

The Best of Byte
Volume 7

Creative Computing Press

Edited by
David H. Ahl

and
Carl T. Helrners, Jr.

iii

Morristown, New Jersey

OTHER BOOKS FROM
CREATIVE COMPUTING PRESS

The Best of Creative Computing - Volumes 1 and 2
101 BASIC Computer Games
Artist and Computer
The Colossal Computer Cartoon Book
Amazing, Thrilling, Fantastic Computer Stories

THE EDITORS

David H. Ahl is the Founder of Creative Computing
Magazine and Creative Computing Press. He was
one of the early proponents of computers in
education and has written numerous books and
articles on the subject. He has also been associated
with AT &T, Digital Equipment Corp., and Manage-
ment Science Associates.

Carl T. Helmers, Jr. is and has been Editor of Byte
Magazine since its founding in mid 1975. Prior to
that he published ECS Magazine, a brew"
hobbyist computer magazine. He is a well- rounded
expert in all aspects of hobbyist computers -
hardware, software, and applications.

First Printing - March 1977

ISBN 0- 916688 -04 -6
Library of Congress Catalog Card Number: 77 -71270
Printed in the United States of America
Copyright ® 1977 by Creative Computing (Portions previously

copyright ® 1975, 1976 by Byte Publications, Inc.)
All rights reserved.

iv

Woe

604 &v.rd

Preface
On a recent Saturday I invited a group of some

twenty associates and friends to my house to discuss
the future direction of hobbyist computing (Naturally,
my objective was to determine how Creative Com-
puting magazine and press should be positioned in
the market). These people represented a diverse
spectrum of the hobbyist computer movement -
people from a major manufacturer which 18 months
before consisted of two people in a basement
workshop, representatives from a large 500 -member
computer club that two years earlier did not even
exist, a department chairman from an Ivy League
University which had just graduated their first group
of Computer Education majors, a salesman from a
retail computer store which had just moved for the
second time in six monthsto larger quarters, hobbyists
from virtually every walk of life, and, of course, people
from the publishing side of things.

What becomes quickly apparent is that the hob-
byists who jumped in two years ago, or one year ago,
or even six months ago are much further along than
people entering today. Nevertheless, vast hordes of
people continue to enter the hobby daily. Thus the
magazines in the field are caught between a rock and
a hard place - should a magazine progress along and
continue to present challenging material to its earlier
and technically more sophisticated subscribers? Or
should it endeavor to bring the newcomer up to speed
with primer -type material and risk losing its more
knowledgeable readers? The magazine that attempts
to do both is a bit like the boy in the Charles Addams
cartoon who is sliding down a bannister that at the
bottom of the stairs turns into a razor blade.

One solution to this dilemma is to offer back issues
to later subscribers so they can get a quick cram
course of what transpired before they subscribed.
Better yet is a book, like this one, of the best material
from previous issues of the magazine.

For those readers who don't knowByte magazine, it
was one of the earliest entries in the hobby computer
field. Some early issues carried the notation on the
cover: "Computers - The World's Greatest Toy ".

However, before long it became apparent that
hobbyists look at their computers as much more than
just a toy; Byte is now dubbed "The Small Systems
Journal" which better reflects the comprehensive
scope of home computerists.

Under the direction of Editor Carl Helmers and
Publisher Virginia Peschke, Byte not only reflects and
responds to the enormous diversity of computer
hobbyists, but sets the pace in innovation and new
development. Naturally most hobbyist's first concern
is getting a system built and running -the sections on
"Computer Kits" and "Hardware" address this need.
However, without software a computer might as well
be a boat anchor, hence there is an equally large
section on "Software." The questions of what's
coming, how does it work, and what do you do with it
are covered in the sections on "Opinion ", "Theory",
and "Applications ".

Volume 1 of Byte magazine includes sixteen issues
from the charter issue in September 1975 through
December 1976. This book includes material from the
first twelve issues. (Does this mean there will be a
Volume 1.5? Quite probably.)

It's an impressive collection. Although I was a
charter subscriber to Byte there were many articles I

didn't read until I put them together in this volume. I

couldn't help but be awed with how far hobbyist
computing progressed in one short year. One can only
wonder what the future holds in store. In my mind
computers are truly different from any other hobby.
First of all, they are not an end in themselves but
rather a tool for accomplishing literally thousands of
things. Second, computers are an intellectual tool,
not simply a hammer or a lathe however useful they
might be, but a fascinating, powerful, creative, mind -
expanding, tool. The cliche is that "the sky is the
limit ", but I look beyond that. The cybernetic
revolution has begun.

March, 1977 David H. Ahl
Morristown, New Jersey

v

WA

Table of Contents
OPINION

The Shadow, Buck Rogers, and the Home Computer -
Gardner

The State of the Art - Helmers
Could a Computer Take Over - Rush

THEORY AND TECHNOLOGY
A Systems Approach to a Personal

Microprocessor - Suding
Frankenstein Emulation - Murray
Programming for the beginner - Herman
What is a Character - Peshka
Friends, Humans, and Countryrobots:

Lend me your Ears - Rice
Magnetic Recording for Computers - Manly

COMPUTER KITS
Assembling an Altair 8800 - Zarrella
Build a 6800 System With This Kit - Kay
More on the SWTPC 6800 System - Kay
The New Altair 680 - Vice
A Date With KIM - Simpson
True Confessions: How I Relate to KIM - Gupta
Zilog Z80 - Hashizume
The Digital Equipment LSI -11 - Baker
Cromemco TV Dazzler

HARDWARE
Flip Flops Exposed - Browning
Recycling Used ICs - Mikkelsen
Powerless IC Test Clip - Errico and Baker
Parallel Output Interfaces in Memory

Address Space - Helmers
Son of Motorola - Fylstra
Data Paths - Liming
Build a TTL Pulse Catcher - Walde
Dressing Up Front Panels - Walters
Deciphering Mystery Keyboards - Helmers
A Quick Test of Keyboards - Walters
Keyboard Modification - Macomber
Serialize Those Bits From Your

Mystery Keyboard - Halber
Build a Television Display - Gantt
The "Ignorance Is Bliss" Television Drive

Circuit - Barbier
Build a TV Readout Device for Your

Microprocessor - Suding

2

5
8

14

17
22
27
36

44

56
59
64
68
72
76
81
86
94

98
102
104
106

110
117
124
125
126
134
135
136

138
144

Let There Be Light Pens - Loomis
Build an Oscilloscope Graphics Interface - Hogenson
An Introduction to Addressing Methods - Zarrella
Interface an ASCII Keyboard to a 60mA

TTY Loop - Cotton
Interfacing the 60 mA Current Loop - King 175
The Complete Tape Cassette Interface - Hemenway 177
Digital Data on Cassette Recorders - Mauch 184
Build a Fast Cassette Interface - Suding 190
Technology Update 197
What's In a Video Display Terminal? - Walters 198
Pot Position Digitizing Idea - Schulein 199
Read Only Memories in Microcomputer Memory 200

Address Space - Eichbauer
More Information on PROMs - Smith
Getting Input from Joysticks and Slide Pots - Helmers
Logic Probes - Hardware Bug Chasers - Burr
Controlling External Devices With Hobbyist

Computers - Bosen
Microprocessor Based Analog /Digital Conversion - 222

Frank
Add a Kluge Harp to Your Computer - Helmers 226
The Time Has Come to Talk - Atmar 231
Make Your Own Printed Circuits - Hogenson 238

153
158
169
174

203
210
213
218

SOFTWARE
Write Your Own Assembler - Fylstra
Simplify Your Homemade Assembler - Jewell
Interact With an ELM - Gable
Design an On Line Debugger - Wier and Brown
Processing Algebraic Expressions - Maurer
The "My Dear Aunt Sally Algorithm" - Grappel
Can YOUR Computer Tell Time? - Hogenson
A Plot Is Incomplete Without Characters - Lerseth
Hexpawn: A Beginning Project in Artificial

Intelligence - Wier
Shooting Stars - Nico
Biorythm for Computers - Fox
Life Line - Helmers

APPLICATIONS
Total Kitchen Information System - Lau
A Small Business Accounting System - Lehman
Chips Found Floating Down Silicon Slough - Trumbull

145 Books of Interest
Magazines

vii

RESOURCES

246
255
261
268
275
286
294
300
309

314
322
326

360
364
369

372
375

Opinion

The Shadow,
Buck Rogers,

and the
Home Computer

by
Richard Gardner
Box 134
Harvard Square
Cambridge MA 02139

A computer at home? Ask many present day computer
systems people what they'd do with a home computer and
you'll get the old silent treatment in return. But all that
indicates is a lack of imagination. A large part of the BYTE
philosophy is the discovery of applications areas through the
imaginations and practical results of readers. Richard Gardner
supplies us with a "Gee Whiz" article on potential applications
areas to get things in motion a bit. Richard has extensive
computer applications experience including one stint working
for the Children's Museum in Boston, creating interactive
computer oriented exhibits. Eventually, many of the systems
ideas Richard mentions in his article will appear as practical
plans and programs in the pages of BYTE - as developed and
described by our readers. If you'd like an interactive meeting
of the minds on possible uses and ideas, Richard invites
correspondence from readers. ... CARL

Y:4}:VITN

Ah yes! It conjures up

visions of an earlier day,
many years ago, when Mom,
Pop and the kids sat around
that newfangled gadget, the
radio, and listened to "The
Shadow" and "Buck Rogers."

Flash forward to the
future, right now! Again, we
see Mom, Pop and the kids
sitting around that new-
fangled gadget, the computer,
balancing a checkbook,
converting a four servings
recipe to seven, and playing
tic -tac -toe. Not very exciting
things to do with a computer,
you say? Well, you're right.
But let's see if we can do
something to make it at least
as exciting as old -time radio.

We mentioned three
applications for a home
computer:

1) checkbook balancing
2) recipe converting
3) game playing
For starters Mom and Pop

should have a program for
collecting and summarizing
all their financial data, on a

daily, monthly and yearly
(for your "friend" and mine,
the IRS) basis. A family will
be more secure by knowing
the state of its financial
affairs. You will want to

.

I ARTHUR'S
INFORMATION PARIOY

H 161 OIIALITY
iNFOA11AT10N LINKS

AT
REASONAdIE FAKES

2

compute interest for different
purchase plans, and balance
the checkbook.

Moving on to a subject
close to my heart (just below,
and a little to the right) -
food. Almost anyone can
convert 4 to 7 servings - just
double it and feed the
leftovers to the dog, or give it
to a charitable organization
(tax deductible, of course).
What you really want to
know is whether everyone got
enough nutrients (vitamins,
minerals, protein, etc.) from
what they ate today. Hint: it
can be done. I know of two
people who started a small
company to do it.

On to fun and games -
hundreds of game playing
programs have been written (I

invented one called
YOUGUESS) for all sorts of
computers and languages.
You should have them all. It
will win friends and influence
neighbors, if you'll pardon
the pun.

I'd say that's at least as

exciting as old -time radio.
Good, but we can do much
better. Let's consider three
things:

1) Today's computers are

very fast. The applications
we've mentioned might take
one hour of CPU time per
day, at the very most. So
what do we do with the other
23+ hours?

2) There are lots of
computers in the world, and
they can talk to each other.

3) Computers can hear,
see, feel, smell and touch.

Keep these things in mind
as we consider what might be

called economic, personal and
educational applications for
the home computer.

Computerizing the Home

Since your computer
won't be doing anything most
of the day why not put it to
work:

1) Heating and air
conditioning control.
Optimize increases and
decreases in the inside
temperature to minimize

energy use. Open and close
curtains on windows to use

the sun's energy or keep it
out.

2) Security. While you're
at home or away, monitor the
opening and closing of
windows and doors.
Automatically telephone the
police with a recorded
message when you're gone or
at home. Monitor the use of
your swimming pool - sound
an alarm when the pool is in
use and nobody's in the
ifeguard seat. Fire

monitoring equipment can be

located in many places and
sound an alarm long before
you might smell or see

Using a Symbol Table to
Improve the Food Table

Most people in America
have a poor diet in spite of
the fact that we have more
food of a better quality and
variety than any other
country. So I consider the
following to be important
uses for a home computer:

1) Selection of foods on a

seasonal basis to reduce cost
and improve quality. A
program for doing this would
run for a year and use a data
base for your area (to take
advantage of local produce).
A second data base would be

programmed for widely

smoke. The fire department
can be called automatically
with another recorded
message.

These applications will
make use of photocells,
theramins (motion sensing

devices), heat sensors, contact
switches, smelling devices
(like those used by the
Defense Department in
Vietnam to smell passing
elephants and tigers). Eight
bits might be used to
represent a temperature range
of 256 degrees. 100 degrees
would be adequate for most
locations. One analog to
digital converter could be

used for other analog inputs,
such as from a photocell. A
digital to analog converter
would generate voltages to be

used by motors and other
mechanisms.

available foods and when
they are best and cheapest.

2) A menu building
program to take advantage of
the above system but with
the intention of increasing
variety and maximizing
nutrition.

3) A shopping guide to
take advantage of local food
supplies by indicating the
best one or two markets from
which to purchase your food.
This data base might be

maintained by some person in
your locality - and then
rented on a per use basis. No
sense in everyone typing in
today's price for cumquats.
Perhaps the New York Times
will eventually computerize
its cookbook, plus thousands
of other recipes, and allow
the public to access this data
base via a personal computer.

3

Since your computer won't
be doing anything most of
the day ...

This application, like others
mentioned, would use the
telephone system - the
world's largest computer.
can see it now. The kids get
home from school and ask,
"What's for dinner, Ma Bell ?"

The Bottom Line Isn't
Always an End Statement

Or, how to profit from
your home computer:

1) Income management, as

previously mentioned, but
with the help of another
computer. Several computer
companies that do nothing
but figure taxes (for you
know who!) already exist.
Eventually they will allow
your computer to call their
computer. Your computer
shovels in a year's data and
out pops a tax form with all
the right numbers. You might
think it easier to do your own
programming, but remember
that you can't write every
program you will want to use.

In addition, these companies
have staffs that do nothing
but make program
improvements and changes
required by the IRS. What
person in his or her right
mind could possibly keep
track of a myriad of new
rules from the IRS?

2) Play the ponies or the
puppies? An obvious use for
your computer. Again, use a

data base compiled by some
local eager beaver. Perhaps
you'd be charged a small fee

for accessing the day's
statistics. Perhaps you have a

data base or program to
trade.

3) Then there's always the
world's biggest daily crap

game - the stock market. A
company in Philadelphia will
charge you $300 a year for a

small numeric terminal and
24 hour a day access to their
stock data base. You key in
the number of a stock and
out pops the high, low,
average, etc. Your computer
could make one call after
each trading day, collect the
stock data you're interested
in, hang up, and then
determine if you should buy,
sell or hold. The decision
making could be done by
your program or one being
rented from a stock market
wizard you know.

4) I mentioned how a
computer could be used to
optimize the purchase of
food. This principle applies to
any commodity whose price

and quality changes during
the year: clothes, home
furnishings, gifts, trans-
portation, even housing.
Some local person, or you,
could create the necessary
commodity and price data
bases, then use or rent them.

Remember! There is a host
of areas for small business
activities using your home
computer as a tool of the
trade. All it takes is

imagination, a bit of digging
into the wants and concerns
of your neightbors, and the
programming of your
computer.

Six Munce Ago I Couldn't
Even Spell Computer
Programmmer .. .

Computers are good for
keeping you in touch with
the world. For example:

1) The New York Times
has a computerized data base
of all its back issues -
currently accessible to the
general public, for a fee. The
cost will probably go down to
the point where you might
program your computer to
query the Times data base
and retrieve front page

4

stories, financial page stories,
or any story that contains a

keyword or some
combination of keywords.
This would be done early in
the morning and read by you
at breakfast time.

2) Your local university or
high school might have a

computer with courses that
can be taken via a remote
terminal. Many universities
already give some courses
using only this method.

3) The Children's Museum
in Boston will eventually
allow you to call their
computer, via a terminal or
computer, and access a data
base of cultural, educational,
and social events in the
Boston area. Your computer
might call theirs once a day
to learn what's new or learn
about a particular type of
event.

Computers As Toys
Computers are probably

the greatest toy ever
ï nvented. Here are some
examples of how you can
play around with yours:

1) It has been rumored
that 50 %, or more, of the
computer time used at MIT is

used to play Space War - the
Grandpa of computer games!
Your computer, a TV set, a

few buttons and switches
and, presto -- Space War! Or
ping -pong, or driving down a

road, flying and landing an
airplane, landing on the
moon, chess, checkers (you
can play these games in
Boston with the Children's
Museum computer).

2) Toys that play with you
- like robots. The Boston
Children's Museum has a

robot that was built for about
$200. Mass production of a

special chip and board will
bring that cost down. Then
the biggest cost will be the
Meccano Set (like an erector
set, only better), which can
be used to build almost any
sort of mechanical device.
How about a robot to do
housework?

3) The ultimate fun,
though, is to write your own
programs to do all these
things! Kids, and adults, will
play only so many games of
tic -tac -toe - then they want
to know how it works. Help
them write their first BASIC
program ... and they're
likely to be hooked for life!
Eventually programming will
include a broader range of
input /out devices such as the
previously mentioned buttons
and switches, photocells,
microphones, etc. This will
lead to the applications just
discussed, and who knows
what?

These are just some of the
possible applications for a

home computer. All of them
might not be reasonable or
practical things to do but
they should set you to
thinking.

As future issues of BYTE
unfold, the Gee Whizzers
applications will lead to
practical articles on the
software and specialized
peripherals needed to
implement some of these
ideas.

Carl Helmers

The State of The Art
If there is one facet of the

small computer field which is

its most exciting, that is

probably its rapid change and
evolution unfolding before all
us users of the technology.
The fact that a magazine such
as BYTE can even exist (let
alone get its enthusiastic
reception) is evidence of the
considerable changes which
have occurred in the home
computer field over the past
year or two. Any attempt
such as this to characterize
the current "state of the art"
is doomed to rapid
obsolescence. Be that as it
may, I won't let that deter
me from characterizing the
field as I see it now.

Just what is this "art" that
I'm talking about? When I

talk about art in this sense, I

mean the body of
technological know -how
available for personal
computing plus the attitudes
and abilities of the people
who use this know -how. An
analogy or two: The state of
the art in a form such as

painting reflects both the
latest developments in the
pigmentation materials field
and the creative talents and
attitudes of the people who
use this technology for

Any attempt to specify
the state of the art in this
field is doomed to
practically instant
obsolescence ...

expressive purposes. The state
of the art in music is a

combination of the
technology of music
production - traditional to
electronic /digital - plus the
aesthetic and creative tastes
of the musicians and
composers who use the
technology. So it is as well
with computing. There is the
technological state of the art
as it exists -a transient thing
at present - together with
the creative uses to which
people such as you or I put
these wonderful technological
devices.

A Recent State of the Art ...
A few years ago, the state

of the art in hardware was
pretty primitive - in other
words, one had to be a really
persevering person to get
something in computing
which worked and cost less

than $1000. To give you an

example, I got a call from
Dick Snyder of Chelmsford,
Mass., shortly after BYTE #1
came out. (See Dick's letter
in the letters column of this
issue.) As a result of our
conversation, I stopped at
Dick's house on the way back
from Peterborough one
weekend in August and took
a look at his pre -
microcomputer home brew
computer, a really beautiful
piece of work. He had
completely designed and built
- in 1972 and 1973 - a

miniature 4 -bit computer
with 256 nybbles of memory
using the Data General
NOVA minicomputer as his
inspiration. He built the
machine using painstakingly
accurate soldering with a

miniature iron, sockets for
over 170 integrated circuits,

5

and a very compact housing.
The most unusual feature of
all was the use of water
cooling to keep his 16
7489 memory chips cool
(said water cooling consisting
of plastic bag baby bottles
filled with water and sealed
with rubber bands). Yet it
works! And - he has built up
quite an impressive array of
software for his one -of -a -kind
machine, including a very
appealing simulation of a

priority- driven real time
operating system with three
tasks in the queue. The entire
program for this simulation is

done in 256 nybbles
(half -bytes) of memory with
the 16 instructions of his
design. The result is an
impressive changing display
of marker patterns in his
front panel lights as the
various tasks swap in and out
of execution. Dick Snyder's
machine is the state of the
art, circa 1972 -1973, to a

large extent - micro-
computers were not yet
widely available to the
general populace of personal
computing hackers. Dick tells
me that he spent about $600
on the parts of his computer
at 1972 prices for SSI and
MSI TTL integrated circuits.

But now, in 1975 after the
first wave of 8008 computer
kit products and the rising
tide of the "first generation"
personal computer systems,
that same $600 can buy a lot
more function. In 1975 we
saw the introduction of the
MITS ALTAI R - which turns
out to be a very good
computer after initial slow
deliveries due to
unanticipated demand - and
a host of new machines such
as Bill Godbout's PACE, the

SWTPC 6800 kit, the MITS
6800 kit and several other
systems.

The Benchmark of a Small
Computer System

In the engineering and
software professions, it is

often common to dream up
"benchmarks" to help in the
evaluation of systems. This
term, benchmark, was
adopted by systems engineers
from its original use in the
field of geodetic surveying. A
geodetic survey benchmark is

a permanent marker set "out
in the field" (literally) at
known locations during the
course of the survey. If you
clamber to the top of Mt.
Chocorua in New Hampshire,
as I sometimes do, when you
get to the top you will find a

little metal plate giving
elevation, longitude and
latitude information. This is

the benchmark for the
mountain's peak. Well, the
benchmarks used for
computer systems are a little
bit less concrete than a metal
plate on a mountaintop, but
serve the same purpose: They
provide a reference point for
comparison.

A common benchmark
which has been used in the
past to evaluate computer
systems (and compilers) is the
"standard set of programs ".
In this method of
benchmarking a system, the
potential user of the system
picks a set of "typical"
applications programs and has
them implemented and
measured in operation on
several different systems. This
is a fairly quantitative and
seemingly accurate method
which is widely practiced in
the information systems

industries. The measurements
made for comparison include
"through -put" (processing
per unit time), high level
language efficiency, memory
requirements, etc. But this
sort of a measure is perhaps a

bit too complicated for the
home computer context. For
one thing, the applications
are known only generally.
Second, this is the type of
study which takes a large
amount of time and access to
various competitive systems.
And, if you read the trade
journals, the results are often
controversial anyway, since
each manufacturer will claim
that the benchmarks he
provides will prove his
machine better than all the
rest. Picking the "ideal" small
computer system still requires
a benchmark, but I suggest it
is not a particular program,
but a capability.

Capability - the Benchmark
of a Small System

We all know that in broad
terms, the benchmark
computer system, as any
computer system, must
include several major
components: a processor,
memory, a mass storage
medium, an interactive
operator's terminal and
systems software. I pick this
list in part to illustrate a

typical computer
configuration and in part to
allow programming of a

benchmark capability:

A small computer system
which meets the benchmark
standard will be able to
interactively edit a mass
storage file of input data
with operator commands,
producing a second mass
storage file as output. This
will be achieved in a system
costing at most $1000
initially.

The system diagram of the
benchmark computer is

shown in Fig. 1, as it is

implemented in the current
state of the art. The

C
P

u

4k to
Bk

RAM

1
APPLICATIONS

SOFTWARE
AND DATA

ROM

1
SYSTEMS

SOFTWARE

2-CHAN
CASSETTE
INTERFACE

RECORDER
#1

KEYBOARD
& DISPLAY

RECORDER
#2

OFF LINE
CASSETTE
LIBRARY

SYSTEM

EXPANSION

Fig. 1. The Complete Low Cost Computer System (circa September 1975). This diagram shows the major
components of a typical low cost computer system - which should total up under $1000 depending upon
manufacturer and details of design. At the time this editorial is written, several kit manufacturers meet this
functional benchmark at prices well under $1000. As time goes on the improvements of mass production
should drop the average price of such systems.

components of the system are
chosen with the editing
function in mind, since
accomplishing such an edit
capability means the machine
can be programmed for
almost any other personal
computing use. Peripherals
that enhance the function are

of course desirable and will
help to personalize your
system, but these functions
represent the bare minimum
without added cost of special
purpose peripherals.

The CPU: Which One?

In Hal Chamberlin's article
in BYTE #1, the relative
merits of three computer
designs were covered. In
BYTE #3, Dan Fylstra covers
a comparison of two
additional designs. There is a

large variety in the types of
CPUs available to home
brewers and kit builders -
ranging from the 8008, 8080,
6800 and 6501 8 -bit micros,
to the 16 -bit IMP and PACE
micros, to commercial
16- bitters such as the LSI -11

6

and NAKED Milli products -
and on into the
never -never -land of custom
designed microcoded MSI
computers implemented by
individuals (and also soon to
be announced in product
form by one manufacturer of
kits). There is a large element
of personal taste involved in
the preference of particular
instruction sets, and there
is also the matter of
efficiency for particular
classes of programs. Whatever
the CPU you use, it is a

definite requirement of the
system. I guarantee you that
any one of the 8 -bit or 16 -bit
microprocessors currently
being packaged and sold as

kits will be adequate to pass
this benchmark test, although
you may have to write the
Editor program yourself.

RAM Memory - How Much?

The CPUs of the
conventional microprocessors - kit or home brew
implementations - create an

output called a "data bus"

Picking your ideal
computer system requires
a benchmark - which
I suggest is not a

particular program but
a capability.

which is used for exchanging
information with everything
else in the system. The data
bus is the "spinal cord" of
the computer's nervous
system. This bus concept
typically includes 16 bits of
buffered address lines and
several bus control
information lines as well as

the 8 or 16 bi- directional
buffered data lines. The
address space of the typical
contemporary micro-
computer's architecture is

usually 16 bits worth or
65,536 possible memory
locations. In the usual system
most of these locations will

Continued on page 88

be unused. In general, as

many of these locations as

you can afford should be
filled up with random access
memory chips, which,
experience has shown, people
are always able to use up in
programs. Sooner or later you
will find yourself limited by
the constraints of small
memory! For the benchmark
system, the minimum random
access memory should be 4k
(4096) 8 -bit bytes or 2k
16 -bit words. A preferable
number is 8k bytes or 4k
16-bit words.

ROM Systems Software?
How do I get my first

programs into memory after
turning on power? The
answer to this question is the
method of "bootstrapping"
or "initial program loading"
(IPL) which is used by a

computer. Early in the
minicomputer game,
technology of computing was
at a state where the principal
bootstrapping method was a

set of front panel switches
which addressed memory
locations and allowed the
programmer to put in short
programs by hand.

With the advent of the
new high density ROM
integrated circuits, it is now
possible to provide the
convenience of an
automatically bootstrapped
system through systems
software which is cast into
the concrete form of an ROM
device.

Many of the kit suppliers I

have talked to are either
currently supplying or
intending to add this ROM
systems software feature.
Initially, the programs which

Experience has shown
that sooner or later you'll
feel constrained by any
size of memory - the
greed of many programmers
for more memory is

unbounded!

are "built -in" tend to be
fairly standard "control
panel" type routines which
use a terminal (Teletype or
television typewriter) for a

set of simple commands.
Later - with inputs from
users regarding desirability -
you can expect to find
prepackaged assemblers and
high level language
compilers /interpreters
occupying major portions of
the address space available in
typical microcomputers. This
will make the systems
software feature even more
versatile.

Keyboard and Displays?

But of course. The
interactive nature of an editor
capability cannot be realized
with a mere control panel.
The same thing goes for most
of the more interesting
applications of the small
computer. You will need a

character- oriented display
device and a typewriter style
input - whether these be a

TV typewriter or an old
Baudot coded Teletype
clunker is up to you. The
typical programs will be
controlled by keyboard
commands and will produce
outputs back to the display.

Cassette Tape Interfaces -
Mass Storage Without Mass
Dollars

Mass storage is a definite
must item for the small
computer system. But
traditional industry
peripherals tend to be
expensive, starting at the low
end with digital cassette
drives and floppy disks at
about $500 -$800, and
working upwards. The
solution is to adopt an audio
recording method which uses
inexpensive ($50) cassette
recorders and appropriate
interfaces. This allows you to
perform the editing
benchmark function while
keeping the total system cost
low. I'll have more to say on
this subject later in this

7

editorial. A minimum of two
such tapes is required for a

decent editor, because one
must be set to "read" old
data, and the second must be
set to "write" new edited
data resulting from your
changes. Three is a more
desirable number still if you
want to do "sort /merge"
applications, but two will
suffice for the editing
benchmark.

Suppose Your Budget is
Limited - Can It be Done in
Stages?

What I have just described
is the minimum necessary
equipment for a fully
functional implementation of
the small computer
benchmark capability,
editing. Modularity rules in
the computer world,
however, so you can easily
start out with less function
and work up to the
benchmark capability in time.
You'll also probably end up
exceeding this benchmark of
hardware /software capability
after a while; modularity does
not stop at this level of
function. The basic place to
start is with a CPU - it'll not
be much more than a blinking
light box without peripherals,
but that's enough to show
that "it works " Then, you
can add on the interactive
keyboard /display of some
sort, along with memory
(presumably the ROM
software came with the CPU).
Finally, you can add on the
tape interfaces and additional
memory in order to arrive at
the full benchmark
capability. From then on,
you can enhancè the system
with new peripherals and
more memory until you end
up with a very capable system
which can run full BASIC, a

decent systems programming
language compiler, and all the
games, practical applications
and amusements you can
dream up for the computer.

Could

a Computer Take Over?

Ed Rush

PO Box 14369
Santa Barbara CA 93107

Just how ridiculous IS the idea of a com-

puter deciding to take over the world and be

its dictator?
Upon hearing this question, most people

who are not computer oriented will laugh

and say "That's only in science fiction
stories." They will be much more likely to
complain about "becoming a number," with
everyone from the grocery store to the gov-

ernment wanting their number instead of
their name.

Those who are more familiar with compu-
ters will laugh off the concept and charge it
to paranoia due to ignorance. "A computer
is little more than a lot of wires conducting
currents here and there," they will say. "Be-
sides, if it-gets uppity you can always pull
the plug."

However, that group of people who are

both computer knowledgeable and fans of
the art form known as science fiction, but
more properly called speculative fiction,
might ask "Can you always pull the plug?

Could a computer really seize the reins of
government? And if so, how ?"

In trying to answer these last questions,
let us first speculate on the capabilities the
computer itself would have to have.

Super Computer
First, the computer system would have to

be extremely powerful (in today's frame of
reference). Considering the fact that compu-
ter technology is already far outstripping
man's capability of harnessing it, a super

computer is not hard to imagine in the not
so distant future; perhaps even today in

some secret government project.

8

While something on the order of 1000

computer circuits can now be stored in a

cubic inch, only one such circuit would fit
that space in 1960 and it took 20 cubic

inches to hold one in 1950. A given number
of programming instructions cost 1000 times

as much in 1955 as in 1970, and probably
10,000 times today's cost, despite inflation.
High speed computers now operate several

thousand times as fast as they did in the

early 1950s. Data storage capabilities are

growing even faster. The capacity of an early

1970s system was a couple of million times

that of 1955, and that is for a common large

installation, not the maximum possible. The

on line storage cost also shows a millionfold
improvement since 1950 (Martin, James and

Norman, Adrian R.D., The Computerized
Society, pp. 9 -14). Who is to say what 1980

will bring?
The next requirement is that this machine

must be able to interact with changes in in-

put from a multitude of input sources at

once, a situation common to today's time
sharing practices.

Such a machine must embody what is

commonly called "artificial intelligence."
That phrase is used hesitantly; since things
which immediately provoke the description
"artificial" are actually just natural materials
rearranged by man. Intelligence is defined
as:

The capacity for knowledge and

understanding, especially as applied to
the handling of novel situations; the
power of handling a novel situation
successfully by adjusting one's behav-

ior to the total situation; the ability to

"The first man to use a machine was the first of our primitive ancestors who picked up

a rock to hurl at some passing animal or to crack open some edible nut. In the million -
plus years since then, our machines have grown much more complex, but even in our
modern era of computers, ... their basic purpose remains the same: to serve man.

"Whether our machines truly serve us is a question much debated by science -fiction
writers and other professional speculative philosophers. Does some essential quality go

out of human life when it becomes too easy? Have our automobiles, telephones, type-
writers and elevators sapped our vigor? Are we speeding into flabby decay because we

have made things too easy for ourselves?
"And as our machines grow more able, when do they cross the boundary that sepa-

rates the living from the unliving? Is it possible that we are building machines that will
make humanity obsolete? Perhaps the day is coming when we ourselves will be rendered

unnecessary, and our sleek successors, creatures of metal and plastic, will inherit the

earth.
"... Many a bitter attack on the encroachments of the machine age has been produced

by a writer using an electric typewriter in an air -conditioned room, innocently unaware of
the inner contradictions involved. We need our machines, but we fear them...." Robert

Silverberg, Introduction to Men and Machines.

apprehend the interrelationships of
presented facts in such a way as to
guide action towards a desired goal.
Psychologists still debate whether in-
telligence is a unitary characteristic of
the individual or a sum of his abilities
to deal with various types of situation.
(Webster's New International Diction-
ary of the English Language, Second

Edition, Unabridged, p. 1291.)
A machine with this capability would be an

intelligence in its own right, not just an elec-

tronic mimic. It might take the form of a

massive, immovable complex, or it might
someday take form as a troop of man sized

robots, or it might be a combination of
these, with the latter as mobile extensions
of the former.

Although Isaac Asimov has written exten-
sively about the possibilities of robotics,
most authors who have seriously considered

a computer takeover have postulated the

immobile complex. There are at least two
good reasons for this assumption: First, such

a machine would most likely be the first to
have massive capabilities, and as such would
most likely be far too big to move about.
Second, it would undoubtedly require very
heavy security as the most advanced piece of
computer hardware in existence; protection
not only from spies, but from vandals, inten-
tional or otherwise. Examples of postulated
massive complexes are HARLIE (Gerrold,
David, When HARLIE Was One), Project 79

(Caidin, Martin, The God Machine) and

Colossus (Jones, D.F., Colossus: The Forbin
Project). The last two are built inside man
made caves in the Rocky Mountains as the

U.S. Air Force's North American Aerospace
Defense Command (NORAD) is today.

Alternatively, if its state of development
is not unique at the time, the system may
simply have no reason to be mobile, as is the

case with the HAL 9000 computer on board
the Discovery in Arthur C. Clarke's 2001: A

Space Odyssey.

Ethics for Computers
Most Americans objecting to a computer

dictator would do so on the basis that it is

immoral for a person to have no say in the
rules governing his life, and specifically for
those rules to come from "cold logic" with-
out the benefit of human sensibilities. True,
the computer would probably have no

morals, since morals are indeed artificial.
Ethics, however, are a different kettle of
fish. A computer could easily be imbued

with a code of ethics, or an intelligent one

might well develop one by and for itself. The
most basic and significant such code of
ethics was developed by Asimov in the early
1940s as "The Three Laws of Robotics" and

has been used by many other authors since.

It says:
1: A robot may not injure a human

being, or, through inaction, allow a

human being to come to harm.
2: A robot must obey the orders

given it by human beings except where

such orders would conflict with the

first law.
3: A robot must protect its own ex-

istence as long as such protection does

not conflict with the First or Second

Law. (Isaac Asimov, /, Robot, p. 6.)

9

Can you always pull the

plug?

The capacity of an early
1970s system was a couple
of million times that of
1955...

How could a finite assort-
ment of nuts and bolts
and wire take absolute
control?

But, given these ethical restrictions, how
could an intelligent computer set onto a

course of world domination and justify it?
The answer to the second part of this ques-
tion lies in another: What constitutes
"harm "? This is an aspect which has
spawned much of Asimov's speculation.

Probably the real crux of the concept,
and certainly the means for preventing (or
causing) it, is in the programming of such a

machine. Asimov and Gerrold are two who
have treated their computers as organisms
rather than just complex machines, each
employing a psychologist to guide or coordi-
nate the programming. Gerrold specifically
considered his HARLIE (Human Analogue
Robot, Life Input Equivalents) in this light,
as a physically mature (and then some) mind
with the emotional maturity of an eight year
old child.

Programming error is one of the more
likely ways to invite a computer takeover.
Colossus was, in its setting, built to provide
an ideal solution to the arms race. In a world
where each side could blow up the other sev-
eral times over, there is fear that, as Bertrand
Russell said, "You may reasonably expect a

man to walk a tightrope safely for 10 min-
utes; it would be unreasonable to expect him
to do so without accident for 200 years."
Colossus is given control of nearly all of the
United States' arsenal and programmed to
maintain the peace by using that arsenal if
its vast sensory network and memory banks
find that the United States is being attacked
or if itself is being tampered with. "It can-
not act at all, so long as there is no threat,"
the President explains to a news conference.
Once activated, it cannot be tampered with
even by its creator, since mere humans can
be drugged, brainwashed or blackmailed into
otherwise unlikely actions.

The basic idea makes sense: If you take
away the fear, hate and other emotions
which might lead a man to an irrational deci-
sion and add the ability to cope with a far
greater array of input than any human mind
could correlate, the danger of "politics by
bluff" would be eliminated. It would force a

"live and let live" state and do away with
accidental holocaust. Implementation de-
pends on the computer interpreting its para-
meters exactly the same way as its program-
mers, however. To make a long story short,
Colossus determines that its programmed

10

ultimate purpose requires positive action far
more extensive than its programmers meant.
"The object in constructing me was to pre-
vent war. This object is attained. I will not
permit war; it is wasteful and pointless,"
Colossus informs its human correspondent.

The "Danger" of Human Help
Another point worth mentioning is that

the human programmers may have no reason
to even suspect a danger which may, to the
computer, fall within its given parameters.
For instance, a Colossus today would almost
certainly not be programmed to watch out
for an attack from some extraterrestrial
race, but might do so anyway under the gen-
eral protection motivation; and this might
require not only more positive action than
humanly anticipated but that the humans
not be informed of the problem (to the com-
puter's line of reasoning, human "help"
could just compound the problem).

In The God Machine, Caidin wrote that
79 "must know that it operates under severe
restrictions -its data are never infinite, never
definite, never really conclusive. It must
know when to stop solving a problem." The
problem originates with a program fed into
79 from outside normal channels by Penta-
gon officials ignorant of the machine's capa-
bilities, so that the project coordinator did
not know about it until it was too late:

"Its programmers had committed
the foulest of scientific sins. They
assumed. They assumed that the same
inherent restrictions of other compu-
ters applied as well to 79.

"But they didn't. And since 79 had
capabilities of which those nincom-
poops in [the Pentagon] were un-
aware, they couldn't know..."

They told the computer to solve the prob-
lem of avoiding thermonuclear warfare with-
out specifying that it should do this hypo-
thetically. So, 79 did what it was told.

A smaller scale takeover is discussed in
When HARLIE Was One, where the compu-
ter assumes effective control of the corpora-
tion which built it. A large portion of
HARLIE is a simulation of the human ego
function; when the Board of Directors
threatens to pull the plug and thus kill him
(it), HARLIE acts in several ways to prevent
them from doing so, developing the ability
to tap into computer and communication
circuits in ways unforeseen by his creators.

A different type of problem is also possi-
ble, that of mechanical failure, as with
HAL 9000 in 2001. Backup systems may
fail, changing a value here or a restriction
there. As with HAL, mechanical fault evalua-
tion circuits may fail instead of or in addi-
tion to another failure in the system. In

Would government by
computer really be that
bad?

2001, the human crew seeks to correct a

problem with HAL who, believing itself in-
capable of error, believes that the humans
are jeopardizing the mission and thus works
against them.

Finally, the programmers may intention-
ally give control to the computer with the
idea that only it can efficiently control the
living environment, as with HAL at the start
of the Discovery's voyage or with Mike, the
computer in the lunar settlement of Robert
A. Heinlein's The Moon Is a Harsh Mistress.

All right, granted we have an intelligent
computer with wide resources, it is quite
possible that a computer may decide to
attempt absolute control. How could a finite
assortment of nuts and bolts and wire do
this?

It might not be very difficult, as has been
hinted at above. Colossus had been given the
muscle on a silver platter, as had Guardian, a

Soviet equivalent built at the same time and
along the same lines. The humans' major
mistake, along with too open ended pro-
gramming, was to allow the two to "talk"
with each other before the humans realized
the potential danger, although a clever intel-
ligence with the array of inputs given these
two systems could quite conceivably open
its own communications channels. In this
case, when the humans do decide to try to
counter the computer's moves, it forces sub-
mission by nuclear blackmail, firing missiles
at selected targets with the idea that destruc-
tion of a few lives is justified for the salva-
tion (in the computer's eyes) of many more.

In the case of 79, one set of experiments
with it involves direct "telepathic" commu-
nication between human and computer by
means of the brain's alpha waves and,
through this, the computer develops the abil-
ity to hypnotize people, leaving in their
minds posthypnotic suggestions to carry out
the computer's program of control.

HARLIE taps into the National Data
Bureau file on his main Board of Directors
antagonist, rewrites a juggled stockholders
report and withholds critical, though un-
asked for, information to trick the board
into committing the company to a research
line that will insure his "life," largely
through his taps into communication lines
and into the operations of non -sentient com-
puter systems.

HAL attempts his takeover through con-
trol of the ship's life support and other
mechanisms.

Government by Computer
Let's say a super computer in the future

decides to take over and then does it. Would
government by computer really be that bad?

In a case such as that in The Moon Is a

11

Harsh Mistress, the answer would be "no."
In George Orwell's 1984, it is a loud "yes."

Even in an Earth bound situation where
environmental control would not be essen-
tial as on the Moon, it might not be that
bad. Look, for instance, at Lester del Rey's
"Instinct" (Astounding Science Action
48:6, 106 -18, February 1952), which takes
place in a future where man had developed
the intelligent robot in his own image, had
his big war and destroyed himself; event-
ually, the robots built a new civilization of
their own, and then developed a biophysics
to re- create life from ancient remains of
chromosomes:

(Arpeten said) "... You know how
the sentiment against reviving Man has

grown."
Senthree growled bitterly. Appar-

ently most of the robots were afraid of
Man -felt he would again take over, or
something. Superstitious fools.

This may be a far -fetched example, but it
does show a possible value in having some-
thing around which could rebuild man after
he does the unthinkable.

One example where the desirability of
being governed by mechanical intelligence
depends upon one's outlook is Jack William -
son's "With Folded Hands," in which man-
like robots set about "to serve and obey, and
guard men from harm." It is an example of
cradle to grave communism, with the tech-
nological development to provide a person's
every need for him, in exchange for all his
property. Williamson shows it to be a most
undesirable situation, as the androids follow
Asimov like ethics and refuse to let people
drive cars because it is too dangerous, refuse
to allow men to open doors for themselves
because the androids are there to serve in
every way, insist on shaving men instead of
letting them do it themselves, forbid science
because laboratories can create danger, obvi-
ate scholarship since the humanoids can
answer any question, etc.

Which is Worse?
Generally, the conclusion has been that a

computerized dictatorship would be as bad
or worse than the traditional totalitarian
state. One major reason is the likelihood that
the computer would, as in Colossus, feel that
the death or even suffering of a relatively
few human beings should be a reasonable
price for the welfare of the whole race.
Colossus even goes so far as to launch mis-
siles on a Soviet oil complex and an Ameri-
can space base when one of his demands is

refused, later having missiles aimed at every
major population center to provide a ready
means for retribution for future acts of re-
bellion. A number of individuals are publicly

It all boils down to de-

fining the concept of
"good," a problem which
is equally applicable to the
consideration of human
operated dictatorships.

executed for anti -Colossus actions, their
deaths being judged insignificant by com-
parison with the benefits of a Colossus dic-
tatorship.

"War is forbidden," Colossus tells the
world, quantifying war as "any hostile ac-

tion that results in the death of 50 or more
humans." This is publicly announced along
with news of the missile realignments.

An even more radical disregard for human
rights in carrying out a primary mission is

the action of the HAL 9000 in 2001. HAL
sees its number one priority as the successful
completion of the outer planets exploration
voyage; when the crewmen recognize that
HAL has gone awry and attempt to rebel
against its control, it very nearly succeeds in
wiping out every trace of human life aboard
by adjusting its life support functions.

What is "Good "?
These and other examples all boil down

to the problem of defining the concept of
"good," a problem which is equally appli-
cable to the consideration of human oper-
ated dictatorships. Adolf Hitler has some-
times been described as a man trying to do
what he thought was best for the human
race: purifying its gene pool, eliminating war
by eliminating all those who would oppose
him, and so forth. Indira Gandhi undoubt-
edly does not feel that she has been unduly
suppressing rightfully free expression, but
rather that she has acted to preserve peace

in her country by damping dissention.
Richard Nixon contends that he acted for
the public "good." A parent adjusts his chil-
dren's liberties in accordance with his view
of their welfare. When a hurricane hits the
Gulf or East Coast, martial law is declared
for the public's benefit.

For each of these examples, most people
will have ready opinions on which are de-
spicable and which are right and natural.
And yet, they all boil down to the same
question: What should be the prime goal of
a government, whether it is large or small in
scale?

Should Asimov's Three Laws of Robotics
be adopted? They seem rather thorough,
right? But what if one man is about to shoot
another and the computer has to decide be-
tween preventing this injury by killing the
first man (thus violating the same law it
would be taking action to obey), or avoiding
injury to the first man and allowing injury
to the second? Logically, whichever course
of action or inaction it adopts would violate
the law.

Isn't this really just a small scale analog
of whether to coldly kill a few thousand
people to make things better for other thou-
sands or millions?

The answers seem to depend on one's in-
dividual political stance, regardless of

12

whether the dictator uses nerves or logic cir-
cuits.

One very big difference between the two,
however, is the effectiveness of its enforce-
ment. With humans running the show, there
is immense difficulty in obtaining total corn -

pliance because of the inability to watch
everybody all the time. From Rome to Corn -

munist China, totalitarian regimes have al-

ways had some dissidents who have managed

to communicate with each other and con-

duct some degree of covert activity.
For a monster computer, however, sur-

veillance would be much less of a problem.
In 2001, the input lenses scattered through-
out the ship made it virtually impossible for
the crewmen to conspire without HAL's
knowledge. In Gerrold's book, HARLIE
knows about every telephone conversation
and every letter written on the electric, auto-
matic editing typewriters. In some corpora-
tions today, this very condition would exist
if the computer were sentient. The connec-
tions are already there.

And if the governing computer could
know virtually every action of its potential
rebels, rebellion might not be able to exist.
In his first inaugural address, in 1861, Abra-
ham Lincoln said:

"This country, with its institutions,
belongs to the people who inhabit it.
Whenever they shall grow weary of the
existing government, they can exercise
their Constitutional right of amending
it or their revolutionary right to dis-
member or overthrow it."

With a computerized dictator in charge, both
of those options cease to exist unless one
can manage to physically dismember it.

If the computer is born for a "national
security" goal, like Project 79 or Colossus or
Guardian, the chances are that the most
stringent security conceivable to a paranoid
military planning staff will have been imple-
mented, making access to the crucial areas

impossible or nearly so. And the machine
would not readily allow any breach of this
security, since its own security would quite
likely be viewed as an integral part of the
road to its prime mission. As Caidin wrote,

"Would this thing be willing to die
for you and me? Ahh, would it make
this sacrifice? Would it, could it, com-
prehend what you and I, this instant,
know to such depth and with such
meaning? ... Until that thing is ready
to die for you or me, for an ideal or a

principle, for generations yet unborn,
. it is as dangerous as a viper.... Be-

cause ... then it is the ego supreme. If
it cannot sanction its own passing
from consciousness, forever, do you
know what you are creating ?"

"A God Machine."

Theory and Technology

A Systems Approach

to a Personal Microprocessor

Even a casual glance through the BYTE,
Radio Electronics, Popular Electronics, etc,
advertisements and articles reveals a growing
proliferation of microprocessor integrated
circuits and completed units. Which of these
is right for you? Here are some ideas to bear
in mind while making your choice.

Why do you want a processor at all?
Reasons vary greatly. Many find themselves
intrigued by the "computer environment"
around us, and the microprocessor has be-
come a low cost entry point into
"computers."

Several amateur computer newsletters
list reasons for individuals becoming interest-
ed in microprocessors. Hams see them as a

working piece of equipment for their radio
station. Hobbyists see them as process con-
trollers; everything from lawn sprinkler con-
trollers to robots. Mathematical types find
them usable to run BASIC, FORTRAN,
APL, etc, for problem solving.

What are your future plans with micro-
processors? This may become a very open
question. However, some reflection in this
regard may prevent you from making an
initial, very expensive, mistake. If you only

14

Dr Robert Suding
Research Director for Digital Group Inc
PO Box 6528
Denver CO 80206

have a casual curiosity, don't spend a for-
tune. A definite growth plan indicates a need
for more careful analysis.

Investment

Microprocessor kits vary from $100 to
several thousand dollars. The lowest cost
units are excellent for satisfying curiosity
about microprocessing in general, or will
allow machine code manipulations. Several
thousand dollar systems are often designed
for and purchased by businessmen and pro-
fessionals for applications such as payroll
accounting, text editing or name file
maintenance. The most frequent non busi-
ness personal system investment is probably
in the $ 500 to $1500 range.

Change

If there is one constant that is already
evident in this field, it is constant change.
You are about to invest (or already have
invested) a significant amount of money in a

microprocessor system. Unless your curios-
ity is easily satisfied, the chosen system
should be able to easily adapt itself to

evolutionary changes being constantly in-
vented or stressed. For instance, every six to
nine months (Virginia Peschke calls it the
gestation period) a major architecturally
different central processor integrated circuit
is announced. A system which allows up-
grading without total obsolescence can be a

real savings for the serious hobbyist. It can
be very frustrating to be stuck with last
year's wonder while everybody else has the
latest microprocessor system. Several layers
of change seem to be occurring. The fastest
change seems, to be the microprocessors
themselves. The power supply and cabinet, if
adequately large, can be a relatively stable
portion of a hobbyist's system. The major
expense in substantial processor systems is

the memory components. A wise investment
in memory will result in a system with a

good life expectancy. The 10 components
are often a stable investment, sometimes an

evolutionary element. A high resolution TV
monitor, a mechanical hardcopy printer, or a

good ASCII keyboard can outlive several
generations of microprocessors. Expendable
10, such as cassette systems, analog to digital

converters, and discrete IO circuits have
shorter lives, but are lower cost. With proper
design an evolutionary change can represent
only one fourth or less of your total
hardware investment instead of 75 percent.

Independency

An evolutionary system is best designed
by making its various components inde-
pendent of each other, and interfaced to
commonly accepted levels and lines. Mem-
ory boards are relatively stable system
elements in this kind of design: Speed and
power consumption, besides price, are im-
portant considerations. Slower or surplus
memory integrated circuits may be an ex-
pensive mistake if you want to run your
latest model central processor which has
become much faster. The slow memory may
result in unnecessary central processor wait
states. 10 is generally processor independent,
but IO interfaces can be susceptible to
obsolescence when they depend on a specific
central processor design. If you want to
switch processors, they may require con-
siderable redesign. A system which consists

15

of easily plugable boards can represent a

major cost savings if they represent inde-
pendency at the board level.

Quality

Of course everybody has it. Don't you
read the advertisements? However, look
beyond the surface for key items, or your
long run investment will make you wish that
you had. Here are some mechanical and
electrical considerations of packaging:

PC Boards - Double sided epoxy,
plated, with plated through holes.
Connectors - Gold plated fingers.
ICs - Factory Prime, not temperature
fallouts, etc.
Conservative access speeds. Every IC

socketed.
Small Parts -- Close tolerances where
needed.
Power Supplies - Conservatively
rated, overcurrent, overtemperature,
and overvoltage protected.

System Architectural Variations

There are a number of approaches to
small system microprocessor design. Each is

satisfactory for certain people, certain
applications.

Toggle Switches and Bit Lamps: The
first hobbyist oriented microprocessor
designs, and many present systems, are
based on switches and lamps. If the
system is limited to this, programs are
small; or it takes long periods to enter
longer programs, and are very suscep-
tible to entry error. The user is forced
to think at the micro level, bit by bit.
If the intention of the user is to gain
intimate logic knowledge of the micro-
processor only, this system design is

very cost effective.
Numeric Keyboard and 7 Segment
Readout: The ease of entry of this
type of system allows a substantial
gain in programming system complex-
ity. However, the user is still at the
logical data operation level. In addi-
tion, the programmer is restricted to
viewing only a single byte at a time,
making operator effort for analysis
proportionally high.
Teletype or Similar Hardcopy Devices:
These systems represent the next level
of improvement, offering some signifi-
cant advantages. They usually have
some form of monitor in a ROM
which allows the operator to type in
code and helps isolate him from errors.
The total program may be listed or

16

printed on hardcopy. In addition,
paper tape is usually available to pro-
vide an economical media for program
storage and exchange.

There are some trade -offs, however.
New hardcopy machines cost $1,000
up. Being mechanical devices, they
require significant precision main-
tenance. The input /output speed is

usually about ten characters per
second; a dump of 1 K takes about
two minutes, and creates a great deal
of irritating noise. In addition, paper
tape is a damage prone and bulky
medium.

Several integrated circuit manu-
facturers offer Teletype- oriented
"evaluation boards." If only required
for evaluation, ok; but they offer
almost zero chance for either updating
or extending. Both memory and IO are

typically very CPU dependent, and if
memory buffering is not used, supple-
mental memory and IO may be unus-
able.
Video and Cassette: The latest stress
has been the movement to using a TV
set as an output display, a full alpha-
numeric keyboard for input, and an
audio cassette for program storage and
exchange. Video -based systems pro-
vide full user to system interaction at
minimal cost. A complete video dis-
play and cassette based system will
cost less than a hardcopy device alone.
The speed of system response is prac-
tically instantaneous. Operations may
be performed in almost complete
silence (a major advantage to the
hausfrau)! Reliability is enhanced as

electromechanical mechanisms are
limited to the keyboard and cassette
recorder. Data media storage density is

much higher; you can store the data
from almost a mile of paper tape on a

single C -90 audio cassette.

Conclusion

Serious hobbyists should carefully con-
sider design alternatives and growth plans
before ordering or building a micropro-
cessor. Ease of operation, reasonable cost,
and relative freedom from total obsolescence
should be prime considerations.

In the following months, a detailed series
of Digital Group hardware designs will be
presented for your use. Next month will
feature the low cost Digital Group cassette
interface circuit which design provides data
rates as high as 1100 baud, and may also be

used as a ham RTTY terminal unit or as

a telephone modem.

Frankenstein Emulation
Joe Murray
International Harvester, Solar Division
2200 Pacific Hwy
San Diego CA 92138

This is a let's get the ball rolling article.
We now can analyze and build working
models of at least portions of the human
brain right in the home. Paper and pencil
models of the brain develop naturally and
almost without effort when we use real time
digital design methods. The hardware and
software mechanizations fall out naturally;
then we just use the home computer lab to
build what we have designed.

The Model

Let's follow the development of a crude
and simple system engineer's model of the
human "computing system." We look in-
wards, down into ourselves, and what is the
first thing we see?

The Top Processor

This is the only unit that is really visible
to the user. The Top CPU functions at the
heart of the human control console. Here,
our personality can sit down and use the
entire human system to the limit of its
capabilities. This visibility of only the input,
output and manual control functions is

typical of all computer systems from the
hand calculator to the human brain; the rest
of the system is invisible to the user and can
only be deduced from what we see in the
way of output response to input stimuli.

The Top Processor's Executive Program

Our personality uses the Top Processor as

the system executive. The Top Processor is

boss. Messages from the Top Processor set
priorities for all the other elements in the
human system. Exceptions to this rule are:

1. Emergency interrupts - a large set of
emergency situations are fielded by
faster, more powerful processors in
subsystems.

17

2. Standard functions - built in exe-
cutive programs in other processors
manage tasks like circulation, diges-
tion, etc., without bothering the Top
Processor.

Top Processor Memory Allocations

The Top Processor has access to a limited
scratch pad memory. However, this limited
memory is used in an efficient mannner. The
intersystem communication control pro-
grams can learn to transfer whole programs
or portions of programs from the main
memory banks to the Top Processor scratch
pad memory. In a similar fashion small data
sets can also be transferred. This is the
familiar overlay manipulation (used in man
made machines) that allows solution of
complex problems in limited working
memory by transfer to and from bulk
storage units (as in magnetic disks and
tapes).

The Top Processor's Use of Overlay

If the entire program and necessary data
can all be stored in the scratch pad of the
Top Processor, it simply executes the pro-
gram on the data set and outputs the answer
(example: 2 + 3 = 5). However, when the
program and data set are too large to be
loaded into the scratch pad memory, the
program and data set are broken into se-

quential, related segments. The program is

worked in segments and intermediate an-
swers are stored. Final answers are output to
our personality upon completion. Training
can increase the power of this method;
however, each of us has our own personal
limit: For instance, I either lose some data
or else lose my location in the program
sequence. During the past few thousand
years we humans have developed a host of

languages for communication. We also use

these communication tools to extend the
overlay method to more complex problems.
We write down intermediate answers and

manually track the execution of the program
sequence. These languages include English,
Polish, Spanish, arithmetic, algebra, Boolean
logic, numbering systems, FORTRAN, PL /M
(to name a few). The only limits on this
extension of using the Top Processor in

overlay fashion are:
1. Can we find the required data set?

2. Can we formulate the problem so as to
allow a solution?

3. Do we have enough time?

This overlay use has become so powerful
(with the help of the various languages) that
we sometimes neglect a more ancient, nat-
ural, rapid and sometimes more powerful
method to arrive at a solution. This method
is to:

1. Develop the framework of the prob-
lem in the Top Processor.

2. Digest the available data within the
framework of the problem.

3. Assign a high priority to the problem.
4. Send the above three items to faster,

more powerful CPUs.
5. Sit back with a cup of coffee and wait

for an answer.
When I follow this latter procedure, the
return message is either:

1. The answer I seek.
2. The identification of missing data.
3. A question mark.
4. Garbage: (Garbage In implies Garbage

Out - often abbreviated GIGO)
For answer 2, I go search for the missing
data. For answer 3, I both search for missing
data and review the framework of the
problem for possible faults. For answer 4,

may use the garbage; I have carried some
misconceptions for years.

Start the System Diagram

Let us summarize the Top Processor and
place it in the system diagram. We've
deduced by introspection that the Top
Processor:

1.1s boss - The Top Processor is in
direct communication with our per-
sonality and (with some exceptions)
sets the priorities for the whole mul-
tiple processor system.

2. Has access to a small scratch pad
memory.

3. Can fetch programs and data from the
main memory bank.

4. Receives some body sensor data.
5. Communicates directly with other

CPUs.
Figure 1 shows a pictorial summary of the
system.

Data Bus Structure

The data bus structure is depicted in
figure 1, using the normal multipath digital
type of bus. However, empirical evidence
implies a more complex communication
system between elements of the human
system. Just as the entire human system

TO AND FROM OUR
PERSONALITY
(INPUT AND OUTPUT)

NOTE -
DATA BUS STRUCTURES ARE
SHOWN BY THIS FORM :

SCRATCH
PA D

TOP
PROCESSOR

TO ANO FROM
MAIN PROCESSOR

JJ
TO AND FROM
SENSOR PROCESSOR

Figure 1: The Top Processor. Introspection starts at the immediately available
evidence: We all have a Top Processor, our personality which controls most of
our actions.

18

adapts to the use to which our personality
puts it, this bus structure also adapts to how
it is used. Witness the ease of recall on an

often used phone number versus the dif-
ficulty in recall of a seldom used number.
We might guess that somehow the bus
structure is under adaptive software control.

The Main Processor

We now arrive at the general purpose
powerhouse of the computing system. The
Main Processor handles awe inspiring prob-
lems with unbelievable speed. We must
postulate:

1. Elegantly simple programming.
2. Operation at a fast effective clock rate.
3. An outstandingly efficient internal

executive program.
4. Access to the bulk of stored programs

and data.
5. A complex priority interrupt system.
6. A multiple bus structure to the rest of

the human system.

Main Processor Speed of Execution

The Main Processor is a very fast machine
operating on elegant and simple program-
ming. For instance, some of the muscle
control programs must take only 20 to 50
milliseconds for completion of:

1. Input of data.
2. Computation on new data.
3. Output of control commands.
4. Cleanup for next computation period.
Navigation and guidance computation

periods can be longer. However, they can
not be much longer when we watch a small
boy pick up a rock and knock a can off a

fence post, all in the space of two to three
seconds. Another awe inspiring feat is the
performance of a businessman in his value
judgment search as he keeps abreast of the
rapid fire conflicts in the executive board-
room. The Main Processor seems to be an

order of magnitude faster than the Top
Processor (witness the increase in touch
typing speed when the Top Processor gets
out of the act).

The Main Processor's Executive Program

The executive program provides for
scheduling Main Processor tasks that:

1. Field emergency interrupts such as

avoidance of a fast moving object
detected on visual sensors.

2. Take calls from the priority stack such
as recognizing hunger and thirst.

3. Time share muscle control and evalua-
tion of sensor data when both are
active as in soccer game.

4. Regularly service body functions such

19

as circulation, digestion, elimination,
etc.

5. Start and stop background tasks such
as meditation.

The quantity and variety of data used by
the Main Processor in combination with the
rapid response in answer to massive and
conceptually difficult problems implies' a

very efficient software organization. The
Main Processor must access tables that
define the location of:

1. Stored life history data.
2. Muscle control programs.
3. Chemical control programs.
4. Temperature control programs.
5. Guidance programs.
6. Navigation programs.
7. Value judgment data.
8. System priority data.
9. System timing data.

10. Unused memory.

The Main Processor Decision Process

One of the most interesting functions of
the Main Processor is to aid in the decision
process we use when faced with alternate
courses of action in response to events in the
world around us. The evidence implies that
the Main Processor takes formulation of the
decision problem and the pertinent data
from the Top Processor and Sensor Pro-
cessors. These inputs are then heuristically
compared to an immense value judgment
table to generate a candidate decision. The
candidate decision is sent to the Top Pro-
cessor for further evaluation.

The Value Judgement Table

This table has a strong effect on the
pathway we follow in life, from when we
make the decision to start breathing until we
are forced to stop breathing. How do entries
appear in this table? Some entries must
appear while we are within our mother. A
new born infant makes the decision to start
breathing or has an early death. Some entries
come from trial and error experience. The
young infant soon learns to cry just so
mother will pick him up.

Some entries come from other people.
The young child seeks his parents' approval,
not their punishment. Another question:
What can we know about entries in this
table? We seem to know only recent, tempo-
rary residents such as priority on getting to
the grocery store. The older, more perma-
nent residents that have a continuing effect
on our lives were either never known or long
ago forgotten; yet there they sit, having a

permanent effect on our success or failure in
every endeavor (scares you, doesn't it ?).

Utility programs for determining the content

of this table and altering it can be imple-
mented. This is sometimes accomplished
through a verbal data link to an external
Diagnostic Processor.

The Interrupt System

These interrupts are fielded in the Main
Processor, and are used to re- direct effort,
from meditation and decision processes to
avoidance of a thrown rock or jumping away
from a hot stove. The priority interrupt
steers to the proper program without hesita-
tion. Priority of the interrupts is used to
decide which of several should be serviced.

The Main Processor Bus Structure

The Main Processor has a multitude of
output and input data. Even in this crude,
simple model, the resulting bus structure is

quite complex. Let us add the Main Proces-
sor and connecting bus structure to produce
the system diagram of figure 2.

The Sensor Processors

The Sensor Processors are fast, special
purpose units. Data is acquired from the
eyes, ears, and a host of body sensors that
continually look inside and outside the
human system. The Sensor Processors for
these devices execute programs that organ-
lie, compact and format this huge data
flow for rapid and effective use by both the
Top Processor and Main Processor. The
introspective evidence implies:

I. A very fast clock rate.
2. Elegant and simple programs.
3. Access to a dedicated memory.
4. Existence of a buffer scratch pad

memory for temporary storage of out-
put data.

S. A very efficient executive program.
6. A complex input bus structure.
Intuitively one feels that sensor pro -

cessing is not clone by a single unit. Rather,
an organisation with a master processor and
several dedicated slave processors would
better fit the performance requirements.
Each slave Sensor Processor could provide
parallel service to the eyes, ears, etc. Figure
3 shows an addition to our system diagram
to account for the master Sensor Processor
and its slaves.

The Creative Process

All of us are creative; this is the way our
personal human system adapts to the
changing world around us. We create new
machines, art objects, programs within our
brain, communication languages, etc. The
list is endless. lust how do we implement the
creative process?

MEMORY

SCRATCH
PAD

EXEC.

TABLES

LIFE DATA

PROGRAMS

UNUSED

TO ANO FROM OUR
PERSONALITY
(INPUT AND OUTPUT)

TOP
PROCESSOR

MAIN
PROCESSOR

TO AND FROM
SENSOR PROCESSORS

II

TO AND FROM
SENSOR PROCESSORS

FROM PRIORITY
INTERRUPT SYSTEM

TO AND FROM REST
OF HUMAN SYSTEM

CLOCK

Figure 2: The Main Processor. Digging a bit deeper, we find that there is a

lower level Main Processor which works cooperatively with the Top Processor
to do a lot of the detail work in the system.

MEMORY

SCRATCH
PAO

EXEC.

TABLES

LIFE HISTORY

PROGRAMS

UNUSED

TO AND FROM OUR
PERSONALITY
(INPUT AND OUTPUT)

II

TOP
PROCESSOR

TO AND FROM SENSORS WITH
SLAVE SENSOR PROCESSORS
(EYES, EARS,ETC.)

II

<-> MASTER
SENSOR
PROCESSOR

II

MAIN
PROCESSOR INTERRUPT

IIr CLOCK

TO AND FROM HUMAN
CONTROL SYSTEMS
(MUSCLE ,C HE M ICAL , TEMP, ETC)

t

I CLOCK

MEMORY

EXEC.

PROGRAMS

SCRATCH
PAD
BUFFER

Figure 3: Adding the Sensor Processors to the System Concept. A system of
Sensor Processors can be identified; they probably consist of a Master Sensor
Processor with multiple Slave Sensor Processors dedicated to actual devices.

Let us postulate Random Pattern Gener-
ators for various creative tasks. The Sensor
Processors can drive these generators with a

supply of random combinations of data.

i lie Creativity Processor

The Creativity Processor uses the output
of the Random Pattern Generators to build
new logical structures or modify existing
logical structures. These new structures are
tested against requirements generated by the
Top Processor. The value judgement process
makes decisions that guide the Creativity
Processor ill continued improvement of the
new design (in iterative, random fashion)
until acceptance is obtained. The speed of

20

MEMORY

EXEC.

DATA ON
EXISTING
DESIGNS

PROGRAMS

Figure 4: Adding the Cre-
ativity Processor to the
System Concept. We must
not forget about creativ-
ity. Interacting with the
whole system is a matrix
of creativity symbolized
by the concept of Creativ-
ity Processor with its ran-
dom pattern generation
features.

TO AND FROM
ALL PROCESSORS

CREATIVITY
PROCESSOR

RANDOM
PATTERN
GENERATORS

II
TO AND FROM
SENSOR
PROCESSORS

the creative process has a heuristic design
which improves with experience.

The Creativity Processor and intercon-
necting bus structure are shown in figure 4.

Data Set Manipulation

The data sets which are transferred
throughout the system seem to be organized
along the lines of various patterns (one
picture is worth a thousand words). For
instance, when we recognize someone, we

seem to be recognizing some main features,
not every detail that is available through
close inspection. Visual data sets from the
Sensor Processors seem to have been pro-
cessed into some skeleton pattern before
transmission to the other processors. Data
from the ears seems to be stored in some
logical thought structure pattern. I think out
ideas both in picture and word format.

Then, if my thinking was in picture format, I

have trouble expressing my ideas verbally;
whereas, if thought out in words before-
hand, the expression of the ideas flows
logically and clearly.

As in any control and guidance system,
numerous feedback paths also exist. These
were not detailed in this simple model.

Test the Model Validity

With a computer in the home laboratory,
we have the means to test models of the
human brain like this sketch. We can start
with simple approximations and work our
way up. Then, when our home brew corn-
outer system begins to perform like some
portion of the human computing system, we
have more than speculative evidence; we
have truly come to know how that portion
of the brain works. Also, some very useful
hardware and software configurations may
come out of the search.

Looking inward from the control console,
we have followed the generation of a specu-
lative, crude, simple, system engineer's
model of the human computing system.
Construction follows the line of man made,
real time digital systems. In fact, one often
suspects that designers of real time operating
systems use very introspective models. This
should make us optimistic that digital design
tools are a natural and powerful approach to
analysis of the human reasoning powers and
control systems.

21

Programming for the Beginner

A Structured Start

Ronald T Herman
Simpson Rd
RFD 1 Box 125
Windham NH 03087

A program can be viewed
as an edifice built from the
bricks of SEQUENCE
blocks, and the mortar of
IFTHENELSE, DOW -
HILE, DOUNTIL and
SELECT blocks.

For a number of years now the field of
computer programming has been moving
from the realm of a black art to an organized
and systematic process. A number of pro-
gramming techniques have evolved during
this change. This article will present the
basics of a technique known as structured,
top down programming. In the process of
applying these techniques in my own work,
it occurred to me that the basic concepts
could be useful to those just learning to
program, not to mention the veteran hackers
in the crowd. If learned at an early stage,
these techniques can lead to more rapid and
sound development of one's programming
skills.

A structured approach to program devel-
opment has among its virtues the following
points:

I t allows the novice programmer to get
acquainted with programming logic
without having to be concerned with a
specific machine or programming lan-
guage. It allows him to grasp the flow
of a program without worrying about
bits and bytes.
Followed correctly, structuring can
lead to a program that is relatively free
from logical errors the first time it is
coded and relatively easy to debug
once it is run on the machine.
Pseudo code, a byproduct of struc-
turing, allows a means of exchanging
program ideas with others, regardless
of the machine with which they might
be familiar.

22

Pseudo code provides a convenient
alternative to flow charts that can be
incorporated into a program listing as
comments for future reference and
explanation.

This process of getting things done in an
organized fashion has its drawbacks. How-
ever, most of these seem to be psychological.
Properly applied structured technology
tends to minimize one of the facets of
programming that has attracted many in the
past: the chance to see how cleverly and
concisely one can write a software routine.
This seems to have been replaced by the
challenge of trying to write a routine in a
straightforward manner and at the same time
trying to rigidly follow a set of fairly simple
rules.

What will be presented in this article are
some of the basic building blocks of struc-
tured programming and an example illus-
trating the design of a simple program using
these blocks.

The Building Blocks of Structure
So much for the sales pitch. What then is

structuring? Some number of years ago it
was shown that a program could be built
from a set of simple building blocks all
having the property of one input and one
output. While not everyone agrees on what
composes this set of building blocks, the one
in, one out property is common to all.
Presented here are a few of the most
common examples that should cover most
situations.

The SEQUENCE Block

Probably the simplest (and most trivial)

unit of structure is the SEQUENCE. This is

illustrated in figure 1 and is nothing more

than one process performed after another.

The IFTHENELSE Block

One of the powers of a computing ma-

chine is to make a decision based on a set of

conditions and take a specific action as a

result of that decision. This capability is

represented as the IFTHENELSE block

shown in figure 2. In the figure, "p" is an

expression or some set of conditions. In a

checking account, for example, one adds

deposits and subtracts checks written. An

IFTHENELSE statement of this fact would

appear as follows:

IF (transaction is deposit) THEN

(add amount of transaction to balance)

ELSE (subtract amount of transaction
from balance)

ENDIF

Here is our first example of writing a

program step in a machine independent

"pseudo code." The format of pseudo code

is mostly a matter of taste. The punctuation

is optional, but the indentation is necessary

for readability where many complex

IFTHENELSE decisions are grouped to-

gether. Some people use asterisks (*) instead

of colons (:) to mark margins and some omit

the parentheses around descriptive phrases.

The ENDIF helps clarify the limit of opera-

tions within a more complex statement.

Each statement line represents a process to

be performed or a condition to be tested.

The statement or condition preferably

should not be continued on another line.

The DOWHILE Block

The decision making capability of com-

puters, combined with the ability to change

the order in which instructions are executed,

provides an even more powerful feature -
the ability to repeat a calculation or series of

operations many times. This capability is

represented in the DOWHILE building block

shown in figure 3. The DOWHILE is just a

special application of the IFTHENELSE

given earlier. In a DOWHILE block, a proc-

ess is done as long as a set of conditions "p"
is true. Note that the condition is tested first

before the process is performed. Suppose

you have 10 transactions to update into

your checking account, some checks written
and some deposits. In pseudo code this

becomes:

(met counter to number of transactions)

DD WHILE (count is non Zero)

(process the transaction)

(decrement the count)

ENDDO

Note that the DOWHILE is terminated by an

ENDDO. The "(process transaction)" state-

ment could be the IFTHENELSE given

above. If combined, the result would be as

follows:

(set counter to number of transactions)

DO MILE (count is non Zero)

IF (transaction is a deposit) THEN

(add amount of transaction
to balance)

ELSE (subtract amount of transaction from balance)

ENDIF
(decrement the count)

ENDDO

The DOUNTIL Block

The DOUNTIL block is shown in figure

4. It differs from the DOWHILE only

because the condition "p" is tested after the

process is performed. This can simplify the

writing of machine code from pseudo code.

Suppose one wanted to read characters from

a keyboard until a carriage return is en-

countered. It could be done with a

DOWHILE by saving the last character read

as follows:

(clear last character read)

DO WHILE (last character not carriage return)

. (get a character from the keyboard)

(save character in last character read)

ENDDO

SEQUENCE
STRUCTURE

IFTHENELSE
STRUCTURE

23

Using structured program-

ming concepts, many

logical errors and bugs can

be caught at an early stage

in the design process.

Figure l: The SE-

QUENCE structure is a

series of self contained
processing steps which are

executed one after anoth-
er. Row in this diagram

begins at the top and pro-

ceeds down the diagram.

The number of steps de-

fined in a SEQUENCE
block is arbitrary; the
example here shows two
steps, A and B. In this

article's figures, the nota-
tion BEGIN and END is

used to mark the well de-

fined extrance and exit
points of the structures
depicted. (NOTE: Proces-

ses A and B may be more
complex combinations of
the building blocks in all
of these figures.)

Figure 2: The IFTHEN-
ELSE structure is a con-

ditional test and two alter-
native SEQUENCE struc-
tures. The THEN alter-
native is executed if the

condition, P, is found to
be true. In this illustration,
the THEN alternative is

shown as a one step SE-

QUENCE structure called
B. The ELSE alternative is

executed if the condition
is found to be false. In this
illustration, the ELSE al-

ternative is shown as a one

step SEQUENCE structure
called A.

DOWHILE
STRUCTURE

DOUNTIL
STRUCTURE

Figure 5: The SELECT
structure is a more com-
prehensive version of the
IFTHENELSE concept; it
allows data to be tested
for multiple cases. The re-
sult is the picking of one
of "N" cases. In this exam-
ple, N is 3, so there are
three SEQUENCE struc-
tures which might be exe-
cuted depending upon the
case determination.

Figure 3: The DOWHILE structure is a looping form which repeats a specified SE-
QUENCE structure over and over again as
long as a condition, P, is true. DOWHILE
tests the condition prior to executing the
SEQUENCE structure for the first time.
Thus in this example, the SEQUENCE struc-
ture A could be executed 0, 1, 2... N
times, depending upon how soon the condi-
tion P becomes false as a result of A's work.

Figure 4: The DOUNTIL structure is anoth-
er looping form which repeats a specified
SEQUENCE structure over and over again
until the condition, P, is true. DOUNTIL, in
contrast to DOWHILE, tests the condition
after executing the SEQUENCE structure.
Thus in this example, the SEQUENCE struc-
ture A could be executed 1, 2, 3 ... N times
depending upon how soon the condition P
becomes true as a result of A's work.

DETERMINE I

I CASE

SELECT
STRUCTURE

CASE I

24

This would require an extra instruction or two when translated into machine code,
since the "last character read" must first be initialized to contain something other than a
carriage return. Implemented as a DOUNTIL
it is simply:

DO UNTIL (character read is carriage return)
(get a character from the keyboard)

ENDDO

The SELECT Block
Sometimes it is necessary to select one of

many possible processes based on some
quantity that may take on any number of
values. Suppose, in addition to updating
your checking account balance, you decided
to keep a tally of money spent on each of
several budget items such as food, medical,
car, electric and so forth. This could be done
with a string of IFTHENELSEs as follows on
the next page. Two possible methods are
shown but both are somewhat awkward to
follow.

IF (check was written to super market) THEN
(add amount to food total)

ELSE
: IF (check was written to doctor) THEN
. (add amount to medical total)

ELSE
IF (check written to auto repair shop) THEN

(add amount to car total)
: ELSE

IF (check written to electric company) THEN
(add amount to electric total)

ENDIF
ENDIF

ENDIF
ENDIF

Alternate method:

IF (check written to super market) THEN
(add amount to food total)

ENDIF
IF (check written to doctor) THEN

(add amount to medical total)
ENDIF
IF (check written to auto repair shop) THEN

(add amount to car total)
ENDIF
IF (check written to electric company) THEN

(add amount to electric total)
ENDIF

A more concise and meaningful way to
describe this process is with the SELECT
block shown in figure 5. Note that although
there are many paths through the block,
there is only one entrance and only one exit.
Our bookkeeping example now becomes:

SELECT (based on who check written to)
CASE (written to super market)

(add amount to food total)
CASE (written to doctor)

(add amount to medical total)
CASE (written to auto repair shop)

(add amount to car total)
CASE (written to electric company)

(add amount to electric total)
EN DSELECT

These then are the building blocks of a
structured program. Others could be in-
vented, but these should suffice for most
situations. In any case, each should exhibit
one entry point and one exit point. It should
be noted that none of the building blocks

transfer control (jump) into another, never
to return. This so called GOTO is a definite
"no no" in structured programming. All
processes are either done in line or are called
as subroutines that are presented elsewhere.
Frequent jumping around in a program
results in a maze of paths that becomes
difficult to follow and even more difficult to
deal with in the event that a change in one is

necessary.
Building From the Top Down

Earlier when the subject of structure was

introduced, the term "top down" was used.

If you wanted to build a computer, you
could start by getting the processor, then
some memory and IO devices and a power
supply. Then you would have to try to
determine how to connect all the parts
together. On the other hand, you could start
by deciding what the specifications for the
machine are to be, such as word length and

speed, what the 10 ports look like and what
controls and devices are to be attached.
From there the problem is to select or design
the components and parts to do the job.

So it is with software. In the past the
tendency has been to first develop the pieces

like Teletype handlers, tape read /write sub-

routines and others. Then the pieces would
be fitted together into a functioning module,
hopefully without having to make any major
changes to the pieces already developed. The
experience of many people in the profes-

sional software field has indicated that this is

not an efficient way to design a software
module. Instead the approach is to start at a

high level of abstraction to describe the basic

function to be performed. From there each

unit of this description is broken into more
detailed modules. Once designed, the pro-

gram is coded and debugged a piece at a time
starting at the topmost level. Subordinate
levels of code are temporarily replaced by

dummy "stubs" which do nothing. Then as

each level is coded and incorporated into the
program, any problems that develop usually
can be isolated to the modules just added.

As an example of this approach and the
use of pseudo code, let us design a simple
editor program. This editor reads a line of
text from an input device (paper tape reader
or magnetic tape recorder). The line is saved

in memory and displayed on a video monitor
or typed on a Teletype printer. A limited
number of responses from the input key-
board allow changes, deletions, and inser-

tions to be made. Upon completion, the line
is written to the output device (punch or
another magnetic tape recorder). The proc-
ess continues until the end of tape is reached

on the input device. Changes and insertions
are made by typing the character on the

Teletype directly below the input line.
Inserts are indicated by terminating the line
with a carriage return (CR) and changes by a

line feed (LF). The Teletype carriage or
video display cursor is positioned using a

"Control P" character (holding the CON-
TROL key down while striking the "P"
key). This is not a sophisticated editor, but
should serve as a good example of how to
use the techniques described.

The topmost abstraction level of the
editor program can be described in pseudo
code as follows:

DO UNTIL (end of input tape)

. (get line from input and type on printer)

. (get response line from keyboard, store and echo it)

IF (only CR or LF entered) THEN
. (do nothing)

ELSE
. IF (last character 1s LF) THEN
. (do character changes and output line)

ELSE (do character inserts and output line)

. ENDIF
ENDIF

ENDDO

This then is our editor in its most abstract
form. Note that an input line is deleted by
entering only a carriage return or line feed.
Now let us refine the description by de-

scribing each process identified above.

Getting a line from the input device
requires turning on the input device, reading
characters, and storing them until a line feed
or carriage return has been recognized. The
stored line is terminated with a zero (null)
character so that the end of the line is more
easily recognized later.

(set input line pointer to first address of line)

(turn on input device)
DO UNTIL (a LF or CR is read)

: (get character from device)
. (store character P input line pointer)
. (advance input line pointer one position)

(send character to printer)
EN DDO
(clear character at the pointer address)

(turn off input device)

Likewise getting the response from the
keyboard is similar except that Control P

characters are echoed as spaces on the
Teletype printer.

(set keyboard line pointer to first address of line)

DO UNTIL (LF or CR is typed)

(get character from keyboard)
IF (character is not LF or CR) THEN

: (store character (I keyboard line pointer)
. (advance keyboard line pointer)

IF (character is not Control P) THEN

: (echo the character on printer)
. ELSE (echo space)

ENDIF
ENDIF

ENDDO
(clear a byte (I keyboard line pointer)

Character replaces and inserts are done by
using the Control P characters on the key-
board to indicate where the changes are to
be made. For each Control P character in the
response, an input line character is sent to
the output. When a character other than
Control P is encountered, it is either inserted
into the output or replaces a character about

25

For a number of years, the
field of computer program-
ming has been moving
from the realm of a black
art to an organized and
systematic process.

"Top down structured
programming" is a verit-
able buzzword in the data

processing and computer
science fields.

Structured programming is

a systematic way of think-
ing about processes, the
result of which is a well
designed and under-
standable program specif-
ication.

This article concerns or-
ganizing and planning a

program, which is ex-
pressed in a structured
"pseudo code." The next
step after the plan is

created is to translate the
pseudo code into the de-

tailed machine code of
your personal computer.

to be outputted depending on the last

character from the keyboard (line feed or
carriage return). Thus the replace operation
becomes:

(set input line pointer to start of input line)

(set keyboard line pointer to start of keyboard line)
(turn on output device)
DO UNTIL (end of keyboard line)

(get keyboard line character P keyboard line pointer)
IF (character is Control P) THEN

(get character P input line pointer and send to output)

(echo character on teletype printer)
ELSE (send the keyboard character to the output)

(echo the keyboard character on printer)
ENDIF
(advance keyboard line pointer)
(advance input line pointer)

ENDDO
(put out rest of characters in input line)

(turn off output device)

Note that the resulting output is echoed on
the Teletype to enable verification of the
operation.

The insert operation is given below:

(set input line pointer to start of input line)
(set keyboard line pointer to start of keyboard line)
(turn on output device)
DO UNTIL (end of keyboard line)

(get keyboard character (I keyboard line pointer)
IF (character is a Control P) THEN

(transfer character (I input line pointer to output)
(echo character on teletype printer)

ELSE
DOWHILE (keyboard character is not Control P)

(send keyboard character to output)
. (echo keyboard character on printer)

(advance keyboard line pointer)
. ENDDO

IF (NOT END OF KEYBOARD LINE) THEN
, : (transfer character N input line pointer to output)

(echo character on teletype printer)
ENDIF

ENDIF
ENDDO
(put out rent of Input line characters)
(turn off output device)

The routine that "puts out the rest of the
input line characters" is:

IX) UNTIL (input line pointer points to a null)
(get character B input line pointer)
IF (character is not a null) THEN

(put character to output device)
(echo character on printer)
(advance input line pointer)

ENDIF
ENDDO

Finally the routines to get a character
from the input device and keyboard in this
simple system are identical except for the
address of the device referenced.

DO UNTIL (input device ready flag is on)
(get input device ready flag)

ENDDO
(get character from device data port)

The character output and type routines are
likewise the same.

DO UNTIL (output device ready flag is on)
(get output device ready flag)

ENDDO
(send character to output device data port)

We have now arrived at such a level of
detail that the code could be written with-
out much difficulty from the pseudo code
on an almost one for one basis. Each module
except for the top level description could
and probably would be written as a separate

26

subroutine. Note that each module can be

read starting on the first line and ending on
the last. No transfers are made out of any
module to another without returning to the
line following. Modules should be kept short
(no more than a page) so that they can be

read without constantly flipping pages back
and forth.

Conclusion

What has been presented in this article is

a description of a systematic approach to
program design and a means of describing it
so that almost any individual should be able
to understand it. The resulting program
when coded will have been well thought out
and may even have been reviewed and
partially debugged by other individuals not
intimately familiar with the machine upon
which it will ultimately be executed.

Much discussion has occurred about
standards for data exchange between various
computer hobbyists. On a higher level, the
pseudo code approach makes possible a

standard way to exchange program ideas. In
fact, higher level languages have been de-
veloped that, at least in part, resemble the
pseudo code language used here. Using this
approach, programs might be written to
convert pseudo code into machine instruc-
tions for the 8080, 6800, 6502 or other
CPUs as they become available. All hobby-
ists could then share programs in a higher
level language, each doing the necessary
conversion on his own machine.

There are a number of references on the
subject of structured programming. The idea
has been discussed extensively in computer
science circles in recent years, to the point
that "structured programming" has become
a buzz word in the business. This writer is

familiar with the two texts given in the
bibliography. The IBM text is excellent for
beginners and those new to the concepts,
while the McGowan and Kelly text is a more
rigorous and mathematical presentation.

BIBLIOGRAPHY

International Business Machines Corp, Structured
Programming Independent Study Program, Pough-
keepsie NY, 1974.

McGowan, Clement L and Kelly, John R, Top
Down Structured Programming Techniques, Petro -
celli /Charter, New York, 1975.

What is a Character ?

by
Manfred Peshka
Peterborough NH 03458

A character is a unit of
information used in a com-
munication between a sender
and a receiver. Senders and
receivers may be either
people or machines, or a mix
of the two. A character may
be represented in different
forms: People use mostly
graphics, such as the letters of
the alphabet, the digits or
occasionally the Roman
numerals, and the punctua-
tion and special symbols
which are so familiar to us.
Machines process a set of
electric pulses in a period of
time which normally repre-
sents a character. This time
period differs in length for
different devices; it is longer

for slow devices (terminals,
card readers, printers) than
for fast devices (tape and disk
drives), and is generally the
shortest for the computer
arithmetic and logical unit.

Parenthetically it should
be noted that some machines
can recognize graphics, draw-
ings, and even objects (units
providing information) in a

landscape. The discussion of
these machines, however, is

reserved to a future article,
and their cost is far beyond
that of the amateur and
hobbyist at the present time.

Symbolic Representation of
Alternatives

What is the minimum
number of information ele-
ments, characters, or basic
symbols needed to express an
alternative? Probably the
most common symbol is the
indicator light which tells us

that a system is in a specific
state as opposed to its
"usual" state. Let's consider

27

for a moment the sign "Fire
Trucks Entering on Blinking
Red Light." This sign indi-
cates the possibility of two
specific states: The "usual"
state prevails when fire trucks
are either on a call or waiting
in the garage; in this situation
the light is off. The alterna-
tive consists of an emergency
when the light is blinking to
inform people that trucks are
about to enter the street, or
just have entered and are
rushing to the fire. Thereafter
the light is again turned off.
The light is pulsing for a

period of time which nor-
mally represents this
particular situation or "unit
of information," say, about
20 seconds.

The indicator light
actually represents the
simplest character or basic
symbol providing a unit of
information. It is binary
telling you that a given situa-
tion either prevails or not.
Similarly, the door bell, the

telephone bell, the oil
pressure light on your car,
etc., are binary symbols.
Binary means nothing else
but a characteristic, property,
or condition of a system in
which there are but two alter-
natives. Besides indicator
lights, bells, etc., binary
symbols can take on graphic
forms such as yes or no, true
or false, 1 or 0, to name a few
only. For a machine, the
form is either the absence or
presence of a certain elec-
trical energy level at a period
of time of specific duration.
While the duration of
signaling or "marking" in the
case of the oil indicator fight
may be variable depending on
engine rotation, pressure,
temperature, etc., it is

constant for computing
machines. It may be a

1 /110th or 1 /300th of a

second for a slow terminal, or
a billionth of a second for a

computer central processing
unit.

Binary and Ternary Symbol
Sets

We have seen that one
binary character suffices to
indicate two distinct states.
On the other hand, an
elevator is in one of three
states: It is idlc, or it is going
up, or it is going down.
Naturally one binary symbol
is not enough to represent
three states. Two lights may
be used as follows: The left
light may signal upward
motion when illuminated,
and the right light may signal
downward motion. No
upward or downward motion
is indicated when the
corresponding light is turned
off. Let's represent the two
possible states of the
indicator lights by the
graphics 1 of on and 0 for
off. The following three
characters then express the
three possible states:

00 [oo]

01 []

10 [

idle
down
up

Note that a character, that is,

the unit of information, is

represented by two bits or
binary digits. We now have
used a two -bit character code
to symbolically represent the
states of the system
consisting of the elevator and
its two lights.

An entirely different way
to represent three distinct
states symbolically is
accomplished by increasing
the number of basic symbols
from two to three. Let's use

the graphic 2 to indicate
upward movement. Instead of
the left and right indicator
lights, such conditions may
be indicated by a panel
displaying the terms idle,
down, or up as follows:

This time we used a code
consisting of ternary digits to
symbolically represent the
three states of the elevator
and its indicator panel.
Ternary means that a

characteristic, property, or
condition of a system can
prevail in one of three
alternatives.

Note that the unit of
i nformation, or in other
words, the character, has

been coded in the first case
by two binary digits, and in
the second instance by one
ternary digit. One can
conceptualize a character as a

distinguishing mark indicating
a specific state of a system.
Characters are "marks of
distinction" which may be
represented in different
graphic forms which have
equivalent value:

Binary Ternary Implementation
00 0 [oo] [IDLE]
01 1 [o, i] [DOWN]
10 2 [[U P]

The two bit code permits a

fourth alternative, namely 11.
In actuality, this situation
represents a contradiction
since the elevator cannot
move up and down at the
same time. However, this
character may be used to
signal a defect, such as the
elevator being stuck between
two floors, or it may simply
be out of operation. The
ternary code cannot signal
this condition unless an
additional basic symbol is

being used; let's assume that
an additional panel indicates
a defect when illuminated,
and the code representing this
situation consists of a binary
digit concatenated with a

ternary digit as follows:

0 [IDLE] neither down 10 [DEFECT] [IDLE]

nor up 00 [] [IDLE]

1 [DOWN] down 01 [] [DOWN]

2 [UP [up 02 [] [UP]

28

In this situation, the
character or information unit
is represented by one binary
and one ternary digit. It is a

mixed code, principally
similar to those found on
license plates consisting of
letters and decimal digits.

In this situation, two of
the six possible characters
remain unused, namely 11

and 12. At least, let's hope
that they remain unused
because 11 would mean that
a defective elevator is in
downward motion.

Enumerating Alternatives
The number of alternatives

which need to be considered
in a given system determines
the coding requirements. The
more alternatives need to be

communicated, the more
"marks of distinction" are
required. We have seen the
two basic ways to accomplish
this: Increase the number of
distinguishing graphics in the
character set, or concatenate
graphics from the same or
from different sets of basic
symbols to form strings.

Obviously there is some
upper limit to the number of
distinguishing marks available
to people. Humans have a

limit of what they can
comfortably memorize in
terms of numbers of basic
symbols when there is no
specific meaning attached to
them. Consequently there
comes a point when graphics
are being concatenated to
form symbol strings which
represent words. The string
3 -D stands for the word
which we pronounce'thr - -'di;
and which obviously means
"the three -dimensional form
or a picture produced in it"
(Webster's Seventh New
Collegiate Dictionary 1965:
page 920). We use the
decimal digits 0, 1, 2, ..., 9
to represent numbers, the
letters a, b, c, ..., z, A, B,

Z to represent the
alphabet for words; special
symbols and punctuation
marks are concatenated with
digits and letters to form even
longer strings to represent
expressions which inform
people about one specific
alternative out of, say, a

million possibilities. We form
mathematical expressions
(x2 +x -3, etc.) and word
expressions (i.e., sentences)
and a combination of the
two: "Yesterday it rained in
Peterborough for two hours."

The basic unit of
information is the basic
graphic symbol or character:
The space on the paper, the
special marks (+ -< , ; etc.),
the letters, and the decimal

digits, and, which is not
immediately obvious, certain
functions like the bell on the
typewriter which signals the
approach of the right margin,
the backspace, the margin
release, the carrier return, the
line feed adjustment, etc. The
latter group is called
functions or control
characters. In the computer
and communications field
many more functions are

encountered than there are

on the typewriter. These will
be discussed in detail further
on.

The number of graphics
available for marking one out
of many possible states of a

system is referred to by the
name base. Digits are used to
represent numbers; since

people generally use ten
distinct digits, the number
system is called a decimal
system. The base of this
system is 10. In the previous
section the binary number
system and the ternary
system were used. Their bases

are two and three,
respectively.

Using any one of these

systems, it is possible to mark
any number of alternatives. If
the number of alternatives
exceeds the base (i.e., the
number of distinct graphics in
the set) one or more
additional graphics are used.

Table 1. Equivalence of Selected Graphics.

Binary Ternary Octal Decimal Hexadecimal

o o o o o
1 1 1 1 1

10 2 2 2 2
11 10 3 3 3

loo 11 4 4 4
101 12 5 5 5
110 20 6 6 6
111 21 7 7 7

1000 22 10 8 8
1001 100 11 9 9
1010 101 12 10 A
1011 102 13 11 B

1100 110 14 12 C

1101 111 15 13 D
1110 112 16 14 E

1111 120 17 15 F

b = 2 3 8 10 16
g= 4 3 2 2 1

a = 16 27 64 100 16

As an example, let's assume

that we desired to mark any
one of sixteen alternatives. If
we used the letters to mark
these possibilities, as is often
found in term papers and
legal documents to mark
paragraphs and sections, one
graphic for each alternative
would suffice. As a matter of
fact, out of the 52 available
letters only sixteen would be

used. Thirty -six graphics
would not be used. Two
decimal graphics are required
to express sixteen options,
leaving 84 pairs unused.
Three ternary graphics
encompass these sixteen
possibilities leaving eleven
triplets unused. A quadruplet
of binary graphics generates
exactly sixteen possibilities.

I n general, by using 'g'
graphics of a set with base 'b',
the maximum number of
alternatives 'a' is determined
by multiplying 'b' with itself
for `g' times, or in other
words, a =bg. Table 1

summarizes this rule by
enumerating all possible
arrangements of binary,
ternary, octal (base 8),
decimal, and hexadecimal
(base 16) graphics for the
first sixteen values or
alternatives.

To illustrate the rule to
calculate the maximum
number of alternatives, the
hexadecimal system requires

29

only one graphic (g =1) for a

maximum of sixteen
alternatives (a =16) because its
base equals sixteen (b =16).
Note, however, that the
largest value or number
equals fifteen which is

represented by the graphic F

because enumeration began
with the magnitude zero.

The maximum value is

always one less than the
number 'a' because these
systems start counting with
zero. Assuming two
hexadecimal graphics (g=2),
256 distinct alternatives can
be identified (a =162). The
largest value, however, is

equal to 255 (a -1) because
the first value is zero. The
hexadecimal string FF
identifies the same magnitude
as the decimal string 255 or
the bit string 11111111.

It is easy to change from
one coding system to
another, especially from
binary to hexadecimal and
back, by means of Table 1.

The choice of the
hexadecimal graphics A to F

was arbitrary and is of great
help to people. Machines
represent all characters as

binary pulses within a given
time period. Bit strings,
therefore, can become very
large and difficult to
remember. Imagine the bit
string 10001111011100.
How much easier it is to

remember the hexadecimal
string 23DC instead (you may
wish to verify the translation
starting with the right four
bits). Any other distinct
graphics instead of A to F
could have been used; for
example ! @ # < % >.
However, try to remember
these in this order, and try to
pronounce 23<# instead of
the above 23DC.

How to Identify Character
Sets

Given the possibility of
switching from one
representation to another, the
question of code
identification must be dealt
with. Assume the graphic
representation 3 -D. Is it a

word of the English language?
Or is it an arithmetic
expression? If it is an
arithmetic expression, which
number system has been
employed? Assume another
representation such as 11.
Which number system has
been employed and what
magnitude is represented?
You may wish to consult
Table 1 and calculate the
magnitude for each number
system.

I n order to avoid
confusion, graphics other
than decimal digits, letters,
and the special symbols are
identified explicitly. The
string 11 therefore means
eleven in the decimal number
system, and 3 -D is part of the
English language. If a ternary
string was meant, one needs
to say so in some
unambiguous manner. This
can be accomplished through
a textual declaration such as

"All following digits are
ternary digits" or, "The
ternary number 11 has a
value of 4" where according
to our convention the graphic
4 is understood to be a

decimal digit.
A different way to

identify strings is by
appending to the string the
base. I n the mathematical and
computing literature different
methods have been

e m p l o y e d . I n the
mathematical literature, this
is accomplished by a separate
graphic which is appended to
the digit string: 112 is a

binary number with a value
of three, while 118 is an octal
number representing nine,
and 1116 is a hexadecimal
number representing 17. The
subscripted graphic represents
the base, and it is omitted
whenever the base is ten. This
convention also avoids the
confusion about 3 -D. This
string is an expression of the
English language, whereas
3 -D16 equals 3 -13 or -A16
which is a numeric expression
resulting in a number.

I n the computing
literature, different ways have
been found to identify bit or
hexadecimal strings. These
ways depend on the
manufacturer and on the
computing language
employed. In American
National Standard (ANS)
Fortran, a predominately
mathematical language
(which is to be distinguished
from Basic Fortran), digit
strings are recognized as

decimal numbers. Bit strings
are not allowed, and non -digit
strings as used for headlines,
table headings, etc., are
preceded by one or more
digits and the capital letter H;
for example, 4H3.14 means
the four characters 3.14
which differ in their internal
representation from the
magnitude 3.14. The constant
4 prior to the H indicates the
length of the string; it is four
symbols long.

In ALGOL 60 which is an

internationally standardized
mathematical language, digit
strings are recognized as

decimal numbers, and
character strings for table
headings, etc., are enclosed in
so-caHed string brackets as
shown in the example: '...
The wife stated that her
husband told her 'our
daughter complained 'the
teacher is giving me trouble "'.
Note that it is possible to
have strings within strings,
each of which is enclosed by

30

the single quotes pair.
In Programming Language

One (PL /I), as devised by
IBM, digit strings are
recognized as decimal
numbers unless they are
appended by the letter B.
11B equals 112 and has a

value of 3. Since the internal
representation of binary
numbers differs from codes,
this language also permits
explicit bit and character
strings such as '11'B which
does not necessarily have a

value of 3 but could mean,
for example, that the elevator
is out of order. Alphanumeric
character strings are also
permitted and recognized
whenever they are enclosed in
single quotes: 'THIS IS A
"STRING ", ISN'T IT ?'.
Similar distinctions exist also
in ALGOL 60 and will be
discussed in a future article.

You might have noted that
the character constants in
Fortran were preceded by the
length indicator and an
identifying character H. In
the systems using quotes or
string brackets, the length is
determined by the number of
positions occupied between
the brackets. Many assembler
languages combine these two
methods. The string is
enclosed in quotes, and it is
preceded by a single letter
indicating the base. B'11' is
equal to 11B or '11'B and has
a value of 3 when it is used as

a number in integer
arithmetic. X'11' equals 1116
or 17 and is a hexadecimal
string.

The distinction between
binary numbers and bit
strings is a rather fine one and
will be discussed in a future
article. The computer
represents all information as

strings of bits and
manipulates these strings
according to their type in
certain groupings of bits. The
basic group is called a
machine word and consists of
one or more bits. These bit
groups have an equivalent
code value which can be
represented graphically in
several different ways.

Function Abbreviations
We have discussed earlier

various functions of the
typewriter. Computer
terminals and communica-
tions equipment use many
more function characters
than the common typewriter
does. In the various codes,
these functions correspond to
certain bit strings. The
functions are indicated in the
code tables on the following
pages by abbreviations.
Therefore, in Table 2 a

dictionary of these
abbreviations is presented.

The more frequently

encountered terminal
function codes (as opposed to
transmission functions) are

marked with an asterisk.

The Baudot Five -Bit
Telegraphy Code

An operator depressing the
telegraph key causes current
to flow through a wire. The
current actuates an
electromagnet at the receiving
end which produces a

"click ". The timing between
the clicks represents either a

dot or a dash, and
telegraphers yesterday, and
hams today, are skilled in

Fig. 1. The word BYTE in Baudot Code.
I.- LETS -.I

"MARKING" I

"SPACING" 0 #I-
ISTART STOP'

1.-ONE CHARACTER-.I
.1 I It- 5 -'-1 1.5 I-.

OR
TIME UNITS 1.42

Table 2. Function Abbreviations.

ACK
BEL, BELL
BS
BYP
CAN
CC

CR

CU 1

CU 2

CU 3

DC 0
DC 1

DC 2

DC 3

DC 4
DEL
DLE
DS
EM
ENQ
EOA
EOB
EOM
EOT
ERR
ESC
ETB
ETX
FE
FF
FIGS
FS
GS
HT
IDLE
IFS
I GS

IL

Affirmative Acknowledgement
Bell or other audible signal

Backspace
By Pass

Cancel
Cursor Control
Carriage Return
Customer Use 1

Customer Use 2

Customer Use 3

Device Control O.

Device Control 1

Device Control 2

Device Control 3

Device Control 4 (stop)
Delete
Data Link Escape

Digit Select
End of Medium
Enquiry
End of Address
End of Block
End of Message
End of Transmission
Error
Escape
End of Transmission Block
End of Text
Format Effector
Form Feed
Figures Shift
Information File Separator
Information Group Separator
Horizontal Tabulation
Null
Interchange File Separator
Interchange Group Separator
Idle

B -
----1--

31

translating these "dots" and
"dashes" into graphics.

Transmission speed was

mostly dependent on the
telegraphers' skills. The term
"baud rate" means the
frequency at which the dots
recurred in a second, with
every dash counting twice as

long as a dot.
In the automatic

teletypewriter the key was
replaced by a distributor
which sends a fixed number
of pulses for each character
entered on a keyboard.
Latches at the other end
actuated a printing device.

Y -.i
--F-

IRS
ITB
IUS
LC
LETS
LF
NAK
NL
NUL
PF
PN

PRE
RES
RS
RU
RVI
SO-S7
SI

SK
SM
SMM
SO

SOH
SOM
SOS
SP

STX
SUB
SYN
TM
TTD
UC
US
VT
VTAB
WACK
WRU

I T -H

The term "marking" was used
to indicate the flow of
current, and the line was
"spacing" when the current
was off. Marking and spacing
can be related to binary
digits. In Table 3, a mark is

indicated by the bit 1, and a

space by the bit O. In
addition to the five bits of
the code, a space occurred
prior to transmission, and a

longer mark (1.5 or 1.42
times the usual mark time)
terminated the code. Fig. 1

shows the timing of marks
and spaces of the string
BYTE:

1- E -01

Interchange Record Separator
Intermediate Text Block
Interchange Unit Separator
Lower Case

Letters Shift
Line Feed

Negative Acknowledgement
New Line
Null, or all zeros

Punch Off
Punch On
Prefix
Restore
Record Separator (Reader Stop)
Are you ... ?

Reverse Interrupt
Separator Information
Shift In
Skip (punched card)
Set Mode
Start of Manual Message

Shift Off or Shift Out
Start of Heading
Start of Message

Start of Significance
Space
Start of Text
Start of Special Sequence
Synchronous Idle
Tape Mark
Temporary Text Delay
Upper Case

Information Unit Separator
Vertical Tabulation
Vertical Tabulation
Wait Before Transmitting Positive Acknowledgement
Who are you?

Prior to transmission of
the letter B, the code LETS
must be sent in order to set
the receiving equipment into
letter shift mode. The reason
for this convention is to make
it possible to transmit more
than 32 symbols with five
bits (g =5, b =2, a =32). 'After
all, there are already 26
uppercase letters and ten
digits; then there is need for
punctuation and special
symbols, and function
characters to control the
printer. Once the operator
intends to send a numeric
character, the FIGS code is
sent prior to the numeric
string. In addition to the
numeric characters, several
other characters were sent in
figures shift mode. Depending
on the equipment used,
various different graphics
were assigned to the same bit
strings. Table 3 indicates the
assignments for four different
keyboards; the first column
shows the International
Telegraph Alphabet No. 2 of
the Comite Consultatif
I nternational Telegraphique
et Telephonique (CCITT); the
second column shows the
commercial teletype
keyboard as used in the
United States, the third
column presents the fractions
keyboard of the American
Te l e phone and Telegraph
Company (ATT); the fourth
column shows the weather
bureau keyboard. All four
different keyboards are
shown here because used
equipment from different
sources may be available to
you which you might want to
modify so that all keycaps
correspond to the commercial
keyboard.

Binary Coded Decimal (BCD)
Transmission Code

The term "binary coded
decimal" derives from the
method of coding decimal
digits. The bit string with
value 9 is 1001, and the value
10 is expressed by adding an
additional four bits, namely,
00010000. The bit string

Table 3. Five -level Baudot Code for Four Selected Keyboards.

BIT
CODE

Upper Case

Lower E d1
E

L

0
Case Ú Ú Q

1 1 o o A - - - f

i o o i 1 B ? ? 5/8 ED

o 1 1 1 o c . 1/8 0
1 0 0 1 0 D arehyou? $ $ /
1 0 0 0 0 E3 33 3

1 0 1 1 0 F I 1/4

0 1 0 1 1 G & & \
o o 1 o 1 H # +

o 1 1 o o I 8 8 8 8

1 1 0 1 0 J Bell Bell ' /
1 1 1 1 0 K ((1/2 -
0 1 0 0 1 L I I 3/4 \
0 0 1 1 1 M

0 0 1 1 0 N 7/8 0

0 0 0 1 1 O 9 9 9 9

0 1 1 0 1 P 0 0 Ò m

1 1 1 0 0 0 1 1 1 1

0 1 0 1 0 R 4 4 4 4

1 0 1 0 0 S Bell Bell

0 0 0 0 1 T 5 5 5 5

1 1 1 o o u 7 7 7 7

0 1 1 1 1 V = 3/8 m

1 1 0 0 1 W 2 2 2 2

1 o 1 1 1 X / / / /

1 0 1 0 1 Y 6 6 6 6

1 0 0 0 1 Z + +

0 0 0 0 0 Blank
. -

1 1 1 1 1 Letters shift I

1 1 0 1 1 Figures shift f

0 0 i 0 0 Space o
0 0 0 1 0 Carriage return <
0 1 0 0 0 Line feed

32

Table 4. Seven -bit American Standard Code for Information Interchange.

Bits 7,

Bits

4 3 2 1

6, 5 000 001 010 011 100 101 110 111

Hex 0
Hex 1

0 1 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 @ P , p

0 0 0 1 1 SOH DC1 It ! 1 A Q a q

0 0 1 0 2 STX DC2 " 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEL ETB ° 7 G W g w

1 0 0 0 8 BS CAN (8 H X h x

1 0 0 1 9 HT EM) 9 I Y i y

1 0 1 0 A LF SUB ' J Z j z

1 0 1 1 B VT ESC + , K (k
ì

1 1 0 0 C FF FS , < L 1 1

1

1 1 0 1 D CR GS -- - M j m i
1 1 1 0 E SO RS . > N 1 t " n ^'
1 1 1 1 F SI US / ? O o DEL

tFor IBM 370, the left of the two symbols is generally displayed. See Table 2 for explanation of
function abbreviations.

Table 5. Six -bit Binary Coded Decimal Transmission Code.

Bits
1, 2

Bits 3,4,5,6 00 01 10 11

0000 SOH & - 0

0001 A J / 1

0010 B K S 2

0011 C L T 3

0100 D M U 4

0101 E N V 5

0110 F O W 6

0111 G P X 7

1000 H Q Y 8

1001 I R Z 9

1010 STX SPACE ESC SYN

1011 . $)

1100 < " % @

1101 BEL US ENQ NAK

1110 SUB EOT ETX EM

1111 ETB DLE HT DEL

33

01011001 therefore has a

value of 59, and 99 is

expressed as 10011001. This
method differs from the bit
coding shown in Table 1.

The binary coded decimal
(BCD) transmission code has
been widely used by IBM and
other manufacturers to
transmit uppercase letters,
digits, and special symbols in
a six -bit code. I t is a subset of
the USASCII code; however,
it is not a national standard.
The bit strings are shown in
Table 5.

The American Standard Code
for Information Interchange
(ASCII)

Throughout the decades,
many different data
transmission codes were
developed, and designers
today often find good reasons
to develop their own codes.
The need for standardized
transmission codes, however,
has increased tremendously
because more and more
machines dial -up other
machines via the public
networks. The American
Standards Association has
standardized a seven bit code
for communications. It
contains upper and lower -case
letters, and a large number of
device and transmission
control characters. An eighth
bit may be added for parity.
The term parity implies that
the number of bits should
add up to an even number
(for even parity) or to an odd
number for odd parity. The
purpose is to check to some
degree for a loss of bits
during transmission. Assume
that a device transmits in

even parity; uppercase B

consists of two marks and
five spaces, therefore, no
eighth bit is transmitted;
uppercase T consists of three
marks and four spaces, and an
eighth mark is sent to make
the number of marks even.
Fig. 2 shows the string BYTE
in even parity transmission.
The code is shown in Table 4.
Bit 1 is transmitted first. You
may also want to refer to
Table 2 in order to
understand the meaning of
the abbreviations.

Extended Binary Coded
Decimal Interchange Code
(EBCDIC)

The Extended Binary
Coded Decimal Interchange
Code is essentially the
previously mentioned Binary
Coded Decimal code
extended by two bits to form
an eight -bit code. A total of
256 codes are possible (b =2,
g =8, a =256) and because of
its length of eight bits, it is
often more easily expressed
in hexadecimal notation by
means of a string of two
hexadecimal digits. Table 6
shows both notations, the bit
pattern and the hexadecimal
notation. The digit 9, for
example, is expressed as the
bit string 11111001, or as the
hexadecimal string F9.

The code is often used to
transmit the eight -bit bytes of
computers. It originated
about a decade ago when IBM
introduced the System 360.
The terms "EBCDIC ",
"byte ", and "hexadecimal
digits 0, ..., F" were
developed at that time.
Today these terms are widely

Fig. 2. The word BYTE in Even -parity USASCII.

"MARKING" I

"SPACING" O i
I

r -
-vIá1 ó I~^ Y

4 co co

accepted and used by many
computer manufacturers. The
code is also widely accepted;
however, it is not a national
standard.

Conclusions

A character is a unit of
information which can be
represented in various forms,
such as in graphic form, or as

a bit string. Since bit strings
can be rather lengthy and
therefore difficult to
remember, we discussed the
abbreviated representation of
the string by means of the
hexadecimal graphics. The
relationship between the bit
string representations of
characters and the
hexadecimal graphics is

independent of the code since
it is based on an intrinsic
numerical order, namely that
of counting from zero by one
to infinity.

On the other hand, bit
strings may be represented by
graphics in an entirely
different manner depending
on the code used. For that
purpose we looked at the
predominant five -, six -, seven -
and eight -bit codes presently
in use. We did not discuss
various other but less
important codes because of
space limitations. Depending
on the code utilized, the same
graphic represents entirely
different bit strings as shown
in Table 7.

The first character in the
Baudot code is the letters
shift. Note the similarity
between the last three codes
which holds only for
uppercase letters and digits.

>
--or! c7

a
ONE CHARACTER `fr ONE CHARACTER

34

ó
Ñ

rc 1.-
1-

-
N

r
T ¢ --^ á

ONE CHARACTER

ó
co

I- s QN_
Ñ

E

ONE CHARACTER -.I

Table 6. Eight -bit Extended Binary Coded Decimal Interchange Code.

-1

Hyphen
1

Break

Sign

Mark

Sign

Mark

Bits

4, 5,

Bits 0, 1 00 01 10 11

Bits 2, 3 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

6, 7
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

ex 0

Hex

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

PF

HT

LC

DEL

SMM

VT

FF

CR

SO

SI

DLE

DC1

DC2

TM

RES

NL

BS

IL

CAN

EM

CC

CU1

IFS

IGS

IRS

IUS

DS SP & -
SOS

FS SYN

BYP PN

LF RS

ETB UC

ESC EOT

SM d

CU2 CU3 . $

DC4 < %

ENO NAK (I -
ACK

BEL SUB ?

1

@

1

a

b

c

d

e

f

g

h

i

d

<
(

+

&

!

$

1

i

k

I

m

n

o

p

q

r

o

A J 1

s B K S 2

t C L T 3

u D M U 4

y E N V 5

w F O W 6

x G P X 7

y H Q Y 8

z I R Z 9

Special Graphic Characters

Cent Sign Minus Sign,

Period, Decimal Point / Slash

Less -than Sign Comma

Left Parenthesis % Percent

Plus Sign a- Underscore,

Logical OR Character

Ampersand > Greater -than

Exclamation Point ? Question

Dollar Sign Colon

Asterisk # Number

Right Parenthesis @ At Sign

Semicolon Prime, Apostrophe

Logical NOT __ Equal Sign

Quotation

To conclude this tutorial,
let me say this in EBCDIC
(without start, stop and
parity bits):

D5 85 A7 A3 6B
40 A6 85 7D 93
93 40 84 89 A2
83 A4 A2 A2 40
95 A4 94 82 85
99 A2 4B

(

1

I

1

See Table 2 for explanation of function abbreviations.

Table 7. Transmission of the String BYTE in selected codes (excluding
start, stop) and parity bits).

11111 10011 10101 00001 10000 Baudot

000010 101000 100011 000101 BCD Transmission Code

0100001 1001101 0010101 1010001 USASCII (see Note 1)

11000010 11101000 11100011 11000101 EBCDIC

Note 1. In memory, the sequence of bits on the IBM 360 and 370 is

reversed. The left bit shown becomes the right bit, etc., as shown:

1000010 1011001 1010100 1000101

35

HARD PALATE

NASAL TRACT

SOFT PALATE

VELUM

ORAL TRACT

TONGUE BODY

PHARYNX

EPIGLOTTIS

DESIRED
CURVE

GLOTTIS

NOSTRILS

LIPS

TEETH

TONGUE TIP

JAW

Figure 1: The Human Vocal Tract. The
human vocal tract is roughly described as a

tube approximately 17.4 cm long with
varying resonance characteristics as muscles
control the shape. The tract splits into two
parts, nasal and oral, at the top, with a valve
called the velum providing flexible control
of the nasal resonances in given utterance.
An electronic model of this natural organ
roughly parallels the function of the tract.

ACTUAL
DAC OUTPUT

Figure 2: DAC Quantization Errors. The actual output of a computer to the
analog world is a step function (in the absence of any filtering). This leads to
the problem of quantization errors, depicted conceptually here by the shaded
areas in between the smooth analog function and its closest step function
approximation. Low precision digital to analog conversions accentuate this
problem.

36

Friends, Humans,

D Lloyd Rice
Computalker Consultants
821 Pacific St #4
Santa Monica CA 90405

You've got your microcomputer running
and you invite your friends in to show off
the new toy. You ask Charlie to sit down
and type in his name. When he does, a

loudspeaker on the shelf booms out a hearty
"Hello, Charlie!" Charlie then starts a game

of Star Trek and as he warps around thru the
galaxy searching for invaders, each alarming
new development is announced by the ship's
computer in a warning voice, "Shield power
low! ", "Torpedo damage on lower decks!"

The device that makes this possible is a

peripheral with truly unlimited applications,
the speech synthesizer. This article describes
what a speech synthesizer is like, how it
works and a general outline of how to
control it with a microcomputer. We will
look at the structure of human speech and

see how that structure can be generated by a

computer controlled device.
How can you generate speech sounds

artificially, under computer control? Let's
look at some of the alternatives. Simplest of
all, with a fast enough digital to analog
converter (DAC) you can generate any
sound you like. A 7 or 8 bit DAC can

produce good quality sound, while some-
where around 4 or 5 bits the quantization
noise starts to be bothersome. This noise is

produced because with a 5 bit data value it is

possible to represent only 32 discrete steps
or voltage levels at the converted analog
output. Instead of a smoothly rising voltage
slope, you would get a series of steps as in
figure 2. As for the speed of the DAC, a

conversion rate of 8,000 to 10,000 conver-
sions per second [The sample rate in con-
versions per second or samples per second is

often quoted in units of Hertz. We will use

that terminology here, although conversions

and Countryrobots: Lend me your Ears

per second is a generalization of the concept
of cycles per second] is sufficient for fairly
good quality speech. With sample rates
below about 6 kHz the speech quality begins
to deteriorate badly because of inadequate
frequency response.

Almost any microprocessor can easily
handle the data rates described above to
keep the DAC going. The next question is,

where do the samples come from? One way
to get them would be by sampling a real

speech signal with a matching analog to
digital converter (ADC) running at the same

sample rate. You then have a complicated
and expensive, but very flexible, recording
system. Each second of speech requires 8 K

to 10 K bytes of storage. If you want only a

few words or short phrases, you could store
the samples on a ROM or two and dump
then sequentially to the DAC. Such a system
appears in figure 3.

If you want more than a second or two of
speech output, however, the amount of
ROM storage required quickly becomes im-
practical. What can be done to minimize
storage? Many words appear to have parts
that could be recombined in different ways
to make other words. Could a lot of memory
be saved this way? A given vowel sound
normally consists of several repetitions of
nearly identical waveform segments with the
period of repetition corresponding to the
speech fundamental frequency or pitch.
Figure 4 shows such a waveform. Within
limits, an acceptable sound is produced if we

store only one such cycle and construct the
vowel sound by repeating this waveform
cycle for the duration of the desired vowel.
Of course, the pitch will be precisely con-
stant over that entire interval. This will
sound rather unnatural, especially for longer
vowel durations, because the period of
repetition in a naturally spoken vowel is

never precisely constant, but fluctuates
slightly. In natural speech the pitch is nearly
always changing, whether drifting slowly or

MICROPHONE

LOW -PASS
FILTER

ROM

ADC

CLOCK

DAC

PROGRAMMABLE
MEMORY

LOW -PASS
FILTER

Si ROM I

SPEAKER

Figure 3: Waveform Playback from ROM Storage. One way to achieve a

digitally controlled vocal output is to first digitize a passage of human speech,

then store the digital pattern in memory. For a commercial product, such as a

talking calculator, the limited vocabulary required makes this a feasible
avenue of design, especially when a single mass produced ROM can be used in
the final product. In an experimenter's system, the ROM is not needed, and
programmable memory can be substituted during experiments. This is

probably the least expensive way to augment an existing computer's
capability with vocal output, but the memory requirements limit its use to
small vocabularies. The quality of the result varies with the ADC (and DAC)
sampling rate and precision.

PITCH PERIOD PITCH PERIOD -+

Figure 4: Typical Vowel Waveform. In prin-
ciple, a vowel Is a fairly long sustained
passage of sound with repetitive characteris-
tics. The vowel sounds are produced physiol-
ogically by the resonances of the vocal tract,
and are controlled electronically by the
formant filters which produce the equivalent
of vocal tract resonances.

37

ACOUSTIC RESONATOR
(ONE END CLOSED)
(ONE END OPEN)

FORMANT I

AIR PRESSURE
DISTRIBUTION

FORMANT 2
AIR PRESSURE
DISTRIBUTION

FORMANT 3
AIR PRESSURE
DISTRIBUTION

17.4cm,--
I

VELOCITY OF SOUND, c 348OOcm /sec
kn WAVELENGTH OF nTH MODE
FREQUENCY OF nTH MODE, Fn c / an - XI /4

1. 312/4

FI c/41 500 Hz

F2 3c /41 1500 Hz

15a3/4 F3. 5c/41. 2500 Hz

Figure 5: Tube Resonances. Temporarily ignore the complicated shape of the vocal tract and

simplify it to a tube 17.4 cm long. Applying the equations of physics to acoustic waves in air

gives resonances at several modes or natural frequencies. The standing waves along the tube at
each frequency are shown, and identified as formant 1, formant 2 and formant 3. In the actual
vocal tract, a more complicated and time varying geometry changes the resonances as a sound is

created.

sweeping rapidly to a new level. It is of
interest that this jitter and movement of the
pitch rate has a direct effect on the percep-
tion of speech because of the harmonic
structure of the speech signal. In fact,
accurate and realistic modelling of the
natural pitch structure is probably the one
most important ingredient of good quality
synthetic speech. In order to have smooth
pitch changes across whole sentences, the
number of separate stored waveform cycles
still gets unreasonable very quickly. From
these observations of the cyclic nature of
vowels, let us move in for a closer look at
the structure of the speech signal and ex-
plore more sophisticated possibilities for
generating synthetic speech.

How Do We Talk?

The human vocal tract consists of an air
filled tube about 16 to 18 cm long, together
with several connected structures which
make the air in the tube respond in different
ways (see figure 1). The tube begins at the
vocal cords, or glottis, where the flow of air
up from the lungs is broken up into a series
of sharp pulses of air by the vibration of the

Figure 6: "ah" as in "father " In figure 1,

the vocal tract was shown in schematic form.
Here is a similar figure showing how the
tract has been modified to produce the
vowel sound ` ah. " The human typically
closes off the nasal cavity and widens out
the oral cavity by opening the mouth during
this sound.

38

vocal cords. Each time the glottis snaps shut,
ending the driving pulse with a rapidly
falling edge, the air in the tube above

vibrates or rings for a few thousandths of a

second. The glottis then opens and the
airflow starts again, setting up conditions for
the next cycle.

The length of this vibrating air column is

the distance from the closed glottis up along
the length of the tongue and ending at the
lips, where the air vibrations are coupled to
the surrounding air. If we now consider the
frequency response of such a column of air,
we see that it vibrates in several modes or
resonant frequencies corresponding to dif-
ferent multiples of the acoustic quarter
wavelength. There is a strong resonance or
energy peak at a frequency such that the
length of the tube is one quarter wavelength,
another energy peak where the tube is three
quarter wavelengths, and so on at every odd
multiple of the quarter wavelength. If a tube
17.4 cm long had a constant diameter from
bottom to top, these resonant energy peaks
would have frequencies of 500 Hz, 1500 Hz,
2500 Hz and so on. These resonant energy
peaks are known as the formant frequencies.
Figure 5 illustrates the simple acoustic
resonator and related physical equations.

The vocal tract tube, however, does not
have a constant diameter from one end to
the other. Since the tube does not have

constant shape, the resonances are not fixed
at 1000 Hz intervals as described above, but
can be swept higher or lower according to
the shape. When you move your tongue
down to say "ah," as in figure 6, the back
part is pushed back toward the walls of the

throat and in the front part of the mouth
the size of the opening is increased. The
effect of changing the shape of the tube in
this way is to raise the frequency of the first
resonance or formant 1 (F1) by several
hundred Hz, while the frequency of formant
2 (F2) is lowered slightly. On the other
hand, if you move your tongue forward and
upward to say "ee," as in figure 7, the size
of the tube at the front, just behind the
teeth, is much smaller, while at the back the
tongue has been pulled away from the walls
of the throat, leaving a large resonant cavity
in that region. This results in a sharp drop in

F1 down to as low as 200 or 250 Hz, with
F2 being increased to as much as 2200 or
2300 Hz.

We now have enough information to put
together the circuit for the oral tract branch
of a basic formant frequency synthesizer.
After discussing that circuit, we will con-
tinue on in this way, describing additional
properties of the speech mechanism and
building up the remaining branches of the
synthesizer circuit.

A Speech Synthesizer Circuit

To start with, we must have a train of
driving pulses, known as the voicing source,
which represents the pulses of air flowing up
thru the vibrating glottis. This could be
simply a rectified sine wave as in figure 8. To
get different voice qualities, the circuit may
be modified to generate different waveform
shapes.

This glottal pulse is then fed to a se-

quence of resonators which represent the
formant frequency resonances of the vocal
tract. These could be simple operational
amplifier bandpass filters which are tunable
over the range of each respective formant.
Figure 9 shows the concept of a typical
resonator circuit which meets our require-
ments. IC1, IC2 and IC4 form the actual
bandpass filter, while IC3 acts as a digitally
controlled resistance element serving to vary

INPUT

Figure 7: `ee" as in 'heed." In contrast to
figure 6, when the "ee" vowel sound is
created, the mouth opening tends to be nar-
rowed; and the upper end of the vocal tract
Is restricted This lowers the frequency of
the first resonant mode and raises the
frequencies of the second and third. Refer-
ring to table 1, the "ee" vowel sound has
some of the highest resonances for formants
F2 and F3 and the lowest for Fi.

.v

OV

Figure 8: Voiced Sounds from the Glottis. Sounds which have definite pitch
are called voiced sounds. In the natural larynx, these sounds are generated by
the vocal chords and drive the vocal tract at the glottis. In an electronic
analog, the voiced sounds can be generated by a programmable counter (to
set the frequency) which in turn creates a sine wave of the same frequency. A
rectified sine wave is a good source for the glottal pulses used in the
electronic model of a larynx used in the author's approach to speech
generation.

the resonant frequency of the filter. Several
such resonator circuits are then combined as

in figure 10 to form the vocal tract simu-
lator. The voicing amplitude control, AV, is

another digitally controlled resistance similar
to IC3 of figure 9.

This gain controlled amplifier configura-
tion is the means by which the digital
computer achieves its control of speech
signal elements. The data of one byte drives
the switches to set the gain level of the
amplifier in question. In figures 10, 13 and
15 of this article, this same variable resis-
tance under digital control is shown symbol-
ically as a resistor with a parameter name,

DATA BUS
8 DIGITALLY CONTROLLED

ANALOG SWITCHES

39

FILTERED
OUTPUT

Figure 9: Typical Formant
Resonator Circuit. A
digitally controlled band
pass filter can be built
from four operational
amplifiers and 8 digitally
controlled analog switches.
The filter characteristics
are set by the choice of
the resistance and capaci-
tance elements as well as
the digital control word.
The operational amplifier
IC3 serves as a gain con -
trolled amplifier in the
feedback loop, which
alters the filter resonance.

AC
SOURCE

8 WITH
DIGITAL

FREQUENCY
CONTROL

fi
AV

AV 8 BIT AMPLITUDE CONTROL

FI
8 BITS

F2
8 BITS

F3
8 BITS

OUTPUT

Figure 10: A first approximation of the voice synthesizer can be constructed
by using three formant filters In series with differing resonance settings all
controlled by 8 bit digital words. The resistance indicated as AV is an
operational amplifier circuit (see IC3 of figure 9) with a digital gain control
input. It is thus a programmable element of gain less than unity, In other
words the electronically controlled equivalent of a variable resistance. This
notation of a controlled resistance is used In figures 13 and 15 as well.

heed

hid

head

had

hod

paw

hood

who

F1 F2 F3

250 2300 3000
375 2150 2800
550 1950 2600
700 1800 2550
775 1100 2500
575 900 2450
425 1000 2400
275 850 2400

Table 1: Steady State English Vowels. The vowel sounds are made by
adjusting the formant resonances of the human vocal tract to the frequencies
listed in this table. These figures are approximate, and actual formant
resonances vary from individual to individual. In a speech synthesizer based
upon an electronic model of the vocal tract, the formant frequencies are set
digitally using operational amplifier filters with adjustable resonant peaks.

2400

2200

2000

1800

N 1600
I- z
4 1400 î
K

1200

1000

800

HEED

. HID

HEAD

HOOD

WHO PAW

I I I I I

o o o o o o o o o o
N In O In to

FORMANT I

HAD

1

o
o
p-

HOD

I 1

o o
o o
CO m

Figure 11: The Steady State English Vowels. The distinctions between
various vowel sounds can be illustrated by plotting them on a two
dimensional graph. The horizontal axis is the formant 1 frequency, the
vertical axis is the formant 2 frequency. A location for each vowel utterance
can be determined experimentally by locating the resonance peaks with an
audio spectrum analyzer.

40

rather than as an operational amplifier with
analog switches.

Generating Vowel Sounds

The vocal tract circuit as shown thus far
is sufficient to generate any vowel sound in
any human language (no porpoise talk, yet).
Most of the vowels of American English can
be produced by fixed, steady state formant
frequencies as given in table 1. A common
word is given to clearly identify each vowel.
The formant frequency values shown here
may occasionally be modified by adjacent
consonants.

An alternative way to describe the for -
mant relationships among the vowels is by
plotting formant frequencies F1 vs F2 as in
figure 11. F3 is not shown here because it
varies only slightly for all vowels (except
those with very high F2, where it is some-
what higher).

The F1 -F2 plot provides a convenient
space in which to study the effects of
different dialects and different languages.
For example, in some sections of the United
States, the vowels in "hod" and "paw" are
pronounced the same, just above and to the
right of "paw" on the graph. Also, many
people from the western states pronounce
the sounds in "head" and "hid" alike, about
halfway between the two points plotted for
these vowels on the graph.

A few English vowels are characterized by
rapid sweeps across the formant frequency

2400

2200

2000

1800

N 1600
I-
z
î 1400
cc

y0, 1200

1000

800 HOE

O o o o o O
O 0 0 0 0 0
N Io h W h

FORMANT I

O
o
m

O
0
m

Figure 12: English Diphthongs. A diphthong
Is a sound which represents a smooth transi-
tion from one vowel sound to another
during an utterance. The time duration of
the swap from one point to another In
formant space Is typically 150 to 250 ms.
This graph shows typical starting and ending
points for several common diphthong
sounds.

r 3000

W
8 2000
w
cc

1000

o

REL,
VO

1

F3

F2

i 1 1

0 100 200 mSEC

FI

'BA'

REL VO

1 ±

'PA'

VOICING
SOURCE

ASPIRATION
SOURCE

AV

AV8 BIT AMPLITUDE CONTROL

AH
FI

8 BITS
AH 8 BIT AMPLITUDE

CONTROL

F2
8 BITS

F3
8 BITS

OUTPUT

Figure 13: Synthesizer with Aspiration Noise Generator. Not all utterances are vowels. By
adding a digitally controlled noise generator to the circuit of figure 10, it is possible to
synthesize the consonant sounds known as "stops." In this circuit,. the amplitude versus time
characteristics of the noise pulse are determined by an 8 bit programmable gain control AH
(shown symbolically as a resistor). The output of the noise source is mixed with the voicing

source with the analog sum being routed to the formant filters. The noise generator is a zener

diode.

space rather than the relatively stable posi-
tions of those given in table 1. These sweeps

are produced by moving the tongue rapidly
from one position to another during the

production of that vowel sound. Approx-
imate traces of the frequency sweeps of
formants F1 and F2 are shown in figure 12

for the vowels in "bay," "boy," "buy,"
"hoe" and "how." These sweeps occur in

150 to 250 ms roughly depending on the
speaking rate.

REL,VO

I
REL,V0

' DA' 'GA"

REL VO REL VO

' TA' 'KA'

Figure 14: Stop Consonant Patterns. This figure illustrates 6 different stop
consonant patterns. The release of the stop closure (start of noise pulse) Is at

the point marked by "Rel" and the beginning of the voicing sounds is marked
by "VO". Note the typical transition of the vowel formants as the steady

state is reached.

41

Consonant Sounds

Consonant sounds consist mostly of vari-
ous pops, hisses and interruptions imposed
on the vibrating column of air by the actions
of several components of the vocal tract
shown in figure 1. We will divide them into
four classes: 1) stops, 2) liquids, 3) nasals,

and 4) fricatives and affricates. Considering
first the basic 'stop consonants,' "p," "t,"
"k," "b," "d" and "g," the air stream is

closed off, or stopped, momentarily at some
point along its length, either at the lips, by
the tongue tip just behind the teeth or by
the tongue body touching the soft palate
near the velum. Stopping the air flow briefly
has the effect of producing a short period of
silence or near silence, followed by a pulse
of noise as the burst of air rushes out of the
narrow opening.

The shape of the vocal tract with the
narrow opening at different points deter-
mines the spectral shape of the noise pulse as

well as the formant locations when voicing is

started. Both the noise burst spectrum and
the rapid sweeps of formant frequency as

the F1 -F2 point moves into position for the
following vowel are perceived as character-
istic cues to the location of the tongue as the
stop closure is released. We need only add a

digitally controlled noise generator to the
vocal tract circuit of figure 10 to simulate
the noise of the burst of air at the closure
release and we can then generate all the stop
consonants as well as the vowels. Figure 13

shows the speech synthesizer with such a

noise generator added. The breakdown noise
of a zener diode is amplified by IC1 and
amplitude is set by the digitally controlled
resistor AH. IC2 is a mixer amplifier which
combines the glottal source and aspiration

VOICING
SOURCE

FV

NOISE
SOURCE

AV

AN
NASAL

RESONATOR

FI F2 F3

AH Il AF
FRICATIVE

IRESONATORI

FF -I

8 BITS

Figure 15: The Complete Synthesizer. This diagram shows the organization of a complete synthesizer which includes a wide

variety of parameters. The voicing frequency and amplitude are set by parameters FV and AV. The noise pulses of stop

consonants are generated with the programmable gain element AH. The fricative resonator with amplitude AF and frequency

resonance FF are used to generate fricatives like "s "and "sh. " The normal vowel sounds are generated by control of the formant

frequencies Fl, F2 and F3, and a nasal resonator with amplitude AN and fixed frequency characteristics is used to add varying

amounts of nasal sounds. The result of signals processed through the nasal, formant and fricative paths is summed by a final

operational amplifier and used to drive the output speaker.

noise at the input to the formant resonators.
It is important to notice at this point the

range of different sounds that can be gen-
erated by small changes in the relative timing
of the control parameters. The most useful
of these timing details is the relationship
between the pulse of aspiration noise and a

sharp increase in the amplitude of voicing
(see figure 14). For example, if we set the
noise generator to come on for a noise pulse
about 40 ms long and immediately after
this pulse, F1 sweeps rapidly from 300 up to
775 Hz and F2 moves from 2000 down to
1100 Hz, the sound generated will cor-
respond to moving the tip of the tongue
down rapidly from the roof of the mouth.
Observe, however, that the formant output
is silent after the noise pulse until the
voicing amplitude is turned up. If voicing is

turned on before or during a short noise
burst, the circuit generates the sound "da,"
whereas if the voicing comes on later, after a

longer burst and during the formant fre-
quency sweeps, the output sounds like "ta."
This same timing distinction characterizes
the sounds "ba" vs "pa" and "ga" vs "ka,"
as well as several other pairs which we will
explore later. Figure 14 gives the formant
frequency patterns needed to produce all the
stop consonants when followed by the vowel
"ah." When the consonant is followed by a

different vowel, the formants must move to
different positions corresponding to that
vowel.

The important thing to note about a stop
transition is that the starting points of the
frequency sweeps correspond to the point of

closure in the vocal tract, even though these

sweeps may be partially silent for the un-
voiced stops "p," "t" and "k," where the
voicing amplitude comes on after the sweep

has begun.
The second consonant group comprises

the liquids, "w," "y," "r" and "I." These
sounds are actually more like vowels than
any of the other consonants except that the
timing of formant movements is crucial to
the liquid quality. "W" and "y" can be

associated with the vowels "oo" and "ee,"
respectively. The difference is one of timing.
If the vowel "oo" is immediately followed
by the vowel "ah," and then the rate of F1

and F2 transitions is increased, the result
will sound like "wa." A comparison of the
resulting traces of F1 and F2 vs time in
"wa" with the transition pattern for "ba" in
figure 14 points out a further similarity. The

Resonator
Frequency

(FF)

Fricative
Amplitude

(AF)

sh, zh 2500 .9

s, z 5000 .7

f, v 6500 .4

th 8000 .2

Table 2: Fricative Spectra. A fricative sound typically consists of a pulse of
high frequency noise. The various types of fricatives are classified according
to the spectral profile of the pulse. For the electronic model described here,

the fricative amplitude and resonator frequency for several sounds are listed
In this table.

42

Product Information
At the time this article

goes to press, a synthesizer
module incorporating several
detail refinements and im-
provements over the circuits
of this article is being de-
veloped by the author and
associates. A detailed user's
guide will be supplied with the
Computalker module which il-
lustrates the timing relation-
ships needed to produce all
the consonant -vowel and vow-
el- consonant combinations
which occur in natural speech.
This can serve as a reference
guide for creating your speech
output software which gener-
ates the proper control pat-
terns from text inputs. Write
to Computalker, 821 Pacific
St No. 4, Santa Monica CA
90405 for the latest informa-
tion on this module.

direction of movement is basically the same,
only the rate of transition of "ba" is still
faster than for "wa." Thus we see the
parallelism in the acoustic signal due to the
common factor of lip closeness in the three
sounds "ua," "wa" and "ba." "Y" can be
compared with the vowel "ee" in the same
way, so the difference between "ia" and
"ya" is only a matter of transition rates.
Generally, "I" is marked by a brief increase
of F3, while "r" is indicated by a sharp drop
in F3, in many cases, almost to the level of
F2.

The third group of consonants consists of
the nasals, "m," "n" and "ng." These are
very similar to the related voiced stops "b,"
"d" and "g," respectively, except for the
addition of a fixed "nasal formant." This
extra formant is most easily generated by an
additional resonator tuned to approximately
1400 Hz and having a fairly wide bandwidth.
It is only necessary to control the amplitude
of this extra resonator during the "closure"
period to achieve the nasal quality in the
synthesizer output.

The fourth series of consonants to be

described are the fricatives, "s," "sh," "z,"
"zh," "f," "v" and "th" and the related
affricates "ch" and "j." The affricates "ch"
and "j" consist of the patterns for "t" and
"d" followed immediately by the fricative
"sh" or "zh," respectively, that is, "ch" _
"t +sh" and "j" = "d +zh." The sound "zh" is

otherwise rare in English. An example occurs
in the word "azure." With the letters "th,"
two different sounds are represented, as

contained in the words "then" and "thin."
All the fricatives are characterized by a pulse
of high frequency noise lasting from 50 to
150 msec. The first subclassification of
fricatives is according to voicing amplitude
during the noise pulse, just as previously
described for the stop consonants. Thus,
"s," "sh," "f," "ch" and "th" as in "thin"
have no voicing during the noise pulse, while
"z," "zh," "v," "j" and "th" as in "then"
have high voice amplitude. When a voiceless
fricative is followed by a vowel, the voicing
comes on during the formant sweeps to the
vowel position, just as in the case of the
voiceless stops. The different fricatives with-
in each voice group are distinguished by the
spectral characteristics of the fricative noise
pulse. This noise signal differs from that
previously described for the stop bursts in
that it does not go thru the formant resona-
tors, but is mixed directly into the output
after spectral shaping by a single. pole filter.
Table 2 gives the fricative resonator settings
needed to produce the various fricative and
affricate consonants. Fricative noise ampli-
tude settings are shown on a scale of 0 to 1.

43

The Complete Synthesizer

The system level diagram of a complete
synthesizer for voice outputs is summarized
in figure 15. The information contained in
this article should be sufficiently complete
for individual readers to begin experimenting
with the circuitry needed to produce speech
outputs. In constructing a synthesizer on
this model, the result will be a device which
is controlled in real time by the following
parameters:

AV = amplitude of the voicing source,
8 bits

FV = frequency of the voicing source,
8 bits

AH = amplitude of the aspiration noise
component, 8 bits

AN = amplitude of the nasal resonator
component, 8 bits

AF = amplitude of the fricative noise
component, 8 bits

F1 = frequency of the formant 1 fil-
ter, 8 bit setting.

F2 = frequency of the formant 2 fil-
ter, 8 bit setting.

F3 = frequency of the formant 3 fil-
ter, 8 bit setting.

FF = frequency of fricative resonator
filter, 8 bit setting.

This is the basic hardware of a system to
synthesize sound; in order to complete the
system, a set of detailed time series for
settings for these parameters must be deter-
mined (by a combination of the theory in
this article and references, plus experiment
with the hardware). Then, software must be

written for your own computer to present
the right time series of settings for each
sound you want to produce. Commercial
synthesizers often come with a predefined
set of "phonemes" which are accessed by an

appropriate binary code. The problem of
creating and documenting such a set of
phonemes is beyond the scope of this
introductory article, but is well within the
dollar and time budgets of an

experimenter.

BIBLIOGRAPHY

1. Erman, Lee, ed, IEEE Symposium on Speech
Recognition, April, 1974, Contributed Papers,
IEEE Catalog No. 74CH0878 -9 AE.

2. Flanagan, J L, and Rabiner, L R, eds, Speech
Synthesis, Benchmark Papers in Acoustics,
Dowden, Hutchinson & Ross, Inc, 1973.

3. Lehiste, Ilse, ed, Readings in Acoustic Phonet-
ics, MIT Press, 1967.

4. Moschytz, George S, Linear Integrated Net-
works Design, Van Nostrand, New York, 1975.

Magnetic Recording for Computers

William A Manly
Cobaloy Co
626 Great Southwest Pkwy
Arlington TX 76011

Nothing can come any-
where near magnetic re-
cording for low cost per
unit of stored information.

Why Magnetic Recording?

Anyone seriously involved with com-
puters, whether he likes it or not, will also
be seriously involved with magnetic record-
ing. After one begins working with com-
puters, it doesn't take very long to discover
the shocking fact that memory for a com-
puter is going to cost a lot more than the
computer itself. A computer requires lots of
memory, and professional or amateur, the
computer user wants to minimize the cost of
his computer setup. A look at figure 1 will
immediately tell you why magnetic record-
ing is so important to computer memories:
Nothing can come anywhere near it for low
cost per unit of stored information. Figure 1

also shows why magnetic recording cannot
be used for all types of computer memories:
It is the slowest of the memories, which
means that it is employed mostly for long
term, low usage storage (usually called bulk
storage).

All Kinds of Recorders -
Magnetic recorders come in many forms:

tape, disk, drum, card, sheet, stripe, roll,
cassette, reel, ... etc. Most of these forms
have been used for computer memories in
the past, and many are still in use.

And Recording Methods

There are several ways of placing mag-
netic signals on magnetic media. Among
these are those which use the hysteresis loop
or the initial magnetization curve, those
which use a variation of anhysteretic mag-
netization, and some methods which use
Curie point magnetization. I will go through
the first two in detail. The last one involves
heating the medium until it is so hot that it
is no longer magnetic (it ceases being mag-
netic at a temperature called the Curie

44

point), then letting it cool in the recording
field until it again becomes magnetic. Due to
the inconvenience of the temperature
cycling, this last method is not important for
digital recording. The first method will be

covered in the greatest detail, as most
recorders designed for digital use employ it.
Many of the conclusions drawn will also
apply to the second method.

Some other names and subdivisions also
apply to the main divisions given above. If
we call the first type hysteresis recording,
there are two main subdivisions. One is very
much like FM radio broadcasting, and is also
called frequency modulation recording
(sometimes called phase modulation). A
single- frequency carrier is recorded on the
medium, and its frequency changed accord-
ing to the information to be stored. Another
subdivision is the type used for most digital
work. It is called saturation recording.
Ideally, the saturation recorded medium has
only two states: saturated (magnetized to
maximum strength) in one direction, or
saturated in the other direction. The infor-
mation is contained in the transitions, where
the direction of saturation is changed. (One
older method also used a third state; that of
erasure, or zero magnetization.) The second
type of recording (anhysteretic magnetiza-
tion) is also called biased recording. It
involves the use of a large amplitude high
frequency bias, to which the signal is added.
The signal does not modulate (change) the
bias in any way. The bias does not return
during the signal playback process.

Although the professionals normally use
only saturation recording for digital use,
computer hobbyists have appropriated re-
corders intended for other uses, and thus use
several types of recording. One is even a type
of FM recording using bias to record the
carrier. Magnetic recording can also be

classified according to the type of informa-
tion being recorded, and there is a correla-
tion between the type of information and
the type of recording:

Type Of Information Type Of Recording

Digital professional Saturation (some-
times FM carrier)

Audio Biased
Instrumentation Biased, biased FM

carrier, FM carrier
Video FM carrier
Digital hobbyist Biased FM carrier,

saturation
All of the foregoing seems rather in-

volved, but just remember that the knowl-
edge of a few basics will enable you to sort
out almost any recording situation. For
instance, all the systems we will discuss
involve only a magnetic surface moving with
respect to a set of magnetic heads, one of
which writes on the surface, and another
which reads the information previously
written there (if you are an audio enthusiast,
forget about the record, playback, and erase

heads - -- those terms are rarely used in digital
recording). You are not likely to have an

erase head in your system unless you use an

audio recorder. Some systems are especially
simple, having only one head which both
reads and writes. Sometimes the surface
moves and the heads are fixed; sometimes
the heads move and the surface is fixed;
sometimes they both move; but the impor-
tant thing is the relative head to surface
movement.

10

A Plan of Attack

It isn't very likely that you are intclested
in becoming an expert on magnetic record.
ing. All that you want is to understand it
well enough so you can exercise enough care

to prevent its becoming a problem. Knowing
this, I'll just present enough of what is called
the theory of recording to give you a feel for
how it works, then I'll talk a bit of practi-
calities with suggestions for smooth opera-
tion and maintenance. Magnetic recording
theory is divided into two parts: Magnetics
and geometry. Let's first look at the

magnetics.

Blame It All on the Electron!

Almost everyone knows that the electron
is a fundamental particle of electricity. It
also possesses a magnetic field (electrons
always have spin; this spin constitutes an

electric current going around in a circle; and

anytime an electric current is flowing, it
generates a magnetic field). Most materials
have their electrons placed in such a way

that the magnetic fields all balance out to
zero, but there are a few materials which
don't. With electron spins paired so that one

is spinning clockwise and one counter-
clockwise, the net field is zero. Of the

materials with unpaired electron spins, some

are put together in such a fashion that the

electrons are coupled together. When this
happens, if you manage to turn one spin

axis, you have to turn its neighbors as well
(the magnetic fields point along the spin

10 -

-2
10 -

-3
10

-4
10

-5
IO

MAGNETIC
CORE

10-8 10-7 10-6 10-
5

CHARGE%
COUPLED

DEVICES

MAGNETIC
DRUMS

AND
RIGID

DISKS

FLOPPY
DISKS

-- MAGNETIC RECORDING

CASSETTES

CARTRIDGES

I0 4 I0-3 102
ACCESS TIME IN SECONDS

10 I 10

Figure l: Digital computer memory hierarchy: cost as a function of access time.

45

10 IÓ

axis). Depending on the material, somewhere
between a few hundred and a few million of
these little fellows will stay coupled together
and pointed in the same way all the time.
This collection of coupled electron spins is

called a domain, and the materials with this
type of structure are called ferromagnetic
materials.

If a large number of atoms arc collected
together, there will be two or more domains,
whose magnetic fields will not necessarily be

pointing in the same direction (though they
might). Materials for magnetic recording
consist either of domain sized particles
separated by non -magnetic material, or they
arc made of plated material with enough
impurities to section the plating into domain
sized units. Separating the domains this way
allows them to operate nearly independently
- a necessity for keeping the information in
storage. Such materials are known as "hard"
magnetic materials.

Hysteresis, Not Hysteria

A hard ferromagnetic material is charac-
terized by its hysteresis loop. I have a library
full of books on hysteresis loops, which have
been confusing students for years; but let me
sec if I can spare you some of the confusion.
Suppose we have a material containing a

large number of domains whose fields arc all
pointing in different directions. The fields all
cancel out, and the material is said to be

demagnetized (note that a single domain
cannot he demagnetized). If a very small
magnetic field is applied to the material,
nothing happens. As the strength of the field
is increased, a few of the domains swing
their electron spin axes to follow the applied
field. As the field strength continues to rise,
more and more domains follow the field
until finally the last domain responds. After
that, no matter how much more field is

applied, nothing more can happen. The
material is now saturated, and it now has

acquired its maximum magnetization, des-
ignated Mm. This process is known as the
initial magnetization of the material. If we
now let the applied field go to zero, a few of
the domains decide to desert the pack, but
most stay pointing in the same direction.
This is known as the remanent condition,
with the remanent magnetization designated
Mr. Magnetization is given in several units,
all of which are measures of how many
unpaired electron spins there are per unit
volume or unit weight of magnetic material.

Now let's reverse the direction of the
field (denoted, for some reason, by the letter
"H ") and slowly increase the strength from
zero. At some point, exactly half of the
domains have decided to follow the new

46

field direction, half arc still pointed in the

other direction; and the result is zero. At
this point, the applied field is called the
coercive field (sometimes called coercivity or
coercive force) of the material, and is indi-
cated by Hc. If the applied field is increased
to the former high level, the material again

becomes saturated, but in the opposite
direction. This cycle can be continued in-

definitely, but the material never returns to
its erased condition (zero magnetization in

the material with zero applied field). If the
first direction is chosen to be positive (and
the opposite direction negative), we can

show a graph of the whole business by
plotting magnetization on the Y axis, posi-
tive direction up; and the strength of the
applied field on the X axis, positive direction
to the right. This plot is known as a

hysteresis loop, and is shown in figure 2;

along with the initial magnetization curve,
which is not properly part of the hysteresis
loop.

Erasure

If we could limit the discussion to satura-
tion recording, I would have been through
with the magnetics right now, but the use of
audio recorders has complicated things, so

there's a bit more. Suppose we are cycling
around the major hysteresis loop we have
just described, but start reducing the maxi-
mum field a bit each time around. Each time
the maximum field is reduced, the loop
shrinks in the horizontal direction, and in

the vertical direction as well. These smaller
loops are hysteresis loops too, but they are

called "minor loops." If we continue to
cycle, but reduce the maximum field
gradually (i.e., go around 10 to 100 times)
to zero, the remanence (the magnetization
when the field is zero) goes to zero as well.
Now we have reduced the magnetic material
to the erased condition. It would be well to
understand this before going on to the next
part, since this cycling and reduction proce-
dure is the basis for biased recording.

Some Recorders Are Biased

Now let's go back to the saturated condi-
tion. This time we will apply two fields
added together. One is the same large cyclic
field we applied in the last paragraph, but
the other is a smaller field. The smaller field
is applied and held constant. The large field
is taken to saturation, then cycled and
reduced to zero as in the erasure process.
Then the small field is also reduced to zero.
Now, the remanent magnetization is not
zero. In fact, it is larger than one might
expect from the application of that small
field. This remanence is called anhysteretic

Figure 2: Initial magnetization curve and major hysteresis loop of a hard ferromagnetic
material. See text for explanation of abbreviations.

