building blocks in all 
of these figures.) 

Figure 2: The IFTHEN- 
ELSE structure is a con- 

ditional test and two alter- 
native SEQUENCE struc- 
tures. The THEN alter- 
native is executed if the 

condition, P, is found to 
be true. In this illustration, 
the THEN alternative is 

shown as a one step SE- 

QUENCE structure called 
B. The ELSE alternative is 

executed if the condition 
is found to be false. In this 
illustration, the ELSE al- 

ternative is shown as a one 

step SEQUENCE structure 
called A. 



DOWHILE 
STRUCTURE 

DOUNTIL 
STRUCTURE 

Figure 5: The SELECT 
structure is a more com- 
prehensive version of the 
IFTHENELSE concept; it 
allows data to be tested 
for multiple cases. The re- 
sult is the picking of one 
of "N" cases. In this exam- 
ple, N is 3, so there are 
three SEQUENCE struc- 
tures which might be exe- 
cuted depending upon the 
case determination. 

Figure 3: The DOWHILE structure is a looping form which repeats a specified SE- 
QUENCE structure over and over again as 
long as a condition, P, is true. DOWHILE 
tests the condition prior to executing the 
SEQUENCE structure for the first time. 
Thus in this example, the SEQUENCE struc- 
ture A could be executed 0, 1, 2... N 
times, depending upon how soon the condi- 
tion P becomes false as a result of A's work. 

Figure 4: The DOUNTIL structure is anoth- 
er looping form which repeats a specified 
SEQUENCE structure over and over again 
until the condition, P, is true. DOUNTIL, in 
contrast to DOWHILE, tests the condition 
after executing the SEQUENCE structure. 
Thus in this example, the SEQUENCE struc- 
ture A could be executed 1, 2, 3 ... N times 
depending upon how soon the condition P 
becomes true as a result of A's work. 

DETERMINE I 

I CASE 

SELECT 
STRUCTURE 

CASE I 
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This would require an extra instruction or two when translated into machine code, 
since the "last character read" must first be initialized to contain something other than a 
carriage return. Implemented as a DOUNTIL 
it is simply: 

DO UNTIL (character read is carriage return) 
(get a character from the keyboard) 

ENDDO 

The SELECT Block 
Sometimes it is necessary to select one of 

many possible processes based on some 
quantity that may take on any number of 
values. Suppose, in addition to updating 
your checking account balance, you decided 
to keep a tally of money spent on each of 
several budget items such as food, medical, 
car, electric and so forth. This could be done 
with a string of IFTHENELSEs as follows on 
the next page. Two possible methods are 
shown but both are somewhat awkward to 
follow. 

IF (check was written to super market) THEN 
(add amount to food total) 

ELSE 
: IF (check was written to doctor) THEN 
. (add amount to medical total) 

ELSE 
IF (check written to auto repair shop) THEN 

(add amount to car total) 
: ELSE 

IF (check written to electric company) THEN 
(add amount to electric total) 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

Alternate method: 

IF (check written to super market) THEN 
(add amount to food total) 

ENDIF 
IF (check written to doctor) THEN 

(add amount to medical total) 
ENDIF 
IF (check written to auto repair shop) THEN 

(add amount to car total) 
ENDIF 
IF (check written to electric company) THEN 

(add amount to electric total) 
ENDIF 

A more concise and meaningful way to 
describe this process is with the SELECT 
block shown in figure 5. Note that although 
there are many paths through the block, 
there is only one entrance and only one exit. 
Our bookkeeping example now becomes: 

SELECT (based on who check written to) 
CASE (written to super market) 

(add amount to food total) 
CASE (written to doctor) 

(add amount to medical total) 
CASE (written to auto repair shop) 

(add amount to car total) 
CASE (written to electric company) 

(add amount to electric total) 
EN DSELECT 

These then are the building blocks of a 
structured program. Others could be in- 
vented, but these should suffice for most 
situations. In any case, each should exhibit 
one entry point and one exit point. It should 
be noted that none of the building blocks 



transfer control (jump) into another, never 
to return. This so called GOTO is a definite 
"no no" in structured programming. All 
processes are either done in line or are called 
as subroutines that are presented elsewhere. 
Frequent jumping around in a program 
results in a maze of paths that becomes 
difficult to follow and even more difficult to 
deal with in the event that a change in one is 

necessary. 
Building From the Top Down 

Earlier when the subject of structure was 

introduced, the term "top down" was used. 

If you wanted to build a computer, you 
could start by getting the processor, then 
some memory and IO devices and a power 
supply. Then you would have to try to 
determine how to connect all the parts 
together. On the other hand, you could start 
by deciding what the specifications for the 
machine are to be, such as word length and 

speed, what the 10 ports look like and what 
controls and devices are to be attached. 
From there the problem is to select or design 
the components and parts to do the job. 

So it is with software. In the past the 
tendency has been to first develop the pieces 

like Teletype handlers, tape read /write sub- 

routines and others. Then the pieces would 
be fitted together into a functioning module, 
hopefully without having to make any major 
changes to the pieces already developed. The 
experience of many people in the profes- 

sional software field has indicated that this is 

not an efficient way to design a software 
module. Instead the approach is to start at a 

high level of abstraction to describe the basic 

function to be performed. From there each 

unit of this description is broken into more 
detailed modules. Once designed, the pro- 

gram is coded and debugged a piece at a time 
starting at the topmost level. Subordinate 
levels of code are temporarily replaced by 

dummy "stubs" which do nothing. Then as 

each level is coded and incorporated into the 
program, any problems that develop usually 
can be isolated to the modules just added. 

As an example of this approach and the 
use of pseudo code, let us design a simple 
editor program. This editor reads a line of 
text from an input device (paper tape reader 
or magnetic tape recorder). The line is saved 

in memory and displayed on a video monitor 
or typed on a Teletype printer. A limited 
number of responses from the input key- 
board allow changes, deletions, and inser- 

tions to be made. Upon completion, the line 
is written to the output device (punch or 
another magnetic tape recorder). The proc- 
ess continues until the end of tape is reached 

on the input device. Changes and insertions 
are made by typing the character on the 

Teletype directly below the input line. 
Inserts are indicated by terminating the line 
with a carriage return (CR) and changes by a 

line feed (LF). The Teletype carriage or 
video display cursor is positioned using a 

"Control P" character (holding the CON- 
TROL key down while striking the "P" 
key). This is not a sophisticated editor, but 
should serve as a good example of how to 
use the techniques described. 

The topmost abstraction level of the 
editor program can be described in pseudo 
code as follows: 

DO UNTIL (end of input tape) 

. (get line from input and type on printer) 

. (get response line from keyboard, store and echo it) 

IF (only CR or LF entered) THEN 
. (do nothing) 

ELSE 
. IF (last character 1s LF) THEN 
. (do character changes and output line) 

ELSE (do character inserts and output line) 

. ENDIF 
ENDIF 

ENDDO 

This then is our editor in its most abstract 
form. Note that an input line is deleted by 
entering only a carriage return or line feed. 
Now let us refine the description by de- 

scribing each process identified above. 

Getting a line from the input device 
requires turning on the input device, reading 
characters, and storing them until a line feed 
or carriage return has been recognized. The 
stored line is terminated with a zero (null) 
character so that the end of the line is more 
easily recognized later. 

(set input line pointer to first address of line) 

(turn on input device) 
DO UNTIL (a LF or CR is read) 

: (get character from device) 
. (store character P input line pointer) 
. (advance input line pointer one position) 

(send character to printer) 
EN DDO 
(clear character at the pointer address) 

(turn off input device) 

Likewise getting the response from the 
keyboard is similar except that Control P 

characters are echoed as spaces on the 
Teletype printer. 

(set keyboard line pointer to first address of line) 

DO UNTIL (LF or CR is typed) 

(get character from keyboard) 
IF (character is not LF or CR) THEN 

: (store character (I keyboard line pointer) 
. (advance keyboard line pointer) 

IF (character is not Control P) THEN 

: (echo the character on printer) 
. ELSE (echo space) 

ENDIF 
ENDIF 

ENDDO 
(clear a byte (I keyboard line pointer) 

Character replaces and inserts are done by 
using the Control P characters on the key- 
board to indicate where the changes are to 
be made. For each Control P character in the 
response, an input line character is sent to 
the output. When a character other than 
Control P is encountered, it is either inserted 
into the output or replaces a character about 
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For a number of years, the 
field of computer program- 
ming has been moving 
from the realm of a black 
art to an organized and 
systematic process. 

"Top down structured 
programming" is a verit- 
able buzzword in the data 

processing and computer 
science fields. 



Structured programming is 

a systematic way of think- 
ing about processes, the 
result of which is a well 
designed and under- 
standable program specif- 
ication. 

This article concerns or- 
ganizing and planning a 

program, which is ex- 
pressed in a structured 
"pseudo code." The next 
step after the plan is 

created is to translate the 
pseudo code into the de- 

tailed machine code of 
your personal computer. 

to be outputted depending on the last 

character from the keyboard (line feed or 
carriage return). Thus the replace operation 
becomes: 

(set input line pointer to start of input line) 

(set keyboard line pointer to start of keyboard line) 
(turn on output device) 
DO UNTIL (end of keyboard line) 

(get keyboard line character P keyboard line pointer) 
IF (character is Control P) THEN 

(get character P input line pointer and send to output) 

(echo character on teletype printer) 
ELSE (send the keyboard character to the output) 

(echo the keyboard character on printer) 
ENDIF 
(advance keyboard line pointer) 
(advance input line pointer) 

ENDDO 
(put out rest of characters in input line) 

(turn off output device) 

Note that the resulting output is echoed on 
the Teletype to enable verification of the 
operation. 

The insert operation is given below: 

(set input line pointer to start of input line) 
(set keyboard line pointer to start of keyboard line) 
(turn on output device) 
DO UNTIL (end of keyboard line) 

(get keyboard character (I keyboard line pointer) 
IF (character is a Control P) THEN 

(transfer character (I input line pointer to output) 
(echo character on teletype printer) 

ELSE 
DOWHILE (keyboard character is not Control P) 

(send keyboard character to output) 
. (echo keyboard character on printer) 

(advance keyboard line pointer) 
. ENDDO 

IF (NOT END OF KEYBOARD LINE) THEN 
, : (transfer character N input line pointer to output) 

(echo character on teletype printer) 
ENDIF 

ENDIF 
ENDDO 
(put out rent of Input line characters) 
(turn off output device) 

The routine that "puts out the rest of the 
input line characters" is: 

IX) UNTIL (input line pointer points to a null) 
(get character B input line pointer) 
IF (character is not a null) THEN 

(put character to output device) 
(echo character on printer) 
(advance input line pointer) 

ENDIF 
ENDDO 

Finally the routines to get a character 
from the input device and keyboard in this 
simple system are identical except for the 
address of the device referenced. 

DO UNTIL (input device ready flag is on) 
(get input device ready flag) 

ENDDO 
(get character from device data port) 

The character output and type routines are 
likewise the same. 

DO UNTIL (output device ready flag is on) 
(get output device ready flag) 

ENDDO 
(send character to output device data port) 

We have now arrived at such a level of 
detail that the code could be written with- 
out much difficulty from the pseudo code 
on an almost one for one basis. Each module 
except for the top level description could 
and probably would be written as a separate 
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subroutine. Note that each module can be 

read starting on the first line and ending on 
the last. No transfers are made out of any 
module to another without returning to the 
line following. Modules should be kept short 
(no more than a page) so that they can be 

read without constantly flipping pages back 
and forth. 

Conclusion 

What has been presented in this article is 

a description of a systematic approach to 
program design and a means of describing it 
so that almost any individual should be able 
to understand it. The resulting program 
when coded will have been well thought out 
and may even have been reviewed and 
partially debugged by other individuals not 
intimately familiar with the machine upon 
which it will ultimately be executed. 

Much discussion has occurred about 
standards for data exchange between various 
computer hobbyists. On a higher level, the 
pseudo code approach makes possible a 

standard way to exchange program ideas. In 
fact, higher level languages have been de- 
veloped that, at least in part, resemble the 
pseudo code language used here. Using this 
approach, programs might be written to 
convert pseudo code into machine instruc- 
tions for the 8080, 6800, 6502 or other 
CPUs as they become available. All hobby- 
ists could then share programs in a higher 
level language, each doing the necessary 
conversion on his own machine. 

There are a number of references on the 
subject of structured programming. The idea 
has been discussed extensively in computer 
science circles in recent years, to the point 
that "structured programming" has become 
a buzz word in the business. This writer is 

familiar with the two texts given in the 
bibliography. The IBM text is excellent for 
beginners and those new to the concepts, 
while the McGowan and Kelly text is a more 
rigorous and mathematical presentation. 
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What is a Character ? 

by 
Manfred Peshka 
Peterborough NH 03458 

A character is a unit of 
information used in a com- 
munication between a sender 
and a receiver. Senders and 
receivers may be either 
people or machines, or a mix 
of the two. A character may 
be represented in different 
forms: People use mostly 
graphics, such as the letters of 
the alphabet, the digits or 
occasionally the Roman 
numerals, and the punctua- 
tion and special symbols 
which are so familiar to us. 
Machines process a set of 
electric pulses in a period of 
time which normally repre- 
sents a character. This time 
period differs in length for 
different devices; it is longer 

for slow devices (terminals, 
card readers, printers) than 
for fast devices (tape and disk 
drives), and is generally the 
shortest for the computer 
arithmetic and logical unit. 

Parenthetically it should 
be noted that some machines 
can recognize graphics, draw- 
ings, and even objects (units 
providing information) in a 

landscape. The discussion of 
these machines, however, is 

reserved to a future article, 
and their cost is far beyond 
that of the amateur and 
hobbyist at the present time. 

Symbolic Representation of 
Alternatives 

What is the minimum 
number of information ele- 
ments, characters, or basic 
symbols needed to express an 
alternative? Probably the 
most common symbol is the 
indicator light which tells us 

that a system is in a specific 
state as opposed to its 
"usual" state. Let's consider 
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for a moment the sign "Fire 
Trucks Entering on Blinking 
Red Light." This sign indi- 
cates the possibility of two 
specific states: The "usual" 
state prevails when fire trucks 
are either on a call or waiting 
in the garage; in this situation 
the light is off. The alterna- 
tive consists of an emergency 
when the light is blinking to 
inform people that trucks are 
about to enter the street, or 
just have entered and are 
rushing to the fire. Thereafter 
the light is again turned off. 
The light is pulsing for a 

period of time which nor- 
mally represents this 
particular situation or "unit 
of information," say, about 
20 seconds. 

The indicator light 
actually represents the 
simplest character or basic 
symbol providing a unit of 
information. It is binary 
telling you that a given situa- 
tion either prevails or not. 
Similarly, the door bell, the 

telephone bell, the oil 
pressure light on your car, 
etc., are binary symbols. 
Binary means nothing else 
but a characteristic, property, 
or condition of a system in 
which there are but two alter- 
natives. Besides indicator 
lights, bells, etc., binary 
symbols can take on graphic 
forms such as yes or no, true 
or false, 1 or 0, to name a few 
only. For a machine, the 
form is either the absence or 
presence of a certain elec- 
trical energy level at a period 
of time of specific duration. 
While the duration of 
signaling or "marking" in the 
case of the oil indicator fight 
may be variable depending on 
engine rotation, pressure, 
temperature, etc., it is 

constant for computing 
machines. It may be a 

1 /110th or 1 /300th of a 

second for a slow terminal, or 
a billionth of a second for a 

computer central processing 
unit. 



Binary and Ternary Symbol 
Sets 

We have seen that one 
binary character suffices to 
indicate two distinct states. 
On the other hand, an 
elevator is in one of three 
states: It is idlc, or it is going 
up, or it is going down. 
Naturally one binary symbol 
is not enough to represent 
three states. Two lights may 
be used as follows: The left 
light may signal upward 
motion when illuminated, 
and the right light may signal 
downward motion. No 
upward or downward motion 
is indicated when the 
corresponding light is turned 
off. Let's represent the two 
possible states of the 
indicator lights by the 
graphics 1 of on and 0 for 
off. The following three 
characters then express the 
three possible states: 

00 [ oo ] 

01 [ ] 

10 [ 

idle 
down 
up 

Note that a character, that is, 

the unit of information, is 

represented by two bits or 
binary digits. We now have 
used a two -bit character code 
to symbolically represent the 
states of the system 
consisting of the elevator and 
its two lights. 

An entirely different way 
to represent three distinct 
states symbolically is 
accomplished by increasing 
the number of basic symbols 
from two to three. Let's use 

the graphic 2 to indicate 
upward movement. Instead of 
the left and right indicator 
lights, such conditions may 
be indicated by a panel 
displaying the terms idle, 
down, or up as follows: 

This time we used a code 
consisting of ternary digits to 
symbolically represent the 
three states of the elevator 
and its indicator panel. 
Ternary means that a 

characteristic, property, or 
condition of a system can 
prevail in one of three 
alternatives. 

Note that the unit of 
i nformation, or in other 
words, the character, has 

been coded in the first case 
by two binary digits, and in 
the second instance by one 
ternary digit. One can 
conceptualize a character as a 

distinguishing mark indicating 
a specific state of a system. 
Characters are "marks of 
distinction" which may be 
represented in different 
graphic forms which have 
equivalent value: 

Binary Ternary Implementation 
00 0 [ oo ] [IDLE] 
01 1 [ o, i ] [DOWN] 
10 2 [ [ U P ] 

The two bit code permits a 

fourth alternative, namely 11. 
In actuality, this situation 
represents a contradiction 
since the elevator cannot 
move up and down at the 
same time. However, this 
character may be used to 
signal a defect, such as the 
elevator being stuck between 
two floors, or it may simply 
be out of operation. The 
ternary code cannot signal 
this condition unless an 
additional basic symbol is 

being used; let's assume that 
an additional panel indicates 
a defect when illuminated, 
and the code representing this 
situation consists of a binary 
digit concatenated with a 

ternary digit as follows: 

0 [ IDLE ] neither down 10 [ DEFECT ] [ IDLE ] 

nor up 00 [ ] [ IDLE ] 

1 [ DOWN ] down 01 [ ] [ DOWN ] 

2 [ UP [ up 02 [ ] [ UP ] 

28 

In this situation, the 
character or information unit 
is represented by one binary 
and one ternary digit. It is a 

mixed code, principally 
similar to those found on 
license plates consisting of 
letters and decimal digits. 

In this situation, two of 
the six possible characters 
remain unused, namely 11 

and 12. At least, let's hope 
that they remain unused 
because 11 would mean that 
a defective elevator is in 
downward motion. 

Enumerating Alternatives 
The number of alternatives 

which need to be considered 
in a given system determines 
the coding requirements. The 
more alternatives need to be 

communicated, the more 
"marks of distinction" are 
required. We have seen the 
two basic ways to accomplish 
this: Increase the number of 
distinguishing graphics in the 
character set, or concatenate 
graphics from the same or 
from different sets of basic 
symbols to form strings. 

Obviously there is some 
upper limit to the number of 
distinguishing marks available 
to people. Humans have a 

limit of what they can 
comfortably memorize in 
terms of numbers of basic 
symbols when there is no 
specific meaning attached to 
them. Consequently there 
comes a point when graphics 
are being concatenated to 
form symbol strings which 
represent words. The string 
3 -D stands for the word 
which we pronounce'thr - -'di; 
and which obviously means 
"the three -dimensional form 
or a picture produced in it" 
(Webster's Seventh New 
Collegiate Dictionary 1965: 
page 920). We use the 
decimal digits 0, 1, 2, ..., 9 
to represent numbers, the 
letters a, b, c, ..., z, A, B, 



Z to represent the 
alphabet for words; special 
symbols and punctuation 
marks are concatenated with 
digits and letters to form even 
longer strings to represent 
expressions which inform 
people about one specific 
alternative out of, say, a 

million possibilities. We form 
mathematical expressions 
(x2 +x -3, etc.) and word 
expressions (i.e., sentences) 
and a combination of the 
two: "Yesterday it rained in 
Peterborough for two hours." 

The basic unit of 
information is the basic 
graphic symbol or character: 
The space on the paper, the 
special marks (+ -< , ; etc.), 
the letters, and the decimal 

digits, and, which is not 
immediately obvious, certain 
functions like the bell on the 
typewriter which signals the 
approach of the right margin, 
the backspace, the margin 
release, the carrier return, the 
line feed adjustment, etc. The 
latter group is called 
functions or control 
characters. In the computer 
and communications field 
many more functions are 

encountered than there are 

on the typewriter. These will 
be discussed in detail further 
on. 

The number of graphics 
available for marking one out 
of many possible states of a 

system is referred to by the 
name base. Digits are used to 
represent numbers; since 

people generally use ten 
distinct digits, the number 
system is called a decimal 
system. The base of this 
system is 10. In the previous 
section the binary number 
system and the ternary 
system were used. Their bases 

are two and three, 
respectively. 

Using any one of these 

systems, it is possible to mark 
any number of alternatives. If 
the number of alternatives 
exceeds the base (i.e., the 
number of distinct graphics in 
the set) one or more 
additional graphics are used. 

Table 1. Equivalence of Selected Graphics. 

Binary Ternary Octal Decimal Hexadecimal 

o o o o o 
1 1 1 1 1 

10 2 2 2 2 
11 10 3 3 3 

loo 11 4 4 4 
101 12 5 5 5 
110 20 6 6 6 
111 21 7 7 7 

1000 22 10 8 8 
1001 100 11 9 9 
1010 101 12 10 A 
1011 102 13 11 B 

1100 110 14 12 C 

1101 111 15 13 D 
1110 112 16 14 E 

1111 120 17 15 F 

b = 2 3 8 10 16 
g= 4 3 2 2 1 

a = 16 27 64 100 16 

As an example, let's assume 

that we desired to mark any 
one of sixteen alternatives. If 
we used the letters to mark 
these possibilities, as is often 
found in term papers and 
legal documents to mark 
paragraphs and sections, one 
graphic for each alternative 
would suffice. As a matter of 
fact, out of the 52 available 
letters only sixteen would be 

used. Thirty -six graphics 
would not be used. Two 
decimal graphics are required 
to express sixteen options, 
leaving 84 pairs unused. 
Three ternary graphics 
encompass these sixteen 
possibilities leaving eleven 
triplets unused. A quadruplet 
of binary graphics generates 
exactly sixteen possibilities. 

I n general, by using 'g' 
graphics of a set with base 'b', 
the maximum number of 
alternatives 'a' is determined 
by multiplying 'b' with itself 
for `g' times, or in other 
words, a =bg. Table 1 

summarizes this rule by 
enumerating all possible 
arrangements of binary, 
ternary, octal (base 8), 
decimal, and hexadecimal 
(base 16) graphics for the 
first sixteen values or 
alternatives. 

To illustrate the rule to 
calculate the maximum 
number of alternatives, the 
hexadecimal system requires 

29 

only one graphic (g =1) for a 

maximum of sixteen 
alternatives (a =16) because its 
base equals sixteen (b =16). 
Note, however, that the 
largest value or number 
equals fifteen which is 

represented by the graphic F 

because enumeration began 
with the magnitude zero. 

The maximum value is 

always one less than the 
number 'a' because these 
systems start counting with 
zero. Assuming two 
hexadecimal graphics (g=2), 
256 distinct alternatives can 
be identified (a =162). The 
largest value, however, is 

equal to 255 (a -1) because 
the first value is zero. The 
hexadecimal string FF 
identifies the same magnitude 
as the decimal string 255 or 
the bit string 11111111. 

It is easy to change from 
one coding system to 
another, especially from 
binary to hexadecimal and 
back, by means of Table 1. 

The choice of the 
hexadecimal graphics A to F 

was arbitrary and is of great 
help to people. Machines 
represent all characters as 

binary pulses within a given 
time period. Bit strings, 
therefore, can become very 
large and difficult to 
remember. Imagine the bit 
string 10001111011100. 
How much easier it is to 



remember the hexadecimal 
string 23DC instead (you may 
wish to verify the translation 
starting with the right four 
bits). Any other distinct 
graphics instead of A to F 
could have been used; for 
example ! @ # < % >. 
However, try to remember 
these in this order, and try to 
pronounce 23<# instead of 
the above 23DC. 

How to Identify Character 
Sets 

Given the possibility of 
switching from one 
representation to another, the 
question of code 
identification must be dealt 
with. Assume the graphic 
representation 3 -D. Is it a 

word of the English language? 
Or is it an arithmetic 
expression? If it is an 
arithmetic expression, which 
number system has been 
employed? Assume another 
representation such as 11. 
Which number system has 
been employed and what 
magnitude is represented? 
You may wish to consult 
Table 1 and calculate the 
magnitude for each number 
system. 

I n order to avoid 
confusion, graphics other 
than decimal digits, letters, 
and the special symbols are 
identified explicitly. The 
string 11 therefore means 
eleven in the decimal number 
system, and 3 -D is part of the 
English language. If a ternary 
string was meant, one needs 
to say so in some 
unambiguous manner. This 
can be accomplished through 
a textual declaration such as 

"All following digits are 
ternary digits" or, "The 
ternary number 11 has a 
value of 4" where according 
to our convention the graphic 
4 is understood to be a 

decimal digit. 
A different way to 

identify strings is by 
appending to the string the 
base. I n the mathematical and 
computing literature different 
methods have been 

e m p l o y e d . I n the 
mathematical literature, this 
is accomplished by a separate 
graphic which is appended to 
the digit string: 112 is a 

binary number with a value 
of three, while 118 is an octal 
number representing nine, 
and 1116 is a hexadecimal 
number representing 17. The 
subscripted graphic represents 
the base, and it is omitted 
whenever the base is ten. This 
convention also avoids the 
confusion about 3 -D. This 
string is an expression of the 
English language, whereas 
3 -D16 equals 3 -13 or -A16 
which is a numeric expression 
resulting in a number. 

I n the computing 
literature, different ways have 
been found to identify bit or 
hexadecimal strings. These 
ways depend on the 
manufacturer and on the 
computing language 
employed. In American 
National Standard (ANS) 
Fortran, a predominately 
mathematical language 
(which is to be distinguished 
from Basic Fortran), digit 
strings are recognized as 

decimal numbers. Bit strings 
are not allowed, and non -digit 
strings as used for headlines, 
table headings, etc., are 
preceded by one or more 
digits and the capital letter H; 
for example, 4H3.14 means 
the four characters 3.14 
which differ in their internal 
representation from the 
magnitude 3.14. The constant 
4 prior to the H indicates the 
length of the string; it is four 
symbols long. 

In ALGOL 60 which is an 

internationally standardized 
mathematical language, digit 
strings are recognized as 

decimal numbers, and 
character strings for table 
headings, etc., are enclosed in 
so-caHed string brackets as 
shown in the example: '... 
The wife stated that her 
husband told her 'our 
daughter complained 'the 
teacher is giving me trouble "'. 
Note that it is possible to 
have strings within strings, 
each of which is enclosed by 
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the single quotes pair. 
In Programming Language 

One (PL /I), as devised by 
IBM, digit strings are 
recognized as decimal 
numbers unless they are 
appended by the letter B. 
11B equals 112 and has a 

value of 3. Since the internal 
representation of binary 
numbers differs from codes, 
this language also permits 
explicit bit and character 
strings such as '11'B which 
does not necessarily have a 

value of 3 but could mean, 
for example, that the elevator 
is out of order. Alphanumeric 
character strings are also 
permitted and recognized 
whenever they are enclosed in 
single quotes: 'THIS IS A 
"STRING ", ISN'T IT ?'. 
Similar distinctions exist also 
in ALGOL 60 and will be 
discussed in a future article. 

You might have noted that 
the character constants in 
Fortran were preceded by the 
length indicator and an 
identifying character H. In 
the systems using quotes or 
string brackets, the length is 
determined by the number of 
positions occupied between 
the brackets. Many assembler 
languages combine these two 
methods. The string is 
enclosed in quotes, and it is 
preceded by a single letter 
indicating the base. B'11' is 
equal to 11B or '11'B and has 
a value of 3 when it is used as 

a number in integer 
arithmetic. X'11' equals 1116 
or 17 and is a hexadecimal 
string. 

The distinction between 
binary numbers and bit 
strings is a rather fine one and 
will be discussed in a future 
article. The computer 
represents all information as 

strings of bits and 
manipulates these strings 
according to their type in 
certain groupings of bits. The 
basic group is called a 
machine word and consists of 
one or more bits. These bit 
groups have an equivalent 
code value which can be 
represented graphically in 
several different ways. 



Function Abbreviations 
We have discussed earlier 

various functions of the 
typewriter. Computer 
terminals and communica- 
tions equipment use many 
more function characters 
than the common typewriter 
does. In the various codes, 
these functions correspond to 
certain bit strings. The 
functions are indicated in the 
code tables on the following 
pages by abbreviations. 
Therefore, in Table 2 a 

dictionary of these 
abbreviations is presented. 

The more frequently 

encountered terminal 
function codes (as opposed to 
transmission functions) are 

marked with an asterisk. 

The Baudot Five -Bit 
Telegraphy Code 

An operator depressing the 
telegraph key causes current 
to flow through a wire. The 
current actuates an 
electromagnet at the receiving 
end which produces a 

"click ". The timing between 
the clicks represents either a 

dot or a dash, and 
telegraphers yesterday, and 
hams today, are skilled in 

Fig. 1. The word BYTE in Baudot Code. 
I.- LETS -.I 

"MARKING" I 

"SPACING" 0 #I- 
ISTART STOP' 

1.-ONE CHARACTER-.I 
.1 I It- 5 -'-1 1.5 I-. 

OR 
TIME UNITS 1.42 

Table 2. Function Abbreviations. 

ACK 
BEL, BELL 
BS 
BYP 
CAN 
CC 

CR 

CU 1 

CU 2 

CU 3 

DC 0 
DC 1 

DC 2 

DC 3 

DC 4 
DEL 
DLE 
DS 
EM 
ENQ 
EOA 
EOB 
EOM 
EOT 
ERR 
ESC 
ETB 
ETX 
FE 
FF 
FIGS 
FS 
GS 
HT 
IDLE 
IFS 
I GS 

IL 

Affirmative Acknowledgement 
Bell or other audible signal 

Backspace 
By Pass 

Cancel 
Cursor Control 
Carriage Return 
Customer Use 1 

Customer Use 2 

Customer Use 3 

Device Control O. 

Device Control 1 

Device Control 2 

Device Control 3 

Device Control 4 (stop) 
Delete 
Data Link Escape 

Digit Select 
End of Medium 
Enquiry 
End of Address 
End of Block 
End of Message 
End of Transmission 
Error 
Escape 
End of Transmission Block 
End of Text 
Format Effector 
Form Feed 
Figures Shift 
Information File Separator 
Information Group Separator 
Horizontal Tabulation 
Null 
Interchange File Separator 
Interchange Group Separator 
Idle 

B - 
----1-- 
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translating these "dots" and 
"dashes" into graphics. 

Transmission speed was 

mostly dependent on the 
telegraphers' skills. The term 
"baud rate" means the 
frequency at which the dots 
recurred in a second, with 
every dash counting twice as 

long as a dot. 
In the automatic 

teletypewriter the key was 
replaced by a distributor 
which sends a fixed number 
of pulses for each character 
entered on a keyboard. 
Latches at the other end 
actuated a printing device. 

Y -.i 
--F- 

IRS 
ITB 
IUS 
LC 
LETS 
LF 
NAK 
NL 
NUL 
PF 
PN 

PRE 
RES 
RS 
RU 
RVI 
SO-S7 
SI 

SK 
SM 
SMM 
SO 

SOH 
SOM 
SOS 
SP 

STX 
SUB 
SYN 
TM 
TTD 
UC 
US 
VT 
VTAB 
WACK 
WRU 

I T -H 

The term "marking" was used 
to indicate the flow of 
current, and the line was 
"spacing" when the current 
was off. Marking and spacing 
can be related to binary 
digits. In Table 3, a mark is 

indicated by the bit 1, and a 

space by the bit O. In 
addition to the five bits of 
the code, a space occurred 
prior to transmission, and a 

longer mark (1.5 or 1.42 
times the usual mark time) 
terminated the code. Fig. 1 

shows the timing of marks 
and spaces of the string 
BYTE: 

1- E -01 

Interchange Record Separator 
Intermediate Text Block 
Interchange Unit Separator 
Lower Case 

Letters Shift 
Line Feed 

Negative Acknowledgement 
New Line 
Null, or all zeros 

Punch Off 
Punch On 
Prefix 
Restore 
Record Separator (Reader Stop) 
Are you ... ? 

Reverse Interrupt 
Separator Information 
Shift In 
Skip (punched card) 
Set Mode 
Start of Manual Message 

Shift Off or Shift Out 
Start of Heading 
Start of Message 

Start of Significance 
Space 
Start of Text 
Start of Special Sequence 
Synchronous Idle 
Tape Mark 
Temporary Text Delay 
Upper Case 

Information Unit Separator 
Vertical Tabulation 
Vertical Tabulation 
Wait Before Transmitting Positive Acknowledgement 
Who are you? 



Prior to transmission of 
the letter B, the code LETS 
must be sent in order to set 
the receiving equipment into 
letter shift mode. The reason 
for this convention is to make 
it possible to transmit more 
than 32 symbols with five 
bits (g =5, b =2, a =32). 'After 
all, there are already 26 
uppercase letters and ten 
digits; then there is need for 
punctuation and special 
symbols, and function 
characters to control the 
printer. Once the operator 
intends to send a numeric 
character, the FIGS code is 
sent prior to the numeric 
string. In addition to the 
numeric characters, several 
other characters were sent in 
figures shift mode. Depending 
on the equipment used, 
various different graphics 
were assigned to the same bit 
strings. Table 3 indicates the 
assignments for four different 
keyboards; the first column 
shows the International 
Telegraph Alphabet No. 2 of 
the Comite Consultatif 
I nternational Telegraphique 
et Telephonique (CCITT); the 
second column shows the 
commercial teletype 
keyboard as used in the 
United States, the third 
column presents the fractions 
keyboard of the American 
Te l e phone and Telegraph 
Company (ATT); the fourth 
column shows the weather 
bureau keyboard. All four 
different keyboards are 
shown here because used 
equipment from different 
sources may be available to 
you which you might want to 
modify so that all keycaps 
correspond to the commercial 
keyboard. 

Binary Coded Decimal (BCD) 
Transmission Code 

The term "binary coded 
decimal" derives from the 
method of coding decimal 
digits. The bit string with 
value 9 is 1001, and the value 
10 is expressed by adding an 
additional four bits, namely, 
00010000. The bit string 

Table 3. Five -level Baudot Code for Four Selected Keyboards. 

BIT 
CODE 

Upper Case 

Lower E d1 
E 

L 

0 
Case Ú Ú Q 

1 1 o o A - - - f 

i o o i 1 B ? ? 5/8 ED 

o 1 1 1 o c . 1/8 0 
1 0 0 1 0 D arehyou? $ $ / 
1 0 0 0 0 E3 33 3 

1 0 1 1 0 F I 1/4 

0 1 0 1 1 G & & \ 
o o 1 o 1 H # + 

o 1 1 o o I 8 8 8 8 

1 1 0 1 0 J Bell Bell ' / 
1 1 1 1 0 K ( ( 1/2 - 
0 1 0 0 1 L I I 3/4 \ 
0 0 1 1 1 M 

0 0 1 1 0 N 7/8 0 

0 0 0 1 1 O 9 9 9 9 

0 1 1 0 1 P 0 0 Ò m 

1 1 1 0 0 0 1 1 1 1 

0 1 0 1 0 R 4 4 4 4 

1 0 1 0 0 S Bell Bell 

0 0 0 0 1 T 5 5 5 5 

1 1 1 o o u 7 7 7 7 

0 1 1 1 1 V = 3/8 m 

1 1 0 0 1 W 2 2 2 2 

1 o 1 1 1 X / / / / 

1 0 1 0 1 Y 6 6 6 6 

1 0 0 0 1 Z + + 

0 0 0 0 0 Blank 
. - 

1 1 1 1 1 Letters shift I 

1 1 0 1 1 Figures shift f 

0 0 i 0 0 Space o 
0 0 0 1 0 Carriage return < 
0 1 0 0 0 Line feed 
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Table 4. Seven -bit American Standard Code for Information Interchange. 

Bits 7, 

Bits 

4 3 2 1 

6, 5 000 001 010 011 100 101 110 111 

Hex 0 
Hex 1 

0 1 2 3 4 5 6 7 

0 0 0 0 0 NUL DLE SP 0 @ P , p 

0 0 0 1 1 SOH DC1 It ! 1 A Q a q 

0 0 1 0 2 STX DC2 " 2 B R b r 

0 0 1 1 3 ETX DC3 # 3 C S c s 

0 1 0 0 4 EOT DC4 $ 4 D T d t 

0 1 0 1 5 ENQ NAK % 5 E U e u 

0 1 1 0 6 ACK SYN & 6 F V f v 

0 1 1 1 7 BEL ETB ° 7 G W g w 

1 0 0 0 8 BS CAN ( 8 H X h x 

1 0 0 1 9 HT EM ) 9 I Y i y 

1 0 1 0 A LF SUB ' J Z j z 

1 0 1 1 B VT ESC + , K ( k 
ì 

1 1 0 0 C FF FS , < L 1 1 

1 

1 1 0 1 D CR GS -- - M j m i 
1 1 1 0 E SO RS . > N 1 t " n ^' 
1 1 1 1 F SI US / ? O o DEL 

tFor IBM 370, the left of the two symbols is generally displayed. See Table 2 for explanation of 
function abbreviations. 

Table 5. Six -bit Binary Coded Decimal Transmission Code. 

Bits 
1, 2 

Bits 3,4,5,6 00 01 10 11 

0000 SOH & - 0 

0001 A J / 1 

0010 B K S 2 

0011 C L T 3 

0100 D M U 4 

0101 E N V 5 

0110 F O W 6 

0111 G P X 7 

1000 H Q Y 8 

1001 I R Z 9 

1010 STX SPACE ESC SYN 

1011 . $ ) 

1100 < " % @ 

1101 BEL US ENQ NAK 

1110 SUB EOT ETX EM 

1111 ETB DLE HT DEL 
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01011001 therefore has a 

value of 59, and 99 is 

expressed as 10011001. This 
method differs from the bit 
coding shown in Table 1. 

The binary coded decimal 
(BCD) transmission code has 
been widely used by IBM and 
other manufacturers to 
transmit uppercase letters, 
digits, and special symbols in 
a six -bit code. I t is a subset of 
the USASCII code; however, 
it is not a national standard. 
The bit strings are shown in 
Table 5. 

The American Standard Code 
for Information Interchange 
(ASCII) 

Throughout the decades, 
many different data 
transmission codes were 
developed, and designers 
today often find good reasons 
to develop their own codes. 
The need for standardized 
transmission codes, however, 
has increased tremendously 
because more and more 
machines dial -up other 
machines via the public 
networks. The American 
Standards Association has 
standardized a seven bit code 
for communications. It 
contains upper and lower -case 
letters, and a large number of 
device and transmission 
control characters. An eighth 
bit may be added for parity. 
The term parity implies that 
the number of bits should 
add up to an even number 
(for even parity) or to an odd 
number for odd parity. The 
purpose is to check to some 
degree for a loss of bits 
during transmission. Assume 
that a device transmits in 

even parity; uppercase B 

consists of two marks and 
five spaces, therefore, no 
eighth bit is transmitted; 
uppercase T consists of three 
marks and four spaces, and an 
eighth mark is sent to make 
the number of marks even. 
Fig. 2 shows the string BYTE 
in even parity transmission. 
The code is shown in Table 4. 
Bit 1 is transmitted first. You 
may also want to refer to 
Table 2 in order to 
understand the meaning of 
the abbreviations. 

Extended Binary Coded 
Decimal Interchange Code 
(EBCDIC) 

The Extended Binary 
Coded Decimal Interchange 
Code is essentially the 
previously mentioned Binary 
Coded Decimal code 
extended by two bits to form 
an eight -bit code. A total of 
256 codes are possible (b =2, 
g =8, a =256) and because of 
its length of eight bits, it is 
often more easily expressed 
in hexadecimal notation by 
means of a string of two 
hexadecimal digits. Table 6 
shows both notations, the bit 
pattern and the hexadecimal 
notation. The digit 9, for 
example, is expressed as the 
bit string 11111001, or as the 
hexadecimal string F9. 

The code is often used to 
transmit the eight -bit bytes of 
computers. It originated 
about a decade ago when IBM 
introduced the System 360. 
The terms "EBCDIC ", 
"byte ", and "hexadecimal 
digits 0, ..., F" were 
developed at that time. 
Today these terms are widely 

Fig. 2. The word BYTE in Even -parity USASCII. 

"MARKING" I 

"SPACING" O i 
I 

r - 
-vIá1 ó I~^ Y 

4 co co 

accepted and used by many 
computer manufacturers. The 
code is also widely accepted; 
however, it is not a national 
standard. 

Conclusions 

A character is a unit of 
information which can be 
represented in various forms, 
such as in graphic form, or as 

a bit string. Since bit strings 
can be rather lengthy and 
therefore difficult to 
remember, we discussed the 
abbreviated representation of 
the string by means of the 
hexadecimal graphics. The 
relationship between the bit 
string representations of 
characters and the 
hexadecimal graphics is 

independent of the code since 
it is based on an intrinsic 
numerical order, namely that 
of counting from zero by one 
to infinity. 

On the other hand, bit 
strings may be represented by 
graphics in an entirely 
different manner depending 
on the code used. For that 
purpose we looked at the 
predominant five -, six -, seven - 
and eight -bit codes presently 
in use. We did not discuss 
various other but less 
important codes because of 
space limitations. Depending 
on the code utilized, the same 
graphic represents entirely 
different bit strings as shown 
in Table 7. 

The first character in the 
Baudot code is the letters 
shift. Note the similarity 
between the last three codes 
which holds only for 
uppercase letters and digits. 

> 
--or! c7 

a 
ONE CHARACTER `fr ONE CHARACTER 
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ó 
Ñ 

rc 1.- 
1- 

- 
N 

r 
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ONE CHARACTER 

ó 
co 
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Ñ 

E 

ONE CHARACTER -.I 



Table 6. Eight -bit Extended Binary Coded Decimal Interchange Code. 

-1 

Hyphen 
1 

Break 

Sign 

Mark 

Sign 

Mark 

Bits 

4, 5, 

Bits 0, 1 00 01 10 11 

Bits 2, 3 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 

6, 7 
0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

ex 0 

Hex 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

NUL 

SOH 

STX 

ETX 

PF 

HT 

LC 

DEL 

SMM 

VT 

FF 

CR 

SO 

SI 

DLE 

DC1 

DC2 

TM 

RES 

NL 

BS 

IL 

CAN 

EM 

CC 

CU1 

IFS 

IGS 

IRS 

IUS 

DS SP & - 
SOS 

FS SYN 

BYP PN 

LF RS 

ETB UC 

ESC EOT 

SM d 

CU2 CU3 . $ 

DC4 < % 

ENO NAK ( I - 
ACK 

BEL SUB ? 

1 

# 

@ 

1 

a 

b 

c 

d 

e 

f 

g 

h 

i 

d 

< 
( 

+ 

& 

! 

$ 

1 

i 

k 

I 

m 

n 

o 

p 

q 

r 

o 

A J 1 

s B K S 2 

t C L T 3 

u D M U 4 

y E N V 5 

w F O W 6 

x G P X 7 

y H Q Y 8 

z I R Z 9 

Special Graphic Characters 

Cent Sign Minus Sign, 

Period, Decimal Point / Slash 

Less -than Sign Comma 

Left Parenthesis % Percent 

Plus Sign a- Underscore, 

Logical OR Character 

Ampersand > Greater -than 

Exclamation Point ? Question 

Dollar Sign Colon 

Asterisk # Number 

Right Parenthesis @ At Sign 

Semicolon Prime, Apostrophe 

Logical NOT __ Equal Sign 

Quotation 

To conclude this tutorial, 
let me say this in EBCDIC 
(without start, stop and 
parity bits): 

D5 85 A7 A3 6B 
40 A6 85 7D 93 
93 40 84 89 A2 
83 A4 A2 A2 40 
95 A4 94 82 85 
99 A2 4B 

( 

1 

I 

1 

See Table 2 for explanation of function abbreviations. 

Table 7. Transmission of the String BYTE in selected codes (excluding 
start, stop) and parity bits). 

11111 10011 10101 00001 10000 Baudot 

000010 101000 100011 000101 BCD Transmission Code 

0100001 1001101 0010101 1010001 USASCII (see Note 1) 

11000010 11101000 11100011 11000101 EBCDIC 

Note 1. In memory, the sequence of bits on the IBM 360 and 370 is 

reversed. The left bit shown becomes the right bit, etc., as shown: 

1000010 1011001 1010100 1000101 
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HARD PALATE 

NASAL TRACT 

SOFT PALATE 

VELUM 

ORAL TRACT 

TONGUE BODY 

PHARYNX 

EPIGLOTTIS 

DESIRED 
CURVE 

GLOTTIS 

NOSTRILS 

LIPS 

TEETH 

TONGUE TIP 

JAW 

Figure 1: The Human Vocal Tract. The 
human vocal tract is roughly described as a 

tube approximately 17.4 cm long with 
varying resonance characteristics as muscles 
control the shape. The tract splits into two 
parts, nasal and oral, at the top, with a valve 
called the velum providing flexible control 
of the nasal resonances in given utterance. 
An electronic model of this natural organ 
roughly parallels the function of the tract. 

ACTUAL 
DAC OUTPUT 

Figure 2: DAC Quantization Errors. The actual output of a computer to the 
analog world is a step function (in the absence of any filtering). This leads to 
the problem of quantization errors, depicted conceptually here by the shaded 
areas in between the smooth analog function and its closest step function 
approximation. Low precision digital to analog conversions accentuate this 
problem. 
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Friends, Humans, 

D Lloyd Rice 
Computalker Consultants 
821 Pacific St #4 
Santa Monica CA 90405 

You've got your microcomputer running 
and you invite your friends in to show off 
the new toy. You ask Charlie to sit down 
and type in his name. When he does, a 

loudspeaker on the shelf booms out a hearty 
"Hello, Charlie!" Charlie then starts a game 

of Star Trek and as he warps around thru the 
galaxy searching for invaders, each alarming 
new development is announced by the ship's 
computer in a warning voice, "Shield power 
low! ", "Torpedo damage on lower decks!" 

The device that makes this possible is a 

peripheral with truly unlimited applications, 
the speech synthesizer. This article describes 
what a speech synthesizer is like, how it 
works and a general outline of how to 
control it with a microcomputer. We will 
look at the structure of human speech and 

see how that structure can be generated by a 

computer controlled device. 
How can you generate speech sounds 

artificially, under computer control? Let's 
look at some of the alternatives. Simplest of 
all, with a fast enough digital to analog 
converter (DAC) you can generate any 
sound you like. A 7 or 8 bit DAC can 

produce good quality sound, while some- 
where around 4 or 5 bits the quantization 
noise starts to be bothersome. This noise is 

produced because with a 5 bit data value it is 

possible to represent only 32 discrete steps 
or voltage levels at the converted analog 
output. Instead of a smoothly rising voltage 
slope, you would get a series of steps as in 
figure 2. As for the speed of the DAC, a 

conversion rate of 8,000 to 10,000 conver- 
sions per second [The sample rate in con- 
versions per second or samples per second is 

often quoted in units of Hertz. We will use 

that terminology here, although conversions 



and Countryrobots: Lend me your Ears 

per second is a generalization of the concept 
of cycles per second] is sufficient for fairly 
good quality speech. With sample rates 
below about 6 kHz the speech quality begins 
to deteriorate badly because of inadequate 
frequency response. 

Almost any microprocessor can easily 
handle the data rates described above to 
keep the DAC going. The next question is, 

where do the samples come from? One way 
to get them would be by sampling a real 

speech signal with a matching analog to 
digital converter (ADC) running at the same 

sample rate. You then have a complicated 
and expensive, but very flexible, recording 
system. Each second of speech requires 8 K 

to 10 K bytes of storage. If you want only a 

few words or short phrases, you could store 
the samples on a ROM or two and dump 
then sequentially to the DAC. Such a system 
appears in figure 3. 

If you want more than a second or two of 
speech output, however, the amount of 
ROM storage required quickly becomes im- 
practical. What can be done to minimize 
storage? Many words appear to have parts 
that could be recombined in different ways 
to make other words. Could a lot of memory 
be saved this way? A given vowel sound 
normally consists of several repetitions of 
nearly identical waveform segments with the 
period of repetition corresponding to the 
speech fundamental frequency or pitch. 
Figure 4 shows such a waveform. Within 
limits, an acceptable sound is produced if we 

store only one such cycle and construct the 
vowel sound by repeating this waveform 
cycle for the duration of the desired vowel. 
Of course, the pitch will be precisely con- 
stant over that entire interval. This will 
sound rather unnatural, especially for longer 
vowel durations, because the period of 
repetition in a naturally spoken vowel is 

never precisely constant, but fluctuates 
slightly. In natural speech the pitch is nearly 
always changing, whether drifting slowly or 
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Figure 3: Waveform Playback from ROM Storage. One way to achieve a 

digitally controlled vocal output is to first digitize a passage of human speech, 

then store the digital pattern in memory. For a commercial product, such as a 

talking calculator, the limited vocabulary required makes this a feasible 
avenue of design, especially when a single mass produced ROM can be used in 
the final product. In an experimenter's system, the ROM is not needed, and 
programmable memory can be substituted during experiments. This is 

probably the least expensive way to augment an existing computer's 
capability with vocal output, but the memory requirements limit its use to 
small vocabularies. The quality of the result varies with the ADC (and DAC) 
sampling rate and precision. 

PITCH PERIOD PITCH PERIOD -+ 

Figure 4: Typical Vowel Waveform. In prin- 
ciple, a vowel Is a fairly long sustained 
passage of sound with repetitive characteris- 
tics. The vowel sounds are produced physiol- 
ogically by the resonances of the vocal tract, 
and are controlled electronically by the 
formant filters which produce the equivalent 
of vocal tract resonances. 
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Figure 5: Tube Resonances. Temporarily ignore the complicated shape of the vocal tract and 

simplify it to a tube 17.4 cm long. Applying the equations of physics to acoustic waves in air 

gives resonances at several modes or natural frequencies. The standing waves along the tube at 
each frequency are shown, and identified as formant 1, formant 2 and formant 3. In the actual 
vocal tract, a more complicated and time varying geometry changes the resonances as a sound is 

created. 

sweeping rapidly to a new level. It is of 
interest that this jitter and movement of the 
pitch rate has a direct effect on the percep- 
tion of speech because of the harmonic 
structure of the speech signal. In fact, 
accurate and realistic modelling of the 
natural pitch structure is probably the one 
most important ingredient of good quality 
synthetic speech. In order to have smooth 
pitch changes across whole sentences, the 
number of separate stored waveform cycles 
still gets unreasonable very quickly. From 
these observations of the cyclic nature of 
vowels, let us move in for a closer look at 
the structure of the speech signal and ex- 
plore more sophisticated possibilities for 
generating synthetic speech. 

How Do We Talk? 

The human vocal tract consists of an air 
filled tube about 16 to 18 cm long, together 
with several connected structures which 
make the air in the tube respond in different 
ways (see figure 1). The tube begins at the 
vocal cords, or glottis, where the flow of air 
up from the lungs is broken up into a series 
of sharp pulses of air by the vibration of the 

Figure 6: "ah" as in "father " In figure 1, 

the vocal tract was shown in schematic form. 
Here is a similar figure showing how the 
tract has been modified to produce the 
vowel sound ` ah. " The human typically 
closes off the nasal cavity and widens out 
the oral cavity by opening the mouth during 
this sound. 
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vocal cords. Each time the glottis snaps shut, 
ending the driving pulse with a rapidly 
falling edge, the air in the tube above 

vibrates or rings for a few thousandths of a 

second. The glottis then opens and the 
airflow starts again, setting up conditions for 
the next cycle. 

The length of this vibrating air column is 

the distance from the closed glottis up along 
the length of the tongue and ending at the 
lips, where the air vibrations are coupled to 
the surrounding air. If we now consider the 
frequency response of such a column of air, 
we see that it vibrates in several modes or 
resonant frequencies corresponding to dif- 
ferent multiples of the acoustic quarter 
wavelength. There is a strong resonance or 
energy peak at a frequency such that the 
length of the tube is one quarter wavelength, 
another energy peak where the tube is three 
quarter wavelengths, and so on at every odd 
multiple of the quarter wavelength. If a tube 
17.4 cm long had a constant diameter from 
bottom to top, these resonant energy peaks 
would have frequencies of 500 Hz, 1500 Hz, 
2500 Hz and so on. These resonant energy 
peaks are known as the formant frequencies. 
Figure 5 illustrates the simple acoustic 
resonator and related physical equations. 

The vocal tract tube, however, does not 
have a constant diameter from one end to 
the other. Since the tube does not have 

constant shape, the resonances are not fixed 
at 1000 Hz intervals as described above, but 
can be swept higher or lower according to 
the shape. When you move your tongue 
down to say "ah," as in figure 6, the back 
part is pushed back toward the walls of the 



throat and in the front part of the mouth 
the size of the opening is increased. The 
effect of changing the shape of the tube in 
this way is to raise the frequency of the first 
resonance or formant 1 (F1) by several 
hundred Hz, while the frequency of formant 
2 (F2) is lowered slightly. On the other 
hand, if you move your tongue forward and 
upward to say "ee," as in figure 7, the size 
of the tube at the front, just behind the 
teeth, is much smaller, while at the back the 
tongue has been pulled away from the walls 
of the throat, leaving a large resonant cavity 
in that region. This results in a sharp drop in 

F1 down to as low as 200 or 250 Hz, with 
F2 being increased to as much as 2200 or 
2300 Hz. 

We now have enough information to put 
together the circuit for the oral tract branch 
of a basic formant frequency synthesizer. 
After discussing that circuit, we will con- 
tinue on in this way, describing additional 
properties of the speech mechanism and 
building up the remaining branches of the 
synthesizer circuit. 

A Speech Synthesizer Circuit 

To start with, we must have a train of 
driving pulses, known as the voicing source, 
which represents the pulses of air flowing up 
thru the vibrating glottis. This could be 
simply a rectified sine wave as in figure 8. To 
get different voice qualities, the circuit may 
be modified to generate different waveform 
shapes. 

This glottal pulse is then fed to a se- 

quence of resonators which represent the 
formant frequency resonances of the vocal 
tract. These could be simple operational 
amplifier bandpass filters which are tunable 
over the range of each respective formant. 
Figure 9 shows the concept of a typical 
resonator circuit which meets our require- 
ments. IC1, IC2 and IC4 form the actual 
bandpass filter, while IC3 acts as a digitally 
controlled resistance element serving to vary 

INPUT 

Figure 7: `ee" as in 'heed." In contrast to 
figure 6, when the "ee" vowel sound is 
created, the mouth opening tends to be nar- 
rowed; and the upper end of the vocal tract 
Is restricted This lowers the frequency of 
the first resonant mode and raises the 
frequencies of the second and third. Refer- 
ring to table 1, the "ee" vowel sound has 
some of the highest resonances for formants 
F2 and F3 and the lowest for Fi. 

.v 

OV 

Figure 8: Voiced Sounds from the Glottis. Sounds which have definite pitch 
are called voiced sounds. In the natural larynx, these sounds are generated by 
the vocal chords and drive the vocal tract at the glottis. In an electronic 
analog, the voiced sounds can be generated by a programmable counter (to 
set the frequency) which in turn creates a sine wave of the same frequency. A 
rectified sine wave is a good source for the glottal pulses used in the 
electronic model of a larynx used in the author's approach to speech 
generation. 

the resonant frequency of the filter. Several 
such resonator circuits are then combined as 

in figure 10 to form the vocal tract simu- 
lator. The voicing amplitude control, AV, is 

another digitally controlled resistance similar 
to IC3 of figure 9. 

This gain controlled amplifier configura- 
tion is the means by which the digital 
computer achieves its control of speech 
signal elements. The data of one byte drives 
the switches to set the gain level of the 
amplifier in question. In figures 10, 13 and 
15 of this article, this same variable resis- 
tance under digital control is shown symbol- 
ically as a resistor with a parameter name, 

DATA BUS 
8 DIGITALLY CONTROLLED 

ANALOG SWITCHES 
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FILTERED 
OUTPUT 

Figure 9: Typical Formant 
Resonator Circuit. A 
digitally controlled band 
pass filter can be built 
from four operational 
amplifiers and 8 digitally 
controlled analog switches. 
The filter characteristics 
are set by the choice of 
the resistance and capaci- 
tance elements as well as 
the digital control word. 
The operational amplifier 
IC3 serves as a gain con - 
trolled amplifier in the 
feedback loop, which 
alters the filter resonance. 
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Figure 10: A first approximation of the voice synthesizer can be constructed 
by using three formant filters In series with differing resonance settings all 
controlled by 8 bit digital words. The resistance indicated as AV is an 
operational amplifier circuit (see IC3 of figure 9) with a digital gain control 
input. It is thus a programmable element of gain less than unity, In other 
words the electronically controlled equivalent of a variable resistance. This 
notation of a controlled resistance is used In figures 13 and 15 as well. 

heed 

hid 

head 

had 

hod 

paw 

hood 

who 

F1 F2 F3 

250 2300 3000 
375 2150 2800 
550 1950 2600 
700 1800 2550 
775 1100 2500 
575 900 2450 
425 1000 2400 
275 850 2400 

Table 1: Steady State English Vowels. The vowel sounds are made by 
adjusting the formant resonances of the human vocal tract to the frequencies 
listed in this table. These figures are approximate, and actual formant 
resonances vary from individual to individual. In a speech synthesizer based 
upon an electronic model of the vocal tract, the formant frequencies are set 
digitally using operational amplifier filters with adjustable resonant peaks. 
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Figure 11: The Steady State English Vowels. The distinctions between 
various vowel sounds can be illustrated by plotting them on a two 
dimensional graph. The horizontal axis is the formant 1 frequency, the 
vertical axis is the formant 2 frequency. A location for each vowel utterance 
can be determined experimentally by locating the resonance peaks with an 
audio spectrum analyzer. 
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rather than as an operational amplifier with 
analog switches. 

Generating Vowel Sounds 

The vocal tract circuit as shown thus far 
is sufficient to generate any vowel sound in 
any human language (no porpoise talk, yet). 
Most of the vowels of American English can 
be produced by fixed, steady state formant 
frequencies as given in table 1. A common 
word is given to clearly identify each vowel. 
The formant frequency values shown here 
may occasionally be modified by adjacent 
consonants. 

An alternative way to describe the for - 
mant relationships among the vowels is by 
plotting formant frequencies F1 vs F2 as in 
figure 11. F3 is not shown here because it 
varies only slightly for all vowels (except 
those with very high F2, where it is some- 
what higher). 

The F1 -F2 plot provides a convenient 
space in which to study the effects of 
different dialects and different languages. 
For example, in some sections of the United 
States, the vowels in "hod" and "paw" are 
pronounced the same, just above and to the 
right of "paw" on the graph. Also, many 
people from the western states pronounce 
the sounds in "head" and "hid" alike, about 
halfway between the two points plotted for 
these vowels on the graph. 

A few English vowels are characterized by 
rapid sweeps across the formant frequency 
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Figure 12: English Diphthongs. A diphthong 
Is a sound which represents a smooth transi- 
tion from one vowel sound to another 
during an utterance. The time duration of 
the swap from one point to another In 
formant space Is typically 150 to 250 ms. 
This graph shows typical starting and ending 
points for several common diphthong 
sounds. 
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Figure 13: Synthesizer with Aspiration Noise Generator. Not all utterances are vowels. By 
adding a digitally controlled noise generator to the circuit of figure 10, it is possible to 
synthesize the consonant sounds known as "stops." In this circuit,. the amplitude versus time 
characteristics of the noise pulse are determined by an 8 bit programmable gain control AH 
(shown symbolically as a resistor). The output of the noise source is mixed with the voicing 

source with the analog sum being routed to the formant filters. The noise generator is a zener 

diode. 

space rather than the relatively stable posi- 
tions of those given in table 1. These sweeps 

are produced by moving the tongue rapidly 
from one position to another during the 

production of that vowel sound. Approx- 
imate traces of the frequency sweeps of 
formants F1 and F2 are shown in figure 12 

for the vowels in "bay," "boy," "buy," 
"hoe" and "how." These sweeps occur in 

150 to 250 ms roughly depending on the 
speaking rate. 

REL,VO 

I 
REL,V0 

' DA' 'GA" 

REL VO REL VO 

' TA' 'KA' 

Figure 14: Stop Consonant Patterns. This figure illustrates 6 different stop 
consonant patterns. The release of the stop closure (start of noise pulse) Is at 

the point marked by "Rel" and the beginning of the voicing sounds is marked 
by "VO". Note the typical transition of the vowel formants as the steady 

state is reached. 
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Consonant Sounds 

Consonant sounds consist mostly of vari- 
ous pops, hisses and interruptions imposed 
on the vibrating column of air by the actions 
of several components of the vocal tract 
shown in figure 1. We will divide them into 
four classes: 1) stops, 2) liquids, 3) nasals, 

and 4) fricatives and affricates. Considering 
first the basic 'stop consonants,' "p," "t," 
"k," "b," "d" and "g," the air stream is 

closed off, or stopped, momentarily at some 
point along its length, either at the lips, by 
the tongue tip just behind the teeth or by 
the tongue body touching the soft palate 
near the velum. Stopping the air flow briefly 
has the effect of producing a short period of 
silence or near silence, followed by a pulse 
of noise as the burst of air rushes out of the 
narrow opening. 

The shape of the vocal tract with the 
narrow opening at different points deter- 
mines the spectral shape of the noise pulse as 

well as the formant locations when voicing is 

started. Both the noise burst spectrum and 
the rapid sweeps of formant frequency as 

the F1 -F2 point moves into position for the 
following vowel are perceived as character- 
istic cues to the location of the tongue as the 
stop closure is released. We need only add a 

digitally controlled noise generator to the 
vocal tract circuit of figure 10 to simulate 
the noise of the burst of air at the closure 
release and we can then generate all the stop 
consonants as well as the vowels. Figure 13 

shows the speech synthesizer with such a 

noise generator added. The breakdown noise 
of a zener diode is amplified by IC1 and 
amplitude is set by the digitally controlled 
resistor AH. IC2 is a mixer amplifier which 
combines the glottal source and aspiration 
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Figure 15: The Complete Synthesizer. This diagram shows the organization of a complete synthesizer which includes a wide 

variety of parameters. The voicing frequency and amplitude are set by parameters FV and AV. The noise pulses of stop 

consonants are generated with the programmable gain element AH. The fricative resonator with amplitude AF and frequency 

resonance FF are used to generate fricatives like "s "and "sh. " The normal vowel sounds are generated by control of the formant 

frequencies Fl, F2 and F3, and a nasal resonator with amplitude AN and fixed frequency characteristics is used to add varying 

amounts of nasal sounds. The result of signals processed through the nasal, formant and fricative paths is summed by a final 

operational amplifier and used to drive the output speaker. 

noise at the input to the formant resonators. 
It is important to notice at this point the 

range of different sounds that can be gen- 
erated by small changes in the relative timing 
of the control parameters. The most useful 
of these timing details is the relationship 
between the pulse of aspiration noise and a 

sharp increase in the amplitude of voicing 
(see figure 14). For example, if we set the 
noise generator to come on for a noise pulse 
about 40 ms long and immediately after 
this pulse, F1 sweeps rapidly from 300 up to 
775 Hz and F2 moves from 2000 down to 
1100 Hz, the sound generated will cor- 
respond to moving the tip of the tongue 
down rapidly from the roof of the mouth. 
Observe, however, that the formant output 
is silent after the noise pulse until the 
voicing amplitude is turned up. If voicing is 

turned on before or during a short noise 
burst, the circuit generates the sound "da," 
whereas if the voicing comes on later, after a 

longer burst and during the formant fre- 
quency sweeps, the output sounds like "ta." 
This same timing distinction characterizes 
the sounds "ba" vs "pa" and "ga" vs "ka," 
as well as several other pairs which we will 
explore later. Figure 14 gives the formant 
frequency patterns needed to produce all the 
stop consonants when followed by the vowel 
"ah." When the consonant is followed by a 

different vowel, the formants must move to 
different positions corresponding to that 
vowel. 

The important thing to note about a stop 
transition is that the starting points of the 
frequency sweeps correspond to the point of 

closure in the vocal tract, even though these 

sweeps may be partially silent for the un- 
voiced stops "p," "t" and "k," where the 
voicing amplitude comes on after the sweep 

has begun. 
The second consonant group comprises 

the liquids, "w," "y," "r" and "I." These 
sounds are actually more like vowels than 
any of the other consonants except that the 
timing of formant movements is crucial to 
the liquid quality. "W" and "y" can be 

associated with the vowels "oo" and "ee," 
respectively. The difference is one of timing. 
If the vowel "oo" is immediately followed 
by the vowel "ah," and then the rate of F1 

and F2 transitions is increased, the result 
will sound like "wa." A comparison of the 
resulting traces of F1 and F2 vs time in 
"wa" with the transition pattern for "ba" in 
figure 14 points out a further similarity. The 

Resonator 
Frequency 

(FF) 

Fricative 
Amplitude 

(AF) 

sh, zh 2500 .9 

s, z 5000 .7 

f, v 6500 .4 

th 8000 .2 

Table 2: Fricative Spectra. A fricative sound typically consists of a pulse of 
high frequency noise. The various types of fricatives are classified according 
to the spectral profile of the pulse. For the electronic model described here, 

the fricative amplitude and resonator frequency for several sounds are listed 
In this table. 
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Product Information 
At the time this article 

goes to press, a synthesizer 
module incorporating several 
detail refinements and im- 
provements over the circuits 
of this article is being de- 
veloped by the author and 
associates. A detailed user's 
guide will be supplied with the 
Computalker module which il- 
lustrates the timing relation- 
ships needed to produce all 
the consonant -vowel and vow- 
el- consonant combinations 
which occur in natural speech. 
This can serve as a reference 
guide for creating your speech 
output software which gener- 
ates the proper control pat- 
terns from text inputs. Write 
to Computalker, 821 Pacific 
St No. 4, Santa Monica CA 
90405 for the latest informa- 
tion on this module. 

direction of movement is basically the same, 
only the rate of transition of "ba" is still 
faster than for "wa." Thus we see the 
parallelism in the acoustic signal due to the 
common factor of lip closeness in the three 
sounds "ua," "wa" and "ba." "Y" can be 
compared with the vowel "ee" in the same 
way, so the difference between "ia" and 
"ya" is only a matter of transition rates. 
Generally, "I" is marked by a brief increase 
of F3, while "r" is indicated by a sharp drop 
in F3, in many cases, almost to the level of 
F2. 

The third group of consonants consists of 
the nasals, "m," "n" and "ng." These are 
very similar to the related voiced stops "b," 
"d" and "g," respectively, except for the 
addition of a fixed "nasal formant." This 
extra formant is most easily generated by an 
additional resonator tuned to approximately 
1400 Hz and having a fairly wide bandwidth. 
It is only necessary to control the amplitude 
of this extra resonator during the "closure" 
period to achieve the nasal quality in the 
synthesizer output. 

The fourth series of consonants to be 

described are the fricatives, "s," "sh," "z," 
"zh," "f," "v" and "th" and the related 
affricates "ch" and "j." The affricates "ch" 
and "j" consist of the patterns for "t" and 
"d" followed immediately by the fricative 
"sh" or "zh," respectively, that is, "ch" _ 
"t +sh" and "j" = "d +zh." The sound "zh" is 

otherwise rare in English. An example occurs 
in the word "azure." With the letters "th," 
two different sounds are represented, as 

contained in the words "then" and "thin." 
All the fricatives are characterized by a pulse 
of high frequency noise lasting from 50 to 
150 msec. The first subclassification of 
fricatives is according to voicing amplitude 
during the noise pulse, just as previously 
described for the stop consonants. Thus, 
"s," "sh," "f," "ch" and "th" as in "thin" 
have no voicing during the noise pulse, while 
"z," "zh," "v," "j" and "th" as in "then" 
have high voice amplitude. When a voiceless 
fricative is followed by a vowel, the voicing 
comes on during the formant sweeps to the 
vowel position, just as in the case of the 
voiceless stops. The different fricatives with- 
in each voice group are distinguished by the 
spectral characteristics of the fricative noise 
pulse. This noise signal differs from that 
previously described for the stop bursts in 
that it does not go thru the formant resona- 
tors, but is mixed directly into the output 
after spectral shaping by a single. pole filter. 
Table 2 gives the fricative resonator settings 
needed to produce the various fricative and 
affricate consonants. Fricative noise ampli- 
tude settings are shown on a scale of 0 to 1. 
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The Complete Synthesizer 

The system level diagram of a complete 
synthesizer for voice outputs is summarized 
in figure 15. The information contained in 
this article should be sufficiently complete 
for individual readers to begin experimenting 
with the circuitry needed to produce speech 
outputs. In constructing a synthesizer on 
this model, the result will be a device which 
is controlled in real time by the following 
parameters: 

AV = amplitude of the voicing source, 
8 bits 

FV = frequency of the voicing source, 
8 bits 

AH = amplitude of the aspiration noise 
component, 8 bits 

AN = amplitude of the nasal resonator 
component, 8 bits 

AF = amplitude of the fricative noise 
component, 8 bits 

F1 = frequency of the formant 1 fil- 
ter, 8 bit setting. 

F2 = frequency of the formant 2 fil- 
ter, 8 bit setting. 

F3 = frequency of the formant 3 fil- 
ter, 8 bit setting. 

FF = frequency of fricative resonator 
filter, 8 bit setting. 

This is the basic hardware of a system to 
synthesize sound; in order to complete the 
system, a set of detailed time series for 
settings for these parameters must be deter- 
mined (by a combination of the theory in 
this article and references, plus experiment 
with the hardware). Then, software must be 

written for your own computer to present 
the right time series of settings for each 
sound you want to produce. Commercial 
synthesizers often come with a predefined 
set of "phonemes" which are accessed by an 

appropriate binary code. The problem of 
creating and documenting such a set of 
phonemes is beyond the scope of this 
introductory article, but is well within the 
dollar and time budgets of an 

experimenter. 
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Magnetic Recording for Computers 

William A Manly 
Cobaloy Co 
626 Great Southwest Pkwy 
Arlington TX 76011 

Nothing can come any- 
where near magnetic re- 
cording for low cost per 
unit of stored information. 

Why Magnetic Recording? 

Anyone seriously involved with com- 
puters, whether he likes it or not, will also 
be seriously involved with magnetic record- 
ing. After one begins working with com- 
puters, it doesn't take very long to discover 
the shocking fact that memory for a com- 
puter is going to cost a lot more than the 
computer itself. A computer requires lots of 
memory, and professional or amateur, the 
computer user wants to minimize the cost of 
his computer setup. A look at figure 1 will 
immediately tell you why magnetic record- 
ing is so important to computer memories: 
Nothing can come anywhere near it for low 
cost per unit of stored information. Figure 1 

also shows why magnetic recording cannot 
be used for all types of computer memories: 
It is the slowest of the memories, which 
means that it is employed mostly for long 
term, low usage storage (usually called bulk 
storage). 

All Kinds of Recorders - 
Magnetic recorders come in many forms: 

tape, disk, drum, card, sheet, stripe, roll, 
cassette, reel, ... etc. Most of these forms 
have been used for computer memories in 
the past, and many are still in use. 

And Recording Methods 

There are several ways of placing mag- 
netic signals on magnetic media. Among 
these are those which use the hysteresis loop 
or the initial magnetization curve, those 
which use a variation of anhysteretic mag- 
netization, and some methods which use 
Curie point magnetization. I will go through 
the first two in detail. The last one involves 
heating the medium until it is so hot that it 
is no longer magnetic (it ceases being mag- 
netic at a temperature called the Curie 
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point), then letting it cool in the recording 
field until it again becomes magnetic. Due to 
the inconvenience of the temperature 
cycling, this last method is not important for 
digital recording. The first method will be 

covered in the greatest detail, as most 
recorders designed for digital use employ it. 
Many of the conclusions drawn will also 
apply to the second method. 

Some other names and subdivisions also 
apply to the main divisions given above. If 
we call the first type hysteresis recording, 
there are two main subdivisions. One is very 
much like FM radio broadcasting, and is also 
called frequency modulation recording 
(sometimes called phase modulation). A 
single- frequency carrier is recorded on the 
medium, and its frequency changed accord- 
ing to the information to be stored. Another 
subdivision is the type used for most digital 
work. It is called saturation recording. 
Ideally, the saturation recorded medium has 
only two states: saturated (magnetized to 
maximum strength) in one direction, or 
saturated in the other direction. The infor- 
mation is contained in the transitions, where 
the direction of saturation is changed. (One 
older method also used a third state; that of 
erasure, or zero magnetization.) The second 
type of recording (anhysteretic magnetiza- 
tion) is also called biased recording. It 
involves the use of a large amplitude high 
frequency bias, to which the signal is added. 
The signal does not modulate (change) the 
bias in any way. The bias does not return 
during the signal playback process. 

Although the professionals normally use 
only saturation recording for digital use, 
computer hobbyists have appropriated re- 
corders intended for other uses, and thus use 
several types of recording. One is even a type 
of FM recording using bias to record the 
carrier. Magnetic recording can also be 



classified according to the type of informa- 
tion being recorded, and there is a correla- 
tion between the type of information and 
the type of recording: 

Type Of Information Type Of Recording 

Digital professional Saturation (some- 
times FM carrier) 

Audio Biased 
Instrumentation Biased, biased FM 

carrier, FM carrier 
Video FM carrier 
Digital hobbyist Biased FM carrier, 

saturation 
All of the foregoing seems rather in- 

volved, but just remember that the knowl- 
edge of a few basics will enable you to sort 
out almost any recording situation. For 
instance, all the systems we will discuss 
involve only a magnetic surface moving with 
respect to a set of magnetic heads, one of 
which writes on the surface, and another 
which reads the information previously 
written there (if you are an audio enthusiast, 
forget about the record, playback, and erase 

heads - -- those terms are rarely used in digital 
recording). You are not likely to have an 

erase head in your system unless you use an 

audio recorder. Some systems are especially 
simple, having only one head which both 
reads and writes. Sometimes the surface 
moves and the heads are fixed; sometimes 
the heads move and the surface is fixed; 
sometimes they both move; but the impor- 
tant thing is the relative head to surface 
movement. 

10 

A Plan of Attack 

It isn't very likely that you are intclested 
in becoming an expert on magnetic record. 
ing. All that you want is to understand it 
well enough so you can exercise enough care 

to prevent its becoming a problem. Knowing 
this, I'll just present enough of what is called 
the theory of recording to give you a feel for 
how it works, then I'll talk a bit of practi- 
calities with suggestions for smooth opera- 
tion and maintenance. Magnetic recording 
theory is divided into two parts: Magnetics 
and geometry. Let's first look at the 

magnetics. 

Blame It All on the Electron! 

Almost everyone knows that the electron 
is a fundamental particle of electricity. It 
also possesses a magnetic field (electrons 
always have spin; this spin constitutes an 

electric current going around in a circle; and 

anytime an electric current is flowing, it 
generates a magnetic field). Most materials 
have their electrons placed in such a way 

that the magnetic fields all balance out to 
zero, but there are a few materials which 
don't. With electron spins paired so that one 

is spinning clockwise and one counter- 
clockwise, the net field is zero. Of the 

materials with unpaired electron spins, some 

are put together in such a fashion that the 

electrons are coupled together. When this 
happens, if you manage to turn one spin 

axis, you have to turn its neighbors as well 
(the magnetic fields point along the spin 
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axis). Depending on the material, somewhere 
between a few hundred and a few million of 
these little fellows will stay coupled together 
and pointed in the same way all the time. 
This collection of coupled electron spins is 

called a domain, and the materials with this 
type of structure are called ferromagnetic 
materials. 

If a large number of atoms arc collected 
together, there will be two or more domains, 
whose magnetic fields will not necessarily be 

pointing in the same direction (though they 
might). Materials for magnetic recording 
consist either of domain sized particles 
separated by non -magnetic material, or they 
arc made of plated material with enough 
impurities to section the plating into domain 
sized units. Separating the domains this way 
allows them to operate nearly independently 
- a necessity for keeping the information in 
storage. Such materials are known as "hard" 
magnetic materials. 

Hysteresis, Not Hysteria 

A hard ferromagnetic material is charac- 
terized by its hysteresis loop. I have a library 
full of books on hysteresis loops, which have 
been confusing students for years; but let me 
sec if I can spare you some of the confusion. 
Suppose we have a material containing a 

large number of domains whose fields arc all 
pointing in different directions. The fields all 
cancel out, and the material is said to be 

demagnetized (note that a single domain 
cannot he demagnetized). If a very small 
magnetic field is applied to the material, 
nothing happens. As the strength of the field 
is increased, a few of the domains swing 
their electron spin axes to follow the applied 
field. As the field strength continues to rise, 
more and more domains follow the field 
until finally the last domain responds. After 
that, no matter how much more field is 

applied, nothing more can happen. The 
material is now saturated, and it now has 

acquired its maximum magnetization, des- 
ignated Mm. This process is known as the 
initial magnetization of the material. If we 
now let the applied field go to zero, a few of 
the domains decide to desert the pack, but 
most stay pointing in the same direction. 
This is known as the remanent condition, 
with the remanent magnetization designated 
Mr. Magnetization is given in several units, 
all of which are measures of how many 
unpaired electron spins there are per unit 
volume or unit weight of magnetic material. 

Now let's reverse the direction of the 
field (denoted, for some reason, by the letter 
"H ") and slowly increase the strength from 
zero. At some point, exactly half of the 
domains have decided to follow the new 
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field direction, half arc still pointed in the 

other direction; and the result is zero. At 
this point, the applied field is called the 
coercive field (sometimes called coercivity or 
coercive force) of the material, and is indi- 
cated by Hc. If the applied field is increased 
to the former high level, the material again 

becomes saturated, but in the opposite 
direction. This cycle can be continued in- 

definitely, but the material never returns to 
its erased condition (zero magnetization in 

the material with zero applied field). If the 
first direction is chosen to be positive (and 
the opposite direction negative), we can 

show a graph of the whole business by 
plotting magnetization on the Y axis, posi- 
tive direction up; and the strength of the 
applied field on the X axis, positive direction 
to the right. This plot is known as a 

hysteresis loop, and is shown in figure 2; 

along with the initial magnetization curve, 
which is not properly part of the hysteresis 
loop. 

Erasure 

If we could limit the discussion to satura- 
tion recording, I would have been through 
with the magnetics right now, but the use of 
audio recorders has complicated things, so 

there's a bit more. Suppose we are cycling 
around the major hysteresis loop we have 
just described, but start reducing the maxi- 
mum field a bit each time around. Each time 
the maximum field is reduced, the loop 
shrinks in the horizontal direction, and in 

the vertical direction as well. These smaller 
loops are hysteresis loops too, but they are 

called "minor loops." If we continue to 
cycle, but reduce the maximum field 
gradually (i.e., go around 10 to 100 times) 
to zero, the remanence (the magnetization 
when the field is zero) goes to zero as well. 
Now we have reduced the magnetic material 
to the erased condition. It would be well to 
understand this before going on to the next 
part, since this cycling and reduction proce- 
dure is the basis for biased recording. 

Some Recorders Are Biased 

Now let's go back to the saturated condi- 
tion. This time we will apply two fields 
added together. One is the same large cyclic 
field we applied in the last paragraph, but 
the other is a smaller field. The smaller field 
is applied and held constant. The large field 
is taken to saturation, then cycled and 
reduced to zero as in the erasure process. 
Then the small field is also reduced to zero. 
Now, the remanent magnetization is not 
zero. In fact, it is larger than one might 
expect from the application of that small 
field. This remanence is called anhysteretic 



Figure 2: Initial magnetization curve and major hysteresis loop of a hard ferromagnetic 
material. See text for explanation of abbreviations. 
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initial magnetization curve and a major hysteresis loop. 

remanence. Figure 3 shows a plot of the 
anhysteretic remanence (solid line) plotted 
against the small applied field, with the 
major hysteresis loop shown with dashed 
lines. This is a transfer curve, which is 

measured point -by- point, and is not con- 
tinuous like the hysteresis loop. Note how 
linear this curve is, and that it is nearly 
parallel to the sides of the major hysteresis 
loop. This anhysterctic process is similar to 
how biased recording works. The large cyclic 
field is called the bias, and the small DC field 
is called the "signal." 

If a field is applied to an erased medium 
and then removed, there is some remanent 
magnetization. If we plot this remanence 
versus various values of applied field, the 

curve looks like the solid line in figure 4. 

Compare it to the linear anhysteretic mag- 

netization curve, which is the dashed curve 
in figure 4. Its nonlinearity prevents it from 
being used for audio and other types of 
recording requiring a linear transfer curve. 
Note particularly that there is very little 
remanence until the maximum field is at 

least as large as Hc. This curve is also a 

point -by -point curve like the anhysteretic 
magnetization curve. 

An Assist From Euclid 

We've covered about all the magnetics 
you're going to need, so we'll get right into 
the geometry of the situation. Magnetic 
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The principal methods of 
magnetic recording are 
hysteretic and anhysteretic 
magnetization. 
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Figure 4: Remanence as a function of applied field for an initially erased hard ferromagnetic 
medium, as compared to the anhysteretic magnetization curve. 

recording is, fortunately, a two -dimensional 
process. This means that we can understand 
most of what we need to know by using 
only a two -dimensional picture, and the 
third dimension is thrown in as an after- 
thought. One of the two important dimen- 
sions lies along the recording surface in the 
direction o1 head- to-surface movement. The 
other important dimension is perpendicular 
to the recording surface, and measures the 
thickness of the magnetic medium and the 
held- to-surface spacing. The afterthought 
dimension measures the magnetic track 
width. It has to be considered, but it's not 
nearly so important as the other two. 

1 he particular geometry we'll consider is 

that of a thick coating. This is the situation 
with floppy disks, and we'll use them as our 
primary example. (IBM, who invented the 
floppies, calls them diskettes. Another term 
is flexible disks.) The Philips -type cassette is 

also usually a thick coating (we'll use coating 
and medium interchangeably) situation, 
while rigid disks, drums, and most reel -to- 
reel and cartridge situations are thin media. 
Thick and thin refer to the ratio of the 
medium thickness to the write gap length, 
not to any absolute value of thickness. A 
thick medium situation exists when that 
ratio is greater than 0.5, and thin medium 
situations exist when the ratio is smaller 
than that. The exact size of the ratio 
dividing the two cases is a bit arbitrary. 
Probably not too many computer hobbyists 
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have floppies as yet; but by using a thick 
medium as an example, we can include 
characteristics of thin media as a special 
case. Another reason for picking the floppy 
is that it uses a type of recording simpler 
than cassettes use; hut, by analyzing it, we 
can cover all the major principles. 

Heads Up! 

A ring type head is shown in figure 5a. 

There are many other types of heads, but 
this one is well known and widely used, and 
the principles are analogous for most of the 
others. Note that this head is balanced: 
Thcrc are similar coils on both sides, and 
similar gaps on both the top and the bottom. 
A balanced head has a great resistance to 
pickup of stray fields, and is used where 
hum pickup might be a problem. A lot of 
digital heads are not balanced, and have only 
one coil, as in figure 5b. Read and write 
heads usually differ only in detail (gap and 
track dimensions), or the same head can be 

used for both functions. Floppy disk drives 
usually have only one dual purpose head. 

In figure 6, I have blown up the outer 
edge of the top head gap, and show it 
contacting the magnetic medium. The actual 
dimensions of most floppy disk head gap 

lengths and the coating thicknesses of most 
floppy disks are about the same: 100 
millionths of an inch (100 microinches or 
2.54 micrometers). 



We're Always Blowing Bubbles 

When we create a magnetic field in the 

write head by passing an electric current 
through the head coils, the field stays inside 

the core until it reaches the gap, where it 
balloons out like a weak spot in an inner 

tube. Since the head gap is small, the field 

bubble is confined to a rather small volume. 

Near the corners of the gap edge, the field 
rises to a rather high value, even with only a 

small field in the head core. If the field in 

the magnetic medium is much higher than 

the coercivity of the medium, the magnetiza- 

tion of the medium begins to follow the 

field, and we say that it is being switched. 

Subsequently, if we allow the field to drop 

below the coercivity, the magnetization 

stays pointed in the same direction as the 

last applied field, and is more or less 

proportional to the difference between the 

highest applied field strength and the 

coercivity (up to the point where the highest 

applied field strength saturates the material). 

Now refer back to the curve "Remanence 
versus applied field," in figure 4. If we set the 

write current at a moderate level, some part 

of the medium is experiencing fields from 

above saturation (Hm) down to nearly zero. 

In region A (figure 6) the fields are greater 

than Hm. In region B the fields are less than 

Hc and there is little magnetization. The part 
of the medium in the recording zone (figure 

6) will experience a substantial amount of 
remanence after the field goes to zero (the 

part of the curve in figure 4 between Hc and 

Hm). The part of figure 6 labeled "Record- 
ing Zone - Low Drive" is a transition 
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region, where some of the material is follow- 
ing the field, and some is not. For most 

materials, the boundaries are not sharp as 

shown, but are actually rather fuzzy. 
As the medium moves away from the 

head gap, the part of it which has been in 

the recording zone has a signal impressed 

Figure 6: Write head near gap, in contact with magnetic recording medium. Total field near 

recording zones shown for low drive and maximum output drive. 
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upon it, while the part farthest away from 
the head has not seen a field high enough to 
leave a signal. We can record through the 
whole coating by increasing the drive 
through the head coils. With a higher drive 
current, the transition region is labeled 
"Recording Zone -- Maximum Drive" (figure 
6). Note how the width of the transition 
region has increased; this is a fundamental 
limitation of the medium and the head. 

Things Are in a State of Flux 

Figure 7 shows a series of diagrams of the 
magnetic flux (lines of force) patterns for a 

reading /writing situation similar to the 
floppy disk geometry. The flux intensity 
bounds determining the transition zones are 
also shown for the writing situation. 

Figure 7a shows the head reading, and 
figures 7b through 7d show the head during 
a writing sequence. To simplify things in 7a, 
the ideal recorded flux pattern (which 
resembles bar magnets laid end -to-end) is 

shown. Actual flux patterns are similar, but 
more complicated. Observe that the flux 
from all the magnetized segments is shorted 
out by the head, except for the segment 
across the gap. In that case, the flux threads 
itself all the way around the head. When the 
next magnetized region moves into place, 
the flux will go in the opposite direction. 
The head coils have an output voltage only 
when the flux changes from one direction to 
the other; and the faster it changes, the 
higher the output voltage will be. 

Floppies Are for Real 

Now let's look at a real recording situa- 
tion. The simplest coding is not used by 
floppy disk machines; but it illustrates all 
the principles, and is easiest to understand. 
It is called NRZ1 (Non - Return to Zero, 
change at 1) recording. The track is divided 
into small segments all the same length. If 
the recording is at a bit packing density of 
800 bpi (bits per inch), the segments are 
1/800 inches long, or 0.00125 inches (32 
micrometers). The read electronics arc gated 
so that they only read signals which come 
shortly before, to shortly after, the dividing 
line between segments. During this period, it 
there is a flux transition from saturation in 
one sense to saturation in the other sense, a 

pulse will appear in the gate. The presence of 
a pulse is a one, and the absence of a pulse is 

a zero. More complicated coding than this is 

used for floppy disks. One type is called 
phase modulation. It uses flux transitions 
between gates so that a positive pulse is a 

one and a negative pulse is a zero. There are 
dozens of other coding schemes for digital 
ecording. 



Figure 7b shows a head which has just 
written two maximum drive flux changes on 
the medium, which is moving from left to 
right. Several things are of note: (1) the 
magnetization directions, shown by the 
arrows, are vertical in some places and 
horizontal in others; (2) there is a fairly wide 
transition zone between saturated segments; 
and (3) the transition zone is spread along 
the length of the medium. Compare this to 
the ideal situation shown in figure 7a, which 
has: (a) all the magnetization in the longitu- 
dinal direction; (b) a zero -width transition 
zone between segments; and (c) the transi- 
tion zone lying only in the vertical direction. 
Each of these discrepancies from the ideal 

case loses some of the signal. There is an 

optimum value of drive current to get 
maximum output for any given distance 
between flux transitions. If the optimum 
situation is shown in figure 7b, increasing 
the drive current would make the transition 
zones more vertical, but the width of the 
zones would increase so much that the 
output would go down. If the drive current 
is decreased, the part of the coating away 
from the head doesn't get recorded, and this 
also reduces the output even though the 
transition zone width decreases. 

Long Bars Are Better Than Short Bars 

Now look at figure 7c. Either the 
medium -to-head speed has been slowed, or 
the frequency of flux changes increased; so 

that the flux changes come much closer 
together. We know that the maximum read 

output would come from what looked like 
long bar magnets laid end -to-end (as in figure 
7a, but with the magnets even longer). The 
shorter the bar magnets, the less flux goes 

through the read head and the more goes 

through the bar magnet itself (this is known 
as demagnetization). In figure 7c, there is 

almost as much transition zone as magnet; 
the magnets are very short and not at all like 
bars; and the saturation magnetization does 

not go all the way through the coating. The 
read output will drop off so much that 
reducing the drive current, as shown in 
figure 7d, will actually increase the output 
again! In figure 7d, the magnets look more 
like bars, and the transition zones are not 
such a large percentage of the magnetized 
part. The recorded volumes do not go all the 
way through the coating, but the recorded 
part far from the head in figure 7c was out 
of phase with the recorded part near the 
head. It was really subtracting from the 
signal, so loss of that part actually increases 
the read output. 

One thing is very apparent in 7c: Half the 
medium is not being used. For short dis- 
tances between flux transitions, then, a thick 

medium is a waste. It's even worse than that. 
The transition zone is partially recorded, and 
the part farthest away from the head is 

making a negative contribution to the read 
signal output. We find that if we decrease 
the medium thickness so that we get rid of 
the continuous part of the transition zone 
(away from the head), we get some increase 
in output. Decreasing it too much will 
diminish the output again, so there is an 

optimum medium thickness for any digital 
recording 'situation. Because of the rapid loss 

of output as the transitions are crowded 
closer together, transitions are never placed 
as close together in digital work as in other 
types of recording. If this crowding is 

overdone just a tiny amount, some transi- 
tions give such a low output that bits are 
lost: an intolerable situation. 

The Cassette Connection 

There is a lot in common between digital 
recording on floppy disks and digital record- 
ing on cassettes, cartridges, or other tape 
media; but there are some differences, too. 
One difference is that we have been dis- 
cussing a medium which is isotropic; that is 

to say, its magnetic characteristics are the 
same in all directions. This is not true of 
tapes, as their particles have been oriented 
during the manufacturing process, so that 
they record more easily in the direction of 
head -to-tape motion, and poorly in the other 
two directions. This means that the longitu- 
dinal component of the field is much more 
effective in recording than the vertical com- 
ponent is. The corresponding figures for 
oriented media (to 7b, 7c, and 7d) would 
always have the transition zone going to a 

point which would be fixed near the trailing 
edge of the head gap (see figure 7d), and the 
zone would slant to the left for low write 
currents and to the right for high write 
currents. Even with these differences, the 
conclusions we have already drawn would 
hold to a large extent. There is some 

indication that the vertical part of the write 
head field causes a type of partial erasure of 
the recording on the surface near the head, 
when an oriented medium is employed. 

Another difference may be that biased 
recording is used, instead of saturation re- 
cording. The situation of oriented media 
used with biased recording is fully discussed 
in reference 1. Other types of recording, 
including frequency or phase modulated 
carriers, may be used. Teletype signals trans- 
mitted over telephone lines or via radio use a 

frequency shift type of modulation, where 
one audio frequency is a one and another is 

a zero. This type signal can be sent directly 
to an audio tape recorder with good results, 
except that it tends to be slow. 
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Magnetic recording theory 
is divided into two parts: 
Magnetics and geometry. 



Keep It Clean, Fella! 

Looking back on what we have learned 
about reading and writing digital signals on 
magnetic media, one thing stands out: The 
distances involved are very small. The period 
at the end of this sentence is about 0.02 
inches (510 micrometers) in diameter. This 
is huge, compared to these important dimen- 
sions in recording systems: 

Item Dimension In: Inches Micrometers 
Coating Floppy disk 0.0001 2.5 
thicknesses: Cassette tape 0.0002 5.1 
Head gap Floppy disk 0.0001 2.5 
lengths: Cassette playback 0.00005 1.3 

On a floppy disk, a magnetized volume of 
material on the surface of the coating away 
from the head is only about 15% as effective 
as an equally magnetized volume of the 
coating next to the head; and this is due 
only to the increased distance from the 
head. And as we have seen, it's harder for a 

write head to magnetize the far part of the 
coating, making things even worse. I t follows 
that a piece of dust, just large enough to see, 

between the medium and the head can cause 
a very large loss of output signal. Something 
only half as large as that period would cause 
the complete loss of several bytes of infor- 
mation. In a factory making precision tapes 
or disks, no smoking is allowed in manu- 
facturing areas; hair is kept covered; and 
special clothing is worn so as not to get 
anything on the recording surfaces. Even the 
smoke from cigarettes, pipes, or cigars will 
build up on heads and recording surfaces and 
cause eventual signal loss. Ashes cause 
instant dropouts (total loss of signal). Dust 
from any source is to be avoided like the 
plague. 

There's also dust and dirt which comes 
from the medium itself, or its substrate. 
Floppy disks and tapes are both made out of 
a long polyester plastic sheet (called a web) 
which is coated with a special lacquer 
containing the magnetic material as its pig- 
ment. The original web may be from 12 
inches (30.5 cm) to 48 inches (122 cm) wide 
for floppies, or 6 inches (15.24 cm) to 48 
inches (122 cm) for tapes. After coating and 
drying, the web is usually calendered 
(pressed between heavy rolls). This smooths 
the surface to a mirrorlike finish, though it 
was fairly smooth to start with. Tapes are 
slit out of the web by shearing. Floppies are 
cut out with a die which also shears the 
edges. Tapes and floppies are then cleaned 
by various methods, since the shearing 
process leaves some debris behind. If the 
lacquer is formulated properly, and the 
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shearing and cleaning are done with care, 
normal usage will not generate very much 
more dust and dirt to cause problems. If 
manufacturing is done carelessly or the 
lacquer is poorly formulated or unstable, 
usage will cause shed (dust), or worse, a 

gummy build up on the heads. Both these 
things tend to push the head away from the 
recorded surface, with a serious loss of 
output. Even the best of coatings will 
eventually cause some build up on the heads, 
and heads should be regularly inspected and 
cleaned. 

Cleaning methods vary, and several ways 
are effective. If your machine operator's 
manual makes any recommendations, follow 
them. There are some special tapes and disks 
which are run in the machine for cleaning. 
Several companies have head cleaning 
materials and solutions on the market. My 
favorite concoction is half toluene and half 
isopropyl alcohol; but it has to be used with 
care, since the toluene dissolves some 
plastics and media coating lacquers. Straight 
isopropyl alcohol does a fair job, and is 
available in any drugstore. Apply the cleaner 
to the heads (and guides of a tape machine) 
with cotton tipped sticks. The ones made 
especially for cleaning heads are best, since 
their sticks are stiff, but you can also use the 
ones made for cleaning and oiling babies. 
Clean until the coating color is removed, or 
until the cotton swab comes away clean. 

Professional installations sometimes have 
special machines to clean and recheck their 
media, but this is not usually within the 
budget of the individual. Cleaning of tapes is 

often accomplished by running them across 
a woven, lightly oiled, soft paper wipe which 
is moved slowly away from the point of 
contact. Tapes and disks can also be cleaned 
in an ultrasonic bath with an air squeegee. 
All methods require relatively complicated 
machinery, making cleaning impractical 
except for the largest installations. There are 
some companies which make a business of 
cleaning and re- certifying media. I recom- 
mend retiring from digital use any dirty 
media, and substituting new. 

When buying tapes and cassettes, get the 
best quality you can buy. This is no place to 
save money, as it is always at the expense of 
lost bits. Tapes especially made for digital 
use are a good buy (floppies are always made 
for digital use). If you can't get these, use 
the top line of a well known brand of audio 
tape. Even this is second choice, since audio 
tapes, even good ones, may have some 
bumps on the surface which cause dropouts. 
The loss of five cycles of that high violin in 
"Scheherazade" will cause only a tiny gap 
which you won't hear, and you can lose a 

whole percent or so of "Rites of Spring" and 



never know it; but the loss of just a bit or 
two of a digital sequence can cause nothing 
but garbage to issue from your computer. 

Making Your Media Comfortable 

About 15 years ago, some people at 
Southwest Research Institute, with grant 
money from the Rockefeller Foundation, 
made a monumental study for the Library of 
Congress on storage of sound recordings 
(reference 2). Part of their study was con- 
cerned with magnetic tape. Not very much 
can be added to their findings today. Boiled 
down, we can almost put their findings into 
one sentence: If people are comfortable in 

an environment, tapes can be safely stored 
there for long periods of time with little 
degradation. I say almost, because there are 

a couple of things to add to this. One is that, 
other than the earth's field, no other mag- 

netic fields should be present if information 
is contained on the media. Permanent 
magnets, wiring carrying heavy currents, 
power transformers, and magnetic erasers or 
degaussers should be kept away from the 
media. For most of these things, three feet 
(one meter) is a good rule of thumb for 
distance. Don't get carried away and worry 
about such things as shielding from the 

earth's field, protecting from lightning or 
static electricity, guarding against radiation 
from radio transmitters or radar sets, 

or storing a hundred feet away from any 
electric wiring. Trouble from magnetic 
fields, though it can occur, is rare. The other 
added condition is that all media should be 

stored under low mechanical stress. Tapes 

and cassettes should be wound properly 
from a regular run, not a fast wind. Floppies 
should be stored flat, with no weight piled 
on top. If supported so that they don't 
buckle, they can be stored on edge. Never 

remove them from the envelope if you want 
to use them again. Avoid large temperature 
or humidity changes. 

Summary 

What I have tried to do is give you first an 

overview of digital magnetic recording so 

that maintenance and setup instructions for 
your machine will make sense to you. 
haven't given specific directions for main- 

tenance or setup, because each machine is a 

little different. Knowing how the informa- 
tion is contained on the medium is also of 
importance to understanding why cleanliness 
and good storage conditions are so impor- 
tant to safe storage. Lastly, I collected 
together several guidelines for cleanliness 
and storage which you probably won't find 
in the instruction manual for your machine. 
I hope that all this helps you to pack away 

your bits for easy retrieval. Once these 
principles become second nature to you, 
your large -scale storage problems should 
fade into the woodwork, and you can then 
apply your troubleshooting talents else- 

where. 
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GLOSSARY OF 
MAGNETIC RECORDING TERMS 

Anhysteretic magnetization: The magnetization 
remaining in a ferromagnetic material after apply- 
ing a constant field Hfixed superimposing on it a 

field varying continually from +Hcycled to 
Hcycled (which is initially large enough in ampli- 

tude to cause practical saturation in each direction, 
then reducing the amplitude of Hcycled to zero as 

the cycling continues). 

Biased recording: Magnetic recording done by 
adding the signal field to be recorded, a high 
frequency, large amplitude field called the bias. 
The purpose of the bias is to linearize the recording 
process. 

Bulk storage: Supplemental storage of large volume 
capacity. Also called external storage, secondary 
storage or mass storage. 

Coercive field: The applied magnetic field in a 

given direction, necessary to reduce the remanent 
magnetization of a ferromagnetic material to zero, 
after the application of a saturating field in the 
opposite direction. 

Curie point magnetization: Magnetization of a 

ferromagnetic material, acquired by applying a 

field, heating the magnetic material until its ferro- 
magnetism disappears (the "Curie point "), then 
cooling the material while still in the field. 

Demagnetized: The condition of a ferromagnetic 
material when the directions of magnetization of 
all its domains have been randomized, so that there 
is no external field coming from the material. 

Domain: A small volume of a ferromagnetic 
material in which the atoms are always mag- 
netically aligned in the same direction. The mag- 
netic direction of a domain may be changed, but it 
may not be demagnetized so long as the material is 

ferromagnetic. 

Electron: A non -nuclear part of an atom; the 
smallest particle of (negative) electricity. An elec- 
tron is regarded by physicists as a fuzzy ball of 
negative electricity which has a "spin" 
characteristic. 
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Erasure: The process by which a bulk magnetized 
ferromagnetic material is placed in a bulk demag- 
netized condition. 

Ferromagnetic: A ferromagnetic material is spon- 
taneously magnetized into an assemblage of tiny 
permanent magnets called domains. A ferro- 
magnetic material can be demagnetized only in a 

bulk sense, and only when it is of a large enough 
physical size to contain many domains. 

Frequency modulation: The changing of a carrier 
waves frequency in accordance with the signal 
being transmitted. 

Hysteresis loop: A closed curve obtained by 
plotting magnetization for ordinates ( "y" direc- 
tion) and applied magnetic field for abscissa ( "x" 
direction) as the material passes through a com- 
plete cycle between definite limits of applied 
magnetic field. 

Hysteretic magnetization (or hysteresis magnetiza- 
tion): Magnetization in a ferromagnetic material 
acquired by the cyclic application of a single 
applied magnetic field; magnetization at some 

point on a hysteresis loop. 

Initial magnetization curve: The plot of the mag- 

netization for ordinates and the applied field for 
abscissa of an initially bulk demagnetized ferro- 
magnetic material, as the applied field has its 
strength increased from zero to some high value. 

Isotropic: An isotropic material has some property 
the same in all directions. This word must be 
modified by some adverb describing the property, 
such as "magnetically isotropic." 

Magnetic direction: A vector on a permanent 
magnet pointing from the south -seeking pole to the 
north- seeking pole; for a magnetic field, the vector 
starts at the north- seeking pole of a magnet and 

goes toward the south- seeking pole. 

Magnetization: The number of elemental magnetic 
dipoles per unit volume of magnetic material. A 
single, isolated, spinning electron can be taken as 

the elemental magnetic dipole. All other units of 
magnetization are based on this. 

Remanent magnetization: The particular value of 
magnetization on a hysteresis loop when the 
applied field is zero; the bulk magnetization of a 

ferromagnetic material when there is no applied 
field. 

Saturation magnetization: The magnetization of a 

ferromagnetic material when the applied field is so 
large that all the domains have their magnetic 
directions aligned with the applied field. 

Spin: A representation of the rotation of an atomic 
or sub -atomic particle. Spin is a vector pointing 
along the direction of the axis of rotation. 

Thick coating: A relative term referring to a 

magnetic coating or layer such that its thickness is 

greater than about half the length of the write head 
gap. 

Thin coating: A relative term referring to a 

magnetic coating or layer such that its thickness is 

less than about half the length of the write head 
gap. 
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Computer Kits 



First Person Report: 

by 
John Zarrella 
90-9 Wakelee Rd. 
Waterbury CT 06705 

I decided I would have 
to opt for a kit ... this 
would enable me to get 
on line quickly. 

Assembling an 

Altair 8800 
My adventure with 

microprocessors began rather 
late in the hobby game, at the 
end of 1974. It was about 
this time, or so it seemed to 
me, that micros became the 
topic of conversation in 
anything related to 
computers and automation. 
With the IMP -16, the 8080, 
8008, 4004, etc., it became 
clear that this was what the 
computer market was waiting 
for. However, it was the 
article on the MITS Altair in 
the January 1975 issue of 
Popular Electronics which 
finally did it. Although 
inaccurate and vague, it 

certainly decided me - I was 
definitely going to own a 

micro. The next few months 
saw hurried mailings of 
information requests to any 
company which produced a 

product even remotely 
connected with a 

microprocessor. I 

immediately got out my 
checkbook, and mailed all my 
hard earned dollars to every 
newsletter that was 
published, in my frantic 
search for the "right" 
processor. 

The results were both 
rewarding and disappointing. 
I found that there were some 

Fig. 1. The schematic diagram of power supply circuitry, showing 
additional protection diodes. 
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fantastic processors, but since 
my hardware background is 

not all that hot, I decided 
that I would have to opt for a 

kit with one of the most 
powerful micros I could find. 
I figured that this would 
enable me to get on line 
quickly, learn enough 
hardware to keep up with the 
state -of- the -art, and permit 
me to evaluate new micros as 

they came out, so I could 
build my "dream machine" 
when the right parts became 
available. 

I decided to build the 
Altair 8800. Although the 
instruction set looked rather 
impressive, what convinced 
me was seeing a process 
control system which used 
the 8080; I was truly 
impressed with its capability. 

The Order 
After calling in my order 

to MITS, I waited nearly 
seven weeks for delivery. 
MITS did make it within the 
advertised 60 -day delivery 
time. All was not roses for 
those seven weeks, however; 
it seems that either MITS or 
BankAmericard got their 
signals crossed and couldn't 
get a credit authorization 
(they both eventually 
declined to accept 
responsibility). You can 
imagine what it was like 
getting a call during dinner, 
explaining that my unit was 



ready to ship, but 
unfortunately ... Luckily 
they agreed to ship it COD, 
and I quickly ran down to my 
bank to get a certified check. 
Every morning I left my wife 
with the admonition not to 
miss the delivery, and every 
day at lunch I called to 
determine whether or not my 
"computer" had arrived. (Did 
you ever try to ask your 
insurance agent whether you 
needed extra renter's 
insurance - "You keep a 

computer at home ? ?!! What 
for ? ") 

Assembly 
Within a week of that call, 

I had the Altair in my hot 
little hands. "Are those little 
plastic parts all you get for 
$500.00 ? ", my wife 
exclaimed, peering over my 
shoulder. Undaunted, I 

shooed her out and locked 
myself in the back room all 
weekend soldering PC boards. 
It took three weekends to 
complete the assembly (was it 
my fault I came down with 
pneumonia in the middle ?). 

Ah yes, assembly. In 
general, I found that the 
MITS assembly instructions 
were well written. However, 
their additions were 
sometimes in the manuals in 

the wrong place (e.g., page 

68A after 69). In at least one 
case (front panel control 
board) I had already 
tightened the panel in place 
(bolts on numerous switches), 
when I read that the nut on 
the little screw holding the 
voltage regulator to the board 
(accessible only with the 
panel out) had to be removed 
to add a grounding strap. 
Therefore it pays to check 
the manual pages carefully, 
and look two or three pages 

ahead to see if there are any 
little tricks sneaking up on 
you. 

As for the parts, only one 
resistor was missing; however, 
out of all the screws and bolts 
supplied with the kit, I could 
never find the right one to fit. 
Maybe it was my own 
stupidity, but it seemed that 

Of all the assembly, the worst (and easiest to mess up) 
part was correctly connecting the 60 bus wires between 
the display /control board and the chassis motherboard. 

the last bolt of any given size 

was always supposed to be 

used in at least 10 more 
places. I found that it pays to 
have a good assortment of 
screws and bolts (number 6, 

various lengths '/a" to 3/ ") to 
permit frustrationless 
assembly. 

All soldering and 
component placement was 

easily accomplished - 
positions were clearly marked 
on the boards and in the 
manual. This is high praise 
since I hadn't built many kits 
before; and of these, none 
were this large. Of all the 
assembly, the worst (and 
easiest to mess up) part was 

correctly connecting the 60 
bus wires between the 
display /control board and the 
chassis motherboard. I used 

an Ohmmeter to assure that 
each connection was correct 
and that there were no solder 
bridges to the other bus lines. 
There's got to be a better 
way. I hear Processor 
Technology, Inc., is currently 
marketing a 16 -slot 
motherboard (on the Altair 
you have to jumper four of 
the four slot boards together, 
only one of which comes 
with the kit), and an 

improved connector for the 
display /control board. These 
will definitely be my first 
additions. 

I made only one 
modification to the circuit 
dúring assembly. That 
modification was to add three 
protection zeners to the CPU 
board. Fig. 1 shows the 
electrical connections for this 
change. These were inserted 
to protect the 8080 chip (still 
pretty expensive in singles) 
from power supply failure. 
These zeners should ground 
out overvoltages at currents 
up to 100 Amps. ICTE5c 

57 

were used for the +5 V and 
-5 V lines to the 8080 and a 

1.5KE15 for the +12 V. The 
zeners on the CPU board are 

illustrated in Fig. 2. 
I also added sockets for 

the 8101 RAMs, cleaned all 
boards with trichloroethylene 
solvent, and inspected the 
finished boards with a 

magnifying glass. I would 
highly recommend these 
procedures as they helped me 

find more than one solder 
splash and cold solder joint. 

The Big Test 

On the fourth weekend 
got up the courage to mount 
the 8080 and 8101s. Then 
came turning on the power 
and checking voltages. 
Everything looked good, with 
very little ripple from the 

Did you ever try to ask 

your insurance agent 
whether you need extra 
renter's insurance for a 

computer? 

Fig. 2. Detail of the additional protective diodes 
mounted on the Altair CPU board. 

Additional zener 
diodes for overvoltage 

protection. 8080 Central Processor 



Fig. 3. Adding a parallel capacitance of .0047 uF to C8 of the Altair CPU board schematic lengthens the data 
out enable line time so that memory write does not extend longer than the data out time. 
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Finally the big test: Run a 

program. This is where the 
only problem finally showed 
up. I stopped and reset the 
CPU, set the switches for my 
spectacular program (JMP 0) 
and would you believe it, 
"deposit" wouldn't work. An 
hour later I had determined 
that all other panel switches 
worked correctly (including 
deposit next), and that the 
deposit switch itself was in 
good order. In order to 
initially get around the 
problem I had to examine 
location 177777 (all address 
bits 1), then use deposit next 
to get to location O. 

A study of the schematics 
showed that deposit and 
deposit next use the same 
circuitry, except that deposit 
next first does an examine 
next. You can verify this 
visually by loading all ones 
into the first 10 locations of 
memory. Then, if you use 
deposit next to change all the 
locations to zero, by carefully 
watching the data LEDs, you 
will notice that they all flash 
on as the switch is activated 
(examine next) and 
immediately go off again as 

the deposit is performed. 
I concluded that the 

problem had to be in the 
timing, since the circuits were 
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otherwise identical. Sure 
enough, when I looked at the 
signals on a scope, lo and 
behold, when a deposit was 
performed, the memory write 
line was enabled for 
approximately 20 ns more 
than the data out line. There 
are two oneshots in the 
deposit circuit; the first 
enables the memory write 
line, and the second enables 
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the data out line. The 
memory write problem was 
cured by increasing the 
capacitance on the second 
deposit oneshot. An increase 
of .0047 uF (which increases 
the data out enable time by 
at least 30 ns) proved 
sufficient. This was obtained 
by adding the .0047 uF 
capacitor as shown in Fig. 3. 

When building the Altair, this 

means that C8 (front panel 

control board) should be 

approximately .0147 uF; if 
the board is already 
assembled into the case, a 

.0047 uF capacitor can easily 
be soldered onto the back of 
the board without removing 
any components from the 
case. (Be sure to unplug the 
computer before making the 
change, however.) Fig. 4 

shows placement of the new 
capacitor and the change to 
the Altair schematic diagram. 

I feel that the kit is 

reasonably well made and a 

good buy - at least at the 
current 8080 single lot prices, 
though the add -on options 
may cost somewhat more 
than elsewhere. 

My plans for my unit 
currently involve addition of 
vectored interrupts (a 9318 

or 74148 8 -bit to 3 -bit 
priority decoder is about all 
that's needed to translate the 
eight vectored interrupt lines 
on the bus into an RST 
instruction), a real -time 
clock, monitor clock and 
some type of I/O (teletype, 
CRT, etc.). 

Fig. 4. The additional .0047 uF capacitor is mounted on the rear of the control panel board. 
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to the rear of the 
control panel board. 
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Modify this section 
of your schematic. 



Build A 6500 System 

With This Kit 

If you are one of the many 
people getting ready to 
purchase one of the 
reasonably priced 
microprocessor system kits 
on the market today, you 
might ask yourself whether or 
not you will be able to start 
entering programs once you 
get it all put together. Of 
course you can always load 
programs and data through 
the front panel programmer's 
console, but most individuals 
aware of the front panel's 
slow speed and difficult 
readability prefer to use a 

Teletype or low cost video 
terminal such as the TV 
Typewriter II (February 1975, 
Rodio Electronics) for data 
and program input /output. 
This is all well and good 
except that in order to attach 
a terminal, you'll have to 
purchase an interface for 
your computer if it is not 
supplied with the basic 
system. In fact you will 
generally need a separate 
interface for each I/O 
(input /output) device 
connected to your computer. 
This can run your system 

by 
Gary Kay 
Southwest Technical Products Corp. 
219 W. Rhapsody 
San Antonio TX 78216 

investment up considerably 
since such interfaces typically 
cost between $75 and $150 
each, and there are more 
surprises yet to come. 

So now you've got your 
computer, with interface, 
attached to your terminal; 
you're ready to sit down, 
power up and start typing in 

your program, right? Well, 
not quite. You see, in order 
to be able to use the terminal 
for either entering programs 
or getting data in and out of 
the computer you must have 

a program resident or loaded 

Fig. 1. Block diagram of the SWTPC 6800 system. The address allocations of the elements of the system are 

noted inside the blocks. 

6800 
CPU, 

CLOCK & BUFFERS 

MI KBUG MIKBUG 2K BYTE CONTROL 
ROM RAM RAM INTERFACE 

E000 -E1FF A000 -A07F 0000 -1 F F F 8004 -8007 

USER 
TERMINAL 

ITTY OR RS -232) 

59 

into memory telling the 
processor how and what to 
do. Without this software 
(program), you can pound on 
the keyboard all you want 
and the computer won't do 
anything. Computers are no 
smarter than their 
programming lets them be 

and without programming 
they're not very smart at all. 
How do you get this software 
into memory? Well, you 
could load it in from paper or 
cassette tape, that is if you 
have a paper tape reader or 
cassette tape interface 
(another sizable investment) 
or you could enter it directly 
from the programmer's 
Console. The problem here is 

two fold. Software to give the 
terminal reasonable system 
control will probably be 

around 500 words in length. 
This is far too long to enter 
from the programmer's 
console especially when you 
consider it has to be 

re- entered every time the 
system is powered up or after 
a wayward program 
overwrites any of its allocated 
area of memory. The second 
problem is that few if any of 
the manufacturers supply a 

listing, paper tape or cassette 
tape of such a program to 
begin with. Their terminal 
control routines are 
contained within 
editor /assembler and higher 



CPU BOARD 

MEMORY BOARD 

CONTROL INTER FACE 

MOTHERBOARD 

MCM6810L1 
128X8 RAM 

MCM6830L 
"MIKBUG" 

ROM 

level language packages which 
not only must be loaded from 
some kind of tape reader, but 
require from 4,096 to 8,192 
words of memory to operate. 
And you thought the 
interfaces were expensive, 
just check the prices on 8,192 
words of memory. Many of 
the systems now on the 
market are supplied with an 
amount of memory with the 
basic unit which is 
considerably less than what 
might actually be needed for 
useful programming. 

So what's the alternative? 
Well, the system presented in 
this article has been designed 
to eliminate the afore- 
mentioned problems and 
allow the user to have a 

powerful and fully functional 
system at a minimum cost 
(see Fig. 1). The entire 
system is built around the 
Motorola MC6800 
microprocessor and its family 
of support devices. The 
computer itself is being made 
available in kit form including 
the chassis, cover, power 
supply and all circuit boards, 

MC6800 
PROCESSOR 

parts and hardware necessary 
to build a Motorola 6800 
based microprocessor 
including a 1,024 word ROM 
(read only memory) stored 
operating system with 
128 -word scratch pad 
memory, serial interface baud 
rate generator, serial 
interface, and 2,048 words of 
memory for $450. This 
article gives a description of 
the microprocessor and 
mother board. A future 
article will describe the power 
supply, memory and interface 
boards. 

The Microprocessor /System 
Board (MP -A) 

The Microprocessor/ 
System Board (coded MP -A) 
is the primary logic board for 
the system. It is a 5 1 /2" x 9" 
double sided plated- through 
hole circuit board containing 
the 6800 microprocessor 
chip, the 6830 ROM which 
stores the mini -operating 
system and the 6810, 
128 -word scratch pad random 
access memory (RAM) 
needed by the ROM. 
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POWER 
SUPPLY 

There is a crystal controlled 
processor clock driver and 
baud rate generator providing 
serial interface baud rates of 
110, 150, 300, 600 and 1200 
baud for all but the terminal 
control interface which is 
operable at 110 or 300 baud. 
Also provided is a power 
up /manual reset circuit which 
restarts the ROM stored 
mini- operating system 
whenever activated. Full I/O 
buffering is provided for the 
16 address lines and eight 
bidirectional data lines with 
these and other connections 
made to the rest of the 
system through the mother 
board via a 50 -pin connector. 
Power for the board is 
derived from a +5 volt 
regulator fed from the 
system's unregulated 7 volt, 
10 Amp power supply. 
Average current consumption 
for the board is 0.8 Amps. 

The mini -operating system 
stored in the 6830 ROM on 
this board has got to be one 
of the most outstanding 
features of this system. It is 

through this Motorola written 

Details of the SWTPC 
6800 System. This photo 
illustrates what you see 
when you remove the 
cover of a typical SWTPC 
computer system. This is 
an assembly of the parts 
which come in the MP -68 
kit. 

software package called 
"MIKBUG" that the user can 
1) enter program or data into 
memory from either the 
terminal's keyboard or tape 
(where applicable), 2) jump 
to and execute a program 
loaded in memory, 3) list 
programs or data stored in 
memory, on the terminal or 
tape (where applicable), 4) 
examine and /or change the 
contents of the internal CPU 
registers, 5) examine and /or 
change the contents of 
specified memory locations. 
These operations are 
performed using a 20 mA 
current loop Teletype or an 
RS -232C compatible serial 
ASCII terminal. 

This ROM mini -operating 
system does not have to be 
loaded from tape and it 
cannot be overwritten. It is 

always there at your 
fingertips - just pressing the 
RESET button or simply 
powering the system up 
automatically restarts this 
firmware (ROM stored 
software). When activated, 
this system responds with a 



L 

MIN IBUG/ 
TEST PATTERN 

(NOT USED 

MIKBUG 
ROM 

ti 

MIKBUG 
RAM 

I/O PORT 
NO.7 

I/O PORT 

NO.6 
I/O PORT 

NO.5 
I/O PORT 

NO.4 
I/O PORT 

NO.3 
I/O PORT 

NO.2 
I/O PORT 

NO.1 CONTRA. 
INTERFACE 
I/O PORT 

NO.0 
4K MEMORY 

NO.7 
4 K MEMORY 

NO.6 
4K MEMORY 

NO.5 

4K MEMORY 
NO.4 

4K MEMORY 
NO.3 

4K MEMORY 
NO.2 

4K MEMORY 
NO. I 

4K MEMORY 
NO.0 

FFFF 

EIFF 

E000 

A 07F 

A000 

801 F 

80I C 

801B 

8018 
8017 
8014 
8013 

8010 
800F 
800C 
800B 
8008 
8007 
8004 
8003 
8000 
7FFF 
7000 
6FFF 
6000 
5FFF 
5000 
4FFF 
4000 
3FFF 
3000 
2FFF 
2000 
IFFF 
1000 
OFF F 

0000 

Fig. 2. SWTPC 6800 
Microprocessor System memory 
map. The 64K address space of a 
6800 CPU is divided up into the 
segments shown here. The first 
32K locations are available for 
user read -write memory. The 
second 32K is devoted to I/O port 
assignments and the requirements 
of the MIKBUG program supplied 
by Motorola. 

carriage return, line feed and 
then prints a * on the 
terminal at which time you 
may enter various single 
character control commands 
such as M for memory 
examine /change, L for load 
from tape, P for punch or list, 
R for examine registers or G 

for go to and execute a 

loaded program. A program 
debug routine can also be 

implemented by using the 
software interrupt (SWI) 
instruction as a "breakpoint" 
which forces a jump from 
your program to the 
operating system to allow 
you to examine the contents 
of memory and /or the CPU 
registers. All data entered or 
displayed through the 
terminal is in convenient 
hexadecimal (base 16) 
notation. This means you can 
type in a command to load 
address location A00016 with 
9E16 instead of setting 24 
console switches to an 

address of 1010 0000 0000 
0000 with data of 1001 1110 
as must be done with the 
conventional programmer's 
console. Since the operating 
system is stored in ROM, it 
consumes no user RAM 
memory, in fact, it actually 
gives the user a little extra. 
There is a 128 -word scratch 
pad memory utilized by the 
operating system for storing 
various addresses and data, 
but there are more than 54 
locations within this 6810 
RAM memory which are 

totally unassigned plus a 

46 -word deep push -down 
stack. All of this memory is 

in addition to the 2,048 
words (expandable to 4,096 
words) contained on the 
standard memory board. 

Since the terminal and 
mini- operating system 
provide the user with 
complete system control, 
there is no need for the 
conventional programmer's 
console. Take note also that 
once system control is turned 
over to your program, the 
control terminal is totally 
available for your program 

input /output. In fact, since 
the character input /output 
subroutines are already stored 
within the operating system 
ROM, they can be used by 
your programs simply by 
loading or storing the 
characters to be handled in 
the proper register and 
executing a jump to 
subroutine (JSR). 

The Motorola MC6800 
microprocessor chip is the 
element around which this 
entire system is built. It is an 

8 -bit parallel processor with 
eight bidirectional data lines 
and 16 address lines giving it 
an addressing capability of up 
to 65,536 words. There is no 
distinction between memory 
and I/O addressing on this 
system, therefore, all 
input /output data transfers 
are handled just as are the 
memory transfers. This means 
the I/O interfaces must have 

their own allocated memory 
addresses where neither ROM 
or RAM memory may be 

located. This may at first 
seem to be a disadvantage 
until you realize that all 
memory handling instructions 
are usable for the interface 
data handling as well, thus 
eliminating the need for 
special data I/O instructions. 
The memory assignments for 
this system have to be made 
as shown in Fig. 2. User RAM 
may be located anywhere in 

the lower 32K (000016 to 
800016) addresses with the 
upper 32K addresses reserved 
for the operating system 
ROM, RAM and interface 
boards. 

There are six registers 
internal to the MC6800 
microprocessor element 
which consist of the program 
counter, stack pointer, index 
register, accumulator A, 
accumulator B and condition 
code register. The stack 
pointer is a 16 -bit register 
used to store the address of 
the push -down stack which is 

located in RAM memory 
external to the MC6800 
microprocessor element. The 
push -down stack itself is used 
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to store the program counter 
and /or processor data during 
branch to subroutine (BSR), 
jump to subroutine (JSR), 
push (PHS) or interrupt 
routines. The index register is 

a 16 -bit register generally 
used as an address pointer for 
many processor instructions. 

There are 72 basic 
instructions for the 6800 
microprocessor system (Fig. 
3) with most of the 72 
utilizing several of the seven 
possible addressing modes: 
Accumulator, implied, 
relative, direct, immediate, 
extended and indexed. 

Accumulator - In 
accumulator addressing, 
either accumulator A or 
accumulator B must be 

specified. 
Implied - In implied 

addressing the instruction 
code itself specifies the 
operand (stack pointer, 
index register, etc.). 

Relative - Relative 
addressing is used for the 
branch instructions and 
indicates the value 
contained in the word of 
memory immediately 
following the instruction 
code added to the program 
counter +2 with the result 
then loaded back into the 
program counter. Positive 
data (bit 7 = 0) generates 
forward jumps up to 129 
words from the branch 
instruction while negative 
data (bit 7 = 1) generates 
backward jumps up to 125 
words from the branch 
instruction. 

Direct -- In direct 
addressing, the value 
contained in the word of 
memory immediately 
following instruction code is 

an actual memory address 
within the first 256 words 
of memory (000016 to 
00FF) which contains the 
operand of the instruction. 
This mode typically saves 

one CPU cycle of execution 
when compared to extended 
addressing. 

Immediate - In 
immediate addressing, the 



value contained in the word, 
or in some cases two words 
of memory, immediately 
following the instruction 
code is the operand of the 
instruction. 

Extended - In 
extended addressing, the 
two words of memory 
immediately following the 
instruction code contain the 
address of the memory 
location which contains the 
operand of the instruction. 

Indexed - In indexed 
addressing, the value 
contained in the word of 
memory, immediately 
following the instruction 
code, is temporarily added 
to the contents of the index 
register generating a new 
address where the operand 
of the instruction is located. 
The jump is positive only, 
going from 0 to 255 words 
and the actual contents of 
the index register are not 
changed. 

Also provided on the main 
processor board is an 
MC14411 baud rate generator 
which uses an external 
1.8432 MHz crystal and 
internal oscillator and divide 
chain to generate serial 
interface clocks for baud 
rates of 110, 150, 300, 600 
and 1200 baud. Also derived 
from this circuit is the 921.6 
kHz clock used by the 
MC6800 microprocessor 
element. It is first, however, 
fed into a gating circuit 
generating two non - 
overlapping, 50% duty cycle, 
complementary clock signals 
(I)1 and 02. 

Mother Board (MP -B) 

The Mother Board (coded 
MP -B) is a 9" x 14" double 
sided, plated- through hole 
circuit board onto which all 
of the various processor 
boards are plugged. Provisions 
have been made for one 
Microprocessor /System 
Board, up to four 4,096 word 
random access memory 
boards plus two unused slots. 
This allows the system to be 
expanded to 16,384 words of 

memory. For those 
demanding even more 
memory, the 50 -line system 
information bus may be 

paralleled onto another 
mother board with separate 
power supply expanding the 
system to a maximum of 
32,768 words of random 
access memory. 

The Mother Board also 
provides the line buffering 
and address decoding for up 
to eight interface boards. 
Although one of the eight 
must be the serial terminal, 
control interface, the other 
seven may be any 
combination of parallel or 
serial interfaces the user may 
choose to have. For those 
demanding even more 
interfacing capability, the 
50 -line system information 
bus may be paralleled onto 
another mother board with 
separate power supply 
expanding the interfacing 
capability to one terminal, 
control interface plus any 
combination of up to 15 
serial or parallel interfaces. 

The following is a brief 
description of each of the 50 
lines on the system 
information bus: 

The AO - A15 lines 
carry address bits 0 through 
15 respectively, forming a 

16 -bit address which is used 
to define either a memory 
location or interface 
address. 

The BUS AVAILABLE 
line goes high ac- 
knowledging a processor 
halt, meaning the processor 
has stopped and that the 
system information bus is 

available for external 
control. 

The DO - D7 lines carry 
inverted data bits 0 through 
7 respectively, forming 8 -bit 
data words which are 
exchanged between the 
various boards within the 
system. 

The GND line is the 
system's common power 
supply ground point. 

Fig. 3. The 6800 microprocessor's instruction set. This is a list of the 
mnemonics available. A more complete explanation of the basic 
operations of the processor is found in Motorola's programming manual 
for the 6800 which is part of the SWTPC documentation package. 
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ABA 
ADC 
ADD 
AND 
ASL 
ASR 
BCC 
BCS 
BEQ 
BGE 
BGT 
BHI 
BIT 
BLE 
BLS 
BLT 
BMI 
BNE 
BPL 
BRA 
BSR 
BVC 
BVS 
CBA 
CLC 
CLI 
CLR 
CLV 
CMP 
COM 
CPX 
DAA 
DEC 
DES 
DEX 
FOR 
INC 
INS 
INX 
JMP 
JSR 
LDA 
LDS 
LDX 
LSR 
NEG 
NOP 
ORA 
PSH 
PUL 
ROL 
ROR 
RTI 
RTS 
SBA 
SBC 
SEC 
SEI 
SEV 
STA 
STS 
STX 
SUB 
SWI 
TAB 
TAP 

TBA 
TPA 

TST 
TSX 

TXS 

WAI 

ADD ACCUMULATORS 
ADD WITH CARRY 
ADD 
LOGICAL AND 
ARITHMETIC SHIFT LEFT 
ARITHMETIC SHIFT RIGHT 

CARRY CLEAR 
CARRY SET 
EQUAL TO ZERO 
GREATER OR EQUAL ZERO 
GREATER THAN ZERO 
HIGHER 

BRANCH IF 
BRANCH IF 
BRANCH IF 

BRANCH IF 
BRANCH IF 
BRANCH IF 

BIT TEST 
IF 
IF 
IF 
IF 
IF 
IF 

BRANCH 
BRANCH 
BRANCH 
BRANCH 
BRANCH 
BRANCH 
BRANCH 
BRANCH 
BRANCH 

LESS OR EQUAL 
LOWER OR SAME 
LESS THAN ZERO 
MINUS 
NOT EQUAL TO ZERO 
PLUS 

ALWAYS 
TO SUBROUTINE 
IF OVERFLOW CLEAR 

BRANCH IF OVERFLOW SET 
COMPARE ACCUMULATORS 
CLEAR CARRY 
CLEAR INTERRUPT MASK 
CLEAR 
CLEAR OVERFLOW 
COMPARE 
COMPLEMENT 
COMPARE INDEX REGISTER 
DECIMAL ADJUST 
DECREMENT 
DECREMENT STACK POINTER 
DECREMENT INDEX REGISTER 
EXCLUSIVE OR 
INCREMENT 
INCREMENT STACK POINTER 
INCREMENT INDEX REGISTER 
JUMP 
JUMP TO SUBROUTINE 
LOAD ACCUMULATOR 
LOAD STACK POINTER 
LOAD INDEX REGISTER 
LOGICAL SHIFT RIGHT 
NEGATE 
NO OPERATION 
INCLUSIVE OR ACCUMULATOR 
PUSH DATA 
PULL DATA 
ROTATE LEFT 
ROTATE RIGHT 
RETURN FROM INTERRUPT 
RETURN FROM SUBROUTINE 
SUBTRACT ACCUMULATORS 
SUBTRACT WITH CARRY 
SET CARRY 
SET INTERRUPT MASK 
SET OVERFLOW 
STORE ACCUMULATOR 
STORE STACK REGISTER 
STORE INDEX REGISTER 
SUBTRACT 
SOFTWARE INTERRUPT 
TRANSFER ACCUMULATORS 
TRANSFER ACCUMULATORS TO 
CONDITION CODE REG. 
TRANSFER ACCUMULATORS 
TRANSFER CONDITION CODE REG. 
TO ACCUMULATOR 
TEST 
TRANSFER STACK POINTER TO 
INDEX REGISTER 
TRANSFER INDEX REGISTER TO 
STACK POINTER 
WAIT FOR INTERRUPT 



The normally high HALT 
line when brought low halts 
the processor and frees the 
system information bus for 
external control. 

The INDEX line is an 

unused one and is provided 
so the pin on each of the 
male connectors may be cut 
with the corresponding 
female connector pins 
plugged, preventing the 
circuit boards from being 
plugged on incorrrectly. 

The I RQ is the maskable, 
single level interrupt request 
line feeding the processor 
board. If not inhibited by 
software it will when 
momentarily given a TTL 
zero level signal, force the 
processor into a push -down 
stack store routine followed 
by a program jump to a user 

selected address stored in 
the operating system RAM. 

The M. RESET line, 
when momentarily 
grounded manually, 
indirectly resets the registers 
internal to the processor 
and interfaces, and loads the 
ROM stored mini -operating 
system. This line is normally 
grounded by depressing the 
RESET button on the 
system's front panel. 

The NMI is the 
non -maskable, single level 

Once you've assembled 
and checked out the 
operation of your MP -68 
kit, the result will be a 
product which looks like 
this. Note the complete 
absence of most of the 
usual control panel 
functions you might 
expect. This is achieved by 
using a serial communica- 
tions device such as a 
Teletype or an RS -232C 
compatible terminal as the 
"front panel." 

interrupt line feeding the 
processor board. When 
momentarily given a TTL 
zero level it forces the 
processor into a push -down 
stack store routine, 
followed by a program jump 
to a user selected address 
stored in the operating 
system RAM. The NMI is 

not maskable thus cannot 
be inhibited by the 
programmer through 
software. 

q)2 is one of the two 
complementary system 
clock outputs and is used to 
signal that valid data is on 
the data lines DO - D7 
when low. 

(pi is the non- overla ping 
clock complement of. 

The RESET line when 
low resets the registers 
internal to the processor 
and interfaces, and loads the 
ROM stored mini -operating 
system. This line is activated 
by one shot on the 
M is roprocessor /System 
board when the system is 

first powered up or when M. 
RESET line is momentarily 
grounded. 

The R/W line establishes 
the direction of data flow 
on the eight data lines, DO 

- D7. It is high for a read 

from memory or interface 

and is low for a write to 
memory or interface. 

VMA is the valid 
memory address line which 
goes low to confirm that 
valid memory address data 
is being presented on the 16 
address lines, AO - A15. 

The UD1 
user defined 
not been 
function. 

and UD2 are 
lines and have 
assigned a 

The -12 and +12 points 
are lines to which an 
isolated ground -12 @ 200 
mA and +12 @ 200 mA 
power supply should be 

connected. The voltages are 
necessary for generating the 
currents required by 20 mA 
current loop Teletype 
equipment on the serial 
interfaces. 

The 7 - 8 VDC UNREG 
point is the line to which a 

+7 to 8 volt dc @ 10 Amp 
unregulated power supply 
should be attached. This 
voltage is then regulated 
down to +5 V dc by 
independent regulators on 
the various boards within 
the system. 

The five 110b, 150b, 
300b, 600b, 1200b lines 
carry 1758.8, 2400, 4800, 
9600 and 19200 Hz clocks 
required by the serial 
interfaces for 110, 150, 300, 

600 and 1200 baud 
communication. 

Also attached to the 
50 -line system information 
bus are the interface decode 
and driver circuits. A 
considerable cost savings is 

made here by providing the 
address decoding and 
information bus buffering for 
all of the interfaces right on 
the mother board instead of 
providing it on each of the 
interface boards individually. 
Since each of the parallel 
interfaces require four 
address locations and the 
serial two, four addresses are 
provided for each of the 
interface positions. They are 
assigned as shown in the 
memory map, Fig. 2. 
Interface position 1 (8004 - 
8007) is reserved for the 
terminal control interface. 
The signals carried on the 
interface information bus are 
almost identical to those on 
the system bus. UD3 and 
UD4 are here again User 
Defined data lines and RSO 

and RS1 are Register select 
lines which are identical to 
address lines AO and Al 
respectively. Power for the 
address decode and buffer 
circuits on the mother board 
is provided by a separate on 
board regulator with a 

current consumption of 
typically 0.4 Amp. 
(More SWTPC 6800 data is 
coming in BYTE.) 
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The Parallel Interface Board is used to latch and control the input and output 
of 8 bit bytes. The Motorola 6820 Peripheral Interface Adaptor (PIA) is the 
main component of this board, with several smaller chips acting as buffers. 
This board permits parallel connections to such devices as printers, laboratory 
breadboards, and special purpose keyboards. 

In the December 1975 issue of BYTE we 
talked about the microprocessor /system 
board (MP -A) and the mother board (MP -B) 
for the Southwest Technical Products 6800 
microprocessor system. This article describes 
the serial control interface (MP -C), the 2,048 
byte random access memory board (MP -M), 
the power supply (MP -P) and cabinet 
(MP -F). We will also talk about the serial 
interface boards (MP -S) and parallel inter- 
face boards (MP -L). 

Serial Control Interface 

The serial control interface (coded MP -C) 
is a 5.25 inch by 3.5 inch doubled sided, 
plated through hole board containing a 6820 
peripheral interface adapter integrated 
circuit and circuitry which forms the serial 
control interface. Data rates of 110 or 300 
baud are selected by a jumper wire. The 
interface includes software control of an 
input to output echo feature which is 

necessary in some tape reader operations. Its 
data input or output must be in ASCII 
(without parity) and either 20 mA Teletype 
or RS -232 compatible. A low cost terminal 
such as the TV Typewriter II (February 
1975 issue of Radio Electronics Magazine) is 

ideal. 
10 connections are made to the interface 

via a 10 pin connector along the top edge of 
the board. Power for the board is provided 
by a 5 VDC regulator at a current con- 
sumption of about 0.2 A. 12 VDC and -12 
VDC sources are also used. 
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The Serial Interface Board is used to convert parallel data from the processor into serial data to a terminal (and vice versa). The 
major portion of this task is accomplished using the Motorola 6850 Asynchronous Communications Interface Adapter (ACTA) 
circuit, which is the large package in the center of the board. The remaining components on this board are used to provide both 
an RS -232 interface and a Teletype 20 mA current loop interface. 

The board itself must only be plugged 
onto the first interface port position of the 
mother board. It is constantly polled for 
incoming commands by the Motorola 
MIKBUG software stored in the operating 
system ROM whenever the system is 

powered up, or is reset and is under oper- 
ating system control. When system control is 

turned over to your program, the control 
terminal is also available for program IO. To 
output a character to the terminal's display, 
store the character in accumulator A and 
jump to subroutine OUTEEE, which is a 

character output routine written into the 
operating system ROM. To input a character 
from the control terminal's keyboard, jump 
to subroutine INEEE, which is a character 
input routine written into the operating 
system ROM. In this subroutine the system 
hangs in a loop until a character is typed at 
which time there is a return from subroutine 
with the entered character deposited in 
accumulator A. The use of these ROM 
stored subroutines greatly simplifies the job 
of the programmer for control terminal data 
input /output. 

In addition to the Serial Control Inter- 

face, any combination of up to seven parallel 
or serial interfaces may be plugged onto the 
interface connectors. Since the 6800 family 
of chips includes both parallel (6820) and 
serial (6850) interface elements, interfacing 
is extremely flexible. 

Parallel Interface 

The Parallel Interface (coded MP -L) is a 

5.25 inches X 3.5 inches (12.86 cm X 8.57 
cm) double sided, plated through hole 
circuit board containing a 6820 peripheral 
interface adapter integrated circuit and its 
associated circuitry which is used to connect 
a parallel data device such as a printer or 
parallel data terminal to the computer sys- 
tem. The board is provided with two sepa- 
rate connectors along the top edge of the 
board. One has eight fully buffered TTL 
compatible high current data outputs along 
with one buffered "data ready" output line 
and one "data accepted" input line for 
complete handshake control. The other con- 
nector has eight TTL compatible input lines 
along with one "data ready" input line and 
one "data accepted" output line, here again 
for complete handshake control. The "data 
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The memory board, shown here with a full 4096 word complement of 2102 
memory chips, is one of the more important elements of the system. The 

black chips at the right edge of the photo are interface devices and address 

decoding. The two voltage regulators on the board are in the center. The 

remaining integrated circuits are 32 chips of 1 K by 1 bit memory. 

ready" and "data accepted" lines are under 
complete program control even to the extent 
of setting the transition polarity upon which 
the lines will be triggered. Interrupts are 

under complete software control as well. 
For the user who has specialized parallel 

IO requirements, the TTL data buffers may 
be omitted from the board, and each of the 
sixteen data lines may be individually soft- 
ware programmed by the user as either all 
inputs, all outputs or any combination of 
the two. The programmer has complete 
software control of the four handshake lines, 
two of which are software programmable for 
input or output. Power for the board is 

supplied by a 5 V regulator at a current 
consumption of 0.3 A. 

Serial Interface 

The Serial Interface (coded MP -S) is a 

5.25 inches X 3.5 inches (13.3 cm X 8.9 cm) 
double sided, plated through hole circuit 
board containing a 6850 asynchronous com- 
munications adapter integrated circuit and 
its associated circuitry which is used to 
interface a serial device such as a terminal to 
the computer system. Like the Serial Con- 
trol Interface, its communication must be in 
ASCII form and either 20 mA TTY or 
RS -232 compatible. Baudot coded teletypes 
will not work. The data IO baud rate for 
each of the interfaces is jumper program- 
mable and may be set for 110, 150, 300, 
600 or 1200 baud operation. One central 
clock on the microprocessor /system board 
provides all of the various baud rate clocks 
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simultaneously, so that each of the serial 

interfaces can have an independent data rate. 

This eliminates a good deal of duplicate 
circuitry and keeps the serial interface cost 
low. 

As with the Parallel Interface, there are 

many functions that are under software 
control. Selection of one of 8 different 
combinations of bit count, parity, and 

number of stop bits is user programmable as 

is control of transmitter and /or receiver 

interrupts. Checking the interface for trans- 

mitter buffer empty, receiver buffer full, 
framing error, parity error, and receiver 

overrun are here again all done through 
software just by reading the data contained 
within the interface's internal status register. 
External connections to the board are made 

via a ten pin connector along the top edge of 
the board. Power for the board is supplied 
by a +5 V regulator at a current consumption 
of approximately 0.2 A. +12 VDC and -12 
VDC sources are used for generating the 

Teletype currents and the RS -232 voltage 

output. 

Memory Board 

The Memory Board (coded MP -M) is a 5.5 
inch by 9 inch (14 cm by 22.9 cm) double 
sided plated through hole circuit board with 
data bus buffering, and address decoding for 
up to 4,096 bytes of fast 2102 static random 
access memories. The basic memory board 
kit comes with only 2,048 words, however. 
To fill the board to a full 4,096 words of 
RAM, you must add the memory expansion 
kit (MP -MX) which contains another 2,048 
words of memory ICs and a separate voltage 
regulator. Up to four of these 4,096 word 
boards may be plugged onto each mother 
board. 

The 2102 static memories were chosen 
because of their availability, low cost and 
established reliability. Although the 4 K 
dynamic memories are becoming popular, 
they require refresh circuitry and slow the 
processor during refresh cycles. Address 
assignments are made on each memory 
board by connecting the address jumper to 
one of the eight possible positions, pro- 
gressing on each memory board from 0 to 7. 
This programs the boards from 0 to 32 K 
words in 4 K word increments. Since each 
mother board will only support up to four 
4,096 word memory boards, it is necessary 
to use another mother board with separate 
power supply to expand the memory 
beyond 16,384 words. Power for the lower 
2,048 words of memory as well as the 
decode and buffer circuits is provided by a 5 

V regulator with a current consumption of 
approximately 0.8 A. Power for the upper 
2,048 words of memory when present is 



provided by a separate 5 V regulator at a 

current consumption of approximately 0.6 
A. 

Power Supply 

The MP -P power supply consists of a 
power transformer, high current bridge recti- 
fier, filter capacitor, and power supply 
board. The low voltage transformer sec- 
ondary winding, bridge rectifier and filter 
capacitor provide the 7 to 8 V DC at 10 A 
required by the complement of boards in the 
computer system. Since the regulation down 
to 5 V is provided on each of the system 
boards, the actual value of this voltage is not 
critical. It must however be maintained at no 
less than 7 V for proper regulator operation 
while not so high as to cause the regulators 
to generate abnormal temperatures. 

The higher voltage transformer secondary 
winding along with the rectifiers and filter 
capacitors on the power supply board pro- 
vide the +12 and -12 V DC at 0.5 A 
required by the control and serial interfaces. 
All connections from the power supply to 
the mother board are made through an easily 
detached connector on the power supply 
board. This makes mother board installation 
and removal a snap. The power transformer's 
primary may be wired for either 120 or 240 
VAC operation with a current consumption 
of 120 VAC at 1 A or 240 `SAC at 0.5 A. 

Chassis and Cover 

All of the boards for the 6800 computer 
system including the power supply are 

housed in a 15.125 inches wide X 7.0 inches 
high X 15.25 inches deep (37.05 cm wide X 
17.15 cm high X 37.36 cm deep) anodized 
aluminum chassis with a perforated cover. 
The use of the perforated cover eliminates 
the need for a cooling fan in almost all 
environments. The front panel supports both 
the POWER on -off and RESET switches. 
The RESET switch initializes all of the 
registers in the system and loads the terminal 
controlled Motorola MIKBUG operating 
system whenever depressed. The rear panel 
contains an array of holes through which the 
interface cables and line cord may pass. Both 
panels along with the cover may be easily 
removed providing 360° access to the system 
for prototyping or service. 

The 6800 system presented within this 
and the previous article, has been shown to 
have outstanding ease of use and is an 

economical package. But as many of us 
already know, hardware is but a small part 
of a "computer system." Programming, or 
software as it is generally referred to, is just 
as important as the hardware. Of course this 
system does have a very useful ROM stored 
operating system, but what else is available, 

and how does one load such software in 
memory without having to type it in 
through the control terminal one byte at a 
time? Well, first of all several diagnostic 
listings are provided by the manufacturer of 
the kit to help check out the various boards 
within the system. These diagnostics are 
typically less than 90 bytes in length and can 
be entered manually from the control ter- 
minal in less than five minutes. Included 
within these diagnostics are two programs 
that provide a thorough checkout of the 
random access memory boards, a common 
failure point for many systems. 

