

ACKNOWLEDGEMENTS

SECRET CB Wishes to gratefully acknowledge the following people FOR THEIR HELP AND CONTRIBUTIONS TOWARD GETTING VOLUME 14 in print. Their encouragement and contribution of material has been INVALUABLE.

INTRODUCTION

Some exciting things are happening again in the $C B$ industry and looks like things are picking up. We are introducing a new kit module for those "impossible LC7130/7131/TC9106P chassis." It covers 27.425 - 27.865 along with even channels on l-40. Complete installation instructions have been included.

Many times we get inquires about WHERE to purchase products mentioned in our book. Ask your Secret CB dealer to get them for you or you can order direct from us. Call us at 1-512-992-1303 to get a copy of our latest FREE CATALOG or to order by phone. (COD or VISA/MC accepted.) We are continually looking for new products, kits conversions, etc. and have a standing offer of honorary mention and FREE BOOK to contributors of NEW, previously unpublished material. So send them in. We also solicit ideas, suggestions, \& comments on how to improve/expand Secret CB. Only by your feedback can we be responsive to your needs. We want to thank all the contributors to date, a few which are regular contributors. We appreciate your help in assembling this information which would otherwise be an impossible task.

Till Next Time.
Best Regards,

Sic Richter

Vic Richter STX 105
PAGE \#
ACKNOWLEDGEMENTS 1
INTRODUCTION 2
TABLE OF CONTENTS 3-4
SSB CONVERSIONS:
GOLDEN EAGLE MARK IV-A. 5-6
KENWOOD TS-820S 7-8
LAFAYETTE SSB-75 9
MIDLAND 78-574 (02A) 10
MB87l9/ll.ll25 CHASSIS UPDATE 11-12
CRAIG•L321 12
PRESIDENT GRANT "HOME CHANNEL CONVERSION" 13-14
MB8719/ll. 3258 TRUTH TABLE 15-17
NEW PRODUCT RELEASE:
FM-30B THRU-LINE FREQUENCY COUNTER 18-19
NEW! "KIT A" FOR LC7130/7131 \& TC9106P CHIPS 20
"KIT A" INSTALLATION INSTRUCTIONS:
HOW TO MAKE UP THE SPDT SWITCH 21
COBRA $21 \& 25$ GTL/LTD 22
COBRA 19X 23
COLT $210 \& 222$ 23
GE 3-5804F 24
GE 3-5805A 25
GE 3-5805B 23
K40 K-401 26
MIDLAND 151M, 102M, l00M, 2001, 3001, 4001 23
MIDLAND 200M 27
MIDLAND 77-824B 28
PRESIDENT AR-7 29
PRESIDENT AX-7 30
PRESEDENT AX-11 31
PRESIDENT AX-43 32
PRESIDENT AR/AX 44 \& AR/AX 7ll 22
PRESIDENT JAMES K 34
PRESIDENT "OLD HICKORY" 33
REALISTIC TRC-427 28
REALISTIC 410 35
REALISTIC 421 36
REALISTIC TRC 422A/421A 37
REALISTIC TRC 426 38
REALISTIC TRC 428 39
SEAHAWK 40 32
TEABERRY STALKER III 40
AM CONVERSIONS \& TUNE-UPS:
CHANNEL MASTER CB6830 41
GE 3-5813A/3-5869A 41
MECTRON ME-402 41
SPARKOMATIC CB-4020S 41
VARIOUS MODULATION ADJUSTMENT: BROWNING SABRE, COBRA $29 \& 1000$ GTL, MIDLAND 102 M \& 130858 , MORSE 2001, PACE CBl44, PANASONIC RJ3200, ROBERTS $40 \mathrm{Ch} .$, and ROYCE l-650 42
BOMAN CB920 (02A) 43
BOWMAN CB-755 (23Ch. - Xtal Rig 44

TABLE OF CONTENTS CONT‘D.

AM CONVERSIONS \& TUNE-UPS (CONT'D): PAGE \#
CHANNEL MASTER CB6834 44
COBRA CAM89 45-46
COLT 350 (M-374) D861C-PLL 46
JC PENNEYS 981-6225 (981-8253) 47
MIDLAND 13-862 48-49
MIDLAND 13-879 50
MIDLAND 76-860 (TC9102P) 51
PANASONIC RJ-3660 52
PEARCE SIMPSON COUGAR 23 (LATE PRODUCTION) 53
PRESIDENT ZACHARY T, DWIGHT D w/uPD 2816C PLL 54
REALISTIC TRC 206 (2l-1635) 55
ROYCE 6ll 55
SBE CORTEX 2lCB (SAMS CB58) 56-57
SUPER SCOPE AIR COMMAND CBl040 BASE (uPD86l) 57
TENNA 10901 MSM 5807 58
TRS CHALLENGER 460 (861) 59
TRUETONE MCC4434A-57 60
WARDS GEN-680A (TC 9103P) 61
WARDS GEN-696A(TC-9103P) 61
BROWNING PING INFORMATION 41
25-29 MHZ FREQUENCY ASSIGNMENTS 62-63
ELECTRONIC TERMINOLOGY 63
"YOU CAN BUILD IT":
FET RECEIVER PRE-AMP 64
BUILD YOUR OWN SPACE SOUND 65
BUILD AN AMPLIFIER 66-67
SECRET CB INDEX FOR VOLUMES l-13 68-80

GOLDEN EAGLE MARK IV A $26.285 \mathrm{MHZ}-28.035 \mathrm{MHZ}$

Transmitter Modification

First obtain the following parts;

> 2-DPDT Center-off Miniature Toggle Switches
> 2-SPST Miniature Toggle Switches
> 3'-22 guage Stranded hook-up wire, any color

1. Remove the covers from the transmitter unit. Locate the 9 wires which are labelled $2,4,8,16,32,64,128,256$, and L. Also, notice the stub of wire sticking up between the wires labelled L and 256.
2. Remove the wire labelled 32 and solder a length of wire from each hole to where you want the first SPST Switch. See Fig.l.
3. Solder one end of a wire to the wire labelled 64. Solder the other end to a DPDT Center-off Switch as shown in Fig.l.
4. Remove the wire labelled 16 and solder a length of wire from each hole to where you want to mount the other DPDT Center-off Switch. Wire as shown in figure 1.
5. Remove the wire labelled 128 and solder 3 wires in its placeone from one hole (A) and two from the other hole.(B) See Fig. 2.
6. Solder these three wires, two of which go to the \#2 DPDT Centeroff Switch and the other to the \#4 SPST Switch as shown in Fig.l. Add jumpers as illustrated.
7. Solder a wire onto the stub sticking up between the wires labelled L and 256. Solder the other end to the \#4 SPST Switch as shown in Figure 1.

* You will need to adjust L701,L702, and L705 for full coverage.

GOLDEN EAGLE MARK IV (CON'T)

The receiver already has the capacity to function up to 27.605 . A 22.500 MHz . crystal will give coverage from 26.575 - 26.915. To receive above 27.605 , a 23.460 MHz . crystal is necessary which gives coverage up to 27.925 MHz . To add the extra crystals, the following modification to the receiver will have to be made.

1. Unsolder the wire from CB2 to R504 on SWl-C. (CBl,CB2,XTL Switch)
2. Install a 1 Pole 3 position switch in a convenient place near SWl.
3. Run a wire from CB2 to the common of the new switch.
4. Run a wire from the wire unsoldered in Step 1 to position 1 .

5. Duplicate the Q301/Q302 circuits by building two new transistor crystal switches on a piece of perforated board as shown. Parts needed for each one are: . 001 ufd disc capacitor; lK $\frac{1}{4} \mathrm{w}$ resistor; 15K $\frac{1}{4}$ w resistor; 2 N 2222 or 2 N 3904 transistor, crystal.
6. Wire to the switch as shown.
7. Connect other ends of new crystals to CR50l/CR502 junction which goes to the grid of Vl03A.

* Reference: Vol.7. Now you are in business!

KENWOOD_IS-820S

11 Meter Modification

Crystals needed: $33.000,32.500,32.000$ (one each)
Remove bottom cover. Set radio up on its side with front of radio to your left. You will see a box in the top left corner. This is the PLL assembly, (X60-1010-00) and must be removed for access.

KENWOOD TS-820S (con't)

To do so, remove two screws at top and bottom. Pull box out and over. Next unplug wires from box. (Watch your work carefully because you will have to put this all back together!) Turn box over and take the bottom off. You will see the PDX 50-1340.00 board and the crystals you will need to replace. Remove the 5 screws that hold down the board to the box. Take a plastic screw driver and pry from the front the board up off the plug. It has 2 plugs in it. Pry a little on each one so it will come up evenly. Now you are ready to replace the crystals. Remove X7 33.500 and install the 33.000 in its place. This will give frequencies 27.5 to 28.0 MHz . Next remove X 834.000 crystal and install the 32.500 in its place. This will give frequencies 27.0-27.5.

Finally, remove X9 34.500 crystal and install the 32.000 in its place. This will give frequencies 26.5 to 27.0 MHz . Recheck your work and make sure there are no solder bridges. Do not overheat board or crystal. Now you are ready to re-assembly. Be sure you get all the plugs back in their proper place. You should now be ready to hook it up and do three simple adjustments. First, adjust T 7 with band switch on 28.0 . It may work without any adjustment. If not turn it CCW $1 / 16$ of a revolution. Put band switch to 28.5. This will activate the new X 8 crystal for 27-27.5. It will probably work in the high side and drop out on low side. Adjust $\mathrm{T} 8 \mathrm{CCW} 1 / 16$ of a revolution at a time with the VFO on low side until the readout stabilizes on 27.000 MHz . Now go to 29.0. The display will be blank. Thats OK. Just adjust T9 CCW about $l \frac{1}{2}$ turns or until frequency display lights up. Adjust a little at a time until you read 26.500 with VFO on Zero low side. Now you are ready to put the bottom back on. Fire up and $\mathrm{E}-\mathrm{N}-\mathrm{J}-\mathrm{O}-\mathrm{Y}$.

LAFAYETTE SSB-75

1. Locate the Green wire on the FINE TUNE control. Cut at board end and resolder to ground.
2. Locate and cut the Brown wire on the FINE TUNE tap. It is no longer needed.
3. D205 may be replaced with a Super Diode or a choke can be added in series with the anode.

NOTE: Each XTAL has a fixed capacitor and a variable capacitor in parallel. The values can be altered to get more slide but you will loose centering and they may not line up with each other.
For additional channels, a XTAL Switch Box can be installed in position X205 or a new XTAL substituted for one of the crystals. However, you will loose the original 4 channels. Each XTAL will yield 4 channels.

TX Alignment:
RV3; RF Panel Meter
RV7; AM Mod.
For maximum modulation, remove Q206.
RV8; SSB Mod.
RV5; SSB ALC.
AM:
Peak L202, L203, L204, L2, L3, L4, L5, L6, L7.
Output Power: RV304
TV1; L301
SSB:
Carrier Balance: RV4, TC2, L9
SSB Exciter: Ll2, Ll3, Ll4, Ll5, Ll6, Ll7.
Bias Final: RV2 Adjust bias for .6V
Bias Driver: RVl Adjust bias for . 6 V
RX Alignment:
RV10; AGC.
RV6; Squelch Range
RV9; S Meter $59=100 u V$.
Peak Ll8, L19, L20, L10, Lll.

MIDLAND 78-574 (02A)

Clarifier

1. Clip D205.
2. Clip R22l.
3. Run a wire from the unused terminals of the clarifier pot to the emitter of Q2l6.
4. Remove D204 and replace with a piece of wire.

Frequency Expansion

1. Isolate pin 7 of IC203 (PLL02AG) from ground by cutting the pc trace.
2. Solder a li resistor across the cut.
3. Isolate pin 8 and solder a 1 K resistor across the cut.
4. Isolate pin 9 and solder a ilK resistor across the cut.
5. Isolate pin 10 and solder a lX resistor across the cut.

Assemble 8 diodes onto a 2 pole 6 position switch as shown:

Adjust VCO for full frequency coverage.
Transmitter Alignment:
Adjust T204,T205,T3,T209,L209,L212,L214 for maximum RF output on USB.

RV1, RV2 Carrier Balance
RV206 XMTR Final Bias-Adjust for .7 volt.
RV 3
RV201
SSB Mod. Gain
USB RF AC
RV9 AM Modulation Control
RV202 RF Power Meter
VR1 AM Power

MB8719/11. 1125 CHASSIS UPDATE

Frequency Range: $26.175-28.085 \mathrm{MHz}$.
Prototype Set: President Washington
Parts Required: 1 SPDT Switch
1 DPDT Switch
1 DPDT Center Off Switch
$19 \mathrm{~K} \frac{1}{4} \mathrm{~W}$. Resistor
12" 7 Conductor Ribbon Wire (Yellow-Orange-Red-Brown-Black-White-Gray)

NOTE: This modification will work on sets using 8719/ll.3258 also. However, to get the frequency range described above, the 11.3258 crystal will have to be substituted with the 11.1125 called for above. Also, on sets using the MB8734 chip, it will have to be replaced with the MB8719 chip.

1. Wire up the three switches as shown below:

2. Isolate pin 10 of the MB87l9 chip. Solder Yellow wire to pin 10.
3. Make a cut on the trace of pin 12 between chip and channel selector. Solder the White wire to pin 12 and the Brown wire to other side of cut trace.
4. Solder the Orange wire to pin 17 of the MB8719 chip.
5. Solder the Red wire to pin ll of the MB8719 chip.
6. Solder the Black wire to ground (pin 18 of MB87l9 chip).
7. Solder the Gray wire to pin 5 of the VCO chip (ICl). Ll8, Tripler adjustment, is critical and must be carefully aligned. Ll3 and Ll4 (VCO) will have to be realigned also.

