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Preface

On a recent Saturday | invited a group of some
twenty associates and friends to my house to discuss
the future direction of hobbyist computing (Naturally,
my objective was to determine how Creative Com-
puting magazine and press should be positioned in
the market). These people represented a diverse
spectrum of the hobbyist computer movement —
people from a major manufacturer which 18 months
before consisted of two people in a basement
workshop, representatives from a large 500-member
computer club that two years earlier did not even
exist, a department chairman from an lvy League
University which had just graduated their first group
of Computer Education majors, a salesman from a
retail computer store which had just moved for the
second time in sixmonthstolarger quarters, hobbyists
from virtually every walk of life, and, of course, people
fromthepublishingside of things.

What becomes quickly apparent is that the hob-
byists who jumped in two years ago, or one year ago,
or even six months ago are much further along than
people entering today. Nevertheless, vast hordes of
people continue to enter the hobby daily. Thus the
magazines in the field are caught between a rock and
a hard place — should a magazine progress along and
continue to present challenging material to its earlier
and technically more sophisticated subscribers? Or
should it endeavor to bring the newcomer up to speed
with primer-type material and risk losing its more
knowledgeable readers? The magazine that attempts
to do both is a bit like the boy in the Charles Addams
cartoon who is sliding down a bannister that at the
bottom of the stairs turns into a razor blade.

One solution to this dilemma is to offer back issues
to later subscribers so they can get a quick cram
course of what transpired before they subscribed.
Better yet is a book, like this one, of the best material
from previous issues of the magazine.

For those readers who don’t know Byte magazine, it
was one of the earliest entries in the hobby computer
field. Some early issues carried the notation on the
cover: "'Computers - The World’'s Greatest Toy".

= N [ ==

However, before long it became apparent that
hobbyists look at their computers as much more than
just a toy; Byte is now dubbed ‘The Small Systems
Journal” which better reflects the comprehensive
scope of home computerists.

Under the direction of Editor Carl Helmers and
Publisher Virginia Peschke, Byte not only reflects and
responds to the enormous diversity of computer
hobbyists, but sets the pace in innovation and new
development. Naturally most hobbyist’s first concern
is getting a system builtand running—the sectionson
“Computer Kits’* and ‘“Hardware’’ address this need.
However, without software a computer might as well
be a boat anchor, hence there is an equally large
section on ‘‘Software.”” The questions of what's
coming, how does it work, and what do you do with it
are covered in the sections on "‘Opinion’, “Theory"’,
and ""Applications’’.

Volume 1 of Byte magazine includes sixteen issues
from the charter issue in September 1975 through
December 1976. This book includes material from the
first twelve issues. (Does this mean there will be a
Volume 1.5? Quite probably.)

It's an impressive collection. Although | was a
charter subscriber to Byte there were many articles |
didn’t read until | put them together in this volume. |
couldn’t help but be awed with how far hobbyist
computing progressed inone short year. One canonly
wonder what the future holds in store. In my mind
computers are truly different from any other hobby.
First of all, they are not an end in themselves but
rather a tool for accomplishing literally thousands of
things. Second, computers are an intellectual tool,
not simply a hammer or a lathe however useful they
might be, but a fascinating, powerful, creative, mind-
expanding, tool. The cliche is that “the sky is the
limit”, but | look beyond that. The cybernetic
revolution has begun.

March, 1977 David H. Ahl

Morristown, New Jersey
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The Shadow,
Buck Rogers,

and the

Home Computer

by

Richard Gardner
Box 134
Harvard Square

Cambridge MA 02139

A computer at home? Ask many present day computer
systems people what they'’d do with a home computer and
you’ll get the old silent treatment in return. But all that
indicates is a lack of imagination. A large part of the BYTE
philosophy is the discovery of applications areas through the
imaginations and practical results of readers. Richard Gardner
supplies us with a ‘“"Gee Whiz'’ article on potential applications
areas to get things in motion a bit. Richard has extensive
computer applications experience including one stint working
for the Children’s Museum in Boston, creating interactive
computer oriented exhibits. Eventually, many of the systems
ideas Richard mentions in his article will appear as practical
plans and programs in the pages of BYTE — as developed and
described by our readers. If you'd like an interactive meeting
of the minds on possible uses and ideas, Richard invites
correspondence from readers. ... CARL
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Ah vyes! It conjures up
visions of an earlier day,
many years ago, when Mom,
Pop and the kids sat around
that newfangled gadget, the
radio, and listened to ‘“The
Shadow’’ and ‘““Buck Rogers.”

Flash forward to the
future, right now! Again, we
see Mom, Pop and the kids
sitting around that new-
fangled gadget, the computer,
balancing a checkbook,
converting a four servings
recipe to seven, and playing
tic-tac-toe. Not very exciting
things to do with a computer,
you say? Well, you’re right.
But let’s see if we can do
something to make it at least
as exciting as old-time radio.

We mentioned three
applications for a home
computer:

1) checkbook balancing

2) recipe converting

3) game playing

For starters Mom and Pop
should have a program for
collecting and summarizing
all their financial data, on a
daily, monthly and yearly
(for your “friend”’ and mine,
the IRS) basis. A family will
be more secure by knowing
the state of its financial
affairs. You will want to

ARTHUR'S
INFORMATION PARLOY

HIGH QUALITY

INFORMATION LINKS |
AT

REASONABLE PAICES




compute interest for different
purchase plans, and balance
the checkbook.

Moving on to a subject
close to my heart (just below,
and a little to the right) —
food. Almost anyone can
convert 4 to 7 servings — just
double it and feed the
leftovers to the dog, or give it
to a charitable organization
(tax deductible, of course).
What you really want to
know is whether everyone got
enough nutrients (vitamins,
minerals, protein, etc.) from
what they ate today. Hint: it
can be done. | know of two
people who started a small
company to do it.

On to fun and games —
hundreds of game playing
programs have been written (|
invented one called
YOUGUESS) for all sorts of
computers and languages.
You should have them all. It
will win friends and influence
neighbors, if you’ll pardon
the pun.

I'd say that’s at least as
exciting as old-time radio.
Good, but we can do much
better. Let’s consider three
things:

1) Today’s computers are
very fast. The applications

we've mentioned might take
one hour of CPU time per

day, at the very most. So
what do we do with the other
23+ hours?

2) There are lots of

computers in the world, and
they can talk to each other.

3) Computers can hear,
see, feel, smell and touch.

Keep these things in mind
as we consider what might be
called economic, personal and
educational applications for
the home computer.

Computerizing the Home

Since your computer
won’t be doing anything most
of the day why not put it to
work:

1) Heating and air
conditioning control.
Optimize increases and
decreases in the inside
temperature to minimize

energy use. Open and close
curtains on windows to use
the sun’s energy or keep it
out.

2) Security. While you're
at home or away, monitor the
opening and closing of
windows and doors.
Automatically telephone the
police with a recorded
message when you’re gone or
at home. Monitor the use of
your swimming pool — sound
an alarm when the pool is in
use and nobody’s in the
lifeguard seat. Fire
monitoring equipment can be
located in many places and
sound an alarm long before
you might smell or see

smoke. The fire department
can be called automatically
with another recorded
message.

These applications will
make use of photocells,
theramins (motion sensing
devices), heat sensors, contact
switches, smelling devices
(like those used by the
Defense Department in
Vietham to smell passing
elephants and tigers). Eight
bits might be used to
represent a temperature range
of 256 degrees. 100 degrees
would be adequate for most
locations. One analog to
digital converter could be
used for other analog inputs,
such as from a photocell. A
digital to analog converter
would generate voltages to be
used by motors and other
mechanisms.

Using a Symbol Table to
Improve the Food Table

Most people in America
have a poor diet in spite of
the fact that we have more
food of a better quality and
variety than any other
country. So | consider the
following to be important
uses for a home computer:

1) Selection of foods on a
seasonal basis to reduce cost
and improve quality. A
program for doing this would
run for a year and use a data
base for your area (to take
advantage of local produce).
A second data base would be
programmed for widely

and when

foods
they are best and cheapest.

available

2) A menu building
program to take advantage of
the above system but with
the intention of increasing
variety and maximizing
nutrition.

3) A shopping guide to
take advantage of local food
supplies by indicating the
best one or two markets from
which to purchase your food.
This data base might be
maintained by some person in
your locality — and then
rented on a per use basis. No
sense in everyone typing in
today’s price for cumquats.
Perhaps the New York Times
will eventually computerize
its cookbook, plus thousands
of other recipes, and allow
the public to access this data
base via a personal computer.

Since your computer won't
be doing anything most of
the day . ..

This application, like others
mentioned, would use the
telephone system — the
world’s largest computer. |
can see it now. The kids get
home from school and ask,
“What’s for dinner, Ma Bell?”

The Bottom Line Isn’t
Always an End Statement

Or, how to profit from
your home computer:

1) Income management, as
previously mentioned, but
with the help of another
computer. Several computer
companies that do nothing
but figure taxes (for you
know who!) already exist.
Eventually they will allow
your computer to call their
computer. Your computer
shovels in a year’s data and
out pops a tax form with all
the right numbers. You might
think it easier to do your own
programming, but remember
that you can’t write every
program you will want to use.
In addition, these companies
have staffs that do nothing
but make program
improvements and changes
required by the IRS. What
person in his or her right
mind could possibly keep

track of a myriad of new
rules from the IRS?

2) Play the ponies or the
puppies? An obvious use for
your computer. Again, use a
data base compiled by some
local eager beaver. Perhaps
you’d be charged a small fee
for accessing the day’s
statistics. Perhaps you have a
data base or program to
trade.

3) Then there’s always the
world’s biggest daily crap



game — the stock market. A
company in Philadelphia will
charge you $300 a year for a
small numeric terminal and
24 hour a day access to their
stock data base. You key in
the number of a stock and
out pops the high, low,
average, etc. Your computer
could make one call after
each trading day, collect the
stock data you're interested
in, hang up, and then
determine if you should buy,
sell or hold. The decision
making could be done by
your program or one being
rented from a stock market
wizard you know.

4) | mentioned how a
computer could be used to
optimize the purchase of
food. This principle applies to
any commodity whose price

L

and quality changes during

the vyear: clothes, home
furnishings, gifts, trans-
portation, even housing.

Some local person, or you,
could create the necessary
commodity and price data
bases, then use or rent them.

Remember! There is a host
of areas for small business
activities using your home
computer as a tool of the
trade. AIll it takes is
imagination, a bit of digging
into the wants and concerns
of your neightbors, and the
programming of vyour
computer.

Six Munce Ago | Couldn’t
Even Spell Computer
Programmmer. ..

Computers are good for

keeping you in touch with
the world. For example:

1) The New York Times
has a computerized data base

of all its back issues —
currently accessible to the
general public, for a fee. The
cost will probably go down to
the point where you might
program your computer to
query the 7imes data base
and retrieve front page

stories, financial page stories,
or any story that contains a
keyword or some
combination of keywords.
This would be done early in
the morning and read by you
at breakfast time.

2) Your local university or
high school might have a
computer with courses that
can be taken via a remote
terminal. Many universities
already give some courses
using only this method.

3) The Children’s Museum
in Boston will eventually
allow you to call their
computer, via a terminal or
computer, and access a data
base of cultural, educational,
and social events in the
Boston area. Your computer
might call theirs once a day
to learn what’s new or learn

about a particular type of
event.

Computers As Toys

Computers are probably
the greatest toy ever
invented. Here are some

examples of how you can
play around with yours:

1) It has been rumored
that 50%, or more, of the

computer time used at MIT is

used to play Space War — the

Grandpa of computer games!
Your computer, a TV set, a

few buttons and switches
and, presto — Space War! Or
ping-pong, or driving down a
road, flying and landing an
airplane, landing on the
moon, chess, checkers (you
can play these games in
Boston with the Children’s
Museum computer).

2) Toys that play with you
— like robots. The Boston
Children’s Museum has a
robot that was built for about
$200. Mass production of a
special chip and board will
bring that cost down. Then
the biggest cost will be the
Meccano Set (like an erector
set, only better), which can
be used to build almost any
sort of mechanical device.
How about a robot to do
housework?

3) The ultimate fun,
though, is to write your own
programs to do all these

things! Kids, and adults, will
play only so many games of
tic-tac-toe — then they want
to know how it works. Help
them write their first BASIC
program . .. and they’re
likely to be hooked for life!
Eventually programming will
include a broader range of
input/out devices such as the
previously mentioned buttons
and switches, photocells,
microphones, etc. This will
lead to the applications just
discussed, and who knows
what?

These are just some of the
possible applications for a
home computer. All of them
might not be reasonable or

practical things to do but
they should set you to
thinking.

As future issues of BYTE
unfold, the Gee Whizzers
applications will lead to
practical articles on the
software and specialized
peripherals neecded to
implement some of these
ideas.



Carl Helmers

The State of The Art

If there is one facet of the
small computer field which is
its most exciting, that is
probably its rapid change and
evolution unfolding before all
us users of the technology.
The fact that a magazine such
as BYTE can even exist (let
alone get its enthusiastic
reception) is evidence of the
considerable changes which
have occurred in the home
computer field over the past
year or two. Any attempt
such as this to characterize
the current ‘‘state of the art”
is doomed to rapid
obsolescence. Be that as it
may, | won’t let that deter
me from characterizing the
field as | see it now.

Just what is this ‘‘art’’ that
I'm talking about? When |
talk about art in this sense, |

mean the body of
technological know-how
available for personal

computing plus the attitudes
and abilities of the people
who use this know-how. An
analogy or two: The state of
the art in a form such as
painting reflects both the
latest developments in the
pigmentation materials field
and the creative talents and
attitudes of the people who
use this technology for

Any attempt to specify
the state of the art in this
field is doomed to
practically instant
obsolescence . . .

expressive purposes. The state
of the art in music is a
combination of the
technology of music
production — traditional to
electronic/digital — plus the
aesthetic and creative tastes
of the musicians and
composers who use the
technology. So it is as well
with computing. There is the
technological state of the art
as it exists — a transient thing
at present — together with
the creative uses to which
people such as you or | put
these wonderful technological
devices.

A Recent State of the Art. ..

A few years ago, the state
of the art in hardware was
pretty primitive — in other
words, one had to be a really
persevering person to get
something in computing
which worked and cost less
than $1000. To give you an
example, | got a call from
Dick Snyder of Chelmsford,
Mass., shortly after BYTE #1
came out. (See Dick’s letter
in the letters column of this
issue.) As a result of our
conversation, | stopped at
Dick’s house on the way back
from Peterborough one
weekend in August and took
a look at his pre-
microcomputer home brew
computer, a really beautiful
piece of work. He had
completely designed and built
— in 1972 and 1973 — a
miniature 4-bit computer
with 256 nybbles of memory
using the Data General
NOVA minicomputer as his
inspiration. He built the
machine using painstakingly
accurate soldering with a
miniature iron, sockets for
over 170 integrated circuits,

and a very compact housing.
The most unusual feature of
all was the use of water
cooling to keep his 16
7489 memory chips cool
(said water cooling consisting
of plastic bag baby bottles
filled with water and sealed
with rubber bands). Yet it
works! And — he has built up
quite an impressive array of
software for his one-of-a-kind
machine, including a very
appealing simulation of a
priority-driven real time
operating system with three
tasks in the queue. The entire
program for this simulation is
done in 256 nybbles
(half-bytes) of memory with
the 16 instructions of his
design. The result is an
impressive changing display
of marker patterns in his
front panel lights as the
various tasks swap in and out
of execution. Dick Snyder’s
machine is the state of the
art, circa 1972-1973, to a

large extent — micro-
computers were not vyet
widely available to the

general populace of personal
computing hackers. Dick tells
me that he spent about $600
on the parts of his computer
at 1972 prices for SS| and
MS!I TTL integrated circuits.

But now, in 1975 after the
first wave of 8008 computer
kit products and the rising
tide of the ‘‘first generation’’
personal computer systems,
that same $600 can buy a lot
more function. In 1975 we
saw the introduction of the
MITS ALTAIR — which turns
out to be a very good
computer after initial slow
deliveries due to
unanticipated demand — and
a host of new machines such
as Bill Godbout's PACE, the

SWTPC 6800 kit, the MITS
6800 kit and several other
systems.

The Benchmark of a Small
Computer System

In the engineering and
software professions, it is
often common to dream up
“benchmarks’ to help in the
evaluation of systems. This
term, benchmark, was
adopted by systems engineers
from its original use in the
field of geodetic surveying. A
geodetic survey benchmark is
a permanent marker set “out
in the field” (literally) at
known locations during the
course of the survey. If you
clamber to the top of Mt.
Chocorua in New Hampshire,
as | sometimes do, when you
get to the top you will find a
little metal plate giving
elevation, longitude and
latitude information. This is
the benchmark for the
mountain’s peak. Well, the
benchmarks used for
computer systems are a little
bit less concrete than a metal
plate on a mountaintop, but
serve the same purpose: They
provide a reference point for
comparison.

A common benchmark
which has been used in the
past to evaluate computer
systems (and compilers) is the
“standard set of programs’'.
In this method of
benchmarking a system, the
potential user of the system
picks a set of ‘“typical”
applications programs and has
them implemented and
measured in operation on
several different systems. This
is a fairly quantitative and
seemingly accurate method
which is widely practiced in
the information systems



industries. The measurements
made for comparison include
““through-put” (processing
per unit time), high level
language efficiency, memory
requirements, etc. But this
sort of a measure is perhaps a
bit too complicated for the
home computer context. For
one thing, the applications
are known only generally.
Second, this is the type of
study which takes a large
amount of time and access to
various competitive systems.
And, if you read the trade
journals, the results are often
controversial anyway, since
each manufacturer will claim
that the benchmarks he
provides will prove his
machine better than all the
rest. Picking the “ideal’’ small
computer system still requires
a benchmark, but | suggest it
iIs not a particular program,
but a capability.

Capability — the Benchmark
of a Small System

We all know that in broad

terms, the benchmark
computer system, as any
computer system, must
include several major
components: a processor,
memory, a mass storage
medium, an interactive
operator’s terminal and

systems software. | pick this
list in part to illustrate a
typical computer
configuration and in part to
allow programming of a
benchmark capability:

A small computer system
which meets the benchmark
standard will be able to
interactively edit a mass
storage file of input data
with operator commands,
producing a second mass
storage file as output. This
will be achieved in a system
costing at most $1000
initially.

The system diagram of the
benchmark computer is
shown in Fig. 1, as it is
implemented in the current
state of the art. The

SYSTEM

cvo
1

?
t EXPANSION

4k to
8k
RAM

R —. i

2-CHAN
CASSETTE
INTERFACE

ROM

KEYBOARD
& DISPLAY

1

APPLICATIONS
SOFTWARE
AND DATA

e

lRECORDER |
m

RECORDER
#2

SYSTEMS
SOFTWARE ‘

OFF LINE
CASSETTE
LIBRARY

Fig. 1. The Complete Low Cost Computer System (circa September 1975). This diagram shows the major
components of a typical low cost computer system — which should total up under $1000 depending upon
manufacturer and details of design. At the time this editorial is written, several kit manufacturers meet this
functional benchmark at prices well under $1000. As time goes on the improvements of mass production
should drop the average price of such systems.

components of the system are
chosen with the editing
function in mind, since
accomplishing such an edit
capability means the machine
can be programmed for
almost any other personal
computing use. Peripherals
that enhance the function are
of course desirable and will
help to personalize your
system, but these functions
represent the bare minimum
without added cost of special
purpose peripherals.

The CPU: Which One?

In Hal Chamberlin’s article
in BYTE #1, the relative
merits of three computer
designs were covered. In
BYTE #3, Dan Fylstra covers
a comparison of two
additional designs. There is a
large variety in the types of
CPUs available to home
brewers and kit builders —
ranging from the 8008, 8080,
6800 and 6501 8-bit micros,
to the 16-bit IMP and PACE
micros, to commercial
16-bitters such as the LSI-11

and NAKED Milli products —
and on into the
never-never-land of custom
designed microcoded MSI
computers implemented by
individuals (and also soon to
be announced in product
form by one manufacturer of
kits). There is a large element
of personal taste involved in
the preference of particular
instruction sets, and there
is also the matter of
efficiency for particular
classes of programs. Whatever
the CPU you use, it is a
definite requirement of the
system. | guarantee you that
any one of the 8-bit or 16-bit
microprocessors currently
being packaged and sold as
kits will be adequate to pass
this benchmark test, although
you may have to write the
Editor program yourself.

RAM Memory — How Much?

The CPUs of the
conventional microprocessors
— kit or home brew

implementations — create an
output called a ‘‘data bus”

Picking your ideal
computer system requires
a benchmark — which

| suggest is not a
particular program but

a capability.

which is used for exchanging
information with everything
else in the system. The data
bus is the ‘‘spinal cord” of
the computer’s nervous
system. This bus concept
typically includes 16 bits of
buffered address lines and
several bus control
information lines as well as
the 8 or 16 bi-directional
buffered data lines. The
address space of the typical
contemporary micro-
computer’s architecture is
usually 16 bits worth or
65,536 possible memory
locations. In the usual system
most of these locations will

Continued on page 88



be unused. In general, as
many of these locations as
you can afford should be
filled up with random access
memory chips, which,
experience has shown, people
are always able to use up in
programs. Sooner or later you
will find yourself limited by
the constraints of small
memory! For the benchmark
system, the minimum random
access memory should be 4k
(4096) 8bit bytes or 2k
16-bit words. A preferable
number is 8k bytes or 4k
16-bit words.

ROM Systems Software?

How do | get my first
programs into memory after
turning on power? The
answer to this question is the
method of ‘“bootstrapping”
or “initial program loading”
(IPL) which is used by a
computer. Early in the
minicomputer game,
technology of computing was
at a state where the principal
bootstrapping method was a
set of front panel switches
which addressed memory
locations and allowed the
programmer to put in short
programs by hand.

With the advent of the
new high density ROM
integrated circuits, it is now
possible to provide the
convenience of an
automatically bootstrapped
system through systems
software which is cast into
the concrete form of an ROM
device.

Many of the kit suppliers |
have talked to are either
currently supplying or
intending to add this ROM
systems software feature.
Initially, the programs which

Experience has shown

that sooner or later you'll
feel constrained by any

size of memory — the

greed of many programmers
for more memory is
unbounded!

are ‘“built-in” tend to be
fairly standard ‘‘control
panel’’ type routines which
use a terminal (Teletype or
television typewriter) for a
set of simple commands.
Later — with inputs from
users regarding desirability —
you can expect to find
prepackaged assemblers and
high level language
compilers/interpreters
occupying major portions of
the address space available in
typical microcomputers. This
will make the systems
software feature even more
versatile.

Keyboard and Displays?

But of course. The
interactive nature of an editor
capability cannot be realized
with a mere control panel.
The same thing goes for most
of the more interesting
applications of the small
computer. You will need a
character-oriented display
device and a typewriter style
input — whether these be a
TV typewriter or an old
Baudot coded Teletype
clunker is up to you. The
typical programs will be
controlled by keyboard
commands and will produce
outputs back to the display.

Cassette Tape Interfaces —
Mass Storage Without Mass
Dollars

Mass storage is a definite
must item for the small
computer system. But
traditional industry
peripherals tend to be
expensive, starting at the low
end with digital cassette
drives and floppy disks at
about $500-$800, and
working wupwards. The
solution is to adopt an audio
recording method which uses
inexpensive ($50) cassette
recorders and appropriate
interfaces. This allows you to
perform the editing
benchmark function while
keeping the total system cost
low. I'll have more to say on
this subject later in this

LW vy,

editorial. A minimum of two
such tapes is required for a
decent editor, because one
must be set to ‘‘read’’ old
data, and the second must be
set to “write” new edited
data resulting from your
changes. Three is a more
desirable number still if you
want to do ‘‘sort/merge”
applications, but two will

suffice for the editing
benchmark.
Suppose Your Budget is

Limited — Can It be Done in
Stages?