Regarding some method of storing and 
loading in programs, a low cost audio cas- 
sette tape digital storage system is presently 
in the works that will be totally compatible 
with this computer system. You can expect 
to see it in a forthcoming BYTE Magazine 
article. Also to be available shortly is an 
editor /assembler software package which 
will be sold for the cost of the documenta- 
tion and tape only to those people simul- 
taneously purchasing 4 K of the 8 K words 
of memory necessary to support the 
package. 

Another note of importance is that the 
ROM stored mini- operating system on the 
Microprocessor /System Board is exactly the 
same (MC6830L7) as that used on 
Motorola's Evaluation Module and Inte- 
grated Circuit Evaluation Kit. This means 
that most all programs written for the 
Motorola's Evaluation Module will function 
on the 6800 computer system presented 
here. Motorola also supports their more 
sophisticated prototyping system called the 
EXORcisor® (Registered trademark of 
Motorola Inc.). This system has a larger, 
more sophisticated firmware package, but it 
uses the same 6800 microprocessor element, 
therefore much of its software is compatible 
with the 6800 system presented here. 
Because of this compatibility, arrangements 
have been made with Motorola Inc. to allow 
Southwest Technical Products 6800 Com- 
puter System customers to have access to 
Motorola's 6800 program library. Customers 
will be permitted to join by either sub- 
mitting an acceptable program or by paying 
a membership fee. Either makes them a 

member of the Motorola 6800 User's Group 
for two years with access to programs within 
the library plus upcoming program 
additions. 

For those applications requiring the 
utmost in speed and storage capability, 
arrangements are in the works with ICOM 
Corporation to supply a floppy disk and 
floppy disk operating system (FDOS) that is 
compatible with the 6800 system described 
in this article. 
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James B Vice 
MITS Inc 

The New ALTAIR 680 

The new ALTAIR 680 designed by MITS 
is a system based on the 6800 microproc- 
essing unit (MPU). The MPU is available 
from Motorola or American Micro-Systems 
and adapts nicely to a minimum design 
configuration. 

The ALTAIR 680 case measures about 
11" by 11" by 4-3/4" (28 cm by 28 cm by 
12 cm) making it less than one third the size 
of the ALTAIR 8800. The basic system is 

available in three configurations, depending 
on the intended application. These include a 

user programmable processor with complete 
front panel controls, and two smaller ver- 
sions oriented towards dedicated ROM pro- 
grammed applications. 

The compact size of the 680 obviously 
precludes any significant amount of internal 
expansion, although additional memory and 
10 control are already on the drawing board. 
Its small physical size can be deceiving. The 
overall concept was to keep the machine as 

simple, small and inexpensive as possible; 
but it forms the complete central processor 
of a system in itself. All that is needed to 
make a MITS 680 system is the addition of 
some IO devices and software. 

The Three Models 

The construction of this machine is a 

relatively easy matter for even the most 
inexperienced kit builder. Almost all of the 
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circuitry is contained on a single large 
printed circuit board, including memory and 
a built -in IO port. This single board is a full 
central processor with the exception of a 

power transformer and some control 
switches. This is where the main distinction 
between the three configurations is 

encountered: 

Most hobbyists will be concerned with 
the full front panel model. This con- 
tains all of the necessary controls for 
addressing and entering data besides 
those for controlling the processor 
itself. 

A turn key front panel model is also 
available which eliminates all controls 
except restarting the processor's ROM 
software. This could be used in appli- 
cations where it is desirable to elimi- 
nate the possibility of the operator or 
any other person affecting the 
machine's memory or computing 
cycle. An example for such an applica- 
tion might be its use in controlling an 
intrusion detection system, or for 
a manufacturing machine control 
system. 

The third configuration is similar to 
the turn key version. The 680 will also 
be available as just the large PC board 
mentioned above. This board contains 



everything but a power supply and 
controls. Its application is similar to 
the turn key model, except that the 
computer would be "buried" inside 
another machine. 

The board only model is an excellent 
starter for the experimenter who wishes to 
purchase an absolute minimum and do a bit 
of his own designing. Such experimental use 
is aided by the considerable amount of 
information available on the 6800 micro- 
processing unit from Motorola Semi- 
conductor Products, Inc. The 6800 MPU is 
also TTL compatible and requires only one 5 
volt power supply. 

Front Panel 

In the front panel model of the 680 there 
is an additional printed circuit board. This 
board contains all of the logic circuitry 
necessary to reset, halt or start the proces- 
sor. Also located on this board are switches 
and associated LED indicator lights for each 
of the sixteen address lines and eight data 
lines. The front panel printed circuit board 
mounts directly to the main printed circuit 
board via a 100 contact edge connector. This 
eliminates the need for a cumbersome wiring 
harness. The only other control is the power 
switch, located on the back panel of the unit 
for safety purposes. 

On the dedicated program models, no 
front panel is needed because PROM or 
ROM software is used to store the starting 
address; a minimum fixed set of programs 
must be supplied by the user or manufac- 
turer in this form of the system. 

Functional Description 

The basic ALTAIR 680 computer can be 

subdivided into five functional sections. 
These are the MPU and clock, the memory, 
an IO port, control and indication, and the 
power supply. 

The first three of these sections, along 
with the power supply regulation compo- 
nents, are located on the main printed 
circuit board. 

MPU and Clock 

At the heart of the 680 system is the 
6800 microprocessing integrated circuit. 
This is a versatile and very powerful little 
processor, yet it is directly responsible for 
the overall simplicity of the 680 design. 

The 6800 is an 8 bit parallel processor 
using a bi- directional data bus and a 16 bit 
address bus. The address bus gives it the 
ability to directly address 65,536 bytes of 
memory. (Of course most configurations will 
have fewer than 65,536 bytes.) The instruc- 
tion set consists of 72 basic instructions with 

various addressing modes giving a total of 
197 different operation codes. 

The 6800 has seven different addressing 
modes, with the available modes being a 

function of the type of instruction selected. 
The seven modes include the following: 

Accumulator Addressing - one byte 
instructions which specify either of 
the two accumulators use this mode. 
Immediate Addressing - two or three 
byte instructions with data specified in 
the instruction use this mode. In 
immediate mode instructions, one or 
two bytes of data follow the op code, 
depending upon the instruction 
involved. 
Direct Addressing - two byte instruc- 
tions which allow the user to directly 
address the first 256 bytes of memory 
address space in the machine employ 
this mode. 
Extended Addressing - three byte 
instructions with a full 16 bit address 
in the second two bytes use this mode. 
There is no need to set up an on -chip 
register to access all of memory with 
the 6800. This mode is available for 
most data manipulation operations. 
Indexed Addressing - two byte in- 
structions with this mode add the 
second byte of the instruction to the 
16 bit index register to give the 
address of the operand. 
Inherent Addressing - certain one 
byte instructions imply the operands 
directly and thus do not need a 

separate address. 
Relative Addressing -- all the branch 
instructions calculate the branch 
address by adding the second instruc- 
tion byte to the current program 
counter plus two. The relative offset is 

treated as a signed two's complement 
number (8 bits) being added to the 
address in the program counter. This 
allows the user to branch to memory 
location +129 to -125 bytes from the 
location of the present instruction. 

These various addressing modes may take 
a bit of getting used to, but once understood 
they allow for some very fast programs to be 

written. 
The 6800 MPU contains three 16 bit 

registers and three 8 bit registers. The 
program counter is a two byte register which 
keeps track of the current address of the 
program. The stack pointer is also a two 
byte register which contains the next address 
in a variable length stack found in main 
memory. The index register is a two byte 
register used to store data or a memory 
address for indexed addressing operations. 
There are two single byte accumulators used 
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for holding operands and results from the 

arithmetic logic unit (ALU). The 8 bit 
condition code register indicates the results 
of an ALU operation. In this register there 
are two unused bits, kept at a logic one. The 
remaining six bits are used as the status flags 
for carry, overflow, zero, negative, interrupt 
and half carry. 

There are several timing and control 
signals required to operate the MPU. Two 
clock inputs are required, phase 1 and phase 

2. These must be nonoverlapping and run at 
the Vcc voltage level. Ordinary TTL will not 
drive these clocks properly. In the 680 the 

clock is a 2 MHz crystal controlled oscillator 
with logic to provide a 500 kHz two phase 

clock. (Although the 6800 is capable of 
running with a clock of up to a 1.0 MHz, 
MITS has set the speed of the 680 to 500 
kHz in order to greatly reduce the cost 
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through use of slower and less expensive 
system components.) Sixteen active high 
address outputs are used to specify the 
sections of memory or IO to be used. These 
can drive up to one standard TTL load and 
130 pF. There are also eight bi- directional 
data lines with the same drive capability as 

the address lines. The HALT signal is an 

active low input which ceases activity in the 
computer. The RW (read or write) signal in 
the high state indicates that the processor is 

in a read condition; in the low state it 
indicates that the processor is in a write 
condition. The VMA (valid memory address) 
signal tells external devices that the proc- 
essor has a valid address on the memory bus. 
The DBE (data bus enable) signal is the 
input which enables the bus drivers. The BA 
(bus available) signal indicates that the 
machine has stopped and that the address 

bus is available. RESET is used to reset and 
start the MPU from a power off condition. 
The IRQ (interrupt request) signal, when 
low, tells the processor to start an interrupt 
sequence. This can occur only if the inter- 
rupt mask bit in the condition code register 
is low. The NMI (nonmaskable interrupt) 



signal is essentially the same as the IRQ 
signal except that it is not dependent on the 
condition code register. 

Memory 

The main printed circuit board on the 
680 contains the basic memory for the unit 
also. This includes 1024 bytes of random 
access memory and provisions for another 
1024 bytes of read only memory. The 
random access memory circuits being used 
are the 2102 static 1024 X 1 bit parts. Read 
only memories of the mask programmed 
type can be custom ordered, and are very 
expensive in small quantities. The 1702 
type, ultra -violet erasable programmable 
read only memories are typically used in this 
system. These are 256 X 8 bit units, so four 
1702As would be required to fill up the 
available space in the 680. 

There is additional memory for the 680 
on the drawing board at this time which may 
add up to 12 K bytes more storage to the 
unit. 

IO Port 

Also on the main printed circuit board is 

a built in IO port and the appropriate 
interface circuitry. This port may be con- 
figured as either an RS232 level port or 
either a 20 mA or 60 mA current loop TTY 
level port. This means it can be interfaced 
with proper software to the old Baudot type 
Teletypes, such as the Model 19 and Model 
28 machines. 

The entire design of the 680 is greatly 
simplified due to the 6800's use of memory 
address space for IO addressing. The proces- 
sor uses addresses to refer to IO devices as 

well as memory, rather than have special IO 
instructions and a separate 10 bus. Within 
the limits of practical engineering, pro- 
gramming and memory requirements, as 

many IO devices as desired can be added to a 

6800 microprocessor system. No logical 
limitation is built into the instruction set. 

MITS also has additional 10 interfaces on 
the drawing board at this time; although 
availability of this and the additional 
memory boards will be greatly influenced 
in their development by customer response. 

Control and Indication 

On the fully user -programmable version 
of the 680, the front panel assembly con- 
tains a RUN /HALT switch with an LED 
indicator for each switch position. There is a 

RESET switch with no indicator, and 
another indicator for the AC power switch 
which is located on the back panel of the 
unit. The switches for the 16 address lines 
and 8 data lines, and their associated indica- 

tor lights, are also located on the front panel 
assembly of the fully programmable model. 
There is also a DEPOSIT switch. 

The DEPOSIT, RESET, DATA and 
ADDRESS switches are enabled only when 
the RUN /HALT switch is in the HALT 
position. To view the data in a particular 
memory address, the RUN /HALT switch 
must first be in the HALT position and then 
the ADDRESS switches may be set to the 
required address. The data located at that 
particular address will then appear on the 
DATA LED indicators above the DATA 
switches. 

To write data in a desired location, once 
the correct address has been set on the 
address switches, the appropriate data 
should be entered on the DATA switches 
and then the DEPOSIT switch activated. 
Since the address bus is already connected to 
the switches by being in the HALT state, a 

write pulse causes the data to be written into 
the selected RAM address. 

When the RESET switch is activated, the 
processor itself resets. This initiates a restart 
sequence, pulling the address bus to its high 
state and causing hard -wired data on the 
board to be used as the restart address. 

On the dedicated program versions of the 
680, most of these functions are taken care 
of by ROM or PROM. The only controls 
available to the user are the AC power and 
RESET switches. 

Power Supply 

The 5 volt supply to the computer is 

supplied from the power transformer 
through a conventional bridge rectifier and 
filter capacitors and voltage regulator IC. A 
32 volt winding on the transformer is used 
to generate the unregulated ±16 volts re- 

quired for a TTY interface, and a -16 volt 
line is fed to four zener diode regulated 
outputs to provide four --9 volt lines for the 
PROMs. 

The transformer itself, along with the 
power switch, is located on the computer's 
back panel. There are also provisions for 
installing a cooling fan when necessary. 

As far as software goes, MITS has a 

package available similar to the 8800's 
Package One. This includes an editor, PROM 
monitor and assembler. This all goes to make 
the ALTAIR 680 a rather powerful little 
machine. There is also the possibility for 
further software development. 

MITS has decided to await customer 
response to determine the course of further 
680 development in both the areas of 
software and hardware. 

Although it's not quite as powerful as the 
ALTAIR 8800, the ALTAIR 680 is mighty 
close and costs less. 
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Photo 1: When you first 
open your KIM -1 box, you 
see a thick layer of docu- 
mentation, including a 
large wall chart of the 
system's hardware details, 
an MCS650X Instruction 
Set Summary card, KIM -1 

User Manual, Programming 
Manual and Hardware 
Manual. Also shown in this 
picture is the KIM monitor 
listing copy which must be 
requested separately and is 
a must if you are to take 
advantage of KIM's sub- 
routines in applications 
programs. 

A Date with KIM 
Here it is! In the November 1975 BYTE, 

Dan Fylstra reviewed the capabilities of the 
MOS Technology 6501 microprocessor chip 
in an article titled "Son of Motorola" (page 
56). The article stated that "it will be three 
to six months before you see (a 6501) 

designed into a kit..." Well, MOS Tech- 
nology has gone one better and introduced 
not a kit, but a completely assembled, tested 
and warranteed microcomputer with a price 
tag of only $250! Using the 6502 processor 
chip (a 6501 with an on -chip clock), the 
microcomputer features 1 K of RAM, 2 K of 
ROM containing the system executive, a 

complete audio cassette interface, a serial 
terminal interface, 15 bidirectional IO lines, 
a 23 key keypad and a six digit LED display. 
This completely assembled one board com- 
puter has all the programming features of 
the 6502 at a very competitive price. 

If you have been hesitating over buying a 

microcomputer because of the difficulty of 
assembly and the fear that it won't work 
when you're finished, KIM -1 is for you. The 
only assembly required is to attach six self 
adhesive plastic feet to the back of the 

72 

KIM -1 printed circuit board and attach a 

+5 volt, 1 ampere power supply to the 44 
pin edge connector provided. You'll also 
need a supply of +12 V for the cassette 
interface; but a handful of flashlight bat- 
teries should work fine since only about 
50 mA of +12 V is required, and that only 
when the interface is being used. 

The name KIM is an acronym for Key- 
board Input Monitor. The name really des- 
cribes the ROM executive routines, not the 
whole unit, but it's a pleasant change from 
the manufacturer's name followed by a 

number. It's also significant that the system 
derives its name from its software. 

The KIM -1 board can be operated in one 
of two modes: using the on board keypad 
and LED display, or using a serial terminal. 
The keypad and hexadecimal display is 

infinitely easier and less error prone than 
throwing toggle switches and reading results 
from binary lamps. In fact, for program 
entry and many simple applications, I prefer 
the 23 key keypad and bright LED display 
to my slow, noisy Teletype. The keys have a 

good, positive "feel" to them (MOS Tech- 



Photo 2: The KIM -1 proc- 
essor as it is removed 
from its box. The MOS 
Technology product 
comes in a neat package 
which has one foam pad- 
ded and static protected 
KIM -1 board as its bottom 
layer. 

nology should know about such things, since 
they are a major manufacturer of chips for 
calculators). 

The switch in the upper right corner of 
the keypad puts the machine in single 
instruction (not single cycle) mode. When 
the switch is "on," each depression of the 
"GO" button causes a single instruction of 
your program to be executed. Control is 

then returned to the executive program in 
ROM and the contents of all six machine 
registers (PC, X, Y, S, P, and the accumula- 
tor) are stored in fixed memory locations 
where you can easily examine them through 
the keypad or terminal and then "GO" to 
the next instruction. This is an important 
capability, since if you just halt a micro- 
processor after each instruction there is no 
way of examining the registers (they're all 
inside the chip!). 

I won't go into any detail on the instruc- 
tion set (see Dan Fylstra's article for that) 
except to say that it is comprehensive. The 
variety of addressing modes makes complex 
programming (especially when processing 
lists) a lot easier. The 6502 architecture has 
no 10 register or 10 instructions, so any 
memory location cari become an IO "port" if 
you build the hardware for it. KIM comes 
with a built -in 15 line bidirectional 10 
interface. TTL levels are acceptable, of 
course, and one of the lines can supply 
enough current (5 mA) to directly drive a 

power transistor. The manual shows how to 
use it to drive a small speaker for "micro- 
processor music" programmed in a manner 

similar to the Kluge Harp of October BYTE 
(page 14). Each line can be separately pro- 
grammed for input or output by writing a 

status word into the correct memory 
location. 

The cassette interface is carefully thought 
out and should be foolproof. Half of the 
executive ROM is devoted to the cassette 
interface software, which includes rudimen- 
tary file management and sophisticated pro- 
grammed equivalents to UART operation. 
This software allows multiple dumps to a 

singlc cassette. A header written on each 
output segment allows you to say, in effect, 
"find me program number 34 on the tape 
and load it starting at location..." A check- 
sum is stored at the end of each segment and 
the user is immediately informed if the 
computed checksum doesn't match when the 
tape is read back in. You can even record 
voice data between segments of digital 
data - the interface will ignore the voice. 
This feature could be used to verbally record 
the instructions for a game and then auto- 
matically load and run it. Both high and low 
level outputs are provided to interface with 
any type of cassette recorder. It's not a vital 
feature, but it indicates the care with which 
the entire system has been thought out. 

The TTY interface is for a standard 
20 mA current loop (figure 1 shows how I 

modified it for an RS -232 interface). A 
unique feature of the software is automatic 
data rate detection. As soon as the system is 
powered up, the user types a RUBOUT 
character on his terminal. The software 
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If you have been hesitating 
over buying a micro- 
computer because of the 
difficulty of assembly and 
the fear that it won't work 
when you're finished, then 
KIM -1 is for you. 

KIM -1 derives its name 
from the software, a sig- 

nificant indication of the 
importance of good user 
support programs. 
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Figure l: One way to in- 
terface KIM -1 with an 
RS -232 compatible ter- 
minal is illustrated in this 
diagram. Opto isolators are 
used to accomplish the 
coupling. The RS -232 pins 
1, 2 and 3 will be suffici- 
ent for terminals which do 
not involve handshaking; 
on some terminals, pins 5, 

6, 8 and 20 of the stand- 
ard RS -232 plug may have 
to be tied together to 
bypass handshaking sig- 
nals. 
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calculates the data rate (anything from 110 
to 1200 baud is acceptable) and auto- 
matically adjusts all further conversation to 
that rate. No additional timing standards or 
switches are required for the interface. 

The real beauty of the terminal interface 
is in the software, not the hardware. On 
request, MOS Technology supplies a com- 
plete listing of KIM. All the executive ROM 
software subroutines are documented and 

available to the user referencing this well - 
commented listing. Thus, to print the con- 
tents of the accumulator in hex on the 
terminal requires a simple one- instruction 
subroutine call. Those readers who have had 

to invent their own terminal interface soft- 
ware will have a deep appreciation for this 
capability. Similar subroutines are provided 
for reading characters from the terminal or 
keypad, printing one or a string of ASCII 
characters, or writing digits in the LED 
display. 

To round out the terminal interface, 
software is provided in ROM to read and 
punch paper tape if your terminal is so 

equipped. Again, care has been taken to 
provide checksums on the punched tape 
which is automatically verified when the 
data is reloaded. This kind of attention to 
detail reflects the high caliber of the MOS 
Technology offering. One reason for this is 

the fact that MOS Technology sells a size- 

able portion of the KIM units to industrial 
users. This policy of building to industrial 
rather than consumer standards is also 
evident in the quality of the PC board, the 
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PC artwork, and the fact that the board is 

coated with a solder mask, a plastic coating 
which protects the printed wiring. To 
further emphasize their faith in KIM, MOS 

Technology gives you a 90 day warranty on 

the entire KIM system, not just the corn - 

ponents. Mail -in repair service is available 
even after the warranty expires. 

Interval Timer 

Another feature of KIM which is finding 
its way into more and more microprocessors 
is the inclusion of a program controlled 
interval timer. The KIM board actually 
contains two programmable timers, but one 

is dedicated to control the keypad and 

cassette interface. Any count from 1 to 256 
can be loaded into the timer by writing to 
the timer's memory location. The user can 

control the scale of the timer by pro- 

gramming it to count every clock pulse or to 

count every 8th, 64th, or 256th clock pulse. 

This prescaling of the counter is done by 

decoding the last two address bits for the 

timer. Thus, the time scale is controlled by 
which memory location is loaded with the 
count. You might consider using a similar 
scheme whenever you have to write more 
than eight bits to control an external device: 
Just use the least significant address bits as 

data. 
When the timer has counted down to 

zero, a software interrupt is generated, noti- 
fying the program that "time has run out." 
As soon as the interrupt is issued, the timer 
continues to count past zero (into negative 
numbers) at the clock rate. If the program is 

servicing other interrupts, it can read the 
counter register to determine how long ago 

(in machine cycles) the timer interrupt 
occurred. 

Memory Expansion 

If you are interested in expanding the 
KIM memory beyond the 1 K provided, 
you'll be glad to know that all the decoding 
for the first 4 K is provided right on the KIM 
board. All you need to provide is 4 K more 
of RAM chips and some buffers. 

There are two connectors on the KIM 
board; one called the expansion connector is 

for adding memory and bus oriented devices. 
The second connector, called the application 
connector, interfaces directly to the outside 
world. The expansion connector has all the 
address, data, and memory control signals. 

The application connector terminates the 
lines for the audio cassette, the terminal 
send and receive signals, and the 15 IO lines. 
Connections are also provided so that the 
keypad can be removed from the KIM board 
and mounted elsewhere, a useful feature if 



Photo 3: Wiring for Stu d 
Alone Use. With due re- 
spect to the instructions in 
the KIM -1 user's manual, 
and addition of some mis- 
cellaneous parts, the re- 
sults will be a wiring har- 
ness similar to that shown 
here. Wires have been 
attached and labelled for 
GND, +5 volts and +12 V. 

The audio cassette inter- 
face has been brought out 
to an RCA -style phono 
jack assembly purchased at 
a retail electronics store, 
along with interconnection 
cables for the recorder in- 
put and output. This setup 
enables the user to enter 
and test out programs 
through the KIM -1 control 
panel and LED display. 

you want to wrap up the KIM printed circuit 
board in sheet metal along with a power 
supply. 

Documentation 

The documentation which comes with 
KIM is thorough and comprehensive. Any 
regular reader of BYTE should have no 
trouble following the details of the 200 page 
programming manual. There are plenty of 
examples; and the explanation of the opera- 
tions which occur in each machine cycle of 
multicycle instructions, while not essential, 
is very instructive. Special sections of the 
manual are devoted to interrupt handling 
and use of the stack pointer. This is vital 
information often glossed over in other 
manuals. 

I have to admit that I have not yet 
digested all the information in the 150 page 
hardware manual which came with my KIM, 
since my main interest is in programming my 
system as soon as possible. However, the 
manual seems to have a solid emphasis on IO 
interfacing and usage of the control lines. 

The third manual provided is the actual 
KIM user's manual. This 100 page document 
explains how the keypad, cassette interface 
and terminal interface are to be used. It gives 
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a few basic programming examples, includ- 
ing an example which goes through the 
entire design of a simple application using 
the IO lines. My only complaint is that no 
sample program was provided for the use of 
the programmable timer or the ROM execu- 
tive subroutines. Also, the listing of KIM 
should have been supplied as a standard 
item. 

Also included in the package is a pocket 
reference card for the instruction set and a 

wall size schematic of the entire KIM board. 
Two other useful documents are available 
from MOS Technology on request. One is 
the manual for the 6500 cross -assembler, 
which is available on several commercial 
time -sharing systems. The other is the well - 
commented listing of the executive programs 
stored in ROM as mentioned earlier. 

In summary, the KIM is an excellent 
microcomputer requiring no assembly and 
which is very attractively priced. The only 
auxiliary equipment required is a power 
supply and a cassette recorder. The manuals 
are among the best available and the built -in 
keypad and display make KIM easy to get 
started with. The terminal interface and ease 
of memory expansion make it easy to 
upgrade as your requirements increase. Make 
a date with KIM - you'll enjoy it! 
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I recently purchased a KIM -1 micro- 
computer card from MOS Technology (See 

"KIM- O- Sabee ?" in the April BYTE, page 14 

and "A Date With KIM" in the May issue, 

page 8). In my opinion, KIM -1 offers one of 
the best bargains to a computer experi- 
menter for the price ($245 for the card + 

$4.50 for shipping and handling). However, 
the hobbyist may be faced with a few 
problems, as I was. The intent of this article 
is to solve some of these problems. 

Clock Stretch and 
Random Access Memories 

The cheapest random access memory in 
experimenters' markets today is the standard 
2102 static memory which averages approxi- 
mately 0.154 per bit. During a write cycle, 
the inexpensive slow versions of this device 
require the data to be stable for 800 ns 

before the trailing edge and data hold time 
of 100 ns after the trailing edge of the write 
pulse. Even if the MOS Technology 6502 
processor is slowed down to 250 kHz to 
obtain the data stability, there is still not 
enough data hold time for the slow chips. 

I solved this problem by implementing 
the circuit shown in figure 1. This circuit 
allows the 6502 processor to use a mixture 
of fast and slow 2102 memory devices in the 
same system. The processor cycle is main- 
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processor on the KIM -1 
board under control of a 

"SPEED SELECT" line 
generated by slow mem- 
ories. SPEED SELECT= 0 
for fast cycles, SPEED 
SELECT = 1 for slow 
cycles. This circuit re- 
quires a 2.0 MHz crystal. 
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tained at 1.0 ps for the fast memory access, 
while for the slower 2102s, the cycle is 
automatically stretched to 2.0 ps. 

Sometimes integrated circuits behave in 
ways that are not predicted by, or are 
overlooked by, their manufacturers. This 
modification of KIM -1 to enable the clock 
stretching function is accomplished by re- 
moving the usual KIM -1 6502 clock genera- 
tion circuitry, and simply driving the ¢0 pin 
of the 6502 directly from a TTL clock 
source which is external to the chip. This 
mode of operation is not documented in the 
6502 Hardware Manual of MOS Technology, 
but it worked quite satisfactorily in my 
system . The intention of the designers of the 
6502 was that the clock generation logic on 
the chip would be used with external com- 
ponents setting the frequency of the 
oscillator. 

The SPEED SELECT signal to stretch the 
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Figure 3: Method 2 
SPEED SELECT Disci- 
pline. In this method, slow 
cycles are the rule, fast 
cycles are the exception. 
Refer to figure 1 for 
points B and C of the 
timing diagram. Invalid 
data on the address bus is 
indicated by the cross- 
hatched areas. 

Figure 4: Write Cycle for Slow 2102 Mem- 
ories. The timing requirement is that valid 
data be present on the bus when the RW 
signal to the memory changes from 0 (write 
state) to 1 (read state). The crosshatched 
areas Indicate when data is invalid on the 
data bus. 
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cycle is generated by address bus decoding 
logic using one of the following two 
methods. 

Method 1: Normally the SPEED 

SELECT signal is kept low so the proces- 

sor cycle is 1.0 ps. However, this signal 

goes high when the processor addresses 

the slow memory region causing the cycle 

to stretch to 2.0 ps. See figure 2 for the 

timing relationships. 
Method 2: Normally the SPEED 

SELECT signal is kept high so that the 
processor cycle time is 2.0 ps to access 

slow memory. However, this signal goes 

low when the processor addresses the fast 
memory devices causing the cycle time to 
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Figure 6: Write Cycle for Slow 2102 Mem- 

ories using the circuit of figure S. The 

output pulse width of RW is adjusted to 
1.2 ps nominally. (Check the results on your 
scope even if you use other than precision 
parts of the values shown for R1 and Cl in 
figure 5.) 
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Figure 5: Alternate Slow 
Clock Generation Circuit. 
In this circuit, the original 
KIM -1 crystal can be used, 

since a digitally controlled 
timing cycle is replaced by 
the 74123 oneshot. 

be only 1.0 ps. See figure 3 for the timing 
relationships. 
The circuit shown in figure 1 will allow a 

data stability of 950 ns before the trailing 
edge and data hold time of 350 ns after the 

trailing edge of the Write Pulse for the slow 

2102s. See figure 4 for the timing relation- 
ships. 

However, the KIM -1 board comes with a 

1.0 MHz crystal. Figure 5 shows an alter- 

native circuit using a 1.0 MHz crystal. The 

timing relationships to control SPEED 
SELECT signal are the same as shown in 

figures 2 and 3. The RW signal for the slow 
memory is generated in this case by using a 

74123 oneshot. The value of the RC 

constant for the 74123 is chosen to provide 
a nominal output pulse width of 1.2 µs. This 

allows a data stability of 1.0 ps before the 

trailing edge and data hold time of 300 ns 

after the trailing edge of the write pulse for 
the slow memories. Figure 6 shows the 

resultant timing relationships. It should be 

noted that the output pulse width of the 

74123 can only tolerate a ± 16.66% 
variation, and still permit successful opera- 
tion of the 2102 memory devices. This 

tolerance may require selection of precision 
parts for the external resistor and capacitor 
of the oneshot. 

Bus Expansion 

The 6502 bus is only capable of driving 
one standard TTL load. If more drive 

capability is needed, the tristate drivers such 

as the 8T97 or DM8833 parts may be used. 
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Figure 7: Use of a Bus Extension Integrated Circuit. In order to tie in extra 
memory or peripherals, a bus extension is required. The typical logic diagram 
of a simple attempt which will not always work is shown here. (Conflicts can 
arise.) 

However, you must be very careful when 
using an extended data bus. If you enable 
the drivers by RW signal as shown in figure 
7, then during read mode, the drivers for the 
existing KIM -1 memory (eg: 74125s) can be 

turned on simultaneously. The low level 
output current of 74125s is only 16 mA and 
is not sufficient to pull down a turned on 
8T97 type driver to logic 0 level. Therefore, 
during read mode the bus extension tristate 
drivers should be turned off when the 
existing on board KIM -1 memory (RAM, 
6530 -002 and 6530 -003) is being accessed as 

shown in figure 8. In actual implementation 
the DECODE ENABLE signal may be the 
same as the one needed on the application 
connector of the KIM board (when more 
than 8 K memory is needed). 

Interrupt Prioritizing Logic 

The KIM -1 Hardware Manual (Section 
2.3.3) describes a few approaches to im- 
plement interrupt priority logic; but I found 
them either inefficient (software time) or 
expensive (use of ROM). The circuit shown 
in figure 9 provides a cost effective com- 
promise. The interrupts from the peripheral 
devices are latched in by the 02 signal. This 

6502 
DATA LINE 

RW(6502) 

DECODE 
ENABLE 

inhibits the priority encoder from generating 
a false vector (if the interrupts from the 
peripherals are changing while the 6502 is 

fetching the vector). In response to IRQ, the 
6502 fetches the vector from hexadecimal 
locations FFFE and FFFF. During these 
fetch cycles, the 6530 -002 is disabled by 
letting the decode enable signal go high on 
the application connector. Therefore, the 
vector generated by this circuit is fetched by 
the 6502 instead, and the program goes to 
one of the locations from 0200 to 021C. 
This segment of memory serves as a vector 
table with pointers to the individual inter- 
rupt service routines as follows: 

0200 
0204 
0208 
020C 
0210 
0214 
0218 
021C 

The actual 

JMP VECO 
JMP VECI 
JMP VEC2 
JMP VEC3 
JMP VEC4 
JMP VEC5 
JMP VEC6 
JMP VEC7 

service routines will reside in 
locations VECO through VEC7 for the 
respective interrupts. It should be noted that 
each vector in the table requires 4 locations. 
(Only 3 locations are needed for a jump but 

BUS EXTENSION INTEGRATED 
t CIRCUIT. TYPICAL PARTS: 

0M 8833 
8797 

I 1 HIGH DRIVE CAPABILITY TRI- 
STATE 
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Figure 8: Adding a gate to 
the bus extension control 
resolves a potential con- 
flict through the use of a 
decode enable signal which 
is high if external memory 
is referenced, low if mem - 
ory on the KIM -1 board is 
referenced. 
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Figure 9: By disabling normal address decode through the DECODE ENABLE pin for the 
KIM -1 applications connector, an alternate source of the interrupt vector at locations FFFF 
and FFFE can be created which accomplishes interrupt prioritizing functions. 

the extra location is a requirement of a 

simple hardware design.) JMP instruction 
takes only three locations, so your software 
might use the fourth location to save the 
accumulator, eg: 

0200 PHA 
0201 J MP 
0202 VECO (LOW) 
0203 VECO (HIGH) 

This architecture will re -map the 1 K 
resident RAM on the KIM board as follows: 

0000 through 00FF Page 0 
0100 through 01 FF Stack 
0200 through 021 F Vector Table 
0220 through 03FF Applications 

The disable signal in figure 9 will deselect 
existing KIM -1 memory when low. This is 

implemented for memory expansion as 

described earlier. However, if memory ex- 
pansion is not desired the signal may be 
fixed to a logic 1 level. 
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Halt? 
Another problem one faces is how to 

debug the software when the processor does 
not have a HLT instruction. You can single 
step the program instructions on KIM -1, but 
this feature does not help the programs 
which involve multiple levels of loops or 
critical peripheral timing controls. The 
obvious solution is to use the BRK (software 
interrupt) instruction. However, this would 
require software overhead in every interrupt 
service routine to determine whether it was a 

hardware or a software interrupt. On the 
KIM -1 system, I found the sequence JSR 05 
1C (Jump to subroutine at location 1C05) 
more useful for this purpose instead. The 
execution of JSR causes the program to 
jump to an input monitor loop and display 
of the address (PC + 2) on the KIM board. 
PC is the location where the JSR was 
executed. 



Photo 1: The Z80 microprocessor evaluation board. 

Microprocessor Update: Zilog Z$0 
Burt Hash izume 
PO Box 172 
Placentia CA 92670 

One feature of the Z80 
not found in other 8 bit 
microprocessors is a built 
in dynamic MOS memory 
refresh algorithm which 
employs unused memory 
cycles to do hidden (from 
software timing) refresh 
operations. 

Zilog, a fairly new company in Los Altos 
CA, has been sampling an 8 bit micropro- 
cessor, the Z80, since early this year. The 
Z80 is a "third generation," single chip, 
NMOS microprocessor, which is completely 
software compatible with Intel's 8080A. Its 
158 instructions include the 8080A's 78 
instructions as a subset. Because the 8080A 
is probably the most widely used 8 bit 
microprocessor on the market today and 
because of the Z80's upward software com- 
patibility, this article evaluates the Z80 in 
comparison to the 8080A. 

Physical and Electrical 
Characteristics 

The Z80 processor is packaged in the 
standard 40 pin dual in line package; how- 
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ever, even though the Z80 is software 
compatible with the 8080A, it is most 
definitely not pin compatible. (See figure 1 

and table 1 for pinout definitions.) There are 
numerous differences between the two pro- 
cessors as far as electrical characteristics are 
concerned. 

The 8080A requires three voltage levels, 
+12, +5, and -5 V. A high voltage two phase 
clock is also required. Maximum speed is a 

480 ns clock period. Finally, some sort of 
system controller is needed to separate the 
system control signals from the data bus. 
This all makes for a fairly complex system 
design around the 8080A. 

On the other hand, it is very easy to 
design a system around the Z80. It requires 
only a single +5 V power supply because the 



technology used is of the same type used by 
Motorola in its 6800 microprocessor, which 
also requires a single 5 V power supply. The 
Z80 requires a single phase 5 V clock. 
Maximum frequency is 2.5 MHz for a 400 ns 

clock period. System control signals, such as 

memory read and write, have separate pins 
from the processor and are not time shared 

with the data bus. An additional feature not 
found on any other microprocessor at the 
time of this writing is the capability to 
refresh dynamic memory. 

Because the Z80 is upward software 
compatible with the 8080A, the internal 
architectures are similar. (See the register 

configuration in figure 2.) Both have 16 bit 
program counters and stack pointers as well 
as a register array of six general purpose 
registers, (B, C, D, E, H and L), an accumu- 
lator (A), and a flag register (F). 

The Z80 has numerous additional 
characteristics. It has an additional duplicate 
register array consisting of 8 registers (A', F', 
B', C', D', E', H' and L'). These can be 

switched with the primary register array for 
fast interrupt processing. There are also two 
16 bit index registers (IX and IV) for 
increased addressing capability and easier 

data manipulation. An 8 bit interrupt vector 
register (I) expands the capability and in- 

creases the power and speed of interrupt 
handling by the processor. Finally, an 8 bit 
memory refresh register (R) automatically 
increments after every instruction fetch and 

refreshes memory while the processor is not 
using the bus. Thus the execution time of 
the system is not increased due to refresh 

overhead. 

Software 

Now that we have seen the hardware 
aspects of the Z80 and how it compares to 
the 8080A, let's take a look at its instruction 
set. The fact that the Z80 has 158 instruc- 
tions versus the 8080A's 78 gives only a 

small indication of its technological super- 
iority in this area. The instruction set can be 

broken up into two aspects, addressing 
modes and instruction groups. 

Since the Z80 is software compatible 
with 8080A, it necessarily has the same 

addressing modes as the 8080A. The modes 
in common are register addressing, register 
indirect addressing, direct addressing, and 

immediate addressing. 
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Figure 1: Pin configuration of the Z80 processor. Of particular note to 

custom hardware hackers is the "M1 "line which gives users the possibility of 
identifying instruction cycles. 

Table 1: Signal list for the Z80 processor. This table lists each active pin of 
the Z80 with a short explanation of its purpose. 

AO -A15 
(Address Bus) 

DO-D7 
(Data Bus) 

M1 
(Machine Cycle one) 

MREQ 
(Memory Request) 

IORQ 
(Input/Output Request) 
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Tri -state output, active high. A0 -A15 constitute a 16 bit 
address bus. The address bus provides the address for 
memory (up to 64 K bytes) data exchanges and for IO 

device data exchanges. IO addressing uses the 8 lower 
address bits to allow the user to directly select up to 256 
input or 256 output ports. A0 is the least significant 
address bit. During refresh time, the lower 7 bits contain a 

valid refresh address. 

Tri -state input and output, active high. Do -D7 constitute 
an 8 bit bidirectional data bus. The data bus is used for 
data exchanges with memory and 10 devices. 

Output, active low. M1 indicates that the current machine 
cycle is the OP code fetch cycle of an instruction 
execution. 

Tri -state output, active low. The memory request signal 

indicates that the address bus holds a valid address for a 

memory read or memory write operation. 

Tri -state output, active low. The IORQ signal indicates 
that the lower half of the address bus holds a valid 10 

address for a IO read or write operation. An IORQ signal 



Table 1 (continued). 

RD 
(Memory Read) 

WR 
(Memory Write) 

R FSH 
(Refresh) 

HALT 
(Halt state) 

WAIT 
(Wait) 

INT 
(Interrupt Request) 

NMI 
(Non Maskable 
Interrupt) 

RESET 

BUSRQ 
(Bus Request) 

BUSAK 
(Bus Acknowledge) 

is also generated when an interrupt is being acknowledged 
to indicate that an interrupt response vector can be placed 

on the data bus. Interrupt Acknowledge operations occur 
during M1 time while IO operations never occur during 
M1 time. 

Tri -state output, active low. RD indicates that the 
processor wants to read data from memory or an 10 

device. The addressed 10 device or memory should use 

this signal to gate data onto the processor data bus. 

Tri -state output, active low. WR indicates that the 

processor data bus holds valid data to be stored in the 

addressed memory or 10 device. 

Output, active low. RFSH indicates that the lower 7 bits 
of the address bus contain a refresh address for dynamic 
memories and the current MREQ signal should be used to 
do a re:esh read to all dynamic memories. 

Output, active low. HALT indicates that the processor has 

executed a HALT software instruction and is awaiting 
either a non maskable or a maskable interrupt (with the 
mask enabled) before operation can resume. While halted, 
the processor executes NOPs to maintain memory refresh 

activity. 

Input, active low. WAIT indicates to the Z80 processor 

that the addressed memory or 10 devices are not ready 

for a data transfer. The processor continues to enter wait 
states for as long as this signal is active. This signal allows 
memory or IO devices of any speed to be synchronized to 
the processor. 
Input, active low. The Interrupt Request signal is 

generated by 10 devices. A request will be honored at the 

end of the current instruction if the internal software 
controlled interrupt enable flip flop (1FF) is enabled and 

if the BUSRQ signal is not active. When the processor 
accepts the interrupt, an acknowledge signal (IORQ 
during M1 time) is sent out at the beginning of the next 
instruction cycle. The processor can respond to an 

interrupt in three different modes that are described in 

detail in the Zilog documentation. 

Input, active low. The non maskable interrupt request line 

has a higher priority than INT and is always recognized at 

the end of the current instruction, independent of the 
status of the interrupt enable flip flop. NMI automatically 
forces the Z80 processor to restart to location 0066 
hexadecimal. The program counter is automatically saved 

in the external stack so that the user can return to the 
program that was interrupted. 

Input, active low. RESET forces the program counter to 
zero and initializes the processor. The processor ini- 
tialization includes: 

1) Disable the interrupt enable flip flop 
2) Set Register 1 = 00 
3) Set Register R = 00 

During reset time, the address bus and data bus go to a 

high impedance state and all control output signals go to 
the inactive state. 

Input, active low. The bus request signal is used to request 
the processor address bus, data bus and tri -state output 
control signals to go to a high impedance state so that 
other devices can control these buses. When BUSRQ is 

activated, the processor will set these buses to a high 

impedance state as soon as the current processor machine 
cycle is terminated. 

Output, active low. Bus acknowledge is used to indicate 
to the requesting device that the processor address bus, 

data bus and tri -state control bus signals have been set to 
their high impedance state and the external device can 

now control these signals. 
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Register addressing. The opcode itself 
specifies a register or register pair in 

which the data is contained. An 

example would be to load the data in 

register B into register D. 
Register indirect addressing. The 
opcode specifies a register pair which 
contains a 16 bit address. This address 

points to the data in memory or is an 

address to be loaded into the program 
counter (PC). An example would be to 
load the accumulator with data in 

memory pointed to by the HL register 
pair. 
Direct addressing. The opcode is fol- 
lowed by two bytes of operand. These 
two bytes are either a 16 bit address 
pointing to data in memory or a 16 bit 
address to be loaded into the PC. For 
example, in a jump instruction, the 
two bytes indicate an address to which 
program control is transferred. 
Immediate addressing. The opcode is 

followed by one or two bytes of 
operand. This operand is the data itself 
to be used. An example is load 

accumulator immediate which moves 

an 8 bit operand into the accumulator. 

To these addressing modes, the Z80 has 

added three more powerful modes. These are 

indexed addressing, relative addressing, and 
bit addressing. The first two are somewhat 
similar to index and relative addressing in 
the Motorola 6800 microprocessor. 

Indexed addressing. The opcode is 

followed by an 8 bit displacement. 
This displacement is a signed two's 
complement number to be added to 
the contents of one of the two index 
registers. The result is a 16 bit effec- 
tive address. The contents of the index 
register are unchanged. 

Relative addressing. The opcode is 

followed by an 8 bit signed two's 
complement number. The number is 

added to the contents of the program 
counter and the result placed back in 

the PC. This results in being able to 
execute program jumps within a range 

of +129 to -126 bytes using only a 

two byte instruction. Since most pro- 
grams have a lot of jumps to locations 
relatively close to current locations, 
using relative addressing will signi- 
ficantly reduce program size. Another 
advantage is the ability to write re- 

locatable code using relative address- 

ing. 
Bit addressing. Three bits in the 
opcode itself specify one of eight bits 
in a byte to be addressed. This byte 



could be the contents of a register or 
of a memory location. An example 
would be to set bit 6 in memory 
pointed to by index register, IX, dis- 
placed by -20. 

The Z80 instruction set's increase of 80 
instructions over the 8080A's didn't come 
from just increasing the number of address- 
ing modes. There are instructions which 
don't exist in any other microprocessor. The 
instruction set will be broken up into groups 
by their function. 

Load and Exchange Instructions 

This group includes all the instructions 
that move data to and from registers, such as 
load B from D, load C from memory, store 
HL into memory, push IX into stack, and 
exchange AF with A'F'. The 8080A has 
most of the same instructions. 

Block Transfer and Search 
Instructions 

This group has several useful and unique 
instructions. The load and increment instruc- 
tion moves one byte of data from memory 
pointed to by HL to another memory 
location pointed to by DE. Both register 
pairs are automatically incremented and the 
byte counter, BC, is decremented. This 
instruction is extremely valuable in moving 
blocks of data around. 

Another instruction repeats the load and 
increment instruction automatically until 
the byte counter reaches zero. Thus, in one 
instruction, a block of data, up to 64 K 
bytes in length, can be moved anywhere in 
memory. Each byte of data transferred 
requires only 8.4 its. 

In the compare and increment instruc- 
tion, the contents of the accumulator are 
compared with that of memory pointed to 
by HL. The appropriate flag bits are set, HL 
is automatically incremented, and the byte 
counter is decremented. 

The instruction compare, increment, and 
repeat repeats the above instruction until 
either a match is found or the counter 
reaches zero. 

The 8080A has no analogy to these 
instructions. It would have to execute three 
to ten separate instructions to achieve the 
same result. The number of bytes would be 
several times larger and the execution time 
would be several times longer. 

Arithmetic and Logical Instructions 

These instructions include all the adds 
and subtracts, increments, compares, ex- 
clusive -ors, etc. What the Z80 has added to 

MAIN REG SET ALTERNATE REG SET 

ACCUMULATOR 
A 

FLAGS 
F 

ACCUMULATOR 
A' 

FLAGS 
F' 

e C e' C' 

D E D. E. 

H L H. L. 

INTERRUPT 
VECTOR 
I 

MEMORY 
REFRESH 
R 

INDEX REGISTER IX 

INDEX REGISTER IY 

STACK POINTER SP 

PROGRAM COUNTER PC 

the 8080A instructions is the indexed ad- 
dressing mode and double precision add with 
carry and subtract with carry. 

Rotate and Shift Instructions 

Here the Z80 has taken the four 8080A 
rotate accumulator instructions and in- 
creased the passible addressing modes as well 
as included logical shifts and arithmetic 
shifts. On top of this there are a couple of 
rotate digit instructions. With these a digit (4 
bits) can be rotated with two digits in a 
memory location, which is great for BCD 
arithmetic. 

Bit Manipulation Instructions 

There are three basic operations, test bit, 
set bit, and reset bit. With the various 
addressing modes, a powerful group of in- 
structions is generated. For instance, if 
several memory locations are used for IO 
devices, status bits can be individually tested 
and control bits individually set or reset. The 
8080A (nor any other 8 bit microprocessor) 
has no such capability to manipulate bits. 

Jump, Call, and Return 

Both the 8080A and Z80 have numerous 
conditional and unconditional jumps, calls, 
and returns. In addition, the Z80 has several 
jump relative instructions using relative ad- 
dressing. One of special interest decrements 
the B register, and jumps relative if B is not 
zero. This is especially useful in program 
loop control; it would take the 8080A two 
instructions to perform the same task. 

Input /Output Instructions 

The 8080A has two IO instructions, input 
and output to and from the accumulator. 
The device address is in the second byte of 
the instruction, which means that each 
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Figure 2: Programmable 
registers of the Z80. Con- 
siderable improvement 
over the 8080 design is 
found in the alternate 
register set, and the addi- 
tion of two index registers, 
interrupt vector and mem- 
ory refresh registers. 

The Z80 should be a nat- 
ural for string manipula- 
tion software with its pair 
of full 16 bit index 
registers and powerful 
multi -byte operations such 
as block move, memory 
search and block IO in- 
structions. 



In addition to expanding 
operations upward to the 

level of blocks, the Z80 

refines its addressing 

downward to the bit level 

with a group of bit mani- 

pulation instructions 
which are quite unique. 

The Z80 simplifies the 
hardware required to im- 

plement a system as com- 

pared to the original 8080 
design. Aside from the in- 

struction enhancements, 

here is a way to get an 

8080 instruction set with 
the ease of interfacing un- 

til now only available (in 8 

bits) with processors like 
the 6800 and 6502. 

For more Information on 
the Z80 CPU and other Z80 
parts contact Zilog Inc, 170 
State St, Ste 260A, Los Altos 
CA 94022, (415) 941 -5055 

device must have its own IO routine. One 

standard routine can't be used in common 
because each device has a different address 

and therefore different instruction. The Z80 
has resolved this by including 10 instructions 
that use the C register to contain the IO 

device address. Therefore one 10 routine can 

be used with the device address placed in 

register C before entering the routine. Also 

instead of being restricted in inputting or 

outputting to and from the accumulator 
only, any register can be used. 

If this isn't enough, the Z80 has eight 
block transfer IO instructions which are 

similar to the memory block transfer instruc- 
tions. HL is the only memory pointer, C is 

the device pointer, and B is the byte 
counter. Therefore, an IO block transfer can 

handle up to 256 bytes. Essentially these 

commands are a processor implementation 
of direct memory access (DMA), invoked by 
a software sequence. 

Miscellaneous Features 

These instructions include no- operation, 
halt, enable and disable interrupts, decimal 
adjust accumulator, set carry, and com- 

plement carry. The Z80 can also select one 

of three interrupt modes. 

Interrupts on the Z80 

The 8080A has one input for interrupts; 
the Z80 has two. One is a nonmaskable 

interrupt (similar to the Motorola 6800 or 
MOS Technology 6502) which cannot be 

disabled by the software. The other is a 

maskable interrupt which can be selectively 
enabled or disabled by the program. The 
maskable interrupt is analogous to the single 

8080A interrupt. 
A nonmaskable interrupt will be accepted 

at all times by the Z80 processor. When one 

occurs, the processor will execute a restart 
to hexadecimal location 0066. The non - 

maskable interrupt is used for very impor- 
tant functions that must be serviced imme- 

diately, such as a power failure routine. 
The Z80 has three programmable modes 

for processor response to a maskable inter- 
rupt. There are three instructions that will 
select these three modes. 

Mode 0 is identical to the 8080A single 

interrupt response mode. The interrupting 
device places an instruction on the data bus, 

and the processor executes it. The instruc- 
tion will often be a restart. This mode is also 

the default mode for the Z80 upon a reset. 

In mode 1, the processor will respond to 
an interrupt by executing a restart to loca- 

tion 0056. The response in this mode is 

similar to the response to a nonmaskable 
interrupt except for the restart location. 
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I n mode 2, a table of 16 bit starting 
addresses for every interrupt routine must be 

maintained. This table can be anywhere in 

memory. When an interrupt is accepted, a 16 

bit address is formed from the contents of 
the 8 bit I register and the 8 bits on the data 

bus. The I register contains the upper 8 bits 
of the address and the 8 bit data on the data 

bus from the peripheral device constitutes 
the lower 8 bits of the address. This 16 bit 
address points to a location in the interrupt 
vector table. The processor fetches the 16 

bit address found at the selected table 
location (in two bytes) and loads the pro- 
gram counter with its value. This whole 
process takes 19 clock periods, or just 7.6 

us. 

The peripheral devices in the Z80 micro- 
computer family all have daisy chain inter- 
rupt structures. They automatically supply a 

programmed vector to the processor during 
interrupt acknowledge. Only the highest 

priority device interrupting the processor 

sees the interrupt acknowledge because of 
the daisy chain structure. With these devices, 

IO interfacing becomes quite a simple task, 
and is as powerful as the IO techniques used 

in many minicomputers. 

Conclusion 

What does the Z80 have going for it? It's 
easy to interface; one chip does the job of 
several 8080A family chips. It's as easy, if 
not easier, to design an entire system around 
than any other microprocessor on the mar- 

ket today, and the Z80 is software com- 
patible with the 8080A, the most widely 
used and known 8 bit microprocessor. Its 
instruction set is much more powerful than 
the 8080A's or any other 8 bit micropro- 
cessor's instruction set. 

Is there anything negative about the Z80? 
As of this writing (March), it is not yet in 

production and therefore not readily avail- 

able to the personal computing ex- 

perimenter. The price tag for unit samples is 

$200, but there are numerous price breaks 

with larger quantities. For instance, the price 
is $80 for quantities of 25 - 99. This is still 
more expensive, however, than either the 
8080A, 6800 or 6502, and is about the same 

as 16 bit microprocessors. 
The result is a tradeoff of cost versus 

performance. Much of the cost difference 
relative to other 8 bit processors is made up 

by the Z80's better memory utilization and 

(with respect to the 8080A) by the fact that 
fewer parts are needed to get a minimum 
system going. Although the Z80 processor is 

priced higher than the 8080A, when the cost 
of all the support devices the 8080A requires 
are included, the costs are comparable. 



A New 
Mini - Microcomputer 

System 

The Digital Equipment 

Corporation LSI- 

Robert W. Baker 
34 White Pine Dr. 
Littleton MA 01460 

Digital Equipment Corporation has a new 
addition to the microcomputer market. 
Designated the LSI -11, it is a complete 16 
bit microcomputer system on a single 8.5 
inch by 10 inch (21.6 cm by 25.4 cm) 
printed circuit board, combining the instruc- 
tion set of a PDP -11 /40 with an under 
$1000 price. 

A 3.5 inch H by 19 inch W by 13.5 inch 
D (8.9 cm by 48.3 cm by 34.3 cm) boxed 
version of the LSI -11 is designed as an 
off- the -shelf microcomputer system. Desig- 
nated the PDP- 11/03, it consists of an 
LSI -11 microcomputer, serial line interface, 
power supply, and a mounting box designed 
to mount in a standard 19 inch cabinet. 
Removing the front panel exposes the LSI 
modules and cables allowing replacement or 
installation of a module from the front of 
the PDP -11/03. The power supply has three 
front panel switches and indicators 
accessible through a cutout in the front 
panel. The lights and switches are still 
attached to the power supply and functional 
when the front panel is removed. Input 
power of the PDP -11 /03 is typically 190 
Watts at full load. 

LSI -11 Evolution 
The processor, memory, device interfaces, 

backplane and interconnecting hardware of 
the LSI -11 are all modular in design to allow 
custom tailoring necessary for specific appli- 
cation requirements. It was not intended to 
be a low end minicomputer, but to provide 
minicomputer capability to the new micro- 
computer applications. 
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To accomplish this goal, the LSI -11 was 

designed to optimize system costs rather 
than component costs. A four -chip micro - 
programmed central processor was selected 

to emulate the PDP -11 instruction set, 

allowing the inclusion of automatic dynamic 
memory refresh without additional cost. The 

microprogrammed processor also makes 

feasible user microcode and an ASCII con- 

sole which will be discussed later. 

Central Processor 

The central processor module consists of 
the microprogrammed processor and 4096 
words of memory, together with the bus 

transceivers and control logic. The four chip 
microcomputer controls the time allocation 
of the LSI -11 bus for peripherals and per- 

forms all arithmetic and logic operations as 

well as instruction decoding. Eight 16 bit, 
general -pupose registers can be used as 

accumulators, address pointers, index 
registers, stack pointers, or other desired 

functions. Arithmetic operations can be 

from one register to another, from one 

memory location or device register to 

another, or between a memory location or a 

device register and a general register. Data 

transfers between IO devices and memory on 

the bus occur without disturbing the 

processor registers. 

Bus 

The bus, which is implemented on the 

H9270 card guide backplane assembly, is the 

data path which enables a complete system 

to be configured. This bus was designed to 
allow low cost peripheral interfaces for 
microcomputer applications, rather than to 

support the wide range of peripheral config- 
urations common to large minicomputer 
systems. The processor module is capable of 
driving six device slots along the bus without 
additional termination, as provided with the 

H9720 backplane. Devices or memory can 

be installed in any location along the bus, as 

most bus control and data signals are bidirec- 
tional, open -collector lines that are asserted 

when low. The bus signals include 16 multi- 
plexed data /address lines, 6 data transfer 
control lines, 6 system control lines, and 5 

interrupt and direct memory access (DMA) 
control lines. 

Any communication between two devices 

on the bus is in the form of a master -slave 

relationship. Only one device, the bus 

master, can have control of the bus at any 

point in time. The master device controls the 

bus while communicating with another 
device on the bus, the slave. Since the 

LSI -11 bus is used by the processor and all 

IO devices, there is a priority structure to 

determine which device gets control of the 

bus. Every device on the bus capable of 
becoming bus master has a specific priority 
associated with its position along the bus. 

When two devices request use of the bus 

simultaneously, the higher priority device 

will receive control. All data transfers on the 
bus are interlocked so that communication is 

independent of the physical length of the 

bus and the response time of the slave so 

long as a bus timeout does not occur. 
Asynchronous operation allows each device 

to operate at the maximum possible speed. 

Interrupt System 

Interrupt and DMA handling incorporates 
two daisy -chained grant signals. This method 

eliminates device polling to service interrupt 
requests and establishes an interrupt 
priority. The highest priority device is the 

module located electrically closest to the 

microcomputer module. Only when a device 

is not asserting a request does it pass grant 
signals to lower priority devices. When an 

interrupting device receives a grant, the 

device passes to the processor an interrupt 
vector which points to a new processor 

status word (PSW) and the starting address 

of an interrupt service routine for the device. 

The current value of the PSW and program 
counter (PC) are stored on the stack. 

The processor operates with the interrupt 
mask (PSW bit 7) set (1) or cleared (0). 
When PSW bit 7 is equal to 1, no external 
device can interrupt the processor with a 

request for service. The processor must be 

operating at PSW bit 7 equal to 0 for the 
device's request to be effective. Interrupts 
can occur only between processor instruc- 
tions since they change the state of the 

processor. DMA operations, on the other 
hand, may occur between individual bus 

cycles since these operations do not change 

the processor state. 
One signal line on the bus functions as an 

external event interrupt line to the 
processor module. When connected to a 60 

Hertz line frequency source, this signal line 
can be used as a real -time clock interrupt. 
When automatic interrupt dispatch (vec- 

toring) is not needed, this line may be used 

as a common interrupt signal. Although this 
necessitates device polling (as in earlier 
computers, such as the PDP -8), device inter- 
faces may now be slightly less complicated. 
A single connection on the processor module 
enables or inhibits the external event 
interrupt. When enabled, the device con- 
nected to this line has a higher interrupt 
priority than any device connected to the 
daisy- chained grant signals. 

Power Fail /Restart 
To further increase the system flexibility, 

several power fail /restart options are avail- 
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able. The power fail sequence is initiated 
upon sensing a warning signal from the 
power supply signaling an impending AC 
power loss. The current PSW and PC are 
pushed on the processor stack and a new PC 
and PSW are taken from a vector at location 
24. Normally, with non -volatile memory, 
this routine would save processor registers, 
set up a restart routine, and halt. When only 
volatile memory is used, the registers cannot 
be saved but the power fail trap does allow 
an orderly system shutdown to occur. 

When AC power is restored, one of the 
four jumper selectable power -up options is 

initiated. The first option is loading a pro- 
grammed PSW and PC from the vector at 
location 24. This would be used with non- 
volatile memory to continue execution of 
the program at the point where the power 
fail occurred or to restart the program at an 
arbitrary address with ROM program 
storage. If the BHALT line on the bus (the 
halt switch) is asserted during this power -up 
sequence, the ASCII console microcode will 
be entered immediately after loading the 
PSW and PC. The second power -up option 
causes an unconditional entry to the ASCII 
console routines. The processor can then be 

started by an ASCII console command 
allowing remote system starting without 
controlling the bus halt line. (More on the 
ASCII console later.) Alternately, the last 
two options allow program execution to 
begin at a specified address in either macro - 
code or microcode. 

Memory 
The 4096 word memory on the basic 

CPU module consists of sixteen 4096 bit 
dynamic RAMs. This memory logically 
appears on the external bus while being 
physically on the CPU module. Being 
accessible to the bus allows external DMA 
transfers to take place to and from the basic 
4096 word memory. Also, an optional 
jumper allows the CPU module memory to 
occupy either the first or second 4096 word 
block of the bus address space. 

Various memory modules are available 
for applications requiring more storage than 
the standard 4096 word MOS memory on 

the processor board. Those offered include a 

non -volatile 4096 word core memory, a 

1024 word static RAM, read -only memory 
(PROM /ROM) with a maximum capacity of 
4096 words per board in 512 word incre- 
ments or 2048 words in 256 word incre- 
ments, and a 4096 word dynamic MOS 
RAM. 

A common disadvantage of using 
dynamic MOS memory is the necessity of 
refreshing the contents of memory at 
specific intervals. The refresh operation is 

required to replace the stored charge in each 



memory cell which has been lost through 
leakage currents. To eliminate most of the 

control circuitry normally necessary to per- 

form this memory refresh, the LSI -11 CPU 

microcode features automatic refresh con- 

trol. 
When enabled by an optional jumper, the 

CPU refresh control causes execution of a 

microcode subroutine approximately every 

1.6 milliseconds; this operation refreshes all 

dynamic MOS memory in the system, not 
just the memory contained on the CPU 

module. While asserting a bus signal causing 

all dynamic memories to cycle at the same 

time, the CPU performs 64 memory 
references to refresh their contents. During 
the burst refresh time, external interrupts 
are locked out while DMA requests are still 
possible. 

Maximum memory size of the 16 bit 
LSI -11 is 65,536 bytes or 32,768 words. 
Usually the top 4096 words of memory on 

members of the PDP -11 family are reserved 

for peripheral device control and data 

buffers, so the nominal maximum main 
memory size is 28,672 sixteen bit words. 
However, the user is not required to dedicate 
the entire upper 4096 word space to IO, but 
may implement only what is needed. Octal 

addresses 000 to 376 are usually reserved for 
trap and device interrupt vector locations. 
Several of these are reserved in particular for 
software generated interrupts (TRAPS) as 

shown in Appendix A. 

Instruction Set 
All operations are accomplished with one 

set of instructions rather than the conven- 

tional collection of memory reference in- 

structions, operate /accumulator control 
instructions, and 10 instructions. Single and 

double operand address instructions for 
words or bytes are used with a wide range of 
addressing modes, providing efficiency and 

flexibility in programming. The various 
addressing modes include sequential forward 
or reverse addressing, 8 -bit byte addressing, 
16-bit word addressing, and stack addressing. 
Using variable -length instruction formatting 
allows a minimum number of words to be 

used for each addressing mode. 
Each processor instruction requires one 

or more bus cycles. The first operation 
fetches an instruction from the location 
specified by the program counter (PC). If no 
further operands are required for executing 
the instruction, no further bus cycles are 
used. If memory or an IO device is 
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referenced, however, one or more additional 
bus cycles are required. 

A special maintenance instruction is 
included in the LSI -11 instruction set to aid 
in hardware checkout. This instruction 
stores the contents of five internal registers 
in a specified block in main memory. A 
diagnostic program may then be used to 
examine the information and determine the 
internal operation of the micro -level 
processor. 

The basic instruction set is that of the 
familiar DEC PDP -11/40 without memory 
mapping. Included are several operations 
normally not found even in other small 
PDP -11 processors, such as exclusive -or 
(XOR), sign extend (SXT), or subtract one 
and branch (SOB). There are also two new 
instructions used to explicitly access the 
processor status word (PSW). With the 
optional extended arithmetic chip, full 
integer multiply /divide and floating point 
arithmetic are also available. The instruction 
set is more comprehensive than that of the 
PDP -11 /05 while the execution times are a 
little slower. Refer to Appendix B for a 
complete list of the LSI -11 instruction set 
and Appendix C for typical timings. 

The branch instructions make use of the 
condition codes (PSW bits 0 to 3) which are 
set after execution of every arithmetic or 
logical instruction. This allows more 
efficient use of memory by eliminating extra 
instructions and temporary storage locations 
typically used to check results of various 
operations. The result of every operation is 
directly accessible and can be modified 
under software control by using any of the 
Condition Code Operator instructions. A list 
of the four condition codes along with a 
brief definition of each is listed in Appendix 
D. 

Software 
Since the LSI -11 uses standard PDP -11 

software, there is an extensive library of 
programs available from DEC including 
diagnostic programs to check out your 
system after it is built. There is also a DEC 
Users Society (DECUS) which makes avail- 
able a complete library of various PDP -11 
programs at reasonable prices. Every LSI -11 
owner automatically becomes a member of 
this organization. 

ASCII Console 
The conventional front panel lights and 

switches are replaced by an ASCII console/ 
ODT package that operates with any stan- 
dard terminal device communicating through 
a serial interface at a specific device address 
at any available baud rate. The functions 
available are very similar to those used by 
the familiar PDP -11 Octal Debugging Tech- 

90 

nique and are shown in detail in Appendix 
E. These include examining and changing the 
contents of memory and registers, calcula- 
tion of effective addresses for relative and 
indirect addressing, and the functions of 
halt, single -step, continue and restart. By 
examining the contents of an internal CPU 
register; it is possible to determine which of 
the five methods of entering the console 
routines was used. 

Upon entering the console routine, the 
location of the next instruction to be exe- 
cuted will be printed followed by @. The 
console routine will then wait for one of the 
14 legal command characters. Thus, the user 
retains all the direct hardware control of a 
conventional lights and switches front panel 
and gains the ability to boot load from a 
specified device in byte transfer mode. 

Interfaces 

The LSI -11 system includes several 
standard interface modules to handle a 
variety of applications. Currently both a 
serial and a parallel IO interface is available, 
each as a single 8.5 inch by 5 inch (21.6 cm 
by 12.7 cm) PC board. The DLV -11 handles 
a single asynchronous serial line between 50 
and 9600 baud, while the DRV -11 provides 
a full 16 -bit parallel interface complete with 
two interrupt control units. The use of the 
two standard interface modules makes it 
very simple to connect any desired device to 
the LSI -11 bus. Standard devices such as 
teletypes, line printers, analog to digital 
converters, etc., can be connected directly to 
the interface modules with no additional 
circuitry. A simple cassette recorder inter- 
face can be made using the DRV -11 parallel 
interface, a UART chip, and a simple speed 
independent recorder interface circuit such 
as that shown in Don Lancaster's article 
Serial Interface, page 30, in the September 
issue of BYTE. 

Are you interested in buying one? 

This article has described the details of 
the LSl -11 computer by Digital Equipment 
Corporation. For those interested in pur- 
chasing the board version of this computer, 
the Southern California Computer Society is 
organizing a group purchase for amateurs. 
This purchase will involve an original equip- 
ment manufacturer (OEM) quantity of 50 or 
more machines, on a basis of cost plus 2% 
minimum contribution to SCCS. For further 
information contact Hal Lashlee of The 
Southern California Computer Society, at 
213- 682 -3108. SCCS is organizing quantity 
purchases of other computer equipment, and 
is interested in making such offerings avail- 
able through other computer clubs. 



APPENDIX A: TRAP VECTORS 

Location 

000 
004 

010 
014 

020 
024 

030 
034 

060 
064 
100 
244 

Vector 

(Reserved) 
Time out & other errors 

Illegal & reserved instructions 

BPT instructions 
IOT instructions 
Power Fail 
EMT instructions 
TRAP instructions 
Console Input Device 

Console Output Device 

External event line interrupt 

FIS option 

APPENDIX B: 

LSI -11 INSTRUCTION SET 

MNEMONIC INSTRUCTION 

Single Operand - General: 

CLR 
CLRB 

COM(B) 
INC(B) 
DEC (B) 
NEG (B ) 
TST(B) 

Rotate & Shift: 

ROR(B) 
ROL(B) 
ASR(B) 
ASL(B) 
SWAB 

Multiple Precision: 

ADC(B) 
SBC(B) 
SXT 

Clear word 
Clear byte 

Complement (1's) 

Increment 
Decrement 
Negate (2's complement) 
Test 

Rotate right 
Rotate left 
Arithmetic shift right 

Arithmetic shift left 

Swap bytes 

Add carry 
Subtract carry 
Sign extend 

Processor Status (PSW) Operators: 

MFPS 
MTPS 

Double Operand - 

Logical: 

MOV (B) 
CMP(B) 
ADD 
SUB 

BIT(B) 
BIC (B) 
BIS (B) 
XOR 

Move byte from PSW 

Move byte to PSW 

General: 

Move 
Compare 
Add 
Subtract 

Bit test (logical AND) 

Bit clear 
Bit set (logical OR) 

Exclusive OR 

Branches: 

BR 
BNE 
BEQ 
BPL 
BMI 
BVC 
BVS 
BCC 
BCS 

Unconditional branch 
Branch if not equal to 0 

Branch if equal to 0 
Branch if plus 
Branch if minus 
Branch if overflow is clear 

Branch if overflow is set 

Branch if carry is clear 

Branch if carry is set 

Signed Conditional Branches: 

BGE 
BLT 
BGT 
BLE 

Branch if greater or equal to 0 
Branch if less than 0 
Branch if greater than 0 
Branch if less or equal to 0 

Unsigned Conditional Branches: 

BHI 
BLOS 
BHIS 
BLO 

Branch if higher 
Branch if lower or same 

Branch if higher or same 

Branch if lower 

Condition Code Operators: 

CLC 
CLV 
CLZ 
CLN 
CCC 

SEC 
SEV 
SEZ 
SEN 
SCC 

Jump & Subroutines: 

JMP 
JSR 
RTS 
MARK 
SOB 

Trap & Interrupts: 

EMT 
TRAP 
BPT 
IOT 
RTI 

RTT 

Miscellaneous 

HALT 
WAIT 
RESET 
NOP 

Optional EIS: 

MUL 
DIV 
ASH 
ASHC 

Optional FIS: 
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FADD 
FSUB 
FMUL 
FDIV 

Clear C Condition Code Bit 

Clear V 
Clear Z 

Clear N 
Clear all condition code bits 

Set 
Set 
Set 
Set 
Set 

C Condition Code it 

V 
Z 

N 

all condition code bits 

Jump 
Jump to subroutine 
Return from subroutine 
Mark (aid in subroutine return) 

Subtract 1 & branch if not 0 

Emulator trap 
Trap 
Breakpoint trap 
Input /Output trap 
Return from interrupt 
Return from interrupt 

Instructions: 

Halt 
Wait for interrupt 
Reset external bus 
(no operation) 

Multiply 
Divide 
Shift arithmetically 
Arithmetic shift combined 

Floating add 
Floating subtract 
Floating multiply 
Floating divide 



Continued from page 19 

APPENDIX C: 
TYPICAL INSTRUCTION TIMING 

INSTRUCTION TIME (usec) COMMENTS 

ADD R1,R2 3.5 Register addressing 

MOV R3,RO 3.5 

MOV TAG1,10 (R2) 11.55 Relative & index addressing 

TSTB (R3)+ 5.25 Auto -indexed 

BMI TAG2 3.5 Conditional branch 

JSR PC,2(R2) 8.05 Subroutine call 

JMP (R4) 4.2 Jump indirect 

RTI 10.5 Return from interrupt 

Optional EIS & FIS Instructions: APPENDIX D: 
PSW CONDITION CODES 

MUL 24 - 64 Multiply 

FADD 42.1 Floating add 

FMUL 52.2 - 93.7 Floating mult 
CODE PSW BIT 

FDIV 151 - 232 Floating divide N 3 

Z 2 

V 1 

APPENDIX E: 

ASCII CONSOLE /ODT COMMANDS C p 

Command 

< CR > 

< LF > 

Up -arrow 

Back -arrow 

Function 

Close opened location and accept next command. 

Close current location; open next sequential 
location. 

Open previous location. 

Take contents of opened location as a 
relative address, and open that location. 

Take contents of opened location as 
absolute address and open that location. 

r/ Open word at location r. 

Reopen the last location. 

$n/ or Rn/ Open general register n(0 -7) or S (PSW). 

r;G or rG Go to location r and start program 

nL Execute bootstrap loader using n as device 
CSR. Console device is 177560. 

;P or P Proceed with program execution. 

RUBOUT <DEL> Erases previous numeric character. Response 
is a backslash (NO. 
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CONDITION WHEN SET = 1 

If result were negative 

If result were zero 

If operation resulted in 
an arithmetic overflow 

If operation resulted in 
a carry from the msb (most 
significant bit) or a 1 
was shifted from the lsb 
(least significant bit) 



Continued from page 22 

BUS 

BUS 
TIMEOUT 

DMA 

JUMPER 
SELECTABLE 
OPTIONS 

A collection of parallel data paths PC 

and power lines used to 
interconnect the various elements 
of the system, including the 
central processor, memory, and 
all peripherals. 

Bus timeouts or bus errors occur 
whenever the controlling device 
on the bus (the bus Master) does 

not receive a response from the 
addressed device (the Slave) 

within a certain length of time. In 

general, these are caused by 
attempts to reference 
non -existent memory or 
peripheral devices. Bus error traps 
cause processor traps through the 
trap vector address 4. 

Direct Memory Access. For high 
speed devices, memory may be 

accessed directly through the bus 
without the use of program 
controlled data transfers. 

The CPU module contains 
locations for six wire jumpers to 
control the various operating 
options as follows: 

1. Two wires select which of the 
four possible power -up options is 

desired. These are normally set to 
restart through vector location 24 
(so the LSI -11 acts as a standard 
POP-11). 

2. One wire jumper enables the 
external event (or real -time clock) 
interrupt feature when inserted. 

3. One wire jumper enables the 
automatic dynamic memory 
refresh feature when inserted. 

4. Two wire jumpers determine 
the addressing of the 4K RAM 
memory located physically on the 
CPU module. 

POWER -UP 
SEQUENCE 

OPTION 

PSW 

STACK 

TRAP 

Each wire jumper consists of a 

short length of bare copper wire VECTOR 
soldered between two designated 
holes in the PC board. 

MACROCODE The instruction set which the 
programmer sees and actually uses 

to implement his program, such as 

the PDP -11 instruction set in this 
case. 

MICROCODE The low level instruction set used 
in a microprogrammed processor 
to "emulate," or execute, the 
macrocode. Microcode is more 
primitive in function, but 
executes at a higher speed than 
the macrocode. 
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Program Counter. A register 
which contains the address of the 
next instruction to be executed. 

Two wire jumpers on the CPU 
module select one of the four 
possible power -up modes: 

POWER -UP 

0 PC at 24, PSW at 26, or HALT 
1 ODT - ASCII Console 
2 PC = 173000, or HALT 
3 Special processor microcode 

VOLATILE 
MEMORY 

The power -up sequence is 

initiated upon supplying power to 
the processor module or on 
restoration of power after a 

temporary power fail has 
occurred. 

Processor Status Word. Contains 
information on the current status 
of the processor including the 
priority mask (bit 7) and the 
condition codes (bits 0 to 3). 

An area of memory set aside by 
the programmer for temporary 
storage or subroutine /interrupt 
sevice linkage. The stack uses the 
"Last In - First Out" concept; 
thus various items may be added 
to a stack in sequential order and 
retrieved or deleted from the 
stack in reverse order. Stack starts 
at the highest location reserved 
for it and expands linearly 
downward. In the LSI -11, register 
6 is reserved as the hardware stack 
pointer and must be initialized by 
the software. However, registers 0 
to 5 may be used for various 
program defined stacks as needed. 

Software generated interrupt. 

A unique address which points to 
a reserved set of locations (2 
words) for interrupt or error 
handling. The first word contains 
the starting address of a service 
routine (a new PC) while the 
second holds the new PSW to be 
used by the service routine. 

Volatile memory, such as RAM, 
will not retain useful information 
without power applied 
continuously. Non -volatile 
memory, such as core or ROM, 
will always retain its information 
with or without power applied. 



Cromemco TV Dazzler 

[This short account is 
based upon materials supplied 
by Harry Garland of Crom- 
memco.... CH) 

Imagine being able to look inside your 
computer memory, actually being able to see 

the individual bits. With this sort of X ray 
vision your computer memory could also 
serve as your computer display. Messages 
could be spelled out by lighting some bits 
and darkening others. Games could be 
played with clusters of bits forming game 
pieces and markers. Space War might be 
played with miniature rocket ship patterns 
zooming in, out and around the visible 
region of memory address space. The key 
element of hardware required to actually 
achieve this imagined result is a memory 
module which has provisions to map its 
contents onto a television screen. This is 
precisely what Cromemco has done in 
creating its TV Dazzler product, the results 
of which were used to create this month's 
cover. 

The TV Dazzler hardware features two 
modes of operation providing high resolu- 
tion and low resolution generation of a 

television picture. Through software selec- 
tion the TV Dazzler can be programmed 
either as a 128 x 128 point black and white 
display, or as a 64 x 64 point colored 
display. The points of the display grid are 
tiny square regions on the screen which map 
into segments of the 2 K byte memory of 
the TV Dazzler module. 

In the high resolution "bit mapped" 
mode, TV Dazzler uses its 2 K byte memory 
as a means of storing 214 = 16,382 bits 
required to generate a unique "on" or "off" 
value for each location of a 128 x 128 grid. 
This high resolution black and white mode is 
very effective for alphanumeric displays and 
detailed computer controlled images. 
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Photo 1: Here is a black 
and white reproduction of 
a single frame of a wine 
pouring animation se- 
quence created by Steve 
Dompier using his Dazzle - 
m a t ion program. The 
colors of the original re- 
produce as shades of gray- 
ness in this black and 
white picture. 

In the low resolution "nybble mapped" 
mode, TV Dazzler uses its 2 K byte memory 
as a means of storing 212 = 4096 four bit 
nybbles of data needed to generate a color 
display on a 64 x 64 grid. Each nybble 
determines the color and intensity of the 
corresponding picture element on the grid. 
The most significant bit sets either high or 
low intensity, and the next three bits inde- 
pendently select the blue, green and red 
channels of the color TV signal. 

Like a metaphorical beachball, (see Janu- 
ary 1976 BYTE editorial), the Dazzler pro- 
vides the hardware for an incredible variety 
of applications. This variety is realized 
through the software for games and other 
purposes developed by people who buy and 
use this type of peripheral. One particular 
application of the peripheral is a program 
called Dazzlemation which was written by 
Steve Dompier. The purpose of Dazzlema- 
tion is to record an animated sequence of 
TV frames in color, then play these back. In 
order to make such a sequence, Dazzlema- 
tion is used to color in the appropriate 
regions of single frames which are stored in 
memory. Steve's standard demonstration se- 

quence shows a carafe of red wine being 
poured into a wine glass. One frame of the 
carafe sequence is illustrated by photo 1. 
This is just one of an endless variety of 
computer generated animated displays which 
is made possible by programs like 
Dazzlemation. 

A second application of the Dazzlemation 
hardware was used to generate the pattern 
which forms the main portion of the cover. 
This is a program called Dazzler -LIFE which 
was written by Ed Hall. John Conway's 



fascinating game of LIFE gains a new dimen- 
sion when it is displayed in color. Watching 
the patterns evolve can be intoxicating in 

black and white, but becomes truly addictive 
when color is used to illustrate the game 

board. In the Dazzler -LIFE program, the 
game begins in a drawing mode which allows 
the user to draw an initial colony of cells on 

the screen using controls from the ASCII 
keyboard. Then the evolution process is 

initiated with each succeeding generation 
being displayed on the screen with colors 
marking the health of each cell. Cells that 
are too crowded, or too remote, turn a 

flaming red color, then wither away. New- 
born cells first appear in green, then grow up 

to a !nature blue color. The kaleidoscopic 
result is fascinating to watch. One frame of a 

colorful LIFE history was photographed for 
the cover. 

Still another application of the Dazzler is 

as a hardware game board for sophisticated 
computer automated games. One example of 
such an application is the Tic Tac Toe 
software written by George Tate. Dazzler 
Tic Tac Toe is written in BASIC, and 

demonstrates how very well suited the MITS 
BASIC is for creating colorful creations. 
George's program is one of a class of "man 
versus computer" game applications, and is 

reputed to be extremely competent at Tic 
Tac Toe. A sample of the output is repro- 
duced here in black and white as photo 2. 

A useful utility program for the Dazzler, 
which demonstrates the bit mapped mode 

of operation is the Dazzlewriter software 
created by Ed Hall. This program turns your 
ASCII keyboard /computer /Dazzler combina- 
tion into a TV typewriter by generating the 

5 x 7 dot matrix display for each keyboard 
character. A sample of Dazzlewriter activity 
is shown in photo 3. Since the main memory 
of the computer is used to store the charac- 

ter generation information, there is no need 

for any additional hardware beyond the 

memory requirements of Dazzlewriter. 
Another delightful application of the 

display is an "idling" program you'll pro- 
bably want to leave in the computer system 
when you're not using it for another pur- 
pose. This program is Li -Chen Wang's color- 
ful Kaleidoscope program. The program is 

surprisingly short, just 127 bytes long, yet it 
generates an unending sequence of captiva- 
ting patterns. 

These programs were created by some of 
the first individuals who had access to the 
Dazzler hardware. They are written for the 

8080 instruction set (except George Tate's 
BASIC Tic Tac Toe) and are available in 

paper tape form from Cromemco at $15 
each. 

Photo 2: Here is the game board of George Tote's Tic Tac Toe application, 
written in MITS Altair BASIC with the TV Dazzler os its display peripheral. 

PAR 1940HP 
Irt< a > ?[ H 

MEMORY SIZE? 
TERMINAL WIDTH? 
DAZZLE- WRITER 
RUNNING WITH 
8K BASIG!!!! 

Photo 3: Here is a sampling of outputs generated using Ed Hall's 

Dazzlewriter program to turn the TV Dazzlerlcomputerlkeyboard combina- 

tion into the logical equivalent of o TV typewriter style display. 
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Flip Flops 

Exposed 

by 
William E. Browning 
516 N. 95th E. Ave. 
Tulsa OK 74155 

One of the important 
building blocks in working 
with transistor -transistor logic 
is the flip flop. It is important 
to understand this building 
block if you desire to use it in 
projects of your own. 

The two most common 
types of flip flops are known 
as the JK flip flop and the D 
flip flop. 

JK Flip Flop 

The JK flip flop has four 
or five inputs and one or two 
outputs. The input pins are 
labeled J , K, CLOCK, 
CLEAR and PRESET, and 
the output pins are labeled Q 
and Q which is often 
pronounced as "Q bar" or 
"not Q ". A typical block 
diagram of a JK flip flop is 

shown in Fig. 1. 
The outputs (Q and Q) can 

be in one of two states: High 
(logic 1) or low (logic 0). In 
general, if the Q output is 
high then the Q output is 
low, and vice -versa, if the Q 
output is low then the Q 
output is high. We will often 
refer to the Q output only 
since we know that Q will be 
the opposite. So if we say 

that the output is high it 
means that Q is high and Q is 
low. However, this is not 
always so; on some flip flops 
you may find a Q output 
only, and, as you will see 
further below, both outputs 
may be high or low under 
specific conditions. 

Asynchronous Inputs 
Now that we know about 

the output states, let's discuss 
the inputs to give us the 
desired outputs. The PRESET 
and CLEAR pins are known 
as asynchronous inputs. 
Asynchronous means that 
these inputs do not depend 
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(INPUTS) 

upon the timing derived from 
the clock pulses. 

With almost all flip flops a 

low PRESET will take Q to 
high, and a low CLEAR will 
take the Q to high. With both 
PRESET and CLEAR low 
both Q and Q will be high. 
This is the only time when Q 
and Q are not opposite from 
each other. If both PRESET 
and CLEAR are high, then 
the control of the output is 

given to the J, K and CLOCK 
inputs. The relationship 
between the asynchronous 
inputs and the output is 

shown in the truth table of 
Fig. 2. 

CLEAR 

J O 

CLOCK 

K Q 

PRESET 

(OUTPUTS) 

Fig. I. The JK flip flop block diagram. 



PRESET CLEAR O Z. 

L L H H 

L H H L 

H L L H 

H H NO CHANGE 

Fig. 2. Truth table of a JK flip 
flop responding to preset and 
clear. 

Synchronous Inputs 

The J and K inputs are 
synchronous inputs. 
Synchronous means that they 
depend on the CLOCK for 
operation. 

For most JK flip flops a 

simple set of rules apply to 
the synchronous inputs, but 
not all flip flops are standard. 
There are several variations 
on the timing when the chip 
accepts inputs and when the 
output changes. 

The most common 
input- output relation is 

known as the rising -edge 

triggered flip flop. The 
rising -edge triggered flip flop 
derives its name from the fact 
that it changes its output 
states only when the CLOCK 
level rises from low to high. 
Of course, the output states 
depend on the configuration 
of the J and K inputs. Fig. 3 

illustrates the changes of the 
Q pin depending on the levels 
on the J and K pins: When 
both J and K are low, Q does 
not change; when both are 

high, Q changes into its 
opposite state; with J being 

low, and K being high, Q 
assumes a low level, and when 
J is high, but K is low, Q will 
take on a high level. 
Remember, though, that this 
change can happen only if the 
CLOCK input rises from low 
to high, and, as was shown in 
conjunction with Fig. 2, 
when both PRESET and 
CLEAR are high. 

The less frequent type of 
input- output relation is 

known as the falling -edge 
triggered flip flop. This flip 
flop resembles the first, 
except that the output 
changes to the condition 
selected by the J and K 
inputs when the CLOCK level 
falls from high to low. 
Everything else remains the 
same. 

It is easy to change the 
operation of a falling -edge 
triggered flip flop to that of a 

rising -edge triggered flip flop. 
All that needs to be done is 

to invert the input to the 
CLOCK. The inverter shown 
in Fig. 4 changes a high level 
to a low level, and vice versa; 
a rising -edge triggered flip 
flop can be changed to a 

n tn + I 

J K 0 

L L 0 

L H L 

H L H 

H H 0 

Fig. 3. Truth table of a JK flip 
flop for synchronous (clocked) 
operation. 

Fig. 4. Inverting the clock input 
converts rising edge - triggered 
operation into negative edge - 
triggered operation and vice versa. 

CLOCK 

OUTPUT OUTPUT 
CHANGES CHANGES 

OUTPUT 
CHANGES 

\_ ___\___ ._\____ 
INPUT NEW INPUT NEW INPUT 

ACCEPTED ACCEPTED ACCEPTED 

Fig. 5. Timing of a negative clock 
pulse master /slave flip flop. 

CLOCK 

INPUT NEW INPUT 
AC CEPTED ACCEPTED 

ZOUTPUT 
CHANGES 

Fig. 6. Timing of a positive clock 
pulse master /slave flip flop. 

falling -edge triggered flip 
flop, and vice versa, by means 
of the inverter. 

A third type of input is 

known as the negative clock 
pulse master /slave flip flop. 
With this flip flop the inputs 
are applied to the J and K 
pins when CLOCK goes low 
and change their outputs 
after the rising edge of the 
clock pulse (see Fig. 5). 

The clock pulses should be 
made as short as possible and 
the time between clock pulses 
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NEW INPUT 
ACCEPTED .-- 

ZOUTPUT OUTPUT 
CHANGES CHANGES 

as long as possible. This will 
increase immunity to 
alternating current noise and 
accommodate all ripple delay 
between clock pulses. 

A fourth type of input is 

the positive clock pulse 
master /slave flip flop. This 
flip flop accepts inputs when 
CLOCK goes high and 
changes output when CLOCK 
goes low (see Fig. 6). The 
pulses should be made as 

short as possible for the 
above mentioned reasons. 
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Fig. 7. Pinout of the 7472 IC, a positive clock pulse master /slave flip 
flop. (Top view ) 
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Fig. 8. Pinout of the 7470 IC, a positive edge triggered flip flop. (Top 
view) 
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Fig. 9. Pinout of the 7473 IC, a dual positive clock pulse master /slave 
flip flop. (Top view ) 

Variations on the Four Flip 
Flops 

One of the confusing 
aspects with flip flops is that 
they differ in the logic 
controlling the J and K 
inputs. Some have AND /OR 
logic circuits accepting several 
distinct inputs, and others 
have an inverter before the J 

or K inputs. 
I f we look at some 

diagrams of flip flop ICs, 
their operation will be easier 
to understand. 

The 7472 in Fig. 7 is a 

single JK flip flop of the 
positive pulse master /slave 
type. 

The 7472 uses gates on the 
J and K inputs. In order to 
get a high level on the J input 
of the flip flop a high on all 

three J inputs of the IC (pins 
3, 4 and 5) and the clock (pin 
12) is required. In a similar 
manner, a high on the K 
input of the flip flop is 

obtained with a high on all 
three K pins (pins 9, 10 and 
11) and the clock of the IC. 

If you have only one J 

input, connect all three J pins 
together, or connect two of 
the J inputs to high, and use 

the remaining input for the 
data input. The same holds 
true for the K inputs. 

The 7470, shown in Fig. 8, 
is a single JK flip flop of the 
positive -edge triggered type. 

The 7470 has identical 
gates and inverters on the J 

and K inputs. For example, 
to get a high level on the J 

input of the flip flop a high 
on J1 and J2 (pins 3 and 4) 

and a low on J* (pin 5) must 
be received. A low level on 
pin 5 is inverted to a high on 
the input to the gate. 

If you do not need J* or 
K *, connect them to ground. 
I f you do not need J1, J2, K1 
or K2 connect them to high. 

The 7473 IC is a dual JK 
flip flop of the positive pulse 
master /slave type. Fig. 9 
shows that this IC does not 
use gating on the J and K 
inputs. 

The two flip flops operate 
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separately from each other 
having only the +5 volt Vcc 

and ground in common with 
each other. You may also 

have noticed that Vcc is on 

pin 4 and ground on pin 11. 

This is not the same as on 

most 7400 ICs which have 

Vcc on pin 14 and ground on 

pin 7. So check your 
connections before you apply 
power. 

There are no PRESET 
inputs to the chip, in order to 
allow a 14 pin package. 

If you do need the 
PRESET on a dual JK flip 
flop, use the 7476 available in 

a 16 pin package. It is shown 
in Fig. 10. It has independent 
CLEAR and PRESET pins, 
whereas in the 74H78 of Fig. 

11 the CLOCK and PRESET 
pins, respectively, are 
connected. The 74H78 comes 
in a 14 pin package. 

In many circuits the same 

clock operates many flip 
flops and several flip flops are 

cleared at the same time. The 
74H78 is well suited for these 

needs because it saves on the 
number of external 
connections, saves on the size 

of the IC package, and the 

number of pins. 

D Flip Flop 
Let's make one small 

modification to the JK flip 
flop: An inverter connects 
the K input to the J input as 

shown in Fig. 12. 
If J is high then K will be 

low, and if J is low, K will be 

high. Since there is only one 

synchronous input instead of 
the two, let's call it the data 
input or D input. 

Some flip flops have this 
modification built into an IC 

and are referred to as D flip 
flops. A typical block 
diagram of a D flip flop is 

shown in Fig. 13. 
The truth table of the D 

flip flop is shown in Fig. 14. 
Remember that the PRESET 
and CLEAR must be high, as 

discussed in connection with 
Fig. 2. The truth table for 
asynchronous inputs applies 
also to the D flip flop. 
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Several ICs employ the D 
flip flop. One of these is the 
7474 dual D flip flop. Since 
only one pin is needed for 
data entry to each flip flop 
both preset and clear 
capability can be provided in 
a 14 pin package. The 
diagram of the 7474 is shown 
in Fig. 15. 

The 7475 IC uses a D flip 
flop which is called a latch 
because the CLEAR and 
PRESET pins are absent. The 
reduction in pins has been 

+5V 
Vcc 

14 

carried one step further by 
combining two CLOCK pins 
each. Therefore it is possible 
to put four latches on one 16 
pin IC; the 7475 quad latch is 

shown in Fig. 16. 
This short introduction to 

flip flops, latches and 
integrated circuits should 
help your understanding of 
this building block. With a 

thorough understanding of 
these circuits, you will be 
well on your way to designing 
your own equipment. 
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Fig. 11. And still another combination - the pinout of the 74H78 has 
14 pins with common CLEAR and CLOCIÇ and separate PRESET pins. Fig. 15. The pinout of the 7474 dual D flip flop. (Top view ) 

Fig. 12. Making a "D" flip flop Fig. 13. The block diagram of a D 
out of a "JK" with an inverter. flip flop. 
(Top view ) 

In to+1 

D 0 O 

L L H 

H H L 

Fig. 14. Truth table of a D flip 
flop. 

OA 

16 

OB 08 

15 

L14 

CLOCK 
ee GND OC 

13 10 

17 
GND 

2 

OA DA De 

15 

CLOCK V Cc CaD+5V 

7 

Do DD 
Q D 

Fig. 16. Pinout of the 7475 latch (or register) circuits. (Top view ) 
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Recycling 
Used 
ICs 

by 
Carl Mikkelsen 
35 Brookline St., No. 5 
Cambridge MA 02139 

The surplus market' is 

saturated with used printed 
circuit boards from early 
computer systems which 
offer a very inexpensive per 
chip source of ICs. Used 
boards typically contain 
50 -200 chips of small scale or 
medium scale integration, 
usually with many simple two 
input gates and four bit data 
registers. Common part 
numbers include 7400, 7402, 
7404, 7408, 74126, 74174, 
74175, etc. Through careful 
shopping, I have found 
boards with large numbers of 
multiplexors such as 74151, 
74153, and even scratch pad 
registers - 7489. After 
removing chips from the 
boards and eliminating any 
non -functional units, cost per 
chip is from 3 to 8 cents, 
resulting in an overall cost of 
about one fourth to one 
tenth of the individual chip 
cost through other surplus 
outlets. 

Removing chips from 
boards offers advantages over 
purchasing chips surplus 
which makes them attractive 
for reasons other than price. 
Primarily, the companies 
which originally built the 
boards used top -quality, fully 
spec'ed components. All 
chips have already been 
tested, and most have already 
served in equipment. 

Given that you've found a 

serendipity of well soldered 
chips, it's necessary to 
unsolder them without either 
burning them or cracking 
their cases. Desoldering 
individual leads can be done, 
but usually the chip is made 
unnecessarily hot by the 
prolonged application of 
heat. Also, pulling each lead 

Sweep the blow torch over the IC's pins -one complete sweep 
once or twice a second. 

out separately results in bent, 
often broken leads. Devices 
are available which will heat 
all 14 or 16 pins of a small 
IC, but again a long time is 

needed to melt the solder 
since the total amount of 
energy available is limited to 
a small soldering pencil 
heating element. Most 
available boards are two sided 
and four layer boards aren't 
uncommon. Multi- layered 
boards make the required 
amount of energy even 
higher. 

When a board is built, the 
ICs are positioned in place 
with all other components, 
and the board is soldered by a 

three step process. 

1. The underside is washed 
by hot, bubbling, liquid flux. 

2. The clean board is 

passed over a small fountain 
of solder, so that the board 
just touches it. 

3. After cooling, the board 
is immersed in FREON gas to 
remove any remaining flux. 

As you can see, the board 
is subjected to high 
temperatures during the 
soldering phase, which takes 
around 5 -10 seconds. 

The blow torch method of 
IC removal duplicates 
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conditions during board 
soldering by heating all pins 
simultaneously; removing the 
IC is a single step. 

Equipment Needed 

To use this technique, you 
will need: 

A torch. Non -oxygenated 
propane and acetylene gas has 

been used. 
C /amps or a vise to hold 

the board fairly rigid during 
chip removal. 

A way to grip the chips, 
depending on how they are 

packed next to each other. 
Components, small vise grips, 
a small screw driver and a fine 
point awl should be all that 
are needed. 

A place where splashed 
solder will not be serious. 

Some form of eye 
protection. 

WARNING 1 

Using this method involves 
heating PC boards to high 
temperatures. Some boards 
release Hydrogen Chloride 
(HCI), which becomes 
hydrochloric acid in your 
lungs. Do this only in a well 
ventilated area, and stop to 
allow air to clear if irritation 
develops. 



Grip the IC a second after removing the flame and rock it away from the board. It should come 
free in a couple of seconds. 

WARNING 2 

When an IC is pulled from 
a board, the board often 
snaps back to its original 
position. This is especially 
true if it isn't fixed very 
rigidly in place. When the 
board flips, solder is often 
sprayed away from the back 
side of the board. I ruined a 

pair of pants by not 
considering this before I 

started. I, therefore, wear old 
clothes and if you don't want 
solder on the floor, cover it 
with newspapers. 

Enough warnings ... 
following is how I pull ICs 
from boards: 

First I clamp the board to 
my bench so that I can get 
my vise grips on about half 
the ICs (this is with a 10" x 
14" board). I adjust the vise 
grips so I can grip a 14 pin IC 
without the vise grips locking 
and then light the torch. The 
flame on my Benzo -matic 
torch with the narrow tip is 

about an inch long. 
Beginning with the lowest 

IC I can reach, I heat it with 
the torch by sweeping the 
torch over its pins (you 
obviously heat the 
non -component side). 
Especially when using a torch 
with a narrow flame it is 

necessary to move the flame 
over the pins. One complete 
sweep should be done once or 
twice a second. After a 

second or so, the IC should 
be gripped, and rocking 
tension away from the board 
applied. It helps to rock the 
IC, especially if corner pins 
have been bent over to hold 
the IC in place during 
assembly. The IC should very 
rapidly become loose, and in 
another couple of seconds 
should come free of the 
board. 

When the IC is removed, 
quickly drop it on the bench 
and move the torch and pliers 
to the IC above the one 
removed. Heating the lower 
I C pre -warms the board 
above, making the next 
removal easier. Also, the 
board position just heated 
will cool faster, thereby 
reducing the amount by 
which the board will be 
damaged. 

As each column of ICs is 

removed, the next is done. 
When all ICs on one half have 
been removed, reposition the 
board so the other half is 

accessible. I've found that the 
half -way point often can be a 

good excuse to let the room 
ventilate and drink a beer. 
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No matter how carefully 
and rapidly I've worked, I 

always burn the board at least 
once because I have trouble 
removing an IC, or my pliers 
slip, or for some other reason. 
If you consistently burn each 
board position, your flame is 

probably too hot. If, 
however, it takes longer than 
5 to 10 seconds to remove an 
IC, your flame is too cool. 

A certain amount of care 
is necessary when gripping 
the ICs. Too much pressure 
may crack them. Too little 
pressure will let the pliers 
slip, costing time to 
reposition them and marring 
the cases. 

When attempting to 
remove the larger ICs such as 

74181s and 74154s, which 
come in 24 pin DIPs, I have 
trouble gripping them, so I 

remove them as a two step 
process. First, I place an awl 
under the middle of one side, 
say between pins 6 and 7. I 

heat that pin row and, with 
the awl applying leverage, 
pull out that row. I then grip 
the IC on its thinnest 
dimension, heat the 
remaining pins, and remove 
the IC. 

So far, by using this 
technique, my friends and I 

have removed about 1000 ICs 
from surplus boards which 
have about 80-100 ICs each. 
tend to break 2% of the chips 
I pull by applying too much 
force with the pliers. But a 

friend has never broken one, 
so it clearly is an individual 
matter. Of those chips 
removed unbroken, we have 
tested around 250, and haec 
never found a bad chip. 

As an unrecommended 
demonstration of the 
ruggedness of ICs, 
accidentally grossly 
overheated one, so that when 
I gripped it in vise grips, the 
chip was bent in a curve. The 
plastic case must have 
softened significantly. After 
allowing it to cool several 
minutes to the point where I 

could handle it by hand, 
plugged it into a circuit, 
expecting it to have failed 
totally. It worked, although 
didn't check out its ac 
characteristics. Out of general 
paranoiac distrust for a device 
so intensely mistreated, I 

discarded it. 
After removing ICs from 

boards it is usually necessary 
to clean and straighten the 
pins. Boards with plated 
through holes often lose their 
plating around the IC lead. 

I have found this method 
useful as a means of quickly 
building a stock of ICs ready 
to use in any project. It is 

limited mainly by the 
availability of exotic surplus 
chips, but most standard 
7400 series TTL is easily 
available. The price of 4 
cents /chip can't be beat, and 
the time required - about 10 
to 20 minutes /80 chip board - is rather small. 

This technique provides a 

fast, cheap, safe means of 
removing chips. I hope it 
proves as effective for you as 

it does for me. 
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This test clip operates like 
the expensive, commercially 
available clips selling for $85 

or more without requiring 
batteries or external power. 
All types of ICs may be 

tested (TTL, DTL, MOS, etc.) 

and LEDs are used to indicate 
the logic state of each pin 

being tested. 
The heart of the test clip is 

a Texas Instruments TID125 
diode array which costs about 
$3.75. Two diode arrays are 

used to determine the pin 
with the highest voltage (Vcc) 
and the pin with the lowest 
voltage (ground). These pins 

are then used to power the 

LEDs on the test clip itself, 
thus taking power from the 

IC on the board and 

eliminating the need for an 

external or separate supply. 
The circuit is straight forward 
and may be expanded to 
make a 24- or 40 -pin test clip. 
The larger test clip, however, 
may be difficult to use due to 
the size of the LED display. 

The basic IC clip is a 

standard item available from 
AP Products Inc., Box 110 -Z, 

Painesville OH 44077. The 
16 -pin clip is part number 
923700 (TC -16) and sells for 
$5.75 each. 



The diode arrays arc 

14 -pin dip packages and were 

chosen to make the test clip 
more compact. To cut down 
the cost, 16 general purpose 
silicon diodes may be used in 

place of each diode array IC. 

The transistors used to drive 
the LEDs may be any NPN 

transistor capable of handling 
the LED current. Any small 

si /e LED may be used; 

however, the 1 k resistance 
value may have to be 

changed. Choose a value 

which gives about 2 mA 
current through the LED; this 
should give sufficient 
brightness without loading 
down the circuit supply. 

Construction is very 
simple and parts layout is not 
critical. Use a small piece of 
0.1" grid perforated board 
bolted to each side of the IC 

clip to mount components 

r----I 
1 0 i 

2 0 
3 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 O 

Ñ 11 O 
w 12 0 

13 0 
á 14 O 

15 0 
16 0 

r 

on. Try to keep the overall 
physical size of the boards as 

small as possible to make the 
finished test clip easier to 
handle. The LEDs should be 

mounted along the top edge 

of the perforated boards so 

they are visible from above 

the clip when it is attached to 
an IC. I would suggest 

wrapping a small piece of 
dark tape or using a short 
piece of dark tubing around 
each LED to improve 
visibility of the finished LED 
display. One of the TID125 
diode arrays is mounted on 
each piece of perforated 
board along with the 
associated resistors and 

transistors, positioned 
wherever convenient. 
Remember to run two wires 
between the two perforated 
boards to connect the Vcc 
and ground outputs of the 

T1D125 DIODE ARRAY 

diode arrays together. These 

wires should be stranded to 
withstand the movement of 
opening and closing the test 
clip when in use. 

Using the test clip is the 
simplest part of all. Just clip 
it over the desired IC. Don't 
worry about how to position 
the test clip on the IC; pin 1 

may be at either end and the 
test clip will still work 
properly. With the test clip 
installed on an IC package the 
LEDs will indicate the logic 
level of each pin: 

ON = Logic 1 (HIGH) or Vcc 
pin 
OFF = Logic 0 (LOW) or 
ground pin 

On 14 -pin ICs disregard the 
two pins not attached. 

Who said building an IC 

test probe is hard? 
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TOGETHER a ALL GND 
PINS TOGETHER 

Fig. 1. Powerless IC Test Clip. 



notes on parallel output interfaces 
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Fig. 1. 8 -bit bus output latch. 

One way to connect an 
extra output port for a 

teletype or other peripheral 
to your CPU is to make the 
interface simulate a memory 
address during the writing 
operations. This method is 

the one which is used for 
both the input and output 
functions in computers such 
as the PDP -11 of DEC, or the 
Motorola 6800 microcom- 
puter. The method can even 
be used to overlap a usable 

main memory address since 
the CPU could care less 

whether or not the addressed 
port is connected in addition 
to the proper main memory 
location! The same method 
can even be used on 
computers such as the Altair 
8800 which split the CPU bus 
into two parts and thus 
complicate the interface 
picture. 

All of the microcomputers 
I have seen to date for the 

home brew computer market 
operate with a degree of 
parallelism at the bit level. 
Whether the chip is 4-bit, 
8 -bit or a 16-bitter, the 
concept of "parallel" data is 

built in. Data is parallel in 
nature if each bit has one line 
assigned to it and transfers of 
a group of such bits are 
always made simultaneously. 
Thus for example, the address 
lines used to select memory 
words are usually done in 
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in memory address space 

parallel in CPU designs of 
practical utility. With the bus 
oriented computer chips 
likely to be used for 
homegrown systems, it is 

possible to grab data from the 
busses by latching it in a 

register which listens to the 
bus continuously but is only 
written when the proper 
address is found. This article 
concerns such latching of 
output data and suggestions 
about several applications of 
the technique. 

The basic idea of the bus 

output is illustrated in Fig. 1. 

Fig. 1 shows a set of data 
lines (denoted DO+ to D7+ to 
indicate a positive logic 
definition) constituting an 

8 -bit data bus. In a 16-bit 
computer, this set of lines 
might be one or the other 
half of the 16 -bit data bus, or 
the logic might be extended 
to 16 bits. Connected directly 
to the bus pins of the 

interface I have noted a set of 
"bus receivers ". This circuit 
should be put in if necessary 
to maintain consistency of 
bus loading with all the other 
bus interconnects. For 
instance, with a tri -state 8833 
circuit as the bus definer, up 
to 100 high- impedance 
PNP -input receivers (input 
side of 8833) can be 

connected to the bus. But put 
a TTL load on, and the 
fanout will be reduced 
considerably. (For an Altair 
8800, the data bus is split 
into two components: in and 
out. The principle of 
minimizing the loading of the 
Altair drivers (TTL) would 
indicate use of a low power 
(74Lxx) device as the bus 

receiver. A non -inverting 
receiver is to be preferred in 
order to keep the same logical 
sense of the data to be stored 
in the latch.) 

Following the bus receiver, 
a latch is shown. The latch 
illustrated with its pinouts is 

the 8 -bit, 24 -pin package 
called a 74100. Alternate 
circuits for this function 
include a pair of 7475s, or 
even four dual master slave 
flip flop packages, such as 

7473s. In general, it will pay 
to use the larger scale of 
integration from a power - 
budget standpoint. Consider 
the specs for two 7475s (64 
mA) versus four 7473s (80 
mA). For a sixteen bit 
output, all that is required is 

to double the number of bits 
used for the latch. The latch 
is used for only one purpose - to hold the data after it is 

stored, until updated by a 

later write to the same 

location. 
A latch is required to 

buffer the output logically in 
many instances of I/O devices. 
A primary example of such a 

case is an output which needs 
stable data for a much longer 
period than the short 
CPU -cycle during which data 
is stable at the output of bus 

receivers. If you interface 
your computer bus to one of 
the Burroughs SELF -SCAN 
display devices with the 
memory option, for instance, 
your data must be stable for a 

long period of time (about 60 
microseconds). This 
requirement is necessitated 
by the need to wait for the 
shift register memory to cycle 
around to the proper position 
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for entry of new data. If your 
interface is to a digital to 
analog converter (DAC) 
presenting a gain control 
voltage to a computerized 
audio mixing panel, then you 
would want the control signal 

to stay stable for all time 
until explicitly altered by the 
CPU. 

Fig. 1 is completed by the 
notation of a big mostly - 
blank box. Big blank boxes 
with labels in them are a way 
of saying "here is a function, 
but I haven't told you what it 
is in detail." In this case the 
function is address decode 
and control logic for grabbing 
output data. I have drawn the 
box with inputs indicated 
from 16 bits of addressing, an 
"RW +" signal and a "0+" 
signal. The logic of this box 
will respond to a specific 
address in order to generate a 

negative logic (WRITE -) pulse 
which is inverted and used to 
latch the data at the correct 
time. The definition of the 
specific address desired and 
the decoding are both 
considered a bit later when 
Fig. 2 is discussed. The 
"RW +" signal controls the 
direction of the CPU's data 
transfer. If it is logic "1" 
(high level) then the CPU is 

attempting to read data from 
the bus and no clock pulse is 

allowed to reach the latch, 
even if the address bits A0+ 
to Al 5+ match the desired 
address. If "RW +" is low, 
then the CPU is sending data 
out and a clock pulse is 

allowed through the address 
decode and control logic. The 
clock pulse is taken from the 
CPU supplied clock 0+ and is 

"Big blank boxes with 
labels in them are a way 
of saying 'here is a 

function, but I haven't 
told you what it is in 
detail.' " 

"The method can even 
be used to overlap a 

usable main memory 
address since the CPU 
could care less ... " 



Fig. 2. Single -address 16 -bit decode with 7485. "Xn "(n =0 to 15) is logical 1 or 0 defining desire address. 
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a positive logic signal 
indicating that valid data is 
present. 

Assuming you actually 
want to grab some data off 
the bus at a specific location 
when it is referenced, how 
can you implement the 
address decode and control 
function? Fig. 2 is a 
suggestion of one method to 
accomplish this function for a 
specific location at a 
considerable price in 
hardware: using more than 
one memory location defined 

108 

WRITE- 
PULSE 

7420 

POWER CONNECTIONS 
+5V GROUND 

7485 16 8 
7420 14 7 

in this way would rapidly 
lead to a large parts count for 
7485s as decoding logic. The 
basic idea of Fig. 2 is to use 
the 7485 comparator circuits 
to check for equality between 
the address lines AO+ to 
Al 5+ and a set of "desired 
address" definition lines, X0+ 
to X15 +. The comparison is 
done as four groups of four 
bits, and a parallel logical 
product (AND) of the results 
of all four bit -group 
comparisons is performed by 
the 7420. The comparators' 

cascading input for equality is 

used to enable the 
comparison: the AND gate 
"E" detects a CPU write 
operation as the simultaneous 
occurrence of the clock 0+ 
and a low state of RW +. 

A Hardware Memory 
Contents Monitor 

A particular application 
for which single- address 
decoding might be useful is as 

a debugging tool based on 
this circuit, used to monitor 
the last content written into a 

specific location. Such a 

debugging tool can be built 
by defining the X0+ to X15+ 
address lines as the outputs of 
a set of four hexadecimal 
switches or six octal encoded 
switches, hand set from the 
panel of the debugging 
instrument. Then the outputs 
of the latch circuit might be 
routed to a set of hex or octal 
LED drivers so that a display 
of each number written might 
be obtained. A more general 
variation of the same theme 
would be attainable as a bus 
monitor device if the gate E 

of g Fig. 2 is eliminated 
entirely and the clock 0+ is 

simply used as the enable 
condition of the comparators 
(pins 3 get 0 +). Then the 
"memory contents monitor" 
always shows the contents of 
the memory bus at the time it 
was last used with the desired 
address. 

Adding a Longer Clock 
It is often necessary to 

obtain a clock signal which is 

longer than the original 
latching clock. In such cases 
the longer clock must also 
occur during a time when the 
latched data is stable, i.e., 
after the CPU is finished with 
its addressing of the output 
latch. One way to generate 
such a delayed longer clock is 

to use the analog timing 
elements called "one shots" - such as the 74122 or 
74123 circuits. In order to do 
so, however, you will have to 
calculate a bunch of resistor 
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Fig. 3, Generating a longer clock digitally. 
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and capacitor values for the 
delays, put in your nearest 
approximations and cross 

your fingers. A better way to 
achieve a deterministic 
system is to use entirely 
"synchronous" logic concepts 
and delays implemented with 
gates and flip flops. 

Fig. 3 and its 
corresponding timing diagram 
Fig. 4 is a detail of one 

method to cue a long but 
delayed clock pulse. The 
basic idea is to set a flag (the 
SR flip flop formed by the 
two NAND sections and 
labelled "flag ") when the I/O 
write occurs. This flag 
becomes data which will get 
clocked synchronously into 
flip flop A, then into flip flop 
B. The output of flip flop B is 

used to enable a reset pulse to 
the flag, which brings the 
system into a stable quiescent 
state until the next output 
WRITE- pulse occurs. The 
timing diagram of Fig. 4 
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illustrates how the 
synchronous operation 
produces an auxiliary pulse 

(Q+ of flip flop B) which is 2 

clock periods in length. This 
clock is delayed with respect 
to setting the flag by the 

original WRITE- pulse, but 
the delay is fixed and 
synchronous due to the fact 
that the actual clock (or its 
inverted e derivative) is used 
to cause all state changes of 
the flip flops. 

Fig. 4. Timing: external write vs. buffer write. 
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Son of Motorola 

(or, the $20 CPU Chip ) 
Would you believe - another microprocessor? You bet. The 

calculator firm, MOS Technology of Norristown, Pennsylvania, 
has just recently announced a new microprocessor which 
combines plug in compatibility with the Motorola 6800 and a 
new instruction set to come out with yet another option for 
microprocessor users - but at a price of $20 in single 
quantities. Here comes the under $200 processor kit? Not 
quite yet, but maybe within a year or two. (It's already to the 
point where the sheet metal and transformer iron of a home 
computer often cost more than all the silicon products which 
make it work ... this new low on CPU prices just compounds 
the problem.) It may be three to six months before you see 
one of these new MCS6501 processors designed into a kit, so 
Dan Fylstra in his article covers quite a few details of the 
Motorola 6800 by way of comparison with "Son of 
Motorola." 

We thought that the "age 
of the affordable computer" 
had arrived when you could 
buy a microprocessor chip for 
$150. But the potent 
combination of new 
technology and free 
enterprise has brought about 
developments beyond our 
wildest expectations. 

So now you can buy your 
microprocessor brand new, in 
single quantities, for $20. The 
new offering is from MOS 
Technology, Inc., and is 
pin -compatible, but 
software -incompatible with 
the Motorola 6800 
microprocessor. Although it 
will be a while before the new 
chip finds its way into 
ready -to -build kits for the 
hobbyist (after all, the first 
Motorola 6800 kits have just 
been announced), the news 
should be of interest to 
nearly every home brew 
computer experimenter. So 
here's a comparison of the 

Motorola 6800 and the MOS 
Technology 6500 series, 
based on the information 
presently available. If you 
aren't already familiar with 
the Motorola microprocessor, 
don't worry - we'll cover its 
major features in the course 
of the comparison. 

Hardware Comparison 
Both the Motorola 6800 

and the MOS Technology 
chip are TTL- compatible 
devices, operating from a 

single five volt power supply. 
Like earlier microcomputers, 
such as the Intel 8008, 8080 
and National PACE, these 
processors make use of a 
bidirectional data bus, to 
which both memory and 
input/output devices may be 
connected. However there are 
no special input /output 
instructions in the instruction 
repertoire of either the 
Motorola or MOS Technology 
microprocessors. Output of a 

character, for example, is 
accomplished by storing a 

value into a certain memory 
location, which is in reality a 

special register inside an 
external I/O interface chip, 
connected to the data bus 
just like any other RAM or 
ROM chip. 

Motorola supplies a 
Peripheral Interface Adapter 
(PIA) chip which connects to 
the data bus for 8 -bit parallel 
I /O, and an Asynchronous 
Communications Interface 
Adapter (ACIA) for bit -serial 
input /output. (The ACIA is 
simply a type of UART, as 
discussed in Don Lancaster's 
September article on serial 
interfaces. It may be used to 
connect a teletype or CRT 
terminal to the micro- 
computer system.) MOS 
Technology plans to supply a 
similar set of chips. 

Most of the time, data is 
being transmitted between 
the microprocessor and the 
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memory chips over the data 
bus. But the processor can 
also disconnect itself from 
the bus, enabling, for 
example, a data transfer to 
take place directly between 
an I/O device and memory. 
Both the Motorola 6800 and 
the MOS Technology chip 
have three -state buffers for 
the eight data lines, enabling 
them to disconnect from the 
bus in this fashion. But the 
Motorola also has three -state 
buffers on its 16 address 
lines, whereas the MOS 
Technology chips do not. 

This would be used, for 
example, in a floppy disk 
controller which is capable of 
transferring a whole block of 
many bytes of data in 
response to a single command 
from the CPU. The controller 
would present a series of 
addresses on the 16 address 
lines, and data bytes on the 
data lines, causing the bytes 
to be stored in a series of 
locations in some RAM chip 
on the bus; all this would 
take place in the intervals 
when the CPU itself was 
disconnected from the bus. 

As a practical matter, 
however, small systems do 
not require this kind of direct 
memory access (DMA) 
capability, and larger systems 
with more devices on the bus 
will require buffers on the 



Ready or not, here I come: 
6800 to 6501. 

address lines to supply the 
necessary power -- and these 

buffers may as well have 

three -state outputs. 
The other major hardware 

difference between the 
Motorola 6800 and the MOS 
Technology 6500 series is 

that the MOS Technology 
chip has an 8080 -style Ready 
line, whereas the Motorola 
6800 does not. The Ready 
line is used to make the 
microprocessor wait for a 

variable length of time before 
going on with the execution 
of an instruction. This feature 
makes it easy to use the less 

expensive memory chips, 
especially for Programmable 
or Erasable Read -Only 
Memory (PROM or EROM) 
which are not as fast as the 
CPU itself. It is possible to 
use such devices with the 
Motorola 6800, of course, by 
stretching out one of the 
clock phases to as long as five 
microseconds. But the 
availability of the Ready line 
on the MOS Technology chip 
is certainly a convenience, 
and allows you to use 

extremely slow memories if 
you wish. 

The MCS6501, first in the 
MOS Technology 6500 series, 

requires the same type of 
external clock as the 
Motorola 6800. But for $25 
you can have the MCS6502, 
which includes an on- the -chip 
clock, driven by an external 
single phase clock or an RC 
or crystal time base input. As 
the manufacturer suggests, it 
is probably cheaper in an 

original design to use the 
MCS6502 than to provide the 
external logic to generate the 
two -phase clock. 

To sum up, both the 

Motorola 6800 and the MOS 
Technology have comparable 
features with some 
differences. In terms of 
hardware differences, the 

MOS Technology Ready line 
is probably more valuable 
than the three -state address 
line buffers available on the 
Motorola 6800. 

A final hardware 
advantage possessed by the 
MOS Technology chip is 

speed. The Motorola 6800 
cycle time is one microsecond 
(1 MHz clock rate), and a 

typical instruction takes 
about three clock cycles. 
While the cycle time of the 
MOS Technology chip is 

nominally the same, the 
company has hinted broadly 
that the chip can be run at 
clock rates of 2 or even 3 

MHz. Of course, one would 
have to use faster and more 
expensive memory chips to 
take advantage of this 
increased speed. 

In addition, certain critical 
instructions take fewer cycles 
on the MOS Technology chip. 
An STA (store accumulator) 
instruction referencing an 

Table I. Functionally equivalent 
instructions for both the 
Motorola 6800 and MOS 
Technology MCS6501 
microprocessors. The mnemonics 
are Motorola's. Of course, these 
instructions operate on the A 
accumulator only in the 
MCS6501, but can address either 
accumulator in the Motorola 
6800. The BIT instruction ( *) has 
a different effect on the V and N 
processor flags in the MCS6501. 

ADC DEX 
AND FOR 
ASL INC 
ASR INX 
BCC JMP 
BCS JSR 
BEQ LDA 
BIT` LDX 
BMI LSR 
BNE NOP 
BPL ORA 
BVC PSH 
BVS PUL 
CLC ROL 
CLI RTI 
CLV RTS 
CMP SBC 
CPX SEC 
DEC SEI 

STA 
STX 
TSX 
TXS 

arbitrary location takes 4 
cycles, versus 5 for the 
Motorola, and a JSR (jump to 
subroutine) instruction 
requires 6 cycles, as opposed 
to 9 on the 6800. Conditional 
branches take 4 cycles on the 
Motorola microprocessor, 
while they take 2 cycles if the 
condition is false and 3 if it is 

true on the MOS Technology 
chip. Because these 
instructions are so frequently 
executed in most programs, 
the 6500 series should enjoy 
a performance edge over the 
Motorola 6800 even at the 
same clock rate. 

Software Comparison 

We can treat the 
instruction set architecture of 
the two processors in two 
stages, first considering the 
facilities for manipulating 
data and then dealing with 
the facilities for manipulating 
addresses. Both features are 

important to the overall 
effectiveness of the processor 
design. 

Data Manipulation 
The instructions for 

manipulating data are quite 
similar on the two processors. 
There are two major 
differences: First, the 
Motorola 6800 has two 8 -bit 
accumulators, A and B, while 
the MOS Technology chip has 

only one accumulator, A. 
Second, i n addition to 
conditional branches for 
unsigned comparisons, the 
Motorola 6800 has special 
branch instructions for signed 
comparisons, but the MOS 
Technology chip does not. 
(The signed comparisons treat 
the two values as positive or 
negative numbers in two's 
complement notation, in the 
range -128 to +127. For 
example, -1 is represented as 

28 -1 = 11111111. An 
unsigned comparison would 
treat this quantity as the 
largest possible (8 -bit) value, 
whereas a signed comparison 
would treat it as smaller than, 
say, zero.) 

Table I lists the 
instructions which are the 
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We thought that the "age 
of the affordable computer" 
had arrived when you could 
buy a microprocessor chip 
for $150. But the potent 
combination of new 
technology and free 
enterprise has brought 
about developments 
beyond our wildest 
expectations. 

same for both processors, 
while Table II lists 
instructions on the Motorola 
6800 which must be replaced 
by more than one instruction 
on the 6500 series 
microprocessors. 

Some of the instructions 
omitted on the MOS 
Technology chip are merely 
incidental; others are more 
serious. The lack of signed 
comparisons represents a real 
inconvenience in many 
applications. The lack of a 

simple ADD instruction 
means that an operation such 
as A = B + C on one -byte 
operands must be coded with 
a "Clear Carry" (CLC) as in 
this example: 

CLC 
LDA B 

ADC C 
STA A 

on the MOS Technology chip. 

On the other hand, a 

computation such as A = B + 
C -D could be coded as 

CLC 
LDA B 

ADC C 
SBC D 

STA A 

assuming that the inclusion of 
"carry" in both operations is 

indeed desired. 
Less serious but still 

irritating are the absence of 
the ROR (rotate right), NEG 
(negate) and COM 



Table 11. Motorola 6800 instructions which have no direct equivalent in 
the MCS6501. The information in this table is taken from MOS 
Technology documentation on the 6500 series. 

Motorola 6800 Instruction 

ABA 
ADD 
BGE loc 
BGT loc 

BHI loc 
BLE loc 

BLS loc 
BLT loc 
BRA 
BSR 
CBA 
CUR [loci 
COM [loci 
DAA 
DES 
INS 
LDS loc 
NEG [loci 
ROR (loci 

SBA 
SEV 
STS loc 
SUB 
SWI 

TAB 
TAP 
TBA 
TPA 
TST 
WAI 
op disp, X 
[indexed addressing mode] 

Equivalent 6500 Series Sequence 

No B accumulator 
CLC, ADC 
BMI +6, BVC loc, BVS +4, BVS loc 
BMI +6, BVC +6, BVS +6, BVC +4, 
BNE loc 
BCS +4, BNE lac 
BEQ lac, BMI +6, BVS loc, BVC +4, 
BVC loc 
BCS loc, BEQ loc 
BMI +6, BVS loc, BVC +4, BVC loe 
JMP 
JSR 
No B accumulator 
LDA #0, [STA lac] 
[LDA loc] , FOR #$FF, [STA loc] 
Replaced by SED 
Use PHA 
Use PLA 
LDX loc, TXS 
FOR #$FF, ADC #1 [or LDA #0, SBC loe] 
[LDA loc], PHP, LSR, PLP, BCC +4, 
ORA #$80, [STA loc] 
No B accumulator 
LDA #1, LSR 
TSX, STX loc 
CLC, SBC 
BRK saves state without transferring 
control 
No B accumulator 
PHA, PLP 
No B accumulator 
PHP, PLA 
BIT #0 
JMP 
LDY #disp, op @loc, Y 
[indirect indexed addressing mode] 

(complement) instructions, as 

well as single -byte 
instructions to increment and 
decrement the accumulator. 
Probably the least significant 
difference is the omission of 
the B accumulator on the 
MOS Technology chip. This is 

more than made up for by 
the availability of an extra 
index register (see below). 

All in all, the Motorola 
6800 comes out ahead when 
considering facilities for 
manipulating data, the most 
important point in its favor 
being the availability of the 
signed comparisons. 
Generally speaking, however, 
the basic instructions 
available on the two 
processors arc quite similar. 

Address Manipulation 

The greatest architectural 
differences between the two 
processors lie in their 
facilities for manipulating 
addresses, or their 
"addressing modes" - and 
here the MOS Technology 
chip has much more to offer. 

The two microprocessors 
are the same in one respect: 
both have special "short 
forms" of most instructions 
for referencing the first 256 
bytes of memory. This is 

called "direct addressing" on 
the Motorola 6800, and "zero 
page addressing" on the MOS 
Technology chip. As an 
example, the most general 
LDA (load accumulator) 
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instruction is three bytes 
long; the second and third 
bytes form the effective 
address (0- 65535), which can 
reference any byte in 
memory. The short form of 
the LDA instruction, 
however, is two bytes long; 
the second byte forms the 
effective address (0 -255) of a 

byte in the first "page" of 
memory. The "short form" 
instructions generally take 
one fewer clock cycle to 
execute, since only two 
rather than three instruction 
bytes must be fetched from 
memory. 

The major differences 
between the two processors 
lie in the important area of 
indexed addressing. The 

Motorola 6800 has a single 

16 -bit index register, called 
X. Essentially all instructions 
have an indexed addressing 
form, in which a one -byte 
displacement (0 -255) is added 
to the address in the index 
register to form the effective 
address. The MOS 
Technology chip, on the 
other hand, has two 8 -bit 
index registers, called X and 
Y. All of the computational 
instructions have indexed 
addressing forms in which 
either a one- or two -byte base 

address is added to the 
contents of either the X or 
the Y register to form the 
effective address. 

Which approach is the 
better one? For the purpose 

of accessing elements of 
arrays, or tables of many 
identical elements, the MOS 
Technology chip comes out 
way ahead. This is partly due 
to the lack of certain critical 
instructions on the Motorola 
6800, such as an instruction 
to add the contents of an 

accumulator to the index 
register, or even to transfer 
the value in the accumulators 
to the index register. 

Suppose that we wish to 
add the Ith element of an 

array, Si, to another variable, 
T. In general, the array may 
be I ocated anywhere in 
memory, and the subscript I 

may be the result of some 
calculation done in the 
accumulators. Letting S 

denote the address of the 
zeroth element (the base 

address) of the array, and 
assuming that the value of the 
subscript I is already in the A 
accumulator, consider the 
instructions necessary to 
accomplish this operation on 
the two processors. 

The biggest difference is in 

the area of addressing 
modes, an area where the 
6500 series devices far 
outshine the Motorola 6800. 
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On the Motorola 6800, 
our first try yields the 
following: 

SHI EQU S/256 *256 
CLR B 

ADD A #S -SHI 
ADC B #S /256 
STA A TEMP +1 

STA B TEMP 
LDX TEMP 
LDA A 0, X 
ADD A T 
STA A T 

This instruction sequence 
requires 19 bytes, counting 
the two -byte temporary 
TEMP and assuming that 
TEMP and T are located in 

the first 256 bytes of 
memory. Since the array S 

could be anywhere in 

memory, we were unable to 
use the displacement field of 
an instruction with indexed 
addressing for the array base 

address, and instead we had 

to add the array base to the 
index (in double precision), 
store the result in memory, 
load it into the index register, 
and finally reference the 
array element SI. 

We can improve on this 
with the aid of a little lateral 
thinking. Noticing that the 
6800 is actually capable of 
adding a one -byte quantity to 
a two -byte address, but only 
in a storage reference with 
indexed addressing, we will 
split up the base address into 
two parts to arrive at a better 
solution: 

SHI EQU S/256 *256 
STA A TEMP +1 

LDX TEMP 
LDA A S -SHI, X 
ADD A T 
STA A T 

TEMP FD. DB SHI 

This instruction sequence 

requires only 12 bytes, under 
the same assumptions. 

Even so, we can't match 
the simplicity of the solution 

1 

Calculate the 
indexed address 

Perform desired 
computation 

to the same problem on the 
MOS Technology chip: 

TAX 
LDA S, X 
ADD T 
STA T 

This instruction sequence 
requires only seven bytes. 
Only four bytes were needed 
to reference the element Si, 
versus eight for the Motorola 
6800. 

How important is this 
improvement? It is certainly 
significant, since arrays and 
tables are used so frequently 
in programs of any size. On 
the other hand, in many 
applications it is only 
necessary to reference each 

element of an array in turn; it 
is not necessary to access 

elements randomly based on 

a computed subscript. In this 
case, we can obtain better 
code on the Motorola 6800 
by first loading the array base 

address into the index 
register, and then referencing 
each element directly (i.e., 
with a zero indexed address 
displacement), incrementing 
the address in the index 
register using the INX 
instruction to proceed from 
element to element. We are 

therefore using the 6800's 
index register to hold a 

pointer or indirect address 
rather than an index. 

An even more important 
difference between the two 
microprocessors in that the 
MOS Technology chip 
possesses two (8 -bit) index 

registers, X and Y, whereas 
the Motorola 6800 has only 
one (16 -bit) index register X. 
As we shall sec, two index 
registers are far more valuable 
than two accumulators. This 
is because programs 
frequently manipulate two 
(or more) tables, or other 
indirectly addressed variables, 
at the same time. As an 

example, we will consider 
perhaps the simplest 
operation of this type, the 
problem of moving a string of 
bytes from one area of 
storage to another. Assume 
that 20 bytes, starting at the 
location denoted by the 
symbol FROM, are to be 

moved to the area starting at 
the location denoted by the 
symbol TO. 

On the Motorola 6800, we 

can write the following 
routine: 

LOOP LDX FRPTR1 Fetch 
LDA A O, X J FROM 

LDX TOPTR1 Move 
STA A O, X J TO 
INC FRPTRIchange 
INC TOPTR J pointers 
DEC COUNT 
BNE LOOP Test 

continuation 

Two index registers are 

far more valuable than 
two accumulators. 

This routine requires 17 

bytes, and executes in 404 
clock cycles. The 
improvement in speed clearly 
depends on the number of 
bytes to be moved; each pass 

through the loop in the 
Motorola 6800 routine takes 
41 clock cycles, while each 
pass through the loop in the 
MOS Technology routine 
takes 20 cycles. (The MOS 
Technology 
limited to 
256 bytes.) 

Once again the degree of 
improvement is substantial, 
and the improvement 

routine is also 
moving at most 

FRPTR FDB FROM 
TOPTR FDB TO 
COUNT FCB 20 

This routine requires 24 
bytes, including the working 
storage locations, and 
executes in 820 clock cycles. 
This routine can move up to 
256 bytes. 

On the MOS Technology 
chip we have the following 
solution: 
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LDX #0 
LDY #0 

LOOP LDA FROM, X 
STA TO, Y 
INX 
INY 
DEC COUNT 
BNE LOOP 

COUNT FCB 20 

VSS O Reset 

Halt TSC 

01 N.C. 

ÌRQ 02 

VMA DBE 

ÑMI N.C. 

BA R/W 

VCC DO 

AO D1 

Al D2 

A2 03 
A3 04 
A4 D5 

A5 D6 

A6 D7 

A7 A15 

A8 A14 

A9 A 13 

A10 Al2 
All VSS 

= 25 

24 

23 

22 

21 

is 

Fig. 1. The pin assignments of the 
Motorola 6800 (and by 
implication, the MOS Technology 
MCS6501). VSS is ground (0 
volts) and VCC is +5 volts. The A 
lines are address outputs. and the 
D lines are bidirectional tristate 
data bus lines. For details see the 
Motorola and MOS Technology 
documentation of these parts. 
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Fig. 2. The programmer's view of the 6800 CPU. This diagram, 
excerpted from the Motorola 6800 documentation, shows the various 
registers of the CPU including the processor's condition code register. 
Note the similarity to the MCS6501 in Fig. 3. 

significant because this type 
of problem arises so 
frequently in large programs. 

The MOS Technology 
chip has some additional 
addressing modes not 
possessed by the Motorola 
6800. First, there is a "short 
form" for instructions with 
simple indexed addressing if 
the array base address is in 
the first "page" (256 
locations) of memory. This 
feature is of somewhat 

One unfortunate feature 
of the MOS Technology 
chip's many addressing 
modes is that they do 
not apply consistently 
to all instructions. 

limited use except in very 
small programs, since only a 

few small arrays can actually 
be placed in the first 256 
locations. Of greater interest 
is the so -called "indirect 
indexed" addressing mode. 
Instructions with this type of 
addressing are two bytes long; 

the second byte specifies the 
address of a two -byte 
constant in the first page of 
memory. This two -byte 
constant then becomes the 
"array base address," and the 
contents of the Y register are 
added to this constant to 
form the effective address. 
This addressing mode is very 
useful: In a program with 
many references to a 

particular array or table 

which is too large to place in 
the first page of memory, one 
can trade space for time by 
placing the array base address 
in the first page of memory, 
and then referencing elements 
of the array using indirect 
indexed addressing. Each 
element reference takes less 

space (two bytes instead of 
three) but more time (five 
cycles instead of four) than 
would be required for 
ordinary indexed addressing. 

There are two other 
addressing modes on the MOS 
Technology chip which are 
somewhat less useful. The 
first is called "indexed 
indirect" addressing: Here the 
contents of the X register are 
added to a one -byte base 

address to obtain the address 
of a two -byte constant in the 
first page of memory. The 
contents of this two -byte 
constant then becomes the 
effective address. 
Unfortunately this addressing 
mode is not available for the 
J MP instruction, where it 
would be most useful: It 
could be used to implement a 

"jump table," or a 

"computed GO TO" or 
"CASE statement" in some 
high -level languages. 

Finally, two other 
addressing modes are used 
with branch instructions: 

15 
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Fig. 3. The programmer's view of the MCS6501 CPU. This diagram, 
excerpted from the MOS Technology 6500 series preliminary documen- 
tation, shows the various registers of the CPU. Note the similarity to 
the Motorola 6800 diagram in Fig. 2. 



Table III. Instructions, addressing modes and execution times for the 
Motorola 6800 processor. Execution times are in "machine cycles" 
which for a 1.0 MHz clock take 1.0 microsecond apiece. This table is 

excerpted from Motorola documentation on their processor. 
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ABA 2 INC 2 6 7 

ADC x 2 3 4 5 INS 4 

ADD x 2 3 4 5 INX 4 

AND x 2 3 4 5 JMP 3 4 

ASL 2 6 7 JSR 9 8 

ASR 2 6 7 IDA x 2 3 4 5 

BCC 4 LDS 3 4 5 6 

BCS 4 LOX 3 4 5 6 

BEA 4 LSR 2 6 7 

BGE 4 NEG 2 6 7 

BGT 4 NOP 2 

Bill 4 ORA x 2 3 4 5 

BIT x 2 3 4 5 PSH 4 

BLE 4 PUL 4 

BLS 4 ROL 2 6 7 

BIT 4 ROR 2 6 7 

BMI 4 RTI 10 

BNE 4 RTS 5 

BPL 4 SBA 2 

BRA 4 SBC x 

BSR 6 SEC 2 

BVC 4 SEI 2 

BVS 4 SEV 2 

CBA 2 STA x 4 5 6 

CLC 2 STS 5 6 7 

CLI 2 STX 5 6 7 

CLR 2 6 7 SUB x 2 3 4 5 

CLV 2 SWI 12 

CMP o 2 3 4 5 TAB 2 

COM 2 6 7 TAP 2 

CPX 3 4 5 6 TBA 2 

DAA 2 TPA 2 

DEC 2 6 7 TST 2 6 7 

DES 4 TSX 4 

DEX 4 TSX 4 

FOR x 2 3 4 5 WAI 9 

NOTE: Interrupt time is 12 cycles from the end of 
the instruction being executed, except following 
a WAI instruction. Then it is 4 cycles. 

"Relative" addressing, 
available on both the 
Motorola and the MOS 

Technology processors, is 

used with the conditional 
branch instructions, which 
are two bytes long. The 
second byte of such an 

instruction specifies a positive 
or negative displacement in 

two's complement notation 
( -128 to +127). The 
destination address of the 
branch is taken to be the 
algebraic sum of the address 

of the byte immediately 
following the branch 
instruction and this 
displacement. Of course, this 
means that it is possible to 
branch directly to a location 
within only a certain limited 
distance from the branch 
itself; but, more often than 
not, the range of -128 to 
+127 bytes is adequate, and a 

space savings is realized in 
comparison to processors 
such as the Intel 8080 which 
have only three -byte branch 
instructions. If necessary, a 

conditional branch can 

always transfer to a 

three -byte unconditional )MP 
instruction, which can jump 
to any location in memory. 
On the MOS Technology 
chip, a JMP instruction can 
also specify "absolute 
indirect" addressing: In this 
case, the second and third 
bytes of the instruction 
specify the address of a 

two -byte constant anywhere 
in memory, and the contents 
of this two-byte constant 
becomes the destination 
address for the jump. 

One unfortunate feature 
of the MOS Technology 
chip's many addressing modes 
is that they do not apply 

Which processor comes out ahead overall? To a great 

extent it depends on your point of view: Systems 

programs are better on the MOS Technology machines; 

applications programs would tend to come out ahead 

on the Motorola 6800. 

consistently to all 
instructions. For example, 
the binary arithmetic 
instructions are available with 
essentially all addressing 
modes, but the unary 
arithmetic instructions are 

missing the Y- register and 
indirect modes, and the BIT 
instruction is missing several 

others as well. This not only 
makes programming more 
difficult, since one must 
constantly check to see which 
instruction forms are legal, 
and program around the 
exceptions; it also makes the 
design of an assembler or 
compiler more complicated. 
A compiler, in particular, 
would require complex logic 
to determine when it could 
and could not take advantage 
of the addressing modes. 

In summary, the MOS 
Technology chip comes out 
ahead when considering 
facilities to manipulate 
addresses, and in many cases 

the advantage realized due to 
the availability of the extra 
addressing modes is 
substantial. The greatest 
failing of the 6500 series 

design is the inconsistent 
availability of the addressing 
modes from instruction to 
instruction. 

Which processor comes 
out ahead overall? This is 

very difficult to judge. It 
depends partly on whether 
the programs being executed 
on the microcomputer are 
"system" programs, such as 

compilers, interpreters and 
I/O controllers, which tend to 
make heavy use of address 

Table IV. Instructions, addressing modes and execution times for the 
MOS Technology MCS6501 processor. Execution times are in "machine 
cycles" which for a 1.0 MHz clock take 1.0 microsecond apiece. This 
table is excerpted from MOS Technology documentation on their 
processor. 
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BIT 
BMI 
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PHA 3 

PHP 
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In favor of the 6500 series 

are price and speed; in 
favor of the 6800 are 
availability and very good 
Motorola documentation. 

manipulation facilities; or 
application programs, which 
make greater use of data 
manipulation facilities. One 
would expect better results in 
the former case with the MOS 
Technology chip, and in the 
latter case with the Motorola 
6800. One would also expect 
the MOS Technology chip to 
enjoy an advantage on large 
programs, since larger 
programs inevitably tend to 
make use of tables, 
subroutines with parameters, 
and other forms of address 
manipulation. 

All in all, the Motorola 
6800 comes out ahead 
when considering facilities 
for manipulating data... 
but nevertheless the two 
processors are quite similar. 

Against these factors one 
must weigh the availability of 
an excellent applications 
manual, proven software, and 
kits for the hobbyist for the 
M o t o r o l a 6 8 0 0 
microprocessor. At the same 
time, the MOS Technology 
chip's price can't be beat, and 
its speed advantage may be 

important for some purposes. 
At the time that this 

article is being written (late 
August), the MOS 
Technology chip is just a 

promise: The chip should be 
available for purchase at the 
Western Electronics 
Conference (Weston) in San 
Francisco, September 16-19. 
By the time you read this, the 
chip itself should be in the 
hands of at least a few 
hobbyists. Let's have some 
letters to BYTE describing 
initial experiences with the 
new microprocessor! Send 
your comments to the author 
or to the editor of BYTE. In 
the meantime, we'll be 
waiting to see what new 
surprises the semiconductor 
houses and kit manufacturers 
have in store for us. And 
BYTE will try to keep you up 
to date on the latest 
developments in the world's 
hottest, fastest -moving hobby - home computers! 

Table V. MCS6501 microprocessor instructions, listed in alphabetical 
order by mnemonics. The instructions with asterisks are similar to the 
same mnemonics in the Motorola 6800 processor. 

ADC Add with Carry to Accumulator 
AND "AND- to Accumulator 
ASL Shift Left One Bd (Memory or Accumulator) 

BCC 
BCS 
BED 
*BIT 
BMI 

BNE 
BPL 
BRK 
BVC 
BVS 

CLC 
CLD 

CLI 
CLV 
CMP 
CPX 
CPY 

*DEC 
DEX 
DEY 

EOR 
INC 
INX 
INY 

JMP 

Branch on Carry Clear 
Branch on Carry Set 

Branch on Zero Result 
Test Bits on Memory with Accumulator 
Branch on Result Minus 
B ranch on Result not Zero 
B lanch on Result Plus 
Force n InteuoPt or Break 
Branch on Overflow Clear 
Branch o., Over muse Set 
Clear Carry Flag 

Clear Dc' ii,at Mode 
Clear Intn.uut Disable Bit 
Clew Overflow Flag 
Compare Mennwy and Accumulator 
Compare Menouy end lodes X 

Croup... e Memory and liude Y 

Deer. vvvvvv Memory by One 
Dec,snnenl Index X by One 
D ecrement totes Y by One 
E schism w Memoir with Ace en,..latu, 
hk,.ynrnt Mntu.s bar One 
Ineirrinewt X by O. 
Ira woksit Y by Oda 
J ump to Nun Lrk -.n,on 

JSR 
*IDA 
LDX 
LDY 

LSR 

NOP 
ORA 
PHA 

PHP 
*PIA 
PLP 

ROL 

RTI 
RTS 
SBC 
SEC 

SED 
'SEI 
STA 
'SIX 
STY 
TAX 
TAY 

'TSX 
TXA 

TXS 
TVA 

Jump to New Location Saving Return Address 
Transfer Memory to Accumulator 
Tramler Memory to Index X 

Transfer Memory to Index Y 
Shift One Bit Right (Memory or Accumulator) 

Do Nothing No Operation 
"OR" Memory with Accumulator 
Push Accumulator on Stack 
Push Processor Status on Stack 
Pull Accumulator from Stack 
Pull Processor Status from Stack 
Rotate One Bit Left (Memory or Accumulator) 

Return From Interrupt 
Return From Subroutine 
Subtract Memory and Carry from Accumulator 
Set Carry Flag 

Set Decimal Mode 
Set Interrupt Disable Status 
Store Accumulator in Memory 
Store Index X in Memory 
Store Index Y in Memory 
Transfer Accumulator to Index X 

Transfer Accumulator to Index Y 
T.woke Stack Register to Irides X 

Transfer Index X to Accumulator 
Transfer Index X to Stack Register 
T.ansler Index V to Accumulator 

More information on the 
6500 series microprocessors is 

available from: 

MOS Technology, Inc. 
Valley Forge Corporate 
Center 
950 Rittenhouse Rd. 
Norristown PA 19401 
1- 215- 666 -7950 

I nformation on the 
Motorola 6800 micro- 
processor is available from 
many local distributors, and 
from: 

Motorola Semiconductor 
Products Inc. 
Box 20912 
Phoenix AZ 85036 

GLOSSARY 
BYTE's Board of Resident Inexperts (BRI) has ruled the following 

terms to be worthy of further explanation. This list is probably not 
complete - readers who would like further explanation of terminology 
are invited to write a letter to the editor identifying terms which need 
such treatment. 
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8-Bit Bidirectional Bus - a "data 
bus" which simultaneously 
transmits eight separate signals 
corresponding to one byte's 
worth of information. The bi- 
directional aspect means that 
either tristate, open collector or 
similar form of output stage is 
used, so that multiple drivers can 
be tied in common with only one 
such driver active at any time. A 
given board, CPU, output 
terminal or other logic circuit can 
then interface to the bus (with 
some addressing and master 
timing control intelligence) for 
both sending and receiving data. 