Synthesizer Alignment:
A. Toggle the first switch so that pins 10 and 17 are connected together, Adjust Ll8 to give upper channels. Tune Ll3 \& Ll4 so set will key up.
B. Toggle the first switch so pin 10 is now grounded. This gives 26.325-26.765. VCO is not strong enough at low frequency so a 9 K resistor has been added to pin 5 of VCO-slight alignment of VCO may be necessary.

MB8719/11.1125 CHASSIS LPDATE (Con't)

C. The Center-Off switch will give 27.415-27.445 in the center. Frequencies of 26.815-26.965, 28.005-28.085, and 26.775-26.805 are obtaindd by using different combinations of the other two switches.
D. Using the DPDI' and center-Off combinations gives 26.17526.325 .
E. Using the SPDT switch only gives 27.605-28.045.
F. Using the DPDT alone gives 26.325-26.765.
G. Using the SPDT and Center-Off gives 27.455-27.605.

See specific models for Clarifier/Tune Up procedure previously published.

CRAIG L321

1. Remove wires from terminals 5 and 7.
2. Add a 4.7 k resistor in series with each wire.
3. Solder other ends of the resistors to the outside terminals of a SPDT Center-Off switch as shown.
4. Solder a wire from the middle terminal on the switch to ground. This yields channels 4l-47 on 33-39 and 48-72 in other position. Center is normal. Do Not cut The traces as

CLARIFIER- Real Simple

1. Remove Gray and Green wires next to relay and solder together.
2. Cut Blue wire next to relay and resolder to ground.
3. Adjust L 5 for desired slide range.

PRESIDENT GRANT "HOME CHANNEL CONVERSION"

Alot of people use a particular channel as a "home channel." Here is a conversion on how to turn the "Ch.9" switch into a custom programmed frequency selector.

First, decide what you want your home channel to be. Now, circle that channel on the Truth Table in red ink. Lets look at an example.

Suppose we want our home channel to be 27.845. The truth chart is; $11,14,15,16$, high; $10,12,13$, Low. To deactivate the Ch. 9 function, we will unsolder and lift the anodes of diodes D28, D29, D30. Reconnect as follows. D28 anode to pin 10. D29 anode to pin 12. D30 anode to pin 13.
Since pins $11,14,15,16$ have to be high, we need not do anything to those pins as they have internal pull up resistors on them so they are normally high. However, the traces on pins $12 \& 13$ must be cut between the chip \& channel selector and 1N914 diodes added as shown in FIG.l.

NOTE: You may have to modify the way you install extra channels. For example, if you used two switches like this;

PRESIDENT GRANT (cont)

You will have to rewire and add lN9l4 diodes like this:

FIGURE 1
*Add . $01 / 50 v$ disc cap from pin 10 to ground.

You can program in any channel between 26.815-28.085. What are you waiting for?

8719/11,3258 TRUTH TABLE

Weight	64	32	16	8	4	2	1	
Pin \#	10	11	12	13	14	15	16	N
26.815	1	0	0	0	0	0	0	64
26.825	1	0	0	0	0	0	1	65
26.835	1	0	0	0	0	1	0	66
26.845	1	0	0	0	0	1	1	67
26.855	1	0	0	0	1	0	0	68
26.865	1	0	0	0	1	0	1	69
26.875	1	0	0	0	1	1	0	70
26.885	1	0	0	0	1	1	1	71
26.895	1	0	0	1	0	0	0	72
26.905	1	0	0	1	0	0	1	73
26.915	1	0	0	1	0	1	0	74
26.925	1	0	0	1	0	1	1	75
26.935	1	0	0	1	1	0	0	76
26.945	1	0	0	1	1	0	1	77
26.955	1	0	0	1	1	1	0	78
26.965	1	0	0	1	1	1	1	79
26.975	1	0	1	0	0	0	0	80
26.985	1	0	1	0	0	0	1	81
26.995	1	0	1	0	0	1	0	82
27.005	1	0	1	0	0	1	1	83
27.015	1	0	1	0	1	0	0	84
27.025	1	0	1	0	1	0	1	85
27.035	1	0	1	0	1	1	0	86
27.045	1	0	1	0	1	1	1	87
27.055	1	0	1	1	0	0	0	88
27.065	1	0	1	1	0	0	1	89
27.075	1	0	1	1	0	1	0	90
27.085	1	0	1	1	0	1	1	91
27.095	1	0	1	1	1	0	0	92
27.105	1	0	1	1	1	0	1	93
27.115	1	0	1	1	1	1	0	94
27.125	1	0	1	1	1	1	1	95
27.135	1	1	0	0	0	0	0	96
27.145	1	1	0	0	0	0	1	97
27.155	1	1	0	0	0	1	0	98
27.165	1	1	0	0	0	1	1	99
27.175	1	1	0	0	1	0	0	100
27.185	1	1	0	0	1	0	1	101
27.195	1	1	0	0	1	1	0	102
27.205	1	1	0	0	1	1	1	103
27.215	1	1	0	1	0	0	0	104
27.225	1	1	0	1	0	0	1	105
27.235	1	1	0	1	0	1	0	106
27.245	1	1	0	1	0	1	1	107
27.255	1	1.	0	1	1	0	0	108

Weight	64	32	$l 6$	8	4	2	1	
Pin \#	10	11	12	13	14	15	161.	N
27.265	1	1	0	1	1	0	1	109
27.275	1	1	0	1	1	1	0	110
27.285	1	1	0	1	1	1	1	111
27.295	1	1	1	0	0	0	0	112
27.305	1	1	1	0	0	0	1	113
27.315	1	1	1	0	0	1	0	114
27.325	1	1	1	0	0	1	1	115
27.335	1	1	1	0	1	0	0	116
27.345	1	1	1	0	1	0	1	117
27.355	1	1	1	0	1	1	0	118
27.365	1	1	1	0	1	1	1	119
27.375	1	1	1	1	0	0	0	120
27.385	1	1	1	1	0	0	1	121
27.395	1	1	1	1	0	1	0	122
27.05	1	1	1	1	0	1	1	123
27415	1	1	1	1	1	0	0	124
27.425	1	1	1	1	1	0	1	125
27435	1	1	1	1	1	1	0	126
27.445	1	1	1	1	1	1	1	127
27.455	0	0	0	0	0	0	0	0
27.465	0	0	0	0	0	0	1	1
27.475	0	0	0	0	0	1	0	2
27.485	0	0	0	0	0	1	1	3
27.495	0	0	0	0	1	0	0	4
27.505	0	0	0	0	1	0	1	5
27.515	0	0	0	0	1	1	0	6
27.525	0	0	0	0	1	1	1	7
27.535	0	0	0	1	0	0	0	8
27.545	0	0	0	1	0	0	1	9
27.555	0	0	0	1	0	1	0	10
27.565	0	0	0	1	0	1	1	11
27.575	0	0	0	1	1	0	0	12
27.585	0	0	0	1	1	0	1	13
27595	0	0	0	1	1	1	0	14
27.05	0	0	0	1	1	1	1	15
27.615	0	0	1	0	0	0	0	16
27.625	0	0	1	0	0	0	1	17
27.635	0	0	1	0	0	1	0	18
27.645	0	0	1	0	0	1	1	19
27.655	0	0	1	0	1	0	0	20
27.665	0	0	1	0	1	0	1	21
27.675	0	0	1	0	1	1	0	22
27.685	0	0	1	0	1	1	1	23
27.695	0	0	1	1	0	0	0	24
27.705	0	0	1	1	0	0	1	25

TRUTH TABLE (COnt)

Weight	64	32	$l 6$	8	4	2	1	
Pin \#	10	$l l$	12	13	14	15	16	N
27.715	0	0	1	1	0	1	0	26
27.725	0	0	1	1	0	1	1	27
27.735	0	0	1	1	1	0	0	28
27.745	0	0	1	1	1	0	1	29
27.755	0	0	1	1	1	1	0	30
27.765	0	0	1	1	1	1	1	31
27.775	0	1	0	0	0	0	0	32
27.785	0	1	0	0	0	0	1	33
27.795	0	1	0	0	0	1	0	34
27.805	0	1	0	0	0	1	1	35
27.815	0	1	0	0	1	0	0	36
27.825	0	1	0	0	1	0	1	37
27.835	0	1	0	0	1	1	0	38
27.845	0	1	0	0	1	1	1	39
27.855	0	1	0	1	0	0	0	40
27.865	0	1	0	1	0	0	1	41
27.875	0	1	0	1	0	1	0	42
27.885	0	1	0	1	0	1	1	43
27.895	0	1	0	1	1	0	0	44
27.905	0	1	0	1	1	0	1	45
27.915	0	1	0	1	1	1	0	46
27.925	0	1	0	1	1	1	1	47
27.935	0	1	1	0	0	0	0	48
27.945	0	1	1	0	0	0	1	49
27.955	0	1	1	0	0	1	0	50
27.965	0	1	1	0	0	1	1	51
27.975	0	1	1	0	1	0	0	52
27.985	0	1	1	0	1	0	1	53
27.995	0	1	1	0	1	1	0	54
28.005	0	1	1	0	1	1	1	55
28.015	0	1	1	1	0	0	0	56
28.025	0	1	1	1	0	0	1	57
28.035	0	1	1	1	0	1	0	58
28.045	0	1	1	1	0	1	1	59
28.055	0	1	1	1	1	0	0	60
28.065	0	1	1	1	1	0	1	61
28.075	0	1	1	1	1	1	0	62
28.085	0	1	1	1	1	1	1	63
2	1	1						

NEW PRODUCT RELEASE

FM - 30 B THRU-LINE FREQUENCY COUNTER

FEATURES:

- 500 Watts P.E.P. Max. RF Input.
- Two SO 239 connectors for transmitter thru-line input. Limits noise interference and readout instability.
- Bright red light emitting diodes for display.
- Resolution switch allows accurate tuning to 100 Hz .
- Floating decimal, eliminates guesswork.
- Instantaneous display update when changing frequencys.
- Stable crystal oscillator circuit.
- Low power consumption and reverse polarity protection.
- Positive or Negative ground operation.
- Reliable C-Mos. L.S.I. (Large scale integeration) with proven performance.
- Black textured chassis with blackout front panel.
- Compact lightweight, designed for vehicle and base station use ${ }^{\text {• }}$
- One year warranty parts and labor.
- 48 Hour Factory burn in assures reliability.
- Optional AC power pack Model \#P S 110

SPECIFICATIONS:

Frequency range 1 MHz to 40 MHz .

Input impedance 50 ohms

Input sensitivity less than 1 watt

Max input power 500 watts P.E.P.

Frequency stability $\ldots \pm 10$ P.P.M. $10^{\circ}-40^{\circ} \mathrm{C}$

Accuracy ± 10 P.P.M. ± 1 count (L.S.D.**)

Frequency resolution $1 \mathrm{KHz} ., 100 \mathrm{~Hz}$.

Gating speed 012 sec. 1 KHz ., 12 sec. 100 Hz .

Power consumption 290 ma. @ 12 V.D.C.

Input voltage 10 V . to 16V.D.C.

Display Five digit 1/2" high seven segment light emitting diodes.
"(L.S.D.) Least significant digit

FM - 30 B THRU-LINE FREQUENCY COUNTER

We have just received the new DIGALOG FM-30B thru-line frequency counter and it looks like the folks at D.T.I. have done it again. The unit is small in size (same as DS 400) but big in performance. It features a bright red half inch high 5 digit LED READOUT with switchable $1 \mathrm{KHz} / 100 \mathrm{~Hz}$. resolution. Using the optional AC Adapter, it can be used on your base station as well as your mobile.

The S0239's on the back provide for quick and easy hookup using standard PL259 connectors. Simply unscrew the antenna coax from your $C B$ and reconnect to the ANT connector on the FM-30B. Then run a coax jumper from your $C B$ antenna connector to the RADIO connector on the counter. Hook up the RED power lead to lo-l6v.D.C. and ground the black wire and you are in business. Since this unit is only about li/2 inches thick, 5" wide and 5" deep it will fit almost anywhere your fancy dictates. No longer will you have to fumble with charts or cramped dials to find out what frequency you are on (and if you are in fact on frequency!) I wouldn't be suprised if you get spoiled and have to have one for every transceiver!

With a dead key, the FM-30B will show your carrier frequency. When you modulate the carrier, the frequency should show fluctuating random numbers. This can be used as an indication that your mike is working. On sideband, frequency can be measured by using a lKC Tone or whistling a stable tone into the mike. D.T.I. suggest using a dummy load to prevent on the air interference when making tests.

Here is the set-up we use in our mobile.

BANDIT ANT.
\#B40-56

NEW PRODUCT RELEASE

NEW! "KIT A" NOW AVAILABLE FOR 19X, AX711, ETC.

A major breakthrough in engineering has resulted in the introduction of a new up-kit for previously unmodifiable sets. Specifically, the LC7130/7131 and TC9106P PLL Chips. The following pages describe specific installations on various models of popular units. You will find the procedure to be straight forward and accurate. The new kit will yield channels 27.425-27.865 and also half channels (even) on l-40 in addition to, of course, the standard forty. It has inherant skips on channels 45, 50, 55, 60, and 65.

This kit is the result of months of "determination" and "experimentation" and shows the "Old American Know How" is still alive and well. Of course, this kit is for expanding the receiver only and no responsibility is assumed for any other use which could exceed FCC Rules and Regulations.

