

contents

Page
BASIC SEMICONDUCTOR THEORY 5
TRANSISTOR CONSTRUCTION TECHNIQUES 8
Major Parameters 11
Rectifier Construction 13
BIASING 15
BASIC AMPLIFIERS 18
Single Stage Audio Amplifier 18
Two Stage R-C Coupled Amplifier 18
Class B Push-Pull Output Stages. 19
Class A Output Stages 20
Class A Driver Stages 21
Design Charts 21
Amplifier Circuit Diagrams 26
HI-FI CIRCUITS 30
Preamplifiers 30
Hybrid Preamplifier 31
Tone Controls 32
Power Amplifiers 34
Stereophonic Tape System 35
Hi-Fi Circuit Diagrams 36
RADIO CIRCUITS 38
Autodyne Converters 38
IF Amplifiers 39
Automatic Volume Controls 40
Reflex Circuits 43
Complete Radio Circuit Diagrams 44
Page
UNIJUNCTION TRANSISTOR CIRCUITS 56
Theory of Operation 56
Parameters - Definition and Measurement 57
Relaxation Oscillator 59
Sawtooth Wave Generator 60
Multivibrator 60
Hybrid Multivibrator 62
Relay Delay 62
TRANSISTOR SWITCHES 63
Temperature Effects on Switching Circuits 64
Power Dissipation 68
Saturation 68
Transient Response Time 73
Flip-Flop Design Procedures 77
Triggering 87
LOGIC 91
Binary Arithmetic 98
TETRODE TRANSISTORS 99
SILICON CONTROLLED RECTIFIER 103
POWER SUPPLIES 105
Circuits 108
TRANSISTOR SPECIFICATIONS 110
How to Read a Specification Sheet 110
Explanation of Parameter Symbols 113
G-E Transistor Summary 115
G-E Transistor Specifications 116
Registered JETEC Transistor Types with Interchangeability Information 150
G-E Outline Drawings 161
CIRCUIT DIAGRAM INDEX 165
Notes on the Circuit Diagrams 167
READING LIST 168

BASIC SEMICONDUCTOR THEORY

Transistors and junction rectifiers are the natural outgrowth of our rapidly advancing technology and the need for electronic devices with small size and high efficiency and reliability. They are made from materials known as semiconductors - materials that will pass more current than an insulator, but not as much as a metal. The two materials now being utilized in the manufacture of semiconductor products are Germanium and Silicon.

It is possible to change the electrical characteristics of semiconductor materials by adding closely controlled amounts of certain impurities. Impurities such as arsenic and antimony cause a surplus of electrons, or free negative charges, while others such as gallium and indium cause a deficiency of electrons, which may be considered as holes in the crystalline structure, and act as mobile positive charges.

A crystal with a surplus of holes, or positive active electric "particles" is known as p-type while a crystal with a surplus of electrons, or negative active electric particles is known as n-type. As might be expected, when a positive charge and a negative charge meet in the crystal, they combine and cease to exist as mobile charge carriers the excess mobile electron meets a mobile electron deficiency or hole and fills the hole, becoming a fixed part of the crystalline structure.

Therefore, in a semiconductor material such as silicon or germanium, we have a material which is a very poor conductor of electricity unless we add mobile charge carriers, and we can add either positive or negative charge carriers. The significance of this will become apparent when we consider what happens when we join a crystal of p-type and a crystal of n-type material together forming a distinct boundary, or junction, between the two types, as in Figure 1.

FIGURE 1
This crystal is now capable of passing current readily in one direction while blocking current in the opposite direction and we have a useful electronic device, a rectifier.

FIGURE 2
When a battery is attached as shown in Figure 2 the electrons will be pushed towards the junction by the negative voltage of the battery and combine with holes attracted towards the junction by the battery's negative voltage. Electrons constantly enter the crystal at the n-terminal to replenish the electrons that have combined with holes, and electrons leave the p-terminal to replenish the hole supply of the p-type portion of the crystal, and current flows.

If we reverse the polarity of the battery as in Figure 3 we have the following situation:

FIGURE 3
Now the positive and negative particles are drawn away from the junction by the battery's voltage, leaving the section of the crystal near the junction practically void of charge carriers and crystal effectively blocks current. A few random charge carriers do remain in the junction area allowing a minute current to pass. This current is known as "leakage current" and is usually in the order of a few microamperes.

We have seen how semiconductors are capable of rectifying current by the use of a single junction within a crystal. By adding a second junction and making a P-N-P or $\mathrm{N}-\mathrm{P}-\mathrm{N}$ sandwich of N and P types we have a device capable of amplification known as a transistor.

The transistor may be compared to a triode tube in some ways, so let's quickly review the triode tube. The tube represented in Figure 4 has three distinct elements:

FIGURE 4

1. The cathode, which emits electrons; 2. The plate which collects the emitted electrons, and 3 . The control grid, which controls the charge concentration of the spaces A and B separating the elements by altering the charge of these spaces. When a large fixed voltage is applied between the cathode and plate and a small varying voltage is applied to the control grid, the plate current varies as much as it would if we made large changes in the plate voltage, giving us a device capable of amplifying voltage.

Now consider the transistor. Again we have three elements, separated by junctions as shown in Figure 5.

Here the emitter emits electrons, the collector collects electrons and the base controls the flow of electrons by controlling the charge concentration in the base region, so in the broadest sense, the function of the three elements in the triode tube and the transistor are similar. However, in the transistor we are amplifying current, not voltage, and its operation is not really as analogous to the tube's operation as this comparison shows.

Let's look a little closer at how a transistor works. First of all we will put the transistor in a circuit as in Figure 6.

FIGURE 6
Here we see that the emitter junction will pass current easily, because it has a forward bias. The collector junction however, will not pass current from the collector to base, because this junction is back biased. These bias conditions are necessary for transistor operation. It is found that the majority of the current flows between the emitter and the collector because of the large number of electrons from the emitter which diffuse through the very thin base region and into the collector without combining with the holes in the base. As the base is made more positive, more electrons are pulled out of the emitter and are made available for diffusion into the collector.

If the base is made less positive, less electrons are pulled from the emitter, so less reach the collector. The electrons that enter the base, but do not reach the collector, combine with holes in the base and contribute to the base current, reducing the gain of the transistor. To reduce the base current, the base is kept as thin as possible (usually less than a thousandths of an inch thick) and the hole content kept to a minimum by using high-purity material, or in other words, the base material is only slightly "p" type material.

The ratio of the collector current to the base current is called beta, usually shown on specification sheets as h_{FE}, and the ratio of the collector current to the emitter current is called alpha, usually shown as h_{FB}. Of course it is desirable to have the alpha of a transistor as high as possible and alphas of 0.95 to 0.99 are common in commercial transistors.

No current (except a small leakage current) will flow in the collector circuit unless current is introduced into the emitter. Since very little voltage (.1 to .5 volts) is needed to cause appreciable current flow into the emitter, the input power is very low. Almost all the emitter current (emitter current times alpha) will flow in the collector circuit where the voltage can be as high as 45 volts. Therefore, a relatively large amount of power can be controlled in an external load and the power gain (G_{e}) of a transistor (power out/power in) can be up to 40,000 in some applications.

TRANSISTOR CONSTRUCTION TECHNIQUES

The most common type of junction transistor is the PNP diffused alloyed type. This transistor is made by taking a wafer of " N " type germanium, mounting it on a holder and pressing indium dots into each side. The assembly is then heated in a furnace until the indium melts and alloys with the germanium forming a "P" layer within the " N " type germanium. The complete assembly is shown by Figure 7.

FIGURE 7
By changing the size of the indium dots and the depth to which the indium is alloyed into the base material, it is possible to obtain a transistor optimized either for audio amplifiers or high speed switching. In addition, by starting with \mathbf{P} type germanium, it is possible to make a NPN transistor. With the alloy type of structure, it is possible to pass currents of up to $1 / 2$ an ampere through the transistor. This structure is not generally suitable for high frequency linear amplifiers since the indium dots produce a high capacitance between collector and base making the unit inherently unstable at high frequencies.

The rate grown transistor is produced by an entirely different technique. A bar of germanium is grown from a bath of molten germanium so doped that the material will change from " P " type to " N " type depending on the temperature and rate of pulling. By suitable growing techniques, 10 to 15 thin " P " type layers are formed in a bar about the size of a cigar. This bar is then sawed up into pieces about 10 mils by 10 mils by 100 mils with the thin " P " layer in the center and long " N " regions on each side. About 7 to 10 thousand transistor bars can be cut from each ingot of germanium. The internal appearance of one of these transistors is shown in Figure 8. This transistor has a low collector capacitance and has excellent gain up to several megacycles. It is stable at high frequencies and is ideally suited for the radio frequency section of broadcast receivers. A rate grown transistor also makes an excellent unit for high speed gates and counting circuits.

FIGURE 8
The meltback method of transistor construction starts off with a bar of germanium about $10 \times 10 \times 100$ mils. The end of the bar is melted and allowed to refreeze very quickly. By suitable doping of the original material, the junction between the melted portion and the unmelted portion becomes a thin layer of "P" type material and the melted and unmelted portion of " N " type material remains " N " type material. This transistor is essentially a rate grown transistor, but the rate growing is done on an individual small bar rather than on the large germanium ingot. By the addition of an extra base connection to a triode, a tetrode is formed. If a current is passed through the base region from one base lead to the other, the active portion of the base region is electrically narrowed and high gain is possible up to 200 mc .

Another method of making semiconductor devices is by gaseous diffusion of impurities. In this type of construction, the base material and the impurity are sealed together in a quartz tube and the complete assembly heated to about $1200^{\circ} \mathrm{C}$. At this high temperature, the impurities form a gas which diffuses into the surface of the base material forming P or N type layers. With this technique, it is possible to form very large flat junctions of precisely controlled thickness. An example of a transistor built using this technique is the 2N451 silicon 85 watt power transistor shown in Figure 9.

FIGURE 9

By using two impurities diffused simultaneously, it is possible to form a P type layer .2 mil thick and an N type emitter layer .3 mil thick. By making contacts to the base and emitter regions, a transistor is produced capable of carrying up to 10 amperes. Since the diffused layers are very thin, the frequency response of this power transistor is good up to 5 to 10 mc .

Another recently developed device using diffusion techniques is the Controlled Rectifier. A Controlled Rectifier is a four layer PNPN structure as shown in Figure 10.

FIGURE 10
By making connections to three of the layers, a regenerative switch is obtained which acts in a manner very similar to a vacuum tube thyratron. This device will switch on in less than $1 \mu \mathrm{sec}$ and with the large areas made possible by diffusion, it will carry 15 amperes continuously and 150 amperes on a surge basis.

G-E silicon signal transistors are grown junction devices with a diffused base and utilize an entirely new type of pellet mounting to obtain maximum mechanical strength and reliability. This construction, used with both the silicon triode and the silicon unijunction transistors is called the ceramic disk construction or fixed-bed mounting, and is shown in Figure 11. A wafer of ceramic which has the same coefficient as the pellet forms the basic mechanical structure. Gold is deposited on the disk in three areas to form the electrical contacts. The silicon bar is mounted across a narrow slit in the disk and between two of the gold contacts. The third connection is made between the silicon bar and the third gold contact by means of a small aluminum wire. The aluminum wire forms the base contact of the silicon triode, and the emitter contact of the unijunction transistor. After the transistor is assembled on the ceramic disk, the entire disk assembly is mounted on a standard header by soldering the gold to the transistor leads.

The use of this fixed-bed construction results in a number of important advantages:

1. The mechanical strength of the structure is increased greatly since the basic transistor structure is not subjected to stress during shock and vibration.
2. The transfer of heat between the transistor bar and the case is improved permitting higher power ratings.
3. The possibility of failure from extreme temperature cycling is greatly reduced because of the matched temperature coefficients of the structure.
4. The electrical characteristics are more stable and reproducible from unit to unit because of the improved uniformity of the mechanical structure.

TOP VIEW
SIDE VIEW
FIGURE 11

MAJOR PARAMETERS

There are many properties of a transistor which can be specified, but this section will only deal with the more important specifications. A fundamental limitation to the use of transistors in circuits is $\mathrm{BV}_{\text {CER }}$, the breakdown voltage in the grounded emitter connection. The grounded emitter breakdown voltage is a function of the resistance from the base to the emitter and it is necessary to specify this resistance shown as R in Figure 12.

FIGURE 12
Since the breakdown voltage is not sharp, it is also necessary to specify a value of collector current at which breakdown will be considered to have taken place. For example, in PNP audio transistors the collector current is specified to be less than 600μ a with 25 volts applied and the resistance R equal to 10,000 ohms. With NPN transistors, the collector current should be less than 300μ a with 15 volts applied, and the base open-circuited.

The small signal parameters of transistors are usually specified in terms of the " h " or hybrid parameters. These parameters are defined for any network by the following equations:

$$
\begin{aligned}
& e_{\text {in }}=h_{1} i_{i n}+h_{r} e_{\text {out }} \\
& i_{\text {out }}=h_{i} i_{\text {in }}+h_{o} e_{o u t} \\
& \text { where } h_{1}=\text { input impedance (ohms) } \\
& h_{r}=\text { feedback voltage ratio (dimensionless) } \\
& h_{\mathrm{f}}=\text { forward current transfer ratio (dimensionless) } \\
& h_{i}=\text { output conductance (mhos) }
\end{aligned}
$$

For transistors, a second subscript is added to designate which terminal of the transistor is grounded. For example, h_{fe} is the grounded emitter forward current transfer ratio.

The current transfer ratio is equal to the ratio of an a-c variation in collector current to an a-c variation in base current. This current gain can be specified either

FIGURE 13
for small a-c values of base current or for large values of base current in which case it would be known as h_{FE}, the d-c current gain. The current gain is the most important property of a transistor in determining the gain of audio amplifiers.

The small signal " h " parameters of a transistor are a function of frequency and bias conditions. For a P-N-P alloy audio transistor, typical h parameters at 270 cps , and bias conditions of 5 volts (collector to emitter) and 1 ma collector current are:

Grounded Base
$\hbar_{\text {iv }} \quad 30$ ohms
$\mathrm{h}_{\text {rb }} \quad 4 \times 10^{-4}$
$\mathrm{h}_{\mathrm{fb}} \quad-0.98$
$\mathrm{h}_{\mathrm{ob}} \quad 1 \times 10^{-8} \mathrm{mhos}$

Grounded Emitter
$\mathrm{h}_{\text {ie }} \quad 1500 \mathrm{ohms}$
$h_{\text {re }} \quad 11 \times 10^{-4}$
$\mathrm{h}_{\mathrm{fe}} \quad 50$
$h_{\text {oe }} \quad 50 \times 10^{-6}$

The h parameters at other bias conditions are shown by Figure 14,

With transistors used as radio frequency amplifiers, it is necessary to specify a transformer coupled power gain as indicated in Figure 15. The power gain is the ratio of output power to input power under conditions where the input and output impedances are matched by means of the transformers. The input and output impedances must also be specified to select the proper transformer.

FIGURE 15
Another common transistor specification is the alpha cut-off frequency. This is the frequency at which the grounded base current gain has decreased to 0.7 of its low frequency value. For audio transistors, the alpha cut-off frequency is in the region of 1 mc . For transistors used in the rf section of radios, the alpha cut-off frequency should be 3 to 15 mcs . Other examples of transistor specifications are shown on the specification sheets starting on page 110.

RECTIFIER CONSTRUCTION

Germanium and Silicon rectifiers are two-element semiconductor devices constructed around the single P-N junction described earlier in Figures 1, 2 and 3. Because of their inherently low forward resistance and high reverse resistance, these devices are widely used for converting alternating current to direct current, to block reverse currents in control circuits, and to increase the power gain of magnetic amplifiers through the effects of self-saturation.

Rectifiers are generally designed to handle power rather than small signals, and sizeable currents in addition to high voltages. These capabilities are attained through use of large cross-sectional area junctions and efficient means for dissipating heat losses, such as fins, heat sinks, etc.

A section through a typical low power germanium rectifier is shown in Figure 16. The germanium pellet, which is soldered to the base disc, is approximately $1 / 16$ inch square. Yet the junction of this germanium pellet with the indium alloy can rectify

FIGURE 16
over $1 / 4$ ampere at room temperature and block voltages in the reverse direction up to 300 volts peak. This latter rating is called the "Peak Inverse Voltage" of the cell. When this same cell is mounted on a 1-1/2 inch square fin as shown in Figure 17, its current carrying capabilities are increased to over $3 / 4$ ampere at room temperature.

FIGURE 17
Germanium rectifiers of this type offer outstanding advantages over other types of rectifiers:

1. Low forward drop, unexcelled by any other type of rectifier with the same inverse voltage rating.
2. Reverse resistance so high as to be negligible for most applications.
3. No aging, and therefore indefinitely long life. Also, no filament to burn out.
4. No junction forming required . . . it is always ready to function after prolonged idleness.
5. Withstands corrosive atmospheres and fluids . . . the junction is protected by a welded hermetic seal.
6. Wide temperature range, from $-65^{\circ} \mathrm{C}$ to as high as $+85^{\circ} \mathrm{C}$.
7. Ability to withstand shock and vibration . . . no moving parts, flimsy supports, or sensitive filament.

When ambient temperatures exceed $85^{\circ} \mathrm{C}$, or when extremely low reverse currents are required, the silicon rectifier shown in cross-section in Figure 18 can be used. In outward appearance, the silicon rectifier looks identical to the germanium rectifier. However, instead of a germanium-indium junction inside, this cell employs the junction of a piece of aluminum wire alloyed into a wafer of the metal silicon. This device can operate in ambients up to $165^{\circ} \mathrm{C}$ and can handle currents up to $3 / 4$ ampere at room temperature. Whereas its forward resistance is approximately 40% higher than a germanium device of the same rating, its reverse leakage current may be several hundred times less than a comparable germanium cell. It too can be mounted on a fin for higher current rating.

BIASING

A major problem with transistor amplifiers is establishing and maintaining the proper collector to emitter voltage and collector current (called biasing conditions) in the circuit. These biasing conditions must be maintained despite variations in ambient temperature and variations of gain and leakage current between transistors of the same classification.

If the current gain (h_{FE}) of a transistor was constant with temperature and the leakage current was negligible, it would be possible to set up the bias conditions by feeding a base current of the proper magnitude into the transistor as indicated by Figure 19.

FIGURE 19
The collector current that flows is equal to $\mathrm{h}_{\mathrm{FE}} \frac{\mathrm{E}}{\mathbf{R}_{\mathbf{1}}}$. This type of biasing is extremely dependent upon the $h_{F E}$ of the transistor and is not recommended except in cases where the biasing resistance can be individually adjusted for optimum results.

In general, it is necessary to use some type of feedback circuit so that the bias conditions of the transistor tend to be relatively independent of the transistor parameters. The use of an emitter resistor will provide feedback to stabilize the operating point. This type of biasing is shown by Figure 20.

FIGURE 20

A voltage divider consisting of resistors R_{1} and R_{2} is connected to the base and the resistance R_{e} is placed in the emitter. Since the emitter junction is forward biased, the current that flows in the emitter circuit is essentially equal to the voltage at the base divided by R_{e}. To prevent degeneration of the a-c signal to be amplified, the emitter resistance is by-passed with a large capacitance. Good design practice is to make R_{2} no larger than 5 to 10 times R_{e}. A typical value of R_{e} is $500-1000$ ohms. The method outlined above does not consider the variations of base to emitter voltage drop or the variations of leakage current with temperature. A more general approach to the biasing problem is to consider the circuit of Figure 21.

FIGURE 21
From this general circuit, the following equations can be derived:

$$
\mathrm{V}_{\mathrm{B}}=\left[(1-a) \mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}\right] \mathrm{I}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{CO}} \mathrm{R}_{\mathrm{B}}
$$

$V_{B E}$ is the base to emitter voltage drop at the specified biasing point. At $25^{\circ} \mathrm{C}$ this is 0.2 volts for germanium and 0.7 volts for silicon. At higher temperatures, V_{BE} is -0.1 for germanium and 0.5 for silicon. If the minimum acceptable emitter current, minimum alpha, maximum emitter current and maximum alpha and maximum leakage current are known, the following equation can be derived for the value of R_{B} :

As an example, consider the 2 N 525 transistor with the following characteristics used in a typical circuit:

$$
\begin{aligned}
& \mathrm{E}=20 \text { volts } \\
& \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{~K} \text { ohms } \\
& \mathrm{I}_{\mathrm{co}}{ }^{\text {max }}=100 \mu \mathrm{mp} \quad 55^{\circ} \mathrm{C} \\
& \mathrm{~h}_{\mathrm{Fs}}{ }^{\text {max }}=66, a^{\text {max }}=\frac{66}{67} \\
& \mathrm{~h}_{\mathrm{FE}^{\text {min }}}=30, a^{\mathrm{min}}=\frac{30}{31} \\
& \mathrm{~V}_{\mathrm{BE}}{ }^{\max }=0.2, \mathrm{~V}_{\mathrm{BE}^{\mathrm{m}}}{ }^{\text {in }}=-0.1 \\
& \text { Desired } \mathrm{I}_{\mathrm{E}^{\text {max }}}=1.24 \mathrm{ma} \\
& \text { Desired } \mathrm{I}_{\mathrm{E}}{ }^{\text {min }}=0.81
\end{aligned}
$$

Substituting these values into the equation and assuming various $\mathbf{R}_{\mathbf{E}}$'s gives the following results for R_{B} :

$$
\text { for } \begin{array}{r}
\mathrm{R}_{\mathrm{E}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{B}}=1.2 \mathrm{k} \\
\mathrm{R}_{\mathrm{E}}=2.2 \mathrm{k}, \mathrm{R}_{\mathrm{B}}=5.8 \mathrm{k} \\
\mathbf{R}_{\mathrm{E}}=3.3 \mathrm{k}, \mathrm{R}_{\mathrm{B}}=10 \mathrm{k}
\end{array}
$$

By substituting the value of R_{B} into the original equation, a value of V_{B} can be obtained. For example, using a 3.3 K emitter resistance and a 10 K value of R_{B}, the value of V_{B} equals 3.1 volts. Transforming from V_{B} and R_{B} to a more practical voltage divider type biasing is done with the equations in Figure 22.

$R_{1}=\frac{R_{B} E}{V_{B}}$
$R_{2}=\frac{R_{1} V_{B}}{E-V_{B}}$

FIGURE 22
By use of the above approach, it is possible to design a bias circuit which will accommodate all the variations of the transistor and maintain the bias points within
the value desired,

BASIC AMPLIFIERS

SINGLE STAGE AUDIO AMPLIFIER

Figure 23 shows a typical single stage audio amplifier using a 2N190 PNP transistor.

SINGLE STAGE AUDIO AMPLIFIER
FIGURE 23
With the resistance values shown, the bias conditions on the transistor are 1 ma of collector current and six volts from collector to emitter. At frequencies at which C_{1} provides good by-passing, the input resistance is given by the formula: $\mathrm{R}_{1 \mathrm{n}}=\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{h}_{1 \mathrm{~b}}$. At 1 ma for a design center 2 N 190 , the input resistance would be 37×30 or about 1100 ohms.

The ac voltage gain $\frac{\mathrm{e}_{\text {out }}}{\mathrm{e}_{1 \mathrm{a}}}$ is approximately equal to $\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{h}_{1 \mathrm{~b}}}$. For the circuit shown this would be $\frac{5000}{30}$ or approximately 167.

The frequency at which the voltage gain is down 3 db from the 1 Kc value depends on r_{g}. This frequency is given approximately by the formula:

low $\mathrm{f}_{3 \mathrm{db}} \approx \frac{1+\mathrm{hfe}_{\mathrm{fe}}}{6.28\left(\mathrm{rg}_{\mathrm{g}}\right)}$

TWO STAGE REC COUPLED AMPLIFIER

The circuit of a two stage R-C coupled amplifier is shown by Figure 24. The input impedance is the same as the single stage amplifier and would be approximately 1100 ohms.

FIGURE 24

The load resistance for the first stage is now the input impedance of the second stage. The voltage gain is given approximately by the formula:

$A_{v} \approx h_{f e} \frac{R_{L}}{h_{i b}}$

More exact formulas for the performance of audio amplifiers may be found in the Reading List at the end of this manual.

CLASS B PUSH-PULL OUTPUT STAGES

In the majority of applications, the output power is specified so a design will usually begin at this point. The circuit of a typical push-pull Class B output stage is shown in Figure 25.

The voltage divider consisting of resistor, R and the 47 ohm resistor gives a slight forward bias on the transistors to prevent cross-over distortion. Usually about $1 / 10$ of a volt is sufficient to prevent cross-over distortion and under these conditions, the no-signal total collector current is about 1.5 ma . The 8.2 ohm resistors in the emitter leads stabilize the transistors so they will not go into thermal runaway when the junction temperature rises to $60^{\circ} \mathrm{C}$. Typical collector characteristics with a load line are shown below:

FIGURE 26
It can be shown that the maximum a-c output power without clipping using a pushpull stage is given by the formula:

$$
\mathbf{P}_{\text {out }}=\frac{\mathbf{I}_{\mathrm{max}}}{2}
$$

Since the load resistance is equal to

$$
\mathbf{R}_{\mathrm{L}}=\frac{\mathbf{E}_{\mathbf{c}}}{\mathbf{I}_{\max }}
$$

and the collector to collector impedance is four times the load resistance per collector, the output power is given by the formula:

$$
\begin{equation*}
P_{0}=\frac{2}{R_{\mathrm{c}-\mathrm{c}}} \mathrm{E}_{\mathrm{c}^{2}}{ }^{2} \tag{1}
\end{equation*}
$$

Thus, for a specified output power and supply voltage the collector to collector load resistance can be determined. For output powers in the order of 50 mw to 750 mw , the load impedance is so low that it is essentially a short circuit compared to the output impedance of the transistors. Thus, unlike small signal amplifiers, no attempt is made to match the output impedance of transistors in power output stages.
The power gain is given by the formula :

$$
\text { Power Gain }=\frac{\mathrm{P}_{\text {out }}}{P_{\text {in }}}=\frac{I_{0}{ }^{2}}{I_{i n}{ }^{2}} \mathbb{R}_{\mathrm{L}} \mathrm{R}_{\mathrm{in}}
$$

Since $\frac{\mathbf{I}_{\circ}}{\mathbf{I}}$ is equal to the current gain, Beta, for small load resistance, the power gain formula can be written as:

$$
\begin{equation*}
\text { P. G. }=\beta^{2} \frac{\mathrm{R}_{\mathrm{c}-\mathrm{c}}}{\mathrm{R}_{\mathrm{b}-\mathrm{b}}} \tag{2}
\end{equation*}
$$

where $\mathbf{R}_{\mathrm{c}-\mathrm{c}}=$ collector to collector load resistance.
$\mathbf{R}_{\mathrm{b}-\mathrm{b}}=$ base to base input resistance.
$\beta \quad=$ grounded emitter current gain.
Since the load resistance is determined by the required maximum undistorted output power, the power gain can be written in terms of the maximum output power by combining equations (1) and (2) to give:

$$
\begin{equation*}
\text { P. G. }=\frac{2 \beta^{2} \mathrm{E}^{2} \mathrm{c}}{\mathrm{R}_{\mathrm{b}-\mathrm{b}} \mathrm{P}_{\text {out }}} \tag{3}
\end{equation*}
$$

CLASS A OUTPUT STAGES

A Class A output stage is biased as shown on the collector characteristics below:

FIGURE 27
The operating point is chosen so that the output signal can swing equally in the positive and negative direction. The maximum output power without clipping is equal to:

$$
P_{\text {out }}=\frac{E_{c} I_{c}}{2}
$$

The load resistance is then given by the formula:

$$
R_{L}=\frac{E_{\mathrm{c}}}{I_{\mathrm{e}}}
$$

Combining these two equations, the load resistance can be expressed in terms of the supply voltage and power output by the formula below:

$$
\begin{equation*}
\mathbf{R}_{\mathrm{L}}=\frac{\mathrm{E}_{\mathrm{c}}{ }^{2}}{2 \mathrm{P}_{\mathrm{o}}} \tag{4}
\end{equation*}
$$

For output powers of 10 mw and above, the load resistance is very small compared to the transistor output impedance and the current gain of the transistor is essentially the short circuit current gain Beta. Thus for a Class A output stage the power gain is given by the formula:

$$
\begin{equation*}
\text { P. G. }=\frac{\beta^{2} \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1 \mathrm{n}}}=\frac{\beta^{2} \mathrm{E}_{\mathrm{e}}{ }^{2}}{2 \mathrm{R}_{\mathrm{in}} \mathrm{P}_{\mathrm{o}}} \tag{5}
\end{equation*}
$$

CLASS A DRIVER STAGES

For a required output power of 250 mw , the typical gain for a push-pull output stage would be in the order of 23 db . Thus the input power to the output stage would be about 1 to 2 mw . The load resistance of a Class A driver stage is then determined by the power that must be furnished to the output stage and this load resistance is given by equation (4). For output powers in the order of a few milliwatts, the load resistance is not negligible in comparison to the output impedance of the transistors, therefore, more exact equations must be used to determine the power gain of a Class A driver stage. From four terminal network theory, after making appropriate approximations, it can be shown that the voltage gain is given by the formula:

$$
\begin{align*}
& A_{v}=\frac{\mathrm{R}_{\mathrm{I}}}{\mathrm{~h}_{\mathrm{ib}}} \tag{6}\\
& \text { where } \mathrm{h}_{\mathrm{ib}}=\text { grounded base input impedance. }
\end{align*}
$$

The current gain is given by the formula:

$$
\begin{equation*}
A_{\mathrm{I}}=\frac{a}{1-a+\mathrm{R}_{\mathrm{L}} h_{\mathrm{ob}}} \tag{7}
\end{equation*}
$$

where $h_{o b}=$ grounded base output conductance.
The power gain is the product of the current gain and the voltage gain, thus unlike the formula for high power output stages, there is no simple relationship between required output power and power gain for a Class A driver amplifier.