Effective Address - whenever the 
computer's CPU addresses 
memory, it must send out 16 bits' 
(for Motorola 6800, MCS 6501 or 
other similar chips). The way in 
which these 16 bits are derived 
can often be a fairly elaborate 
procedure, as well as a simple 
absolute expression. Whatever the 
method of derivation, however, 
the result is a 16 -bit value which 
is used to address memory, called 
the effective address because it is 
what actually does go out to 
memory regardless of the details 
of the internal codes of the 
program. 

Instruction Repertoire - the . 

repertoire of a musician is the set 
of all pieces he or she can play 
well in concert. Well, the 
repertoire of a computer - its 
instructions - is the list of all the 
instructions it can perform and 
their definitions. 

Subscript - in typical high order 
languages, a means is provided to 
specify elements of arrays of data. 

This is done by subscripts to 
indicate the "nth" element for 
subscript "n ". Use of such 
notation presents the problem of 
calculating the effective address 
of the actual data being 
referenced. In the context of 
evaluating a CPU, attention spent 
on the problem of calculating 
effective addresses from 
subscripts is very fundamental. 

Time Base - whenever it is 
necessary to examine the relative 
timing of different signals, it is 
necessary to have a reference 
point and a scale for making the 
measurement. This is the "time 
base" of the reference. 

TTL compatible - one of the 
largest families of integrated 
circuits is the line of 
"transistor- transistor logic" 
devices, TTI, for short. A TTL 
compatible line of some non -TTL 
device can "drive" one or more 
TTL loads if it is an output, or 
can receive a TTL device's output 
if it is an input. There are various 
cautions to be observed - 
probably worthy of a BYTE 
article - when different types of 
logic are interfaced, but the 
phrase "TTL compatible" usually 
means that the compatible device 
can be wired directly to TTL 
interconnection pins safely in at 
least one configuration. 

Unary - this term is derived from 
the Latin roots of "oneness." A 
unary operation is an operation 
which has but one operand, for 
example the complement opera- 
tion of a Motorola 6800 CPU. 



Gary Liming 
3152 Santiago Dr 
Florissant MO 63033 

Data transmission in a 

broader sense doesn't have 

to mean large networks of 
computers and remote 
terminals. 

Data Paths 

Data transmission usually brings to mind 
terminals, telephone lines, satellites, and 
large computer centers. Computer links in 
retail stores, banks, airliries and government 
agencies are becoming more and more wide- 
spread. Such large scale operations can easily 
cost millions of dollars and are thus out of 
the range of the hobbyist. The prospect of 
linking home systems across distances for 
program swapping and interactive games will 
undoubtedly become more a possibility as 

the technology improves. 
However, data transmission in a broader 

sense doesn't have to mean large networks of 
computers and remote terminals. It is 

defined as the process of sending error free 
bits from one place to another, and applies 
to all digital systems regardless of com- 
plexity. In this article we illustrate some 

data transmission principles applied to 
hobby system design, over distances ranging 
from the length of printed circuit foil runs 
on a circuit card to the extremely long 
distances involved in phone or radio links. 

Communication Theory 

Data transmission is part of the broader 
subject of communication theory which is 

used to analyze communication systems. 
Any communication system has three parts: 
a message source, a medium, and a receiver. 
To communicate, information of some kind 
must be transferred. Information is defined 
simply as an orderly representative signal. 
Orderly means that the signal is sent in a 

known format which can be interpreted and 

decoded by the receiver. Representative 
means that there is agreement between 
source and receiver upon what the signal will 
mean. A signal could be a series of printed 
characters, a bell, a whistle or even a color. 
The smallest unit of information is the bit, 
representing only an on off or yes no 
condition. One or a series of these fun- 
damental bit signals makes up the message in 

digital communications. 
Any medium that can transfer a message 

has limits, and the medium within these 

limits is called the channel. The limits which 
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define a channel might be physical prop- 
erties such as the technologically available 
bandwidth, or human defined limits such as 
an arbitrary FCC ruling that a radio station 
is allocated a particular set of frequencies 
with a prescribed bandwidth for its signals. 
Noise is defined as any signal that interferes 
with the message, like radio static or dirt on 
a camera lens. 

A communication that works one -way, or 
does not allow information to be mutually 
exchanged is called a simplex transmission or 
communication. If information can be 
exchanged, it is called a duplex system. 
There are two kinds of duplex systems: If 
information can be sent between two points 
simultaneously, it is called a full duplex 
system; if the information can be transferred 
in both directions but not at the same time, 
it is called you guessed it - half duplex. 
Figure 1 illustrates the various kinds of 
communications exchanges. 

Let's apply this to a simple example - 
consider the page you are looking at. The 
author is the message source, you are the 
receiver, and paper and ink are the medium. 
The size of the page sets the channel limits, 
and ink blots or printing errors comprise 
noise. Communication is simplex. When a 

reader replies, it has become half duplex. 
This point of view can be applied at 

different levels to your system design. Inte- 
grated circuits, printed circuit boards, 
peripherals and terminals can all be con- 
sidered sources and receivers. They all use 
the but as the common unit of information. 

An important factor in data communi- 
cations is the data or transmission rate at 
which the bits are transferred. This is mea- 
sured, naturally, in bits per second (abbrevi- 
ated b /s). It is on this simple point that 
many newcomers first get into trouble by 
using the term baud. Baud has a different 
meaning which can be ambiguous, as we will 
see when we look at modulation methods 
and modems. 

Another important parameter of informa- 
tion transmission is the error rate, measured 
by the number of bits in error out of the 



Simplex: 

Half Duplex: 

Full Duplex: 
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One way for all time. 

Now. Alternating, 

Later. but one way. 

Simultaneous two way. 

Figure 1: The terminology describing modes of communication between 
sender and receiver depend upon who is sending data and when the data is 
sent. 

total number transmitted. If your computer 
processes instructions at 500 kilobytes per 
second which equals 4 megabits per second, 
an error rate of one in 10 million (10 * * -7) 
will give you an error on the average of every 
2.5 seconds. Clearly, what is a tolerable error 
rate depends on the transmission rate. A 
central processor which has errors every 2.5 
seconds is not very usable. 

Medium Characteristics 

To transfer data, the hobbyist can use 
any medium that will support a bit stream. 
There isn't any reason why you couldn't 
take a serial interface and hook it up to 
modulate a laser beam. However, since most 
of the transmission done by the hobbyist 
uses conductors, let's first look at small 
gauge wire used as a communication 
channel. 

As the data rate through the wire 
increases, the bit stream begins to look like 
an AC signal passing through a transmission 
line, and must be treated as such. This is not 
necessarily related to a reversal of current 
flow, like AC, but is due to the fast rise and 
fall times of the pulses. 

Therefore, the channel must have a fairly 
wide band of frequencies it can pass (band- 
width). It must pass an AC signal with 
approximately the same rise and fall times as 

the pulse and the flat portion of the pulse, 
which is essentially AC at zero frequency. 

Conductor properties such as resitance, 
capacitance, and inductance degrade the 
quality of the pulses. The voltage drop due 
to the resistance of the wire lowers the 
voltage of the received pulse. Capacitance 
between the signal wire and the ground wire 
shunts some of the voltage, and inductance 
and capacitance both provide impedance to 
the flow of the pulses. Noise induced from 
the environment and the power supply will 
further degrade signal quality. 

Another problem amateur radio operators 
will be familiar with is the skin effect, where 
high frequency current tends to concentrate 
in the outer layers of the wire, increasing the 
effective resistance. Also, the propagation 

time of the pulses should be taken into 
account. Even though the pulses travel at 
near the speed of light, for 22 AWG (0.79 
mm (b) wire, the delay is about 1.5 ns /ft (4.9 
ps /cm); a 100 foot coaxial cable introduces a 

transmission delay which is nearly a whole 
machine cycle delay in some high speed 
systems. Indeed, such transmission lines are 
often used as delay elements in 
oscilloscopes. 

All these phenomena depend on the 
length of the wire and the frequencies of the 
signal. They can combine to ruin the shape 
of the pulse to the extent that the logic gates 
can become confused as to whether they are 
seeing a zero or a one. We conclude then 
that the longer the wire and the higher the 
transmitted frequencies, the harder it is to 
get an acceptable error rate. 

Microtransmissions 

Armed with these characteristics and 
definitions, let's look at how conductors 
affect data transmission in a typical proc- 
essor. To date hobby systems have been 
predominantly designed with 7400 series 
TTL, which can handle clock frequencies up 
to around 35 MHz, but are commonly 
clocked at around 1 MHz. At 1 MHz, 
characteristics like resistance and capaci- 
tance of wires are not significant for short 
transmissions such as chip to chip or board 
to board transfers. The big problem inside 
systems is induced high frequency noise due 
to changes of logic states. The typical TTL 
transition time of ten nanoseconds has a 

significant harmonic content well into the 
VHF range of 50 to 200 MHz. (This is the 
reason your computer can generate some 
powerful television interference if it is not 
properly shielded.) The current surges at the 
power connection of a TTL gate which is 

changing state induces a noise signal, since 
the power bus is typically a poor conductor 
of VHF. 

Thus one common source of noise is a 

poorly designed power supply and distribu- 
tion system. Because of its high speed 
characteristics, TTL logic is very sensitive to 
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Data transmission is the 
process of sending error 
free bits from one place to 
another. 

To communicate, infor- 
mation of some kind must 
be transferred. 



What is a tolerable error 
rate depends upon the 

number of bits per second 

transferred. 

changes in its supply voltage. The power 
surges of one gate changing state can 

momentarily drop the level of a local power 
distribution wire, affecting its neighboring 
integrated circuit and thereby giving birth to 
a glitch in the system. Detecting a glitch is a 

real hassle for the pros, and the best policy is 

to use sound design practices from the start. 
The design of well regulated power supplies 
is a significant subject in its own right, and 

will not be covered in this article. Home 
brew computer experimenters can ofte.í find 
excellent high current logic power supplies 
in surplus stores. 

Noise spikes in the power wiring can also 

occur between chips on the power paths and 

can spread to other chips and boards. These 

noise spikes in the power wiring are induced 
due to the inductance of the printed circuit 
foils or wire wrap wires as the gates change 

state and draw a lot of current. Using wide 

flat power supply runs in the PC artwork 
will lower the high frequency impedance of 
the conductors. Problems can be further 
minimized by placing many small ceramic 

decoupling capacitors of approximately 0.01 

uF between the positive power supply bus 

and ground. Use one decoupling capacitor 
for every five to ten TTL integrated circuits. 
Using an integrated circuit voltage regulator 
on each board will also help provide isola- 

tion of power supply noise between boards. 

A well grounded case will greatly help 

reduce environmental noise. The case will 
also shield you from your neighbor's corn - 

plaints about interference with his television 

reception. Another benefit of a well 

grounded system case or chassis is protection 
from static electricity. In a dry house in 

winter, shuffling across the room to turn on 

the system can wipe out some MOS chips, as 

I know from bitter experience. 
These may not sound like important data 

transmission problems, but they are direct 
results of the same high frequency trans- 

mission characteristics which affect long 

wire links. Troubles that start with an 

improperly designed power distribution and 

layout scheme are hard to spot and correct, 
but will certainly show up in transmissions 
over long wires. 

Macrotransmissions 

Macrotransmission problems occur 
between central processors and peripherals. 
The transmission line characteristics become 

important: If the length of the wire 
approaches the order of magnitude of the 

wavelength of the signal, transmission line 
effects are a potential source of problems. 
This phenomenon occurs in short wires at 

high frequencies, and in longer wires at 

lower frequencies. As mentioned previously, 
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the frequency characteristics of TTL logic 
circuits changing state - VHF components 
in the 100 MHz range -- are what tend to 
dominate the transmission line properties of 
long wires carrying TTL signals. Using the 
usual radio formula, 

X = 300 /f (X in meters, f in MHz) 

gives wavelengths for the high frequency 
components of a TTL state transition which 
are in the vicinity of three meters at 100 
MHz. Thus cables with lengths of one or two 
meters should exhibit many of the prop- 
erties of transmission lines when they carry 
standard TTL signals. Note that this prop- 
erty primarily depends upon the transition 
time, and is independent of the actual 
number of transitions per second. By 
slowing the transition time by a factor of 
100 to one microsecond or more, trans- 
mission line effects will not begin to occur 
until cables of 100 meters or more are 

considered. Given some arbitrary length of 
cable, the alternatives open are to take into 
account transmission line behavior through 
impedance matching techniques, or to slow 
down the signals so that transmission line 
effects are no longer a consideration. Since 
the latter option produces a non -TTL signal 

because it changes state too slowly, let's turn 
attention to methods of compensating for 
transmission line behavior. 

As a simple example, consider two paral- 

lel wires. Each wire has the properties 
mentioned before, and is represented in 

figure 2. In order for the pulses to travel 
through the conductor with minimal losses 

in signal quality, each end of the cable must 

be terminated properly. Termination of the 

Figure 2: Symbolic representation of parallel 
wire transmission. The system is symmetric, 
so it does not matter whether the left 
terminals are at the source and the right 
terminals are at the receiver or vice versa. 

The symbols used in the diagram are as 

follows: 

L, inductance of the wire. 

R, resistance of the wire. 

ç capacitance between the wires. 

G, high resistance leakage path 
between the wires. 



Photo 1: Coaxial cable consists of a central conductor, an outer conductive 
braid, and a protective coating. It is bulky and expensive, but it has good 
characteristics as a transmission line for data. 

Photo 2: Two examples of ribbon cable. The lower example is a surplus item 
consisting of flat copper conductors (similar to PC lamination) embedded in a 
plastic carrier. The upper example is a more conventional cable intended for 
assembling to a special dual in line package (DIP) plug. 

Photo 3: Twisted pair cable is the only good data transmission line which can 
be easily fabricated at home. Here is an example made using an electric drill 
to do the twisting. 

line involves matching the characteristic 
impedance of the wire with the impedance 
of receiver and transmitter. 

As a pulse is sent to the other end, the 
energy of the pulse is dissipated by the 
termination of the wire. If the wire is not 
terminated properly, a reflection of the 
pulse will travel back to the source, and a 

condition called ringing will occur. 
It is for this reason that flip flops should 

never be used to directly drive a line of 
significant distance. Ringing or noise spikes 
could occur on the line and enter the flip 
flop circuit and change its state. 

Typical 7400 gates have an impedance of 
100 O in the high state and nearly 0 O in the 
low state. Almost all newer small scale TTL 
integrated circuits are diode clamped, pre- 
venting most ringing on the inputs. This 
allows wires to go about 5 feet between 
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gates without using external impedance 
matching techniques, and assumes a rela- 
tively high speed and constant impedance 
line. If a standard TTL gate is used as the 
transmitter in a data link, fan out rules must 
be observed to supply sufficient current. To 
raise the output voltage of the pulse, a 2.2 

kO resistor can be connected between the 
output and the 5 V source. This pullup 
resistor raises the output pulse to a full 5 V 
and reduces the chances of noise affecting 
the line. 

For longer runs at high speeds, a TTL line 
driver chip like the 74128 can be used to 
provide more current to the line. For even 
longer runs or in critical applications special 
chips like the Signetics 8T13 and 8T16 are 
used as drivers and receivers to insure a low 
error rate. The maximum length for these 
transmissions depends on the type of wire 
being used. 

Coaxial cable is one of the best cables to 
use for long distance transmission of digital 
data. I t has a center conductor set in a non 
conductor with a metallic braid or foil (the 
shield) wrapped around it. The shield is used 
as the ground return and for protection from 
external noise. Photo 1 illustrates a typical 
coaxial cable, cut so its construction can be 
seen. Cables with a nominal characteristic 
impedance of around 100 O are normally 
used in order to match gate terminations. 
Coaxial cable has the disadvantage of being 
inflexible and bulky, especially if many 
wires have to be terminated in a small area. 
An even worse disadvantage is its high cost. 
Coax is usually used when other wires aren't 
suitable. 

Flat ribbon cable, which usually has every 
other conductor grounded, provides a con- 
stant impedance and reduces the chance of 
wires inducing signals on each other. Ribbon 
cable for the hobbyist is still rather expen- 
sive, and special connectors generally must 
be used. Photo 2 shows two types of ribbon 
cable: flexible copper strips in plastic, and 
multiple stranded wires. 

Twisted pair wire is the most cost effec- 
tive transmission line for long runs in hobby 
systems. This kind of cable can be fabricated 
at home using an electric drill. In multipair 
cable, each pair should be used as a single 
signal path, with one wire grounded. The rise 
time characteristics of the pair are deter- 
mined by the conductor size and tightness of 
the twist. For a 100 O cable, the wire should 
be 22 to 24 AWG (stranded) with about 
three turns to the inch. Multipair wire is 

available at many surplus houses, and is 
generally a bargain. Photo 3 illustrates a 

typical home made twisted pair. 
Good old hookup wire is the most suscep- 

tible to noise and usually has a highly 



A well grounded case ... 
will help shield you from 
your neighbor's com- 
plaints about interference 
with his television 
reception. 

When wires get long 

enough to look like trans- 

mission lines, termination 
and impedance matching 

become important. 

SPACE 

START 

1.852 

-.544- 
.05SDIA. (25) 

274 
21` 

I 

.326 

\ì 109 

0000000000000± 
000000 

.120 DIA. 
(2) 

I.163 
.272 

-.381 

.598 - 
OOC+O00 

.055 .056 

I 2 3 4 5 6 7 8 9 1011 1213 

.112 

1llllllll1111 

1 11111111111) 
14 15 16 17 18 19 20 21 22 23 24 25 

RS-232 PIN ASSIGNMENTS 

Pin Name Function 

1 

2 
3 
4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 

FG 
TD 
RD 
TRS 
CTS 
DSR 
SG 
DCD 

(S)DCD 
(SiCTS 
(S)TD 
TC 
(SIRD 
RC 

(WITS 
20 DTR 
21 SQ 
22 RI 
23 
24 ETC 
25 

Frame Ground (not switched) 
Transmit Data 
Receive Data 
Request To Send 
Clear To Send 
Data Set Ready 
Signal Ground 
Data Carrier Detect 
Positive DC Test Voltage 
Negative DC Test Voltage 
Unassigned 
Secondary Data Carrier Detect 
Secondary Clear To Send 
Secondary Transmit Data 
Transmit Clock 
Secondary Receive Data 
Receive Clock 
Receiver Dibit Clock 
Secondary Request To Send 
Data Terminal Ready 
Signal Quality Detect 
Ring Indicator 
Data Rate Select 
External Transmit Clock 
Busy 

Figure 3: The commonly used RS -232 elec- 

trical interconnection for data transmission 
is shown here in the form of pin assignments 
for the typical D connector. A typical part 
number for the connector is DB -25P (plug) 
and DB -25S (socket) made by Cinch. 

i I 
I 

I I I I 
I 

I O I O I I O I MARK MARK 

O 1 2 3 4 5 6 7 STOP STOP 

DIGITAL 

AMPLITUDE 
MODULATION 

FREQUENCY 
MODULATION 

PHASE 
MODULATION 

Figure 4: Two level asynchronous modulation, shown for the ASCII character 

"5" along with typical modulated waveforms for different methods of 
modulation. 
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unpredictable characteristic impedance. 
Hookup wire should be used only for short 
runs between boards and as on board 
jumpers. 

The Long Haul 

At distances greater than your next door 
neighbor's house, it begins to become 

impractical to use your own wire between 
systems. This is primarily due to a very 
important conductor property - cost. Cop- 
per is not cheap, and stringing wire all over 
the place will give hobbyists a bad name. 

However, the phone company has already 
done this and will provide service to you if 
you pay the price. 

Another alternative is using a different 
medium, like radio waves. It will be inter- 
esting to see how many people suddenly 
want FCC ham licenses in order to play 
interactive TV games and exchange software. 

Both of these methods have a major 
drawback; they will not directly pass a 

digital signal. The telephone system was 

designed to carry audio frequencies. Phones 

just cannot carry DC level signals. Radio 
frequencies are at the other end of the 
spectrum and certainly won't support a 

usable DC coupled logic signal. 
However, the pulses of digital trans- 

mission can be superimposed on an AC 
signal that is within the bandwidth of the 

channel being used. The process of super- 

imposing one signal on another is called 
modulation. A device that will translate the 

digital bit stream to an encoded analog signal 

for transmission and analog to digital for 
reception is called a modulator -demodulator, 
or modem. 

Since it is impractical to have eight 
telephone lines or eight radio frequencies 
transmit in parallel, a conversion to serial 
must be done. This can be accomplished by 
writing the conversion in software, but is 

more cost effective by using an integrated 
circuit called a UART (Universal Asyn- 
chronous Receiver -Transmitter). This chip 
takes the data in parallel form and converts 
it to serial at a rate specified by external 
components. For a more detailed discussion 
of the serial interface and UARTs, see "The 
Serial Interface" by Don Lancaster in the 
September 1975 issue of BYTE. 

There is a standard for interfacing serial 

data transmission between peripherals, sys- 

tems, and modems. The Electronic 
Industries Association (EIA) of America has, 

by consent of various manufacturers and 

users, standardized a 25 pin connection with 
appropriate signal levels called the RS -232 
interface. There is also a new EIA standard 
that has been introduced, called the RS -422 
standard that is more suitable to TTL. 



However, since almost all modems and 
peripherals now available and all surplus 
items are likely to use the RS -232 standard, 
it will remain the most significant to 
hobbyists for some time. 

A commonly used RS -232 connector 
along with pin assignments is shown in figure 
3. The signals that appear on the signal pins 
must be bipolar with 3 V to 25 V represent- 
ing a logical one and -3 V to -25 V being a 

logical zero. There are chips available to do 
this conversion from TTL, the 1488 and 
1489. If you are going to use commercial 
RS -232 equipment, you should expect to 
provide this interface; and you'll also need 
the positive and negative supply voltages. 
Keep in mind that in common practice many 
of the pins in figure 3 are not used. The 
most important lines on the RS -232 inter- 
face plug are the grounds, the transmit data 
(TD) and receive data (RD). In many 
instances it is sufficient to use only these 
lines, especially if you are just experimenting 
with an RS -232 peripheral. Note, however, 
that some terminals require inputs for one or 
more additional pins, many of which can 
simply be wired to the RS -232 logic zero or 
logic one lines ( -12 V or +12 V, for 
example). 

Data Modulation 

There are three basic techniques for 
modulating an analog signal and many dif- 
ferent variations of these. An analog signal 
that is to be modulated by the data is called 
a carrier, and the carrier has three basic 
characteristics that can be varied. If the 
amplitude, frequency, or phase is varied in 
step with the bit stream, modulation occurs. 
An example of each technique is shown in 
figure 4. 

Amplitude modulation is seldom used in 
modems because of its high susceptibility to 
noise and attenuation, but the technique is 

used in some magnetic tape encoding 
schemes. Frequency modulation is a more 
common technique. The example shown in 
figure 4 uses one frequency to represent a 0 
bit and a higher frequency to represent a 1 

bit. This particular method is called fre- 
quency shift keying (FSK). 

The phase modulation example in figure 
4 shows a two level coding scheme with each 
180° phase shift triggering a logical state 
change. 

The number of times the signal is varied 
each second is called Baud or Baud rate. 
Suppose you were designing a modem using 
phase modulation. You could, for example, 
divide the possible phase shifts into 45° 
each, having eight possible phase shifts for 
each signal change. A 45° shift would 
represent a group of three bits, namely 

'000'. 90° would represent '001', 135° _ 

'010', 180° = '011', etc., up to 360° for 
'111'. In this case a signal changing 100 
times a second, or at 100 Baud, would 
actually transfer data at 300 b /s. This 
method of one signal change representing 
more than one bit is called multi level 
encoding. It is in principle the way some 
commercial high speed modems function. 

In order to obtain a fair amount of 
accuracy in transmitting data from a trans- 
mitter to a receiver, it is necessary to keep 
the two systems in step with each other. 
There are two common methods to do this, 
called synchronous and asynchronous trans- 
mission. 

Asynchronous transmission is also called 
start -stop transmission because each charac- 
ter is sent as it is created at the transmission 
interface. To synchronize the receiver, each 
character carries its own timing in the form 
of additional bits called start and stop bits. 
These give the receiver the ability to decode 
each bit reliably. The format of a single 
character is shown in figure 4 along with 
data for the digit 5 encoded in ASCII. 

Synchronous transmission is usually 
associated with blocks of data, where groups 
of characters are sent together. A fixed 
speed of transmission is set by clocks or 
oscillators, and data bits are transferred at 
this rate. To provide character synchroniza- 
tion, usually two special synchronization 
characters precede the actual block of data. 
An end of block character follows the data 
to signal the receiver that all of the data in 
that block has been sent. An additional error 
detecting character may also be sent as 

shown in figure 5. 

SYN I SYN 
1 

DATA 1 EOB 

ERROR DETECTION CHARACTER 

Figure 5: Synchronous transmission is block 
oriented and assumes highly accurate com- 
mon clocking of both the sender and the 
receiver. 

Finally, there is one other complication 
in using radio or telephones for your com- 
munication channel - the FCC. The FCC 
regulates the telephone industry by tariffs 
that specify the costs and types of devices 
that can be used with Ma Bell. They also 
regulate radio frequency allocation and 
power output and information codes that 
can be transmitted by radio. 

There are good reasons for having these 
regulations followed, but they do tend to 
make life difficult for the hobbyist. A 
dedicated 100 mile phone line with a Bell 
modem will exceed most other system costs 
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A baud is not necessarily a 

bit per second - although 
it might be in special cases. 

A baud is a signal change 
per second. 



for a home computer in a very short time. A 
ham license and suitable radio equipment are 

not cheap, either. Long distance real time 
data transmission is presently out of reach to 
many hobbyists. 

GLOSSARY 

Asynchronous transmission: Transmission where 
data is sent a character at a time with syn- 
chronizing bits added. See Synchronous 
Transmission. 

b /s: Bits per second. 

Bandwidth: The width of the frequency spectrum 
that a channel can pass, measured in Hz. 

Baud: The number of signal changes per second. 

Carrier: The analog signal that is modulated by the 
information that it is to carry. Also, the provider 
of a communications channel, i.e., Ma Bell. 

Duplex: Communication system that allows 
information to be exchanged. See simplex. 

FSK: Frequency shift keying, a type of frequency 
modulation for digital data. 

Full duplex: Communication system that allows 
simultaneous information exchange. See half 
duplex. 

Half duplex: Communication system that allows 
information to be exchanged, but not simultane- 
ously. See full duplex. 

Modem: Modulator -demodulator. A device used to 
convert digital to analog signals and vice versa. 

Modulation: The process of superimposing 
information on a carrier. See carrier. 

Multilevel Encoding: The process of using a signal 

change to represent more than one bit of 
information. 

Noise: Unwanted signals that interfere with the 
message. 

Ringing: A condition in transmission lines where 
"reflections" of pulses oscillate due to an 

impedance mismatch. 

Simplex: Communication system that does not 
allow information to be exchanged. See duplex. 

Synchronous Transmission: Transmission where 
the bit rate is clocked. Usually associated with 
block transmission. See asynchronous transmission. 
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TO CIRCUIT 

UNDER TEST 1 

+5v 

Build a 

TTL Pulse 

Catcher 

R2 
LED, 220 

I/4 W 

TEST PROBE 

GROUND 

FALLING 
GND 

PIN 0 ICI 

ICI 
LOOKING FROM THE 
TOP TOWARD 
SOCKET 

PIN I IS NEAR 
THE DOT 

ICI = 7400 

2 3 4 5 6 7 

+5 

}-s2 
RESET 

TO TEST 
PROBE 

PUSH TO 
I SIMULATE PULSE 

TESTING THE TESTER 

Figure 1: The circuit diagram and parts list for the TTL pulse catcher design. 
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William A Walde 
28 Tuttle Dr 
Acton MA 01720 

While checking out the operation of some 
oneshots on the address latch board during 
the construction of my Mark -8 micro- 
processor, I discovered that my first home- 
made logic probe could not detect very short 
TTL logic pulses. Since my old probe would 
not work, I needed a quick and easy way to 
tell whether a short TTL pulse had arrived. I 

dreamt up this circuit which solved the 
problem by adding memory in the form of 
an RS flip flop wired from a NAND gate. 
This pulse catcher will detect pulses as short 
as the combined gate delays of the two 
NAND sections used to form the flip flop, 
approximately 10 to 30 ns. The circuit 
works by changing state at the start of a 

pulse, with an LED monitoring the flip flop 
output. There is no indication of the end of 
the pulse and there is no way to tell if 
multiple pulses have occurred. After a pulse 
has been detected, the circuit must be reset 
in order to detect the next pulse. The TTL 
pulse catcher is designed to work with either 
a positive or a negative going pulse as 
selected by a switch. 

Construction 

The original version of this test instru- 
ment was built using perforated board and 
flea clips. The circuit could also be made 
using a small printed circuit board. Lead 
dress is not critical, but the polarity of the 
LED must be observed. Select a value of the 
resistor R2 in the range 47 to 470 0 such 
that good illumination is achieved with a 

current of approximately 20 mA. A typical 
resistance value is 220 0. The tester can be 
tested using a resistor, a bounceless push- 
button switch and the test circuit shown in 
figure 1. Label switch S1 to identify which 
setting is the rising edge mode and which 
setting is the falling edge mode. A clever 
approach would be to build the pulse 
catcher inside a cylindrical enclosure, such as 
a pen or thin tube. 

Using the Pulse Catcher 

Connect the 5 VDC and ground terminals 
to a suitable power supply. If you use a 
power supply separate from the main system 
supply of the computer or logic device you 



are testing, be sure to tie the grounds of the 

two supplies together. Connect the input 
probe to the line being tested and select the 
rising or falling edge mode via switch Sl. 
Depress the reset button to extinguish the 

LED and arm the latch. If you are unable to 
cause the LED to stay off after releasing the 

reset, the following information is learned 

about the line being tested: 

It may have a steady state condition 
which is inconsistent with the mode of 
the test. Change S1 and try again. 

You may be observing a line which has 

regular clock transitions. The light will 
never go out when testing such a line. 

In normal operation, once the pulse 

catcher is reset, the LED will remain out 
until the first pulse comes along, after which 

it will stay on until reset by pushing the S2 

button. 

Theory of Operation 

Gates ICIc and ICId are cross -coupled to 
form the familiar RS flip flop that is used to 

remember when a pulse has occurred. 
Momentarily depressing SW2 grounds pin 9 

of gate IC1d, causing the flip flop to go into 
the reset mode. In this mode both sides of 
LED1 are high and it will not light up. In a 

similar manner, falling pulse at pin 13 of 
gate ICIc will cause the flip flop to go into 
the set mode with gate ICid now becoming 
a current sink for LEDI, causing it to 
illuminate. 

Switch SW1 is used to select between 
either a rising or a falling input pulse. The 
RS flip flop always needs a falling pulse to 
operate. In the case of a rising pulse, it is 

inverted by gate ICI a, which is also used as a 

buffer. Gate ICIb is used to invert a falling 
pulse a second time to put the pulse back 
into its original form. Note that pin 1 of gate 

IC1a is held high so that the input (pin 2) 

will only present one standard TTL load to 
the circuit under test (as compared to gate 

ICI b where the 2 inputs are tied together). 
Rl is used as a pull up resistor to the pin 

9 input to gate ICId for noise immunity. 
Resistor R2 is used as a current limiting 
resistor for LED1. 

Don R. Walters 
3505 Edgewood Dr 
Ann Arbor MI 48104 

Dressing up Front Panels 

To dress up panels of equipment use press 

on lettering (available from stationery shops, 

college and university book stores, and from 
graphics arts supply shops) to label the 

various functions performed by the compo- 

nents which will be mounted on the panel 

(see figure 1). The lettering can be pressed 

on, wire brushed, chemically etched, or 

painted surfaces. The only caution is that 

the surface be free of dirt and grease before 
applying the lettering to the panel. 

When applying the lettering, if a mistake 
is made the mistake can be removed by 

gently scraping the lettering off the panel. 

After all the lettering is completed and 

you are satisfied with the job, lay the panel 

on a flat surface and carefully spray the 

panel with several (5 to 10) light coats of a 

clear plastic spray. Allow the surface to dry 

before applying the next coat. Also allow 
the sprayed surface to dry completely (over- 

night) before installing the components on 

the panel. The plastic spray protects the 

lettering from being rubbed or scraped off 
easily. 

OFF 

00000000 0 
7 6 5 4 3 2 1 0 

ADDRESS 

ON 0000000 
6 S 4 3 2 Ó O 

DATI, 
A 

POWER 

MACHINED 
PANEL 

AFTER COMPLET- 
ING LETTERING, 
SPRAY ENTIRE 
PANEL WITH PLAS- 
TIC SPRAY 

FROM PRESS - 
ON LETTERING 
SHEET TO PAN- 
EL SURFACE 

A word of caution; let the spray dry 
thoroughly before mounting the com- 

ponents. Secondly, on each spraying put 
down only a light coat. Otherwise the letters 
will tend to move (float ?) a little out of 
place. Also be careful when mounting com- 
ponents onto the panel so that the lettering 
and /or the panel's surface is not scratched. 
The end result of lettering and care will be a 

very good looking piece of equipment. 
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MYSTERY KEYBOARDS 

by 
Carl Helmers 
Editor, BYTE 

One of the best sources of 
input data for your home 
brew computer system is the 
typewriter style keyboard 
device. A decent keyboard 
will give you the ability to 
enter parallel character data 8 
bits at a time. The typical 
keyboard input devices will 
also include a flag of some 
sort to indicate that a key has 
been pressed. It might also 
include an "acknowledge" 
line to be pulsed after the 
computer had read the data. 
The parallel interface of a 
typical keyboard is illustrated 
in Fig. 1. Fig. 1 is a typical 

Did you ever wonder about the use of surplus keyboards 
for use in your system? Here is an article describing one way 
to analyze such a keyboard - illustrated by a particular model 
which is available through one of BYTE's advertisers. Do you 
use a surplus keyboard already? This is one of the most 
common and usable of surplus subsystems - I'd like to see a 
few reader submitted articles on use of various keyboards 
available in surplus channels. ... CARL 

interface of a keyboard, and 
is used only as a guide to the 
analysis of an actual 
keyboard later on in this 
article. 

The manual input of the 
keyboard is its most 
important feature. It is the 
human operator's depression 
of a selected key which 
communicates some 
information to your system. 
When the key is depressed, it 
causes the keyboard input 
device's logic to generate an 
encoded binary pattern for 
the key. This encoded binary 
pattern is typically an ASCII 
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character code presented on 
the data lines DO to D6. In 
addition to the encoding 
function, the keyboard has 
logic which produces a "flag" 
signal to indicate that some 
key has been depressed. This 
flag is either a pulse (see 
timing diagram example in 
Fig. 1) or a level state, 
depending upon the 
particular keyboard design 
involved. It is often the case 
(but not required) that the 
keyboard is designed for 
interactive control by the 
computer processor. In such 
cases, an "acknowledge" 



signal must be generated by 
the computer and sent back 
to the keyboard to reset the 
logic of the keyboard input 
device. 

The encoding pattern of 
the keyboard input device 
depends upon the 
manufacturer's design and 
must be determined for a 

surplus keyboard before you 
can use it. For many 
keyboards, the ASCII pattern 
of Table I is applicable - 
each key maps into one of 
the 7 -bit patterns listed. 
Unless stated by the dealer, 
you will have to approach the 
analysis of the surplus 
keyboard without any 
assumptions: it is likely to be 
ASCII but ... you could 
wind up with a Univac 
"Fieldata" encoded 
keyboard; you could wind up 
with an IBM EBCDIC 
keyboard, etc. Many 
non -standard encoding 
schemes for alphanumeric 
keyboards are derivatives of 
ASCII. Thus the example in 
this article is chosen with an 
ASCII encoding scheme in 
mind. (IBM surplus is rarely 
in usable form and the 
number of EBCDIC 
keyboards by non -IBM 
manufacturers is an unknown 
but assumed small number.) 
In Table I, the common 
character codes are shown in 
a typical graphic form as well 
as in binary, octal and 
hexadecimal representations. 

Now a new keyboard fully 
encoded for ASCII and /or 
EBCDIC is one option you 
have for implementing a 

keyboard input device. For 
example, a new commercial 
keyboard will typically sell in 
the $ 50 to $150 range 
depending upon options - a 

keyboard with a standard 
typewriter style layout and 
an LSI encoding method. As 
a second example, Southwest 
Technical Products Corp. 
used to sell a hobby quality 
keyboard at about $40 in kit 
form. The advantages of new 
keyboards are obvious: you 
get the complete description 
of the hardware along with 
the product - and an 

interface which will be similar 
to the one described in Fig. 1. 

With the newer LSI encoded 
boards, you will probably get 

a keyboard with an "n" key 
rollover feature to decipher 
multiple key strokes which 
overlap in quick succession. 
This is all well and good, but 
is there a less expensive 
alternative? The answer of 
course is "Yes ", and the 
remainder of this article 
concerns the techniques 
involved. 

Using Surplus Keyboards 
The alternative to new 

equipment is "pre- owned" 
equipment, to borrow a term 
from standard used car 
dealers' lexicon. Since 
computers have been in use 
for a number of years there is 

a fairly wide selection of 
equipment in the "surplus" 
market, as you can find out 
by reading the advertising 
pages of BYTE. An item 
which is frequently found in 
surplus vendors' offerings is 

the keyboard input device. 
Prices for keyboards vary 
considerably - from $10 for 
real "junk" to about $40 for 
premium keyboards. The use 
you can get out of such a 

surplus board ranges from a 

MANUAL 
INPUT 

complete subsystem ready to 
hook up - to a mere array of 
key switches which must have 
a new set of encoding logic to 
make it work. 

The keyboards you 
employ for this purpose must 
be selected and analyzed on 
an individual basis - there is 

no stock formula applicable 
to all such keyboards. Several 
rough guidelines will help 
you keep out of too much 
trouble: 

1. Always look for a unit 
which is in sound physical 
condition. Get one which has 
the cleanest possible key 
tops, smoothly working keys, 
little sign of "hack" 
modifications to PC circuits, 
etc. Verify that the keyboard 
is a "switch" type - Hall 
effect or capacitive keyboards 
exist and should be avoided without proper 
documentation. 

2. The most desirable 
keyboard will be one in 
which the encoding logic is 

readily decipherable. This will 
invariably be the case with 
diode matrix keyboards (see 
text below) - and may be 

TIMING (TYPICAL): 

HUMAN FINGER 

possible if an LSI chip with a 

standard part number is 
utilized. 

3. The most desirable 
keyboard will be one on 
which the PC layout people 
have made notations of nice 
little comments like " +5V ", 
-12V ", "VCC ", "A", "$" 

etc. These are great aids to 
figuring out the operation of 
the devices. 

If you (at a minimum) 
satisfy the first criterion 
above, the keyboard will 
ultimately be usable, 
provided it uses actual 
keyswitches, since you can 
always construct a switch 
scanner and /or diode matrix 
to encode the switches as 

ASCII binary information. 

Diode Matrix Keyboard 
Analysis - An Example 

To illustrate what can be 
done with surplus keyboards, 
the remainder of this article 
concerns the analysis of a 

particular keyboard input 
device. The keyboard in 
question has been advertised 
recently, and is a fairly 
typical diode matrix encoded 

ACKNOWLEDGE + 

KEYBOARD 
INPUT 

DEVICE 

LSB 

MSB 

FLAG+ 

f 
FLAG 

ACKNOWLEDGE 

DO 

DI 
D2 
D3 
D4 
D5 
D6 

COMPUTER 
ice- RESPONSE 

TIME 

Fig. 1. Typical keyboard functions. 
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The keyboard, with 
bottom plate removed and 
encoder board out in the 
open. The encoder printed 
circuit is separated from 
its mounting on the 
bottom plate but is still 
attached by its wiring 
harness. 

keyboard of the 1966 -1970 
vintage. This keyboard is a 

surplus Sanders Associates 
Model 722 -1 subsystem, 
which comes enclosed in a 

metal housing with a fairly 
typical Teletype style key 
layout. On the right hand side 
of the keyboard is a set of 
special function keys, which 
obviously had some meaning 
in the original system using 
the device. 

The keyboard and housing 
can be used "as is" in your 
system - with the only 
necessary modifications being 
the substitution of an 
interface plug and cable 
which can mate with your 
own equipment. The example 
of analyzing and figuring out 
this keyboard can be used as 

a guide to similar work with 
other surplus keyboards. 

Start at the Beginning 
The object of this project 

is to determine the details 
needed to make the Model 

KEYBOARD 
HOUSING 

OUTPUT 
TERMINALS Uzt ;U8 

BYPASS 
CAPACITOR 

KEYBOARD 
ENCODER 
P.C. 

INTEGRATED CIRCUITS 

722 -1 keyboard work - but 
without any original design 
documentation from the 
manufacturer, since it is 

surplus. The first step is to 
put on your Sherlock Holmes 
cap, crank up your deductive 
powers and begin 
disassembling the keyboard. 
In order to analyze the 
circuit, a likely place to start 
is the bottom cover plate. In 
the case of the 722 -1, four 
screws hold the cover plate to 
the bottom of the housing. 
Upon opening the cover 
plate, the 722 -1 will be found 
to have a printed circuit 
board attached to the plate - 
a thin plastic sheet glued to 
the cover plate prevents 
inadvertent shorting of PC 
conductors. The PC should be 
removed from the cover plate 
by unscrewing the four nuts 
securing it. The result will be 
a PC board hanging out the 
back of the housing /keyboard 
assembly by its wiring 
harness. 

The actual process of 
analysis of a keyboard such as 

this will probably take you an 
evening or so. The key 

features to look for in a diode 
matrix encoder keyboard are 
identified in the photo. 

Keyboard Encoder PC. 
The typical diode matrix 
keyboard will have a printed 
circuit board containing a 

large number (approximately 
100 -200) of computer diodes 
and several integrated 
circuits, with individual wires 
running from keyswitches to 
the PC. Sometimes the 
functions of encoding and 
control logic will all be 
mounted on the same printed 
circuit as in this example. 
Occasionally, the logic will be 
split up into smaller chunks 
on separate boards. 

Wiring Harness. A 
keyboard is easy to figure out 
if you can get at it "live" 
(under power). In this case, a 

wiring harness allows 
considerable room for 
extbnsion so that the key 
switch matrix and housing 
can be separated from the 
encoder board. 

Diode Matrix. The way to 
tell a diode matrix board is 

by the regular array of diodes 
found at some point. In this 
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DIODE MATRIX 

example, the array is at the 
lower right in the photo. 
While the array is regular, the 
actual printed wiring is fairly 
random - although it will 
ultimately condense down 
into a set of bit busses. 

Integrated Circuits. This 
particular keyboard has a 

bunch of integrated circuits 
in the left hand portion of 
the encoder board. The photo 
illustrates arbitrary reference 
numbers U1 to U12 for the 
purposes of this article, since 
no references were built into 
the printed circuit board. 

Pu//up Resistors. In diode 
matrix boards, a set of 
negative logic "wired or" 
busses is used to generate 
each bit of the encoded 
binary word. One pullup 
resistor (typically 1000 
Ohms) is associated with each 
bus line. 

Identifying the Power 
Requirements 

One of the most critical 
items to be determined in 
figuring out a keyboard is to 
identify the power 
requirements. The best way is 



Table I. Binary, Octal 
and Hexadecimal ASCII 

Codes. This table contains 
common symbols for 
keyboard characters 

and the corresponding 
ASCII codes. 

Binary 

0000000 
0000001 
0000010 
0000011 
0000100 
0000101 
0000110 
0000111 
0001000 
0001001 
0001010 
0001011 
0001100 
0001101 
0001110 
0001111 
0010000 
0010001 
0010010 
0010011 
0010100 
0010101 
0010110 
0010111 
0011000 
0011001 
0011010 
0011011 
0011100 
0011101 
0011110 
0011111 
0100000 
0100001 
0100010 
0100011 
0100100 
0100101 
0100110 
0100111 
0101000 
0101001 
0101010 
0101011 
0101100 
0101101 
0101110 
0101111 
0110000 
0110001 
0110010 
0110011 
0110100 
0110101 
0110110 
0110111 
0111000 
0111001 
0111010 
0111011 
0111100 
0111101 
0111110 
0111111 

Octal 

000 
001 

002 
003 
004 
005 
006 
007 
010 
011 

012 
013 
014 
015 
016 
017 
020 
021 

022 
023 
024 
025 
026 
027 
030 
031 

032 
033 
034 
035 
036 
037 
040 
041 
042 
043 
044 
045 
046 
047 
050 
051 
052 
053 
054 
055 
056 
057 
060 
061 
062 
063 
064 
065 
066 
067 
070 
071 

072 
073 
074 
075 
076 
C77 

Hex 

00 
01 

02 
03 
04 
05 
06 
07 
08 
09 
OA 

OB 

OC 

OD 

OE 

OF 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

1A 
1B 

1C 

10 
1E 

1F 

20 
21 

22 
23 
24 

25 
26 
27 

28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

Common "Graphics "* 

NUL character 

Bell - Ring the Bell! 

LF - Line Feed 

CR - Carriage Return 

ESC - "Escape" 

SP - Space 

! - Exclamation 
- Quotes 

#- Number Sign 

$ - Dollar Sign 

%- Percent 

& - Ampersand 
- Apostrophe 

1 - Left Paren 

) - Right Paren, 

- Asterisk 
+ - Plus sign 

, - Comma 
Minus Sign (hyphen) 

. - Decimal (period) 
/ - Slash 

0 
1 

2 

3 

4 
5 

6 

7 

8 
9 

. - Colon 

. - Semicolon 
< - Less than 
= - Equality 
> - Greater than 

? - Question Mark 

Binary 

1000000 
1000001 
1000010 
1000011 
1000100 
1000101 
1000110 
1000111 
1001000 
1001001 
1001010 
1001011 
1001100 
1001101 
1001110 
1001111 
1010000 
1010001 
1010010 
1010011 
1010100 
1010101 
1010110 
1010111 
1011000 
1011001 
1011010 
1011011 
101 1100 
1011101 
1011110 
1011111 
1100000 
1100001 
1100010 
1100011 
1100100 
1100101 
1100110 
1100111 
1101000 
1101001 
1101010 
1101011 
1101100 
1001101 
1101110 
1101111 
1110000 
1110001 
1110010 
1110011 
1110100 
1110101 
1110110 
1110111 
1111000 
1111001 
1111010 
1111011 
1111100 
1111101 
1111110 
1111111 

Octal 

100 
101 

102 
103 
104 
105 
106 
107 
110 
111 

112 

113 
114 

115 

116 

117 
120 
121 

122 
123 
124 
125 
126 
127 
130 
131 

132 

133 
134 
135 

136 
137 
140 
141 

142 
143 
144 
145 
146 
147 
150 
151 

152 
153 
154 

155 
156 
157 
160 
161 

162 
163 
164 

165 
166 
167 
170 
171 

172 
173 
174 
175 
176 
177 

Hex 

40 
41 

42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 

4D 
4E 

4F 
50 
51 

52 
53 
54 
55 

56 
57 

58 

59 

5A 
5B 
5C 

5D 
5E 
5F 
60 
61 

62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 

72 
73 
74 

75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 

7F 

Common "Graphics "* 

@ - "at" 
A 
B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 
R 

S 

T 
U 

V 
W 

X 
Y 
Z 

( - Left bracket 
\ - Reverse slash 

I - Right bracket 

- Underscore 

a 

b 

c 

d 

e 

f 
g 

h 

i 

j 

k 

m 
n 
o 
p 

q 
r 

s 

t 
u 

v 

w 
x 

Y 

z 

L 
- Left brace 

}- Right brace 

DEL - Delete 
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Diode matrix - this 
system of generating 
the ASCII code is used 
in older keyboards. 

AC 
MAINS 

of course to get a keyboard 
which has power 
requirements listed on its 
encoder printed circuit in no 
uncertain terms. However, 
"the best" is often a matter 
of luck and judicious choice 
of equipment in surplus 
circles ... you can make do 
with less than perfect 
documentation by employing 
some knowledge of common 
design practices. Figuring out 
power voltages requires the 
analysis of one circuit power 
line for each level of voltage 
involved to completely 
establish the requirements of 
the system. 

One of the least 
ambiguous ways to identify 
power lines is to look up the 
power pinouts of the 
integrated circuit components 
used in your keyboard. This 
method requires a supply of 
reference books and a 
keyboard encoder circuit 

POWER 
+5,/ 

SUPPLY 
o 

VOM 
300m A 
SCALE 
. 

Fig. Z Turn it on and cross your fingers. 

which uses standard part 
numbers. For keyboards 
which are manufactured by 
the smaller companies in the 
computer field, parts are 
usually standard items so that 
this method can be 
employed. One of the main 
justifications for home brew 
computer clubs is the nice 
informal arrangement which 
provides for an exchange of 
information of this type. In 
the case of the Sanders 
keyboard, the two integrated 
circuit designs used were 
labelled "ST659A" and 
"ST680A ". The only 
problem is that no direct 
reference could be found in 
literature I had available. 
However, don't give up with 
an initial failure to find a 

reference. What I did after 
striking out on these two 
numbers was to look for a 

similar number differing only 
in the alphabetical 
information. I did find 
references to two DTL 
integrated circuits "SP659A" 
and "SP680A," an 
expandable 4 -input NAND 
gate and a quad 2 -input 
NAND gate. Both these gate 
designs have package power 
connections of Pin 8 for 
power and Pin 1 for ground. 

The gate references gave 
me a high probability 
determination of the power 
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connections by tracing down 
ground to the I/O pin labelled 
7 and tracing down power 
( +5 for DTL) to I/O pin 5. 
Being a cautious type of 
person, I then looked for 
some independent 
confirmations of this power 
pinout identification. 

Another method of 
identifying power and ground 
connections is to look for 
color coding on wires. This 
kind of a confirmation is only 
possible for boards 
manufactured with hand 
wiring. If the harness is one 
of the multiconductor ribbon 
cables, color coding is not 
likely. In the keyboard I 

analyzed I found that the 
ground terminal of the 
decoder was routed via a 

black wire to the connector 
on the case, and that the +5 
volt terminal was routed to 
the connector via a red wire. 
This is consistent with the 
industry conventions which 
are used for such wiring - 
power (positive) is red, 
ground (negative) is black. 

Still another method for 
determination of power 
connections is to examine the 
polarity of electrolytic 
capacitors mounted on the 
board for local power supply 
filtering. These bypass 
capacitors are often (not 
always) connected between 



Detail of the output pins. 
This keyboard is one of 
the more desirable types - 
it has labeling of many key 
features etched along with 
the printed wiring. 

the positive supply and 
ground, with markings of ( +) 
for the supply side and ( -) for 
the ground side. In the 
disassembled keyboard 
photograph accompanying 
this article, the bypass 
capacitor is labeled. Using 
clip leads, the bypass 
capacitor often provides a 

handy way to apply power 
when first testing the board. 

Multiple power supply 
keyboards often occur with 
later equipment, especially 
where MOS encoders are 
employed. This will 
complicate the analysis 
problem - often to the point 
where it might be wise to 
avoid such boards unless 
adequately labeled with 
vol tage designations, part 
numbers and other 
comments. 
Turn It On and Cross Your 
Fingers? 

Now that you think you 
have the power connections 
straight, your next step in 
analysis is to apply a little bit 
of power to the circuit and 
see what happens - using a 

milliammeter. Connect the 
keyboard using the circuit of 
Fig. 2. If the power leads 
have been correctly 
identified, the current read 
on the meter should be 

approximately 100 

Fig. 3. The typical encoded bit 
line for a diode matrix. 

*DTL gates used in surplus 
"Sanders 720" keyboard; TTL 
might be used in variations on 
this theme, e.g.: 7400 series. 

OUTPUT BIT LINE 

milliamperes. Remove power 
ASAP if the meter movement 
is "pinned" on a 300 or 1000 
milliampere scale, since that 
indicates either a short circuit 
or incorrect polarity for the 
power. If a reasonable current 
(under 300 milliamperes) is 

drawn, then you can safely 
trust your power connection 
determination and proceed 
by removing the meter from 
the circuit. 

Does It Have a Flag? 

The next thing to look for 
is a "flag" indicating that the 
keyboard has been activated 
by a finger and data is 

present. The term "flag" 
means a logic line generated 
in the keyboard encoder 
which may be either pulsed 
or steady state. This test 
requires a method of catching 
pulses - either an 
oscilloscope with about 10 
MHz bandwidth, or one of a 

number of logic probes 
available which "flash" when 
a state change occurs. Check 
each of the several I/O 
connection terminals while 
pressing a key. If the 
keyboard is working at all, 
you will find at least one 
terminal which changes state 
- with a pulse or a level 
change - as keys are 
activated. 

"EXPAND" INPUT 
OF 659 

659* 

+5V 

-ll° READ" 680* ¡}-- 
COMMAND LINE 

131 

1100011 
PULLUP 
RESISTOR 

R-S FLIPFLOP 
STORES BIT 

When you have found a 

pin which changes state, the 
next test is to see whether it 
changes the same way for 
every normal key on the 
keyboard. If the effects vary 
from key to key, then the 
line in question is a data line - if the tentatively identified 
"flag" pin pulses or changes 
its level consistently for all 
keys (with one or two 
possible exceptions) then it is 

probably the flag desired. In 
the Sanders surplus board 
analyzed here, the flag pin 
was found to be I/O 
connection terminal 8. 

The exception possible to 
the "same behavior on every 
key" statement is evidenced 
in the Sanders board - the 
flag interconnection terminal 
is a pulsed output of 2 
microseconds in width for all 
keys except one: the 
"Repeat" key causes the flag 
to change its state. The flag is 

normally high in this board, 
but when repeat is depressed 
it is held low. 

Where's the Data? 

Now, having found a flag 
to indicate when data is 

present, the next problem 
immediately presents itself - 
you now turn to examine the 
other pins of the 
interconnection to the 

f /WIRED - "OR "(NEGATIVE LOGIC) 
fMATRIX BIT LINE 

KEY 
SWITCH 

DIODE ISOLATES 
KEY LINES FROM 
WIRED-OR BUS 

TO OTHER ACTIVE 
BITS OF THIS KEY 

-EACH KEY 
WHICH 
ACTIVATES 

THIS BIT LINE 
IS CONNECTED 
IN THIS MANNER 



4 

5 

10 

II 

12 

13 

`EXPANSION__f. 
INPUTS 

14 

decoder and find no change 
whatsoever in levels regardless 
of the key pressed. Ah! The 
frustration! It's enough to 
drive you to tracing down the 
logic of the keyboard, at least 
for one of the low order data 
bits. That's exactly what 
happened in analyzing this 
example of a keyboard. Fig. 3 
is the result of that tracing 
operation - using the pinouts 
of Fig. 4 which were obtained 
from an old (late sixties) data 
reference for the DTL gates. 

As can be seen in Fig. 3, 
an R -S flip flop is made out 
of two NAND gate sections 
for each bit -line of the 
keyboard. This storage of the 
state of the diode matrix 

outputs explains the lack of 
change seen when first 
examining the board's 
outputs for possible data - in 
order to read (or get ready to 
read) a key, the R -S flip flops 
of all diode matrix outputs 
must be reset. The "read" 
command line performs this 
reset. After resetting, the first 
negative going pulse on the 
matrix bit line into the 659's 
expander input sets the flip 
flop, thus debouncing the 
contact closure. There is one 
bit line for each possible bit 
of "raw data" - and some 
logic is used to superimpose 
the shift key and control key 
information as required. 

So, in order to find out 

Fig. 5. Keyboard "Read" and Acknowledge logic. 

'READ' 2 

COMMAND LINE 

0 
659A 

Fig. 4. Pinouts for the DTL gates 
in the Sanders keyboard. (Unused 
inputs are assumed logic 1 

without external pullups.) 

which interface terminal 
corresponds to the "read" 
command line which resets all 
the flip flops, a bit more 
circuit tracing is required. 
Fig. 5 illustrates the effective 
logic resulting from the 
tracing for "Read" - which it 
turns out is commanded by a 

negative logic pulse from the 
computer via interconnection 
terminal pin 6. In Fig. 5, the 
R -S flip flop (A) is used to 
control the computer 
interface. The receipt of an 

acknowledge command from 
the computer resets that flip 
flop potentially allowing a 

read, but the NAND gate (B) 
inhibits recognition of any 
new keystroke until after the 

ANY KEY DOWN' 
INHIBITS 
ACKNOWLEDGE 
INPUT 

659A 

4 

i 10 

o 
680A 

previous key is released. Thus 
this keyboard has zero -key 
rollover since all keys must be 

released before a new key can 
be recognized. 

Figuring Out the Coding 
Once the problem of 

locked up outputs is solved 
by identifying the 
"Acknowledge" signal line, 
the next problem is to 
identify the bit lines at the 
interconnection interface. To 
do this requires the following 
procedure (by hand) when 
testing the state of individual 
bit lines as keys are 
depressed ... 

1. Short the Acknowledge 
line to ground. 

2. Press a key whose code 
is to be examined. 

3. Look at the outputs on 
a scope or logic state 
indicator (the latter is an 

LED driven by a gate 
section). 

To identify your coding, 
make the following 
reasonableness hypothesis 
initially: 

Keys with an identifiable 
sequential order (eg: 
alphabetical order) will be 
consecutive integer numbers 
in any reasonable binary 
coding scheme. 

You can identify the low 
order bits in ASCII, for 
instance, if you make this 
assumption. 

13 ACKNOWLEDGE 

6804 II 

TERMINAL NO.6 

FLAG-L.1- 
TERMINAL NO.8 

2 14 
659A (UNUSED -OPEN) 

ANY KEY' (UNUSED 
IN PUTS 
OPEN) 

9 
EXPAND Q I 

BUS 

132 

O KEY SWITCHES 



Table II. Terminal 
Connections for the Sanders 
surplus keyboard. 

Terminal I.D. 
#5 Power ( +5 volts) 
#6 Acknowledge ( -) 
#7 Ground 
#8 Flag ( -) (pulse unless 
REPEAT key held down) 
#9 Bit 0 ( +) ASCII LSB 
#10 Bit 1 ( +) 
#11 Bit 2 ( +) 
#12 Bit 3 ( +) 
#13 Bit 4 ( +) 
#14 Bit 5 ( +) 
#15 Bit 6 ( +) 

So, pick two neighboring 
keys with identical ASCII 
high order bits, and test first 
one then the other (using the 
three steps above) for each 
potential bit line until you 
find a bit line which 
alternates with your key 
strokes. Thus, for instance, if 
you alternately press @ and A 
on the Sanders board of this 
article (acknowledging 
between each look) you will 
find the state of interface 
terminal 9 alternating. This 
can only be the low order bit 
of the ASCII code. Now pick 
two keys in alphabetical 
order which are at a change in 
bit 1. For example, pick "A" 
and "B ". This will result in all 
high order bits of the code 
remaining identical down to 
the ASCII bit 1 line. Examine 
the terminals of the encoder 
while alternately looking at A 
and B until you find the line 
which changes. 

This procedure can be 
repeated for the third ASCII 
low order bit (bit 2) by 
picking the letters C and D. 
The bit 2 terminal is found to 
be 11 by this test for the 
Sanders board. Continuing 
once more, test the bit 3 
output by looking at G and H 
alternately (ignore the 
previously identified pins - 
all high order pins will remain 
the same). 

By the time terminal 12 is 

found to be ASCII bit 3, a 

trend has been established for 
this keyboard - ascending 
terminal identifications from 
9 are the bits of the ASCII 
code. In many cases this will 
be the order of terminals - 
but you have to identify 

several of the least significant 
bits first before you can make 
a conjecture. This conjecture 
of ordering can be verified for 
the Sanders board being 
analyzed by looking at 
typical codes (see Table I, 
and look, for instance, at the 
output for "line feed" using 
the terminal identifications 
listed in Table II). 

Now a major input to this 
identification process is the 
assumption of ASCII coding - if this assumption gives 
"funny" results, you have no 
choice but to use a slightly 
different method: take each 
key in turn, depress it, and 
look at all possible output 
bits lines of the encode. 
Record the results in a table 
similar to Table I, but with 
the key you find, instead of 
the standard ASCII. You may 
find you have inverted data, a 

completely non -ASCII code 
set such as EBCDIC, or a 

modified ASCII. 

Now You've Sorted the Bits - So What's Next? 
When you have figured out 

the equivalent of Table II for 
your own surplus keyboard, 
the next step is to make a 

systematic identification in a 

table similar to Table I. One 
of the best ways to do this is 

to use your computer with an 
input port devoted to the 
keyboard, and a display or 
hard copy device for output. 
A program written to 
implement the flow chart of 
Fig. 6 can be used to 
selectively examine keys on 
the keyboard. The program 
accepts a key input, unpacks 
the bits into a binary and 
octal form, then displays the 
bits on your output (TV, 
character generator, or 
printer) as a binary and an 
octal number. If you have a 
printer output (e : a Teletype 
or line printer) then you 
should write the symbol on 
the key next to each code 
after the code is printed. If 
you only have a display 
output, then you should note 
the code on paper along with 
the key symbol. After you 
have completed this bit of 
research, your keyboard is 

now thoroughly documented 
so that its input codes can be 
interpreted by programs. 
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Wait For Interrupt 
( "Flag" = 0) 

7 
Read Key Input 

Port 

NI 
Convert Key Code 
to Binary and Octal 

Character Strings 

7 
Display or Type 

the Strings 

Acknowledge 
The Key (send pulse) 

r--- 
Fig. 6. Keyboard Test Program Flow Chart. 



A QUICK Test of Keyboards 

This indicator circuit can be used to advantage when 
analyzing keyboards using techniques described in BYTE #1, 
"Deciphering the Mystery Keyboard," page 62. 

by 
Don R. Walters 
3505 Edge wood Dr. 
Ann Arbor MI 48104 

After completing the 
assembly of a keyboard late 
one night, I wanted to check 
the keyboard out for proper 
operation. So I picked up my 
VOM and started looking at 
the voltage levels on the 
output pins of the keyboard, 
since I do not have a CRT 
terminal or any other ASCII 
device available. Well, being a 

software type, I kinda felt a 

little frustrated since I am 
generally used to being able 

to see all the bits of a bit 

pattern at the same time. The 
solution was very simple, 
inexpensive, and quickly 
allowed the bit pattern on the 
keyboard output pins to be 
viewed as a bit pattern. Fig. 1 

shows the system used. The 
LEDs are lit or unlit 
depending on the key pressed 
and held. The pattern 
produced by the LEDs will 
display the bits of the 
character generated by the 
key pressed on the keyboard. 
Keyboards which generate 

Fig. 1. Examining Keyboard Outputs with LED Indicators. A 
TTL- compatible output can drive the typical LED with about 10 
milliamperes in an active low state. 
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47% 

rLED 3308 

)f LED 3308 

"LED 3308 

LED 

'LEO 

3308 

3308 

'LED 3308 

'LED 411 
140 

3308 

ASCII, EBIDIC, or whatever 
could be checked out quickly 
with this system. 

Example 

A keyboard which 
generates ASCII coded 
characters has the "A" key 
pressed and held. The LED 
bit pattern would look like 
this: 

0-LED on, logic level high 
-LED off, logic level low 

0 SUU IMO ASCII character 
code for "A" 

bit 0 123 456 
1 000 001 

It should be pointed out 
that this test method will 
work without modification 
with diode encoded 
keyboards such as Southwest 
Technical Products KBD -2 
keyboard (which is the 
keyboard I assembled and 
tested with the above 
method). However, some 
keyboards may generate an 

inverted code which 
shouldn't be a problem. Some 
keyboards (surplus and 
perhaps, new) with more 
sophisticated debouncing 
techniques may not work 
with this test method without 
some additional components. 
For example, some keyboards 
have a bus -oriented tri -state 
MOS output without 
sufficient drive to light the 
diode lamps; you would need 
a buffer gate in this case, as 

well as an output data strobe. 
Other keyboards require an 

active "read" operation in 
which a pulse is supplied to 
reset flip flops acknowledging 
CPU acceptance of data. 



Keyboard Modification 

George Macomber 
1422 -18th Ave 
Seattle WA 98122 

I read your article in the September 1975 
BYTE on surplus keyboards with interest. I 

have made some simple modifications to 
produce lower case codes on RTL and DTL 
keyboards. I have a Southwest Technical 
Products keyboard which I have modified. 
have also modified a Sanders 720 owned by 
a friend. 

Control Key: On keyboards with RTL or 
DTL outputs (Sanders 720), simply ground- 
ing the most significant bit (MSB) converts 
the upper case letters to the corresponding 
control codes. "M" becomes "carriage 
return" and "J" becomes "line feed," etc. 
Most keyboards have some control codes, 
but this simple modification gives all 32 
possible codes 0000000-0011111. 

As an example, on a Sanders 720, the 
"repeat key" is wired to terminal 8 (yellow 
wire), which is the flag output (see "Deci- 
phering Mystery Keyboards," September 
1975 BYTE). The repeat key simply grounds 
the flag output. Moving the wire to terminal 
15 converts the repeat key to a control key. 

Lower Case: A somewhat more com- 
plicated modification which works on both 

MSB 
IN 
BIT NO.6 

CONTROL 
KEY S° 

SHIFT 
KEY 

IN 

+5 

IK 

I _ 

MSB 
OUT 

BIT NO.6 

1/4 7432 

BIT NO.5 
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the Sanders 720 and the Southwest Tech- 
nical Products keyboards allows the produc- 
tion of lower case letter codes 
1100000-1111111. 

In order to get lower case codes from a 

keyboard which produces only upper case, it 
is necessary to make the fifth bit high. The 
code for "A" 1000001 becomes "a" 
1100001, and "L" 1011011 becomes 
" [ " 1111011. The circuit shown adds 
lower case and control to any RTL or DTL 
output keyboard. 

The control key has already been men- 
tioned and is not required if the keyboard 
already has one (Southwest Technical Pro- 
ducts). Both a shift key and a toggle switch 
are shown. You will probably want both. 
When the toggle or key switch is closed, the 
keyboard behaves as it did before modifica- 
tion. When both are open, the keyboard 
generates lower case, but the numbers and 
other shifted keys (i.e., 1 -+ !) are un- 
affected. A convenient key to use on the 
Sanders is one of the shift keys, leaving the 
other shift key for numbers and some other 
symbols (i.e., [, \ , J, _) 

What happens when both shift keys are 
pressed? Shift' has no effect on the numbers 
since bit no. 6 is 0, which forces the upper 
case or shift' function. But the old shift 
changes the letter codes, either by forcing 
the fourth bit to 0, or by inverting the 
fourth bit (Sanders). Inverting the fourth bit 
allows the generation of some additional 
codes ([, \ , ), _), and their equivalent 
lower case ( [ , } , gz, DEL) and control 
codes. These will not be available if your 
keyboard forces the fourth bit, unless it has 
separate keys for these codes. 



Serialize Those Bits From 

Your Mystery Keyboard 

Dr George L Haller 
1500 Galleon Dr 
Naples FL 33940 

Figure 1: Parallel ASCII to Serial ASCII Converter. The output of an ASCII 
keyboard can be converted from parallel to asynchronous serial format using 
a UA RT and two 555 timers. The result can be used to drive the 20 mA cur- 
rent loop of the Teletype print mechanism. 
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Now that you have deciphered your 
mystery keyboard, (page 62, September 
1975 BYTE) and have determined which 
terminals are for the power supply, data bits, 
and flag pulse, what are you going to do 
with it? Well, one good use is to make it part 
of a Teletype style terminal. The Teletype 
models 33KSR or ASR, which are complete 
with printer and mechanical keyboard, are 

still quite expensive, usually over $1000 
new; but the model 33RO, which consists of 
the printer only, can be bought for less than 
one half of that price. Now, mate the model 
33RO Teletype with your electronic key- 
board and you have the equivalent of the 
33KSR for your computer terminal. The 
ASR is the same with the addition of paper 
tape punch and reader. The computer ter- 
minal is usually specified as a full duplex 
terminal which merely means that while 
both the printer and the keyboard operate 
with serial data, they are not connected 
together except through the computer. The 
following is a description of a small adapter 
which will convert your electronic keyboard 
from a parallel to a serial output device 
which will then be the keyboard half of your 
full duplex terminal. The cost of the parts 
for this adapter, exclusive of power supply, 
is less than $10. 

The main component of this adapter is, 

of course, the UART which has been used 

for several years in communication circuits 
for series to parallel and parallel to series 

conversion. An excellent explanation of the 
UART was given in the very first issue of 
BYTE. (Don Lancaster's "Serial Interface," 
page 22, September 1975 BYTE.) In order 
to use the UART, we write in 8 bits of 
parallel data whenever a key is struck. The 
key pressed pulse sent to the UART must be 

negative going and have the correct width to 
drive the UART strobe. A clock frequency 



of 1760 Hz must be applied in order to get a 

110 baud data rate out of the UART. The 
output will produce a high level mark and a 

low level space. Note that we are only using 
one half of the UART. The adapter shown 
here was made for the Sanders keyboard, 
but it should be applicable to any keyboard 
if considerations are made to insure that the 
start pulse sent to the UART is negative 
going, and data is in true form (logical 1 is a 

high level). Looking at figure 1, we find that 
the power is applied to UART pins 1, 2, and 
3. The power requirement is about 200 mA 
at 5 volts (pin 1) and 10 mA at -12 volts 
(pin 2). The data bits are wired directly from 
the keyboard to the UART as shown. 
Terminal 6, the acknowledge function to the 
keyboard, is grounded. Terminal 8 of the 
keyboard is the key pressed flag. In the 
Sanders keyboard, this flag is a negative 
going pulse which is too short to operate the 
UART directly. This pulse is first stretched 
in a 555 timer circuit (IC2). This particular 
stretcher requires a negative input. After 
stretching, it is reinverted in a section of the 
7406 and applied to the UART. The clock 
circuit is also a 555 (IC1). The output 
frequency at pin 3 of IC1 should be adjusted 
to 1760 Hz. This can be determined by using 
a frequency counter or by adjusting the 
potentiometer until good copy is obtained 
while the keyboard and adapter are con- 

nected directly to the 33RD. The frequency 
should be held to an accuracy of about 1 %, 
but this is no problem with a good poly- 
styrene condenser shown as 0.01 µF. Most 
of the other terminals on the transmission 
side of the UART should be a high level 
input, which means that they can be left 
unconnected, since they have internal pull 
ups. The exception is terminal 21 which is 

grounded. The serial output is connected 
through the inverter with an external pull up 
resistor which provides the loop with a mark 
current of 20 mA and a space current of 
zero. 

Another slight modification of the 
Sanders keyboard will make it more useful. 
As received, the keyboard has no "line feed" 
key. It is a simple matter to convert the TAB 
key to an LF key. We must change the code 
for this key from an 013 to an 012 octal, 
which means we must change the zero bit 
from a 1 to a O. Find the terminal at about 
the center of the rear of the diode matrix 
labeled "VT ". A yellow wire connects this 
terminal to the TAB key. On top of the 
matrix board this terminal is connected to a 

single diode. Either end of this diode should 
be disconnected. This is the zero bit diode. 
There are two other diodes still connected 
under the board which will leave the code 
012 octal. 
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Build a Television Display 

C W Gantt Jr 
6 Fieldpoint Rd 
Aurora IL 60538 

As a small system expands and becomes 
more sophisticated, the limiting factor is 

often the speed of input and output (IO). In 
addition to being noisy, mechanical, and 
paper consuming, the slow clacking of a 

TTY may account for a large percentage of 
system time. Among the alternatives, the 
display of characters on a standard TV set is 

among the simplest and most economical 
methods. 

This TV display (TVD) is designed to 
take data from 512 bytes of memory and 
convert it into a video signal with 16 lines of 
32 characters. This can be used to feed a 

black and white or color TV. The data in the 
TVD memory is in a six bit ASCII subset 
and is updated by the CPU to create the 
desired display. The processor addresses the 
TVD memory just as it does any other 
portion of memory and can actually execute 
instructions from the TVD memory if so 

programmed. Of course, some provisions 

FIRST LINE, SECOND FRAME 

FIRST LINE, 
FIRST FRAME--" 

HORIZONTAL - 
RETRACE 

VERTICAL 
RE TRACE 

VERTICAL 
SYNC 
STARTS SIMPLIFIED INTERLACED RASTER SCAN 

ORIZON TAL 
SYNC 
STARTS 

HORIZONTAL 
SYNC 
STARTS 

Figure 1: This shows how the electron beam is moved during an interlaced 
scan in a television monitor. The dashed lines are quick retrace motions which 
are normally invisible. The solid lines are periods during which the display 
presents video information controlling brightness on the tube face. 
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must be made to prevent the CPU and TVD 
from simultaneously accessing the TVD 
memory (more about this below). 

As designed, the TVD is strictly a display 
device with the central processor of your 
system doing all housekeeping (entering 
characters, etc). This approach simplifies the 
hardware at the expense of extra software, 
but also allows the user to take advantage of 
the flexibility offered by software data 
manipulation and formatting. 

At present one TVD is up and running in 
my system, but the memory and central 
processor interfaces are incomplete. The 
remainder of this article therefore empha- 
sizes the TVD design and only offers some 
basic ideas on interfacing to processors. 
Although simple items such as the power 
supply and oscillators have been omitted, 
the information furnished should be suffi- 
cient for the more experienced readers to 
assemble a working version. The straight 
forward TVD design allows easy modifica- 
tion to meet individual system requirements. 

Television Raster Scanning 

Before going too deeply into operation of 
the TVD, a review of the basic television 
scanning system will clarify some terms with 
which pure digital designers may not be 
familiar. 

A television picture is formed by scanning 
an electron beam across the face of the 
picture tube. A TV line is one sweep of the 
electron beam from the left of the picture 
tube to the right (as viewed from the front 
of the set) and is initiated by the horizontal 
sync (see figure 1). The horizontal sync 
pulse causes termination of a line, horizontal 
retrace of the electron beam back to the left 
side of the screen, and the start of a new 
line. During the time of retrace the beam is 

blanked so that the retrace will not be seen. 
The time allotted for each complete line 
(including retrace) is 63.5 microseconds. Of 
this about 16% is taken by retrace, leaving 
53.5 As of usable line. Video information in 
the form of a voltage fed to the picture tube 
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controls the brightness of the beam as it is 

swept across the screen. 
To trace out a frame, the electron beam is 

slowly deflected from the top of the screen 
to the bottom as it rapidly sweeps horizontal 
lines. This vertical sweep is allotted 16.67 
milliseconds (60 Hz) so there are 2621/2 lines 
in one frame. In a manner similar to the 
horizontal sync, the vertical sync causes the 
beam to be returned to the top of the screen 
to start a new frame. The beam is blanked 
during vertical retrace which takes about 
1250µs. This leaves 242 usable lines in each 
frame. 

A complete picture is formed by two 
consecutive frames that are interlaced with 
each other. Interlacing means that the hori- 
zontal lines of one frame fit in between the 
horizontal lines of the other frame. The 
result is 30 complete pictures every second 
of about 484 usable (525 total) lines each. 
Because of the interlacing, however, the 
screen is illuminated at a 60 Hz rate. This 
eliminates an objectionable "flicker" that 
would be seen if the screen were only 
scanned at a 30 Hz rate. 

The TV signal received at the antenna 
terminals contains the information needed 
to generate the vertical and horizontal sync, 
blanking, and video. The TVD simulates a 

TV signal by supplying a composite wave 
form containing the same information nor- 
mally present except sound. The full 

schematic of this TVD design (except 
memory) is shown in figure 2. 

Character Generation 

The scanning nature of the TV raster 
requires that the video (or brightness) infor- 
mation be sent in serial form to control the 
electron beam as it sweeps lines across the 
screen. Suppose, for example, that the 
character "H" is to be displayed as shown in 
figure 3. The first line can be represented as 

10001, ones signifying light spots (dots) and 
zeros signifying dark spots. The remaining 
six lines can similarly be represented as a 

series of dots and dark spaces. When the 
seven lines are displayed one above the 
other, the character "H" is seen. 

The tedious job of deciding where to put 
the dots (ones versus zeros) to generate a 

given character is done by the 2513 read 
only memory, IC14. It has been mask 
programmed at the factory with the bit 
patterns required for 64 separate five by 
seven dot matrix characters. The 2513 sup- 
plies five bits of parallel output data repre- 
senting one line of a given character. It 
requires the six bit ASCII subset code of the 
character and the three bit line number as 

inputs. The five bit parallel output of the 
2513 is converted to serial data by the 
74165 shift register, IC15. To produce one 
line of video, five bits are required for each 
character in the line, plus spacing bits. Note 
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Photo 1: This is a test 
display pattern generated 
by connecting the low 
order outputs of the char- 
acter and line counters to 
the character generator 
ROM's 6 input bits. The 
result presents every com- 
bination of the character 
set, so every character pat- 
tern is visible on the 
screen. 



Figure 2: Schematic Diagram of the TV Display. This diagram includes details of the time base generation circuitry and control 

logic for television display generation. It omits detailed wiring of the memory circuits shown conceptually in figure 4. 
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that the TVD generates two identical inter- 
laced frames to make a complete picture. 
The result is that each character is actually 
14 lines high. 

Sync Generator 

The MM5320 sync generator chip, IC13, 
uses a single 2.0 MHz input to produce all 
the sync and blanking signals needed for a 

525 line interlaced raster. The same logic 
could be wired using TTL but would require 
considerably more hardware and probably 
cost just as much. (The 5320 runs $4.95 ppd 
from NEXUS Trading Co, Box 3357, San 
Leandro CA 94578.) The only disadvantage 
found thus far with the 5320 is that it 
prefers a square wave 2 MHz source. To this 
end the 100 nanoseconds pulse from the 
7490 "D" output is squared using two 7400 
sections of IC10 as a oneshot. 

Line Generation 

Horizontal drive (coincident with hori- 
zontal sync) from the 5320 triggers a 74121 
oneshot, IC1, to delay the start of each line 
and establish the left hand margin on the 
screen. The output of the oneshot serves 

three purposes: 

1. Triggers the 74192 row counter, IC2. 
2. Resets the 74193 character counters, 

IC11 and IC12. 
3. Inhibits the dot counter, IC9, until the 

start of the line. 

When the line oneshot output pulse ends, 
the dot counter starts counting at 5 MHz. It 
resets itself every seventh count to allow for 
the five dots of the character plus a two dot 
space between characters. When the dot 
counter resets, it also loads the next charac- 
ter into the 74165 shift register, IC15. (The 
very first character of each line is all zeros 
since the 74165 is not loaded until the dot 
counter resets the first time.) The 74165 
shifts out the tvo dot space and the five dot 
character at a 5 MHz rate. As each character 
is loaded, the 74193 character counter incre- 
ments by one to change the address for the 
RAM to the next character. When the 32nd 
load pulse occurs, the 5 MHz input to the 
dot counter is inhibited using the "B" 
output of the second 74193 character 
counter. The 74165 continues to shift out 
the 32nd (last) character and then shifts out 
a steady zero. When the character counters 
are reset at the start of the next line, the 
process repeats itself. 

Line Counter 

The 74192, IC2, counts each video line dis- 
played. It counts to 10 for the seven lines of 
character information plus a three line space. 

LINE I 

(ROW) 

2 

3 

4 

5 

6 

7 

BIT (DOT) 
5 4 3 2 

5 DOT WIDE BY 7 DOT 
HIGH CHARACTER 

10001 

10001 

10001 

11111 

10001 

10001 

Figure 3: An example of a 
10001 dot matrix 

erated by 
display. 

pattern gen- 
the television 

The "A ", "B ", and "C" outputs control the 
row inputs to the 2513 character generator 
chip. The first video line is all zeros since the 
row input to the 2513 is zero. Lines 9 and 
10 are blanked using output "D" of the 
74192, resulting in a total of three lines 
blanked. At the end of each complete line of 
characters, the 74193 line counter, IC3, 
increments by one until, at the end of the 
16th line, a carry pulse is produced. This 
carry pulse resets the 7490, IC5, and signi- 
fies the end of a page. Output "A" of the 
7490 is used to inhibit the 7492 dot counter 
and prevent the first line from being 
repeated at the bottom of the page. 

Page Control 

The 7490, IC5, stays reset until the top 
of the next page. Output "A" can be used to 
tell the memory control circuits that the 
TVD is not using the memory so that any 
required updates may be made by the CPU. 
Output "A" also inhibits the "B Clock" 
input via the 7410. The "D" output inhibits 
the line oneshot. 

When a vertical drive pulse (coincident 
with vertical sync) triggers the 74121 page 
oneshot, IC6, the TV set syncs to the top of 
the next frame. The page oneshot delays the 
start of the first line to establish the top 
margin. At the end of the oneshot's output, 
IC5, bit "A" is clocked to a one. This tells 
the memory control that the TVD needs to 
resume control of the memory address and 
also enables the IC5 "B Clock" input via the 
7410, IC7. The "B" section of the IC5 then 
proceeds to count color burst gate pulses to 
give the memory time to complete any 
access already in progress. The color burst 
gate was used only because it was convenient 
and occurs at the same rate as the horizontal 
drive - the horizontal drive could be used at 
the expense of a buffer since the 5320 can 
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READY 

CONTROL 
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Figure 4: System Diagram. This figure details how the TV display fits into a 

central processor's memory address space. The low order 9 lines of address go 
directly to the line and character counters of the TVD; the memory array is 
addressed by the outputs of the counters, which are connected logically to 
the address bus when the load line demands central processor access. The high 
order bits of the processor's address are decoded separately and are used to 
enable processor access if the TV display portion of address space is 
referenced. 

only drive one TTL load per output. When 
output "C" of the IC5 goes high, the line 
counters are reset. When output "D" goes 
high the "B clock" is inhibited via IC7b, and 
the line oneshot is enabled. This allows the 
first line to start. 

Composite Video Generation 

The video and sync are independently 
adjusted and then added to produce com- 
posite video. This can be piped directly into 
a set (be sure not to touch a hot chassis!) or 
used to modulate a low power RF source. A 
signal generator works fine for tests. (See 

"Television Interface" by Don Lancaster, 
page 20, October 1975 BYTE, for a 

thorough discussion of the various tricks to 
improve the interface.) 

Memory Interface 

Figure 4 illustrates how the TVD fits into 
a larger system. It is intended that the 
address outputs of the 74193 character and 
line counters (IC3 and IC1 l) be hard wired 
to the address lines of a 512 or 1 K by 6 
static random access memory using 2102s or 
similar parts. The data outputs of low order 
6 bits of this memory are the ASCII charac- 
ter select inputs to the 2513 character 
generator, IC14, and can be gated back to 
your system's data bus if you want the CPU 
to be able to read from the RAM. (Of 
course, a 512 by 8 memory would be needed 
if the CPU is to be able to use the RAM for 
other tasks.) The data inputs of the RAM tie 
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to the data bus to allow the CPU to write 
into the RAM. 

To avoid breaking up the picture on the 
display during access, the memory control 
logic must use the "A" output of IC5 to tell 
when the CPU can use the RAM and when it 
must signal a busy to the CPU at the start of 
a page. There is more than ample time 
between the "A" output and the line 
counter reset to finish any access in progress. 
To use this feature, the memory busy line 
must be wired to your processor's "memory 
ready" line (possibly through an inverter if 
the logic of your particular computer re- 
quires it). This method will work well for 
any processor, like the 8008 or 8080, which 
allows unlimited "memory busy" delays. 
However, for dynamic processors such as the 
6800, the maximum processor delay time of 
about 5 As dictates use of an alternative 
approach. One simple approach is to ignore 
the effect of memory access on the display. 
The result will be a short glitch in the 
display corresponding to each computer 
access. The nature of the glitch will be a 

resetting of the line and character counters 
to a new location, causing a scrambling of 
the display for the remainder of the current 
frame. A second approach is to wire the 
memory ready line into a single bit input 
port which can be tested as a status flag: If 
the line indicates a retrace, then the memory 
access software for the display will allow an 

update to occur. 
The CPU addresses the RAM through the 

character and line counters (IC3 and IC11) 
by tying their data inputs to the system 
address bus and using the load control of pin 
11. The 74193s can also be used as tem- 
porary storage for the address in a system 
with a common address and data bus. Note 
that the TVD does not interfere with CPU 
access to the remainder of the system's 
memory at any time and only delays the 
CPU by one of the techniques discussed 
above if it tries to access the TVD RAM 
while a page is being displayed. The CPU has 
the entire vertical retrace to make updates at 
once every 16.67 milliseconds. 

Lacking a memory for my initial testing, 
the 2513 data inputs were temporarily tied 
to the 74193 address outputs (2513 PIN 17 
to character counter PIN 3, etc) to display 
the complete 2513 repertoire every two lines 
as in photo 1. The 74193 load lines must 
also be connected to a "one." 

Modifications and Adjustments 

1. There is one known bug so far and no 
doubt more will show up when the TVD is 

integrated into a system. The 7490 can, on 
power up, hang in state with both the "C" 



and "D" outputs a one. This state con- 
tinuously resets the 74192 row counter and 
is nonrecoverable. A cure would be to 
power -on -reset the 7490 "R9" which does 
produce a recoverable state. 

2. As mentioned before, the 5320 likes a 

square wave input, so check the 7400 
imitation of IC10a and b oneshot, or better 
yet use a 74121. 

3. Using a separate oscillator for charac- 
ter generation (5 MHz) would allow adjust- 
able character width, but watch out for any 
interaction with the 2 MHz - it shows up as 

a torn, garbled display, as will most sync or 
jitter problems. A crystal is best. (It is 

possible to use 12 MHz and a 7492 in place 
of IC8 to get 6 MHz for the characters and 

2 MHz for the 5320.) 
4. The prototype is wire wrapped on a 

41/2 by 6 inch (11.43 by 15.24 cm) vector 
board (see photo 2) with room to spare, 

although a slightly larger board would 
accommodate more interface goofs. Fulp's 
corollary says things like this always get 
bigger. Also, the 44 pin connector planned 
for the prototype is not large enough count- 
ing the additional RAM address and data 
lines. 

5. The modulation levels for the radio 
frequency modulator are fairly critical and 
misadjustment of sync or video levels will 
cause a torn display. Try setting video level 
control for 1/2 of maximum and sync for 
3/4 of maximum. 

6. Harmonics from the 10 MHz tend to 
leak into the TV so pick a higher channel (5 

or 6) if herringbone is noticeable on your 
display. 

7. There are many causes for ghosting 
and smeared characters including VSWR 
(voltage standing wave ratio) on the cable to 
the TV, misadjusted fine tuning, or a narrow 
band width TV. 

8. Character and line spacing can be 
altered by modifying the dot and row 
counters, respectively, to reset at different 
counts. Be careful though, or the display will 
not fit on the screen. 

9. The unused bits C and D of the second 
74193 character counter, IC12, may be used 
for the 512 and 1024 bits if a two or four 
page RAM is desired. Some method of 
controlling these bits during display time is 

needed to select the page. 

10. A light pen could strobe the present 
RAM address into a latch to be read by the 
CPU via the data bus. 

11. The 5320 provides color sync gating 
so how about color characters? The extra 2 
bits available .with an 8 bit wide RAM can 
provide software control of many goodies 
(like brightness, color, blinking, underlining, 
black on white, etc). 

The TVD as described can be used to 
display one or more pages of ASCII charac- 
ters and opens up many possibilities of 
modernizing the IO portion of a small 
system. My home brew computer will be a 

complete microcomputer chip based system, 
designed with the TVD as the main man 
machine interface. 
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Photo 2: Prototype Cir- 
cuit. The large socket is 
for the character genera- 
tor. Test points are the 6 
small rectangular objects 
along the left hand side of 
the board. A 7812 regula- 
tor in a plastic package is 
to the right of the charac- 
ter generator, and is used 
to provide the -12 V bias 
for the ROM. A zener 
diode with a dropping re- 
sistor is used to create the 
-5 V bias required for the 
ROM. 
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I had not yet heard of BYTE magazine, 
or hams building such hardware, when I 

built my CRT terminal (a computerhead's 
term for "TV typewriter ") in the fall of 
1975. I didn't even own a TV set! Two 
situations resulted: I had to buy a new all 
solid state TV, and I didn't have any idea 
how to interface with it. I knew approxi- 
mately what it took to create horizontal and 
vertical sync, but had no idea whether levels, 
pulse widths, and frequencies would be 

noncritical. I was delighted, therefore, when 
my sync generator worked just fine the first 
time I patched its output across the video 
driver base resistor using the circuit as shown 
in figure 1. My big fat TTL level pulses 
swamp the AGC circuity so effectively that 
normal signals and noise from the TV IF just 
disappeared and I had nothing to switch off! 

Not having any idea how to mix in my 
video (character generator output) with the 
sync, I just hooked up a 2 K pot where the 
620 ohm is shown, and started reducing 
video until it stopped interfering with the 
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Figure 1: The "Ignorance 
Is Bliss" Television Drive 
Circuit. The components 
to the left of the dashed 
line were added as part of 
the interface. The corn - 
ponents to the right of the 
dashed line are part of the 
Zenith 12FB12X chassis 
which was used for the 
television display. 

sync, and there I was at 620 ohms. All was 
fine, until I erased my character memory 
and started typing in one character at a time. 
Contrast went all to pot! I had provided no 
DC restoration. And I never did. At least not 
in the TV set circuitry. 

My terminal design produces 24 lines of 
64 characters each, with a total of 270 scan 

lines per frame. Vertical sync is the 10 scan 
lines that would have been character line 26. 
To eliminate the need for the type of DC 
restoration as detailed in "Television Inter- 
face" (page 20, BYTE, October 1975), I 

generated a black level blanking signal cover- 
ing what would have been character lines 25 
thru 27. This signal enters the blanking gate, 
IC1, at pin 2 in figure 1. Now, when I turn 
on my system and erase the memory, my TV 
field shows a nice white area with a black 
border top and bottom. My character gen- 
erator output produces black on white 
characters which I find preferable to the 
usual white on black. 

Simply by turning off the logic power 
can be instantly flooded with the inanities 
emanating from the vast TV wasteland. With 
this design, I have no need to pull plugs or 
throw switches. Sometimes ignorance can be 

bliss. 



Build a TV Readout Device 

for Your Microprocessor 

Dr Robert Suding 
Research Director, The Digital Group Inc 
PO Box 6528 
Denver CO 80206 

A television set readout for your micro- 
processor has many attractive advantages. 
The TV readout is vastly faster, quieter, and 
even lighter, than the usual Teletype based 
design. Since it is an electronic rather than 
mechanical device, less service and main- 
tenance are required. Much more data may 
be contained on a television screen than on 
front panel readouts. 

The precise design of the television 
driving circuitry (interface) can take on a 

considerable number of forms. Some con- 
siderations are: 

Number of horizontal characters. 
Number of vertical characters. 
Upper case only, or upper and lower 
case text. 
Character generation format: 

row or column scan. 
5 x 7 dot matrix, 7 x 9 dot matrix 
or? 

Alphanumeric only, or alphanumeric 
and graphic formats? 
Converted home TV set or commercial 
TV monitor? 
Separate TV buffer memory or TV 
buffer shared with main memory? 
Shift registers for memory, or pro- 
grammable RAM? 
Multiple video pages or single display? 
Interlaced scan or non interlaced? 
Hardware or software cursor, or no 
cursor? 

Rather extensive list, isn't it? Understand- 
ably, a large number of designs have ap- 
peared recently, and many more will be 

seen. Every design has some advantages, 
some disadvantages. 

The 5 k 7 dot television display circuit in 
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the June 1976 BYTE [page 16] is an 
example of a number of the above design 
alternatives. The 5 x 7 dot 2513 is a rugged, 
low cost character generator. The MM5320 
is a fairly easy way to generate an interlaced 
signal. Programmable random access mem- 
ory provides a random and faster screen 
update capability compared to the shift 
register "TV typewriters" of a few years ago. 

Major Features 

The television display design shown in 
this article has several major departures from 
previously published designs. The June 1976 
BYTE article on "A Systems Approach to a 

Personal Microprocessor" [page 32] stresses 
the need to keep various system elements 
independent in order to avoid unnecessary 
obsolescence. By using a simple parallel 
interface and making refresh memory part of 
the design, this television display achieves 
independence from a particular computer 
and bus design. This same display is also 
useful in such items as terminals, TV type- 
writers, and large computers. 

A Motorola MCM6571 L character gen- 
erator is used as the heart of the Digital 
Group as well as several other video display 
systems. This character generator provides a 

7 x 9 dot matrix character with automatic 
character shift for lower case characters such 
as g,j,y, etc, which extend below the base 

line, making an effective 7 x 13 dot matrix. 
Thirty -two characters per line by 16 lines 

give a total of 512 characters on the screen. 
Endless arguments can result when screen 
formats arise. The 32 x 16 format was 
chosen to achieve the clearest and simplest 
(hence lowest cost) system. The more char- 
acters per line, the more television band- 
width is required. This system requires a TV 
monitor with better than 6 MHz bandwidth. 
A system with 64 characters per line would 
require a 12 MHz monitor, etc. Since the 
system was designed to minimize costs, a 
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Figure 1: Memory and write address counter logic for the TV readout design. 
The inputs to this circuit are at the left, labelled DO to D7 corresponding to 
the data lines of a typical latched output data port. The connections to fig- 
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+5 POWER SUPPLY PINS 

Number Type +5V GND 

Cl 2102 10 9 
C2 2102 10 9 
C3 2102 10 9 
C4 2102 10 9 
C5 2102 10 9 
C6 2102 10 9 
C7 2102 10 9 
C8 74157 16 8 
C9 74193 16 8 
C10 74193 16 8 
C11 7404 14 7 
C12 74193 16 8 
C13 7400 14 7 
C14 7400 14 7 
C15 74157 16 8 
C16 74193 16 8 
C17 74193 16 8 
C18 7410 14 7 
C19 7404 14 7 
C20 7420 14 7 
C21 74193 16 8 
C22 7430 14 7 
C23 74123 16 8 
C24 74193 16 8 
C25 7430 14 7 
C26 7401 14 7 
C27 74L00 14 7 
C28 74157 16 8 
C29 74193 16 8 
C30 MCM6571L 2 13 
C31 74165 16 8 
C32 74193 16 8 



Figure 2: Character generation, composite video output and video timing 
chain logic for the TV readout design. The output of the TV readout is the 
composite video signal which drives a monitor or modified standard television 
set through a coaxial cable. The character generation logic consists of a read 
only memory, 1C30, to translate character patterns into horizontal rows of 
dots, and the shift register, 1C37, which sequences the bit by bit output of 
the row of dots. The video timing chain is a series of counters driven by the 
5.990 MHz crystal, which cycles through the memory section of figure 1 and 
controls operation of the display. 
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A Note About Construction 

The circuit shown in figures 1 and 2 is 
complete, and can be constructed in any well 
equipped home hardware laboratory using point to 
point soldering, home brew printed circuits, Vector 
wiring pencils, or wire wrap as an interconnection 
technique. 

For those who wish to take advantage of 
construction using a circuit board and a complete 
set of electronic parts, Dr Suding's TV readout and 
the cassette interface described in his article on 
page 46 of July BYTE are available in a combined 
kit form for $130, postpaid in the USA. Contact 
the Digital Group Inc, PO Box 6528, Denver CO 
80206, for information on this product. 

For home brewers, the only part which might 
be difficult to find in surplus markets is the 
Motorola MCM6517L character generator chip. 
This package is available over the counter at many 
major electronics trade distributors. If you are 
unable to locate the MCM6517L from such a 
source, the part can be purchased for $20 postpaid 
in the USA from the Digital Group. 
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home black and white television set can be 

easily modified [page 20, October 1975 
BYTE] and will satisfactorily meet the 
6 MHz requirement. Sixteen rows of char- 
acters allow use of a non -interlaced sync 
system for lower cost. My own preferred TV 
display formats are either a 32 x 16 char- 
acter system or the 80 x 24 character for- 
mat. However, the 80 horizontal characters 
will require an expensive monitor to achieve 
the 15 MHz TV bandwidth and critical 
corner focus requirements. 

The character memory can be of several 

formats, but this system uses a self con- 
tained programmable memory buffer which 
is loaded sequentially from the driving 8 bit 
output port of the microprocessor, or an 

ASCII keyboard. Some systems permit data 
readback from the TV readout system, but a 

greater cost is involved, and a mirror image 

buffer in the computer's programmable 
memory will produce the same result. Use of 
programmable random access memory in the 
TV readout permits very fast loadings, as 

fast as the system can output data. The 
typical update time for a total of 512 
characters is under 5 ms. How far under 
5 ms depends on the driving software and 

microprocessor used. 
Cursors and cursor control may be per- 

formed in hardware or software. The ap- 

proach of this system is to use software for 
the most part, which results in lower cost 
hardware. Cursor inserting subroutines are 

then used as needed. 
So much for system design alternatives. 

TV Readout Description 

This TV readout consists of five inter- 
acting sections. They are memory, character 
generation, composite video output, video 
timing chain, and write address counter. The 
memory section (figure 1) consists of seven 

2102A -2 or faster 1 K memories. Only one 
half of each memory is used, giving a 

possible storage of 512 seven bit ASCII 
characters. The microprocessor, keyboard, 
or some attached circuit writes the char- 
acters one by one into the 2102s, and then 
the TV readout continuously displays these 
characters until either more characters are 
entered, or the circuit is turned off. 

The character generation circuit (see 

figure 2) consists of two integrated circuits, 
the MCM6571L character generator, IC30, 

and the 74165 shift register used to convert 
from parallel to serial. The 6571 takes the 
seven bit ASCII character coming from the 
memories and outputs 7 dots making up a 

character row for each of 13 potential rows 
making up each character. The 74165 loads 

TV ZTEP IEM:.'tbTWtTICt4 
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all 7 dots into its internal memory, and then 
outputs these dots one at a time for serial 

transmission to a TV set. For more informa- 
tion on TV character generators, I would 
suggest reading an excellent article by Don 
Lancaster in June 1974 Radio Electronics 
[pages 48 -52], or the June 1976 BYTE 
magazine article by C W Gantt [page 16] . 

The video output section uses a 7401 

open collector NAND gate and a driver 
transistor to produce a low impedance com- 
posite video signal. The output is around 3 V 
peak to peak with about a 1 /2 V horizontal 
and vertical sync and blanking pedestal. 

The read clock (see figure 2) is the source 
of master control for the various sections. 
Starting from an initial frequency of 
5.990 MHz, a countdown chain of three 
74193s (ICs 32, 17, and 21) produce an 8µs 
horizontal sync when gated by IC11 a, 

IC20a, IC18b, IC13c and IC13d. A 41 µs 
horizontal blanking circuit prevents loss of 
characters at the edges of the screen, and is 

produced by the gating action of IC14, 
IC11c, ICllf and IC13a. The resultant hori- 
zontal frequency is 15,598 Hz, somewhat 
lower than the standard 15,750 Hz, but 
usually only requires trimming horizontal 
hold slightly, if at all. 

The vertical countdown chain uses three 
more 74193s (ICs 24, 10 and 12) to obtain a 

final vertical frequency of 60 Hz, the same 
frequency as the AC line to avoid hum roll 
and wobble problems on low cost televi- 
sions. IC19b, IC19c, IC19d and IC25 pro- 
duce an 82012s vertical sync pulse, IC18a 
and IC19e detect state 20 of IC10 and IC12, 
counting lines 0 to 19 and giving four line 
periods for vertical retrace. The inverter 
IC19f produces a 3.5 ms vertical blanking 
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Photo 1: A test demon- 
stration of Dr Suding's TV 
readout, shown in schema- 
tic form as figures 1 and 2. 

The test pattern consists 
of the four lines in the 
center which cycle 
through the possible bi- 
nary combinations of 
characters. The differences 
in line width between the 
top line and the other lines 
are caused by non- linear- 
ities in the monitor used 
for this photograph. 



pulse during states 16 to 19 of the counter 
IC10 and IC12. 

As if these operations weren't enough, 
part of the video timing chain, counter IC24, 
tells which of the 13 lines in a character is 

being currently accessed. The counter IC32 
keeps track of shifting and loads the 74165 
when the row of 7 dots is available from the 
6571. The 5.990 MHz signal then shifts out 
8 dot periods (the 8th one is a horizontal 
space between characters) before the next 
dot load command occurs. All of these 

timings are very critical during the design 
phase; but since the circuit is digital, the 
builder should have no problems, since no 
adjustments are needed. The video timing 
chain counters develop a 9 bit address that 
controls which of 512 characters is currently 
being presented to the 6571 for dot en- 
coding. This is routed to memory through 
74157 multiplexors IC15, IC28 and IC8 
except during write clock time. 

I thought you'd never ask about the write 
clock. Well, it controls the entry of the 

Figure 3: 

Check Out Notes 

The TV readout should be assembled according 
to your preferences (see "A Note About Construc- 
tion") using sockets for all integrated circuits. 
These notes suggest a procedure for orderly testing 
of the new TV readout. 

1. Power supply. Start checkout after all wiring 
has been completed, but before any integrated 
circuits have been inserted into sockets. Measure 
the resistance between ground and the other 
voltage supply pins. A very low resistance indicates 
a bad bypass capacitor, a solder bridge, or some 
other form of short circuit between the supply 
voltage and ground. 

2. TTL integrated circuits. Insert all the in- 
tegrated circuits of the TV readout except the 
memories (2102s, IC1 to IC7) and the character 
generator (MCM6517, 1C30). Measure the resis- 
tance between the ground and the +5 V supply pin, 
noting its value; reverse the ohmmeter leads and 
remeasure. A shorted reading in either direction 
indicates a bad integrated circuit, and nearly equal 
readings in both directions indicates that at least 
one integrated circuit has been plugged in in 
reverse. 

3. Initial power up. Temporarily ground the most 
significant bit input pin (D7 in figure 1), and 
connect the video output to a commercial TV 
monitor, or a TV set which has been modified to 
act as a monitor. Turn on the +5 V power. You 
should see 32 white vertical columns on the screen. 
(Refer to the "Diagnosis of Ailing Readouts ", 
section 2, if this does not happen.) Turn off +5 V 
power. 

Connect up the +12 V and -12 V power sup- 
plies, then turn on all power again. Verify the 
proper voltages on the MCM6517L socket, 1C30: 
Pin 1 should have -5 V, pin 2 should have +5 V and 
pin 3 should have +12 V. Turn off power again. 

4. Now plug in the MOS parts: The seven 2102 
memory integrated circuits and the MCM6517 
character generator read only memory. (The tem- 
porary ground jumper for the D7 input, and the 
video monitor output are still attached.) This time, 
when power is turned on, you should see a random 
display of 512 characters on the screen. The actual 
character at each location is determined by the 
chance power on initialization of each bit location, 
and cannot be predicted in advance. 

5. Testing: Complete testing is now possible 
under computer control or by using a breadboard 
input device. If you use microprocessor control, 

22011 

100µF 

7413 SCHMITT TRIGGER 
PIN 7 -GND 
PIN 14 -+SV 

TO D7 STROBE 
INPUT 

A test setup for manual verification of the 
display. The Schmitt trigger integrated cir- 
cuit, a 7413 NAND function, has an RC 
feedback network to cause oscillations. This 
logic oscillator is used to drive the strobe 
input continuously, so that memory will be 
filled with a constant character pattern if 
that pattern's ASCII code is presented on 
input pins DO to 06. 

simply wire the inputs to the TV readout to an 

8 bit output port, load the software of listing 1 (if 
you have an 8080 or Z-80; write equivalent 
programs for other processors if necessary), and 
write some simple programs to generate known 
data and load that data into the display. 

If it is desired to test the TV display without a 

microprocessor, the oscillator of figure 3 can be 
used to drive the input strobe pin, D7. Then 
temporarily tie all the other data pins to the +5 V 
supply through a 1 k resistor. Verification of the 
operation of the display can be obtained by 
grounding bits DO through D6 of the input (the 1 k 
pullup resistors protect the power supply). The 
following table gives the characters which should 
f ill the screen for each case: 

Pinto Octal 
Ground Character Code 

DO ' 376 
D1 } 375 
D2 { 373 
D3 vl 367 
D4 o 357 
D5 337 (underscore) 
D6 T 277 
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characters from your external source into 
the 2102 memory bank. Several alternatives 
in character entry are possible, yet give the 
user a very capable unit, particularly when 
using a microprocessor, or even mini, midi, 
or maxi processors. 

A sequential entry system is utilized. A 
home reset control signal (denoted " ") is de- 

veloped by IC22 when it detects all of the 8 

input lines high ( "1 "). The write address 
counter of IC16, IC29 and IC9 is then preset 
so that the next character to be entered will 
result in its being displayed as the top 
leftmost character on the screen. The second 

character will be viewed to the right of the 
first, ... until on the 33rd character a new 

Table 1: Character graphics, octal codes and binary codes for the TV readout. 

Char Octal Binary` Char Octal Binary` 

a 200 10 000 000 @ 300 11 000 000 
A 201 10 000 001 A 301 11 000 001 
y 202 10 000 010 B 302 11 000 010 
6 203 10 000 011 C 303 11 000 011 
e 204 10 000 100 D 304 11 000 100 
t 205 10 000 101 E 305 11 000 101 
n 206 10 000 110 F 306 11 000 110 
o 207 10 000 111 G 307 11 000 111 
L 210 10 001 000 H 310 11 001 000 
K 211 10 001 001 I 311 11 001 001 
X 212 10 001 010 J 312 11 001 010 
µ 213 10 001 011 K 313 11 001 01 1 

v 214 10 001 100 L 314 11 001 100 
t 215 10 001 101 M 315 11 001 101 
o 216 10 001 110 N 316 11 001 110 
rr 217 10 001 111 0 317 11 001 111 
p 220 10 010 000 P 320 11 010 000 
a 221 10 010 001 Q 321 11 010 001 
1 222 10 010 010 R 322 11 010 010 
u 223 10 010 011 S 323 11 010 011 
0 224 10 010 100 T 324 11 010 100 
X 225 10 010 101 U 325 11 010 101 
4/ 226 10 010 110 V 326 11 010 110 
w 227 10 010 111 W 327 11 010 111 
1-2 230 10 011 000 X 330 11 011 000 f 231 10 011 001 Y 331 11 011 001 

232 10 011 010 Z 332 11 011 010 
4-- 233 10 011 011 1 333 11 011 011 
1 234 10 011 100 \ 334 11 011 100 
- 235 10 011 101 1 335 11 011 101 
E 236 10 011 110 r--+ 336 11 011 110 
= 237 10 011 111 - 337 11 011 111 

blank 240 10 100 000 340 11 100 000 
I 241 10 100 001 a 341 11 100 001 
" 242 10 100 010 b 342 11 100 010 
# 243 10 100 011 c 343 11 100 011 
$ 244 10 100 100 d 344 11 100 100 
% 245 10 100 101 e 345 11 100101 
& 246 10 100 110 f 346 11 100 110 

247 10100111 g 347 11 100111 
( 250 10 101 000 h 350 11 101 000 
1 251 10 101 001 i 351 11 101001 

252 10 101 010 j 352 11 101 010 
+ 253 10 101 011 k 353 11 101011 
, 254 10 101 100 I 354 11 101 100 
- 255 10 101 101 m 355 11 101 101 

256 10 101 110 n 356 11 101 110 
/ 257 10 101 111 o 357 11 101 111 
0 260 10 110 000 p 360 11 110 000 
1 261 10 110 001 q 361 11 110 001 
2 262 10 110 010 r 362 11 110 010 
3 263 10 110 011 s 363 11 110 011 
4 264 10 110 100 t 364 11 110100 
5 265 10 110 101 u 365 11 110101 
6 266 10110110 v 366 11 110110 
7 267 10110111 w 367 11 110111 
8 270 10 111 000 x 370 11 111 000 
9 271 10 111 001 Y 371 11 111 001 
. 272 10 111 010 z 372 11 111010 

273 10 111 011 { 373 11 111 011 
< 274 10 111 100 374 11 111 100 . 275 10 111 101 1 375 11 111 101 
> 276 10 111 110 376 11 111110 
I 277 10 111 111 "Home" 377 11 111 111 

The low order 7 bits of the binary representation map into the ASCII graphics where such graphics are defined. 
The high order bit is always a "1" value to act as a strobe in the software of TVOUT shown in listing 1. 
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Diagnosis of Ailing Readouts 

1. Troubles - General 
One of the more difficult troubles to find is 

an IC pin which was bent under the inte- 
grated circuit when it was inserted. Any 
unusual pressure when inserting an inte- 
grated circuit should be investigated. 
Check continuity. Your wiring should be 
correct. If soldering is used, as in printed 
circuit assembly, check to make sure all 
joints are in good shape. 
When troubleshooting with an oscilloscope 
probe, measure from the top side of the 
integrated circuit, not the bottom, to elimi- 
nate the possibility of being misled by a pin 
which is bent under or a defective socket. 
Before ever plugging in any integrated 
circuits, always measure the voltages at the 
terminals of the display board and at the 
power pins of the more expensive integrated 
circuits, like the MCM6571. 
When handling integrated circuits, avoid 
static charges. Run your house humidity 
high, and ground yourself by touching a 

grounded chassis before touching the inte- 
grated circuits. 

2. When initially checking out, if no white 
columns appear on the screen at step 3, the 
following may be a cause of the problem. 

Bad connection between TV output con- 
nector pin and TV, 
Temporary jumper from input D7 pin to 
ground not connected. 
Crystal not oscillating. Check for pulses at 
pin 1 of IC27. 
Horizontal countdown chain defective. 
Successively measure output at pin 3 of 
1C32, IC17 and IC21. Each should be 

progressively lower in frequency. 
Vertical countdown chain defective. As 
above, but measure pin 3 of IC24, IC10 and 
IC12. 
Defective video mixer. Look for pulses at 
pins 1 and 13 or IC26. 

3. Initial checkout pattern (step 3) is poorly 
defined or lacking synchronization. In this case the 
following comments might apply. 

TV could be overloaded by the _ 3 V of 
video. Cut the level by adding a series 

resistor of 10 ohms to see if sync and video 
stabilize. 
Check for horizontal and vertical sync and 
blanking pulse at connector pin 16. A 75 ohm 
load should be attached. The pattern should 
look like this: 

1..-- BLANKING--y 

III 
I.SYNC 

II I 

a. If horizontal sync is defective, check 
IC11, 1C20, IC18 and IC13. 

b. If vertical sync is defective, check IC19 
and IC25. 

c. If horizontal blanking is defective, check 
IC11, 1C13 and 1C14. 

d. If vertical blanking is defective, check 
1C19. 

4. No characters at step 4 of the checkout 
procedure. Look for: 

Missing voltages at the MCM6571 (IC30). 
Defective character generator. 
Defective 74165 (IC31). 
Defective logic signals to and from IC30 and 
IC31. All inputs and outputs should be 
pulsing at valid TTL levels (0 to 0.8 V = 

low; 2 to 5 V = high). 
5. Wrong character(s) in display when driving 
from computer or manual testing of step 5 in 
checkout. 

Miswired or misjumpered input. 
Defective memory IC. Note the bit dif- 
ference between the intended character. IC1 
is the memory for the Least Significant Bit 
(LSB) of the character ... and IC7 is the 
Most Significant Bit's (MSB) memory. 
Defective 74157(0, ICB, IC15 and IC28. 

6. "Twinkling" characters on TV. The source of 
this problem could be: 

Slow memories. 650 ns or faster 21025 must 
be used. 
Overheated memories. Access times increase 
with heat. 
Wrong pulse levels at pin 1 of 74165 (IC31). 
A base level of about 2.5 V with short 
positive and negative going spikes should be 
seen. 
Defective character generator, IC30. 
Incorrect timing components on 74123, 
IC23. 

7. Won't write characters into memory of TV 
readout. Look for: 

Missing strobe pulse, or continuous level on 
D7 input. 
No write pulse from 74123. Measure at pin 
12 of IC23, looking for an ? 600 ns nega- 

tive going pulse. Connecting the D7 input to 
a t 50 kHz TTL clock will permit viewing 
on lower cost oscilloscopes. 

Write clock not toggling. With above tem- 
porary oscillator inputting to D7, look for 
pulses at pin 3 of IC16, IC29 and 1C9. 
Defective memory address multiplexers, 
IC15, IC28 and IC8. 

8. Extraneous characters can be caused by: 
Noise on the input lines to the memory, 
particularly on the D7 line. A 220 pF 
condenser (C4) is used on D7 to suppress 
most noise sources. More or larger con- 
densers may be required in extreme cases. 

This trouble often shows up as an a appear- 
ing on the screen when another port is 

addressed. 
Data sent to the TV character generator 
faster than it can handle. Data must be valid 
for 1.5 us following the rise of D7 strobe. 
Faster data rates can be handled by reducing 
the value of the condensers in the 74123 
write strobe singleshot. Alternatively, a data 
hold loop in your program, consisting of 
NOP instructions, can slow the data output 
to the readout. 
Defective or slow memories. Look at the bit 
pattern of the extraneous character to deter- 
mine if a single memory is bad in a single or 
several data locations. 
More bypassing required. Power supply 
conditioning is shown in figure 2. Look at 
the power supply with a high speed 
scope - if excessive voltage glitches are pres- 
ent, add capacitance. 
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line appears, displaying the 33rd character. 
Up to 512 characters are thus sequentially 
entered and displayed. If a 513th and 
following characters are entered, the address 
wraps around so that an overwrite condition 
results: New characters start appearing at the 
top left corner of the screen. The display 
address may be reset to the home position at 
any time. Screen erase is accomplished either 
by loading 512 or more ASCII "spaces" 
(octal 240) followed by the home reset 
(octal 377), or by issuing the home reset 
followed by exactly 512 ASCII spaces, the 
latter being preferable. 

Memory writing occurs when the MSB 
goes high. The memory address multiplexors 
(IC15, IC28, and IC8) then use the write 
address counter to control the memory 
address lines, interrupting normal display 
activity. 600 ns later, a 600 ns strobe pulse 
writes the new character into memory. 

An excellent idea was suggested by Phil 
Mork in the Digital Group Clearinghouse to 
utilize a parallel logic path to step the write 
address counter without writing a character. 
Using a cycle of 511 write address steps, a 

blank, 511 write address steps and a non - 
blank character, a blinking "pseudo cursor" 
effect is obtained without the usual expense 
of a number of comparators. This software 
"blink" may be easily implemented with a 

final result indistinguishable from a hard- 
ware cursor. The write address stepping logic 
consists of IC19a and IC27d which detect 
the presence of a "1" in the least significant 
bit while the most significant bit is held 
low. This toggles the write address counter 
without firing the 74123 write strobe 
(IC23b). Disable the "pseudo cursor" when 
using a direct keyboard input. Do this by 
disconnecting pin 12 of IC27 from IC19, 
and tying pin 12 to +5 V (logical 1). 

8080/Z80 Driving Software 

This television display can be driven by a 

microprocessor's 8 bit output port. In the 
Digital Group systems, we use port 0 for 
this function. Listing 1 shows code for the 
routines CLEARTV, SPACE, and TVOUT to 
show how the software drivers are designed. 

The main subroutine is labeled TVOUT 
and is located at <0> 372. The programmer 
merely loads the A register with one of the 
characters from the list in table 1 and calls 
the TVOUT subroutine. The codes in table 1 

include all the standard upper and lower case 
ASCII codes, but have the high order bit of 
an 8 bit word set to "1". For those 
characters in table 1 which have ASCII 
graphics, subtracting 2 from the leftmost 
digit will give the equivalent 7 bit ASCII 

Listing 1: Utility software for driving the TV readout with an 8080 or Z80 
system. This listing gives the CLEARTV, SPACE and TVOUT functions, a 
total of 28 bytes. The CLEARTV operation simply homes the display, then 
writes 512 spaces leaving a blank screen and the write address counter 
pointing to the upper left corner of the screen. The SPACE subroutine simply 
loads a space code into the accumulator (see table 1) then falls through into 
TVOUT. TVOUT simply outputs the value in the accumulator, then clears 
the accumulator and outputs all zeros so that the write strobe (D7) is turned 
off completing the write operation. This routine assumes a latched output 
port. 

Split 
Octal 

Address Octal Code Label Op. Operand Commentary 

<0> 343 076 377 CLEARTV MVI A,377 A :_ (set up home reset character]; 
<0> 345 315 372 <0> CALL TVOUT write character (resets write address) ; 

<0> 350 006 000 MV I 8.0 
BC :s 2000 (sat loop count to split 

<0> 352 016 002 MVI C,2 l octal equivalent of 5121; 
<0> 354 315 370 <0> CLEAR CALL SPACE write one space on screen; 
<0> 357 015 DCR C C :- C- 1 Dow order count]; 
<0> 360 302 354 <0> JNZ CLEAR if not C -0 than reiterate the loop; 
<0> 363 005 OCR B B :- B - 1 (high order count); 
<0> 364 302 354 <0> JNZ CLEAR if not B = 0 then reiterate the loop; 
<0> 367 311 R ET return with screen clear, write address 

counter pointing to home position; 
<0> 370 076 240 SPACE MVI A,240 A ' ' (load one blank character coctel; 
<0> 372 323 000 TVOUT OUT o (port 0) A; 
<0> 374 257 XRA A A := 0 (turns off strobe pulse in bit 71; 
<0> 375 323 000 OUT o (port 01 :s A; 
<0> 377 311 RET return from SPACE or TVOUT; 

Entry points: 

CLEARTV: Called with no parameters when TV display screen is to be cleared completely and left in 
the ''home" (upper left) position. Uses registers A, B and C. 

SPACE: Called when a space (ASCII 040, 240 from tabla 1) is to be sent to the TV display. 
Uses register A. 

TVOUT: Utility output routine to transfer contents of A (high order bit assumed "1 ") to the TV display 
and increment the write address counter. Uses register A as input parameter, destroys its value 
leaving 0. 

code (with the high order eighth bit assumed 
to be zero). 

The instruction at <0> 370 will load the 
"space" character for you, so to get a space 
on the screen, merely call SPACE at address 
<0> 370. 

Before attempting to write any character 
on the screen, the user must know where on 
the screen the character will appear. A third 
included subroutine starting at <0> 343 
called CLEARTV will reset the write address 
counter to the home position and clear the 
512 character screen. The next character 
entered after this subroutine will appear at 
the top leftmost position on the screen. 

Conclusion 

This television display design provides a 

versatile and essentially self contained circuit 
to provide the key output device of a small 
and inexpensive computer system. It can be 
built from scratch in the typical experimen- 
ter's laboratory or from a kit provided by 
Digital Group. Due to its use of an extended 
character set with 127 symbols including 
upper and lower case, special characters and 
Greek, the display will prove quite useful in 
a variety of applications. 
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Photo 1: The ease of removing just one dot from a 
full field display depends upon the display size. 
The author's X -Y display has an adjustable size 
control which was used in preparing this picture. 
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Loomis Laboratories 
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Photo 2: The light pen can be used in an "erase" mode by filling the screen with "on" 
dots then selectively removing dots with the light pen. The titles added to this picture 
(and all the pictures in this article) were created with a separate character generator 
which is not described. 
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With only a few components and a few 
hours of construction you can add a versatile 
light pen to the oscilloscope graphics inter- 
face which has been described in the 
October 1975 issue of BYTE, page 70 ff. 

By holding the light pen to the face of 
the cathode ray tube (CRT), a point may be 

added or removed. This eliminates the 
awkward and time consuming effort 
required when using a program or manual 
switches to change the dots on the screen. 

The resolution and capability of the light 
pen are dependent on two characteristics of 
the CRT. The brightness and the size of the 
display tube will determine how easily you 
may add or remove one dot. An idea of the 
effect of display size may be had from photo 
1. The word Test was written twice on a 12 

inch (30.5 cm) black and white TV picture 
tube configured as an XY display like an 

oscilloscope. The top word was written with 
the display adjusted to an 8 inch (20.3 cm) 
size, and the lower word was written with a 

4 inch (10.2 cm) display. Each letter was 

written with only one stroke of the light pen 
without touch up or corrections. With some 
practice, and possibly several passes, one dot 
may be added or removed if the display 
measures 8 inches (20.3 cm) or more. 
Further improvements to the pen are 

required with smaller display tubes. An 
advanced circuit that greatly improves the 
capability of the pen with small displays is 

also described in this article. 



The light pen can erase or draw 
depending on the setting of a switch. 
Examples of the two actions may be seen in 
photos 2 and 3. If the oscilloscope interface 
is adjusted for a high repetition rate, some 
smearing or carry over into the neighboring 
dot positions occurs. The author's system 
has a front panel control permitting ten 
repetition rates. A small improvement in 
resolution can be noted at the lower writing 
rates, as shown in photo 2. A frame consists 
of 64 by 64 dots. 

Theory of Operation 

The light pen operates on the principle 
that brightness is quite intense during the 
actual interval that a particular dot is being 
written by the CRT's electron beam. 
Although phosphor will continue to emit 
light for some time, the brightness decays in 
an exponential manner after the writing 
beam has moved on to the next dot. 

Figure 1 illustrates the simple light pen 
circuit. With proper adjustment of the sensi- 
tivity control (and possibly the brightness 
control), the photocell in the tip of the light 
pen will sense the moment in time when a 

dot is written at the particular location of 
the light pen. At this instant, the photocell 
will conduct, biasing the PNP transistor 
which causes a short pulse to be conducted 
through capacitor Cl to the base of the NPN 
transistor Q2. If the pulse is greater than .6 
V, this transistor will be driven into satura- 
tion, and the light pen output will fall to .3 
V. This output line is the connected to pin 5 
of the oscilloscope graphics unit which 
writes a 1 or a 0 bit (dot or no dot) at 
precisely the instant that the dot position 
touched by the pen was addressed. 

The above procedure works quite well if 
the dot to be changed is illuminated at the 
time. With proper adjustment of the sensi- 
tivity control, we can usually use an illum- 
inated dot just above the point of action (it 
must precede the dot in scan sequence) to 
create a new dot in the next space. This 
action of extending a line can be quite useful 
for drawing bar graphs on the CRT. This 
mode of entry is possible because screen 
persistence allows the light pulse to be 
carried over into two or three subsequent 
dot positions depending on the frame speed. 

How can the photocell sense the dot's 
position if there is not any illumination to 
trigger it? This is accomplished by the flood 
circuit which is shown in figure 2. This 
circuit overrides the normal Z -axis control 
and floods the screen with light by feeding a 
logical one signal to the Z axis of the display 
unit. With this arrangement the pen is placed 
at the required dot position, the footswitch 
is actuated to flood the screen with light, 
and the photocell is energized when the 
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Photo 3: The light pen can be used in an "enhance" mode by using a footswitch control 
to flood the screen momentarily when the light pen is in position. 

SENSITIVITY 

RI 

MINI PHONE JACK 

r -- 
11 

R2 
1.5 K 

R3 R4 
100K 22OK 

RS 
IK 

el) 
LIGHT-PEN 
OUTPUT 

1 

2N2222 1 
PI N S 

1 

I 

1 SI 
1DDU 

SPST 
DEPOSIT 

MFG 
PC-1 
PHOTOCELL 

R -I 
CONTROL 

TI H-35 IM 
TI H-38 2M 
TI L -63 5K 
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Figure 1: The simple version of the light pen can be constructed according to this 
schematic. All resistors Y W. 
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Figure 2: The foot switch control used to flood the screen for "enhance" mode 
operation is given in this circuit which modifies the Z -axis signal to the oscilloscope 
driver. 
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Figure 3: By adding a pair of oneshots to the circuit, the ability to draw pictures is improved through a short 

data lockout period which avoids smearing. 

writing beam reaches that particular dot 
position. Releasing the footswitch removes 

the flood and allows the data to be 

examined. 
The circuits just described will probably 

suffice if you wish to use the light pen only 
for occasional correction of data. If you plan 

extensive and detailed work, such as 

cartooning or statistical data entry, a modifi- 
cation of the circuit will allow you to tailor 
the light pen's response to your own particu- 
lar needs and system speed. The circuit 
shown in figure 3 is similar to the one shown 

in figure 1. However, it includes two oneshot 
multivibrators (contained in one CMOS 

DIP). The first one produces a constant 
amplitude pulse of approximately 200 nsec 

duration which is sufficient to bring about 
the storage of a 1 or 0 bit in most versions of 
the 2102 memory (ICs 11 to 14 in the 
oscilloscope graphics interface). The second 

one delays the generation of another write 
command for .25 sec, giving the operator 
sufficient time to withdraw the pen from the 
screen or move to a new location, before a 

double or multiple dot can be drawn. Once 

the two pulses have been timed in accor- 
dance with a given system speed and the 
operator's writing speed, it becomes very 
easy to draw detailed images with the light 
pen. 
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In figure 3 resistor R4 and capacitor Cl 
control the length of the write pulse, and 

resistor R5 and capacitor C2 control the 
wait time. For the 4528 CMOS oneshot, the 
time of the pulse (T) measured in micro- 
seconds is a function of resistance (R) and 

capacitance (C) measured in ohms and 

microfarads, respectively, as follows: 

T = 2.5 * R * C ** .85; 

where a single asterisk denotes multiplica- 
tion, and a double asterisk exponentiation. 

The circuit shown in figure 3 also 

includes a switch and connections for using 
the light pen with the author's text display 
and editing system. Exact details for this 
connection are not given here, as they will 
differ with the type and construction of the 
text display system. I found, however, that 
the shift register type memories commonly 
used in these systems require a much longer 
write pulse than is necessary for the 2102 
memories. It was also desired to eliminate 
the holdoff circuit (second oneshot) for this 
application. These changes are accomplished 
with switch S1 and resistors R9 and 125. If 
these features are not desired, it is recom- 
mended that R9 be replaced by a wire, R4 

changed to 4.7 kSt and Cl to 20 pF. 



Construction 

As is shown in the table accompanying 
figure 1, several different types of photocells 
are suitable for use in the light pen. The 
Texas Instrument (TI) type H -35 or H -38 is 
a very small device with a built in lens. These 
were originally designed for use in punched 
tape and card readers, thus the small size. 
Their size, sensitivity, and restricted field of 
view make them ideal for this application. 
The high impedance of these devices, how- 
ever, makes them somewhat slow for this 
application, particularly at low brightness 
levels. The slow response time limits their 
use at the faster scan rates, and complicates 
the smearing mentioned earlier. Another 
device, the L -63 type which is available from 
Radio Shack (276 -140 infared detector), was 
found to be considerably faster. Being a 

much larger device, however, it has a larger 
field of view, and much of its speed advan- 
tage is lost to optical smearing. Models of 
both photocell types were built and tested 
by me, with only slight preference for the 
H -35. With some careful masking, and 
possibly the addition of a small, short focal 
length lens (e.g., Edmund Scientific number 
12050 cylinder lens, or a small drop of clear 
epoxy), this photocell will probably perform 
better than the H -35 for this application. 
The Claire types 903 and 903 -L were tried 
with only fair results. 

Any ball -point pen or felt -tipped marker 
can be reworked to make a housing for your 
light pen. Take a tour of the local stationery 
store to find likely candidates. The L -63 
photocell was found to fit nicely into the 
end of a Graphi -100 marker pen which can 
easily be disassembled with diagonal cutters. 
An example of the construction with the 
L -63 is shown in photo 4, and the H -35 
assembly is shown in photo 5. 

Secure the photocell in place with epoxy 
adhesive after attaching the shielded cable. 
The cable can also be secured against damage 
from pulling by filling the entire pen with 
silicone rubber adhesive or ordinary house- 
hold bathtub caulk. It is wise to keep the 
cable short, especially with the H -35 or H -38 
photocells, to obtain maximum possible 
response speed. I used an 18 inch (45.7 cm) 
long miniature coaxial cable leading to a 

miniature phone plug. 
If you are using the simple circuit of 

figure 1, the parts can be assembled on a 
small turret terminal board available at most 
electronic supply houses. This assembly is 
shown in photo 6. The circuit of figure 3 can 
be assembled in the same manner with the 
addition of a 16 pin DIP socket. R4, R5, Cl 
and C2 should be mounted in such a manner 
that they can be changed easily (Cambion 
601 -1512 component clips are useful here). 

Photo 4: This shows a pen based on the TI type L -63 photocell, built using a marking 
pen case. 

Photo 5: This picture shows an assembled light pen using a TI type H -35 (or H -38) 
photocell with a standard ballpoint pen housing. 

Photo 6: This photo illustrates how the circuit of figure 1 can be assembled using a small 
turret terminal board. The transistors and R5 are mounted out of sight on the rear side 
of the board. 
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Photo 7: Using the improved circuit of figure 3 reduces much of the over -writing of 
multiple dots which occurred using the original circuit of figure 1. This is an enhance 
mode picture. 
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Photo 8: This illustrates a cartoon drawn using the erase mode of operation with the 
improved circuit of figure 3. 
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The sensitivity control may be conveniently 
mounted on the front panel. 

The operation of the light pen requires 
control of the inputs to the oscilloscope 
graphics unit. I have found that one of the 
most convenient ways in my system is 
through a set of manual data switches. This 
type of input was illustrated as a test fixture 
for the oscilloscope graphics interface in 
figure 5 on page 75 of the October 1975 
issue of BYTE. In my system, these data 
input switches are shared with a Mark -8 
minicomputer front panel by means of an 8 
pole double throw toggle switch. It is also 
possible to set up input codes to the 
oscilloscope graphics unit using software in 
the microcomputer system which drives it. 

In order to enter data with the light pen, 
a deposit switch is pressed whenever the pen 
is in the proper position for data entry. The 
deposit switch should be mounted in a 

convenient location near the display tube 
and light pen. In my system the light pen 
deposit switch was mounted next to the 
original deposit switch of the Mark -8 corn - 
puter. 

Using The Light Pen 

To illustrate the use of the light pen, we 
will cover the procedure necessary to draw a 

simple figure on the screen in the erase mode 
using manual controls. Set the switch 
register to 1000 0110 binary (turn scan on) 
and depress the deposit switch. This should 
produce random dots on the screen. Set the 
switch register for 1000 0010 binary (set Z 
on) and depress the deposit switch again. 
The screen will show a full field of dots. (If 
the Z axis polarity of your display tube is 

reversed, you will have to use the "set Z off" 
command (1000 0011 binary) to illuminate 
the screen.) Set the switch register for 1000 
0010 (set Z on), but do not activate the 
deposit switch. Now bring the light pen in 
contact with the display CRT, and note that 
the dot or dots within its field of view are 
erased. To erase the entire screen and start 
over, simply press the deposit switch and 
repeat the above procedure. 

To write in the enhance mode (screen 
dark, writing illuminated dots), reverse the 
above procedure by wiping the screen clean 
with the "set Z off" command (while the 
scan is on), and after setting the switch 
register to "set Z on" without the deposit 
switch, proceed to write dots with the light 
pen. In this mode, the flood foot switch 
must be periodically activated to provide the 
required illumination. Examples of the light 
pen's drawing capability can be seen in 
photos 7 and 8. 



Build an Oscilloscope 
Ever wonder how to make a computer draw pictures for 

output? One way is to use an oscilloscope - which many 

readers have on general principles for debugging the logic 

circuitry. Jim Hogenson provides a practical circuit for 
accomplishing that end in his "Oscilloscope Graphics Inter- 

face" design. This graphics device was conceived by Jim as a 

neat idea to add to the 8008 -oriented computer system he was 

building for a high school science fair. He first mentioned it to 
me in a letter late last year. I suggested to him (or was it the 

other way around ?) that it might be appropriate to turn it into 
an article for the ECS Magazine I was publishing at the time. 
After a fair amount of time spent researching the various 

options - plus one lengthy phone conversation with me - Jim 
settled on the design shown in this article, which is reprinted 
here from its original publication in the last issue of ECS 

Magazine. The interface is very simple, and can be adapted to 
virtually any computer with a minimum of 8 parallel TTL 
output lines and a clock pulse line which is active when output 
data is stable. Arrangements have been made for a PC version 

of this design (see the parts list, Fig. 6) so you won't have to 
wire wrap the thing like Jim did in his first version. 

by 
James Hogenson 
Box 295 
Halstad MN 56548 

Fig. 1. Oscilloscope graphics display block diagram. 
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Many members of the 

large family of alphanumeric 
computer output devices may 
be readily used in the home 
computer system. But there 
are as yet few devices of a 

graphic orientation which are 

economically acceptable in 
the home computer system. 
The oscilloscope graphic 
interface project presented 
here provides one unique, 
inexpensive and 
uncomplicated solution to 
the graphic output problem 
in small scale systems. It 
turns an essential test 
instrument - the oscilloscope 
- into a versatile output 
device. 

The oscilloscope graphic 
interface is programmed and 
operated through a parallel 
8-bit TTL compatible input. 
An image is represented by a 

pattern of dots which is 

organized according to the 
computer's instructions. 
During the scan cycle, the 
digital dot pattern is 
converted to analog 
waveforms which reproduce 
the image on an oscilloscope 
screen. The graphic interface 
stores the dot pattern within 
its own internal refresh 
memory. Therefore, once the 
pattern has been generated 
and loaded into the graphic 
interface memory, the 
computer is left free to 
execute other programs. 

Principle of Operation 
The raster begins its scan 

in the upper left -hand corner, 
scanning left to right and 
down. The full raster contains 
4096 dots, 64 rows of 64 
dots each. The horizontal 
scan is produced by a 



Graphics Interface 

stepping analog ramp wave. 
Each of the 64 steps in the 
ramp produces one dot. The 
vertical scan is similar. It is a 

stepping ramp wave 
consisting of 64 steps. 
However, there is only one 
step in the vertical wave for 
each complete horizontal 
ramp wave. The result is 64 
vertical steps with 64 
horizontal steps per vertical 
step, or 64 rows of 64 dots 
each. 

The timing of horizontal 
and vertical sweep waveforms 
originates in a 12 -bit binary 
counter, the operational 
center of the entire circuit. 
The six least significant bits 
of the counter are connected 
to a digital -to- analog 
converter (DAC) which 
converts the digital binary 
input to a voltage level 

output. The output of the 
least significant DAC is the 

horizontal ramp wave. The 
six most significant bits are 

connected to a second DAC. 
This DAC produces the 
vertical ramp wave. 
Incrementing the 12 -bit 
counter at a frequency of 
around 100 kHz results in a 

raster on the screen of the 
oscilloscope. 

The contrast in the pattern 
of dots needed to represent a 

picture is dependent upon the 
intensity of each dot. From 
this point, it is assumed that a 

dot can be either on or off. 
An "on" dot will show up on 
the screen as a bright dot of 
light. An "off" dot will be a 

dim dot of light. 
When a particular dot is 

addressed by the counters, it 
may be set to either the "on" 
or the "off" state. The on -off 

Fig. 2. Oscilloscope graphics inter- 
face instruction codes. 

Op Code 
Binary Octal Mnemonic 

00dddddd Odd STX 

0ldddddd 1dd STY 

10xxx000 2x0 DCY 

l0xxx001 2x1 TSF 

10xxx010 2x2 ZON 

10xxx011 2x3 ZOF 

10xxx100 2x4 ZNI 
1Oxxx101 2x5 ZFI 
1Oxxxll0 2x6 TSN 
1Oxxxlll 2x7 DCX 

llxxxxxx 3xx CNO 

d = data 

control is represented by a 

single bit. It is this bit which 
is stored in the internal 
memory of the oscilloscope 
graphic interface. There is 

one bit in the memory for 
each of the 4096 dots in the 

raster. When displaying the 
image, the 12 -bit counter 
which produces the raster 
addresses the appropriate 
dot status bit in the memory 
as that dot is produced on the 
screen. The on -off dot status 
bit taken from the memory is 

converted to a Z -axis signal 
which controls the intensity 
of the dot on the screen. 

The major portion of the 
circuitry is taken up in the 
12 -bit counter, the DACs, 
and the memory. Fig. 1 

shows a block diagram of the 
oscilloscope graphic interface. 
The remaining circuitry is the 
control circuitry which 

x = null 

Explanation 

Set X 

Set Y s 
Contrór Decrement Y 

Control - Turn off scan 

Control - Set Z on 

Control - Set Z off 
Control - Set Z on with increment 

Control - Set Z off with increment 
Control - Turn on scan 

Control - Decrement X 

No Op 

decodes the 8 -bit input word 
and allows for completely 
programmed operation. 

Programming 
The programming 

instruction format is shown 
in Fig. 2. Bits 7 and 6 of the 
input word are the high -order 
instruction code. It is 

assumed that the addressing 
of dots is done on the basis of 
X and Y coordinates. The X 
coordinate is the 6 bits in the 
least significant or horizontal 
section of the 12 -bit counter. 
The Y coordinate is the 6 bits 
in the most significant or 
vertical section of the 
counter. In programming 
from an 8 -bit microcomputer 
source, all 12 bits of the 
counter cannot be set at 
once. The counter is set one 
half or 6 bits at a time. It is 

for this reason X and Y 
coordinates are assumed in 

programming. 
When the instruction code 

(bits 7 and 6) is set at 00, the 
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data on bits 0 through 5 of 
the input word is loaded into 
the least significant counter 
section as the X coordinate. 
When the instruction code is 

set at 01, the data on bits 0 
through 5 is loaded into the 
most significant counter 
section as the Y coordinate. 
In effect, the Y coordinate 
will select a row of dots, 
while the X coordinate will 
select one dot in the selected 
row. The coordinates loaded 
into the counter will address 



the memory and select the 
desired dot status bit for 
programming. 

After loading the 
coordinates of the dot 
selected for programming, the 
status of the dot (on or off) is 
set using the ZON, ZOF, ZFI 
or ZNI control codes. Setting 
the instruction code at 10 
directs the control circuitry 
to decode the three least 
significant bits of the input 
word for further instruction. 
The three least significant bits 
are called the "control code." 

Since the 1 2-bit counter 
must store selected 
coordinates during 
programming, the raster scan 
must be disabled before 

programming. Control code 
"1" will stop the scan. 
Control code "6" will restart 
the scan. When the scan is on, 
the 12 -bit counter will be 
incremented at a high 
frequency and the 
programmed image is 
displayed on the scope 
screen. 

Control code "2 ", "set Z 
on ", will program a bright 
dot to appear at the dot 
location presently stored in 
the counter. Control code 
"3 ", "set Z off ", will 
program a dim dot or blank 
to appear at the dot location 
presently stored in the 12 -bit 
counter. 

Control codes "4" and 
"5" set Z in the same manner 
as control codes two and 

Fig. 3. Timing pulse input to the 
interface. The 8 data lines must 
be stable during this pulse. 

PULSE WIDTH DETERMINED 
BY EXTERNAL CLOCK PULSE SOURCE 

MINIMUM 750 NS 

DATA STORED 

will decrement the stored Y 
coordinate. Control code "7" 
will not set Z, but will 
decrement the entire 12 -bit 
counter by one. This, in 
effect, will decrement the 
stored X coordinate. Since 
the X and Y counter sections 
are cascaded, Y will 
automatically be incremented 
or decremented once for 
every 64 executions of an 
increment or decrement X 
control code. 

The increment and 
decrement control codes are 
very useful in constructing 
lines in an image since lines 
require repeated "set Z" 
instructions, often on the 
same axis. An effective 
method of clearing an image 

COUNTER INCREMENTED 

three. However, after setting 
Z, these instructions will 
increment the counter by one 
thus advancing to the next 
dot location in the raster scan 
pattern. This will allow 
programming of the entire 
raster using only a repeated 
"set Z" instruction. 

Control code "0" will not 
set Z, but will decrement the 
most significant or vertical 
section of the counter only. 
In effect, control code "0" 

from the screen is repeating a 

"set Z with increment" 
control code in a 

programmed loop. This 
method allows the option of 
using either a light or dark 
image background. 

Circuit Operation 
Once the data word on the 

microcomputer parallel 
output interface is stable, one 
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clock pulse is used to execute 
the instruction. This clock 
pulse is taken from the 
microcomputer output 
interface. The instruction 
code is decoded by the 7410 
triple three -input NAND gate 
and two inverters. The clock 
pulse is enabled by the 
NAND gate to the 
appropriate counter section, 
or to the strobe input of the 
control code decoder. 

The 1 2-bit counter 
consists of two 6 -bit counting 
sections. Each section 
consists of two cascaded TTL 
74193 presettable binary 
counters. Bits 0 through 5 of 
the data input are common to 
both sections of the counter. 
The set X instruction will 
pulse the load input of the 
least significant or horizontal 
section, while the set Y 
instruction will pulse the load 
input of the most significant 
or vertical section of the 
counter. A pulse on the load 
input will cause the data on 
bits 0 through 5 to be loaded 
into the proper counter 
section. 

Four TTL counters must 
be used to provide 
independent loading 
capabilities for each 6 -bit 
section. The counters within 
each section are cascaded in 
the normal fashion. The two 
sections are cascaded by 
connecting the upper data B 
output of the X counter 
section (IC 8, pin 2) through 
inverter "a" of IC 2 to the 
count up input (IC 9, pin 5) 
of the Y counter section. The 
inverter is needed to provide 
proper synchronization 
in high frequency counting. 

The control code is 
decoded by a 74155 decoder 
connected for 3 to 8 line 
decoding. Bits 0 through 2 
are decoded by the 74155. 
The control code is enabled 
by the pulse coming from the 
7 41 0 instruction decoder 
only when the instruction 
code is set at 10 on bits 7 and 
6. 

Decoder lines 1 and 6 are 
connected to an R/S flip Hop 



Fig. 4. PC artwork of the graphic 
interface, by Andrew Hay. 

(a) Component side. 
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Fig. 4. PC artwork of the graphic 
interface, by Andrew Hay. 

(b) Solder side. 
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TO 8 -BIT DATA INPUT 

87 

o 

13 

12 

11 

f, o 

1/4 7400 TTL NAND 

which provides the scan 
on /off control. The flip flop 
enables the system clock to 
provide the high frequency 
square wave which 
increments the 12 -bit 
counter. 

Control codes 2 through 5 

define the "set Z" 
instructions which perform a 

data write operation. Decoder 
lines 2, 3, 4 and 5 are 
connected to a group of AND 
gates (IC 5a, b, c) functioning 
as a negative logic OR gate. 
The output of this gate is the 
Read /Write control line for 
the memory. When this line is 

in the low state, the data 
present on the data input line 
of the memory will be 

written into the memory 
location presently stored in 
the 1 2-bit counter. 

The data input of the 
memory is connected directly 
to bit 0 of the 8 -bit input 
word. This bit is stored in the 
memory only when a set Z 
command is executed. The 
Z -axis circuit configuration 
will require a high state pulse 
for a blank or dim dot. As 
shown in the binary 

BO 

o 

to 
SPDT 

TOGGLE 

NC 

NOQ 
SPOT 

MOMENTARY 

instruction format, Fig. 2, bit 
zero will be binary zero for 
"set Z on" instructions and 
binary one for "set Z off" 
instructions. The backward 
appearance of this binary 
format will be overlooked 
when programming in octal 
notation. 

The high frequency system 
clock controlled by the RIS 
flip flop and decoder lines 4 
and 5 are negative logic 

Fig. 6. Parts list. 

Cl, C2 
C3, C5, C6-C11 
C4 
C12 

TO 
CLOCK PULSE 

INPUT 

o 

1/2 7400 TTL 
NAND 

ORed. The resulting pulse 
increments the counter 
according to control 
commands. 

The same clock pulse 
taken from the computer 
output interface is used to 
write data into the memory 
and increment the counter in 
control commands 4 and 5. 
The data is written into the 
memory on the leading edge 
of the pulse. The counter is 

20 pF disc capacitor 
.01 mF disc capacitor 
.0015 mF disc capacitor 
25 mF electrolytic capacitor 

IC 1 7410 
IC 2 7404 
IC 3, IC 4, IC 20 7400 
IC 5 7408 
IC 6 74155 
IC7-IC10 74193 
IC11-IC14 2102 
IC 15, IC 16 MC1406 
IC17,IC18 741 
IC 19 NE555 

R1, R2 3.3k Ohm 
R3, R4 5.6k Ohm 
R5, R6 10k Ohm 
R7 1k Ohm 
R8 2.2k Ohm 
R9 7.5k Ohm 

TTL triple 3 -input NAND gate 
TTL hex inverter 
TTL quad 2 -input NAND gate 
TTL quad 2 -input AND gate 
TTL dual 2- to- 4-line decoder 
TTL presettable 4 -bit binary counter 
NMOS 1024 -bit static RAM 
Motorola 6 -bit DAC 
Op amp 
Oscillator (timer IC) 

resistor 
resistor 
miniature potentiometer 
resistor (all resistors Y. Watt, 10 %) 
resistor 
miniature potentiometer 

A printed circuit board using the masks of Fig. 4 is available for $29.95. 
Write to M. F. Bancroft, CELDAT Design Associates, Box 752, 
Amherst NH 03031. 
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Fig. 5. A test circuit for manual 
operation. The set -reset flip flop 
of the 7400 circuit generates a 
debounced clock pulse which 
will perform the operation set 
into the toggle switches. If 
you haven't got a computer up 
and running yet, the manual 
interface can be used in order to 
test out the display. 

incremented on the trailing 
edge. Fig. 3 shows the 
waveform timing. 