The kit consists of a 3-lead epoxy pak with yellow, red, and unmarked terminals; a 5 Kc drop switch with trimmer cap, and a Normal-High selector switch. The two toggle switches can be mounted in any convenient location, usually in the lid or side of the chassis. Also included are a 4700 ohm resistor and a 47 pf capacitor for use in some installations. Now we are ready to proceed with the specifics. (Kit can be obtained from your local CB Dealer or order direct from Secret CB, catalog \#l36.)

HOW TO MAKE UP THE SPDT SWITCH

Kits may come with a two post or a three post trimmer capacitor. Electronically, they will connect like this:

and Physically like this:

On the three leg trimmer capacitors, turn the bottom legs inward from this
to this.

Bottom View

Most mobile CB's are mounted with the component side of the board down. Take this in account when mounting your switches.

PREPARING THE UNIT FOR THE KIT
Use a hole saw or chassis punch $l^{\prime \prime}$ in size and cut the component side cover as illustrated, at a point where switches can be accomodated without interfering with alignment, etc.

Use the two lock washers for proper spacing and as a guide for drilling and in mounting the switches.

CAUTION: When mounting the switches, do not apply pressure on the body part of the switch. Use the locking washers and apply torque on the nuts only. Failure to follow this advice could result in a broken switch.

COBRA 21 GTL/LTD, 25 GTL/LTD \& PRESIDENT AR/AX 7ll, AR/AX 44

5KC OFFSET

FIG.2.

l. Wire up the SPDT switch and the trimmer capacitor (supplied) as shown in Fig.l.
2. Cut the trace between the 10.240 MHz . crystal and VCl/Clll. Solder the wires from the switch to each side of the cut trace as shown in Fig.2.
3. With switch in low position, adjust VC for 27.410 MHz on Ch .40 .
4. Switch to high position and check for 27.405. If necessary, adjust VCl or change Clll to obtain this reading.

CHANNEL CONVERSION

1. Unsolder and lift the end of R58 opposite pin 8 of IC3.
2. Run a wire from terminal Q of the DPDT switch to the lifted end of R58.
3. Run a wire from terminal P to where $R 58$ was connected. Also run a wire from P to the red dot post of the epoxy pak. ALSO Run wire from L to Yel Dot on Epory Pak
4. Run a wire from terminal S to pin l of the PLL chip.
5. Unsolder and remove R69 (off pin 4 of IC2).
6. Solder one end of the 47pf capacitor supplied to pin 4.
7. Connect the other leg of the 47pf capacitor to terminal K of the switch.
8. Run a wire from terminal J to where R69 was connected opposite pin 4.
9. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate on Channels $42-86,1-40$ and on half channels $1 \mathrm{~A}-40 \mathrm{~A}$.


```
MIDLAND 151M, 102M, 100M,2001,3001,4001
GE 3-5805 B; COLT 210,222; COBRA 19X
```

5KC OFFSET

1. Wire up the SPDT switch and the trimmer capacitor supplied as shown Fig.l.
2. Cut foil at leg of 10.240 as shown. Solder wires from the switch to each side of the cut trace.
3. With switch in low position, adjust VC for 27.410 on Ch. 40.
4. Check for 27.405 on high position. If necessary, alter value of c302/ C351 to obtain this reading.

CHANNEL CONVERSION

1. Isolate pin 20 of IC202, LC7130 by cutting foil trace.
2. Solder one leg of the 4700 ohm resistor supplied to pin 20.
3. Run a wire from the other leg of the resistor to terminal Q of DPDT switch provided.
4. Run a wire from terminal P on the switch to the other side of the trace and to the unmarked terminal of the epoxy pak.
5. Connect the S terminal on the switch to ground.
6. Locate pin 4 of the TA73l0/AN103 VCO/Mixer chip. Unsolder the leg of C306 opposite pin 4 , and lift.
7. Solder a wire from terminal K on the switch to the lifted leg of $C 306$.
8. Solder a wire from terminal J on the switch to where $C 306$ was connected.
9. Run a wire from the yellow dot post of the epoxy pak to terminal L of the switch.
10. Connect the red dot post to pin 18 of IC202.

Now this unit will operate on Channels 42-86,1-40 and on half channels 1A-40A.

5KC OFFSET

FIG.2.

1. Wire up the SPDT switch and trim capacitor (supplied) as shown in Fig. 1.
2. Cut the foil trace between the 10.240 crystal and C 42 and wire as shown in Fig. 2.
3. With switch in low position adjust VC for transmit freq. of 27.410 on Ch. 40.
4. Switch to high position and check for 27.405. If necessary, alter the value of C42 to compensate.

CHANNEL CONVERSION

l. Locate, unsolder, and lift the leg of R47 opposite pin 8 of the TC9106 PLL chip.
2. Run a wire from the lifted leg of $R 47$ to terminal Q on the DPDT switch provided.
3. Run a wire from terminal P on the switch to where $R 47$ was connected. Also run a wire from terminal P to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin l of the PLL chip.
5. Locate, unsolder, and lift the leg of Cl36 opposite pin 4 of the TA7310P vCO/Mixer chip.
6. Run a wire from the lifted leg of Cl 36 to terminal K on the switch.
7. Run a wire from terminal J to where the other leg of Cl36 was connected.
8. Run a wire from terminal L to the yellow dot post of the epoxy pak.
9. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate on Channels 42-86,1-40 and on half channels $1 \mathrm{~A}-40 \mathrm{~A}$.

$$
\text { GE } 3-5805 \mathrm{~A}
$$

5KC OFFSET

FIG。2.

1. Wire up the SPDT switch and the trimmer capacitor (supplied) as shown in Fig.l.
2. Cut the foil trace between the 10.240 crystal and $C 76$ as shown Fig.2.
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust VC for 27.410 on Ch. 40 .
5. Switch to Hi position and check for 27.405. If necessary, alter value of C76 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the leg of R 58 opposite pin 8 of the TC9106P chip.
2. Run a wire from terminal Q of the DPDT switch provided to the lifted end of R58.
3. Run a wire from terminal P to where $R 58$ was connected, Also run a wire from terminal P to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the TC9106P chip.
5. Locate pin 4 of the $T A 7310$ VCO/Mixer chip. Unsolder and lift the leg of C 88 opposite pin 4.
6. Run a wire from terminal K on the switch to the lifted end of $\mathbf{C 8 8}$.
7. Run a wire from terminal J to where $C 88$ was connected.
8. Run a wire from terminal L to the yellow dot post of the epoxy pak.
9. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate $42-86,1-40$ and half channels 1A-40A.

5KC OFFSET

FIG. 2.

l. Wire up the SPDT switch and the trimmer capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 crystal and C3l0/trim cap.
3. Solder the wire from the switch to each side of the cut trace.
4. With switch in low position, adjust VC for 27.410 on Ch. 40 .
5. Switch to the high position and check for 27.405. If necessary, change the value of the trim cap to compensate.

CHANNEL CONVERSION

1. Cut the foil trace between pin 20 of the LC-7131 PLL chip and D401.
2. Solder a leg of the 4700Ω resistor (supplied) to pin 20.
3. Run a wire from the other leg of the resistor to terminal Q of the DPDT switch provided.
4. Run a wire from terminal P to the other side of the cut trace. Also, run a wire from P to the unmarked post of the epoxy pak.
5. Run a wire from terminal S to ground.
6. Locate pin 4 of the TA73l0 VCO/Mixer chip. Unsolder and lift the leg of C314 opposite pin 4.
7. Run a wire from terminal K on the switch to the lifted leg of c3l4. 8. Run a wire from terminal J on the switch to where $C 314$ was connected. 9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
8. Run a wire from the red dot post of the epoxy pak to pin 18 of the LC7l3l chip.
Now this unit will operate on channels $42-86,1-40$ and half channels $1 \mathrm{~A}-40 \mathrm{~A}$.

9. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
10. Cut the foil trace between the 10.240 crystal and $R 88 / L 21$ as shown in Fig.2.
11. Solder the wires from the switch to each side of the cut trace.
12. With switch in low position, adjust VC for 27.410 on Ch. 40.
13. Switch to the high position and check for 27.405. If necessary, adjust L21 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the end of $R 92$ opposite pin 8 of the TC9106P PLL chip.
2. Run a wire from terminal Q on the DPDT switch provided to the lifted end of R92.
3. Run a wire from terminal P on the switch to where $R 92$ was connected and also to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the TC9106 P chip.
5. Locate C 98 (next to L20) and lift the leg of C98 connected to C158.
6. Run a wire from the lifted leg of C 98 to terminal K on the switch.
7. Run a wire from where $C 98$ was connected to terminal J on the switch.
8. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
9. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate in channels $42-86,1-40$ and half channels 1A-40A.

5KC OFFSET

FIG. 2 .

1. Wire up the SPDT switch and trim cap as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and VCl/C47,Fig.2.
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust VC for 27.410 on CH. 40.
5. Switch to high position and check for 27.405, adjust VCl if necessary to obtain this reading.

CHANNEL CONVERSION

1. Unsolder and lift the leg of R7l opposite pin 8 of the TC9106P PLL chip.
2. Run a wire from terminal Q on the DPDT switch provided to lifted leg of R71.
3. Run a wire from terminal P on the switch to where R7l was connected. Also, run a wire from Terminal P on the switch to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the TC9106P chip.
5. Unsolder and remove Cll3 (just off pin 4 of the TA73l0 VCO/Mixer chip)
6. Solder one leg of the 47 pf capacitor supplied to pin 4 of the TA73l0 chip.
7. Run a wire from the other leg to terminal K on the switch.
8. Run a wire from terminal J on the switch to where other end of Cll3 was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the unmarked terminal of the epoxy pak to ground. Now this unit will operate on channels 42-86, 1-40 and on half channels 1A-40A.

5KC OFFSET

FIG. 2.

1. Wire up the SPDT switch and trim cap as shown in Fig.l.
2. Cut the foil trace between the 10.240 Mhz . crystal and C 42 as shown in Fig. 2 .
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust the vc for 27.410 on Ch. 40.
5. Switch to high position and check for 27.405. If necessary, alter the value of c42 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the leg of R 47 opposite pin 8 of the TC9106P PLL chip.
2. Run a wire from terminal Q on the DPDT switch provided to the lifted leg of R47.
3. Run a wire from terminal P on the switch to where $R 47$ was connected. Also run a wire from P to the red dot post on the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the TC9106P chip.
5. Locate, unsolder, and remove Cl44 and Cl36 (off of pin 4 of IC2-TA310P VCO/Mixer chip).
6. Solder one leg of the 47pf capacitor provided to pin 4 of IC2.
7. Run a wire from the other leg to terminal K on the switch.
8. Run a wire from terminal J on the switch to where the other side of Cl36 was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate on channels 42-86, 1-40 and on half channels $1 A-40 A$.

PRESIDENT AX-7

5KC OFFSET

FIG.2.

1. Wire up the SPDT switch and trim capacitor as shown in fig. l.
2. Cut the foil trace between the 10.240 MHz . crystal and C76 as shown in Fig. 2 .
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust the VC for 27.410 on Ch. 40.
5. Switch to the high position and check for 27.405. If necessary, alter the value of C 76 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the leg of R58 opposite pin 8 of IC3, the TC9106P PLL chip.
2. Run a wire from terminal Q on the DPDT switch supplied to the lifted leg of R58.
3. Run a wire from terminal P on the switch to where $R 58$ was connected. Also run a wire from terminal P on the switch to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the TC9106P chip.
5. Locate, unsolder and remove C87 and C88 (off of pin 4 of IC2 TA7310 VCO/Mixer chip.)
6. Solder the leg of the 47pf capacitor supplied to pin 4 of the TA7310P chip.
7. Run a wire from the other leg to terminal K on the switch.
8. Run a wire from terminal J on the switch to where the other side of C88 was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the unmarked post of the epoxy pak to ground.

Now this unit will operate on channels 42-86, 1-40 and on half channels $1 A-40 A$.

PRESIDENT AX-11

5KC OFFSET

FIG. 2 .

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C69.
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust the VC for 27.410 on CH. 40.
5. Switch to the high position and check for 27.405. If necessary, alter the value of C 69 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the anode of D21 connected to pin 20 of ICl, the LC7131 PLL chip.
2. Solder one leg of the $47000 h m$ resistor provided to pin 20 of the LC713l chip.
3. Run a wire from the other leg of the $47000 h m$ resistor to terminal Q on the DPDT switch provided.
4. Run a wire from the lifted anode of $D 21$ to terminal P on the switch. Also run a wire from terminal P on the switch to the unmarked post of the epoxy pak.
5. Run a wire from terminal S on the switch to ground.
6. Locate, unsolder, and remove R 78 (off of pin 4 of IC3 TA7310 VCO/Mixer chip)
7. Solder on leg of the 47 pf capacitor provided to pin 4.
8. Run a wire from the other leg of the 47 pf capacitor to terminal K on the switch.
9. Run a wire from terminal J on the switch to where the other side of $R 78$ was connected.
10. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
11. Run a wire from the red dot post of the epoxy pak to pin 18 of the PLL chip. Now this unit will operate on Channels 42-86, 1-40 and on half Channels 1A-40A.

PRESIDENT AX43 \& SEAHAWK 40

l. Wire up the SPDT switch and trim capacitor as shown in fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C64 as shown in Fig.2.
3. Solder the wires from the switch to each side of the cut trace.
4. With switch in low position, adjust VC for 27.410 on Ch. 40 .
5. Switch to the high position and check for 27.405. If necessary, alter the value of C 64 to compensate.