DESIGN CHARTS

Figures 28 through 36 are design charts for determination of transformer impedances and typical power gains for Class A driver stages, Class A output stages, and Class B push-pull stages. Their use can be best understood by working through a typical example. It will be assumed that it is desired to design a driver and push-pull amplifier capable of delivering a 250 mw with a 9 volt supply. Using Figure 28, for 250 mw of undistorted output power, the required collector to collector load resistance is 450 ohms. From Figure 30 using a typical 2N187, the power gain is 22.5 db . In numerical terms, a power gain of 22.5 db is 178 . Therefore, the required input power to the driver stage would be:

$$
P_{\mathrm{in}}=\frac{250}{178}
$$

or 1.4 mw . Assuming about 70% efficiency in the transformers, the required output power of the driver stage will be 2 mw . From Figure 32, for 2 mw of undistorted output power, the load resistance is slightly over 10,000 ohms so a 10,000 ohm transformer could be used. From Figure 35 assuming a 2 N191 driver transistor, the power gain is 41 db . The typical power gain of the two stages using a 2 N 191 driver and

2 N 187 's in the output would be 63.5 db . The secondary impedance of the driving transformer should be 2,000 ohms center tapped as shown on the specification sheet for the $2 \mathrm{~N} 186,2 \mathrm{~N} 187$ and 2 N 188 . The secondary impedance of the output transformer should be selected to match the impedance of the load.

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

SIMPLE AUDIO AMPLFIER
FIGURE 37

R SHOULD BE ADJUSTED FOR OPTIMUM RESULTS

DIRECT COUPLED "BATTERY SAVER" AMPLIFIER
FIGURE 38

CODE PRACTICE OSCILLATOR
FIGURE 39

LOUDSPEAKER AUDIO AMPLIFIER
FIGURE 40

MAXIMUM POWER OUTPUT 35 WAT TS MAXIMUM POWER OUT AT 10%
HARMONIC OISTORTION .25 WATTS EENSITIVITY FOR 50 MILLIWATTS REFERENCE POWER OUTPUT: 2 VOLTS FOR USE WITH MAGNETIC CARTRIDGE ONIT RI, IN THIS CONDITION SENSITIVITY 5 MILLIVOLTS

FOUR TRANSISTOR PHONO AMPLIFIER

five transistor audio amplifer

"HI-FI" CIRCUITS

Transistors are ideally suited for Hi-Fi amplifiers since there is no problem with microphonics or hum pick-up from filaments as there is with tubes. Transistors are inherently low impedance devices and thus offer better matching to magnetic pick-ups and loudspeakers for more efficient power transfer.

Transistor circuits with negative feedback can give the wide frequency response and low distortion needed in hi-fi equipment.

PREAMPLIFIERS

Preamplifiers have two major functions (1) increasing the signal level from a pick-up device to 1 or 2 volts rms, and (2) providing compensation if required to equalize the input signal for a constant output with frequency.

The circuit of Figure 44 meets these requirements when the pick-up device is a variable reluctance phono cartridge such as the General Electric VRII, or a tape head.

FIGURE 44
This preamp will accommodate most magnetic pick-up impedances. The input impedance to the preamp increases with frequency because of the frequency selective negative feedback to the emitter of TR1. The impedance of the magnetic pick-ups will also increase with frequency but are below that of the preamp.

The first two stages of this circuit have a feedback bias arrangement for current stabilization of both stages. The 330 K from the emitter of TR2 provides this DC current feedback to the base of TR1. The output stage is well stabilized with a 5 K emitter resistance.

The AC negative feedback from the collector of TR2 to the emitter of TR1 is frequency selective to compensate for the standard NARTB recording characteristic for tape or the standard RLAA for phonograph records. The flat response from a standard NARTB pre-recorded tape occurs with the tone control (R12) at mid-position or 12 K ohms. (See Figure 45.) There is 7 to 8 db of treble boost with the control at 25 K maximum position, and approximately 20 db of treble cut with $\mathrm{R} 12=0$. Mid-position of the tone control also gives flat response from a standard RIAA recording.

FIGURE 45

The voltage feedback from the collector of TR2 decreases at low frequencies because of the increasing reactance of the feedback capacitor in series with the tone control. Each of the two feedback networks give the desired increase in gain at the lower frequencies to accomplish the correct compensation. If this feedback capacitor were shunted by an electrolytic capacitor, the preamplifier would give constant gain at all frequencies (in the "Tape" switch position). This gain is determined by R12/R1.

The RIAA feedback network (with tone control at mid-position) has a net feedback resistance of 6 K to decrease the gain because of the higher level input. This resistance has a $.01 \mu \mathrm{f}$ capacitor in parallel for decreasing the amplifier gain at the higher frequencies in accordance with RIAA requirements. This eliminates the need to load a reluctance pick-up with the proper resistance for high frequency compensation. If it is desirable to build the preamplifier for phonograph use only, the compensating feedback network would consist only of a . $04 \mu \mathrm{f}$ feedback capacitor in series with a 6 K resistor (or a 10 K Tone control) which has a $.01 \mu \mathrm{f}$ capacitor in parallel.

The emitter-follower output stage of the preamp gives a low impedance output for a cable run to a power amplifier, and acts as a buffer so that any preamp loading will not affect the equalization characteristic.

The Tone control should have a linear taper and the Volume control an audio taper. Two 9 volt batteries will give good life in this application since the total supply drain is approximately 3.5 ma DC. This 18 volts may also be obtained by suitable decoupling from a higher voltage supply that is available.

HYBRID PREAMPLIFIER

The hybrid preamplifier circuit of Figure 46 uses a similar feedback equalization technique to that of Figure 44 . There is a small amount of treble boost above 10 KC due to the $.01 \mu \mathrm{f}$ capacitor from the 12AX7 cathode to ground. The Treble Control is set at the same position $(R 4=20 \mathrm{~K})$ for a compensated output from a standard RIAA recording or an NARTB recorded tape.

The 2N508 transistor is biased at approximately .7 ma from a constant current source for good current stability with temperature and transistor interchangeability. RI biases the base for the desired $V_{C E}$, and since this bias is taken from the collector, the

HYBRID PHONO-TAPE PREAMPLIFIER

 FIGURE 46d-c feedback helps to keep $V_{\text {CE }}$ in the range of 1 to 5 volts. This voltage varies with leakage current of Cl and with h_{FE} for different transistors. This range of V_{CE} bias has little effect on the operation of the preamplifier.

The standard reference level for S / N (signal-to-noise) measurements in tape recording is the maximum level at which a 400 cycle signal can be recorded at 2% harmonic distortion. The hybrid preamplifier of Figure 46 is capable of a S / N in excess of 60 db . The signal output from this reference level is approximately 1.5 volts. The variation of treble equalization for tape is shown in Figure 47.

FIGURE 47
A dual preamp for a stereophonic disc or tape system could be built with two identical preamps as in Figure 46, using only one tube (12AX7) and two transistors (2N508).

TONE CONTROLS

Tone control circuits for transistor amplifiers are somewhat different than conventional vacuum tube tone controls since the impedance levels in transistor circuits are lower. A satisfactory bass and treble tone control for use between transistor stages is shown by Figure 48. *

[^0]

FIGURE 48
The action of the tone controls is easily understood if they are considered as current transfer networks rather than voltage transfer networks as in vacuum tube amplifiers. The output current from the preceding stage goes to the volume control where part of it is shunted to ground and the rest goes to the junction of the $0.02 \mu \mathrm{fd}$ and $0.2 \mu \mathrm{fd}$ capacitors and the center arms of the potentiometers. At 1000 cycles, the equivalent circuit of the tone controls is very simple, as shown in Figure 49(A). At this frequency, the current is divided so that $10 / 11$ ths of the current is shunted to ground and $1 / 11$ th goes on to the next transistor. The low-frequency equivalent circuit for the "bass boost" condition is shown in Figure 49(B). With the movable arm of the potentiometer near the top, the $0.02 \mu \mathrm{fd}$ capacitor is bypassed and more of the current is shunted into the $10,000 \mathrm{ohm}$ resistor as the impedance of the $0.2 \mu \mathrm{fd}$ capacitor rises at low frequencies.

The high-frequency equivalent circuit of the tone control is shown in Figure 49(C) for the "treble cut" condition. Depending on the potentiometer setting, most of the higher frequencies will be shunted to ground as compared to a 1000 cycle signal. With the potentiometer arm at the top, the higher frequency current would bypass the $10,000 \mathrm{ohm}$ resistor and a treble boost would be achieved.

The performance of the tone control is shown by Figure 50.

(A) A I KC EQUIVALENT CIRCUIT. (B) LOW-FREQUENCY EQUIVALENT CIRCUIT, AND (C) THE EQUIVALENT CIRCUIT AT HIGH FREQUENCIES.

POWER AMPLIFIERS

A great deal of effort has gone into developing transformerless push-pull amplifiers using vacuum tubes. Practical circuits, however, use many power tubes in parallel to provide the high currents necessary for direct driving of low impedance loudspeakers.

The advent of power transistors has given new impetus to the development of transformerless circuits since the transistors are basically low voltage, high current devices. The emitter follower stage, in particular, offers the most interesting possibilities since it has low inherent distortion and low output impedance.

SIX WATT POWER AMPUFIER
FIGURE 51
Figure 51 is a direct coupled power amplifier with excellent low frequency response, and also has the advantage of a feedback arrangement for current stabilization of all stages. The feedback system also stabilizes the voltage division across the power output transistors TR4 and TR6 which operate in a Class B push-pull arrangement. TR3 and TR5 also operate Class B in the Darlington connection to increase the current gain. Using an NPN for TR5 gives the required phase inversion for driving TR6 and also has the advantage of push-pull emitter follower operation. TR4 and TR6 have a small forward bias to minimize crossover distortion. This bias is set by the voltage drop across the 1 K resistors that shunt the input to TR4 and TR6. TR3 and TR5 are biased for the same reason with the voltage drop across the 1 N 91 . A 68 ohm resistor would serve the same function as the IN91 except there would be no temperature compensation. Thermistors have also been used to compensate for the temperature variation of the emitter-base resistance, but they do not track this variation as well as a germanium junction diode which has temperature characteristics similar to the transistor.

TR2 is a Class A driver requiring a very low impedance drive which is accomplished by an emitter follower TR1. TRI needs a current source for low distortion thus R1 and the Level Control supply the desired drive impedance. The Level Control should be set for a value of approximately 1 K ohms when this amplifier is driven by the preamplifier of Figure 44. This will permit the amplifier to be driven to full output. TR1 has an emitter current of .8 to 1 ma , and TR2 has a 2.5 to 3 ma bias.

The bias adjuster R2 is set for one-half the supply voltage across TR6. TR4 and TR6 have a beta cut-off at approximately 7 Kc . The phase shift and drop in beta gives rise to a decline in transistor efficiency which causes an elevation of junction temperature. To help stabilize this runaway condition, the higher frequency drive has been decreased by the $.005 \mu \mathrm{f}$ capacitors in parallel with the 1 K ohm drive resistors. This reduces the drive by 3 db at 30 Kc . The $.001 \mu \mathrm{f}$ feedback from collector to base of TR2 also aids in this stabilization by reducing the high frequency gain of this stage. The $220 \mu \mu \mathrm{f}$ capacitor shunting the bias network further aids the stabilization of the amplifier with high frequency negative feedback from output to input. This circuit has approximately 17 db of overall voltage feedback with the 20 K resistor from load to input. The output to speaker is shunted by 22 ohms in series with $.2 \mu \mathrm{f}$ to prevent the continued rise of speaker impedance and its accompanying phase shift beyond the audio spectrum.

The overall result, from using direct coupling, no transformers, and ample degeneration, is an amplifier with output impedance less than one ohm for good speaker damping, and very low total harmonic distortion. The frequency response at 100 milliwatts is flat over the audio spectrum. When checking for maximum power out at the higher frequencies, a sinewave can be applied only for a short duration before sufficient heating for runaway results as indicated above. To protect the power transistors, a current meter should be used in series with the voltage supply for quick, visual indication of runaway while checking power output above approximately 2 Kc . There is not sufficient sustained high frequency power in regular program material to precipitate this instability. Thus the actual performance of the amplifier does not suffer since the power level in music and speech declines as the frequency increases beyond
about 1 Kc .

This amplifier is capable of a 5 watt output with less than 1% harmonic distortion into a 4,8 or 16 ohm speaker when used with the power supply of Figure 153, page 108.

The power transistors TR4 and TR6 should be mounted on an adequate heat radiator such as used for transistor output in an automobile radio, or mounted on a $3^{\prime \prime} \times 4^{\prime \prime} \times 1 / 8^{\prime \prime}$ aluminum plate.

STEREOPHONIC TAPE SYSTEM

A complete semiconductor, stereophonic tape playback system may be assembled by using the following circuits in conjunction with a stereophonic tape deck.

Two identical tape preamplifier circuits can use a common 18 volt battery supply. The circuitry of Figure 44 may be used with the switch and RIAA network eliminated if the preamps are to be used for tape only.

The output of each preamp is fed to a power amplifier as indicated in Figure 52. Two identical power amplifiers with circuitry as in Figure 51 can use a common power supply as shown in Figure 154, page 108. The output coupling capacitor of the preamps may be eliminated when fed to an amplifier with an input coupling capacitor as in Figure 51. The output of each amplifier fed to its respective speaker completes the stereo system as shown in Figure 52.

A dual 10 watt stereo system consists of two identical amplifiers with circuitry of Figure 53 using the common power supply of Figure 155, page 109. This power supply has separate decoupled outputs for each amplifier. The 1 N1115 rectifiers should be mounted on a metal chassis with the electrically insulating mounting kit provided with each unit. The stereo system uses the same tape preamplifiers as that of Figure 52.

TEN WATT POWER AMPLIFIER
FIGURE 53
The power amplifier of Figure 53 is the same circuit as Figure 51 except for the transistors which have a higher voltage rating. This amplifier with the power supply of Figure 155, page 109, is capable of a 10 watt output with very low distortion into an 8 or 16 ohm speaker.

HI-FI CIRCUIT DIAGRAMS

NPN PREAMPLIFIER FOR MAGNETIC PICKUPS
FIGURE 54

PREAMPLIFIER AND DRIVER

RADIO CIRCUITS

AUTODYNE CONVERTER CIRCUITS

The converter stage of a transistor radio is a combination of a local oscillator, a mixer and an IF amplifier. A typical circuit for this stage is shown in Figure 56.

FOR ADDITIONAL INFORMATION SEE PAGE 167

AUTODYNE CONVERTER

FIGURE 56
Redrawing the circuit to illustrate the oscillator and mixer sections separately, we obtain Figures 57A and 57B.

FIGURE 57A
The operation of the oscillator section (57A) is as follows:
Random noise produces a slight variation in base current which is subsequently amplified to a larger variation of collector current. This A.C. signal in the primary of L_{2} induces an A.C. current into the secondary of L_{2} tuned by C_{B} to the desired oscillator frequency. C_{2} then couples the resonant frequency signal back into the emitter circuit. If the feedback (tickler) winding of L_{2} is properly phased the feedback will be positive (regenerative) and of proper magnitude to cause sustained oscillations. The secondary of L_{2} is an auto-transformer to achieve proper impedance match between the high impedance tank circuit of L_{2} and the relatively low impedance of the emitter circuit.
C_{1} effectively bypasses the biasing resistors R_{2} and \mathbf{R}_{3} to ground, thus the base is A.C. grounded. In other words, the oscillator section operates essentially in the grounded base configuration.

The operation of the mixer section (57B) is as follows:
The ferrite rod antenna L_{1} exposed to the radiation field of the entire frequency spectrum is tuned by C_{Δ} to the desired frequency (broadcast station).

The transistor is being biased in a relatively low current region, thus exhibiting quite non-linear characteristics. This enables the incoming signal to mix with the oscillator signal present, creating signals of the following four frequencies:

1. The local oscillator signal.
2. The received incoming signal.
3. The sum of the above two.
4. The difference between the above two.

The IF load impedance T_{1} is tuned here to the difference between the oscillator and incoming signal frequencies. This frequency is called the intermediate frequency (I.F.) and is conventially $455 \mathrm{KC} / \mathrm{S}$. This frequency will be maintained fixed since C_{a} and C_{B} are mechanically geared (ganged) together. R_{1} and C_{3} make up a filter to prevent undesirable currents to flow through the collector circuit. C_{2} essentially bypasses the biasing and stabilizing resistor \mathbf{R}_{1} to. ground. Since the emitter is grounded and the incoming signal injected into the base, the mixer section operates in the "grounded emitter" configuration.

IF AMPLIFIERS

A typical circuit for a transistor IF amplifier is shown by Figure 58.

FIGURE 58
The collector current is determined by a voltage divider on the base and a large resistance in the emitter. The input and output are coupled by means of tuned IF transformers. The .05 capacitors are used to prevent degeneration by the resistance in the emitter. The collector of the transistor is connected to a tap on the output transformer to provide proper matching for the transistor and also to make the performance of the stage relatively independent of variations between transistors of the same type. With a rate-grown NPN transistor such as the 2N293, it is unnecessary to use neutralization to obtain a stable IF amplifier. With PNP alloy transistors, it is necessary to use neutralization to obtain a stable amplifier and the neutralization capacitor depends on the collector capacitance of the transistor. The gain of a transistor IF amplifier will decrease if the emitter current is decreased. This property of the transistor can be used to control the gain of the IF amplifier so that weak stations and strong stations will produce the same audio output from a radio. Typical circuits for changing the gain of an IF amplifier in accordance with the strength of the received signal are explained in the A.V.C. section of this chapter.

AUTOMATIC VOLUME CONTROLS

A.V.C. is a system which automatically varies the total amplification of the signal in a radio receiver with changing strength of the received signal carrier wave.

From the definition given, it would be correctly inferred that a more exact term to describe the system would be automatic gain control (A.G.C.).

Since broadcast stations are at different distances from a receiver and there is a great deal of variation in transmitted power from station-to-station, the field strength around a receiver can vary by several orders of magnitude. Thus, without some sort of automatic control circuit, the output power of the receiver would vary considerably when tuning through the frequency band. It is the purpose of the A.V.C. or A.G.C. circuit to maintain the output power of the receiver constant for large variations of signal strengths.

Another important purpose of this circuit is its so-called "anti-fading" properties. The received signal strength from a distant station depends on the phase and amplitude relationship of the ground wave and the sky wave. With atmospheric changes this relationship can change, yielding a net variation in signal strength. Since these changes may be of periodic and/or temporary nature, the A.V.C. system will maintain the average output power constant without constantly adjusting the volume control.

The A.V.C. system consists of taking, at the detector, a voltage proportional to the incoming carrier amplitude and applying it as a negative bias to the controlled amplifier thereby reducing its gain.

In tube circuits the control voltage is a negative going DC grid voltage creating a loss in transconductance (Gm).

In transistor circuits various types of A.V.C. schemes can be used:

EMITTER CURRENT CONTROL

As the emitter current of a transistor is reduced (from 1.0 ma to , 1 ma for instance) various parameters change considerably (see Figure 59).

FIGURE 59
The effect of these changes will be twofold:

1. A change in maximum available gain and
2. A change in impedance matching since it can be seen that both hot and $h_{i s}$ vary radically.
Therefore, a considerable change in power gain can be obtained as shown by Figure 60.

FIGURE 60
On the other hand, as' a result of I_{co} (collector leakage current) some current always flows, thus a transistor can be controlled only up to a point and cannot be "cut-off" completely. This system yields generally fair control and is, therefore, used more than others. For performance data see Figure 61.

FIGURE 6.1

AUXILIARY A.V.C. SYSTEMS

Since most A.V.C. systems are somewhat limited in performance, to obtain improved control, auxiliary diode A.V.C. is sometimes used. The technique used is to shunt some of the signal to ground when operating at high signal levels, as shown by Figure 62.

FIGURE 62
In the circuit of Figure 62 diode CR_{1} is back-biased by the voltage drops across R_{1} and R_{2} and represents a high impedance across T_{1} at low signal levels. As the signal strength increases, the conventional emitter current control A.V.C. system creates a bias change reducing the emitter current of the controlled stage. This current reduction coupled with the ensuing impedance mismatch creates a power gain loss in the stage. As the current is further reduced, the voltage drop across R_{2} becomes smaller thus changing the bias across CR_{1}. At a predetermined level CR_{1} becomes forward biased, constituting a low impedance shunt across T_{1} and creating a great deal of additional A.V.C. action. This system will generally handle high signal strengths as can be seen from Figure 61. Hence, almost all radio circuit diagrams in the circuit section of this maniual use this system in addition to the conventional emitter current control.

"TETRODE" OR BASE \#2 CONTROL

In tetrode transistor amplifiers the high frequency gain of the transistor depends on the base-to-base bias voltage, varying the latter will give good gain control. For circuit see Figure 63.

FIGURE 63

REFLEX CIRCUITS

"A reflex amplifier is one which is used to amplify at two frequencies - usually intermediate and audio frequencies."*

The system consists of using an I.F. amplifier stage and after detection to return the audio portion to the same stage where it is then amplified again. Since in Figure 64,

FIGURE 64
two signals of widely different frequencies are amplified, this does not constitute a "regenerative effect" and the input and output loads of these stages can be split audio - I.F. loads. In Figure 65, the I.F. signal ($455 \mathrm{Kc} / \mathrm{s}$) is fed through T2 to the detector circuit CR1, C3 and R5. The detected audio appears across the volume control R5 and is returned through C 4 to the cold side of the secondary of Tl .

FIGURE 65

* F. Langford-Smith, Radiotron Designers Handbook, Australia, 1953, p. 1140

Since the secondary only consists of a few turns of wire, it is essentially a short circuit at audio frequencies. CI bypasses the I.F. signal otherwise appearing across the parallel combination of RI and R2. The emitter resistor R3 is bypassed for both audio and I.F. by the electrolytic condenser C2. After amplification, the audio signal appears across R4 from where it is then fed to the audio output stage. C5 bypasses R4 for I.F. frequencies and the primary of T 2 is essentially a short circuit for the audio signal.

The advantage of "reflex" circuits is that one stage produces gain otherwise requiring two stages with the resulting savings in cost, space, and battery drain. The disadvantages of such circuits are that the design is considerably more difficult, although once a satisfactory receiver has been designed, no outstanding production difficulties should be encountered. Other disadvantages are a somewhat higher amount of playthrough (i.e. signal output with volume control at zero setting), and a minimum volume effect. The latter is the occurrence of minimum volume at a volume control setting slightly higher than zero. At this point, the signal is distorted due to the balancing out of the fundamentals from the normal signal and the out-of-phase playthrough component. Schematics of complete radios are on pages 44 through 55.

COMPLETE RADIO CIRCUIT DIAGRAMS

SIMPLE RADIO RECEIVER
FIGURE 67

TWO TRANSISTOR RADIO RECEIVER

NENT INFORMATION SEE PAGE 167
THREE TRANSISTOR REFIEX RECEIVER

$\left.\begin{array}{l}\mathrm{CR}_{1}, \mathrm{CR}_{2}, \\ \Delta \mathrm{C}_{1}-190.6 \\ \Delta \mathrm{C}_{2}-89.3\end{array}\right\}$ R/C MODEL 242

THREE TRANSISTOR REFLEX RECEIVER

FOUR TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

コ
SIX VOLT FOUR TRANSISTOR REFLEX RECEIVER

* For further component information sèe page igt

nine voit four transistor reflex receiver

IVE TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

THREE VOLT BROADCAST RECEIVER

SIX YOLT SIX TRANSISTOR BROADCAST RECEIVER

12 V
8.2 HMM
$02 \mu \mathrm{fd}$
$.01 \mu \mathrm{fd}$
$.05 \mu \mathrm{fd}$
$6 \mu \mathrm{fd}, \mathrm{liV}$
$05 \mu \mathrm{fd}$
> $\left.\begin{array}{l}\text { * } \Delta C_{1},-190.6 \\ * \Delta C 2-89.3\end{array}\right\}$ R/G MODEL 242
> * L2 - $250 \mu \mathrm{~m} \pm 10 \%$ OR CK706A OR EQUIV.
> * L_{1} - $435 \mathrm{\mu h} \pm 10 \%$

> NOMINAL SENSITIVITY = 200 MICROVOLTS / METER MEASUURED WIT SOUTPUT . 6 WATTS. MAXIMCIVITY AT $-6 d \mathrm{db}: 8.0 \mathrm{KC} / \mathrm{S}$
SELECTIVITY AT $-60 \mathrm{db}: 60.0 \mathrm{kC} / \mathrm{S}$
SELECTIVIY AT ZERO SIGNAL BATTERY DRAIN 7.0 MILLIAMPS.

* for further component information see page igt
SIX TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

FIGURE 78

UNIJUNCTION TRANSISTOR CIRCUITS

The unijunction transistor is a three-terminal semiconductor device which has electrical characteristics that are quite different from those of conventional two-junction transistors. Its most important feature is its highly stable negative resistance characteristic which permits its application in oscillator circuits, timing circuits and bistable circuits. Circuits such as sawtooth generators, pulse generators, delay circuits, multivibrators, one-shots, trigger circuits and pulse rate modulators can be greatly simplified by the use of the unijunction transistor.