Output bits 0 through 9 of 
the 12 -bit counter are 
connected to the address 
inputs of the memory. The 
memory uses four MM2102 
type 1k x 1 bit MOS RAMS 
(Random Access Memories). 
Bits 10 and 11 of the counter 
output are connected to the 
chip select circuitry which 



Fig. 7. Oscilloscope graphics interface circuit diagram. (a) 

8-BIT DATA INPUT 

CLOCK PULSE INPUT B7 

IC 

4 5 

2C 
6 S 

IC 
20A 

II 15 3 
13 4 5 14 C B 

IC6 
IC IC IC 74155 
IA IC IB 7 6 5 4 3 

12 

LOAD 
X 

8 '6 
LOAD 

CONTROL 

RB 
22K 

R9 
75K 6 

2 

C4 
.0015µF T 

IC19 
NE555 

+SV 

-3- C3 T.OIµF 

enables one memory chip at a 

time for addressing and data 
input /output operations. The 
chip select circuitry uses 2 
inverters and a TTL 7400 
Quad two -input NAND gate. 

The data outputs of the 
RAMs are OR -tied and 
connected to an AND gate. 
The data output is 
synchronized with the high 
frequency clock for better 
blanking performance. The 
output of this gate is 

connected to the Z -axis 
blanking circuitry. The 
blanking circuitry converts 
the TTL level signal to a 

scope compatible signal 
which may be varied over a 

wide range of output voltages 
to best match the scope being 
used. 

Bits 0 through 5 of the 
12 -bit counter arc connected 
to the X coordinate DAC. 
Bits 6 through 11 arc 

S 6 7 

BO 

r- 

0- 

13 

A 

2 o 
2 111 

IC 
4A 

connected to the Y 
coordinate DAC. The DACs 
are Motorola MC1406 ICs. 
The DACs operate on 
voltages of +5 and -5 to -15. 
A current output is produced 
by the DACs. The current 
output is converted to a 

voltage output and amplified 
by the 741 op amps. The 
output from the X coordinate 
amp is connected to the 
horizontal input of the scope. 
(The scope should be set for 
external horizontal sweep.) 
The output from the Y amp 
is connected to the vertical 
scope input. 

Although the scope used 
does not need dc- coupled 
inputs, triggered sweep, or 
high frequency response for 
this project, a Z axis or 
intensity input is required. 
The Z axis output provided 
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10 9 

10 

IC I IC 
SC 5A 

13 12 4 5 

IC 
5D 

IC 
SB 

6 

19 

R/W 

V 

COUNTER INCREMENT 

on the interface PC pattern is 

TTL compatible only. Most 
scopes will need some type of 
blanking circuitry to amplify 
the TTL level pulses. The 
design of the blanking 
circuitry will be of the 
builder's choice, allowing the 
builder to best suit his scope. 
A suggested method which is 

simple and effective is the use 
of the circuit shown in Fig. 
13. 

Construction 
This project may be 

wire wrapped, the PC artwork 
in Fig. 4 may be used to 
fabricate a double -sided 
printed circuit board, or the 
printed circuit board product 
mentioned in the parts list 

may be employed. The PC 

pattern is designed for easy 
soldering. The components 
need be soldered on the 
bottom side only. 

Remember that the 
memory ICs are MOS devices 
and should be handled as 

such. Static electricity will 
easily puncture the thin MOS 
transistor junctions. 

Bypass capacitors should 
be connected between supply 
voltages and ground. A 
minimum of a 10 mF 
electrolytic or tantalum 
capacitor should be used for 
all supply voltages. For the 
+5 logic supply, one .01 mF 
disc capacitor should be used 
for each 2 to 5 integrated 
circuits. The large 



clectrolytics will filter out 
low frequency noise and 
voltage transients while the 
small disc capacitors will 
filter out high frequency 
noise which could falsely 
trigger flip flop and counter 
circuits. 

Set -up, Testing and Operation 
The system requires a +5 

volt, 400 mA power supply 
and a dual polarity supply of 
from ±9 to ±15 volts at 10 
mA. The wide range of analog 
supply voltages allows use of 
existing power supplies for 
the graphic interface. 

The clock pulse derived 
from the computer parallel 
I/O interface should be active 
in the low state. If a device 
operating with an active high 
pulse is used, one of the free 
gates of IC 20 may be used to 
invert the clock pulse or IC 
20 may be omitted. 

When ready for testing, be 
certain of voltage supply 
polarities, then apply power. 
If the scan does not come on 
at random, execute a "turn 
on scan" command. Using the 
10k Ohm pots, R5 and R6, 
adjust the DAC voltage 
references to eliminate any 
distorted concentration of 
dots in the raster. 

The system clock consists 
of a 555 timer IC connected 
as an astable multivibrator. 

Fig. 7. Oscilloscope graphics interface circuit diagram.(b) 
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Fig. 8. CLEAR Program flow chart. 

START 
LOOP 

OUTPUT 
'TURN OFF SCAN" 

INSTRUCTION 

LOAD ITERATION 
COUNT INTO 
REGISTERS 

OUTPUT 
"Z FI" 

INSTRUCTION 

DECREMENT 
ITERATION 

COUNT 

RETURN 

Fig. 9. Listing of 8008 code for 
the CLEAR program. 

START 

00/344 = 006 LAI 
00/345 = 201 (TSF) 
00/346 = 121 OUT 10 
00/347 = 006 LAI 
00/350 = 205 
00/351 = 016 LBI 
00/352 = 377 
00/353 = 026 LCI 
00/354 = 021 
00/355 = 121 OUT 10 
00/356 = 011 DCB 
00/357 = 150 JTZ 
00/360 = 365 
00/361 = 000 
00/362 = 104 JMP 
00/363 = 355 
00/364 = 000 
00/365 = 021 DCC 
00/366 = 110 JFZ 
00/367 = 355 
00/370 = 000 
00/371 = 377 HLT 

Adjusting the frequency may 

be necessary to obtain a 

stable raster. The frequency is 

adjusted using R9, the 7.5k 
pot. The frequency of the 
system clock should be 

approximately 100 kHz, but 
is not critical. The only 
requirement is appearance of 
the raster. 

If the raster is evenly 
distributed over the screen, 

but is severely chopped up, 

check the digital inputs to the 

DACs. Use the scope to check 
the vertical and horizontal 
ramp waves individually. If 
the wave is not an even ramp, 
two or more of the DAC 
inputs may be reversed. Note 
that DAC input Al is the 
most significant bit while 
input A6 is the least 

significant bit. Reversed 

inputs may also cause 

incomplete raster formations. 
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Slight gaps or overlapping 
between some dots is caused 

by non- linearities in the 

manufacturing of the DACs. 
If no raster at all appears, 

first check for a square wave 

output at pin 3 of the 555 

timer IC. Then check for 
square wave outputs at each 

TTL 74193 counter. These 

square waves will be binary 
submultiples of the oscillator 
frequency. If the counter is 

operating, check all con- 
nections to the DACs and op 

amps. 
Applying power will 

produce a random pattern of 
on and off dots. Adjust the 

amplitude of the Z axis signal 

for best contrast. Since most 
scopes will have an 

ac- coupled (or capacitor 
coupled) Z axis input, both 
amplitude and frequency of 
the signal will affect 

Fig. 10. To construct a line seg- 
ment in the direction shown by 
the arrow, alternately execute the 
commands shown. 

a. ZNI 

b. ZNI,STYln+1) 

C. 

d. /1 

s. 

f. 

Y 

b. 

ZON, STVln+1) 

ZON, DCX, STY (n+1) 

ZON, DCX 

ZON, DCX, DCV 

ZON, DCY 

ZNI, DCV 



performance. Charging the 
capacitor within the scope 

with too much voltage at a 

given frequency will cause the 
blank pulse to carry over into 
the next dot. This could 
cause more dots than desired 
to be blanked out or dimmed. 

After a satisfactory raster 
is obtained, each instruction 
should be executed to verify 
its operation. First, clear the 
screen. The flowchart for a 

simple CLEAR program is 

shown in Fig. 8. The method 
outlined is to simply send out DECLOOP 

a "set Z off with increment" 
instruction 4096 times. 

Fig. 9 shows the program 
listing for an 8008 system. 
This example used the B and 
C registers to keep track of 
the iteration count. The DOTLOOP 

register contents are 
decremented once for each 

output ZFI instruction. The 
RETURN instruction may be 

substituted with a HALT if 
the CLEAR program is not to 
be used as a called 
subroutine. The CLEAR 
subroutine as listed in Fig. 9 

begins by turning off the scan XSECLOOP 

(which must be done before 
any programming, as stated), 
but does not turn the scan 

back on after the interface 
memory is cleared. The 
course of operation is left to 
the programmer once CLEAR 
has been called. 

The chart in Fig. 10 may 
be used in testing the various 
control commands. The chart 
shows the commands to be 

used to construct a line 
segment in the direction 
shown by the arrow. Lines 
moving in a downward 
direction require that Y be 

reset with (n +1) for each dot 
programmed, "n" being the 

Fig. 11. CHECKERBOARD Test Pattern Program flow chart. 

ROWLOOP 

YSECLOOP 

START 

i 
TURN OFF SCAN, 
SET X &YTO "0," 

CLEAR REGISTERS, 
SET PARITY 
REGISTER. 

i 

INVERT PARITY; 
SELECT "SET Z" 

INSTRUCTION 
ACCORDING TO 

PARITY. 

HALT 
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INCREMENT "B" 

/OUTPUT SELECTED 
SET "Z" 

INSTRUCTION / 

INCREMENT "C" 

-i INCREMENT D 

ADD 0408 to 
"D" REGISTER 

INCREMENT "E" 
EXTRA TIME TO 
INVERT PARITY 
AN EXTRA TIME. 



2 

Fig. 12. Listing of 8008 code for 
the CHECKERBOARD program. 

START 00 /200 = 006 LAI 00/255 = 
00/201 = 201 (TSF) 00/256 = 
00/202 = 121 OUT 10 00/257 = 
00/203 = 006 LAI 00/260 = 
00/204 = 000 (STX) 00/261 = 
00/205 = 121 OUT 10 00/262 = 
00/206 = 006 LAI 00/263 = 
00/207 = 100 (STY) 00/264 = 
00/210 = 121 OUT 10 00/265 = 

CLEAR 00/211 = 016 LBI 00/266 = 
REGISTERS 00/212 = 000 ROWLOOP 00/267 = 

00/213 = 321 LCB 00/270 = 
00/214 = 331 LDB 00/271 = 
00/215 = 351 LHB 00/272 = 
00/216 = 361 LLB 00/273 = 
00/217 = 046 LEI 00/274 = 

PARITY REG 00/220 = 000 00/275 = 
DECLOOP 00 /221 = 040 INE 00/276 = 

00/222 = 304 LAE 00 /277 = 
00/223 = 044 NDI 00/300 = 
00/224 = 001 00/301 = 
00/225 = 150 JTZ 00 /302 = 
00/226 = 246 00/303 = 
00/227 = 000 00/304 = 
00/230 = 066 LLI YSECLOOP 00 /305 = 
00/231 = 332 00/306 = 

DOTLOOP 00 /232 = 301 LAB 00 /307 = 
00/233 = 024 SUI 00 /310 = 
00/234 = 020 00/311 = 
00/235 = 150 JTZ 00 /312 = 
00/236 = 253 00/313 = 
00/237 = 000 00/314 = 
00/240 = 010 INB 00/315 = 
00/241 = 307 LAM 00/316 = 
00/242 = 121 OUT 10 00/317 = 
00/243 = 104 JMP 00/320 = 
00/244 = 232 00/321 = 
00/245 = 000 00/322 = 

DECLOOPJMP 00/246 = 066 LLI 00/323 = 
00/247 = 333 00/324 = 
00/250 = 104 JMP 00/325 = 
00/251 = 232 END 00/326 = 
00/252 = 000 00/327 = 

XSECLOOP 00 /253 = 016 LBI 00/330 = 
00/254 = 000 00/331 = 

00/332 = 

00/333 = 

Fig. 13. A Z -axis drive circuit used 
to control blanking in the author's 
original version of the design. The 
transistors are 2N5139s and the 
diodes are silicon switching diodes 
such as the 1N914 part or its 
equivalent. 

302 LAC 
024 SUI 
003 
150 JTZ 
267 
000 
020 INC 
104 JMP 
221 
000 
026 LCI 
000 
303 LAD 
044 NDI 
037 
024 SUI 
017 
150 JTZ 
305 
000 
030 IND 
104 JMP 
221 
000 
303 LAD 
044 NDI 
340 
330 LDA 
024 SUI 
140 
150 JTZ 
326 
000 
303 LAD 
004 ADI 
040 
330 LDA 
040 INE 
104 JMP 
221 
000 
006 LAI 
206 (TSN) 
121 OUT 10 
377 HLT 
204 (ZNI) 
205 (ZFI) 

TTL Z -AXIS Z AXIS DRIVE (TTL) 

DRIVE FROM 
GRAPHICS 

INTERFACE 
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330pf 
1.8k 

present Y coordinate. Use the 
STX and STY instructions to 
select a starting point. The 
dot whose coordinates are 
X =00, Y =00 will be in the 
upper left corner, the point 
where the scan begins its 
cycle. 

The flow chart for a 

CHECKERBOARD TEST 
PATTERN program is shown 
in Fig. 11, with an 8008 
listing in Fig. 12. The pattern 
produced will be 16 
alternating light and dark 
squares. The 64 rows of dots 
are divided into 4 groups of 
16 rows each. Each row is 

divided into 4 segments. The 
segments are alternately light 
and dark. The 4 groups also 
alternated to reverse the 
pattern between each group. 

The set Z with increment 
instructions is used. The 
least significant bit of the E 

register is used in DECLOOP 
to alternate between "set Z 
on" and "set Z off." To 
obtain the complement of the 
entire pattern on the screen, 
place a 001 in location 
00/220 instead of 000. 

2 AXIS OUTPUT 

-9V 

2.2k 



An Introduction to Addressing Methods 

John Zarrella 
90-9 Wakelee Rd 
Waterbury CT 06705 

Figure 1: Memory Addresses. The effective 
address is the object of memory address 
calculations. It identifies a location in mem- 
ory address space for the particular cell 
involved in some operation. 

EFFECTIVE 
ADDRESS 
(LOCATION) 
00000000 
00000001 00000010 
00000011 
00000100 
00000101 00000110 
00000111 
0000 000 
0000 001 
0000 010 
0000 01 
0000 100 0000 101 
0000 110 

11111101 
11111110 
1 1 1 1 1 1 1 1 

MEMORY CELLS 

MICROPROCESSOR CHIP B SUPPORT LOGIC 

SEQUENCING I 

CONTROL UNIT 

ADDRESS 
COMPUTATIONS 

L== 
t 

INSTRUCTION 
DECODE 

ALU/ 
REGISTERS 

Figure 2: A Typical Sys- 

tem Arrangement. The 

central processor with its 
internal elements defines 
the data bus and an ad- 
dress bus. The address bus 
is used by the memory 
subsystem to decode a par- 
ticular location in the 
memory array which will 
be connected to the data 
bus. 

ADDRESS 
BUS 

rEMORV 
I SUBSYSTEM 

DATA 
BUS - -1 

ADDRESS 
DECODE 

MEMORY ARRAY 
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An address is an identifier which de- 
scribes the location of a particular piece of 
information within a computer's memory 
system. This information, when presented to 
the central processing unit for use in a 

computation, is usually referred to as an 
operand. In all microprocessor systems and 
in most other computer systems, an address 
is a binary number which is decoded to 
reference one computer word of information 
somewhere in the memory subsystem. Fig- 
ure 1 illustrates how unique addresses are 
typically associated with memory cells. 

It is interesting to note that this identifier 
need not be a number. There are some 
experimental computer systems in which 
memory locations are actually referenced by 
name or a combination of a name and a 

numeric index during execution. In these 

systems, there is hardware which translates 
the name directly into the location of an 

appropriate memory cell or group of cells. 
In a similar manner, when writing pro- 

grams in either assembly language or a higher 
level language such as FORTRAN, a pro- 
grammer uses names to reference infor- 
mation. In this case, however, the names are 
generally mapped into numeric addresses by 
the language processing program and are not 
actually implemented in hardware as named 
references. 

Instruction Cycles 

Figure 2 illustrates typical intercon- 
nections among the control unit, arithmetic 
and logic unit (ALU), registers and memory 
subsystems of a general purpose processor. A 
brief review of the typical instruction fetch 
and execute cycle of such a CPU will be 

useful for the discussion which follows. The 
instruction fetch begins when the control 



unit requests the next instruction by trans- 
mitting its address to the memory subsystem 
via the address bus. The current instruction 
address is usually maintained in a register 
called the program counter (or PC), and is 

updated to point to the next instruction 
when the current instruction is completed. 

The information returned is treated as an 

instruction which specifies what function is 

to be performed by the processor. This 
instruction is analyzed in the instruction 
decode section of the processor. The execute 
portion of the instruction cycle then per- 
forms the functions which are specified by 
the decoded instruction. 

Most instructions require data operands 
from the memory subsystem before execu- 
tion can be completed. Thus a memory 
address must be created and sent to mem- 
ory. This address is created using informa- 
tion contained in the decoded instruction in 
conjunction with information contained in 
various registers of the processor. The pro- 
cess of determining a data address is called 
address formation or address computation 
and is performed by the address computa- 
tion section of the central processor. The 
result of address calculation is called an 

effective address. 
A number of address formation capabil- 

ities are provided in the various designs of 
computers which are available. The typical 
contemporary microprocessor only provides 
a portion of the address calculation options 
to be described below. However, each mode, 
when available, can be utilized advantageous- 
ly by the programmer. An understanding of 
addressing modes is useful when evaluating 
the instruction set of a computer. In order 
to clearly define the variety of addressing 
methods, an analogy will be used in the 
following discussion. 

Immediate Addressing 

In many ways memory addressing may be 
likened to the postal system. Imagine that 
you are writing a book on atomic physics 
and that Dr J Smith is to be a consultant. He 

currently lives in a small apartment complex 
called Apple Valley at 15 Grove St. There 
are five apartments at this location, each of 
which has its own street number -from 15 
(manager) to 19. The mailboxes are arranged 
as shown in figure 3. 

While researching the book, you attempt 
many of the necessary calculations yourself. 
These calculations involve multiplication, 
addition, transcendental functions and so 
on. Many times in these calculations you use 
fixed numeric factors, such as 18, which 
approximates 2rr2. In doing this, you are 
treating 18 as a simple integer constant for 
the purposes of the approximation. In com- 

puter addressing terminology, this constant 
might be referenced with what is called 
immediate addressing by simply putting the 
number in a field of the computer instruc- 
tion which follows the operation code. Here 

the effective address of the data is derived 
from the current program counter, and the 
actual instruction contains no addressing 
information. 

Direct Addressing 

Many times when performing calcula- 
tions, you find that the results obtained are 

perplexing and need explanation. Therefore, 
you decide to ask your consultant for help. 
Since Dr Smith does not believe in tele- 
phones, you must send him a note, ad- 

dressed to: 
Dr J Smith 
18 Grove St 

In this case, the value of 18 is being used 

as an address. When delivering the letter, the 
mailman uses this address to determine 
where the letter belongs on Grove St. In its 
computer form, addressing with a single 
number such as 18 is called direct addressing 
or absolute addressing. In a computer, this 
number forms the address field which fol- 
lows the instruction code in the program. 
This address field contains all the informa- 
tion needed by the memory subsystem in 
order to reference the required information, 
in the same manner that 18 Grove St 
contains all the information needed to locate 
Dr Smith on Grove St. 

Note the contrast of this use of 18 as an 
address with its previous use as a constant. 
The number 18 which follows the instruc- 
tion code is the same in either case; the 
intended use differs according to the instruc- 
tion being executed. To know whether to 
use a number following the instruction code 
as an address or as a constant, its context 
must be known. In the typical computer, 
this is accomplished by building a special set 
of instructions called immediate instructions 
which use the number following the instruc- 
tion code as a constant. A second set of 
instruction codes will be devoted to the 
absolute addressing mode, in which the field 
following the instruction code is an address. 
In general, for each possible addressing 
mode, a set of instructions exists which uses 

Figure 3: The concept of 
a memory address can be 
likened to that of a post 
office address. 
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An effective address is the 

goal of address calculation 
techniques. 

The problem of computing 
a result often reduces to 
the problem of organizing 
the reference of operands 
in memory through ad- 

dressing techniques. 



An absolute or direct ad- 

dress specifies an operand 
location as a fixed number 
embedded in the instruc- 
tion sequence. 

Use of registers for address 

components enables one 

to employ base and index 
address concepts. 

that mode and interprets the information 
following the instruction code according to 
that mode. 

Addressing With Registers 

Suppose that you did not know Dr 
Smith's street address and sent the letter 
anyway. When the letter is received at the 
post office, the postmaster, knowing Dr 
Smith very well, would have to tell the 
postman: "I can't remember Dr Smith's 
address, but he lives in Apple Valley apart- 
ments at 15 Grove St and his mailbox is the 
fourth from the right in front of the 
complex." This specifies Dr Smith's address 
relative to a base address, 15 Grove St. In a 

computer, such a base address might typical- 
ly be stored in an index (or general purpose) 
register as shown in figure 4. The displace- 
ment or address modifier in this case would 
be 3, which added to 15 gives the actual 
address of 18 Grove St. A computer with 
this single register indexed addressing meth- 
od carries out the same form of calculation 
to produce the effective address: It adds the 
displacement or modifier field to the con- 
tents of the index register identified in the 
instruction. 

DECODED INSTRUCTION 

ADDRESS 
MODIFIER OR 
DISPLACEMENT 

INDEX OR 

INDEX 
GENERAL PURPOSE 

REGISTER REGISTER BANK 

ID 

INDEX 
+ VALUE 

ADDITION 

EFFECTIVE 
ADDRESS 

Figure 4: Indexed Addressing. One common 
mode of addressing is called indexed address- 

ing, in which an index register specifies one 

numeric value which is added to an address 
modifier to produce the effective address. If 
the index register contains a base address 
value, then the modifier specifies a displace- 
ment or offset which is added to the base; if 
the index register contains an offset or 
displacement, then the modifier field is 

interpreted as a base address. In either case 

the result is an effective address. 

In the most general case, the index 
register may contain either an actual base 

address such as the first address of a table of 
values, or a displacement value. The cor- 
responding contents of the modifier would 
be a displacement value or a base address, 

respectively. In some presently existing 
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microprocessor designs, the index register is 

not large enough to contain a full base 
address. For instance, this occurs if the 
microprocessor uses a 16 bit address space 
and contains only an 8 bit index register. 
This case would require using the index 
register to contain a displacement with the 
base address becoming the instruction's 
modifier field. 

Other options which sometimes occur 
include the choice of a second register as a 

component of effective address generation. 
In such cases, the instruction specifies one 
register which is intended as a base register, 
and a second register which is intended as an 

index register, as shown in figure 5. This 
form of double register addressing is some- 
times combined with a modifier field as 

shown in figure 5. At this time, however, the 
microcomputers commonly available do not 
have such a powerful addressing mode. 

One of the advantages of using a base 

register as well as an index register is that the 
base register can be used to locate a segment 
of memory, while the index register is used 
to access various places in that segment 
according to the program. Since all address- 
ing is specified relative to the base register, 
relocating the program or data being ref- 
erenced can be accomplished without modi- 
fying any code except the instructions which 
load the base register. The example of figure 
6 shows the case of a computer which 
specifies a jump instruction effective address 
as the sum of a base register (register 0) and 
a displacement. Loading the same binary 
code at location 100 or 1125 is possible, 
provided the base register is initialized at the 
start of the program. The problem of reloca- 
tion thus consists of redefining the constant 
which will be loaded into register 0 at the 
start of the program. 

Program Counter Relative Addressing 

Program counter relative addressing is 

very similar to indexed addressing except 
that the base address is implicitly specified 
using the program counter. In a typical 
machine which allows program counter 
relative addressing for data as well as pro- 
gram control purposes, the instruction con- 
tains a modifier relative to the current 
contents of the program counter as shown in 
figure 7. In some microcomputers, such as 

the 6800, program counter relative address- 
ing is only allowed for branch instructions, 
and is specified relative to the next address 
following the end of the current instruction. 

In terms of the postal analogy, this 
corresponds to the mailman coming upon a 

letter with no street address as he is working 
along his route. He therefore calls the 
postmaster and explains his dilemma. Since 



BASE OR 
GENERAL PURPOSE 
REGISTER BANK 

DECODED INSTRUCTION 

BASE 
ADDRESS 
VALUE 

BASE 
REGISTER 
NUMBER 

1 
EFFECTIVE 
ADDRESS 

INDEX 
REGISTER 
NUMBER 

MODIFIER 

ADDITION 

Figure 6: A base register scheme allows 
convenient relocation of code. In this exam- 
ple, the target address of a IMP (jump) 
instruction is specified as u base address 
register and a displacement. The value of the 
displacement is shown as Iwo words from 
the start of a block of memory in which the 
program resides. With the base register 
loaded to the starting address, it does not 
mutter where the block is located. At (a) it is 

INDEX OR 
GENERAL PURPOSE 
REGISTER BANK 

INDEX 
VALUE 

a. 

100 
101 

102 

103 
104 

105 
IO6 
107 

Figure 5: Combining Two Index Registers. 
A more general address calculation uses one 
register as a base register, a second register as 

an index register, and a modifier. The 
effective address is then the sum of the 
values found in the two registers and the 
value of the modifier. The order of calcula- 
tion and detailed significance of the registers 
depends upon the processor design which 
uses this type of address calculation. 

BASE 
REGISTER O 

JUMP TO ADDRESS 2 
PLUS REGISTER O 

BASE 
b. SAME PROGRAM,RELOCATED REGISTER O 

1125 
located at octal address 100; at (b) the block 
is located at address 1125 With base ad- 
dressing schemes, the first operation on 
entry to a program or block of code is to 
establish the value in the base register, as 
illustrated in these examples. 

1126 
1127 
1130 
1131 

1132 
1133 

1134 

there is only one phone booth on the route, 
the postmaster gives him directions, such as: 
"Walk down the street directly in front of 
you and deliver the letter to the fourth 
mailbox in the apartment complex." Note 
that the base address is implicitly specified 
since the postmaster knows the location of 
the phone booth. 

Indirect Addressing 

To illustrate still another method of 
addressing, assume that Dr Smith recently 
had a post office box, #35. Since then he 
changed his mind and asked to have all his 
mail forwarded to his Grove St address. In 
order to remember the change when mail 
comes to the old address, the postmaster 
might mark Dr Smith's Grove St address on 
box 35. Then, when the mailman attempts 
to insert a letter for box 35 into that box, he 
sees the note that tells him to forward the 
letter to 18 Grove St. Thus, the box is not 
the final destination of the letter; in fact, it 
contains only an address to which the letter 
is to be forwarded. We call this method of 
locating the effective address (18 Grove St) 

DECODED INSTRUCTION 

PC 
RELATIVE 
ADDRESS 
VA LUE 

1 

JUMP TO ADDRESS 2 
PLUS REGISTER 0 

PROGRAM COUNTER 

ADDITION 

EFFECTIVE 
ADDRESS 

PC 
VALUE 

indirect addressing. Figure 8 illustrates how 
the effective address is used to retrieve a 
second effective address in the computer 
form of indirect addressing. In the simplest 
form of indirect addressing, only one such 
level of indirection is involved. 

We could easily extend this notion to 
multiple levels. In the postal analogy, 
imagine that Dr Smith moves out of 18 
Grove St. The change of address order to the 
post office would result in a note to the 
postman on the 18 Grove St route, giving 
the new address of Dr Smith. Then, if a 
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Figure 7: Program Coun- 
ter Relative Addressing 
Some computers provide a 
means to address memory 
in terms of an address dis- 
placement relative to the 
current program counter 
value. The instruction con- 
tains the displacement 
which the processor adds 
in the current program 
counter value for this type 
of effective address 
calculation. 



DECODED INSTRUCTION 

FIRST EFFECTIVE 
ADDRESS 

MAIN 
MEMORY 

SECOND (INDIRECT) 
EFFECTIVE ADDRESS 

Figure 8: Indirect Ad- 
dressing. In this form of 
addressing, the first effec- 
tive address developed is 
used to address memory to 
find a pointer which will 
become the final effective 
address used for the 
instruction. 
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Figure . 9: A General Address Computation 
Algorithm. This flow chart shows a typical 
address calculation algorithm of a modern 
general purpose computer. The typical 
microcomputer design circa early 1976 does 
not employ such a powerful addressing 
algorithm, but future improvements in chip 
designs should yield addressing techniques 
which approach the power of a good general 
purpose computer's addressing. 
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letter came to the original post office box 35 
address, the postman would look up the 18 
Grove St address. At the 18 Grove St 
address, the postman would in turn find the 
pointer to a new address for Dr Smith. The 
letter in this case would reach Dr Smith after 
two levels of indirection. This might happen 
a number of times if Dr Smith has a habit of 
frequently moving. In a microprocessor, the 
current chip designs offer only a very limited 
version of this mode, if indirect addressing is 
permitted at all. In minicomputers and large 
scale systems, indirect addressing is often 
allowed to continue to an indefinitely large 
number of levels. 

General Address Evaluation Algorithm 

Indirect addressing is often combined 
with the other addressing modes in com- 
puters which feature the most powerful 
effective address calculations. For instance, 
the indexed addressing mode might be used 
to develop the effective address for the first 
indirect address in a chain of indirect ad- 
dresses. Once the chained indirect address 
lookup is begun, the processor might con- 
tinue through multiple levels of indirection 
until a chain termination condition is de- 
tected. A general address evaluation algo- 
rithm which combines base register, index 
register and the possibility of indirection is 

shown in figure 9. Such an algorithm is 
typical of a good minicomputer, but is only 
partially implemented for most presently 
available microcomputer chip designs. 

Summary 

These methods of addressing are usually 
referred to as the addressing modes of the 
computer. To recap, the typically available 
modes are: 

1. Immediate Addressing, in which 
the data being referenced forms a part 
of the actual instruction. 
2. Direct or Absolute Addressing, in 
which the address of the operand is 

actually given as part of the instruc- 
tion. 
3. Indexed Addressing, in which one 
or more registers are specified, pos- 
sibly including a modifier field. The 
effective address is a sum of the 
contents of the addressing registers 
and the modifier. 
4. PC Relative Addressing, in which 
the program counter acts as a base 
address with an offset specified by the 
instruction. 
5. Indirect Addressing, in which one 
of the other modes develops an effec- 
tive address at which a pointer to data 
will be found. 



Interface an ASCII 
Keyboard to a 

60 mA TTY Loop 

Jay A Cotton 
Bldg 844, Apt 2H 
Gov Island NY 10004 

Figure 1: Using a UART 
and special case logic to 
convert and serialize the 
output of a keyboard for a 
60 mA current loop. 

I recently purchased a Sanders 720 elec- 
tronic keyboard. This keyboard is identical 
to the Model 722 -1 keyboard which was 
described in BYTE, September 1975, page 
62, except for the key layout and the line 
feed code. My version of the keyboard had 
no line feed, but had a vertical tab key 
which produced an octal 013 code. In order 
to convert this to an octal 012 line feed 
code, some form of transformation logic was 
required. I also wanted to drive my Tele- 
type's 60 mA current loop directly from the 
keyboard. By combining the special case 
code conversion, a UART for parallel to 
serial conversion, a clock and a current loop 
driver, I achieved the desired function of 
sending characters to my Teletype. Figure 1 

shows the schematic of this conversion. 

The Circuit 
I chose to detect the octal code 013, then 

to use this special case to alter the data on 
the low order bit of the parallel code pre- 
sented to the UART. By changing the low 
order bit of the octal 013 code from a 

logical one to a logical zero, the number is 

converted from 013 to 012. The 013 code is 
detected using inverters and the 7430 NAND 
gate shown in figure 1. The low order bit is 
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selectively changed for this one code by 

using the exclusive OR function of one sec- 

tion of the 7486 integrated circuit. When the 
input at pin 2 is low (the normal case with- 
out the 013 code input), the exclusive OR 
normally passes line 0's value directly to the 
UART pin 26 input; when the input at pin 2 

of the exclusive OR is high (as is the case 

when 013 is detected), the exclusive OR 
function inverts the value of line 0, thus 
transforming 013 at the keyboard into 012 
at the UART. 

The UART is programmed to generate 
the standard Teletype compatible format of 
a start bit, seven ASCII data bits, least sig- 

nificant first, then parity and stop bits. The 
key pressed signal from the keyboard unit is 

used as the data strobe to start transmission, 
and the transmitter end of character output 
of the UART is used to acknowledge com- 
pletion of transmission. A 555 circuit is used 
to generate the clock. The clock should be 
adjusted to a 1760 Hz square wave; the cir- 
cuit shown has about a 15% adjustment 
range for this purpose. The output of the 
UART is buffered by two inversions which 
protect the UART from excessive current 
drain. The buffered output in turn drives a 

relay through the quasi -Darlington coupled 
transistors. The relay used must be capable 
of switching the 60 mA current loop in 
times on the order of one millisecond. It 
must also be capable of sustained operation 
at high rates of change. If your junk box is 

not equipped with such a relay, other alter- 
natives include use of an opto isolator and 
(Ise of a high power interface circuit such as 

the 75451 driver chip. 
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Interfacing the 
60 mA Current Loop 

+ 5V 

Generally the older Teletype units such as 

model 15s, 19s and 28s require a 60 mA 
loop to operate the printer. These older 
machines are not as attractive looking as the 
newer model 32s and 33s, but for the Altair 
computer hobbyist, looks are probably 
second to costs. The 60 mA interface cir- 

RSI TO UART 

Figure 1: Input Circuit. The Teletype generates Baudot codes mechanically 
by activating switch contacts according to the code being generated. To 
condition the inputs for the UA RT, this circuit will debounce the signal and 
convert it to a TTL level. 

Figure 2: Printer Drive Cir- 
cuit. The 60 mA current 
loop is a circuit which 
normally passes 60 mA 
through all the printer 
magnets and keyboard 
contacts of Teletypes 
which are "in the loop." 
This circuit drives the 
printer mechanism only by 
using a TTL level signal 
from the UART to control 
a transistor switch. 

TSO 10K 
FROM 
UART 

2N5655 
OR 
MJE 340 

cuits shown below are simple, straight- 
forward, and do an effective job. 

Circuit Notes 

The loop keying transistor, 2N5655, is a 

250 V power tab purchased at two for $1 at 
a surplus house. In the mark state, this 
transistor is fully saturated. The collector 
dissipation is 0.7 V x 0.060 A or 0.042 W. In 
the space state, with no collector current, 
the dissipation is zero. Heat sinking is not 
required. The 0.1 pF and the 470 ohm 
resistor protects the keying transistor from 
voltage spikes generated by the inductance 
of the printer magnet. The 10 K ohm re- 
sistor in base circuit limits the current 
supplied by the UART TSO output gate to a 

safe value when in the mark state. The 
variable resistor in the loop should be 
adjusted with a milliampere in the circuit. 
Set the loop current to 60 mA. A pull up 
resistor, 1 k ohm, is connected to the 
keyboard and +5 V to generate a TTL level 
keying signal. The 1 pF capacitor in parallel 
with the keyboard is used to smooth out any 
contact bounce. The 4.8 V zer.er diode 
clamps the space signal to 4.8 V (logic 1). 
Also, hopefully, it will act as a crowbar 
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circuit (short to ground) if high voltage were 
to appear in the keying circuit by accident. 

External Connections 

It is a good idea to mount the keying 
transistor on a perforated board separated 
from the serial 10 board. An inadvertent 
short circuit to the high voltage loop could 
wipe out the serial IO board integrated 
circuits. The keyboard contacts on a Model 
15 or 19 are usually terminals number 32 
and 34. The printer magnet terminals are 
numbers 46 and 45. If there is a line relay in 
the machine, remove it and discard it. 

UART Connections 

If you are using a Model 15 or Model 19, 
the Baud rate is 45. The UART clock preset 
count for 45 Baud is 2454 in octal. The 
Model 28 with 100 word per minute gears 
runs at 74.2 Baud. The preset count for 74.2 

Figure 3: To complete the adaptation of a 60 mA TTY to your UART, this 
simple power supply will provide the necessary voltages. The transformer 
should have a secondary with at least 90 volts AC input to the bridge 
rectifier. The actual value could be 90 to 120 volts or so depending upon 
what you can find in the junk box of your home laboratory. The capacitor 
value of 1750 AF is also not critical. The voltage rating should be higher than 
the output peak of the bridge rectifier and the value should be greater than 
500 /IF. 

Baud is 4553 in octal. Since these older 
Teletypewriter machines use only five data 
bits, the UART jumpers NDB1 and NDB2 
must be wired to GND. The NSB jumper is 

connected to logic 1 which selects 1 -1 /2 stop 
bits when NDB1 and NDB2 are grounded. 

If read errors begin to occur on the 
keyboard, it is probably due to an oil film 
on the keyboard switch contancts. Use a 

little carbon tetrachloride solvent on them 
or carefully pull a piece of paper between 
the contacts to clean them. 
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The COMPLEAT 

Tape Cassette Interface 

Jack Hemenway 
151 Tremont St, 8P 
Boston MA 02111 

The software of a tape 
cassette interface provides 
open, data transfer and 
close operations for both 
input and output. 

Mass storage is one of the most important 
functions in the small computer system 
design. Mass storage can typically be used as 

the medium of a text editor, as the input 
and output of a full fledged language trans- 
lator program, and as a means of saving 
working and debugged software you've 
created. One of the least expensive ways to 
accomplish mass storage is the audio cassette 
storage method. 

What is involved in the use of audio 
cassettes for mass storage? Here's an answer 
which works quite well in my Motorola 
6800 microcomputer system. The 
COMPLEAT Tape Cassette Interface consists 
of tape input and output software, the 
Lancaster speed independent audio interface 
(see BYTE, September 1975), a Motorola 
asynchronous communications interface 
adapter (ACIA), a transmit clock, and the 
circuitry needed to start and stop the tape 
recorder's motor under program control. 
The hardware of the interface is shown in 
block diagram form in figure 1. The software 
consists of an open, data transfer and close 
subroutine for each direction of transfer, 
input and output. The hardware and soft- 
ware described in this article can be used as 

the stepping stone to a more complete 
cassette tape information management 
system, or it can be used alone whenever a 

program requires cassette input or output 
functions. 
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What Is an ACTA? 

The Motorola MC6850 asynchronous 
communications interface adapter is a 

specialized version of the familiar universal 
asynchronous receiver transmitter (UART). 
The ACIA is designed specifically to inter- 
face the Motorola 6800 central processor; 
however, its use is by no means limited to 
the 6800. An ACIA can be used con- 
veniently in any computer system with data 
paths 8 bits or more in width. 

The ACIA differs from the conventional 
UART in the way it is controlled. All 
control, status and data transfers are made 
over a single 8 bit bi- directional bus. The 
integrated circuit contains a control register 
which may be set by the microprocessor; it 
is a location in memory address space. The 
ACIA contains a status register which may 
be tested by looking at the same location. 
The ACIA also contains transmitter and 
receiver data registers which are treated as a 

memory location via the bus structure and 
selection logic. In contrast to the UART 
with its separate input and output data 
buses, hardwired option selections and 40 
pin package, the ACIA design fits into a 24 
pin package with several pins left over for 
use as address selection and modem control 
functions. 

The ACIA options are normally selected 
by storing a bit string into the control 



register when the computer system is first 
initialized (at power on time) or later when 
the reset operation is performed manually. 
However, since the ACIA has the control 
register, these options can be changed at any 
time by a program which runs the interface. 
This capability is used to advantage in the 
COMPLEAT Tape Cassette Interface: The 
tape cassette motion is controlled through 
the RTS line of the ACIA (pin 5, IC1) by 
setting an appropriate two bit code into the 
transmitter control bits of the control 
register (bits 5 and 6); whenever the tape 
motion is changed (on to off, or off to on), 
these bits of the control register are 
redefined. 

The ACIA is interfaced to the system 
data bus either directly, or by means of an 

appropriate 8 bit bus buffer. The interface is 

controlled by means of the read write line 
(RW) and address selection logic. In the 
hardware of this article, a full address 
decode is avoided by wiring the chip select 
lines to appropriate system address bits and 
using the low order address bit as the register 
select line (RS, ICI pin 11). The ACIA has 

four registers, but only two memory address 
space locations are required. The apparent 
inconsistency is resolved by the read write 
line of the system interface. Two of the 
internal registers are read only registers 
(receiver data and status registers), and two 
of the internal registers are write only 
registers (transmitter data and control 
registers). Table 1 shows the system 
addresses and register access used by the 
interface of figure 2. (Note that any pair of 
neighboring locations in memory address 
space can be used conveniently with 
appropriate decoding.) 

The enable line (E, pin 14 of IC1) is used 

to synchronize the ACIA status and control 
changes to the processor, and to condition 
the ACIA's internal interrupt circuitry. The 
interrupt request line (IRQ, pin 7 of IC1) is 

used in systems which employ interrupts to 
coordinate IO operations. If used, it signals 
the microprocessor whenever the ACIA is 

requesting an interrupt. In the simple inter- 
face presented here, interrupts are ignored 
and the software is coordinated using the 
status register flags of the ACIA. 

For a full description of the ACIA con- 
trol and status registers, the specifications of 
the Motorola MC6850 ACIA integrated cir- 
cuit should be consulted. See also pages 3 -22 
to 3 -25 of the Motorola M6800 Micro- 
processor Applications Manual. The software 
shown in this article makes use of the status 
register bits for timing and error detection, 
and sets up the control register for a 

standard 8 bit asynchronous data format 

INTERFACE 
WITH THE 
MICROPROCESSOR 

ACTA 

DATA 
TO 9E TRANSMITTED 

RECEIVE CLOCK 

RECEIVE DATA 

TRANSMIT CLOCK 

RTS 

CTS DCD 

TRANSMIT 
CLOCK 

LANCAS- 
TER 

INTER 
FACE 

TO 
"AUX INPUT 
OF CASSETTE 
RECORDER 

5 SEC 
DELAY 
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FROM 
'EAR' OUTPUT 
OF CASSETTE 
RECORDER 

TO 
'REMOTE' INPUT 
OF CASSETTE 
RECORDER 

TAPE CASSETTE 

Figure 1: Block diagram of the COMPLEAT Tape Cassette Interface. This 
illustrates the major elements of the interface; see Don Lancaster's BIT 
BOFFER article . in this issue for details of the hardware of the cassette 
modem. 

with one start bit, one stop bit, odd parity 
and a division ratio of 16 for the clocks used 

with the ACIA. 
On the peripheral side of the ACIA there 

are three lines which are used to control and 

test the tape recorder interface. An output 
line called request to send (RTS, pin 5 of An ACIA is Motorola's 
IC1) is used for tape motion control. An 
input line called clear to send (CTS, pin 24 
of IC1) is used for a tape output delay timer, 
and an input line called data carrier detect 
(DCD, pin 23 of IC1) is used for a tape input 
delay timer. Serial data generated by the 
ACIA is sent to the Lancaster tape interface 
modem over the transmit data line 
(TXDATA, pin 6 of IC1), and serial data 
received from the Lancaster tape interface 

version of a UART. 

Table 1: ACIA addresses. This table shows how the four ACIA registers are 
referenced, using two memory locations. The secret is that two of the 
registers are input only, and two of the registers are output only. Thus at each 
address, the register referenced in the AC /A depends upon whether the CPU 
is reading data from that address or writing data to that address. 

Address Operation Symbol ACIA Register Typical Code 

8010 read ACI ACTR L status LDAA AC IACTR L 
8010 write ACIACTRL control STAA ACI ACTR L 
8011 read ACIADATA receiver data LDAA ACIADATA 
8011 write ACIADATA transmitter data STAA ACI ADATA 
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In this interface, software 
is synchronized to hard- 

ware, using the technique 
of testing status bits in 

wait loops. 

A flip flop toggled by a 

clock produces an output 
clock which is a perfect 
square wave at one half 
the input frequency. 

Software timing loops and 

hardware oneshots can 

accomplish the same goal: 
delaying execution. 

modem is presented to the receive data line 
(RXDATA, pin 2 of IC1). During trans- 
mission, the data rate is set by the trans- 
mitter clock, generated by IC3 and IC4, and 

during input operations the receiver clock 
(RXCLK, pin 3 of ICl) is recovered from 
the tape data by the Lancaster interface, 
locking the ACIA to the actual tape speed. 

Hardware Software Interfaces 

The ACIA is controlled by the micro- 
processor software which views it as the two 
adjacent memory locations shown in table 1. 

The interfaces between hardware and soft- 
ware can be controlled by one of two 
different methods. The interrupt method of 
IO synchronization relies upon the ACIA to 
generate an interrupt in the processor 
through the IRQ line of the system. Because 

the central processor is interrupted (and its 
state is saved) only when IO service is 

required, the processor can be busy with 
some other task while waiting for the slow 
IO device to complete its operation. 

In contrast, the programmed transfer 
method employs a wait loop in a program to 
monitor ACIA status register bits which 
indicate the progress of the data transfer 
operations. When the status bits indicate 
that the ACIA is ready for a transfer to or 
from the data location, the interface pro- 
gram can then proceed to carry out the 

transfer. The programmed transfer method is 

employed in the software of the 

COMPLEAT Tape Cassette Interface illus- 
trated here, primarily because of its 

simplicity. 
Reading is accomplished by testing the 

status register repeatedly until the receiver 

data ready flag (bit 0 of the status register) is 

high, indicating the presence of data. When 

the data is available, the program loads the 
ACIA data location into an accumulator, an 

operation which resets the status flag; for 
input the status register is also tested for the 

three kinds of error conditions, and a con- 

dition code is returned from the input 
routine in the other accumulator. Similarly, 
writing is accomplished by testing the status 
register repeatedly until the transmitter 
buffer empty flag (bit 1 of the status 

register) is high, indicating an empty buffer 
which can receive the output character. The 
output program then stores a character into 
the ACIA data location causing the ACIA to 
begin an output operation and resetting the 

flag status bit. 

Hardware for COMPLEATness 

The circuit of the interface is shown in 

figure 2, including all details except the 

Lancaster tape cassette modem circuit. Note 
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that with appropriate clock frequencies, any 
modem circuit could be used which accepts 
the asynchronous data format and clock 
information. (See Don Lancaster's article 
"Build the BIT BOFFER" in this issue, and 
"BYTE's Audio Cassette Standards Sympo- 
sium," page 72 in the February 1976 
BYTE.) The modem interface consists of 
four signals: 

TXDATA: This signal is the output data 
generated by the ACIA at a baud rate 
equal to the TXCLK frequency divided 
by the ACIA divide ratio. In this article, 
division by 16 is used, as set in software 
by the control codes to the ACIA. This 
line is shown wired directly from the 
ACIA, so it can drive the equivalent of 
one TTL load. 

TXCLK: This signal is the output data 
clock, which is fed to the ACIA and to 
the tape interface. The Lancaster inter- 
face modem uses this signal to synchro- 
nously generate the two data frequencies 
which are recorded on the tape according 
to TXDATA. 

RXCLK: This signal is the input data 
clock, which is recovered from data by 
the tape interface. Since this signal is 

derived from the tape input data, it is 

locked to any variations in tape speed. 
Thus the ACIA's input circuitry will not 
make errors due to differences between 
the transmitter clock frequency and the 
variations in tape speed which are called 
"wow and flutter" in audio tape recorder 
specifications. 

RXDATA: This signal is the input serial 
data recovered from the Lancaster audio 
interface modem. Since RXDATA is 

locked to RXCLK, speed variations of 
data relative to clock cannot occur. 

Transmit Clock 

The transmit clock is provided by a 555 
oscillator (IC3) followed by a flip flop 
(7473, IC4) which divides the oscillator 
frequency by 2. The 555 is wired with 
components selected for a frequency of 
9600 Hz. When the interface is constructed, 
the potentiometer R1 should be adjusted so 

that the frequency is 9600 Hz, using a 

frequency counter or an oscilloscope to 
make the measurement. For those using 
oscilloscopes, 9600 Hz is a period of 104.2 
µs, or a 5.21 cm trace on a scope set for a 20 
ps /cm horizontal time base. 

The division by 2 which follows the 

oscillator is provided by a )K flip flop set up 
to toggle. This means that both the J and the 
K inputs are connected to logical one (IC4 



CPU 
SIDE 

DATA 
BUS 

ADDRESS 
AND 
CONTROL 
BUS 

[24- 
23- 
22 

DI 21 

02 20 
D3 19 

04 18 

OS 17 

D6 16 

D7 15 

4,2 14 

R/W-13- 
AO 
AS 
A13 
IRO 
VMA 

A15 

TO /FROM 
LANCASTER SPEED INDEPENDENT 

CASSETTE INTERFACE 

I 2 3 4 V V 

I- RECEIVE DATA FROM INTERFACE 
2- RECEIVE CLOCK FROM INTERFACE 
3- TRANSMIT CLOCK TO INTERFACE 
4- TRANSMIT DATA TO INTERFACE 

ICI 
MC6850 

PERIPHERAL 
SIOE 

CTS if 
DCD lr 
DO 

DI 

P2 
03 
04 
D5 
D6 

D7 

E 

R/W 

VSS 
RXDATA 

RXCLK 

TX CL K 

lr RTS 
TXDATA 

11- IRO 

A CSO 

lr CS2 
JL CSI 

RS 

VDD 

2 

-3 
4 

5 

6 
7 

8 

9 
10 

11 

-12-0 +5 

2 

IC2o 
+5 

IC3 
555 

1C2D 5 
R6 
1K 

2 

CRO 

I C5o 

7407 OPEN 
COLLECTOR DRIVER 
NONINVERTING 

RTS 

+12 

T DI 

+5 

RLYI 
NO. RELAY 
1200A IOmA I2VDC 
RADIO SHACK 275 -003 

TO R CAS- t:: :: l SEETTE REMOTE 
CONTROL 

1RTS 

2 

7404 

nJ 
12 ' _rL 

16 F 4800Hí 

I11 
IC4 TRANSMIT CLOCK 

1 7473 2 6 1 FOR 300 BAUD 
+5 

' 2700pFL 
DRJ 

9600Hí 
CI 

R2 RI R3 
1K 50K 1K 

IC5 D 

3 

14 
5 

R4 
39K 

100 
µF 

B 
Al 

A2 

3 

2, 7 

10 

74121 
106 
5sec DELAY 

iRTS 

+5 
4 14 

R5 
39K 

C3 
50µF 10 

L 
B 

Al 

A2 

0 

ONESHOT 
74121 
IC7 
2.5 sec DELAY 

Figure 2: Motorola 6800 ACIA and control circuitry for the COMPLEAT Tape Cassette Interface. 

pins 14 and 3). The purpose of the division 
stage is to produce a perfect square wave 
clock signal, which is a requirement for the 
Lancaster cassette interlace. 
Tape Motion Control 

The request to send line (RTS) is used to 
control the tape recorder's motor, as men- 
tioned earlier. Whenever the ACIA is set up 
with a control register code for a low value 
of RTS, the signal presented to the 7407 
(1C8) section used as a relay driver is low 
(after two inversions in IC5). This signal is 
buffered by the driver, producing a low state 
at its output (1C8, pin 6) which places 12 
volts across the relay coil, closing the con- 
tacts and turning on the motor. When RTS is 

set high, using a different ACIA control 
code, the input to IC8 is high, so the relay 
coil has zero volts across it and the relay 
contacts are open. Note that diode Dl is 
placed across the relay coil to guard against 
inductive back EMF which can blow out 
integrated circuit drivers such as IC8. 

Tape Motor Start Delays 

Two oncshots are provided in this design 
in order to give hardware delays of 2.5 and 

5.0 seconds following tape motor turn on. 
The long delay is used prior to output 
operations so that a long leader at the mark 
frequency will be recorded. The short delay 
is used during read operations so that 
reading will start 2.5 seconds prior to the 
first actual data byte. Since the asynchro- 
nous data format is used, the solid mark 
tone for about 2.5 seconds will not cause 
any data to be input; it provides tolerance 
for manual tape positioning to selected 
blocks usinga tape position counter which is 

built into many cassette recorders. 
The system as designed and illustrated in 

this article uses hardware to generate the 
time delays of 2.5 and 5.0 seconds after 
motor start. I t should be noted, however, 
that the timers IC6 and IC7 could be 
omitted and replaced by software. To make 
such a change, the input and output initiali- 
zation routines would have to be altered to 
use software timing loops to create the 
required delay. Examples of such timing 
loops have appeared in previous issues of 
BYTE (sec "Add A Kluge Harp to Your 
Computer," October 1975, page 14, and 
"Can Your Computer Tell Time ? ", Decem- 
ber 1975, page 82). This is an example of a 
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Always program with com- 
mentary - if you want to 
communicate what you 
mean to yourself (five 
years from now) or to 
your neighbor. 



The larger a block of data 

on a cassette, the less tape 
is wasted in "inter record 
gaps" as the motor starts 

and stops. At 300 baud, a 

4096 byte block can be 

recorded in 150 seconds, 

so the 5 to 10 seconds of 
inter record gap waste less 

than 7% of the available 
tape on a cassette. 

hardware software tradeoff: If you find it 
easier to program timing loops and you 
don't mind having an idle computer wasting 
time in such loops, then omit the hardware 
timers and use software; if you plan to use 

interrupts, with the central processor turning 
to other tasks while waiting for IO opera- 
tions, then the hardware timers would be 

preferable. 

Software COMPLEATness 

No tape cassette interface is complete 
without software to run it. The software of 
the COMPLEAT Tape Cassette Interface 
gives facilities to perform several operations. 
In order to understand the use of the 
software provided, the three operations of 
opening, transferring data and closing a file 
should be defined: 

Opening a file. The first operation in a 

data transfer to a device such as the 
COMPLEAT Tape Cassette Interface is 

opening the file. This operation is mini- 
mal for the simple system discussed here: 
The tape motion is started and a wait 
loop is entered until the motor start delay 
is complete. For output, the subroutine 
T1OTZ performs this operation. For 
input, the subroutine T1INZ performs 
this operation. In a more sophisticated 
software system, opening a file can have a 

much more general meaning and effect. 
For the COMPLEAT Tape Cassette Inter- 
face, the tape recorder must be set up 

manually for playback (read operation) 
or record (write operation) and the tape 
should be positioned at the beginning or 
at a location specified by the location 
counter of the recorder prior to opening 
the file. 

Data Transfer. Once the file is opened, 
the motor is on; and data transfer can 

occur for as long as software desires. A 
data transfer operation is the input or 
output of one character from the corn - 
puter. The software of the interface 
provides an input routine called T1GET 
which reads the next character into 
accumulator A with an error condition 
code in accumulator B. The software of 
the interface provides an output routine 
called T1PUT which takes a character 
from accumulator A and stores it in the 
ACIA for conversion and output to the 
cassette modern. Note that the program 
which calls the data transfer routines 
must keep track of how many bytes to 
transfer. One convenient way to do this is 

to arbitrarily decide to always output a 

fixed number of bytes, such as 256. 
Another way to keep track of block size 
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is to decide to send the block length as an 
8 (or 16) bit number which is always 
recorded as the first byte (or first two 
bytes) of the block. These are by no 
means the only software data formats 
possible. 

Closing a file. When the software which 
requires an IO interface completes 
sending all the data required for one 
block on the tape, the last step of the IO 
operation is to close the file. In this 
simple cassette interface, the file closing 
operation consists of turning off the 
motor. (In the case of output, the last 
character transmission must be completed 
so the close routine also includes a wait 
loop.) In the more general case of an 
information management system, closing 
a file might include other operations such 
as recording check sums for error detec- 
tion. The output file closing routine is 

TIOSTP, and the input file closing 
routine is Ti ISTP. 

The Listings 

Listing 1 starts a detailed presentation of 
the software in the absolute machine lan- 
guage and the symbolic assembly language of 
the Motorola 6800 microprocessor. (While 
the interface is shown oriented toward my 
6800 system, the listings are given with 
ample commentary to document function 
and facilitate conversion to other micro- 
processors.) Listing 1 contains three state- 
ments which set up information used by the 
assembler. Lines 1 and 2 use the EQU 
pseudo operation to set the addresses of the 
labels ACIACTRL and ACIADATA which 
are used to reference the two memory 
address space locations associated with the 
COMPLEAT Tape Cassette Interface hard- 
ware. Line 3 is an ORG statement which is 

used to set the location counter of the 
assembler to hexadecimal 1000 which will 
become the starting point of the first 
routine. While the listings of the COM- 
PLEAT Tape Interface routines in this 
article show a hexadecimal starting address 
of 1000, the subroutines can in fact be 
relocated to any starting address without 
changing the absolute machine code. If you 
do choose to relocate the code, however, 
you should figure out the relocated 
addresses of the subroutine entry points so 

that they can be referenced by software 
which uses these routines. 

Listing 2 describes the output initializa- 
tion routine T1OTZ which is used to prepare 
for an output operation. When T1OTZ is 

given control, an assumption is made that 
the cassette recorder has been manually 
prepared for recording but with motor 



power removed. The ACIA is first reset using 
the control register code of hexadecimal 5F 
(lines 6 and 7). Then the ACIA control code 
for normal operation, hexadecimal 1D, is set 

up by execution of lines 8 and 9. This turns 
on the tape recorder motor and triggers the 
oneshots of IC6 and IC7 in the interface. 
The output of oneshot IC6 is monitored as 

bit 4 of the control register (the CTS line 
into pin 24 of IC1). The initialization 
routine falls into a loop at lines 10 to 12 

until this time delay signal ends and bit 4 of 
the control register becomes zero. T1OTZ 
has no parameters and uses the stack to 
preserve the contents of accumulator B, so 

that upon return none of the internal 
registers of the processor have been altered. 

Listing 3 describes the output data trans- 
fer routine T1PUT. The purpose of this 
routine is to put the contents of accumula- 
tor A into the output data stream. Ti PUT 
first tests the transmitter buffer empty flag 
of the status register (bit 1) in a wait loop at 
lines 17 to 19. Then it simply stores the 
output character of accumulator A into the 
ACIA data location, which automatically 
iritializes an output operation for that 
character. Ti PUT has one parameter, a 

character code passed in accumulator A. It 
preserves the content of accumulator B in 

the stack. 
Listing 4 gives the code for the output 

close routine, TIOSTP. This routine uses a 

wait loop at lines 24 to 26 in order to ensure 
completion of the last ACIA output con- 
version. Following completion of the last 
character, T1OSTP loads the ACIA control 
register with the hexadecimal control code 
5D in order to turn off the tape recorder 
motor. It then returns to the caller. TIOSTP 
has no parameters. As shown, TIOSTP uses 

accumulator B as a temporary data storage 
area but does not preserve its value in the 
stack; addition of PSHB and PULB opera- 
tions (after line 23 and before line 29 
respectively) could be done to preserve these 
registers if required. 

Listing 5 gives the code of the input open 
routine, TiITZ. This routine is identical to 
T1OTZ in all areas except one: It tests the 
DCD status line (bit 2 of the control 
register) instead of the CTS status line. Thus 
the input initialization routine waits for the 
2.5 second delay produced by oneshot IC7. 

Listing 6 shows the input data transfer 
routine, Ti GET. This routine is called once 
for each character of input expected by the 
program which uses the tape cassette inter- 
face. Its first action is to enter a loop (lines 
41 to 44) waiting for the receiver data 
available flag in the status register to become 
high. When a character is ready and indi- 

Listing 1: Global symbol equates and origin of the COMPLEAT Tope Cassette 

Interface software. This listing sets up the symbolic addresses ACIADATA 
and ACIACTRL, and sets the location counter to start at hexadecimal 1000. 

Note that a common statement number sequence is used for all the tape 

cassette interface software in listings 7 through 8, and that symbols with up 

to 8 characters (Motorola allows 6) are used in these listings. 

1 0000 80 10 ACIACTRL EQU $8010 
2 0000 80 11 ACIADATA EQU $8011 
3 1000 10 00 ORG $1000 

set up address of ACIA control 
and then ACIA data; 

start program at 1000 hexadecimal, 

Listing 2: Output initialization routine TiOTZ. This subroutine is called after 
the tape recorder has been readied manually for a write operation. T1OTZ 
resets the A CIA and turns on the tape recorder motor, then waits for the end 
of the output initialization delay. The delay is ended when CTS is found to 
be zero five seconds after the motor turned on. 

4 1000 10 00 T1OTZ EQU this routine Initializes and starts output, 
5 1000 37 PSHB push B into stack to save it; 
6 1001 C6 5F LDAB rS5F ACIACTRL control code for 
7 1003 F7 80 10 STAB ACIACTRL master reset, RTS high; 

8 1006 C6 10 LDAB eS1D ACIACTRL :' control code for 

9 1008 F7 80 10 STAB ACIACTRL RTS low, normal operation; 
10 1008 F6 80 10 TIOTZW LDAB ACIACTRL B . LL ACIA status register, 

11 100E C5 08 BITS rS08 test status of CTS (bit 4), 
12 1010 26 F9 BNE Ti OTZW if not ready then keep looping; 
13 1012 33 PULB else pull B from stack to 
14 1013 39 RTS restore it, then return; 

Listing 3: Character PUT routine T1PUT. This subroutine is called whenever 
it is desired to write a character on tape. After waiting for a go ahead from 
the transmitter buffer empty status bit, the routine transfers the contents of 
accumulator A to the ACIA transmitter buffer register. 

15 1014 10 14 T1PUT ECU 
16 1014 37 PSH B 

17 1015 F6 80 10 T1PUTW LDAB 
18 1018 C5 02 EITB 
19 101A 27 F9 BEC 
20 101C B7 80 11 STAA 
21 101F 33 PULB 
22 1020 39 RTS 

this routine wines one character of output, 
push B into stack to save it; 

ACIACTRL B . ACIA status register; 
"S02 test status of transmitter (bit 11. 

T1PUTW if not ready then keep looping; 
ACIADATA else transmit ,r byte from A, 

pull B from stack to restore it; 
i et.irn to the caller, 

Listing 4: Output close routine TIOSTP. This subroutine is called following 
output of a series of characters (a "block "). TIOSTP waits for the 
completion of the last output operation, then shuts down the tape recorder 
motor and returns. 

23 1021 10 21 T1OSTP EQU 
24 1021 F6 80 10 LDAB 
25 1024 C5 02 BITE 
26 1026 27 F9 BED 
27 1028 C6 5D LDAB 
28 102A F7 80 10 STAB 
29 1020 39 RTS 

this routine stops tape alter writing a block, 
ACIACTRL B .° ACIA status register; 
=$02 is transmitter data register cr..ipty) 
T1OSTP if not keep waiting for empty, 

S50 else ACIACTRL control code for 
ACIACTRL RTS high, motor off, 

return to caller, 

Listing 5: Input initialization routine T1INZ. This subroutine is called after 
the tape recorder has been readied manually for a read operation. T1 /NZ 
resets the ACIA and turns on the tape recorder motor, then waits for the end 
of the inpu t initialization delay. The delay is ended when DCD is found to be 

zero 2.5 seconds after the motor is turned on. 

30 102E 10 2E T1INZ ECU 
31 102E 36 PSHA 
32 102F 86 5F LDAA 
33 1031 87 80 10 STAA 
34 1034 86 10 LDAA 
35 1036 67 80 10 ST AA 
36 1039 66 80 10 T11NZW LDAA 
37 103C 85 04 BITA 
38 103E 26 F9 BNE 
39 1040 32 PULA 
40 1041 39 RTS 
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this routine initializes and starts input, 
push A into stack to save it; 

-55F ACIACTRL . ' control code for 
ACIACTRL master reset, RTS high; 
-510 ACIACTRL - control code for 
ACIACTRL RTS low, normal operation, 
ACIACTRL B - ACIA status register. 
.SO4 is DCDfbit 2) low) 
T1 INZW if not then keep waiting, 

else pull A from stack to 
restore it, then return; 



Listing 6: Character GET routine T1GET. This subroutine is called whenever 

it is desired to read a character from tape. After waiting for a go ahead from 
the receiver data available status bit, the routine transfers the input data to 
the accumulator A before returning. If errors occur, the error status bits are 

returned in accumulator B. Note that once the tape is started for input, the 

processing performed between Ti GET calls must on the average be 

completed before the next character is ready, if an over run error is to be 

avoided. For a 300 baud transmission rate, this gives 33.33 milliseconds, or 
33,000 Motorola 6800 instruction cycles at 1 MHz, assuming that the output 
routine was called at an lO limited rate. 

41 1042 10 42 T1GET EQU 
42 1042 F6 80 10 LDAB 
43 1045 C5 01 BITB 
44 1047 27 F9 BEG 
45 1049 C5 70 BITE 
46 104B 27 01 BEG 
47 1040 39 RTS 
48 104E B6 80 11 T1GETR LDAA 
49 
50 

1051 
1052 

5F 
39 

CLRB 
RTS 

' this routine reads one character of input; 
ACIACTRL B := ACIA status register; 
=$01 is receiver data ready (bit 01? 

T1GET of not then keep looping; 
=$70 are there any errors (bits 4 -61? 

T1GETR if not then go read character; 
else return with condition in B; 

ACIADATA A := ACIA data register; 
B := 0 (clear condition code in B); 
return with character in A; 

Listing 7: Input close routine TIISTP. This subroutine is called following the 

last input of a series of characters (a "block'). TIISTP immediately turns off 
the motor, since the Ti GET routine is assumed to have been executed for the 

last character prior to TIISTP. Note that the determination of the length of a 

block is intentionally omitted from the software of this package. 

51 

52 
53 
54 
55 
56 

1053 
1053 
1054 
1056 
1059 
105A 

10 
36 
86 
B7 
32 
39 

53 

5F 
80 10 

T11STP EQU 
PSHA 
LDAA 
STAA 
PU LA 
RTS 

this routine stops tape after reading a block; 
push A into stack to save it; 

ß5F ACIACTRL =: control code for 
ACIACTRL RTS high and motor off; 

pull A from stack to restore it; 
return to caller; 

Listing 8: Test Routines. The programs READ and WRITE are shown in this 

listing. WRITE should be called first to output 256 bytes of arbitrary data 

located at hexadecimal addresses 400 to 4FF in memory. Once the block 

is dumped to tape, the tape cassette can be rewound and set up for a playback 

operation. Then READ can be called to transfer the data back into the 

computer where the terminal monitor program (for example, Motorola 

MIKBUG) can be used to examine the data to verify that the interface 

restored it properly. 

57 0100 01 00 ORG 

58 0100 10 00 T1OTZ EQU 

59 0100 10 14 T1PUT EQU 

60 0100 10 21 T1OSTP EQU 

61 0100 10 2E T1INZ EQU 

62 0100 10 42 T1GET EQU 

63 0100 10 53 T11STP EQU 

64 0100 01 00 WRITE EQU 
65 0100 BD 10 00 JSR 

66 0103 CE 04 00 LDX 
67 0106 A6 00 WRITELP LDAA 
68 0108 BD 10 14 JSR 

69 010B 08 INX 
70 O10C 8C 05 00 CPX 

71 010F 26 F5 BNE 
72 0111 BD 00 21 JSR 

73 0114 39 RTS 

74 0115 01 15 READ EQU 
75 0115 BD 10 2E JSR 

76 0118 CE 04 00 LOX 
77 0118 BO 10 42 READLP JSR 

78 011E Cl 00 CMPB 
79 0120 26 08 BNE 

80 0122 co 00 STAA 
81 0124 08 INX 
82 0125 8C 05 00 CPX 

83 0128 26 F1 BNE 
84 012A BO 10 53 ENDREAD JSR 

85 012D 39 RTS 

$0100 start programming at location 0100; 
$1000 here is a set of 
$1014 equates used to 
$1021 
$102E 
$1042 
$1053 

tell the assembler 
where the COMPLEAT 
Tape Cassette Interface 
is located; 

' here begins the output test routine. 
T1OTZ call the output open routine; 
=$400 X := starting address of block; 
O,X A := memory (X); 
T1PUT output ;= A (call the put routine); 

X := X i 1; 

=$500 is X = last address plus one 
WRITELP of not then reiterate; 
TIOSTP call the output close routine; 

return to monitor; 

here begins the input test routine; 
T1ITZ call the input open routine; 
=$400 X =' starting address of block; 
Ti GET A 1= input (call get routine); 
=0 
ENOREAD 
0,x 

=$500 
READLP 
TI ISTP 

are there errors? 
if so then stop prematurely. 
memory(X) := A; 
X := X + 1; 

is X = last address plus one 

if not then reiterate; 
call the input close routine; 
return to monitor; 
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cated by the flag, T1GET transfers the input 
data from the ACIA receiver data register to 
the accumulator A at line 48, after verifying 
that there are no errors in a test at lines 45 
to 46. A premature return with the error 
code in bits 4 to 6 of accumulator B occurs 
at line 47 if a parity, over run or framing 
error was detected. The program using the 
cassette interface is responsible for checking 
any errors and possibly taking some form of 
corrective action. If the data had no 
detected errors, the normal return at line 50 
is taken after clearing the error indication 
code in accumulator B at line 49. T1GET 
has two parameters which are returned in 

the CPU accumulators. Accumulator A con- 
tains the character which was received (or 
undefined garbage if in error). Accumulator 
B contains 0 if there were no errors, and an 

error condition code in bits 4 to 6 if an error 
occurred: 

bit 4 is 1 if there was a framing error; 
bit 5 is 1 if there was an over run 
error; 
bit 6 is 1 if there was a parity error. 

Listing 7 completes the tape utility 
routines with the input close routine T1STP. 
Since input operations do not have to wait 
for completion of the last character, simply 
turning off the cassette motor suffices to 
complete the input operation. The motor is 

turned off by storing the hexadecimal code 
5F in the ACIA control register. 

A Test and Example 

In order to illustrate typical use of the 
COMPLEAT Tape Cassette Interface, a 

demonstration program was written and is 

shown in listing 8. This demonstration pro- 
gram has two routines: The routine named 
WRITE at hexadecimal location 100 should 
be called from your terminal monitor pro- 
gram (such as Motorola MIKBUG) to copy 
the contents of hexadecimal memory loca- 

tions 400 to 4FF onto tape as a single block 
of characters. (Remember to set up the tape 
recorder before calling WRITE.) Then the 
routine named READ at hexadecimal loca- 
tion 115 can be called to read the informa- 
tion back in from tape starting at location 
400. (Be sure to rewind the tape and set it 
up for a playback operation first.) 
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Digital Data on Cassette Recorders 

Harold A Mauch 
Pronetics Corp 
PO Box 28582 
Dallas TX 75228 

Nearly everyone has a portable cassette 
recorder. If you don't have one, chances are 
your kid does ( "Hey, Mom, Dad stole my 
tape recorder! "). These recorders range from 
the under $20 "bare bones" variety to multi 
centibuck units with nearly every feature 
imaginable. Fortunately it should be possible 
to use nearly any cassette recorder available 
if it is clean and in good working condition. 
Pawnshops and similar outlets are good 
sources of used cassette recorders. Used 
recorders are often quite dirty and may need 
repair. Take along a couple of test cassettes 
when you go shopping and check out the 
units' operation before buying. 

Watch out for bent capstans and broken 
cassette holders since these often are not 
repairable and indicate excessive abuse. 

Some dictating and "pocket secretary" 
cassette recorders do not use a capstan drive 
system. While these recorders are usable, it 
may not be possible to exchange programs 
recorded on these machines with a friend. 
Stick with the capstan driven recorders. 

While nearly any cassette recorder is 

usable for storage of digital information, 
some units have features which improve 
performance or convenience. 

(The Demise of an Overworked Carry- Corder) 

Tops on the convenience list is a digital 
tape counter. Next to destroying a valuable 
recording, nothing is more frustrating than 
not being able to find a desired program on a 

cassette with several programs. The tape 
counter solves this problem. Merely reset the 
counter with the cassette fully rewound and 
write the counter reading of the start of each 
program on the cassette label. Some of the 
newer cassette recorders also have cue and 
review capability. While occassionally useful, 
these features are not really necessary. 

A recorder with an AC bias and erase 
oscillator will produce the most reliable 
performance and highest quality recordings. 
Unfortunately most of the under $100 
cassette recorders now available erase and 
bias the tape with DC. 

DC erased and biased recordings have 
more low frequency noise and residuals and 
poorer high frequency response than AC bias 
recordings. Cassette recorders designed for 
music recording usually have circuitry to 
erase and bias the tape with a 50 to 100 kHz 
signal. These same recorders usually have 
drive motors which are speed controlled by 
the power line frequency. The result is more 
precisely driven and recorded tape. Since 
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Figure 7: Cassette digital modulator. This circuit converts 8 bit parallel data from a computer 
into a series of 2400 Hz and 7200 Hz tones using a UA RT. Filtering provided by Cl and R1 is 
used to turn the square wave outputs of lC2b into a closer approximation of a sine wave (see 
figure 2). 
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these are normally stereo recorders, be sure 

to bulk erase the cassette first to remove the 

residual signals between the stereo tracks. If 
you apply the signal to be recorded to both 
channels, the resulting recording will he 

usable on any of the portable cassette 

players. 
The cassette tape unit you select must 

have an auxiliary (AUX) or microphone 
input and a line or earplug output. This is 

the only reasonable way to connect the 

cassette tape unit to the necessary 

modulator /demodulator circuitry. Acoustic 
coupling through the microphone and 

speaker is totally unsatisfactory. 
Pause controls are nice hut not necessary. 

Use the cassette tape unit available to 

you, but remember you only get what you 
pay for and these days even that costs more. 

Choice of Cassette and Tape 

The choice of cassette cartridge and tape 

has more effect on performance than u// 

other factors combined. This is no place to 
save a penny or even a buck. Get the very 
best tape you can buy. Do not even consider 
anything less than the super tapes. If your 
recorder can record the chromium dioxide 
tapes, use them. Anything less than the best 

will result in much frustration. Avoid using 

the C90 and C120 cassettes. The tape is too 
thin and fragile. C60 and shorter tapes are 

much more rugged. 
If a cassette is not in use it should be 

stored in its container in a dust free location. 
Keep the cassette tape unit spotlessly clean 

and do not smoke in the room in which the 

cassette equipment is used or stored. 
It is impossible to adequately stress the 

importance of buying the very best quality 
tape and then keeping it and the tape unit 
clean. Tape quality and cleanliness is much 
more important in digital applications than 

in the more conventional speech or music 
applications. 

A 

B 

C 

D 

Getting the Digital Information 
onto the Cassette 

There are many ways to record digital 
information on audio cassette tapes. Many 
of these techniques work quite well as long 
as the data is played back on the same 

machine as was used to make the initial 
recording. Rather than debate the merits and 

deficiencies of the various techniques, the 
author has chosen to support the proposal 
suggested for evaluation by the BYTE spon- 
sored symposium on audio digital cassette 
recording. I feel the proposal adequately 
accommodates the limitations imposed by 
conventionally available audio cassette tape 

units. 
Digital information from your computer 

is generally available as 8 bits parallel from 
an IO port or data bus. The recording on 

tape must be serial with start and stop 

delimiting bits. The transmitter portion of 
the UART is ideal for converting the parallel 
data to this serial format. Figure 1 is a 

circuit implementing such a converter or 
modulator. 

The serial output of the UART is said to 
be NRZ (non return to zero). It means that a 

logic one bit is a high level and a logic zero 

hit is a low level. A logic one causes the 

modulator to generate a 2400 hertz output 
signal and a logic zero generates a 1200 hertz 
signal. Normal output from the modulator is 

a string of square waves. The sharp edges of 
the square wave signal do not usually record 
well on recorders with DC recording bias. 

The designers of such recorders "roll off" 
the amplifier low frequency response and 

boost high frequency response in an attempt 
to diminish the drawbacks of DC biased 

recording. This causes a square wave to be 

abnormally "peaked" on the rising and 

falling edges and the flat portions to he 

"tilted." Refer to figure 2. 

Such signals are more likely to cause 

errors during playback. Ideally the modu- 

zz 
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figure 2: If u square wave 
signal such as waveform A 

is recorded on a low cost 
cassette recorder, the play- 
back response may look 
like waveform l3, which is 

very difficult to demodu- 
late. If the square wave is 

filtered with a low puss 
filter before recording 
(waveform C), the play- 
back response will look 
like waveform D, which is 

u usable signal. 



Figure 3: Circuit of a 4800 
Hz oscillator this oscilla- 
tor, using the 555 pre- 
cision timer circuit, can be 
used if u crystal controlled 
or line frequency derived 
timing source is not avail- 
able. 

lating signals should be sine waves but 
generating and switching sine wave signals 
digitally is somewhat complicated. 
"Rounding the square wave corners" with a 

low pass filter (R1 and C1 in figure 1) is not 
totally effective but does provide a usable 
waveform. 

The AUX output is a 500 mV peak to 
peak signal. This signal level will overdrive a 

microphone input and should only be con- 
nected to the recorder auxiliary input (50 
kOhm or greater input impedance). The 
MIKE output is 50 mV peak to peak and 
will drive most cassette microphone inputs. 

The 4800 Hz signal should be as precise 
as possible and capable of driving 2 TTL 
loads. Ideally it should be obtained from a 

crystal oscillator and divider string or a 

phase locked loop (PLL) locked to the 
power line frequency. If such stable sources 
arc not available the circuit shown in figure 
3 is satisfactory but it must be accurately 
adjusted with a frequency counter. 

ADJUST FOR 
5K 4800Hz 

OUTPUT +5 

8.2 K 

.Or 
MYLAR 

.01 

4800 Hz 

If the available digital information to be 
recorded is already in serial form with the 
necessary start and stop bits (2 stop bits are 

required) and is being sent at 300 baud, the 
UART transmitter is not necessary. How- 
ever, the 4800 Hz clocking signal should be 

synchronous with the serial digital informa- 
tion (16 clock pulses per bit). If the informa- 
tion is serial but at some rate slower than 
300 baud, it will be necessary to use a 

UART receiver to first convert the informa- 
tion to parallel form. It is then loaded into 
the UART transmitter as described earlier. 

When the UART transmitter is ready to 
accept a parallel byte of data, the OK TO 
LOAD line will be high. Data on the eight 
parallel input lines is loaded into the UART 
transmitter buffers by pulsing the LOAD 
line low for at least 1 microsecond or until 
the OK TO LOAD line goes low. The 
transmitter will start transmitting the byte 
or character when the LOAD line is returned 
to the high state. 
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I f the UART is not transmitting any data, 
its serial output line is high, causing the 
modulator to generate the 2400 Hz signal. 

Playback of the Recorded Data 

Since the signal recorded on tape is 

basically a standard FSK (frequency shift 
keyed) signal, it is possible to recover the 
digital signal with a phase locked loop (PLL) 
or FM discriminator. In fact, users of the 
Suding cassette system (wide shift audio 
FSK) should be able to recover the NRZ 
data signal by readjusting their demodula- 
tors. However, data recovery by these means 
is not as precise nor as insensitive to tape 
speed variations as digital recovery tech- 
niques which extract speed insensitive timing 
pulses from the recorded signal and use these 
pulses to retime the NRZ data. 

Figure 4 is a complete schematic of the 
playback recovery circuit or demodulator. 

The cassette earplug output signal is 

conditioned by the operational amplifier 
Schmidt trigger IC3. IC4 is a retriggerable 
one shot with a period of 555 microseconds. 
As long as the 2400 Hz signal is being 
received, the one shot is constantly retrig- 
gered and does not time out. This causes flip 
flop IC5a to remain at the high state 
interpreting the data as a logic one. When 
the 1200 Hz signal is received, its period is 

long enough to allow the one shot to time 
out. Flip flop IC5a is immediately reset. It 
stays at the low state as long as the 1200 Hz 

signal is being received, because the one shot 
is timed out whenever the next triggering 
edge occurs. When the 2400 Hz signal 
returns, the one shot output stays high, 
thereby permitting the flip flop IC5a output 
to switch to its high state. The output of flip 
flop IC5a is the recovered NRZ serial data. 

Under ideal circumstances, the recovered 
data would be sufficiently stable to drive a 

300 baud teleprinter or TV typewriter 
directly. However, if the tape speed varies in 

excess of approximately ±6 percent (a com- 
mon occurrence), errors will result. Since the 
1200 and 2400 Hz signals carrying the 
digital information on tape will vary in 

frequency directly with tape speed vari- 
ations, it is possible to use these signals to 
accurately retime the recovered data. Flip 
flops IC6a and IC6b extract this timing 
information. 

When the 1200 Hz signal is received, IC6a 
is preset with a pulse generated by C8 and 
R15 every time the one shot times out. The 
effect is to cause IC6 to act as a division by 
two. When the 2400 Hz signal is being 
received, the one shot does not time out and 
IC6 acts as a divide by four. The result is a 

double clock rate at the output of IC6b. 



C4 RB .005 
(MYLAR) 

27K 

10K 12 

e 4 
C4 
047 

R9 r50K 
2 RIO 

10 IK 5 050 

ICSa 
1/2 4013 

ONE SHOT 

O ©07 D 4 
r. 

_LC5 
001 

f77 3 
C Ó 

R 

3 
IC3a 
1/4 LM 324 

C3 
001 R6 

IOK 

R5 R7 
IOOK 470 

R4 
100K -\nn1-7 

-.- C2 

TOS EARPLUG 

C 
001 IOK 

8 

147 
1 NRZ DATA 

2 

R15 

L 
8 

D S 

IC6o 

C o R 

10 

Instead of clocking the data into a shift 
register, it may be more desirable to use the 

receiver portion of a UART, since the UART 
receiver has built in circuitry to identify the 

beginning and end of each byte or character 
automatically. Furthermore, the UART 
parallel data outputs are 3- state, which 
permits convenient direct connection to 

most 10 ports or data buscs. (For a more 

detailed discussion of the UART, you may 

wish to read "Serial Interface" by Don 
Lancaster in BYTE, September 1975). 

However, the UART requires a clock at 

16 times the data rate. This problem is 

solved by phase locking an oscillator at 4800 
Hz to 600 Hz (2X) ouput of IC6b. 

The phase locked loop (PLL) oscillator is 

adjusted for 4800 Hz in the absence of any 

input signal. IC5b and IC9 divide the PLL 
oscillator output by eight and drive one of 
the PLL phase detector inputs. The other 
phase detector input is driven by the 2400 
Hz clock output of IC6b. 

When the UART receiver recognizes that 
it has received a complete character, it raises 

its DATA AVAILABLE output line to logic 
one (high level). Since the UART outputs 
are 3- state, it is necessary to drive the 

RECEIVED DATA ENABLE input to logic 
zero (low level) to read the parallel output 
data. After the parallel data has been read, it 

is necessary to pulse the RESET DATA 
AVAILABLE line to prepare the UART to 
output the next byte or character. The pulse 
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must remain at logic zero for a minimum of 
one microsecond or until DATA AVAIL- 
ABLE drops to logic zero. 

Circuit Adjustments 

As already stated, the 4800 Hz signal 

used to drive the UART transmitter and 

modulate the tape recorder should be 

obtained from a very stable and accurate 
source for best results. No other adjustments 
are necessary on the recorder modulation 
circuits. 

The data recovery one shot and the phase 

locked loop oscillator in the playback data 

recovery circuits must be accurately adjusted 
for best results. The most critical adjustment 
is the period of the data recovery one shot. 
An easy way to adjust the period is to 
connect a well calibrated audio oscillator to 
the earplug input of the data recovery circuit 
and a high impedance voltmeter to the NRZ 
data output (ICSa pin 1). Set the audio 
oscillator for 1800 Hz and the output level 

for 1.5 to 3.5 volts RMS. Adjust R9 until 
the voltmeter reading just changes (use the 5 

to 15 volt scales). Get the adjustment as 

close to the point of change as possible. 
The PLL oscillator is adjusted for 4800 

Hz (R I2) with no connection to the earplug 
input. It a frequency counter is not avail- 

able, compare the PLL oscillator output 
(IC7 pin 4) to the 4800 Hz signal used to 
drive the UART transmitter. 

187 

20 

17 

r5 -12 

I T2 
5 

5B 
ICI 6 

DATA 

UART 
RECEIVER 

16X 
CLOCK 

8 8 BIT 
PARALLEL 
OUTPUT 

10 

II 

12 

l9 LSB -0. DATA AVAIL. 
IB ET 

AVAIRESL. U 
DATA 

--< OUTPUT 

rj.: I16 ENABLE 

Figure 4: Cassette data 
recovery circuit. This cir- 
cuit shares the UART with 
figure 1. The operation of 
the recovery circuit is 

described in text. 



Figure 5: Cassette modula- 
tor demodulator wave 
forms. The signal pre- 
sented to the tupe recorder 
is a filtered square wave, 
shown at the top. The 
timing of data recovery is 

shown relative to the con- 
ditioned playback signal in 
the remaining five traces. 

Operating Procedure 

The playback data recovery circuit will 
operate best with an earplug output signal of 
between 4 to 10 volts peak to peak. This is 
within the range of most portable cassette 
recorders. It may be necessary to put a low 
gain amplifier ahead of the data recovery 
circuit if you are using a cassette tape deck 
not capable of driving a speaker directly. It 
may be necessary to turn down the playback 
tone control if the tape was recorded on a 

DC biased recorder. 
To comply with the BYTE Symposium 

Standard, the recorded block of data on tape 
must have a minimum of five seconds of the 
2400 Hz tone before data is recorded. This is 
easily obtained by permitting the recorder to 
run in the record mode for five seconds or 
longer before sending data to the DART 
transmitter. When the UART is idle the 
modulator is generating 2400 Hz. 

During playback it is recommended that 
you wait until the playback is one or two 
seconds into the 2400 Hz "leader" before 
allowing the computer to accept the UART 
receiver output. This is to avoid reading 
"trash" caused by turning the cassette tape 
unit on and off. 

It is possible to turn the cassette tape unit 
on and off with a relay under computer 
program control using the cassette tape unit 
remote control input. However, the cassette 
will record and playback "trash" during the 
startup and stop intervals which may take as 
long as 3 to 5 seconds. The 2400 Hz signal 
recorded on tape before each block of data 
gives the computer a "trash free" interval in 
which to prepare itself for the data to 
follow. 

Circuit Design Considerations 

It will be some time before enough 
information has been learned about the use 
of audio cassette recorders for storage of 
digital information to permit truly optimum 
designs of the necessary modulator/ 
demodulator circuits. Therefore the author 
would like to present his design considera- 
tions to provide other experimenters and 

SIGNAL TO BE 
RECORDED (AUX) 

CONDITIONED PLAY- 
BACK SIGNAL (IC3a) 

RECOVERY 
ONE SHOT (IC4) 

RECOVERED 
NRZ DATA (IC5o) 

IC6o 

IC6 b 
(2X CLOCK) 

designers a starting point for additional 
experimentation and optimization. The com- 
ments are somewhat technical and are 

intended for the advanced experimenter or 
designer. 

Modulator Waveform 

The nonlinearity and skewed frequency 
response of most low cost cassette recorders 
impose serious limitations on the waveform 
of the recorded signal. In severe cases, the 
waveform recovered from a square wave 
input may be so seriously "tilted" and 
"peaked" and filled with overshoots that 
data recovery is impossible. Obviously a 

better modulating signal would be a sine or 
triangular waveform. On the other hand, 
"doctoring" the square wave with filters is 

attractive from an economic viewpoint. Such 
filtering can only be carried so far before the 
resulting differential amplitude of the two 
modulating frequencies produces "pumping" 
of the recorder automatic level control 
circuits and begins to diminish the signal -to- 
noise ratio and signal drop out margins of 
the higher of the two modulating fre- 
quencies. Economical generation of a better 
modulating waveform will go a long way 
toward improving data recovery reliability 
with simple recorders. 

Modulator Signal Level 

The signal level applied to the recorder 
appears to be relatively uncritical. However, 
I feel the level should be standardized; but I 

am not prepared to recommend a preferred 
level at the present time. 

Demodulator Signal Conditioning 

Many experimenters have used simple 
zero crossing comparators to condition the 
playback signal. While these circuits have 
tremendous immunity to signal drop out, 
they are quite sensitive to "drop in noise" 
and tend to "chatter" at low signal levels or 
in the absence of an input signal. I prefer a 

circuit with sufficient hysteresis to provide 
some margin against the drop in noise and 
residuals and to prevent chatter. The ideal 

MARK --I MARK - 
(LOGIC ONE) (LOGIC ZERO) (LOGIC ONE) 
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trip points for such a circuit is probably in 

the range of 20 to 30 percent of peak 
signal. The trip points of the circuit 
described in this article are approximately 
±0.5 volt. Best performance will then be 

obtained from 3.5 to 5.0 volt peak to peak 
input signals. 

Demodulator One Shot 

If the one shot is properly adjusted, the 
data is recoverable with tape speed variation 
in excess of ±30 percent from nominal 
speed. I have found the speed distribution of 
the portable cassette tape units to be skewed 
roughly 5 percent negative. If a tape is 

played on the same unit as was used to make' 

the recording the problem is negligible. If, 
however, the tape was prepared on precision 
tape recording equipment (such as may be 

used for mass production of cassettes for 
widespread distribution), then played on a 

consumer quality tape player, the tolerance 
of the recovery circuit to a decrease in tape 
speed will be diminished. This may provide 
some argument for increasing the period of 
the one shot 5 percent. 

A characteristic of the data recovery 
circuit used is that it, causes an approxi- 
mately 6 percent marking bias in the 
recovered waveform. This is not too impor- 
tant if the data is recovered by a shift 
register or clocked into a UART receiver. A 
purist approach would delay the space to 
mark transition 6 percent of the nominal bit 
cell duration. 

Some experimenters filter the recovered 
data waveform to provide an additional 
immunity to error. I have not found it to be 

necessary and have found it creates more 
problems than it solves. 

Demodulator Phase Locked Oscillator 

The PLO is only necessary because the 
UART requires a clock at 16 times the data 
rate. The phase detector output is filtered 
with a lag -lead network. The filter was 
designed to permit capture of signals ±15 
percent from nominal speed with a 0.707 
damping factor. Consequently, the oscillator 
will remain locked during ±15 percent step 
changes of the input signal frequency. Once 
locked, the oscillator will track the input 
signal over .a ±70 percent range. The sum 
frequency component of the phase detector 
output does modulate the oscillator slightly 
but was not considered to be a problem. 
This modulation can be diminished by 
increasing the loop filtering; however, this 
reduces the capture range which is 

undesirable. 

Conclusion 

The use of hardware to modulate and 
demodulate the cassette tape simplifies the 
programming problems associated with using 
the cassette for program loading and storage. 
In some circumstances it may be possible to 
connect the cassette hardware interface 
directly to your 'panel switches and display 
drivers and "let it rip." Other systems may 
require peripheral interface adapters or other 
similar circuitry to get the data onto and off 
the computer data bus. 

The cassette interface described in this 
article is manufactured by Pronetics Cor- 
poration. It is available fully assembled and 
tested on a 4.5 x 6.5 inch circuit card with 
connections through a standard dual 22 pin 
gold plated card edge connector. Price, 
availability, and other information may be 
obtained by writing: Pronetics Corporation, 
PO Box 28582, Dallas TX 75228. 



Why Wait? 

Build a FAST Cassette Interface 

Dr Robert Suding 
Research Director for Digital Group Inc 
PO Box 6528 
Denver CO 80206 

This cassette interface does not have a 

±30% speed tolerance. The design requires 
±12 V and +5 V to run. A good quality 
recorder must be used, along with excellent 
quality tapes. Careful adjustments are 
required. 

So why use it? Well, it works! It's 
dependable. And it's fast. In contrast, the 
proposed BYTE standard cassette interface 
runs at 300 Baud. A Teletype paper tape 
reads @ 110 Baud. I have 24 K on my 
system. How long would it take me to 
completely load my system (not including 
any Bootstrap Loader operations)? 

Teletype @ 110 Baud - 40 minutes 58 
seconds 

Proposed BYTE standard @ 300 Baud - 
15 minutes 1 second 

The system to be shown in this article has 
been running for almost a year at 1100 Baud 
(with an upper limit of 1750 Baud with 
critical tuning). 

Suding system @ 1100 Baud -4 minutes 
6 seconds 

Past issues of BYTE have included several 
articles on cassette interface proposals and 
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circuits. I would suggest re- reading these 
articles. You will find one common element. 
Slow. If you get the impression that I'm 
impatient, you're right. I'll bet you are too. 
Imagine reading 300 Baud for 15 minutes to 
discover a noise pulse had destroyed data, 
requiring re- reading. Ugh! 

Thus the proposed standard of the BYTE 
Kansas City conference in 1975 has a major 
disadvantage: The use of a redundant Man- 
chester format with a 1200 Hz low fre- 
quency critically restricts the user to slower 
data rates. A related disadvantage for those 
who use filters or phase lock loops as an 

input detection method is the fact that the 
Manchester code employs harmonically re- 
láted frequencies; this leads to design 
problems in detectors based upon frequency 
discrimination techniques. 

The system shown in this article avoids 
the above pitfalls. It uses the non- harmoni- 
cally related tones of 2125 Hz - Mark and 
2975 Hz - Space. The second harmonic of 
2125 Hz occurs at 4250 Hz, well down on 
the passband of a 2975 Hz detector. Suffi- 
cient space exists between the two frequen- 
cies to allow for reasonable recorder speed 
discrepancies. The higher frequencies in- 
volved permit increasing the data rate. 

Several approaches are possible in cassette 
interfacing, as seen in past BYTE articles. 
However, their emphasis on wide cassette 
speed tolerance made them slower. My 
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Figure 1: The schematic of the Suding cassette input interface as found in the Digital Group systems. This interface amplifies 

and clips the cassette output with limiting amplifier IC34, discriminates the two data frequencies (see table 1) with bandpass 

filters followed by full wave detectors, passes the detected signal through a 3 pole active low pass filter, then converts the result 

to a TTL level which is read by a single bit Input port. One example of software (see listing 1) to drive this input interface uses a 

programmed simulation of UA RT Input algorithm; an actual UART or ACIA device could be substituted if desired. 

approach to `but of specification cassette 

speed" is - "put it in the specification, or 
get a good recorder." More of that later. 

Theory of Operation 

The 1100 Baud Digital Group system uses 

the circuits of figures 1 and 2. The cassette 

receive circuitry detects the prerecorded 
frequency shift keying and produces a "1" 
or a "0" output as a result of a detected 
2125 Hz or 2975 Hz tone at the input. A 

741 operational amplifier, IC34, is used as a 

clamped limiter which prevents variations in 

cassette amplitude from affecting the detec- 

tion process. The output of the limiter 
should be about .6 V peak to peak, roughly 

a square wave with rounded edges of the 

incoming frequency, constant in amplitude 

regardless of tape volume setting or minor 

tape "dropout" problems. 

Two bandpass active filters (IC35) then 

amplify a tone five times when actually 
tuned to their respective frequencies of 2975 

Hz for the top filter, and 2125 Hz for the 

lower filter. The further off the tuned 

frequency the tone is, the less amplification 
the filter will produce. The gain, bandwidth, 
and tuned frequency are set by the three 
resistors and two condensers in each filter. 
Each filter may be exactly tuned to fre- 
quency by carefully setting the variable 

resistance value (which may be either a 

potentiometer or selected fixed values). 
Full wave active detectors produce 

rectified full wave pulses at the summing 
junction, pin 5 of IC37. The 2975 Hz tones 

are rectified to a positive voltage, and the 

2125 Hz tones are rectified to a negative 

voltage. As received tones depart from either 
exact frequency, a value less positive or 
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Figure 2: The schematic of the Suding cassette output interface as found in 
the Digital Group systems. The output interface Is a simple audio frequency 
shift keyer made up of a 566 voltage controlled oscillator with two frequency 
states controlled by a single TTL data line. The TTL level which drives the 
output modulator Is a single bit derived from an output port. The software 
(see listing 2) to drive this output Interface Is shown as a programmed 
simulation of a UART output algorithm; an actual UART or ACM device 
could be substituted If desired. 

negative is produced until approximately 
midway (2550 Hz) a summed voltage of 0 
results. 

A three pole lowpass active filter then 
removes the remaining traces of pulsating 
DC from the summed signal with almost no 
effect on the data pulses up to a speed of 
1000 bits per second. If lower data rates 
were to be utilized, an improved signal to 
noise ratio could be obtained by multiplying 
the values of C12, C13, and C11 by the 
reciprocal of the data rate ratio. Table 1 

shows some component values for alter- 
native frequency designs. 

The final receiver section is a 741 opera- 
tional amplifier, IC38, connected as a slicer. 
This operational amplifier detects whether 
the voltage at its pin 2 is positive or negative 
with respect to the constant voltage at its 
pin 3. The output voltage will then swing 
either to nearly -12 V or to nearly +5 V. 
Notice that this operational amplifier has +5 
as its positive supply voltage, pin 7. A 
forward biased germanium diode prevents 
the actual output voltage from going less 

Tune Up Notes 

The cassette interface must be carefully tuned 
to achieve proper performance. Careless tuning has 
been the most frequent cause of cassette system 
failure. 

1. Plug in the six integrated circuits of the 
cassette interface. 

2. Connect a calibrated audio oscillator 
between the limiter input and ground. A 
digital frequency counter driven by the 
audio oscillator is highly recommended. The 
oscillator should cover the desired range of 
2 - 3 kHz, with a sine wave output of .5 or 
so, although the precise level is not at all 
critical. 

3. Apply +5 and ±12 voltages to the circuit. 
Measure the output at pin 6 of the 741 
limiter (IC34) with an oscilloscope. The 
wave shape should be a rounded square 
wave of about .6 V peak to peak. 

4. Set the audio oscillator to 2125 Hz. Measure 
the output at pin 1 of the 5558 active 
bandpass filter. Slowly turn R25 until the 
signal peaks. Be sure that you are peaking at 
2125 Hz, not a harmonic. Vary the oscil- 
lator frequency a few decades to insure 
2125 Hz is the tuned frequency. 

5. Similarly, set the oscillator to 2975 Hz and 
measure the output at pin 7 of the 5558 
(IC35). Slowly turn R26 until the signal 
peaks. Vary the oscillator to insure a 2975 
Hz peak. 

6. Measure the detected voltages at pin 5 of 
IC37. When the oscillator approaches 2125, 
the voltage should go negative. When ap- 
proaching 2975, the voltage should go posi- 
tive. Trouble in this area would most likely 
be caused by reversed or defective diodes, or 
shorts between adjacent lines. 

7. Measure the voltage at the cathode (bar) end 
of the output clamping germanium diode 

(G1). Sweeping the frequency between 
2125 and 2975 Hz should result in a clean 
voltage jump somewhere between 2125 and 
2975 Hz. Measure the output swing to 
insure that it does not exceed +5, -.3 V. 

8. Remove the audio oscillator and short input 
connector J1 temporarily to ground. Meas- 
ure the output at pin 6 of IC34. A stable 
condition (no oscillation) should be seen. 
Connect the oscilloscope to the cathode of 
G1 again. Adjust the balance potentiometer 
(R42) so that the output voltage is a 
negative level. Slowly turn the potentio- 
meter until the output voltage jumps to a 
positive level and leave the setting at this 
point. 

9. Disconnect the temporary jumper from the 
input connector and reconnect the audio 
oscillator. Perform step 7 again. The cross- 
over threshold should be close to 2550 now. 
If all proceeds well at this point, the cassette 
interface is ready to receive data. 

10. Connect the oscilloscope to pin 4 of the 
566 voltage controlled oscillator (IC33). A 
triangular wave output should be seen. 

11. Connect a temporary jumper between the 
TTL input going to DS1 and +5 V. Connect 
a frequency counter to pin 3 of the VCO 
(IC33). Adjust potentiometer R41 for a 
resultant output frequency of 2125 Hz. 

12. Remove the jumper from +5 V and connect 
the jumper from DS1's input to ground. 
This time adjust R40 for 2975 Hz output. 

13. Remove the jumpers, and you are ready for 
final tune in the driving circuit. Connect the 
cassette interface to the driving output port, 
and program the driving processor to send a 
TTL high level ( "1 ") output to the cassette 
interface. Adjust R41 to 2125 Hz. Then 
have the processor send a "0" level. This 
time adjust R40 for 2975 Hz output. The 
cassette interface is now ready for use. 
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than _ -.2 V, so that valid TTL levels are 

not exceeded. An offset adjusting poten- 
tiometer allows the output to be placed in a 

"Mark Hold" condition when no tone input 
is being detected. 

The cassette recording section (figure 2) 

uses a single integrated circuit, a 566 voltage 

controlled oscillator, IC33. A logic 'level 

from the computer's output port controls 

the resultant audio frequency output to the 

cassette recorder microphone input. A high 

input ( "1 ") produces a 2125 Hz output, and 

a low input ( "0 ") results in 2975 Hz. The 

output wave shape is a symmetrical trian- 
gular wave. Should the user object to using a 

triangular wave, a more nearly sine wave can 

be obtained by connecting a pair of back to 

back 1N914 diodes between ground and the 

output side of the coupling capacitor C5. 

Exact values and high quality com- 

ponents will result in a trouble -free voltage 

controlled oscillator. The 47 K (R17) resistor 

in series with the output is a typical value to 
be used when coupling to the low level, low 

impedence external microphone inputs of 
most cassette recorders. Using the "AUX" 
input of your cassette recorder generally 

gives better results. 

Construction 

The cassette interface is available as a part 

of a printed circuit board kit from the 

Digital Group. The printed circuit board is 

shared by a television display circuit to be 

described in the next article in this series. A 

kit of the cassette interface only is also 

available from the Digital Group for $30, 

which includes all parts and the printed 
circuit board. The experienced builder can 

build the circuit in an evening or two by 

hand wiring components on standard .1 inch 

grid Vectorboard. All the circuitry can be 

contained in an area of approximately 3 inch 

by 5 inch (about 8 cm by 13 cm). 

Be sure to use only high quality com- 

ponents, particularly in the active bandpass 

filters and voltage controlled oscillator. 
Some strange "frequency jump" problems 
have been traced to surplus 566s which were 

temperature sensitive. Lay out the receive 

circuit to avoid feedback paths from output 
to input, particularly in the limiter, active 

bandpass filters, and slicer areas. Different 
op amps could be used, but may result in 

instability or degradation of final perfor- 
mance due to suboptimization. 

Modifying Your Cassette Recorder 

It is very helpful to listen to the data 

from the cassette so that the beginning of 
the data burst may be detected, as well as 
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hearing the end of the data. When the 

cassette read cable is plugged into most 
cassette recorders' earphone output jack, the 

speaker output is usually cut off. However, 

since a closed circuit jack is all that is 

involved, a quick solution is to connect a 

jumper on the jack so that the speaker is not 
disconnected. Even better, use a 100 ohm' /a 

watt resistor instead of the jumper, and the 

data howl won't be so loud. A 10 ohm, 'A 

watt resistor from the amplifier lead to jack, 
to the jack frame will prevent potential 
damage to the output driving transistor(s). 

Alternative Frequencies and Applications 

The cassette interface design may be used 

with the proposed BYTE standard should 

you so desire. Table 1 has appropriate 
component values calculated for two alter- 
native possibilities: the simple way (less 

desirable) and the "right way ". The simple 

way permits using a switch on the bandpass 

active filters to select the frequency pairs. 

The right way involves setting the circuit to 
the optimal values, and using separate inter- 
faces for each frequency pair. 

Amateur radio (ham) radioteletype 
(RTTY) generally uses 2125 - 2295 Hz 

frequency shift keying for 170 Hz shift. The 

existing cassette interface can be used by 

"straddle tuning," but improved per- 

formance may be obtained by selecting a 

second R26 which will tune the high filter to 
2295. The cassette read cable may then be 

attached to the short wave receiver and the 
microprocessor, programmed as a radiotele- 
type video terminal, which can replace the 

noisy Teletype machine. Of course, a 

cassette interface specifically designed for 
this 170 Hz shift at 100 WPM will give 

superior performance under marginal condi- 
tions. 

The cassette interface may be used as a 

stand alone radioteletype terminal unit and 

audio frequency shift keying if desired, and 

works quite nicely in this application. 

Software 

I would suggest using software for your 
cassette read and write timings. Sample 8080 
software is included as listing 1. Timings at 

locations <0 >/116, <0 >/133, <0 >/241, 
and <0 >/260 are based on an 8080 system 

with a 500 ns T time and no wait states. 

Slower systems will require proportionately 
decreased loop timings. 

A UART could be used instead of the 

"software UART" system shown. However, 
several disadvantages arise. First, a slightly 
greater cost and complexity. More impor- 
tant, however, is a degradation in total 



Low Filter High Filter Low Pass Filter VCO 

R21 R24 R25 
« 

R22 R23 R26 . C13 C12 C14 R1 R~ 
2125-2975 Hz 
1100 Baud 6.8 k 68 k 938 4.7 k 47 k 697 .0056 µF .01 .015 2.7 k 1.3 k 

1200-2400 Hz 
300 Baud 
(Simple) 6.8 k 68 k 4173 4.7 k 47 k 1162 .0056 µF .01 .015 470 k 2.7 k 

1200-2400 Hz 
300 Baud 
(Correct) 12 k 120 k 1668 5.6 k 56 k 906 .015 µF .033 .047 470 k 2.7 k 

2125-2295 
100 Baud 
(Simple) 6.8 k 68 k 938 4.7 k 47 k 1301 ..0056 µF .01 .015 47 k 2.7 k 

2125.2295 
100 Baud 
(Correct) 36 k 360 k 156 27 k 270 k 179 .056 µF .1 .15 47 k 2.7 k 

means that the value so indicated is the typical calculated value. The precise value is dependent on component 
tolerance. 

Table 1: Theoretical values of components for alternate frequencies. This table gives values of 
components to be used with the circuits of figures 1 and 2 in order to make this cassette Interface 
work with several alternate specifications. See the text for a definition of the various comments at 
the left of the table. 

Potential Troubles 

Knowing about potential problem areas is a 
first step to minimization of their effects. Troubles 
seem to break down into six classes. 

Cassette recorders and the cassettes used: A 
marriage between your $1000 microprocessor and 
junior's $20 cassette recorder, which has been 
using 30d cassettes for the last five years, will not 
produce happy offspring! I have been using a 

Superscope C -104 for the past year, and can report 
no failures except for defective cassette tapes. The 
C-104 has several attractive features. Besides the 
usual conveniences such as index counter, cuing, 
etc, it has a variable readback speed control, dandy 
for out of spec cassettes from friends. Inside, 
another special motor speed control potentiometer 
is located near the speaker which allows precisely 
setting the record /write speed. Quality control 
seems good overall, and the list price of $120 
(cheaper at discount stores) is worth the invest- 
ment. Don't waste your money on cheap cassettes. 
Sony Low Noise C -45s have been generally good. 
Some $2 - $4 Data Certified Cassettes are 
superior, but not needed. 

Microprocessor caused problems: Some 
microprocessor designs will not work directly with 
this interface system. This interface was designed 
to be connected directly to a single bit IO port, 
with the processor handling all of the bit timings 
through timing loops. If your processor must 
periodically catch its breath for such things as 
dynamic memory refreshing, you may be unable to 
directly use the "Software UART" system. What a 
shame! However, a hardware UART will permit 
using the system even with a system of this nature. 

Cabling problems: It is possible to connect 
your cassette recorders with the read and write 
cables reversed. Enough crosstalk from the write 
line to the read limiter existed to give the 
appearance of data being read, but so many errors 
resulted that the programming would not run. 

Tuning problems: Circuit tuning is the most 
common problem. Carefully tune the active filters! 

Cassette Crashes: Cassette damage is frequent 

on tapes which have always worked before, but 
now mysteriously fail. The most common cause of 
this is removing a cassette from the recorder 
without completely rewinding. The exposed oxide 
then gets damaged, and is no longer usable. 

Miscellaneous circuit problems: 
Defective level output from cassette read limiter. 

1. None at all: Check for ±12 V to IC34, and 
IC34. 

2. Too high output level: Diodes (DS4 and 
DS5) open, or one is reversed. 

Bandpass active filters don't filter. 
1. Off frequency 
2. Bad 5558 
3. Check for shorts or out of tolerance con- 

densers C8, C9, C10, or C11. Disk ceramics 
are a "no-no" in tuned circuits. 

4. Resistors improperly wired or inserted. 
Full wave detector does not work as described: 

1. Diodes open, reversed or shorted. 
2. Defective IC36. 

Low pass active filter fails to work: 
1. Shorted or out of tolerance condensers. 
2. Defective I C37. 

Output slicer (1038) fails to produce TTL levels: 
1. Reversed, open or not Germanium diode at 

DG1. 
2. Too heavily loaded output. This circuit 

should drive no more than one TTL load 
(standard for most IO ports). 

VCO won't oscillate. 
1. Defective 566 (1C33). 
2. Shorted condenser C6. 

VCO has parasitic oscillation (high frequency): 
1. C7 not connected. 
2. Defective 566. 
3. C6 is open, producing a very high fre- 

quency. 
VCO won't tune to frequency or stay there: 

1. Out of tolerance or defective C6. You really 
didn't use a disk ceramic here, did you? 

2. Defective 566. 
3. Non -TTL levels used to drive VCO. 
4. Defective potentiometers R40 or R41. 
5. DS1 or DZ2 reversed or defective. 
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Listing 1: Stand Alone 
Suding Cassette Input Pro- 
gram. This program Is a 

self contained data trans- 
fer routine which will 
transfer a block of data 
from cassette to split octal 
memory locations 
xxx /xxx through yyy /000. 
This program assumes that 
MEMTOCAS (see listing 2) 
was used to create the tape 
being read. A more gener- 
ally useful input facility 
would be modelled on this 
program and linked to a 

system monitor as o sub- 
routine. 

Listing 2: Stand Alone 
Suding Cassette Output 
Program. This program is o 

self contained data trans- 
fer routine which will 
transfer a block of data 
from split octal memory 
locations xxx /xxx through 
yyy /000 onto cassette 
tape after a five second 
leader output delay. This 

program assumes that 
CASTOMEM (see listing 1) 

will be used to read the 
tape being created. A more 
generally useful output fa- 

cility would be modelled 
on this program and linked 
to a system monitor as a 

subroutine. 

Split 
Octal 

Address Octal Code Label Op. Operand Commentary 

<0>/100 041 xxx xxx CASTOMEM LXI H,xxx/xxx Load starting address in HL pair; 
<0>/103 021 010 000 STARTBYT LXI D,000/000 Load E, clear D; 
<0>/106 333 001 SYNCH LOO IN 1 Port 1 bit 0 read for input; 
<0>/110 346 001 AN I 1 Mask all but bit 0; 
<0>/112 302 106 <0> JNZ SYNCHLOO If not start bit then reiterate loop; 

<0>/115 006 300 MVI B,300 Time delay to middle of first data bit; 
<0>/117 005 WSYNCH DCR B Decrement synch wait count; 
<0>1120 302 117 <0> JNZ WSYNCH If not done then keep waiting; 
<0>1123 333 001 GETDATA IN 1 Read port 1 bit 0 again; 
<0>/125 346 001 AN I 1 Mask all but bit 0 again; 
<0>1127 202 ADD D Sum old bits with new bit; 
<0>/130 017 RRC Rotate new and old into next position; 
<0>/131 127 MOV D,A Save result back in D; 

'<0>/132 006 200 MV I B,200 Time delay between bits; 
<0>/134 005 WDATA DCR B Decrement data wait count; 
<0>/135 302 134 <0> JNZ WDATA If not done then keep waiting; 
<0>/140 035 DCR E Decrement data count loaded at 0/103; 
<0>/141 302 123 <0> JNZ GETDATA If not done then repeat for next bit; 
<0>/144 162 MOV M,D Save received data in memory; 
<0>/145 043 INX H Point to next available location; 
<0>/146 174 MOV A,H Move high order address to A for end check; 
<0>/147 376 YYY CP I YYY Has high order address reached end? 
<0>/151 302 103 <0> JNZ STARTBYT If not then reiterate for next byte; 
<0>/154 166 H LT End input; 

Notes: 

Input is assumed to be wired to bit 0 of port 1, from output of IC38 pin 6 via resistor R38 and shunted 

by diode DG1. 
Loading proceeds from split octal address xxx /xxx to address yyy /000. Enter this program by jumping to 
location <0 >/100 after setting up constants of address. 
" *" indicates a timing constant for the "software UART" inputs. 
"v" indicates the end of transfer comparison mentioned in text. 
<0> indicates an arbitrary page location for this program, to be replaced by a real memory page number 

when actually loading the program at byte 100 of some page. 

Split 
Octal 

Address Octal Code Label Op. Operand Commentary 

<0 >/200 041 xxx xxx MEMTOCAS LXI H,xxx /xxx Load starting address in HL pair; 

<0 >/203 076 001 MVI A,1 Start port output in high state; 

<0 >/205 323 001 OUT 1 Send initial state out; 
<0 >/207 026 012 MVI D,012 Outer leader delay count; 
<0 >/211 006 377 LEADER5S MVI B,377 Outer leader delay loop return; 
<0 >/213 016 377 LEADER5X MVI C,377 Middle leader delay loop return; 
<0 >/215 015 LEADER5Y DCR C Inner leader delay loop return; 
<0 >/216 302 215 <0> JNZ LEADER5Y If inner loop not done then reiterate; 
<0 >/221 005 DCR B Middle leader delay count; 
<0 >/222 302 213 <0> JNZ LEADER5X If middle loop not done then reiterate; 
<0>/225 025 DCR D Outer leader delay count; 
<0 >/226 302 211 <0> JNZ LEADER5S If outer loop not done then reiterate; 

" Upon reaching this point, 5 seconds of mark (high) state have 
been output to the cassette interface. 

<0 >/231 016 011 BYTEOUT MVI C,011 Define output bit count (decimal 9); 
<0 >/233 257 XRA A Clear carry (start bit level is 0); 
<0 >/234 176 MOV A,M Move current byte to A; 
<0 >/235 027 RAL Rotate bit into position (carry =0 first); 
<0 >/236 

'<0>/240 
<0 >/242 

323 001 
006 200 
005 

WNEXBIT 

WOUTLOOP 

OUT 
MVI 
DCR 

1 

B,200 
B 

Send current LSB to output port; 
Time delay between bits; 
Decrement delay count; 

<0>/243 302 242 <0> JNZ WOUTLOOP If time left then reiterate; 
<0 >/246 037 RAR Rotate new bit into position; 
<0 >/247 015 DCR C Decrement output bit count; 
<0>/250 302 236 <0> JNZ WNEXBIT If data left then reiterate; 
<0 >/253 076 001 MVI A,001 Stop bit state defined 
<0 >/255 323 001 OUT 1 then sent out to port; 

'<0 >/257 006 377 MVI B,377 Stop bit value set; 

<0 >/261 005 WIBDELAY DCR B Decrement stop bit counter; 
<0 >/262 302 261 <0> JNZ WIBDELAY If time left then reiterate; 
<0 >/265 
<0 >/266 

043 
174 

INX 
MOV 

H 
A,H 

Increment memory address; 
Move high order address to A for end check; 

J <0 >/267 
<0 >/271 

376 yyy 
302 231 <0> 

CPI 
JNZ 

yyy 
BYTEOUT 

Has high order address reached end? 
If not then continue output process; 

<0 >/274 166 H LT End output; 

Note: 

Output is assumed to be wired from bit 0 of port 1 to DS1 in figure 2. 
See notes to listing 1 for listing conventions. 
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system flexibility. The "software UART" 
allows the timing constants to be dynami- 
cally modified (if desired) by detecting the 
variations in the stop bit timing, thereby 
compensating for wow and flutter. Digital 
integration of the incoming data bits is 

possible by setting a register to octal 200 at 
the beginning of each bit time. During the 
bit time, repeated sampling either adds or 
subtracts from the register (depending on 
whether 1 or 0) and a "branch minus" 
instruction system effectively eliminates re- 
ceive problems. This digital integration 
detection is utilized by the Digital Group 
Z -80 cassette read software. 

Versions of this "software UART" sys- 
tem have been written for 8008, 8080, Z -80, 
6502, and 6800. All work satisfactorily. 

Operation 

This cassette system is utilized by first 
turning on the cassette recorder and waiting 
until the lower tone 5 second leader tone is 
heard. At this point, restart the system to 
the beginning address of the "Cassette to 
Memory" software. 

Cassette writing is accomplished by re- 
starting the system to the beginning of the 

"Memory to Cassette" programming. Be sure 
to set the appropriate start and stop ad- 
dresses prior to beginning the read or write 
operations. The monitor programs in the 
various Digital Group systems automatically 
set the start and stop addresses. The check 
marks in the listing W) indicate the points 
where start and stop addresses may have to 
be modified. 

The software may be adjusted to run at 
different data rates by changing the values at 
the addresses mark with an asterisk ( *). Note 
that the constants at <0 >/133 and <0>/241 
are the same. The constant at <0 >1116 is 
50% greater and the constant at <0>/260 is 
twice the value of the constant at <0 4241. 

Summing It Up 

This cassette interface represents a simple 
but fast and dependable way to store pro- 
grams and data for the serious hobbyist. It 
does not seek to be all things to all users, but 
a number of applications can be run using 
the same basic design. The detail interface 
design has independence from other com- 
ponents in the system, allowing various 
processors to use the same cassette system 
(with appropriate software). 
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Technology Update 

BYTE always searches far and wide for 
the latest in the technology of computing 
systems. This month in the hills of New 
Hampshire, we discovered an example of 
computer technology in the form of the first 
practical Touring Machine, shown here 

complete with a unary relocatable based 

operator (in IBM OS PL /1 parlance). 

For those individuals having less than a 

passing acquaintance with computer science, 
the Turing Machine is a famous mathemati- 
cal construction first formulated some 
decades ago by Alan Mathison Turing, and 
which can be shown to be logically 
equivalent to any digital computer imple- 
mentation. A Turing Machine is to comput- 
ing what a Carnot Cycle is to thermodyna- 
mics. (The fact that this particular Touring 
Machine implementation looks like a CarNot 
Cycle is purely incidental.) But Turing 
machines have been notoriously impractical 
in terms of everyday computer usage until 
this new product rolled into town. 

This newly released virtual Touring 
Machine, version 27 chain level 1, incorpo- 
rates numerous state of the art features 
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which make it one of the better examples of 
the form. These features include: 

1. SHIFT (micro instruction). 
2. 10 speed clock controls. 
3. 2 phase clock drive. 
4. clock conditioner. 
5. LCS (large cookie store). 
6. global debugging mechanism. 
7. flying head with head crash padding. 
8. access arm. 
9. audio output peripheral. 
10. visual input scanner. 
11. audio input scanner. 
12. local debyking mechanism. 
13. relocatable memory mapping software. 
14. HLT (halt instruction). 
15. system maintenance package. 
16. competing access lockout feature. 
17. nomadic road interfaces. 
18. tape. 
19. SHIFT (macro instruction). 
20. EXCP (executing channel program). 
21. sectored disk drive. 
22. transmission links. 
23. unallocated stowage. 
24. machine environment ( circa January 

30 1976). 



What's in a Video Display Terminal? 

Don R. Walters 
3505 Edgewood Dr 
Ann Arbor MI 48104 

r 

Let's look at the video display terminal as 

a black box which is connected to a com- 
puter system (somehow) as depicted in 
figure 1. Since the computer system has 

already been explained (at the block diagram 
level) in BYTE ( "The State of the Art" by 
Carl Helmers, November 1975, page 6), we 
will concentrate on what smaller black boxes 
make up a video display terminal. 

VIDEO 
DISPLAY 
TERMINAL DATA 

TRANSFER 
LINK 

COMPUTER 
SYSTEM 

Figure 1: Two black boxes: the video 
display terminal and the computer system. 

Figures 2 and 3 illustrate subassemblies 
typically combined to form the video 
display terminal. We see that the video 
display terminal is actually made up of some 
more familiar subassemblies, such as a key- 
board, video display controller, video dis- 
play, and a parallel (figure 2) or a serial 
(figure 3) interface. Let's take a closer look 
at each subassembly and see what its func- 
tion is. The keyboard is a man -machine 

KEYBOARD 

VIDEO 
DISPLAY 
CONTROLLER 

L 

VIDEO 
DISPLAY 

PARALLEL DATA 

PARALLEL DATA 

PARALLEL DATA 
INTERFACE 

1 

interface which is used to enter data (alpha- 
betic commands, instructions, and /or num- 
bers) into the computer system. When a key 

is pressed, the equivalent electrical code 

assigned to the character is generated and is 

available in parallel form. Thus all bits of the 

character's code are available at the same 

time at the output of the keyboard. 
Now that the electrical codes of charac- 

ters can be easily generated using the key- 
board, how will that data be transferred to a 

computer system? Since the data from the 
keyboard is already in a parallel form, the 
data could be transferred to the computer 
system through the parallel interface in 

figure 2. The parallel interface handles the 

buffering of the data between the keyboard 
and the computer system (which must also 

have a parallel 10 interface). The parallel 
data from the keyboard could also be sent to 
a computer system in serial form by using the 
serial interface of figure 3. Serial interfaces 
are usually used when the data path between 
the video display terminal and the computer 
system is longer than five feet, which would 
be the case when the video display terminal 
is to be connected to an acoustical coupler. 
The coupler is a device which changes serial 

data into frequency shifted tones to transmit 
the data over voice grade telephone lines so 

that a terminal can be used with a remote 
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I PARALLEL 
!DATA 

I AT TTL 
I LEVELS 

411. 

4- 
VIDEO 
SIGNAL VIDEO DISPLAY COMPUTER TERMINAL J 
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COMPUTE R 
SYSTEM 

WITH 

PARALLEL I/O 
INTERFACE 

Figure 2: Video display terminal interfaced 
to a computer system through a parallel 
interface. 



KEYBOARD 

VIDEO 
DISPLAY 
CONTROLLER 

PARALLEL DATA 

L 
computer system via the telephone. The 
serial interface converts the parallel data 
from the keyboard to a bit serial form. In 

this form, the bits of the character are sent 
one bit at a time until the entire character 
has been sent. Of course the computer 
system must also have a serial IO interface. 

We now have traced the data path from 
the keyboard of the video display terminal 
to the computer system. Let's trace the data 

path from the computer system to the video 
display terminal. Data is sent from the 
computer system to the video display ter- 
minal in parallel or serial form with the same 

type of interface (parallel or serial) as is used 

between the keyboard and the computer 

VIDEO 
DISPLAY 4- 

VIDEO 
SIGNAL 

PARALLEL DATA 

PARALLEL DATA CONVERTED 
TO BIT SERIAL 

PARALLEL TO SERIAL 
INTERFACE 

BIT SERIAL TO PARALLEL 
DATA CONVERSION 

1 

VIDEO DISPLAY COMPUTER TERMINAL 

1 BIT SERIAL DATA 

12OmA TELETYPE 
'CURRENT LOOP 

OR 

RS-232C 
METHOD 

BIT SERIAL DATA 

COMPUTER 
SYSTEM 

WITH BIT 
SERIAL I/O 
INTERFACE 

Figure 3: Video display terminal interfaced 
to a computer system through a serial 
interface. 

system, except that each data path must 
have its own interface electronics. 

The data from the interface (parallel or 
serial) is fed to the video display controller 
in parallel form. The video display controller 
converts its parallel data input to a com- 
posite video signal which causes the video 
display to show the desired characters. 

The video display portion of the terminal 
is essentially a TV set without the RF tuner, 
IF amplifiers, and mixer circuits, but with 
the necessary circuitry to display a video 
signal on a CRT screen. 

As you can see, the video display terminal 
is not a very complicated black box after 
all. 

John M Schulein 
Homebrew Computer Club 
P 0 Box 626 
Mountain View CA 94042 

Pot Position Digitizing Idea 

A scheme to convert the position of a 

potentiometer arm into a digital value, using 
a cheap commonly available timer IC 

(NE555) and a few bytes of program in an 

8008 or 8080 microprocessor, is shown in 

figure 1. The software is organized as a 

subroutine and uses the flags and the A and 

B registers. The NE555 is triggered by the 
OUT TRIGGER instruction and then the 
program monitors the output pin of the 
NE555 in a loop that increments the B 

register. When the NE555 times out, the 
program exits from the subroutine and the B 

register contains a digital representation of 
the pot position. 

The hardware and software shown in 

figure 1 was run on an 8008 system with a 

2.5 ps clock and the B register digital output 
varied from 2 to 65 Hex. The values of the 
pot and /or the timing capacitor can be 
modified (see the NE555 data sheet) to suit 
your processor's speed and the desired range 
of the digitized output. 

Figure 1: Pot Position Digitizing Idea. 

STATUS TO PROCESSOR (D7) 

TRIGGER FROM PROCESSOR 
(OUTPUT STROBE) 

Hardware 

.5v 

POTPOS: MVI 
OUT 

CONT: INR 
IN 
ANA 
JM 
RET 

Software 

8,0 
TRIGGER 
B 

STATUS 
A 
CONT 

;Sets sign flag 

NOTES: 1. Software written as a subroutine for the 8008 or 8080 microprocessors. 
2. The flags and registers A and B are affected by the subroutine. 
3. Register B contains the pot position on exit. 
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Read Only Memories in 

Microcomputer Memory Address Space 

The important advantages 

of a ROM in microcom- 
puter use are nonvolatility 
and write protection for 
whatever data it holds. 

A bootstrap or absolute 
loader is a simple program 
which just transfers data 
from an input device to 
memory. To keep it in 

your machine, it should 
ideally be in ROM. 

System monitors are prime 
targets for ROM 
technology. 

Dale Eichbauer 
Digitech 
PO Box 6838 
Grosse Pointe Ml 48236 

In an earlier BYTE (sec "Read Only 
Memory Technology," page 64, December 
1975), Don Lancaster introduced the use of 
read only memories as a tool for design at 

the hardware level. This application is but 
one of a multitude of uses for ROMs, 
especially when you consider a ROM as part 
of the main memory address space for your 
computer. The important advantages of a 

ROM in microcomputer use are nonvolatil- 
ity and write protection for whatever data it 
holds. It relieves the user from the chore of 
reentering frequently used programs each 

time his machine is fired up or after data is 

accidentally modified. To put it simply, 
your data is always in the machine whenever 
you need it. 

The two most common and well known 
uses of ROMs are for holding loaders and 

system programs. There are two basic types 
of loaders: the bootstrap (or absolute) and 

the more complex relocating loaders. The 
bootstrap or absolute loader is a short 
program which is used to load the machine 
following a power interruption or any other 
type of catastrophic failure which wipes 

out the main programmable memory. 
(Unless your machine's programmable 
memory is of a special design, it is volatile, 
meaning that its data is lost if power to the 
memory is lost for more than a very short 
time.) This loader program requests input 
from a peripheral device such as a paper tape 
reader or cassette drive which contains pro- 
grams needed for machine operation and 
stores this input data in programmable 
memory. After toggling all your data in from 
the front panel following power interrup- 
tion, one can easily see both the convenience 
and versatility of such a bootstrap loader. 
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The relocating loader takes the input data 
from the peripheral device, converts its 
addresses from a relocatable form into 
absolute binary and stores it in memory at 

selected addresses. It might typically per- 

form some error checking and turn over 

execution to the loaded object program. 

Monitors and Debuggers 

System programs suitable for or, prefer- 
ably, in ROM include such things as system 
monitors, assemblers, device drivers, soft- 
ware debugging programs, hardware fault 
testing and diagnostics. The system monitor 
(which is often available from the computer 
or CPU manufacturer) is a program which 
handles and coordinates machine operations 
at a basic level. A monitor allows the user to 
control the entire system's operation with 
simple, powerful commands. A typical moni- 
tor might have commands for the creation, 
modification, and deletion of files, device 
independent 10 (from the user's point of 
view), automatic assembly and execution of 
programs, relocation of programs and data, 
and so forth. Device drivers (short programs 
which handle the software end of peripheral 
interfacing) are rarely changed once 
debugged and are needed for almost all IO 
operations, making them a natural for ROM 
storage. Software debugging programs, often 
manufacturer supplied, provide a means of 
detecting and correcting programming faults. 
The many forms and features which they 
possess are too extensive for any detail in 
this article. One rather unusual but poten- 
tially useful application of ROM storage is in 

storing hardware testing and diagnostic 
routines. Testing of the microcomputer 
often can be done by simple programs which 
execute an algorithm and compare the re- 

sults with the correct answer. It can also be 

done by complex programs which execute 

all functions of the machine, often in cer- 

tain critical combinations peculiar to the 



machine under test. At first it would seem 

that there is no need to put these routines in 
memory of any type until needed except for 
convenience, since it would be an infre- 
quently used task. Consider, however, the 
case where a fault which is to be located is in 
some way related to or impeding the input 
or the programmable memory's storage func- 
tions. If this is the case, then the testing or 
diagnostic routine may never get into the 
machine in usable form to do its job. 

Simulation and Emulation 

Simulation is another use of ROMs in 

microcomputers which will become more 

common as CPU capabilities increase, ma- 

chines proliferate, and users demand more of 
their machines. Simulation is the technique 
of interpretively executing an instruction set 

for one computer design using a program 
running on a second "host" machine. For 
example, a host machine with an 8080 CPU 

could execute object programs from another 
machine which uses a 6800 or PACE CPU (or 
even IBM 360/370 software for those with 
delusions of grandeur). A ROM could con- 
tain the simulator program to execute the 
foreign instruction set. With an appropriate 
general purpose simulator program it might 
even be possible to change the instruction 
set of a machine by referencing a different 
ROM data table for each simulated machine. 
Of course all such simulations run much 
more slowly than the actual speed of the 
computer in question. 

A related technique is emulation, in 

which microprogrammed hardware imple- 
ments an instruction set directly. Some 

microprocessors are internally micropro- 
grammed, but the user typically will not see 

this fact externally. Microprogrammed corn - 

puters are fairly widespread in contemporary 
technology. And with nearly every micro - 
programmed computer, there is a control 
store implemented in some form of ROM. 
But the majority of microprocessor chips 
currently available do not give the user a 

facility to use microprogramming tech- 
niques. The instruction set is typically com- 
mitted by the manufacturer during the 
design stage; so, to perform the software of a 

foreign machine, a software simulator must 
be used as described above. 

With such simulations, the slowness of 
operation is due to the fact that a series of 
instructions (a subroutine) must be executed 
on the host computer in order to achieve the 
effect of a single instruction of the simulated 
machine. Even though a simulated computer 
may be 10 to 50 times slower than the real 

machine, such slowness is often tolerable 
when compared to the time it would take to 

hand translate the program. Use of ROM to 
store the simulator makes the simulation 
mode virtually a part of your hardware, 
protected from destruction due to power 
loss or accidental modification during pro- 
gram execution. 

Subroutines 

Another excellent use of ROMs is the 
storage of subroutines. Multiply, divide, 
double precision, floating point, conversion 
formulas and other algorithms, plus addi- 
tional software implemented functions are in 

the machine as soon as power is applied. 
When they have been implemented in ROM, 
such subroutines act as if they were really 
hardware instructions. 

Security Data 

Anyone assembling a multi user computer 
system, especially one with remote access, 

should consider using a ROM for main- 
taining data pertinent to the various users of 
the system. This data might include such 

things as access codes, what devices and 
memory segments are authorized for use by 
which individuals, the particular user's sys- 

tem priorities (for job and device scheduling 
by the operating system), and so forth. The 
operating system constantly needs such in- 
formation to make decisions concerning the 
handling of tasks for the current users. A 
ROM protects this information from modi- 
fication or destruction, whether accidental 
or malicious. 

Tables 

An excellent use for ROMs is the storage 
of tables of values. There are many tables, 

such as logarithmic, sine, cosine, and tangent 
values, which could be of use to almost any 
computer hobbyist. A program needing one 

of these values then has to merely look up 

the desired value in the appropriate ROM 
table. Such tables can also be used to speed 

up high precision calculations by giving an 

approximate starting value. Those faced with 
interfacing a non -ASCII encoded terminal or 
other peripheral (such as EBCDIC, Selectric, 
Baudot, or Hollerith) to their microcom- 
puter may find that a character conversion 
table, implemented in ROM, is part of the 
solution, as Don Lancaster points out in 
BYTE #4. However, while his conversion 
scheme uses a ROM which does its conver- 
sion of data apparently at the peripheral 
itself, in many cases it would be useful or 
desirable to perform this conversion in the 
machine. Such a conversion method would 
even make it possible for two terminals, 
whatever their coding scheme, to commu- 
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If you plan to do a lot of 
simulation, the simulator 
program might be a logical 
choice for ROM. With dili- 
gent software preparation, 
your humble 8008 could 
simulate a mighty 360/370 
(although much much 
more slowly in execution). 

A library of often used 

subroutines is another 
item which would make a 

good candidate for ROM 
storage. 

Data tables for character 
code conversion via soft- 
ware can be stored in 

ROM if they are used a 

lot. 



If you want to use your 
computer as a low fre- 
quency (audio) waveform 
generator, you could burn 
a set of standard waveform 
patterns into ROMs, using 
software to drive a DA 
conversion device at vari- 
ous frequencies. 

nicate with each other using the microcom- 
puter (and its ROM) as a sophisticated 
interpreter. And, if data rates, character 
lengths, and line lengths are different, then 
such a setup offers the added advantage of 
using software and memory as a buffer to 
compensate for these differences. 

Waveforms 

If your machine is equipped with a DA 
converter (digital to analog converter), then 
a ROM can contain a set of values which, 
when output through the DA, will produce a 

custom waveform. In many cases special 
waveforms may be generated in this fashion 
which would be impractical to generate, 
using any other method. Both the frequency 
and amplitude of the waveform may be 
controlled completely by software. With an 
8 bit word and a DA with 10 volts full scale 
output, resolution of 0.04 volts per bit is 

obtainable. The maximum generated fre- 

quency is dependent on the speed of the 
microcomputer and the number of outputs 
per cycle required for a suitable waveshape. 

Error Checking and Arithmetic 

Two other possible uses for ROMs which 
may be implemented either in main memory 
or as processor add -ons are a parity gener- 
ator /checker and a fast multiplier /divider. A 
table for all possible combinations of a word 
can be referenced to generate the parity bit 
or a flag check bit. Multiplication and 
division may also be done as table functions. 
Several of the IC fast multipliers currently 
available are actually modified and specially 
programmed ROMs. 

The article in BYTE #4 also introduced 
Programmable Read Only Memories 
(PROMs), which are the most useful type of 
ROM for computer hobbyists, since a cus- 
tom pattern costs very little to have pro- 
grammed or the user can do it himself. 

Bibliography on ROMs and PROMs 

These articles are found in engineering publica- 
tions, which should be available in well stocked 
corporate or university libraries. 

"PROMpting a minicomputer" by Robert High- 
tower of Motorola in the February, 1973, 
Electronic Engineer /Systems Engineering Today. 
This is a description of a bootstrap (or absolute) 
and a relocating loader for a PDP -11 which is 

stored in ROM. 
"PROMs, Proms, Promises" by Jerry Metzger in 

June 16, 1975, Electronics Products Magazine. 
This is a good introductory article on PROMs and 
includes a wall chart of all PROMs available, both 
bipolar and MOS, as of its publication. 

"PROMs - a practical alternative to random 
logic" by Dave Uimari of Signetics in the January 
21, 1974, Electronic Products Magazine. Here is an 
excellent article on PROM theory and use which 
also includes lengthy discussions on programming, 
such as how it is done, best place to have it done, 
typical large and small scale equipment, etc.; lists 
PROM programming services and equipment 
manufacturers. 

"Designer's Guide to Semiconductor Memories 
- Part 1" by Robert J Frankenberg of Hewlett - 
Packard Data Systems in August 5, 1975, EDN 
magazine. This is a good introduction to all types 
of memories, ROMs and PROMs included; it also 
includes an excellent list of references. 

"Read -Only- Memories in computers - where 
are they headed ?" by Roger R Dussine of Com- 
pagnie Honeywell Bull and Robert M Zieve of 
Honeywell Information Systems in the August 1, 
1972, EDN magazine. The authors provide an 
overall survey of ROMs, their use in computers, 
mentions use for fault location, bootstrap, some 
unusual types of ROMs, and things to come in 
ROM technology. 

"Programmable ROMs offer a digital approach 
to waveform synthesis" by Karl Huehne of 
Motorola in the August 1, 1972, EDN magazine. 
This is a detailed description of ROM wa'.gorm 
synthesis. 

"Large Bipolar ROMs and p /ROMs Revolu- 
tionize Logic and System Design" by Joe Mc- 
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Dowell of Monolithic Memories, Inc in the June, 
1974, Computer Design. Here you'll find a short 
survey of the current bipolar ROM technology and 
some examples of use, including a ROM controlled 
timing pulse generator under microcomputer 
command. 

"Mixing Memories in Minicomputer -based Con- 
trol Systems" by Richard A Farwell of Data 
General in the February, 1973, Control Engineer- 
ing. This is a discussion of how various memories 
are used in Data General minicomputers and the 
costs and tradeoffs involved; a section on ROMs 
lists a number of uses outlined in this article. 

Manufacturer's data sheets on particular devices 
contain a wealth of information and are free for 
the asking. As an example, the data sheets below 
contain listings of ROM and PROM lookup tables 
of values. 

From AMI: 
A 256 word sine and cosine table in the 
S8614 supplemental note. 
An arctan table in the S8771 supplemental 
note. 
A 512 word sine and cosine table in the 
S8772 data sheet. 
A Hollerith to USASCII conversion table in 
the S8457 data sheet. 
A USASCII to Hollerith conversion table in 
the S8539 data sheet. 

From Nitron: 

A Hollerith to ASCII conversion table in the 
NCM 1112 data sheet. 
A Selectric to ASCII to Selectric conversion 
table in the NCM 1151 data sheet. 
A 512 word sine and cosine table in the 
NCM 1141 data sheet. 

From Computer Microtechnology: 

ASCII to EBCDIC and EBCDIC to ASCII 
conversion tables in the CM 2850 sup- 
plemental note. 



More Information 
on PROMs 

Roger L Smith 
4502 E Nancy Ln 
Phoenix AZ 85040 

Have you ever wanted to program your 
own read only memories automatically so 

that you could copy programs into a per- 
manent storage device? This article concerns 
one kind of erasable read only memory, the 
Intel 1702A integrated circuit and its 

pin compatible equivalents the National 
MM5202AQ and MM5203Q. These 
memories store 256 eight bit bytes of data 
using a method which allows total erasure 
and reprogramming many times. The 
method of programming is complex while 
erasure can be accomplished simply by 
exposure to an ionizing radiation (such as 

ultraviolet light). When you need to store 

large tables of data or programs, use of such 

read only memories is a very attractive 
alternative to more elaborate types of 
memory provided a method of programming 
is available. These erasable read only 
memories are economical as well, since 
typical prices at the time of this article are in 

the $20 range. 

Why PROMs? 

A few years ago, it became apparent that 
the different users of read only memories 
(ROMs) had many special applications which 
required only one or two copies of any given 
data pattern. The technology of mask pro- 
grammed read only memories is only cost 
effective for large production runs of parts 
so an alternative had to be found. A means 
was needed for the user of read only 
memories to inexpensively field program one 
or two copies of a data pattern. This is 

where Harris Semiconductor, a division of 
Harris Intertype Co., entered the picture and 

coined the term PROM for programmable 
read only memory, a Harris trademark that 
has become almost generic through wide- 
spread use. A PROM then was simply a 

ROM that could be programmed in the field. 
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While production read only memories are 
manufactured from specific masks provided 
weeks in advance by the user, a PROM can 
be programmed in seconds automatically by 
the user reducing turn -around time to a 

minimum. 

Types of PROMs 

Let's examine some of the different 
PROMs in use today. There are a number of 
options for the memory elements used in 
making programmable read only memories 
including nichrome fuse links, diode 
matrices, stored charge devices, amorphous 
semiconductors, polycrystalline silicon fuses, 
etc. Note that all these memory elements 
can be electrically altered in order to store 
data. A few can also be restored to the 
original condition; these are used in erasable 
read only memories (EROMs). 

Figure 1 illustrates how the basic PROM 
operates. The first thing to notice is a 

decode circuit. This decodes the address to 
select one of the 32, 64 (or whatever) word 
gates in the memory matrix. The decoder is 

simply an array of multiple input gates with 
one input for each address bit and one gate 
for each memory word. 

Each decoder gate drives a multiple 
emitter word driver transistor. In series with 
each emitter is a memory element which in 
this case is a fusible link. In this example, we 
have a 4 bit word so each word driver 
transistor contains 4 emitters, each con- 
nected to a fusible memory element. The 
memory elements then connect to the 
appropriate bit sensors and output buffers (4 
in this example). 

When a particular word is addressed, its 
decoder and word driver transistor turn on. 
If the fuse link is intact, the bit sensor turns 
on and the output line for that bit goes low 
(logical zero). If the fuse link is open, the 
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Figure 1: This partial schematic of a PROM shows the circuit for one word and one bit. This 
PROM would be the nichrome fuse link type. 

sensor and buffer circuit remains off and the 
output is high (1 bit). 

Not shown in the diagram are the chip 
select (or chip enable) lines. The chip select 
lines are typically connected to the higher 
order address bits. When many PROMs are 
utilized, an external decoder circuit (such as 

74154 or 7442) might be used to decode 
several high order address bits and decide 
which PROMs to enable or select. Essen- 
tially, the chip select inputs are used to turn 
on the output bit sensors and buffers when 
the PROM is selected. PROMs use open 
collector or tri -state output buffers so that 
they can be bused. The buffers are in the 
high impedance state until enabled. 

The nichrome fusible link type of pro- 
grammable read only memory is manufac- 
tured by Harris, Signetics, Texas Instru- 
ments, and Motorola. From this basic 
nichrome fuse PROM, other types have 
evolved. The next natural step was to poly- 
crystalline silicon fuses, as made by Intel and 
Advanced Micro Devices. These are easier to 
build in the semiconductor fabrication proc- 
ess because the fuse links are also made out 
of a semiconductor material. The silicon 
fuses are burned open in the same manner as 

the nichrome fusible link type. Due to the 
semiconductor structure of the memory 
elements, these PROMs often require a more 
elaborate programmer than the nichrome 
fuse type. 

Another development in memory ele- 
ments is the Avalanche Induced Migration 
(AIM) device patented by Intersil. Fabrica- 
tion of these elements is similar to TTL logic 
which simplifies the manufacturing process. 
The elements are basically NPN transistors 
arranged in a matrix with common collectors 
on the X -lines and common emitters on the 
Y- lines. In programming a logical one, a high 
current is forced through the desired transis- 
tor from emitter to collector. The emitter to 

base junction is forced beyond normal 
avalanche and into secondary breakdown. 
Aluminum flows into the junction causing a 

base to emitter short that in effect leaves a 

base to collector diode. These PROMs are 
programmed using 2.5 us pulses of 200 mA 
current that are alternated with sense pulses. 
After a number of pulses, a change is sensed 
and the programmer moves on to the next 
bit. 

Erasable ROMs 

A memory element used by Intel and 
National Semiconductor is a stored charge 
type called a FAMOS transistor. FAMOS 
stands for floating -gate avalanche -injection 
MOS charge- storage device. It is similar to a 

P- channel silicon gate field- effect transistor 
with no contact on the gate. Programming 
the FAMOS type of memory element re- 
quires a pulse more negative than -30 volts 
applied to the drain or source P -N junction. 
High energy electrons are injected into the 
floating silicon gate. With this negative 
charge on the gate, there is current con- 
duction between the source and drain of the 
FAMOS transistor. 