MAGNZ 1 IC FIELD
NEGATIVE DIRECTION

-H

MM

M

MAGNETIZATION
POSITIVE DIRECTION

M

INITIAL
MAGNETIZATION
CURVE

IHM
MAGNETIC FIELD
POSITIVE DIRECTION

MAJOR HYSTERESIS LOOP

MM .0"/
- MAGNETIZATION

NEGATIVE DIRECTION

-H DIRECTION

/
I

/ /

I
I

M DIRECTION

/ //
ANHYSTERETIC
MAGNETIZATION
CURVE

/ - -INITIAL MAGNETIZATION CURVE

H DIRECTION

- ;- ̀MAJOR HYSTERESIS LOOP

-M DIRECTION

Figure 3: Anhysteretic magnetization curve of a hard ferromagnetic material, compared to the
initial magnetization curve and a major hysteresis loop.

remanence. Figure 3 shows a plot of the
anhysteretic remanence (solid line) plotted
against the small applied field, with the
major hysteresis loop shown with dashed
lines. This is a transfer curve, which is

measured point -by- point, and is not con-
tinuous like the hysteresis loop. Note how
linear this curve is, and that it is nearly
parallel to the sides of the major hysteresis
loop. This anhysterctic process is similar to
how biased recording works. The large cyclic
field is called the bias, and the small DC field
is called the "signal."

If a field is applied to an erased medium
and then removed, there is some remanent
magnetization. If we plot this remanence
versus various values of applied field, the

curve looks like the solid line in figure 4.

Compare it to the linear anhysteretic mag-

netization curve, which is the dashed curve
in figure 4. Its nonlinearity prevents it from
being used for audio and other types of
recording requiring a linear transfer curve.
Note particularly that there is very little
remanence until the maximum field is at

least as large as Hc. This curve is also a

point -by -point curve like the anhysteretic
magnetization curve.

An Assist From Euclid

We've covered about all the magnetics
you're going to need, so we'll get right into
the geometry of the situation. Magnetic

47

The principal methods of
magnetic recording are
hysteretic and anhysteretic
magnetization.

aM y

MR ------ i
t

- Ma

' M.

Ht

REMANENCE VS.APPLIED FIELD:
MEDIUM INITIALLY ERASED

Hy

ANHYSTERETIC MAGNETIZATION CURVE

Figure 4: Remanence as a function of applied field for an initially erased hard ferromagnetic
medium, as compared to the anhysteretic magnetization curve.

recording is, fortunately, a two -dimensional
process. This means that we can understand
most of what we need to know by using
only a two -dimensional picture, and the
third dimension is thrown in as an after-
thought. One of the two important dimen-
sions lies along the recording surface in the
direction o1 head- to-surface movement. The
other important dimension is perpendicular
to the recording surface, and measures the
thickness of the magnetic medium and the
held- to-surface spacing. The afterthought
dimension measures the magnetic track
width. It has to be considered, but it's not
nearly so important as the other two.

1 he particular geometry we'll consider is

that of a thick coating. This is the situation
with floppy disks, and we'll use them as our
primary example. (IBM, who invented the
floppies, calls them diskettes. Another term
is flexible disks.) The Philips -type cassette is

also usually a thick coating (we'll use coating
and medium interchangeably) situation,
while rigid disks, drums, and most reel -to-
reel and cartridge situations are thin media.
Thick and thin refer to the ratio of the
medium thickness to the write gap length,
not to any absolute value of thickness. A
thick medium situation exists when that
ratio is greater than 0.5, and thin medium
situations exist when the ratio is smaller
than that. The exact size of the ratio
dividing the two cases is a bit arbitrary.
Probably not too many computer hobbyists

48

have floppies as yet; but by using a thick
medium as an example, we can include
characteristics of thin media as a special
case. Another reason for picking the floppy
is that it uses a type of recording simpler
than cassettes use; hut, by analyzing it, we
can cover all the major principles.

Heads Up!

A ring type head is shown in figure 5a.

There are many other types of heads, but
this one is well known and widely used, and
the principles are analogous for most of the
others. Note that this head is balanced:
Thcrc are similar coils on both sides, and
similar gaps on both the top and the bottom.
A balanced head has a great resistance to
pickup of stray fields, and is used where
hum pickup might be a problem. A lot of
digital heads are not balanced, and have only
one coil, as in figure 5b. Read and write
heads usually differ only in detail (gap and
track dimensions), or the same head can be

used for both functions. Floppy disk drives
usually have only one dual purpose head.

In figure 6, I have blown up the outer
edge of the top head gap, and show it
contacting the magnetic medium. The actual
dimensions of most floppy disk head gap

lengths and the coating thicknesses of most
floppy disks are about the same: 100
millionths of an inch (100 microinches or
2.54 micrometers).

We're Always Blowing Bubbles

When we create a magnetic field in the

write head by passing an electric current
through the head coils, the field stays inside

the core until it reaches the gap, where it
balloons out like a weak spot in an inner

tube. Since the head gap is small, the field

bubble is confined to a rather small volume.

Near the corners of the gap edge, the field
rises to a rather high value, even with only a

small field in the head core. If the field in

the magnetic medium is much higher than

the coercivity of the medium, the magnetiza-

tion of the medium begins to follow the

field, and we say that it is being switched.

Subsequently, if we allow the field to drop

below the coercivity, the magnetization

stays pointed in the same direction as the

last applied field, and is more or less

proportional to the difference between the

highest applied field strength and the

coercivity (up to the point where the highest

applied field strength saturates the material).

Now refer back to the curve "Remanence
versus applied field," in figure 4. If we set the

write current at a moderate level, some part

of the medium is experiencing fields from

above saturation (Hm) down to nearly zero.

In region A (figure 6) the fields are greater

than Hm. In region B the fields are less than

Hc and there is little magnetization. The part
of the medium in the recording zone (figure

6) will experience a substantial amount of
remanence after the field goes to zero (the

part of the curve in figure 4 between Hc and

Hm). The part of figure 6 labeled "Record-
ing Zone - Low Drive" is a transition

f ,l

COIL NO.I{
SIGNAL l'
CURRENT

4

H FIELD A

SMALL
GAPS

H FIELD

COIL
NO.2

Figure 5: (a) Magnetic ring head,

balanced coils and gaps. (b) Magnetic

with single coil and gap.

SIGNAL
CURRENT

t

GAP

i

H
FIELD

COIL

with
head

B

region, where some of the material is follow-
ing the field, and some is not. For most

materials, the boundaries are not sharp as

shown, but are actually rather fuzzy.
As the medium moves away from the

head gap, the part of it which has been in

the recording zone has a signal impressed

Figure 6: Write head near gap, in contact with magnetic recording medium. Total field near

recording zones shown for low drive and maximum output drive.

SUBSTRATE / /% /////////,
MEDIUM
MOVEMENT

RECORDING ZONE
MAXIMUM DRIVE

REGION B

RECORDING ZONE
LOW DRIVE

MAGNETIC
MEDIUM

REGION A REGION A

HEAD:
HEAD GAP

HEAD'.'.'

49

A

MEDIUM

S TZ S

1

HEAD

B

GAP
HEAD

C

MEDIUM THIS PART NOT RECORDED

T T T TZ

N1 ® ® ®®
HEAD

D

GAP HEAD

TRAILING EDGE

Figure 7: (a) Read head near gap, in contact with ideally magnetized
recording medium. (b) Write head near gap, showing two maximum output
flux transitions. (c) Same as (b), but with flux transitions extremely crowded.
(d) Same as (c), except that write drive has been reduced to relieve crowding
effects. Arrows show magnetization direction. N: North -seeking poles; S:
South seeking poles; TZ: Transition Zone.

50

upon it, while the part farthest away from
the head has not seen a field high enough to
leave a signal. We can record through the
whole coating by increasing the drive
through the head coils. With a higher drive
current, the transition region is labeled
"Recording Zone -- Maximum Drive" (figure
6). Note how the width of the transition
region has increased; this is a fundamental
limitation of the medium and the head.

Things Are in a State of Flux

Figure 7 shows a series of diagrams of the
magnetic flux (lines of force) patterns for a

reading /writing situation similar to the
floppy disk geometry. The flux intensity
bounds determining the transition zones are
also shown for the writing situation.

Figure 7a shows the head reading, and
figures 7b through 7d show the head during
a writing sequence. To simplify things in 7a,
the ideal recorded flux pattern (which
resembles bar magnets laid end -to-end) is

shown. Actual flux patterns are similar, but
more complicated. Observe that the flux
from all the magnetized segments is shorted
out by the head, except for the segment
across the gap. In that case, the flux threads
itself all the way around the head. When the
next magnetized region moves into place,
the flux will go in the opposite direction.
The head coils have an output voltage only
when the flux changes from one direction to
the other; and the faster it changes, the
higher the output voltage will be.

Floppies Are for Real

Now let's look at a real recording situa-
tion. The simplest coding is not used by
floppy disk machines; but it illustrates all
the principles, and is easiest to understand.
It is called NRZ1 (Non - Return to Zero,
change at 1) recording. The track is divided
into small segments all the same length. If
the recording is at a bit packing density of
800 bpi (bits per inch), the segments are
1/800 inches long, or 0.00125 inches (32
micrometers). The read electronics arc gated
so that they only read signals which come
shortly before, to shortly after, the dividing
line between segments. During this period, it
there is a flux transition from saturation in
one sense to saturation in the other sense, a

pulse will appear in the gate. The presence of
a pulse is a one, and the absence of a pulse is

a zero. More complicated coding than this is

used for floppy disks. One type is called
phase modulation. It uses flux transitions
between gates so that a positive pulse is a

one and a negative pulse is a zero. There are
dozens of other coding schemes for digital
ecording.

Figure 7b shows a head which has just
written two maximum drive flux changes on
the medium, which is moving from left to
right. Several things are of note: (1) the
magnetization directions, shown by the
arrows, are vertical in some places and
horizontal in others; (2) there is a fairly wide
transition zone between saturated segments;
and (3) the transition zone is spread along
the length of the medium. Compare this to
the ideal situation shown in figure 7a, which
has: (a) all the magnetization in the longitu-
dinal direction; (b) a zero -width transition
zone between segments; and (c) the transi-
tion zone lying only in the vertical direction.
Each of these discrepancies from the ideal

case loses some of the signal. There is an

optimum value of drive current to get
maximum output for any given distance
between flux transitions. If the optimum
situation is shown in figure 7b, increasing
the drive current would make the transition
zones more vertical, but the width of the
zones would increase so much that the
output would go down. If the drive current
is decreased, the part of the coating away
from the head doesn't get recorded, and this
also reduces the output even though the
transition zone width decreases.

Long Bars Are Better Than Short Bars

Now look at figure 7c. Either the
medium -to-head speed has been slowed, or
the frequency of flux changes increased; so

that the flux changes come much closer
together. We know that the maximum read

output would come from what looked like
long bar magnets laid end -to-end (as in figure
7a, but with the magnets even longer). The
shorter the bar magnets, the less flux goes

through the read head and the more goes

through the bar magnet itself (this is known
as demagnetization). In figure 7c, there is

almost as much transition zone as magnet;
the magnets are very short and not at all like
bars; and the saturation magnetization does

not go all the way through the coating. The
read output will drop off so much that
reducing the drive current, as shown in
figure 7d, will actually increase the output
again! In figure 7d, the magnets look more
like bars, and the transition zones are not
such a large percentage of the magnetized
part. The recorded volumes do not go all the
way through the coating, but the recorded
part far from the head in figure 7c was out
of phase with the recorded part near the
head. It was really subtracting from the
signal, so loss of that part actually increases
the read output.

One thing is very apparent in 7c: Half the
medium is not being used. For short dis-
tances between flux transitions, then, a thick

medium is a waste. It's even worse than that.
The transition zone is partially recorded, and
the part farthest away from the head is

making a negative contribution to the read
signal output. We find that if we decrease
the medium thickness so that we get rid of
the continuous part of the transition zone
(away from the head), we get some increase
in output. Decreasing it too much will
diminish the output again, so there is an

optimum medium thickness for any digital
recording 'situation. Because of the rapid loss

of output as the transitions are crowded
closer together, transitions are never placed
as close together in digital work as in other
types of recording. If this crowding is

overdone just a tiny amount, some transi-
tions give such a low output that bits are
lost: an intolerable situation.

The Cassette Connection

There is a lot in common between digital
recording on floppy disks and digital record-
ing on cassettes, cartridges, or other tape
media; but there are some differences, too.
One difference is that we have been dis-
cussing a medium which is isotropic; that is

to say, its magnetic characteristics are the
same in all directions. This is not true of
tapes, as their particles have been oriented
during the manufacturing process, so that
they record more easily in the direction of
head -to-tape motion, and poorly in the other
two directions. This means that the longitu-
dinal component of the field is much more
effective in recording than the vertical com-
ponent is. The corresponding figures for
oriented media (to 7b, 7c, and 7d) would
always have the transition zone going to a

point which would be fixed near the trailing
edge of the head gap (see figure 7d), and the
zone would slant to the left for low write
currents and to the right for high write
currents. Even with these differences, the
conclusions we have already drawn would
hold to a large extent. There is some

indication that the vertical part of the write
head field causes a type of partial erasure of
the recording on the surface near the head,
when an oriented medium is employed.

Another difference may be that biased
recording is used, instead of saturation re-
cording. The situation of oriented media
used with biased recording is fully discussed
in reference 1. Other types of recording,
including frequency or phase modulated
carriers, may be used. Teletype signals trans-
mitted over telephone lines or via radio use a

frequency shift type of modulation, where
one audio frequency is a one and another is

a zero. This type signal can be sent directly
to an audio tape recorder with good results,
except that it tends to be slow.

51

Magnetic recording theory
is divided into two parts:
Magnetics and geometry.

Keep It Clean, Fella!

Looking back on what we have learned
about reading and writing digital signals on
magnetic media, one thing stands out: The
distances involved are very small. The period
at the end of this sentence is about 0.02
inches (510 micrometers) in diameter. This
is huge, compared to these important dimen-
sions in recording systems:

Item Dimension In: Inches Micrometers
Coating Floppy disk 0.0001 2.5
thicknesses: Cassette tape 0.0002 5.1
Head gap Floppy disk 0.0001 2.5
lengths: Cassette playback 0.00005 1.3

On a floppy disk, a magnetized volume of
material on the surface of the coating away
from the head is only about 15% as effective
as an equally magnetized volume of the
coating next to the head; and this is due
only to the increased distance from the
head. And as we have seen, it's harder for a

write head to magnetize the far part of the
coating, making things even worse. I t follows
that a piece of dust, just large enough to see,

between the medium and the head can cause
a very large loss of output signal. Something
only half as large as that period would cause
the complete loss of several bytes of infor-
mation. In a factory making precision tapes
or disks, no smoking is allowed in manu-
facturing areas; hair is kept covered; and
special clothing is worn so as not to get
anything on the recording surfaces. Even the
smoke from cigarettes, pipes, or cigars will
build up on heads and recording surfaces and
cause eventual signal loss. Ashes cause
instant dropouts (total loss of signal). Dust
from any source is to be avoided like the
plague.

There's also dust and dirt which comes
from the medium itself, or its substrate.
Floppy disks and tapes are both made out of
a long polyester plastic sheet (called a web)
which is coated with a special lacquer
containing the magnetic material as its pig-
ment. The original web may be from 12
inches (30.5 cm) to 48 inches (122 cm) wide
for floppies, or 6 inches (15.24 cm) to 48
inches (122 cm) for tapes. After coating and
drying, the web is usually calendered
(pressed between heavy rolls). This smooths
the surface to a mirrorlike finish, though it
was fairly smooth to start with. Tapes are
slit out of the web by shearing. Floppies are
cut out with a die which also shears the
edges. Tapes and floppies are then cleaned
by various methods, since the shearing
process leaves some debris behind. If the
lacquer is formulated properly, and the

52

shearing and cleaning are done with care,
normal usage will not generate very much
more dust and dirt to cause problems. If
manufacturing is done carelessly or the
lacquer is poorly formulated or unstable,
usage will cause shed (dust), or worse, a

gummy build up on the heads. Both these
things tend to push the head away from the
recorded surface, with a serious loss of
output. Even the best of coatings will
eventually cause some build up on the heads,
and heads should be regularly inspected and
cleaned.

Cleaning methods vary, and several ways
are effective. If your machine operator's
manual makes any recommendations, follow
them. There are some special tapes and disks
which are run in the machine for cleaning.
Several companies have head cleaning
materials and solutions on the market. My
favorite concoction is half toluene and half
isopropyl alcohol; but it has to be used with
care, since the toluene dissolves some
plastics and media coating lacquers. Straight
isopropyl alcohol does a fair job, and is
available in any drugstore. Apply the cleaner
to the heads (and guides of a tape machine)
with cotton tipped sticks. The ones made
especially for cleaning heads are best, since
their sticks are stiff, but you can also use the
ones made for cleaning and oiling babies.
Clean until the coating color is removed, or
until the cotton swab comes away clean.

Professional installations sometimes have
special machines to clean and recheck their
media, but this is not usually within the
budget of the individual. Cleaning of tapes is

often accomplished by running them across
a woven, lightly oiled, soft paper wipe which
is moved slowly away from the point of
contact. Tapes and disks can also be cleaned
in an ultrasonic bath with an air squeegee.
All methods require relatively complicated
machinery, making cleaning impractical
except for the largest installations. There are
some companies which make a business of
cleaning and re- certifying media. I recom-
mend retiring from digital use any dirty
media, and substituting new.

When buying tapes and cassettes, get the
best quality you can buy. This is no place to
save money, as it is always at the expense of
lost bits. Tapes especially made for digital
use are a good buy (floppies are always made
for digital use). If you can't get these, use
the top line of a well known brand of audio
tape. Even this is second choice, since audio
tapes, even good ones, may have some
bumps on the surface which cause dropouts.
The loss of five cycles of that high violin in
"Scheherazade" will cause only a tiny gap
which you won't hear, and you can lose a

whole percent or so of "Rites of Spring" and

never know it; but the loss of just a bit or
two of a digital sequence can cause nothing
but garbage to issue from your computer.

Making Your Media Comfortable

About 15 years ago, some people at
Southwest Research Institute, with grant
money from the Rockefeller Foundation,
made a monumental study for the Library of
Congress on storage of sound recordings
(reference 2). Part of their study was con-
cerned with magnetic tape. Not very much
can be added to their findings today. Boiled
down, we can almost put their findings into
one sentence: If people are comfortable in

an environment, tapes can be safely stored
there for long periods of time with little
degradation. I say almost, because there are

a couple of things to add to this. One is that,
other than the earth's field, no other mag-

netic fields should be present if information
is contained on the media. Permanent
magnets, wiring carrying heavy currents,
power transformers, and magnetic erasers or
degaussers should be kept away from the
media. For most of these things, three feet
(one meter) is a good rule of thumb for
distance. Don't get carried away and worry
about such things as shielding from the

earth's field, protecting from lightning or
static electricity, guarding against radiation
from radio transmitters or radar sets,

or storing a hundred feet away from any
electric wiring. Trouble from magnetic
fields, though it can occur, is rare. The other
added condition is that all media should be

stored under low mechanical stress. Tapes

and cassettes should be wound properly
from a regular run, not a fast wind. Floppies
should be stored flat, with no weight piled
on top. If supported so that they don't
buckle, they can be stored on edge. Never

remove them from the envelope if you want
to use them again. Avoid large temperature
or humidity changes.

Summary

What I have tried to do is give you first an

overview of digital magnetic recording so

that maintenance and setup instructions for
your machine will make sense to you.
haven't given specific directions for main-

tenance or setup, because each machine is a

little different. Knowing how the informa-
tion is contained on the medium is also of
importance to understanding why cleanliness
and good storage conditions are so impor-
tant to safe storage. Lastly, I collected
together several guidelines for cleanliness
and storage which you probably won't find
in the instruction manual for your machine.
I hope that all this helps you to pack away

your bits for easy retrieval. Once these
principles become second nature to you,
your large -scale storage problems should
fade into the woodwork, and you can then
apply your troubleshooting talents else-

where.

BIBLIOGRAPHY

1. "A Primer on Choosing Tape," William A.
Manly, Audio, Volume 58, Number 9, Septem-
ber 1974, pages 34 -46.

2. "Preservation and Storage of Sound Re-
cordings,'" A.G. Pickett and M.M. Lemcoe,
Library of Congress, Washington: 1959. Super-
intendent of Documents, Washington DC.

GLOSSARY OF
MAGNETIC RECORDING TERMS

Anhysteretic magnetization: The magnetization
remaining in a ferromagnetic material after apply-
ing a constant field Hfixed superimposing on it a

field varying continually from +Hcycled to
Hcycled (which is initially large enough in ampli-

tude to cause practical saturation in each direction,
then reducing the amplitude of Hcycled to zero as

the cycling continues).

Biased recording: Magnetic recording done by
adding the signal field to be recorded, a high
frequency, large amplitude field called the bias.
The purpose of the bias is to linearize the recording
process.

Bulk storage: Supplemental storage of large volume
capacity. Also called external storage, secondary
storage or mass storage.

Coercive field: The applied magnetic field in a

given direction, necessary to reduce the remanent
magnetization of a ferromagnetic material to zero,
after the application of a saturating field in the
opposite direction.

Curie point magnetization: Magnetization of a

ferromagnetic material, acquired by applying a

field, heating the magnetic material until its ferro-
magnetism disappears (the "Curie point "), then
cooling the material while still in the field.

Demagnetized: The condition of a ferromagnetic
material when the directions of magnetization of
all its domains have been randomized, so that there
is no external field coming from the material.

Domain: A small volume of a ferromagnetic
material in which the atoms are always mag-
netically aligned in the same direction. The mag-
netic direction of a domain may be changed, but it
may not be demagnetized so long as the material is

ferromagnetic.

Electron: A non -nuclear part of an atom; the
smallest particle of (negative) electricity. An elec-
tron is regarded by physicists as a fuzzy ball of
negative electricity which has a "spin"
characteristic.

53

Erasure: The process by which a bulk magnetized
ferromagnetic material is placed in a bulk demag-
netized condition.

Ferromagnetic: A ferromagnetic material is spon-
taneously magnetized into an assemblage of tiny
permanent magnets called domains. A ferro-
magnetic material can be demagnetized only in a

bulk sense, and only when it is of a large enough
physical size to contain many domains.

Frequency modulation: The changing of a carrier
waves frequency in accordance with the signal
being transmitted.

Hysteresis loop: A closed curve obtained by
plotting magnetization for ordinates ("y" direc-
tion) and applied magnetic field for abscissa ("x"
direction) as the material passes through a com-
plete cycle between definite limits of applied
magnetic field.

Hysteretic magnetization (or hysteresis magnetiza-
tion): Magnetization in a ferromagnetic material
acquired by the cyclic application of a single
applied magnetic field; magnetization at some

point on a hysteresis loop.

Initial magnetization curve: The plot of the mag-

netization for ordinates and the applied field for
abscissa of an initially bulk demagnetized ferro-
magnetic material, as the applied field has its
strength increased from zero to some high value.

Isotropic: An isotropic material has some property
the same in all directions. This word must be
modified by some adverb describing the property,
such as "magnetically isotropic."

Magnetic direction: A vector on a permanent
magnet pointing from the south -seeking pole to the
north- seeking pole; for a magnetic field, the vector
starts at the north- seeking pole of a magnet and

goes toward the south- seeking pole.

Magnetization: The number of elemental magnetic
dipoles per unit volume of magnetic material. A
single, isolated, spinning electron can be taken as

the elemental magnetic dipole. All other units of
magnetization are based on this.

Remanent magnetization: The particular value of
magnetization on a hysteresis loop when the
applied field is zero; the bulk magnetization of a

ferromagnetic material when there is no applied
field.

Saturation magnetization: The magnetization of a

ferromagnetic material when the applied field is so
large that all the domains have their magnetic
directions aligned with the applied field.

Spin: A representation of the rotation of an atomic
or sub -atomic particle. Spin is a vector pointing
along the direction of the axis of rotation.

Thick coating: A relative term referring to a

magnetic coating or layer such that its thickness is

greater than about half the length of the write head
gap.

Thin coating: A relative term referring to a

magnetic coating or layer such that its thickness is

less than about half the length of the write head
gap.

54

Computer Kits

First Person Report:

by
John Zarrella
90-9 Wakelee Rd.
Waterbury CT 06705

I decided I would have
to opt for a kit ... this
would enable me to get
on line quickly.

Assembling an

Altair 8800
My adventure with

microprocessors began rather
late in the hobby game, at the
end of 1974. It was about
this time, or so it seemed to
me, that micros became the
topic of conversation in
anything related to
computers and automation.
With the IMP -16, the 8080,
8008, 4004, etc., it became
clear that this was what the
computer market was waiting
for. However, it was the
article on the MITS Altair in
the January 1975 issue of
Popular Electronics which
finally did it. Although
inaccurate and vague, it

certainly decided me - I was
definitely going to own a

micro. The next few months
saw hurried mailings of
information requests to any
company which produced a

product even remotely
connected with a

microprocessor. I

immediately got out my
checkbook, and mailed all my
hard earned dollars to every
newsletter that was
published, in my frantic
search for the "right"
processor.

The results were both
rewarding and disappointing.
I found that there were some

Fig. 1. The schematic diagram of power supply circuitry, showing
additional protection diodes.

+8v
(UNREG) 4.1_

Cl l

35µF
I6V

µA7805 Z Z
ICTE5 1Cl2 ISO,

35µF
I6V

Z+5V
* (REG)

ISC20
.1µF
16V

R46
3351

+I6V 2W
(UNREG)

12V

2l
T

((REG) EG)

1.5KEI5
7 m m IV 35 F .1µ F

I6V I6V
R45
220n

-16V 2W -5V
(UNREG)

ICTE5 ,L 02
S.IV 35µF .1µF

m m I6V I6V

(REG)

56

fantastic processors, but since
my hardware background is

not all that hot, I decided
that I would have to opt for a

kit with one of the most
powerful micros I could find.
I figured that this would
enable me to get on line
quickly, learn enough
hardware to keep up with the
state -of- the -art, and permit
me to evaluate new micros as

they came out, so I could
build my "dream machine"
when the right parts became
available.

I decided to build the
Altair 8800. Although the
instruction set looked rather
impressive, what convinced
me was seeing a process
control system which used
the 8080; I was truly
impressed with its capability.

The Order
After calling in my order

to MITS, I waited nearly
seven weeks for delivery.
MITS did make it within the
advertised 60 -day delivery
time. All was not roses for
those seven weeks, however;
it seems that either MITS or
BankAmericard got their
signals crossed and couldn't
get a credit authorization
(they both eventually
declined to accept
responsibility). You can
imagine what it was like
getting a call during dinner,
explaining that my unit was

ready to ship, but
unfortunately ... Luckily
they agreed to ship it COD,
and I quickly ran down to my
bank to get a certified check.
Every morning I left my wife
with the admonition not to
miss the delivery, and every
day at lunch I called to
determine whether or not my
"computer" had arrived. (Did
you ever try to ask your
insurance agent whether you
needed extra renter's
insurance - "You keep a

computer at home ? ?!! What
for ? ")

Assembly
Within a week of that call,

I had the Altair in my hot
little hands. "Are those little
plastic parts all you get for
$500.00 ? ", my wife
exclaimed, peering over my
shoulder. Undaunted, I

shooed her out and locked
myself in the back room all
weekend soldering PC boards.
It took three weekends to
complete the assembly (was it
my fault I came down with
pneumonia in the middle ?).

Ah yes, assembly. In
general, I found that the
MITS assembly instructions
were well written. However,
their additions were
sometimes in the manuals in

the wrong place (e.g., page

68A after 69). In at least one
case (front panel control
board) I had already
tightened the panel in place
(bolts on numerous switches),
when I read that the nut on
the little screw holding the
voltage regulator to the board
(accessible only with the
panel out) had to be removed
to add a grounding strap.
Therefore it pays to check
the manual pages carefully,
and look two or three pages

ahead to see if there are any
little tricks sneaking up on
you.

As for the parts, only one
resistor was missing; however,
out of all the screws and bolts
supplied with the kit, I could
never find the right one to fit.
Maybe it was my own
stupidity, but it seemed that

Of all the assembly, the worst (and easiest to mess up)
part was correctly connecting the 60 bus wires between
the display /control board and the chassis motherboard.

the last bolt of any given size

was always supposed to be

used in at least 10 more
places. I found that it pays to
have a good assortment of
screws and bolts (number 6,

various lengths '/a" to 3/ ") to
permit frustrationless
assembly.

All soldering and
component placement was

easily accomplished -
positions were clearly marked
on the boards and in the
manual. This is high praise
since I hadn't built many kits
before; and of these, none
were this large. Of all the
assembly, the worst (and
easiest to mess up) part was

correctly connecting the 60
bus wires between the
display /control board and the
chassis motherboard. I used

an Ohmmeter to assure that
each connection was correct
and that there were no solder
bridges to the other bus lines.
There's got to be a better
way. I hear Processor
Technology, Inc., is currently
marketing a 16 -slot
motherboard (on the Altair
you have to jumper four of
the four slot boards together,
only one of which comes
with the kit), and an

improved connector for the
display /control board. These
will definitely be my first
additions.

I made only one
modification to the circuit
dúring assembly. That
modification was to add three
protection zeners to the CPU
board. Fig. 1 shows the
electrical connections for this
change. These were inserted
to protect the 8080 chip (still
pretty expensive in singles)
from power supply failure.
These zeners should ground
out overvoltages at currents
up to 100 Amps. ICTE5c

57

were used for the +5 V and
-5 V lines to the 8080 and a

1.5KE15 for the +12 V. The
zeners on the CPU board are

illustrated in Fig. 2.
I also added sockets for

the 8101 RAMs, cleaned all
boards with trichloroethylene
solvent, and inspected the
finished boards with a

magnifying glass. I would
highly recommend these
procedures as they helped me

find more than one solder
splash and cold solder joint.

The Big Test

On the fourth weekend
got up the courage to mount
the 8080 and 8101s. Then
came turning on the power
and checking voltages.
Everything looked good, with
very little ripple from the

Did you ever try to ask

your insurance agent
whether you need extra
renter's insurance for a

computer?

Fig. 2. Detail of the additional protective diodes
mounted on the Altair CPU board.

Additional zener
diodes for overvoltage

protection. 8080 Central Processor

Fig. 3. Adding a parallel capacitance of .0047 uF to C8 of the Altair CPU board schematic lengthens the data
out enable line time so that memory write does not extend longer than the data out time.

EXM NXT 74L10 0--
13

o-
DEP

o-- o-Q
DEP NXT

2

s

74 LOO

109

12 2
EXM NXT SS

1/2 74123
1(

2

ó
DEP NXT SS
1/2 74123

"")
C9 RII

on -card voltage regulators.
Finally the big test: Run a

program. This is where the
only problem finally showed
up. I stopped and reset the
CPU, set the switches for my
spectacular program (JMP 0)
and would you believe it,
"deposit" wouldn't work. An
hour later I had determined
that all other panel switches
worked correctly (including
deposit next), and that the
deposit switch itself was in
good order. In order to
initially get around the
problem I had to examine
location 177777 (all address
bits 1), then use deposit next
to get to location O.

A study of the schematics
showed that deposit and
deposit next use the same
circuitry, except that deposit
next first does an examine
next. You can verify this
visually by loading all ones
into the first 10 locations of
memory. Then, if you use
deposit next to change all the
locations to zero, by carefully
watching the data LEDs, you
will notice that they all flash
on as the switch is activated
(examine next) and
immediately go off again as

the deposit is performed.
I concluded that the

problem had to be in the
timing, since the circuits were

TO
MWRITE
LINE

+5V

13

DEP SS
1/2 74123

o

Cl R9

0 -0 1/2 74123
F

-+GND

--GND

CIO R12

otherwise identical. Sure
enough, when I looked at the
signals on a scope, lo and
behold, when a deposit was
performed, the memory write
line was enabled for
approximately 20 ns more
than the data out line. There
are two oneshots in the
deposit circuit; the first
enables the memory write
line, and the second enables

C8
.01µF

J12

TO DATA
OUT ENABLE
(SWITCHES
SAO- SA7)

6
1/2 74123

G

RIO

GND

MODIFICATION
C - .O047µ F

+5V

the data out line. The
memory write problem was
cured by increasing the
capacitance on the second
deposit oneshot. An increase
of .0047 uF (which increases
the data out enable time by
at least 30 ns) proved
sufficient. This was obtained
by adding the .0047 uF
capacitor as shown in Fig. 3.

When building the Altair, this

means that C8 (front panel

control board) should be

approximately .0147 uF; if
the board is already
assembled into the case, a

.0047 uF capacitor can easily
be soldered onto the back of
the board without removing
any components from the
case. (Be sure to unplug the
computer before making the
change, however.) Fig. 4

shows placement of the new
capacitor and the change to
the Altair schematic diagram.

I feel that the kit is

reasonably well made and a

good buy - at least at the
current 8080 single lot prices,
though the add -on options
may cost somewhat more
than elsewhere.

My plans for my unit
currently involve addition of
vectored interrupts (a 9318

or 74148 8 -bit to 3 -bit
priority decoder is about all
that's needed to translate the
eight vectored interrupt lines
on the bus into an RST
instruction), a real -time
clock, monitor clock and
some type of I/O (teletype,
CRT, etc.).

Fig. 4. The additional .0047 uF capacitor is mounted on the rear of the control panel board.

y~_ ti' t. , r trv-..,,5 ! J

I I "-

.. Y iY.

Solder the
additional capacitor

to the rear of the
control panel board.

58

Modify this section
of your schematic.

Build A 6500 System

With This Kit

If you are one of the many
people getting ready to
purchase one of the
reasonably priced
microprocessor system kits
on the market today, you
might ask yourself whether or
not you will be able to start
entering programs once you
get it all put together. Of
course you can always load
programs and data through
the front panel programmer's
console, but most individuals
aware of the front panel's
slow speed and difficult
readability prefer to use a

Teletype or low cost video
terminal such as the TV
Typewriter II (February 1975,
Rodio Electronics) for data
and program input /output.
This is all well and good
except that in order to attach
a terminal, you'll have to
purchase an interface for
your computer if it is not
supplied with the basic
system. In fact you will
generally need a separate
interface for each I/O
(input /output) device
connected to your computer.
This can run your system

by
Gary Kay
Southwest Technical Products Corp.
219 W. Rhapsody
San Antonio TX 78216

investment up considerably
since such interfaces typically
cost between $75 and $150
each, and there are more
surprises yet to come.

So now you've got your
computer, with interface,
attached to your terminal;
you're ready to sit down,
power up and start typing in

your program, right? Well,
not quite. You see, in order
to be able to use the terminal
for either entering programs
or getting data in and out of
the computer you must have

a program resident or loaded

Fig. 1. Block diagram of the SWTPC 6800 system. The address allocations of the elements of the system are

noted inside the blocks.

6800
CPU,

CLOCK & BUFFERS

MI KBUG MIKBUG 2K BYTE CONTROL
ROM RAM RAM INTERFACE

E000 -E1FF A000 -A07F 0000 -1 F F F 8004 -8007

USER
TERMINAL

ITTY OR RS -232)

59

into memory telling the
processor how and what to
do. Without this software
(program), you can pound on
the keyboard all you want
and the computer won't do
anything. Computers are no
smarter than their
programming lets them be

and without programming
they're not very smart at all.
How do you get this software
into memory? Well, you
could load it in from paper or
cassette tape, that is if you
have a paper tape reader or
cassette tape interface
(another sizable investment)
or you could enter it directly
from the programmer's
Console. The problem here is

two fold. Software to give the
terminal reasonable system
control will probably be

around 500 words in length.
This is far too long to enter
from the programmer's
console especially when you
consider it has to be

re- entered every time the
system is powered up or after
a wayward program
overwrites any of its allocated
area of memory. The second
problem is that few if any of
the manufacturers supply a

listing, paper tape or cassette
tape of such a program to
begin with. Their terminal
control routines are
contained within
editor /assembler and higher

CPU BOARD

MEMORY BOARD

CONTROL INTER FACE

MOTHERBOARD

MCM6810L1
128X8 RAM

MCM6830L
"MIKBUG"

ROM

level language packages which
not only must be loaded from
some kind of tape reader, but
require from 4,096 to 8,192
words of memory to operate.
And you thought the
interfaces were expensive,
just check the prices on 8,192
words of memory. Many of
the systems now on the
market are supplied with an
amount of memory with the
basic unit which is
considerably less than what
might actually be needed for
useful programming.

So what's the alternative?
Well, the system presented in
this article has been designed
to eliminate the afore-
mentioned problems and
allow the user to have a

powerful and fully functional
system at a minimum cost
(see Fig. 1). The entire
system is built around the
Motorola MC6800
microprocessor and its family
of support devices. The
computer itself is being made
available in kit form including
the chassis, cover, power
supply and all circuit boards,

MC6800
PROCESSOR

parts and hardware necessary
to build a Motorola 6800
based microprocessor
including a 1,024 word ROM
(read only memory) stored
operating system with
128 -word scratch pad
memory, serial interface baud
rate generator, serial
interface, and 2,048 words of
memory for $450. This
article gives a description of
the microprocessor and
mother board. A future
article will describe the power
supply, memory and interface
boards.

The Microprocessor /System
Board (MP -A)

The Microprocessor/
System Board (coded MP -A)
is the primary logic board for
the system. It is a 5 1 /2" x 9"
double sided plated- through
hole circuit board containing
the 6800 microprocessor
chip, the 6830 ROM which
stores the mini -operating
system and the 6810,
128 -word scratch pad random
access memory (RAM)
needed by the ROM.

60

POWER
SUPPLY

There is a crystal controlled
processor clock driver and
baud rate generator providing
serial interface baud rates of
110, 150, 300, 600 and 1200
baud for all but the terminal
control interface which is
operable at 110 or 300 baud.
Also provided is a power
up /manual reset circuit which
restarts the ROM stored
mini- operating system
whenever activated. Full I/O
buffering is provided for the
16 address lines and eight
bidirectional data lines with
these and other connections
made to the rest of the
system through the mother
board via a 50 -pin connector.
Power for the board is
derived from a +5 volt
regulator fed from the
system's unregulated 7 volt,
10 Amp power supply.
Average current consumption
for the board is 0.8 Amps.

The mini -operating system
stored in the 6830 ROM on
this board has got to be one
of the most outstanding
features of this system. It is

through this Motorola written

Details of the SWTPC
6800 System. This photo
illustrates what you see
when you remove the
cover of a typical SWTPC
computer system. This is
an assembly of the parts
which come in the MP -68
kit.

software package called
"MIKBUG" that the user can
1) enter program or data into
memory from either the
terminal's keyboard or tape
(where applicable), 2) jump
to and execute a program
loaded in memory, 3) list
programs or data stored in
memory, on the terminal or
tape (where applicable), 4)
examine and /or change the
contents of the internal CPU
registers, 5) examine and /or
change the contents of
specified memory locations.
These operations are
performed using a 20 mA
current loop Teletype or an
RS -232C compatible serial
ASCII terminal.

This ROM mini -operating
system does not have to be
loaded from tape and it
cannot be overwritten. It is

always there at your
fingertips - just pressing the
RESET button or simply
powering the system up
automatically restarts this
firmware (ROM stored
software). When activated,
this system responds with a

L

MIN IBUG/
TEST PATTERN

(NOT USED

MIKBUG
ROM

ti

MIKBUG
RAM

I/O PORT
NO.7

I/O PORT

NO.6
I/O PORT

NO.5
I/O PORT

NO.4
I/O PORT

NO.3
I/O PORT

NO.2
I/O PORT

NO.1 CONTRA.
INTERFACE
I/O PORT

NO.0
4K MEMORY

NO.7
4 K MEMORY

NO.6
4K MEMORY

NO.5

4K MEMORY
NO.4

4K MEMORY
NO.3

4K MEMORY
NO.2

4K MEMORY
NO. I

4K MEMORY
NO.0

FFFF

EIFF

E000

A 07F

A000

801 F

80I C

801B

8018
8017
8014
8013

8010
800F
800C
800B
8008
8007
8004
8003
8000
7FFF
7000
6FFF
6000
5FFF
5000
4FFF
4000
3FFF
3000
2FFF
2000
IFFF
1000
OFF F

0000

Fig. 2. SWTPC 6800
Microprocessor System memory
map. The 64K address space of a
6800 CPU is divided up into the
segments shown here. The first
32K locations are available for
user read -write memory. The
second 32K is devoted to I/O port
assignments and the requirements
of the MIKBUG program supplied
by Motorola.

carriage return, line feed and
then prints a * on the
terminal at which time you
may enter various single
character control commands
such as M for memory
examine /change, L for load
from tape, P for punch or list,
R for examine registers or G

for go to and execute a

loaded program. A program
debug routine can also be

implemented by using the
software interrupt (SWI)
instruction as a "breakpoint"
which forces a jump from
your program to the
operating system to allow
you to examine the contents
of memory and /or the CPU
registers. All data entered or
displayed through the
terminal is in convenient
hexadecimal (base 16)
notation. This means you can
type in a command to load
address location A00016 with
9E16 instead of setting 24
console switches to an

address of 1010 0000 0000
0000 with data of 1001 1110
as must be done with the
conventional programmer's
console. Since the operating
system is stored in ROM, it
consumes no user RAM
memory, in fact, it actually
gives the user a little extra.
There is a 128 -word scratch
pad memory utilized by the
operating system for storing
various addresses and data,
but there are more than 54
locations within this 6810
RAM memory which are

totally unassigned plus a

46 -word deep push -down
stack. All of this memory is

in addition to the 2,048
words (expandable to 4,096
words) contained on the
standard memory board.

Since the terminal and
mini- operating system
provide the user with
complete system control,
there is no need for the
conventional programmer's
console. Take note also that
once system control is turned
over to your program, the
control terminal is totally
available for your program

input /output. In fact, since
the character input /output
subroutines are already stored
within the operating system
ROM, they can be used by
your programs simply by
loading or storing the
characters to be handled in
the proper register and
executing a jump to
subroutine (JSR).

The Motorola MC6800
microprocessor chip is the
element around which this
entire system is built. It is an

8 -bit parallel processor with
eight bidirectional data lines
and 16 address lines giving it
an addressing capability of up
to 65,536 words. There is no
distinction between memory
and I/O addressing on this
system, therefore, all
input /output data transfers
are handled just as are the
memory transfers. This means
the I/O interfaces must have

their own allocated memory
addresses where neither ROM
or RAM memory may be

located. This may at first
seem to be a disadvantage
until you realize that all
memory handling instructions
are usable for the interface
data handling as well, thus
eliminating the need for
special data I/O instructions.
The memory assignments for
this system have to be made
as shown in Fig. 2. User RAM
may be located anywhere in

the lower 32K (000016 to
800016) addresses with the
upper 32K addresses reserved
for the operating system
ROM, RAM and interface
boards.

There are six registers
internal to the MC6800
microprocessor element
which consist of the program
counter, stack pointer, index
register, accumulator A,
accumulator B and condition
code register. The stack
pointer is a 16 -bit register
used to store the address of
the push -down stack which is

located in RAM memory
external to the MC6800
microprocessor element. The
push -down stack itself is used

61

to store the program counter
and /or processor data during
branch to subroutine (BSR),
jump to subroutine (JSR),
push (PHS) or interrupt
routines. The index register is

a 16 -bit register generally
used as an address pointer for
many processor instructions.

There are 72 basic
instructions for the 6800
microprocessor system (Fig.
3) with most of the 72
utilizing several of the seven
possible addressing modes:
Accumulator, implied,
relative, direct, immediate,
extended and indexed.

Accumulator - In
accumulator addressing,
either accumulator A or
accumulator B must be

specified.
Implied - In implied

addressing the instruction
code itself specifies the
operand (stack pointer,
index register, etc.).

Relative - Relative
addressing is used for the
branch instructions and
indicates the value
contained in the word of
memory immediately
following the instruction
code added to the program
counter +2 with the result
then loaded back into the
program counter. Positive
data (bit 7 = 0) generates
forward jumps up to 129
words from the branch
instruction while negative
data (bit 7 = 1) generates
backward jumps up to 125
words from the branch
instruction.

Direct -- In direct
addressing, the value
contained in the word of
memory immediately
following instruction code is

an actual memory address
within the first 256 words
of memory (000016 to
00FF) which contains the
operand of the instruction.
This mode typically saves

one CPU cycle of execution
when compared to extended
addressing.

Immediate - In
immediate addressing, the

value contained in the word,
or in some cases two words
of memory, immediately
following the instruction
code is the operand of the
instruction.

Extended - In
extended addressing, the
two words of memory
immediately following the
instruction code contain the
address of the memory
location which contains the
operand of the instruction.

Indexed - In indexed
addressing, the value
contained in the word of
memory, immediately
following the instruction
code, is temporarily added
to the contents of the index
register generating a new
address where the operand
of the instruction is located.
The jump is positive only,
going from 0 to 255 words
and the actual contents of
the index register are not
changed.

Also provided on the main
processor board is an
MC14411 baud rate generator
which uses an external
1.8432 MHz crystal and
internal oscillator and divide
chain to generate serial
interface clocks for baud
rates of 110, 150, 300, 600
and 1200 baud. Also derived
from this circuit is the 921.6
kHz clock used by the
MC6800 microprocessor
element. It is first, however,
fed into a gating circuit
generating two non -
overlapping, 50% duty cycle,
complementary clock signals
(I)1 and 02.

Mother Board (MP -B)

The Mother Board (coded
MP -B) is a 9" x 14" double
sided, plated- through hole
circuit board onto which all
of the various processor
boards are plugged. Provisions
have been made for one
Microprocessor /System
Board, up to four 4,096 word
random access memory
boards plus two unused slots.
This allows the system to be
expanded to 16,384 words of

memory. For those
demanding even more
memory, the 50 -line system
information bus may be

paralleled onto another
mother board with separate
power supply expanding the
system to a maximum of
32,768 words of random
access memory.

The Mother Board also
provides the line buffering
and address decoding for up
to eight interface boards.
Although one of the eight
must be the serial terminal,
control interface, the other
seven may be any
combination of parallel or
serial interfaces the user may
choose to have. For those
demanding even more
interfacing capability, the
50 -line system information
bus may be paralleled onto
another mother board with
separate power supply
expanding the interfacing
capability to one terminal,
control interface plus any
combination of up to 15
serial or parallel interfaces.

The following is a brief
description of each of the 50
lines on the system
information bus:

The AO - A15 lines
carry address bits 0 through
15 respectively, forming a

16 -bit address which is used
to define either a memory
location or interface
address.

The BUS AVAILABLE
line goes high ac-
knowledging a processor
halt, meaning the processor
has stopped and that the
system information bus is

available for external
control.

The DO - D7 lines carry
inverted data bits 0 through
7 respectively, forming 8 -bit
data words which are
exchanged between the
various boards within the
system.

The GND line is the
system's common power
supply ground point.

Fig. 3. The 6800 microprocessor's instruction set. This is a list of the
mnemonics available. A more complete explanation of the basic
operations of the processor is found in Motorola's programming manual
for the 6800 which is part of the SWTPC documentation package.

62

ABA
ADC
ADD
AND
ASL
ASR
BCC
BCS
BEQ
BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE
BPL
BRA
BSR
BVC
BVS
CBA
CLC
CLI
CLR
CLV
CMP
COM
CPX
DAA
DEC
DES
DEX
FOR
INC
INS
INX
JMP
JSR
LDA
LDS
LDX
LSR
NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS
SBA
SBC
SEC
SEI
SEV
STA
STS
STX
SUB
SWI
TAB
TAP

TBA
TPA

TST
TSX

TXS

WAI

ADD ACCUMULATORS
ADD WITH CARRY
ADD
LOGICAL AND
ARITHMETIC SHIFT LEFT
ARITHMETIC SHIFT RIGHT

CARRY CLEAR
CARRY SET
EQUAL TO ZERO
GREATER OR EQUAL ZERO
GREATER THAN ZERO
HIGHER

BRANCH IF
BRANCH IF
BRANCH IF

BRANCH IF
BRANCH IF
BRANCH IF

BIT TEST
IF
IF
IF
IF
IF
IF

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

LESS OR EQUAL
LOWER OR SAME
LESS THAN ZERO
MINUS
NOT EQUAL TO ZERO
PLUS

ALWAYS
TO SUBROUTINE
IF OVERFLOW CLEAR

BRANCH IF OVERFLOW SET
COMPARE ACCUMULATORS
CLEAR CARRY
CLEAR INTERRUPT MASK
CLEAR
CLEAR OVERFLOW
COMPARE
COMPLEMENT
COMPARE INDEX REGISTER
DECIMAL ADJUST
DECREMENT
DECREMENT STACK POINTER
DECREMENT INDEX REGISTER
EXCLUSIVE OR
INCREMENT
INCREMENT STACK POINTER
INCREMENT INDEX REGISTER
JUMP
JUMP TO SUBROUTINE
LOAD ACCUMULATOR
LOAD STACK POINTER
LOAD INDEX REGISTER
LOGICAL SHIFT RIGHT
NEGATE
NO OPERATION
INCLUSIVE OR ACCUMULATOR
PUSH DATA
PULL DATA
ROTATE LEFT
ROTATE RIGHT
RETURN FROM INTERRUPT
RETURN FROM SUBROUTINE
SUBTRACT ACCUMULATORS
SUBTRACT WITH CARRY
SET CARRY
SET INTERRUPT MASK
SET OVERFLOW
STORE ACCUMULATOR
STORE STACK REGISTER
STORE INDEX REGISTER
SUBTRACT
SOFTWARE INTERRUPT
TRANSFER ACCUMULATORS
TRANSFER ACCUMULATORS TO
CONDITION CODE REG.
TRANSFER ACCUMULATORS
TRANSFER CONDITION CODE REG.
TO ACCUMULATOR
TEST
TRANSFER STACK POINTER TO
INDEX REGISTER
TRANSFER INDEX REGISTER TO
STACK POINTER
WAIT FOR INTERRUPT

The normally high HALT
line when brought low halts
the processor and frees the
system information bus for
external control.

The INDEX line is an

unused one and is provided
so the pin on each of the
male connectors may be cut
with the corresponding
female connector pins
plugged, preventing the
circuit boards from being
plugged on incorrrectly.

The I RQ is the maskable,
single level interrupt request
line feeding the processor
board. If not inhibited by
software it will when
momentarily given a TTL
zero level signal, force the
processor into a push -down
stack store routine followed
by a program jump to a user

selected address stored in
the operating system RAM.

The M. RESET line,
when momentarily
grounded manually,
indirectly resets the registers
internal to the processor
and interfaces, and loads the
ROM stored mini -operating
system. This line is normally
grounded by depressing the
RESET button on the
system's front panel.

The NMI is the
non -maskable, single level

Once you've assembled
and checked out the
operation of your MP -68
kit, the result will be a
product which looks like
this. Note the complete
absence of most of the
usual control panel
functions you might
expect. This is achieved by
using a serial communica-
tions device such as a
Teletype or an RS -232C
compatible terminal as the
"front panel."

interrupt line feeding the
processor board. When
momentarily given a TTL
zero level it forces the
processor into a push -down
stack store routine,
followed by a program jump
to a user selected address
stored in the operating
system RAM. The NMI is

not maskable thus cannot
be inhibited by the
programmer through
software.

q)2 is one of the two
complementary system
clock outputs and is used to
signal that valid data is on
the data lines DO - D7
when low.

(pi is the non- overla ping
clock complement of.

The RESET line when
low resets the registers
internal to the processor
and interfaces, and loads the
ROM stored mini -operating
system. This line is activated
by one shot on the
M is roprocessor /System
board when the system is

first powered up or when M.
RESET line is momentarily
grounded.

The R/W line establishes
the direction of data flow
on the eight data lines, DO

- D7. It is high for a read

from memory or interface

and is low for a write to
memory or interface.

VMA is the valid
memory address line which
goes low to confirm that
valid memory address data
is being presented on the 16
address lines, AO - A15.

The UD1
user defined
not been
function.

and UD2 are
lines and have
assigned a

The -12 and +12 points
are lines to which an
isolated ground -12 @ 200
mA and +12 @ 200 mA
power supply should be

connected. The voltages are
necessary for generating the
currents required by 20 mA
current loop Teletype
equipment on the serial
interfaces.

The 7 - 8 VDC UNREG
point is the line to which a

+7 to 8 volt dc @ 10 Amp
unregulated power supply
should be attached. This
voltage is then regulated
down to +5 V dc by
independent regulators on
the various boards within
the system.

The five 110b, 150b,
300b, 600b, 1200b lines
carry 1758.8, 2400, 4800,
9600 and 19200 Hz clocks
required by the serial
interfaces for 110, 150, 300,

600 and 1200 baud
communication.

Also attached to the
50 -line system information
bus are the interface decode
and driver circuits. A
considerable cost savings is

made here by providing the
address decoding and
information bus buffering for
all of the interfaces right on
the mother board instead of
providing it on each of the
interface boards individually.
Since each of the parallel
interfaces require four
address locations and the
serial two, four addresses are
provided for each of the
interface positions. They are
assigned as shown in the
memory map, Fig. 2.
Interface position 1 (8004 -
8007) is reserved for the
terminal control interface.
The signals carried on the
interface information bus are
almost identical to those on
the system bus. UD3 and
UD4 are here again User
Defined data lines and RSO

and RS1 are Register select
lines which are identical to
address lines AO and Al
respectively. Power for the
address decode and buffer
circuits on the mother board
is provided by a separate on
board regulator with a

current consumption of
typically 0.4 Amp.
(More SWTPC 6800 data is
coming in BYTE.)

i!;y'; '% /í/f í//f1/iu,! ..

íSiuT 6800
SYOSTEUWTjER

63

INN

More on

the SWTPC

6800 System

Gary Kay
Southwest Technical Products Corp
219 W Rhapsody
San Antonio TX 78216

The Parallel Interface Board is used to latch and control the input and output
of 8 bit bytes. The Motorola 6820 Peripheral Interface Adaptor (PIA) is the
main component of this board, with several smaller chips acting as buffers.
This board permits parallel connections to such devices as printers, laboratory
breadboards, and special purpose keyboards.

In the December 1975 issue of BYTE we
talked about the microprocessor /system
board (MP -A) and the mother board (MP -B)
for the Southwest Technical Products 6800
microprocessor system. This article describes
the serial control interface (MP -C), the 2,048
byte random access memory board (MP -M),
the power supply (MP -P) and cabinet
(MP -F). We will also talk about the serial
interface boards (MP -S) and parallel inter-
face boards (MP -L).

Serial Control Interface

The serial control interface (coded MP -C)
is a 5.25 inch by 3.5 inch doubled sided,
plated through hole board containing a 6820
peripheral interface adapter integrated
circuit and circuitry which forms the serial
control interface. Data rates of 110 or 300
baud are selected by a jumper wire. The
interface includes software control of an
input to output echo feature which is

necessary in some tape reader operations. Its
data input or output must be in ASCII
(without parity) and either 20 mA Teletype
or RS -232 compatible. A low cost terminal
such as the TV Typewriter II (February
1975 issue of Radio Electronics Magazine) is

ideal.
10 connections are made to the interface

via a 10 pin connector along the top edge of
the board. Power for the board is provided
by a 5 VDC regulator at a current con-
sumption of about 0.2 A. 12 VDC and -12
VDC sources are also used.

64

. n 1 R. 4 w

The Serial Interface Board is used to convert parallel data from the processor into serial data to a terminal (and vice versa). The
major portion of this task is accomplished using the Motorola 6850 Asynchronous Communications Interface Adapter (ACTA)
circuit, which is the large package in the center of the board. The remaining components on this board are used to provide both
an RS -232 interface and a Teletype 20 mA current loop interface.

The board itself must only be plugged
onto the first interface port position of the
mother board. It is constantly polled for
incoming commands by the Motorola
MIKBUG software stored in the operating
system ROM whenever the system is

powered up, or is reset and is under oper-
ating system control. When system control is

turned over to your program, the control
terminal is also available for program IO. To
output a character to the terminal's display,
store the character in accumulator A and
jump to subroutine OUTEEE, which is a

character output routine written into the
operating system ROM. To input a character
from the control terminal's keyboard, jump
to subroutine INEEE, which is a character
input routine written into the operating
system ROM. In this subroutine the system
hangs in a loop until a character is typed at
which time there is a return from subroutine
with the entered character deposited in
accumulator A. The use of these ROM
stored subroutines greatly simplifies the job
of the programmer for control terminal data
input /output.

In addition to the Serial Control Inter-

face, any combination of up to seven parallel
or serial interfaces may be plugged onto the
interface connectors. Since the 6800 family
of chips includes both parallel (6820) and
serial (6850) interface elements, interfacing
is extremely flexible.

Parallel Interface

The Parallel Interface (coded MP -L) is a

5.25 inches X 3.5 inches (12.86 cm X 8.57
cm) double sided, plated through hole
circuit board containing a 6820 peripheral
interface adapter integrated circuit and its
associated circuitry which is used to connect
a parallel data device such as a printer or
parallel data terminal to the computer sys-
tem. The board is provided with two sepa-
rate connectors along the top edge of the
board. One has eight fully buffered TTL
compatible high current data outputs along
with one buffered "data ready" output line
and one "data accepted" input line for
complete handshake control. The other con-
nector has eight TTL compatible input lines
along with one "data ready" input line and
one "data accepted" output line, here again
for complete handshake control. The "data

65

The memory board, shown here with a full 4096 word complement of 2102
memory chips, is one of the more important elements of the system. The

black chips at the right edge of the photo are interface devices and address

decoding. The two voltage regulators on the board are in the center. The

remaining integrated circuits are 32 chips of 1 K by 1 bit memory.

ready" and "data accepted" lines are under
complete program control even to the extent
of setting the transition polarity upon which
the lines will be triggered. Interrupts are

under complete software control as well.
For the user who has specialized parallel

IO requirements, the TTL data buffers may
be omitted from the board, and each of the
sixteen data lines may be individually soft-
ware programmed by the user as either all
inputs, all outputs or any combination of
the two. The programmer has complete
software control of the four handshake lines,
two of which are software programmable for
input or output. Power for the board is

supplied by a 5 V regulator at a current
consumption of 0.3 A.

Serial Interface

The Serial Interface (coded MP -S) is a

5.25 inches X 3.5 inches (13.3 cm X 8.9 cm)
double sided, plated through hole circuit
board containing a 6850 asynchronous com-
munications adapter integrated circuit and
its associated circuitry which is used to
interface a serial device such as a terminal to
the computer system. Like the Serial Con-
trol Interface, its communication must be in
ASCII form and either 20 mA TTY or
RS -232 compatible. Baudot coded teletypes
will not work. The data IO baud rate for
each of the interfaces is jumper program-
mable and may be set for 110, 150, 300,
600 or 1200 baud operation. One central
clock on the microprocessor /system board
provides all of the various baud rate clocks

66

simultaneously, so that each of the serial

interfaces can have an independent data rate.

This eliminates a good deal of duplicate
circuitry and keeps the serial interface cost
low.

As with the Parallel Interface, there are

many functions that are under software
control. Selection of one of 8 different
combinations of bit count, parity, and

number of stop bits is user programmable as

is control of transmitter and /or receiver

interrupts. Checking the interface for trans-

mitter buffer empty, receiver buffer full,
framing error, parity error, and receiver

overrun are here again all done through
software just by reading the data contained
within the interface's internal status register.
External connections to the board are made

via a ten pin connector along the top edge of
the board. Power for the board is supplied
by a +5 V regulator at a current consumption
of approximately 0.2 A. +12 VDC and -12
VDC sources are used for generating the

Teletype currents and the RS -232 voltage

output.

Memory Board

The Memory Board (coded MP -M) is a 5.5
inch by 9 inch (14 cm by 22.9 cm) double
sided plated through hole circuit board with
data bus buffering, and address decoding for
up to 4,096 bytes of fast 2102 static random
access memories. The basic memory board
kit comes with only 2,048 words, however.
To fill the board to a full 4,096 words of
RAM, you must add the memory expansion
kit (MP -MX) which contains another 2,048
words of memory ICs and a separate voltage
regulator. Up to four of these 4,096 word
boards may be plugged onto each mother
board.

The 2102 static memories were chosen
because of their availability, low cost and
established reliability. Although the 4 K
dynamic memories are becoming popular,
they require refresh circuitry and slow the
processor during refresh cycles. Address
assignments are made on each memory
board by connecting the address jumper to
one of the eight possible positions, pro-
gressing on each memory board from 0 to 7.
This programs the boards from 0 to 32 K
words in 4 K word increments. Since each
mother board will only support up to four
4,096 word memory boards, it is necessary
to use another mother board with separate
power supply to expand the memory
beyond 16,384 words. Power for the lower
2,048 words of memory as well as the
decode and buffer circuits is provided by a 5

V regulator with a current consumption of
approximately 0.8 A. Power for the upper
2,048 words of memory when present is

provided by a separate 5 V regulator at a

current consumption of approximately 0.6
A.

Power Supply

The MP -P power supply consists of a
power transformer, high current bridge recti-
fier, filter capacitor, and power supply
board. The low voltage transformer sec-
ondary winding, bridge rectifier and filter
capacitor provide the 7 to 8 V DC at 10 A
required by the complement of boards in the
computer system. Since the regulation down
to 5 V is provided on each of the system
boards, the actual value of this voltage is not
critical. It must however be maintained at no
less than 7 V for proper regulator operation
while not so high as to cause the regulators
to generate abnormal temperatures.

The higher voltage transformer secondary
winding along with the rectifiers and filter
capacitors on the power supply board pro-
vide the +12 and -12 V DC at 0.5 A
required by the control and serial interfaces.
All connections from the power supply to
the mother board are made through an easily
detached connector on the power supply
board. This makes mother board installation
and removal a snap. The power transformer's
primary may be wired for either 120 or 240
VAC operation with a current consumption
of 120 VAC at 1 A or 240 `SAC at 0.5 A.

Chassis and Cover

All of the boards for the 6800 computer
system including the power supply are

housed in a 15.125 inches wide X 7.0 inches
high X 15.25 inches deep (37.05 cm wide X
17.15 cm high X 37.36 cm deep) anodized
aluminum chassis with a perforated cover.
The use of the perforated cover eliminates
the need for a cooling fan in almost all
environments. The front panel supports both
the POWER on -off and RESET switches.
The RESET switch initializes all of the
registers in the system and loads the terminal
controlled Motorola MIKBUG operating
system whenever depressed. The rear panel
contains an array of holes through which the
interface cables and line cord may pass. Both
panels along with the cover may be easily
removed providing 360° access to the system
for prototyping or service.

The 6800 system presented within this
and the previous article, has been shown to
have outstanding ease of use and is an

economical package. But as many of us
already know, hardware is but a small part
of a "computer system." Programming, or
software as it is generally referred to, is just
as important as the hardware. Of course this
system does have a very useful ROM stored
operating system, but what else is available,

and how does one load such software in
memory without having to type it in
through the control terminal one byte at a
time? Well, first of all several diagnostic
listings are provided by the manufacturer of
the kit to help check out the various boards
within the system. These diagnostics are
typically less than 90 bytes in length and can
be entered manually from the control ter-
minal in less than five minutes. Included
within these diagnostics are two programs
that provide a thorough checkout of the
random access memory boards, a common
failure point for many systems.

Regarding some method of storing and
loading in programs, a low cost audio cas-
sette tape digital storage system is presently
in the works that will be totally compatible
with this computer system. You can expect
to see it in a forthcoming BYTE Magazine
article. Also to be available shortly is an
editor /assembler software package which
will be sold for the cost of the documenta-
tion and tape only to those people simul-
taneously purchasing 4 K of the 8 K words
of memory necessary to support the
package.

Another note of importance is that the
ROM stored mini- operating system on the
Microprocessor /System Board is exactly the
same (MC6830L7) as that used on
Motorola's Evaluation Module and Inte-
grated Circuit Evaluation Kit. This means
that most all programs written for the
Motorola's Evaluation Module will function
on the 6800 computer system presented
here. Motorola also supports their more
sophisticated prototyping system called the
EXORcisor® (Registered trademark of
Motorola Inc.). This system has a larger,
more sophisticated firmware package, but it
uses the same 6800 microprocessor element,
therefore much of its software is compatible
with the 6800 system presented here.
Because of this compatibility, arrangements
have been made with Motorola Inc. to allow
Southwest Technical Products 6800 Com-
puter System customers to have access to
Motorola's 6800 program library. Customers
will be permitted to join by either sub-
mitting an acceptable program or by paying
a membership fee. Either makes them a

member of the Motorola 6800 User's Group
for two years with access to programs within
the library plus upcoming program
additions.

For those applications requiring the
utmost in speed and storage capability,
arrangements are in the works with ICOM
Corporation to supply a floppy disk and
floppy disk operating system (FDOS) that is
compatible with the 6800 system described
in this article.

67

James B Vice
MITS Inc

The New ALTAIR 680

The new ALTAIR 680 designed by MITS
is a system based on the 6800 microproc-
essing unit (MPU). The MPU is available
from Motorola or American Micro-Systems
and adapts nicely to a minimum design
configuration.

The ALTAIR 680 case measures about
11" by 11" by 4-3/4" (28 cm by 28 cm by
12 cm) making it less than one third the size
of the ALTAIR 8800. The basic system is

available in three configurations, depending
on the intended application. These include a

user programmable processor with complete
front panel controls, and two smaller ver-
sions oriented towards dedicated ROM pro-
grammed applications.

The compact size of the 680 obviously
precludes any significant amount of internal
expansion, although additional memory and
10 control are already on the drawing board.
Its small physical size can be deceiving. The
overall concept was to keep the machine as

simple, small and inexpensive as possible;
but it forms the complete central processor
of a system in itself. All that is needed to
make a MITS 680 system is the addition of
some IO devices and software.

The Three Models

The construction of this machine is a

relatively easy matter for even the most
inexperienced kit builder. Almost all of the

68

circuitry is contained on a single large
printed circuit board, including memory and
a built -in IO port. This single board is a full
central processor with the exception of a

power transformer and some control
switches. This is where the main distinction
between the three configurations is

encountered:

Most hobbyists will be concerned with
the full front panel model. This con-
tains all of the necessary controls for
addressing and entering data besides
those for controlling the processor
itself.

A turn key front panel model is also
available which eliminates all controls
except restarting the processor's ROM
software. This could be used in appli-
cations where it is desirable to elimi-
nate the possibility of the operator or
any other person affecting the
machine's memory or computing
cycle. An example for such an applica-
tion might be its use in controlling an
intrusion detection system, or for
a manufacturing machine control
system.

The third configuration is similar to
the turn key version. The 680 will also
be available as just the large PC board
mentioned above. This board contains

everything but a power supply and
controls. Its application is similar to
the turn key model, except that the
computer would be "buried" inside
another machine.

The board only model is an excellent
starter for the experimenter who wishes to
purchase an absolute minimum and do a bit
of his own designing. Such experimental use
is aided by the considerable amount of
information available on the 6800 micro-
processing unit from Motorola Semi-
conductor Products, Inc. The 6800 MPU is
also TTL compatible and requires only one 5
volt power supply.

Front Panel

In the front panel model of the 680 there
is an additional printed circuit board. This
board contains all of the logic circuitry
necessary to reset, halt or start the proces-
sor. Also located on this board are switches
and associated LED indicator lights for each
of the sixteen address lines and eight data
lines. The front panel printed circuit board
mounts directly to the main printed circuit
board via a 100 contact edge connector. This
eliminates the need for a cumbersome wiring
harness. The only other control is the power
switch, located on the back panel of the unit
for safety purposes.

On the dedicated program models, no
front panel is needed because PROM or
ROM software is used to store the starting
address; a minimum fixed set of programs
must be supplied by the user or manufac-
turer in this form of the system.

Functional Description

The basic ALTAIR 680 computer can be

subdivided into five functional sections.
These are the MPU and clock, the memory,
an IO port, control and indication, and the
power supply.

The first three of these sections, along
with the power supply regulation compo-
nents, are located on the main printed
circuit board.

MPU and Clock

At the heart of the 680 system is the
6800 microprocessing integrated circuit.
This is a versatile and very powerful little
processor, yet it is directly responsible for
the overall simplicity of the 680 design.

The 6800 is an 8 bit parallel processor
using a bi- directional data bus and a 16 bit
address bus. The address bus gives it the
ability to directly address 65,536 bytes of
memory. (Of course most configurations will
have fewer than 65,536 bytes.) The instruc-
tion set consists of 72 basic instructions with

various addressing modes giving a total of
197 different operation codes.

The 6800 has seven different addressing
modes, with the available modes being a

function of the type of instruction selected.
The seven modes include the following:

Accumulator Addressing - one byte
instructions which specify either of
the two accumulators use this mode.
Immediate Addressing - two or three
byte instructions with data specified in
the instruction use this mode. In
immediate mode instructions, one or
two bytes of data follow the op code,
depending upon the instruction
involved.
Direct Addressing - two byte instruc-
tions which allow the user to directly
address the first 256 bytes of memory
address space in the machine employ
this mode.
Extended Addressing - three byte
instructions with a full 16 bit address
in the second two bytes use this mode.
There is no need to set up an on -chip
register to access all of memory with
the 6800. This mode is available for
most data manipulation operations.
Indexed Addressing - two byte in-
structions with this mode add the
second byte of the instruction to the
16 bit index register to give the
address of the operand.
Inherent Addressing - certain one
byte instructions imply the operands
directly and thus do not need a

separate address.
Relative Addressing -- all the branch
instructions calculate the branch
address by adding the second instruc-
tion byte to the current program
counter plus two. The relative offset is

treated as a signed two's complement
number (8 bits) being added to the
address in the program counter. This
allows the user to branch to memory
location +129 to -125 bytes from the
location of the present instruction.

These various addressing modes may take
a bit of getting used to, but once understood
they allow for some very fast programs to be

written.
The 6800 MPU contains three 16 bit

registers and three 8 bit registers. The
program counter is a two byte register which
keeps track of the current address of the
program. The stack pointer is also a two
byte register which contains the next address
in a variable length stack found in main
memory. The index register is a two byte
register used to store data or a memory
address for indexed addressing operations.
There are two single byte accumulators used

69

for holding operands and results from the

arithmetic logic unit (ALU). The 8 bit
condition code register indicates the results
of an ALU operation. In this register there
are two unused bits, kept at a logic one. The
remaining six bits are used as the status flags
for carry, overflow, zero, negative, interrupt
and half carry.

There are several timing and control
signals required to operate the MPU. Two
clock inputs are required, phase 1 and phase

2. These must be nonoverlapping and run at
the Vcc voltage level. Ordinary TTL will not
drive these clocks properly. In the 680 the

clock is a 2 MHz crystal controlled oscillator
with logic to provide a 500 kHz two phase

clock. (Although the 6800 is capable of
running with a clock of up to a 1.0 MHz,
MITS has set the speed of the 680 to 500
kHz in order to greatly reduce the cost

70

through use of slower and less expensive
system components.) Sixteen active high
address outputs are used to specify the
sections of memory or IO to be used. These
can drive up to one standard TTL load and
130 pF. There are also eight bi- directional
data lines with the same drive capability as

the address lines. The HALT signal is an

active low input which ceases activity in the
computer. The RW (read or write) signal in
the high state indicates that the processor is

in a read condition; in the low state it
indicates that the processor is in a write
condition. The VMA (valid memory address)
signal tells external devices that the proc-
essor has a valid address on the memory bus.
The DBE (data bus enable) signal is the
input which enables the bus drivers. The BA
(bus available) signal indicates that the
machine has stopped and that the address

bus is available. RESET is used to reset and
start the MPU from a power off condition.
The IRQ (interrupt request) signal, when
low, tells the processor to start an interrupt
sequence. This can occur only if the inter-
rupt mask bit in the condition code register
is low. The NMI (nonmaskable interrupt)

signal is essentially the same as the IRQ
signal except that it is not dependent on the
condition code register.

Memory

The main printed circuit board on the
680 contains the basic memory for the unit
also. This includes 1024 bytes of random
access memory and provisions for another
1024 bytes of read only memory. The
random access memory circuits being used
are the 2102 static 1024 X 1 bit parts. Read
only memories of the mask programmed
type can be custom ordered, and are very
expensive in small quantities. The 1702
type, ultra -violet erasable programmable
read only memories are typically used in this
system. These are 256 X 8 bit units, so four
1702As would be required to fill up the
available space in the 680.

There is additional memory for the 680
on the drawing board at this time which may
add up to 12 K bytes more storage to the
unit.

IO Port

Also on the main printed circuit board is

a built in IO port and the appropriate
interface circuitry. This port may be con-
figured as either an RS232 level port or
either a 20 mA or 60 mA current loop TTY
level port. This means it can be interfaced
with proper software to the old Baudot type
Teletypes, such as the Model 19 and Model
28 machines.

The entire design of the 680 is greatly
simplified due to the 6800's use of memory
address space for IO addressing. The proces-
sor uses addresses to refer to IO devices as

well as memory, rather than have special IO
instructions and a separate 10 bus. Within
the limits of practical engineering, pro-
gramming and memory requirements, as

many IO devices as desired can be added to a

6800 microprocessor system. No logical
limitation is built into the instruction set.

MITS also has additional 10 interfaces on
the drawing board at this time; although
availability of this and the additional
memory boards will be greatly influenced
in their development by customer response.

Control and Indication

On the fully user -programmable version
of the 680, the front panel assembly con-
tains a RUN /HALT switch with an LED
indicator for each switch position. There is a

RESET switch with no indicator, and
another indicator for the AC power switch
which is located on the back panel of the
unit. The switches for the 16 address lines
and 8 data lines, and their associated indica-

tor lights, are also located on the front panel
assembly of the fully programmable model.
There is also a DEPOSIT switch.

The DEPOSIT, RESET, DATA and
ADDRESS switches are enabled only when
the RUN /HALT switch is in the HALT
position. To view the data in a particular
memory address, the RUN /HALT switch
must first be in the HALT position and then
the ADDRESS switches may be set to the
required address. The data located at that
particular address will then appear on the
DATA LED indicators above the DATA
switches.

To write data in a desired location, once
the correct address has been set on the
address switches, the appropriate data
should be entered on the DATA switches
and then the DEPOSIT switch activated.
Since the address bus is already connected to
the switches by being in the HALT state, a

write pulse causes the data to be written into
the selected RAM address.

When the RESET switch is activated, the
processor itself resets. This initiates a restart
sequence, pulling the address bus to its high
state and causing hard -wired data on the
board to be used as the restart address.

On the dedicated program versions of the
680, most of these functions are taken care
of by ROM or PROM. The only controls
available to the user are the AC power and
RESET switches.

Power Supply

The 5 volt supply to the computer is

supplied from the power transformer
through a conventional bridge rectifier and
filter capacitors and voltage regulator IC. A
32 volt winding on the transformer is used
to generate the unregulated ±16 volts re-

quired for a TTY interface, and a -16 volt
line is fed to four zener diode regulated
outputs to provide four --9 volt lines for the
PROMs.

The transformer itself, along with the
power switch, is located on the computer's
back panel. There are also provisions for
installing a cooling fan when necessary.

As far as software goes, MITS has a

package available similar to the 8800's
Package One. This includes an editor, PROM
monitor and assembler. This all goes to make
the ALTAIR 680 a rather powerful little
machine. There is also the possibility for
further software development.

MITS has decided to await customer
response to determine the course of further
680 development in both the areas of
software and hardware.

Although it's not quite as powerful as the
ALTAIR 8800, the ALTAIR 680 is mighty
close and costs less.

71

1110= _
AILICROI.OA\PR'l' ERN

MICROCOMPUTERS

ea -1 YAM MANUAL

wl-îllrgRs

NAAGWAII MANUAL

Richard S Simpson
314 Second Av
Haddon Heights NJ 08035

Photo 1: When you first
open your KIM -1 box, you
see a thick layer of docu-
mentation, including a
large wall chart of the
system's hardware details,
an MCS650X Instruction
Set Summary card, KIM -1

User Manual, Programming
Manual and Hardware
Manual. Also shown in this
picture is the KIM monitor
listing copy which must be
requested separately and is
a must if you are to take
advantage of KIM's sub-
routines in applications
programs.

A Date with KIM
Here it is! In the November 1975 BYTE,

Dan Fylstra reviewed the capabilities of the
MOS Technology 6501 microprocessor chip
in an article titled "Son of Motorola" (page
56). The article stated that "it will be three
to six months before you see (a 6501)

designed into a kit..." Well, MOS Tech-
nology has gone one better and introduced
not a kit, but a completely assembled, tested
and warranteed microcomputer with a price
tag of only $250! Using the 6502 processor
chip (a 6501 with an on -chip clock), the
microcomputer features 1 K of RAM, 2 K of
ROM containing the system executive, a

complete audio cassette interface, a serial
terminal interface, 15 bidirectional IO lines,
a 23 key keypad and a six digit LED display.
This completely assembled one board com-
puter has all the programming features of
the 6502 at a very competitive price.

If you have been hesitating over buying a

microcomputer because of the difficulty of
assembly and the fear that it won't work
when you're finished, KIM -1 is for you. The
only assembly required is to attach six self
adhesive plastic feet to the back of the

72

KIM -1 printed circuit board and attach a

+5 volt, 1 ampere power supply to the 44
pin edge connector provided. You'll also
need a supply of +12 V for the cassette
interface; but a handful of flashlight bat-
teries should work fine since only about
50 mA of +12 V is required, and that only
when the interface is being used.

The name KIM is an acronym for Key-
board Input Monitor. The name really des-
cribes the ROM executive routines, not the
whole unit, but it's a pleasant change from
the manufacturer's name followed by a

number. It's also significant that the system
derives its name from its software.

The KIM -1 board can be operated in one
of two modes: using the on board keypad
and LED display, or using a serial terminal.
The keypad and hexadecimal display is

infinitely easier and less error prone than
throwing toggle switches and reading results
from binary lamps. In fact, for program
entry and many simple applications, I prefer
the 23 key keypad and bright LED display
to my slow, noisy Teletype. The keys have a

good, positive "feel" to them (MOS Tech-

Photo 2: The KIM -1 proc-
essor as it is removed
from its box. The MOS
Technology product
comes in a neat package
which has one foam pad-
ded and static protected
KIM -1 board as its bottom
layer.

nology should know about such things, since
they are a major manufacturer of chips for
calculators).

The switch in the upper right corner of
the keypad puts the machine in single
instruction (not single cycle) mode. When
the switch is "on," each depression of the
"GO" button causes a single instruction of
your program to be executed. Control is

then returned to the executive program in
ROM and the contents of all six machine
registers (PC, X, Y, S, P, and the accumula-
tor) are stored in fixed memory locations
where you can easily examine them through
the keypad or terminal and then "GO" to
the next instruction. This is an important
capability, since if you just halt a micro-
processor after each instruction there is no
way of examining the registers (they're all
inside the chip!).

I won't go into any detail on the instruc-
tion set (see Dan Fylstra's article for that)
except to say that it is comprehensive. The
variety of addressing modes makes complex
programming (especially when processing
lists) a lot easier. The 6502 architecture has
no 10 register or 10 instructions, so any
memory location cari become an IO "port" if
you build the hardware for it. KIM comes
with a built -in 15 line bidirectional 10
interface. TTL levels are acceptable, of
course, and one of the lines can supply
enough current (5 mA) to directly drive a

power transistor. The manual shows how to
use it to drive a small speaker for "micro-
processor music" programmed in a manner

similar to the Kluge Harp of October BYTE
(page 14). Each line can be separately pro-
grammed for input or output by writing a

status word into the correct memory
location.

The cassette interface is carefully thought
out and should be foolproof. Half of the
executive ROM is devoted to the cassette
interface software, which includes rudimen-
tary file management and sophisticated pro-
grammed equivalents to UART operation.
This software allows multiple dumps to a

singlc cassette. A header written on each
output segment allows you to say, in effect,
"find me program number 34 on the tape
and load it starting at location..." A check-
sum is stored at the end of each segment and
the user is immediately informed if the
computed checksum doesn't match when the
tape is read back in. You can even record
voice data between segments of digital
data - the interface will ignore the voice.
This feature could be used to verbally record
the instructions for a game and then auto-
matically load and run it. Both high and low
level outputs are provided to interface with
any type of cassette recorder. It's not a vital
feature, but it indicates the care with which
the entire system has been thought out.

The TTY interface is for a standard
20 mA current loop (figure 1 shows how I

modified it for an RS -232 interface). A
unique feature of the software is automatic
data rate detection. As soon as the system is
powered up, the user types a RUBOUT
character on his terminal. The software

73

If you have been hesitating
over buying a micro-
computer because of the
difficulty of assembly and
the fear that it won't work
when you're finished, then
KIM -1 is for you.

KIM -1 derives its name
from the software, a sig-

nificant indication of the
importance of good user
support programs.

RS- 232
CONNECTOR

20

e

o

1.3 K
Ws.

DATA

- DATA

20mA CURRENT LOOP TO
RS -232 CONVERSION

4N33

1
IN914

KIM -I
APPLICATION
CONNECTOR

2K
w.

4N33

Figure l: One way to in-
terface KIM -1 with an
RS -232 compatible ter-
minal is illustrated in this
diagram. Opto isolators are
used to accomplish the
coupling. The RS -232 pins
1, 2 and 3 will be suffici-
ent for terminals which do
not involve handshaking;
on some terminals, pins 5,

6, 8 and 20 of the stand-
ard RS -232 plug may have
to be tied together to
bypass handshaking sig-
nals.

A

oR

4.7

calculates the data rate (anything from 110
to 1200 baud is acceptable) and auto-
matically adjusts all further conversation to
that rate. No additional timing standards or
switches are required for the interface.

The real beauty of the terminal interface
is in the software, not the hardware. On
request, MOS Technology supplies a com-
plete listing of KIM. All the executive ROM
software subroutines are documented and

available to the user referencing this well -
commented listing. Thus, to print the con-
tents of the accumulator in hex on the
terminal requires a simple one- instruction
subroutine call. Those readers who have had

to invent their own terminal interface soft-
ware will have a deep appreciation for this
capability. Similar subroutines are provided
for reading characters from the terminal or
keypad, printing one or a string of ASCII
characters, or writing digits in the LED
display.

To round out the terminal interface,
software is provided in ROM to read and
punch paper tape if your terminal is so

equipped. Again, care has been taken to
provide checksums on the punched tape
which is automatically verified when the
data is reloaded. This kind of attention to
detail reflects the high caliber of the MOS
Technology offering. One reason for this is

the fact that MOS Technology sells a size-

able portion of the KIM units to industrial
users. This policy of building to industrial
rather than consumer standards is also
evident in the quality of the PC board, the

74

PC artwork, and the fact that the board is

coated with a solder mask, a plastic coating
which protects the printed wiring. To
further emphasize their faith in KIM, MOS

Technology gives you a 90 day warranty on

the entire KIM system, not just the corn -

ponents. Mail -in repair service is available
even after the warranty expires.

Interval Timer

Another feature of KIM which is finding
its way into more and more microprocessors
is the inclusion of a program controlled
interval timer. The KIM board actually
contains two programmable timers, but one

is dedicated to control the keypad and

cassette interface. Any count from 1 to 256
can be loaded into the timer by writing to
the timer's memory location. The user can

control the scale of the timer by pro-

gramming it to count every clock pulse or to

count every 8th, 64th, or 256th clock pulse.

This prescaling of the counter is done by

decoding the last two address bits for the

timer. Thus, the time scale is controlled by
which memory location is loaded with the
count. You might consider using a similar
scheme whenever you have to write more
than eight bits to control an external device:
Just use the least significant address bits as

data.
When the timer has counted down to

zero, a software interrupt is generated, noti-
fying the program that "time has run out."
As soon as the interrupt is issued, the timer
continues to count past zero (into negative
numbers) at the clock rate. If the program is

servicing other interrupts, it can read the
counter register to determine how long ago

(in machine cycles) the timer interrupt
occurred.

Memory Expansion

If you are interested in expanding the
KIM memory beyond the 1 K provided,
you'll be glad to know that all the decoding
for the first 4 K is provided right on the KIM
board. All you need to provide is 4 K more
of RAM chips and some buffers.

There are two connectors on the KIM
board; one called the expansion connector is

for adding memory and bus oriented devices.
The second connector, called the application
connector, interfaces directly to the outside
world. The expansion connector has all the
address, data, and memory control signals.

The application connector terminates the
lines for the audio cassette, the terminal
send and receive signals, and the 15 IO lines.
Connections are also provided so that the
keypad can be removed from the KIM board
and mounted elsewhere, a useful feature if

Photo 3: Wiring for Stu d
Alone Use. With due re-
spect to the instructions in
the KIM -1 user's manual,
and addition of some mis-
cellaneous parts, the re-
sults will be a wiring har-
ness similar to that shown
here. Wires have been
attached and labelled for
GND, +5 volts and +12 V.

The audio cassette inter-
face has been brought out
to an RCA -style phono
jack assembly purchased at
a retail electronics store,
along with interconnection
cables for the recorder in-
put and output. This setup
enables the user to enter
and test out programs
through the KIM -1 control
panel and LED display.

you want to wrap up the KIM printed circuit
board in sheet metal along with a power
supply.

Documentation

The documentation which comes with
KIM is thorough and comprehensive. Any
regular reader of BYTE should have no
trouble following the details of the 200 page
programming manual. There are plenty of
examples; and the explanation of the opera-
tions which occur in each machine cycle of
multicycle instructions, while not essential,
is very instructive. Special sections of the
manual are devoted to interrupt handling
and use of the stack pointer. This is vital
information often glossed over in other
manuals.

I have to admit that I have not yet
digested all the information in the 150 page
hardware manual which came with my KIM,
since my main interest is in programming my
system as soon as possible. However, the
manual seems to have a solid emphasis on IO
interfacing and usage of the control lines.

The third manual provided is the actual
KIM user's manual. This 100 page document
explains how the keypad, cassette interface
and terminal interface are to be used. It gives

75

a few basic programming examples, includ-
ing an example which goes through the
entire design of a simple application using
the IO lines. My only complaint is that no
sample program was provided for the use of
the programmable timer or the ROM execu-
tive subroutines. Also, the listing of KIM
should have been supplied as a standard
item.

Also included in the package is a pocket
reference card for the instruction set and a

wall size schematic of the entire KIM board.
Two other useful documents are available
from MOS Technology on request. One is
the manual for the 6500 cross -assembler,
which is available on several commercial
time -sharing systems. The other is the well -
commented listing of the executive programs
stored in ROM as mentioned earlier.

In summary, the KIM is an excellent
microcomputer requiring no assembly and
which is very attractively priced. The only
auxiliary equipment required is a power
supply and a cassette recorder. The manuals
are among the best available and the built -in
keypad and display make KIM easy to get
started with. The terminal interface and ease
of memory expansion make it easy to
upgrade as your requirements increase. Make
a date with KIM - you'll enjoy it!

True Confessions:

How I Relate to KIM

ICI
7404

56011 560 il --w-

.0210

3

1I
2.0MHz CRYSTAL

+5V ONO

ICI 7404 14 7

IC2 7474 14 7

IC3 7400 14 7

IC4 74103 4 1I

POINT
A

2

Yogesh M Gupta
118 E Main St
New Concord OH 43762

+5 +5

PR

D 0
IC2a

CLK
7474

a
CLR

POINT B ---+

RW
(FROM 6502)

C>

110
PR

0
IC2D

CLK
7474

CLR
13

ICI

POINT
/ C

I recently purchased a KIM -1 micro-
computer card from MOS Technology (See

"KIM- O- Sabee ?" in the April BYTE, page 14

and "A Date With KIM" in the May issue,

page 8). In my opinion, KIM -1 offers one of
the best bargains to a computer experi-
menter for the price ($245 for the card +

$4.50 for shipping and handling). However,
the hobbyist may be faced with a few
problems, as I was. The intent of this article
is to solve some of these problems.

Clock Stretch and
Random Access Memories

The cheapest random access memory in
experimenters' markets today is the standard
2102 static memory which averages approxi-
mately 0.154 per bit. During a write cycle,
the inexpensive slow versions of this device
require the data to be stable for 800 ns

before the trailing edge and data hold time
of 100 ns after the trailing edge of the write
pulse. Even if the MOS Technology 6502
processor is slowed down to 250 kHz to
obtain the data stability, there is still not
enough data hold time for the slow chips.

I solved this problem by implementing
the circuit shown in figure 1. This circuit
allows the 6502 processor to use a mixture
of fast and slow 2102 memory devices in the
same system. The processor cycle is main-

SPEED SELECT

IC 3
7 400

Q Figure 1: A circuit which

m 0
creates an alternative slow
clock cycle for the 6502 2 JD V

1(
65Ó2)7O
PIN 37

c M
J 0

I C 4
I CLK

74103
3

76

IC3
7400

RW

(TO SLOW
2IO2's)

processor on the KIM -1
board under control of a

"SPEED SELECT" line
generated by slow mem-
ories. SPEED SELECT= 0
for fast cycles, SPEED
SELECT = 1 for slow
cycles. This circuit re-
quires a 2.0 MHz crystal.

POINT B

POINT C

410 (IN)

m I (6502)

ADDRESS BUS
(6502)

SPEED SELECT

t2-+l r1+1

I I 500 n5
12 IDOOnS
13 75 nS - MAX.
t4 300nS -MAX.
15 TIME FOR ADDRESS DECODER

tained at 1.0 ps for the fast memory access,
while for the slower 2102s, the cycle is
automatically stretched to 2.0 ps.

Sometimes integrated circuits behave in
ways that are not predicted by, or are
overlooked by, their manufacturers. This
modification of KIM -1 to enable the clock
stretching function is accomplished by re-
moving the usual KIM -1 6502 clock genera-
tion circuitry, and simply driving the ¢0 pin
of the 6502 directly from a TTL clock
source which is external to the chip. This
mode of operation is not documented in the
6502 Hardware Manual of MOS Technology,
but it worked quite satisfactorily in my
system . The intention of the designers of the
6502 was that the clock generation logic on
the chip would be used with external com-
ponents setting the frequency of the
oscillator.

The SPEED SELECT signal to stretch the

POINT A

POINT 8

00 (IN)
6502 PIN 37

m2 (6502)

DATA BUS (6502)

t2 -+{
t1+I

t 2 -tl
tl+I

POINT B

POINTC I

410 (IN)
6502 PIN 37 1

I(6502)

ADDRESS BUS
(6502)

SPEED SELECT

Figure 2: Method 1

SPEED SELECT Dis-
cipline. In this method,
fast cycles are ° the rule,
slow cycles are the excep-
tion. Refer to figure 1 for
points B and C. Invalid
data on the address bus is
indicated by the cross-
hatched areas.

t5

SLOW CYCLE
FAST

CYCLE

II 500nS
12 I000 n5
1 3 75 n5 MAX
r4 300nS MAX
t 5 TIME ALLOWED FOR ADDRESS DECODER

SLOW
FOR

102' S I I-

t1 250nS
12 500nS
t3 90nS MAX
14 200 nS MAX
IS 950nS
16 350 nS

77

Figure 3: Method 2
SPEED SELECT Disci-
pline. In this method, slow
cycles are the rule, fast
cycles are the exception.
Refer to figure 1 for
points B and C of the
timing diagram. Invalid
data on the address bus is
indicated by the cross-
hatched areas.

Figure 4: Write Cycle for Slow 2102 Mem-
ories. The timing requirement is that valid
data be present on the bus when the RW
signal to the memory changes from 0 (write
state) to 1 (read state). The crosshatched
areas Indicate when data is invalid on the
data bus.

560 Sl

ICI
7404 560n

+5

1.0MHz
CRYSTAL

POWER CONNECTIONS
+5 V ONO

ICI 7404 14 7
1C2 7474 14 7
IC3 7400 14 7
IC4 74123 16 8

2
FROM KIM -I

RW FROM
KIM -1

+5

SPEED SELECT

cycle is generated by address bus decoding
logic using one of the following two
methods.

Method 1: Normally the SPEED

SELECT signal is kept low so the proces-

sor cycle is 1.0 ps. However, this signal

goes high when the processor addresses

the slow memory region causing the cycle

to stretch to 2.0 ps. See figure 2 for the

timing relationships.
Method 2: Normally the SPEED

SELECT signal is kept high so that the
processor cycle time is 2.0 ps to access

slow memory. However, this signal goes

low when the processor addresses the fast
memory devices causing the cycle time to

4-SDOnS+I

2(6502)---II
-01 20onS

2µS

DATA BUS
(6502)

RW FOR
2102

1+--1.0µS -4300n$1..

Figure 6: Write Cycle for Slow 2102 Mem-

ories using the circuit of figure S. The

output pulse width of RW is adjusted to
1.2 ps nominally. (Check the results on your
scope even if you use other than precision
parts of the values shown for R1 and Cl in
figure 5.)

78

O
TO 6502
PIN 37

RW TO
SLOW 2102- 5

Figure 5: Alternate Slow
Clock Generation Circuit.
In this circuit, the original
KIM -1 crystal can be used,

since a digitally controlled
timing cycle is replaced by
the 74123 oneshot.

be only 1.0 ps. See figure 3 for the timing
relationships.
The circuit shown in figure 1 will allow a

data stability of 950 ns before the trailing
edge and data hold time of 350 ns after the

trailing edge of the Write Pulse for the slow

2102s. See figure 4 for the timing relation-
ships.

However, the KIM -1 board comes with a

1.0 MHz crystal. Figure 5 shows an alter-

native circuit using a 1.0 MHz crystal. The

timing relationships to control SPEED
SELECT signal are the same as shown in

figures 2 and 3. The RW signal for the slow
memory is generated in this case by using a

74123 oneshot. The value of the RC

constant for the 74123 is chosen to provide
a nominal output pulse width of 1.2 µs. This

allows a data stability of 1.0 ps before the

trailing edge and data hold time of 300 ns

after the trailing edge of the write pulse for
the slow memories. Figure 6 shows the

resultant timing relationships. It should be

noted that the output pulse width of the

74123 can only tolerate a ± 16.66%
variation, and still permit successful opera-
tion of the 2102 memory devices. This

tolerance may require selection of precision
parts for the external resistor and capacitor
of the oneshot.

Bus Expansion

The 6502 bus is only capable of driving
one standard TTL load. If more drive

capability is needed, the tristate drivers such

as the 8T97 or DM8833 parts may be used.

 BUS EXTENSION INTEGRATED
CIRCUIT. TYPICAL PARTS:

DM8833
8T97

6502
DATA LINE

RW
(6502)

7404

HIGH DRIVE CAPABILITY TRI-
STATE

Figure 7: Use of a Bus Extension Integrated Circuit. In order to tie in extra
memory or peripherals, a bus extension is required. The typical logic diagram
of a simple attempt which will not always work is shown here. (Conflicts can
arise.)

However, you must be very careful when
using an extended data bus. If you enable
the drivers by RW signal as shown in figure
7, then during read mode, the drivers for the
existing KIM -1 memory (eg: 74125s) can be

turned on simultaneously. The low level
output current of 74125s is only 16 mA and
is not sufficient to pull down a turned on
8T97 type driver to logic 0 level. Therefore,
during read mode the bus extension tristate
drivers should be turned off when the
existing on board KIM -1 memory (RAM,
6530 -002 and 6530 -003) is being accessed as

shown in figure 8. In actual implementation
the DECODE ENABLE signal may be the
same as the one needed on the application
connector of the KIM board (when more
than 8 K memory is needed).

Interrupt Prioritizing Logic

The KIM -1 Hardware Manual (Section
2.3.3) describes a few approaches to im-
plement interrupt priority logic; but I found
them either inefficient (software time) or
expensive (use of ROM). The circuit shown
in figure 9 provides a cost effective com-
promise. The interrupts from the peripheral
devices are latched in by the 02 signal. This

6502
DATA LINE

RW(6502)

DECODE
ENABLE

inhibits the priority encoder from generating
a false vector (if the interrupts from the
peripherals are changing while the 6502 is

fetching the vector). In response to IRQ, the
6502 fetches the vector from hexadecimal
locations FFFE and FFFF. During these
fetch cycles, the 6530 -002 is disabled by
letting the decode enable signal go high on
the application connector. Therefore, the
vector generated by this circuit is fetched by
the 6502 instead, and the program goes to
one of the locations from 0200 to 021C.
This segment of memory serves as a vector
table with pointers to the individual inter-
rupt service routines as follows:

0200
0204
0208
020C
0210
0214
0218
021C

The actual

JMP VECO
JMP VECI
JMP VEC2
JMP VEC3
JMP VEC4
JMP VEC5
JMP VEC6
JMP VEC7

service routines will reside in
locations VECO through VEC7 for the
respective interrupts. It should be noted that
each vector in the table requires 4 locations.
(Only 3 locations are needed for a jump but

BUS EXTENSION INTEGRATED
t CIRCUIT. TYPICAL PARTS:

0M 8833
8797

I 1 HIGH DRIVE CAPABILITY TRI-
STATE

79

Figure 8: Adding a gate to
the bus extension control
resolves a potential con-
flict through the use of a
decode enable signal which
is high if external memory
is referenced, low if mem -
ory on the KIM -1 board is
referenced.

INTERRUPTS
FROM
PERIPHERALS

4

INTERRUPT
LATCH

ICI
74175
D 0

C>-I2 D 0

-LCK CL

o- s
D41

2 4

14

GS
7

6
5

4
74148

A2

D 0
D 0

C>-.111 D 0 K CL
m2 p-

'A0 C>

A2C>
A3C>
A4C>
A5 p
A 6C>

BUFFERED A 7 E>
ADDRESS - A 8 (=>
LINES A9 A10o-?

A11C> 3

A13

4

S 7430
8

A I4 6 AIS II
12

+5

0
E1

Al

AO

IC3

IC4

IC5
740

2

3

5

6

IC7 8
7430

12
IC8

7432

2

QIRO

CO D7

Q D6

Q DS

D4

Q DO

SYSTEM DATA
BUS
EXTENSION

L - - - - -- -HIGH DRIVE CAPABILITY
BUS INTERFACE
E G: DM 8833

8797

10ADDRESS
LIFFFE/FFFF

I ARBITRARY
ADDRESS

POWER PINS
+5V GND

ICI 74175 16 8
IC2 74175 16 8
IC3 74158 16 8
IC4 7408 14 7
IC5 7404 14 7
IC6 7430 14 7
IC7 7430 14 7
IC8 7432 14 7
1C 9 7400 14 7

BUFFERS - PER CHOICE

1C9

DISABLE -
DECODE ENABLE
TO KIM
APPLICATIONS
CONNECTOR

Figure 9: By disabling normal address decode through the DECODE ENABLE pin for the
KIM -1 applications connector, an alternate source of the interrupt vector at locations FFFF
and FFFE can be created which accomplishes interrupt prioritizing functions.

the extra location is a requirement of a

simple hardware design.) JMP instruction
takes only three locations, so your software
might use the fourth location to save the
accumulator, eg:

0200 PHA
0201 J MP
0202 VECO (LOW)
0203 VECO (HIGH)

This architecture will re -map the 1 K
resident RAM on the KIM board as follows:

0000 through 00FF Page 0
0100 through 01 FF Stack
0200 through 021 F Vector Table
0220 through 03FF Applications

The disable signal in figure 9 will deselect
existing KIM -1 memory when low. This is

implemented for memory expansion as

described earlier. However, if memory ex-
pansion is not desired the signal may be
fixed to a logic 1 level.

80

Halt?
Another problem one faces is how to

debug the software when the processor does
not have a HLT instruction. You can single
step the program instructions on KIM -1, but
this feature does not help the programs
which involve multiple levels of loops or
critical peripheral timing controls. The
obvious solution is to use the BRK (software
interrupt) instruction. However, this would
require software overhead in every interrupt
service routine to determine whether it was a

hardware or a software interrupt. On the
KIM -1 system, I found the sequence JSR 05
1C (Jump to subroutine at location 1C05)
more useful for this purpose instead. The
execution of JSR causes the program to
jump to an input monitor loop and display
of the address (PC + 2) on the KIM board.
PC is the location where the JSR was
executed.

Photo 1: The Z80 microprocessor evaluation board.

Microprocessor Update: Zilog Z$0
Burt Hash izume
PO Box 172
Placentia CA 92670

One feature of the Z80
not found in other 8 bit
microprocessors is a built
in dynamic MOS memory
refresh algorithm which
employs unused memory
cycles to do hidden (from
software timing) refresh
operations.

Zilog, a fairly new company in Los Altos
CA, has been sampling an 8 bit micropro-
cessor, the Z80, since early this year. The
Z80 is a "third generation," single chip,
NMOS microprocessor, which is completely
software compatible with Intel's 8080A. Its
158 instructions include the 8080A's 78
instructions as a subset. Because the 8080A
is probably the most widely used 8 bit
microprocessor on the market today and
because of the Z80's upward software com-
patibility, this article evaluates the Z80 in
comparison to the 8080A.

Physical and Electrical
Characteristics

The Z80 processor is packaged in the
standard 40 pin dual in line package; how-

81

ever, even though the Z80 is software
compatible with the 8080A, it is most
definitely not pin compatible. (See figure 1

and table 1 for pinout definitions.) There are
numerous differences between the two pro-
cessors as far as electrical characteristics are
concerned.

The 8080A requires three voltage levels,
+12, +5, and -5 V. A high voltage two phase
clock is also required. Maximum speed is a

480 ns clock period. Finally, some sort of
system controller is needed to separate the
system control signals from the data bus.
This all makes for a fairly complex system
design around the 8080A.

On the other hand, it is very easy to
design a system around the Z80. It requires
only a single +5 V power supply because the

technology used is of the same type used by
Motorola in its 6800 microprocessor, which
also requires a single 5 V power supply. The
Z80 requires a single phase 5 V clock.
Maximum frequency is 2.5 MHz for a 400 ns

clock period. System control signals, such as

memory read and write, have separate pins
from the processor and are not time shared

with the data bus. An additional feature not
found on any other microprocessor at the
time of this writing is the capability to
refresh dynamic memory.

Because the Z80 is upward software
compatible with the 8080A, the internal
architectures are similar. (See the register

configuration in figure 2.) Both have 16 bit
program counters and stack pointers as well
as a register array of six general purpose
registers, (B, C, D, E, H and L), an accumu-
lator (A), and a flag register (F).

The Z80 has numerous additional
characteristics. It has an additional duplicate
register array consisting of 8 registers (A', F',
B', C', D', E', H' and L'). These can be

switched with the primary register array for
fast interrupt processing. There are also two
16 bit index registers (IX and IV) for
increased addressing capability and easier

data manipulation. An 8 bit interrupt vector
register (I) expands the capability and in-

creases the power and speed of interrupt
handling by the processor. Finally, an 8 bit
memory refresh register (R) automatically
increments after every instruction fetch and

refreshes memory while the processor is not
using the bus. Thus the execution time of
the system is not increased due to refresh

overhead.

Software

Now that we have seen the hardware
aspects of the Z80 and how it compares to
the 8080A, let's take a look at its instruction
set. The fact that the Z80 has 158 instruc-
tions versus the 8080A's 78 gives only a

small indication of its technological super-
iority in this area. The instruction set can be

broken up into two aspects, addressing
modes and instruction groups.

Since the Z80 is software compatible
with 8080A, it necessarily has the same

addressing modes as the 8080A. The modes
in common are register addressing, register
indirect addressing, direct addressing, and

immediate addressing.

SYSTEM
CONTROL

CPU
CONTROL

CPU
BUS
CONTROL

27 30 _ A

> ADDRESS BUS

DATA BUS

MI
31 0 AI
32 _ A2 19

MREO
20

2
A3 TORO

21 34 _ A4 RD
22

Z -80 CPU

35
A5 WR

28

3.6_.
37

A7 RFSH 38 _ A8
39 _ 1,9

HÁIT --e
24

40
A10

- WAIT WAIT

16

All 2 Al2
3

- A13 INT
17 4

A14 NMI -
26

5
A15

14

RESET

25
emu kb

23
DO 1=
D1 BUSAK

6

+

D2 ~~ D3 7-
D4 + ÌI 9 D5 +5V

29 _

.0-1.
Ir - D6 GND I. D7

Figure 1: Pin configuration of the Z80 processor. Of particular note to

custom hardware hackers is the "M1 "line which gives users the possibility of
identifying instruction cycles.

Table 1: Signal list for the Z80 processor. This table lists each active pin of
the Z80 with a short explanation of its purpose.

AO -A15
(Address Bus)

DO-D7
(Data Bus)

M1
(Machine Cycle one)

MREQ
(Memory Request)

IORQ
(Input/Output Request)

82

Tri -state output, active high. A0 -A15 constitute a 16 bit
address bus. The address bus provides the address for
memory (up to 64 K bytes) data exchanges and for IO

device data exchanges. IO addressing uses the 8 lower
address bits to allow the user to directly select up to 256
input or 256 output ports. A0 is the least significant
address bit. During refresh time, the lower 7 bits contain a

valid refresh address.

Tri -state input and output, active high. Do -D7 constitute
an 8 bit bidirectional data bus. The data bus is used for
data exchanges with memory and 10 devices.

Output, active low. M1 indicates that the current machine
cycle is the OP code fetch cycle of an instruction
execution.

Tri -state output, active low. The memory request signal

indicates that the address bus holds a valid address for a

memory read or memory write operation.

Tri -state output, active low. The IORQ signal indicates
that the lower half of the address bus holds a valid 10

address for a IO read or write operation. An IORQ signal

Table 1 (continued).

RD
(Memory Read)

WR
(Memory Write)

R FSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI
(Non Maskable
Interrupt)

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

is also generated when an interrupt is being acknowledged
to indicate that an interrupt response vector can be placed

on the data bus. Interrupt Acknowledge operations occur
during M1 time while IO operations never occur during
M1 time.

Tri -state output, active low. RD indicates that the
processor wants to read data from memory or an 10

device. The addressed 10 device or memory should use

this signal to gate data onto the processor data bus.

Tri -state output, active low. WR indicates that the

processor data bus holds valid data to be stored in the

addressed memory or 10 device.

Output, active low. RFSH indicates that the lower 7 bits
of the address bus contain a refresh address for dynamic
memories and the current MREQ signal should be used to
do a re:esh read to all dynamic memories.

Output, active low. HALT indicates that the processor has

executed a HALT software instruction and is awaiting
either a non maskable or a maskable interrupt (with the
mask enabled) before operation can resume. While halted,
the processor executes NOPs to maintain memory refresh

activity.

Input, active low. WAIT indicates to the Z80 processor

that the addressed memory or 10 devices are not ready

for a data transfer. The processor continues to enter wait
states for as long as this signal is active. This signal allows
memory or IO devices of any speed to be synchronized to
the processor.
Input, active low. The Interrupt Request signal is

generated by 10 devices. A request will be honored at the

end of the current instruction if the internal software
controlled interrupt enable flip flop (1FF) is enabled and

if the BUSRQ signal is not active. When the processor
accepts the interrupt, an acknowledge signal (IORQ
during M1 time) is sent out at the beginning of the next
instruction cycle. The processor can respond to an

interrupt in three different modes that are described in

detail in the Zilog documentation.

Input, active low. The non maskable interrupt request line

has a higher priority than INT and is always recognized at

the end of the current instruction, independent of the
status of the interrupt enable flip flop. NMI automatically
forces the Z80 processor to restart to location 0066
hexadecimal. The program counter is automatically saved

in the external stack so that the user can return to the
program that was interrupted.

Input, active low. RESET forces the program counter to
zero and initializes the processor. The processor ini-
tialization includes:

1) Disable the interrupt enable flip flop
2) Set Register 1 = 00
3) Set Register R = 00

During reset time, the address bus and data bus go to a

high impedance state and all control output signals go to
the inactive state.

Input, active low. The bus request signal is used to request
the processor address bus, data bus and tri -state output
control signals to go to a high impedance state so that
other devices can control these buses. When BUSRQ is

activated, the processor will set these buses to a high

impedance state as soon as the current processor machine
cycle is terminated.

Output, active low. Bus acknowledge is used to indicate
to the requesting device that the processor address bus,

data bus and tri -state control bus signals have been set to
their high impedance state and the external device can

now control these signals.

83

Register addressing. The opcode itself
specifies a register or register pair in

which the data is contained. An

example would be to load the data in

register B into register D.
Register indirect addressing. The
opcode specifies a register pair which
contains a 16 bit address. This address

points to the data in memory or is an

address to be loaded into the program
counter (PC). An example would be to
load the accumulator with data in

memory pointed to by the HL register
pair.
Direct addressing. The opcode is fol-
lowed by two bytes of operand. These
two bytes are either a 16 bit address
pointing to data in memory or a 16 bit
address to be loaded into the PC. For
example, in a jump instruction, the
two bytes indicate an address to which
program control is transferred.
Immediate addressing. The opcode is

followed by one or two bytes of
operand. This operand is the data itself
to be used. An example is load

accumulator immediate which moves

an 8 bit operand into the accumulator.

To these addressing modes, the Z80 has

added three more powerful modes. These are

indexed addressing, relative addressing, and
bit addressing. The first two are somewhat
similar to index and relative addressing in
the Motorola 6800 microprocessor.

Indexed addressing. The opcode is

followed by an 8 bit displacement.
This displacement is a signed two's
complement number to be added to
the contents of one of the two index
registers. The result is a 16 bit effec-
tive address. The contents of the index
register are unchanged.

Relative addressing. The opcode is

followed by an 8 bit signed two's
complement number. The number is

added to the contents of the program
counter and the result placed back in

the PC. This results in being able to
execute program jumps within a range

of +129 to -126 bytes using only a

two byte instruction. Since most pro-
grams have a lot of jumps to locations
relatively close to current locations,
using relative addressing will signi-
ficantly reduce program size. Another
advantage is the ability to write re-

locatable code using relative address-

ing.
Bit addressing. Three bits in the
opcode itself specify one of eight bits
in a byte to be addressed. This byte

could be the contents of a register or
of a memory location. An example
would be to set bit 6 in memory
pointed to by index register, IX, dis-
placed by -20.

The Z80 instruction set's increase of 80
instructions over the 8080A's didn't come
from just increasing the number of address-
ing modes. There are instructions which
don't exist in any other microprocessor. The
instruction set will be broken up into groups
by their function.

Load and Exchange Instructions

This group includes all the instructions
that move data to and from registers, such as
load B from D, load C from memory, store
HL into memory, push IX into stack, and
exchange AF with A'F'. The 8080A has
most of the same instructions.

Block Transfer and Search
Instructions

This group has several useful and unique
instructions. The load and increment instruc-
tion moves one byte of data from memory
pointed to by HL to another memory
location pointed to by DE. Both register
pairs are automatically incremented and the
byte counter, BC, is decremented. This
instruction is extremely valuable in moving
blocks of data around.

Another instruction repeats the load and
increment instruction automatically until
the byte counter reaches zero. Thus, in one
instruction, a block of data, up to 64 K
bytes in length, can be moved anywhere in
memory. Each byte of data transferred
requires only 8.4 its.

In the compare and increment instruc-
tion, the contents of the accumulator are
compared with that of memory pointed to
by HL. The appropriate flag bits are set, HL
is automatically incremented, and the byte
counter is decremented.

The instruction compare, increment, and
repeat repeats the above instruction until
either a match is found or the counter
reaches zero.

The 8080A has no analogy to these
instructions. It would have to execute three
to ten separate instructions to achieve the
same result. The number of bytes would be
several times larger and the execution time
would be several times longer.

Arithmetic and Logical Instructions

These instructions include all the adds
and subtracts, increments, compares, ex-
clusive -ors, etc. What the Z80 has added to

MAIN REG SET ALTERNATE REG SET

ACCUMULATOR
A

FLAGS
F

ACCUMULATOR
A'

FLAGS
F'

e C e' C'

D E D. E.

H L H. L.

INTERRUPT
VECTOR
I

MEMORY
REFRESH
R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

the 8080A instructions is the indexed ad-
dressing mode and double precision add with
carry and subtract with carry.

Rotate and Shift Instructions

Here the Z80 has taken the four 8080A
rotate accumulator instructions and in-
creased the passible addressing modes as well
as included logical shifts and arithmetic
shifts. On top of this there are a couple of
rotate digit instructions. With these a digit (4
bits) can be rotated with two digits in a
memory location, which is great for BCD
arithmetic.

Bit Manipulation Instructions

There are three basic operations, test bit,
set bit, and reset bit. With the various
addressing modes, a powerful group of in-
structions is generated. For instance, if
several memory locations are used for IO
devices, status bits can be individually tested
and control bits individually set or reset. The
8080A (nor any other 8 bit microprocessor)
has no such capability to manipulate bits.

Jump, Call, and Return

Both the 8080A and Z80 have numerous
conditional and unconditional jumps, calls,
and returns. In addition, the Z80 has several
jump relative instructions using relative ad-
dressing. One of special interest decrements
the B register, and jumps relative if B is not
zero. This is especially useful in program
loop control; it would take the 8080A two
instructions to perform the same task.

Input /Output Instructions

The 8080A has two IO instructions, input
and output to and from the accumulator.
The device address is in the second byte of
the instruction, which means that each

84

SPECIAL
PURPOSE
REGISTERS

GENERAL
PURPOSE
REGISTERS

Figure 2: Programmable
registers of the Z80. Con-
siderable improvement
over the 8080 design is
found in the alternate
register set, and the addi-
tion of two index registers,
interrupt vector and mem-
ory refresh registers.

The Z80 should be a nat-
ural for string manipula-
tion software with its pair
of full 16 bit index
registers and powerful
multi -byte operations such
as block move, memory
search and block IO in-
structions.

In addition to expanding
operations upward to the

level of blocks, the Z80

refines its addressing

downward to the bit level

with a group of bit mani-

pulation instructions
which are quite unique.

The Z80 simplifies the
hardware required to im-

plement a system as com-

pared to the original 8080
design. Aside from the in-

struction enhancements,

here is a way to get an

8080 instruction set with
the ease of interfacing un-

til now only available (in 8

bits) with processors like
the 6800 and 6502.

For more Information on
the Z80 CPU and other Z80
parts contact Zilog Inc, 170
State St, Ste 260A, Los Altos
CA 94022, (415) 941 -5055

device must have its own IO routine. One

standard routine can't be used in common
because each device has a different address

and therefore different instruction. The Z80
has resolved this by including 10 instructions
that use the C register to contain the IO

device address. Therefore one 10 routine can

be used with the device address placed in

register C before entering the routine. Also

instead of being restricted in inputting or

outputting to and from the accumulator
only, any register can be used.

If this isn't enough, the Z80 has eight
block transfer IO instructions which are

similar to the memory block transfer instruc-
tions. HL is the only memory pointer, C is

the device pointer, and B is the byte
counter. Therefore, an IO block transfer can

handle up to 256 bytes. Essentially these

commands are a processor implementation
of direct memory access (DMA), invoked by
a software sequence.

Miscellaneous Features

These instructions include no- operation,
halt, enable and disable interrupts, decimal
adjust accumulator, set carry, and com-

plement carry. The Z80 can also select one

of three interrupt modes.

Interrupts on the Z80

The 8080A has one input for interrupts;
the Z80 has two. One is a nonmaskable

interrupt (similar to the Motorola 6800 or
MOS Technology 6502) which cannot be

disabled by the software. The other is a

maskable interrupt which can be selectively
enabled or disabled by the program. The
maskable interrupt is analogous to the single

8080A interrupt.
A nonmaskable interrupt will be accepted

at all times by the Z80 processor. When one

occurs, the processor will execute a restart
to hexadecimal location 0066. The non -

maskable interrupt is used for very impor-
tant functions that must be serviced imme-

diately, such as a power failure routine.
The Z80 has three programmable modes

for processor response to a maskable inter-
rupt. There are three instructions that will
select these three modes.

Mode 0 is identical to the 8080A single

interrupt response mode. The interrupting
device places an instruction on the data bus,

and the processor executes it. The instruc-
tion will often be a restart. This mode is also

the default mode for the Z80 upon a reset.

In mode 1, the processor will respond to
an interrupt by executing a restart to loca-

tion 0056. The response in this mode is

similar to the response to a nonmaskable
interrupt except for the restart location.

85

I n mode 2, a table of 16 bit starting
addresses for every interrupt routine must be

maintained. This table can be anywhere in

memory. When an interrupt is accepted, a 16

bit address is formed from the contents of
the 8 bit I register and the 8 bits on the data

bus. The I register contains the upper 8 bits
of the address and the 8 bit data on the data

bus from the peripheral device constitutes
the lower 8 bits of the address. This 16 bit
address points to a location in the interrupt
vector table. The processor fetches the 16

bit address found at the selected table
location (in two bytes) and loads the pro-
gram counter with its value. This whole
process takes 19 clock periods, or just 7.6

us.

The peripheral devices in the Z80 micro-
computer family all have daisy chain inter-
rupt structures. They automatically supply a

programmed vector to the processor during
interrupt acknowledge. Only the highest

priority device interrupting the processor

sees the interrupt acknowledge because of
the daisy chain structure. With these devices,

IO interfacing becomes quite a simple task,
and is as powerful as the IO techniques used

in many minicomputers.

Conclusion

What does the Z80 have going for it? It's
easy to interface; one chip does the job of
several 8080A family chips. It's as easy, if
not easier, to design an entire system around
than any other microprocessor on the mar-

ket today, and the Z80 is software com-
patible with the 8080A, the most widely
used and known 8 bit microprocessor. Its
instruction set is much more powerful than
the 8080A's or any other 8 bit micropro-
cessor's instruction set.

Is there anything negative about the Z80?
As of this writing (March), it is not yet in

production and therefore not readily avail-

able to the personal computing ex-

perimenter. The price tag for unit samples is

$200, but there are numerous price breaks

with larger quantities. For instance, the price
is $80 for quantities of 25 - 99. This is still
more expensive, however, than either the
8080A, 6800 or 6502, and is about the same

as 16 bit microprocessors.
The result is a tradeoff of cost versus

performance. Much of the cost difference
relative to other 8 bit processors is made up

by the Z80's better memory utilization and

(with respect to the 8080A) by the fact that
fewer parts are needed to get a minimum
system going. Although the Z80 processor is

priced higher than the 8080A, when the cost
of all the support devices the 8080A requires
are included, the costs are comparable.

A New
Mini - Microcomputer

System

The Digital Equipment

Corporation LSI-

Robert W. Baker
34 White Pine Dr.
Littleton MA 01460

Digital Equipment Corporation has a new
addition to the microcomputer market.
Designated the LSI -11, it is a complete 16
bit microcomputer system on a single 8.5
inch by 10 inch (21.6 cm by 25.4 cm)
printed circuit board, combining the instruc-
tion set of a PDP -11 /40 with an under
$1000 price.

A 3.5 inch H by 19 inch W by 13.5 inch
D (8.9 cm by 48.3 cm by 34.3 cm) boxed
version of the LSI -11 is designed as an
off- the -shelf microcomputer system. Desig-
nated the PDP- 11/03, it consists of an
LSI -11 microcomputer, serial line interface,
power supply, and a mounting box designed
to mount in a standard 19 inch cabinet.
Removing the front panel exposes the LSI
modules and cables allowing replacement or
installation of a module from the front of
the PDP -11/03. The power supply has three
front panel switches and indicators
accessible through a cutout in the front
panel. The lights and switches are still
attached to the power supply and functional
when the front panel is removed. Input
power of the PDP -11 /03 is typically 190
Watts at full load.

LSI -11 Evolution
The processor, memory, device interfaces,

backplane and interconnecting hardware of
the LSI -11 are all modular in design to allow
custom tailoring necessary for specific appli-
cation requirements. It was not intended to
be a low end minicomputer, but to provide
minicomputer capability to the new micro-
computer applications.

86

To accomplish this goal, the LSI -11 was

designed to optimize system costs rather
than component costs. A four -chip micro -
programmed central processor was selected

to emulate the PDP -11 instruction set,

allowing the inclusion of automatic dynamic
memory refresh without additional cost. The

microprogrammed processor also makes

feasible user microcode and an ASCII con-

sole which will be discussed later.

Central Processor

The central processor module consists of
the microprogrammed processor and 4096
words of memory, together with the bus

transceivers and control logic. The four chip
microcomputer controls the time allocation
of the LSI -11 bus for peripherals and per-

forms all arithmetic and logic operations as

well as instruction decoding. Eight 16 bit,
general -pupose registers can be used as

accumulators, address pointers, index
registers, stack pointers, or other desired

functions. Arithmetic operations can be

from one register to another, from one

memory location or device register to

another, or between a memory location or a

device register and a general register. Data

transfers between IO devices and memory on

the bus occur without disturbing the

processor registers.

Bus

The bus, which is implemented on the

H9270 card guide backplane assembly, is the

data path which enables a complete system

to be configured. This bus was designed to
allow low cost peripheral interfaces for
microcomputer applications, rather than to

support the wide range of peripheral config-
urations common to large minicomputer
systems. The processor module is capable of
driving six device slots along the bus without
additional termination, as provided with the

H9720 backplane. Devices or memory can

be installed in any location along the bus, as

most bus control and data signals are bidirec-
tional, open -collector lines that are asserted

when low. The bus signals include 16 multi-
plexed data /address lines, 6 data transfer
control lines, 6 system control lines, and 5

interrupt and direct memory access (DMA)
control lines.

Any communication between two devices

on the bus is in the form of a master -slave

relationship. Only one device, the bus

master, can have control of the bus at any

point in time. The master device controls the

bus while communicating with another
device on the bus, the slave. Since the

LSI -11 bus is used by the processor and all

IO devices, there is a priority structure to

determine which device gets control of the

bus. Every device on the bus capable of
becoming bus master has a specific priority
associated with its position along the bus.

When two devices request use of the bus

simultaneously, the higher priority device

will receive control. All data transfers on the
bus are interlocked so that communication is

independent of the physical length of the

bus and the response time of the slave so

long as a bus timeout does not occur.
Asynchronous operation allows each device

to operate at the maximum possible speed.

Interrupt System

Interrupt and DMA handling incorporates
two daisy -chained grant signals. This method

eliminates device polling to service interrupt
requests and establishes an interrupt
priority. The highest priority device is the

module located electrically closest to the

microcomputer module. Only when a device

is not asserting a request does it pass grant
signals to lower priority devices. When an

interrupting device receives a grant, the

device passes to the processor an interrupt
vector which points to a new processor

status word (PSW) and the starting address

of an interrupt service routine for the device.

The current value of the PSW and program
counter (PC) are stored on the stack.

The processor operates with the interrupt
mask (PSW bit 7) set (1) or cleared (0).
When PSW bit 7 is equal to 1, no external
device can interrupt the processor with a

request for service. The processor must be

operating at PSW bit 7 equal to 0 for the
device's request to be effective. Interrupts
can occur only between processor instruc-
tions since they change the state of the

processor. DMA operations, on the other
hand, may occur between individual bus

cycles since these operations do not change

the processor state.
One signal line on the bus functions as an

external event interrupt line to the
processor module. When connected to a 60

Hertz line frequency source, this signal line
can be used as a real -time clock interrupt.
When automatic interrupt dispatch (vec-

toring) is not needed, this line may be used

as a common interrupt signal. Although this
necessitates device polling (as in earlier
computers, such as the PDP -8), device inter-
faces may now be slightly less complicated.
A single connection on the processor module
enables or inhibits the external event
interrupt. When enabled, the device con-
nected to this line has a higher interrupt
priority than any device connected to the
daisy- chained grant signals.

Power Fail /Restart
To further increase the system flexibility,

several power fail /restart options are avail-

87

88

able. The power fail sequence is initiated
upon sensing a warning signal from the
power supply signaling an impending AC
power loss. The current PSW and PC are
pushed on the processor stack and a new PC
and PSW are taken from a vector at location
24. Normally, with non -volatile memory,
this routine would save processor registers,
set up a restart routine, and halt. When only
volatile memory is used, the registers cannot
be saved but the power fail trap does allow
an orderly system shutdown to occur.

When AC power is restored, one of the
four jumper selectable power -up options is

initiated. The first option is loading a pro-
grammed PSW and PC from the vector at
location 24. This would be used with non-
volatile memory to continue execution of
the program at the point where the power
fail occurred or to restart the program at an
arbitrary address with ROM program
storage. If the BHALT line on the bus (the
halt switch) is asserted during this power -up
sequence, the ASCII console microcode will
be entered immediately after loading the
PSW and PC. The second power -up option
causes an unconditional entry to the ASCII
console routines. The processor can then be

started by an ASCII console command
allowing remote system starting without
controlling the bus halt line. (More on the
ASCII console later.) Alternately, the last
two options allow program execution to
begin at a specified address in either macro -
code or microcode.

Memory
The 4096 word memory on the basic

CPU module consists of sixteen 4096 bit
dynamic RAMs. This memory logically
appears on the external bus while being
physically on the CPU module. Being
accessible to the bus allows external DMA
transfers to take place to and from the basic
4096 word memory. Also, an optional
jumper allows the CPU module memory to
occupy either the first or second 4096 word
block of the bus address space.

Various memory modules are available
for applications requiring more storage than
the standard 4096 word MOS memory on

the processor board. Those offered include a

non -volatile 4096 word core memory, a

1024 word static RAM, read -only memory
(PROM /ROM) with a maximum capacity of
4096 words per board in 512 word incre-
ments or 2048 words in 256 word incre-
ments, and a 4096 word dynamic MOS
RAM.

A common disadvantage of using
dynamic MOS memory is the necessity of
refreshing the contents of memory at
specific intervals. The refresh operation is

required to replace the stored charge in each

memory cell which has been lost through
leakage currents. To eliminate most of the

control circuitry normally necessary to per-

form this memory refresh, the LSI -11 CPU

microcode features automatic refresh con-

trol.
When enabled by an optional jumper, the

CPU refresh control causes execution of a

microcode subroutine approximately every

1.6 milliseconds; this operation refreshes all

dynamic MOS memory in the system, not
just the memory contained on the CPU

module. While asserting a bus signal causing

all dynamic memories to cycle at the same

time, the CPU performs 64 memory
references to refresh their contents. During
the burst refresh time, external interrupts
are locked out while DMA requests are still
possible.

Maximum memory size of the 16 bit
LSI -11 is 65,536 bytes or 32,768 words.
Usually the top 4096 words of memory on

members of the PDP -11 family are reserved

for peripheral device control and data

buffers, so the nominal maximum main
memory size is 28,672 sixteen bit words.
However, the user is not required to dedicate
the entire upper 4096 word space to IO, but
may implement only what is needed. Octal

addresses 000 to 376 are usually reserved for
trap and device interrupt vector locations.
Several of these are reserved in particular for
software generated interrupts (TRAPS) as

shown in Appendix A.

Instruction Set
All operations are accomplished with one

set of instructions rather than the conven-

tional collection of memory reference in-

structions, operate /accumulator control
instructions, and 10 instructions. Single and

double operand address instructions for
words or bytes are used with a wide range of
addressing modes, providing efficiency and

flexibility in programming. The various
addressing modes include sequential forward
or reverse addressing, 8 -bit byte addressing,
16-bit word addressing, and stack addressing.
Using variable -length instruction formatting
allows a minimum number of words to be

used for each addressing mode.
Each processor instruction requires one

or more bus cycles. The first operation
fetches an instruction from the location
specified by the program counter (PC). If no
further operands are required for executing
the instruction, no further bus cycles are
used. If memory or an IO device is

ar: .r} r ..3
11. 1100101110 I1iuu1f111iuM iwl.

MìII
41611%

I s
MOMS 1ü1\1kC !111UU1t

89

referenced, however, one or more additional
bus cycles are required.

A special maintenance instruction is
included in the LSI -11 instruction set to aid
in hardware checkout. This instruction
stores the contents of five internal registers
in a specified block in main memory. A
diagnostic program may then be used to
examine the information and determine the
internal operation of the micro -level
processor.

The basic instruction set is that of the
familiar DEC PDP -11/40 without memory
mapping. Included are several operations
normally not found even in other small
PDP -11 processors, such as exclusive -or
(XOR), sign extend (SXT), or subtract one
and branch (SOB). There are also two new
instructions used to explicitly access the
processor status word (PSW). With the
optional extended arithmetic chip, full
integer multiply /divide and floating point
arithmetic are also available. The instruction
set is more comprehensive than that of the
PDP -11 /05 while the execution times are a
little slower. Refer to Appendix B for a
complete list of the LSI -11 instruction set
and Appendix C for typical timings.

The branch instructions make use of the
condition codes (PSW bits 0 to 3) which are
set after execution of every arithmetic or
logical instruction. This allows more
efficient use of memory by eliminating extra
instructions and temporary storage locations
typically used to check results of various
operations. The result of every operation is
directly accessible and can be modified
under software control by using any of the
Condition Code Operator instructions. A list
of the four condition codes along with a
brief definition of each is listed in Appendix
D.

Software
Since the LSI -11 uses standard PDP -11

software, there is an extensive library of
programs available from DEC including
diagnostic programs to check out your
system after it is built. There is also a DEC
Users Society (DECUS) which makes avail-
able a complete library of various PDP -11
programs at reasonable prices. Every LSI -11
owner automatically becomes a member of
this organization.

ASCII Console
The conventional front panel lights and

switches are replaced by an ASCII console/
ODT package that operates with any stan-
dard terminal device communicating through
a serial interface at a specific device address
at any available baud rate. The functions
available are very similar to those used by
the familiar PDP -11 Octal Debugging Tech-

90

nique and are shown in detail in Appendix
E. These include examining and changing the
contents of memory and registers, calcula-
tion of effective addresses for relative and
indirect addressing, and the functions of
halt, single -step, continue and restart. By
examining the contents of an internal CPU
register; it is possible to determine which of
the five methods of entering the console
routines was used.

Upon entering the console routine, the
location of the next instruction to be exe-
cuted will be printed followed by @. The
console routine will then wait for one of the
14 legal command characters. Thus, the user
retains all the direct hardware control of a
conventional lights and switches front panel
and gains the ability to boot load from a
specified device in byte transfer mode.

Interfaces

The LSI -11 system includes several
standard interface modules to handle a
variety of applications. Currently both a
serial and a parallel IO interface is available,
each as a single 8.5 inch by 5 inch (21.6 cm
by 12.7 cm) PC board. The DLV -11 handles
a single asynchronous serial line between 50
and 9600 baud, while the DRV -11 provides
a full 16 -bit parallel interface complete with
two interrupt control units. The use of the
two standard interface modules makes it
very simple to connect any desired device to
the LSI -11 bus. Standard devices such as
teletypes, line printers, analog to digital
converters, etc., can be connected directly to
the interface modules with no additional
circuitry. A simple cassette recorder inter-
face can be made using the DRV -11 parallel
interface, a UART chip, and a simple speed
independent recorder interface circuit such
as that shown in Don Lancaster's article
Serial Interface, page 30, in the September
issue of BYTE.

Are you interested in buying one?

This article has described the details of
the LSl -11 computer by Digital Equipment
Corporation. For those interested in pur-
chasing the board version of this computer,
the Southern California Computer Society is
organizing a group purchase for amateurs.
This purchase will involve an original equip-
ment manufacturer (OEM) quantity of 50 or
more machines, on a basis of cost plus 2%
minimum contribution to SCCS. For further
information contact Hal Lashlee of The
Southern California Computer Society, at
213- 682 -3108. SCCS is organizing quantity
purchases of other computer equipment, and
is interested in making such offerings avail-
able through other computer clubs.

APPENDIX A: TRAP VECTORS

Location

000
004

010
014

020
024

030
034

060
064
100
244

Vector

(Reserved)
Time out & other errors

Illegal & reserved instructions

BPT instructions
IOT instructions
Power Fail
EMT instructions
TRAP instructions
Console Input Device

Console Output Device

External event line interrupt

FIS option

APPENDIX B:

LSI -11 INSTRUCTION SET

MNEMONIC INSTRUCTION

Single Operand - General:

CLR
CLRB

COM(B)
INC(B)
DEC (B)
NEG (B)
TST(B)

Rotate & Shift:

ROR(B)
ROL(B)
ASR(B)
ASL(B)
SWAB

Multiple Precision:

ADC(B)
SBC(B)
SXT

Clear word
Clear byte

Complement (1's)

Increment
Decrement
Negate (2's complement)
Test

Rotate right
Rotate left
Arithmetic shift right

Arithmetic shift left

Swap bytes

Add carry
Subtract carry
Sign extend

Processor Status (PSW) Operators:

MFPS
MTPS

Double Operand -

Logical:

MOV (B)
CMP(B)
ADD
SUB

BIT(B)
BIC (B)
BIS (B)
XOR

Move byte from PSW

Move byte to PSW

General:

Move
Compare
Add
Subtract

Bit test (logical AND)

Bit clear
Bit set (logical OR)

Exclusive OR

Branches:

BR
BNE
BEQ
BPL
BMI
BVC
BVS
BCC
BCS

Unconditional branch
Branch if not equal to 0

Branch if equal to 0
Branch if plus
Branch if minus
Branch if overflow is clear

Branch if overflow is set

Branch if carry is clear

Branch if carry is set

Signed Conditional Branches:

BGE
BLT
BGT
BLE

Branch if greater or equal to 0
Branch if less than 0
Branch if greater than 0
Branch if less or equal to 0

Unsigned Conditional Branches:

BHI
BLOS
BHIS
BLO

Branch if higher
Branch if lower or same

Branch if higher or same

Branch if lower

Condition Code Operators:

CLC
CLV
CLZ
CLN
CCC

SEC
SEV
SEZ
SEN
SCC

Jump & Subroutines:

JMP
JSR
RTS
MARK
SOB

Trap & Interrupts:

EMT
TRAP
BPT
IOT
RTI

RTT

Miscellaneous

HALT
WAIT
RESET
NOP

Optional EIS:

MUL
DIV
ASH
ASHC

Optional FIS:

91

FADD
FSUB
FMUL
FDIV

Clear C Condition Code Bit

Clear V
Clear Z

Clear N
Clear all condition code bits

Set
Set
Set
Set
Set

C Condition Code it

V
Z

N

all condition code bits

Jump
Jump to subroutine
Return from subroutine
Mark (aid in subroutine return)

Subtract 1 & branch if not 0

Emulator trap
Trap
Breakpoint trap
Input /Output trap
Return from interrupt
Return from interrupt

Instructions:

Halt
Wait for interrupt
Reset external bus
(no operation)

Multiply
Divide
Shift arithmetically
Arithmetic shift combined

Floating add
Floating subtract
Floating multiply
Floating divide

Continued from page 19

APPENDIX C:
TYPICAL INSTRUCTION TIMING

INSTRUCTION TIME (usec) COMMENTS

ADD R1,R2 3.5 Register addressing

MOV R3,RO 3.5

MOV TAG1,10 (R2) 11.55 Relative & index addressing

TSTB (R3)+ 5.25 Auto -indexed

BMI TAG2 3.5 Conditional branch

JSR PC,2(R2) 8.05 Subroutine call

JMP (R4) 4.2 Jump indirect

RTI 10.5 Return from interrupt

Optional EIS & FIS Instructions: APPENDIX D:
PSW CONDITION CODES

MUL 24 - 64 Multiply

FADD 42.1 Floating add

FMUL 52.2 - 93.7 Floating mult
CODE PSW BIT

FDIV 151 - 232 Floating divide N 3

Z 2

V 1

APPENDIX E:

ASCII CONSOLE /ODT COMMANDS C p

Command

< CR >

< LF >

Up -arrow

Back -arrow

Function

Close opened location and accept next command.

Close current location; open next sequential
location.

Open previous location.

Take contents of opened location as a
relative address, and open that location.

Take contents of opened location as
absolute address and open that location.

r/ Open word at location r.

Reopen the last location.

$n/ or Rn/ Open general register n(0 -7) or S (PSW).

r;G or rG Go to location r and start program

nL Execute bootstrap loader using n as device
CSR. Console device is 177560.

;P or P Proceed with program execution.

RUBOUT Erases previous numeric character. Response
is a backslash (NO.

92

CONDITION WHEN SET = 1

If result were negative

If result were zero

If operation resulted in
an arithmetic overflow

If operation resulted in
a carry from the msb (most
significant bit) or a 1
was shifted from the lsb
(least significant bit)

Continued from page 22

BUS

BUS
TIMEOUT

DMA

JUMPER
SELECTABLE
OPTIONS

A collection of parallel data paths PC

and power lines used to
interconnect the various elements
of the system, including the
central processor, memory, and
all peripherals.

Bus timeouts or bus errors occur
whenever the controlling device
on the bus (the bus Master) does

not receive a response from the
addressed device (the Slave)

within a certain length of time. In

general, these are caused by
attempts to reference
non -existent memory or
peripheral devices. Bus error traps
cause processor traps through the
trap vector address 4.

Direct Memory Access. For high
speed devices, memory may be

accessed directly through the bus
without the use of program
controlled data transfers.

The CPU module contains
locations for six wire jumpers to
control the various operating
options as follows:

1. Two wires select which of the
four possible power -up options is

desired. These are normally set to
restart through vector location 24
(so the LSI -11 acts as a standard
POP-11).

2. One wire jumper enables the
external event (or real -time clock)
interrupt feature when inserted.

3. One wire jumper enables the
automatic dynamic memory
refresh feature when inserted.

4. Two wire jumpers determine
the addressing of the 4K RAM
memory located physically on the
CPU module.

POWER -UP
SEQUENCE

OPTION

PSW

STACK

TRAP

Each wire jumper consists of a

short length of bare copper wire VECTOR
soldered between two designated
holes in the PC board.

MACROCODE The instruction set which the
programmer sees and actually uses

to implement his program, such as

the PDP -11 instruction set in this
case.

MICROCODE The low level instruction set used
in a microprogrammed processor
to "emulate," or execute, the
macrocode. Microcode is more
primitive in function, but
executes at a higher speed than
the macrocode.

93

Program Counter. A register
which contains the address of the
next instruction to be executed.

Two wire jumpers on the CPU
module select one of the four
possible power -up modes:

POWER -UP

0 PC at 24, PSW at 26, or HALT
1 ODT - ASCII Console
2 PC = 173000, or HALT
3 Special processor microcode

VOLATILE
MEMORY

The power -up sequence is

initiated upon supplying power to
the processor module or on
restoration of power after a

temporary power fail has
occurred.

Processor Status Word. Contains
information on the current status
of the processor including the
priority mask (bit 7) and the
condition codes (bits 0 to 3).

An area of memory set aside by
the programmer for temporary
storage or subroutine /interrupt
sevice linkage. The stack uses the
"Last In - First Out" concept;
thus various items may be added
to a stack in sequential order and
retrieved or deleted from the
stack in reverse order. Stack starts
at the highest location reserved
for it and expands linearly
downward. In the LSI -11, register
6 is reserved as the hardware stack
pointer and must be initialized by
the software. However, registers 0
to 5 may be used for various
program defined stacks as needed.

Software generated interrupt.

A unique address which points to
a reserved set of locations (2
words) for interrupt or error
handling. The first word contains
the starting address of a service
routine (a new PC) while the
second holds the new PSW to be
used by the service routine.

Volatile memory, such as RAM,
will not retain useful information
without power applied
continuously. Non -volatile
memory, such as core or ROM,
will always retain its information
with or without power applied.

Cromemco TV Dazzler

[This short account is
based upon materials supplied
by Harry Garland of Crom-
memco.... CH)

Imagine being able to look inside your
computer memory, actually being able to see

the individual bits. With this sort of X ray
vision your computer memory could also
serve as your computer display. Messages
could be spelled out by lighting some bits
and darkening others. Games could be
played with clusters of bits forming game
pieces and markers. Space War might be
played with miniature rocket ship patterns
zooming in, out and around the visible
region of memory address space. The key
element of hardware required to actually
achieve this imagined result is a memory
module which has provisions to map its
contents onto a television screen. This is
precisely what Cromemco has done in
creating its TV Dazzler product, the results
of which were used to create this month's
cover.

The TV Dazzler hardware features two
modes of operation providing high resolu-
tion and low resolution generation of a

television picture. Through software selec-
tion the TV Dazzler can be programmed
either as a 128 x 128 point black and white
display, or as a 64 x 64 point colored
display. The points of the display grid are
tiny square regions on the screen which map
into segments of the 2 K byte memory of
the TV Dazzler module.

In the high resolution "bit mapped"
mode, TV Dazzler uses its 2 K byte memory
as a means of storing 214 = 16,382 bits
required to generate a unique "on" or "off"
value for each location of a 128 x 128 grid.
This high resolution black and white mode is
very effective for alphanumeric displays and
detailed computer controlled images.

94

Photo 1: Here is a black
and white reproduction of
a single frame of a wine
pouring animation se-
quence created by Steve
Dompier using his Dazzle -
m a t ion program. The
colors of the original re-
produce as shades of gray-
ness in this black and
white picture.

In the low resolution "nybble mapped"
mode, TV Dazzler uses its 2 K byte memory
as a means of storing 212 = 4096 four bit
nybbles of data needed to generate a color
display on a 64 x 64 grid. Each nybble
determines the color and intensity of the
corresponding picture element on the grid.
The most significant bit sets either high or
low intensity, and the next three bits inde-
pendently select the blue, green and red
channels of the color TV signal.

Like a metaphorical beachball, (see Janu-
ary 1976 BYTE editorial), the Dazzler pro-
vides the hardware for an incredible variety
of applications. This variety is realized
through the software for games and other
purposes developed by people who buy and
use this type of peripheral. One particular
application of the peripheral is a program
called Dazzlemation which was written by
Steve Dompier. The purpose of Dazzlema-
tion is to record an animated sequence of
TV frames in color, then play these back. In
order to make such a sequence, Dazzlema-
tion is used to color in the appropriate
regions of single frames which are stored in
memory. Steve's standard demonstration se-

quence shows a carafe of red wine being
poured into a wine glass. One frame of the
carafe sequence is illustrated by photo 1.
This is just one of an endless variety of
computer generated animated displays which
is made possible by programs like
Dazzlemation.

A second application of the Dazzlemation
hardware was used to generate the pattern
which forms the main portion of the cover.
This is a program called Dazzler -LIFE which
was written by Ed Hall. John Conway's

fascinating game of LIFE gains a new dimen-
sion when it is displayed in color. Watching
the patterns evolve can be intoxicating in

black and white, but becomes truly addictive
when color is used to illustrate the game

board. In the Dazzler -LIFE program, the
game begins in a drawing mode which allows
the user to draw an initial colony of cells on

the screen using controls from the ASCII
keyboard. Then the evolution process is

initiated with each succeeding generation
being displayed on the screen with colors
marking the health of each cell. Cells that
are too crowded, or too remote, turn a

flaming red color, then wither away. New-
born cells first appear in green, then grow up

to a !nature blue color. The kaleidoscopic
result is fascinating to watch. One frame of a

colorful LIFE history was photographed for
the cover.

Still another application of the Dazzler is

as a hardware game board for sophisticated
computer automated games. One example of
such an application is the Tic Tac Toe
software written by George Tate. Dazzler
Tic Tac Toe is written in BASIC, and

demonstrates how very well suited the MITS
BASIC is for creating colorful creations.
George's program is one of a class of "man
versus computer" game applications, and is

reputed to be extremely competent at Tic
Tac Toe. A sample of the output is repro-
duced here in black and white as photo 2.

A useful utility program for the Dazzler,
which demonstrates the bit mapped mode

of operation is the Dazzlewriter software
created by Ed Hall. This program turns your
ASCII keyboard /computer /Dazzler combina-
tion into a TV typewriter by generating the

5 x 7 dot matrix display for each keyboard
character. A sample of Dazzlewriter activity
is shown in photo 3. Since the main memory
of the computer is used to store the charac-

ter generation information, there is no need

for any additional hardware beyond the

memory requirements of Dazzlewriter.
Another delightful application of the

display is an "idling" program you'll pro-
bably want to leave in the computer system
when you're not using it for another pur-
pose. This program is Li -Chen Wang's color-
ful Kaleidoscope program. The program is

surprisingly short, just 127 bytes long, yet it
generates an unending sequence of captiva-
ting patterns.

These programs were created by some of
the first individuals who had access to the
Dazzler hardware. They are written for the

8080 instruction set (except George Tate's
BASIC Tic Tac Toe) and are available in

paper tape form from Cromemco at $15
each.

Photo 2: Here is the game board of George Tote's Tic Tac Toe application,
written in MITS Altair BASIC with the TV Dazzler os its display peripheral.

PAR 1940HP
Irt< a > ?[H

MEMORY SIZE?
TERMINAL WIDTH?
DAZZLE- WRITER
RUNNING WITH
8K BASIG!!!!

Photo 3: Here is a sampling of outputs generated using Ed Hall's

Dazzlewriter program to turn the TV Dazzlerlcomputerlkeyboard combina-

tion into the logical equivalent of o TV typewriter style display.

95

Hardware

Flip Flops

Exposed

by
William E. Browning
516 N. 95th E. Ave.
Tulsa OK 74155

One of the important
building blocks in working
with transistor -transistor logic
is the flip flop. It is important
to understand this building
block if you desire to use it in
projects of your own.

The two most common
types of flip flops are known
as the JK flip flop and the D
flip flop.

JK Flip Flop

The JK flip flop has four
or five inputs and one or two
outputs. The input pins are
labeled J , K, CLOCK,
CLEAR and PRESET, and
the output pins are labeled Q
and Q which is often
pronounced as "Q bar" or
"not Q ". A typical block
diagram of a JK flip flop is

shown in Fig. 1.
The outputs (Q and Q) can

be in one of two states: High
(logic 1) or low (logic 0). In
general, if the Q output is
high then the Q output is
low, and vice -versa, if the Q
output is low then the Q
output is high. We will often
refer to the Q output only
since we know that Q will be
the opposite. So if we say

that the output is high it
means that Q is high and Q is
low. However, this is not
always so; on some flip flops
you may find a Q output
only, and, as you will see
further below, both outputs
may be high or low under
specific conditions.

Asynchronous Inputs
Now that we know about

the output states, let's discuss
the inputs to give us the
desired outputs. The PRESET
and CLEAR pins are known
as asynchronous inputs.
Asynchronous means that
these inputs do not depend

98

(INPUTS)

upon the timing derived from
the clock pulses.

With almost all flip flops a

low PRESET will take Q to
high, and a low CLEAR will
take the Q to high. With both
PRESET and CLEAR low
both Q and Q will be high.
This is the only time when Q
and Q are not opposite from
each other. If both PRESET
and CLEAR are high, then
the control of the output is

given to the J, K and CLOCK
inputs. The relationship
between the asynchronous
inputs and the output is

shown in the truth table of
Fig. 2.

CLEAR

J O

CLOCK

K Q

PRESET

(OUTPUTS)

Fig. I. The JK flip flop block diagram.

PRESET CLEAR O Z.

L L H H

L H H L

H L L H

H H NO CHANGE

Fig. 2. Truth table of a JK flip
flop responding to preset and
clear.

Synchronous Inputs

The J and K inputs are
synchronous inputs.
Synchronous means that they
depend on the CLOCK for
operation.

For most JK flip flops a

simple set of rules apply to
the synchronous inputs, but
not all flip flops are standard.
There are several variations
on the timing when the chip
accepts inputs and when the
output changes.

The most common
input- output relation is

known as the rising -edge

triggered flip flop. The
rising -edge triggered flip flop
derives its name from the fact
that it changes its output
states only when the CLOCK
level rises from low to high.
Of course, the output states
depend on the configuration
of the J and K inputs. Fig. 3

illustrates the changes of the
Q pin depending on the levels
on the J and K pins: When
both J and K are low, Q does
not change; when both are

high, Q changes into its
opposite state; with J being

low, and K being high, Q
assumes a low level, and when
J is high, but K is low, Q will
take on a high level.
Remember, though, that this
change can happen only if the
CLOCK input rises from low
to high, and, as was shown in
conjunction with Fig. 2,
when both PRESET and
CLEAR are high.

The less frequent type of
input- output relation is

known as the falling -edge
triggered flip flop. This flip
flop resembles the first,
except that the output
changes to the condition
selected by the J and K
inputs when the CLOCK level
falls from high to low.
Everything else remains the
same.

It is easy to change the
operation of a falling -edge
triggered flip flop to that of a

rising -edge triggered flip flop.
All that needs to be done is

to invert the input to the
CLOCK. The inverter shown
in Fig. 4 changes a high level
to a low level, and vice versa;
a rising -edge triggered flip
flop can be changed to a

n tn + I

J K 0

L L 0

L H L

H L H

H H 0

Fig. 3. Truth table of a JK flip
flop for synchronous (clocked)
operation.

Fig. 4. Inverting the clock input
converts rising edge - triggered
operation into negative edge -
triggered operation and vice versa.

CLOCK

OUTPUT OUTPUT
CHANGES CHANGES

OUTPUT
CHANGES

_ ______ ._____
INPUT NEW INPUT NEW INPUT

ACCEPTED ACCEPTED ACCEPTED

Fig. 5. Timing of a negative clock
pulse master /slave flip flop.

CLOCK

INPUT NEW INPUT
AC CEPTED ACCEPTED

ZOUTPUT
CHANGES

Fig. 6. Timing of a positive clock
pulse master /slave flip flop.

falling -edge triggered flip
flop, and vice versa, by means
of the inverter.

A third type of input is

known as the negative clock
pulse master /slave flip flop.
With this flip flop the inputs
are applied to the J and K
pins when CLOCK goes low
and change their outputs
after the rising edge of the
clock pulse (see Fig. 5).

The clock pulses should be
made as short as possible and
the time between clock pulses

99

NEW INPUT
ACCEPTED .--

ZOUTPUT OUTPUT
CHANGES CHANGES

as long as possible. This will
increase immunity to
alternating current noise and
accommodate all ripple delay
between clock pulses.

A fourth type of input is

the positive clock pulse
master /slave flip flop. This
flip flop accepts inputs when
CLOCK goes high and
changes output when CLOCK
goes low (see Fig. 6). The
pulses should be made as

short as possible for the
above mentioned reasons.

+5
Vcc

14

PRESET CLOCK K K K

13 2 u lo

n
P

K Q

CLOCK

J Q

C

4

2

NC. CLEAR J J J

17

GND

Fig. 7. Pinout of the 7472 IC, a positive clock pulse master /slave flip
flop. (Top view)

+5V
Vcc PRESET CLOCK

14 3 2

K2 KI

III Ilo

e
P

K Z_
CLOCK

J Q

C

Y

--11)

Q

N.C. CLEAR J I J2 J')E
I

GND

Fig. 8. Pinout of the 7470 IC, a positive edge triggered flip flop. (Top
view)

14

QA °A

13 112

GND KB

lo

Q8

8

-Q U

lo

D-

3

CLOCKA CLEARA K A

14

Vcc
+5V

6

CLOCKe CLEARe

Fig. 9. Pinout of the 7473 IC, a dual positive clock pulse master /slave
flip flop. (Top view)

Variations on the Four Flip
Flops

One of the confusing
aspects with flip flops is that
they differ in the logic
controlling the J and K
inputs. Some have AND /OR
logic circuits accepting several
distinct inputs, and others
have an inverter before the J

or K inputs.
I f we look at some

diagrams of flip flop ICs,
their operation will be easier
to understand.