CHANNEL CONVERSION

1. Unsolder and lift the leg of R54 opposite pin 8 of IC3, the TC9106 PLL chip.
2. Run a wire from terminal Q on the DPDT switch provided to the lifted leg of R54.
3. Run a wire from terminal P on the switch to where R54 was connected. Also run a wire from terminal P on the switch to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of IC3.
5. Locate, unsolder and remove C76 \& C77 (off pin 4 of IC2, the TA7310P VCO/ Mixer chip).
6. Solder one leg of the 47pf capacitor provided to pin 4 of IC2.
7. Run a wire from terminal K on the switch to the other leg of the 47pf capacitor.
8. Run a wire from terminal J on the switch to where the other leg of $C 77$ was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10 Run a wire from the unmarked post of the epoxy pak to ground. Now this unit will operate on Channels 42-86,1-40 and on half channels 1A-40A.

PRESIDENT "OLD HICKORY"

5KC OFFSET

FIG. 2 .

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Unsolder and lift the leg of C90 next to the 10.240. MHz. crystal.
3. Solder the wires from the switch to these two points as shown above in Fig. 2 .
4. With the switch on the low position, adjust VC for 27.410 on Ch. 40. 5. Switch to the high position and check for 27.405. You may need to adjust $V C l$ to obtain this reading.

CHANNEL CONVERSION

1. Isolate pin 9 of the KM-5624 PLL chip by cutting the foil trace.
2. Solder one leg of the $47000 h m$ resistor supplied to pin 9 .
3. Run a wire from terminal Q on the DPDT switch provided to the other end of the resistor.
4. Run a wire from terminal P on the switch to the other side of the cut trace (anode of DlO). Also run a wire from terminal P on the switch to the unmarked post of the epoxy pak.
5. Run a wire from terminal S on the switch to ground.
6. Locate, unsolder and lift the leg of C 55 opposite pin 4 of the TA7310 VCO/Mixer chip.
7. Run a wire from the lifted leg of $C 55$ to terminal K on the switch.
8. Run a wire from terminal J on the switch to where $C 55$ was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the red dot post of the epoxy pak to pin 11 of the KM5624 PLL chip.

Now this unit will operate on Channels42-86,1-40 and on half channels lA40A.

PRESIDENT JAMES K.
5KC OFFSET

FIG. 2 .

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz crystal and C62 as shown in Fig. 2 .
3. Solder the wires from the switch to each side of the cut trace.
4. With the switch on low position, adjust VC for 27.410 on Ch. 40.
5. Switch to high position and check for 27.405. If necessary alter the value of C 62 to obtain this reading.

CHANNEL CONVERSION

1. Unsolder and lift anode of $D 17$ where it connects to pin 9 of the uPD2814C PLL chip.
2. Solder one leg of the $47000 h m$ resistor supplied to pin 9 of the PLL chip.
3. Run a wire from the other leg of the resistor to terminal Q on the DPDT switch provided.
4. Run a wire from terminal P on the switch to the lifted end (anode) of Dl7. Also run a wire from terminal P to the unmarked post of the epoxy pak.
5. Run a wire from terminal S on the switch to ground.
6. Locate, unsolder and remove R93 (off pin 4 of the TA7310 VCO/Mixer chip).
7. Solder one leg of the 47 pf capacitor supplied to pin 4 of the TA73l0 chip.
8. Run a wire from terminal K on the switch to the other leg of the capacitor.
9. Run a wire from terminal J on the switch to where the other leg of R93 was connected.
10. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
11. Run a wire from the red dot post of the epoxy pak to pin 11 of the PLL chip. Now this unit will operate on Channels 42-86,1-40 and on half channels 1A-40A.

REALISTIC 410

5KC OFFSET

FIG.2.

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C76 as shown in Fig. 2 .
3. Solder the wires from the switch to each side of the cut trace.
4. With the switch in the low position, adjust VC for 27.410 on Ch. 40 .
5. Switch to the high position and check for 27.405. If necessary, alter the value of C 76 to obtain this reading.

CHANNEL CONVERSION

1. Isolate pin 20 of the PLL chip by cutting the foil trace.
2. Solder one leg of the 47000 hm resistor supplied to pin 20 of the PLL chip.
3. Run a wire from the other leg of the resistor to terminal Q on the DPDT switch supplied.
4. Run a wire from terminal P on the switch to the other side of the cut trace (anode of D10). Also run a wire from terminal P to the unmarked post of the epoxy pak.
5. Run a wire from terminal S on the switch to ground.
6. Unsolder and lift the leg of C66 connected to CF3/R109.
7. Run a wire from terminal K on the switch to the lifted leg of C66.
8. Run a wire from terminal J on the switch to where C66 was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the red dot post of the epoxy pak to pin 18 of the PLL chip. Now this unit will operate on channels $42-86,1-40$ and on half channels $1 A-40 A$.

5KC OFFSET

FIG.2.

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C38 as shown.
3. Solder the wires from the switch across the cut trace.
4. With the switch in the low position, adjust vc for 27.410 on Ch .40 .
5. Switch to the high position and check for 27.405 Adjust CT if necessary to obtain this reading.

CHANNEL CONVERSION

1. Isolate pin 9 of the PLL chip by cutting the foil trace.
2. Solder one leg of the 47000 hm resistor supplied to pin 9 of the PLL chip.
3. Run a wire from the other leg of the resistor to terminal Q on the DPDT switch provided.
4. Run a wire from terminal P on the switch to the other side of the trace (anode of D7). Also run a wire from terminal P to the unmarked post of the epoxy pak.
5. Run a wire from terminal S on the switch to ground.
6. Locate, unsolder, and remove c40.
7. Solder one leg of the 47pf capacitor provided to the hole opposite c4l.
8. Run a wire from the other leg of the 47 pf capacitor to terminal K on the switch.
9. Run a wire from terminal J on the switch to where $C 40$ was connected to $C 41$.
10. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
11. Run a wire from the red dot post of the epoxy pak to pin 11 of the PLL chip. Now this unit will operate on Channels 42-86, 1-40 and on half channels $1 \mathrm{~A}-40 \mathrm{~A}$.

FIG.2.

1. Wire up the SPDT switch and the trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C37 as shown Fig. 2 .
3. Solder the wires from the switch to the cut trace.
4. With switch on low position, adjust VC for 27.410 on CH. 40.
5. Switch to high position and check for 27.405. If necessary, alter the value of C 37 to obtain this reading.

CHANNEL CONVERSION

1. Isolate pin 20 of the PLL chip by cutting the foil trace.
2. Solder one leg of the 4700 ohm resistor provided to pin 20.
3. Run a wire from the other leg of the resistor to terminal Q on the DPDT switch provided.
4. Run a wire from terminal P on the switch to the unmarked post of the epoxy pak. Also run a wire from terminal P on the switch to the other side of the cut trace (anode of D8).
5. Run a wire from terminal S on the switch to ground.
6. Unsolder and remove c7l.
7. Unsolder and remove C4l.
8. Solder one leg of the 47pf capacitor supplied to the hole opposite R43/CF2.
9. Run a wire from terminal K on the switch to the other leg of the 47pf capacitor.
10. Run a wire from terminal J on the switch to where the other leg of C 41 was connected.
11. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
12. Run a wire from the red dot post of the epoxy pak to pin 18 of the PLL chip. Now this unit will operate on Channels 42-86, 1-40 and on half channels 1A-40A.

REALISTIC TRC-426

5KC OFFSET

FIG. 2 .

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Unsolder and lift the collector of $Q 804$ and at the same point lift the leg of C809.
3. Cut the foil trace between the 10.240 MHz . crystal and C802 as shown in Fig. 2.
4. Solder the wires from the switch across the cut trace.
5. With the switch in low position, adjust VC for 27.410 on Ch .40 .
6. Switch to the high position and check for 27.405. If necessary, adjust CT801 to obtain this reading.

CHANNEL CONVERSION

1. Locate, unsolder, and remove R808 (off of pin 8 of the TC9106P PLL chip.)
2. Solder one leg of the $47000 h m$ resistor provided to pin 8 of PLL chip.
3. Run a wire from the other leg of the resistor to terminal Q on the DPDT switch supplied.
4. Run a wire from terminal P on the switch to where the other leg of R 808 was connected, Also run a wire from terminal P to the red dot post of the epoxy pak.
5. Run a wire from terminal S on the switch to pin 1 of the PLL chip.
6. Remove the jumper between C807 \& C805.
7. Replace C807 with the 47pf capacitor provided.
8. Run a wire from C 807 to terminal K on the switch.
9. Run a wire from C 805 to terminal J on the switch.
10. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
11. Run a wire from the unmarked terminal on the epoxy pak to ground. Now this unit will operate on Channels 42-86,1-40 and on half channels 1A-40A.

5KC OFFSET

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C 80 as shown in Fig.2.
3. Solder the wires from the switch across the cut trace.
4. With switch in low position, adjust VC for 27.410 on Ch. 40 .
5. Switch to high position and check for 27.405. If necessary, alter the value of C 80 to obtain this reading.

CHANNEL CONVERSION

1. Locate, unsolder, and lift the anode leg of D2l (off of pin 20 of the PLL chip LC7131).
2. Solder one leg of the 47000 hm resistor supplied to pin 20 of the PLL chip.
3. Run a wire from the other leg of the resistor to terminal Q of the DPDT switch provided.
4. Run a wire from terminal P on the switch to the unmarked post of the epoxy pak. Also run a wire from terminal P to the anode of D2l.
5. Run a wire from terminal S on the switch to ground.
6. Unsolder and remove C84 and C85 (off pin 4 of TA7310 VCO/Mixer chip).
7. Solder one leg of the 47pf capacitor provided to pin 4 of the VCO/Mixer chip.
8. Run a wire from the other leg of the capacitor to terminal K on the switch.
9. Run a wire from terminal J on the switch to where the other leg of C84 was connected (Rll2).
10. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
11. Run a wire from the red dot post of the epoxy pak to pin 18 of the PLL chip. Now this unit will operate on Channels 42-86, l-40 and on half channels $1 A-40 A$.

5KC OFFSET

FIG. 2.

1. Wire up the SPDT switch and trim capacitor as shown in Fig.l.
2. Cut the foil trace between the 10.240 MHz . crystal and C76 as shown in Fig. 2 .
3. Solder the wires to each of the cut trace.
4. With the switch in the low position,adjust VC for 27.410 on Ch.40.
5. Switch to the high position and check for 27.405. If necessary, alter the value of C 76 to obtain this reading.

CHANNEL CONVERSION

1. Locate, unsolder, and lift the leg of R63 opposite pin 8 of the TC9106 PLL chip.
2. Run a wire from the lifted leg of K 63 to terminal Q on the DPDT switch provided.
3. Run a wire from terminal P on the switch to where $R 63$ was connected. Also run a wire from terminal P to the red dot post of the epoxy pak.
4. Run a wire from terminal S on the switch to pin 1 of the PLL chip.
5. Locate, unsolder, and remove $\mathrm{C} 88 \& \mathrm{C} 89$ (off pin 4 of the TA7310P VCO/ Mixer chip.)
6. Solder one leg of the 47pf capacitor provided to pin 4 of the VCO/Mixer chip.
7. Run a wire from terminal K on the switch to the other leg of the 47pf cap.
8. Run a wire from terminal J on the switch to where $C 89$ was connected.
9. Run a wire from terminal L on the switch to the yellow dot post of the epoxy pak.
10. Run a wire from the unmarked post of the epoxy pak to ground. Now this unit will operate on Channels 42-86,1-40 and on half channels $1 A-40 A$.

40

Connect a SPST switch between pins 3 and 13 of the M58472 PLL chip. This gives channels 27.285-27.575.

GENERAL ELECTRIC 3-5813A/3-5869A
First change $03 A$ Chip with $02 A$
Connect a SPST switch between terminal labelled E and 5 on board. This gives channels 27.425-27.565. Pull Q503 for maximum modulation.
MECTRON ME-402

On channel selector board cut the sixth trace and connect a a SPST switch across the cut. This gives channels 27.405-27.595 on channels ll-27.

SPARKOMATIC CB 4020S
Behind the front panel cut the sixth trace from the left and add a SPST switch across cut. This gives channels 27.285-27.595 on l-27.

A NOTE FROM BROWNING REGARDING PING

The "ping" ("squeal," "scream;" "whistle," etc.) that was common in the older base stations; i.e., R-27/S-23, Mark II, Mark III; is alas, no longer legal for use in the Golden Eagle Mark IV. The Federal Communications Commission (FCC) has disallowed the familiar ping, and we have had to make modifications to the Mark IV in order to meet Type Acceptance.

The ping was caused by the screen by-pass capacitor on V206, storing the supply voltage ($B+$) on the receiver for a few milliseconds after the transmit relay opens the $B+$ circuit.

We had to remove the ping by changing the screen by-pass capacitor in the receiver from a $20 \mathrm{MFD}, 450 \mathrm{VDC}$ to a $2 \mathrm{MFD}, 450 \mathrm{VDC}$. This action decreased the RC time constant to the point that the feedback would not occur.

Any modification to this circuit on the Mark IV would be in direct violation of FCC Rules and Regulations and would also void all warranty to the equipment.

VARIOUS MODULATION ADJUSTMENT

Browning Sabre
Clip R75 for maximum modulation.
Cobra 29 GTL
Clip Dll for maximum modulation
Cobra 1000 GTL
Clip TRI6 for maximum modulation
We use the Turner Super Side Kick mike for performance you can't touch.

Midland 102 M
RV201 Adjust for maximum modulation.
Midland 13-858
RV-2 Adjust for maximum modulation. Jump D3 for more power.
Morse 2001
VR202 Adjust for maximum modulation

Pace CBl4 4

R92 Adjust for maximum modulation
Panasonic RJ3200
R74 Adjust for maximum modulation (Located near antenna connector)
Roberts 40Ch.
VR202 Adjust for maximum modulation
Royce 1-650
For maximum modulation, jump C 302 with a wire.