The primary advantage of this stored 
charge type of memory element is that the 
charge can be removed later by exposing it 
to a high intensity, short wavelength ultra- 
violet light. The radiation creates an ionizing 
action that causes the charge on the floating 
gate to leak back to the substrate. These 
erasable ROMs (EROMs) are provided with a 

transparent quartz lid to allow exposure to 
the radiation. More about erasure later. 

For the really dedicated computer 
hobbyist who wants all of his system moni- 
tor, resident assembler, text editor, etc. in 
PROMs because they are all working as 

desired (at least this week), erasable ROMs 
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A2 I 24 Vdd 

Al 2 23 Vcc 

AO 3 22 Vcc 

DI 4 21 A3 

D2 5 20 A4 

D3 6 19 AS 

D4 7 18 A6 

D5 8 17 A7 

D6 9 16 Vgg 

D7 IO 15 Vbb 

D8 II 14 CS 

Vcc 12 13 PROGRAM 

Figure 2: Pin -out diagram Intel 1 702A 
EROM. AO - A7 = address inputs; D1 - D8 
= data output (for READ mode), data input 
(for PROGRAM mode); CS = chip select. 

are the logical choice. Currently available for 
around $20 are the 2 Kb Intel 1702A and 

National MM5202AQ and MM5203Q. All of 
these EROMs use the FAMOS stored charge 

memory elements and can be erased with 
ultraviolet light. These EROMs have one 

definite advantage over regular ROMs; they 
have been tested before delivery. 

Intel 1702A EROM 

The Intel 1702A EROM is produced in a 

24 pin dual in line package with a trans- 

parent quartz lid. Intel also makes a 1602A 
ROM which is identical to the 1702A except 
that it has a metal lid and is not erasable. All 
chips undergo complete programming and 

functional testing on each bit position prior 
to shipment. The 1702A and 1602A are 

both 256 word by 8 bit, entirely static MOS 

ROMs with no clocks required. All inputs 
and outputs are TTL and DTL compatible, 
but the outputs are tri -level to allow output 
busing capability. Memory expansion is 

simplified by use of a chip select input 
which disables the chip when high (logical 
one). Figure 2 shows the Intel 1702A pin 
connections while table 1 shows the voltage 
inputs for the read or program modes. 

Erasure Methods 

To erase EROMs such as the 1702A, Intel 
recommends using the Model S -52 ultra- 
violet lamp available from Ultra -Violet 
Products Inc., San Gabriel CA (cost is 
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Table 1: Intel 1 702A EROM input voltages. 

Read 
Pin Mode Program Mode 

12 Vcc 5 V ground 

13 PROGRAM 5 V Program pulse 
(-46 V to -48 V) 

14 CS ground ground 

15Vbb 5V 12V 

16 Vgg -9 V Pulsed Vgg input 
( -35 V to -40 V) 

22 Vcc 5 V ground 

23 Vcc 5 V ground 

24 Vdd -9 V Pulsed Vdd input 
(-46 V to -48 VI 

about $170) or through Intel distributors. 
An inexpensive eraser can be built for about 
$15 using a General Electric ultraviolet lamp 
#G8T5, a ballast transformer, single pole 
switch, a push button starter switch, and 
mounting hardware. The lamp is mounted in 
an enclosure and the EROM is placed under 
it at a distance of 0.25 inch. The lamp is 

turned on for about 6 minutes for complete 
erasure, but use caution not to expose 
anyone to the ultraviolet rays. 

CAUTION: When using an ultraviolet 
lamp, you should exercise extreme 
care not to expose your eyes or skin to 
the rays. Short wave ultraviolet light 
can cause sunburning of the eyes and 
skin. 

According to a National Semiconductor 
engineer, the ultraviolet erasable EROMs 
cannot be indefinitely erased and repro- 
grammed. After about 52 cycles of repro- 
gramming, the device will not work properly 
unless it is reconditioned by baking in an 

oven at 400 °F for 45 minutes. After recon- 
ditioning, the program -erase cycle can be 

repeated another 52 times, although the 
National Semiconductor engineer 
recommends only 35 cycles between 
reconditioning. 

EROM Programming 

We'll describe two possible methods of 
programming these EROMs. The first 
method is highly recommended, will prove 
least expensive, and is extremely simple - 
order it programmed or send it in to be 

programmed! 
Many EROMs are not simple to program. 

The 1702A type EROM requires a series 

(over 32) of 47 volt programming pulses of 3 

ms duration with 20 percent duty cycle for 
each word. Also, at the beginning of each 
pulse, the address must be complemented. 



Manual programming is out, and the cost of 
an automatic programmer may not be justi- 
fied. Remember also that in order to erase 
programs you must buy some type of 
ultraviolet lamp. A PROM /E ROM pro- 
grammer could, however, prove to be a very 
interesting and fund raising activity for an 
industrious computer club. 

Figure 3A: 
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If this isn't convincing enough, or if you 
plan on going into the business, or if you're 
just plain curious, you may want to try the 
circuit of figure 3 that can be built to 
program the 1702A, 5202AQ, etc. The 
programmer is a simplification of the Intel 
MP7 -03 programmer and is designed to work 
with the 8080 program of table 3. Crowbar 
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4.7K (T.) PART B) 

Figures 3A and 3B: Com- 
puter controlled PROM 
programmer for stored 
charge PROMs. Unless 
otherwise noted, transistors 
are MPS -A06 or 2N3722 
or equivalent. Pin 14 of 
ICs to 5 V, pin 7 to 
ground. 



PINS ON PROM +5V DATA BITS 
+SOCKET 68K OUTPUT 

100 

FEU iii 7403 7404 PORT 2 

3.1 2,1 ODO 

INPUT © 
PORT 2 

ID 

100 . 7403 6.©6 I5 nn 

Fa ° .. 
100 : 7403 11140110 8.9 1011 002 

" 68 K 

102 a 

0 100 
= 7403 

® 

111114111E . 

El 
100 , 

M 

UNIrrili 
/ .: 

0 100 : 7403 

IV". 6.© I I 

1n 

ADDRESS BITS 

6.8K 

330 3 

OUT PUT 
7486 PORT 3 

330 

2 

7486 
6 -. 4 

5 

7486 
330 8 

9 .(10 

7486 
330 II 12 

330 

330 

3 

7486 

13 

7486 6-/4 

ODO 

OD I 

004 

330 II 

7486 
12 

13 



Figure 4: Program flow chart. 
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and protective features have been removed, 
so you need to check your circuit voltages 
before each use. Input data and addresses 
should be in positive logic (i.e., logical one is 

a positive level). The five monostables are 
contained in three 9602 dual one shot 
integrated circuits. Do not substitute the 
74123 dual monostable which is very suscep- 
tible to noise and therefore may not operate 
properly for this application. These mono - 
stables generate the proper programming 
pulses when enabled by bit 2 of the output 
port 4. The pulses are repeated every 15 ms 
(by the first 9602) and the length of time 

Table 2: 

Programmer Connections 

1. Connect 8 Address lines to output port 3 of 
your 8080 computer (port 3 lines ODO to 
007). 

2. Connect 8 Output Data lines from output port 
2 to pins 1, 5, and 11 of the three 7404s for 
data to be programmed (port 2 lines ODO to 
007). 

3. Connect computer input port 2 to pins 4, 8, 12 
of 7404s for reading EROM data for com- 
parison (port 2 lines IDO to 107). 

4. Connect bit 2 of output port 4 to pin 1 of 
74L10 (near the PROGRAM ENABLE switch). 

5. Connect 5 V and -9 V supplies from computer 
or other source and connect the 110 VAC 
power line. 

Programmer Operation 

DO NOT TURN POWER ON OR OFF WHILE 
EROM IS IN SOCKET. 

1. Turn on computer and programmer. 
2. Load EROM program at location 001/000. 
3. Load desired EROM data at location 002/000. 
4. Insert EROM into socket. Single step first five 

instructions of the program (to disable Program 
Enable). 

5. Set computer at address 001/000, switch on 
Program Enable switch, and start computer. 

6. At Halt, turn off Program Enable switch and 
remove EROM. 

Programmer Calibration Test 

ALL POWER ON, AND NO EROM IN THE 
SOCK ET. 

1. Be sure Program Enable switch is OFF. 
2. Measure 5 V at pins 12, 13, 15, 22, and 23. 
3. Measure 0 V at pin 14. 
4. Measure -9 V at pins 16 and 24. 
5. Ground pin 2 of the 7405 IC and measure 0 V 

at pin 24 of the EROM socket. 
6. Ground pin 4 of 7405 IC and measure 58 V at 

pin 15. 
7. Ground pin 6 of 7405 and measure 47 V at pins 

12, 14, 22, and 23. Adjust pot on NE550 for 
the 47 V. Pin 13 should remain at 5 V. Measure 
9 V at pin 16. 

8. Ground pins 6 and 8 of 7405 and measure 47 V 
at pin 13. 



The author will program 
the 1702A EROM for $5. All 
he needs is the PROM, an 
octal or hexadecimal listing of 
the desired program and $5. 

each word is programmed is determined by 
the software. This will be 520 ms with the 
program given here, so about 35 pulses are 

generated per word. Note that all bits in a 

word are programmed at one time. 
At first glance it would appear that the 

voltages generated by this programmer don't 
seem to agree with the voltages specified for 
programming the 1702A in the manufac- 
turer's documentation. However, if you look 
at the voltages with respect to Vcc (pin 12), 
they do agree. Follow the programming 
instructions of table 2 exactly and be sure 
you don't turn power on or off while an 

EROM is in the socket. The monostables 
could be triggered and program unwanted 
bits in the EROM. Also, turn the Program 
Enable switch to off when inserting or 
removing EROMs. Table 2 gives a complete 
list of programmer connections and a cali- 
bration test. 

A program for use in your 8080 type 
computer to program the 1702A (or equiva- 
lent) is shown in table 3 and the accompany- 
ing flow chart is shown in figure 4. This 

Table 3: 8080 program for EROM programmer. 

program is loaded into your computer start- 
ing at octal location 001/000, and the data 
to be written into the EROM is loaded 
starting at location 002/000. If any errors in 
programming are detected, the Interrupt 
Enable (INTE) light will light and the EROM 
addresses of the invalid words will be stored 
consecutively starting at octal location 
000 /000. The program runs for about 2.25 
minutes and then halts. If you have an 8008 
system, you can translate the operations and 
change the timing loops accordingly. For 
users of other machines, comments and a 

flow chart are provided to aid in translating 
the 8080 code for your machine. This 
EROM program can be entered and operated 
entirely from front panel switches or, for 
those with a teletype, punched tape, TV 
typewriter, etc., the program can be modi- 
fied to suit. In any event, check that the 
timing loops are correct for your particular 
system before attempting to use the pro- 
grammer to actually program EROMs. 

Good luck with the PROM /EROMs for 
your computer. 

001/000 257 XRA A ;CLEAR REGISTER A 

/001 117 MO V C,A ;SET ERROR TABLE ADDRESS 

/002 137 MOV E,A ;SET FIRST EROM ADDRESS 

/003 323 004 OUT 4 ;DISABLE PROGRAMMER 
/005 041 000 002 LXI H,DATBK ;SET ADDRESS FOR DATA TABLE 
/010 323 003 START: OUT 3 ;SET EROM ADDRESS 

/012 176 MOV A,M ;GET DATA FROM TABLE 
/013 323 002 OUT 2 ;LOAD DATA TO EROM 

/015 076 004 M V I A,004 ;SET BIT 2 - 1 

/017 323 004 OUT 4 ;ENABLE PROGRAMMER 
/021 006 260 M V I B,260 ;SET DELAY COUNT 

/023 026 000 MVI D,000 
/025 025 DELAYI: DCR D ;DELAY FOR 520 MSEC. 
/026 302 025 001 JNZ DELA1 
/031 005 DCR B 

/032 302 025 001 JNZ DELAY1 
/035 257 XRA A ;CLEAR REGISTER A 

/036 323 004 OUT 4 ;DISABLE PROGRAMMER 

/040 006 003 M V I 8,003 ;SET DELAY COUNT 

/042 025 DELAY2: DCR D ;DELAY 9 MSEC." 

/043 302 042 001 JNZ DELA2 
/046 005 DCR B 

/047 302 042 001 JNZ DELA2 
/052 333 002 IN 2 ;READ PROGRAMMED DATA 

/054 276 CMP M ;CHECK DATA -- IS IT CORRECT? 
/055 312 064 001 JZ ALLOK ;JUMP IF OK 

/060 373 El ;BAD DATA -- TURN INTE LIGHT ON 

/061 173 MOV A,E ;GET DATA ADDRESS FOR DATA 

/062 002 STAX B ;STORE BAD DATA ADDRESS 

/063 014 INR C ;INCREMENT ERROR TABLE ADDRESS 

/064 076 377 ALLOK: MVI A,377 ;CHECK IF DONE PROGRAMMING THIS CHIP 

/066 273 CMP E ;AT LAST ADDRESS? 

/067 312 100 001 JZ STOP ;HALT IF DONE 

/072 034 INR E ;INCREMENT EROM ADDRESS 

/073 043 INX H ;SET NEXT DATA ADDRESS FOR DATA TABLE 
/074 173 MOV A,E ;GET NEXT EROM ADDRESS 

/075 303 010 001 JMP START ;CONTINUE -- PROGRAM NEXT WORD 

/100 166 STOP: HLT ;HALT -- ALL DONE 

002/000 (EROM DATAI DATBK: BLK 256. 

'Note: Time delay loops are shown for an ALTAIR 8800 with a clock frequency of 2 MHz. Total loop time 11.5 usec for an apparent frequency 

of 1 .3 MHz. 
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Carl Helmers 

betting Inputs from 

Joysticks and Slide Pots 

Have you ever wondered how to get 
inputs from joysticks and slide pots for 
interactive game control purposes? A joy- 
stick is a two dimensional potentiometer 
control of the kind often seen in model 
aircraft radio control rigs. A slide pot (or 
conventional pot) is just a one dimensional 
version of the same concept of interactive 
control. To use the information obtained 
from such a potentiometer in the computer 
it must be converted into two binary inte- 
gers. An inexpensive oscillator, two 
counters, a four bit output latch and one 
NAND gate section are needed in addition to 
a standard 8 bit bus IO interface and a 

simple set of software routines. The ideas in 
this article can be adapted to any computer, 
although sample subroutines are shown for 
the 8080 and the 6800 microprocessors. 

The Method 

The problem to be solved is turning a 

mechanical signal into the corresponding 
value of a digital word used by the program. 
The mechanical signal is the position of the 
joystick, slide pot or conventional shafted 
potentiometer. The electronics can immed- 
iately measure this position by measuring 
the resistance of a potentiometer. The prob- 
lem thus evolves into looking for a way to 
convert a resistance into a binary meas- 

urement. 
There are many different ways to accom- 

plish this task. The particular method chosen 
here is to convert the measurement into a 

frequency through an oscillator. The fre- 
quency is measured under direct control of 
the computer program using an 8 bit counter 
with the CPU clock as a time base. To 
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Figure 1: The hardware of an input device for Interactive manual controls consists of an 

oscillator, two counter circuits, an output latch and a NAND gate section. This hardware must 
be driven by a suitable program. 
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accomplish this conversion, the processor 

must execute a simple five step process: 

1: Clear the counter, 
2: Turn on the counter, 
3: Wait 2 milliseconds, 
4: Turn off the counter, 
5: Read the count. 

The result is the number of cycles during a 

two millisecond period. For the circuit of 
figure 1 this number will range from 1 to 
about 240. The relationship of frequency to 

control position depends primarily upon the 

resistance to frequency conversion function 
of the oscillator and the linearity of the 

potentiometer. The accuracy of the conver- 

sion will not necessarily be high -- but the 

intended application as an interactive con- 

trol input more than makes uF for that 
failing. For a game control application such 

as Space War or Pong, accuracy of the 

conversion function is not a paramount 
concern, so long as it is reasonably repeat- 

able within limits of human perception. 

The Hardware 

The resistance to frequency conversion is 

performed by IC1, an NE555 timer inte- 
grated circuit which comes in an 8 pin mini 
DIP package (see figure 1). The timer is set 

up as an oscillator with frequency (f) of 
oscillation determined by R1, R2, R3 and 

Cl: 

f = 1.44/((R1 + R3 + 2 *R2) *C1), where 

f is the frequency measured in kHz, 

Rl, R2, and R3 are all measured in kO, 

and 
Cl is measured in uF. 

The resistances and capacitance used are 

chosen so that the frequency will range from 
about 0.75 kHz to about 122 kHz as the 

control Rl is varied from 100 kO to 0 kO. 

A linear potentiometer is not recom- 

mended because of the relationship between 

changes in frequency and resistance as illus- 

trated in table 1. A linear potentiometer 
provides for resistance changes proportional 
to the position of the shaft. The relationship 
between resistance and frequency, on the 

other hand, is not linear. Therefore, the 

relationship between position of the shaft 
and frequency is not linear if a linear 
potentiometer is used. To solve this problem 
to some extent, a logarithmic potentiometer 
may be used; it is often called an "audio - 
taper" because of the relationship between 

the position of the shaft and the sensitivity 
of the ear. This potentiometer will not per- 

fectly compensate for the nonlinearity of 
the resistance and frequency relationship. 
However, it is quite an improvement. 

Table 1: Frequency (rounded to nearest 0.5 
kHz) versus Resistance of Rl. (R2 = 440 
Ohms, R1 = 750 Ohms, Cl = 0.02 uF) 

kilohm kilohertz 

100 0.5 
90 1.0 
80 1.0 
70 1.0 
60 1.0 
50 1.5 
40 2.0 
30 2.5 
20 3.5 
10 7.0 
9 7.5 
8 8.5 
7 9.5 
6 11.0 
5 13.0 
4 15.5 
3 20.0 
2 27.5 

45.5 
0.5 66.0 
o 122.0 

A control register is provided by the 7475 
circuit (IC2). This circuit is connected to the 

output side of the IO port (POTIN). The 
two lines DO and D1 of the output side of 
POTIN are used to control the circuit. The 
GATE line is used to control whether or not 
the oscillator output is allowed to reach the 

counter. A 1 bit output enables counting. 
The CLEAR line is used to reset the 

counters prior to beginning a measurement. 

This line is connected directly to the asyn- 

chronous clear inputs of the counter circuits 
IC3 and IC4. A 1 bit output clears the 

counters. 
The counters used to measure the fre- 

quency are 74193 circuits (1C3 and IC4) 
which are wired for 8 bits. Following a clear 

operation, a 2 millisecond GATE signal will 
result in a measurement. 

Not shown in figure 1 is the specific bus 

interface circuit required to connect this 

peripheral to your computer. The software 
of this article assumes only that hardware of 
your system can decode the required output 
operation to the 7475 (IC2), and can read 

the 8 bits coming out of IC3 and IC4. 

The Software 

Table 2 presents a subroutine called 
POTREAD written for the Motorola 6800 
processor design, and table 3 performs the 

equivalent program on an Intel 8080. Both 
listings are done in a symbolic assembly 

language format with comments to explain 
the operations. In both listings assumptions 
are made about the 10 operations involved. 
For the 6800, the POTREAD procedure 
assumes that the memory address space 

location POTIN is implemented as the inter- 
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Table 2: Symbolic assembly code of POTREAD implemented for a 6800 
instruction set. This procedure assumes that the potentiometer input device of figure 1 is located at POTIN in the memory address space of the 6800 
computer. It also assumes that ALPHA is the memory location which is to 
receive the latest input, and that a subroutine MILLI exists which implements 
a 1 millisecond wait. 

POTREAD LDAA #2 
STAA POTIN 
DECA 
STAA POTI N 
JSR MILLI 
JSR MILLI 
CLR POTIN 
LDAA POTIN 
STAA ALPHA 
RTS 

binary '00000010' is the clear command 
which is sent to the device register; 

binary '00000001' is the count enable command 
which is sent out to start measurement; 

call on MILLI for a one millisecond wait; 
call MILLI to wait once more; 
turn off the counter with binary '00000000'; 
read the count via input side of interface; 
save it in ALPHA and 

return to the caller; 

Table 3: Symbolic assembly code of POTREAD implemented for an 8080 
instruction set. This procedure assumes that the potentiometer input device of figure 1 is located at a parallel interface decoded for device address POTIN. It also assumes that ALPHA is a memory location which is to receive the 
latest input and that there exists a subroutine called MILLI which implements 
a 1 millisecond wait. 

POTREAD MVIA 2 
OUT POTIN 
DCRA 
OUT POTIN 
CALL MILLI 
CALL MILLI 
MVIA 0 
OUT POTIN 
IN POTIN 
LXIH ALPHA 
MOVM A 
RET 

binary '00000010' is the clear command 
which is sent to the device register; 

binary '00000001' is the count enable command 
which is sent out to start measurement; 

call MILLI for a one millisecond wait; 
call MILLI to wait 2 ms total; 
binary '00000000' is the stop command 

which is sent out to end measurements; 
read the count via input side of interface; 
set up address of ALPHA; 
save count in ALPHA; 
return to caller; 

Table 4: The MILLI procedure specified in symbolic assembly language for 
the 6800 processor. The timing calculation is shown in the left hand columns; 
the JSR which calls MILLI from the main program is shown for purposes of 
the timing calculation. When the return instruction (RTS) is completed, 
exactly 1.000 ms will have elapsed between the completion of the instruction 
preceding the JSR and the beginning of the instruction following the JSR, 
assuming that the CPU has a 1.000 MHz crystal controlled oscillator. 
Note: Not all 6800 systems have 1.0 MHz CPU clocks. To adjust timing pick 
u new constant instead of 162, and possibly balance with NOP or nullbranch 
instructions. 

Time 
(#s=:-,---cycle) 

Time 
Total Label Op. Operand 

9 9 JSR MILLI 
4 13 MILLI PSHA 
2 15 LDAA #162 

162 x 2 339 MILOOP DECA 
162 x 4 987 BNE MI LOOP 

4 991 BRA NEXT 
4 995 NEXT PULA 
5 1000 RTS 

Commentary 

main program calls MILLI; 
save A register in stack; 
decimal 162 loop count; 
count decremented and tested 

to keep loop going on; 
time wasting null branch; 
restore A from stack; 
back to the caller; 
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face to the peripheral of figure 1. For the 
8080, the procedure assumes that the IO 
device with a symbolic code POTIN is 
implemented as the interface. It is an inter- 
esting exercise which is left to readers to 
perform, comparing the number of bytes 
required and the execution time required on 
the two machines, assuming comparable 
operation near the highest possible clock 
frequency. The result will be found to be 
similar. 

The subroutine MILLI is intended to be a 

1000 microsecond delay implemented either 
by reference to a hardware realtime clock, or 
as a timing loop with constants adjusted to 
the clock frequency of your computer. The 
concepts of creative time wasting described 
by J im Hogenson in his article "Can Your 
Computer Tell Time" (in the December issue 
of BYTE) can be applied to the problem of 
writing such a program for your particular 
computer. An example for a 6800 is shown 
in table 4. 

What's Next? 

This article has illustrated a simple analog 
to digital conversion input device which can 
be implemented inexpensively. The uses to 
which you put this idea are up to your own 
imagination. The electronic music person 
can use this kind of input to control 
parameters like tempo and timbre variations. 
The model railroad buff could use this 
conversion to input engine speed informa- 
tion. The amateur radio operator could use 
such an input as one way to control the 
speed of machine generated Morse code 
transmission. The space war freak can use 
this type of a device for the input of heading 
and velocity information taken off a joy- 
stick. This is by no means an exhaustive 
catalog of applications which can take ad- 
vantage of a simple conversion of this kind. 



Logic Probes 

Hardware Bug Chasers 
by 
Alex. F. Burr 
Physics Dept. Box 3D 
New Mexico State University 
Las Cruces NM 88003 

While an oscilloscope or 

voltmeter can be used with 
digital circuits, a logic 

probe is much less 

expensive if built from an 

appropriate kit. 

Digital logic, whether used 

in an 8080 microprocessor or 
as the TTL chips that can be 

used to make a processor, is, 

at least in theory, clean and 
simple because only two 
states are possible. Any point 
in even the most complicated 
circuit is either HIGH or 
LOW. However this very 
simplicity encourages the 
design of large and 
complicated circuits. While 
the chance of anything going 
wrong at any one point is 

small, the accumulated 
chances of many points 
means that sooner or later the 
experimenter is going to have 

to hunt for sources of 
trouble. 

In the case of analog 
circuits, when trouble 
develops, you get out the 
oscilloscope or voltmeter and 
start looking for places which 
have waveforms or voltages 
not meeting the 
specifications. These 
instruments can be used to 
troubleshoot digital circuits 
too. The oscilloscope is 

particularly useful if you have 
timing problems, but usually 
they give you too much 
information and may just 
confuse the issue. The 

voltmeter may tell you that 
the voltage on pin 8 is 3.9 
but, because most IC failures 
show up as a node stuck 
either HIGH or LOW, really 
all you need to know is that 
on pin 8 there is a HIGH. 
That single bit (literally) of 
information can be obtained 
with an instrument a lot 
smaller and less complicated 
than a voltmeter. 

That instrument is the 
logic probe. In its simplest 
form it is just a state 
indicator with a sharp point.. 

SEE PULSE STREAMS 

SEE 
SINGLESHOT 
RESPONSES 

When the point is placed on 
any pin of an IC, the probe 
will indicate whether a LOW 
or a HIGH is present at that 
point. And with digital logic 
that is usually all the 
information you need. 

Logic probes can detect a 

surprising number of 
different defective 
conditions. Fig. 1 illustrates 
some of the uses to which a 

probe can be put. Of course, 
just as voltmeters come with 
a variety of capabilities and 
prices, so do logic probes. 

SEE PULSE STREAMS 

rSEE OPEN CIRCUITS 

,.OPEN BOND 

HS 

41re11011116°000, 
f 

SEE STUCK 
Lows 

J L 
SEE LOW REP RATE \ HIGHS AND LOWS 

SEE STUCK HIGHS 

SHORT - --- 
SOLDER 
BRIDGE 

SEE SINGLE-SHOT RESPONSES 

Fig. I. Some of the uses of logic probes and the malfunctions which 

they can detect. 

213 



Commercial Logic Probes 

One of the first developed 
was the Hewlett Packard 
10525T logic probe. It is a 

marvel of compactness and 
versatility, all carefully 
human -engineered. Basically 
it consists of a white light 
which goes out when the 
probe is placed on a LOW and 
comes on when the probe is 

placed on a HIGH. 
Simple - - yes indeed; but 

it does much more. What if 
the point tested is open 
circuited, or the level is just 
plain bad, neither HIGH or 
LOW? Then the light glows 
at half intensity. What if a 

pulse comes along that is too 
short to excite the indicator 
light? Then a pulse stretcher 
takes over. Pulses with a 

width of between 10 ms and 
0.05 seconds are stretched to 
0.05 seconds in length. What 
if the pulses come so fast that 
the eye cannot distinguish 
one from the next? All pulse 
streams with a repetition rate 
between 10 Hz and 50 MHz 
cause the lamp to blink at a 

10 Hz rate. All this capability 
is enclosed in a probe about 
six inches long and one -half 
inch in diameter. The light is 
placed near the tip in such a 

way that it can be seen no 
matter how the probe is 
rotated. Thus you can easily 
see both the point of the 
probe and the indicator at the 

The E & L Instruments logic probe is compact, with the two indicator LEDs visible toward the 
left in this photo. 

same time. Power is supplied 
to the probe by a well 
protected single cord which is 

attached to a source of 5 V 
dc at 60 mA. 

The input impedance is 

greater than 25k Ohms in 
both the HIGH and LOW 
state (less than one low 
power TTL load). The input 
is well protected against 
operator error. The probe will 
stand ±70 volts continuously 
and -}200 volts intermittently 
as well as 120 V ac for 30 
seconds. The power input is 

internally protected from +7 
to -15 V dc as well as power 
lead reversal. The only catch 
is the price, which even with 
a recent reduction is $65. 

There are, however, other 
less expensive probes. Two of 

these are distributed by E and 
L Laboratories. Their model 
340 is a logic probe and 
pulser combined into one 
instrument. The model 320 is 
a logic probe only, designed 
to give maximum information 
about the state of the node 
being tested. Both probes are 
well constructed, a little over 
6 1/2 inches in length and 
half an inch in diameter. Both 
come with two different 
probe tips and handy carrying 
cases. 

The model 340 has two 
LED indicator lights. In 
operation the two leads from 
the probe are connected to 
the 5 V dc supply and the 
probe tip applied to the IC 
lead to be tested. If that node 
is HIGH, the red LED lights 

The Hewlett Packard 10525T logic probe and 10526T pulser, 
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up brightly. If that node is 

LOW, neither LED is lit. The 
green LED is used to detect 
pulses which do not last long 
enough to give a useful 
indication on the red LED. It 
lights for 0.1 seconds (just 
long enough to see) whenever 
a single pulse wider than 50 
nanoseconds is applied to the 
probe tip. In the probe tested 
for this article, when a 

voltage increasing from zero 
was applied to the tip, the red 
LED lit when the voltage was 
greater than 1.5 V; just what 
the specifications called for. 

The model 320 is a little 
more versatile as an indicating 
instrument, but it lacks the 
ability to generate pulses that 
the model 340 has. It too has 
two LED indicators, one red 
and one green. In operation, 
the two power leads are 
connected to the 5 V dc 
power supply and the tip to 
the node under test. The 
specifications say that if the 
voltage at the node is less 
than 0.7 volts the green LED 
will be lit. If the voltage is 
greater than 2.4 volts, the red 
LED will be lit. In practice 
the specifications are closely 
followed. The LEDs may 
glow dimly at voltages just a 

few tenths higher or lower 
than the specified voltages. 
But the dividing line between 
lit and not lit states is 

remarkably sharp. 
A special feature of this 

probe is the pulse storage 



"Nodes" are places in a 

circuit - such as the pin of 
an IC - where you might 
want to test the logic level 

using the probe. 

7 

6 

--g I_I 
ois -I 

capability brought into play 
by a small switch near the tip. 
When the pulse storage 
feature is on, a short pulse 
(either HIGH or LOW) is 

stretched so that it turns on 
the appropriate LED to full 
brightness even if it is as short 
as 50 nanoseconds. Square 
and sine waves appearing at a 

tested node will cause both 
LEDs to have equal 
brightness. 

The main difficulty noted 
with this probe is with the 

green LED. It is somewhat 
dimmer than the red LED 
and the lens diffuses the spot 
of light generated less well so 

that in bright room light it is 

sometimes hard to tell 
whether or not the green 

LED is lit. This fact would 
make the determination of 
the duty cycle of a chain of 
pulses by a brightness 
comparison between the 
LEDs much more difficult 
than the instruction booklet 
suggests. 

Even the E and L 

Laboratories probes are 

expensive ($35 and $25); 
although they are more 

convenient than, and 
certainly in the same price 

3 

D2 

14 
DI R3 

TO GROUND CLIPO 

TO 5V CLIPO 

TO PROBE TIP 

a 6 F14 I712 l' 

ICI 

8 9 'IO II '12'13 114 

RI 

R2 

of 

TO GROUND CLIP 

Fig. 2. Circuit diagram for the James logic probe kit. 

range as, a good voltmeter. 
Nothing, however, can beat 

the cost effectiveness of two 
probe kits which have been 
fairly widely advertised. 

Logic Probe Kits 

One of these kits is 

manufactured by Chesapeake 
Digital Devices. This kit 
allows one to easily construct 
a probe which uses red, green 

and yellow LEDs to signal the 
presence of logic levels in 

digital circuits. 
The kit goes together in a 

very short time with the aid 
of very complete assembly 
instructions. The whole probe 
fits into a well constructed 
case, a little over six inches 
long and slightly less than one 
inch in diameter. There are 

only three resistors, three 
LEDs, one transistor, and a 

74S00 integrated circuit to 
solder onto the clearly 
marked printed circuit board. 

In operation the green 
LED is brightly lit on a LOW, 
the red LED is brightly lit on 
a logic HIGH, while the 
yellow LED lights on an open 
circuit or a level between a 

true HIGH or LOW. A slow 
pulsing condition will be 

indicated by alternate 
flashing of the red and green 

LEDs. A fast pulsing 
condition will be indicated by 
the simultaneous activation 
of the red and green LEDs. 
The dividing line between 
these last two conditions is 

about 20 Hz, depending on 
the eye of the user. 

The biggest difficulty with 
the kit was the circuit board. 
The copper leads had not 
been tinned and were 
oxidized, making them a bit 
difficult to solder; especially 
if the builder was concerned 
that he not use so much heat 
for so long as to damage the 
components. The clear plastic 
tube into which the circuit 
board with its LEDs slide did 
crack on assembly and the 
green LED was open but 
these difficulties were easily 
remedied and the result was a 
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handy logic probe at a price 
significantly less than any 
assembled probe. 

A Unique Probe 

A particularly ineXpensive 
kit is the one sold by dames 

Electronics for $9.95 
including postage and case. It 
is unique in that it uses a 

MAN 3 seven segment 
readout which gives a 1 for a 

HIGH a 0 fora LOW and a P 

for a pulse train - all this in a 

compact package measuring 
five inches long and one inch 
in diameter. 

The circuit diagram for 
this intriguing probe is given 
in Fig. 2. The 2N2222 input 
transistor drives the chip, 
ICI, which in turn causes the 
appropriate segments of the 
MAN 3 to light. The chip was 

custom made for James 
Electronics by National 
Semiconductor and contains 
a proprietary circuit which 
was laid down by a $500 
master mask. 

The kit comes in a very 
impressive package which was 

carefully designed to protect 
the contents from rough 
handling by the U.S. Postal 

Service. The parts, which 
include the case and a custom 
glass epoxy printed circuit 
board, are of high quality and 
are not your usual cheap 
imports. Because most of the 
parts are in the 14 -pin chip 
which is the heart of the 
probe, the kit goes together 
quickly and easily for the 
experienced builder (about 
one hour to solder all the 
parts to the board). There are 

no explicit devices for 
overload or reverse voltage 
protection. The probe draws 
65 mA from any convenient 
5 V point on the circuit 
under test. 

The inexperienced builder 
is going to have trouble 
because the complete 
assembly instructions say, 

"Assemble the Logic Probe 

according to the schematic 
diagram and board layout 
shown below." The end. One 
has to have pretty sharp eyes 



 

A kit logic probe shown in action testing a printed circuit board. 

to orientate the IC, transistor 
and readout correctly. Even 
then you might miss the two 
jumpers that go on the circuit 
board. The circuit board also 
could have been laid out 
more efficiently so that 
the drastic bending of the 
MAN 3 leads would have 
been avoided. 

There is one serious 
defect. I t is more serious 
from the theoretical than the 
practical point of view. That 
defect concerns the input 
level at which the indicator 
switches from 0 to 1. That 
level is 0.65 volts; but the 
specifications for TTL logic 
say that the maximum 
voltage that the logic is 
guaranteed to interpret as 

LOW is 0.8 volts. Thus the 
probe would indicate a HIGH 
on a node which the logic 
would interpret as a LOW. 
This defect is of lesser 
practical importance because 
it is the unusual LOW which 
will have a voltage greater 
than 0.6 V. Indeed the usual 
gate input is only a very few 
tenths of a volt above ground 
at the most when it is LOW. 
Nevertheless it is a bit 
disconcerting to have the 
probe give a wrung reading 

even if it does so only under 
unusual circumstances. After 
all, it is under unusual 
circumstances that the probe 
is most often used. 

Logic Clips? 

The probes which have 
been discussed so far all 
investigate one pin of the IC 
at a time. There are some 
instruments which will do 
much more. These are called 

logic clips and are not really 
probes but will give you the 
same type of information. 
They are extremely handy 
service and design tools. They 
clip onto TTL DIP ICs and 
instantly display the logic 
states of all 14 or 16 pins. 
Each of the clip's 16 LEDs 
independently follows level 
changes at its associated pin: 
A lighted diode corresponds 
to a HIGH. 

A logic clip is like 16 
binary voltmeters in a neat 
little package. 

The logic clip's real value 
is in its ease of use. It has no 
controls to set, needs no 
power connections, and 
requires practically no 
explanation as to how it is 
used. The clip has its own 
gating logic for locating the 
ground and +5 volts Vcc pins 
and the buffered inputs 
reduce circuit loading. Simply 
attaching the clip to a TTL 
dual inline package makes all 

A detail of the Chesapeake Digital Devices logic probe board. The three LEDs are at the right in 
this picture, with the 74S00 IC in the center. 
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the logic states visible at a 

glance. The clip is, in effect, 
16 binary voltmeters. When 

used with some means of 
pulsing a complicated circuit 
slowly, sequential logic states 

like shift registers come alive 

- each state change is 

immediately visible. 
The most popular clips are 

made by Hewlett Packard and 

Circuit Specialties. 
Unfortunately they have one 

big drawback - price. They 
cost from $75 to $85 each 

and will not be discussed 

further here. 

Summary 
Table 1 summarizes all the 

information that has been 

given here and presents some 

new facts about each of the 

logic probes discussed. By 

scanning this table you ought 
to be able to determine which 
probes have the features you 
need and the ones you can 

afford. The following 
comments are based on 

personal experience with each 

of these probes, but that 
experience has been rather 
limited. 

The Hewlett Packard 
probe is obviously the best. It 
should be; it certainly costs 

significantly more. It will 
work under a wide range of 
conditions and it is carefully 
made. For the extra money 
you get wide frequency 
range, tight specifications, 
and vastly superior handling 
of pulse trains. The 
construction is first class and 

includes such extras as a 

compact BNC plug on the 

power cable (which, of 
course, is not so good if your 
breadboarding system does 

not have a BNC jack to 

supply that power). 
The E and L probes (340 

and 320) are imported from 
Japan. They are very well 
constructed and have the 

little extras like plastic 
carrying cases and different 
probe tips that the better 
Japanese manufacturers like 
to include with their 

products. The 320 is a better 
logic probe than the 340. It is 

less expensive and it handles 
pulse trains and logic levels in 

a better and more revealing 
way. Of course, it does not 
have the pulse generating 
capabilities of the 340. 

The professional logic 
designer will want to get one 

of these three probes. They 
may be a bit expensive for 
the serious hobbyist. In that 
case one of the two kits 
would be satisfactory. 

Both kits went together 
easily and rapidly. The CDD 
kit is much more revealing 
about the state of the logic 
under test and has superior 
assembly instructions. The 
James kit has better quality 
parts and is cheaper. 

I n any case the serious 

worker in digital logic and 
computers, whether a 

professional or a serious 
hobbyist, will find one of 
these probes a valued 
addition to his collection of 
test equipment. 

Table 1. Characteristics of logic probes. 

Probe 

Operating 
Voltage 

Current 

Frequency 
Response 

HP 10525T1 

5 ± 10% V 

60 mA 

50 MHzS 

Input Impedance >25 IM 

Min. pulse width 10 ms6 

Levels OPEN half intensity 

HIGH on >2±0.2 V 

LOW off <0.8 
-042V 

Size 6" x 0.5" dia. 

Overvoltage excellent 
protection 

Price 

3402 

5 ±10 %V 

100 mA 

12 MHz 

50 kS2 

50 ms 

no lights7 

red >1.5V 

no lights 

6.6" x 0.6" dia. 

reasonable 

$65 $358 

3202 

5 ± 10% V 

CDD3 

5 ± 10% V 

80 mA 40 mA 

12 MHz 

100 -600 kS2 

50 ms 

no lights9 

red >2.4 V 

green <0.7 V 

6.6" x 0.6" dia. 

reasonable 

$25 

yellow.'0 

red >2.5 V 

green <1 V 

6 "x1 "dia. 

none 

$1512 

James4 

5V 

65 mA 

See1 1 

1 >0.7 V 

0 <0.7 V 

5 x 1" dia. 

none 

$1012 

Notes: 

I Hewlett Packard, Palo Alto CA 94304. 

2E and L Instruments Inc., 61 First St., Derby CT 06418. 

3Chesapt'ake Digital Devices, Inc.. Box 341, Havre de Grace MD 21078. 

4James Electronics. Box 822, Belmont CA 94002. 

5Pulse trains faster than IO He cause the lamp to flash at a 10 Hz rate. 

l'Pulses between 10 ms and 0.05 seconds are stretched to 0.05 seconds. 
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7Short pulses indicated by green LED. 

8Single pulse generator contained in probe. 

9Switchable pulse stretcher for short pulses. 

10yellow LED is also lit if voltage is between HIGH and LOW. 

11lndicator reads P. for pulse trains >20 Hz. 

12Kit price. 



Controlling External Devices 

With Hobbyist Computers 
Robert J Bosen 

Box 93 
Magna UT 84044 

There is an almost infinite variety of uses 
to which a hobbyist computer system may 
be applied besides calculating or data 
processing, and many of these can bring a 
great deal of satisfaction to the proud 
owner. For example, hobbyist microcom- 
puters are invariably advertised with a long 
list of possible applications such as home 
security systems, light controllers, process 
controllers, or automated drink mixers. I 

have personally had several opportunities to 
use my computer in a variety of related 

Photo 1: The author's computer setup includes the two CRT terminals shown 
on the table, plus a rack cabinet presently containing his central processor. 

ways, including controlling stage lighting and 
sound effects for a large bicentennial cele- 
bration, and automating a spook alley. These 
and other applications inspired me to build 
the module described here to interface my 
computer with virtually any electrical or 
electronic device. If you build this interface 
as I did, you'll be able to control up to 16 
channels of electrical outlets or switches of 
any kind, and only your imagination will 
limit the applications. 

The basic principle behind any computer 
interface is to change computer compatible 
signals to device compatible power levels, 
and this interface accomplishes that goal 
with a great deal of flexibility, allowing the 
user to hook up virtually any type of 
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Figure 1: This is all you'll need to build if you already have a parallel output port you can use 

to control the interface card. If not, lines DO through D4 should be joined with the 

corresponding points in figure 2. Transistors Q1 through Q16 can be any economical NPN with 

reasonable Beta. Due to varying configurations (you may not want to build up all 16 channels 

or use different transistors), I suggest the curd be wirewrapped. 

transistor, relay, or small electrical device to 
its open collector outputs. I used 16 surplus 
relays and wired them to 16 AC outlets and 

16 sets of "five -way" binding posts. But this 
is by no means the only way to utilize the 
16 output channels provided. All in all, the 
system described allows the programmer a 

great deal of flexibility over what he will 
control and how he will do it. 

This interface may be used with virtually 
any 8 bit computer, and could be modified 
to work with a 4 bit machine as well. The 
circuit consists of four parts: A parallel 

output port, a 16 channel demultiplexer, a 

16 bit memory, and 16 single transistor 
driver amplifiers. It can be built on a single 
small circuit board and total cost for all the 
solid state parts will be under $35 if a little 
shopping around is donc. If you already have 

a spare parallel output port you can dedicate 
to this purpose, you can save about half of 
that cost. 

Here's how it works: A byte of data is 

sent out of the computer to the parallel 
output port where it is latched. The four low 
order bits are applied to the four inputs of 
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IN 

OUT> 

AO 

AI 

A2 

A3 

A4 

A5 

A6 

the 74154 demultiplexer which selects one 
of 16 output pins and pulls it low. If, for 
example, the four bits are 0000, the de- 
multiplexer will select channel zero and pin 
1 will go low. There are 16 possible com- 
binations of data that may be received, and 
for each of these combinations one of the 
pins of the 74154 will go low. Each of the 
16 outputs of the demultiplexer then goes to 
a D flip flop which it toggles. Since we are 
trying to exercise control over 16 channels 
continuously, but the 74154 can only 
process one channel at a time, these D flip 
flops are needed to store the status of all 
inactive channels. Toggling the flip flops 
causes them to reverse their state and 
alternately turn on or off the transistors 
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they drive each time a particular channel is 
selected. The fifth bit of the data byte is 
buffered (IC D) and then runs to the reset 
inputs of all 16 D flip flops, providing a reset 
signal to turn all the channels off simul- 
taneously. (The three high order bits are 
unused.) 

Hardware. The circuit provides 16 transis- 
tors in an open collector configuration, 
which may be viewed as open switches when 
off, and as switches shorted to ground when 
on. Each transistor can handle about 30 V 
and 30 mA. These may be used to control 
bigger transistors, or relay coils may be 
energized through them, or small electronic 
devices (sirens, light bulbs, etc.) may be 
powered directly with them by placing a 

voltage source in series with the device and 
the transistor. This is shown in several 
variations in figure 3. A word of caution is in 
order here if inductive loads such as relay 
coils are used: The collapsing magnetic field 
of the relay coil as it is turned off can 
generate large voltage spikes which may 
damage the transistors. Relay coils (see 
figure 3a) should therefore be protected 
with shunt diodes to short out these spikes 
when they approach dangerous levels. Relays 
may also oscillate at high frequencies if 
selected frequently in a program, so small 
capacitors may be necessary across the 
windings to short these oscillations to 
ground. From my own experience I found 
about half the surplus relays I tried exhib- 
ited this problem, but tinkering with various 
small capacitors clears it up. 

Software. The software must provide data 
bytes containing the right information to 
select the right device at the right time. This 
will require a little forethought from the 
programmer because of the nature of the D 
flip flops used to store the status of each 
channel. Returning to the preceding discus- 
sion on circuit operation, it will be recalled 
that the D flip flops toggle (reverse states) 
each time they are selected. However, simply 
selecting the same channel over and over 
again will not toggle it on and off as it might 

Figure 2: This is u standard parallel output port, capable of responding to any output address 
between zero und 255. The address is specified by the eight jumpers coming off the address 
lines. You may want to use low power chips (74L series) for IC A, IC B and IC C, to save on 
address bus loading. Incidentally, this addressed output port could be used in any application 
requiring a parallel output. All eight data lines are available at the various outputs of the 8212 
chip. The IN and OUT and PWR inputs are for Altair 8800 and similar computers. The 
OPTIONAL INPUT PORT ENABLE line coming from pin 8 of IC B may be used to enable 
another 8212 chip with the CS pin to function as on input port and place data on the input bus 
when the IN line is active and the specified address is enabled. 
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Photo 2: Details of the output control interface. The interface was built upon perforated board 

mounted at the side of the rack cabinet at the left. 

be expected, because the D flip flops only 
toggle on rising edges from the demulti- 
plexer, and a rising edge only occurs after a 

channel has been selected when the multi- 
plexer changes to select (ground out) a 

different channel. So, turning a channel on 

and then off is accomplished by first select- 

ing the desired channel with a data byte, 

then selecting a different channel (This 

might be an unused channel or the next 

sequential channel in your program), then 

waiting the delay needed for the first 
channel ko switch on, then selecting it again 

to reset it. This may seem a little compli- 
cated at first, but it's easy to get used to. 

Applications. Software and hardware will 
of course be determined by the application 
needed, and this will vary widely from 
instance to instance. The following ideas 3b . 
have occurred to me and you will un- 

doubtedly think of many more: Light 
shows, computer music, industrial process 

control, computerized games, industrial 
robots, stage lighting, spook alleys (Electro- 
Spook?), slide presentations, darkroom auto- 
mation, chemical mixing, remote controls of 
any type, or a fully programmable electri- 

cally operated teeter -totter. Try it - you'll 
like WE 

v'') our PUTS 

CONTROL 
RELAY 

i 

3c. 

T 
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EXTERNAL 
POWER 
SUPPLY 

2 N3O55 OR OTHER 
NPN POWER 
TRANSISTOR 

HIGH CURRENT 
OUTPUT 
(INVERTED h LOGIC) 

SMALL 
ELECTRONIC 
CIRCUIT 

t SMALL 
POWER 
SUPPLY 

Figure 3a: Interfacing re- 
lays. ZI is used to protect 
Ql from spikes. Zl should 
have a breakdown voltage 
just higher than the relay 
voltage. 

Figure 3b: Power transis- 
tor interface, suitable for 
powering tape recorders or 
other small appliances. 

Figure 3c: Small load 
(< =30 mA) direct inter- 
face. 



Microprocessor Based Analog 

Roger Frank 
1801 E Girard 4247 
Englewood CO 80110 

An analog signal is typi- 
cally a voltage level ... 
which corresponds to 
measurement of some 
physical variable. 

Analog signals can be proc- 
essed with only a minimal 
addition of hardware to a 

system. 

Analog input and output capabilities, 
when added to a microcomputer, can greatly 
expand the power of the home or hobby 
computer. Inherently, the microprocessor is 
a digital device, ideal for control of discrete 
(on or off) input and output levels. How- 
ever, many analog signals can also be proc- 
essed with only minimal additional hard- 
ware. With this addition, such devices as 
temperature sensors or photocells can be 
monitored, and output peripherals such as 
oscilloscopes and audio amplifiers can be 
added to the microprocessor. 

Taking traditional approaches to analog 
to digital conversion can be very expensive 
to the hobbyist. Hundreds of dollars could 
be spent, but this would yield only high 
speed or resolution. For the amateur, 
typically eight bits of accuracy is sufficient, 
and speed is not a critical factor. The 
brightness of the sun, the temperature of the 
room, or the moisture of the front lawn do 
not change very rapidly. By allowing the 
microprocessor to do most of the work 
involved in the conversion, a simple, inex- 
pensive circuit can convert an analog input 
to a digital word in less than a millisecond. 
The overall cost can be kept under $20 for 
four channels of analog input. 

Two techniques of analog to digital con- 
version are easily accomplished by a micro- 
processor: the ramp and successive approxi- 
mation methods. In each case, the task is to 
generate a digital word, apply it to a digital 
to analog converter (DAC), and compare the 
analog output of the DAC to the analog 
input to he converted. Based on the results 
of the comparison, the next digital word to 
the DAC is generated. 

Traditionally, several gates, up -down 
counters, and clock generators are used to 
achieve the conversion. This approach is 
much more expensive than using the micro- 
processor to implement the same functions, 
using no external TTL logic in the conver- 
sion at all. 
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The Ramp Technique 

The simplest approach is the ramp tech- 
nique. It has the advantage of needing the 
least code in the microprocessor, but the 
disadvantage of being the slowest, some 15 
times slower, on the average, than the 
successive approximation approach discussed 
later. For many applications, where speed is 
not critical, this approach may be best. Since 
the ramp technique is conceptually easiest to 
understand, it will be examined closely first. 

Figure 1 shows the block diagram of the 
AD conversion system. Unlike hardware 
approaches, the identical components can be 
used for successive approximation, ramp, or 
tracking conversion algorithms. The hard- 
ware can be tailored, by software, to meet 
speed or accuracy requirements of the over- 
all system. 

To understand the circuit, assume in 
figure 1 that the analog input to the + input 
connector of the comparator is 2.00 V, and 
that all zero bits are applied to the DAC's 
digital inputs. The DAC's output will be 0 V 
at the comparator's - input connector-. The 
comparator's output will be a 1 bit, which is 
applied to the microprocessor through an 
input port. The software, by reading and 
testing the input port, knows if the digital 
word applied to the DAC is too large or too 
small. In this case, the 1 bit read at the input 
port means "too small" and the micro- 
processor will increment the digital word at 
the input to the DAC. The output of the 
DAC increases by a small amount each time 
the comparator says "too small," until the 
DAC generated analog voltage just exceeds 
the "unknown" input voltage. At that 
moment, the comparator output will be read 
as a 0 bit, and the digital equivalent of the 
analog input voltage will be present at the 
input to the DAC. 

This sequence, using an eight bit DAC, 
generates a ramp voltage at the input to the 
comparator with each step I /256th of the 



/Digital Conversion 

full scale voltage. In this application, a five 
volt full scale is typical, so each step would 
be about 19.5 millivolts. Using the Motorola 
MC6800 microprocessor, a routine to 
accomplish this simple conversion would be 

as shown in listing 1. 

Note that with the MC6800, IO is treated 
as a memory location, so it is simple to 
directly implement the algorithm. For the 
Intel 8008, a similar sequence could be used, 
as shown in listing 2. In this example, 
Register B will have the eight bit digital 
equivalent of the analog input when the 
sequence is complete. 

The Successive Approximation Method 

A faster technique, which always takes 
the same number of passes through the 
decision making loop, is the successive ap- 

proximation method. The hardware is 

exactly the same, but instead of changing 
the least significant bits in incrementing 
fashion (19.5 millivolts per step), this 
method changes the most significant bits, 
one at a time, and very quickly homes in on 
the correct digital word. 

Using the same example, with 2.00 V 
applied to the "unknown" input of the 
comparator, the sequence is like this. First, 
the most significant bit, bit 7, is set to a one 
in the DAC. The output of the DAC 
immediately goes to half scale, or 2.5 volts. 
(Remember that bit 7 represents 2 * *7 or 
128 times the least significant bit's weight of 
19.5 mV, which is about 2.5 volts.) Right 
away, the microprocessor knows that in the 
final digital word, bit 7 will be a zero, since 
the comparator is already saying "too high" 
with that bit only set in the DAC. The 
microprocessor removes bit 7 from the DAC 
and sets bit 6 to a one. Now the DAC output 
of 1.25 V is compared to the 2.00 V "un- 
known" input to the comparator, and the 
processor quickly learns that bit 6, by itself, 
is "too low," since 1.25 V is less than 

OUTPUT PORT 
FROM MICROPROCESSOR 

81T7 BITO 

...rrrrrrrr.,, 
b7 b6 b5 b4 b3 b2 bl b0 

DIGITAL TO ANALOG 
CONVERTER 

A challenge: Write a pro- 
gram to send data to the 
DAC at regular intervals, 
connect the DAC output 
to a high fidelity amplifier, 
and play music with the 
DAC as a waveform gen- 
erator. 

INPUT PORT 
OF MICROPROCESSOR 

BIT 7 

i 
VOLTAGE OUTPUT 
PROPORTIONAL TO 
DIGITAL INPUT WORD 

COMPARATOR 

o 
ANALOG UNKNOWN 
VOLTAGE INPUT 
(2.0 V IN EXAMPLE) 

Figure 1: The microprocessor controlled analog digital conversion system 
consists of un 8 bit DAC output which is compared against the unknown 
input. 

1 RAMP 
2 R LOOP 
3 
4 
5 

CLR DAC 
INC DAC 
TST COMP 
BMI R LOOP 
RTS 

start conversion at zero; 
increment output voltage; 
test comparator input of bit 7 (N); 

back for more until done; 
return to caller; 

Listing 1: The ramp method of conversion, specified as a 

symbolic assembly language program for the Motorola 
6800 central processor. 

1 RAMP XOR 
2 LBA 
3 LOOP INC 
4 LAB 
5 OUT 
6 INP 

7 JTS 
8 RET 

A 

B 

DAC 
COMP 
LOOP 

clear the accumulator with XOR; 
clear B from A; 
increment DAC input word by one; 
move to accumulator for output; 
output to DAC device code; 
input from comparator device code 
using sign bit for comparator; 
return when done; 

Listing 2: The rump method of conversion, specified as a 

symbolic assembly language program for the Intel 8008 
processor. 
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1 SUCAPPRX CLR A 
2 LDAB #$80 
3 NEXTBIT ABA 
4 STAA DAC 
5 LDAA COMP 
6 ANDA #$80 
7 BNE RETAIN 
8 LDAA DAC 
9 SBA 

10 BRA MSHIFT 
11 RETAIN LDAA DAC 
12 MSHIFT ROR B 
13 BCC NEXTBIT 
14 RTS 

result will be in A; 
rotating mask, most significant first; 
apply trial bit to A with addition; 
send it to the output DAC latch; 
read the comparator output; 
check sign bit with comparator output; 
if low then retain trial bit; 
recover the DAC word; 
restore zero to last trial bit; 
then go shift the rotating mask; 
keep the trial bit as logical one; 
rotate the mask; 
on eighth rotate, carry set 

so return from the conversion; 

Listing 3: A successive approximation conversion, specified as a symbolic 
assembly language program for the Motorola 6800 processor. This program 
was adapted from a Motorola application note on the subject. Note that for 
fast processors or slow operational amplifiers (such as the 741), a delay loop 
should be inserted between lines 4 and S of this program to allow the 
output to settle. 

3.0 

2.0 

VOLTAGE 
1.0 

1 TESTPGM LDAA #$00 
2 STAA DAC 
3 RTS 

load test value for DAC; 
and store it in the DAC; 
then return to caller; 

Listing 4: A test program which can be used to load 
the immediate value of 0 into the DAC output port. 
The symbolic location DAC is assumed to be the 
output port address. 

DIGITAL WORD 
AT INPUT TO DAC 
IS 01100110 

TIME 

INVERTING INPUT 
OF COMPARATOR 

Figure 2: A rump conver- 
sion starts ut zero voltage 
output and increases the 
voltage until it equals or 
just exceeds the unknown 
input. For larger input 
voltages, conversion takes 
longer since the program 
must cycle through all the 
intermediate values from 
zero to the final binary 
word 

2.00 V. In this case, the processor leaves bit 
6 on and adds the bit with lesser signifi- 
cance, bit 5. With bit 6 and bit 5 on, the 
DAC output voltage is 1.87 V, still too low. 
Thus, bit 5 also is left on and the next bit in 
line is tried. 

The algorithm is this: simply try a bit, 
starting at the most significant. If the DAC 
generated voltage exceeds the "unknown," 
remove that bit only, else keep it. Try the 
next bit, repeating the process until all bits 
have been determined. In this case, eight 
passes through the loop will result in the 
complete digital equivalent of the unknown 
analog voltage input in a matter of milli- 
seconds. 

This faster technique has been imple- 
mented with the MC6800 microprocessor 
with the sequence shown in listing 3. A 
sustained rate of 1000 conversions per 
second has been achieved. 

An actual circuit to implement these 
techniques is shown in figure 2. The circuit 
uses an inexpensive Motorola MC1408L -8 
digital to analog converter, which converts 
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digital inputs to a current output at pin 4. 
Current output, which is subsequently con- 
verted to a voltage, is typical with DACs. 

The circuit to the left of the DAC is a 

simple zener diode voltage regulator. The 
zener maintains a constant voltage drop 
across the resistor R1, since the right side of 
the resistor is at virtual ground. The current 
through R1 is the reference current, which is 
either absorbed internally or steered out the 
DAC's pin 4. How much current leaves the 
DAC is a function of the digital input word 
applied on pins 5 through 12. 

The current cannot be compared to the 
unknown analog input voltage without some 
conversion. Dig out your operational ampli- 
fier articles and you'll realize that the 
LM301 is functioning as a current to voltage 
converter, which changes the 0 to 2 mA 
output of the DAC into a 0 to 5 V voltage. 
This voltage, after a little filtering, is then 
applied to an LM311 comparator. 

The LM311 has the useful feature of 
having an analog comparator input, but a 

TTL compatible (open collector) output. 
The LM311 output can be directly applied 
to an input port of the microprocessor for 
program controlled evaluation. Resistors R6 
and R5 add a little hysteresis to the com- 
parator and, like the filtering components 
Cl, C2, C4 and R7, are recommended, 
though not absolutely essential to the opera- 
tion of the circuit. Similarly, a 741 type 
opamp can be used in place of the LM301, 
but the circuit will take longer to convert 
the current output of the DAC into a stable 
voltage at the input to the LM311. 

Circuit calibration is simple and consists 
of only one adjustment. First apply all zeros 
to the digital input to the DAC. The voltage 
at pin 6 of the LM301 should be very nearly 
zero volts. If it isn't, check your circuit 
carefully. If off by only a few millivolts, a 
small offset current could be injected into 
the input of the LM301 to make it exactly 
zero volts, but for eight bit accuracy this 
should not be necessary. Now apply all 1 

bits to the DAC input. The output of the 
current to voltage converter should now be 
adjusted to 5.00 V with resistor R4. With 
this setting, you have calibrated to the 
19.5 mV /b specification used in the 
examples. 

Expansion of this circuit, once the single 
channel version is complete, is straight- 
forward and very inexpensive. For example, 
each additional channel of analog to digital 
conversion can be added with only an 
additional comparator. Each added LM311 
has its output connected to a separate input 
port bit, up to eight channels per port for an 
8 bit processor. Then in software, choose the 
channel of interest by logically masking out 
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Figure 3: Schematic of the circuit used for 8 

approximation methods described in this article. 

all the other channels. Here the LM339 can 

be used to have four comparators, and four 
channels of AD, in one package. Similarly, at 

no charge, this circuit can be used as a 

source of digitally programmed analog volt- 

age to deflect an oscilloscope trace or act as 

a computer controlled function generator, 

producing extremely complex waveforms, if 
desired. Another use could be a keyboard 

IOOpF p 

R6 R5 R9 
ANALOG IOK [MEG IK 
INPUT 

R7 
IOK 

-15 

LM 30I A 

CURRENT TO VOLTAGE 
CONVERSION 

C4 
100 pF 

/n 
-IS V 

LM3II 
ANALOG COMPARATOR 

+5V 
A 

TO MICROPROCESSOR 
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bit conversions. This hardware can be used for either the romp or successive 

controlled power supply with suitable cur- 

rent gain added to the DAC output. 
These techniques and this inexpensive 

circuit open a wide world of analog inter- 
facing to the microprocessor hobbyist. Now 

the home computer can go beyond the 

number crunching, logic control functions 
and talk to the real world on its own analog 

terms. 
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by 
Carl Helmers 
^ditor, BYTE 

Add a Kluge Harp 
to Your Computer 

One of the most 
interesting computer 
applications is that of 
electronic music. This is the 
use of software /hardware 
systems to produce sequences 
of notes heard in a loud 
speaker or recorded on 
magnetic tape. The idea of 
generating music - if well 
done - is of necessity 
complex. If I want to put my 
favorite Mozart piano sonata 
into an electronic form, I'd 
have to record a very large 
number of bits in order to 
completely specify the piece 
with all the artistic effects of 
expression, dynamics, etc ... 
The magnitude of the 
problem can be intimidating. 
But, never let a hard problem 
get in the way of fun! 

Fig. I. The Kluge Harp Circuit ... minus computer. 
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CLR SETLOC 
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JL 
CLR RESETLOC 
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12 7437 
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Simplify the music problem 
to one channel of melody, 
and you can use a virtually 
bare CPU with a very simple 
peripheral to play music.* 
The combination of the CPU 
with this simple peripheral is 

what I call the "Kluge Harp" 
-a quick and dirty electronic 
music kluge. 

I invented this electronic 
music kluge to answer a 

specific problem: I had just 
gotten a new Motorola 6800 
system's CPU, memory and 
control panel up and running. 

(*ALTAIR owners: Write an 
8080 version of this program and 
your machine can do more than 
blink its lights.) 

41, X 

1 i 

J 
OPTIONAL 
RESISTOR 
(loon) 
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i 

SPEAKER 

The next problem (since I 

wasn't using the Motorola 
ROM software) was to make 
a test program which could 
be loaded by hand. By 
combining a little 
imagination, my predilections 
for computer music systems 
and an evening getting the 
whole mess straightened out, 
the Kluge Harp resulted. 
While the program and 
schematic are specific to the 
system I was using, the idea 
can be applied to your own 
system just as well. 

The Kluge Harp Hardware 
The hardware of a Kluge 

Harp is simplicity at its 
essence. The peripheral is 

driven off two "un- used" 
high order address lines (I 
used A14 and A13), and 
consists of a set -reset flip 
flop. A program running in 
the computer alternately will 
set and reset the flip flop by 
referencing one or the other 
of two addresses. These 
addresses are chosen so that 
the address lines in question 
will change state, actuating 
the set or reset side of the flip 
flop. A "note" at some pitch 
consists of a delay loop in the 
program followed by 
instructions to change the 
state of the flip flop. Since 
the same count is used for the 
two halves of a complete 
cycle of the note, this will 
produce a perfect square 
wave. The actual music 
program organization is a bit 



Backplane Interconnections 

1 

Control Panel 

2k x'8 RAM 

CPU and Buffers (M6800) 
KLUGEHARP Peripheral 

Control Panel Interface 

The Kluge Harp peripheral and the KLUGEHARP program were concocted in order to test out a Motorola 6800 system's 

operation. This photo shows a test bench mounting of the three main cards and control panel. The Kluge Harp peripheral, such 

as it is, is the single isolated wire wrap socket in the foreground, with wires dangling from connections on the CPU card. 

more complex and is 

described in detail below. 
Fig. 1 illustrates the 

hardware as implemented in 

my system. The 7437 circuit 
is used to form the NAND 
gate flip flop. This flip flop in 
turn drives a parallel 
combination of the two 
remaining 7437 gates, acting 
as a buffer. The output of 
this buffer is used to drive the 

speaker; an 8 Ohm 5" speaker 
produced more than adequate 
volume. (A 100 Ohm resistor 
in series will limit the volume 
level to spare the ear drums.) 

Generating Music With 
Program Loops 

Fig. 2 illustrates the basic 

concept of the one- channel 
music generator, expressed in 

a procedure- oriented language 

for compactness. The main 
program loop begins at line 2 

of the listing - "DO 
FOREVER" means repeat 

over and over again all the 
lines of code down through 
the "END" at the same 

margin, found at line 17. This 
is the main loop used to cycle 
through the SCORE stored at 
some point in memory as 

pairs of note selection /length 
data bytes. 

Lines 3 to 4 compute the 

"next" pointer to the SCORE 
- incrementing NOTER by 2. 

Then LNGTH is set equal to 
the second byte of the 
current pair, SCORE 
(NOTER +1 ). The length 
codes are taken from Table I 

along with note codes when 
you set up a SCORE, and 
represent a fixed interval of 
time for the note in question, 
measured as the number of 
cycles. 

Line 6 begins a note length 
loop which extends to line 
14. This "note length" loop 
repeats the generation of the 
note a number of times 

indicated by the length code 
just retrieved. The note 
generation is accomplished by 
delaying a number of time 
units (CPU states) set by the 
pitch code found at 
SCORE(NOTER), then 
changing the state of the 
output flip flop and repeating 
the process. The loop at lines 

8 -10 counts down the pitch 
code and has a fixed delay 
multiplied by the pitch code 
to give the time for one half 
cycle of the desired 
frequency. Lines 11 to 15 

change the state of the Kluge 
Harp output device (0 to 1,1 
to 0) - remembering in the 
software location IT what the 
previous state was. 

Generating Codes 

Table I is a reference table 
of 21 notes "roughly" spaced 

at equal intervals on the well 
tempered scale. The integer 
numbers in the "divide ratio" 
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column were determined 
using the prime number 137 
as an arbitrary starting point 
and calculating the integer 
closest to the result of the 
following formula: 

(In(137)+ n In(2)/12) 

rn=e 

Where e is the usual 
mathematical number 2.717 
... and the natural logarithm 
of x (base e) is indicated by 
In(x). This is the standard 
mathematical calculation of 
the musical "well tempered" 
scale - the 8 -bit 
approximation used by the 
Kluge Harp is not perfect by 
any means, but comes close 

enough for the purposes of 
this project. 

The length count columns 
are determined based upon 
the assembly language 
generated code for this 



Fig. 2. The KLUGEHARP program specified in a procedure -oriented 
computer language. 
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routine, so that for each 
pitch, the corresponding 
length count column will 
measure a nearly identical 
interval of time. The formula 
is: 
Lcn = time / (oh + dt# 
where: 

pcn) 

KLUGEHARP: PROGRAM; 
DO FOREVER; 

NOTER = NOTER + 2; 
IF NOTER = NOTEND THEN NOTER = NOTESTART; 
LNGTH = SCORE(NOTER +1); /* SECOND OF TWO BYTES */ 
DO FOR I = LNGTH TO 1 BY -1; 

PITCH = SCORE(NOTER); /* FIRST OF TWO BYTES */ 
DO FOR J = PITCH TO 1 BY -1; 

/* COUNT DOWN THE PITCH DELAY */ 
END; 
IT = IT + ( -127); /* SWITCH SIGN BIT OF IT */ 
I F I T O THEN 

SETLOC = 0; /* SET FLIP FLOP WITH MEMORY REF */ 
ELSE 

RESETLOC = 0; /* RESET FLIP FLOP WITH REF */ 
END; 

END; 
CLOSE KLUGEHARP; 

Lcn = nth length count. 
time is the total number of 
states for one "beat" of the 
music (e.g., the shortest 
note). 
oh is the overhead of the 
length counting loop. 
dt is the number of states in 

the pitch count innermost 
loop. 
pcn is the pitch count for the 
nth frequency. 

Table I shows the divide 
ratio in decimal, a 

hexadecimal equivalent note 
pitch code, and seven 

Table I. Kluge Harp Symnesizer pitch/length specification codes (HEX). 

n divide hex note Note Length Codes (second byte of pair) 
ratio code 1 2 4 6 8 16 32 

-10 77 4D 19 32 64 96 C8 
-9 81 51 18 30 60 90 CO 
-8 86 56 17 2D 5A 87 B4 
-7 91 5B 16 2B 56 81 AC 
-6 97 61 14 29 51 7A A2 F3 
-5 102 66 13 27 4D 74 9A E7 
-4 108 6C 12 25 49 6E 92 DB 
-3 115 73 11 23 43 68 8A CF 
-2 122 7A 10 21 41 62 82 C3 
-1 129 81 10 1F 3E 5D 7C BA F8 
0 137 89 OF 1D 3A 57 74 AE E8 
1 145 91 OE 1C 37 53 6E A5 DC 
2 154 9A OD 1A 34 4E 68 9C DO 
3 163 A3 OC 19 31 4A 62 93 C4 
4 173 AD OC 18 2F 47 5E 8D BC 
5 183 B7 OB 16 2C 42 58 84 BO 
6 194 C2 OB 15 2A 3F 54 7E A8 
7 205 CD OA 14 28 3C 50 78 AO 
8 217 D9 09 13 25 38 4A 6F 94 
9 230 E6 09 12 23 35 46 69 8C 

10 244 F4 08 11 21 32 42 63 84 
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Data assumed by KLUGEHARP: 
NOTER: 16-bit (two -byte) 
address value. Initialize to 
point to the address of the 
first byte of SCORE. 
SCORE: An array of data in 
memory containing the code 
sequence of the music (see 
Table II). Initialize with the 
music of your heart's desire 
or use the example of Table 
I I. 

NOTEND: 16 -bit address 
value, the address of the last 
byte of SCORE (must be an 
even number). 
NOTESTART: 16 -bit address 
value, the address of the first 
byte of SCORE (must be an 
even number). 
SETLOC: An unimplemented 
address location which if 
referenced turns off one bit 
among the high order address 
lines, bit 14 in the author's 
case. 
R E S E T L O C : A n 
unimplemented address 
location which if referenced 
turns off one bit among the 
high order address lines, bit 
13 in the author's case. 
Data used but not initialized: 
LNGTH 
PITCH 
IT 
I, J 



Fig. 3. Motorola 6800 Code for KLUGEHARP program. 

Address Data 

F800 FE 
F801 FA 
F802 00 
F803 08 
F804 08 
F805 FF 
F806 FA 
F807 00 
F808 8C 
F809 FC 
F80A 80 
F8OB 26 
F80C 03 
F8OD CE 
F80E FC 
F8OF 00 
F810 FF 
F811 FA 
F812 00 
F813 FE 
F814 FA 
F815 00 
F816 E6 
F817 01 
F818 5A 
F819 26 
F81A 03 
F81B 7E 
F81C F8 
F81D 00 
F81E A6 
F81F 00 
F820 4A 
F821 26 
F822 FD 
F823 86 
F824 80 
F825 BB 
F826 FA 
F827 02 
F828 2B 
F829 05 
F82A 7F 
F82B BO 
F82C 00 
F82D 20 
F82E 03 
F82F 7F 
F830 DO 
F831 00 
F832 B7 
F833 FA 
F834 02 
F835 7E 
F836 F8 
F837 18 

columns of hexadecimal 
length codes weighted to 1, 2, 
4, 6, 8, 16 and 32 unit 
intervals of time. A note is 

placed in the score by picking 
a note code, putting it in an 

even numbered byte, then 
placing a length code from 
the same line of the table in 
the odd numbered byte 
which follows it. The actual 

Label Opcode 

KLUGEHARP: LDX 
3: 

4: 
NOT END: 

NOTESTART: 

INX 
INX 
STX 

CPX 
(last address of 
SCORE plus 2) 
BNE 
. +3 +2 
LDX 
(first address of 
score ... 
ST ?' 

LDX 

5: LDAB 

LENGTH: 
6: 

7: 

F LOOP: 
8: 

11: 

DECB 
BNE 
+2+3 
JMP 

LDAA 

DECA 
BNE 
+2 -3 

LDAA 
( -127) 
ADDA 

Operand 

NOTER 

NOTER 

#NOTEND 

#NOTESTART 

NOTER 

NOTER 

1,X 

Add 2 to location in score 
by incrementing and then 
saving 16-bit new address 

compare against immediate 

Skip if not at end ... 

otherwise recycle 

save in either case 

This is superfluous! 

Skip if length remains .. . 

KLUGEHARP Restart piece 

O,X 

F LOOP 

#80 

IT 

12: BMI 
+2 +5 

13: CLR SETLOC 
(address with bit 14 off ... ) 

BRA 
+2 +3 

15: CLR RESETLOC 
(address with bit 13 off ... 1 

STAA 

16: JMP 

pitches you'll get from these 

codes depend upon the 

details of the algorithm in 

your own particular 
computer and the clock rate 

of the computer. For the 
6800 system on which Kluge 
Harp was first implemented, 
the lowest note (code F4) is 

approximately 170 Hz with a 

500 kHz clock - and the unit 

IT 

LENGTH 

interval of time is 
approximately 2000 CPU 

states or about 4 
milliseconds. 

The hand assembled 
M6800 code for the 
KLUGEHARP program is 

listed in Fig. 3. The 
mnemonics and notations 
have been taken from the 
Motorola M6800 
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Data allocations for KLUGE- 
HARP: 
FA00 -FA01 = Current 
pointer to SCORE, NOTER, 
which should be initialized to 
FC00 before starting the 
program. 
FA02 = IT - an arbitrary 
initialization will do. 
FA03 -FFF7 = memory area 
available for SCORE - the 
example uses FC00 to FC7F 
and puts the relevant 
initializations into locations 
F809 -F80A (NOTEND) and 
F80E -F8OF (NOTESTART). 

NOTE: In the label column, 
the numbers followed by colons 
(e.g., "6:")are used to indicate 
corresponding places in the high 
level language version of the 
program of Fig. 2. 

In the system for which this 
program was written, all active 
memory is found at addresses 
F800 to FFFF. Thus for all 
normal program activity, bits A14 
and A13 at the back plane of the 
system are logical "1". When the 
location SETLOC (8000) is 

cleared, the high order address 
portion changes and bit A14 goes 

to negative for a short time, 
setting the Kluge Harp flip flop. 
When the location A13 is cleared 
(D000) on an alternate cycle, 
address bit A13 goes to logical 0 
for a short timer resetting the 
Kluge Harp flip flop ... 



Table 11. WOLFGANG: Set the content of SCORE in memory to the 
codes in this table - given for the addresses of the M6800 program 
version - and KLUGEHARP will play four bars from the classical 
period. 

6800 Address Value 6800 Address Value 

FC00 9A34 - FC40 5656 - 
FCO2 9A34 FC42 5B56 
FC04 9A34 FC44 5B56 
FC06 9A34 FC46 5B56 
FC08 9A34 Note 1 FC48 5B56 Note 8 
FCOA 9A34 FC4A 5B56 
FCOC 9A34 FC4C 5B56 
FCOE 9A34 FC4E 5B56 - 
FC10 7A41 FC50 664D 
FC12 7A41 Note 2 FC52 664D Note 9 
FC14 7A41 FC54 664D 
FC16 7A41 FC56 664D 

FC18 664D FC58 4D64 
FC1A 664D Note 3 FC5A 4D64 Note 10 
FC1C 664D FC5C 4D64 
FC1E 664D FC5E 4D64 

FC20 A331 FC60 664 
FC22 A331 FC62 664D 
FC24 A331 Note 4 FC64 664D Note 11 
FC26 A331 FC66 664D 
FC28 A331 
FC2A A331 FC68 7343 - Note 12 

FC6A 664D - Note 13 
FC2C 9A34 - Note 5 FC6C 7343 - Note 14 

FC6E 7A41 - Note 15 
FC2E 893A - Note 6 FC70 7343 - Note 16 

FC30 9A34- FC72 7A41 
FC32 9A34 FC74 7A41 
FC34 9A34 FC76 7A41 
FC36 
FC38 

9A34 
9A34 

Note 7 FC78 
FC7A 

7A41 
7A41 

Note 17 

FC3A 9A34 FC7C 7A41 
FC3C 9A34 FC7E 7A41 
FC3E 9A34- FC80 (end pointer points here) 

Microprocessor Programming 
Manual available from the 
manufacturer. 

While not the greatest 
musical instrument in the 
world, the Kluge Harp 
represents an interesting and 
challenging diversion. The 
program presented here is by 
no means the ultimate in 
music systems - and can 
serve as a basis for further 
experimentation and 
elaboration. Some challenges 
for readers: modify the 
program to change the 
frequency of the notes 
without changing the SCORE 
data; write another (longer) 
music program which only 
specifies the pitch 
code /length information once - and represents the score as 
a series of one -byte indices 
into the table of pitch 
code /length information. 
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NOTE: This program is 
simpleminded and not at all 
optimized. As a challenge to 
readers, figure out a way to make 
the notation more compact yet 
preserving the total length of each 
note. 

Fig. 4. Timing of the Kluge Harp Output Waveform. At is the amount 
of time spent in the inner loop, and is set by choice of pitch codes. AT 
is the length of the note, measured as a count of half- cycles at its 
frequency. See Table I fora consistent set of length codes. 

N AT 

-E-nt --114-nt-+1.-nt -+l 
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The Time Has Come to Talk 

Wirt Atmar 
Ai Cybernetic Systems 
PO Box 4691 
University Park NM 88003 

The extent to which art and literature, 
particularly science fiction, affect the future 
course of civilization remains a persistent 
and perplexing question. Must a dream, by 
necessity, occur decades before its realiza- 
tion? Or does the presence of the dream 
itself generate its own reality? Mankind's 
trip to the Moon in 1969 was the dream 
dreamt by Cyrano de Bergerac and Johannes 
Kepler 300 years prior to its enactment. 

And now, we, nurtured by the thousand 
different dreams of the future as portrayed 
in novels and movies, all expect computers 

to be able to talk in the near future. Whether 
we see the computer becoming the benign 
and obedient servant of man or wildly out of 
control, we all tend to see the computer 
becoming more anthropomorphic, more 
humanlike in behavior and form. 

In science fiction two great dreams of the 
future predominate. One is the seemingly 
inevitable first contact with intelligent be- 
ings of an extra terrestrial origin. The second 
is the construction, by our own hands, of an 
alternate embodiment of intelligence in 
machine form. The first dream may well not 

.lá rnl-;r , a a 
231 



"The time has come," the Walrus said, 

"To talk of many things: 
Of shoes - and ships - and sealing wax - 

Of cabbages - and kings - 
And why the sea is boiling hot - 

And whether pigs have wings." 

occur within the lifetime of our civilization; 
the second would seem to be almost guar- 
anteed within the next 100 years. 

The addition of speech to the computer's 
behavioral repertoire makes the computer no 
more intelligent nor aware than it was 
before. It remains a simple machine. But it 
undeniably takes on a human characteristic 
that it never possessed before. An observer 
finds it impossible not to personify the 
machine with an identity and a distinct 
personality. While the addition of speech is 

only a minor step toward achievement of a 

truly self- organizing, artifically intelligent 
machine, it is a psychologically important 
one. The computer, once it speaks, seems to 
be intelligent. But again, the dream of 
machine produced speech is much older than 
its reality. The ancient Greco -Roman civili- 
zation was fascinated with the idea of deus 
ex machina. Stone gods were often hollowed 
to allow a priest to speak from within, a 

practice that persisted well into the Christian 
era. 

The first known practical realization of 
machine generated speech was accomplished 
in 1791 by a most ingenious engineer, 
Wolfgang von Kempelen, of the Hungarian 
government. Von Kempelen's machine was 
based on a surprisingly detailed under- 
standing of the mechanisms of human 
speech production, but he was not taken 
seriously by his peers due to a previous well 
publicized deception in which he built a 

nearly unbeatable chess playing automaton. 
The "automaton" was unfortunately later 
discovered to actually conceal a legless 
Polish army ex- commander who was a 

master chess player. 
By 1820, a machine was constructed 

which could carry on a normal conversation 
when operated by an exceptionally skilled 
person. Built by Joseph Faber, a Viennese 
professor, the machine was demonstrated in 
London where it sang "God Save the 
Queen." Both the Von Kempelen and Faber 
machines were mechanical analogs of the 
human vocal tract. A bellows was provided 
to simulate the action of lungs; reeds were 

- Lewis Carroll, 1871, in 

Through the Looking -Glass. 

used to simulate the vocal cords, and vari- 
able resonant cavities served to simulate the 

mouth and nasal passages. 

The basic method, modelling the human 
vocal tract, remains to this time the only 
practical method of actually synthesizing 
speech. In the 20th century, such modelling 
is done electronically. The approach was 

first put in electrical analog form by Bell 
Laboratories in the late 1930s. The Bell 

Telephone VODER (Voice Operation 
DEmonstratoR) was initially shown at the 

1939 New York's World Fair where it drew 
large crowds and considerable attention. The 
VODER consisted of a buzz source (similar 
to human vocal cords or mechanical synthesi- 
zers), a hiss source to simulate the rush of 
aspirated air, and a series of frequency filters 
to imitate the three, four, five or six 
preferred frequencies (called formant fre- 
quencies) passed by the resonant cavities 
formed by the mouth, tongue and nose. 

The original VODER was played by 
highly trained operators using a keyboard, 
wrist switches, and pedals at an organ -like 
console. Twenty four telephone operators 
were trained six hours a day over a 12 
month period for the 1939 World's Fair. The 
VODER itself was a full rack in height. 

With the advent of digital computers, 
however, the synthesis of speech has been 
made much easier. All the information 
necessary to repeatedly and reliably generate 
any one speech sound (a "phoneme ") can 
now be programmed into the machine. 
Through the proper connection of 
phonemes, a digital computer could be made 
to say words and sentences. 

General American English, the dialect 
spoken in the midwest and southwestern 
parts of the United States, contains 38 
distinct phonemes. These speech sounds can 
be divided into the following classes: 

Pure vowels: produced by a constant 
excitation of the larynx and the 
mouth held in a steady position; eg: 
1,6111. 

Diphthongs: a transition from one 
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Figure 1: The serial analog speech synthesizer in block diagram form. 

(PITCH PERIOD) 

pure vowel to another, thus are not 
always considered as separate pho- 
nemes; "i ", "u ". 
Fricatives: consonants produced by a 

rush of aspirated air through the vocal 
passages: "f ", "s ". 
Plosives: explosive bursts of air: "p ", 
,1k 11tß 

Semi -vowels: "w ", "y ". 
Laterals: "1", "r ". 
Nasals: "n ", "m ". 

To produce speech, a separate circuit, or 
combination of circuits, must be provided to 
generate each of the above classes of 
phonemes. 

AFI FILTERS 

AV 

IMPULS E 

GENERATOR 

Among possible realizations of such a 

synthesizer, there are the serial analog and 
parallel analog forms. Figure 1 illustrates a 

block diagram of a serial analog design, and 
figure 2 shows the general organization of a 

parallel analog synthesizer. 
The parallel analog method was the reali- 

zation chosen by Ai Cybernetic Systems for 
its synthesizer module. The parallel realiza- 
tion was chosen because of the low digital 
information transfer rate and the smaller 
number of bits required to control the filters 
which simulate the resonant cavity of the 
vocal tract. 

In the Ai Cybernetic Systems design, the 
rush of aspirated air is generated by the 
noise of a zener diode operated at its knee, 

amplified many times, as shown in figure 3. 

The action of the larynx is simulated by an 

integrated circuit function generator. One or 
both of these circuits is selected to produce 
the excitation necessary to generate any one 
class of phonemes. The actual phoneme 
perceived is determined by the duration of 
the excitation and the selected formant 
filters. Figure 4 shows the typical formant 
filter circuits which are digitally activated by 
analog switches. 

The control of the several analog switches 
is provided by a read only memory which is 

addressed by the ASCII bit patterns identi- 
fied in table 1. 

No hard and fast rules exist in the design 

of the circuitry to generate a phoneme. In 

fact, small changes in component values can 

often make large differences in the phoneme 
which is actually heard. Because no set rules 
exist, a steady stream of listeners must 
parade before the machine while it is being 
designed in order to determine which 
phoneme the synthesizer is really saying. 
The phenomenon of "tired ears" rapidly sets 

in; and a person will begin, after a bit, 
hearing any one speech sound as a whole 
array of possible phonemes. Suggestion, on 

the other hand, is an ever obtuse enemy to 
the designer. Surprisingly, almost any speech 

sound can be suggested to sound like a great 

SPECTRAL 
COMPENSATION 

WHITE- 
NOISE 
GENERATOR 

SUMMING 
AMPLIFIER 

AN 
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Figure 2: The parallel ana- 
log speech synthesizer in 
block diagram form. 
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number of alternate phonemes, especially 
after 20 to 30 minutes of intense listening. 

Once the design is experimentally deter- 
mined, careful procedures must be followed 
to insure that when the circuit is duplicated, 
it produces each phoneme properly. This 
means precision components must be used, 
as small changes in values can make the 
difference between moderately distinct 
speech and a fairly mushy speech. 

Analog simulation of the vocal tract is the 
only method of true speech synthesis 

Figure 4: The parallel fil- 
ter network of the Model 
100Q The filter fre- 
quencies and quality fac- 
tors chosen depend on the 
number of filters used to 
divide the voice frequency 
spectrum. Ideally, the cen- 
ter frequencies of the 
filters should lie some- 
where near the commonly 
occurring formant 
frequencies. 
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known. A popular alternate method of 
speech production (actually, reproduction) 
is the storage of digitized speech in a ROM. 
When the stored information is clocked out 
of the ROM at the proper rate and smoothed 
by a low pass filter, the generated speech can 
be quite clear and distinct. But it is impor- 
tant to note that this is not synthesized 
speech. In effect, this method is no different 
than any other method of recording speech. 
Yet, the method does have the advantage of 
producing readily understood words by a 
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1K 
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Figure 3: The excitation 
sources of the Ai Cyber- 
netic Systems Model 1000 
Speech Synthesizer. The 
rush of air through the 
vocal passages is simulated 
in the upper branch while 
the action of the larynx is 

simulated in the lower 
branch. 
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Photo 1: The Ai Cybernetic Systems Model 1000 Speech Synthesizer. The 

synthesizer is primarily an analog circuit controlled digitally. Ten active filters 
composed of 15 operational amplifiers are mounted in the upper left corner 
of the board Directly beneath these resonant -cavity simulating filters are the 

vocal excitation circuits The right half of the board is composed of the 

ASCII character decoding circuits and phoneme memories Four 32 x 8 
ROMs control the 16 analog switches to select the proper combination of 
circuits to generate any one phoneme. A device -busy flag is returned for the 

duration of the phoneme. 

computer or calculator. However, the vocab- 
ulary is totally predefined and must remain 
small due to the high cost of storing this 
kind of generated speech. Moreover, the 

repertoire of this kind of speech is limited to 
the person who initially spoke the recorded 
words. 

Synthetic speech, on the other hand, is 

generally not as clear and distinct. The 
proper transitions from phoneme to pho- 
neme, the automatic emphasis given to 
leading or terminating consonants, and the 
intonation of a rhythm in speech which is 

associated with a word's importance or 
placement, are all facets of human speech 

which are difficult to properly recreate in 

machine produced speech. The determina- 
tion of accurate rules to account for these 
factors has been the subject of active and 
intense research at centers here, and in 
Europe and Japan, including Bell Telephone 
Laboratories, the Haskins Laboratories of 
New York, the Royal Institute of Tech- 
nology in Sweden, and the Musashino Elec- 

trical Communication Laboratory in Tokyo. 
On the whole, totally satisfactory rules have 

not yet been worked out although a great 
deal of progress has been made in the last 20 
years. Machines which do incorporate the 
known rules quickly become elaborate and 

expensive (in the tens of thousands of 
dollars). 
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Simplified speech rules can be incor- 
porated in a much smaller machine, but the 
burden of intelligibility now falls upon the 
listener. The produced speech is not natural 
speech. It sounds for all the world like the 
speech produced by the robots of 1950s 
grade B science fiction movies. But it is 

intelligible and it is quickly learned. Because 
the machine pronounces every phoneme in 
the same fashion each time it occurs, a 

listener quickly gains a feeling for the 
speech. The process is not unlike learning to 
listen to a newly- arrived foreigner who 
possesses a strong accent. The fashion by 
which he mispronounces the English 
phonemes is quickly learned and intel- 
ligibility increases rapidly. The difference 
with synthetic speech is that the speech is 

truly an alien form of speech, not often 
heard before by many of us. 

As to the naturalness of synthetic speech, 
M D Mcllroy of Bell Telephone Labs wrote 
this in 1974 [in "Synthetic English Speech 
by Rule," Computer Science Technical Re- 

port No. 14, Bell Telephone Laboratories]: 

The Computer Science Center at this 
laboratory has experimented with an 

inexpensive speech synthesizer [pre- 
sumed to be the Votrax] as a regular 
output device in a general purpose 
computing system. Our intention was 

not to do speech research or to create 
artificial speech as an end in itself. In 

the present state of the art, those goals 
require much more elaborate facilities 
than we have at our disposal. 

We wished to see what uses might 
evolve when speech became available 
more or less on a par with printed out- 
put. For this goal, "naturalness" was 
not a prerequisite, any more than it is 

for printed output. Most computers 
still print mainly in upper case, are 

incapable of printing mathematical 
notation, and normally produce 
cryptic codes or tabular stuff that 
require considerable indulgence to be 

understood. Since printed gobbledy- 
gook is so widely accepted from com- 
puters - and fed into them, witness 
any manufacturer's operating system 
manual - we suspected that spoken 
gobbledygook might be quite passable, 
too, except for one severe difficulty: 
Being ephemeral, sounds must be 

understood at first hearing. As it turns 
out, long speeches are hard to under- 
stand, as are extremely short utter- 
ances of very simple words out of 
context. But given a little familiarity 



Vowels: 

Semi- Vowels: 

Plosives: 

Fricatives: 

Liquids: 

Nasals: 

Others: 

with the machine's "accent ", one finds 
short sentences to be quite intelligible. 

The phonemes generated by the Model 
1000 synthesizer appear in table 1. Each 

phoneme has been assigned an ASCII charac- 
ter to represent its particular sound. The 
assignment was done in the most intuitive 
manner possible; the consonants are gener- 

ally the consonants as they appear on the 
keyboard, but there are many more vowels 
than a, e, i, o and u. Non -alphanumeric 
characters were chosen to represent the 
remaining vowels and consonants in such a 

manner that they could be easily associated 
with their sound. As examples of this, the 
number symbol, " #" is used to signify the 
vowel er as in number, " &" for the vowel ae 

as in and "(" for ah and ")" for ow 

Table 1: List of Phonemes. 

Phoneme 

a 

ae 

ah 
aw 
e 

eh 
er 

o 
00 
uh 
A 

w 
Y 

p 
k 
t 
b 
d 
g 

f 
h 
s 

v 
sh 
th 
z 

t 
r 

m 
n 

Glottal Stop 

Draw Bar 

Pause 

ASCII Symbol 

A 
& 

E 

o 
u 

t 

w 
Y 

P 

K 
T 
B 
D 
G 

F 

H 
S 

V 
/ 
+ 

z 

L 
R 

M 
N 

(space) 

Usage 

pace, bay 
and, Altair 
father, all 
bought, robot 
see, harmony 
excessive, ten 
number, bird 
hit, six 
Mexico, over 
too, sue 
the, computer 
putt, up 

water, wind 
yaw, yacht 

pop, deep 
computer, Atlantic 
top, pot 
boy, bird 
dog, died 
go, great 

puff, food 
how, had 
saw, miss 
David, vow 
slash, shoot 
thaw, Earth 
zero, is 

low, all 
row, round 

miss, am 
now, nine 

The pause associated 
with aspiration 
An extended vowel 
with decay 
Normal word spacing 
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representing the position of the tongue when 

these vowels are spoken, "!" for the sharp 

sound of uh, " +" for the fricative consonant 
di as in thaw, and "I" for the sh in slash. 

The Model 1000 accepts a string of ASCII 
characters as if it were a normal printing 
device. Read only memories on the board 
convert the incoming ASCII symbol into 
specific control information which in turn 
determines the vocal source, duration and 

frequency content of the spoken phoneme. 
Less than 50 bytes of machine code or 8 

lines of the typical BASIC are all that is 

required to generate a subroutine to accept a 

string of characters and output it character - 
by- character to the synthesizer. 

For example, to write the phrase "I am a 

talking robot" on a printer or display periph- 
eral, an ASCII character string is set up and 

sent to the output device. In BASIC, if C$ is 

the argument of the output subroutine, the 
setup would be: 

C$ = "I AM A TALKING ROBOT." 

To have the synthesizer say the same phrase, 
the setup for the phonetic output routine 
with argument P$ might be: 

P$ = " &IE AM AE T)..KEN- RO.B)..T" 

(The ASCII symbols are taken from table 1.) 

The long vowels I and A occur in this 
passage. As a rule, most of the long vowels 
are not really vowels at all but rather 
diphthongs composed of a sequence of pure 
vowels. Pronounce out loud each of the 
phonemes in the phrase above, referring to 
table 1 as necessary. Remember that each 

phoneme has only one specific sound. Play- 

ing the part of a synthesizer yourself, you 
will find that you can say any English word 
with the phonemes of table 1. 

Programming the Model 1000 synthesizer 
is easy once you actually begin to listen to 
what you say and learn to rely less on how a 

word is written. English is a hodge podge of 
languages and carries with it all the alternate 
symbolisms of the pronunciations of its root 
languages. Purely phonetic languages such as 

the Polynesian languages of Samoa or Tonga 
could be made to be spoken almost as they 
are written. This is unfortunately not true of 
English; homonyms such as "won" and 
"one" and "two ", "too" and "to" abound. 

Generally, only one phonetic spelling 
exists for any one word regardless of the 
number of alternate written spellings. It 
becomes important to identify the sounds 
that you actually are saying when a word is 

pronounced. The word "one" is phoneti- 
cized using the phonemes of table 1 as WIN 
in similarity to the word "won "; "two" is 

programmed as TOU- more as if it were the 



written word "too ". For most Americans, 
there is no difference in the way these words 
are pronounced. 

Proceeding in the same fashion, the 
remaining numbers up to ten are typed in as: 

T + #E- FO #- F &IE..V SI..KZ 
S' -VIN AE..T N &IEN T'N 

Again, pronounce these phonetic spellings to 
yourself. As you will discover, phonetic 
spellings are quickly deduced and learned. 

In a very short period of time, it becomes 
possible to make the machine say anything. 
At that point, conversational computing 
takes on a whole new meaning. Interactive 
computing will never again be the same once 
your computer has actually spoken to you. 
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COMMERCIAL PRODUCTS 

At the present time, two speech synthesizers 
are both commercially available and affordable by 
the hobbyist. One is the Votrax produced by: 

Vocal Interface Division 
Federal Screw Works 
500 Stephenson Dr 
Troy MI 48084 
Price, approximately $2,000 
Interfacing: Parallel or Serial (RS -232) 

The second is the Model 1000 manufactured by: 

Ai Cybernetic Systems 
PO Box 4691 
University Park NM 88003 
Price, $425 
Interfacing: Electrically and mechanically 

compatible with Altair /IMSAI/ 
Poly -88 bus structure. 

Either company will be pleased to provide 
literature free of charge. A demonstration tape is 

available from Ai Cybernetic Systems for $5 and a 

complete programming guide, theory of operation 
manual and phonetic glossary is available for 
$2.50. 
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Photo 1: The Direct Etch Method. In this method, a one of a kind printed circuit is made by putting the pattern directly onto 
the copper. A Sanford's "Sharpie" pen (available in most stationery stores) can be used to draw patterns directly, and tape resist 
can be used for more uniform runs. If tape resist is used, care should be taken to avoid gaps in the adhesion of the tape to the 
copper. 

Make Your Own Printed Circuits 

James Hogenson 
Box 295 
Halsted MN 56548 

Photos accompanying this 
article are by Ed Crabtree, 
using materials supplied by 
the author. 

The widespread commercial use of 
printed circuits in electronic equipment 
began a few decades back when engineers 
started looking for more efficient wiring 
techniques to replace laborious hand -wiring 
methods. One of the first methods tried was 
to deposit (in other words, to print) a 

conductive ink pattern on a base of insulat- 
ing material. The original method, printing, 
gave its name to all subsequent methods. 
Today, the term printed circuit refers to any 
electrical circuit in which individual wire 
lead connections have been replaced by a 

two dimensional conductive pattern bonded 
to an insulating base material. 

Contemporary printed circuits consist of 
etched copper foil wiring patterns bonded to 
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any of several insulating substrate materials 
sturdy enough to serve as a mounting base 

for the actual electrical components which 
make up the circuit. Although originally 
developed for mass production applications, 
printed circuit fabrication techniques have 
been refined until they can now be used by 
almost anyone with average mechanical 
skills. 

Choosing your base material, the board, is 

a matter of price and purpose. The best is 

the epoxy glass board while phenolic (bake - 
lite) is the cheapest. Phenolic base material is 

perfectly adequate for many applications, 
but since small boards are relatively inex- 
pensive, epoxy glass is usually the optimum 
choice. The base material often comes 



laminated with copper foil on one or both 
sides. 

The toughest part of making your first 
printed circuit board is getting started. In 

other words, the process may not be as 

difficult as you had thought. 
A pattern of etch resist is applied by one 

of several methods to the copper foil. The 
board is then immersed in a chemical solu- 
tion (usually a ferric chloride solution) 
which etches away all exposed copper. Then 
the board is washed and the etch resist 
pattern removed. The copper foil that was 
covered by etch resist remains on the board 
to provide you with a printed circuit. 

Plan the Layout 

The first step toward making your own 
printed circuit board is planning the layout. 

Photo 2: Printing the Cir- 
cuit. Once a negative of 
the artwork has been 
created, the next step is to 
print the circuit. The nega- 
tive is placed over a sensi- 
tized PC board and held 
firmly in place by a glass 
cover plate in the printing 
frame. The glass guar- 
antees smooth and even 

contact for accurate trans- 
fer of the image. The 

board is then exposed to a 

photoflood lamp for one 
to three minutes. 

Draw the circuit pattern on paper as it 
should appear on the printed circuit board. 
You will use this as a guide for laying out 
the actual etch resist pattern. Keep in mind 
that you are looking at your board from the 

bottom when looking at the foil side. Be 

careful not to put the pattern on the printed 
circuit board upside down. (I've made that 
mistake more than once!) 

Direct Etch 

Direct resist is a method often used when 
a one of a kind board pattern is needed. Dry 
transfer etch resistant patterns are applied 
directly to the copper. The dry transfer 
patterns form integrated circuit pads, tran- 
sistor pads, edge connectors, round donut 
pads, etc. Narrow etch resistant tape is 

applied to complete the circuit path between 

A printed circuit is any 
electrical circuit in which 
individual wire leads have 

been replaced by a two 
dimensional conductive 
pattern bonded to an in- 

sulating base material. 

The toughest part about 
making your own printed 
circuits is getting started. 

Photo 3: Results of Ex- 
posure. After being ex- 
posed, the photosensitive 
layer is developed, using 
an appropriate solution. 
An etch resist pattern will 
then remain on the board 
as in the example at left. 
(The dark blotches are oxi- 
dation on the copper.) The 
board is then etched with 
the usual ferric chloride 
solution. The finished pro- 
duct (hopefully free of im- 
perfections) is a printed 
circuit board such as the 
one at right. 



Photo 4: The "Cut -N- Peel" Method. A sheet of red mylar film on clear 
acetate backing is placed over the pattern to be copied The negative is made 
by carefully tracing the pattern with a razor or sharp knife, then removing the 
red film wherever component pads and connections are to be made. (A trade 
name for the film used in this method is "Rubylith. ') The negative is then 
transferred to sensitized copper and etched 

Photo 5: The Bishop Graphics " `B' Neg" Method In this method, o negative 
is made directly, using self adhesive block patterns on a mylar backing. The 
connections between patterns are made by cutting away the black layer with 
a sharp knife as in the "Cut -N- Peel" method 
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component pads. Etch resistant ink pens and 

resist paint are also available for direct 
etching, as illustrated in photo 1. 

After etching, copper will remain on the 

board only where dry transfer patterns or 
resist ink protected the copper foil from the 
etching solution. It should be noted that the 
etch resistant tape must be applied firmly, 
especially at overlaps, to keep the etching 
solution from getting under the tape and 

breaking the conductive copper path. 
The direct resist method does not require 

extra steps for developing, as does the photo 
etch method. If only one printed circuit 
board is going to be made from a pattern, 
the direct etch method may be a time saver. 

If more than one board is to be made from 
one pattern, the direct etch method will 
quickly turn the element of time against 
you, since the pattern must be reconstructed 
on each board. 

Photo Etching 

The photo resist method is the most 
efficient method for making more than one 

printed circuit board of a kind. Photo resist 
etching is probably the most popular meth- 
od, and is often preferred even for one of a 

kind printed circuit boards. The difference 
between photo resist and direct resist is the 

way the resist pattern is applied. 
The copperclad board to be photo etched 

is first sprayed with a thin coat of a photo 
sensitive etch resist. This etch resist is 

sensitive to ultraviolet light. The sensitized 
board must be handled in a darkened room 
using a yellow light for illumination. 

After the resist is dry, a negative of the 
printed circuit pattern is placed over the 
sensitized board in a print frame, as shown 
in photo 2. The board is exposed to the light 
of a photo flood lamp through the negative 
for one to three minutes. It is then immersed 
in a resist developer solution for about one 
minute. Only the etch resist which was 

exposed to the bright light will remain on 
the copper foil, as in photo 3. The resist is 

no longer light sensitive after developing, but 
should be allowed to dry for a short time. 
The board may then be etched. The copper 
which is protected by the remaining etch 
resist will not be removed. After the board 
has been etched, the resist is removed and 

the board may be cut, drilled, and 

assembled. 

Making Negatives 

It is plain to see that exposing a board 
through a reusable negative is much simpler 
than reconstructing the pattern by hand 
each time the pattern is used. The negative 



may be obtained by a number of methods. 
If a pattern is not too complex, the 

"Cut -N- Peel" method of photo 4 can be 
used. The pattern is simply cut into a red 
film on a clear acetate backing. The red film 
is peeled off, leaving a negative of the 
pattern. 

If the pattern involves integrated circuits, 
the "Cut -N- Peel" method becomes rather 
difficult. The Bishop Graphics" 'B' Neg" TM 

method would be more suitable. The ready 
made negative component patterns are laid 
out on a mylar sheet according to desired 
component placement. The areas between 
these self adhesive patterns are blacked out, 
using solid black acetate film. The only 
cutting necessary is for connections between 
component patterns. Photo 5 illustrates this 
method. The finished product is a negative 
of the entire printed circuit pattern. 

Photographic Negatives 

Perhaps the easiest and certainly the most 
popular method of obtaining the necessary 
negative is to first make a positive pattern, 
then produce a negative by photographic 
methods. 

Positive artwork is made on a sheet of 
clear mylar film with matte finish on one 
side. This film is dimensionally stable and 
similar to plastic drafting film used by 
draftsmen. Positive artwork patterns are 
widely available in a large number of sizes 

and shapes. Photo 6 shows an example of a 

circuit being laid out with these patterns. 
Unless the artwork is going to be photo- 
graphically reduced, use 1:1 artwork pat- 
terns. The self adhesive positive artwork 
patterns are laid out on the mylar sheet 
according to your pencil layout. Narrow 
black tape is used to form conductive paths 
between components. Graph paper or a 

similar grid should be used as a guide for 
orderly and uniform positioning of patterns. 
Since components are normally configured 
for dimensions which are multiples of 0.1 

inch a 0.1 inch grid should be used. 
A negative reproduction of your positive 

pattern can be made by a photographer or 
(preferably) by you. If you enjoy experi- 
menting with photography, you might try 
experimenting with lithographic and ortho- 
graphic films. 

Photography Without a Darkroom? 

The most popular negative producing 
method does not require photographic dark- 
room facilities. The special reversing film 
used may be handled in subdued light or in a 

darkened room using a dim yellow light. 
The positive pattern is placed directly on top 

Photo 6: The Traditional Photo Negative Method. In this method, a positive 
artwork pattern is created, using preprinted self adhesive patterns and 
artwork tape. A sharp knife is used to cut the tape as it is being applied to the 
mylar film backing. A photographic process must be used to invert the image 
and create the negative form (see photo 5). 

of the reversing film. The film is exposed 
through the positive artwork pattern to a 

photo flood lamp for one to three minutes 
and developed by rubbing gently with a 

cotton swab and a little film developing 
solution, as shown in photo 7. The opaque 
or colored emulsion on the film will rub off 
areas not exposed to light. The result is a 

clear pattern on a dark background. 
A somewhat more involved but rather 

unique artwork developing system is made 
by Datak. With the Datak film and develop- 
ing solutions, any of the following can be 

made: (1) negative from film positive or 
original artwork, (2) film positive from 
negative, (3) negative from negative, (4) film 
positive from film positive or original art- 
work, (5) film positive from black image on 
white paper, (6) film negative from black 
image on white paper. The last two methods 
allow you to copy a printed circuit pattern 
directly from a magazine page. 

The Datak film is developed by methods 
similar to standard photographic procedures, 
so this method is more complicated and time 
consuming. Exposure and developing times 
are somewhat more critical.Datak film may, 
however, be handled in subdued tungsten 
light. 

Advantages of Photo Resist Techniques 

One of several advantages in using the 
photo resist method will become apparent 
when a modification of an existing board is 
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For a one shot printed 
circuit, simply draw the 
pattern onto copper with a 

resist pen and dump the 
board into ferric chloride 
until done. 



Photo 7: Creating a Photo Negative for Etching. A negative is reproduced from the positive artwork pattern, using a reversing 
film. The film is exposed with a bright light, then developed by rubbing gently with a cotton swab and developing solution. The 
result is a negative version of the artwork with a 1:1 scaling. 

For a unique approach to 
making jumpers on one 
layer boards, see Don Lan- 
caster's "How to Build a 

Memory With One Layer 
Printed Circuits" in the 
April 1976 BYTE, page 

28. 

made. (Like when you need to make a board 
over because you forgot two or three con- 
nections. This does happen!) Rather than 
reconstructing an entire printed circuit pat- 
tern, make only the necessary changes or 
additions on the original artwork, then make 
a new negative and a new board. Making a 

new negative using reversing film requires 
only a few minutes of your time. 

Double Sided Boards? 

Sometimes a circuit will be too complex 
to fit on one side of a circuit board. Since a 

printed circuit is only two dimensional, 
conductor paths cannot cross. Jumper wires 
can be used to provide some crossovers, but 
if the circuit requires a large number of 
crossovers, a double sided circuit board 
might be considered. A double sided PC 

board is one which has a copper foil pattern 
on each side. The major consideration in 
making a double sided PC board is getting 
the pattern and terminals lined up. Both 
sides of the board are developed and etched 
at the same time. 
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Drilling 

The step following the fabrication of a PC 

board is drilling out the holes. A small bench 
type drill press is ideal for this purpose. A 
standard hand held drill is unsatisfactory as 

the small drill bits break at low speeds. 
Commercially, small holes are drilled in 
boards at speeds as high as 70,000 RPM. A 
Dremel "Moto- tool" is a suitable com- 
promise for work on printed circuit boards. 
This tool runs at 30,000 RPM. Such a tool 
will not only drill out extremely small holes, 
but cut and shape printed circuit boards, and 
lend itself to a host of other uses not related 
to making boards. A multipurpose tool like 
this is handy, especially for cutting out 
things like board edge connectors. 

If repairs or small changes are needed on 
a printed circuit board, a piece of bare wire 
soldered over the foil is the cheapest and 
quickest modification. A conductive silver 
paint is available for printed circuit repairs, 
but the paint is quite expensive. GC Electro- 
nics, Techniques Inc, Kepro, and Datak 
each manufacture printed supplies for the 



hobbyist in addition to their commercial 
products. Such supplies are distributed 
through a large number of mail order firms 
and retailers. The appendix lists the various 
products and who makes them. Cost of 
materials will vary depending upon a number 
of factors, but a figure of 20 cents per 
square inch of printed circuit board will 
provide a good rule of thumb to estimate the 
cost per board. 

You will notice that Techniques and 
Kepro do not manufacture photo resist 
spray. Instead, they sell printed circuit board 
panels with the photo resist already applied. 
Presensitized panels (which come wrapped 
individually in dark paper) will assure you of 
a uniform and dustfree coating of photo 
resist. However, if you make a mistake 
developing the resist pattern, you will 
waste the extra cost of presensitized panels. 
It is a good idea to start with a spray resist, 
then graduate to presensitized panels once 
you have refined your circuit fabrication 
techniques. And the keys to refining your 
techniques are: Read instructions and famili- 
arize yourself with what you're doing, fol- 
low the instructions, take your time, be 

careful, and practice first, using small sample 
boards. Follow those hints and you may 

surprise yourself with the fine boards you 
can turn out. 

APPENDIX: Sources of Supply 

Direct etch materials 
Ink resist is made by GC Electronics, Tech- 

niques, and Kepro. 
Dry transfer resist patterns are made by Tech- 

niques, Datak, and Kepro. 
An ordinary "Sanford's Sharpie" marking pen 

available for about 49 cents at any stationery store 
can be used as a resist pen. 

Photo etch supplies 
"Cut -N- Peel" and " 'B' Neg" supplies are 

distributed by GC electronics. (The "'B' Neg" 
materials are manufactured by Bishop Graphics.) 

Rubylith material, available at art supply 
houses, can also be used for cutting and peeling 
patterns. 

Positive artwork patterns and supplies are made 
by Datak, Kepro, and Techniques. GC Electronics 
distributes artwork materials made by Bishop 
Graphics. Bishop Graphics materials are also dis- 
tributed by independent distributors. 

Photo etch supplies 
Photo resist spray and developer are made by 

GC and Datak. Presensitized panels are distributed 
by Techniques and Kepro. Reversing film and 
developer are made by Techniques, Kepro, and 
Datak. 

All of the above mentioned manufacturers make 
or distribute plain PC board panels (unsensitized) 
and etching solutions. 

Photo flood lamps are available at photo supply 
houses. (Look for 375 Watt reflector flood lamp or 
No. 2 (EVB) Photoflood.) 

Photo 8: Close up, a successfully etched printed circuit will have even lines 
with no hairline cracks or other imperfections. This example shows such a 

result, prior to drilling out the holes for component leads. 
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Photo 9: When various imperfections enter the picture, the result is not so 
clean. Here is a high contrast picture of an imperfect result. The resist layer 
has separated from the copper during the etch process at several points, 
resulting in holes in the copper and, in several instances, complete breaks in 
circuit runs. 
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WIZ Yoim, Oft 
ASSEMBLER 

To date I have not seen 
any detail descriptions of 
home brew self assembler 
systems for microcomputers 
such as the 8008, 8080, 6800 
or PACE. Maybe Dan 
Fylstra's description of 
assemblers will start a few 
readers off in that direction. 
Dan describes in general 

by 
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terms what assemblers do, 
scanning techniques, symbol 
tables, hashing methods and 
some of the more advanced 
"bells and whistles" you 
might employ. Use Dan's 
article as a source of ideas on 
the organization and features 
for your own assembler 
software designs. ... CARL 

If you have done any work 
with microcomputers, you 
have doubtless seen programs 
written in assembly language. 
You probably know that 
assembly language programs 
must be translated into 
machine language before they 
can be executed on the 
computer. The translation is 

usually performed by another 
program, called an 
"assembler." Because 
assembly language lets you 
write mnemonic (easily 
remembered) names for 
instructions and data, rather 
than binary codes, programs 
may be written more quickly 
and with fewer errors. The 
assembler does the tedious 
job of putting together, or 
assembling, all of the right bit 
patterns to make up the 
program in machine language. 
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Most of the assemblers 
presently available for 
microcomputers are 
cross -assemblers: They run on 
big computers or time -sharing 
systems, and produce output 
which must be loaded in 
some way into the 
microcomputer system. 
Commercial time -sharing 
services are expensive, and 
the whole point of having a 

home computer is to be able 
to perform computing chores, 
such as program assembly, on 
your own system at ultra -low 
cost. Since a resident 
assembler - one which runs 
on your own micro system - 
may be unavailable or very 
costly, you might be 
interested in writing your 
own assembler. By doing it 
yourself you can learn a lot 
about programming and 
software design as well as the 
specs of your own 
microcomputer, save yourself 
the cost of program 
development, and produce a 
customized language suited to 
your own needs or fancies. 
And who knows? - you 
might even find that other 
hobbyists or microcomputer 
risers might be willing to pay 
you for a copy of the 
assembler program that you 
had so much fun writing. 



Now, it's only fair to warn 
you that writing an assembler 

is a big undertaking - you'll 
need a fair amount of time 
and perhaps some extra RAM 

chips to accommodate the 

finished product. But such 

obstacles have never stopped 

anyone with your boundless 

enthusiasm. So the only 
question is, how do you go 

about writing an assembler? 

That's the sort of question 
that BYTE magazine is 

designed to answer, and that's 
what this article is all about. 

What Does an Assembler Do? 

To answer this question, 
we have to take a look at 

some typical machine 
instructions and how they 

might be written in assembly 

language. A machine 
instruction usually consists of 
a binary code for some 

operation, such as addition, 
and one or more binary 

numbers denoting the 
"operands" of the operation. 
The binary number for an 

operand may have either of 
two interpretations: It may 

denote the binary value of, 

say, a number, or the ASCII 

code of a character, or it may 

denote the binary address of 
a memory location which 

holds the actual value of the 

operand. For example, on the 

Motorola 6800 the bit 

pattern 

1000 1011 

opcode 

0011 0000 

operand 

means "add the number 48 

(00110000 in binary) to the 

A accumulator." This might 
be represented in assembly 

language as 

ADDA #48 

- note how much more 

convenient it is to write 
things this way! In contrast, 
the bit pattern: 

1001 1011 

opcode 

0011 0000 

operand 

means "add the 8 -bit number 
found in memory location 48 

to the A accumulator." This 
might be written in assembly 

language as 

ADDA BETA 

where it so happened that, 
just after the last instruction 
of a program which was 48 

bytes long, the programmer 
had also written 

BETA RMB 1 

meaning "reserve 1 memory 
byte at this point, and call it 
BETA." 

These examples illustrate 
the basic functions of an 

assembler. In the first case, 

the instruction's operand was 

the actual number to be 

added. (This is often called an 

"immediate operand. ") The 

The assembler does the tedious job of putting 

together, or assembling, all of the right bit patterns to 

make up the program in machine language. 

start at location 0. He 

indicated this by means of 
the mnemonic RMB, for 
"reserve memory byte." 
Since this assembly language 

statement doesn't actually 
represent an instruction, but 
instead tells the assembler 

what to do, it is often called a 

"pseudo -op." The assembler 

read the entire program, 

counting up the number of 
bytes that the subroutine 
would take, and determined 
that the address of the 

Fig. 1. The Forward Reference Problem 

lNEXT 

take, and furthermore it 
doesn't know (yet) that the 

memory location BETA is 

supposed to be reserved just 
after the subroutine, since it 
hasn't seen the RMB 
pseudo -op." 

Forward Reference 

Fig. 1 illustrates a problem 
common to all assemblers and 

compilers, often called the 

"forward reference problem." 
There is no neat way out of 
it. In this case, the 

THERE 

61 LDAA THERE 
63 JMP BACK 

66 RMB 1 

assembler read the characters 
"ADDA" and substituted the 

proper binary opcode 
10001011, and converted the 

decimal number 48 to its 

binary equivalent, 00110000. 
In the second case, the 

instruction's operand was the 

address of a memory 
location. The programmer 
called this memory location 
BETA and decided to put it 
after the instructions of a 

subroutine, which was to 

memory location called 
BETA was therefore 48, or 

00110000 in binary. It 
assembled this address into 
the instruction. 

All well and good. But, 

being an alert reader, you ask, 

"Wait a minute! What if the 

ADDA instruction is in the 

middle of the subroutine? 
When the assembler reads the 

ADDA instruction, it doesn't 
know how many bytes the 

rest of the subroutine will 
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programmer could have 

reserved the memory location 
BETA before the subroutine 
rather than after it. But 

suppose that the subroutine 
had included a "jump" or "go 
to" statement: 

JMP NEXT 

NEXT ADDA # 7 



A two -pass assembler 
solves the forward 
reference problem by 
reading the program 
twice. 

It is rather impractical to try 
to write every program 
without any forward jumps! 

There are basically two 
ways to cope with this 
problem. The first is to read 
the program once, but to 
keep sections of the program 
in memory until all forward 
references are resolved. Since 
RAM costs us money in a 

microcomputer system, we 
will reject this approach. The 
second alternative is to read 
the program twice; an 
assembler which adopts this 
strategy is called a two -pass 
assembler. This approach is 
slow, but it's also cheap, and 
that's what we want! 

The first time that such an 
assembler reads the program 
(i.e., on the first pass), it 
simply looks at the 
instruction mnemonics, 
counts up the number of 
locations that each 
instruction will take, and 
builds a symbol table in 
memory which lists all of the 
programmer defined names 
for memory locations and 
their corresponding addresses. 
(We need RAM for this, but 
not so much as would be 
required for the first 
approach.) This process is 
(somewhat fancifully) 
illustrated in Fig. 2. Notice 
that the assembler picks up 
only the statement labels, 
ignoring (for the purposes of 
Pass 1) appearances of the 
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same symbols in the operand 
fields of instructions. 

On the second pass, binary 
opcodes are substituted for 
the instruction mnemonics, 
constants are converted to 
their binary representation, 
and programmer defined 
names are replaced by their 
actual memory addresses, 
found in the symbol table. 
This is illustrated in Fig. 3. 
Any name appearing in the 
operand field of an 
instruction which is not 
already in the symbol table 
on Pass 2 is undefined in the 
program, and will cause an 
error message. One other 
note: looking up the binary 
opcode for an instruction 
mnemonic is essentially the 
same process as looking up 
the address for a programmer 
defined name, so the symbol 
table can be used for both 
purposes. 

It should be pretty clear 
by now that an assembler 
spends most of its time 1) 
scanning characters, looking 
for names, numbers and 
punctuation symbols, and 2) 
building and searching the 
symbol table. If we can find 
simple and efficient ways of 
performing these operations, 
and avoid getting them 
hopelessly intertwined with 
the rest of the program logic, 
we should come out with a 

fairly decent assembler. So 
let's now take a look at 
programming techniques for 
scanning and searching 
symbol tables. 

Scanning Techniques 
Our assembler's first task 

is to scan the characters 
making up an assembly 
language program, and find 
things such as instruction 
mnemonics, constants and 
programmer defined names, 
while noticing but generally 
ignoring such things as 

blanks, punctuation symbols 
and comments. The amateur 
programmer's first impulse 
usually is to plunge in by 
writing a series of tests and 
branches to handle various 
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Fig. 2. PASS 1 picks up the labels. 

THERE 

LDAA THERE 

JMP BACK 

RMB1 

sequences of characters which 
may appear on a line. This 
approach frequently leads to 
the type of scanner known as 

a "kluge." The computer 
scientist, on the other hand, 
has nothing but contempt for 
this "ill- structured" 
approach, and prefers to 
work with regular expressions 
or right -linear grammars and 
finite automata. We will take 
a middle course, outlining 
some programming 
techniques that will help 
make a hand implemented 
scanner simpler, smaller and 
faster. 

The first technique, if you 
are designing your own 
assembly language, is to make 
it simple to scan! An 
assembly language statement 
usually consists of an 
optional statement label 
(which then represents the 
address of the location into 
which the instruction is 

assembled), an instruction 
mnemonic, an operand field, 
and room for comments. 

A typical example would be: 

Some assemblers require each 
element of an assembly 
language statement to begin 
in a fixed column or 
character position of a line, 
so that the problem of 
locating the elements for 
scanning is greatly simplified. 
However, this is a little rough 
on the assembly language 
user, and you will probably 
save yourself time in the long 
run by implementing a 

slightly more complex 
scanner. To permit a more 
flexible format, one may take 
either the "IBM approach," 
in which a statement label 
must begin in column 1, an 
instruction mnemonic must 
be preceded by at least one 
blank, and comments are 
separated from operands by a 

blank; or the "DEC 
approach," in which 
statement labels are followed 
by a colon (or other 
punctuation symbol), and 
comments are preceded by a 

semicolon. The "DEC 
approach" is somewhat more 

EVAL LDAA BETA 

statement instruction operand 
label mnemonic field 

BEGIN FUNCTION 
EVALUATION 

comments 



Fig. 3. PASS 2 generates code referencing labels. 

convenient and less 
error -prone for the user, but 
is slightly harder to analyze. 

For instance, one must be 

willing to scan a string of 
alphameric c haracters 
followed by blanks, waiting 
for a colon or an alphabetic 
character in order to decide 
whether the string was a 

statement label or an in- 
struction mnemonic. 

Sometimes a decision as to 
what to do next must be 

made on the basis of the type 
of the next (non -blank) 
character. If several 
alternatives are possible, one 

would like to use a "jump 
table," or an array of branch 
addresses indexed by the 

character code, instead of a 

sequence of character 
comparisons. But the ASCII 
character set allows for 128 

different character codes, of 
which only about 45 are used 

in assembly language 
statements. Hence, a common 
technique for complex 
scanning problems is to first 
translate from ASCII to a 

more convenient set of 
character codes, using a 128 

byte character translation 
table. The new character 
codes can be chosen so as to 
facilitate the use of jump 
tables at other points. 

The elements of an 

assembly language statement 
(names, mnemonics and 

constants) generally consist 
of variable length character 
strings, separated by a 

variable number of blanks. 
Present -day computers, 
however, are more adept at 

handling fixed size objects 
such as bytes or words. So 

the most important technique 
you can use to keep your 
scanner coherent is to write a 

"next token" routine, which 
scans off an alphameric 
string, a constant (e.g., a 

string of digits) or a 

punctuation symbol each 

time it is called. This routine 
should return a code for the 

type of item or token just 
scanned (say, 1 for 
alphameric strings, 2 for digit 
strings, 3 for a colon, 4 for a 

comma, and so on), and a 

fixed -size descriptor giving 
the address of the first 
character and the number of 
characters in the string. 

Fig. 4 illustrates 
descriptors for the statement 
label, instruction mnemonic, 
and operand of a typical 
assembly language statement. 

Descriptors for character 
strings are handy for a 

number of purposes. 
Character string move and 
comparison routines can be 

written which take two 
descriptors as arguments. 
Output lines can be 

constructed from a sequence 

of descriptors, and error 
messages can also be handled 
in this way. By storing the 

fixed -size descriptors in the 
symbol table and the 
character strings themselves 
in another area, you can 

avoid the arbitrary restriction 
on the length of names to six 

or eight characters found in 

many assemblers. 
Even more important, the 

Fig. 4. Descriptors Identify Text Tokens in a Line of Characters. 
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use of a "next token" routine 
separates the details of 
scanning individual characters 
from the problem of deciding 
how to process each element 
of a statement. The symbol 
table routines described 
below similarly separate the 
details of identifying 
particular names and 
mnemonics from the other 
problems of processing. These 

are examples of the use of 
modularity and hierarchical 
structure to organize the 

solution of a complex 
problem. 

Enough in the way of 
generalizations and 
philosophy; let's get on with 
an example to see how all this 
works. Fig. 5 shows the flow 
of information from a 

character code translation 
routine, to a next token 
routine, to a routine which 
determines the type of 
statement from the 
instruction mnemonic using a 

symbol table lookup 
subroutine. Assembly 
language for the Intel 8080 
has been used in this 
example. Lower case letters 
are translated to upper case, 

and the codes for digits (0 -9) 

and letters (A =10, B =11, ... , 

1 315 

M 
'r7) 

lfl 

C7 

o 
M 

n 
M :I.,.. .iii 
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CHARACTER 
CODE 

TRANSLATION 
ROUTINE 

LOOP: 

MVI 
LXI 
MVI 
LDAX 
MOV 
MOV 
STAX 
INX 
DCR 
JNZ 

LXI 
LDAX 
RLC 
MOV 
MVI 
DAD 
PCHL 

BRTAB: JMP 
JMP 
JMP 
JMP 

Fig. 5. Typical (8080) Character Translate and Next Token Routines 

STATEMENT 
TYPE 

DETERMINATION 
ROUTINE 

"NEXT TOKEN" 
ROUTINE 

SYMBOL 
TABLE 

LOOKUP 
ROUTINE 

CHARACTER TRANSLATION ROUTINE 

H, TABLE 
D, LINE 
C, 72 
D 
L, A 
A, M 
D 
D 
C 
LOOP 

H + page holding table 
DE +begin of line 
C = length of line 
get next char of line 
L = character code index 
A = table entry at index 
replace char in line 
advance to next char 
reduce no. chars remaining 
loop for all 72 chars 

"NEXT TOKEN" ROUTINE 
H, BRTAB H + branch table base 
D get translated char from line 

times 2 for branch table index 
C, A set up 16-bit index 
B, 0 in registers B and C 
B add to branch table base 

jump to appropriate routine 
LETTER 
DIGIT 
COLON 
COMMA 

LETTER: XCHG 
SHLD DESCR + 1 

MVI A, 36 
MVI C, 0 

SCAN: INX H 
INR C 
CMP M 
JP SCAN 
LXI H, DESCR 
MOV M, C 

HL +begin of alpha string 
put start addr in descriptor 
max translated code for alphameric 
initialize count of chars in string 
advance to next character 
increase character count 
code < max for Alphanumeric 
continue scan if so 
HL length part of descriptor 
put in no. chars in string 
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Z =35) are chosen so that 
alphameric and digit strings 
can be scanned off using a 

single comparison for each 
character. Note the use of a 

jump table "BRTAB" to 
select the appropriate 
handling routine for the next 
character in the next token 
routine. Descriptors are 
returned to the statement 
type determination routine, 
and are passed on to the 
symbol table lookup routine 
which uses them in character 
comparisons. The problem of 
distinguishing statement 
labels followed by a colon is 

handled easily at this level: 
The next token is obtained, 
and its descriptor is saved; the 
next token is obtained, and 
its code is tested; if a colon 
has been found, the saved 
descriptor is passed to the 
symbol table lookup routine, 
and two more tokens are 
obtained to balance things 
out before the instruction 
mnemonic is processed. 

Symbol Tables 

The greatest convenience 
that an assembler provides for 
the programmer is the ability 
to give names to memory 
locations and to refer to 
those names from other 
points in the program. The 
assembler determines the 
proper address of the 
memory location, and fills in 
the address wherever the 
name is referenced. 

The assembler 
accomplishes this by building 
a symbol table on its first 
pass. Each entry of the 
symbol table contains a 

programmer defined name in 
character string form, and the 
binary address corresponding 
to it. In addition, the symbol 
table may contain other 
character string names, such 
as the instruction mnemonics 
or assembler pseudo -ops. The 
entry for an instruction 
mnemonic would contain the 
corresponding binary opcode, 
and the entry for a pseudo -op 
might contain the address of 
a processing routine in the 



Fig. 6. An Array Symbol Table. 
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assembler itself. For a 

computer with several 
different instruction formats, 
the entry for an instruction 
mnemonic might also contain 
a type code indicating the 
proper format for this 
instruction, the number of 
operands expected, and the 
interpretation of the 
operands as addresses or 
values. 

The simplest way of 
organizing the symbol table 

would be as an array of 
descriptors and address 

words, as illustrated in Fig. 6. 

Entries are added sequentially 
to the array during Pass 1. 

and a sequential search of the 
whole array is used to find 
the addresses of 
programmer defined names 

during Pass 2. (Each 
descriptor from the table is 

passed in turn to a character 
comparison routine, along 
with the descriptor for an 

operand. The comparison 
fails immediately if the string 
lengths in the descriptors 
were unequal.) This type of 
organization has the great 
virtue of simplicity, and is 

probably adequate for a first 
version of your own 
assembler. As the programs to 
be assembled get longer, 
however, the asembler will 
spend an increasing fraction 
of its time searching the 

symbol table. A faster way of 
searching the table is needed. 

Think about how you 
would go about such a search, 

if you were the assembler. 
What do you do when you 
open a dictionary or a 

telephone book? Knowing 

the order of the alphabet and 
the thickness of the book, 
you look at the first character 
or two of the word, you 
make a guess at the 
approximate page, open the 

book to that page, and begin 
searching from that point. 

Let's have the assembler 
do the same sort of thing. We 

will divide up the table into 
twenty -six sections, one for 
names beginning with each 

letter of the alphabet. We 

know the starting address of 

each section of the table (we 
can make a small array of the 
twenty -six starting addresses), 
so to look up a name, we 

look at its first character, go 

to the appropriate section 
and search just that section 
rather than the whole table. 

This approach is depicted 
in Fig. 7. 

This is a good first try, but 
there are some drawbacks. In 
a program called "assembler," 
say, you might have a lot of 
names beginning with A, 

Fig. 7. An Alphabetically Indexed Symbol Table. 
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while in a program called 
"editor," you might have 
many names starting with E. 

On the other hand, your 
friend Zaborowski might start 
all of his names with Z. 

Should all of the sections be 

of the same size? If not, how 
do you know (at the 
beginning of an assembly) 
which sections to make 
larger? If a section becomes 
filled, we can simply add the 
extra names to the next 
section of the table; now, 

'ALPHA' 
'ADDA' 

'BETA' 

'CAr 
r 'CRADLE' 

'CALL' 

I 

I 

1 

1 

I 

` 'ZABOROWSKI' 



What happens if we use 
a random assortment of 
the names, placing 
them haphazardly into 
the various sections of 
the table? 

however, if a name to be 
looked up on Pass 2 is not 
found in its original section, 
most of the following section 
will have to be searched 
before the name is found. 
This phenomenon is called 
"clustering." Your friend 
Zaborowski is especially 
likely to run into this 
problem, and even if you 
make the Z section large 
enough, searching the symbol 
table will take just as long 
using the new approach as it 
did with the old one. 

Can we overcome these 
drawbacks of the new 
method? Here's where a little 
lateral thinking will help. We 
are making use of our 
knowledge of the ordering of 
the alphabet. Try the 
opposite approach: What 
happens if we use a random 
assortment of the names, 
placing them haphazardly 
into the various sections of 
the table? At first this sounds 
absurd, but on closer 
examination we realize that it 
solves the problem! The 
problem arose because people 
are fairly likely to choose a 

set of names which are 
related in the alphabetic 
ordering; by using a randomly 

chosen ordering, we can 
minimize the likelihood that 
a large number of symbols 
will be placed in a single 
section of the table. This 
technique, which is called 
"hashing" or "hash 
addressing" for obvious 
reasons, is used in most 
modern assemblers and 
compilers. 

So, instead of using the 
first character of a name to 
select the proper section of 
the table, we will use a 

random assortment of bits, or 
an arbitrary function of the 
bit pattern of the entire 
name, to select a starting 
point in the table. A function 
of this sort is called a "hash 
function ". So long as the 
function's possible values are 
evenly distributed over the 
range of addresses for table 
entries, the problem of the 

"clustering" or grouping of 
names will be minimized. 

An example of a hash 
function which usually gives 
good results is to add 
together all of the bytes of a 

character string, ignoring 
overflow, or else to 
"exclusive or" the bytes 
together. 

Similarly, in order to 
minimize the clustering of 
names which hash to the 
same starting address, we can 
"re- hash" the names so as to 
randomly distribute them 
around the table. Such a 

method is called a "random 
rehash." The following 
method is easy to implement, 
efficient, and works well 
when the table size is a power 
of 2, say 2 * *k (see Morris): 
Suppose a name initially 
hashes to table entry h, which 
is already occupied by 

Fig. 8. Hashing Symbol Table Descriptors. 
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another name. Initialize a 

variable R to 1. To rehash the 
name: 

1. Set R = R *5 (shift left 
two bits, and add to the 
original number). 

2. Mask out all but the 
low -order k +2 bits of R, and 
save this as the new R. 

3. Shift R right 2 bits and 
add it to h to get the next 
table entry h. If this entry is 

occupied, rehash the name 
again. 

To find a name in the 
table during Pass 2, we simply 
hash and rehash in exactly 
the same way, this time 
comparing each table entry h 
against the name to be found. 
The remarkable fact about 
this algorithm is that the 
number of comparisons 
needed to find an entry, on 
the average, depends only on 
how full the table is and not 
on how large it is. Even when 
the table is 90% full, only 
about 2.56 comparisons will 
be needed, on the average. In 
contrast, for a nearly full 
table of 512 entries, the 
sequential search method 
described earlier would take 
an average of 256 
comparisons to find a name, 
or about 100 times as long! 

Random rehashing is 

illustrated in Fig. 8. The first 
name to hash to table entry 
12, for example, would be 
stored there, while the next 
name whose hash function 
value was 12 would be 
rehashed to table entry 13, 
and the next one would be 
rehashed twice and finally 
stored in table entry 3. 

We have only described 
one method of hashing here; 
several other variations are 
possible. The most important 
of these is called "hashing 
with overflow chaining," in 
which all of the names which 
hash to the same starting 
address are chained together 
on a linked list. This method, 
which is often used on large 
computers with dynamic 
storage allocation, is less 
suitable for microcomputers 
because it requires an extra 



address field for each symbol 
table entry. The references at 
the end of this article can be 

consulted for a more 
complete discussion of 
hashing. 

Now that you have 
become acquainted with 
some of the basic 
programming techniques used 

for scanning and searching 
symbol tables, you're about 
ready to start writing your 
own assembler! You might 
want to actually try this, 
using the simplest techniques 
outlined in this article: 
Perhaps a fixed -column 
scanner and a sequentially 
searched symbol table for a 

first version. Very often, 
when it comes to actually 
getting a program up and 
running, the simple- minded 
approach turns out to be the 
one that works best. Once 
you've got a basic assembler 
working, you can consider 
adding some of the features 
that we'll discuss next. 

More Assembler Features 

Up to this point, we have 
been concerned with only the 
basic functions of an 

assembler; The conversion of 

Very often, when it 
comes to actually 
getting a program up 
and running, the 
simple- minded 
approach turns out to 
be the one that works 
best. 

m n e m o n i c s a n d 

programmer defined names to 
instruction opcodes and 
addresses. Many other 
features can be added to an 

assembly language to make it 
even more convenient for 
programming. Some of the 
more useful features of this 
kind will be considered here. 

Defining Constants 

Most assembly languages 
have pseudo -ops which direct 
the assembler to reserve one 
or more locations containing 
constant values. For example, 
the Motorola 6800 assembly 
language has a pseudo -op 
FCB, for "form constant 
byte." An example of its use 

would be 

FCB 23,$FA 

which would reserve two 
bytes containing 00010111 
(23 in decimal) and 
11111010 (FA in 
hexadecimal or base sixteen). 

Sometimes an instruction 
takes its operand in a 

memory location (rather than 
as an "immediate" operand), 
but the operand itself is 

actually a constant. Instead 
of writing 

ADDA THREE 

THREE FCB 3 

we would like to be able to 
write 

ADDA = 3 

and have the assembler 
automatically reserve a 

memory location containing 
3, and assemble its address 
into the instruction. Such an 
instruction operand is called a 

"literal." On machines where 
some instructions can address 
only a limited range of 
memory locations, this 
feature may be difficult to 
implement. 

Equivalences 

It is often convenient to 

be able to define a symbol 
with a constant value, or with 
the same value as another 
symbol. For example, a 

constant representing, say, 
the size of an array, may be 

used at several points in a 

program. By using a symbol 
in place of the constant 
throughout the program, and 
defining the symbol's 
constant value at the 
beginning of the program, we 

can make it easier to change 
the size of the array when 
producing a new version: 
Only the symbol need be 

redefined, and its new value 
will be substituted at the 
appropriate points by the 
normal process of assembly. 
(This is called "parameter- 
izing" the program.) This 
feature is not too difficult to 
implement, and most 
assemblers have a pseudo -op 
such as 

SIZE EQU 25 

which allows us to write 

LDAA #SIZE 

ARRAY RMB SIZE 

or, in general to use the 
symbol SIZE wherever the 
constant 25 could appear. 

Expression Evaluation 
Besides defining constants 

and constant -valued symbols 
in a program, it is frequently 
useful to be able to combine 
such elements into arithmetic 
expressions whose values can 
be computed at assembly 
time, and to use those values 
in place of other constants. 
For example, the same 
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program with a parameter 
SIZE for the size of an array 
might include statements 
such as 

ADDA #SIZE -1 

SPACE EQU 3 *SIZE +1 

which would specify (for 
SIZE =25) that 24 should be 

added to the A accumulator, 
and that SPACE should have 

the constant value 76 
wherever it appears in the 
program. 

It is remarkably easy to 
evaluate expressions of this 
kind, taking account of 
parentheses and the normal 
precedence of arithmetic 
operations. An algorithm to 
perform the evaluation of 
such expressions will be the 
subject of an article in a later 
issue of BYTE; if you are 

impatient, you can consult 
Mealy or Gries (see the 
references). 

Conditional Assembly 

We saw how a program 
could be parameterized by 
the use of equivalenced 
symbols and arithmetic 
expressions. Sometimes a 

program can be 
parameterized in another 
way: Entire sections of the 
program can be included or 
omitted, depending on the 
values of certain parameters. 
For example, if the maximum 
value of a certain variable is 

less than 256, it can be stored 
in a single byte on most 
machines; but if the 
maximum value is 256 or 
more, two bytes or a word 
must be used. Thus we might 
wish to write something like 

.IF MAXVAL LT 256 
ARRAY RMB SIZE 

.END 

.IF MAXVAL GE 256 
ARRAY RMB 2 *SIZE 

.END 



with the intent that, if an 
earlier EQU pseudo-op had 
defined MAXVAL as, say, 
200, the first RMB statement 
would be assembled, while if 
MAXVAL had been defined 
as, say, 400, the second RMB 
would be assembled. 

This feature is not too 
difficult to implement, and it 
is extremely useful. The 
assembler must simply 
recognize the .IF and .END 
pseudo -ops, evaluate the 
relations, and skip the 
intervening text on both 
passes if the relation is false. 
It is easy to imagine (but 
somewhat more difficult to 
implement) extensions to this 
feature, such as the repetitive 
assembly of certain program 
segments. 

Macros and Relocation 
The most sophisticated 

assemblers are comparable to 
compilers in complexity, size 
and versatility. Some 
assemblers implement a 

macro facility, which enables 
the programmer to define 
new instruction mnemonics 

which are replaced by 
parameterized sequences of 
assembly language statements 
wherever they appear in the 
program. When combined 
with features for conditional 
assembly, a macro facility 
provides a powerful tool for 
extending an assembly 
language to suit it for a 

particular application. 
We have discussed only 

absolute assemblers: We 
began by assuming that the 
program was to be assembled 
starting at location 0 (or 
some other fixed location). 
When the program is going to 
be loaded into memory along 
with other, previously 
assembled programs, 
however, we don't know how 
big the other programs are or 
in which order they will be 
loaded. In this case it is 

necessary to put out 
relocation information along 
with the assembled program, 
which says, in effect, "If you 
load this program at location 
m, you should add the 
number m to the following 
bytes or words in order to 

make the addresses come out 
right." This relocation 
information is processed by a 

loader, which is responsible 
for loading all of the related 
programs into memory. 

While both of these topics 
are interesting and very 
important, many pages would 
be required to do them 
justice and this article is 

pretty long already! So we'll 
content ourselves with the 
topics already discussed. By 
this time, you probably have 
either decided that writing an 
assembler is too much work, 
and have stopped reading this 
article, or else you have 
found the whole idea very 
intriguing and are looking 
forward for the last word. So 
here it is: Now that you 
know how to write an 
assembler, why not get out 
and give it a try? You have 
nothing to lose but your 
innocence about the 
complexities of system 
software, and perhaps a little 
of your time. 
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Simplify Your 

Homemade Assembler 

Gregory C Jewell 
11855 Southeast 188th 
Renton WA 98055 

CHARACTER POSITION 

_ I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 IB 19 20 

IAIXILIEMJISIRMWIHIAIT1 I I I 1 1 I I 

label (optional) 

ignored / 
mnemonic operation code J 

or pseudo operation 

ignored 

operand field 

comments (to end of line) 

Notes: 1. A semicolon ( ;) in line position 1 

indicates the whole line is a comment 
and will be ignored by the assembler. 

2. If the .AS or .AZ pseudo operations are 
used, the operand field can be as long as 

required. 

Figure 1: Summary of simplified assembler source format. This figure 

illustrates the fixed field format. The label field is used to define symbols, the 

operation code field is used to specify a mnemonic operation code or a 

pseudo operation, and the operand field is used to contain information 

according to the format of figure 2. Comments may be written by starting a 

line with a semicolon in position one, or following the operand field with the 

desired comments. 
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Our primary goal in the design of a simple 
assembler is to eliminate the need to parse a 

line in order to determine what information 
is contained in that line. Rather than asking 
"What are you trying to give me ? ", our 
assembler will demand, "I know where I am, 

so give me what I want." 
The assembler described here is a three - 

pass assembler. The first pass compiles a 

symbol table; the second pass outputs the 

generated machine code, and the third pass 

produces a hexadecimal listing of the gen- 

erated machine code with its associated 

addresses and source statements. 

Labels 

The first step on our path to simplicity is 

a major one even though its impact on our 

program writing will be slight. We will 
specify that all labels should have a fixed 

length of four characters with a restriction 
that the first character should be alphabetic. 
Although not the main objective, requiring 
fixed length labels adds the feature of 
allowing embedded blanks in the labels. 

Figure 1 illustrates the fixed field format of 
the simplified assembler. In the example, a 

line of assembler input is shown in the 
boxes, with shaded boxes indicating blanks. 

The label AXLE is shown on a statement 
containing the JSR operation code with 
operand WHAT. 

Six or eight characters is a popular 
maximum for assembly language labels; how- 
ever, our four character labels will save 

memory space and speed up the task of 
searching for a label in the symbol table. 



A label is defined when it appears for the 
first time in a statement of the program 
which is being assembled. A label is not 
required for every statement. However, if 
the first character position of the statement 
is found to have an alphabetic character, 
then the first four columns define a new 
label for the symbol table. If the first 
position is a blank, then the assembler 
should ignore the remaining positions of the 
label field. This is an example of what is 
called a fixed field syntax because we always 
expect a label or no label at all in these 
positions. Programming of the assembler is 
simplified by use of this limitation. The need 
for parsing has been nearly eliminated by 
this single requirement of fixed -length labels. 
But let's take a few more steps. 

Operation Codes 

As in commercially available assemblers, 
the next field on each line of the program 
being assembled is an operation code field. 
This field is separated by a blank character 
position from the label field, and thus begins 
in the sixth character position of our fixed 
field input format. In the operation code 
field, the assembler can find two types of 
information: an assembler pseudo operation 
or a mnemonic operation code for machine 
instructions. 

Pseudo Operations 

A mnemonic operation code is a symbol 
which the assembler in most instances will 
translate into a machine instruction. A 
pseudo operation code is a similar symbol 
which looks very much like a mnemonic 
operation code. However, the pseudo opera- 

Mnemonic Description 

.SA 

.RS 

,xw 
.AS 

.AZ 

.DF 

IL 

.EL 

starting address 

reserve storage 

hexadecimal word 

ASCII string 

ASCII string with zero 

define address 

inhibit listing 

enable listing 

.ND end 

Table 1: Pseudo operations. 

The simplified assembler 
will demand "I know 
where I am, so give me 
what I want." 

Action 

Defines the address for the next instruction. 
The assembler must know where to start assign- 
ing code whether by default or instruction. 
Similar to the ORG pseudo -op of other 
languages. 

Saves space for specified number of words. 

Loads specified hexadecimal value into location. 

Breaks down a character string into its ASCII 
equivalent. 

Same as AS except that the ASCII code is ter- 
minated by a zero byte. 

Loads address of specified label into location. 

Inhibits listing during third pass. 

Enables listing during third pass (default 
condition/. 

End of source program. 

tion does not normally generate machine 
instructions and is used instead to control 
how the assembler will generate code. All 
assemblers have pseudo operations. Ours is 
no exception. When choosing pseudo opera- 
tions, the goal of simplicity should be kept 
in mind. Most likely we will be able to get 
by without many of the fancy or powerful 
pseudo operations that add bulk and com- 
plexity to the assembler program. 