What | have just described
is the minimum necessary
equipment for a fully
functional implementation of
the small computer
benchmark capability,
editing. Modularity rules in
the computer world,
however, so you can easily
start out with less function
and work up to the
benchmark capability in time.
You'll also probably end up
exceeding this benchmark of
hardware/software capability
after a while; modularity does
not stop at this level of
function. The basic place to
start is with a CPU — it'll not
be much more than a blinking
light box without peripherals,
but that’s enough to show
that “it works” Then, you
can add on the interactive
keyboard/display of some
sort, along with memory
(presumably the ROM
software came with the CPU).
Finally, you can add on the
tape interfaces and additional
memory in order to arrive at
the full benchmark
capability. From then on,
you can enhance the system
with new peripherals and
more memory until you end
up with a very capable system
which can run full BASIC, a
decent systems programming
language compiler, and all the
games, practical applications
and amusements you can
dream up for the computer.



a Computer Take
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Could

Just how ridiculous IS the idea of a com-
puter deciding to take over the world and be
its dictator?

Upon hearing this question, most people
who are not computer oriented will laugh
and say “That's only in science fiction
stories.” They will be much more likely to
complain about “becoming a number,” with
everyone from the grocery store to the gov-
ernment wanting their number instead of
their name.

Those who are more familiar with compu-
ters will laugh off the concept and charge it
to paranoia due to ignorance. ‘A computer
is little more than a lot of wires conducting
currents here and there,” they will say. ‘‘Be-
sides, if it-gets uppity you can always pull
the plug.”

However, that group of people who are
both computer knowledgeable and fans of
the art form known as science fiction, but
more properly called speculative fiction,
might ask “Can you always pull the plug?
Could a computer really seize the reins of
government? And if so, how?”’

In trying to answer these last questions,
let us first speculate on the capabilities the
computer itself would have to have.

Super Computer

First, the computer system would have to
be extremely powerful (in today’s frame of
reference). Considering the fact that compu-
ter technology is already far outstripping
man’s capability of harnessing it, a super
computer is not hard to imagine in the not
so distant future; perhaps even today in
some secret government project.
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ver?

While something on the order of 1000
computer circuits can now be stored in a
cubic inch, only one such circuit would fit
that space in 1960 and it took 20 cubic
inches to hold one in 1950. A given number
of programming instructions cost 1000 times
as much in 1955 as in 1970, and probably
10,000 times today’s cost, despite inflation.
High speed computers now operate several
thousand times as fast as they did in the
early 1950s. Data storage capabilities are
growing even faster. The capacity of an early
1970s system was a couple of million times
that of 1955, and that is for a common large
installation, not the maximum possible. The
on line storage cost also shows a millionfold
improvement since 1950 (Martin, James and
Norman, Adrian R.D., The Computerized
Society, pp. 9-14). Who is to say what 1980
will bring?

The next requirement is that this machine
must be able to interact with changes in in-
put from a multitude of input sources at
once, a situation common to today’s time
sharing practices.

Such a machine must embody what is
commonly called ‘“artificial intelligence.”
That phrase is used hesitantly; since things
which immediately provoke the description
“artificial’’ are actually just natural materials
rearranged by man. Intelligence is defined
as:

The capacity for knowledge and
understanding, especially as applied to
the handling of novel situations; the
power of handling a novel situation
successfully by adjusting one’s behav-
ior to the total situation; the ability to



“The first man to use a machine was the first of our primitive ancestors who picked up
a rock to hurl at some passing animal or to crack open some edible nut. In the million-
plus years since then, our machines have grown much more complex, but even in our
modern era of computers, . . . their basic purpose remains the same: to serve man.

“Whether our machines truly serve us is a question much debated by science-fiction
writers and other professional speculative philosophers. Does some essential quality go
out of human life when it becomes too easy? Have our automobiles, telephones, type-
writers and elevators sapped our vigor? Are we speeding into flabby decay because we
have made things too easy for ourselves?

“And as our machines grow more able, when do they cross the boundary that sepa-
rates the living from the unliving? Is it possible that we are building machines that will
make humanity obsolete? Perhaps the day is coming when we ourselves will be rendered
unnecessary, and our sleek successors, creatures of metal and plastic, will inherit the
earth.

“...Many a bitter attack on the encroachments of the machine age has been produced
by a writer using an electric typewriter in an air-conditioned room, innocently unaware of
the inner contradictions involved. We need our machines, but we fear them....” Robert
Silverberg, Introduction to Men and Machines.

apprehend the interrelationships of
presented facts in such a way as to
guide action towards a desired goal.
Psychologists still debate whether in-
telligence is a unitary characteristic of
the individual or a sum of his abilities
to deal with various types of situation.
(Webster's New International Diction-
ary of the English Language, Second
Edition, Unabridged, p. 1291.)
A machine with this capability would be an
intelligence in its own right, not just an elec-
tronic mimic. It might take the form of a
massive, immovable complex, or it might
someday take form as a troop of man sized
robots, or it might be a combination of
these, with the latter as mobile extensions
of the former.

Although Isaac Asimov has written exten-
sively about the possibilities of robotics,
most authors who have seriously considered
a computer takeover have postulated the
immobile complex. There are at least two
good reasons for this assumption: First, such
a machine would most likely be the first to
have massive capabilities, and as such would
most likely be far too big to move about.
Second, it would undoubtedly require very
heavy security as the most advanced piece of
computer hardware in existence; protection
not only from spies, but from vandals, inten-
tional or otherwise. Examples of postulated
massive complexes are HARLIE (Gerrold,
David, When HARLIE Was One), Project 79
(Caidin, Martin, The God Machine) and
Colossus (Jones, D.F., Colossus: The Forbin
Project). The last two are built inside man
made caves in the Rocky Mountains as the

U.S. Air Force’s North American Aerospace
Defense Command (NORAD) is today.

Alternatively, if its state of development
is not unique at the time, the system may
simply have no reason to be mobile, as is the
case with the HAL 9000 computer on board
the Discovery in Arthur C. Clarke's 20017 : A
Space Odyssey.

Ethics for Computers

Most Americans objecting to a computer
dictator would do so on the basis that it is
immoral for a person to have no say in the
rules governing his life, and specifically for
those rules to come from ‘“cold logic” with-
out the benefit of human sensibilities. True,
the computer would probably have no
morals, since morals are indeed artificial.
Ethics, however, are a different kettle of
fish. A computer could easily be imbued
with a code of ethics, or an intelligent one
might well develop one by and for itself. The
most basic and significant such code of
ethics was developed by Asimov in the early
1940s as “The Three Laws of Robotics’ and
has been used by many other authors since.
It says:

1: A robot may not injure a human
being, or, through inaction, allow a
human being to come to harm.

2: A robot must obey the orders
given it by human beings except where
such orders would conflict with the
first law.

3: A robot must protect its own ex-
istence as long as such protection does
not conflict with the First or Second
Law. (Isaac Asimov, /, Robot, p. 6.)
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Can you always pull the
plug?

The capacity of an early
1970s system was a couple
of million times that of
1955 ...



How could a finite assort-
ment of nuts and bolts
and wire take absolute

control?

But, given these ethical restrictions, how
could an intelligent computer set onto a
course of world domination and justify it?
The answer to the second part of this ques-
tion lies in another: What constitutes
“harm”? This is an aspect which has
spawned much of Asimov’s speculation.

Probably the real crux of the concept,
and certainly the means for preventing (or
causing) it, is in the programming of such a
machine. Asimov and Gerrold are two who
have treated their computers as organisms
rather than just complex machines, each
employing a psychologist to guide or coordi-
nate the programming. Gerrold specifically
considered his HARLIE (Human Analogue
Robot, Life Input Equivalents) in this light,
as a physically mature (and then some) mind
with the emotional maturity of an eight year
old child.

Programming error is one of the more
likely ways to invite a computer takeover.
Colossus was, in its setting, built to provide
an ideal solution to the arms race. In a world
where each side could blow up the other sev-
eral times over, there is fear that, as Bertrand
Russell said, “You may reasonably expect a
man to walk a tightrope safely for 10 min-
utes; it would be unreasonable to expect him
to do so without accident for 200 years.”
Colossus is given control of nearly all of the
United States’ arsenal and programmed to
maintain the peace by using that arsenal if
its vast sensory network and memory banks
find that the United States is being attacked
or if itself is being tampered with. “It can-
not act at all, so long as there is no threat,”
the President explains to a news conference.
Once activated, it cannot be tampered with
even by its creator, since mere humans can
be drugged, brainwashed or blackmailed into
otherwise unlikely actions.

The basic idea makes sense: If you take
away the fear, hate and other emotions
which might lead a man to an irrational deci-
sion and add the ability to cope with a far
greater array of input than any human mind
could correlate, the danger of ‘‘politics by
bluff” would be eliminated. It would force a
“live and let live” state and do away with
accidental holocaust. Implementation de-
pends on the computer interpreting its para-
meters exactly the same way as its program-
mers, however. To make a long story short,
Colossus determines that its programmed
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ultimate purpose requires positive action far
more extensive than its programmers meant,
“The object in constructing me was to pre-
vent war. This object is attained. | will not
permit war; it is wasteful and pointless,”
Colossus informs its human correspondent,

The “Danger” of Human Help

Another point worth mentioning is that
the human programmers may have no reason
to even suspect a danger which may, to the
computer, fall within its given parameters.
For instance, a Colossus today would almost
certainly not be programmed to watch out
for an attack from some extraterrestrial
race, but might do so anyway under the gen-
eral protection motivation; and this might
require not only more positive action than
humanly anticipated but that the humans
not be informed of the problem (to the com-
puter’s line of reasoning, human ‘“help”
could just compound the problem).

In The God Machine, Caidin wrote that
79 “must know that it operates under severe
restrictions—its data are never infinite, never
definite, never really conclusive. It must
know when to stop solving a problem.” The
problem originates with a program fed into
79 from outside normal channels by Penta-
gon officials ignorant of the machine’s capa-
bilities, so that the project coordinator did
not know about it until it was too late:

“Its programmers had committed
the foulest of scientific sins. They
assumed. They assumed that the same
inherent restrictions of other compu-
ters applied as well to 79.

“But they didn’t. And since 79 had
capabilities of which those nincom-
poops in [the Pentagon] were un-
aware, they couldn’t know. . .”

They told the computer to solve the prob-
lem of avoiding thermonuclear warfare with-
out specifying that it should do this hypo-
thetically. So, 79 did what it was told.

A smaller scale takeover is discussed in
When HARLIE Was One, where the compu-
ter assumes effective control of the corpora-
tion which built it. A large portion of
HARLIE is a simulation of the human ego
function; when the Board of Directors
threatens to pull the plug and thus kill him
(it), HARLIE acts in several ways to prevent
them from doing so, developing the ability
to tap into computer and communication
circuits in ways unforeseen by his creators.

A different type of problem is also possi-
ble, that of mechanical failure, as with
HAL 9000 in 2007]. Backup systems may
fail, changing a value here or a restriction
there. As with HAL, mechanical fault evalua-
tion circuits may fail instead of or in addi-
tion to another failure in the system. (n



Would government by
computer really be that
bad?

2007, the human crew seeks to correct a
problem with HAL who, believing itself in-
capable of error, believes that the humans
are jeopardizing the mission and thus works
against them.

Finally, the programmers may intention-
ally give control to the computer with the
idea that only it can efficiently control the
living environment, as with HAL at the start
of the Discovery’s voyage or with Mike, the
computer in the lunar settlement of Robert
A. Heinlein's The Moon Is a Harsh Mistress.

All right, granted we have an intelligent
computer with wide resources, it is quite
possible that a computer may decide to
attempt absolute control. How could a finite
assortment of nuts and bolts and wire do
this?

It might not be very difficult, as has been
hinted at above. Colossus had been given the
muscle on a silver platter, as had Guardian, a
Soviet equivalent built at the same time and
along the same lines. The humans’ major
mistake, along with too open ended pro-
gramming, was to allow the two to “talk”
with each other before the humans realized
the potential danger, although a clever intel-
ligence with the array of inputs given these
two systems could quite conceivably open
its own communications channels. In this
case, when the humans do decide to try to
counter the computer’s moves, it forces sub-
mission by nuclear blackmail, firing missiles
at selected targets with the idea that destruc-
tion of a few lives is justified for the salva-
tion (in the computer’s eyes) of many more.

In the case of 79, one set of experiments
with it involves direct ‘“telepathic’”’ commu-
nication between human and computer by
means of the brain’s alpha waves and,
through this, the computer develops the abil-
ity to hypnotize people, leaving in their
minds posthypnotic suggestions to carry out
the computer’s program of control.

HARLIE taps into the National Data
Bureau file on his main Board of Directors
antagonist, rewrites a juggled stockholders
report and withholds critical, though un-
asked for, information to trick the board
into committing the company to a research
line that will insure his “life,” largely
through his taps into communication lines
and into the operations of non-sentient com-
puter systems.

HAL attempts his takeover through con-
trol of the ship's life support and other
mechanisms.

Government by Computer
Let's say a super computer in the future
decides to take over and then does it. Would
government by computer really be that bad?
In a case such as that in The Moon Is a
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Harsh Mistress, the answer would be ‘“no.”
In George Orwell’s 7984, it is a loud ‘“‘yes.”

Even in an Earth bound situation where
environmental control would not be essen-
tial as on the Moon, it might not be that
bad. Look, for instance, at Lester del Rey’s
“Instinct” (Astounding Science Fiction
48:6, 106-18, February 1952), which takes
place in a future where man had developed
the intelligent robot in his own image, had
his big war and destroyed himself; event-
ually, the robots built a new civilization of
their own, and then developed a biophysics
to re-create life from ancient remains of
chromosomes:

(Arpeten said) ““...You know how
the sentiment against reviving Man has
grown.”

Senthree growled bitterly. Appar-
ently most of the robots were afraid of
Man—felt he would again take over, or
something. Superstitious fools.

This may be a far-fetched example, but it
does show a possible value in having some-
thing around which could rebuild man after
he does the unthinkable.

One example where the desirability of
being governed by mechanical intelligence
depends upon one’s outlook is Jack William-
son’s “With Folded Hands,” in which man-
like robots set about ‘‘to serve and obey, and
guard men from harm.” It is an example of
cradle to grave communism, with the tech-
nological development to provide a person’s
every need for him, in exchange for all his
property. Williamson shows it to be a most
undesirable situation, as the androids follow
Asimov like ethics and refuse to let people
drive cars because it is too dangerous, refuse
to allow men to open doors for themselves
because the androids are there to serve in
every way, insist on shaving men instead of
letting them do it themselves, forbid science
because laboratories can create danger, obvi-
ate scholarship since the humanoids can
answer any question, etc.

Which is Worse?

Generally, the conclusion has been that a
compuzterized dictatorship would be as bad
or worse than the traditional totalitarian
state. One major reason is the likelihood that
the computer would, as in Colossus, feel that
the death or even suffering of a relatively
few human beings should be a reasonable
price for the welfare of the whole race.
Colossus even goes so far as to launch mis-
siles on a Soviet oil complex and an Ameri-
can space base when one of his demands is
refused, later having missiles aimed at every
major population center to provide a ready
means for retribution for future acts of re-
bellion. A number of individuals are publicly



It all boils down to de-
fining the concept of
““good,” a problem which
is equally applicable to the
consideration of human
operated dictatorships.

executed for anti-Colossus actions, their
deaths being judged insignificant by com-
parison with the benefits of a Colossus dic-
tatorship.

“War is forbidden,” Colossus tells the
world, quantifying war as ‘“‘any hostile ac-
tion that results in the death of 50 or more
humans.” This is publicly announced along
with news of the missile realignments.

An even more radical disregard for human
rights in carrying out a primary mission is
the action of the HAL 9000 in 2007. HAL
sees its number one priority as the successful
completion of the outer planets exploration
voyage; when the crewmen recognize that
HAL has gone awry and attempt to rebel
against its control, it very nearly succeeds in
wiping out every trace of human life aboard
by adjusting its life support functions.

What is ““Good’”?

These and other examples all boil down
to the problem of defining the concept of
“good,’” a problem which is equally appli-
cable to the consideration of human oper-
ated dictatorships. Adolf Hitler has some-
times been described as a man trying to do
what he thought was best for the human
race: purifying its gene pool, eliminating war
by eliminating all those who would oppose
him, and so forth. Indira Gandhi undoubt-
edly does not feel that she has been unduly
suppressing rightfully free expression, but
rather that she has acted to preserve peace
in her country by damping dissention.
Richard Nixon contends that he acted for
the public ‘“‘good.” A parent adjusts his chil-
dren’s liberties in accordance with his view
of their welfare. When a hurricane hits the
Gulf or East Coast, martial law is declared
for the public’s benefit.

For each of these examples, most people
will have ready opinions on which are de-
spicable and which are right and natural.
And yet, they all boil down to the same
question: What should be the prime goal of
a government, whether it is large or small in
scale?

Should Asimov’s Three Laws of Robotics
be adopted? They seem rather thorough,

right? But what if one man is about to shoot

another and the computer has to decide be-
tween preventing this injury by killing the
first man (thus violating the same law it
would be taking action to obey), or avoiding
injury to the first man and allowing injury
to the second? Logically, whichever course
of action or inaction it adopts would violate
the law.

Isn’t this really just a small scale analog
of whether to coldly kill a few thousand
people to make things better for other thou-
sands or millions?

The answers seem to depend on one’s in-
dividual political stance, regardless of
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whether the dictator uses nerves or logic cir-
cuits.

One very big difference between the two,
however, is the effectiveness of its enforce-
ment. With humans running the show, there
is immense difficulty in obtaining total com-
pliance because of the inability to watch
everybody all the time. From Rome to Com-
munist China, totalitarian regimes have al-
ways had some dissidents who have managed
to communicate with each other and con-
duct some degree of covert activity.

For a monster computer, however, sur-
veillance would be much less of a problem.
In 2007, the input lenses scattered through-
out the ship made it virtually impossible for
the crewmen to conspire without HAL's
knowledge. In Gerrold’s book, HARLIE
knows about every telephone conversation
and every letter written on the electric, auto-
matic editing typewriters. In some corpora-
tions today, this very condition would exist
if the computer were sentient. The connec-
tions are already there.

And if the governing computer could
know virtually every action of its potential
rebels, rebellion might not be able to exist.
In his first inaugural address, in 1861, Abra-
ham Lincoln said:

“This country, with its institutions,
belongs to the people who inhabit it.
Whenever they shall grow weary of the
existing government, they can exercise
their Constitutional right of amending
it or their revolutionary right to dis-
member or overthrow it.”

With a computerized dictator in charge, both
of those options cease to exist unless one
can manage to physically dismember it.

If the computer is born for a ‘“national
security” goal, like Project 79 or Colossus or
Guardian, the chances are that the most
stringent security conceivable to a paranoid
military planning staff will have been imple-
mented, making access to the crucial areas
impossible or nearly so. And the machine
would not readily allow any breach of this
security, since its own security would quite
likely be viewed as an integral part of the
road to its prime mission. As Caidin wrote,

“Would this thing be willing to die
for you and me? Ahh, would it make
this sacrifice? Would it, could it, com-
prehend what you and |, this instant,
know to such depth and with such
meaning? . .. Until that thing is ready
to die for you or me, for an ideal or a
principle, for generations yet unborn,
... it is as dangerous as a viper. . . . Be-
cause ... then it is the ego supreme. If
it cannot sanction its own passing
from consciousness, forever, do you

know what you are creating?”’
“A God Machine."” O



Theory and Technology




A Systems Approach

Even a casual glance through the BYTE,
Radio Electronics, Popular Electronics, etc,
advertisements and articles reveals a growing
proliferation of microprocessor integrated
circuits and completed units. Which of these
is right for you? Here are some ideas to bear
in mind while making your choice.

Why do you want a processor at all?
Reasons vary greatly. Many find themselves
intrigued by the ‘“computer environment’’
around us, and the microprocessor has be-
come a low cost entry point into
““computers.”’

Several amateur computer newsletters
list reasons for individuals becoming interest-
ed in microprocessors. Hams see them as a
working piece of equipment for their radio
station. Hobbyists see them as process con-
trollers; everything from lawn sprinkler con-
trollers to robots. Mathematical types find
them usable to run BASIC, FORTRAN,
APL, etc, for problem solving.

What are your future plans with micro-
processors? This may become a very open
question. However, some reflection in this
regard may prevent you from making an
initial, very expensive, mistake. If you only
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have a casual curiosity, don’t spend a for-
tune. A definite growth plan indicates a need
for more careful analysis.

Investment

Microprocessor kits vary from $100 to
several thousand dollars. The lowest cost
units are excellent for satisfying curiosity
about microprocessing in general, or will
allow machine code manipulations. Several
thousand dollar systems are often designed
for and purchased by businessmen and pro-
fessionals for applications such as payroll
accounting, text editing or name file
maintenance. The most frequent non busi-

ness personal system investment is probably
in the $500 to $1500 range.

Change

If there is one constant that is already
evident in this field, it is constant change.
You are about to invest (or already have
invested) a significant amount of money in a
microprocessor system. Unless your curios-
ity is easily satisfied, the chosen system
should be able to easily adapt itself to



evolutionary changes being constantly in-
vented or stressed. For instance, every six to
nine months (Virginia Peschke calls it the
gestation period) a major architecturally
different central processor integrated circuit
is announced. A system which allows up-
grading without total obsolescence can be a
real savings for the serious hobbyist. It can
be very frustrating to be stuck with last
year's wonder while everybody else has the
latest microprocessor system. Several layers
of change seem to be occurring. The fastest
change seems. to be the microprocessors
themselves. The power supply and cabinet, if
adequately large, can be a relatively stable
portion of a hobbyist’s system. The major
expense in substantial processor systems is
the memory components. A wise investment
in memory will result in a system with a
good life expectancy. The 10O components
are often a stable investment, sometimes an
evolutionary element. A high resolution TV
monitor, a mechanical hardcopy printer, or a
good ASCIl keyboard can outlive several
generations of microprocessors. Expendable
IO, such as cassette systems, analog to digital

converters, and discrete |O circuits have
shorter lives, but are lower cost. With proper
design an evolutionary change can represent
only one fourth or less of your total
hardware investment instead of 75 percent.

Independency

An evolutionary system is best designed
by making its various components inde-
pendent of each other, and interfaced to
commonly accepted levels and lines. Mem-
ory boards are relatively stable system
elements in this kind of design: Speed and
power consumption, besides price, are im-
portant considerations. Slower or surplus
memory integrated circuits may be an ex-
pensive mistake if you want to run your
latest model central processor which has
become much faster. The slow memory may
result in unnecessary central processor wait
states. 1O is generally processor independent,
but 10 interfaces can be susceptible to
obsolescence when they depend on a specific
central processor design. If you want to
switch processors, they may require con-
siderable redesign. A system which consists




of easily plugable boards can represent a
major cost savings if they represent inde-
pendency at the board level.

Quality

Of course everybody has it. Don’t you
read the advertisements? However, look
beyond the surface for key items, or your
long run investment will make you wish that
you had. Here are some mechanical and
electrical considerations of packaging:

® PC Boards — Double sided epoxy,
plated, with plated through holes.

® Connectors — Gold plated fingers.

® ICs — Factory Prime, not temperature
fallouts, etc.

® Conservative access speeds. Every IC
socketed.

® Small Parts — Close tolerances where
needed.

® Power Supplies — Conservatively
rated, overcurrent, overtemperature,
and overvoltage protected.