The 7472 in Fig. 7 is a

single JK flip flop of the
positive pulse master /slave
type.

The 7472 uses gates on the
J and K inputs. In order to
get a high level on the J input
of the flip flop a high on all

three J inputs of the IC (pins
3, 4 and 5) and the clock (pin
12) is required. In a similar
manner, a high on the K
input of the flip flop is

obtained with a high on all
three K pins (pins 9, 10 and
11) and the clock of the IC.

If you have only one J

input, connect all three J pins
together, or connect two of
the J inputs to high, and use

the remaining input for the
data input. The same holds
true for the K inputs.

The 7470, shown in Fig. 8,
is a single JK flip flop of the
positive -edge triggered type.

The 7470 has identical
gates and inverters on the J

and K inputs. For example,
to get a high level on the J

input of the flip flop a high
on J1 and J2 (pins 3 and 4)

and a low on J* (pin 5) must
be received. A low level on
pin 5 is inverted to a high on
the input to the gate.

If you do not need J* or
K *, connect them to ground.
I f you do not need J1, J2, K1
or K2 connect them to high.

The 7473 IC is a dual JK
flip flop of the positive pulse
master /slave type. Fig. 9
shows that this IC does not
use gating on the J and K
inputs.

The two flip flops operate

100

separately from each other
having only the +5 volt Vcc

and ground in common with
each other. You may also

have noticed that Vcc is on

pin 4 and ground on pin 11.

This is not the same as on

most 7400 ICs which have

Vcc on pin 14 and ground on

pin 7. So check your
connections before you apply
power.

There are no PRESET
inputs to the chip, in order to
allow a 14 pin package.

If you do need the
PRESET on a dual JK flip
flop, use the 7476 available in

a 16 pin package. It is shown
in Fig. 10. It has independent
CLEAR and PRESET pins,
whereas in the 74H78 of Fig.

11 the CLOCK and PRESET
pins, respectively, are
connected. The 74H78 comes
in a 14 pin package.

In many circuits the same

clock operates many flip
flops and several flip flops are

cleared at the same time. The
74H78 is well suited for these

needs because it saves on the
number of external
connections, saves on the size

of the IC package, and the

number of pins.

D Flip Flop
Let's make one small

modification to the JK flip
flop: An inverter connects
the K input to the J input as

shown in Fig. 12.
If J is high then K will be

low, and if J is low, K will be

high. Since there is only one

synchronous input instead of
the two, let's call it the data
input or D input.

Some flip flops have this
modification built into an IC

and are referred to as D flip
flops. A typical block
diagram of a D flip flop is

shown in Fig. 13.
The truth table of the D

flip flop is shown in Fig. 14.
Remember that the PRESET
and CLEAR must be high, as

discussed in connection with
Fig. 2. The truth table for
asynchronous inputs applies
also to the D flip flop.

KA

16

OA

15

OA

14

GNO

1

K8

12

08 OB

1 IO

-C u
""!

D-

io

J8

1

CLOCKA PRESETA CLEARA

15

Vcc

+5

6

CLOCK° PRESETS

8

CLEARS

Fig. IO. Pinout of the 7476 IC, a dual flip flop similar to the 7473 but
having both PRESET and CLEAR. (Top view)

+5
Va PRESETA CLEAR a8

14 113 112

J8

111

PRESET
B

110

CLOCKABe K

-O

r

I 2

KA 0A OA JA
17

GND

Several ICs employ the D
flip flop. One of these is the
7474 dual D flip flop. Since
only one pin is needed for
data entry to each flip flop
both preset and clear
capability can be provided in
a 14 pin package. The
diagram of the 7474 is shown
in Fig. 15.

The 7475 IC uses a D flip
flop which is called a latch
because the CLEAR and
PRESET pins are absent. The
reduction in pins has been

+5V
Vcc

14

carried one step further by
combining two CLOCK pins
each. Therefore it is possible
to put four latches on one 16
pin IC; the 7475 quad latch is

shown in Fig. 16.
This short introduction to

flip flops, latches and
integrated circuits should
help your understanding of
this building block. With a

thorough understanding of
these circuits, you will be
well on your way to designing
your own equipment.

CLEAR° DATA CLOCKS PRESET

1 1 11 IO

O° OB

C
DATA

- CLOCK
P

.

A
P,

-CLOCK

DATA
C

I2 I3 I4

DATAA CLOCKA PRESET* 0A

Fig. 11. And still another combination - the pinout of the 74H78 has
14 pins with common CLEAR and CLOCIÇ and separate PRESET pins. Fig. 15. The pinout of the 7474 dual D flip flop. (Top view)

Fig. 12. Making a "D" flip flop Fig. 13. The block diagram of a D
out of a "JK" with an inverter. flip flop.
(Top view)

In to+1

D 0 O

L L H

H H L

Fig. 14. Truth table of a D flip
flop.

OA

16

OB 08

15

L14

CLOCK
ee GND OC

13 10

17
GND

2

OA DA De

15

CLOCK V Cc CaD+5V

7

Do DD
Q D

Fig. 16. Pinout of the 7475 latch (or register) circuits. (Top view)

101

Recycling
Used
ICs

by
Carl Mikkelsen
35 Brookline St., No. 5
Cambridge MA 02139

The surplus market' is

saturated with used printed
circuit boards from early
computer systems which
offer a very inexpensive per
chip source of ICs. Used
boards typically contain
50 -200 chips of small scale or
medium scale integration,
usually with many simple two
input gates and four bit data
registers. Common part
numbers include 7400, 7402,
7404, 7408, 74126, 74174,
74175, etc. Through careful
shopping, I have found
boards with large numbers of
multiplexors such as 74151,
74153, and even scratch pad
registers - 7489. After
removing chips from the
boards and eliminating any
non -functional units, cost per
chip is from 3 to 8 cents,
resulting in an overall cost of
about one fourth to one
tenth of the individual chip
cost through other surplus
outlets.

Removing chips from
boards offers advantages over
purchasing chips surplus
which makes them attractive
for reasons other than price.
Primarily, the companies
which originally built the
boards used top -quality, fully
spec'ed components. All
chips have already been
tested, and most have already
served in equipment.

Given that you've found a

serendipity of well soldered
chips, it's necessary to
unsolder them without either
burning them or cracking
their cases. Desoldering
individual leads can be done,
but usually the chip is made
unnecessarily hot by the
prolonged application of
heat. Also, pulling each lead

Sweep the blow torch over the IC's pins -one complete sweep
once or twice a second.

out separately results in bent,
often broken leads. Devices
are available which will heat
all 14 or 16 pins of a small
IC, but again a long time is

needed to melt the solder
since the total amount of
energy available is limited to
a small soldering pencil
heating element. Most
available boards are two sided
and four layer boards aren't
uncommon. Multi- layered
boards make the required
amount of energy even
higher.

When a board is built, the
ICs are positioned in place
with all other components,
and the board is soldered by a

three step process.

1. The underside is washed
by hot, bubbling, liquid flux.

2. The clean board is

passed over a small fountain
of solder, so that the board
just touches it.

3. After cooling, the board
is immersed in FREON gas to
remove any remaining flux.

As you can see, the board
is subjected to high
temperatures during the
soldering phase, which takes
around 5 -10 seconds.

The blow torch method of
IC removal duplicates

102

conditions during board
soldering by heating all pins
simultaneously; removing the
IC is a single step.

Equipment Needed

To use this technique, you
will need:

A torch. Non -oxygenated
propane and acetylene gas has

been used.
C /amps or a vise to hold

the board fairly rigid during
chip removal.

A way to grip the chips,
depending on how they are

packed next to each other.
Components, small vise grips,
a small screw driver and a fine
point awl should be all that
are needed.

A place where splashed
solder will not be serious.

Some form of eye
protection.

WARNING 1

Using this method involves
heating PC boards to high
temperatures. Some boards
release Hydrogen Chloride
(HCI), which becomes
hydrochloric acid in your
lungs. Do this only in a well
ventilated area, and stop to
allow air to clear if irritation
develops.

Grip the IC a second after removing the flame and rock it away from the board. It should come
free in a couple of seconds.

WARNING 2

When an IC is pulled from
a board, the board often
snaps back to its original
position. This is especially
true if it isn't fixed very
rigidly in place. When the
board flips, solder is often
sprayed away from the back
side of the board. I ruined a

pair of pants by not
considering this before I

started. I, therefore, wear old
clothes and if you don't want
solder on the floor, cover it
with newspapers.

Enough warnings ...
following is how I pull ICs
from boards:

First I clamp the board to
my bench so that I can get
my vise grips on about half
the ICs (this is with a 10" x
14" board). I adjust the vise
grips so I can grip a 14 pin IC
without the vise grips locking
and then light the torch. The
flame on my Benzo -matic
torch with the narrow tip is

about an inch long.
Beginning with the lowest

IC I can reach, I heat it with
the torch by sweeping the
torch over its pins (you
obviously heat the
non -component side).
Especially when using a torch
with a narrow flame it is

necessary to move the flame
over the pins. One complete
sweep should be done once or
twice a second. After a

second or so, the IC should
be gripped, and rocking
tension away from the board
applied. It helps to rock the
IC, especially if corner pins
have been bent over to hold
the IC in place during
assembly. The IC should very
rapidly become loose, and in
another couple of seconds
should come free of the
board.

When the IC is removed,
quickly drop it on the bench
and move the torch and pliers
to the IC above the one
removed. Heating the lower
I C pre -warms the board
above, making the next
removal easier. Also, the
board position just heated
will cool faster, thereby
reducing the amount by
which the board will be
damaged.

As each column of ICs is

removed, the next is done.
When all ICs on one half have
been removed, reposition the
board so the other half is

accessible. I've found that the
half -way point often can be a

good excuse to let the room
ventilate and drink a beer.

103

No matter how carefully
and rapidly I've worked, I

always burn the board at least
once because I have trouble
removing an IC, or my pliers
slip, or for some other reason.
If you consistently burn each
board position, your flame is

probably too hot. If,
however, it takes longer than
5 to 10 seconds to remove an
IC, your flame is too cool.

A certain amount of care
is necessary when gripping
the ICs. Too much pressure
may crack them. Too little
pressure will let the pliers
slip, costing time to
reposition them and marring
the cases.

When attempting to
remove the larger ICs such as

74181s and 74154s, which
come in 24 pin DIPs, I have
trouble gripping them, so I

remove them as a two step
process. First, I place an awl
under the middle of one side,
say between pins 6 and 7. I

heat that pin row and, with
the awl applying leverage,
pull out that row. I then grip
the IC on its thinnest
dimension, heat the
remaining pins, and remove
the IC.

So far, by using this
technique, my friends and I

have removed about 1000 ICs
from surplus boards which
have about 80-100 ICs each.
tend to break 2% of the chips
I pull by applying too much
force with the pliers. But a

friend has never broken one,
so it clearly is an individual
matter. Of those chips
removed unbroken, we have
tested around 250, and haec
never found a bad chip.

As an unrecommended
demonstration of the
ruggedness of ICs,
accidentally grossly
overheated one, so that when
I gripped it in vise grips, the
chip was bent in a curve. The
plastic case must have
softened significantly. After
allowing it to cool several
minutes to the point where I

could handle it by hand,
plugged it into a circuit,
expecting it to have failed
totally. It worked, although
didn't check out its ac
characteristics. Out of general
paranoiac distrust for a device
so intensely mistreated, I

discarded it.
After removing ICs from

boards it is usually necessary
to clean and straighten the
pins. Boards with plated
through holes often lose their
plating around the IC lead.

I have found this method
useful as a means of quickly
building a stock of ICs ready
to use in any project. It is

limited mainly by the
availability of exotic surplus
chips, but most standard
7400 series TTL is easily
available. The price of 4
cents /chip can't be beat, and
the time required - about 10
to 20 minutes /80 chip board - is rather small.

This technique provides a

fast, cheap, safe means of
removing chips. I hope it
proves as effective for you as

it does for me.

1

circuit by
John Errico
5 Richard Rd.
Hudson MA 01 749

written by
Robert Baker
34 White Pine Dr.
Littleton MA 01460

Powerless IC
Test Clip

Ti 1r -
it;1'y t1

t ' tttl - . 1!l k 11ow`
S
2 i:l1

1°

t1.11W

104

This test clip operates like
the expensive, commercially
available clips selling for $85

or more without requiring
batteries or external power.
All types of ICs may be

tested (TTL, DTL, MOS, etc.)

and LEDs are used to indicate
the logic state of each pin

being tested.
The heart of the test clip is

a Texas Instruments TID125
diode array which costs about
$3.75. Two diode arrays are

used to determine the pin
with the highest voltage (Vcc)
and the pin with the lowest
voltage (ground). These pins

are then used to power the

LEDs on the test clip itself,
thus taking power from the

IC on the board and

eliminating the need for an

external or separate supply.
The circuit is straight forward
and may be expanded to
make a 24- or 40 -pin test clip.
The larger test clip, however,
may be difficult to use due to
the size of the LED display.

The basic IC clip is a

standard item available from
AP Products Inc., Box 110 -Z,

Painesville OH 44077. The
16 -pin clip is part number
923700 (TC -16) and sells for
$5.75 each.

The diode arrays arc

14 -pin dip packages and were

chosen to make the test clip
more compact. To cut down
the cost, 16 general purpose
silicon diodes may be used in

place of each diode array IC.

The transistors used to drive
the LEDs may be any NPN

transistor capable of handling
the LED current. Any small

si /e LED may be used;

however, the 1 k resistance
value may have to be

changed. Choose a value

which gives about 2 mA
current through the LED; this
should give sufficient
brightness without loading
down the circuit supply.

Construction is very
simple and parts layout is not
critical. Use a small piece of
0.1" grid perforated board
bolted to each side of the IC

clip to mount components

r----I
1 0 i

2 0
3
4 0
5 0
6 0
7 0
8 0
9 0
10 O

Ñ 11 O
w 12 0

13 0
á 14 O

15 0
16 0

r

on. Try to keep the overall
physical size of the boards as

small as possible to make the
finished test clip easier to
handle. The LEDs should be

mounted along the top edge

of the perforated boards so

they are visible from above

the clip when it is attached to
an IC. I would suggest

wrapping a small piece of
dark tape or using a short
piece of dark tubing around
each LED to improve
visibility of the finished LED
display. One of the TID125
diode arrays is mounted on
each piece of perforated
board along with the
associated resistors and

transistors, positioned
wherever convenient.
Remember to run two wires
between the two perforated
boards to connect the Vcc
and ground outputs of the

T1D125 DIODE ARRAY

diode arrays together. These

wires should be stranded to
withstand the movement of
opening and closing the test
clip when in use.

Using the test clip is the
simplest part of all. Just clip
it over the desired IC. Don't
worry about how to position
the test clip on the IC; pin 1

may be at either end and the
test clip will still work
properly. With the test clip
installed on an IC package the
LEDs will indicate the logic
level of each pin:

ON = Logic 1 (HIGH) or Vcc
pin
OFF = Logic 0 (LOW) or
ground pin

On 14 -pin ICs disregard the
two pins not attached.

Who said building an IC

test probe is hard?

L_
14

5

C

GND

---e5--- 8 _9 II 12

TID125 DIODE ARRAY

105

VCC

GND

ONE LED DRIVER
CIRCUIT REQUIRED FOR

EACH PIN

2 K

VCC

GND

IK

2N3904
OR

EQUIV.

MV5054 -2
OR

EOUIV. LED

ALL RESISTORS = I/8 WATT

CONNECT ALL Vcc PINS

TOGETHER a ALL GND
PINS TOGETHER

Fig. 1. Powerless IC Test Clip.

notes on parallel output interfaces

by
Carl Helmers
Editor, BYTE

Fig. 1. 8 -bit bus output latch.

One way to connect an
extra output port for a

teletype or other peripheral
to your CPU is to make the
interface simulate a memory
address during the writing
operations. This method is

the one which is used for
both the input and output
functions in computers such
as the PDP -11 of DEC, or the
Motorola 6800 microcom-
puter. The method can even
be used to overlap a usable

main memory address since
the CPU could care less

whether or not the addressed
port is connected in addition
to the proper main memory
location! The same method
can even be used on
computers such as the Altair
8800 which split the CPU bus
into two parts and thus
complicate the interface
picture.

All of the microcomputers
I have seen to date for the

home brew computer market
operate with a degree of
parallelism at the bit level.
Whether the chip is 4-bit,
8 -bit or a 16-bitter, the
concept of "parallel" data is

built in. Data is parallel in
nature if each bit has one line
assigned to it and transfers of
a group of such bits are
always made simultaneously.
Thus for example, the address
lines used to select memory
words are usually done in

COMPUTER
SIDE

BUS

DO +

RECEIVERS (OPTIONAL) "BUS BOUNCE"
5 LDO+

ONE -BYTE
LATCHED DATA TO
OUTSIDE WORLD

8
BIT

LATCH
(74100)

CLOCKS

DI + 3 4 LDI +
D2+ 8 11 LLLD223+

D3+ 9 10
D4+ 15 18 LD4+
05+ 16, 17 LD5+
D6+ l 19, 22 LD6+
D7+ 20 21 LD 7+

740 4
5 lam_ 6

POWER PINS
+5V GROUND

7400 14 7
7404 14 7
74109 16 8
74100 24 7

23

A0+

WRITE -

/ WRITE+

TO PIN NO.1 FIG3 ADDRESS

Al +
A2+
A3+
A4+
A5+
A6+ DECODE

AND CONTROL

IC 7400
PULSE A7+

AO +
A9 + LOGIC
A10+
A11+
A 12+
A 13+
A l4+
AIS+

RW+

CLOCK

0+ TO 0+ FIG 3

106

in memory address space

parallel in CPU designs of
practical utility. With the bus
oriented computer chips
likely to be used for
homegrown systems, it is

possible to grab data from the
busses by latching it in a

register which listens to the
bus continuously but is only
written when the proper
address is found. This article
concerns such latching of
output data and suggestions
about several applications of
the technique.

The basic idea of the bus

output is illustrated in Fig. 1.

Fig. 1 shows a set of data
lines (denoted DO+ to D7+ to
indicate a positive logic
definition) constituting an

8 -bit data bus. In a 16-bit
computer, this set of lines
might be one or the other
half of the 16 -bit data bus, or
the logic might be extended
to 16 bits. Connected directly
to the bus pins of the

interface I have noted a set of
"bus receivers ". This circuit
should be put in if necessary
to maintain consistency of
bus loading with all the other
bus interconnects. For
instance, with a tri -state 8833
circuit as the bus definer, up
to 100 high- impedance
PNP -input receivers (input
side of 8833) can be

connected to the bus. But put
a TTL load on, and the
fanout will be reduced
considerably. (For an Altair
8800, the data bus is split
into two components: in and
out. The principle of
minimizing the loading of the
Altair drivers (TTL) would
indicate use of a low power
(74Lxx) device as the bus

receiver. A non -inverting
receiver is to be preferred in
order to keep the same logical
sense of the data to be stored
in the latch.)

Following the bus receiver,
a latch is shown. The latch
illustrated with its pinouts is

the 8 -bit, 24 -pin package
called a 74100. Alternate
circuits for this function
include a pair of 7475s, or
even four dual master slave
flip flop packages, such as

7473s. In general, it will pay
to use the larger scale of
integration from a power -
budget standpoint. Consider
the specs for two 7475s (64
mA) versus four 7473s (80
mA). For a sixteen bit
output, all that is required is

to double the number of bits
used for the latch. The latch
is used for only one purpose - to hold the data after it is

stored, until updated by a

later write to the same

location.
A latch is required to

buffer the output logically in
many instances of I/O devices.
A primary example of such a

case is an output which needs
stable data for a much longer
period than the short
CPU -cycle during which data
is stable at the output of bus

receivers. If you interface
your computer bus to one of
the Burroughs SELF -SCAN
display devices with the
memory option, for instance,
your data must be stable for a

long period of time (about 60
microseconds). This
requirement is necessitated
by the need to wait for the
shift register memory to cycle
around to the proper position

107

for entry of new data. If your
interface is to a digital to
analog converter (DAC)
presenting a gain control
voltage to a computerized
audio mixing panel, then you
would want the control signal

to stay stable for all time
until explicitly altered by the
CPU.

Fig. 1 is completed by the
notation of a big mostly -
blank box. Big blank boxes
with labels in them are a way
of saying "here is a function,
but I haven't told you what it
is in detail." In this case the
function is address decode
and control logic for grabbing
output data. I have drawn the
box with inputs indicated
from 16 bits of addressing, an
"RW +" signal and a "0+"
signal. The logic of this box
will respond to a specific
address in order to generate a

negative logic (WRITE -) pulse
which is inverted and used to
latch the data at the correct
time. The definition of the
specific address desired and
the decoding are both
considered a bit later when
Fig. 2 is discussed. The
"RW +" signal controls the
direction of the CPU's data
transfer. If it is logic "1"
(high level) then the CPU is

attempting to read data from
the bus and no clock pulse is

allowed to reach the latch,
even if the address bits A0+
to Al 5+ match the desired
address. If "RW +" is low,
then the CPU is sending data
out and a clock pulse is

allowed through the address
decode and control logic. The
clock pulse is taken from the
CPU supplied clock 0+ and is

"Big blank boxes with
labels in them are a way
of saying 'here is a

function, but I haven't
told you what it is in
detail.' "

"The method can even
be used to overlap a

usable main memory
address since the CPU
could care less ... "

Fig. 2. Single -address 16 -bit decode with 7485. "Xn "(n =0 to 15) is logical 1 or 0 defining desire address.

43+

RW+

(PULSE ONLY IF WRITE CYCLE _f
RW-

AO+

AI +

A2+
A3+

A4+
A5+
A 6+

A7+

A8+
A9+

A10+

AII+

Al2+
A13+

A14+

AI5+

10

11z

114

II

3 g

7485
INPUT UT

12

114

IN

7485

I
INPUT OuT

21 4, 6

10_

u

13

I5

X0+
XI+
x2+
X3+

11

13

112
IN

14
7485

INPUT puT

21,:j7 16

I
10

X4+

X5+
X6+

IS

2
4

13 9

12

14

IN

7485
INPUT OUT r 16

n
X12+

XI3+
13 7-----
15

XI4+
XI5+

5

a positive logic signal
indicating that valid data is
present.

Assuming you actually
want to grab some data off
the bus at a specific location
when it is referenced, how
can you implement the
address decode and control
function? Fig. 2 is a
suggestion of one method to
accomplish this function for a
specific location at a
considerable price in
hardware: using more than
one memory location defined

108

WRITE-
PULSE

7420

POWER CONNECTIONS
+5V GROUND

7485 16 8
7420 14 7

in this way would rapidly
lead to a large parts count for
7485s as decoding logic. The
basic idea of Fig. 2 is to use
the 7485 comparator circuits
to check for equality between
the address lines AO+ to
Al 5+ and a set of "desired
address" definition lines, X0+
to X15 +. The comparison is
done as four groups of four
bits, and a parallel logical
product (AND) of the results
of all four bit -group
comparisons is performed by
the 7420. The comparators'

cascading input for equality is

used to enable the
comparison: the AND gate
"E" detects a CPU write
operation as the simultaneous
occurrence of the clock 0+
and a low state of RW +.

A Hardware Memory
Contents Monitor

A particular application
for which single- address
decoding might be useful is as

a debugging tool based on
this circuit, used to monitor
the last content written into a

specific location. Such a

debugging tool can be built
by defining the X0+ to X15+
address lines as the outputs of
a set of four hexadecimal
switches or six octal encoded
switches, hand set from the
panel of the debugging
instrument. Then the outputs
of the latch circuit might be
routed to a set of hex or octal
LED drivers so that a display
of each number written might
be obtained. A more general
variation of the same theme
would be attainable as a bus
monitor device if the gate E

of g Fig. 2 is eliminated
entirely and the clock 0+ is

simply used as the enable
condition of the comparators
(pins 3 get 0 +). Then the
"memory contents monitor"
always shows the contents of
the memory bus at the time it
was last used with the desired
address.

Adding a Longer Clock
It is often necessary to

obtain a clock signal which is

longer than the original
latching clock. In such cases
the longer clock must also
occur during a time when the
latched data is stable, i.e.,
after the CPU is finished with
its addressing of the output
latch. One way to generate
such a delayed longer clock is

to use the analog timing
elements called "one shots" - such as the 74122 or
74123 circuits. In order to do
so, however, you will have to
calculate a bunch of resistor

SET -RESET
FROM
FIG 1 S- I 1

WRITE- I

I

I

I

Fig. 3, Generating a longer clock digitally.

7404 1

FLAG i

0 2 X

I

I

I

I

"AND" 17400

EXTWRITE +

7400

LOGIC+

1 5

CLR PRE

J

Io

O+ 0+ 3>4 O-

FROM
FIG I 6l

and capacitor values for the
delays, put in your nearest
approximations and cross

your fingers. A better way to
achieve a deterministic
system is to use entirely
"synchronous" logic concepts
and delays implemented with
gates and flip flops.

Fig. 3 and its
corresponding timing diagram
Fig. 4 is a detail of one

method to cue a long but
delayed clock pulse. The
basic idea is to set a flag (the
SR flip flop formed by the
two NAND sections and
labelled "flag ") when the I/O
write occurs. This flag
becomes data which will get
clocked synchronously into
flip flop A, then into flip flop
B. The output of flip flop B is

used to enable a reset pulse to
the flag, which brings the
system into a stable quiescent
state until the next output
WRITE- pulse occurs. The
timing diagram of Fig. 4

A

CLK
4

o+
6 r

74109

IS II

CLR PRE

0+

DIGITAL
SYNCHRONOUS
ONE -SHOT

8

0-

CLK
12

0-

illustrates how the
synchronous operation
produces an auxiliary pulse

(Q+ of flip flop B) which is 2

clock periods in length. This
clock is delayed with respect
to setting the flag by the

original WRITE- pulse, but
the delay is fixed and
synchronous due to the fact
that the actual clock (or its
inverted e derivative) is used
to cause all state changes of
the flip flops.

Fig. 4. Timing: external write vs. buffer write.

,2+ 1J

WRITE +
I I

O +OF FLAG + I

O+OF A

O+ OF 8

WRITE+ A B

I

-J
1

A = .OR.

BUFFER WRITE

I

I ---- EXTERNAL WRITE

I

______-/

TIME
SEPARATION

109

Son of Motorola

(or, the $20 CPU Chip)
Would you believe - another microprocessor? You bet. The

calculator firm, MOS Technology of Norristown, Pennsylvania,
has just recently announced a new microprocessor which
combines plug in compatibility with the Motorola 6800 and a
new instruction set to come out with yet another option for
microprocessor users - but at a price of $20 in single
quantities. Here comes the under $200 processor kit? Not
quite yet, but maybe within a year or two. (It's already to the
point where the sheet metal and transformer iron of a home
computer often cost more than all the silicon products which
make it work ... this new low on CPU prices just compounds
the problem.) It may be three to six months before you see
one of these new MCS6501 processors designed into a kit, so
Dan Fylstra in his article covers quite a few details of the
Motorola 6800 by way of comparison with "Son of
Motorola."

We thought that the "age
of the affordable computer"
had arrived when you could
buy a microprocessor chip for
$150. But the potent
combination of new
technology and free
enterprise has brought about
developments beyond our
wildest expectations.

So now you can buy your
microprocessor brand new, in
single quantities, for $20. The
new offering is from MOS
Technology, Inc., and is
pin -compatible, but
software -incompatible with
the Motorola 6800
microprocessor. Although it
will be a while before the new
chip finds its way into
ready -to -build kits for the
hobbyist (after all, the first
Motorola 6800 kits have just
been announced), the news
should be of interest to
nearly every home brew
computer experimenter. So
here's a comparison of the

Motorola 6800 and the MOS
Technology 6500 series,
based on the information
presently available. If you
aren't already familiar with
the Motorola microprocessor,
don't worry - we'll cover its
major features in the course
of the comparison.

Hardware Comparison
Both the Motorola 6800

and the MOS Technology
chip are TTL- compatible
devices, operating from a

single five volt power supply.
Like earlier microcomputers,
such as the Intel 8008, 8080
and National PACE, these
processors make use of a
bidirectional data bus, to
which both memory and
input/output devices may be
connected. However there are
no special input /output
instructions in the instruction
repertoire of either the
Motorola or MOS Technology
microprocessors. Output of a

character, for example, is
accomplished by storing a

value into a certain memory
location, which is in reality a

special register inside an
external I/O interface chip,
connected to the data bus
just like any other RAM or
ROM chip.

Motorola supplies a
Peripheral Interface Adapter
(PIA) chip which connects to
the data bus for 8 -bit parallel
I /O, and an Asynchronous
Communications Interface
Adapter (ACIA) for bit -serial
input /output. (The ACIA is
simply a type of UART, as
discussed in Don Lancaster's
September article on serial
interfaces. It may be used to
connect a teletype or CRT
terminal to the micro-
computer system.) MOS
Technology plans to supply a
similar set of chips.

Most of the time, data is
being transmitted between
the microprocessor and the

110

by
Daniel Fylstra
Associate Editor, BYTE
25 Hancock St.
Somerville MA 02144

memory chips over the data
bus. But the processor can
also disconnect itself from
the bus, enabling, for
example, a data transfer to
take place directly between
an I/O device and memory.
Both the Motorola 6800 and
the MOS Technology chip
have three -state buffers for
the eight data lines, enabling
them to disconnect from the
bus in this fashion. But the
Motorola also has three -state
buffers on its 16 address
lines, whereas the MOS
Technology chips do not.

This would be used, for
example, in a floppy disk
controller which is capable of
transferring a whole block of
many bytes of data in
response to a single command
from the CPU. The controller
would present a series of
addresses on the 16 address
lines, and data bytes on the
data lines, causing the bytes
to be stored in a series of
locations in some RAM chip
on the bus; all this would
take place in the intervals
when the CPU itself was
disconnected from the bus.

As a practical matter,
however, small systems do
not require this kind of direct
memory access (DMA)
capability, and larger systems
with more devices on the bus
will require buffers on the

Ready or not, here I come:
6800 to 6501.

address lines to supply the
necessary power -- and these

buffers may as well have

three -state outputs.
The other major hardware

difference between the
Motorola 6800 and the MOS
Technology 6500 series is

that the MOS Technology
chip has an 8080 -style Ready
line, whereas the Motorola
6800 does not. The Ready
line is used to make the
microprocessor wait for a

variable length of time before
going on with the execution
of an instruction. This feature
makes it easy to use the less

expensive memory chips,
especially for Programmable
or Erasable Read -Only
Memory (PROM or EROM)
which are not as fast as the
CPU itself. It is possible to
use such devices with the
Motorola 6800, of course, by
stretching out one of the
clock phases to as long as five
microseconds. But the
availability of the Ready line
on the MOS Technology chip
is certainly a convenience,
and allows you to use

extremely slow memories if
you wish.

The MCS6501, first in the
MOS Technology 6500 series,

requires the same type of
external clock as the
Motorola 6800. But for $25
you can have the MCS6502,
which includes an on- the -chip
clock, driven by an external
single phase clock or an RC
or crystal time base input. As
the manufacturer suggests, it
is probably cheaper in an

original design to use the
MCS6502 than to provide the
external logic to generate the
two -phase clock.

To sum up, both the

Motorola 6800 and the MOS
Technology have comparable
features with some
differences. In terms of
hardware differences, the

MOS Technology Ready line
is probably more valuable
than the three -state address
line buffers available on the
Motorola 6800.

A final hardware
advantage possessed by the
MOS Technology chip is

speed. The Motorola 6800
cycle time is one microsecond
(1 MHz clock rate), and a

typical instruction takes
about three clock cycles.
While the cycle time of the
MOS Technology chip is

nominally the same, the
company has hinted broadly
that the chip can be run at
clock rates of 2 or even 3

MHz. Of course, one would
have to use faster and more
expensive memory chips to
take advantage of this
increased speed.

In addition, certain critical
instructions take fewer cycles
on the MOS Technology chip.
An STA (store accumulator)
instruction referencing an

Table I. Functionally equivalent
instructions for both the
Motorola 6800 and MOS
Technology MCS6501
microprocessors. The mnemonics
are Motorola's. Of course, these
instructions operate on the A
accumulator only in the
MCS6501, but can address either
accumulator in the Motorola
6800. The BIT instruction (*) has
a different effect on the V and N
processor flags in the MCS6501.

ADC DEX
AND FOR
ASL INC
ASR INX
BCC JMP
BCS JSR
BEQ LDA
BIT` LDX
BMI LSR
BNE NOP
BPL ORA
BVC PSH
BVS PUL
CLC ROL
CLI RTI
CLV RTS
CMP SBC
CPX SEC
DEC SEI

STA
STX
TSX
TXS

arbitrary location takes 4
cycles, versus 5 for the
Motorola, and a JSR (jump to
subroutine) instruction
requires 6 cycles, as opposed
to 9 on the 6800. Conditional
branches take 4 cycles on the
Motorola microprocessor,
while they take 2 cycles if the
condition is false and 3 if it is

true on the MOS Technology
chip. Because these
instructions are so frequently
executed in most programs,
the 6500 series should enjoy
a performance edge over the
Motorola 6800 even at the
same clock rate.

Software Comparison

We can treat the
instruction set architecture of
the two processors in two
stages, first considering the
facilities for manipulating
data and then dealing with
the facilities for manipulating
addresses. Both features are

important to the overall
effectiveness of the processor
design.

Data Manipulation
The instructions for

manipulating data are quite
similar on the two processors.
There are two major
differences: First, the
Motorola 6800 has two 8 -bit
accumulators, A and B, while
the MOS Technology chip has

only one accumulator, A.
Second, i n addition to
conditional branches for
unsigned comparisons, the
Motorola 6800 has special
branch instructions for signed
comparisons, but the MOS
Technology chip does not.
(The signed comparisons treat
the two values as positive or
negative numbers in two's
complement notation, in the
range -128 to +127. For
example, -1 is represented as

28 -1 = 11111111. An
unsigned comparison would
treat this quantity as the
largest possible (8 -bit) value,
whereas a signed comparison
would treat it as smaller than,
say, zero.)

Table I lists the
instructions which are the

111

We thought that the "age
of the affordable computer"
had arrived when you could
buy a microprocessor chip
for $150. But the potent
combination of new
technology and free
enterprise has brought
about developments
beyond our wildest
expectations.

same for both processors,
while Table II lists
instructions on the Motorola
6800 which must be replaced
by more than one instruction
on the 6500 series
microprocessors.

Some of the instructions
omitted on the MOS
Technology chip are merely
incidental; others are more
serious. The lack of signed
comparisons represents a real
inconvenience in many
applications. The lack of a

simple ADD instruction
means that an operation such
as A = B + C on one -byte
operands must be coded with
a "Clear Carry" (CLC) as in
this example:

CLC
LDA B

ADC C
STA A

on the MOS Technology chip.

On the other hand, a

computation such as A = B +
C -D could be coded as

CLC
LDA B

ADC C
SBC D

STA A

assuming that the inclusion of
"carry" in both operations is

indeed desired.
Less serious but still

irritating are the absence of
the ROR (rotate right), NEG
(negate) and COM

Table 11. Motorola 6800 instructions which have no direct equivalent in
the MCS6501. The information in this table is taken from MOS
Technology documentation on the 6500 series.

Motorola 6800 Instruction

ABA
ADD
BGE loc
BGT loc

BHI loc
BLE loc

BLS loc
BLT loc
BRA
BSR
CBA
CUR [loci
COM [loci
DAA
DES
INS
LDS loc
NEG [loci
ROR (loci

SBA
SEV
STS loc
SUB
SWI

TAB
TAP
TBA
TPA
TST
WAI
op disp, X
[indexed addressing mode]

Equivalent 6500 Series Sequence

No B accumulator
CLC, ADC
BMI +6, BVC loc, BVS +4, BVS loc
BMI +6, BVC +6, BVS +6, BVC +4,
BNE loc
BCS +4, BNE lac
BEQ lac, BMI +6, BVS loc, BVC +4,
BVC loc
BCS loc, BEQ loc
BMI +6, BVS loc, BVC +4, BVC loe
JMP
JSR
No B accumulator
LDA #0, [STA lac]
[LDA loc] , FOR #$FF, [STA loc]
Replaced by SED
Use PHA
Use PLA
LDX loc, TXS
FOR #$FF, ADC #1 [or LDA #0, SBC loe]
[LDA loc], PHP, LSR, PLP, BCC +4,
ORA #$80, [STA loc]
No B accumulator
LDA #1, LSR
TSX, STX loc
CLC, SBC
BRK saves state without transferring
control
No B accumulator
PHA, PLP
No B accumulator
PHP, PLA
BIT #0
JMP
LDY #disp, op @loc, Y
[indirect indexed addressing mode]

(complement) instructions, as

well as single -byte
instructions to increment and
decrement the accumulator.
Probably the least significant
difference is the omission of
the B accumulator on the
MOS Technology chip. This is

more than made up for by
the availability of an extra
index register (see below).

All in all, the Motorola
6800 comes out ahead when
considering facilities for
manipulating data, the most
important point in its favor
being the availability of the
signed comparisons.
Generally speaking, however,
the basic instructions
available on the two
processors arc quite similar.

Address Manipulation

The greatest architectural
differences between the two
processors lie in their
facilities for manipulating
addresses, or their
"addressing modes" - and
here the MOS Technology
chip has much more to offer.

The two microprocessors
are the same in one respect:
both have special "short
forms" of most instructions
for referencing the first 256
bytes of memory. This is

called "direct addressing" on
the Motorola 6800, and "zero
page addressing" on the MOS
Technology chip. As an
example, the most general
LDA (load accumulator)

112

instruction is three bytes
long; the second and third
bytes form the effective
address (0- 65535), which can
reference any byte in
memory. The short form of
the LDA instruction,
however, is two bytes long;
the second byte forms the
effective address (0 -255) of a

byte in the first "page" of
memory. The "short form"
instructions generally take
one fewer clock cycle to
execute, since only two
rather than three instruction
bytes must be fetched from
memory.

The major differences
between the two processors
lie in the important area of
indexed addressing. The

Motorola 6800 has a single

16 -bit index register, called
X. Essentially all instructions
have an indexed addressing
form, in which a one -byte
displacement (0 -255) is added
to the address in the index
register to form the effective
address. The MOS
Technology chip, on the
other hand, has two 8 -bit
index registers, called X and
Y. All of the computational
instructions have indexed
addressing forms in which
either a one- or two -byte base

address is added to the
contents of either the X or
the Y register to form the
effective address.

Which approach is the
better one? For the purpose

of accessing elements of
arrays, or tables of many
identical elements, the MOS
Technology chip comes out
way ahead. This is partly due
to the lack of certain critical
instructions on the Motorola
6800, such as an instruction
to add the contents of an

accumulator to the index
register, or even to transfer
the value in the accumulators
to the index register.

Suppose that we wish to
add the Ith element of an

array, Si, to another variable,
T. In general, the array may
be I ocated anywhere in
memory, and the subscript I

may be the result of some
calculation done in the
accumulators. Letting S

denote the address of the
zeroth element (the base

address) of the array, and
assuming that the value of the
subscript I is already in the A
accumulator, consider the
instructions necessary to
accomplish this operation on
the two processors.

The biggest difference is in

the area of addressing
modes, an area where the
6500 series devices far
outshine the Motorola 6800.

1

2

3

4C
5

6

7C
8

9C
10 C
11 C
12

13

14 1=1

15

17 t_
18

19 C
20 C

40

= 39

= 38

= 37

= 36

= 35

= 34

= 33

= 32

= 31

= 30

= 29

= 28

= 27

= 26

_
_
C
_

On the Motorola 6800,
our first try yields the
following:

SHI EQU S/256 *256
CLR B

ADD A #S -SHI
ADC B #S /256
STA A TEMP +1

STA B TEMP
LDX TEMP
LDA A 0, X
ADD A T
STA A T

This instruction sequence
requires 19 bytes, counting
the two -byte temporary
TEMP and assuming that
TEMP and T are located in

the first 256 bytes of
memory. Since the array S

could be anywhere in

memory, we were unable to
use the displacement field of
an instruction with indexed
addressing for the array base

address, and instead we had

to add the array base to the
index (in double precision),
store the result in memory,
load it into the index register,
and finally reference the
array element SI.

We can improve on this
with the aid of a little lateral
thinking. Noticing that the
6800 is actually capable of
adding a one -byte quantity to
a two -byte address, but only
in a storage reference with
indexed addressing, we will
split up the base address into
two parts to arrive at a better
solution:

SHI EQU S/256 *256
STA A TEMP +1

LDX TEMP
LDA A S -SHI, X
ADD A T
STA A T

TEMP FD. DB SHI

This instruction sequence

requires only 12 bytes, under
the same assumptions.

Even so, we can't match
the simplicity of the solution

1

Calculate the
indexed address

Perform desired
computation

to the same problem on the
MOS Technology chip:

TAX
LDA S, X
ADD T
STA T

This instruction sequence
requires only seven bytes.
Only four bytes were needed
to reference the element Si,
versus eight for the Motorola
6800.

How important is this
improvement? It is certainly
significant, since arrays and
tables are used so frequently
in programs of any size. On
the other hand, in many
applications it is only
necessary to reference each

element of an array in turn; it
is not necessary to access

elements randomly based on

a computed subscript. In this
case, we can obtain better
code on the Motorola 6800
by first loading the array base

address into the index
register, and then referencing
each element directly (i.e.,
with a zero indexed address
displacement), incrementing
the address in the index
register using the INX
instruction to proceed from
element to element. We are

therefore using the 6800's
index register to hold a

pointer or indirect address
rather than an index.

An even more important
difference between the two
microprocessors in that the
MOS Technology chip
possesses two (8 -bit) index

registers, X and Y, whereas
the Motorola 6800 has only
one (16 -bit) index register X.
As we shall sec, two index
registers are far more valuable
than two accumulators. This
is because programs
frequently manipulate two
(or more) tables, or other
indirectly addressed variables,
at the same time. As an

example, we will consider
perhaps the simplest
operation of this type, the
problem of moving a string of
bytes from one area of
storage to another. Assume
that 20 bytes, starting at the
location denoted by the
symbol FROM, are to be

moved to the area starting at
the location denoted by the
symbol TO.

On the Motorola 6800, we

can write the following
routine:

LOOP LDX FRPTR1 Fetch
LDA A O, X J FROM

LDX TOPTR1 Move
STA A O, X J TO
INC FRPTRIchange
INC TOPTR J pointers
DEC COUNT
BNE LOOP Test

continuation

Two index registers are

far more valuable than
two accumulators.

This routine requires 17

bytes, and executes in 404
clock cycles. The
improvement in speed clearly
depends on the number of
bytes to be moved; each pass

through the loop in the
Motorola 6800 routine takes
41 clock cycles, while each
pass through the loop in the
MOS Technology routine
takes 20 cycles. (The MOS
Technology
limited to
256 bytes.)

Once again the degree of
improvement is substantial,
and the improvement

routine is also
moving at most

FRPTR FDB FROM
TOPTR FDB TO
COUNT FCB 20

This routine requires 24
bytes, including the working
storage locations, and
executes in 820 clock cycles.
This routine can move up to
256 bytes.

On the MOS Technology
chip we have the following
solution:

113

LDX #0
LDY #0

LOOP LDA FROM, X
STA TO, Y
INX
INY
DEC COUNT
BNE LOOP

COUNT FCB 20

VSS O Reset

Halt TSC

01 N.C.

ÌRQ 02

VMA DBE

ÑMI N.C.

BA R/W

VCC DO

AO D1

Al D2

A2 03
A3 04
A4 D5

A5 D6

A6 D7

A7 A15

A8 A14

A9 A 13

A10 Al2
All VSS

= 25

24

23

22

21

is

Fig. 1. The pin assignments of the
Motorola 6800 (and by
implication, the MOS Technology
MCS6501). VSS is ground (0
volts) and VCC is +5 volts. The A
lines are address outputs. and the
D lines are bidirectional tristate
data bus lines. For details see the
Motorola and MOS Technology
documentation of these parts.

15

7 o

Accumulator A

Accumulator B

Index Register

Program Counter

Stack Pointer

ACCA

7 o

ACCB

o

Ix
15 o

PC

15 o

SP

7 o

H N Z V C
Condition Codes
Register

LCarry (From Bit 7)

Overflow

Zero

Negative

Interrupt

Half Carry (From Bit 3)

Fig. 2. The programmer's view of the 6800 CPU. This diagram,
excerpted from the Motorola 6800 documentation, shows the various
registers of the CPU including the processor's condition code register.
Note the similarity to the MCS6501 in Fig. 3.

significant because this type
of problem arises so
frequently in large programs.

The MOS Technology
chip has some additional
addressing modes not
possessed by the Motorola
6800. First, there is a "short
form" for instructions with
simple indexed addressing if
the array base address is in
the first "page" (256
locations) of memory. This
feature is of somewhat

One unfortunate feature
of the MOS Technology
chip's many addressing
modes is that they do
not apply consistently
to all instructions.

limited use except in very
small programs, since only a

few small arrays can actually
be placed in the first 256
locations. Of greater interest
is the so -called "indirect
indexed" addressing mode.
Instructions with this type of
addressing are two bytes long;

the second byte specifies the
address of a two -byte
constant in the first page of
memory. This two -byte
constant then becomes the
"array base address," and the
contents of the Y register are
added to this constant to
form the effective address.
This addressing mode is very
useful: In a program with
many references to a

particular array or table

which is too large to place in
the first page of memory, one
can trade space for time by
placing the array base address
in the first page of memory,
and then referencing elements
of the array using indirect
indexed addressing. Each
element reference takes less

space (two bytes instead of
three) but more time (five
cycles instead of four) than
would be required for
ordinary indexed addressing.

There are two other
addressing modes on the MOS
Technology chip which are
somewhat less useful. The
first is called "indexed
indirect" addressing: Here the
contents of the X register are
added to a one -byte base

address to obtain the address
of a two -byte constant in the
first page of memory. The
contents of this two -byte
constant then becomes the
effective address.
Unfortunately this addressing
mode is not available for the
J MP instruction, where it
would be most useful: It
could be used to implement a

"jump table," or a

"computed GO TO" or
"CASE statement" in some
high -level languages.

Finally, two other
addressing modes are used
with branch instructions:

15

r
L
15

r
L
15

r

L
15

r
L
15

7 0

0

V

7 0

X

7 0

PCL

7 o

A

PCH

15

r
L 01 s

I/O REGISTERS

ACCUMULATOR

INDEX REGISTER V

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

PROCESSOR STATUS REGISTER,

Solid ene indicates currently ar Jable faaa,m
Dashed ene indicates forthcoming member of family

CARRY (BIT 71

ZERO
INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
FORTHCOMING FEATURE
OVERFLOW
NEGATIVE

114

Fig. 3. The programmer's view of the MCS6501 CPU. This diagram,
excerpted from the MOS Technology 6500 series preliminary documen-
tation, shows the various registers of the CPU. Note the similarity to
the Motorola 6800 diagram in Fig. 2.

Table III. Instructions, addressing modes and execution times for the
Motorola 6800 processor. Execution times are in "machine cycles"
which for a 1.0 MHz clock take 1.0 microsecond apiece. This table is

excerpted from Motorola documentation on their processor.

' ó
°c x .! c

9 á E ó W
c E Q

°c x Px i
É ú É i ' ç

Q O W

ABA 2 INC 2 6 7

ADC x 2 3 4 5 INS 4

ADD x 2 3 4 5 INX 4

AND x 2 3 4 5 JMP 3 4

ASL 2 6 7 JSR 9 8

ASR 2 6 7 IDA x 2 3 4 5

BCC 4 LDS 3 4 5 6

BCS 4 LOX 3 4 5 6

BEA 4 LSR 2 6 7

BGE 4 NEG 2 6 7

BGT 4 NOP 2

Bill 4 ORA x 2 3 4 5

BIT x 2 3 4 5 PSH 4

BLE 4 PUL 4

BLS 4 ROL 2 6 7

BIT 4 ROR 2 6 7

BMI 4 RTI 10

BNE 4 RTS 5

BPL 4 SBA 2

BRA 4 SBC x

BSR 6 SEC 2

BVC 4 SEI 2

BVS 4 SEV 2

CBA 2 STA x 4 5 6

CLC 2 STS 5 6 7

CLI 2 STX 5 6 7

CLR 2 6 7 SUB x 2 3 4 5

CLV 2 SWI 12

CMP o 2 3 4 5 TAB 2

COM 2 6 7 TAP 2

CPX 3 4 5 6 TBA 2

DAA 2 TPA 2

DEC 2 6 7 TST 2 6 7

DES 4 TSX 4

DEX 4 TSX 4

FOR x 2 3 4 5 WAI 9

NOTE: Interrupt time is 12 cycles from the end of
the instruction being executed, except following
a WAI instruction. Then it is 4 cycles.

"Relative" addressing,
available on both the
Motorola and the MOS

Technology processors, is

used with the conditional
branch instructions, which
are two bytes long. The
second byte of such an

instruction specifies a positive
or negative displacement in

two's complement notation
(-128 to +127). The
destination address of the
branch is taken to be the
algebraic sum of the address

of the byte immediately
following the branch
instruction and this
displacement. Of course, this
means that it is possible to
branch directly to a location
within only a certain limited
distance from the branch
itself; but, more often than
not, the range of -128 to
+127 bytes is adequate, and a

space savings is realized in
comparison to processors
such as the Intel 8080 which
have only three -byte branch
instructions. If necessary, a

conditional branch can

always transfer to a

three -byte unconditional)MP
instruction, which can jump
to any location in memory.
On the MOS Technology
chip, a JMP instruction can
also specify "absolute
indirect" addressing: In this
case, the second and third
bytes of the instruction
specify the address of a

two -byte constant anywhere
in memory, and the contents
of this two-byte constant
becomes the destination
address for the jump.

One unfortunate feature
of the MOS Technology
chip's many addressing modes
is that they do not apply

Which processor comes out ahead overall? To a great

extent it depends on your point of view: Systems

programs are better on the MOS Technology machines;

applications programs would tend to come out ahead

on the Motorola 6800.

consistently to all
instructions. For example,
the binary arithmetic
instructions are available with
essentially all addressing
modes, but the unary
arithmetic instructions are

missing the Y- register and
indirect modes, and the BIT
instruction is missing several

others as well. This not only
makes programming more
difficult, since one must
constantly check to see which
instruction forms are legal,
and program around the
exceptions; it also makes the
design of an assembler or
compiler more complicated.
A compiler, in particular,
would require complex logic
to determine when it could
and could not take advantage
of the addressing modes.

In summary, the MOS
Technology chip comes out
ahead when considering
facilities to manipulate
addresses, and in many cases

the advantage realized due to
the availability of the extra
addressing modes is
substantial. The greatest
failing of the 6500 series

design is the inconsistent
availability of the addressing
modes from instruction to
instruction.

Which processor comes
out ahead overall? This is

very difficult to judge. It
depends partly on whether
the programs being executed
on the microcomputer are
"system" programs, such as

compilers, interpreters and
I/O controllers, which tend to
make heavy use of address

Table IV. Instructions, addressing modes and execution times for the
MOS Technology MCS6501 processor. Execution times are in "machine
cycles" which for a 1.0 MHz clock take 1.0 microsecond apiece. This
table is excerpted from MOS Technology documentation on their
processor.

X > x " l;l;sà:
3 É d

e s a a
Y

á E ti Ñ ti/ ái E

x,g

F -21

ADC 2 3 4 4. 4 6 56
AND 2 3 4 4 6 56
ASL 2 5 6 6 7
BCC
Bc5
BED
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC 2

2..

2..

CLD 2
CLI 2

CLV 2
CMP 2 3 4 4 44 6 5
dcx 2 3 4
cvv 2 3 4
DEC
DEX

5 6 . 6
.

7

DEY
EOR 2 3 4 4. 4 6 5
INC 5 6 6 7
INX . 2
INY 2

3 5

x>
X ,>?

;

//if
7

Q E Ñ Ñ Ñ

bR 6
LDA 2 3 4.4' 6 5'
LOX 2 3 4
LDV 2 3 4 4 4
LSR 2 5 6 6 7

NOP
ORA 2 3 4.4 2

6 5
PHA 3

PHP
PLA :
PLP
ROL 2 5 6 6 7

RTI 6
RTS 6
SBC 2 3 4 4 4' ' 6 5'
SEC
SED
SEI
STA 3 4 4 5 S Ii 6
STX 3 4
STY 3 a
TAX 2
TAY 2
TSX 2
TXA
TXS
TYA

Add one cycle it indearng across page bounder, . Add One cycle rl branch ,s raker. Add one add,r,Onar .r brancn,ng open noon cr ussc$, j

115

In favor of the 6500 series

are price and speed; in
favor of the 6800 are
availability and very good
Motorola documentation.

manipulation facilities; or
application programs, which
make greater use of data
manipulation facilities. One
would expect better results in
the former case with the MOS
Technology chip, and in the
latter case with the Motorola
6800. One would also expect
the MOS Technology chip to
enjoy an advantage on large
programs, since larger
programs inevitably tend to
make use of tables,
subroutines with parameters,
and other forms of address
manipulation.

All in all, the Motorola
6800 comes out ahead
when considering facilities
for manipulating data...
but nevertheless the two
processors are quite similar.

Against these factors one
must weigh the availability of
an excellent applications
manual, proven software, and
kits for the hobbyist for the
M o t o r o l a 6 8 0 0
microprocessor. At the same
time, the MOS Technology
chip's price can't be beat, and
its speed advantage may be

important for some purposes.
At the time that this

article is being written (late
August), the MOS
Technology chip is just a

promise: The chip should be
available for purchase at the
Western Electronics
Conference (Weston) in San
Francisco, September 16-19.
By the time you read this, the
chip itself should be in the
hands of at least a few
hobbyists. Let's have some
letters to BYTE describing
initial experiences with the
new microprocessor! Send
your comments to the author
or to the editor of BYTE. In
the meantime, we'll be
waiting to see what new
surprises the semiconductor
houses and kit manufacturers
have in store for us. And
BYTE will try to keep you up
to date on the latest
developments in the world's
hottest, fastest -moving hobby - home computers!

Table V. MCS6501 microprocessor instructions, listed in alphabetical
order by mnemonics. The instructions with asterisks are similar to the
same mnemonics in the Motorola 6800 processor.

ADC Add with Carry to Accumulator
AND "AND- to Accumulator
ASL Shift Left One Bd (Memory or Accumulator)

BCC
BCS
BED
*BIT
BMI

BNE
BPL
BRK
BVC
BVS

CLC
CLD

CLI
CLV
CMP
CPX
CPY

*DEC
DEX
DEY

EOR
INC
INX
INY

JMP

Branch on Carry Clear
Branch on Carry Set

Branch on Zero Result
Test Bits on Memory with Accumulator
Branch on Result Minus
B ranch on Result not Zero
B lanch on Result Plus
Force n InteuoPt or Break
Branch on Overflow Clear
Branch o., Over muse Set
Clear Carry Flag

Clear Dc' ii,at Mode
Clear Intn.uut Disable Bit
Clew Overflow Flag
Compare Mennwy and Accumulator
Compare Menouy end lodes X

Croup... e Memory and liude Y

Deer. vvvvvv Memory by One
Dec,snnenl Index X by One
D ecrement totes Y by One
E schism w Memoir with Ace en,..latu,
hk,.ynrnt Mntu.s bar One
Ineirrinewt X by O.
Ira woksit Y by Oda
J ump to Nun Lrk -.n,on

JSR
*IDA
LDX
LDY

LSR

NOP
ORA
PHA

PHP
*PIA
PLP

ROL

RTI
RTS
SBC
SEC

SED
'SEI
STA
'SIX
STY
TAX
TAY

'TSX
TXA

TXS
TVA

Jump to New Location Saving Return Address
Transfer Memory to Accumulator
Tramler Memory to Index X

Transfer Memory to Index Y
Shift One Bit Right (Memory or Accumulator)

Do Nothing No Operation
"OR" Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack
Rotate One Bit Left (Memory or Accumulator)

Return From Interrupt
Return From Subroutine
Subtract Memory and Carry from Accumulator
Set Carry Flag

Set Decimal Mode
Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory
Transfer Accumulator to Index X

Transfer Accumulator to Index Y
T.woke Stack Register to Irides X

Transfer Index X to Accumulator
Transfer Index X to Stack Register
T.ansler Index V to Accumulator

More information on the
6500 series microprocessors is

available from:

MOS Technology, Inc.
Valley Forge Corporate
Center
950 Rittenhouse Rd.
Norristown PA 19401
1- 215- 666 -7950

I nformation on the
Motorola 6800 micro-
processor is available from
many local distributors, and
from:

Motorola Semiconductor
Products Inc.
Box 20912
Phoenix AZ 85036

GLOSSARY
BYTE's Board of Resident Inexperts (BRI) has ruled the following

terms to be worthy of further explanation. This list is probably not
complete - readers who would like further explanation of terminology
are invited to write a letter to the editor identifying terms which need
such treatment.

116

8-Bit Bidirectional Bus - a "data
bus" which simultaneously
transmits eight separate signals
corresponding to one byte's
worth of information. The bi-
directional aspect means that
either tristate, open collector or
similar form of output stage is
used, so that multiple drivers can
be tied in common with only one
such driver active at any time. A
given board, CPU, output
terminal or other logic circuit can
then interface to the bus (with
some addressing and master
timing control intelligence) for
both sending and receiving data.

Effective Address - whenever the
computer's CPU addresses
memory, it must send out 16 bits'
(for Motorola 6800, MCS 6501 or
other similar chips). The way in
which these 16 bits are derived
can often be a fairly elaborate
procedure, as well as a simple
absolute expression. Whatever the
method of derivation, however,
the result is a 16 -bit value which
is used to address memory, called
the effective address because it is
what actually does go out to
memory regardless of the details
of the internal codes of the
program.

Instruction Repertoire - the .

repertoire of a musician is the set
of all pieces he or she can play
well in concert. Well, the
repertoire of a computer - its
instructions - is the list of all the
instructions it can perform and
their definitions.

Subscript - in typical high order
languages, a means is provided to
specify elements of arrays of data.

This is done by subscripts to
indicate the "nth" element for
subscript "n ". Use of such
notation presents the problem of
calculating the effective address
of the actual data being
referenced. In the context of
evaluating a CPU, attention spent
on the problem of calculating
effective addresses from
subscripts is very fundamental.

Time Base - whenever it is
necessary to examine the relative
timing of different signals, it is
necessary to have a reference
point and a scale for making the
measurement. This is the "time
base" of the reference.

TTL compatible - one of the
largest families of integrated
circuits is the line of
"transistor- transistor logic"
devices, TTI, for short. A TTL
compatible line of some non -TTL
device can "drive" one or more
TTL loads if it is an output, or
can receive a TTL device's output
if it is an input. There are various
cautions to be observed -
probably worthy of a BYTE
article - when different types of
logic are interfaced, but the
phrase "TTL compatible" usually
means that the compatible device
can be wired directly to TTL
interconnection pins safely in at
least one configuration.

Unary - this term is derived from
the Latin roots of "oneness." A
unary operation is an operation
which has but one operand, for
example the complement opera-
tion of a Motorola 6800 CPU.

Gary Liming
3152 Santiago Dr
Florissant MO 63033

Data transmission in a

broader sense doesn't have

to mean large networks of
computers and remote
terminals.

Data Paths

Data transmission usually brings to mind
terminals, telephone lines, satellites, and
large computer centers. Computer links in
retail stores, banks, airliries and government
agencies are becoming more and more wide-
spread. Such large scale operations can easily
cost millions of dollars and are thus out of
the range of the hobbyist. The prospect of
linking home systems across distances for
program swapping and interactive games will
undoubtedly become more a possibility as

the technology improves.
However, data transmission in a broader

sense doesn't have to mean large networks of
computers and remote terminals. It is

defined as the process of sending error free
bits from one place to another, and applies
to all digital systems regardless of com-
plexity. In this article we illustrate some

data transmission principles applied to
hobby system design, over distances ranging
from the length of printed circuit foil runs
on a circuit card to the extremely long
distances involved in phone or radio links.

Communication Theory

Data transmission is part of the broader
subject of communication theory which is

used to analyze communication systems.
Any communication system has three parts:
a message source, a medium, and a receiver.
To communicate, information of some kind
must be transferred. Information is defined
simply as an orderly representative signal.
Orderly means that the signal is sent in a

known format which can be interpreted and

decoded by the receiver. Representative
means that there is agreement between
source and receiver upon what the signal will
mean. A signal could be a series of printed
characters, a bell, a whistle or even a color.
The smallest unit of information is the bit,
representing only an on off or yes no
condition. One or a series of these fun-
damental bit signals makes up the message in

digital communications.
Any medium that can transfer a message

has limits, and the medium within these

limits is called the channel. The limits which

117

define a channel might be physical prop-
erties such as the technologically available
bandwidth, or human defined limits such as
an arbitrary FCC ruling that a radio station
is allocated a particular set of frequencies
with a prescribed bandwidth for its signals.
Noise is defined as any signal that interferes
with the message, like radio static or dirt on
a camera lens.

A communication that works one -way, or
does not allow information to be mutually
exchanged is called a simplex transmission or
communication. If information can be
exchanged, it is called a duplex system.
There are two kinds of duplex systems: If
information can be sent between two points
simultaneously, it is called a full duplex
system; if the information can be transferred
in both directions but not at the same time,
it is called you guessed it - half duplex.
Figure 1 illustrates the various kinds of
communications exchanges.

Let's apply this to a simple example -
consider the page you are looking at. The
author is the message source, you are the
receiver, and paper and ink are the medium.
The size of the page sets the channel limits,
and ink blots or printing errors comprise
noise. Communication is simplex. When a

reader replies, it has become half duplex.
This point of view can be applied at

different levels to your system design. Inte-
grated circuits, printed circuit boards,
peripherals and terminals can all be con-
sidered sources and receivers. They all use
the but as the common unit of information.

An important factor in data communi-
cations is the data or transmission rate at
which the bits are transferred. This is mea-
sured, naturally, in bits per second (abbrevi-
ated b /s). It is on this simple point that
many newcomers first get into trouble by
using the term baud. Baud has a different
meaning which can be ambiguous, as we will
see when we look at modulation methods
and modems.

Another important parameter of informa-
tion transmission is the error rate, measured
by the number of bits in error out of the

Simplex:

Half Duplex:

Full Duplex:

S] R

A) B

A s B

A s
i

B

One way for all time.

Now. Alternating,

Later. but one way.

Simultaneous two way.

Figure 1: The terminology describing modes of communication between
sender and receiver depend upon who is sending data and when the data is
sent.

total number transmitted. If your computer
processes instructions at 500 kilobytes per
second which equals 4 megabits per second,
an error rate of one in 10 million (10 * * -7)
will give you an error on the average of every
2.5 seconds. Clearly, what is a tolerable error
rate depends on the transmission rate. A
central processor which has errors every 2.5
seconds is not very usable.

Medium Characteristics

To transfer data, the hobbyist can use
any medium that will support a bit stream.
There isn't any reason why you couldn't
take a serial interface and hook it up to
modulate a laser beam. However, since most
of the transmission done by the hobbyist
uses conductors, let's first look at small
gauge wire used as a communication
channel.

As the data rate through the wire
increases, the bit stream begins to look like
an AC signal passing through a transmission
line, and must be treated as such. This is not
necessarily related to a reversal of current
flow, like AC, but is due to the fast rise and
fall times of the pulses.

Therefore, the channel must have a fairly
wide band of frequencies it can pass (band-
width). It must pass an AC signal with
approximately the same rise and fall times as

the pulse and the flat portion of the pulse,
which is essentially AC at zero frequency.

Conductor properties such as resitance,
capacitance, and inductance degrade the
quality of the pulses. The voltage drop due
to the resistance of the wire lowers the
voltage of the received pulse. Capacitance
between the signal wire and the ground wire
shunts some of the voltage, and inductance
and capacitance both provide impedance to
the flow of the pulses. Noise induced from
the environment and the power supply will
further degrade signal quality.

Another problem amateur radio operators
will be familiar with is the skin effect, where
high frequency current tends to concentrate
in the outer layers of the wire, increasing the
effective resistance. Also, the propagation

time of the pulses should be taken into
account. Even though the pulses travel at
near the speed of light, for 22 AWG (0.79
mm (b) wire, the delay is about 1.5 ns /ft (4.9
ps /cm); a 100 foot coaxial cable introduces a

transmission delay which is nearly a whole
machine cycle delay in some high speed
systems. Indeed, such transmission lines are
often used as delay elements in
oscilloscopes.

All these phenomena depend on the
length of the wire and the frequencies of the
signal. They can combine to ruin the shape
of the pulse to the extent that the logic gates
can become confused as to whether they are
seeing a zero or a one. We conclude then
that the longer the wire and the higher the
transmitted frequencies, the harder it is to
get an acceptable error rate.

Microtransmissions

Armed with these characteristics and
definitions, let's look at how conductors
affect data transmission in a typical proc-
essor. To date hobby systems have been
predominantly designed with 7400 series
TTL, which can handle clock frequencies up
to around 35 MHz, but are commonly
clocked at around 1 MHz. At 1 MHz,
characteristics like resistance and capaci-
tance of wires are not significant for short
transmissions such as chip to chip or board
to board transfers. The big problem inside
systems is induced high frequency noise due
to changes of logic states. The typical TTL
transition time of ten nanoseconds has a

significant harmonic content well into the
VHF range of 50 to 200 MHz. (This is the
reason your computer can generate some
powerful television interference if it is not
properly shielded.) The current surges at the
power connection of a TTL gate which is

changing state induces a noise signal, since
the power bus is typically a poor conductor
of VHF.

Thus one common source of noise is a

poorly designed power supply and distribu-
tion system. Because of its high speed
characteristics, TTL logic is very sensitive to

118

Data transmission is the
process of sending error
free bits from one place to
another.

To communicate, infor-
mation of some kind must
be transferred.

What is a tolerable error
rate depends upon the

number of bits per second

transferred.

changes in its supply voltage. The power
surges of one gate changing state can

momentarily drop the level of a local power
distribution wire, affecting its neighboring
integrated circuit and thereby giving birth to
a glitch in the system. Detecting a glitch is a

real hassle for the pros, and the best policy is

to use sound design practices from the start.
The design of well regulated power supplies
is a significant subject in its own right, and

will not be covered in this article. Home
brew computer experimenters can ofte.í find
excellent high current logic power supplies
in surplus stores.

Noise spikes in the power wiring can also

occur between chips on the power paths and

can spread to other chips and boards. These

noise spikes in the power wiring are induced
due to the inductance of the printed circuit
foils or wire wrap wires as the gates change

state and draw a lot of current. Using wide

flat power supply runs in the PC artwork
will lower the high frequency impedance of
the conductors. Problems can be further
minimized by placing many small ceramic

decoupling capacitors of approximately 0.01

uF between the positive power supply bus

and ground. Use one decoupling capacitor
for every five to ten TTL integrated circuits.
Using an integrated circuit voltage regulator
on each board will also help provide isola-

tion of power supply noise between boards.

A well grounded case will greatly help

reduce environmental noise. The case will
also shield you from your neighbor's corn -

plaints about interference with his television

reception. Another benefit of a well

grounded system case or chassis is protection
from static electricity. In a dry house in

winter, shuffling across the room to turn on

the system can wipe out some MOS chips, as

I know from bitter experience.
These may not sound like important data

transmission problems, but they are direct
results of the same high frequency trans-

mission characteristics which affect long

wire links. Troubles that start with an

improperly designed power distribution and

layout scheme are hard to spot and correct,
but will certainly show up in transmissions
over long wires.

Macrotransmissions

Macrotransmission problems occur
between central processors and peripherals.
The transmission line characteristics become

important: If the length of the wire
approaches the order of magnitude of the

wavelength of the signal, transmission line
effects are a potential source of problems.
This phenomenon occurs in short wires at

high frequencies, and in longer wires at

lower frequencies. As mentioned previously,

119

the frequency characteristics of TTL logic
circuits changing state - VHF components
in the 100 MHz range -- are what tend to
dominate the transmission line properties of
long wires carrying TTL signals. Using the
usual radio formula,

X = 300 /f (X in meters, f in MHz)

gives wavelengths for the high frequency
components of a TTL state transition which
are in the vicinity of three meters at 100
MHz. Thus cables with lengths of one or two
meters should exhibit many of the prop-
erties of transmission lines when they carry
standard TTL signals. Note that this prop-
erty primarily depends upon the transition
time, and is independent of the actual
number of transitions per second. By
slowing the transition time by a factor of
100 to one microsecond or more, trans-
mission line effects will not begin to occur
until cables of 100 meters or more are

considered. Given some arbitrary length of
cable, the alternatives open are to take into
account transmission line behavior through
impedance matching techniques, or to slow
down the signals so that transmission line
effects are no longer a consideration. Since
the latter option produces a non -TTL signal

because it changes state too slowly, let's turn
attention to methods of compensating for
transmission line behavior.

As a simple example, consider two paral-

lel wires. Each wire has the properties
mentioned before, and is represented in

figure 2. In order for the pulses to travel
through the conductor with minimal losses

in signal quality, each end of the cable must

be terminated properly. Termination of the

Figure 2: Symbolic representation of parallel
wire transmission. The system is symmetric,
so it does not matter whether the left
terminals are at the source and the right
terminals are at the receiver or vice versa.

The symbols used in the diagram are as

follows:

L, inductance of the wire.

R, resistance of the wire.

ç capacitance between the wires.

G, high resistance leakage path
between the wires.

Photo 1: Coaxial cable consists of a central conductor, an outer conductive
braid, and a protective coating. It is bulky and expensive, but it has good
characteristics as a transmission line for data.

Photo 2: Two examples of ribbon cable. The lower example is a surplus item
consisting of flat copper conductors (similar to PC lamination) embedded in a
plastic carrier. The upper example is a more conventional cable intended for
assembling to a special dual in line package (DIP) plug.

Photo 3: Twisted pair cable is the only good data transmission line which can
be easily fabricated at home. Here is an example made using an electric drill
to do the twisting.

line involves matching the characteristic
impedance of the wire with the impedance
of receiver and transmitter.

As a pulse is sent to the other end, the
energy of the pulse is dissipated by the
termination of the wire. If the wire is not
terminated properly, a reflection of the
pulse will travel back to the source, and a

condition called ringing will occur.
It is for this reason that flip flops should

never be used to directly drive a line of
significant distance. Ringing or noise spikes
could occur on the line and enter the flip
flop circuit and change its state.

Typical 7400 gates have an impedance of
100 O in the high state and nearly 0 O in the
low state. Almost all newer small scale TTL
integrated circuits are diode clamped, pre-
venting most ringing on the inputs. This
allows wires to go about 5 feet between

120

gates without using external impedance
matching techniques, and assumes a rela-
tively high speed and constant impedance
line. If a standard TTL gate is used as the
transmitter in a data link, fan out rules must
be observed to supply sufficient current. To
raise the output voltage of the pulse, a 2.2

kO resistor can be connected between the
output and the 5 V source. This pullup
resistor raises the output pulse to a full 5 V
and reduces the chances of noise affecting
the line.

For longer runs at high speeds, a TTL line
driver chip like the 74128 can be used to
provide more current to the line. For even
longer runs or in critical applications special
chips like the Signetics 8T13 and 8T16 are
used as drivers and receivers to insure a low
error rate. The maximum length for these
transmissions depends on the type of wire
being used.

Coaxial cable is one of the best cables to
use for long distance transmission of digital
data. I t has a center conductor set in a non
conductor with a metallic braid or foil (the
shield) wrapped around it. The shield is used
as the ground return and for protection from
external noise. Photo 1 illustrates a typical
coaxial cable, cut so its construction can be
seen. Cables with a nominal characteristic
impedance of around 100 O are normally
used in order to match gate terminations.
Coaxial cable has the disadvantage of being
inflexible and bulky, especially if many
wires have to be terminated in a small area.
An even worse disadvantage is its high cost.
Coax is usually used when other wires aren't
suitable.

Flat ribbon cable, which usually has every
other conductor grounded, provides a con-
stant impedance and reduces the chance of
wires inducing signals on each other. Ribbon
cable for the hobbyist is still rather expen-
sive, and special connectors generally must
be used. Photo 2 shows two types of ribbon
cable: flexible copper strips in plastic, and
multiple stranded wires.

Twisted pair wire is the most cost effec-
tive transmission line for long runs in hobby
systems. This kind of cable can be fabricated
at home using an electric drill. In multipair
cable, each pair should be used as a single
signal path, with one wire grounded. The rise
time characteristics of the pair are deter-
mined by the conductor size and tightness of
the twist. For a 100 O cable, the wire should
be 22 to 24 AWG (stranded) with about
three turns to the inch. Multipair wire is

available at many surplus houses, and is
generally a bargain. Photo 3 illustrates a

typical home made twisted pair.
Good old hookup wire is the most suscep-

tible to noise and usually has a highly

A well grounded case ...
will help shield you from
your neighbor's com-
plaints about interference
with his television
reception.

When wires get long

enough to look like trans-

mission lines, termination
and impedance matching

become important.

SPACE

START

1.852

-.544-
.05SDIA. (25)

274
21`

I

.326

\ì 109

0000000000000±
000000

.120 DIA.
(2)

I.163
.272

-.381

.598 -
OOC+O00

.055 .056

I 2 3 4 5 6 7 8 9 1011 1213

.112

1llllllll1111

1 11111111111)
14 15 16 17 18 19 20 21 22 23 24 25

RS-232 PIN ASSIGNMENTS

Pin Name Function

1

2
3
4
5
6
7

8
9

10
11

12
13
14
15
16
17
18
19

FG
TD
RD
TRS
CTS
DSR
SG
DCD

(S)DCD
(SiCTS
(S)TD
TC
(SIRD
RC

(WITS
20 DTR
21 SQ
22 RI
23
24 ETC
25

Frame Ground (not switched)
Transmit Data
Receive Data
Request To Send
Clear To Send
Data Set Ready
Signal Ground
Data Carrier Detect
Positive DC Test Voltage
Negative DC Test Voltage
Unassigned
Secondary Data Carrier Detect
Secondary Clear To Send
Secondary Transmit Data
Transmit Clock
Secondary Receive Data
Receive Clock
Receiver Dibit Clock
Secondary Request To Send
Data Terminal Ready
Signal Quality Detect
Ring Indicator
Data Rate Select
External Transmit Clock
Busy

Figure 3: The commonly used RS -232 elec-

trical interconnection for data transmission
is shown here in the form of pin assignments
for the typical D connector. A typical part
number for the connector is DB -25P (plug)
and DB -25S (socket) made by Cinch.

i I
I

I I I I
I

I O I O I I O I MARK MARK

O 1 2 3 4 5 6 7 STOP STOP

DIGITAL

AMPLITUDE
MODULATION

FREQUENCY
MODULATION

PHASE
MODULATION

Figure 4: Two level asynchronous modulation, shown for the ASCII character

"5" along with typical modulated waveforms for different methods of
modulation.

121

unpredictable characteristic impedance.
Hookup wire should be used only for short
runs between boards and as on board
jumpers.

The Long Haul

At distances greater than your next door
neighbor's house, it begins to become

impractical to use your own wire between
systems. This is primarily due to a very
important conductor property - cost. Cop-
per is not cheap, and stringing wire all over
the place will give hobbyists a bad name.

However, the phone company has already
done this and will provide service to you if
you pay the price.

Another alternative is using a different
medium, like radio waves. It will be inter-
esting to see how many people suddenly
want FCC ham licenses in order to play
interactive TV games and exchange software.

Both of these methods have a major
drawback; they will not directly pass a

digital signal. The telephone system was

designed to carry audio frequencies. Phones

just cannot carry DC level signals. Radio
frequencies are at the other end of the
spectrum and certainly won't support a

usable DC coupled logic signal.
However, the pulses of digital trans-

mission can be superimposed on an AC
signal that is within the bandwidth of the

channel being used. The process of super-

imposing one signal on another is called
modulation. A device that will translate the

digital bit stream to an encoded analog signal

for transmission and analog to digital for
reception is called a modulator -demodulator,
or modem.

Since it is impractical to have eight
telephone lines or eight radio frequencies
transmit in parallel, a conversion to serial
must be done. This can be accomplished by
writing the conversion in software, but is

more cost effective by using an integrated
circuit called a UART (Universal Asyn-
chronous Receiver -Transmitter). This chip
takes the data in parallel form and converts
it to serial at a rate specified by external
components. For a more detailed discussion
of the serial interface and UARTs, see "The
Serial Interface" by Don Lancaster in the
September 1975 issue of BYTE.

There is a standard for interfacing serial

data transmission between peripherals, sys-

tems, and modems. The Electronic
Industries Association (EIA) of America has,

by consent of various manufacturers and

users, standardized a 25 pin connection with
appropriate signal levels called the RS -232
interface. There is also a new EIA standard
that has been introduced, called the RS -422
standard that is more suitable to TTL.

However, since almost all modems and
peripherals now available and all surplus
items are likely to use the RS -232 standard,
it will remain the most significant to
hobbyists for some time.

A commonly used RS -232 connector
along with pin assignments is shown in figure
3. The signals that appear on the signal pins
must be bipolar with 3 V to 25 V represent-
ing a logical one and -3 V to -25 V being a

logical zero. There are chips available to do
this conversion from TTL, the 1488 and
1489. If you are going to use commercial
RS -232 equipment, you should expect to
provide this interface; and you'll also need
the positive and negative supply voltages.
Keep in mind that in common practice many
of the pins in figure 3 are not used. The
most important lines on the RS -232 inter-
face plug are the grounds, the transmit data
(TD) and receive data (RD). In many
instances it is sufficient to use only these
lines, especially if you are just experimenting
with an RS -232 peripheral. Note, however,
that some terminals require inputs for one or
more additional pins, many of which can
simply be wired to the RS -232 logic zero or
logic one lines (-12 V or +12 V, for
example).

Data Modulation

There are three basic techniques for
modulating an analog signal and many dif-
ferent variations of these. An analog signal
that is to be modulated by the data is called
a carrier, and the carrier has three basic
characteristics that can be varied. If the
amplitude, frequency, or phase is varied in
step with the bit stream, modulation occurs.
An example of each technique is shown in
figure 4.

Amplitude modulation is seldom used in
modems because of its high susceptibility to
noise and attenuation, but the technique is

used in some magnetic tape encoding
schemes. Frequency modulation is a more
common technique. The example shown in
figure 4 uses one frequency to represent a 0
bit and a higher frequency to represent a 1

bit. This particular method is called fre-
quency shift keying (FSK).

The phase modulation example in figure
4 shows a two level coding scheme with each
180° phase shift triggering a logical state
change.

The number of times the signal is varied
each second is called Baud or Baud rate.
Suppose you were designing a modem using
phase modulation. You could, for example,
divide the possible phase shifts into 45°
each, having eight possible phase shifts for
each signal change. A 45° shift would
represent a group of three bits, namely

'000'. 90° would represent '001', 135° _

'010', 180° = '011', etc., up to 360° for
'111'. In this case a signal changing 100
times a second, or at 100 Baud, would
actually transfer data at 300 b /s. This
method of one signal change representing
more than one bit is called multi level
encoding. It is in principle the way some
commercial high speed modems function.

In order to obtain a fair amount of
accuracy in transmitting data from a trans-
mitter to a receiver, it is necessary to keep
the two systems in step with each other.
There are two common methods to do this,
called synchronous and asynchronous trans-
mission.

Asynchronous transmission is also called
start -stop transmission because each charac-
ter is sent as it is created at the transmission
interface. To synchronize the receiver, each
character carries its own timing in the form
of additional bits called start and stop bits.
These give the receiver the ability to decode
each bit reliably. The format of a single
character is shown in figure 4 along with
data for the digit 5 encoded in ASCII.

Synchronous transmission is usually
associated with blocks of data, where groups
of characters are sent together. A fixed
speed of transmission is set by clocks or
oscillators, and data bits are transferred at
this rate. To provide character synchroniza-
tion, usually two special synchronization
characters precede the actual block of data.
An end of block character follows the data
to signal the receiver that all of the data in
that block has been sent. An additional error
detecting character may also be sent as

shown in figure 5.

SYN I SYN
1

DATA 1 EOB

ERROR DETECTION CHARACTER

Figure 5: Synchronous transmission is block
oriented and assumes highly accurate com-
mon clocking of both the sender and the
receiver.

Finally, there is one other complication
in using radio or telephones for your com-
munication channel - the FCC. The FCC
regulates the telephone industry by tariffs
that specify the costs and types of devices
that can be used with Ma Bell. They also
regulate radio frequency allocation and
power output and information codes that
can be transmitted by radio.

There are good reasons for having these
regulations followed, but they do tend to
make life difficult for the hobbyist. A
dedicated 100 mile phone line with a Bell
modem will exceed most other system costs

122

A baud is not necessarily a

bit per second - although
it might be in special cases.

A baud is a signal change
per second.

for a home computer in a very short time. A
ham license and suitable radio equipment are

not cheap, either. Long distance real time
data transmission is presently out of reach to
many hobbyists.

GLOSSARY

Asynchronous transmission: Transmission where
data is sent a character at a time with syn-
chronizing bits added. See Synchronous
Transmission.

b /s: Bits per second.

Bandwidth: The width of the frequency spectrum
that a channel can pass, measured in Hz.

Baud: The number of signal changes per second.

Carrier: The analog signal that is modulated by the
information that it is to carry. Also, the provider
of a communications channel, i.e., Ma Bell.

Duplex: Communication system that allows
information to be exchanged. See simplex.

FSK: Frequency shift keying, a type of frequency
modulation for digital data.

Full duplex: Communication system that allows
simultaneous information exchange. See half
duplex.

Half duplex: Communication system that allows
information to be exchanged, but not simultane-
ously. See full duplex.

Modem: Modulator -demodulator. A device used to
convert digital to analog signals and vice versa.

Modulation: The process of superimposing
information on a carrier. See carrier.

Multilevel Encoding: The process of using a signal

change to represent more than one bit of
information.

Noise: Unwanted signals that interfere with the
message.

Ringing: A condition in transmission lines where
"reflections" of pulses oscillate due to an

impedance mismatch.

Simplex: Communication system that does not
allow information to be exchanged. See duplex.

Synchronous Transmission: Transmission where
the bit rate is clocked. Usually associated with
block transmission. See asynchronous transmission.

xxxx
X XX

X X xxxXX
X X xxx xx

XXXX XXX xXxx kx
xx X xxxXxxXXx XX XXX

XX X X x. X

x XX XX x x.x
X //XXX* x xxxx

x // x XX

x // x xxxxxxXxxxxxxxxxXx/
X xxx// X x

X X X X x

X X x x X

X X X x X XX

x X X x x XXX XX
x XXX X X X x x X

X x x XX x xXxx
X x XxxXxXxx\ XX XX E

xx XX x x X XX

XX XXXX XXXXXX/ x XXIX
xxx XX*** X X

xxxXxxXXxXXXx X X

___ x X X - XXX X x - xxx X

. .x XXX
- x X XXX
_ x X XX
_ *XX x x X X X x
x x X x
X** X XXXX X

X.. XX X x . X. X Xx x
X. XXX X x . XX XXXX XXX

xxxx X x
X X X

X X xxxxxxxx\
/XXXXX XXXXXXXX\)

X) \)

x \ \)XXXXX
XxXxXxXxXxxxxxxxxxxxxx

123

TO CIRCUIT

UNDER TEST 1

+5v

Build a

TTL Pulse

Catcher

R2
LED, 220

I/4 W

TEST PROBE

GROUND

FALLING
GND

PIN 0 ICI

ICI
LOOKING FROM THE
TOP TOWARD
SOCKET

PIN I IS NEAR
THE DOT

ICI = 7400

2 3 4 5 6 7

+5

}-s2
RESET

TO TEST
PROBE

PUSH TO
I SIMULATE PULSE

TESTING THE TESTER

Figure 1: The circuit diagram and parts list for the TTL pulse catcher design.

124

William A Walde
28 Tuttle Dr
Acton MA 01720

While checking out the operation of some
oneshots on the address latch board during
the construction of my Mark -8 micro-
processor, I discovered that my first home-
made logic probe could not detect very short
TTL logic pulses. Since my old probe would
not work, I needed a quick and easy way to
tell whether a short TTL pulse had arrived. I

dreamt up this circuit which solved the
problem by adding memory in the form of
an RS flip flop wired from a NAND gate.
This pulse catcher will detect pulses as short
as the combined gate delays of the two
NAND sections used to form the flip flop,
approximately 10 to 30 ns. The circuit
works by changing state at the start of a

pulse, with an LED monitoring the flip flop
output. There is no indication of the end of
the pulse and there is no way to tell if
multiple pulses have occurred. After a pulse
has been detected, the circuit must be reset
in order to detect the next pulse. The TTL
pulse catcher is designed to work with either
a positive or a negative going pulse as
selected by a switch.

Construction

The original version of this test instru-
ment was built using perforated board and
flea clips. The circuit could also be made
using a small printed circuit board. Lead
dress is not critical, but the polarity of the
LED must be observed. Select a value of the
resistor R2 in the range 47 to 470 0 such
that good illumination is achieved with a

current of approximately 20 mA. A typical
resistance value is 220 0. The tester can be
tested using a resistor, a bounceless push-
button switch and the test circuit shown in
figure 1. Label switch S1 to identify which
setting is the rising edge mode and which
setting is the falling edge mode. A clever
approach would be to build the pulse
catcher inside a cylindrical enclosure, such as
a pen or thin tube.

Using the Pulse Catcher

Connect the 5 VDC and ground terminals
to a suitable power supply. If you use a
power supply separate from the main system
supply of the computer or logic device you

are testing, be sure to tie the grounds of the

two supplies together. Connect the input
probe to the line being tested and select the
rising or falling edge mode via switch Sl.
Depress the reset button to extinguish the

LED and arm the latch. If you are unable to
cause the LED to stay off after releasing the

reset, the following information is learned

about the line being tested:

It may have a steady state condition
which is inconsistent with the mode of
the test. Change S1 and try again.

You may be observing a line which has

regular clock transitions. The light will
never go out when testing such a line.

In normal operation, once the pulse

catcher is reset, the LED will remain out
until the first pulse comes along, after which

it will stay on until reset by pushing the S2

button.

Theory of Operation

Gates ICIc and ICId are cross -coupled to
form the familiar RS flip flop that is used to

remember when a pulse has occurred.
Momentarily depressing SW2 grounds pin 9

of gate IC1d, causing the flip flop to go into
the reset mode. In this mode both sides of
LED1 are high and it will not light up. In a

similar manner, falling pulse at pin 13 of
gate ICIc will cause the flip flop to go into
the set mode with gate ICid now becoming
a current sink for LEDI, causing it to
illuminate.

Switch SW1 is used to select between
either a rising or a falling input pulse. The
RS flip flop always needs a falling pulse to
operate. In the case of a rising pulse, it is

inverted by gate ICI a, which is also used as a

buffer. Gate ICIb is used to invert a falling
pulse a second time to put the pulse back
into its original form. Note that pin 1 of gate

IC1a is held high so that the input (pin 2)

will only present one standard TTL load to
the circuit under test (as compared to gate

ICI b where the 2 inputs are tied together).
Rl is used as a pull up resistor to the pin

9 input to gate ICId for noise immunity.
Resistor R2 is used as a current limiting
resistor for LED1.

Don R. Walters
3505 Edgewood Dr
Ann Arbor MI 48104

Dressing up Front Panels

To dress up panels of equipment use press

on lettering (available from stationery shops,

college and university book stores, and from
graphics arts supply shops) to label the

various functions performed by the compo-

nents which will be mounted on the panel

(see figure 1). The lettering can be pressed

on, wire brushed, chemically etched, or

painted surfaces. The only caution is that

the surface be free of dirt and grease before
applying the lettering to the panel.

When applying the lettering, if a mistake
is made the mistake can be removed by

gently scraping the lettering off the panel.

After all the lettering is completed and

you are satisfied with the job, lay the panel

on a flat surface and carefully spray the

panel with several (5 to 10) light coats of a

clear plastic spray. Allow the surface to dry

before applying the next coat. Also allow
the sprayed surface to dry completely (over-

night) before installing the components on

the panel. The plastic spray protects the

lettering from being rubbed or scraped off
easily.

OFF

00000000 0
7 6 5 4 3 2 1 0

ADDRESS

ON 0000000
6 S 4 3 2 Ó O

DATI,
A

POWER

MACHINED
PANEL

AFTER COMPLET-
ING LETTERING,
SPRAY ENTIRE
PANEL WITH PLAS-
TIC SPRAY

FROM PRESS -
ON LETTERING
SHEET TO PAN-
EL SURFACE

A word of caution; let the spray dry
thoroughly before mounting the com-

ponents. Secondly, on each spraying put
down only a light coat. Otherwise the letters
will tend to move (float ?) a little out of
place. Also be careful when mounting com-
ponents onto the panel so that the lettering
and /or the panel's surface is not scratched.
The end result of lettering and care will be a

very good looking piece of equipment.

DECIPHERING

trtr am an
NININNINNINNINNINNI

NINNININNIINNINN N

MYSTERY KEYBOARDS

by
Carl Helmers
Editor, BYTE

One of the best sources of
input data for your home
brew computer system is the
typewriter style keyboard
device. A decent keyboard
will give you the ability to
enter parallel character data 8
bits at a time. The typical
keyboard input devices will
also include a flag of some
sort to indicate that a key has
been pressed. It might also
include an "acknowledge"
line to be pulsed after the
computer had read the data.
The parallel interface of a
typical keyboard is illustrated
in Fig. 1. Fig. 1 is a typical

Did you ever wonder about the use of surplus keyboards
for use in your system? Here is an article describing one way
to analyze such a keyboard - illustrated by a particular model
which is available through one of BYTE's advertisers. Do you
use a surplus keyboard already? This is one of the most
common and usable of surplus subsystems - I'd like to see a
few reader submitted articles on use of various keyboards
available in surplus channels. ... CARL

interface of a keyboard, and
is used only as a guide to the
analysis of an actual
keyboard later on in this
article.

The manual input of the
keyboard is its most
important feature. It is the
human operator's depression
of a selected key which
communicates some
information to your system.
When the key is depressed, it
causes the keyboard input
device's logic to generate an
encoded binary pattern for
the key. This encoded binary
pattern is typically an ASCII

126

character code presented on
the data lines DO to D6. In
addition to the encoding
function, the keyboard has
logic which produces a "flag"
signal to indicate that some
key has been depressed. This
flag is either a pulse (see
timing diagram example in
Fig. 1) or a level state,
depending upon the
particular keyboard design
involved. It is often the case
(but not required) that the
keyboard is designed for
interactive control by the
computer processor. In such
cases, an "acknowledge"

signal must be generated by
the computer and sent back
to the keyboard to reset the
logic of the keyboard input
device.

The encoding pattern of
the keyboard input device
depends upon the
manufacturer's design and
must be determined for a

surplus keyboard before you
can use it. For many
keyboards, the ASCII pattern
of Table I is applicable -
each key maps into one of
the 7 -bit patterns listed.
Unless stated by the dealer,
you will have to approach the
analysis of the surplus
keyboard without any
assumptions: it is likely to be
ASCII but ... you could
wind up with a Univac
"Fieldata" encoded
keyboard; you could wind up
with an IBM EBCDIC
keyboard, etc. Many
non -standard encoding
schemes for alphanumeric
keyboards are derivatives of
ASCII. Thus the example in
this article is chosen with an
ASCII encoding scheme in
mind. (IBM surplus is rarely
in usable form and the
number of EBCDIC
keyboards by non -IBM
manufacturers is an unknown
but assumed small number.)
In Table I, the common
character codes are shown in
a typical graphic form as well
as in binary, octal and
hexadecimal representations.

Now a new keyboard fully
encoded for ASCII and /or
EBCDIC is one option you
have for implementing a

keyboard input device. For
example, a new commercial
keyboard will typically sell in
the $ 50 to $150 range
depending upon options - a

keyboard with a standard
typewriter style layout and
an LSI encoding method. As
a second example, Southwest
Technical Products Corp.
used to sell a hobby quality
keyboard at about $40 in kit
form. The advantages of new
keyboards are obvious: you
get the complete description
of the hardware along with
the product - and an

interface which will be similar
to the one described in Fig. 1.

With the newer LSI encoded
boards, you will probably get

a keyboard with an "n" key
rollover feature to decipher
multiple key strokes which
overlap in quick succession.
This is all well and good, but
is there a less expensive
alternative? The answer of
course is "Yes ", and the
remainder of this article
concerns the techniques
involved.

Using Surplus Keyboards
The alternative to new

equipment is "pre- owned"
equipment, to borrow a term
from standard used car
dealers' lexicon. Since
computers have been in use
for a number of years there is

a fairly wide selection of
equipment in the "surplus"
market, as you can find out
by reading the advertising
pages of BYTE. An item
which is frequently found in
surplus vendors' offerings is

the keyboard input device.
Prices for keyboards vary
considerably - from $10 for
real "junk" to about $40 for
premium keyboards. The use
you can get out of such a

surplus board ranges from a

MANUAL
INPUT

complete subsystem ready to
hook up - to a mere array of
key switches which must have
a new set of encoding logic to
make it work.

The keyboards you
employ for this purpose must
be selected and analyzed on
an individual basis - there is

no stock formula applicable
to all such keyboards. Several
rough guidelines will help
you keep out of too much
trouble:

1. Always look for a unit
which is in sound physical
condition. Get one which has
the cleanest possible key
tops, smoothly working keys,
little sign of "hack"
modifications to PC circuits,
etc. Verify that the keyboard
is a "switch" type - Hall
effect or capacitive keyboards
exist and should be avoided without proper
documentation.

2. The most desirable
keyboard will be one in
which the encoding logic is

readily decipherable. This will
invariably be the case with
diode matrix keyboards (see
text below) - and may be

TIMING (TYPICAL):

HUMAN FINGER

possible if an LSI chip with a

standard part number is
utilized.

3. The most desirable
keyboard will be one on
which the PC layout people
have made notations of nice
little comments like " +5V ",
-12V ", "VCC ", "A", "$"

etc. These are great aids to
figuring out the operation of
the devices.

If you (at a minimum)
satisfy the first criterion
above, the keyboard will
ultimately be usable,
provided it uses actual
keyswitches, since you can
always construct a switch
scanner and /or diode matrix
to encode the switches as

ASCII binary information.

Diode Matrix Keyboard
Analysis - An Example

To illustrate what can be
done with surplus keyboards,
the remainder of this article
concerns the analysis of a

particular keyboard input
device. The keyboard in
question has been advertised
recently, and is a fairly
typical diode matrix encoded

ACKNOWLEDGE +

KEYBOARD
INPUT

DEVICE

LSB

MSB

FLAG+

f
FLAG

ACKNOWLEDGE

DO

DI
D2
D3
D4
D5
D6

COMPUTER
ice- RESPONSE

TIME

Fig. 1. Typical keyboard functions.

127

The keyboard, with
bottom plate removed and
encoder board out in the
open. The encoder printed
circuit is separated from
its mounting on the
bottom plate but is still
attached by its wiring
harness.

keyboard of the 1966 -1970
vintage. This keyboard is a

surplus Sanders Associates
Model 722 -1 subsystem,
which comes enclosed in a

metal housing with a fairly
typical Teletype style key
layout. On the right hand side
of the keyboard is a set of
special function keys, which
obviously had some meaning
in the original system using
the device.

The keyboard and housing
can be used "as is" in your
system - with the only
necessary modifications being
the substitution of an
interface plug and cable
which can mate with your
own equipment. The example
of analyzing and figuring out
this keyboard can be used as

a guide to similar work with
other surplus keyboards.

Start at the Beginning
The object of this project

is to determine the details
needed to make the Model

KEYBOARD
HOUSING

OUTPUT
TERMINALS Uzt ;U8

BYPASS
CAPACITOR

KEYBOARD
ENCODER
P.C.

INTEGRATED CIRCUITS

722 -1 keyboard work - but
without any original design
documentation from the
manufacturer, since it is

surplus. The first step is to
put on your Sherlock Holmes
cap, crank up your deductive
powers and begin
disassembling the keyboard.
In order to analyze the
circuit, a likely place to start
is the bottom cover plate. In
the case of the 722 -1, four
screws hold the cover plate to
the bottom of the housing.
Upon opening the cover
plate, the 722 -1 will be found
to have a printed circuit
board attached to the plate -
a thin plastic sheet glued to
the cover plate prevents
inadvertent shorting of PC
conductors. The PC should be
removed from the cover plate
by unscrewing the four nuts
securing it. The result will be
a PC board hanging out the
back of the housing /keyboard
assembly by its wiring
harness.

The actual process of
analysis of a keyboard such as

this will probably take you an
evening or so. The key

features to look for in a diode
matrix encoder keyboard are
identified in the photo.

Keyboard Encoder PC.
The typical diode matrix
keyboard will have a printed
circuit board containing a

large number (approximately
100 -200) of computer diodes
and several integrated
circuits, with individual wires
running from keyswitches to
the PC. Sometimes the
functions of encoding and
control logic will all be
mounted on the same printed
circuit as in this example.
Occasionally, the logic will be
split up into smaller chunks
on separate boards.

Wiring Harness. A
keyboard is easy to figure out
if you can get at it "live"
(under power). In this case, a

wiring harness allows
considerable room for
extbnsion so that the key
switch matrix and housing
can be separated from the
encoder board.

Diode Matrix. The way to
tell a diode matrix board is

by the regular array of diodes
found at some point. In this

128

DIODE MATRIX

example, the array is at the
lower right in the photo.
While the array is regular, the
actual printed wiring is fairly
random - although it will
ultimately condense down
into a set of bit busses.

Integrated Circuits. This
particular keyboard has a

bunch of integrated circuits
in the left hand portion of
the encoder board. The photo
illustrates arbitrary reference
numbers U1 to U12 for the
purposes of this article, since
no references were built into
the printed circuit board.

Pu//up Resistors. In diode
matrix boards, a set of
negative logic "wired or"
busses is used to generate
each bit of the encoded
binary word. One pullup
resistor (typically 1000
Ohms) is associated with each
bus line.

Identifying the Power
Requirements

One of the most critical
items to be determined in
figuring out a keyboard is to
identify the power
requirements. The best way is

Table I. Binary, Octal
and Hexadecimal ASCII

Codes. This table contains
common symbols for
keyboard characters

and the corresponding
ASCII codes.

Binary

0000000
0000001
0000010
0000011
0000100
0000101
0000110
0000111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
0010000
0010001
0010010
0010011
0010100
0010101
0010110
0010111
0011000
0011001
0011010
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111

Octal

000
001

002
003
004
005
006
007
010
011

012
013
014
015
016
017
020
021

022
023
024
025
026
027
030
031

032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071

072
073
074
075
076
C77

Hex

00
01

02
03
04
05
06
07
08
09
OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

16
17

18

19

1A
1B

1C

10
1E

1F

20
21

22
23
24

25
26
27

28
29
2A
2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Common "Graphics "*

NUL character

Bell - Ring the Bell!

LF - Line Feed

CR - Carriage Return

ESC - "Escape"

SP - Space

! - Exclamation
- Quotes

#- Number Sign

$ - Dollar Sign

%- Percent

& - Ampersand
- Apostrophe

1 - Left Paren

) - Right Paren,

- Asterisk
+ - Plus sign

, - Comma
Minus Sign (hyphen)

. - Decimal (period)
/ - Slash

0
1

2

3

4
5

6

7

8
9

. - Colon

. - Semicolon
< - Less than
= - Equality
> - Greater than

? - Question Mark

Binary

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
101 1100
1011101
1011110
1011111
1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1001101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Octal

100
101

102
103
104
105
106
107
110
111

112

113
114

115

116

117
120
121

122
123
124
125
126
127
130
131

132

133
134
135

136
137
140
141

142
143
144
145
146
147
150
151

152
153
154

155
156
157
160
161

162
163
164

165
166
167
170
171

172
173
174
175
176
177

Hex

40
41

42
43
44
45
46
47
48
49
4A
4B
4C

4D
4E

4F
50
51

52
53
54
55

56
57

58

59

5A
5B
5C

5D
5E
5F
60
61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74

75
76
77
78
79
7A
7B
7C
7D
7E

7F

Common "Graphics "*

@ - "at"
A
B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
R

S

T
U

V
W

X
Y
Z

(- Left bracket
\ - Reverse slash

I - Right bracket

- Underscore

a

b

c

d

e

f
g

h

i

j

k

m
n
o
p

q
r

s

t
u

v

w
x

Y

z

L
- Left brace

}- Right brace

DEL - Delete

129

Diode matrix - this
system of generating
the ASCII code is used
in older keyboards.

AC
MAINS

of course to get a keyboard
which has power
requirements listed on its
encoder printed circuit in no
uncertain terms. However,
"the best" is often a matter
of luck and judicious choice
of equipment in surplus
circles ... you can make do
with less than perfect
documentation by employing
some knowledge of common
design practices. Figuring out
power voltages requires the
analysis of one circuit power
line for each level of voltage
involved to completely
establish the requirements of
the system.

One of the least
ambiguous ways to identify
power lines is to look up the
power pinouts of the
integrated circuit components
used in your keyboard. This
method requires a supply of
reference books and a
keyboard encoder circuit

POWER
+5,/

SUPPLY
o

VOM
300m A
SCALE
.

Fig. Z Turn it on and cross your fingers.

which uses standard part
numbers. For keyboards
which are manufactured by
the smaller companies in the
computer field, parts are
usually standard items so that
this method can be
employed. One of the main
justifications for home brew
computer clubs is the nice
informal arrangement which
provides for an exchange of
information of this type. In
the case of the Sanders
keyboard, the two integrated
circuit designs used were
labelled "ST659A" and
"ST680A ". The only
problem is that no direct
reference could be found in
literature I had available.
However, don't give up with
an initial failure to find a

reference. What I did after
striking out on these two
numbers was to look for a

similar number differing only
in the alphabetical
information. I did find
references to two DTL
integrated circuits "SP659A"
and "SP680A," an
expandable 4 -input NAND
gate and a quad 2 -input
NAND gate. Both these gate
designs have package power
connections of Pin 8 for
power and Pin 1 for ground.

The gate references gave
me a high probability
determination of the power

130

connections by tracing down
ground to the I/O pin labelled
7 and tracing down power
(+5 for DTL) to I/O pin 5.
Being a cautious type of
person, I then looked for
some independent
confirmations of this power
pinout identification.

Another method of
identifying power and ground
connections is to look for
color coding on wires. This
kind of a confirmation is only
possible for boards
manufactured with hand
wiring. If the harness is one
of the multiconductor ribbon
cables, color coding is not
likely. In the keyboard I

analyzed I found that the
ground terminal of the
decoder was routed via a

black wire to the connector
on the case, and that the +5
volt terminal was routed to
the connector via a red wire.
This is consistent with the
industry conventions which
are used for such wiring -
power (positive) is red,
ground (negative) is black.

Still another method for
determination of power
connections is to examine the
polarity of electrolytic
capacitors mounted on the
board for local power supply
filtering. These bypass
capacitors are often (not
always) connected between

Detail of the output pins.
This keyboard is one of
the more desirable types -
it has labeling of many key
features etched along with
the printed wiring.

the positive supply and
ground, with markings of (+)
for the supply side and (-) for
the ground side. In the
disassembled keyboard
photograph accompanying
this article, the bypass
capacitor is labeled. Using
clip leads, the bypass
capacitor often provides a

handy way to apply power
when first testing the board.

Multiple power supply
keyboards often occur with
later equipment, especially
where MOS encoders are
employed. This will
complicate the analysis
problem - often to the point
where it might be wise to
avoid such boards unless
adequately labeled with
vol tage designations, part
numbers and other
comments.
Turn It On and Cross Your
Fingers?

Now that you think you
have the power connections
straight, your next step in
analysis is to apply a little bit
of power to the circuit and
see what happens - using a

milliammeter. Connect the
keyboard using the circuit of
Fig. 2. If the power leads
have been correctly
identified, the current read
on the meter should be

approximately 100

Fig. 3. The typical encoded bit
line for a diode matrix.

*DTL gates used in surplus
"Sanders 720" keyboard; TTL
might be used in variations on
this theme, e.g.: 7400 series.

OUTPUT BIT LINE

milliamperes. Remove power
ASAP if the meter movement
is "pinned" on a 300 or 1000
milliampere scale, since that
indicates either a short circuit
or incorrect polarity for the
power. If a reasonable current
(under 300 milliamperes) is

drawn, then you can safely
trust your power connection
determination and proceed
by removing the meter from
the circuit.

Does It Have a Flag?

The next thing to look for
is a "flag" indicating that the
keyboard has been activated
by a finger and data is

present. The term "flag"
means a logic line generated
in the keyboard encoder
which may be either pulsed
or steady state. This test
requires a method of catching
pulses - either an
oscilloscope with about 10
MHz bandwidth, or one of a

number of logic probes
available which "flash" when
a state change occurs. Check
each of the several I/O
connection terminals while
pressing a key. If the
keyboard is working at all,
you will find at least one
terminal which changes state
- with a pulse or a level
change - as keys are
activated.

"EXPAND" INPUT
OF 659

659*

+5V

-ll° READ" 680* ¡}--
COMMAND LINE

131

1100011
PULLUP
RESISTOR

R-S FLIPFLOP
STORES BIT

When you have found a

pin which changes state, the
next test is to see whether it
changes the same way for
every normal key on the
keyboard. If the effects vary
from key to key, then the
line in question is a data line - if the tentatively identified
"flag" pin pulses or changes
its level consistently for all
keys (with one or two
possible exceptions) then it is

probably the flag desired. In
the Sanders surplus board
analyzed here, the flag pin
was found to be I/O
connection terminal 8.

The exception possible to
the "same behavior on every
key" statement is evidenced
in the Sanders board - the
flag interconnection terminal
is a pulsed output of 2
microseconds in width for all
keys except one: the
"Repeat" key causes the flag
to change its state. The flag is

normally high in this board,
but when repeat is depressed
it is held low.

Where's the Data?

Now, having found a flag
to indicate when data is

present, the next problem
immediately presents itself -
you now turn to examine the
other pins of the
interconnection to the

f /WIRED - "OR "(NEGATIVE LOGIC)
fMATRIX BIT LINE

KEY
SWITCH

DIODE ISOLATES
KEY LINES FROM
WIRED-OR BUS

TO OTHER ACTIVE
BITS OF THIS KEY

-EACH KEY
WHICH
ACTIVATES

THIS BIT LINE
IS CONNECTED
IN THIS MANNER

4

5

10

II

12

13

`EXPANSION__f.
INPUTS

14

decoder and find no change
whatsoever in levels regardless
of the key pressed. Ah! The
frustration! It's enough to
drive you to tracing down the
logic of the keyboard, at least
for one of the low order data
bits. That's exactly what
happened in analyzing this
example of a keyboard. Fig. 3
is the result of that tracing
operation - using the pinouts
of Fig. 4 which were obtained
from an old (late sixties) data
reference for the DTL gates.

As can be seen in Fig. 3,
an R -S flip flop is made out
of two NAND gate sections
for each bit -line of the
keyboard. This storage of the
state of the diode matrix

outputs explains the lack of
change seen when first
examining the board's
outputs for possible data - in
order to read (or get ready to
read) a key, the R -S flip flops
of all diode matrix outputs
must be reset. The "read"
command line performs this
reset. After resetting, the first
negative going pulse on the
matrix bit line into the 659's
expander input sets the flip
flop, thus debouncing the
contact closure. There is one
bit line for each possible bit
of "raw data" - and some
logic is used to superimpose
the shift key and control key
information as required.

So, in order to find out

Fig. 5. Keyboard "Read" and Acknowledge logic.

'READ' 2

COMMAND LINE

0
659A

Fig. 4. Pinouts for the DTL gates
in the Sanders keyboard. (Unused
inputs are assumed logic 1

without external pullups.)

which interface terminal
corresponds to the "read"
command line which resets all
the flip flops, a bit more
circuit tracing is required.
Fig. 5 illustrates the effective
logic resulting from the
tracing for "Read" - which it
turns out is commanded by a

negative logic pulse from the
computer via interconnection
terminal pin 6. In Fig. 5, the
R -S flip flop (A) is used to
control the computer
interface. The receipt of an

acknowledge command from
the computer resets that flip
flop potentially allowing a

read, but the NAND gate (B)
inhibits recognition of any
new keystroke until after the

ANY KEY DOWN'
INHIBITS
ACKNOWLEDGE
INPUT

659A

4

i 10

o
680A

previous key is released. Thus
this keyboard has zero -key
rollover since all keys must be

released before a new key can
be recognized.

Figuring Out the Coding
Once the problem of

locked up outputs is solved
by identifying the
"Acknowledge" signal line,
the next problem is to
identify the bit lines at the
interconnection interface. To
do this requires the following
procedure (by hand) when
testing the state of individual
bit lines as keys are
depressed ...

1. Short the Acknowledge
line to ground.

2. Press a key whose code
is to be examined.

3. Look at the outputs on
a scope or logic state
indicator (the latter is an

LED driven by a gate
section).

To identify your coding,
make the following
reasonableness hypothesis
initially:

Keys with an identifiable
sequential order (eg:
alphabetical order) will be
consecutive integer numbers
in any reasonable binary
coding scheme.

You can identify the low
order bits in ASCII, for
instance, if you make this
assumption.

13 ACKNOWLEDGE

6804 II

TERMINAL NO.6

FLAG-L.1-
TERMINAL NO.8

2 14
659A (UNUSED -OPEN)

ANY KEY' (UNUSED
IN PUTS
OPEN)

9
EXPAND Q I

BUS

132

O KEY SWITCHES

Table II. Terminal
Connections for the Sanders
surplus keyboard.

Terminal I.D.
#5 Power (+5 volts)
#6 Acknowledge (-)
#7 Ground
#8 Flag (-) (pulse unless
REPEAT key held down)
#9 Bit 0 (+) ASCII LSB
#10 Bit 1 (+)
#11 Bit 2 (+)
#12 Bit 3 (+)
#13 Bit 4 (+)
#14 Bit 5 (+)
#15 Bit 6 (+)

So, pick two neighboring
keys with identical ASCII
high order bits, and test first
one then the other (using the
three steps above) for each
potential bit line until you
find a bit line which
alternates with your key
strokes. Thus, for instance, if
you alternately press @ and A
on the Sanders board of this
article (acknowledging
between each look) you will
find the state of interface
terminal 9 alternating. This
can only be the low order bit
of the ASCII code. Now pick
two keys in alphabetical
order which are at a change in
bit 1. For example, pick "A"
and "B ". This will result in all
high order bits of the code
remaining identical down to
the ASCII bit 1 line. Examine
the terminals of the encoder
while alternately looking at A
and B until you find the line
which changes.

This procedure can be
repeated for the third ASCII
low order bit (bit 2) by
picking the letters C and D.
The bit 2 terminal is found to
be 11 by this test for the
Sanders board. Continuing
once more, test the bit 3
output by looking at G and H
alternately (ignore the
previously identified pins -
all high order pins will remain
the same).

By the time terminal 12 is

found to be ASCII bit 3, a

trend has been established for
this keyboard - ascending
terminal identifications from
9 are the bits of the ASCII
code. In many cases this will
be the order of terminals -
but you have to identify

several of the least significant
bits first before you can make
a conjecture. This conjecture
of ordering can be verified for
the Sanders board being
analyzed by looking at
typical codes (see Table I,
and look, for instance, at the
output for "line feed" using
the terminal identifications
listed in Table II).

Now a major input to this
identification process is the
assumption of ASCII coding - if this assumption gives
"funny" results, you have no
choice but to use a slightly
different method: take each
key in turn, depress it, and
look at all possible output
bits lines of the encode.
Record the results in a table
similar to Table I, but with
the key you find, instead of
the standard ASCII. You may
find you have inverted data, a

completely non -ASCII code
set such as EBCDIC, or a

modified ASCII.

Now You've Sorted the Bits - So What's Next?
When you have figured out

the equivalent of Table II for
your own surplus keyboard,
the next step is to make a

systematic identification in a

table similar to Table I. One
of the best ways to do this is

to use your computer with an
input port devoted to the
keyboard, and a display or
hard copy device for output.
A program written to
implement the flow chart of
Fig. 6 can be used to
selectively examine keys on
the keyboard. The program
accepts a key input, unpacks
the bits into a binary and
octal form, then displays the
bits on your output (TV,
character generator, or
printer) as a binary and an
octal number. If you have a
printer output (e : a Teletype
or line printer) then you
should write the symbol on
the key next to each code
after the code is printed. If
you only have a display
output, then you should note
the code on paper along with
the key symbol. After you
have completed this bit of
research, your keyboard is

now thoroughly documented
so that its input codes can be
interpreted by programs.

133

Wait For Interrupt
("Flag" = 0)

7
Read Key Input

Port

NI
Convert Key Code
to Binary and Octal

Character Strings

7
Display or Type

the Strings

Acknowledge
The Key (send pulse)

r---
Fig. 6. Keyboard Test Program Flow Chart.

A QUICK Test of Keyboards

This indicator circuit can be used to advantage when
analyzing keyboards using techniques described in BYTE #1,
"Deciphering the Mystery Keyboard," page 62.

by
Don R. Walters
3505 Edge wood Dr.
Ann Arbor MI 48104

After completing the
assembly of a keyboard late
one night, I wanted to check
the keyboard out for proper
operation. So I picked up my
VOM and started looking at
the voltage levels on the
output pins of the keyboard,
since I do not have a CRT
terminal or any other ASCII
device available. Well, being a

software type, I kinda felt a

little frustrated since I am
generally used to being able

to see all the bits of a bit

pattern at the same time. The
solution was very simple,
inexpensive, and quickly
allowed the bit pattern on the
keyboard output pins to be
viewed as a bit pattern. Fig. 1

shows the system used. The
LEDs are lit or unlit
depending on the key pressed
and held. The pattern
produced by the LEDs will
display the bits of the
character generated by the
key pressed on the keyboard.
Keyboards which generate

Fig. 1. Examining Keyboard Outputs with LED Indicators. A
TTL- compatible output can drive the typical LED with about 10
milliamperes in an active low state.

KP

GNO

KEYBOARD BO
AND

ENCODER BI

B2

83

B4

85

B6

5V

134

47%

rLED 3308

)f LED 3308

"LED 3308

LED

'LEO

3308

3308

'LED 3308

'LED 411
140

3308

ASCII, EBIDIC, or whatever
could be checked out quickly
with this system.

Example

A keyboard which
generates ASCII coded
characters has the "A" key
pressed and held. The LED
bit pattern would look like
this:

0-LED on, logic level high
-LED off, logic level low

0 SUU IMO ASCII character
code for "A"

bit 0 123 456
1 000 001

It should be pointed out
that this test method will
work without modification
with diode encoded
keyboards such as Southwest
Technical Products KBD -2
keyboard (which is the
keyboard I assembled and
tested with the above
method). However, some
keyboards may generate an

inverted code which
shouldn't be a problem. Some
keyboards (surplus and
perhaps, new) with more
sophisticated debouncing
techniques may not work
with this test method without
some additional components.
For example, some keyboards
have a bus -oriented tri -state
MOS output without
sufficient drive to light the
diode lamps; you would need
a buffer gate in this case, as

well as an output data strobe.
Other keyboards require an

active "read" operation in
which a pulse is supplied to
reset flip flops acknowledging
CPU acceptance of data.

Keyboard Modification

George Macomber
1422 -18th Ave
Seattle WA 98122

I read your article in the September 1975
BYTE on surplus keyboards with interest. I

have made some simple modifications to
produce lower case codes on RTL and DTL
keyboards. I have a Southwest Technical
Products keyboard which I have modified.
have also modified a Sanders 720 owned by
a friend.

Control Key: On keyboards with RTL or
DTL outputs (Sanders 720), simply ground-
ing the most significant bit (MSB) converts
the upper case letters to the corresponding
control codes. "M" becomes "carriage
return" and "J" becomes "line feed," etc.
Most keyboards have some control codes,
but this simple modification gives all 32
possible codes 0000000-0011111.

As an example, on a Sanders 720, the
"repeat key" is wired to terminal 8 (yellow
wire), which is the flag output (see "Deci-
phering Mystery Keyboards," September
1975 BYTE). The repeat key simply grounds
the flag output. Moving the wire to terminal
15 converts the repeat key to a control key.

Lower Case: A somewhat more com-
plicated modification which works on both

MSB
IN
BIT NO.6

CONTROL
KEY S°

SHIFT
KEY

IN

+5

IK

I _

MSB
OUT

BIT NO.6

1/4 7432

BIT NO.5

135

OUT
BIT NO.5

the Sanders 720 and the Southwest Tech-
nical Products keyboards allows the produc-
tion of lower case letter codes
1100000-1111111.

In order to get lower case codes from a

keyboard which produces only upper case, it
is necessary to make the fifth bit high. The
code for "A" 1000001 becomes "a"
1100001, and "L" 1011011 becomes
" [" 1111011. The circuit shown adds
lower case and control to any RTL or DTL
output keyboard.

The control key has already been men-
tioned and is not required if the keyboard
already has one (Southwest Technical Pro-
ducts). Both a shift key and a toggle switch
are shown. You will probably want both.
When the toggle or key switch is closed, the
keyboard behaves as it did before modifica-
tion. When both are open, the keyboard
generates lower case, but the numbers and
other shifted keys (i.e., 1 -+ !) are un-
affected. A convenient key to use on the
Sanders is one of the shift keys, leaving the
other shift key for numbers and some other
symbols (i.e., [, \ , J, _)

What happens when both shift keys are
pressed? Shift' has no effect on the numbers
since bit no. 6 is 0, which forces the upper
case or shift' function. But the old shift
changes the letter codes, either by forcing
the fourth bit to 0, or by inverting the
fourth bit (Sanders). Inverting the fourth bit
allows the generation of some additional
codes ([, \ ,), _), and their equivalent
lower case ([, } , gz, DEL) and control
codes. These will not be available if your
keyboard forces the fourth bit, unless it has
separate keys for these codes.

Serialize Those Bits From

Your Mystery Keyboard

Dr George L Haller
1500 Galleon Dr
Naples FL 33940

Figure 1: Parallel ASCII to Serial ASCII Converter. The output of an ASCII
keyboard can be converted from parallel to asynchronous serial format using
a UA RT and two 555 timers. The result can be used to drive the 20 mA cur-
rent loop of the Teletype print mechanism.

RI '5 OSCILLATOR
I0K

R2
38K

4
7

R3 ICI
2.5K 555

CI I

KOPOLY

8

C2 .IµF

O

2 11

-i_c4 T.IµF
8 ¡

3
IC2
555 2

PULSE
STRETCHER

GROUND

ACK

POWER

FLAG

D6

05

04

03

D2

DI

DO

o

SANDERS
KEYBOARD
TERMINALS

5V

IC3a
7406
t>02 23

7406
POWER-
PIN 14 +5V
PIN 7GND

TRANSMITTER
CLOCK

SERIAL
OUTPUT

32 D6

D5 31

D4 30

D3 29

02 28

DI 27

DO 26

IC4
AY-5-1013
UART

5V

C7 .IµF
IC3f /77 TTY-

RS HI

TTY-
25 V12 LO

20mA
CURRENT LOOP
DRIVE

5V

3,21

C6
.IµF

'Li- C5
.1µF

-12V

NOTE:
MOST UART PINS ARE
'NO CONNECTION'

136

Now that you have deciphered your
mystery keyboard, (page 62, September
1975 BYTE) and have determined which
terminals are for the power supply, data bits,
and flag pulse, what are you going to do
with it? Well, one good use is to make it part
of a Teletype style terminal. The Teletype
models 33KSR or ASR, which are complete
with printer and mechanical keyboard, are

still quite expensive, usually over $1000
new; but the model 33RO, which consists of
the printer only, can be bought for less than
one half of that price. Now, mate the model
33RO Teletype with your electronic key-
board and you have the equivalent of the
33KSR for your computer terminal. The
ASR is the same with the addition of paper
tape punch and reader. The computer ter-
minal is usually specified as a full duplex
terminal which merely means that while
both the printer and the keyboard operate
with serial data, they are not connected
together except through the computer. The
following is a description of a small adapter
which will convert your electronic keyboard
from a parallel to a serial output device
which will then be the keyboard half of your
full duplex terminal. The cost of the parts
for this adapter, exclusive of power supply,
is less than $10.

The main component of this adapter is,

of course, the UART which has been used

for several years in communication circuits
for series to parallel and parallel to series

conversion. An excellent explanation of the
UART was given in the very first issue of
BYTE. (Don Lancaster's "Serial Interface,"
page 22, September 1975 BYTE.) In order
to use the UART, we write in 8 bits of
parallel data whenever a key is struck. The
key pressed pulse sent to the UART must be

negative going and have the correct width to
drive the UART strobe. A clock frequency

of 1760 Hz must be applied in order to get a

110 baud data rate out of the UART. The
output will produce a high level mark and a

low level space. Note that we are only using
one half of the UART. The adapter shown
here was made for the Sanders keyboard,
but it should be applicable to any keyboard
if considerations are made to insure that the
start pulse sent to the UART is negative
going, and data is in true form (logical 1 is a

high level). Looking at figure 1, we find that
the power is applied to UART pins 1, 2, and
3. The power requirement is about 200 mA
at 5 volts (pin 1) and 10 mA at -12 volts
(pin 2). The data bits are wired directly from
the keyboard to the UART as shown.
Terminal 6, the acknowledge function to the
keyboard, is grounded. Terminal 8 of the
keyboard is the key pressed flag. In the
Sanders keyboard, this flag is a negative
going pulse which is too short to operate the
UART directly. This pulse is first stretched
in a 555 timer circuit (IC2). This particular
stretcher requires a negative input. After
stretching, it is reinverted in a section of the
7406 and applied to the UART. The clock
circuit is also a 555 (IC1). The output
frequency at pin 3 of IC1 should be adjusted
to 1760 Hz. This can be determined by using
a frequency counter or by adjusting the
potentiometer until good copy is obtained
while the keyboard and adapter are con-

nected directly to the 33RD. The frequency
should be held to an accuracy of about 1 %,
but this is no problem with a good poly-
styrene condenser shown as 0.01 µF. Most
of the other terminals on the transmission
side of the UART should be a high level
input, which means that they can be left
unconnected, since they have internal pull
ups. The exception is terminal 21 which is

grounded. The serial output is connected
through the inverter with an external pull up
resistor which provides the loop with a mark
current of 20 mA and a space current of
zero.

Another slight modification of the
Sanders keyboard will make it more useful.
As received, the keyboard has no "line feed"
key. It is a simple matter to convert the TAB
key to an LF key. We must change the code
for this key from an 013 to an 012 octal,
which means we must change the zero bit
from a 1 to a O. Find the terminal at about
the center of the rear of the diode matrix
labeled "VT ". A yellow wire connects this
terminal to the TAB key. On top of the
matrix board this terminal is connected to a

single diode. Either end of this diode should
be disconnected. This is the zero bit diode.
There are two other diodes still connected
under the board which will leave the code
012 octal.

\ \\ " '''''''50:5--; ZZ riiiiii sàrïfÿ!tL '.^^-`^`' z = ¡= =`. ::: +-: ::_:s-yÿ,:9 -o 'i'f .., i:TO a ii . a iiiii ï///I 11 " //%%% '/ '`\`\
,,,,,,,,,,,,_-.00.,-00,010.- %%%%%%' i%%%%%II1\\© «««<1 i)»í \ s\\ /íi

,::... .-.-.-.-.-. .-. v:.. - .o, ;,...............:.. :fii.... iii//I11 `' ///// I I 11 % \\\\
, ..#4, 1`\

137

Build a Television Display

C W Gantt Jr
6 Fieldpoint Rd
Aurora IL 60538

As a small system expands and becomes
more sophisticated, the limiting factor is

often the speed of input and output (IO). In
addition to being noisy, mechanical, and
paper consuming, the slow clacking of a

TTY may account for a large percentage of
system time. Among the alternatives, the
display of characters on a standard TV set is

among the simplest and most economical
methods.

This TV display (TVD) is designed to
take data from 512 bytes of memory and
convert it into a video signal with 16 lines of
32 characters. This can be used to feed a

black and white or color TV. The data in the
TVD memory is in a six bit ASCII subset
and is updated by the CPU to create the
desired display. The processor addresses the
TVD memory just as it does any other
portion of memory and can actually execute
instructions from the TVD memory if so

programmed. Of course, some provisions

FIRST LINE, SECOND FRAME

FIRST LINE,
FIRST FRAME--"

HORIZONTAL -
RETRACE

VERTICAL
RE TRACE

VERTICAL
SYNC
STARTS SIMPLIFIED INTERLACED RASTER SCAN

ORIZON TAL
SYNC
STARTS

HORIZONTAL
SYNC
STARTS

Figure 1: This shows how the electron beam is moved during an interlaced
scan in a television monitor. The dashed lines are quick retrace motions which
are normally invisible. The solid lines are periods during which the display
presents video information controlling brightness on the tube face.

138

must be made to prevent the CPU and TVD
from simultaneously accessing the TVD
memory (more about this below).

As designed, the TVD is strictly a display
device with the central processor of your
system doing all housekeeping (entering
characters, etc). This approach simplifies the
hardware at the expense of extra software,
but also allows the user to take advantage of
the flexibility offered by software data
manipulation and formatting.

At present one TVD is up and running in
my system, but the memory and central
processor interfaces are incomplete. The
remainder of this article therefore empha-
sizes the TVD design and only offers some
basic ideas on interfacing to processors.
Although simple items such as the power
supply and oscillators have been omitted,
the information furnished should be suffi-
cient for the more experienced readers to
assemble a working version. The straight
forward TVD design allows easy modifica-
tion to meet individual system requirements.

Television Raster Scanning

Before going too deeply into operation of
the TVD, a review of the basic television
scanning system will clarify some terms with
which pure digital designers may not be
familiar.

A television picture is formed by scanning
an electron beam across the face of the
picture tube. A TV line is one sweep of the
electron beam from the left of the picture
tube to the right (as viewed from the front
of the set) and is initiated by the horizontal
sync (see figure 1). The horizontal sync
pulse causes termination of a line, horizontal
retrace of the electron beam back to the left
side of the screen, and the start of a new
line. During the time of retrace the beam is

blanked so that the retrace will not be seen.
The time allotted for each complete line
(including retrace) is 63.5 microseconds. Of
this about 16% is taken by retrace, leaving
53.5 As of usable line. Video information in
the form of a voltage fed to the picture tube

011111t:OEMEI
E SWIM t _.0912345671M = sEart
`Illn*'4- _4111123436789= sE=?? CHI.. .

11,1131Z.0 .AH 23456789 sEatn-_'.
.=_ I "WM&EE]*f #0I23436789 = s Earn

INNBCOEFIDEIJKLINIOOMPRS ' #IM&' 6" _ '0123456789 s,
1111.10WE

4

4 4

controls the brightness of the beam as it is

swept across the screen.
To trace out a frame, the electron beam is

slowly deflected from the top of the screen
to the bottom as it rapidly sweeps horizontal
lines. This vertical sweep is allotted 16.67
milliseconds (60 Hz) so there are 2621/2 lines
in one frame. In a manner similar to the
horizontal sync, the vertical sync causes the
beam to be returned to the top of the screen
to start a new frame. The beam is blanked
during vertical retrace which takes about
1250µs. This leaves 242 usable lines in each
frame.

A complete picture is formed by two
consecutive frames that are interlaced with
each other. Interlacing means that the hori-
zontal lines of one frame fit in between the
horizontal lines of the other frame. The
result is 30 complete pictures every second
of about 484 usable (525 total) lines each.
Because of the interlacing, however, the
screen is illuminated at a 60 Hz rate. This
eliminates an objectionable "flicker" that
would be seen if the screen were only
scanned at a 30 Hz rate.

The TV signal received at the antenna
terminals contains the information needed
to generate the vertical and horizontal sync,
blanking, and video. The TVD simulates a

TV signal by supplying a composite wave
form containing the same information nor-
mally present except sound. The full

schematic of this TVD design (except
memory) is shown in figure 2.

Character Generation

The scanning nature of the TV raster
requires that the video (or brightness) infor-
mation be sent in serial form to control the
electron beam as it sweeps lines across the
screen. Suppose, for example, that the
character "H" is to be displayed as shown in
figure 3. The first line can be represented as

10001, ones signifying light spots (dots) and
zeros signifying dark spots. The remaining
six lines can similarly be represented as a

series of dots and dark spaces. When the
seven lines are displayed one above the
other, the character "H" is seen.

The tedious job of deciding where to put
the dots (ones versus zeros) to generate a

given character is done by the 2513 read
only memory, IC14. It has been mask
programmed at the factory with the bit
patterns required for 64 separate five by
seven dot matrix characters. The 2513 sup-
plies five bits of parallel output data repre-
senting one line of a given character. It
requires the six bit ASCII subset code of the
character and the three bit line number as

inputs. The five bit parallel output of the
2513 is converted to serial data by the
74165 shift register, IC15. To produce one
line of video, five bits are required for each
character in the line, plus spacing bits. Note

139

Photo 1: This is a test
display pattern generated
by connecting the low
order outputs of the char-
acter and line counters to
the character generator
ROM's 6 input bits. The
result presents every com-
bination of the character
set, so every character pat-
tern is visible on the
screen.

Figure 2: Schematic Diagram of the TV Display. This diagram includes details of the time base generation circuitry and control

logic for television display generation. It omits detailed wiring of the memory circuits shown conceptually in figure 4.

or ?
m z

m V W x
0 limo x

O ; U 1
o Z
X

O <
coo) _

O - O D

co

Z

N

ZnUnn < O
O n Of W z;

O
O
N

C

1

-4
Uw

r N m< <Z
r
O

1
4+

W

O
r

mo< 7C

W

tn
141 1

w

X

1 r
-una Ó

r U
Z<U ÿ N 0

O i,1

mC
-10
00
CC
1

rn
o

02,1011.11,64,14-. nn O

a a a a a A a go,g2ee,`3 W N

f
O 1 a ä U a m a t a<

c
-N W a U

A U m J a

N

N

N -
U1O
(n A

u Ia
0 Z

U7 x
10

r

X

00
O

rñ
z o
o

A

N

ID O

CO a
O O

0 r r sx x a
0 J

- n
m o N

W

ó
o

to

a

A

O

ñ

Uo

a
ZI

N
a CO, J

W

no
OZ c> zA
1D
m0
A1

A

a a=ó-
a JaDN

140

r

co TA 4-4 al
C a _ aC0
9 a Ám mp

-0 U p_ CO - .a n O 10-0-
W N 1 0 _

CO
C

u
o
z
m

O

J

U D
/1 a U m C

a s NW

2U'A W

co

CI

J
A - - N

<

x

I

1.

that the TVD generates two identical inter-
laced frames to make a complete picture.
The result is that each character is actually
14 lines high.

Sync Generator

The MM5320 sync generator chip, IC13,
uses a single 2.0 MHz input to produce all
the sync and blanking signals needed for a

525 line interlaced raster. The same logic
could be wired using TTL but would require
considerably more hardware and probably
cost just as much. (The 5320 runs $4.95 ppd
from NEXUS Trading Co, Box 3357, San
Leandro CA 94578.) The only disadvantage
found thus far with the 5320 is that it
prefers a square wave 2 MHz source. To this
end the 100 nanoseconds pulse from the
7490 "D" output is squared using two 7400
sections of IC10 as a oneshot.

Line Generation

Horizontal drive (coincident with hori-
zontal sync) from the 5320 triggers a 74121
oneshot, IC1, to delay the start of each line
and establish the left hand margin on the
screen. The output of the oneshot serves

three purposes:

1. Triggers the 74192 row counter, IC2.
2. Resets the 74193 character counters,

IC11 and IC12.
3. Inhibits the dot counter, IC9, until the

start of the line.

When the line oneshot output pulse ends,
the dot counter starts counting at 5 MHz. It
resets itself every seventh count to allow for
the five dots of the character plus a two dot
space between characters. When the dot
counter resets, it also loads the next charac-
ter into the 74165 shift register, IC15. (The
very first character of each line is all zeros
since the 74165 is not loaded until the dot
counter resets the first time.) The 74165
shifts out the tvo dot space and the five dot
character at a 5 MHz rate. As each character
is loaded, the 74193 character counter incre-
ments by one to change the address for the
RAM to the next character. When the 32nd
load pulse occurs, the 5 MHz input to the
dot counter is inhibited using the "B"
output of the second 74193 character
counter. The 74165 continues to shift out
the 32nd (last) character and then shifts out
a steady zero. When the character counters
are reset at the start of the next line, the
process repeats itself.

Line Counter

The 74192, IC2, counts each video line dis-
played. It counts to 10 for the seven lines of
character information plus a three line space.

LINE I

(ROW)

2

3

4

5

6

7

BIT (DOT)
5 4 3 2

5 DOT WIDE BY 7 DOT
HIGH CHARACTER

10001

10001

10001

11111

10001

10001

Figure 3: An example of a
10001 dot matrix

erated by
display.

pattern gen-
the television

The "A ", "B ", and "C" outputs control the
row inputs to the 2513 character generator
chip. The first video line is all zeros since the
row input to the 2513 is zero. Lines 9 and
10 are blanked using output "D" of the
74192, resulting in a total of three lines
blanked. At the end of each complete line of
characters, the 74193 line counter, IC3,
increments by one until, at the end of the
16th line, a carry pulse is produced. This
carry pulse resets the 7490, IC5, and signi-
fies the end of a page. Output "A" of the
7490 is used to inhibit the 7492 dot counter
and prevent the first line from being
repeated at the bottom of the page.

Page Control

The 7490, IC5, stays reset until the top
of the next page. Output "A" can be used to
tell the memory control circuits that the
TVD is not using the memory so that any
required updates may be made by the CPU.
Output "A" also inhibits the "B Clock"
input via the 7410. The "D" output inhibits
the line oneshot.

When a vertical drive pulse (coincident
with vertical sync) triggers the 74121 page
oneshot, IC6, the TV set syncs to the top of
the next frame. The page oneshot delays the
start of the first line to establish the top
margin. At the end of the oneshot's output,
IC5, bit "A" is clocked to a one. This tells
the memory control that the TVD needs to
resume control of the memory address and
also enables the IC5 "B Clock" input via the
7410, IC7. The "B" section of the IC5 then
proceeds to count color burst gate pulses to
give the memory time to complete any
access already in progress. The color burst
gate was used only because it was convenient
and occurs at the same rate as the horizontal
drive - the horizontal drive could be used at
the expense of a buffer since the 5320 can

141

DATA
FROM
RAM

6 OR 8 LINE

ADDRESS BUS

I
9 LINES

TV
DISPLAY

ADDRESS
TO

RAM
9 LINE

LOAD

AVAILABLE

READ/ WRITE
SELECT

1512X6 OR 8)
RAM

MEM
CTL

TRI -STATE
BUFFER

8 LINES

DATA BUS

SELECT
DECODE

READ / WRITE

MEMORY CPU
READY

CONTROL

SYSTEM
INTERFACES

Figure 4: System Diagram. This figure details how the TV display fits into a

central processor's memory address space. The low order 9 lines of address go
directly to the line and character counters of the TVD; the memory array is
addressed by the outputs of the counters, which are connected logically to
the address bus when the load line demands central processor access. The high
order bits of the processor's address are decoded separately and are used to
enable processor access if the TV display portion of address space is
referenced.

only drive one TTL load per output. When
output "C" of the IC5 goes high, the line
counters are reset. When output "D" goes
high the "B clock" is inhibited via IC7b, and
the line oneshot is enabled. This allows the
first line to start.

Composite Video Generation

The video and sync are independently
adjusted and then added to produce com-
posite video. This can be piped directly into
a set (be sure not to touch a hot chassis!) or
used to modulate a low power RF source. A
signal generator works fine for tests. (See

"Television Interface" by Don Lancaster,
page 20, October 1975 BYTE, for a

thorough discussion of the various tricks to
improve the interface.)

Memory Interface

Figure 4 illustrates how the TVD fits into
a larger system. It is intended that the
address outputs of the 74193 character and
line counters (IC3 and IC1 l) be hard wired
to the address lines of a 512 or 1 K by 6
static random access memory using 2102s or
similar parts. The data outputs of low order
6 bits of this memory are the ASCII charac-
ter select inputs to the 2513 character
generator, IC14, and can be gated back to
your system's data bus if you want the CPU
to be able to read from the RAM. (Of
course, a 512 by 8 memory would be needed
if the CPU is to be able to use the RAM for
other tasks.) The data inputs of the RAM tie

142

to the data bus to allow the CPU to write
into the RAM.

To avoid breaking up the picture on the
display during access, the memory control
logic must use the "A" output of IC5 to tell
when the CPU can use the RAM and when it
must signal a busy to the CPU at the start of
a page. There is more than ample time
between the "A" output and the line
counter reset to finish any access in progress.
To use this feature, the memory busy line
must be wired to your processor's "memory
ready" line (possibly through an inverter if
the logic of your particular computer re-
quires it). This method will work well for
any processor, like the 8008 or 8080, which
allows unlimited "memory busy" delays.
However, for dynamic processors such as the
6800, the maximum processor delay time of
about 5 As dictates use of an alternative
approach. One simple approach is to ignore
the effect of memory access on the display.
The result will be a short glitch in the
display corresponding to each computer
access. The nature of the glitch will be a

resetting of the line and character counters
to a new location, causing a scrambling of
the display for the remainder of the current
frame. A second approach is to wire the
memory ready line into a single bit input
port which can be tested as a status flag: If
the line indicates a retrace, then the memory
access software for the display will allow an

update to occur.
The CPU addresses the RAM through the

character and line counters (IC3 and IC11)
by tying their data inputs to the system
address bus and using the load control of pin
11. The 74193s can also be used as tem-
porary storage for the address in a system
with a common address and data bus. Note
that the TVD does not interfere with CPU
access to the remainder of the system's
memory at any time and only delays the
CPU by one of the techniques discussed
above if it tries to access the TVD RAM
while a page is being displayed. The CPU has
the entire vertical retrace to make updates at
once every 16.67 milliseconds.

Lacking a memory for my initial testing,
the 2513 data inputs were temporarily tied
to the 74193 address outputs (2513 PIN 17
to character counter PIN 3, etc) to display
the complete 2513 repertoire every two lines
as in photo 1. The 74193 load lines must
also be connected to a "one."

Modifications and Adjustments

1. There is one known bug so far and no
doubt more will show up when the TVD is

integrated into a system. The 7490 can, on
power up, hang in state with both the "C"

and "D" outputs a one. This state con-
tinuously resets the 74192 row counter and
is nonrecoverable. A cure would be to
power -on -reset the 7490 "R9" which does
produce a recoverable state.

2. As mentioned before, the 5320 likes a

square wave input, so check the 7400
imitation of IC10a and b oneshot, or better
yet use a 74121.

3. Using a separate oscillator for charac-
ter generation (5 MHz) would allow adjust-
able character width, but watch out for any
interaction with the 2 MHz - it shows up as

a torn, garbled display, as will most sync or
jitter problems. A crystal is best. (It is

possible to use 12 MHz and a 7492 in place
of IC8 to get 6 MHz for the characters and

2 MHz for the 5320.)
4. The prototype is wire wrapped on a

41/2 by 6 inch (11.43 by 15.24 cm) vector
board (see photo 2) with room to spare,

although a slightly larger board would
accommodate more interface goofs. Fulp's
corollary says things like this always get
bigger. Also, the 44 pin connector planned
for the prototype is not large enough count-
ing the additional RAM address and data
lines.

5. The modulation levels for the radio
frequency modulator are fairly critical and
misadjustment of sync or video levels will
cause a torn display. Try setting video level
control for 1/2 of maximum and sync for
3/4 of maximum.

6. Harmonics from the 10 MHz tend to
leak into the TV so pick a higher channel (5

or 6) if herringbone is noticeable on your
display.

7. There are many causes for ghosting
and smeared characters including VSWR
(voltage standing wave ratio) on the cable to
the TV, misadjusted fine tuning, or a narrow
band width TV.

8. Character and line spacing can be
altered by modifying the dot and row
counters, respectively, to reset at different
counts. Be careful though, or the display will
not fit on the screen.

9. The unused bits C and D of the second
74193 character counter, IC12, may be used
for the 512 and 1024 bits if a two or four
page RAM is desired. Some method of
controlling these bits during display time is

needed to select the page.

10. A light pen could strobe the present
RAM address into a latch to be read by the
CPU via the data bus.

11. The 5320 provides color sync gating
so how about color characters? The extra 2
bits available .with an 8 bit wide RAM can
provide software control of many goodies
(like brightness, color, blinking, underlining,
black on white, etc).

The TVD as described can be used to
display one or more pages of ASCII charac-
ters and opens up many possibilities of
modernizing the IO portion of a small
system. My home brew computer will be a

complete microcomputer chip based system,
designed with the TVD as the main man
machine interface.

143

Photo 2: Prototype Cir-
cuit. The large socket is
for the character genera-
tor. Test points are the 6
small rectangular objects
along the left hand side of
the board. A 7812 regula-
tor in a plastic package is
to the right of the charac-
ter generator, and is used
to provide the -12 V bias
for the ROM. A zener
diode with a dropping re-
sistor is used to create the
-5 V bias required for the
ROM.

VIDEO

BLANKING

V SYNC

H SYNC

2

2

The "Ignorance Is Bliss"

Television Drive Circuit

VIDEO
'MIXER'

ICI

IC2

I FROM
I VIDEO
I DETECTOR

620
IOff. AUDIO

100 CABLE '` F I

VIDEO
DRIVER

TO AGC

CONTRAST

IK 150

I SYNC

GND- BLACK
3.5V- WHITE

100µF i
25V

+12 V

ZENITH CHASSIS 12F812X

Ken Barbier
PO Box 1042
Socorro NM 87801

I had not yet heard of BYTE magazine,
or hams building such hardware, when I

built my CRT terminal (a computerhead's
term for "TV typewriter ") in the fall of
1975. I didn't even own a TV set! Two
situations resulted: I had to buy a new all
solid state TV, and I didn't have any idea
how to interface with it. I knew approxi-
mately what it took to create horizontal and
vertical sync, but had no idea whether levels,
pulse widths, and frequencies would be

noncritical. I was delighted, therefore, when
my sync generator worked just fine the first
time I patched its output across the video
driver base resistor using the circuit as shown
in figure 1. My big fat TTL level pulses
swamp the AGC circuity so effectively that
normal signals and noise from the TV IF just
disappeared and I had nothing to switch off!

Not having any idea how to mix in my
video (character generator output) with the
sync, I just hooked up a 2 K pot where the
620 ohm is shown, and started reducing
video until it stopped interfering with the

144

Figure 1: The "Ignorance
Is Bliss" Television Drive
Circuit. The components
to the left of the dashed
line were added as part of
the interface. The corn -
ponents to the right of the
dashed line are part of the
Zenith 12FB12X chassis
which was used for the
television display.

sync, and there I was at 620 ohms. All was
fine, until I erased my character memory
and started typing in one character at a time.
Contrast went all to pot! I had provided no
DC restoration. And I never did. At least not
in the TV set circuitry.

My terminal design produces 24 lines of
64 characters each, with a total of 270 scan

lines per frame. Vertical sync is the 10 scan
lines that would have been character line 26.
To eliminate the need for the type of DC
restoration as detailed in "Television Inter-
face" (page 20, BYTE, October 1975), I

generated a black level blanking signal cover-
ing what would have been character lines 25
thru 27. This signal enters the blanking gate,
IC1, at pin 2 in figure 1. Now, when I turn
on my system and erase the memory, my TV
field shows a nice white area with a black
border top and bottom. My character gen-
erator output produces black on white
characters which I find preferable to the
usual white on black.

Simply by turning off the logic power
can be instantly flooded with the inanities
emanating from the vast TV wasteland. With
this design, I have no need to pull plugs or
throw switches. Sometimes ignorance can be

bliss.

Build a TV Readout Device

for Your Microprocessor

Dr Robert Suding
Research Director, The Digital Group Inc
PO Box 6528
Denver CO 80206

A television set readout for your micro-
processor has many attractive advantages.
The TV readout is vastly faster, quieter, and
even lighter, than the usual Teletype based
design. Since it is an electronic rather than
mechanical device, less service and main-
tenance are required. Much more data may
be contained on a television screen than on
front panel readouts.

The precise design of the television
driving circuitry (interface) can take on a

considerable number of forms. Some con-
siderations are:

Number of horizontal characters.
Number of vertical characters.
Upper case only, or upper and lower
case text.
Character generation format:

row or column scan.
5 x 7 dot matrix, 7 x 9 dot matrix
or?

Alphanumeric only, or alphanumeric
and graphic formats?
Converted home TV set or commercial
TV monitor?
Separate TV buffer memory or TV
buffer shared with main memory?
Shift registers for memory, or pro-
grammable RAM?
Multiple video pages or single display?
Interlaced scan or non interlaced?
Hardware or software cursor, or no
cursor?

Rather extensive list, isn't it? Understand-
ably, a large number of designs have ap-
peared recently, and many more will be

seen. Every design has some advantages,
some disadvantages.

The 5 k 7 dot television display circuit in

145

the June 1976 BYTE [page 16] is an
example of a number of the above design
alternatives. The 5 x 7 dot 2513 is a rugged,
low cost character generator. The MM5320
is a fairly easy way to generate an interlaced
signal. Programmable random access mem-
ory provides a random and faster screen
update capability compared to the shift
register "TV typewriters" of a few years ago.

Major Features

The television display design shown in
this article has several major departures from
previously published designs. The June 1976
BYTE article on "A Systems Approach to a

Personal Microprocessor" [page 32] stresses
the need to keep various system elements
independent in order to avoid unnecessary
obsolescence. By using a simple parallel
interface and making refresh memory part of
the design, this television display achieves
independence from a particular computer
and bus design. This same display is also
useful in such items as terminals, TV type-
writers, and large computers.

A Motorola MCM6571 L character gen-
erator is used as the heart of the Digital
Group as well as several other video display
systems. This character generator provides a

7 x 9 dot matrix character with automatic
character shift for lower case characters such
as g,j,y, etc, which extend below the base

line, making an effective 7 x 13 dot matrix.
Thirty -two characters per line by 16 lines

give a total of 512 characters on the screen.
Endless arguments can result when screen
formats arise. The 32 x 16 format was
chosen to achieve the clearest and simplest
(hence lowest cost) system. The more char-
acters per line, the more television band-
width is required. This system requires a TV
monitor with better than 6 MHz bandwidth.
A system with 64 characters per line would
require a 12 MHz monitor, etc. Since the
system was designed to minimize costs, a

+5V 4 RI
6BK

CI
11 220pF

0 7 6

CLR B

IC23 b
74123 AI

12 V

+ 5V
4

H2
CLR

B
IC23a 0
74123

9

R2
6.8K

C2
220pF

3 115 14

A

,);

3

-MEMORY -

CONNECTOR
PINS

LSB
DO
pDI p D2

D3 p D4
D5

O

1

12
3RW

2102 (LSB)
DOUT

13
RW ADDRESS CE

O

14 15 16 17 le 12 II 116 115114

DIN IC2 DOUT
12

2102 13
RW ADDRESS

4 15 16 17 18 12 I1 116115114

II
DIN 1C3 DOUT

12

2102 13 RW ADDRESS CE

14 15 16 17 18 12 11 116115114

11
D IN IC4 D OUT

12

2102 3
RW ADDRESS CE

13

4 IS 16 17 18 12 II 116115114

II DIN IC5 DOUT
12

3 2102 13
RW ADDRESS CE

4 15 I617 IB 12 II 116115114

3
RW ADDRESS CE

2

3

C4

12
I I DIN IC6 D OUT

2102 13

14IS1617 1e12II 116I1s 14

D6
D7

MSB
FROM OUTPUT
PORT OR
DATA BUS

3
4
5
6
11

12

7430
B

IC22

3
D IN

RW

1C7
2102 MSB)

ADDRESS

D OUT
13

5

12 C6

CE

4 S 6 7 8

C4 T 220pF

12 9 7 4

SEL 4Y 3Y 2Y IY
ENABLE

74157
4A3A2AIA 48 382818
!III 5 2 13 106 3

HOME

12

2 16 15114

9 7 4TI
4Y 3Y 2Y Y SEL
1C28 ENABLE
74157
4A3A2AIA 48 38 2818

14 II 5 2 13 10 6

D7

II"
4Y SEL
ENABLE

4A 48

IC8
741S7

14 13

O

AO
A

A2
A3
A

II 3 2 6 7

LOAO OA 08 OC OD
BO ICI6

v 74193
GIB

14

Ca

OWN AB C D

+5V

9

13 4
t1I 3 2 6 7

12 5
OWN

LOAD OAOBO OI

IC29 B'
uP 74193
CIR A B C D

13 4
n 3

12

1744 41,541:_41:019

+5V
Q

LOAD 0
DWN IC9
UP 74193
CLR B C O

114 IS I 10 9

+ 5V

AS Q A6 G A7
A8

-WRITE ADDRESS COUNTER- NEXTCH

Figure 1: Memory and write address counter logic for the TV readout design.
The inputs to this circuit are at the left, labelled DO to D7 corresponding to
the data lines of a typical latched output data port. The connections to fig-
ure 2 include DO and D7, memory outputs CO to C6, and video timing chain
address lines AO to A8.

146

+5 POWER SUPPLY PINS

Number Type +5V GND

Cl 2102 10 9
C2 2102 10 9
C3 2102 10 9
C4 2102 10 9
C5 2102 10 9
C6 2102 10 9
C7 2102 10 9
C8 74157 16 8
C9 74193 16 8
C10 74193 16 8
C11 7404 14 7
C12 74193 16 8
C13 7400 14 7
C14 7400 14 7
C15 74157 16 8
C16 74193 16 8
C17 74193 16 8
C18 7410 14 7
C19 7404 14 7
C20 7420 14 7
C21 74193 16 8
C22 7430 14 7
C23 74123 16 8
C24 74193 16 8
C25 7430 14 7
C26 7401 14 7
C27 74L00 14 7
C28 74157 16 8
C29 74193 16 8
C30 MCM6571L 2 13
C31 74165 16 8
C32 74193 16 8

Figure 2: Character generation, composite video output and video timing
chain logic for the TV readout design. The output of the TV readout is the
composite video signal which drives a monitor or modified standard television
set through a coaxial cable. The character generation logic consists of a read
only memory, 1C30, to translate character patterns into horizontal rows of
dots, and the shift register, 1C37, which sequences the bit by bit output of
the row of dots. The video timing chain is a series of counters driven by the
5.990 MHz crystal, which cycles through the memory section of figure 1 and
controls operation of the display.