I have defined nine basic pseudo opera- 
tions for my assembler. All begin with a 

period so that the assembler program need 
only examine the first character to deter- 
mine if the mnemonic is a pseudo operation. 
This speeds address calculation during the 
first pass since all other PACE instructions 
generate a single word of code. It also aids 
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Table 2: An example of 
the output of an assembler 
implemented according to 
this definition. This assem- 
bly shows a memory test 
program written for the 
author's system. Bearing in 
mind all the limitations 
placed upon the source 
format to simplify writing 
the assembler, note that 
the listing looks like a 

"typical" output of an 
assembler. Note the fre- 
quent use of comment 
lines (starting with a semi- 
colon) to explain various 
aspects of the program. 
The program uses the 
author's 3 character mne- 
monics instead of the 
PACE mnemonics, and the 
pseudo operations are 
shown in table 1. 

END FIRST PASS, 

SYMBOL TABLE 

DATA 000E 
DSPL 0024 
ERR 0020 
LIN 0025 
NEXT 0O1D 
RITE 000,1 

READ 0006 
REED 0015 

END OF 

0 ERRORS DETECTED 

human recognition. The nine pseudo opera- 
tions are briefly described in table 1. 

We now have all the information required 
to complete the first (address allocation) 
pass. It is possible to identify a label and 
calculate its address, since PACE has fixed 
length instructions. The label and its 
associated address are stored in the symbol 
table sequentially. A symbol definition re- 
quires three words, since we must store two 
words for the name and one word for the 
address. If desired, at the end of the first 
pass the labels may be sorted by the first 

SYMBOL TABLE, 8 LABELS character (it's surprising how close this 

TWO -FART MEMORY TEST 
2 (1) ADDRESS -DATA CHECK 
3 WRITE A UNIQUE NUMBER IN ALL LOCATIONS 
4 IF A USED ADDRESS LINE IS EAD. THEN AT LEAST 
5 ONE ERROR WILL OCCUR 
6 
7 .SA 0 
8 0000 5226 LIN F'2,26 LOAD STARTING ADDRESS OF TEST 
9 0001 DÁ00 RITE STA R2,(R2) (,'RITE ADDRESS INTO LOCATION 

10 0002 F922 SNE P2,LIM MEi1ORY LIMIT REACHED" 
11 0003 1902 JMF READ YES 
12 0004 7AO1 AIL P2,1 NO INC INDEX 
13 0005 19E6 JF1P PITE 
14 

15 ; READ BACK UNIQUE NUMBERS 
16 

17 0006 5226 READ LIM 82.226 RELOAD STARTING ADDRESS 
18 0007 FADO SNE P2.(R2) COIIPARE. SKIP IF ERROR 
19 0008 1901 JI1P +2 
20 0009 1916 JMP ERR 
21 000A F91A SNE R2,LIM MEMORY LIMIT REACHED" 
22 0006 1902 _Jr1P DATA YES, GO TO NEXT PART OF TEST 
23 0O0C 7A01 AIS P2.1 NO. INC INDEX 
24 000D 19F9 JMF' REAL +1 
25 . 

26 , (2) SHIFT -ONE DATA CHECK 
27 , TEST WORD HAS A SINGLE BIT SET 
28 IJPITE TEST WORD IN ALL LOCATIONS 
29 TEST ALL BIT POSITIONS 
30 
31 000E 5001 DATA LIr1 PO,1 INITIALIZE TEST WORD 
32 OOOF 5226 LIM P2.26 LOAD STARTING ADDRESS 
33 0010 D22200 STA RO,(R2) WRITE TEST WORD 
34 0011 F913 SNE R2.LIM MEMORY LIMIT REACHED? 
35 0012 1902 JF1F' REEL YES 
36 0013 7A01 AIS P2,1 NO, INC INDEX 
37 0014 19E6 JIIF DATA +2 
38 , 

39 , READ BACI' TEST WORD 
40 
41 00I5 5226 REED LIM 82.26 'RELOAD STARTING ADDRESS 
42 0016 F200 SNE Ro,(P2) COMPARE. SKIP IF ERROR 
43 0017 1901 JMP +2 
44 0018 1907 J11P ERR 
45 0019 F9O6 SNE R2,LI1'1 MEMORY LIMIT REACHED" 
46 001A 1902 JMF NEXT YES 
47 0016 7ÁE1 AIS P2.1 NO. INC INDEX 
48 0010 19F9 JI1F' PEED +1 
49 0O1D 2802 NEXT SHL R0,1 SHIFT TEST WORD 
50 001E 45FO 60C 5,DATA +1 WRITE NEW TEST WORD IF NONZERO 
51 001E 5E0O CPY P2, R0 TEST COMPLETE, DISPLAY 0 ERRORS 
52 
53 ; ERROR ROUTINE: DISPLAY BAD LOCATInti 
54 
55 0020 51280 ERR CPY R0, P2 
56 0021 8102 STI DSPL LOAD DISPLAY FEGISTEP 
57 0022 D9O3 STA P2. LIM +1 SAVE TEST DATA FOR REFERENCE 
58 0023 0000 HLT 
59 0024 8009 DSPL `XL,I 8009 ADDRESS OF DISPLAY REGISTER 
60 0025 O3FF LIM XW 3FF MEI1ORY LIMIT = 1K 
61 .ND 

END THIRD PASS, 0 ERRORS DETECTED 
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comes to actually alphabetizing the labels) 
and listed with their addresses. The sample 
assembly of table 2 shows the result of such 
a sort. 

Mnemonic Operation Codes 

The next step toward simplification is to 
specify that all mnemonic operation codes 
should also have a fixed length. National 
Semiconductor Corporation, PACE's manu- 
facturer, suggests mnemonics containing 
from two to five characters. Even if we use 
the manufacturer's suggested mnemonics 
and specify a fixed length of five characters, 
the indirect notation @ would probably 
throw a wrench into the works since the @ 

usually directly precedes the label rather 
than immediately following the mnemonic. 

I chose to define a set of 3 character 
mnemonics. This saves memory space and 
speeds up the search for mnemonics in the 
table of operation codes. The three charac- 
ters of the mnemonic operation code can be 
stored in one and a half words (3 bytes) and 
the binary opcode may be kept in the 
remaining byte. There is nothing magic 
about mnemonics; they are simply aids to 
remembering the instructions. It's your 
computer, so you might as well use your 
own mnemonics - unless you plan to make 
your assembler commercially available. 
Table 3 shows the correlation between the 

Table 3: Correlation between manufacturer's suggested mnemonics and the 
author's 3 character mnemonics. 

1. 

2. 

3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 

Manfacturer's 
Suggested 

Mnemonics 

JMP 
JMP@ 
JSR 
JSR@ 
SKG 
SKAZ 
I SZ 
Dsz 
LD@ 
ST@ 
LSE X 
AND 
OR 
SU B B 

DECA 
AISZ 
LI 
XCHRS 
CFR 
CR F 

PUSH 
PULL 
CA I 

SKNE 
LD 
ST 
ADD 
RXCH 
RCPY 
RADD 
RADC 
RAND 
RXOR 
BOC 
RTS 
RTI 
PUSHF 
PU LLF 
HALT 
SF LG 
PFLG 
SHL 
SHR 
ROL 
ROR 

Description 

jump 
jump indirect 
jump to subroutine 
jump to subroutine indirect 
skip if greater 
skip if AND is zero 
increment and skip if zero 
decrement and skip if zero 
load indirect 
store indirect 
load with sign extended 
logical AND 
logical OR 
subtract with borrow 
decimal add 
add immediate, skip if zero 
load immediate 
exchange register and stack 
copy flags into register 
copy register into flags 
push register onto stack 
pull register from stack 
complement and add immediate 
skip if not equal 
load 
store 
add 
register exchange 
register copy 
register add 
register add with carry 
register logical AND 
register exclusive -OR 
branch on condition 
return from subroutine 
return from interrupt 
push flags onto stack 
pull stack into flags 
halt 
set flag 
pulse flag 
shift left 
shift right 
rotate left 
rotate right 
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Author's 
Mnemonics 

JMP 
JMI 
JS R 

JS I 
SGT 
SAZ 

I SZ 
DSZ 
LDI 
STI 
LSX 
AND 
IOR 
SBB 
DCA 
AIS 
LIM 
XRS 
CFR 
CRF 
PSH 
PUL 
CAI 
SN E 

LDA 
STA 
ADD 
RGX 
CPY 
RAD 
RAC 
RND 
XOR 
BOC 
RTS 
RTI 
PSF 
PLF 
HLT 
SET 
PLS 
SHL 
SHR 
ROL 
ROR 

An effective address is a 

combination of an address- 
ing mode and a displace- 
ment. 

All assemblers have pseudo 
operations. This one is no 
exception. 



manufacturer's suggested mnemonics and 

the 3 character mnemonics which I selected 

to simplify my assembler. 

Instruction Groups 

So far we have defined a 4 character label 

field and a 3 character mnemonic field. To 

make the program readable, we'll allow a 

single character (blank) after each field and a 

semicolon in the first character position 
(column one) to signal a comment line. Our 

assembler now expects either a blank, a 

semicolon, or an alphabetic character in the 

first position. As noted earlier, if the first 
position of a line contains an alphabetic 
character, then a label exists in the first four 
positions. The fifth position is ignored. The 

sixth through eighth positions contain the 

operation code or pseudo operation 
mnemonic and the ninth position is ignored. 

What does the assembler expect in the tenth 

position? To answer this question, we must 

collect instructions with similar binary and 

source formats into instruction groups. The 

only variation within an instruction group is 

the mnemonic operation code. Figure 2 lists 

the ten PACE instruction groups. 

After the instruction group is determined, 

our assembler will know exactly what to 

look for and where to find it. For example, 

if the instruction is in group three, the tenth 

character position is ignored (allowing you 

to specify RO, AO, XO, or whatever pleases 

Figure 2: PACE Instruction groups. 

Group 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

you at the time), a digit less than four is 

expected in the eleventh position; the 

twelfth position is ignored, and the destina- 

tion (DEST) field begins in the thirteenth 
position. If the instruction is in group four, 
then the assembler expects to find a digit 
less than four in the eleventh and fourteenth 
positions. If the instruction is in group 

seven, then the assembler's worries are over, 

since such instructions have no operands. 

Instructions Binary Format 
0 
6 

JMP,JMI,JSR,JSI,SGT,SAZ,ISZ,DSZ, 
LDI,STI,LSX,AND,IOR,S88,DCA 

AIS,LIM,CAI 

XRS,CFR,CR F,PSH,PU L 

SN E, LDA,STA,A DD 

RGX,CPY,RAD,RAC,RN D,XOR 

BOC 

RTS,RTI 

PSF,PLF,HLT 

SET,PLS 

SHL,SHR,ROL,ROR 

R = RO, R1, R2 or R3 
0 G M < F 

5 4 3 2 
I O O O 

O 9 8 7 

OP XP I 

Destination Field 

The destination field (DEST) is required 

to determine the effective address. An effec- 

tive address is the combination of an 

addressing mode and a displacement. The 

four PACE addressing modes are program 

counter relative, relative to register R2 used 

as an index, relative to register R3 used as an 

index, and base page. All addressing modes 

of the destination field entries (destination 

modes) listed in table 4 are program counter 

relative except the last two: (R) is index 

mode and *K is base page mode. The index 

and base page modes are limited primarily 
by my own biases and could be chosen 

differently in your own version of such an 

assembler. As with all other fields of a 

personal assembler, the DEST field should 

be tailored to your own preferences. The 

modes of table 4 are sufficient while main- 

taining the goal of simplicity. 

0 0 0 0 0 0 
5 4 3 2 I O 

DISP 

OP R IMMEDIATE 

OP R NOT USED 

OP I R I XR I DISP 

OP I DR I SR I NOT USED 

OP CC DISP 

L_ OP DISP 

OP NOT USED 

OP FC IPI NOT USED 

OP R N lLl 

0 6 K < FF 
L = "L" (letter L) 

See Modes of the destination field, table 4. 

259 

Operand Format 

Position 10 

DEST 

R,K 

R 

R, DEST 

R,R 

M,DEST 

K 

none 

M 

R,K or R,K,L 



Again, by examining only the first charac- 
ter of the field, the assembler can determine 
if the DEST field has a label, a specified 
displacement, an index register, or a base 
page value. The + or - extension after the 
label will always be in the same relative 
position since we have declared that all 
labels contain four characters. If the first 
character of the DEST field is an alphabetic 
character, then the first four characters of 
the field form the label; and, if there is an 
extension, the + or - will always be the fifth 
character of the field. 

Example 

Table 2 shows the output of the first and 
third passes of a memory test program. It 
looks general even though strict rules were 
applied. The execution time is approxi- 
mately 1.5 seconds for each 1 K of memory 
tested. Notice the destination LIM +1 in 
statement line 57. LIM +1 would have pro- 
duced an UNDEFINED LABEL error. The 
trailing blank is part of the label. 

If you desire simplicity and can live with 
LIM +1 rather than LIM +1 then you might 
implement the rules I have presented (or 
your own variation) in your homemade 
assembler. 

Conclusion 

The simplified homemade assembler's 
source language is now completely defined 

Table 4: Modes of the destination field 
(DEST). 

DEST Description 

LABEL 

LABEL +K 

LABEL -K 
. +K (here plus KI 

. -K (here minus Ki 

(R) 

"K 

0<=K<=FF 
R= R2orR3 

symbolic 

symbol relative 

symbol relative 

program counter 
relative 

program counter 
relative 

index register 

base page 

in a way which is simple and easy to 
implement, yet probably adequate for all 
our programming needs. Except for the AS 
and .AZ pseudo operations, we have 
eliminated the need for parsing, mainly by 
specifying a fixed label length (with 
embedded blanks) and a fixed mnemonic 
length. Other simplifications were achieved 
by selecting only basic pseudo operations 
and destination modes. By using these 
techniques, you should have your home- 
made assembler running by tomorrow. 

GLOSSARY 

ASCII: American Standard Code for Information 
Interchange. A 7 bit code used by many machines. 

Assembler: An assembler is a program which 
accepts a symbolic representation of some compu- 
ter program and transforms it into one which can 
be executed by a computer. The symbolic repre- 
sentation is called a source program; the executable 
representation is called an object program. 

Character Position: Each line of the source pro- 
gram which is read by the assembler is a character 
string. In a fixed field syntax, the character 
positions are numbered (in this case, from 1 to the 
end of the line). Each field of the format is a group 
of characters specified by number, such as the label 
field which is positions 1 to 4 of a line in the 
example of this article. 

Mnemonic: A technique to assist human memory. 
A mnemonic term is an abbreviation or acronym 
used instead of numeric codes in order to facilitate 
easy recognition. Example: BOC for Branch On 
Condition rather than 4. 

Parsing: The breaking down of a general character 
string into its structural forms. This requires syntax 
rules for the computer language analogous to the 
grammar rules for English that define "subject," 

"predicate," "object," and so forth. In this assem- 
bler, we simplify syntax rules by requiring fixed 
positions for each piece of information on a line 
which eliminates the need for parsing. 

Pass: An assembler typically must look at the 
entire data of a program several times. Each pass of 
an assembler is one complete scan through the 
program data. In the simplest home brew assem- 
blers using audio cassette mass storage, each pass 
will require manual intervention to rewind and 
restart the appropriate tape cassette drive. 

Pseudo operation: A group of characters having the 
same general form as a computer instruction, but 
never executed by the computer as an actual 
instruction. Pseudo operations are instructions to 
the assembler. 

Source Program: A program coded as a human 
readable character string in some programming 
language, which must be translated into machine 
language. 

Symbol Table: A dictionary relating one set of 
symbols to another set of symbols or numbers. The 
assembler builds a table of labels used in the 
assembly language program and assigns memory 
locations (addresses) to those labels. 
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Interact with an ELM 

G H Gable 
419 Jackson St 
Grand Ledge MI 48837 

The fundamental interface between the 

user and the hardware of a computer system 

is the system software. It runs the gamut 

from a dozen or so bytes of a bootstrap 
loader on a microcomputer to the multi- 
million word operating system of a large 

general purpose computer system. In fact, 

the microcomputer system can be made to 
do much of what the general purpose com- 

puter does with appropriate versions of 
systems software. One of the most signif- 

icant differences between the big computer 
and the microcomputer is that the large 

computers typically operate on multiple 
bytes of information and often provide 

extended arithmetic and logical operations. 
Minicomputers and microcomputers can 

emulate these extended operations with soft- 

ware; the main difference is speed. The 

typical large computer might execute its 

built in instructions 1000 times faster than a 

microcomputer's software emulation. How- 

ever, all the features of a large computer 
system can be implemented in the software 
of a microcomputer system. This includes 

assemblers, compilers, text editors, time- 

sharing and multiprogramming, disk opera- 

ting systems, virtual memory, utilities, and 

of course applications programs. In addition, 
the powerful hardware of a big computer 
can be emulated with software. The prin- 
cipal hardware requirements, other than a 

general purpose instruction set, are access to 
the program counter, an interrupt structure 
and possibly direct memory access by the 

peripheral equipment. Program counter ac- 

cess and interrupt processing is available in 
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most microprocessors; direct memory access 

is often implemented by peripheral device 

controllers using the system bus. 

For microcomputers, the system software 
can be divided into two major segments: the 

operating system or monitor and a utility 
library of functions which extend the in- 
struction set. The utility library is a set of 
subroutines written to redefine and expand 

the operations the computer can perform. It 
can range from a simple set of number 
conversion and formatting routines up to the 

complexity of a complete floating point 
mathematical package. 

Monitors 

The monitor program, sometimes called 

the executive program or operating system, 

is the program which the computer executes 

when it is not running some other program_ 

The monitor's primary purpose is to decide 

what the system is to do next. Sophisticated 
monitors typically implement disk operating 
systems, time sharing and multi- 
programming. They call loaders, assemblers 

and compilers, handle input and output, and 

process user requests. In short, the monitor 
program is "the brains" of the system. In 

some very large systems, such as the Control 
Data Corporation's CDC -6500, the monitor 
program even has its own processor, separate 

from the central processors. The central 
processors are merely slaves to the monitor 
processor in such a multiprocessor system. 

For a beginning, let's examine a very 

simple monitor program. If you have a 

microcomputer which needs system soft- 



ware, this might be just the ticket to get you 
on the system. This monitor design will let 
you load and execute programs and edit the 
contents of memory. From such a basic 
monitor, more sophisticated software can be 
developed to upgrade the system to what- 
ever level you desire. 

ELM 

Every routine should have a name, espe- 
cially a system routine. Thus I call this the 
Eloquent Little Monitor, or ELM. ELM is 
designed to have a Teletype or a cathode ray 
tube (CRT) terminal such as a TV typewriter 
as its control console. A CRT running at 
1200 baud makes a wonderful control con- 
sole due to the brisk speed at which mes- 
sages are transmitted. ELM implements four 
commands in its simplest version: LOAD 
which will load a program into memory 
beginning at a specified location; LIST 
which lists the content of selected memory 
locations; MODIFY which will modify the 
contents of selected memory locations, and 
GO which starts execution of a program at a 
specified location. My version of ELM fea- 
tures decimal addresses and allows input line 
editing. 

Many processors begin execution at a 
fixed location at power -on or system reset. 
Some processors begin execution at a hard- 
ware programmed address which might be 
set by switches. Wherever the processor 
begins its execution, the implementation of 
ELM assumes that ELM will be the program 
which receives control as a matter of course. 
For the purposes of this article, we'll assume 
that ELM is located at the low end of 
memory address space. Following ELM 
comes the first available address (FAA) of 
user programmable memory, then the last 
available address (LAA). This memory or- 
ganization for a typical monitor residing at 
the low end of address space is shown in 
figure 1. Other allocation schemes are of 
course possible. It is also desirable to have 
the monitor in a read only memory so that, 
when the computer is first switched on, the 
CPU will immediately begin execution of the 
monitor. With such a firmware monitor, 
your programs will not be able to destroy 
the monitor program itself. In addition to 
the address space for the monitor, the 
allocation shown in figure 1 includes 80 
bytes of programmable RAM for use as data 
storage. 

Using ELM 

First, let's look at the monitor from the 
user's point of view at the terminal. When 
the system is switched on, the Teletype or 
display will print "OK - ". Any time the 

FAA 

LAA- 

ELM Monitor Program 

(store in ROM or write 
protected memory) 

Line Buffer LB (70 RAM bytes) 

Decimal Multiplier M (2 bytes) 

Buffer Pointer P (1 byte) 

Address Parameter P1 (2 bytes) 

Address Parameter P2 (2 bytes) 

Accumulator ACC (2 bytes) 

Parameter Count F (1 byte) 

-- = first available address 

User memory area 

-- = last available address 

Figure 1: Memory Allocations for a Typical 
Monitor Program. This map assumes that the 
ELM monitor program resides at the low end 
of memory address space, and that program- 
mable random access memory begins at the 
address of the line buffer. 

monitor is waiting for a command it will 
print the same message. 

If you want to enter a program starting at 
location 123, type "LOAD,123" then a 

carriage return to end the line. The ELM 
program will respond with the message 
"123 =" on the next line. ELM now expects 
you to type a string of hexadecimal charac- 
ters grouped two per byte, with a single 
space between each group. See figure 2 for 
examples of this format. You can enter up 
to 22 double character hexadecimal codes 
on a line. The line is terminated with a 
carriage return. After the carriage return, 
these codes are entered into memory begin- 
ning at the address 123 in this example. 
Then the address waiting to be loaded will 
be printed at the beginning of the next line 
so that more hexadecimal, codes can be 
entered. This process is repeated until you 
type the word "END" at the beginning of a 

line. After ending the load routine, the last 
loaded address is printed followed by the 
"OK -" message which indicates that ELM is 
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0K- LÒAL.1104 
1104- 12 7E 51 C3 E9 CI E3 SA 

1112. 04 SC 54 12 43 -8 

1117. 49 2C42 59 54 
ERROR 
1119. 42 59 54 53 20 20 

1122E- END 
LAST ALCPESS LOADED 1128- 

0K- LIST.IIC4-1128 
11C4. 12 7L 51 C3 C9 01 E3 SA 04 50'54 12 48 49 20 42 59 54 45 53 

1124. 20 2C SA 00 00 

8Xi\NOLIFCY.11 
NODIFY.1112 
1112- C4 
1112- OC 

OK- LIST.1111-1113 
1111- SA CC 5C 

0K- G0.1024---104 

HI BYTERS 

0K- 

Figure 2: Sample Printout of an ELM Interactive Sequence. This listing 

shows ELM at work. Note the use of the Teletype back arrow (underscore 

character) to delete mistakes and one instance of a cancelled line. This listing 

illustrates use of ELM to load and execute a simple program which types out 

"Hl BYTERS " and returns to ELM. 

back in the command mode again. If the 

starting address is omitted or is less than the 

first available address (FAA) then FAA is 

assn med. 
If you want to list the contents of 

memory locations 123 to 456, the command 
"LIST,123 -456" will start the listing, print- 
ing 20 hexadecimal codes per line. If the 

address range is omitted, listing begins at the 

first available address (FAA) and continues 
until the last available address (LAA) or an 

end of program mark. Figure 2 illustrates the 

output format of a listing. 

If you want to modify memory contents 

at locations 123 to 130, the command 

"MODIFY, 123 -130" will first list the old 

contents of these locations, then it will enter 
the load routine to print "123 =" as if you 
were loading these locations. Modified codes 

may then be entered, to be stored beginning 
at 123. 

Finally, if you want to start executing the 

program at location 123, the command 
"GO,123" puts 123 into the program coun- 

ter and begins execution of your program. 

Again, if the address is omitted, execution 

starts at the first available address, FAA. 
It is certainly easy to make typing errors, 

especially for me. Thus I implemented ELM 

with a line buffer and two special line 

editing characters. The underscore (ASCII 
back arrow, hexadecimal 5F) effectively 
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removes the preceding character typed, two 
underscores remove the preceding two char- 

acters, etc. The control X character (ASCII 
cancel code, hexadecimal 18) cancels the 

whole line. Several reverse slashes (ASCII, 
hexadecimal 5C) are printed on the can- 

celled line and a line feed is generated as 

shown in figure 2. 

Architecture 

Now that the monitor design is set, let's 

look at the architecture of the program 

needed to implement ELM. Figure 3 shows 

the logic for the whole monitor. After the 

power on restart, "OK -" is printed as the 

ELM input request message, then the system 

idles while waiting for input. Figure 4 shows 

the logic of the subroutine INPUT, which 
reads each character and puts it into the line 

buffer. If the terminal is running in the full 
duplex mode, the character should be 

echoed back to the printer. The buffer 
pointer, P, shows where to put the next 
character in the buffer. The editing char- 

acters are implemented as shown. An ASCII 
carriage return code (hexadecimal OD) ends 

the input sequence. The test for carriage 

return is done after storing the input 
character since the load routine expects a 

carriage return as an end of line character. 

In figure 3, the parameter decoding and 

error checking logic is shown as a box and an 

error test with a note attached. This logic is 

expanded in more detail in figure 5. The 

parameter decoding logic has a structure that 
enforces a non ambiguous syntax on the 

command line. The command is examined 
by means of a command list. This list is a 

table which is sequentially searched, match- 

ing the command in the buffer with each 

possible command in the table. The result is 

used to determine the proper branch. An 

error message is printed if the command is 

not found in the table. 
The LOAD subroutine is shown in figure 

6. The logic consists of an outer loop for 
each line of input, and an inner loop which 
scans the line, loading memory from left to 
right in ascending address order. The LOAD 
routine checks the syntax for double char- 

acter hexadecimal codes separated by 

blanks. If a syntax error is found, loading 
stops, an error message is printed, and the 

next address to be loaded is printed on the 

next line. A variable number of hexadecimal 
codes from 1 to 22 may be entered on each 

line. The initial address (P1) is incremented 
during the loading routine. 

Note that after loading is completed and 

control returns to the main routine, an end 

of program mark is inserted into memory. In 

my version of ELM, the code for a jump to 



address zero is loaded into the next three 
bytes as an end of program mark. This 
convention allows normal termination of a 
user program by running off the end and 
branching to the starting address of the 
monitor at location 0. 

The LIST routine is shown in figure 7. 
This routine simply prints out the hexa- 
decimal codes found at locations specified 
by the input parameters. This listing is done 
20 bytes per line. Note that LIST stores the 

r- ------i ELM IS ELM INPUT 
I WAITING I REQUEST / 

FOR INPUT b - MESSAGF1 

I ENTER ELM! 
AT POWER 

ION OR 
!RESTART J 

( ELM 

I 

I SEE DETAIL 
I OF I_ 
I FIGURE 5 I 

TESTS 
COMMAND 
AGAINST I I - -- 

1 TABLE I 

CALL 
INPUT 

I DECODE 
COMMAND I 
LINE 

NO 

EXAMINE 
COMMAND 

YES 

r --1 
I ERROR I 

BRANCH 

L - - -J 

CALL 
LOAD 

CALL 
LIST 

ERROR 
MESSAGE 

INSERT END 
OF PROGRAM 
MARK 

CALL 
LIST 

CALL 
LOAD 

SET UP 
JUMP TO PI 
ADDRESS 

END 

r -1 - 
ENTER I 

NEW I 

PROGRAM I 

L - - - 

P: MAXP 
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YES 

( INPUT 

P. O; 

-111 

NO 

P:P+I; 

P IS LINE BUFFER j 
POINTER. START 

I SCAN AT ZERO I 

READ 
CHARAC° 
TER 

PRINT 
OHARA 

C 
TER 

ECHO 

PP°I i 

LINE 
DELETE 
MESSAG 

STORE 
CHARACTER 
LINE BUFF- 
ER AT P 

C 
RETURN ) 

I CARRIAGE I 

--A RETURN 

Figure 4: The Input Subroutine Specified as 
a Flow Chart. The main purpose of INPUT is 
to read one line of input, terminated by a 
carriage return. INPUT implements the line 
editing functions of character delete and line 
delete. When the carriage return code is 
detected, the line buffer LB is filled from 
position 0 to position P. 

Figure 3: The ELM Program Specified as a 
Flow Chart. The main logic of the Eloquent 
Little Monitor is shown in this diagram. 
Flow begins at the top left and proceeds 
down the diagram. Normal operation of 
ELM involves a closed loop, returning to the 
ELM input request message printed near the 
top of the diagram. If the GO command is 
carried out, execution leaves ELM and pro- 
ceeds to the selected address. 



Figure 5: Parameter De- 

coding Logic Details. Fig- 

ure 3 contains a box 
labelled Decode Command 
Line and a conditional test 
labelled Errors, with a 

note referencing figure 5. 

This figure contains the 

details of the logic needed 
to decode a command line 
into two parameters and a 

command. There are two 
possible exits from this 
logic. An error exit to ter- 

minal (1) occurs if an error 
is detected; an error free 
exit to terminal (2) occurs 

If no errors are detected 

initial value of parameter Pl in the accumu- 

lator ACC during its operation. Then Pl is 

restored after the listing is completed. This 
allows LOAD to be called after LIST during 
a MODIFY sequence, so that both LOAD 
and LIST reference the same starting 
address. 

In my version of ELM, addresses are 

handled as decimal numbers. This is re- 

flected in the input numeric conversion logic 

(see figure 5) and in the creation of an 

output conversion subroutine: Both LOAD 

and LIST call a subroutine DECIMAL which 
prints the decimal addresses at the beginning 
of lines in messages. DECIMAL simply con- 

verts the first address parameter, Pl, into 
five ASCII numeric characters, and prints 
them followed by an ASCII "_" character 
and a blank. I put decimal address conver- 
sion into ELM out of personal preference. 
The decimal conversions may be omitted 
and hexadecimal or octal address parameters 
could also be used. There is already a binary 
to ASCII hexadecimal routine implicit in the 

I PARAMETER DECODE 
LOGIC,DETAIL OF - 
FIGURE 3 J 

F:O, 

M:I; 
ACC' O, I L 

NOTE ; VARIABLES 
F + FLAG 
M. DECIMAL MULTIPLIER 
ACCT DECIMAL VALUE ACCUMULATOR 
P'LINE POSITION 
LB=LINE BUFFER 
PI ,P2 i POINTERS J 

7 

M;MIO; 

ACC; ACC+ 
M LB (P); 

P:P I, 

EXAMINE 
CHARACTER 
LB (P) 

I ERROR I 

I BRANCH I 

-7 
IERROR.FREEI 
IBRANCH I 

L J 

'7NP UT ---1 
!NUMERIC I 

!CONVERSION f - 
LLOGIC -_J 

r ERROR 
I BRANCH 

F: 2 
PI : ACC; 

I ERROR I 

I BRANCH I 

ACC:- FAA; 

YES 

F: I; 
P2: ACC; 

PARAMETERS ARE EXAMINED AND I 

DECODED IN REVERSE CHARACTER 
CORDER 
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LIST function. For input, the parameter 
decoding routine can be simplified some- 
what by using hexadecimal parameters. 

Expansions 

There are several obvious expansions to 
ELM which should be easy to implement. 
You may even want to incorporate them 
into your own version of ELM right from 
the start. If you have an ASR Teletype (with 
paper tape reader and punch), you may want 
to add the following commands: LOADPT 
and PUNCH. Your Teletype should be able 
to receive the rubout character (ASCII de- 
lete, hexadecimal FF) but not transmit as is 

SKIP TO j -' NEW LINE 
PRINT 
CURRENT 

I 'ADDRESS 

(CALL DECIMAL) 

ILOAD 
I ROUTINE 

FOR ONE 
LINE J 

P:PfI; YES 

the normal configuration. LOADPT would 
operate the same way as LOAD except that 
there is no printing needed. The format of 
the tape would be lines of hexadecimal 
codes with a carriage return and two or more 
delete characters at the end of each line. 
You can skip the blanks between bytes to 
save tape if you like. When the processor 
sees the carriage return, it begins loading 
memory from the line buffer. The two 
delete characters give the computer time to 
load the line, so that by the time the next 
real character comes along the computer is 
ready for it. Instead of the word "END" at 
the end of the input, you might want to use 

LB(P) 
I VALID I- 
(HEX 

F:. O; 
ACC: 0; 

YES 

NO 'ROR 
E MERESSAG 

TAND I 

LRE START 

CONVERT 
LB(P) 
ASCII TO 
BINARY 

ACC: 
ACC 8F0,6; 
ACC: 
ACCILB(P); 

MEM(PI) 

ACC; 

1 

PI: PI+I; 
P:PfI; 

I SHL (LB (P),4) 
IMEANS ACC;ACCB 
ISHIFTLB(P) LyOF;fACC 
'LEFT FOUR I ACCISHL 'BINARY 
LPLACES 

I (LB(P),4); 

ONLY ONE 
1 BYTE OF 

Two- BYTE 
I (ACCUMULA- 

TOR IS USED 
IN THIS 

I ROUTINE 

-L_ 
P: P+I 
F: I¡ 

II-BLANK MUST BE 
.j SEPARATOR I 

I BETWEEN ' 

1 HEXADECIMAL ( 

NO LCODES 

NO r 
L 

rLP(P) 
I CARRIAGE ; 

LRETURN_J 

J - --' 
j- BACK FOR I 

I MORE 
I I 

YES 

LOAD 
ERROR 

MESSAGE 

RESTART 
LOAD 
ROUTINE 

I TRY I 

I AGAIN I 

L - - -- I 
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ILLEGAL I 

_1 CHARAC- I 

I TER I 

Figure 6: The LOAD Sub- 
routine Specified as o 

Flow Chart. The purpose 
of LOAD is to set the 
contents of user program- 
mable memory beginning 
at a location specified by 
the user. The routine con- 
tinues indefinitely until 
the characters "END" be- 
gin a line of input. 



Figure 7: The LIST Sub- 
routine Specified as a 

Flow Chart. The purpose 
of LIST is to dump the 
contents of memory, for- 
matted as ASCII encoded 
hexadecimal digits. The 

dump routine types the 
address first on each line, 
then follows with 20 
groups of two hexadecimal 
digits. 

the ASCII end of tape character (hexa- 
decimal 04). The PUNCH routine would 
operate like LIST, without the addresses. It 
should punch the tape in exactly the same 

format read by LOADPT. If you are not 
using blanks between bytes in the tape 
format, you can get 34 hexadecimal codes 

on a line followed by a carriage return and 

the two delete characters. The last character 
punched might be the end of tape code or 

the END convention, depending upon your 
own preferences. 

If you have a serial tape drive at a 

different IO port, you may want LOADMT 
and SAVEMT commands. These could be 

exactly like LOADPT and PUNCH except 
for the IO port address. Most tape interfaces 

LIST 

ACC: PI; 

i HEM (PI) 

I END MARK 

L 

F: 20 

\LIST 
[-SKIP TO 1 

MESSAGE/ 4 NEW LINE 1 

I PRINT 
CURRENT 

LADDRESS I 

(CALL DECIMAL) 

CONVERT MEM(PI)TÓ \ MEM ASCII HEX I 

AND PRINT I 

L. -I 

PRINT 
ASCI I 

BLANK 

PI:PI1 
F:F I 

TES 

CARRIAGE 

PI: ACC 

(RETURN 
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are set up to use the null code (hexadecimal 
00) instead of the delete code to give blank 
spacing. You may also want to implement 
absolute binary versions of SAVEMT and 
LOADMT to allow higher speed and elim- 
inate conversions. 

Philosophy 

With this article, I've given you enough 
information on the design of a monitor to 
enable you to write the code for your own 
machine. After a few days of coding and 
debugging, you should be ready to go to the 
local computer store and have your ROMs 
zapped with a mighty ELM. The whole 
monitor could be put in and initially de- 

bugged via front panel switches; however, 
this is a tedious process at best. Once you 
have ELM installed, you can use this tool to 
help build software and programs on your 
own machine to your heart's content. 

Even though ELM is a fairly simple 
monitor as monitors go, it can be further 
simplified and condensed. As mentioned 
before, the decimal conversions can be 

omitted. The syntax checking can be re- 

duced, the printing of addresses at the 
beginning of lines might be omitted, and the 
commands could be reduced to single letter 
codes. None of these simplifications will 
reduce the basic functions of the monitor; 
however, these features add a sharp dimen- 
sion of utility and a touch of class to your 
monitor. 

In many years of designing systems and 

studying human interaction with computers, 
I've found that people (ie: users, be they 
systems engineers or airline ticket clerks) 
think most efficiently in words and decimal 
numbers. Addresses are a sequential stream of 
numbers and we have all been taught since 
childhood to think of streams of numbers in 
decimal base. Only computer nuts, putting 
on airs, pretend to be able to think in octal 
or hex. Likewise, we communicate with each 

other in words. The computer is capable of 
communicating with us in our own language, 

so let it. An instruction such as LOAD 
STARTING AT 489 is much easier to learn 
and more efficiently used than L,01 E9. The 
latter, however, is easier to implement in the 
computer. ELM compromises with 
LOAD,489; retaining the keyword and the 
decimal address. My basic philosophy is: Let 
the machine do the things it is good at. It is 

good at base conversions and word recogni- 
tion. It can convert binary to decimal and 

back again in the twinkling of an eye; we 

can't. Remember, you will probably want to 
use your monitor for a long time; the extra 
effort in its construction will be well worth 
the frustration. 
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Machine or assembly language will most 
likely be used by many computer experi- 
menters. While many professional program- 
mers will swear by the use of assembly 
language, others, perhaps equal in number, 
will swear at it, preferring the use of high 
level languages. To those new to the field, 
these terms may seem confusing. It's really 
quite straightforward when one remembers 
that the language a machine uses differs 
considerably from the one used by the 
people. As one surveys a continuum from 
machine to human languages, the language 
most easily understood by the machine is a 

binary language; next on the continuum is 

assembly language with additional features 
that make it considerably easier to use, thus 
avoiding all night debug sessions, frazzled 
nerves, and 2 AM programming logic which 
hardly ever works, etc. For a good discussion 
on assemblers, see the October 1975 issue of 
BYTE. Easier yet for the programmer are 
languages such as BASIC, FORTRAN, PL /I, 
and ALGOL. These languages allow the 
problem to be stated and solved in terms 
better adapted to human understanding. 
Unfortunately, there are rather serious diffi- 
culties encountered when these high level 
languages are to be used on small systems. 
1 hey require a compiler or interpreter to 
transform the problem from the high level 
language to machine language and more 
memory than is found in most small hobby 
systems. Therefore you'll probably be using 
assembly and machine language. After the 
program is written and loaded into the 
machine, experience has shown an astro- 
nomical probability against the program 
working correctly if it is more than two 
instructions large. Considerable time will 
probably be spent at the front control panel 
surveying the address and data lights, 
mumbling "I dontunnerstand" and 
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"(expletive deleted) machine! ". This can 
lead to terrific pains in the back and neck 
from bending over to look at the panel 
square in the face and operate the switches. 
This is commonly named "minicomputer 
neck." 

How much nicer would it be to sit in a 

chair and do approximately the same thing 
using a Teletype or CRT display (CRT is an 
abbreviation for Cathode Ray Tube, essen- 
tially a TV picture tube. A television type- 
writer is a unit often used in this 
application). 

There are several ways to use the control 
panel: 

1: Executing a few instructions, then 
examining memory to see what the 
blinking machine is really doing, or 

2: Inserting or changing data in memory, 
or 

3: Displaying the contents of specific 
memory locations, or 

4: Searching through memory for a 

specific bit string or number, if you 
prefer, or 

5: Displaying and possibly changing the 
values in the CPU registers. 

The authors had occasion to be working 
with a 16 bit /word minicomputer which 
mainly was used as a remote job entry 
terminal into a large computer. It could, 
however, function as a stand alone computer. 
Since an assembler was available, a number 
of assembly programs were written and 
debugged. When the machine was first de- 
livered, a temporary control panel was pro- 
vided. Since this was to be removed at some 
future date, the following technique was 
used to implement a DEBUG program using 
a CRT terminal to replace the control panel. 

The basic idea is to develop a program 
that will take care of the functions outlined 
above and interface to the console terminal 



Debugger 
and hopefully will protect itself from wild 
extremes of a program being debugged. This 

might be thought of as running a program 

within a program (figure 1). Hereafter, the 

program being debugged will be referred to 

as the problem program. 
The debugger program must have pro- 

visions for a number of things. It has to 

handle the IO for the hardware and to 

converse with the human programmer. It has 

to keep track of the various status condi- 
tions of the program being debugged (the 

problem program). It must understand the 

input commands directing it to perform 
certain actions of the problem program. It 
must be transparent to the problem program 

so that when the final version is finished, the 

problem program may be loaded without the 

debugger, and still work. 
In addition, the debugger should be small 

in size, and easy to implement to avoid the 

herculean task of debugging the debugger. 

(Although that's not strictly true. Once the 

IO and display portions were working, we 

used these to debug the rest of our de- 

bugger.) 
The following commands arc the results 

of our efforts to provide effective yet 
concise operations. In this list adr means a 

specific memory address, val a value, and reg 

a register. 
The final implementation including all 

the IO and interrupt handlers required 560 
bytes, or about 256 instructions on the 

Lockheed SUE 1110 minicomputer. Figure 

2 is an overview of the debugger logic flow. 
It is reasonably straightforward, except for 
the execute (G) instruction. Consider the 

debugger waiting for a programmer to enter 

a command. It just sits there wasting expen- 

sive electricity. As soon as you enter a 

command, the debugger checks it for vali- 
text continued on page 60 

T ERMINAL 

DATA d 
COMMANDS 

DEBUGGER PROGRAM 

PROBLEM 
PROGRAM'S 
REGISTER 

INTERRUPT 
HANDLERS 

PROBLEM 
PROGRAM 
TO BE 
DEBUGGED 

Figure 1: Logical arrangement of debugger. 

Table 1: DEBUGGER program commands. 
Each command consists of an operation 
code character, followed by from one to 
three operands (numbers) separated by 
blanks. The command line is completed by a 

period. In implementing the program, the 

computer should respond with a carriage 

return and line feed after finding the period. 

C adr val. changes memory at adr 
to val 

C adrl adr2 val. changes memory from 
adrl through adr2 to 
val 

D adr. displays memory con- 
tents at adr 

D adrl adr2. displays memory con- 
tents from adrl through 
adr2 

D adrl adr2 val. searches memory from 
adrl through adr2 for 
val 

R. displays the contents of 
all registers 

displays the contents of 
register reg 

changes the contents of 
register reg to val 

sets return to debugger 
at adr in problem 
program 

G. go, i.e., continue or 
start execution of 
problem program using 
contents of the prob- 
lem program's program 
counter register 

G adr. start execution of prob- 
lem program at adr 

R reg. 

R reg val. 

@ adr. 
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Figure 2: Debugger flowchart. 
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A TRAP EXAMPLE 

Assume that the memory of the com- 
puter contains the following information. 

Address Content at this address 

LOW Beginning of the problem program 
region, a low address. 

LOC.W Call DEBUGGER trap handler. This 
is a "trap." 

LOC.W+D Assuming a trap call of length D, 
this is the next instruction of the 
problem program after the trap. 

LOC.X Problem program ends. 
LOC.X+1 Systems programming area begins 

(RAM, not ROM). 

LOC.Y DEBUGGER program starts. 

LOC. DEBUGGER's trap handler routine. 

HIGH End of systems programming area. 



Note 1: The DEBUGGER program acts as a system 
monitor for your computer. Whenever the com- 
puter is restarted, the DEBUGGER is entered and 
will execute a power -on initialization sequence. 

Note 2: The format of the command line and a list 
of all the variations on each command are found in 
table 1. The input routine should parse the 
command line by identifying the operation code 
and operands, stripping blanks, and counting the 
number of operands (M). 

Note 3: The function LOOKUP is used to translate 
an input ASCII command character into a cor- 
responding integer number. In the authors' system, 
this was accomplished by manipulating the bits of 
the ASCII character code; other schemes are 
possible. 

Note 4: A trap is set by replacing the instruction at 
the trap address with a temporary alternate which 
causes a branch to the trap routine. The instruction 
used for this purpose in the authors' system was a 

"jump to subroutine." Depending upon the par- 
ticular computer architecture, other instructions 
might be used, such as software interrupt, super- 
visor call, etc. 

Note 5: Both trap instructions and interrupts 
require similar processing. One way to view the 
DEBUGGER program is as a large interrupt 
handler which is entered upon system restart, 
execution of a trap, or end of a problem program's 
execution. 

Note 6: Command formats from table 1 are shown 
in quotes within comment boxes in this flow chart. 

Assuming a stack oriented machine in 

which the state information is stored in the 
stack, the following sequence occurs in a 

typical case. 
1. The user enters a program. After 

entering it, he decides to place a trap 
at location LOC.W in memory with 
the " @" command. 

2. The problem program begins execu- 
tion after a "G LOW." command. It 
reaches the trap at LOC.X and 

executes the subroutine call. 
3. The subroutine call saves the address 

of the next instruction (at a minimum) 
and branches to the trap handler at 
LOC.Z. The trap handler continues the 
state saving process so that the 
machine's stack contains complete 
CPU state information. 

4. The trap handler displays a trap mes- 

sage containing information on the 
address and register content of the 
machine at the time of the trap. 

5. The trap handler passes control back 
to the DEBUGGER's command line 
interpreter. 

r ---- 
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text continued from page 57 

dity, and if it is a legitimate command the 

various parameters arc read and stored in 

memory to be accessed when necessary. 
Now the debugger looks at the part of the 
command line which tells it what to do 
(known as the opcode). Assuming that you 
are using ASCII, here is a sneaky way of 
determining which routine to go to. 

1: Add 9 to the ASCII character, 
2: Logically AND the opcode character 

with a 7, 

3: Assuming the given opcodes 
(C,D,R, @,G), you now have a numeri- 
cal index which you may use to test or 
use in a jump table to go to the proper 
code which accomplishes the desired 
function. 

EXAMPLE: Suppose you have an ASCII 'R'; 
in binary this is: 

01010010 -'R' 
0000 1001 - add 9 

0101 1011 - AND result 
0000 0111 - with 7 

0000 0011 - final result is '3' 

using this method then: G =0, @ =1, R =3, 
C =4, D =5. 

Now we offer a few comments on the 
various procedures shown in figure 2. 

Change: This is perhaps the simplest of all 
the commands to implement. Using the last 

parameter supplied, step through memory 
from the first address zapping each location 
with the desired value until the ending 
address is reached (note: for a single address, 
adrl= adr2). Though not necessary, it is 

highly recommended to check the addresses 
for validity to avoid clobbering the de- 
bugger. 

Display: Simply step through memory from 
the starting address to the ending address 

displaying memory contents as you go. We 

displayed in hexadecimal notation. You 
might alternately wish to use octal or (God 
forbid) binary. Since our CRT was capable 
of an 80 character line, we put 8 groups of 4 

hex characters on each line: 

LLLL: XXXX XXXX XXXX XXXX 
XXXX XXXX XXXX XXXX 

The first number is the memory location of 
the lowest address displayed on the line 
(leftmost). Using this, it is easy to glance at 
the display and see patterns in memory. 

For the search option of the display 
operation, you need only to print out the 
addresses where a compare was successful. 
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You should be able to remember what you 
are looking for. When the search option is 

used, a flag is set which somewhat modifies 
the display such as: 

: LLLL LLLL LLLL LLLL 
LLLL LLLL LLLL LLLL 

where the L's are the memory addresses 
containing the argument. 

Some commercial variants of the search 

operation allow you to look for certain bit 
patterns within words by masking out don't 
care bits; however, this is no small task to 
program for a feature of somewhat limited 
usefulness. 

Register: Here you have three alternatives 
determined, once again, by the number of 
operands (i.e., how many parameters you 
specify with a particular opcode). No 
operands are used to indicate the display of 
all register contents. If one operand is 

present, then the content of that register 
only is to be displayed. Two operands 
indicate the contents of the specified register 
are to be changed to the given value. 

Please note that these registers are really 
fixed memory locations, set aside inside the 
debugger (i.e., pseudo registers). These 
values are typically loaded into the CPU 
registers by the G command. Most CPUs 
have one or more general registers plus a 

program counter (i.e., the address of the 
next executable instruction), and a collec- 
tion of indicators commonly referred to as 

status flags or sometimes as status registers. 
For our implementation we had seven 

general registers numbered (cleverly) one 
through seven. Register number zero was the 
program counter and register number eight 
was the status register (note: All registers 
were 16 bits large). Thus we only had to 
enter a single digit, zero through eight, to 
reference any register. On most micro or 
minicomputers, alphabetic type designators 
are used to reference registers, but with 
much luck a similar trick used to simplify 
opcode determination may be used. 

GO and SET TRAP: This section is the most 

machine dependent implementation which 
requires very careful planning. The object 
here is to put the problem program into 
execution, and eventually have control re- 

turned gracefully to the debugger. The point 
where execution is to end and control to 
return to the debugger is called a breakpoint 
or trap. 

Constructing a trap is not too difficult. 
The simplest method is to insert in the 
problem program an unconditional branch 
back to the debugger. A serious drawback of 



Figure 3: How to set traps in the problem 
program (see text). 

MEMORY MAP 

Address 

LO Problem program starts 

Contents 

W Call debugger trap handler at address Z 

W f1 Problem program continues 

X Problem program ends 

X f1 Stack starts 

X HI Stack ends 
Y Debugger program starts 

Z Trap handler of debugger program 

HI Debugger program ends 

ALGORITHM 

The stack of a elements is located at address X, the 

debugger program at address Y, and the trap 
handler at Z. The following steps are executed: 

1: The problem program executes a trap at 

location W, i.e., a subroutine call to the trap 
handler. 

2: The subroutine call saves the address W +1. 

return address W+ 1 in the stack, e.g., in X f3 
3: The trap handler at address Z is executed. 
4: The trap handler fetches the return address 

W1.1 from the stack (tit this example X f3), 
reduces the stack by one element, and 

displays the address W t 1. 

this is That the location from which the 

branch occurred will be unknown. the 

solution is to use an unconditional sub- 

routine call to the debugger. A call instruc- 

tion places a return address somewhere, 

depending on the machine, and then 

branches to the location specified in the 

instruction. With this it is a simple matter to 

retrieve this return address as the program 
counter for the 'G.' option of the GO 

statement (figure 3). Our computer had 

fixed locations in which routine addresses 

could be placed, such that if certain types of 
interrupts occurred the return address was 

saved and a branch taken using the address 

at that location (vectored interrupts). One 

such interrupt was .t "hall" instruction inter- 
rupt, hence the setting of program traps 

consisted of moving an illegal instruction to 

the location a trap was to occur. 
The GO command should set the pseudo 

program counter if an operant) is present, 

then load all general registers. I he last two 
registers loaded are the status flags and the 

program counter (which would be identical 

to a branch). Typically a branch using the 

contents of the pseudo program counter 
would be used (note: Branches usually do 

not set or reset status flags). 
In conjunction with the preceding, there 

should be a phantom routine which is the 

target for all traps. Its job is to save all 

registers and status before the debugger main 

routine uses them into the pseudo register 
area. It is suggested to display the program 
counter and the fact that a trap occurred, 
such as: 

09 interrupt address 

There is a dandy reason for this. If multiple 
traps exist, it is handy to know which trap 

was encountered. Additionally, since the 

trap itself may clobber one or more memory 
locations in the problem program, to remove 
a trap one must change these trap instruc- 
tions hack to the original contents (typically 
from the original assembly listings). In an 

earlier version of the debugger we allowed 

only one trap per execution and saved the 

good code from the trap location. When the 

trap occurred, we then restored the good 

code at that location. However, a serious 

drawback, of course, was that it isn't always 

known what branches will he taken between 

the G and ((1) instructions, and it was highly 
probable that the trap would be bypassed 

entirely. 1 has in our present debugger we 

allow multiple traps but do not restore the 

previous code when a trap occurs. 

Execute Instruction Considerations: If you 

happen to get tied up in an endless loop, 

you'll have to manually force a return to the 

debugger. I his could be accomplished in 

several ways. You could physically reset the 

machine from the control panel (assuming 

you have one), and enter the debugger 

starting address. Or you could have pre- 

viously set up an interrupt structure which 

would respond to some outside stimulus 
(such as an escape from the keyboard, or a 

special control panel switch) which would 

accomplish a branch to DEBUG. Some 

thought was given to simply kicking the 

power supply, initiating a power fail inter- 

rupt, but this was later discarded. 
I I you make extensive use of interrupts in 

the debugger (which is not really necessay) 

then you'll have to debug your problem 
program's interrupts separately. Otherwise 
the problem program's interrupts antl the 

debugger's interrupts will he working at 

cross purposes. 
Should you place the breakpoint address 

in a branch of a conditional statement that 

doesn't happen to be executed, then the 

program will just skip around your break- 

273 



point. Or worse, placing the trap instruction 
as the operand of a multiword instruction 
could be distressing. The obvious solution to 
the first problem is the placing of multiple 
traps, so the problem program could not 
escape from the debugger regardless of the 
flow of control. The latter had no fool proof 
solution except exercising a little caution as 

to trap locations. 
Some commercially available debuggers 

are really monitors that check the program 
counter every time a step is executed (inter- 
preters). With a little thought it is apparent 
that this would involve considerably more 
programming than we've discussed here. Our 
debugger just allows you to set up the initial 
conditions and then "let fly," while the 
alternative is to have the debugger arrange 
every instruction which has the advantage of 
a more fool proof operation. But, it suf- 
fers from program complexity and a tenden- 
cy toward slow execution which is critical in 
some 10 operations. 

The debugger ideally should be immune 
to anything which the problem program 
might try to do to it. This suggests the use of 
ROM (Read Only Memory). After you have 
the debugger working to your satisfaction, 
just place the debugger somewhere in your 
memory address space where you'll probably 

Figure 4: Physical arrangement of debugger 
in memory. 
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0 -O. 
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PROBLEM 
PROGRAM 
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RAM 

ROM 
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never need to move it. Usually this is in high 
memory. Since the debugger needs a small 
amount of RAM (Random Access Memory) 
in order to save the problem program's 
registers between G instructions, it cannot 
be made completely invulnerable. If the 
problem program happens to move garbage 
into the interrupt vectors, there is no telling 
what will happen on the next interrupt. But 
this is better than having the debugger 
completely in RAM. As a practical note, 
however, we found that there were not too 
many occasions when the problem program 
zapped the debugger if it was in RAM (figure 
4). 

If you want to get really fancy, you could 
include in the debugger an option to per- 
form loading functions, such as retrieving a 

program off cassette tape. Assuming the 
debugger is in ROM you would never have to 
toggle in a bootstrap loader again, which is 
undoubtedly one of the worst aspects of 
small systems. Of course if you do not wish 
to get that fancy, you may still enter the 
loader via the debugger, which is certainly 
easier than using the front switches. 

All in all, we've found that a good online 
debugger program is worth its weight in 
ROM. It will remove some of the worst 
aggravations of using small systems, and 
you'll learn a lot about logical flow of 
control, hardware software interfacing, and 
modularity of programming. 

So let's get in there and STAMP OUT 
THOSE BUGS! 

Source listings of the debugger are available 
for the SUE 1110. Send one dollar to cover 
duplication and postage to Robert R Wier. 

A version utilizing Intel's 8080 CPU chip 
is in the works, and when available a note 
will appear in BYTE. 



You don't need high - 

powered compiler theory 
to process your own 
algebraic expressions - 
all you need are a few 
variations on one basic 

idea, developed in 
West Germany .. . 

Processing 

Algebraic Expressions 

W Douglas Maurer 
University Library Room 634 
George Washington University 
Washington DC 20052 

To the amateur programmer, algebraic 
expression processing may seem a formida- 
ble obstacle. How do you write a program 
which takes a character string like 
2 +3 *(4- (14/7 -1)) as input, and produces 
the right answer - in this case 11 - as 

output? The programmer seeking answers to 
such questions is usually led to a collection 
of sources on compiler theory, and to 
arcane -sounding terms like "recursive de- 

scent," "top -down and bottom -up parsing," 
and the like. These were developed for use 

by the compiler writer, although even com- 
piler writers find much of compiler theory 
interesting for theoretical purposes only. 
The net result has been, in all too many 
instances, to scare the ordinary programmer 
away from algebraic expressions entirely -a 
decidedly unfortunate state of affairs. 

Most people who do work with algebraic 
expressions in a small system setting have 

made use of what is called "Polish nota- 
tion." Although we shall describe Polish 
notation next month, the warning must 
be given that Polish notation can be misused 
as easily as it can be used. The much more 
direct method which we shall describe was 

developed by F.L. Bauer and K. Samelson at 
the Technische Hochschule in Munich, 
Germany. We refer to it as the "Bauer - 
Samelson algorithm." 

Before describing the Bauer -Samelson al- 

gorithm, let us first take up a number of 
elementary points about the processing of 
algebraic expressions. The input to any 
algebraic expression processor will, of 
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course, be a string of characters. These are 
given in some sort of character -code format, 
and there are as many such formats as there 
are computers. Even the number of bits per 
character varies from one system to another. 
Some systems use five bits per character, 
some six, some seven, but most use eight - 
the standard IBM 360 (and 370) "byte." 

Since there are 26 letters in the alphabet, 
at least 26 different codes must be used. To 
find out how many bits are needed to 
represent that many codes, we take the next 
higher power of 2, in this case 32, or 25. 
There are 32 different possible codes in 5 

bits (from 00000 to 11111). Therefore 5 

bits are enough to represent the 26 letters of 
the alphabet; whereas 4 bits would not be, 

because there are only 16 possible codes in 4 

bits (from 0000 to 1111). If we wish to 
represent digits as well, we need 26 + 10 = 

36 codes. Now five bits are not enough, and 

we must take the power of 2 next higher 
than 36, that is 64 = 26. There are 64 
possible codes in six bits, and six bits are 

what is used on many big computers - the 

UNIVAC 1106, the CDC 6400, and the 
obsolete IBM 7094. (The PDP -10, DEC's 

biggie, has two character code schemes; one 

uses six bits, the other uses seven.) Once we 

have 64 codes, of course, we can represent 
characters other than letters and digits, such 

as +, -, *, /, _, parentheses, period and 

comma, and so on - known as special 
characters. Where five bit codes are used, the 

special characters include shift characters, 
analogous to the shift key on a typewriter, 



enabling us to pass from one group of 32 
codes (including the shift characters them- 
selves) to another such group and back. 

Once we know how many bits are in a 
character, the choice of the actual character 
codes is still quite variable from one com- 
puter to another. There is a "standard" code 
called ASCII, or American Standard Code 
for Information Interchange. But this, as its 
name suggests, is a standard code for infor- 
mation interchange (between different corn - 
puters) only, and many individual computer 
makers continue to use their own code 
schemes. 

All of the codes in common use, however, 
share certain characteristics. One of the most 
important of these is that the codes for the 
digits are all consecutive. That is, whatever 
the code for zero is (and this is quite 
variable), the code for 7, say, is 7 more than 
the code for zero. This is quite helpful to us 
in finding the binary equivalents of integers. 
Another common characteristic of character 
codes is that the codes for letters of the 
alphabet are given in numerical order 
(although not always consecutively). Thus 
the code for T, for example, will be greater 
than the code for R, because T follows R in 
alphabetical order; but it will not always be 
true that the code for T is 2 more than the 
code for R. 

A sequence of characters is given in a 
character array. On a byte machine, charac- 
ter arrays are easy to index. As soon as we 
have loaded the first character in our array 
into a register, we add 1 to our index register 
(or indirect address location) and we are 
immediately set up to load the next charac- 
ter. If we are working on a machine which 
holds more than one character per word - 
such as a 16 bit or 18 bit machine - our best 
course, when processing character strings (of 
limited size) is usually to unpack them into a 

word array in which one character is con- 
tained in each word. This is illustrated, for a 

16 bit machine, in figure 1. After unpacking, 
the characters may be processed in the same 
way as given above. 

We will thus have an index in our 
program which is initialized to point to the 
first character in our array, and which is 
incremented, after we are through processing 
that character, to point to succeeding char- 
acters in the array. Let us now turn to the 
question of how these characters should be 
processed. 

Suppose, first of all, that we load a 
character into a register and discover that it 
is a digit. Our first job should be to find out 
whether any of the characters immediately 
following this one are also digits. Since 
numbers are stored internally in binary form 
in almost all computers, a string of digits 

16 9 ~ 9 16 ,,,, 

Figure 1: Unpacking characters on a 16 bit 
machine. 

representing an integer will have to be 
converted to this form for further proc- 
essing. Let us assume that we have a cell 
called NUMBER which is initialized to zero. 
Then our algorithm for finding the binary 
value of a string of digits is as follows: 

1. Check the current character. If it is 
not a digit, stop. 

2. Multiply NUMBER by 10; add the 
current character; and subtract the character 
code for zero. 

3. Advance to the next character in the 
string and go back to step 1. 

Thus for the character string 327, we 
perform OX 10= 0,0 +3= 3; then 3X 10= 
30, 30 + 2 = 32; and finally 32 X 10 = 320, 
320 + 7 = 327 - all in internal binary form. 
Each time we add the value of the next digit, 
which is equivalent to adding the character 
code for the digit itself and then subtracting 
the character code for zero. 

Now suppose that, instead of a digit, we 
find the character code for a letter of the 
alphabet. The normal rule here is to look for 
letters and digits following this letter and to 
keep them in a string. Once we have found 
the first character that is neither a letter nor 
a digit, the letters and the digits that we have 
gathered so far constitute an identifier, 
which we may process further in a number 
of ways, depending on the way in which we 
are processing algebraic expressions. 

As an example, consider the expression 
ALPHA *BETA +GAMMA *DELTA. We load 
the first character, namely A, into a register. 
Since this is a letter, we keep looking for 
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letters and digits, and we find L, P, H, and 

A. All of these characters are kept in a 

string. When we get to the *, the characters 

we have kept in our string so far constitute 
the identifier ALPHA. How we process this 

identifier depends on what it is supposed to 
mean. Is it a constant with a defined value? 

In that case the value is presumably in a 

table, and we can look it up. Or perhaps the 

purpose of processing this character string is 

to give this identifier some constant value. 

For example, suppose the string were 

ALPHA =3 and suppose we were processing 

this in such a way as to put the the value 3 

in a table, corresponding to the identifier 
ALPHA. In this case, when we reach the 

character =, we can put ALPHA into our 
table, and then later put in the value. 

Much algebraic expression processing in- 

volves special identifiers, or identifiers which 
are to be processed differently from the 

others - such as SIN, COS, and SQRT, or, 

perhaps, IF, STOP, and GOTO. All special 

identifiers should be collected into a table, 

and every time we recognize an identifier - 
that is, at the point in our program at which 

we have encountered a character that is not 

a letter or a digit, so that we know that the 

characters we have accumulated so far con- 

stitute an identifier - this table should be 

searched, to see whether any of its entries 
are equal to the current identifier. For each 

special identifier, we will then have a sub- 

routine, or a section of our program, which 
handles it. 

Let us now see what happens when, in 

the processing of our character string, we 

encounter an operator - a character such as 

+, -, *, /, or parentheses. This is where we 

use the Bauer -Samelson algorithm. 
The Bauer -Samelson algorithm uses two 

stacks - one for operators and one for 
operands. Many programmers, although they 
understand the basic idea of a stack, have 

never actually written a stack- oriented pro- 

gram. The easiest way to do this is by using 

an array - call it S - together with a current 
length for the array, which we may call LS. 

At the start of our program, LS is set to 
zero. To put the quantity X on top of the 

stack, or, as we call it, to push down X on 

the stack, we perform 

IF LS = MAX 
THEN GOTO OVERFLOW 

LS: = LS + 1 

S(LS): = X 

where MAX is the dimension of the array S, 

and we transfer to OVERFLOW if we have 

stack overflow, that is, if the stack has 

grown too large. Pushing down X on the 

stack, of course, puts X on top of the stack 
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while preserving all quantities on the stack 

that were previously put there. To take the 
quantity X off the top of the stack, or, as we 

say, to pop up X from the stack, we perform 

IF LS = 0 THEN GOTO EMPTY 
X: = S(LS) 
LS: = LS - 1 

where we transfer to EMPTY if the stack 
was empty when we tried to pop it. (This is 

usually not an error condition, but normally 
means that our stack process has termi- 
nated.) Of course, in the Bauer -Samelson 
algorithm, since we have two stacks, we may 
call them S1 and S2, with corresponding 
current lengths LS1 and LS2, both of which 
are initially set to zero. 

In order to follow the operation of the 
Bauer -Samelson algorithm, we shall have to 
understand the basic idea of precedence of 
operators. Taking the five operators +, -, *, 
/, and ** (the last of these denoting expo- 
nentiation), we shall assign to each one a 

number called its precedence, as follows: 

+ 1 

1 

* 2 
/ 2 
** 3 

The easiest way to understand precedence is 

to consider what would happen if we didn't 
have it. For example, let us look at the 
expression 2 *5 +3 *4. Suppose we tried to 
find the value of this expression in the 

following way: 2 times 5 is 10, plus 3 is 13, 

times 4 is 52. Clearly, this would be the 

wrong answer. What we want to do is to 
perform the multiplications first, namely 2 

times 5 is 10 and 3 times 4 is 12, and then 
add together the resulting values, 10 and 12. 

Since we perform the multiplications before 
the addition, we say that multiplication (as 

an operator) has higher precedence than 
addition. The numbers which we have 

assigned to the operators reflect this fact; 
that is, 2 (the precedence of multiplication) 
is higher than 1 (the precedence of 
addition). 

We shall now describe the basic opera- 

tions of the Bauer -Samelson algorithm. The 
algorithm proceeds by scanning over the 

characters of the given string from left to 
right. Every time we encounter an operand 
- a constant or a variable - while we are 

doing this, we place it on the operand stack 

Si. Every time we encounter an operator, 
we try to place it on the operator stack S2. 

This is not done unless the precedence test is 

satisfied; that is, unless the precedence of 
the given operator is higher than that of the 



operator at the top of the stack (or unless 
the operator stack is empty). If the prece- 
dence test is not satisfied, we remove an 
operator from the top of the stack S2, 
remove its operand or operands from the top 
of Si, calculate a result, and put this result 
back on Si. This is called unstacking an 
operator. We continue to unstack all opera- 
tors from S2 until the precedence test is 
satisfied. When we reach the end of the 
entire original string, we unstack all opera- 
tors from S2. 

An example should make this clear. 
Suppose we have the string 2 *5 +3 *4 men- 
tioned earlier, and we are trying to calculate 
its value, which is in this case not 52 but 22. 
In the following analysis, we shall denote the 
contents of a stack by several quantities in 
parentheses, with the last of these quantities 
denoting the top of the stack. Thus (10,3,4) 
as the contents of the stack 51 means that 
the number 4 is at the top of this stack. The 
Bauer -Samelson algorithm proceeds in this 
case as follows: 

1. The 2 goes on the stack Si. 
2. The first * goes on the stack S2. (The 

precedence test is satisfied, since the stack 
S2 was empty.) 

3. The 5 goes on the stack Si, which 
now contains (2,5). 

4. We cannot put the + on the stack S2, 
because the precedence of + is lower than 
that of *. Therefore we unstack the * from 
the operator stack S2. This means: we take * 
off the stack S2, leaving S2 empty; we take 
its operands off the top of S1 (that is, we 
take 5 and 2 off S1); we calculate the result, 
namely 2 *5 = 10 (the second operand of any 
operator is always removed from the stack 
first); and we put the 10 back on the 
operand stack Si, which now contains 10 
and nothing else. 

5. We are supposed to keep unstacking 
operators until the precedence test is satis- 
fied. At this point, however, the precedence 
test is in fact satisfied, since the operator 
stack is empty, and we may therefore place 
a + on the operator stack and continue. 

6. The 3 goes on the stack S1, which 
now contains (10,3). 

7. The * goes on the stack S2, which 
now contains ( +, *). The precedence test 
succeeded in this case, since the precedence 
of * is higher than that of +. 

8. The 4 goes on the stack Si, which 
now contains (10,3,4). We are now at the 
end of the original string, and it is time to 
unstack all the operators from the stack S2. 

9. The operator at the top of S2, namely 
*, is taken off this stack. Two operands are 
taken off the top of Si, namely 4 and 3; this 
leaves 10 on Si. The result, namely 3 *4 = 

12, is calculated and placed back on Si, so 
that S1 now contains (10,12). 

10. The operator at the top of S2, namely 
+, is taken off this stack. Two operands are 
taken off the top of Si, namely 12 and 10; 
this leaves S1 empty. The result, namely 
10+12 = 22, is calculated and placed back on 
Si. 

11. The operator stack 52 is now empty; 
the Bauer -Samelson algorithm has finished; 
and the answer, namely 22, is on the 
operand stack Si. (Unless there has been an 
error, the Bauer -Samelson algorithm will 
always end with exactly one quantity on 
the operand stack, and this quantity will be 
the final result.) 

This is the basic Bauer -Samelson al- 
gorithm. It may now be modified and 
extended in a number of ways. 

Let us first consider parentheses. A left 
parenthesis is treated as an operator. It is 
always placed directly on the operator stack 
without making the precedence test; that is, 
it is treated as if it had the highest prece- 
dence. Once it is on the operator stack, 
however, it is treated as if it had the lowest 
precedence; that is, any other operator is 
placed directly above it on the stack, or, to 
put it another way, the precedence test 
always succeeds if there is a left parenthesis 
at the top of the operator stack. 

A right parenthesis is treated somewhat 
like the end of the expression. We unstack 
all operators on the operator stack until we 
come to a left parenthesis, which we remove 
from the operator stack and continue to 
scan the given string. If there is no left 
parenthesis on the operator stack, there were 
too many right parentheses in the original 
expression. Conversely, if we come to the 
end of our string and start unstacking 
operators, and one of these is a left paren- 
thesis, then there were too many left paren- 
theses in the original expression. 

As an example of the use of parentheses, 
we consider the expression 
2 +4 *(5- (6- 3))/8, the value of which is 3. 
We shall again "walk through" the Bauer - 
Samelson algorithm as it scans this string. 
This time, however, we shall use an abbre- 
viated notation. In the second column 
below, marked action, we use one of the 
following codes: 

O (Operand) - An operand is placed on 
the operand stack. 

S (Succeed) - The precedence test 
succeeds, and therefore an operator is placed 
on the operator stack. 

U (Unstack) - The precedence test fails 
(or else we are at the end of the expression, 
or at a right parenthesis), and thus an 
operator is unstacked. 
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Table 1: Calculation of 
2+4 *(5- (6- 3))/8. 

Current Operand 
Character Action Stack 

the value of 

Operator 
Stack 

2 0 (2) Empty 
+ S (2) (+) 
4 0 (2,4) 1+) 

S (2,4) 1+,1 
1 L (2,4) (+,,L) 
5 0 (2,4,5) (+,,L) 
- S (2,4,5) (+,,L,-) 
1 L 12,4,5) 1+,,L,-,L) 
6 0 (2,4,5,6) (+,,L,-,L) 
- S (2,4,5,6) (+,,L,-,L,-) 
3 0 (2,4,5,6,3) (+,,L,-,L,-) 
) U (2,4,5,3) (+,,L,-,L) 

R (2,4,5,3) (+,,L,-) 
) U (2,4,2) (+,,L) 

R (2,4,2) (+,) 
/ U (2,8) (+) 

S 12,8) (+,/) 
8 0 (2,8,8) 1+,/) 

End U (2,1) (+) 
U (3) Empty 

L (Left parenthesis) -A left parenthesis 

is placed on the operator stack. (This is 

denoted by L in table 1. 

R (Remove left parenthesis) A left 
parenthesis is removed from the operator 

stack (this happens after unstacking, when 

the current character is a right parenthesis). 

The operation of the Bauer -Samelson 

algorithm in this case can now be expressed 

by means of table 1. 

Of course, the "current character" col- 

umn in table 1 takes advantage of the fact 
that every operator and every operand in our 

example program consists of a single charac- 

ter. In a more general case, this column 
would be headed "current operator or op- 

erand." 
Let us now consider unary operators. 

Superficially, there is no difference between 

a unary and a binary operator from our 

point of view, except that when we unstack 

a unary operator we must remove only one 

operand, rather than two, from the operand 

Table 2: Calculation of the 

- 5- ( -3 -4). 
Current Current Operand 
Label Character Action Stack 

value of 

Operator 
Stack 

L1 - S Empty (U) 

1.1 5 0 (5) (U) 
L2 - U (-5) Empty 

S (-5) 1-1 

L1 1 L (-5) (-,L) 
L1 - S (-5) (-,L,U) 
L1 3 0 (-5,3) 1-,L,U) 
L2 - U (-5,-3) (-,L) 

S (-5,-3) (-,L,-) 
L1 4 0 (-5,-3,4) (-,L,-) 
L2 ) U (-5,-7) (-,L) 

R 1-5,-71 (-1 
L2 End U (2) Empty 
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stack. However, when we put the unary 
minus sign on the operand stack, we must be 

careful to identify it as a unary, rather than 
a binary minus sign, so that we know how 
many operands to take off the stack Si. This 
in turn means that we are going to have to 
be able to tell the difference between a 

unary and a binary minus sign as we are 

scanning our string. 
The simplest way to do this is to think of 

our Bauer -Samelson algorithm as having 

two basic labels, which we shall call L1 and 

L2. We start off at L1 (after all necessary 

initializations). When we are at L1, we are 

expecting to find an operand. If we find one, 

we put it on the stack Si, and go to L2. 
When we are at L2, we are expecting to find 
an operator. If we find one, it will be a 

binary operator; we put it on the stack S2 

(after any necessary unstacking) and go back 

to L1. But if we are at L1 and we find an 

operator, it must be a unary operator; we 

put it on S2, after unstacking if necessary, 

and then return to L1. 
Suppose now that we find a right paren- 

thesis. Then we must be at L2 (if we are at 
L1, we have an error in the string we are 

scanning). We perform all necessary unstack- 

ing, remove a left parenthesis from the 

operator stack as described above - and 

then return to L2, since we are now expect- 
ing a binary operator. If we find an operand 

at L2, this is also an error condition. If we 

find a left parenthesis (of the type that we 

have so far described), we should be at L1; 
we put it on the operator stack and then 

return to L1, since we are again expecting to 
find an operand. 

This interplay between L1 and L2 may be 

illustrated by the following example, con- 

taining two unary and two binary minus 
signs, in addition to parentheses. For the 

moment, we shall consider a unary minus 

sign to have precedence equal to 2. A binary 
minus on the stack S2 will be denoted by 
' -', a unary minus by U, and a left paren- 

thesis by L. The codes in the "action" 
column are as in the preceding example. The 
string to be scanned is -5- ( -3 -4); its 
value, which is 2, is calculated by the 
Bauer -Samelson algorithm as in table 2. 

It is, incidentally, a matter of controversy 
as to what the precedence of the unary 
minus should be. It should clearly be lower 

than that of exponentiation (thus -X * *N is 

clearly - (X * *N), and not (- X) * *N) and 

higher than that of addition (thus -X +Y is 

clearly ( -X) +Y, and not -(X +Y)). What 
about -X *Y, however? The two expressions 

( -X) *Y and -(X *Y) are equal, and the 

same is true of ( -X) /Y and -- (X /Y). It is not 
clear which choice leads to the greatest 

efficiency of calculation. 
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In an article which appeared last month, 
we showed how the small system user can 
process algebraic expressions by using the 
Bauer -Samelson algorithm, developed by 
F L Bauer and K Samelson at the Tech - 
nische Hochschule in Munich, Germany. The 
Bauer -Samelson algorithm has many varia- 
tions, depending on the type of algebraic 
expression processing we wish to do. The 
most interesting of these have to do with the 
process of compiling. 

Anyone who has ever thought about 
writing a compiler has probably already 
guessed that there are certain aspects to 
compiler writing that are not hard at all. 
Consider, for example, GO TO statements. If 
a compiler is reading, as input, a source 
program, and it comes to the words GO TO, 
it proceeds in a very simple manner. It reads 
the next few characters - let us say they are 

305, so that the statement is GO TO 305 - 
and it writes, as output, whatever the 
machine code is for a transfer to some point 
in the object program corresponding to the 
label 305. The only part of this that is 

difficult at all is keeping a table of labels 
(such as 305) and their corresponding 
addresses. That can be somewhat complex, 
especially when GO TO 305 is a so- called 
forward reference - that is, when it precedes 
the label 305 in the source program. 

A Single Register Machine 

But all that pales into insignificance 
beside the problem of compiling code for 
algebraic expressions. Let us consider the 
simplest possible case. We have a machine 
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with one register ( "the accumulator ") and 
six instructions as follows: 

LDA 
ADD 
SUB 
MPS 
DVS 
STO 

Load Accumulator 
Add to Accumulator 
Subtract from Accumulator 
Multiply Single Register 
Divide Single Register 
Store Accumulator 

(We are assuming for the moment that our 
multiply instruction produces a single regis- 
ter result in the accumulator, and that our 
divide instruction divides a single register 
quantity in the accumulator by a quantity in 
memory. This restriction will be relaxed 
later on.) 

Suppose now that we have an assignment 
statement such as 

K=(I*)-I+1)/N 

If this' is read by the compiler as part of the 
source program, then the compiler must 
write out the equivalent machine language or 
assembly language code, which in this case 
would be 

LDA 
MPS 
SU B 

ADD 
DVS 
STO 

) 

I 

N 

K 

or the corresponding machine language 
(absolute binary or octal or hexadecimal) 
code. How is this code to be produced? 



Expressions Part 2 

We will now describe a modification of 

the Bauer -Samelson algorithm that produces 

such code. The main areas of modification 
are as follows: 

(1) The "result" of a computation, which 

is calculated by the unstacking process, is no 

longer a number, but rather a p /ace where 

the result of the computation is stored. For 

all of the instructions above (except STO), 

this will be the accumulator. Thus a special 

code to signify the accumulator will be 

placed on the operand stack. 
(2) Every time unstacking takes place, 

output code is generated in addition to the 

calculation of the result. 

Let us go through the above assignment 

statement as an example. (Refer to BYTE 

No. 6 for a general discussion of the Bauer - 

Samelson algorithm.) 
(1) The left parenthesis goes on the 

operator stack. 
(2) The I goes on the operand stack. (In 

this version of the Bauer -Samelson algo- 

rithm, we put variables - or pointers to 

them - on the operand stack, and not their 

values.) 
(3) The * goes on the operator stack. 

(4) The J goes on the operand stack. 

(5) Now we cannot put the (binary) 
minus sign on the operator stack, because it 
has lower precedence than the * operator. 

So we must unstack the *. We take it off the 

operator stack, and its operands, I and J, off 
the operand stack; and now we must cal- 

culate a result. 
Since I and J are the operands and * is 

Once you know how to do basic processing on 

algebraic expressions, you can begin to learn how to 

write compilers. 

the operator, we must generate code to 

multiply I by J. The code that does this is 

LDA 
MPS J 

or its machine language equivalent as above; 

and the result, I *J, is left, by these two 

instructions, in the accumulator. Let us 

denote the accumulator by $AC (the $ is 

there so that we cannot possibly confuse this 

with the name of a variable in the program, 

such as AC); then $AC goes on the operand 

stack. Now we can put the minus sign on the 

operator stack, directly above the left paren- 

thesis. 
(6) The second I goes on the operand 

stack. 
(7) We cannot put + on the operator 

stack, because its precedence is equal to that 

of the minus sign, which we must now 

unstack. We take it off the operator stack, 

and we take its operands, I and $AC, off the 

operand stack. Remember that the second 

operand is taken off first; so the operands 

are actually $AC and I. What instruction 
performs the subtraction $AC - I? Clearly 

SUB I 

is the one we want. (If the subtraction were 

I - $AC, this would have to be followed by 

another instruction which complements the 

value in the accumulator.) So the above 

instruction is generated; and, since it leaves 

its result in the accumulator, $AC is put 
back on the operand stack. Now we can put 
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An interpreter analyzes 

algebraic expressions every 

time a calculation is made; 

by carrying the process 

one step further we get a 

compiler, which analyzes 

the expression once while 

creating a specialized ma- 

chine language program to 
do the calculations. 



The Bauer -Samelson algo- 
rithm will always generate 
code from left to right. 
The result will not neces- 
sarily be as fast as optimal 
code by a human program- 
mer. 

There is often the problem 
of data types: If all data is 
in the form of n bit 
integers, this is not a 

problem; but when multi- 
ple types of data are 
allowed, mechanisms for 
conversion are required. 

+ on the operator stack, directly above the 
left parenthesis. 

(8) The second J goes on the operand 
stack. 

(9) Now we come to the right paren- 
thesis. This means that we must unstack the 
+ on the operator stack. Its operands are 
$AC and J (after reversing the order, as 
above); so, just as in step 7, we want to 
generate the instruction 

ADD J 

and put its result register, namely $AC, back 
on the operand stack. Now the operator at 
the top of the operator stack is a left 
parenthesis; this is removed, leaving the 
operator stack empty. 

(10) The / goes on the operator stack. 
(11) The N goes on the operand stack. 
(12) We are now at the end of the 

expression, and we must unstack the / and 
generate the instruction 

DVS N 

This is done in the same way as in steps 7 
and 9, leaving the operator stack empty and 
$AC on the operand stack. 

(13) Finally - and this is not, strictly 
speaking, part of the Bauer -Samelson algo- 
rithm - we look at the left side of the = for 
the first time, namely K, and generate the 
instruction 

STO K 

to complete the generation of code in this 
case. 

We have purposely picked a rather easy 
example, involving no temporary variables, 
no quotient register, and so on. This is by no 
means all there is to this version of the 
Bauer -Samelson algorithm, but the further 
refinements are not hard to visualize. 

First of all, we must make sure that we 
can generate code for all possible cases. For 
a reason which will become apparent, 
the special symbol $AC will never be on the 
operand stack in two different places. So the 
operands of any given operator will always 
be in one of the following three forms: $AC 
and Y, Y and $AC, or X and Y. All of these 
cases have been treated, or at least men- 
tioned, above. The first two cases arc, of 
course, equivalent if the operator is + or 
(since $AC + Y = Y + $AC and $AC* Y = Y 
* $AC). 

The second case above, in which we may 
have to use more than one instruction 
(subtract followed by complement, for 
example, as discussed above) corresponds to 
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the case in which a human being might 
generate different code from that generated 
by the algorithm. Suppose, for example, that 
our expression is A *D - B *C. A human 
being would generate the code to multiply B 
and C first, and later subtract it from A *D. 
The Bauer -Samelson algorithm, however, 
will always generate code from left to right. 
Ultimately, it will calculate B *C -A *D and 
then complement this, producing A *D - 
B *C. The resulting code will not, of course, 
be as fast as the code that a human being 
would generate. However, the difference in 
speed is minimal, and the so- called "optimi- 
zation techniques" which allow computers 
to produce better code are probably too 
bulky to fit into your small system. 

The above example expression, A *D - 
B *C, illustrates two further problems with 
compiling of expressions. The first is that of 
data types. If we use the FORTRAN con- 
ventions, A, B, C, and D are all real numbers, 
and we have to use floating point addition, 
subtraction, multiplication, and division. In 
many small systems, there are no real num- 
bers, but the problem of data types may still 
remain. There may be 16 bit and 32 bit 
integers, signed and unsigned integers, and so 
on, each of which has its own instruction 
set. If mixed mode expressions are not 
allowed, we may determine the type of an 
expression as soon as we see the first variable 
in it, and make sure that we use only 
addition, subtraction, multiplication, and 
division instructions of that type. 

(If we do allow mixed mode expressions, 
then it will be necessary to put a code - 
$REAL, $INT16, $INT32, or the like - on 
the operand stack along with each quantity 
placed there to record the type of that 
quantity. When we unstack, we must now 
generate code to add, subtract, multiply, or 
divide two quantities of the types given, and 
calculate not only the result - which we put 
back on the operand stack but also its 
type. Thus all quantities on the operand 
stack, in that case, are pairs, each of which 
consists of a variable, register, etc., together 
with its data type.) 

The second problem illustrated by A *D - 
B *C is the use of temporary variables. In our 
one register machine, we will have to store 
the value of A *D (or B *C) in a temporary 
location during the calculation. This store 
instruction is generated when we are trying 
to load a register - in this case the accumu- 
lator - whose contents cannot be destroyed, 
as evidenced by the fact that the symbol for 
this register is currently on the operand 
stack. To illustrate this process, we shall go 
through the above example in the same way 
as we did before. The code we will generate 



for the evaluation of the expression A *D - 
B*C is 

LDA 
MPS 
STO 
LDA 
MPS 
SU B 

COM 

A 
D 
TEMPI 
B 

C 

TEMPI 

(where COM stands for "complement the 

value in the accumulator "), and this is 

generated as follows: 

(1) A goes on the operand stack. 

(2) * goes on the operator stack. 

(3) D goes on the operand stack. 

(4) We cannot put on the operator 

stack, since it has lower precedence than *, 
which we must therefore unstack. We take * 

off the operator stack and A and D off the 

operand stack, and generate code to mul- 

tiply A by D, just as before, that is, 

LDA 
MPS 

A 
D 

Since the answer is left in the accumulator, 
we put $AC on the operand stack. At the 

same time we keep a pointer to this stack 

position in a special cell which we shall call 

ACSP (for $AC Stack Position). In this case, 

the pointer value is 1, since $AC is the first 
quantity on the operand stack (counting 
from the bottom). ACSP is initialized to 
zero, and whenever it is zero, it is assumed 

that $AC is not currently on the operand 

stack. 
Now we can proceed to put - on the 

operator stack, which was left empty by the 

previous unstacking. 

(5) B goes on the operand stack. 

(6) * goes on the operator stack (since its 

precedence is higher than that of the opera- 

tor at the top of that stack, namely -). 
(7) C goes on the operand stack. We are 

now at the end of the expression and must 

unstack all the operators on the operator 

stack. 
(8) First we unstack the *. Its operands 

are B and C, and it would seem that the code 

we should generate is 

LDA B 

MPS C 

However, there is a problem. If we generate 

the first of these two instructions, we will be 

loading the accumulator and destroying its 

current contents, which we need. We can tell 

that we need the current contents of the 

accumulator because ACSP is not zero. In 

fact, the quantity currently in the accumula- 
tor is the value of A *D. 

Therefore the rule is as follows: Whenever 

we are about to generate a load instruction, 
we first check to see if ACSP is zero. If it is, 

we may proceed. If it is not, however, we 

must generate another instruction to store 

the accumulator into a temporary cell - in 

this case, TEMPI. The name TEMPI is now 

put on the operand stack in place of $AC. It 
is not (necessarily) put on the top of that 

stack. Instead, we look at the pointer to see 

where to place it. In this case, the pointer 
value is 1, so that TEMPI becomes the first 
element on the operand stack (counting 
from the bottom), which is where $AC was 

before. At the same time, ACSP must be set 

to zero, denoting the fact that $AC is no 

longer on the operand stack. 

(In some algebraic expression evaluations, 

we will need more than one temporary cell. 

Let us call these TEMPI, TEMP2, TEMP3, 

etc. We have a temporary cell counter which 

is initialized to zero. Every time we need a 

new temporary cell, as above, we may 

increase this counter by 1. Alternatively, we 

may check the operand stack to see what 

temporary cells are currently on it, and pick 

out a new one in this way. If a new 

temporary cell is needed, it cannot be 

currently on the operand stack; however, its 

choice is otherwise unrestricted.) 

Let us assume, therefore, that we have 

generated 

STO TEMPI 

followed by the two instructions as above. 

The result of these two instructions is left in 

the accumulator, so $AC goes back on the 

operand stack. Note that the contents of the 

operand stack were $AC, B, and C, with C 

on top; then $AC was changed to TEMPI 

and B and C were taken off. Now with $AC 

put back on, the contents of this stack are 

TEMPI and $AC. 
(9) Now we unstack the -. Its operands, 

as given above, are TEMPI and $AC. If the 

- were a + we could simply generate 

ADD TEMPI 

and we would be done. However, as it 
stands, we have a problem, because simply 

generating 

SUB TEMPI 

would perform the operation $AC - 

TEMPI, rather than TEMPI - $AC. We may 
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Evaluation of expressions 

on a single register ma- 

chine often requires use of 
temporary operands in 

memory. 



Generation of code for 
expressions evaluated on 
multi -register machines 
can use the extra registers 
as temporary storage; how- 
ever, this introduces the 
need to keep track of 
register usage and special 
cases. 

notice that $AC - TEMPI = -(TEMPI - 
$AC), and, therefore, the instructions 

SUB TEMPI 
COM 

will perform the subtraction we want. 

Multi- register Machines 

The use of the special cell ACSP as above 
is a special case of the use of a table of 
register contents. In general, a computer will 
have more than one register. For each such 
register (that participates in the instructions 
to be generated), we will need a location like 
ACSP. All these locations are initialized to 
zero at the start of evaluation; each time one 
of them is used, it will appear on the 
operand stack, and a pointer to its position 
there will be kept in the location cor- 
responding to that particular register. In 
some cases we may simplify matters and 
keep only Boolean values (zero or one) in 
these locations; we can always search the 
operand stack, if we have to, to find where a 
register is on that stack, if the corresponding 
Boolean value is 1. 

As an example, suppose that we have a 
more typical kind of multiplication instruc- 
tion which leaves a double word answer in 
the accumulator and a quotient register, 
which we shall denote by $Q on the operand 
stack. If the quantities being multiplied are 
integers and the quotient register is the least 
significant part of the double register result, 
we can assume that the result goes in the 
quotient register and put $Q on the operand 
stack immediately after generating a multi- 
ply instruction. This in turn means that we 
have to be prepared to accept $Q as an 
operand. If X and $Q, for example, are the 
operands of + (which is being unstacked) 
and there is no instruction to add X to the 
quotient register directly, there may be an 
instruction, which we can generate, to move 
the contents of the quotient register to the 
accumulator (or to exchange these two 
registers), after which we can generate an 
instruction to add X in the normal way. Of 
course, in this case, we have to check the 
location corresponding to $Q before we 
generate a multiply, to see whether the 
quotient register has to be stored in a 
temporary location. 

In a multi- register machine, we will not 
usually need any temporary cells. (By a 
multi- register machine, we mean here, speci- 
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fically, a machine with more than one 
arithmetic register, in which addition, sub- 
traction, multiplication, and division can 
take place.) All we need is to make sure, 
whenever we load a new register, that this 
register is not already being used for some 
other purpose. Let us illustrate this by 
considering again the expression A *D 
B*C. The code generated for this, on a 
multi- register machine, would be roughly as 
fol lows: 

(1) Load some register U with A. 
(2) Multiply D by the contents of regis- 

ter U. 
(3) Load some other register V with B. 
(4) Multiply C by the contents of register 

V. 
(5) Subtract one register from the other. 

Here the registers U and V will have 
corresponding stack position variables, 
which for the moment we shall call USP and 
VSP. At the beginning, these are set to zero. 
When it comes time to generate the first two 
instructions ( "load A" and "multiply by 
D "), we search for a register in which this 
computation can be performed. We find that 
it can be performed in U (because USP = 0), 
and so we generate instructions which make 
use of the register U. At the same time, we 
set USP to indicate that register U is now in 
use (assuming that the multiply instruction 
leaves its answer in U). Now, when it comes 
time to generate the next two instructions 
( "load B" and "multiply by C "), we again 
look for a register that we can use. This time 
we determine that we cannot use U (because 
USP 1 = 0); so we have to keep on looking. 
If V is the next register that we look at, we 
see that we can use it, since VSP = 0, and so 
we generate the third and fourth instructions 
above in such a way that they make use of 
the register V. 

Stack Machines and Lukasiewicz Notation 
Besides conventional single register and 

multi- register machines, there are stack 
machines. A load instruction on a stack 
machine puts the quantity to be loaded on 
the top of a stack of registers; a store 
instruction removes (pops up) the quantity 
to be stored from the top of this stack. An 
add instruction removes two registers from 
the top of the stack, adds their contents, and 
puts the result back on top of the stack. 
Thus a stack machine effectively performs 
about half the Bauer -Samelson algorithm in 



hardware, and the generation of code for 
such a machine is considerably simplified. 
We shall now describe how this is done. 

The code for calculation of an algebraic 
expression on a stack machine is directly 
related to the form of that algebraic expres- 
sion expressed in Polish notation. (The 
proper name for this is Lukasiewicz nota- 
tion, but it is popularly called Polish nota- 
tion because very few people can pronounce 
Lukasiewicz - an English approximation, 
however poor, is WOO- kah -SHEV -itch. 
Other names for Polish notation are "suffix 
notation" and "reverse Polish." There is also 

"prefix notation" or "forward Polish," but 
this is never used in this context in 

computing.) 
The Polish notation equivalent of a one 

operator expression, such as A +B or C -D, is 

formed by taking out that operator and 

putting it at the end: A B + or C D -. The 
Polish notation equivalent of a more com- 
plex expression is formed by breaking it 
down into parts, normally two parts with an 

operator between them; this operator is 

placed at the end, and the two parts are 

themselves expressed in Polish notation. 
Thus for (A +B) *(C --D), the two parts are 

A +B and C -D, or, in Polish notation, A B + 

and C D -, and the operator is *, so the 

entire expression is A B + C D - *. 
Similarly, A *D -B *C is expressed in Polish 

notation as A D * B C * -. 
Conversion of an algebraic expression in 

ordinary, non -Polish (or, as it is often called, 

infix) notation into Polish notation may be 

performed by using a drastically simplified 
version of the Bauer -Samelson algorithm. 
There is only one stack, namely the operator 
stack. Operands, instead of being put on a 

stack, are put directly on the end of the 

string in Polish notation which is being 

constructed. As an example, let us go 

through the string A *D B *C once again, 

according to this version of the algorithm: 
(1) A goes on the end of the string. 
(2) * goes on the stack. 
(3) D goes on the end of the string, 

which is now A D. 
(4) * is unstacked, that is, placed on the 

end of the string, which is now A D *. 
(5) - goes on the stack. 
(6) B goes on the end of the string, 

which is now A D * B. 

(7) * goes on the stack (as before, since 

its precedence is greater than that of -). 
(8) C goes on the end of the string, 

which is now A D * B C. 

(9) * is unstacked, so the string is now 

AD *BC *. 
(10) - is unstacked, so the string is 

finally AD *BC * 

Once a string in Polish notation (or 
"Polish string ") has been formed, code to 
calculate the value of the corresponding 
algebraic expression may be generated 

directly. Each operand corresponds to a load 

instruction, and each operator corresponds 
to an instruction which implements it. Thus 
in the above case the instructions would be: 

Load A; load D; multiply; load B; load C; 

multiply; subtract. The first two of these 

instructions load A and D onto the register 
stack in our stack machine. The next instruc- 
tion takes A and D off the stack and puts 
A *D back on. The next two instructions put 
B and C on the stack of registers, which now 
contains A *D, B, and C. The next multiply 
instruction takes B and C off the stack and 
puts B *C back on; the final subtract instruc- 
tion takes A *D and B *C off the stack and 
puts A *D -B *C back on. After this code, 
we can have an instruction to store the 
result, and this instruction leaves the register 
stack the way it was before expression 
evaluation started. 

Polish notation is also often used in 

interpreters. An interpreter is like a com- 
piler, except that no code is generated; 
instead, the interpreter actually performs the 

indicated instructions as it goes. Typically, 
an interpreter will go through an initial 
phase (often called, confusingly, a "compiler 
phase ") in which the program to be inter- 
preted is read, and all expressions converted 
to Polish notation (among other things) and 

stored internally in this way. The actual 
interpretation now follows, with the inter- 
preter moving from one statement of the 

interpreted program to the next, doing what 
each statement says and proceeding to the 

interpretation of whichever statement comes 
next in logical order. (Thus if it is inter- 
preting IF K =0 THEN GO TO ALPHA, and 

K is in fact zero, then the statement labeled 
ALPHA will be interpreted next.) The 
advantage of keeping expressions in an inter- 
nal form corresponding to Polish notation, 
rather than ordinary infix notation, is that 
Polish notation may be evaluated much 
more efficiently than infix notation. All we 
have to do to evaluate a Polish string is to 
simulate the effect of a stack machine, as 

outlined in the preceding paragraph. That is, 

we go through the Polish string from left to 
right; whenever we come to an operand, we 

place it on a stack, and whenever we come 
to an operator, we act as if we were 
unstacking it. This is the "other half' of the 
Bauer -Samelson algorithm; like the algo- 
rithm given above to convert a string into 
Polish notation, it uses only one stack, but 
this is an operand stack rather than an 

operator stack. 
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A stack machine effective- 
ly performs half the Bauer - 
Samelson algorithm in 
hardware, so code genera- 

tion is considerably simpli- 
fied. 



The "My Dear Aunt 

Robert Grappel 
MIT Lincoln Laboratory 
Lexington MA 02173 

The number of mathematical operations a 
computer can perform without the aid of 
programming is quite small. The bare 
machine can add and subtract, and perhaps 
it can also multiply and divide. It cannot 
comprehend a series of operations, nor can it 
evaluate a mathematical expression as a 
human would typically write it. It cannot 
group operations as required by the rules of 
mathematics. All these require software; 
programs which convert mathematical state- 
ments to sequences of machine instructions. 
This article describes a set of programs 
which can read a mathematical statement in 
its normal form and evaluate its result. The 
discussion is kept on a general level: no 
specific machine or language structure is 
assumed. These programs should find their 
way into many "do-it- yourself" assemblers, 
compilers and interpreters .... wherever it 
is useful to write mathematical expressions 
for input to a computer. 

My Dear Aunt Sally 

Shortly after students learn to do the 
basic operations of addition, subtraction, 
multiplication, and division (the same opera- 
tions that bare computers can perform), 
they are faced with problems of the follow- 
ing kind: 3- 5 *2 = ?. A student with imagina- 
tion finds such a problem paradoxical; there 
are several apparently "correct" answers. 
Performing the operations in the order of 
appearance, he gets -4 (scanning left-to- 
right). Performing the multiplication first, he 
gets -7. If he chooses to scan from right to 
left, then the results +4 and +7 are possible. 
Which is correct? 

My teacher gave us a rule to remember 
how to proceed with these problems - 
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multiply, divide, add, subtract - or, "My 
Dear Aunt Sally" as we came to remember 
this order. Mathematical statements are read 
from left to right, for each operation. The 
evaluation starts with all the multiplications, 
left to right. It then proceeds in the order of 
"my- dear -aunt -sally," evaluating all the divi- 
sions, then all the additions, then all the 
subtractions. Mathematicians call this order- 
ing the "precedence of functions," and all 
mathematical operations can be ranked in 
the order in which they are to be performed. 
Hence, the example has only one correct 
result, and this is -7. 

Unfortunately, precedence is not enough 
to force a single answer from every problem. 
Suppose one wishes to perform one opera- 
tion upon the result of a group of several 
other operations, some of which are of 
higher precedence. One needs some mech- 
anism to group certain parts of a mathe- 
matical statement so that they can be 
considered as a single unit to be treated by 
some other operation. For this purpose, 
mathematics uses parentheses. If one wrote 
the example from above as: (3- 5) *2 = ?, it is 
clear that the subtraction should be per- 
formed first, in spite of the precedence of 
the two operators. With the two tools of 
precedence and parentheses, one can force 
the desired ordering of operations upon a 
mathematical statement and ensure that 
there will be only one correct result. 

What Is a Parser? 

Now, how can a computer deal with 
complex mathematical statements like the 
example? The computer can perform each 
operation individually, either by a single 



Sally" Algorithm 

elementary operation or by calling a sub- 

routine. The problem is the same one that 
we faced as students; how does one break 

down a complex mathematical statement to 

perform the individual operations in the 

right order? The name for this operation of 
breaking down a complex statement into its 

component parts, determining the structure 
of the statement, and evaluating it as re- 

quired, is "parsing." This article describes a 

set of procedures which together form a 

parser. 

Tokens 

At the outset, the computer sees a mathe- 

matical statement as a string of characters. 

All that is known about the string is its 

starting address and its length. The 

statement 

X --2/ (YAXI S +Z) 

is a string of 13 characters at some address. 

One of the first things that is necessary is a 

procedure to subdivide this string into its 

elements: variables, constants, operators, 
and parentheses. The example contains three 

variables: X, YAXIS, and Z. It contains one 

constant: 2. There are three operators: --, /, 
and +. There are also two parentheses. Each 

of these elements is a character string. These 

strings may be of differing lengths. There 

may be blanks embedded in the input string, 

but these are not desired in the element 

strings. The procedure which subdivides the 

input string and eliminates blanks is called 

NEXTOKEN. Each element of the input 
string is called a token. The first problem of 
constructing a parser is to find a way to 
inform a computer about the tokens con- 

tained in the character string representation "My Dear Aunt Sally" is a 

precedence ordering rule. of a mathematical statement. 

Blanks as Separators 

There are several ways to approach this 

problem. Perhaps the easiest (in the sense 

that the coding of NEXTOKEN is simplest) 

is to require that the writer of a mathe- 

matical statement put at least one blank 

between every element or token in the 

statement. In this way, the human pro- 

grammer breaks the input string into tokens 

before the computer gets it. We would 

require that the above statement be written 
as 

X -2 / ( YAXIS + Z ) 

where all the extra spaces are required. With 

this method of token separation 

NEXTOKEN would work like this: Starting 

at the last character processed (the leftmost 

one at the start of the string), NEXTOKEN 

scans the input string from left to right until 
a blank occurs. This substring (from starting 

point to blank) is the next token. The next 
step is to determine what type of token has 

been scanned. The rule that will be followed 
in this article is that the first character of a 

token determines its type. If the first charac- 

ter is alphabetic, then the token is a variable. 

If the first character is a digit or decimal 

point, then the token is a constant. If the 

first character is neither of the above, then it 
is checked against a table of legal operators. 

If it is not an operator, then it is checked to 

see if it is a parenthesis. Variables might be 

checked for invalid characters in their names 

or too many characters in the name; con- 

stants might be checked for non -numeric 
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A parser is a programming 
scheme to analyze state- 

ments. 



Figure 1: Flow chart of the NEXTOKEN algorithm used in this design. (a) The main routine. (b) The variable name collection 
algorithm. (c) The numeric constant collection algorithm. (d) Parenthesis handler. (e) Single character function name handler. (f) 
Generalized function name handler. 
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characters or more than one decimal point. 

A token which failed to match the model of 

any of the four token types would be 

flagged as an error, as would any of the error 

conditions described above. A check for 

string length of an operator might be used: 

The string '+ =VAR' is not an operator, 

despite its first character. 

A Smarter Token Separator 

Requiring blanks around every token of a 

mathematical statement not only takes up 

valuable memory space but also makes the 

parser very susceptible to programmer 

errors. It is far too easy to forget one of 

those critical blanks. Fortunately, with a 

slightly more complicated mechanism for 

NEXTOKEN, one can parse a randomly 

written statement with any spacing. This 

algorithm is flowcharted in figure 1. 

The routine starts by always scanning and 

ignoring any leading blanks. Eventually it 
finds a non blank character, the first charac- 

ter of some token. Remember that a rule 

was established for this parser: The first 

character of a token determines its type. 

Once the token type is known, the 

NEXTOKEN routine checks that subsequent 

characters are valid for that token type. As 

soon as a character is found which is invalid 

for that token type, the token is completed. 

For example, consider the expression X +5. 

The first character (leftmost) is alphabetic; 

this means that the first token is a variable. 

The second character is not alphanumeric, so 

it is not part of the variable type token. 

Hence, the first token is X which is a 

variable. The next token starts with a + 

which is found in the operator table. Hence 

it is an operator. The next character is the 

digit 5. This is the start of a constant type 

token. There are no further characters, so 

the token is complete. 

Is It an Operator or a Variable? 

One useful extension to the algorithm 

should be considered here. Many operator 

names that we would like to use are not 

single symbols, but are several characters in 

length. One might for example want to call 

the cosine operator by the name COS. 

Unfortunately, the simple minded 

NEXTOKEN procedure would confuse this 

with a variable named COS. There are several 

ways around this problem. One is to define 

new symbols for each operation added to 

the system. These are added to the character 

tests for operators and the parser will work 

fine. This makes for clumsy notation, how- 

ever; and there may not be enough distinct 

characters available in keyboards, Teletypes, 

etc. A second approach is to require a special 

character, such as the dollar sign ($), as the 

first character of the string desired as an 

operator name. The cosine function might 

therefore be named $COS. The dollar sign 

would disqualify the name as a variable and 

identify it as a candidate for operator status. 

NEXTOKEN would then check the re- 

maining characters in the name (using the 

same rules as for variables) against a table of 
operator names. If a match is found, then 

the string is an operator. The third approach 

is to forego the identifying first character in 

operator names and to treat operator names 

as a special kind of variable in NEXTOKEN: 
When a character string is typed as a 

variable, it is then checked against the list of 

operator names. If a match is found, then 

the token is changed in type from variable to 

operator after further statement analysis. 

Since this is complicated, NEXTOKEN 
assumes the dollar sign as identifying charac- 

ter for extended operator names. We see that 

NEXTOKEN starts with a character string, a 

starting pointer within that character string, 

and the position of the end of the string. 

NEXTOKEN returns a character string 

which is the new token, an indication of the 

token type, and the token length. It leaves 

the input string starting pointer with a new 

value after collecting or discarding each 

character needed to build the current token. 

Some Small Procedures 

There are several small procedures which 

are necessary to the parser and which are 

briefly described now. Two of these are 

required to convert the character strings, 

which are the tokens, into their values. One 

of these, called CONST, works on constants. 

The other, called VARIABLE, works on 

variables. Routines like these are usually 

available in a large computer's operating 

system. For minicomputers, the algorithms 

can be extracted from programming texts 

and programmed for software deficient 

home brew systems. The mechanism of 

VARIABLE depends on the structure 

chosen for the symbol table used to store 

variables. There should be some form of 

check that a variable has a value before it is 

used. If it has no value, an error message 

should be generated. Another routine 

needed is a form of branch table to convert 

the character string name of an operator into 

a call to the proper subroutine to perform 

the operation. 
A mechanism for generating the prece- 

dence of operators is also needed, as was 

demonstrated in the introduction to this 

article. This amounts to a table of prece- 

dence values indexed by the operator name. 

Every legal operator is assigned a prece- 
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Computing the value of a 

statement is often easier if 
the statement is first re- 

written in a form better 

suited to computers. 
Polish notation is such a 

form. 



o AVVE TOM,: 
TO STACK 

Operator 

Trigonometric functions, 
Logarithmic functions, 
Roots, etc. 

Precedence 

7 or more 

T (Exponentiation) 6 

(Multiplication) 5 

/ (Division) 4 

+ (Addition) 3 

- (Subtraction) 2 

parenthesis 
1 

empty stack o 

Table 1: Precedence of operators. This is a 
typical mathematical precedence of 
operations. 
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Figure 2: The POLISH routine specified as a flow chart. This routine uses NEXTOKEN to obtain individual tokens of the syntax, then uses its logic to rearrange these tokens in Polish notation. The output of this routine is a Polish string. 
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dente, as are parentheses and the right and 
left terminations of the input string. This 
article assumes that the higher the prece- 
dence value, the earlier the operation should 
be done. In other words, the operator with 
highest precedence goes first, the second 
highest goes next, etc. Table 1 is a typical 
precedence table. This precedence lookup 
procedure is called PRECEDE. 

Intermediate Results 

As shown in the introduction of this 
article, it is often necessary to evaluate a 
mathematical statement in a different order 
than that in which the statement was 
written. "My Dear Aunt Sally" does all the 
multiplications first, then the divisions, then 
the additions and subtractions. This parser 
operates by rewriting the statement into a 
more desirable form. In the new form, the 
operators are performed in the order that 
they appear. There are no parentheses re- 
quired in the new form. The operands (the 
variables and constants) and operators are 
located in a simple and consistent relation- 
ship to one another in the new form. This 
makes the evaluation algorithm easier to 
write and more efficient. This "nice" form 
for writing mathematical statements was 
devised by the Polish logician J. Lukasie- 
wicz. The next item to consider in this 
parsing system is a procedure to rewrite the 
input character string into Polish notation. 
This procedure, called POLISH, uses 
NEXTOKEN to disassemble the input string 
when required by its algorithm. POLISH also 
uses PRECEDE to compare the precedences 
of operators in different parts of the string. 
Figure 2 shows a flowchart of POLISH. This 
procedure forms the heart of the parser and 
is described in some detail. Several examples 
are also worked through. Once a mathe- 
matical statement is in Polish notation, it is 
rather easy to evaluate it. 

A few examples of Polish notation and its 
evaluation are in order here. Consider the 
statement A *B+C *D. We know by prece- 
dence that the multiplications are to be 
performed first. In Polish notation we 
choose to write the operands first, followed 
by the operator. Hence, A *B becomes AB *. 
Similarly, C *D becomes CD *. Then the 
addition of these quantities is written 
AB *CD * +. This is the Polish form of the 
example statement. This string is evaluated 
as follows: Starting at the left, operands 
(variables and constants) are passed directly 
into a software pushdown stack in memory, 
which is a temporary holding area organized 
so that the first item in the stack will be the 
last item out of the stack. (This stack should 
not be confused with the subroutine call and 
return stacks of many microcomputers.) The 



stack will hold the values of the operands, as 

returned by the procedures VARIABLE and 

CONST. When an operator is encountered, it 
is applied to the top two values in the stack. 
The result of the operation is returned to the 

stack in place of the operands. Figure 3 

shows a flowchart of the evaluation proce- 

dure, called EVAL. 
Let us proceed to evaluate the example 

AB *CD * +. First, we place A, which is a 

value, on the stack. Then we place B on the 

stack. Next, we encounter the operator *. 
The top two values on the stack are A and B, 

so we compute A times B and return that 
value to the stack. Next, we put C on the 

stack. Next, D goes on the stack. Then the 

operator * is encountered again. The top 
two entries on the stack (the last ones 

entered) are C and D. We compute C times D 

and return that value to the stack. The stack 

now holds two values which are the products 
of A and B, C and D, respectively. Finally, 
we encounter the operator +. We perform 
the addition and then we are done. In a 

similar manner, the first example of this 

article, 3 -5 *2, would be written as 352*- 
in Polish. 

POLISH starts by calling NEXTOKEN for 
the first token. If it is not an operator or 

parenthesis, the token is output to the Polish 

string and NEXTOKEN is called for the next 

token in the input string. If the token was a 

left parenthesis, the parenthesis is placed in 

the stack and NEXTOKEN is called again. If 
the token was a right parenthesis, the con- 

tents of the stack are moved to the output 
Polish string until a left parenthesis is en- 

countered or the stack is empty. Both the 

left and right parentheses are deleted and 

NEXTOKEN is called. Parentheses must 

occur in left -right pairs - if there is no left 
parenthesis in the stack after a right paren- 

thesis is found, there is an error and the 

string cannot be parsed. If the token was an 

operator, then its precedence is checked 

against the precedence of the top of the 

stack. If the new operator is of lower 

precedence than the top of the stack, the 

top of the stack is output to the Polish string 
and the check is performed with the new top 
of stack. Eventually the new operator will 
have higher precedence than the top of the 

stack (an empty stack has zero precedence). 

If the new token is the end of the input 
string, then it is treated as an operator of 
lowest precedence. Some languages use a 

special character for the input string termi- 

nator, but this is not necessary. In any case, 

if the new token is the end of the input 
string, then POLISH is finished when the 

stack is empty. If the new token is not the 

end of the input string, then the token is 

placed on the stack and NEXTOKEN is 

BEGIN 

C£P NF]CI 

POLISH STR'; 
TOKEN 

TEST TOKEN 
TYPE 

A.-POP 

B:=POP 

PUSH 
OPERATOR 
(A,B) 

A:=POP 

RFTVRN A 

END 

PUSH OPERAND 
IMV POLISH 
STACK 

Figure 3: The EVAL routine specified as a flow chart. This routine is an 

example of an interpreter. It takes the Polish string created by POLISH, and 

decodes it and evaluates the mathematical value to be computed. Several 

functions are employed by the EVAL routine, as follows: PUSH means place 

the value in question into the operand stack, increasing the stack size by one 

value. POP means recover the top operand from the operand stack, decreasing 

the stack size by one value. OPERATOR(A,B) means evaluate the combina- 

tion of the value A and the value B according to the definition of the current 

operator in the POLISH string. The data concepts employed during 

evaluation are as follows: Temporary data storage is found in A and B. The 

Polish string is a series of separated tokens created by POLISH as its output. 

The operand stack is a first -in- first -out stack of values defined by operand 

tokens (variables and constants) in the Polish string, or by the results of 
previous operations which are left in the stack. 
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Table 2: An example of the POLISH routine 
in operation. The output string of a practical 
implementation of POLISH must have a 
convention to separate tokens. Storing out- 
put as a reconstructed character string with 
blanks to separate operands allows EVAL 
and UNPOL to use the same NEXTOKEN 
routine which POLISH calls. Other storage 
techniques, which do not require the use of 
blanks as separators, are possible. 

GET NDPF 
POLISH S'IWG 
IOICEN 

Input Stack Output 

A 

B 

A 
+ + 

B + 

t +t 
+t1 

C +tl C +tl 
D +tl 
/ +t1/ 
( +t (/l 
D +t(/1 
+ +t 1/1+ 
F +t (/(+ 
) +t (/ 

+tl 
G +t1 

+t 
end of string 

OUTPUT 

PUSH 

( INTO 
STACK 

OUTPUT 
OUTPUT 
TOP OF 
STACK 

TEST 
LAST 
OUTPUT 

D 

F 
+ 

/ 

G 

t 
+ 

U 

Figure 4: The UNPOL routine specified as a flow chart. This routine takes the 
Polish string created by POLISH and inverts the transformation to obtain a 
normal arithmetic expression again. 
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called again. Table 2 shows the input 
string, stack contents, and output string 
as POLISH works through the string 
A +Bt(C *D /(D +F) *G) where the upward 
arrow symbol represents the exponentiation. 
Exponentiation has a higher precedence than 
the other operations in this example. Work- 
ing through the example shown in table 2 
should convince the beginning programmer 
that this algorithm actually does translate to 
Polish notation. EVAL can then evaluate 
the Polish expression to obtain the final 
result. 

Undoing What's Just Been Done 

Polish notation is a convenient way to 
store a mathematical expression in computer 
memory. I t tends to contain fewer charac- 
ters, since parentheses are not needed. Also, 
it can be readily evaluated without the need 
to first perform a complicated conversion of 
the sort we just saw described. However, if 
one wants to edit an expression or change its 
structure, then one would really like to see 
the original form of the expression. Figure 4 
shows the flowchart of a procedure called 
UNPOL which reverses the process of 
POLISH and converts a statement of Polish 
notation back to normal form. It scans from 
right to left (the reverse of POLISH) and 
outputs the normal string in reverse order. 
UNPOL can use the same NEXTOKEN and 
PRECEDE that POLISH uses (see the note 
in table 2). The only change is the sequence 
in which the tokens are used. Table 3 shows 
the input, stack contents, and output of 
UNPOL as it reverses the processing of the 
example A +Bt(C *D /(D +F) *G). Note that 
unnecessary parentheses are dropped when a 

mathematical expression goes through 
POLISH and then through UNPOL. For 

Input Stack Output 

+ 

t 

G 
/ 

+ 

F 

D 

D 
C 
B 
A 

G 

F+ 
DU 

D 
CI t 
B+ 
A 

NOTE: Processing starts at the top of this table. 
The Polish string is scanned in reverse order 
starting with its rightmost character. Pro- 
ceeding down the table, the output is 
generated in reverse order also, starting 
with the rightmost character. 

Table 3: An example of UNPOL in opera- 
tion. The Polish string input to UNPOL is 
scanned in reverse order (right to left) and 
generates the output string starting at the 
left. 



example, (A *B) +(C *D) becomes A *B +C *D. 
The parentheses were unnecessary because 

operator precedence ensured that the multi- 
plications would be done first. UNPOL will 
not drop any necessary parentheses. 

Trying a few examples through the 

parsing algorithms presented here should 

convince even a beginning programmer that 
Polish notation provides a straightforward 
way to make a computer evaluate complex 
mathematical expressions. Using these 

algorithms, it will be possible for readers to 
incorporate evaluation of mathematical state- 

ments into their programming systems. 

My Dear Aunt Sally's Glossary 

Alphabetic Character: Any of the letters A through 
Z. 

Assembler: A program which translates symbolic 
assembly language intput into machine language 

output. Assemblers frequently require arithmetic 
statement parsers in order to compute addresses 

and data values based upon symbolic assembly 

language statements. 

Compiler: A program which translates symbolic 
statements of a high level language input into a 

machine language output. Compilers require some 

form of arithmetic statement parsing, although the 

output is generally converted one step further into 
actual machine code. 

Constant: A constant is a way of specifying data 

which is fixed. In the My Dear Aunt Sally parser, 

constants are defined by input character strings 

which begin with a numeric character, and contain 
only numeric characters or at most one decimal 
point. 

Interpreter: A program which translates symbolic 
statements of a high level language input into an 

immediate action. An interpreter could use the My 

Dear Aunt Sally parser to evaluate arithmetic 
expressions when required. 

Mathematical expression: An input character string 

which obeys the syntactical rules of the My Dear 

Aunt Sally parser and can potentially be evaluated 

as a single resulting arithmetic value. 

Numeric character: Any of the numbers 0 through 
9. 

Operator: An operator is a token specifying an 

action to be taken when the expression being 
parsed is evaluated. My Dear Aunt Sally recognizes 
two kinds of operators: Single character operators 
are used to denote the conventional arithmetic 
operations; multiple character operators are recog- 

nized by a dollar sign (as in $SIN) and are used for 
mathematical functions. 

Parenthesis: Left and right parentheses are used to 
group operations in mathematical expressions. The 
only requirement for consistent evaluation of 
expressions is that left and right parentheses must 

balance. 

Parser: A computer program mechanism for per- 

forming the parsing function. 

Parsing: Given a set of syntax rules (a grammar) 
and an input string, parsing is the process of 

breaking that input string into a series of tokens 
according to the syntax rules. 

Pop: Remove an element from a stack storage 

mechanism, in a last in, first out order. 

Precedence: In evaluating an arithmetic expression, 
precedence is used to resolve ambiguities in the 

order of execution of several operations: The 

operations with higher precedence are performed 
first. 

Push: Add an element to a stack storage 

mechanism. 

Scan a string: The process of sequentially looking 
at each character or token of a string in a well 

defined order from left to right, or right to left. 

Software pushdown stack: A stack storage 

mechanism can be implemented exclusively in 

hardware, or by using mechanisms which are part 
hardware and part software, or entirely in soft- 

ware. For the purposes of the My Dear Aunt Sally 
algorithm, all stacks are implemented in software. 
This means that each stack reserves a random 
access memory region and is supported by sub- 

routines to perform the push and pop functions. 
The POLISH routine uses an operator stack to 
temporarily store and reorder the operator tokens 
when creating a Polish string; the EVAL routine 
uses an operand stack to temporarily hold values as 

it interprets the Polish string. 

Statement: A statement is the programming lan- 

guage equivalent of a sentence in a natural language 

such as English. 

String: A string is a series of values with definite 
starting and ending points. The parser of this 
article requires an input character string containing 
the human readable codes of an arithmetic expres- 

sion, and produces a Polish string output of parsed 

tokens which can be evaluated by the Polish string 
interpreter. 

Subroutine: A subroutine is a section of a program 
which is called to perform its function. When 

completed, it returns control to the routine which 
calls it. Subroutines are created for two purposes 

when programming: To modularize a program 

according to function, and to share common 
functions and save memory space. 

Symbol table: A central collection of the variable 
names used in a program, along with related 
information. For the My Dear Aunt Sally parser, a 

symbol table would be composed of the variable 
token (a character string) and current numeric 
value for each variable found while parsing a 

statement. Note that the My Dear Aunt Sally 
algorithm by itself does not provide a means for 
setting the value of variables; an extension of the 

software into a full interpretive high level language 

with an assignment statement would provide such a 

means. 

Token: A token is a basic unit of the syntax of an 

expression. In the My Dear Aunt Sally parser, 
tokens are character strings collected and returned 
by NEXTOKEN along with an indication of 
syntactical type. 

Variable: A variable is a symbolically named data 

location. The parser of this article detects variables 
as character string names which begin with an 

alphabetic character. 
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Can YOUR 

Computer 

Tell Time? 

Loops are the basic 
time delay elements. 
Then there are loops 
within loops, loops 
within loops within 
loops and so on ad 
infinitum. 

Can your computer tell 
time? O.K. Now take away 
the LSI clock chip, pocket 
watch, grandfather clock, or 
whatever else you managed to 
interface together. Can your 
computer still tell time? You 
bet it can! 

It is a readily accepted fact 
that almost any type of 
hardware logic device can be 
imitated or simulated by 
computer software. That can 
also include timing devices if 
you wish. 

We will examine a few 
methods and considerations 
for software timing, then 
apply what we've learned in 
making a novel "software 
only" clock which will keep 
time as well as any 
conventional clock. 

The most efficient method 
(efficient referring to 
memory space used) to 

produce a time delay is the 
use of a loop. This loop is 
basically very simple, as 

shown by Fig. 1. By including 
NOPs or other non -functional 
time wasters in the loop, the 
loop can be significantly 
stretched. 

An 8008 is being used in 
the examples in this article, 
but the principles hold for 
any computer. Only the 
numerical values will change. 

The loop represented by 
Fig. 1 for an 8008 would be a 

simple three instructions (six 
bytes) long. 

"XI -j 
..X., 

DCB 
JFZ 
L JUMP BACK 
H UNLESS X = 0 

LOAD DELAY 

DECREMENT "X" 

The value of "x" loaded 
into the B register will be the 
main factor in varying the 
time delay provided by this 
loop. Calculating the exact 
time period is done by 
tabulation of instruction 
execution times. These 
examples will be based on the 
8008 instruction execution 
times with the clock running 
at exactly 500 kHz. 

by 
James Hogenson 
Box 295 
Halstad MN 56548 

OPTIONAL 
"NOP" - 
TIME 

t 

FROM MAIN 
PROGRAM 

SET VALUE 

REGISTER 

NO 

Fig. 1. The idea of a timing loop, 
or how to make a CPU waste time 
productively. 

To calculate the time for 
this loop, assume the value of 
"x" to be 1 so no part of the 
loop is repeated. Add up the 
number of microseconds 
required by each instruction. 

LBI 
DCB 
JFZ 

32 
20 
36 
88 

US 
US 
US 
US 

Now go back to determine 
how many microseconds each 
repetition of the loop will 
produce. The LBI instruction 
is not repeated. Do not count 
any unrepeated instructions 
in this second tabulation. 

DCB 
JFZ 

= 20 US 
= 44 US 

64 US 

Note the different 
execution times for the J FZ 
instruction. For the 8008, the 
execution time of conditional 
instructions depends upon 
the condition. If the 
condition results in a true 
branch, the instruction takes 
the longer of the two 
execution times. The false 
branch is the shorter time. 

The time formula for this 
loop is 

64X + 24 = N 
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DECREMENT 
REGISTER 

RETURN 
TO MAIN 
PROGRAM 

"x" being the value loaded 
into B and "n" being the 
total execution time in 
microseconds. The unreduced 
formula is 

(X - 1 ) 64 + 88 = N 

Since 64 us are added for 
each repetition, we must 
multiply 64 by one less than 
the value of "x." 

255 is the largest possible 
value of "x" since we are 
limited to an 8 -bit word. 
Therefore, the maximum 
time delay that can be 
provided by this loop is 
16344 us. This loop can be 
stretched by placing a NOP 
instruction (op code 300) 
before the DCB, and 
re- routing the jump. 

LBI SET VALUE OF "X" 
"X" 

NOP ABSORB EXTRA 20 US 
DCB DECREMENT "X" 
JFZ JUMP BACK TO NOP 
L UNLESS X = 0 

If desired, more than one 
NOP may be inserted. Each 
NOP will add another 20x 
microsedonds. The maximum 
time with one NOP is 21444 
us, the NOP adding 5100 us. 

If a timing loop is to be 
used a number of times at 



various points in a program, it 
may be desirable to rewrite 
the loop as a called 
subroutine. The basic 
flowchart remains unchanged; 
only the method of 
implementing it changes. 

(MAIN 
PROGRAM) 
CAL CALL 
L TIME 
H LOOP 

(TIME 
LOOP) 

LBI SET VALUE OF "X" 
"X" 

DECREMENT "X" 
RTZ RETURN IF "X" = 0 

JMP 
L JUMP BACK TO DCB 
H 

Tabulation will show that 
the basic loop is good for 116 
us with each repetition 
adding 76 us. The reduced 
formula is 

76X + 40 = N 

This loop is a little more 
complex. Although the CAL 
instruction which calls the 
loop is not a part of the loop 
itself, the execution time of 
the CAL instruction is a part 
of the time period produced. 
We, therefore, must add 44 us 

for the CAL. 
As done before, we assume 

the value of "x" to be 1 for 
the first tabulation. The RTZ 
will be a true branch, so we 
stop adding there. An RTZ 
true branch will take 20 us, 

while an RTZ false branch 
will take 12 us. 

Each repetition will add 
12 us for the RTZ, 44 us for 
the JMP, and 20 us for the 
DCB instruction. The 
unreduced formula is 

(X - 1 )76 + 116 = N 

NOPs placed before the 
DCB instruction will have the 
same effect as in the first 
loop, an additional 20x us per 
NOP. 

The maximum time period 
produced by this second loop 
with one NOP is 24520 us. 

The minimum time period 
without any NOPs is 116 us. 

Anything under 116 us can 

be more efficiently 
implemented with straight 
NOPs than with a loop, 
should such a need arise. 

If a time period much 
longer than 24000 us is 

needed, modify the time loop 
to make a double loop as 

shown in Fig. 2. Make an 

identical loop, but rather 
than using a NOP for more 
time, insert an entire loop. 

CAL (TIME LOOP) 
L 

(TIME LOOP) 
LCI 
nYn 

A NOP 
LB I 
"X" 

B NOP 
DCB 
JFZ 

H 
DCC 
RTZ 

L 
H 

SET VALUE OF "Y" 

SET VALUE OF "X" 

DECREMENT nXn 

JUMP BACK TO DCB 
IF "X" x O 

DECREMENT "Y" 
RETURN IF "Y" = 0 

JUMP TO LBI 

Time calculations for 
multiple loops become 
somewhat more complex, but 
again the same principle is 

used. 
The inside loop used here 

is the same loop first 
calculated at the beginning of 
this article. When calculating 
the main loop, the inside loop 
is treated as one combined 
unit of value. The tabulation 
will look like this: 

MAIN LOOP: 
CAL = 44 US 
LCI = 32 US 
INSIDE 
LOOP = 

DCC = 

RTZ = 

(64X + 24) US 
20 US 
20 US 

(64X + 140) US 

EACH REPETITION OR 
TRUE BRANCH WILL ADD: 

RTZ = 12 US 
JMP = 

INSIDE 
LOOP = (64X + 24) US 
DCC = 20 US 

(64X + 100) US 

44 US 

The formula, unreduced, 
would be 

64X + 140 + 

(Y-1)(64X + 100) = N 

Reducing the formula 
gives us 

64XY + 100X + 40 = N 

Fig. 2. Getting fancy. By nesting one timing loop 
within an outer loop, much longer delays can be 
obtained. Two parameters "x" and "y" are re- 
quired to completely specify this loop. In a 16 -bit 
machine, of course, the same result (here intended 
for an 8 -bit 8008) can be obtained without nested 
loops since the 16- bitter can count much higher. 

The maximum time delay 
provided by this loop would 
be 4187140 us. A NOP 
inserted at location "a" will 
add 20y us. A NOP at "b" 
will add 20xy us. The use of 
both NOPs will boost our 
maximum time to 5492740 
us, or over 5 seconds. 

The purpose of developing 
formulas is to determine the 
values of the registers needed 
to obtain a specified time 
period. For purposes of 
illustrating an example, let us 

assume we want exactly 5000 
us to pass between point A 
and point B of a program. We 
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would place a CAL 
instruction between point A 
and point B which would call 
the time loop. The shorter 
loop will be sufficient for this 
application, so the equation 
will now be 

76X + 40 = 5000 

Working the equation will 
give a value of 65.23615 ... 
for "x." A fractional value 
will not fit in any single 
register of the CPU. To find 
out what to do now, multiply 
65 by 76, add 40, and 
subtract the result from 
5000. We find the difference 



is 20 us. This is very simple to 
take care of. Insert a NOP 
instruction at any point in 
the routine where it will not 
be repeated. Before the LBI 
instruction would do fine. 
Now, with 65 (decimal 
notation) loaded into the B 

register, exactly 5000 us will 
pass between points A and B 

of our main program. 
Finding an exact time 

period using the longer loop 
involves a certain amount of 
trial and error. To find an 
approximate value of "x" 
(using no NOPs) use this 
formula: 

N-40 
64Y/ 1.5 

Assign an arbitrary value 
to "y," replace "n" with the 
required time period. 

Now, assume a time period 
of exactly 505904 us is 

needed. (This time period will 
be used later.) There is one 
stipulation in this case which 
will be explained in greater 
detail later. The value of "x" 
must be 255. Solving the 
formula equation for "y" 

(64)(255)Y + 
100Y + 40 = 505904 

gives "y" a value of 30.8078. 
30 must be used for "y." The 
total time of the loop is then 
492640 us, 13264 us short of 
the required time. In most 
cases, you would re- assign 

values and try again, but in 
this case, the value of "x" 
cannot be changed. The 
alternative is to use the 
shorter loop to clean up the 
leftovers. After calling one 
loop, call the other loop. 
Then go on with the main 
program. Solving the short 
loop equation comes out at a 

nice even 174. 
76X + 40 = 13264 

What looked like a real 
oddball turned out to be 

perfect! 
The formulas and all such 

may seem like a lot of 
monkey business just to 
waste time. Speed is the 
purpose of computers, but 
there are times when they 
must be slowed down. 

The primary application of 
time loops is in I/O interface. 
If a computer is to monitor a 

data input which is to be read 
once every 10 ms, there are 
two alternatives for timing. 
The hardware of the device 
being monitored may include 
a timing device and a flag to 
indicate when the device is 

ready. The computer enters a 

loop which monitors the flag 
until the device is ready, then 
reads the data. The other 
alternative is to use the 
software time loop, and omit 
the extra hardware. 

An interesting application 
along this line is a completely 
software "fabricated" 
keyboard debounce system. 
This method will not work in 
an interrupt type of input 
system, but for many small 
scale systems, this method is 

ideal. 
Rather than connecting 

the keypressed line of the 
keyboard to some debounce, 
timer and latch circuitry, 
connect it to the eighth bit of 
the parallel data input on the 
computer. The loop used will 
test the eighth bit for the 
keypressed state. When a 

keypressed is sensed, a time 
loop of 16344 us is executed, 
then the data input is 

accepted. The loop then 
branches back to the main 
program to take care of the 
new data. When the program 
comes back to the input loop, 
the keypressed line is first 
tested to be sure no keys are 
being pressed. After all keys 
have been released, the loop 
will wait for the next 
keypressed state. This 
procedure will prevent more 
than one data entry from 
each keystroke. 

When I first tried this 
keyboard debounce method 
over five months ago, I was so 
pleased with it that I'm still 

Fig. 3. Software can be used to debounce a keyboard - simply loop 
around for a long enough time to ensure that keys have stabilized. The 
loop is started as soon as the "any key pressed" (keypressed) line 
indicates any non -null bit pattern. 

07/115 = 101 
116 = 002 
117 = 100 
120 = 115 
121 = 007 
122 = 101 
123 = 002 
124 = 140 
125 = 122 
126 = 007 
127 = 026 
130 = 377 
131 = 021 
132 = 110 
133 = 131 
134 = 007 
135 = 101 
136 = 104 
137 = 1 

140 = H 

IN 
RLC 
JFC 
L 

H 

IN 
RLC 
JTC 
L 
H 

LC I 
"255" 
DCC 
JFZ 
L 
H 

IN 
JMP 
L 

H 

TEST INPUT 
WAIT UNTIL 
SATISFIED 

FOR KEYPRESSED, 
CONDITION IS 

TEST INPUT FOR KEYPRESSED, 
WAIT UNTIL CONDITION IS 
SATISFIED 

EXECUTE 
TIME 
DELAY 

ACCEPT INPUT OF DATA 

JUMP TO MAIN PROGRAM 
(MAY BE REPLACED WITH A 

RETURN INSTRUCTION.) 
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INCREMENT 
TI ME 
COUNT 

UPDATE 
DISPLAY 

i 
INITIATE 
TIME 
CYCLE 

Fig. 4. The digital clock program 
looks simple at this level: Incre- 
ment the time count, update the 
display, then initiate a time cycle 
such that the entire loop takes 
exactly one second! 

using the method for all data 
entry to my microcomputer. 
Not once has it missed some 
data, or given me false or 
duplicated data. And it was 
so easy to implement! 

Time loops may also be 
used in output applications. 
have an SWTPC TV 
typewriter, but I am not 
using the special computer 
interface board. I found that 
a simple time loop does the 
job well enough and fast 
enough. 

Since we've done our 
homework, now we can play. 
An interesting and novel 
application of time loops is a 

completely software 
"fabricated" clock. The clock 
program presented here will 
have three major functions 
(see Fig. 4). 

The clock will display 
hours, minutes and seconds. 
The "increment time count" 
segment of. the program is 

responsible for computing the 
next time reading in 
sequence. It must consist of 
more than a straight counting 
sequence since time is not 
expressed in straight decimal 
format. 

The "update display" 
segment is responsible for 
producing the newly 
computed time at an output 
device. 

After the first two 
segments have been executed, 



Fig. 5. Ah, but the simplicity of Fig. 4 - as this figure reveals - hides a lot of low level detail. Here is the flow chart of the clock's operations. 
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8008 Timing Quick Reference Guide 
INSTRUCTION 

20 INCREMENT INDEX REGISTER 
20 DECREMENT INDEX REGISTER 
20 ROTATE ACCUMULATOR 
12/20 CONDITIONAL RETURN" 
36/44 CONDITIONAL JUMPS 
36/44 CONDITIONAL CALL` 
20 UNCONDITIONAL RETURN 
44 UNCONDITIONAL JUMP 
44 UNCONDITIONAL CALL 
20 RESTART 
32 LOAD DATA IMMEDIATE 

(INTO INDEX REGISTER) 
36 LOAD DATA IMMEDIATE 

(INTO MEMORY REGISTER) 
32 ALU IMMEDIATE 
20 ALU REGISTER 
32 ALU MEMORY REGISTER 
24 OUTPUT 
32 INPUT 
20 LOAD DATA - REGISTER(oP CODE 3 --) 
32 LOAD DATA - MEM. & REG. (OP CODE 3 -7 oR 37 -) 

Here is a quick reference table for execution times of all instructions 
in the 8008 repertoire. Such a reference table can be easily made for 
any CPU. Simply multiply the number of machine states required 
for the execution of each type of instruction by the time required 
per machine state. AT 500 kHz, the 8008 takes four us per machine 
state. An unconditional jump instruction requires 11 states in the 
8008 , therefore 44 us. Do not confuse machine states with machine 
cycles. The same jump instruction requires three machine cycles. 

'Conditional instructions: Execution time depends upon condition. 
If condition causes true branch, the execution time is longer. If the 
condition causes a false branch (if condition is not satisfied), the 
execution time is shorter. 

the "time cycle" segment 
makes up the difference so 
that the entire program takes 
exactly one second per pass. 
Writing a clock program isn't 
hard, but making it take 
exactly one second per pass 
definitely adds to the 
challenge. The major 
consideration is that branches 
from conditional instructions 
must be balanced in such a 

way that the program will 
take exactly the same 
execution time regardless of 
the combination of 
conditions and branches. 
That's where all the time 
loops come in, and that's 
where lots of fun comes in! 

The program can best be 
described in the form of a 

flowchart, Fig. 5. The 
program listing in Fig. 6 is 
divided according to the 
flowchart divisions shown by 
dashed lines. The op codes 
are for 8008 systems. The 
mnemonics and op codes can 
be easily translated into 8080 
format. However, all timing 
considerations must be 
recalculated for use with 
anything other than an 8008 
running at exactly 500 kHz. 

When time balancing a 

segment of a program, it is 
best to work from the 
bottom and go up. The time 
adjustment in part A of the 
flowchart must compensate 
for parts B, C, D and E, so 
before that time period can 
be calculated, the execution 
time of the other parts must 
be calculated. 

Some of the time 
adjustments in part E do not 
use a time loop. The short 
time adjustments there (in 
part E) are more conveniently 
implemented with a 

combination of other time 
consuming instructions which 
will not change the function 
of the program. 

To determine the time 
adjustment needed in one 
branch, tabulate the total 
execution time of the longer 
branch. Add or subtract 8 us 

(depending upon which 
branch is the true branch) to 
compensate for the difference 
in conditional jump 
instructions. 

The same time loop will be 
used several times, yet the 
time periods will vary. This 

can be accommodated when 
using the short loop by 
placing the LBI instruction 
and loading the value of "x" 
before the loop is called. The 
location of the LBI 
instruction will have no effect 
on the overall time period 
produced. 

Occasionally a time loop 
will not come out evenly. For 
example, another 12 us may 
be needed. This will not be 
accommodated in the loop, 
so the only alternative is to 
use a NOP instruction. But 
the only instruction which 
will absorb just 12 us is an 
unsatisfied conditional return 
instruction. Using such an 
instruction could result in 
trouble if used alone. 
However, if an AND 
instruction can be used 
without affecting the 
program functions, the AND 
instruction will insure that 
the conditional return (RTC) 
will not be satisfied. To keep 
the program in balance when 
balancing the time, insert a 

NOP in the opposite branch 
to offset the AND 
instruction, and the net 
difference will be 12 us. 

Flowchart parts F and G 
need not be included in the 
time balancing considerations 
of A, B, C, D and E. The 
program returns to a common 
point before executing parts 
F and G, so those parts are 
not offsetting anything. 

The output loop as given 
in the listing will provide an 
ASCII output for a TV 
typewriter. A sufficient time 
loop is provided between 
each individual output 
operation. The output loop 
may be easily modified for 
use with other devices. For 
use with Teletype, a line feed 
command must be added to 
the output characters. (Only 
a carriage return is used with 
a TVT.) For use with an LED 
display, deleting the ORI 
instruction at location 
04/257 will leave a straight 
binary (also BCD equivalent, 
since vales do not exceed 9) 
output. Keep in mind, 
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however, that modifying any 
part of the program will also 
require modifying the timing 
elements involved. 

The execution time of the 
complete "increment time 
count" segment plus the 
"update display" segment 
totals 494096 us. Subtract 
that time from one second to 
find the time required of the 
timing cycle. The required 
time is 505904 us. The values 
for this loop have already 
been worked out in a 

previous example. 
The reason the value of 

"x" cannot be conveniently 
changed in the long loop in 
this case is that the loop is 

called and used from two 
locations in the program. The 
value of "x" cannot be 
changed for one application 
without affecting the other. 
If the loop were modified to 
load B from another register 
which remained constant, 
both values would become 
variables which could be 
easily assigned values from 
any point in the program. 
This would also include 
recalculating the time 
formula of the loop. 

Your clock should now be 
ready to run. (Oh, by the 
way, there is one little 
drawback: Your computer 
can't be used for anything 
else while it's keeping time, 
unless, of course, you really 
want to go to extremes with 
the calculating! This program 
is strictly a novelty!) When 
you are ready to start your 
clock, load the correct time 
plus a couple of minutes into 
memory locations 04/000 
through 04/005. When the 
loaded time comes, start the 
computer. Jump into the 
program at 04/006. 

The time kept by the 
computer will only be as 

accurate as the frequency of 
the clock driving the CPU. 
The oscillator must be set at 
exactly 500 kHz. Although 
this is difficult to do, any 
percentage of error in fre- 
quency will be directly 
reflected by the time kept. 



004/153 = 150 JTZ 

Fig. 6. And finally, the lowest level of detail of all: A "pseudo oo4 s4 = 213 LNOON 
assembly listing of the program for the digital clock as implemented óó0:;s6 óéó iNJL 

for an 8008 computer. Of course, those readers who have an 8080, a oo4 /IS7 = 307 LAM 
004/,60 = 074 CPI DEC,51_^N, JUMP IF 

6501, a 6800 or PACE will have to do a little bit of thinking to adapt 004/161 012 "10 HouR DIGIT Is NOT 

Fig. 4 and Fig. 5 to the alternative microcomputer CPU designs. oo4 /,6z = 100 JFC LESS THAN 10 
004/167 = 177 GTENH 

TNOUR ,G04 /000 : XXX 10 HOUR DIGIT REGISTER 004/,64 = 004 
HOUR,0',4 /001 xxx HOUR DIGIT REGISTER 004/165 307 LAM NEED " A NOR IS ADDED TO BOTH BRANCHES 
TMIN,004 /002 = XXX IO MINUTE REGISTER 004/166 = 307 LAM TO TO BALANCE TNfi TRUE BRANCH FROM 
MINI004 /003 = XXX MINUTE REGISTER 004/167 = 307 LAM WASTE 04/153. A BETTER PLACE FOR THE ND 
TSEC1004 /004 = XXX 10 SECOND REGISTER 004/170 = 307 LAM 200 VS OULD HAVE BEEN 04/]56. BUT *NO 
SEC,004 /003 X %% SECOND REGISTER 004/171 = j07 LAM TO *ANTS TO REWRITE HALF A PROGRAM TO 

004/172 = 300 NOP BALANCE SAVE ONE MEMORY LOCATION? 
START,004 /006 = 056 LITI LOAD L/H *ITN 004/173 = 700 NOR BRANCH 

004/007 004 N(SEC) ADDRESS OF SECONDS 004/174 = 104 JMP NO LET'S GET OUT'A ITERE 

AO004/010 066 LLI DIGIT REGISTER 004/175 = 275 LDISPL 
004/011 = 005 L(SEC) 004/176 = 004 M 

004/012 = 307 LAM INCREMENT SECONDS GTENH, 004/177 = 006 LAI 

004/013 004 ROI DIGIT 004/200 = 000 0' CLEAR HOUR DIGIT REGISTER 
004 /OI4 001 "1" 004/201 370 LMA 

004/013 = 074 CPI DECISION. JUMP IF 004/202 = 061 DCL 

004/016 012 "IO" SECONDS DIGIT IS NOT 004/203 = 707 LAM INCREMENT 
004/017 100 JFC LESS TITAN 10 004/204 = 004 ADI 10 HOUR DIGIT 
004/020 = 036 LL 004/20.5 = 001 "1" 

004/021 004 HJ - GIENS 004/206 = 370 LMA RETURN 10 MR. DIGIT TO REGISTER 

004/022 370 LMA RETURN SECONDS DIGIT TO ITS REGISTER 004/207 = 700 NOP .. 
004/023 = 370 LMA REPEAT INSTRUCTION FOR MORE TIME 004/210 = 104 JMP CYCLE FINISHED 

004/024 = 016 LOI 004/211 = 275 LISPL 
004/023 017 "IS" SET VALUE OF "x" 004/212 = 004 H 

004/026 = 106 CAL CALL TIME LOOP TO COMPENSATE NOON. 004/2,7 = 060 INL 

004/027 = 247 LL 004 /214 = 707 LAM 

004/030 = 004 H TLOOP 004/215 = 074 CPI DECISION, JUMP IF 

004/071 = 300 NOR NEED A LITTLE MORE TIME 004/216 = 003 "7" HOUR DIGIT IS NOT 

004/032 300 NOP 004/217 = 100 JFC LESS TITAN 3 

004/037 = 104 JMP FINISHED THIS CYCLE 004/220 = 232 L 

004/034 = 275 L L 004/221 = 004 H 
RESNOUR 

004/075 = 004 HJ DISPL 004/222 = 016 LOI 

GTENS,004 /036 = 006 LAI 004/223 = 002 "x" SET VALUE OF " %" 

004/037 000 "0" CLEAR SECONDS DIGIT REGISTER 004/224 = 106 CAL CALL TIME LOOP 

004/040 370 LMA 004/225 = 247 L 

004/041 = 061 DCL 004/226 = 004 M 
TLOOP 

004/042 307 LAM INCREMENT 004/227 = 104 JMP JUMP TO 004/275/036 

004/043 = 004 ADI IO SECONDS DIGIT 004/230 = 275 LDISPL 
004/044 = 001 "1" 004/231 = 004 H 

RESNDURI004 /232 = 006 LAI 

O004/045 = 074 CPI DECISION, JUMP IF 004/233 = 001 '1" RESET HOUR DIGIT TO "1" 

004/046 = 006 "6" IO SECONDS DIGIT IS NOT 004/234 = 370 LMA 

004/047 100 JFC LESS THAN 6 004/235 = 061 DCL 

004/050 063 
L IGOMIN 004/236 = 006 LAI 

004/051 = 004 H 004/277 = 000 "0" CLEAR 10 NOVR DIGIT REGISTER 

004/052 370 LMA RETURN IO SEC. DIGIT TO REGISTER 004/240 = 770 LMA 

004/053 016 LBI 004/241 = 241 NDB (YES. 241 = 241, THAT'S NOT AN ERROR[ 

004/054 015 "13" SET VALUE OF "K" 004/242 = 043 RTC FOR TIME BALANCING. THE NET DIFFERENCE 

004/055 = 106 CAL CALL TIME LOOP 004/247 = 047 RTC BETWEEN BRANCHES FROM 04/153 RAS 24 US. 