BOMAN CB920 (02A)
SYNTH:
CTl Adjust for $10.240 \mathrm{Mhz} \pm 50 \mathrm{~Hz}$. @TPl. on Ch.19.
Tl Adjust for maximum RF @ TP2 on Ch.l9.
.Ll Adjust for 3.6 v on Ch .1 @ TP8. Ch. 40 Approx. 1.9 v (VCO)
With Frequency Counter of TP3 check for 3.3 Mhz .
Peak T2,L2, on Ch. 19 using O-scope @ TP4.
With Frequency Counter on TP4, check for 37.660 on Ch.l. Key XMTR on Ch.l, Check for 26.965 MHz .

RX:
Peak Tl0,T9,T8 on 455 KC .
Peak T7,Ll4,T6,T5 on Ch.19.
RV1 Squelch Range
RV3 S Meter S9=100uV.
TX:
Peak L5,T3,T4,L7,Lll,L12.
RV2 Modulation Adj.
RV4 RF Power Meter
FREQUENCY CONVERSION:
Cut Trace on pins 9 and 10 of ICl , PLL02A chip. Install 4.7 K resistors across cuts, Wire up a DPDT Center Off Switch as Shown:

RX: \quad - 31 , Squelch Range
R-24, S Meter
TX: R-109, RF Meter
Peak Tl0,Tll,Tl2,Tl3,Tl4,L3,L6,L7 (Pour It On!
Unit has 12 W Driver \& 25 W Final!)
AMC Defeat---D-17

CHANNEL MASTER CB6834

RX:
Peak T304,T303 on 455 KC .
Peak T302,T301,L102,L101 on Ch.19.
VRI A G C
VR 3 Squelch Range
VR 4 S Meter
TX:
Peak L901,L903,L905.
F901 is T.V.I. Filter
VR6 is Modulation control (or remove Q503)
VR 7 RF Power Meter
MIKE WIRING: 4 Pin Locking Ring Type.

1. REC. (Black)
2. Audio hot (Yellow)
3. Xmit (White)
4. Shield

COBRA CAM89

RX: VRl2 Adj. for 13.4 V @ TR2l emitter.
Peak T5,T6,T8 on 455 KC .
Peak Tl,T2,T3,T4,Tll,T12,Tl3,T14 on Ch. 11 .
VRl A G C adj.
VR3 Squelch Range
VR7 S Meter $59=100 u V$.
TX: Peak T15,T16,T27,Ll3,L12,L9.
VRll Modulation Meter Adj.
VR6 RF Power Meter
L7 TVI filter
X1, X2, X3, X4, X5, X6, can be switched for new channels.
23.085 gives $26.760,26.770,26.780,26.800$.
23.090 gives $26.765,26.775,26,785,26.805$.
23.140 gives $26.815,26.825,26.835,26.855$.
23.190 gives $26.865,26.875,26.885,26.905$.
23.240 gives $26.915,26.925,26.935,26.955$.
23.590 gives $27.265,27.275,27.285,27.305$.
23.640 gives $27.315,27.325,27.335,27.355$.
23.690 gives $27.365,27.375,27.385,27.405$.
23.740 gives $27.415,27.425,27.435,27.455$.
23.790 gives $27.465,27.475,27.485,27.505$.

Kit \#4 can be used to switch 4 Xtals with one switch. (Kit \#4 can be obtained from "Secret CB")

X9 can be switched to pick up missed channels.

Even channels from 26.510 - 26.800 can easily be obtained by switching Xl2 and Kl as shown.

MIKE WIRING: 4 Pin Locking Ring Type - Electronic Switching

1. Shield
2. Audio hot (White)
3. Omit (Red)
4. REC (Black)

COLT 350 (M-374) D86IC-PLL

RX: R-44, Squelch Range
TX: L29,L30,L31,L32,L33,L34,L37.
R-121 Mic Gain (Adjust for Maximum!)
Q-17 (Remove)
L-19,L20 (Adjust for maximum modulation without distortion.)
J.C. PENNEYS 981-6225 (981-8352) HD42851A2 - PLL
R-417 RF Meter
R-2 ALC
R-312 S Meter
R-336 Squelch Range
R-314 A G C
TX: Peak T401,L403,L406
c-2 (luf electrolytic) Modulation defeat
KRACO KB-4045 (02A)
RX:
Peak Tl0,T9,T8, on 455 KC .
Peak T7,Ll4,T6,T5 on Ch.19.
RV1 Squelch Range
RV3 S Meter
TX:
Peak L5,T3,T4,L7,Lll,Ll2 for maximum RF output.
RV2 Modulation Control
RV4 RF Power Meter
FREQUENCY EXPANSION
See 02A information in previous issues.
MIKE WIRING: Electronic Switching

1. Audio Hot (White)
2. Shield
3. REC (Black)
4. Xmit (Red)

MIDLAND 13-862

RX: Peak T3,T4,T5,on 455 KC for maximum.
Peak Tl,T2,T18 for maximum.
R45 S Meter S9=l00uV.
TX: Peak T7,T8,T9,Tl0,Tll,T12,T13,T14,L3,C5.
Cl,C2,Ll TVI filter
R3 RF Output Meter
R58 Modulation Adj.
No polarity Protection Diode. Unsolder wire from Tl7 to Power Switch. Install a HEPl70 (\#99) silicon diode as shown:

X1, X2, X3, X4, X5, X6, can be switched for new channels.
37.395 gives $26.760,26.770 .26 .780,26.800$.
37.400 gives $26.765,26.775,26.785,26.805$.
37.450 gives $26.815,26.825,26.835,26.855$.
37.500 gives $26.865,26.875,26.885,26.905$.
37.550 gives $26.915,26.925,26.935,26.955$.
37.900 gives 27.265,27.275, 27.285,27.305.
37.950 gives $27.315,27.325,27.335,27.355$.
38.000 gives $27.365,27.375,27.385,27.405$.
38.050 gives 27.415,27.425,27.435,27.455.
38.100 gives $27.465,27.475,27.485,27.505$.

Kit \#4 can be used to switch 4 Xtals with one switch.

MIDLAND 13-862 continued:

X9 and Xl3 can be switched with 10.605 and 10.150 Xtals to get missed channels as shown.

MIKE WIRING: 4 Pin Locking Ring Type.

1. Audio hot (Red)
2. Shield
3. Xmit (Black)
4. REC (White)

NOTE: \#99 and Kit \#4 can be obtained direct from "Secret CB".

MIDLAND 13-879

RX: Peak IFT1,IFT2, on 455 KC . Peak Ll,L2,L3,L4, on Ch.l3.

VR3 Squelch Threshold
VR6 S Meter l00uV= S9
TX:

> Peak L7,L8,L9,Ll0,Ll1,L15.

VR5 RF Power Meter
VR7 Adjust for 13.8 VDC.
L16 T.V.I. filter
Extra channels are obtained in same manner as in $13-862$ model previously described.

MIKE WIRING: 4 Pin Locking Ring Type

1. Audio hot (Red)
2. Ground (Shield \& Blue)
3. Xmit (White)
4. REC (Black)

No protection diode on DC.
Wire in a HEPl70 (Item \#99) as shown:
(Item \#99 can be obtained from "Secret CB".

MIDLAND 76-860 (TC9102P)

```
RX:
Peak Tll,Tl0,T9 on 455KC.
Peak T7,T6,T5, on Ch.l9.
VR7 A G C
VRl0 Squelch Range
VR3 S Meter S9=l00uV.
TlO5 is VCO.
TX:
Peak Tl,T2,L3,L4,L5.
T3 is T.V.I. filter
VR6 is Modulation Control
VR2 RF Power Meter
VCI,VRI Antenna Warning Indicator
FREQUENCY:
Use Zapper for hi-lo channels (kit 89)
Install @ Cll7.
MIKE WIRING: Electronic type 4 Pin Locking Ring Connector
1. Audio Hot
2. Ground
3. Rec
4. Xmit
Note: Kit #89 can be obtained direct from "Secret CB".
```


PANASONIC RJ-3660

RX:
Peak Tl4,Tl2,Tll on 455KC
Peak T8,T3,T2,T1 on Ch.19.
R46 Squelch Range
R143 S Meter
R163 vU Meter

TX:
Peak T5,T6,T7,T9,T10,L7,FLl,Lll for maximum RF output, R94 Modulation Control (or remove Dll and D12 and install wire from where cathode of Dll was to cathode of where Dl2 was.) R146 RF Power Meter

FREQUENCY EXPANSION
X2 (35.740Mhz) Xtal may be switched for hi-lo channels.
L2 is VCO Coil.

MIKE WIRING - Electronic Switching

1. REC (Black)
2. Audio hot (Red)
3. Xmit (White)
4. Common (shield)

UNIQUE FEATURE:
Unit includes a receiver on the FM Public Service band from 136-174Mhz 。

PEARCE SIMPSON COUGAR 23 (Late Production)

RX: Adjust T3,T4,T5,T6,CT2 for Maximum with a 455 KC signal. Peak L6,L7,Tl,T2,L8,Lll on Ch.13. VR5 Squelch Adjustment
Ll,CTl Adjust for minimum on Ch.4.
Adjust L2,L3,L4,L5,for maximum using a $25 \mathrm{Mhz}, 1 \mathrm{KC}, 30 \%$
signal input.
VR3 S Meter
TX: Peak Ll2,Ll3,Ll4,Ll5,Ll7,L22.
VR 7 RF Power Meter
L23 T.V.I. filter
VR6 Modulation Adjustment (or clip Dl5)
Xl thru X6 may be replaced for extra channels. See the Midland 13-862 previously described for Xtal frequency information. MIKE WIRING: 3 Pin Locking Ring Type - Relay Switching
l. Audio hot (Yellow)
2. Shield \& Violet
3. Xmit (Red)

PRESIDENT ZACHARY T, DWIGHT D
 with uPD 2816C PLL

Channel expansion is possible using the Zapper oscillator-injection module. Remove C79 and install kit in its place.

RECEIVER ALIGNMENT:
Peak L8, L7, L6, L5, L3, L2, L1.
VRI IF Gain.
VR3 Squelch Range.
VR2 S Meter 9=100uV.

TRANSMITTER ALIGNMENT:

Peak L24, L25, Ll7, Ll6, Ll3. Do not touch Ll0 - TVI filter.
VR6 AMC (or remove TRl6).
VR4 RF Power Meter.
VR201 Power Supply voltage output (zachary T only).
Remove Dl3 and install solid wire jumper in its place.

SYNTHESIZER ALIGNMENT:
L23 Scope or RF VTVM on TP6 - Peak.
L21 Adjust for 10.240 using frequency counter @ TP6.
L20 VCO Coil 2.lV Ch. 40 rec. $/ 3.3 \mathrm{~V}$ Ch. 40 Xmit.
Ll9 Scope or RF VTVM on TPll (IC2, pin 4) - Peak.
Ll8 Scope or RF VTVM to TP2 - Peak.

MICROPHONE WIRING:

1. Audio Shield and Common.
2. Audio Hot.
3. Transmit.
4. Receive.

NOTE: Zapper can be obtained from your favorite Secret CB Dealer or order direct from "Secret CB".

REALISTIC TRC206 (21-1635)

VR3 Squelch Range.
R53 Remove for maximum modulation. Peak L8 and Ll0 with field strength meter.

ROYCE 611

RX:

Peak T601 on 455 KC .
Peak Tl03,Tl02,Tl01,VRl01 on Ch.19.
VR102 Squelch Range
VR104 S Meter
VRl Channel 9 Alert
TX:
Peak T301,T302, L303, VCl, for maximum.
VR202 Modulation Control (or remove Q205)
VC2, VR Antenna Warning Indicator
MIKE WIRING: Electronic Switching

1. Audio hot (Yellow)
2. Shield
3. Xmit (Red)
4. REC (Green)
5. Volume (White)

SBE CORTEZ 21CB (SAMS CB58)

RX: Peak T6,T3,T4,T5,T2.
Adjust Ll for minimum using $10 \mathrm{Mhz}, 1 \mathrm{KC}$ @ 30% signal input.
VR5 5 Meter
VR2 Squelch Threshold.
TX: Peak T7,T8,T9,T10,L6,L9,L8.
CVI TVI filter
VR6 RF Power Meter
VR4 Modulation Limiter (or remove C87)
Our unit had a bad alternator whine which was cured by the installation of a GC 18-252 Hot Line Filter installed inside the chassis.

X5-X10 can be replaced or switched for additional channels.
17.760 gives $26.760,26.770,26.780,26.800$.
16.765 gives $26.765,27.775,27.785,27.805$.
16.815 gives $26.815,26.825,26.835,26.855$.
16.865 gives $26.865,26.875,26.885,26.905$.
16.915 gives $26.915,26.925,26.935,26.955$.
17.235 gives $27.235,27.245 .27 .255,27.275$.
17.265 gives $27.265,27.275,27.285,27.305$.
17.315 gives $27.315,27.325,27.335,27.355$.
17.365 gives $27.365,27.375,27.385,27.405$.
17.415 gives $27.415,27.425,27.435,27.455$.
17.465 gives $27.465,27.475,27.485,27.505$.

Kit \#4 can be used to switch 4 Xtals with one switch.
The missed channels can be obtained by switching the 9.565 with a 9.575 Xtal and the 10.020 crystal with a 10.030 .
(Kit \#4 can be obtained direct from "Secret CB")

SBE Cortez 2lCB continued:

They can be mounted on a DPDT switch as shown;

MIKE.WIRING: 4 Pin Locking Ring Connector - Relay Switching. 1. Shield 3. Xmit (Red)
2. Audio hot (White) 4. Common (Black)

SUPER SCOPE AIR COMMAND CB1040 BASE (uPD861)

RX: L401-L498
TX: L606, L607, L610
ADJ. R810 for Power Increase
R508 is AM Modulation Control
Remove Q501 to eliminate AMC (located under meter).
Comments: I recently set up one of these to 9W with $100 \%+$ modulation and have had no problems with Final or

Driver. This unit comes with a desk mike with 3 position gain setting that works real good. Also has excellent receive and a noise blanker that is hard to beat.