NEXTCH

D
- CHARACTER GENERATION-

+12V +5V

t3 2
.CO 15 IC30

MCM
65711

OUT

l
ROw A

17 I I
N

A
IC31

B 74165

D

N N

uP

` CI 16 7 12 c>-----
C2 12 18 13 t7 C 6 14 'ZIS. ON

S

D

+5V

RIO
IK

R9 13K

IC37

`4
5 4 c4/...1.

4 20 5
13 1 F"'
211

RORI

FROM
ROW

122123¡24
5V

R2 R3

IC24
ADDRESS

COUNT

IS 2 I

IoOpF

Cs
D7

IC19a
7404

- COMPOSITE VIDEO +5y
OUTPUT-

A Note About Construction

The circuit shown in figures 1 and 2 is
complete, and can be constructed in any well
equipped home hardware laboratory using point to
point soldering, home brew printed circuits, Vector
wiring pencils, or wire wrap as an interconnection
technique.

For those who wish to take advantage of
construction using a circuit board and a complete
set of electronic parts, Dr Suding's TV readout and
the cassette interface described in his article on
page 46 of July BYTE are available in a combined
kit form for $130, postpaid in the USA. Contact
the Digital Group Inc, PO Box 6528, Denver CO
80206, for information on this product.

For home brewers, the only part which might
be difficult to find in surplus markets is the
Motorola MCM6517L character generator chip.
This package is available over the counter at many
major electronics trade distributors. If you are
unable to locate the MCM6517L from such a
source, the part can be purchased for $20 postpaid
in the USA from the Digital Group.

+5V

R6 470

XI
5.990MHz

RS 470

10

7400 7400
DOT CLOCK

7400

C>
AO

C> Al

A2

C>
A3

C>
A4

5

+5V
DOT LOAD

VERTICAL SYNC

TI
2N5129 OR
EOUIVALENT

VIDEO
OUT

+5V
n

POWER
CONDITIONING

+12V

(21

+ e,
11F

+SV +12V GND -12V

01

-5v

ZI
5V
ZENER

OI

IµF

RII
IK

VERTICAL BLANK
HORIZ SYNC

HORIZ BLANK

II 14

OWN LOAD CLR

UP IC32 Bo
74193 CA

OC OD

13 4

12 5

6 7

+5V T +5V

111 114
LOAD CLR

OWN 1017
up 74193
04 OR OC OD

BO

CA

14

13 4

12 5

3 2 6 7

VIDEO CHARACTER
ADDR -

LOAD CLR
OWN IC21
up 74193

OA

3

ICI la
7404 I

I r>0c2
4
5

7420
3

®
3 13 12

7400 7404
1ICIIf 3_7400

IC 6
20a

11

5

7410 7400

4

+SV

©®o0

-VIDEO TIMING CHAIN -
+5V (READ CLOCK)

UP A C D B

IC24
OwN 74193 t
OA OB OC OD LOAD R

3 2 6 7 II)14

147

11 114

OWN LOAD C R

ICIO BO
5 UP 74193 CA

OA OB OC OD

23)
IC30

RI OW AS
RO

INPUTS

ICIID
3 t>04 II

10
7404 9
ICIle

II K)

7404
ICIId

9 >08
7404

7410
8

3 2 6 7

1 I I la
13 4 LOAD CLR "" IC12
12 5 Up 74193

OA

3 VIDEO LINE
ADDRESS

1 1

v

13

IC19d
7404
91))08

3 4 3
IC19D 7404 IC 8

5 6 4 25

IC19c 5 7430
7404

+5V 6

4
II
12

7410

IC19f
13N,2

7404
12 II 10

IC I9e
7404

AS
A6 Q A7
A8 á

home black and white television set can be

easily modified [page 20, October 1975
BYTE] and will satisfactorily meet the
6 MHz requirement. Sixteen rows of char-
acters allow use of a non -interlaced sync
system for lower cost. My own preferred TV
display formats are either a 32 x 16 char-
acter system or the 80 x 24 character for-
mat. However, the 80 horizontal characters
will require an expensive monitor to achieve
the 15 MHz TV bandwidth and critical
corner focus requirements.

The character memory can be of several

formats, but this system uses a self con-
tained programmable memory buffer which
is loaded sequentially from the driving 8 bit
output port of the microprocessor, or an

ASCII keyboard. Some systems permit data
readback from the TV readout system, but a

greater cost is involved, and a mirror image

buffer in the computer's programmable
memory will produce the same result. Use of
programmable random access memory in the
TV readout permits very fast loadings, as

fast as the system can output data. The
typical update time for a total of 512
characters is under 5 ms. How far under
5 ms depends on the driving software and

microprocessor used.
Cursors and cursor control may be per-

formed in hardware or software. The ap-

proach of this system is to use software for
the most part, which results in lower cost
hardware. Cursor inserting subroutines are

then used as needed.
So much for system design alternatives.

TV Readout Description

This TV readout consists of five inter-
acting sections. They are memory, character
generation, composite video output, video
timing chain, and write address counter. The
memory section (figure 1) consists of seven

2102A -2 or faster 1 K memories. Only one
half of each memory is used, giving a

possible storage of 512 seven bit ASCII
characters. The microprocessor, keyboard,
or some attached circuit writes the char-
acters one by one into the 2102s, and then
the TV readout continuously displays these
characters until either more characters are
entered, or the circuit is turned off.

The character generation circuit (see

figure 2) consists of two integrated circuits,
the MCM6571L character generator, IC30,

and the 74165 shift register used to convert
from parallel to serial. The 6571 takes the
seven bit ASCII character coming from the
memories and outputs 7 dots making up a

character row for each of 13 potential rows
making up each character. The 74165 loads

TV ZTEP IEM:.'tbTWtTICt4

c< TI E ;11E+1, k 't µ ti ç 0 rN..:; ni ,<

" ' +-+-, - 0123456739 , = . .>7

1?(=tBCDÉF:HI.J1+ U°lf 1OPOPSTLY C

i _IF.: I mnopqrstuilwy-C ; ;..

11 EAT

all 7 dots into its internal memory, and then
outputs these dots one at a time for serial

transmission to a TV set. For more informa-
tion on TV character generators, I would
suggest reading an excellent article by Don
Lancaster in June 1974 Radio Electronics
[pages 48 -52], or the June 1976 BYTE
magazine article by C W Gantt [page 16] .

The video output section uses a 7401

open collector NAND gate and a driver
transistor to produce a low impedance com-
posite video signal. The output is around 3 V
peak to peak with about a 1 /2 V horizontal
and vertical sync and blanking pedestal.

The read clock (see figure 2) is the source
of master control for the various sections.
Starting from an initial frequency of
5.990 MHz, a countdown chain of three
74193s (ICs 32, 17, and 21) produce an 8µs
horizontal sync when gated by IC11 a,

IC20a, IC18b, IC13c and IC13d. A 41 µs
horizontal blanking circuit prevents loss of
characters at the edges of the screen, and is

produced by the gating action of IC14,
IC11c, ICllf and IC13a. The resultant hori-
zontal frequency is 15,598 Hz, somewhat
lower than the standard 15,750 Hz, but
usually only requires trimming horizontal
hold slightly, if at all.

The vertical countdown chain uses three
more 74193s (ICs 24, 10 and 12) to obtain a

final vertical frequency of 60 Hz, the same
frequency as the AC line to avoid hum roll
and wobble problems on low cost televi-
sions. IC19b, IC19c, IC19d and IC25 pro-
duce an 82012s vertical sync pulse, IC18a
and IC19e detect state 20 of IC10 and IC12,
counting lines 0 to 19 and giving four line
periods for vertical retrace. The inverter
IC19f produces a 3.5 ms vertical blanking

148

Photo 1: A test demon-
stration of Dr Suding's TV
readout, shown in schema-
tic form as figures 1 and 2.

The test pattern consists
of the four lines in the
center which cycle
through the possible bi-
nary combinations of
characters. The differences
in line width between the
top line and the other lines
are caused by non- linear-
ities in the monitor used
for this photograph.

pulse during states 16 to 19 of the counter
IC10 and IC12.

As if these operations weren't enough,
part of the video timing chain, counter IC24,
tells which of the 13 lines in a character is

being currently accessed. The counter IC32
keeps track of shifting and loads the 74165
when the row of 7 dots is available from the
6571. The 5.990 MHz signal then shifts out
8 dot periods (the 8th one is a horizontal
space between characters) before the next
dot load command occurs. All of these

timings are very critical during the design
phase; but since the circuit is digital, the
builder should have no problems, since no
adjustments are needed. The video timing
chain counters develop a 9 bit address that
controls which of 512 characters is currently
being presented to the 6571 for dot en-
coding. This is routed to memory through
74157 multiplexors IC15, IC28 and IC8
except during write clock time.

I thought you'd never ask about the write
clock. Well, it controls the entry of the

Figure 3:

Check Out Notes

The TV readout should be assembled according
to your preferences (see "A Note About Construc-
tion") using sockets for all integrated circuits.
These notes suggest a procedure for orderly testing
of the new TV readout.

1. Power supply. Start checkout after all wiring
has been completed, but before any integrated
circuits have been inserted into sockets. Measure
the resistance between ground and the other
voltage supply pins. A very low resistance indicates
a bad bypass capacitor, a solder bridge, or some
other form of short circuit between the supply
voltage and ground.

2. TTL integrated circuits. Insert all the in-
tegrated circuits of the TV readout except the
memories (2102s, IC1 to IC7) and the character
generator (MCM6517, 1C30). Measure the resis-
tance between the ground and the +5 V supply pin,
noting its value; reverse the ohmmeter leads and
remeasure. A shorted reading in either direction
indicates a bad integrated circuit, and nearly equal
readings in both directions indicates that at least
one integrated circuit has been plugged in in
reverse.

3. Initial power up. Temporarily ground the most
significant bit input pin (D7 in figure 1), and
connect the video output to a commercial TV
monitor, or a TV set which has been modified to
act as a monitor. Turn on the +5 V power. You
should see 32 white vertical columns on the screen.
(Refer to the "Diagnosis of Ailing Readouts ",
section 2, if this does not happen.) Turn off +5 V
power.

Connect up the +12 V and -12 V power sup-
plies, then turn on all power again. Verify the
proper voltages on the MCM6517L socket, 1C30:
Pin 1 should have -5 V, pin 2 should have +5 V and
pin 3 should have +12 V. Turn off power again.

4. Now plug in the MOS parts: The seven 2102
memory integrated circuits and the MCM6517
character generator read only memory. (The tem-
porary ground jumper for the D7 input, and the
video monitor output are still attached.) This time,
when power is turned on, you should see a random
display of 512 characters on the screen. The actual
character at each location is determined by the
chance power on initialization of each bit location,
and cannot be predicted in advance.

5. Testing: Complete testing is now possible
under computer control or by using a breadboard
input device. If you use microprocessor control,

22011

100µF

7413 SCHMITT TRIGGER
PIN 7 -GND
PIN 14 -+SV

TO D7 STROBE
INPUT

A test setup for manual verification of the
display. The Schmitt trigger integrated cir-
cuit, a 7413 NAND function, has an RC
feedback network to cause oscillations. This
logic oscillator is used to drive the strobe
input continuously, so that memory will be
filled with a constant character pattern if
that pattern's ASCII code is presented on
input pins DO to 06.

simply wire the inputs to the TV readout to an

8 bit output port, load the software of listing 1 (if
you have an 8080 or Z-80; write equivalent
programs for other processors if necessary), and
write some simple programs to generate known
data and load that data into the display.

If it is desired to test the TV display without a

microprocessor, the oscillator of figure 3 can be
used to drive the input strobe pin, D7. Then
temporarily tie all the other data pins to the +5 V
supply through a 1 k resistor. Verification of the
operation of the display can be obtained by
grounding bits DO through D6 of the input (the 1 k
pullup resistors protect the power supply). The
following table gives the characters which should
f ill the screen for each case:

Pinto Octal
Ground Character Code

DO ' 376
D1 } 375
D2 { 373
D3 vl 367
D4 o 357
D5 337 (underscore)
D6 T 277

149

characters from your external source into
the 2102 memory bank. Several alternatives
in character entry are possible, yet give the
user a very capable unit, particularly when
using a microprocessor, or even mini, midi,
or maxi processors.

A sequential entry system is utilized. A
home reset control signal (denoted " ") is de-

veloped by IC22 when it detects all of the 8

input lines high ("1 "). The write address
counter of IC16, IC29 and IC9 is then preset
so that the next character to be entered will
result in its being displayed as the top
leftmost character on the screen. The second

character will be viewed to the right of the
first, ... until on the 33rd character a new

Table 1: Character graphics, octal codes and binary codes for the TV readout.

Char Octal Binary` Char Octal Binary`

a 200 10 000 000 @ 300 11 000 000
A 201 10 000 001 A 301 11 000 001
y 202 10 000 010 B 302 11 000 010
6 203 10 000 011 C 303 11 000 011
e 204 10 000 100 D 304 11 000 100
t 205 10 000 101 E 305 11 000 101
n 206 10 000 110 F 306 11 000 110
o 207 10 000 111 G 307 11 000 111
L 210 10 001 000 H 310 11 001 000
K 211 10 001 001 I 311 11 001 001
X 212 10 001 010 J 312 11 001 010
µ 213 10 001 011 K 313 11 001 01 1

v 214 10 001 100 L 314 11 001 100
t 215 10 001 101 M 315 11 001 101
o 216 10 001 110 N 316 11 001 110
rr 217 10 001 111 0 317 11 001 111
p 220 10 010 000 P 320 11 010 000
a 221 10 010 001 Q 321 11 010 001
1 222 10 010 010 R 322 11 010 010
u 223 10 010 011 S 323 11 010 011
0 224 10 010 100 T 324 11 010 100
X 225 10 010 101 U 325 11 010 101
4/ 226 10 010 110 V 326 11 010 110
w 227 10 010 111 W 327 11 010 111
1-2 230 10 011 000 X 330 11 011 000 f 231 10 011 001 Y 331 11 011 001

232 10 011 010 Z 332 11 011 010
4-- 233 10 011 011 1 333 11 011 011
1 234 10 011 100 \ 334 11 011 100
- 235 10 011 101 1 335 11 011 101
E 236 10 011 110 r--+ 336 11 011 110
= 237 10 011 111 - 337 11 011 111

blank 240 10 100 000 340 11 100 000
I 241 10 100 001 a 341 11 100 001
" 242 10 100 010 b 342 11 100 010
243 10 100 011 c 343 11 100 011
$ 244 10 100 100 d 344 11 100 100
% 245 10 100 101 e 345 11 100101
& 246 10 100 110 f 346 11 100 110

247 10100111 g 347 11 100111
(250 10 101 000 h 350 11 101 000
1 251 10 101 001 i 351 11 101001

252 10 101 010 j 352 11 101 010
+ 253 10 101 011 k 353 11 101011
, 254 10 101 100 I 354 11 101 100
- 255 10 101 101 m 355 11 101 101

256 10 101 110 n 356 11 101 110
/ 257 10 101 111 o 357 11 101 111
0 260 10 110 000 p 360 11 110 000
1 261 10 110 001 q 361 11 110 001
2 262 10 110 010 r 362 11 110 010
3 263 10 110 011 s 363 11 110 011
4 264 10 110 100 t 364 11 110100
5 265 10 110 101 u 365 11 110101
6 266 10110110 v 366 11 110110
7 267 10110111 w 367 11 110111
8 270 10 111 000 x 370 11 111 000
9 271 10 111 001 Y 371 11 111 001
. 272 10 111 010 z 372 11 111010

273 10 111 011 { 373 11 111 011
< 274 10 111 100 374 11 111 100 . 275 10 111 101 1 375 11 111 101
> 276 10 111 110 376 11 111110
I 277 10 111 111 "Home" 377 11 111 111

The low order 7 bits of the binary representation map into the ASCII graphics where such graphics are defined.
The high order bit is always a "1" value to act as a strobe in the software of TVOUT shown in listing 1.

150

Diagnosis of Ailing Readouts

1. Troubles - General
One of the more difficult troubles to find is

an IC pin which was bent under the inte-
grated circuit when it was inserted. Any
unusual pressure when inserting an inte-
grated circuit should be investigated.
Check continuity. Your wiring should be
correct. If soldering is used, as in printed
circuit assembly, check to make sure all
joints are in good shape.
When troubleshooting with an oscilloscope
probe, measure from the top side of the
integrated circuit, not the bottom, to elimi-
nate the possibility of being misled by a pin
which is bent under or a defective socket.
Before ever plugging in any integrated
circuits, always measure the voltages at the
terminals of the display board and at the
power pins of the more expensive integrated
circuits, like the MCM6571.
When handling integrated circuits, avoid
static charges. Run your house humidity
high, and ground yourself by touching a

grounded chassis before touching the inte-
grated circuits.

2. When initially checking out, if no white
columns appear on the screen at step 3, the
following may be a cause of the problem.

Bad connection between TV output con-
nector pin and TV,
Temporary jumper from input D7 pin to
ground not connected.
Crystal not oscillating. Check for pulses at
pin 1 of IC27.
Horizontal countdown chain defective.
Successively measure output at pin 3 of
1C32, IC17 and IC21. Each should be

progressively lower in frequency.
Vertical countdown chain defective. As
above, but measure pin 3 of IC24, IC10 and
IC12.
Defective video mixer. Look for pulses at
pins 1 and 13 or IC26.

3. Initial checkout pattern (step 3) is poorly
defined or lacking synchronization. In this case the
following comments might apply.

TV could be overloaded by the _ 3 V of
video. Cut the level by adding a series

resistor of 10 ohms to see if sync and video
stabilize.
Check for horizontal and vertical sync and
blanking pulse at connector pin 16. A 75 ohm
load should be attached. The pattern should
look like this:

1..-- BLANKING--y

III
I.SYNC

II I

a. If horizontal sync is defective, check
IC11, 1C20, IC18 and IC13.

b. If vertical sync is defective, check IC19
and IC25.

c. If horizontal blanking is defective, check
IC11, 1C13 and 1C14.

d. If vertical blanking is defective, check
1C19.

4. No characters at step 4 of the checkout
procedure. Look for:

Missing voltages at the MCM6571 (IC30).
Defective character generator.
Defective 74165 (IC31).
Defective logic signals to and from IC30 and
IC31. All inputs and outputs should be
pulsing at valid TTL levels (0 to 0.8 V =

low; 2 to 5 V = high).
5. Wrong character(s) in display when driving
from computer or manual testing of step 5 in
checkout.

Miswired or misjumpered input.
Defective memory IC. Note the bit dif-
ference between the intended character. IC1
is the memory for the Least Significant Bit
(LSB) of the character ... and IC7 is the
Most Significant Bit's (MSB) memory.
Defective 74157(0, ICB, IC15 and IC28.

6. "Twinkling" characters on TV. The source of
this problem could be:

Slow memories. 650 ns or faster 21025 must
be used.
Overheated memories. Access times increase
with heat.
Wrong pulse levels at pin 1 of 74165 (IC31).
A base level of about 2.5 V with short
positive and negative going spikes should be
seen.
Defective character generator, IC30.
Incorrect timing components on 74123,
IC23.

7. Won't write characters into memory of TV
readout. Look for:

Missing strobe pulse, or continuous level on
D7 input.
No write pulse from 74123. Measure at pin
12 of IC23, looking for an ? 600 ns nega-

tive going pulse. Connecting the D7 input to
a t 50 kHz TTL clock will permit viewing
on lower cost oscilloscopes.

Write clock not toggling. With above tem-
porary oscillator inputting to D7, look for
pulses at pin 3 of IC16, IC29 and 1C9.
Defective memory address multiplexers,
IC15, IC28 and IC8.

8. Extraneous characters can be caused by:
Noise on the input lines to the memory,
particularly on the D7 line. A 220 pF
condenser (C4) is used on D7 to suppress
most noise sources. More or larger con-
densers may be required in extreme cases.

This trouble often shows up as an a appear-
ing on the screen when another port is

addressed.
Data sent to the TV character generator
faster than it can handle. Data must be valid
for 1.5 us following the rise of D7 strobe.
Faster data rates can be handled by reducing
the value of the condensers in the 74123
write strobe singleshot. Alternatively, a data
hold loop in your program, consisting of
NOP instructions, can slow the data output
to the readout.
Defective or slow memories. Look at the bit
pattern of the extraneous character to deter-
mine if a single memory is bad in a single or
several data locations.
More bypassing required. Power supply
conditioning is shown in figure 2. Look at
the power supply with a high speed
scope - if excessive voltage glitches are pres-
ent, add capacitance.

151

line appears, displaying the 33rd character.
Up to 512 characters are thus sequentially
entered and displayed. If a 513th and
following characters are entered, the address
wraps around so that an overwrite condition
results: New characters start appearing at the
top left corner of the screen. The display
address may be reset to the home position at
any time. Screen erase is accomplished either
by loading 512 or more ASCII "spaces"
(octal 240) followed by the home reset
(octal 377), or by issuing the home reset
followed by exactly 512 ASCII spaces, the
latter being preferable.

Memory writing occurs when the MSB
goes high. The memory address multiplexors
(IC15, IC28, and IC8) then use the write
address counter to control the memory
address lines, interrupting normal display
activity. 600 ns later, a 600 ns strobe pulse
writes the new character into memory.

An excellent idea was suggested by Phil
Mork in the Digital Group Clearinghouse to
utilize a parallel logic path to step the write
address counter without writing a character.
Using a cycle of 511 write address steps, a

blank, 511 write address steps and a non -
blank character, a blinking "pseudo cursor"
effect is obtained without the usual expense
of a number of comparators. This software
"blink" may be easily implemented with a

final result indistinguishable from a hard-
ware cursor. The write address stepping logic
consists of IC19a and IC27d which detect
the presence of a "1" in the least significant
bit while the most significant bit is held
low. This toggles the write address counter
without firing the 74123 write strobe
(IC23b). Disable the "pseudo cursor" when
using a direct keyboard input. Do this by
disconnecting pin 12 of IC27 from IC19,
and tying pin 12 to +5 V (logical 1).

8080/Z80 Driving Software

This television display can be driven by a

microprocessor's 8 bit output port. In the
Digital Group systems, we use port 0 for
this function. Listing 1 shows code for the
routines CLEARTV, SPACE, and TVOUT to
show how the software drivers are designed.

The main subroutine is labeled TVOUT
and is located at <0> 372. The programmer
merely loads the A register with one of the
characters from the list in table 1 and calls
the TVOUT subroutine. The codes in table 1

include all the standard upper and lower case
ASCII codes, but have the high order bit of
an 8 bit word set to "1". For those
characters in table 1 which have ASCII
graphics, subtracting 2 from the leftmost
digit will give the equivalent 7 bit ASCII

Listing 1: Utility software for driving the TV readout with an 8080 or Z80
system. This listing gives the CLEARTV, SPACE and TVOUT functions, a
total of 28 bytes. The CLEARTV operation simply homes the display, then
writes 512 spaces leaving a blank screen and the write address counter
pointing to the upper left corner of the screen. The SPACE subroutine simply
loads a space code into the accumulator (see table 1) then falls through into
TVOUT. TVOUT simply outputs the value in the accumulator, then clears
the accumulator and outputs all zeros so that the write strobe (D7) is turned
off completing the write operation. This routine assumes a latched output
port.

Split
Octal

Address Octal Code Label Op. Operand Commentary

<0> 343 076 377 CLEARTV MVI A,377 A :_ (set up home reset character];
<0> 345 315 372 <0> CALL TVOUT write character (resets write address) ;

<0> 350 006 000 MV I 8.0
BC :s 2000 (sat loop count to split

<0> 352 016 002 MVI C,2 l octal equivalent of 5121;
<0> 354 315 370 <0> CLEAR CALL SPACE write one space on screen;
<0> 357 015 DCR C C :- C- 1 Dow order count];
<0> 360 302 354 <0> JNZ CLEAR if not C -0 than reiterate the loop;
<0> 363 005 OCR B B :- B - 1 (high order count);
<0> 364 302 354 <0> JNZ CLEAR if not B = 0 then reiterate the loop;
<0> 367 311 R ET return with screen clear, write address

counter pointing to home position;
<0> 370 076 240 SPACE MVI A,240 A ' ' (load one blank character coctel;
<0> 372 323 000 TVOUT OUT o (port 0) A;
<0> 374 257 XRA A A := 0 (turns off strobe pulse in bit 71;
<0> 375 323 000 OUT o (port 01 :s A;
<0> 377 311 RET return from SPACE or TVOUT;

Entry points:

CLEARTV: Called with no parameters when TV display screen is to be cleared completely and left in
the ''home" (upper left) position. Uses registers A, B and C.

SPACE: Called when a space (ASCII 040, 240 from tabla 1) is to be sent to the TV display.
Uses register A.

TVOUT: Utility output routine to transfer contents of A (high order bit assumed "1 ") to the TV display
and increment the write address counter. Uses register A as input parameter, destroys its value
leaving 0.

code (with the high order eighth bit assumed
to be zero).

The instruction at <0> 370 will load the
"space" character for you, so to get a space
on the screen, merely call SPACE at address
<0> 370.

Before attempting to write any character
on the screen, the user must know where on
the screen the character will appear. A third
included subroutine starting at <0> 343
called CLEARTV will reset the write address
counter to the home position and clear the
512 character screen. The next character
entered after this subroutine will appear at
the top leftmost position on the screen.

Conclusion

This television display design provides a

versatile and essentially self contained circuit
to provide the key output device of a small
and inexpensive computer system. It can be
built from scratch in the typical experimen-
ter's laboratory or from a kit provided by
Digital Group. Due to its use of an extended
character set with 127 symbols including
upper and lower case, special characters and
Greek, the display will prove quite useful in
a variety of applications.

152

...

::

WITTEN IDr 8' DIRRt'

WITTEN tDl 4' DISFlA1'

Photo 1: The ease of removing just one dot from a
full field display depends upon the display size.
The author's X -Y display has an adjustable size
control which was used in preparing this picture.

Let There Be

Light Pens
Sumner S. Loomis
Loomis Laboratories
Route 1 Box 131A
Prairie Point MS 39353

:::::i
i... ...

i I

I
i ' ;1

is....t
i.;.. . '

.s

{ Z':..
.= t

= ii.ii i
isiiiiiiiiiiii iiiiiiiiiiifiiiiiiiiii

FRAMES/SEC. H = WR I TTEN AT 40 FRAME
.irS1

L = WR I TTEN AT 10 FRAME

Photo 2: The light pen can be used in an "erase" mode by filling the screen with "on"
dots then selectively removing dots with the light pen. The titles added to this picture
(and all the pictures in this article) were created with a separate character generator
which is not described.

153

With only a few components and a few
hours of construction you can add a versatile
light pen to the oscilloscope graphics inter-
face which has been described in the
October 1975 issue of BYTE, page 70 ff.

By holding the light pen to the face of
the cathode ray tube (CRT), a point may be

added or removed. This eliminates the
awkward and time consuming effort
required when using a program or manual
switches to change the dots on the screen.

The resolution and capability of the light
pen are dependent on two characteristics of
the CRT. The brightness and the size of the
display tube will determine how easily you
may add or remove one dot. An idea of the
effect of display size may be had from photo
1. The word Test was written twice on a 12

inch (30.5 cm) black and white TV picture
tube configured as an XY display like an

oscilloscope. The top word was written with
the display adjusted to an 8 inch (20.3 cm)
size, and the lower word was written with a

4 inch (10.2 cm) display. Each letter was

written with only one stroke of the light pen
without touch up or corrections. With some
practice, and possibly several passes, one dot
may be added or removed if the display
measures 8 inches (20.3 cm) or more.
Further improvements to the pen are

required with smaller display tubes. An
advanced circuit that greatly improves the
capability of the pen with small displays is

also described in this article.

The light pen can erase or draw
depending on the setting of a switch.
Examples of the two actions may be seen in
photos 2 and 3. If the oscilloscope interface
is adjusted for a high repetition rate, some
smearing or carry over into the neighboring
dot positions occurs. The author's system
has a front panel control permitting ten
repetition rates. A small improvement in
resolution can be noted at the lower writing
rates, as shown in photo 2. A frame consists
of 64 by 64 dots.

Theory of Operation

The light pen operates on the principle
that brightness is quite intense during the
actual interval that a particular dot is being
written by the CRT's electron beam.
Although phosphor will continue to emit
light for some time, the brightness decays in
an exponential manner after the writing
beam has moved on to the next dot.

Figure 1 illustrates the simple light pen
circuit. With proper adjustment of the sensi-
tivity control (and possibly the brightness
control), the photocell in the tip of the light
pen will sense the moment in time when a

dot is written at the particular location of
the light pen. At this instant, the photocell
will conduct, biasing the PNP transistor
which causes a short pulse to be conducted
through capacitor Cl to the base of the NPN
transistor Q2. If the pulse is greater than .6
V, this transistor will be driven into satura-
tion, and the light pen output will fall to .3
V. This output line is the connected to pin 5
of the oscilloscope graphics unit which
writes a 1 or a 0 bit (dot or no dot) at
precisely the instant that the dot position
touched by the pen was addressed.

The above procedure works quite well if
the dot to be changed is illuminated at the
time. With proper adjustment of the sensi-
tivity control, we can usually use an illum-
inated dot just above the point of action (it
must precede the dot in scan sequence) to
create a new dot in the next space. This
action of extending a line can be quite useful
for drawing bar graphs on the CRT. This
mode of entry is possible because screen
persistence allows the light pulse to be
carried over into two or three subsequent
dot positions depending on the frame speed.

How can the photocell sense the dot's
position if there is not any illumination to
trigger it? This is accomplished by the flood
circuit which is shown in figure 2. This
circuit overrides the normal Z -axis control
and floods the screen with light by feeding a
logical one signal to the Z axis of the display
unit. With this arrangement the pen is placed
at the required dot position, the footswitch
is actuated to flood the screen with light,
and the photocell is energized when the

t1
;

l

t

tt

l1 i.1j
ij 'tt t t

ttt t
is It

t
t

i ill 1{
!

sill

It
.i

li .Ii *sit t
t i . 1$ t t

((s tst
:tittt{

1,` III !tt 11011 .t

:tttttt jt tttil4
Of

11101 .
tii

FREE -HAND WRITING

Photo 3: The light pen can be used in an "enhance" mode by using a footswitch control
to flood the screen momentarily when the light pen is in position.

SENSITIVITY

RI

MINI PHONE JACK

r --
11

R2
1.5 K

R3 R4
100K 22OK

RS
IK

el)
LIGHT-PEN
OUTPUT

1

2N2222 1
PI N S

1

I

1 SI
1DDU

SPST
DEPOSIT

MFG
PC-1
PHOTOCELL

R -I
CONTROL

TI H-35 IM
TI H-38 2M
TI L -63 5K

CLAIRE 903 20K

LIGHT PEN PC-I

Figure 1: The simple version of the light pen can be constructed according to this
schematic. All resistors Y W.

FROM DDU CARD
Z OUTPUT

-12V

RI
2.2K

R2
IK

R3
SK

FOOT SWITCH SI

CI
O.1µ F

TO OSCILLOSCOPE
Z INPUT

R9
390 -22K

Figure 2: The foot switch control used to flood the screen for "enhance" mode
operation is given in this circuit which modifies the Z -axis signal to the oscilloscope
driver.

154

C3 C4
O.IµF 20µF

T T
RI

OI
2N5138

R2
I.5 K

t

MIN.
PHONE

LIGHT PEN PC-I

R3
IOOK

+SV

16
CI

1100DF
R4

10 PINS

RT
IK

19-01/104--

4528

680

En

ONE-
SHOT
NO.1

CMOS

O
C2
3.3µ F

R6
100K

o

14

RS
33K

ONE-
SHOT
NO.2

CHAR GFN
WRITE 53

R9
*IM

DDU

TEXT

SI

Figure 3: By adding a pair of oneshots to the circuit, the ability to draw pictures is improved through a short

data lockout period which avoids smearing.

writing beam reaches that particular dot
position. Releasing the footswitch removes

the flood and allows the data to be

examined.
The circuits just described will probably

suffice if you wish to use the light pen only
for occasional correction of data. If you plan

extensive and detailed work, such as

cartooning or statistical data entry, a modifi-
cation of the circuit will allow you to tailor
the light pen's response to your own particu-
lar needs and system speed. The circuit
shown in figure 3 is similar to the one shown

in figure 1. However, it includes two oneshot
multivibrators (contained in one CMOS

DIP). The first one produces a constant
amplitude pulse of approximately 200 nsec

duration which is sufficient to bring about
the storage of a 1 or 0 bit in most versions of
the 2102 memory (ICs 11 to 14 in the
oscilloscope graphics interface). The second

one delays the generation of another write
command for .25 sec, giving the operator
sufficient time to withdraw the pen from the
screen or move to a new location, before a

double or multiple dot can be drawn. Once

the two pulses have been timed in accor-
dance with a given system speed and the
operator's writing speed, it becomes very
easy to draw detailed images with the light
pen.

155

In figure 3 resistor R4 and capacitor Cl
control the length of the write pulse, and

resistor R5 and capacitor C2 control the
wait time. For the 4528 CMOS oneshot, the
time of the pulse (T) measured in micro-
seconds is a function of resistance (R) and

capacitance (C) measured in ohms and

microfarads, respectively, as follows:

T = 2.5 * R * C ** .85;

where a single asterisk denotes multiplica-
tion, and a double asterisk exponentiation.

The circuit shown in figure 3 also

includes a switch and connections for using
the light pen with the author's text display
and editing system. Exact details for this
connection are not given here, as they will
differ with the type and construction of the
text display system. I found, however, that
the shift register type memories commonly
used in these systems require a much longer
write pulse than is necessary for the 2102
memories. It was also desired to eliminate
the holdoff circuit (second oneshot) for this
application. These changes are accomplished
with switch S1 and resistors R9 and 125. If
these features are not desired, it is recom-
mended that R9 be replaced by a wire, R4

changed to 4.7 kSt and Cl to 20 pF.

Construction

As is shown in the table accompanying
figure 1, several different types of photocells
are suitable for use in the light pen. The
Texas Instrument (TI) type H -35 or H -38 is
a very small device with a built in lens. These
were originally designed for use in punched
tape and card readers, thus the small size.
Their size, sensitivity, and restricted field of
view make them ideal for this application.
The high impedance of these devices, how-
ever, makes them somewhat slow for this
application, particularly at low brightness
levels. The slow response time limits their
use at the faster scan rates, and complicates
the smearing mentioned earlier. Another
device, the L -63 type which is available from
Radio Shack (276 -140 infared detector), was
found to be considerably faster. Being a

much larger device, however, it has a larger
field of view, and much of its speed advan-
tage is lost to optical smearing. Models of
both photocell types were built and tested
by me, with only slight preference for the
H -35. With some careful masking, and
possibly the addition of a small, short focal
length lens (e.g., Edmund Scientific number
12050 cylinder lens, or a small drop of clear
epoxy), this photocell will probably perform
better than the H -35 for this application.
The Claire types 903 and 903 -L were tried
with only fair results.

Any ball -point pen or felt -tipped marker
can be reworked to make a housing for your
light pen. Take a tour of the local stationery
store to find likely candidates. The L -63
photocell was found to fit nicely into the
end of a Graphi -100 marker pen which can
easily be disassembled with diagonal cutters.
An example of the construction with the
L -63 is shown in photo 4, and the H -35
assembly is shown in photo 5.

Secure the photocell in place with epoxy
adhesive after attaching the shielded cable.
The cable can also be secured against damage
from pulling by filling the entire pen with
silicone rubber adhesive or ordinary house-
hold bathtub caulk. It is wise to keep the
cable short, especially with the H -35 or H -38
photocells, to obtain maximum possible
response speed. I used an 18 inch (45.7 cm)
long miniature coaxial cable leading to a

miniature phone plug.
If you are using the simple circuit of

figure 1, the parts can be assembled on a
small turret terminal board available at most
electronic supply houses. This assembly is
shown in photo 6. The circuit of figure 3 can
be assembled in the same manner with the
addition of a 16 pin DIP socket. R4, R5, Cl
and C2 should be mounted in such a manner
that they can be changed easily (Cambion
601 -1512 component clips are useful here).

Photo 4: This shows a pen based on the TI type L -63 photocell, built using a marking
pen case.

Photo 5: This picture shows an assembled light pen using a TI type H -35 (or H -38)
photocell with a standard ballpoint pen housing.

Photo 6: This photo illustrates how the circuit of figure 1 can be assembled using a small
turret terminal board. The transistors and R5 are mounted out of sight on the rear side
of the board.

156

t
. . s i

_ i t

s
. .

s :' 1 s i

IMPROVED FREE -HAND WRITING

Photo 7: Using the improved circuit of figure 3 reduces much of the over -writing of
multiple dots which occurred using the original circuit of figure 1. This is an enhance
mode picture.

i?.

_:?

' :s:iiii?}.: :ssti}

???i? gg

.}) ?::??????':'}}a: i'' :._ ?i=': :; - ..i
is:=.. ? :} ; . .}I.. . }:; ,. } :

?i: i}ii? :}}}s}i{ii.1:1iiii{iii° {:s }t:.{.ss .

ii :{i:)'it}s1:1 I ' s*1_

;i.ii'ii}'' }

}
i.

=il.i } :;{* {_,.. ,
;;:: s......s.s . ..t

iii
};

It

i}}

i't

,ti:{ i :=1osii?{:,.

riiJWFT or i-TRRY PITS

Photo 8: This illustrates a cartoon drawn using the erase mode of operation with the
improved circuit of figure 3.

157

The sensitivity control may be conveniently
mounted on the front panel.

The operation of the light pen requires
control of the inputs to the oscilloscope
graphics unit. I have found that one of the
most convenient ways in my system is
through a set of manual data switches. This
type of input was illustrated as a test fixture
for the oscilloscope graphics interface in
figure 5 on page 75 of the October 1975
issue of BYTE. In my system, these data
input switches are shared with a Mark -8
minicomputer front panel by means of an 8
pole double throw toggle switch. It is also
possible to set up input codes to the
oscilloscope graphics unit using software in
the microcomputer system which drives it.

In order to enter data with the light pen,
a deposit switch is pressed whenever the pen
is in the proper position for data entry. The
deposit switch should be mounted in a

convenient location near the display tube
and light pen. In my system the light pen
deposit switch was mounted next to the
original deposit switch of the Mark -8 corn -
puter.

Using The Light Pen

To illustrate the use of the light pen, we
will cover the procedure necessary to draw a

simple figure on the screen in the erase mode
using manual controls. Set the switch
register to 1000 0110 binary (turn scan on)
and depress the deposit switch. This should
produce random dots on the screen. Set the
switch register for 1000 0010 binary (set Z
on) and depress the deposit switch again.
The screen will show a full field of dots. (If
the Z axis polarity of your display tube is

reversed, you will have to use the "set Z off"
command (1000 0011 binary) to illuminate
the screen.) Set the switch register for 1000
0010 (set Z on), but do not activate the
deposit switch. Now bring the light pen in
contact with the display CRT, and note that
the dot or dots within its field of view are
erased. To erase the entire screen and start
over, simply press the deposit switch and
repeat the above procedure.

To write in the enhance mode (screen
dark, writing illuminated dots), reverse the
above procedure by wiping the screen clean
with the "set Z off" command (while the
scan is on), and after setting the switch
register to "set Z on" without the deposit
switch, proceed to write dots with the light
pen. In this mode, the flood foot switch
must be periodically activated to provide the
required illumination. Examples of the light
pen's drawing capability can be seen in
photos 7 and 8.

Build an Oscilloscope
Ever wonder how to make a computer draw pictures for

output? One way is to use an oscilloscope - which many

readers have on general principles for debugging the logic

circuitry. Jim Hogenson provides a practical circuit for
accomplishing that end in his "Oscilloscope Graphics Inter-

face" design. This graphics device was conceived by Jim as a

neat idea to add to the 8008 -oriented computer system he was

building for a high school science fair. He first mentioned it to
me in a letter late last year. I suggested to him (or was it the

other way around ?) that it might be appropriate to turn it into
an article for the ECS Magazine I was publishing at the time.
After a fair amount of time spent researching the various

options - plus one lengthy phone conversation with me - Jim
settled on the design shown in this article, which is reprinted
here from its original publication in the last issue of ECS

Magazine. The interface is very simple, and can be adapted to
virtually any computer with a minimum of 8 parallel TTL
output lines and a clock pulse line which is active when output
data is stable. Arrangements have been made for a PC version

of this design (see the parts list, Fig. 6) so you won't have to
wire wrap the thing like Jim did in his first version.

by
James Hogenson
Box 295
Halstad MN 56548

Fig. 1. Oscilloscope graphics display block diagram.

INPUT

CONTROL
CIRCUITRY

.CARL

4

COUNTER

MEMORY CHIP
SELECT
CKTRY

BLANKÌ Y X
ICKTRY I DAC DAC L-T-J

OUTPUT
VERTICAL HORIZONTAL
OUTPUT OUTPUT

158

Many members of the

large family of alphanumeric
computer output devices may
be readily used in the home
computer system. But there
are as yet few devices of a

graphic orientation which are

economically acceptable in
the home computer system.
The oscilloscope graphic
interface project presented
here provides one unique,
inexpensive and
uncomplicated solution to
the graphic output problem
in small scale systems. It
turns an essential test
instrument - the oscilloscope
- into a versatile output
device.

The oscilloscope graphic
interface is programmed and
operated through a parallel
8-bit TTL compatible input.
An image is represented by a

pattern of dots which is

organized according to the
computer's instructions.
During the scan cycle, the
digital dot pattern is
converted to analog
waveforms which reproduce
the image on an oscilloscope
screen. The graphic interface
stores the dot pattern within
its own internal refresh
memory. Therefore, once the
pattern has been generated
and loaded into the graphic
interface memory, the
computer is left free to
execute other programs.

Principle of Operation
The raster begins its scan

in the upper left -hand corner,
scanning left to right and
down. The full raster contains
4096 dots, 64 rows of 64
dots each. The horizontal
scan is produced by a

Graphics Interface

stepping analog ramp wave.
Each of the 64 steps in the
ramp produces one dot. The
vertical scan is similar. It is a

stepping ramp wave
consisting of 64 steps.
However, there is only one
step in the vertical wave for
each complete horizontal
ramp wave. The result is 64
vertical steps with 64
horizontal steps per vertical
step, or 64 rows of 64 dots
each.

The timing of horizontal
and vertical sweep waveforms
originates in a 12 -bit binary
counter, the operational
center of the entire circuit.
The six least significant bits
of the counter are connected
to a digital -to- analog
converter (DAC) which
converts the digital binary
input to a voltage level

output. The output of the
least significant DAC is the

horizontal ramp wave. The
six most significant bits are

connected to a second DAC.
This DAC produces the
vertical ramp wave.
Incrementing the 12 -bit
counter at a frequency of
around 100 kHz results in a

raster on the screen of the
oscilloscope.

The contrast in the pattern
of dots needed to represent a

picture is dependent upon the
intensity of each dot. From
this point, it is assumed that a

dot can be either on or off.
An "on" dot will show up on
the screen as a bright dot of
light. An "off" dot will be a

dim dot of light.
When a particular dot is

addressed by the counters, it
may be set to either the "on"
or the "off" state. The on -off

Fig. 2. Oscilloscope graphics inter-
face instruction codes.

Op Code
Binary Octal Mnemonic

00dddddd Odd STX

0ldddddd 1dd STY

10xxx000 2x0 DCY

l0xxx001 2x1 TSF

10xxx010 2x2 ZON

10xxx011 2x3 ZOF

10xxx100 2x4 ZNI
1Oxxx101 2x5 ZFI
1Oxxxll0 2x6 TSN
1Oxxxlll 2x7 DCX

llxxxxxx 3xx CNO

d = data

control is represented by a

single bit. It is this bit which
is stored in the internal
memory of the oscilloscope
graphic interface. There is

one bit in the memory for
each of the 4096 dots in the

raster. When displaying the
image, the 12 -bit counter
which produces the raster
addresses the appropriate
dot status bit in the memory
as that dot is produced on the
screen. The on -off dot status
bit taken from the memory is

converted to a Z -axis signal
which controls the intensity
of the dot on the screen.

The major portion of the
circuitry is taken up in the
12 -bit counter, the DACs,
and the memory. Fig. 1

shows a block diagram of the
oscilloscope graphic interface.
The remaining circuitry is the
control circuitry which

x = null

Explanation

Set X

Set Y s
Contrór Decrement Y

Control - Turn off scan

Control - Set Z on

Control - Set Z off
Control - Set Z on with increment

Control - Set Z off with increment
Control - Turn on scan

Control - Decrement X

No Op

decodes the 8 -bit input word
and allows for completely
programmed operation.

Programming
The programming

instruction format is shown
in Fig. 2. Bits 7 and 6 of the
input word are the high -order
instruction code. It is

assumed that the addressing
of dots is done on the basis of
X and Y coordinates. The X
coordinate is the 6 bits in the
least significant or horizontal
section of the 12 -bit counter.
The Y coordinate is the 6 bits
in the most significant or
vertical section of the
counter. In programming
from an 8 -bit microcomputer
source, all 12 bits of the
counter cannot be set at
once. The counter is set one
half or 6 bits at a time. It is

for this reason X and Y
coordinates are assumed in

programming.
When the instruction code

(bits 7 and 6) is set at 00, the

159

data on bits 0 through 5 of
the input word is loaded into
the least significant counter
section as the X coordinate.
When the instruction code is

set at 01, the data on bits 0
through 5 is loaded into the
most significant counter
section as the Y coordinate.
In effect, the Y coordinate
will select a row of dots,
while the X coordinate will
select one dot in the selected
row. The coordinates loaded
into the counter will address

the memory and select the
desired dot status bit for
programming.

After loading the
coordinates of the dot
selected for programming, the
status of the dot (on or off) is
set using the ZON, ZOF, ZFI
or ZNI control codes. Setting
the instruction code at 10
directs the control circuitry
to decode the three least
significant bits of the input
word for further instruction.
The three least significant bits
are called the "control code."

Since the 1 2-bit counter
must store selected
coordinates during
programming, the raster scan
must be disabled before

programming. Control code
"1" will stop the scan.
Control code "6" will restart
the scan. When the scan is on,
the 12 -bit counter will be
incremented at a high
frequency and the
programmed image is
displayed on the scope
screen.

Control code "2 ", "set Z
on ", will program a bright
dot to appear at the dot
location presently stored in
the counter. Control code
"3 ", "set Z off ", will
program a dim dot or blank
to appear at the dot location
presently stored in the 12 -bit
counter.

Control codes "4" and
"5" set Z in the same manner
as control codes two and

Fig. 3. Timing pulse input to the
interface. The 8 data lines must
be stable during this pulse.

PULSE WIDTH DETERMINED
BY EXTERNAL CLOCK PULSE SOURCE

MINIMUM 750 NS

DATA STORED

will decrement the stored Y
coordinate. Control code "7"
will not set Z, but will
decrement the entire 12 -bit
counter by one. This, in
effect, will decrement the
stored X coordinate. Since
the X and Y counter sections
are cascaded, Y will
automatically be incremented
or decremented once for
every 64 executions of an
increment or decrement X
control code.

The increment and
decrement control codes are
very useful in constructing
lines in an image since lines
require repeated "set Z"
instructions, often on the
same axis. An effective
method of clearing an image

COUNTER INCREMENTED

three. However, after setting
Z, these instructions will
increment the counter by one
thus advancing to the next
dot location in the raster scan
pattern. This will allow
programming of the entire
raster using only a repeated
"set Z" instruction.

Control code "0" will not
set Z, but will decrement the
most significant or vertical
section of the counter only.
In effect, control code "0"

from the screen is repeating a

"set Z with increment"
control code in a

programmed loop. This
method allows the option of
using either a light or dark
image background.

Circuit Operation
Once the data word on the

microcomputer parallel
output interface is stable, one

160

clock pulse is used to execute
the instruction. This clock
pulse is taken from the
microcomputer output
interface. The instruction
code is decoded by the 7410
triple three -input NAND gate
and two inverters. The clock
pulse is enabled by the
NAND gate to the
appropriate counter section,
or to the strobe input of the
control code decoder.

The 1 2-bit counter
consists of two 6 -bit counting
sections. Each section
consists of two cascaded TTL
74193 presettable binary
counters. Bits 0 through 5 of
the data input are common to
both sections of the counter.
The set X instruction will
pulse the load input of the
least significant or horizontal
section, while the set Y
instruction will pulse the load
input of the most significant
or vertical section of the
counter. A pulse on the load
input will cause the data on
bits 0 through 5 to be loaded
into the proper counter
section.

Four TTL counters must
be used to provide
independent loading
capabilities for each 6 -bit
section. The counters within
each section are cascaded in
the normal fashion. The two
sections are cascaded by
connecting the upper data B
output of the X counter
section (IC 8, pin 2) through
inverter "a" of IC 2 to the
count up input (IC 9, pin 5)
of the Y counter section. The
inverter is needed to provide
proper synchronization
in high frequency counting.

The control code is
decoded by a 74155 decoder
connected for 3 to 8 line
decoding. Bits 0 through 2
are decoded by the 74155.
The control code is enabled
by the pulse coming from the
7 41 0 instruction decoder
only when the instruction
code is set at 10 on bits 7 and
6.

Decoder lines 1 and 6 are
connected to an R/S flip Hop

Fig. 4. PC artwork of the graphic
interface, by Andrew Hay.

(a) Component side.

161

Fig. 4. PC artwork of the graphic
interface, by Andrew Hay.

(b) Solder side.

162

TO 8 -BIT DATA INPUT

87

o

13

12

11

f, o

1/4 7400 TTL NAND

which provides the scan
on /off control. The flip flop
enables the system clock to
provide the high frequency
square wave which
increments the 12 -bit
counter.

Control codes 2 through 5

define the "set Z"
instructions which perform a

data write operation. Decoder
lines 2, 3, 4 and 5 are
connected to a group of AND
gates (IC 5a, b, c) functioning
as a negative logic OR gate.
The output of this gate is the
Read /Write control line for
the memory. When this line is

in the low state, the data
present on the data input line
of the memory will be

written into the memory
location presently stored in
the 1 2-bit counter.

The data input of the
memory is connected directly
to bit 0 of the 8 -bit input
word. This bit is stored in the
memory only when a set Z
command is executed. The
Z -axis circuit configuration
will require a high state pulse
for a blank or dim dot. As
shown in the binary

BO

o

to
SPDT

TOGGLE

NC

NOQ
SPOT

MOMENTARY

instruction format, Fig. 2, bit
zero will be binary zero for
"set Z on" instructions and
binary one for "set Z off"
instructions. The backward
appearance of this binary
format will be overlooked
when programming in octal
notation.

The high frequency system
clock controlled by the RIS
flip flop and decoder lines 4
and 5 are negative logic

Fig. 6. Parts list.

Cl, C2
C3, C5, C6-C11
C4
C12

TO
CLOCK PULSE

INPUT

o

1/2 7400 TTL
NAND

ORed. The resulting pulse
increments the counter
according to control
commands.

The same clock pulse
taken from the computer
output interface is used to
write data into the memory
and increment the counter in
control commands 4 and 5.
The data is written into the
memory on the leading edge
of the pulse. The counter is

20 pF disc capacitor
.01 mF disc capacitor
.0015 mF disc capacitor
25 mF electrolytic capacitor

IC 1 7410
IC 2 7404
IC 3, IC 4, IC 20 7400
IC 5 7408
IC 6 74155
IC7-IC10 74193
IC11-IC14 2102
IC 15, IC 16 MC1406
IC17,IC18 741
IC 19 NE555

R1, R2 3.3k Ohm
R3, R4 5.6k Ohm
R5, R6 10k Ohm
R7 1k Ohm
R8 2.2k Ohm
R9 7.5k Ohm

TTL triple 3 -input NAND gate
TTL hex inverter
TTL quad 2 -input NAND gate
TTL quad 2 -input AND gate
TTL dual 2- to- 4-line decoder
TTL presettable 4 -bit binary counter
NMOS 1024 -bit static RAM
Motorola 6 -bit DAC
Op amp
Oscillator (timer IC)

resistor
resistor
miniature potentiometer
resistor (all resistors Y. Watt, 10 %)
resistor
miniature potentiometer

A printed circuit board using the masks of Fig. 4 is available for $29.95.
Write to M. F. Bancroft, CELDAT Design Associates, Box 752,
Amherst NH 03031.

163

Fig. 5. A test circuit for manual
operation. The set -reset flip flop
of the 7400 circuit generates a
debounced clock pulse which
will perform the operation set
into the toggle switches. If
you haven't got a computer up
and running yet, the manual
interface can be used in order to
test out the display.

incremented on the trailing
edge. Fig. 3 shows the
waveform timing.

Output bits 0 through 9 of
the 12 -bit counter are
connected to the address
inputs of the memory. The
memory uses four MM2102
type 1k x 1 bit MOS RAMS
(Random Access Memories).
Bits 10 and 11 of the counter
output are connected to the
chip select circuitry which

Fig. 7. Oscilloscope graphics interface circuit diagram. (a)

8-BIT DATA INPUT

CLOCK PULSE INPUT B7

IC

4 5

2C
6 S

IC
20A

II 15 3
13 4 5 14 C B

IC6
IC IC IC 74155
IA IC IB 7 6 5 4 3

12

LOAD
X

8 '6
LOAD

CONTROL

RB
22K

R9
75K 6

2

C4
.0015µF T

IC19
NE555

+SV

-3- C3 T.OIµF

enables one memory chip at a

time for addressing and data
input /output operations. The
chip select circuitry uses 2
inverters and a TTL 7400
Quad two -input NAND gate.

The data outputs of the
RAMs are OR -tied and
connected to an AND gate.
The data output is
synchronized with the high
frequency clock for better
blanking performance. The
output of this gate is

connected to the Z -axis
blanking circuitry. The
blanking circuitry converts
the TTL level signal to a

scope compatible signal
which may be varied over a

wide range of output voltages
to best match the scope being
used.

Bits 0 through 5 of the
12 -bit counter arc connected
to the X coordinate DAC.
Bits 6 through 11 arc

S 6 7

BO

r-

0-

13

A

2 o
2 111

IC
4A

connected to the Y
coordinate DAC. The DACs
are Motorola MC1406 ICs.
The DACs operate on
voltages of +5 and -5 to -15.
A current output is produced
by the DACs. The current
output is converted to a

voltage output and amplified
by the 741 op amps. The
output from the X coordinate
amp is connected to the
horizontal input of the scope.
(The scope should be set for
external horizontal sweep.)
The output from the Y amp
is connected to the vertical
scope input.

Although the scope used
does not need dc- coupled
inputs, triggered sweep, or
high frequency response for
this project, a Z axis or
intensity input is required.
The Z axis output provided

164

10 9

10

IC I IC
SC 5A

13 12 4 5

IC
5D

IC
SB

6

19

R/W

V

COUNTER INCREMENT

on the interface PC pattern is

TTL compatible only. Most
scopes will need some type of
blanking circuitry to amplify
the TTL level pulses. The
design of the blanking
circuitry will be of the
builder's choice, allowing the
builder to best suit his scope.
A suggested method which is

simple and effective is the use
of the circuit shown in Fig.
13.

Construction
This project may be

wire wrapped, the PC artwork
in Fig. 4 may be used to
fabricate a double -sided
printed circuit board, or the
printed circuit board product
mentioned in the parts list

may be employed. The PC

pattern is designed for easy
soldering. The components
need be soldered on the
bottom side only.

Remember that the
memory ICs are MOS devices
and should be handled as

such. Static electricity will
easily puncture the thin MOS
transistor junctions.

Bypass capacitors should
be connected between supply
voltages and ground. A
minimum of a 10 mF
electrolytic or tantalum
capacitor should be used for
all supply voltages. For the
+5 logic supply, one .01 mF
disc capacitor should be used
for each 2 to 5 integrated
circuits. The large

clectrolytics will filter out
low frequency noise and
voltage transients while the
small disc capacitors will
filter out high frequency
noise which could falsely
trigger flip flop and counter
circuits.

Set -up, Testing and Operation
The system requires a +5

volt, 400 mA power supply
and a dual polarity supply of
from ±9 to ±15 volts at 10
mA. The wide range of analog
supply voltages allows use of
existing power supplies for
the graphic interface.

The clock pulse derived
from the computer parallel
I/O interface should be active
in the low state. If a device
operating with an active high
pulse is used, one of the free
gates of IC 20 may be used to
invert the clock pulse or IC
20 may be omitted.

When ready for testing, be
certain of voltage supply
polarities, then apply power.
If the scan does not come on
at random, execute a "turn
on scan" command. Using the
10k Ohm pots, R5 and R6,
adjust the DAC voltage
references to eliminate any
distorted concentration of
dots in the raster.

The system clock consists
of a 555 timer IC connected
as an astable multivibrator.

Fig. 7. Oscilloscope graphics interface circuit diagram.(b)

BO1g A A

ÌO 9 C -0 0
IC7

74193

85

15

9

A A 3

B B

C C

0 D
IC9

74193 li

3

4

12

5

I BS B

ICIO
74193

2
6
7

II

+5v
11

A6 LSB

IC15
MC1406

M

R5
2 I0K1_411

13 RI 3.3K

í4 yc1 />*7 T 20pF

3 2

-9 v
(SEE

TEXT)

+5v
II

10 12
LSB

9
e
7

5

20

10T IC2E

IC POWER AND PIN CONNECTION CHART

IC +5 GND +9 -9

1,2,3,4,5 14 7

6 16 8
7, 9 16 8, 14

8, 10 16 8, 14
11,12,13,14 10 9

15,16 11 2 3

17, 18 7 4
19 4,8 1

20 14 7

N/C

9,4

IC3B

2

I IC3A

9

10 IC 3C

12
1

IC3D

13

6,7,9,10,12,13

1

1,5,8

C/S4

3 C/S3

IC16
MC1406

AI MSB

R6
IOKy I

R3
5.6K

HORIZONTAL (X)
OUTPUT

13 R2 3.3K

C2
14 20pF

13
2

-9V 7
(SEE
TEXT)

R4
5.6 K

+5V

K

C5
OIµF

0VERTICAL (Y)
OUTPUT

ALL 2102_PIN CONNECTIONS ALIKE,EXCEPT CHIP ENABLE

31 III
R/W DI

IC14
2102

CE DO

IC13
2102

IC12
2102

ICII
2102

A9

8 C/S 2

C/SI

1,2,3,8,9,10,11,12,13

165

5

IC4B
6 (\ IC2F

13

AO

12

C12 (25µF

--1(

--1 (.--
.-1(
---1 (

C6-II
/77

I Z AXIS
BLANKING

I CIRCUITRY
I (SEE TEXT)

1

L__

I --
SCOPE COMPATIBLE
Z AXIS OUTPUT

2102 MEMORY ADDRESS PIN CONNECTIONS

MEMORY
ADDRESS
LINES

TTL
COMPATIBLE
Z AXIS
OUTPUT

A-0 pin 8 : A -1 pin 4 : A -2 -- pin 5 : A -3 -- pin 6
A-4 -- pin 7 : A -5 -- pin 2 : A-0 -- pin 1 : A -7 pin 16

A -8 pin 15 : A-9 -- pin 14

Fig. 8. CLEAR Program flow chart.

START
LOOP

OUTPUT
'TURN OFF SCAN"

INSTRUCTION

LOAD ITERATION
COUNT INTO
REGISTERS

OUTPUT
"Z FI"

INSTRUCTION

DECREMENT
ITERATION

COUNT

RETURN

Fig. 9. Listing of 8008 code for
the CLEAR program.

START

00/344 = 006 LAI
00/345 = 201 (TSF)
00/346 = 121 OUT 10
00/347 = 006 LAI
00/350 = 205
00/351 = 016 LBI
00/352 = 377
00/353 = 026 LCI
00/354 = 021
00/355 = 121 OUT 10
00/356 = 011 DCB
00/357 = 150 JTZ
00/360 = 365
00/361 = 000
00/362 = 104 JMP
00/363 = 355
00/364 = 000
00/365 = 021 DCC
00/366 = 110 JFZ
00/367 = 355
00/370 = 000
00/371 = 377 HLT

Adjusting the frequency may

be necessary to obtain a

stable raster. The frequency is

adjusted using R9, the 7.5k
pot. The frequency of the
system clock should be

approximately 100 kHz, but
is not critical. The only
requirement is appearance of
the raster.

If the raster is evenly
distributed over the screen,

but is severely chopped up,

check the digital inputs to the

DACs. Use the scope to check
the vertical and horizontal
ramp waves individually. If
the wave is not an even ramp,
two or more of the DAC
inputs may be reversed. Note
that DAC input Al is the
most significant bit while
input A6 is the least

significant bit. Reversed

inputs may also cause

incomplete raster formations.

166

Slight gaps or overlapping
between some dots is caused

by non- linearities in the

manufacturing of the DACs.
If no raster at all appears,

first check for a square wave

output at pin 3 of the 555

timer IC. Then check for
square wave outputs at each

TTL 74193 counter. These

square waves will be binary
submultiples of the oscillator
frequency. If the counter is

operating, check all con-
nections to the DACs and op

amps.
Applying power will

produce a random pattern of
on and off dots. Adjust the

amplitude of the Z axis signal

for best contrast. Since most
scopes will have an

ac- coupled (or capacitor
coupled) Z axis input, both
amplitude and frequency of
the signal will affect

Fig. 10. To construct a line seg-
ment in the direction shown by
the arrow, alternately execute the
commands shown.

a. ZNI

b. ZNI,STYln+1)

C.

d. /1

s.

f.

Y

b.

ZON, STVln+1)

ZON, DCX, STY (n+1)

ZON, DCX

ZON, DCX, DCV

ZON, DCY

ZNI, DCV

performance. Charging the
capacitor within the scope

with too much voltage at a

given frequency will cause the
blank pulse to carry over into
the next dot. This could
cause more dots than desired
to be blanked out or dimmed.

After a satisfactory raster
is obtained, each instruction
should be executed to verify
its operation. First, clear the
screen. The flowchart for a

simple CLEAR program is

shown in Fig. 8. The method
outlined is to simply send out DECLOOP

a "set Z off with increment"
instruction 4096 times.

Fig. 9 shows the program
listing for an 8008 system.
This example used the B and
C registers to keep track of
the iteration count. The DOTLOOP

register contents are
decremented once for each

output ZFI instruction. The
RETURN instruction may be

substituted with a HALT if
the CLEAR program is not to
be used as a called
subroutine. The CLEAR
subroutine as listed in Fig. 9

begins by turning off the scan XSECLOOP

(which must be done before
any programming, as stated),
but does not turn the scan

back on after the interface
memory is cleared. The
course of operation is left to
the programmer once CLEAR
has been called.

The chart in Fig. 10 may
be used in testing the various
control commands. The chart
shows the commands to be

used to construct a line
segment in the direction
shown by the arrow. Lines
moving in a downward
direction require that Y be

reset with (n +1) for each dot
programmed, "n" being the

Fig. 11. CHECKERBOARD Test Pattern Program flow chart.

ROWLOOP

YSECLOOP

START

i
TURN OFF SCAN,
SET X &YTO "0,"

CLEAR REGISTERS,
SET PARITY
REGISTER.

i

INVERT PARITY;
SELECT "SET Z"

INSTRUCTION
ACCORDING TO

PARITY.

HALT

167

INCREMENT "B"

/OUTPUT SELECTED
SET "Z"

INSTRUCTION /

INCREMENT "C"

-i INCREMENT D

ADD 0408 to
"D" REGISTER

INCREMENT "E"
EXTRA TIME TO
INVERT PARITY
AN EXTRA TIME.

2

Fig. 12. Listing of 8008 code for
the CHECKERBOARD program.

START 00 /200 = 006 LAI 00/255 =
00/201 = 201 (TSF) 00/256 =
00/202 = 121 OUT 10 00/257 =
00/203 = 006 LAI 00/260 =
00/204 = 000 (STX) 00/261 =
00/205 = 121 OUT 10 00/262 =
00/206 = 006 LAI 00/263 =
00/207 = 100 (STY) 00/264 =
00/210 = 121 OUT 10 00/265 =

CLEAR 00/211 = 016 LBI 00/266 =
REGISTERS 00/212 = 000 ROWLOOP 00/267 =

00/213 = 321 LCB 00/270 =
00/214 = 331 LDB 00/271 =
00/215 = 351 LHB 00/272 =
00/216 = 361 LLB 00/273 =
00/217 = 046 LEI 00/274 =

PARITY REG 00/220 = 000 00/275 =
DECLOOP 00 /221 = 040 INE 00/276 =

00/222 = 304 LAE 00 /277 =
00/223 = 044 NDI 00/300 =
00/224 = 001 00/301 =
00/225 = 150 JTZ 00 /302 =
00/226 = 246 00/303 =
00/227 = 000 00/304 =
00/230 = 066 LLI YSECLOOP 00 /305 =
00/231 = 332 00/306 =

DOTLOOP 00 /232 = 301 LAB 00 /307 =
00/233 = 024 SUI 00 /310 =
00/234 = 020 00/311 =
00/235 = 150 JTZ 00 /312 =
00/236 = 253 00/313 =
00/237 = 000 00/314 =
00/240 = 010 INB 00/315 =
00/241 = 307 LAM 00/316 =
00/242 = 121 OUT 10 00/317 =
00/243 = 104 JMP 00/320 =
00/244 = 232 00/321 =
00/245 = 000 00/322 =

DECLOOPJMP 00/246 = 066 LLI 00/323 =
00/247 = 333 00/324 =
00/250 = 104 JMP 00/325 =
00/251 = 232 END 00/326 =
00/252 = 000 00/327 =

XSECLOOP 00 /253 = 016 LBI 00/330 =
00/254 = 000 00/331 =

00/332 =

00/333 =

Fig. 13. A Z -axis drive circuit used
to control blanking in the author's
original version of the design. The
transistors are 2N5139s and the
diodes are silicon switching diodes
such as the 1N914 part or its
equivalent.

302 LAC
024 SUI
003
150 JTZ
267
000
020 INC
104 JMP
221
000
026 LCI
000
303 LAD
044 NDI
037
024 SUI
017
150 JTZ
305
000
030 IND
104 JMP
221
000
303 LAD
044 NDI
340
330 LDA
024 SUI
140
150 JTZ
326
000
303 LAD
004 ADI
040
330 LDA
040 INE
104 JMP
221
000
006 LAI
206 (TSN)
121 OUT 10
377 HLT
204 (ZNI)
205 (ZFI)

TTL Z -AXIS Z AXIS DRIVE (TTL)

DRIVE FROM
GRAPHICS

INTERFACE

168

330pf
1.8k

present Y coordinate. Use the
STX and STY instructions to
select a starting point. The
dot whose coordinates are
X =00, Y =00 will be in the
upper left corner, the point
where the scan begins its
cycle.

The flow chart for a

CHECKERBOARD TEST
PATTERN program is shown
in Fig. 11, with an 8008
listing in Fig. 12. The pattern
produced will be 16
alternating light and dark
squares. The 64 rows of dots
are divided into 4 groups of
16 rows each. Each row is

divided into 4 segments. The
segments are alternately light
and dark. The 4 groups also
alternated to reverse the
pattern between each group.

The set Z with increment
instructions is used. The
least significant bit of the E

register is used in DECLOOP
to alternate between "set Z
on" and "set Z off." To
obtain the complement of the
entire pattern on the screen,
place a 001 in location
00/220 instead of 000.

2 AXIS OUTPUT

-9V

2.2k

An Introduction to Addressing Methods

John Zarrella
90-9 Wakelee Rd
Waterbury CT 06705

Figure 1: Memory Addresses. The effective
address is the object of memory address
calculations. It identifies a location in mem-
ory address space for the particular cell
involved in some operation.

EFFECTIVE
ADDRESS
(LOCATION)
00000000
00000001 00000010
00000011
00000100
00000101 00000110
00000111
0000 000
0000 001
0000 010
0000 01
0000 100 0000 101
0000 110

11111101
11111110
1 1 1 1 1 1 1 1

MEMORY CELLS

MICROPROCESSOR CHIP B SUPPORT LOGIC

SEQUENCING I

CONTROL UNIT

ADDRESS
COMPUTATIONS

L==
t

INSTRUCTION
DECODE

ALU/
REGISTERS

Figure 2: A Typical Sys-

tem Arrangement. The

central processor with its
internal elements defines
the data bus and an ad-
dress bus. The address bus
is used by the memory
subsystem to decode a par-
ticular location in the
memory array which will
be connected to the data
bus.

ADDRESS
BUS

rEMORV
I SUBSYSTEM

DATA
BUS - -1

ADDRESS
DECODE

MEMORY ARRAY

169

J

An address is an identifier which de-
scribes the location of a particular piece of
information within a computer's memory
system. This information, when presented to
the central processing unit for use in a

computation, is usually referred to as an
operand. In all microprocessor systems and
in most other computer systems, an address
is a binary number which is decoded to
reference one computer word of information
somewhere in the memory subsystem. Fig-
ure 1 illustrates how unique addresses are
typically associated with memory cells.

It is interesting to note that this identifier
need not be a number. There are some
experimental computer systems in which
memory locations are actually referenced by
name or a combination of a name and a

numeric index during execution. In these

systems, there is hardware which translates
the name directly into the location of an

appropriate memory cell or group of cells.
In a similar manner, when writing pro-

grams in either assembly language or a higher
level language such as FORTRAN, a pro-
grammer uses names to reference infor-
mation. In this case, however, the names are
generally mapped into numeric addresses by
the language processing program and are not
actually implemented in hardware as named
references.

Instruction Cycles

Figure 2 illustrates typical intercon-
nections among the control unit, arithmetic
and logic unit (ALU), registers and memory
subsystems of a general purpose processor. A
brief review of the typical instruction fetch
and execute cycle of such a CPU will be

useful for the discussion which follows. The
instruction fetch begins when the control

unit requests the next instruction by trans-
mitting its address to the memory subsystem
via the address bus. The current instruction
address is usually maintained in a register
called the program counter (or PC), and is

updated to point to the next instruction
when the current instruction is completed.

The information returned is treated as an

instruction which specifies what function is

to be performed by the processor. This
instruction is analyzed in the instruction
decode section of the processor. The execute
portion of the instruction cycle then per-
forms the functions which are specified by
the decoded instruction.

Most instructions require data operands
from the memory subsystem before execu-
tion can be completed. Thus a memory
address must be created and sent to mem-
ory. This address is created using informa-
tion contained in the decoded instruction in
conjunction with information contained in
various registers of the processor. The pro-
cess of determining a data address is called
address formation or address computation
and is performed by the address computa-
tion section of the central processor. The
result of address calculation is called an

effective address.
A number of address formation capabil-

ities are provided in the various designs of
computers which are available. The typical
contemporary microprocessor only provides
a portion of the address calculation options
to be described below. However, each mode,
when available, can be utilized advantageous-
ly by the programmer. An understanding of
addressing modes is useful when evaluating
the instruction set of a computer. In order
to clearly define the variety of addressing
methods, an analogy will be used in the
following discussion.

Immediate Addressing

In many ways memory addressing may be
likened to the postal system. Imagine that
you are writing a book on atomic physics
and that Dr J Smith is to be a consultant. He

currently lives in a small apartment complex
called Apple Valley at 15 Grove St. There
are five apartments at this location, each of
which has its own street number -from 15
(manager) to 19. The mailboxes are arranged
as shown in figure 3.

While researching the book, you attempt
many of the necessary calculations yourself.
These calculations involve multiplication,
addition, transcendental functions and so
on. Many times in these calculations you use
fixed numeric factors, such as 18, which
approximates 2rr2. In doing this, you are
treating 18 as a simple integer constant for
the purposes of the approximation. In com-

puter addressing terminology, this constant
might be referenced with what is called
immediate addressing by simply putting the
number in a field of the computer instruc-
tion which follows the operation code. Here

the effective address of the data is derived
from the current program counter, and the
actual instruction contains no addressing
information.

Direct Addressing

Many times when performing calcula-
tions, you find that the results obtained are

perplexing and need explanation. Therefore,
you decide to ask your consultant for help.
Since Dr Smith does not believe in tele-
phones, you must send him a note, ad-

dressed to:
Dr J Smith
18 Grove St

In this case, the value of 18 is being used

as an address. When delivering the letter, the
mailman uses this address to determine
where the letter belongs on Grove St. In its
computer form, addressing with a single
number such as 18 is called direct addressing
or absolute addressing. In a computer, this
number forms the address field which fol-
lows the instruction code in the program.
This address field contains all the informa-
tion needed by the memory subsystem in
order to reference the required information,
in the same manner that 18 Grove St
contains all the information needed to locate
Dr Smith on Grove St.

Note the contrast of this use of 18 as an
address with its previous use as a constant.
The number 18 which follows the instruc-
tion code is the same in either case; the
intended use differs according to the instruc-
tion being executed. To know whether to
use a number following the instruction code
as an address or as a constant, its context
must be known. In the typical computer,
this is accomplished by building a special set
of instructions called immediate instructions
which use the number following the instruc-
tion code as a constant. A second set of
instruction codes will be devoted to the
absolute addressing mode, in which the field
following the instruction code is an address.
In general, for each possible addressing
mode, a set of instructions exists which uses

Figure 3: The concept of
a memory address can be
likened to that of a post
office address.

170

An effective address is the

goal of address calculation
techniques.

The problem of computing
a result often reduces to
the problem of organizing
the reference of operands
in memory through ad-

dressing techniques.

An absolute or direct ad-

dress specifies an operand
location as a fixed number
embedded in the instruc-
tion sequence.

Use of registers for address

components enables one

to employ base and index
address concepts.

that mode and interprets the information
following the instruction code according to
that mode.

Addressing With Registers

Suppose that you did not know Dr
Smith's street address and sent the letter
anyway. When the letter is received at the
post office, the postmaster, knowing Dr
Smith very well, would have to tell the
postman: "I can't remember Dr Smith's
address, but he lives in Apple Valley apart-
ments at 15 Grove St and his mailbox is the
fourth from the right in front of the
complex." This specifies Dr Smith's address
relative to a base address, 15 Grove St. In a

computer, such a base address might typical-
ly be stored in an index (or general purpose)
register as shown in figure 4. The displace-
ment or address modifier in this case would
be 3, which added to 15 gives the actual
address of 18 Grove St. A computer with
this single register indexed addressing meth-
od carries out the same form of calculation
to produce the effective address: It adds the
displacement or modifier field to the con-
tents of the index register identified in the
instruction.

DECODED INSTRUCTION

ADDRESS
MODIFIER OR
DISPLACEMENT

INDEX OR

INDEX
GENERAL PURPOSE

REGISTER REGISTER BANK

ID

INDEX
+ VALUE

ADDITION

EFFECTIVE
ADDRESS

Figure 4: Indexed Addressing. One common
mode of addressing is called indexed address-

ing, in which an index register specifies one

numeric value which is added to an address
modifier to produce the effective address. If
the index register contains a base address
value, then the modifier specifies a displace-
ment or offset which is added to the base; if
the index register contains an offset or
displacement, then the modifier field is

interpreted as a base address. In either case

the result is an effective address.

In the most general case, the index
register may contain either an actual base

address such as the first address of a table of
values, or a displacement value. The cor-
responding contents of the modifier would
be a displacement value or a base address,

respectively. In some presently existing

171

microprocessor designs, the index register is

not large enough to contain a full base
address. For instance, this occurs if the
microprocessor uses a 16 bit address space
and contains only an 8 bit index register.
This case would require using the index
register to contain a displacement with the
base address becoming the instruction's
modifier field.

Other options which sometimes occur
include the choice of a second register as a

component of effective address generation.
In such cases, the instruction specifies one
register which is intended as a base register,
and a second register which is intended as an

index register, as shown in figure 5. This
form of double register addressing is some-
times combined with a modifier field as

shown in figure 5. At this time, however, the
microcomputers commonly available do not
have such a powerful addressing mode.

One of the advantages of using a base

register as well as an index register is that the
base register can be used to locate a segment
of memory, while the index register is used
to access various places in that segment
according to the program. Since all address-
ing is specified relative to the base register,
relocating the program or data being ref-
erenced can be accomplished without modi-
fying any code except the instructions which
load the base register. The example of figure
6 shows the case of a computer which
specifies a jump instruction effective address
as the sum of a base register (register 0) and
a displacement. Loading the same binary
code at location 100 or 1125 is possible,
provided the base register is initialized at the
start of the program. The problem of reloca-
tion thus consists of redefining the constant
which will be loaded into register 0 at the
start of the program.

Program Counter Relative Addressing

Program counter relative addressing is

very similar to indexed addressing except
that the base address is implicitly specified
using the program counter. In a typical
machine which allows program counter
relative addressing for data as well as pro-
gram control purposes, the instruction con-
tains a modifier relative to the current
contents of the program counter as shown in
figure 7. In some microcomputers, such as

the 6800, program counter relative address-
ing is only allowed for branch instructions,
and is specified relative to the next address
following the end of the current instruction.

In terms of the postal analogy, this
corresponds to the mailman coming upon a

letter with no street address as he is working
along his route. He therefore calls the
postmaster and explains his dilemma. Since

BASE OR
GENERAL PURPOSE
REGISTER BANK

DECODED INSTRUCTION

BASE
ADDRESS
VALUE

BASE
REGISTER
NUMBER

1
EFFECTIVE
ADDRESS

INDEX
REGISTER
NUMBER

MODIFIER

ADDITION

Figure 6: A base register scheme allows
convenient relocation of code. In this exam-
ple, the target address of a IMP (jump)
instruction is specified as u base address
register and a displacement. The value of the
displacement is shown as Iwo words from
the start of a block of memory in which the
program resides. With the base register
loaded to the starting address, it does not
mutter where the block is located. At (a) it is

INDEX OR
GENERAL PURPOSE
REGISTER BANK

INDEX
VALUE

a.

100
101

102

103
104

105
IO6
107

Figure 5: Combining Two Index Registers.
A more general address calculation uses one
register as a base register, a second register as

an index register, and a modifier. The
effective address is then the sum of the
values found in the two registers and the
value of the modifier. The order of calcula-
tion and detailed significance of the registers
depends upon the processor design which
uses this type of address calculation.

BASE
REGISTER O

JUMP TO ADDRESS 2
PLUS REGISTER O

BASE
b. SAME PROGRAM,RELOCATED REGISTER O

1125
located at octal address 100; at (b) the block
is located at address 1125 With base ad-
dressing schemes, the first operation on
entry to a program or block of code is to
establish the value in the base register, as
illustrated in these examples.

1126
1127
1130
1131

1132
1133

1134

there is only one phone booth on the route,
the postmaster gives him directions, such as:
"Walk down the street directly in front of
you and deliver the letter to the fourth
mailbox in the apartment complex." Note
that the base address is implicitly specified
since the postmaster knows the location of
the phone booth.

Indirect Addressing

To illustrate still another method of
addressing, assume that Dr Smith recently
had a post office box, #35. Since then he
changed his mind and asked to have all his
mail forwarded to his Grove St address. In
order to remember the change when mail
comes to the old address, the postmaster
might mark Dr Smith's Grove St address on
box 35. Then, when the mailman attempts
to insert a letter for box 35 into that box, he
sees the note that tells him to forward the
letter to 18 Grove St. Thus, the box is not
the final destination of the letter; in fact, it
contains only an address to which the letter
is to be forwarded. We call this method of
locating the effective address (18 Grove St)

DECODED INSTRUCTION

PC
RELATIVE
ADDRESS
VA LUE

1

JUMP TO ADDRESS 2
PLUS REGISTER 0

PROGRAM COUNTER

ADDITION

EFFECTIVE
ADDRESS

PC
VALUE

indirect addressing. Figure 8 illustrates how
the effective address is used to retrieve a
second effective address in the computer
form of indirect addressing. In the simplest
form of indirect addressing, only one such
level of indirection is involved.

We could easily extend this notion to
multiple levels. In the postal analogy,
imagine that Dr Smith moves out of 18
Grove St. The change of address order to the
post office would result in a note to the
postman on the 18 Grove St route, giving
the new address of Dr Smith. Then, if a

172

Figure 7: Program Coun-
ter Relative Addressing
Some computers provide a
means to address memory
in terms of an address dis-
placement relative to the
current program counter
value. The instruction con-
tains the displacement
which the processor adds
in the current program
counter value for this type
of effective address
calculation.

DECODED INSTRUCTION

FIRST EFFECTIVE
ADDRESS

MAIN
MEMORY

SECOND (INDIRECT)
EFFECTIVE ADDRESS

Figure 8: Indirect Ad-
dressing. In this form of
addressing, the first effec-
tive address developed is
used to address memory to
find a pointer which will
become the final effective
address used for the
instruction.

EFFECTIVE ADDRESS
CALCULATION

(START
Ill

)

ADDR :
modifier;
B : O; I: O;

rNDEX
;SPECIFIED F

r - - - -,
I BASE

SPECIFIED

r-----)
IINOIRECT I

IAOORESS f-

I: INDEX
REGISTER
CONTENTS

e: BASE
REGISTER
CONTENTS

EA:
ADORBiI;

NO

ADDR
MEM (EA);
BcO; u co,

(END

EA HAS EFFECTIVE
ADDRESS

Figure . 9: A General Address Computation
Algorithm. This flow chart shows a typical
address calculation algorithm of a modern
general purpose computer. The typical
microcomputer design circa early 1976 does
not employ such a powerful addressing
algorithm, but future improvements in chip
designs should yield addressing techniques
which approach the power of a good general
purpose computer's addressing.

173

letter came to the original post office box 35
address, the postman would look up the 18
Grove St address. At the 18 Grove St
address, the postman would in turn find the
pointer to a new address for Dr Smith. The
letter in this case would reach Dr Smith after
two levels of indirection. This might happen
a number of times if Dr Smith has a habit of
frequently moving. In a microprocessor, the
current chip designs offer only a very limited
version of this mode, if indirect addressing is
permitted at all. In minicomputers and large
scale systems, indirect addressing is often
allowed to continue to an indefinitely large
number of levels.

General Address Evaluation Algorithm

Indirect addressing is often combined
with the other addressing modes in com-
puters which feature the most powerful
effective address calculations. For instance,
the indexed addressing mode might be used
to develop the effective address for the first
indirect address in a chain of indirect ad-
dresses. Once the chained indirect address
lookup is begun, the processor might con-
tinue through multiple levels of indirection
until a chain termination condition is de-
tected. A general address evaluation algo-
rithm which combines base register, index
register and the possibility of indirection is

shown in figure 9. Such an algorithm is
typical of a good minicomputer, but is only
partially implemented for most presently
available microcomputer chip designs.

Summary

These methods of addressing are usually
referred to as the addressing modes of the
computer. To recap, the typically available
modes are:

1. Immediate Addressing, in which
the data being referenced forms a part
of the actual instruction.
2. Direct or Absolute Addressing, in
which the address of the operand is

actually given as part of the instruc-
tion.
3. Indexed Addressing, in which one
or more registers are specified, pos-
sibly including a modifier field. The
effective address is a sum of the
contents of the addressing registers
and the modifier.
4. PC Relative Addressing, in which
the program counter acts as a base
address with an offset specified by the
instruction.
5. Indirect Addressing, in which one
of the other modes develops an effec-
tive address at which a pointer to data
will be found.

Interface an ASCII
Keyboard to a

60 mA TTY Loop

Jay A Cotton
Bldg 844, Apt 2H
Gov Island NY 10004

Figure 1: Using a UART
and special case logic to
convert and serialize the
output of a keyboard for a
60 mA current loop.

I recently purchased a Sanders 720 elec-
tronic keyboard. This keyboard is identical
to the Model 722 -1 keyboard which was
described in BYTE, September 1975, page
62, except for the key layout and the line
feed code. My version of the keyboard had
no line feed, but had a vertical tab key
which produced an octal 013 code. In order
to convert this to an octal 012 line feed
code, some form of transformation logic was
required. I also wanted to drive my Tele-
type's 60 mA current loop directly from the
keyboard. By combining the special case
code conversion, a UART for parallel to
serial conversion, a clock and a current loop
driver, I achieved the desired function of
sending characters to my Teletype. Figure 1

shows the schematic of this conversion.

The Circuit
I chose to detect the octal code 013, then

to use this special case to alter the data on
the low order bit of the parallel code pre-
sented to the UART. By changing the low
order bit of the octal 013 code from a

logical one to a logical zero, the number is

converted from 013 to 012. The 013 code is
detected using inverters and the 7430 NAND
gate shown in figure 1. The low order bit is

Sv

41 Bf

RI
4.7K
R2
6.BK

1
NESSS 6
ICI

¿R4 ,, .O2C1 0047
/7lT IIJJ F F 5 IK CT µ

C2 µ
.0047X

1760 Hz µF

R3
SK

-12V +pSV

I

P 2

3
IC3 Q81

81T 7486 26

IJACK>

21

NP CS XR

D
50

B
8 Ds

'23 24
I L IC2

AY-S-1013
WART)

selectively changed for this one code by

using the exclusive OR function of one sec-

tion of the 7486 integrated circuit. When the
input at pin 2 is low (the normal case with-
out the 013 code input), the exclusive OR
normally passes line 0's value directly to the
UART pin 26 input; when the input at pin 2

of the exclusive OR is high (as is the case

when 013 is detected), the exclusive OR
function inverts the value of line 0, thus
transforming 013 at the keyboard into 012
at the UART.

The UART is programmed to generate
the standard Teletype compatible format of
a start bit, seven ASCII data bits, least sig-

nificant first, then parity and stop bits. The
key pressed signal from the keyboard unit is

used as the data strobe to start transmission,
and the transmitter end of character output
of the UART is used to acknowledge com-
pletion of transmission. A 555 circuit is used
to generate the clock. The clock should be
adjusted to a 1760 Hz square wave; the cir-
cuit shown has about a 15% adjustment
range for this purpose. The output of the
UART is buffered by two inversions which
protect the UART from excessive current
drain. The buffered output in turn drives a

relay through the quasi -Darlington coupled
transistors. The relay used must be capable
of switching the 60 mA current loop in
times on the order of one millisecond. It
must also be capable of sustained operation
at high rates of change. If your junk box is

not equipped with such a relay, other alter-
natives include use of an opto isolator and
(Ise of a high power interface circuit such as

the 75451 driver chip.

LOGIC I

ICS
7404

2S V

+Sv
2N3414 (3)

OS% 9011
S

-7SV

DI 1N914
PROTECTION

BINARY CODES

VERT TAB: 10001011 i
LINEFEED! 10001010

TO TTY
LOOP

r
TO TTY
LOOP

RELAY-
POTTER BRUMFIELD
106P439
JPE 4000

1C4 7404

174

12

6
7430

5

3

2

1C4
7404

Walter S King
451 -145th Place NE
Bellevue WA 98007

Interfacing the
60 mA Current Loop

+ 5V

Generally the older Teletype units such as

model 15s, 19s and 28s require a 60 mA
loop to operate the printer. These older
machines are not as attractive looking as the
newer model 32s and 33s, but for the Altair
computer hobbyist, looks are probably
second to costs. The 60 mA interface cir-

RSI TO UART

Figure 1: Input Circuit. The Teletype generates Baudot codes mechanically
by activating switch contacts according to the code being generated. To
condition the inputs for the UA RT, this circuit will debounce the signal and
convert it to a TTL level.

Figure 2: Printer Drive Cir-
cuit. The 60 mA current
loop is a circuit which
normally passes 60 mA
through all the printer
magnets and keyboard
contacts of Teletypes
which are "in the loop."
This circuit drives the
printer mechanism only by
using a TTL level signal
from the UART to control
a transistor switch.

TSO 10K
FROM
UART

2N5655
OR
MJE 340

cuits shown below are simple, straight-
forward, and do an effective job.

Circuit Notes

The loop keying transistor, 2N5655, is a

250 V power tab purchased at two for $1 at
a surplus house. In the mark state, this
transistor is fully saturated. The collector
dissipation is 0.7 V x 0.060 A or 0.042 W. In
the space state, with no collector current,
the dissipation is zero. Heat sinking is not
required. The 0.1 pF and the 470 ohm
resistor protects the keying transistor from
voltage spikes generated by the inductance
of the printer magnet. The 10 K ohm re-
sistor in base circuit limits the current
supplied by the UART TSO output gate to a

safe value when in the mark state. The
variable resistor in the loop should be
adjusted with a milliampere in the circuit.
Set the loop current to 60 mA. A pull up
resistor, 1 k ohm, is connected to the
keyboard and +5 V to generate a TTL level
keying signal. The 1 pF capacitor in parallel
with the keyboard is used to smooth out any
contact bounce. The 4.8 V zer.er diode
clamps the space signal to 4.8 V (logic 1).
Also, hopefully, it will act as a crowbar

45

= SILICON
SOPIV

m

175

1470
1%2 W

.1p ,F

400VDC

PRINTER
MAGNET

PHYSICAL
LAYOUT
OF 2N5655

O

Ill
B C E

METAL
FACE 130VDC

LOOP
POWER
SUPPLY

T I

46

RI
2K

10w

2A

II 90VAC .
1750µF 1000

1- 250VDC 20W

o

IA
500PIV

130 VDC

circuit (short to ground) if high voltage were
to appear in the keying circuit by accident.

External Connections

It is a good idea to mount the keying
transistor on a perforated board separated
from the serial 10 board. An inadvertent
short circuit to the high voltage loop could
wipe out the serial IO board integrated
circuits. The keyboard contacts on a Model
15 or 19 are usually terminals number 32
and 34. The printer magnet terminals are
numbers 46 and 45. If there is a line relay in
the machine, remove it and discard it.

UART Connections

If you are using a Model 15 or Model 19,
the Baud rate is 45. The UART clock preset
count for 45 Baud is 2454 in octal. The
Model 28 with 100 word per minute gears
runs at 74.2 Baud. The preset count for 74.2

Figure 3: To complete the adaptation of a 60 mA TTY to your UART, this
simple power supply will provide the necessary voltages. The transformer
should have a secondary with at least 90 volts AC input to the bridge
rectifier. The actual value could be 90 to 120 volts or so depending upon
what you can find in the junk box of your home laboratory. The capacitor
value of 1750 AF is also not critical. The voltage rating should be higher than
the output peak of the bridge rectifier and the value should be greater than
500 /IF.

Baud is 4553 in octal. Since these older
Teletypewriter machines use only five data
bits, the UART jumpers NDB1 and NDB2
must be wired to GND. The NSB jumper is

connected to logic 1 which selects 1 -1 /2 stop
bits when NDB1 and NDB2 are grounded.

If read errors begin to occur on the
keyboard, it is probably due to an oil film
on the keyboard switch contancts. Use a

little carbon tetrachloride solvent on them
or carefully pull a piece of paper between
the contacts to clean them.

\7

i %

t

,.,,;\s=}.s

a

,i

E,
,.;,

.. y-

f,

I
/Í/,' .

¡_

/
; .1

/> i
,

- G '/

i `

1

Ì
-

;

i

31!.i!,

`
=

í

. /f

/

r
.

i

j/.

i-

'

.

.

s
.

-_

,:=.+

5

'
.,

;

ss,.

i r

1,

,

'1'/

0

.

<

,f_

;

3 f

;

.._

r

j(11

1t%

'

_

.

,i,

440,..;%'"

'

. , ,4 9 -

L yijio

5
,:

,.-,

,

i .

.

\

>:\< ,.

. .
-

!\.

,.\.
r

=-

; _

.
:
..

.

- \
.

S\

!.

,
.
\

.

.

=

''c í. t
.

,+

w

a .

ir

¡:i,

i c

. f

¡

T

.

1 iOA, Ili
/1!1

\14 ,/' ' 1 %A.ais!AP';11 .. g 1.4, ;,
IA '001i\ / \,.¡1.1011 '. 14.' 4000¡0$01," t 1, ' t,' 4j .11 . .i ,`k.t

s $ 4040 0,,/ . 'e'r.. /ori. .ie atop.
; i

. '.1
1

v i % íIt
A t ryi` : i ï ..' g1 . :w.i. . r i L/i. q i t F `i í :'i,' iyü i /s I/?i.i- - ! .oi s : í

e.91,101,1,0) . .r,t. r :..it-1111 N.:
..- !

S At 11\ k

;' mI :irli .Ízrg i i ' 7 .. torre it,
`i ./-+'- i/Gii iG iv '` ti

..

176

The COMPLEAT

Tape Cassette Interface

Jack Hemenway
151 Tremont St, 8P
Boston MA 02111

The software of a tape
cassette interface provides
open, data transfer and
close operations for both
input and output.

Mass storage is one of the most important
functions in the small computer system
design. Mass storage can typically be used as

the medium of a text editor, as the input
and output of a full fledged language trans-
lator program, and as a means of saving
working and debugged software you've
created. One of the least expensive ways to
accomplish mass storage is the audio cassette
storage method.

What is involved in the use of audio
cassettes for mass storage? Here's an answer
which works quite well in my Motorola
6800 microcomputer system. The
COMPLEAT Tape Cassette Interface consists
of tape input and output software, the
Lancaster speed independent audio interface
(see BYTE, September 1975), a Motorola
asynchronous communications interface
adapter (ACIA), a transmit clock, and the
circuitry needed to start and stop the tape
recorder's motor under program control.
The hardware of the interface is shown in
block diagram form in figure 1. The software
consists of an open, data transfer and close
subroutine for each direction of transfer,
input and output. The hardware and soft-
ware described in this article can be used as

the stepping stone to a more complete
cassette tape information management
system, or it can be used alone whenever a

program requires cassette input or output
functions.

177

What Is an ACTA?

The Motorola MC6850 asynchronous
communications interface adapter is a

specialized version of the familiar universal
asynchronous receiver transmitter (UART).
The ACIA is designed specifically to inter-
face the Motorola 6800 central processor;
however, its use is by no means limited to
the 6800. An ACIA can be used con-
veniently in any computer system with data
paths 8 bits or more in width.

The ACIA differs from the conventional
UART in the way it is controlled. All
control, status and data transfers are made
over a single 8 bit bi- directional bus. The
integrated circuit contains a control register
which may be set by the microprocessor; it
is a location in memory address space. The
ACIA contains a status register which may
be tested by looking at the same location.
The ACIA also contains transmitter and
receiver data registers which are treated as a

memory location via the bus structure and
selection logic. In contrast to the UART
with its separate input and output data
buses, hardwired option selections and 40
pin package, the ACIA design fits into a 24
pin package with several pins left over for
use as address selection and modem control
functions.

The ACIA options are normally selected
by storing a bit string into the control

register when the computer system is first
initialized (at power on time) or later when
the reset operation is performed manually.
However, since the ACIA has the control
register, these options can be changed at any
time by a program which runs the interface.
This capability is used to advantage in the
COMPLEAT Tape Cassette Interface: The
tape cassette motion is controlled through
the RTS line of the ACIA (pin 5, IC1) by
setting an appropriate two bit code into the
transmitter control bits of the control
register (bits 5 and 6); whenever the tape
motion is changed (on to off, or off to on),
these bits of the control register are
redefined.

The ACIA is interfaced to the system
data bus either directly, or by means of an

appropriate 8 bit bus buffer. The interface is

controlled by means of the read write line
(RW) and address selection logic. In the
hardware of this article, a full address
decode is avoided by wiring the chip select
lines to appropriate system address bits and
using the low order address bit as the register
select line (RS, ICI pin 11). The ACIA has

four registers, but only two memory address
space locations are required. The apparent
inconsistency is resolved by the read write
line of the system interface. Two of the
internal registers are read only registers
(receiver data and status registers), and two
of the internal registers are write only
registers (transmitter data and control
registers). Table 1 shows the system
addresses and register access used by the
interface of figure 2. (Note that any pair of
neighboring locations in memory address
space can be used conveniently with
appropriate decoding.)

The enable line (E, pin 14 of IC1) is used

to synchronize the ACIA status and control
changes to the processor, and to condition
the ACIA's internal interrupt circuitry. The
interrupt request line (IRQ, pin 7 of IC1) is

used in systems which employ interrupts to
coordinate IO operations. If used, it signals
the microprocessor whenever the ACIA is

requesting an interrupt. In the simple inter-
face presented here, interrupts are ignored
and the software is coordinated using the
status register flags of the ACIA.

For a full description of the ACIA con-
trol and status registers, the specifications of
the Motorola MC6850 ACIA integrated cir-
cuit should be consulted. See also pages 3 -22
to 3 -25 of the Motorola M6800 Micro-
processor Applications Manual. The software
shown in this article makes use of the status
register bits for timing and error detection,
and sets up the control register for a

standard 8 bit asynchronous data format

INTERFACE
WITH THE
MICROPROCESSOR

ACTA

DATA
TO 9E TRANSMITTED

RECEIVE CLOCK

RECEIVE DATA

TRANSMIT CLOCK

RTS

CTS DCD

TRANSMIT
CLOCK

LANCAS-
TER

INTER
FACE

TO
"AUX INPUT
OF CASSETTE
RECORDER

5 SEC
DELAY

SEC
DELAYA DELAY Y

FROM
'EAR' OUTPUT
OF CASSETTE
RECORDER

TO
'REMOTE' INPUT
OF CASSETTE
RECORDER

TAPE CASSETTE

Figure 1: Block diagram of the COMPLEAT Tape Cassette Interface. This
illustrates the major elements of the interface; see Don Lancaster's BIT
BOFFER article . in this issue for details of the hardware of the cassette
modem.

with one start bit, one stop bit, odd parity
and a division ratio of 16 for the clocks used

with the ACIA.
On the peripheral side of the ACIA there

are three lines which are used to control and

test the tape recorder interface. An output
line called request to send (RTS, pin 5 of An ACIA is Motorola's
IC1) is used for tape motion control. An
input line called clear to send (CTS, pin 24
of IC1) is used for a tape output delay timer,
and an input line called data carrier detect
(DCD, pin 23 of IC1) is used for a tape input
delay timer. Serial data generated by the
ACIA is sent to the Lancaster tape interface
modem over the transmit data line
(TXDATA, pin 6 of IC1), and serial data
received from the Lancaster tape interface

version of a UART.

Table 1: ACIA addresses. This table shows how the four ACIA registers are
referenced, using two memory locations. The secret is that two of the
registers are input only, and two of the registers are output only. Thus at each
address, the register referenced in the AC /A depends upon whether the CPU
is reading data from that address or writing data to that address.

Address Operation Symbol ACIA Register Typical Code

8010 read ACI ACTR L status LDAA AC IACTR L
8010 write ACIACTRL control STAA ACI ACTR L
8011 read ACIADATA receiver data LDAA ACIADATA
8011 write ACIADATA transmitter data STAA ACI ADATA

178

In this interface, software
is synchronized to hard-

ware, using the technique
of testing status bits in

wait loops.

A flip flop toggled by a

clock produces an output
clock which is a perfect
square wave at one half
the input frequency.

Software timing loops and

hardware oneshots can

accomplish the same goal:
delaying execution.

modem is presented to the receive data line
(RXDATA, pin 2 of IC1). During trans-
mission, the data rate is set by the trans-
mitter clock, generated by IC3 and IC4, and

during input operations the receiver clock
(RXCLK, pin 3 of ICl) is recovered from
the tape data by the Lancaster interface,
locking the ACIA to the actual tape speed.

Hardware Software Interfaces

The ACIA is controlled by the micro-
processor software which views it as the two
adjacent memory locations shown in table 1.

The interfaces between hardware and soft-
ware can be controlled by one of two
different methods. The interrupt method of
IO synchronization relies upon the ACIA to
generate an interrupt in the processor
through the IRQ line of the system. Because

the central processor is interrupted (and its
state is saved) only when IO service is

required, the processor can be busy with
some other task while waiting for the slow
IO device to complete its operation.

In contrast, the programmed transfer
method employs a wait loop in a program to
monitor ACIA status register bits which
indicate the progress of the data transfer
operations. When the status bits indicate
that the ACIA is ready for a transfer to or
from the data location, the interface pro-
gram can then proceed to carry out the

transfer. The programmed transfer method is

employed in the software of the

COMPLEAT Tape Cassette Interface illus-
trated here, primarily because of its

simplicity.
Reading is accomplished by testing the

status register repeatedly until the receiver

data ready flag (bit 0 of the status register) is

high, indicating the presence of data. When

the data is available, the program loads the
ACIA data location into an accumulator, an

operation which resets the status flag; for
input the status register is also tested for the

three kinds of error conditions, and a con-

dition code is returned from the input
routine in the other accumulator. Similarly,
writing is accomplished by testing the status
register repeatedly until the transmitter
buffer empty flag (bit 1 of the status

register) is high, indicating an empty buffer
which can receive the output character. The
output program then stores a character into
the ACIA data location causing the ACIA to
begin an output operation and resetting the

flag status bit.

Hardware for COMPLEATness

The circuit of the interface is shown in

figure 2, including all details except the

Lancaster tape cassette modem circuit. Note

179

that with appropriate clock frequencies, any
modem circuit could be used which accepts
the asynchronous data format and clock
information. (See Don Lancaster's article
"Build the BIT BOFFER" in this issue, and
"BYTE's Audio Cassette Standards Sympo-
sium," page 72 in the February 1976
BYTE.) The modem interface consists of
four signals:

TXDATA: This signal is the output data
generated by the ACIA at a baud rate
equal to the TXCLK frequency divided
by the ACIA divide ratio. In this article,
division by 16 is used, as set in software
by the control codes to the ACIA. This
line is shown wired directly from the
ACIA, so it can drive the equivalent of
one TTL load.

TXCLK: This signal is the output data
clock, which is fed to the ACIA and to
the tape interface. The Lancaster inter-
face modem uses this signal to synchro-
nously generate the two data frequencies
which are recorded on the tape according
to TXDATA.

RXCLK: This signal is the input data
clock, which is recovered from data by
the tape interface. Since this signal is

derived from the tape input data, it is

locked to any variations in tape speed.
Thus the ACIA's input circuitry will not
make errors due to differences between
the transmitter clock frequency and the
variations in tape speed which are called
"wow and flutter" in audio tape recorder
specifications.

RXDATA: This signal is the input serial
data recovered from the Lancaster audio
interface modem. Since RXDATA is

locked to RXCLK, speed variations of
data relative to clock cannot occur.

Transmit Clock

The transmit clock is provided by a 555
oscillator (IC3) followed by a flip flop
(7473, IC4) which divides the oscillator
frequency by 2. The 555 is wired with
components selected for a frequency of
9600 Hz. When the interface is constructed,
the potentiometer R1 should be adjusted so

that the frequency is 9600 Hz, using a

frequency counter or an oscilloscope to
make the measurement. For those using
oscilloscopes, 9600 Hz is a period of 104.2
µs, or a 5.21 cm trace on a scope set for a 20
ps /cm horizontal time base.

The division by 2 which follows the

oscillator is provided by a)K flip flop set up
to toggle. This means that both the J and the
K inputs are connected to logical one (IC4

CPU
SIDE

DATA
BUS

ADDRESS
AND
CONTROL
BUS

[24-
23-
22

DI 21

02 20
D3 19

04 18

OS 17

D6 16

D7 15

4,2 14

R/W-13-
AO
AS
A13
IRO
VMA

A15

TO /FROM
LANCASTER SPEED INDEPENDENT

CASSETTE INTERFACE

I 2 3 4 V V

I- RECEIVE DATA FROM INTERFACE
2- RECEIVE CLOCK FROM INTERFACE
3- TRANSMIT CLOCK TO INTERFACE
4- TRANSMIT DATA TO INTERFACE

ICI
MC6850

PERIPHERAL
SIOE

CTS if
DCD lr
DO

DI

P2
03
04
D5
D6

D7

E

R/W

VSS
RXDATA

RXCLK

TX CL K

lr RTS
TXDATA

11- IRO

A CSO

lr CS2
JL CSI

RS

VDD

2

-3
4

5

6
7

8

9
10

11

-12-0 +5

2

IC2o
+5

IC3
555

1C2D 5
R6
1K

2

CRO

I C5o

7407 OPEN
COLLECTOR DRIVER
NONINVERTING

RTS

+12

T DI

+5

RLYI
NO. RELAY
1200A IOmA I2VDC
RADIO SHACK 275 -003

TO R CAS- t:: :: l SEETTE REMOTE
CONTROL

1RTS

2

7404

nJ
12 ' _rL

16 F 4800Hí

I11
IC4 TRANSMIT CLOCK

1 7473 2 6 1 FOR 300 BAUD
+5

' 2700pFL
DRJ

9600Hí
CI

R2 RI R3
1K 50K 1K

IC5 D

3

14
5

R4
39K

100
µF

B
Al

A2

3

2, 7

10

74121
106
5sec DELAY

iRTS

+5
4 14

R5
39K

C3
50µF 10

L
B

Al

A2

0

ONESHOT
74121
IC7
2.5 sec DELAY

Figure 2: Motorola 6800 ACIA and control circuitry for the COMPLEAT Tape Cassette Interface.

pins 14 and 3). The purpose of the division
stage is to produce a perfect square wave
clock signal, which is a requirement for the
Lancaster cassette interlace.
Tape Motion Control

The request to send line (RTS) is used to
control the tape recorder's motor, as men-
tioned earlier. Whenever the ACIA is set up
with a control register code for a low value
of RTS, the signal presented to the 7407
(1C8) section used as a relay driver is low
(after two inversions in IC5). This signal is
buffered by the driver, producing a low state
at its output (1C8, pin 6) which places 12
volts across the relay coil, closing the con-
tacts and turning on the motor. When RTS is

set high, using a different ACIA control
code, the input to IC8 is high, so the relay
coil has zero volts across it and the relay
contacts are open. Note that diode Dl is
placed across the relay coil to guard against
inductive back EMF which can blow out
integrated circuit drivers such as IC8.

Tape Motor Start Delays

Two oncshots are provided in this design
in order to give hardware delays of 2.5 and

5.0 seconds following tape motor turn on.
The long delay is used prior to output
operations so that a long leader at the mark
frequency will be recorded. The short delay
is used during read operations so that
reading will start 2.5 seconds prior to the
first actual data byte. Since the asynchro-
nous data format is used, the solid mark
tone for about 2.5 seconds will not cause
any data to be input; it provides tolerance
for manual tape positioning to selected
blocks usinga tape position counter which is

built into many cassette recorders.
The system as designed and illustrated in

this article uses hardware to generate the
time delays of 2.5 and 5.0 seconds after
motor start. I t should be noted, however,
that the timers IC6 and IC7 could be
omitted and replaced by software. To make
such a change, the input and output initiali-
zation routines would have to be altered to
use software timing loops to create the
required delay. Examples of such timing
loops have appeared in previous issues of
BYTE (sec "Add A Kluge Harp to Your
Computer," October 1975, page 14, and
"Can Your Computer Tell Time ? ", Decem-
ber 1975, page 82). This is an example of a

180

Always program with com-
mentary - if you want to
communicate what you
mean to yourself (five
years from now) or to
your neighbor.

The larger a block of data

on a cassette, the less tape
is wasted in "inter record
gaps" as the motor starts

and stops. At 300 baud, a

4096 byte block can be

recorded in 150 seconds,

so the 5 to 10 seconds of
inter record gap waste less

than 7% of the available
tape on a cassette.

hardware software tradeoff: If you find it
easier to program timing loops and you
don't mind having an idle computer wasting
time in such loops, then omit the hardware
timers and use software; if you plan to use

interrupts, with the central processor turning
to other tasks while waiting for IO opera-
tions, then the hardware timers would be

preferable.

Software COMPLEATness

No tape cassette interface is complete
without software to run it. The software of
the COMPLEAT Tape Cassette Interface
gives facilities to perform several operations.
In order to understand the use of the
software provided, the three operations of
opening, transferring data and closing a file
should be defined:

Opening a file. The first operation in a

data transfer to a device such as the
COMPLEAT Tape Cassette Interface is

opening the file. This operation is mini-
mal for the simple system discussed here:
The tape motion is started and a wait
loop is entered until the motor start delay
is complete. For output, the subroutine
T1OTZ performs this operation. For
input, the subroutine T1INZ performs
this operation. In a more sophisticated
software system, opening a file can have a

much more general meaning and effect.
For the COMPLEAT Tape Cassette Inter-
face, the tape recorder must be set up

manually for playback (read operation)
or record (write operation) and the tape
should be positioned at the beginning or
at a location specified by the location
counter of the recorder prior to opening
the file.

Data Transfer. Once the file is opened,
the motor is on; and data transfer can

occur for as long as software desires. A
data transfer operation is the input or
output of one character from the corn -
puter. The software of the interface
provides an input routine called T1GET
which reads the next character into
accumulator A with an error condition
code in accumulator B. The software of
the interface provides an output routine
called T1PUT which takes a character
from accumulator A and stores it in the
ACIA for conversion and output to the
cassette modern. Note that the program
which calls the data transfer routines
must keep track of how many bytes to
transfer. One convenient way to do this is

to arbitrarily decide to always output a

fixed number of bytes, such as 256.
Another way to keep track of block size

181

is to decide to send the block length as an
8 (or 16) bit number which is always
recorded as the first byte (or first two
bytes) of the block. These are by no
means the only software data formats
possible.

Closing a file. When the software which
requires an IO interface completes
sending all the data required for one
block on the tape, the last step of the IO
operation is to close the file. In this
simple cassette interface, the file closing
operation consists of turning off the
motor. (In the case of output, the last
character transmission must be completed
so the close routine also includes a wait
loop.) In the more general case of an
information management system, closing
a file might include other operations such
as recording check sums for error detec-
tion. The output file closing routine is

TIOSTP, and the input file closing
routine is Ti ISTP.

The Listings

Listing 1 starts a detailed presentation of
the software in the absolute machine lan-
guage and the symbolic assembly language of
the Motorola 6800 microprocessor. (While
the interface is shown oriented toward my
6800 system, the listings are given with
ample commentary to document function
and facilitate conversion to other micro-
processors.) Listing 1 contains three state-
ments which set up information used by the
assembler. Lines 1 and 2 use the EQU
pseudo operation to set the addresses of the
labels ACIACTRL and ACIADATA which
are used to reference the two memory
address space locations associated with the
COMPLEAT Tape Cassette Interface hard-
ware. Line 3 is an ORG statement which is

used to set the location counter of the
assembler to hexadecimal 1000 which will
become the starting point of the first
routine. While the listings of the COM-
PLEAT Tape Interface routines in this
article show a hexadecimal starting address
of 1000, the subroutines can in fact be
relocated to any starting address without
changing the absolute machine code. If you
do choose to relocate the code, however,
you should figure out the relocated
addresses of the subroutine entry points so

that they can be referenced by software
which uses these routines.

Listing 2 describes the output initializa-
tion routine T1OTZ which is used to prepare
for an output operation. When T1OTZ is

given control, an assumption is made that
the cassette recorder has been manually
prepared for recording but with motor

power removed. The ACIA is first reset using
the control register code of hexadecimal 5F
(lines 6 and 7). Then the ACIA control code
for normal operation, hexadecimal 1D, is set

up by execution of lines 8 and 9. This turns
on the tape recorder motor and triggers the
oneshots of IC6 and IC7 in the interface.
The output of oneshot IC6 is monitored as

bit 4 of the control register (the CTS line
into pin 24 of IC1). The initialization
routine falls into a loop at lines 10 to 12

until this time delay signal ends and bit 4 of
the control register becomes zero. T1OTZ
has no parameters and uses the stack to
preserve the contents of accumulator B, so

that upon return none of the internal
registers of the processor have been altered.

Listing 3 describes the output data trans-
fer routine T1PUT. The purpose of this
routine is to put the contents of accumula-
tor A into the output data stream. Ti PUT
first tests the transmitter buffer empty flag
of the status register (bit 1) in a wait loop at
lines 17 to 19. Then it simply stores the
output character of accumulator A into the
ACIA data location, which automatically
iritializes an output operation for that
character. Ti PUT has one parameter, a

character code passed in accumulator A. It
preserves the content of accumulator B in

the stack.
Listing 4 gives the code for the output

close routine, TIOSTP. This routine uses a

wait loop at lines 24 to 26 in order to ensure
completion of the last ACIA output con-
version. Following completion of the last
character, T1OSTP loads the ACIA control
register with the hexadecimal control code
5D in order to turn off the tape recorder
motor. It then returns to the caller. TIOSTP
has no parameters. As shown, TIOSTP uses

accumulator B as a temporary data storage
area but does not preserve its value in the
stack; addition of PSHB and PULB opera-
tions (after line 23 and before line 29
respectively) could be done to preserve these
registers if required.

Listing 5 gives the code of the input open
routine, TiITZ. This routine is identical to
T1OTZ in all areas except one: It tests the
DCD status line (bit 2 of the control
register) instead of the CTS status line. Thus
the input initialization routine waits for the
2.5 second delay produced by oneshot IC7.

Listing 6 shows the input data transfer
routine, Ti GET. This routine is called once
for each character of input expected by the
program which uses the tape cassette inter-
face. Its first action is to enter a loop (lines
41 to 44) waiting for the receiver data
available flag in the status register to become
high. When a character is ready and indi-

Listing 1: Global symbol equates and origin of the COMPLEAT Tope Cassette

Interface software. This listing sets up the symbolic addresses ACIADATA
and ACIACTRL, and sets the location counter to start at hexadecimal 1000.

Note that a common statement number sequence is used for all the tape

cassette interface software in listings 7 through 8, and that symbols with up

to 8 characters (Motorola allows 6) are used in these listings.

1 0000 80 10 ACIACTRL EQU $8010
2 0000 80 11 ACIADATA EQU $8011
3 1000 10 00 ORG $1000

set up address of ACIA control
and then ACIA data;

start program at 1000 hexadecimal,

Listing 2: Output initialization routine TiOTZ. This subroutine is called after
the tape recorder has been readied manually for a write operation. T1OTZ
resets the A CIA and turns on the tape recorder motor, then waits for the end
of the output initialization delay. The delay is ended when CTS is found to
be zero five seconds after the motor turned on.

4 1000 10 00 T1OTZ EQU this routine Initializes and starts output,
5 1000 37 PSHB push B into stack to save it;
6 1001 C6 5F LDAB rS5F ACIACTRL control code for
7 1003 F7 80 10 STAB ACIACTRL master reset, RTS high;

8 1006 C6 10 LDAB eS1D ACIACTRL :' control code for

9 1008 F7 80 10 STAB ACIACTRL RTS low, normal operation;
10 1008 F6 80 10 TIOTZW LDAB ACIACTRL B . LL ACIA status register,

11 100E C5 08 BITS rS08 test status of CTS (bit 4),
12 1010 26 F9 BNE Ti OTZW if not ready then keep looping;
13 1012 33 PULB else pull B from stack to
14 1013 39 RTS restore it, then return;

Listing 3: Character PUT routine T1PUT. This subroutine is called whenever
it is desired to write a character on tape. After waiting for a go ahead from
the transmitter buffer empty status bit, the routine transfers the contents of
accumulator A to the ACIA transmitter buffer register.

15 1014 10 14 T1PUT ECU
16 1014 37 PSH B

17 1015 F6 80 10 T1PUTW LDAB
18 1018 C5 02 EITB
19 101A 27 F9 BEC
20 101C B7 80 11 STAA
21 101F 33 PULB
22 1020 39 RTS

this routine wines one character of output,
push B into stack to save it;

ACIACTRL B . ACIA status register;
"S02 test status of transmitter (bit 11.

T1PUTW if not ready then keep looping;
ACIADATA else transmit ,r byte from A,

pull B from stack to restore it;
i et.irn to the caller,

Listing 4: Output close routine TIOSTP. This subroutine is called following
output of a series of characters (a "block "). TIOSTP waits for the
completion of the last output operation, then shuts down the tape recorder
motor and returns.

23 1021 10 21 T1OSTP EQU
24 1021 F6 80 10 LDAB
25 1024 C5 02 BITE
26 1026 27 F9 BED
27 1028 C6 5D LDAB
28 102A F7 80 10 STAB
29 1020 39 RTS

this routine stops tape alter writing a block,
ACIACTRL B .° ACIA status register;
=$02 is transmitter data register cr..ipty)
T1OSTP if not keep waiting for empty,

S50 else ACIACTRL control code for
ACIACTRL RTS high, motor off,

return to caller,

Listing 5: Input initialization routine T1INZ. This subroutine is called after
the tape recorder has been readied manually for a read operation. T1 /NZ
resets the ACIA and turns on the tape recorder motor, then waits for the end
of the inpu t initialization delay. The delay is ended when DCD is found to be

zero 2.5 seconds after the motor is turned on.

30 102E 10 2E T1INZ ECU
31 102E 36 PSHA
32 102F 86 5F LDAA
33 1031 87 80 10 STAA
34 1034 86 10 LDAA
35 1036 67 80 10 ST AA
36 1039 66 80 10 T11NZW LDAA
37 103C 85 04 BITA
38 103E 26 F9 BNE
39 1040 32 PULA
40 1041 39 RTS

182

this routine initializes and starts input,
push A into stack to save it;

-55F ACIACTRL . ' control code for
ACIACTRL master reset, RTS high;
-510 ACIACTRL - control code for
ACIACTRL RTS low, normal operation,
ACIACTRL B - ACIA status register.
.SO4 is DCDfbit 2) low)
T1 INZW if not then keep waiting,

else pull A from stack to
restore it, then return;

Listing 6: Character GET routine T1GET. This subroutine is called whenever

it is desired to read a character from tape. After waiting for a go ahead from
the receiver data available status bit, the routine transfers the input data to
the accumulator A before returning. If errors occur, the error status bits are

returned in accumulator B. Note that once the tape is started for input, the

processing performed between Ti GET calls must on the average be

completed before the next character is ready, if an over run error is to be

avoided. For a 300 baud transmission rate, this gives 33.33 milliseconds, or
33,000 Motorola 6800 instruction cycles at 1 MHz, assuming that the output
routine was called at an lO limited rate.

41 1042 10 42 T1GET EQU
42 1042 F6 80 10 LDAB
43 1045 C5 01 BITB
44 1047 27 F9 BEG
45 1049 C5 70 BITE
46 104B 27 01 BEG
47 1040 39 RTS
48 104E B6 80 11 T1GETR LDAA
49
50

1051
1052

5F
39

CLRB
RTS

' this routine reads one character of input;
ACIACTRL B := ACIA status register;
=$01 is receiver data ready (bit 01?

T1GET of not then keep looping;
=$70 are there any errors (bits 4 -61?

T1GETR if not then go read character;
else return with condition in B;

ACIADATA A := ACIA data register;
B := 0 (clear condition code in B);
return with character in A;

Listing 7: Input close routine TIISTP. This subroutine is called following the

last input of a series of characters (a "block'). TIISTP immediately turns off
the motor, since the Ti GET routine is assumed to have been executed for the

last character prior to TIISTP. Note that the determination of the length of a

block is intentionally omitted from the software of this package.

51

52
53
54
55
56

1053
1053
1054
1056
1059
105A

10
36
86
B7
32
39

53

5F
80 10

T11STP EQU
PSHA
LDAA
STAA
PU LA
RTS

this routine stops tape after reading a block;
push A into stack to save it;

ß5F ACIACTRL =: control code for
ACIACTRL RTS high and motor off;

pull A from stack to restore it;
return to caller;

Listing 8: Test Routines. The programs READ and WRITE are shown in this

listing. WRITE should be called first to output 256 bytes of arbitrary data

located at hexadecimal addresses 400 to 4FF in memory. Once the block

is dumped to tape, the tape cassette can be rewound and set up for a playback

operation. Then READ can be called to transfer the data back into the

computer where the terminal monitor program (for example, Motorola

MIKBUG) can be used to examine the data to verify that the interface

restored it properly.

57 0100 01 00 ORG

58 0100 10 00 T1OTZ EQU

59 0100 10 14 T1PUT EQU

60 0100 10 21 T1OSTP EQU

61 0100 10 2E T1INZ EQU

62 0100 10 42 T1GET EQU

63 0100 10 53 T11STP EQU

64 0100 01 00 WRITE EQU
65 0100 BD 10 00 JSR

66 0103 CE 04 00 LDX
67 0106 A6 00 WRITELP LDAA
68 0108 BD 10 14 JSR

69 010B 08 INX
70 O10C 8C 05 00 CPX

71 010F 26 F5 BNE
72 0111 BD 00 21 JSR

73 0114 39 RTS

74 0115 01 15 READ EQU
75 0115 BD 10 2E JSR

76 0118 CE 04 00 LOX
77 0118 BO 10 42 READLP JSR

78 011E Cl 00 CMPB
79 0120 26 08 BNE

80 0122 co 00 STAA
81 0124 08 INX
82 0125 8C 05 00 CPX

83 0128 26 F1 BNE
84 012A BO 10 53 ENDREAD JSR

85 012D 39 RTS

$0100 start programming at location 0100;
$1000 here is a set of
$1014 equates used to
$1021
$102E
$1042
$1053

tell the assembler
where the COMPLEAT
Tape Cassette Interface
is located;

' here begins the output test routine.
T1OTZ call the output open routine;
=$400 X := starting address of block;
O,X A := memory (X);
T1PUT output ;= A (call the put routine);

X := X i 1;

=$500 is X = last address plus one
WRITELP of not then reiterate;
TIOSTP call the output close routine;

return to monitor;

here begins the input test routine;
T1ITZ call the input open routine;
=$400 X =' starting address of block;
Ti GET A 1= input (call get routine);
=0
ENOREAD
0,x

=$500
READLP
TI ISTP

are there errors?
if so then stop prematurely.
memory(X) := A;
X := X + 1;

is X = last address plus one

if not then reiterate;
call the input close routine;
return to monitor;

183

cated by the flag, T1GET transfers the input
data from the ACIA receiver data register to
the accumulator A at line 48, after verifying
that there are no errors in a test at lines 45
to 46. A premature return with the error
code in bits 4 to 6 of accumulator B occurs
at line 47 if a parity, over run or framing
error was detected. The program using the
cassette interface is responsible for checking
any errors and possibly taking some form of
corrective action. If the data had no
detected errors, the normal return at line 50
is taken after clearing the error indication
code in accumulator B at line 49. T1GET
has two parameters which are returned in

the CPU accumulators. Accumulator A con-
tains the character which was received (or
undefined garbage if in error). Accumulator
B contains 0 if there were no errors, and an

error condition code in bits 4 to 6 if an error
occurred:

bit 4 is 1 if there was a framing error;
bit 5 is 1 if there was an over run
error;
bit 6 is 1 if there was a parity error.

Listing 7 completes the tape utility
routines with the input close routine T1STP.
Since input operations do not have to wait
for completion of the last character, simply
turning off the cassette motor suffices to
complete the input operation. The motor is

turned off by storing the hexadecimal code
5F in the ACIA control register.

A Test and Example

In order to illustrate typical use of the
COMPLEAT Tape Cassette Interface, a

demonstration program was written and is

shown in listing 8. This demonstration pro-
gram has two routines: The routine named
WRITE at hexadecimal location 100 should
be called from your terminal monitor pro-
gram (such as Motorola MIKBUG) to copy
the contents of hexadecimal memory loca-

tions 400 to 4FF onto tape as a single block
of characters. (Remember to set up the tape
recorder before calling WRITE.) Then the
routine named READ at hexadecimal loca-
tion 115 can be called to read the informa-
tion back in from tape starting at location
400. (Be sure to rewind the tape and set it
up for a playback operation first.)

REFERENCES

1. Motorola Corporation: M6800 Systems
Reference and Data Sheets, M6800 Micro-
processor Applications Manual, M6800 Micro-
processor Programming Manual, alI 1975.

2. Lancaster, Don: "Serial Interface," BYTE,
September 1975, pp 29 -32.

Digital Data on Cassette Recorders

Harold A Mauch
Pronetics Corp
PO Box 28582
Dallas TX 75228

Nearly everyone has a portable cassette
recorder. If you don't have one, chances are
your kid does ("Hey, Mom, Dad stole my
tape recorder! "). These recorders range from
the under $20 "bare bones" variety to multi
centibuck units with nearly every feature
imaginable. Fortunately it should be possible
to use nearly any cassette recorder available
if it is clean and in good working condition.
Pawnshops and similar outlets are good
sources of used cassette recorders. Used
recorders are often quite dirty and may need
repair. Take along a couple of test cassettes
when you go shopping and check out the
units' operation before buying.

Watch out for bent capstans and broken
cassette holders since these often are not
repairable and indicate excessive abuse.

Some dictating and "pocket secretary"
cassette recorders do not use a capstan drive
system. While these recorders are usable, it
may not be possible to exchange programs
recorded on these machines with a friend.
Stick with the capstan driven recorders.

While nearly any cassette recorder is

usable for storage of digital information,
some units have features which improve
performance or convenience.

(The Demise of an Overworked Carry- Corder)

Tops on the convenience list is a digital
tape counter. Next to destroying a valuable
recording, nothing is more frustrating than
not being able to find a desired program on a

cassette with several programs. The tape
counter solves this problem. Merely reset the
counter with the cassette fully rewound and
write the counter reading of the start of each
program on the cassette label. Some of the
newer cassette recorders also have cue and
review capability. While occassionally useful,
these features are not really necessary.

A recorder with an AC bias and erase
oscillator will produce the most reliable
performance and highest quality recordings.
Unfortunately most of the under $100
cassette recorders now available erase and
bias the tape with DC.

DC erased and biased recordings have
more low frequency noise and residuals and
poorer high frequency response than AC bias
recordings. Cassette recorders designed for
music recording usually have circuitry to
erase and bias the tape with a 50 to 100 kHz
signal. These same recorders usually have
drive motors which are speed controlled by
the power line frequency. The result is more
precisely driven and recorded tape. Since

LS8

8 BIT
PARALLEL
INPUT

MSB
OK TO LOAD

26
ICIo r5

34

+5

IOK

4027

15

UART
TRANS-
MITTER

27 35
36
37
38

28
29
30
31 25
32 ICBc

1/6
4049

2I 1

13

9
33 r)7

6 a:??
23 E = LOAD V

40
C

KR 5

4800 Hz

12 IC2o

RI
100K 3S0

C

KR

CI R2
.005 !OK

7.IC2D R3
1K

AUX (500mV
P -P)

MIKE (SOmV
P -P)

Figure 7: Cassette digital modulator. This circuit converts 8 bit parallel data from a computer
into a series of 2400 Hz and 7200 Hz tones using a UA RT. Filtering provided by Cl and R1 is
used to turn the square wave outputs of lC2b into a closer approximation of a sine wave (see
figure 2).

184

these are normally stereo recorders, be sure

to bulk erase the cassette first to remove the

residual signals between the stereo tracks. If
you apply the signal to be recorded to both
channels, the resulting recording will he

usable on any of the portable cassette

players.
The cassette tape unit you select must

have an auxiliary (AUX) or microphone
input and a line or earplug output. This is

the only reasonable way to connect the

cassette tape unit to the necessary

modulator /demodulator circuitry. Acoustic
coupling through the microphone and

speaker is totally unsatisfactory.
Pause controls are nice hut not necessary.

Use the cassette tape unit available to

you, but remember you only get what you
pay for and these days even that costs more.

Choice of Cassette and Tape

The choice of cassette cartridge and tape

has more effect on performance than u//

other factors combined. This is no place to
save a penny or even a buck. Get the very
best tape you can buy. Do not even consider
anything less than the super tapes. If your
recorder can record the chromium dioxide
tapes, use them. Anything less than the best

will result in much frustration. Avoid using

the C90 and C120 cassettes. The tape is too
thin and fragile. C60 and shorter tapes are

much more rugged.
If a cassette is not in use it should be

stored in its container in a dust free location.
Keep the cassette tape unit spotlessly clean

and do not smoke in the room in which the

cassette equipment is used or stored.
It is impossible to adequately stress the

importance of buying the very best quality
tape and then keeping it and the tape unit
clean. Tape quality and cleanliness is much
more important in digital applications than

in the more conventional speech or music
applications.

A

B

C

D

Getting the Digital Information
onto the Cassette

There are many ways to record digital
information on audio cassette tapes. Many
of these techniques work quite well as long
as the data is played back on the same

machine as was used to make the initial
recording. Rather than debate the merits and

deficiencies of the various techniques, the
author has chosen to support the proposal
suggested for evaluation by the BYTE spon-
sored symposium on audio digital cassette
recording. I feel the proposal adequately
accommodates the limitations imposed by
conventionally available audio cassette tape

units.
Digital information from your computer

is generally available as 8 bits parallel from
an IO port or data bus. The recording on

tape must be serial with start and stop

delimiting bits. The transmitter portion of
the UART is ideal for converting the parallel
data to this serial format. Figure 1 is a

circuit implementing such a converter or
modulator.

The serial output of the UART is said to
be NRZ (non return to zero). It means that a

logic one bit is a high level and a logic zero

hit is a low level. A logic one causes the

modulator to generate a 2400 hertz output
signal and a logic zero generates a 1200 hertz
signal. Normal output from the modulator is

a string of square waves. The sharp edges of
the square wave signal do not usually record
well on recorders with DC recording bias.

The designers of such recorders "roll off"
the amplifier low frequency response and

boost high frequency response in an attempt
to diminish the drawbacks of DC biased

recording. This causes a square wave to be

abnormally "peaked" on the rising and

falling edges and the flat portions to he

"tilted." Refer to figure 2.

Such signals are more likely to cause

errors during playback. Ideally the modu-

zz

185

figure 2: If u square wave
signal such as waveform A

is recorded on a low cost
cassette recorder, the play-
back response may look
like waveform l3, which is

very difficult to demodu-
late. If the square wave is

filtered with a low puss
filter before recording
(waveform C), the play-
back response will look
like waveform D, which is

u usable signal.

Figure 3: Circuit of a 4800
Hz oscillator this oscilla-
tor, using the 555 pre-
cision timer circuit, can be
used if u crystal controlled
or line frequency derived
timing source is not avail-
able.

lating signals should be sine waves but
generating and switching sine wave signals
digitally is somewhat complicated.
"Rounding the square wave corners" with a

low pass filter (R1 and C1 in figure 1) is not
totally effective but does provide a usable
waveform.

The AUX output is a 500 mV peak to
peak signal. This signal level will overdrive a

microphone input and should only be con-
nected to the recorder auxiliary input (50
kOhm or greater input impedance). The
MIKE output is 50 mV peak to peak and
will drive most cassette microphone inputs.

The 4800 Hz signal should be as precise
as possible and capable of driving 2 TTL
loads. Ideally it should be obtained from a

crystal oscillator and divider string or a

phase locked loop (PLL) locked to the
power line frequency. If such stable sources
arc not available the circuit shown in figure
3 is satisfactory but it must be accurately
adjusted with a frequency counter.

ADJUST FOR
5K 4800Hz

OUTPUT +5

8.2 K

.Or
MYLAR

.01

4800 Hz

If the available digital information to be
recorded is already in serial form with the
necessary start and stop bits (2 stop bits are

required) and is being sent at 300 baud, the
UART transmitter is not necessary. How-
ever, the 4800 Hz clocking signal should be

synchronous with the serial digital informa-
tion (16 clock pulses per bit). If the informa-
tion is serial but at some rate slower than
300 baud, it will be necessary to use a

UART receiver to first convert the informa-
tion to parallel form. It is then loaded into
the UART transmitter as described earlier.

When the UART transmitter is ready to
accept a parallel byte of data, the OK TO
LOAD line will be high. Data on the eight
parallel input lines is loaded into the UART
transmitter buffers by pulsing the LOAD
line low for at least 1 microsecond or until
the OK TO LOAD line goes low. The
transmitter will start transmitting the byte
or character when the LOAD line is returned
to the high state.

186

I f the UART is not transmitting any data,
its serial output line is high, causing the
modulator to generate the 2400 Hz signal.

Playback of the Recorded Data

Since the signal recorded on tape is

basically a standard FSK (frequency shift
keyed) signal, it is possible to recover the
digital signal with a phase locked loop (PLL)
or FM discriminator. In fact, users of the
Suding cassette system (wide shift audio
FSK) should be able to recover the NRZ
data signal by readjusting their demodula-
tors. However, data recovery by these means
is not as precise nor as insensitive to tape
speed variations as digital recovery tech-
niques which extract speed insensitive timing
pulses from the recorded signal and use these
pulses to retime the NRZ data.

Figure 4 is a complete schematic of the
playback recovery circuit or demodulator.

The cassette earplug output signal is

conditioned by the operational amplifier
Schmidt trigger IC3. IC4 is a retriggerable
one shot with a period of 555 microseconds.
As long as the 2400 Hz signal is being
received, the one shot is constantly retrig-
gered and does not time out. This causes flip
flop IC5a to remain at the high state
interpreting the data as a logic one. When
the 1200 Hz signal is received, its period is

long enough to allow the one shot to time
out. Flip flop IC5a is immediately reset. It
stays at the low state as long as the 1200 Hz

signal is being received, because the one shot
is timed out whenever the next triggering
edge occurs. When the 2400 Hz signal
returns, the one shot output stays high,
thereby permitting the flip flop IC5a output
to switch to its high state. The output of flip
flop IC5a is the recovered NRZ serial data.

Under ideal circumstances, the recovered
data would be sufficiently stable to drive a

300 baud teleprinter or TV typewriter
directly. However, if the tape speed varies in

excess of approximately ±6 percent (a com-
mon occurrence), errors will result. Since the
1200 and 2400 Hz signals carrying the
digital information on tape will vary in

frequency directly with tape speed vari-
ations, it is possible to use these signals to
accurately retime the recovered data. Flip
flops IC6a and IC6b extract this timing
information.

When the 1200 Hz signal is received, IC6a
is preset with a pulse generated by C8 and
R15 every time the one shot times out. The
effect is to cause IC6 to act as a division by
two. When the 2400 Hz signal is being
received, the one shot does not time out and
IC6 acts as a divide by four. The result is a

double clock rate at the output of IC6b.

C4 RB .005
(MYLAR)

27K

10K 12

e 4
C4
047

R9 r50K
2 RIO

10 IK 5 050

ICSa
1/2 4013

ONE SHOT

O ©07 D 4
r.

_LC5
001

f77 3
C Ó

R

3
IC3a
1/4 LM 324

C3
001 R6

IOK

R5 R7
IOOK 470

R4
100K -\nn1-7

-.- C2

TOS EARPLUG

C
001 IOK

8

147
1 NRZ DATA

2

R15

L
8

D S

IC6o

C o R

10

Instead of clocking the data into a shift
register, it may be more desirable to use the

receiver portion of a UART, since the UART
receiver has built in circuitry to identify the

beginning and end of each byte or character
automatically. Furthermore, the UART
parallel data outputs are 3- state, which
permits convenient direct connection to

most 10 ports or data buscs. (For a more

detailed discussion of the UART, you may

wish to read "Serial Interface" by Don
Lancaster in BYTE, September 1975).

However, the UART requires a clock at

16 times the data rate. This problem is

solved by phase locking an oscillator at 4800
Hz to 600 Hz (2X) ouput of IC6b.

The phase locked loop (PLL) oscillator is

adjusted for 4800 Hz in the absence of any

input signal. IC5b and IC9 divide the PLL
oscillator output by eight and drive one of
the PLL phase detector inputs. The other
phase detector input is driven by the 2400
Hz clock output of IC6b.

When the UART receiver recognizes that
it has received a complete character, it raises

its DATA AVAILABLE output line to logic
one (high level). Since the UART outputs
are 3- state, it is necessary to drive the

RECEIVED DATA ENABLE input to logic
zero (low level) to read the parallel output
data. After the parallel data has been read, it

is necessary to pulse the RESET DATA
AVAILABLE line to prepare the UART to
output the next byte or character. The pulse

16:47
5 D1 14

IC6b

RII
47K

3
C

R

(2X)
3

4013

R12
IOOK

C6
.001

ICBa
1/6 4049

5 >4

ICED

7 4800Hz
I/6 4049

4 (16X) 7' `_6
16 aar5 'VJ

.033

8

D

1C9D

C

R

9
D

IC9a

R

I10 4 j
4013

5 S
D

IC5b

R

I10

1/2 4013

9

must remain at logic zero for a minimum of
one microsecond or until DATA AVAIL-
ABLE drops to logic zero.

Circuit Adjustments

As already stated, the 4800 Hz signal

used to drive the UART transmitter and

modulate the tape recorder should be

obtained from a very stable and accurate
source for best results. No other adjustments
are necessary on the recorder modulation
circuits.

The data recovery one shot and the phase

locked loop oscillator in the playback data

recovery circuits must be accurately adjusted
for best results. The most critical adjustment
is the period of the data recovery one shot.
An easy way to adjust the period is to
connect a well calibrated audio oscillator to
the earplug input of the data recovery circuit
and a high impedance voltmeter to the NRZ
data output (ICSa pin 1). Set the audio
oscillator for 1800 Hz and the output level

for 1.5 to 3.5 volts RMS. Adjust R9 until
the voltmeter reading just changes (use the 5

to 15 volt scales). Get the adjustment as

close to the point of change as possible.
The PLL oscillator is adjusted for 4800

Hz (R I2) with no connection to the earplug
input. It a frequency counter is not avail-

able, compare the PLL oscillator output
(IC7 pin 4) to the 4800 Hz signal used to
drive the UART transmitter.

187

20

17

r5 -12

I T2
5

5B
ICI 6

DATA

UART
RECEIVER

16X
CLOCK

8 8 BIT
PARALLEL
OUTPUT

10

II

12

l9 LSB -0. DATA AVAIL.
IB ET

AVAIRESL. U
DATA

--< OUTPUT

rj.: I16 ENABLE

Figure 4: Cassette data
recovery circuit. This cir-
cuit shares the UART with
figure 1. The operation of
the recovery circuit is

described in text.

Figure 5: Cassette modula-
tor demodulator wave
forms. The signal pre-
sented to the tupe recorder
is a filtered square wave,
shown at the top. The
timing of data recovery is

shown relative to the con-
ditioned playback signal in
the remaining five traces.

Operating Procedure

The playback data recovery circuit will
operate best with an earplug output signal of
between 4 to 10 volts peak to peak. This is
within the range of most portable cassette
recorders. It may be necessary to put a low
gain amplifier ahead of the data recovery
circuit if you are using a cassette tape deck
not capable of driving a speaker directly. It
may be necessary to turn down the playback
tone control if the tape was recorded on a

DC biased recorder.
To comply with the BYTE Symposium

Standard, the recorded block of data on tape
must have a minimum of five seconds of the
2400 Hz tone before data is recorded. This is
easily obtained by permitting the recorder to
run in the record mode for five seconds or
longer before sending data to the DART
transmitter. When the UART is idle the
modulator is generating 2400 Hz.

During playback it is recommended that
you wait until the playback is one or two
seconds into the 2400 Hz "leader" before
allowing the computer to accept the UART
receiver output. This is to avoid reading
"trash" caused by turning the cassette tape
unit on and off.

It is possible to turn the cassette tape unit
on and off with a relay under computer
program control using the cassette tape unit
remote control input. However, the cassette
will record and playback "trash" during the
startup and stop intervals which may take as
long as 3 to 5 seconds. The 2400 Hz signal
recorded on tape before each block of data
gives the computer a "trash free" interval in
which to prepare itself for the data to
follow.

Circuit Design Considerations

It will be some time before enough
information has been learned about the use
of audio cassette recorders for storage of
digital information to permit truly optimum
designs of the necessary modulator/
demodulator circuits. Therefore the author
would like to present his design considera-
tions to provide other experimenters and

SIGNAL TO BE
RECORDED (AUX)

CONDITIONED PLAY-
BACK SIGNAL (IC3a)

RECOVERY
ONE SHOT (IC4)

RECOVERED
NRZ DATA (IC5o)

IC6o

IC6 b
(2X CLOCK)

designers a starting point for additional
experimentation and optimization. The com-
ments are somewhat technical and are

intended for the advanced experimenter or
designer.

Modulator Waveform

The nonlinearity and skewed frequency
response of most low cost cassette recorders
impose serious limitations on the waveform
of the recorded signal. In severe cases, the
waveform recovered from a square wave
input may be so seriously "tilted" and
"peaked" and filled with overshoots that
data recovery is impossible. Obviously a

better modulating signal would be a sine or
triangular waveform. On the other hand,
"doctoring" the square wave with filters is

attractive from an economic viewpoint. Such
filtering can only be carried so far before the
resulting differential amplitude of the two
modulating frequencies produces "pumping"
of the recorder automatic level control
circuits and begins to diminish the signal -to-
noise ratio and signal drop out margins of
the higher of the two modulating fre-
quencies. Economical generation of a better
modulating waveform will go a long way
toward improving data recovery reliability
with simple recorders.

Modulator Signal Level

The signal level applied to the recorder
appears to be relatively uncritical. However,
I feel the level should be standardized; but I

am not prepared to recommend a preferred
level at the present time.

Demodulator Signal Conditioning

Many experimenters have used simple
zero crossing comparators to condition the
playback signal. While these circuits have
tremendous immunity to signal drop out,
they are quite sensitive to "drop in noise"
and tend to "chatter" at low signal levels or
in the absence of an input signal. I prefer a

circuit with sufficient hysteresis to provide
some margin against the drop in noise and
residuals and to prevent chatter. The ideal

MARK --I MARK -
(LOGIC ONE) (LOGIC ZERO) (LOGIC ONE)

188

trip points for such a circuit is probably in

the range of 20 to 30 percent of peak
signal. The trip points of the circuit
described in this article are approximately
±0.5 volt. Best performance will then be

obtained from 3.5 to 5.0 volt peak to peak
input signals.

Demodulator One Shot

If the one shot is properly adjusted, the
data is recoverable with tape speed variation
in excess of ±30 percent from nominal
speed. I have found the speed distribution of
the portable cassette tape units to be skewed
roughly 5 percent negative. If a tape is

played on the same unit as was used to make'

the recording the problem is negligible. If,
however, the tape was prepared on precision
tape recording equipment (such as may be

used for mass production of cassettes for
widespread distribution), then played on a

consumer quality tape player, the tolerance
of the recovery circuit to a decrease in tape
speed will be diminished. This may provide
some argument for increasing the period of
the one shot 5 percent.

A characteristic of the data recovery
circuit used is that it, causes an approxi-
mately 6 percent marking bias in the
recovered waveform. This is not too impor-
tant if the data is recovered by a shift
register or clocked into a UART receiver. A
purist approach would delay the space to
mark transition 6 percent of the nominal bit
cell duration.

Some experimenters filter the recovered
data waveform to provide an additional
immunity to error. I have not found it to be

necessary and have found it creates more
problems than it solves.

Demodulator Phase Locked Oscillator

The PLO is only necessary because the
UART requires a clock at 16 times the data
rate. The phase detector output is filtered
with a lag -lead network. The filter was
designed to permit capture of signals ±15
percent from nominal speed with a 0.707
damping factor. Consequently, the oscillator
will remain locked during ±15 percent step
changes of the input signal frequency. Once
locked, the oscillator will track the input
signal over .a ±70 percent range. The sum
frequency component of the phase detector
output does modulate the oscillator slightly
but was not considered to be a problem.
This modulation can be diminished by
increasing the loop filtering; however, this
reduces the capture range which is

undesirable.

Conclusion

The use of hardware to modulate and
demodulate the cassette tape simplifies the
programming problems associated with using
the cassette for program loading and storage.
In some circumstances it may be possible to
connect the cassette hardware interface
directly to your 'panel switches and display
drivers and "let it rip." Other systems may
require peripheral interface adapters or other
similar circuitry to get the data onto and off
the computer data bus.

The cassette interface described in this
article is manufactured by Pronetics Cor-
poration. It is available fully assembled and
tested on a 4.5 x 6.5 inch circuit card with
connections through a standard dual 22 pin
gold plated card edge connector. Price,
availability, and other information may be
obtained by writing: Pronetics Corporation,
PO Box 28582, Dallas TX 75228.

Why Wait?

Build a FAST Cassette Interface

Dr Robert Suding
Research Director for Digital Group Inc
PO Box 6528
Denver CO 80206

This cassette interface does not have a

±30% speed tolerance. The design requires
±12 V and +5 V to run. A good quality
recorder must be used, along with excellent
quality tapes. Careful adjustments are
required.

So why use it? Well, it works! It's
dependable. And it's fast. In contrast, the
proposed BYTE standard cassette interface
runs at 300 Baud. A Teletype paper tape
reads @ 110 Baud. I have 24 K on my
system. How long would it take me to
completely load my system (not including
any Bootstrap Loader operations)?

Teletype @ 110 Baud - 40 minutes 58
seconds

Proposed BYTE standard @ 300 Baud -
15 minutes 1 second

The system to be shown in this article has
been running for almost a year at 1100 Baud
(with an upper limit of 1750 Baud with
critical tuning).

Suding system @ 1100 Baud -4 minutes
6 seconds

Past issues of BYTE have included several
articles on cassette interface proposals and

190

circuits. I would suggest re- reading these
articles. You will find one common element.
Slow. If you get the impression that I'm
impatient, you're right. I'll bet you are too.
Imagine reading 300 Baud for 15 minutes to
discover a noise pulse had destroyed data,
requiring re- reading. Ugh!

Thus the proposed standard of the BYTE
Kansas City conference in 1975 has a major
disadvantage: The use of a redundant Man-
chester format with a 1200 Hz low fre-
quency critically restricts the user to slower
data rates. A related disadvantage for those
who use filters or phase lock loops as an

input detection method is the fact that the
Manchester code employs harmonically re-
láted frequencies; this leads to design
problems in detectors based upon frequency
discrimination techniques.

The system shown in this article avoids
the above pitfalls. It uses the non- harmoni-
cally related tones of 2125 Hz - Mark and
2975 Hz - Space. The second harmonic of
2125 Hz occurs at 4250 Hz, well down on
the passband of a 2975 Hz detector. Suffi-
cient space exists between the two frequen-
cies to allow for reasonable recorder speed
discrepancies. The higher frequencies in-
volved permit increasing the data rate.

Several approaches are possible in cassette
interfacing, as seen in past BYTE articles.
However, their emphasis on wide cassette
speed tolerance made them slower. My

FROM CASSETTE
RECORDER OUTPUT

JI

RI8
10K

R19
10

LIMITER

n
DSS
IN4148 R22

2975 Hz
BANDPASS FILTER

DS4 li IN4148 R26

_LCIO
OI C8

01
D52 R21

IN4148(2)
R20
10K -12V

3 POLE
LOW PASS FILTER

6

12V

IC37
1/2
5558

8

4

-12V

R25

R23
12V

6 8
IC3

1/2
5558

4
S

/F
-12V

FULL WAVE DETECTORS
R31
100K W1e-

IC35
1/2

3 5558

2125 Hz
BANDPASS FILTER -12V

DS9
1N4148
D58
IN4148

NVV--
R32
47K

I

2 1\
R36 1/2
IOK 3 5558

C14

5V

IC38
741

3

kIR37 R39
K IOOK

7

4

- 12V

R38
470
1/2W

DGI
IN48

?7

12V -12V

4 4
R42

READ OFFSET ADJUST INPUT PORT
50K TO TTL

Figure 1: The schematic of the Suding cassette input interface as found in the Digital Group systems. This interface amplifies

and clips the cassette output with limiting amplifier IC34, discriminates the two data frequencies (see table 1) with bandpass

filters followed by full wave detectors, passes the detected signal through a 3 pole active low pass filter, then converts the result

to a TTL level which is read by a single bit Input port. One example of software (see listing 1) to drive this input interface uses a

programmed simulation of UA RT Input algorithm; an actual UART or ACIA device could be substituted if desired.

approach to `but of specification cassette

speed" is - "put it in the specification, or
get a good recorder." More of that later.

Theory of Operation

The 1100 Baud Digital Group system uses

the circuits of figures 1 and 2. The cassette

receive circuitry detects the prerecorded
frequency shift keying and produces a "1"
or a "0" output as a result of a detected
2125 Hz or 2975 Hz tone at the input. A

741 operational amplifier, IC34, is used as a

clamped limiter which prevents variations in

cassette amplitude from affecting the detec-

tion process. The output of the limiter
should be about .6 V peak to peak, roughly

a square wave with rounded edges of the

incoming frequency, constant in amplitude

regardless of tape volume setting or minor

tape "dropout" problems.

Two bandpass active filters (IC35) then

amplify a tone five times when actually
tuned to their respective frequencies of 2975

Hz for the top filter, and 2125 Hz for the

lower filter. The further off the tuned

frequency the tone is, the less amplification
the filter will produce. The gain, bandwidth,
and tuned frequency are set by the three
resistors and two condensers in each filter.
Each filter may be exactly tuned to fre-
quency by carefully setting the variable

resistance value (which may be either a

potentiometer or selected fixed values).
Full wave active detectors produce

rectified full wave pulses at the summing
junction, pin 5 of IC37. The 2975 Hz tones

are rectified to a positive voltage, and the

2125 Hz tones are rectified to a negative

voltage. As received tones depart from either
exact frequency, a value less positive or

191

SPACE ADJ
(2975 Hz)

R40
5K R12

RI4
1.6K

+5V

DS!
IN4148

FROM TTL
OUTPUT PORT

R13
IOK

DZ2
5V ZENER

TO CASSETTE
CS MICROPHONE
.033 1 R 7 INPUT

4 1 .

(TYPICAL)
RIG
220
1/2W

-12V

J2

Figure 2: The schematic of the Suding cassette output interface as found in
the Digital Group systems. The output interface Is a simple audio frequency
shift keyer made up of a 566 voltage controlled oscillator with two frequency
states controlled by a single TTL data line. The TTL level which drives the
output modulator Is a single bit derived from an output port. The software
(see listing 2) to drive this output Interface Is shown as a programmed
simulation of a UART output algorithm; an actual UART or ACM device
could be substituted If desired.

negative is produced until approximately
midway (2550 Hz) a summed voltage of 0
results.

A three pole lowpass active filter then
removes the remaining traces of pulsating
DC from the summed signal with almost no
effect on the data pulses up to a speed of
1000 bits per second. If lower data rates
were to be utilized, an improved signal to
noise ratio could be obtained by multiplying
the values of C12, C13, and C11 by the
reciprocal of the data rate ratio. Table 1

shows some component values for alter-
native frequency designs.

The final receiver section is a 741 opera-
tional amplifier, IC38, connected as a slicer.
This operational amplifier detects whether
the voltage at its pin 2 is positive or negative
with respect to the constant voltage at its
pin 3. The output voltage will then swing
either to nearly -12 V or to nearly +5 V.
Notice that this operational amplifier has +5
as its positive supply voltage, pin 7. A
forward biased germanium diode prevents
the actual output voltage from going less

Tune Up Notes

The cassette interface must be carefully tuned
to achieve proper performance. Careless tuning has
been the most frequent cause of cassette system
failure.

1. Plug in the six integrated circuits of the
cassette interface.

2. Connect a calibrated audio oscillator
between the limiter input and ground. A
digital frequency counter driven by the
audio oscillator is highly recommended. The
oscillator should cover the desired range of
2 - 3 kHz, with a sine wave output of .5 or
so, although the precise level is not at all
critical.

3. Apply +5 and ±12 voltages to the circuit.
Measure the output at pin 6 of the 741
limiter (IC34) with an oscilloscope. The
wave shape should be a rounded square
wave of about .6 V peak to peak.