THEORY OF OPERATION

The construction of the unijunction transistor is shown in Figure 81. Two ohmic contacts, called base-one (B 1) and base-two (B2) are made at opposite ends of a small bar of n-type silicon. A single rectifying contact, called the emitter (E), is made on the opposite side of the bar close to base-two. An interbase resistance, \mathbf{R}_{BB}, of between 5 K and 10 K exists between base-one and base-two. In normal circuit operation, base-one is grounded and a positive bias voltage, V_{BB}, is applied at base-two. With no emitter current flowing, the silicon bar acts like a simple voltage divider (Figure 82) and a certain fraction, η, of V_{BB} will appear at the emitter. If the emitter voltage, V_{E}, is less than $\eta \mathrm{V}_{\mathrm{BB}}$, the emitter will be reverse-biased and only a small emitter leakage current will flow. If V_{E} becomes greater than $\eta \mathrm{V}_{\mathrm{BB}}$, the emitter will be forward biased and emitter current will flow. This emitter current consists primarily of holes injected into the silicon bar. These holes move down the bar from the emitter to base-one and result in an equal increase in the number of electrons in the emitter to base-one region. The net result is a decrease in the resistance between emitter and base-one so that as the emitter current increases, the emitter voltage decreases and a negative resistance characteristic is obtained (Figure 84).

Symbol for unijunction transistor with indentification of principle voltages and currents
FIGURE 80

Construction of unijunction transistorcross sectional view

FIGURE 81

The operation of the unijunction transistor may be best understood by the representative circuit of Figure 82. The diode represents the emitter diode, $\mathrm{R}_{\mathrm{B} 1}$ represents the resistance of the region in the silicon bar between the emitter and base-one and $\mathbf{R}_{\mathrm{B} 2}$ represents the resistance between the emitter and base-two. The resistance $\mathrm{R}_{\mathrm{B} 1}$ varies with the emitter current as indicatd in Figure 83.

Unijunction transistor representative
circuit
figure 82

$\begin{aligned} & I_{E} \\ & \left(M A A^{\prime}\right) \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{BI}} \\ (\mathrm{OHMS}) \end{gathered}$
0	4600
1	2000
2	900
5	240
10	150
20	90
50	40

Variation of R_{BI} with I_{E} in representative circuit (typical 2N492)

FIGURE 83

The large signal properties of the unijunction transistor are usually given in the form of characteristic curves. Figure 84 gives typical emitter characteristic curves as plots of emitter voltage vs. emitter current for fixed values of interbase voltage. Figure 85 gives typical interbase characteristic curves as plots of interbase voltage vs. base-two current for fixed values of emitter current. On each of the emitter characteristic curves there are two points of interest, the peak point and the valley point. On each of the emitter characteristic curves the region to the left of the peak point is called the cut-off region; here the emitter is reverse biased and only a small leakage current flows. The region between the peak point and the valley point is the negative resistance region. The region to the right of the valley point is the saturation region; here the dynamic resistance is positive and lies in the range of 5 to 20Ω.

Typical emitter characteristics
(type 2N492)
FIGURE 84

Typical interbase characteristics
(type 2N492)
FIGURE 85

PARAMETERS-DEFINITION AND MEASUREMENT

1. R_{BB} - Interbase Resistance. The interbase resistance is the resistance measured between base-one and base-two with the emitter open circuited. It may be measured with any conventional ohmmeter or resistance bridge if the applied voltage is five volts or less. The interbase resistance increases with temperature at about $0.8 \% /{ }^{\circ} \mathrm{C}$. This temperature variation of R_{BB} may be utilized for either temperature compensation or in the design of temperature sensitive circuits.
2. η-Intrinsic Stand-off Ratio. This parameter is defined in terms of the peak point voltage, V_{P}, by means of the equation: $\mathrm{V}_{\mathrm{P}}=\eta \mathrm{V}_{\mathrm{BB}}+\mathrm{V}_{\mathrm{D}} \ldots$ where V_{D} is about 0.70 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 3 millivolts $/{ }^{\circ} \mathrm{C}$. It is
found that η is constant over wide ranges of temperature and interbase voltage. A circuit which may be used to measure η is shown in Figure 86. In this circuit $\mathrm{R}_{1}, \mathrm{C}_{1}$, and the unijunction transistor form a relaxation oscillator and the remainder of the circuit serves as a peak voltage detector with the diode automatically subtracting the voltage V_{D}. To use the circuit, the voltage V_{1} is set to the value desired, the "cal." button is pushed and R_{s} adjusted to make the meter read full scale. The "test" button is then pushed and the value of η is read directly from the meter (1.0 full scale). If the voltage V_{1} is changed, the meter must be recalibrated.
3. I_{P} - Peak Point Current. The peak point current corresponds to the emitter current at the peak point. It represents the minimum current which is required to fire the unijunction transistor or required for oscillation in the relaxation oscillator circuit. I_{P} is inversely proportional to the interbase voltage. I_{P} may be measured in the circuit of Figure 87. In this circuit, the voltage V_{1} is increased until the unijunction transistor fires as evidenced by noise from the loudspeaker. V_{1} is then reduced slowly until the unijunction ceases to fire and the current through the meter is read as I_{P}.

TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)
FIGURE 86

TEST CIRCUIT FOR PEAK POINT EMITTER CURRENT (IP)
FIGURE 87
4. $\mathrm{V}_{\mathbf{P}}$ - Peak Point Emitter Voltage. This voltage depends on the interbase voltage as indicated in (2). V_{p} decreases with increasing temperature because of the change in V_{D} and may be stabilized by a small resistor in series with base-two.
5. V_{E} (sat) - Emitter Saturation Voltage. This parameter indicates the forward drop of the unijunction transistor from emitter to base-one when it is conducting the maximum rated emitter current. It is measured at an emitter current of 50 ma and an interbase voltage of 10 volts.
6. $\mathrm{I}_{\mathrm{B} 2}$ (mod) - Interbase Modulated Current. This parameter indicates the effective current gain between emitter and base-two. It is measured as the base-two current under the same condition used to measure V_{E} (sat).
7. $I_{\text {Eo }}$ - Emitter Reverse Current. The emitter reverse current is measured with 60 volts between base-two and emitter with base-one open circuit. This current varies with temperature in the same way as the I_{co} of a conventional transistor.
8. V_{v}-Valley Voltage. The valley voltage is the emitter voltage at the valley point. The valley voltage increases as the interbase voltage increases, it decreases with resistance in series with base-two and increases with resistance in series with base-one.
9. I_{v} - Valley Current. The valley current is the emitter current at the valley point. The valley current increases as the interbase voltage increases and decreases with resistance in series with base-one or base-two.

RELAXATION OSCILLATOR

The relaxation oscillator circuit shown in Figure 88 is a basic circuit for many applications. It is chiefly useful as a timing circuit, a pulse generator, a trigger circuit or a sawtooth wave generator.

bASIC RELAXATION OSCILLATOR with typical waveforms
 FIGURE 88

Conditions for Oscillation.

$$
\frac{V_{1}-V_{P}}{R_{1}}>I_{p}, \quad \frac{V_{1}-V_{V}}{R_{I}}<I_{V}
$$

It is found that these conditions are very broad permitting a 1000 to 1 range of $\mathbf{R}_{ \pm}$ from about 2 K to $2 \mathrm{M} . \mathrm{R}_{2}$ is used for temperature compensation, its value may be calculated from the equation:

$$
\mathrm{R}_{2} \cong \frac{0.65 \mathrm{R}_{\mathrm{BB}}}{\eta \mathrm{~V}_{1}}
$$

The maximum and minimum voltages of the emitter voltage waveform may be calculated from:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}(\max .)=\mathrm{V}_{\mathrm{p}}=\eta \mathrm{V}_{\mathrm{BB}}+0.7 \\
& \mathrm{~V}_{\mathrm{E}}(\min .) \cong 1 / 2 \mathrm{~V}_{\mathrm{E}}(\text { sat })
\end{aligned}
$$

The frequency of oscillation is given by the equation:

$$
f \cong \frac{1}{R_{1} C \ln \left(\frac{1}{1-\eta}\right)}
$$

and may be obtained conveniently from the nomogram of Figure 89.

Nomogram for calculating frequency of relaxation oscillation
FIGURE 89 FIGURE 89

The emitter voltage recovery time, t_{ve}, is defined as the time between the 90% and 10% points on the emitter voltage waveform. The value of $t_{v E}$ is determined primarily by the size of the capacitor C in Figure 88 and may be obtained from Figure 90.

Recovery time of unijunction transistor relaxation oscillator vs. capacity FIGURE 90

The pulse amplitude at base-one or base-two may be determined from the equations:

$$
\begin{aligned}
& \mathrm{I}_{\left.\mathrm{E}_{\mathrm{peak}}\right)} \cong \frac{\left[\mathrm{V}_{\mathrm{P}}-1 / 2 \mathrm{~V}_{\mathrm{B}}(\mathrm{sat})\right] \mathrm{C}}{\mathrm{t}_{\mathrm{VE}}} \\
& \mathrm{I}_{\mathrm{E}_{2}(\text { peak })} \cong \frac{\mathrm{I}_{\mathrm{B} 2}(\text { mod })}{7} \sqrt{\mathrm{I}_{\mathrm{E}(\text { peak }\}}}
\end{aligned}
$$

SAWTOOTH WAVE GENERATOR

The circuit of Figure 91 may be used as a linear sawtooth wave generator. The NPN transistor serves as an output buffer amplifier with the capacitor C_{2} and resistor R_{2} serving in a bootstrap circuit to improve the linearity of the sawtooth. The output of the circuit shown has an amplitude of about 12 volts peak to peak and a frequency of about 2 Kc . Note that a negative synchronizing pulse may be used at base-two.

LINEAR SAWTOOTH GENERATOR
FIGURE 91

MULTIVIBRATOR

Figure 92 shows a unijunction transistor multivibrator circuit which has a frequency of about 1 Kc . The conditions for oscillation of this circuit are the same as for the relaxation oscillator. The length of time during which the unijunction transistor is off (no emitter current flowing) is determined primarily by R_{1}. The length of time during
which the unijunction transistor is on is determined primarily by R_{2}. The periods may be calculated from the equations:

$$
\begin{aligned}
& \mathbf{t}_{1}=\mathrm{R}_{1} \mathrm{C} \ln \left[\frac{\mathrm{~V}_{1}-V_{\mathrm{E}}}{\mathrm{~V}_{1}-V_{\mathrm{p}}}\right] \\
& \mathbf{t}_{2}=\mathrm{R}_{2} \mathrm{C} \cdot \ln \left[\frac{\mathrm{~V}_{1}+\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}_{1}}\right]
\end{aligned}
$$

Where V_{E} is measured at an emitter current of $\mathbf{I}_{\mathrm{E}_{i}}=\frac{\mathbf{V}_{1}\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)}{\mathbf{R}_{1} \mathbf{R}_{2}}$ and may be obtained from the emitter characteristic curves.

UNIJUNCTION TRANSISTOR MULTIVIBRATOR WITH TYPICAL WAVE FORMS
 FIGURE 92

An NPN transistor may be direct coupled to the multivibrator circuit by replacing the diode as shown in Figure 93. This circuit has the advantage that the load does not have any effect on the timing of the circuit.

RELAY

Unijunction transistor multivibrator used to drive NPN transistor FIGURE 93

HYBRID MULTIVIBRATOR

The circuit of Figure 94 illustrates how the unijunction transistor may be used in conjunction with conventional transistors to obtain the maximum advantages of each. The two PNP transistors form a conventional flip-flop with the unijunction serving the timing and triggering function. The timing capacitor C_{T} is charged alternately through $\mathbf{R}_{\mathbf{T}_{1}}$ and $\mathrm{R}_{\mathrm{T}_{2}}$. The advantages obtained by a circuit of this type are:
(1) The two periods may be adjusted independently over a range of as much as 1000 to 1. (2) The output at the collector of each of the transistors is very nearly an ideal rectangular waveform. (3) The circuit will tolerate large changes in I_{co} or beta of the transistors. It is not. prone to "lock-up" or non-oscillation. (4) The timing stability is very good. (5) A small timing capacitor C_{T} may be used, avoiding the use of electrolytic capacitors in many applications.

> HYBRID MULTIVIBRATOR FEATURING WIDE RANGE OPERATION
> FIGURE 94

RELAY DELAY

Figure 95 shows the use of the unijunction transistor to obtain a precise delay in the operation of a relay. When the switch SW1 is closed, the capacitor C is charged to the peak point voltage at which time the unijunction transistor fires and the capacitor discharges through the relay thus causing it to close. One set of relay contacts hold the relay closed. For supply voltages of 30 volts or above, about one second of delay can be obtained per microfarad of capacitance.

TIME DELAY CIRCUIT WITH RELAY
FIGURE 95

TRANSISTOR SWITCHES

A switch is characterized by a high resistance when it is open and a low resistance when it is closed. Transistors can be used as switches. They offer the advantages of no moving or wearing parts and are easily actuated from various electrical inputs. Transistor collector characteristics as applied to a switching application is shown in Figure 96. The operating point A at which $I_{0}=I_{c o} / 1-a$ indicates the transistor's high resistance

FIGURE 96
when $I_{B}=O$. Since $1-\alpha$ is a small number, I_{C} may be many times greater than $I_{C 0}$. Shorting the base to the emitter results in a smaller I_{c}. If the base to emitter junction is reversed biased by more than .2 v , I_{c} will approach I_{co}. Reverse biasing achieves the highest resistance across an open transistor switch.

When the transistor switch is turned on, the voltage across it should be a minimum. At operating point B of Figure 96, the transistor is a low resistance. Alloy transistors such as the 2 N 525 have about one ohm resistance when switched on. Grown junction transistors, such as the 2 N 167 have approximately 80 ohms resistance which makes them less suitable for high power switching although they are well suited for high speed computer applications. In order that a low resistance be achieved, it is necessary that point B lie beyond the knee of the characteristic curves. The region beyond the knee is referred to as the saturation region. Enough base current must be supplied to ensure that this point is reached. It is also important that both the on and off operating points lie in the region below the maximum rated dissipation to avoid transistor destruction. It is permissible, however, to pass through the high dissipation region very rapidly since peak dissipations of about one watt can be tolerated for a few microseconds with a transistor rated at 150 mw . In calculating the I_{B} necessary to reach point B, it is necessary to know how $h_{\text {Fe }}$ varies with I_{c}. Curves such as Figure 97 are provided for switching transistors. Knowing $h_{F E}$ from the curve gives
$I_{B m \ln } \operatorname{since} I_{B m \ln }=\frac{I_{C}}{h_{F E}}$. Generally I_{B} is made two or three times greater than $I_{B m i n}$ to allow for variations in $h_{\text {FE }}$ with temperature or aging. The maximum rated collector voltage should never be exceeded since destructive heating may occur once a transistor breaks down. Inductive loads can generate injurious voltage transients. These can be avoided by connecting a diode across the inductance to absorb the transient as shown in Figure 98.

DIODE USED TO PROTECT TRANSISTOR EROM INDUCTIVE voltage transients.

FIGURE 98
Lighted incandescent lamps have about 10 times their off resistance. Consequently, I_{B} must be increased appreciably to avoid overheating the switching transistor when lighting a lamp.

A typical switching circuit is shown in Figure 99. The requirement is to switch a

$$
\begin{aligned}
& I_{c}=80 \mu \mathrm{~A} \text { SWITCH OPEN } \\
& I_{6}=0.2 \mathrm{~A} \text { SWITCH CLOSED } \\
& I_{s}=10 \mathrm{~mA}=\text { CURRENT THROUGH SWITCH } \\
& V_{c e}=.19 \mathrm{~V} \text { SWITCH CLOSED } \\
& V_{\text {be }}=48 \mathrm{~V} \text { SWITCH CLOSED } \\
& \text { INPUT POWER }=15 \text { MILLWATTS } \\
& \text { LOAD POWER }=5 \text { WATTS }
\end{aligned}
$$

Typical transistor switch application
FIGURE 99
200 ma current in a 25 volt circuit, delivering 5 watts to the load resistor. The mechanical switch contacts are to carry a low current and be operated at a low voltage to minimize arcing. The circuit shown uses a 2 N 525 . The 1 K resistor from the base to ground reduces the leakage current when the switch is open. Typical values are indicated in Figure 99.

TEMPERATURE EFFECTS ON SWITCHING CIRCUITS
At high junction temperatures, $I_{C O}$ can become a problem. In the off condition, both the emitter and collector junctions are generally reverse-biased. As a rule, the bias source has an appreciable resistance permitting a voltage to be developed across the resistance by I_{co}. The voltage can reduce the reverse bias to a point where the base becomes forward biased and conduction occurs. Conduction can be avoided by reducing the bias source resistance, by increasing the reverse bias voltage or by reducing $I_{\text {co }}$ through a heat sink or a lower dissipation circuit design.

The $I_{\text {co }}$ of a transistor is generated in three ways. One component originates in the semiconductor material in the base region of the transistor. At any temperature, there are a number of interatomic energy bonds which will spontaneously break into a hole-electron pair. If a voltage is applied, the hole and electron drift in opposite directions and can be seen as the I_{co} current. If no voltage is present, the hole and electron eventually recombine. The number of bonds that will break can be predicted theoretically to double about every $10^{\circ} \mathrm{C}$ in germanium transistors and every $6^{\circ} \mathrm{C}$ in silicon. Theory also indicates that the number of bonds broken will not depend on voltage over a considerable voltage range. At low voltages, $I_{c o}$ appears to decrease because the drift field is too small to extract all hole-electron pairs before they recombine. At very high voltages, breakdown occurs.

A second component of $I_{\text {co }}$ is generated at the surface of the transistor by surface energy states. The energy levels established at the center of a semiconductor junction cannot end abruptly at the surface. The laws of physics demand that the energy levels adjust to compensate for the presence of the surface. By storing charges on the surface, compensation is accomplished. These charges can generate an I_{co} component; in fact, in the processes designed to give the most stable $I_{c o}$, the surface energy levels contribute much $I_{\text {co }}$ current. This current behaves much like the base region component with respect to voltage and temperature changes. It is described as the surface thermal component in Figure 100.

(A)

(B)

(C)

A third component of $I_{c o}$ is generated at the surface of the transistor by leakage across the junction. This component can be the result of impurities, moisture or surface imperfections. It behaves like a resistor in that it is relatively independent of temperature but varies markedly with voltage. Figure 100(a) shows the regions which contribute to the three components. Figure $100(\mathrm{~b})$ illustrates how the components vary with voltage. It is seen that while there is no way to measure the base region and surface energy state components separately, a low voltage $I_{\text {Co }}$ consists almost entirely of these two components. Thus, the surface leakage contribution to a high voltage \mathbf{I}_{co} can be readily determined by subtracting out the low voltage value of $I_{\text {co }}$.

Figure $100(\mathrm{c})$ shows the variation of I_{co} with temperature. Note that while the surface thermal and base $I_{c o}$ components have increased markedly, the leakage component is unchanged. For this reason, as temperature is changed the high voltage Ico will change by a smaller percentage than the low voltage \mathbf{I}_{co}.

FIGURE 101
Figure 101 shows the variation of I_{Co} with temperature and voltage for a number of transistor types. Note that the three curves for the 2 N 396 agree with the principles above and show a leakage current less than one microampere.

The variation of current gain at high temperatures is also significant. Since $h_{\text {FE }}$ is defined as $I_{C} / I_{B}, h_{\text {EE }}$ depends on $I_{\text {co }}$ since $I_{C} \approx h_{f e}\left(I_{B}+I_{\text {COO }}\right)$. If $I_{B}=0$ i.e., if the base is open circuited, a collector current still flows, $\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{Co}}$. Thus h_{FE} is infinite when $I_{B}=0$. As base current is applied, the ratio I_{C} / I_{B} becomes more meaningful. If $h_{F B}$ is measured for a sufficiently low I_{C}, then at a high temperature $\mathrm{h}_{\mathrm{f}} \mathrm{I}_{\mathrm{co}}$ will become equal to I_{c}. At this temperature $h_{F E}$ becomes infinite since no I_{B} is required to maintain I_{c}. The AC current gain $h_{f e}$, however, is relatively independent of $I_{c o}$ and generally increases about 2:1 from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The different electrical properties of the base, emitter and collector regions tend to disappear at high temperatures with the result that transistor action ceases. This temperature usually exceeds $85^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ in germanium and silicon transistors respectively.

At high junction temperatures, it is possible for the transistor to heat itself regeneratively until it destroys itself. The factors which enter into this problem are $\mathrm{I}_{\mathrm{co}}, \mathrm{V}_{\mathrm{CB}}$, and collector load resistance and the thermal impedance of the transistor. If the load
resistance is large enough, it can limit the transistor dissipation to a safe value; otherwise, the transistor is heated by $\mathbf{I}_{\mathrm{Co}} \times \mathrm{V}_{\mathrm{cs}}$. As the temperature rises, this heating can become appreciable.

The following procedure, illustrated in Figure 102 gives a conservative estimate of the run-away temperature for a transistor with both junctions reverse biased. Thermal run-away will occur at the temperature where the rate at which I_{CO} increases heating, exceeds the thermal derating factor. T_{0} calculate this temperature, let us assume a $1^{\circ} \mathrm{C}$ rise in junction temperature. The increased heating due to the rise will be, 0.08 $I_{\text {CO }}\left(V_{C O}-2 R_{L} I_{C O}\right)$, since $I_{\text {Co }}$ increases about 8% per $I^{\circ} \mathrm{C}$. If this power will in fact raise the junction temperature by $1^{\circ} \mathrm{C}$ according to the derating factor, run-away occurs.

CIRCUIT

CALCULATE

$0.08 \mathrm{I}_{\text {Com }}\left(\mathrm{V}_{\mathrm{Cc}}-2 \mathrm{R}_{\mathrm{L}} \mathrm{I}_{\text {com }}\right)=1 / \mathrm{K}$ where I_{co} at run-away temperature $=\mathrm{I}_{\text {сом }}$. Use:

Data from specifications
$\mathrm{K}=.27^{\circ} \mathrm{C} / \mathrm{mw}$
Data from circuit
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$
$\mathrm{V}_{\mathrm{cc}}=30$ volts. The solution by substitution is
$\mathrm{I}_{\text {сом }}=1.75 \mathrm{ma}$ or 13.2 ma.
The smaller value is always the correct one.

Using $\mathrm{I}_{\mathrm{C} 0}=10 \mu \mathrm{a} \max$ at $\mathrm{T}_{\mathrm{J}}=$ $25^{\circ} \mathrm{C}$, from Figure 101A, $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$ when $\mathrm{I}_{\mathrm{C} 0}=1.75 \mathrm{ma}$.
Heating due to $\mathrm{I}_{\text {сом }}$ is
$\mathrm{P}=\mathrm{I}_{\text {сом }}\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{\mathrm{L}} \mathrm{I}_{\text {Сом }}\right)=49.5 \mathrm{mw}$, Rise in junction temperature above ambient temperature is

$$
\mathrm{KP}=(.27)(49.5)=13.4^{\circ} \mathrm{C}=\mathrm{T}_{s}
$$

$\mathrm{T}_{\mathrm{A}}=86.6^{\circ} \mathrm{C}=$ thermal run-away temperature.
Since worst condition values were used throughout, the circuit can safely be used to $86^{\circ} \mathrm{C}$.

Calculation of Thermal Run-away Temperature
 FIGURE 102

The major problem encountered in low temperature operation is the reduction of $h_{\text {FE }}$. Figure 103 shows the variation of $h_{\text {FE }}$ for the $2 N 525$ indicating that $h_{\text {FE }}$ drops about 50% from its $25^{\circ} \mathrm{C}$ value when $\mathrm{T}_{3}=-55^{\circ} \mathrm{C}$. Most transistors show approximately this variation in $h_{\text {re }}$.

POWER DISSIPATION

As with most electrical components, the transistor's range of operating conditions is limited by the transistor power dissipation.

Because the transistor is capable of a very low $V_{C D}$ when it is in saturation it is possible to use load lines which exceed the maximum rated dissipation during the switching transient, but do not exceed it in the steady state. Such load lines can be used safely if the junction temperature does not rise to the runaway temperature during the switching transient. If the transient is faster than the thermal time constant of the junction, the transistor case may be considered to be an infinite heatsink. The junction temperature rise can then be calculated on the basis of the infinite heatsink derating factor. Since the thermal mass of the junctions is not considered, the calculation is conservative.

In some applications there may be a transient over-voltage applied to transistors when power is turned on or when circuit failure occurs. If the transistor is manufactured to high reliability standards, the maximum voltages may be exceeded provided the dissipation is kept within specifications. While quality alloy transistors and grown junction transistors can tolerate operation in the breakdown region, low quality alloy transistors with irregular junctions should not be used above the maximum voltage ratings.

Quality transistors can withstand much abuse. In experimental work, a 2 N 43 was operated at a peak power of 15 watts and a peak current of 0.5 amperes with no change in characteristics. 2N396 Transistors in an avalanche mode oscillator were operated at peak currents of one ampere. 3N37 Tetrodes rated at 50 milliwatts and 25 milliamperes maximum were operated at a peak power of one watt and a peak current of 200 milliamperes without change in characteristics. Standard production units however should be operated within ratings to ensure consistent circuit performance and long life.

It is generally desirable to heatsink a transistor to lower its junction temperature since life expectancy as well as performance decreases at high temperatures. Heat sinks also minimize thermal fatigue problems, if any exist.

SATURATION

A transistor is said to be in saturation when both junctions are forward biased. Looking at the common emitter collector characteristics shown in Figure 104(a) the saturation region is approximately the region below the knee of the curves, since h_{FE}

usually falls rapidly when the collector is forward biased. Since all the characteristic curves tend to become superimposed in the saturation region, the slope of the curves is called the saturation resistance. If the transistor is unsymmetrical electrically and most transistors are unsymmetrical - then the characteristics will not be directed towards the zero coordinates but will be displaced a few millivolts from zero. For ease of measurement, generally the characteristics are assumed to converge on zero so that the saturation resistance is $\mathrm{r}_{s}=\frac{\mathbf{V}_{\mathrm{CE}}(\mathrm{sat})}{\mathbf{I}_{\mathrm{C}}}$.

FIGURE 104 (B)
While the characteristic curves appear superimposed, an expanded scale shows that $V_{C E}(s a t)$ depends on I_{B} for any given I_{c}. The greater I_{B} is made, the lower $V_{C E}(s a t)$ becomes until I_{B} is so large that it develops an appreciable voltage across the ohmic emitter resistance and in this way increases $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$. In most cases the saturation voltage, $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$, is specified rather than the saturation resistance. Figure 104(b) showing the collector characteristics in the saturation region, illustrates the small voltage off-set due to asymmetry and the dependence of r_{s} on I_{B}. Note also that r_{s} is a low resistance to both AC and DC.

DIRECT COUPLED TRANSISTOR LOGIC (DCTL) FLIP-FLOP FIGURE 105

Some circuits have been designed making specific use of saturation. The direct coupled transistor logic (DCTL) flip-flop shown in Figure 105 utilizes saturation. In saturation $V_{C E}(s a t)$ can be so low that if this voltage is applied between the base and emitter of another transistor, as in this flip-flop, there is insufficient forward bias to cause this transistor to conduct appreciably. The extreme simplicity of the circuit
is self evident and is responsible for its popularity. However, special requirements are placed on the transistors. The following are among the circuit characteristics:

First, the emitter junction is never reverse biased permitting excessive current to flow in the off transistor at temperatures above $40^{\circ} \mathrm{C}$ in germanium. In silicon, however, operation to $150^{\circ} \mathrm{C}$ has proved feasible.

Second, saturation is responsible for a storage time delay, slowing up circuit speed. In the section on transient response we see the importance of drawing current out of the base region to increase speed. In DCTL, this current results from the difference between $V_{\text {OE }}(\mathrm{sat})$ and $\mathrm{V}_{\text {BE }}$ of a conducting transistor. To increase the current, V_{CE} (sat) should be small and r_{b}^{\prime} should be small. However, if one collector is to drive more than one base, r_{b}^{\prime} should be relatively large to permit uniform current sharing between bases since large base current unbalance will cause large variations in transient response resulting in circuit design complexity.