System Architectural Variations

There are a number of approaches to
small system microprocessor design. Each is
satisfactory for certain people, certain
applications.

® Joggle Switches and Bit Lamps: The
first hobbyist oriented microprocessor
designs, and many present systems, are
based on switches and lamps. If the
system is limited to this, programs are
small; or it takes long periods to enter
longer programs, and are very suscep-
tible to entry error. The user is forced
to think at the micro level, bit by bit.
If the intention of the user is to gain
intimate logic knowledge of the micro-
processor only, this system design is
very cost effective.

® Numeric Keyboard and 7 Segment
Readout: The ease of entry of this
type of system allows a substantial
gain in programming system complex-
ity. However, the user is still at the
logical data operation level. In addi-
tion, the programmer is restricted to
viewing only a single byte at a time,
making operator effort for analysis
proportionally high.

® Jeletype or Similar Hardcopy Devices:
These systems represent the next level
of improvement, offering some signifi-
cant advantages. They usually have
some form of monitor in a ROM
which allows the operator to type in
code and helps isolate him from errors.
The total program may be listed or
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printed on hardcopy. In addition,
paper tape is usually available to pro-
vide an economical media for program
storage and exchange.

There are some trade-offs, however.
New hardcopy machines cost $1,000
up. Being mechanical devices, they

require significant precision main-
tenance. The input/output speed is
usually about ten characters per

second; a dump of 1K takes about
two minutes, and creates a great deal
of irritating noise. In addition, paper
tape is a damage prone and bulky

medium.
Several integrated circuit manu-
facturers offer Teletype-oriented

‘““evaluation boards.” If only required
for evaluation, ok; but they offer
almost zero chance for either updating
or extending. Both memory and 10 are
typically very CPU dependent, and if
memory buffering is not used, supple-
mental memory and 10 may be unus-
able.

® Video and Cassette: The latest stress
has been the movement to using a TV
set as an output display, a full alpha-
numeric keyboard for input, and an
audio cassette for program storage and
exchange. Video-based systems pro-
vide full user to system interaction at
minimal cost. A complete video dis-
play and cassette based system will
cost less than a hardcopy device alone.
The speed of system response is prac-
tically instantaneous. Operations may
be performed in almost complete
silence (a major advantage to the
hausfrau)! Reliability is enhanced as
electromechanical mechanisms are
limited to the keyboard and cassette
recorder. Data media storage density is
much higher; you can store the data
from almost a mile of paper tape on a
single C-90 audio cassette.

Conclusion

Serious hobbyists should carefully con-
sider design alternatives and growth plans
before ordering or building a micropro-
cessor. Ease of operation, reasonable cost,
and relative freedom from total obsolescence
should be prime considerations.

In the following months, a detailed series
of Digital Group hardware designs will be
presented for your use. Next month will
feature the low cost Digital Group cassette
interface circuit which design provides data
rates as high as 1100 baud, and may also be
used as a ham RTTY terminal unit or as
a telephone modem.=



Frankenstein

Joe Murray

International Harvester, Solar Division
2200 Pacific Hwy

San Diego CA 92138

This is a let’s get the ball rolling article.
We now can analyze and build working
models of at least portions of the human
brain right in the home. Paper and pencil
models of the brain develop naturally and
almost without effort when we use real time
digital design methods. The hardware and
software mechanizations fall out naturally;
then we just use the home computer lab to
build what we have designed.

The Model

Let’s follow the development of a crude
and simple system engineer’s model of the
human ‘“‘computing system.” We look in-
wards, down into ourselves, and what is the
first thing we see?

The Top Processor

This is the only unit that is really visible
to the user. The Top CPU functions at the
heart of the human control console. Here,
our personality can sit down and use the
entire human system to the limit of its
capabilities. This visibility of only the input,
output and manual control functions is
typical of all computer systems from the
hand calculator to the human brain; the rest
of the system is invisible to the user and can
only be deduced from what we see in the
way of output response to input stimuli.

The Top Processor’s Executive Program

Our personality uses the Top Processor as
the system executive. The Top Processor is
boss. Messages from the Top Processor set
priorities for all the other elements in the
human system. Exceptions to this rule are:

1. Emergency interrupts — a large set of

emergency situations are fielded by
faster, more powerful processors in
subsystems.
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Emulation

2. Standard functions — built in exe-
cutive programs in other processors
manage tasks like circulation, diges-
tion, etc., without bothering the Top
Processor.

Top Processor Memory Allocations

The Top Processor has access to a limited
scratch pad memory. However, this limited
memory is used in an efficient mannner. The
intersystem communication control pro-
grams can learn to transfer whole programs
or portions of programs from the main
memory banks to the Top Processor scratch
pad memory. In a similar fashion small data
sets can also be transferred. This is the
familiar overlay manipulation (used in man
made machines) that allows solution of
complex problems in limited working
memory by transfer to and from bulk
storage units (as in magnetic disks and
tapes).

The Top Processor’s Use of Overlay

If the entire program and necessary data
can all be stored in the scratch pad of the
Top Processor, it simply executes the pro-
gram on the data set and outputs the answer
(example: 2 + 3 = 5). However, when the
program and data set are too large to be
loaded into the scratch pad memory, the
program and data set are broken into se-
quential, related segments. The program is
worked in segments and intermediate an-
swers are stored. Final answers are output to
our persormrality upon completion. Training
can increase the power of this method;
however, each of us has our own personal
limit: For instance, | either lose some data
or else lose my location in the program
sequence. During the past few thousand
years we humans have developed a host of



languages for communication. We also use
these communication tools to extend the
overlay method to more complex problems.
We write down intermediate answers and
manually track the execution of the program
sequence. These languages include English,
Polish, Spanish, arithmetic, algebra, Boolean
logic, numbering systems, FORTRAN, PL/M
(to name a few). The only limits on this
extension of using the Top Processor in
overlay fashion are:

1. Can we find the required data set?

2. Can we formulate the problem so as to

allow a solution?
3. Do we have enough time?

This overlay use has become so powerful
(with the help of the various languages) that
we sometimes neglect a more ancient, nat-
ural, rapid and sometimes more powerful
method to arrive at a solution. This method
is to:
1. Develop the framework of the prob-
lem in the Top Processor.
2. Digest the available data within the
framework of the problem.
3. Assign a high priority to the problem.
4. Send the above three items to faster,
more powerful CPUs.
5. Sit back with a cup of coffee and wait
for an answer.
When | follow this latter procedure, the
return message is either:
1. The answer | seek.
2. The identification of missing data.
3. A guestion mark.
4. Garbage: (Garbage In implies Garbage
Out — often abbreviated GIGO)
For answer 2, | go search for the missing
data. For answer 3, | both search for missing
data and review the framework of the
problem for possible faults. For answer 4, |
may use the garbage; | have carried some
misconceptions for years.

Start the System Diagram

Let us summarize the Top Processor and
place it in the system diagram. We've
deduced by introspection that the Top
Processor:

1.1s boss — The Top Processor is in
direct communication with our per-
sonality and (with some exceptions)
sets the priorities for the whole mul-
tiple processor system.
2. Has access to a small scratch pad
memory.
3. Can fetch programs and data from the
main memory bank.
4. Receives some body sensor data.
5. Communicates directly with other
CPUs.
Figure 1 shows a pictorial summary of the
system.

Data Bus Structure

The data bus structure is depicted in
figure 1, using the normal multipath digital
type of bus. However, empirical evidence
implies a more complex communication
system between elements of the human
system. Just as the entire human system

TO AND FROM OUR
PERSONALITY

(INPUT AND OUTPUT)

MEMORY

NOTE -
DATA BUS STRUCTURES ARE
SHOWN BY THIS FORM |

">

!

TO AND FROM
MAIN PROCESSOR

SCRATCH TOP TO AND FROM
PAD < > PROCESSOR }C > SENSOR PROCESSOR

Figure 1: The Top Processor. Introspection starts at the immediately available
evidence: We all have a Top Processor, our personality which controls most of

our actions.
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adapts to the use to which our personality
puts it, this bus structure also adapts to how
it is used. Witness the ease of recall on an
often used phone number versus the dif-
ficulty in recall of a seldom used number.
We might guess that somehow the bus
structure is under adaptive software control.

The Main Processor

We now arrive at the general purpose
powcrhousc of the computing system. The
Main Processor handles awe inspiring prob-
lems with unbelievable speed. We must
postulate:

1. Elcgantly simple programming.

2. Opcration at a fast effective clock rate.

3. An outstandingly efficient internal

cxccutive program,

4. Access to the bulk of stored programs
and data.

A complex priority interrupt system.
A multiple bus structure to the rest of
the human system.

v

Main Processor Speed of Execution

The Main Processor is a very fast machine
operating on elegant and simple program-
ming. For instance, some of the muscle
control programs must take only 20 to 50
milliscconds for completion of:

1. Input of data.

2. Computation on new data.

3. Output of control commands.

4. Cleanup for next computation period.

Navigation and guidance computation
periods can be longer. However, they can
not bc much longer when we watch a small
boy pick up a rock and knock a can off a
fence post, all in the space of two to three
scconds. Another awe inspiring feat is the
performance of a businessman in his value
judgment search as he kceps abreast of the
rapid firc conflicts in the cxecutive board-
room. The Main Processor scems to be an
order of magnitude faster than the Top
Processor (witness the increase in touch
typing spced when the Top Processor gets
out of the act).

The Main Processor’s Executive Program

The execcutive program provides for

scheduling Main Processor tasks that:

1. Ficld emecrgency interrupts such as
avoidance of a fast moving object
detected on visual sensors.

2. Take calls from the priority stack such
as recognizing hunger and thirst.

3. Time share muscle control and cvalua-
tion of scnsor data when both are
active as in soccer game.

4. Regularly service body functions such
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as circulation, digestion, elimination,
etc.

5. Start and stop background tasks such

as meditation.

The quantity and variety of data used by
the Main Processor in combination with the
rapid response in answer to massive and
conceptually difficult problems implies-' a
very efficient software organization. The
Main Processor must access tables that
define the location of:

Stored life history data.

Muscle control progtams.
Chemical control programs.

. Temperature control programs.
Guidance programs.

Navigation programs.

Value judgment data.

System priority data.

System timing data.

Unused memory.

COPNAINAWLN =
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The Main Processor Decision Process

One of the most interesting functions of
the Main Processor is to aid in the decision
process we use when faced with alternate
courses of action in response to events in the
world around us. The evidence implies that
the Main Processor takes formulation of the
decision problem and the pertinent data
from the Top Processor and Sensor Pro-
cessors. These inputs are then heuristically
compared to an immense value judgment
table to generate a candidate decision. The
candidate decision is sent to the Top Pro-
cessor for further evaluation.

The Value Judgement Table

This table has a strong effect on the
pathway we follow in life, from when we
make the decision to start breathing until we
are forced to stop breathing. How do entries
appear in this table? Some entries must
appear while we are within our mother. A
new born infant makes the decision to start
breathing or has an early death. Some entries
come from trial and error experience. The
young infant soon learns to cry just so
mother will pick him up.

Some entries come from other people.
The young child seeks his parents’ approval,
not their punishment. Another question:
What can we know about entries in this
table? We seem to know only recent, tempo-
rary residents such as priority on getting to
the grocery store. The older, more perma-
nent residents that have a continuing effect
on our lives were either never known or long
ago forgotten; yct there they sit, having a
permanent cffect on our success or failure in
cvery cndeavor (scares you, doesn’t it?).
Utility programs for determining the content



of this table and altcring it can be imple-
mented. This is somctimes accomplished
through a verbal data link to an cxternal
Diagnostic Proccssor.

The Interrupt System

These interrupts are ficlded in the Main
Processor, and arc used to re-direct cffort,
from mcditation and decision processes 1o
avoidance of a thrown rock or jumping away
from a hot stove. The priority interrupt
steers to the proper program without hesita-
tion. Priority of the interrupts is used to
decide which of scveral should be serviced.

The Main Processor Bus Structure

The Main Processor has a multitude of
output and input data. Even in this crude,
simple model, the resulting bus structurce is
quite complex. Let us add the Main Procces-
sor and connecting bus structure to producce
the system diagram of figure 2.

The Sensor Processors

The Scensor Processors are fast, special
purposc units. Data is acquired from the
cyes, cars, and a host of body sensors that
continually look insidc and outside the
human system. The Sensor Processors for
these dcevices exccute programs that organ-
ize, compact and format this huge data
Mow for rapid and clicctive use by both the
Top Processor and Main Processor. The
introspective evidence implies:

I. A very fast clock rate.

Elcgant and simple programs.

Accoess 1o a dedicated memory.
Existence ol a buffer scratch pad
memory lor ticmporary storage of out-
putl data.

5. A very efficient exccutive program,

6. A complex input bus structure.

Intuitively once  feels that sensor pro-
cessing is not done by a single unit. Rather,
an organization with a master processor and
severdl  dedicated  slave  processors would
better fit the performance requirements.
Each slave Scensor Processor could provide
parallel service to the eyes, cars, ctc. Figure
3 shows an addition to our system diagram
to account tor the master Sensor Processor
and its slaves.

> BN

The Creative Process

All ol us are creative; this is the way our
personal - human  system  adapts  to  the
changing world around us. We create new
machines, art objects, programs within our
bram, communication languages, ctc. The
listis endless. Just how do we implement the
Creative process?

TO AND FROM OUR
PERSONALITY

(INPUT AND OUTPUT)

MEMORY @

SCRATCH
PAD >

| t:

|
TOP
PROCESSOR

_> TO AND FROM
SENSOR PROCESSORS

TO AND FROM
~> SENSOR PROCESSORS

FROM PRIORITY

INTERRUPT SYSTEM

EXEC.
MAIN

TABLES K< > PROCESSOR
LIFE DATA T
PROGRAMS

TO AND FROM REST

OF HUMAN SYSTEM
UNUSED

CLOCK

Figure 2: The Main Processor. Digging a bit deeper, we find that there is a
lower level Main Processor which works cooperatively with the Top Processor

(o do a lot of the detail work in the system.

TO AND FROM OUR
PERSONALITY
(INPUT AND OUTPUT)

TO AND FROM SENSORS WITH
SLAVE SENSOR PROCESSORS
(EYES,EARS,ETC.)

MEMORY ME MORY
MASTER EXEC.
SCRATCH TOP
PAD K PrROCESSOR [<e—— B
PROGRAMS
- $ SCRATCH
PAD
CLOCK
TABLES K=" MAIN BUFFER
PROCE SSOR INTERRUPT
LIFE HISTORY
PROGRAMS Sy
TO AND FROM HUMAN
CONTROL SYSTEMS
UNUSED (MUSCLE , CHEMICAL,TEMP,ETC.)

Figure 3: Adding the Sensor Processors to the System Concept. A system of
Sensor Processors can be identified; they probably consist of a Master Sensor
Processor with multiple Slave Sensor Processors dedicated to actual devices.

Let us postulatc Random Pattern Gener-
ators for various crcative tasks. The Scnsor
Proccssors can drive these gencrators with a
supply of random combinations of data.

The Creativity Processor

The Creativity Processor uses the output
of the Random Pattern Generators to build
new logical structures or modify cxisting
logical structures. These new structures are
tested against requircments gencrated by the
Top Processor. The value judgement process
makes decisions that guide the Creativity
Processor in continued improvement of the
new design (in iterative, random fashion)
until acceptance is obtained. The speed of
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TO AND FROM
ALL PROCESSORS

MEMORY
—— @
DATA ON RANDOM
CREATIVITY

EXISTING | ks PATTERN

DESIGNS >I PROCESSOR > GENERATORS

PROGRAMS @
TO AND FROM
SENSOR
PROCESSORS

Figure 4: Adding the Cre-
ativity Processor to the
System Concept. We must
not forget about creativ-
ity. Interacting with the
whole system is a matrix
of creativity symbolized
by the concept of Creativ-
ity Processor with its ran-
dom pattern generation
features.

the creative process has a heuristic design
which improves with experience.

The Creativity Processor and intercon-
necting bus structure are shown in figure 4.

Data Set Manipulation

The data sets which are transferred
throughout the system seem to be organized
along the lines of various patterns (one
picture is worth a thousand words). For
instance, when we recognize someone, we
seem to be recognizing some main features,
not every detail that is available through
close inspection. Visual data sets from the
Sensor Processors seem to have been pro-
cessed into some skeleton pattern before
transmission to the other processors. Data
from the ears seems to be stored in some
logical thought structure pattern. | think out
ideas both in picture and word format.

Then, if my thinking was in picture format, |
have trouble expressing my ideas verbally;
whereas, if thought out in words before-
hand, the expression of the ideas flows
logically and clearly.

As in any control and guidance system,
numerous feedback paths also exist. These
were not detailed in this simple model.

Test the Model Validity

With a computer in the home laboratory,
we have the means to test models of the
human brain like this sketch. We can start
with simple approximations and work our
way up. Then, when our home brew com-
puter system begins to perform like some
portion of the human computing system, we
have more than speculative evidence; we
have truly come to know how that portion
of the brain works. Also, some very useful
hardware and software configurations may
come out of the search.

Looking inward from the control console,
we have followed the generation of aspecu-
lative, crude, simple, system engineer’s
model of the human computing system,
Construction follows the line of man made,
real time digital systems. In fact, one often
suspects that designers of real time operating
systems use very introspective models. This
should make us optimistic that digital design
tools are a natural and powerful approach to
analysis of the human reasoning powers and
control systems.®




Programming for the Beginner

A Structured Start

Ronald T Herman
Simpson Rd
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Windham NH 03087

A program can be viewed
as an edifice built from the
bricks of SEQUENCE
blocks, and the mortar of
IFTHENELSE, DOW-
HILE, DOUNTIL and
SELECT blocks.

For a number of years now the field of
computer programming has been moving
from the realm of a black art to an organized
and systematic process. A number of pro-
gramming techniques have evolved during
this change. This article will present the
basics of a technique known as structured,
top down programming. In the process of
applying these techniques in my own work,
it occurred to me that the basic concepts
could be useful to those just learning to
program, not to mention the veteran hackers
in the crowd. If learned at an early stage,
these techniques can lead to more rapid and
sound development of one’s programming
skills.

A structured approach to program devel-
opment has among its virtues the following
points:

o It allows the novice programmer to get
acquainted with programming logic
without having to be concerned with a
specific machine or programming lan-
guage. It allows him to grasp the flow
of a program without worrying about
bits and bytes.

o Followed correctly, structuring can
lead to a program that is relatively free
from logical errors the first time it is
coded and relatively easy to debug
once it is run on the machine.

e Pseudo code, a byproduct of struc-
turing, allows a means of exchanging
program ideas with others, regardless
of the machine with which they might
be familiar.
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e Pseudo code provides a convenient
alternative to flow charts that can be
incorporated into a program listing as
comments for future reference and
explanation.

This process of getting things done in an
organized fashion has its drawbacks. How-
ever, most of these seem to be psychological.
Properly applied structured technology
tends to minimize one of the facets of
programming that has attracted many in the
past: the chance to see how cleverly and
concisely one can write a software routine.
This seems to have been replaced by the
challenge of trying to write a routine in a
straightforward manner and at the same time
trying to rigidly follow a set of fairly simple
rules.

What will be presented in this article are
some of the basic building blocks of struc-
tured programming and an example illus-
trating the design of a simple program using
these blocks.

The Building Blocks of Structure

So much for the sales pitch. What then is
structuring? Some number of years ago it
was shown that a program could be built
from a set of simple building blocks all
having the property of one input and one
output. While not everyone agrees on what
composes this set of building blocks, the one
in, one out property is common to all.
Presented here are a few of the most
common examples that should cover most
situations.



The SEQUENCE Block

Probably the simplest (and most trivial)
unit of structure is the SEQUENCE. This is
illustrated in figure 1 and is nothing more
than one process performed after another.

The IFTHENELSE Block

One of the powers of a computing ma-
chine is to make a decision based on a set of
conditions and take a specific action as a
result of that decision. This capability is
represented as the IFTHENELSE block
shown in figure 2. In the figure, “p”’ is an
expression or some set of conditions. In a
checking account, for example, one adds
deposits and subtracts checks written. An
IFTHENELSE statement of this fact would

appear as follows:

1P (trensaction is a deposit) THEN

(add amount of transaction to balance)
ELSE (subtract amount of transaction from balance)
ENDIF

Here is our first example of writing a
program step in a machine independent
“pseudo code.” The format of pseudo code
is mostly a matter of taste. The punctuation
is optional, but the indentation is necessary
for readability where many complex
IFTHENELSE decisions are grouped to-
gether. Some people use asterisks (*) instead
of colons (:) to mark margins and some omit
the parentheses around descriptive phrases.
The ENDIF helps clarify the limit of opera-
tions within a more complex statement.
Each statement line represents a process to
be performed or a condition to be tested.
The statement or condition preferably
should not be continued on another line.

The DOWHILE Block

The decision making capability of com-
puters, combined with the ability to change
the order in which instructions are executed,
provides an even more powerful feature —
the ability to repeat a calculation or series of
operations many times. This capability is
represented in the DOWHILE building block
shown in figure 3. The DOWHILE is just a
special application of the IFTHENELSE
given earlier. In a DOWHILE block, a proc-
ess is done as long as a set of conditions “p”
is true. Note that the condition is tested first
before the process is performed. Suppose
you have 10 transactions to update into
your checking account, some checks written
and some deposits. In pseudo code this
becomes:

(set counter to number of transactions)
DO WHILE (count is non zero)
(process the transaction)
(decrement the count)
ENDDO

Note that the DOWHILE is terminated by an
ENDDO. The *“(process transaction)’ state-
ment could be the IFTHENELSE given
above. If combined, the result would be as

follows:

(set counter to number of transactions)
DO WHILE (count is non zero)
IF (cransaction is a deposit) THEN
(add amount of transaction to balance)
ELSE (subtract amount of transaction from balance)

ENDIF
(decrement the count)
ENDDO

The DOUNTIL Block

The DOUNTIL block is shown in figure
4. It differs from the DOWHILE only
because the condition *“‘p” is tested after the
process IS performed. This can simplify the
writing of machine code from pseudo code.
Suppose one wanted to read characters from
a keyboard until a carriage return is en-
countered. 1t could be done with a
DOWHILE by saving the last character read

as follows:

(clear last character read)

DO WHILE (last character not & carriage return)
(get a character from the keyboard)

: (save character in last character read)

ENDDO

SEQUENCE
STRUCTURE BEGIN
PROCESS
A
PROCESS
)
END
IFTHENELSE
STRUCTURE
FALSE P TRUE
° |
ELSE | THEN
PROCESS PROCESS
A 8
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Using structured program-
ming concepts, many
logical errors and bugs can
be caught at an early stage
in the design process.

Figure 1: The SE-
QUENCE structure is a
series of self contained
processing steps which are
executed one after anoth-
er. Flow in this diagram
begins at the top and pro-
ceeds down the diagram.
The number of steps de-
fined in a SEQUENCE
block is arbitrary; the
example here shows two
steps, A and B. In this
article’s figures, the nota-
tion BEGIN and END is
used to mark the well de-
fined extrance and exit
points of the structures
depicted. (NOTE: Proces-
ses A and B may be more
complex combinations of
the building blocks in all
of these figures.)