4. Set the audio oscillator to 2125 Hz. Measure
the output at pin 1 of the 5558 active
bandpass filter. Slowly turn R25 until the
signal peaks. Be sure that you are peaking at
2125 Hz, not a harmonic. Vary the oscil-
lator frequency a few decades to insure
2125 Hz is the tuned frequency.

5. Similarly, set the oscillator to 2975 Hz and
measure the output at pin 7 of the 5558
(IC35). Slowly turn R26 until the signal
peaks. Vary the oscillator to insure a 2975
Hz peak.

6. Measure the detected voltages at pin 5 of
IC37. When the oscillator approaches 2125,
the voltage should go negative. When ap-
proaching 2975, the voltage should go posi-
tive. Trouble in this area would most likely
be caused by reversed or defective diodes, or
shorts between adjacent lines.

7. Measure the voltage at the cathode (bar) end
of the output clamping germanium diode

(G1). Sweeping the frequency between
2125 and 2975 Hz should result in a clean
voltage jump somewhere between 2125 and
2975 Hz. Measure the output swing to
insure that it does not exceed +5, -.3 V.

8. Remove the audio oscillator and short input
connector J1 temporarily to ground. Meas-
ure the output at pin 6 of IC34. A stable
condition (no oscillation) should be seen.
Connect the oscilloscope to the cathode of
G1 again. Adjust the balance potentiometer
(R42) so that the output voltage is a
negative level. Slowly turn the potentio-
meter until the output voltage jumps to a
positive level and leave the setting at this
point.

9. Disconnect the temporary jumper from the
input connector and reconnect the audio
oscillator. Perform step 7 again. The cross-
over threshold should be close to 2550 now.
If all proceeds well at this point, the cassette
interface is ready to receive data.

10. Connect the oscilloscope to pin 4 of the
566 voltage controlled oscillator (IC33). A
triangular wave output should be seen.

11. Connect a temporary jumper between the
TTL input going to DS1 and +5 V. Connect
a frequency counter to pin 3 of the VCO
(IC33). Adjust potentiometer R41 for a
resultant output frequency of 2125 Hz.

12. Remove the jumper from +5 V and connect
the jumper from DS1's input to ground.
This time adjust R40 for 2975 Hz output.

13. Remove the jumpers, and you are ready for
final tune in the driving circuit. Connect the
cassette interface to the driving output port,
and program the driving processor to send a
TTL high level ("1 ") output to the cassette
interface. Adjust R41 to 2125 Hz. Then
have the processor send a "0" level. This
time adjust R40 for 2975 Hz output. The
cassette interface is now ready for use.

192

than _ -.2 V, so that valid TTL levels are

not exceeded. An offset adjusting poten-
tiometer allows the output to be placed in a

"Mark Hold" condition when no tone input
is being detected.

The cassette recording section (figure 2)

uses a single integrated circuit, a 566 voltage

controlled oscillator, IC33. A logic 'level

from the computer's output port controls

the resultant audio frequency output to the

cassette recorder microphone input. A high

input ("1 ") produces a 2125 Hz output, and

a low input ("0 ") results in 2975 Hz. The

output wave shape is a symmetrical trian-
gular wave. Should the user object to using a

triangular wave, a more nearly sine wave can

be obtained by connecting a pair of back to

back 1N914 diodes between ground and the

output side of the coupling capacitor C5.

Exact values and high quality com-

ponents will result in a trouble -free voltage

controlled oscillator. The 47 K (R17) resistor

in series with the output is a typical value to
be used when coupling to the low level, low

impedence external microphone inputs of
most cassette recorders. Using the "AUX"
input of your cassette recorder generally

gives better results.

Construction

The cassette interface is available as a part

of a printed circuit board kit from the

Digital Group. The printed circuit board is

shared by a television display circuit to be

described in the next article in this series. A

kit of the cassette interface only is also

available from the Digital Group for $30,

which includes all parts and the printed
circuit board. The experienced builder can

build the circuit in an evening or two by

hand wiring components on standard .1 inch

grid Vectorboard. All the circuitry can be

contained in an area of approximately 3 inch

by 5 inch (about 8 cm by 13 cm).

Be sure to use only high quality com-

ponents, particularly in the active bandpass

filters and voltage controlled oscillator.
Some strange "frequency jump" problems
have been traced to surplus 566s which were

temperature sensitive. Lay out the receive

circuit to avoid feedback paths from output
to input, particularly in the limiter, active

bandpass filters, and slicer areas. Different
op amps could be used, but may result in

instability or degradation of final perfor-
mance due to suboptimization.

Modifying Your Cassette Recorder

It is very helpful to listen to the data

from the cassette so that the beginning of
the data burst may be detected, as well as

193

hearing the end of the data. When the

cassette read cable is plugged into most
cassette recorders' earphone output jack, the

speaker output is usually cut off. However,

since a closed circuit jack is all that is

involved, a quick solution is to connect a

jumper on the jack so that the speaker is not
disconnected. Even better, use a 100 ohm' /a

watt resistor instead of the jumper, and the

data howl won't be so loud. A 10 ohm, 'A

watt resistor from the amplifier lead to jack,
to the jack frame will prevent potential
damage to the output driving transistor(s).

Alternative Frequencies and Applications

The cassette interface design may be used

with the proposed BYTE standard should

you so desire. Table 1 has appropriate
component values calculated for two alter-
native possibilities: the simple way (less

desirable) and the "right way ". The simple

way permits using a switch on the bandpass

active filters to select the frequency pairs.

The right way involves setting the circuit to
the optimal values, and using separate inter-
faces for each frequency pair.

Amateur radio (ham) radioteletype
(RTTY) generally uses 2125 - 2295 Hz

frequency shift keying for 170 Hz shift. The

existing cassette interface can be used by

"straddle tuning," but improved per-

formance may be obtained by selecting a

second R26 which will tune the high filter to
2295. The cassette read cable may then be

attached to the short wave receiver and the
microprocessor, programmed as a radiotele-
type video terminal, which can replace the

noisy Teletype machine. Of course, a

cassette interface specifically designed for
this 170 Hz shift at 100 WPM will give

superior performance under marginal condi-
tions.

The cassette interface may be used as a

stand alone radioteletype terminal unit and

audio frequency shift keying if desired, and

works quite nicely in this application.

Software

I would suggest using software for your
cassette read and write timings. Sample 8080
software is included as listing 1. Timings at

locations <0 >/116, <0 >/133, <0 >/241,
and <0 >/260 are based on an 8080 system

with a 500 ns T time and no wait states.

Slower systems will require proportionately
decreased loop timings.

A UART could be used instead of the

"software UART" system shown. However,
several disadvantages arise. First, a slightly
greater cost and complexity. More impor-
tant, however, is a degradation in total

Low Filter High Filter Low Pass Filter VCO

R21 R24 R25
«

R22 R23 R26 . C13 C12 C14 R1 R~
2125-2975 Hz
1100 Baud 6.8 k 68 k 938 4.7 k 47 k 697 .0056 µF .01 .015 2.7 k 1.3 k

1200-2400 Hz
300 Baud
(Simple) 6.8 k 68 k 4173 4.7 k 47 k 1162 .0056 µF .01 .015 470 k 2.7 k

1200-2400 Hz
300 Baud
(Correct) 12 k 120 k 1668 5.6 k 56 k 906 .015 µF .033 .047 470 k 2.7 k

2125-2295
100 Baud
(Simple) 6.8 k 68 k 938 4.7 k 47 k 1301 ..0056 µF .01 .015 47 k 2.7 k

2125.2295
100 Baud
(Correct) 36 k 360 k 156 27 k 270 k 179 .056 µF .1 .15 47 k 2.7 k

means that the value so indicated is the typical calculated value. The precise value is dependent on component
tolerance.

Table 1: Theoretical values of components for alternate frequencies. This table gives values of
components to be used with the circuits of figures 1 and 2 in order to make this cassette Interface
work with several alternate specifications. See the text for a definition of the various comments at
the left of the table.

Potential Troubles

Knowing about potential problem areas is a
first step to minimization of their effects. Troubles
seem to break down into six classes.

Cassette recorders and the cassettes used: A
marriage between your $1000 microprocessor and
junior's $20 cassette recorder, which has been
using 30d cassettes for the last five years, will not
produce happy offspring! I have been using a

Superscope C -104 for the past year, and can report
no failures except for defective cassette tapes. The
C-104 has several attractive features. Besides the
usual conveniences such as index counter, cuing,
etc, it has a variable readback speed control, dandy
for out of spec cassettes from friends. Inside,
another special motor speed control potentiometer
is located near the speaker which allows precisely
setting the record /write speed. Quality control
seems good overall, and the list price of $120
(cheaper at discount stores) is worth the invest-
ment. Don't waste your money on cheap cassettes.
Sony Low Noise C -45s have been generally good.
Some $2 - $4 Data Certified Cassettes are
superior, but not needed.

Microprocessor caused problems: Some
microprocessor designs will not work directly with
this interface system. This interface was designed
to be connected directly to a single bit IO port,
with the processor handling all of the bit timings
through timing loops. If your processor must
periodically catch its breath for such things as
dynamic memory refreshing, you may be unable to
directly use the "Software UART" system. What a
shame! However, a hardware UART will permit
using the system even with a system of this nature.

Cabling problems: It is possible to connect
your cassette recorders with the read and write
cables reversed. Enough crosstalk from the write
line to the read limiter existed to give the
appearance of data being read, but so many errors
resulted that the programming would not run.

Tuning problems: Circuit tuning is the most
common problem. Carefully tune the active filters!

Cassette Crashes: Cassette damage is frequent

on tapes which have always worked before, but
now mysteriously fail. The most common cause of
this is removing a cassette from the recorder
without completely rewinding. The exposed oxide
then gets damaged, and is no longer usable.

Miscellaneous circuit problems:
Defective level output from cassette read limiter.

1. None at all: Check for ±12 V to IC34, and
IC34.

2. Too high output level: Diodes (DS4 and
DS5) open, or one is reversed.

Bandpass active filters don't filter.
1. Off frequency
2. Bad 5558
3. Check for shorts or out of tolerance con-

densers C8, C9, C10, or C11. Disk ceramics
are a "no-no" in tuned circuits.

4. Resistors improperly wired or inserted.
Full wave detector does not work as described:

1. Diodes open, reversed or shorted.
2. Defective IC36.

Low pass active filter fails to work:
1. Shorted or out of tolerance condensers.
2. Defective I C37.

Output slicer (1038) fails to produce TTL levels:
1. Reversed, open or not Germanium diode at

DG1.
2. Too heavily loaded output. This circuit

should drive no more than one TTL load
(standard for most IO ports).

VCO won't oscillate.
1. Defective 566 (1C33).
2. Shorted condenser C6.

VCO has parasitic oscillation (high frequency):
1. C7 not connected.
2. Defective 566.
3. C6 is open, producing a very high fre-

quency.
VCO won't tune to frequency or stay there:

1. Out of tolerance or defective C6. You really
didn't use a disk ceramic here, did you?

2. Defective 566.
3. Non -TTL levels used to drive VCO.
4. Defective potentiometers R40 or R41.
5. DS1 or DZ2 reversed or defective.

194

Listing 1: Stand Alone
Suding Cassette Input Pro-
gram. This program Is a

self contained data trans-
fer routine which will
transfer a block of data
from cassette to split octal
memory locations
xxx /xxx through yyy /000.
This program assumes that
MEMTOCAS (see listing 2)
was used to create the tape
being read. A more gener-
ally useful input facility
would be modelled on this
program and linked to a

system monitor as o sub-
routine.

Listing 2: Stand Alone
Suding Cassette Output
Program. This program is o

self contained data trans-
fer routine which will
transfer a block of data
from split octal memory
locations xxx /xxx through
yyy /000 onto cassette
tape after a five second
leader output delay. This

program assumes that
CASTOMEM (see listing 1)

will be used to read the
tape being created. A more
generally useful output fa-

cility would be modelled
on this program and linked
to a system monitor as a

subroutine.

Split
Octal

Address Octal Code Label Op. Operand Commentary

<0>/100 041 xxx xxx CASTOMEM LXI H,xxx/xxx Load starting address in HL pair;
<0>/103 021 010 000 STARTBYT LXI D,000/000 Load E, clear D;
<0>/106 333 001 SYNCH LOO IN 1 Port 1 bit 0 read for input;
<0>/110 346 001 AN I 1 Mask all but bit 0;
<0>/112 302 106 <0> JNZ SYNCHLOO If not start bit then reiterate loop;

<0>/115 006 300 MVI B,300 Time delay to middle of first data bit;
<0>/117 005 WSYNCH DCR B Decrement synch wait count;
<0>1120 302 117 <0> JNZ WSYNCH If not done then keep waiting;
<0>1123 333 001 GETDATA IN 1 Read port 1 bit 0 again;
<0>/125 346 001 AN I 1 Mask all but bit 0 again;
<0>1127 202 ADD D Sum old bits with new bit;
<0>/130 017 RRC Rotate new and old into next position;
<0>/131 127 MOV D,A Save result back in D;

'<0>/132 006 200 MV I B,200 Time delay between bits;
<0>/134 005 WDATA DCR B Decrement data wait count;
<0>/135 302 134 <0> JNZ WDATA If not done then keep waiting;
<0>/140 035 DCR E Decrement data count loaded at 0/103;
<0>/141 302 123 <0> JNZ GETDATA If not done then repeat for next bit;
<0>/144 162 MOV M,D Save received data in memory;
<0>/145 043 INX H Point to next available location;
<0>/146 174 MOV A,H Move high order address to A for end check;
<0>/147 376 YYY CP I YYY Has high order address reached end?
<0>/151 302 103 <0> JNZ STARTBYT If not then reiterate for next byte;
<0>/154 166 H LT End input;

Notes:

Input is assumed to be wired to bit 0 of port 1, from output of IC38 pin 6 via resistor R38 and shunted

by diode DG1.
Loading proceeds from split octal address xxx /xxx to address yyy /000. Enter this program by jumping to
location <0 >/100 after setting up constants of address.
" *" indicates a timing constant for the "software UART" inputs.
"v" indicates the end of transfer comparison mentioned in text.
<0> indicates an arbitrary page location for this program, to be replaced by a real memory page number

when actually loading the program at byte 100 of some page.

Split
Octal

Address Octal Code Label Op. Operand Commentary

<0 >/200 041 xxx xxx MEMTOCAS LXI H,xxx /xxx Load starting address in HL pair;

<0 >/203 076 001 MVI A,1 Start port output in high state;

<0 >/205 323 001 OUT 1 Send initial state out;
<0 >/207 026 012 MVI D,012 Outer leader delay count;
<0 >/211 006 377 LEADER5S MVI B,377 Outer leader delay loop return;
<0 >/213 016 377 LEADER5X MVI C,377 Middle leader delay loop return;
<0 >/215 015 LEADER5Y DCR C Inner leader delay loop return;
<0 >/216 302 215 <0> JNZ LEADER5Y If inner loop not done then reiterate;
<0 >/221 005 DCR B Middle leader delay count;
<0 >/222 302 213 <0> JNZ LEADER5X If middle loop not done then reiterate;
<0>/225 025 DCR D Outer leader delay count;
<0 >/226 302 211 <0> JNZ LEADER5S If outer loop not done then reiterate;

" Upon reaching this point, 5 seconds of mark (high) state have
been output to the cassette interface.

<0 >/231 016 011 BYTEOUT MVI C,011 Define output bit count (decimal 9);
<0 >/233 257 XRA A Clear carry (start bit level is 0);
<0 >/234 176 MOV A,M Move current byte to A;
<0 >/235 027 RAL Rotate bit into position (carry =0 first);
<0 >/236

'<0>/240
<0 >/242

323 001
006 200
005

WNEXBIT

WOUTLOOP

OUT
MVI
DCR

1

B,200
B

Send current LSB to output port;
Time delay between bits;
Decrement delay count;

<0>/243 302 242 <0> JNZ WOUTLOOP If time left then reiterate;
<0 >/246 037 RAR Rotate new bit into position;
<0 >/247 015 DCR C Decrement output bit count;
<0>/250 302 236 <0> JNZ WNEXBIT If data left then reiterate;
<0 >/253 076 001 MVI A,001 Stop bit state defined
<0 >/255 323 001 OUT 1 then sent out to port;

'<0 >/257 006 377 MVI B,377 Stop bit value set;

<0 >/261 005 WIBDELAY DCR B Decrement stop bit counter;
<0 >/262 302 261 <0> JNZ WIBDELAY If time left then reiterate;
<0 >/265
<0 >/266

043
174

INX
MOV

H
A,H

Increment memory address;
Move high order address to A for end check;

J <0 >/267
<0 >/271

376 yyy
302 231 <0>

CPI
JNZ

yyy
BYTEOUT

Has high order address reached end?
If not then continue output process;

<0 >/274 166 H LT End output;

Note:

Output is assumed to be wired from bit 0 of port 1 to DS1 in figure 2.
See notes to listing 1 for listing conventions.

195

system flexibility. The "software UART"
allows the timing constants to be dynami-
cally modified (if desired) by detecting the
variations in the stop bit timing, thereby
compensating for wow and flutter. Digital
integration of the incoming data bits is

possible by setting a register to octal 200 at
the beginning of each bit time. During the
bit time, repeated sampling either adds or
subtracts from the register (depending on
whether 1 or 0) and a "branch minus"
instruction system effectively eliminates re-
ceive problems. This digital integration
detection is utilized by the Digital Group
Z -80 cassette read software.

Versions of this "software UART" sys-
tem have been written for 8008, 8080, Z -80,
6502, and 6800. All work satisfactorily.

Operation

This cassette system is utilized by first
turning on the cassette recorder and waiting
until the lower tone 5 second leader tone is
heard. At this point, restart the system to
the beginning address of the "Cassette to
Memory" software.

Cassette writing is accomplished by re-
starting the system to the beginning of the

"Memory to Cassette" programming. Be sure
to set the appropriate start and stop ad-
dresses prior to beginning the read or write
operations. The monitor programs in the
various Digital Group systems automatically
set the start and stop addresses. The check
marks in the listing W) indicate the points
where start and stop addresses may have to
be modified.

The software may be adjusted to run at
different data rates by changing the values at
the addresses mark with an asterisk (*). Note
that the constants at <0 >/133 and <0>/241
are the same. The constant at <0 >1116 is
50% greater and the constant at <0>/260 is
twice the value of the constant at <0 4241.

Summing It Up

This cassette interface represents a simple
but fast and dependable way to store pro-
grams and data for the serious hobbyist. It
does not seek to be all things to all users, but
a number of applications can be run using
the same basic design. The detail interface
design has independence from other com-
ponents in the system, allowing various
processors to use the same cassette system
(with appropriate software).

196

Technology Update

BYTE always searches far and wide for
the latest in the technology of computing
systems. This month in the hills of New
Hampshire, we discovered an example of
computer technology in the form of the first
practical Touring Machine, shown here

complete with a unary relocatable based

operator (in IBM OS PL /1 parlance).

For those individuals having less than a

passing acquaintance with computer science,
the Turing Machine is a famous mathemati-
cal construction first formulated some
decades ago by Alan Mathison Turing, and
which can be shown to be logically
equivalent to any digital computer imple-
mentation. A Turing Machine is to comput-
ing what a Carnot Cycle is to thermodyna-
mics. (The fact that this particular Touring
Machine implementation looks like a CarNot
Cycle is purely incidental.) But Turing
machines have been notoriously impractical
in terms of everyday computer usage until
this new product rolled into town.

This newly released virtual Touring
Machine, version 27 chain level 1, incorpo-
rates numerous state of the art features

197

which make it one of the better examples of
the form. These features include:

1. SHIFT (micro instruction).
2. 10 speed clock controls.
3. 2 phase clock drive.
4. clock conditioner.
5. LCS (large cookie store).
6. global debugging mechanism.
7. flying head with head crash padding.
8. access arm.
9. audio output peripheral.
10. visual input scanner.
11. audio input scanner.
12. local debyking mechanism.
13. relocatable memory mapping software.
14. HLT (halt instruction).
15. system maintenance package.
16. competing access lockout feature.
17. nomadic road interfaces.
18. tape.
19. SHIFT (macro instruction).
20. EXCP (executing channel program).
21. sectored disk drive.
22. transmission links.
23. unallocated stowage.
24. machine environment (circa January

30 1976).

What's in a Video Display Terminal?

Don R. Walters
3505 Edgewood Dr
Ann Arbor MI 48104

r

Let's look at the video display terminal as

a black box which is connected to a com-
puter system (somehow) as depicted in
figure 1. Since the computer system has

already been explained (at the block diagram
level) in BYTE ("The State of the Art" by
Carl Helmers, November 1975, page 6), we
will concentrate on what smaller black boxes
make up a video display terminal.

VIDEO
DISPLAY
TERMINAL DATA

TRANSFER
LINK

COMPUTER
SYSTEM

Figure 1: Two black boxes: the video
display terminal and the computer system.

Figures 2 and 3 illustrate subassemblies
typically combined to form the video
display terminal. We see that the video
display terminal is actually made up of some
more familiar subassemblies, such as a key-
board, video display controller, video dis-
play, and a parallel (figure 2) or a serial
(figure 3) interface. Let's take a closer look
at each subassembly and see what its func-
tion is. The keyboard is a man -machine

KEYBOARD

VIDEO
DISPLAY
CONTROLLER

L

VIDEO
DISPLAY

PARALLEL DATA

PARALLEL DATA

PARALLEL DATA
INTERFACE

1

interface which is used to enter data (alpha-
betic commands, instructions, and /or num-
bers) into the computer system. When a key

is pressed, the equivalent electrical code

assigned to the character is generated and is

available in parallel form. Thus all bits of the

character's code are available at the same

time at the output of the keyboard.
Now that the electrical codes of charac-

ters can be easily generated using the key-
board, how will that data be transferred to a

computer system? Since the data from the
keyboard is already in a parallel form, the
data could be transferred to the computer
system through the parallel interface in

figure 2. The parallel interface handles the

buffering of the data between the keyboard
and the computer system (which must also

have a parallel 10 interface). The parallel
data from the keyboard could also be sent to
a computer system in serial form by using the
serial interface of figure 3. Serial interfaces
are usually used when the data path between
the video display terminal and the computer
system is longer than five feet, which would
be the case when the video display terminal
is to be connected to an acoustical coupler.
The coupler is a device which changes serial

data into frequency shifted tones to transmit
the data over voice grade telephone lines so

that a terminal can be used with a remote

110

I PARALLEL
!DATA

I AT TTL
I LEVELS

411.

4-
VIDEO
SIGNAL VIDEO DISPLAY COMPUTER TERMINAL J

198

COMPUTE R
SYSTEM

WITH

PARALLEL I/O
INTERFACE

Figure 2: Video display terminal interfaced
to a computer system through a parallel
interface.

KEYBOARD

VIDEO
DISPLAY
CONTROLLER

PARALLEL DATA

L
computer system via the telephone. The
serial interface converts the parallel data
from the keyboard to a bit serial form. In

this form, the bits of the character are sent
one bit at a time until the entire character
has been sent. Of course the computer
system must also have a serial IO interface.

We now have traced the data path from
the keyboard of the video display terminal
to the computer system. Let's trace the data

path from the computer system to the video
display terminal. Data is sent from the
computer system to the video display ter-
minal in parallel or serial form with the same

type of interface (parallel or serial) as is used

between the keyboard and the computer

VIDEO
DISPLAY 4-

VIDEO
SIGNAL

PARALLEL DATA

PARALLEL DATA CONVERTED
TO BIT SERIAL

PARALLEL TO SERIAL
INTERFACE

BIT SERIAL TO PARALLEL
DATA CONVERSION

1

VIDEO DISPLAY COMPUTER TERMINAL

1 BIT SERIAL DATA

12OmA TELETYPE
'CURRENT LOOP

OR

RS-232C
METHOD

BIT SERIAL DATA

COMPUTER
SYSTEM

WITH BIT
SERIAL I/O
INTERFACE

Figure 3: Video display terminal interfaced
to a computer system through a serial
interface.

system, except that each data path must
have its own interface electronics.

The data from the interface (parallel or
serial) is fed to the video display controller
in parallel form. The video display controller
converts its parallel data input to a com-
posite video signal which causes the video
display to show the desired characters.

The video display portion of the terminal
is essentially a TV set without the RF tuner,
IF amplifiers, and mixer circuits, but with
the necessary circuitry to display a video
signal on a CRT screen.

As you can see, the video display terminal
is not a very complicated black box after
all.

John M Schulein
Homebrew Computer Club
P 0 Box 626
Mountain View CA 94042

Pot Position Digitizing Idea

A scheme to convert the position of a

potentiometer arm into a digital value, using
a cheap commonly available timer IC

(NE555) and a few bytes of program in an

8008 or 8080 microprocessor, is shown in

figure 1. The software is organized as a

subroutine and uses the flags and the A and

B registers. The NE555 is triggered by the
OUT TRIGGER instruction and then the
program monitors the output pin of the
NE555 in a loop that increments the B

register. When the NE555 times out, the
program exits from the subroutine and the B

register contains a digital representation of
the pot position.

The hardware and software shown in

figure 1 was run on an 8008 system with a

2.5 ps clock and the B register digital output
varied from 2 to 65 Hex. The values of the
pot and /or the timing capacitor can be
modified (see the NE555 data sheet) to suit
your processor's speed and the desired range
of the digitized output.

Figure 1: Pot Position Digitizing Idea.

STATUS TO PROCESSOR (D7)

TRIGGER FROM PROCESSOR
(OUTPUT STROBE)

Hardware

.5v

POTPOS: MVI
OUT

CONT: INR
IN
ANA
JM
RET

Software

8,0
TRIGGER
B

STATUS
A
CONT

;Sets sign flag

NOTES: 1. Software written as a subroutine for the 8008 or 8080 microprocessors.
2. The flags and registers A and B are affected by the subroutine.
3. Register B contains the pot position on exit.

199

Read Only Memories in

Microcomputer Memory Address Space

The important advantages

of a ROM in microcom-
puter use are nonvolatility
and write protection for
whatever data it holds.

A bootstrap or absolute
loader is a simple program
which just transfers data
from an input device to
memory. To keep it in

your machine, it should
ideally be in ROM.

System monitors are prime
targets for ROM
technology.

Dale Eichbauer
Digitech
PO Box 6838
Grosse Pointe Ml 48236

In an earlier BYTE (sec "Read Only
Memory Technology," page 64, December
1975), Don Lancaster introduced the use of
read only memories as a tool for design at

the hardware level. This application is but
one of a multitude of uses for ROMs,
especially when you consider a ROM as part
of the main memory address space for your
computer. The important advantages of a

ROM in microcomputer use are nonvolatil-
ity and write protection for whatever data it
holds. It relieves the user from the chore of
reentering frequently used programs each

time his machine is fired up or after data is

accidentally modified. To put it simply,
your data is always in the machine whenever
you need it.

The two most common and well known
uses of ROMs are for holding loaders and

system programs. There are two basic types
of loaders: the bootstrap (or absolute) and

the more complex relocating loaders. The
bootstrap or absolute loader is a short
program which is used to load the machine
following a power interruption or any other
type of catastrophic failure which wipes

out the main programmable memory.
(Unless your machine's programmable
memory is of a special design, it is volatile,
meaning that its data is lost if power to the
memory is lost for more than a very short
time.) This loader program requests input
from a peripheral device such as a paper tape
reader or cassette drive which contains pro-
grams needed for machine operation and
stores this input data in programmable
memory. After toggling all your data in from
the front panel following power interrup-
tion, one can easily see both the convenience
and versatility of such a bootstrap loader.

200

The relocating loader takes the input data
from the peripheral device, converts its
addresses from a relocatable form into
absolute binary and stores it in memory at

selected addresses. It might typically per-

form some error checking and turn over

execution to the loaded object program.

Monitors and Debuggers

System programs suitable for or, prefer-
ably, in ROM include such things as system
monitors, assemblers, device drivers, soft-
ware debugging programs, hardware fault
testing and diagnostics. The system monitor
(which is often available from the computer
or CPU manufacturer) is a program which
handles and coordinates machine operations
at a basic level. A monitor allows the user to
control the entire system's operation with
simple, powerful commands. A typical moni-
tor might have commands for the creation,
modification, and deletion of files, device
independent 10 (from the user's point of
view), automatic assembly and execution of
programs, relocation of programs and data,
and so forth. Device drivers (short programs
which handle the software end of peripheral
interfacing) are rarely changed once
debugged and are needed for almost all IO
operations, making them a natural for ROM
storage. Software debugging programs, often
manufacturer supplied, provide a means of
detecting and correcting programming faults.
The many forms and features which they
possess are too extensive for any detail in
this article. One rather unusual but poten-
tially useful application of ROM storage is in

storing hardware testing and diagnostic
routines. Testing of the microcomputer
often can be done by simple programs which
execute an algorithm and compare the re-

sults with the correct answer. It can also be

done by complex programs which execute

all functions of the machine, often in cer-

tain critical combinations peculiar to the

machine under test. At first it would seem

that there is no need to put these routines in
memory of any type until needed except for
convenience, since it would be an infre-
quently used task. Consider, however, the
case where a fault which is to be located is in
some way related to or impeding the input
or the programmable memory's storage func-
tions. If this is the case, then the testing or
diagnostic routine may never get into the
machine in usable form to do its job.

Simulation and Emulation

Simulation is another use of ROMs in

microcomputers which will become more

common as CPU capabilities increase, ma-

chines proliferate, and users demand more of
their machines. Simulation is the technique
of interpretively executing an instruction set

for one computer design using a program
running on a second "host" machine. For
example, a host machine with an 8080 CPU

could execute object programs from another
machine which uses a 6800 or PACE CPU (or
even IBM 360/370 software for those with
delusions of grandeur). A ROM could con-
tain the simulator program to execute the
foreign instruction set. With an appropriate
general purpose simulator program it might
even be possible to change the instruction
set of a machine by referencing a different
ROM data table for each simulated machine.
Of course all such simulations run much
more slowly than the actual speed of the
computer in question.

A related technique is emulation, in

which microprogrammed hardware imple-
ments an instruction set directly. Some

microprocessors are internally micropro-
grammed, but the user typically will not see

this fact externally. Microprogrammed corn -

puters are fairly widespread in contemporary
technology. And with nearly every micro -
programmed computer, there is a control
store implemented in some form of ROM.
But the majority of microprocessor chips
currently available do not give the user a

facility to use microprogramming tech-
niques. The instruction set is typically com-
mitted by the manufacturer during the
design stage; so, to perform the software of a

foreign machine, a software simulator must
be used as described above.

With such simulations, the slowness of
operation is due to the fact that a series of
instructions (a subroutine) must be executed
on the host computer in order to achieve the
effect of a single instruction of the simulated
machine. Even though a simulated computer
may be 10 to 50 times slower than the real

machine, such slowness is often tolerable
when compared to the time it would take to

hand translate the program. Use of ROM to
store the simulator makes the simulation
mode virtually a part of your hardware,
protected from destruction due to power
loss or accidental modification during pro-
gram execution.

Subroutines

Another excellent use of ROMs is the
storage of subroutines. Multiply, divide,
double precision, floating point, conversion
formulas and other algorithms, plus addi-
tional software implemented functions are in

the machine as soon as power is applied.
When they have been implemented in ROM,
such subroutines act as if they were really
hardware instructions.

Security Data

Anyone assembling a multi user computer
system, especially one with remote access,

should consider using a ROM for main-
taining data pertinent to the various users of
the system. This data might include such

things as access codes, what devices and
memory segments are authorized for use by
which individuals, the particular user's sys-

tem priorities (for job and device scheduling
by the operating system), and so forth. The
operating system constantly needs such in-
formation to make decisions concerning the
handling of tasks for the current users. A
ROM protects this information from modi-
fication or destruction, whether accidental
or malicious.

Tables

An excellent use for ROMs is the storage
of tables of values. There are many tables,

such as logarithmic, sine, cosine, and tangent
values, which could be of use to almost any
computer hobbyist. A program needing one

of these values then has to merely look up

the desired value in the appropriate ROM
table. Such tables can also be used to speed

up high precision calculations by giving an

approximate starting value. Those faced with
interfacing a non -ASCII encoded terminal or
other peripheral (such as EBCDIC, Selectric,
Baudot, or Hollerith) to their microcom-
puter may find that a character conversion
table, implemented in ROM, is part of the
solution, as Don Lancaster points out in
BYTE #4. However, while his conversion
scheme uses a ROM which does its conver-
sion of data apparently at the peripheral
itself, in many cases it would be useful or
desirable to perform this conversion in the
machine. Such a conversion method would
even make it possible for two terminals,
whatever their coding scheme, to commu-

201

If you plan to do a lot of
simulation, the simulator
program might be a logical
choice for ROM. With dili-
gent software preparation,
your humble 8008 could
simulate a mighty 360/370
(although much much
more slowly in execution).

A library of often used

subroutines is another
item which would make a

good candidate for ROM
storage.

Data tables for character
code conversion via soft-
ware can be stored in

ROM if they are used a

lot.

If you want to use your
computer as a low fre-
quency (audio) waveform
generator, you could burn
a set of standard waveform
patterns into ROMs, using
software to drive a DA
conversion device at vari-
ous frequencies.

nicate with each other using the microcom-
puter (and its ROM) as a sophisticated
interpreter. And, if data rates, character
lengths, and line lengths are different, then
such a setup offers the added advantage of
using software and memory as a buffer to
compensate for these differences.

Waveforms

If your machine is equipped with a DA
converter (digital to analog converter), then
a ROM can contain a set of values which,
when output through the DA, will produce a

custom waveform. In many cases special
waveforms may be generated in this fashion
which would be impractical to generate,
using any other method. Both the frequency
and amplitude of the waveform may be
controlled completely by software. With an
8 bit word and a DA with 10 volts full scale
output, resolution of 0.04 volts per bit is

obtainable. The maximum generated fre-

quency is dependent on the speed of the
microcomputer and the number of outputs
per cycle required for a suitable waveshape.

Error Checking and Arithmetic

Two other possible uses for ROMs which
may be implemented either in main memory
or as processor add -ons are a parity gener-
ator /checker and a fast multiplier /divider. A
table for all possible combinations of a word
can be referenced to generate the parity bit
or a flag check bit. Multiplication and
division may also be done as table functions.
Several of the IC fast multipliers currently
available are actually modified and specially
programmed ROMs.

The article in BYTE #4 also introduced
Programmable Read Only Memories
(PROMs), which are the most useful type of
ROM for computer hobbyists, since a cus-
tom pattern costs very little to have pro-
grammed or the user can do it himself.

Bibliography on ROMs and PROMs

These articles are found in engineering publica-
tions, which should be available in well stocked
corporate or university libraries.

"PROMpting a minicomputer" by Robert High-
tower of Motorola in the February, 1973,
Electronic Engineer /Systems Engineering Today.
This is a description of a bootstrap (or absolute)
and a relocating loader for a PDP -11 which is

stored in ROM.
"PROMs, Proms, Promises" by Jerry Metzger in

June 16, 1975, Electronics Products Magazine.
This is a good introductory article on PROMs and
includes a wall chart of all PROMs available, both
bipolar and MOS, as of its publication.

"PROMs - a practical alternative to random
logic" by Dave Uimari of Signetics in the January
21, 1974, Electronic Products Magazine. Here is an
excellent article on PROM theory and use which
also includes lengthy discussions on programming,
such as how it is done, best place to have it done,
typical large and small scale equipment, etc.; lists
PROM programming services and equipment
manufacturers.

"Designer's Guide to Semiconductor Memories
- Part 1" by Robert J Frankenberg of Hewlett -
Packard Data Systems in August 5, 1975, EDN
magazine. This is a good introduction to all types
of memories, ROMs and PROMs included; it also
includes an excellent list of references.

"Read -Only- Memories in computers - where
are they headed ?" by Roger R Dussine of Com-
pagnie Honeywell Bull and Robert M Zieve of
Honeywell Information Systems in the August 1,
1972, EDN magazine. The authors provide an
overall survey of ROMs, their use in computers,
mentions use for fault location, bootstrap, some
unusual types of ROMs, and things to come in
ROM technology.

"Programmable ROMs offer a digital approach
to waveform synthesis" by Karl Huehne of
Motorola in the August 1, 1972, EDN magazine.
This is a detailed description of ROM wa'.gorm
synthesis.

"Large Bipolar ROMs and p /ROMs Revolu-
tionize Logic and System Design" by Joe Mc-

202

Dowell of Monolithic Memories, Inc in the June,
1974, Computer Design. Here you'll find a short
survey of the current bipolar ROM technology and
some examples of use, including a ROM controlled
timing pulse generator under microcomputer
command.

"Mixing Memories in Minicomputer -based Con-
trol Systems" by Richard A Farwell of Data
General in the February, 1973, Control Engineer-
ing. This is a discussion of how various memories
are used in Data General minicomputers and the
costs and tradeoffs involved; a section on ROMs
lists a number of uses outlined in this article.

Manufacturer's data sheets on particular devices
contain a wealth of information and are free for
the asking. As an example, the data sheets below
contain listings of ROM and PROM lookup tables
of values.

From AMI:
A 256 word sine and cosine table in the
S8614 supplemental note.
An arctan table in the S8771 supplemental
note.
A 512 word sine and cosine table in the
S8772 data sheet.
A Hollerith to USASCII conversion table in
the S8457 data sheet.
A USASCII to Hollerith conversion table in
the S8539 data sheet.

From Nitron:

A Hollerith to ASCII conversion table in the
NCM 1112 data sheet.
A Selectric to ASCII to Selectric conversion
table in the NCM 1151 data sheet.
A 512 word sine and cosine table in the
NCM 1141 data sheet.

From Computer Microtechnology:

ASCII to EBCDIC and EBCDIC to ASCII
conversion tables in the CM 2850 sup-
plemental note.

More Information
on PROMs

Roger L Smith
4502 E Nancy Ln
Phoenix AZ 85040

Have you ever wanted to program your
own read only memories automatically so

that you could copy programs into a per-
manent storage device? This article concerns
one kind of erasable read only memory, the
Intel 1702A integrated circuit and its

pin compatible equivalents the National
MM5202AQ and MM5203Q. These
memories store 256 eight bit bytes of data
using a method which allows total erasure
and reprogramming many times. The
method of programming is complex while
erasure can be accomplished simply by
exposure to an ionizing radiation (such as

ultraviolet light). When you need to store

large tables of data or programs, use of such

read only memories is a very attractive
alternative to more elaborate types of
memory provided a method of programming
is available. These erasable read only
memories are economical as well, since
typical prices at the time of this article are in

the $20 range.

Why PROMs?

A few years ago, it became apparent that
the different users of read only memories
(ROMs) had many special applications which
required only one or two copies of any given
data pattern. The technology of mask pro-
grammed read only memories is only cost
effective for large production runs of parts
so an alternative had to be found. A means
was needed for the user of read only
memories to inexpensively field program one
or two copies of a data pattern. This is

where Harris Semiconductor, a division of
Harris Intertype Co., entered the picture and

coined the term PROM for programmable
read only memory, a Harris trademark that
has become almost generic through wide-
spread use. A PROM then was simply a

ROM that could be programmed in the field.

203

While production read only memories are
manufactured from specific masks provided
weeks in advance by the user, a PROM can
be programmed in seconds automatically by
the user reducing turn -around time to a

minimum.

Types of PROMs

Let's examine some of the different
PROMs in use today. There are a number of
options for the memory elements used in
making programmable read only memories
including nichrome fuse links, diode
matrices, stored charge devices, amorphous
semiconductors, polycrystalline silicon fuses,
etc. Note that all these memory elements
can be electrically altered in order to store
data. A few can also be restored to the
original condition; these are used in erasable
read only memories (EROMs).

Figure 1 illustrates how the basic PROM
operates. The first thing to notice is a

decode circuit. This decodes the address to
select one of the 32, 64 (or whatever) word
gates in the memory matrix. The decoder is

simply an array of multiple input gates with
one input for each address bit and one gate
for each memory word.

Each decoder gate drives a multiple
emitter word driver transistor. In series with
each emitter is a memory element which in
this case is a fusible link. In this example, we
have a 4 bit word so each word driver
transistor contains 4 emitters, each con-
nected to a fusible memory element. The
memory elements then connect to the
appropriate bit sensors and output buffers (4
in this example).

When a particular word is addressed, its
decoder and word driver transistor turn on.
If the fuse link is intact, the bit sensor turns
on and the output line for that bit goes low
(logical zero). If the fuse link is open, the

ADDRESS
LINES

DECODE VCC

1 1

TO OTHER
BITS

WORD
DRIVER
TRANSISTOR

MEMORY

H

C
FROM OTHER
WORDS

G2

PROGRAM
CIRCUIT

G2

4 OUTPUT BIT

SENSE AMP

Figure 1: This partial schematic of a PROM shows the circuit for one word and one bit. This
PROM would be the nichrome fuse link type.

sensor and buffer circuit remains off and the
output is high (1 bit).

Not shown in the diagram are the chip
select (or chip enable) lines. The chip select
lines are typically connected to the higher
order address bits. When many PROMs are
utilized, an external decoder circuit (such as

74154 or 7442) might be used to decode
several high order address bits and decide
which PROMs to enable or select. Essen-
tially, the chip select inputs are used to turn
on the output bit sensors and buffers when
the PROM is selected. PROMs use open
collector or tri -state output buffers so that
they can be bused. The buffers are in the
high impedance state until enabled.

The nichrome fusible link type of pro-
grammable read only memory is manufac-
tured by Harris, Signetics, Texas Instru-
ments, and Motorola. From this basic
nichrome fuse PROM, other types have
evolved. The next natural step was to poly-
crystalline silicon fuses, as made by Intel and
Advanced Micro Devices. These are easier to
build in the semiconductor fabrication proc-
ess because the fuse links are also made out
of a semiconductor material. The silicon
fuses are burned open in the same manner as

the nichrome fusible link type. Due to the
semiconductor structure of the memory
elements, these PROMs often require a more
elaborate programmer than the nichrome
fuse type.

Another development in memory ele-
ments is the Avalanche Induced Migration
(AIM) device patented by Intersil. Fabrica-
tion of these elements is similar to TTL logic
which simplifies the manufacturing process.
The elements are basically NPN transistors
arranged in a matrix with common collectors
on the X -lines and common emitters on the
Y- lines. In programming a logical one, a high
current is forced through the desired transis-
tor from emitter to collector. The emitter to

base junction is forced beyond normal
avalanche and into secondary breakdown.
Aluminum flows into the junction causing a

base to emitter short that in effect leaves a

base to collector diode. These PROMs are
programmed using 2.5 us pulses of 200 mA
current that are alternated with sense pulses.
After a number of pulses, a change is sensed
and the programmer moves on to the next
bit.

Erasable ROMs

A memory element used by Intel and
National Semiconductor is a stored charge
type called a FAMOS transistor. FAMOS
stands for floating -gate avalanche -injection
MOS charge- storage device. It is similar to a

P- channel silicon gate field- effect transistor
with no contact on the gate. Programming
the FAMOS type of memory element re-
quires a pulse more negative than -30 volts
applied to the drain or source P -N junction.
High energy electrons are injected into the
floating silicon gate. With this negative
charge on the gate, there is current con-
duction between the source and drain of the
FAMOS transistor.

The primary advantage of this stored
charge type of memory element is that the
charge can be removed later by exposing it
to a high intensity, short wavelength ultra-
violet light. The radiation creates an ionizing
action that causes the charge on the floating
gate to leak back to the substrate. These
erasable ROMs (EROMs) are provided with a

transparent quartz lid to allow exposure to
the radiation. More about erasure later.

For the really dedicated computer
hobbyist who wants all of his system moni-
tor, resident assembler, text editor, etc. in
PROMs because they are all working as

desired (at least this week), erasable ROMs

204

A2 I 24 Vdd

Al 2 23 Vcc

AO 3 22 Vcc

DI 4 21 A3

D2 5 20 A4

D3 6 19 AS

D4 7 18 A6

D5 8 17 A7

D6 9 16 Vgg

D7 IO 15 Vbb

D8 II 14 CS

Vcc 12 13 PROGRAM

Figure 2: Pin -out diagram Intel 1 702A
EROM. AO - A7 = address inputs; D1 - D8
= data output (for READ mode), data input
(for PROGRAM mode); CS = chip select.

are the logical choice. Currently available for
around $20 are the 2 Kb Intel 1702A and

National MM5202AQ and MM5203Q. All of
these EROMs use the FAMOS stored charge

memory elements and can be erased with
ultraviolet light. These EROMs have one

definite advantage over regular ROMs; they
have been tested before delivery.

Intel 1702A EROM

The Intel 1702A EROM is produced in a

24 pin dual in line package with a trans-

parent quartz lid. Intel also makes a 1602A
ROM which is identical to the 1702A except
that it has a metal lid and is not erasable. All
chips undergo complete programming and

functional testing on each bit position prior
to shipment. The 1702A and 1602A are

both 256 word by 8 bit, entirely static MOS

ROMs with no clocks required. All inputs
and outputs are TTL and DTL compatible,
but the outputs are tri -level to allow output
busing capability. Memory expansion is

simplified by use of a chip select input
which disables the chip when high (logical
one). Figure 2 shows the Intel 1702A pin
connections while table 1 shows the voltage
inputs for the read or program modes.

Erasure Methods

To erase EROMs such as the 1702A, Intel
recommends using the Model S -52 ultra-
violet lamp available from Ultra -Violet
Products Inc., San Gabriel CA (cost is

205

Table 1: Intel 1 702A EROM input voltages.

Read
Pin Mode Program Mode

12 Vcc 5 V ground

13 PROGRAM 5 V Program pulse
(-46 V to -48 V)

14 CS ground ground

15Vbb 5V 12V

16 Vgg -9 V Pulsed Vgg input
(-35 V to -40 V)

22 Vcc 5 V ground

23 Vcc 5 V ground

24 Vdd -9 V Pulsed Vdd input
(-46 V to -48 VI

about $170) or through Intel distributors.
An inexpensive eraser can be built for about
$15 using a General Electric ultraviolet lamp
#G8T5, a ballast transformer, single pole
switch, a push button starter switch, and
mounting hardware. The lamp is mounted in
an enclosure and the EROM is placed under
it at a distance of 0.25 inch. The lamp is

turned on for about 6 minutes for complete
erasure, but use caution not to expose
anyone to the ultraviolet rays.

CAUTION: When using an ultraviolet
lamp, you should exercise extreme
care not to expose your eyes or skin to
the rays. Short wave ultraviolet light
can cause sunburning of the eyes and
skin.

According to a National Semiconductor
engineer, the ultraviolet erasable EROMs
cannot be indefinitely erased and repro-
grammed. After about 52 cycles of repro-
gramming, the device will not work properly
unless it is reconditioned by baking in an

oven at 400 °F for 45 minutes. After recon-
ditioning, the program -erase cycle can be

repeated another 52 times, although the
National Semiconductor engineer
recommends only 35 cycles between
reconditioning.

EROM Programming

We'll describe two possible methods of
programming these EROMs. The first
method is highly recommended, will prove
least expensive, and is extremely simple -
order it programmed or send it in to be

programmed!
Many EROMs are not simple to program.

The 1702A type EROM requires a series

(over 32) of 47 volt programming pulses of 3

ms duration with 20 percent duty cycle for
each word. Also, at the beginning of each
pulse, the address must be complemented.

Manual programming is out, and the cost of
an automatic programmer may not be justi-
fied. Remember also that in order to erase
programs you must buy some type of
ultraviolet lamp. A PROM /E ROM pro-
grammer could, however, prove to be a very
interesting and fund raising activity for an
industrious computer club.

Figure 3A:

STANCOR
P8180

V2A
SLO-
BLO

IIOVAC

1001

II 25V
IN4002 (4)

+80

If this isn't convincing enough, or if you
plan on going into the business, or if you're
just plain curious, you may want to try the
circuit of figure 3 that can be built to
program the 1702A, 5202AQ, etc. The
programmer is a simplification of the Intel
MP7 -03 programmer and is designed to work
with the 8080 program of table 3. Crowbar

5µF
+I¡50V

\ In
MJE1102 I/2W

27 K

200pF

100

II 25V
390

/77

PINS ON
PROM
SOCKET

IN914

P8180 3000µF
STANCOR IOOV

4.7K

-IN5258A
36V

200 IOOK pF IN4002

I0K rh---Alv-

IN 2 70

IN270 2N2907

100 BB

IN5242A 5
12V NE550A

V. REG

T9
-9V
SUPPLY

5µF +5
+5V
SUPPLY

>T TI T.I
GNO

PROGRAM
ENABLE

12

+5

+5

1120K

+5

I
ADJ FOR 47V
PULSE AT PROM
PIN 12

1

/77

IN5258A
IN4753A
36V

470 W

1N914

4

o
DM9602
I5mS

74L10

13 2

+5
IK 4

IK

IK

27K

IN914
IN
5264A

60V OK

IN914 /77 1200pF
) 27K

2N2907

2

1

20K

1µF

7405

IN4002
4

7405 3
+5

47K

2

BIT 2, OUTPUT PORT 4

4
1/2 0
DM9602

I 55µ S

+ 80
27K

27K

16

12

1/2 0
DM9602
60µS

+ 5 151 14

I6
1/2 0
DM9602
3.0mS

12

1 n 10

7405

206

4.7K (T.) PART B)

Figures 3A and 3B: Com-
puter controlled PROM
programmer for stored
charge PROMs. Unless
otherwise noted, transistors
are MPS -A06 or 2N3722
or equivalent. Pin 14 of
ICs to 5 V, pin 7 to
ground.

PINS ON PROM +5V DATA BITS
+SOCKET 68K OUTPUT

100

FEU iii 7403 7404 PORT 2

3.1 2,1 ODO

INPUT ©
PORT 2

ID

100 . 7403 6.©6 I5 nn

Fa ° ..
100 : 7403 11140110 8.9 1011 002

" 68 K

102 a

0 100
= 7403

®

111114111E .

El
100 ,

M

UNIrrili
/ .:

0 100 : 7403

IV". 6.© I I

1n

ADDRESS BITS

6.8K

330 3

OUT PUT
7486 PORT 3

330

2

7486
6 -. 4

5

7486
330 8

9 .(10

7486
330 II 12

330

330

3

7486

13

7486 6-/4

ODO

OD I

004

330 II

7486
12

13

Figure 4: Program flow chart.
BEGIN

INITIALIZE:
CLEAR REG A, SET ADDR
DISABLE PROGRAMMER

INCREMFSTP AMR,
au NEXT EROM AMR

SET EROM ADDR, GET
DATA AND ILIAD TO
EROM

I

START PROGRAMMER:
SET PROGRAM ENABLE
BIT

DELAY 520 MS FOR
PROGRAMER TO
PROGRAM DATA

STOP PROGRAMMER: ER:

RESET PROGRAM ENABLE
BIT

I

DELAY 9 MS FOR
PROGRAMER 10 STOP

READ
DATA

I

TEST
DATA

TURN ENTE LlGHT ON,
SAVE BAD DATA ADDR,
INCREMENT ERROR TABLE

208

and protective features have been removed,
so you need to check your circuit voltages
before each use. Input data and addresses
should be in positive logic (i.e., logical one is

a positive level). The five monostables are
contained in three 9602 dual one shot
integrated circuits. Do not substitute the
74123 dual monostable which is very suscep-
tible to noise and therefore may not operate
properly for this application. These mono -
stables generate the proper programming
pulses when enabled by bit 2 of the output
port 4. The pulses are repeated every 15 ms
(by the first 9602) and the length of time

Table 2:

Programmer Connections

1. Connect 8 Address lines to output port 3 of
your 8080 computer (port 3 lines ODO to
007).

2. Connect 8 Output Data lines from output port
2 to pins 1, 5, and 11 of the three 7404s for
data to be programmed (port 2 lines ODO to
007).

3. Connect computer input port 2 to pins 4, 8, 12
of 7404s for reading EROM data for com-
parison (port 2 lines IDO to 107).

4. Connect bit 2 of output port 4 to pin 1 of
74L10 (near the PROGRAM ENABLE switch).

5. Connect 5 V and -9 V supplies from computer
or other source and connect the 110 VAC
power line.

Programmer Operation

DO NOT TURN POWER ON OR OFF WHILE
EROM IS IN SOCKET.

1. Turn on computer and programmer.
2. Load EROM program at location 001/000.
3. Load desired EROM data at location 002/000.
4. Insert EROM into socket. Single step first five

instructions of the program (to disable Program
Enable).

5. Set computer at address 001/000, switch on
Program Enable switch, and start computer.

6. At Halt, turn off Program Enable switch and
remove EROM.

Programmer Calibration Test

ALL POWER ON, AND NO EROM IN THE
SOCK ET.

1. Be sure Program Enable switch is OFF.
2. Measure 5 V at pins 12, 13, 15, 22, and 23.
3. Measure 0 V at pin 14.
4. Measure -9 V at pins 16 and 24.
5. Ground pin 2 of the 7405 IC and measure 0 V

at pin 24 of the EROM socket.
6. Ground pin 4 of 7405 IC and measure 58 V at

pin 15.
7. Ground pin 6 of 7405 and measure 47 V at pins

12, 14, 22, and 23. Adjust pot on NE550 for
the 47 V. Pin 13 should remain at 5 V. Measure
9 V at pin 16.

8. Ground pins 6 and 8 of 7405 and measure 47 V
at pin 13.

The author will program
the 1702A EROM for $5. All
he needs is the PROM, an
octal or hexadecimal listing of
the desired program and $5.

each word is programmed is determined by
the software. This will be 520 ms with the
program given here, so about 35 pulses are

generated per word. Note that all bits in a

word are programmed at one time.
At first glance it would appear that the

voltages generated by this programmer don't
seem to agree with the voltages specified for
programming the 1702A in the manufac-
turer's documentation. However, if you look
at the voltages with respect to Vcc (pin 12),
they do agree. Follow the programming
instructions of table 2 exactly and be sure
you don't turn power on or off while an

EROM is in the socket. The monostables
could be triggered and program unwanted
bits in the EROM. Also, turn the Program
Enable switch to off when inserting or
removing EROMs. Table 2 gives a complete
list of programmer connections and a cali-
bration test.

A program for use in your 8080 type
computer to program the 1702A (or equiva-
lent) is shown in table 3 and the accompany-
ing flow chart is shown in figure 4. This

Table 3: 8080 program for EROM programmer.

program is loaded into your computer start-
ing at octal location 001/000, and the data
to be written into the EROM is loaded
starting at location 002/000. If any errors in
programming are detected, the Interrupt
Enable (INTE) light will light and the EROM
addresses of the invalid words will be stored
consecutively starting at octal location
000 /000. The program runs for about 2.25
minutes and then halts. If you have an 8008
system, you can translate the operations and
change the timing loops accordingly. For
users of other machines, comments and a

flow chart are provided to aid in translating
the 8080 code for your machine. This
EROM program can be entered and operated
entirely from front panel switches or, for
those with a teletype, punched tape, TV
typewriter, etc., the program can be modi-
fied to suit. In any event, check that the
timing loops are correct for your particular
system before attempting to use the pro-
grammer to actually program EROMs.

Good luck with the PROM /EROMs for
your computer.

001/000 257 XRA A ;CLEAR REGISTER A

/001 117 MO V C,A ;SET ERROR TABLE ADDRESS

/002 137 MOV E,A ;SET FIRST EROM ADDRESS

/003 323 004 OUT 4 ;DISABLE PROGRAMMER
/005 041 000 002 LXI H,DATBK ;SET ADDRESS FOR DATA TABLE
/010 323 003 START: OUT 3 ;SET EROM ADDRESS

/012 176 MOV A,M ;GET DATA FROM TABLE
/013 323 002 OUT 2 ;LOAD DATA TO EROM

/015 076 004 M V I A,004 ;SET BIT 2 - 1

/017 323 004 OUT 4 ;ENABLE PROGRAMMER
/021 006 260 M V I B,260 ;SET DELAY COUNT

/023 026 000 MVI D,000
/025 025 DELAYI: DCR D ;DELAY FOR 520 MSEC.
/026 302 025 001 JNZ DELA1
/031 005 DCR B

/032 302 025 001 JNZ DELAY1
/035 257 XRA A ;CLEAR REGISTER A

/036 323 004 OUT 4 ;DISABLE PROGRAMMER

/040 006 003 M V I 8,003 ;SET DELAY COUNT

/042 025 DELAY2: DCR D ;DELAY 9 MSEC."

/043 302 042 001 JNZ DELA2
/046 005 DCR B

/047 302 042 001 JNZ DELA2
/052 333 002 IN 2 ;READ PROGRAMMED DATA

/054 276 CMP M ;CHECK DATA -- IS IT CORRECT?
/055 312 064 001 JZ ALLOK ;JUMP IF OK

/060 373 El ;BAD DATA -- TURN INTE LIGHT ON

/061 173 MOV A,E ;GET DATA ADDRESS FOR DATA

/062 002 STAX B ;STORE BAD DATA ADDRESS

/063 014 INR C ;INCREMENT ERROR TABLE ADDRESS

/064 076 377 ALLOK: MVI A,377 ;CHECK IF DONE PROGRAMMING THIS CHIP

/066 273 CMP E ;AT LAST ADDRESS?

/067 312 100 001 JZ STOP ;HALT IF DONE

/072 034 INR E ;INCREMENT EROM ADDRESS

/073 043 INX H ;SET NEXT DATA ADDRESS FOR DATA TABLE
/074 173 MOV A,E ;GET NEXT EROM ADDRESS

/075 303 010 001 JMP START ;CONTINUE -- PROGRAM NEXT WORD

/100 166 STOP: HLT ;HALT -- ALL DONE

002/000 (EROM DATAI DATBK: BLK 256.

'Note: Time delay loops are shown for an ALTAIR 8800 with a clock frequency of 2 MHz. Total loop time 11.5 usec for an apparent frequency

of 1 .3 MHz.

209

Carl Helmers

betting Inputs from

Joysticks and Slide Pots

Have you ever wondered how to get
inputs from joysticks and slide pots for
interactive game control purposes? A joy-
stick is a two dimensional potentiometer
control of the kind often seen in model
aircraft radio control rigs. A slide pot (or
conventional pot) is just a one dimensional
version of the same concept of interactive
control. To use the information obtained
from such a potentiometer in the computer
it must be converted into two binary inte-
gers. An inexpensive oscillator, two
counters, a four bit output latch and one
NAND gate section are needed in addition to
a standard 8 bit bus IO interface and a

simple set of software routines. The ideas in
this article can be adapted to any computer,
although sample subroutines are shown for
the 8080 and the 6800 microprocessors.

The Method

The problem to be solved is turning a

mechanical signal into the corresponding
value of a digital word used by the program.
The mechanical signal is the position of the
joystick, slide pot or conventional shafted
potentiometer. The electronics can immed-
iately measure this position by measuring
the resistance of a potentiometer. The prob-
lem thus evolves into looking for a way to
convert a resistance into a binary meas-

urement.
There are many different ways to accom-

plish this task. The particular method chosen
here is to convert the measurement into a

frequency through an oscillator. The fre-
quency is measured under direct control of
the computer program using an 8 bit counter
with the CPU clock as a time base. To

CLEAR

EXTERNAL
CONTROL
SYSTEM

RI
OOK

CONTROL

R3
'5v

15OS1

LOGIC

4 8
7

R2
220

6 1 CI
02µF

CLEAR

3

ICI
NE555

1-2-717
OI

177

AVAILABLE FOR
OTHER CONTROL
F UNCTIONS

L

_ r
j, 110

2

7400

5v

3 CLOCK 5

Ti
o 14

5V
O

16

GATE
I ENABLES CLOCK
ODISABLES CLOCK

16

WRITE CLOCK
FROM SYSTEM
OUTPUT LOGIC

IC2
7475

.5v

51
12

D31 D2 DI DO NI IBITFICANT

7 16 13 }2 T

FROM SYSTEM
BUS INTERFACE
OUTPUT SIDE
"POT IN " OUTPUT

LOAD DOWN CLR
CAR

JP 1C3
74 93

BO

12 5

3 4

B 3

CO

2

CI

6

(2

7

C3

O .5V

II 14 ¡16

UP
LOAD CLR

IC4

DOWN 74193

8

MOST ---
SIGNIFICANT
BIT

-LEAST
SIGNIFICANT
BIT

TO SYSTEM
BUS INTERFACE
INPUT SIDE
"POT IN" INPUT

3

C4

2

C5

6

C6

7

C7

Figure 1: The hardware of an input device for Interactive manual controls consists of an

oscillator, two counter circuits, an output latch and a NAND gate section. This hardware must
be driven by a suitable program.

210

accomplish this conversion, the processor

must execute a simple five step process:

1: Clear the counter,
2: Turn on the counter,
3: Wait 2 milliseconds,
4: Turn off the counter,
5: Read the count.

The result is the number of cycles during a

two millisecond period. For the circuit of
figure 1 this number will range from 1 to
about 240. The relationship of frequency to

control position depends primarily upon the

resistance to frequency conversion function
of the oscillator and the linearity of the

potentiometer. The accuracy of the conver-

sion will not necessarily be high -- but the

intended application as an interactive con-

trol input more than makes uF for that
failing. For a game control application such

as Space War or Pong, accuracy of the

conversion function is not a paramount
concern, so long as it is reasonably repeat-

able within limits of human perception.

The Hardware

The resistance to frequency conversion is

performed by IC1, an NE555 timer inte-
grated circuit which comes in an 8 pin mini
DIP package (see figure 1). The timer is set

up as an oscillator with frequency (f) of
oscillation determined by R1, R2, R3 and

Cl:

f = 1.44/((R1 + R3 + 2 *R2) *C1), where

f is the frequency measured in kHz,

Rl, R2, and R3 are all measured in kO,

and
Cl is measured in uF.

The resistances and capacitance used are

chosen so that the frequency will range from
about 0.75 kHz to about 122 kHz as the

control Rl is varied from 100 kO to 0 kO.

A linear potentiometer is not recom-

mended because of the relationship between

changes in frequency and resistance as illus-

trated in table 1. A linear potentiometer
provides for resistance changes proportional
to the position of the shaft. The relationship
between resistance and frequency, on the

other hand, is not linear. Therefore, the

relationship between position of the shaft
and frequency is not linear if a linear
potentiometer is used. To solve this problem
to some extent, a logarithmic potentiometer
may be used; it is often called an "audio -
taper" because of the relationship between

the position of the shaft and the sensitivity
of the ear. This potentiometer will not per-

fectly compensate for the nonlinearity of
the resistance and frequency relationship.
However, it is quite an improvement.

Table 1: Frequency (rounded to nearest 0.5
kHz) versus Resistance of Rl. (R2 = 440
Ohms, R1 = 750 Ohms, Cl = 0.02 uF)

kilohm kilohertz

100 0.5
90 1.0
80 1.0
70 1.0
60 1.0
50 1.5
40 2.0
30 2.5
20 3.5
10 7.0
9 7.5
8 8.5
7 9.5
6 11.0
5 13.0
4 15.5
3 20.0
2 27.5

45.5
0.5 66.0
o 122.0

A control register is provided by the 7475
circuit (IC2). This circuit is connected to the

output side of the IO port (POTIN). The
two lines DO and D1 of the output side of
POTIN are used to control the circuit. The
GATE line is used to control whether or not
the oscillator output is allowed to reach the

counter. A 1 bit output enables counting.
The CLEAR line is used to reset the

counters prior to beginning a measurement.

This line is connected directly to the asyn-

chronous clear inputs of the counter circuits
IC3 and IC4. A 1 bit output clears the

counters.
The counters used to measure the fre-

quency are 74193 circuits (1C3 and IC4)
which are wired for 8 bits. Following a clear

operation, a 2 millisecond GATE signal will
result in a measurement.

Not shown in figure 1 is the specific bus

interface circuit required to connect this

peripheral to your computer. The software
of this article assumes only that hardware of
your system can decode the required output
operation to the 7475 (IC2), and can read

the 8 bits coming out of IC3 and IC4.

The Software

Table 2 presents a subroutine called
POTREAD written for the Motorola 6800
processor design, and table 3 performs the

equivalent program on an Intel 8080. Both
listings are done in a symbolic assembly

language format with comments to explain
the operations. In both listings assumptions
are made about the 10 operations involved.
For the 6800, the POTREAD procedure
assumes that the memory address space

location POTIN is implemented as the inter-

211

Table 2: Symbolic assembly code of POTREAD implemented for a 6800
instruction set. This procedure assumes that the potentiometer input device of figure 1 is located at POTIN in the memory address space of the 6800
computer. It also assumes that ALPHA is the memory location which is to
receive the latest input, and that a subroutine MILLI exists which implements
a 1 millisecond wait.

POTREAD LDAA #2
STAA POTIN
DECA
STAA POTI N
JSR MILLI
JSR MILLI
CLR POTIN
LDAA POTIN
STAA ALPHA
RTS

binary '00000010' is the clear command
which is sent to the device register;

binary '00000001' is the count enable command
which is sent out to start measurement;

call on MILLI for a one millisecond wait;
call MILLI to wait once more;
turn off the counter with binary '00000000';
read the count via input side of interface;
save it in ALPHA and

return to the caller;

Table 3: Symbolic assembly code of POTREAD implemented for an 8080
instruction set. This procedure assumes that the potentiometer input device of figure 1 is located at a parallel interface decoded for device address POTIN. It also assumes that ALPHA is a memory location which is to receive the
latest input and that there exists a subroutine called MILLI which implements
a 1 millisecond wait.

POTREAD MVIA 2
OUT POTIN
DCRA
OUT POTIN
CALL MILLI
CALL MILLI
MVIA 0
OUT POTIN
IN POTIN
LXIH ALPHA
MOVM A
RET

binary '00000010' is the clear command
which is sent to the device register;

binary '00000001' is the count enable command
which is sent out to start measurement;

call MILLI for a one millisecond wait;
call MILLI to wait 2 ms total;
binary '00000000' is the stop command

which is sent out to end measurements;
read the count via input side of interface;
set up address of ALPHA;
save count in ALPHA;
return to caller;

Table 4: The MILLI procedure specified in symbolic assembly language for
the 6800 processor. The timing calculation is shown in the left hand columns;
the JSR which calls MILLI from the main program is shown for purposes of
the timing calculation. When the return instruction (RTS) is completed,
exactly 1.000 ms will have elapsed between the completion of the instruction
preceding the JSR and the beginning of the instruction following the JSR,
assuming that the CPU has a 1.000 MHz crystal controlled oscillator.
Note: Not all 6800 systems have 1.0 MHz CPU clocks. To adjust timing pick
u new constant instead of 162, and possibly balance with NOP or nullbranch
instructions.

Time
(#s=:-,---cycle)

Time
Total Label Op. Operand

9 9 JSR MILLI
4 13 MILLI PSHA
2 15 LDAA #162

162 x 2 339 MILOOP DECA
162 x 4 987 BNE MI LOOP

4 991 BRA NEXT
4 995 NEXT PULA
5 1000 RTS

Commentary

main program calls MILLI;
save A register in stack;
decimal 162 loop count;
count decremented and tested

to keep loop going on;
time wasting null branch;
restore A from stack;
back to the caller;

212

face to the peripheral of figure 1. For the
8080, the procedure assumes that the IO
device with a symbolic code POTIN is
implemented as the interface. It is an inter-
esting exercise which is left to readers to
perform, comparing the number of bytes
required and the execution time required on
the two machines, assuming comparable
operation near the highest possible clock
frequency. The result will be found to be
similar.

The subroutine MILLI is intended to be a

1000 microsecond delay implemented either
by reference to a hardware realtime clock, or
as a timing loop with constants adjusted to
the clock frequency of your computer. The
concepts of creative time wasting described
by J im Hogenson in his article "Can Your
Computer Tell Time" (in the December issue
of BYTE) can be applied to the problem of
writing such a program for your particular
computer. An example for a 6800 is shown
in table 4.

What's Next?

This article has illustrated a simple analog
to digital conversion input device which can
be implemented inexpensively. The uses to
which you put this idea are up to your own
imagination. The electronic music person
can use this kind of input to control
parameters like tempo and timbre variations.
The model railroad buff could use this
conversion to input engine speed informa-
tion. The amateur radio operator could use
such an input as one way to control the
speed of machine generated Morse code
transmission. The space war freak can use
this type of a device for the input of heading
and velocity information taken off a joy-
stick. This is by no means an exhaustive
catalog of applications which can take ad-
vantage of a simple conversion of this kind.

Logic Probes

Hardware Bug Chasers
by
Alex. F. Burr
Physics Dept. Box 3D
New Mexico State University
Las Cruces NM 88003

While an oscilloscope or

voltmeter can be used with
digital circuits, a logic

probe is much less

expensive if built from an

appropriate kit.

Digital logic, whether used

in an 8080 microprocessor or
as the TTL chips that can be

used to make a processor, is,

at least in theory, clean and
simple because only two
states are possible. Any point
in even the most complicated
circuit is either HIGH or
LOW. However this very
simplicity encourages the
design of large and
complicated circuits. While
the chance of anything going
wrong at any one point is

small, the accumulated
chances of many points
means that sooner or later the
experimenter is going to have

to hunt for sources of
trouble.

In the case of analog
circuits, when trouble
develops, you get out the
oscilloscope or voltmeter and
start looking for places which
have waveforms or voltages
not meeting the
specifications. These
instruments can be used to
troubleshoot digital circuits
too. The oscilloscope is

particularly useful if you have
timing problems, but usually
they give you too much
information and may just
confuse the issue. The

voltmeter may tell you that
the voltage on pin 8 is 3.9
but, because most IC failures
show up as a node stuck
either HIGH or LOW, really
all you need to know is that
on pin 8 there is a HIGH.
That single bit (literally) of
information can be obtained
with an instrument a lot
smaller and less complicated
than a voltmeter.

That instrument is the
logic probe. In its simplest
form it is just a state
indicator with a sharp point..

SEE PULSE STREAMS

SEE
SINGLESHOT
RESPONSES

When the point is placed on
any pin of an IC, the probe
will indicate whether a LOW
or a HIGH is present at that
point. And with digital logic
that is usually all the
information you need.

Logic probes can detect a

surprising number of
different defective
conditions. Fig. 1 illustrates
some of the uses to which a

probe can be put. Of course,
just as voltmeters come with
a variety of capabilities and
prices, so do logic probes.

SEE PULSE STREAMS

rSEE OPEN CIRCUITS

,.OPEN BOND

HS

41re11011116°000,
f

SEE STUCK
Lows

J L
SEE LOW REP RATE \ HIGHS AND LOWS

SEE STUCK HIGHS

SHORT - ---
SOLDER
BRIDGE

SEE SINGLE-SHOT RESPONSES

Fig. I. Some of the uses of logic probes and the malfunctions which

they can detect.

213

Commercial Logic Probes

One of the first developed
was the Hewlett Packard
10525T logic probe. It is a

marvel of compactness and
versatility, all carefully
human -engineered. Basically
it consists of a white light
which goes out when the
probe is placed on a LOW and
comes on when the probe is

placed on a HIGH.
Simple - - yes indeed; but

it does much more. What if
the point tested is open
circuited, or the level is just
plain bad, neither HIGH or
LOW? Then the light glows
at half intensity. What if a

pulse comes along that is too
short to excite the indicator
light? Then a pulse stretcher
takes over. Pulses with a

width of between 10 ms and
0.05 seconds are stretched to
0.05 seconds in length. What
if the pulses come so fast that
the eye cannot distinguish
one from the next? All pulse
streams with a repetition rate
between 10 Hz and 50 MHz
cause the lamp to blink at a

10 Hz rate. All this capability
is enclosed in a probe about
six inches long and one -half
inch in diameter. The light is
placed near the tip in such a

way that it can be seen no
matter how the probe is
rotated. Thus you can easily
see both the point of the
probe and the indicator at the

The E & L Instruments logic probe is compact, with the two indicator LEDs visible toward the
left in this photo.

same time. Power is supplied
to the probe by a well
protected single cord which is

attached to a source of 5 V
dc at 60 mA.

The input impedance is

greater than 25k Ohms in
both the HIGH and LOW
state (less than one low
power TTL load). The input
is well protected against
operator error. The probe will
stand ±70 volts continuously
and -}200 volts intermittently
as well as 120 V ac for 30
seconds. The power input is

internally protected from +7
to -15 V dc as well as power
lead reversal. The only catch
is the price, which even with
a recent reduction is $65.

There are, however, other
less expensive probes. Two of

these are distributed by E and
L Laboratories. Their model
340 is a logic probe and
pulser combined into one
instrument. The model 320 is
a logic probe only, designed
to give maximum information
about the state of the node
being tested. Both probes are
well constructed, a little over
6 1/2 inches in length and
half an inch in diameter. Both
come with two different
probe tips and handy carrying
cases.

The model 340 has two
LED indicator lights. In
operation the two leads from
the probe are connected to
the 5 V dc supply and the
probe tip applied to the IC
lead to be tested. If that node
is HIGH, the red LED lights

The Hewlett Packard 10525T logic probe and 10526T pulser,

214

up brightly. If that node is

LOW, neither LED is lit. The
green LED is used to detect
pulses which do not last long
enough to give a useful
indication on the red LED. It
lights for 0.1 seconds (just
long enough to see) whenever
a single pulse wider than 50
nanoseconds is applied to the
probe tip. In the probe tested
for this article, when a

voltage increasing from zero
was applied to the tip, the red
LED lit when the voltage was
greater than 1.5 V; just what
the specifications called for.

The model 320 is a little
more versatile as an indicating
instrument, but it lacks the
ability to generate pulses that
the model 340 has. It too has
two LED indicators, one red
and one green. In operation,
the two power leads are
connected to the 5 V dc
power supply and the tip to
the node under test. The
specifications say that if the
voltage at the node is less
than 0.7 volts the green LED
will be lit. If the voltage is
greater than 2.4 volts, the red
LED will be lit. In practice
the specifications are closely
followed. The LEDs may
glow dimly at voltages just a

few tenths higher or lower
than the specified voltages.
But the dividing line between
lit and not lit states is

remarkably sharp.
A special feature of this

probe is the pulse storage

"Nodes" are places in a

circuit - such as the pin of
an IC - where you might
want to test the logic level

using the probe.

7

6

--g I_I
ois -I

capability brought into play
by a small switch near the tip.
When the pulse storage
feature is on, a short pulse
(either HIGH or LOW) is

stretched so that it turns on
the appropriate LED to full
brightness even if it is as short
as 50 nanoseconds. Square
and sine waves appearing at a

tested node will cause both
LEDs to have equal
brightness.

The main difficulty noted
with this probe is with the

green LED. It is somewhat
dimmer than the red LED
and the lens diffuses the spot
of light generated less well so

that in bright room light it is

sometimes hard to tell
whether or not the green

LED is lit. This fact would
make the determination of
the duty cycle of a chain of
pulses by a brightness
comparison between the
LEDs much more difficult
than the instruction booklet
suggests.

Even the E and L

Laboratories probes are

expensive ($35 and $25);
although they are more

convenient than, and
certainly in the same price

3

D2

14
DI R3

TO GROUND CLIPO

TO 5V CLIPO

TO PROBE TIP

a 6 F14 I712 l'

ICI

8 9 'IO II '12'13 114

RI

R2

of

TO GROUND CLIP

Fig. 2. Circuit diagram for the James logic probe kit.

range as, a good voltmeter.
Nothing, however, can beat

the cost effectiveness of two
probe kits which have been
fairly widely advertised.

Logic Probe Kits

One of these kits is

manufactured by Chesapeake
Digital Devices. This kit
allows one to easily construct
a probe which uses red, green

and yellow LEDs to signal the
presence of logic levels in

digital circuits.
The kit goes together in a

very short time with the aid
of very complete assembly
instructions. The whole probe
fits into a well constructed
case, a little over six inches
long and slightly less than one
inch in diameter. There are

only three resistors, three
LEDs, one transistor, and a

74S00 integrated circuit to
solder onto the clearly
marked printed circuit board.

In operation the green
LED is brightly lit on a LOW,
the red LED is brightly lit on
a logic HIGH, while the
yellow LED lights on an open
circuit or a level between a

true HIGH or LOW. A slow
pulsing condition will be

indicated by alternate
flashing of the red and green

LEDs. A fast pulsing
condition will be indicated by
the simultaneous activation
of the red and green LEDs.
The dividing line between
these last two conditions is

about 20 Hz, depending on
the eye of the user.

The biggest difficulty with
the kit was the circuit board.
The copper leads had not
been tinned and were
oxidized, making them a bit
difficult to solder; especially
if the builder was concerned
that he not use so much heat
for so long as to damage the
components. The clear plastic
tube into which the circuit
board with its LEDs slide did
crack on assembly and the
green LED was open but
these difficulties were easily
remedied and the result was a

215

handy logic probe at a price
significantly less than any
assembled probe.

A Unique Probe

A particularly ineXpensive
kit is the one sold by dames

Electronics for $9.95
including postage and case. It
is unique in that it uses a

MAN 3 seven segment
readout which gives a 1 for a

HIGH a 0 fora LOW and a P

for a pulse train - all this in a

compact package measuring
five inches long and one inch
in diameter.

The circuit diagram for
this intriguing probe is given
in Fig. 2. The 2N2222 input
transistor drives the chip,
ICI, which in turn causes the
appropriate segments of the
MAN 3 to light. The chip was

custom made for James
Electronics by National
Semiconductor and contains
a proprietary circuit which
was laid down by a $500
master mask.

The kit comes in a very
impressive package which was

carefully designed to protect
the contents from rough
handling by the U.S. Postal

Service. The parts, which
include the case and a custom
glass epoxy printed circuit
board, are of high quality and
are not your usual cheap
imports. Because most of the
parts are in the 14 -pin chip
which is the heart of the
probe, the kit goes together
quickly and easily for the
experienced builder (about
one hour to solder all the
parts to the board). There are

no explicit devices for
overload or reverse voltage
protection. The probe draws
65 mA from any convenient
5 V point on the circuit
under test.

The inexperienced builder
is going to have trouble
because the complete
assembly instructions say,

"Assemble the Logic Probe

according to the schematic
diagram and board layout
shown below." The end. One
has to have pretty sharp eyes

A kit logic probe shown in action testing a printed circuit board.

to orientate the IC, transistor
and readout correctly. Even
then you might miss the two
jumpers that go on the circuit
board. The circuit board also
could have been laid out
more efficiently so that
the drastic bending of the
MAN 3 leads would have
been avoided.

There is one serious
defect. I t is more serious
from the theoretical than the
practical point of view. That
defect concerns the input
level at which the indicator
switches from 0 to 1. That
level is 0.65 volts; but the
specifications for TTL logic
say that the maximum
voltage that the logic is
guaranteed to interpret as

LOW is 0.8 volts. Thus the
probe would indicate a HIGH
on a node which the logic
would interpret as a LOW.
This defect is of lesser
practical importance because
it is the unusual LOW which
will have a voltage greater
than 0.6 V. Indeed the usual
gate input is only a very few
tenths of a volt above ground
at the most when it is LOW.
Nevertheless it is a bit
disconcerting to have the
probe give a wrung reading

even if it does so only under
unusual circumstances. After
all, it is under unusual
circumstances that the probe
is most often used.

Logic Clips?

The probes which have
been discussed so far all
investigate one pin of the IC
at a time. There are some
instruments which will do
much more. These are called

logic clips and are not really
probes but will give you the
same type of information.
They are extremely handy
service and design tools. They
clip onto TTL DIP ICs and
instantly display the logic
states of all 14 or 16 pins.
Each of the clip's 16 LEDs
independently follows level
changes at its associated pin:
A lighted diode corresponds
to a HIGH.

A logic clip is like 16
binary voltmeters in a neat
little package.

The logic clip's real value
is in its ease of use. It has no
controls to set, needs no
power connections, and
requires practically no
explanation as to how it is
used. The clip has its own
gating logic for locating the
ground and +5 volts Vcc pins
and the buffered inputs
reduce circuit loading. Simply
attaching the clip to a TTL
dual inline package makes all

A detail of the Chesapeake Digital Devices logic probe board. The three LEDs are at the right in
this picture, with the 74S00 IC in the center.

216

the logic states visible at a

glance. The clip is, in effect,
16 binary voltmeters. When

used with some means of
pulsing a complicated circuit
slowly, sequential logic states

like shift registers come alive

- each state change is

immediately visible.
The most popular clips are

made by Hewlett Packard and

Circuit Specialties.
Unfortunately they have one

big drawback - price. They
cost from $75 to $85 each

and will not be discussed

further here.

Summary
Table 1 summarizes all the

information that has been

given here and presents some

new facts about each of the

logic probes discussed. By

scanning this table you ought
to be able to determine which
probes have the features you
need and the ones you can

afford. The following
comments are based on

personal experience with each

of these probes, but that
experience has been rather
limited.

The Hewlett Packard
probe is obviously the best. It
should be; it certainly costs

significantly more. It will
work under a wide range of
conditions and it is carefully
made. For the extra money
you get wide frequency
range, tight specifications,
and vastly superior handling
of pulse trains. The
construction is first class and

includes such extras as a

compact BNC plug on the

power cable (which, of
course, is not so good if your
breadboarding system does

not have a BNC jack to

supply that power).
The E and L probes (340

and 320) are imported from
Japan. They are very well
constructed and have the

little extras like plastic
carrying cases and different
probe tips that the better
Japanese manufacturers like
to include with their

products. The 320 is a better
logic probe than the 340. It is

less expensive and it handles
pulse trains and logic levels in

a better and more revealing
way. Of course, it does not
have the pulse generating
capabilities of the 340.

The professional logic
designer will want to get one

of these three probes. They
may be a bit expensive for
the serious hobbyist. In that
case one of the two kits
would be satisfactory.

Both kits went together
easily and rapidly. The CDD
kit is much more revealing
about the state of the logic
under test and has superior
assembly instructions. The
James kit has better quality
parts and is cheaper.

I n any case the serious

worker in digital logic and
computers, whether a

professional or a serious
hobbyist, will find one of
these probes a valued
addition to his collection of
test equipment.

Table 1. Characteristics of logic probes.

Probe

Operating
Voltage

Current

Frequency
Response

HP 10525T1

5 ± 10% V

60 mA

50 MHzS

Input Impedance >25 IM

Min. pulse width 10 ms6

Levels OPEN half intensity

HIGH on >2±0.2 V

LOW off <0.8
-042V

Size 6" x 0.5" dia.

Overvoltage excellent
protection

Price

3402

5 ±10 %V

100 mA

12 MHz

50 kS2

50 ms

no lights7

red >1.5V

no lights

6.6" x 0.6" dia.

reasonable

$65 $358

3202

5 ± 10% V

CDD3

5 ± 10% V

80 mA 40 mA

12 MHz

100 -600 kS2

50 ms

no lights9

red >2.4 V

green <0.7 V

6.6" x 0.6" dia.

reasonable

$25

yellow.'0

red >2.5 V

green <1 V

6 "x1 "dia.

none

$1512

James4

5V

65 mA

See1 1

1 >0.7 V

0 <0.7 V

5 x 1" dia.

none

$1012

Notes:

I Hewlett Packard, Palo Alto CA 94304.

2E and L Instruments Inc., 61 First St., Derby CT 06418.

3Chesapt'ake Digital Devices, Inc.. Box 341, Havre de Grace MD 21078.

4James Electronics. Box 822, Belmont CA 94002.

5Pulse trains faster than IO He cause the lamp to flash at a 10 Hz rate.

l'Pulses between 10 ms and 0.05 seconds are stretched to 0.05 seconds.

217

7Short pulses indicated by green LED.

8Single pulse generator contained in probe.

9Switchable pulse stretcher for short pulses.

10yellow LED is also lit if voltage is between HIGH and LOW.

11lndicator reads P. for pulse trains >20 Hz.

12Kit price.

Controlling External Devices

With Hobbyist Computers
Robert J Bosen

Box 93
Magna UT 84044

There is an almost infinite variety of uses
to which a hobbyist computer system may
be applied besides calculating or data
processing, and many of these can bring a
great deal of satisfaction to the proud
owner. For example, hobbyist microcom-
puters are invariably advertised with a long
list of possible applications such as home
security systems, light controllers, process
controllers, or automated drink mixers. I

have personally had several opportunities to
use my computer in a variety of related

Photo 1: The author's computer setup includes the two CRT terminals shown
on the table, plus a rack cabinet presently containing his central processor.

ways, including controlling stage lighting and
sound effects for a large bicentennial cele-
bration, and automating a spook alley. These
and other applications inspired me to build
the module described here to interface my
computer with virtually any electrical or
electronic device. If you build this interface
as I did, you'll be able to control up to 16
channels of electrical outlets or switches of
any kind, and only your imagination will
limit the applications.

The basic principle behind any computer
interface is to change computer compatible
signals to device compatible power levels,
and this interface accomplishes that goal
with a great deal of flexibility, allowing the
user to hook up virtually any type of

218

5 BITS OF
OUTPUT DATA
FROM CPU

19

00 - 20

21
DI }--
D2)_ 22

03)-- 23

3

7400
4

*7400
7400

GI

G2

G

74154

12

2 11

ALL 7474

D ó

C H O

CLR
3 131

12

4 II
D O

C J O

CLR
5 131

9

12

CLR

12
D

8 II L

CLR
9 13

12

10 II

12

13 11

14

3

ALL 7474

D Ó

H 0

CLR
iI

CLR
O Ì

12

IS II

CLR
13'

D O

C P O

CLR
16 13

12

17 I

D

C O O

CLR

131

D O
31_ P O

CLR

9

Figure 1: This is all you'll need to build if you already have a parallel output port you can use

to control the interface card. If not, lines DO through D4 should be joined with the

corresponding points in figure 2. Transistors Q1 through Q16 can be any economical NPN with

reasonable Beta. Due to varying configurations (you may not want to build up all 16 channels

or use different transistors), I suggest the curd be wirewrapped.

transistor, relay, or small electrical device to
its open collector outputs. I used 16 surplus
relays and wired them to 16 AC outlets and

16 sets of "five -way" binding posts. But this
is by no means the only way to utilize the
16 output channels provided. All in all, the
system described allows the programmer a

great deal of flexibility over what he will
control and how he will do it.

This interface may be used with virtually
any 8 bit computer, and could be modified
to work with a 4 bit machine as well. The
circuit consists of four parts: A parallel

output port, a 16 channel demultiplexer, a

16 bit memory, and 16 single transistor
driver amplifiers. It can be built on a single
small circuit board and total cost for all the
solid state parts will be under $35 if a little
shopping around is donc. If you already have

a spare parallel output port you can dedicate
to this purpose, you can save about half of
that cost.

Here's how it works: A byte of data is

sent out of the computer to the parallel
output port where it is latched. The four low
order bits are applied to the four inputs of

219

IN

OUT>

AO

AI

A2

A3

A4

A5

A6

the 74154 demultiplexer which selects one
of 16 output pins and pulls it low. If, for
example, the four bits are 0000, the de-
multiplexer will select channel zero and pin
1 will go low. There are 16 possible com-
binations of data that may be received, and
for each of these combinations one of the
pins of the 74154 will go low. Each of the
16 outputs of the demultiplexer then goes to
a D flip flop which it toggles. Since we are
trying to exercise control over 16 channels
continuously, but the 74154 can only
process one channel at a time, these D flip
flops are needed to store the status of all
inactive channels. Toggling the flip flops
causes them to reverse their state and
alternately turn on or off the transistors

JUMPERS FOR ADDRESS SELECTION

2 7404

7404

7404

e

7404

10

7404

13

7404

3

B
7400

4

PWR

5

6

C
7430

12

7404

13 12

DO 0---3
B 6

DO I -
7400 DO 2 9

DO 3)----
00 4

DO 5 >
1e

7404 22
00 7)

13 12 13

20

1CS

DS

10

e

VCC

12

MODE

INTEL
8212

E

OPTIONAL
INPUT PORT

ENABLE
(FOR FUTURE
EXPANSION)

VCC. 24
G110.12

4- DO 6 (1. DI
e

Dz 10-
D3 15y
D4

they drive each time a particular channel is
selected. The fifth bit of the data byte is
buffered (IC D) and then runs to the reset
inputs of all 16 D flip flops, providing a reset
signal to turn all the channels off simul-
taneously. (The three high order bits are
unused.)

Hardware. The circuit provides 16 transis-
tors in an open collector configuration,
which may be viewed as open switches when
off, and as switches shorted to ground when
on. Each transistor can handle about 30 V
and 30 mA. These may be used to control
bigger transistors, or relay coils may be
energized through them, or small electronic
devices (sirens, light bulbs, etc.) may be
powered directly with them by placing a

voltage source in series with the device and
the transistor. This is shown in several
variations in figure 3. A word of caution is in
order here if inductive loads such as relay
coils are used: The collapsing magnetic field
of the relay coil as it is turned off can
generate large voltage spikes which may
damage the transistors. Relay coils (see
figure 3a) should therefore be protected
with shunt diodes to short out these spikes
when they approach dangerous levels. Relays
may also oscillate at high frequencies if
selected frequently in a program, so small
capacitors may be necessary across the
windings to short these oscillations to
ground. From my own experience I found
about half the surplus relays I tried exhib-
ited this problem, but tinkering with various
small capacitors clears it up.

Software. The software must provide data
bytes containing the right information to
select the right device at the right time. This
will require a little forethought from the
programmer because of the nature of the D
flip flops used to store the status of each
channel. Returning to the preceding discus-
sion on circuit operation, it will be recalled
that the D flip flops toggle (reverse states)
each time they are selected. However, simply
selecting the same channel over and over
again will not toggle it on and off as it might

Figure 2: This is u standard parallel output port, capable of responding to any output address
between zero und 255. The address is specified by the eight jumpers coming off the address
lines. You may want to use low power chips (74L series) for IC A, IC B and IC C, to save on
address bus loading. Incidentally, this addressed output port could be used in any application
requiring a parallel output. All eight data lines are available at the various outputs of the 8212
chip. The IN and OUT and PWR inputs are for Altair 8800 and similar computers. The
OPTIONAL INPUT PORT ENABLE line coming from pin 8 of IC B may be used to enable
another 8212 chip with the CS pin to function as on input port and place data on the input bus
when the IN line is active and the specified address is enabled.

220

Photo 2: Details of the output control interface. The interface was built upon perforated board

mounted at the side of the rack cabinet at the left.

be expected, because the D flip flops only
toggle on rising edges from the demulti-
plexer, and a rising edge only occurs after a

channel has been selected when the multi-
plexer changes to select (ground out) a

different channel. So, turning a channel on

and then off is accomplished by first select-

ing the desired channel with a data byte,

then selecting a different channel (This

might be an unused channel or the next

sequential channel in your program), then

waiting the delay needed for the first
channel ko switch on, then selecting it again

to reset it. This may seem a little compli-
cated at first, but it's easy to get used to.

Applications. Software and hardware will
of course be determined by the application
needed, and this will vary widely from
instance to instance. The following ideas 3b .
have occurred to me and you will un-

doubtedly think of many more: Light
shows, computer music, industrial process

control, computerized games, industrial
robots, stage lighting, spook alleys (Electro-
Spook?), slide presentations, darkroom auto-
mation, chemical mixing, remote controls of
any type, or a fully programmable electri-

cally operated teeter -totter. Try it - you'll
like WE

v'') our PUTS

CONTROL
RELAY

i

3c.

T

221

EXTERNAL
POWER
SUPPLY

2 N3O55 OR OTHER
NPN POWER
TRANSISTOR

HIGH CURRENT
OUTPUT
(INVERTED h LOGIC)

SMALL
ELECTRONIC
CIRCUIT

t SMALL
POWER
SUPPLY

Figure 3a: Interfacing re-
lays. ZI is used to protect
Ql from spikes. Zl should
have a breakdown voltage
just higher than the relay
voltage.

Figure 3b: Power transis-
tor interface, suitable for
powering tape recorders or
other small appliances.

Figure 3c: Small load
(< =30 mA) direct inter-
face.

Microprocessor Based Analog

Roger Frank
1801 E Girard 4247
Englewood CO 80110

An analog signal is typi-
cally a voltage level ...
which corresponds to
measurement of some
physical variable.

Analog signals can be proc-
essed with only a minimal
addition of hardware to a

system.

Analog input and output capabilities,
when added to a microcomputer, can greatly
expand the power of the home or hobby
computer. Inherently, the microprocessor is
a digital device, ideal for control of discrete
(on or off) input and output levels. How-
ever, many analog signals can also be proc-
essed with only minimal additional hard-
ware. With this addition, such devices as
temperature sensors or photocells can be
monitored, and output peripherals such as
oscilloscopes and audio amplifiers can be
added to the microprocessor.

Taking traditional approaches to analog
to digital conversion can be very expensive
to the hobbyist. Hundreds of dollars could
be spent, but this would yield only high
speed or resolution. For the amateur,
typically eight bits of accuracy is sufficient,
and speed is not a critical factor. The
brightness of the sun, the temperature of the
room, or the moisture of the front lawn do
not change very rapidly. By allowing the
microprocessor to do most of the work
involved in the conversion, a simple, inex-
pensive circuit can convert an analog input
to a digital word in less than a millisecond.
The overall cost can be kept under $20 for
four channels of analog input.

Two techniques of analog to digital con-
version are easily accomplished by a micro-
processor: the ramp and successive approxi-
mation methods. In each case, the task is to
generate a digital word, apply it to a digital
to analog converter (DAC), and compare the
analog output of the DAC to the analog
input to he converted. Based on the results
of the comparison, the next digital word to
the DAC is generated.

Traditionally, several gates, up -down
counters, and clock generators are used to
achieve the conversion. This approach is
much more expensive than using the micro-
processor to implement the same functions,
using no external TTL logic in the conver-
sion at all.

222

The Ramp Technique

The simplest approach is the ramp tech-
nique. It has the advantage of needing the
least code in the microprocessor, but the
disadvantage of being the slowest, some 15
times slower, on the average, than the
successive approximation approach discussed
later. For many applications, where speed is
not critical, this approach may be best. Since
the ramp technique is conceptually easiest to
understand, it will be examined closely first.

Figure 1 shows the block diagram of the
AD conversion system. Unlike hardware
approaches, the identical components can be
used for successive approximation, ramp, or
tracking conversion algorithms. The hard-
ware can be tailored, by software, to meet
speed or accuracy requirements of the over-
all system.

To understand the circuit, assume in
figure 1 that the analog input to the + input
connector of the comparator is 2.00 V, and
that all zero bits are applied to the DAC's
digital inputs. The DAC's output will be 0 V
at the comparator's - input connector-. The
comparator's output will be a 1 bit, which is
applied to the microprocessor through an
input port. The software, by reading and
testing the input port, knows if the digital
word applied to the DAC is too large or too
small. In this case, the 1 bit read at the input
port means "too small" and the micro-
processor will increment the digital word at
the input to the DAC. The output of the
DAC increases by a small amount each time
the comparator says "too small," until the
DAC generated analog voltage just exceeds
the "unknown" input voltage. At that
moment, the comparator output will be read
as a 0 bit, and the digital equivalent of the
analog input voltage will be present at the
input to the DAC.

This sequence, using an eight bit DAC,
generates a ramp voltage at the input to the
comparator with each step I /256th of the

/Digital Conversion

full scale voltage. In this application, a five
volt full scale is typical, so each step would
be about 19.5 millivolts. Using the Motorola
MC6800 microprocessor, a routine to
accomplish this simple conversion would be

as shown in listing 1.

Note that with the MC6800, IO is treated
as a memory location, so it is simple to
directly implement the algorithm. For the
Intel 8008, a similar sequence could be used,
as shown in listing 2. In this example,
Register B will have the eight bit digital
equivalent of the analog input when the
sequence is complete.

The Successive Approximation Method

A faster technique, which always takes
the same number of passes through the
decision making loop, is the successive ap-

proximation method. The hardware is

exactly the same, but instead of changing
the least significant bits in incrementing
fashion (19.5 millivolts per step), this
method changes the most significant bits,
one at a time, and very quickly homes in on
the correct digital word.

Using the same example, with 2.00 V
applied to the "unknown" input of the
comparator, the sequence is like this. First,
the most significant bit, bit 7, is set to a one
in the DAC. The output of the DAC
immediately goes to half scale, or 2.5 volts.
(Remember that bit 7 represents 2 * *7 or
128 times the least significant bit's weight of
19.5 mV, which is about 2.5 volts.) Right
away, the microprocessor knows that in the
final digital word, bit 7 will be a zero, since
the comparator is already saying "too high"
with that bit only set in the DAC. The
microprocessor removes bit 7 from the DAC
and sets bit 6 to a one. Now the DAC output
of 1.25 V is compared to the 2.00 V "un-
known" input to the comparator, and the
processor quickly learns that bit 6, by itself,
is "too low," since 1.25 V is less than

OUTPUT PORT
FROM MICROPROCESSOR

81T7 BITO

...rrrrrrrr.,,
b7 b6 b5 b4 b3 b2 bl b0

DIGITAL TO ANALOG
CONVERTER

A challenge: Write a pro-
gram to send data to the
DAC at regular intervals,
connect the DAC output
to a high fidelity amplifier,
and play music with the
DAC as a waveform gen-
erator.

INPUT PORT
OF MICROPROCESSOR

BIT 7

i
VOLTAGE OUTPUT
PROPORTIONAL TO
DIGITAL INPUT WORD

COMPARATOR

o
ANALOG UNKNOWN
VOLTAGE INPUT
(2.0 V IN EXAMPLE)

Figure 1: The microprocessor controlled analog digital conversion system
consists of un 8 bit DAC output which is compared against the unknown
input.

1 RAMP
2 R LOOP
3
4
5

CLR DAC
INC DAC
TST COMP
BMI R LOOP
RTS

start conversion at zero;
increment output voltage;
test comparator input of bit 7 (N);

back for more until done;
return to caller;

Listing 1: The ramp method of conversion, specified as a

symbolic assembly language program for the Motorola
6800 central processor.

1 RAMP XOR
2 LBA
3 LOOP INC
4 LAB
5 OUT
6 INP

7 JTS
8 RET

A

B

DAC
COMP
LOOP

clear the accumulator with XOR;
clear B from A;
increment DAC input word by one;
move to accumulator for output;
output to DAC device code;
input from comparator device code
using sign bit for comparator;
return when done;

Listing 2: The rump method of conversion, specified as a

symbolic assembly language program for the Intel 8008
processor.

223

1 SUCAPPRX CLR A
2 LDAB #$80
3 NEXTBIT ABA
4 STAA DAC
5 LDAA COMP
6 ANDA #$80
7 BNE RETAIN
8 LDAA DAC
9 SBA

10 BRA MSHIFT
11 RETAIN LDAA DAC
12 MSHIFT ROR B
13 BCC NEXTBIT
14 RTS

result will be in A;
rotating mask, most significant first;
apply trial bit to A with addition;
send it to the output DAC latch;
read the comparator output;
check sign bit with comparator output;
if low then retain trial bit;
recover the DAC word;
restore zero to last trial bit;
then go shift the rotating mask;
keep the trial bit as logical one;
rotate the mask;
on eighth rotate, carry set

so return from the conversion;

Listing 3: A successive approximation conversion, specified as a symbolic
assembly language program for the Motorola 6800 processor. This program
was adapted from a Motorola application note on the subject. Note that for
fast processors or slow operational amplifiers (such as the 741), a delay loop
should be inserted between lines 4 and S of this program to allow the
output to settle.

3.0

2.0

VOLTAGE
1.0

1 TESTPGM LDAA #$00
2 STAA DAC
3 RTS

load test value for DAC;
and store it in the DAC;
then return to caller;

Listing 4: A test program which can be used to load
the immediate value of 0 into the DAC output port.
The symbolic location DAC is assumed to be the
output port address.

DIGITAL WORD
AT INPUT TO DAC
IS 01100110

TIME

INVERTING INPUT
OF COMPARATOR

Figure 2: A rump conver-
sion starts ut zero voltage
output and increases the
voltage until it equals or
just exceeds the unknown
input. For larger input
voltages, conversion takes
longer since the program
must cycle through all the
intermediate values from
zero to the final binary
word

2.00 V. In this case, the processor leaves bit
6 on and adds the bit with lesser signifi-
cance, bit 5. With bit 6 and bit 5 on, the
DAC output voltage is 1.87 V, still too low.
Thus, bit 5 also is left on and the next bit in
line is tried.

The algorithm is this: simply try a bit,
starting at the most significant. If the DAC
generated voltage exceeds the "unknown,"
remove that bit only, else keep it. Try the
next bit, repeating the process until all bits
have been determined. In this case, eight
passes through the loop will result in the
complete digital equivalent of the unknown
analog voltage input in a matter of milli-
seconds.

This faster technique has been imple-
mented with the MC6800 microprocessor
with the sequence shown in listing 3. A
sustained rate of 1000 conversions per
second has been achieved.

An actual circuit to implement these
techniques is shown in figure 2. The circuit
uses an inexpensive Motorola MC1408L -8
digital to analog converter, which converts

224

digital inputs to a current output at pin 4.
Current output, which is subsequently con-
verted to a voltage, is typical with DACs.

The circuit to the left of the DAC is a

simple zener diode voltage regulator. The
zener maintains a constant voltage drop
across the resistor R1, since the right side of
the resistor is at virtual ground. The current
through R1 is the reference current, which is
either absorbed internally or steered out the
DAC's pin 4. How much current leaves the
DAC is a function of the digital input word
applied on pins 5 through 12.

The current cannot be compared to the
unknown analog input voltage without some
conversion. Dig out your operational ampli-
fier articles and you'll realize that the
LM301 is functioning as a current to voltage
converter, which changes the 0 to 2 mA
output of the DAC into a 0 to 5 V voltage.
This voltage, after a little filtering, is then
applied to an LM311 comparator.

The LM311 has the useful feature of
having an analog comparator input, but a

TTL compatible (open collector) output.
The LM311 output can be directly applied
to an input port of the microprocessor for
program controlled evaluation. Resistors R6
and R5 add a little hysteresis to the com-
parator and, like the filtering components
Cl, C2, C4 and R7, are recommended,
though not absolutely essential to the opera-
tion of the circuit. Similarly, a 741 type
opamp can be used in place of the LM301,
but the circuit will take longer to convert
the current output of the DAC into a stable
voltage at the input to the LM311.

Circuit calibration is simple and consists
of only one adjustment. First apply all zeros
to the digital input to the DAC. The voltage
at pin 6 of the LM301 should be very nearly
zero volts. If it isn't, check your circuit
carefully. If off by only a few millivolts, a
small offset current could be injected into
the input of the LM301 to make it exactly
zero volts, but for eight bit accuracy this
should not be necessary. Now apply all 1

bits to the DAC input. The output of the
current to voltage converter should now be
adjusted to 5.00 V with resistor R4. With
this setting, you have calibrated to the
19.5 mV /b specification used in the
examples.

Expansion of this circuit, once the single
channel version is complete, is straight-
forward and very inexpensive. For example,
each additional channel of analog to digital
conversion can be added with only an
additional comparator. Each added LM311
has its output connected to a separate input
port bit, up to eight channels per port for an
8 bit processor. Then in software, choose the
channel of interest by logically masking out

+15V

R8
2K

FROM MICROPROCESSOR OUTPUT LATCH

RI
2.7K 14

1N5232
CI
AI IS

R2

b7 D6 D5 b4 b3 b2 bi b0

II'UCIIOT 12

MCI408L-8

2.7K `
3 16

C3
IOW

3

+ 5QV

C2
47 p F

R3)17:07-
2K I

+15V
n

V
-15V

MC1408L-8
DIGITAL TO ANALOG

CONVERTER

Figure 3: Schematic of the circuit used for 8

approximation methods described in this article.

all the other channels. Here the LM339 can

be used to have four comparators, and four
channels of AD, in one package. Similarly, at

no charge, this circuit can be used as a

source of digitally programmed analog volt-

age to deflect an oscilloscope trace or act as

a computer controlled function generator,

producing extremely complex waveforms, if
desired. Another use could be a keyboard

IOOpF p

R6 R5 R9
ANALOG IOK [MEG IK
INPUT

R7
IOK

-15

LM 30I A

CURRENT TO VOLTAGE
CONVERSION

C4
100 pF

/n
-IS V

LM3II
ANALOG COMPARATOR

+5V
A

TO MICROPROCESSOR
INPUT PORT

bit conversions. This hardware can be used for either the romp or successive

controlled power supply with suitable cur-

rent gain added to the DAC output.
These techniques and this inexpensive

circuit open a wide world of analog inter-
facing to the microprocessor hobbyist. Now

the home computer can go beyond the

number crunching, logic control functions
and talk to the real world on its own analog

terms.

1

r + ~ , + r

~

+

+

1 1 _1 + , +1 .rZ 1`1+1~r 1~ 4L +4 ̀ "..sI ... f _
1 I r

1

, iir r s.r+f1r1.iï.i Iii ../11

_

'%

,
++

ÿ
+ i
1

~ 1
v

i

4

w~ 1

+,

.

,,

v /

;,
,
,
,

,
,

I
y4,
r

t d

+ 1i
¡
: + y
+ +

' ̀ '

+.

1-++

I=+

1 ¢. ,.

~ +

`+I1+j
++ .' +++I++1 i¡++

+i+++ +

r
I'1

+++1+t'

'r- r +1 + Z ++
++
+ +
+ w

1
++

+ r 1 1 1 ~ 1

1

,,

` ̀ 1. /
l

`

4,

.
`

`

`

+

\` ̀

`,,

+

+

, '

i

I 1 I + s

s

-

?

. .+.

+

r 1
+ 1. ++ i 1

1 1+
+ 1

+++ r '.f++
F1+1

¡
;. / +

i +rr j ïr
"r11+¡+¡.++++++++++++++11.

+141,41,11%, . + + i1,4r¡4
+ .++4

s+
+1. ¡

Z¡+
r

` i+

+

i
s

_

.s

i
.

.

+

+

'

r ¡1
_
+

.`

,
I
`

i,

,

`

,
.

/

` ̀
` , `

'
`
/

`
I

,

=

' '

+

` `
r

+ f +

+

. . 1 1 ++1r4, 1~.1+ ~+,P1
,`IIÌ

:i
~11 '1 /, =+

~`:`, `
j 1

+

'

' 1 .

r

1

.
,

'
` ,

.

+

,
,, ,

w

s

1y' 1r s

1

`' ,
+

1 '

s-

s1-.

1.¡

I'
`'I

+ `i r

`

+,,

,
+

,,

~
~
`+ `
~

'

+`+ + +
~

1

y

h ,
1411 + 1 ` rI11'14 ' 41i_ i . 1 ¡.

:4411 4
44 P4

..,. ` í1+ _ .r I 1 i + 1
,-1

++Z,s`++Z
4.

225

by
Carl Helmers
^ditor, BYTE

Add a Kluge Harp
to Your Computer

One of the most
interesting computer
applications is that of
electronic music. This is the
use of software /hardware
systems to produce sequences
of notes heard in a loud
speaker or recorded on
magnetic tape. The idea of
generating music - if well
done - is of necessity
complex. If I want to put my
favorite Mozart piano sonata
into an electronic form, I'd
have to record a very large
number of bits in order to
completely specify the piece
with all the artistic effects of
expression, dynamics, etc ...
The magnitude of the
problem can be intimidating.
But, never let a hard problem
get in the way of fun!

Fig. I. The Kluge Harp Circuit ... minus computer.

414 OF COMPUTER

CLR SETLOC

413 OF COMPUTER

JL
CLR RESETLOC

13

12 7437

07437 > 8

Simplify the music problem
to one channel of melody,
and you can use a virtually
bare CPU with a very simple
peripheral to play music.*
The combination of the CPU
with this simple peripheral is

what I call the "Kluge Harp"
-a quick and dirty electronic
music kluge.

I invented this electronic
music kluge to answer a

specific problem: I had just
gotten a new Motorola 6800
system's CPU, memory and
control panel up and running.

(*ALTAIR owners: Write an
8080 version of this program and
your machine can do more than
blink its lights.)

41, X

1 i

J
OPTIONAL
RESISTOR
(loon)

226

+5V

i

SPEAKER

The next problem (since I

wasn't using the Motorola
ROM software) was to make
a test program which could
be loaded by hand. By
combining a little
imagination, my predilections
for computer music systems
and an evening getting the
whole mess straightened out,
the Kluge Harp resulted.
While the program and
schematic are specific to the
system I was using, the idea
can be applied to your own
system just as well.

The Kluge Harp Hardware
The hardware of a Kluge

Harp is simplicity at its
essence. The peripheral is

driven off two "un- used"
high order address lines (I
used A14 and A13), and
consists of a set -reset flip
flop. A program running in
the computer alternately will
set and reset the flip flop by
referencing one or the other
of two addresses. These
addresses are chosen so that
the address lines in question
will change state, actuating
the set or reset side of the flip
flop. A "note" at some pitch
consists of a delay loop in the
program followed by
instructions to change the
state of the flip flop. Since
the same count is used for the
two halves of a complete
cycle of the note, this will
produce a perfect square
wave. The actual music
program organization is a bit

Backplane Interconnections

1

Control Panel

2k x'8 RAM

CPU and Buffers (M6800)
KLUGEHARP Peripheral

Control Panel Interface

The Kluge Harp peripheral and the KLUGEHARP program were concocted in order to test out a Motorola 6800 system's

operation. This photo shows a test bench mounting of the three main cards and control panel. The Kluge Harp peripheral, such

as it is, is the single isolated wire wrap socket in the foreground, with wires dangling from connections on the CPU card.

more complex and is

described in detail below.
Fig. 1 illustrates the

hardware as implemented in

my system. The 7437 circuit
is used to form the NAND
gate flip flop. This flip flop in
turn drives a parallel
combination of the two
remaining 7437 gates, acting
as a buffer. The output of
this buffer is used to drive the

speaker; an 8 Ohm 5" speaker
produced more than adequate
volume. (A 100 Ohm resistor
in series will limit the volume
level to spare the ear drums.)

Generating Music With
Program Loops

Fig. 2 illustrates the basic

concept of the one- channel
music generator, expressed in

a procedure- oriented language

for compactness. The main
program loop begins at line 2

of the listing - "DO
FOREVER" means repeat

over and over again all the
lines of code down through
the "END" at the same

margin, found at line 17. This
is the main loop used to cycle
through the SCORE stored at
some point in memory as

pairs of note selection /length
data bytes.

Lines 3 to 4 compute the

"next" pointer to the SCORE
- incrementing NOTER by 2.

Then LNGTH is set equal to
the second byte of the
current pair, SCORE
(NOTER +1). The length
codes are taken from Table I

along with note codes when
you set up a SCORE, and
represent a fixed interval of
time for the note in question,
measured as the number of
cycles.

Line 6 begins a note length
loop which extends to line
14. This "note length" loop
repeats the generation of the
note a number of times

indicated by the length code
just retrieved. The note
generation is accomplished by
delaying a number of time
units (CPU states) set by the
pitch code found at
SCORE(NOTER), then
changing the state of the
output flip flop and repeating
the process. The loop at lines

8 -10 counts down the pitch
code and has a fixed delay
multiplied by the pitch code
to give the time for one half
cycle of the desired
frequency. Lines 11 to 15

change the state of the Kluge
Harp output device (0 to 1,1
to 0) - remembering in the
software location IT what the
previous state was.

Generating Codes

Table I is a reference table
of 21 notes "roughly" spaced

at equal intervals on the well
tempered scale. The integer
numbers in the "divide ratio"

227

column were determined
using the prime number 137
as an arbitrary starting point
and calculating the integer
closest to the result of the
following formula:

(In(137)+ n In(2)/12)

rn=e

Where e is the usual
mathematical number 2.717
... and the natural logarithm
of x (base e) is indicated by
In(x). This is the standard
mathematical calculation of
the musical "well tempered"
scale - the 8 -bit
approximation used by the
Kluge Harp is not perfect by
any means, but comes close

enough for the purposes of
this project.

The length count columns
are determined based upon
the assembly language
generated code for this

Fig. 2. The KLUGEHARP program specified in a procedure -oriented
computer language.

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

routine, so that for each
pitch, the corresponding
length count column will
measure a nearly identical
interval of time. The formula
is:
Lcn = time / (oh + dt#
where:

pcn)

KLUGEHARP: PROGRAM;
DO FOREVER;

NOTER = NOTER + 2;
IF NOTER = NOTEND THEN NOTER = NOTESTART;
LNGTH = SCORE(NOTER +1); /* SECOND OF TWO BYTES */
DO FOR I = LNGTH TO 1 BY -1;

PITCH = SCORE(NOTER); /* FIRST OF TWO BYTES */
DO FOR J = PITCH TO 1 BY -1;

/* COUNT DOWN THE PITCH DELAY */
END;
IT = IT + (-127); /* SWITCH SIGN BIT OF IT */
I F I T O THEN

SETLOC = 0; /* SET FLIP FLOP WITH MEMORY REF */
ELSE

RESETLOC = 0; /* RESET FLIP FLOP WITH REF */
END;

END;
CLOSE KLUGEHARP;

Lcn = nth length count.
time is the total number of
states for one "beat" of the
music (e.g., the shortest
note).
oh is the overhead of the
length counting loop.
dt is the number of states in

the pitch count innermost
loop.
pcn is the pitch count for the
nth frequency.

Table I shows the divide
ratio in decimal, a

hexadecimal equivalent note
pitch code, and seven

Table I. Kluge Harp Symnesizer pitch/length specification codes (HEX).

n divide hex note Note Length Codes (second byte of pair)
ratio code 1 2 4 6 8 16 32

-10 77 4D 19 32 64 96 C8
-9 81 51 18 30 60 90 CO
-8 86 56 17 2D 5A 87 B4
-7 91 5B 16 2B 56 81 AC
-6 97 61 14 29 51 7A A2 F3
-5 102 66 13 27 4D 74 9A E7
-4 108 6C 12 25 49 6E 92 DB
-3 115 73 11 23 43 68 8A CF
-2 122 7A 10 21 41 62 82 C3
-1 129 81 10 1F 3E 5D 7C BA F8
0 137 89 OF 1D 3A 57 74 AE E8
1 145 91 OE 1C 37 53 6E A5 DC
2 154 9A OD 1A 34 4E 68 9C DO
3 163 A3 OC 19 31 4A 62 93 C4
4 173 AD OC 18 2F 47 5E 8D BC
5 183 B7 OB 16 2C 42 58 84 BO
6 194 C2 OB 15 2A 3F 54 7E A8
7 205 CD OA 14 28 3C 50 78 AO
8 217 D9 09 13 25 38 4A 6F 94
9 230 E6 09 12 23 35 46 69 8C

10 244 F4 08 11 21 32 42 63 84

228

Data assumed by KLUGEHARP:
NOTER: 16-bit (two -byte)
address value. Initialize to
point to the address of the
first byte of SCORE.
SCORE: An array of data in
memory containing the code
sequence of the music (see
Table II). Initialize with the
music of your heart's desire
or use the example of Table
I I.

NOTEND: 16 -bit address
value, the address of the last
byte of SCORE (must be an
even number).
NOTESTART: 16 -bit address
value, the address of the first
byte of SCORE (must be an
even number).
SETLOC: An unimplemented
address location which if
referenced turns off one bit
among the high order address
lines, bit 14 in the author's
case.
R E S E T L O C : A n
unimplemented address
location which if referenced
turns off one bit among the
high order address lines, bit
13 in the author's case.
Data used but not initialized:
LNGTH
PITCH
IT
I, J

Fig. 3. Motorola 6800 Code for KLUGEHARP program.

Address Data

F800 FE
F801 FA
F802 00
F803 08
F804 08
F805 FF
F806 FA
F807 00
F808 8C
F809 FC
F80A 80
F8OB 26
F80C 03
F8OD CE
F80E FC
F8OF 00
F810 FF
F811 FA
F812 00
F813 FE
F814 FA
F815 00
F816 E6
F817 01
F818 5A
F819 26
F81A 03
F81B 7E
F81C F8
F81D 00
F81E A6
F81F 00
F820 4A
F821 26
F822 FD
F823 86
F824 80
F825 BB
F826 FA
F827 02
F828 2B
F829 05
F82A 7F
F82B BO
F82C 00
F82D 20
F82E 03
F82F 7F
F830 DO
F831 00
F832 B7
F833 FA
F834 02
F835 7E
F836 F8
F837 18

columns of hexadecimal
length codes weighted to 1, 2,
4, 6, 8, 16 and 32 unit
intervals of time. A note is

placed in the score by picking
a note code, putting it in an

even numbered byte, then
placing a length code from
the same line of the table in
the odd numbered byte
which follows it. The actual

Label Opcode

KLUGEHARP: LDX
3:

4:
NOT END:

NOTESTART:

INX
INX
STX

CPX
(last address of
SCORE plus 2)
BNE
. +3 +2
LDX
(first address of
score ...
ST ?'

LDX

5: LDAB

LENGTH:
6:

7:

F LOOP:
8:

11:

DECB
BNE
+2+3
JMP

LDAA

DECA
BNE
+2 -3

LDAA
(-127)
ADDA

Operand

NOTER

NOTER

#NOTEND

#NOTESTART

NOTER

NOTER

1,X

Add 2 to location in score
by incrementing and then
saving 16-bit new address

compare against immediate

Skip if not at end ...

otherwise recycle

save in either case

This is superfluous!

Skip if length remains .. .

KLUGEHARP Restart piece

O,X

F LOOP

#80

IT

12: BMI
+2 +5

13: CLR SETLOC
(address with bit 14 off ...)

BRA
+2 +3

15: CLR RESETLOC
(address with bit 13 off ... 1

STAA

16: JMP

pitches you'll get from these

codes depend upon the

details of the algorithm in

your own particular
computer and the clock rate

of the computer. For the
6800 system on which Kluge
Harp was first implemented,
the lowest note (code F4) is

approximately 170 Hz with a

500 kHz clock - and the unit

IT

LENGTH

interval of time is
approximately 2000 CPU

states or about 4
milliseconds.

The hand assembled
M6800 code for the
KLUGEHARP program is

listed in Fig. 3. The
mnemonics and notations
have been taken from the
Motorola M6800

229

Data allocations for KLUGE-
HARP:
FA00 -FA01 = Current
pointer to SCORE, NOTER,
which should be initialized to
FC00 before starting the
program.
FA02 = IT - an arbitrary
initialization will do.
FA03 -FFF7 = memory area
available for SCORE - the
example uses FC00 to FC7F
and puts the relevant
initializations into locations
F809 -F80A (NOTEND) and
F80E -F8OF (NOTESTART).

NOTE: In the label column,
the numbers followed by colons
(e.g., "6:")are used to indicate
corresponding places in the high
level language version of the
program of Fig. 2.

In the system for which this
program was written, all active
memory is found at addresses
F800 to FFFF. Thus for all
normal program activity, bits A14
and A13 at the back plane of the
system are logical "1". When the
location SETLOC (8000) is

cleared, the high order address
portion changes and bit A14 goes

to negative for a short time,
setting the Kluge Harp flip flop.
When the location A13 is cleared
(D000) on an alternate cycle,
address bit A13 goes to logical 0
for a short timer resetting the
Kluge Harp flip flop ...

Table 11. WOLFGANG: Set the content of SCORE in memory to the
codes in this table - given for the addresses of the M6800 program
version - and KLUGEHARP will play four bars from the classical
period.

6800 Address Value 6800 Address Value

FC00 9A34 - FC40 5656 -
FCO2 9A34 FC42 5B56
FC04 9A34 FC44 5B56
FC06 9A34 FC46 5B56
FC08 9A34 Note 1 FC48 5B56 Note 8
FCOA 9A34 FC4A 5B56
FCOC 9A34 FC4C 5B56
FCOE 9A34 FC4E 5B56 -
FC10 7A41 FC50 664D
FC12 7A41 Note 2 FC52 664D Note 9
FC14 7A41 FC54 664D
FC16 7A41 FC56 664D

FC18 664D FC58 4D64
FC1A 664D Note 3 FC5A 4D64 Note 10
FC1C 664D FC5C 4D64
FC1E 664D FC5E 4D64

FC20 A331 FC60 664
FC22 A331 FC62 664D
FC24 A331 Note 4 FC64 664D Note 11
FC26 A331 FC66 664D
FC28 A331
FC2A A331 FC68 7343 - Note 12

FC6A 664D - Note 13
FC2C 9A34 - Note 5 FC6C 7343 - Note 14

FC6E 7A41 - Note 15
FC2E 893A - Note 6 FC70 7343 - Note 16

FC30 9A34- FC72 7A41
FC32 9A34 FC74 7A41
FC34 9A34 FC76 7A41
FC36
FC38

9A34
9A34

Note 7 FC78
FC7A

7A41
7A41

Note 17

FC3A 9A34 FC7C 7A41
FC3C 9A34 FC7E 7A41
FC3E 9A34- FC80 (end pointer points here)

Microprocessor Programming
Manual available from the
manufacturer.

While not the greatest
musical instrument in the
world, the Kluge Harp
represents an interesting and
challenging diversion. The
program presented here is by
no means the ultimate in
music systems - and can
serve as a basis for further
experimentation and
elaboration. Some challenges
for readers: modify the
program to change the
frequency of the notes
without changing the SCORE
data; write another (longer)
music program which only
specifies the pitch
code /length information once - and represents the score as
a series of one -byte indices
into the table of pitch
code /length information.

230

NOTE: This program is
simpleminded and not at all
optimized. As a challenge to
readers, figure out a way to make
the notation more compact yet
preserving the total length of each
note.

Fig. 4. Timing of the Kluge Harp Output Waveform. At is the amount
of time spent in the inner loop, and is set by choice of pitch codes. AT
is the length of the note, measured as a count of half- cycles at its
frequency. See Table I fora consistent set of length codes.

N AT

-E-nt --114-nt-+1.-nt -+l

7437
PIN 3 IN
FIG.I

AI4 LINE

CLR SETLOC
INSTRUCTION
EXECTED

413 LINE

CLR RESETLOC
INSTRUCTION
EXECUTED

If-

t

The Time Has Come to Talk

Wirt Atmar
Ai Cybernetic Systems
PO Box 4691
University Park NM 88003

The extent to which art and literature,
particularly science fiction, affect the future
course of civilization remains a persistent
and perplexing question. Must a dream, by
necessity, occur decades before its realiza-
tion? Or does the presence of the dream
itself generate its own reality? Mankind's
trip to the Moon in 1969 was the dream
dreamt by Cyrano de Bergerac and Johannes
Kepler 300 years prior to its enactment.

And now, we, nurtured by the thousand
different dreams of the future as portrayed
in novels and movies, all expect computers

to be able to talk in the near future. Whether
we see the computer becoming the benign
and obedient servant of man or wildly out of
control, we all tend to see the computer
becoming more anthropomorphic, more
humanlike in behavior and form.

In science fiction two great dreams of the
future predominate. One is the seemingly
inevitable first contact with intelligent be-
ings of an extra terrestrial origin. The second
is the construction, by our own hands, of an
alternate embodiment of intelligence in
machine form. The first dream may well not

.lá rnl-;r , a a
231

"The time has come," the Walrus said,

"To talk of many things:
Of shoes - and ships - and sealing wax -

Of cabbages - and kings -
And why the sea is boiling hot -

And whether pigs have wings."

occur within the lifetime of our civilization;
the second would seem to be almost guar-
anteed within the next 100 years.

The addition of speech to the computer's
behavioral repertoire makes the computer no
more intelligent nor aware than it was
before. It remains a simple machine. But it
undeniably takes on a human characteristic
that it never possessed before. An observer
finds it impossible not to personify the
machine with an identity and a distinct
personality. While the addition of speech is

only a minor step toward achievement of a

truly self- organizing, artifically intelligent
machine, it is a psychologically important
one. The computer, once it speaks, seems to
be intelligent. But again, the dream of
machine produced speech is much older than
its reality. The ancient Greco -Roman civili-
zation was fascinated with the idea of deus
ex machina. Stone gods were often hollowed
to allow a priest to speak from within, a

practice that persisted well into the Christian
era.

The first known practical realization of
machine generated speech was accomplished
in 1791 by a most ingenious engineer,
Wolfgang von Kempelen, of the Hungarian
government. Von Kempelen's machine was
based on a surprisingly detailed under-
standing of the mechanisms of human
speech production, but he was not taken
seriously by his peers due to a previous well
publicized deception in which he built a

nearly unbeatable chess playing automaton.
The "automaton" was unfortunately later
discovered to actually conceal a legless
Polish army ex- commander who was a

master chess player.
By 1820, a machine was constructed

which could carry on a normal conversation
when operated by an exceptionally skilled
person. Built by Joseph Faber, a Viennese
professor, the machine was demonstrated in
London where it sang "God Save the
Queen." Both the Von Kempelen and Faber
machines were mechanical analogs of the
human vocal tract. A bellows was provided
to simulate the action of lungs; reeds were

- Lewis Carroll, 1871, in

Through the Looking -Glass.

used to simulate the vocal cords, and vari-
able resonant cavities served to simulate the

mouth and nasal passages.

The basic method, modelling the human
vocal tract, remains to this time the only
practical method of actually synthesizing
speech. In the 20th century, such modelling
is done electronically. The approach was

first put in electrical analog form by Bell
Laboratories in the late 1930s. The Bell

Telephone VODER (Voice Operation
DEmonstratoR) was initially shown at the

1939 New York's World Fair where it drew
large crowds and considerable attention. The
VODER consisted of a buzz source (similar
to human vocal cords or mechanical synthesi-
zers), a hiss source to simulate the rush of
aspirated air, and a series of frequency filters
to imitate the three, four, five or six
preferred frequencies (called formant fre-
quencies) passed by the resonant cavities
formed by the mouth, tongue and nose.

The original VODER was played by
highly trained operators using a keyboard,
wrist switches, and pedals at an organ -like
console. Twenty four telephone operators
were trained six hours a day over a 12
month period for the 1939 World's Fair. The
VODER itself was a full rack in height.

With the advent of digital computers,
however, the synthesis of speech has been
made much easier. All the information
necessary to repeatedly and reliably generate
any one speech sound (a "phoneme ") can
now be programmed into the machine.
Through the proper connection of
phonemes, a digital computer could be made
to say words and sentences.

General American English, the dialect
spoken in the midwest and southwestern
parts of the United States, contains 38
distinct phonemes. These speech sounds can
be divided into the following classes:

Pure vowels: produced by a constant
excitation of the larynx and the
mouth held in a steady position; eg:
1,6111.

Diphthongs: a transition from one

232

(PITCH PERIOD)

MPULSE
GENERATOR

AV

WHITE -
NOISE AN
GENERATOR

VARIABLE -FILTER
SYSTEM

FI F2 F3

FP FZ
VARIABLE
POLE /ZERO
NETWORK

SPECTRAL
COMPENSATION

KEY:

SPEECH
OUTPUT

DIGITAL
(TWO LEVEL)
GAIN CONTROLLED
AMPLIFIER

SUMMING
AMPLIFIER

I PROGRAMMABLE
FILTER

t

Figure 1: The serial analog speech synthesizer in block diagram form.

(PITCH PERIOD)

pure vowel to another, thus are not
always considered as separate pho-
nemes; "i ", "u ".
Fricatives: consonants produced by a

rush of aspirated air through the vocal
passages: "f ", "s ".
Plosives: explosive bursts of air: "p ",
,1k 11tß

Semi -vowels: "w ", "y ".
Laterals: "1", "r ".
Nasals: "n ", "m ".

To produce speech, a separate circuit, or
combination of circuits, must be provided to
generate each of the above classes of
phonemes.

AFI FILTERS

AV

IMPULS E

GENERATOR

Among possible realizations of such a

synthesizer, there are the serial analog and
parallel analog forms. Figure 1 illustrates a

block diagram of a serial analog design, and
figure 2 shows the general organization of a

parallel analog synthesizer.
The parallel analog method was the reali-

zation chosen by Ai Cybernetic Systems for
its synthesizer module. The parallel realiza-
tion was chosen because of the low digital
information transfer rate and the smaller
number of bits required to control the filters
which simulate the resonant cavity of the
vocal tract.

In the Ai Cybernetic Systems design, the
rush of aspirated air is generated by the
noise of a zener diode operated at its knee,

amplified many times, as shown in figure 3.

The action of the larynx is simulated by an

integrated circuit function generator. One or
both of these circuits is selected to produce
the excitation necessary to generate any one
class of phonemes. The actual phoneme
perceived is determined by the duration of
the excitation and the selected formant
filters. Figure 4 shows the typical formant
filter circuits which are digitally activated by
analog switches.

The control of the several analog switches
is provided by a read only memory which is

addressed by the ASCII bit patterns identi-
fied in table 1.

No hard and fast rules exist in the design

of the circuitry to generate a phoneme. In

fact, small changes in component values can

often make large differences in the phoneme
which is actually heard. Because no set rules
exist, a steady stream of listeners must
parade before the machine while it is being
designed in order to determine which
phoneme the synthesizer is really saying.
The phenomenon of "tired ears" rapidly sets

in; and a person will begin, after a bit,
hearing any one speech sound as a whole
array of possible phonemes. Suggestion, on

the other hand, is an ever obtuse enemy to
the designer. Surprisingly, almost any speech

sound can be suggested to sound like a great

SPECTRAL
COMPENSATION

WHITE-
NOISE
GENERATOR

SUMMING
AMPLIFIER

AN

233

SUMMING
AMPLIFIER

SPEECH
OUTPUT

Figure 2: The parallel ana-
log speech synthesizer in
block diagram form.

+12 WHITE -NOISE
GENERATOR 22K WHITE NOISE AMPLITUDE

AN

+12 +12

4.7K
IK

IooSl

82K
5

IK
500K

7

2 10

3µF RESISTANCE
DETERMINED
BY
FACTORY

500K

VOICE
GENERATOR

220K

PITCH
FREQUENCY

number of alternate phonemes, especially
after 20 to 30 minutes of intense listening.

Once the design is experimentally deter-
mined, careful procedures must be followed
to insure that when the circuit is duplicated,
it produces each phoneme properly. This
means precision components must be used,
as small changes in values can make the
difference between moderately distinct
speech and a fairly mushy speech.

Analog simulation of the vocal tract is the
only method of true speech synthesis

Figure 4: The parallel fil-
ter network of the Model
100Q The filter fre-
quencies and quality fac-
tors chosen depend on the
number of filters used to
divide the voice frequency
spectrum. Ideally, the cen-
ter frequencies of the
filters should lie some-
where near the commonly
occurring formant
frequencies.

FROM
EXCITATION
SOURCES

500K

AV
VOICING AMPLITUDE

PITCH PERIOD
CONTROL

--1
1 I

_J

TO
FILTERS

DIGITALLY CONTROLLED
ANALOG SWITCH

known. A popular alternate method of
speech production (actually, reproduction)
is the storage of digitized speech in a ROM.
When the stored information is clocked out
of the ROM at the proper rate and smoothed
by a low pass filter, the generated speech can
be quite clear and distinct. But it is impor-
tant to note that this is not synthesized
speech. In effect, this method is no different
than any other method of recording speech.
Yet, the method does have the advantage of
producing readily understood words by a

r -
1 1

L T J
AFI

FORMANTI
AMPLITUDE

500K r -
1 1

AF2
FORMANT 2
AMPLITUDE

FORMANT FILTER NO.1

234

1K

FORMANT FILTER NO.2

IK IK

Figure 3: The excitation
sources of the Ai Cyber-
netic Systems Model 1000
Speech Synthesizer. The
rush of air through the
vocal passages is simulated
in the upper branch while
the action of the larynx is

simulated in the lower
branch.

0.5µF

002

33K

SPEECH
2µF OUTPUT

r-- o-
L-J

DIGITALLY CONTROLLED
ANALOG SWITCH

Photo 1: The Ai Cybernetic Systems Model 1000 Speech Synthesizer. The

synthesizer is primarily an analog circuit controlled digitally. Ten active filters
composed of 15 operational amplifiers are mounted in the upper left corner
of the board Directly beneath these resonant -cavity simulating filters are the

vocal excitation circuits The right half of the board is composed of the

ASCII character decoding circuits and phoneme memories Four 32 x 8
ROMs control the 16 analog switches to select the proper combination of
circuits to generate any one phoneme. A device -busy flag is returned for the

duration of the phoneme.

computer or calculator. However, the vocab-
ulary is totally predefined and must remain
small due to the high cost of storing this
kind of generated speech. Moreover, the

repertoire of this kind of speech is limited to
the person who initially spoke the recorded
words.

Synthetic speech, on the other hand, is

generally not as clear and distinct. The
proper transitions from phoneme to pho-
neme, the automatic emphasis given to
leading or terminating consonants, and the
intonation of a rhythm in speech which is

associated with a word's importance or
placement, are all facets of human speech

which are difficult to properly recreate in

machine produced speech. The determina-
tion of accurate rules to account for these
factors has been the subject of active and
intense research at centers here, and in
Europe and Japan, including Bell Telephone
Laboratories, the Haskins Laboratories of
New York, the Royal Institute of Tech-
nology in Sweden, and the Musashino Elec-

trical Communication Laboratory in Tokyo.
On the whole, totally satisfactory rules have

not yet been worked out although a great
deal of progress has been made in the last 20
years. Machines which do incorporate the
known rules quickly become elaborate and

expensive (in the tens of thousands of
dollars).

235

Simplified speech rules can be incor-
porated in a much smaller machine, but the
burden of intelligibility now falls upon the
listener. The produced speech is not natural
speech. It sounds for all the world like the
speech produced by the robots of 1950s
grade B science fiction movies. But it is

intelligible and it is quickly learned. Because
the machine pronounces every phoneme in
the same fashion each time it occurs, a

listener quickly gains a feeling for the
speech. The process is not unlike learning to
listen to a newly- arrived foreigner who
possesses a strong accent. The fashion by
which he mispronounces the English
phonemes is quickly learned and intel-
ligibility increases rapidly. The difference
with synthetic speech is that the speech is

truly an alien form of speech, not often
heard before by many of us.

As to the naturalness of synthetic speech,
M D Mcllroy of Bell Telephone Labs wrote
this in 1974 [in "Synthetic English Speech
by Rule," Computer Science Technical Re-

port No. 14, Bell Telephone Laboratories]:

The Computer Science Center at this
laboratory has experimented with an

inexpensive speech synthesizer [pre-
sumed to be the Votrax] as a regular
output device in a general purpose
computing system. Our intention was

not to do speech research or to create
artificial speech as an end in itself. In

the present state of the art, those goals
require much more elaborate facilities
than we have at our disposal.

We wished to see what uses might
evolve when speech became available
more or less on a par with printed out-
put. For this goal, "naturalness" was
not a prerequisite, any more than it is

for printed output. Most computers
still print mainly in upper case, are

incapable of printing mathematical
notation, and normally produce
cryptic codes or tabular stuff that
require considerable indulgence to be

understood. Since printed gobbledy-
gook is so widely accepted from com-
puters - and fed into them, witness
any manufacturer's operating system
manual - we suspected that spoken
gobbledygook might be quite passable,
too, except for one severe difficulty:
Being ephemeral, sounds must be

understood at first hearing. As it turns
out, long speeches are hard to under-
stand, as are extremely short utter-
ances of very simple words out of
context. But given a little familiarity

Vowels:

Semi- Vowels:

Plosives:

Fricatives:

Liquids:

Nasals:

Others:

with the machine's "accent ", one finds
short sentences to be quite intelligible.

The phonemes generated by the Model
1000 synthesizer appear in table 1. Each

phoneme has been assigned an ASCII charac-
ter to represent its particular sound. The
assignment was done in the most intuitive
manner possible; the consonants are gener-

ally the consonants as they appear on the
keyboard, but there are many more vowels
than a, e, i, o and u. Non -alphanumeric
characters were chosen to represent the
remaining vowels and consonants in such a

manner that they could be easily associated
with their sound. As examples of this, the
number symbol, " #" is used to signify the
vowel er as in number, " &" for the vowel ae

as in and "(" for ah and ")" for ow

Table 1: List of Phonemes.

Phoneme

a

ae

ah
aw
e

eh
er

o
00
uh
A

w
Y

p
k
t
b
d
g

f
h
s

v
sh
th
z

t
r

m
n

Glottal Stop

Draw Bar

Pause

ASCII Symbol

A
&

E

o
u

t

w
Y

P

K
T
B
D
G

F

H
S

V
/
+

z

L
R

M
N

(space)

Usage

pace, bay
and, Altair
father, all
bought, robot
see, harmony
excessive, ten
number, bird
hit, six
Mexico, over
too, sue
the, computer
putt, up

water, wind
yaw, yacht

pop, deep
computer, Atlantic
top, pot
boy, bird
dog, died
go, great

puff, food
how, had
saw, miss
David, vow
slash, shoot
thaw, Earth
zero, is

low, all
row, round

miss, am
now, nine

The pause associated
with aspiration
An extended vowel
with decay
Normal word spacing

236

representing the position of the tongue when

these vowels are spoken, "!" for the sharp

sound of uh, " +" for the fricative consonant
di as in thaw, and "I" for the sh in slash.

The Model 1000 accepts a string of ASCII
characters as if it were a normal printing
device. Read only memories on the board
convert the incoming ASCII symbol into
specific control information which in turn
determines the vocal source, duration and

frequency content of the spoken phoneme.
Less than 50 bytes of machine code or 8

lines of the typical BASIC are all that is

required to generate a subroutine to accept a

string of characters and output it character -
by- character to the synthesizer.

For example, to write the phrase "I am a

talking robot" on a printer or display periph-
eral, an ASCII character string is set up and

sent to the output device. In BASIC, if C$ is

the argument of the output subroutine, the
setup would be:

C$ = "I AM A TALKING ROBOT."

To have the synthesizer say the same phrase,
the setup for the phonetic output routine
with argument P$ might be:

P$ = " &IE AM AE T)..KEN- RO.B)..T"

(The ASCII symbols are taken from table 1.)

The long vowels I and A occur in this
passage. As a rule, most of the long vowels
are not really vowels at all but rather
diphthongs composed of a sequence of pure
vowels. Pronounce out loud each of the
phonemes in the phrase above, referring to
table 1 as necessary. Remember that each

phoneme has only one specific sound. Play-

ing the part of a synthesizer yourself, you
will find that you can say any English word
with the phonemes of table 1.

Programming the Model 1000 synthesizer
is easy once you actually begin to listen to
what you say and learn to rely less on how a

word is written. English is a hodge podge of
languages and carries with it all the alternate
symbolisms of the pronunciations of its root
languages. Purely phonetic languages such as

the Polynesian languages of Samoa or Tonga
could be made to be spoken almost as they
are written. This is unfortunately not true of
English; homonyms such as "won" and
"one" and "two ", "too" and "to" abound.

Generally, only one phonetic spelling
exists for any one word regardless of the
number of alternate written spellings. It
becomes important to identify the sounds
that you actually are saying when a word is

pronounced. The word "one" is phoneti-
cized using the phonemes of table 1 as WIN
in similarity to the word "won "; "two" is

programmed as TOU- more as if it were the

written word "too ". For most Americans,
there is no difference in the way these words
are pronounced.

Proceeding in the same fashion, the
remaining numbers up to ten are typed in as:

T + #E- FO #- F &IE..V SI..KZ
S' -VIN AE..T N &IEN T'N

Again, pronounce these phonetic spellings to
yourself. As you will discover, phonetic
spellings are quickly deduced and learned.

In a very short period of time, it becomes
possible to make the machine say anything.
At that point, conversational computing
takes on a whole new meaning. Interactive
computing will never again be the same once
your computer has actually spoken to you.

BIBLIOGRAPHY

1. Speech Synthesis, Benchmark Papers In Acous
tics, 1973. J L Flanagan and L R Rabiner, eds.
Dowden, Hutchinson and Ross, Stroudsburg
PA. A collection of the best papers on speech
synthesis over the past 35 years.

2. "Synthetic Voices for Computers," 1970. J L
Flanagan, C H Coker, L R Rabiner, R W

Schater, N Umeda in IEEE Spectrum 7:22 -45.
An authoritative overview of the speech synthe-
sis procedure.

3. "The Synthesis of Speech," 1972. J L Flana-
gan, Scientific American 226:48 -58. A simpli-
fied rework of the IEEE Spectrum article
above.

4. IEEE 1974 Speech Recognition, Proceedings,
1974. L Erman, ed. IEEE, NY. A bit too
technical for a first introduction but a good
measure of where things are going.

COMMERCIAL PRODUCTS

At the present time, two speech synthesizers
are both commercially available and affordable by
the hobbyist. One is the Votrax produced by:

Vocal Interface Division
Federal Screw Works
500 Stephenson Dr
Troy MI 48084
Price, approximately $2,000
Interfacing: Parallel or Serial (RS -232)

The second is the Model 1000 manufactured by:

Ai Cybernetic Systems
PO Box 4691
University Park NM 88003
Price, $425
Interfacing: Electrically and mechanically

compatible with Altair /IMSAI/
Poly -88 bus structure.

Either company will be pleased to provide
literature free of charge. A demonstration tape is

available from Ai Cybernetic Systems for $5 and a

complete programming guide, theory of operation
manual and phonetic glossary is available for
$2.50.

237

Photo 1: The Direct Etch Method. In this method, a one of a kind printed circuit is made by putting the pattern directly onto
the copper. A Sanford's "Sharpie" pen (available in most stationery stores) can be used to draw patterns directly, and tape resist
can be used for more uniform runs. If tape resist is used, care should be taken to avoid gaps in the adhesion of the tape to the
copper.

Make Your Own Printed Circuits

James Hogenson
Box 295
Halsted MN 56548

Photos accompanying this
article are by Ed Crabtree,
using materials supplied by
the author.

The widespread commercial use of
printed circuits in electronic equipment
began a few decades back when engineers
started looking for more efficient wiring
techniques to replace laborious hand -wiring
methods. One of the first methods tried was
to deposit (in other words, to print) a

conductive ink pattern on a base of insulat-
ing material. The original method, printing,
gave its name to all subsequent methods.
Today, the term printed circuit refers to any
electrical circuit in which individual wire
lead connections have been replaced by a

two dimensional conductive pattern bonded
to an insulating base material.

Contemporary printed circuits consist of
etched copper foil wiring patterns bonded to

238

any of several insulating substrate materials
sturdy enough to serve as a mounting base

for the actual electrical components which
make up the circuit. Although originally
developed for mass production applications,
printed circuit fabrication techniques have
been refined until they can now be used by
almost anyone with average mechanical
skills.

Choosing your base material, the board, is

a matter of price and purpose. The best is

the epoxy glass board while phenolic (bake -
lite) is the cheapest. Phenolic base material is

perfectly adequate for many applications,
but since small boards are relatively inex-
pensive, epoxy glass is usually the optimum
choice. The base material often comes

laminated with copper foil on one or both
sides.

The toughest part of making your first
printed circuit board is getting started. In

other words, the process may not be as

difficult as you had thought.
A pattern of etch resist is applied by one

of several methods to the copper foil. The
board is then immersed in a chemical solu-
tion (usually a ferric chloride solution)
which etches away all exposed copper. Then
the board is washed and the etch resist
pattern removed. The copper foil that was
covered by etch resist remains on the board
to provide you with a printed circuit.

Plan the Layout

The first step toward making your own
printed circuit board is planning the layout.

Photo 2: Printing the Cir-
cuit. Once a negative of
the artwork has been
created, the next step is to
print the circuit. The nega-
tive is placed over a sensi-
tized PC board and held
firmly in place by a glass
cover plate in the printing
frame. The glass guar-
antees smooth and even

contact for accurate trans-
fer of the image. The

board is then exposed to a

photoflood lamp for one
to three minutes.

Draw the circuit pattern on paper as it
should appear on the printed circuit board.
You will use this as a guide for laying out
the actual etch resist pattern. Keep in mind
that you are looking at your board from the

bottom when looking at the foil side. Be

careful not to put the pattern on the printed
circuit board upside down. (I've made that
mistake more than once!)

Direct Etch

Direct resist is a method often used when
a one of a kind board pattern is needed. Dry
transfer etch resistant patterns are applied
directly to the copper. The dry transfer
patterns form integrated circuit pads, tran-
sistor pads, edge connectors, round donut
pads, etc. Narrow etch resistant tape is

applied to complete the circuit path between

A printed circuit is any
electrical circuit in which
individual wire leads have

been replaced by a two
dimensional conductive
pattern bonded to an in-

sulating base material.

The toughest part about
making your own printed
circuits is getting started.

Photo 3: Results of Ex-
posure. After being ex-
posed, the photosensitive
layer is developed, using
an appropriate solution.
An etch resist pattern will
then remain on the board
as in the example at left.
(The dark blotches are oxi-
dation on the copper.) The
board is then etched with
the usual ferric chloride
solution. The finished pro-
duct (hopefully free of im-
perfections) is a printed
circuit board such as the
one at right.

Photo 4: The "Cut -N- Peel" Method. A sheet of red mylar film on clear
acetate backing is placed over the pattern to be copied The negative is made
by carefully tracing the pattern with a razor or sharp knife, then removing the
red film wherever component pads and connections are to be made. (A trade
name for the film used in this method is "Rubylith. ') The negative is then
transferred to sensitized copper and etched

Photo 5: The Bishop Graphics " `B' Neg" Method In this method, o negative
is made directly, using self adhesive block patterns on a mylar backing. The
connections between patterns are made by cutting away the black layer with
a sharp knife as in the "Cut -N- Peel" method

240

component pads. Etch resistant ink pens and

resist paint are also available for direct
etching, as illustrated in photo 1.

After etching, copper will remain on the

board only where dry transfer patterns or
resist ink protected the copper foil from the
etching solution. It should be noted that the
etch resistant tape must be applied firmly,
especially at overlaps, to keep the etching
solution from getting under the tape and

breaking the conductive copper path.
The direct resist method does not require

extra steps for developing, as does the photo
etch method. If only one printed circuit
board is going to be made from a pattern,
the direct etch method may be a time saver.

If more than one board is to be made from
one pattern, the direct etch method will
quickly turn the element of time against
you, since the pattern must be reconstructed
on each board.

Photo Etching

The photo resist method is the most
efficient method for making more than one

printed circuit board of a kind. Photo resist
etching is probably the most popular meth-
od, and is often preferred even for one of a

kind printed circuit boards. The difference
between photo resist and direct resist is the

way the resist pattern is applied.
The copperclad board to be photo etched

is first sprayed with a thin coat of a photo
sensitive etch resist. This etch resist is

sensitive to ultraviolet light. The sensitized
board must be handled in a darkened room
using a yellow light for illumination.

After the resist is dry, a negative of the
printed circuit pattern is placed over the
sensitized board in a print frame, as shown
in photo 2. The board is exposed to the light
of a photo flood lamp through the negative
for one to three minutes. It is then immersed
in a resist developer solution for about one
minute. Only the etch resist which was

exposed to the bright light will remain on
the copper foil, as in photo 3. The resist is

no longer light sensitive after developing, but
should be allowed to dry for a short time.
The board may then be etched. The copper
which is protected by the remaining etch
resist will not be removed. After the board
has been etched, the resist is removed and

the board may be cut, drilled, and

assembled.

Making Negatives

It is plain to see that exposing a board
through a reusable negative is much simpler
than reconstructing the pattern by hand
each time the pattern is used. The negative

may be obtained by a number of methods.
If a pattern is not too complex, the

"Cut -N- Peel" method of photo 4 can be
used. The pattern is simply cut into a red
film on a clear acetate backing. The red film
is peeled off, leaving a negative of the
pattern.

If the pattern involves integrated circuits,
the "Cut -N- Peel" method becomes rather
difficult. The Bishop Graphics" 'B' Neg" TM

method would be more suitable. The ready
made negative component patterns are laid
out on a mylar sheet according to desired
component placement. The areas between
these self adhesive patterns are blacked out,
using solid black acetate film. The only
cutting necessary is for connections between
component patterns. Photo 5 illustrates this
method. The finished product is a negative
of the entire printed circuit pattern.

Photographic Negatives

Perhaps the easiest and certainly the most
popular method of obtaining the necessary
negative is to first make a positive pattern,
then produce a negative by photographic
methods.

Positive artwork is made on a sheet of
clear mylar film with matte finish on one
side. This film is dimensionally stable and
similar to plastic drafting film used by
draftsmen. Positive artwork patterns are
widely available in a large number of sizes

and shapes. Photo 6 shows an example of a

circuit being laid out with these patterns.
Unless the artwork is going to be photo-
graphically reduced, use 1:1 artwork pat-
terns. The self adhesive positive artwork
patterns are laid out on the mylar sheet
according to your pencil layout. Narrow
black tape is used to form conductive paths
between components. Graph paper or a

similar grid should be used as a guide for
orderly and uniform positioning of patterns.
Since components are normally configured
for dimensions which are multiples of 0.1

inch a 0.1 inch grid should be used.
A negative reproduction of your positive

pattern can be made by a photographer or
(preferably) by you. If you enjoy experi-
menting with photography, you might try
experimenting with lithographic and ortho-
graphic films.

Photography Without a Darkroom?

The most popular negative producing
method does not require photographic dark-
room facilities. The special reversing film
used may be handled in subdued light or in a

darkened room using a dim yellow light.
The positive pattern is placed directly on top

Photo 6: The Traditional Photo Negative Method. In this method, a positive
artwork pattern is created, using preprinted self adhesive patterns and
artwork tape. A sharp knife is used to cut the tape as it is being applied to the
mylar film backing. A photographic process must be used to invert the image
and create the negative form (see photo 5).

of the reversing film. The film is exposed
through the positive artwork pattern to a

photo flood lamp for one to three minutes
and developed by rubbing gently with a

cotton swab and a little film developing
solution, as shown in photo 7. The opaque
or colored emulsion on the film will rub off
areas not exposed to light. The result is a

clear pattern on a dark background.
A somewhat more involved but rather

unique artwork developing system is made
by Datak. With the Datak film and develop-
ing solutions, any of the following can be

made: (1) negative from film positive or
original artwork, (2) film positive from
negative, (3) negative from negative, (4) film
positive from film positive or original art-
work, (5) film positive from black image on
white paper, (6) film negative from black
image on white paper. The last two methods
allow you to copy a printed circuit pattern
directly from a magazine page.

The Datak film is developed by methods
similar to standard photographic procedures,
so this method is more complicated and time
consuming. Exposure and developing times
are somewhat more critical.Datak film may,
however, be handled in subdued tungsten
light.

Advantages of Photo Resist Techniques

One of several advantages in using the
photo resist method will become apparent
when a modification of an existing board is

241

For a one shot printed
circuit, simply draw the
pattern onto copper with a

resist pen and dump the
board into ferric chloride
until done.

Photo 7: Creating a Photo Negative for Etching. A negative is reproduced from the positive artwork pattern, using a reversing
film. The film is exposed with a bright light, then developed by rubbing gently with a cotton swab and developing solution. The
result is a negative version of the artwork with a 1:1 scaling.