Third, since $V_{C E}(s a t)$ and $V_{b e}$ differ by less than .3 volt, in germanium, stray voltage signals of this amplitude can cause faulty performance. While stray signals can be minimized by careful circuit layout, this leads to equipment design complexity. Silicon transistors with a .7 volt difference between $V_{C E}(\mathrm{sat})$ and V_{be} are less prone to being turned on by stray voltages but are still susceptible to turn off signals. This is somewhat compensated for in transistors with long storage time delay since they will remain on by virtue of the stored charge during short turn-off stray signals. This leads to conflicting transistor requirements - long storage time for freedom from. noise; short storage time for circuit speed.

Another application of saturation is saturated flip-flops of conventional configuration. Since $\mathrm{V}_{\text {CE }}(\mathrm{sat})$ is generally very much less than other circuit voltages, saturating the transistors permits the assumption that all three electrodes are nearly at the same potential making circuit voltages independent of transistor characteristics. This yields good temperature stability, and good interchangeability. The stable voltage levels are useful in generating precise pulse widths with monostable flip-flops. The section on flip-flop design indicates the ease with which saturated circuits can be designed.

In general, the advantages of saturated switch design are: (a) simplicity of circuit design, (b) well defined voltage levels, (c) fewer parts required than in non-saturating circuits, (d) low transistor dissipation when conducting, and (e) immunity to short stray voltage signals. Against this must be weighed the reduction in circuit speed. Speed is affected in a number of ways: (a) much higher trigger power is required to turn off a saturated transistor than an unsaturated one, (b) since $V_{C E}(s a t), h_{F E}$ and V_{BE} all vary markedly with temperature, circuit speed also depends on temperature.

DIODE COLLECTOR
CLAMPING CIRCUIT TO
AVOID SATURATION

Collector voltage clamp
FIGURE 106

A number of techniques are used to avoid saturation. The simplest is shown in Figure 106. The diode clamps the collector voltage so that it cannot fall below the base voltage to forward bias the collector junction. Response time is not improved appreciably over the saturated case since I_{C} is not clamped but rises to $h_{F B} I_{B}$. With typical variations of I_{B} and $h_{F E}$ with temperature and life for a standard transistor, I_{C} may vary by as much as $10: 1$. Care should be taken to ensure that the diode prevents saturation with the highest I_{c}. When the transistor is turned off, I_{c} must fall below the value given by $\left(\mathrm{E}_{\mathrm{co}}-\mathrm{E}_{\mathrm{D}}\right) / \mathrm{R}_{\mathrm{I}}$, before any change in collector voltage is observed. The time required can be determined from the fall time equations in the section on transient response. The diode can also have a long recovery time from the high currents it has to handle. This can further increase the delay in turning off.

Collector current clamp without bias
supply
FIGURE 107 (A)

Collector current clamp using silicon and germanium diodes
FIGURE 107 (C)

Collector current using bias supply FIGURE 107 (B)

A much better way of avoiding saturation is to control I_{B} in such a way that I_{C} is just short of the saturation level. This can be achieved with the circuit of Figure 107(a). The diode is connected between a tap on the base drive resistor and the collector. When the collector falls below the voltage at the tap, the diode conducts diverting base current into the collector, preventing any further increase in I_{c}. The voltage drop across R_{2} is approximately $I_{C} R_{2} / h_{F E}$ since the current in R_{2} is I_{B}. Since the voltage drop across the diode is approximately the same as the input voltage to the transistor, V_{OE} is approximately $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{2} / \mathrm{h}_{\mathrm{FE}}$. It is seen that if the load decreases (I_{C} is reduced) or $h_{F E}$ becomes very high, V_{CE} decreases towards saturation. Where the change in h_{FE} is known and the load is relatively fixed, this circuit prevents saturation.

To avoid the dependence of $V_{C E}$ on I_{C} and $h_{F E}, R_{3}$ may be added as in Figure 107(b). By returning R_{3} to a bias voltage, an additional current is drawn through \mathbf{R}_{2}. Now $V_{C E}$ is approximately $\left(\frac{I_{C}}{h_{F E}}+I_{3}\right) R_{2} . I_{3}$ can be chosen to give a suitable minimum $V_{C E}$.

The power consumed by \mathbf{R}_{3} can be avoided by using the circuit of Figure 107(c). The silicon diode replaces \mathbf{R}_{2}. Since the silicon diode has a forward voltage drop of approximately .7 volts over a considerable range of current, it acts as a constant voltage source making $\mathrm{V}_{\text {ce }}$ approximately .7 volts. If considerable base drive is used, it may be necessary to use a high conductance germanium diode to avoid momentary saturation as the voltage drop across the diode increases to handle the large base drive current.

In applying the same technique to silicon transistors with low saturation resistance, it is possible to use a single germanium diode between the collector and base. While this permits V_{CE} to fall below V_{BE}, the collector diode remains essentially nonconducting since the .7 volt forward voltage necessary for conduction cannot be reached with the germanium diode in the circuit.

The diode requirements are not stringent. The silicon diode need never be back biased, consequently, any diode will be satisfactory. The germanium diode will have to withstand the maximum circuit $V_{C E}$, conduct the maximum base drive with a low forward voltage and switch rapidly under the conditions imposed by the circuit, but these requirements are generally easily met.

Care should be taken to include the diode leakage currents in designing these circuits for high temperatures. All the circuits of Figure 107 permit large base drive currents to enhance switching speed, yet they limit both I_{B} and I_{C} just before saturation is reached. In this way, the transistor dissipation is made low and uniform among transistors of differing characteristics.

It is quite possible to design flip-flops which will be non-saturating without the use of clamping diodes by proper choice of components. The resulting flip-flop is simpler than that using diodes but it does not permit as large a load variation before malfunction occurs. The design procedure for an unclamped non-saturating flip-flop can be found in Transistor Circuit Engineering by R. F. Shea, et al (Wiley).

Stored neutralization by capacitor
FIGURE 108
Another circuit which is successful in minimizing storage time is shown in Figure 108. If the input is driven from a voltage source, it is seen that if the input voltage and capacitor are appropriately chosen, the capacitor charge can be used to neutralize the stored charge, in this way avoiding the storage time delay. In practical circuits, the RC time constant in the base necessary for this action limits the maximum pulse repetition rate.

TRANSIENT RESPONSE TIME

The speed with which a transistor switch responds to an input signal depends on the load impedance, the gain expected from the transistor, the operating conditions just prior to the input signal, as well as on the transistor's inherent speed. The following discussion will assume that the collector load resistance is sufficiently small that $2 \pi \mathrm{R}_{L} \mathrm{C}_{\mathrm{c}} \mathrm{f}_{\alpha} \ll 1$ where C_{C} is the collector capacitance. If this is not the case, all the response time equations must be multiplied by the correction factor ($1+2 \pi \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{c}} \mathrm{f}_{a}$).

Transient response
FIGURE 109
Let us consider the simple circuit of Figure 109(a). If we close and open the switch to generate a pulse as shown in 109(b), we will obtain the other waveforms shown in the figure. When the switch closes, current flows through the 20 K resistor to turn on the transistor. However there is a delay before collector current can begin to flow since the 20 K must discharge the emitter capacitance which was charged to -10 volts prior to closing the switch. Time must also be allowed for the emitter current to diffuse across the base region. A third factor adding to the delay time is the fact that at low emitter current densities current gain and frequency response decrease. The total delay from all causes is called the "delay time" and is measured conventionally from the beginning of the input pulse to the 10% point on the collector waveform as shown in Figure 109(e). Delay time can be decreased by reducing the bias voltage across the emitter capacitance, and by reducing the base drive resistor in order to reduce the charging time constant. At high emitter current densities, delay time becomes negligible. Figure 110 shows typical delay times for the 2N396 transistor.

FIGURE 110
The rise time refers to the turn-on of collector current. By basing the definition of rise time on current rather than voltage it becomes the same for NPN and PNP transistors. The collector voltage change may be of either polarity depending on the transistor type. However, since the voltage across the collector load resistor is a measure of collector current, it is customary to discuss the response time in terms of the collector voltage. The theoretical analysis of rise time suggests that a single exponential curve as defined in Figure 111 fits the experimental results.

GRAPHICAL ANALYSIS OF RISE TIME
SYMBOLS DEFINEDIN FIGURE 109
THE INTERCEPT OF I_{C} AND THE CURVE GIVES 1_{r}.
FIGURE 111
If the load resistor R_{L} in Figure 109(a) is small enough that a current, $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{Bi}}$, through it will not drive the transistor into saturation, the collector current will rise exponentially to $h_{F E} B_{B 1}$ with a time constant, $h_{F E} / 2 \pi f_{a}$. However, if R_{L} limits the current to less than $h_{F B} I_{B 1}$, the same exponential response will apply except that the curve will be terminated at $\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathbf{R}_{\mathrm{L}}}$. Figure 111 illustrates the case for $\mathrm{I}_{\mathrm{C}} \approx \mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 1} / 2$. Note that the waveform will no longer appear exponential but rather almost linear. This curve can be used to demonstrate the roles of the circuit and the transistor in determining rise time. For a given $h_{F E}$ and f_{a}, it is seen that increasing $h_{\text {FE }} I_{B 1} / I_{0}$ will decrease rise time by having I_{E} intersect the curve closer to the origin. On the other hand, for a given $\mathrm{I}_{\mathrm{B} 1}$ and I_{C}, speed will be proportional to f_{a} but nearly independent of h_{FE} since its effect on the time constant is balanced by its effect on the curve amplitude. A useful expression for rise time is $\mathrm{t}_{\mathrm{r}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B} 1} 2 \pi \mathrm{f}_{\mathrm{a}}$. It is valid for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}<\mathrm{h}_{\mathrm{FB}} / 5$. Since this
analysis assumes that $h_{F E}$ and f_{α} are the same for all operating points the calculated results will not fit experimental data where these assumptions are invalid. Figure 112 shows that the rise time halves as the drive current doubles, just as the expression for t_{r} suggests. However the calculated value for t_{r} is in error by more than 50%. This shows that even though the calculations may be in error, if the response time is specified for a circuit, it is possible to judge fairly accurately how it will change with circuit modifications using the above equations.

FIGURE 112
Storage time is the delay a transistor exhibits before its collector current starts to turn off. In Figure 109, R_{B} and R_{L} are chosen so that R_{L} rather than h_{FE} will limit the collector current. The front edge of the collector waveform, Figure 109(e), shows the delay time followed by the nearly linear risetime. When the collector voltage falls below the base voltage, the base to collector diode becomes forward biased with the result that the collector begins emitting. By definition, the transistor is said to be in saturation when this occurs. This condition results in a stored charge of carriers in the base region. Since the flow of current is controlled by the carrier distribution in the base, it is impossible to decrease the collector current until the stored carriers are removed. When the switch is opened in Figure 109, the voltage at A drops immediately to -10 volts. The base voltage at B however cannot go negative since the transistor is kept on by the stored carriers. The resulting voltage across R_{B} causes the carriers to flow out of the base to produce a current $\mathrm{I}_{\mathrm{B} 2}$. This is illustrated in Figure 109 (c) and 109 (d). As soon as the stored carriers are swept out, the transistor starts to turn off; the base voltage dropping to -10 volts and the base current decreasing to zero. The higher $I_{B 1}$ is, the greater the stored charge; the higher $I_{B 2}$ is, the faster they are swept out. Since both junctions are forward biased during storage time, the inverse characteristics of the transistor are involved. The inverse characteristics are obtained by interchanging the collector and emitter connections in any test circuit. They are identified by the subscript I following the parameter, e.g., $h_{\text {Fer }}$ is the inverse DC beta. Figure 113 shows a curve which is useful for calculating storage time graphically. The maximum value is $h_{F E}\left(I_{B 1}+I_{B 2}\right)$ where $I_{B 2}$ is given the same sign as $I_{B 2}$, ignoring the fact it flows in the opposite direction. The time constant of the curve involves the forward and inverse current gain and frequency cut-off. The storage time corresponds to the time required to reach the current $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{Bi}}-\mathrm{I}_{\mathrm{c}}$. It can be seen that for a given frequency response, high h_{Fs} gives long storage time. The storage time also decreases as $\mathbf{I}_{\mathbf{B} 2}$ is increased or $\mathbf{I}_{\mathbf{B} 1}$ is decreased.

FIGURE 113
The time constant for a very unsymmetrical transistor is approximately $\frac{h_{\text {FEr }}+1}{2 \pi f_{a r}}$. It is seen that the generally specified normal $h_{F E}$ and f_{a} are of little use in determining storage time. For a symmetrical transistor, the time constant is approximately $\frac{h_{F E}+1}{2 \pi f_{a}}$. It is possible for a symmetrical transistor to have a longer storage time than

FIGURE 114
an unsymmetrical transistor with the same $h_{\text {FE }}$ and f_{a}. Figure 114 shows the dependence of storage time on I_{BI} and $\mathrm{I}_{\mathrm{B} 2}$ for the 2 N 396 transistor.

FIGURE 11.5
The collector current fall time can be analyzed in much the same manner. Figure 115 indicates the exponential curve of amplitude $\mathrm{I}_{\mathrm{C}}+\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 2}$, and a time constant,
$\mathrm{h}_{\mathrm{FB}} / 2 \pi \mathrm{f}_{\mathrm{a}}$. The fall time is given by the time it takes the exponential to reach I_{C}. If $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 2} \gg \mathrm{I}_{\mathrm{G}}$, fall time is given by the expression,

$$
\mathfrak{t}_{\mathrm{F}}=\frac{1}{2 \pi \mathfrak{f}_{\sigma}} \frac{\mathbf{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{B} 2}}{\mathrm{~h}_{\mathrm{FB}}+\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{B} 2}}
$$

As $h_{\text {FE }}$ becomes large, this expression reduces to,

$$
\mathrm{t}_{\mathrm{k}}=\frac{\mathrm{l}}{2 \pi \mathrm{f}_{a}} \frac{\mathbf{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{B} 2}}
$$

which is identical to the expression for t_{r} except that $I_{B 2}$ replaces $I_{B 1}$. Figure 116 shows typical fall time measurements for a 2 N 396 .

FIGURE 116

FLIP-FLOP DESIGN PROCEDURES

The bistable Eccles-Jordan circuit or flip-flop is a building block for counters, shift registers, data storage and control machinery. At the outset, the designer has the choice of using saturating or non-saturating circuits. If he chooses saturating circuits, the design becomes very straightforward.

SATURATING FLIPAFLOPS

The simplest flip-flop possible is shown in Figure 105, however, for standard transistor types the circuit in Figure 117(a) is preferable at moderate temperatures. We shall refer to the conducting and non-conducting transistors as the on and off

SATURATED FLIP-FLOPS
transistors respectively. For stability, the circuit depends on the low collector to emitter voltage of the saturated on transistor to reduce the base current of the off transistor to a point where the circuit gain is too low for regeneration. The 220Ω emitter resistor could be removed if emitter triggering is not used. By adding resistors from base to ground as in Figure 117(b), the off transistor has both junctions reverse biased for greater stability. While the 33 K resistors divert some of the formerly available base current, operation no longer depends on a very low saturation voltage consequently less base current may be used. Adding the two resistors permits stable operation beyond $50^{\circ} \mathrm{C}$ ambient temperature.

SATURATED FLIP-FLOP
FIGURE 117 (C)
The circuit in Figure $117(\mathrm{c})$ is stabilized to $100^{\circ} \mathrm{C}$. The price that is paid for the stability is (1) smaller voltage change at the collector, (2) more battery power consumed, (3) more trigger power required, (4) a low I Io transistor must be used. The capacitor values depend on the trigger characteristics and the maximum trigger repetition rate as well as on the flip-flop design.

By far, the fastest way to design saturating flip-flops is to define the collector and emitter resistors by the current and voltage levels generally specified as load requirements. Then assume a tentative cross-coupling network. With all components specified, it is easy to calculate the on base current and the off base voltage. For example, the circuit in Figure 117(b) can be analyzed as follows. Assume $\mathrm{V}_{\mathrm{be}}=.3$ volt and $\mathrm{V}_{\mathrm{os}}=$.2 volt when the transistor is on. Also assume that $\mathrm{V}_{\mathrm{EB}}=.2$ volts will maintain the off transistor reliably cut-off. Transistor specifications are used to validate the assumptions.
I. Check for the maximum temperature of stability.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=\frac{\mathrm{R}_{4} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{4}}=\frac{220}{2200+220}(25)=2.3 \text { volts } \\
& \mathrm{V}_{\mathrm{C} \text { on }}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{CE} \text { on }}=2.3+.2=2.5 \text { volts }
\end{aligned}
$$

Assuming no \mathbf{I}_{co}, the base of the off transistor can be considered connected to

$$
\begin{aligned}
& \text { a potential, } \\
& \mathrm{V}_{\mathbf{B}}^{\prime}=\mathrm{V}_{\mathrm{C} \text { on }} \frac{\mathrm{R}_{3}}{\mathbf{R}_{2}+\mathbf{R}_{3}} \text { through a resistor } \mathrm{R}_{\mathbf{B}}^{\prime}=\frac{\mathbf{R}_{2} \mathbf{R}_{3}}{\mathrm{R}_{2}+\overline{\mathrm{R}}_{\mathbf{3}}} \\
& \mathrm{V}_{\mathrm{B}}^{\prime}=\frac{(2.5)(33 \mathrm{~K})}{(42 \mathrm{~K}+33 \mathrm{~K})}=1.1 \text { volts } \\
& \mathbf{R}_{\mathrm{B}}^{\prime}=\frac{(33 \mathrm{~K})(42 \mathrm{~K})}{75 \mathrm{~K}}=18.5 \mathrm{~K}
\end{aligned}
$$

The $I_{c o}$ of the off transistor will flow through R_{B} reducing the base to emitter potential. If the $I_{\text {co }}$ is high enough, it can forward bias the emitter to base junction causing the off transistor to conduct. In our example, $V_{\mathrm{E}}=2.3$ volts and $\mathrm{V}_{\mathrm{Er}}=.2$ volts will maintain off conditions. Therefore, the base potential can rise from 1.1 volts to 2.1 volts ($2.3-.2$) without circuit malfunction. This potential is developed across R_{B} by $\mathrm{I}_{\mathrm{co}}=\frac{2.1-1.1}{18.5 \mathrm{~K}}=54 \mu \mathrm{a}$. A germanium transistor with $\mathrm{I}_{\mathrm{co}}=10 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ will not exceed 54μ a at $50^{\circ} \mathrm{C}$. If a higher operating temperature is required, R_{2} and R_{3} may be decreased and/or R_{4} may be increased.
II. Check for sufficient base current to saturate the on transistor:
$\mathrm{V}_{\mathrm{B} \text { on }}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE} \text { on }}=2.3+.3=2.6$ volts
The current through $\mathrm{R}_{3}=\mathrm{I}_{3}=\frac{2.6 \mathrm{v}}{33 \overline{\mathrm{~K}}}=.079 \mathrm{ma}$
The current through R_{1} and R_{2} in series is $I_{2}=\frac{V_{\mathrm{CD}}-V_{\mathrm{B} \text { on }}}{\mathbf{R}_{1}+R_{2}}=\frac{25-2.6}{42 \mathrm{~K}+2.2 \mathrm{~K}}$

$$
=.506 \mathrm{ma}
$$

The available base current is $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{2}-\mathrm{I}_{3}=.43 \mathrm{ma}$
The collector current is $I_{C}=\frac{V_{C C}-V_{\mathrm{C} \text { on }}}{\mathrm{R}_{1}}=\frac{25-2.5}{2.2 \mathrm{~K}}=10.25 \mathrm{ma}$
The transistor will be in saturation if h_{FE} at 10 ma is greater than

$$
\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10.25}{.43}=24
$$

If this circuit were required to operate to $-55^{\circ} \mathrm{C}$, allowance must be made for the reduction of $h_{F E}$ at low temperatures. The minimum allowable room temperature $h_{\text {PE }}$ should be doubled, or $\mathrm{h}_{\mathrm{FE}} \min =48$.

Generally it is not necessary to include the effect of $I_{\text {co }}$ flowing through \mathbf{R}_{1} when calculating I_{2} since at temperatures where I_{co} subtracts from the base drive it simultaneously increases $h_{\text {FE }}$. If more base drive is required, R_{2} and R_{3} may be decreased. If their ratio is kept constant, the off condition will not deteriorate, and so need not be rechecked.
III. Check transistor dissipation to determine the maximum junction temperature. The dissipation in the on transistor is

$$
\mathrm{V}_{\mathrm{BE} \text { on }} \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{CE} \text { on }} \mathrm{I}_{\mathrm{C}}=\frac{(.3)(.43)}{1000}+\frac{(.2)(10.25)}{1000}=2.18 \mathrm{mw}
$$

The dissipation in the off transistor resulting from the maximum $I_{c o}$ is

$$
\mathrm{V}_{\mathrm{CB}} \mathrm{I}_{\mathrm{CO}}=\frac{(25)(55)}{10^{6}}=1.4 \mathrm{mw}
$$

Generally the dissipation during the switching transient can be ignored at speeds justifying saturated circuitry. In both transistors the junction temperature is within $1{ }^{\circ} \mathrm{C}$ of the ambient temperature if transistors in the $2 \mathrm{~N} 394-97$ or $2 \mathrm{~N} 524-27$ series are used.

NON-SATURATED FLIP-FLOP DESIGN

The abundance of techniques to prevent saturation makes a general design procedure impractical if not impossible. While it is a simple matter to design a flip-flop as shown above, it becomes quite tedious to check all the worst possible combinations of component change to ensure manufacturability and long term reliability. Often the job is assigned to a computer which calculates the optimum component values and tolerances. While a number of flip-flop design procedures have been published, they generally make simplifying assumptions concerning leakage currents and the voltages developed across the conducting transistors.

CIRCUIT CONFIGURATION FOR NON-SATURATING
 FLIP-FLOP DESIGN PROCEDURE

Characteristics:
Trigger input at points E
Trigger steering by D_{2} and R_{5}
Collector clamping by D_{1} and R_{3}
Connect points A, B, C, D, E as shown in Figure 119 to get counter or shift register operation
C1 and C2 chosen on basis of speed requirements

FIGURE 118(A)
The design procedure described here is for the configuration in Figure 118(a). No simplifying assumptions are made but all the leakage currents and all the potentials are considered. The design makes full allowance for component tolerances, voltage fluctuations, and collector output loading. The anti-saturation scheme using one resistor (R3) and one diode (D1) was chosen because of its effectiveness, low cost and simplicity. The trigger gating resistors (R5) may be returned to different collectors to get different circuit functions as shown in Figure 119. This method of triggering offers the trigger sensitivity of base triggering and the wide range of trigger amplitude permissible in collector triggering. The derivation of the design procedure would require much space, therefore for conciseness, the procedure is shown without any substantiation. The procedure involves defining the circuit requirements explicitly then determining the transistor and diode characteristics at the anticipated operating points. A few astute guesses of key parameters yield a fast solution. However, since the procedure deals with only one section of the circuit at a time, a solution is readily reached by cut and try methods without recourse to good fortune. A checking procedure permits verification of the calculations. The symbols used refer to Figure 118(a) or in some cases are used only to simplify calculations. A bar over a symbol denotes its maximum value; a bar under it, its minimum. The example is based on polarities associated with NPN transistors for clarity. The result is that only \mathbf{E}_{2} is negative. While the procedure is lengthly, its straightforward steps lend themselves to computation by technically unskilled personnel and the freedom from restricting assumptions guarantees a working circuit when a solution is reached. The circuit designed by this procedure is shown in Figure 118(b).

NON-SATURATED FLIP-FLOP
FIGURE 118 (B)

The same procedure can be used to analyze existing flip-flops of this configuration by using the design check steps.

(a) FLIP-FLOP

INPUT

(b) INTER CONNECTION AS COUNTER

(c) INTERCONNECTION AS SHIFT REGISTER

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE

STEP]

(A)	Circuit Requirements and Device Characteristics		
1	Assume maximum voltage design tolerance	$\Delta \mathrm{e}$	Let $\Delta \mathrm{e}= \pm 5 \%$
2	Assume maximum resistor design tolerance	Δ_{r}	Let $\Delta_{x}= \pm 7 \%$ (assuming $\pm 5 \%$ resistors)
3	Assume maximum ambient temperature	T_{Δ}	Let $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$
4	Assume maximum load current out of the off side	I_{0}	Let $\mathrm{I}_{0}=1 \mathrm{ma}$
5	Assume maximum load current into the on side	I_{1}	Let $\mathrm{I}_{\mathrm{t}}=0.2 \mathrm{ma}$
6	Estimate the maximum required collector current in the on transistor	${ }_{4}$	Let $\mathrm{I}_{1} \leq 17.5 \mathrm{ma}$
7	Assume maximum design I_{co} at $25^{\circ} \mathrm{C}$		From spec sheet $\mathrm{I}_{\text {co }}<6 \mu \mathrm{a}$
8	Estimate the maximum junction temperature	T_{J}	Let $\mathrm{T}_{\mathrm{J}}=60^{\circ} \mathrm{C}$
9	Calculate I_{co} at T_{J} assuming I_{co} doubles every $10^{\circ} \mathrm{C}$ or $\mathrm{I}_{\mathrm{COT}}^{\mathrm{T}} \mathrm{J}, \mathrm{I}_{\mathrm{CO26}} \mathrm{e}^{07\left(\mathrm{~T}_{\mathrm{J}}-255\right)}$	I_{2}	$\mathrm{I}_{2}=6 \mathrm{e}^{.07 \mathrm{~T}_{3}}=71 \mu \mathrm{a} ;$ Let $\mathrm{I}_{2}=100 \mu \mathrm{a}$
10	Assume the maximum base leakage current is equal to the maximum I_{co}	I_{3}	Let $\mathrm{I}_{3}=100 \mu \mathrm{a}$
11	Calculate the allowable transistor dissipation		2 N 396 is derated at $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. The junction temperature rise is estimated as $20^{\circ} \mathrm{C}$ therefore 50 mw can be allowed. Let $\mathrm{P}_{\mathrm{c}}=50 \mathrm{mw}$
12	Estimate h_{FE} minimum taking into account low temperature degradation and specific assumed operating point	$\beta_{\text {mitin }}$	Let $a_{\text {min }}=0.94$ or $\beta_{\mathrm{mln}}=15.67$
13	Estimate the maximum design base to emitter voltage of the "on" transistor	V_{1}	Let $V_{1}=0.35$ volts
14	Assume voltage logic levels for the outputs		Let the level separation be ≥ 7 volts

DEFINITION OF OPERATION
SAAPLE DESIGN FOR 2N396 TRANSISTOR

T	DEFINITION OF OPERATION	SYMBOL	SAAPLE DESIGN FOR 2N396 TRANSISTOR
15	"Choose the maximum collector voltage permissible for the "on" transistor	V_{2}	Let $\mathrm{V}_{3} \leq 2.0$ volts
16	Choose suitable diode types		Let all diodes be 1N198
17	Estimate the maximum leakage current of any diode	I	Maximum leakage estimated as $\leq 25 \mu \mathrm{a}$. Let $\mathrm{I}_{i}=40 \mu \mathrm{a}$ at end of life
18	Calculate $\mathrm{I}_{5}=\mathrm{I}_{3}+\mathrm{I}_{4}$	I	$40+100=140 \mu \mathrm{a}$
19a	Choose the minimum collector voltage for the "off" transistor keeping in mind 14 and 15 above	V	Let $\mathrm{V}_{3} \geq 9.0$ volts
19b	Choose the maximum collector voltage for the "off" transistor	$V_{\text {d }}$	Let $\mathrm{V}_{4} \leq 13.0$ volts
20	Choose the minimum design base to emitter reverse bias to assure off conditions	Vs	Let $\mathrm{V}_{5}=0.5$ volt
21a	Estimate the maximum forward voltage across the diodes	$V_{\text {a }}$	Let $\mathrm{V}_{6}=0.8 \mathrm{volt}$
21 b	Estimate the minimum forward voltage	$V_{\text {b }}$	Let $\mathrm{V}_{7}=0.2$ volt
22	Estimate the worst saturation conditions that can be tolerated.		
22 a	Estimate the minimum collector voltage that can be tolerated	V_{8}	Let $\mathrm{V}_{8}=0.1$ volt
22b	Estimate the maximum base to collector forward bias voltage that can be tolerated	V.	Let $\mathrm{V}_{\mathrm{s}}=0.1$ volt
23a	Calculate $\mathrm{V}_{0}+\mathrm{V}_{7}$	V^{10}	$2+0.2=2.2$ volts
23b	Calculate $\mathrm{V}_{2}+\mathrm{V}_{6}$	$\mathrm{V}_{5 \mathrm{~s}}$	$2+0.8=2.8$ volts
24a	Calculate $V_{8}+V_{T}$	$V_{\text {st }}$	$0.1+0.2=0.3$ volt
24 b	Calculate $\mathrm{V}_{3}+\mathrm{V}_{8}$	$V_{\text {雨 }}$	$0.1+0.8=0.9$ volt
25	Calculate $\mathrm{V}_{8}+\mathrm{V}_{8}$	V13	$0.1+0.1=0.2$ volt