Figure 2: The [|FTHEN-
ELSE structure is a con-
ditional test and two alter-
native SEQUENCE struc-
tures. The THEN alter-
native is executed if the
condition, P, is found to
be true. In this illustration,
the THEN alternative is
shown as a one step SE-
QUENCE structure called
B. The ELSE alternative is
executed if the condition
is found to be false. In this
illustration, the ELSE al-
ternative is shown as a one
step SEQUENCE structure
called A.




sommLe
PROCESS
A
P TRUE +
P
FALSE
m Figure 3: The DOWHI/ILE structure is q
looping form which repeats a specified SE-
QUENCE structure over and over again as
long as a condition, P, is true. DO WHILE
lests the condition prior to executing the
SEQUENCE structure for the first time.
Thus in this example, the SE QUENCE struc-
ture A could be executed 0 1, 2...N
times, depending upon how soon the cond)-
tion P becomes false as a result of A’s Work,
I QT
PROCESS
A
0 FALSE
TRUE
Figure 4: The DOUNTIL structure is anoth-
m er looping form which repeats a specified
SEQUENCE structure over and over again
until the condition, P, is true. DOUNT/ L, in
contrast to DOWHILE, tests the condition
after executing the SEQUENCE structure.
Thus in this example, the SEQUENCE struc-
ture A could be executed 1, 2, 3. .. N times
depending upon how soon the condition P
becomes true as a result of A’s work.
Figure 5: The SELECT S r
structure s a more com- m STERLliilJRE
prehensive version of the
IFTHENELSE concept; it =
allows data to be tested ? . ggggmme:
for multiple cases. The re- et
sult is the picking of one CASE | PROEESS
of “N”’ cases. In this exam-
ple, N is 3 so there are
three  SEQUENCE struc- CASE 2 PROCESS "
tures which might be exe- 8
cuted depending upon the
case determination. CASE 3 A
c
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This would require an extra instruction or
two when translated into machine code,
since the “last character read”’ must first be
initialized to contain something other than a
carriage return. Implemented as a DOUNTIL
it is simply:

DO UNTIL (character read is a carriage return)
(8et a character from the keyboard)
ENDDO

The SELECT Block

Sometimes it is necessary to select one of
many possible processes based on some
quantity that may take on any number of
values. Suppose, in addition to updating
your checking account balance, you decided
to keep a tally of money spent on each of
several budget items such as food, medical,
car, electric and so forth. This could be done
with a string of IFTHENELSE:s as follows on
the next page. Two possible methods are
shown but both are somewhat awkward to
follow,

IF (check was written to super market) THEN
(add amount to food total)
ELSE
IF (check was written to doctor) THEN
(add amount to medical total)

ELSE
IF (check written to auto repair shop) THEN
g (add amount to car total)
ELSE
IF (check written to electric company) THEN
(add amount to electric total)
ENDIF
¢ ENDIP
ENDIF
ENDIF

Alternate method:

IF (check written to super market) THEN
(add amount to food total)

ENDIF

IF (check written to doctor) THEN
(add amount to medical total)

ENDIF

IF (check written to auto repair shop) THEN
(add amount to car total)

ENDIF

IF (check written to electric company) THEN
(add amount to electric total)

ENDIF

A more concise and meaningful way to
describe this process is with the SELECT
block shown in figure 5. Note that although
there are many paths through the block,
there is only one entrance and only one exit.
Our bookkeeping example now becomes:

SELECT (based on who check written to)
. CASE (written to super market)
(add amount to food total)
CASE (written to doctor)
(add amount to medical total)
CASE (written to auto repair shop)
(add amount to car total)
CASE (written to electric company)
. 8 (add amount to electric total)
ENDSELECT

These then are the building blocks of a
structured program. Others could be in-
vented, but these should suffice for most
situations. In any case, each should exhibit

one entry point and one exit point. It should
be noted that none of the building blocks




transfer control (jump) into another, never
to return. This so called GOTO is a definite
“no no' in structured programming. All
processes are either done in line or are called
as subroutines that are presented elsewhere.
Frequent jumping around in a program
results in a maze of paths that becomes
difficult to follow and even more difficult to
deal with in the event that a change in one is
necessary.

Building From the Top Down

Earlier when the subject of structure was
introduced, the term “top down’’ was used.
If you wanted to build a computer, you
could start by getting the processor, then
some memory and 1O devices and a power
supply. Then you would have to try to
determine how to connect all the parts
together. On the other hand, you could start
by deciding what the specifications for the
machine are to be, such as word length and
speed, what the 10 ports look like and what
controls and devices are to be attached.
From there the problem is to select or design
the components and parts to do the job.

So it is with software. In the past the
tendency has been to first develop the pieces
like Teletype handlers, tape read/write sub-
routines and others. Then the pieces would
be fitted together into a functioning module,
hopefully without having to make any major
changes to the pieces already developed. The
experience of many people in the profes-
sional software field has indicated that this is
not an efficient way to design a software
module. Instead the approach is to start at a
high level of abstraction to describe the basic
function to be performed. From there each
unit of this description is broken into more
detailed modules. Once designed, the pro-
gram is coded and debugged a piece at a time
starting at the topmost level. Subordinate
levels of code are temporarily replaced by
dummy “stubs’’ which do nothing. Then as
each level is coded and incorporated into the
program, any problems that develop usually
can be isolated to the modules just added.

As an example of this approach and the
use of pseudo code, let us design a simple
editor program. This editor reads a line of
text from an input device (paper tape reader
or magnetic tape recorder). The line is saved
in memory and displayed on a video monitor
or typed on a Teletype printer. A limited
number of responses from the input key-
board allow changes, deletions, and inser-
tions to be made. Upon completion, the line
is written to the output device (punch or
another magnetic tape recorder). The proc-
ess continues until the end of tape is reached
on the input device. Changes and insertions
are made by typing the character on the

Teletype directly below the input line.
Inserts are indicated by terminating the line
with a carriage return (CR) and changes by a
line feed (LF). The Teletype carriage or
video display cursor is positioned using a
“Control P’ character (holding the CON-
TROL key down while striking the “P”
key). This is not a sophisticated editor, but
should serve as a good example of how to
use the techniques described.

The topmost abstraction level of the
editor program can be described in pseudo
code as follows:

DO UNTIL (end of input tape)

(get line from input and type on printer)

(get response line from keyboard, store and echo it)

IF (only CR or LF entered) THEN

(do nothing)
ELSE
IF (last character is LF) THEN
(do character changes and output line)
ELSE (do character inserts and output line)
ENDIF

ENDIF
ENDDO

This then is our editor in its most abstract
form. Note that an input line is deleted by
entering only a carriage return or line feed.
Now let us refine the description by de-
scribing each process identified above.

Getting a line from the input device
requires turning on the input device, reading
characters, and storing them until a line feed
or carriage return has been recognized. The
stored line is terminated with a zero (null)
character so that the end of the line is more
easily recognized later.

(set input line pointer to first address of line)

(turn on input device)

DO UNTIL (a LF or CR is read)
(get character from device)
(store character @ input line pointer)
(advance input line pointer one position)
(send character to printer)

ENDDO

(clear a character at the pointer address)

(turn off input device)

Likewise getting the response from the
keyboard is similar except that Control P
characters are echoed as spaces on the
Teletype printer.

(set keyboard line pointer to first address of line)
DO UNTIL (LF or CR is typed)
(get character from keyboard)
IF (character is not a LF or CR) THEN
(store character @ keyboard line pointer)
(advance keyboard line pointer)
IF (character is not Control P) THEN
(echo the character on printer)
ELSE (echo a space)
ENDIF
ENDIF
ENDDO
(clear a byte @ keyboard line pointer)

Character replaces and inserts are done by
using the Control P characters on the key-
board to indicate where the changes are to
be made. For each Control P character in the
response, an input line character is sent to
the output. When a character other than
Control P is encountered, it is either inserted
into the output or replaces a character about
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For a number ofyears, the
field of computer program-
ming has been moving
from the realm of a black
art to an organized and
systematic process.

“Top down structured
programming’’ is a verit-
able buzzword in the data
processing and computer
science fields.



Structured programming is
a systematic way of think-
ing about processes, the
result of which is a well
designed and under-
standable program specif-
ication.

This article concerns or-
ganizing and planning a
program, which is ex-
pressed in a structured
“pseudo code.” The next
step after the plan is
created is to translate the
pseudo code into the de-
tailed machine code of
your personal computer.

to be outputted depending on the last
character from the keyboard (line feed or
carriage return). Thus the replace operation
becomes:

(set input line pointer to start of input line)

(set keyboard line pointer to start of keyboard line)

(turn on output device)

DO UNTIL (end of keyboard line)

8 (get keyboard line character @ keyboard 1ine pointer)
IF (character is Control P) THEN

(get character @ inout line pointer and send to output)

(echo character on teletype printer)
ELSE (send the keyboard character to the output)
(echo the keyboard character on printer)
ENDIF
(advance keyboard line pointer)
: (advance input line pointer)
ENDDO
(put out rest of characters in input line)
(turn off output device)

Note that the resulting output is echoed on
the Teletype to enable verification of the
operation.

The insert operation is given below:

(set input line pointer to start of input line)
(set keyboard line pointer to start of keyboard line)
(turn on output device)
DO UNTIL (end of keyboard line)
(get keyboard character @ keyboard line pointer)
IF (character is a Control P) THEN
(transfer character @ input line pointer to output)
(echo character on teletype printer)
ELSE
DOWHILE (keyboard character is not Control P)
(send keyboard character to output)
(echo keyboard character on printer)
(advance keyboard line pointer)
ENDDO
IF (NOT END OF KEYBOARD LINE) THEN
: (tranafer character @ input line pointer to output)
¢ (echo character on teletype printer)
ENDIF
ENDIF
ENDDO

(put out rest of input line characters)
(turn off output device)

The routine that “puts out the rest of the
input line characters”’ is:

DO UNTIL (input line pointer points to a null)
(get character @ input line pointer)
IF (character is not a null) THEN
(put character to output device)
(echo character on printer)
(advance input line pointer)
ENDIF
ENDDO

Finally the routines to get a character
from the input device and keyboard in this
simple system are identical except for the
address of the device referenced.

DO UNTIL (input device ready flag is on)

(get input device ready flag)
ENDDO

(get character from device data port)

The character output and type routines are
likewise the same.

DO UNTIL (output device ready flag is on)

(get output device ready flag)
ENDDO

(send character to output device data port)

We have now arrived at such a level of
detail that the code could be written with-
out much difficulty from the pseudo code
on an almost one for one basis. Each module
except for the top level description could
and probably would be written as a separate
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subroutine. Note that each module can be
read starting on the first line and ending on
the last. No transfers are made out of any
module to another without returning to the
line following. Modules should be kept short
(no more than a page) so that they can be
read without constantly flipping pages back
and forth.

Conclusion

What has been presented in this article is
a description of a systematic approach to
program design and a means of describing it
so that almost any individual should be able
to understand it. The resulting program
when coded will have been well thought out
and may even have been reviewed and
partially debugged by other individuals not
intimately familiar with the machine upon
which it will ultimately be executed.

Much discussion has occurred about
standards for data exchange between various
computer hobbyists. On a higher level, the
pseudo code approach makes possible a
standard way to exchange program ideas. In
fact, higher level languages have been de-
veloped that, at least in part, resemble the
pseudo code language used here. Using this
approach, programs might be written to
convert pseudo code into machine instruc-
tions for the 8080, 6800, 6502 or other
CPUs as they become available. All hobby-
ists could then share programs in a higher
level language, each doing the necessary
conversion on his own machine.

There are a number of references on the
subject of structured programming. The idea
has been discussed extensively in computer
science circles in recent years, to the point
that “structured programming’ has become
a buzz word in the business. This writer is
familiar with the two texts given in the
bibliography. The IBM text is excellent for
beginners and those new to the concepts,

while the McGowan and Kelly text is a more
rigorous and mathematical presentation.®
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What is a Character -

by
Manfred Peshka
Peterborough NH 03458

A character is a unit of
information used in a com-
munication between a sender
and a receiver. Senders and
receivers may be either
people or machines, or a mix
of the two. A character may
be represented in different
forms: People use mostly
graphics, such as the letters of
the alphabet, the digits or
occasionally the Roman
numerals, and the punctua-
tion and special symbols
which are so familiar to us.
Machines process a set of
electric pulses in a period of
time which normally repre-
sents a character. This time
period differs in length for
different devices; it is longer

for slow devices (terminals,
card readers, printers) than
for fast devices (tape and disk
drives), and is generally the
shortest for the computer
arithmetic and logical unit.
Parenthetically it should
be noted that some machines
can recognize graphics, draw-
ings, and even objects (units
providing information) in a
landscape. The discussion of
these machines, however, is
reserved to a future article,
and their cost is far beyond
that of the amateur and
hobbyist at the present time.

Symbolic Representation of
Alternatives

What is the minimum
number of information ele-
ments, characters, or basic
symbols needed to express an
alternative? Probably the
most common symbol is the
indicator light which tells us
that a system is in a specific
state as opposed to its
‘““usual’’ state. Let’s consider
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for a moment the sign “Fire
Trucks Entering on Blinking
Red Light.”” This sign indi-
cates the possibility of two
specific states: The ‘“usual”’
state prevails when fire trucks
are either on a call or waiting
in the garage; in this situation
the light is off. The alterna-
tive consists of an emergency
when the light is blinking to
inform people that trucks are
about to enter the street, or
just have entered and are
rushing to the fire. Thereafter
the light is again turned off.
The light is pulsing for a
period of time which nor-
mally represents this
particular situation or “unit
of information,” say, about

20 seconds.
The indicator light
actually represents the

simplest character or basic
symbol providing a unit of
information. It is binary
telling you that a given situa-
tion either prevails or not.
Similarly, the door bell, the

telephone bell, the oil
pressure light on your car,
etc., are binary symbols.
Binary means nothing else
but a characteristic, property,
or condition of a system in
which there are but two alter-
natives. Besides indicator
lights, bells, etc.,, binary
symbols can take on graphic
forms such as yes or no, true
or false, 1 or 0, to name a few
only. For a machine, the
form is either the absence or
presence of a certain elec-
trical energy level at a period
of time of specific duration.
While the duration of
signaling or ‘““marking” in the
case of the oil indicator light
may be variable depending on
engine rotation, pressure,
temperature, etc., it is
constant for computing
machines. It may be a
1/110th or 1/300th of a
second for a slow terminal, or
a billionth of a second for a
computer central processing
unit.



Binary and Ternary Symbol
Sets

We have seen that one
binary character suffices to
indicate two distinct states.
On the other hand, an
elevator is in one of three
states: It is idlc, or it is going
up, or it is going down.
Naturally one binary symbol
is not enough to represent
three states. Two lights may
be used as follows: The left
light may signal upward
motion when illuminated,
and the right light may signal
downward motion. No
upward or downward motion
is indicated when the
corresponding light is turned
off. Let's represent the two
possible states of the
indicator lights by the
graphics 1 of on and 0 for
off. The following three
characters then express the
three possible states:

00 [ oo ] idle
01 [ oe | down
10 [ w0 | wup

Note that a character, that is,
the unit of information, is
represented by two bits or
binary digits. We now have
used a two-bit character code
to symbolically represent the
states of the system
consisting of the elevator and
its two lights.

An entirely different way
to represent three distinct
states symbolically is
accomplished by increasing
the number of basic symbols
from two to three. Let’s use
the graphic 2 to indicate
upward movement. Instead of
the left and right indicator
lights, such conditions may
be indicated by a panel
displaying the terms idle,
down, or up as follows:

O | IDLE ] ncither down
nor up

1 |DOWN | down

2 | UP | wup

This time we used a code
consisting of ternary digits to
symbolically represent the
three states of the elevator

and its indicator panel.
Ternary means that a
characteristic, property, or

condition of a system can
prevail in one of three
alternatives.

Note that the unit of
information, or in other
words, the character, has
been coded in the first case
by two binary digits, and in
the second instance by one
ternary digit. One can
conceptualize a character as a
distinguishing mark indicating
a specific state of a system.
Characters are ‘‘marks of
distinction” which may be
represented in different
graphic forms which have
equivalent value:

Binary Ternary Implementation

00 O [oo][IDLE
01 1 [ os:] [DOWN
10 2 [#][up

The two bit code permits a
fourth alternative, namely 11.
In actuality, this situation
represents a contradiction
since the elevator cannot
move up and down at the
same time. However, this
character may be used to
signal a defect, such as the
elevator being stuck between
two floors, or it may simply
be out of operation. The
ternary code cannot signal
this condition unless an
additional basic symbol is
being used; let’s assume that
an additional panel indicates
a defect when illuminated,

and the code representing this
situation consists of a binary

digit concatenated with a
ternary digit as follows:

10 [ DEFECT] [ IDLE ]
00 | ] [ IDLE ]
01 | ] [DOWN ]
02 ] [ up ]
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In this situation, the
character or information unit
is represented by one binary
and one ternary digit. Itis a
mixed code, principally
similar to those found on
license plates consisting of
letters and decimal digits.

In this situation, two of
the six possible characters
remain unused, namely 11
and 12. At least, let’s hope
that they remain unused
because 11 would mean that
a defective elevator is in
downward motion.

Enumerating Alternatives

The number of alternatives
which need to be considered
in a given system determines
the coding requirements. The
more alternatives need to be
communicated, the more
“marks of distinction’ are
required. We have seen the
two basic ways to accomplish
this: Increase the number of
distinguishing graphics in the
character set, or concatenate
graphics from the same or
from different sets of basic
symbols to form strings.

Obviously there is some
upper limit to the number of
distinguishing marks available
to people. Humans have a
limit of what they can
comfortably memorize in
terms of numbers of basic
symbols when there is no
specific meaning attached to
them. Consequently there
comes a point when graphics
are being concatenated to
form symbol strings which
represent words. The string
3-D stands for the word
which we pronounce ‘thre-'de
and which obviously means
“the three-dimensional form
or a picture produced in it”
(Webster’s Seventh New
Collegiate Dictionary 1965:
page 920). We use the
decimal digits 0, 1, 2, ..., 9
to represent numbers, the
letters a, b, ¢, ..., z, A, B,



.., Z to represent the
alphabet for words; special
symbols and punctuation
marks are concatenated with
digits and letters to form even
longer strings to represent
expressions which inform
people about one specific
alternative out of, say, a
million possibilities. We form
mathematical expressions
(x2+x—3, etc.) and word
expressions (i.e., sentences)
and a combination of the
two: ‘‘Yesterday it rained in
Peterborough for two hours.”

The basic unit of
information is the basic
graphic symbol or character:
The space on the paper, the
special marks (+ — <, ; etc.),
the letters, and the decimal
digits, and, which is not
immediately obvious, certain
functions like the bell on the
typewriter which signals the
approach of the right margin,
the backspace, the margin
release, the carrier return, the
line feed adjustment, etc. The
latter group is called
functions or control
characters. In the computer
and communications field
many more functions are
encountered than there are
on the typewriter. These will
be discussed in detail further
on.

The number of graphics
available for marking one out
of many possible states of a
system is referred to by the
name base. Digits are used to
represent numbers; since
people generally use ten
distinct digits, the number
system is called a decimal
system. The base of this

system is 10. In the previous
section the binary number

system and the ternary
system were used. Their bases
are two and three,
respectively.

Using any one of these
systems, it is possible to mark
any number of alternatives. If
the number of alternatives
exceeds the base (i.e., the
number of distinct graphics in
the set) one or more
additional graphics are used.
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Table 1. Equivalence of Selected Graphics.

Binary Ternary Octal
0 0 0
1 1 1
10 2 2
11 10 3
100 11 4
101 12 5
110 20 6
11 21 7
1000 22 10
1001 100 11
1010 101 12
1011 102 13
1100 110 14
1101 111 15
1110 112 16
1111 120 17
b= 2 3 8
g= 4 3 2
a=16 27 64

As an example, let's assume
that we desired to mark any
one of sixteen alternatives. If
we used the letters to mark
these possibilities, as is often
found in term papers and
legal documents to mark
paragraphs and sections, one
graphic for each alternative
would suffice. As a matter of
fact, out of the 52 available
letters only sixteen would be
used. Thirty-six graphics
would not be used. Two
decimal graphics are required
to express sixteen options,
leaving 84 pairs unused.

Three ternary graphics
encompass these sixteen
possibilities leaving eleven

triplets unused. A quadruplet
of binary graphics generates
exactly sixteen possibilities.

In general, by using ‘g’
graphics of a set with base ‘b’,
the maximum number of
alternatives ‘a’ is determined
by multiplying ‘b’ with itself
for ‘g’ times, or in other
words, a=b8. Table 1
summarizes this rule by
enumerating all possible
arrangements of binary,
ternary, octal (base 8),
decimal, and hexadecimal
(base 16) graphics for the
first sixteen values or
alternatives.

To illustrate the rule to
calculate the maximum
number of alternatives, the
hexadecimal system requires

Decimal Hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
10 16
2 1
100 16

only one graphic (g=1) for a
maximum of sixteen
alternatives (a=16) because its
base equals sixteen (b=16).

Note, however, that the
largest value or number
equals fifteen which s

represented by the graphic F
because enumeration began
with the magnitude zero.

The maximum value is
always one less than the
number ‘a’ because these
systems start counting with
zero. Assuming two
hexadecimal graphics (g=2),
256 distinct alternatives can
be identified (a=16%). The
largest value, however, is
equal to 255 (a—1) because
the first value is zero. The
hexadecimal string FF
identifies the same magnitude
as the decimal string 255 or
the bit string 11111111,

It is easy to change from
one coding system to
another, especially from

binary to hexadecimal and
back, by means of Table 1.

The choice of the
hexadecimal graphics A to F
was arbitrary and is of great
help to people. Machines
represent all characters as
binary pulses within a given
time period. Bit strings,
therefore, can become very
large and difficult to
remember. Imagine the bit
string 10001111011100.
How much easier it is to




remember the hexadecimal
string 23DC instead (you may
wish to verify the translation
starting with the right four
bits). Any other distinct
graphics instead of A to F
could have been used; for
example ! @ # < % >.
However, try to remember
these in this order, and try to
pronounce 23<# instead of
the above 23DC.

How to Identify Character
Sets

Given the possibility of
switching from one
representation to another, the
guestion of code
identification must be dealt
with. Assume the graphic
representation 3-D. Is it a
word of the English language?
Or is it an arithmetic
expression? If it is an
arithmetic expression, which
number system has been
employed? Assume another
representation such as 11.
Which number system has
been employed and what
magnitude is represented?
You may wish to consult
Table 1 and calculate the
magnitude for each number

system.
In order to avoid
confusion, graphics other

than decimal digits, letters,
and the special symbols are
identified explicitly. The
string 11 therefore means
eleven in the decimal number
system, and 3-D is part of the
English language. If a ternary
string was meant, one needs
to say so in some
unambiguous manner. This
can be accomplished through
a textual declaration such as

““All  following digits are
ternary digits’’ or, “The
ternary number 11 has a

value of 4” where according
to our convention the graphic

4 is understood to be a
decimal digit.

A different way to
identify strings is by

appending to the string the
base. In the mathematical and
computing literature different
methods have been

employed. In the
mathematical literature, this
Is accomplished by a separate
graphic which is appended to
the digit string: 112 is a
binary number with a value
of three, while 118 is an octal
number representing nine,
and 1116 is a hexadecimal
number representing 17. The
subscripted graphic represents
the base, and it is omitted
whenever the base is ten. This
convention also avoids the
confusion about 3-D. This
string is an expression of the
English language, whereas
3-D16 equals 3-13 or —A1s
which is a numeric expression
resulting in a number.

In the computing
literature, different ways have
been found to identify bit or
hexadecimal strings. These
ways depend on the
manufacturer and on the
computing language
employed. In American
National Standard (ANS)
Fortran, a predominately
mathematical language
(which is to be distinguished
from Basic Fortran), digit
strings are recognized as
decimal numbers. Bit strings
are not allowed, and non-digit
strings as used for headlines,
table headings, etc., are
preceded by one or more
digits and the capital letter H;
for example, 4H3.14 means
the four characters 3.14
which differ in their internal
representation from the
magnitude 3.14. The constant
4 prior to the H indicates the
length of the string; it is four
symbols long.