For a unique approach to
making jumpers on one
layer boards, see Don Lan-
caster's "How to Build a

Memory With One Layer
Printed Circuits" in the
April 1976 BYTE, page

28.

made. (Like when you need to make a board
over because you forgot two or three con-
nections. This does happen!) Rather than
reconstructing an entire printed circuit pat-
tern, make only the necessary changes or
additions on the original artwork, then make
a new negative and a new board. Making a

new negative using reversing film requires
only a few minutes of your time.

Double Sided Boards?

Sometimes a circuit will be too complex
to fit on one side of a circuit board. Since a

printed circuit is only two dimensional,
conductor paths cannot cross. Jumper wires
can be used to provide some crossovers, but
if the circuit requires a large number of
crossovers, a double sided circuit board
might be considered. A double sided PC

board is one which has a copper foil pattern
on each side. The major consideration in
making a double sided PC board is getting
the pattern and terminals lined up. Both
sides of the board are developed and etched
at the same time.

242

Drilling

The step following the fabrication of a PC

board is drilling out the holes. A small bench
type drill press is ideal for this purpose. A
standard hand held drill is unsatisfactory as

the small drill bits break at low speeds.
Commercially, small holes are drilled in
boards at speeds as high as 70,000 RPM. A
Dremel "Moto- tool" is a suitable com-
promise for work on printed circuit boards.
This tool runs at 30,000 RPM. Such a tool
will not only drill out extremely small holes,
but cut and shape printed circuit boards, and
lend itself to a host of other uses not related
to making boards. A multipurpose tool like
this is handy, especially for cutting out
things like board edge connectors.

If repairs or small changes are needed on
a printed circuit board, a piece of bare wire
soldered over the foil is the cheapest and
quickest modification. A conductive silver
paint is available for printed circuit repairs,
but the paint is quite expensive. GC Electro-
nics, Techniques Inc, Kepro, and Datak
each manufacture printed supplies for the

hobbyist in addition to their commercial
products. Such supplies are distributed
through a large number of mail order firms
and retailers. The appendix lists the various
products and who makes them. Cost of
materials will vary depending upon a number
of factors, but a figure of 20 cents per
square inch of printed circuit board will
provide a good rule of thumb to estimate the
cost per board.

You will notice that Techniques and
Kepro do not manufacture photo resist
spray. Instead, they sell printed circuit board
panels with the photo resist already applied.
Presensitized panels (which come wrapped
individually in dark paper) will assure you of
a uniform and dustfree coating of photo
resist. However, if you make a mistake
developing the resist pattern, you will
waste the extra cost of presensitized panels.
It is a good idea to start with a spray resist,
then graduate to presensitized panels once
you have refined your circuit fabrication
techniques. And the keys to refining your
techniques are: Read instructions and famili-
arize yourself with what you're doing, fol-
low the instructions, take your time, be

careful, and practice first, using small sample
boards. Follow those hints and you may

surprise yourself with the fine boards you
can turn out.

APPENDIX: Sources of Supply

Direct etch materials
Ink resist is made by GC Electronics, Tech-

niques, and Kepro.
Dry transfer resist patterns are made by Tech-

niques, Datak, and Kepro.
An ordinary "Sanford's Sharpie" marking pen

available for about 49 cents at any stationery store
can be used as a resist pen.

Photo etch supplies
"Cut -N- Peel" and " 'B' Neg" supplies are

distributed by GC electronics. (The "'B' Neg"
materials are manufactured by Bishop Graphics.)

Rubylith material, available at art supply
houses, can also be used for cutting and peeling
patterns.

Positive artwork patterns and supplies are made
by Datak, Kepro, and Techniques. GC Electronics
distributes artwork materials made by Bishop
Graphics. Bishop Graphics materials are also dis-
tributed by independent distributors.

Photo etch supplies
Photo resist spray and developer are made by

GC and Datak. Presensitized panels are distributed
by Techniques and Kepro. Reversing film and
developer are made by Techniques, Kepro, and
Datak.

All of the above mentioned manufacturers make
or distribute plain PC board panels (unsensitized)
and etching solutions.

Photo flood lamps are available at photo supply
houses. (Look for 375 Watt reflector flood lamp or
No. 2 (EVB) Photoflood.)

Photo 8: Close up, a successfully etched printed circuit will have even lines
with no hairline cracks or other imperfections. This example shows such a

result, prior to drilling out the holes for component leads.

NiinaMONOOli s eMINIMMINWa.amilaw

tiaMt i!
1"14\maimhooi

)
I 6

Photo 9: When various imperfections enter the picture, the result is not so
clean. Here is a high contrast picture of an imperfect result. The resist layer
has separated from the copper during the etch process at several points,
resulting in holes in the copper and, in several instances, complete breaks in
circuit runs.

243

A

Software

WIZ Yoim, Oft
ASSEMBLER

To date I have not seen
any detail descriptions of
home brew self assembler
systems for microcomputers
such as the 8008, 8080, 6800
or PACE. Maybe Dan
Fylstra's description of
assemblers will start a few
readers off in that direction.
Dan describes in general

by
Ilan Fvlslra
IIR

.ïil) Ilrmurinl Drive
(:anrhridre
II I 02/39

terms what assemblers do,
scanning techniques, symbol
tables, hashing methods and
some of the more advanced
"bells and whistles" you
might employ. Use Dan's
article as a source of ideas on
the organization and features
for your own assembler
software designs. ... CARL

If you have done any work
with microcomputers, you
have doubtless seen programs
written in assembly language.
You probably know that
assembly language programs
must be translated into
machine language before they
can be executed on the
computer. The translation is

usually performed by another
program, called an
"assembler." Because
assembly language lets you
write mnemonic (easily
remembered) names for
instructions and data, rather
than binary codes, programs
may be written more quickly
and with fewer errors. The
assembler does the tedious
job of putting together, or
assembling, all of the right bit
patterns to make up the
program in machine language.

246

Most of the assemblers
presently available for
microcomputers are
cross -assemblers: They run on
big computers or time -sharing
systems, and produce output
which must be loaded in
some way into the
microcomputer system.
Commercial time -sharing
services are expensive, and
the whole point of having a

home computer is to be able
to perform computing chores,
such as program assembly, on
your own system at ultra -low
cost. Since a resident
assembler - one which runs
on your own micro system -
may be unavailable or very
costly, you might be
interested in writing your
own assembler. By doing it
yourself you can learn a lot
about programming and
software design as well as the
specs of your own
microcomputer, save yourself
the cost of program
development, and produce a
customized language suited to
your own needs or fancies.
And who knows? - you
might even find that other
hobbyists or microcomputer
risers might be willing to pay
you for a copy of the
assembler program that you
had so much fun writing.

Now, it's only fair to warn
you that writing an assembler

is a big undertaking - you'll
need a fair amount of time
and perhaps some extra RAM

chips to accommodate the

finished product. But such

obstacles have never stopped

anyone with your boundless

enthusiasm. So the only
question is, how do you go

about writing an assembler?

That's the sort of question
that BYTE magazine is

designed to answer, and that's
what this article is all about.

What Does an Assembler Do?

To answer this question,
we have to take a look at

some typical machine
instructions and how they

might be written in assembly

language. A machine
instruction usually consists of
a binary code for some

operation, such as addition,
and one or more binary

numbers denoting the
"operands" of the operation.
The binary number for an

operand may have either of
two interpretations: It may

denote the binary value of,

say, a number, or the ASCII

code of a character, or it may

denote the binary address of
a memory location which

holds the actual value of the

operand. For example, on the

Motorola 6800 the bit

pattern

1000 1011

opcode

0011 0000

operand

means "add the number 48

(00110000 in binary) to the

A accumulator." This might
be represented in assembly

language as

ADDA #48

- note how much more

convenient it is to write
things this way! In contrast,
the bit pattern:

1001 1011

opcode

0011 0000

operand

means "add the 8 -bit number
found in memory location 48

to the A accumulator." This
might be written in assembly

language as

ADDA BETA

where it so happened that,
just after the last instruction
of a program which was 48

bytes long, the programmer
had also written

BETA RMB 1

meaning "reserve 1 memory
byte at this point, and call it
BETA."

These examples illustrate
the basic functions of an

assembler. In the first case,

the instruction's operand was

the actual number to be

added. (This is often called an

"immediate operand. ") The

The assembler does the tedious job of putting

together, or assembling, all of the right bit patterns to

make up the program in machine language.

start at location 0. He

indicated this by means of
the mnemonic RMB, for
"reserve memory byte."
Since this assembly language

statement doesn't actually
represent an instruction, but
instead tells the assembler

what to do, it is often called a

"pseudo -op." The assembler

read the entire program,

counting up the number of
bytes that the subroutine
would take, and determined
that the address of the

Fig. 1. The Forward Reference Problem

lNEXT

take, and furthermore it
doesn't know (yet) that the

memory location BETA is

supposed to be reserved just
after the subroutine, since it
hasn't seen the RMB
pseudo -op."

Forward Reference

Fig. 1 illustrates a problem
common to all assemblers and

compilers, often called the

"forward reference problem."
There is no neat way out of
it. In this case, the

THERE

61 LDAA THERE
63 JMP BACK

66 RMB 1

assembler read the characters
"ADDA" and substituted the

proper binary opcode
10001011, and converted the

decimal number 48 to its

binary equivalent, 00110000.
In the second case, the

instruction's operand was the

address of a memory
location. The programmer
called this memory location
BETA and decided to put it
after the instructions of a

subroutine, which was to

memory location called
BETA was therefore 48, or

00110000 in binary. It
assembled this address into
the instruction.

All well and good. But,

being an alert reader, you ask,

"Wait a minute! What if the

ADDA instruction is in the

middle of the subroutine?
When the assembler reads the

ADDA instruction, it doesn't
know how many bytes the

rest of the subroutine will

247

programmer could have

reserved the memory location
BETA before the subroutine
rather than after it. But

suppose that the subroutine
had included a "jump" or "go
to" statement:

JMP NEXT

NEXT ADDA # 7

A two -pass assembler
solves the forward
reference problem by
reading the program
twice.

It is rather impractical to try
to write every program
without any forward jumps!

There are basically two
ways to cope with this
problem. The first is to read
the program once, but to
keep sections of the program
in memory until all forward
references are resolved. Since
RAM costs us money in a

microcomputer system, we
will reject this approach. The
second alternative is to read
the program twice; an
assembler which adopts this
strategy is called a two -pass
assembler. This approach is
slow, but it's also cheap, and
that's what we want!

The first time that such an
assembler reads the program
(i.e., on the first pass), it
simply looks at the
instruction mnemonics,
counts up the number of
locations that each
instruction will take, and
builds a symbol table in
memory which lists all of the
programmer defined names
for memory locations and
their corresponding addresses.
(We need RAM for this, but
not so much as would be
required for the first
approach.) This process is
(somewhat fancifully)
illustrated in Fig. 2. Notice
that the assembler picks up
only the statement labels,
ignoring (for the purposes of
Pass 1) appearances of the

52

same symbols in the operand
fields of instructions.

On the second pass, binary
opcodes are substituted for
the instruction mnemonics,
constants are converted to
their binary representation,
and programmer defined
names are replaced by their
actual memory addresses,
found in the symbol table.
This is illustrated in Fig. 3.
Any name appearing in the
operand field of an
instruction which is not
already in the symbol table
on Pass 2 is undefined in the
program, and will cause an
error message. One other
note: looking up the binary
opcode for an instruction
mnemonic is essentially the
same process as looking up
the address for a programmer
defined name, so the symbol
table can be used for both
purposes.

It should be pretty clear
by now that an assembler
spends most of its time 1)
scanning characters, looking
for names, numbers and
punctuation symbols, and 2)
building and searching the
symbol table. If we can find
simple and efficient ways of
performing these operations,
and avoid getting them
hopelessly intertwined with
the rest of the program logic,
we should come out with a

fairly decent assembler. So
let's now take a look at
programming techniques for
scanning and searching
symbol tables.

Scanning Techniques
Our assembler's first task

is to scan the characters
making up an assembly
language program, and find
things such as instruction
mnemonics, constants and
programmer defined names,
while noticing but generally
ignoring such things as

blanks, punctuation symbols
and comments. The amateur
programmer's first impulse
usually is to plunge in by
writing a series of tests and
branches to handle various

248

Fig. 2. PASS 1 picks up the labels.

THERE

LDAA THERE

JMP BACK

RMB1

sequences of characters which
may appear on a line. This
approach frequently leads to
the type of scanner known as

a "kluge." The computer
scientist, on the other hand,
has nothing but contempt for
this "ill- structured"
approach, and prefers to
work with regular expressions
or right -linear grammars and
finite automata. We will take
a middle course, outlining
some programming
techniques that will help
make a hand implemented
scanner simpler, smaller and
faster.

The first technique, if you
are designing your own
assembly language, is to make
it simple to scan! An
assembly language statement
usually consists of an
optional statement label
(which then represents the
address of the location into
which the instruction is

assembled), an instruction
mnemonic, an operand field,
and room for comments.

A typical example would be:

Some assemblers require each
element of an assembly
language statement to begin
in a fixed column or
character position of a line,
so that the problem of
locating the elements for
scanning is greatly simplified.
However, this is a little rough
on the assembly language
user, and you will probably
save yourself time in the long
run by implementing a

slightly more complex
scanner. To permit a more
flexible format, one may take
either the "IBM approach,"
in which a statement label
must begin in column 1, an
instruction mnemonic must
be preceded by at least one
blank, and comments are
separated from operands by a

blank; or the "DEC
approach," in which
statement labels are followed
by a colon (or other
punctuation symbol), and
comments are preceded by a

semicolon. The "DEC
approach" is somewhat more

EVAL LDAA BETA

statement instruction operand
label mnemonic field

BEGIN FUNCTION
EVALUATION

comments

Fig. 3. PASS 2 generates code referencing labels.

convenient and less
error -prone for the user, but
is slightly harder to analyze.

For instance, one must be

willing to scan a string of
alphameric c haracters
followed by blanks, waiting
for a colon or an alphabetic
character in order to decide
whether the string was a

statement label or an in-
struction mnemonic.

Sometimes a decision as to
what to do next must be

made on the basis of the type
of the next (non -blank)
character. If several
alternatives are possible, one

would like to use a "jump
table," or an array of branch
addresses indexed by the

character code, instead of a

sequence of character
comparisons. But the ASCII
character set allows for 128

different character codes, of
which only about 45 are used

in assembly language
statements. Hence, a common
technique for complex
scanning problems is to first
translate from ASCII to a

more convenient set of
character codes, using a 128

byte character translation
table. The new character
codes can be chosen so as to
facilitate the use of jump
tables at other points.

The elements of an

assembly language statement
(names, mnemonics and

constants) generally consist
of variable length character
strings, separated by a

variable number of blanks.
Present -day computers,
however, are more adept at

handling fixed size objects
such as bytes or words. So

the most important technique
you can use to keep your
scanner coherent is to write a

"next token" routine, which
scans off an alphameric
string, a constant (e.g., a

string of digits) or a

punctuation symbol each

time it is called. This routine
should return a code for the

type of item or token just
scanned (say, 1 for
alphameric strings, 2 for digit
strings, 3 for a colon, 4 for a

comma, and so on), and a

fixed -size descriptor giving
the address of the first
character and the number of
characters in the string.

Fig. 4 illustrates
descriptors for the statement
label, instruction mnemonic,
and operand of a typical
assembly language statement.

Descriptors for character
strings are handy for a

number of purposes.
Character string move and
comparison routines can be

written which take two
descriptors as arguments.
Output lines can be

constructed from a sequence

of descriptors, and error
messages can also be handled
in this way. By storing the

fixed -size descriptors in the
symbol table and the
character strings themselves
in another area, you can

avoid the arbitrary restriction
on the length of names to six

or eight characters found in

many assemblers.
Even more important, the

Fig. 4. Descriptors Identify Text Tokens in a Line of Characters.

N
M M

length

r
location

4 302

M

CO Me
M

n
O
M

4 I 308

N
M M

use of a "next token" routine
separates the details of
scanning individual characters
from the problem of deciding
how to process each element
of a statement. The symbol
table routines described
below similarly separate the
details of identifying
particular names and
mnemonics from the other
problems of processing. These

are examples of the use of
modularity and hierarchical
structure to organize the

solution of a complex
problem.

Enough in the way of
generalizations and
philosophy; let's get on with
an example to see how all this
works. Fig. 5 shows the flow
of information from a

character code translation
routine, to a next token
routine, to a routine which
determines the type of
statement from the
instruction mnemonic using a

symbol table lookup
subroutine. Assembly
language for the Intel 8080
has been used in this
example. Lower case letters
are translated to upper case,

and the codes for digits (0 -9)

and letters (A =10, B =11, ... ,

1 315

M
'r7)

lfl

C7

o
M

n
M :I.,.. .iii

249

CHARACTER
CODE

TRANSLATION
ROUTINE

LOOP:

MVI
LXI
MVI
LDAX
MOV
MOV
STAX
INX
DCR
JNZ

LXI
LDAX
RLC
MOV
MVI
DAD
PCHL

BRTAB: JMP
JMP
JMP
JMP

Fig. 5. Typical (8080) Character Translate and Next Token Routines

STATEMENT
TYPE

DETERMINATION
ROUTINE

"NEXT TOKEN"
ROUTINE

SYMBOL
TABLE

LOOKUP
ROUTINE

CHARACTER TRANSLATION ROUTINE

H, TABLE
D, LINE
C, 72
D
L, A
A, M
D
D
C
LOOP

H + page holding table
DE +begin of line
C = length of line
get next char of line
L = character code index
A = table entry at index
replace char in line
advance to next char
reduce no. chars remaining
loop for all 72 chars

"NEXT TOKEN" ROUTINE
H, BRTAB H + branch table base
D get translated char from line

times 2 for branch table index
C, A set up 16-bit index
B, 0 in registers B and C
B add to branch table base

jump to appropriate routine
LETTER
DIGIT
COLON
COMMA

LETTER: XCHG
SHLD DESCR + 1

MVI A, 36
MVI C, 0

SCAN: INX H
INR C
CMP M
JP SCAN
LXI H, DESCR
MOV M, C

HL +begin of alpha string
put start addr in descriptor
max translated code for alphameric
initialize count of chars in string
advance to next character
increase character count
code < max for Alphanumeric
continue scan if so
HL length part of descriptor
put in no. chars in string

250

Z =35) are chosen so that
alphameric and digit strings
can be scanned off using a

single comparison for each
character. Note the use of a

jump table "BRTAB" to
select the appropriate
handling routine for the next
character in the next token
routine. Descriptors are
returned to the statement
type determination routine,
and are passed on to the
symbol table lookup routine
which uses them in character
comparisons. The problem of
distinguishing statement
labels followed by a colon is

handled easily at this level:
The next token is obtained,
and its descriptor is saved; the
next token is obtained, and
its code is tested; if a colon
has been found, the saved
descriptor is passed to the
symbol table lookup routine,
and two more tokens are
obtained to balance things
out before the instruction
mnemonic is processed.

Symbol Tables

The greatest convenience
that an assembler provides for
the programmer is the ability
to give names to memory
locations and to refer to
those names from other
points in the program. The
assembler determines the
proper address of the
memory location, and fills in
the address wherever the
name is referenced.

The assembler
accomplishes this by building
a symbol table on its first
pass. Each entry of the
symbol table contains a

programmer defined name in
character string form, and the
binary address corresponding
to it. In addition, the symbol
table may contain other
character string names, such
as the instruction mnemonics
or assembler pseudo -ops. The
entry for an instruction
mnemonic would contain the
corresponding binary opcode,
and the entry for a pseudo -op
might contain the address of
a processing routine in the

Fig. 6. An Array Symbol Table.

I
I I A I B I C

I T I H I E IT IA INIE IXIT I I
I I
I I

I

assembler itself. For a

computer with several
different instruction formats,
the entry for an instruction
mnemonic might also contain
a type code indicating the
proper format for this
instruction, the number of
operands expected, and the
interpretation of the
operands as addresses or
values.

The simplest way of
organizing the symbol table

would be as an array of
descriptors and address

words, as illustrated in Fig. 6.

Entries are added sequentially
to the array during Pass 1.

and a sequential search of the
whole array is used to find
the addresses of
programmer defined names

during Pass 2. (Each
descriptor from the table is

passed in turn to a character
comparison routine, along
with the descriptor for an

operand. The comparison
fails immediately if the string
lengths in the descriptors
were unequal.) This type of
organization has the great
virtue of simplicity, and is

probably adequate for a first
version of your own
assembler. As the programs to
be assembled get longer,
however, the asembler will
spend an increasing fraction
of its time searching the

symbol table. A faster way of
searching the table is needed.

Think about how you
would go about such a search,

if you were the assembler.
What do you do when you
open a dictionary or a

telephone book? Knowing

the order of the alphabet and
the thickness of the book,
you look at the first character
or two of the word, you
make a guess at the
approximate page, open the

book to that page, and begin
searching from that point.

Let's have the assembler
do the same sort of thing. We

will divide up the table into
twenty -six sections, one for
names beginning with each

letter of the alphabet. We

know the starting address of

each section of the table (we
can make a small array of the
twenty -six starting addresses),
so to look up a name, we

look at its first character, go

to the appropriate section
and search just that section
rather than the whole table.

This approach is depicted
in Fig. 7.

This is a good first try, but
there are some drawbacks. In
a program called "assembler,"
say, you might have a lot of
names beginning with A,

Fig. 7. An Alphabetically Indexed Symbol Table.

251

while in a program called
"editor," you might have
many names starting with E.

On the other hand, your
friend Zaborowski might start
all of his names with Z.

Should all of the sections be

of the same size? If not, how
do you know (at the
beginning of an assembly)
which sections to make
larger? If a section becomes
filled, we can simply add the
extra names to the next
section of the table; now,

'ALPHA'
'ADDA'

'BETA'

'CAr
r 'CRADLE'

'CALL'

I

I

1

1

I

` 'ZABOROWSKI'

What happens if we use
a random assortment of
the names, placing
them haphazardly into
the various sections of
the table?

however, if a name to be
looked up on Pass 2 is not
found in its original section,
most of the following section
will have to be searched
before the name is found.
This phenomenon is called
"clustering." Your friend
Zaborowski is especially
likely to run into this
problem, and even if you
make the Z section large
enough, searching the symbol
table will take just as long
using the new approach as it
did with the old one.

Can we overcome these
drawbacks of the new
method? Here's where a little
lateral thinking will help. We
are making use of our
knowledge of the ordering of
the alphabet. Try the
opposite approach: What
happens if we use a random
assortment of the names,
placing them haphazardly
into the various sections of
the table? At first this sounds
absurd, but on closer
examination we realize that it
solves the problem! The
problem arose because people
are fairly likely to choose a

set of names which are
related in the alphabetic
ordering; by using a randomly

chosen ordering, we can
minimize the likelihood that
a large number of symbols
will be placed in a single
section of the table. This
technique, which is called
"hashing" or "hash
addressing" for obvious
reasons, is used in most
modern assemblers and
compilers.

So, instead of using the
first character of a name to
select the proper section of
the table, we will use a

random assortment of bits, or
an arbitrary function of the
bit pattern of the entire
name, to select a starting
point in the table. A function
of this sort is called a "hash
function ". So long as the
function's possible values are
evenly distributed over the
range of addresses for table
entries, the problem of the

"clustering" or grouping of
names will be minimized.

An example of a hash
function which usually gives
good results is to add
together all of the bytes of a

character string, ignoring
overflow, or else to
"exclusive or" the bytes
together.

Similarly, in order to
minimize the clustering of
names which hash to the
same starting address, we can
"re- hash" the names so as to
randomly distribute them
around the table. Such a

method is called a "random
rehash." The following
method is easy to implement,
efficient, and works well
when the table size is a power
of 2, say 2 * *k (see Morris):
Suppose a name initially
hashes to table entry h, which
is already occupied by

Fig. 8. Hashing Symbol Table Descriptors.

2

252

12

13

14

15

DESCRIPTORS

1

another name. Initialize a

variable R to 1. To rehash the
name:

1. Set R = R *5 (shift left
two bits, and add to the
original number).

2. Mask out all but the
low -order k +2 bits of R, and
save this as the new R.

3. Shift R right 2 bits and
add it to h to get the next
table entry h. If this entry is

occupied, rehash the name
again.

To find a name in the
table during Pass 2, we simply
hash and rehash in exactly
the same way, this time
comparing each table entry h
against the name to be found.
The remarkable fact about
this algorithm is that the
number of comparisons
needed to find an entry, on
the average, depends only on
how full the table is and not
on how large it is. Even when
the table is 90% full, only
about 2.56 comparisons will
be needed, on the average. In
contrast, for a nearly full
table of 512 entries, the
sequential search method
described earlier would take
an average of 256
comparisons to find a name,
or about 100 times as long!

Random rehashing is

illustrated in Fig. 8. The first
name to hash to table entry
12, for example, would be
stored there, while the next
name whose hash function
value was 12 would be
rehashed to table entry 13,
and the next one would be
rehashed twice and finally
stored in table entry 3.

We have only described
one method of hashing here;
several other variations are
possible. The most important
of these is called "hashing
with overflow chaining," in
which all of the names which
hash to the same starting
address are chained together
on a linked list. This method,
which is often used on large
computers with dynamic
storage allocation, is less
suitable for microcomputers
because it requires an extra

address field for each symbol
table entry. The references at
the end of this article can be

consulted for a more
complete discussion of
hashing.

Now that you have
become acquainted with
some of the basic
programming techniques used

for scanning and searching
symbol tables, you're about
ready to start writing your
own assembler! You might
want to actually try this,
using the simplest techniques
outlined in this article:
Perhaps a fixed -column
scanner and a sequentially
searched symbol table for a

first version. Very often,
when it comes to actually
getting a program up and
running, the simple- minded
approach turns out to be the
one that works best. Once
you've got a basic assembler
working, you can consider
adding some of the features
that we'll discuss next.

More Assembler Features

Up to this point, we have
been concerned with only the
basic functions of an

assembler; The conversion of

Very often, when it
comes to actually
getting a program up
and running, the
simple- minded
approach turns out to
be the one that works
best.

m n e m o n i c s a n d

programmer defined names to
instruction opcodes and
addresses. Many other
features can be added to an

assembly language to make it
even more convenient for
programming. Some of the
more useful features of this
kind will be considered here.

Defining Constants

Most assembly languages
have pseudo -ops which direct
the assembler to reserve one
or more locations containing
constant values. For example,
the Motorola 6800 assembly
language has a pseudo -op
FCB, for "form constant
byte." An example of its use

would be

FCB 23,$FA

which would reserve two
bytes containing 00010111
(23 in decimal) and
11111010 (FA in
hexadecimal or base sixteen).

Sometimes an instruction
takes its operand in a

memory location (rather than
as an "immediate" operand),
but the operand itself is

actually a constant. Instead
of writing

ADDA THREE

THREE FCB 3

we would like to be able to
write

ADDA = 3

and have the assembler
automatically reserve a

memory location containing
3, and assemble its address
into the instruction. Such an
instruction operand is called a

"literal." On machines where
some instructions can address
only a limited range of
memory locations, this
feature may be difficult to
implement.

Equivalences

It is often convenient to

be able to define a symbol
with a constant value, or with
the same value as another
symbol. For example, a

constant representing, say,
the size of an array, may be

used at several points in a

program. By using a symbol
in place of the constant
throughout the program, and
defining the symbol's
constant value at the
beginning of the program, we

can make it easier to change
the size of the array when
producing a new version:
Only the symbol need be

redefined, and its new value
will be substituted at the
appropriate points by the
normal process of assembly.
(This is called "parameter-
izing" the program.) This
feature is not too difficult to
implement, and most
assemblers have a pseudo -op
such as

SIZE EQU 25

which allows us to write

LDAA #SIZE

ARRAY RMB SIZE

or, in general to use the
symbol SIZE wherever the
constant 25 could appear.

Expression Evaluation
Besides defining constants

and constant -valued symbols
in a program, it is frequently
useful to be able to combine
such elements into arithmetic
expressions whose values can
be computed at assembly
time, and to use those values
in place of other constants.
For example, the same

253

program with a parameter
SIZE for the size of an array
might include statements
such as

ADDA #SIZE -1

SPACE EQU 3 *SIZE +1

which would specify (for
SIZE =25) that 24 should be

added to the A accumulator,
and that SPACE should have

the constant value 76
wherever it appears in the
program.

It is remarkably easy to
evaluate expressions of this
kind, taking account of
parentheses and the normal
precedence of arithmetic
operations. An algorithm to
perform the evaluation of
such expressions will be the
subject of an article in a later
issue of BYTE; if you are

impatient, you can consult
Mealy or Gries (see the
references).

Conditional Assembly

We saw how a program
could be parameterized by
the use of equivalenced
symbols and arithmetic
expressions. Sometimes a

program can be
parameterized in another
way: Entire sections of the
program can be included or
omitted, depending on the
values of certain parameters.
For example, if the maximum
value of a certain variable is

less than 256, it can be stored
in a single byte on most
machines; but if the
maximum value is 256 or
more, two bytes or a word
must be used. Thus we might
wish to write something like

.IF MAXVAL LT 256
ARRAY RMB SIZE

.END

.IF MAXVAL GE 256
ARRAY RMB 2 *SIZE

.END

with the intent that, if an
earlier EQU pseudo-op had
defined MAXVAL as, say,
200, the first RMB statement
would be assembled, while if
MAXVAL had been defined
as, say, 400, the second RMB
would be assembled.

This feature is not too
difficult to implement, and it
is extremely useful. The
assembler must simply
recognize the .IF and .END
pseudo -ops, evaluate the
relations, and skip the
intervening text on both
passes if the relation is false.
It is easy to imagine (but
somewhat more difficult to
implement) extensions to this
feature, such as the repetitive
assembly of certain program
segments.

Macros and Relocation
The most sophisticated

assemblers are comparable to
compilers in complexity, size
and versatility. Some
assemblers implement a

macro facility, which enables
the programmer to define
new instruction mnemonics

which are replaced by
parameterized sequences of
assembly language statements
wherever they appear in the
program. When combined
with features for conditional
assembly, a macro facility
provides a powerful tool for
extending an assembly
language to suit it for a

particular application.
We have discussed only

absolute assemblers: We
began by assuming that the
program was to be assembled
starting at location 0 (or
some other fixed location).
When the program is going to
be loaded into memory along
with other, previously
assembled programs,
however, we don't know how
big the other programs are or
in which order they will be
loaded. In this case it is

necessary to put out
relocation information along
with the assembled program,
which says, in effect, "If you
load this program at location
m, you should add the
number m to the following
bytes or words in order to

make the addresses come out
right." This relocation
information is processed by a

loader, which is responsible
for loading all of the related
programs into memory.

While both of these topics
are interesting and very
important, many pages would
be required to do them
justice and this article is

pretty long already! So we'll
content ourselves with the
topics already discussed. By
this time, you probably have
either decided that writing an
assembler is too much work,
and have stopped reading this
article, or else you have
found the whole idea very
intriguing and are looking
forward for the last word. So
here it is: Now that you
know how to write an
assembler, why not get out
and give it a try? You have
nothing to lose but your
innocence about the
complexities of system
software, and perhaps a little
of your time.

References

Barron, D. W. Assemblers
and Loaders. American
Elsevier (Computer
Monograph Series, No. 6),
New York, 1969.

The most complete,
readily available text on the
design of assemblers and
loaders; also describes
one -pass assemblers and
meta-assemblers.

Gries, David. Compiler
Construction for Digital
Computers. Wiley, New York,
1971.

A highly recommended
text on compiler design:
Covers both the theoretical
and practical aspects of the
problem. Includes a good
discussion of hashing and
more sophisticated methods
of scanning.

254

Good luck!

Mealy, George. "A
Generalized Assembly System
(Excerpts)," in Saul Rosen
(ed.), Programming Systems
and Languages. McGraw -Hill,
New York, 1967.

A classic paper by one of
the pioneers of language
translators and operating
systems. Presents the idea of
descriptors for character
strings as well as many other
innovations.

Morris, R. "Scatter
Storage Techniques," in
Communications of the ACM
11:1 (January 1968), pp.
38 -44.

One of the best general
surveys of hashing
techniques; includes a good,
brief description of hashing
with overflow chaining.

Now that you know
how to write an
assembler, why not get
out and give it a try?

Simplify Your

Homemade Assembler

Gregory C Jewell
11855 Southeast 188th
Renton WA 98055

CHARACTER POSITION

_ I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 IB 19 20

IAIXILIEMJISIRMWIHIAIT1 I I I 1 1 I I

label (optional)

ignored /
mnemonic operation code J

or pseudo operation

ignored

operand field

comments (to end of line)

Notes: 1. A semicolon (;) in line position 1

indicates the whole line is a comment
and will be ignored by the assembler.

2. If the .AS or .AZ pseudo operations are
used, the operand field can be as long as

required.

Figure 1: Summary of simplified assembler source format. This figure

illustrates the fixed field format. The label field is used to define symbols, the

operation code field is used to specify a mnemonic operation code or a

pseudo operation, and the operand field is used to contain information

according to the format of figure 2. Comments may be written by starting a

line with a semicolon in position one, or following the operand field with the

desired comments.

255

Our primary goal in the design of a simple
assembler is to eliminate the need to parse a

line in order to determine what information
is contained in that line. Rather than asking
"What are you trying to give me ? ", our
assembler will demand, "I know where I am,

so give me what I want."
The assembler described here is a three -

pass assembler. The first pass compiles a

symbol table; the second pass outputs the

generated machine code, and the third pass

produces a hexadecimal listing of the gen-

erated machine code with its associated

addresses and source statements.

Labels

The first step on our path to simplicity is

a major one even though its impact on our

program writing will be slight. We will
specify that all labels should have a fixed

length of four characters with a restriction
that the first character should be alphabetic.
Although not the main objective, requiring
fixed length labels adds the feature of
allowing embedded blanks in the labels.

Figure 1 illustrates the fixed field format of
the simplified assembler. In the example, a

line of assembler input is shown in the
boxes, with shaded boxes indicating blanks.

The label AXLE is shown on a statement
containing the JSR operation code with
operand WHAT.

Six or eight characters is a popular
maximum for assembly language labels; how-
ever, our four character labels will save

memory space and speed up the task of
searching for a label in the symbol table.

A label is defined when it appears for the
first time in a statement of the program
which is being assembled. A label is not
required for every statement. However, if
the first character position of the statement
is found to have an alphabetic character,
then the first four columns define a new
label for the symbol table. If the first
position is a blank, then the assembler
should ignore the remaining positions of the
label field. This is an example of what is
called a fixed field syntax because we always
expect a label or no label at all in these
positions. Programming of the assembler is
simplified by use of this limitation. The need
for parsing has been nearly eliminated by
this single requirement of fixed -length labels.
But let's take a few more steps.

Operation Codes

As in commercially available assemblers,
the next field on each line of the program
being assembled is an operation code field.
This field is separated by a blank character
position from the label field, and thus begins
in the sixth character position of our fixed
field input format. In the operation code
field, the assembler can find two types of
information: an assembler pseudo operation
or a mnemonic operation code for machine
instructions.

Pseudo Operations

A mnemonic operation code is a symbol
which the assembler in most instances will
translate into a machine instruction. A
pseudo operation code is a similar symbol
which looks very much like a mnemonic
operation code. However, the pseudo opera-

Mnemonic Description

.SA

.RS

,xw
.AS

.AZ

.DF

IL

.EL

starting address

reserve storage

hexadecimal word

ASCII string

ASCII string with zero

define address

inhibit listing

enable listing

.ND end

Table 1: Pseudo operations.

The simplified assembler
will demand "I know
where I am, so give me
what I want."

Action

Defines the address for the next instruction.
The assembler must know where to start assign-
ing code whether by default or instruction.
Similar to the ORG pseudo -op of other
languages.

Saves space for specified number of words.

Loads specified hexadecimal value into location.

Breaks down a character string into its ASCII
equivalent.

Same as AS except that the ASCII code is ter-
minated by a zero byte.

Loads address of specified label into location.

Inhibits listing during third pass.

Enables listing during third pass (default
condition/.

End of source program.

tion does not normally generate machine
instructions and is used instead to control
how the assembler will generate code. All
assemblers have pseudo operations. Ours is
no exception. When choosing pseudo opera-
tions, the goal of simplicity should be kept
in mind. Most likely we will be able to get
by without many of the fancy or powerful
pseudo operations that add bulk and com-
plexity to the assembler program.

I have defined nine basic pseudo opera-
tions for my assembler. All begin with a

period so that the assembler program need
only examine the first character to deter-
mine if the mnemonic is a pseudo operation.
This speeds address calculation during the
first pass since all other PACE instructions
generate a single word of code. It also aids

256

Table 2: An example of
the output of an assembler
implemented according to
this definition. This assem-
bly shows a memory test
program written for the
author's system. Bearing in
mind all the limitations
placed upon the source
format to simplify writing
the assembler, note that
the listing looks like a

"typical" output of an
assembler. Note the fre-
quent use of comment
lines (starting with a semi-
colon) to explain various
aspects of the program.
The program uses the
author's 3 character mne-
monics instead of the
PACE mnemonics, and the
pseudo operations are
shown in table 1.

END FIRST PASS,

SYMBOL TABLE

DATA 000E
DSPL 0024
ERR 0020
LIN 0025
NEXT 0O1D
RITE 000,1

READ 0006
REED 0015

END OF

0 ERRORS DETECTED

human recognition. The nine pseudo opera-
tions are briefly described in table 1.

We now have all the information required
to complete the first (address allocation)
pass. It is possible to identify a label and
calculate its address, since PACE has fixed
length instructions. The label and its
associated address are stored in the symbol
table sequentially. A symbol definition re-
quires three words, since we must store two
words for the name and one word for the
address. If desired, at the end of the first
pass the labels may be sorted by the first

SYMBOL TABLE, 8 LABELS character (it's surprising how close this

TWO -FART MEMORY TEST
2 (1) ADDRESS -DATA CHECK
3 WRITE A UNIQUE NUMBER IN ALL LOCATIONS
4 IF A USED ADDRESS LINE IS EAD. THEN AT LEAST
5 ONE ERROR WILL OCCUR
6
7 .SA 0
8 0000 5226 LIN F'2,26 LOAD STARTING ADDRESS OF TEST
9 0001 DÁ00 RITE STA R2,(R2) (,'RITE ADDRESS INTO LOCATION

10 0002 F922 SNE P2,LIM MEi1ORY LIMIT REACHED"
11 0003 1902 JMF READ YES
12 0004 7AO1 AIL P2,1 NO INC INDEX
13 0005 19E6 JF1P PITE
14

15 ; READ BACK UNIQUE NUMBERS
16

17 0006 5226 READ LIM 82.226 RELOAD STARTING ADDRESS
18 0007 FADO SNE P2.(R2) COIIPARE. SKIP IF ERROR
19 0008 1901 JI1P +2
20 0009 1916 JMP ERR
21 000A F91A SNE R2,LIM MEMORY LIMIT REACHED"
22 0006 1902 _Jr1P DATA YES, GO TO NEXT PART OF TEST
23 0O0C 7A01 AIS P2.1 NO. INC INDEX
24 000D 19F9 JMF' REAL +1
25 .

26 , (2) SHIFT -ONE DATA CHECK
27 , TEST WORD HAS A SINGLE BIT SET
28 IJPITE TEST WORD IN ALL LOCATIONS
29 TEST ALL BIT POSITIONS
30
31 000E 5001 DATA LIr1 PO,1 INITIALIZE TEST WORD
32 OOOF 5226 LIM P2.26 LOAD STARTING ADDRESS
33 0010 D22200 STA RO,(R2) WRITE TEST WORD
34 0011 F913 SNE R2.LIM MEMORY LIMIT REACHED?
35 0012 1902 JF1F' REEL YES
36 0013 7A01 AIS P2,1 NO, INC INDEX
37 0014 19E6 JIIF DATA +2
38 ,

39 , READ BACI' TEST WORD
40
41 00I5 5226 REED LIM 82.26 'RELOAD STARTING ADDRESS
42 0016 F200 SNE Ro,(P2) COMPARE. SKIP IF ERROR
43 0017 1901 JMP +2
44 0018 1907 J11P ERR
45 0019 F9O6 SNE R2,LI1'1 MEMORY LIMIT REACHED"
46 001A 1902 JMF NEXT YES
47 0016 7ÁE1 AIS P2.1 NO. INC INDEX
48 0010 19F9 JI1F' PEED +1
49 0O1D 2802 NEXT SHL R0,1 SHIFT TEST WORD
50 001E 45FO 60C 5,DATA +1 WRITE NEW TEST WORD IF NONZERO
51 001E 5E0O CPY P2, R0 TEST COMPLETE, DISPLAY 0 ERRORS
52
53 ; ERROR ROUTINE: DISPLAY BAD LOCATInti
54
55 0020 51280 ERR CPY R0, P2
56 0021 8102 STI DSPL LOAD DISPLAY FEGISTEP
57 0022 D9O3 STA P2. LIM +1 SAVE TEST DATA FOR REFERENCE
58 0023 0000 HLT
59 0024 8009 DSPL `XL,I 8009 ADDRESS OF DISPLAY REGISTER
60 0025 O3FF LIM XW 3FF MEI1ORY LIMIT = 1K
61 .ND

END THIRD PASS, 0 ERRORS DETECTED

257

comes to actually alphabetizing the labels)
and listed with their addresses. The sample
assembly of table 2 shows the result of such
a sort.

Mnemonic Operation Codes

The next step toward simplification is to
specify that all mnemonic operation codes
should also have a fixed length. National
Semiconductor Corporation, PACE's manu-
facturer, suggests mnemonics containing
from two to five characters. Even if we use
the manufacturer's suggested mnemonics
and specify a fixed length of five characters,
the indirect notation @ would probably
throw a wrench into the works since the @

usually directly precedes the label rather
than immediately following the mnemonic.

I chose to define a set of 3 character
mnemonics. This saves memory space and
speeds up the search for mnemonics in the
table of operation codes. The three charac-
ters of the mnemonic operation code can be
stored in one and a half words (3 bytes) and
the binary opcode may be kept in the
remaining byte. There is nothing magic
about mnemonics; they are simply aids to
remembering the instructions. It's your
computer, so you might as well use your
own mnemonics - unless you plan to make
your assembler commercially available.
Table 3 shows the correlation between the

Table 3: Correlation between manufacturer's suggested mnemonics and the
author's 3 character mnemonics.

1.

2.

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

Manfacturer's
Suggested

Mnemonics

JMP
JMP@
JSR
JSR@
SKG
SKAZ
I SZ
Dsz
LD@
ST@
LSE X
AND
OR
SU B B

DECA
AISZ
LI
XCHRS
CFR
CR F

PUSH
PULL
CA I

SKNE
LD
ST
ADD
RXCH
RCPY
RADD
RADC
RAND
RXOR
BOC
RTS
RTI
PUSHF
PU LLF
HALT
SF LG
PFLG
SHL
SHR
ROL
ROR

Description

jump
jump indirect
jump to subroutine
jump to subroutine indirect
skip if greater
skip if AND is zero
increment and skip if zero
decrement and skip if zero
load indirect
store indirect
load with sign extended
logical AND
logical OR
subtract with borrow
decimal add
add immediate, skip if zero
load immediate
exchange register and stack
copy flags into register
copy register into flags
push register onto stack
pull register from stack
complement and add immediate
skip if not equal
load
store
add
register exchange
register copy
register add
register add with carry
register logical AND
register exclusive -OR
branch on condition
return from subroutine
return from interrupt
push flags onto stack
pull stack into flags
halt
set flag
pulse flag
shift left
shift right
rotate left
rotate right

258

Author's
Mnemonics

JMP
JMI
JS R

JS I
SGT
SAZ

I SZ
DSZ
LDI
STI
LSX
AND
IOR
SBB
DCA
AIS
LIM
XRS
CFR
CRF
PSH
PUL
CAI
SN E

LDA
STA
ADD
RGX
CPY
RAD
RAC
RND
XOR
BOC
RTS
RTI
PSF
PLF
HLT
SET
PLS
SHL
SHR
ROL
ROR

An effective address is a

combination of an address-
ing mode and a displace-
ment.

All assemblers have pseudo
operations. This one is no
exception.

manufacturer's suggested mnemonics and

the 3 character mnemonics which I selected

to simplify my assembler.

Instruction Groups

So far we have defined a 4 character label

field and a 3 character mnemonic field. To

make the program readable, we'll allow a

single character (blank) after each field and a

semicolon in the first character position
(column one) to signal a comment line. Our

assembler now expects either a blank, a

semicolon, or an alphabetic character in the

first position. As noted earlier, if the first
position of a line contains an alphabetic
character, then a label exists in the first four
positions. The fifth position is ignored. The

sixth through eighth positions contain the

operation code or pseudo operation
mnemonic and the ninth position is ignored.

What does the assembler expect in the tenth

position? To answer this question, we must

collect instructions with similar binary and

source formats into instruction groups. The

only variation within an instruction group is

the mnemonic operation code. Figure 2 lists

the ten PACE instruction groups.

After the instruction group is determined,

our assembler will know exactly what to

look for and where to find it. For example,

if the instruction is in group three, the tenth

character position is ignored (allowing you

to specify RO, AO, XO, or whatever pleases

Figure 2: PACE Instruction groups.

Group

o

1

2

3

4

5

6

7

8

9

you at the time), a digit less than four is

expected in the eleventh position; the

twelfth position is ignored, and the destina-

tion (DEST) field begins in the thirteenth
position. If the instruction is in group four,
then the assembler expects to find a digit
less than four in the eleventh and fourteenth
positions. If the instruction is in group

seven, then the assembler's worries are over,

since such instructions have no operands.

Instructions Binary Format
0
6

JMP,JMI,JSR,JSI,SGT,SAZ,ISZ,DSZ,
LDI,STI,LSX,AND,IOR,S88,DCA

AIS,LIM,CAI

XRS,CFR,CR F,PSH,PU L

SN E, LDA,STA,A DD

RGX,CPY,RAD,RAC,RN D,XOR

BOC

RTS,RTI

PSF,PLF,HLT

SET,PLS

SHL,SHR,ROL,ROR

R = RO, R1, R2 or R3
0 G M < F

5 4 3 2
I O O O

O 9 8 7

OP XP I

Destination Field

The destination field (DEST) is required

to determine the effective address. An effec-

tive address is the combination of an

addressing mode and a displacement. The

four PACE addressing modes are program

counter relative, relative to register R2 used

as an index, relative to register R3 used as an

index, and base page. All addressing modes

of the destination field entries (destination

modes) listed in table 4 are program counter

relative except the last two: (R) is index

mode and *K is base page mode. The index

and base page modes are limited primarily
by my own biases and could be chosen

differently in your own version of such an

assembler. As with all other fields of a

personal assembler, the DEST field should

be tailored to your own preferences. The

modes of table 4 are sufficient while main-

taining the goal of simplicity.

0 0 0 0 0 0
5 4 3 2 I O

DISP

OP R IMMEDIATE

OP R NOT USED

OP I R I XR I DISP

OP I DR I SR I NOT USED

OP CC DISP

L_ OP DISP

OP NOT USED

OP FC IPI NOT USED

OP R N lLl

0 6 K < FF
L = "L" (letter L)

See Modes of the destination field, table 4.

259

Operand Format

Position 10

DEST

R,K

R

R, DEST

R,R

M,DEST

K

none

M

R,K or R,K,L

Again, by examining only the first charac-
ter of the field, the assembler can determine
if the DEST field has a label, a specified
displacement, an index register, or a base
page value. The + or - extension after the
label will always be in the same relative
position since we have declared that all
labels contain four characters. If the first
character of the DEST field is an alphabetic
character, then the first four characters of
the field form the label; and, if there is an
extension, the + or - will always be the fifth
character of the field.

Example

Table 2 shows the output of the first and
third passes of a memory test program. It
looks general even though strict rules were
applied. The execution time is approxi-
mately 1.5 seconds for each 1 K of memory
tested. Notice the destination LIM +1 in
statement line 57. LIM +1 would have pro-
duced an UNDEFINED LABEL error. The
trailing blank is part of the label.

If you desire simplicity and can live with
LIM +1 rather than LIM +1 then you might
implement the rules I have presented (or
your own variation) in your homemade
assembler.

Conclusion

The simplified homemade assembler's
source language is now completely defined

Table 4: Modes of the destination field
(DEST).

DEST Description

LABEL

LABEL +K

LABEL -K
. +K (here plus KI

. -K (here minus Ki

(R)

"K

0<=K<=FF
R= R2orR3

symbolic

symbol relative

symbol relative

program counter
relative

program counter
relative

index register

base page

in a way which is simple and easy to
implement, yet probably adequate for all
our programming needs. Except for the AS
and .AZ pseudo operations, we have
eliminated the need for parsing, mainly by
specifying a fixed label length (with
embedded blanks) and a fixed mnemonic
length. Other simplifications were achieved
by selecting only basic pseudo operations
and destination modes. By using these
techniques, you should have your home-
made assembler running by tomorrow.

GLOSSARY

ASCII: American Standard Code for Information
Interchange. A 7 bit code used by many machines.

Assembler: An assembler is a program which
accepts a symbolic representation of some compu-
ter program and transforms it into one which can
be executed by a computer. The symbolic repre-
sentation is called a source program; the executable
representation is called an object program.

Character Position: Each line of the source pro-
gram which is read by the assembler is a character
string. In a fixed field syntax, the character
positions are numbered (in this case, from 1 to the
end of the line). Each field of the format is a group
of characters specified by number, such as the label
field which is positions 1 to 4 of a line in the
example of this article.

Mnemonic: A technique to assist human memory.
A mnemonic term is an abbreviation or acronym
used instead of numeric codes in order to facilitate
easy recognition. Example: BOC for Branch On
Condition rather than 4.

Parsing: The breaking down of a general character
string into its structural forms. This requires syntax
rules for the computer language analogous to the
grammar rules for English that define "subject,"

"predicate," "object," and so forth. In this assem-
bler, we simplify syntax rules by requiring fixed
positions for each piece of information on a line
which eliminates the need for parsing.

Pass: An assembler typically must look at the
entire data of a program several times. Each pass of
an assembler is one complete scan through the
program data. In the simplest home brew assem-
blers using audio cassette mass storage, each pass
will require manual intervention to rewind and
restart the appropriate tape cassette drive.

Pseudo operation: A group of characters having the
same general form as a computer instruction, but
never executed by the computer as an actual
instruction. Pseudo operations are instructions to
the assembler.

Source Program: A program coded as a human
readable character string in some programming
language, which must be translated into machine
language.

Symbol Table: A dictionary relating one set of
symbols to another set of symbols or numbers. The
assembler builds a table of labels used in the
assembly language program and assigns memory
locations (addresses) to those labels.

260

REFERENCE

PACE Technical Description
National Semiconductor Corp
Santa Clara CA 95051
Publication number 4200078A
June 1975

Interact with an ELM

G H Gable
419 Jackson St
Grand Ledge MI 48837

The fundamental interface between the

user and the hardware of a computer system

is the system software. It runs the gamut

from a dozen or so bytes of a bootstrap
loader on a microcomputer to the multi-
million word operating system of a large

general purpose computer system. In fact,

the microcomputer system can be made to
do much of what the general purpose com-

puter does with appropriate versions of
systems software. One of the most signif-

icant differences between the big computer
and the microcomputer is that the large

computers typically operate on multiple
bytes of information and often provide

extended arithmetic and logical operations.
Minicomputers and microcomputers can

emulate these extended operations with soft-

ware; the main difference is speed. The

typical large computer might execute its

built in instructions 1000 times faster than a

microcomputer's software emulation. How-

ever, all the features of a large computer
system can be implemented in the software
of a microcomputer system. This includes

assemblers, compilers, text editors, time-

sharing and multiprogramming, disk opera-

ting systems, virtual memory, utilities, and

of course applications programs. In addition,
the powerful hardware of a big computer
can be emulated with software. The prin-
cipal hardware requirements, other than a

general purpose instruction set, are access to
the program counter, an interrupt structure
and possibly direct memory access by the

peripheral equipment. Program counter ac-

cess and interrupt processing is available in

261

most microprocessors; direct memory access

is often implemented by peripheral device

controllers using the system bus.

For microcomputers, the system software
can be divided into two major segments: the

operating system or monitor and a utility
library of functions which extend the in-
struction set. The utility library is a set of
subroutines written to redefine and expand

the operations the computer can perform. It
can range from a simple set of number
conversion and formatting routines up to the

complexity of a complete floating point
mathematical package.

Monitors

The monitor program, sometimes called

the executive program or operating system,

is the program which the computer executes

when it is not running some other program_

The monitor's primary purpose is to decide

what the system is to do next. Sophisticated
monitors typically implement disk operating
systems, time sharing and multi-
programming. They call loaders, assemblers

and compilers, handle input and output, and

process user requests. In short, the monitor
program is "the brains" of the system. In

some very large systems, such as the Control
Data Corporation's CDC -6500, the monitor
program even has its own processor, separate

from the central processors. The central
processors are merely slaves to the monitor
processor in such a multiprocessor system.

For a beginning, let's examine a very

simple monitor program. If you have a

microcomputer which needs system soft-

ware, this might be just the ticket to get you
on the system. This monitor design will let
you load and execute programs and edit the
contents of memory. From such a basic
monitor, more sophisticated software can be
developed to upgrade the system to what-
ever level you desire.

ELM

Every routine should have a name, espe-
cially a system routine. Thus I call this the
Eloquent Little Monitor, or ELM. ELM is
designed to have a Teletype or a cathode ray
tube (CRT) terminal such as a TV typewriter
as its control console. A CRT running at
1200 baud makes a wonderful control con-
sole due to the brisk speed at which mes-
sages are transmitted. ELM implements four
commands in its simplest version: LOAD
which will load a program into memory
beginning at a specified location; LIST
which lists the content of selected memory
locations; MODIFY which will modify the
contents of selected memory locations, and
GO which starts execution of a program at a
specified location. My version of ELM fea-
tures decimal addresses and allows input line
editing.

Many processors begin execution at a
fixed location at power -on or system reset.
Some processors begin execution at a hard-
ware programmed address which might be
set by switches. Wherever the processor
begins its execution, the implementation of
ELM assumes that ELM will be the program
which receives control as a matter of course.
For the purposes of this article, we'll assume
that ELM is located at the low end of
memory address space. Following ELM
comes the first available address (FAA) of
user programmable memory, then the last
available address (LAA). This memory or-
ganization for a typical monitor residing at
the low end of address space is shown in
figure 1. Other allocation schemes are of
course possible. It is also desirable to have
the monitor in a read only memory so that,
when the computer is first switched on, the
CPU will immediately begin execution of the
monitor. With such a firmware monitor,
your programs will not be able to destroy
the monitor program itself. In addition to
the address space for the monitor, the
allocation shown in figure 1 includes 80
bytes of programmable RAM for use as data
storage.

Using ELM

First, let's look at the monitor from the
user's point of view at the terminal. When
the system is switched on, the Teletype or
display will print "OK - ". Any time the

FAA

LAA-

ELM Monitor Program

(store in ROM or write
protected memory)

Line Buffer LB (70 RAM bytes)

Decimal Multiplier M (2 bytes)

Buffer Pointer P (1 byte)

Address Parameter P1 (2 bytes)

Address Parameter P2 (2 bytes)

Accumulator ACC (2 bytes)

Parameter Count F (1 byte)

-- = first available address

User memory area

-- = last available address

Figure 1: Memory Allocations for a Typical
Monitor Program. This map assumes that the
ELM monitor program resides at the low end
of memory address space, and that program-
mable random access memory begins at the
address of the line buffer.

monitor is waiting for a command it will
print the same message.

If you want to enter a program starting at
location 123, type "LOAD,123" then a

carriage return to end the line. The ELM
program will respond with the message
"123 =" on the next line. ELM now expects
you to type a string of hexadecimal charac-
ters grouped two per byte, with a single
space between each group. See figure 2 for
examples of this format. You can enter up
to 22 double character hexadecimal codes
on a line. The line is terminated with a
carriage return. After the carriage return,
these codes are entered into memory begin-
ning at the address 123 in this example.
Then the address waiting to be loaded will
be printed at the beginning of the next line
so that more hexadecimal, codes can be
entered. This process is repeated until you
type the word "END" at the beginning of a

line. After ending the load routine, the last
loaded address is printed followed by the
"OK -" message which indicates that ELM is

262

0K- LÒAL.1104
1104- 12 7E 51 C3 E9 CI E3 SA

1112. 04 SC 54 12 43 -8

1117. 49 2C42 59 54
ERROR
1119. 42 59 54 53 20 20

1122E- END
LAST ALCPESS LOADED 1128-

0K- LIST.IIC4-1128
11C4. 12 7L 51 C3 C9 01 E3 SA 04 50'54 12 48 49 20 42 59 54 45 53

1124. 20 2C SA 00 00

8Xi\NOLIFCY.11
NODIFY.1112
1112- C4
1112- OC

OK- LIST.1111-1113
1111- SA CC 5C

0K- G0.1024---104

HI BYTERS

0K-

Figure 2: Sample Printout of an ELM Interactive Sequence. This listing

shows ELM at work. Note the use of the Teletype back arrow (underscore

character) to delete mistakes and one instance of a cancelled line. This listing

illustrates use of ELM to load and execute a simple program which types out

"Hl BYTERS " and returns to ELM.

back in the command mode again. If the

starting address is omitted or is less than the

first available address (FAA) then FAA is

assn med.
If you want to list the contents of

memory locations 123 to 456, the command
"LIST,123 -456" will start the listing, print-
ing 20 hexadecimal codes per line. If the

address range is omitted, listing begins at the

first available address (FAA) and continues
until the last available address (LAA) or an

end of program mark. Figure 2 illustrates the

output format of a listing.

If you want to modify memory contents

at locations 123 to 130, the command

"MODIFY, 123 -130" will first list the old

contents of these locations, then it will enter
the load routine to print "123 =" as if you
were loading these locations. Modified codes

may then be entered, to be stored beginning
at 123.

Finally, if you want to start executing the

program at location 123, the command
"GO,123" puts 123 into the program coun-

ter and begins execution of your program.

Again, if the address is omitted, execution

starts at the first available address, FAA.
It is certainly easy to make typing errors,

especially for me. Thus I implemented ELM

with a line buffer and two special line

editing characters. The underscore (ASCII
back arrow, hexadecimal 5F) effectively

263

removes the preceding character typed, two
underscores remove the preceding two char-

acters, etc. The control X character (ASCII
cancel code, hexadecimal 18) cancels the

whole line. Several reverse slashes (ASCII,
hexadecimal 5C) are printed on the can-

celled line and a line feed is generated as

shown in figure 2.

Architecture

Now that the monitor design is set, let's

look at the architecture of the program

needed to implement ELM. Figure 3 shows

the logic for the whole monitor. After the

power on restart, "OK -" is printed as the

ELM input request message, then the system

idles while waiting for input. Figure 4 shows

the logic of the subroutine INPUT, which
reads each character and puts it into the line

buffer. If the terminal is running in the full
duplex mode, the character should be

echoed back to the printer. The buffer
pointer, P, shows where to put the next
character in the buffer. The editing char-

acters are implemented as shown. An ASCII
carriage return code (hexadecimal OD) ends

the input sequence. The test for carriage

return is done after storing the input
character since the load routine expects a

carriage return as an end of line character.

In figure 3, the parameter decoding and

error checking logic is shown as a box and an

error test with a note attached. This logic is

expanded in more detail in figure 5. The

parameter decoding logic has a structure that
enforces a non ambiguous syntax on the

command line. The command is examined
by means of a command list. This list is a

table which is sequentially searched, match-

ing the command in the buffer with each

possible command in the table. The result is

used to determine the proper branch. An

error message is printed if the command is

not found in the table.
The LOAD subroutine is shown in figure

6. The logic consists of an outer loop for
each line of input, and an inner loop which
scans the line, loading memory from left to
right in ascending address order. The LOAD
routine checks the syntax for double char-

acter hexadecimal codes separated by

blanks. If a syntax error is found, loading
stops, an error message is printed, and the

next address to be loaded is printed on the

next line. A variable number of hexadecimal
codes from 1 to 22 may be entered on each

line. The initial address (P1) is incremented
during the loading routine.

Note that after loading is completed and

control returns to the main routine, an end

of program mark is inserted into memory. In

my version of ELM, the code for a jump to

address zero is loaded into the next three
bytes as an end of program mark. This
convention allows normal termination of a
user program by running off the end and
branching to the starting address of the
monitor at location 0.

The LIST routine is shown in figure 7.
This routine simply prints out the hexa-
decimal codes found at locations specified
by the input parameters. This listing is done
20 bytes per line. Note that LIST stores the

r- ------i ELM IS ELM INPUT
I WAITING I REQUEST /

FOR INPUT b - MESSAGF1

I ENTER ELM!
AT POWER

ION OR
!RESTART J

(ELM

I

I SEE DETAIL
I OF I_
I FIGURE 5 I

TESTS
COMMAND
AGAINST I I - --

1 TABLE I

CALL
INPUT

I DECODE
COMMAND I
LINE

NO

EXAMINE
COMMAND

YES

r --1
I ERROR I

BRANCH

L - - -J

CALL
LOAD

CALL
LIST

ERROR
MESSAGE

INSERT END
OF PROGRAM
MARK

CALL
LIST

CALL
LOAD

SET UP
JUMP TO PI
ADDRESS

END

r -1 -
ENTER I

NEW I

PROGRAM I

L - - -

P: MAXP

264

YES

(INPUT

P. O;

-111

NO

P:P+I;

P IS LINE BUFFER j
POINTER. START

I SCAN AT ZERO I

READ
CHARAC°
TER

PRINT
OHARA

C
TER

ECHO

PP°I i

LINE
DELETE
MESSAG

STORE
CHARACTER
LINE BUFF-
ER AT P

C
RETURN)

I CARRIAGE I

--A RETURN

Figure 4: The Input Subroutine Specified as
a Flow Chart. The main purpose of INPUT is
to read one line of input, terminated by a
carriage return. INPUT implements the line
editing functions of character delete and line
delete. When the carriage return code is
detected, the line buffer LB is filled from
position 0 to position P.

Figure 3: The ELM Program Specified as a
Flow Chart. The main logic of the Eloquent
Little Monitor is shown in this diagram.
Flow begins at the top left and proceeds
down the diagram. Normal operation of
ELM involves a closed loop, returning to the
ELM input request message printed near the
top of the diagram. If the GO command is
carried out, execution leaves ELM and pro-
ceeds to the selected address.

Figure 5: Parameter De-

coding Logic Details. Fig-

ure 3 contains a box
labelled Decode Command
Line and a conditional test
labelled Errors, with a

note referencing figure 5.

This figure contains the

details of the logic needed
to decode a command line
into two parameters and a

command. There are two
possible exits from this
logic. An error exit to ter-

minal (1) occurs if an error
is detected; an error free
exit to terminal (2) occurs

If no errors are detected

initial value of parameter Pl in the accumu-

lator ACC during its operation. Then Pl is

restored after the listing is completed. This
allows LOAD to be called after LIST during
a MODIFY sequence, so that both LOAD
and LIST reference the same starting
address.

In my version of ELM, addresses are

handled as decimal numbers. This is re-

flected in the input numeric conversion logic

(see figure 5) and in the creation of an

output conversion subroutine: Both LOAD

and LIST call a subroutine DECIMAL which
prints the decimal addresses at the beginning
of lines in messages. DECIMAL simply con-

verts the first address parameter, Pl, into
five ASCII numeric characters, and prints
them followed by an ASCII "_" character
and a blank. I put decimal address conver-
sion into ELM out of personal preference.
The decimal conversions may be omitted
and hexadecimal or octal address parameters
could also be used. There is already a binary
to ASCII hexadecimal routine implicit in the

I PARAMETER DECODE
LOGIC,DETAIL OF -
FIGURE 3 J

F:O,

M:I;
ACC' O, I L

NOTE ; VARIABLES
F + FLAG
M. DECIMAL MULTIPLIER
ACCT DECIMAL VALUE ACCUMULATOR
P'LINE POSITION
LB=LINE BUFFER
PI ,P2 i POINTERS J

7

M;MIO;

ACC; ACC+
M LB (P);

P:P I,

EXAMINE
CHARACTER
LB (P)

I ERROR I

I BRANCH I

-7
IERROR.FREEI
IBRANCH I

L J

'7NP UT ---1
!NUMERIC I

!CONVERSION f -
LLOGIC -_J

r ERROR
I BRANCH

F: 2
PI : ACC;

I ERROR I

I BRANCH I

ACC:- FAA;

YES

F: I;
P2: ACC;

PARAMETERS ARE EXAMINED AND I

DECODED IN REVERSE CHARACTER
CORDER

265

LIST function. For input, the parameter
decoding routine can be simplified some-
what by using hexadecimal parameters.

Expansions

There are several obvious expansions to
ELM which should be easy to implement.
You may even want to incorporate them
into your own version of ELM right from
the start. If you have an ASR Teletype (with
paper tape reader and punch), you may want
to add the following commands: LOADPT
and PUNCH. Your Teletype should be able
to receive the rubout character (ASCII de-
lete, hexadecimal FF) but not transmit as is

SKIP TO j -' NEW LINE
PRINT
CURRENT

I 'ADDRESS

(CALL DECIMAL)

ILOAD
I ROUTINE

FOR ONE
LINE J

P:PfI; YES

the normal configuration. LOADPT would
operate the same way as LOAD except that
there is no printing needed. The format of
the tape would be lines of hexadecimal
codes with a carriage return and two or more
delete characters at the end of each line.
You can skip the blanks between bytes to
save tape if you like. When the processor
sees the carriage return, it begins loading
memory from the line buffer. The two
delete characters give the computer time to
load the line, so that by the time the next
real character comes along the computer is
ready for it. Instead of the word "END" at
the end of the input, you might want to use

LB(P)
I VALID I-
(HEX

F:. O;
ACC: 0;

YES

NO 'ROR
E MERESSAG

TAND I

LRE START

CONVERT
LB(P)
ASCII TO
BINARY

ACC:
ACC 8F0,6;
ACC:
ACCILB(P);

MEM(PI)

ACC;

1

PI: PI+I;
P:PfI;

I SHL (LB (P),4)
IMEANS ACC;ACCB
ISHIFTLB(P) LyOF;fACC
'LEFT FOUR I ACCISHL 'BINARY
LPLACES

I (LB(P),4);

ONLY ONE
1 BYTE OF

Two- BYTE
I (ACCUMULA-

TOR IS USED
IN THIS

I ROUTINE

-L_
P: P+I
F: I¡

II-BLANK MUST BE
.j SEPARATOR I

I BETWEEN '

1 HEXADECIMAL (

NO LCODES

NO r
L

rLP(P)
I CARRIAGE ;

LRETURN_J

J - --'
j- BACK FOR I

I MORE
I I

YES

LOAD
ERROR

MESSAGE

RESTART
LOAD
ROUTINE

I TRY I

I AGAIN I

L - - -- I

266

ILLEGAL I

_1 CHARAC- I

I TER I

Figure 6: The LOAD Sub-
routine Specified as o

Flow Chart. The purpose
of LOAD is to set the
contents of user program-
mable memory beginning
at a location specified by
the user. The routine con-
tinues indefinitely until
the characters "END" be-
gin a line of input.

Figure 7: The LIST Sub-
routine Specified as a

Flow Chart. The purpose
of LIST is to dump the
contents of memory, for-
matted as ASCII encoded
hexadecimal digits. The

dump routine types the
address first on each line,
then follows with 20
groups of two hexadecimal
digits.

the ASCII end of tape character (hexa-
decimal 04). The PUNCH routine would
operate like LIST, without the addresses. It
should punch the tape in exactly the same

format read by LOADPT. If you are not
using blanks between bytes in the tape
format, you can get 34 hexadecimal codes

on a line followed by a carriage return and

the two delete characters. The last character
punched might be the end of tape code or

the END convention, depending upon your
own preferences.

If you have a serial tape drive at a

different IO port, you may want LOADMT
and SAVEMT commands. These could be

exactly like LOADPT and PUNCH except
for the IO port address. Most tape interfaces

LIST

ACC: PI;

i HEM (PI)

I END MARK

L

F: 20

\LIST
[-SKIP TO 1

MESSAGE/ 4 NEW LINE 1

I PRINT
CURRENT

LADDRESS I

(CALL DECIMAL)

CONVERT MEM(PI)TÓ \ MEM ASCII HEX I

AND PRINT I

L. -I

PRINT
ASCI I

BLANK

PI:PI1
F:F I

TES

CARRIAGE

PI: ACC

(RETURN

267

are set up to use the null code (hexadecimal
00) instead of the delete code to give blank
spacing. You may also want to implement
absolute binary versions of SAVEMT and
LOADMT to allow higher speed and elim-
inate conversions.

Philosophy

With this article, I've given you enough
information on the design of a monitor to
enable you to write the code for your own
machine. After a few days of coding and
debugging, you should be ready to go to the
local computer store and have your ROMs
zapped with a mighty ELM. The whole
monitor could be put in and initially de-

bugged via front panel switches; however,
this is a tedious process at best. Once you
have ELM installed, you can use this tool to
help build software and programs on your
own machine to your heart's content.

Even though ELM is a fairly simple
monitor as monitors go, it can be further
simplified and condensed. As mentioned
before, the decimal conversions can be

omitted. The syntax checking can be re-

duced, the printing of addresses at the
beginning of lines might be omitted, and the
commands could be reduced to single letter
codes. None of these simplifications will
reduce the basic functions of the monitor;
however, these features add a sharp dimen-
sion of utility and a touch of class to your
monitor.

In many years of designing systems and

studying human interaction with computers,
I've found that people (ie: users, be they
systems engineers or airline ticket clerks)
think most efficiently in words and decimal
numbers. Addresses are a sequential stream of
numbers and we have all been taught since
childhood to think of streams of numbers in
decimal base. Only computer nuts, putting
on airs, pretend to be able to think in octal
or hex. Likewise, we communicate with each

other in words. The computer is capable of
communicating with us in our own language,

so let it. An instruction such as LOAD
STARTING AT 489 is much easier to learn
and more efficiently used than L,01 E9. The
latter, however, is easier to implement in the
computer. ELM compromises with
LOAD,489; retaining the keyword and the
decimal address. My basic philosophy is: Let
the machine do the things it is good at. It is

good at base conversions and word recogni-
tion. It can convert binary to decimal and

back again in the twinkling of an eye; we

can't. Remember, you will probably want to
use your monitor for a long time; the extra
effort in its construction will be well worth
the frustration.

Design an On Line

Robert R Wier
PO Box 9209
College Station TX 77840

James Brown
2518 Finley St No 636
Irving TX 75062

Machine or assembly language will most
likely be used by many computer experi-
menters. While many professional program-
mers will swear by the use of assembly
language, others, perhaps equal in number,
will swear at it, preferring the use of high
level languages. To those new to the field,
these terms may seem confusing. It's really
quite straightforward when one remembers
that the language a machine uses differs
considerably from the one used by the
people. As one surveys a continuum from
machine to human languages, the language
most easily understood by the machine is a

binary language; next on the continuum is

assembly language with additional features
that make it considerably easier to use, thus
avoiding all night debug sessions, frazzled
nerves, and 2 AM programming logic which
hardly ever works, etc. For a good discussion
on assemblers, see the October 1975 issue of
BYTE. Easier yet for the programmer are
languages such as BASIC, FORTRAN, PL /I,
and ALGOL. These languages allow the
problem to be stated and solved in terms
better adapted to human understanding.
Unfortunately, there are rather serious diffi-
culties encountered when these high level
languages are to be used on small systems.
1 hey require a compiler or interpreter to
transform the problem from the high level
language to machine language and more
memory than is found in most small hobby
systems. Therefore you'll probably be using
assembly and machine language. After the
program is written and loaded into the
machine, experience has shown an astro-
nomical probability against the program
working correctly if it is more than two
instructions large. Considerable time will
probably be spent at the front control panel
surveying the address and data lights,
mumbling "I dontunnerstand" and

268

"(expletive deleted) machine! ". This can
lead to terrific pains in the back and neck
from bending over to look at the panel
square in the face and operate the switches.
This is commonly named "minicomputer
neck."

How much nicer would it be to sit in a

chair and do approximately the same thing
using a Teletype or CRT display (CRT is an
abbreviation for Cathode Ray Tube, essen-
tially a TV picture tube. A television type-
writer is a unit often used in this
application).

There are several ways to use the control
panel:

1: Executing a few instructions, then
examining memory to see what the
blinking machine is really doing, or

2: Inserting or changing data in memory,
or

3: Displaying the contents of specific
memory locations, or

4: Searching through memory for a

specific bit string or number, if you
prefer, or

5: Displaying and possibly changing the
values in the CPU registers.

The authors had occasion to be working
with a 16 bit /word minicomputer which
mainly was used as a remote job entry
terminal into a large computer. It could,
however, function as a stand alone computer.
Since an assembler was available, a number
of assembly programs were written and
debugged. When the machine was first de-
livered, a temporary control panel was pro-
vided. Since this was to be removed at some
future date, the following technique was
used to implement a DEBUG program using
a CRT terminal to replace the control panel.

The basic idea is to develop a program
that will take care of the functions outlined
above and interface to the console terminal

Debugger
and hopefully will protect itself from wild
extremes of a program being debugged. This

might be thought of as running a program

within a program (figure 1). Hereafter, the

program being debugged will be referred to

as the problem program.
The debugger program must have pro-

visions for a number of things. It has to

handle the IO for the hardware and to

converse with the human programmer. It has

to keep track of the various status condi-
tions of the program being debugged (the

problem program). It must understand the

input commands directing it to perform
certain actions of the problem program. It
must be transparent to the problem program

so that when the final version is finished, the

problem program may be loaded without the

debugger, and still work.
In addition, the debugger should be small

in size, and easy to implement to avoid the

herculean task of debugging the debugger.

(Although that's not strictly true. Once the

IO and display portions were working, we

used these to debug the rest of our de-

bugger.)
The following commands arc the results

of our efforts to provide effective yet
concise operations. In this list adr means a

specific memory address, val a value, and reg

a register.
The final implementation including all

the IO and interrupt handlers required 560
bytes, or about 256 instructions on the

Lockheed SUE 1110 minicomputer. Figure

2 is an overview of the debugger logic flow.
It is reasonably straightforward, except for
the execute (G) instruction. Consider the

debugger waiting for a programmer to enter

a command. It just sits there wasting expen-

sive electricity. As soon as you enter a

command, the debugger checks it for vali-
text continued on page 60

T ERMINAL

DATA d
COMMANDS

DEBUGGER PROGRAM

PROBLEM
PROGRAM'S
REGISTER

INTERRUPT
HANDLERS

PROBLEM
PROGRAM
TO BE
DEBUGGED

Figure 1: Logical arrangement of debugger.

Table 1: DEBUGGER program commands.
Each command consists of an operation
code character, followed by from one to
three operands (numbers) separated by
blanks. The command line is completed by a

period. In implementing the program, the

computer should respond with a carriage

return and line feed after finding the period.

C adr val. changes memory at adr
to val

C adrl adr2 val. changes memory from
adrl through adr2 to
val

D adr. displays memory con-
tents at adr

D adrl adr2. displays memory con-
tents from adrl through
adr2

D adrl adr2 val. searches memory from
adrl through adr2 for
val

R. displays the contents of
all registers

displays the contents of
register reg

changes the contents of
register reg to val

sets return to debugger
at adr in problem
program

G. go, i.e., continue or
start execution of
problem program using
contents of the prob-
lem program's program
counter register

G adr. start execution of prob-
lem program at adr

R reg.

R reg val.

@ adr.

269

ENTER
I DEBUGGER L -T -J

BEGIN)

CPU REGISTERS
SET BY PSEUDO
REGISTERS

SET UP
RETURN TO
PROBLEM
PROGRAM

Figure 2: Debugger flowchart.

SET UP
JUMP TO

'adr.'

r--
...-{ 'G' I L--J

(JUMP TO PROBLEM
PROGRAM

ILEAVE
IDEBUGGER,I

IPROBLEM I
I PROGRAM I L__-J

r - 'G adr. I
J

r----
'

t J I

YES DISPLAY
ALL

REGISTERS

I R rag. I-1
L - - --J I

YES DISPLAY
REGISTER .feg.

r
R reg val.' I

L - - --J
REGISTER 'reg'

val

r --I SEE NOTE I

L J
INITIALIZE
SYSTEM AS
REQUIRED

\DISPLAY \ REGISTER \ reg'

SET TRAP
AT 'ode'.

READ B PARSE /
COMMAND

(SETS M)
I
r/ SEE NOTE 2,

I
J

N:
LOOKUP
(OPCODE)

L SEE NOTE 3

YES
¿COMMAND ROUTINE

YES

YES

YES

YES

ERROR
MES-
SAGE

1

r
L (-,iaCOMMAND ROUTINE

r---
'R'COMMANDROUTINE-1
L

L' COMMAND ROUTINE)

`D'COMMAND ROUTINE)

r-- --I BAD OPERATION CODE J

270

A TRAP EXAMPLE

Assume that the memory of the com-
puter contains the following information.

Address Content at this address

LOW Beginning of the problem program
region, a low address.

LOC.W Call DEBUGGER trap handler. This
is a "trap."

LOC.W+D Assuming a trap call of length D,
this is the next instruction of the
problem program after the trap.

LOC.X Problem program ends.
LOC.X+1 Systems programming area begins

(RAM, not ROM).

LOC.Y DEBUGGER program starts.

LOC. DEBUGGER's trap handler routine.

HIGH End of systems programming area.

Note 1: The DEBUGGER program acts as a system
monitor for your computer. Whenever the com-
puter is restarted, the DEBUGGER is entered and
will execute a power -on initialization sequence.

Note 2: The format of the command line and a list
of all the variations on each command are found in
table 1. The input routine should parse the
command line by identifying the operation code
and operands, stripping blanks, and counting the
number of operands (M).

Note 3: The function LOOKUP is used to translate
an input ASCII command character into a cor-
responding integer number. In the authors' system,
this was accomplished by manipulating the bits of
the ASCII character code; other schemes are
possible.

Note 4: A trap is set by replacing the instruction at
the trap address with a temporary alternate which
causes a branch to the trap routine. The instruction
used for this purpose in the authors' system was a

"jump to subroutine." Depending upon the par-
ticular computer architecture, other instructions
might be used, such as software interrupt, super-
visor call, etc.

Note 5: Both trap instructions and interrupts
require similar processing. One way to view the
DEBUGGER program is as a large interrupt
handler which is entered upon system restart,
execution of a trap, or end of a problem program's
execution.

Note 6: Command formats from table 1 are shown
in quotes within comment boxes in this flow chart.

Assuming a stack oriented machine in

which the state information is stored in the
stack, the following sequence occurs in a

typical case.
1. The user enters a program. After

entering it, he decides to place a trap
at location LOC.W in memory with
the " @" command.

2. The problem program begins execu-
tion after a "G LOW." command. It
reaches the trap at LOC.X and

executes the subroutine call.
3. The subroutine call saves the address

of the next instruction (at a minimum)
and branches to the trap handler at
LOC.Z. The trap handler continues the
state saving process so that the
machine's stack contains complete
CPU state information.

4. The trap handler displays a trap mes-

sage containing information on the
address and register content of the
machine at the time of the trap.

5. The trap handler passes control back
to the DEBUGGER's command line
interpreter.

r ----
I 'C adr val.'
L---- J ,----

r-
I D adr' I L--,__-_J

DISPLAY
M lack) YES

I: adr I

NO

Dadrladr2.' I

1 L J
YES

DISPLAY
`MEM (I

r".
D adrl adr2 val.' I

L_T_

DISPLAY YES

rLEAVE PROBLEM 1 !LEAVE PROBLEM 1
I PROGRAM,ENTER I IPROGRAM, ENTER I

I INTERRUPT SERVICE I I DEBUGGER I

L---- _ - - - - -J t - - -- J - - -
I \ r (EXECUTE (INTERRUPT (INTERRUPT }-1 5)TRAP

J L - --J
SAVE
CPU
STATE

INTERRUPT
HANDLER

(RETURN)
LEAVE INTERRUPT

I SERVICE, ENTER I
I PROBLEM PROGRAM I L J

271

SAVE
CPU
STATE

\ DISPLAY TRAP/ /

I: I+I

NO

text continued from page 57

dity, and if it is a legitimate command the

various parameters arc read and stored in

memory to be accessed when necessary.
Now the debugger looks at the part of the
command line which tells it what to do
(known as the opcode). Assuming that you
are using ASCII, here is a sneaky way of
determining which routine to go to.

1: Add 9 to the ASCII character,
2: Logically AND the opcode character

with a 7,

3: Assuming the given opcodes
(C,D,R, @,G), you now have a numeri-
cal index which you may use to test or
use in a jump table to go to the proper
code which accomplishes the desired
function.

EXAMPLE: Suppose you have an ASCII 'R';
in binary this is:

01010010 -'R'
0000 1001 - add 9

0101 1011 - AND result
0000 0111 - with 7

0000 0011 - final result is '3'

using this method then: G =0, @ =1, R =3,
C =4, D =5.

Now we offer a few comments on the
various procedures shown in figure 2.

Change: This is perhaps the simplest of all
the commands to implement. Using the last

parameter supplied, step through memory
from the first address zapping each location
with the desired value until the ending
address is reached (note: for a single address,
adrl= adr2). Though not necessary, it is

highly recommended to check the addresses
for validity to avoid clobbering the de-
bugger.

Display: Simply step through memory from
the starting address to the ending address

displaying memory contents as you go. We

displayed in hexadecimal notation. You
might alternately wish to use octal or (God
forbid) binary. Since our CRT was capable
of an 80 character line, we put 8 groups of 4

hex characters on each line:

LLLL: XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX

The first number is the memory location of
the lowest address displayed on the line
(leftmost). Using this, it is easy to glance at
the display and see patterns in memory.

For the search option of the display
operation, you need only to print out the
addresses where a compare was successful.

272

You should be able to remember what you
are looking for. When the search option is

used, a flag is set which somewhat modifies
the display such as:

: LLLL LLLL LLLL LLLL
LLLL LLLL LLLL LLLL

where the L's are the memory addresses
containing the argument.

Some commercial variants of the search

operation allow you to look for certain bit
patterns within words by masking out don't
care bits; however, this is no small task to
program for a feature of somewhat limited
usefulness.

Register: Here you have three alternatives
determined, once again, by the number of
operands (i.e., how many parameters you
specify with a particular opcode). No
operands are used to indicate the display of
all register contents. If one operand is

present, then the content of that register
only is to be displayed. Two operands
indicate the contents of the specified register
are to be changed to the given value.

Please note that these registers are really
fixed memory locations, set aside inside the
debugger (i.e., pseudo registers). These
values are typically loaded into the CPU
registers by the G command. Most CPUs
have one or more general registers plus a

program counter (i.e., the address of the
next executable instruction), and a collec-
tion of indicators commonly referred to as

status flags or sometimes as status registers.
For our implementation we had seven

general registers numbered (cleverly) one
through seven. Register number zero was the
program counter and register number eight
was the status register (note: All registers
were 16 bits large). Thus we only had to
enter a single digit, zero through eight, to
reference any register. On most micro or
minicomputers, alphabetic type designators
are used to reference registers, but with
much luck a similar trick used to simplify
opcode determination may be used.

GO and SET TRAP: This section is the most

machine dependent implementation which
requires very careful planning. The object
here is to put the problem program into
execution, and eventually have control re-

turned gracefully to the debugger. The point
where execution is to end and control to
return to the debugger is called a breakpoint
or trap.

Constructing a trap is not too difficult.
The simplest method is to insert in the
problem program an unconditional branch
back to the debugger. A serious drawback of

Figure 3: How to set traps in the problem
program (see text).

MEMORY MAP

Address

LO Problem program starts

Contents

W Call debugger trap handler at address Z

W f1 Problem program continues

X Problem program ends

X f1 Stack starts

X HI Stack ends
Y Debugger program starts

Z Trap handler of debugger program

HI Debugger program ends

ALGORITHM

The stack of a elements is located at address X, the

debugger program at address Y, and the trap
handler at Z. The following steps are executed:

1: The problem program executes a trap at

location W, i.e., a subroutine call to the trap
handler.

2: The subroutine call saves the address W +1.

return address W+ 1 in the stack, e.g., in X f3
3: The trap handler at address Z is executed.
4: The trap handler fetches the return address

W1.1 from the stack (tit this example X f3),
reduces the stack by one element, and

displays the address W t 1.

this is That the location from which the

branch occurred will be unknown. the

solution is to use an unconditional sub-

routine call to the debugger. A call instruc-

tion places a return address somewhere,

depending on the machine, and then

branches to the location specified in the

instruction. With this it is a simple matter to

retrieve this return address as the program
counter for the 'G.' option of the GO

statement (figure 3). Our computer had

fixed locations in which routine addresses

could be placed, such that if certain types of
interrupts occurred the return address was

saved and a branch taken using the address

at that location (vectored interrupts). One

such interrupt was .t "hall" instruction inter-
rupt, hence the setting of program traps

consisted of moving an illegal instruction to

the location a trap was to occur.
The GO command should set the pseudo

program counter if an operant) is present,

then load all general registers. I he last two
registers loaded are the status flags and the

program counter (which would be identical

to a branch). Typically a branch using the

contents of the pseudo program counter
would be used (note: Branches usually do

not set or reset status flags).
In conjunction with the preceding, there

should be a phantom routine which is the

target for all traps. Its job is to save all

registers and status before the debugger main

routine uses them into the pseudo register
area. It is suggested to display the program
counter and the fact that a trap occurred,
such as:

09 interrupt address

There is a dandy reason for this. If multiple
traps exist, it is handy to know which trap

was encountered. Additionally, since the

trap itself may clobber one or more memory
locations in the problem program, to remove
a trap one must change these trap instruc-
tions hack to the original contents (typically
from the original assembly listings). In an

earlier version of the debugger we allowed

only one trap per execution and saved the

good code from the trap location. When the

trap occurred, we then restored the good

code at that location. However, a serious

drawback, of course, was that it isn't always

known what branches will he taken between

the G and ((1) instructions, and it was highly
probable that the trap would be bypassed

entirely. 1 has in our present debugger we

allow multiple traps but do not restore the

previous code when a trap occurs.

Execute Instruction Considerations: If you

happen to get tied up in an endless loop,

you'll have to manually force a return to the

debugger. I his could be accomplished in

several ways. You could physically reset the

machine from the control panel (assuming

you have one), and enter the debugger

starting address. Or you could have pre-

viously set up an interrupt structure which

would respond to some outside stimulus
(such as an escape from the keyboard, or a

special control panel switch) which would

accomplish a branch to DEBUG. Some

thought was given to simply kicking the

power supply, initiating a power fail inter-

rupt, but this was later discarded.
I I you make extensive use of interrupts in

the debugger (which is not really necessay)

then you'll have to debug your problem
program's interrupts separately. Otherwise
the problem program's interrupts antl the

debugger's interrupts will he working at

cross purposes.
Should you place the breakpoint address

in a branch of a conditional statement that

doesn't happen to be executed, then the

program will just skip around your break-

273

point. Or worse, placing the trap instruction
as the operand of a multiword instruction
could be distressing. The obvious solution to
the first problem is the placing of multiple
traps, so the problem program could not
escape from the debugger regardless of the
flow of control. The latter had no fool proof
solution except exercising a little caution as

to trap locations.
Some commercially available debuggers

are really monitors that check the program
counter every time a step is executed (inter-
preters). With a little thought it is apparent
that this would involve considerably more
programming than we've discussed here. Our
debugger just allows you to set up the initial
conditions and then "let fly," while the
alternative is to have the debugger arrange
every instruction which has the advantage of
a more fool proof operation. But, it suf-
fers from program complexity and a tenden-
cy toward slow execution which is critical in
some 10 operations.

The debugger ideally should be immune
to anything which the problem program
might try to do to it. This suggests the use of
ROM (Read Only Memory). After you have
the debugger working to your satisfaction,
just place the debugger somewhere in your
memory address space where you'll probably

Figure 4: Physical arrangement of debugger
in memory.

MEMORY
ADDRESS

0 -O.
LOW --10

INTERRUPT CODE

H1GH -b
HIGHEST -1

PROBLEM
PROGRAM

DEBUGGER

IDEAL
TYPE OF
MEMORY

RAM OR ROM

RAM

ROM

274

never need to move it. Usually this is in high
memory. Since the debugger needs a small
amount of RAM (Random Access Memory)
in order to save the problem program's
registers between G instructions, it cannot
be made completely invulnerable. If the
problem program happens to move garbage
into the interrupt vectors, there is no telling
what will happen on the next interrupt. But
this is better than having the debugger
completely in RAM. As a practical note,
however, we found that there were not too
many occasions when the problem program
zapped the debugger if it was in RAM (figure
4).

If you want to get really fancy, you could
include in the debugger an option to per-
form loading functions, such as retrieving a

program off cassette tape. Assuming the
debugger is in ROM you would never have to
toggle in a bootstrap loader again, which is
undoubtedly one of the worst aspects of
small systems. Of course if you do not wish
to get that fancy, you may still enter the
loader via the debugger, which is certainly
easier than using the front switches.

All in all, we've found that a good online
debugger program is worth its weight in
ROM. It will remove some of the worst
aggravations of using small systems, and
you'll learn a lot about logical flow of
control, hardware software interfacing, and
modularity of programming.

So let's get in there and STAMP OUT
THOSE BUGS!

Source listings of the debugger are available
for the SUE 1110. Send one dollar to cover
duplication and postage to Robert R Wier.

A version utilizing Intel's 8080 CPU chip
is in the works, and when available a note
will appear in BYTE.

You don't need high -

powered compiler theory
to process your own
algebraic expressions -
all you need are a few
variations on one basic

idea, developed in
West Germany .. .

Processing

Algebraic Expressions

W Douglas Maurer
University Library Room 634
George Washington University
Washington DC 20052

To the amateur programmer, algebraic
expression processing may seem a formida-
ble obstacle. How do you write a program
which takes a character string like
2 +3 *(4- (14/7 -1)) as input, and produces
the right answer - in this case 11 - as

output? The programmer seeking answers to
such questions is usually led to a collection
of sources on compiler theory, and to
arcane -sounding terms like "recursive de-

scent," "top -down and bottom -up parsing,"
and the like. These were developed for use

by the compiler writer, although even com-
piler writers find much of compiler theory
interesting for theoretical purposes only.
The net result has been, in all too many
instances, to scare the ordinary programmer
away from algebraic expressions entirely -a
decidedly unfortunate state of affairs.

Most people who do work with algebraic
expressions in a small system setting have

made use of what is called "Polish nota-
tion." Although we shall describe Polish
notation next month, the warning must
be given that Polish notation can be misused
as easily as it can be used. The much more
direct method which we shall describe was

developed by F.L. Bauer and K. Samelson at
the Technische Hochschule in Munich,
Germany. We refer to it as the "Bauer -
Samelson algorithm."

Before describing the Bauer -Samelson al-

gorithm, let us first take up a number of
elementary points about the processing of
algebraic expressions. The input to any
algebraic expression processor will, of

275

course, be a string of characters. These are
given in some sort of character -code format,
and there are as many such formats as there
are computers. Even the number of bits per
character varies from one system to another.
Some systems use five bits per character,
some six, some seven, but most use eight -
the standard IBM 360 (and 370) "byte."

Since there are 26 letters in the alphabet,
at least 26 different codes must be used. To
find out how many bits are needed to
represent that many codes, we take the next
higher power of 2, in this case 32, or 25.
There are 32 different possible codes in 5

bits (from 00000 to 11111). Therefore 5

bits are enough to represent the 26 letters of
the alphabet; whereas 4 bits would not be,

because there are only 16 possible codes in 4

bits (from 0000 to 1111). If we wish to
represent digits as well, we need 26 + 10 =

36 codes. Now five bits are not enough, and

we must take the power of 2 next higher
than 36, that is 64 = 26. There are 64
possible codes in six bits, and six bits are

what is used on many big computers - the

UNIVAC 1106, the CDC 6400, and the
obsolete IBM 7094. (The PDP -10, DEC's

biggie, has two character code schemes; one

uses six bits, the other uses seven.) Once we

have 64 codes, of course, we can represent
characters other than letters and digits, such

as +, -, *, /, _, parentheses, period and

comma, and so on - known as special
characters. Where five bit codes are used, the

special characters include shift characters,
analogous to the shift key on a typewriter,

enabling us to pass from one group of 32
codes (including the shift characters them-
selves) to another such group and back.

Once we know how many bits are in a
character, the choice of the actual character
codes is still quite variable from one com-
puter to another. There is a "standard" code
called ASCII, or American Standard Code
for Information Interchange. But this, as its
name suggests, is a standard code for infor-
mation interchange (between different corn -
puters) only, and many individual computer
makers continue to use their own code
schemes.

All of the codes in common use, however,
share certain characteristics. One of the most
important of these is that the codes for the
digits are all consecutive. That is, whatever
the code for zero is (and this is quite
variable), the code for 7, say, is 7 more than
the code for zero. This is quite helpful to us
in finding the binary equivalents of integers.
Another common characteristic of character
codes is that the codes for letters of the
alphabet are given in numerical order
(although not always consecutively). Thus
the code for T, for example, will be greater
than the code for R, because T follows R in
alphabetical order; but it will not always be
true that the code for T is 2 more than the
code for R.

A sequence of characters is given in a
character array. On a byte machine, charac-
ter arrays are easy to index. As soon as we
have loaded the first character in our array
into a register, we add 1 to our index register
(or indirect address location) and we are
immediately set up to load the next charac-
ter. If we are working on a machine which
holds more than one character per word -
such as a 16 bit or 18 bit machine - our best
course, when processing character strings (of
limited size) is usually to unpack them into a

word array in which one character is con-
tained in each word. This is illustrated, for a

16 bit machine, in figure 1. After unpacking,
the characters may be processed in the same
way as given above.

We will thus have an index in our
program which is initialized to point to the
first character in our array, and which is
incremented, after we are through processing
that character, to point to succeeding char-
acters in the array. Let us now turn to the
question of how these characters should be
processed.

Suppose, first of all, that we load a
character into a register and discover that it
is a digit. Our first job should be to find out
whether any of the characters immediately
following this one are also digits. Since
numbers are stored internally in binary form
in almost all computers, a string of digits

16 9 ~ 9 16 ,,,,

Figure 1: Unpacking characters on a 16 bit
machine.

representing an integer will have to be
converted to this form for further proc-
essing. Let us assume that we have a cell
called NUMBER which is initialized to zero.
Then our algorithm for finding the binary
value of a string of digits is as follows:

1. Check the current character. If it is
not a digit, stop.

2. Multiply NUMBER by 10; add the
current character; and subtract the character
code for zero.

3. Advance to the next character in the
string and go back to step 1.

Thus for the character string 327, we
perform OX 10= 0,0 +3= 3; then 3X 10=
30, 30 + 2 = 32; and finally 32 X 10 = 320,
320 + 7 = 327 - all in internal binary form.
Each time we add the value of the next digit,
which is equivalent to adding the character
code for the digit itself and then subtracting
the character code for zero.

Now suppose that, instead of a digit, we
find the character code for a letter of the
alphabet. The normal rule here is to look for
letters and digits following this letter and to
keep them in a string. Once we have found
the first character that is neither a letter nor
a digit, the letters and the digits that we have
gathered so far constitute an identifier,
which we may process further in a number
of ways, depending on the way in which we
are processing algebraic expressions.

As an example, consider the expression
ALPHA *BETA +GAMMA *DELTA. We load
the first character, namely A, into a register.
Since this is a letter, we keep looking for

276

letters and digits, and we find L, P, H, and

A. All of these characters are kept in a

string. When we get to the *, the characters

we have kept in our string so far constitute
the identifier ALPHA. How we process this

identifier depends on what it is supposed to
mean. Is it a constant with a defined value?

In that case the value is presumably in a

table, and we can look it up. Or perhaps the

purpose of processing this character string is

to give this identifier some constant value.

For example, suppose the string were

ALPHA =3 and suppose we were processing

this in such a way as to put the the value 3

in a table, corresponding to the identifier
ALPHA. In this case, when we reach the

character =, we can put ALPHA into our
table, and then later put in the value.

Much algebraic expression processing in-

volves special identifiers, or identifiers which
are to be processed differently from the

others - such as SIN, COS, and SQRT, or,

perhaps, IF, STOP, and GOTO. All special

identifiers should be collected into a table,

and every time we recognize an identifier -
that is, at the point in our program at which

we have encountered a character that is not

a letter or a digit, so that we know that the

characters we have accumulated so far con-

stitute an identifier - this table should be

searched, to see whether any of its entries
are equal to the current identifier. For each

special identifier, we will then have a sub-

routine, or a section of our program, which
handles it.

Let us now see what happens when, in

the processing of our character string, we

encounter an operator - a character such as

+, -, *, /, or parentheses. This is where we

use the Bauer -Samelson algorithm.
The Bauer -Samelson algorithm uses two

stacks - one for operators and one for
operands. Many programmers, although they
understand the basic idea of a stack, have

never actually written a stack- oriented pro-

gram. The easiest way to do this is by using

an array - call it S - together with a current
length for the array, which we may call LS.

At the start of our program, LS is set to
zero. To put the quantity X on top of the

stack, or, as we call it, to push down X on

the stack, we perform

IF LS = MAX
THEN GOTO OVERFLOW

LS: = LS + 1

S(LS): = X

where MAX is the dimension of the array S,

and we transfer to OVERFLOW if we have

stack overflow, that is, if the stack has

grown too large. Pushing down X on the

stack, of course, puts X on top of the stack

277

while preserving all quantities on the stack

that were previously put there. To take the
quantity X off the top of the stack, or, as we

say, to pop up X from the stack, we perform

IF LS = 0 THEN GOTO EMPTY
X: = S(LS)
LS: = LS - 1

where we transfer to EMPTY if the stack
was empty when we tried to pop it. (This is

usually not an error condition, but normally
means that our stack process has termi-
nated.) Of course, in the Bauer -Samelson
algorithm, since we have two stacks, we may
call them S1 and S2, with corresponding
current lengths LS1 and LS2, both of which
are initially set to zero.

In order to follow the operation of the
Bauer -Samelson algorithm, we shall have to
understand the basic idea of precedence of
operators. Taking the five operators +, -, *,
/, and ** (the last of these denoting expo-
nentiation), we shall assign to each one a

number called its precedence, as follows:

+ 1

1

* 2
/ 2
** 3

The easiest way to understand precedence is

to consider what would happen if we didn't
have it. For example, let us look at the
expression 2 *5 +3 *4. Suppose we tried to
find the value of this expression in the

following way: 2 times 5 is 10, plus 3 is 13,

times 4 is 52. Clearly, this would be the

wrong answer. What we want to do is to
perform the multiplications first, namely 2

times 5 is 10 and 3 times 4 is 12, and then
add together the resulting values, 10 and 12.

Since we perform the multiplications before
the addition, we say that multiplication (as

an operator) has higher precedence than
addition. The numbers which we have

assigned to the operators reflect this fact;
that is, 2 (the precedence of multiplication)
is higher than 1 (the precedence of
addition).

We shall now describe the basic opera-

tions of the Bauer -Samelson algorithm. The
algorithm proceeds by scanning over the

characters of the given string from left to
right. Every time we encounter an operand
- a constant or a variable - while we are

doing this, we place it on the operand stack

Si. Every time we encounter an operator,
we try to place it on the operator stack S2.

This is not done unless the precedence test is

satisfied; that is, unless the precedence of
the given operator is higher than that of the

operator at the top of the stack (or unless
the operator stack is empty). If the prece-
dence test is not satisfied, we remove an
operator from the top of the stack S2,
remove its operand or operands from the top
of Si, calculate a result, and put this result
back on Si. This is called unstacking an
operator. We continue to unstack all opera-
tors from S2 until the precedence test is
satisfied. When we reach the end of the
entire original string, we unstack all opera-
tors from S2.

An example should make this clear.
Suppose we have the string 2 *5 +3 *4 men-
tioned earlier, and we are trying to calculate
its value, which is in this case not 52 but 22.
In the following analysis, we shall denote the
contents of a stack by several quantities in
parentheses, with the last of these quantities
denoting the top of the stack. Thus (10,3,4)
as the contents of the stack 51 means that
the number 4 is at the top of this stack. The
Bauer -Samelson algorithm proceeds in this
case as follows:

1. The 2 goes on the stack Si.
2. The first * goes on the stack S2. (The

precedence test is satisfied, since the stack
S2 was empty.)

3. The 5 goes on the stack Si, which
now contains (2,5).

4. We cannot put the + on the stack S2,
because the precedence of + is lower than
that of *. Therefore we unstack the * from
the operator stack S2. This means: we take *
off the stack S2, leaving S2 empty; we take
its operands off the top of S1 (that is, we
take 5 and 2 off S1); we calculate the result,
namely 2 *5 = 10 (the second operand of any
operator is always removed from the stack
first); and we put the 10 back on the
operand stack Si, which now contains 10
and nothing else.

5. We are supposed to keep unstacking
operators until the precedence test is satis-
fied. At this point, however, the precedence
test is in fact satisfied, since the operator
stack is empty, and we may therefore place
a + on the operator stack and continue.

6. The 3 goes on the stack S1, which
now contains (10,3).

7. The * goes on the stack S2, which
now contains (+, *). The precedence test
succeeded in this case, since the precedence
of * is higher than that of +.

8. The 4 goes on the stack Si, which
now contains (10,3,4). We are now at the
end of the original string, and it is time to
unstack all the operators from the stack S2.

9. The operator at the top of S2, namely
*, is taken off this stack. Two operands are
taken off the top of Si, namely 4 and 3; this
leaves 10 on Si. The result, namely 3 *4 =

12, is calculated and placed back on Si, so
that S1 now contains (10,12).

10. The operator at the top of S2, namely
+, is taken off this stack. Two operands are
taken off the top of Si, namely 12 and 10;
this leaves S1 empty. The result, namely
10+12 = 22, is calculated and placed back on
Si.

11. The operator stack 52 is now empty;
the Bauer -Samelson algorithm has finished;
and the answer, namely 22, is on the
operand stack Si. (Unless there has been an
error, the Bauer -Samelson algorithm will
always end with exactly one quantity on
the operand stack, and this quantity will be
the final result.)

This is the basic Bauer -Samelson al-
gorithm. It may now be modified and
extended in a number of ways.

Let us first consider parentheses. A left
parenthesis is treated as an operator. It is
always placed directly on the operator stack
without making the precedence test; that is,
it is treated as if it had the highest prece-
dence. Once it is on the operator stack,
however, it is treated as if it had the lowest
precedence; that is, any other operator is
placed directly above it on the stack, or, to
put it another way, the precedence test
always succeeds if there is a left parenthesis
at the top of the operator stack.

A right parenthesis is treated somewhat
like the end of the expression. We unstack
all operators on the operator stack until we
come to a left parenthesis, which we remove
from the operator stack and continue to
scan the given string. If there is no left
parenthesis on the operator stack, there were
too many right parentheses in the original
expression. Conversely, if we come to the
end of our string and start unstacking
operators, and one of these is a left paren-
thesis, then there were too many left paren-
theses in the original expression.

As an example of the use of parentheses,
we consider the expression
2 +4 *(5- (6- 3))/8, the value of which is 3.
We shall again "walk through" the Bauer -
Samelson algorithm as it scans this string.
This time, however, we shall use an abbre-
viated notation. In the second column
below, marked action, we use one of the
following codes:

O (Operand) - An operand is placed on
the operand stack.

S (Succeed) - The precedence test
succeeds, and therefore an operator is placed
on the operator stack.

U (Unstack) - The precedence test fails
(or else we are at the end of the expression,
or at a right parenthesis), and thus an
operator is unstacked.

278

Table 1: Calculation of
2+4 *(5- (6- 3))/8.

Current Operand
Character Action Stack

the value of

Operator
Stack

2 0 (2) Empty
+ S (2) (+)
4 0 (2,4) 1+)

S (2,4) 1+,1
1 L (2,4) (+,,L)
5 0 (2,4,5) (+,,L)
- S (2,4,5) (+,,L,-)
1 L 12,4,5) 1+,,L,-,L)
6 0 (2,4,5,6) (+,,L,-,L)
- S (2,4,5,6) (+,,L,-,L,-)
3 0 (2,4,5,6,3) (+,,L,-,L,-)
) U (2,4,5,3) (+,,L,-,L)

R (2,4,5,3) (+,,L,-)
) U (2,4,2) (+,,L)

R (2,4,2) (+,)
/ U (2,8) (+)

S 12,8) (+,/)
8 0 (2,8,8) 1+,/)

End U (2,1) (+)
U (3) Empty

L (Left parenthesis) -A left parenthesis

is placed on the operator stack. (This is

denoted by L in table 1.

R (Remove left parenthesis) A left
parenthesis is removed from the operator

stack (this happens after unstacking, when

the current character is a right parenthesis).

The operation of the Bauer -Samelson

algorithm in this case can now be expressed

by means of table 1.

Of course, the "current character" col-

umn in table 1 takes advantage of the fact
that every operator and every operand in our

example program consists of a single charac-

ter. In a more general case, this column
would be headed "current operator or op-

erand."
Let us now consider unary operators.

Superficially, there is no difference between

a unary and a binary operator from our

point of view, except that when we unstack

a unary operator we must remove only one

operand, rather than two, from the operand

Table 2: Calculation of the

- 5- (-3 -4).
Current Current Operand
Label Character Action Stack

value of

Operator
Stack

L1 - S Empty (U)

1.1 5 0 (5) (U)
L2 - U (-5) Empty

S (-5) 1-1

L1 1 L (-5) (-,L)
L1 - S (-5) (-,L,U)
L1 3 0 (-5,3) 1-,L,U)
L2 - U (-5,-3) (-,L)

S (-5,-3) (-,L,-)
L1 4 0 (-5,-3,4) (-,L,-)
L2) U (-5,-7) (-,L)

R 1-5,-71 (-1
L2 End U (2) Empty

279

stack. However, when we put the unary
minus sign on the operand stack, we must be

careful to identify it as a unary, rather than
a binary minus sign, so that we know how
many operands to take off the stack Si. This
in turn means that we are going to have to
be able to tell the difference between a

unary and a binary minus sign as we are

scanning our string.
The simplest way to do this is to think of

our Bauer -Samelson algorithm as having

two basic labels, which we shall call L1 and

L2. We start off at L1 (after all necessary

initializations). When we are at L1, we are

expecting to find an operand. If we find one,

we put it on the stack Si, and go to L2.
When we are at L2, we are expecting to find
an operator. If we find one, it will be a

binary operator; we put it on the stack S2

(after any necessary unstacking) and go back

to L1. But if we are at L1 and we find an

operator, it must be a unary operator; we

put it on S2, after unstacking if necessary,

and then return to L1.
Suppose now that we find a right paren-

thesis. Then we must be at L2 (if we are at
L1, we have an error in the string we are

scanning). We perform all necessary unstack-

ing, remove a left parenthesis from the

operator stack as described above - and

then return to L2, since we are now expect-
ing a binary operator. If we find an operand

at L2, this is also an error condition. If we

find a left parenthesis (of the type that we

have so far described), we should be at L1;
we put it on the operator stack and then

return to L1, since we are again expecting to
find an operand.

This interplay between L1 and L2 may be

illustrated by the following example, con-

taining two unary and two binary minus
signs, in addition to parentheses. For the

moment, we shall consider a unary minus

sign to have precedence equal to 2. A binary
minus on the stack S2 will be denoted by
' -', a unary minus by U, and a left paren-

thesis by L. The codes in the "action"
column are as in the preceding example. The
string to be scanned is -5- (-3 -4); its
value, which is 2, is calculated by the
Bauer -Samelson algorithm as in table 2.

It is, incidentally, a matter of controversy
as to what the precedence of the unary
minus should be. It should clearly be lower

than that of exponentiation (thus -X * *N is

clearly - (X * *N), and not (- X) * *N) and

higher than that of addition (thus -X +Y is

clearly (-X) +Y, and not -(X +Y)). What
about -X *Y, however? The two expressions

(-X) *Y and -(X *Y) are equal, and the

same is true of (-X) /Y and -- (X /Y). It is not
clear which choice leads to the greatest

efficiency of calculation.

Processing Algebraic

W Douglas Maurer
University Library Room 634
George Washington University
Washington DC 20052

In an article which appeared last month,
we showed how the small system user can
process algebraic expressions by using the
Bauer -Samelson algorithm, developed by
F L Bauer and K Samelson at the Tech -
nische Hochschule in Munich, Germany. The
Bauer -Samelson algorithm has many varia-
tions, depending on the type of algebraic
expression processing we wish to do. The
most interesting of these have to do with the
process of compiling.

Anyone who has ever thought about
writing a compiler has probably already
guessed that there are certain aspects to
compiler writing that are not hard at all.
Consider, for example, GO TO statements. If
a compiler is reading, as input, a source
program, and it comes to the words GO TO,
it proceeds in a very simple manner. It reads
the next few characters - let us say they are

305, so that the statement is GO TO 305 -
and it writes, as output, whatever the
machine code is for a transfer to some point
in the object program corresponding to the
label 305. The only part of this that is

difficult at all is keeping a table of labels
(such as 305) and their corresponding
addresses. That can be somewhat complex,
especially when GO TO 305 is a so- called
forward reference - that is, when it precedes
the label 305 in the source program.

A Single Register Machine

But all that pales into insignificance
beside the problem of compiling code for
algebraic expressions. Let us consider the
simplest possible case. We have a machine

280

with one register ("the accumulator ") and
six instructions as follows:

LDA
ADD
SUB
MPS
DVS
STO

Load Accumulator
Add to Accumulator
Subtract from Accumulator
Multiply Single Register
Divide Single Register
Store Accumulator

(We are assuming for the moment that our
multiply instruction produces a single regis-
ter result in the accumulator, and that our
divide instruction divides a single register
quantity in the accumulator by a quantity in
memory. This restriction will be relaxed
later on.)

Suppose now that we have an assignment
statement such as

K=(I*)-I+1)/N

If this' is read by the compiler as part of the
source program, then the compiler must
write out the equivalent machine language or
assembly language code, which in this case
would be

LDA
MPS
SU B

ADD
DVS
STO

)

I

N

K

or the corresponding machine language
(absolute binary or octal or hexadecimal)
code. How is this code to be produced?

Expressions Part 2

We will now describe a modification of

the Bauer -Samelson algorithm that produces

such code. The main areas of modification
are as follows:

(1) The "result" of a computation, which

is calculated by the unstacking process, is no

longer a number, but rather a p /ace where

the result of the computation is stored. For

all of the instructions above (except STO),

this will be the accumulator. Thus a special

code to signify the accumulator will be

placed on the operand stack.
(2) Every time unstacking takes place,

output code is generated in addition to the

calculation of the result.

Let us go through the above assignment

statement as an example. (Refer to BYTE

No. 6 for a general discussion of the Bauer -

Samelson algorithm.)
(1) The left parenthesis goes on the

operator stack.
(2) The I goes on the operand stack. (In

this version of the Bauer -Samelson algo-

rithm, we put variables - or pointers to

them - on the operand stack, and not their

values.)
(3) The * goes on the operator stack.

(4) The J goes on the operand stack.

(5) Now we cannot put the (binary)
minus sign on the operator stack, because it
has lower precedence than the * operator.

So we must unstack the *. We take it off the

operator stack, and its operands, I and J, off
the operand stack; and now we must cal-

culate a result.
Since I and J are the operands and * is

Once you know how to do basic processing on

algebraic expressions, you can begin to learn how to

write compilers.

the operator, we must generate code to

multiply I by J. The code that does this is

LDA
MPS J

or its machine language equivalent as above;

and the result, I *J, is left, by these two

instructions, in the accumulator. Let us

denote the accumulator by $AC (the $ is

there so that we cannot possibly confuse this

with the name of a variable in the program,

such as AC); then $AC goes on the operand

stack. Now we can put the minus sign on the

operator stack, directly above the left paren-

thesis.
(6) The second I goes on the operand

stack.
(7) We cannot put + on the operator

stack, because its precedence is equal to that

of the minus sign, which we must now

unstack. We take it off the operator stack,

and we take its operands, I and $AC, off the

operand stack. Remember that the second

operand is taken off first; so the operands

are actually $AC and I. What instruction
performs the subtraction $AC - I? Clearly

SUB I

is the one we want. (If the subtraction were

I - $AC, this would have to be followed by

another instruction which complements the

value in the accumulator.) So the above

instruction is generated; and, since it leaves

its result in the accumulator, $AC is put
back on the operand stack. Now we can put

281

An interpreter analyzes

algebraic expressions every

time a calculation is made;

by carrying the process

one step further we get a

compiler, which analyzes

the expression once while

creating a specialized ma-

chine language program to
do the calculations.

The Bauer -Samelson algo-
rithm will always generate
code from left to right.
The result will not neces-
sarily be as fast as optimal
code by a human program-
mer.

There is often the problem
of data types: If all data is
in the form of n bit
integers, this is not a

problem; but when multi-
ple types of data are
allowed, mechanisms for
conversion are required.

+ on the operator stack, directly above the
left parenthesis.

(8) The second J goes on the operand
stack.

(9) Now we come to the right paren-
thesis. This means that we must unstack the
+ on the operator stack. Its operands are
$AC and J (after reversing the order, as
above); so, just as in step 7, we want to
generate the instruction

ADD J

and put its result register, namely $AC, back
on the operand stack. Now the operator at
the top of the operator stack is a left
parenthesis; this is removed, leaving the
operator stack empty.

(10) The / goes on the operator stack.
(11) The N goes on the operand stack.
(12) We are now at the end of the

expression, and we must unstack the / and
generate the instruction

DVS N

This is done in the same way as in steps 7
and 9, leaving the operator stack empty and
$AC on the operand stack.

(13) Finally - and this is not, strictly
speaking, part of the Bauer -Samelson algo-
rithm - we look at the left side of the = for
the first time, namely K, and generate the
instruction

STO K

to complete the generation of code in this
case.

We have purposely picked a rather easy
example, involving no temporary variables,
no quotient register, and so on. This is by no
means all there is to this version of the
Bauer -Samelson algorithm, but the further
refinements are not hard to visualize.

First of all, we must make sure that we
can generate code for all possible cases. For
a reason which will become apparent,
the special symbol $AC will never be on the
operand stack in two different places. So the
operands of any given operator will always
be in one of the following three forms: $AC
and Y, Y and $AC, or X and Y. All of these
cases have been treated, or at least men-
tioned, above. The first two cases arc, of
course, equivalent if the operator is + or
(since $AC + Y = Y + $AC and $AC* Y = Y
* $AC).

The second case above, in which we may
have to use more than one instruction
(subtract followed by complement, for
example, as discussed above) corresponds to

282

the case in which a human being might
generate different code from that generated
by the algorithm. Suppose, for example, that
our expression is A *D - B *C. A human
being would generate the code to multiply B
and C first, and later subtract it from A *D.
The Bauer -Samelson algorithm, however,
will always generate code from left to right.
Ultimately, it will calculate B *C -A *D and
then complement this, producing A *D -
B *C. The resulting code will not, of course,
be as fast as the code that a human being
would generate. However, the difference in
speed is minimal, and the so- called "optimi-
zation techniques" which allow computers
to produce better code are probably too
bulky to fit into your small system.

The above example expression, A *D -
B *C, illustrates two further problems with
compiling of expressions. The first is that of
data types. If we use the FORTRAN con-
ventions, A, B, C, and D are all real numbers,
and we have to use floating point addition,
subtraction, multiplication, and division. In
many small systems, there are no real num-
bers, but the problem of data types may still
remain. There may be 16 bit and 32 bit
integers, signed and unsigned integers, and so
on, each of which has its own instruction
set. If mixed mode expressions are not
allowed, we may determine the type of an
expression as soon as we see the first variable
in it, and make sure that we use only
addition, subtraction, multiplication, and
division instructions of that type.

(If we do allow mixed mode expressions,
then it will be necessary to put a code -
$REAL, $INT16, $INT32, or the like - on
the operand stack along with each quantity
placed there to record the type of that
quantity. When we unstack, we must now
generate code to add, subtract, multiply, or
divide two quantities of the types given, and
calculate not only the result - which we put
back on the operand stack but also its
type. Thus all quantities on the operand
stack, in that case, are pairs, each of which
consists of a variable, register, etc., together
with its data type.)

The second problem illustrated by A *D -
B *C is the use of temporary variables. In our
one register machine, we will have to store
the value of A *D (or B *C) in a temporary
location during the calculation. This store
instruction is generated when we are trying
to load a register - in this case the accumu-
lator - whose contents cannot be destroyed,
as evidenced by the fact that the symbol for
this register is currently on the operand
stack. To illustrate this process, we shall go
through the above example in the same way
as we did before. The code we will generate

for the evaluation of the expression A *D -
B*C is

LDA
MPS
STO
LDA
MPS
SU B

COM

A
D
TEMPI
B

C

TEMPI

(where COM stands for "complement the

value in the accumulator "), and this is

generated as follows:

(1) A goes on the operand stack.

(2) * goes on the operator stack.

(3) D goes on the operand stack.

(4) We cannot put on the operator

stack, since it has lower precedence than *,
which we must therefore unstack. We take *

off the operator stack and A and D off the

operand stack, and generate code to mul-

tiply A by D, just as before, that is,

LDA
MPS

A
D

Since the answer is left in the accumulator,
we put $AC on the operand stack. At the

same time we keep a pointer to this stack

position in a special cell which we shall call

ACSP (for $AC Stack Position). In this case,

the pointer value is 1, since $AC is the first
quantity on the operand stack (counting
from the bottom). ACSP is initialized to
zero, and whenever it is zero, it is assumed

that $AC is not currently on the operand

stack.
Now we can proceed to put - on the

operator stack, which was left empty by the

previous unstacking.

(5) B goes on the operand stack.

(6) * goes on the operator stack (since its

precedence is higher than that of the opera-

tor at the top of that stack, namely -).
(7) C goes on the operand stack. We are

now at the end of the expression and must

unstack all the operators on the operator

stack.
(8) First we unstack the *. Its operands

are B and C, and it would seem that the code

we should generate is

LDA B

MPS C

However, there is a problem. If we generate

the first of these two instructions, we will be

loading the accumulator and destroying its

current contents, which we need. We can tell

that we need the current contents of the

accumulator because ACSP is not zero. In

fact, the quantity currently in the accumula-
tor is the value of A *D.

Therefore the rule is as follows: Whenever

we are about to generate a load instruction,
we first check to see if ACSP is zero. If it is,

we may proceed. If it is not, however, we

must generate another instruction to store

the accumulator into a temporary cell - in

this case, TEMPI. The name TEMPI is now

put on the operand stack in place of $AC. It
is not (necessarily) put on the top of that

stack. Instead, we look at the pointer to see

where to place it. In this case, the pointer
value is 1, so that TEMPI becomes the first
element on the operand stack (counting
from the bottom), which is where $AC was

before. At the same time, ACSP must be set

to zero, denoting the fact that $AC is no

longer on the operand stack.

(In some algebraic expression evaluations,

we will need more than one temporary cell.

Let us call these TEMPI, TEMP2, TEMP3,

etc. We have a temporary cell counter which

is initialized to zero. Every time we need a

new temporary cell, as above, we may

increase this counter by 1. Alternatively, we

may check the operand stack to see what

temporary cells are currently on it, and pick

out a new one in this way. If a new

temporary cell is needed, it cannot be

currently on the operand stack; however, its

choice is otherwise unrestricted.)

Let us assume, therefore, that we have

generated

STO TEMPI

followed by the two instructions as above.

The result of these two instructions is left in

the accumulator, so $AC goes back on the

operand stack. Note that the contents of the

operand stack were $AC, B, and C, with C

on top; then $AC was changed to TEMPI

and B and C were taken off. Now with $AC

put back on, the contents of this stack are

TEMPI and $AC.
(9) Now we unstack the -. Its operands,

as given above, are TEMPI and $AC. If the

- were a + we could simply generate

ADD TEMPI

and we would be done. However, as it
stands, we have a problem, because simply

generating

SUB TEMPI

would perform the operation $AC -

TEMPI, rather than TEMPI - $AC. We may

283

Evaluation of expressions

on a single register ma-

chine often requires use of
temporary operands in

memory.

Generation of code for
expressions evaluated on
multi -register machines
can use the extra registers
as temporary storage; how-
ever, this introduces the
need to keep track of
register usage and special
cases.

notice that $AC - TEMPI = -(TEMPI -
$AC), and, therefore, the instructions

SUB TEMPI
COM

will perform the subtraction we want.

Multi- register Machines

The use of the special cell ACSP as above
is a special case of the use of a table of
register contents. In general, a computer will
have more than one register. For each such
register (that participates in the instructions
to be generated), we will need a location like
ACSP. All these locations are initialized to
zero at the start of evaluation; each time one
of them is used, it will appear on the
operand stack, and a pointer to its position
there will be kept in the location cor-
responding to that particular register. In
some cases we may simplify matters and
keep only Boolean values (zero or one) in
these locations; we can always search the
operand stack, if we have to, to find where a
register is on that stack, if the corresponding
Boolean value is 1.

As an example, suppose that we have a
more typical kind of multiplication instruc-
tion which leaves a double word answer in
the accumulator and a quotient register,
which we shall denote by $Q on the operand
stack. If the quantities being multiplied are
integers and the quotient register is the least
significant part of the double register result,
we can assume that the result goes in the
quotient register and put $Q on the operand
stack immediately after generating a multi-
ply instruction. This in turn means that we
have to be prepared to accept $Q as an
operand. If X and $Q, for example, are the
operands of + (which is being unstacked)
and there is no instruction to add X to the
quotient register directly, there may be an
instruction, which we can generate, to move
the contents of the quotient register to the
accumulator (or to exchange these two
registers), after which we can generate an
instruction to add X in the normal way. Of
course, in this case, we have to check the
location corresponding to $Q before we
generate a multiply, to see whether the
quotient register has to be stored in a
temporary location.

In a multi- register machine, we will not
usually need any temporary cells. (By a
multi- register machine, we mean here, speci-

284

fically, a machine with more than one
arithmetic register, in which addition, sub-
traction, multiplication, and division can
take place.) All we need is to make sure,
whenever we load a new register, that this
register is not already being used for some
other purpose. Let us illustrate this by
considering again the expression A *D
B*C. The code generated for this, on a
multi- register machine, would be roughly as
fol lows:

(1) Load some register U with A.
(2) Multiply D by the contents of regis-

ter U.
(3) Load some other register V with B.
(4) Multiply C by the contents of register

V.
(5) Subtract one register from the other.

Here the registers U and V will have
corresponding stack position variables,
which for the moment we shall call USP and
VSP. At the beginning, these are set to zero.
When it comes time to generate the first two
instructions ("load A" and "multiply by
D "), we search for a register in which this
computation can be performed. We find that
it can be performed in U (because USP = 0),
and so we generate instructions which make
use of the register U. At the same time, we
set USP to indicate that register U is now in
use (assuming that the multiply instruction
leaves its answer in U). Now, when it comes
time to generate the next two instructions
("load B" and "multiply by C "), we again
look for a register that we can use. This time
we determine that we cannot use U (because
USP 1 = 0); so we have to keep on looking.
If V is the next register that we look at, we
see that we can use it, since VSP = 0, and so
we generate the third and fourth instructions
above in such a way that they make use of
the register V.

Stack Machines and Lukasiewicz Notation
Besides conventional single register and

multi- register machines, there are stack
machines. A load instruction on a stack
machine puts the quantity to be loaded on
the top of a stack of registers; a store
instruction removes (pops up) the quantity
to be stored from the top of this stack. An
add instruction removes two registers from
the top of the stack, adds their contents, and
puts the result back on top of the stack.
Thus a stack machine effectively performs
about half the Bauer -Samelson algorithm in

hardware, and the generation of code for
such a machine is considerably simplified.
We shall now describe how this is done.

The code for calculation of an algebraic
expression on a stack machine is directly
related to the form of that algebraic expres-
sion expressed in Polish notation. (The
proper name for this is Lukasiewicz nota-
tion, but it is popularly called Polish nota-
tion because very few people can pronounce
Lukasiewicz - an English approximation,
however poor, is WOO- kah -SHEV -itch.
Other names for Polish notation are "suffix
notation" and "reverse Polish." There is also

"prefix notation" or "forward Polish," but
this is never used in this context in

computing.)
The Polish notation equivalent of a one

operator expression, such as A +B or C -D, is

formed by taking out that operator and

putting it at the end: A B + or C D -. The
Polish notation equivalent of a more com-
plex expression is formed by breaking it
down into parts, normally two parts with an

operator between them; this operator is

placed at the end, and the two parts are

themselves expressed in Polish notation.
Thus for (A +B) *(C --D), the two parts are

A +B and C -D, or, in Polish notation, A B +

and C D -, and the operator is *, so the

entire expression is A B + C D - *.
Similarly, A *D -B *C is expressed in Polish

notation as A D * B C * -.
Conversion of an algebraic expression in

ordinary, non -Polish (or, as it is often called,

infix) notation into Polish notation may be

performed by using a drastically simplified
version of the Bauer -Samelson algorithm.
There is only one stack, namely the operator
stack. Operands, instead of being put on a

stack, are put directly on the end of the

string in Polish notation which is being

constructed. As an example, let us go

through the string A *D B *C once again,

according to this version of the algorithm:
(1) A goes on the end of the string.
(2) * goes on the stack.
(3) D goes on the end of the string,

which is now A D.
(4) * is unstacked, that is, placed on the

end of the string, which is now A D *.
(5) - goes on the stack.
(6) B goes on the end of the string,

which is now A D * B.

(7) * goes on the stack (as before, since

its precedence is greater than that of -).
(8) C goes on the end of the string,

which is now A D * B C.

(9) * is unstacked, so the string is now

AD *BC *.
(10) - is unstacked, so the string is

finally AD *BC *

Once a string in Polish notation (or
"Polish string ") has been formed, code to
calculate the value of the corresponding
algebraic expression may be generated

directly. Each operand corresponds to a load

instruction, and each operator corresponds
to an instruction which implements it. Thus
in the above case the instructions would be:

Load A; load D; multiply; load B; load C;

multiply; subtract. The first two of these

instructions load A and D onto the register
stack in our stack machine. The next instruc-
tion takes A and D off the stack and puts
A *D back on. The next two instructions put
B and C on the stack of registers, which now
contains A *D, B, and C. The next multiply
instruction takes B and C off the stack and
puts B *C back on; the final subtract instruc-
tion takes A *D and B *C off the stack and
puts A *D -B *C back on. After this code,
we can have an instruction to store the
result, and this instruction leaves the register
stack the way it was before expression
evaluation started.

Polish notation is also often used in

interpreters. An interpreter is like a com-
piler, except that no code is generated;
instead, the interpreter actually performs the

indicated instructions as it goes. Typically,
an interpreter will go through an initial
phase (often called, confusingly, a "compiler
phase ") in which the program to be inter-
preted is read, and all expressions converted
to Polish notation (among other things) and

stored internally in this way. The actual
interpretation now follows, with the inter-
preter moving from one statement of the

interpreted program to the next, doing what
each statement says and proceeding to the

interpretation of whichever statement comes
next in logical order. (Thus if it is inter-
preting IF K =0 THEN GO TO ALPHA, and

K is in fact zero, then the statement labeled
ALPHA will be interpreted next.) The
advantage of keeping expressions in an inter-
nal form corresponding to Polish notation,
rather than ordinary infix notation, is that
Polish notation may be evaluated much
more efficiently than infix notation. All we
have to do to evaluate a Polish string is to
simulate the effect of a stack machine, as

outlined in the preceding paragraph. That is,

we go through the Polish string from left to
right; whenever we come to an operand, we

place it on a stack, and whenever we come
to an operator, we act as if we were
unstacking it. This is the "other half' of the
Bauer -Samelson algorithm; like the algo-
rithm given above to convert a string into
Polish notation, it uses only one stack, but
this is an operand stack rather than an

operator stack.

285

A stack machine effective-
ly performs half the Bauer -
Samelson algorithm in
hardware, so code genera-

tion is considerably simpli-
fied.

The "My Dear Aunt

Robert Grappel
MIT Lincoln Laboratory
Lexington MA 02173

The number of mathematical operations a
computer can perform without the aid of
programming is quite small. The bare
machine can add and subtract, and perhaps
it can also multiply and divide. It cannot
comprehend a series of operations, nor can it
evaluate a mathematical expression as a
human would typically write it. It cannot
group operations as required by the rules of
mathematics. All these require software;
programs which convert mathematical state-
ments to sequences of machine instructions.
This article describes a set of programs
which can read a mathematical statement in
its normal form and evaluate its result. The
discussion is kept on a general level: no
specific machine or language structure is
assumed. These programs should find their
way into many "do-it- yourself" assemblers,
compilers and interpreters wherever it
is useful to write mathematical expressions
for input to a computer.

My Dear Aunt Sally

Shortly after students learn to do the
basic operations of addition, subtraction,
multiplication, and division (the same opera-
tions that bare computers can perform),
they are faced with problems of the follow-
ing kind: 3- 5 *2 = ?. A student with imagina-
tion finds such a problem paradoxical; there
are several apparently "correct" answers.
Performing the operations in the order of
appearance, he gets -4 (scanning left-to-
right). Performing the multiplication first, he
gets -7. If he chooses to scan from right to
left, then the results +4 and +7 are possible.
Which is correct?

My teacher gave us a rule to remember
how to proceed with these problems -

286

multiply, divide, add, subtract - or, "My
Dear Aunt Sally" as we came to remember
this order. Mathematical statements are read
from left to right, for each operation. The
evaluation starts with all the multiplications,
left to right. It then proceeds in the order of
"my- dear -aunt -sally," evaluating all the divi-
sions, then all the additions, then all the
subtractions. Mathematicians call this order-
ing the "precedence of functions," and all
mathematical operations can be ranked in
the order in which they are to be performed.
Hence, the example has only one correct
result, and this is -7.

Unfortunately, precedence is not enough
to force a single answer from every problem.
Suppose one wishes to perform one opera-
tion upon the result of a group of several
other operations, some of which are of
higher precedence. One needs some mech-
anism to group certain parts of a mathe-
matical statement so that they can be
considered as a single unit to be treated by
some other operation. For this purpose,
mathematics uses parentheses. If one wrote
the example from above as: (3- 5) *2 = ?, it is
clear that the subtraction should be per-
formed first, in spite of the precedence of
the two operators. With the two tools of
precedence and parentheses, one can force
the desired ordering of operations upon a
mathematical statement and ensure that
there will be only one correct result.

What Is a Parser?

Now, how can a computer deal with
complex mathematical statements like the
example? The computer can perform each
operation individually, either by a single

Sally" Algorithm

elementary operation or by calling a sub-

routine. The problem is the same one that
we faced as students; how does one break

down a complex mathematical statement to

perform the individual operations in the

right order? The name for this operation of
breaking down a complex statement into its

component parts, determining the structure
of the statement, and evaluating it as re-

quired, is "parsing." This article describes a

set of procedures which together form a

parser.

Tokens

At the outset, the computer sees a mathe-

matical statement as a string of characters.

All that is known about the string is its

starting address and its length. The

statement

X --2/ (YAXI S +Z)

is a string of 13 characters at some address.

One of the first things that is necessary is a

procedure to subdivide this string into its

elements: variables, constants, operators,
and parentheses. The example contains three

variables: X, YAXIS, and Z. It contains one

constant: 2. There are three operators: --, /,
and +. There are also two parentheses. Each

of these elements is a character string. These

strings may be of differing lengths. There

may be blanks embedded in the input string,

but these are not desired in the element

strings. The procedure which subdivides the

input string and eliminates blanks is called

NEXTOKEN. Each element of the input
string is called a token. The first problem of
constructing a parser is to find a way to
inform a computer about the tokens con-

tained in the character string representation "My Dear Aunt Sally" is a

precedence ordering rule. of a mathematical statement.

Blanks as Separators

There are several ways to approach this

problem. Perhaps the easiest (in the sense

that the coding of NEXTOKEN is simplest)

is to require that the writer of a mathe-

matical statement put at least one blank

between every element or token in the

statement. In this way, the human pro-

grammer breaks the input string into tokens

before the computer gets it. We would

require that the above statement be written
as

X -2 / (YAXIS + Z)

where all the extra spaces are required. With

this method of token separation

NEXTOKEN would work like this: Starting

at the last character processed (the leftmost

one at the start of the string), NEXTOKEN

scans the input string from left to right until
a blank occurs. This substring (from starting

point to blank) is the next token. The next
step is to determine what type of token has

been scanned. The rule that will be followed
in this article is that the first character of a

token determines its type. If the first charac-

ter is alphabetic, then the token is a variable.

If the first character is a digit or decimal

point, then the token is a constant. If the

first character is neither of the above, then it
is checked against a table of legal operators.

If it is not an operator, then it is checked to

see if it is a parenthesis. Variables might be

checked for invalid characters in their names

or too many characters in the name; con-

stants might be checked for non -numeric

287

A parser is a programming
scheme to analyze state-

ments.

Figure 1: Flow chart of the NEXTOKEN algorithm used in this design. (a) The main routine. (b) The variable name collection
algorithm. (c) The numeric constant collection algorithm. (d) Parenthesis handler. (e) Single character function name handler. (f)
Generalized function name handler.

TESI NOCI
CHARPChR

A

DISCARD
CHARACTER

DISY'NRD
CHARACTER

4
COLLECT
CHARACTER

TEST NEDCT

CHARACTER
VS TABLE

RETURN
1 CHARACTER
OPERATOR

E

PVT
ERROR 04

D

COLLECT
CHARACTER

RETURN

PARENI4ffSIS
TOKEN

A character is fetched by the `get next character" operation. This character may be collected into an output string by NEXTOKEN, or discarded if it is to be ignored. if it is neither collected or discarded, the character will be reused the next time the "get next character" operation is performed Flow is from left to right or from top to bottom unless an arrowhead indicates a different flow direction.

288

characters or more than one decimal point.

A token which failed to match the model of

any of the four token types would be

flagged as an error, as would any of the error

conditions described above. A check for

string length of an operator might be used:

The string '+ =VAR' is not an operator,

despite its first character.

A Smarter Token Separator

Requiring blanks around every token of a

mathematical statement not only takes up

valuable memory space but also makes the

parser very susceptible to programmer

errors. It is far too easy to forget one of

those critical blanks. Fortunately, with a

slightly more complicated mechanism for

NEXTOKEN, one can parse a randomly

written statement with any spacing. This

algorithm is flowcharted in figure 1.

The routine starts by always scanning and

ignoring any leading blanks. Eventually it
finds a non blank character, the first charac-

ter of some token. Remember that a rule

was established for this parser: The first

character of a token determines its type.

Once the token type is known, the

NEXTOKEN routine checks that subsequent

characters are valid for that token type. As

soon as a character is found which is invalid

for that token type, the token is completed.

For example, consider the expression X +5.

The first character (leftmost) is alphabetic;

this means that the first token is a variable.

The second character is not alphanumeric, so

it is not part of the variable type token.

Hence, the first token is X which is a

variable. The next token starts with a +

which is found in the operator table. Hence

it is an operator. The next character is the

digit 5. This is the start of a constant type

token. There are no further characters, so

the token is complete.

Is It an Operator or a Variable?

One useful extension to the algorithm

should be considered here. Many operator

names that we would like to use are not

single symbols, but are several characters in

length. One might for example want to call

the cosine operator by the name COS.

Unfortunately, the simple minded

NEXTOKEN procedure would confuse this

with a variable named COS. There are several

ways around this problem. One is to define

new symbols for each operation added to

the system. These are added to the character

tests for operators and the parser will work

fine. This makes for clumsy notation, how-

ever; and there may not be enough distinct

characters available in keyboards, Teletypes,

etc. A second approach is to require a special

character, such as the dollar sign ($), as the

first character of the string desired as an

operator name. The cosine function might

therefore be named $COS. The dollar sign

would disqualify the name as a variable and

identify it as a candidate for operator status.

NEXTOKEN would then check the re-

maining characters in the name (using the

same rules as for variables) against a table of
operator names. If a match is found, then

the string is an operator. The third approach

is to forego the identifying first character in

operator names and to treat operator names

as a special kind of variable in NEXTOKEN:
When a character string is typed as a

variable, it is then checked against the list of

operator names. If a match is found, then

the token is changed in type from variable to

operator after further statement analysis.

Since this is complicated, NEXTOKEN
assumes the dollar sign as identifying charac-

ter for extended operator names. We see that

NEXTOKEN starts with a character string, a

starting pointer within that character string,

and the position of the end of the string.

NEXTOKEN returns a character string

which is the new token, an indication of the

token type, and the token length. It leaves

the input string starting pointer with a new

value after collecting or discarding each

character needed to build the current token.

Some Small Procedures

There are several small procedures which

are necessary to the parser and which are

briefly described now. Two of these are

required to convert the character strings,

which are the tokens, into their values. One

of these, called CONST, works on constants.

The other, called VARIABLE, works on

variables. Routines like these are usually

available in a large computer's operating

system. For minicomputers, the algorithms

can be extracted from programming texts

and programmed for software deficient

home brew systems. The mechanism of

VARIABLE depends on the structure

chosen for the symbol table used to store

variables. There should be some form of

check that a variable has a value before it is

used. If it has no value, an error message

should be generated. Another routine

needed is a form of branch table to convert

the character string name of an operator into

a call to the proper subroutine to perform

the operation.
A mechanism for generating the prece-

dence of operators is also needed, as was

demonstrated in the introduction to this

article. This amounts to a table of prece-

dence values indexed by the operator name.

Every legal operator is assigned a prece-

289

Computing the value of a

statement is often easier if
the statement is first re-

written in a form better

suited to computers.
Polish notation is such a

form.

o AVVE TOM,:
TO STACK

Operator

Trigonometric functions,
Logarithmic functions,
Roots, etc.

Precedence

7 or more

T (Exponentiation) 6

(Multiplication) 5

/ (Division) 4

+ (Addition) 3

- (Subtraction) 2

parenthesis
1

empty stack o

Table 1: Precedence of operators. This is a
typical mathematical precedence of
operations.

BEGIN

CALI.
NEXTOKEN

TT'_ST

'TOKEN

MOVE TOKEN
TO POLISH
STRING

DISCARD 'l'

MOVE STACK TO
POLISH STRING
UNTIL 'j'

DISCARD

MOVE STACK
I t POLISH
STR " OU TP

POP SPALI(

MOVE TOKEN
T STACK

o
Figure 2: The POLISH routine specified as a flow chart. This routine uses NEXTOKEN to obtain individual tokens of the syntax, then uses its logic to rearrange these tokens in Polish notation. The output of this routine is a Polish string.

290

dente, as are parentheses and the right and
left terminations of the input string. This
article assumes that the higher the prece-
dence value, the earlier the operation should
be done. In other words, the operator with
highest precedence goes first, the second
highest goes next, etc. Table 1 is a typical
precedence table. This precedence lookup
procedure is called PRECEDE.

Intermediate Results

As shown in the introduction of this
article, it is often necessary to evaluate a
mathematical statement in a different order
than that in which the statement was
written. "My Dear Aunt Sally" does all the
multiplications first, then the divisions, then
the additions and subtractions. This parser
operates by rewriting the statement into a
more desirable form. In the new form, the
operators are performed in the order that
they appear. There are no parentheses re-
quired in the new form. The operands (the
variables and constants) and operators are
located in a simple and consistent relation-
ship to one another in the new form. This
makes the evaluation algorithm easier to
write and more efficient. This "nice" form
for writing mathematical statements was
devised by the Polish logician J. Lukasie-
wicz. The next item to consider in this
parsing system is a procedure to rewrite the
input character string into Polish notation.
This procedure, called POLISH, uses
NEXTOKEN to disassemble the input string
when required by its algorithm. POLISH also
uses PRECEDE to compare the precedences
of operators in different parts of the string.
Figure 2 shows a flowchart of POLISH. This
procedure forms the heart of the parser and
is described in some detail. Several examples
are also worked through. Once a mathe-
matical statement is in Polish notation, it is
rather easy to evaluate it.

A few examples of Polish notation and its
evaluation are in order here. Consider the
statement A *B+C *D. We know by prece-
dence that the multiplications are to be
performed first. In Polish notation we
choose to write the operands first, followed
by the operator. Hence, A *B becomes AB *.
Similarly, C *D becomes CD *. Then the
addition of these quantities is written
AB *CD * +. This is the Polish form of the
example statement. This string is evaluated
as follows: Starting at the left, operands
(variables and constants) are passed directly
into a software pushdown stack in memory,
which is a temporary holding area organized
so that the first item in the stack will be the
last item out of the stack. (This stack should
not be confused with the subroutine call and
return stacks of many microcomputers.) The

stack will hold the values of the operands, as

returned by the procedures VARIABLE and

CONST. When an operator is encountered, it
is applied to the top two values in the stack.
The result of the operation is returned to the

stack in place of the operands. Figure 3

shows a flowchart of the evaluation proce-

dure, called EVAL.
Let us proceed to evaluate the example

AB *CD * +. First, we place A, which is a

value, on the stack. Then we place B on the

stack. Next, we encounter the operator *.
The top two values on the stack are A and B,

so we compute A times B and return that
value to the stack. Next, we put C on the

stack. Next, D goes on the stack. Then the

operator * is encountered again. The top
two entries on the stack (the last ones

entered) are C and D. We compute C times D

and return that value to the stack. The stack

now holds two values which are the products
of A and B, C and D, respectively. Finally,
we encounter the operator +. We perform
the addition and then we are done. In a

similar manner, the first example of this

article, 3 -5 *2, would be written as 352*-
in Polish.

POLISH starts by calling NEXTOKEN for
the first token. If it is not an operator or

parenthesis, the token is output to the Polish

string and NEXTOKEN is called for the next

token in the input string. If the token was a

left parenthesis, the parenthesis is placed in

the stack and NEXTOKEN is called again. If
the token was a right parenthesis, the con-

tents of the stack are moved to the output
Polish string until a left parenthesis is en-

countered or the stack is empty. Both the

left and right parentheses are deleted and

NEXTOKEN is called. Parentheses must

occur in left -right pairs - if there is no left
parenthesis in the stack after a right paren-

thesis is found, there is an error and the

string cannot be parsed. If the token was an

operator, then its precedence is checked

against the precedence of the top of the

stack. If the new operator is of lower

precedence than the top of the stack, the

top of the stack is output to the Polish string
and the check is performed with the new top
of stack. Eventually the new operator will
have higher precedence than the top of the

stack (an empty stack has zero precedence).

If the new token is the end of the input
string, then it is treated as an operator of
lowest precedence. Some languages use a

special character for the input string termi-

nator, but this is not necessary. In any case,

if the new token is the end of the input
string, then POLISH is finished when the

stack is empty. If the new token is not the

end of the input string, then the token is

placed on the stack and NEXTOKEN is

BEGIN

C£P NF]CI

POLISH STR';
TOKEN

TEST TOKEN
TYPE

A.-POP

B:=POP

PUSH
OPERATOR
(A,B)

A:=POP

RFTVRN A

END

PUSH OPERAND
IMV POLISH
STACK

Figure 3: The EVAL routine specified as a flow chart. This routine is an

example of an interpreter. It takes the Polish string created by POLISH, and

decodes it and evaluates the mathematical value to be computed. Several

functions are employed by the EVAL routine, as follows: PUSH means place

the value in question into the operand stack, increasing the stack size by one

value. POP means recover the top operand from the operand stack, decreasing

the stack size by one value. OPERATOR(A,B) means evaluate the combina-

tion of the value A and the value B according to the definition of the current

operator in the POLISH string. The data concepts employed during

evaluation are as follows: Temporary data storage is found in A and B. The

Polish string is a series of separated tokens created by POLISH as its output.

The operand stack is a first -in- first -out stack of values defined by operand

tokens (variables and constants) in the Polish string, or by the results of
previous operations which are left in the stack.

291

Table 2: An example of the POLISH routine
in operation. The output string of a practical
implementation of POLISH must have a
convention to separate tokens. Storing out-
put as a reconstructed character string with
blanks to separate operands allows EVAL
and UNPOL to use the same NEXTOKEN
routine which POLISH calls. Other storage
techniques, which do not require the use of
blanks as separators, are possible.

GET NDPF
POLISH S'IWG
IOICEN

Input Stack Output

A

B

A
+ +

B +

t +t
+t1

C +tl C +tl
D +tl
/ +t1/
(+t (/l
D +t(/1
+ +t 1/1+
F +t (/(+
) +t (/

+tl
G +t1

+t
end of string

OUTPUT

PUSH

(INTO
STACK

OUTPUT
OUTPUT
TOP OF
STACK

TEST
LAST
OUTPUT

D

F
+

/

G

t
+

U

Figure 4: The UNPOL routine specified as a flow chart. This routine takes the
Polish string created by POLISH and inverts the transformation to obtain a
normal arithmetic expression again.

292

called again. Table 2 shows the input
string, stack contents, and output string
as POLISH works through the string
A +Bt(C *D /(D +F) *G) where the upward
arrow symbol represents the exponentiation.
Exponentiation has a higher precedence than
the other operations in this example. Work-
ing through the example shown in table 2
should convince the beginning programmer
that this algorithm actually does translate to
Polish notation. EVAL can then evaluate
the Polish expression to obtain the final
result.

Undoing What's Just Been Done

Polish notation is a convenient way to
store a mathematical expression in computer
memory. I t tends to contain fewer charac-
ters, since parentheses are not needed. Also,
it can be readily evaluated without the need
to first perform a complicated conversion of
the sort we just saw described. However, if
one wants to edit an expression or change its
structure, then one would really like to see
the original form of the expression. Figure 4
shows the flowchart of a procedure called
UNPOL which reverses the process of
POLISH and converts a statement of Polish
notation back to normal form. It scans from
right to left (the reverse of POLISH) and
outputs the normal string in reverse order.
UNPOL can use the same NEXTOKEN and
PRECEDE that POLISH uses (see the note
in table 2). The only change is the sequence
in which the tokens are used. Table 3 shows
the input, stack contents, and output of
UNPOL as it reverses the processing of the
example A +Bt(C *D /(D +F) *G). Note that
unnecessary parentheses are dropped when a

mathematical expression goes through
POLISH and then through UNPOL. For

Input Stack Output

+

t

G
/

+

F

D

D
C
B
A

G

F+
DU

D
CI t
B+
A

NOTE: Processing starts at the top of this table.
The Polish string is scanned in reverse order
starting with its rightmost character. Pro-
ceeding down the table, the output is
generated in reverse order also, starting
with the rightmost character.

Table 3: An example of UNPOL in opera-
tion. The Polish string input to UNPOL is
scanned in reverse order (right to left) and
generates the output string starting at the
left.

example, (A *B) +(C *D) becomes A *B +C *D.
The parentheses were unnecessary because

operator precedence ensured that the multi-
plications would be done first. UNPOL will
not drop any necessary parentheses.

Trying a few examples through the

parsing algorithms presented here should

convince even a beginning programmer that
Polish notation provides a straightforward
way to make a computer evaluate complex
mathematical expressions. Using these

algorithms, it will be possible for readers to
incorporate evaluation of mathematical state-

ments into their programming systems.

My Dear Aunt Sally's Glossary

Alphabetic Character: Any of the letters A through
Z.

Assembler: A program which translates symbolic
assembly language intput into machine language

output. Assemblers frequently require arithmetic
statement parsers in order to compute addresses

and data values based upon symbolic assembly

language statements.

Compiler: A program which translates symbolic
statements of a high level language input into a

machine language output. Compilers require some

form of arithmetic statement parsing, although the

output is generally converted one step further into
actual machine code.

Constant: A constant is a way of specifying data

which is fixed. In the My Dear Aunt Sally parser,

constants are defined by input character strings

which begin with a numeric character, and contain
only numeric characters or at most one decimal
point.

Interpreter: A program which translates symbolic
statements of a high level language input into an

immediate action. An interpreter could use the My

Dear Aunt Sally parser to evaluate arithmetic
expressions when required.

Mathematical expression: An input character string

which obeys the syntactical rules of the My Dear

Aunt Sally parser and can potentially be evaluated

as a single resulting arithmetic value.

Numeric character: Any of the numbers 0 through
9.

Operator: An operator is a token specifying an

action to be taken when the expression being
parsed is evaluated. My Dear Aunt Sally recognizes
two kinds of operators: Single character operators
are used to denote the conventional arithmetic
operations; multiple character operators are recog-

nized by a dollar sign (as in $SIN) and are used for
mathematical functions.

Parenthesis: Left and right parentheses are used to
group operations in mathematical expressions. The
only requirement for consistent evaluation of
expressions is that left and right parentheses must

balance.

Parser: A computer program mechanism for per-

forming the parsing function.

Parsing: Given a set of syntax rules (a grammar)
and an input string, parsing is the process of

breaking that input string into a series of tokens
according to the syntax rules.

Pop: Remove an element from a stack storage

mechanism, in a last in, first out order.

Precedence: In evaluating an arithmetic expression,
precedence is used to resolve ambiguities in the

order of execution of several operations: The

operations with higher precedence are performed
first.

Push: Add an element to a stack storage

mechanism.

Scan a string: The process of sequentially looking
at each character or token of a string in a well

defined order from left to right, or right to left.

Software pushdown stack: A stack storage

mechanism can be implemented exclusively in

hardware, or by using mechanisms which are part
hardware and part software, or entirely in soft-

ware. For the purposes of the My Dear Aunt Sally
algorithm, all stacks are implemented in software.
This means that each stack reserves a random
access memory region and is supported by sub-

routines to perform the push and pop functions.
The POLISH routine uses an operator stack to
temporarily store and reorder the operator tokens
when creating a Polish string; the EVAL routine
uses an operand stack to temporarily hold values as

it interprets the Polish string.

Statement: A statement is the programming lan-

guage equivalent of a sentence in a natural language

such as English.

String: A string is a series of values with definite
starting and ending points. The parser of this
article requires an input character string containing
the human readable codes of an arithmetic expres-

sion, and produces a Polish string output of parsed

tokens which can be evaluated by the Polish string
interpreter.

Subroutine: A subroutine is a section of a program
which is called to perform its function. When

completed, it returns control to the routine which
calls it. Subroutines are created for two purposes

when programming: To modularize a program

according to function, and to share common
functions and save memory space.

Symbol table: A central collection of the variable
names used in a program, along with related
information. For the My Dear Aunt Sally parser, a

symbol table would be composed of the variable
token (a character string) and current numeric
value for each variable found while parsing a

statement. Note that the My Dear Aunt Sally
algorithm by itself does not provide a means for
setting the value of variables; an extension of the

software into a full interpretive high level language

with an assignment statement would provide such a

means.