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE (CONTINUED)

STEP	DEFINITION OF OPERATION	MboL	SAMPLE DESIGN FOR 2N36 TRANSISTOR
(B)	Cut and Try Circuit Design		
1	Assume E_{2}	Eir	Let $\mathrm{E}_{2}=-16$ volts $\pm 5 \% ; \overline{\mathrm{E}_{2}}=-15.2 \mathrm{v} ; \underline{\mathrm{E}_{2}}=-16.8 \mathrm{v}$
2 a	Calculate $\frac{\left(1 \pm \Delta_{\mathrm{r}}\right)}{\left(1-\Delta_{\mathrm{r}}\right)}$	K_{1}	$\frac{1.07}{0.93}=1.15$
2b	Calculate $\frac{\left(1+\frac{\Delta \Delta^{\prime}}{}\right)}{\left(1-\frac{\Delta_{\mathrm{e}}}{}\right)}$	K_{3}	$\frac{1.05}{0.95}=1.105$
2c	Calculate $\frac{\mathrm{I}_{1}}{\beta_{\mathrm{min}}}$	Ks	$\frac{17.5}{15.67}=1.11 .7 \mathrm{ma}$
2d	Calculate $\mathrm{I}_{2}+\mathrm{I}_{0}+2 \mathrm{I}_{4}$	K_{4}	$0.1+1.0+0.08=1.18 \mathrm{ma}$
2 e	Calculate $\frac{\mathrm{V}_{8}-\mathrm{V}_{8}}{\mathrm{~V}_{8}+\mathrm{V}_{8}-\overline{\mathrm{E}_{2}}}$	K_{6}	$\frac{0.8-0.1}{0.1+0.1+15.2}=0.0454$
3	Calculate $\overline{\mathrm{R}_{4}} \leq \frac{1}{\mathrm{~K}_{3}}\left[\frac{\mathrm{~V}_{10}-\mathrm{V}_{1}}{\mathrm{~K}_{1} \mathrm{~K}_{5}}-\mathrm{K}_{1}\left(\mathrm{~V}_{1}-\underline{\mathrm{E}_{2}}\right)\right]$		$\frac{1}{1.117}\left[\frac{2.2-0.35}{(1.15)(0.0454)}-1.15(0.35+16.8)\right]=14.03 \mathrm{~K}$
4	Choose R_{4}	\mathbf{R}_{4}	Let $\mathrm{R}_{4}=13 \mathrm{~K} \pm 7 \% ; \overline{\mathbf{R}_{\mathbf{4}}}=13.91 \mathrm{~K} ; \underline{\mathbf{R}_{4}}=12.09 \mathrm{~K}$
5	Calculate $\underline{R}_{3} \geq \mathrm{K}_{5} \overline{\mathrm{R}_{4}}$		$(0.0454)(13.91 \mathrm{~K})=0.632 \mathrm{~K}$
6	Choose R_{3}	$\mathrm{R}_{\text {s }}$	Let $\mathrm{R}_{3}=0.68 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}}_{3}=0.7276 \mathrm{~K} ; \underline{\mathrm{R}}_{3}=0.6324 \mathrm{~K}$
7	$\text { Check } R_{3} \text { by calculating } \overline{R_{3}} \leq \frac{\underline{R_{4}}\left(V_{19}-V_{1}\right)}{V_{1}-\underline{E_{2}}+\mathrm{K}_{3} \underline{R_{4}}}$		$\frac{(12.09 \mathrm{~K})(2.2-0.35)}{0.35+16.8+(1.117)(12.09)}=0.730 \mathrm{~K} \text {; choice of }$
8	Calculate $\frac{\overline{\overline{R_{4}}}}{-V_{5}-\overline{\mathrm{E}_{2}}-\mathrm{I}_{5} \overline{\mathrm{R}_{4}}}$	$\mathrm{K}_{\text {\% }}$	$\frac{13.91 \mathrm{~K}}{-0.5+15.2-(0.14)(13.91)}=1.091 \mathrm{~K} / \mathrm{V}$

STEP	DEFINITION OF OPERATION	SYMBOL	
$\begin{array}{r}9 \\ \hline 10\end{array}$	$\text { Calculate } \underline{R_{2}} \geq \frac{\mathrm{K}_{6}\left(\mathrm{~V}_{2}+\mathrm{V}_{5}\right)-\underline{\mathrm{R}_{8}}}{1-\mathrm{K}_{6} \mathrm{I}_{4}}$	SYMBOL	$\begin{aligned} & \text { SAMPLE DESIGN FOR 2N396 TRANSISTOR } \\ & \frac{(1.091)(2.0+0.5) \mathrm{K}-0.632 \mathrm{~K}}{1-(1.091)(0.04)}=2.19 \mathrm{~K} \end{aligned}$
10	different E_{z}. Choose R_{2} - If there are difficulties at this point, assume a	县	Let $\mathrm{R}_{2}=2.7 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{2}}=2.889 \mathrm{~K} ; \underline{\mathrm{R}_{2}}=2.511 \mathrm{~K}$
11	Calculate $\frac{\mathrm{K}_{1}{ }^{2}\left[\mathrm{~V}_{3}-\mathrm{V}_{12}+\mathrm{K}_{4} \mathrm{R}_{2}\right]}{\mathrm{V}_{4}-\bar{V}_{11}}$	K_{7}	$(1.15)^{2}\left[\frac{[9.0-0.3+(1.18)(2.511)]}{13.0-2.8}=1.51\right.$
12			$\frac{(1.51)(13.0)-9.0}{1.51-1 / 1.105}=17.63 \text { volts }$
13	Choose E1	E	Let $\mathrm{E}_{1}=16$ volts $\pm 5 \% ; \overline{\mathrm{E}_{1}}=16.8$ volts; $\mathrm{E}_{1}=15.2$ volts
14	Calculate $\overline{\mathrm{R}_{\mathrm{I}}} \leq \frac{\left(\mathrm{E}_{1}-\mathrm{V}_{3}\right) \underline{\mathrm{R}_{2}}}{\mathrm{~V}_{3}-\mathrm{V}_{12}+\mathrm{K}_{4} \underline{\mathrm{R}_{2}}}$		$\frac{(15.2-9.0)(2.511)}{9.0-0.3+(1.18)(2.511)}=1.335 \mathrm{~K}$
15	Calculate $\mathrm{R}_{1} \geq \frac{\left(\overline{\mathrm{E}_{1}}-\mathrm{V}_{4}\right)\left(\overline{\mathrm{R}_{2}}\right)}{\overline{\mathrm{V}_{4}}-\mathrm{V}_{\mathrm{ul}}}$		$\frac{(16.8-13.0)(2.889)}{13.0-2.8}=1.077 \mathrm{~K}$
16	Choose R_{1}	P^{*}	Let $\mathrm{R}_{1}=1.2 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{1}}=1.284$
(C) Design Checks			
1	Check "off" stability. Reverse bias voltage is given by: $\overline{V_{E B}} \leq \overline{\mathrm{E}_{2}}+\frac{\overline{\mathbf{R}_{4}}}{\overline{\mathbf{R}_{4}}+\underline{\mathbf{R}_{3}}+\underline{\mathrm{R}_{2}}}\left[\mathrm{~V}_{2}-\overline{\mathrm{E}_{2}}+\mathrm{I}_{4} \underline{\mathrm{R}_{2}}+\mathrm{I}_{5}\left(\underline{\mathrm{R}_{2}}+\underline{\mathrm{R}_{3}}\right)\right]$ Circuit stable if $\mathrm{V}_{\mathrm{EB}} \leq-\mathrm{V}_{5}$	$V_{\text {Eb }}$	$\begin{aligned} & -15.2+\frac{13.91}{17.05} \\ & {[2+15.2+(0.04)(2.511)+(0.14)(3.14)]=-0.7 \text { volts }} \\ & \text { The design value of } V_{5} \text { was } 0.5 \text { volts. Therefore, the "off" } \\ & \text { condition is stable. } \end{aligned}$
2	Check for non-saturation under the worst conditions, $\mathrm{V}_{\mathrm{BH}} \leq \overline{\mathrm{E}_{2}}+\frac{\overline{\mathrm{R}_{4}}\left(\mathrm{~V}_{13}-\overline{\mathrm{E}_{2}}\right)}{\overline{\overline{\mathrm{R}}_{1}}+\underline{\mathrm{R}_{2}}}$ Circuit non-saturated if $\mathrm{V}_{\mathrm{BE}} \leq \mathrm{V}_{14}$		$-15.2+\frac{13.91(0.9+15.2)}{14.54}=0.19 \text { volts }$ The design maximum of V_{14} was 0.2 volts.

NON-SATURATING

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
$\begin{aligned} & 3 \\ & 3 \mathrm{a} \end{aligned}$	Check for stability. Calculate: $\mathrm{R}_{\mathrm{A}}=\overline{\mathbf{R}_{1}}+\overline{\mathrm{R}_{2}}$	R	$1.284+2.889=4.173 \mathrm{~K}$
3 b	$\mathrm{R}_{\mathrm{B}}=\overline{\mathrm{R}_{1}}+\overline{\mathrm{R}}_{2}+\overline{\mathrm{R}}_{3}+\underline{\mathrm{R}_{4}}$	R_{3}	$1.284+2.889+.728+12.09=16.99 \mathrm{~K}$
3 c	$\mathrm{R}_{\mathrm{c}}=\overline{\mathrm{R}_{3}}+\underline{\mathrm{R}_{4}}$	Re_{c}	$.728+12.09=12.82 \mathrm{~K}$
3d	$\mathrm{E}_{1}^{\prime}=\underline{\mathrm{E}_{1}}-\mathrm{K}_{4} \overline{\mathrm{R}_{1}}$	E_{1}^{\prime}	$15.2-(1.18)(1.284)=13.68$ volts
3 e	$\mathrm{R}_{\mathrm{D}}=\underline{\mathrm{R}_{1}}+\overline{\mathrm{R}}_{2}+\overline{\mathrm{R}}_{3}+\overline{\mathrm{R}}_{4}$	$\mathbf{R o b}_{\text {d }}$	$1.116+2.889+.728+13.91=18.643 \mathrm{~K}$
3 f	$\mathrm{I}_{6}=\frac{\mathrm{R}_{\mathrm{D}}\left(\overline{\mathrm{E}_{1}}-\mathrm{V}_{2}\right)-\underline{\mathbf{R}_{1}}\left[\overline{\mathrm{E}_{1}}-\underline{\mathrm{E}_{2}}-\mathrm{I}_{5} \overline{\mathrm{R}_{4}}-\mathrm{I}_{4} \overline{\left(\overline{\mathbf{R}_{3}}+\overline{\mathbf{R}_{4}}\right]}\right]}{\underline{\mathbf{R}_{1}}\left(\mathbf{R}_{\mathrm{D}}-\underline{\mathbf{R}_{1}}\right)}$	$1{ }_{6}$	$\begin{aligned} & \frac{18.64(16.8-2)-1.116[16.8+16.8-(0.14)(13.91)}{1.116(18.64-1.116)} \\ & \frac{-(.04)(.728+13.91)]}{}=12.34 \mathrm{ma} \end{aligned}$
3 g	$\mathrm{I}_{7}=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}}}\left(\mathrm{E}_{1}^{\prime}-\mathrm{V}_{10}\right)-\frac{1}{\mathrm{R}_{\mathrm{G}}}\left(\mathrm{E}_{1}^{\prime}-\underline{\mathrm{E}_{2}}\right)$	I_{7}	$\frac{16.99}{(4.173)(12.82)}(13.68-2.2)-\frac{(13.68+16.8)}{12.82}=1.266 \mathrm{ma}$
3h	$\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{I}_{1}+\mathrm{I}_{6}+\mathrm{I}_{7}}{\beta_{\mathrm{m} 1 \mathrm{n}}+\underline{\mathbf{R}_{4}} / \mathrm{R}_{\mathrm{C}}}$	I_{8}	$\frac{0.2+12.34+1.266}{15.67+12.09 / 12.82}=0.831 \mathrm{ma}$
3 i	$\begin{aligned} & V_{B E}^{\prime}=\underline{E_{2}}+\frac{\underline{R_{4}}}{R_{B}}\left(1+\frac{R_{A}}{R_{C}}\right)\left(E_{1}^{\prime}-\underline{E_{2}}\right) \\ & -\frac{R_{4}}{R_{\mathrm{C}}}\left(E^{\prime}-V_{10}\right)-I_{8} \frac{R_{4}}{R_{B}}\left(\frac{\mathrm{R}_{4} \underline{R_{4}}}{R_{\mathrm{C}}}-R_{A}-\overline{R_{3}}\right) \end{aligned}$	$\mathrm{V}^{\prime} \mathrm{BE}^{\text {e }}$	$\begin{aligned} & -16.8+\frac{12.09}{16.99}\left(1+\frac{4.173}{12.818}\right)(13.683+16.8) \\ & -\frac{12.09}{12.818}(13.683-2.2)-0.831 \frac{12.09}{16.99} \\ & \left(\frac{(4.173)(12.09)}{12.818}-4.173-0.7276\right)=.55 \mathrm{~V} \end{aligned}$.55 V is greater than $\mathrm{V}_{1}=.35 \mathrm{~V}$, therefore the design is satisfactory.

TRIGGERING

Flip-flops are the basic building blocks for many computer and switching circuit applications. In all cases it is necessary to be able to trigger one side or the other into conduction. For counter applications, it is necessary to have pulses at a single input make the two sides of the flip-flop conduct alternately. Outputs from the flip-flop must have characteristics suitable for triggering other similar flip-flops. When the counting period is finished, it is generally necessary to reset the counter by a trigger pulse to one side of all flip-flops simultaneously. Shift registers, and ring counters have similar triggering requirements.

In applying a trigger to one side of a flip-flop, it is preferable to have the trigger turn a transistor off rather than on. The off transistor usually has a reverse-biased emitter junction. This bias potential must be overcome by the trigger before switching can start. Furthermore, some transistors have slow turn on characteristics resulting in a delay between the application of the trigger pulse and the actual switching. On the other hand, since no bias has to be overcome, there is less delay in turning off a transistor. As turn-off begins, the flip-flop itself turns the other side on.

A lower limit on trigger power requirements can be determined by calculating the base charge required to maintain the collector current in the on transistor. The trigger source must be capable of neutralizing this charge in order to turn off the transistor. It has been determined that the base charge for a non-saturated transistor is approximately $\mathrm{Q}_{\mathrm{B}}=1.22 \mathrm{I}_{\mathrm{c}} / 2 \pi \mathrm{f}_{a}$. The turn-off time constant is approximately $\mathrm{h}_{\mathrm{FE}} / 2 \pi f_{a}$. This indicates that circuits utilizing high speed transistors at low collector currents will require the least trigger power. Consequently, it may be advantageous to use high speed transistors in slow circuitry if trigger power is critical. If the on transistor was in saturation, the trigger power must also include the stored charge. The stored charge is given by

$$
\mathrm{Qs}=\frac{1}{2 \pi}-\left(\frac{1}{\mathrm{f}_{a}}+\frac{1}{\mathrm{f}_{a \mathrm{I}}}\right)\left(\frac{1}{1-a_{\mathrm{N}} a_{\mathrm{I}}}\right)\left(\mathrm{I}_{\mathrm{B} 1}-\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~h}_{\mathrm{FE}}}\right)
$$

where the symbols are defined in the section on transient response time.
Generally, the trigger pulse is capacitively coupled. Small capacitors permit more frequent triggering but a lower limit of capacitance is imposed by base charge considerations. When a trigger voltage is applied, the resulting trigger current causes the charge on the capacitor to change. When the change is equal to the base charge just calculated, the transistor is turned off. If the trigger voltage or the capacitor are too small, the capacitor charge may be less than the base charge resulting in incomplete turn-off. In the limiting case $C=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{V}_{\mathbf{T}}}$. The speed with which the trigger turns off a transistor depends on the speed in which Q_{B} is delivered to the base. This is determined by the trigger source impedance and $\mathrm{r}^{\prime}{ }_{b}$.

In designing counters, shift registers or ring counters, it is necessary to make alternate sides of a flip-flop conduct on alternate trigger pulses. There are so-called steering circuits which accomplish this. At low speeds, the trigger may be applied at the emitters as shown in Figure 120. It is important that the trigger pulse be shorter than the cross coupling time constant for reliable operation. The circuit features few parts and a low trigger voltage requirement. Its limitations lie in the high trigger current required.

At this point, the effect of trigger pulse repetition rate can be analyzed. In order that each trigger pulse produce reliable triggering, it must find the circuit in exactly the same state as the previous pulse found it. This means that all the capacitors in the circuit must stop charging before a trigger pulse is applied. If they do not, the result

EMITTER TRIGGERING
MAXIMUM TRIGGER RATE EXCEEDS 500 KCS WITH TRIGGER AMPLITUDE FROM $2 V$ TO IRV

FIGURE 120
is equivalent to reducing the trigger pulse amplitude. The transistor being turned off presents a low impedance permitting the trigger capacitor to charge rapidly. The capacitor must then recover its initial charge through another impedance which is generally much higher. The recovery time constant can limit the maximum pulse rate.

FIGURE 121

MAXIMUM TRIGGER RATE EXCEEDS I MC WITH TRIGGER AMPLITUDE FROM 0.75 TO 3 VOLTS.

FIGURE 122
Steering circuits using diodes are shown in Figures 121 and 122. The collectors are triggered in 121 by applying a negative pulse. As a diode conducts during triggering, the trigger pulse is loaded by the collector load resistance. When triggering is accomplished, the capacitor recovers through the biasing resistor R_{T}. To minimize trigger loading, R_{T} should be large; to aid recovery, it should be small. To avoid the recovery problem mentioned above, R_{T} can be replaced by a diode as shown in 123 . The diode's low forward impedance ensures fast recovery while its high back impedance avoids shunting the trigger pulse during the triggering period.

Collector triggering requires a relatively large amplitude low impedance pulse but has the advantage that the trigger pulse adds to the switching collector waveform to enhance the speed. Large variations in trigger pulse amplitude are also permitted.

FIGURE 123

COLLECTOR TRIGGERING WITH TRIGGER AMPLIFIER FOR IMC TRIGGER RATE LESS THAN I VOLT TRIGGER AMPLITUDE REQUIRED.

FIGURE 124

In designing a counter, it may be advantageous to design all stages identically the same to permit the economies of automatic assembly. Should it prove necessary to increase the speed of the early stages, this can be done by adding a trigger amplifier as shown in Figure 124, without any change to the basic stage.

Base triggering shown in Figure 122 produces steering in the same manner as collector triggering. The differences are quantitative with base triggering requiring less trigger energy but a more accurately controlled trigger amplitude. A diode can replace the bias resistor to shorten the recovery time.

FIGURE 125
Hybrid triggering illustrated in Figure 125 combines the sensitivity of base triggering and the trigger amplitude variation of collector triggering. In all the other steering circuits, the bias potential was fixed, in this one the bias potential varies in order to more effectively direct the trigger pulse. By returning the bias resistor to the collector, the bias voltage is V_{CB}. For the conducting transistor, V_{CB} is much less than for the off transistor, consequently, the trigger pulse is directed to the conducting transistor. This steering scheme is particularly attractive if $\mathrm{V}_{\text {Св }}$ for the conducting transistor is very small as it is in certain non-saturating circuits such as shown in Figure 107.

Care should be taken that the time constant $\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{I}}$ does not limit the maximum counting rate. Generally \mathbf{R}_{T} can be made approximately equal to \mathbf{R}_{K} the cross-coupling resistor.

To design a shift register or a ring counter, it is only necessary to return R_{T} to the appropriate collector to achieve the desired switching pattern. The connections for the shift register are shown in Figure 119(a) and (b). A ring counter connection results from connecting the shift register output back to its input as shown in Figure 119(c).

SYMMETRICAL TRANSISTOR TRIGGERS BOTH SIDES OF FLIP-FLOP SIMULTANEOUSLY,

FIGURE $126(A)$

TRIGGER TRANSISTORS SIMULTANEOUSLY SUPPLY CURRENT TO TURN OFF ONE SIDE OF FLLP-FLOP AND TO OEVELOP A TO TURN OFF ONE SIDE OF FLIPPFLOP AND TO
VOLTAGE ACROSS THE COLLECTOR LOAD ON THEOTHER SIDE.

FIGURE 126(B)

CIRCUIT OF FIGURE I26(b) WITH TRIGGER STEERING ADDED FOR COUNTER APPLICATION
trigger circuits
USING TRIGGER POWER TO INCREASE SWITCHING SPEED
FIGURE 126 (C)
By using transistors as trigger amplifiers, some circuits superpose the trigger on the output of the flip-flop so that an output appears even if the flip-flop is still in the transient condition. Figure 126(a) shows a symmetrical transistor used for steering. The transistor makes the trigger appear in opposite phase at the flip-flop collectors speeding up the transition. The circuit in Figure 126(b) can have R_{C} and R_{K} so chosen so that a trigger pulse will bring the collector of the transistor being turned on to ground even though the transistor may not have started conducting. The circuit in $126(\mathrm{~b})$ may be converted to a steering circuit by the method shown in 126(c).

LOGIC

Large scale scientific computers, smaller machine control computers and electronic animals all have in common the facility to take action without any outside help when the situation warrants it. For example, the scientific computer recognizes when it has completed an addition, and tells itself to go on to the next part of the problem. A machine control computer recognizes when the process is finished and another part should be fed in. Electronic animals can be made to sense obstructions and change their course to avoid collisions. Mathematicians have determined that such logical operations can be described using the conjunctives AND, OR, AND NOT, OR NOT. Boolean algebra is the study of these conjunctives, the language of logic. Transistors can be used to accomplish logic operations. To illustrate this an example from automobile operation will be used.
Let us consider the interactions between the ignition switch, the operation of the motor and the oil pressure warning light. If the ignition is off, the motor and light will both be off. If the ignition is turned on, but the starter is not energized the warning lamp should light because the motor has not generated oil pressure. Once the motor is running, the ignition is on and the lamp should be off. These three combinations of ignition, motor and lamp conditions are the only possible combinations signifying proper operation. Note that the three items discussed have only two possible states each, they are on or off. This leads to the use of the binary arithmetic system, which has only two symbols corresponding to the two possible states. Binary numbers will be discussed later in the chapter.

Table of all possible combinations of ignition, motor and lamp conditions FIGURE 127

To write the expressions necessary to derive a circuit, first assign letters to the variables, e.g., I for ignition, M for motor and L for lamp. Next assign the number one to the variable if it is on; assign zero if it is off. Now we can make a table of all porsible combinations of the variables as shown in Figure 127. The table is formed by writing ones and zeros alternately down the first column, writing ones and zeros in series of two down the second; in fours down the third, etc. For each additional variable, double the number of ones or zeros written in each group. Only 2^{N} rows are written, where \mathbf{N} is the number of variables, since the combinations will repeat if more rows are added. Indicate with a check mark in the result column if the combination represented in the row is acceptable. For example, combination 4 reads, the ignition is off and the motor is running and the warning light is on. This obviously is an unsatisfactory
situation. Combination 7 reads, the ignition is on and the motor is running and the warning light is off. This obviously is the normal situation while driving. If we indicate that the variable is a one by its symbol, and that it is a zero by the same symbol with a bar over it, and if we use the symbol plus (+) to mean "OR" and multiplication to mean "AND" we can write the Boolean equation $\bar{I} \bar{M} \bar{L}+I \bar{M} L+I M \bar{L}=R$ where R means an acceptable result. The three terms on the left hand side are combinations 1,6 , and 7 of the table since these are the only ones to give a check mark in the result column. The plus signs indicate that any of the three combinations individually is acceptable. While there are many rules for simplifying such equations, they are beyond the scope of this book.

FIGURE 128

FIGURE 129

To express this equation in circuitry, two basic circuits are required. They are named gates because they control the signal passing through. An "AND" gate generates an output only if all the inputs representing the variables are simultaneously applied and an "OR" gate generates an output whenever it receives any input. Our equation translated into gates would be as shown in Figure 128. Only if all three inputs shown for an "AND" gate are simultaneously present will an output be generated. The output will pass through the "OR" gate to indicate a result. Note that any equation derived from the table can be written as a series of "AND" gates followed by one "OR" gate.

It is possible to rearrange the equation to give a series of "OR" gates followed by one "AND" gate. To achieve this, interchange all plus and multiplication signs, and remove bars where they exist and add them where there are none. This operation gives us,

$$
(\mathrm{I}+\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}+\overline{\mathrm{L}})(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\mathrm{R}}
$$

In ordinary language this means if any of the ignition or motor or lamp is on, and simultaneously either the ignition is off or the motor is on or the lamp is off, and simultaneously either the ignition is off or the motor is off or the lamp is on, then the result is unacceptable. Let us apply combination 4 to this equation to see if it is acceptable. The ignition is off therefore the second and third brackets are satisfied. The first bracket is not satisfied by the ignition because it requires that the ignition be on. However, the motor is on in combination 4, satisfying the conditions of the first bracket. Since the requirements of all brackets are met, an output results. Applying combination 7 to the equation we find that the third bracket cannot be satisfied since its conditions are the opposite of those in combination 7. Consequently, no output appears. Note that for this equation, an output indicates an unacceptable situation, rather than an acceptable one, as in the first equation. In gate form, this equation is shown in Figure 129.

Consider the circuits in Figure 130. The base of each transistor can be connected through a resistor either to ground or a positive voltage by operating a switch. In Figure 130(a) if both switches are open, both transistors will be non-conducting except for a small leakage current. If either switch A or switch B is closed, current will flow through R_{L}. If we define closing a switch as being synonymous with applying an input then we have an "OR" gate. When either switch is closed, the base of the transistor sees a positive voltage, therefore, in an "OR" gate the output should be a positive voltage also. In this circuit it is negative, or "NOT OR". The circuit is an "OR" gate with phase inversion. It has been named a "NOR" circuit. Note that if we define opening a switch as being synonymous with applying an input, then we have an "AND" circuit with phase inversion since both switch A and switch B must be open before the current through R_{L} ceases. We see that the same circuit can be an "AND" or an "OR" gate depending on the polarity of the inpuț.

The circuit in Figure 130(b) has identically the same input and output levels but uses PNP rather than NPN transistors. If we define closing a switch as being an input,
we find that both switches must be closed before the current through \mathbf{R}_{L} ceases. Therefore, the inputs which made the NPN circuit an "OR" gate make the PNP circuit an "AND" gate. Because of this, the phase inversion inherent in transistor gates does not complicate the overall circuitry excessively.

Figure $131($ a) and (b) are very similar to Figure $130(a)$ and (b) except that the transistors are in series rather than in parallel. This change converts "OR" gates into "AND" gates and vice versa.