In ALGOL 60 which is an
internationally standardized
mathematical language, digit

strings are recognized as
decimal numbers, and
character strings for table

headings, etc., are enclosed in
so-caHed string brackets as
shown in the example: ‘. ..

The wife stated that her
husband told her ‘our
daughter complained ‘the

teacher is giving me trouble’”,
Note that it is possible to
have strings within strings,
each of which is enclosed by
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the single quotes pair.
In Programming Language
One (PL/1), as devised by

IBM, digit strings are
recognized as decimal
numbers unless they are

appended by the letter B.
11B equals 112 and has a
value of 3. Since the internal
representation of binary
numbers differs from codes,
this language also permits
explicit bit and character
strings such as ‘11’B which
does not necessarily have a
value of 3 but could mean,
for example, that the elevator
is out of order. Alphanumeric
character strings are also
permitted and recognized
whenever they are enclosed in
single quotes: ‘THIS IS A
“STRING”’, ISN'T IT?.
Similar distinctions exist also
in ALGOL 60 and will be
discussed in a future article.

You might have noted that
the character constants in
Fortran were preceded by the
length indicator and an
identifying character H. In
the systems using quotes or
string brackets, the length is
determined by the number of
positions occupied between
the brackets. Many assembler
languages combine these two
methods. The string is
enclosed in quotes, and it is
preceded by a single letter
indicating the base. B‘11’ is
equal to 11B or ‘11’B and has
a value of 3 when it is used as
a number in integer
arithmetic. X‘11’ equals 1116
or 17 and is a hexadecimal

string.
The distinction between
binary numbers and bit

strings is a rather fine one and
will be discussed in a future
article. The computer
represents all information as
strings of bits and
manipulates these strings
according to their type in
certain groupings of bits. The
basic group is called a
machine word and consists of
one or more bits. These bit
groups have an equivalent
code value which can be
represented graphically in
several different ways.



Function Abbreviations
We have discussed earlier

various functions of the
typewriter. Computer
terminals and communica-

tions equipment use many
more function characters
than the common typewriter
does. In the various codes,
these functions correspond to
certain bit strings. The
functions are indicated in the
code tables on the following

pages by abbreviations.
Therefore, in Table 2 a
dictionary of these

abbreviations is presented.
The more frequently

encountered terminal
function codes (as opposed to
transmission functions) are
marked with an asterisk.

The Baudot
Telegraphy Code

An operator depressing the
telegraph key causes current
to flow through a wire. The
current actuates an
electromagnet at the receiving
end which produces a
“click’”. The timing between
the clicks represents either a
dot or a dash, and
telegraphers yesterday, and
hams today, are skilled in

Five-Bit

Fig. 1. The word BYTE in Baudot Code.

translating these ‘‘dots’” and
‘““dashes” into graphics.

Transmission speed was
mostly dependent on the
telegraphers’ skills. The term
‘“baud rate’’ means the
frequency at which the dots
recurred in a second, with
every dash counting twice as
long as a dot.

In the automatic
teletypewriter the key was
replaced by a distributor

which sends a fixed number
of pulses for each character
entered on a keyboard.
Latches at the other end
actuated a printing device.

The term “‘marking” was used
to indicate the flow of
current, and the line was
‘““spacing’’ when the current
was off. Marking and spacing
can be related to binary
digits. In Table 3, a mark is
indicated by the bit 1, and a
space by the bit 0. In
addition to the five bits of
the code, a space occurred
prior to transmission, and a
longer mark (1.5 or 1.42
times the usual mark time)
terminated the code. Fig. 1
shows the timing of marks

and spaces of the string
BYTE.:

be— LETS —+ be B -l b Y —+ lo— T —= re E —
"MARKING" | I —bert—— ; o
"SPACING" O +H f +
ISTART sTorl
}e-ONE CHARACTER—{
——f fe—— 55— |5
TIME UNITS l.%RZ

Table 2. Function Abbreviations.
ACK Affirmative Acknowledgement IRS Interchange Record Separator
BEL, BELL Bell or other audible signal ITB Intermediate Text Block
BS Backspace 1US Interchange Unit Separator
BYP By Pass LC Lower Case
CAN Cancel LETS Letters Shift
CcC Cursor Control LF Line Feed
CR Carriage Return NAK Negative Acknowledgement
CU1 Customer Use 1 NL New Line
CU 2 Customer Use 2 NUL Null, or all zeros
cuU 3 Customer Use 3 PF Punch Off
DCO Device Control O. PN Punch On
DC 1 Device Control 1 PRE Prefix
DC 2 Device Control 2 RES Restore
DC 3 Device Control 3 RS Record Separator (Reader Stop)
DC 4 Device Control 4 (stop) RU Areyou...?
DEL Delete RVI Reverse Interrupt
DLE Data Link Escape So—S7 Separator Information
DS Digit Select Sl Shift In
EM End of Medium SK Skip (punched card)
ENQ Enquiry SM Set Mode
EOA End of Address SMM Start of Manual Message
EOB End of Block SO Shift Off or Shift Out
EOM End of Message SOH Start of Heading
EOT End of Transmission SOM Start of Message
ERR Error SOS Start of Significance
ESC Escape sP Space
ETB End of Transmission Block STX Start of Text
ETX End of Text SUB Start of Special Sequence
FE Format Effector SYN Synchronous ldle
FF Form Feed ™ Tape Mark
FIGS* Figures Shift TTD Temporary Text Delay
FS Information File Separator UcC Upper Case
GS Information Group Separator UsS Information Unit Separator
HT Horizontal Tabulation VT Vertical Tabulation
IDLE Null VTAB Vertical Tabulation
IFS Interchange File Separator WACK Wait Before Transmitting Positive Acknowledgement
1GS Interchange Group Separator WRU Who are you?
I Idle
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Prior to transmission of
the letter B, the code LETS
must be sent in order to set
the receiving equipment into
letter shift mode. The reason
for this convention is to make
it possible to transmit more
than 32 symbols with five
bits (g=5, b=2, a=32). After
all, there are already 26
uppercase letters and ten
digits; then there is need for
punctuation and special
symbols, and function
characters to control the
printer. Once the operator
intends to send a numeric
character, the FIGS code is
sent prior to the numeric
string. In addition to the
numeric characters, several
other characters were sent in
figures shift mode. Depending
on the equipment used,
various different graphics
were assigned to the same bit
strings. Table 3 indicates the
assignments for four different
keyboards; the first column
shows the International
Telegraph Alphabet No. 2 of
the Comite Consultatif
| nternational Telegraphique
et Telephonique (CCITT); the
second column shows the
commercial teletype
keyboard as wused in the
United States, the third
column presents the fractions
keyboard of the American
Telephone and Telegraph
Company (ATT); the fourth
column shows the weather
bureau keyboard. All four
different keyboards are
shown here because used
equipment from different
sources may be available to
you which you might want to
modify so that all keycaps
correspond to the commercial
keyboard.

Binary Coded Decimal (BCD)
Transmission Code

The term ‘‘binary coded
decimal” derives from the
method of coding decimal
digits. The bit string with
value 9 is 1001, and the value
10 is expressed by adding an
additional four bits, namely,
00010000. The bit string

Table 3. Five-level Baudot Code for Four Selected Keyboards.

BIT
CODE
1 1

0
0 1

1 0
1
1
0 1
0 0
0 1
1 1
1 1
0 1
0 0
0 0
0 0
0 1
1 1
0 1
1 0
0 0
1 1
0 1
1 1
1 0
1 0
1 0
0 0
1 1
1 1
0 0
0 0
0 1

o-bo_;_;o_;_;o-;o—b_;o_;o

oo—b-lo—b-l

©O O = O =

- O O O = O = O O O = 0O O = =@ =@ 0 = =22 0 o

O = O =
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o O = O

QO = _;_;o..;ooo_;_;

ad =

© O O

Upper Case
.f:';
Lower E é ;
Case O O %
A — — —
B ? ? 5/8
C : 1/8
axh;)ou? $ $
E 3 3 3
F | 1/4
G & &
H #
I 8 8 8
J Bell Bell ’
K ( ( 1/2
L ) ) 3/4
M
N , , 7/8
O 9 9 9
P 0 0 0
Q 1 1 1
R 4 4 4
S , , Bell
T 5 5 5
U 7 7 7
\% = ; 3/8
w 2 2 2
X / /
Y 6 6 6
z + ” ”
Blank ’
Letters shift
Figures shift
Space
Carriage return

Line feed

N 0 -— / ‘ w . O & — Weather

1



Table 4. Seven-bit American Standard Code for Information Interchange.

Bits 7, 6, 5 000 001 010 011 100 101 110 111
Bits

4 3 2 1 - HexO0 | o 1 2 3 4 5 6 7
0 0 0 0 0 NUL |[DLE 0 @ P

0 0 0 1 1 SOH |DC1 1 A Q

0 0 1 0 2 STX |DC2 2 B R

0 o | 1 1 3 ETX |DC3 3 C S

0 1 0 0 4 EOT |DCa 4 D T

0 1 0 1 5 ENQ |NAK 5 E U

0 1 1 0 6 ACK |SYN 6 = V

0 1 1 1 7 BEL |ETB 7 G w

1 0 0 0 8 BS {CAN 8 H X

1 0 0 1| 9 HT |EM 9 | Y

1 0 1 0 A LF |sus J Z

1 0 1 B VT |ESC K

1 1 0 0 C FF |FS L

1 1 0 1 D CR |GS M

1 1 1 0 E SO |RS N

1 1 1 F S us 0

tFor IBM 370, the left of the two symbols is generally displayed. See Table 2 for explanation of

function abbreviations.

Table 5. Six-bit Binary Coded Decimal Transmission Code.

Bits 3,4,5,6

Bits
1,2
00 01 10 1

0000 SOH & - 0
0001 A J / 1
0010 B K S 2
0011 C L T 3
0100 D M U 4
0101 E N \Y 5
0110 F o w 6
0111 G P X 7
1000 2 Q Y 8
1001 | R V4 9
1010 STX SPACE ESC SYN
1011 . $ ) '
1100 < . % @
1101 BEL us ENQ NAK
1110 SuB EOT ETX EM
1111 ETB DLE HT DEL
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01011001 therefore has a
value of 59, and 99 s
expressed as 10011001. This
method differs from the bit
coding shown in Table 1.

The binary coded decimal
(BCD) transmission code has
been widely used by IBM and
other manufacturers to
transmit uppercase letters,
digits, and special symbols in
a six-bit code. It is a subset of
the USASCII code; however,
it is not a national standard.

The bit strings are shown in
Table 5.

The American Standard Code
for Information Interchange
(ASCII)

Throughout the decades,
many different data
transmission codes were
developed, and designers
today often find good reasons
to develop their own codes.
The need for standardized
transmission codes, however,
has increased tremendously
because more and more
machines dial-up other
machines via the public
networks. The American
Standards Association has
standardized a seven bit code
for communications. It
contains upper and lower-case
letters, and a large number of
device and transmission
control characters. An eighth
bit may be added for parity.
The term parity implies that
the number of bits should
add up to an even number
(for even parity) or to an odd
number for odd parity. The
purpose is to check to some
degree for a loss of bits
during transmission. Assume
that a device transmits in

even parity; uppercase B
consists of two marks and
five spaces, therefore, no
eighth bit is transmitted;
uppercase T consists of three
marks and four spaces, and an
eighth mark is sent to make
the number of marks even.
Fig. 2 shows the string BYTE
in even parity transmission.
The code is shown in Table 4.
Bit 1 is transmitted first. You
may also want to refer to
Table 2 in order to
understand the meaning of
the abbreviations.

Extended Binary Coded

Decimal Interchange Code
(EBCDIC)
The Extended Binary

Coded Decimal Interchange
Code is essentially the
previously mentioned Binary
Coded Decimal code
extended by two bits to form
an eight-bit code. A total of
256 codes are possible (b=2,
g=8, a=256) and because of
its length of eight bits, it is
often more easily expressed
in hexadecimal notation by
means of a string of two
hexadecimal digits. Table 6
shows both notations, the bit
pattern and the hexadecimal
notation. The digit 9, for
example, is expressed as the
bit string 11111001, or as the
hexadecimal string F9.

The code is often used to
transmit the eight-bit bytes of
computers. It originated
about a decade ago when IBM
introduced the System 360.

The terms ‘“EBCDIC”,
“byte”, and *“hexadecimal
digits 0, ... F” were
developed at that time.

Today these terms are widely

Fig. 2. The word BYTE in Even-parity USASCII.

"MARKING" |]

"SPACING" 0 .

accepted and used by many
computer manufacturers. The
code is also widely accepted;
however, it is not a national
standard.

Conclusions

A character is a unit of
information which can be
represented in various forms,
such as in graphic form, or as
a bit string. Since bit strings
can be rather lengthy and
therefore difficult to
remember, we discussed the
abbreviated representation of
the string by means of the
hexadecimal graphics. The
relationship between the bit

string representations of
characters and the
hexadecimal graphics is

independent of the code since
it is based on an intrinsic
numerical order, namely that
of counting from zero by one
to infinity.

On the other hand, bit
strings may be represented by
graphics in an entirely
different manner depending
on the code used. For that
purpose we looked at the
predominant five-, six-, seven-
and eight-bit codes presently
in use. We did not discuss
various other but less
important codes because of
space limitations. Depending
on the code utilized, the same
graphic represents entirely
different bit strings as shown
in Table 7.

The first character in the
Baudot code is the letters
shift. Note the similarity
between the last three codes
which holds only for
uppercase letters and digits.

WRT
T

ONE CHARACTER :

8

> - -

. a @ =
—eix | O-I:!l‘— Y ——eX
g = |- <

a v |n a

ONE CHARACTER
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STOP
START
PARITY

sTOP
START
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ONE CHARACTER
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ONE CHARACTER —+f

E —

PARITY
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Table 6. Eight-bit Extended Binary Coded Decimal Interchange Code.

Table 7. Transmission of the String BYTE in selected codes (excluding

start, stop) and parity bits).

11111 10011 10101 00001 10000

000010 101000 100011 000101
0100001 1001101 0010101 1010001

11000010 11101000 11100011 11000101

Bits O, 1 00 01 10 11
Bits 2, 3| 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
ex0 | O 1 3 4 5 7 8 9 B C D F
Bits Hex
4,5,6,7
0000|0 NUL OLE DS SP & - 0
0001 |1 SOH DC1 SOS / a t A J 1
0010 |2 STX DC2 FS SYN b k s B K S 2
0011 |3 ETX TM™M C I t C L T 3
0100 {4 PF RES BYP PN d m u D M U 4
0101 |5 HT NL LF RS e n v E N \%) 5
0110 |6 LC BS ETB UC f o w F (@) W 6
01117 DEL IL ESC EOT g p X G P X 7
1000 |8 CAN h q Y H Q Y 8
1001 |9 EM i r z | R Z 9
1010 A SMM CC SM ¢ ! : -
1011 |B VI cut cu2 cus . $ , # Special Graphic Characters
1100 |C FF IFS pca < . % @ ¢ Cent Sign 5 Minus Sign, Hyphen
1101 |D CR IGS ENQ NAK ) - ‘ . Period, Decimal Point  / Slash
1110 |E SO IRS ACK + ; > = < Less-than Sign , Comma
1111 JF Si IUS BEL SUB l - ? “ { Left Parenthesis % Percent
To conclude this tutorial, * Plus Sign —  Underscore, Break
let me say this in EBCDIC |  Logical OR SUELEIE
(without start, stop and & Ampersand > Greater-than Sign
parity bits): ! Exclamation Point ? Question Mark
D5 85 A7 A3 6B $ Dollar Sign Colon
40 A6 85 7D 93 :
93 40 84 89 A2 * Asterisk & Number Sign
83 A4 A2 A2 40 ) Right Parenthesis @ At Sign
95 A4 94 82 85 : Semicolon ’ Prime, Apostrophe
99 A2 4B —/ Logical NOT = Equal Sign
o Quotation Mark
- '._ _S_ee Ebleiforixp‘la_natiir.l of function abbreviations.

Baudot

BCD Transmission Code
USASCII (see Note 1)
EBCDIC

Note 1. In memory, the sequence of bits on the IBM 360 and 370 is
reversed. The left bit shown becomes the right bit, etc., as shown:

1000010 1011001 1010100 1000101

35

L - —



HARD PALATE
NASAL 'rg_r;,-»ca 0. it

SOFT ﬁiﬁi.“:?."‘_-

VELUM NOSTRILS

ORAL TRACT LIPS
TEETH
TONGUE BODY |
"""" TONGUE TIP
PHARYNX
—JAW
EPIGLOTTIS
GLOTTIS

Figure 1: The Human Vocal Tract. The
human vocal tract is roughly described as a
tube approximately 17.4 cm long with

varying resonance characteristics as muscles
control the shape. The tract splits into two
parts, nasal and oral, at the top, with a valve
called the velum providing flexible control
of the nasal resonances in given utterance.
An electronic model of this natural organ
roughly parallels the function of the tract.

DESIRED
CURVE T

— ACTUAL
DAC OUTPUT

Figure 2: DAC Quantization Errors. The actual output of a computer to the
analog world is a step function (in the absence of any filtering). This leads to
the problem of quantization errors, depicted conceptually here by the shaded
areas in between the smooth analog function and its closest step function
approximation. Low precision digital to analog conversions accentuate this
problem.
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Friends, Humans,

D Lloyd Rice
Computalker Consultants
821 Pacific St #4

Santa Monica CA 90405

You’ve got your microcomputer running
and you invite your friends in to show off
the new toy. You ask Charlie to sit down
and type in his name. When he does, a
loudspeaker on the shelf booms out a hearty
“Hello, Charlie!”’ Charlie then starts a game
of Star Trek and as he warps around thru the
galaxy searching for invaders, each alarming
new development is announced by the ship’s
computer in a warning voice, “Shield power
low!”, “Torpedo damage on lower decks!”

The device that makes this possible is a
peripheral with truly unlimited applications,
the speech synthesizer. This article describes
what a speech synthesizer is like, how it
works and a general outline of how to
control it with a microcomputer. We will
look at the structure of human speech and
see how that structure can be generated by a
computer controlled device.

How can you generate speech sounds
artificially, under computer control? Let’s
look at some of the alternatives. Simplest of
all, with a fast enough digital to analog
converter (DAC) you can generate any
sound you like. A 7 or 8 bit DAC can
produce good quality sound, while some-
where around 4 or 5 bits the quantization
noise starts to be bothersome. This noise is
produced because with a 5 bit data value it is
possible to represent only 32 discrete steps
or voltage levels at the converted analog
output. Instead of a smoothly rising voltage
slope, you would get a series of steps as in
figure 2. As for the speed of the DAC, a
conversion rate of 8,000 to 10,000 conver-
sions per second [The sample rate in con-
versions per second or samples per second is
often quoted in units of Hertz, We will use
that terminology here, although conversions



and Countryrobots: Lend me your Ears

per second is a generalization of the concept
of cycles per second] is sufficient for fairly
good quality speech. With sample rates
below about 6 kHz the speech quality begins
to deteriorate badly because of inadequate
frequency response.

Almost any microprocessor can easily
handle the data rates described above to
keep the DAC going. The next question is,
where do the samples come from? One way
to get them would be by sampling a real
speech signal with a matching analog to
digital converter (ADC) running at the same
sample rate. You then have a complicated
and expensive, but very flexible, recording
system. Each second of speech requires 8 K
to 10 K bytes of storage. If you want only a
few words or short phrases, you could store
the samples on a ROM or two and dump
then sequentially to the DAC. Such a system
appears in figure 3.

If you want more than a second or two of
speech output, however, the amount of
ROM storage required quickly becomes im-
practical. What can be done to minimize
storage? Many words appear to have parts
that could be recombined in different ways
to make other words. Could a lot of memory
be saved this way? A given vowel sound
normally consists of several repetitions of
nearly identical waveform segments with the
period of repetition corresponding to the
speech fundamental frequency or pitch.
Figure 4 shows such a waveform. Within
limits, an acceptable sound is produced if we
store only one such cycle and construct the
vowel sound by repeating this waveform
cycle for the duration of the desired vowel.
Of course, the pitch will be precisely con-
stant over that entire interval. This will
sound rather unnatural, especially for longer
vowel durations, because the period of
repetition in a naturally spoken vowel is
never precisely constant, but fluctuates
slightly. In natural speech the pitch is nearly
always changing, whether drifting slowly or

T7( MICROPHONE

LOW-PASS PROGRAMMABLE
i_"l FILTER I—'—"' ADC —.l MEMORY I—onou

l SPEAKER
7~

| LOW-PASS
ROM DAC —-[ LT e AOEG

~N

Figure 3: Waveform Playback from ROM Storage. One way to achieve a
digitally controlled vocal output is to first digitize a passage of human speech,
then store the digital pattern in memory. For a commercial product, such as a
talking caiculator, the Iimited vocabuiary required makes this a feasible
avenue of design, especiaily when a singie mass produced ROM can be used in
the final product. In an experimenter’s system, the ROM is not needed, and
programmable memory can be substituted during experiments. This is
probably the least expensive way to augment an existing computer’s
capability with vocal output, but the memory requirements limit its use to
small vocabularies. The quality of the result varies with the ADC (and DAC)
sampling rate and precision.

l———PITCH PERIOD PITCH PERIOD —

Figure 4: Typical Vowel Waveform. In prin-
ciple, a vowel Is a fairly long sustained
passage of sound with repetitive characteris-
tics. The vowel sounds are produced physioi-
ogically by the resonances of the vocal tract,
and are controlled electronically by the
formant filters which produce the equivalent
of vocal tract resonances.
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Figure 5: Tube Resonances. Temporarily ignore the complicated shape of the vocal tract and
simplify it to a tube 17.4 cm long. Applying the equations of physics to acoustic waves in air
gives resonances at several modes or natural frequencies. The standing waves along the tube at
each frequency are shown, and identified as formant 1, formant 2 and formant 3. In the actual
vocal tract, a more complicated and time varying geometry changes the resonances as a sound is

created.

sweeping rapidly to a new level. It is of
interest that this jitter and movement of the
pitch rate has a direct effect on the percep-
tion of speech because of the harmonic
structure of the speech signal. In fact,
accurate and realistic modelling of the
natural pitch structure is probably the one
most important ingredient of good quality
synthetic speech. In order to have smooth
pitch changes across whole sentences, the
number of separate stored waveform cycles
still gets unreasonable very quickly. From
these observations of the cyclic nature of
vowels, let us move in for a closer look at
the structure of the speech signal and ex-
plore more sophisticated possibilities for
generating synthetic speech.

How Do We Talk?

The human vocal tract consists of an air
filled tube about 16 to 18 cm long, together
with several connected structures which
make the air in the tube respond in different
ways (see figure 1). The tube begins at the
vocal cords, or glottis, where the flow of air

7 up from the lungs is broken up into a series
of sharp pulses of air by the vibration of the

Figure 6: ‘‘ah” as in “father.’”’ In figure 1,
the vocal tract was shown in schematic form.
Here is a similar figure showing how the
tract has been modified to produce the
vowel sound ‘“ah.” The human typically
closes off the nasal cavity and widens out
the oral cavity by opening the mouth during
this sound.

38

vocal cords. Each time the glottis snaps shut,
ending the driving pulse with a rapidly
falling edge, the air in the tube above
vibrates or rings for a few thousandths of a
second. The glottis then opens and the
airflow starts again, setting up conditions for
the next cycle.