TENNA 10901 MSM 5807

RX:
Peak T4 and T5 on 455 KC .
Peak T3,T2,T1,L4 on Ch.19.
R26 Squelch Range
Rl6 S Meter
TX:
Peak T6,T7,T8,T9,Tl0,T1l,L3 for maximum RF
R54 Modulation Control (or remove Qll)
R3 RF Power Meter
FREQUENCY:
Tl4 is VCO Coil. Pins $12,13,14,15,1,2,3,4,5$ are address pins. (ICl) $\mathrm{X} 2,39.570 \mathrm{mhz}$, is the offset oscillator. Crystal can be switched for hi-low channels.

MICROPHONE WIRING: 4 Pin Locking Ring Type

1. Audio Hot
2. Xmit (Violet)
3. REC (Red)
4. Shield

TRS CHALLENGER 460 (861)

RX:

Peak Tl08, Tl07,Tl06 on 455 KC .
Peak Tl05, Tl04, Tl03, Tl02, Tlol on Ch.19.
VR 2 AGC
VR8 IF Gain
VR6 Squelch Range
VR5 8 Meter $59=100 u V$.

TX:
Peak Tll2, Tll4, Ll01, Ll03, Ll06, Ll07.
Ll09 is T.V.I. Filter
VR3 Modulation Control
VR4 RF Power Meter
FREQUENCY
Switch X3 (36.750) Xtal to go higher or lower.
T3 is VCO Coil.

MIKE WIRING: 4 Pin Locking Ring Type. Electronic Switching

1. Audio hot (yellow)
2. Common (shield)
3. REC (violet)
4. Xmit (red)

TRUETONE MCC4434A-57

RX: Peak T3,T4,T5 on 455KC. Peak L5,L6,L7,T1,T2 on Ch.13. VR 3 A.G.C.

TX: Peak L4,L8,L9,Ll0,Lll,Ll2,L4.
Ll T.V.I filter
VRI RF Output Meter
For maximum modulation, remove C39.
For additional frequencies, consult the information on the Midland 13-862 previously described.

MIKE WIRING: Electronic Switching.

1. Audio hot
2. Xmit
3. Rec.
4. Shield

No polarity protection diode. Add a HEP170 (\#99) as shown: (\#99 can be obtained from "Secret CB")

WARDS GEN-680A (TC 9103P)

SYNTH:
Peak Ll 02 on Ch. 19 (Scope to TPK)
Adjust TC 101 For 10.240 Mhz . (Counter @ TPK)
Adjust Ll05 (VCO) for 2 volts on Ch.l. CHeck for 3 volts on Ch.40. Peak L3 for maximum RF with scope on TPC on Ch.19. Peak Ll03,Ll04,105 for maximum. Rf with scope on TPL,Ch. 19
Xmit.
RX:
Peak T2,T1 on 455 KC .
Peak L2,Ll on Ch.19.
VRI Squelch Range
VR 2 S Meter
TX:
Peak L4,L5 on Ch.19.
Peak L6,L7,L9 for maximum.
VR3 Modulation Adjustment (or remove Q8)
FREQUENCY:
Zapper 9000, (\#89), can be installed @ Clll for extra channels.
MIKE WIRING: 6Pin Din Connector

1. White
2. Blue
3. Violet
4. Yellow
5. Sheild
6. Red

Note: \#89 can be obtained direct from "Secret CB".
WARDS GEN-696A TC-9103P PLL
Mod. Defeat (D-8)
AMC-VR 3
Peak TX-L4,L5,L6,L7,L9
Squelch Range-VR4.

25-29 MHZ FREQUENCY ASSIGNMENTS

25-29 MHZ FREQUENCY ASSIGNMENTS (cont'd)

26.930	U.S. Navy/Marine Corps.	27.750	U.S. Navy/Army
26.945	Federal Aviation Admin.	27.775	U.S. Army
27.545	U.S. Navy	27.785	U.S. Coast Guard
27.550	U.S. Navy/Army	27.794	U.S. Army
27.565	U.S. Navy/Army	27.800	U.S. Navy/Army
27.575	F.C.C.	27.825	U.S. Army
27.585	F.C.C.	27.850	U.S. Navy/Army
27.590	U.S. Coast Guard	27.870	U.S. Air Force
27.595	U.S. Navy	27.875	U.S. Army
27.600	U.S. Navy/Army	27.900	U.S. Army
27.615	U.S. Navy	27.925	U.S. Army
27.625	Federal Aviation Admin.	27.950	U.S. Navy/Army
27.630	N.A.S.A.	27.964	U.S. Navy
27.650	U.S. Navy/Army	27.975	U.S. Army
27.655	U.S. Navy	27.980	U.S. Coast Guard Reserve
27.675	U.S.Army	27.995	U.S. Army
27.700	U.S. Navy/Army	29.895	U.S. Navy
27.715	U.S. Navy	29.900	Air Force One
27.725	N.A.S.A.	29.905	Inter-Military Freq.
27.745	U.S. Navy		

ELECTRONIC TERMINOLOGY

' 90 DAY WONDER'........The thick plastic insulators sometimes used on driver and final transistors. They do not allow adequate heat transfer so we advise to replace them with standard mica type insulators with a liberal amount of silicone heatsink compound (ECG 424).
LSB-MSB................. Refers to binary bits in a digital system. LSB is the least significant bit (Po) and MSB is the most significant bit (P6). often seen used in programmable dividers address pins.
Po......................In a programmable divider chip, the least significant bit.
P6,P8, etc.............In a programmable divider chip, the most significant bits.

FET RECEIVER PRE-AMP

```
PARTS LIST:
1 - 50K Linear Taper Pot.
2 - 365 pf Variable Capacitor.
3 - .0l uf disc capacitor (50V).
l - l00K \frac{1}{4}W Resistor.
l - 9lK \frac{1}{4}W Resistor.
l - 470\Omega \frac{1}{4}W Resistor.
l - 470~ \frac{1}{2}W Resistor.
2 - Miller D-5495-A RF Transformer.
l - DUAL MOSFET ECG454,SK3065.
l - Red LED.
l - 9 Volt Battery.
l - 220^ \frac{1}{4}W Resistor.
l - DPDT Switch.
l - 47PF (50V).
```


Coils should be shielded with Miller type S-33 Shields.
LEAD from $T 2$ should be as short as possible.
Tl and T2 should be placed at Right angles.

This novel circuit uses a SN76488 Sound Generator Chip, available from Radio Shack and a hand full of resistors and capacitors

PARTS LIST
1 - SN76488 IC Chip
1 - $22 \mathrm{~K} \frac{1}{4} \mathrm{~W}$ Resistor (Red-Red-Orange)
1 - $47 \mathrm{~K} \frac{1}{4} \mathrm{~W}$ (Yellow-Violet-Orange)
1 - $16 \mathrm{~K} \frac{1}{4} \mathrm{~W}$ (Brown-Blue-Orange)
l - 5lK (Green-Brown-Orange)
1 - 300K $\frac{1}{4} W$ (Orange-Black-Yellow)
1 - . 01 uf (l03)
1 - $2.2 \mathrm{uf} / 25 \mathrm{~V}$
1 - . 047 uf (473)
2 - 33uf/25v
3 - SPST Momentary contact P.B. Switches

Pin 13 is the audio output. It can be connected to a speaker or can modulate the Xmtr by connecting to the mic input audio hot wire.

SECRET CB INDEX

LISTING ALL MODELS/CHASSIS COVERED
"SECRET CB" SERIES VOLUMES 1 THRU 13

CONVERSIONS VOL/PG	COBRA (Con't) VOL/PG	DEMC ${ }^{\text {V }}$ VOL/PG
Conversion tips for		Star II..............5/60
all SSB radios..........9/7	148GTL..................8/16	Super Satellite.....5/60
"A" Channel Mod.	2000 (C.A.P.).........6/23	
for all SSB........9/16-17	2000GTL.......5/20,7/15-17	FIELDMASTER
MB8719	COLT	Micro-mini 40 Frequency
Modification.......10/25-27		expansion details..11/37
13/33	Sx33...................3/4-7	G.E.
Tech tips on the	210 LC7130PLL.........11/33	
858 Chassis...........10/55	290....................3/4-7	Superbase 3-5875-A.10/48
Uniden 858PLL	390...................3/4-7	
update................9/8-11	480............. 3/8-15,5/39	GEMTRONIX
How to get on $28 \& 29 \mathrm{MHz}$.	485...................3/8-15	GTX77................ . 5 /39
w/the uPD858 PLL Chipl/4-7	800.................... . $3 / 4-7$	
How to increase ANL	1000..................3/8-15	HALLICRAFTERS
efficiency 70\%........ll/8	COURIER	HCM271......5/50,51,6/39
Ham Radio Crystal	Centurion PLL......l/31,61,	HYGAIN
Selector..............12/24	Centurion PLL.....1/31,61,	I-A................... $1 / 22$
	Centurion 40D........10/53	PLL................... $1 / 32$
Receiver Widebanding	Galaxy.............5/53,54	II................... $8 / 20$
for 858 Chassis.......13/34	(7/18-22	v-02A.................11/8
Thumbwheel Conversion, NEW	Gladiator PLL.... ${ }^{\text {1/31,61, }}$ 62,5/55	ITT
for 858 Chassis...13/35-37	Spartan...........1/61,62,	CB-4000M............13/61
BOWMAN	5/30,53,55	
CB910...........ll/41,13/58	CPI	J.C. PENNEY
CB930....................3/21	CPI	6246.................13/61
CB950....................5/39	300.................... 8/21	6248................ 8/24
CBH990...................5/43	400..................... $8 / 21$	JOHNSON
BROWNING L	2000...................3/25	Johnson
	2000 Low..............9/23	242-473010/49-51
LTD.1/53	2500...............5/37,38	4125/4174...........13/61
MKIII....................6/28	ALC Mod for increased	4740 (NDC40013)......11/9
MKIV.6/29-30	SSB Power.............ill/9	
MKIV, IVA............7/8-13	CRA	KENWOOD
COBRA		TS-120S.............12/22
	L131 \& L231..... 9/12-14	TS-13012/23
32XLR. $4 / 47$	L132 \& L232...........9/12	KRACO
132B....................l1/53	L232 \& Ll32 w/UPD	KRACO
132XLR. 10/45-46	2824C Chip....10/47,11/10	KCB233A...............9/15
135B.....................1/53		
135XLR. $4 / 38$	DAK	MIDLAND
135XLR Update.....10/43/46	IX5/21-23	13-883B (UPD858)....12/4
138XLR.l/20,23	IX Mod update.....9/18-19	13-882C (02A)......13/62
139XLR.1/20,23	X4/39-46	13-892..............11/10
140GTL. 3 /19,20	DELCO	79-892...o.o........oll/11
142GTL. $8 / 15$		79-893...............2/20
146GTL ll.............10/41	Delco factory AM/FM/CB	79-900................5/47
	Combo Unit.......ll/38-40	6001-7001...........11/16

SECRET CB INDEX (Cont'd)

CONVERSIONS (Con't)	
MORSE	VOL/P
3005.................. $2 / 27$	
MOTOROLA	
CM555 (TC9105P)...... 12/7	
NESCO	
1249.................. $6 / 38$	
PACE	
8092............... 6/35,36	
POLOMAR	
500.............. . . $4 / 19,20$	
	5/32-36
	8/21
PANASONIC	
RJ3600.............. 10/57	
RJ3700.......... $13 / 16-17$	
PEARCE	
Cheetah PLLl/31,32	
Simba PLL........l/31,32	
PRESIDENT	
Adams.2/16
AR144	11/17,18
AR144 UPD282	C PLL.11/41
AR144 Updat11/42
Grant.......... $1 / 22,23,59$	
	2/17,23-26
Grant (New) 5/24-27	
Honest Abe...........l/60	
John Q................ $1 / 60$	
Madison w/ll.3258..10/30	
PRESIDENT	
McKinley.u.......4/12,13	
McKinley w/ll.ll25.10/29	
Teddy R.l/60	
Washington ...1/22,23,59	
Washington w/ll.ll25	
-...........	.. 10/28-29
zachary T............l/60	
RCA	
14T302........... $5 / 11,39$	
14T302 (PLL 02AG)...4/36	
REALISTIC	
TRC-57. $12 / 28$
TRC-431	.7/23,24
TRC-448 REC	345PLL.11/16

REALISTIC (Con't) VOL/PG 'TRC-450. $10 / 31$
TRC-451........... $12 / 10-13$
TRC-455 (SM5104)12/30
TRC-457.............. . 10/36
TRC-459........... 10/32-35
TRC-480........... 10/37,38
TRC-490........... 12/14, 15
RAY JEFFERSON
CB845 (02A).......... 12/27
ROBYN

```
GT-440D................l/23
SB-505............5/41,42
SB-520D........... 2/21,22
SB-540D............5/19,36
                                7/25-38
WV-23.............ll/24,25
WV-110 (SM5104).....12/31
ROYCE
1-601................... . . \(1 / 26\)
1-612................... . \(5 / 45\)
1-632 Update........ 13/23
11/21
1-641................. \(11 / 20\)
1-642.................. . . \(13 / 24\)
```