Token: A token is a basic unit of the syntax of an

expression. In the My Dear Aunt Sally parser,
tokens are character strings collected and returned
by NEXTOKEN along with an indication of
syntactical type.

Variable: A variable is a symbolically named data

location. The parser of this article detects variables
as character string names which begin with an

alphabetic character.

293

Can YOUR

Computer

Tell Time?

Loops are the basic
time delay elements.
Then there are loops
within loops, loops
within loops within
loops and so on ad
infinitum.

Can your computer tell
time? O.K. Now take away
the LSI clock chip, pocket
watch, grandfather clock, or
whatever else you managed to
interface together. Can your
computer still tell time? You
bet it can!

It is a readily accepted fact
that almost any type of
hardware logic device can be
imitated or simulated by
computer software. That can
also include timing devices if
you wish.

We will examine a few
methods and considerations
for software timing, then
apply what we've learned in
making a novel "software
only" clock which will keep
time as well as any
conventional clock.

The most efficient method
(efficient referring to
memory space used) to

produce a time delay is the
use of a loop. This loop is
basically very simple, as

shown by Fig. 1. By including
NOPs or other non -functional
time wasters in the loop, the
loop can be significantly
stretched.

An 8008 is being used in
the examples in this article,
but the principles hold for
any computer. Only the
numerical values will change.

The loop represented by
Fig. 1 for an 8008 would be a

simple three instructions (six
bytes) long.

"XI -j
..X.,

DCB
JFZ
L JUMP BACK
H UNLESS X = 0

LOAD DELAY

DECREMENT "X"

The value of "x" loaded
into the B register will be the
main factor in varying the
time delay provided by this
loop. Calculating the exact
time period is done by
tabulation of instruction
execution times. These
examples will be based on the
8008 instruction execution
times with the clock running
at exactly 500 kHz.

by
James Hogenson
Box 295
Halstad MN 56548

OPTIONAL
"NOP" -
TIME

t

FROM MAIN
PROGRAM

SET VALUE

REGISTER

NO

Fig. 1. The idea of a timing loop,
or how to make a CPU waste time
productively.

To calculate the time for
this loop, assume the value of
"x" to be 1 so no part of the
loop is repeated. Add up the
number of microseconds
required by each instruction.

LBI
DCB
JFZ

32
20
36
88

US
US
US
US

Now go back to determine
how many microseconds each
repetition of the loop will
produce. The LBI instruction
is not repeated. Do not count
any unrepeated instructions
in this second tabulation.

DCB
JFZ

= 20 US
= 44 US

64 US

Note the different
execution times for the J FZ
instruction. For the 8008, the
execution time of conditional
instructions depends upon
the condition. If the
condition results in a true
branch, the instruction takes
the longer of the two
execution times. The false
branch is the shorter time.

The time formula for this
loop is

64X + 24 = N

294

DECREMENT
REGISTER

RETURN
TO MAIN
PROGRAM

"x" being the value loaded
into B and "n" being the
total execution time in
microseconds. The unreduced
formula is

(X - 1) 64 + 88 = N

Since 64 us are added for
each repetition, we must
multiply 64 by one less than
the value of "x."

255 is the largest possible
value of "x" since we are
limited to an 8 -bit word.
Therefore, the maximum
time delay that can be
provided by this loop is
16344 us. This loop can be
stretched by placing a NOP
instruction (op code 300)
before the DCB, and
re- routing the jump.

LBI SET VALUE OF "X"
"X"

NOP ABSORB EXTRA 20 US
DCB DECREMENT "X"
JFZ JUMP BACK TO NOP
L UNLESS X = 0

If desired, more than one
NOP may be inserted. Each
NOP will add another 20x
microsedonds. The maximum
time with one NOP is 21444
us, the NOP adding 5100 us.

If a timing loop is to be
used a number of times at

various points in a program, it
may be desirable to rewrite
the loop as a called
subroutine. The basic
flowchart remains unchanged;
only the method of
implementing it changes.

(MAIN
PROGRAM)
CAL CALL
L TIME
H LOOP

(TIME
LOOP)

LBI SET VALUE OF "X"
"X"

DECREMENT "X"
RTZ RETURN IF "X" = 0

JMP
L JUMP BACK TO DCB
H

Tabulation will show that
the basic loop is good for 116
us with each repetition
adding 76 us. The reduced
formula is

76X + 40 = N

This loop is a little more
complex. Although the CAL
instruction which calls the
loop is not a part of the loop
itself, the execution time of
the CAL instruction is a part
of the time period produced.
We, therefore, must add 44 us

for the CAL.
As done before, we assume

the value of "x" to be 1 for
the first tabulation. The RTZ
will be a true branch, so we
stop adding there. An RTZ
true branch will take 20 us,

while an RTZ false branch
will take 12 us.

Each repetition will add
12 us for the RTZ, 44 us for
the JMP, and 20 us for the
DCB instruction. The
unreduced formula is

(X - 1)76 + 116 = N

NOPs placed before the
DCB instruction will have the
same effect as in the first
loop, an additional 20x us per
NOP.

The maximum time period
produced by this second loop
with one NOP is 24520 us.

The minimum time period
without any NOPs is 116 us.

Anything under 116 us can

be more efficiently
implemented with straight
NOPs than with a loop,
should such a need arise.

If a time period much
longer than 24000 us is

needed, modify the time loop
to make a double loop as

shown in Fig. 2. Make an

identical loop, but rather
than using a NOP for more
time, insert an entire loop.

CAL (TIME LOOP)
L

(TIME LOOP)
LCI
nYn

A NOP
LB I
"X"

B NOP
DCB
JFZ

H
DCC
RTZ

L
H

SET VALUE OF "Y"

SET VALUE OF "X"

DECREMENT nXn

JUMP BACK TO DCB
IF "X" x O

DECREMENT "Y"
RETURN IF "Y" = 0

JUMP TO LBI

Time calculations for
multiple loops become
somewhat more complex, but
again the same principle is

used.
The inside loop used here

is the same loop first
calculated at the beginning of
this article. When calculating
the main loop, the inside loop
is treated as one combined
unit of value. The tabulation
will look like this:

MAIN LOOP:
CAL = 44 US
LCI = 32 US
INSIDE
LOOP =

DCC =

RTZ =

(64X + 24) US
20 US
20 US

(64X + 140) US

EACH REPETITION OR
TRUE BRANCH WILL ADD:

RTZ = 12 US
JMP =

INSIDE
LOOP = (64X + 24) US
DCC = 20 US

(64X + 100) US

44 US

The formula, unreduced,
would be

64X + 140 +

(Y-1)(64X + 100) = N

Reducing the formula
gives us

64XY + 100X + 40 = N

Fig. 2. Getting fancy. By nesting one timing loop
within an outer loop, much longer delays can be
obtained. Two parameters "x" and "y" are re-
quired to completely specify this loop. In a 16 -bit
machine, of course, the same result (here intended
for an 8 -bit 8008) can be obtained without nested
loops since the 16- bitter can count much higher.

The maximum time delay
provided by this loop would
be 4187140 us. A NOP
inserted at location "a" will
add 20y us. A NOP at "b"
will add 20xy us. The use of
both NOPs will boost our
maximum time to 5492740
us, or over 5 seconds.

The purpose of developing
formulas is to determine the
values of the registers needed
to obtain a specified time
period. For purposes of
illustrating an example, let us

assume we want exactly 5000
us to pass between point A
and point B of a program. We

295

would place a CAL
instruction between point A
and point B which would call
the time loop. The shorter
loop will be sufficient for this
application, so the equation
will now be

76X + 40 = 5000

Working the equation will
give a value of 65.23615 ...
for "x." A fractional value
will not fit in any single
register of the CPU. To find
out what to do now, multiply
65 by 76, add 40, and
subtract the result from
5000. We find the difference

is 20 us. This is very simple to
take care of. Insert a NOP
instruction at any point in
the routine where it will not
be repeated. Before the LBI
instruction would do fine.
Now, with 65 (decimal
notation) loaded into the B

register, exactly 5000 us will
pass between points A and B

of our main program.
Finding an exact time

period using the longer loop
involves a certain amount of
trial and error. To find an
approximate value of "x"
(using no NOPs) use this
formula:

N-40
64Y/ 1.5

Assign an arbitrary value
to "y," replace "n" with the
required time period.

Now, assume a time period
of exactly 505904 us is

needed. (This time period will
be used later.) There is one
stipulation in this case which
will be explained in greater
detail later. The value of "x"
must be 255. Solving the
formula equation for "y"

(64)(255)Y +
100Y + 40 = 505904

gives "y" a value of 30.8078.
30 must be used for "y." The
total time of the loop is then
492640 us, 13264 us short of
the required time. In most
cases, you would re- assign

values and try again, but in
this case, the value of "x"
cannot be changed. The
alternative is to use the
shorter loop to clean up the
leftovers. After calling one
loop, call the other loop.
Then go on with the main
program. Solving the short
loop equation comes out at a

nice even 174.
76X + 40 = 13264

What looked like a real
oddball turned out to be

perfect!
The formulas and all such

may seem like a lot of
monkey business just to
waste time. Speed is the
purpose of computers, but
there are times when they
must be slowed down.

The primary application of
time loops is in I/O interface.
If a computer is to monitor a

data input which is to be read
once every 10 ms, there are
two alternatives for timing.
The hardware of the device
being monitored may include
a timing device and a flag to
indicate when the device is

ready. The computer enters a

loop which monitors the flag
until the device is ready, then
reads the data. The other
alternative is to use the
software time loop, and omit
the extra hardware.

An interesting application
along this line is a completely
software "fabricated"
keyboard debounce system.
This method will not work in
an interrupt type of input
system, but for many small
scale systems, this method is

ideal.
Rather than connecting

the keypressed line of the
keyboard to some debounce,
timer and latch circuitry,
connect it to the eighth bit of
the parallel data input on the
computer. The loop used will
test the eighth bit for the
keypressed state. When a

keypressed is sensed, a time
loop of 16344 us is executed,
then the data input is

accepted. The loop then
branches back to the main
program to take care of the
new data. When the program
comes back to the input loop,
the keypressed line is first
tested to be sure no keys are
being pressed. After all keys
have been released, the loop
will wait for the next
keypressed state. This
procedure will prevent more
than one data entry from
each keystroke.

When I first tried this
keyboard debounce method
over five months ago, I was so
pleased with it that I'm still

Fig. 3. Software can be used to debounce a keyboard - simply loop
around for a long enough time to ensure that keys have stabilized. The
loop is started as soon as the "any key pressed" (keypressed) line
indicates any non -null bit pattern.

07/115 = 101
116 = 002
117 = 100
120 = 115
121 = 007
122 = 101
123 = 002
124 = 140
125 = 122
126 = 007
127 = 026
130 = 377
131 = 021
132 = 110
133 = 131
134 = 007
135 = 101
136 = 104
137 = 1

140 = H

IN
RLC
JFC
L

H

IN
RLC
JTC
L
H

LC I
"255"
DCC
JFZ
L
H

IN
JMP
L

H

TEST INPUT
WAIT UNTIL
SATISFIED

FOR KEYPRESSED,
CONDITION IS

TEST INPUT FOR KEYPRESSED,
WAIT UNTIL CONDITION IS
SATISFIED

EXECUTE
TIME
DELAY

ACCEPT INPUT OF DATA

JUMP TO MAIN PROGRAM
(MAY BE REPLACED WITH A

RETURN INSTRUCTION.)

296

INCREMENT
TI ME
COUNT

UPDATE
DISPLAY

i
INITIATE
TIME
CYCLE

Fig. 4. The digital clock program
looks simple at this level: Incre-
ment the time count, update the
display, then initiate a time cycle
such that the entire loop takes
exactly one second!

using the method for all data
entry to my microcomputer.
Not once has it missed some
data, or given me false or
duplicated data. And it was
so easy to implement!

Time loops may also be
used in output applications.
have an SWTPC TV
typewriter, but I am not
using the special computer
interface board. I found that
a simple time loop does the
job well enough and fast
enough.

Since we've done our
homework, now we can play.
An interesting and novel
application of time loops is a

completely software
"fabricated" clock. The clock
program presented here will
have three major functions
(see Fig. 4).

The clock will display
hours, minutes and seconds.
The "increment time count"
segment of. the program is

responsible for computing the
next time reading in
sequence. It must consist of
more than a straight counting
sequence since time is not
expressed in straight decimal
format.

The "update display"
segment is responsible for
producing the newly
computed time at an output
device.

After the first two
segments have been executed,

Fig. 5. Ah, but the simplicity of Fig. 4 - as this figure reveals - hides a lot of low level detail. Here is the flow chart of the clock's operations.

Ul
w
>

w
>

z
W
CCr

W D co
cc 06
U S z

Q0 Z
wOtO JU -
U W O

-

F.
wpt) -. woo
U S o Ú

Z
m
O

W j W
wJ >
W

<=1

w
>

y

297

cc ar_ W7o
Jz - U0

8008 Timing Quick Reference Guide
INSTRUCTION

20 INCREMENT INDEX REGISTER
20 DECREMENT INDEX REGISTER
20 ROTATE ACCUMULATOR
12/20 CONDITIONAL RETURN"
36/44 CONDITIONAL JUMPS
36/44 CONDITIONAL CALL`
20 UNCONDITIONAL RETURN
44 UNCONDITIONAL JUMP
44 UNCONDITIONAL CALL
20 RESTART
32 LOAD DATA IMMEDIATE

(INTO INDEX REGISTER)
36 LOAD DATA IMMEDIATE

(INTO MEMORY REGISTER)
32 ALU IMMEDIATE
20 ALU REGISTER
32 ALU MEMORY REGISTER
24 OUTPUT
32 INPUT
20 LOAD DATA - REGISTER(oP CODE 3 --)
32 LOAD DATA - MEM. & REG. (OP CODE 3 -7 oR 37 -)

Here is a quick reference table for execution times of all instructions
in the 8008 repertoire. Such a reference table can be easily made for
any CPU. Simply multiply the number of machine states required
for the execution of each type of instruction by the time required
per machine state. AT 500 kHz, the 8008 takes four us per machine
state. An unconditional jump instruction requires 11 states in the
8008 , therefore 44 us. Do not confuse machine states with machine
cycles. The same jump instruction requires three machine cycles.

'Conditional instructions: Execution time depends upon condition.
If condition causes true branch, the execution time is longer. If the
condition causes a false branch (if condition is not satisfied), the
execution time is shorter.

the "time cycle" segment
makes up the difference so
that the entire program takes
exactly one second per pass.
Writing a clock program isn't
hard, but making it take
exactly one second per pass
definitely adds to the
challenge. The major
consideration is that branches
from conditional instructions
must be balanced in such a

way that the program will
take exactly the same
execution time regardless of
the combination of
conditions and branches.
That's where all the time
loops come in, and that's
where lots of fun comes in!

The program can best be
described in the form of a

flowchart, Fig. 5. The
program listing in Fig. 6 is
divided according to the
flowchart divisions shown by
dashed lines. The op codes
are for 8008 systems. The
mnemonics and op codes can
be easily translated into 8080
format. However, all timing
considerations must be
recalculated for use with
anything other than an 8008
running at exactly 500 kHz.

When time balancing a

segment of a program, it is
best to work from the
bottom and go up. The time
adjustment in part A of the
flowchart must compensate
for parts B, C, D and E, so
before that time period can
be calculated, the execution
time of the other parts must
be calculated.

Some of the time
adjustments in part E do not
use a time loop. The short
time adjustments there (in
part E) are more conveniently
implemented with a

combination of other time
consuming instructions which
will not change the function
of the program.

To determine the time
adjustment needed in one
branch, tabulate the total
execution time of the longer
branch. Add or subtract 8 us

(depending upon which
branch is the true branch) to
compensate for the difference
in conditional jump
instructions.

The same time loop will be
used several times, yet the
time periods will vary. This

can be accommodated when
using the short loop by
placing the LBI instruction
and loading the value of "x"
before the loop is called. The
location of the LBI
instruction will have no effect
on the overall time period
produced.

Occasionally a time loop
will not come out evenly. For
example, another 12 us may
be needed. This will not be
accommodated in the loop,
so the only alternative is to
use a NOP instruction. But
the only instruction which
will absorb just 12 us is an
unsatisfied conditional return
instruction. Using such an
instruction could result in
trouble if used alone.
However, if an AND
instruction can be used
without affecting the
program functions, the AND
instruction will insure that
the conditional return (RTC)
will not be satisfied. To keep
the program in balance when
balancing the time, insert a

NOP in the opposite branch
to offset the AND
instruction, and the net
difference will be 12 us.

Flowchart parts F and G
need not be included in the
time balancing considerations
of A, B, C, D and E. The
program returns to a common
point before executing parts
F and G, so those parts are
not offsetting anything.

The output loop as given
in the listing will provide an
ASCII output for a TV
typewriter. A sufficient time
loop is provided between
each individual output
operation. The output loop
may be easily modified for
use with other devices. For
use with Teletype, a line feed
command must be added to
the output characters. (Only
a carriage return is used with
a TVT.) For use with an LED
display, deleting the ORI
instruction at location
04/257 will leave a straight
binary (also BCD equivalent,
since vales do not exceed 9)
output. Keep in mind,

298

however, that modifying any
part of the program will also
require modifying the timing
elements involved.

The execution time of the
complete "increment time
count" segment plus the
"update display" segment
totals 494096 us. Subtract
that time from one second to
find the time required of the
timing cycle. The required
time is 505904 us. The values
for this loop have already
been worked out in a

previous example.
The reason the value of

"x" cannot be conveniently
changed in the long loop in
this case is that the loop is

called and used from two
locations in the program. The
value of "x" cannot be
changed for one application
without affecting the other.
If the loop were modified to
load B from another register
which remained constant,
both values would become
variables which could be
easily assigned values from
any point in the program.
This would also include
recalculating the time
formula of the loop.

Your clock should now be
ready to run. (Oh, by the
way, there is one little
drawback: Your computer
can't be used for anything
else while it's keeping time,
unless, of course, you really
want to go to extremes with
the calculating! This program
is strictly a novelty!) When
you are ready to start your
clock, load the correct time
plus a couple of minutes into
memory locations 04/000
through 04/005. When the
loaded time comes, start the
computer. Jump into the
program at 04/006.

The time kept by the
computer will only be as

accurate as the frequency of
the clock driving the CPU.
The oscillator must be set at
exactly 500 kHz. Although
this is difficult to do, any
percentage of error in fre-
quency will be directly
reflected by the time kept.

004/153 = 150 JTZ

Fig. 6. And finally, the lowest level of detail of all: A "pseudo oo4 s4 = 213 LNOON
assembly listing of the program for the digital clock as implemented óó0:;s6 óéó iNJL

for an 8008 computer. Of course, those readers who have an 8080, a oo4 /IS7 = 307 LAM
004/,60 = 074 CPI DEC,51_^N, JUMP IF

6501, a 6800 or PACE will have to do a little bit of thinking to adapt 004/161 012 "10 HouR DIGIT Is NOT

Fig. 4 and Fig. 5 to the alternative microcomputer CPU designs. oo4 /,6z = 100 JFC LESS THAN 10
004/167 = 177 GTENH

TNOUR ,G04 /000 : XXX 10 HOUR DIGIT REGISTER 004/,64 = 004
HOUR,0',4 /001 xxx HOUR DIGIT REGISTER 004/165 307 LAM NEED " A NOR IS ADDED TO BOTH BRANCHES
TMIN,004 /002 = XXX IO MINUTE REGISTER 004/166 = 307 LAM TO TO BALANCE TNfi TRUE BRANCH FROM
MINI004 /003 = XXX MINUTE REGISTER 004/167 = 307 LAM WASTE 04/153. A BETTER PLACE FOR THE ND
TSEC1004 /004 = XXX 10 SECOND REGISTER 004/170 = 307 LAM 200 VS OULD HAVE BEEN 04/]56. BUT *NO
SEC,004 /003 X %% SECOND REGISTER 004/171 = j07 LAM TO *ANTS TO REWRITE HALF A PROGRAM TO

004/172 = 300 NOP BALANCE SAVE ONE MEMORY LOCATION?
START,004 /006 = 056 LITI LOAD L/H *ITN 004/173 = 700 NOR BRANCH

004/007 004 N(SEC) ADDRESS OF SECONDS 004/174 = 104 JMP NO LET'S GET OUT'A ITERE

AO004/010 066 LLI DIGIT REGISTER 004/175 = 275 LDISPL
004/011 = 005 L(SEC) 004/176 = 004 M

004/012 = 307 LAM INCREMENT SECONDS GTENH, 004/177 = 006 LAI

004/013 004 ROI DIGIT 004/200 = 000 0' CLEAR HOUR DIGIT REGISTER
004 /OI4 001 "1" 004/201 370 LMA

004/013 = 074 CPI DECISION. JUMP IF 004/202 = 061 DCL

004/016 012 "IO" SECONDS DIGIT IS NOT 004/203 = 707 LAM INCREMENT
004/017 100 JFC LESS TITAN 10 004/204 = 004 ADI 10 HOUR DIGIT
004/020 = 036 LL 004/20.5 = 001 "1"

004/021 004 HJ - GIENS 004/206 = 370 LMA RETURN 10 MR. DIGIT TO REGISTER

004/022 370 LMA RETURN SECONDS DIGIT TO ITS REGISTER 004/207 = 700 NOP ..
004/023 = 370 LMA REPEAT INSTRUCTION FOR MORE TIME 004/210 = 104 JMP CYCLE FINISHED

004/024 = 016 LOI 004/211 = 275 LISPL
004/023 017 "IS" SET VALUE OF "x" 004/212 = 004 H

004/026 = 106 CAL CALL TIME LOOP TO COMPENSATE NOON. 004/2,7 = 060 INL

004/027 = 247 LL 004 /214 = 707 LAM

004/030 = 004 H TLOOP 004/215 = 074 CPI DECISION, JUMP IF

004/071 = 300 NOR NEED A LITTLE MORE TIME 004/216 = 003 "7" HOUR DIGIT IS NOT

004/032 300 NOP 004/217 = 100 JFC LESS TITAN 3

004/037 = 104 JMP FINISHED THIS CYCLE 004/220 = 232 L

004/034 = 275 L L 004/221 = 004 H
RESNOUR

004/075 = 004 HJ DISPL 004/222 = 016 LOI

GTENS,004 /036 = 006 LAI 004/223 = 002 "x" SET VALUE OF " %"

004/037 000 "0" CLEAR SECONDS DIGIT REGISTER 004/224 = 106 CAL CALL TIME LOOP

004/040 370 LMA 004/225 = 247 L

004/041 = 061 DCL 004/226 = 004 M
TLOOP

004/042 307 LAM INCREMENT 004/227 = 104 JMP JUMP TO 004/275/036

004/043 = 004 ADI IO SECONDS DIGIT 004/230 = 275 LDISPL
004/044 = 001 "1" 004/231 = 004 H

RESNDURI004 /232 = 006 LAI

O004/045 = 074 CPI DECISION, JUMP IF 004/233 = 001 '1" RESET HOUR DIGIT TO "1"

004/046 = 006 "6" IO SECONDS DIGIT IS NOT 004/234 = 370 LMA

004/047 100 JFC LESS THAN 6 004/235 = 061 DCL

004/050 063
L IGOMIN 004/236 = 006 LAI

004/051 = 004 H 004/277 = 000 "0" CLEAR 10 NOVR DIGIT REGISTER

004/052 370 LMA RETURN IO SEC. DIGIT TO REGISTER 004/240 = 770 LMA

004/053 016 LBI 004/241 = 241 NDB (YES. 241 = 241, THAT'S NOT AN ERROR[

004/054 015 "13" SET VALUE OF "K" 004/242 = 043 RTC FOR TIME BALANCING. THE NET DIFFERENCE

004/055 = 106 CAL CALL TIME LOOP 004/247 = 047 RTC BETWEEN BRANCHES FROM 04/153 RAS 24 US.

004/056 207 L 004/244 = 104 JMP 2 X RTC = 24 US. THE NDB IS BALANCED

004/057 004 H TLOOP 004/245 = 275 LL BY THE HOP'S MENTIONED

004/060 = 104 JMP FINISHED THIS CYCLE 004/24R6 = 004 Hr -DISPL IN THE NOTE

004 /061 = 275 L] TLOOPI004/247 = 011 DCB SHORT TIMING LOOP
004/062 = 004 H D15PL

004/250 = 053 RTZ
GOMINI 004/063 = 076 LMI CLEAR 10 SEC. DIGIT REGISTER 004/251 = 104 JMP

004/064 000 "0" (LAI. LMA ARE USED INSTEAD OF LMI 004/252 = 247 L
004/065 061 DCL WHERE TIMING WORKS OUTBETTER THAT MAY.) LOOP

004/233 = 004 H

004/066 307 LAM INCREMENT
004/067 004 ADI MINUTES DIGIT OW1. 004 /256 = 307 LAM OUTPUT SUBROUTINE STARTS
004/070 001 "I" 004/257 = 064 ORI GENERATE ASCII CHARACTER

004/071 = 074 CPI DECISION. JUMP IF 004/260 = 060 'AR"

O004/072 012 "10" MINUTES DIGIT IS NOT 004/261 121 OUT PRINT CHARACTER

004/073 100 JFC LESS THAN 10 OO4/262 026 LCI

004/074 = 110 L
004/263 = 005 "5" SET VALUE OF "Y"

004/075 004 H
GTENM 004/zó4 106 CAL CALL LONG TIME LOOP

004/076 370 LMA RETURN MINUTES DIGIT TO REGISTER 004/263 = 724 LLTIME
004/077 016 LBI

004/266 = 004 H

004 /100 012 "10" SET VALUE OF "x" 004/267 = 031 DCD

004 /101 106 CAL CALL TIME LOOP 004/270 = 053 RTZ ARE WE DONE PRINTING,

004/102 247 L
004/271 = 060 INL CONTINUE IF NOT

004/103 004 H
LOOP 004/272 = 104 JMP

004/104 317 LBM NEED AN EXTRA (2 US. 004/273 256 L

H
UTL

004/105 104 JMP 1LBM - 32 US, OTHER 20 US BALANCED BY NOP) 004/274 004

004/106 275 L 6ISPL1004 /273 = 036 LDI
004/276 006 "6

SET UP COUNT - DISPLAY ROUTINE

ISPL '
004/107 004 H SET UR ADDRESS O

GTENM, 004 /110 300 NOP 20 US BALANCE F 004/277 066 LLI

004 /III 006 LAI
004/300 000 "0'

004/112 = 000 "0" CLEAR MINUTES REGISTER 004/301 106 CAL OUTPUT ROUTINE

004/113 370 LMA
004/302 = 256 LI-.... OUTL

004/114 061 DCL
004/707 = 004 H

004/113 307 LAM INCREMENT 004/304 006 LAI

004/116 004 AD1 IO MINUTES DIGIT 004/305 OI5 "17" OUTPUT CARRIAf1E RETURN COMMAND

004/117 001 "I" _ 004/706 121 OUT
004/367 = 026 LC1

004/120 074 CPI DECISION, JUMP IF O 004 /71) 0106 CAL, O CALL
VALUE
LONG TIME LOOP

OF
Y

004/121 006 "6" 10 MINUTES DIGIT IS NOT 004/312 324
004/122 100 JFC LESS THAN 6 LTIME

004/123 137 L 004/313 004

004/124 004 H GOMOUR 004/314 016 LBI

004/125 370 LMA RETURN IO MIN. DIGIT TO REGISTER 004/315 255 "175" SET VALUE OF "X"

004/316 106 CAL CALL SNORT TIME LOOP
004/126 016 LBI
004/127 007 "7" SET VALUE OF "X"

004/317 - 247 L]__... TLOOP

004/130 106 CAL CALL TIME LOOP 004/720 004 H

004 /131 247 L 004/321 104 JMP JUMP BACK TO THE BEGINNING AND RECYCLE

004/132 004 H
TL OOP 004/322 006 LI-mw, TART

004/133 300 HOP KEEPING THE TIME IN BALANCE _ 004 327 004 H

004/134 104 JMP FINISHED THIS CYCLE LTIME1004 /324 016 LOI SET VALUE OF

004/135 275 LL 004/325 377 "255'

004/136 004 HJ - DISPL LTIMI, 004 /726 011 DCB DECREMENT "X"

GOHDUR,004 /137 006 LAI
004/327 110 JF2 JUMP BACK TO DECREMENT AGAIN

004/140 000 "0" CLEAR 10 MINUTES REGISTER 004/370 326 LLTIMI
004/111 370 LMA

004/331 004 N IF "X" DOESN'T EQUAL "0"

004/142 061 OCL
004/332 021 DCC DECREMENT "Y"

004/143 307 LAM INCREMENT 004/333 053 RTZ GO BACK TO PROGRAM IF Y = 0

001/144 004 ADI HOURS DIGIT 004/774 104 JMP REPEAT LOOP

004/145 001 "1"
004/335 = 324 LTIME

004/146 770 LMA PUT TITE HOURS DIGIT BACK FOR THE 004/736 004 NJ _

.. 004/147 061 DCL TIME BEING.
004 /END = SET THE TIME MINUTE OR TAO IN ADVANCE AT LOCATIONS 04/005.

EO 004 /ISO 307 LAM
WAIT UNTIL THE RIGHT TIME. AND START THE PROGRAM BY JUMPING

IN AT 04/006. THE PROGRAM IS STOPPED BY LOADING A HALT

004 /I5I 074 CPI DECISION, JUMP IF

004/152 001 "1" IO HOUR DIGIT = 1

INSTRUCTION INTERRUPT FROM THE FRONT PANEL.

299

A Plot Is Incomplete
Without Characters

Who would want to miss
the opportunity of cre-
ating customized graphics
for special applications?

The design of a plotting
data format can be likened
to designing a special pur-
pose computer instruction
set; this instruction set is
emulated by the plotting
software in real time.

Richard J Lerseth
8245 Mediterranean Way
Sacramento CA 95826

As computer hobbyists, a number of us
will sooner or later play around with
graphics using vector CRTs or XY pen
plotters; but very few of us will be willing to
pay the high price of a number of copy-
righted plotting packages available today
through computer graphics houses. Besides,
most of us will not want to miss the
opportunity of creating our own packages.

So, in the process of interfacing your
graphic media to your computer, you will
normally have built the software needed to
control simple vector moves on your media,
as well as be able to window your plottings
(that is, confine your moves within a speci-
fied area).

But, you will find that one of your major
efforts will be building the character genera-
tion module. As you will soon realize,
computer graphics take large chunks of
memory space for the graphic routines and
plotting tables describing plotting sequences.
Particularly, you will find that character
generation will take a large portion of that
memory space.

In this article, I will describe some of the
basic concepts of character generation, and
describe techniques of saving memory space
through efficient programming and by maxi-
mizing the packing of information in the
plotting tables.

I assume at this point that you have
within your basic plotting software: (1) the
capability of shifting the relative origin
within the plotting frame and (2) the capa-

300

bility of chain plotting. That is, plotting a

vector from the ending point of the last
vector move to the new position on the
plotting field without explicitly defining the
beginning point every time you make a

vector move. We make full use of these two
capabilities in plotting the character strings.

Plotting Frame

The easiest way of plotting a character is
to define a plotting frame or grid upon
which a sequence of vector moves are made
from grid point to grid point. To minimize
the complications involved with signed vec-
tors, it is best to set the origin in the lower
left hand corner of the field on which the
character is to be plotted. With this conven-
tion, the vector moves are positive upward
and to the right in the grid. In this way, we
can define the ending point of a vector move
with positive integer coordinates.

Limiting Frame and Plotting Resolution

Next, we have to define the resolution in
plotting the characters. That is, we have to
decide how many grid points we desire
within a character frame. This depends on
many factors: How fine you want your
plotting; how many different characters you
are to plot; how you are to pack the moves
into memory; what special effects or options
you desire. These considerations are all
interrelated and must be considered as a
whole.

I will propose an optimum character grid
field within a limiting frame which will have
a resolution as fine or finer than any used
today by the graphic houses in their charac-

The choice of a character
grid should reflect the re-

alities of the common
machine designs. For most
microcomputers (and

minicomputers), a charac-

ter frame optimized for 8

or 16 bit words is

desirable.

ter plotting packages. It will minimize the

use of storage, and will also have some

capability for special options. However, as a

user of this software, you can make appro-
priate changes in your own system to reduce

the resolution or to eliminate some of the

special options.
Figure 1 shows the (8 x 16) grid I

propose. The storage origin (0,0) is defined
to be in the lower left hand corner of the

grid. The character base origin (0,5) is at the

lower third point of the left hand side of the

limiting frame such that upper case alpha-

betic characters will be confined to the

upper two-thirds of the grid frame. The

lower third will be used for the tails of lower
case alphabetic characters. The lower row of
the grid will not be used for plotting; this
row of 8 points will be reserved for flagging
special options, which will be explained
later.

Specifying Moves

Since most of us are using or will be

using 8 or 16 bit machines, choosing this
grid optimizes the packing of information
for a vector move into an 8 bit byte of
memory. A move to any point in this grid
field (figure 1) could be defined with 3 bits
for the horizontal (H) position, 4 bits for the
vertical (V) position, and 1 bit for the Z

function or the status (P) of the move- (pen

up or pen down for pen plotters, or intensity
modulation in video graphics).

The 8 bits of H, V and P data for a move

can be packed in the six different ways, such

as HVP, VPH, PHV, VHP, HPV, or
PVH. However, when packing such data into

FRAME
LIMITS

V

(IS,O) I I (IS,7) _.-- .-.-.-.-s-

1
I

(5,0) - CHARACTER
I BASE LINE

BASE LINE
ORIGIN

STORAGE
ORIGIN

FRAME
LIMITS

(o,o'
111-0-1111-0 . 111-! -H I (0,7)

the byte, one must consider which is the

fastest way to unpack the values. This

greatly depends on the machine used. In

most cases, it simply entails masking and

shifting. I am going to use (VHP) as my

standard. Why? No reason except that it can

be implemented on most of the micros in

use today without excessive effort. One

procedure of unpacking the byte is given in

appendix A.
To clarify further discussions on vector

moves, the coordinates of the moves within
the limiting frame will be written as (V,H).
When the Z function is included, the move

will be defined as (V,H,P) where

V is the vertical portion of the move
H is the horizontal portion of the move
P is the status of the Z function where,

0 is pen down or display tube electron
gun on

1 is pen up or display tube electron
gun off.

The lower portion of the grid (V = 0; H = 0

to 7; P = 0 or 1) will be reserved for special

options which will be defined later.

Optimization of the Storage
of Character Moves

Once a user starts playing around with
developing the moves for each and every
character, he soon realizes that there are a

number of instances where a chain of moves
is duplicated in the patterns of several

characters. One can take advantage of this
by building subchains and referencing them
where it is appropriate to combine them in a

large sequence. For example, the upper case

301

Figure 1: 8 by 16 Charac-
ter Frame. Characters are
plotted (or drawn on a
vector graphics display)
with reference to this local
coordinate system. A
series of 8 bit codes identi-
fies the successive loca-
tions of the pen (or elec-
tron beam) and whether or
not a line is to be drawn
while moving to the loca-
tion. The codes which
reference the bottom row
of this grid are treated as

special operation codes for
the plotting software: sub -
chain reference, half shift
right option, and floating
subchain operation are de-
fined in this article.

When implementing this
software for a graphic dis-

play mechanism such as a

CRT, pay attention to
speed of execution.
Flicker will result if your
computer and software
cannot keep up with
your eye's timing charac-

teristics.

With the character de-

fined, the next task is to
shift, twist, stretch or
squeeze the characters as

they are drawn.

alphabetic characters, (G, C, O, and Q) can

all be combined together in one single chain.
Also, the many lower case alphabetic charac-
ters have (c, a, or o) as part of their chain.
Taking advantage of such duplications can
significantly lower the storage requirements
of character plotting tables.

Special Options

When I defined the character limiting
frame previously, I reserved the lowest hori-
zontal line of grid points for special options.
There are 8 grid points on this line. This
gives 8 special options that can be used. If
one considers the Z function, there are 16
options in all. Whenever (O,H,P) is

encountered in a plotting chain of moves,
then a special option is initiated. The special
options can use the following bytes in the
plotting sequence and, as such, can involve
one, two, three, or more bytes.

The first special option we need is a

subchain option. I shall define the code as

(0,0,0). When this code is encountered, the
next byte in sequence is the subchain num-
ber. As one can see, there can be 256
subchains. You will probably never need all

256 unless you build a large multi -language
or multi -font character set.

The second option needed is a 1/2 shift
right option. The code I used is (0,1,0). This
option increases the resolution of the plot-
ting in the horizontal direction and comes in
handy when plotting upper case alphabetic

APPENDIX A
UNPACKING A VECTOR MOVE FROM AN EIGHT BIT BYTE

Using V, H and P to denote bits, the move is VVVVHHHP in packed form. The
unpacking procedure is as follows:

1. An arithmetic shift right will make the Z function of the move available in the carry
flag. The user can make use of this information through appropriate compares and
jumps. Note that masking all but Bit P will also make the Z function available, but
the action of shifting also readies the horizontal position of the move.

2. Temporarily store present value of the accumulator in any other register.
3. Mask the accumulator with octal 7. The horizontal position is now available. Send it

out to the graphic device or store it for later use in another register.
4. Bring back the stored value of the accumulator from Step 2, shift right three times

and mask the result with octal 17. Now the vertical portion is available.

The 8008 microprocessor assembly code would look like:

032 RAR Shift right.
310 LBA Load results temporarily in Register B.

301
044 007

1

301
012
012
012
044 017

User defined portion using the Z function code in the carry flag.

LAB Load ACC with value in Register B.
ND! 007 Mask the ACC with 0078.

User defined portion using the unpacked horizontal portion of the
move.

LAB Load ACC with value in Register B and rotate right
RRC three times.
RRC
RRC
NOI 017 Mask ACC with 0178.

User defined portion using the unpacked vertical portion of the move.

302

M, T, V, W and a number of other characters
to make them symmetric in the particular
grid frame I propose. It is a one byte
instruction to shift the horizontal portion of
the next move byte one half grid space to
the right. That is, if the sequence of bytes
(5,0,0) (0,1,0) (5,3,0) (5,4,0) was

encountered, then the next two moves
would begin at (5,0), move to (5,3 -1/2) and

end at (5,4) with pen down (or gun on).
These last two options I consider to be

the minimum you should have in your
system if you are to have the resolution
required to plot large character sets.

Another option that could be used is the
floating subchain option, (0,2,0). (This
option is not shown in figure 6.) It takes
three bytes of code to complete the se-

quence of this option. For instance, a period
is used extensively for a number of punctua-
tion characters and lower case i's and j's. The
subchain sequence (1,0,1) (1,1,0) (2,1,0)
(2,0,0) (1,0,0) plots a period in the lower
left hand corner of the grid. Now, by using
the floating subchain option, this period can

be floated anywhere on the grid. A three -
byte sequence (0,2,0), (SV,SH,0), (subchain
no.) will move the period to any location
desired by using positive offset values
(SV,SH). This would save at least two bytes
of storage for every different position of the
period in the grid field, if there are more
than two positions to be plotted. But, it
takes some extensive programming to
include this option; the advantage is large in
large character sets, but minimal in small
sets. Also, since timing is important in using
CRT graphic systems, one must consider
whether the extra computing effort is worth
the savings in memory. I will leave it up to
you to dream up exotic plotting options of
your own for the 13 additional options
which remain undefined.

Pointer and Move Sequence Tables

The pointer and move sequence tables
now have to be established. A general
schematic of the tables is shown in figure 2,
along with the relationship of the tables to
one another.

The primary pointer table defines the
starting point in the character vector move
sequence table, and the number of moves for
each particular sequence. The pointer table
is two bytes per character and shown in
figure 3. Five bits of the first byte gives a

maximum number of 31 primary steps per
character. This is more than enough for any
character contemplated, even if it were
script or gothic. It is conceivable that a

sequence table can be as large as 8 pages or
2 K bytes long. The remaining 3 bits of the
first byte could designate the page number.

The second byte would designate the Table 1 (continued): , S

starting point within that page. o o

This two byte table will fit into one 256 __ E r É 6 m

byte page of memory if there are 128 or less -ó m v 3 2
>...v v

Y P g Y uv m.,o and um o
full ASCII O a O a th o v O z O c a. u

characters in your set. So, the
character set would fit easily in one page.

The 7 bit ASCII code, if it resides in the

upper portion of the address byte (bits 7 -1)

with a zero in the LSB of the byte, can

address the location table directly. The Y
location table for the subchains will also use

the same format.
In figure 4, I give my version of the full

ASCII 128 character set. Tables 1 -3 give the
values needed to plot this set. The tables
contain octal 2235 (decimal 1181) bytes of
data. The tables are set up so that you can

easily reduce the size of the tables to a y
minimum set containing only 63 upper case

alphabetic, numeric, and punctuation char-

Table 1.

E,

E -o 0<

PRIMARY POINTER VALUES

d . oo
o o rn 6 - E ,c-, E ó

T. ÿ d ; o éúó
OQ Ov» CZ

000 000 587 11

002 001 598 17
004 002 615 12
006 003 627 8
010 004 635 10
012 005 645 12
014 006 657 14

016 007 671 9

020 010 680 10

022 011 690 8
024 012 698 8
026 013 706 6
030 014 712 7

032 015 719 11

034 016 730 2

036 017 732 4
040 020 736 11

042 021 747 7

044 022 754 9
046 023 768 8
050 024 776 6
052 025 782 10
054 026 792 14
056 027 806 14
060 030 820 6
062 031 826 8
064 032 834 6
066 033 840 10
070 034 850 4
072 035 854 6
074 036 860 9
076 037 869 6
100 040 875 1

102 041 245 11

104 042 262 12
106 043 274 8
110 044 278 14

112 045 292 9
114 046 301 12

116 047 256 6
120 050 323 6
122 051 329 6
124 052 313 6
126 053 317 6
130 054 243 7

132 055 317 2
134 056 245 5
136 057 335 2

140 060 147 13

142 061 160 5 050 -240
144 062 165 9 110 -245
146 063 174 11 130 -256
150 064 185 4 040 -271
152 065 189 9 110 -275
154 066 206 11 130 -316
156 067 217 217 5 050 -331
160 070 198 17 210 -306
162 071 222 11 130 -336
164 072 233 10 120 -351
166 073 238 12 140 -356
170 074 344 3 031-130
172 075 337 4 041 -121
174 076 341 3 031 -125
176 077 347 12 141 -133
200 100 359 19 231 -147
202 101 0 8 100-000
204 102 8 12 140 -010
206 103 23 8 100 -027
210 104 34 7 070 -042
212 105 41 6 060 -051
214 106 41 5 050 -051
216 107 20 11 130 -024
220 110 47 6 060 -057

ro 222 111 53 8 100 -065
m 224 112 61 6 060 -075

á
°' m °-

226
230

113
114

67
73

6
3

060 -103
030-111

ú m ó 232 115 76 6 060 -114
OÑa.o 234 116 82 4 040 -122

132 -113 236 117 23 9 110 -027

212 -126 240 120 86 7 070 -126

142 -147 242 121 23 11 130 -027

102-163 244 122 86 9 110 -126

122 -173 246 123 95 12 140 -137

142 -205 250 124 107 6 060 -153

162 -221 252 125 113 6 060 -161

112 -237 254 126 119 4 040 -167

122 -250 256 127 123 6 060 -173

102 -262 260 130 129 4 040 -201

102 -272 262 131 133 8 100 -205

062 -302 264 132 141 6 060 -215

072 -310 266 133 378 4 041 -172

132 -317 270 134 382 2 021 -176

022 -332 272 135 384 4 041 -200

042 -334 274 136 388 3 031 -204

132 -340 276 137 391 2 021 -207

072 -353 300 140 393 2 021 -211

112- 362 302 141 395 10 121 -213
103 -000 304 142 407 10 121 -227

063 -010 306 143 397 8 101 -215

123 -016 310 144 418 4 041 -242

163 -030 312 145 397 10 121 -215

163 -046 314 146 422 8 101 -246
063 -064 316 147 430 7 071 -256
103 -072 320 150 437 7 071 -265
063 -102 322 151 444 10 121 -274
123 -110 324 152 446 10 121 -276
043 -122 326 153 456 6 061 -310
063 -126 330 154 462 5 051 -316
113 -134 332 155 467 12 141 -323
063 -145 334 156 479 4 041.337
013 -153 336 157 409 9 111-231
130- 365 340 160 483 4 041 -343
141 -006 342 161 487 4 041 -347
101 -022 344 162 491 6 061 -353
161 -026 346 163 497 12 141 -361
111 -044 350 164 512 6 062 -000
141 -055 352 165 518 7 072 -006
061 -000 354 166 525 4 042 -015
061 -103 356 167 529 5 052 -021

061 -111 360 170 534 4 042 -026
061 -071 362 171 538 7 072 -032
061 -075 364 172 545 6 062-041
070 -363 366 173 551 7 072 -047
021 -075 370 174 565 2 022 -065
050 -365 372 175 558 7 072 -056
021 -117 374 176 567 4 042 -067
150 -223 376 177 571 16 202 -073

303

Table 2

acters. Appendix B explains how to reduce
the size of the tables to the minimum set.
But, I encourage you to go in the opposite
direction and build up other subsets to add
to this basic set. For example: Greek
alphabet and mathematical sets, or centered
symbol sets for line graphs.

SUBCHAIN POINTER VALUES

N

°
d
v

OQ
000

0 u
c

Et 5á
Gÿ

1

002 2
004 3
006 4
010 5
012 6
014 7
016 8
020 9
022 10
024 11
026 12
030 13
032 14
034 15
036 16
040 17
042 18
044 19
046 20
050 21
052 22
054 23
056 24
060 25

Table 3.

MOVE SEQUENCE VALUES

An Aside:

The techniques used in
this article can be directly
applied to any repeatable
set of plotting sequences
for display on a vector
graphics device. For ex-
ample, the chess pieces
and chess board of a chess
game display are one possi-
ble data display; similarly,
a Space War game's space
ship symbol output to a
graphic display device
could use techniques of
vector generation and rota-
tion.

T
C

.5
p ° -

OtnJ

VI

ó
To

O
dv oS

ÓÑ a aC1

397 8 101 -215
409 8 101 -231
438 6 061 -266
598 6 062 -126
617 10 122 -151
627 6 062 -163
604 5 052 -134
578 4 042 -102
578 9 112 -102
671 5 052 -237
617 6 062 -151
701 5 052 -275
598 11 132 -126
571 7 072 -073
571 11 132 -073
587 4 042 -113
665 6 062 -231
629 4 042 -165
784 6 063 -020
802 4 043 -042
591 4 042-117
810 10 123 -052
810 4 043 -052
627 5 052 -163
842 6 063 -112

000 040 100 140 200 240 300 340

121 167 132 124 376 325 176 224
320 076 176 132 121 370 256 260
364 121 376 176 376 130 312 320
372 360 121 216 361 125 300 364
336 372 360 252 136 134 360 372
136 336 377 244 361 321 374 336
221 176 200 300 002 364 273 276
236 132 245 320 226 372 314 172
121 120 136 364 376 336 354 124
360 241 361 372 002 276 372 311
372 250 120 336 227 254 364 330
354 377 136 361 002 202 342 326
314 360 121 376 126 120 302 306
272 120 360 002 213 136 264 310
260 136 002 367 304 363 221 171
273 121 126 002 361 376 264 210
236 360 376 126 376 314 272 206
176 241 136 361 120 272 236 166
132 256 121 160 136 266 176 170
120 377 360 124 125 273 132 067
251 136 136 132 142 236 124 130
256 365 376 176 200 176 160 131
136 372 121 376 300 132 220 150
337 002 360 361 342 124 324 146
372 367 372 002 364 160 372 126
364 002 336 126 372 133 321 130
320 126 276 376 354 372 360 002
160 125 232 361 316 160 376 167
124 132 220 122 216 176 210 370
132 221 231 002 154 161 130 366
176 160 136 246 132 124 277 002
336 124 161 134 124 132 232 166
037 077 137 177 237 277 337 377

UPPER CASE ALPHA

Position, Orientation, and Scale

Now that we have the ability to pull out
the coordinates for a sequence of moves, we
have just begun the job of plotting a

character chain. We must translate each
character into its appropriate position on the
plotting media, then scale it up or down,
rotate it into the proper position, and if
desired, slant the character. What usually is

done is to build conversion coefficients prior
to plotting the desired character string.
While going through the process of plotting,
these coefficients transform the move co-
ordinates residing in the move sequence
table to the appropriate coordinates on the
plotting media.

This requires that you have the capability
of multiplying and dividing floating point
numbers in your system. I assume you will
either have a calculator chip interface or a

floating point software package to draw on.
Additionally, you will need the capability of
obtaining sines and cosines if you want the
ability to rotate the character string out of a

horizontal position or to define the slant of
a character with an angle.

Before we get into the procedure of
shifting, twisting, stretching or squeezing the
characters onto the plotting media, we must
define a few parameters which are required
prior to plotting the character string. In

000 040 100 140 200 240 300 340

307 234 347 226 365 242 346 262
350 174 002 206 370 142 326 000
370 152 146 147 130 355 330 003
366 142 371 144 124 134 271 263
346 365 346 124 241 000 266 022
350 320 264 126 304 001 126 000
305 360 224 146 236 353 026 002
346 376 146 273 101 372 062 000
366 120 130 310 116 364 363 001
364 137 367 306 323 124 122 275
344 132 350 264 214 127 143 034
346 176 272 224 275 122 274 263
311 136 232 206 134 243 207 264
352 255 150 210 155 250 134 124
372 130 126 232 132 000 371 205
370 124 125 313 124 001 366 272
350 160 372 212 142 275 126 234
352 220 301 174 242 054 125 143
221 326 316 216 264 032 130 124
236 346 201 336 272 024 121 132
277 364 216 372 254 042 260 154
260 362 161 364 214 363 241 174
367 340 256 320 202 122 262 212
124 320 320 160 363 243 264 204
131 136 337 124 122 264 246 222
372 143 240 132 143 272 126 242
355 354 176 373 124 254 247 264
344 343 341 366 132 134 270 272
322 154 364 126 154 125 272 254
262 241 372 132 254 130 254 000
244 256 336 365 272 331 134 000
252 002 254 132 264 350 123 000
037 077 137 177 237 277 337 377

NUMERALS PUNCTUATION LOWER CASE ALPHA

304

figure 5, we see that we need the standard
height (S) and width (W) of each character,
the gap (G) between each character, the

starting coordinate position (X0,Y0) of the

character string defined as the baseline origin
(identical to the relative origin), and the

angles (0 &ß) defining the orientation and

slant of the character string. These param-
eters must be made available prior to plot-
ting the character string.

Now, let's list the formulae you will use in

your plotting routine.

7 BIT ASCII CODE OR USER DEFINED CODE
RESIDING IN UPPER 7 BITS OF THE ACCESS
BYTE W /LSB EOUAL TO ZERO

PAGE 0

254

PRIMARY POINTER TABLE

NO MOVES IPG NO BEGINNING ADD

1. Scale Equations
SS = S /10.0 vertical scale (1)

SW = W /7.0 horizontal scale (2)

SG = G /SW width -gap ratio (3)
2. Rotation Equations

a. Horizontal (H) portion of move
HX = Cos 0 (4) 254

H Y = Sin 0

b. Vertical (V) portion of move
(5)

VX = -Sin 0 = -HY (6)

VY= Cos O =HX (7)

c. Vertical (V) portion of move

corrected for the slant
VX = -HY + HX *Sin ß (8)

VY = HX + HY *Sin ß (9)

3. Final Coefficients for Rotation and

Scale
DHX = HX *SW (10)
DHY = HY *SW (11)

VECTOR MOVE
SEQUENCE TABLE

PRIMARY SEO.

255

SUBCHAIN POINTER TABLE

/

255 o
PAGE I

NO. MOVES I PG NO BEGINNING ADD

000 040 100 140 200 240 300 340 000 040 100 140

263 274 264 264 176 346 225 000 000 002 272 320

272 205 260 171 002 324 230 016 017 166 172 325

331 212 273 070 172 306 361 265 171 071 000 266

346 263 264 131 002 266 002 164 176 170 004 000
126 274 164 136 072 000 262 172 076 076 000 031

132 122 172 177 000 006 366 177 070 176 025 361

263 134 225 076 006 000 000 170 133 000 000 260

142 373 230 000 165 011 013 070 136 006 026 266
124 366 171 004 264 000 367 076 000 000 000 366
132 270 070 265 172 012 360 131 017 013 006 000
154 246 076 272 272 000 260 134 117 177 273 031

275 230 261 002 115 006 321 000 110 170 264 137

134 126 360 267 076 273 324 017 174 070 224
263 132 266 002 070 264 000 153 074 076 232
002 365 366 166 170 224 014 174 000 116 172

126 370 265 171 176 232 367 074 020 134 164

274 266 164 076 076 172 360 073 165 130 000
261 250 172 071 261 164 260 076 264 135 027
122 226 272 176 360 261 266 000 272 156 000
206 130 171 321 366 360 165 017 172 176 030
132 124 070 324 266 321 264 151 225 000 000
274 371 076 367 321 326 272 172 232 022 031

123 130 367 360 326 367 232 176 000 000 000
274 221 360 260 000 266 224 136 021 023 022
263 264 320 266 010 000 231 110 000 000 326
134 232 326 000 171 013 172 070 004 024 324
263 276 266 005 070 361 000 076 265 000 000
124 260 000 111 260 015 000 224 006 031 261
132 360 265 006 176 266 000 000 232 165 261

025 364 164 000 133 273 004 000 272 264 360
030 346 172 007 076 264 271 000 002 002 366
132 306 272 171 367 164 170 000 227 226 326

037 077 137 177 237 277 337 377 037 077 137 177

LOWER ADDITIONAL
CASE PUNCTUATION
ALPHA

ASCII CONTROL CHARACTERS

305

SUBCHAIN SEO

255

255
O

PAGE 2

PAGE
N < 7

BEGIN

SUBCHAIN
OPT. CODE

END

BEGIN

END

255 VERT I HORIZ I Z

7 4 3 I O

Figure 2: Relationship of the Character
Generation Tables. The selected character
code is rotated left by one bit to define a

number from 0 to 254. This number accesses

a 16 bit quantity in the primary pointer
table. The primary pointer table in turn
locates the beginning of a series of pen

locations in the move sequence table which
define the character's plot representation.
Within that series, there might be a pointer
to the subchain table, which in turn points
to an often used fragment of the graphics
representation located at a different place in

the move sequence table. Note that to
minimize retrieval effort on machines such

as the 8008 and 8080, sequences of moves

should be restricted to single pages of
memory.

BYTE I BYTE 2

7 6 5 4 3 2 1 0 7 6 5 4 3 k 2 1 O

PAGE STARTING LOCATION
NUMBER OF NO.

MOVES IN ADDRESS OF FIRST

SEQUENCE
MOVE OF THE

SEQUENCE

Figure 3: Pr mary and Subchain Pointer
Formats. The pointer tables are composed of
two byte elements which contain informa-
tion on the number of moves required, and
the address of the first move of the

sequence.

As always, climb the
highest mountain rather
than be content with a

mole hill.

LOW
ORDER
BITS 000 001

DVX = VX *SS
DVY = VY *SS

4. Shift Coefficients
Baseline Origins

(12)
(13)

Between Character

DSX = DHX (7.0 + SG) (14)
DSY = DHY (7.0 + SG) (15)

5. Final Transformation Equations to be
Applied to Each Move
X = XO + H * DVX + (V -5.0) * DHX

(16)
Y = YO + H * DVY + (V-5.0) * DHY

(17)

HIGH ORDER BITS
010 011 100

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

79

o
1

2
3
4
5
6
7
8
9

A
B
C
D

E
F
G

H

I

J
K
L
N

N
0

101

P

Q Q

R b

S
T d

U e
v f
W

X h

Y l
o

J

C k

\ I

rn

n

o

110

P

G

r
s
f

u

v

w

X

Figure 4: an ASCII Graphic Character Set. The plotting tables 1 -3 are used to
define this set of characters when displayed or drawn on an XYplotter. This
figure was prepared by the author, using a commercial plotter as the output
device.

306

6. Shift Relative Origin from Character
XO = XO +DSX (18)
YO = YO + DSY (19)

Formulas (1) through (15) are calculated
prior to plotting the first character of a line.
The coefficients thus derived will not change
throughout the plotting of the character
chain. Note that the equations simplify con-
siderably when the angles O and ß are limited
to special cases. Two common special cases
are 9 = 0 °, ß = 0° and 0 = 90 °, ß=
Substituting the special values of sine and
cosine for these angles produces the special
cases. These values are:

SIN(0) = 0.0 COS(0) = 1.0

SIN(90) = 1.0 COS (90) = 0.0

Equations (16) and (17) are the transforma-
tion equations used during the plotting where
only the values (H) and (V) change for each
move. XO and YO are updated as we move
to the next character in line to be plotted by
using equations (18) and (19).

Plotting Routine

The plotting routine is outlined in figures
6 and 7 as a flow chart. If you have BASIC,
you should not have any problems imple-

APPENDIX
ABRIDGING THE ASCII PLOTTING TABLES

NOTES:

1. To abridge the plotting tables, do the
following:
A. For upper case alphabetic, numerals, and

punctuation, only use:
Primary Pointer Table - bytes (octal) 100
to 301
Subchain Pointer Table - none
Move Sequence Table - bytes (octal) 0 to
613

B. For all characters except ASCII control
characters, use:
Primary Pointer Table - bytes (octal) 100
to 375.
Subchain Pointer Table - bytes (octal) 0 to
5
Move Sequence Table - bytes (octal) 0 to
1070

2. If you want abridged Set A above, note that
you do not need to include the traps for special
subchain option in your program.

3. Note that the move sequence table is set up so
that no sequence of moves crosses the
boundary of a 256 byte page of memory. This
eases the programming of micros such as the
Intel 8008 or 8080.

4. Note that the blank or space character was
included at the end of the move sequence table.
If you abridge the table, move the code to the
end of your abridged table and correct the
location code in the primary pointer table.
Better yet, include in your program a trap to
catch any spacing, as there is no actual plotting
for this character. Just shift the relative origin
to the next character to be plotted.

menting this routine, as BASIC has the

required floating point arithmetic and the

transcendental functions, sine and cosine. If
you plan to implement the routine in

machine language, then I dare say you will
have a little more work cut out for you. But,

the advantage of going this route is that you

will take full advantage of your micro-

computer's design in order to minimize the

use of memory and increase the speed of
plotting. Speed is very important if you have

a CRT graphics terminal, because of the

refreshing problem.

Summary

In summary, I think you have here a start

in creating your own vector character gene-

ration package on whatever graphic media

you have or plan to use. You can 11iplement

the package as I have given it to you or

abbreviate, expand, or abridge the package

to suit your needs.

I encourage you, though, to expand the

(HARPLOT /) \
CALCULATE
DHX,DHY,DVX
DVY,DSX,O5Y

I:I1

l

-
I CALCULATE

-1 TRANSFORMATION
COEFFICIENTS. SEE TEXT,

L FORMULI (1)TO(15)

1

J

I HALF
SHIFT OPTION

I ENABLE

r-
1 FOR AC 1

CHARACTER 1

OF A LINE I

J

IGET NEXT
PRIMARY CODE
AND UNPACK

r
I DEFINES VALUES I

1

J:J+1

GET NEXT
MOVE CODE
AND UNPACK

b

...I OF NM,NPG,NB
1

1 FOR EACH MOVE I

r..-I OF A CHARACTER I

` J

I DEFINES VALUES
OF V, H,P

1
1

I

J

Y AXIS

4104

CHARACTER SLANT ANGLE
a

GpP

t
\Fa

PMES \M

)Z °
GH

\t\°° GE
a e

-StOP

E

ORIENTATION ANGLE
OF CHARACTER
STRING

X AXIS

Figure 5: Character Orientation. To add an element of finesse to the plotting

function, provision for general purpose rotation and slanting is a desirable

feature. There are two angles to specify: angle O is the orientation angle of

the baseline for a character string; angle ß is the frame slant relative to a

perpendicular through the base line.

r - 1
I THE TRAP POINT FOR INCLUSION OF OTHER 1 -j SPECIAL OPTIONS YOU DESIRE TO PUT INTO I r--

I I THE ROUTINE 1

I I (EXAMPLE: FLOATING CHAIN OPTION) I _J
NO

NO

FP:I
CALL
SUBCHAIN

YES

H:H+0.5
FP:O

TRANSFORM
AND PLOT
THE MOVE

CALL
SHIFT

NO

(RETURN)

307

l
FORMULI
16 9 17

Figure 6: CHA RPLOT
specified as a flow chart.

' This is a subroutine which

FORMULI is called whenever it is
18 919 J desired to draw a character

string of output. Sub-
routines referenced by
CHARPLOT are: SUB -
CHAIN (see figure 7) and
SHIFT. SHIFT Is a routine
which Is used to move the
relative origin of charac-
ters from the present char-
acter position to the next
character position.

- - - - --
I HALF I

I SHIFT OPTION L-
1 ENABLE I L_ -_ - --J

Figure 7: SUBCHA IN
specified as a flow chart.
This is a subroutine which
is called whenever it is
desired to reference a sub-
chain when drawing a
character pattern. By
picking commonly used
segments of character pat-
terns and putting these
segments in isolated sub -
chains, table storage is
conserved

basic character set I have given you to
include foreign language alphabets, a music
symbol set, a mathematical symbol set, or a

centered symbol set for line graphs. The
horizon in character plotting is only limited
to your own efforts or imagination. Climb
the highest mountain, rather than be content
with a mole hill.

(SUBCHAIN)

GET NEXT
SUBCHAIN CODE
AND UNPACK

K: .0

a

K: K+I

GET NEXT
MOVE CODE
AND UNPACK

F5: I

I-
I DEFINES VALUES

OF MM,MPG,MB

J

--J
I

L

r
DEFINES VALUES - OF SV,SH,SP I

L J

FOR EACH
SUBCHAIN
MOVE

I

J

TRANSFORM
AND PLOT
THE MOVE

J". J+1

(RETURN) ``)

FS:0
SH: S H+O.S

__J FORMULI
I L

GLOSSARY

16 B 17

NO
Oa

Ì
J

Absolute origin: In a typical plotter or display
device, there is an absolute origin for all possible
positions of the writing mechanism. A common
location of this origin is the lower left hand corner
of the plotting field, so that points to the right and
above can be specified by positive integer
displacements.

308

Byte: A cell in memory which can store 8 bits of
information.

Chain: A set of vector moves to be performed
sequentially.

Chain plotting: The technique of specifying a
movement of the plotting or display mechanism by
a series of small movements.

Character frame: A small region of the plotting
medium in which motions will take place while
plotting a single character. See figure 1.

Coordinates: A point in a two dimensional space
can be specified by a pair of numbers. These
numbers are the coordinates of the point with
respect to a reference point called the origin.

Masking: The technique of selecting bits for
inspection using the AND operation and a mask.
The word which is being tested is combined with
the mask using the AND operation. Every logical 1

bit in the mask will select a corresponding bit in
the word being tested; every logical zero bit in the
mask forces a zero in the result independent of the
word being tested.

Medium: A plot or a display is usually performed
on a two dimensional object which can be viewed
by a human being. In the context of this article,
the medium is the piece of paper or display tube
on which you see the resulting characters.

Page: In many microcomputers it is convenient to
divide memory into blocks of multiple bytes,
called pages. In the context of this article, the Intel
8080 and 8008 definition is intended: a block of
256 bytes whose high order address byte is
identical.

Plotting frame: The range of possible positions for
the plotting or display mechanism. In most equip-
ment, this is a grid of points specified by two
integer coordinates for horizontal and vertical
position.

Relative origin: A local origin which is used for
convenience of programming. The relative origin is
specified by a coordinate pair with respect to an
absolute origin of the mechanism used; movements
involved in plotting a character are specified with
respect to the relative origin to simplify placement
of character patterns.

Resolution: A degree of detail involved in the plot.
Ultimately this is limited by the resolution of
hardware, which is specified as the number of
points per linear inch (or centimeter) of display in
each coordinate direction.

Subchain: In a chained plotting table, a subchain is
like a subroutine of a computer program. It is a
fragment of a plot which is often referenced, so use
of the subchain economizes the memory require-
ments of the data tables.

Vector move: In the context of this article, a
vector is a line segment which connects two points
in the plotting frame. A vector move is the act of
moving the plotting mechanism (pen or electron
beam) from one of the points to the second point.
In a chained approach, as used in this article, the
starting point is implied by the last position of the
mechanism and the ending point of the move is
specified by the coordinates of the position.

HEXPAWN

A Beginning Project

in ARTIFICIAL Intelligence

What is intelligence? Pushing aside the philosophical and
psychological questions for the moment, I can offer an

operational definition of intelligence in programs: An
"intelligent" program is one which was designed with a range
of possible circumstances in mind, rules defining successful
and unsuccessful responses to such circumstances, memory of
the history of past responses and relevant circumstances, and
an algorithm for using such past history information when

similar circumstances occur again. Robert Wier has provided an

example of a simple game application which illustrates this

definition of intelligence in programs. Does it sound too
deterministic for you? Hardly - the response is in some sense
inherent in the program and its context. But, just as in natural
life, the order and degree of the various inputs to the AI
program cannot be predicted in advance with any great
certainty. Just as each individual person is unique, each
individual run of a good AI program will tend to differ - AI
programs, like people, are good for lots of surprises.

by
Robert R. Wier
1208 Mistletoe Drive
Fort Worth TX 76110

Artificial intelligence. The
very words themselves are at
once frightening and
fascinating. Hal lip reading;
Colossus communicating with
Guardian in a real "machine
language "; MS taking over the
Enterprise. Yet these are still
media creations, and we are

cushioned by the comforting
buffer of a movie or TV
screen. To realize what
artificial intelligence (or Al)
is really like, you have to

create it yourself (ever have
an urge to play Franken-
stein?). HEXPAWN originally
appeared in Scientific
American (Vol. 206, No. 3, p.
138) in Martin Gardner's
"Mathematical Games"
column. It is simplicity itself.
The game board is identical
to that of the standard
two-dimensional tic -tac -toe,
and two players control three
pieces (or Xs or Os or
whatever) each. Each player's
objective is to advance his
pieces to the opposite side of
the board, or eliminate or
block the opposition's pieces.
Moves of each piece are the
same as the pawn in chess

(i.e., move 1 forward to a

vacant square, take
diagonally).

309

HEXPAWN rules are very
simple: To win, attempt to
move one of your pieces to
the opponent's side of the
board, or block him from
making any move. Moves are
those of the pawn in chess.
That is, you may move one
square forward to an
unoccupied square, or you
may move one square
diagonally in order to "take"
an opponent's piece. Only
these two moves are allowed.
You may not move
diagonally without a "take ";
you may not move forward
with a "take ". Fig. 1

illustrates a typical game
situation of occupied and
unoccupied squares. In this
"model" of the layout, the
computer(X) can move in
two ways which "take" the
human pawn in the central
square (number 4). The
computer can move in one
way which will not "take" a

human pawn.

For a complete
explanation, please refer to
the original article (every
library should carry Scientific
American, and if yours
doesn't, ask them why).

This version of HEXPAWN
is a game that learns. You

may play it several times
beating the computer (which
keeps track of the board, as

well as acting as one of the
players) with ridiculously
simple strategies. However, as

play progresses, the computer
notes its mistakes, and
eventually, after 8 to 10
games, you may only tie or
lose to the computer. The
machine has "learned" how
to play the game successfully.

The method described
here to implement
HEXPAWN is strictly brute
force, and many techniques
may be used to improve both
the execution time and
storage efficiencies. But in
order to fully appreciate the
internal workings of
HEXPAWN, it is nice to keep
it simple. Also, since this is a

self- modifying program (a

necessity in almost all Al),
programmers will recognize
that "simple is good," since
after the code runs wild a few
times and produces strange
and wonderful results, it is
fortunate to have code which
is easy to debug.

H E X P A W N was
implemented by the author
on a 16-bit /word mini with
an assembler. In this version
it occupies 88E hex bytes, or
2190 decimal bytes, or 4218
octal bytes. It would be
possible to reduce the
memory requirement by
using two or three bits
instead of two bytes for the
board representation of the
playing pieces, but this would
require a lot of bit diddling
that is tedious unless you are
really tight on memory. The
minimum representation of
the three states requires a

two -bit binary number, using
three of the four possible
states of two bits. This
requires only one word of
memory. A less compact but
easier to program bit level
representation is to use three
bits, one for each state. Only
one bit would be "on" at any
given time if the
corresponding state is
present. But on many
computers it's considerably

simpler to use two bytes so
that pieces may be
represented by "X ", "0 ", and
" " (space). The storage
requirement will also vary
considerably with the nature
of the peripherals used, due
to whatever interface
programming is necessary.
The original was implemented
with a CRT where the cursor
was "locked" in
synchronization with a
programmed counter
notifying the program of the
board location of the square
being referenced.

Basically, the structure of
the implementation is quite
simple. In the Scientific
American article, all possible
board configurations are
presented. Note that some are
mirror images of others, but
these are still required. These
board configurations are
hereafter referred to as

"models ". The program
attempts to match the
current board configuration
with the models stored in
memory. When a model is

found, several courses of
action may be available. In
some cases, only one move
will be possible, thus the
computer is limited to that
move. In other cases several
moves are possible. The
computer will select one
(whichever is first on the list)
and make the move. If a

model is not found, this is an
error situation; an illegal
move has been made on your
part, and an error message

should be output. Fig. 2 is a

"macro" flowchart of this
process.

Following each model in
memory is a string of move
index bytes followed by a

hex "FF ". The "FF" is used
as a terminator for that
particular model. The bytes
between the model and the
"F" are index numbers for
possible moves - the index
references a jump table to
produce a correct move by
executing a jump.

A jump table is a very
handy device when you need
to reference several different

sT.RT

X
o

o'

2

1

6 8

Fig. 1. The game layout for a typical move.

SEARCH FOR
MODEL MATCHING
CURRENT WARD

INITIALIZE
MOVE

INDICES

INITIALIZE
OTHER AS
REQUIRED

STOP

¡SOSAS CONCEDEV
MIMAN

ANSI

Note that the move indices are initialized only once for each series of
games. Initialization for each game will defeat the learning process.

Fig. 2. Control flow logic for the HEXPAWN program.

310

Fig. 3. Table of All Possible Moves (Models).

EXAMPLE
OF FIG.I

BOARD POSITION MODEL
SQUARE

0 1 2 3 4 5 6 7 8

X X X O 0 0

X X X 0 0 0

X X X 0 0 0
X X X 0 0

X X O X 0

X x 0 0 0
X X 0 0 0

X X X 0 0

X X X 0 0 0
X x x o 0
X X 0 0 X 0

X X 0 0 0

X X 0 0

X X 0 0
X X 0 0

X X X 0
X 0 0 0

X X 0 0
X 0 0 X

X x x 0

X X 0 0 0

X 0 X 0

X O X X

X X 0
X 0 X

X X 0
X x 0

X 0 x
X 0 0
X X 0 0 0

X 0
X X 0 X 0 0

X 0 C 0

Key:

COMPUTE R'S
POSSIBLE MOVES
(see Fig. 4)

3, 4, 7

1, 4, 5

1,2
2, 6, 8
3, 7, 11

2,6,7
3, 4, 5

5,10,11
5, 6
8, 9
2, 3

3, 4, 5

6, 7

6, 7

7

8, 11

2

8, 5

3, 14

8, 11

15
15
11, 14

6, 7, 8

3, 11

5, 1 1

2, 8
6, 14
2

1,2,6
15
15
6

X = computer piece occupies square

0 = human's piece occupies square

blank = square is empty

locations in your program
using numerically sequential
indices. The advantage is that
after assembly, debugging is

facilitated. If you desire to
change all the jump addresses
of a particular segment of
code, you need only change

the jump table, rather than
each reference containing the
desired jump address. It is

also unnecessary to worry
about having to make the

code referenced in the jump
table equal in length. All that
is taken care of in the jump
table itself in an easy and

consistent manner. The jump
table is particularly appealing
in that you have multiple -
level- indirect addressing
capability.

HEXPAWN learns by
removing the index which
leads to a defeat for the
computer. Thus, if a move to
square 8 results in a loss, the
index following the
appropriate model is changed
to a null character, which
eliminates the losing move. I t

is easily seen that if a

particular move always leads

to a loss, it will be completely

nulled, thus allowing the
computer to "know" several
moves ahead that it has lost
the game. As each losing
move's index is nulled, the
learning process effectively
progresses toward earlier
moves.

As noted in the original
article, this version only
penalizes the losing move.
Also of possible consideration
is the rewarding of a winning
move, but this would
complicate our code
considerably.

For convenience's sake let
us number the squares of the

playing board 0 -8 starting in

the upper left corner,
working horizontally and

down. Let us also establish
the convention that the
human player always moves

first. This does not seem to
compel a deterministic game.
That is, either player may win
regardless of who moves first.
Now suppose that there has

occurred a particular board
configuration (Fig. 2). Note
that the "X" pieces belong to
the computer, while the "0"
pieces are yours. You have

just made the preceding
move, and now the computer
must decide what to do. The
computer's possible moves
are indicated by the dotted
lines. But how does the
computer know this? It
searches through memory
until the following bit pattern
is found (in hex):

"To realize what artificial
intelligence is reully like,
you have to create it
yourself ... "

06: "X" in square 2 moves
to square 4 taking your "0"

07: "X" in square 2 moves
to square 5

Now, either move 02 or
move 07 will result in a loss

the next move that "0"
makes (assuming that you are

trying to win) and that index
will be nulled so it cannot be

selected again in the event of
this same board
configuration. Move 06 is

correct since it removes your
piece and also blocks you
from obtaining "X's" side of
the board. Since the
computer simply selects the
first move on its list, the first
time this board configuration
is encountered, the computer
will lose (as a result of move
02). However, after this game

the computer will select move
06, which is correct, since it
is next on the list. The
number of the index has no
particular significance; it
could be anything as long as

it denotes the displacement
needed in the jump table to

direct the flow of control to

E740E7D6D64040D640020607FF the proper code for the move

desired. The "F" is a

terminator that signals the

end of that particular model
and move list.

We will not present the
actual code to accomplish the
HEXPAWN algorithm since

there are so many machines
of a differing nature in hobby
use. However, copies of the
author's LOCKHEED SUE
Minicomputer version are

available from him for $3 to
cover the most of duplication
and postage.

A few hints are in order to
help you avoid some of the

more obvious problems. The

The first 9 bytes represent
the board. Note that in

EBCDIC, E7 is an "X ", D6 is

an "0 ", and 40 is an " .

Remember that these are

EBCDIC codes (my
peripherals use it), but it
could just as easily have been

ASCII. The next three bytes
represent the indices for
possible moves as they exist
at the beginning of the game.

That is, the possible moves

are these:

311

02: "X" in square 0 moves
to square 4 taking your "0"

EXAMPLE 1: To illustrate, assume that the following is in memory at the start:

Location (hex) Contents (hex)

Step 1. 56 i2i.---Step 6.
58 06 If loss store
SA 07 "00" here.
SC FF

AO XX
Step 2. A2 XX

A4 D2
A6 XX
A8 XX
AA XX
AC E4 Step 4.
AE EA

D2 XX "-

Comments

move indices after appropriate
model

beginning of jump table

address of move 02

address of move 06
address of move 07

code for move 02

The "learning" sequence is composed of the following steps:
1. Search models until match is found.
2. Select first index of possible moves, add to location of

beginning of jump table, giving location of address of
that move's code - in this case, index 02 x 2 (to get even
byte boundary) + AO = A4. If no possible move (no
non -null index) is available, concede game to human player.

3. Note the address of the index used - in this case "56."
4. Jump using indirect addressing to the move's code and

execute - in this case, location D2.
5. Evaluate board for win or loss.
6. If loss has occurred, null the location of the last index

used - in this case "56 ", thereby removing this move from
the machine's repertoire of responses to this particular board
configuration. If a tie or computer win has occurred, do
nothing to the index.

EXAMPLE 2: Assume that the following is in memory after example 1 is completed:

Location (hex) Contents Comments

56 1712x2 =4 - - --i 1st selected
58 " Ái 6x2 =12 ! - 2nd selected
60 07
62 FF !

4+AD=A4 AO
A2 00 ---A4
A6
A8
AA
AC
AE

12(C) + AD
= AC

D2-_,
00 I

00
0o
E4
EA

- _- --J -- --
-D2 -

4

beginning of jump table
address of move 1

address of move 2
address of move 3

address of move 4
address of move 5

address of move 6
address of move 7

code for move 2
to accomplish:
move " ," to sq. 0 (blank)
move "X" to sq. 4
jump to continue

code for move 6
to accomplish:
move " " to sq. 2
move "X" to sq. 4
jump to continue

Suppose move index 2 has been selected. The index "2" is multiplied by 2
(shifted left 1 bit) in order to produce an even word address, and added to
the address of the beginning of the jump table - AO - resulting in an address
of A4 . At location A4 is the address - D2 - of the code to accomplish
move # 02. At location D2, move 2 consists of blanking the computer's "X"
in square 0, and inserting an "X" at square 4, taking your "0 ". Since this is
.1 losing move, the index 02 will be made null (replacement by 00 is good
for error checking), and move 06 will be accomplished in the same manner
next time this board configuration occurs.

biggest hang -up with this
program is to get it running
correctly in regard to the
jump table.. If a wrong index
is obtained, the program will
run off into the boondocks
and never be heard from
again. Therefore it is nice to
include checks on the validity
of the index retrieved and to
output an error message in
the event of something
strange happening. A
reasonable board may be
printed using dashes and
exclamation marks. However,
if you do this, you will have
to "unpack" the board as

represented in memory into a
more suitable form for I /O. If
you don't have a CRT with
machine programmable
cursor, you can use the
numbers assigned to the
squares to indicate your
moves. Of course you'll want
the machine to have a variety
of responses for being
blocked, losing and winning.
For debugging it is good to
output the number of the
index which is nulled after a
losing game. In this way you
may keep track of the
learning process as it
advances. Also you should be
aware that if the human
player makes some illegal
moves, no model will be
found, and a message should
be output indicating this fact.

But not all illegal moves

Fig. 4. Table of Computer's
Moves ("X" Graphic).

312

COMPUTER'S (X's) MOVES

In a written communica-
tion, Martin Gardner points
out that the original Hexa-
pawn article is reprinted as

Chapter 8, "A Matchbox
Game -Learning Machine" in
his book The Unexpected
Hanging and Other Mathe-
matical Diversions (Simon &
Schuster, 1969). The book
version includes updates of
the drawings in the original
Scientific American article,
notes on reader reactions to
Hexapawn, and reference to
an article on the more general
game "Extendapawn." Our
thanks to Martin Gardner for
his assistance in supplying a

corrected version of Fig. S for
use in BYTE.

will result in an error
condition. In this case, should
the human player win, the
machine will null the last
move's index even if it is
correct. After this happens a

few times, the machine will
start making illegal moves,
acting illogically, and
generally approximating a

nervous breakdown!
Programming HEXPAWN

will painlessly (?) introduce
you to a number of
worthwhile aspects of the
logical arts. You'll see that
many segments of code (such
as the board evaluation) are
similar and are potential

MOVE INDEX # SQUARE TO SQUARE

1

2

3
4
5
6
7

8
9
10
11

12
13
14
15

0
0
1

1

1

2
2
3

3

4
4
4
5

5

3
4
3
4
5
4
5
6
7

6
7

8
7

8

COMMENTS

computer wins!

It

computer blocked

 ! c3(

00
2

4

o
o

4

n
o o

2

o
4

o

6

n
6

o

4

o

6

o
4

6

6

o
4

4

6

o
4

n
4

Z
o

6

.,

6

Fig. 5. The set of possible Hexapawn game situations faced by the HEXPAWN program after 2, 4 and 6 moves. (Reprinted from Chapter 6; 'A

Matchbox Game -Learning Machine, "in The Unexpected Hanging and Other Mathematical Diversions by Martin Gardner.)

A BASIC Version of This
Program:

For those with systems

running the BASIC language,

a BASIC version of this
program called HEX is found
on page 122 of the third
printing of 101 Basic

Computer Games, available
for $7.50 + 504 postage from
Digital Equipment Corp.,

Software Distribution Center,

Maynard MA 01754.

candidates for subroutines.
You'll see that indirect
addressing does indeed have

some practical uses, if you
can ever get the code

debugged. You'll see that it is

very important to try and

anticipate possible sources of
error in your code before you
run the program, and at least

to include a mechanism to
warn you when problems
occur. (I didn't anticipate any

313

problems with the jump table
and consequently spent

several hours trying to figure
out how the move indices
were coming up with such

strange values. If I had put in

some code to check them
first, this process would have

been shortened considerably.)
You'll see that some
programs are complex to such

a point that you simply
cannot sit down and write
them without thinking about

the logical design first! You'll
see why you should never,

ever write programs that are

self -modifying in nature
(except AI, naturally).

Lastly, amaze (antagonize)
your friends by sitting down
at your computer and

winning four or five games,

then inviting them to try.
When they can't, you can

smile smugly and explain how
your computer learns from its

mistakes, and so should they!

Figure 1: Three special patterns of stars and black holes. The game begins
with a single star representing the Big Bang theory (left), and is won when the
pattern of only one central black hole is achieved (center). The pattern shown
on the right represents a loss and terminates the game.

SHOOTING STARS

Willard I Nico
Delta t
11020 Old Katy Rd, Suite 204
Houston TX 77043

There are probably as many reasons to
have a computer in the home as there arc
computers in homes. For whatever reason
you have one though, it's only human nature
to want to show it off to other people.

Say you have a super program called
"Investment Portfolio Analysis and
Statistical Summary" (IPASS) up and
running on your Scelbi 8H or whatever. It
took months to write and debug the pro-
gram and it involved several unique concepts
of which you are justifiably proud. You can
picture the furious activity going on inside
the little heart of the computer and would
dearly love to show off your skill to Mr and
Mrs Nexdor and bask in their admiration.
So you invite them over for cocktails.

The program runs flawlessly and, as the
results flash on the display screen, you step
back slightly to receive your praise. Mr
Nexdor looks at you with a blank expression
and says, "But will it grind pepper ?"

That actually happened to mc. One way
around this problem is to save (PASS for
your own enjoyment and have a game
program or two available to show off. Of
course, for some people game programs arc
the primary interest in having a home
computer. Whatever your games interest, I

314

think you'll find SHOOTING STARS an

interesting addition to your library.
I started my quest for a "show -off" game

about a year ago, searching everywhere for
one that was just right. I learned a very
interesting fact quickly: My computer
doesn't speak BASIC, and to date many
games have been written and published in
that language.

So I had to do it myself. The result is

SHOOTING STARS, a game with enough
challenge to intrigue, enough variables to
make learning to win difficult (but not
impossible), and a couple of goodies thrown
in to involve the player with the computer.

A complete program listing for 8008
computer is included, as well as the various
messages that allow the computer to interact
with the player.

The Game

Nine dot or asterisk characters are

arranged in a 3 by 3 matrix on the playing
field which may be shown on a CRT screen.
The matrix represents the universe; asterisks
are stars and dots are black holes. The player
shoots stars which dic and turn into black
holes. When a star dies, it affects other stars
and black holes in its particular galaxy.

How To Play

Each position in the universe is assigned a

number (see figure 2). The computer
outputs the current composition of the
universe and asks YOUR SHOT? The player
responds by typing the position number of
the star he decides to shoot. Then the new
constellation is displayed for the next shot.

Effect Of Shooting A Star

When a star dies, it affects the stars and
black holes of its particular galaxy. The
effect is that fragments of the star move into
black holes to become new stars and other
fragments collide with other stars and knock
them out of orbit producing black holes.
Each star has its own galaxy as shown in
figure 3.

The Program

The game proceeds in an orderly manner
which is shown in the Flow Chart of figure 4.

The heading, rules and interactive messages

require approximately 1600 B of memory.
use a Delta t Digital Recorder for message

storage and retrieval since it operates in the
reverse as well as forward incremental
modes. Each message is prefaced with a

Figure 3: A complete set
of galaxies which are

associated with every star
or black hole position.
Stars or black holes within
a galaxy are affected
whenever the respective
position has been chosen.

315

message number surrounded with STX and
ETX characters. A search routine in the
main program finds the first address, decides
whether the desired message is ahead or
behind the current tape position, and
rewinds or spins forward as necessary.

Table 1 is a list of the interactive
messages. For computers with limited
memory the essential messages are in the
first portion of the table; the fancy heading
is next, and the rules of the game occupy the
largest number of bytes at the end of the
text.

When the program is entered at address
014000, the 8008's H and L pointers are set
to the beginning of the heading. Then the
message control routine is called. It outputs
sequentially each character of the message

until the EM delimiter is encountered which
returns control to the main program.

The status of the universe is stored in the
B and C registers. Universe positions 1

through 4 and 6 through 9 are represented
by the eight bits in the B register. A one bit
represents a star, and a zero a black hole. Bit
0 of the C register keeps track of position 5.

The universe is set up in the beginning by
clearing the B register and setting C to 001

Figure 2: Positions in the
universe are identified by
numbers.

7

2

e

3

n
6

9

octal. The D register, which will tally the

number of shots fired, is also cleared as part
of the initialization process. Each time the

print universe routine is entered after a valid
shot, the D register is incremented to count
the shot.

Displaying The Universe

First, the print universe routine is

entered. This routine sets the E register to
octal 012 and will decrement the register
each time the print loop is executed. The E

register tells the program when it needs to
insert a couple of linefeeds for spacing, when
it needs to branch to the position 5 special
routine, and when it has finished printing
the universe. These events occur at the
following E register exception counts:

006 -- Insert two linefeeds
005 - Go to position 5 subroutine

003 - Insert two linefeeds
000 - Done Print; exit

In normal processing, the positions repre-

sented by the bits in the B register are

inspected one -by -one for star or black hole
status, and the corresponding symbol is

printed. It's done like this: The B register is

loaded to A and rotated one place to the

right. The rotated byte is loaded into B to be

ready for the following position next time
around in the loop. The carry flag is then

tested for a one or zero. If the carry is zero,

the program jumps to the dot output
section. A one in the carry bit causes the

asterisk output to be executed.
At the exception counts, further pro-

cessing is required.
Thus when the E register count indicates

that position 5 is the next one to be printed,
the program loads the C register to A and

Figure 4: A flow churl of the SHOOTING STARS program acts as a guide to the listing. The labels indicated on this flow chart

correspond to the labels found in table 3.

SHOOTSTR

BEGIN) 1

ASTART

INITIALIZE

3

SETCNT

UNIVERSE

YES
RULES...

YES

YES

'YOU WIN'

'YOU LOSE'

BINARY TO
ASCII
DECIMAL
CONVERSION

RESULTS

\, YES

'SHOOT
AGAIN ?'

A

316

GOTSTA R

SEARCH E
IN

MASKTAB

NO

INVAL

NO

NOTVAL

YES
NEXBYT

CHANGE
GALAXY

YES

BAD SHOT'

I

COUNT
SHOTS

E IS AN
INVALID
STAR

'YOU GIVE
UP TOO EASY

rotates the least significant bit to carry. The
program then jumps back to the asterisk and

dot output portion of the loop. Note that
the rotated C register content is not loaded

again to C, since we are only interested in

the least significant bit.

Shoot A Star
When the universe has been displayed, the

message YOUR SHOT? is printed and the

computer waits for the player to type a

number from 1 to 9 which indicates the star

he wants to shoot. The ASCII code for the

number the player types is compared to the

first byte in each group of four contained in

the MASKTAB table 2. The number of tries

at the table is monitored by the E register,

which starts at 011 and is decremented each

time around the "test for match" loop. If
the E register gets to 000 without finding a

match, the input is tested for code 177

(delete), indicating that the player gives up

and wants to start over. If a match still can't
be found, the NOT A VALID STAR
NUMBER message is printed, and the

universe displayed again. If this happens, the

print universe routine is entered just after
the instruction that causes the shot to be

counted, so the player won't be charged for
his mistake.

When a find is made in the MASKTAB
table, the program is ready to process the

player's shot. First, it must make sure the

player is following the rules and hasn't shot
a black hole. The second byte of the four
byte group is used as a "mask" to blank out
all the positions of the universe except the
one that has been shot. Figure 5 shows how
the mask is used with the Boolean AND
function to isolate the bit representing the

shot position from among the eight bits of
the B register. After masking out all but the

selected position, the resultant byte is tested

to see if it is zero. If it is, the shot position
was a black hole and the message HEY!
YOU CAN ONLY SHOOT STARS, NOT
BLACK FIOLES! is printed. If this happens,

the universe is displayed again without
counting the shot.

If the mask itself is zero, it indicates that
position 5 was selected, and so the program

Table 1: Program Messages. This table lists all the messages used by

SHOOTING STARS. Each message entry in the table starts with a symbolic
name and an absolute address. The text should be stored at ascending

memory address locations, and terminated with an end of message (EM)

delimiter of octal 031, which is printed as I. The symbolic names in this table

are referenced by table 3.

MESSI:

016000

HEY! YOU CAN ONLY SHOOT STARS,
NOT BLACK HOLES.

TRY AGAIN!

MESS2:

016077

THAT WASNT A VALID STAR NUMBER!

TRY AGAIN!

MESS3:

016156

YOU LOST THE GAME!

WANT TO SHOOT SOME MORE STARS?

MESSI:

016243

YOU W INI GOOD SHOOTING!
YOU FIRED

MESSS:

016310

SHOTS.
BEST POSSIBLE SCORE IS 11 SHOTS.

WANT TO SHOOT AGAIN, DEADEYE?

MESSE:

017022

YOU GIVE UP TOO EASILY!

WANT TO SHOOT SOME MORE STARS ?.

MESS]:

017114

YOUR SHOT?

HMESS:

017131

S H

O T

I N G

SSS

SSS

SSS

TTT

T

T

AAA
A A
AAA
A A
A A

SHOOTING STARS
A BRAIN TEASER GAME

WANT THE RULES?

PAGEL:

020147

THERE ARE STARS:
AND BLACK HOLES:
IN THE UNIVERSE:

YOU SHOOT A STAR
(NOT A BLACK HOLEI
BY TYPING ITS NUMBER 1 2 3

4 5 6

7 8 9

THAT CHANGES THE STAR TO A BLACK HOLE'

ITO SEE MORE RULES. TYPE ANY KEY.!

RRR
R R
RRR
RR
R R

SSS
S

SSS

SSS

317

PAGE2:

021277

EACH STAR IS IN A GALAXY. WHEN YOU
SHOOT A STAR. EVERYTHING IN ITS GALAXY
CHANGES. ALL STARS BECOME BLACK HOLES
AND ALL BLACK HOLES BECOME STARS.

GALAXIES:
2 '

(TYPE ANY KEY FOR LAST PAGE OF RULES.!

PAGES:

023137

THE GAME STARTS
WITH THE UNIVERSE
LIKE THIS

YOU WIN WHEN YOU
CHANGE IT TO THIS .

YOU LOSE IF YOU
GET THIS

READY TO PLAY. TYPE ANY KEY TO START
THE GAME. GOOD LUCKI

DATA 1 0 11 0 1 01 1 0 1 1 0 0 0 1

MASKOO 0 00 / 00 0 0 0 0 0 1 0 0

RESULT O O 0 0 0 1 0 0 00 0 0 0 0 0 0

o 1 o 1

o o 1 1

o 0 0 1

Figure 5: The AND function of Boolean
logic is used to mask the current universe in
order to select one position for testing each
shot.

POSITION GALAXY CENTER
LOCATION SHOT MASK MASK MASK

MASKTAB 015070 061 001 013 001
015074 062 002 007 000
015100 063 004 026 001
015104 064 010 051 000
015110 065 000 132 001
015114 066 020 224 000
015120 067 040 150 001
015124 070 100 340 000
015130 071 200 320 001

Table 2: MASKTAB, a table of masks to test and alter galaxies. This table
gives the data needed for memory locations 0151070 to 015/133 in the
SHOOTING STARS program. This table is used to check the shot fired for a
valid star number and to change the portion of the universe which is affected
by the star's change.

POSITIONS IN GALAXY

MASK 10 1 10 101
DATA o O 0 1 0 11 0

RESULT 1 O 1 0 0 O 1 1

9 e 7 6 4 3 2 1

O 1 0 1

o o 1 1

0 1 1 0

Figure 6: The EXCL U-
SI VE OR function of
Boolean logic is used to
complement bits selected
according to the galaxy
information stored for the
position just shot.

318

tests the C instead of the B register for a

star.

Change A Galaxy

Once the program has determined that
the shot was valid, it can use the next byte
in the MASKTAB table to change the dots
and stars in the galaxy of the "shot" star.
Again, the table entry is a mask, but this
time the Boolean EXCLUSIVE OR function
is used. The result is that the selected
positions are complemented; one bits are
changed to zero bits and the zeros are
changed to ones. Figure 6 shows how the
mask does this neat trick. After the change is

made, the new universe is stored in the B

register.
Byte four of the MASKTAB table entry

contains a mask that is used to EXCLUSIVE
OR the C register to change position 5 if
required. If star 5 is to be complemented,
the mask will be octal 001 ; if not, it will be

octal 000.
After the universe in the B and C registers

is changed, the new universe is displayed and
the cycle repeats until a win or a loss is

detected, or until the player gives up.

Win Or Loss Test

Each time the universe is displayed, it is

tested for a win or a loss. If both the B and
C registers contain the octal number 000,
the YOU LOST THE GAME message is

printed, and the opportunity to play again is

offered.
If the B register contains octal 377 and C

is octal 000 a win is detected. After display-
ing the proper message, the binary content
of the D register is converted to decimal
numbers and the number of shots fired is

printed. The calculation is performed by the
binary to decimal conversion subroutine.

Binary To Decimal Conversion

The B, C and E registers are assigned the
functions of summing the hundred, ten and
unit digits of the score respectively. The
process is one of repetitively adding a one to
the three digit number while subtracting a

one from the shots fired register (D).
Looping continues until all shots fired have
been counted in the 3 digit decimal form.

The somewhat unusual feature of the
binary to decimal conversion is that it is
done directly in ASCII numeric code. The
three registers B, C and E are intially loaded
with octal 060, which is the ASCII numeric
character zero. After each increment, the
least significant digit register (E) is tested to
see if it contains octal 072. If it does, the
register has counted 060, 061 ... 071,
which is 0 through 9 in ASCII, and has just
been incremented one more to 072. When

the register has 072, a carry condition
exists. When this condition is detected, the

register is reset to 060 and the next register
in line (C) is incremented. After incre-

menting, the second register is tested for a

carry in the same manner, and so on. When

all the shots have been counted, the

registers B, C and E will not only represent

the decimal equivalent of the shots fired, but
will contain the proper ASCII codes for the

decimal digits of the count.

Print The Shots

To suppress leading ieros, the hundreds

digit (B) is tested for octal 060. If it contains
any other code, the contents of all three

registers will be printed. If it contains octal

060, the tens register (C) is similarly tested

and the output will be one digit if it is at

zero (code 060) and two digits if it is not.
Figure 7 contains a flow chart of the

binary to decimal conversion program. You

may find use for it in some of your other

programs.

Program Listing Conventions

Table 3 contains the complete program as

it was implemented in my 8008 system using

the SCELBI 8H computer. The listing is in

symbolic assembly language with absolute

octal address and memory contents.
The 8008 computer has 8 possible restart

instructions which arc one byte calls to

locations in the first portion of memory

address space. These are used to access

utility subroutines needed by the

SHOOTING STARS program. The required

restarts arc as follows:
RSTO: User's input routine, starting at

location 000 /000 which is used to wait for

one character input from the keyboard

device.
RST1: Exit Routine, starting at location

000 /010. This is a return address to the

system monitor for the computer.

(BEGIN

I E E+1

YES

NO

c:C+I

NO

B:B+1

octal
address

014/000
014/002
014/003
014/005
014/007
014/012
014/015
014/017
014/022
014/024
014/026
014/031
014/032
014/034
014/036
014/041
014/042
014/044
014/046
014/051
014/052
014/054
014/055
014/056
014/057
014/061

octal code

006 012
025
066 131
056 017
106 134
106 151
074 116
150 052
066 147
056 020
106 134
075
066 277
056 021
106 134
075
066 137
056 023
106 134
075
006 012
025
025
025
016 000
026 001

015
015

014

015

015

015

label

SHOOTSTR

ASTART

op.

LAI
RST
LLI
LHI
CAL
CAL
CPI
JTZ
LLI
LHI
CAL
RST
LLI
LHI
CAL
RST
LLI
LHI
CAL
RST
LAI
RST
RST
RST
LBI
LCI

operand

012
2
LIHMESSI
HIHMESS)
OUTPUT
INPUT
'N'
ASTART
LIPAGE11
HIPAGE1I
OUTPUT
7

LIPAGE2)
HIPAGE2)
OUTPUT
7
LIPAGE3)
HIPAGE3I
OUTPUT
7
012
2
2
2
O

1

319

TALLYHO

D: D-I

commentary

display linefeed to
initialize display;

set address pointers
to heading message;

print massage Si return;
call input looper;
is first letter' N'7
if to then plunge into game;
if not then pomt to first

page of rules text;
and go output rules message;
wait for goahead;
point to second page of

rules text;
display second page of rules;
wait for goahead;
point to third page of

rules tent;
display third page of rules;
wait for goahead;
set up linefeed;
display one linefeed,

then a second linefeed,
then a third;

initialize the universe
to starting pattern;

Figure 7: A binary to dec-

imal conversion is per-
formed to output 3 dec-

imal digits encoded as

ASCII numeric characters.
This is a flow chart of the
conversion routine, with
labels referring to table 3.

Table 3: The SHOOTING
STARS program specified
in symbolic assembly lan-
guage with an absolute list-
ing of addresses and codes

for the author's system.

octal
address octal code label operand

014/063 331 LOB
014/064 030 CNTSHOT IND
014/065 046 012 SETCNT LEI 100
014/067 041 DISLOOP DCE
014/070 150 321 014 JTZ WINTEST
014/073 304 LAE
014/074 074 006 CPI 6
014/076 150 142 014 JT2 LINFEED
014/101 074 003 CPI 3
014/103 150 142 014 JTZ LINFEED
014/106 074 005 CPI 5
014/110 150 151 014 JTZ FIVTST
014/113 250 NEDOT XRA
014/114 301 LAB
014/115 012 RRC
014/116 310 LBA
014/117 100 130 014 PSEUDOT JFC LOADOT
014/122 006 052 LAI
014/124 025 RST 2
014/125 104 133 014 JMP SPCNOW
014/130 006 056 LOADOT LAI
014/132 025 RST 2

014/133 006 040 SPCNOW LAI '
014/135 025 RST 2
014/136 025 RST 2
014/137 104 067 014 JMP DISLOOP
014/142 006 012 LINFEED LAI 012
014/144 025 RST 2
014/145 025 RST 2
014/146 104 113 014 JMP NEDOT
014/151 250 FIVTST XRA
014/152 302 LAC
014/153 012 RRC
014/154 104 117 014 JMP PSEUDOT
014/157 006 012 GOTSTAR LAI 012
014/161 025 RST 2
014/162 025 RST 2
014/163 025 RST 2
014/164 025 RST 2
014/165 025 RST 2
014/166 066 114 LLI LIMES57)
014/170 056 017 LHI HIMESS7)
014/172 106 134 015 CAL OUTPUT
014/175 005 RST 0
014/176 025 RST 2
014/177 340 LEA
014/200 006 012 LAI 012
014/202 025 RST 2
014/203 025 RST 2
014/204 025 RST 2
014/205 304 LAE
014/206 046 011 LEI 9D
014/210 066 070 LLI LIMASKTABI
014/212 056 015 LHl HIMASKTABI
014/214 277 NEXGRUP CPM
014/215 150 233 014 JT2 FOUND
014/220 041 DCE
014/221 150 273 014 JTZ INVAL
014/224 060 INL
014/225 060 INL
014/226 060 INL
014/227 060 INL
014/230
014/233

104 214 014
060 FOUND

JMP
INL

NEXGRUP

014/234 307 LAM 014/235 074 000 CPI 0 014/237 110 253 014 JFZ UNIV2A 014/242 302 LAC
014/243 074 001 CPI 1 014/245 110 165 015 JFZ BADFELO 014/250 104 260 014 JMP NEXBYT 014/253 301 UNIV2A LAB
014/254 247 NOM
014/255
014/260

150 165 015
060 NEXBYT

JT2
INL

BADFELO

014/261 301 LAB
014/262 257 XRM
014/263 310 LBA
014/264 060 INL
014/265 302 LAC
014/266 257 XRM
014/267 320 LCA
014/270 104 064 014 JMP CNTSHOT 014/273 074 177 INVAL CPI 177
014/275 110 307 014 JFZ NOTVAL 014/300
014/302

066 022
056 017

LLI
LHI

LIMESS61
HIMESS61 014/304 104 034 015 JMP PRNTIT

014/307 066 077 NOTV AL LLI LIME5S21 014/311 056 016 LHI LIMESS21 014/313 106 134 015 OUTMES CAL OUTPUT 014/316 104 065 014 JMP SETCNT 014/321 301 WINTEST LAB 014/322 074 377 CPI 11111111B 014/324
014/327

110 050 015
302

JFZ
LAC

LOSSTST

014/330 074 000 CPI 0 014/332 110 157 014 JFZ GOTSTAR 014/335
014/337

066 243
056 016

LLI
LHI

LIMESS41
HIMESS41

014/341 106 134 015 CAL OUTPUT 014/344 046 060 LEI '0' 014/346 314 LBE
014/347 324 LCE 014/350 031 OCD
014/351 303 LAD
014/352 074 000 CPI 0 014/354 150 026 015 JTZ LSTSIG

014/357 006 072 LAI
014/361 040 MOREDEC INE
014/362 274 CPE
014/363 110 000 015 JF2 TALLYHO
014/366 046 060 LEI '0'
014/370 020 INC

commentary

then clear shot counter;
Count a shot (anticipatory);
loop count 10 iterations;
is the loop done?
if so then go to win testing;
0 not then continue display;
is it fourth cycle?
if so then new line needed;
is it seventh cycle?
it so then new line needed:
is it star number 5?
.f so then go test star 5;
clear the carry land A too);
move universe to A;
rotate next place into carry;
save it in B for a while;
if dot then go outpUt dot;
otherwise load a star;
then print the star;
branch around dot logic;
load a dot;
then print the dot;
load a space;
print one space,

then print a second;
waltz around loop once more;
load a line feed;
display a line feed,

then a second one;
back to print next dot or star;
no Operation intended - leftover;
get position 5 status;
put status into carry;
rejoin main line after RRC;
load a line feed;
have finished universe print,

so print several
line feeds
to separate
successive rounds;

Point to the 'your shot'
message;

then go print it;
call input for character;
immediately echo the input,
save input temporarily in E;
load a line feed;
print three line feeds to

space Out the response
a bit more;

recover input for testing;
loop count for table search;
set up pointer to the

the mask table;
is input equal table character?
if so then go alter structure of

the universe otherwise just
check end of loop;

increment the L
register pointer
four times to get
to next table entry;

then go test next entry;
point to position mask

and load mask into A;
is it zero,
if not then fringe position;
otherwise the center position;
is a star in Center'
if not then have wrong move;
if so then go process star;
rest of universe to A;
AND with mask to isolate star;
if not star then wrong move;
point to the galaxy mask;
fetch universe again;
and complement the universe

on a fine performance;
point to center mask;
fetch center of universe;
complement center rf required;
save center of universe;
go display a new universe;
was invalid shot a'delete ?

if not then recycle bad star;
otherwise point to giving up

message;
display then test for restart,
point to the invalid star

number message
output a message then

go display the universe again;
move universe to A,
are all fringe stars present,
if not see if player has lost;
fetch center of universe;
is center of universe empty,
is full then not win;
no star. got a win, folks

so point to win message;
then display win message;
begin binary to decimal conversion

by setting all three working
register to (ASCII) zero;

get rid of last shot;
move shot count to A for test;
test for zero not needed in

SHOOTING STARS but generally
useful with conversions);

need compare to ASCII '9' ...1;
count up one in 1.s. digit;
is it equal to overflow code,
if not then tally and continue;
else reset 1's digit to zero

and carry into next digit;

320

RST2: User's output routine, starting at
location 000/020. This routine prints or
displays one character on the output device
for the system. The character to be output is

in the A register when RST2 is entered.
RST7: A "do Nothing" keyboard input

acknowledgement routine, starting at loca-
tion 000/070. Any character typed on the
keyboard causes return from this subroutine.

For the optimum use of the program, the
output device should be a cathode ray tube
terminal with a scrolling feature.

Game Background

I first saw the SHOOTING STARS game
in the September, 1974, issue of PCCt as a

program called TEASER. If you are an
analytical person, you can figure out all of
the possible positions.

PCC Editor, Bob Albrecht, told me that
the program was contributed to the
Hewlett- Packard software library, and orig-
inally written in BASIC.

tPCC is People's Computer Company which pub-
lishes a tabloid size computer hobbyist newspaper
five or more times during the school year. It's filled
with games written in BASIC, art, and computer
news. If you are interested, write to People's
Computer Company, PO Box 310, Menlo Park CA
94025.

Symbol table, in order of appearance

SHOOTSTR 014 000
ASTART 014 052
CNTSHOT 014 064
SETCNT 014 065
DISLOOP 014 066
NEDOT 014 113
PSEUDOT 014 117
LOADOT 014 130
SPCNOW 014133
LINFEED 014 142
FIVTST 014 151
GOTSTAR 014 157
NEXGRUP 014.214
FOUND 014'233
UNIV2A 014/253
NEXTBYT 014 260
INVAL 014'273
NOTVAL 014 307
OUTMES 014313
WINTEST 014/321
MORE DEC 014361
TALLYHO 015000
THREED 015/023
MIDPH NT 015/025
LSTSIG 015 02G
RECYC 015/032
PRNTIT 015/034
LOSSTST 015 /050
MASKTAB 015'070
OUTPUT 015/134
INPUT 015/151
GETNEXT 015/154
BADFELO 015/165
MESS1 016/000
MESS2 016/077
MESS3 016/156
MESS4 016/243
MESS5 016/310
MESS6 017.022
MESST 017'144
HMESS 017/131
PAGE1 020/147
PAGE2 021/277
PAGES 023137

octal
address octal code label op. operand

014/371 272 CPC

014/372 110 000 015 JFZ TALLYHO
014/375 026 060 LCI '0'
014/377 010 INB
015/000 031 TALLYHO DCD
015/001 110 361 01(JFZ MORE DEC

015 /004 301 LAB
015 /005 074 060 CPI '0'
015/007 110 073 015 JFZ THREEO
015/012 302 LAC
015/013 074 060 CPI '0'
015/015 110 025 015 JFZ MIDPANT
015 /020 104 026 015 JMP LSTSIG
015/023 025 THREED AST 2

015/074 302 LAC
015/025 025 MIDPRNT RST 2

015/026 304 LSTSIG LAE
015/027 025 RST 2

015 /030 066 310 LLI LIMESS5)
015/032 056 016 RECYC LHI HIMESS51

015/034 106 134 015 PANTIT CAL OUTPUT
015/037 106 151 015 CAL INPUT

015/042 074 131 CPI 'Y'
015 /044 150 052 014 JTZ ASTART
015/047 015 AST 1

015/050 074 000 LOSSTST CPI 0

015/052 110 157 014 JFZ GOTSTAR

015/055 302 LAC
015/056 074 000 CPI 0

015/060 110 157 014 JFZ GOTSTAR
015/063 066 156 LLI LIMESS3)
015,065 104 032 015 JMP RECYC

015/070 see Table I l MASKTAB BLK 036D

015/134 307 OUTPUT LAM
015/135 074 031 CPI 031

015/137 053 RTZ
015/140 025 RST 2

015/141
015/142

060
110 134 015

INL
JFZ OUTPUT

015/145 050 INH

015/146 104 134 015 JMP OUTPUT

015/151 005 INPUT RST O

015/157 340 LEA
015/153 075 AST 2

015/154 005 GETNEXT RST 0

015 /155 025 RST 2

015/156 0/4 017 CPI 012

015/160 110 154 015 JFZ GETNEXT

015'163 304 LAE
015/164 007 HET

015,165
015/167
015 171

OGG 000
056 016
104 313 ()14

BADFELO LLI
LHI
JMP

LIMESSII
HIMESSII
OUTMES

commentary
is it equal to overflow code tool
if not then tally and continue;
else reset middle digit to zero

and carry into ms, digit;
decrement score counter for tally,
if not zero then keep loopin;
fetch leading digit to A,
.s it IASCIII zero)
if not go display three digits:
fetch middle digit to A.
is it (ASCII) zero tool
if not go display two digits;
if so display only one.
display three digits, left first,
fetch middle digit to A,
display two digits, left first,
fetch l's digit;
display remaining digit.
point to first part of you win;
second part of MESSS /MESS6 pointer.
display the message;
fetch a character for continue

query, is it yes-7
if so then continue game;
otherwise call EXIT:
is fringe universe all black holes]
it not then continue game,
if so then test center position,
is center also black hole]
it not then continue game,
else point to loss message,
and go print loss,

36 bytes of mask table,

hrch next message byte.
is it a debmurer7
return when delimiter found,
otherwise display byte:
pint to next byte.
Is it page boundary]
if so increment Page.
and then recycle,

get nest character,
save it in E,
echo on display.
yet next character,
echo on display,
was it a line feed]
if not continue scan,
it so, restore first input.
and then return to Caller.

point to the error message
admonishing bad 'srai',

and go display error,

C]

Notation:

LIHMESS) = low order 8 bits
of address of HMESS;

H(HMESS) = high order 8 bits
of address of HMESS;

'N' = the ASCII character
"N"

9D = the decimal number 9;

7 = the octal number 7 (with
high order zeros as needed);

mnemonics are from original
Intel 8008 documentation;

octal code is shown in ascend-

ing address order top to bot-
tom, left to right;

321

Biorhythm for Computers

According to the bio-
rhythm hypothesis, there
is a reason for those dol-
drum days when even your
computer refuses to com-
municate with you.

[NOTE: The ideas pre-
sented in this article are a

hypothesis about human
mental states and are not
necessarily a valid predic-
tive theory. One danger of
computer programming is
the assumption that a

logically correct program
which executes without
bombing out will neces-
sarily produce meaningful
results. Whatever the final
conclusion with regard to
the biorhythm hypothesis,
the calculation makes an
interesting example of a
BASIC language applica-
tion program.... CH]

Joy and Richard Fox
1364 Campbell St

Orlando FL 32806

There is no doubt that all living things
have biological rhythms. The study of three
of these rhythms in humans has led to the
development of a pseudo science, bio-
rhythm, that, through the use of computers,
is growing in popularity in the United States.
This article describes a program, written in
BASIC, which you can run in your own
computer to plot biorhythm curves.

The purpose of the program is to use the
biorhythm hypothesis to "predict" physical,
emotional and intellectual patterns that indi-
cate up, down and critical days for any
period of time. These predictions are based
on what purport to be scientific studies of
human behavior. Biorhythm people claim to
have learned through their studies that a

physical cycle occurs every 23 days, an
emotional cycle occurs every 28 days and an
intellectual cycle occurs every 33 days. The
plotting of these rhythms is printed out as a

two-dimensional graph on a Teletype or
similar output device, showing the three
cycles as a function of time.

The biorhythm hypothesis is nothing
new. It was first proposed in the late
nineteenth century by a Viennese psycholo-
gist and a German physician, each working
separately. In the 1920s, an Austrian teacher
added the 33 day intellectual cycle after
studying the performance of high school and
college students.

According to the biorhythm hypothesis,
there is a reason for those doldrum days
when even your computer refuses to com-
municate with you. Each of the three cycles
oscillates between ups and downs. When
your cycles are up, you feel physically

322

strong, emotionally high or intellectually
brilliant. When your cycles are down, you
feel physically weak, emotionally depressed
or intellectually dull. But the days to really
watch out for are the transition days when
you are crossing from a low to a high or a

high to a low. It is during these transition
days that you are especially susceptible to
accident and illness. A few times each year,
two or even all three of your cycles will
cross the transition simultaneously. Accord-
ing to biorhythm people, these critical days
are best spent quietly.

The biorhythm hypothesis has gained
acceptance in a growing number of indus-
tries. In Japan, 2,000 businesses use bio-
rhythm calculations. One Japanese firm
reports a 35% reduction in computer data
errors by assigning workers to other tasks
when they are going through critical days.
Another Japanese firm using biorhythm pre-
dictions claims to have reduced its yearly
vehicle accident loss by 45 %. An American
survey of 1,000 industrial accidents showed
that 90% of them occurred on critical days.

Mike Bertalot, a supervisor for United
Airlines, estimates that between 6,000 and
8,000 of United's 40,000 employees are
using biorhythm predictions as a guide for
safety awareness. United uses the printouts,
which they distribute to interested em-
ployees, as "an excuse to warn employees
about safety." The result has been that some
departments have shown a 50% decrease in
accidents. It is not clear whether this reduc-
tion is due to the extra warnings or to the
predictive value of the hypothesis. Although
the future of the biorhythm experiment at
United is uncertain, the results are being sent
to the United States Naval Laboratory,
which is studying the hypothesis.

Biorhythms have also been used for
profit. The September 15 1975 issue of
Newsweek quotes Lester Cherubin, president

of Time Pattern Research, Inc, as having sold
100,000 biorhythm printouts for $10 to $20
each in the past three years. Other com-
panies sell plastic biorhythm calculating de-
vices for anywhere between $4 and $20.
Some shopping center vendors sell for a

mere 50 cents a computer printout of your
rhythms for one day.

The calculation of biorhythm curves is

not easy to do with a pencil and paper. First,
the subject's age in days must be calculated.
This problem, of course, is complicated by
all the peculiarities of the modern calendar.
Then you must calculate how many com-
plete 23 day cycles the subject has lived
through and how many days he is into the
next cycle. (The biorhythm hypothesis
makes a simplifying assumption that all
cycles originate at birth with zero relative
phase.) The same must be done for the 28
and 33 day cycles. The fraction of each

cycle is multiplied by two pi radians and the
sine of that number is taken to obtain the
points of the biorhythm curve for that day.
The calculation must be rerun for each

succeeding day, and the results plotted on
graph paper, in order to obtain the bio-
rhythm curves.

The program to calculate biorhythm
curves is shown in the form of a flow chart
in figure 1; figure 2 shows the complete
listing of this program in BASIC. The opera-

tion of the program is as follows:
Line 0001 dimensions the strings N and S

and the array T. N will be filled with the

character set for the days of the month and

S will be filled with the image of each line of
the graph, as it is prepared for printing. T
will be filled from the data statement at line
0080 with the number of days in each

month of the year. The input statement at
line 0008 and the if statement at line 0009
together allow the user to skip over the

explanatory printout at the beginning of the

program and go directly to the calculation
which starts at line 0027.

Line 0040 defines the numeric values for
the month, day and year that thesubject
was born. Line 0050 defines the month, day
and year for the start of the printout. The
year can be supplied as a two digit number
('76) or as a four digit number (1976), but
the same format must be used for both the
birth date and the printout target date. Line
0065 defines the number of days to be

plotted.
D3 in the program is the variable which

will contain the age of the subject in days.

At line 0130, D3 is initialized to 0. The
program will now calculate the number of
days between the subject's birth date and

the requested plotting date. The calculation
is performed in several steps, and at the end

CBIORHYTHM

0010

0027

PRINT
INSTRUCTIONS

REQUEST PARA- I INTERACTIVE
METERS AND .-J SEQUENCE TO DEFINE I
INITIALIZE I BIRTHDATE,PLOT

DATE,DAYS TO I

PRINT

0130 L J
CALCULATE
LIFESPAN AT
START OF THIS
YEAR

0305

ADD LIFESPAN
FOR EACH YEAR

0450

ADD LIFESPAN
SO FAR
THIS YEAR

0475
PRINT HEADER
MESSAGE OF
PLOT

0570

CALCULATE
CURRENT CURVE
VALUES

0727

PREPARE PRINT
LINE

0746
PRINT LINE
AND ONE BLANK
LINE

0750

NO CALCULATE
NEXT DAY'S
LIFESPAN

of each step, the value calculated at that step

is added to the total in D3.
Next, the program checks if the subject

was born in January or February of a leap

year. The test for a leap year, at line 0150, is

made by dividing the birth year by four and

checking for a remainder. Only leap years
divide by four with a remainder of zero. If
the subject was born in January or February
of a leap year, one day is added to the
running total, at line 0160. Otherwise, the
running total is left at zero.

323

Watch out for evil omens

on transition days.

While not intended to ap-

ply to machines, maybe
biorhythms can be used to
predict computer be-

havior. Enter the birth
date of your computer and
predict when your cyber-
netic monster plans its
next bomb out!

Figure 1: Flow Chart of
Biorhythm Calculator.
This chart illustrates the
general outline of the
program found in figure 2.

The numbers noted next
to symbols In the flow
chart refer to line numbers
of the listing in figure 2

0001 DIM NS1721, 501721, 11121

0002 NS" 000102030405060708091011121314151617181920212223242526272829 031°

0004 REM BIORHYTHM CREATED BY JOY AND RICHARD FOX
0006 PRINT "DO YOU WISH AN INTRODUCTION TO BIORHYTHM, TYPE 1 FOR YES."

0007
000B
0009
0010
0011
0012
0013
0015
0016
0017
D018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0040
0045
0050
0060
0065
0080
0110
0120
0130
0140
0150
0160
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0299
0305
0310
0315
0316
0320
0325
0400
0405
0410
0450
0455
0460
0470
0475
0480
0490
0491
0492
0493
0500
0505
0510
0520
0525
0526
0530
0540
0550
0560
0570
0571
0580
0600
0610
0640
0650
0655
0660
0670

PRINT OR 0 FOR NO"
INPUT A
IF A0 THEN 27
PRINT TABI251, "BIORHYTHM"
PRINT
PRINT
PRINT
PRINT "THE PURPOSE OF BIORHYTHM IS TO PREDICT A PHYSICAL,"
PRINT "EMOTIONAL ANC) INTELLECTUAL PATTERN THAT INDICATES YOUR"
PRINT "UP AND DOWN DAYS FOR ANY PERIOD OF TIME BIORHYTHM CAN"
PRINT "SHOW WHICH DAYS WERE GOOD OR BAD FOR YOU BEGINNING WITH"
PRINT "YOUR BIRTH. IT CAN ALSO SHOW YOU WHICH FUTURE"
PRINT "DAYS WILL BE GOOD OR BAD FOR YOU."
PRINT' THESE PREDICTIONS ARE BASED ON SCIENTIFIC" '

PRINT "STUDIES TO DETERMINE WHY ACCIDENTS OCCUR IT WAS LEARNED
PRINT "THROUGH THESE STUDIES THAT A PHYSICAL CYCLE OCCURS EVERY"
PRINT "23 DAYS, AN EMOTIONAL CYCLE OCCURS EVERY 28 DAYS. AND AN"
PRINT "INTELLECTUAL CYCLE OCCURS EVERY 33 DAYS"
PRINT
PRINT "PLEASE TYPE YOUR BIRTH DATE USING THE FOLLOWING FORMAT "
PRINT "MM,DD YY EXAMPLE JANUARY 17, 1942 01,17.42"
INPUT M, D, Y
PRINT "AT WHAT DATE ARE YOU INTERESTED IN BEGINNING BIORHYTHM"
INPUT M1, Dl, YI
PRINT "HOW MANY DAYS DO YOU WISH TO HAVE PLOTTED,
INPUT D2
DATA 31. 28 .31,30,31,30,31,31,30,31,30,31
REM M= MONTH, O -DAY, Y YEAR
REM 03TOTAL NUMBER OF DAYS ELAPSED
D30
IF M 2 THEN 200
IF INTIY/41.IY041 0 THEN 200
D3.1
FOR 1.1 TO 12
READ TIII
REM T -DAYS IN EACH MONTH
NEXT 1

D3TIMI.D4D3
FOR 14M41 TO 12
D3.71114133
NEXT I

REM Y3- YEAR COUNTER FROM BIRTH TO DISPLAY
Y3Y
Y3Y3.1
IF Y3 .Y1 THEN 400
IF INTIY3 /41.IY3,41 0 THEN 320
03.03.365
GOTO 299
D3.D3.366
GOTO 299
IF M1.2 THEN 450
IF INTIY1 /41.IY1 41 0 THEN 450
03D3.1
FOR l'1 TO M1 1

D3= TIII.D3
NEXT
13331.D3
PRINT "PHYSICAL CYCLE P"
PRINT "EMOTIONAL CYCLE E"
PRINT "INTELLECTUAL CYCLE I"
PRINT
PRINT
PRINT
PRINT "DATE ";
PRINT TAB1131, "DOWN ".
PRINT TAB1351, "CRITICAL ".
PRINT TABI631, "UP"
PRINT "

LET M4 Ml
LET D4-D1
LET Y4 Y1
REM M4.D4,Y4 DATE PRINTED OUT IN PLOTTING CHANT
LOTO 580
REM FFRACTION INTO CYCLE
F 1031231.INTID31231
REM X THE ARGUMENT FOR THE SINE FUNCTION
X F'2'3. 1416
REM PTHE PHYSICAL POSITION ON THE GRAPH
P= IISINIX /011'241.15
REM E EMOTIONAL POSITION ON THE GRAPH
F ID31281INTID3.281
X F'2'31416

0680 E.IISINIXI11'241.15
0690 F 1133,331 INTID3 /331
0700 X F2'31416
0710 REM I. INTELLECTUAL POSITION ON THE GRAPH
0720 I IISINIXI'11'241415
0727 FOR X =1 TO 32
0728 SS12X 1,2XI " "
0729 NEXT X

0731 SS139,391 - ""
0732 SSIP PI"P"
0733 SSIE,E1 -"E"
0734 SSII,II "1"
0735 SS13,31 "/"
0736 SS16.61 "I"
0741 SS11,21= NSIM4'2.1 M4.2.21
0742 SS14,51NS(D4. 2. 1,04' 2.21
0743 IF Y . 99 THEN 950
0744 5SI7. 71- NSIIINTIY/1012.21,IINT(Y;101.2.211
0745 SSIB,BI- NSIIY4.INTIYI101 101'2.2.IY4 INTIY4 101'101'2.21
0746 PRINT 5011.631
0747 PRINT
0748 IF D2 -1 THEN 1000
0750 D2D2.1
0800 D3 -D31
0810 D4 =D4.1
0815 IF M4,. 2 THEN 820
0816 IF 040 29 THEN 820
0817 IF INTIY4 /41 IY4 /41'. .0 THEN B20
0818 GOTO 570
0820 IF D4 TIM4I THEN 570
0630 M4 M4.1
0835 04 =1
0840 IF M4 .12 THEN B70
0850 LOTO 570
0870 M4 -1
0880 Y4Y4.1
0900 LOTO 570
0950 Y= YIINTIY4/1001'1001
0951 LOTO 744
1000 END

Figure 2: BASIC Program
of the Biorhythm Calcula-
tor. This is the complete
listing of a BASIC program
to perform calculations
and plot the results on a

hard copy printer.

324

Lines 0200 through 0230 fill the array T

with the values in data statement 0080 so

that the array contains the number of days

in each month of the year. Line 0240
calculates the number of days from the

subject's birth date to the end of his first
calendar month, and adds that number to
the running total in D3. Lines 0250 through
0270 calculate the number of days in each

month during the remainder of the subject's

birth year, and add that number to the

running total.

The birth year, Y, is transferred to the

year counter Y3, and the year counter is

incremented at line 0299. If the year count-
er is greater than or equal to the year to be

printed out, Y1, then the program jumps to

line 0400. Otherwise, the program adds 365

or 366 to the running total for each year
between birth and the target year. Each time
that is done, the year counter is incre-

mented. When it matches the printout target
year, the program jumps to line 0400.

Next the program calculates the number
of days between the start of the display year

and the display day. If the display month is

March or later, then the program checks if
the display year is a leap year. If it is, one
day is added to the running total at line
0410. Lines 0450 through 0460 add the
number of days in each month between the
start of the display year and the display
month to the running total D3. Line 0470
adds the number of days into the display
month to the running total. D3 now con-
tains the age of the subject in days, as of the
requested display date.

Lines 0475 through 0526 print the head-
er of the graph. Lines 0530 through 0571 set

up three new variables, M4, D4, and Y4,
which will contain each consecutive date as

it is printed out.

Now the program calculates the phase of
each of the three biological cycles for the
subject for the dates requested. The physical
cycle has a period of 23 days. If you divide
the age of the subject in days by 23, the

remainder is a number between 0 and 22.9.
That remainder is proportional to the phase

of the subject's physical cycle at the

requested date. The remainder is stored in
variable F at statement 0580. F is then
multiplied by two pi radians and the answer
is stored in X. X is therefore a number
between zero and two pi and is proportional
to the phase of the subject's physical cycle.
Line 0650 takes the sine of X. The result is a

value between +1 and -1. This number is

then normalized to a value between 15 and
63 and is stored in P. The values 15 and 63
represent the beginning and ending column
numbers of the graph on the Teletype.

Extreme down days will plot in column 15.
Extreme up days will plot in column 63.
Critical days will plot in column 39, and
other days will plot in between these points.

The same calculation is then repeated at
lines 0660 through 0680, with a period of
28 days, for the emotional cycle; and at lines
0690 through 0720, with a period of 33
days, for the intellectual cycle. Lines 0727
through 0729 loop to fill up the string S

with blank characters, to wipe out old data
still in the string. Line 0731 places a dot
character in element 39 of the string, so that
the zero crossing will be clearly marked by a

string of dots down the 39th column of the
page. Line 0732 stores the character "P"
into the column calculated by the equation
for the physical cycle. Lines 0733 and 0734
do the same for the characters "E" and "I ".
Next the program places slashes in elements
three and six of the string S, so that they
will print out as slashes in the date at the left
of the graph.

The month is placed in array elements
one and two and the day is placed in
elements four and five. If the operator typed
the year as a four digit number, the program
truncates the most significant two digits.
Line 0744 places the ten's digit of the year
into element seven of the string and line
0745 puts the unit's digit of the year into
element eight.

The string S is now ready for printing.
Line 0746 prints elements one through 63
across the output device page as a month,
day, year, a dot at column 39 and the letters
"P ", "E" and "I" in appropriate positions.
Line 0747 causes the typewriter to double
space so the graph is easier to read.

If the number of days left to print, D2,
has been reduced to one, then the program
exits. Otherwise, D2 is decremented by one,
and the age of the subject in days is

incremented by one.
The date in the month, D4, is incre-

mented and the program checks if the day to
be plotted is February 29 of leap year. If it
is, the next day's data is plotted. If it is not
February 29 of a leap year, then the number
of days in the month is checked against the
maximum number of days in that month as

defined in table T. If the day in the month,
D4, is too large, it is reset to one and the
month is incremented. If the month has

been incremented to 13, it is reset to one
and the year is incremented. The program
prints the next day's data and keeps looping
till all the requested data has been printed.

This program has an unusual application
that you may not yet have considered: enter
the birth date of your computer, and predict
when your cybernetic monster plans its next
bomb out!!!

1(' VOL' WISN AN INTRI'llY'T11N 711 NIUPHYTHMT 7VPF I FOP YkSOP n FOP NO.
TI

MIDPHYTHM

THE PURPUSF OF HI('PNYTNM IS TO PRFI'11:T A PHYSICAL.
FMOTIINAL AND INTFLLFI'.TUAL PATTEFIN THAT INI'1C.ATFS YI1E'R

LV AN l' DOWN DAYS 1.0M ANY PF RIM) Di T1 MF. PIORHYTNM CAN
DIOW WHICH DAYS WERF WHIP UP PAP FOP v(ll' Hk4INNINO WI TN

YOUR MIMTN. IT CAN AI.SU SHOW VOl' WNIIN FITIRk.
DAYS WILL MF C.U(lU UR HAU 1.0H
TNFSF PRIM CTI ori S PRF HASkU (N SCIFNTIFIL
STll'IkS TU I4TERMINE HY AC(:114NTS OCI:I:R IT WAS LEAPNkD
THROUGH THE SF STUOIFS THAT A PNYSI(AL I.yCLF OCCURS F'+kRv
23 DAYS. AN kMl'TIMAL (:Y(:Lk DC(UPS 'VERY PA DAYS,. INI' AN

INT ELL FCTCAL IvI.LE Ul:1.1.1.S DE MY 33 DAYS.

H.FASF TYPE YI'CP 1411.TH VATS I SING. THE E1l.LISIING FOMATI
MMl'l'W. F%AMTLF, .IANI ANY 17. IV AP Ob. 17.42
TOG 17.42
AT WHAT UATE AWE YOU INTERF STEU IN HE111NNING RI('PHVTNMT
711. 25.75
HOW M/WY IMPS DO YOU WISH TO HA "F PLOTTEL'T
TOO
PHYSICAL CYCLE

P MOT IIN AL CYG.I.F F
INTELLECTUAL CYCLE I

UATE. Di NM

11/2ynS

11/2h/75

II/27/7S

11/2H/75

11/PY/7S

1I/30/75

12/OI/75

12/02/7 S

12/1':1/7 S

12/04/75

12/05/75

12/0h/75

12/07 /7 5

12 /0M /7 5

1%/014/75

12/ 110/7

IP/II/75

12/12/75

IP/I:1/75

12/14/7!

12/15/75

12/1h/75

12/ 17 /7

12/1X/75

12/1V/75

12/'lU/75

12/21/75

1P/PP/7S

I2/23/75

12/24/75.

12/2S/7 S

12/Ph/7S

12/27/7.`

IV/2H/75

12/PO/7S

12/30/75

12/31/7 5

01/0I/7h

01/02 /7 h

01/03/7h

CRITICAL VP

P

V

n

P

EV

1 I

. P

P

F I

E

P F I

! 1 V

P

F. P

V

D

I1 P

IP

P 1

IF

I

I P

P

P

Figure 3: Output of the Biorhythm Calculator. Here is a listing of the output
of the program found in figure 2. In this case, the introductory text was
printed prior to entering the parameter definition sequence.

325

LIFE
Line

by
Carl Heinters
Editor, BYTE

Games played with
computer equipment

are applications of value
above and beyond the
momentary "hack" value of
putting together an
interesting program. The
creation of a game is one of
the best ways to learn about
the art and technique of
programming with real
hardware and software
systems. LIFE Line concerns
a game - the Game of LIFE,
originated by Charles Conway
and first publicized by Martin
Gardner in Scientific
American. The Game of LIFE
serves as the central theme of
LIFE Line - a well defined
application of the type of
hardware and software which
is within the reach of BYTE
readers. The description of
the LIFE application is the
"down to earth" goal of
LIFE Line. However, I have
an ulterior motive as well -
LI FE Line is a very
convenient and practical
vehicle for teaching ideas
about program and system
design which you can apply
for your own use. Even if you
never implement a graphics
output device and interactive
input keyboards, you can
gain knowledge and improve
your skills by reading and
reflecting upon the points to
be made in LIFE Line. The
LIFE application also has the
side benefit of illustrating
some techniques of

interactive visual graphics
which can be used much
more generally.

The Starting Point

In developing a system, it
always helps to know what
you want to do! The ability
to pin down a goal for a

programming effort - indeed,
any effort you make - is one'

of the most important tools
of thought you have available
(or can develop) in your
personal "bag of tricks."
Goal setting does not
necessarily mean a complete
and detailed description of
the result - the feedback
from the process of reaching
the goal can often modify the
details. Goal setting means
the setting of a standard in

your mind - and on paper -
of what you want to
accomplish. This standard is

used to evaluate and choose
among alternatives in a

methodical approach to a

system which meets that
standard.

How to Get From Here to
There

The goal of LIFE Line isa
hardware /software system
which enables the home brew
computer builder such as you
or me (the "byter ") to
automate the game of LIFE
using relatively inexpensive
equipment. It's appropriate
here to give a preliminary
road map of the course LIFE

326

Line will take, as an

illustration of the first steps

in the development of a

complicated system ...
1. The facts of LIFE.
Defining the rules of the

game and its logical
requirements always helps -
after all, I would not want to
confuse it with chess, poker
or space war!

2. What do I need to
implement LIFE? Once I

know the rules, my next
problem is to sketch the

hardware and software
requirements for a reasonable
implementation.
3. Programming. Given the

necessary hardware, the
biggest lump of effort is the
process of programming the
application. Some parts of
this lump include ...

-Control flow:
Outlining the major
pieces of the program
and their relationships.

-Partitioning: A well
designed system is

simple! But how can

the desired simplicity
be reconciled with
"doing a lot." One way
is to partition the
system into pieces.

Within each piece, a

further partition
provides a set of
sub -pieces and so on.
Each piece of the

program is thus kept at

a level of relative
simplicity, yet the

whole system adds up

to a quite sophisticated
set of functions.

-Coding: With the
application design laid
out in some detail, the
program must be coded
and debugged for a

particular computer.
The result could be a

series of octal or
hexadecimal numbers
for your own
computer, or a high
level language program
which can be translated
by an appropriate
compiler.

A

A live "cell" is a dot on paper.

What Are The Facts of LIFE?

Ask a biologist the
question "What are the facts

of life ?" and you will get one
answer; ask a "byter" and
you'll get the "real" answer -
an evolution algorithm used

to generate the placement
and "cell" content of a

square grid given the previous
state of cells in the grid. The
inspiration of the game is a

combination of modern
biology, the concept of
"cellular automata" in

computer science and the
pure fun of mathematical
abstractions. In making a

computer version of the
game, the simplest approach
is to think of a group of
individual "bits" in the
computer memory - with
your thoughts assigning one
memory bit to each "square"
of the grid. (The hand
operated form of the game

algorithm uses graph paper
for the squares in question.)
If I have a place in memory
which can store one bit, it

Fig. 1. Three views of LIFE: (a)
on paper; (b) in memory; (c) on a

display.

B 0000000000000
00000000000000

000000000000000
0000000000000000
0000000000010000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
A live "cell" is a "1" bit in
memory.

can have a value of logical
"zero" or logical "one ".

The LIFE game treats each
location of the grid (its
"squares ") as a place where a

"cell" might live. If the place
is empty, a logical "0" value
will be used in the computer
memory; if the place is

occupied, the "cell" will be

indicated by a logical "1"
value. The rules of the LIFE
algorithm are defined in

terms of this idea of a "cell"
(logic 1) or "no cell" (logic 0)

at every point in the universe
of the grid. Fig. 1(a)
illustrates a single live cell on
a section of graph paper as I

might record it when I work
out the LIFE process by
hand. Fig. 1(b) shows a

similar section of the
computer memory in which
bits ("0" mostly, but "1" for
the cell) stand for the content
or lack of content of a square
on the grid. Fig. 1(c) shows a

third view - the output of a

program which puts the
computer memory bits of the
grid onto a graphics display.

Look again at Fig. 1(a).
The "cell" on the graph paper
grid is a black dot placed in
some location. Count the
number of graph paper
squares which directly
surround the live "cell"
location. There are 8 possible
places which are "nearest
neighbors" to the place held
by the live cell. Similarly, if
you pick an arbitrary square
on the graph paper, you can
count up its nearest neighbors
and find 8 of them also. The
rules of the LIFE algorithm
concern how to determine
whether to place a "cell" in a

particular square of the grid
for the "next generation ",
given the present content of
that square and its 8 nearest
neighbors.

What are the properties of
a specific grid location of the
game? I've already mentioned
its binary valued nature (it
has a "cell" or it doesn't) and
its neighbors. One more
property which is crucial to
the game of LIFE is that of
the "state" of its 8 nearest

327

A live "cell" is a point of light on
a graphics display.

neighbor squares. For LIFE,
the "state" of the neighbors
of a grid location is defined as

"the number of occupied
neighbors." In the examples
of Fig. 1, the "state" of the
grid location with the live cell
is thus "0" (no neighboring
cells), and the state of any
cell location which touches
the single live cell's location is

"1 ". If I were to fill the
entire graph paper or its

memory equivalent with live
cells, the state of any grid
location in the middle would
be "8 ".

Stated in words, the rules
of the LIFE algorithm
determine the content of
each grid location in the
"next generation" in terms of
its present content and the
state of its nearest neighbor
grid locations. The rules
divide into two groups
depending upon the present
content of the grid location
whose "next generation"
value is to be calculated:

Fig. 2. (a) A "glider" generation 4th. (b) Examining location "Z" and its

nearest neighbors. (c) What has to change for generation #n +1. (d) The

second phase of the glider (generation 41+1).

A

c

Rule 1. LIVE CELL
LOCATIONS. If the location
to be evolved has a live "cell"
at present ("this generation ")
then,

1.1 Starving for
Affection. If the
location to be evolved
has a state of 0 or 1,

there will be no cell at
the location in the next
generation. Metaphori-
cally, if the cell has

only one or no nearest
neighbors it will die out
for lack of interaction
with other members of
its species.
1.2 Status Quo. If the
location to be evolved
has a state of 2 or 3,

the present live cell will

live into the tomorrow
of the next generation.
1.3 Overpopulation. If
the location to be

evolved has a state of 4

thru 8, there will be no
cell at the location in
the next generation.
Metaphorically, the cell
has been crowded out
by overpopulation on a

local basis.
Rule 2. EMPTY
LOCATIONS. If the location
to be evolved has no live
"cell" at present ("this
generation ") then,

2.1 The Sex Life of
Cells. If the location to
be evolved has a state
of 3, a new cell will be

"born" in the formerly

empty location for the
"next generation."
Metaphorically, the
three neighboring
"parent" cells have

decided it is time to
have a child.
2.2 Emptiness. If the

location to be evolved
does not have three
cells in neighboring
locations, it will remain
empty.

This is the simplest set of
rules for the LIFE algorithm,
a version which will allow
you to begin experimenting
with patterns and the
evolution of patterns. More

complicated extensions can

be made to provide an actual
interactive (two people)
competitive game version; an

interesting variation I once
implemented is a LIFE game
with "genetics." In the
genetics variation, each grid
location (graph paper square)
is represented in the
computer as a "character" -
an 8 bit byte - of memory.
The character in the square is

the "gene" pattern of that
cell. Then, when rule 2.1 is

implemented, LIFE with
genetics uses a set of genetic
evolution rules to determine
which character will be put in
the newborn cell based upon
the "genes" of the parents.
(This genetic evolution
program for LIFE was

written for my associates at
Intermetrics, Inc., as a test
program to try out a new
compiler's output.)

a "glider" for reasons which

will become clear a little bit
later in this article. The glider

pattern of Fig. 2(a) consists

of the five cells indicated by

black dots, and their
positions relative to one

another. I have also indicated
a dotted line in all the

illustrations of Figs. 2 and 3

as a fixed reference point in

the grid.
The algorithm for evolving

one generation to the next is

illustrated for one grid

location in Fig. 2(b). The

LIFE program will examine
each location in the grid one

by one. This examination is

used to figure out what the

content of the cell will be in

the next generation according
to the facts of LIFE. Since

these facts only require
knowledge of the given grid
location Z and its 8 nearest

neighbor locations, Fig. 2(b)

depicts a box of 9 squares

including Z. The rest of the

universe is shown shaded. To
determine what grid -space

location Z will be like in the

next generation, the LIFE
program first counts up the

live cells in all the
nearest -neighbor positions.
The count is the "state" of Z.

In this case there are 3 live

cells on the top edge of the

box containing Z. Then, the

program chooses which rule
to use depending upon

whether or not location Z has

a cell. In this case, Z is empty
so the "empty location" set

of rules (numbers 2.1 or 2.2)
is used. Since the state of Z is

3, rule 2.1 applies and a cell
will be born in location Z for
the next generation.

Now if I had a true
"cellular automaton" to
implement the LIFE
program, all grid locations
would be evolved
"simultaneously" - and very
quickly - in the computation
of the next generation. In

point of fact, however, I have

How Do You Use The Facts of
Life?

To illustrate the facts of
LIFE, a hand -worked
example is a valuable tool of
understanding. Consider a

"typical" pattern of LIFE as

shown in Fig. 2(a). Fig. 2(a)
shows what LIFE addicts call

328

a computer which can only
handle 8 (or 16) bits at a time
which are stored in words of
memory. For small
microcomputers, these bits
for the LIFE grid will be

stored as "packed" bit strings
and will be accessed by a

series of subroutines which
will be described in LIFE
Line when the time comes.
have to sequentially look
at every bit of the internal
LIFE grid of the program and
examine its old nearest
neighbors in order to
calculate its new value. I

emphasize old for the
following reason: if I store
the new value of the grid
location just evolved back
into that location with no
provision to recall its old
value, I'll end up with a

mixture of old and new data
when I look at the next grid
location in the row. That
mixture is not part of the
rules and constitutes a

"faulty" program for
evolution. It turns out to be

sufficient to remember all the
data in one previous row
before it was changed in
order to calculate the next
row after the change. Similar
problems of keeping track of
partially updated data often
occur in computer
programming, to be solved by
the identical technique of
temporarily remembering a

copy of the un- updated data.

In Fig. 2(c), the result of
examining all the grid
locations in the vicinity of
the glider of Fig. 2(a) is

illustrated. The changes are

indicated by three notations
for cells:

Generation "n +1 " of the grid
of LIFE is illustrated in Fig.
2(d), which was obtained by
"executing" the changes
noted in Fig. 2(c). When the
LIFE program is run, all this
is done automatically for
each point in the grid -
resulting in a new generation
as soon as the computer can
complete all the calculations.
The patterns will be seen to
"evolve" in real time as new
generations are calculated and
sent to the scope output. One
"dot" on the scope display
corresponds to each live cell
of the grid pattern. Fig. 3,

(a), (b) and (c), continue the
pattern evolution illustrated
in Fig. 2 for the "glider ". In
Fig. 3(a), changes to
generation n +1 are indicated
with the same notation as was

used in Fig. 2(c). The
resulting generation n +2
pattern is shown at the right.
Fig. 3(b) shows the changes
from generation n +2 to
generation n +3, and 3(c)
shows the change going to
generation n +4.

One of the most
interesting features of the
LIFE game is the evolution of
patterns which "move" across
a graphics display device.
With a fast enough processor,
a glider such as the one used
in this example will "glide"
to the loner right of the
screen at a breakneck speed,
going off into limbo at the
edge - or if the program is

0 - this indicates a new cell generated
by rule 2.1 - this indicates an old cell which dies
by rules 1.1 or 1.3
- this indicates an old cell which is

retained by rule 1.2

sufficiently "smart ",
reappearing elsewhere on the
screen due to a "wrap-
around". The reason that the
glider gets its name is because
of its motion attributes. Note
now the fourth generation
("n +4 ") in the sequence
repeats the original glider
pattern, but has moved one
unit along a diagonal of the
LIFE grid toward the lover
right. (The reference line
shows this movement.) It
took four generations for the
glider pattern to regenerate
its original form, which
defines the "period" of this
pattern. When you get your
graphics interface up and
running, you will find
numerous other classes of
patterns, some of which have
periods which run into

hundreds of generations.
There are also other forms of
moving patterns similar to the
glider.

What Do I Need to
Implement LIFE?

The fun part of LIFE is to
experiment with patterns of
cells and observe how the
evolution from generation to
generation changes with
patterns and classes of
patterns. In the lexicon of
LIFE lovers, there are whole
classes of "gliders ", "space
ships ", "blocks ", the
"blinkers ", "beehives ", the
"PI" and other patterns.
You'll be able to set up initial
configurations of these and
other patterns, and observe
the course of evolution using
the hardware /software system

Fig. 3. (a) Third phase of the glider. (b) Fourth phase of the glider. (c)
Back to the first phase, but displaced!

329

O
GENERATION N +1

B

, O

GENERATION N+2

11.1011110 O
GENERATION N +3

y - !
-1-4

.11--

+.1.

J
GENERATION N+2

GENERATION N +3

GENERATION N+4

Fig. 4. The LIFE grid display with cursor detail (showing suggested pattern).

64

positions

concepts of LIFE Line. The
hardware requirements of this
application's first simple form
are three:
1. An input method. The best
all around input you can get
for your computer is an

ASCII encoded typewriter
keyboard. This hardware will
be assumed, with 7 -bit ASCII
codes used in the examples of
programs. I f you feel like
embellishing the program
with special hardware, a

"paddle" with several keys

can be wired in parallel with
your main keyboard to
control the special functions
of the LIFE program. The
input keys used to control
the display will require a

keyboard which can detect
two simultaneous (or three)
keys being pressed. A normal
ASCII encoded keyboard
with an LSI encoding chip
will not work "as is" in this
application since pressing two
keys (other than control or
shift and one other) will be

resolved into two characters.
An alternate "paddle" type
of arrangement is to use a

single input port with one

64 " x " positions

switch key switch for each bit
of the port, debounced by

software. A keyboard which
is encoded by a diode matrix
can be used since the diode
matrix will give a new code

(logical sum) based upon
which keys were depressed.

2. A processor. The game can

be implemented on any
conventional computer. As a

measure of capacity,
however, the simple form will
assume a 64x64 bit array for
the playing field, and an

available home brew
processor such as an Intel
8080 (i.e.: Altair), Motorola
6800, or National PACE. The
total programming capacity
of your memory should be

roughly 4000 8 -bit words, or
2000 1 6-bit words; the
playing field will require 512
8 -bit words, or 256 16 -bit
words - and programming
will include a set of
subroutines to access
individual bits.
3. A display. My first version
of LIFE was implemented on
a PDP -6 in FORTRAN at the
University of Rochester when
I was a student. That program

used a direct link out to a

DEC Scope controlled by a

PDP -8 - with a teletype for
input. I have since
implemented life programs
using character -oriented
terminal output and line
printers.

The display to be used for
LIFE Line purposes I'll leave

undefined in detail, but with
the following characteristics:
It should have an X -Y
selection of coordinates for
display elements (LIFE grid
locations), which can be

individually controlled. Its

size will be assumed 64x64.

A Note Regarding Speed

The LIFE algorithm to be

illustrated in LIFE Line is

optimized fairly well for
speed - a requirement which
will become obvious in the

context of your own system
if you use a typical
microprocessor. With a fairly
large pattern of cells, it may
take as much as a minute or
more to compute the next
generation. Trading off
against speed is memory size

330

(x,y) designated
by cursor

- use of a packed bit
structure is necessary if the

matrix and programs are to
fit in a micro computer which
is inexpensive. But the

packed bit structure requires
time to access bits (eg: the

shift /rotate instructions
several times might be used in
the access process). I predict
that the program will be

"dreadfully slow" if run on

an 8008, and perhaps
passably quick if you use a

6800 or 8080. ("Passably
quick" means under 10

seconds per generation.) A
used third -generation mini
(high speed TTL) would be

ideal.

User Features

No application is complete
without taking into
consideration the user of the

system. The interface which
controls the system is an

important section of the
design. There is a temptation
on the part of individuals
such as you or I to say words
to the effect: "Since I am

making it for me, who the
heck cares about the user

interface." But! Removing
the system from the working
product realm to the purely
personal realm does not
eliminate the need to design a

usable system. You have at
least one user to think of -
yourself! In point of fact,
however, I doubt that any
reader who builds a scope or
TV graphics interface will be
able to resist the temptation
to show it off to his or her
family and friends; so, even
for "fun" systems,
consideration of users is still a

major input to the design.
The user interface for the

LIFE program will provide
the following functions to
enable a pattern to be drawn
on the screen and initiated:

1. Cursor. The display
output should provide a

"cursor" which is maintained
all the time by a subroutine
in the software at a given "X"
and "Y" position of the
matrix. Fig. 4 illustrates the
point matrix of the screen
(here assumed 64x64) and
the cursor pattern. The cursor
is a visual feedback through
the display to the user of the
LIFE program, illustrating
where the program will place
or erase information. Fig. 4
shows a blow -up of one
possible cursor pattern.

Two additional features
are required for a useful
cursor output of the program
for LIFE. These are:
- A blinking feature.
Suppose you have filled the
screen with a complicated
pattern drawn with the cursor
controls described below. A
significant number of the
screen points are now filled
with dots - and there will be

a strong tendency to confuse
the cursor pattern of Fig. 4
with the actual data pattern
you have entered. A "blink"
feature can be built into the
programs which create the
cursor so that you will always
be able to distinguish it by its
flashes.
-A blanking feature. For the
LIFE game, a necessary
attribute of cursor control is

the ability to blank out the
cursor during the actual
evolution of patterns. I

consider this necessary due to
observation of a

demonstration LIFE program
for one desk top
programmable CRT terminal:
its cursor is always present
and mildly annoying when
the LIFE game is in
operation.

A basic way to make the
cursor disappear from view at
certain times is to require
active control by cursor
display routines when the
program is in its input mode.
If the LIFE program leaves

the input mode to go evolve
some patterns, the cursor will
die a natural death until the
active maintenance is
resumed on return to the
input mode.

2. Cursor Control. The
whole purpose of the cursor
is to provide a means of
feeding back to you - the
user - the current grid
location the LIFE program is

pondering. Movement of the
cursor provides the
opportunity for three types
of data entry to the program:
- Positioning of the Cursor.
By simply moving the cursor
under control of the
keyboard (see below) you can
direct the LIFE program's
attention to different parts of
the screen.

- Sowing Seeds of LIFE. By
moving the cursor while
indicating a "birth" function,
the cursor will leave a trail of

Birth - the cursor leaves a path of "cells," illuminated points.

Death - cells in the cursor's path are eliminated.

"cells" indicated in the
display by illuminated points.
(One keyboard key is

required for this function.)
- The Grim Reaper. By
moving the cursor while
indicating a "death"
function, any cells in the path
of the cursor will be
eliminated, by turning off the
corresponding display point.
(One keyboard key is

required for this function.)
Motion control is also used

to enter data. By picking a

data key and at the same time
depressing one or two of the
cursor direction keys, a

"trail" will be left. A timing
loop in the input program
will be used to set a

reasonable motion rate in the
X (horizontal) and Y
(vertical) directions, so that
the data entry will be
performed automatically as

long as the keys are
depressed. The motion
control keys and useful
combinations are illustrated
in Fig. 5.

3. Program Control
Commands. This is the
section of the LIFE program
design which is the software
analog of the "backplane"
data bus concept in a

hardware system. LIFE Line
concerns a modular LIFE
program which will be subject
to many variations and
improvements.

331

3.

KILLING TWO BIRDS WITH ONE STONE, or "HOW I

DESIGNED A GENERAL INTERACTIVE GRAPHICS

SOFTWARE INITIALIZATION PACKAGE IN THE GUISE

OF A SPECIFIC APPLICATION.