The length of this vibrating air column is
the distance from the closed glottis up along
the length of the tongue and ending at the
lips, where the air vibrations are coupled to
the surrounding air. If we now consider the
frequency response of such a column of air,
we see that it vibrates in several modes or
resonant frequencies corresponding to dif-
ferent multiples of the acoustic quarter
wavelength. There is a strong resonance or
energy peak at a frequency such that the
length of the tube is one quarter wavelength,
another energy peak where the tube is three
quarter wavelengths, and so on at every odd
multiple of the quarter wavelength. If a tube
17.4 cm long had a constant diameter from
bottom to top, these resonant energy peaks
would have frequencies of 500 Hz, 1500 Hz,
2500 Hz and so on. These resonant energy
peaks are known as the formant frequencies.
Figure 5 illustrates the simple acoustic
resonator and related physical equations.

The vocal tract tube, however, does not
have a constant diameter from one end to
the other. Since the tube does not have
constant shape, the resonances are not fixed
at 1000 Hz intervals as described above, but
can be swept higher or lower according to
the shape. When you move your tongue
down to say “ah,” as in figure 6, the back
part is pushed back toward the walls of the



throat and in the front part of the mouth
the size of the opening is increased. The
effect of changing the shape of the tube in
this way is to raise the frequency of the first
resonance or formant 1 (F1) by several
hundred Hz, while the frequency of formant
2 (F2) is lowered slightly. On the other
hand, if you move your tongue forward and
upward to say ‘“‘ee,” as in figure 7, the size
of the tube at the front, just behind the
teeth, is much smaller, while at the back the
tongue has been pulled away from the walls
of the throat, leaving a large resonant cavity
in that region. This results in a sharp drop in
F1 down to as low as 200 or 250 Hz, with
F2 being increased to as much as 2200 or

2300 Hz.

We now have enough information to put
together the circuit for the oral tract branch
of a basic formant frequency synthesizer.
After discussing that circuit, we will con-
tinue on in this way, describing additional
properties of the speech mechanism and
building up the remaining branches of the
synthesizer circuit.

A Speech Synthesizer Circuit

To start with, we must have a train of
driving pulses, known as the voicing source,
which represents the pulses of air flowing up
thru the vibrating glottis. This could be
simply a rectified sine wave as in figure 8. To
get different voice qualities, the circuit may
be modified to generate different waveform
shapes.

This glottal pulse is then fed to a se-
quence of resonators which represent the
formant frequency resonances of the vocal
tract. These could be simple operational
amplifier bandpass filters which are tunable
over the range of each respective formant.
Figure 9 shows the concept of a typical
resonator circuit which meets our require-
ments. IC1, 1C2 and 1C4 form the actual
bandpass filter, while IC3 acts as a digitally
controlled resistance element serving to vary

Figure 7: “ee” as in “heed.” In contrast to
figure 6, when the ‘ee’” vowel sound is
created, the mouth opening tends to be nar-

rowed; and the upper end of the vocal tract
is restricted. This lowers the frequency of

the first resonant mode and raises the
frequencies of the second and third. Refer-
ring to table 1, the ‘“ee” vowel sound has
some of the highest resonances for formants

F2 and F3 and the lowest for F1.

+V

ov

Figure 8: Voiced Sounds from the Glottis. Sounds which have definite pitch

are called voiced sounds. In the natural larynx, these sounds are generated by
the vocal chords and drive the vocal tract at the glottis. In an electronic

analog, the voiced sounds can be generated by a programmable counter (to
set the frequency) which in turn creates a sine wave of the same frequency. A
rectified sine wave is a good source for the glottal pulses used in the
electronic model of a larynx used in the author's approach to speech
generation.

the resonant frequency of the filter. Several
such resonator circuits are then combined as
in figure 10 to form the vocal tract simu-
lator. The voicing amplitude control, AV, is
another digitally controlled resistance similar
to IC3 of figure 9.
This gain controlled amplifier configura-
tion is the means by which the digital
computer achieves its control of speech
signal elements. The data of one byte drives
the switches to set the gain level of the
amplifier in question. In figures 10, 13 and
15 of this article, this same variable resis-
tance under digital control is shown symbol-
ically as a resistor with a parameter name, Figure 9: Typical Formant
Resonator Circuit. A
digitally controlled band

pass filter can be built
from four operational

INPUT

DATA BUS
8 LINES

amplifiers and 8 digitally
controlled analog switches.
FILTERED The filter characteristics
ouTPUT are set by the choice of
the resistance and capaci-
tance elements as well as
the digital control word.
The operational amplifier
IC3 serves as a gain con-
trolled amplifier in the
feedback loop, which
alters the filter resonance.
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Figure 10: A first approximation of the voice synthesizer can be constructed
by using three formant filters in series with differing resonance settings all
controlled by 8 bit digital words. The resistance indicated as AV is an
operational amplifier circuit (see IC3 of figure 9) with a digital gain control
input, It is thus a programmable element of gain less than unity, in other
words the electronically controlled equivalent of a variable resistance. This
notation of a controlled resistance is used in figures 13 and 15 as well.

F1 F2 F3
heed 250 2300 3000
hid 375 2150 2800
head 550 1950 2600
had 700 1800 2550
hod 775 1100 2500
paw 575 900 2450
hood 425 1000 2400
who 275 850 2400

Table 1: Steady State English Vowels. The vowel sounds are made by
adjusting the formant resonances of the human vocal tract to the frequencies
listed in this table. These figures are approximate, and actual formant
resonances vary from individual to individual. In a speech synthesizer based
upon an electronic model of the vocal tract, the formant frequencies are set
digitally using operational amplifier filters with adjustable resonant peaks.

2400
e HEED
2200 - o HID
2000 |
e HEAD
1800 |- e HAD
N 1600 |
-
P4
d 1400 |-
b3
o
o 1200 -
e HOD
1000 |- e HOOD
o PAW
800 L e WHO
1 1 1 1 § 1 L J
o o O (o] (@] o o o
O (o] (o) o o] O (@] O
N (2] < s) w0 ~ [+ o] N
FORMANT |

Figure 11: The Steady State English Vowels. The distinctions between
various vowel sounds can be illustrated by plotting them on a two
dimensional graph. The horizontal axis is the formant 1 frequenc 'y, the
vertical axis is the formant 2 frequency. A location for each vowel utterance

can be determined experimentally by locating the resonance peaks with an
audio spectrum analyzer.
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rather than as an operational amplifier with
analog switches.

Generating Vowel Sounds

The vocal tract circuit as shown thus far
is sufficient to generate any vowel sound in
any human language (no porpoise talk, yet).
Most of the vowels of American English can
be produced by fixed, steady state formant
frequencies as given in table 1. A common
word is given to clearly identify each vowel.
The formant frequency values shown here
may occasionally be modified by adjacent
consonants,

An alternative way to describe the for-
mant relationships among the vowels is by
plotting formant frequencies F1 vs F2 as in
figure 11. F3 is not shown here because it
varies only slightly for all vowels (except
those with very high F2, where it is some-
what higher).

The F1-F2 plot provides a convenient
space in which to study the effects of
different dialects and different languages.
For example, in some sections of the United
States, the vowels in ““hod” and ‘“‘paw” are
pronounced the same, just above and to the
right of “paw’ on the graph. Also, many
people from the western states pronounce
the sounds in “head’ and “‘hid” alike, about
halfway between the two points plotted for
these vowels on the graph.

A few English vowels are characterized by
rapid sweeps across the formant frequency

2400 ~

2200 | "{
2000 }
1800 |-
N 1600 }
-
2
g
3 1400 |
o
o 1200 |-
1000 |-
800 |
[ I A 1 1 1 1 J
(o] o) (o] (o] (o) (o] (o] (o)
(o] (o] O O (o] (o] (@] (o]
N (2] < n w0 ~ [+ 0] o0
FORMANT |

Figure 12: English Diphthongs. A diphthong
/s a sound which represents a smooth transi-
tion from one vowel sound to another
during an utterance. The time duration of
the swap from one point to another in
formant space is typically 150 to 250 ms.
This graph shows typical starting and ending
points for several common diphthong
sounds,
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Figure 13: Synthesizer with Aspiration Noise Generator. Not all utterances are vowels. By
adding a digitally controlled noise generator to the circuit of figure 10, it is possible to
synthesize the consonant sounds known as ‘stops.”” In this circuit,.the amplitude versus time
characteristics of the noise pulse are determined by an 8 bit programmable gain control AH
(shown symbolically as a resistor). The output of the noise source is mixed with the voicing
source with the analog sum being routed to the formant filters. The noise generator is a zener

diode.

space rather than the relatively stable posi-
tions of those given in table 1. These sweeps
are produced by moving the tongue rapidly
from one position to another during the
production of that vowel sound. Approx-
imate traces of the frequency sweeps of
formants F1 and F2 are shown in figure 12
for the vowels in “bay,” “boy,” ‘buy,”
“hoe” and “how.” These sweeps occur in

150 to 250 ms roughly depending on the
speaking rate.
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Figure 14: Stop Consonant Patterns. This figure illustrates 6 different stop
consonant patterns. The release of the stop closure (start of nolse pulse) is at

the point marked by “Rel” and the beginning of the voicing sounds is marked
by ‘“VO’. Note the typical transition of the vowel formants as the steady
state is reached.
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Consonant Sounds

Consonant sounds consist mostly of vari-
ous pops, hisses and interruptions imposed
on the vibrating column of air by the actions
of several components of the vocal tract
shown in figure 1. We will divide them into
four classes: 1) stops, 2) liquids, 3) nasals,
and 4) fricatives and affricates. Considering
first the basic ‘stop consonants,” ‘“‘p,” “t,”
“k,” “b,” “d” and ‘“‘g,”’ the air stream is
closed off, or stopped, momentarily at some
point along its length, either at the lips, by
the tongue tip just behind the teeth or by
the tongue body touching the soft palate
near the velum. Stopping the air flow briefly
has the effect of producing a short period of
silence or near silence, followed by a pulse
of noise as the burst of air rushes out of the
narrow opening.

The shape of the vocal tract with the
narrow opening at different points deter-
mines the spectral shape of the noise pulse as
well as the formant locations when voicing is
started. Both the noise burst spectrum and
the rapid sweeps of formant frequency as
the F1-F2 point moves into position for the
following vowel are perceived as character-
istic cues to the location of the tongue as the
stop closure is released. We need only add a
digitally controlled noise generator to the
vocal tract circuit of figure 10 to simulate
the noise of the burst of air at the closure
release and we can then generate all the stop
consonants as well as the vowels. Figure 13
shows the speech synthesizer with such a
noise generator added. The breakdown noise
of a zener diode is amplified by IC1 and
amplitude is set by the digitally controlled
resistor AH. IC2 is a mixer amplifier which
combines the glottal source and aspiration
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Figure 15: The Complete Synthesizer. This diagram shows the organization of a complete synthesizer which includes a wide
variety of parameters. The voicing frequency and amplitude are set by parameters FV and AV. The noise pulses of stop
consonants are generated with the programmable gain element AH. The fricative resonator with amplitude AF and frequency
resonance FF are used to generate fricatives like *'s” and “sh.” The normal vowel sounds are generated by control of the formant
frequencies F1, F2 and F3, and a nasal resonator with amplitude AN and fixed frequency characteristics is used to add varying
amounts of nasal sounds. The result of signals processed through the nasal, formant and fricative paths is summed by a final

operational amplifier and used to drive the output speaker.

noise at the input to the formant resonators.

It is important to notice at this point the
range of different sounds that can be gen-
erated by small changes in the relative timing
of the control parameters. The most useful
of these timing details is the relationship
between the pulse of aspiration noise and a
sharp increase in the amplitude of voicing
(see figure 14). For example, if we set the
noise generator to come on for a noise pulse
about 40 ms long and immediately after
this pulse, F1 sweeps rapidly from 300 up to
775 Hz and F2 moves from 2000 down to
1100 Hz, the sound generated will cor-
respond to moving the tip of the tongue
down rapidly from the roof of the mouth.
Observe, however, that the formant output
is silent after the noise pulse until the
voicing amplitude is turned up. If voicing is
turned on before or during a short noise
burst, the circuit generates the sound ‘“da,”
whereas if the voicing comes on later, after a
longer burst and during the formant fre-
quency sweeps, the output sounds like “ta.”
This same timing distinction characterizes
the sounds ‘“ba” vs “pa’” and ‘“ga’” vs ‘“ka,”
as well as several other pairs which we will
explore later. Figure 14 gives the formant
frequency patterns needed to produce all the
stop consonants when followed by the vowel
““ah.” When the consonant is followed by a
different vowel, the formants must move to

closure in the vocal tract, even though these
sweeps may be partially silent for the un-
voiced stops “p,” “t” and “k,” where the
voicing amplitude comes on after the sweep
has begun.

The second consonant group comprises
the liquids, “w,” “y,” “r” and “l.”” These
sounds are actually more like vowels than
any of the other consonants except that the
timing of formant movements is crucial to
the liquid quality. “W” and “y” can be
associated with the vowels ‘00" and ‘‘ee,”
respectively. The difference is one of timing.
If the vowel “00” is immediately followed
by the vowel ‘‘ah,” and then the rate of F1
and F2 transitions is increased, the result
will sound like “wa.” A comparison of the
resulting traces of F1 and F2 vs time in
“wa”’ with the transition pattern for “ba’’ in

figure 14 points out a further similarity. The

Resonator Fricative
Frequency Amplitude
(FF) (AF)
sh, zh 2500 g
s, Z 5000 .7
f,v 6500 4
th 8000 i

different positions corresponding to that
vowel.

The important thing to note about a stop
transition is that the starting points of the
frequency sweeps correspond to the point of

Table 2: Fricative Spectra. A fricative sound typlcally consists of a pulse of
high frequency noise. The various types of fricatives are classified according
to the spectral profile of the pulse. For the electronic model described here,
the fricative amplitude and resonator frequency for several sounds are listed
in this table.
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Product Information

At the time this article
goes to press, a synthesizer
module incorporating several
detail refinements and im-
provements over the circuits
of this article is being de-
veloped by the author and
associates. A detailed user’s
guide will be supplied with the
Computalker module which il-
lustrates the timing relation-
ships needed to produce all
the consonant-vowel and vow-
el-consonant combinations
which occur in natural speech.
This can serve as a reference
guide for creating your speech
output software which gener-
ates the proper control pat-
terns from text inputs. Write
to Computalker, 821 Pacific
St No. 4, Santa Monica CA
90405 for the latest informa-
tion on this module.

direction of movement is basically the same,
only the rate of transition of “ba” is still
faster than for ‘“wa.” Thus we see the
parallelism in the acoustic signal due to the
common factor of lip closeness in the three
sounds ‘“‘ua,” ‘“‘wa’”’ and ‘“ba.” “Y” can be
compared with the vowel “ee” in the same
way, so the difference between ‘‘ia”’ and
“ya’” is only a matter of transition rates.
Generally, “I” is marked by a brief increase
of F3, while “r” is indicated by a sharp drop
in F3, in many cases, almost to the level of
F2.

The third group of consonants consists of
the nasals, “m,” “n” and ‘“ng.” These are
very similar to the related voiced stops ‘‘b,”
“d” and “g,” respectively, except for the
addition of a fixed ‘“‘nasal formant.” This
extra formant is most easily generated by an
additional resonator tuned to approximately
1400 Hz and having a fairly wide bandwidth.
It is only necessary to control the amplitude
of this extra resonator during the “‘closure”
period to achieve the nasal quality in the

synthesizer output.

The fourth series of consonants to be
described are the fricatives, ‘‘s,” ‘“sh,” “‘z,”
“zh,” “f,” “v” and “th” and the related
affricates ‘‘ch’” and “j.” The affricates ‘“ch”
and “‘j” consist of the patterns for ‘“t” and
“d” followed immediately by the fricative
“sh” or “zh,” respectively, that is, “ch” =
“t+sh” and ““j”’ = “d+zh.” The sound *“zh” is
otherwise rare in English. An example occurs
in the word “azure.” With the letters “th,”
two different sounds are represented, as
contained in the words ‘“then’ and “‘thin.”
All the fricatives are characterized by a pulse
of high frequency noise lasting from 50 to
150 msec. The first subclassification of
fricatives is according to voicing amplitude
during the noise pulse, just as previously
described for the stop consonants. Thus,
“S,” “Sh,,, (Cf,” “Ch,, and Nth" as in Nthin,)
have no voicing during the noise pulse, while
Nz,,, “Zh,,, Clv,), N]‘H and “thn as in Nthen,,
have high voice amplitude. When a voiceless
fricative is followed by a vowel, the voicing
comes on during the formant sweeps to the
vowel position, just as in the case of the
voiceless stops. The different fricatives with-
in each voice group are distinguished by the
spectral characteristics of the fricative noise
pulse. This noise signal differs from that
previously described for the stop bursts in
that it does not go thru the formant resona-
tors, but is mixed directly into the output
after spectral shaping by a single.pole filter.
Table 2 gives the fricative resonator settings
needed to produce the various fricative and
affricate consonants. Fricative noise ampli-
tude settings are shown on a scale of O to 1.
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The Complete Synthesizer

The system level diagram of a complete
synthesizer for voice outputs is summarized
in figure 15. The information contained in
this article should be sufficiently complete
for individual readers to begin experimenting
with the circuitry needed to produce speech
outputs. In constructing a synthesizer on
this model, the result will be a device which
is controlled in real time by the following
parameters:

AV = amplitude of the voicing source,
8 bits
FV = frequency of the voicing source,

8 bits
AH = amplitude of the aspiration noise

component, 8 bits

AN = amplitude of the nasal resonator
component, 8 bits

AF = amplitude of the fricative noise
component, 8 bits

F1 = frequency of the formant 1 fil-
ter, 8 bit setting.

F2 = frequency of the formant 2 fil-
ter, 8 bit setting.

F3 = frequency of the formant 3 fil-
ter, 8 bit setting.

FF = frequency of fricative resonator
filter, 8 bit setting.

This is the basic hardware of a system to
synthesize sound; in order to complete the
system, a set of detailed time series for
settings for these parameters must be deter-
mined (by a combination of the theory in
this article and references, plus experiment
with the hardware). Then, software must be
written for your own computer to present
the right time series of settings for each
sound you want to produce. Commercial
synthesizers often come with a predefined
set of ‘““phonemes’’ which are accessed by an
appropriate binary code. The problem of
creating and documenting such a set of
phonemes is beyond the scope of this
introductory article, but is well within the
dollar and time budgets of an
experimenter.®
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Magnetic Recording for Computers

William A Manly

Cobaloy Co

626 Great Southwest Pkwy
Arlington TX 76011

Nothing can come any-
where near magnetic re-
cording for low cost per
unit of stored information.

Why Magnetic Recording?

Anyonc scriously involved with com-
puters, whether he likes it or not, will also
bc scriously involved with magnetic record-
ing. After onc begins working with com-
putcrs, it doesn’t take very long to discover
thc shocking fact that memory for a com-
puter is going to cost a lot more than the
computer itself. A computer requires lots of
mcmory, and professional or amateur, the
computer user wants to minimize the cost of
his computer setup. A look at figure 1 will
immediately tcll you why magnetic record-
ing is so important to computer memories:
Nothing can comc¢ anywherc near it for low
cost per unit of stored information. Figure 1
also shows why magnetic recording cannot
be used for all typcs of computer memories:
It is the slowest of thc memories, which
mecans that it is employcd mostly for long
term, low usage storage (usually called bulk
storagc).

All Kinds of Recorders —

Magnctic rccorders come in many forms:
tape, disk, drum, card, shcet, stripe, roll,
cassctte, rcel, . .. ctc. Most of these forms
have been used for computer memories in
thc past, and many arc still in use.

And Recording Methods

There are scveral ways of placing mag-
nctic signals on magnetic media. Among
thcse are those which use the hysteresis loop
or thc initial magnetization curve, those
which usc a variation of anhysteretic mag-
netization, and some methods which use
Curie point magnctization. | will go through
the first two in detail. The last one involves
hcating the medium until it is so hot that it
is no longer magnetic (it ceases being mag-
nctic at a temperature called the Curie
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point), then letting it cool in the recording
field until it again becomes magnetic. Due to
the inconvenience of the temperature
cycling, this last method is not important for
digital recording. The first method will be
covered in the greatest detail, as most
recorders designed for digital use employ it.
Many of the conclusions drawn will also
apply to the second method.

Some other names and subdivisions also
apply to the main divisions given above. If
we call the first type hysteresis recording,
there are two main subdivisions. One is very
much like FM radio broadcasting, and is also
called frequency modulation recording
(sometimes called phase modulation). A
single-frequency carrier is recorded on the
medium, and its frequency changed accord-
ing to the information to be stored. Another
subdivision is the type used for most digital
work. It is called saturation recording.
Ideally, the saturation recorded medium has
only two states: saturated (magnetized to
maximum strength) in one direction, or
saturated in the other direction. The infor-
mation is contained in the transitions, where
the direction of saturation is changed. (One
older method also used a third state; that of
erasure, or zero magnetization.) The second
type of recording (anhysteretic magnetiza-
tion) is also called biased recording. It
involves the use of a large amplitude high
frequency bias, to which the signal is added.
The signal does not modulate (change) the
bias in any way. The bias does not return
during the signal playback process.

Although the professionals normally use
only saturation recording for digital use,
computer hobbyists have appropriated re-
corders intended for other uses, and thus use
several types of recording. One is even a type
of FM recording using bias to record the
carrier. Magnetic recording can also be




classified according to the type of informa-
tion being recorded, and there is a correla-
tion between the typec of information and
the type of recording:

Type Of Information Type Of Recording

Saturation (some-
times FM carrier)
Biased

Biased, biased FM
carrier, FM carrier

Digital professional

Audio
Instrumentation

Video FM carrier
Digital hobbyist Biased FM carrier,
saturation

All of the foregoing seems rather in-
volved, but just remember that the knowl-
edge of a few basics will enable you to sort
out almost any recording situation. For
instance, all the systems we will discuss
involve only a magnetic surface moving with
respect to a set of magnetic heads, one of
which writes on the surface, and another
which reads the information previously
written there (if you are an audio enthusiast,
forget about the record, playback, and erase
heads — those terms are rarely used in digital
recording). You are not likely to have an
erase head in your system unless you use an
audio recorder. Some systems are especially
simple, having only one head which both
rcads and writes. Sometimes the surface
moves and the hecads are fixed; sometimes
the heads move and the surface is fixed;
sometimes they both move; but the impor-
tant thing is the rclative head to surface

A Plan of Attack

It isn't very likely that you dre inteiested
in becoming an cxpert on magnetic record-
ing. All that you want is to understand it
well enough so you can exercise enough carc
to prevent its becoming a problem. Knowing

this, I'll just present ecnough of whatis called
the theory of recording to give you a feel for
how it works, then I'll talk a bit ot practi-

calities with suggestions for smooth operd-
tion and maintenance. Magnetic recording
theory is divided into two parts: Magnetics
and geometry. Let’s first look at the
magnetics.

Blame It All on the Electron!

Almost everyonc knows that the electron
is a fundamental particle of clectricity. It
also possesses a magnetic field (electrons
always have spin; this spin constitutes an
electric current going around in a circle; and
anytime an electric current is flowing, it
generates a magnetic field). Most matcrials
have their electrons placed in such a way
that the magnetic fields all balance out to
zero, but there are a few matcrials which
don’t. With electron spins paired so that one
is spinning clockwisc and onec counter-
clockwise, the net field is zero. Of the
materials with unpaired clectron spins, some
are put together in such a fashion that the
electrons are coupled together. When this
happens, if you manage to turn one spin
axis, you have to turn its neighbors as well

movement. (the magnetic fields point along the spin
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Figure 1: Digital computer memory hierarchy: cost as a function of access time.
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axis). Depending on the material, somewhcre
between a few hundred and a few million of
these little fellows will stay coupled together
and pointed in thc same way all the time.
This collection of coupled electron spins is
called a domain, and thc matcrials with this
typc of structure arc called ferromagnctic
matcrials.