004/056 207 L 004/244 = 104 JMP 2 X RTC = 24 US. THE NDB IS BALANCED 

004/057 004 H TLOOP 004/245 = 275 LL BY THE HOP'S MENTIONED 

004/060 = 104 JMP FINISHED THIS CYCLE 004/24R6 = 004 Hr -DISPL IN THE NOTE 

004 /061 = 275 L] TLOOPI004/247 = 011 DCB SHORT TIMING LOOP 
004/062 = 004 H D15PL 

004/250 = 053 RTZ 
GOMINI 004/063 = 076 LMI CLEAR 10 SEC. DIGIT REGISTER 004/251 = 104 JMP 

004/064 000 "0" (LAI. LMA ARE USED INSTEAD OF LMI 004/252 = 247 L 
004/065 061 DCL WHERE TIMING WORKS OUTBETTER THAT MAY.) LOOP 

004/233 = 004 H 

004/066 307 LAM INCREMENT 
004/067 004 ADI MINUTES DIGIT OW1. 004 /256 = 307 LAM OUTPUT SUBROUTINE STARTS 
004/070 001 "I" 004/257 = 064 ORI GENERATE ASCII CHARACTER 

004/071 = 074 CPI DECISION. JUMP IF 004/260 = 060 'AR" 

O004/072 012 "10" MINUTES DIGIT IS NOT 004/261 121 OUT PRINT CHARACTER 

004/073 100 JFC LESS THAN 10 OO4/262 026 LCI 

004/074 = 110 L 
004/263 = 005 "5" SET VALUE OF "Y" 

004/075 004 H 
GTENM 004/zó4 106 CAL CALL LONG TIME LOOP 

004/076 370 LMA RETURN MINUTES DIGIT TO REGISTER 004/263 = 724 LLTIME 
004/077 016 LBI 

004/266 = 004 H 

004 /100 012 "10" SET VALUE OF "x" 004/267 = 031 DCD 

004 /101 106 CAL CALL TIME LOOP 004/270 = 053 RTZ ARE WE DONE PRINTING, 

004/102 247 L 
004/271 = 060 INL CONTINUE IF NOT 

004/103 004 H 
LOOP 004/272 = 104 JMP 

004/104 317 LBM NEED AN EXTRA (2 US. 004/273 256 L 

H 
UTL 

004/105 104 JMP 1LBM - 32 US, OTHER 20 US BALANCED BY NOP) 004/274 004 

004/106 275 L 6ISPL1004 /273 = 036 LDI 
004/276 006 "6 

SET UP COUNT - DISPLAY ROUTINE 

ISPL ' 
004/107 004 H SET UR ADDRESS O 

GTENM, 004 /110 300 NOP 20 US BALANCE F 004/277 066 LLI 

004 /III 006 LAI 
004/300 000 "0' 

004/112 = 000 "0" CLEAR MINUTES REGISTER 004/301 106 CAL OUTPUT ROUTINE 

004/113 370 LMA 
004/302 = 256 LI-.... OUTL 

004/114 061 DCL 
004/707 = 004 H 

004/113 307 LAM INCREMENT 004/304 006 LAI 

004/116 004 AD1 IO MINUTES DIGIT 004/305 OI5 "17" OUTPUT CARRIAf1E RETURN COMMAND 

004/117 001 "I" _ 004/706 121 OUT 
004/367 = 026 LC1 

004/120 074 CPI DECISION, JUMP IF O 004 /71) 0106 CAL, O CALL 
VALUE 
LONG TIME LOOP 

OF 
Y 

004/121 006 "6" 10 MINUTES DIGIT IS NOT 004/312 324 
004/122 100 JFC LESS THAN 6 LTIME 

004/123 137 L 004/313 004 

004/124 004 H GOMOUR 004/314 016 LBI 

004/125 370 LMA RETURN IO MIN. DIGIT TO REGISTER 004/315 255 "175" SET VALUE OF "X" 

004/316 106 CAL CALL SNORT TIME LOOP 
004/126 016 LBI 
004/127 007 "7" SET VALUE OF "X" 

004/317 - 247 L]__... TLOOP 

004/130 106 CAL CALL TIME LOOP 004/720 004 H 

004 /131 247 L 004/321 104 JMP JUMP BACK TO THE BEGINNING AND RECYCLE 

004/132 004 H 
TL OOP 004/322 006 LI-mw, TART 

004/133 300 HOP KEEPING THE TIME IN BALANCE _ 004 327 004 H 

004/134 104 JMP FINISHED THIS CYCLE LTIME1004 /324 016 LOI SET VALUE OF 

004/135 275 LL 004/325 377 "255' 

004/136 004 HJ - DISPL LTIMI, 004 /726 011 DCB DECREMENT "X" 

GOHDUR,004 /137 006 LAI 
004/327 110 JF2 JUMP BACK TO DECREMENT AGAIN 

004/140 000 "0" CLEAR 10 MINUTES REGISTER 004/370 326 LLTIMI 
004/111 370 LMA 

004/331 004 N IF "X" DOESN'T EQUAL "0" 

004/142 061 OCL 
004/332 021 DCC DECREMENT "Y" 

004/143 307 LAM INCREMENT 004/333 053 RTZ GO BACK TO PROGRAM IF Y = 0 

001/144 004 ADI HOURS DIGIT 004/774 104 JMP REPEAT LOOP 

004/145 001 "1" 
004/335 = 324 LTIME 

004/146 770 LMA PUT TITE HOURS DIGIT BACK FOR THE 004/736 004 NJ _ 

.. 004/147 061 DCL TIME BEING. 
004 /END = SET THE TIME MINUTE OR TAO IN ADVANCE AT LOCATIONS 04/005. 

EO 004 /ISO 307 LAM 
WAIT UNTIL THE RIGHT TIME. AND START THE PROGRAM BY JUMPING 

IN AT 04/006. THE PROGRAM IS STOPPED BY LOADING A HALT 

004 /I5I 074 CPI DECISION, JUMP IF 

004/152 001 "1" IO HOUR DIGIT = 1 

INSTRUCTION INTERRUPT FROM THE FRONT PANEL. 
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A Plot Is Incomplete 
Without Characters 

Who would want to miss 
the opportunity of cre- 
ating customized graphics 
for special applications? 

The design of a plotting 
data format can be likened 
to designing a special pur- 
pose computer instruction 
set; this instruction set is 
emulated by the plotting 
software in real time. 

Richard J Lerseth 
8245 Mediterranean Way 
Sacramento CA 95826 

As computer hobbyists, a number of us 
will sooner or later play around with 
graphics using vector CRTs or XY pen 
plotters; but very few of us will be willing to 
pay the high price of a number of copy- 
righted plotting packages available today 
through computer graphics houses. Besides, 
most of us will not want to miss the 
opportunity of creating our own packages. 

So, in the process of interfacing your 
graphic media to your computer, you will 
normally have built the software needed to 
control simple vector moves on your media, 
as well as be able to window your plottings 
(that is, confine your moves within a speci- 
fied area). 

But, you will find that one of your major 
efforts will be building the character genera- 
tion module. As you will soon realize, 
computer graphics take large chunks of 
memory space for the graphic routines and 
plotting tables describing plotting sequences. 
Particularly, you will find that character 
generation will take a large portion of that 
memory space. 

In this article, I will describe some of the 
basic concepts of character generation, and 
describe techniques of saving memory space 
through efficient programming and by maxi- 
mizing the packing of information in the 
plotting tables. 

I assume at this point that you have 
within your basic plotting software: (1) the 
capability of shifting the relative origin 
within the plotting frame and (2) the capa- 
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bility of chain plotting. That is, plotting a 

vector from the ending point of the last 
vector move to the new position on the 
plotting field without explicitly defining the 
beginning point every time you make a 

vector move. We make full use of these two 
capabilities in plotting the character strings. 

Plotting Frame 

The easiest way of plotting a character is 
to define a plotting frame or grid upon 
which a sequence of vector moves are made 
from grid point to grid point. To minimize 
the complications involved with signed vec- 
tors, it is best to set the origin in the lower 
left hand corner of the field on which the 
character is to be plotted. With this conven- 
tion, the vector moves are positive upward 
and to the right in the grid. In this way, we 
can define the ending point of a vector move 
with positive integer coordinates. 

Limiting Frame and Plotting Resolution 

Next, we have to define the resolution in 
plotting the characters. That is, we have to 
decide how many grid points we desire 
within a character frame. This depends on 
many factors: How fine you want your 
plotting; how many different characters you 
are to plot; how you are to pack the moves 
into memory; what special effects or options 
you desire. These considerations are all 
interrelated and must be considered as a 
whole. 

I will propose an optimum character grid 
field within a limiting frame which will have 
a resolution as fine or finer than any used 
today by the graphic houses in their charac- 



The choice of a character 
grid should reflect the re- 

alities of the common 
machine designs. For most 
microcomputers (and 

minicomputers), a charac- 

ter frame optimized for 8 

or 16 bit words is 

desirable. 

ter plotting packages. It will minimize the 

use of storage, and will also have some 

capability for special options. However, as a 

user of this software, you can make appro- 
priate changes in your own system to reduce 

the resolution or to eliminate some of the 

special options. 
Figure 1 shows the (8 x 16) grid I 

propose. The storage origin (0,0) is defined 
to be in the lower left hand corner of the 

grid. The character base origin (0,5) is at the 

lower third point of the left hand side of the 

limiting frame such that upper case alpha- 

betic characters will be confined to the 

upper two-thirds of the grid frame. The 

lower third will be used for the tails of lower 
case alphabetic characters. The lower row of 
the grid will not be used for plotting; this 
row of 8 points will be reserved for flagging 
special options, which will be explained 
later. 

Specifying Moves 

Since most of us are using or will be 

using 8 or 16 bit machines, choosing this 
grid optimizes the packing of information 
for a vector move into an 8 bit byte of 
memory. A move to any point in this grid 
field (figure 1) could be defined with 3 bits 
for the horizontal (H) position, 4 bits for the 
vertical (V) position, and 1 bit for the Z 

function or the status (P) of the move- (pen 

up or pen down for pen plotters, or intensity 
modulation in video graphics). 

The 8 bits of H, V and P data for a move 

can be packed in the six different ways, such 

as HVP, VPH, PHV, VHP, HPV, or 
PVH. However, when packing such data into 

FRAME 
LIMITS 

V 

(IS,O) I I (IS,7) _.-- .-.-.-.-s- 

1 
I 

(5,0) - CHARACTER 
I BASE LINE 

BASE LINE 
ORIGIN 

STORAGE 
ORIGIN 

FRAME 
LIMITS 

(o,o' 
111-0-1111-0 . 111-! -H I (0,7) 

the byte, one must consider which is the 

fastest way to unpack the values. This 

greatly depends on the machine used. In 

most cases, it simply entails masking and 

shifting. I am going to use (VHP) as my 

standard. Why? No reason except that it can 

be implemented on most of the micros in 

use today without excessive effort. One 

procedure of unpacking the byte is given in 

appendix A. 
To clarify further discussions on vector 

moves, the coordinates of the moves within 
the limiting frame will be written as (V,H). 
When the Z function is included, the move 

will be defined as (V,H,P) where 

V is the vertical portion of the move 
H is the horizontal portion of the move 
P is the status of the Z function where, 

0 is pen down or display tube electron 
gun on 

1 is pen up or display tube electron 
gun off. 

The lower portion of the grid (V = 0; H = 0 

to 7; P = 0 or 1) will be reserved for special 

options which will be defined later. 

Optimization of the Storage 
of Character Moves 

Once a user starts playing around with 
developing the moves for each and every 
character, he soon realizes that there are a 

number of instances where a chain of moves 
is duplicated in the patterns of several 

characters. One can take advantage of this 
by building subchains and referencing them 
where it is appropriate to combine them in a 

large sequence. For example, the upper case 
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Figure 1: 8 by 16 Charac- 
ter Frame. Characters are 
plotted (or drawn on a 
vector graphics display) 
with reference to this local 
coordinate system. A 
series of 8 bit codes identi- 
fies the successive loca- 
tions of the pen (or elec- 
tron beam) and whether or 
not a line is to be drawn 
while moving to the loca- 
tion. The codes which 
reference the bottom row 
of this grid are treated as 

special operation codes for 
the plotting software: sub - 
chain reference, half shift 
right option, and floating 
subchain operation are de- 
fined in this article. 

When implementing this 
software for a graphic dis- 

play mechanism such as a 

CRT, pay attention to 
speed of execution. 
Flicker will result if your 
computer and software 
cannot keep up with 
your eye's timing charac- 

teristics. 



With the character de- 

fined, the next task is to 
shift, twist, stretch or 
squeeze the characters as 

they are drawn. 

alphabetic characters, (G, C, O, and Q) can 

all be combined together in one single chain. 
Also, the many lower case alphabetic charac- 
ters have (c, a, or o) as part of their chain. 
Taking advantage of such duplications can 
significantly lower the storage requirements 
of character plotting tables. 

Special Options 

When I defined the character limiting 
frame previously, I reserved the lowest hori- 
zontal line of grid points for special options. 
There are 8 grid points on this line. This 
gives 8 special options that can be used. If 
one considers the Z function, there are 16 
options in all. Whenever (O,H,P) is 

encountered in a plotting chain of moves, 
then a special option is initiated. The special 
options can use the following bytes in the 
plotting sequence and, as such, can involve 
one, two, three, or more bytes. 

The first special option we need is a 

subchain option. I shall define the code as 

(0,0,0). When this code is encountered, the 
next byte in sequence is the subchain num- 
ber. As one can see, there can be 256 
subchains. You will probably never need all 

256 unless you build a large multi -language 
or multi -font character set. 

The second option needed is a 1/2 shift 
right option. The code I used is (0,1,0). This 
option increases the resolution of the plot- 
ting in the horizontal direction and comes in 
handy when plotting upper case alphabetic 

APPENDIX A 
UNPACKING A VECTOR MOVE FROM AN EIGHT BIT BYTE 

Using V, H and P to denote bits, the move is VVVVHHHP in packed form. The 
unpacking procedure is as follows: 

1. An arithmetic shift right will make the Z function of the move available in the carry 
flag. The user can make use of this information through appropriate compares and 
jumps. Note that masking all but Bit P will also make the Z function available, but 
the action of shifting also readies the horizontal position of the move. 

2. Temporarily store present value of the accumulator in any other register. 
3. Mask the accumulator with octal 7. The horizontal position is now available. Send it 

out to the graphic device or store it for later use in another register. 
4. Bring back the stored value of the accumulator from Step 2, shift right three times 

and mask the result with octal 17. Now the vertical portion is available. 

The 8008 microprocessor assembly code would look like: 

032 RAR Shift right. 
310 LBA Load results temporarily in Register B. 

301 
044 007 

1 

301 
012 
012 
012 
044 017 

User defined portion using the Z function code in the carry flag. 

LAB Load ACC with value in Register B. 
ND! 007 Mask the ACC with 0078. 

User defined portion using the unpacked horizontal portion of the 
move. 

LAB Load ACC with value in Register B and rotate right 
RRC three times. 
RRC 
RRC 
NOI 017 Mask ACC with 0178. 

User defined portion using the unpacked vertical portion of the move. 
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M, T, V, W and a number of other characters 
to make them symmetric in the particular 
grid frame I propose. It is a one byte 
instruction to shift the horizontal portion of 
the next move byte one half grid space to 
the right. That is, if the sequence of bytes 
(5,0,0) (0,1,0) (5,3,0) (5,4,0) was 

encountered, then the next two moves 
would begin at (5,0), move to (5,3 -1/2) and 

end at (5,4) with pen down (or gun on). 
These last two options I consider to be 

the minimum you should have in your 
system if you are to have the resolution 
required to plot large character sets. 

Another option that could be used is the 
floating subchain option, (0,2,0). (This 
option is not shown in figure 6.) It takes 
three bytes of code to complete the se- 

quence of this option. For instance, a period 
is used extensively for a number of punctua- 
tion characters and lower case i's and j's. The 
subchain sequence (1,0,1) (1,1,0) (2,1,0) 
(2,0,0) (1,0,0) plots a period in the lower 
left hand corner of the grid. Now, by using 
the floating subchain option, this period can 

be floated anywhere on the grid. A three - 
byte sequence (0,2,0), (SV,SH,0), (subchain 
no.) will move the period to any location 
desired by using positive offset values 
(SV,SH). This would save at least two bytes 
of storage for every different position of the 
period in the grid field, if there are more 
than two positions to be plotted. But, it 
takes some extensive programming to 
include this option; the advantage is large in 
large character sets, but minimal in small 
sets. Also, since timing is important in using 
CRT graphic systems, one must consider 
whether the extra computing effort is worth 
the savings in memory. I will leave it up to 
you to dream up exotic plotting options of 
your own for the 13 additional options 
which remain undefined. 

Pointer and Move Sequence Tables 

The pointer and move sequence tables 
now have to be established. A general 
schematic of the tables is shown in figure 2, 
along with the relationship of the tables to 
one another. 

The primary pointer table defines the 
starting point in the character vector move 
sequence table, and the number of moves for 
each particular sequence. The pointer table 
is two bytes per character and shown in 
figure 3. Five bits of the first byte gives a 

maximum number of 31 primary steps per 
character. This is more than enough for any 
character contemplated, even if it were 
script or gothic. It is conceivable that a 

sequence table can be as large as 8 pages or 
2 K bytes long. The remaining 3 bits of the 
first byte could designate the page number. 



The second byte would designate the Table 1 (continued): , S 

starting point within that page. o o 

This two byte table will fit into one 256 __ E r É 6 m 

byte page of memory if there are 128 or less -ó m v 3 2 
>...v v 

Y P g Y uv m.,o and um o 
full ASCII O a O a th o v O z O c a. u 

characters in your set. So, the 
character set would fit easily in one page. 

The 7 bit ASCII code, if it resides in the 

upper portion of the address byte (bits 7 -1) 

with a zero in the LSB of the byte, can 

address the location table directly. The Y 
location table for the subchains will also use 

the same format. 
In figure 4, I give my version of the full 

ASCII 128 character set. Tables 1 -3 give the 
values needed to plot this set. The tables 
contain octal 2235 (decimal 1181) bytes of 
data. The tables are set up so that you can 

easily reduce the size of the tables to a y 
minimum set containing only 63 upper case 

alphabetic, numeric, and punctuation char- 

Table 1. 

E, 

E -o 0< 

PRIMARY POINTER VALUES 

d . oo 
o o rn 6 - E ,c-, E ó 

T. ÿ d ; o éúó 
OQ Ov» CZ 

000 000 587 11 

002 001 598 17 
004 002 615 12 
006 003 627 8 
010 004 635 10 
012 005 645 12 
014 006 657 14 

016 007 671 9 

020 010 680 10 

022 011 690 8 
024 012 698 8 
026 013 706 6 
030 014 712 7 

032 015 719 11 

034 016 730 2 

036 017 732 4 
040 020 736 11 

042 021 747 7 

044 022 754 9 
046 023 768 8 
050 024 776 6 
052 025 782 10 
054 026 792 14 
056 027 806 14 
060 030 820 6 
062 031 826 8 
064 032 834 6 
066 033 840 10 
070 034 850 4 
072 035 854 6 
074 036 860 9 
076 037 869 6 
100 040 875 1 

102 041 245 11 

104 042 262 12 
106 043 274 8 
110 044 278 14 

112 045 292 9 
114 046 301 12 

116 047 256 6 
120 050 323 6 
122 051 329 6 
124 052 313 6 
126 053 317 6 
130 054 243 7 

132 055 317 2 
134 056 245 5 
136 057 335 2 

140 060 147 13 

142 061 160 5 050 -240 
144 062 165 9 110 -245 
146 063 174 11 130 -256 
150 064 185 4 040 -271 
152 065 189 9 110 -275 
154 066 206 11 130 -316 
156 067 217 217 5 050 -331 
160 070 198 17 210 -306 
162 071 222 11 130 -336 
164 072 233 10 120 -351 
166 073 238 12 140 -356 
170 074 344 3 031-130 
172 075 337 4 041 -121 
174 076 341 3 031 -125 
176 077 347 12 141 -133 
200 100 359 19 231 -147 
202 101 0 8 100-000 
204 102 8 12 140 -010 
206 103 23 8 100 -027 
210 104 34 7 070 -042 
212 105 41 6 060 -051 
214 106 41 5 050 -051 
216 107 20 11 130 -024 
220 110 47 6 060 -057 

ro 222 111 53 8 100 -065 
m 224 112 61 6 060 -075 

á 
°' m °- 

226 
230 

113 
114 

67 
73 

6 
3 

060 -103 
030-111 

ú m ó 232 115 76 6 060 -114 
OÑa.o 234 116 82 4 040 -122 

132 -113 236 117 23 9 110 -027 

212 -126 240 120 86 7 070 -126 

142 -147 242 121 23 11 130 -027 

102-163 244 122 86 9 110 -126 

122 -173 246 123 95 12 140 -137 

142 -205 250 124 107 6 060 -153 

162 -221 252 125 113 6 060 -161 

112 -237 254 126 119 4 040 -167 

122 -250 256 127 123 6 060 -173 

102 -262 260 130 129 4 040 -201 

102 -272 262 131 133 8 100 -205 

062 -302 264 132 141 6 060 -215 

072 -310 266 133 378 4 041 -172 

132 -317 270 134 382 2 021 -176 

022 -332 272 135 384 4 041 -200 

042 -334 274 136 388 3 031 -204 

132 -340 276 137 391 2 021 -207 

072 -353 300 140 393 2 021 -211 

112- 362 302 141 395 10 121 -213 
103 -000 304 142 407 10 121 -227 

063 -010 306 143 397 8 101 -215 

123 -016 310 144 418 4 041 -242 

163 -030 312 145 397 10 121 -215 

163 -046 314 146 422 8 101 -246 
063 -064 316 147 430 7 071 -256 
103 -072 320 150 437 7 071 -265 
063 -102 322 151 444 10 121 -274 
123 -110 324 152 446 10 121 -276 
043 -122 326 153 456 6 061 -310 
063 -126 330 154 462 5 051 -316 
113 -134 332 155 467 12 141 -323 
063 -145 334 156 479 4 041.337 
013 -153 336 157 409 9 111-231 
130- 365 340 160 483 4 041 -343 
141 -006 342 161 487 4 041 -347 
101 -022 344 162 491 6 061 -353 
161 -026 346 163 497 12 141 -361 
111 -044 350 164 512 6 062 -000 
141 -055 352 165 518 7 072 -006 
061 -000 354 166 525 4 042 -015 
061 -103 356 167 529 5 052 -021 

061 -111 360 170 534 4 042 -026 
061 -071 362 171 538 7 072 -032 
061 -075 364 172 545 6 062-041 
070 -363 366 173 551 7 072 -047 
021 -075 370 174 565 2 022 -065 
050 -365 372 175 558 7 072 -056 
021 -117 374 176 567 4 042 -067 
150 -223 376 177 571 16 202 -073 
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Table 2 

acters. Appendix B explains how to reduce 
the size of the tables to the minimum set. 
But, I encourage you to go in the opposite 
direction and build up other subsets to add 
to this basic set. For example: Greek 
alphabet and mathematical sets, or centered 
symbol sets for line graphs. 

SUBCHAIN POINTER VALUES 

N 

° 
d 
v 

OQ 
000 

0 u 
c 

Et 5á 
Gÿ 

1 

002 2 
004 3 
006 4 
010 5 
012 6 
014 7 
016 8 
020 9 
022 10 
024 11 
026 12 
030 13 
032 14 
034 15 
036 16 
040 17 
042 18 
044 19 
046 20 
050 21 
052 22 
054 23 
056 24 
060 25 

Table 3. 

MOVE SEQUENCE VALUES 

An Aside: 

The techniques used in 
this article can be directly 
applied to any repeatable 
set of plotting sequences 
for display on a vector 
graphics device. For ex- 
ample, the chess pieces 
and chess board of a chess 
game display are one possi- 
ble data display; similarly, 
a Space War game's space 
ship symbol output to a 
graphic display device 
could use techniques of 
vector generation and rota- 
tion. 

T 
C 

.5 
p ° - 

OtnJ 

VI 

ó 
To 

O 
dv oS 

ÓÑ a aC1 

397 8 101 -215 
409 8 101 -231 
438 6 061 -266 
598 6 062 -126 
617 10 122 -151 
627 6 062 -163 
604 5 052 -134 
578 4 042 -102 
578 9 112 -102 
671 5 052 -237 
617 6 062 -151 
701 5 052 -275 
598 11 132 -126 
571 7 072 -073 
571 11 132 -073 
587 4 042 -113 
665 6 062 -231 
629 4 042 -165 
784 6 063 -020 
802 4 043 -042 
591 4 042-117 
810 10 123 -052 
810 4 043 -052 
627 5 052 -163 
842 6 063 -112 

000 040 100 140 200 240 300 340 

121 167 132 124 376 325 176 224 
320 076 176 132 121 370 256 260 
364 121 376 176 376 130 312 320 
372 360 121 216 361 125 300 364 
336 372 360 252 136 134 360 372 
136 336 377 244 361 321 374 336 
221 176 200 300 002 364 273 276 
236 132 245 320 226 372 314 172 
121 120 136 364 376 336 354 124 
360 241 361 372 002 276 372 311 
372 250 120 336 227 254 364 330 
354 377 136 361 002 202 342 326 
314 360 121 376 126 120 302 306 
272 120 360 002 213 136 264 310 
260 136 002 367 304 363 221 171 
273 121 126 002 361 376 264 210 
236 360 376 126 376 314 272 206 
176 241 136 361 120 272 236 166 
132 256 121 160 136 266 176 170 
120 377 360 124 125 273 132 067 
251 136 136 132 142 236 124 130 
256 365 376 176 200 176 160 131 
136 372 121 376 300 132 220 150 
337 002 360 361 342 124 324 146 
372 367 372 002 364 160 372 126 
364 002 336 126 372 133 321 130 
320 126 276 376 354 372 360 002 
160 125 232 361 316 160 376 167 
124 132 220 122 216 176 210 370 
132 221 231 002 154 161 130 366 
176 160 136 246 132 124 277 002 
336 124 161 134 124 132 232 166 
037 077 137 177 237 277 337 377 

UPPER CASE ALPHA 

Position, Orientation, and Scale 

Now that we have the ability to pull out 
the coordinates for a sequence of moves, we 
have just begun the job of plotting a 

character chain. We must translate each 
character into its appropriate position on the 
plotting media, then scale it up or down, 
rotate it into the proper position, and if 
desired, slant the character. What usually is 

done is to build conversion coefficients prior 
to plotting the desired character string. 
While going through the process of plotting, 
these coefficients transform the move co- 
ordinates residing in the move sequence 
table to the appropriate coordinates on the 
plotting media. 

This requires that you have the capability 
of multiplying and dividing floating point 
numbers in your system. I assume you will 
either have a calculator chip interface or a 

floating point software package to draw on. 
Additionally, you will need the capability of 
obtaining sines and cosines if you want the 
ability to rotate the character string out of a 

horizontal position or to define the slant of 
a character with an angle. 

Before we get into the procedure of 
shifting, twisting, stretching or squeezing the 
characters onto the plotting media, we must 
define a few parameters which are required 
prior to plotting the character string. In 

000 040 100 140 200 240 300 340 

307 234 347 226 365 242 346 262 
350 174 002 206 370 142 326 000 
370 152 146 147 130 355 330 003 
366 142 371 144 124 134 271 263 
346 365 346 124 241 000 266 022 
350 320 264 126 304 001 126 000 
305 360 224 146 236 353 026 002 
346 376 146 273 101 372 062 000 
366 120 130 310 116 364 363 001 
364 137 367 306 323 124 122 275 
344 132 350 264 214 127 143 034 
346 176 272 224 275 122 274 263 
311 136 232 206 134 243 207 264 
352 255 150 210 155 250 134 124 
372 130 126 232 132 000 371 205 
370 124 125 313 124 001 366 272 
350 160 372 212 142 275 126 234 
352 220 301 174 242 054 125 143 
221 326 316 216 264 032 130 124 
236 346 201 336 272 024 121 132 
277 364 216 372 254 042 260 154 
260 362 161 364 214 363 241 174 
367 340 256 320 202 122 262 212 
124 320 320 160 363 243 264 204 
131 136 337 124 122 264 246 222 
372 143 240 132 143 272 126 242 
355 354 176 373 124 254 247 264 
344 343 341 366 132 134 270 272 
322 154 364 126 154 125 272 254 
262 241 372 132 254 130 254 000 
244 256 336 365 272 331 134 000 
252 002 254 132 264 350 123 000 
037 077 137 177 237 277 337 377 

NUMERALS PUNCTUATION LOWER CASE ALPHA 
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figure 5, we see that we need the standard 
height (S) and width (W) of each character, 
the gap (G) between each character, the 

starting coordinate position (X0,Y0) of the 

character string defined as the baseline origin 
(identical to the relative origin), and the 

angles (0 &ß) defining the orientation and 

slant of the character string. These param- 
eters must be made available prior to plot- 
ting the character string. 

Now, let's list the formulae you will use in 

your plotting routine. 

7 BIT ASCII CODE OR USER DEFINED CODE 
RESIDING IN UPPER 7 BITS OF THE ACCESS 
BYTE W /LSB EOUAL TO ZERO 

PAGE 0 

254 

PRIMARY POINTER TABLE 

NO MOVES IPG NO BEGINNING ADD 

1. Scale Equations 
SS = S /10.0 vertical scale (1) 

SW = W /7.0 horizontal scale (2) 

SG = G /SW width -gap ratio (3) 
2. Rotation Equations 

a. Horizontal (H) portion of move 
HX = Cos 0 (4) 254 

H Y = Sin 0 

b. Vertical (V) portion of move 
(5) 

VX = -Sin 0 = -HY (6) 

VY= Cos O =HX (7) 

c. Vertical (V) portion of move 

corrected for the slant 
VX = -HY + HX *Sin ß (8) 

VY = HX + HY *Sin ß (9) 

3. Final Coefficients for Rotation and 

Scale 
DHX = HX *SW (10) 
DHY = HY *SW (11) 

VECTOR MOVE 
SEQUENCE TABLE 

PRIMARY SEO. 

255 

SUBCHAIN POINTER TABLE 

/ 

255 o 
PAGE I 

NO. MOVES I PG NO BEGINNING ADD 

000 040 100 140 200 240 300 340 000 040 100 140 

263 274 264 264 176 346 225 000 000 002 272 320 

272 205 260 171 002 324 230 016 017 166 172 325 

331 212 273 070 172 306 361 265 171 071 000 266 

346 263 264 131 002 266 002 164 176 170 004 000 
126 274 164 136 072 000 262 172 076 076 000 031 

132 122 172 177 000 006 366 177 070 176 025 361 

263 134 225 076 006 000 000 170 133 000 000 260 

142 373 230 000 165 011 013 070 136 006 026 266 
124 366 171 004 264 000 367 076 000 000 000 366 
132 270 070 265 172 012 360 131 017 013 006 000 
154 246 076 272 272 000 260 134 117 177 273 031 

275 230 261 002 115 006 321 000 110 170 264 137 

134 126 360 267 076 273 324 017 174 070 224 
263 132 266 002 070 264 000 153 074 076 232 
002 365 366 166 170 224 014 174 000 116 172 

126 370 265 171 176 232 367 074 020 134 164 

274 266 164 076 076 172 360 073 165 130 000 
261 250 172 071 261 164 260 076 264 135 027 
122 226 272 176 360 261 266 000 272 156 000 
206 130 171 321 366 360 165 017 172 176 030 
132 124 070 324 266 321 264 151 225 000 000 
274 371 076 367 321 326 272 172 232 022 031 

123 130 367 360 326 367 232 176 000 000 000 
274 221 360 260 000 266 224 136 021 023 022 
263 264 320 266 010 000 231 110 000 000 326 
134 232 326 000 171 013 172 070 004 024 324 
263 276 266 005 070 361 000 076 265 000 000 
124 260 000 111 260 015 000 224 006 031 261 
132 360 265 006 176 266 000 000 232 165 261 

025 364 164 000 133 273 004 000 272 264 360 
030 346 172 007 076 264 271 000 002 002 366 
132 306 272 171 367 164 170 000 227 226 326 

037 077 137 177 237 277 337 377 037 077 137 177 

LOWER ADDITIONAL 
CASE PUNCTUATION 
ALPHA 

ASCII CONTROL CHARACTERS 
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SUBCHAIN SEO 

255 

255 
O 

PAGE 2 

PAGE 
N < 7 

BEGIN 

SUBCHAIN 
OPT. CODE 

END 

BEGIN 

END 

255 VERT I HORIZ I Z 

7 4 3 I O 

Figure 2: Relationship of the Character 
Generation Tables. The selected character 
code is rotated left by one bit to define a 

number from 0 to 254. This number accesses 

a 16 bit quantity in the primary pointer 
table. The primary pointer table in turn 
locates the beginning of a series of pen 

locations in the move sequence table which 
define the character's plot representation. 
Within that series, there might be a pointer 
to the subchain table, which in turn points 
to an often used fragment of the graphics 
representation located at a different place in 

the move sequence table. Note that to 
minimize retrieval effort on machines such 

as the 8008 and 8080, sequences of moves 

should be restricted to single pages of 
memory. 

BYTE I BYTE 2 

7 6 5 4 3 2 1 0 7 6 5 4 3 k 2 1 O 

PAGE STARTING LOCATION 
NUMBER OF NO. 

MOVES IN ADDRESS OF FIRST 

SEQUENCE 
MOVE OF THE 

SEQUENCE 

Figure 3: Pr mary and Subchain Pointer 
Formats. The pointer tables are composed of 
two byte elements which contain informa- 
tion on the number of moves required, and 
the address of the first move of the 

sequence. 



As always, climb the 
highest mountain rather 
than be content with a 

mole hill. 

LOW 
ORDER 
BITS 000 001 

DVX = VX *SS 
DVY = VY *SS 

4. Shift Coefficients 
Baseline Origins 

(12) 
(13) 

Between Character 

DSX = DHX (7.0 + SG) (14) 
DSY = DHY (7.0 + SG) (15) 

5. Final Transformation Equations to be 
Applied to Each Move 
X = XO + H * DVX + (V -5.0) * DHX 

(16) 
Y = YO + H * DVY + (V-5.0) * DHY 

(17) 

HIGH ORDER BITS 
010 011 100 

0000 

0001 

0010 

0011 

0100 
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0110 

0111 
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Figure 4: an ASCII Graphic Character Set. The plotting tables 1 -3 are used to 
define this set of characters when displayed or drawn on an XYplotter. This 
figure was prepared by the author, using a commercial plotter as the output 
device. 
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6. Shift Relative Origin from Character 
XO = XO +DSX (18) 
YO = YO + DSY (19) 

Formulas (1) through (15) are calculated 
prior to plotting the first character of a line. 
The coefficients thus derived will not change 
throughout the plotting of the character 
chain. Note that the equations simplify con- 
siderably when the angles O and ß are limited 
to special cases. Two common special cases 
are 9 = 0 °, ß = 0° and 0 = 90 °, ß= 
Substituting the special values of sine and 
cosine for these angles produces the special 
cases. These values are: 

SIN(0) = 0.0 COS(0) = 1.0 

SIN(90) = 1.0 COS (90) = 0.0 

Equations (16) and (17) are the transforma- 
tion equations used during the plotting where 
only the values (H) and (V) change for each 
move. XO and YO are updated as we move 
to the next character in line to be plotted by 
using equations (18) and (19). 

Plotting Routine 

The plotting routine is outlined in figures 
6 and 7 as a flow chart. If you have BASIC, 
you should not have any problems imple- 

APPENDIX 
ABRIDGING THE ASCII PLOTTING TABLES 

NOTES: 

1. To abridge the plotting tables, do the 
following: 
A. For upper case alphabetic, numerals, and 

punctuation, only use: 
Primary Pointer Table - bytes (octal) 100 
to 301 
Subchain Pointer Table - none 
Move Sequence Table - bytes (octal) 0 to 
613 

B. For all characters except ASCII control 
characters, use: 
Primary Pointer Table - bytes (octal) 100 
to 375. 
Subchain Pointer Table - bytes (octal) 0 to 
5 
Move Sequence Table - bytes (octal) 0 to 
1070 

2. If you want abridged Set A above, note that 
you do not need to include the traps for special 
subchain option in your program. 

3. Note that the move sequence table is set up so 
that no sequence of moves crosses the 
boundary of a 256 byte page of memory. This 
eases the programming of micros such as the 
Intel 8008 or 8080. 

4. Note that the blank or space character was 
included at the end of the move sequence table. 
If you abridge the table, move the code to the 
end of your abridged table and correct the 
location code in the primary pointer table. 
Better yet, include in your program a trap to 
catch any spacing, as there is no actual plotting 
for this character. Just shift the relative origin 
to the next character to be plotted. 



menting this routine, as BASIC has the 

required floating point arithmetic and the 

transcendental functions, sine and cosine. If 
you plan to implement the routine in 

machine language, then I dare say you will 
have a little more work cut out for you. But, 

the advantage of going this route is that you 

will take full advantage of your micro- 

computer's design in order to minimize the 

use of memory and increase the speed of 
plotting. Speed is very important if you have 

a CRT graphics terminal, because of the 

refreshing problem. 

Summary 

In summary, I think you have here a start 

in creating your own vector character gene- 

ration package on whatever graphic media 

you have or plan to use. You can 11iplement 

the package as I have given it to you or 

abbreviate, expand, or abridge the package 

to suit your needs. 

I encourage you, though, to expand the 

(HARPLOT / ) \ 
CALCULATE 
DHX,DHY,DVX 
DVY,DSX,O5Y 

I:I1 
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I CALCULATE 

-1 TRANSFORMATION 
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IGET NEXT 
PRIMARY CODE 
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I DEFINES VALUES I 
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MOVE CODE 
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Figure 5: Character Orientation. To add an element of finesse to the plotting 

function, provision for general purpose rotation and slanting is a desirable 

feature. There are two angles to specify: angle O is the orientation angle of 

the baseline for a character string; angle ß is the frame slant relative to a 

perpendicular through the base line. 

r - 1 
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I I THE ROUTINE 1 

I I (EXAMPLE: FLOATING CHAIN OPTION) I _J 
NO 

NO 

FP:I 
CALL 
SUBCHAIN 
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H:H+0.5 
FP:O 

TRANSFORM 
AND PLOT 
THE MOVE 

CALL 
SHIFT 

NO 

(RETURN ) 
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l 
FORMULI 
16 9 17 

Figure 6: CHA RPLOT 
specified as a flow chart. 

' This is a subroutine which 

FORMULI is called whenever it is 
18 919 J desired to draw a character 

string of output. Sub- 
routines referenced by 
CHARPLOT are: SUB - 
CHAIN (see figure 7) and 
SHIFT. SHIFT Is a routine 
which Is used to move the 
relative origin of charac- 
ters from the present char- 
acter position to the next 
character position. 



- - - - -- 
I HALF I 

I SHIFT OPTION L- 
1 ENABLE I L_ -_ - --J 

Figure 7: SUBCHA IN 
specified as a flow chart. 
This is a subroutine which 
is called whenever it is 
desired to reference a sub- 
chain when drawing a 
character pattern. By 
picking commonly used 
segments of character pat- 
terns and putting these 
segments in isolated sub - 
chains, table storage is 
conserved 

basic character set I have given you to 
include foreign language alphabets, a music 
symbol set, a mathematical symbol set, or a 

centered symbol set for line graphs. The 
horizon in character plotting is only limited 
to your own efforts or imagination. Climb 
the highest mountain, rather than be content 
with a mole hill. 
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GLOSSARY 
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NO 
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Absolute origin: In a typical plotter or display 
device, there is an absolute origin for all possible 
positions of the writing mechanism. A common 
location of this origin is the lower left hand corner 
of the plotting field, so that points to the right and 
above can be specified by positive integer 
displacements. 
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Byte: A cell in memory which can store 8 bits of 
information. 

Chain: A set of vector moves to be performed 
sequentially. 

Chain plotting: The technique of specifying a 
movement of the plotting or display mechanism by 
a series of small movements. 

Character frame: A small region of the plotting 
medium in which motions will take place while 
plotting a single character. See figure 1. 

Coordinates: A point in a two dimensional space 
can be specified by a pair of numbers. These 
numbers are the coordinates of the point with 
respect to a reference point called the origin. 

Masking: The technique of selecting bits for 
inspection using the AND operation and a mask. 
The word which is being tested is combined with 
the mask using the AND operation. Every logical 1 

bit in the mask will select a corresponding bit in 
the word being tested; every logical zero bit in the 
mask forces a zero in the result independent of the 
word being tested. 

Medium: A plot or a display is usually performed 
on a two dimensional object which can be viewed 
by a human being. In the context of this article, 
the medium is the piece of paper or display tube 
on which you see the resulting characters. 

Page: In many microcomputers it is convenient to 
divide memory into blocks of multiple bytes, 
called pages. In the context of this article, the Intel 
8080 and 8008 definition is intended: a block of 
256 bytes whose high order address byte is 
identical. 

Plotting frame: The range of possible positions for 
the plotting or display mechanism. In most equip- 
ment, this is a grid of points specified by two 
integer coordinates for horizontal and vertical 
position. 

Relative origin: A local origin which is used for 
convenience of programming. The relative origin is 
specified by a coordinate pair with respect to an 
absolute origin of the mechanism used; movements 
involved in plotting a character are specified with 
respect to the relative origin to simplify placement 
of character patterns. 

Resolution: A degree of detail involved in the plot. 
Ultimately this is limited by the resolution of 
hardware, which is specified as the number of 
points per linear inch (or centimeter) of display in 
each coordinate direction. 

Subchain: In a chained plotting table, a subchain is 
like a subroutine of a computer program. It is a 
fragment of a plot which is often referenced, so use 
of the subchain economizes the memory require- 
ments of the data tables. 

Vector move: In the context of this article, a 
vector is a line segment which connects two points 
in the plotting frame. A vector move is the act of 
moving the plotting mechanism (pen or electron 
beam) from one of the points to the second point. 
In a chained approach, as used in this article, the 
starting point is implied by the last position of the 
mechanism and the ending point of the move is 
specified by the coordinates of the position. 



HEXPAWN 

A Beginning Project 

in ARTIFICIAL Intelligence 

What is intelligence? Pushing aside the philosophical and 
psychological questions for the moment, I can offer an 

operational definition of intelligence in programs: An 
"intelligent" program is one which was designed with a range 
of possible circumstances in mind, rules defining successful 
and unsuccessful responses to such circumstances, memory of 
the history of past responses and relevant circumstances, and 
an algorithm for using such past history information when 

similar circumstances occur again. Robert Wier has provided an 

example of a simple game application which illustrates this 

definition of intelligence in programs. Does it sound too 
deterministic for you? Hardly - the response is in some sense 
inherent in the program and its context. But, just as in natural 
life, the order and degree of the various inputs to the AI 
program cannot be predicted in advance with any great 
certainty. Just as each individual person is unique, each 
individual run of a good AI program will tend to differ - AI 
programs, like people, are good for lots of surprises. 

by 
Robert R. Wier 
1208 Mistletoe Drive 
Fort Worth TX 76110 

Artificial intelligence. The 
very words themselves are at 
once frightening and 
fascinating. Hal lip reading; 
Colossus communicating with 
Guardian in a real "machine 
language "; MS taking over the 
Enterprise. Yet these are still 
media creations, and we are 

cushioned by the comforting 
buffer of a movie or TV 
screen. To realize what 
artificial intelligence (or Al) 
is really like, you have to 

create it yourself (ever have 
an urge to play Franken- 
stein?). HEXPAWN originally 
appeared in Scientific 
American (Vol. 206, No. 3, p. 
138) in Martin Gardner's 
"Mathematical Games" 
column. It is simplicity itself. 
The game board is identical 
to that of the standard 
two-dimensional tic -tac -toe, 
and two players control three 
pieces (or Xs or Os or 
whatever) each. Each player's 
objective is to advance his 
pieces to the opposite side of 
the board, or eliminate or 
block the opposition's pieces. 
Moves of each piece are the 
same as the pawn in chess 

(i.e., move 1 forward to a 

vacant square, take 
diagonally). 
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HEXPAWN rules are very 
simple: To win, attempt to 
move one of your pieces to 
the opponent's side of the 
board, or block him from 
making any move. Moves are 
those of the pawn in chess. 
That is, you may move one 
square forward to an 
unoccupied square, or you 
may move one square 
diagonally in order to "take" 
an opponent's piece. Only 
these two moves are allowed. 
You may not move 
diagonally without a "take "; 
you may not move forward 
with a "take ". Fig. 1 

illustrates a typical game 
situation of occupied and 
unoccupied squares. In this 
"model" of the layout, the 
computer(X) can move in 
two ways which "take" the 
human pawn in the central 
square (number 4). The 
computer can move in one 
way which will not "take" a 

human pawn. 

For a complete 
explanation, please refer to 
the original article (every 
library should carry Scientific 
American, and if yours 
doesn't, ask them why). 

This version of HEXPAWN 
is a game that learns. You 



may play it several times 
beating the computer (which 
keeps track of the board, as 

well as acting as one of the 
players) with ridiculously 
simple strategies. However, as 

play progresses, the computer 
notes its mistakes, and 
eventually, after 8 to 10 
games, you may only tie or 
lose to the computer. The 
machine has "learned" how 
to play the game successfully. 

The method described 
here to implement 
HEXPAWN is strictly brute 
force, and many techniques 
may be used to improve both 
the execution time and 
storage efficiencies. But in 
order to fully appreciate the 
internal workings of 
HEXPAWN, it is nice to keep 
it simple. Also, since this is a 

self- modifying program (a 

necessity in almost all Al), 
programmers will recognize 
that "simple is good," since 
after the code runs wild a few 
times and produces strange 
and wonderful results, it is 
fortunate to have code which 
is easy to debug. 

H E X P A W N was 
implemented by the author 
on a 16-bit /word mini with 
an assembler. In this version 
it occupies 88E hex bytes, or 
2190 decimal bytes, or 4218 
octal bytes. It would be 
possible to reduce the 
memory requirement by 
using two or three bits 
instead of two bytes for the 
board representation of the 
playing pieces, but this would 
require a lot of bit diddling 
that is tedious unless you are 
really tight on memory. The 
minimum representation of 
the three states requires a 

two -bit binary number, using 
three of the four possible 
states of two bits. This 
requires only one word of 
memory. A less compact but 
easier to program bit level 
representation is to use three 
bits, one for each state. Only 
one bit would be "on" at any 
given time if the 
corresponding state is 
present. But on many 
computers it's considerably 

simpler to use two bytes so 
that pieces may be 
represented by "X ", "0 ", and 
" " (space). The storage 
requirement will also vary 
considerably with the nature 
of the peripherals used, due 
to whatever interface 
programming is necessary. 
The original was implemented 
with a CRT where the cursor 
was "locked" in 
synchronization with a 
programmed counter 
notifying the program of the 
board location of the square 
being referenced. 

Basically, the structure of 
the implementation is quite 
simple. In the Scientific 
American article, all possible 
board configurations are 
presented. Note that some are 
mirror images of others, but 
these are still required. These 
board configurations are 
hereafter referred to as 

"models ". The program 
attempts to match the 
current board configuration 
with the models stored in 
memory. When a model is 

found, several courses of 
action may be available. In 
some cases, only one move 
will be possible, thus the 
computer is limited to that 
move. In other cases several 
moves are possible. The 
computer will select one 
(whichever is first on the list) 
and make the move. If a 

model is not found, this is an 
error situation; an illegal 
move has been made on your 
part, and an error message 

should be output. Fig. 2 is a 

"macro" flowchart of this 
process. 

Following each model in 
memory is a string of move 
index bytes followed by a 

hex "FF ". The "FF" is used 
as a terminator for that 
particular model. The bytes 
between the model and the 
"F" are index numbers for 
possible moves - the index 
references a jump table to 
produce a correct move by 
executing a jump. 

A jump table is a very 
handy device when you need 
to reference several different 

sT.RT 

X 
o 

o' 

2 

1 

6 8 

Fig. 1. The game layout for a typical move. 

SEARCH FOR 
MODEL MATCHING 
CURRENT WARD 

INITIALIZE 
MOVE 

INDICES 

INITIALIZE 
OTHER AS 
REQUIRED 

STOP 

¡SOSAS CONCEDEV 
MIMAN 

ANSI 

Note that the move indices are initialized only once for each series of 
games. Initialization for each game will defeat the learning process. 

Fig. 2. Control flow logic for the HEXPAWN program. 
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Fig. 3. Table of All Possible Moves (Models). 

EXAMPLE 
OF FIG.I 

BOARD POSITION MODEL 
SQUARE 

0 1 2 3 4 5 6 7 8 

X X X O 0 0 

X X X 0 0 0 

X X X 0 0 0 
X X X 0 0 

X X O X 0 

X x 0 0 0 
X X 0 0 0 

X X X 0 0 

X X X 0 0 0 
X x x o 0 
X X 0 0 X 0 

X X 0 0 0 

X X 0 0 

X X 0 0 
X X 0 0 

X X X 0 
X 0 0 0 

X X 0 0 
X 0 0 X 

X x x 0 

X X 0 0 0 

X 0 X 0 

X O X X 

X X 0 
X 0 X 

X X 0 
X x 0 

X 0 x 
X 0 0 
X X 0 0 0 

X 0 
X X 0 X 0 0 

X 0 C 0 

Key: 

COMPUTE R'S 
POSSIBLE MOVES 
(see Fig. 4) 

3, 4, 7 

1, 4, 5 

1,2 
2, 6, 8 
3, 7, 11 

2,6,7 
3, 4, 5 

5,10,11 
5, 6 
8, 9 
2, 3 

3, 4, 5 

6, 7 

6, 7 

7 

8, 11 

2 

8, 5 

3, 14 

8, 11 

15 
15 
11, 14 

6, 7, 8 

3, 11 

5, 1 1 

2, 8 
6, 14 
2 

1,2,6 
15 
15 
6 

X = computer piece occupies square 

0 = human's piece occupies square 

blank = square is empty 

locations in your program 
using numerically sequential 
indices. The advantage is that 
after assembly, debugging is 

facilitated. If you desire to 
change all the jump addresses 
of a particular segment of 
code, you need only change 

the jump table, rather than 
each reference containing the 
desired jump address. It is 

also unnecessary to worry 
about having to make the 

code referenced in the jump 
table equal in length. All that 
is taken care of in the jump 
table itself in an easy and 

consistent manner. The jump 
table is particularly appealing 
in that you have multiple - 
level- indirect addressing 
capability. 

HEXPAWN learns by 
removing the index which 
leads to a defeat for the 
computer. Thus, if a move to 
square 8 results in a loss, the 
index following the 
appropriate model is changed 
to a null character, which 
eliminates the losing move. I t 

is easily seen that if a 

particular move always leads 

to a loss, it will be completely 

nulled, thus allowing the 
computer to "know" several 
moves ahead that it has lost 
the game. As each losing 
move's index is nulled, the 
learning process effectively 
progresses toward earlier 
moves. 

As noted in the original 
article, this version only 
penalizes the losing move. 
Also of possible consideration 
is the rewarding of a winning 
move, but this would 
complicate our code 
considerably. 

For convenience's sake let 
us number the squares of the 

playing board 0 -8 starting in 

the upper left corner, 
working horizontally and 

down. Let us also establish 
the convention that the 
human player always moves 

first. This does not seem to 
compel a deterministic game. 
That is, either player may win 
regardless of who moves first. 
Now suppose that there has 

occurred a particular board 
configuration (Fig. 2). Note 
that the "X" pieces belong to 
the computer, while the "0" 
pieces are yours. You have 

just made the preceding 
move, and now the computer 
must decide what to do. The 
computer's possible moves 
are indicated by the dotted 
lines. But how does the 
computer know this? It 
searches through memory 
until the following bit pattern 
is found (in hex): 

"To realize what artificial 
intelligence is reully like, 
you have to create it 
yourself ... " 

06: "X" in square 2 moves 
to square 4 taking your "0" 

07: "X" in square 2 moves 
to square 5 

Now, either move 02 or 
move 07 will result in a loss 

the next move that "0" 
makes (assuming that you are 

trying to win) and that index 
will be nulled so it cannot be 

selected again in the event of 
this same board 
configuration. Move 06 is 

correct since it removes your 
piece and also blocks you 
from obtaining "X's" side of 
the board. Since the 
computer simply selects the 
first move on its list, the first 
time this board configuration 
is encountered, the computer 
will lose (as a result of move 
02). However, after this game 

the computer will select move 
06, which is correct, since it 
is next on the list. The 
number of the index has no 
particular significance; it 
could be anything as long as 

it denotes the displacement 
needed in the jump table to 

direct the flow of control to 

E740E7D6D64040D640020607FF the proper code for the move 

desired. The "F" is a 

terminator that signals the 

end of that particular model 
and move list. 

We will not present the 
actual code to accomplish the 
HEXPAWN algorithm since 

there are so many machines 
of a differing nature in hobby 
use. However, copies of the 
author's LOCKHEED SUE 
Minicomputer version are 

available from him for $3 to 
cover the most of duplication 
and postage. 

A few hints are in order to 
help you avoid some of the 

more obvious problems. The 

The first 9 bytes represent 
the board. Note that in 

EBCDIC, E7 is an "X ", D6 is 

an "0 ", and 40 is an " . 

Remember that these are 

EBCDIC codes (my 
peripherals use it), but it 
could just as easily have been 

ASCII. The next three bytes 
represent the indices for 
possible moves as they exist 
at the beginning of the game. 

That is, the possible moves 

are these: 
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02: "X" in square 0 moves 
to square 4 taking your "0" 



EXAMPLE 1: To illustrate, assume that the following is in memory at the start: 

Location (hex) Contents (hex) 

Step 1. 56 i2i.---Step 6. 
58 06 If loss store 
SA 07 "00" here. 
SC FF 

AO XX 
Step 2. A2 XX 

A4 D2 
A6 XX 
A8 XX 
AA XX 
AC E4 Step 4. 
AE EA 

D2 XX "- 

Comments 

move indices after appropriate 
model 

beginning of jump table 

address of move 02 

address of move 06 
address of move 07 

code for move 02 

The "learning" sequence is composed of the following steps: 
1. Search models until match is found. 
2. Select first index of possible moves, add to location of 

beginning of jump table, giving location of address of 
that move's code - in this case, index 02 x 2 (to get even 
byte boundary) + AO = A4. If no possible move (no 
non -null index) is available, concede game to human player. 

3. Note the address of the index used - in this case "56." 
4. Jump using indirect addressing to the move's code and 

execute - in this case, location D2. 
5. Evaluate board for win or loss. 
6. If loss has occurred, null the location of the last index 

used - in this case "56 ", thereby removing this move from 
the machine's repertoire of responses to this particular board 
configuration. If a tie or computer win has occurred, do 
nothing to the index. 

EXAMPLE 2: Assume that the following is in memory after example 1 is completed: 

Location (hex) Contents Comments 

56 1712x2 =4 - - --i 1st selected 
58 " Ái 6x2 =12 ! - 2nd selected 
60 07 
62 FF ! 

4+AD=A4 AO 
A2 00 ---A4 
A6 
A8 
AA 
AC 
AE 

12(C) + AD 
= AC 

D2-_, 
00 I 

00 
0o 
E4 
EA 

- _- --J -- -- 
-D2 - 

4 

beginning of jump table 
address of move 1 

address of move 2 
address of move 3 

address of move 4 
address of move 5 

address of move 6 
address of move 7 

code for move 2 
to accomplish: 
move " ," to sq. 0 (blank) 
move "X" to sq. 4 
jump to continue 

code for move 6 
to accomplish: 
move " " to sq. 2 
move "X" to sq. 4 
jump to continue 

Suppose move index 2 has been selected. The index "2" is multiplied by 2 
(shifted left 1 bit) in order to produce an even word address, and added to 
the address of the beginning of the jump table - AO - resulting in an address 
of A4 . At location A4 is the address - D2 - of the code to accomplish 
move # 02. At location D2, move 2 consists of blanking the computer's "X" 
in square 0, and inserting an "X" at square 4, taking your "0 ". Since this is 
.1 losing move, the index 02 will be made null (replacement by 00 is good 
for error checking), and move 06 will be accomplished in the same manner 
next time this board configuration occurs. 

biggest hang -up with this 
program is to get it running 
correctly in regard to the 
jump table.. If a wrong index 
is obtained, the program will 
run off into the boondocks 
and never be heard from 
again. Therefore it is nice to 
include checks on the validity 
of the index retrieved and to 
output an error message in 
the event of something 
strange happening. A 
reasonable board may be 
printed using dashes and 
exclamation marks. However, 
if you do this, you will have 
to "unpack" the board as 

represented in memory into a 
more suitable form for I /O. If 
you don't have a CRT with 
machine programmable 
cursor, you can use the 
numbers assigned to the 
squares to indicate your 
moves. Of course you'll want 
the machine to have a variety 
of responses for being 
blocked, losing and winning. 
For debugging it is good to 
output the number of the 
index which is nulled after a 
losing game. In this way you 
may keep track of the 
learning process as it 
advances. Also you should be 
aware that if the human 
player makes some illegal 
moves, no model will be 
found, and a message should 
be output indicating this fact. 

But not all illegal moves 

Fig. 4. Table of Computer's 
Moves ( "X" Graphic). 
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COMPUTER'S (X's) MOVES 

In a written communica- 
tion, Martin Gardner points 
out that the original Hexa- 
pawn article is reprinted as 

Chapter 8, "A Matchbox 
Game -Learning Machine" in 
his book The Unexpected 
Hanging and Other Mathe- 
matical Diversions (Simon & 
Schuster, 1969). The book 
version includes updates of 
the drawings in the original 
Scientific American article, 
notes on reader reactions to 
Hexapawn, and reference to 
an article on the more general 
game "Extendapawn." Our 
thanks to Martin Gardner for 
his assistance in supplying a 

corrected version of Fig. S for 
use in BYTE. 

will result in an error 
condition. In this case, should 
the human player win, the 
machine will null the last 
move's index even if it is 
correct. After this happens a 

few times, the machine will 
start making illegal moves, 
acting illogically, and 
generally approximating a 

nervous breakdown! 
Programming HEXPAWN 

will painlessly ( ?) introduce 
you to a number of 
worthwhile aspects of the 
logical arts. You'll see that 
many segments of code (such 
as the board evaluation) are 
similar and are potential 

MOVE INDEX # SQUARE TO SQUARE 

1 

2 

3 
4 
5 
6 
7 

8 
9 
10 
11 

12 
13 
14 
15 

0 
0 
1 

1 

1 

2 
2 
3 

3 

4 
4 
4 
5 

5 

3 
4 
3 
4 
5 
4 
5 
6 
7 

6 
7 

8 
7 

8 

COMMENTS 

computer wins! 

It 

computer blocked 
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Fig. 5. The set of possible Hexapawn game situations faced by the HEXPAWN program after 2, 4 and 6 moves. (Reprinted from Chapter 6; 'A 

Matchbox Game -Learning Machine, "in The Unexpected Hanging and Other Mathematical Diversions by Martin Gardner.) 

A BASIC Version of This 
Program: 

For those with systems 

running the BASIC language, 

a BASIC version of this 
program called HEX is found 
on page 122 of the third 
printing of 101 Basic 

Computer Games, available 
for $7.50 + 504 postage from 
Digital Equipment Corp., 

Software Distribution Center, 

Maynard MA 01754. 

candidates for subroutines. 
You'll see that indirect 
addressing does indeed have 

some practical uses, if you 
can ever get the code 

debugged. You'll see that it is 

very important to try and 

anticipate possible sources of 
error in your code before you 
run the program, and at least 

to include a mechanism to 
warn you when problems 
occur. (I didn't anticipate any 
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problems with the jump table 
and consequently spent 

several hours trying to figure 
out how the move indices 
were coming up with such 

strange values. If I had put in 

some code to check them 
first, this process would have 

been shortened considerably.) 
You'll see that some 
programs are complex to such 

a point that you simply 
cannot sit down and write 
them without thinking about 

the logical design first! You'll 
see why you should never, 

ever write programs that are 

self -modifying in nature 
(except AI, naturally). 

Lastly, amaze (antagonize) 
your friends by sitting down 
at your computer and 

winning four or five games, 

then inviting them to try. 
When they can't, you can 

smile smugly and explain how 
your computer learns from its 

mistakes, and so should they! 



Figure 1: Three special patterns of stars and black holes. The game begins 
with a single star representing the Big Bang theory (left), and is won when the 
pattern of only one central black hole is achieved (center). The pattern shown 
on the right represents a loss and terminates the game. 

SHOOTING STARS 

Willard I Nico 
Delta t 
11020 Old Katy Rd, Suite 204 
Houston TX 77043 

There are probably as many reasons to 
have a computer in the home as there arc 
computers in homes. For whatever reason 
you have one though, it's only human nature 
to want to show it off to other people. 

Say you have a super program called 
"Investment Portfolio Analysis and 
Statistical Summary" (IPASS) up and 
running on your Scelbi 8H or whatever. It 
took months to write and debug the pro- 
gram and it involved several unique concepts 
of which you are justifiably proud. You can 
picture the furious activity going on inside 
the little heart of the computer and would 
dearly love to show off your skill to Mr and 
Mrs Nexdor and bask in their admiration. 
So you invite them over for cocktails. 

The program runs flawlessly and, as the 
results flash on the display screen, you step 
back slightly to receive your praise. Mr 
Nexdor looks at you with a blank expression 
and says, "But will it grind pepper ?" 

That actually happened to mc. One way 
around this problem is to save (PASS for 
your own enjoyment and have a game 
program or two available to show off. Of 
course, for some people game programs arc 
the primary interest in having a home 
computer. Whatever your games interest, I 
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think you'll find SHOOTING STARS an 

interesting addition to your library. 
I started my quest for a "show -off" game 

about a year ago, searching everywhere for 
one that was just right. I learned a very 
interesting fact quickly: My computer 
doesn't speak BASIC, and to date many 
games have been written and published in 
that language. 

So I had to do it myself. The result is 

SHOOTING STARS, a game with enough 
challenge to intrigue, enough variables to 
make learning to win difficult (but not 
impossible), and a couple of goodies thrown 
in to involve the player with the computer. 

A complete program listing for 8008 
computer is included, as well as the various 
messages that allow the computer to interact 
with the player. 

The Game 

Nine dot or asterisk characters are 

arranged in a 3 by 3 matrix on the playing 
field which may be shown on a CRT screen. 
The matrix represents the universe; asterisks 
are stars and dots are black holes. The player 
shoots stars which dic and turn into black 
holes. When a star dies, it affects other stars 
and black holes in its particular galaxy. 



How To Play 

Each position in the universe is assigned a 

number (see figure 2). The computer 
outputs the current composition of the 
universe and asks YOUR SHOT? The player 
responds by typing the position number of 
the star he decides to shoot. Then the new 
constellation is displayed for the next shot. 

Effect Of Shooting A Star 

When a star dies, it affects the stars and 
black holes of its particular galaxy. The 
effect is that fragments of the star move into 
black holes to become new stars and other 
fragments collide with other stars and knock 
them out of orbit producing black holes. 
Each star has its own galaxy as shown in 
figure 3. 

The Program 

The game proceeds in an orderly manner 
which is shown in the Flow Chart of figure 4. 

The heading, rules and interactive messages 

require approximately 1600 B of memory. 
use a Delta t Digital Recorder for message 

storage and retrieval since it operates in the 
reverse as well as forward incremental 
modes. Each message is prefaced with a 

Figure 3: A complete set 
of galaxies which are 

associated with every star 
or black hole position. 
Stars or black holes within 
a galaxy are affected 
whenever the respective 
position has been chosen. 
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message number surrounded with STX and 
ETX characters. A search routine in the 
main program finds the first address, decides 
whether the desired message is ahead or 
behind the current tape position, and 
rewinds or spins forward as necessary. 

Table 1 is a list of the interactive 
messages. For computers with limited 
memory the essential messages are in the 
first portion of the table; the fancy heading 
is next, and the rules of the game occupy the 
largest number of bytes at the end of the 
text. 

When the program is entered at address 
014000, the 8008's H and L pointers are set 
to the beginning of the heading. Then the 
message control routine is called. It outputs 
sequentially each character of the message 

until the EM delimiter is encountered which 
returns control to the main program. 

The status of the universe is stored in the 
B and C registers. Universe positions 1 

through 4 and 6 through 9 are represented 
by the eight bits in the B register. A one bit 
represents a star, and a zero a black hole. Bit 
0 of the C register keeps track of position 5. 

The universe is set up in the beginning by 
clearing the B register and setting C to 001 

Figure 2: Positions in the 
universe are identified by 
numbers. 

7 

2 

e 

3 

n 
6 

9 



octal. The D register, which will tally the 

number of shots fired, is also cleared as part 
of the initialization process. Each time the 

print universe routine is entered after a valid 
shot, the D register is incremented to count 
the shot. 

Displaying The Universe 

First, the print universe routine is 

entered. This routine sets the E register to 
octal 012 and will decrement the register 
each time the print loop is executed. The E 

register tells the program when it needs to 
insert a couple of linefeeds for spacing, when 
it needs to branch to the position 5 special 
routine, and when it has finished printing 
the universe. These events occur at the 
following E register exception counts: 

006 -- Insert two linefeeds 
005 - Go to position 5 subroutine 

003 - Insert two linefeeds 
000 - Done Print; exit 

In normal processing, the positions repre- 

sented by the bits in the B register are 

inspected one -by -one for star or black hole 
status, and the corresponding symbol is 

printed. It's done like this: The B register is 

loaded to A and rotated one place to the 

right. The rotated byte is loaded into B to be 

ready for the following position next time 
around in the loop. The carry flag is then 

tested for a one or zero. If the carry is zero, 

the program jumps to the dot output 
section. A one in the carry bit causes the 

asterisk output to be executed. 
At the exception counts, further pro- 

cessing is required. 
Thus when the E register count indicates 

that position 5 is the next one to be printed, 
the program loads the C register to A and 

Figure 4: A flow churl of the SHOOTING STARS program acts as a guide to the listing. The labels indicated on this flow chart 

correspond to the labels found in table 3. 

SHOOTSTR 

BEGIN ) 1 

ASTART 

INITIALIZE 

3 

SETCNT 

UNIVERSE 

YES 
RULES... 

YES 

YES 

'YOU WIN' 

'YOU LOSE' 

BINARY TO 
ASCII 
DECIMAL 
CONVERSION 

RESULTS 

\, YES 

'SHOOT 
AGAIN ?' 

A 
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GOTSTA R 

SEARCH E 
IN 

MASKTAB 

NO 

INVAL 

NO 

NOTVAL 

YES 
NEXBYT 

CHANGE 
GALAXY 

YES 

BAD SHOT' 

I 

COUNT 
SHOTS 

E IS AN 
INVALID 
STAR 

'YOU GIVE 
UP TOO EASY 



rotates the least significant bit to carry. The 
program then jumps back to the asterisk and 

dot output portion of the loop. Note that 
the rotated C register content is not loaded 

again to C, since we are only interested in 

the least significant bit. 

Shoot A Star 
When the universe has been displayed, the 

message YOUR SHOT? is printed and the 

computer waits for the player to type a 

number from 1 to 9 which indicates the star 

he wants to shoot. The ASCII code for the 

number the player types is compared to the 

first byte in each group of four contained in 

the MASKTAB table 2. The number of tries 

at the table is monitored by the E register, 

which starts at 011 and is decremented each 

time around the "test for match" loop. If 
the E register gets to 000 without finding a 

match, the input is tested for code 177 

(delete), indicating that the player gives up 

and wants to start over. If a match still can't 
be found, the NOT A VALID STAR 
NUMBER message is printed, and the 

universe displayed again. If this happens, the 

print universe routine is entered just after 
the instruction that causes the shot to be 

counted, so the player won't be charged for 
his mistake. 

When a find is made in the MASKTAB 
table, the program is ready to process the 

player's shot. First, it must make sure the 

player is following the rules and hasn't shot 
a black hole. The second byte of the four 
byte group is used as a "mask" to blank out 
all the positions of the universe except the 
one that has been shot. Figure 5 shows how 
the mask is used with the Boolean AND 
function to isolate the bit representing the 

shot position from among the eight bits of 
the B register. After masking out all but the 

selected position, the resultant byte is tested 

to see if it is zero. If it is, the shot position 
was a black hole and the message HEY! 
YOU CAN ONLY SHOOT STARS, NOT 
BLACK FIOLES! is printed. If this happens, 

the universe is displayed again without 
counting the shot. 

If the mask itself is zero, it indicates that 
position 5 was selected, and so the program 

Table 1: Program Messages. This table lists all the messages used by 

SHOOTING STARS. Each message entry in the table starts with a symbolic 
name and an absolute address. The text should be stored at ascending 

memory address locations, and terminated with an end of message (EM) 

delimiter of octal 031, which is printed as I. The symbolic names in this table 

are referenced by table 3. 

MESSI: 

016000 

HEY! YOU CAN ONLY SHOOT STARS, 
NOT BLACK HOLES. 

TRY AGAIN! 

MESS2: 

016077 

THAT WASNT A VALID STAR NUMBER! 

TRY AGAIN! 

MESS3: 

016156 

YOU LOST THE GAME! 

WANT TO SHOOT SOME MORE STARS? 

MESSI: 

016243 

YOU W INI GOOD SHOOTING! 
YOU FIRED 

MESSS: 

016310 

SHOTS. 
BEST POSSIBLE SCORE IS 11 SHOTS. 

WANT TO SHOOT AGAIN, DEADEYE? 

MESSE: 

017022 

YOU GIVE UP TOO EASILY! 

WANT TO SHOOT SOME MORE STARS ?. 

MESS]: 

017114 

YOUR SHOT? 

HMESS: 

017131 

S H 

O T 

I N G 

SSS 

SSS 

SSS 

TTT 

T 

T 

AAA 
A A 
AAA 
A A 
A A 

SHOOTING STARS 
A BRAIN TEASER GAME 

WANT THE RULES? 

PAGEL: 

020147 

THERE ARE STARS: 
AND BLACK HOLES: 
IN THE UNIVERSE: 

YOU SHOOT A STAR 
(NOT A BLACK HOLEI 
BY TYPING ITS NUMBER 1 2 3 

4 5 6 

7 8 9 

THAT CHANGES THE STAR TO A BLACK HOLE' 

ITO SEE MORE RULES. TYPE ANY KEY.! 

RRR 
R R 
RRR 
RR 
R R 

SSS 
S 

SSS 

SSS 
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PAGE2: 

021277 

EACH STAR IS IN A GALAXY. WHEN YOU 
SHOOT A STAR. EVERYTHING IN ITS GALAXY 
CHANGES. ALL STARS BECOME BLACK HOLES 
AND ALL BLACK HOLES BECOME STARS. 

GALAXIES: 
2 ' 

(TYPE ANY KEY FOR LAST PAGE OF RULES.! 

PAGES: 

023137 

THE GAME STARTS 
WITH THE UNIVERSE 
LIKE THIS 

YOU WIN WHEN YOU 
CHANGE IT TO THIS . 

YOU LOSE IF YOU 
GET THIS 

READY TO PLAY. TYPE ANY KEY TO START 
THE GAME. GOOD LUCKI 



DATA 1 0 11 0 1 01 1 0 1 1 0 0 0 1 

MASKOO 0 00 / 00 0 0 0 0 0 1 0 0 

RESULT O O 0 0 0 1 0 0 00 0 0 0 0 0 0 

o 1 o 1 

o o 1 1 

o 0 0 1 

Figure 5: The AND function of Boolean 
logic is used to mask the current universe in 
order to select one position for testing each 
shot. 

POSITION GALAXY CENTER 
LOCATION SHOT MASK MASK MASK 

MASKTAB 015070 061 001 013 001 
015074 062 002 007 000 
015100 063 004 026 001 
015104 064 010 051 000 
015110 065 000 132 001 
015114 066 020 224 000 
015120 067 040 150 001 
015124 070 100 340 000 
015130 071 200 320 001 

Table 2: MASKTAB, a table of masks to test and alter galaxies. This table 
gives the data needed for memory locations 0151070 to 015/133 in the 
SHOOTING STARS program. This table is used to check the shot fired for a 
valid star number and to change the portion of the universe which is affected 
by the star's change. 

POSITIONS IN GALAXY 

MASK 10 1 10 101 
DATA o O 0 1 0 11 0 

RESULT 1 O 1 0 0 O 1 1 

9 e 7 6 4 3 2 1 

O 1 0 1 

o o 1 1 

0 1 1 0 

Figure 6: The EXCL U- 
SI VE OR function of 
Boolean logic is used to 
complement bits selected 
according to the galaxy 
information stored for the 
position just shot. 
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tests the C instead of the B register for a 

star. 

Change A Galaxy 

Once the program has determined that 
the shot was valid, it can use the next byte 
in the MASKTAB table to change the dots 
and stars in the galaxy of the "shot" star. 
Again, the table entry is a mask, but this 
time the Boolean EXCLUSIVE OR function 
is used. The result is that the selected 
positions are complemented; one bits are 
changed to zero bits and the zeros are 
changed to ones. Figure 6 shows how the 
mask does this neat trick. After the change is 

made, the new universe is stored in the B 

register. 
Byte four of the MASKTAB table entry 

contains a mask that is used to EXCLUSIVE 
OR the C register to change position 5 if 
required. If star 5 is to be complemented, 
the mask will be octal 001 ; if not, it will be 

octal 000. 
After the universe in the B and C registers 

is changed, the new universe is displayed and 
the cycle repeats until a win or a loss is 

detected, or until the player gives up. 

Win Or Loss Test 

Each time the universe is displayed, it is 

tested for a win or a loss. If both the B and 
C registers contain the octal number 000, 
the YOU LOST THE GAME message is 

printed, and the opportunity to play again is 

offered. 
If the B register contains octal 377 and C 

is octal 000 a win is detected. After display- 
ing the proper message, the binary content 
of the D register is converted to decimal 
numbers and the number of shots fired is 

printed. The calculation is performed by the 
binary to decimal conversion subroutine. 

Binary To Decimal Conversion 

The B, C and E registers are assigned the 
functions of summing the hundred, ten and 
unit digits of the score respectively. The 
process is one of repetitively adding a one to 
the three digit number while subtracting a 

one from the shots fired register (D). 
Looping continues until all shots fired have 
been counted in the 3 digit decimal form. 

The somewhat unusual feature of the 
binary to decimal conversion is that it is 
done directly in ASCII numeric code. The 
three registers B, C and E are intially loaded 
with octal 060, which is the ASCII numeric 
character zero. After each increment, the 
least significant digit register (E) is tested to 
see if it contains octal 072. If it does, the 
register has counted 060, 061 ... 071, 
which is 0 through 9 in ASCII, and has just 
been incremented one more to 072. When 



the register has 072, a carry condition 
exists. When this condition is detected, the 

register is reset to 060 and the next register 
in line (C) is incremented. After incre- 

menting, the second register is tested for a 

carry in the same manner, and so on. When 

all the shots have been counted, the 

registers B, C and E will not only represent 

the decimal equivalent of the shots fired, but 
will contain the proper ASCII codes for the 

decimal digits of the count. 

Print The Shots 

To suppress leading ieros, the hundreds 

digit (B) is tested for octal 060. If it contains 
any other code, the contents of all three 

registers will be printed. If it contains octal 

060, the tens register (C) is similarly tested 

and the output will be one digit if it is at 

zero (code 060) and two digits if it is not. 
Figure 7 contains a flow chart of the 

binary to decimal conversion program. You 

may find use for it in some of your other 

programs. 

Program Listing Conventions 

Table 3 contains the complete program as 

it was implemented in my 8008 system using 

the SCELBI 8H computer. The listing is in 

symbolic assembly language with absolute 

octal address and memory contents. 
The 8008 computer has 8 possible restart 

instructions which arc one byte calls to 

locations in the first portion of memory 

address space. These are used to access 

utility subroutines needed by the 

SHOOTING STARS program. The required 

restarts arc as follows: 
RSTO: User's input routine, starting at 

location 000 /000 which is used to wait for 

one character input from the keyboard 

device. 
RST1: Exit Routine, starting at location 

000 /010. This is a return address to the 

system monitor for the computer. 

( BEGIN 

I E E+1 

YES 

NO 

c:C+I 

NO 

B:B+1 

octal 
address 

014/000 
014/002 
014/003 
014/005 
014/007 
014/012 
014/015 
014/017 
014/022 
014/024 
014/026 
014/031 
014/032 
014/034 
014/036 
014/041 
014/042 
014/044 
014/046 
014/051 
014/052 
014/054 
014/055 
014/056 
014/057 
014/061 

octal code 

006 012 
025 
066 131 
056 017 
106 134 
106 151 
074 116 
150 052 
066 147 
056 020 
106 134 
075 
066 277 
056 021 
106 134 
075 
066 137 
056 023 
106 134 
075 
006 012 
025 
025 
025 
016 000 
026 001 

015 
015 

014 

015 

015 

015 

label 

SHOOTSTR 

ASTART 

op. 

LAI 
RST 
LLI 
LHI 
CAL 
CAL 
CPI 
JTZ 
LLI 
LHI 
CAL 
RST 
LLI 
LHI 
CAL 
RST 
LLI 
LHI 
CAL 
RST 
LAI 
RST 
RST 
RST 
LBI 
LCI 

operand 

012 
2 
LIHMESSI 
HIHMESS) 
OUTPUT 
INPUT 
'N' 
ASTART 
LIPAGE11 
HIPAGE1I 
OUTPUT 
7 

LIPAGE2) 
HIPAGE2) 
OUTPUT 
7 
LIPAGE3) 
HIPAGE3I 
OUTPUT 
7 
012 
2 
2 
2 
O 

1 
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TALLYHO 

D: D-I 

commentary 

display linefeed to 
initialize display; 

set address pointers 
to heading message; 

print massage Si return; 
call input looper; 
is first letter' N'7 
if to then plunge into game; 
if not then pomt to first 

page of rules text; 
and go output rules message; 
wait for goahead; 
point to second page of 

rules text; 
display second page of rules; 
wait for goahead; 
point to third page of 

rules tent; 
display third page of rules; 
wait for goahead; 
set up linefeed; 
display one linefeed, 

then a second linefeed, 
then a third; 

initialize the universe 
to starting pattern; 

Figure 7: A binary to dec- 

imal conversion is per- 
formed to output 3 dec- 

imal digits encoded as 

ASCII numeric characters. 
This is a flow chart of the 
conversion routine, with 
labels referring to table 3. 

Table 3: The SHOOTING 
STARS program specified 
in symbolic assembly lan- 
guage with an absolute list- 
ing of addresses and codes 

for the author's system. 



octal 
address octal code label operand 

014/063 331 LOB 
014/064 030 CNTSHOT IND 
014/065 046 012 SETCNT LEI 100 
014/067 041 DISLOOP DCE 
014/070 150 321 014 JTZ WINTEST 
014/073 304 LAE 
014/074 074 006 CPI 6 
014/076 150 142 014 JT2 LINFEED 
014/101 074 003 CPI 3 
014/103 150 142 014 JTZ LINFEED 
014/106 074 005 CPI 5 
014/110 150 151 014 JTZ FIVTST 
014/113 250 NEDOT XRA 
014/114 301 LAB 
014/115 012 RRC 
014/116 310 LBA 
014/117 100 130 014 PSEUDOT JFC LOADOT 
014/122 006 052 LAI 
014/124 025 RST 2 
014/125 104 133 014 JMP SPCNOW 
014/130 006 056 LOADOT LAI 
014/132 025 RST 2 

014/133 006 040 SPCNOW LAI ' 
014/135 025 RST 2 
014/136 025 RST 2 
014/137 104 067 014 JMP DISLOOP 
014/142 006 012 LINFEED LAI 012 
014/144 025 RST 2 
014/145 025 RST 2 
014/146 104 113 014 JMP NEDOT 
014/151 250 FIVTST XRA 
014/152 302 LAC 
014/153 012 RRC 
014/154 104 117 014 JMP PSEUDOT 
014/157 006 012 GOTSTAR LAI 012 
014/161 025 RST 2 
014/162 025 RST 2 
014/163 025 RST 2 
014/164 025 RST 2 
014/165 025 RST 2 
014/166 066 114 LLI LIMES57) 
014/170 056 017 LHI HIMESS7) 
014/172 106 134 015 CAL OUTPUT 
014/175 005 RST 0 
014/176 025 RST 2 
014/177 340 LEA 
014/200 006 012 LAI 012 
014/202 025 RST 2 
014/203 025 RST 2 
014/204 025 RST 2 
014/205 304 LAE 
014/206 046 011 LEI 9D 
014/210 066 070 LLI LIMASKTABI 
014/212 056 015 LHl HIMASKTABI 
014/214 277 NEXGRUP CPM 
014/215 150 233 014 JT2 FOUND 
014/220 041 DCE 
014/221 150 273 014 JTZ INVAL 
014/224 060 INL 
014/225 060 INL 
014/226 060 INL 
014/227 060 INL 
014/230 
014/233 

104 214 014 
060 FOUND 

JMP 
INL 

NEXGRUP 

014/234 307 LAM 014/235 074 000 CPI 0 014/237 110 253 014 JFZ UNIV2A 014/242 302 LAC 
014/243 074 001 CPI 1 014/245 110 165 015 JFZ BADFELO 014/250 104 260 014 JMP NEXBYT 014/253 301 UNIV2A LAB 
014/254 247 NOM 
014/255 
014/260 

150 165 015 
060 NEXBYT 

JT2 
INL 

BADFELO 

014/261 301 LAB 
014/262 257 XRM 
014/263 310 LBA 
014/264 060 INL 
014/265 302 LAC 
014/266 257 XRM 
014/267 320 LCA 
014/270 104 064 014 JMP CNTSHOT 014/273 074 177 INVAL CPI 177 
014/275 110 307 014 JFZ NOTVAL 014/300 
014/302 

066 022 
056 017 

LLI 
LHI 

LIMESS61 
HIMESS61 014/304 104 034 015 JMP PRNTIT 

014/307 066 077 NOTV AL LLI LIME5S21 014/311 056 016 LHI LIMESS21 014/313 106 134 015 OUTMES CAL OUTPUT 014/316 104 065 014 JMP SETCNT 014/321 301 WINTEST LAB 014/322 074 377 CPI 11111111B 014/324 
014/327 

110 050 015 
302 

JFZ 
LAC 

LOSSTST 

014/330 074 000 CPI 0 014/332 110 157 014 JFZ GOTSTAR 014/335 
014/337 

066 243 
056 016 

LLI 
LHI 

LIMESS41 
HIMESS41 

014/341 106 134 015 CAL OUTPUT 014/344 046 060 LEI '0' 014/346 314 LBE 
014/347 324 LCE 014/350 031 OCD 
014/351 303 LAD 
014/352 074 000 CPI 0 014/354 150 026 015 JTZ LSTSIG 

014/357 006 072 LAI 
014/361 040 MOREDEC INE 
014/362 274 CPE 
014/363 110 000 015 JF2 TALLYHO 
014/366 046 060 LEI '0' 
014/370 020 INC 

commentary 

then clear shot counter; 
Count a shot (anticipatory); 
loop count 10 iterations; 
is the loop done? 
if so then go to win testing; 
0 not then continue display; 
is it fourth cycle? 
if so then new line needed; 
is it seventh cycle? 
it so then new line needed: 
is it star number 5? 
.f so then go test star 5; 
clear the carry land A too); 
move universe to A; 
rotate next place into carry; 
save it in B for a while; 
if dot then go outpUt dot; 
otherwise load a star; 
then print the star; 
branch around dot logic; 
load a dot; 
then print the dot; 
load a space; 
print one space, 

then print a second; 
waltz around loop once more; 
load a line feed; 
display a line feed, 

then a second one; 
back to print next dot or star; 
no Operation intended - leftover; 
get position 5 status; 
put status into carry; 
rejoin main line after RRC; 
load a line feed; 
have finished universe print, 

so print several 
line feeds 
to separate 
successive rounds; 

Point to the 'your shot' 
message; 

then go print it; 
call input for character; 
immediately echo the input, 
save input temporarily in E; 
load a line feed; 
print three line feeds to 

space Out the response 
a bit more; 

recover input for testing; 
loop count for table search; 
set up pointer to the 

the mask table; 
is input equal table character? 
if so then go alter structure of 

the universe otherwise just 
check end of loop; 

increment the L 
register pointer 
four times to get 
to next table entry; 

then go test next entry; 
point to position mask 

and load mask into A; 
is it zero, 
if not then fringe position; 
otherwise the center position; 
is a star in Center' 
if not then have wrong move; 
if so then go process star; 
rest of universe to A; 
AND with mask to isolate star; 
if not star then wrong move; 
point to the galaxy mask; 
fetch universe again; 
and complement the universe 

on a fine performance; 
point to center mask; 
fetch center of universe; 
complement center rf required; 
save center of universe; 
go display a new universe; 
was invalid shot a'delete ? 

if not then recycle bad star; 
otherwise point to giving up 

message; 
display then test for restart, 
point to the invalid star 

number message 
output a message then 

go display the universe again; 
move universe to A, 
are all fringe stars present, 
if not see if player has lost; 
fetch center of universe; 
is center of universe empty, 
is full then not win; 
no star. got a win, folks 

so point to win message; 
then display win message; 
begin binary to decimal conversion 

by setting all three working 
register to (ASCII) zero; 

get rid of last shot; 
move shot count to A for test; 
test for zero not needed in 

SHOOTING STARS but generally 
useful with conversions); 

need compare to ASCII '9' ...1; 
count up one in 1.s. digit; 
is it equal to overflow code, 
if not then tally and continue; 
else reset 1's digit to zero 

and carry into next digit; 
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RST2: User's output routine, starting at 
location 000/020. This routine prints or 
displays one character on the output device 
for the system. The character to be output is 

in the A register when RST2 is entered. 
RST7: A "do Nothing" keyboard input 

acknowledgement routine, starting at loca- 
tion 000/070. Any character typed on the 
keyboard causes return from this subroutine. 

For the optimum use of the program, the 
output device should be a cathode ray tube 
terminal with a scrolling feature. 

Game Background 

I first saw the SHOOTING STARS game 
in the September, 1974, issue of PCCt as a 

program called TEASER. If you are an 
analytical person, you can figure out all of 
the possible positions. 

PCC Editor, Bob Albrecht, told me that 
the program was contributed to the 
Hewlett- Packard software library, and orig- 
inally written in BASIC. 

tPCC is People's Computer Company which pub- 
lishes a tabloid size computer hobbyist newspaper 
five or more times during the school year. It's filled 
with games written in BASIC, art, and computer 
news. If you are interested, write to People's 
Computer Company, PO Box 310, Menlo Park CA 
94025. 

Symbol table, in order of appearance 

SHOOTSTR 014 000 
ASTART 014 052 
CNTSHOT 014 064 
SETCNT 014 065 
DISLOOP 014 066 
NEDOT 014 113 
PSEUDOT 014 117 
LOADOT 014 130 
SPCNOW 014133 
LINFEED 014 142 
FIVTST 014 151 
GOTSTAR 014 157 
NEXGRUP 014.214 
FOUND 014'233 
UNIV2A 014/253 
NEXTBYT 014 260 
INVAL 014'273 
NOTVAL 014 307 
OUTMES 014313 
WINTEST 014/321 
MORE DEC 014361 
TALLYHO 015000 
THREED 015/023 
MIDPH NT 015/025 
LSTSIG 015 02G 
RECYC 015/032 
PRNTIT 015/034 
LOSSTST 015 /050 
MASKTAB 015'070 
OUTPUT 015/134 
INPUT 015/151 
GETNEXT 015/154 
BADFELO 015/165 
MESS1 016/000 
MESS2 016/077 
MESS3 016/156 
MESS4 016/243 
MESS5 016/310 
MESS6 017.022 
MESST 017'144 
HMESS 017/131 
PAGE1 020/147 
PAGE2 021/277 
PAGES 023137 



octal 
address octal code label op. operand 

014/371 272 CPC 

014/372 110 000 015 JFZ TALLYHO 
014/375 026 060 LCI '0' 
014/377 010 INB 
015/000 031 TALLYHO DCD 
015/001 110 361 01( JFZ MORE DEC 

015 /004 301 LAB 
015 /005 074 060 CPI '0' 
015/007 110 073 015 JFZ THREEO 
015/012 302 LAC 
015/013 074 060 CPI '0' 
015/015 110 025 015 JFZ MIDPANT 
015 /020 104 026 015 JMP LSTSIG 
015/023 025 THREED AST 2 

015/074 302 LAC 
015/025 025 MIDPRNT RST 2 

015/026 304 LSTSIG LAE 
015/027 025 RST 2 

015 /030 066 310 LLI LIMESS5) 
015/032 056 016 RECYC LHI HIMESS51 

015/034 106 134 015 PANTIT CAL OUTPUT 
015/037 106 151 015 CAL INPUT 

015/042 074 131 CPI 'Y' 
015 /044 150 052 014 JTZ ASTART 
015/047 015 AST 1 

015/050 074 000 LOSSTST CPI 0 

015/052 110 157 014 JFZ GOTSTAR 

015/055 302 LAC 
015/056 074 000 CPI 0 

015/060 110 157 014 JFZ GOTSTAR 
015/063 066 156 LLI LIMESS3) 
015,065 104 032 015 JMP RECYC 

015/070 see Table I l MASKTAB BLK 036D 

015/134 307 OUTPUT LAM 
015/135 074 031 CPI 031 

015/137 053 RTZ 
015/140 025 RST 2 

015/141 
015/142 

060 
110 134 015 

INL 
JFZ OUTPUT 

015/145 050 INH 

015/146 104 134 015 JMP OUTPUT 

015/151 005 INPUT RST O 

015/157 340 LEA 
015/153 075 AST 2 

015/154 005 GETNEXT RST 0 

015 /155 025 RST 2 

015/156 0/4 017 CPI 012 

015/160 110 154 015 JFZ GETNEXT 

015'163 304 LAE 
015/164 007 HET 

015,165 
015/167 
015 171 

OGG 000 
056 016 
104 313 ()14 

BADFELO LLI 
LHI 
JMP 

LIMESSII 
HIMESSII 
OUTMES 

commentary 
is it equal to overflow code tool 
if not then tally and continue; 
else reset middle digit to zero 

and carry into ms, digit; 
decrement score counter for tally, 
if not zero then keep loopin; 
fetch leading digit to A, 
.s it IASCIII zero) 
if not go display three digits: 
fetch middle digit to A. 
is it (ASCII) zero tool 
if not go display two digits; 
if so display only one. 
display three digits, left first, 
fetch middle digit to A, 
display two digits, left first, 
fetch l's digit; 
display remaining digit. 
point to first part of you win; 
second part of MESSS /MESS6 pointer. 
display the message; 
fetch a character for continue 

query, is it yes-7 
if so then continue game; 
otherwise call EXIT: 
is fringe universe all black holes] 
it not then continue game, 
if so then test center position, 
is center also black hole] 
it not then continue game, 
else point to loss message, 
and go print loss, 

36 bytes of mask table, 

hrch next message byte. 
is it a debmurer7 
return when delimiter found, 
otherwise display byte: 
pint to next byte. 
Is it page boundary] 
if so increment Page. 
and then recycle, 

get nest character, 
save it in E, 
echo on display. 
yet next character, 
echo on display, 
was it a line feed] 
if not continue scan, 
it so, restore first input. 
and then return to Caller. 

point to the error message 
admonishing bad 'srai', 

and go display error, 

C] 

Notation: 

LIHMESS) = low order 8 bits 
of address of HMESS; 

H(HMESS) = high order 8 bits 
of address of HMESS; 

'N' = the ASCII character 
"N" 

9D = the decimal number 9; 

7 = the octal number 7 (with 
high order zeros as needed); 

mnemonics are from original 
Intel 8008 documentation; 

octal code is shown in ascend- 

ing address order top to bot- 
tom, left to right; 
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Biorhythm for Computers 

According to the bio- 
rhythm hypothesis, there 
is a reason for those dol- 
drum days when even your 
computer refuses to com- 
municate with you. 

[NOTE: The ideas pre- 
sented in this article are a 

hypothesis about human 
mental states and are not 
necessarily a valid predic- 
tive theory. One danger of 
computer programming is 
the assumption that a 

logically correct program 
which executes without 
bombing out will neces- 
sarily produce meaningful 
results. Whatever the final 
conclusion with regard to 
the biorhythm hypothesis, 
the calculation makes an 
interesting example of a 
BASIC language applica- 
tion program.... CH] 

Joy and Richard Fox 
1364 Campbell St 

Orlando FL 32806 

There is no doubt that all living things 
have biological rhythms. The study of three 
of these rhythms in humans has led to the 
development of a pseudo science, bio- 
rhythm, that, through the use of computers, 
is growing in popularity in the United States. 
This article describes a program, written in 
BASIC, which you can run in your own 
computer to plot biorhythm curves. 

The purpose of the program is to use the 
biorhythm hypothesis to "predict" physical, 
emotional and intellectual patterns that indi- 
cate up, down and critical days for any 
period of time. These predictions are based 
on what purport to be scientific studies of 
human behavior. Biorhythm people claim to 
have learned through their studies that a 

physical cycle occurs every 23 days, an 
emotional cycle occurs every 28 days and an 
intellectual cycle occurs every 33 days. The 
plotting of these rhythms is printed out as a 

two-dimensional graph on a Teletype or 
similar output device, showing the three 
cycles as a function of time. 

The biorhythm hypothesis is nothing 
new. It was first proposed in the late 
nineteenth century by a Viennese psycholo- 
gist and a German physician, each working 
separately. In the 1920s, an Austrian teacher 
added the 33 day intellectual cycle after 
studying the performance of high school and 
college students. 

According to the biorhythm hypothesis, 
there is a reason for those doldrum days 
when even your computer refuses to com- 
municate with you. Each of the three cycles 
oscillates between ups and downs. When 
your cycles are up, you feel physically 

322 

strong, emotionally high or intellectually 
brilliant. When your cycles are down, you 
feel physically weak, emotionally depressed 
or intellectually dull. But the days to really 
watch out for are the transition days when 
you are crossing from a low to a high or a 

high to a low. It is during these transition 
days that you are especially susceptible to 
accident and illness. A few times each year, 
two or even all three of your cycles will 
cross the transition simultaneously. Accord- 
ing to biorhythm people, these critical days 
are best spent quietly. 

The biorhythm hypothesis has gained 
acceptance in a growing number of indus- 
tries. In Japan, 2,000 businesses use bio- 
rhythm calculations. One Japanese firm 
reports a 35% reduction in computer data 
errors by assigning workers to other tasks 
when they are going through critical days. 
Another Japanese firm using biorhythm pre- 
dictions claims to have reduced its yearly 
vehicle accident loss by 45 %. An American 
survey of 1,000 industrial accidents showed 
that 90% of them occurred on critical days. 

Mike Bertalot, a supervisor for United 
Airlines, estimates that between 6,000 and 
8,000 of United's 40,000 employees are 
using biorhythm predictions as a guide for 
safety awareness. United uses the printouts, 
which they distribute to interested em- 
ployees, as "an excuse to warn employees 
about safety." The result has been that some 
departments have shown a 50% decrease in 
accidents. It is not clear whether this reduc- 
tion is due to the extra warnings or to the 
predictive value of the hypothesis. Although 
the future of the biorhythm experiment at 
United is uncertain, the results are being sent 
to the United States Naval Laboratory, 
which is studying the hypothesis. 

Biorhythms have also been used for 
profit. The September 15 1975 issue of 
Newsweek quotes Lester Cherubin, president 



of Time Pattern Research, Inc, as having sold 
100,000 biorhythm printouts for $10 to $20 
each in the past three years. Other com- 
panies sell plastic biorhythm calculating de- 
vices for anywhere between $4 and $20. 
Some shopping center vendors sell for a 

mere 50 cents a computer printout of your 
rhythms for one day. 

The calculation of biorhythm curves is 

not easy to do with a pencil and paper. First, 
the subject's age in days must be calculated. 
This problem, of course, is complicated by 
all the peculiarities of the modern calendar. 
Then you must calculate how many com- 
plete 23 day cycles the subject has lived 
through and how many days he is into the 
next cycle. (The biorhythm hypothesis 
makes a simplifying assumption that all 
cycles originate at birth with zero relative 
phase.) The same must be done for the 28 
and 33 day cycles. The fraction of each 

cycle is multiplied by two pi radians and the 
sine of that number is taken to obtain the 
points of the biorhythm curve for that day. 
The calculation must be rerun for each 

succeeding day, and the results plotted on 
graph paper, in order to obtain the bio- 
rhythm curves. 

The program to calculate biorhythm 
curves is shown in the form of a flow chart 
in figure 1; figure 2 shows the complete 
listing of this program in BASIC. The opera- 

tion of the program is as follows: 
Line 0001 dimensions the strings N and S 

and the array T. N will be filled with the 

character set for the days of the month and 

S will be filled with the image of each line of 
the graph, as it is prepared for printing. T 
will be filled from the data statement at line 
0080 with the number of days in each 

month of the year. The input statement at 
line 0008 and the if statement at line 0009 
together allow the user to skip over the 

explanatory printout at the beginning of the 

program and go directly to the calculation 
which starts at line 0027. 

Line 0040 defines the numeric values for 
the month, day and year that thesubject 
was born. Line 0050 defines the month, day 
and year for the start of the printout. The 
year can be supplied as a two digit number 
('76) or as a four digit number (1976), but 
the same format must be used for both the 
birth date and the printout target date. Line 
0065 defines the number of days to be 

plotted. 
D3 in the program is the variable which 

will contain the age of the subject in days. 

At line 0130, D3 is initialized to 0. The 
program will now calculate the number of 
days between the subject's birth date and 

the requested plotting date. The calculation 
is performed in several steps, and at the end 

CBIORHYTHM 

0010 

0027 

PRINT 
INSTRUCTIONS 

REQUEST PARA- I INTERACTIVE 
METERS AND .-J SEQUENCE TO DEFINE I 
INITIALIZE I BIRTHDATE,PLOT 

DATE,DAYS TO I 

PRINT 

0130 L J 
CALCULATE 
LIFESPAN AT 
START OF THIS 
YEAR 

0305 

ADD LIFESPAN 
FOR EACH YEAR 

0450 

ADD LIFESPAN 
SO FAR 
THIS YEAR 

0475 
PRINT HEADER 
MESSAGE OF 
PLOT 

0570 

CALCULATE 
CURRENT CURVE 
VALUES 

0727 

PREPARE PRINT 
LINE 

0746 
PRINT LINE 
AND ONE BLANK 
LINE 

0750 

NO CALCULATE 
NEXT DAY'S 
LIFESPAN 

of each step, the value calculated at that step 

is added to the total in D3. 
Next, the program checks if the subject 

was born in January or February of a leap 

year. The test for a leap year, at line 0150, is 

made by dividing the birth year by four and 

checking for a remainder. Only leap years 
divide by four with a remainder of zero. If 
the subject was born in January or February 
of a leap year, one day is added to the 
running total, at line 0160. Otherwise, the 
running total is left at zero. 
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Watch out for evil omens 

on transition days. 

While not intended to ap- 

ply to machines, maybe 
biorhythms can be used to 
predict computer be- 

havior. Enter the birth 
date of your computer and 
predict when your cyber- 
netic monster plans its 
next bomb out! 

Figure 1: Flow Chart of 
Biorhythm Calculator. 
This chart illustrates the 
general outline of the 
program found in figure 2. 

The numbers noted next 
to symbols In the flow 
chart refer to line numbers 
of the listing in figure 2 



0001 DIM NS1721, 501721, 11121 

0002 NS" 000102030405060708091011121314151617181920212223242526272829 031° 

0004 REM BIORHYTHM CREATED BY JOY AND RICHARD FOX 
0006 PRINT "DO YOU WISH AN INTRODUCTION TO BIORHYTHM, TYPE 1 FOR YES." 

0007 
000B 
0009 
0010 
0011 
0012 
0013 
0015 
0016 
0017 
D018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0040 
0045 
0050 
0060 
0065 
0080 
0110 
0120 
0130 
0140 
0150 
0160 
0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
0280 
0290 
0299 
0305 
0310 
0315 
0316 
0320 
0325 
0400 
0405 
0410 
0450 
0455 
0460 
0470 
0475 
0480 
0490 
0491 
0492 
0493 
0500 
0505 
0510 
0520 
0525 
0526 
0530 
0540 
0550 
0560 
0570 
0571 
0580 
0600 
0610 
0640 
0650 
0655 
0660 
0670 

PRINT OR 0 FOR NO" 
INPUT A 
IF A0 THEN 27 
PRINT TABI251, "BIORHYTHM" 
PRINT 
PRINT 
PRINT 
PRINT "THE PURPOSE OF BIORHYTHM IS TO PREDICT A PHYSICAL," 
PRINT "EMOTIONAL ANC) INTELLECTUAL PATTERN THAT INDICATES YOUR" 
PRINT "UP AND DOWN DAYS FOR ANY PERIOD OF TIME BIORHYTHM CAN" 
PRINT "SHOW WHICH DAYS WERE GOOD OR BAD FOR YOU BEGINNING WITH" 
PRINT "YOUR BIRTH. IT CAN ALSO SHOW YOU WHICH FUTURE" 
PRINT "DAYS WILL BE GOOD OR BAD FOR YOU." 
PRINT' THESE PREDICTIONS ARE BASED ON SCIENTIFIC" ' 

PRINT "STUDIES TO DETERMINE WHY ACCIDENTS OCCUR IT WAS LEARNED 
PRINT "THROUGH THESE STUDIES THAT A PHYSICAL CYCLE OCCURS EVERY" 
PRINT "23 DAYS, AN EMOTIONAL CYCLE OCCURS EVERY 28 DAYS. AND AN" 
PRINT "INTELLECTUAL CYCLE OCCURS EVERY 33 DAYS" 
PRINT 
PRINT "PLEASE TYPE YOUR BIRTH DATE USING THE FOLLOWING FORMAT " 
PRINT "MM,DD YY EXAMPLE JANUARY 17, 1942 01,17.42" 
INPUT M, D, Y 
PRINT "AT WHAT DATE ARE YOU INTERESTED IN BEGINNING BIORHYTHM" 
INPUT M1, Dl, YI 
PRINT "HOW MANY DAYS DO YOU WISH TO HAVE PLOTTED, 
INPUT D2 
DATA 31. 28 .31,30,31,30,31,31,30,31,30,31 
REM M= MONTH, O -DAY, Y YEAR 
REM 03TOTAL NUMBER OF DAYS ELAPSED 
D30 
IF M 2 THEN 200 
IF INTIY/41.IY041 0 THEN 200 
D3.1 
FOR 1.1 TO 12 
READ TIII 
REM T -DAYS IN EACH MONTH 
NEXT 1 

D3TIMI.D4D3 
FOR 14M41 TO 12 
D3.71114133 
NEXT I 

REM Y3- YEAR COUNTER FROM BIRTH TO DISPLAY 
Y3Y 
Y3Y3.1 
IF Y3 .Y1 THEN 400 
IF INTIY3 /41.IY3,41 0 THEN 320 
03.03.365 
GOTO 299 
D3.D3.366 
GOTO 299 
IF M1.2 THEN 450 
IF INTIY1 /41.IY1 41 0 THEN 450 
03D3.1 
FOR l'1 TO M1 1 

D3= TIII.D3 
NEXT 
13331.D3 
PRINT "PHYSICAL CYCLE P" 
PRINT "EMOTIONAL CYCLE E" 
PRINT "INTELLECTUAL CYCLE I" 
PRINT 
PRINT 
PRINT 
PRINT "DATE "; 
PRINT TAB1131, "DOWN ". 
PRINT TAB1351, "CRITICAL ". 
PRINT TABI631, "UP" 
PRINT " 

LET M4 Ml 
LET D4-D1 
LET Y4 Y1 
REM M4.D4,Y4 DATE PRINTED OUT IN PLOTTING CHANT 
LOTO 580 
REM FFRACTION INTO CYCLE 
F 1031231.INTID31231 
REM X THE ARGUMENT FOR THE SINE FUNCTION 
X F'2'3. 1416 
REM PTHE PHYSICAL POSITION ON THE GRAPH 
P= IISINIX /011'241.15 
REM E EMOTIONAL POSITION ON THE GRAPH 
F ID31281INTID3.281 
X F'2'31416 

0680 E.IISINIXI11'241.15 
0690 F 1133,331 INTID3 /331 
0700 X F2'31416 
0710 REM I. INTELLECTUAL POSITION ON THE GRAPH 
0720 I IISINIXI'11'241415 
0727 FOR X =1 TO 32 
0728 SS12X 1,2XI " " 
0729 NEXT X 

0731 SS139,391 - "" 
0732 SSIP PI"P" 
0733 SSIE,E1 -"E" 
0734 SSII,II "1" 
0735 SS13,31 "/" 
0736 SS16.61 "I" 
0741 SS11,21= NSIM4'2.1 M4.2.21 
0742 SS14,51NS(D4. 2. 1,04' 2.21 
0743 IF Y . 99 THEN 950 
0744 5SI7. 71- NSIIINTIY/1012.21,IINT(Y;101.2.211 
0745 SSIB,BI- NSIIY4.INTIYI101 101'2.2.IY4 INTIY4 101'101'2.21 
0746 PRINT 5011.631 
0747 PRINT 
0748 IF D2 -1 THEN 1000 
0750 D2D2.1 
0800 D3 -D31 
0810 D4 =D4.1 
0815 IF M4,. 2 THEN 820 
0816 IF 040 29 THEN 820 
0817 IF INTIY4 /41 IY4 /41'. .0 THEN B20 
0818 GOTO 570 
0820 IF D4 TIM4I THEN 570 
0630 M4 M4.1 
0835 04 =1 
0840 IF M4 .12 THEN B70 
0850 LOTO 570 
0870 M4 -1 
0880 Y4Y4.1 
0900 LOTO 570 
0950 Y= YIINTIY4/1001'1001 
0951 LOTO 744 
1000 END 

Figure 2: BASIC Program 
of the Biorhythm Calcula- 
tor. This is the complete 
listing of a BASIC program 
to perform calculations 
and plot the results on a 

hard copy printer. 
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Lines 0200 through 0230 fill the array T 

with the values in data statement 0080 so 

that the array contains the number of days 

in each month of the year. Line 0240 
calculates the number of days from the 

subject's birth date to the end of his first 
calendar month, and adds that number to 
the running total in D3. Lines 0250 through 
0270 calculate the number of days in each 

month during the remainder of the subject's 

birth year, and add that number to the 

running total. 

The birth year, Y, is transferred to the 

year counter Y3, and the year counter is 

incremented at line 0299. If the year count- 
er is greater than or equal to the year to be 

printed out, Y1, then the program jumps to 

line 0400. Otherwise, the program adds 365 

or 366 to the running total for each year 
between birth and the target year. Each time 
that is done, the year counter is incre- 

mented. When it matches the printout target 
year, the program jumps to line 0400. 

Next the program calculates the number 
of days between the start of the display year 

and the display day. If the display month is 

March or later, then the program checks if 
the display year is a leap year. If it is, one 
day is added to the running total at line 
0410. Lines 0450 through 0460 add the 
number of days in each month between the 
start of the display year and the display 
month to the running total D3. Line 0470 
adds the number of days into the display 
month to the running total. D3 now con- 
tains the age of the subject in days, as of the 
requested display date. 

Lines 0475 through 0526 print the head- 
er of the graph. Lines 0530 through 0571 set 

up three new variables, M4, D4, and Y4, 
which will contain each consecutive date as 

it is printed out. 

Now the program calculates the phase of 
each of the three biological cycles for the 
subject for the dates requested. The physical 
cycle has a period of 23 days. If you divide 
the age of the subject in days by 23, the 

remainder is a number between 0 and 22.9. 
That remainder is proportional to the phase 

of the subject's physical cycle at the 

requested date. The remainder is stored in 
variable F at statement 0580. F is then 
multiplied by two pi radians and the answer 
is stored in X. X is therefore a number 
between zero and two pi and is proportional 
to the phase of the subject's physical cycle. 
Line 0650 takes the sine of X. The result is a 

value between +1 and -1. This number is 

then normalized to a value between 15 and 
63 and is stored in P. The values 15 and 63 
represent the beginning and ending column 
numbers of the graph on the Teletype. 



Extreme down days will plot in column 15. 
Extreme up days will plot in column 63. 
Critical days will plot in column 39, and 
other days will plot in between these points. 

The same calculation is then repeated at 
lines 0660 through 0680, with a period of 
28 days, for the emotional cycle; and at lines 
0690 through 0720, with a period of 33 
days, for the intellectual cycle. Lines 0727 
through 0729 loop to fill up the string S 

with blank characters, to wipe out old data 
still in the string. Line 0731 places a dot 
character in element 39 of the string, so that 
the zero crossing will be clearly marked by a 

string of dots down the 39th column of the 
page. Line 0732 stores the character "P" 
into the column calculated by the equation 
for the physical cycle. Lines 0733 and 0734 
do the same for the characters "E" and "I ". 
Next the program places slashes in elements 
three and six of the string S, so that they 
will print out as slashes in the date at the left 
of the graph. 

The month is placed in array elements 
one and two and the day is placed in 
elements four and five. If the operator typed 
the year as a four digit number, the program 
truncates the most significant two digits. 
Line 0744 places the ten's digit of the year 
into element seven of the string and line 
0745 puts the unit's digit of the year into 
element eight. 

The string S is now ready for printing. 
Line 0746 prints elements one through 63 
across the output device page as a month, 
day, year, a dot at column 39 and the letters 
"P ", "E" and "I" in appropriate positions. 
Line 0747 causes the typewriter to double 
space so the graph is easier to read. 

If the number of days left to print, D2, 
has been reduced to one, then the program 
exits. Otherwise, D2 is decremented by one, 
and the age of the subject in days is 

incremented by one. 
The date in the month, D4, is incre- 

mented and the program checks if the day to 
be plotted is February 29 of leap year. If it 
is, the next day's data is plotted. If it is not 
February 29 of a leap year, then the number 
of days in the month is checked against the 
maximum number of days in that month as 

defined in table T. If the day in the month, 
D4, is too large, it is reset to one and the 
month is incremented. If the month has 

been incremented to 13, it is reset to one 
and the year is incremented. The program 
prints the next day's data and keeps looping 
till all the requested data has been printed. 

This program has an unusual application 
that you may not yet have considered: enter 
the birth date of your computer, and predict 
when your cybernetic monster plans its next 
bomb out!!! 

1(' VOL' WISN AN INTRI'llY'T11N 711 NIUPHYTHMT 7VPF I FOP YkSOP n FOP NO. 
TI 

MIDPHYTHM 

THE PURPUSF OF HI('PNYTNM IS TO PRFI'11:T A PHYSICAL. 
FMOTIINAL AND INTFLLFI'.TUAL PATTEFIN THAT INI'1C.ATFS YI1E'R 

LV AN l' DOWN DAYS 1.0M ANY PF RIM) Di T1 MF. PIORHYTNM CAN 
DIOW WHICH DAYS WERF WHIP UP PAP FOP v(ll' Hk4INNINO WI TN 

YOUR MIMTN. IT CAN AI.SU SHOW VOl' WNIIN FITIRk. 
DAYS WILL MF C.U(lU UR HAU 1.0H 
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TOG 17.42 
AT WHAT UATE AWE YOU INTERF STEU IN HE111NNING RI('PHVTNMT 
711. 25.75 
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PHYSICAL CYCLE 
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INTELLECTUAL CYCLE I 
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11/PY/7S 
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Figure 3: Output of the Biorhythm Calculator. Here is a listing of the output 
of the program found in figure 2. In this case, the introductory text was 
printed prior to entering the parameter definition sequence. 
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LIFE 
Line 

by 
Carl Heinters 
Editor, BYTE 

Games played with 
computer equipment 

are applications of value 
above and beyond the 
momentary "hack" value of 
putting together an 
interesting program. The 
creation of a game is one of 
the best ways to learn about 
the art and technique of 
programming with real 
hardware and software 
systems. LIFE Line concerns 
a game - the Game of LIFE, 
originated by Charles Conway 
and first publicized by Martin 
Gardner in Scientific 
American. The Game of LIFE 
serves as the central theme of 
LIFE Line - a well defined 
application of the type of 
hardware and software which 
is within the reach of BYTE 
readers. The description of 
the LIFE application is the 
"down to earth" goal of 
LIFE Line. However, I have 
an ulterior motive as well - 
LI FE Line is a very 
convenient and practical 
vehicle for teaching ideas 
about program and system 
design which you can apply 
for your own use. Even if you 
never implement a graphics 
output device and interactive 
input keyboards, you can 
gain knowledge and improve 
your skills by reading and 
reflecting upon the points to 
be made in LIFE Line. The 
LIFE application also has the 
side benefit of illustrating 
some techniques of 

interactive visual graphics 
which can be used much 
more generally. 

The Starting Point 

In developing a system, it 
always helps to know what 
you want to do! The ability 
to pin down a goal for a 

programming effort - indeed, 
any effort you make - is one' 

of the most important tools 
of thought you have available 
(or can develop) in your 
personal "bag of tricks." 
Goal setting does not 
necessarily mean a complete 
and detailed description of 
the result - the feedback 
from the process of reaching 
the goal can often modify the 
details. Goal setting means 
the setting of a standard in 

your mind - and on paper - 
of what you want to 
accomplish. This standard is 

used to evaluate and choose 
among alternatives in a 

methodical approach to a 

system which meets that 
standard. 

How to Get From Here to 
There 

The goal of LIFE Line isa 
hardware /software system 
which enables the home brew 
computer builder such as you 
or me (the "byter ") to 
automate the game of LIFE 
using relatively inexpensive 
equipment. It's appropriate 
here to give a preliminary 
road map of the course LIFE 
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Line will take, as an 

illustration of the first steps 

in the development of a 

complicated system ... 
1. The facts of LIFE. 
Defining the rules of the 

game and its logical 
requirements always helps - 
after all, I would not want to 
confuse it with chess, poker 
or space war! 

2. What do I need to 
implement LIFE? Once I 

know the rules, my next 
problem is to sketch the 

hardware and software 
requirements for a reasonable 
implementation. 
3. Programming. Given the 

necessary hardware, the 
biggest lump of effort is the 
process of programming the 
application. Some parts of 
this lump include ... 

-Control flow: 
Outlining the major 
pieces of the program 
and their relationships. 

-Partitioning: A well 
designed system is 

simple! But how can 

the desired simplicity 
be reconciled with 
"doing a lot." One way 
is to partition the 
system into pieces. 

Within each piece, a 

further partition 
provides a set of 
sub -pieces and so on. 
Each piece of the 

program is thus kept at 

a level of relative 
simplicity, yet the 

whole system adds up 

to a quite sophisticated 
set of functions. 

-Coding: With the 
application design laid 
out in some detail, the 
program must be coded 
and debugged for a 

particular computer. 
The result could be a 

series of octal or 
hexadecimal numbers 
for your own 
computer, or a high 
level language program 
which can be translated 
by an appropriate 
compiler. 



A 

A live "cell" is a dot on paper. 

What Are The Facts of LIFE? 

Ask a biologist the 
question "What are the facts 

of life ?" and you will get one 
answer; ask a "byter" and 
you'll get the "real" answer - 
an evolution algorithm used 

to generate the placement 
and "cell" content of a 

square grid given the previous 
state of cells in the grid. The 
inspiration of the game is a 

combination of modern 
biology, the concept of 
"cellular automata" in 

computer science and the 
pure fun of mathematical 
abstractions. In making a 

computer version of the 
game, the simplest approach 
is to think of a group of 
individual "bits" in the 
computer memory - with 
your thoughts assigning one 
memory bit to each "square" 
of the grid. (The hand 
operated form of the game 

algorithm uses graph paper 
for the squares in question.) 
If I have a place in memory 
which can store one bit, it 

Fig. 1. Three views of LIFE: (a) 
on paper; (b) in memory; (c) on a 

display. 

B 0000000000000 
00000000000000 

000000000000000 
0000000000000000 
0000000000010000 
0000000000000000 
0000000000000000 
0000000000000000 
0000000000000000 
A live "cell" is a "1" bit in 
memory. 

can have a value of logical 
"zero" or logical "one ". 

The LIFE game treats each 
location of the grid (its 
"squares ") as a place where a 

"cell" might live. If the place 
is empty, a logical "0" value 
will be used in the computer 
memory; if the place is 

occupied, the "cell" will be 

indicated by a logical "1" 
value. The rules of the LIFE 
algorithm are defined in 

terms of this idea of a "cell" 
(logic 1) or "no cell" (logic 0) 

at every point in the universe 
of the grid. Fig. 1(a) 
illustrates a single live cell on 
a section of graph paper as I 

might record it when I work 
out the LIFE process by 
hand. Fig. 1(b) shows a 

similar section of the 
computer memory in which 
bits ( "0" mostly, but "1" for 
the cell) stand for the content 
or lack of content of a square 
on the grid. Fig. 1(c) shows a 

third view - the output of a 

program which puts the 
computer memory bits of the 
grid onto a graphics display. 

Look again at Fig. 1(a). 
The "cell" on the graph paper 
grid is a black dot placed in 
some location. Count the 
number of graph paper 
squares which directly 
surround the live "cell" 
location. There are 8 possible 
places which are "nearest 
neighbors" to the place held 
by the live cell. Similarly, if 
you pick an arbitrary square 
on the graph paper, you can 
count up its nearest neighbors 
and find 8 of them also. The 
rules of the LIFE algorithm 
concern how to determine 
whether to place a "cell" in a 

particular square of the grid 
for the "next generation ", 
given the present content of 
that square and its 8 nearest 
neighbors. 

What are the properties of 
a specific grid location of the 
game? I've already mentioned 
its binary valued nature (it 
has a "cell" or it doesn't) and 
its neighbors. One more 
property which is crucial to 
the game of LIFE is that of 
the "state" of its 8 nearest 
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A live "cell" is a point of light on 
a graphics display. 

neighbor squares. For LIFE, 
the "state" of the neighbors 
of a grid location is defined as 

"the number of occupied 
neighbors." In the examples 
of Fig. 1, the "state" of the 
grid location with the live cell 
is thus "0" (no neighboring 
cells), and the state of any 
cell location which touches 
the single live cell's location is 

"1 ". If I were to fill the 
entire graph paper or its 

memory equivalent with live 
cells, the state of any grid 
location in the middle would 
be "8 ". 

Stated in words, the rules 
of the LIFE algorithm 
determine the content of 
each grid location in the 
"next generation" in terms of 
its present content and the 
state of its nearest neighbor 
grid locations. The rules 
divide into two groups 
depending upon the present 
content of the grid location 
whose "next generation" 
value is to be calculated: 



Fig. 2. (a) A "glider" generation 4th. (b) Examining location "Z" and its 

nearest neighbors. (c) What has to change for generation #n +1. (d) The 

second phase of the glider (generation 41+1). 

A 

c 

Rule 1. LIVE CELL 
LOCATIONS. If the location 
to be evolved has a live "cell" 
at present ( "this generation ") 
then, 

1.1 Starving for 
Affection. If the 
location to be evolved 
has a state of 0 or 1, 

there will be no cell at 
the location in the next 
generation. Metaphori- 
cally, if the cell has 

only one or no nearest 
neighbors it will die out 
for lack of interaction 
with other members of 
its species. 
1.2 Status Quo. If the 
location to be evolved 
has a state of 2 or 3, 

the present live cell will 

live into the tomorrow 
of the next generation. 
1.3 Overpopulation. If 
the location to be 

evolved has a state of 4 

thru 8, there will be no 
cell at the location in 
the next generation. 
Metaphorically, the cell 
has been crowded out 
by overpopulation on a 

local basis. 
Rule 2. EMPTY 
LOCATIONS. If the location 
to be evolved has no live 
"cell" at present ( "this 
generation ") then, 

2.1 The Sex Life of 
Cells. If the location to 
be evolved has a state 
of 3, a new cell will be 

"born" in the formerly 

empty location for the 
"next generation." 
Metaphorically, the 
three neighboring 
"parent" cells have 

decided it is time to 
have a child. 
2.2 Emptiness. If the 

location to be evolved 
does not have three 
cells in neighboring 
locations, it will remain 
empty. 

This is the simplest set of 
rules for the LIFE algorithm, 
a version which will allow 
you to begin experimenting 
with patterns and the 
evolution of patterns. More 

complicated extensions can 

be made to provide an actual 
interactive (two people) 
competitive game version; an 

interesting variation I once 
implemented is a LIFE game 
with "genetics." In the 
genetics variation, each grid 
location (graph paper square) 
is represented in the 
computer as a "character" - 
an 8 bit byte - of memory. 
The character in the square is 

the "gene" pattern of that 
cell. Then, when rule 2.1 is 

implemented, LIFE with 
genetics uses a set of genetic 
evolution rules to determine 
which character will be put in 
the newborn cell based upon 
the "genes" of the parents. 
(This genetic evolution 
program for LIFE was 

written for my associates at 
Intermetrics, Inc., as a test 
program to try out a new 
compiler's output.) 

a "glider" for reasons which 

will become clear a little bit 
later in this article. The glider 

pattern of Fig. 2(a) consists 

of the five cells indicated by 

black dots, and their 
positions relative to one 

another. I have also indicated 
a dotted line in all the 

illustrations of Figs. 2 and 3 

as a fixed reference point in 

the grid. 
The algorithm for evolving 

one generation to the next is 

illustrated for one grid 

location in Fig. 2(b). The 

LIFE program will examine 
each location in the grid one 

by one. This examination is 

used to figure out what the 

content of the cell will be in 

the next generation according 
to the facts of LIFE. Since 

these facts only require 
knowledge of the given grid 
location Z and its 8 nearest 

neighbor locations, Fig. 2(b) 

depicts a box of 9 squares 

including Z. The rest of the 

universe is shown shaded. To 
determine what grid -space 

location Z will be like in the 

next generation, the LIFE 
program first counts up the 

live cells in all the 
nearest -neighbor positions. 
The count is the "state" of Z. 

In this case there are 3 live 

cells on the top edge of the 

box containing Z. Then, the 

program chooses which rule 
to use depending upon 

whether or not location Z has 

a cell. In this case, Z is empty 
so the "empty location" set 

of rules (numbers 2.1 or 2.2) 
is used. Since the state of Z is 

3, rule 2.1 applies and a cell 
will be born in location Z for 
the next generation. 

Now if I had a true 
"cellular automaton" to 
implement the LIFE 
program, all grid locations 
would be evolved 
"simultaneously" - and very 
quickly - in the computation 
of the next generation. In 

point of fact, however, I have 

How Do You Use The Facts of 
Life? 

To illustrate the facts of 
LIFE, a hand -worked 
example is a valuable tool of 
understanding. Consider a 

"typical" pattern of LIFE as 

shown in Fig. 2(a). Fig. 2(a) 
shows what LIFE addicts call 
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a computer which can only 
handle 8 (or 16) bits at a time 
which are stored in words of 
memory. For small 
microcomputers, these bits 
for the LIFE grid will be 

stored as "packed" bit strings 
and will be accessed by a 

series of subroutines which 
will be described in LIFE 
Line when the time comes. 
have to sequentially look 
at every bit of the internal 
LIFE grid of the program and 
examine its old nearest 
neighbors in order to 
calculate its new value. I 

emphasize old for the 
following reason: if I store 
the new value of the grid 
location just evolved back 
into that location with no 
provision to recall its old 
value, I'll end up with a 

mixture of old and new data 
when I look at the next grid 
location in the row. That 
mixture is not part of the 
rules and constitutes a 

"faulty" program for 
evolution. It turns out to be 

sufficient to remember all the 
data in one previous row 
before it was changed in 
order to calculate the next 
row after the change. Similar 
problems of keeping track of 
partially updated data often 
occur in computer 
programming, to be solved by 
the identical technique of 
temporarily remembering a 

copy of the un- updated data. 

In Fig. 2(c), the result of 
examining all the grid 
locations in the vicinity of 
the glider of Fig. 2(a) is 

illustrated. The changes are 

indicated by three notations 
for cells: 

Generation "n +1 " of the grid 
of LIFE is illustrated in Fig. 
2(d), which was obtained by 
"executing" the changes 
noted in Fig. 2(c). When the 
LIFE program is run, all this 
is done automatically for 
each point in the grid - 
resulting in a new generation 
as soon as the computer can 
complete all the calculations. 
The patterns will be seen to 
"evolve" in real time as new 
generations are calculated and 
sent to the scope output. One 
"dot" on the scope display 
corresponds to each live cell 
of the grid pattern. Fig. 3, 

(a), (b) and (c), continue the 
pattern evolution illustrated 
in Fig. 2 for the "glider ". In 
Fig. 3(a), changes to 
generation n +1 are indicated 
with the same notation as was 

used in Fig. 2(c). The 
resulting generation n +2 
pattern is shown at the right. 
Fig. 3(b) shows the changes 
from generation n +2 to 
generation n +3, and 3(c) 
shows the change going to 
generation n +4. 

One of the most 
interesting features of the 
LIFE game is the evolution of 
patterns which "move" across 
a graphics display device. 
With a fast enough processor, 
a glider such as the one used 
in this example will "glide" 
to the loner right of the 
screen at a breakneck speed, 
going off into limbo at the 
edge - or if the program is 

0 - this indicates a new cell generated 
by rule 2.1 - this indicates an old cell which dies 
by rules 1.1 or 1.3 
- this indicates an old cell which is 

retained by rule 1.2 

sufficiently "smart ", 
reappearing elsewhere on the 
screen due to a "wrap- 
around". The reason that the 
glider gets its name is because 
of its motion attributes. Note 
now the fourth generation 
( "n +4 ") in the sequence 
repeats the original glider 
pattern, but has moved one 
unit along a diagonal of the 
LIFE grid toward the lover 
right. (The reference line 
shows this movement.) It 
took four generations for the 
glider pattern to regenerate 
its original form, which 
defines the "period" of this 
pattern. When you get your 
graphics interface up and 
running, you will find 
numerous other classes of 
patterns, some of which have 
periods which run into 

hundreds of generations. 
There are also other forms of 
moving patterns similar to the 
glider. 

What Do I Need to 
Implement LIFE? 

The fun part of LIFE is to 
experiment with patterns of 
cells and observe how the 
evolution from generation to 
generation changes with 
patterns and classes of 
patterns. In the lexicon of 
LIFE lovers, there are whole 
classes of "gliders ", "space 
ships ", "blocks ", the 
"blinkers ", "beehives ", the 
"PI" and other patterns. 
You'll be able to set up initial 
configurations of these and 
other patterns, and observe 
the course of evolution using 
the hardware /software system 

Fig. 3. (a) Third phase of the glider. (b) Fourth phase of the glider. (c) 
Back to the first phase, but displaced! 
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Fig. 4. The LIFE grid display with cursor detail (showing suggested pattern). 

64 

positions 

concepts of LIFE Line. The 
hardware requirements of this 
application's first simple form 
are three: 
1. An input method. The best 
all around input you can get 
for your computer is an 

ASCII encoded typewriter 
keyboard. This hardware will 
be assumed, with 7 -bit ASCII 
codes used in the examples of 
programs. I f you feel like 
embellishing the program 
with special hardware, a 

"paddle" with several keys 

can be wired in parallel with 
your main keyboard to 
control the special functions 
of the LIFE program. The 
input keys used to control 
the display will require a 

keyboard which can detect 
two simultaneous (or three) 
keys being pressed. A normal 
ASCII encoded keyboard 
with an LSI encoding chip 
will not work "as is" in this 
application since pressing two 
keys (other than control or 
shift and one other) will be 

resolved into two characters. 
An alternate "paddle" type 
of arrangement is to use a 

single input port with one 

64 " x " positions 

switch key switch for each bit 
of the port, debounced by 

software. A keyboard which 
is encoded by a diode matrix 
can be used since the diode 
matrix will give a new code 

(logical sum) based upon 
which keys were depressed. 

2. A processor. The game can 

be implemented on any 
conventional computer. As a 

measure of capacity, 
however, the simple form will 
assume a 64x64 bit array for 
the playing field, and an 

available home brew 
processor such as an Intel 
8080 (i.e.: Altair), Motorola 
6800, or National PACE. The 
total programming capacity 
of your memory should be 

roughly 4000 8 -bit words, or 
2000 1 6-bit words; the 
playing field will require 512 
8 -bit words, or 256 16 -bit 
words - and programming 
will include a set of 
subroutines to access 
individual bits. 
3. A display. My first version 
of LIFE was implemented on 
a PDP -6 in FORTRAN at the 
University of Rochester when 
I was a student. That program 

used a direct link out to a 

DEC Scope controlled by a 

PDP -8 - with a teletype for 
input. I have since 
implemented life programs 
using character -oriented 
terminal output and line 
printers. 

The display to be used for 
LIFE Line purposes I'll leave 

undefined in detail, but with 
the following characteristics: 
It should have an X -Y 
selection of coordinates for 
display elements (LIFE grid 
locations), which can be 

individually controlled. Its 

size will be assumed 64x64. 

A Note Regarding Speed 

The LIFE algorithm to be 

illustrated in LIFE Line is 

optimized fairly well for 
speed - a requirement which 
will become obvious in the 

context of your own system 
if you use a typical 
microprocessor. With a fairly 
large pattern of cells, it may 
take as much as a minute or 
more to compute the next 
generation. Trading off 
against speed is memory size 
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(x,y) designated 
by cursor 

- use of a packed bit 
structure is necessary if the 

matrix and programs are to 
fit in a micro computer which 
is inexpensive. But the 

packed bit structure requires 
time to access bits (eg: the 

shift /rotate instructions 
several times might be used in 
the access process). I predict 
that the program will be 

"dreadfully slow" if run on 

an 8008, and perhaps 
passably quick if you use a 

6800 or 8080. ( "Passably 
quick" means under 10 

seconds per generation.) A 
used third -generation mini 
(high speed TTL) would be 

ideal. 

User Features 

No application is complete 
without taking into 
consideration the user of the 

system. The interface which 
controls the system is an 

important section of the 
design. There is a temptation 
on the part of individuals 
such as you or I to say words 
to the effect: "Since I am 

making it for me, who the 
heck cares about the user 

interface." But! Removing 
the system from the working 
product realm to the purely 
personal realm does not 
eliminate the need to design a 



usable system. You have at 
least one user to think of - 
yourself! In point of fact, 
however, I doubt that any 
reader who builds a scope or 
TV graphics interface will be 
able to resist the temptation 
to show it off to his or her 
family and friends; so, even 
for "fun" systems, 
consideration of users is still a 

major input to the design. 
The user interface for the 

LIFE program will provide 
the following functions to 
enable a pattern to be drawn 
on the screen and initiated: 

1. Cursor. The display 
output should provide a 

"cursor" which is maintained 
all the time by a subroutine 
in the software at a given "X" 
and "Y" position of the 
matrix. Fig. 4 illustrates the 
point matrix of the screen 
(here assumed 64x64) and 
the cursor pattern. The cursor 
is a visual feedback through 
the display to the user of the 
LIFE program, illustrating 
where the program will place 
or erase information. Fig. 4 
shows a blow -up of one 
possible cursor pattern. 

Two additional features 
are required for a useful 
cursor output of the program 
for LIFE. These are: 
- A blinking feature. 
Suppose you have filled the 
screen with a complicated 
pattern drawn with the cursor 
controls described below. A 
significant number of the 
screen points are now filled 
with dots - and there will be 

a strong tendency to confuse 
the cursor pattern of Fig. 4 
with the actual data pattern 
you have entered. A "blink" 
feature can be built into the 
programs which create the 
cursor so that you will always 
be able to distinguish it by its 
flashes. 
-A blanking feature. For the 
LIFE game, a necessary 
attribute of cursor control is 

the ability to blank out the 
cursor during the actual 
evolution of patterns. I 

consider this necessary due to 
observation of a 

demonstration LIFE program 
for one desk top 
programmable CRT terminal: 
its cursor is always present 
and mildly annoying when 
the LIFE game is in 
operation. 

A basic way to make the 
cursor disappear from view at 
certain times is to require 
active control by cursor 
display routines when the 
program is in its input mode. 
If the LIFE program leaves 

the input mode to go evolve 
some patterns, the cursor will 
die a natural death until the 
active maintenance is 
resumed on return to the 
input mode. 

2. Cursor Control. The 
whole purpose of the cursor 
is to provide a means of 
feeding back to you - the 
user - the current grid 
location the LIFE program is 

pondering. Movement of the 
cursor provides the 
opportunity for three types 
of data entry to the program: 
- Positioning of the Cursor. 
By simply moving the cursor 
under control of the 
keyboard (see below) you can 
direct the LIFE program's 
attention to different parts of 
the screen. 

- Sowing Seeds of LIFE. By 
moving the cursor while 
indicating a "birth" function, 
the cursor will leave a trail of 

Birth - the cursor leaves a path of "cells," illuminated points. 

Death - cells in the cursor's path are eliminated. 

"cells" indicated in the 
display by illuminated points. 
(One keyboard key is 

required for this function.) 
- The Grim Reaper. By 
moving the cursor while 
indicating a "death" 
function, any cells in the path 
of the cursor will be 
eliminated, by turning off the 
corresponding display point. 
(One keyboard key is 

required for this function.) 
Motion control is also used 

to enter data. By picking a 

data key and at the same time 
depressing one or two of the 
cursor direction keys, a 

"trail" will be left. A timing 
loop in the input program 
will be used to set a 

reasonable motion rate in the 
X (horizontal) and Y 
(vertical) directions, so that 
the data entry will be 
performed automatically as 

long as the keys are 
depressed. The motion 
control keys and useful 
combinations are illustrated 
in Fig. 5. 

3. Program Control 
Commands. This is the 
section of the LIFE program 
design which is the software 
analog of the "backplane" 
data bus concept in a 

hardware system. LIFE Line 
concerns a modular LIFE 
program which will be subject 
to many variations and 
improvements. 
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KILLING TWO BIRDS WITH ONE STONE, or "HOW I 

DESIGNED A GENERAL INTERACTIVE GRAPHICS 

SOFTWARE INITIALIZATION PACKAGE IN THE GUISE 

OF A SPECIFIC APPLICATION. 

The ideas contained in this article are by no means limited 

to control of the graphics display type of device in the LIFE 

context used for this application. The only necessary 

connection between the LIFE program proper and the display 

"drawing" and updating functions is in the existence of several 

subroutines needed to turn on /turn off selected points, and 

the ability of the display input ( "drawing ") routines to call the 

LIFE program. One logical extension of the program control 

mechanisms to be included in LIFE Line is to allow the 

invocation (ie: activation, calling, etc.) of other programs and 

games which use the display. 
When the "drawing" routines are up and running, even 

before you hook up the LIFE algorithm proper, you'll be able 

to manipulate the contents of the scope under software 

control and draw pictures on the screen. 

Fig. 5. Cursor motion control commands. 

The following commands (one key on your keyboard for each) are used to simply move the cursor in one 

of the grid directions at a rate set by the cursor control software: 

Typical "Key Tops' 

or 

or 

or 

or 

Move toward top of screen. 

Move toward bottom of screen. 

Move left on the screen. 

Move right on the screen. 

The following combinations can be used to achieve motion in diagonal directions: 

Toward Upper Right Corner - PRESS 

Toward Lower Right Corner - PRESS 

Toward Lower Left Corner - PRESS 

Toward Upper Left Corner PRESS 

AND 

AND 

DOWN J AND 

AND 

RIGHT) AT THE SAME TIME. 

AT THE SAME TIME. 

AT THE SAME TIME. 

AT THE SAME TIME. 

Remember that all eight of these possibilities can be used to "sow the seeds" or erase data if the 

appropriate data key is pressed simultaneously. 
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The first demonstration of 
LIFE in these pages is just the 

bare bones of a LIFE 
program. When it is fully 
described you will see the 

input display routines, the 

evolution algorithm, the 

program control mechanism 
and little else. The program 
control mechanism, however, 
is quite general and will be 

used to integrate additional 
commands, variations on 

LIFE, etc. The means of 

achieving this modularityis a 

set of "hooks" which enable 

you to add commands 
beyond the bare minimum by 

coordinating new modules 
with the program. The 

following is a minimum set of 
program control commands 

for the first version: 
RUN -a key assigned to this 

function will terminate the 

input ( "drawing ") mode, and 

begin the "run mode." 
DRAW - a key assigned to 
this function will be tested 
during the "run" mode to 
cause a return to the "draw" 
mode. 
CLEAR - a key assigned to 
this function will be used to 
clear the screen in the 
"drawing" mode, leaving only 
the cursor and a blank screen. 

The above features are 

only a minimum set of user 

controls for LIFE. Additional 
program control commands 
which will prove invaluable 
when added include: 
SAVE /RESTORE - 
commands to write and read 

LIFE patterns on cassette 

tape or other mass storage 

device in your home brew 
system. 
INITIALIZATION - 
functional key entries for the 
generation of various 
"standard" LIFE patterns 
placed at the current cursor 
location. 

Next month, LIFE Line 
will enter into the realm of 
software design to describe 

the LIFE program software in 

more detail. 



LIFE Line Glossary. 
Communication of meaning requires definition of terms. The following is a listing of selected terms used 

in LIFE Line with short explanations. The terms which are marked "L" are primarily significant only in the 
LIFE application - all others are fairly general terms. 

"Active Control" - in the LIFE example, a desired 
requirement for the cursor is that it disappear 
automatically if not continually refreshed. This can 
be accomplished in software by instituting a 
"garbage sweeper" for the screen which clears the 
screen memory periodically and updates from the 
latest non-cursor sources of data. Normally, the 
cursor control /display subroutine would be called 
after the screen is updated - but if the cursor 
control routine is not called, the cursor will be 
absent after garbage sweeping. The cursor is thus 
said to require "active control" because it must be 
explicitly posted on the screen following the 
garbage sweeping operation if it is to appear at all. 
(L) 

"Algorithm" - this term has a formal mathe- 
matical origin as the generalized methodology for 
arriving at some result. In the computer science 
area, it retains this definition: an algorithm is the 
most general processing required to achieve some 
result. "Algorithm" is a term which includes the 
term "program" in the following sense: a program 
is an algorithm (general) as written and coded for a 

specific system. 

"Application" - an application is a specific system 
designed to accomplish some goal. In the computer 
systems area, applications are generally composed 
of hardware and software components which must 
"play together" to accomplish the desired func- 
tions. The LIFE Line's target -a working game of 
LIFE - is an example of an application. 

"Backplane Bus" - the hardware concept of a set 
of wired connections between identical terminals 
of multiple sockets. In modular systems, the 
common wiring makes each socket identical to 
every other socket. Hardware modules can then be 
inserted without regard to position in the cabinet 
containing the equipment. 

"Cellular Automata" - conventional computers 
employ a serial or sequential method of processing. 
One instruction, then the next, is executed in a 

timeordered sequence. The "cellular automata" 
concept is one way of visualizing large and compli- 
cated parallel computing elements. Hypothetically, 
the LIFE game could be played by such a cellular 
computer, one which calculates each matrix 
element simultaneously. In the present state of 
computer technology, this is not possible, so you 
have to settle for a simulation of the parallel 
computation's result, using a serially executing 
program.(L) 

"Coding" - the process of translating a functional 
specification of a program or routine into a set of 
machine readable elements for actual use in a 

computer. Coding can mean writing FORTRAN 
statements, writing PL /1 statements, writing 
assembly language statements, or ... if you have 
no compiler, coding is the writing of machine 
codes directly onto a sheet of paper using tables of 
op codes, an eraser and patience. 

"Cursor" - a mark on a display screen used to 
identify a particular place. This interpretation is an 
electronic adaptation of the standard definition in 
Webster. 

"Evolution" - patterns in the game of LIFE 
change from generation to generation according to 
the rules. The sequence of such changes can loosely 
be called the evolution of the pattern.(L) 
"Feedback" - in the context of system develop- 
ment, feedback is the use of observed system 
behavior to modify and improve the design of the 
system. 

"Functional Specification" - a functional specifi- 
cation of a system is one which describes "what" 
the system must do, more or less independent of 
any technology which is required to make the 
"what" work. It is easy to come up with loose 
functional specifications - the hard part is to 
refine the specification and pin it down to some- 
thing which is "do- able" in a given context of 
technology. I have a functional specification in my 
mind, for instance, of a useful interplanetary travel 
method - but whether or not I ever see such a 
system depends upon advances in physics, 
engineering and economic understanding. BYTE 
often concerns itself with functional specifications 
of much more "do-able" systems which readers can 
and will implement on home computers. 

"Generation" - this term in the LIFE context 
means the present "state" of all the locations in 
the "universe of the grid" at some point in 
time.(L) 

"Implement" - technical jargon verb for the 
creation of a system or element of a system. A 
hardware designer might implement a controller or 
a CPU; a software programmer implements a 
system of programs; a systems designer implements 
a hardware /software combination which achieves a 
desired functional end. 

"Indexing" - the technique of referencing data in 
collection of similar items by means of numerical 
"indices." In the LIFE Line example, the collec- 
tion is that of the 64x64 array of bits in the 
computer representation of "grid space." Indexing 
by row and by column is used to pick a particular 
bit within this array when the program requires the 
data. 

"Interact" - when a system "interacts" with 
"something /person" it is operating under an 
algorithm which allows conditional ;.ehavior 
dependent upon data. The data is obtained from 
the "something/person" and may in fact be 
influenced by previous interactions as well as new 
inputs. In many computer contexts "interact" has 
the additional implication of "quick" response in 
"real time." Thus when you think of an 
"interactive" terminal or game, you think of a 
computer programmed so that it keeps up with the 
inputs from the human operator. 
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"Lexicon" - the list of buzzwords in any given 
field. This glossary is a subset of a lexicon coupled 
with explanations. In compiler and language 
design, "lexical analysis" is a derivative of this term 
concerned with language keywords and their rela- 
tion to a grammar. 

"n ", "n +1 " "n+2"... - when it is useful to 
specify a sequence of things, where no particular 
number is intended, a "relative" notation of the 
sequence is useful. "n" is some arbitrary number; 
"n +I" is one number Beater than an arbitrary 
number, and so on. When I say "generation n +l" 
of LIFE, I mean the next generation after 
generation "n" where "n" is arbitrary. 

A suitable LIFE display peripheral is an oscilloscope 
graphics interface such as the Digital Graphic Display 
Oscilloscope Interface designed by lames Hogenson and 
printed in the May 1975 issue of ECS Magazine, the 
predecessor to BYTE. The graphics interface article will be 

expanded and published in BYTE No. Z October 1975. Until 
supplies are exhausted, back issues of May ECS (and earlier 
articles) can be ordered at $2 each. Orders and inquiries 
regarding ECS back issues should be sent to M. P. Publishing, 
Box 378, Belmont MA 02178. 

'Partitioning" - the technique of "divide and 
conquer." Rather than view a complicated system 
as a monolithic blob of "function," an extremely 
useful design method is to partition the system 
into little "bloblets" of function which are easy to 
understand. Hardware designers of CPUs thus think 
of MSI chips as sub-elements in partitioning; 
hardware systems designers think of CPUs and 
peripherals and memories as sub-elements of parti- 
tioning, and software designers consider divisions 
of complicated programs and program libraries as 
their sub-elements. 

"State" - the present condition of some system, 
or elements of the system. This term applies to any 
system which has "memory" to distinguish one 
possible "state" from another. The term applies 
equally well to small sub-elements of a system such 
as the bits of a memory: in the LIFE Line context, 
the "state" of a single grid location is a number 
from 0 to 8 counting how many "neighbor cells" 
are present. 

"System"-the most general of all general purpose 
terms. A system is a collection of component 
elements (technological, hardware, software, 
human -interface) selected to play together accord- 
ing to some design or purpose. A system is a 
human -invented way of doing things. 