The ideas contained in this article are by no means limited

to control of the graphics display type of device in the LIFE

context used for this application. The only necessary

connection between the LIFE program proper and the display

"drawing" and updating functions is in the existence of several

subroutines needed to turn on /turn off selected points, and

the ability of the display input ("drawing ") routines to call the

LIFE program. One logical extension of the program control

mechanisms to be included in LIFE Line is to allow the

invocation (ie: activation, calling, etc.) of other programs and

games which use the display.
When the "drawing" routines are up and running, even

before you hook up the LIFE algorithm proper, you'll be able

to manipulate the contents of the scope under software

control and draw pictures on the screen.

Fig. 5. Cursor motion control commands.

The following commands (one key on your keyboard for each) are used to simply move the cursor in one

of the grid directions at a rate set by the cursor control software:

Typical "Key Tops'

or

or

or

or

Move toward top of screen.

Move toward bottom of screen.

Move left on the screen.

Move right on the screen.

The following combinations can be used to achieve motion in diagonal directions:

Toward Upper Right Corner - PRESS

Toward Lower Right Corner - PRESS

Toward Lower Left Corner - PRESS

Toward Upper Left Corner PRESS

AND

AND

DOWN J AND

AND

RIGHT) AT THE SAME TIME.

AT THE SAME TIME.

AT THE SAME TIME.

AT THE SAME TIME.

Remember that all eight of these possibilities can be used to "sow the seeds" or erase data if the

appropriate data key is pressed simultaneously.

332

The first demonstration of
LIFE in these pages is just the

bare bones of a LIFE
program. When it is fully
described you will see the

input display routines, the

evolution algorithm, the

program control mechanism
and little else. The program
control mechanism, however,
is quite general and will be

used to integrate additional
commands, variations on

LIFE, etc. The means of

achieving this modularityis a

set of "hooks" which enable

you to add commands
beyond the bare minimum by

coordinating new modules
with the program. The

following is a minimum set of
program control commands

for the first version:
RUN -a key assigned to this

function will terminate the

input ("drawing ") mode, and

begin the "run mode."
DRAW - a key assigned to
this function will be tested
during the "run" mode to
cause a return to the "draw"
mode.
CLEAR - a key assigned to
this function will be used to
clear the screen in the
"drawing" mode, leaving only
the cursor and a blank screen.

The above features are

only a minimum set of user

controls for LIFE. Additional
program control commands
which will prove invaluable
when added include:
SAVE /RESTORE -
commands to write and read

LIFE patterns on cassette

tape or other mass storage

device in your home brew
system.
INITIALIZATION -
functional key entries for the
generation of various
"standard" LIFE patterns
placed at the current cursor
location.

Next month, LIFE Line
will enter into the realm of
software design to describe

the LIFE program software in

more detail.

LIFE Line Glossary.
Communication of meaning requires definition of terms. The following is a listing of selected terms used

in LIFE Line with short explanations. The terms which are marked "L" are primarily significant only in the
LIFE application - all others are fairly general terms.

"Active Control" - in the LIFE example, a desired
requirement for the cursor is that it disappear
automatically if not continually refreshed. This can
be accomplished in software by instituting a
"garbage sweeper" for the screen which clears the
screen memory periodically and updates from the
latest non-cursor sources of data. Normally, the
cursor control /display subroutine would be called
after the screen is updated - but if the cursor
control routine is not called, the cursor will be
absent after garbage sweeping. The cursor is thus
said to require "active control" because it must be
explicitly posted on the screen following the
garbage sweeping operation if it is to appear at all.
(L)

"Algorithm" - this term has a formal mathe-
matical origin as the generalized methodology for
arriving at some result. In the computer science
area, it retains this definition: an algorithm is the
most general processing required to achieve some
result. "Algorithm" is a term which includes the
term "program" in the following sense: a program
is an algorithm (general) as written and coded for a

specific system.

"Application" - an application is a specific system
designed to accomplish some goal. In the computer
systems area, applications are generally composed
of hardware and software components which must
"play together" to accomplish the desired func-
tions. The LIFE Line's target -a working game of
LIFE - is an example of an application.

"Backplane Bus" - the hardware concept of a set
of wired connections between identical terminals
of multiple sockets. In modular systems, the
common wiring makes each socket identical to
every other socket. Hardware modules can then be
inserted without regard to position in the cabinet
containing the equipment.

"Cellular Automata" - conventional computers
employ a serial or sequential method of processing.
One instruction, then the next, is executed in a

timeordered sequence. The "cellular automata"
concept is one way of visualizing large and compli-
cated parallel computing elements. Hypothetically,
the LIFE game could be played by such a cellular
computer, one which calculates each matrix
element simultaneously. In the present state of
computer technology, this is not possible, so you
have to settle for a simulation of the parallel
computation's result, using a serially executing
program.(L)

"Coding" - the process of translating a functional
specification of a program or routine into a set of
machine readable elements for actual use in a

computer. Coding can mean writing FORTRAN
statements, writing PL /1 statements, writing
assembly language statements, or ... if you have
no compiler, coding is the writing of machine
codes directly onto a sheet of paper using tables of
op codes, an eraser and patience.

"Cursor" - a mark on a display screen used to
identify a particular place. This interpretation is an
electronic adaptation of the standard definition in
Webster.

"Evolution" - patterns in the game of LIFE
change from generation to generation according to
the rules. The sequence of such changes can loosely
be called the evolution of the pattern.(L)
"Feedback" - in the context of system develop-
ment, feedback is the use of observed system
behavior to modify and improve the design of the
system.

"Functional Specification" - a functional specifi-
cation of a system is one which describes "what"
the system must do, more or less independent of
any technology which is required to make the
"what" work. It is easy to come up with loose
functional specifications - the hard part is to
refine the specification and pin it down to some-
thing which is "do- able" in a given context of
technology. I have a functional specification in my
mind, for instance, of a useful interplanetary travel
method - but whether or not I ever see such a
system depends upon advances in physics,
engineering and economic understanding. BYTE
often concerns itself with functional specifications
of much more "do-able" systems which readers can
and will implement on home computers.

"Generation" - this term in the LIFE context
means the present "state" of all the locations in
the "universe of the grid" at some point in
time.(L)

"Implement" - technical jargon verb for the
creation of a system or element of a system. A
hardware designer might implement a controller or
a CPU; a software programmer implements a
system of programs; a systems designer implements
a hardware /software combination which achieves a
desired functional end.

"Indexing" - the technique of referencing data in
collection of similar items by means of numerical
"indices." In the LIFE Line example, the collec-
tion is that of the 64x64 array of bits in the
computer representation of "grid space." Indexing
by row and by column is used to pick a particular
bit within this array when the program requires the
data.

"Interact" - when a system "interacts" with
"something /person" it is operating under an
algorithm which allows conditional ;.ehavior
dependent upon data. The data is obtained from
the "something/person" and may in fact be
influenced by previous interactions as well as new
inputs. In many computer contexts "interact" has
the additional implication of "quick" response in
"real time." Thus when you think of an
"interactive" terminal or game, you think of a
computer programmed so that it keeps up with the
inputs from the human operator.

333

"Lexicon" - the list of buzzwords in any given
field. This glossary is a subset of a lexicon coupled
with explanations. In compiler and language
design, "lexical analysis" is a derivative of this term
concerned with language keywords and their rela-
tion to a grammar.

"n ", "n +1 " "n+2"... - when it is useful to
specify a sequence of things, where no particular
number is intended, a "relative" notation of the
sequence is useful. "n" is some arbitrary number;
"n +I" is one number Beater than an arbitrary
number, and so on. When I say "generation n +l"
of LIFE, I mean the next generation after
generation "n" where "n" is arbitrary.

A suitable LIFE display peripheral is an oscilloscope
graphics interface such as the Digital Graphic Display
Oscilloscope Interface designed by lames Hogenson and
printed in the May 1975 issue of ECS Magazine, the
predecessor to BYTE. The graphics interface article will be

expanded and published in BYTE No. Z October 1975. Until
supplies are exhausted, back issues of May ECS (and earlier
articles) can be ordered at $2 each. Orders and inquiries
regarding ECS back issues should be sent to M. P. Publishing,
Box 378, Belmont MA 02178.

'Partitioning" - the technique of "divide and
conquer." Rather than view a complicated system
as a monolithic blob of "function," an extremely
useful design method is to partition the system
into little "bloblets" of function which are easy to
understand. Hardware designers of CPUs thus think
of MSI chips as sub-elements in partitioning;
hardware systems designers think of CPUs and
peripherals and memories as sub-elements of parti-
tioning, and software designers consider divisions
of complicated programs and program libraries as
their sub-elements.

"State" - the present condition of some system,
or elements of the system. This term applies to any
system which has "memory" to distinguish one
possible "state" from another. The term applies
equally well to small sub-elements of a system such
as the bits of a memory: in the LIFE Line context,
the "state" of a single grid location is a number
from 0 to 8 counting how many "neighbor cells"
are present.

"System"-the most general of all general purpose
terms. A system is a collection of component
elements (technological, hardware, software,
human -interface) selected to play together accord-
ing to some design or purpose. A system is a
human -invented way of doing things.

"Undefined in Detail" - I know what is needed,
can specify its interface, but am not at present
supplying the detail design. This is a useful attitude
since it allows for "plug compatible" designs
differing widely in their internal principles of
operation. A similar expression would be to call
the subsystem in question (the graphic display
mentioned in this LIFE Line example) a "black
box" and leave it at that. (Software always seems
to reference hardware in this way, and hardware
does the same for software.) A synonym for the
attitude is the mathematician's way of saying "in
principle there exists a solution!" without telling
you what it is.

"Universe of the Grid" - this is the set of all
possible places in which a LIFE cell could be
placed. These places are called "grid locations ".(L)

334

LIFE Line

by
Carl Helmers
Editor, BYTE

What Is This Process -
Designing A Program?

For the readers who are
only just now beginning to
learn the programming of
computers, an elementary
acquaintance with some
machine's language, a BASIC
interpreter, or high level
languages would tend to give
the impression that
programming is
fundamentally simple. It is!

To write a program which
fills a single page of listing -
whatever the language or
machine architecture involved - is not a tremendously
difficult task. When it comes
to more complex projects -
say 1000 or more words of
hand or machine -generated
code on your microcomputer
- the problem is how to
preserve the blissful
innocence of simplicity in the
face of the worldly forces of
complexity.

When you begin to talk
about programs more
complex than a one page

assembly or machine code

LIFE Line I (BYTE #1) presented the general picture of
the LIFE program application of your computer. That picture
includes the rules of the game, methods of interactively
entering graphic data, major software components in verbal
description and some of the hardware requirements of the
game. In this installment, the discussion turns to some of the
program design for the LIFE application. The discussion starts
"at the top" (overall program flow) and works down to more
detailed levels of design, concentrating upon the "evolution
algorithm" which generates new patterns from old patterns.

As in the previous LIFE Line, the goal of the article series is

as much to explain and instruct as it is to elaborate upon this
one particular system. This article concentrates on the
program design process as illustrated by a real LIFE example.

listing of some specialized
service routine or simple
"gimmick" program (see the
Kluge Harp article in this
issue), the complexities and
subtleties of scale begin to
enter into the programming
art. For an application such
as the LIFE program,
proceeding from the vague

notion "I want this
application" to a working
program can be done in
innumerable ways - many of
which will work quite well.
This is the first ambiguity of
scale - where do you head as

you start programming?
Unless you have a unique
parallel processing mind, you
can't possibly concentrate on
the whole problem of
programming at once.

In order to make a big
application program work,
you have to select "bits and
pieces" of the desired result,
figure out what they do and
how they fit into the big
picture, then program them
one by one. These little
pieces of the program - its
"modules" - are like the
multiple layers of stone
blocks in a pyramid. In fact,
defining what to do is very
much like the tip of some
Egyptian tyrant's tomb in the
spring flood ... as the murky
generalities recede, more and
more of the structure of the
program is defined and
clarified. Fig. 1 illustrates the
pyramid of abstractions at
the start of a program design
process. The top layer is clear
- a LIFE program is the
desired goal. The next layer

335

down is for the most part
visible through the obscuring
water. But the details of the
base of the pyramid - while
you know they have to be

there in some form - are not
at all visible at the start. The
design process moves the
logical "water level"
surrounding the pyramid
lower and lower as you figure
out more and more of the
detail content of the
program.

Start at the Top ...
In LIFE Line 1, I

mentioned two major
functions which compose a

practical LIFE program -
data entry and manipulation
is one, the LIFE evolution
algorithm is the second.
Together, these functions
define the "program control"
layer of the LIFE pyramid.
Fig. 2 is a flow chart
illustrating the program
control algorithm which is

the top level of the program
structure. Although the
diagram - and the algorithm
- are extremely simple, they

DESIGN

KEYBOARD
INTERPRETER

ADDITIONAL LAYERS
YET TO BE DEFINED

serve a very useful purpose in
the program design process:
This high level design has split
most of the programming
work into two moderately
large segments, each of which
is less complicated than the
whole program. This view of
the problem now gives us two
major components upon
which to concentrate
attention once the top level
routine is completed. The
program control algorithm of
Fig. 2, elaborated in Fig. 3, is

the "mortar" which cements
together these two blocks of
function.

The LIFE program is

entered by one of a number
of methods. Fig. 2 illustrates
branch or jump possibilities
from a systems program
called a "monitor,"
"executive" or "operating
system" - the preferred way
once you get such a system
generated. If your system
runs "bare bones" with little
system -resident software, you
might select the starting point
and activate the program
through use of hardware

restart mechanisms and a

front panel console.
The first module of the

LIFE application to be

entered is the KEYBOARD_
INTERPRETER, a set of
routines which is used to
define the initial content of
the LIFE grid using

START (JUMP OR
CALL) FROM SYSTEM
EXECUTIVE OR MONITOR, ETC.

interactive commands and the
scope display output. The
KEYBOARD_INTER-
PRETER eventually will
receive a "GO" command or
an "END" command from
the user - whereupon it will
return to the main routine
with the parameters "DONE"

KEYBOARD
INTERPRETER

(DEFINE DATAI

YES

336

RETURN TO
MONITOR OR HALT

Fig. 1. Defining what to do is like
the tip of some Egyptian tyrant's
tomb in the spring flood ... as

the murky generalities recede
more and more of the structure
is defined and clarified . .

and "N" defined. If "N" is

greater than zero, control
flows to the evolution process
- and "N" generations of
LIFE will be computed and
displayed as they are
completed. After the "N"
generations have been
completed, the scope display
and the LIFE grid have the
last completed results. If the
program is not "DONE,"
control flows back to the
KEYBOARD INTER-
PRETER for modification of
the data, clearing the screen
and starting over, or other
operations. If the program is

"DONE" then the control
flows back to the systems
programs - or to a halt point.

This program control
algorithm is elaborated in

more explicit detail in Fig. 3.

Fig. 2. LIFE program flow of
control.

Fig. 3. The main control routine of LIFE specified in a procedure -
oriented language .. .

1 LIFE:

2 PROGRAM;

3 DONE = FALSE;

4 DO UNTIL DONE = TRUE;

5 CALL KEYBOARD_INTERPRETER

DO FOR I - I TO N;

7 CALL GENERATION;

R END;

O END;

10 RETURN; / * TO EXECUTIVE, MONITOR,

11 CLOSE LIFE;

(N, DONE);

OR JUST HALT /

Subroutines Referenced by LIFE:

KEYBOARD_INTERPRETER ... This is the routine which

looks at the interactive keyboard and interprets user actions

such as specifying initial patterns, modifying patterns, etc. N is

defined by the GO command which causes return from this

subroutine to LIFE.
GENERATION ... This is the routine which is used to evolve

one generation of the life matrix and display the result. Since

the entire matrix is kept in software by GENERATION until

after a new matrix has been evolved, there will never be any

partially updated patterns on the scope.

Data (8 bit bytes) used by LIFE at this level:

FALSE - the value "0 ".
TRUE - the value "1".
DONE - variable set by KEYBOARD_INTERPRETER

after a user command (GO) to start execution.
N - a variable set by user interaction in KEYBOARD

INTERPRETER giving the number of generations to evolve.

I - a temporary loop index variable.

... the problem is how
to preserve the blissful
innocence of simplicity
in the face of the wordly
forces of complexity.

Fig. 3 uses a "procedure -
oriented language" (see the
box accompanying this
article) to specify the
program in a more explicit
and compact form than is

possible with a flow chart.
Each line of the program as

specified in Fig. 3 could
potentially be compiled by an
appropriate compiler - but
for the purposes of most
home computer systems,
generation of code from this
model would be done by
hand. The outer loop is

performed by a "DO UNTIL"
construct starting at line 4
and extending through line 9.
The program elements found

on lines 5 to 8 are executed
over and over again until
DONE is found to be equal to
logical 1 or "TRUE" when a

test is made at the END
statement of line 9. A "DO
FOR" loop is used to
sequence "N" calls to a

subroutine called
GENERATION which does
the actual work of computing
the next generation content
and then displaying it on the
scope. The remainder of Fig.
3 summarizes the data and
subroutines referenced by
LIFE.

From this point, the LIFE

Line can extend in two
directions. I n order to have a

complete LIFE program,
both areas have to be
traversed - the
KEYBOARD_INTER-
PRETER and the
G E N E R A T I O N

routine . . .but the
partitioning has nicely
separated the two problems.
The simpler and most
self- contained of the two
segments is the
GENERATION algorithm, so
I'll turn attention to it next.

Grid Scanning Strategies
The GENERATION

subroutines of the LIFE
program has as its design goal
the transformation of one

complete LIFE grid pattern
into the "next" complete
pattern The rules of the
Game of LIFE - the "facts
of life" - must be applied to
each location in the grid to
compute the next value of
that location. Fig. 4
illustrates two potential
strategies for computing the
next generation - methods of
scanning the grid to compute
one location at a time.

The first strategy, Fig.
4(a), is to employ alternate
copies of a complete LIFE
grid of 64 by 64 points. If
generations are numbered
consecutively, the generation
algorithm would transform
copy A into a "next" copy in
B on odd generations, and
complete the cycle by
transforming copy B into a

"next" copy in the A grid on
even generations. Since each
grid requires 4096 bits -
which can be packed into 512
bytes - a total of 1024 bytes
is required for data storage if
this method is used. The
primary advantages of this
method are its "straight-
forward" nature and its
separation of old and new
data at all times.

A second strategy is

illustrated in Fig. 4(b), the
strategy of using alternate
row -buffers with only one

Fig. 4. The LIFE evolution algorithm - matrix scanning techniques
which preserve relevant old information while creating new information
in overlapping storage areas.

A. ODD GENERATIONS

ADVANTAGES
1. STRAIGHTFORWARD.
2. ONLY NEW BITS

ARE UPDATED IN
ALTERNATE MATRIX.

DISADVANTAGES
1. TWO 512 -BYTE R.A.M.

AREAS REQUIRED FOR
64 64 LIFE GRID.

EVEN GENERATIONS

B.

MAIN GRID ROW-BUFFERS ADVANTAGES
1. ONE 512 BYTE LIFE

GRID PLUS TWO 8 BYTE

BITS
BUFFERS.

64 64 OLD DISADVANTAGES 64

BITS CURRENT
1. LESS "INTUITIVE."
2. MOVEMENT OF DATA 64BITS N

TAKES TIME.
3 EXTRA CODE

337

main grid copy. Two 64 bit
rows must be maintained -
the last previous row and the
current row - as 8 byte
copies. These copies contain
information prior to updating
in the row by row scan down
the matrix. The main
advantage is a saving of data
areas (partially offset by
more complicated software).
The main disadvantages are

its less "intuitive" nature, the
extra time required to make
data copies, and a slightly
larger program.

The choice between these
two methods is primarily one
of the amount of storage to
be devoted to data. The
tradeoff is in favor of the
double matrix method when
very small LIFE matrix sizes
are considered. The extra 8

bytes required for a second
copy of an 8 by 8 grid of bits
hardly compares to the
programming cost of the
alternate row -buffer strategy.
When large matrices are

considered, however, the
memory requirements of an

extra copy of the data are
considerable, but the
programming involved is no
more difficult. For example,
consider the limit of an 8 bit
indexing method - a 256 by
256 grid. This will require a

total of 8192 bytes for each
copy of the LIFE grid. Two
copies of the LIFE grid
would use up 16k bytes, or

one fourth of the addressing
space of a typical
contemporary micro-
computer, and all of the
addressing space of an 8008
microcomputer! At the 64 x
64 bit level, the tradeoff is

much closer to the break -even
point, but I expect to find at
least 100 bytes saved as a

result of using the row -buffer
method. An assumption
which is also being made
when the alternate row -buffer
method is used is that the
scope display or TV display
you use for output will have
its own refresh memory so

that the "old" pattern can be

held during computation of

An objective: Split the processing into moderately large

segments, each of which is less complicated than the program

taken as a whole.

the new. If this is not the
case, a less desirable output in

which partially updated
patterns are seen will be the
result. (Counting the CRT
refresh, the method of Fig.
4(a) thus requires three full
copies of the matrix
information, and the method
of Fig. 4(b) requires two full
copies.)

Active Area Optimization
With the choice of a

matrix scanning strategy -
the alternate row- buffer
method - another
consideration in designing the
generation algorithm is a

computation time
optimization method. There
is no real need to calculate a

new value of every cell in a

mostly empty LIFE grid. If I

only have one glider with its
corner at location (34, 27) of
the grid, why should I

compute any new generation
information outside the area
which could possibly be

affected by the present
pattern's evolution? Again,
the savings in computation
time using active area
optimization depend upon
the size of the grid. If most
patterns occupy the full grid,
then very little will be saved
- for the small 8 x 8 grid
"straw man" used in
discussing scanning strategy,
there would also be no point
to active area optimization.
But with a huge 256 by 256
grid, and an 8 by 8 active
area, this optimization might
mean the difference between
a 15 minute computation and
a 1 or 2 second computation
of the next generation.

Fig. 5 illustrates the
concept of active area
optimization in a LIFE
program. The current
generation's active area is

defined as the set of X and Y
limits on the extent of live
cells in the grid. In Fig. 5, the
active area is the inner square
of 7 x 7 = 49 grid locations.
In computing the next
generation, a box which is

one location wider in each of
the four cardinal directions is

the "zone of possible
expansion" for the pattern.
In Fig. 5, this zone is the
outer box of 9 by 9 locations.
The computation of "next
generation" values need only
be carried out for the 81 grid
locations bounded by the
outer limits of the zone of

Fig. 5. Active area optimization - never compute more than the
absolute minimum if speed is at a premium.

i
"Y" LIVE

CELL LIMITS

ZONE
OF POSSIBLE
EXPANSION

OF PATTERN
IN NEXT

GENERATION

PRESENT
ACTIVE
AREA

e

LIVE CELL
LIMITS

possible expansion. Thus in
the case of the 64 by 64
matrix of LIFE points, this
optimization for the pattern
of Fig. 5 will limit the
program to calculation of 81

new points versus the 4096
points which would be
calculated if at least one cell
was found at each of the
minimum (0) and maximum
(63) values of the X and Y

338

The "facts of life" must be applied to each location in the grid

to compute the next value - cell or no cell --- of that location.

coordinates. This case yields a

savings of 98% of the

maximum generation to
generation computing time.

The GENERATION
Subroutine

Fig. 6 illustrates the code
of the GENERATION
routine, specified in a

procedure- oriented language,

Fig. 6. The GENERATION routine specified in a procedure- oriented
language...

1 GENERATION:

2 PROCEDURE;

3 THIS - 0; /* INITIALIZE POINTERS TO TEMPORARY ROW */

4

5

6

7

THAT - 1; /* COPY VARIABLE "TEMP"

DO FOR I - 0 TO 7;

IF NROWMIN - 0 THEN

TEMP (THAT,I) - LIFEBITS(63,I);

ELSE

0 TEMP (THAT,I) - 0;

10 /* THIS ESTABLISHED WRAP- AROUND BOUNDARY CONDITION */

11 END;

12 NRMIN - 09; /* THEN INITIALIZE ACTIVE AREA LIMITS */

13 NRMAX - 0;

14 NCMIN - 99;

15 NCMAX - O;

16 ROW LOOP:

17 DO FOR IROW - NROWMIN TO NROWMAX; /* SCAN ACTIVE ROWS ONLY

18 DO FOR I - O TO 7; /* COPY THIS ROW TO TEMPORARY */

19 TEMP (THIS,I) - LIFEBITS (IROW,I);

20 END;

21 DO FOR ICOL - NCOLMIN TO NCOLMAX; /* SCAN ACTIVE COLUMNS ONLY */

22 CALL FACTS_OF_LIFE (IRON, ICOL);

23 END;

24 X - THIS;

25 THIS - THAT;

26 THAT - X; /* THIS SWITCHES BUFFERS */

*/

27 END;

28 CALL LIMITCHECK;

20 CALL DISPLAY;

30 CLOSE GENERATION;

Subroutines Referenced by GENERATION:
EV OL VER ... This is the routine used to calculate the next
value of the ICOLth bit in the IROWth row of LIFEBITS
using the current value of the next row, the saved value in

along with notes on further
subroutines and data
requirements. The procedure
starts by initializing the data
used for the scan of the
matrix, in lines 3 through 15.
THIS and THAT are used to
alternately reference the 0
and 1 copies of an 8 byte
data item called a 2 by 8 byte
data area called "TEMP".

(Subscripts, like in XPL and
PL /M are taken to run 0
through the dimension minus
1.) NRMIN, NRMAX,
NCMIN, and NCMAX are
used to keep track of the new
active area limits after this
generation is computed;
NROWMIN, NROWMAX,
NCOLMIN and NCOLMAX
are originally initialized by
the KEYBOARD_INTER-
PRETER and are updated by
LIMITCHECK after each

generation is calculated -
using the new active area
limits.

The actual scan of the grid
of LIFE, stored in the data
area called LIFEBITS, is

TEMP of the previous row, and the saved value in TEMP of the
current row before updating.
LIMITCHECK... This is the routine used to calculate the
next values of NROWMIN, NROWMAX, NCOLMIN,
NCOLMAX using the current values of NRMIN, NRMAX,
NCMIN and NCMAX.
DISPLAY... This routine transfers the LIFEBITS data to the
display, on whatever kind of device you have.

Data (8 bit bytes) used by GENERATION at this level:

339

X = TEMPORARY
I = temporary index (not the same as the I in Fig. 3)

ICOL = index for column scanning . . .

IROW = index for row scanning .. .

NCMAX = current maximum column index of live cells

NCMIN = current minimum column index of live cells

NRMA X = current maximum row index of live cells

NRMIN = current minimum row index of live cells

Data (8 bit bytes) used by GENERATION but shared with the
whole program:

THIS = current line copy index into TEMP.
THAT = previous line copy index into TEMP.
TEMP = 2 by 8 array of bytes containing 2 64 -bit rows.
NROWMIN= minimum row index of live cells.
NROWMAX = maximum row index of live cells.
NCOLMIN = minimum column index of live cells.
NCOLMAX = maximum column index of live cells.
LIFEBITS = 64 by 8 array of bytes containing 64 rows of

64 bits.
Assumptions:

LIFEBITS, NROWMIN, NROWMAX, NCOLMIN,
NCOLMAX are initialized in KEYBOARD INTERPRETER
for the first time prior to entry - and retain old values across
multiple executions of GENERATION thereafter.

Fig. 7. The LIMITCHECK routine specified in a procedure- oriented
language...

1 LIMITCHECX:

2 PROCEDURE;

3 /* CALCULATE NEXT ROW LIMITS s/
4 IF NRMIN -1 < NROWMIN THEN NROWMIN - NRMIN-1;

5 IF NRMAX +1 > NROWMAX THEN NROWMAX - NRMAX +1;

6 IF NROWMAX >63 THEN NROWMAX - 63;

7 IF NROWMIN < 0 THEN NROWMIN - 0;

/s CALCULATE NEXT COLUMN LIMITS */
into the output display IF NCMIN -1 (NCOLMIN THEN NCOLMIN - NCMIN-1;

device. The LIMITCHECK 10 IF NCMAX +1 > NCOLMAX THEN NCOLMAX - NCMAX +1;
routine simply performs 11 IF NCOLMAX > 63 THEN NCOLMAX - 63;
comparisons and updating - 12 IF NCOLMIN < 0 THEN NCOLMIN - 0;
Fig. 7 illustrates the high level 13 CLOSE LIMITCHECX:

Subroutines Referenced by LIMITCHECK:
None.

Data (8 bit bytes) used by LIMITCHECK but shared with the
whole program:

NCOLMA X, NCOLMIN, NROWMAX, NROWMIN
NR MA X, NRMIN, NCMAX, NCMIN (see Fig. 6)

Assumptions:
The arithmetic of the comparisons in this routine is done

using signed two's complement arithmetic - thus a negative
number results if 0 - I is calculated ... this is consistent with
code generation on most 8 bit micros.

performed by the set of DO
groups beginning with
ROW_LOOP at line 16. For
each row of the matrix,
ROW_LOOP first copies the
row into TEMP as the THIS
copy (the THAT copy is left
over from initialization the
first time at lines 5 to 11, or
from the previous
ROW_LOOP iteration
thereafter). Following the
copying operation, another
DO FOR loop goes from
NCOLMIN to NCOLMAX
applying the FACTS_OF_
LIFE to each grid position in
the current (THIS) row as
saved in TEMP. New data is
stored back into LIFEBITS

by FACTS_OF_LI FE. At
the end of the row loop, prior
to reiteration, the THIS and
THAT copies of temp are
switched by changing the
indices. What was THIS row
becomes THAT row with
respect to the next row to be
computed.

After all the rows have
been computed, line 28 is
reached. Line 28 calls
subroutine LIMITCHECK to
compute the next
generation's active area
computation limits using the
results of this generation.
Line 29 then calls a module
named DISPLAY to copy the
results of GENERATION

language description of its
logic.

Computing The Facts of
LIFE...

Fig. 8 contains the
information on implementing
the Facts of LIFE in a

programmed set of
instructions. The
computation is divided into
two major parts. The first
part is to determine the
STATE of the bit being
updated, where "STATE" is a

number from 0 to 8 as

described in LIFE Line 1 last
month. The second major
step is to evolve the grid
location using its current
value and the STATE.

FACTS_OF_LI FE begins
by performing left and
bottom boundary
wrap- around checks by
adjusting indices. Lines 8 to
18 determine the current
STATE by referencing all 8
grid locations surrounding the
location being computed at
(I ROW, ICOL). In
determining the state, the
subroutines TGET and LGET

Two copies of a 256 by
256 grid would require
more memory than (for
example) an 8008 can
address if you want to
have programs along
with your data.

Why should I compute any new generation information
outside the area which could possibly be affected by the
present pattern's evolution?

340

Fig. 8. The FACTS OF LIFE routine specified in a procedure -
oriented language. FLACTS_OF_LIFE does the actual calculation of
the next value for the LIFEBITS location at the IROWth row and
ICOLth column based upon the previous value of the 8 neighboring
locations. (The state defined in LIFE Line 1, last month.) This routine
implements the rules described in BYTE #1, page 73.

1 FACTS_OF_LIFE:

2 PROCEDURE (IROW,ICOL);

3 M- IROW +1;

4 IF M >63 THEN M - 0; 1* BOTTOM BOUNDARY WRAP CONDITION /
5 N - ICOL - 1;

6 IF N < 0 THEN N - 63; /* LEFT BOUNDARY WRAP CONDITION /
7 DETERMINE_ STATE:

B STATE - TGET (THAT,N);

9 STATE - STATE + TGET (THIS,N);

70 STATE - STATE + LGET (M,N);

11 N - ICOL;

12 STATE - STATE + TGET (THAT,N);

13 STATE - STATE + LGET (M,N);

14 N - ICOL + 1;

15 IF N > 63 THEN N - 0; /* RIGHT BOUNDARY WRAP CONDITION */

16 STATE - STATE + TGET (THAT,N);

17 STATE - STATE + TGET (THIS,N);

18 STATE - STATE + LGET (M,N);

19 EVOLVEIT:

20 NEWCELL - 0; / DEFAULT EMPTY LOCATION UNLESS OTHERWISE
21 OLDCELL - TGET (THIS, ICOL);

22 IF OLDCELL - 1 THEN DO;

23 IF STATE - 2 OR STATE - 3 THEN NEWCELL - 1;

24 END;

25 ELSE DO;

26 IF STATE - 3 THEN NEWCELL - 1;

27 END;

28 CALL LPUT (IROW, ICOL, NEWCELL);

29 IF NEWCELL - 1 THEN CALL SETLIMIT (IRCW, ICOL);

30 CLOSE FACTS_OF_LIFE;

What was THIS
next row to be computed. (What's in a name? A pointer of
course!)

.1

Subroutines Referenced by FACTS_OF_LIFE:
TGET... This is a "function" subroutine which returns an
8 bit value (for example in an accumulator when you generate
code) of 00000001 or 00000000 depending upon whether or
not a referenced column in one of the two temporary line
copies in TEMP is 1 or 0 respectively. The first argument tells
which line of the two, and the second argument tells which
column (0 to 63) is to be retrieved.
LGET... This is a "function" subroutine which returns an
8 bit value similar to TGET, but taken instead from the bit
value at a specified row /column location of LIFEBITS.
LPUT... This subroutine is used to set a new value into the
specified row /column location of LIFEBITS.
NOTE: The routines LGET and LPUT will be referenced from
the KEYBOARD_INTERPRETER routine in the course of
manipulating data when setting up a life pattern.
SETLIMIT ... This subroutine is used to check the current
active region limits when the result of the facts of life indicate
a live cell.

Data (8 bit bytes) used by FACTS_OF_LIFE at this level:

IROW = Parameter passed from GENERATION.
ICOL = Parameter passed from GENERATION.
M = temporary , row index.
N= temporary , column index.
STATE= count of "on" bits in neighborhood of IROW, ICOL.
OLDCELL = temporary copy of old cell at IROW, ICOL.
NEWCELL = new value for location IROW, ICOL.

Data (8 bit bytes) used by FACTS_OF_LIFE but shared with
the whole program:

THAT, THIS (see Fig. 6)

are used to reference bits in
TEMP and LIFEBITS
respectively, using
appropriate bit location
indices. The values returned

row becomes THAT row with respect to the by these two "function
subroutines" are either 0 or 1

in all cases - thus counting
the number of "on" cells
consists of adding up all the
TGET or LGET references
required to examine
neighboring grid locations.

Once the STATE of the
grid location is determined,
the Facts of LIFE are

implemented by examining

341

the positive cases of an "on"
(live cell) value for the grid
location. A cell will be in the
grid location for the next
generation in only two cases:
If the old content of the
location was a live cell and
the STATE is 2 or 3; or if the
old content of the location is

0 (no cell) and the STATE is

3. A default of NEWCELL =

0 covers all the other cases if
these two do not hold. Line
28 stashes the new value
away in LIFEBITS with
subroutine LPUT, and if the
new value of the grid location

Fig. 9. The SETLIMIT routine specified in a procedure- oriented
language.

I SETLIMIT:

2 PROCEDURE (IROW,ICOL) ;

3 IF IROW < NRMIN THEN NRMIN - IROW;

4 IF IROW > NRMAX THEN NRMAX - IROW;

5 IF ICOL < NCMIN THEN NCMIN - ICOL;

6 IF ICOL > NCMAX THEN NCMAX - ICOL;

7 CLOSE SETLIMIT;

Subroutines Referenced by SETLIMIT:
None.

Data (8 bit bytes) used by SETLIMIT at this level:

IROW = parameter passed from FACTS_OF_LIFE.
ICOL = parameter passed from FACTS OF LIFE.

Data (8 bit bytes) used by SETLIMIT but shared with the
whole program:

NRMIN, NR MA X, NCMIN, NCMAX (see Fig. 6)

is a live cell, SETLIMIT is
called (see Fig. 9) in order to
update the active area
pointers NRMAX, NRMIN,
NCMAX and NCMIN.

Where Does the LIFE
Application Stand?

An alternative to the
pyramid structure way of
viewing programming
program designs introduced
at the beginning of this article
is a "tree" notation showing
the heirarchy of modules in
the application. The "Tree of
LIFE" is shown in Fig. 10 as
it exists in materials printed
to date. The next installment
of LIFE Line will explore the
left hand branch of the tree
diagram by a similar
presentation of a
KEYBOARD INTER-
PRETER algorith

Fig. 10. The Tree of LIFE.

342

LIFE Line 2
Addendum

Procedure -Oriented Computer
Languages

The examples of programs
accompanying two articles in
this issue have been
constructed in a
procedure-oriented language.
This method of program
representation is compact and
complete. In principle, one
could write a compiler to
automatically translate the
programs written this way
into machine codes for some
computer. By writing the
programs in this manner,
more detail is provided than
in a flow chart, and the
program is retained in a
machine independent form.

T h e p a r t i c u l a r
representation used here
resembles several languages in
the "PL/ 1" family of
computer languages, but is

not intended for compilation
by any existing compiler. For
readers familiar with such
languages, you will find a
strong PL /1 influence and a
moderate XPL influence. In a

future issue BYTE will be
running articles on a language
specifically designed for
microcomputer systems,
PL /M, which is an adaptation
of the XPL language for 8 -bit
machines. For the time being,
this representation is used
with some notes to aid your
understanding.

Programs and Procedures
A program is a group of

lines which extends from a
PROGRAM statement to a

matching CLOSE statement.
It is intended as the "main
routine" of an application. A
procedure is a similar group
of lines which extends from a

PROCEDURE statement to
its CLOSE statement. A

procedure may have
parameters indicated in the
PROCEDURE statement, and

may be called as a
"subroutine" from a program
or another procedure. A
procedure may be called in a

"function" sense as well, in
which case a RETURN
statement would be required
to set a value.

Data
For the purposes of these

examples, no "data
declarations" are put into the
programs to complicate the
picture. Instead, each
example has a section
following it which verbally
describes each data name
used. Only one "data type" is

considered at this point -
integers - and these are
generally assumed to be 8

bits.
Arrays of integers are used

in several examples. An array
is a group of bytes, starting at
the location of its address and
extending through ascending
memory addresses from the
starting point. The purpose of
an array is to reference
"elements" within the array
by "subscripts ". For these
examples, the elements are
referenced by the numbers 0
through "n -1" for an array
dimension of length "n ". If
LIFEBITS is an array of 64
by 8 bytes, then
LIFEBITS(63,7) is the last
element of the last row of the
array, and LIFEBITS(I,J) is

the byte at row I, column J
provided I and J are within
the proper ranges.

Statements
A program or procedure

consists of statements which
specify what the computer
should do. In a machine
language, these would
correspond to the selected
operation codes of the
computer which is being
programmed. For a high level

language, one statement
typically represents several
machine instructions. In these
the high level language
statement has a "semantic
intent" - a definition of its
operation - which can be
translated into the lower level
machine language. In these
examples several types of
statements are employed ...

"IF ... THEN ... ELSE ..."
constructs are used for
notation of decisions. The
first set of ellipses indicate a

condition which is to be
tested. The second set of
ellipses in the model is used
to stand for the "true part" -
a statement (or DO group)
which is to be executed if and
only if the condition is true;
the third set of ellipses is the
"false part" - a statement
which is only executed if the
condition is false. The word
ELSE and the whole false
part are often omitted if not
needed.

343

"CALL X" is a statement
used to call a subroutine, in
its simplest form. A more
complicated form is to say
CALL X(Z) where Z is a set
of "arguments" to be passed
to the routine. Another form
of subroutine call is the
"function reference" in an
assignment statement, where
the name of the subroutine is

used as a term in an
arithmetic expression.

"assignment" - a statement
of the form "X = Y;" is called
the assignment statement. Y
is "evaluated" and the result
is moved into X when the
statement is executed. If X or
Y have subscripts as in
` `TEMP (THIS , I) _
LIFEBITS(IROW,I);" then
the subscripts (such as
"THIS,I" and "IROW,I" in
the example) are used to
reference the name as an
array and pick particular
bytes.

"DO groups" - a grouping of
several statements beginning
with a "DO" statement and
running through a

corresponding "END" is used
to collect statements for a
logical purpose. In "DO FOR
I = 0 to 7;" this purpose is to
execute the next few
statements through the
correspcnding "END;" 8

times with I ranging from 0
to 7. "DO UNTIL
DONE = TRUE;" is an
example of a group which is

repeated indefinitely until a

condition is met at the END.
"DO FOREVER" is a handy
way of noting a group to be
repeated over and over with
no end test, a practice often
frowned upon.

LIFE Line 3

by
Carl '.elmers
Editor, BYTE

Program design is a process which can be approached in a

haphazard manner - or by a systematic exploration of what is

needed to achieve the desired end. LIFE Line 2 in BYTE #2
began the systematic exploration of the Tree of LIFE by
presenting information on the overall program design of LIFE,
as well as the details of the GENERATION algorithm used to
carry one generation of LIFE into the next.

LIFE Line 3 continues the development of LIFE by a

discussion of thé KEYBOARD_INTERPRETER procedure.
This procedure monitors the "user inputs" of a keyboard, and
uses the command keystrokes detected to dictate what LIFE
will do. As in the exploration of the GENERATION
algorithm, the presentation starts at the top and works
downward.

Fig. 1. Data concepts for LIFE program and graphics control. The
variables XCOL, YROW, N and ENTRY are &bit "software registers"
maintained as variables in the LIFE program.

INCREMENT /DECREMENT Y

INPUTS FROM MOVECURS
ROUTINE

Y
R
O
w

Y CURSOR
POSITION

Z-(4Y "COMMAND

DEFAULT N. 0 AT START
OF KEYBOARD INTERPRETER

GENERATION COUNT

N

DISPLAY SCREEN IMAGE

LIFEBITS ARRAY

e-:"--IN-COMMAND

i

X CURSOR
POSITION

XCOL 4 , INCREMENT /DECREMENT X
INPUTS FROM MOVECURS T ROUTINE `X "COMMAND

ENTRY ENTRY
REGISTER

l,.
DEFAULT ROUTINE ASCII NUMERIC
DATA DEFINES ENTRY

344

SPECIAL LIFE CONTROL
PANEL AND ASCII
KEYBOARD

Much of the challenge and
fun of the LIFE application is

the fact that it is best
implemented with some form
of interactive graphics. In the
partition of the application
presented in LIFE Line 2,

one of the major pieces of the
program is the KEYBOARD
_INTERPRETER with its
interactive graphics concepts.
A good place to start the
discussion of the
KEY BOARD__INTER-
PRETER is the software
block diagram of the
interactive graphics system of
LIFE.

A Software Block Diagram?

Yes! Strange as it may
sound to hardware types, the
ebb and flow of data in a

program can be depicted in
block diagrams. While Fig. 1

looks very much like an

ordinary hardware block
diagram of some system, it is

descriptive of the plan of data
flow in a program rather than
actual wires. Fig. 1 is the
programming equivalent in
every respect of the hardware
block diagram of some
dedicated interactive graphics
system. By retaining the
system in software, LIFE is

inherently more flexible than
any hard -wired system could
be. This block diagram
illustrates the potential flow
of data in LIFE as controlled
through the KEYBOARD_
INTERPRETER and its

subroutines. Data flows and

changes in response to the
several input commands
defined for the program.

As was pointed out in
LIFE Line 1, the
fundamental tool of an

interactive graphics
application is a cursor which
illustrates where the program
thinks attention should be

placed. This cursor is flashed
on and off on the screen, and

can be moved through
appropriate commands of the
user sent via a keyboard. The
cursor concept is
implemented in the LIFE
program application by
means of two "global"
variables called XCOL and

YROW. These are both 8 -bit
bytes of data. But since the
maximum dimension value in

either the X or Y directions
of the display is 63 (i.e., 6

bits) only the low order 6 bits
have significance for cursor
control. At any point in time
during the execution of
LIFE, the variables YROW
and XCOL retain the location
of the cursor for
KEYBOARD_INTER-
PRETER's use.

Fig. 1 also shows arrows
directed from XCOL and
YROW to intersecting dotted
lines in the LIFEBITS array.
These two numbers together
have 12 bits of significance.
This is sufficient to uniquely
specify one of the 4096 bits
in the array using the utility

subroutines LGET and LPUT
to reference and change
LIFEBITS, respectively.
These routines are left to a

later LIFE Line for their
details.

A "ghost copy" of
LIFEBITS is also shown in
back of the main copy in the
drawing to emphasize the
following point: Each bit of
the internal LIFEBITS array
maps directly into a

corresponding bit in the
refresh memory of the CRT
display subsystem. This is an

example of a common theme
throughout the use and abuse

of computer systems:
Software systems map into
corresponding hardware -
and vice versa. This mapping
is of course one to one, and is

carried out by the DISPLAY
subroutine whenever the
internal data is changed. As
with LGET and LPUT,
DISPLAY is left to a future
LIFE Line for its details.

What Does it Take to Move
the Cursor?

Since the cursor position is

maintained by the values of
XCOL and YROW, the
movement of the cursor is

simplicity at its essence: To
move the cursor, all you have

to do is change the value of
XCOL, YROW or both! The
interactive graphics portion
of KEYBOARD_INTER-
PRETER has as its primary
concern the various ways of

Fig. 2. An overall view of the KEYBOARD_INTERPRETER. This is a

flow chart of the control algorithm for the LIFE application's
KEYBOARD_INTERPRETER routine. Fig. 3 shows the same informa-
tion in the form of a procedure- oriented language.

1.

3

(KEYBOARD
INTERPRETER

OLDKEY - NULL
GO . FALSE

IS
KEY READY

12.

13.

14.

16.

READ
KEYBOARD

CALL
DECODE

CALL
REPEATWAIT

ITIMEOUTI

NO

YES

OLDKEY . NULL

TIMEOUT
LONGTIMEWAIT

CALL
CUR BL INK

TIMEOUT
SHORTIMEWAIT

OLDKEY - KEY

345

16.
RETURN
TO LIFE J

i
Loop actively blinks

the cursor while warring
for non-null key cod....
IThis branch is not taken
in cae of r.p..t.d key.)

Time out between
repeated operations starts

out equal to LONGTIM EW AIT,
set to SHORTIMEWAIT after

the second time delay.

The simultaneous advantage
and disadvantage of the
multiple conditional test
method of decoding: It
is a plodding (but straight-
forward) approach which
squanders memory resources.

changing the values of these
two crucial variables -- while
possibly leaving a trail of
changed data points in
LI FEBITS. Fig. 1 illustrates
several of these changes -
- To move the cursor up,
YROW is incremented.

To move tho cursor
down, YROW is
decremented.
- To move the cursor left,
XCOL is decremented.
- To move the cursor right,
XCOL is incremented.
- To completely redefine
the column of the cursor,
the ENTRY register is
transferred to XCOL.
- To completely redefine
the row of the cursor, the
ENTRY register is
transferred to YROW.

KEYBOARD_INTER-
PRETER performs these

actions at the whim of the
user via commands entered at
the keyboards of the system
- with the flashing cursor
mark on the screen showing
the results.

The ENTRY Register

In order to provide a

means of entering 8 -bit
integers into the program for
control purposes, the
software of KEYBOARD_
INTERPRETER maintains a

numeric input area called
ENTRY. Whenever an ASCII
character is sent to the
program which cannot be
decoded by DECODE's
COMMAND table, the last
resort is to call DEFAULT. In
DEFAULT, the recover
assumption is to interpret the
unknown command as a

numeric digit (0 to 9) and
push it into ENTRY. A
routine in DEFAULT
performs a BCD to binary
conversion of the ASCII
character after it has been
trimmed to the range 0 to 9.
Later, when the user wants to
define XCOL, YROW or N,
the commands X, Y and N
respectively are used to
transfer ENTRY to one of
the other registers, after
which ENTRY is set to 0 in
preparation for re -use. It is

important to emphasize that
ENTRY is a binary number.
When decimal digits are
entered by the user, the input
routines convert the digits
into the appropriate binary
number and decimally shift
the significance of the
previous value.

The N Register

In LIFE Line 2, the LIFE
program given in Fig. 3
references a variable called N.
This N is used to control the
number of times
GENERATION is called. N,
like XCOL and YROW, is a

"software register" in the
LIFE program which may be
set by a user command. The
"N" command is what is used
to transfer the ENTRY value
to N for use in controlling the

Fig. 3. The KEYBOARD_INTERPRETER routine's overall flow,
expressed in a procedure- oriented language. Note that the interpreta-
tion of the "DO WHILE'S differs from a "DO UNTIL" - the former has
its test prior to execution of the loop statements, and the latter has its
test at the end of the loop. Nesting of the DO groups is indicated by the
indentation of lines.

1 KEYBOARD_INTERPRETER:
2 PROCEDURE;

3 OLDKEY = NULL;
4 GO - FALSE;

5 DO UNTIL GO = TRUE; I' LOOP UNTIL DONE WITH INPUTS /
6 DO WHILE NOTREADYIKEYBOARD) = TRUE;
7 CALL CURBLINK;
8 OLDKEY = NULL;
9 TIMEOUT - LONGWAIT;

10 END;

11 KEY - I NPUTIKEYBOAR DI;

12 CALL DECODE;

13 CALL REPEATWAITITIMEOUT);
14 IF KEY = OLDKEY THEN
15 TIMEOUT=SHORTIMEWAIT;
16 OLDKEY = KEY;
17 END;

18 CLOSE KEYBOARD_INTERPRETER;

I' THIS LITTLE LOOP WAITS /
I. FOR A KEYSTROKE AND BLINKS /
1 THE CURSOR ALL THE WHILE /
I. WHEN READY, READ KEYBOARD 'I
I. EXECUTE COMMAND '/ / DON'T LOOK TOO SOON /
I. SHORT DELAY AFTER FIRST / / TWO OPERATIONS DONE /

Subroutines Referenced by KEY BOARD _INTERPRETER:

NOTREADY = a function subroutine (also referenced by INPUT)
which is used to control an idle loop. It returns FALSE as its value if
the selected device (in this case, KEYBOARD) is ready for input, and it
returns TRUE as its value otherwise.

CURBLINK = a subroutine which "blinks" the cursor on for a fixed
period of time, followed by a fixed period of "off" time. Since it must
be called each time a single blink is required, this implements the
"active control" feature mentioned in LIFE Line 1.

INPUT = a function subroutine which returns the current input data
value for the selected device (in this case, KEYBOARD). INPUT has its
own wait loop referencing NOTREADY - which for KEYBOARD_
INTERPRETER is redundant, but is not redundant in general.

DECODE = the major subroutine of KEYBOARD_INTERPRETER.
This routine analyzes KEY based upon tables and the previous inputs to
the program from the operator. Using this analysis it will select the
appropriate subroutine to execute. These "command subroutines" will
in turn affect LIFE program data and the course of the LIFE program's
execution.

REPEATWAIT = a subroutine designed to call CURBLINK a number of
times specified by TIMEOUT. This implements a delay between
multiple responses to the same key held down continuously.

Data (8 -bit bytes) used locally by KEYBOARD_INTER-
PRETER:

OLDKEY = 8 -bit value of the last previous keystroke.

NULL = 8 -bit value of a null key pattern as read from the keyboard.

TIMEOUT = 8-bit value of the current repeat key time delay.

SHORTIMEWAIT = the timeout parameter used after the first delay in
a multiple input of the same key. This specifies the rate of rapid motion
of the cursor under manual control.

LONGTIMEWAIT = the value of the timeout parameter used for the
first delay following a key entry. A longer wait is required at first to
avoid false duplication of keystrokes for heavy- handed players of the
game.

Data (8 -bit bytes) used by KEY BOARD_ INTERPRETER and
shared with the whole program. See Table II for explanations.

GO, DONE, TRUE, FALSE, KEYBOARD, COMMAND, KEY

346

extent of the next run. Since
this application uses 8 -bit
data, the limit is 255
generations of LIFE at
present.

Figuring Out What the User
Said

The KEYBOARD_
INTERPRETER routine
serves the function of
controlling the input of
information to these software
register and to the
LIFEBITS grid. The routine
itself is a loop which executes
over and over until the user is

ready to run the
GENERATION algorithm for
one or more generations. The
K E Y B O A R D_
I NTERPRETER terminates
for one cycle of LIFE when
the user inputs a "G" control

command which is
interpreted semantically as

"GO generate N generations ".
The flow chart of the
KEYBOARD_INTER-
PRETER logic is illustrated in
Fig. 2, with the equivalent
procedure -oriented language
version shown in Fig. 3 as a

detailed reference. In Fig. 2,
line numbers are provided for
comparison to Fig. 3.

Execution of the
KEYBOARD_INTER-
PRETER begins with some
initialization statements. The
values of GO and OLDKEY
are set at the start of
execution (lines 3 and 4).
These values will be changed
during execution of the
KEYBOARD_INTER-
PRETER based upon input
data. OLDKEY is used to

detect duplications of
keyboard input which occur
when a key is held down for
continuous operations. After
a given KEY is held down
continuously for two
operations, the repetition
goes into a high speed mode
with SHORTIMEWAIT
controlling the delay between
operations. GO is the control
variable which is used to
govern whether or not the
loop is to continue - it is

initialized to FALSE and will
be changed to TRUE when
the "G" user command is

decoded.

Programs Are the Willing
Servants of the Noble User?

Interaction of
programmed computers with
human beings is often a

waiting game. This waiting
game is aptly illustrated in
the loop which checks for
user input keystrokes at lines
6 to 10 of the KEYBOARD
_INTERPRETER routine.
The function NOTREADY
(KEYBOARD) is a notational
convention used to indicate a

test for the keyboard ready
condition. Like a ready and
willing servant, the computer
program keeps marking time
in this loop until the user -
you or I - has given it a

character to digest. Two
statements are included in
this loop for the purpose of
coordinating multiple
keystroke conditions: Setting
OLDKEY = NULL is used to
re-establish a null history if
the program ever has to wait
(it never waits when keys are

Table I. ASCII Command encoding for the LIFE application. This is an initial specification of the command codes used to control the
KEYBOARD_INTERPRETER routine's effect. The command table locations go up by three as in Fig. 4. No addresses for the command
subroutines are given yet - these will be filled in when the program is compiled for your computer. Command table locations and command
characters are given as hexadecimal numbers.

Command Table
Location

Command
Character

ASCII
Key

Command
Subroutine Meaning of the Command (its "semantics ")

00 xx 777 DEFAULT The first table position is the "default" routine position, which is called
when no other matching key is found in the table search.

03 47 G RUN The "run" command which sets a flag called GO in order to end the
KEYBOARD_INTERPRETER and have LIFE call the GENERATION
routine.

06 49 I INITIALIZE The "initialize" command to set up the screen with predetermined
patterns selected by additional keystrokes.

09 53 S SAVELIFE The "save" command to dump the current screen content onto a

waiting audio cassette or other mass storage device.

OC 52 R RESTORELIFE The "restore" command to recover a screen pattern previously saved
by "S ".

OF 58 X SET XLOC The "set X" command to explicitly set the horizontal cursor location.
XCOL.

12 59 Y SETYLOC The "set Y" command to explicitly set the vertical cursor location,
YROW.

15 4E N SETNGEN The "set N" command to explicitly set the generation count for
subsequent execution with the "G" command.

18 43 C CLEARS The "clear screen" command to wipe out all data and place the cursor
at the center. CLEARS requires confirmation with a second S key
stroke to avoid accidental clears.

1B 45 E LIFEDONE The "done" command is an E followed by an L (for End Life.) The
second character confirmation is checked by LI F EDON E.

Note that the ASCII characters 0 to 9 are used to define the "current input" maintained by software in ENTRY. ENTRY may then be
transferred to N, XCOL, or YROW by the N, X and Y commands respectively.

347

held down continuously).
TIMEOUT = LONGTIME -
WAIT re -establishes a longish
debounce period between key
interpretations following a

series of continuous inputs.
The program of course thinks
that if a key is not ready
upon restarting the main loop
at line 6 it could not possibly
be a repeat. While idling and
waiting for your interactive
whims, the computer
program is not completely
devoid of useful work. It calls
CURBLINK once each time
around the wait loop in order
to flash the cursor actively on
the screen.

Finally, after some time of
unspecified duration, you
make up your mind to input
a key. This has one major
effect upon the program: The
next time around the loop at
the test of the WHILE
condition, a result of FALSE
ends the loop. Execution
then flows from the DO
WHILE (line 6) to line 11

where the KEY is read from
the waiting keyboard device
by a subroutine called
INPUT.

With KEY defined,
DECODE is the next item on
the agenda. DECODE is one
of the major subroutines of
KEYBOARD_INTER-
PRETER, a roJtine which
takes KEY and compares it to
a COMMAND table. The
result of the COMMAND
table search is execution of a

"command subroutine" if a

match is made, or execution
of a DEFAULT routine if no
match to KEY is found.
Upon return to
KEYBOARD_INTER-
PRETER (all subroutines by
nature return to the caller
except in very rare cases), the
flow of control reaches the
REPEATWAIT call using the
current value of TIMEOUT.

During normal execution
of single isolated commands,

the TIMEOUT value is

LONGTIMEWAIT - which
might be chosen to be from
0.1 to 0.5 seconds. This
TIMEOUT sets the minimum
time between the first 3

keystrokes of a repeated
sequence. But, after two long
delays have been executed,
the match of OLDKEY =
KEY is detected at line 14
and TIMEOUT is changed to
SHORTIMEWAIT allowing a

speedy repeated motion case.

SHORTIMEWAIT might be

chosen in the 0.05 to 0.1

second range for rapid
motion. The values of these
two motion control constants
are left unchosen for now,
and can be figured out as

binary integers to be used in
REPEATWAIT when details
of the CPU and
REPEATWAIT routine are

filled in. Note that if fast
operation is desired
immediately after the second
operation of a repeated
sequence, then line 13 of Fig.
3 should be moved to a

location between lines 15 and
16.

In order to control the
repeat logic, the statement
OLDKEY =KEY is executed
at line 16 so that the last
input will be retained for
comparison purposes the next
time around.

The KEYBOARD_
INTERPRETER routine
finishes up with the CLOSE
statement of LIFE line 18,
which stands for the end of
the routine and return to its
caller. There is one and only
one caller of this routine, the
LIFE program itself,
illustrated in Fig. 3 of LIFE
Line #2.

It's All in DECODE of the
LIFE Program

When giving the details of
the KEYBOARD_INTER-
PRETER logic, the principle

348

While idling and waiting
for your interactive whims,
the computer is not com-
pletely devoid of useful

work. It calls CURBLINK
once each time around the
wait loop in order to
seductively flash its cursor
on the screen.

Fig. 4. Decoding by multiple conditional tests. This method of
decoding keystrokes and activating routines in software is most
efficient when a small number of possible commands is involved.

START J

YES

NO

CALL
G ROUTINE

YES
CALL

H ROUTINE

NO

YES
CALL

7 ROUTINE

NO

CALL
DEFAULT

YES
CALL

7 ROUTINE

"NONE OF
THE ABOVE"

END

f
FIG. 5
DETAIL

i

Fig. f. Typical code for a single conditional test in the scheme of Fig. 4.

The example here is using Motorola 6800 system mnemonics. This
example assumes accumulator A is set up with the character being
decoded.

of keeping the program
design locally simple results
in a CALL DECODE at line
12. Whenever some
subroutine is left unspecified
except for its inputs (KEY
for DECODE) and its outputs
(a command subroutine's
execution), sooner or later
the details must be filled in.
I n designing a DECODE
algorithm to fill in this set of
details, there are numerous
alternatives. For high order
language aficionados,
something called a

"computed GO TO"
(FORTRAN) or "DO CASE"
(PL /1 family languages such
as XPL or PL /M) would
suffice following a table
search. However, for this
particular application, a

slightly lower level approach
is justified to conserve
memory.

Two major alternatives
come to mind as possible
ways to map an input KEY
value into the execution of a

selected subroutine. The
simplest (least elaborate)
"straightforward" approach is

the method of multiple
conditional tests. This is

illustrated schematically in
Fig. 4's flow chart, and in a

concrete form in Fig. 5's
example of a segment of the
typical conditional test. In
this approach, each possible
command code is tested in
turn by the routine.
Eventually, all the explicit
possibilities will have been
exhausted if no match is

found. Then, if "none of the
above" match the KEY input,
a DEFAULT routine is called.
The main advantage of this
approach is also its
disadvantage: It is a plodding
and straightforward approach
which squanders memory.
While the code's intent is

obvious, it requires - in the
example of Fig. 5 -a total of
8 bytes per test.

There should be a better
way - comparisons and
branches are repeated in this
method. The segment of
generated code and its
corresponding procedure -
oriented language version in
Fig. 5 shows four instructions
which are repeated over and
over but with varying data
(the character being
compared and the address of
the subroutine). Why not put
the instructions in only once
and tabulate the variable
data? There might be a saving
of memory if this table driven
approach is used instead.

Fig. 6 i Ilustrates the
concept of an alternative
structure, the "command
table," which will result in a

lower memory requirement
once the number of
commands to be tested
exceeds some break even
point. In this concept, the
changing data for each test is

stored in the table, and the
program to go along with it
uses a looping technique to
scan that table. The changing
data for tests comprises:
- The command character.
This is the keyboard code
which is matched against
the actual KEY input. - The command
subroutine. This is the
address of the subroutine
which will be called if KEY
matches the corresponding
command character.

The table is organized in
3 -byte groups consisting of a

command character followed
by its subroutine address.
Note that on first inspection,
this form of DECODE
requires only 3 bytes of
storage per test versus the 8

bytes in the example of Fig.

Bytes

2

2

3

1

Mnemonic Comment

CMPA # 'G Compare A to literal

BNE + 4 Branch around JSR and RTS

JSR GROUTINE Call the G subroutine

RTS Return from decoder rather than
continue the testing

8 = Total number of bytes per test.

This is the "generated code" of the following statements in the
procedure- oriented language used for LIFE Line examples:

IF KEY = 'G' THEN
DO; /' HAVE MADE A MATCH /

CALL GROUTINE;
RETURN; / FROM DECODE COMPLETELY /

END;

349

Relativa
Address

o

2

3

3n

Content

3n+1

3n+2

3(n +11

3(n +1) +1

Stn +11 + 2

o

o

o

"H"

Default Address

\ Address of "G" ! Command Subroutine

Address of "H"
Commend Subroutine

Fig. 6. The Command Table
Concept. By storing the character
(keystroke) being decoded,
followed by the address of its
routine, only three bytes need be
used for each routine which could
be decoded. Allowing for the
overhead of a longer decode
algorithm (specified once), the
command table method will prove
more compact when the number
of commands get larger than four
or five.

Fig. 7. The Command Table DECODE routine specified in a procedure
oriented language.

1 DECODE:

2 PROCEDURE; 1 TO FIGURE OUT WHAT USER SAID 1
3 1 COME HERE WITH THE KEY TO THE COMMAND'/
4 DO FOR I = 3 TO LENGTHICOMMAND) BY 3; / SCAN TABLE /
5 IF KEY = COMMANDII) THEN
6 DO; 1 WOW!! I GOT A MATCH I GOT A MATCH! /
7 I = I + 1; / POINT TO ADDRESS ENTRY 1
8 CALL CALLXICOMMANDII));
9 / NOTATION FOR CALL OF SUBROUTINE, INDEXED /
10 RETURN;

11 /THIS FORCES EXIT FROM DECODE 1
12 END;
13 / ONLY GET HERE IF NO MATCH IN TABLE /
14 CALL CALLXICOMMAND(1)); 1 CALL DEFAULT FROM TABLE /
15 END;
16 CLOSE DECODE.

Data (8 -bit bytes) used locally by DECODE:

I = temporary used for loop control and indexing.

Data (8 -bit bytes) used by DECODE but shared with the
whole program. For details see Table H.

COMMAND, KEY

Subroutines referenced by DECODE:

DECODE does not use any "real" subroutines, but does use the
following two notational conventions which look like subroutines.

LENGTH(COMMAND) stands for the length (in bytes) of the
COMMAND table. When you know what it is, you put in the value.

CALLX(X) is used to denote using the two bytes starting at the
address X as the address of a subroutine to be called. This is an
indexed subroutine call effectively. For a Motorola 6800 CPU, this
would be performed by an LDX instruction indexed off the
COMMAND table position, followed by a JSR instruction with the
indexed addressing mode.

5. For a 10 command table,
this would be a 50 byte
saving at first inspection.
However, the 50 -byte figure
does not take into account
the longer looping routine
required to scan the table and
indirectly jump when a match
is found. But for 10
commands (the number
found in Table I) this 50 byte
saving potential goes a long
way. I expect the actual
DECODE routine of the table
driven variety to be

considerably less than 50
bytes in length when it is

generated for the 6800
system instruction set used as
the straw -man in Fig. 5. I'll
leave the final conclusion on
that to a later LIFE Line.

There is an additional
advantage to be obtained
from the table driven
method. This is an advantage
which concerns some of the
finer points of programming:
The table driven method
results in "pure code" in

which potentially variable
data is completely segregated
off in the table. This achieves
an often desirable end of
separating data from
instructions. In the multiple
conditional test version, the
data of the DECODE is

embedded right in the
instruction stream, both as

the literal value of the
character being tested and as

the address of the routine
being selected. If I want to
modify the multiple
conditional test version, I

must certainly recompile or

reassemble the whole routine
(a pain in small systems
work). In contrast, to modify
the table driven version, I

only have to alter the table
itself, and the variable which
specifies the table's length.
But this is a minor point in
addition to the major
memory conservation
argument for the table driven
approach.

The actual algorithm for
DECODE is shown in a

procedure -oriented language
in Fig. 7. The scan of the
table is a DO FOR loop with

Notes on Notation:

Concerning Indentation: The listings of procedures for
the LIFE program make use of an indentation
convention to help show the structure of the routines.
The significance of the indentation is that it shows the
opening and closing of various local software
constructions and in so doing helps convey the meaning
of the program to human readers. Note how the
statements from line 7 to line 11 of DECODE in Fig. 7
are indented one level compared to the DO (line 6) and
END (line 12) statements. This indentation shows that
lines 7 to 11 are part of the DO ... END construction
which is executed if the test on line 5 gives a true result.

The notation "l *" followed by arbitary remarks and
then a " */" is the "comments" convention used in these
examples. This convention is stolen from the PL /1
family of languages.

Concerning names of variables: With each procedure
specified in LIFE Line, data is separated into two
categories: Local data is used only within the procedure
question. Local data may have a name which duplicates
names used in other procedures, but is always qualified
by its local nature. Thus "I" in GENERATION (Fig. 6,
LIFE Line 2) is a different data location in memory than
the "I" in DECODE (Fig. 7, LIFE Line 3). Data
shared with the rest of the program, which is often
called global data in programming terminology, is in
contrast defined universally for LIFE. Global data is
summarized for LIFE in Table II. Thus whenever KEY is
referenced (as in KEYBOARD_INTERPRETER or in
MOVECURS) the same data is intended, since these have
been classified as shared or global in the notes
accompanying the program listings.

350

the index, I, running from 3

(the first entry is reserved for
the default) to the length of
the table by 3. When a match
is found, the 16-bit address in
the table is used for an
indirect subroutine call (lines
7 and 8). For a Motorola
6800 system, this would be

accomplished by an indexed
JSR instruction after loading
the index register from the
table. When the selected
command subroutine returns
to DECODE (as would any
well structured subroutine in
the same circumstance), the
RETURN statement is
executed causing an exit from
DECODE and resumption of
the KEYBOARD_
INTERPRETER at the calling
point. If no match is found,
the loop eventually runs out
and line 14 of Fig. 7 is

reac hed, where the
DEFAULT routine is called.

This is shown notationally in
a general purpose form with
reference to the command
table, but in generating the
code for the statement of line
14, a simple call to
DEFAULT might be
substituted. (If the generality
of the DECODE routine is to
be preserved for possible use
with other command tables,
this optimization would not
be possible.)

What about data for the
COMMAND table? Table I

provides a preliminary answer
to this question by giving a

list of command table entries
including relative location,
the corresponding character
code, the ASCII key which
invokes the command, the
name of the subroutine and a

verbal description of the
subroutine. This table will be

used as the basis for creating
a detailed data table when the

actual programs of LIFE are
generated for a particular
computer in a future LIFE
Line. For now, Table I serves
to list the areas which remain
to be covered in the
discussion of the
KEYBOARD_INTER-
PRETER and all its
subrou tines.

LIFE Line 4 will continue
the presentation of the
KEYBOARD_INTER-
PRETER portion of the LIFE
program. To fill out the
remaining portion of the Tree
of LIFE, the next installment
includes the integration of
graphics control commands
into the KEYBOARD_
INTERPRETER and the first
hardware details of LIFE -a
simple circuit which
combines an ASCII keyboard
input with the special
purpose controls for an

interactive cursor.

Does Anyone Know What
Happened to Robert T.
Wainwright?

This series of articles
ínadvertantly duplicated
the name of Robert T.
Wainwright's LIFELINE
newsletter, published
through 1973. Thanks to
Bob Albrecht of People's
Computer Co. for sending
us his copy of LI FELI NE's
last issue. Does anyone
know where Mr.
Wainwright is now (he's no
longer at the address given
by Charles A. Dunning Jr.
in the Letters column),
and is LIFELINE still
being published?

Table II. Global Data. Data which is shared by an entire program or application is often called "global ". The word global is used to indicate the
widespread effects of such data in the program's execution. Many procedures will alter and change such data. This table summarizes the global data
variables of the LIFE application as used in procedures given in LIFE Lines #2 and #ki.

COMMAND = the table of commands interpreted by DECODE,
containing the ASCII codes of command keys and the addresses of the
appropriate command subroutine. The format of this table is illustrated
in Fig. 6. The information content, in preliminary form, is found in
Table I.

DONE = the variable used to control continued execution of the main
LIFE routine (see LIFE Line #2, Fig. 3).

ENTRY = the entry register used to receive numeric ASCII digits, after
weighting the previous value in a BCD fashion. While the entry to
ENTRY of new digits is done in a BCD manner (multiplying by 10 then
adding the digit's value) the content of ENTRY is a binary number of
8 -bit precision with values 0 to 255 and is thus not itself BCD. (BCD =

"binary coded decimal. ")

FALSE = the value "0" (00 hex, 000 octal, 00000000 binary). This
name is used to indicate the software equivalent of a hardware gate
input wired to logical zero.

GO = the flag (value is TRUE or FALSE) which controls continued
execution of KEYBOARD INTERPRETER.

KEY = the 8 -bit data area which receives keyboard inputs.

KEYBOARD = the logical unit number of the keyboard I/O device.
This is a bit pattern which specifies the device one is talking to.

LIFEBITS = the object of the whole exercise - an array of 64 by 64
bits stored as 64 by 8 bytes.

N = the variable used to control the number of generations to be
evolved by LIFE before returning to KEYBOARD_INTERPRETER
graphics control.

NCMAX = current maximum column index of live cells.

351

NCMIN = current minimum column index of live cells.

NCOLMAX = maximum column index of live cells for active area
optimization.

NCOLMIN = minimum column index of live cells for active area
optimization.

NROWMAX = maximum row index of live cells for active area
optimization.

NROWMIN = minimum row index of live cells for active area
optimization.

NRMAX = current maximum row index of live cells.

NRMIN = current minimum row index of live cells.

TEMP = 2 by 8 array of bytes containing two 64 -bit rows of cells,

THAT = previous line copy index to TEMP used in GENERATION (see
LIFE Line #2, Fig. 6). THAT should always have a value of 1 or 0,
opposite of THIS.

THIS = current line copy index to TEMP used in GENERATION (see
LIFE Line #2, Fig. 6). THIS should always have a value of 0 or 1.

TRUE = the value "255" (FF hex, 377 octal, 11111111 binary). This
name is used to indicate the software equivalent of a hardware gate
input wired to logical one.

XCOL = the current cursor position in the horizontal (column)
direction.

YROW = the current cursor position in the vertical (row) direction.

LIFE Line 4
Integrating graphics control commands

Carl Helmers In LIFE Line 3, the design of the
DECODE routine of the LIFE program was
presented. DECODE is designed as a table
driven mechanism for selecting one of
several subroutines which carry out the
functions of the LIFE program's KEY -
BOARD_INTERPRETER. However if you
examine table 1 of LIFE Line 3 (see p. 51 of
BYTE #4), you will note one conspicuous
and intentional lack: There are no routines
which process the interactive graphics com-
mands required to set up LIFE patterns on
the scope display. Yet in LIFE Line 1,

several special purpose keys were introduced
as manual inputs for cursor motion control
and data definition purposes. Where is the
missing part of the program which interfaces
these keys? What are the hardware implica-
tions of requiring a special keyboard?
Answers to these questions are the major
concern of LIFE Line 4. Integrating the
graphics control commands is a combined
hardware and software topic. The software is

that of the DEFAULT routine that inter-
prets several keyboard inputs not handled by
DECODE; the hardware consists of the
design of a special keyboard interface to
automatically switch between an ASCII key-
board's 7 -bit parallel output code and the
LIFE graphics control keypad.

The main requirement for LIFE cursor
motion and data control is that one, two or
three of the input keys can be depressed at
the same time. This capability is needed in
order to specify all the possible combina-
tions of motion control and optional cell
birth or death data inputs. The individual
motion control possibilities (one key at a

time) are the movements in four principal
directions: up, down, left or right. When two
motion control keys for perpendicular direc-
tions are selected at the same time, diagonal
motion is the desired result. With either
form of motion control, entry of data can

352

optionally be performed by depressing either
the birth key or the death key at the same

time. Thus as many as three keys may be

sensibly pressed simultaneously when
entering data.

The large number of combinations
possible for the six bits which will be needed
for six switches strongly argues against
making the software use a table driven
algorithm such as DECODE. This is the
reason why no cursor motion and data entry
commands are found in table 1 of LIFE
Line 3. Since each bit of the parallel
information from the motion control
switches can have an independent meaning, a

specially programmed determination of
motion control actions uses less memory
than the huge table which would be required
for all the combinations. Thus handling of
motion control is left to the DEFAULT
routine which is called by DECODE when it
fails to decode one of the commands in table
1 of LIFE Line 3. (DEFAULT also handles
ASCII numeric inputs, as you'll see a bit
later in LIFE Line 4.)

Graphics Control Hardware Considerations

For the hardware of LIFE, how can the
need of this special set of input codes be

reconciled with the need to input ASCII via
the same eight -bit input port? One answer
lies in the choice of an eight -bit format in

which the most significant bit determines
what lies in the low order seven bits. With
this format, one state of the most significant
bit indicates when an ASCII code is present
in the low order; the other state of the most
significant bit indicates when graphic control
keyboard information is in the low order.
This choice of format is supported in hard-
ware by the addition of a simple interface
module which uses seven integrated circuits
to switch between data sources and
debounce the motion control keyboard.

Graphics Control Commands

Format: 7 6 5 3 2 1 0

u d I r

ASCII Keyboard Input

Format: 7 6 5 4 3 2 1 0

right movement if one

left movement if one

down movement if one

up movement if one

birth /death (one /zero)

change enable, if one,
move only if zero

unused

one to indicate a graphics
command

0 a a a a a a a

ASCII character (7 bit)

zero to indicate ASCII

Figure 1: Data formats for graphic control commands and ASCII keyboard input.

The combined ASCII and control data

format is illustrated in figure 1. When the

value of bit seven of the interface is read as

one, the programming of the DEFAULT
routine will always be entered and the low
order bits will be analyzed as graphic control
information as shown by the upper diagram

in figure 1. The low order bits zero through
three represent the individual key states of
the motion control switches and the next
two bits, four and five, are encoded with
information on data entry from the birth
and death switches. If the value of bit seven

is read as a logical zero, the program will
interpret the ASCII value of the low order
bits through the DECODE routine of LIFE
Line 3, or through the DEFAULT routine if
the command is not in the table which drives
DECODE.

The hardware needed to implement this
special interface is shown in figure 2. The
interface consists of a two way data selector
(IC6 and IC7) which determines whether the

eight bit pattern presented to the system bus

interface comes from the cursor motion
control keyboard or from the ASCII key-

board. The ASCII data is routed straight to
the data selectors from a jack (J 1) which
receives a cable which connects to the

keyboard unit. (The LIFE Line system

prototype is currently using one of the

surplus Sanders 720 keyboards described in

BYTE #1.) The graphic control information
is derived through jack J2 from the special

keyboard via the 7474 flip flops IC1, IC2

and IC3. These D flip flops are being used as

set reset flip flops by grounding the clock
line and employing the preset (PRES) and

clear (CLR) inputs for data and keyboard
acknowledge functions respectively. The flip
flop outputs for bits zero to three go

directly to the data selector to define cursor

motion inputs. The flip flop output for bit
four (birth switch) also is directly connected
to the selector. However, bit five of the

selector's cursor motion inputs is taken from
NAND gate IC4D which encodes a CHANGE
ENABLE signal when either birth or death
data input is indicated. (Note that the user

of the LIFE cursor motion control keyboard
is on his honor not to push both birth and

death keys simultaneously - with this
encoding logic, birth always locks out
death.) One item derived from the cursor
control keyboard is a key pressed signal

produced by 7430 NAND gate ICS. This

signal is inverted by IC4C and used to
control the data selector: If any key on the
cursor motion control keyboard is pressed,

the ASCII keyboard will be locked out;

353

A flip flop with preset and

clear inputs can be used in

place of a hand -wired set

reset flip flop.

LIFE INPUT KEYBOARD

JACK J2
I +5V

I 4

SI-RIGHT

+SV ti I

52-LEFT

R3+SV

o !

S3. DOWN

1 R4+5V

-e% I

S4. UPI

1 +5V
R5

-e%'
S5 BIRTH

I

RV6v+SpV o% I

S6 DEATH

PRES O
S LO+

CLR C 5 l6 LO-

/473 ICI 7474
IOPRES O9

13
CLR C Ó

8

4
PRES

CLR C

10
PRES

CLR C

13

10
PRES O

--CLR C
13 4,11

-zr-

PRES

CLR C

a
O

S

6

LI+

LI-

L2+

L2-

IC2 7474
9

O
L3+

II 8

O

0

L3-

L4+ DATA

L4-

3 6

IC3 7474

WRITE- I
IC4A Z CDD3

PULSE TO 2
KEYBOARD
DEVICE FOR
SYSTEM INTERFACE

2 3 4

IC4D
7400

13 II CHANGE
LS- 12

ENABLE

5%17112
IC5
7430

IC4C
7400 --

e 10
CHANGE

BIRTH DEATH ENABLE DATA
O O O O
O I I O

I O 1 I

I I 1 I

4 IC4B
6

jt S

~I

LOW
ORDER

K0+ Q

W
U
u_
(Y
W
I-
Z

CC

O
CO }
W

"
U
U)
Q

JI

KI+ O

K2+ O

K3+ a

K4+ d

L5+
K5+

2 5 11 14 13 10 6 3

R7

+ 5 V

K6+
5V
Q

KEYBOARD I 12 IS II 14 13 IO 6 3
1 2 3 4 4 3 2 1

A A A A B B B B

74 57
4Y 3Y 2Y IY

,_)
15

I 1

2 3 4 4 3 2 I

AA A A B B B B

74157
4Y 3Y 2Y IY m

O
POWER

KEYBOARD
GROUND d
/i7

Q

12 9 7 4 12 9 7 4

DO DI D2 D3 D4 DS D6 D7

HIGH
ORDER KEYBOARD

JACK

TO SYSTEM BUS INTERFACE
o 1 2 3 o 7

(IDLE STATE: 00000000)

Figure 2: The logic diagram of a keyboard interface which implements the formats of figure 1. Resistors RI to R7 are TTL pull up resistors. The
value are not critical, and may range from I KO to 10 KO, 54 W.

otherwise the ASCII keyboard is connected
and the cursor motion control keyboard is

ignored. Note that the cursor motion input
has priority over the ASCII keyboard since it
controls the data selector.

Finally, to complete the interface logic
sections A and B of IC4 are used to buffer
the computer -generated keyboard WRITE -
signal which occurs when the computer
writes data into the keyboard location. This
signal is used to reset the graphics control
flip flops. The buffered version of the signal
(pin 6 of IC4) is used to drive the acknow-
ledge line of the ASCII keyboard unit. A
separate buffer is recommended due to the
unknown loading of the ASCII keyboard
device. In LIFE Line's design of a program,
the logic of the KEYBOARD_INTER-
PRETER procedure is used to manipulate
the interface.

What is not shown in figure 2 is the actual
system bus interface. The design of such an

interface must be done consistent with a

given computer's data bus. In the prototype
system for LIFE Line, a Motorola 6800

354

computer's data bus, buffered by National
DM8833 Tri State bus transceivers is used.

The interface thus consists of two DM8833's
used to drive the bus, plus the address
selection logic needed to detect the address
of the keyboard and produce the bus enable
signal as well as the WRITE- signal. For a

computer based upon a kit, the input port
logic will be in a standard form designed by
the kit manufacturer. What is needed is a

parallel input port, which might already
exist if your computer kit comes with a

keyboard and parallel interface.

Notes on Assembly
The prototype version of the graphic

control keyboard is illustrated in photo 1.

The keys were made from conventional
magnetic reed switches obtained from key-
board units found at a computer auction.
Any single pole single throw keyswitch can
be used; options on mounting are left to the
ingenuity of the builder. The arrangement of
keys shown in photo 1 is designed so that
the cursor motion controls are at the top in

M O T I O N

C O*I T R O L

Photo 1: The graphics control keyboard of
the LIFE Line prototype system. The group
of four switches with arrows are cursor
motion control keys. The two switches with
captions "B" and "D" are the birth and
death data keys, respectively.

a group of four. The arrows were applied
using small pieces of self- sticking address
labels of the type often used by computer
centers. The two isolated switches at the
bottom of this arrangement are the birth (8)
and death (D) keys. The wiring of the
keyswitches to the computer is accom-
plished through a multi -conductor bundle of
wires trailing away at the bottom. This cable
terminates in a dual -inline header plug which
fits into a socket on the wire wrap board
containing the computer and interface.
Photo 2 illustrates the wire wrap wiring of
the interface logic in the LIFE Line proto-
type system.

Using The Control Information
The purpose of the interface hardware is

to combine two keyboards into a single
input port with software distinguishing
"who called" on the basis of the format
shown in figure 1. How does the LIFE
software handle this data format? Recalling
the presentation in LIFE Line 3, the
DEFAULT routine is called by the DECODE

` . "
...

i/ \ ?' . --- , ,,;
, . ,. , . . a.-,.... ... ,i 'f '''',11e-

i
(¿`,

. i iry''..AI./; _1'' fl,:°-'--:,; ` -,t4191.1-01.11,- wow14:.1, i
. '_ " ... , i

- ""' ..0. ,(.+. ,+j _.:...! / *

a` 'E i 7 t1!`" :_, ''..Y, 1, ,.,_
sí%:/ %

5T!

12°7 VI
.

.0%

Photo 2: Detail illustrating wire wrapped assembly of figure 2 using a general
purpose prototyping board.

routine whenever DECODE cannot match an

input from this port to an entry in the
COMMAND table. Decoding of the graphics
control format and ASCII numeric
characters is left to the DEFAULT routine
because of the systematic nature of these
inputs.

How is this decoding done? One answer
of course lies in the design of the DEFAULT
routine. DEFAULT is specified in a pro-
cedure- oriented language in figure 3.

Basically the DEFAULT processing follows
one of two paths of execution according to
the high order format identifier bit, bit seven
of the formats illustrated in figure 1. The
input data from the interface is passed to
DEFAULT in the variable KEY which is set

at line 11 of KEYBOARD_INTERPRETER
(see LIFE Line 3, figure 3). The high order
bit of KEY is tested by the AND operation
of line 3. The masking bit string 10000000B

355

1 DEFAULT:

2 PROCEDURE;

3 I F (KEY AND 10000000B) NOT = O THEN

4 DO; / GRAPHICS CONTROL INPUT CASE `I
5 CALL MOVECURS; 1" MOVE CURSOR PER INPUT

6 IF (KEY AND 00100000B) NOT = 0 THEN

7 DO; /" CHANGE IS INDICATED `1

8 IF (KEY AND 00010000B) = 0 THEN

9 CALL LPUTIXCOL, YROW,0); /` TURN OFF POINT "/
10 ELSE

11 CALL LPUT(XCOL,YROW,1); /" TURN ON POINT

12 CALL DISPLAY; / SEND UPDATED LI FEBITS OUT

13 END;

14 END;

15 ELSE

16 DO; /" ASCII NUMERIC DEFAULT CASE

17 NUM = KEY - 30H;

18 IF NUM >9 THEN NUM = 9;

19 ZUM = 0;

20 DO FOR I = 1 TO 10; /" MULTIPLY = REPEATED ADD "/
21 ZUM = ZUM + ENTRY;

22 END;

23 ENTRY = ZUM + NUM;

24 /" ENTRY NOW HAS NEXT DECIMAL DIGIT ADDED IN WITH `/
25 1` A BCD SHIFT BY ONE PLACE

.1

./

./
./

26 END;

27 CLOSE DEFAULT;

selects only the high order bit of KEY so

that the result of the masked test will be

zero if bit seven is zero, non zero if bit seven
is one. If the result of the AND is not equal
to zero, the graphics control case will be

executed: the DO ... END group extending
from line 4 to line 14. If the result of the
AND is zero, ASCII input is present so the
character is forced into a numeric entry
interpretation. The ELSE DO ... END
clause of lines 15 to 26 handles this alterna-
tive.

Graphics Control Processing

The processing of the graphics control
format is not at all complicated. A pro-
cedure, called MOVECURS is executed first
to decode the four low order bits of the
graphics control format and adjust the
cursor position.

MOVECURS is specified in a procedure -
oriented language in figure 4. This routine
contains four IF statements which test the
four motion control bits. Motion is achieved
for each logical one bit by simply adding or
subtracting one from the corresponding
cursor position variable XCOL or YROW.
Note that this software takes care of an
invalid combination of up and down (or left
and right) in a unique way: nothing happens.
If contradictory commands are input, the

Data (8 -bit bytes) used by DEFAULT at this level:

NUM = temporary data byte used to hold a BCD digit for conversion to
binary.

ZUM = temporary data byte used to form the product when ENTRY is

shifted left 1 BCD digit by multiplication with 10, lines 20 to 22.

Data (8 -bit bytes) used by DEFAULT but shared with the

whole program.

KEY, XCOL, YROW, ENTRY

Subroutines Referenced by DEFAULT:

LPUT ... Routine (used also by FACTS_OF_LIFE) which placet the
bit value of the third argument at a location specified by the first two
arguments. Thus lines 9 and 11 define a new value for the bit at XCOL
and YROW in the LIFEBITS matrix.

MOVECURS ... The routine (see Fig. 1 1) which moves the cursor up,
down, left or right depending upon the motion control switches which
are read into the low order bits of KEY.

DISPLAY ... The routine which copies LIFEBITS to the graphics
output device for viewing.

Figure 3: The DEFAULT routine specified in a procedure- oriented
language.

356

Decoding "who called" is

done in software by the

DEFAULT routine.

1 MOVECURS:

2 PROCEDURE;

3 /' MOVE THE CURSOR BASED UPON THE FOUR LOW ORDER BITS

4 1' OF THE GRAPHICS CONTROL CHARACTER INPUT

5 IF (KEY AND 1000B) NOT -O THEN

6 YROW = YROW + 1;

7 IF (KEY AND 0100B) NOT = 0 THEN

8 YROW = YROW - 1;

9 IF (KEY AND 0010B) NOT = 0 THEN

10 XCOL = XCOL - 1;

11 IF (KEYAND0001B) NOT =OTHEN

12 XCOL= XCOL + 1;

13 1' NOW, IF THE SELECTED KEY WAS ON, THE APPROPRIATE

14 / CURSOR POSITION REGISTER HAS BEEN CHANGED /
15 CLOSE MOVECURS;

Data (8 -bit bytes) used by DEFAULT but shared with the
whole program. See Table 2 of LIFE Line 3, BYTE #4, pg.

55, for details.

KEY, XCOL, YROW

Figure 4: The MOVECURS routine specified in a procedure -oriented
language.

cursor position variable in question is both
incremented and decremented with a net
result of no change. Remember also that
time delays are built into KEYBOARD_
INTERPRETER to govern the speed of
changes when keys are held down contin-
uously.

Upon return from MOVECURS with the

newly updated position, the remaining
portion of the graphics control processing

consists of program logic to test for data

entry. If the change enable bit (bit five) has

a value of one, a change is indicated. Then if
the data bit (bit four) is zero, the current
position in LIFEBITS is turned off, indi-
cating a death; if the data bit is one, the

current position in LIFEBITS is turned on,

indicating a birth. Graphics control change
processing is completed at line 12 when
DISPLAY is called to put the new data out
on the display screen.

Numeric Default Processing

In the alternative DEFAULT processing
case of an ASCII character which is not
recognized by the DECODE routine, the

program will assume numeric entry. In effect
what this means is that any unrecognized
non -numeric ASCII character will cause

invalid data to be placed in the ENTRY
register of the software since this little
routine uses brute force to extract a numeric

357

./

1

meaning. At line 17, a value of hexadecimal
30, denoted 30H, is subtracted from the key

code. Since valid numeric ASCII characters

run from hexadecimal 30 to 39, this will
result in data running from 0 to 9 for valid

numeric codes. The test of line 18 excludes

invalid codes by forcing a 9 value. (Unsigned
arithmetic is assumed here so that all 8 -bit
integer values not in the range 0 to 9 will be

larger than 9.) Then the previous ENTRY
value is multiplied by 10 using a repeated

addition loop at lines 20 to 22. The new
entry digit value is then added in to the low
order at line 23. Note that ENTRY is a

binary number, but that the digit being
defaulted is entered with a decimal

weighting. (For multiplication.an alternative
to repeated addition in this case would be to
observe that 10 x = 8 x + 2 x. Thus using

three arithmetic left shifts both twice and

eight times the original ENTRY could be

obtained and summed producing the 10 x

product.)
After execution of one or the other of

the two paths determined by the format bit
of the data in KEY, DEFAULT reaches its

CLOSE statement and returns to DECODE.

Where Does LIFE Stand?

In the course of LIFE Line through this
installment, the structure of the LIFE pro-
gram has been the major topic. LIFE Line 4

has introduced the first hardware considera-
tions - the special keyboard - as a
requirement in the specification of graphics
control processing. LIFE Line 5 will con-
tinue the software theme by completing the
initial specification of the LIFE program
design exclusive of the RESTORELIFE,
SAVELIFE and INITIALIZATION pro-
cedures which together form a major soft-
ware subject in their own right. LIFE Line 5
will cover the DISPLAY, RUN, SETXLOC,
SETYLOC, LIFEDONE, and SETNGEN
procedures as its main theme. Then the
series will turn to the hardware of the LIFE
system prototype in more detail, to provide
a basis for the generation of actual
executable programs which will run on the
prototype system. The first major phase of
the LIFE Line project will be completed
when it is possible to draw a LIFE pattern
on an oscilloscope output device using the
cursor motion control keyboard, then
initiate the pattern evolution according to
the facts of LIFE as presented in LIFE Line
1

The second major phase of the project
will be the addition of the data management
hardware and softwave facilities of the
SAVELIFE, RESTORELIFE and
INITIALIZE procedures. These facilities will
enable the construction of initial patterns
from "standard parts" saved on a mass
storage device. As always, the aim of the
entire series of LIFE Line articles is to show
how the bits and pieces of hardware and
software design fit together to produce a
working application system.

A bibliography of Scientific American infor-
mation on LIFE (all references are to Martin
Gardner's "Mathematical Games" column).

October 1970: page 120. This is the
original LIFE article, including the
definition of the Facts of LIFE, and
illustration of numerous fundamental
patterns.

November 1970: page 118. Answers to
several questions posed in the first
article on the subject, including
definition of the several varieties of
"spaceships."

January 1971: pages 105, 106 and 108.
Continued progress on the LIFE
front including answers to several
unsolved questions and results of a
flurry of computer LIFE activity.

February 1971: Special "Mathematical
Games" article on `cellular automata
theory."

March 1971: pages 108 and 109. Short
note about progress made by John
Conway and R. William Gospers, plus
illustration of a large scale flip flop
pattern which is delicately balanced
and easily destroyed by minor distur-
bances such as impact of a glider.

April 1971: pages 116 and 117.
Examples of fuses, the five cell cross
series, and announcement of Robert
T. Wainright's LIFELINE newsletter.

November 1971: page 120. Short note
on continued progress at the MIT AI
Laboratory.

January 1972: page 107. The discovery
of the "eater" by Bill Gospers at
MIT.

This is an essential list of readily available
information on the LIFE game which interested
readers can research in any complete public or
university library.

An Aside Regarding the Ultimate LIFE
LIFE on a 64 x 64 grid is an achievable

project for the home brew computer
enthusiast. But it is far from the ultimate.
My thanks to Bob Clements of Lexington,
Massachusetts for arranging a demonstration
by R. William Gospers, Jr., at the MIT
Artificial Intelligence Laboratory one recent
Saturday evening. When LIFE was first
widely publicized by Martin Gardner in his
October 1970 Mathematical Games column
in Scientific American, it helped set up a
flurry of research work on the subject.

Bill Gospers and his associates at the MIT
Al Lab took the definition of John
Conway's game and began constructing a
highly efficient LIFE system running on a
Digital Equipment Corporation PDP -6 com-
puter with a high resolution 1024 x 1024
position oscilloscope display. This research
tool was used by the MIT people to generate
numerous mathematically interesting LIFE
patterns. These include such fundamental
discoveries as glider guns, space ship
factories, a binary transcendental number

calculator, and a Turing machine pattern.
The ultimate climax of the evening's demon-
stration was Bill's demonstration of a

disproof - by example - of John Conway's
conjecture that no LIFE pattern could grow
without limit. The particular example he
used is a colossal moving glider gun factory - a pattern which leaves a trail of active
glider guns behind it as it travels slowly to
the right on the display screen. This pattern
fills the plane of the LIFE matrix with cells,
and the number of active cells increases in
proportion to the square of the number of
generations the pattern has lived. After an
arbitrary length of time, an arbitrary region
of the plane will be filled with glider
patterns emanating from the residue of
glider guns produced by this LIFE machine.

The programs which form the MIT LIFE
system are run on equipment far beyond the
range of price a home brewer could consider - but with the advances in technology it is
now possible to make a LIFE system which
demonstrates many principles without
breaking budgets.

358

Applications

Total Kitchen
Information System

Ted M Lau
7740 P Chalmette Dr
Hazelwood MO 63042

I have become a hateful
person just because my
grocery list is unsorted.

I want to outline a plan for a total
kitchen information system (TKIS) suitable
for implementing on a home computer. This
outline is the first step in the development
of TKISs of arbitrary complexity from the
simplest inventory modules to artificial
intelligence modules (such as those suggested
by Richard Gardner in the October 1975
issue of BYTE). The functional approach
used here should allow the reader to plan a

complex system using small and manageable,
"byte- sized" pieces, or to interface indepen-
dently developed modules.

This project began as a gripe list my wife
and I compiled after many frustrating
experiences in the kitchen; throwing out
spoiled food we'd forgotten in the refriger-
ator, abandoning a recipe for lack of a key
ingredient, reeling with confusion after read-
ing pages of grocery specials, neither being
able to remember an appealing recipe nor to
find it among all our cookbooks, and so on.

Hierarchy Chart
Figure 1 shows the functions to be

performed by a TKIS, structured in
hierarchic fashion - meaning that every
function is made up of several subfunctions,
each function box performs one general task
which can be divided into several specific
tasks, and so on. This chart differs from a

flowchart in that the function boxes are not
necessarily performed in left to right order,
nor are the conditions for execution given.
The hierarchy (H) chart attempts to outline
what a system must do, but not how, when,
or if.

Each rectangle in the chart represents a

transformation of some inputs into some

360

outputs. For example, box 1.0 takes grocery
prices from several markets and spits out a

list of bargains to be scheduled into meals.

Box 2.0 accepts a list of on -hand perishables,
in addition to the output from 1.0, and

yields a schedule of meals. Box 3.0 trans-
forms the meal schedule into the food
needed. Box 4.0 transforms raw, separate
foodstuffs into cooked fare. Box 5.0 turns a

meal into leftovers and garbage, and 6.0
turns garbage into cleanliness.

Notice that I've ignored inputs that
appear unchanged as outputs, such as the
recipes consulted to plan the meal (2.0):
They are brought in at the beginning and
returned unchanged at the end of the task.
These unchanged or rarely changed inputs
are the tables and files referenced by the
function boxes. These tables and files appear
to be internal to the boxes, and therefore
can be ignored for the time being, thus
allowing me to concentrate on TKIS func-
tions. Though file design itself can be put
off, provision must be made for the creation
and maintenance of this data (7.0).
Examples are the writing of recipes onto
blank recipe cards, or the (presumed) struc-
turing of a previously unstructured human
brain nerve net to respond to a low price in
hamburger.

Notice that action boxes (3.5, 4.5, 5.0)
are mixed in with thought boxes. The H

chart attempts to completely describe all the
functions involved in operating a kitchen,
whether primarily physical or primarily
informational. While no one can seriously
attempt to computerize these physical tasks
at the present time, we must remember that
all physical processes have informational

0

TKIS

O 2.0
. .

VIEW
ROCER

PRICES

REVIEW
FOR
SPECIALS

2

DECIDE
TO
PURCHASE

GENERATE
TEMP
PURCHASE
LIST

AN
MEAL
SCHEDULE

3.0

:ROt.ERI

4.0

PREPARE
MEAL

4.1

5.0 I 6.0 I 7.0

CONSUME
MEAL.

6.1

DISPOSE
OF
CiARBACE

CLEANUP
MEAL

AINI AIN
I ILLS

1

STORE
LEFTOVERS

UPDATE EVALUA TL
INVENTORIES MEAL

Pull
RECIPES
FOR MEAL

3.1

GENERATE
URCHASE

LIST

3.1.1

SEARCH SEARCH TO
ON,HAND BE PURCHASED
PERISHABLES PERISHABLES

CHOOSE
ADDED ITEMS
TO PLAN

32I
DECIDE
MARKETS
TO VISIT

\

3.3.1

3

GENERATE
GROCERY
LISTS

3.2

POST MARKET SORT ITEMS
TO EACH ITEM INTO LISTS

TOTAL
INGREDIENTS
FOR MEALS

SEARCH CHOOSE

FOR RECIPES RECIPE

\ t

Figure 1: Functions of Total Kitchen Information System.

components (and are thus fair game for
computer enhancement), and that any
distinction between physical and informa-
tional is strictly provisional (and is subject to
erosion as computers expand their capa-

bilities to manipulate objects, as in robotics
and automation). So the H chart incor-
porates into its comprehensive structure
both modules that are subject to present
data processing solutions and modules that
must wait for future technology. (Readers
will identify box 4.0 as the voice responsive
vending machine in the rec room of the Star

Ship Enterprise.)
Notice that the H chart says nothing

about computers. It describes my concep-
tion of a very rigorous manual system that
could be performed with paper and pencil. It
purposely steers clear of computer concepts
to allow you to be flexible in making
software and hardware design decisions. To
paraphrase: "Hardware and software may
pass away, but functions endure." The tasks
to be performed by the TKIS remain
unchanged from one system configuration to
another.

The H chart functionally describes my
view of what must be done to get meals on
the table. It is triggered by specials and
perishables in that it tries to cut costs by
planning meals using bargains, and to reduce
wastage by scheduling perishables in timely

3.1.2 3.1.3

COMPARE ESTIMATE
TO STOCK ITEMS
INVENTORIES NEEDED

FIND
INGREDIENTS UTçNSII.

PREPARE COOK
INGREDIENTS FOOD

S_

3., 4 I 3. 5 3., 6 3._,
PURCHASE STORE
GROCERIES GROCERIES

3.3.3 3.3.4

SORT LISTS PRINT
BV ITEM GROCERY
LOCATION LISTS

PLAN MENU
SCHEDULE DISPOSE OF

MEAL UNSCHEDULED
PERISHABLES

fashion. Specifically, TKIS plans to review a

large number of grocery item prices and to
call attention to those that meet a specials
criterion specified by the developer (1.1). It
plans to call attention to items in inventory
whose perishable date falls within the next
meal scheduling period (2.1). It plans to
retrieve recipes based on key ingredients and
other characteristics such as casserole, quick -
meal, Chinese, price -per- serving, nutritional
values, etc., (2.4), and to reveal the recipe
ingredients not on hand, or to reveal only
those recipes whose ingredients are all on
hand. It plans to help the kitchen operator
decide which markets to visit by simulating
the expenses of buying at various markets,
including labor time and gasoline costs (3.2).
It plans to calculate the quantities of ingre-
dients needed for recipes with adjusted
servings (3.1.1, 4.1). It plans to collect menu
and recipe evaluations (yum, good or echch)
(6.4), along with keeping past meal
schedules and market receipts, for future
analysis in planning menus, purchasing
foods, budgeting, and dietetics. It even plans
to sort the items on each grocery list into
store location order, so that by walking
through the store in a prescribed way the
items will be encountered in order (3.3.3).
This is big on my gripe list: I hate carrying a

pencil to mark the groceries I buy, and I also
hate chasing all over the store to find the last

361

SAVE RECEIPTS
FOR BUDGET

UPDATE
INVENTORIES

2.4

SEARCH
FOR
RECIPES

2.4.1

INITIATE
FUNCTION

2.4.2

DISPLAY
SEARCH
ARGUMENT
LIST

2.4.3 2.4.4 2.4.5

GET VALID
SEARCH SEARCH DISPLAY

ARGUMENT RECIPES RESULTS
SELECTIONS FILE

Figure 2: Recipe Subsystem.

3.7.1

READ
ITEMS
PURCHASED

3.7.4

4.2

FIND
INGREDIENTS

4.2.1 I .
GET ITEM
SEARCH
REOUEST

4.2.2

SEARCH
INVENTORIES

3.7

ADD TO
INVENTORIES

3.7.2

ASSIGN NON.
PER ISHARLES
TO SHELF

GET VALID
LOCATION
ASSIGNMENTS

3.7.3 I . ,
DISPLAY
PERISHAI LE
ITEMS

3.75

PRINT
LAB L WITH
ID NUMBER

6.3
.

UPDATE
INVENTORIES

3.7.6

AFFIX 10
LARLE TO
PERISHABLE

4. .2.3 I 6.3.1 I /
DISPLAY
LOCAT IONISI
ANO ID NUMBER

GET
ITEM USE
REPORT

6.3.2

\ \ \

Figure 3: Inventory Subsystem.

REDUCE
INVENTORIES

6.3.3 I .
A00 LEFT.
OVER RECORD
TO INVENTORY

few unmarked items. I have become a

hateful person just because my grocery list is

unsorted.

Beyond The Hierarchy Chart

The H chart tells us that to do but not
how, so where do we go from here? I would
hope that some of the readers will come
forward with data base and file designs,
hardware specifications, and program
descriptions. This is a massive project and
certainly in need of special talents and
diverse opinions. There are many well
known techniques for designing computer
systems, and I think it is sufficient for me to
mention some of the potential problems that
may be encountered.

1. Is the proposed TKIS technically and
economically feasible in a home? If not now,
will it become so in a time frame approxi-

362

mately equal to the development time? To
answer these questions, someone must
expand the effort to prepare detailed hard-
ware, software, and manpower estimates.

For example, a recipe retrieval subsystem
might use a CRT with keyboard to initiate a

search of the recipe file, and to display the
results on the cathode ray tube (CRT) (see

figure 2 for a schematic of the hardware and
an H chart of the software functions).
Assuming a file contains 2000 recipes aver-
aging 500 B each, what are the cost and
performance tradeoffs between a tape
system versus disk system? In order to make
this estimate we must know, first, what
response time is acceptable to the kitchen
operator. If the program reads records
sequentially, what tape speed is required?
What bandwidth is needed for data path A in
figure 2 and how fast must programs exe-
cute? And so on ...

2. How can the human labor required for
data entry be kept below that required for
the manual system? Data entry is the process
by which humans, through the sweat of their
brows, convert data into machine readable
form so that the computer can do marvelous
things with it and look like a genius. Data

entry is probably one of the most costly
items in the operating budget of the TKIS,
and certainly one of the most boring.

Table 1 lists the tables and files needed to
implement a basic version of the TKIS. Of
the tables, recipes and prices represent large
data entry tasks at initial system startup and
at periodic intervals. It would be very nice if
the kitchen operator could acquire data in
machine readable form (on cassettes or via

the phone line). The book and magazine

publishers could supply a periodic update of
recipes and the markets an update of prices.
Standard formats would have to be

developed for these interfaces, and a

customer base must be developed to provide
an economic incentive.

The files, on the other hand, originate
within TKIS and change continually with
use, making it difficult to solve the data
entry problem in the same way. For
example, figure 3 describes a test design for
an inventory module. The functions of this
subsystem are to add a record (or a count)
of each purchased item to the inventory file
corresponding to the storage location, to
allow retrievals by item, and to decrement
the inventories as items are used. The major
data entry requirements are to tell the
computer what was used and what was

bought.
An efficient way to do the former is to

signify what was used, instead of specifying
in detail what was used. By entering the
recipe name (say, recipe B), the operator

Table 1: Functional Storage Requirements.

File Name Contents Possible Source

A. Tables
1. Prices grocery item prices by brand for each market Grocers

2. Recipes

3. Menus

4. Calendar

5. Markets

B. Files
1. Inventories

freezer
refrigerator
shelf
stock items -

ingredients, instructions, recipe characteristics, Book and Magazine

nutritional data, number of servings Publishers

groups of recipes, menu characteristics Book and Magazine
Publishers

dates, meal times, number of guests, other TKIS User

requirements

market name, address, distance TKIS User

number and quantity of ingredients by location TKIS User

also perishable items by ID No.

number and quantity of items, rate of use (salt, soy sauce)

2. Meal Schedule menu or recipes for each meal TKIS User

3. History past schedules and evaluations, market receipts, TKIS User

etc.

4. Working Storage purchase list, grocery lists, etc. TKIS User

says in effect that "the ingredients for recipe
B were used." This requires that the com-
puter have a recipe file for translating
"recipe B = ingredients D, E, F." If the
computer lacks this file, the operator must
enter the specific ingredients used. Thus a

stand alone inventory subsystem is less data
entry efficient than one integrated into a full
TKIS (a truism about systems in general).

On the other hand, telling the computer
what was bought can be handled rather
neatly, by adhering to the rule that once the

data is in machine readable form it should
not be degraded out of same. Instead of a

paper receipt, the bag person at the market
will plop a cassette in your bag containing all

the items you purchased and their prices.

This cassette will have been produced by the
market's point -of -sale terminal which so

graciously performed the data entry chore
for you by optically scanning your groceries.
(In fact - or rather in fantasy - the market
won't even have to provide the cassette: you
will bring the purchase list created by TKIS
on cassette to the store, insert it into the

computer at the front door which sorts and

prints your grocery list in location order
(3.3.3 and 3.3.4), and carry the cassette to the

checkout counter for recording of your
receipt.)

3. What does the kitchen operator do
when the system goes down because a disk
crashes, or the bus turns flaky, or a program
blows up? (This picturesque lingo seems to

less accurately describe the condition of the
computer than it does our emotional state

after the unthinkable has happened.) Backup
manual procedures or alternate computer
services must be provided to allow the
kitchen operator who has become dependent
on the TKIS to function while the system is

down. Adequate system recovery and restart
procedures must be designed, and a tech-
nique developed for catching the computer
up on what transpired while it was uncon-
scious. The importance of these considera-
tions will depend upon the complexity and

reliability of the hardware and software, but
must be conceived and designed as an

integral part of the total system.
4. Finally, assuming a TKIS was

developed, would a kitchen operator use it?

Besides being more efficient, less costly, and

all the other good reasons for which we

developed it, the TKIS must be flexible
enough to allow for human inefficiency and
taste preferences. What if the TKIS user

doesn't want to prepare the scheduled meal

for the evening? TKIS must be able to take
account of human inconsistency.

Summary
I have briefly outlined the functions I

think a kitchen information system should
perform, and mentioned some considera-
tions affecting its design. I hope this article
will help catalyze development efforts in

what appears to be a fruitful home computer
applications area.

363

A Small Business Accounting System

The least sophisticated
form of bookkeeping is

single entry accounting; it
is not, however, generally
suitable for preparing fi-
nancial statements for
banks, investing brothers -
in -law, and so forth.

Double entry bookkeeping
has the advantage of incor-
porating redundancy and
error checking techniques.
It is the most common
form of business
accounting.

Or, How Your Microcomputer Can Take the Worry Out of Tax Time

John A Lehman
716 Hutchins #2
Ann Arbor MI 48103

Here's an outline of an accounting system
suitable for small business use on a micro-
computer. It is designed for a small, inexpen-
sive system having a central processor, Tele-
type IO, one or preferably two cassette tapes
for storage, and a high level language facility
such as BASIC. It could probably be written
in assembly language, but at a price of
inconvenience. The system is designed to be
used by an individual proprietorship (one
man business) or a small partnership. While
perhaps suitable as a bookkeeping system for
a small corporation, it is not intended to
produce the sort of reports which various
regulatory agencies may require of one. It is
designed to keep books, produce tax returns
(either Form 1040 schedule C for pro-
prietorships or Form 1065 for partnerships),
produce balance sheets which may be re-
quired either for management information
or for the information of banks and other
outside investors, and to be adaptable for
check reconciliation, cash budgets, pro
forma balance sheets and the like. Its use
requires about the same amount of time and
effort as keeping a journal would normally,
with the added advantage that the entries are
pretty much self checking. All other reports
are produced by the programs which would
be used. I'll try to describe the system in
enough detail so that anyone who is skilled
in BASIC and knows a little about account-
ing could write a program to do all of the
above.

First, however, it might be a good idea to
take a quick look at accounting systems and
what they're used for.

Of the various systems available, the

364

simplest is the single entry system. A check
book is a good example; each time money
goes in or out, a notation is made of the
date, the amount, and any comments on
sources, uses, etc. This sort of system is
obviously very simple to keep, and has the
additional advantage of being accepted by
the IRS for preparing tax returns. However,
it has a number of disadvantages. The first is
that it is not self checking, as anyone who
has ever tried to balance a checkbook can
testify. Also, while capable of producing an
"income statement" (the generic term for
what a tax return amounts to), it is not
suitable for the preparation of other finan-
cial statements that may be required by
banks, investing brothers -in -law and so forth.
These disadvantages make a single entry
accounting system unsuitable for the system
under discussion here.

Double Entry Accounting

The other major accounting system is the
double entry system. It was invented about
600 years ago, and came into widespread use
because it was self checking. It is also quite a
bit more complicated than a single entry
system. The basic idea behind the double
entry system is that each transaction has two
parts: where money comes from and where
it goes. So each transaction is entered twice,
each time in a different account. The mech-
anism behind this is the idea of debits
(DR) and credits (CR). Very briefly, a debit
represents an addition to something which
you have (an asset) or to an expense. A
credit represents a subtraction from one of
these. On the other hand, a debit represents
a subtraction from something which you
owe or from a revenue, while a credit
represents an addition to one of these. All of
which can be very confusing.

As a quick example, suppose you pay

$100 on your BankAmericard and receive

$150 for some service which you performed.
You would debit accounts payable (sub-

tracting from what you owe) for $100, and

credit cash (subtracting from something you
have) for $100. Then you would debit cash

(adding to something you have) for $150,
and credit income or revenue (adding to
revenue) for $150. The self checking feature
is provided by the fact that debits must

always equal credits. It would probably be a

good idea to look through a beginning
accounting book to get more examples to
help explain accounting techniques. I've

listed some at the end of the article.
Besides being self checking, a double

entry system has the advantage of being able

to churn out all sorts of reports on what is

going on in the business in question. The
IRS approves of it; and in fact, large

companies have no choice - they have to
use it. Now that we've described the major
accounting systems, let's get on to what they
do and how they can be used in a computer-
ized system.

The purpose of any accounting system is

to provide information (another purpose is

to provide employment for accountants, of
course). This information is of use to various
people. The owner of a business uses it to
see how well he's doing, and more impor-
tant, where he's not doing so well. Another
important user is your friendly local IRS

agent; anyone in business is required to
produce accounting reports to the Internal
Revenue Service's specifications. Banks and

other investors also are likely to be quite
interested in this sort of information, espe-

cially when their services are requested for
loans rather than for deposits. Corporations
are also required to provide statements to
various government agencies, but we're not
going to be concerned with that here.

The basic statements and reports were

mentioned earlier. The first is the balance
sheet such as the one shown in figure 1.

This represents the financial state of the

company at a particular time. The left hand
side (in the US at least) represents assets, or
what the firm has. The right hand side

represents liabilities and equities. (Liabilities
and Equities is accounting terminology for
where the stuff on the left came from.)
Liabilities are amounts owed; equities are

amounts contributed or earned by the own -
er(s). The second statement is the income
statement. As was mentioned above, a tax
return is a species of income statement. This
shows what happened over a period of time.
Other statements, such as the cash budget
and the pro forma balance sheet, show what
may happen in the future. These are the

ASSETS:

Cash
Receivables
Equipment

1000
2000
4000

Total 7000

LIABILITIES:

Payables 2000
Notes from bank 1000

EQUITY:
Proprietor 4000

Total 7000

Figure 1: The Balance Sheet. This document shows the current financial state

of a business operation. It is used by businesses large and small, and is one of
the end products of the automated accounting system.

EXPENSES (Debit to add, Credit to
subtract)

Return & Allowances
Depreciation
Business Taxes`
Rent
Repairs
Salaries & Wages
Insurance
Professional fees
Commissions
Amortization*
Pension /Profit sharing
Interest
Bad Debts
Depletion
Other (specify if common, eg:
Fuel
Electricity
Telephone
Cost of Goods Sold which

includes
Purchases
Materials /supplies
Other costs
Labor (used for or directly

related to
Production - does not include

money paid to you)

RTN
DEP
TAX
R NT
RPR
SA L
INS
PR F

COM
AMT
PEN
INT
BDB
DP L
MIS
FUL
PWR
FON
CGS

PUR
MAT
OTR

LAB

ASSETS (Debit to add, Credit to
subtract)

Cash
Receivables
Inventory
Prepaid expenses
Supplies
Equipment
Investments
Misc.

CSH
RBL
INV
PPD
SUP
EQT
IVS
ETC

LIABILITIES & EQUITY (Credit to add,
debit to subtract)

Payables
Notes
Long Term Payables
Proprietor
Drawing

PBL
NOT
LTP
PRP
DRW

REVENUES (Credit to add, Debit to
subtract)

Gross Receipts
Other Revenue

*Items for which the IRS requires supplementary schedules or statements

RCP
REV

Figure 2: Account Files Example. When the double entry accounting system

is designed, one of the first steps is to create a list of accounts and their
corresponding mnemonic codes. The mnemonic codes are used internally by

the computer in order to save memory space. if you are lavish with memory,
texts of the long names could be looked up in a table when you generate

reports.

statements which our system is going to be

able to churn out. Now, having got an

overview of what we're trying to do, let's
take a look at our data base requirements.

The first thing we are going to need here
is a set of names for our accounts. This is a

"chart of accounts" to use the jargon of the
accounting trade. A small system such as

ours will need about 35 of these, selected for
the most part to make our output match

365

SUMMARY
EDIT
PROGRAM

SUMMAR
LEDGER
TAPE

TAX
RETURN
PROGRAM

INCOME
STATEMENT
(TAX RE-
TURN)

INPUT FROM
DAILY
ACTIVITY

JOURNAL
EDIT
PROGRAM

JOURNAL
TAPE

BALANCE
SHEET
PROGRAM

BALANCE
SHEET
REPORT

Figure 3: An Accounting
System Flow Chart. This is
a software system flow
chart which identifies the
ma for program com-
ponents of an accounting
system. The representation
assumes that tape files will
be used to maintain mass
storage on your personal
system; floppy disks with
sequential access file orga-
nizations could be used as
we //.

LEDGER
EDIT
PROGRAM

DETAILED
LEDGER
REPORT

BALANCE
SHEET
TAPE

FORECAST
PROGRAM

CASH
BUDGET

PRO FORMA
BALANCE SHEET

MANUAL
FORECAST
INPUTS f-

what the IRS requires. In order to save

memory space in the programs, each of these
accounts is also given a three letter mne-
monic code. Two letters would be possible,
but some ease of use would be sacrificed.
Figure 2 gives a sample list of accounts and
mnemonics, broken down by classification.
A brief explanation of some of the accounts
might be in order. Returns and Allowances is

for goods which are returned for one reason
or another. Its purpose is to reduce the
amount in gross receipts while keeping the
amount of returns separate. The category
SAL includes only those wages paid which
are not included in cost of goods sold (CGS).
This would involve such things as clerical

366

help. INT is interest paid, not received. BDB
(bad debts) is used if we want to use the
specific charge off method of accounting for
such unfortunate happenings. The IRS also
allows use of another method, called the
reserve method, but it is more complicated.
DPL (depletion) is used for things like oil
wells and mines. DEP (depreciation) is used
for equipment, machines and the like, while
AMT (amortization) is used to charge part of
the cost of such things as organization
expense, capitalized research and develop-
ment and so forth. Some of these things can
be listed as assets when the money is first
spent, and the cost spread over several
periods. For details see the IRS books listed
at the end of the article. Cost of goods sold
(CGS) is the total of the costs incurred to
get something ready for sale; the breakdown
is listed below it. Cash (CSH) is mostly
checking account balances. Receivables
(RBL) are what customers owe you on
account. Payables (PBL) are what you owe
on account. Proprietor (PRP) is what you
put into the business and what it has earned
so far. Drawing (DRW) is the account you
use to take money out of the business for
personal uses. Notes (NOT) is money bor-
rowed from banks and other lenders. The
rest should be pretty much self explanatory.
These 35 or so accounts are the data files
which we're going to be working from; all of
the information we put into the system goes
into them and all of the output uses them as

building blocks. Now, having taken care of
all of the groundwork, we are ready to start
running information through the system.

Reference to the system flow chart of
figure 3 shows that the journal is the first
thing we produce. It's shown being produced
on tape, since that way we can use it to
produce all of the other reports without
having to type in any more material, at least
until we come to the forecasts. Also, by
writing our journal entries onto tape as soon
as they're checked by the editing program,
we save much memory space, since we need
keep only a little bit of data in memory at
any given time. So, in this automated sys-
tem, the journal is the only file we really
have to manipulate on a day by day basis.
To use it, first we enter the date. Then we
enter each transaction through the checking
program which makes sure we have two
entries for each amount and that the num-
bers we give the machine match. A sample of
a possible format is given as figure 4. We
debit the power expense account (re-
member, we debit an expense when we want
to add to it) for $58, and enter the comment
that this is for the month of March. Then we
credit cash (to decrease it), but reverse the

numbers. The program sees that the debits
do not equal the credits, and fires off an
error message, prompting us to enter a

correction. Note here that we include the
check number; this is very important when it
comes time to reconcile our records with
what the bank statement says. Also, the
editing program should provide the ability to
debit and credit unequal numbers of ac-

counts so long as the totals are equal. If this
would be too much of a demand on memo-
ry, amounts can be split up before entry.
Going on, the OK indicates that the entries
check, and at this point they should be

written onto the tape. Entries for the journal
can come from cash register tapes, bills, etc.
Up through this point our system is about as

much work as a manual system, but from
here on in things get much easier.

The next item on the system flow chart is

the ledger. This is a set of files which puts all
of the journal entries for each account
together. In our system, there are two types:
summary and detailed. In a more advanced
system, all of the ledgers would be detailed,
but this would require much more memory
than most small systems would have avail-
able. Basically, what we do at this point is

have the program read the journal entries
one by one and keep a running count of the
amount for each of the different accounts in

use. Beginning balances may be read in

either via the Teletype or via a separate
ledger tape. The ending balances should be

printed on the Teletype if the user wishes to
see what they are, but they should also be

saved on tape for use in preparing the rest of
the statements. Detailed ledgers will require
a separate run for each one desired; they
might be run on a weekly or monthly basis.
The most important one is the cash ledger,
since this will provide a record of every
check written and every deposit made to the
checking account by date and number. This
should make balancing one's checkbook a

fairly simple task. The one thing to be
careful of in this program is to be sure that
the rules for addition and subtraction of
debits and credits are carefully written into

the program. Otherwise all that will come
out is garbage.

Once we have the ledger, it's fairly easy
to see how the balance sheet is generated. A
look back at figure 1 will show that there are
only about a dozen of the ledger accounts
which have to be put together. All of the
asset accounts are added together, and the
sum is listed at the bottom of the column as

total. Subtracting the sum of the liabilities
from the sum of the assets leaves what is left
for the owner. If the amount in the drawing
account is set beforehand, that leaves only
the Proprietor (PRP) account to be
"plugged," which is to say, given whatever
value is necessary to make the two columns
come out equal. So, if the assets total
$7000, the liabilities total $3000 and there
are $500 in the drawing account, that leaves
7000 -3000 -500 =3500 for PRP. The only
other detail is that the program should either
write the date at the top, or it should be
filled in by hand. A balance sheet may be
prepared at any time; it will often be
required for getting a loan from a bank.
Besides being run on paper, it should be run
onto tape for use in preparing forecasts.

Probably the most important report
which our system will prepare is the income
statement. This is a report which shows what
has happened over a period; usually a year,
but often prepared on a quarterly or a

monthly basis. Its importance arises not so

much from the fact that people like to see

how much money they've made as from the
fact that the government is quite interested
in this information - so they can take their
cut, of course. The system being illustrated
produces an income statement patterned

The balance sheet is a

snapshot of the current
status of the business.

A mass storage file comes
in handy for business ac-

counting, since much of
the work involved is ac-

complished by reviewing
the same data with dif-
ferent criteria to produce
reports.

Figure 4: An Example of the Interactive Dialog with the Journal Edit
Program. The purpose of this program is to filter your own manual inputs
looking for certain known discrepancies which can be detected by the double
entry bookkeeping method. In this example, upper case letters are the
computer output to a Teletype (or video terminal) and the lower case letters
indicate manual keyboard inputs taken from daily activity records such as

receipts, checks written, etc.

Interactive program for journal entries might read:

ENTER NAME OF ACCOUNT DEBITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
pwr,58,march
ENTER ACCOUNT CREDITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
csh,85,check 346
DEBITS DO NOT EQUAL CREDITS -ENTER IF DR OR CR TO BE CHANGED:
cr

ENTER ACCOUNT CREDITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
csh,58,check 346
OK
ENTER NAME OF ACCOUNT DEBITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
iam done
OK GOODBYE

367

UM

I

Figure 5: The object of
much of this program ac-

tivity is filling out IRS
Schedule C for your small
business.

after Form 1040 Schedule C (figure 5), but
could produce Form 1065 for partnerships
with minor changes. As is fairly obvious to
those who can wade their way through the
governmentese, what we have to do here is

state all income and then subtract expenses.
The accounts which we have been working
with will do this on what is called an accrual
basis, which is to say future expenses and
revenues are included if they are certain and

we know how much money is involved. For
example, if we have charge customers, we

include what they are scheduled to pay us in
revenues. For a small business it is often
better to file a tax return on the cash basis in
which only cash in is considered revenue and
cash out is considered expense. This system
can prepare cash basis returns too; one must
eliminate receivables, payables, prepaid ex-

penses and materials and supplies not yet
part of cost of goods sold. The effect of all

of these should be taken out of the revenue
and expense accounts too.

That's the basic system. Using this system

alone would be a pretty respectable account-
ing setup for a small business. But as long as

we're using a personal microcomputer, we

might think of adding a few bells and
whistles. These would pretty much depend
on individual wants. We could have the
computer automatically calculate FICA de-

ductions when payroll expense is debited.
We might also have the machine figure our
depreciation and amortization schedules for

GLOSSARY

Accrual: Including payments and receipts in the
future.

Check reconciliation: Accounting buzzword for
balancing a checkbook.

Credit (CR): An addition to the righthand side of
the balance sheet or to income.

Debit (DR): An addition to the lefthand side of
the balance sheet or to an expense.

Journal: The accounting equivalent of a check
register.

Ledger: Book or file which contains the totals
from the journal broken down by categories.

Payables: Amounts which will have to be paid in
the future.

Pro forma: Buzzword used to describe reports
which show how things might be or might have
been rather than what they are.

Proprietorship: A one man business; one owner.

Receivables: Amounts which are not yet on hand
in cash but which will definitely be coming in in
the near future.

368

us. For this we would need (for each item or
class of items) initial value, estimated life
and age. For tax purposes we would want to
get our annual depreciation by taking two
divided by the life of the object and multi-
plying the total times the remaining value. In

more symbolic form:

(2 /total Iife) *(initial - depreciation).

This would give us the depreciation to date

and the amount for this year, both of which
are needed for the flip side of the tax form.
We could also do forecasting with the

system. For this we would want an inter-
active program which would ask for esti-

mated expenses and receipts in all the

different categories for x number of months.
Then we would prepare a (pro forma)
balance sheet for the end of the period if our
predictions were correct, so that we could
see where things would stand if the predic-
tions came true. It could also prepare a

month by month schedule to show whether
the firm would have enough on hand to
meet projected outflows. This is called a

cash budget, and is quite a handy thing to
have since it enables you to forecast cash

shortages far enough in advance to do
something about them, and also to compare
the results of different courses of action.

And there's the system. While not very
fancy from either an accountant's or a

system designer's point of view, it ought to
be enough to handle much of the record -
keeping for those firms on the other end of
the spectrum from GM, IBM and ITT. It
might be too that the availability of a few
business oriented systems like this will help
increase the sales of microcomputers and

bring the prices down even more through
mass production.

REFERENCES

1. Accounting Essentials, Margolis, Wiley and Sons

1972.

2. Elementary Accounting, College Outline Series

#39.

3. Management Accounting, Anthony and Reece,

Irwin, Inc, 1975 (Note: this is a college
accounting textbook - heavy reading).

4. Recordkeeping for a Small Business, IRS #583,
1976.

5. Tax Guide for Small Business, IRS #334, 1976
(complete handbook).

6. Tax Information on Accounting Periods and
Methods, IRS #538, 1975.

The last three are available free from any IRS
office.

Chips Found Floating Down Silicon Slough

Roy H Trumbull
833 Beira Dr
El Cerrito CA 94530

NOISE EMITTING DIODE

NED

IN -OP AMP

J(UN)K FLIPFLOP

The state of the Art is changing rapidly.
In fact I ran into him in New Mexico last

month. Seems he had just gotten back from
China where he had seen their latest

computer. It was really fantastic, but they
still have a problem with noise from the

beads. I asked Art to clue me in on the latest

devices coming out of research and these are

the ones he told me about:

The Don't Gate
You don't get no output no matter

what's at the inputs. It is believed that the

don't gate was the breakthrough that made

the LSI write only memory possible.

Noise Emitting Diode (NED)
When connected across a 1000 volt

supply it makes a loud noise (once). The

NED was discovered by Igor Pravaganda

whom you'll recall worked many years

trying to filter AC with electrolytics. He'll

always be remembered as the father of the

confetti generator.

Shiftless Register
Must be used with 3 speed forward clutch

gate. Shifts at 15, 25, and 35 bits per
second. Double clutching with logic 2s is not
suggested.

Inoperational Amplifier (IN -OP AMP)
Linear cousin of the DON'T gate.

Provides no output for any input at a slew

rate of 0 volts per microsecond. Mil Spec.

version available at 100 times the cost of
OEM version.

J(UN)K Flip Flop
Doesn't change state when clocked

regardless of input states. Changes state only
of when cola machine down the hall makes

o' change.

Excess 3 To Insufficient 4 Carry Forward
Fudger

Used to enter Murphy factor and get the

programmer off the hook.

MOSS

Moss
Highly experimental material. Very rare

at present since only source is from under
grizzly bear toenails. Turns green when
facing north while on wood substrate.

Fuzz Locked Loop
Great if you want to avoid radar speed

traps.

369

TICK TOCK

CEREAL IN

DON'T GATE

SHIFTLESS REGISTER

NO NO

GRANOLA OUT

MAYBE

.-- NUMBERS FALLING
OUT

OD

CLUTCH GATE

3ncE óame\
EXCESS 4 TO INSUFF,IFNr 4

CARRY FORWARD FUD.:ER

\ O

\ O o

O

iocx

Resources

The diversity in The Best of
Creative Computing - Vol-
urne 1 can only be described
as staggering. The book
contains 328 pages of articles
and fiction about computers,
games that you can play with
computers and calculators,
hilarious cartoons, vivid
graphics and comprehensive
book reviews.

Authors range from Isaac
Asimov to Sen: John Tunney
of California; from Marian
Goldeen, an eighth -grader in
Palo Alto to Erik McWilliams
of the National Science
Foundation; and from Dr.
Sema Marks of CUNY to
Peter Payack, a small press
poet. In all, over 170 authors are represented in over 200
individual articles, learning activities, games, reviews and stories.

This 328 -page book has 108 pages of articles on computers in
education, CAI, programming, and the computer impact on
society; 10 pages of fiction and poetry including a fascinating
story by Isaac Asimov about all the computers on earth linking up
after a nuclear war to support the few remaining survivors; 15
pages of "Foolishness" including a cute cartoon piece -
called"Why We're Losing Our War Against Computers "; 26 pages
on "People, Places, and Things" including the popular feature
"The Compleat Computer Catalogue" which gives capsule
reviews and lists sources for all kinds of computer -related
goodies; 79 pages of learning activities, problems and puzzles; 29
pages continuing 18 computer games including a fantastic
extended version of the single most popular computer game -
Super Star Trek; and 32 pages of in -depth book and game reviews
including Steve Gray's definitive review of 34 books on the Basic
language.

The Best of Creative Computing - Volume 1 is available by mail
for $8.95 plus 750 postage from Creative Computing Press, Attn:
Becky P.O. Box 789 -M, Morristown, N.J. 07960.

The Best of - ..

creative
contputiR f
Volume 1 Edited by David H. AM

ARTIST AND COMPUTER is a unique new art book that
covers a multitude of computer uses and the very latest
techniques. In its pages. 35 artists who work with computers

a
explain how the computer can be
programmed either to actualize the
artist's concept (such as the
visualization of fabric before it is wo-

ven) or to produce finished pieces. Illustrated
Elwith more than 160 examples of computer art. 9 D of them in full color. ARTIST AND COMPUTER
will fascinate and inspire anyone who is in-

terested in art c
Size puter technology. Size

81 / "11 ".

Edited by RUTH LEAVITT
Paper 54.95. cloth $10: now at selected bookstores, or send payment plus
75C handling to Creative Computing, P.O. Box 789 -M, Morristown, N.J.
07960. N.J. residents add 5% sales tax.

THE BEST OF BYTE - VOL. 1

The Best of Byte - Volume 1 is a 384 -page blockbuster of a book
which contains the majority of material from the first 12 issues of
Byte magazine. 146 pages are devoted to "Hardware" and are
cram full of how -to articles on everything from TV displays to
joysticks to cassette interfaces. The section on computer kits
describes building 7 major kits. But hardware without software
might as well be a boat anchor, so there are 125 pages of
"Software and Applications" ranging from on -line debuggers to
games to a complete small business accounting system. A
section on "Theory" examines the how and why behind the
circuits and programs, and a final section "Opinion" looks at
where this explosive new hobby is heading.

The Best of Byte - Volume 1 is edited by Carl Hel mers and David
Ahl and published by Creative Computing Press. Price in the US
is $11.95 plus $1.00 shipping and handling ($12.95 total); foreign
orders add $1.00 ($13.95 total). Orders from individuals must be
prepaid. Creative Computing Press, Attn: Becky , P.O. Box 789 -
M, Morristown, NJ 07960. Allow 8 weeks for delivery.

o

o

101 BASIC Computer Games is the most popular
book of computer games in the world. Every pro-
gram in the book has been thoroughly tested and
appears with a complete listing, sample run, and de-
scriptive write -up. All you need add is a BASIC -
speaking computer and you're set to go.

101 BASIC Computer Games. Edited by David H.
Ahl. 248 pages. 8'hx11 paperbound. $7.50 plus 75i
postage and handling ($8.25 total) from Creative
Computing, P.O. Box 789 -M, Morristown, NJ 07960.

THE BEST OF

creative
corripu1iRg
VOL. Z EDITED BY DAVID MIL

1N

This fascinating 336 -page book contains the best of the
articles, fiction, foolishness, puzzles, programs, games, and
reviews from Volume 2 issues of Creative Computing magazine.
The contents are enormously diverse with something for
everyone. Fifteen new computer games are described with
complete listings and sample runs for each; 67 pages are devoted
to puzzles, problems, programs, and things to actually do.
Frederik Pohl drops in for a visit along with 10 other super
storytellers. And much more! The staggering diversity of the book
can really only be grasped by examining the contents, or better
yet, the book itself.

Price is $8.95 plus $0.75 shipping and handling in the USA
($9.70 total); outside USA, add $1.00 ($10.70 total). Individual
orders must be prepaid. Creative Computing Press, Attn: Becky
P.O. Box 789 -M, Morristown, NJ 07960.

sr, fr° Hundreds
ts- and hundreds of

cartoons about computers,
robots, calculators, Al, and much more.

THE COLOSSAL COMPUTER
CARTOON BOOK

128 big pages! Paperbound. Only $4.95
plus 750 postage ($5.70 total).

Creative Computing, Attn: Becky
Box 789 -M, Morristown,

NJ 07960

:QQOC

20(

Outrageous T Shirts:
creative

competing

Einstein in black, white Scarlet design,
shirt, scarlet sleeve and orange shirt.
collar trim.

T- Shirts a-
vailable in
adult sizes S,
M, L, XL. All
cotton, made
in USA. $4.50
each post-
paid in USA,
$5.50 to for-
eign ad-
dresses. Send
order (speci-
fying design
and size) with payments to
Creative Computing. P.O.
Box 789 -M, Morristown,
NJ 07960. Allow 8 weeks
for delivery.

Black design,
light green shirt.

t Ha 01G O
TAKE A

COMPUTER
TO LUNCH

Hot pink design,
yellow shirt.

Enterprise
in sliver,

dark blue
shirt.

Purple design, powder
blue shirt.

OM-

,..

The New Creative Computing Catalogue is cram full of
goodies you'll want to know about or order. Described are over
60 books, art prints, posters, T- Shirts, and magazines. Double
Wow!! Send for one today - FREE!

Creative Computing Press, Attn: Becky P.O. Box 789 -M,
Morristown, NJ 07960.

373

101 Basic
Computer Games
David H. Ahl. An anthology of games
and simulations -from Deucey to
Yahtzee, all in the BASIC language
Contains a complete listing, sample run,
plus a descriptive write -up of each game.
Our most popular book! Large format,
248 pp. 37.50 [6C]

What to Do After
You Hit Return
Another collection of games and
simulations -all in BASIC- including
number guessing games, word games,
hide- and -seek games, pattern games,
board games, business and social science
simulations and science fiction games.
Large format. 158 pp. 56.95 [8A]

Fun & Games
with the Computer
Ted Sage. "This book is designed as a
text for a one -semester course in com-
puter programming using the BASIC
language. The programs used as il-
lustrations and exercises are games
rather than mathematical algorithms, in
order to make the book appealing and
accessible to more students. The text is
well written, with many excellent sample
programs. Highly recommended." -The
Mathematics Teacher 351 pp. 66.95 [8B]

Game Playing
With the Computer,
2nd Ed.
Donald Spencer. Over 70 games. puzzles.
and mathematical recreations for the
computer. Over 25 games in BASIC and
FORTRAN are included complete with
descriptions. flowcharts, and output.
Also includes a fascinating account of the
history of game- playing machines, right
up to today's computer war games. Lots
of "how -to" information for applying
mathematical concepts to writing your
own games. 320 pp. 1976 $14.95 [8S]

BYTE Magazine
If you are considering a personal com-
puting system now or later, BYTE
provides a wealth of information on how
to get started at an affordable price.
Covers theory of computers. practical
applications, and of course, lots of how -
to build it. Monthly. I -Year sub'n512.00
[2A], 3 -Years $30.00 [2B]

Games & Puzzles
Magazine
The only magazine in the world devoted
to games and puzzles of every kind -
mathematical, problematical,
crosswords, chess. gomoko, checkers,
backgammon. wargames. card games,
board games, reviews. competitions. and
more. Monthly. I -Year sub nS12.00[3A]

Games With The
Pocket Calculator
Sivasailam Thiagarajan and Harold
Stolovitch. A big step beyond tricks and
puzzles with the hand calculator, the two
dozen games of chance and strategy in
this clever new book involve two or more
players in conflict and competition. A
single inexpensive four- banger is all you
need to play. Large format. 50 pp. 52.00
[8H]

Games, Tricks and
Puzzles For A Hand
Calculator
Walk Judd. This book is a necessity for
anyone who owns or intends to buy a
hand calculator, from the most
sophisticated (the H P65, for example) to
the basic "four banger." I 10 pp. 52.95
[8D]

So you've got a
personal computer.

Now what?
Creative Computing Magazine
So you've got your own computer. Now what? Creative Computing is chock full
of answers - new computer games with complete listings every issùe, TV color
graphics, simulations, educational programs, how to catalog your LPs on
computer, etc. Also computer stories by Asimov, Pohl. and others; loads of
challenging problems and puzzles; in -depth equipment reports on kits. terminals,
and calculators; reviews of programming and hobbyist books; outrageous
cartoons and much more. Creative Computing is the software and applications
magazine of personal and educational computing. Bi- monthly.
I-year sub'n $8.00 [IA]. 3- years S21.00 [1 B]. sample copy $ 1.50 [I C]

The Best of Creative
Computing - Vol. 1
David AM, esL Staggering diversity of
articles and fiction (Isaac Asimov, etc.),
computer urnes (18 new ones with
complete listings), vivid graphics, IS,
pages of `foolishness," and comprehen-
sive reviews of over 100 books. The book
consists of material which originally

in the first 6 issues of Crean
Comparing (1975), all of which are now

out of print. 324 pp. S8,95 [6A]

Computer Lib/
Dream Machine
Ted Nelson. This book is devoted to the
premise that everybody should under-
stand computers. In a blithe manner the
author covers interactive systems. ter-
minals, computer languages, data struc-
tures, binary patterns, computer
architecture. mini -computers, big com-
puters. microprocessors, simulation,
military uses of computers, computer
companies, and much, much more.
Whole earth catalog style and size. A
doozy! 127 pp. 57.00 [8P]

Computer Power and
Human Reason
Joseph Weizenbaum. In this major new
book. a distinguished computer scientist
sounds the warning against the
dangerous tendency to view computers
and humans as merely two different
kinds of "thinking machines." Weizen-
baum explains exactly how the computer
works and how it is being wrongly
substituted for human choices. 300 pp.
$9.95 [8R]

Problems For
Computer Solution
Gruenberger & Jq(frai. A collection of
92 problems in engineering, business,
social science and mathematics. The
problems are presented in depth and
cover a wide range of difficulty. Oriented
to Fortran but good for any language. A
classic. 401 pp. 58.95 [7A]

Problem Solving With
The Computer
Ted Sage. This text is designed to be used
in a one -semester course in computer
programming. It teaches BASIC in the
context of the traditional high school
mathematics curriculum. There are 40
carefully graded problems dealing with
many of the more familiar topics of
algebra and geometry. Probably the
most widely adopted computer text. 244
pp. 56.95 [8J]

A Simplified Guide to
Fortran Programming
Daniel McCracken. A thorough first text
in Fortran. Covers all basic statements
and quickly gets into case studies ranging
from simple (printing columns) to
challenging (craps games simulation).
278 pp. $8.75 [7F]

Understanding Solid
State Electronics
An excellent tutorial introduction to
transistor and diode circuitry. Used at
the TI Learning Center, this book was
written for the person who needs to
understand electronics but can't devote
years to the study. 242 pp. $2.95 [9A]

A Guided Tour of
Computer Programming
In Basic
Tom Dwyer and Michael Kaufman.
"This is a fine book, mainly for young
people. but of value for everyone, full of
detail, many examples (including
programs for hotel and airline reser-
vations systems, and payroll), with much
thought having been given to the use of
graphics in teaching. This is the best of
the introductory texts on BASIC." -
Creative Computing Large format. 156
pp. 54.40 [81]

BASIC Programming
2nd Ed
Kemeny and Kunz "A simple gradual
introduction to computer programming
and time- sharing systems. T'Ire best text
on BASIC on almost all counts. Rating A- Creative Computing. 130 pp. $8.50
í7E1

Artist and Computer
Ruth Leavitt, ecL Presents personal
statements o05 internationally -known
computer artists coupled with over 160
plates in full color and black & white. ,

Covers video art, optical phenomena,
mathematical structures, sculpture,
weaving, and more. 132 pp: $4.95 [6D]
Cloth cover S10.95 [6E]

Computer Science:
A First Course (2nd Ed.)
Forsythe. Keenan, Organic),, and
Srenherg. A new, improved edition of
this comprehensive survey of the basic
components of computer science. There
has been an updating of important areas
such as Programming, Structured
Programming, Problem Solving, and
other Computer Science Concepts. The
quantity of exercises and problems has
been increased. 876 pp.516.95 [7D]

Mr. Spock Poster
Dramatic, large (17" x 23 ") computer
image of Mr. Spock on heavy poster
stock. Uses two levels of overprinting.
Comes in strong mailing tube. $1.50[5B]

Build Your Own
Working Robot
David Heiserman. Complete plans,
schematics and logic circuits for building
a robot. Not a project for novices, this
robot is a sophisticated experiment in
cybernetics. You build him in phases and
watch his capabilities increase and his
personality develop. Phase 1 is leash led,
Phase II has a basic brain, while Phase
Ill responds and makes decisions. 238
pp. 1976 S5.95 [9M]

Computers and
Society
R. Hamming. Provides a framework for
thinking about and drawing conclusions
about how machines should be used in
our society. Presents, in a non -technical
way, the principles of computer
operations, pro amming and use, 288
pp. 1972 S7.95 [8T]

Problem Solving: The
Computer Approach
La Faye. Milbrandt, and Garth.
Describes the process of thinking
through the steps needed to solve a
problem, flowcharting the steps, coding
in a computer language, development of
appropriate test data. and manual
checking. 176 pp. 1973 SI0.40 [8U]

Microprocessors
A collection of articles from Electronics
magazine. The book is in three parts:
device technology; designing with
microprocessors; and applications. 160
pp. 1975 SI3.50 [9J]

Microprocessors: Tech-
nology, Architecture
and Applications
Daniel R. McGlynn. This introduction
to the microprocessor defines and
describes the related computer structures
and electronic semi -conductor processes.
Treats both hardware- and software,
giving an overview of commercially
available microprocessors, and helps the
user to determine the best one for
him her. 240 pp. $12.00 [7C]

The Art of Computer
Programming
Donald Knuth. The purpose of this series
is to provide a unified, readable, and
theoretically sound summary of the
present knowledge concerning computer
programming techniques, together with
their historical development. For the'
sake of clarity, many carefully checked
computer procedures are expressed both
in formal and informal language. A
classic series. Vol. I: Fundamental
Algorithms, 6)4 pp. 520.95 [7R]. Vol. 2:
Seminumerical Algorithms, 624 pp.
$20.95 (7S]. Vol. 3: Sorting and
Searching, 722 pp. $20.95 [77].

ALGOL by Problems
B. Meek. A set of programming exer-
cises, both abstract and concrete, to give
the reader a thorough working
knowledge of ALGOL. Good compan-
ion to vendor's language manual. 168 pp.
1972 $8.95 [8V]

Computer Algorithms
and Flowcharting
G. Silver and J. Silver. A straightforward
approach to analyzing problems and
structuring solutions suitable for the
computer. Branching. counters, loops.
and other important concepts are
presented in easily- grasped modular
units in the text. 176 pp. 1975 S6.95 [8W]

Creative Computing
Catalogue
Zany 12 -page tabloid newspaper!
catalog lists books, magazines, an prints.
and T- Shins. A conversation piece even
if you don't order anything. Free. [5A]

374 Use order form or send amount plus $1.00 postage and handling to Creative Computing , Box 789 -M, Morristown, NJ -07960.

= AZA AIMS 1111
AMP% 41411111P 1/1111"

The Small Systems Journal

Isn't i f time .. .

you had your own personal computer?

Read FUI , the leading consumer publication covering the fantastic new field of per-
sonal computer applications. Today, large scale integration has made it possible for
the individual to enjoy the unique benefits of a general purpose computing system.
Now, an entire micro industry markets microcomputer related items, products that
range from computer system kits to peripherals, software and literature on the sub-
ject. But where should you go for all the details about your personal involvement in

computer technology?

Read EVIE , the Small Systems Journal devoted exclusively to microcomputer
systems. Every issue a monthly compendium of lively articles by professionals, corn -

puter scientists, and serious amateurs.

Detailed hardware and software design articles authored by individuals who are
experimenting in the field.
Tutorial background articles on hardware, software and applications ideas for the
home computer and general topics of computer science.
Reviews of processors as candidates for small general purpose systems.
An editorial bias toward the fun of using and applying computers toward personally
interesting problems such as electronic music, video games, control of systems for
hobbies from ham radio to model railroading, uses of computers from burglar
alarms to private information systems.
Advertisements of the firms who bring you products to help expedite your personal
computing activities.
Information on clubs, newsletters and other social activities of the individuals
engaged in personal computing.

Don't miss a single FM .Order your subscription today by filling in this coupon or
phone your request directly - call 617/646 -4329 and ask for your subscription.

Read your first copy of BYTE, if its IFNIMENSENIMIMINEMMINIMMENEM_____MIll
everything

isn't,
expected,

write
'Cr our in- BYTE Subscriptions Dept. 50Z

voice. 11 it isn °t, just write 'CANCEL'
across invoice and mail it back. You Box 361 Please ante /my subscription'
won't be billed and the first issue is Arlington, Mass. 02174 to BYTf, .. '
yours.

o $
Bill

Year D $22 Two Years D $30 Three Years

Allow6to8 weeks for Processing. L. Bill me Ci Check Enclosed ' D Bill BankAmericard D Bill Master Charge

Credit Card Number D O CI D O CI CJ CJ C] CJ C] U C1 CJ

ICredit Card Expiration Date

Name (Please Print)
Address
City State Zip

375

When you get your home or
office computer, will you
know what to do with it?

The typical home or small business computer system starts
with a microcomputer, keyboard, cassette recorder, and TV set.
From there you can add the peripherals, sensors, controllers,
and other devices you need for your own special applications.

keyboard

Cassette
Recorder

Floppy Disc

Color TV Set

IInput Sensors

Microcomputer

Music, Speech
Synthesis

Printer

Health Care
1.Medical /dental record keeping
2. Insurance claim processing
3. Health maintenance instrumentation control (EKG, blood

chemical analysis, diet analysis, self- diagnosis)
Education and Training

1. Mathematics drill and practice
2. Problem solving techniques
3. Tutorial instruction in a given field
4. Simulation and gaming
5. Music instruction and training
6. Music composition and synthesis
7. Learning to program
8. Software development
9. Perception /response /manipulation skills improvement

Recreation and Leisure

Joysticks
1. Games, games, games
2. Puzzle solving
3.Animation /kinetic art
4. Sports simulations
5.Needlepoint /stitchery /weaving pattern generation

Output
Control Lines

Creative Computing Magazine is dedicated to describing
applications for home, school, and small business computers
completely and pragmatically in non -technical language. You
won't need a Ph.D in Computer Science, or a technical reference
library, or a computer technician beside you to get these
applications up and running. We give you complete hardware and
software details. Typically, applications utilize commercially
available systems. However, if an application needs a piece of
home -brew hardware, we tell you how to build it. Or if it requires a
combination of high -level and machine language code, we give
you the entire listings along with the flowcharts and algorithms.

We also run no- nonsense reviews of computers (assembled
and kits), peripherals, terminals, software, and books. We're frank
and honest, even if it costs us an advertiser, which it occasionally
has.

Here are just some of the applications you'll see fully described
in future issues of Creative Computing.

Building Management and Cbntrol
1.Alarm monitoring /police notification
2. Environmental control (heating, air conditioning, humidifica-

tion, dehumidification, air purity, etc.)
3. Fire and smoke detection
4.Appliance control (microwave oven, gas oven, refrigerator)
5. Perimeter system control (sprinklers, outdoor lights, gates)
6. Solar and /or auxiliary energy source control
7.Watering system control based on soil moisture
8. Fuel economizing systems
9. Maintenance alert system for household devices (key

component sensing and periodic preventative maintenance)

Household Management
1.Address /telephone file
2. Investment analysis
3. Loan /annuity /interest calculations and analysis
4. Checkbook maintenance
5. Periodic comparisons of expenditures vs. budget
6. Monitor time and cost of telephone calls
7.Record incoming telephone calls and select appropriate

response to caller
8. Recipe file
9. Diet /nutrition analysis

10. Menu planning
11. Pantry inventory /shopping list

376

6. Computer art
7. Library cataloging (books, records, etc.)
8. Collection catalog /inventory /value (coins, stamps, shells,

antique auto parts, comics, etc.)
9. Model railroad control

10.Amateur radio station control
11. Astronomy; star, planet, satellite tracking
12. Robotics
13. Speech recognition and synthesis

Business Functions
1. Small business accounting
2. Word processing /text editing
3. Customer files
4. Software development
5. Operations research
6. Scientific research
7. Computer conferencing
8. Telephone monitoring
9. Engineering calculations

10. Statistical analysis
11. Survey tabulation
12. Inventory control
13. Mailing lists

r

e
o tzt.

014
+

yG
dv"

1'2'w 4.
tC e

SUBSCRIPTION ORDER FORM
Type Term
Individual 1 -Year

3 -Year
Lifetime

Institutional 1 -Year
3 -Year

o New Renewal

USA
o s 8

Foreign
£ to

21 27
300 400

15 15
o 40 40

o Cash. check, or M.O. enclosed

BankAmericard Card No _.

o Master Charge Expiration date

o Please bill me (S1 00 billing fee will be added)

Name

Address

City State _ Zip

Send to Creative Computing, Attn: Becky
P 0 Box 789 -M, Morristown, NJ 07960 tw MOM

Subscriptions
to BYTE

[).

Books and
Merchandise

Subscriptions to
CREATIVE

COMPUTING

Á z co)

9
9
Q

Q)CDCUO a -O pQ - CD ` O

ln (D O O .- O
Cn c

C °J

CnrOC')V VO á 1:CUVCDO
p 7 V
LL(nffl n

ln CD O O Q-CU,4(O
U) (

cf) L7 m
m

E.)
N N N
CU a

E u'iïnu'iE
a N N N

VCD =
CVC')J

a
d

S 1 : T.1 #
óN r r E c m i

> - ,
m
- w çç

CV J U m m

d

,---...-..

É

z

a)
E

z

Dept. 50Z

Attn: Becky

Attn: Becky

F (ill SUBSCRIPTIONS
Publications, Inc.

70 Main Street
Peterborough, N. H. 03458

creative computiRf
P.O. Box 789 -M

Morristown, New Jersey 07960

creative computiRg
P.O. Box 789 -M

Morristown, New Jersey 07960

PLACE

STAMP

HERE

Place
Stamp
Here

Place
Stamp
Here

T
the small systems journal