SBE
Formula D.............. $1 / 49$
Touch Com. 1/50,51
39CB Sidebander V.2/36,37
Sidebander II.....2/28-35
Console IV.........2/28-35
Sidebander ConsoleVI.8/14
Console V2/37,38
LCBS-4.............. . 7/29-33
LCMS-4............. . 7/34-37
SEARS
562-3822070010/56
663-3810 w/2824Chip.11/22
934-3677150......12/16,17
934-36772600.....12/16,17
934-38260700......6/26, 27
10/52
934-38270700......5/28,29
934-38260700.Update.11/23
934-38270700.Update9 / 20-22
Pll D63911 w/UPD861C Chip
.12/26

SHARP
VOL/PG
CB-5470 HD42851B3..11/24 SILTRONIX

1011C................. $1 / 46$
1011D................. $1 / 46$
SOMMERKAMP
TS-788DX 13/25-30
SONAR
FS-2340.............. . $5 / 31$
STANDARD HORIZON
29-A.......... 13/63,5/58
STONER
Pro-40 4/52,53
SUPERSCOPE AIRCOMMAND

SWAN SIGNET
270
. $/ 58$

TEABERRY

52 Ch. Capability..l/43
CAP Mod.5/30
Model T.4/3,4
Racer T. $1 / 58$
Ranger T.4/1,2
$6 / 24,25$

STALKER

I (4001/4003).....4/7-9
T Bear...........4/14,15
T Dispatch......4/14,15
Titan T..........4/14,15
XV.................. 10/39
XX.................. $10 / 40$

TRAM
D12................. $10 / 56$
D42........... 4/47,5/40
D60................... $1 / 53$
D62............. . 10/45, 46
D80................. $10 / 30$
D201..... $1 / 56,3 / 22,23$
D201A Update...... 10/54
D300
$.8 / 11-13$

SECRET CB INDEX (Cont'd)

CONVERSIONS (Cont.)		
TRS CHALLENGER VOL/PG	CRAIG VOL/PG	PRESIDENT VOL/PG
460.... 4/28	L-131,L-231......9/12,14	Adams............... $2 / 16$
600..................... $4 / 28$	L-132,L-232..........9/12	Adams-858....... 13/18-20
730.................... $4 / 30$	L-231................ 12/3	Grant................l/59
1200....................4/31	DAK	Grant (NEW) $8 / 34$
850/1400....4/21-27,32-35	DAK	Grant-8719...... 13/21-22
	X...................... $4 / 45$	McKinley........... $4 / 12$
TRUETONE	FANON	Washington..........l/59
CYJ-4837A-87.........11/14	FANON	Washington. (New) . 8/33, 34
VICTOR	Fanfare 350 F...l3/ll-12	RCA
770................ 4/56,57	GEMTRONICS	
790................ 4/58,59	GTX-77.............. $4 / 49$	14T302..............4/49
WARDS	HYGAIN	REALISTIC
719A w/UPD2824 Chip..ll/10	623..................l/33	TRC-47...............l/41
	674-A...............4/60	TRC-48...............l/42
YAESU		TRC-458.........8/39,40
100..................... $5 / 58$	JC PENNEY	ROBYN
FT-901.............. . .6/3-12	6248............ 13/14-15	
FT-7B.............. . $7 / 38-41$	981-6247............13/13	$\text { SB-540D 。. . } 5 / 19$
FT-707............ $10 / 20-24$	JOHNSON	T240D..............13/63
**************************	352l/34	ROYCE
SLIDE MODIFICATIONS	MIDLAND	1-632.........13/23,5/41
BOMAN VOL/PG	13-892..............11/13	1-641................ $4 / 51$
950...................... $4 / 49$	13-893..............4/51	1-642...............13/24
COBRA	13-898...............l/36	SBE
COBRA	13-898B..............l-35	
132-A................... $1 / 28$	79-960.............. . $5 / 47$	Sidebander II.o.....1/47
135-A..................1/28	N.D.I.	Sidebander V..... $2 / 3 / 38-450$
135-B................... $1 / 29$	N.D.I.	Console IV........2/28-35
138..................... $1 / 28$	PC-201 (NDC40013PLL) 12/8	Console V. .2/28-35,38-40
139.................... $1 / 30$	PACE	Console V..2/28-35,38-40
25GTL. $13 / 57$	PACE	SEARS
140GTL. $4 / 50$	1000.............l/37,38	934-38270700.5/28,9/20-22
142GTL. 4/50,8/35-37	DX1023B............. $1 / 39$	934-38310700. 5/19
135XLR................. $8 / 38$	8092............... . 6/37	Roadtalker SM5l04..12/18
2000GTL $12 / 20$	8193 (CCl3001)......12/9	
COLT	POLOMAR	SILTRONIX
485.......... 4 /49	500........ 4/19,5/32,35	SSB..................l/45
COURIER	PANASONIC	STONER
Centurion..............l1/61	$\mathrm{RJ}-370013 / 16-17$	Pro-40...........4/52,53
Galaxy.................. $5 / 53$	PEARCE	TEABERRY
Gladiator PLL..........ol/61	PEARCE	Stalker IX/XV......4/7,8
Spartan................. $1 / 61$	Bengal............... $1 / 40$	Stalker IX/xV......4/7,8
	Cheetah..............l/40	
CPI	Simba................ $1 / 40$	
2500.................... . 5 /37		

SECRET CB INDEX (COnt’D)

SLIDE MODIFICATIONS (Cont.)		
TRAM VOL/PG	COBRA VOL/PG	COURIER VOL/PG
D60......................1/52	19...................... $7 / 51$	Blazer 40D.............3/58
D64.....................13/31	19GTL.................. $12 / 34$	Centurian 40D........13/10
D201......................1/56	21GTL............... $3 / 41,58$	Classic PLL 40.........3/43
D300.....................12/19	21XLR.................. $1 / 20$	Classic PLL 40 updatel0/59
***************************	21XLR Update..........10/58	Fanfare 125F...........3/43
	25GTL...............3/41,58	Fanon Rouge 40.........3/43
SPECIFIC RADIO TUNEUPS	29GTL................... 3/45	Nightrider 40DR.......3/46
AIR COMMAND	29LTD................... $13 / 59$	Rangler 40D............3/58
ARE ${ }^{\text {a }}$	29XLR.................... $1 / 20$	Redball..................1/21
CB640.....................5/38	32XLR...................3/58	Renegade 40............3/46
ALARON	45XLR....................... $12 / 34$	CRAIG
B-4075.................. $9 / 30$	47XLR.................. $3 / 45$	Ll01.............6/20,11/42
B-4900.................. 9/30	50XLR....................3/43	L102.....................6/20
B-5050A..................9/30	55XLR...................3/43	L131....................10/59
B-5200...................3/41	66GTL. $10 / 58$	L231 (AM, SSB).........10/60
AMERICAN MOTORS	77x..................... $9 / 30$	CYBERNET
3221847/48/49/50......12/34	78XLR.......... 4/49,6/19	AM Radios..............13/59
AUDIOVOX	86XLR. $3 / 45$	DAK
MCB750....................3/41	89GTL....................6/18	Mark II................10/60
MCB5000.................11/42	132XLR..................3/45	Mark V.................12/34
MDV6000.................. .6/18	135XLR.................3/45	DELCO
AUTOMATIC	139..................... $1 / 20$	DELCO
CBH2265..................3/41	140GTL.3/20,58,4/50 142GTL.4/50	70вFMC3. $2 / 43$
BOMAN	148GTL.6/19	90вCBl. 10/60
	1000GTL.................6/18	90bFMCl................ 12/26
CB555.....................3/44	COLT	90BFTCl (FM, AM, CB) ... 10/60
CB750....................2/43	COLT	90bFPCl................12/26
CBH900...................3/44	222......................6/20	91YFMCl................12/26
CB910...............1/21,3/44	290.................... 3/40	
CB920.....................1/21	390.... 3 3/4	FANON
CB930..............1/21,3/44	480...................3/8,58	10-40...................6/20
CB950.....................3/43	485................ $3 / 8,6 / 19$	Fanfare 182F...........3/41
CBR9600.............2/42,3/41	800.... $3 / 4$	Fanfare 184DF..........3/47
CBR9940..................3/44	800 Update............10/58	Fanfare 185PLL.........3/46
CBR9950..................10/58	1000..................3/8,58	Fanfare 190DF....3/47,7/51
CHANNEL MASTER	1200.................9/30,31	Fanfare 350F...........3/47
CB6835...................6/18	CAMMANDO	FORMAC 13/11-12
CHRYSLER	2340..................... $1 / 21$	40..................... $10 / 60$
4048076/8077............6/18	CONVOY	GE
CLARION	CON-400.................3/58	3-5800A................3/50
DMA066.................. . . $3 / 45$	CPI	3-5804B.................6/21
JC202E.................. $3 / 45$	CP400................... 10/59	3-5804F.................10/61
RCJ003.................. . $3 / 45$		3-5804G...............12/35
TC203E................... .6/18		3-5805A................9/31

SECret cb inidex (Cont‘d)
SPECIFIC RADIO TTINEUPS (CONT.)

GE (Cont) VOL/PG
3-5811в.........9/31,10/61
3-5812A................. 10/61
3-5814B..................6/21
3-5817A................. 7/51
3-5818A.................2/42
3-5819A.................11/42
3-5821A..................9/31
3-5821B..................3/54
3-5825A.............9/31,32
3-5830....................3/42
3-5869A..................2/42
3-5871B..................3/46
3-5875A.9/32
3-5900A................ . 12/35
GEMTRONICS
GT44......................2/42
GT55...................... 3/48
GTX66....................6/21
GTX77....................6/21
GTX4040.................. $3 / 48$
GTX5000...... 13/60,3/42
GM
CBD-20U................ . 12/36
CBD-203..................3/48
4120...................... 3/46
4145..................... 9/32
4175....................... 3/46

HYGAIN
VIII......................3/59

674A....................4/60
v674B.....................1/21
2701....................... $2 / 42$
2702......................3/48
2703......................3/48
2716.................... 12/36

ITT
4400M.................... 4/17
J.C. PENNEYS

981-6204................9/32
981-8360............... 10/61
981-6247...............11/14
981-6248........... 13/14-15
981-7461
9/32
JIL
615CB
$.11 / 42$
JOHNSON VOL/PG

123A $1 / 21$
Viking 200.............12/36
Viking 260/270..........3/49
Messenger 40...........12/36
Messenger 50............7/51
Messenger 80 (242-0080)7/51
Messenger 4120.........3/47
Messenger 4135.........3/48
Messenger 4140/4145...3/54
Messenger 4170/4175...3/47
Messenger 4170/4175 Update
...........................11/43
Messenger 4250.........3/48
Viking 4330/4360......11/43

KRACO

КСВ-2340................... 2/42
ксв-4000.11/43
ксВ-4003. 3/43
КСВ-4005..........9/38,11/43
ксВ-4020. 3/49
кСВ-4030.................. .8/44
КСВ-4088...................3/50
KRIS
XL25.........................2/43
LAFAYETTE
Comstate 525...........11/45
Dynacom 40..............11/44
HB640. 2/43
LM-100 (PLLO2A).......12/36
LM-300. 12/37
SSB140....................11/44
Telestat 1240...........5/14
LAKE
410......................... 12/37
450. $12 / 37$
600......................... 12/37

MEDALLION
63-240..................... 3/50
MIDLAND
150 м7/52
13-867....................13/62
13-882C...................13/62
13/893......................4/51
63-445....................11/45
76-858.....................3/49
77-101B................... $8 / 44$
77-101C..................12/38
MIDLAND (Cont.) VOL/PG 77-821..................3/42
77-824................... 8/44
77-824B.................12/38
77-824C. 12/39
77-838....................9/33
77-849....................3/50
77-856...................11/45
77-861................... $3 / 50$
77-861B................11/45
77-865................... .9/33
77-899.................. . .9/33
77-963....................3/42
78-574......... 9/38,12/39
79-892.................... 3/49
79-893...................2/20
79-900...............9/33, 34
3001..................... 12/37
4001 (77-004)......... 7/52
5001.................... 12/37
7001 (79-007).....11/45,46
78-999 (02A)...........12/7
79-891 (02A)...........12/5
MOPAR

> 4094173.................3/51
> 4094176...................3/51
> 4094177....................3/49
> 4094178....................3/60

MOTOROLA
T4000A/05A10A/20A.... 3/50
CF925AX................11/46
Mocat 40....o..........11/46
NDI
PC-102................... $11 / 46$
PC-200................ $7 / 52$
PACE
8003.....................11/47
8008.......................2/43
8016.....................11/47

8046
.9/33
8113 12/39
8117 11/47
8155 9/34,12/40
8193. $.7 / 52$

PALOMAR
49........................3/60
500......... 4/19, 5/32
4100.......................3/54
3/54

SECRET CB INDEX (COnt'd)

SPECIFIC RADIO TUNEUPS (Cont.)CR-B474EU (AM,FM, CB)9-94RJ...11/48RJ-360013/16,17
PEARCE
impson Leopard B13/623/60
-.10/62PRESIDENT
AR-7.10/63
AX-7112/16
Andrew J10/62
James K.
9/34
Washington
9/36
14 T300
3/53
14 T303
4/37
TRC-471/21
TRC-99A.4/37
TRC-1804/37
TRC-200 Update10/63
TRC-20510/63
TRC-209 (GRE7189PLL-VC)12/49
TRC-41012/41TRC-421A9/35