BASIC LOGIC CIRCUITS using series transistors
 FIGURE 131

Looking at the logic of Figure 129, let us define an input as a positive voltage; a lack of an input as zero voltage. By using the circuit of Figure 130(a) with three transistors in parallel, we can perform the "OR" operation but we also get phase inversion. We can apply the output to an inverter stage which is connected to an "AND" gate of three series transistors of the configuration shown in Figure 131(b). An output inverter stage would also be required. This is shown in Figure 132(a),

By recognizing that the circuit in Figure 130(a) becomes an "AND" gate if the input signal is inverted, the inverters can be eliminated as shown in Figure 132(b).

Circuits representing $(\mathrm{I}+\underset{\text { FIGURE }}{\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}}+\overline{\mathrm{L}})(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\mathrm{R}}$
If the transistors are made by processes yielding low saturation voltages and high base resistance, the series base resistors may be eliminated. Without these resistors the logic would be called direct-coupled transistor logic DCTL. While DCTL offers extreme circuit simplicity, it places severe requirements on transistor parameters and does not offer the economy, speed or stability offered by other logical circuitry.

The base resistors of Figure 132 relax the saturation voltage and base input voltage requirements. Adding another resistor from each base to a negative bias potential would enhance temperature stability.

Note that the inputs include both "on" and "of" values of all variables e.g., both I and $\overline{\mathrm{I}}$ appear. In order that the gates function properly, I and $\overline{\mathrm{I}}$ cannot both be positive simultaneously but they must be identical and oppositely phased, i.e. when I is positive \bar{I} must be zero and vice versa. This can be accomplished by using a phase inverter to generate I from I. Another approach, more commonly used, is to take I and \bar{I} from opposite sides of a symmetrical flip-flop.

IF A OR B OR C IS RAISED FROM ZERO TO 12 VOLTS THE TRANSISTOR WILL CONDUGT.

BASIC NOR CIRCUIT

FIGURE 1.33
"NOR" logic is a natural extension of the use of resistors in the base circuit. In the circuit of Figure 133, if any of the inputs is made positive, sufficient base current
results to cause the transistor to conduct heavily. The "OR" gating is performed by the resistors; the transistor amplifying and inverting the signal. The logic of Figure 129 can now be accomplished by combining the "NOR" circuit of Figure 133 with the "AND" circuit of Figure 131(a). The result is shown in Figure 134. In comparing the circuits in Figure 132(a) and 134, we see that the "NOR" circuit uses one-fourth as many transistors and one-half as many resistors as the brute force approach. In fact if we recall that the equation we are dealing with gives $\overline{\mathrm{R}}$ rather than R , we see that we can get R by removing the output phase inverter and making use of the inherent inversion in the "NOR" circuit.

"NOR" logic using series transistors for
"AND" gate
FIGURE 134
Because of the fact that a generalized Boolean equation can be written as a series of "OR" gates followed by an "AND" gate as was shown, it follows that such equations can be written as a series of "NOR" gates followed by a "NOR" gate. The low cost of the resistors used to perform the logic and the few transistors required make "NOR" logic attractive.

Circuit used for design of "NOR" circuitry FIGURE 135

A detailed "NOR" building block is shown in Figure 135. The figure defines the basic quantities. The circuit can readily be designed with the aid of three basic equations. The first derives the current I_{K} under the worst loading conditions at the collector of a stage.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{K}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}-\mathbf{I}_{\mathrm{COM}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{K}}+\mathrm{N} \mathrm{R}_{\mathrm{C}}} \ldots \ldots \text { where } \mathrm{I}_{\mathrm{COM}} \tag{A}
\end{equation*}
$$

is the maximum $I_{C O}$ that is expected at the maximum junction temperature. The second equation indicates the manner in which I_{K} is split up at the base of the transistor.

$$
\begin{equation*}
I_{K}=I_{B}+\frac{M\left(V_{C E M}-V_{C E N}+V_{B E}-V_{E B}\right)-\left(V_{B E}-V_{C E N}\right)}{R_{K}}+I_{C O M} \tag{B}
\end{equation*}
$$

where $\mathrm{V}_{\text {Cen }}$ is the minimum expected saturation voltage, $\mathrm{V}_{\text {cex }}$ is the maximum expected saturation voltage and V_{EB} is the reverse bias required to reduce the collector current to $I_{c o} V_{\text {eb }}$ is a negative voltage. The third equation ensures that $V_{\text {eb }}$ will be reached to turn off the transistor.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{COM}}+\frac{\left(\mathrm{V}_{\text {CEM }}-\mathrm{V}_{\text {EB }}\right) \mathrm{M}}{\mathrm{R}_{\mathrm{K}}}=\mathrm{I}_{\mathrm{T}} \tag{C}
\end{equation*}
$$

Knowing $\mathbf{I}_{\mathbf{T}}$ and choosing a convenient bias potential permits calculation of R_{T}. In using these equations, first select a transistor type. Assume the maximum possible supply voltage and collector current consistent with the rating of the transistor and the maximum anticipated ambient temperature. This will ensure optimization of N and M. From the transistor specifications values of $I_{\text {com, }}, V_{b e}, V_{\text {cen }}$, and I_{B} (min) can be calculated. $I_{B}(\mathrm{~min})$ is the minimum base current required to cause saturation. R_{C} is calculated from the assumed collector current. In equation (A) solve for I_{K} using the desired value of N and an arbitrary value for R_{K}. Substitute the value for I_{K} in equation (B) along with a chosen value for M and solve for I_{B}. While superficially I_{B} need only be large enough to bring the transistor into saturation, increasing I_{B} will improve the rise time.

FIGURE 136
Circuit speed can also be enhanced by using a diode as shown in Figure 136(a) to prevent severe saturation or by shunting R_{k} by a capacitor as in 136(b). The capacitors may cause malfunction unless the stored charge during saturation is carefully
controlled; they also aggravate crosstalk between collectors. For this reason it is preferable to use higher frequency transistors without capacitors when additional speed is required.

BINARY ARITHMETIC

Because bistable circuits can be readily designed using a variety of components from switches to transistors, it is natural for counters to be designed to use binary numbers, i.e. numbers to the base 2 . In the conventional decimal system, a number written as 2904 is really a contraction for $2 \times 10^{3}+9 \times 10^{2}+0 \times 10^{1}+4 \times 1$. We see that each place refers to a different power of 10 in ascending order from the right. In the binary system, only two symbols are permitted, 0 and 1. All numbers are constructed on the basis of ascending powers of 2 . For example, 11011 means $1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 1$. This is 27 in the decimal system. Using this construction, we can compare the form of binary and decimal numbers.

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

We see that the table in Figure 127 is actually a list of the first 8 binary numbers. The count in a binary counter can be determined by noting whether each stage is in the 1 or 0 condition, and then assigning the appropriate power of 2 to the stage to construct the number as in our examples.

To multiply a number by 10 we add a zero to the right hand side in the decimal system. In the binary system, we add a zero when multiplying by two. This is equivalent to shifting the number one place to the left. This operation is done by a shift register.

If it is required to count to a base other than 2, a binary counter can be modified to counter to another base.

The rules for accomplishing the modification will be illustrated by constructing a counter to the base 10 .

	Rule	Example
1)	Determine the number of binary stages	$\mathrm{M}=10$
	(N) required to count to the desired	$2^{3}<10<2^{4}$
	new base (M)	$\mathrm{N}=4$
2)	Subtract M from $2^{\text {N }}$	$2^{4}-10=6$
3)	Write the remainder in binary form	$6=110$
	When the count reaches $2^{\mathrm{N}-1}$, feed	$2^{\mathrm{N}-1}=2^{3}=1000$
	back a one to each stage having a one	Feedback added gives
	in the remainder	1110

As additional pulses are added they will count through to M and then recycle to zero. This method is based on advancing the count at the point 2^{N-1} to the extent that the indicated count is 2^{N} when M input pulses are applied. The feedback is applied when the most significent place becomes a one but it is imperative that feedback be delayed until the counter settles down in order to avoid interference with the normal counter action.

TETRODE TRANSISTORS

Transistor types 3N36 and 3N37 are grown germanium NPN tetrodes manufactured by the meltback process. The 3 N 36 is generally used between 30 MC and 90 MC while the 3 N 37 is used from 90 MC to 200 MC . Primarily intended for high frequency use as RF amplifiers, IF amplifiers, mixers and oscillators, these transistors are also excellent for wide band video amplifiers. The use of base-two for AGC control is also attractive in that very little detuning of the collector circuit results.

Formerly designated by the development number ZJ-22, these types are now in quantity production. The case dimensions of these transistors conform to the JETEC TO-12 package. They are electrically isolated from the case, which may be grounded by the indexing tab, if required for shielding purposes. The design is suitable for automatic insertion into printed circuit boards.

It has long been recognized that smaller bar size will improve high frequency transistor performance. In particular, small cross section base regions will reduce the base spreading resistance, $r^{\prime}{ }_{b}$, (or high frequency base resistance). High $r^{\prime}{ }_{b}$ is the most degradating high frequency parameter and is almost always the performance-limiting factor. One approach to reducing $r^{\prime}{ }_{b}$ is to use physically minute bars. While this solves the electrical problem and is technically possible, the cost of manufacture is high and mechanical reliability is low. To overcome these problems, G.E. uses a reasonable size bar and obtains the high frequency performance by electrical means. With the addition of a second base lead and the application of a suitable cross-base bias, an electric field is established which "compresses" the active base region and thereby brings about a significant reduction in the high frequency base resistance. See Figure 137.

Effect of base-two bias on current distribution
FIGURE 137
Improvements in base resistance of the order of 10 to 1 are achieved by the tetrode over the triode. Since the collector-base junction is normally biased in the inverse direction, the addition of base-two bias has relatively little effect on the collector junction. It merely increases the average bias by $\mathrm{V}_{\mathrm{B}_{1}{ }^{\mathrm{F}} 2} / 2$ which at any collector bias over a few volts has practically no effect.

Operation in the common emitter configuration is generally recommended for several reasons. Operation is more stable and is less likely to be regenerative. Power gain is higher except at the upper frequency limits. The effect of collector capacity on
internal feedback is approximately halved when base-two is connected to a-c ground. See Figure 138 for a simplified equivalent circuit.

Approximate equivalent circuit of tetrode
FIGURE 138
As can be seen, half the collector capacity is across the load and can be tuned out. Thus, it does not contribute to the internal feedback. Output impedance is increased by a factor of 2 , with a corresponding improvement in high frequency available power gain. Figure 139 shows the typical power gain variations of a 3N36 at 60 MC with collector voltage, emitter current and base-two bias. Curves for the 3N37 at 150 MC have the same general shape.

Power gain variations with bias FIGURE 139

Typical d-c biasing methods are shown in Figures 140 and 141. Recommended conditions are:

Collector to emitter voltage, $\mathrm{V}_{\text {CE }}=5$ volts; base-one to base-two voltage, $\mathrm{V}_{\mathrm{B}_{1} \mathrm{~B}_{2}}=2$ volts; base-one to base-two current, $\mathrm{I}_{\mathrm{B}_{1} \mathrm{~B}_{2}}=$.5 ma ; emitter current, $\mathrm{I}_{\mathrm{E}}=1.5 \mathrm{ma}$.

Typical circuit configurations utilizing tetrode transistors are shown in Figures 142,143 , and 144.

CRYSTAL CONTROLLED OSCILLATOR
FIGURE 142

BASE 2 AGC FOR RF AND IF AMPLIFIERS
FIGURE 143

TV VIDEO AMPLIFIER (FOR HIGH Gm PICTURE TUBES)
FIGURE 144

POWER SUPPLIES

Both silicon and germanium cells can be used in the types of power supplies illustrated in Figures 149, 150, 151, and 152. All four of these power supplies are designed for low ripple output and high reliability at minimum expense. However, they are limited to Class A types of load in which the average load current does not vary with the amplitude of the impressed signal. Class B loads require a stiffer voltage source than

PRE-AMP POWER SUPPLY FIGURE 1.49

* to adjust voltage output for other output currents, ADJUST R2.

GENERAL PURPOSE TRANSISTOR POWER SUPPLY FIGURE 150

OUTFUT v	OUTPUT CURRENT	R1	R2	R3*	$\begin{array}{\|c\|} \mathrm{Cl} \\ \text { METALIZED } \\ \text { PAPER } \end{array}$	c2	c3	APPROX R\|PPLE
12 VOLTS	100MA.	20	$\begin{gathered} 100 \Omega \\ 2 \mathrm{~W} \end{gathered}$	$\frac{2200 \Omega}{1 \mathrm{~W}}$	THREE $2-\mu \mathrm{f}$ IN PARALLEL 200 V	$\begin{gathered} 250 \mu \neq f \\ 15 . ~ V O L T \\ \text { ELEOTROLYTIC } \end{gathered}$	$\begin{gathered} 250 \mu 4 \\ \text { I5 VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	0.5\%
12 Volts	150MA	$\underset{\text { I WATT }}{2 \Omega}$	$\begin{aligned} & 100 \Omega \\ & 10 \mathrm{~W} \end{aligned}$	$\left\|\begin{array}{c} 2200 \Omega \\ \mid W \end{array}\right\|$	FOUR $2-\mu+\mathrm{IN}$ PARALLEL 200 V	$\left\|\begin{array}{c} 250 \mu \mathrm{t} \\ 15 \text { VoLT } \\ \text { ELECTROLYTJC } \end{array}\right\|$	$\begin{gathered} 250_{\mu} f \\ 15 \text { VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	0.5\%
25 VOLTS	50 MA	$\left\|\begin{array}{c} 2 \Omega \\ 1 \text { WATT } \end{array}\right\|$	$\begin{gathered} 250 \Omega \\ 2 W \end{gathered}$	$\left\|\begin{array}{c} 10,000 \Omega \\ \text { IW } \end{array}\right\|$	```Two 2-mi IN PARALLEL 200 V```	$100 \mu 7$ 50 VOLT elegtroittic	$\begin{gathered} 250, \mathrm{y} \\ 30 \text { VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	0.5\%

[^1]

OUTPUT VOLTAGE V	OUTPUT CURRENT	RI	R2	Cl	C2	RECT.	APPROX RIPPLE
40 VOLTS	1 AMP:	$\left\lvert\, \begin{gathered} 3 \Omega \\ 10 \text { WATTS } \end{gathered}\right.$	$20 \text { WATTS }$	$\begin{gathered} 300 \mu \mathrm{f} \\ \text { I50 VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	$1000 \mu \mathrm{H}$ $50 \text { VOLT }$ ELECTROLYTIC		1\%

TI - U.T.C. R-43 AUTOTRANSFORMER OR EQUAL 2:। WINDING RATIO

POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPLIFIER
FIGURE 151
the resistance-capacity combinations of the illustrated power supplies can provide. For Class B and other loads that require good voltage regulation, it is recommended that the line voltage be reduced through transformers rather than series resistance or capacitance, and that chokes be substituted for the series resistance in the filter elements. Alternately, a regulated power supply such as shown on page 108 can be used.

This circuit uses a step-down transformer and full-wave rectifier as a source of unregulated DC. A power transistor acts as a series regulator and mercury batteries are used for the voltage reference. The battery drain is very small so their life is essentially equal to the shelf life.

When a semiconductor rectifier feeds a capacity-input filter such as in Figures 149 through 152 , it is necessary to limit the high charging current that flows into the input capacitor when the circuit is energized. Otherwise this surge of current may destroy the rectifier. Resistor R1 is used in Figures 149 through 152 to limit this charging current to safe values.

As shown, the four power supplies do not isolate the load circuit from the 117 volt AC line. In Figures 149 and 150, the load circuit may be grounded provided a polarized

$\begin{aligned} & \text { OUTPUT } \\ & \text { VOLTAGE } \\ & \mathrm{V} \end{aligned}$	output CURRENT	Bi	R2	Cl	C2	RECT	APPROX RIPPLE
40 VOLTS	1 AMP.	$\left\|\begin{array}{c} 3 \Omega \\ 10 \text { WATTS } \end{array}\right\|$	$\begin{gathered} 20 \Omega \\ 20 \text { WATTS } \end{gathered}$	$\begin{gathered} 300 \mu \dagger \\ 150 \text { VOLT } \\ \text { ELECTROLYTIC } \end{gathered}$	$1000 \mu \mathrm{f}$ 50 VOLT ELECTROLYTIC		1\%

TI - U.T.C. R-43 AUTOTRANSFORMER OR EQUAL
2:| WINDING RATIO
POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPLIFIER
FIGURE 151
the resistance-capacity combinations of the illustrated power supplies can provide. For Class B and other loads that require good voltage regulation, it is recommended that the line voltage be reduced through transformers rather than series resistance or capacitance, and that chokes be substituted for the series resistance in the filter elements. Alternately, a regulated power supply such as shown on page 108 can be used.

This circuit uses a step-down transformer and full-wave rectifier as a source of unregulated DC. A power transistor acts as a series regulator and mercury batteries are used for the voltage reference. The battery drain is very small so their life is essentially equal to the shelf life.

When a semiconductor rectifier feeds a capacity-input filter such as in Figures 149 through 152, it is necessary to limit the high charging current that flows into the input capacitor when the circuit is energized. Otherwise this surge of current may destroy the rectifier. Resistor R1 is used in Figures 149 through 152 to limit this charging current to safe values.

As shown, the four power supplies do not isolate the load circuit from the 117 volt AC line. In Figures 149 and 150, the load circuit may be grounded provided a polarized

* to adjust voltage output for other output currents,
adjust r3.

POWER SUPPLY FOR HIGH POWER CLASS A TRANSISTOR AMPLIFIER FIGURE 152

plug is used on the AC line cord to ensure that the grounded side of the AC line is always connected to the grounded side of the load. Figures 151 and 152 utilize what is called a single phase bridge rectifier circuit to achieve full wave rectification, and hence, lower ripple. Since ground cannot be carried through on a common line to the load in this type of circuit, it is necessary to insulate the load "ground" from accidental contact with true ground, or to insert an isolation transformer ahead of the power supply to isolate the two systems. Careful attention to these factors is of particular importance when supplying DC to high gain amplifiers to eliminate hum.

As illustrated, Figures 149 and 150 develop a negative output voltage with respect to ground as required when supplying P-N-P transistors with grounded emitters. To develop a positive voltage with respect to ground, it is only necessary to reverse the rectifiers and electrolytic capacitors in the circuit.

The power supply of Figure 151 uses an autotransformer to reduce the line voltage to one-half normal value before applying to the rectifiers. Provided the additional heat same objective by using resistor R 2 to reduce the voltage to the desired value.

COMPLETE POWER SUPPLY CIRCUITS

POWER SUPPLY FOR FIVE-WATT AMPLIFIER FIGURE 153

POWER SUPPLY FOR DUAL SIX-WATT AMPLIFIER
FIGURE 154

$C I-1500 \mu f, 50$ VOLTS
$C 2-1500 \mu f, 50$ VOLTS
$C 3-1500 \mu f, 50$ VOLTS
$C 4-1500 \mu f, 50$ VOLTS
SILICON BRIDGE - FOUR-INIII5
POWER SUPPLY FOR DUAL TEN-WATT AMPLIFIERS
FIGURE 155

TRANSISTOR SPECIFICATIONS

HOW TO READ A SPECIFICATION SHEET

Semiconductors are available in a large variety of different types, each with its own unique characteristics. At the present time there are over 2200 different types of diodes and rectifiers and over 750 different types of transistors being manufactured.

The Characteristics of each of these devices are usually presented in specification sheets similar to the ones represented on the next two pages. These specifications, particularly the transistor specification on the next page, contain many terms and ratings that are probably new to you, so we have selected several of the more important ones and explained what they mean.

NOTES ON TRANSISTOR SPECIFICATION SHEET

(1) The lead paragraph is a general description of the device and usually contains three specific pieces of information - The kind of transistor, in this case a silicon NPN triode, - A few major application areas, amplifier and switch, - General sales features, electrical stability and a standard size hermetically sealed package.
(2) The Absolute Maximum Ratings are those ratings which should not be exceeded under any circumstances. Exceeding them may cause device failure.
(3) The Power Dissipation of a transistor is limited by its junction temperature. Therefore, the higher the temperature of the air surrounding the transistor (ambient temperature), the less power the device can dissipate. A factor telling how much the trańsistor must be clerated for each degree of increase in ambient temperature in degrees centigrade is usually given. Notice that this device can dissipate 150 mw at $25^{\circ} \mathrm{C}$. By applying the given derating factor of lmw for each degree increase in ambient temperature, we find that the power dissipation has dropped to 0 mw at $175^{\circ} \mathrm{C}$, which is the maximum operating temperature of this device.
(4) All of the remaining ratings define what the device is capable of under specified test conditions. These characteristics are needed by the design engineer to design matching networks and to calculate exact circuit performance.
(5) Current Transfer Ratio is another name for beta. In this case we are talking about an a-c characteristic, so the symbol is h_{fe}. Many specification sheets also list ţhe d-c beta using the symbol $h_{\text {FE. }}$. Beta is partially dependent on frequency, so some specifications list beta for more than one frequency.
(6) The Noise Figure is a measurement derived to evaluate the amount of electrical noise produced by the transistor in a circuit.
(7) The Frequency Cutoff $f_{\text {al }}$, of a transistor is defined as that frequency at which the grounded base current gain drops to .707 of the 1 kc value. It gives a rough indication of the useful frequency range of the device.
(8) The Collector Cutoff Current is the leakage current from collector to base when no emitter current is being applied. This leakage current varies with temperature changes and must be taken into account whenever any semiconductor device is designed into equipment used over a wide range of ambient temperature.
(9) The Switching Characteristics given show how the device responds to an input pulse under the specified driving conditions. These response times are very dependent on the circuit used. The terms used are explained in the curves at right.

The General Electric Type 2N332 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switch-

2N332

Outline Drawing No. 4 ing. It is a grown junction device with a diffused base. Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Collector to Base (Emitter Open)
Emitter to Base (Collector Open)
Collector Current
Power:
Collector Dissipation $\left(25^{\circ} \mathrm{C}\right)$
Collector Dissipation ($125^{\circ} \mathrm{C}$)
Temperature Range
Storage
Operating

$\begin{aligned} & \mathbf{V}_{\text {CBo }} \\ & \mathbf{V}_{\mathrm{Eb} O} \end{aligned}$	45 volts 1 volt
Ic	25 ma
$\begin{aligned} & \mathrm{PC}_{\mathrm{C}} \\ & \mathrm{P}^{2} \end{aligned}$	$\begin{array}{r} 150 \mathrm{mw} \\ 50 \mathrm{mw} \end{array}$
$\begin{aligned} & \mathrm{T}_{\mathrm{sta}} \\ & \mathrm{~T}_{\mathrm{A}} \end{aligned}$	$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 175^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)

(Unless otherwise specified; $\mathrm{VeB}_{\mathrm{CB}}=\mathbf{5 v}$;
$\left.\mathrm{IE}_{\mathrm{E}}=-\mathbf{1} \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathbf{k c}\right)$

Small Signal Characteristics
Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
$\left(\mathrm{VCE}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathbf{f}=1 \mathrm{kc} ;\right.$
$\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{Rl}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)
Noise Figure
High Frequency Characteristics
Frequency Cutoff
$\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}\right)$
Collector to Base Capacity
($\mathrm{VCb}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}$)
Power Gain (Common Emitter)
($\mathrm{VCB}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}$)

D-C Characteristics

Collector Breakdown Voltage
(Icso $=50 \mu a ; I_{\text {en }}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Collector Cutoff Current
$\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
$\underset{\text { Collector }}{\left(\mathrm{V}_{\mathrm{CB}}=\right.} \begin{gathered}5 \mathrm{~V} ; \mathrm{IE}_{\mathrm{S}}=0 ; \mathrm{TA}_{\mathrm{A}}= \\ =\end{gathered}$
($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}$)

BVCbo	
ICbo	
ICbo	
Rse	45

.15
me
7
$\mu \mu \mathrm{f}$
17
$d b$
db
28

fab $_{\text {ab }}$	15	me
Cob $_{\text {ob }}$	7	$\mu \mu \mathrm{f}$
G_{e}	17	db

Switching Characteristics
$\left(\mathrm{I}_{7}=0.4 \mathrm{ma} ; \mathrm{I}_{2}=-04 \mathrm{ma} ;\right.$
$\mathrm{IC}_{\mathrm{C}}=2.8 \mathrm{ma}$)
Delay Time
Rise Time
Storage Time

.75	$\mu \mathrm{sec}$
.5	$\mu \mathrm{sec}$ $\mu \mathrm{sec}$ $\mu \mathrm{sec}$
.05	

NOTES ON RECTIFIER SPECIFICATION SHEET

The performance of a rectifier is judged primarily on four key measurements, or parameters. They are always given for specific ambient conditions, such as still air and $55^{\circ} \mathrm{C}$, and are based on a 60 cycles per second (A-C) input with the rectifier feeding a resistive or inductive load (see (A) below). A capacitive load will increase the Peak Inverse Voltage and necessitate a different set of ratings than shown here. These key parameters are:
(1) Maximum Peak Inverse Voltage (usually referred to as PIV), the peak a-c voltage which the unit will withstand in the reverse direction; (2) Maximum Allow-

60 CPS (CYCLES PER SECOND) A-C INPUT able D-C Output Current, which varies with ambient temperature; (3) Maximum Allowable One-cycle Surge Current, representing the maximum instantaneous current which the rectifier can withstand, usually encountered when the equipment is turned on; (4) Maximum Full-load Forward Voltage Drop. measured with maximum d-c output flowing and maximum PIV applied. This is a measure of the rectifier's efficiency.

1N1692, 1N1693
1N1694, 1N1695

These alloy junction silicon rectifiers are designed for general purpose applications requiring maximum economy. These rectifiers are hermetically sealed and will perform reliably within the operating specifications.

RATINGS AND SPECIFICATIONS

The other ratings or specifications are additional yardsticks of performance which are more or less critical depending on the operating conditions to be experienced. For instance, the IN536 Series for which specifications are shown, being silicon rectifiers, are able to show a higher range of Ambient Operating Temperatures with higher output than a germanium unit would, and are preferred on this basis for many applications. Maximum Leakage Current refers to the reverse current which will flow when voltage is applied, and here, too, can be a critical measure of performance for specific applications such as magnetic amplifiers.

Sometimes there is confusion as to whether a unit is a Diode or a Rectifier. Actually the word Diode means "two" and both rectifiers and diodes have two elements. However, rectifiers are capable of handling much larger currents than diodes. The term diode is used to describe units used in high frequency, low current, signal applications such as in high frequency circuits of television receivers.