"Undefined in Detail" - I know what is needed, 
can specify its interface, but am not at present 
supplying the detail design. This is a useful attitude 
since it allows for "plug compatible" designs 
differing widely in their internal principles of 
operation. A similar expression would be to call 
the subsystem in question (the graphic display 
mentioned in this LIFE Line example) a "black 
box" and leave it at that. (Software always seems 
to reference hardware in this way, and hardware 
does the same for software.) A synonym for the 
attitude is the mathematician's way of saying "in 
principle there exists a solution!" without telling 
you what it is. 

"Universe of the Grid" - this is the set of all 
possible places in which a LIFE cell could be 
placed. These places are called "grid locations ".(L) 
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LIFE Line 

by 
Carl Helmers 
Editor, BYTE 

What Is This Process - 
Designing A Program? 

For the readers who are 
only just now beginning to 
learn the programming of 
computers, an elementary 
acquaintance with some 
machine's language, a BASIC 
interpreter, or high level 
languages would tend to give 
the impression that 
programming is 
fundamentally simple. It is! 

To write a program which 
fills a single page of listing - 
whatever the language or 
machine architecture involved - is not a tremendously 
difficult task. When it comes 
to more complex projects - 
say 1000 or more words of 
hand or machine -generated 
code on your microcomputer 
- the problem is how to 
preserve the blissful 
innocence of simplicity in the 
face of the worldly forces of 
complexity. 

When you begin to talk 
about programs more 
complex than a one page 

assembly or machine code 

LIFE Line I (BYTE #1) presented the general picture of 
the LIFE program application of your computer. That picture 
includes the rules of the game, methods of interactively 
entering graphic data, major software components in verbal 
description and some of the hardware requirements of the 
game. In this installment, the discussion turns to some of the 
program design for the LIFE application. The discussion starts 
"at the top" (overall program flow) and works down to more 
detailed levels of design, concentrating upon the "evolution 
algorithm" which generates new patterns from old patterns. 

As in the previous LIFE Line, the goal of the article series is 

as much to explain and instruct as it is to elaborate upon this 
one particular system. This article concentrates on the 
program design process as illustrated by a real LIFE example. 

listing of some specialized 
service routine or simple 
"gimmick" program (see the 
Kluge Harp article in this 
issue), the complexities and 
subtleties of scale begin to 
enter into the programming 
art. For an application such 
as the LIFE program, 
proceeding from the vague 

notion "I want this 
application" to a working 
program can be done in 
innumerable ways - many of 
which will work quite well. 
This is the first ambiguity of 
scale - where do you head as 

you start programming? 
Unless you have a unique 
parallel processing mind, you 
can't possibly concentrate on 
the whole problem of 
programming at once. 

In order to make a big 
application program work, 
you have to select "bits and 
pieces" of the desired result, 
figure out what they do and 
how they fit into the big 
picture, then program them 
one by one. These little 
pieces of the program - its 
"modules" - are like the 
multiple layers of stone 
blocks in a pyramid. In fact, 
defining what to do is very 
much like the tip of some 
Egyptian tyrant's tomb in the 
spring flood ... as the murky 
generalities recede, more and 
more of the structure of the 
program is defined and 
clarified. Fig. 1 illustrates the 
pyramid of abstractions at 
the start of a program design 
process. The top layer is clear 
- a LIFE program is the 
desired goal. The next layer 
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down is for the most part 
visible through the obscuring 
water. But the details of the 
base of the pyramid - while 
you know they have to be 

there in some form - are not 
at all visible at the start. The 
design process moves the 
logical "water level" 
surrounding the pyramid 
lower and lower as you figure 
out more and more of the 
detail content of the 
program. 

Start at the Top ... 
In LIFE Line 1, I 

mentioned two major 
functions which compose a 

practical LIFE program - 
data entry and manipulation 
is one, the LIFE evolution 
algorithm is the second. 
Together, these functions 
define the "program control" 
layer of the LIFE pyramid. 
Fig. 2 is a flow chart 
illustrating the program 
control algorithm which is 

the top level of the program 
structure. Although the 
diagram - and the algorithm 
- are extremely simple, they 



DESIGN 

KEYBOARD 
INTERPRETER 

ADDITIONAL LAYERS 
YET TO BE DEFINED 

serve a very useful purpose in 
the program design process: 
This high level design has split 
most of the programming 
work into two moderately 
large segments, each of which 
is less complicated than the 
whole program. This view of 
the problem now gives us two 
major components upon 
which to concentrate 
attention once the top level 
routine is completed. The 
program control algorithm of 
Fig. 2, elaborated in Fig. 3, is 

the "mortar" which cements 
together these two blocks of 
function. 

The LIFE program is 

entered by one of a number 
of methods. Fig. 2 illustrates 
branch or jump possibilities 
from a systems program 
called a "monitor," 
"executive" or "operating 
system" - the preferred way 
once you get such a system 
generated. If your system 
runs "bare bones" with little 
system -resident software, you 
might select the starting point 
and activate the program 
through use of hardware 

restart mechanisms and a 

front panel console. 
The first module of the 

LIFE application to be 

entered is the KEYBOARD_ 
INTERPRETER, a set of 
routines which is used to 
define the initial content of 
the LIFE grid using 

START (JUMP OR 
CALL) FROM SYSTEM 
EXECUTIVE OR MONITOR, ETC. 

interactive commands and the 
scope display output. The 
KEYBOARD_INTER- 
PRETER eventually will 
receive a "GO" command or 
an "END" command from 
the user - whereupon it will 
return to the main routine 
with the parameters "DONE" 

KEYBOARD 
INTERPRETER 

(DEFINE DATAI 

YES 
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RETURN TO 
MONITOR OR HALT 

Fig. 1. Defining what to do is like 
the tip of some Egyptian tyrant's 
tomb in the spring flood ... as 

the murky generalities recede 
more and more of the structure 
is defined and clarified . . 

and "N" defined. If "N" is 

greater than zero, control 
flows to the evolution process 
- and "N" generations of 
LIFE will be computed and 
displayed as they are 
completed. After the "N" 
generations have been 
completed, the scope display 
and the LIFE grid have the 
last completed results. If the 
program is not "DONE," 
control flows back to the 
KEYBOARD INTER- 
PRETER for modification of 
the data, clearing the screen 
and starting over, or other 
operations. If the program is 

"DONE" then the control 
flows back to the systems 
programs - or to a halt point. 

This program control 
algorithm is elaborated in 

more explicit detail in Fig. 3. 

Fig. 2. LIFE program flow of 
control. 



Fig. 3. The main control routine of LIFE specified in a procedure - 
oriented language .. . 

1 LIFE: 

2 PROGRAM; 

3 DONE = FALSE; 

4 DO UNTIL DONE = TRUE; 

5 CALL KEYBOARD_INTERPRETER 

DO FOR I - I TO N; 

7 CALL GENERATION; 

R END; 

O END; 

10 RETURN; / * TO EXECUTIVE, MONITOR, 

11 CLOSE LIFE; 

(N, DONE); 

OR JUST HALT / 

Subroutines Referenced by LIFE: 

KEYBOARD_INTERPRETER ... This is the routine which 

looks at the interactive keyboard and interprets user actions 

such as specifying initial patterns, modifying patterns, etc. N is 

defined by the GO command which causes return from this 

subroutine to LIFE. 
GENERATION ... This is the routine which is used to evolve 

one generation of the life matrix and display the result. Since 

the entire matrix is kept in software by GENERATION until 

after a new matrix has been evolved, there will never be any 

partially updated patterns on the scope. 

Data (8 bit bytes) used by LIFE at this level: 

FALSE - the value "0 ". 
TRUE - the value "1". 
DONE - variable set by KEYBOARD_INTERPRETER 

after a user command (GO) to start execution. 
N - a variable set by user interaction in KEYBOARD 

INTERPRETER giving the number of generations to evolve. 

I - a temporary loop index variable. 

... the problem is how 
to preserve the blissful 
innocence of simplicity 
in the face of the wordly 
forces of complexity. 

Fig. 3 uses a "procedure - 
oriented language" (see the 
box accompanying this 
article) to specify the 
program in a more explicit 
and compact form than is 

possible with a flow chart. 
Each line of the program as 

specified in Fig. 3 could 
potentially be compiled by an 
appropriate compiler - but 
for the purposes of most 
home computer systems, 
generation of code from this 
model would be done by 
hand. The outer loop is 

performed by a "DO UNTIL" 
construct starting at line 4 
and extending through line 9. 
The program elements found 

on lines 5 to 8 are executed 
over and over again until 
DONE is found to be equal to 
logical 1 or "TRUE" when a 

test is made at the END 
statement of line 9. A "DO 
FOR" loop is used to 
sequence "N" calls to a 

subroutine called 
GENERATION which does 
the actual work of computing 
the next generation content 
and then displaying it on the 
scope. The remainder of Fig. 
3 summarizes the data and 
subroutines referenced by 
LIFE. 

From this point, the LIFE 

Line can extend in two 
directions. I n order to have a 

complete LIFE program, 
both areas have to be 
traversed - the 
KEYBOARD_INTER- 
PRETER and the 
G E N E R A T I O N 

routine . . .but the 
partitioning has nicely 
separated the two problems. 
The simpler and most 
self- contained of the two 
segments is the 
GENERATION algorithm, so 
I'll turn attention to it next. 

Grid Scanning Strategies 
The GENERATION 

subroutines of the LIFE 
program has as its design goal 
the transformation of one 

complete LIFE grid pattern 
into the "next" complete 
pattern The rules of the 
Game of LIFE - the "facts 
of life" - must be applied to 
each location in the grid to 
compute the next value of 
that location. Fig. 4 
illustrates two potential 
strategies for computing the 
next generation - methods of 
scanning the grid to compute 
one location at a time. 

The first strategy, Fig. 
4(a), is to employ alternate 
copies of a complete LIFE 
grid of 64 by 64 points. If 
generations are numbered 
consecutively, the generation 
algorithm would transform 
copy A into a "next" copy in 
B on odd generations, and 
complete the cycle by 
transforming copy B into a 

"next" copy in the A grid on 
even generations. Since each 
grid requires 4096 bits - 
which can be packed into 512 
bytes - a total of 1024 bytes 
is required for data storage if 
this method is used. The 
primary advantages of this 
method are its "straight- 
forward" nature and its 
separation of old and new 
data at all times. 

A second strategy is 

illustrated in Fig. 4(b), the 
strategy of using alternate 
row -buffers with only one 

Fig. 4. The LIFE evolution algorithm - matrix scanning techniques 
which preserve relevant old information while creating new information 
in overlapping storage areas. 

A. ODD GENERATIONS 

ADVANTAGES 
1. STRAIGHTFORWARD. 
2. ONLY NEW BITS 

ARE UPDATED IN 
ALTERNATE MATRIX. 

DISADVANTAGES 
1. TWO 512 -BYTE R.A.M. 

AREAS REQUIRED FOR 
64 64 LIFE GRID. 

EVEN GENERATIONS 

B. 

MAIN GRID ROW-BUFFERS ADVANTAGES 
1. ONE 512 BYTE LIFE 

GRID PLUS TWO 8 BYTE 

BITS 
BUFFERS. 

64 64 OLD DISADVANTAGES 64 

BITS CURRENT 
1. LESS "INTUITIVE." 
2. MOVEMENT OF DATA 64BITS N 

TAKES TIME. 
3 EXTRA CODE 
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main grid copy. Two 64 bit 
rows must be maintained - 
the last previous row and the 
current row - as 8 byte 
copies. These copies contain 
information prior to updating 
in the row by row scan down 
the matrix. The main 
advantage is a saving of data 
areas (partially offset by 
more complicated software). 
The main disadvantages are 

its less "intuitive" nature, the 
extra time required to make 
data copies, and a slightly 
larger program. 

The choice between these 
two methods is primarily one 
of the amount of storage to 
be devoted to data. The 
tradeoff is in favor of the 
double matrix method when 
very small LIFE matrix sizes 
are considered. The extra 8 

bytes required for a second 
copy of an 8 by 8 grid of bits 
hardly compares to the 
programming cost of the 
alternate row -buffer strategy. 
When large matrices are 

considered, however, the 
memory requirements of an 

extra copy of the data are 
considerable, but the 
programming involved is no 
more difficult. For example, 
consider the limit of an 8 bit 
indexing method - a 256 by 
256 grid. This will require a 

total of 8192 bytes for each 
copy of the LIFE grid. Two 
copies of the LIFE grid 
would use up 16k bytes, or 

one fourth of the addressing 
space of a typical 
contemporary micro- 
computer, and all of the 
addressing space of an 8008 
microcomputer! At the 64 x 
64 bit level, the tradeoff is 

much closer to the break -even 
point, but I expect to find at 
least 100 bytes saved as a 

result of using the row -buffer 
method. An assumption 
which is also being made 
when the alternate row -buffer 
method is used is that the 
scope display or TV display 
you use for output will have 
its own refresh memory so 

that the "old" pattern can be 

held during computation of 

An objective: Split the processing into moderately large 

segments, each of which is less complicated than the program 

taken as a whole. 

the new. If this is not the 
case, a less desirable output in 

which partially updated 
patterns are seen will be the 
result. (Counting the CRT 
refresh, the method of Fig. 
4(a) thus requires three full 
copies of the matrix 
information, and the method 
of Fig. 4(b) requires two full 
copies.) 

Active Area Optimization 
With the choice of a 

matrix scanning strategy - 
the alternate row- buffer 
method - another 
consideration in designing the 
generation algorithm is a 

computation time 
optimization method. There 
is no real need to calculate a 

new value of every cell in a 

mostly empty LIFE grid. If I 

only have one glider with its 
corner at location (34, 27) of 
the grid, why should I 

compute any new generation 
information outside the area 
which could possibly be 

affected by the present 
pattern's evolution? Again, 
the savings in computation 
time using active area 
optimization depend upon 
the size of the grid. If most 
patterns occupy the full grid, 
then very little will be saved 
- for the small 8 x 8 grid 
"straw man" used in 
discussing scanning strategy, 
there would also be no point 
to active area optimization. 
But with a huge 256 by 256 
grid, and an 8 by 8 active 
area, this optimization might 
mean the difference between 
a 15 minute computation and 
a 1 or 2 second computation 
of the next generation. 

Fig. 5 illustrates the 
concept of active area 
optimization in a LIFE 
program. The current 
generation's active area is 

defined as the set of X and Y 
limits on the extent of live 
cells in the grid. In Fig. 5, the 
active area is the inner square 
of 7 x 7 = 49 grid locations. 
In computing the next 
generation, a box which is 

one location wider in each of 
the four cardinal directions is 

the "zone of possible 
expansion" for the pattern. 
In Fig. 5, this zone is the 
outer box of 9 by 9 locations. 
The computation of "next 
generation" values need only 
be carried out for the 81 grid 
locations bounded by the 
outer limits of the zone of 

Fig. 5. Active area optimization - never compute more than the 
absolute minimum if speed is at a premium. 

i 
"Y" LIVE 

CELL LIMITS 

ZONE 
OF POSSIBLE 
EXPANSION 

OF PATTERN 
IN NEXT 

GENERATION 

PRESENT 
ACTIVE 
AREA 

e 

LIVE CELL 
LIMITS 

possible expansion. Thus in 
the case of the 64 by 64 
matrix of LIFE points, this 
optimization for the pattern 
of Fig. 5 will limit the 
program to calculation of 81 

new points versus the 4096 
points which would be 
calculated if at least one cell 
was found at each of the 
minimum (0) and maximum 
(63) values of the X and Y 
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The "facts of life" must be applied to each location in the grid 

to compute the next value - cell or no cell --- of that location. 

coordinates. This case yields a 

savings of 98% of the 

maximum generation to 
generation computing time. 

The GENERATION 
Subroutine 

Fig. 6 illustrates the code 
of the GENERATION 
routine, specified in a 

procedure- oriented language, 

Fig. 6. The GENERATION routine specified in a procedure- oriented 
language... 

1 GENERATION: 

2 PROCEDURE; 

3 THIS - 0; /* INITIALIZE POINTERS TO TEMPORARY ROW */ 

4 

5 

6 

7 

THAT - 1; /* COPY VARIABLE "TEMP" 

DO FOR I - 0 TO 7; 

IF NROWMIN - 0 THEN 

TEMP (THAT,I) - LIFEBITS(63,I); 

ELSE 

0 TEMP (THAT,I) - 0; 

10 /* THIS ESTABLISHED WRAP- AROUND BOUNDARY CONDITION */ 

11 END; 

12 NRMIN - 09; /* THEN INITIALIZE ACTIVE AREA LIMITS */ 

13 NRMAX - 0; 

14 NCMIN - 99; 

15 NCMAX - O; 

16 ROW LOOP: 

17 DO FOR IROW - NROWMIN TO NROWMAX; /* SCAN ACTIVE ROWS ONLY 

18 DO FOR I - O TO 7; /* COPY THIS ROW TO TEMPORARY */ 

19 TEMP (THIS,I) - LIFEBITS (IROW,I); 

20 END; 

21 DO FOR ICOL - NCOLMIN TO NCOLMAX; /* SCAN ACTIVE COLUMNS ONLY */ 

22 CALL FACTS_OF_LIFE (IRON, ICOL); 

23 END; 

24 X - THIS; 

25 THIS - THAT; 

26 THAT - X; /* THIS SWITCHES BUFFERS */ 

*/ 

27 END; 

28 CALL LIMITCHECK; 

20 CALL DISPLAY; 

30 CLOSE GENERATION; 

Subroutines Referenced by GENERATION: 
EV OL VER ... This is the routine used to calculate the next 
value of the ICOLth bit in the IROWth row of LIFEBITS 
using the current value of the next row, the saved value in 

along with notes on further 
subroutines and data 
requirements. The procedure 
starts by initializing the data 
used for the scan of the 
matrix, in lines 3 through 15. 
THIS and THAT are used to 
alternately reference the 0 
and 1 copies of an 8 byte 
data item called a 2 by 8 byte 
data area called "TEMP". 

(Subscripts, like in XPL and 
PL /M are taken to run 0 
through the dimension minus 
1.) NRMIN, NRMAX, 
NCMIN, and NCMAX are 
used to keep track of the new 
active area limits after this 
generation is computed; 
NROWMIN, NROWMAX, 
NCOLMIN and NCOLMAX 
are originally initialized by 
the KEYBOARD_INTER- 
PRETER and are updated by 
LIMITCHECK after each 

generation is calculated - 
using the new active area 
limits. 

The actual scan of the grid 
of LIFE, stored in the data 
area called LIFEBITS, is 

TEMP of the previous row, and the saved value in TEMP of the 
current row before updating. 
LIMITCHECK... This is the routine used to calculate the 
next values of NROWMIN, NROWMAX, NCOLMIN, 
NCOLMAX using the current values of NRMIN, NRMAX, 
NCMIN and NCMAX. 
DISPLAY... This routine transfers the LIFEBITS data to the 
display, on whatever kind of device you have. 

Data (8 bit bytes) used by GENERATION at this level: 
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X = TEMPORARY 
I = temporary index (not the same as the I in Fig. 3) 

ICOL = index for column scanning . . . 

IROW = index for row scanning .. . 

NCMAX = current maximum column index of live cells 

NCMIN = current minimum column index of live cells 

NRMA X = current maximum row index of live cells 

NRMIN = current minimum row index of live cells 

Data (8 bit bytes) used by GENERATION but shared with the 
whole program: 

THIS = current line copy index into TEMP. 
THAT = previous line copy index into TEMP. 
TEMP = 2 by 8 array of bytes containing 2 64 -bit rows. 
NROWMIN= minimum row index of live cells. 
NROWMAX = maximum row index of live cells. 
NCOLMIN = minimum column index of live cells. 
NCOLMAX = maximum column index of live cells. 
LIFEBITS = 64 by 8 array of bytes containing 64 rows of 

64 bits. 
Assumptions: 

LIFEBITS, NROWMIN, NROWMAX, NCOLMIN, 
NCOLMAX are initialized in KEYBOARD INTERPRETER 
for the first time prior to entry - and retain old values across 
multiple executions of GENERATION thereafter. 



Fig. 7. The LIMITCHECK routine specified in a procedure- oriented 
language... 

1 LIMITCHECX: 

2 PROCEDURE; 

3 /* CALCULATE NEXT ROW LIMITS s/ 
4 IF NRMIN -1 < NROWMIN THEN NROWMIN - NRMIN-1; 

5 IF NRMAX +1 > NROWMAX THEN NROWMAX - NRMAX +1; 

6 IF NROWMAX >63 THEN NROWMAX - 63; 

7 IF NROWMIN < 0 THEN NROWMIN - 0; 

/s CALCULATE NEXT COLUMN LIMITS */ 
into the output display IF NCMIN -1 ( NCOLMIN THEN NCOLMIN - NCMIN-1; 

device. The LIMITCHECK 10 IF NCMAX +1 > NCOLMAX THEN NCOLMAX - NCMAX +1; 
routine simply performs 11 IF NCOLMAX > 63 THEN NCOLMAX - 63; 
comparisons and updating - 12 IF NCOLMIN < 0 THEN NCOLMIN - 0; 
Fig. 7 illustrates the high level 13 CLOSE LIMITCHECX: 

Subroutines Referenced by LIMITCHECK: 
None. 

Data (8 bit bytes) used by LIMITCHECK but shared with the 
whole program: 

NCOLMA X, NCOLMIN, NROWMAX, NROWMIN 
NR MA X, NRMIN, NCMAX, NCMIN (see Fig. 6) 

Assumptions: 
The arithmetic of the comparisons in this routine is done 

using signed two's complement arithmetic - thus a negative 
number results if 0 - I is calculated ... this is consistent with 
code generation on most 8 bit micros. 

performed by the set of DO 
groups beginning with 
ROW_LOOP at line 16. For 
each row of the matrix, 
ROW_LOOP first copies the 
row into TEMP as the THIS 
copy (the THAT copy is left 
over from initialization the 
first time at lines 5 to 11, or 
from the previous 
ROW_LOOP iteration 
thereafter). Following the 
copying operation, another 
DO FOR loop goes from 
NCOLMIN to NCOLMAX 
applying the FACTS_OF_ 
LIFE to each grid position in 
the current (THIS) row as 
saved in TEMP. New data is 
stored back into LIFEBITS 

by FACTS_OF_LI FE. At 
the end of the row loop, prior 
to reiteration, the THIS and 
THAT copies of temp are 
switched by changing the 
indices. What was THIS row 
becomes THAT row with 
respect to the next row to be 
computed. 

After all the rows have 
been computed, line 28 is 
reached. Line 28 calls 
subroutine LIMITCHECK to 
compute the next 
generation's active area 
computation limits using the 
results of this generation. 
Line 29 then calls a module 
named DISPLAY to copy the 
results of GENERATION 

language description of its 
logic. 

Computing The Facts of 
LIFE... 

Fig. 8 contains the 
information on implementing 
the Facts of LIFE in a 

programmed set of 
instructions. The 
computation is divided into 
two major parts. The first 
part is to determine the 
STATE of the bit being 
updated, where "STATE" is a 

number from 0 to 8 as 

described in LIFE Line 1 last 
month. The second major 
step is to evolve the grid 
location using its current 
value and the STATE. 

FACTS_OF_LI FE begins 
by performing left and 
bottom boundary 
wrap- around checks by 
adjusting indices. Lines 8 to 
18 determine the current 
STATE by referencing all 8 
grid locations surrounding the 
location being computed at 
(I ROW, ICOL). In 
determining the state, the 
subroutines TGET and LGET 

Two copies of a 256 by 
256 grid would require 
more memory than (for 
example) an 8008 can 
address if you want to 
have programs along 
with your data. 

Why should I compute any new generation information 
outside the area which could possibly be affected by the 
present pattern's evolution? 
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Fig. 8. The FACTS OF LIFE routine specified in a procedure - 
oriented language. FLACTS_OF_LIFE does the actual calculation of 
the next value for the LIFEBITS location at the IROWth row and 
ICOLth column based upon the previous value of the 8 neighboring 
locations. (The state defined in LIFE Line 1, last month.) This routine 
implements the rules described in BYTE #1, page 73. 

1 FACTS_OF_LIFE: 

2 PROCEDURE (IROW,ICOL); 

3 M- IROW +1; 

4 IF M >63 THEN M - 0; 1* BOTTOM BOUNDARY WRAP CONDITION / 
5 N - ICOL - 1; 

6 IF N < 0 THEN N - 63; /* LEFT BOUNDARY WRAP CONDITION / 
7 DETERMINE_ STATE: 

B STATE - TGET ( THAT,N); 

9 STATE - STATE + TGET (THIS,N); 

70 STATE - STATE + LGET (M,N); 

11 N - ICOL; 

12 STATE - STATE + TGET ( THAT,N); 

13 STATE - STATE + LGET (M,N); 

14 N - ICOL + 1; 

15 IF N > 63 THEN N - 0; /* RIGHT BOUNDARY WRAP CONDITION */ 

16 STATE - STATE + TGET (THAT,N); 

17 STATE - STATE + TGET (THIS,N); 

18 STATE - STATE + LGET (M,N); 

19 EVOLVEIT: 

20 NEWCELL - 0; / DEFAULT EMPTY LOCATION UNLESS OTHERWISE 
21 OLDCELL - TGET (THIS, ICOL); 

22 IF OLDCELL - 1 THEN DO; 

23 IF STATE - 2 OR STATE - 3 THEN NEWCELL - 1; 

24 END; 

25 ELSE DO; 

26 IF STATE - 3 THEN NEWCELL - 1; 

27 END; 

28 CALL LPUT (IROW, ICOL, NEWCELL); 

29 IF NEWCELL - 1 THEN CALL SETLIMIT (IRCW, ICOL); 

30 CLOSE FACTS_OF_LIFE; 

What was THIS 
next row to be computed. (What's in a name? A pointer of 
course!) 

.1 

Subroutines Referenced by FACTS_OF_LIFE: 
TGET... This is a "function" subroutine which returns an 
8 bit value (for example in an accumulator when you generate 
code) of 00000001 or 00000000 depending upon whether or 
not a referenced column in one of the two temporary line 
copies in TEMP is 1 or 0 respectively. The first argument tells 
which line of the two, and the second argument tells which 
column (0 to 63) is to be retrieved. 
LGET... This is a "function" subroutine which returns an 
8 bit value similar to TGET, but taken instead from the bit 
value at a specified row /column location of LIFEBITS. 
LPUT... This subroutine is used to set a new value into the 
specified row /column location of LIFEBITS. 
NOTE: The routines LGET and LPUT will be referenced from 
the KEYBOARD_INTERPRETER routine in the course of 
manipulating data when setting up a life pattern. 
SETLIMIT ... This subroutine is used to check the current 
active region limits when the result of the facts of life indicate 
a live cell. 

Data (8 bit bytes) used by FACTS_OF_LIFE at this level: 

IROW = Parameter passed from GENERATION. 
ICOL = Parameter passed from GENERATION. 
M = temporary , row index. 
N= temporary , column index. 
STATE= count of "on" bits in neighborhood of IROW, ICOL. 
OLDCELL = temporary copy of old cell at IROW, ICOL. 
NEWCELL = new value for location IROW, ICOL. 

Data (8 bit bytes) used by FACTS_OF_LIFE but shared with 
the whole program: 

THAT, THIS (see Fig. 6) 

are used to reference bits in 
TEMP and LIFEBITS 
respectively, using 
appropriate bit location 
indices. The values returned 

row becomes THAT row with respect to the by these two "function 
subroutines" are either 0 or 1 

in all cases - thus counting 
the number of "on" cells 
consists of adding up all the 
TGET or LGET references 
required to examine 
neighboring grid locations. 

Once the STATE of the 
grid location is determined, 
the Facts of LIFE are 

implemented by examining 

341 

the positive cases of an "on" 
(live cell) value for the grid 
location. A cell will be in the 
grid location for the next 
generation in only two cases: 
If the old content of the 
location was a live cell and 
the STATE is 2 or 3; or if the 
old content of the location is 

0 (no cell) and the STATE is 

3. A default of NEWCELL = 

0 covers all the other cases if 
these two do not hold. Line 
28 stashes the new value 
away in LIFEBITS with 
subroutine LPUT, and if the 
new value of the grid location 



Fig. 9. The SETLIMIT routine specified in a procedure- oriented 
language. 

I SETLIMIT: 

2 PROCEDURE (IROW,ICOL) ; 

3 IF IROW < NRMIN THEN NRMIN - IROW; 

4 IF IROW > NRMAX THEN NRMAX - IROW; 

5 IF ICOL < NCMIN THEN NCMIN - ICOL; 

6 IF ICOL > NCMAX THEN NCMAX - ICOL; 

7 CLOSE SETLIMIT; 

Subroutines Referenced by SETLIMIT: 
None. 

Data (8 bit bytes) used by SETLIMIT at this level: 

IROW = parameter passed from FACTS_OF_LIFE. 
ICOL = parameter passed from FACTS OF LIFE. 

Data (8 bit bytes) used by SETLIMIT but shared with the 
whole program: 

NRMIN, NR MA X, NCMIN, NCMAX (see Fig. 6) 

is a live cell, SETLIMIT is 
called (see Fig. 9) in order to 
update the active area 
pointers NRMAX, NRMIN, 
NCMAX and NCMIN. 

Where Does the LIFE 
Application Stand? 

An alternative to the 
pyramid structure way of 
viewing programming 
program designs introduced 
at the beginning of this article 
is a "tree" notation showing 
the heirarchy of modules in 
the application. The "Tree of 
LIFE" is shown in Fig. 10 as 
it exists in materials printed 
to date. The next installment 
of LIFE Line will explore the 
left hand branch of the tree 
diagram by a similar 
presentation of a 
KEYBOARD INTER- 
PRETER algorith 

Fig. 10. The Tree of LIFE. 
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LIFE Line 2 
Addendum 

Procedure -Oriented Computer 
Languages 

The examples of programs 
accompanying two articles in 
this issue have been 
constructed in a 
procedure-oriented language. 
This method of program 
representation is compact and 
complete. In principle, one 
could write a compiler to 
automatically translate the 
programs written this way 
into machine codes for some 
computer. By writing the 
programs in this manner, 
more detail is provided than 
in a flow chart, and the 
program is retained in a 
machine independent form. 

T h e p a r t i c u l a r 
representation used here 
resembles several languages in 
the "PL/ 1" family of 
computer languages, but is 

not intended for compilation 
by any existing compiler. For 
readers familiar with such 
languages, you will find a 
strong PL /1 influence and a 
moderate XPL influence. In a 

future issue BYTE will be 
running articles on a language 
specifically designed for 
microcomputer systems, 
PL /M, which is an adaptation 
of the XPL language for 8 -bit 
machines. For the time being, 
this representation is used 
with some notes to aid your 
understanding. 

Programs and Procedures 
A program is a group of 

lines which extends from a 
PROGRAM statement to a 

matching CLOSE statement. 
It is intended as the "main 
routine" of an application. A 
procedure is a similar group 
of lines which extends from a 

PROCEDURE statement to 
its CLOSE statement. A 

procedure may have 
parameters indicated in the 
PROCEDURE statement, and 

may be called as a 
"subroutine" from a program 
or another procedure. A 
procedure may be called in a 

"function" sense as well, in 
which case a RETURN 
statement would be required 
to set a value. 

Data 
For the purposes of these 

examples, no "data 
declarations" are put into the 
programs to complicate the 
picture. Instead, each 
example has a section 
following it which verbally 
describes each data name 
used. Only one "data type" is 

considered at this point - 
integers - and these are 
generally assumed to be 8 

bits. 
Arrays of integers are used 

in several examples. An array 
is a group of bytes, starting at 
the location of its address and 
extending through ascending 
memory addresses from the 
starting point. The purpose of 
an array is to reference 
"elements" within the array 
by "subscripts ". For these 
examples, the elements are 
referenced by the numbers 0 
through "n -1" for an array 
dimension of length "n ". If 
LIFEBITS is an array of 64 
by 8 bytes, then 
LIFEBITS(63,7) is the last 
element of the last row of the 
array, and LIFEBITS(I,J) is 

the byte at row I, column J 
provided I and J are within 
the proper ranges. 

Statements 
A program or procedure 

consists of statements which 
specify what the computer 
should do. In a machine 
language, these would 
correspond to the selected 
operation codes of the 
computer which is being 
programmed. For a high level 

language, one statement 
typically represents several 
machine instructions. In these 
the high level language 
statement has a "semantic 
intent" - a definition of its 
operation - which can be 
translated into the lower level 
machine language. In these 
examples several types of 
statements are employed ... 

"IF ... THEN ... ELSE ..." 
constructs are used for 
notation of decisions. The 
first set of ellipses indicate a 

condition which is to be 
tested. The second set of 
ellipses in the model is used 
to stand for the "true part" - 
a statement (or DO group) 
which is to be executed if and 
only if the condition is true; 
the third set of ellipses is the 
"false part" - a statement 
which is only executed if the 
condition is false. The word 
ELSE and the whole false 
part are often omitted if not 
needed. 
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"CALL X" is a statement 
used to call a subroutine, in 
its simplest form. A more 
complicated form is to say 
CALL X(Z) where Z is a set 
of "arguments" to be passed 
to the routine. Another form 
of subroutine call is the 
"function reference" in an 
assignment statement, where 
the name of the subroutine is 

used as a term in an 
arithmetic expression. 

"assignment" - a statement 
of the form "X = Y;" is called 
the assignment statement. Y 
is "evaluated" and the result 
is moved into X when the 
statement is executed. If X or 
Y have subscripts as in 
` `TEMP (THIS , I) _ 
LIFEBITS(IROW,I);" then 
the subscripts (such as 
"THIS,I" and "IROW,I" in 
the example) are used to 
reference the name as an 
array and pick particular 
bytes. 

"DO groups" - a grouping of 
several statements beginning 
with a "DO" statement and 
running through a 

corresponding "END" is used 
to collect statements for a 
logical purpose. In "DO FOR 
I = 0 to 7;" this purpose is to 
execute the next few 
statements through the 
correspcnding "END;" 8 

times with I ranging from 0 
to 7. "DO UNTIL 
DONE = TRUE;" is an 
example of a group which is 

repeated indefinitely until a 

condition is met at the END. 
"DO FOREVER" is a handy 
way of noting a group to be 
repeated over and over with 
no end test, a practice often 
frowned upon. 



LIFE Line 3 

by 
Carl '.elmers 
Editor, BYTE 

Program design is a process which can be approached in a 

haphazard manner - or by a systematic exploration of what is 

needed to achieve the desired end. LIFE Line 2 in BYTE #2 
began the systematic exploration of the Tree of LIFE by 
presenting information on the overall program design of LIFE, 
as well as the details of the GENERATION algorithm used to 
carry one generation of LIFE into the next. 

LIFE Line 3 continues the development of LIFE by a 

discussion of thé KEYBOARD_INTERPRETER procedure. 
This procedure monitors the "user inputs" of a keyboard, and 
uses the command keystrokes detected to dictate what LIFE 
will do. As in the exploration of the GENERATION 
algorithm, the presentation starts at the top and works 
downward. 

Fig. 1. Data concepts for LIFE program and graphics control. The 
variables XCOL, YROW, N and ENTRY are &bit "software registers" 
maintained as variables in the LIFE program. 
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ENTRY ENTRY 
REGISTER 
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DATA DEFINES ENTRY 
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SPECIAL LIFE CONTROL 
PANEL AND ASCII 
KEYBOARD 

Much of the challenge and 
fun of the LIFE application is 

the fact that it is best 
implemented with some form 
of interactive graphics. In the 
partition of the application 
presented in LIFE Line 2, 

one of the major pieces of the 
program is the KEYBOARD 
_INTERPRETER with its 
interactive graphics concepts. 
A good place to start the 
discussion of the 
KEY BOARD__INTER- 
PRETER is the software 
block diagram of the 
interactive graphics system of 
LIFE. 

A Software Block Diagram? 

Yes! Strange as it may 
sound to hardware types, the 
ebb and flow of data in a 

program can be depicted in 
block diagrams. While Fig. 1 

looks very much like an 

ordinary hardware block 
diagram of some system, it is 

descriptive of the plan of data 
flow in a program rather than 
actual wires. Fig. 1 is the 
programming equivalent in 
every respect of the hardware 
block diagram of some 
dedicated interactive graphics 
system. By retaining the 
system in software, LIFE is 

inherently more flexible than 
any hard -wired system could 
be. This block diagram 
illustrates the potential flow 
of data in LIFE as controlled 
through the KEYBOARD_ 
INTERPRETER and its 



subroutines. Data flows and 

changes in response to the 
several input commands 
defined for the program. 

As was pointed out in 
LIFE Line 1, the 
fundamental tool of an 

interactive graphics 
application is a cursor which 
illustrates where the program 
thinks attention should be 

placed. This cursor is flashed 
on and off on the screen, and 

can be moved through 
appropriate commands of the 
user sent via a keyboard. The 
cursor concept is 
implemented in the LIFE 
program application by 
means of two "global" 
variables called XCOL and 

YROW. These are both 8 -bit 
bytes of data. But since the 
maximum dimension value in 

either the X or Y directions 
of the display is 63 (i.e., 6 

bits) only the low order 6 bits 
have significance for cursor 
control. At any point in time 
during the execution of 
LIFE, the variables YROW 
and XCOL retain the location 
of the cursor for 
KEYBOARD_INTER- 
PRETER's use. 

Fig. 1 also shows arrows 
directed from XCOL and 
YROW to intersecting dotted 
lines in the LIFEBITS array. 
These two numbers together 
have 12 bits of significance. 
This is sufficient to uniquely 
specify one of the 4096 bits 
in the array using the utility 

subroutines LGET and LPUT 
to reference and change 
LIFEBITS, respectively. 
These routines are left to a 

later LIFE Line for their 
details. 

A "ghost copy" of 
LIFEBITS is also shown in 
back of the main copy in the 
drawing to emphasize the 
following point: Each bit of 
the internal LIFEBITS array 
maps directly into a 

corresponding bit in the 
refresh memory of the CRT 
display subsystem. This is an 

example of a common theme 
throughout the use and abuse 

of computer systems: 
Software systems map into 
corresponding hardware - 
and vice versa. This mapping 
is of course one to one, and is 

carried out by the DISPLAY 
subroutine whenever the 
internal data is changed. As 
with LGET and LPUT, 
DISPLAY is left to a future 
LIFE Line for its details. 

What Does it Take to Move 
the Cursor? 

Since the cursor position is 

maintained by the values of 
XCOL and YROW, the 
movement of the cursor is 

simplicity at its essence: To 
move the cursor, all you have 

to do is change the value of 
XCOL, YROW or both! The 
interactive graphics portion 
of KEYBOARD_INTER- 
PRETER has as its primary 
concern the various ways of 

Fig. 2. An overall view of the KEYBOARD_INTERPRETER. This is a 

flow chart of the control algorithm for the LIFE application's 
KEYBOARD_INTERPRETER routine. Fig. 3 shows the same informa- 
tion in the form of a procedure- oriented language. 

1. 

3 

(KEYBOARD 
INTERPRETER 

OLDKEY - NULL 
GO . FALSE 

IS 
KEY READY 

12. 

13. 

14. 

16. 

READ 
KEYBOARD 

CALL 
DECODE 

CALL 
REPEATWAIT 

ITIMEOUTI 

NO 

YES 

OLDKEY . NULL 

TIMEOUT 
LONGTIMEWAIT 

CALL 
CUR BL INK 

TIMEOUT 
SHORTIMEWAIT 

OLDKEY - KEY 
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16. 
RETURN 
TO LIFE J 

i 
Loop actively blinks 

the cursor while warring 
for non-null key cod.... 
IThis branch is not taken 
in cae of r.p..t.d key.) 

Time out between 
repeated operations starts 

out equal to LONGTIM EW AIT, 
set to SHORTIMEWAIT after 

the second time delay. 



The simultaneous advantage 
and disadvantage of the 
multiple conditional test 
method of decoding: It 
is a plodding (but straight- 
forward) approach which 
squanders memory resources. 

changing the values of these 
two crucial variables -- while 
possibly leaving a trail of 
changed data points in 
LI FEBITS. Fig. 1 illustrates 
several of these changes - 
- To move the cursor up, 
YROW is incremented. 

To move tho cursor 
down, YROW is 
decremented. 
- To move the cursor left, 
XCOL is decremented. 
- To move the cursor right, 
XCOL is incremented. 
- To completely redefine 
the column of the cursor, 
the ENTRY register is 
transferred to XCOL. 
- To completely redefine 
the row of the cursor, the 
ENTRY register is 
transferred to YROW. 

KEYBOARD_INTER- 
PRETER performs these 

actions at the whim of the 
user via commands entered at 
the keyboards of the system 
- with the flashing cursor 
mark on the screen showing 
the results. 

The ENTRY Register 

In order to provide a 

means of entering 8 -bit 
integers into the program for 
control purposes, the 
software of KEYBOARD_ 
INTERPRETER maintains a 

numeric input area called 
ENTRY. Whenever an ASCII 
character is sent to the 
program which cannot be 
decoded by DECODE's 
COMMAND table, the last 
resort is to call DEFAULT. In 
DEFAULT, the recover 
assumption is to interpret the 
unknown command as a 

numeric digit (0 to 9) and 
push it into ENTRY. A 
routine in DEFAULT 
performs a BCD to binary 
conversion of the ASCII 
character after it has been 
trimmed to the range 0 to 9. 
Later, when the user wants to 
define XCOL, YROW or N, 
the commands X, Y and N 
respectively are used to 
transfer ENTRY to one of 
the other registers, after 
which ENTRY is set to 0 in 
preparation for re -use. It is 

important to emphasize that 
ENTRY is a binary number. 
When decimal digits are 
entered by the user, the input 
routines convert the digits 
into the appropriate binary 
number and decimally shift 
the significance of the 
previous value. 

The N Register 

In LIFE Line 2, the LIFE 
program given in Fig. 3 
references a variable called N. 
This N is used to control the 
number of times 
GENERATION is called. N, 
like XCOL and YROW, is a 

"software register" in the 
LIFE program which may be 
set by a user command. The 
"N" command is what is used 
to transfer the ENTRY value 
to N for use in controlling the 

Fig. 3. The KEYBOARD_INTERPRETER routine's overall flow, 
expressed in a procedure- oriented language. Note that the interpreta- 
tion of the "DO WHILE'S differs from a "DO UNTIL" - the former has 
its test prior to execution of the loop statements, and the latter has its 
test at the end of the loop. Nesting of the DO groups is indicated by the 
indentation of lines. 

1 KEYBOARD_INTERPRETER: 
2 PROCEDURE; 

3 OLDKEY = NULL; 
4 GO - FALSE; 

5 DO UNTIL GO = TRUE; I' LOOP UNTIL DONE WITH INPUTS / 
6 DO WHILE NOTREADYIKEYBOARD) = TRUE; 
7 CALL CURBLINK; 
8 OLDKEY = NULL; 
9 TIMEOUT - LONGWAIT; 

10 END; 

11 KEY - I NPUTIKEYBOAR DI; 

12 CALL DECODE; 

13 CALL REPEATWAITITIMEOUT); 
14 IF KEY = OLDKEY THEN 
15 TIMEOUT=SHORTIMEWAIT; 
16 OLDKEY = KEY; 
17 END; 

18 CLOSE KEYBOARD_INTERPRETER; 

I' THIS LITTLE LOOP WAITS / 
I. FOR A KEYSTROKE AND BLINKS / 
1 THE CURSOR ALL THE WHILE / 
I. WHEN READY, READ KEYBOARD 'I 
I. EXECUTE COMMAND '/ / DON'T LOOK TOO SOON / 
I. SHORT DELAY AFTER FIRST / / TWO OPERATIONS DONE / 

Subroutines Referenced by KEY BOARD _INTERPRETER: 

NOTREADY = a function subroutine (also referenced by INPUT) 
which is used to control an idle loop. It returns FALSE as its value if 
the selected device (in this case, KEYBOARD) is ready for input, and it 
returns TRUE as its value otherwise. 

CURBLINK = a subroutine which "blinks" the cursor on for a fixed 
period of time, followed by a fixed period of "off" time. Since it must 
be called each time a single blink is required, this implements the 
"active control" feature mentioned in LIFE Line 1. 

INPUT = a function subroutine which returns the current input data 
value for the selected device (in this case, KEYBOARD). INPUT has its 
own wait loop referencing NOTREADY - which for KEYBOARD_ 
INTERPRETER is redundant, but is not redundant in general. 

DECODE = the major subroutine of KEYBOARD_INTERPRETER. 
This routine analyzes KEY based upon tables and the previous inputs to 
the program from the operator. Using this analysis it will select the 
appropriate subroutine to execute. These "command subroutines" will 
in turn affect LIFE program data and the course of the LIFE program's 
execution. 

REPEATWAIT = a subroutine designed to call CURBLINK a number of 
times specified by TIMEOUT. This implements a delay between 
multiple responses to the same key held down continuously. 

Data (8 -bit bytes) used locally by KEYBOARD_INTER- 
PRETER: 

OLDKEY = 8 -bit value of the last previous keystroke. 

NULL = 8 -bit value of a null key pattern as read from the keyboard. 

TIMEOUT = 8-bit value of the current repeat key time delay. 

SHORTIMEWAIT = the timeout parameter used after the first delay in 
a multiple input of the same key. This specifies the rate of rapid motion 
of the cursor under manual control. 

LONGTIMEWAIT = the value of the timeout parameter used for the 
first delay following a key entry. A longer wait is required at first to 
avoid false duplication of keystrokes for heavy- handed players of the 
game. 

Data (8 -bit bytes) used by KEY BOARD_ INTERPRETER and 
shared with the whole program. See Table II for explanations. 

GO, DONE, TRUE, FALSE, KEYBOARD, COMMAND, KEY 

346 



extent of the next run. Since 
this application uses 8 -bit 
data, the limit is 255 
generations of LIFE at 
present. 

Figuring Out What the User 
Said 

The KEYBOARD_ 
INTERPRETER routine 
serves the function of 
controlling the input of 
information to these software 
register and to the 
LIFEBITS grid. The routine 
itself is a loop which executes 
over and over until the user is 

ready to run the 
GENERATION algorithm for 
one or more generations. The 
K E Y B O A R D_ 
I NTERPRETER terminates 
for one cycle of LIFE when 
the user inputs a "G" control 

command which is 
interpreted semantically as 

"GO generate N generations ". 
The flow chart of the 
KEYBOARD_INTER- 
PRETER logic is illustrated in 
Fig. 2, with the equivalent 
procedure -oriented language 
version shown in Fig. 3 as a 

detailed reference. In Fig. 2, 
line numbers are provided for 
comparison to Fig. 3. 

Execution of the 
KEYBOARD_INTER- 
PRETER begins with some 
initialization statements. The 
values of GO and OLDKEY 
are set at the start of 
execution (lines 3 and 4). 
These values will be changed 
during execution of the 
KEYBOARD_INTER- 
PRETER based upon input 
data. OLDKEY is used to 

detect duplications of 
keyboard input which occur 
when a key is held down for 
continuous operations. After 
a given KEY is held down 
continuously for two 
operations, the repetition 
goes into a high speed mode 
with SHORTIMEWAIT 
controlling the delay between 
operations. GO is the control 
variable which is used to 
govern whether or not the 
loop is to continue - it is 

initialized to FALSE and will 
be changed to TRUE when 
the "G" user command is 

decoded. 

Programs Are the Willing 
Servants of the Noble User? 

Interaction of 
programmed computers with 
human beings is often a 

waiting game. This waiting 
game is aptly illustrated in 
the loop which checks for 
user input keystrokes at lines 
6 to 10 of the KEYBOARD 
_INTERPRETER routine. 
The function NOTREADY 
(KEYBOARD) is a notational 
convention used to indicate a 

test for the keyboard ready 
condition. Like a ready and 
willing servant, the computer 
program keeps marking time 
in this loop until the user - 
you or I - has given it a 

character to digest. Two 
statements are included in 
this loop for the purpose of 
coordinating multiple 
keystroke conditions: Setting 
OLDKEY = NULL is used to 
re-establish a null history if 
the program ever has to wait 
(it never waits when keys are 

Table I. ASCII Command encoding for the LIFE application. This is an initial specification of the command codes used to control the 
KEYBOARD_INTERPRETER routine's effect. The command table locations go up by three as in Fig. 4. No addresses for the command 
subroutines are given yet - these will be filled in when the program is compiled for your computer. Command table locations and command 
characters are given as hexadecimal numbers. 

Command Table 
Location 

Command 
Character 

ASCII 
Key 

Command 
Subroutine Meaning of the Command (its "semantics ") 

00 xx 777 DEFAULT The first table position is the "default" routine position, which is called 
when no other matching key is found in the table search. 

03 47 G RUN The "run" command which sets a flag called GO in order to end the 
KEYBOARD_INTERPRETER and have LIFE call the GENERATION 
routine. 

06 49 I INITIALIZE The "initialize" command to set up the screen with predetermined 
patterns selected by additional keystrokes. 

09 53 S SAVELIFE The "save" command to dump the current screen content onto a 

waiting audio cassette or other mass storage device. 

OC 52 R RESTORELIFE The "restore" command to recover a screen pattern previously saved 
by "S ". 

OF 58 X SET XLOC The "set X" command to explicitly set the horizontal cursor location. 
XCOL. 

12 59 Y SETYLOC The "set Y" command to explicitly set the vertical cursor location, 
YROW. 

15 4E N SETNGEN The "set N" command to explicitly set the generation count for 
subsequent execution with the "G" command. 

18 43 C CLEARS The "clear screen" command to wipe out all data and place the cursor 
at the center. CLEARS requires confirmation with a second S key 
stroke to avoid accidental clears. 

1B 45 E LIFEDONE The "done" command is an E followed by an L (for End Life.) The 
second character confirmation is checked by LI F EDON E. 

Note that the ASCII characters 0 to 9 are used to define the "current input" maintained by software in ENTRY. ENTRY may then be 
transferred to N, XCOL, or YROW by the N, X and Y commands respectively. 
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held down continuously). 
TIMEOUT = LONGTIME - 
WAIT re -establishes a longish 
debounce period between key 
interpretations following a 

series of continuous inputs. 
The program of course thinks 
that if a key is not ready 
upon restarting the main loop 
at line 6 it could not possibly 
be a repeat. While idling and 
waiting for your interactive 
whims, the computer 
program is not completely 
devoid of useful work. It calls 
CURBLINK once each time 
around the wait loop in order 
to flash the cursor actively on 
the screen. 

Finally, after some time of 
unspecified duration, you 
make up your mind to input 
a key. This has one major 
effect upon the program: The 
next time around the loop at 
the test of the WHILE 
condition, a result of FALSE 
ends the loop. Execution 
then flows from the DO 
WHILE (line 6) to line 11 

where the KEY is read from 
the waiting keyboard device 
by a subroutine called 
INPUT. 

With KEY defined, 
DECODE is the next item on 
the agenda. DECODE is one 
of the major subroutines of 
KEYBOARD_INTER- 
PRETER, a roJtine which 
takes KEY and compares it to 
a COMMAND table. The 
result of the COMMAND 
table search is execution of a 

"command subroutine" if a 

match is made, or execution 
of a DEFAULT routine if no 
match to KEY is found. 
Upon return to 
KEYBOARD_INTER- 
PRETER (all subroutines by 
nature return to the caller 
except in very rare cases), the 
flow of control reaches the 
REPEATWAIT call using the 
current value of TIMEOUT. 

During normal execution 
of single isolated commands, 

the TIMEOUT value is 

LONGTIMEWAIT - which 
might be chosen to be from 
0.1 to 0.5 seconds. This 
TIMEOUT sets the minimum 
time between the first 3 

keystrokes of a repeated 
sequence. But, after two long 
delays have been executed, 
the match of OLDKEY = 
KEY is detected at line 14 
and TIMEOUT is changed to 
SHORTIMEWAIT allowing a 

speedy repeated motion case. 

SHORTIMEWAIT might be 

chosen in the 0.05 to 0.1 

second range for rapid 
motion. The values of these 
two motion control constants 
are left unchosen for now, 
and can be figured out as 

binary integers to be used in 
REPEATWAIT when details 
of the CPU and 
REPEATWAIT routine are 

filled in. Note that if fast 
operation is desired 
immediately after the second 
operation of a repeated 
sequence, then line 13 of Fig. 
3 should be moved to a 

location between lines 15 and 
16. 

In order to control the 
repeat logic, the statement 
OLDKEY =KEY is executed 
at line 16 so that the last 
input will be retained for 
comparison purposes the next 
time around. 

The KEYBOARD_ 
INTERPRETER routine 
finishes up with the CLOSE 
statement of LIFE line 18, 
which stands for the end of 
the routine and return to its 
caller. There is one and only 
one caller of this routine, the 
LIFE program itself, 
illustrated in Fig. 3 of LIFE 
Line #2. 

It's All in DECODE of the 
LIFE Program 

When giving the details of 
the KEYBOARD_INTER- 
PRETER logic, the principle 
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While idling and waiting 
for your interactive whims, 
the computer is not com- 
pletely devoid of useful 

work. It calls CURBLINK 
once each time around the 
wait loop in order to 
seductively flash its cursor 
on the screen. 

Fig. 4. Decoding by multiple conditional tests. This method of 
decoding keystrokes and activating routines in software is most 
efficient when a small number of possible commands is involved. 

START J 

YES 

NO 

CALL 
G ROUTINE 

YES 
CALL 

H ROUTINE 

NO 

YES 
CALL 

7 ROUTINE 

NO 

CALL 
DEFAULT 

YES 
CALL 

7 ROUTINE 

"NONE OF 
THE ABOVE" 

END 

f 
FIG. 5 
DETAIL 

i 



Fig. f. Typical code for a single conditional test in the scheme of Fig. 4. 

The example here is using Motorola 6800 system mnemonics. This 
example assumes accumulator A is set up with the character being 
decoded. 

of keeping the program 
design locally simple results 
in a CALL DECODE at line 
12. Whenever some 
subroutine is left unspecified 
except for its inputs (KEY 
for DECODE) and its outputs 
(a command subroutine's 
execution), sooner or later 
the details must be filled in. 
I n designing a DECODE 
algorithm to fill in this set of 
details, there are numerous 
alternatives. For high order 
language aficionados, 
something called a 

"computed GO TO" 
(FORTRAN) or "DO CASE" 
(PL /1 family languages such 
as XPL or PL /M) would 
suffice following a table 
search. However, for this 
particular application, a 

slightly lower level approach 
is justified to conserve 
memory. 

Two major alternatives 
come to mind as possible 
ways to map an input KEY 
value into the execution of a 

selected subroutine. The 
simplest (least elaborate) 
"straightforward" approach is 

the method of multiple 
conditional tests. This is 

illustrated schematically in 
Fig. 4's flow chart, and in a 

concrete form in Fig. 5's 
example of a segment of the 
typical conditional test. In 
this approach, each possible 
command code is tested in 
turn by the routine. 
Eventually, all the explicit 
possibilities will have been 
exhausted if no match is 

found. Then, if "none of the 
above" match the KEY input, 
a DEFAULT routine is called. 
The main advantage of this 
approach is also its 
disadvantage: It is a plodding 
and straightforward approach 
which squanders memory. 
While the code's intent is 

obvious, it requires - in the 
example of Fig. 5 -a total of 
8 bytes per test. 

There should be a better 
way - comparisons and 
branches are repeated in this 
method. The segment of 
generated code and its 
corresponding procedure - 
oriented language version in 
Fig. 5 shows four instructions 
which are repeated over and 
over but with varying data 
(the character being 
compared and the address of 
the subroutine). Why not put 
the instructions in only once 
and tabulate the variable 
data? There might be a saving 
of memory if this table driven 
approach is used instead. 

Fig. 6 i Ilustrates the 
concept of an alternative 
structure, the "command 
table," which will result in a 

lower memory requirement 
once the number of 
commands to be tested 
exceeds some break even 
point. In this concept, the 
changing data for each test is 

stored in the table, and the 
program to go along with it 
uses a looping technique to 
scan that table. The changing 
data for tests comprises: 
- The command character. 
This is the keyboard code 
which is matched against 
the actual KEY input. - The command 
subroutine. This is the 
address of the subroutine 
which will be called if KEY 
matches the corresponding 
command character. 

The table is organized in 
3 -byte groups consisting of a 

command character followed 
by its subroutine address. 
Note that on first inspection, 
this form of DECODE 
requires only 3 bytes of 
storage per test versus the 8 

bytes in the example of Fig. 

Bytes 

2 

2 

3 

1 

Mnemonic Comment 

CMPA # 'G Compare A to literal 

BNE + 4 Branch around JSR and RTS 

JSR GROUTINE Call the G subroutine 

RTS Return from decoder rather than 
continue the testing 

8 = Total number of bytes per test. 

This is the "generated code" of the following statements in the 
procedure- oriented language used for LIFE Line examples: 

IF KEY = 'G' THEN 
DO; /' HAVE MADE A MATCH / 

CALL GROUTINE; 
RETURN; / FROM DECODE COMPLETELY / 

END; 
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Relativa 
Address 

o 

2 

3 

3n 

Content 

3n+1 

3n+2 

3(n +11 

3(n +1) +1 

Stn +11 + 2 

o 

o 

o 

"H" 

Default Address 

\ Address of "G" ! Command Subroutine 

Address of "H" 
Commend Subroutine 

Fig. 6. The Command Table 
Concept. By storing the character 
(keystroke) being decoded, 
followed by the address of its 
routine, only three bytes need be 
used for each routine which could 
be decoded. Allowing for the 
overhead of a longer decode 
algorithm (specified once), the 
command table method will prove 
more compact when the number 
of commands get larger than four 
or five. 



Fig. 7. The Command Table DECODE routine specified in a procedure 
oriented language. 

1 DECODE: 

2 PROCEDURE; 1 TO FIGURE OUT WHAT USER SAID 1 
3 1 COME HERE WITH THE KEY TO THE COMMAND'/ 
4 DO FOR I = 3 TO LENGTHICOMMAND) BY 3; / SCAN TABLE / 
5 IF KEY = COMMANDII) THEN 
6 DO; 1 WOW!! I GOT A MATCH I GOT A MATCH! / 
7 I = I + 1; / POINT TO ADDRESS ENTRY 1 
8 CALL CALLXICOMMANDII)); 
9 / NOTATION FOR CALL OF SUBROUTINE, INDEXED / 
10 RETURN; 

11 /THIS FORCES EXIT FROM DECODE 1 
12 END; 
13 / ONLY GET HERE IF NO MATCH IN TABLE / 
14 CALL CALLXICOMMAND(1)); 1 CALL DEFAULT FROM TABLE / 
15 END; 
16 CLOSE DECODE. 

Data (8 -bit bytes) used locally by DECODE: 

I = temporary used for loop control and indexing. 

Data (8 -bit bytes) used by DECODE but shared with the 
whole program. For details see Table H. 

COMMAND, KEY 

Subroutines referenced by DECODE: 

DECODE does not use any "real" subroutines, but does use the 
following two notational conventions which look like subroutines. 

LENGTH(COMMAND) stands for the length (in bytes) of the 
COMMAND table. When you know what it is, you put in the value. 

CALLX(X) is used to denote using the two bytes starting at the 
address X as the address of a subroutine to be called. This is an 
indexed subroutine call effectively. For a Motorola 6800 CPU, this 
would be performed by an LDX instruction indexed off the 
COMMAND table position, followed by a JSR instruction with the 
indexed addressing mode. 

5. For a 10 command table, 
this would be a 50 byte 
saving at first inspection. 
However, the 50 -byte figure 
does not take into account 
the longer looping routine 
required to scan the table and 
indirectly jump when a match 
is found. But for 10 
commands (the number 
found in Table I) this 50 byte 
saving potential goes a long 
way. I expect the actual 
DECODE routine of the table 
driven variety to be 

considerably less than 50 
bytes in length when it is 

generated for the 6800 
system instruction set used as 
the straw -man in Fig. 5. I'll 
leave the final conclusion on 
that to a later LIFE Line. 

There is an additional 
advantage to be obtained 
from the table driven 
method. This is an advantage 
which concerns some of the 
finer points of programming: 
The table driven method 
results in "pure code" in 

which potentially variable 
data is completely segregated 
off in the table. This achieves 
an often desirable end of 
separating data from 
instructions. In the multiple 
conditional test version, the 
data of the DECODE is 

embedded right in the 
instruction stream, both as 

the literal value of the 
character being tested and as 

the address of the routine 
being selected. If I want to 
modify the multiple 
conditional test version, I 

must certainly recompile or 

reassemble the whole routine 
(a pain in small systems 
work). In contrast, to modify 
the table driven version, I 

only have to alter the table 
itself, and the variable which 
specifies the table's length. 
But this is a minor point in 
addition to the major 
memory conservation 
argument for the table driven 
approach. 

The actual algorithm for 
DECODE is shown in a 

procedure -oriented language 
in Fig. 7. The scan of the 
table is a DO FOR loop with 

Notes on Notation: 

Concerning Indentation: The listings of procedures for 
the LIFE program make use of an indentation 
convention to help show the structure of the routines. 
The significance of the indentation is that it shows the 
opening and closing of various local software 
constructions and in so doing helps convey the meaning 
of the program to human readers. Note how the 
statements from line 7 to line 11 of DECODE in Fig. 7 
are indented one level compared to the DO (line 6) and 
END (line 12) statements. This indentation shows that 
lines 7 to 11 are part of the DO ... END construction 
which is executed if the test on line 5 gives a true result. 

The notation "l *" followed by arbitary remarks and 
then a " */" is the "comments" convention used in these 
examples. This convention is stolen from the PL /1 
family of languages. 

Concerning names of variables: With each procedure 
specified in LIFE Line, data is separated into two 
categories: Local data is used only within the procedure 
question. Local data may have a name which duplicates 
names used in other procedures, but is always qualified 
by its local nature. Thus "I" in GENERATION (Fig. 6, 
LIFE Line 2) is a different data location in memory than 
the "I" in DECODE (Fig. 7, LIFE Line 3). Data 
shared with the rest of the program, which is often 
called global data in programming terminology, is in 
contrast defined universally for LIFE. Global data is 
summarized for LIFE in Table II. Thus whenever KEY is 
referenced (as in KEYBOARD_INTERPRETER or in 
MOVECURS) the same data is intended, since these have 
been classified as shared or global in the notes 
accompanying the program listings. 
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the index, I, running from 3 

(the first entry is reserved for 
the default) to the length of 
the table by 3. When a match 
is found, the 16-bit address in 
the table is used for an 
indirect subroutine call (lines 
7 and 8). For a Motorola 
6800 system, this would be 

accomplished by an indexed 
JSR instruction after loading 
the index register from the 
table. When the selected 
command subroutine returns 
to DECODE (as would any 
well structured subroutine in 
the same circumstance), the 
RETURN statement is 
executed causing an exit from 
DECODE and resumption of 
the KEYBOARD_ 
INTERPRETER at the calling 
point. If no match is found, 
the loop eventually runs out 
and line 14 of Fig. 7 is 

reac hed, where the 
DEFAULT routine is called. 

This is shown notationally in 
a general purpose form with 
reference to the command 
table, but in generating the 
code for the statement of line 
14, a simple call to 
DEFAULT might be 
substituted. (If the generality 
of the DECODE routine is to 
be preserved for possible use 
with other command tables, 
this optimization would not 
be possible.) 

What about data for the 
COMMAND table? Table I 

provides a preliminary answer 
to this question by giving a 

list of command table entries 
including relative location, 
the corresponding character 
code, the ASCII key which 
invokes the command, the 
name of the subroutine and a 

verbal description of the 
subroutine. This table will be 

used as the basis for creating 
a detailed data table when the 

actual programs of LIFE are 
generated for a particular 
computer in a future LIFE 
Line. For now, Table I serves 
to list the areas which remain 
to be covered in the 
discussion of the 
KEYBOARD_INTER- 
PRETER and all its 
subrou tines. 

LIFE Line 4 will continue 
the presentation of the 
KEYBOARD_INTER- 
PRETER portion of the LIFE 
program. To fill out the 
remaining portion of the Tree 
of LIFE, the next installment 
includes the integration of 
graphics control commands 
into the KEYBOARD_ 
INTERPRETER and the first 
hardware details of LIFE -a 
simple circuit which 
combines an ASCII keyboard 
input with the special 
purpose controls for an 

interactive cursor. 

Does Anyone Know What 
Happened to Robert T. 
Wainwright? 

This series of articles 
ínadvertantly duplicated 
the name of Robert T. 
Wainwright's LIFELINE 
newsletter, published 
through 1973. Thanks to 
Bob Albrecht of People's 
Computer Co. for sending 
us his copy of LI FELI NE's 
last issue. Does anyone 
know where Mr. 
Wainwright is now (he's no 
longer at the address given 
by Charles A. Dunning Jr. 
in the Letters column), 
and is LIFELINE still 
being published? 

Table II. Global Data. Data which is shared by an entire program or application is often called "global ". The word global is used to indicate the 
widespread effects of such data in the program's execution. Many procedures will alter and change such data. This table summarizes the global data 
variables of the LIFE application as used in procedures given in LIFE Lines #2 and #ki. 

COMMAND = the table of commands interpreted by DECODE, 
containing the ASCII codes of command keys and the addresses of the 
appropriate command subroutine. The format of this table is illustrated 
in Fig. 6. The information content, in preliminary form, is found in 
Table I. 

DONE = the variable used to control continued execution of the main 
LIFE routine (see LIFE Line #2, Fig. 3). 

ENTRY = the entry register used to receive numeric ASCII digits, after 
weighting the previous value in a BCD fashion. While the entry to 
ENTRY of new digits is done in a BCD manner (multiplying by 10 then 
adding the digit's value) the content of ENTRY is a binary number of 
8 -bit precision with values 0 to 255 and is thus not itself BCD. (BCD = 

"binary coded decimal. ") 

FALSE = the value "0" (00 hex, 000 octal, 00000000 binary). This 
name is used to indicate the software equivalent of a hardware gate 
input wired to logical zero. 

GO = the flag (value is TRUE or FALSE) which controls continued 
execution of KEYBOARD INTERPRETER. 

KEY = the 8 -bit data area which receives keyboard inputs. 

KEYBOARD = the logical unit number of the keyboard I/O device. 
This is a bit pattern which specifies the device one is talking to. 

LIFEBITS = the object of the whole exercise - an array of 64 by 64 
bits stored as 64 by 8 bytes. 

N = the variable used to control the number of generations to be 
evolved by LIFE before returning to KEYBOARD_INTERPRETER 
graphics control. 

NCMAX = current maximum column index of live cells. 
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NCMIN = current minimum column index of live cells. 

NCOLMAX = maximum column index of live cells for active area 
optimization. 

NCOLMIN = minimum column index of live cells for active area 
optimization. 

NROWMAX = maximum row index of live cells for active area 
optimization. 

NROWMIN = minimum row index of live cells for active area 
optimization. 

NRMAX = current maximum row index of live cells. 

NRMIN = current minimum row index of live cells. 

TEMP = 2 by 8 array of bytes containing two 64 -bit rows of cells, 

THAT = previous line copy index to TEMP used in GENERATION (see 
LIFE Line #2, Fig. 6). THAT should always have a value of 1 or 0, 
opposite of THIS. 

THIS = current line copy index to TEMP used in GENERATION (see 
LIFE Line #2, Fig. 6). THIS should always have a value of 0 or 1. 

TRUE = the value "255" (FF hex, 377 octal, 11111111 binary). This 
name is used to indicate the software equivalent of a hardware gate 
input wired to logical one. 

XCOL = the current cursor position in the horizontal (column) 
direction. 

YROW = the current cursor position in the vertical (row) direction. 



LIFE Line 4 
Integrating graphics control commands 

Carl Helmers In LIFE Line 3, the design of the 
DECODE routine of the LIFE program was 
presented. DECODE is designed as a table 
driven mechanism for selecting one of 
several subroutines which carry out the 
functions of the LIFE program's KEY - 
BOARD_INTERPRETER. However if you 
examine table 1 of LIFE Line 3 (see p. 51 of 
BYTE #4), you will note one conspicuous 
and intentional lack: There are no routines 
which process the interactive graphics com- 
mands required to set up LIFE patterns on 
the scope display. Yet in LIFE Line 1, 

several special purpose keys were introduced 
as manual inputs for cursor motion control 
and data definition purposes. Where is the 
missing part of the program which interfaces 
these keys? What are the hardware implica- 
tions of requiring a special keyboard? 
Answers to these questions are the major 
concern of LIFE Line 4. Integrating the 
graphics control commands is a combined 
hardware and software topic. The software is 

that of the DEFAULT routine that inter- 
prets several keyboard inputs not handled by 
DECODE; the hardware consists of the 
design of a special keyboard interface to 
automatically switch between an ASCII key- 
board's 7 -bit parallel output code and the 
LIFE graphics control keypad. 

The main requirement for LIFE cursor 
motion and data control is that one, two or 
three of the input keys can be depressed at 
the same time. This capability is needed in 
order to specify all the possible combina- 
tions of motion control and optional cell 
birth or death data inputs. The individual 
motion control possibilities (one key at a 

time) are the movements in four principal 
directions: up, down, left or right. When two 
motion control keys for perpendicular direc- 
tions are selected at the same time, diagonal 
motion is the desired result. With either 
form of motion control, entry of data can 
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optionally be performed by depressing either 
the birth key or the death key at the same 

time. Thus as many as three keys may be 

sensibly pressed simultaneously when 
entering data. 

The large number of combinations 
possible for the six bits which will be needed 
for six switches strongly argues against 
making the software use a table driven 
algorithm such as DECODE. This is the 
reason why no cursor motion and data entry 
commands are found in table 1 of LIFE 
Line 3. Since each bit of the parallel 
information from the motion control 
switches can have an independent meaning, a 

specially programmed determination of 
motion control actions uses less memory 
than the huge table which would be required 
for all the combinations. Thus handling of 
motion control is left to the DEFAULT 
routine which is called by DECODE when it 
fails to decode one of the commands in table 
1 of LIFE Line 3. (DEFAULT also handles 
ASCII numeric inputs, as you'll see a bit 
later in LIFE Line 4.) 

Graphics Control Hardware Considerations 

For the hardware of LIFE, how can the 
need of this special set of input codes be 

reconciled with the need to input ASCII via 
the same eight -bit input port? One answer 
lies in the choice of an eight -bit format in 

which the most significant bit determines 
what lies in the low order seven bits. With 
this format, one state of the most significant 
bit indicates when an ASCII code is present 
in the low order; the other state of the most 
significant bit indicates when graphic control 
keyboard information is in the low order. 
This choice of format is supported in hard- 
ware by the addition of a simple interface 
module which uses seven integrated circuits 
to switch between data sources and 
debounce the motion control keyboard. 



Graphics Control Commands 

Format: 7 6 5 3 2 1 0 

u d I r 

ASCII Keyboard Input 

Format: 7 6 5 4 3 2 1 0 

right movement if one 

left movement if one 

down movement if one 

up movement if one 

birth /death (one /zero) 

change enable, if one, 
move only if zero 

unused 

one to indicate a graphics 
command 

0 a a a a a a a 

ASCII character (7 bit) 

zero to indicate ASCII 

Figure 1: Data formats for graphic control commands and ASCII keyboard input. 

The combined ASCII and control data 

format is illustrated in figure 1. When the 

value of bit seven of the interface is read as 

one, the programming of the DEFAULT 
routine will always be entered and the low 
order bits will be analyzed as graphic control 
information as shown by the upper diagram 

in figure 1. The low order bits zero through 
three represent the individual key states of 
the motion control switches and the next 
two bits, four and five, are encoded with 
information on data entry from the birth 
and death switches. If the value of bit seven 

is read as a logical zero, the program will 
interpret the ASCII value of the low order 
bits through the DECODE routine of LIFE 
Line 3, or through the DEFAULT routine if 
the command is not in the table which drives 
DECODE. 

The hardware needed to implement this 
special interface is shown in figure 2. The 
interface consists of a two way data selector 
(IC6 and IC7) which determines whether the 

eight bit pattern presented to the system bus 

interface comes from the cursor motion 
control keyboard or from the ASCII key- 

board. The ASCII data is routed straight to 
the data selectors from a jack (J 1) which 
receives a cable which connects to the 

keyboard unit. (The LIFE Line system 

prototype is currently using one of the 

surplus Sanders 720 keyboards described in 

BYTE #1.) The graphic control information 
is derived through jack J2 from the special 

keyboard via the 7474 flip flops IC1, IC2 

and IC3. These D flip flops are being used as 

set reset flip flops by grounding the clock 
line and employing the preset (PRES) and 

clear (CLR) inputs for data and keyboard 
acknowledge functions respectively. The flip 
flop outputs for bits zero to three go 

directly to the data selector to define cursor 

motion inputs. The flip flop output for bit 
four (birth switch) also is directly connected 
to the selector. However, bit five of the 

selector's cursor motion inputs is taken from 
NAND gate IC4D which encodes a CHANGE 
ENABLE signal when either birth or death 
data input is indicated. (Note that the user 

of the LIFE cursor motion control keyboard 
is on his honor not to push both birth and 

death keys simultaneously - with this 
encoding logic, birth always locks out 
death.) One item derived from the cursor 
control keyboard is a key pressed signal 

produced by 7430 NAND gate ICS. This 

signal is inverted by IC4C and used to 
control the data selector: If any key on the 
cursor motion control keyboard is pressed, 

the ASCII keyboard will be locked out; 
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A flip flop with preset and 

clear inputs can be used in 

place of a hand -wired set 

reset flip flop. 
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Figure 2: The logic diagram of a keyboard interface which implements the formats of figure 1. Resistors RI to R7 are TTL pull up resistors. The 
value are not critical, and may range from I KO to 10 KO, 54 W. 

otherwise the ASCII keyboard is connected 
and the cursor motion control keyboard is 

ignored. Note that the cursor motion input 
has priority over the ASCII keyboard since it 
controls the data selector. 

Finally, to complete the interface logic 
sections A and B of IC4 are used to buffer 
the computer -generated keyboard WRITE - 
signal which occurs when the computer 
writes data into the keyboard location. This 
signal is used to reset the graphics control 
flip flops. The buffered version of the signal 
(pin 6 of IC4) is used to drive the acknow- 
ledge line of the ASCII keyboard unit. A 
separate buffer is recommended due to the 
unknown loading of the ASCII keyboard 
device. In LIFE Line's design of a program, 
the logic of the KEYBOARD_INTER- 
PRETER procedure is used to manipulate 
the interface. 

What is not shown in figure 2 is the actual 
system bus interface. The design of such an 

interface must be done consistent with a 

given computer's data bus. In the prototype 
system for LIFE Line, a Motorola 6800 

354 

computer's data bus, buffered by National 
DM8833 Tri State bus transceivers is used. 

The interface thus consists of two DM8833's 
used to drive the bus, plus the address 
selection logic needed to detect the address 
of the keyboard and produce the bus enable 
signal as well as the WRITE- signal. For a 

computer based upon a kit, the input port 
logic will be in a standard form designed by 
the kit manufacturer. What is needed is a 

parallel input port, which might already 
exist if your computer kit comes with a 

keyboard and parallel interface. 

Notes on Assembly 
The prototype version of the graphic 

control keyboard is illustrated in photo 1. 

The keys were made from conventional 
magnetic reed switches obtained from key- 
board units found at a computer auction. 
Any single pole single throw keyswitch can 
be used; options on mounting are left to the 
ingenuity of the builder. The arrangement of 
keys shown in photo 1 is designed so that 
the cursor motion controls are at the top in 



M O T I O N 

C O*I T R O L 

Photo 1: The graphics control keyboard of 
the LIFE Line prototype system. The group 
of four switches with arrows are cursor 
motion control keys. The two switches with 
captions "B" and "D" are the birth and 
death data keys, respectively. 

a group of four. The arrows were applied 
using small pieces of self- sticking address 
labels of the type often used by computer 
centers. The two isolated switches at the 
bottom of this arrangement are the birth (8) 
and death (D) keys. The wiring of the 
keyswitches to the computer is accom- 
plished through a multi -conductor bundle of 
wires trailing away at the bottom. This cable 
terminates in a dual -inline header plug which 
fits into a socket on the wire wrap board 
containing the computer and interface. 
Photo 2 illustrates the wire wrap wiring of 
the interface logic in the LIFE Line proto- 
type system. 

Using The Control Information 
The purpose of the interface hardware is 

to combine two keyboards into a single 
input port with software distinguishing 
"who called" on the basis of the format 
shown in figure 1. How does the LIFE 
software handle this data format? Recalling 
the presentation in LIFE Line 3, the 
DEFAULT routine is called by the DECODE 
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Photo 2: Detail illustrating wire wrapped assembly of figure 2 using a general 
purpose prototyping board. 

routine whenever DECODE cannot match an 

input from this port to an entry in the 
COMMAND table. Decoding of the graphics 
control format and ASCII numeric 
characters is left to the DEFAULT routine 
because of the systematic nature of these 
inputs. 

How is this decoding done? One answer 
of course lies in the design of the DEFAULT 
routine. DEFAULT is specified in a pro- 
cedure- oriented language in figure 3. 

Basically the DEFAULT processing follows 
one of two paths of execution according to 
the high order format identifier bit, bit seven 
of the formats illustrated in figure 1. The 
input data from the interface is passed to 
DEFAULT in the variable KEY which is set 

at line 11 of KEYBOARD_INTERPRETER 
(see LIFE Line 3, figure 3). The high order 
bit of KEY is tested by the AND operation 
of line 3. The masking bit string 10000000B 
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1 DEFAULT: 

2 PROCEDURE; 

3 I F (KEY AND 10000000B) NOT = O THEN 

4 DO; / GRAPHICS CONTROL INPUT CASE `I 
5 CALL MOVECURS; 1" MOVE CURSOR PER INPUT 

6 IF (KEY AND 00100000B) NOT = 0 THEN 

7 DO; /" CHANGE IS INDICATED `1 

8 IF (KEY AND 00010000B) = 0 THEN 

9 CALL LPUTIXCOL, YROW,0); /` TURN OFF POINT "/ 
10 ELSE 

11 CALL LPUT(XCOL,YROW,1); /" TURN ON POINT 

12 CALL DISPLAY; / SEND UPDATED LI FEBITS OUT 

13 END; 

14 END; 

15 ELSE 

16 DO; /" ASCII NUMERIC DEFAULT CASE 

17 NUM = KEY - 30H; 

18 IF NUM >9 THEN NUM = 9; 

19 ZUM = 0; 

20 DO FOR I = 1 TO 10; /" MULTIPLY = REPEATED ADD "/ 
21 ZUM = ZUM + ENTRY; 

22 END; 

23 ENTRY = ZUM + NUM; 

24 /" ENTRY NOW HAS NEXT DECIMAL DIGIT ADDED IN WITH `/ 
25 1` A BCD SHIFT BY ONE PLACE 

.1 

./ 

./ 
./ 

26 END; 

27 CLOSE DEFAULT; 

selects only the high order bit of KEY so 

that the result of the masked test will be 

zero if bit seven is zero, non zero if bit seven 
is one. If the result of the AND is not equal 
to zero, the graphics control case will be 

executed: the DO ... END group extending 
from line 4 to line 14. If the result of the 
AND is zero, ASCII input is present so the 
character is forced into a numeric entry 
interpretation. The ELSE DO ... END 
clause of lines 15 to 26 handles this alterna- 
tive. 

Graphics Control Processing 

The processing of the graphics control 
format is not at all complicated. A pro- 
cedure, called MOVECURS is executed first 
to decode the four low order bits of the 
graphics control format and adjust the 
cursor position. 

MOVECURS is specified in a procedure - 
oriented language in figure 4. This routine 
contains four IF statements which test the 
four motion control bits. Motion is achieved 
for each logical one bit by simply adding or 
subtracting one from the corresponding 
cursor position variable XCOL or YROW. 
Note that this software takes care of an 
invalid combination of up and down (or left 
and right) in a unique way: nothing happens. 
If contradictory commands are input, the 

Data (8 -bit bytes) used by DEFAULT at this level: 

NUM = temporary data byte used to hold a BCD digit for conversion to 
binary. 

ZUM = temporary data byte used to form the product when ENTRY is 

shifted left 1 BCD digit by multiplication with 10, lines 20 to 22. 

Data (8 -bit bytes) used by DEFAULT but shared with the 

whole program. 

KEY, XCOL, YROW, ENTRY 

Subroutines Referenced by DEFAULT: 

LPUT ... Routine (used also by FACTS_OF_LIFE) which placet the 
bit value of the third argument at a location specified by the first two 
arguments. Thus lines 9 and 11 define a new value for the bit at XCOL 
and YROW in the LIFEBITS matrix. 

MOVECURS ... The routine (see Fig. 1 1) which moves the cursor up, 
down, left or right depending upon the motion control switches which 
are read into the low order bits of KEY. 

DISPLAY ... The routine which copies LIFEBITS to the graphics 
output device for viewing. 

Figure 3: The DEFAULT routine specified in a procedure- oriented 
language. 
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Decoding "who called" is 

done in software by the 

DEFAULT routine. 

1 MOVECURS: 

2 PROCEDURE; 

3 /' MOVE THE CURSOR BASED UPON THE FOUR LOW ORDER BITS 

4 1' OF THE GRAPHICS CONTROL CHARACTER INPUT 

5 IF (KEY AND 1000B) NOT -O THEN 

6 YROW = YROW + 1; 

7 IF (KEY AND 0100B) NOT = 0 THEN 

8 YROW = YROW - 1; 

9 IF (KEY AND 0010B) NOT = 0 THEN 

10 XCOL = XCOL - 1; 

11 IF (KEYAND0001B) NOT =OTHEN 

12 XCOL= XCOL + 1; 

13 1' NOW, IF THE SELECTED KEY WAS ON, THE APPROPRIATE 

14 / CURSOR POSITION REGISTER HAS BEEN CHANGED / 
15 CLOSE MOVECURS; 

Data (8 -bit bytes) used by DEFAULT but shared with the 
whole program. See Table 2 of LIFE Line 3, BYTE #4, pg. 

55, for details. 

KEY, XCOL, YROW 

Figure 4: The MOVECURS routine specified in a procedure -oriented 
language. 

cursor position variable in question is both 
incremented and decremented with a net 
result of no change. Remember also that 
time delays are built into KEYBOARD_ 
INTERPRETER to govern the speed of 
changes when keys are held down contin- 
uously. 

Upon return from MOVECURS with the 

newly updated position, the remaining 
portion of the graphics control processing 

consists of program logic to test for data 

entry. If the change enable bit (bit five) has 

a value of one, a change is indicated. Then if 
the data bit (bit four) is zero, the current 
position in LIFEBITS is turned off, indi- 
cating a death; if the data bit is one, the 

current position in LIFEBITS is turned on, 

indicating a birth. Graphics control change 
processing is completed at line 12 when 
DISPLAY is called to put the new data out 
on the display screen. 

Numeric Default Processing 

In the alternative DEFAULT processing 
case of an ASCII character which is not 
recognized by the DECODE routine, the 

program will assume numeric entry. In effect 
what this means is that any unrecognized 
non -numeric ASCII character will cause 

invalid data to be placed in the ENTRY 
register of the software since this little 
routine uses brute force to extract a numeric 
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meaning. At line 17, a value of hexadecimal 
30, denoted 30H, is subtracted from the key 

code. Since valid numeric ASCII characters 

run from hexadecimal 30 to 39, this will 
result in data running from 0 to 9 for valid 

numeric codes. The test of line 18 excludes 

invalid codes by forcing a 9 value. (Unsigned 
arithmetic is assumed here so that all 8 -bit 
integer values not in the range 0 to 9 will be 

larger than 9.) Then the previous ENTRY 
value is multiplied by 10 using a repeated 

addition loop at lines 20 to 22. The new 
entry digit value is then added in to the low 
order at line 23. Note that ENTRY is a 

binary number, but that the digit being 
defaulted is entered with a decimal 

weighting. (For multiplication.an alternative 
to repeated addition in this case would be to 
observe that 10 x = 8 x + 2 x. Thus using 

three arithmetic left shifts both twice and 

eight times the original ENTRY could be 

obtained and summed producing the 10 x 

product.) 
After execution of one or the other of 

the two paths determined by the format bit 
of the data in KEY, DEFAULT reaches its 

CLOSE statement and returns to DECODE. 

Where Does LIFE Stand? 

In the course of LIFE Line through this 
installment, the structure of the LIFE pro- 
gram has been the major topic. LIFE Line 4 



has introduced the first hardware considera- 
tions - the special keyboard - as a 
requirement in the specification of graphics 
control processing. LIFE Line 5 will con- 
tinue the software theme by completing the 
initial specification of the LIFE program 
design exclusive of the RESTORELIFE, 
SAVELIFE and INITIALIZATION pro- 
cedures which together form a major soft- 
ware subject in their own right. LIFE Line 5 
will cover the DISPLAY, RUN, SETXLOC, 
SETYLOC, LIFEDONE, and SETNGEN 
procedures as its main theme. Then the 
series will turn to the hardware of the LIFE 
system prototype in more detail, to provide 
a basis for the generation of actual 
executable programs which will run on the 
prototype system. The first major phase of 
the LIFE Line project will be completed 
when it is possible to draw a LIFE pattern 
on an oscilloscope output device using the 
cursor motion control keyboard, then 
initiate the pattern evolution according to 
the facts of LIFE as presented in LIFE Line 
1 

The second major phase of the project 
will be the addition of the data management 
hardware and softwave facilities of the 
SAVELIFE, RESTORELIFE and 
INITIALIZE procedures. These facilities will 
enable the construction of initial patterns 
from "standard parts" saved on a mass 
storage device. As always, the aim of the 
entire series of LIFE Line articles is to show 
how the bits and pieces of hardware and 
software design fit together to produce a 
working application system. 

A bibliography of Scientific American infor- 
mation on LIFE (all references are to Martin 
Gardner's "Mathematical Games" column). 

October 1970: page 120. This is the 
original LIFE article, including the 
definition of the Facts of LIFE, and 
illustration of numerous fundamental 
patterns. 

November 1970: page 118. Answers to 
several questions posed in the first 
article on the subject, including 
definition of the several varieties of 
"spaceships." 

January 1971: pages 105, 106 and 108. 
Continued progress on the LIFE 
front including answers to several 
unsolved questions and results of a 
flurry of computer LIFE activity. 

February 1971: Special "Mathematical 
Games" article on `cellular automata 
theory." 

March 1971: pages 108 and 109. Short 
note about progress made by John 
Conway and R. William Gospers, plus 
illustration of a large scale flip flop 
pattern which is delicately balanced 
and easily destroyed by minor distur- 
bances such as impact of a glider. 

April 1971: pages 116 and 117. 
Examples of fuses, the five cell cross 
series, and announcement of Robert 
T. Wainright's LIFELINE newsletter. 

November 1971: page 120. Short note 
on continued progress at the MIT AI 
Laboratory. 

January 1972: page 107. The discovery 
of the "eater" by Bill Gospers at 
MIT. 

This is an essential list of readily available 
information on the LIFE game which interested 
readers can research in any complete public or 
university library. 

An Aside Regarding the Ultimate LIFE 
LIFE on a 64 x 64 grid is an achievable 

project for the home brew computer 
enthusiast. But it is far from the ultimate. 
My thanks to Bob Clements of Lexington, 
Massachusetts for arranging a demonstration 
by R. William Gospers, Jr., at the MIT 
Artificial Intelligence Laboratory one recent 
Saturday evening. When LIFE was first 
widely publicized by Martin Gardner in his 
October 1970 Mathematical Games column 
in Scientific American, it helped set up a 
flurry of research work on the subject. 

Bill Gospers and his associates at the MIT 
Al Lab took the definition of John 
Conway's game and began constructing a 
highly efficient LIFE system running on a 
Digital Equipment Corporation PDP -6 com- 
puter with a high resolution 1024 x 1024 
position oscilloscope display. This research 
tool was used by the MIT people to generate 
numerous mathematically interesting LIFE 
patterns. These include such fundamental 
discoveries as glider guns, space ship 
factories, a binary transcendental number 

calculator, and a Turing machine pattern. 
The ultimate climax of the evening's demon- 
stration was Bill's demonstration of a 

disproof - by example - of John Conway's 
conjecture that no LIFE pattern could grow 
without limit. The particular example he 
used is a colossal moving glider gun factory - a pattern which leaves a trail of active 
glider guns behind it as it travels slowly to 
the right on the display screen. This pattern 
fills the plane of the LIFE matrix with cells, 
and the number of active cells increases in 
proportion to the square of the number of 
generations the pattern has lived. After an 
arbitrary length of time, an arbitrary region 
of the plane will be filled with glider 
patterns emanating from the residue of 
glider guns produced by this LIFE machine. 

The programs which form the MIT LIFE 
system are run on equipment far beyond the 
range of price a home brewer could consider - but with the advances in technology it is 
now possible to make a LIFE system which 
demonstrates many principles without 
breaking budgets. 
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Total Kitchen 
Information System 

Ted M Lau 
7740 P Chalmette Dr 
Hazelwood MO 63042 

I have become a hateful 
person just because my 
grocery list is unsorted. 

I want to outline a plan for a total 
kitchen information system (TKIS) suitable 
for implementing on a home computer. This 
outline is the first step in the development 
of TKISs of arbitrary complexity from the 
simplest inventory modules to artificial 
intelligence modules (such as those suggested 
by Richard Gardner in the October 1975 
issue of BYTE). The functional approach 
used here should allow the reader to plan a 

complex system using small and manageable, 
"byte- sized" pieces, or to interface indepen- 
dently developed modules. 

This project began as a gripe list my wife 
and I compiled after many frustrating 
experiences in the kitchen; throwing out 
spoiled food we'd forgotten in the refriger- 
ator, abandoning a recipe for lack of a key 
ingredient, reeling with confusion after read- 
ing pages of grocery specials, neither being 
able to remember an appealing recipe nor to 
find it among all our cookbooks, and so on. 

Hierarchy Chart 
Figure 1 shows the functions to be 

performed by a TKIS, structured in 
hierarchic fashion - meaning that every 
function is made up of several subfunctions, 
each function box performs one general task 
which can be divided into several specific 
tasks, and so on. This chart differs from a 

flowchart in that the function boxes are not 
necessarily performed in left to right order, 
nor are the conditions for execution given. 
The hierarchy (H) chart attempts to outline 
what a system must do, but not how, when, 
or if. 

Each rectangle in the chart represents a 

transformation of some inputs into some 
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outputs. For example, box 1.0 takes grocery 
prices from several markets and spits out a 

list of bargains to be scheduled into meals. 

Box 2.0 accepts a list of on -hand perishables, 
in addition to the output from 1.0, and 

yields a schedule of meals. Box 3.0 trans- 
forms the meal schedule into the food 
needed. Box 4.0 transforms raw, separate 
foodstuffs into cooked fare. Box 5.0 turns a 

meal into leftovers and garbage, and 6.0 
turns garbage into cleanliness. 

Notice that I've ignored inputs that 
appear unchanged as outputs, such as the 
recipes consulted to plan the meal (2.0): 
They are brought in at the beginning and 
returned unchanged at the end of the task. 
These unchanged or rarely changed inputs 
are the tables and files referenced by the 
function boxes. These tables and files appear 
to be internal to the boxes, and therefore 
can be ignored for the time being, thus 
allowing me to concentrate on TKIS func- 
tions. Though file design itself can be put 
off, provision must be made for the creation 
and maintenance of this data (7.0). 
Examples are the writing of recipes onto 
blank recipe cards, or the (presumed) struc- 
turing of a previously unstructured human 
brain nerve net to respond to a low price in 
hamburger. 

Notice that action boxes (3.5, 4.5, 5.0) 
are mixed in with thought boxes. The H 

chart attempts to completely describe all the 
functions involved in operating a kitchen, 
whether primarily physical or primarily 
informational. While no one can seriously 
attempt to computerize these physical tasks 
at the present time, we must remember that 
all physical processes have informational 
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Figure 1: Functions of Total Kitchen Information System. 

components (and are thus fair game for 
computer enhancement), and that any 
distinction between physical and informa- 
tional is strictly provisional (and is subject to 
erosion as computers expand their capa- 

bilities to manipulate objects, as in robotics 
and automation). So the H chart incor- 
porates into its comprehensive structure 
both modules that are subject to present 
data processing solutions and modules that 
must wait for future technology. (Readers 
will identify box 4.0 as the voice responsive 
vending machine in the rec room of the Star 

Ship Enterprise.) 
Notice that the H chart says nothing 

about computers. It describes my concep- 
tion of a very rigorous manual system that 
could be performed with paper and pencil. It 
purposely steers clear of computer concepts 
to allow you to be flexible in making 
software and hardware design decisions. To 
paraphrase: "Hardware and software may 
pass away, but functions endure." The tasks 
to be performed by the TKIS remain 
unchanged from one system configuration to 
another. 

The H chart functionally describes my 
view of what must be done to get meals on 
the table. It is triggered by specials and 
perishables in that it tries to cut costs by 
planning meals using bargains, and to reduce 
wastage by scheduling perishables in timely 
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fashion. Specifically, TKIS plans to review a 

large number of grocery item prices and to 
call attention to those that meet a specials 
criterion specified by the developer (1.1). It 
plans to call attention to items in inventory 
whose perishable date falls within the next 
meal scheduling period (2.1). It plans to 
retrieve recipes based on key ingredients and 
other characteristics such as casserole, quick - 
meal, Chinese, price -per- serving, nutritional 
values, etc., (2.4), and to reveal the recipe 
ingredients not on hand, or to reveal only 
those recipes whose ingredients are all on 
hand. It plans to help the kitchen operator 
decide which markets to visit by simulating 
the expenses of buying at various markets, 
including labor time and gasoline costs (3.2). 
It plans to calculate the quantities of ingre- 
dients needed for recipes with adjusted 
servings (3.1.1, 4.1). It plans to collect menu 
and recipe evaluations (yum, good or echch) 
(6.4), along with keeping past meal 
schedules and market receipts, for future 
analysis in planning menus, purchasing 
foods, budgeting, and dietetics. It even plans 
to sort the items on each grocery list into 
store location order, so that by walking 
through the store in a prescribed way the 
items will be encountered in order (3.3.3). 
This is big on my gripe list: I hate carrying a 

pencil to mark the groceries I buy, and I also 
hate chasing all over the store to find the last 
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Figure 2: Recipe Subsystem. 
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Figure 3: Inventory Subsystem. 
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few unmarked items. I have become a 

hateful person just because my grocery list is 

unsorted. 

Beyond The Hierarchy Chart 

The H chart tells us that to do but not 
how, so where do we go from here? I would 
hope that some of the readers will come 
forward with data base and file designs, 
hardware specifications, and program 
descriptions. This is a massive project and 
certainly in need of special talents and 
diverse opinions. There are many well 
known techniques for designing computer 
systems, and I think it is sufficient for me to 
mention some of the potential problems that 
may be encountered. 

1. Is the proposed TKIS technically and 
economically feasible in a home? If not now, 
will it become so in a time frame approxi- 
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mately equal to the development time? To 
answer these questions, someone must 
expand the effort to prepare detailed hard- 
ware, software, and manpower estimates. 

For example, a recipe retrieval subsystem 
might use a CRT with keyboard to initiate a 

search of the recipe file, and to display the 
results on the cathode ray tube (CRT) (see 

figure 2 for a schematic of the hardware and 
an H chart of the software functions). 
Assuming a file contains 2000 recipes aver- 
aging 500 B each, what are the cost and 
performance tradeoffs between a tape 
system versus disk system? In order to make 
this estimate we must know, first, what 
response time is acceptable to the kitchen 
operator. If the program reads records 
sequentially, what tape speed is required? 
What bandwidth is needed for data path A in 
figure 2 and how fast must programs exe- 
cute? And so on ... 

2. How can the human labor required for 
data entry be kept below that required for 
the manual system? Data entry is the process 
by which humans, through the sweat of their 
brows, convert data into machine readable 
form so that the computer can do marvelous 
things with it and look like a genius. Data 

entry is probably one of the most costly 
items in the operating budget of the TKIS, 
and certainly one of the most boring. 

Table 1 lists the tables and files needed to 
implement a basic version of the TKIS. Of 
the tables, recipes and prices represent large 
data entry tasks at initial system startup and 
at periodic intervals. It would be very nice if 
the kitchen operator could acquire data in 
machine readable form (on cassettes or via 

the phone line). The book and magazine 

publishers could supply a periodic update of 
recipes and the markets an update of prices. 
Standard formats would have to be 

developed for these interfaces, and a 

customer base must be developed to provide 
an economic incentive. 

The files, on the other hand, originate 
within TKIS and change continually with 
use, making it difficult to solve the data 
entry problem in the same way. For 
example, figure 3 describes a test design for 
an inventory module. The functions of this 
subsystem are to add a record (or a count) 
of each purchased item to the inventory file 
corresponding to the storage location, to 
allow retrievals by item, and to decrement 
the inventories as items are used. The major 
data entry requirements are to tell the 
computer what was used and what was 

bought. 
An efficient way to do the former is to 

signify what was used, instead of specifying 
in detail what was used. By entering the 
recipe name (say, recipe B), the operator 



Table 1: Functional Storage Requirements. 

File Name Contents Possible Source 

A. Tables 
1. Prices grocery item prices by brand for each market Grocers 

2. Recipes 

3. Menus 

4. Calendar 

5. Markets 

B. Files 
1. Inventories 

freezer 
refrigerator 
shelf 
stock items - 

ingredients, instructions, recipe characteristics, Book and Magazine 

nutritional data, number of servings Publishers 

groups of recipes, menu characteristics Book and Magazine 
Publishers 

dates, meal times, number of guests, other TKIS User 

requirements 

market name, address, distance TKIS User 

number and quantity of ingredients by location TKIS User 

also perishable items by ID No. 

number and quantity of items, rate of use (salt, soy sauce) 

2. Meal Schedule menu or recipes for each meal TKIS User 

3. History past schedules and evaluations, market receipts, TKIS User 

etc. 

4. Working Storage purchase list, grocery lists, etc. TKIS User 

says in effect that "the ingredients for recipe 
B were used." This requires that the com- 
puter have a recipe file for translating 
"recipe B = ingredients D, E, F." If the 
computer lacks this file, the operator must 
enter the specific ingredients used. Thus a 

stand alone inventory subsystem is less data 
entry efficient than one integrated into a full 
TKIS (a truism about systems in general). 

On the other hand, telling the computer 
what was bought can be handled rather 
neatly, by adhering to the rule that once the 

data is in machine readable form it should 
not be degraded out of same. Instead of a 

paper receipt, the bag person at the market 
will plop a cassette in your bag containing all 

the items you purchased and their prices. 

This cassette will have been produced by the 
market's point -of -sale terminal which so 

graciously performed the data entry chore 
for you by optically scanning your groceries. 
(In fact - or rather in fantasy - the market 
won't even have to provide the cassette: you 
will bring the purchase list created by TKIS 
on cassette to the store, insert it into the 

computer at the front door which sorts and 

prints your grocery list in location order 
(3.3.3 and 3.3.4), and carry the cassette to the 

checkout counter for recording of your 
receipt.) 

3. What does the kitchen operator do 
when the system goes down because a disk 
crashes, or the bus turns flaky, or a program 
blows up? (This picturesque lingo seems to 

less accurately describe the condition of the 
computer than it does our emotional state 

after the unthinkable has happened.) Backup 
manual procedures or alternate computer 
services must be provided to allow the 
kitchen operator who has become dependent 
on the TKIS to function while the system is 

down. Adequate system recovery and restart 
procedures must be designed, and a tech- 
nique developed for catching the computer 
up on what transpired while it was uncon- 
scious. The importance of these considera- 
tions will depend upon the complexity and 

reliability of the hardware and software, but 
must be conceived and designed as an 

integral part of the total system. 
4. Finally, assuming a TKIS was 

developed, would a kitchen operator use it? 

Besides being more efficient, less costly, and 

all the other good reasons for which we 

developed it, the TKIS must be flexible 
enough to allow for human inefficiency and 
taste preferences. What if the TKIS user 

doesn't want to prepare the scheduled meal 

for the evening? TKIS must be able to take 
account of human inconsistency. 

Summary 
I have briefly outlined the functions I 

think a kitchen information system should 
perform, and mentioned some considera- 
tions affecting its design. I hope this article 
will help catalyze development efforts in 

what appears to be a fruitful home computer 
applications area. 
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A Small Business Accounting System 

The least sophisticated 
form of bookkeeping is 

single entry accounting; it 
is not, however, generally 
suitable for preparing fi- 
nancial statements for 
banks, investing brothers - 
in -law, and so forth. 

Double entry bookkeeping 
has the advantage of incor- 
porating redundancy and 
error checking techniques. 
It is the most common 
form of business 
accounting. 

Or, How Your Microcomputer Can Take the Worry Out of Tax Time 

John A Lehman 
716 Hutchins #2 
Ann Arbor MI 48103 

Here's an outline of an accounting system 
suitable for small business use on a micro- 
computer. It is designed for a small, inexpen- 
sive system having a central processor, Tele- 
type IO, one or preferably two cassette tapes 
for storage, and a high level language facility 
such as BASIC. It could probably be written 
in assembly language, but at a price of 
inconvenience. The system is designed to be 
used by an individual proprietorship (one 
man business) or a small partnership. While 
perhaps suitable as a bookkeeping system for 
a small corporation, it is not intended to 
produce the sort of reports which various 
regulatory agencies may require of one. It is 
designed to keep books, produce tax returns 
(either Form 1040 schedule C for pro- 
prietorships or Form 1065 for partnerships), 
produce balance sheets which may be re- 
quired either for management information 
or for the information of banks and other 
outside investors, and to be adaptable for 
check reconciliation, cash budgets, pro 
forma balance sheets and the like. Its use 
requires about the same amount of time and 
effort as keeping a journal would normally, 
with the added advantage that the entries are 
pretty much self checking. All other reports 
are produced by the programs which would 
be used. I'll try to describe the system in 
enough detail so that anyone who is skilled 
in BASIC and knows a little about account- 
ing could write a program to do all of the 
above. 

First, however, it might be a good idea to 
take a quick look at accounting systems and 
what they're used for. 

Of the various systems available, the 
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simplest is the single entry system. A check 
book is a good example; each time money 
goes in or out, a notation is made of the 
date, the amount, and any comments on 
sources, uses, etc. This sort of system is 
obviously very simple to keep, and has the 
additional advantage of being accepted by 
the IRS for preparing tax returns. However, 
it has a number of disadvantages. The first is 
that it is not self checking, as anyone who 
has ever tried to balance a checkbook can 
testify. Also, while capable of producing an 
"income statement" (the generic term for 
what a tax return amounts to), it is not 
suitable for the preparation of other finan- 
cial statements that may be required by 
banks, investing brothers -in -law and so forth. 
These disadvantages make a single entry 
accounting system unsuitable for the system 
under discussion here. 

Double Entry Accounting 

The other major accounting system is the 
double entry system. It was invented about 
600 years ago, and came into widespread use 
because it was self checking. It is also quite a 
bit more complicated than a single entry 
system. The basic idea behind the double 
entry system is that each transaction has two 
parts: where money comes from and where 
it goes. So each transaction is entered twice, 
each time in a different account. The mech- 
anism behind this is the idea of debits 
(DR) and credits (CR). Very briefly, a debit 
represents an addition to something which 
you have (an asset) or to an expense. A 
credit represents a subtraction from one of 
these. On the other hand, a debit represents 
a subtraction from something which you 
owe or from a revenue, while a credit 
represents an addition to one of these. All of 
which can be very confusing. 

As a quick example, suppose you pay 



$100 on your BankAmericard and receive 

$150 for some service which you performed. 
You would debit accounts payable (sub- 

tracting from what you owe) for $100, and 

credit cash (subtracting from something you 
have) for $100. Then you would debit cash 

(adding to something you have) for $150, 
and credit income or revenue (adding to 
revenue) for $150. The self checking feature 
is provided by the fact that debits must 

always equal credits. It would probably be a 

good idea to look through a beginning 
accounting book to get more examples to 
help explain accounting techniques. I've 

listed some at the end of the article. 
Besides being self checking, a double 

entry system has the advantage of being able 

to churn out all sorts of reports on what is 

going on in the business in question. The 
IRS approves of it; and in fact, large 

companies have no choice - they have to 
use it. Now that we've described the major 
accounting systems, let's get on to what they 
do and how they can be used in a computer- 
ized system. 

The purpose of any accounting system is 

to provide information (another purpose is 

to provide employment for accountants, of 
course). This information is of use to various 
people. The owner of a business uses it to 
see how well he's doing, and more impor- 
tant, where he's not doing so well. Another 
important user is your friendly local IRS 

agent; anyone in business is required to 
produce accounting reports to the Internal 
Revenue Service's specifications. Banks and 

other investors also are likely to be quite 
interested in this sort of information, espe- 

cially when their services are requested for 
loans rather than for deposits. Corporations 
are also required to provide statements to 
various government agencies, but we're not 
going to be concerned with that here. 

The basic statements and reports were 

mentioned earlier. The first is the balance 
sheet such as the one shown in figure 1. 

This represents the financial state of the 

company at a particular time. The left hand 
side (in the US at least) represents assets, or 
what the firm has. The right hand side 

represents liabilities and equities. (Liabilities 
and Equities is accounting terminology for 
where the stuff on the left came from.) 
Liabilities are amounts owed; equities are 

amounts contributed or earned by the own - 
er(s). The second statement is the income 
statement. As was mentioned above, a tax 
return is a species of income statement. This 
shows what happened over a period of time. 
Other statements, such as the cash budget 
and the pro forma balance sheet, show what 
may happen in the future. These are the 

ASSETS: 

Cash 
Receivables 
Equipment 

1000 
2000 
4000 

Total 7000 

LIABILITIES: 

Payables 2000 
Notes from bank 1000 

EQUITY: 
Proprietor 4000 

Total 7000 

Figure 1: The Balance Sheet. This document shows the current financial state 

of a business operation. It is used by businesses large and small, and is one of 
the end products of the automated accounting system. 

EXPENSES (Debit to add, Credit to 
subtract) 

Return & Allowances 
Depreciation 
Business Taxes` 
Rent 
Repairs 
Salaries & Wages 
Insurance 
Professional fees 
Commissions 
Amortization* 
Pension /Profit sharing 
Interest 
Bad Debts 
Depletion 
Other (specify if common, eg: 
Fuel 
Electricity 
Telephone 
Cost of Goods Sold which 

includes 
Purchases 
Materials /supplies 
Other costs 
Labor (used for or directly 

related to 
Production - does not include 

money paid to you) 

RTN 
DEP 
TAX 
R NT 
RPR 
SA L 
INS 
PR F 

COM 
AMT 
PEN 
INT 
BDB 
DP L 
MIS 
FUL 
PWR 
FON 
CGS 

PUR 
MAT 
OTR 

LAB 

ASSETS (Debit to add, Credit to 
subtract) 

Cash 
Receivables 
Inventory 
Prepaid expenses 
Supplies 
Equipment 
Investments 
Misc. 

CSH 
RBL 
INV 
PPD 
SUP 
EQT 
IVS 
ETC 

LIABILITIES & EQUITY (Credit to add, 
debit to subtract) 

Payables 
Notes 
Long Term Payables 
Proprietor 
Drawing 

PBL 
NOT 
LTP 
PRP 
DRW 

REVENUES (Credit to add, Debit to 
subtract) 

Gross Receipts 
Other Revenue 

*Items for which the IRS requires supplementary schedules or statements 

RCP 
REV 

Figure 2: Account Files Example. When the double entry accounting system 

is designed, one of the first steps is to create a list of accounts and their 
corresponding mnemonic codes. The mnemonic codes are used internally by 

the computer in order to save memory space. if you are lavish with memory, 
texts of the long names could be looked up in a table when you generate 

reports. 

statements which our system is going to be 

able to churn out. Now, having got an 

overview of what we're trying to do, let's 
take a look at our data base requirements. 

The first thing we are going to need here 
is a set of names for our accounts. This is a 

"chart of accounts" to use the jargon of the 
accounting trade. A small system such as 

ours will need about 35 of these, selected for 
the most part to make our output match 
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SUMMARY 
EDIT 
PROGRAM 

SUMMAR 
LEDGER 
TAPE 

TAX 
RETURN 
PROGRAM 

INCOME 
STATEMENT 
(TAX RE- 
TURN) 

INPUT FROM 
DAILY 
ACTIVITY 

JOURNAL 
EDIT 
PROGRAM 

JOURNAL 
TAPE 

BALANCE 
SHEET 
PROGRAM 

BALANCE 
SHEET 
REPORT 

Figure 3: An Accounting 
System Flow Chart. This is 
a software system flow 
chart which identifies the 
ma for program com- 
ponents of an accounting 
system. The representation 
assumes that tape files will 
be used to maintain mass 
storage on your personal 
system; floppy disks with 
sequential access file orga- 
nizations could be used as 
we //. 

LEDGER 
EDIT 
PROGRAM 

DETAILED 
LEDGER 
REPORT 

BALANCE 
SHEET 
TAPE 

FORECAST 
PROGRAM 

CASH 
BUDGET 

PRO FORMA 
BALANCE SHEET 

MANUAL 
FORECAST 
INPUTS f- 

what the IRS requires. In order to save 

memory space in the programs, each of these 
accounts is also given a three letter mne- 
monic code. Two letters would be possible, 
but some ease of use would be sacrificed. 
Figure 2 gives a sample list of accounts and 
mnemonics, broken down by classification. 
A brief explanation of some of the accounts 
might be in order. Returns and Allowances is 

for goods which are returned for one reason 
or another. Its purpose is to reduce the 
amount in gross receipts while keeping the 
amount of returns separate. The category 
SAL includes only those wages paid which 
are not included in cost of goods sold (CGS). 
This would involve such things as clerical 
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help. INT is interest paid, not received. BDB 
(bad debts) is used if we want to use the 
specific charge off method of accounting for 
such unfortunate happenings. The IRS also 
allows use of another method, called the 
reserve method, but it is more complicated. 
DPL (depletion) is used for things like oil 
wells and mines. DEP (depreciation) is used 
for equipment, machines and the like, while 
AMT (amortization) is used to charge part of 
the cost of such things as organization 
expense, capitalized research and develop- 
ment and so forth. Some of these things can 
be listed as assets when the money is first 
spent, and the cost spread over several 
periods. For details see the IRS books listed 
at the end of the article. Cost of goods sold 
(CGS) is the total of the costs incurred to 
get something ready for sale; the breakdown 
is listed below it. Cash (CSH) is mostly 
checking account balances. Receivables 
(RBL) are what customers owe you on 
account. Payables (PBL) are what you owe 
on account. Proprietor (PRP) is what you 
put into the business and what it has earned 
so far. Drawing (DRW) is the account you 
use to take money out of the business for 
personal uses. Notes (NOT) is money bor- 
rowed from banks and other lenders. The 
rest should be pretty much self explanatory. 
These 35 or so accounts are the data files 
which we're going to be working from; all of 
the information we put into the system goes 
into them and all of the output uses them as 

building blocks. Now, having taken care of 
all of the groundwork, we are ready to start 
running information through the system. 

Reference to the system flow chart of 
figure 3 shows that the journal is the first 
thing we produce. It's shown being produced 
on tape, since that way we can use it to 
produce all of the other reports without 
having to type in any more material, at least 
until we come to the forecasts. Also, by 
writing our journal entries onto tape as soon 
as they're checked by the editing program, 
we save much memory space, since we need 
keep only a little bit of data in memory at 
any given time. So, in this automated sys- 
tem, the journal is the only file we really 
have to manipulate on a day by day basis. 
To use it, first we enter the date. Then we 
enter each transaction through the checking 
program which makes sure we have two 
entries for each amount and that the num- 
bers we give the machine match. A sample of 
a possible format is given as figure 4. We 
debit the power expense account (re- 
member, we debit an expense when we want 
to add to it) for $58, and enter the comment 
that this is for the month of March. Then we 
credit cash (to decrease it), but reverse the 



numbers. The program sees that the debits 
do not equal the credits, and fires off an 
error message, prompting us to enter a 

correction. Note here that we include the 
check number; this is very important when it 
comes time to reconcile our records with 
what the bank statement says. Also, the 
editing program should provide the ability to 
debit and credit unequal numbers of ac- 

counts so long as the totals are equal. If this 
would be too much of a demand on memo- 
ry, amounts can be split up before entry. 
Going on, the OK indicates that the entries 
check, and at this point they should be 

written onto the tape. Entries for the journal 
can come from cash register tapes, bills, etc. 
Up through this point our system is about as 

much work as a manual system, but from 
here on in things get much easier. 

The next item on the system flow chart is 

the ledger. This is a set of files which puts all 
of the journal entries for each account 
together. In our system, there are two types: 
summary and detailed. In a more advanced 
system, all of the ledgers would be detailed, 
but this would require much more memory 
than most small systems would have avail- 
able. Basically, what we do at this point is 

have the program read the journal entries 
one by one and keep a running count of the 
amount for each of the different accounts in 

use. Beginning balances may be read in 

either via the Teletype or via a separate 
ledger tape. The ending balances should be 

printed on the Teletype if the user wishes to 
see what they are, but they should also be 

saved on tape for use in preparing the rest of 
the statements. Detailed ledgers will require 
a separate run for each one desired; they 
might be run on a weekly or monthly basis. 
The most important one is the cash ledger, 
since this will provide a record of every 
check written and every deposit made to the 
checking account by date and number. This 
should make balancing one's checkbook a 

fairly simple task. The one thing to be 
careful of in this program is to be sure that 
the rules for addition and subtraction of 
debits and credits are carefully written into 

the program. Otherwise all that will come 
out is garbage. 

Once we have the ledger, it's fairly easy 
to see how the balance sheet is generated. A 
look back at figure 1 will show that there are 
only about a dozen of the ledger accounts 
which have to be put together. All of the 
asset accounts are added together, and the 
sum is listed at the bottom of the column as 

total. Subtracting the sum of the liabilities 
from the sum of the assets leaves what is left 
for the owner. If the amount in the drawing 
account is set beforehand, that leaves only 
the Proprietor (PRP) account to be 
"plugged," which is to say, given whatever 
value is necessary to make the two columns 
come out equal. So, if the assets total 
$7000, the liabilities total $3000 and there 
are $500 in the drawing account, that leaves 
7000 -3000 -500 =3500 for PRP. The only 
other detail is that the program should either 
write the date at the top, or it should be 
filled in by hand. A balance sheet may be 
prepared at any time; it will often be 
required for getting a loan from a bank. 
Besides being run on paper, it should be run 
onto tape for use in preparing forecasts. 

Probably the most important report 
which our system will prepare is the income 
statement. This is a report which shows what 
has happened over a period; usually a year, 
but often prepared on a quarterly or a 

monthly basis. Its importance arises not so 

much from the fact that people like to see 

how much money they've made as from the 
fact that the government is quite interested 
in this information - so they can take their 
cut, of course. The system being illustrated 
produces an income statement patterned 

The balance sheet is a 

snapshot of the current 
status of the business. 

A mass storage file comes 
in handy for business ac- 

counting, since much of 
the work involved is ac- 

complished by reviewing 
the same data with dif- 
ferent criteria to produce 
reports. 

Figure 4: An Example of the Interactive Dialog with the Journal Edit 
Program. The purpose of this program is to filter your own manual inputs 
looking for certain known discrepancies which can be detected by the double 
entry bookkeeping method. In this example, upper case letters are the 
computer output to a Teletype (or video terminal) and the lower case letters 
indicate manual keyboard inputs taken from daily activity records such as 

receipts, checks written, etc. 

Interactive program for journal entries might read: 

ENTER NAME OF ACCOUNT DEBITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS: 
pwr,58,march 
ENTER ACCOUNT CREDITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS: 
csh,85,check 346 
DEBITS DO NOT EQUAL CREDITS -ENTER IF DR OR CR TO BE CHANGED: 
cr 

ENTER ACCOUNT CREDITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS: 
csh,58,check 346 
OK 
ENTER NAME OF ACCOUNT DEBITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS: 
iam done 
OK GOODBYE 
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UM 

I 

Figure 5: The object of 
much of this program ac- 

tivity is filling out IRS 
Schedule C for your small 
business. 

after Form 1040 Schedule C (figure 5), but 
could produce Form 1065 for partnerships 
with minor changes. As is fairly obvious to 
those who can wade their way through the 
governmentese, what we have to do here is 

state all income and then subtract expenses. 
The accounts which we have been working 
with will do this on what is called an accrual 
basis, which is to say future expenses and 
revenues are included if they are certain and 

we know how much money is involved. For 
example, if we have charge customers, we 

include what they are scheduled to pay us in 
revenues. For a small business it is often 
better to file a tax return on the cash basis in 
which only cash in is considered revenue and 
cash out is considered expense. This system 
can prepare cash basis returns too; one must 
eliminate receivables, payables, prepaid ex- 

penses and materials and supplies not yet 
part of cost of goods sold. The effect of all 

of these should be taken out of the revenue 
and expense accounts too. 

That's the basic system. Using this system 

alone would be a pretty respectable account- 
ing setup for a small business. But as long as 

we're using a personal microcomputer, we 

might think of adding a few bells and 
whistles. These would pretty much depend 
on individual wants. We could have the 
computer automatically calculate FICA de- 

ductions when payroll expense is debited. 
We might also have the machine figure our 
depreciation and amortization schedules for 

GLOSSARY 

Accrual: Including payments and receipts in the 
future. 

Check reconciliation: Accounting buzzword for 
balancing a checkbook. 

Credit (CR): An addition to the righthand side of 
the balance sheet or to income. 

Debit (DR): An addition to the lefthand side of 
the balance sheet or to an expense. 

Journal: The accounting equivalent of a check 
register. 

Ledger: Book or file which contains the totals 
from the journal broken down by categories. 

Payables: Amounts which will have to be paid in 
the future. 

Pro forma: Buzzword used to describe reports 
which show how things might be or might have 
been rather than what they are. 

Proprietorship: A one man business; one owner. 

Receivables: Amounts which are not yet on hand 
in cash but which will definitely be coming in in 
the near future. 
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us. For this we would need (for each item or 
class of items) initial value, estimated life 
and age. For tax purposes we would want to 
get our annual depreciation by taking two 
divided by the life of the object and multi- 
plying the total times the remaining value. In 

more symbolic form: 

(2 /total Iife) *(initial - depreciation). 

This would give us the depreciation to date 

and the amount for this year, both of which 
are needed for the flip side of the tax form. 
We could also do forecasting with the 

system. For this we would want an inter- 
active program which would ask for esti- 

mated expenses and receipts in all the 

different categories for x number of months. 
Then we would prepare a (pro forma) 
balance sheet for the end of the period if our 
predictions were correct, so that we could 
see where things would stand if the predic- 
tions came true. It could also prepare a 

month by month schedule to show whether 
the firm would have enough on hand to 
meet projected outflows. This is called a 

cash budget, and is quite a handy thing to 
have since it enables you to forecast cash 

shortages far enough in advance to do 
something about them, and also to compare 
the results of different courses of action. 

And there's the system. While not very 
fancy from either an accountant's or a 

system designer's point of view, it ought to 
be enough to handle much of the record - 
keeping for those firms on the other end of 
the spectrum from GM, IBM and ITT. It 
might be too that the availability of a few 
business oriented systems like this will help 
increase the sales of microcomputers and 

bring the prices down even more through 
mass production. 
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Chips Found Floating Down Silicon Slough 

Roy H Trumbull 
833 Beira Dr 
El Cerrito CA 94530 

NOISE EMITTING DIODE 

NED 

IN -OP AMP 

J(UN)K FLIPFLOP 

The state of the Art is changing rapidly. 
In fact I ran into him in New Mexico last 

month. Seems he had just gotten back from 
China where he had seen their latest 

computer. It was really fantastic, but they 
still have a problem with noise from the 

beads. I asked Art to clue me in on the latest 

devices coming out of research and these are 

the ones he told me about: 

The Don't Gate 
You don't get no output no matter 

what's at the inputs. It is believed that the 

don't gate was the breakthrough that made 

the LSI write only memory possible. 

Noise Emitting Diode (NED) 
When connected across a 1000 volt 

supply it makes a loud noise (once). The 

NED was discovered by Igor Pravaganda 

whom you'll recall worked many years 

trying to filter AC with electrolytics. He'll 

always be remembered as the father of the 

confetti generator. 

Shiftless Register 
Must be used with 3 speed forward clutch 

gate. Shifts at 15, 25, and 35 bits per 
second. Double clutching with logic 2s is not 
suggested. 

Inoperational Amplifier (IN -OP AMP) 
Linear cousin of the DON'T gate. 

Provides no output for any input at a slew 

rate of 0 volts per microsecond. Mil Spec. 

version available at 100 times the cost of 
OEM version. 

J(UN)K Flip Flop 
Doesn't change state when clocked 

regardless of input states. Changes state only 
of when cola machine down the hall makes 

o' change. 

Excess 3 To Insufficient 4 Carry Forward 
Fudger 

Used to enter Murphy factor and get the 

programmer off the hook. 

MOSS 

Moss 
Highly experimental material. Very rare 

at present since only source is from under 
grizzly bear toenails. Turns green when 
facing north while on wood substrate. 

Fuzz Locked Loop 
Great if you want to avoid radar speed 

traps. 
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The diversity in The Best of 
Creative Computing - Vol- 
urne 1 can only be described 
as staggering. The book 
contains 328 pages of articles 
and fiction about computers, 
games that you can play with 
computers and calculators, 
hilarious cartoons, vivid 
graphics and comprehensive 
book reviews. 

Authors range from Isaac 
Asimov to Sen: John Tunney 
of California; from Marian 
Goldeen, an eighth -grader in 
Palo Alto to Erik McWilliams 
of the National Science 
Foundation; and from Dr. 
Sema Marks of CUNY to 
Peter Payack, a small press 
poet. In all, over 170 authors are represented in over 200 
individual articles, learning activities, games, reviews and stories. 

This 328 -page book has 108 pages of articles on computers in 
education, CAI, programming, and the computer impact on 
society; 10 pages of fiction and poetry including a fascinating 
story by Isaac Asimov about all the computers on earth linking up 
after a nuclear war to support the few remaining survivors; 15 
pages of "Foolishness" including a cute cartoon piece - 
called"Why We're Losing Our War Against Computers "; 26 pages 
on "People, Places, and Things" including the popular feature 
"The Compleat Computer Catalogue" which gives capsule 
reviews and lists sources for all kinds of computer -related 
goodies; 79 pages of learning activities, problems and puzzles; 29 
pages continuing 18 computer games including a fantastic 
extended version of the single most popular computer game - 
Super Star Trek; and 32 pages of in -depth book and game reviews 
including Steve Gray's definitive review of 34 books on the Basic 
language. 

The Best of Creative Computing - Volume 1 is available by mail 
for $8.95 plus 750 postage from Creative Computing Press, Attn: 
Becky P.O. Box 789 -M, Morristown, N.J. 07960. 

The Best of - .. 

creative 
contputiR f 
Volume 1 Edited by David H. AM 

ARTIST AND COMPUTER is a unique new art book that 
covers a multitude of computer uses and the very latest 
techniques. In its pages. 35 artists who work with computers 

a 
explain how the computer can be 
programmed either to actualize the 
artist's concept (such as the 
visualization of fabric before it is wo- 

ven) or to produce finished pieces. Illustrated 
Elwith more than 160 examples of computer art. 9 D of them in full color. ARTIST AND COMPUTER 
will fascinate and inspire anyone who is in- 

terested in art c 
Size puter technology. Size 

81 / "11 ". 

Edited by RUTH LEAVITT 
Paper 54.95. cloth $10: now at selected bookstores, or send payment plus 
75C handling to Creative Computing, P.O. Box 789 -M, Morristown, N.J. 
07960. N.J. residents add 5% sales tax. 

THE BEST OF BYTE - VOL. 1 

The Best of Byte - Volume 1 is a 384 -page blockbuster of a book 
which contains the majority of material from the first 12 issues of 
Byte magazine. 146 pages are devoted to "Hardware" and are 
cram full of how -to articles on everything from TV displays to 
joysticks to cassette interfaces. The section on computer kits 
describes building 7 major kits. But hardware without software 
might as well be a boat anchor, so there are 125 pages of 
"Software and Applications" ranging from on -line debuggers to 
games to a complete small business accounting system. A 
section on "Theory" examines the how and why behind the 
circuits and programs, and a final section "Opinion" looks at 
where this explosive new hobby is heading. 

The Best of Byte - Volume 1 is edited by Carl Hel mers and David 
Ahl and published by Creative Computing Press. Price in the US 
is $11.95 plus $1.00 shipping and handling ($12.95 total); foreign 
orders add $1.00 ($13.95 total). Orders from individuals must be 
prepaid. Creative Computing Press, Attn: Becky , P.O. Box 789 - 
M, Morristown, NJ 07960. Allow 8 weeks for delivery. 

o 

o 

101 BASIC Computer Games is the most popular 
book of computer games in the world. Every pro- 
gram in the book has been thoroughly tested and 
appears with a complete listing, sample run, and de- 
scriptive write -up. All you need add is a BASIC - 
speaking computer and you're set to go. 

101 BASIC Computer Games. Edited by David H. 
Ahl. 248 pages. 8'hx11 paperbound. $7.50 plus 75i 
postage and handling ($8.25 total) from Creative 
Computing, P.O. Box 789 -M, Morristown, NJ 07960. 



THE BEST OF 

creative 
corripu1iRg 
VOL. Z EDITED BY DAVID MIL 

1N 

This fascinating 336 -page book contains the best of the 
articles, fiction, foolishness, puzzles, programs, games, and 
reviews from Volume 2 issues of Creative Computing magazine. 
The contents are enormously diverse with something for 
everyone. Fifteen new computer games are described with 
complete listings and sample runs for each; 67 pages are devoted 
to puzzles, problems, programs, and things to actually do. 
Frederik Pohl drops in for a visit along with 10 other super 
storytellers. And much more! The staggering diversity of the book 
can really only be grasped by examining the contents, or better 
yet, the book itself. 

Price is $8.95 plus $0.75 shipping and handling in the USA 
($9.70 total); outside USA, add $1.00 ($10.70 total). Individual 
orders must be prepaid. Creative Computing Press, Attn: Becky 
P.O. Box 789 -M, Morristown, NJ 07960. 

sr, fr° Hundreds 
ts- and hundreds of 

cartoons about computers, 
robots, calculators, Al, and much more. 

THE COLOSSAL COMPUTER 
CARTOON BOOK 

128 big pages! Paperbound. Only $4.95 
plus 750 postage ($5.70 total). 

Creative Computing, Attn: Becky 
Box 789 -M, Morristown, 

NJ 07960 

:QQOC 

20( 

Outrageous T Shirts: 
creative 

competing 

Einstein in black, white Scarlet design, 
shirt, scarlet sleeve and orange shirt. 
collar trim. 

T- Shirts a- 
vailable in 
adult sizes S, 
M, L, XL. All 
cotton, made 
in USA. $4.50 
each post- 
paid in USA, 
$5.50 to for- 
eign ad- 
dresses. Send 
order (speci- 
fying design 
and size) with payments to 
Creative Computing. P.O. 
Box 789 -M, Morristown, 
NJ 07960. Allow 8 weeks 
for delivery. 

Black design, 
light green shirt. 

t Ha 01G O 
TAKE A 

COMPUTER 
TO LUNCH 

Hot pink design, 
yellow shirt. 

Enterprise 
in sliver, 

dark blue 
shirt. 

Purple design, powder 
blue shirt. 

OM- 

,.. 

The New Creative Computing Catalogue is cram full of 
goodies you'll want to know about or order. Described are over 
60 books, art prints, posters, T- Shirts, and magazines. Double 
Wow!! Send for one today - FREE! 

Creative Computing Press, Attn: Becky P.O. Box 789 -M, 
Morristown, NJ 07960. 
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101 Basic 
Computer Games 
David H. Ahl. An anthology of games 
and simulations -from Deucey to 
Yahtzee, all in the BASIC language 
Contains a complete listing, sample run, 
plus a descriptive write -up of each game. 
Our most popular book! Large format, 
248 pp. 37.50 [6C] 

What to Do After 
You Hit Return 
Another collection of games and 
simulations -all in BASIC- including 
number guessing games, word games, 
hide- and -seek games, pattern games, 
board games, business and social science 
simulations and science fiction games. 
Large format. 158 pp. 56.95 [8A] 

Fun & Games 
with the Computer 
Ted Sage. "This book is designed as a 
text for a one -semester course in com- 
puter programming using the BASIC 
language. The programs used as il- 
lustrations and exercises are games 
rather than mathematical algorithms, in 
order to make the book appealing and 
accessible to more students. The text is 
well written, with many excellent sample 
programs. Highly recommended." -The 
Mathematics Teacher 351 pp. 66.95 [8B] 

Game Playing 
With the Computer, 
2nd Ed. 
Donald Spencer. Over 70 games. puzzles. 
and mathematical recreations for the 
computer. Over 25 games in BASIC and 
FORTRAN are included complete with 
descriptions. flowcharts, and output. 
Also includes a fascinating account of the 
history of game- playing machines, right 
up to today's computer war games. Lots 
of "how -to" information for applying 
mathematical concepts to writing your 
own games. 320 pp. 1976 $14.95 [8S] 

BYTE Magazine 
If you are considering a personal com- 
puting system now or later, BYTE 
provides a wealth of information on how 
to get started at an affordable price. 
Covers theory of computers. practical 
applications, and of course, lots of how - 
to build it. Monthly. I -Year sub'n512.00 
[2A], 3 -Years $30.00 [2B] 

Games & Puzzles 
Magazine 
The only magazine in the world devoted 
to games and puzzles of every kind - 
mathematical, problematical, 
crosswords, chess. gomoko, checkers, 
backgammon. wargames. card games, 
board games, reviews. competitions. and 
more. Monthly. I -Year sub nS12.00[3A] 

Games With The 
Pocket Calculator 
Sivasailam Thiagarajan and Harold 
Stolovitch. A big step beyond tricks and 
puzzles with the hand calculator, the two 
dozen games of chance and strategy in 
this clever new book involve two or more 
players in conflict and competition. A 
single inexpensive four- banger is all you 
need to play. Large format. 50 pp. 52.00 
[8H] 

Games, Tricks and 
Puzzles For A Hand 
Calculator 
Walk Judd. This book is a necessity for 
anyone who owns or intends to buy a 
hand calculator, from the most 
sophisticated (the H P65, for example) to 
the basic "four banger." I 10 pp. 52.95 
[8D] 

So you've got a 
personal computer. 

Now what? 
Creative Computing Magazine 
So you've got your own computer. Now what? Creative Computing is chock full 
of answers - new computer games with complete listings every issùe, TV color 
graphics, simulations, educational programs, how to catalog your LPs on 
computer, etc. Also computer stories by Asimov, Pohl. and others; loads of 
challenging problems and puzzles; in -depth equipment reports on kits. terminals, 
and calculators; reviews of programming and hobbyist books; outrageous 
cartoons and much more. Creative Computing is the software and applications 
magazine of personal and educational computing. Bi- monthly. 
I-year sub'n $8.00 [IA]. 3- years S21.00 [ 1 B]. sample copy $ 1.50 [ I C] 

The Best of Creative 
Computing - Vol. 1 
David AM, esL Staggering diversity of 
articles and fiction (Isaac Asimov, etc.), 
computer urnes (18 new ones with 
complete listings), vivid graphics, IS, 
pages of `foolishness," and comprehen- 
sive reviews of over 100 books. The book 
consists of material which originally 

in the first 6 issues of Crean 
Comparing (1975), all of which are now 

out of print. 324 pp. S8,95 [6A] 

Computer Lib/ 
Dream Machine 
Ted Nelson. This book is devoted to the 
premise that everybody should under- 
stand computers. In a blithe manner the 
author covers interactive systems. ter- 
minals, computer languages, data struc- 
tures, binary patterns, computer 
architecture. mini -computers, big com- 
puters. microprocessors, simulation, 
military uses of computers, computer 
companies, and much, much more. 
Whole earth catalog style and size. A 
doozy! 127 pp. 57.00 [8P] 

Computer Power and 
Human Reason 
Joseph Weizenbaum. In this major new 
book. a distinguished computer scientist 
sounds the warning against the 
dangerous tendency to view computers 
and humans as merely two different 
kinds of "thinking machines." Weizen- 
baum explains exactly how the computer 
works and how it is being wrongly 
substituted for human choices. 300 pp. 
$9.95 [8R] 

Problems For 
Computer Solution 
Gruenberger & Jq(frai. A collection of 
92 problems in engineering, business, 
social science and mathematics. The 
problems are presented in depth and 
cover a wide range of difficulty. Oriented 
to Fortran but good for any language. A 
classic. 401 pp. 58.95 [7A] 

Problem Solving With 
The Computer 
Ted Sage. This text is designed to be used 
in a one -semester course in computer 
programming. It teaches BASIC in the 
context of the traditional high school 
mathematics curriculum. There are 40 
carefully graded problems dealing with 
many of the more familiar topics of 
algebra and geometry. Probably the 
most widely adopted computer text. 244 
pp. 56.95 [8J] 

A Simplified Guide to 
Fortran Programming 
Daniel McCracken. A thorough first text 
in Fortran. Covers all basic statements 
and quickly gets into case studies ranging 
from simple (printing columns) to 
challenging (craps games simulation). 
278 pp. $8.75 [7F] 

Understanding Solid 
State Electronics 
An excellent tutorial introduction to 
transistor and diode circuitry. Used at 
the TI Learning Center, this book was 
written for the person who needs to 
understand electronics but can't devote 
years to the study. 242 pp. $2.95 [9A] 

A Guided Tour of 
Computer Programming 
In Basic 
Tom Dwyer and Michael Kaufman. 
"This is a fine book, mainly for young 
people. but of value for everyone, full of 
detail, many examples (including 
programs for hotel and airline reser- 
vations systems, and payroll), with much 
thought having been given to the use of 
graphics in teaching. This is the best of 
the introductory texts on BASIC." - 
Creative Computing Large format. 156 
pp. 54.40 [81] 

BASIC Programming 
2nd Ed 
Kemeny and Kunz "A simple gradual 
introduction to computer programming 
and time- sharing systems. T'Ire best text 
on BASIC on almost all counts. Rating A- Creative Computing. 130 pp. $8.50 
í7E1 

Artist and Computer 
Ruth Leavitt, ecL Presents personal 
statements o05 internationally -known 
computer artists coupled with over 160 
plates in full color and black & white. , 

Covers video art, optical phenomena, 
mathematical structures, sculpture, 
weaving, and more. 132 pp: $4.95 [6D] 
Cloth cover S10.95 [6E] 

Computer Science: 
A First Course (2nd Ed.) 
Forsythe. Keenan, Organic ),, and 
Srenherg. A new, improved edition of 
this comprehensive survey of the basic 
components of computer science. There 
has been an updating of important areas 
such as Programming, Structured 
Programming, Problem Solving, and 
other Computer Science Concepts. The 
quantity of exercises and problems has 
been increased. 876 pp.516.95 [7D] 

Mr. Spock Poster 
Dramatic, large (17" x 23 ") computer 
image of Mr. Spock on heavy poster 
stock. Uses two levels of overprinting. 
Comes in strong mailing tube. $1.50[5B] 

Build Your Own 
Working Robot 
David Heiserman. Complete plans, 
schematics and logic circuits for building 
a robot. Not a project for novices, this 
robot is a sophisticated experiment in 
cybernetics. You build him in phases and 
watch his capabilities increase and his 
personality develop. Phase 1 is leash led, 
Phase II has a basic brain, while Phase 
Ill responds and makes decisions. 238 
pp. 1976 S5.95 [9M] 

Computers and 
Society 
R. Hamming. Provides a framework for 
thinking about and drawing conclusions 
about how machines should be used in 
our society. Presents, in a non -technical 
way, the principles of computer 
operations, pro amming and use, 288 
pp. 1972 S7.95 [8T] 

Problem Solving: The 
Computer Approach 
La Faye. Milbrandt, and Garth. 
Describes the process of thinking 
through the steps needed to solve a 
problem, flowcharting the steps, coding 
in a computer language, development of 
appropriate test data. and manual 
checking. 176 pp. 1973 SI0.40 [8U] 

Microprocessors 
A collection of articles from Electronics 
magazine. The book is in three parts: 
device technology; designing with 
microprocessors; and applications. 160 
pp. 1975 SI3.50 [9J] 

Microprocessors: Tech- 
nology, Architecture 
and Applications 
Daniel R. McGlynn. This introduction 
to the microprocessor defines and 
describes the related computer structures 
and electronic semi -conductor processes. 
Treats both hardware- and software, 
giving an overview of commercially 
available microprocessors, and helps the 
user to determine the best one for 
him her. 240 pp. $12.00 [7C] 

The Art of Computer 
Programming 
Donald Knuth. The purpose of this series 
is to provide a unified, readable, and 
theoretically sound summary of the 
present knowledge concerning computer 
programming techniques, together with 
their historical development. For the' 
sake of clarity, many carefully checked 
computer procedures are expressed both 
in formal and informal language. A 
classic series. Vol. I: Fundamental 
Algorithms, 6)4 pp. 520.95 [7R]. Vol. 2: 
Seminumerical Algorithms, 624 pp. 
$20.95 (7S]. Vol. 3: Sorting and 
Searching, 722 pp. $20.95 [77]. 

ALGOL by Problems 
B. Meek. A set of programming exer- 
cises, both abstract and concrete, to give 
the reader a thorough working 
knowledge of ALGOL. Good compan- 
ion to vendor's language manual. 168 pp. 
1972 $8.95 [8V] 

Computer Algorithms 
and Flowcharting 
G. Silver and J. Silver. A straightforward 
approach to analyzing problems and 
structuring solutions suitable for the 
computer. Branching. counters, loops. 
and other important concepts are 
presented in easily- grasped modular 
units in the text. 176 pp. 1975 S6.95 [8W] 

Creative Computing 
Catalogue 
Zany 12 -page tabloid newspaper! 
catalog lists books, magazines, an prints. 
and T- Shins. A conversation piece even 
if you don't order anything. Free. [5A] 
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The Small Systems Journal 

Isn't i f time .. . 

you had your own personal computer? 

Read FUI , the leading consumer publication covering the fantastic new field of per- 
sonal computer applications. Today, large scale integration has made it possible for 
the individual to enjoy the unique benefits of a general purpose computing system. 
Now, an entire micro industry markets microcomputer related items, products that 
range from computer system kits to peripherals, software and literature on the sub- 
ject. But where should you go for all the details about your personal involvement in 

computer technology? 

Read EVIE , the Small Systems Journal devoted exclusively to microcomputer 
systems. Every issue a monthly compendium of lively articles by professionals, corn - 

puter scientists, and serious amateurs. 

Detailed hardware and software design articles authored by individuals who are 
experimenting in the field. 
Tutorial background articles on hardware, software and applications ideas for the 
home computer and general topics of computer science. 
Reviews of processors as candidates for small general purpose systems. 
An editorial bias toward the fun of using and applying computers toward personally 
interesting problems such as electronic music, video games, control of systems for 
hobbies from ham radio to model railroading, uses of computers from burglar 
alarms to private information systems. 
Advertisements of the firms who bring you products to help expedite your personal 
computing activities. 
Information on clubs, newsletters and other social activities of the individuals 
engaged in personal computing. 

Don't miss a single FM .Order your subscription today by filling in this coupon or 
phone your request directly - call 617/646 -4329 and ask for your subscription. 

Read your first copy of BYTE, if its IFNIMENSENIMIMINEMMINIMMENEM_____MIll 
everything 

isn't, 
expected, 

write 
'Cr our in- BYTE Subscriptions Dept. 50Z 

voice. 11 it isn °t, just write 'CANCEL' 
across invoice and mail it back. You Box 361 Please ante /my subscription' 
won't be billed and the first issue is Arlington, Mass. 02174 to BYTf, .. ' 
yours. 

o $ 
Bill 

Year D $22 Two Years D $30 Three Years 

Allow6to8 weeks for Processing. L. Bill me Ci Check Enclosed ' D Bill BankAmericard D Bill Master Charge 

Credit Card Number D O CI D O CI CJ CJ C] CJ C] U C1 CJ 

ICredit Card Expiration Date 

Name (Please Print) 
Address 
City State Zip 
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When you get your home or 
office computer, will you 
know what to do with it? 

The typical home or small business computer system starts 
with a microcomputer, keyboard, cassette recorder, and TV set. 
From there you can add the peripherals, sensors, controllers, 
and other devices you need for your own special applications. 

keyboard 

Cassette 
Recorder 

Floppy Disc 

Color TV Set 

IInput Sensors 

Microcomputer 

Music, Speech 
Synthesis 

Printer 

Health Care 
1.Medical /dental record keeping 
2. Insurance claim processing 
3. Health maintenance instrumentation control (EKG, blood 

chemical analysis, diet analysis, self- diagnosis) 
Education and Training 

1. Mathematics drill and practice 
2. Problem solving techniques 
3. Tutorial instruction in a given field 
4. Simulation and gaming 
5. Music instruction and training 
6. Music composition and synthesis 
7. Learning to program 
8. Software development 
9. Perception /response /manipulation skills improvement 

Recreation and Leisure 

Joysticks 
1. Games, games, games 
2. Puzzle solving 
3.Animation /kinetic art 
4. Sports simulations 
5.Needlepoint /stitchery /weaving pattern generation 

Output 
Control Lines 

Creative Computing Magazine is dedicated to describing 
applications for home, school, and small business computers 
completely and pragmatically in non -technical language. You 
won't need a Ph.D in Computer Science, or a technical reference 
library, or a computer technician beside you to get these 
applications up and running. We give you complete hardware and 
software details. Typically, applications utilize commercially 
available systems. However, if an application needs a piece of 
home -brew hardware, we tell you how to build it. Or if it requires a 
combination of high -level and machine language code, we give 
you the entire listings along with the flowcharts and algorithms. 

We also run no- nonsense reviews of computers (assembled 
and kits), peripherals, terminals, software, and books. We're frank 
and honest, even if it costs us an advertiser, which it occasionally 
has. 

Here are just some of the applications you'll see fully described 
in future issues of Creative Computing. 

Building Management and Cbntrol 
1.Alarm monitoring /police notification 
2. Environmental control (heating, air conditioning, humidifica- 

tion, dehumidification, air purity, etc.) 
3. Fire and smoke detection 
4.Appliance control (microwave oven, gas oven, refrigerator) 
5. Perimeter system control (sprinklers, outdoor lights, gates) 
6. Solar and /or auxiliary energy source control 
7.Watering system control based on soil moisture 
8. Fuel economizing systems 
9. Maintenance alert system for household devices (key 

component sensing and periodic preventative maintenance) 

Household Management 
1.Address /telephone file 
2. Investment analysis 
3. Loan /annuity /interest calculations and analysis 
4. Checkbook maintenance 
5. Periodic comparisons of expenditures vs. budget 
6. Monitor time and cost of telephone calls 
7.Record incoming telephone calls and select appropriate 

response to caller 
8. Recipe file 
9. Diet /nutrition analysis 

10. Menu planning 
11. Pantry inventory /shopping list 
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6. Computer art 
7. Library cataloging (books, records, etc.) 
8. Collection catalog /inventory /value (coins, stamps, shells, 

antique auto parts, comics, etc.) 
9. Model railroad control 

10.Amateur radio station control 
11. Astronomy; star, planet, satellite tracking 
12. Robotics 
13. Speech recognition and synthesis 

Business Functions 
1. Small business accounting 
2. Word processing /text editing 
3. Customer files 
4. Software development 
5. Operations research 
6. Scientific research 
7. Computer conferencing 
8. Telephone monitoring 
9. Engineering calculations 

10. Statistical analysis 
11. Survey tabulation 
12. Inventory control 
13. Mailing lists 
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SUBSCRIPTION ORDER FORM 
Type Term 
Individual 1 -Year 

3 -Year 
Lifetime 

Institutional 1 -Year 
3 -Year 

o New Renewal 

USA 
o s 8 

Foreign 
£ to 

21 27 
300 400 

15 15 
o 40 40 

o Cash. check, or M.O. enclosed 

BankAmericard Card No _. 

o Master Charge Expiration date 

o Please bill me (S1 00 billing fee will be added) 

Name 

Address 

City State _ Zip 

Send to Creative Computing, Attn: Becky 
P 0 Box 789 -M, Morristown, NJ 07960 tw MOM 
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