REALISTIC (Cont.) VOL/PG TRC-422................. 8/45
TRC-422A. 10/64
TRC-424...........3/57,9/35
TRC-425................ . 7/53
TRC-426................ . 10/64
TRC-427................ . . . 8/45
TRC-428................. $11 / 48$
TRC-431............... . . . 4/37
TRC-432. 11/48
TRC-440.......... . . $8 / 45$,9/35
TRC-441................11/49
TRC-448.........3/51,10/64
TRC-449....... 3/51,9/35,36
TRC-452...........1/21,3/52
TRC-454................. . $8 / 45$
TRC-455.................. . $3 / 60$
TRC-457.9/35, 36
TRC-458................. . 10/64
TRC-461................... $3 / 51$
TRC-462.................. .9/36
TRC-466....................3/51
TRC-468................... . $3 / 51$
TRC-470......... 9/39,12/41
TRC-471................ . $8 / 45$
TRC-480................. . $7 / 53$
TRC-490................. . $11 / 49$

ROBYN

wV110. 3/56
WV110 Update..........11/50
LB120...................... 3/52
DG130D.....................3/56
007-140.................. 3/52
T240D.13/60-63,3/56
sx-401................... . 3/57
sx-402D................... 3/57
GT-410D..................3/57
AM500D.................... $3 / 57$
SB-505................... . $5 / 42$
SB-520D..................2/22
ROYCE
582 (PLL3001)........12/42
604.......................12/42
607...................... $12 / 42$

1-617..................... $3 / 52$
1-619.................... $3 / 56$
1-621.....................3/57
1-625.....................3/56
1-639....................12/41
1-641..............3/60,4/51
1-642....................13/24

ROYCE (Cont.)	VOL/PG
1-651	7/55
1-655	. $11 / 50$
1-660.	. . .2/42
1-673.	. $3 / 52$
1-675	. $3 / 53$
1-680.	. $3 / 52$
SBE	
26CBlA.	. $3 / 61$
42CB Cortez 40	. . .3/61
44CB.9/36
45CB Trinidad	...3/61
49 CB Tahoe 40.	. $3 / 53$
47CB.........	. . .3/53
43CB. $3 / 53$
LCB-8 (uPD2816C)	.12/43
LCM-5Land Comm	. . .9/36
LCM-8........	..9/36
LCM-8 (PLLO3A)	.12/42
LCMS-8(uPD2816	.12/43
SEARS	
CM-6000LA. .	. $3 / 59$
CM-600LC.	. $3 / 59$
Roadtalker 40	. . $2 / 43$
370-38050700	...3/54
562-38200700	. $3 / 55$
663-38020800	. $7 / 53$
663-38070700	..3/61
934-38061700	.11/50
934-38062700.	. .10/65
934-38080700	. . .9/37
934-38081700	. $9 / 38$
934-38120700.	..3/61
934-38260700.	.0.7/53
934-38270700	. . $7 / 54$
934-38310700。	7/54,55
SHAKESPEARE	
GBS240................ 3/53	
SHARP	
CB-23.	.13/63
CB-800...	.2/42
CB-2170	.12/43
CB-4370.	.12/43
CB-4470.	.12/44
CB-4670.	. $7 / 55$
SONAR	
FS-2340...。	. .5/31

SECRET CB INDEX (Cont'd)

VOLUME 1

	PAGE \#
CRYSTAL CROSS REFERENCE GUIDE	5-10
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION	11-18
GENERAL INFORMATION	63-67
LInEARS	68-70
40 Channel Pll SWItch	71-72

VOLUME 2

	PAGE \#
NEW CRYSTAL CROSS REFERENCE GUIDE	$5-9$
LETTER CHART FOR CRYSTAL FREQUENCY CORRELATION	$10-13$
ANTENNA REPORTS	$53-55$
BETA-COM INFO (Upgrading 23 channel radios)	$57-87$

VOLUME 3
PAGE \#
SUPER MOD. IV (Frequency Counter Kit) 16-18
MICROPHONE WIRING INSTRUCTIONS 26-32
PLL CHANNELIZER 33-40
ANTENNA SECRETS (K40 Stud Mount for Big Stick) 63-64

SECRET CB INDEX (Cont'd):

VOLUME 6

PAGE \#
PLL CRYSTAL CROSS REFERENCE GUIDE 1-2
SECRET CB TEST TONE 13
ERRONEOUS SIGNAL LOCATOR 14
LOW COST AMATEUR CONVERSION FOR 10 METERS 15
BASE ANTENNA GROUNDING 16-17
SUPER CLARIFIER 10-TURN POT 22
OOPS! WE GOFFED! 25
Vol. 5, Page 19, 20, 28 25
THUMBWHEEL 200 CHANNEL CONVERSION FOR 858 CHASSIS 31-34
REDCO UFO APPLICATIONS 40-52
SPECIAL SECTION ON LINEAR AMPLIFIERS:
PDX 400 54
D \& A Maverick 250 55
Maco Duster 300, 750 \& 1000 Transmitter 56-57
Maco 75 58
500 CX \& 700 CX 10 to 11 Meter Conversions 58
RDX-75 59
HDX-50 59
MDX-200 60
PDX-400 61
10 METER EXPERIMENTER BOARD INFORMATION 62-63
SUPER CLARIFIER HINTS 66
REDCO DX-50 68-70
VOLUME 7
PAGE \#
HOW TO MAKE YOUR EAGLE SCREAM 14
IMPROVED SLIDE MODIFICATION FOR O2A SSB RADIOS 42
UPDATED 200 CHANNEL AMATEUR CONVERSION FOR 858 CHIP 43-48
10 METER CONVERSION FOR SSB RADIOS USING MB8719 CHIP 49-50
HOW TO MAKE YOUR 858 CHASSIS SLIDE 56
LINEAR AMPLIFIER NOTES 57
ECHO BOX SPEECH PROCESSING FOR TRC-449 60
ADDING PING 61
CORRECTION TO THUMBWHEEL 200 CHANNEL CONVERSION 62-63
MICROMONITOR TECH NOTES 64-69
MICROMONITOR INSTALLATION INSTRUCTIONS FOR RADIOS USING 858 CHIP 70-71
AMP FOR RF PROBE 72
OSCILLOSCOPE MODIFICATION FOR RF \& MODULATION DISPLAY 73
THE "BANDIT" ANTENNA 74-76
EXPO 100 KIT 76
SECRET CB'S OWN "TROUBLESHOOTER" 77

SECRET CB INDEX (Cont'd):

VOLUME 8	
	PAGE \#
WHAT"S NEW ON THE ELECTRONICS HORIZON?	1-6
UHF FM CB (GMRS)	7-10
UNIDEN MB8719 PLL CHIP FREQUENCY CONVERSION	15
FREQUENCY MOD. FOR J.C. PENNEY, COLT, LAFAYETTE, HYGAIN, ETC.	18
BROWNING MKIVA MOD. \& UFO INSTALLATION	22-23
BROWNING MKIV TRANSMITTER TROUBLESHOOTING	25-32
OOPS! WE GOOFED!	41-43
Vol. 5, Pages 3l-34	41
Vol. 7, Pages 31, 37	42-43
LINEAR AMPLIFIER NOTES:	
Installing \& troubleshooting Linear Amplifiers	47-49
10 Meter Amp board modification to upright driver	50
YOU CAN BUILD IT	
Two-Tone Generator	51
Yaesu $601(B)$ frequency counter modification to read CB Low, Middle, High	
frequencies	52-54
RF Test Meter	56-57
REDCO UFO MODIFICATION (form 20 to 29.995 MHz)	55
SECRET CB'S POWER VECTORING	58
HOW THE ECHO BOX CAN ACTUALLY SURPASS THE POWER OF A LINEAR IN SSB	59
MICROMONITOR QUESTIONS	60-62
MICROMONITOR INSTALLATION INSTRUCTIOSN:	
SM5104 PLL	63-64
ICOM 22S	65-67
NEW PRODUCT RELEASE:	
Zapper 9000	68-69
Redco Digi-Scan UFO Elite	70
Chopper Charlie Antenna, Model 64 \#5	71
Troubleshooter	73
VOLUME 9	
	PAGE \#
SSB'er LOSE OUT AGAIN	1
FCC ANNOUNCES PLANS FOR SIDEBAND	2-3
FCC DELAYS NPRM; SSB RREQS. DOUBTFUL	3-4
PRODUCT REVIEW; SPEED-O-MATIC "SPEEDO-1" X-BAND RADAR GUN	5-6
RELAY CRYSTAL SWITCHING	25-26
LETTER FROM A FRIEND	27-28
HINTS \& KINKS-ELECTRONIC CRYSTAL SWITCHING	29
SOLVING T.V.I.	40-42
IMPORTANT FACTS ABOUT ECHO BOXES	43-44
VOICE SIGNAL BOOSTER (VSB-1) INSTALLATION	45-48
POWER SUPPLY MODIFICATION FOR REALISTIC PRE-AMP NOISE-CANCELLING MIKE \#21-1175	49-50
HINTS \& KINKS- SWITCHABLE MODULATION INCREASE	51
RF ATTENUATOR	52-54
PRESIDENT SERVICE BULLETINS	55-61
OOPS! WE GOOFED!	
Vol. 8, Page 17	29
Vol. 4, Page 51	44

VOLUME 10	
	PAGE \#
LETTER FROM VIC	1
SECRET CB'S TROUBLESHOOTER	2-4
VOICE SIGNAL BOOSTER- "VSB-1"	5-19
UNCONVERTIBLE CHIP LIST	66
MODULATION ADJUSTMENTS FOR NEW RADIOS	67
LINEAR SUGGESTIONS	68-69
ZAPPER INSTALLATION HINTS	70
OOPS! WE GOOFED!	
Vol. 3, Page 33	71
Vol. 5, Page 24, 28 \& 48	72
Vol. 8, Page 16, 17	72-73
Vol. 9, Page 9, 51	74-75
Vol. 9, Page 29	72

VOLUME 11	
	PAGE \#
CPI ALC MODIFICATION FOR INCREASED SSB POWER	9
VSB-1 UPDATES	25-26
NEW FRONTIER: FM CB	27-29
NEW PRODUCT: DIGI-SCAN DS-400	30-31
COMING ATTRACTIONS-SERIAL DATA/PLL FREQ. SYNTHESIZERS	32
UNCONVERTIBLE AT THIS TIME-GE 3-5900A TC9109P	33
ZAPPER 9000 INSTALLATION UPDATES	34
RADIO MODULATION ADJUSTMENTS FOR VARIOUS BRANDS/MODELS	51-53
HINTS ON SERVICING	54
SERVICE NOTES-GOLDEN EAGLE MARK IV TRANSMITTER	55
Dl04 \& Dl04M6 ASTATIC MIKE MODIFICATION	55
HOW TO SOLVE NOISE PROBLEMS	56-58
MORE ON THE "TROUBLESHOOTER"	57
IN HOUSE VALUE LISTING	59
HOW TO BUILD	60-71
PLL PINOUT DIAGRAMS	72-77
THE "BANDIT" ANTENNA	53
OOPS! WE GOOFED!	
Vol. 3, Page 25	78
Vol. 6, Page 32	78
Vol. 7, Page 43,53,63	78
Vol. 8, Page 52	78
Vol. 10, Page 3	78
858 AM CONVERSION	35

SECRET CB INDEX (Cont'd):

VOLUME 12
PAGE \#
SIMPLE CURE FOR RX-TX TRACKING PROBLEMS 21
VSB-1 HOOK-UP:
Teaberry Stalker XX 25
Realistic TRC-490 25
Wards GEN-719A 25
MODULATION ADJUSTMENTS FOR VARIOUS REALISTICS 33
ZAPPER 9000 REFERENCE CHART 46
ZAPPER TROUBLESHOOTING HINTS 47-48
TC9106 PLL OPERATION ANALYSIS 50-53
THE "SPREAD EAGLE" ANTENNA BREAK-THRU FOR TRUCKERS 54-55
BASIC PLL 56
ELECTRONIC TERMINOLOGY 57
SCANNER PROGRAMMING TIPS 58
INTO THE KNOW WITH JAPANESE SEMICONDUCTORS 59
TRANSISTOR SPECIFICATIONS 60
RESISTOR COLOR CODE 61-62
YOU CAN BUILD IT
"Secret CB's" Super-Duper Power Supply Controller 63
Audio Test Station 64
Power Line Filter 65
OPPS! WE GOOFED!
Vol. 4, Page 38 66
Vol. 10, Page 10, 16, 28 66
Vol. ll, Page 3, 10, 15, 16 \& 71 66
"SECRET CB" INDEX ON VOLUMES 1 THRU 11 67-68
"SECRET CB" BOOK ORDER FORM 79
VOLUME 13
PAGE4-9
INTRODUCING THE SOMMERKAMP TS-788DX
32
32
MB 8719 PINOUT
38
38
AGC SELECTOR SWITCH 39
HOW TO HOOK UP A IOT POT TO 2000 GTL 40
2824C OPERATION ANALYSIS 41-43
VSB-l HOOK-UP:
TRC-448 43
MIDLAND 77-0004 4001 44
TROUBLE SHOOTING CLARIFIER PROBLEMS ON THE 858 45-47
SUPER REGULATOR 48
buILd A RECEIVER PREAMP 49
LINEAR NOTES 50-51
MODULATED GUNN OSCILLATER 52-56
REALISTIC DX300 (20-204) 64
BEARCAT 250 65

SECRET CB INDEX (Cont‘d)

VOLUME 13

(cont.) PAGE \#
OOPS! WE GOOFED!
VOL. 4, PAGE 39 66
VOL. 6, PAGE $3 \& 12$ 66
VOL. 7, PAGE 54 66
VOL. 10, PAGE $25 \& 48$ 66-67
VOL. 11, PAGE 4, 6, 10, 41, \& $75 \quad 67$
INDEX VOLUMES 1 thru 12 68-80

NOTES

80