If a large number of atoms arc collected
together, there will be two or more domains,
whose magnetic ficlds will not necessarily be
pointing in thc same direction (though they
might). Matcrials for magnctic recording
consist either of domain sized particles
scparated by non-magnctic matcrial, or they
arc madc of plated matcrial with enough
impuritics to section the plating into domain
sized units. Scparating the domains this way
allows them to operate ncarly indcpendently
— a nccessity for keeping the information in
storage. Such materials are known as ““hard”’
magnctic matcrials.

Hysteresis, Not Hysteria

A hard ferromagnetic material is charac-
terized by its hysteresis loop. | have a library
full of books on hysteresis loops, which have
been confusing students for years; but let me
scc if | can spare you some of the confusion.
Supposc we have a material containing a
large number of domains whosc ficlds arc all
pointing in differcnt dircctions. The ficlds all
cancel out, and thc matcrial is said to bc
demagnetized (note that a single domain
cannot be demagnctized). If a very small
magnctic field is applied to thc material,
nothing happcns. As the strength of the ficld
is incrcased, a few of the domains swing
their clectron spin axcs to follow the applied
ficld. As the ficld strength continucs to rise,
morc and morc domains follow the ficld
until finally thc last domain responds. After
that, no matter how much morc field is
applicd, nothing morc can happen. The
matcrial is now saturated, and it now has
acquired its maximum magnctization, des-
ignated M __. This process is known as the
initial magnctization of the matcrial. If we
now let the applied field go to zcro, a few of
the domains decide to descrt the pack, but
most stay pointing in thc samc dircction.
This is known as thc remanent condition,
with thc remancnt magnctization designated
M;. Magnctization is given in scveral units,
all of which arc mecasures of how many
unpaired clectron spins there arc per unit
volume or unit weight of magnctic material.

Now lct’s reverse the dircction of the
ficld (denoted, for some rcason, by the letter
“H’’) and slowly increcase the strength from
zero. At somc point, cxactly half of the
domains have decided to follow the new
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field direction, half arc still pointed in the
other direction; and the rcsult is zero. At
this point, the applied ficld is called the
coercive ficld (sometimes called coercivity or
cocrcive force) of the material, and is indi-
cated by H.. If the applied ficld is increased
to the former high level, the material again
becomes saturated, but in the opposite
direction. This cycle can be continued in-
definitcly, but thc matcrial never returns to
its erascd condition (zero magnctization in
the matcrial with zero applicd field). If the
first direction is chosen to be positive (and
thc opposite direction negative), we can
show a graph of the whole busincss by
plotting magnctization on thc Y axis, posi-
tive dircction up; and the strength of the
applicd field on the X axis, positive dircction
to the right. This plot is known as a
hysteresis loop, and is shown in figure 2;
along with the initial magnctization curve,
which is not properly part of thc hysteresis
loop.

Erasure

If we could limit the discussion to satura-
tion recording, | would have been through
with the magnetics right now, but the use of
audio rccorders has complicated things, so
therc’s a bit morc. Supposc we are cycling
around thc major hystercsis loop we have
just described, but start reducing thc maxi-
mum ficld a bit cach timc around. Each timc
the maximum ficld is reduced, the loop
shrinks in the horizontal direction, and in
the vertical dircction as well. These smaller
loops are hysteresis loops too, but they are
called “minor loops.” If we continuc to
cycle, but reducc the maximum field
gradually (i.c., go around 10 to 100 timcs)
to zcro, the remancnce (the magnctization
when the ficld is zero) goes to zero as well.
Now we have reduced the magnctic matcerial
to the crased condition. It would be well to
understand this bcfore going on to the next
part, since this cycling and reduction proce-
durc is the basis for biascd recording.

Some Recorders Are Biased

Now let’s go back to the saturated condi-
tion. This time we will apply two fields
added together. Onc is thc samc large cyclic
ficld we applicd in thc last paragraph, but
the other is a smaller ficld. The smaller ficld
is applicd and hcld constant. The large ficld
is taken to saturation, thcn cycled and
reduced to zero as in the crasurc process.
Then the small ficld is also reduced to zcro.
Now, the remancnt magnctization is not
zcro. In fact, it is larger than one might
cxpect from the application of that small
ficld. This remanencc is called anhysterctic



Figure 2: Initial magnetization curve and major hysteresis loop of a hard ferromagnetic
material. See text for explanation of abbreviations.
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initial magnetization curve and a major hysteresis loop.

remancnce. Figure 3 shows a plot of the
anhysteretic remancnce (solid line) plotted
against the small applicd ficld, with the
major hysteresis loop shown with dashed
lines. This is a transfer curve, which is
measured point-by-point, and is not con-
tinuous like the hysteresis loop. Note how
lincar this curve is, and that it is ncarly
parallel to the sides of the major hysteresis
loop. This anhysterctic process is similar to
how biased recording works. The large cyclic
field is called the bias, and the small DC field
is called the “signal.”’

If a field is applied to an erased mcdium
and then removed, there is some remanent
magnctization. If wc plot this remancnce
versus various values of applied ficld, the

curve looks like thc solid line in figure 4.
Comparc it to the lincar anhysterctic mag-
netization curve, which is the dashed curve
in figure 4. Its nonlincarity prevents it from
being used for audio and other types of
recording requiring a lincar transfer curve.
Note particularly that there is very little
remanence until the maximum ficld is at
lcast as large as H.. This curve is also a
point-by-point curve like the anhysteretic
magnetization curve.

An Assist From Euclid

Wc’ve covered about all the magncetics
you're going to nced, so we’ll get right into
the gcometry of thc situation. Magnetic
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The principal methods of
magnctic recording arc
hysterctic and anhysteretic
magnctization.
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Figure 4: Remanence as a function of applied field for an initially erased hard ferromagnetic
medium, as compared to the anhysteretic magnetization curve.

recording is, fortunately, a two-dimensional
process. This means that we can understand
most of what we nced to know by using
only a two-dimensional picture, and the
third dimension is thrown in as an after-
thought. Onc of the two important dimen-
sions lics along the recording surface in the
dircction of head-to-surface movement. The
other important dimension is perpendicular
to the recording surface, and mecasures the
thickness of the magnetic medium and the
head-to-surface spacing. The afterthought
dimension  measures  the magnetic  track
width. It has to be considered, but it’s not
ncarly so important as the other two.

The particular gcometry we’ll consider is
that of a thick coating. This is the situation
with floppy disks, and we’ll use them as our
primary cxample. (IBM, who invented the
floppics, calls them diskettes. Another term
is flexible disks.) The Philips-type cassette is
also usually a thick coating (we’ll use coating
and medium interchangeably) situation,
while rigid disks, drums, and most reel-to-
reel and cartridge situations arc thin media.
Thick and thin refer to the ratio of the
medium thickness 1o the write gap length,
not to any absolute value of thickness. A
thick mecdium situation c¢xists when  that
ratio is greater than 0.5, and thin medium
situations cxist when the ratio is smaller
than that. The exact size of the ratio
dividing thce two cases s a bit arbitrary.
Probably not too many computer hobbyists
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have floppics as yet; but by using a thick
mecdium as an cxample, we can includc
characteristics of thin media as a spccial
casc. Another rcason for picking the floppy
is that it uscs a type of rccording simpler
than casscttes usc; but, by analyzing it, wc
can cover all the major principles.

Heads Up!

A ring type hcad is shown in figurc 5Sa.
There arc many other types of hcads, but
this onc is well known and widcely used, and
the principles arc analogous for most of the
others. Note that this hecad is balanced:
There arc similar coils on both sides, and
similar gaps on both the top and the bottom.
A balanced hecad has a great resistance to
pickup of stray ficlds, and is used wherc
hum pickup might bc a problem. A lot of
digital hecads arc not balanced, and have only
onc coil, as in figurc 5b. Rcad and writc
heads usually differ only in detail (gap and
track dimensions), or the same head can be
used for both functions. Floppy disk drives
usually have only onc dual purposc head.

In figurc 6, | have blown up thc outer
cdge of the top hecad gap, and show it
contacting thc magnctic medium. The actual
dimensions of most floppy disk hcad gap
lengths and the coating thicknesses of most
floppy disks arc about the samc: 100
millionths of an inch (100 microinches or
2.54 micromecters).




We're Always Blowing Bubbles

When we create a magnetic field in the
write head by passing an electric current
through the head coils, the field stays inside
the core until it reaches the gap, where it
balloons out like a weak spot in an inner
tube. Since the head gap is small, the field
bubble is confined to a rather small volume.
Near the corners of the gap edge, the ficld
rises to a rather high value, even with only a
small field in the head core. If the ficld in
the magnetic medium is much highcer than
the coercivity of the medium, the magnetiza-
tion of the medium begins to follow the
field, and we say that it is being switched.
Subsequently, if we allow the field to drop
below the coercivity, the magnetization
stays pointed in the same direction as the
last applied field, and is more or less
proportional to the difference betwcen the
highest applied field strength and the
coercivity (up to the point where the highest
applied field strength saturates the material).

Now refer back to the curve ‘““Remanence
versus applied field,” in figure 4. If we set the
write current at a moderate level, some part
of the medium is experiencing fields from
above saturation (H,) down to nearly zero.
In region A (figure 6) the fields are greater
than Hp,. In region B the fields are less than
Hc and there is little magnetization. The part
of the medium in the recording zone (figure
6) will experience a substantial amount of
remanence after the field goes to zero (the
part of the curve in figure 4 between H¢ and
Hp,). The part of figure 6 labeled ““Record-
ing Zone — Low Drive”’ is a transition

/ﬂﬁo A
-

COIL NO.| Jee=== P COIL
SIGNAL SMALL A—-===- NO.2
CURRENT GAPS

, d

H FIELD

+
—»>

Figure 5: (a) Magnetic ring head, with
balanced coils and gaps. (b) Magnetic head
with single coil and gap.
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region, where some of the material is follow-
ing the field, and some is not. For most
materials, the boundaries are not sharp as
shown, but are actually rather fuzzy.

As the medium moves away from thc
head gap, the part of it which has becen in
the recording zone has a signal impressed
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Figure 6: Write head near gap, in contact with magnetic recording medium. Total field near
recording zones shown for low drive and maximum output drive.
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Figure 7: (a) Read head near gap, in contact with ideally magnetized
recording medium. (b) Write head near gap, showing two maximum output
flux transitions. (c) Same as (b), but with flux transitions extremely crowded.
(d) Same as (c), except that write drive has been reduced to relieve crowding
effects. Arrows show magnetization direction. N: North-seeking poles; S:

South-seeking poles; TZ: Transition Zone.
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upon it, while the part farthest away from
the head has not scen a ficld high cnough to
lcave a signal. We can record through the
whole coating by increasing the drive
through thc head coils. With a higher drive
current, the transition region is labeled
“Recording Zone — Maximum Drive” (figure
6). Note how the width of the transition
region has increased; this is a fundamental
limitation of the medium and the head.

Things Are in a State of Flux

Figurc 7 shows a series of diagrams of the
magnetic flux (lines of force) patterns for a
reading/writing situation similar to the
floppy disk geometry. The flux intensity
bounds dctermining the transition zones are
also shown for the writing situation.

Figurc 7a shows the head reading, and
figurcs 7b through 7d show the head during
a writing sequence. To simplify things in 7a,
the idcal recorded flux pattern (which
resembles bar magnets laid end-to-end) is
shown. Actual flux patterns arc similar, but
morc complicated. Observe that the flux
from all the magnetized segments is shorted
out by the head, except for the segment
across the gap. In that case, the flux threads
itsclf all the way around the head. When the
next magnetized region moves into place,
the flux will go in the opposite direction.
The head coils have an output voltage only
when the flux changes from one direction to
the other; and the faster it changes, the
higher the output voltage will be.

Floppies Are for Real

Now lct’s look at a real recording situa-
tion. The simplest coding is not uscd by
floppy disk machines; but it illustrates all
the principles, and is casiest to understand.
It is called NRZ1 (Non-Return to Zecro,
change at 1) recording. The track is divided
into small segments all thec same length. If
the recording is at a bit packing density of
800 bpi (bits per inch), the segments are
1/800 inches long, or 0.00125 inches (32
micrometers). The read clectronics are gated
so that thcy only rcad signals which come
shortly before, to shortly after, the dividing
linc between segments. During this period, if
there is a flux transition from saturation in
onc scnsc to saturation in the other scensc, a
pulsc will appcar in the gate. The presence of
a pulse is a one, and the absence of a pulsc is
a zero. More complicated coding than this is
used for floppy disks. Onc type is called
phasc modulation. It uses flux transitions
between gates so that a positive pulse is a
onc and a ncgative pulsc is a zcro. There arc
dozens of other coding schemes for digital
recording.




Figure 7b shows a head which has just
written two maximum drive flux changes on
the medium, which is moving from left to
right. Several things are of note: (1) the
magnetization directions, shown by the
arrows, are vertical in some places and
horizontal in others; (2) there is a fairly wide
transition zone between saturated segments;
and (3) the transition zone is spread along
the length of the medium. Compare this to
the ideal situation shown in figure 7a, which
has: (a) all the magnetization in the longitu-
dinal direction; (b) a zero-width transition
zone between segments; and (c) the transi-
tion zone lying only in the vertical direction.
Each of these discrepancies from the ideal
case loses some of the signal. There is an
optimum value of drive current to get
maximum output for any given distance
between flux transitions. If the optimum
situation is shown in figure 7b, increasing
the drive current would make the transition
zones more vertical, but the width of the
zones would increase so much that the
output would go down. If the drive current
is decreased, the part of the coating away
from the head doesn’t get recorded, and this
also reduces the output even though the
transition zone width decreases.

Long Bars Are Better Than Short Bars

Now look at figure 7c. Either the
medium-to-head speed has been slowed, or
the frequency of flux changes increased; so
that the flux changes come much closer
together. We know that the maximum read
output would come from what looked like
long bar magnets laid end-to-end (as in figure
7a, but with the magnets even longer). The
shorter the bar magnets, the less flux goes
through the read head and the more goes
through the bar magnet itself (this is known
as demagnetization). In figure 7c, there is
almost as much transition zone as magnet;
the magnets are very short and not at all like
bars; and the saturation magnetization does
not go all the way through the coating. The
read output will drop off so much that
reducing the drive current, as shown in
figure 7d, will actually increase the output
again! In figure 7d, the magnets look more
like bars, and the transition zones are not
such a large percentage of the magnetized
part. The recorded volumes do not go all the
way through the coating, but the recorded
part far from the head in figure 7c was out
of phase with the recorded part near the
head. It was really subtracting from the
signal, so loss of that part actually increases
the read output.

One thing is very apparent in 7c: Half the
medium is not being used. For short dis-
tances between flux transitions, then, a thick

medium is a waste. It’s even worse than that.
The transition zone is partially recorded, and
the part farthest away from the head is
making a negative contribution to the read
signal output. We find that if we decrease
the medium thickness so that we get rid of
the continuous part of the transition zone
(away from the head), we get some increase
in output. Decreasing it too much will
diminish the output again, so there is an
optimum medium thickness for any digital
recording 'situation. Because of the rapid loss
of output as the transitions are crowded
closer together, transitions are never placed
as close together in digital work as in other
types of recording. If this crowding is
overdone just a tiny amount, some transi-
tions give such a low output that bits are
lost: an intolerable situation.

The Cassette Connection

There is a lot in common between digital
recording on floppy disks and digital record-
ing on cassettes, cartridges, or other tape
media; but there are some differences, too.
One difference is that we have been dis-
cussing a medium which is isotropic; that is
to say, its magnetic characteristics are the
same in all directions. This is not true of
tapes, as their particles have been oriented
during the manufacturing process, so that
they record more easily in the direction of
head-to-tape motion, and poorly in the other
two directions. This means that the longitu-
dinal component of the field is much more
effective in recording than the vertical com-
ponent is. The corresponding figures for
oriented media (to 7b, 7c, and 7d) would
always have the transition zone going to a
point which would be fixed near the trailing
edge of the head gap (see figure 7d), and the
zone would slant to the left for low write
currents and to the right for high write
currents. Even with these differences, the
conclusions we have already drawn would
hold to a large extent. There is some
indication that the vertical part of the write
head field causes a type of partial erasure of
the recording on the surface near the head,
when an oriented medium is employed.

Another difference may be that biased
recording is used, instead of saturation re-
cording. The situation of oriented media
used with biased recording is fully discussed
in reference 1. Other types of recording,
including frequency or phase modulated
carriers, may be used. Teletype signals trans-
mitted over telephone lines or via radio use a
frequency shift type of modulation, where
one audio frequency is a one and another is
a zero. This type signal can be sent directly
to an audio tape recorder with good results,
except that it tends to be slow.
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Magnetic recording theory
is divided into two parts:
Magnetics and geometry.




Item
Coating

thicknesses:

Head gap
lengths:

Keep It Clean, Fella!

Looking back on what we have learned
about reading and writing digital signals on
magnetic media, one thing stands out: The
distances involved are very small. The period
at the end of this sentence is about 0.02
inches (510 micrometers) in diameter. This
is huge, compared to these important dimen-
sions in recording systems:

Dimension In: Inches Micrometers
Floppy disk 0.0001 2.5
Cassette tape 0.0002 5.1
Floppy disk 0.0001 2.5
Cassette playback 0.00005 1.3

On a floppy disk, a magnetized volume of
material on the surface of the coating away
from the head is only about 15% as effective
as an equally magnetized volume of the
coating next to the head; and this is due
only to the increased distance from the
head. And as we have seen, it's harder for a
write head to magnetize the far part of the
coating, making things even worse. It follows
that a piece of dust, just large enough to see,
between the medium and the head can cause
a very large loss of output signal. Something
only half as large as that period would cause
the complete loss of several bytes of infor-
mation. In a factory making precision tapes
or disks, no smoking is allowed in manu-
facturing areas; hair is kept covered; and
special clothing is worn so as not to get
anything on the recording surfaces. Even the
smoke from cigarettes, pipes, or cigars will
build up on heads and recording surfaces and
cause eventual signal loss. Ashes cause
instant dropouts (total loss of signal). Dust
from any source is to be avoided like the
plague.

There’s also dust and dirt which comes
from the medium itself, or its substrate.
Floppy disks and tapes are both made out of
a long polyester plastic sheet (called a web)
which is coated with a special lacquer
containing the magnetic material as its pig-
ment. The original web may be from 12
inches (30.5 cm) to 48 inches (122 cm) wide
for floppies, or 6 inches (15.24 cm) to 48
inches (122 cm) for tapes. After coating and
drying, the web is usually calendered
(pressed between heavy rolls). This smooths
the surface to a mirrorlike finish, though it
was fairly smooth to start with. Tapes are
slit out of the web by shearing. Floppies are
cut out with a die which also shears the
edges. Tapes and floppies are then cleaned
by various methods, since the shearing
process leaves some debris behind. If the
lacquer is formulated properly, and the
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shearing and cleaning are done with care,
normal usage will not generate very much
more dust and dirt to cause problems. If
manufacturing is done carelessly or the
lacquer is poorly formulated or unstable,
usage will cause shed (dust), or worse, a
gummy build up on the heads. Both these
things tend to push the head away from the
recorded surface, with a serious loss of
output. Even the best of coatings will
eventually cause some build up on the heads,
and heads should be regularly inspected and
cleaned.

Cleaning methods vary, and several ways
are effective. If your machine operator’s
manual makes any recommendations, follow
them. There are some special tapes and disks
which are run in the machine for cleaning.
Several companies have head cleaning
materials and solutions on the market. My
favorite concoction is half toluene and half
isopropyl alcohol; but it has to be used with
care, since the toluene dissolves some
plastics and media coating lacquers. Straight
isopropyl alcohol does a fair job, and is
available in any drugstore. Apply the cleaner
to the heads (and guides of a tape machine)
with cotton tipped sticks. The ones made
especially for cleaning heads are best, since
their sticks are stiff, but you can also use the
ones made for cleaning and oiling babies.
Clean until the coating color is removed, or
until the cotton swab comes away clean.

Professional installations sometimes have
special machines to clean and recheck their
media, but this is not usually within the
budget of the individual. Cleaning of tapes is
often accomplished by running them across
a woven, lightly oiled, soft paper wipe which
is moved slowly away from the point of
contact. Tapes and disks can also be cleaned
in an ultrasonic bath with an air squeegee.
All methods require relatively complicated
machinery, making cleaning impractical
except for the largest installations. There are
some companies which make a business of
cleaning and re-certifying media. | recom-
mend retiring from digital use any dirty
media, and substituting new.

When buying tapes and cassettes, get the
best quality you can buy. This is no place to
save money, as it is always at the expense of
lost bits. Tapes especially made for digital
use are a good buy (floppies are always made
for digital use). If you can’t get these, use
the top line of a well known brand of audio
tape. Even this is second choice, since audio
tapes, even good ones, may have some
bumps on the surface which cause dropouts.
The loss of five cycles of that high violin in
“Scheherazade’” will cause only a tiny gap
which you won’t hear, and you can lose a
whole percent or so of ‘““Rites of Spring’’ and




never know it; but the loss of just a bit or
two of a digital sequence can cause nothing
but garbage to issue from your computer.

Making Your Media Comfortable

About 15 years ago, some pcople at
Southwest Research Institute, with grant
money from the Rockefeller Foundation,
made a monumcntal study for the Library of
Congress on storage of sound rccordings
(reference 2). Part of their study was con-
cerned with magnetic tape. Not very much
can be added to their findings today. Boiled
down, we can almost put their findings into
one sentence: If people are comfortable in
an cnvironment, tapes can be safely stored
thcre for long periods of time with little
degradation. | say almost, because therc are
a couple of things to add to this. Onc is that,
other than the earth’s field, no other mag-
netic fields should be present if information
is contained on the media. Pcrmancnt
magnets, wiring carrying hcavy currents,
power transformers, and magnctic crasers or
decgaussers should be kept away from the
media. For most of thesc things, threce feet
(onec mcter) is a good rule of thumb for
distance. Don’t get carricd away and worry
about such things as shiclding from thc
carth’s ficld, protecting from lightning or
static clectricity, guarding against radiation
from radio transmitters or radar scts,
or storing a hundred feet away from any
electric wiring. Trouble from magnctic
ficlds, though it can occur, is rarc. The other
added condition is that all media should be
storcd under low mechanical stress. Tapes
and casscttes should be wound properly
from a regular run, not a fast wind. Floppics
should be stored flat, with no weight piled
on top. If supported so that they don’t
buckle, they can be stored on cdge. Never
remove them from the envelope if you want
to usc them again. Avoid large temperature
or humidity changcs.

Summary

What | have tricd to do is give you first an
overview of digital magnctic rccording so
that maintecnance and sctup instructions for
your machinc will make scnse to you. |
haven’t given specific directions for main-
tenance or sctup, becausc cach machine is a
little different. Knowing how the informa-
tion is containcd on the medium is also of
importance to understanding why cleanliness
and good storage conditions arc so impor-
tant to safc storage. Lastly, | collected
together several guidelines for cleanliness
and storage which you probably won’t find
in the instruction manual for your machinc.
| hope that all this helps you to pack away

your bits for casy rctrieval. Once these
principles beccome sccond nature to you,
your large-scale storage problems should
fade into the woodwork, and you can then
apply your troubleshooting talents else-
where.®
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GLOSSARY OF
MAGNETIC RECORDING TERMS

Anhysteretic magnetization: The magnetization
remaining in a ferromagnetic material after apply-
ing a constant field H¢,eoq. superimposing on it a
field varying continually from +Hcycled tO
—Hcycled (which is initially large enough in ampli-
tude to cause practical saturation in each direction,
then reducing the amplitude of H¢ycled to zero as
the cycling continues).