EXPLANATION OF PARAMETER SYMBOLS

SMALL SIGNAL \& HIGH FREQUENCY PARAMETERS (at specified bias)

Symbols	Abbreviated Definitions
$h_{0} \mathrm{~b}$	Com. base - output admittance, input AC open-circuited
hib	Com. base - input impedance, output AC short-circuited
$\mathrm{hrb}^{\text {b }}$	Com. base - reverse voltage transfer ratio, input AC open-circuited
heb	Com. base
$h_{\text {fe }}$	Com. emitter \quad forward current transfer ratio,
$\mathrm{hre}^{\text {c }}$	Com. collector
$\mathrm{h}_{\text {oe, }} \mathrm{h}$: ${ }^{\text {e }}$	Examples of other corresponding com. emitter symbols
$\mathbf{f a b b}^{\text {b }}$	Com. base , the frequency at which the magnitude
fae	Com. emitter \quadsignal short-circuit forward current transfer ratio is 0.707 of its low frequency value.
$\mathrm{fm}_{M X}$	Maximum frequency of oscillation
Cob	Collector to base $\}$ Capacitance measured -
Coe	Collector to emitter $\}$ with the input AC open-circuited
r'b	Base spreading resistance
Ge	Com. emitter Power Gain (use \mathbf{G}_{b} for com. base)
CG ${ }_{\text {e }}$	Conversion gain
NF	Noise Figure

	SWITCHING CHARACTERISTICS (at specified bias)
$t \mathrm{~d}$	These depend on both transistor and circuit parameters
$\mathrm{tr}_{\mathbf{r}}$	
ts	
te	
Vce (SAT.)	Saturation voltage at specified Ic and IB. This is defined only with the collector saturation region.
$\mathrm{hFE}^{\text {l }}$	Com. emitter - static value of short-circuit forward current transfer ratio, hre $=-\frac{\mathrm{Ic}}{\text { c }}$
hfe (INV)	Inverted hre (emitter and collector leads switched)

UNIJUNCTION TRANSISTOR MEASUREMENTS

IB2 (MOD)	Modulated interbase current
IP_{P}	Peak point emitter current
Iv_{\square}	Valley current
$\mathrm{R}_{\mathrm{Bb} \boldsymbol{O}}$	Interbase resistance
$V_{\text {b }}$	Interbase voltage
Vv	Valley voltage
n	Intrinsic stand-off ratio. Defined by $\mathrm{V}_{\mathrm{P}}=\eta \mathrm{V}_{\mathrm{BB}}+\frac{200}{\mathrm{~T}_{\mathrm{J}}}$ (in ${ }^{\circ}$ Kelvin)

DC MEASUREMENTS

If, Ie, Ib	DC currents into collector, emitter, or base terminal
$V_{\text {cb, }} \mathrm{Veb}^{\text {d }}$	Voltage collector to base, or emitter to base
Vch	Voltage collector to emitter
Vвe	Voltage base to emitter
BVcro	Breakdown voltage, collector to base junction reverse biased, emitter open-circuited (value of Ic should be specified)
Vceo	Voltage collector to emitter, at zero base current, with the collector junction reverse biased. Specify Ió.
BVceo	Breakdown voltage, collector to emitter, with base open-circuited. This may be a function of both "m" (the charge carrier multiplication factor) and the hrb of the transistor. Specify Ic.
Veer	Similar to VCEo except a resistor of value " R " between base and emitter.
Vces	Similar to Vceo but base shorted to emitter.
$V_{\text {Pt }}$	Punch-through voltage, collector to base voltage at which the collector space charge layer has widened until it contacts the emitter junction. At voltages above punch-through, $\mathrm{V}_{\mathrm{Pt}}=\mathrm{V}_{\mathrm{CB}}-\mathrm{V}_{\mathrm{Eb}}$
$\begin{aligned} & \mathrm{V}_{\mathrm{CCB}} \\ & \mathrm{~V}_{\mathrm{CCEE}} \\ & \mathrm{~V}_{\mathrm{BBH}} \end{aligned}$	$\left.\begin{array}{l}\begin{array}{l}\text { Supply voltage collector to base } \\ \text { Supply } \\ \text { Supply voltage collector to eme base to emitter }\end{array}\end{array}\right\} \quad$NOTE - third subscript may be omited i if no confusion results.
Ico, Ісво	Collector current when collector junction is reverse biased and emitter is DC open-circuited.
Ino, Imbo	Emitter current when emitter junction is reverse biased and collector is DC open-circuited.
İemo	Collector current with collector junction reverse biased and base open-circuited.
Ioms	Collector current with collector junction reverse biased and base shorted to emitter.
Ifes	Emitter current with emitter junction reverse biased and base shorted to collector.
Rsc	Collector saturation resistance

OTHER SYMBOLS USED

Pem	Peak collector power dissipation for a specified time limit
Pcav	Average maximum collector power dissipation
$\mathrm{P}_{\text {o }}$	Power output
Z_{1}	Input impedance
Zo	Output impedance
TA	Operating Temperature
$\mathrm{T}_{\text {J }}$	Junction Temperature
Tstg	Storage Temperature

NOTE: In devices with several electrodes of the same type, indicate electrode by number. Example: $\mathrm{I}_{\mathrm{B} 2}$. In multiple unit devices, indicate device by number preceding electrode subscript. Example: I I c. Where ambiguity might arise, separate complete electrode designations by hyphens or commas. Example: V1C1-2C1 (Voltage between collector \#1 of device \#1 and collector \#1 of device \#2.)
NOTE: Reverse biased junction means biased for current flow in the high resistance direction.

TRANSISTOR SUMMARY
The table below shows all current General Electric Signal Transistor types along with the maximum dimension of the package base and general application area.

GENERAL ELECTRIC TRANSISTOR SPECIFICATIONS

2N43

Outline Drawing No. 1

The General Electric Type 2N43 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for high gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages
Collect
Collect
Emitter
Collect
Power
Power
Total Transistor Dissipation

VCe
Voe
Veb
IG

Pм

Temperature

> -45 volts
> -30 volts
> -5 volts
> -300 ma

240 mw

Storage Tste
Operating Junction

DESIGN

CENTER

Small Signal Characteristics
MIN. MAX CENTER
(V_{CB} or $\mathrm{V}_{\mathrm{CE}}=-5$ volts, $\mathrm{I}_{\mathrm{v}}=1 \mathrm{ma}$; $f=270$ cps unless otherwise specified
Common base output admittance (input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer
ratio (input A-C open circuited)
Common base output capacity (input A-C open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathrm{BW}=1 \mathrm{cycle}$)
Frequency cutoff (Common Base)

D-C Characteristics

Collector cutoff current ($\mathrm{V}_{\mathrm{cbo}}=-45 \mathrm{v}$)
Ico

	MIN.
hab	1
hie	30
hib	25
hrb	1
Cab	20
NF	5

Emitter cutoff current ($\mathrm{VEBO}_{\mathrm{EBO}}=-5 \mathrm{v}$)
Base input voltage, common emitter (VCe $=-1$ volt; Ic $=-20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (VCe $=-1$ volt; Ic $=-20 \mathrm{ma}$)
Common emitter static forward current transfer ratio (Vce $=-1$ volt; $\mathrm{Ic}=-100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohms resistor base to emitter; $\mathrm{I}_{\mathrm{c}}=-0.6 \mathrm{ma}$)
Punch-through voltage
Vhe

hre	34	65	53	
hFE	30		48	
VCEE	-30			volts
Vi't	-30			volts

T_{J}

Thermal Characteristics
Junction temperature rise/unit collector or emitter dissipation (in free air)
Junction temperature rise/unit collector or emitter dissipation (infinite heat sink)
${ }^{\circ} \mathrm{C} / \mathrm{mw}$
${ }^{\circ} \mathrm{C} / \mathrm{mw}$

The 2 N 43 A is a commercial version of the military type 2N43A per MIL-T-19500, and is tested to the same electrical, mechanical and degradation tests.

2N43A
Outline Drawing No. 1

The General Electric Type 2N44 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for medium gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

2N44
Outline Drawing No. 1

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

$\begin{array}{ll}\text { Collector to Base } & \text { VCB } \\ \text { Collector to Emitter } & \text { VCE }\end{array}$
$\mathrm{VCB}_{\mathrm{Cb}}$
Emitter to Base
Veb
Collector Current
Ic

Power

Total Transistor Dissipation

Temperature

Storage
Operating Junction
ELECTRICAL CHARACTERISTICS; $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
($\mathrm{VCR}_{\mathrm{CB}}$ or $\mathrm{V}_{\mathrm{CE}}=-5$ volts, $I_{E}=1 \mathrm{ma}$;
$f=270$ cps unless otherwise specified)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance
(output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input $A-C$ open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{KC} ; \mathrm{BW}=1$ cycle)
Frequency cutoff (Common Base)

D-C Characteristics

Collector cutoff current ($\mathrm{VcRo}=-45 \mathrm{v}$)
Emitter cutoff current (V ERO $=-5 \mathrm{5}$)
Base input voltage, common emitter
Common emitter static forward current transfer ratio ($\mathrm{V}_{\mathrm{Ce}}=-1$ volt; $\mathrm{I}_{\mathrm{c}}=-20 \mathrm{ma}$)
Common emitter static forward current
transfer ratio (VCE transfer ratio (VCe $=-1$ volt;
$\mathrm{I}_{0}=-100 \mathrm{ma}$) $\mathrm{I}_{0}=-100 \mathrm{ma}$)
Collector to emitter voltage (10 K ohms
resistor base to emitter; Ic $=-0.6 \mathrm{ma}$) resistor base to emitter; $\mathrm{Ic}=-0.6 \mathrm{ma}$)
Punch-through voltage

	MIN.
hàb	.1
hie	
hib	27
h_{rb}	1,0
Cob	20
$\mathrm{f}_{\boldsymbol{a}+1}$. 5

MIN.

Thermal Characteristics

$\begin{aligned} & \text { ICo } \\ & \text { IEO } \end{aligned}$	
Vbe	
$\mathrm{hfe}^{\text {e }}$	18
hre	13
Vcer	-30
VPT	-30

Junction temperature rise/unit collector or emitter dissipation (in free air)
Junction temperature rise/ unit collector
or emitter dissipation or emitter dissipation (infinite heat sink)

> -45 volts -30 volts -5 volts -300 ma 240 mw ${ }^{\circ} \mathrm{C}$ Min. $-655^{\circ} \mathrm{C}$ Max. $+80^{\circ} \mathrm{C}$

Max. $+100^{\circ} \mathrm{C}$ Min. $-65{ }^{\circ} \mathrm{C}$

DESIGN
 CENTER

MAX.

1.5	. 9	$\mu \mathrm{mhos}$
	25	
38	31	ohms
13	4	$\times 10^{-4}$
$\begin{aligned} & 60 \\ & 15 \\ & 3.0 \end{aligned}$	40 6 1.0	$\begin{aligned} & \mu \mu \mathrm{f} \\ & \mathrm{db} \\ & \mathrm{mc} \end{aligned}$
-16	-8 -.45	μ amps $\mu \mathrm{mmps}$ volts
43	31	
	25	
		volts volts
0.25		${ }^{\circ} \mathrm{C} / \mathrm{mw}$
0.11		${ }^{\circ} \mathrm{C} / \mathrm{mw}$

The 2N44A is a commercial version of the military type 2N44A per MIL-T-19500, and is tested to the same electrical, mechanical and degradation tests.

2N44A

Outline Drawing No. 3

The General Electric 2 N78 is a grown junction NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The G.E. rate-growing process used in the manufacture of the 2N78 provides the uniform and stable characteristics required for military and industrial service.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: (25	
Collector to Emitter Voltage (base open), Vceo	15 volts
Collector to Base Voltage (emitter open), Vсво	20 ma
Collector Current, Ic	$-20 \mathrm{ma}$
	65 mw
Collector Dissipation*, PCM	$85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Low Frequency Characteristics (Common Base)	DESIGN	LIMITS		
$\left(\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}, \mathrm{f}=270 \mathrm{cps}\right.$)	CENTER			ohms
Input Impedance (output short circuit), hib	2	. 8	10	$\times 10^{-4}$
Voltage Feedback Ratio (input short circuit), $\mathrm{hrb}^{\text {rb }}$	-. 983			
	- 70	45	135	
OC Base Current Gain (input open circuit), hob	. 2			${ }_{\text {umhos }}$
Noise Figure ($\mathrm{V}_{\mathrm{CB}}=1.5 \mathrm{~V} ; \mathrm{IE}^{\text {O }}=-0.5 \mathrm{ma} ; \mathrm{f}=1 \mathrm{KC}$), NF	12			
High Frequency Characteristics (Common Base)				
$\left(V_{C B}=5 V_{1} \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma}\right)$		5		mc
Alpha Cutoff Frequency, fab ${ }_{\text {a }}$	3		6	
Output Capacity ($f=2 \mathrm{mc}$), Cob) $\mathrm{hrb}^{\text {a }}$			12	$\times 10^{-5}$
Vower Gain in Typical IF Test Circuit, $\mathrm{G}_{\text {e }}$		27		db
Cutoff Characteristics				
Collector Cutoff Current ($\mathrm{VcB}=15 \mathrm{~V}$), Ico			5	${ }_{\mu}^{\mu}$
Collector Cutoff Current ($\mathrm{Vcb}^{\text {c }}=5 \mathrm{~V}$), Ico	7			$\mu \mathrm{a}$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

2N1O7

Outline Drawing No. 1

The General Electric type 2N107 is an alloy junction PNP transistor particularly suggested for students, experimenters, hobbyists, and hams. It is available only from franchised General Electric distributors. The 2N107 is hermetically sealed and will dissipate 50 milliwatts in $25^{\circ} \mathrm{C}$ free air.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)	
Collector Voltage (referred to base), VCB	12 volts
Collector Current, Ic	10 ma
Emitter Current, I_{E}	$60^{\circ} \mathrm{C}$
Junction Temperature, TJ	
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$	
(Comman Base, $\mathrm{T}_{\mathfrak{j}}=30^{\circ} \mathrm{C}, \mathrm{f}=270 \mathrm{cps}$	
$V_{\text {CB }}=-5 \mathrm{v}, \mathrm{If}_{\mathrm{E}}=1 \mathrm{ma}$)	
Collector Voltage, Vcb	- 1.0 volts
Emitter Current, IE	1.0 ma
Output Admittance (input open circuit), hob	$-1.0{ }^{\mu \text { mhos }}$
Current Amplification (output short circuit),	32 ohms
Input Impedance (output short circuit), $\mathrm{h}_{1} \mathrm{~b}$, $\mathrm{l}_{\text {d }}$	3×10^{-5}
Collector Cutoff Current, Ico...	$10 \mu \mathrm{a}$
Output Capacitance, $\mathrm{C}_{\text {ob }}$. . .	$40 \mu \mu \mathrm{f}$
Frequency Cutoff, $\mathrm{f}_{\text {ab }}$. .	0.6 mc
Common Emitter, ($\mathrm{V}_{\mathrm{CE}}=-\mathrm{Iv}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$)	
e Current Gain, hro	20

The General Electric type 2N123 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high re-

Outline Drawing No. 8

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$				
Collector to Emitter Voltage (base open), Vceo				
Collector to Base Voltage (emitter open), Vcbo				-15 volts
Emitter to Base Voltage (collector open), Vebo				-20 volts
Collector Current, Ic.				-125 volts
Peak Collector Current ($10 \mu \mathrm{~s}$ max.), ICm				-125 ma
				500 ma
Collector Dissipation*, Pcay				125 ma
Peak Collector Dissipation (10 ¢ s max.) ${ }^{* *}$, PCM				100 mw
Total Transistor Dissipation***, Pav... Pcm				500 mw
Storage Temperature, Tstg				$\begin{aligned} & 150 \mathrm{mw} \\ & 085^{\circ} \mathrm{C} \end{aligned}$
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$				
Switching Characteristics (Common Emitter	DESIGN	MIN		
D.C. Base Current Gain (VGE-1 v; Ic $=10 \mathrm{ma}$) $\mathrm{hev}^{\text {en }}$		MIN.	MAX.	
	50	30	150	
Pulse Response Time ($\overline{I_{0}}=10 \mathrm{ma}$) $=10 \mathrm{ma}$), V CE	. 15		0.2	volts
Delay \& Rise Time, $\mathrm{td}_{\mathbf{d}}+\mathrm{tr}_{\mathbf{r}}$				
Storage Time, $\mathrm{ts}^{\text {a }}$. 5			$\mu \mathrm{sec}$
Fall Time, $\mathrm{tf}^{\text {f }}$,	. 5			$\mu \mathrm{sec}$
Cutoff Characteristics				
Collector Cutoff Current (Vob $=-20 \mathrm{v}$), Ico				
Emitter Cutoff Current ($\mathrm{Vebr}^{\text {E }}=-10 \mathrm{v}$), $\mathrm{I}_{\text {eo }}$	${ }_{2}^{2}$		6	$\mu \mathrm{a}$
Collector to Emitter (Base open, $\mathrm{I}_{\mathrm{C}}=-0.6 \mathrm{ma}$), $\mathrm{V}_{\text {CE }}$	25	15	6	$\stackrel{\mu}{\mu}$
High Frequency Characteristics (Common Base)				
$\left(V_{\text {ci }}=-5 v ; I_{\text {E }}=1 \mathrm{ma}\right)$				
Alpha Cutoff Frequency, $\mathbf{f}_{a b}$				
Collector Capacitance ($\mathrm{f}=1 \mathrm{mc}$) , $\mathrm{C}_{0} \mathrm{~b}$	15	5		
Voltage Feedback Ratio ($\overline{\mathrm{f}}=1 \mathrm{mc}$), hr_{r}	18			$\begin{aligned} & \mu \mu f \\ & \times 10^{-3} \end{aligned}$
Base Spreading Resistance, $\mathbf{r}^{\prime} \mathbf{v}$	80			$\stackrel{\text { ohms }}{ }$
Low Frequency Characteristics (Common Base)				
$\xrightarrow[\text { (} \mathrm{Vcr}^{\text {c }}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathbf{f}=270 \mathrm{cps} \text {) }]{\text { Input }}$				
Input Impedance, hib ${ }_{\text {Voltage Feedback Ratio, } \mathrm{h}_{\mathrm{r}} \mathrm{b}}$	28			
Voltage Feedback Ratio, h_{rb}	8			$\begin{aligned} & \text { ohms } \\ & \times 10^{-i} \end{aligned}$
Current Amplification, $\mathrm{h}_{\text {fb }}$	$-.980$	$-.970$		
	. 9			$\mu \mathrm{mhos}$

Derate for increase in ambient temperature:
${ }^{*} 1.67 \mathrm{nw} /{ }^{\circ} \mathrm{C}, \quad{ }^{* *} 8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$, $\quad * * * 2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$

The General Electric types 2N135, 2N136 and 2N137 are PNP alloy junction germanium transistors intended for RF and IF service in broadcast receivers. Special control of manufacturing processes provides a narrow spread of characteristics, resulting in uniformly high power gain at radio frequencies. These types are obsolete and avail-

Outline Drawing No. 8 able for replacement only.

SPECIFICATIONS

Outline Drawing No. 3

The General Electric type 2 N 167 is an NPN high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime inportance.

SPECIFICATIONS

Storage Temperature, Tstg
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Switching Characteristics (Common Emitter)
D-C Base Current Gain ($\mathrm{V}_{\mathrm{CE}}=1 \mathrm{v} ; \mathrm{Ic}_{\mathrm{c}}=8 \mathrm{ma}$), h FE
Saturation Voltage ($\mathrm{IB}_{\mathrm{B}}=.8 \mathrm{ma} ; \mathrm{Ic}=8 \mathrm{ma}$), VCE
Pulse Response Time ($\mathrm{Ic}=8 \mathrm{ma}$)
DESIGN
CENTER
30
0.35
.5
.3
.2

Delay \& Rise Time, $t_{d}+t_{r}$
Storage Time, t_{s}
Fall Time, ti

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{Vcb}=15 \mathrm{v}$), Ico
Emitter Cutoff Current (Veb $=5 \mathrm{v}$), Ieo
Collector to Emitter Voltage (Base open,
$\left.I_{c}=0.3 \mathrm{ma}\right), V_{\text {ce }}$
High Frequency Characteristics (Common Base)

> (VCB $=5 y ; I_{\mathrm{E}}=1 \mathrm{ma}$
> Alpha Cutoff Frequency, fab
9.0
2.5

Collector Capacity ($f=1 \mathrm{mc}$), Cob
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$), hrb
Low Frequency Characteristics (Common Base) $\left(V_{c B}=5 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}^{=}=-1 \mathrm{ma} ; f=270 \mathrm{cps}\right)$
Input Impedance, hib
Voltage Feedback Ratio, $\mathrm{h}_{\mathrm{rb}} \quad-1.5$
Base Current Amplification, hrb
Output Admittance, hob

LIMITS

ohms $\times 10^{-4}$ $\mu \mathrm{mhos}$
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

2N168A

Outline Drawing No. 3

The 2N168A is a rate grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity vide a low value and a narrow spread is not required. The
so that neutralization in many circuits 2N168A has a frequency cutoff control to provide proper operation as an oscillator or autodyne mixer. For IF amplifier service the range in power gain in controlled to 3 db .

CONVERTER TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage	15 volts	
Collector to Emitter (base open), VCEO Collector to Base (emitter open), Vcbo		
Current	20 ma	
Collector, Ic		
Temperoture Range Operating and Storage, T_{A}, Tsta	-55 to $85{ }^{\circ} \mathrm{C}$	
TYPICAL ELECTRICAL CHARACTERIS		

Converter Service
Design Center Characterisfics

```
Input Impedance ( \(\mathrm{IE}=1 \mathrm{ma} ; \mathrm{VCE}_{\mathrm{E}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}\) ), \(\mathrm{Z}_{\mathrm{i}}\)
400 ohms
Output Impedance ( \(\mathrm{IE}=1 \mathrm{ma} \mathrm{V}_{\mathrm{ce}}=5 \mathrm{~F} ; \mathbf{f}=455 \mathrm{KC}\) ), \(\mathrm{Z}_{\mathrm{o}} \ldots \ldots .12 \mathrm{Kohms}\)
```

Voltage Feedback Ratio ($\mathrm{Im}_{\mathrm{m}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cm}}=5 \mathrm{v} ; f=1 \mathrm{mc}$), hrb .
12 K ohms
Collector to Base Capacitance ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cs}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$), C_{ob}.
Frequency Cutoff ($\mathrm{IL}_{\mathrm{E}}=1 \mathrm{ma}$; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$), $\mathrm{fab}_{\mathrm{ab}}$
$2.4 \mu \mu \mathrm{f}$
8 mc
5 mc min

Base Current Gain ($\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{a}$; $\mathrm{V}_{\mathrm{CE}}=1 \mathrm{l}$), hFe.
4
Minimum Base Current Gain, hfe
23
Maximum Base Current Gain, hfs
135
Conversion Gain, CGe
25 db

IF Amplifier Performance

Collector Current, Ic
Input Frequency, f. .
Available Power Gain, Ge_{e}
Minimum Power Gain in typical IF circuit, $G e$
28 db min
Power Gain Range of Variation in typical IF circuit, G_{0}
3 db

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$), Ico.
$.5 \mu \mathrm{a}$
Collector Cutoff Current (VCB $=15 \mathrm{v}$), Ico
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The 2N169A and 2N169 are rate grown NPN germanium transistors intended for use as IF amplifiers in broadcast radio receivers. The collector capacity is controlled to a low value so that neutralization in most circuits is not required. The power gain at 455 KC is maintained at a 3 db spread for the 2N169A. The 2N169A is a special high voltage unit intended for second IF amplifier service where large voltage signals are encountered. The 2N169 is also intended for low gain IF amplifier and power detector applications.

IF TRANSISTOR SPECIFICATIONS			
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$	2N169A	2NI69	
Voltage			
Collector to Emitter (base open), Vceo	25	15	volts
Collector to Base (emitter open), VCbo	25	15	volts
Current			
Power			mw
Temperature Range Operating and Storage, $\mathrm{T}_{A}, \mathrm{~T}_{\text {srg }}$	-55 to 85	5 to 85	${ }^{\circ} \mathrm{C}$
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ IF Amplifier Service			
Maximum Ratings Collector Supply Voltage, Vec			
Design Center Characteristics			
($\mathrm{I}_{\mathrm{F}}=-1 \mathrm{ma} ; \mathrm{V}_{\text {ce }}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$ except as noted)			
${ }_{\text {Output }}$ Input Impedance, $\mathrm{Z}_{i} \mathrm{Z}_{0}$	700	700	ohms
	10	7 10	$\underset{\times}{\mathrm{K}} \times 1 \mathrm{ohms}^{\mathbf{- 8}}$
Collector to Base Capacitance ($\mathrm{VCB}^{=} 5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$), $\mathrm{C}_{\text {ob }}$	2.4	2.4	${ }_{\mu \mu \mathrm{f}}$
Frequency Cutoff ($\mathrm{Vcb}_{\text {cr }}=5 \mathrm{v}$) , $\mathrm{fab}_{\text {ab }}$	${ }^{2} 9$	2.9	${ }_{m c}^{\mu \mu \mathrm{F}}$
	72	72	
Minimum Base Current Gain, hFe	36	36	
Maximum Base Current Gain, hre	220	220	
IF Amplifier Performance			
Collector Supply Voltage, Vcc	5	5	volts
Collector Current, If	1	1	ma
	455	455	KC
Available Power Gain, Ge Minimum Power Gain in typical IF circuit, $\mathrm{Ge}_{\text {e }}$	36	36	
Power Gain Range of Variation in typical IF circuit, G_{e}	24 3	24	$\begin{aligned} & \mathrm{db} \text { min } \\ & \mathrm{db} \end{aligned}$
Cutoff Characteristics			
Collector Cutoff Current ($\mathrm{Vcm}=\mathbf{5 v}$), Ico	. 5	5	
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}$), $\mathrm{I}_{\text {co }}$	5	5	$\mu \mathrm{a}$ max

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

2N17O

Outline Drawing No. 3

The 2N170 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2N170 can be used in any of the many published circuits where a low voltage, high frequency transistor is necessary such as for regenerative receivers, high frequency oscillators, etc. If you desire to use the 2 N 170 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

$5 \mu \max$
*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

2N186, 2N187, 2N188

Outline Drawing No. I

The 2 N186, 2 N 187 , and 2 N 188 are medium power PNP transistors, intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in Class B circuits, and permits use of any two transistors from a particular type without matching.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages	-25 volts
	-25 volts
Collector to Emitter (RFb = 10K ohm), VCER	- 5 volts
Emitter to Base (collector open), Vei	-200 ma
Collector Current, Ic	

Power
100 mw
Collector Dissipation*, Рсм

Operating Range, $\mathbf{T}_{\mathbf{A}}$
-55 to $85^{\circ} \mathrm{C}$
Storage Range, Tstg
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Class B Audio Amplifier Operation

(Values for two transistors. Note that matching
is not required to hold distortion to less than
5% for any two transistors from a type)

Moximum Closs B Ratings (Common Emitter)	2N186			
Collector Supply Voltage, VCC Power Output (Distortion less than 5\%) P	-12	$2 N 187$ -12	$2 N 188$ -12	
Power Output (Distortion less than 5\%), Po	300	300	-120	volts mw
Design Center Characteristics 300 mw				
Input Impedance large signal base to base$\left(\Delta \mathrm{I}_{E}=100 \mathrm{ma}\right), \mathrm{h}_{\mathrm{ie}}$				
Base Current Gain (VcF $=-1 \mathrm{v}$; $\mathrm{Ic}=100 \mathrm{ma}$), h_{F}	1200	2000	2600	ohms
	24	36	54	
Frequency Cutoff ($\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$), fab	40 .8	40	40	${ }_{\text {me }}^{\mu \mu}$
Closs B Circuit Performance (Common Emitter)				
Collector Voltage, VCC ${ }_{\text {Minimum }}$ Power Gain at 100 mw power output, $\mathrm{Ge}_{\text {e }}$	-12	$\begin{array}{r} -12 \\ \hline 30 \end{array}$	-12	volts
Cutoff Characteristics				
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{cb}}=-25 \mathrm{v}$), , $\mathrm{I}_{\text {co }}$	16	16		
Maximum Emitter Cutoff Current ($\mathrm{Veb}_{\text {eb }}=-5 \mathrm{v}$), Ifeo $^{\text {co }}$	10	10	16	$\max \mu a$ $\max \mu \mathrm{a}$