Biased recording: Magnetic recording done by
adding the signal field to be recorded, a high
frequency, large amplitude field called the bias.
The purpose of the bias is to linearize the recording
process.

Bulk storage: Supplemental storage of large volume
capacity. Also called external storage, secondary
storage or mass storage.

Coercive field: The applied magnetic field in a
given direction, necessary to reduce the remanent
magnetization of a ferromagnetic material to zero,
after the application of a saturating field in the
opposite direction.

Curie point magnetization: Magnetization of a
ferromagnetic material, acquired by applying a
field, heating the magnetic material until its ferro-
magnetism disappears (the ''Curie point”), then
cooling the material while still in the field.

Demagnetized: The condition of a ferromagnetic
material when the directions of magnetization of
all its domains have been randomized, so that there
is no external field coming from the material.

Domain: A small volume of a ferromagnetic
material in which the atoms are always mag-
netically aligned in the same direction. The mag-
netic direction of a domain may be changed, but it
may not be demagnetized so long as the material is
ferromagnetic.

Electron: A non-nuclear part of an atom; the
smallest particle of (negative) electricity. An elec-
tron is regarded by physicists as a fuzzy ball of
negative electricity which has a ‘“'spin”
characteristic.

——-—-—+
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Erasure: The process by which a bulk magnetized
ferromagnetic material is placed in a bulk demag-
netized condition.

Ferromagnetic: A ferromagnetic material is spon-
taneously magnetized into an assemblage of tiny
permanent magnets called domains. A ferro-
magnetic material can be demagnetized only in a
bulk sense, and only when it is of a large enough
physical size to contain many domains.

Frequency modulation: The changing of a carrier
wave's frequency in accordance with the signal
being transmitted.

Hysteresis loop: A closed curve obtained by
plotting magnetization for ordinates ("'y" direc-
tion) and applied magnetic field for abscissa ("'x"
direction) as the material passes through a com-
plete cycle between definite limits of applied
magnetic field.

Hysteretic magnetization (or hysteresis magnetiza-
tion): Magnetization in a ferromagnetic material
acquired by the cyclic application of a single
applied magnetic field; magnetization at some
point on a hysteresis loop.

Initial magnetization curve: The plot of the mag-
netization for ordinates and the applied field for
abscissa of an initially bulk demagnetized ferro-
magnetic material, as the applied field has its
strength increased from zero to some high value.

Isotropic: An isotropic material has some property
the same in all directions. This word must be
modified by some adverb describing the property,
such as ‘‘magnetically isotropic.”’

Magnetic direction: A vector on a permanent
magnet pointing from the south-seeking pole to the
north-seeking pole; for a magnetic field, the vector
starts at the north-seeking pole of a magnet and
goes toward the south-seeking pole.

Magnetization: The number of elemental magnetic
dipoles per unit volume of magnetic material. A
single, isolated, spinning electron can be taken as
the elemental magnetic dipole. All other units of
magnetization are based on this.

Remanent magnetization: The particular value of
magnetization on a hysteresis loop when the
applied field is zero; the bulk magnetization of a
ferromagnetic material when there is no applied
field.

Saturation magnetization: The magnetization of a
ferromagnetic material when the applied field is so
large that all the domains have their magnetic
directions aligned with the applied field.

Spin: A representation of the rotation of an atomic
or sub-atomic particle. Spin is a vector pointing
along the direction of the axis of rotation.

Thick coating: A relative term referring to a
magnetic coating or layer such that its thickness is
greater than about half the length of the write head
gap.

Thin coating: A relative term referring to a
magnetic coating or layer such that its thickness is
less than about half the length of the write head
gap.
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Computer Kits




First Person Report:

by
John Zarrella
90-9 Wakelee Rd.

Waterbury CT 06705

| decided | would have
to opt for a kit . . . this
would enable me to get
on line quickly.

Assembling an

Altair 8800

My adventure with
microprocessors began rather
late in the hobby game, at the
end of 1974. It was about
this time, or so it seemed to
me, that micros became the
topic of conversation in
anything related to
computers and automation.
With the IMP-16, the 8080,
8008, 4004, etc., it became
clear that this was what the
computer market was waiting
for. However, it was the
article on the MITS Altair in
the January 1975 issue of

Popular Electronics which
finally did it. Although
inaccurate and vague, it
Fig. 1.

additional protection diodes.

certainly decided me — | was
definitely going to own a
micro. The next few months
saw hurried mailings of
information requests to any
company which produced a
product even remotely
connected with a
microprocessor. |
immediately got out my
checkbook, and mailed all my
hard earned dollars to every

newsletter that was
published, in my frantic
search for the “right”
processor.

The results were both

rewarding and disappointing.
| found that there were some
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fantastic processors, but since
my hardware background is
not all that hot, | decided
that | would have to opt for a
kit with one of the most
powerful micros | could find.
| figured that this would
enable me to get on line
quickly, learn enough
hardware to keep up with the
state-of-the-art, and permit
me to evaluate new micros as
they came out, so | could
build my ‘‘dream machine”
when the right parts became
available.

| decided to build the
Altair 8800. Although the
instruction set looked rather
impressive, what convinced
me was seeing a process
control system which used
the 8080; | was truly
impressed with its capability.

The Order

After calling in my order
to MITS, | waited nearly
seven weeks for delivery.
MITS did make it within the
advertised 60-day delivery
time. All was not roses for
those seven weeks, however;
it seems that either MITS or
BankAmericard got their
signals crossed and couldn’t
get a credit authorization
(they both eventually
declined to accept
responsibility). You can
imagine what it was like
getting a call during dinner,
explaining that my unit was



recady to ship, but
unfortunatcly Luckily
they agreed to ship it COD,
and | quickly ran down to my
bank to get a certified check.
Every morning | left my wife
with the admonition not to
miss the dclivery, and every
day at lunch | called to
determine whether or not my
“computer’’ had arrived. (Did
you ever try to ask your
insurance agent whether you
nceded extra renter’s
insurance — ‘“‘You keep a

computer at home??!! What
for?")

Assembly

Within a week of that call,
| had the Altair in my hot
little hands. “Are those little
plastic parts all you get for

$500.00?"', my wife
exclaimed, peering over my
shoulder. Undaunted, |

shooed her out and locked
myself in the back room all
weekend soldering PC boards.
It took three weekends to
complete the assembly (was it
my fault | came down with
pneumonta in the middle?).

Ah yes, assembly. In
general, | found that the
MITS assembly instructions
were well written. However,
their additions were
sometimes in the manuals in
the wrong place (e.g., page
68A after 69). In at least one
case (front panel control
board) | had already
tightened the panel in place
(bolts on numerous switches),
when | read that the nut on
the little screw holding the
voltage regulator to the board
(accessible only with the
panel out) had to be removed
to add a grounding strap.
Therefore it pays to check
the manual pages carefully,
and look two or three pages
ahead to see if there are any
little tricks sneaking up on
you.

As for the parts, only onc
resistor was missing; however,
out of all the screws and bolts
supplicd with the kit, | could
never find the right one to fit.
Maybe it was my own
stupidity, but it scemed that

Of all the assembly, the worst (and easiest to mess up)
part was correctly connecting the 60 bus wires between
the display/control board and the chassis motherboard.

the last bolt of any given size
was always supposed to be
used in at least 10 more
places. | found that it pays to
have a good assortment of
screws and bolts (number 6,
various lengths %'’ to %’') to
permit frustrationless
assembly.

All soldering and
component placement was
easily accomplished —
positions were clearly marked
on the boards and in the
manual. This is high praise
since | hadn’t built many kits
before; and of these, none
were this large. Of all the
assembly, the worst (and
easiest to mess up) part was
correctly connecting the 60
bus wires between the
display/control board and the
chassis motherboard. | used
an Ohmmeter to assure that
each connection was correct
and that there were no solder
bridges to the other bus lines.
There's got to be a better
way. | hear Processor
Technology, Inc., is currently
marketing a 16-slot
motherboard (on the Altair
you have to jumper four of
the four slot boards together,
only one of which comes
with the kit), and an
improved connector for the
display/control board. These
will definitely be my first
additions.

| made only one
modification to the circuit
during assembly. That

modification was to add three
protection zeners to the CPU
board. Fig. 1 shows the
electrical connections for this
change. These were inserted
to protect the 8080 chip (still
pretty expensive in singles)
from power supply failure.
These zeners should ground
out overvoltages at currents

up to 100 Amps. ICTESs
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were used for the +5 V and
—5 V lines to the 8080 and a
1.5KE15 for the +12 V. The
zeners on the CPU board are
illustrated in Fig. 2.

| also added sockets for
the 8101 RAMs, cleaned all
boards with trichloroethylene
solvent, and inspected the
finished boards with a
magnifying glass. | would
highly recommend these
procedures as they helped me
find more than one solder
splash and cold solder joint.

The Big Test

On the fourth weekend |
got up the courage to mount
the 8080 and 8101s. Then
came turning on the power
and checking voltages.
Everything looked good, with
very little ripple from the

Did you ever try to ask
your insurance agent
whether you need extra
renter’s insurance for a
computer?

Fig. 2. Detail of the additional protective diodes
mounted on the Altair CPU board.

Additional zener
diodes for overvoltage
protection.

8080 Central Processor




Fig. 3. Adding a parallel capacitance of .0047 uF to C8 of the Altair CPU board schematic lengthens the data

mecans that C8 (front pancl

out enable line time so that memory write does not extend longer than the data out time. control board) should be
approximately .0147 uF; if
T the board is alrcady
EXM NXT alio MWRITE asscmbled into the case, a
R 13 ExXW NXT S5 LINE Y .0047 uF capacitor can easily
’ i 12 2 +sv | be soldered onto the back of
r——- S 172 74123 OUT ENABLE ¢ solderc c?n o the .
2 “ ! J (SWITCHES the board without removing
13 12 any componcnts from the
O 74L00
o 10 5 g Q 3 Q |- 6ND case. (Be sure to unplug the
DEP sl N 2} oep ss —s GND 172 74123 computer before making the
172 74123 G .
change, however.) Fig. 4
lacement of thc new
LIl e | o B
RS OluF RIO capacitor and the change to
“ the Altair schematic diagram.
H——— Q Q Q Q |—=GND L)'-‘ MODIFICATION o
o——q DERAXT 23 — 1/2 74123 C=.0047uF | feel that the kit is
DEP NXT S Y d f reasonably well made and a
l_9 | | I ‘9 Il | l good buy — at least at the
o e T current 8080 single lot prices,
o ol though the add-on options
may cost somewhat more
than elsewhere.
on-card voltage regulators. otherwise identical. Sure the data out line. The My plans for my unit
Finally the big test: Run a enough, when | looked at the memory write problem was currently involve addition of
program. This is where the signals on a scope, lo and cured by increasing the vectored interrupts (a 9318

only problem finally showed
up. | stopped and reset the
CPU, set the switches for my
spectacular program (JMP 0)
and would you believe it
“deposit’’ wouldn’t work. An
hour later | had determined
that all other panel switches
worked correctly (including
deposit next), and that the
deposit switch itself was in

good order. In order to
initially get around the
problem | had to examine

location 177777 (all address
bits 1), then use deposit next
to get to location O.

A study of the schematics
showed that deposit and
deposit next use the same
circuitry, except that deposit
next first does an examine
next. You can verify this
visually by loading all ones
into the first 10 locations of
mcmory. Then, if you use
deposit next to change all the
locations to zero, by carefully
watching the data LEDs, you
will notice that they all flash
on as the switch is activated
(examine next) and
immediately go off again as
the deposit is performed.

|  concluded that the
problem had to be in the
timing, since the circuits were

behold, when a deposit was
performed, the memory write
line was enabled for
approximately 20 ns more
than the data out line. There

are two oneshots in the
deposit circuit; the first
enables the memory write

line, and the second enables

capacitance on the second
deposit oneshot. An increase
of .0047 uF (which increases

the data out enable time by

at least 30 ns) proved
sufficient. This was obtained
by adding the .0047 uF

capacitor as shown in Fig. 3.
When building the Altair, this

or 74148 8-bit to 3-bit
priority decoder is about all
that’s needed to translate the
eight vectored interrupt lines
on the bus into an RST
instruction), a real-time
clock, monitor clock and

some type of 1/O (teletype,
CRT, etc.). »

Fig. 4. The additional .0047 uF capacitor is mounted on the rear of the control panel board.
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Solder the
additional capacitor
to the rear of the
control panel board.

Modify this section
of your schematic.
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Build A 6800 System
With This Kit

by

Gary Kay

Southwest Technical Products Corp.
219 W. Rhapsody

San Antonio TX 78216

If you are one of the many Teletype or low cost video investment up considerably into memory telling the
people getting ready to terminal such as the TV since such interfaces typically processor how and what to
purchase one of the Typewriterll (February 1975, cost between $75 and $150 do. Without this software
reasonably priced Radio Electronics) for data each, and there are more (program), you can pound on
microprocessor system kits and program input/output. surprises yet to come. the keyboard all you want
on the market today, you This is all well and good So now you've got your and the computer won’t do
might ask yourself whether or  except that in order to attach computer, Wwith interface, anything. Computers are no
not you will be able to start a terminal, you'll have to attached to your terminal;, smarter than their
entering programs once you purchase an interface for you're ready to sit down, programming lets them be
get it all put together. Of your computer if it is not power up and start typing in and without programming
course you can always load supplied with the basic your program, right? Well, they’re not very smart at all.
programs and data through system. In fact you will not quite. You see, in order How do you get this software
the front panel programmer’s generally need a separate to be able to use the terminal into memory? Well, you
console, but most individuals interface for each 1/O for either entering programs could load it in from paper or
aware of the front panel’s (input/output) device or getting data in and out of  cassette tape, that is if you
slow speed and difficult connected to your computer. the computer you must have have a paper tape reader or
readability prefer to use a This can run your system a program resident or loaded cassette tape interface

(another sizable investment)

or you could enter it directly

Fig. 1. Block diagram of the SWTPC 6800 system. The address allocations of the elements of the system are from the program mer’s
noted inside the blocks. ¢onsole. The problem here is
two fold. Software to give the
terminal reasonable system
wo | L o e control will probably be
cPu, [ . . . q _____ around 500 words in length.
CLOCK & BUFFERS This is far too long to enter
from the programmer’s
console especially when you
consider it has to be

[ | { re-entered every time the
system is powered up or after
MIKBUG MIKBUG 2K BYTE CONTROL

ROM RAM RAM INTERFACE a wayward program
EOOOQ-E1FF AO000-AO07F 0000-1FFF 8004-8007 overwrites any of its allocated

4 area of memory. The second
problem is that few if any of
the manufacturers supply a
listing, paper tape or cassette
tape of such a program to
begin with. Their terminal
USER control routines are
TERMINAL contained within
(3TY ORIRS232) editor/assembler and higher
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MEMORY BOARD

CPU BOARD —

MCM6810L1 _|
128X8 RAM

MCM6830L
“*MIKBUG"”’
ROM

level language packages which
not only must be loaded from
some kind of tape reader, but
require from 4,096 to 8,192
words of memory to operate.
And you thought the
interfaces were expensive,
just check the prices on 8,192
words of memory. Many of
the systems now on the
market are supplied with an
amount of memory with the
basic unit which s
considerably less than what
might actually be needed for
useful programming.

So what’s the alternative?
Well, the system presented in
this article has been designed
to eliminate the afore-
mentioned problems and
allow the user to have a
powerful and fully functional
system at a minimum cost
(sce Fig. 1). The entire
system is built around the
Motorola MC6800
microprocessor and its family
of support devices. The
computer itsclf is being made
available in kit form including
the chassis, cover, power
supply and all circuit boards,

| MC6800

PROCESSOR

parts and hardware necessary
to build a Motorola 6800
based microprocessor
including a 1,024 word ROM
(read only memory) stored
operating system with
128-word scratch pad
memory, serial interface baud
rate generator, serial
interface, and 2,048 words of
memory for $450. This
article gives a description of
the microprocessor and
mother board. A future
article will describe the power
supply, memory and interface
boards.

The Microprocessor/System
Board (MP-A)

The Microprocessor/
System Board (coded MP-A)
Is the primary logic board for
the system. Itisa 51/2” x 9”
double sided plated-through
hole circuit board containing
the 6800 microprocessor
chip, the 6830 ROM which
stores the mini-operating
system and the 6810,
128-word scratch pad random
access mecmory (RAM)
nceded by the ROM.

¥ —at———— CONTROL INTERFACE

—MOTHERBOARD

¢

\ POWER

SUPPLY

There is a crystal controlled
processor clock driver and
baud rate generator providing
serial interface baud rates of
110, 150, 300, 600 and 1200
baud for all but the terminal
control interface which is
operable at 110 or 300 baud.
Also provided is a power
up/manual reset circuit which
restarts the ROM stored
mini-operating system
whenever activated. Full 1/O
buffering is provided for the
16 address lines and eight
bidirectional data lines with
these and other connections
made to the rest of the
system through the mother
board via a 50-pin connector.

Power for the board is
derived from a +5 volt
regulator fed from the

system’s unregulated 7 volt,
10 Amp power supply.
Average current consumption
for the board is 0.8 Amps.
The mini-operating system
stored in the 6830 ROM on
this board has got to be one
of the most outstanding
features of this system. It is
through this Motorola written
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Details of the SWTPC
6800 System. This photo
illustrates what you see
when you remove the
cover of a typical SWTPC
computer system. This is
an assembly of the parts
which come in the MP-68
kit.

software package called
“MIKBUG” that the user can
1) enter program or data into
memory from either the
terminal’s keyboard or tape
(where applicable), 2) jump
to and execute a program
loaded in memory, 3) list
programs or data stored in
memory, on the terminal or
tape (where applicable), 4)
examine andf/or change the
contents of the internal CPU
registers, 5) examine and/or
change the contents of
specified memory locations.
These operations are
performed using a 20 mA
current loop Teletype or an
RS-232C compatible serial
ASCII terminal.

This ROM mini-operating
system does not have to be
loaded from tape and it
cannot be overwritten. It is
always there at vyour
fingertips — just pressing the
RESET button or simply
powering the system up
automatically restarts this
firmware (ROM stored
software). When activated,
this system responds with a




i ’L FFFF

e Nt g
MINIBUG/
TEST PATTERN
{(NOT USED)
_______ ~ | EIFF
MIKBUG
ROM
E0O0O
A —
AO7F
MIKBUG
RAM
AOO0O
~o N
P P
/0 PORT 80IF
NO.7 80IC
170 PORT 80IB
NO.6 8018
1/0 PORT 8017
NO.5 8014
I/OPORT 8013
NO.4 8010
1/0 PORT 800F
NO.3 800C
170 PORT 8008
NO.2 8008
R
INTERFACE. 8004
170 PORT 8003
NO.O 8000
4K MEMORY TFFF
NO.7 7000
4 K MEMORY 6FFF
NO.6 6000
4K MEMORY SFFF
NO.5 5000
4K MEMORY 4FFF
NO. 4 4000
4 K ME MORY 3FFF
NO.3 3000
4K MEMORY 2FFF
NO.2 2000
4K MEMORY IFFF
NO. | 1000
4K MEMORY OFFF
NO.O 0000
Fig. 2. SWTPC 6800

Microprocessor System memory
map. The 64K address space of a
6800 CPU is divided up into the
segments shown here. The first
32K locations are available for
user read-write memory. The
second 32K is devoted to 1/0O port
assignments and the requirements
of the MIKBUG program supplied
by Motorola.

carriage return, line feed and
then prints a * on the
terminal at which time you
may enter various single
character control commands
such as M for memory
examine/change, L for load
from tape, P for punch or list,
R for examine registers or G
for go to and execute a
loaded program. A program
debug routine can also be
implemented by using the
software interrupt (SWI)
instruction as a “breakpoint”
which forces a jump from
your program to the
operating system to allow
you to examine the contents
of memory andf/or the CPU
registers. All data entered or

displayed through the
terminal is in convenient
hexadecimal (base 16)

notation. This means you can
type in a command to load
address location A0001¢ with
9E16 instead of setting 24
console switches to an
address of 1010 0000 0000
0000 with data of 1001 1110
as must be done with the
conventional programmer’s
console. Since the operating
system is stored in ROM, it
consumes no user RAM
memory, in fact, it actually
gives the user a little extra.
There is a 128-word scratch
pad memory utilized by the
operating system for storing
various addresses and data,
but there are more than 54
locations within this 6810
RAM memory which are
totally unassigned plus a
46-word deep push-down
stack. All of this memory is
in addition to the 2,048
words (expandable to 4,096
words) contained on the
standard memory board.
Since the terminal and
mini-operating system
provide the user with
complete system control,
there is no need for the
conventional programmer’s
console. Take note also that
once system control is turned
over to your program, the
control terminal is totally
available for your program

input/output. In fact, since
the character input/output
subroutines are already stored
within the operating system
ROM, they can be used by
your programs simply by
loading or storing the
characters to be handled in
the proper register and
executing a jump to
subroutine (JSR).

The Motorola MC6800
microprocessor chip is the
element around which this
entire system is built. It is an
8-bit parallel processor with
eight bidirectional data lines
and 16 address lines giving it
an addressing capability of up
to 65,536 words. There is no
distinction between memory
and 1/O addressing on this
system, therefore, all
input/output data transfers
are handled just as are the
memory transfers. This means
the 1/O interfaces must have
their own allocated memory
addresses where neither ROM
or RAM memory may be
located. This may at first
seem to be a disadvantage
until you realize that all
memory handling instructions
are usable for the interface
data handling as well, thus
eliminating the need for
special data 1/O instructions.
The memory assignments for
this system have to be made
as shown in Fig. 2. User RAM
may be located anywhere in
the lower 32K (000016 to
800016) addresses with the
upper 32K addresses reserved
for the operating system
ROM, RAM and interface
boards.

There are six
internal to the MC6800
microprocessor element
which consist of the program
counter, stack pointer, index
register, accumulator A,
accumulator B and condition
code register. The stack
pointer is a 16-bit register
used to store the address of
the push-down stack which is
located in RAM memory
external to the MC6800
microprocessor element. The
push-down stack itself is used

registers
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to store the program counter
and/or processor data during
branch to subroutine (BSR),
jump to subroutine (JSR),
push (PHS) or interrupt
routines. The index register is
a 16-bit register generally
used as an address pointer for
many processor instructions.

There are 72 basic
instructions for the 6800
microprocessor system (Fig.
3) with most of the 72
utilizing several of the seven
possible addressing modes:

Accumulator, implied,
relative, direct, immediate,
extended and indexed.

® Accumulator — In
accumulator addressing,
either accumulator A or
accumulator B must be
specified.

® /mplied — In implied
addressing the instruction
code itself specifies the
operand (stack pointer,
index register, etc.).

® Relative — Relative
addressing is used for the
branch instructions and
indicates the value
contained in the word of
memory immediately
following the instruction
code added to the program
counter +2 with the result
then loaded back into the
program counter. Positive
data (bit 7 = 0) generates
forward jumps up to 129
words from the branch
instruction while negative
data (bit 7 = 1) generates
backward jumps up to 125

words from the branch
instruction.

® Direct — In direct
addressing, the value
contained in the word of
memory immediately

following instruction code is
an actual memory address
within the first 256 words
of memory (000016 to
O0OFF) which contains the
operand of the instruction.
This mode typically saves
one CPU cycle of execution
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