The $2 \mathrm{~N} 186 \mathrm{~A}, 2 \mathrm{~N} 187 \mathrm{~A}$, and 2 N 188 A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\mathbf{2 5}{ }^{\circ} \mathbf{C}$)				
Collector to Base (emitter open), Vero				
Emitter to Base (collector open), Vebo......				25 volts
Collector Current, Ic				
Power				
Collector Dissipation* P ${ }_{\text {CM }}$.sa . .i. 200 mw				
Operating Range, TA_{A} Storage Range, TSTG. .. $75{ }^{\circ} \mathrm{C}$				
TYPICAL ELECTRICAL CHARACTERISTICS:Class B Audio Amplifier Operation				
(Values for two transistors. Note that matching is not required to hold distortion to less than 5% for any two transistors from a type)				
Maximum Class B Ratings (Common Emitter)				
Collector Supply Voltage, VCC				
Power Output (Distortion less than 5\%), $\mathrm{P}_{\text {d }}$	- 750	$\overline{750}$	-12	volts
Design Center Characteristics				
Input Impedance large signal base to base$\left(\Delta I_{E}=100 \mathrm{ma}\right), h_{\mathrm{l}}$				
Base Current Gain ('VCE $=-1 \mathrm{v}$; $\mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}$) $\mathrm{h}_{\text {F }}$	1200	2000	2600	ohms
Collector Capacity ($\mathrm{V} C \mathrm{CB}=5 \mathrm{v}$; $\mathrm{I}_{\mathrm{H}}=1 \mathrm{ma}$;	24	36	54	
Frequency Cutoff ($\mathrm{V}_{\mathrm{OB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$), $\mathrm{f}_{a b}$	40	40	40	$\mu \mu \mathrm{f}$
Class B Circuit Performance (Comman Emitter)				
Collector Voltage, Vcc				
Minimum Power Gain at 100 mw power output, Ge_{e}	-12 -28	$\begin{array}{r}-12 \\ \hline 0\end{array}$	$\begin{array}{r} -12 \\ 32 \end{array}$	volts $\min \mathrm{db}$
$\frac{\text { Class A Audio Amplifier Operation (Common Emitter) }}{\left(V_{C C C}=12 \mathrm{~V} ; \mathrm{IE}_{\mathrm{E}}=10 \mathrm{ma}\right)}$				
Power Gain at 50 mw power output, G_{e}	30	32	3	db
Cutoff Characteristics				
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-25 \mathrm{v}$), ICo				
Maximum Emitter Cutoff Current ($\mathrm{V}_{\text {Eb }}=-5 \mathrm{v}$), $\mathrm{I}_{\text {EO }}$	10	10	16	max μa

2N189, 2N190, 2N191, 2N192

The $2 \mathrm{~N} 189,2 \mathrm{~N} 190,2 \mathrm{~N} 191$, and 2 N 192 are alloy junction PNP transistors intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right.$)
Voltage
Collector to Emitter (Reb $=10 \mathrm{~K}$ ohm), VCer

Collector Current, Ic
Collector Dissipation $\left(25^{\circ} \mathrm{C}\right) *$ Pem
-55 to $60^{\circ} \mathrm{C}$
-55 to $85^{\circ} \mathrm{C}$
Temperature
Operating Range, Ta
Storage Range, TSTG CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
Audio Driver Class A Operation
(Values for one transistor driving a transformer coupled output stage)
Maximum Closs A Ratings (Common Emitter)
Collector Supply Voltage, Vcc
Design Center Characteristics
Input Impedance base to emitter ($\mathrm{I}_{\mathrm{e}}=1 \mathrm{ma}$), $\mathrm{hie}_{\mathrm{i}}$
Base Current Gain (VCe $=-5 \mathrm{v}$; $\mathrm{Ie}_{\mathrm{Ce}}=1 \mathrm{ma}$), hre
Collector Capacity ($\mathrm{V}_{\mathrm{cb}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$), $\mathrm{Cob}_{\text {ob }}$
Frequency Cutoff (Vcs $=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$), fab
Noise Figure ($\mathrm{VCb}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=1 \mathrm{ma}$;
$\mathbf{f}=1 \mathrm{KC} ; \mathrm{BW}=1$ cycle), NF
Audio Circuit Performance (Common Emifter)
Collector Supply Voltage, Vcc
Emitter Current, If
Minimum Power Gain at 1 mw power output, Ge_{e}
Small Signal Characteristics (Common Base)

$$
\left(V_{C R}=-5 v ; I_{F}=1 \mathrm{ma} ; f=270 \mathrm{cps}\right)
$$

Input Impedance, hib
Voltage Feedback Ratio, hrb
Current Amplification, hfb
Output Admittance, hob
Cutoff Choracteristics
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{cb}}=-25 \mathrm{v}$), Ico
*Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

The 2N241, and 2N241A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By special process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain insures low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Collector to Base (emitter open)
Collector to Emitter (REB $=10 \mathrm{~K}$ ohm)
Emitter to Base (collector open)
Collector Current
Power
Collector Dissipation
Temperature
Operating Range
Storage Range

	2N241	2N241A	
Vcbo	-25	-25	volts
Verer	-25	-25	volts
Vebo	- 5	- 5	volts
Ic	-200	-200	ma
Pcm	100^{*}	200**	mw
$\mathrm{T}^{\text {a }}$	-55 to 60	-55 to 75	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Tsta	-55 to 85	-55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Class B Audio Amplifier Operation

The 2N265 is an alloy junction PNP transistor intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special

2N265

Outline Drawing No. 1 processing techniques and the use of hermetic seals provides stability of these oharacteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATİNGS: $\mathbf{(2 5}{ }^{\circ} \mathrm{C}$

Voltage

Collector to Emitter ($\mathrm{REB}=10 \mathrm{~K}$		-25 volts	
Collector Current, IC		$-50 \mathrm{ma}$	
Power Collector Dissipation ($25^{\circ} \mathrm{C}$)*, Pcm			
Temperoture Operating Range, T_{A}.			
Storage Range, Tsig		to $60{ }^{\circ} \mathrm{C}$	

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Audio Driver Class A Operation
(Values for one transistor driving a transformer coupled output stage)

Maximum Class A Ratings (Common Emitter)

Collector Supply Voltage, Vcc
-12 volts

Small Signal Choracteristics (Common Base)

Cutoff Characteristics

$.5 \mu \mathrm{mhos}$
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-25 \mathrm{v}$), I_{Co}
*Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

2N292, 2N293

Outline Drawing No. 3

Types 2N292 and 2N293 are rate grown NPN germanium transistors intended for amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The type 2N293 is intended for receiver circuits where high gain is needed. In IF amplifier service the range in power gain is controlled to 3 db .

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$	2N292	2N293	
Voltage Collector to Emitter (base open), Vceo	15	15	volts
Collector to Base (emitter open), Vcro.	15	15	volts
Current Collector, Ic	20	20	ma
Power Collector Dissipation*, Pcm	65	65	mw
Temperature Range Operating and Storage, $T_{\Delta}, T_{S T G}$	to 85	55 to 85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right) \% \%$
IF Amplifier Service
Maximum Ratings

Design Center Characteristics

Input Impedance ($\mathrm{If}=1 \mathrm{ma} ; \mathrm{Vce}^{\text {a }}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$), Z_{1}	350	350	ohms
Output Impedance ($\mathrm{If}_{\mathrm{E}}=1 \mathrm{ma}$; $\mathrm{VCE}=5 \mathrm{~V} ; \mathrm{f}=455 \mathrm{KC}$), Z_{0}	16	18	K ohms
Voltage Feedback Ratio ($\mathrm{Im}_{\mathrm{s}}=1 \mathrm{ma} \mathrm{V}_{\text {cr }}=5 \mathrm{v} ; \mathrm{f}=\mathrm{mc}$), $\mathrm{h}_{\text {rb }}$	10	5	$\times 10^{-3}$
Collector to Base Capacitance ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$; $\left.V_{c b}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}\right), \mathrm{C}_{\mathrm{ob}}$	2.4	2.4	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$; $\mathrm{V}_{\text {cb }}=5 \mathrm{v}$), fab	6	7	me
Base Current Gain ($\mathrm{Ib}=20 \mu \mathrm{a}$; Vce $=1 \mathrm{v}$), haf	25	25	
Min. Base Current Gain, hri	6	6	
Max. Base Current Gain, hrm.	44	55	
IF Amplifier Performance			
Collector Supply Voltage, Vcc	5	5	volts
Collector Current, Ic.	1	1	ma
Input Frequency, f.	455	455	KC
Available Power Gain, $\mathbf{G e}_{\text {e }}$	36	39	
Min. Power Gain in Typical IF Test Circuit, Ge	24	28	db min
Power Gain Range of Variation in Typical IF Circuit	3	3	
Cutoff Characteristics			
Collector Cutoff Current ($\mathrm{Vcb}=5 \mathrm{v}$), Ico	. 5	. 5	
Collectry Cutoff Current ($\mathrm{V}_{\text {cb }}=15 \mathrm{v}$), Ico	5	5	$\mu \mathrm{amax}$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min or max.

2N319, 2N32O, 2N321

Outline Drawing No. 2

The $2 \mathrm{~N} 319,2 \mathrm{~N} 320$, and 2 N 321 are miniaturized versions of the 2 N186A series of G-E transistors. Like the prototype versions, the 2 N 319 , 2N320, and 2N321 are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS; ($25^{\circ} \mathrm{C}$)

Voltages

Collector to Emitter	VCE	-20 volts
Collector to Base	VGB	-30 volts
Emitter to Base	VEB 2	-3 volts
Collector Current	IC	-200 ma

Power
Collector Dissipation
Temperature
Operating and Storage Range $\mathrm{T}_{\mathrm{A}-\mathrm{T}_{\mathrm{STG}}}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left.\mathbf{(2 5}{ }^{\circ} \mathrm{C}\right)$
D.C. Characteristics
$\left.\begin{array}{c}\text { Base Current Gain (} \\ \text { VC } \\ \text { Ce } \\ =-1 v\end{array}\right)-20 \mathrm{ma}$;
Base Current Gain ($\mathrm{I} \mathrm{C}=-100 \mathrm{ma}$;
$\mathrm{V} \mathbf{c e}=-1 \mathrm{v}$)
Collector to Emitter Voltage ($\mathrm{Reb}_{\mathrm{Eb}}=10 \mathrm{~K}$; $\mathrm{Ic}=.6 \mathrm{ma}$)
Collector Cutoff Current (VEB2 - 25 v)
Maximum Collector Cutoff Current
($\mathrm{V}_{\mathrm{cs}}-\mathrm{C}-25 \mathrm{v}$)
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{Eib}}=3 \mathrm{v}$)
2N319 2N320
-65 to $85^{\circ} \mathrm{C}$

Small Signal Characteristics (Common Base)
$\left(V_{C R}=-5 v_{j} I_{\mathrm{E}}=1 \mathrm{ma} ; \mathbf{f}=270 \mathrm{cps}\right)$
Frequency Cutoff
Collector Capacity ($f=1 \mathrm{mc}$)
Noise Figure
Input Impedance

hFE	33
hFE	30

$V_{\text {CER }}$	-20	-20
ICo 2	8	

80
40

Thermal Choracteristics

Thermal Resistance
Without Heat Sink (Junction to Air)
With Clip On Heat Sink (Junction to Case)

Performance Data (Common Emitter)

Class A Power Gain ($\mathrm{V}_{\mathrm{co}}=-9 \mathrm{v}$)
Power Output
Class B Power Gain (Vcc $=-9 \mathrm{v}$)
Power Output

G_{e}	30
P_{o}	50
G_{e}	27
P_{o}	100

32	db
50	mw
31	db
100	mw

The $2 \mathrm{~N} 322,2 \mathrm{~N} 323,2 \mathrm{~N} 324$ are alloy junction PNP transistors intended for driver service in audio amplifiers. They are miniaturized versions of the 2 N190 series of G.E. transistors. By control of transistor characteristics during manufacture, a specific power gain is provided for

2N322, 2N323, 2N324

Outline Drawing No. 2 each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltages

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D.C. Characteristics

(Ree $=10 \mathrm{~K} ; \mathrm{Ic}=-.6 \mathrm{ma}) \quad \mathrm{VChr}^{\mathrm{R}}$
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-16 \mathrm{v}$) I Ico
Max. Collector Cutoff Current (Vcb $=-16 \mathrm{v}$) Ico

Small Signal Characteristics

Frequency Cutoff (VGB=-5v; $I_{E}=1$ ma) $f_{a b}$
Collector Capacity ($\mathrm{VCr}=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$) $\mathrm{Cob}_{\mathrm{b}}$
Noise Figure ($\mathrm{VCB}_{\mathrm{B}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{H}}=1 \mathrm{ma}$) ma (NF
Input Impedance ($\bar{V}_{\mathrm{CE}}=-5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=1$ ma) $\mathrm{hi}_{\mathrm{he}}$
Current Gain ($\mathrm{V}_{\mathrm{Ce}}=-5 \mathrm{v} ; \mathrm{Im}_{\mathrm{E}}=1 \mathrm{ma}$) hfe

Thermal Characteristics

Thermal Resistance Junction to Air

2N322	2N323	2N324	
48	80	95	
16	16	16	volts
10	10	10	$\mu \mathrm{a}$
16	16	16	$\mu \mathrm{a}$
2.5	3.1	3.4	
25	25	25	$\mu \mu \mathrm{f}$
${ }^{6}$	6	6	db
2200	2600	3300	ohms
50	70	84	
. 27	. 27	. 27	${ }^{6} \mathrm{C} / \mathrm{mw}$
39	41		
1	1	1	mw

Performance Data Common Emitter

Power Gain Driver (Vcc $=9 \mathrm{v}$)

Q_{e}	.27
$\mathbf{P}_{\dot{\theta}}$	39

2N332
Outline Drawing No. 4

The General Electric Type 2N332 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching. It is a grown junction device with a diffused base. Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$		
Voitages		45 volts
Collector to Base (Emitter Open)	Vebo	1 volt
Emitter to Base (Collector Open)	Vebo	
	Ic	25 ma
Collector Current		
Power		150 mw
Collector Dissipation ($25^{\circ} \mathrm{C}$)	$\mathrm{Pc}_{\mathrm{Pc}}$	100 mw
Collector Dissipation ($100^{\circ} \mathrm{C}$)	${ }^{\mathrm{Pc}} \mathrm{P}$	50 mw
Collector Dissipation ($150{ }^{\circ} \mathrm{C}$) ${ }^{\text {PC }}$		
Temperature Range		-65 to $200{ }^{\circ} \mathrm{C}$
Storage	$\mathrm{Ta}_{\text {a }}$	-55 to $175{ }^{\circ} \mathrm{C}$
Operating		

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$; $\left.\mathbf{I E}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1 k c}\right)$

Small Signal Characteristics		MIN.	NOM.	MAX. 20	
Current Transfer Ratio	hie	9 30	53	80	ohms
Input Impedance	hib	. 25	1.0	5.0	$\times 10^{-4}$
Reverse Voltage Transfer Ratio	hrb	0.0	. 25	1.2	$\mu \mathrm{mhos}$
Output Admittance					
Power Gain ($\mathrm{VCe}=20 \mathrm{v} ; \mathrm{Ie}_{\mathrm{E}}=-2 \mathrm{ma} ; \dot{\mathrm{f}}=1 \mathrm{kc}$; $\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)	$\begin{gathered} \mathrm{GF}_{\mathrm{e}} \end{gathered}$		$\begin{aligned} & 35 \\ & 28 \end{aligned}$		$\frac{d b}{d b}$
Noise Figure					
High Frequency Choracteristics					
Frequency Cutoff $\left(V_{C B}=5 v ; I_{E}=-1 \text { ma }\right)$	fab		15		me
Collector to Base Capacity $f=1 \mathrm{mc}$	Cob		7		μ
Power Gain (Common Emitter) $\left(\mathrm{VCB}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{It}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right)$	Ge		17		db
D-C Characteristics					
Collector Breakdown Voltage $\left(\text { IcBo }=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\Delta}=25^{\circ} \mathrm{C}\right)$	BVcbo	45			volts
Collector Cutoff Current $\mathrm{T}_{\mathbf{a}}=25^{\circ} \mathrm{C}$)			. 02	2 50	$\mu \mathrm{a}$ $\mu \mathrm{a}$
	Icbo			50	$\mu \mathrm{a}$
Collector Saturation Resistance ($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{C}}=5 \mathrm{ma}$)	Rsc		80	200	ohms

Switching Characteristics

$\left(\mathrm{I}_{B_{1}}=0.4 \mathrm{ma} ; \mathrm{IB}_{2}=-0.4 \mathrm{ma} ;\right.$
$\mathrm{Ic}_{\mathrm{C}}=2.8 \mathrm{ma}$)
Delay Time
Rise Time
Storage Time
Fall Time

The General Electric Type 2N333 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching. It is a grown junction device with a diffused base,

2N333

Outline. Drawing No. 4 Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

High Frequency Characteristics

Frequency Cutoff
$\left(V_{C B}=5 v ; I_{\mathrm{e}}=-1 \mathrm{ma}\right)$

Collector to Base Capacity

fab	17	me
Cob	7	$\mu \mu \mathrm{f}$
Ge	16	db

D-C Characteristics

Collector Breakdown Voltage (Icbo $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0$; T_{a}
Collector Cutoff Current
($\mathrm{V}_{\mathrm{cb}}=30 \mathrm{v} ; \mathrm{If}^{\text {e }}=0 ; \mathrm{T}_{4}$
$\mathrm{V}_{\text {cbi }}=5 \mathrm{v} ; \mathrm{I}_{\text {e }}=$
Collector Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=5 \mathrm{ma}\right)$
Switching Characteristics
$\begin{aligned} & \left(\mathrm{IB}_{1}=0.4 \mathrm{ma} ; \mathrm{IB}_{2}=-04 \mathrm{ma} ;-2.8 \mathrm{ma}\right) \\ & \mathrm{Ic}=2 . \end{aligned}$
Delay Time
Rise Time
Storage Time
Fall Time

BV ${ }_{\text {cbo }}$	45		volts
Íbo	:02	2	$\mu \mathrm{a}$
Icrồ		50	$\mu \mathrm{a}$
Rsc	80	200	ohms

$\left(\mathrm{IB}_{1}=0.4 \mathrm{ma} ; \mathrm{IB}_{2}=-04 \mathrm{ma} ;\right.$
Ic $=2.8 \mathrm{ma}$)
Delay Time
Storage Time
t_{d}
.7
.15
.18
$\mu \mathrm{sec}$ $\mu \mathrm{sec}$
t_{s}
$\mu \mathrm{sec}$
$\mu \mathrm{sec}$

Outline Drawing No. 4

The General Electric Type 2N334 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching. It is a grown junction device with a diffused base. Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Voltoges
Collector to Base (Emitter Open)
Emitter to Base (Collector Open)
Collector Current

Power

Collector Dissipation $\left(25^{\circ} \mathrm{C}\right)$
Collector Dissipation $\left(100^{\circ} \mathrm{C}\right)$
Collector Dissipation ($150^{\circ} \mathrm{C}$)
Temperature Range
Storage
Operating

Vobo

10
Pc_{P}
Pe
Pe

Tseg
TA

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

(Unless otherwise specified; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$;
$\mathbf{I}_{\mathrm{E}}=-\mathbf{1} \mathrm{ma} ; \mathbf{f}=\mathbf{i k c}$)

	MIN.	NOM.
hie	18	39
$h_{1 b}$	30	53
$h_{r b}$.5	3.5
$h_{\text {rb }}$	0.0	.18
G $_{e}$		40
NF		

Noise Figure

High Frequency Characteristies

$\begin{aligned} & \text { Frequency Cutoff } \\ & \left(\mathrm{VCB}=5 \mathrm{v} ; \mathrm{In}_{\mathrm{a}}=-1 \mathrm{ma}\right) \end{aligned}$	$\mathbf{f a b}^{\text {b }}$	8.0	20		me
Collector to Base Capacity $\left(\mathrm{VCB}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}\right)$	Cob		7		$\mu \mu \mathrm{f}$
Power Gain (Common Emitter) $\left(\mathrm{VCB}=20 \mathrm{v} ; \mathrm{Ie}^{=}-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right.$)	Ge		15		db
D-C Characteristics					
Collector Breakdown Voltage $\left(\text { Icво }=50 \mu a ; T_{E}=0 ; T_{A}=25^{\circ} \mathrm{C}\right)$	BVceo	45			volts
Collector Cutoff Current $\left(\mathrm{VCB}=30 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Iobo		. 02	50	${ }_{\mu}^{\mu \mathbf{a}}$
$\left(\mathrm{VCB}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}:=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right)$ Collector Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}\right)$	Icbo Rsc		80	50 200	$\stackrel{\mu \mathrm{a}}{\text { ohms }}$

Switching Characteristics

$\left(\mathrm{I}_{\mathrm{B}_{1}}=0.4 \mathrm{ma} ; \mathrm{Ir}_{2}=-04 \mathrm{ma}_{3}\right.$ $\mathrm{Ic}_{\mathrm{C}}=2.8 \mathrm{ma}$)
Delay Time
Rise Time
Storage Time
Fall Time
ts
t
$\mu \mathrm{sec}$

.65	$\mu \mathrm{sec}$
.4	$\mu \mathrm{sec}$
.2	$\mu \mathrm{sec}$
.18	$\mu \mathrm{sec}$

The General Electric Type 2N335 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching. It is a grown junction device with a diffused base.

Outline Drawing No. 4 Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$) Voltages		
Collector to Base (Emitter Open)		
Emitter to Base (Collector Open)	Vebo	45 volts 1 volt
Collector Current	Ia	
Power		
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pc	
Collector Dissipation ($100^{\circ} \mathrm{C}$)	${ }^{\mathrm{P}} \mathrm{C}$	150 mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)	PG_{G}	100 mw 50 mw
Temperature Range		
Storage		
Operating	T_{A}	$\begin{aligned} & -65 \text { to } 200^{\circ} \mathrm{C} \\ & -55 \text { to } 175^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$;
$I_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{l k c}$)

Smail Signal Characteristics		MIN.	NOM.	MAX	
Current Transfer Ratio Input Impedance	hee	37	NOM.	MAX,	
Reverse Voltage Transfer Ratio	$h_{\text {hib }}$	30	53	80	ohms
Output Admittance	hrb	0.5	3.0	10.0	$\times 10^{-4}$
Power Gain $\left(\mathrm{VCE}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc} ;\right.$	hob	0.0	. 15	1.2	$\mu \mathrm{mhos}$
$\mathbf{R G}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{RL}_{\mathrm{L}}=20 \mathrm{~K}$ ohms) Noise Figure	$\stackrel{\mathrm{G}_{\mathrm{e}}}{\mathrm{NF}}$		42 20		db

High Frequency Characteristics

Frequency Cutoff			
Collector to Base Capacity	$\mathrm{f}_{\text {ab }}$	22	mc
	Cob	7	¢
$\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right.$)	Ge.	\%	f
		14	db

D-C Characteristics

Collector Breakdown Voltage
(ICBO $=50 \mu \mathrm{a} ; \mathrm{IE}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Collector Cutoff Current
$\left(V_{C B}=30 v ; I_{\Delta}=0 ; T_{\Delta}=25^{\circ} \mathrm{C}\right)$

BVcro	45		volts
Icbo			
Ícoo	. 02	2	$\mu \mathrm{a}$
Rsc	80	200	ohms

Switching Characteristics

($\mathrm{I}_{\mathrm{B}_{1}}=0.4 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.4 \mathrm{ma}$;
Ic $=2.8 \mathrm{ma}$)
Delay Time
Rise Time
Storage Time

$\mu \mathrm{sec}$
$\mu \mathrm{sec}$
Fall Time

.65	$\mu \mathrm{sec}$
.35	$\mu \mathrm{sec}$
.25	$\mu \mathrm{sec}$
.19	$\mu \mathrm{sec}$

2N336

Outline Drawing No. 4

The General Electric Type 2N336 is a silicon NPN triode transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching. It is a grown junction device with a diffused base. Electrical stability is insured by means of a minimum 150 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. This transistor is hermetically sealed in a welded case. The case dimensions and lead configuration conform to the JETEC TO-5 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltages

(Unless otherwise specified; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$; $\left.\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=\mathbf{1 k c}\right)$

Small Signal Characteristics

Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio

Vcbo
Vebo
45 volts
1 volt

Ic

Pe_{P}	150 mw
Pe_{c}	100 mw
	50 mw

Tsta
T.
-65 to $200^{\circ} \mathrm{C}$
-55 to $175^{\circ} \mathrm{C}$

Output Admittance
Power Gain
($\mathrm{VCe}=20 \mathrm{v} ; \mathrm{It}=-2 \mathrm{ma} ; \mathbf{f}=1 \mathrm{kc}$;
$\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}$ ohms $)$
Noise Figure

High Frequency Characteristics

Frequency Cutoff $\left(\mathrm{VCB}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}\right)$	$\mathrm{fab}_{\text {a }}$		23		me
Collector to Base Capacity $(V \mathrm{VB}=5 \mathrm{v} ; \text { Ie }=-1 \mathrm{ma} ; f=1 \mathrm{mc})$	Cob		7		$\mu \mu \mathrm{f}$
Power Gain (Common Emitter) $\left(V_{C B}=20 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}=-2 \mathrm{ma} ; f=5 \mathrm{mc}\right)$	Ge		13.		db
D-C Characteristics					
Collector Breakdown Voltage $\left(I_{C B O}=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	BVcbo	45			volts
Collector Cutoff Current $\left\{\begin{array}{l} \left(\mathrm{VCB}_{\mathrm{CB}}=30 \mathrm{v} ; \mathrm{I}_{E}=0 ; \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right) \\ \left.\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{array}\right.$	Icbo Icbo		. 02	2 50	$\mu \mathbf{a}$ $\mu \mathrm{a}$
Collector Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{C}}=5 \mathrm{ma}\right)$	Rsc		80	200	ohms
Switching Characteristics					
$\begin{aligned} & \left(\mathrm{I}_{\mathrm{B}_{1}}=0.4 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.4 \mathrm{ma} ;\right. \\ & \left.\mathrm{I}_{\mathrm{C}}=2.8 \mathrm{ma}\right) \end{aligned}$					
Delay Time	td		.65		$\mu \mathrm{sec}$
Rise Time	t_{r}		. 2		$\mu \mathrm{sec}$
Storage Time Fall Time	ts		. 2		μ sec μ sec

The General Electric types 2N394, 2N395 are PNP alloy junction high frequency switching transistors intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

2N394, 2N395

Outline Drawing No. 2

SPECIFICATIONS

Voltages		2N394	2N395	
Collector to Emitter	VCe			
Collector to Base	$V_{C B}$	-10 -10	-15	volts
Emitter to Base	Veb	-10	-15 -10	volts volts
Collector Current	Ic	-200	-200	ma
Power Dissipation	Pav	150	150	mw
Peak Power Dissipation ($50 \mu \mathrm{sec}$. max. 20% duty cycle)	P_{M}	500	500	nww
Storage Temperature	Tsta	-65 to 100	to 100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)

High Frequency Characferistics (Common Base)
$\left(V_{C B}=-5 v ; I_{\mathrm{E}}=1 \mathrm{ma}\right)$
Alpha Cutoff Freqיency
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)
Base Spreading Resistance

Cutoff Characteristies
Collector Cutoff Current
$\left(\mathrm{V}_{\mathrm{cbo}}=-10 \mathrm{v}\right) \quad$ Ico
$($ Vсbo $=-15 \mathrm{v}) \quad$ Ico
Emitter Cutoff Current
(Vebo $=-5 \mathrm{~V}$)
($\mathrm{V}_{\text {ebo }}=-10 \mathrm{~V}$)
Punch-through Voltage

D-C Characteristics
D-C Base Current Gain

$\begin{aligned} & \left(V_{\mathrm{CE}}=-1 \mathrm{lv} ; \mathrm{Ic}=-10 \mathrm{ma}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=-0.5 \mathrm{v} ;\right. \end{aligned}$	hFe	20	150		25	150	
Ic $=-100 \mathrm{ma}$)	hfe				20		
aturation Voltage (Is $=1 \mathrm{ma}$ I Ic $^{=}=-20 \mathrm{ma}$) ulse Response Time	Vce (SAT)			-0.1	20		-0.1 volts
$\begin{aligned} & \text { (Ise Response Time } \\ & \text { (} \mathrm{I}_{\mathrm{c}}=-5 \mathrm{ma} \text {; } \\ & \left.\mathrm{I}_{\mathrm{B}_{1}}=-\mathrm{I}_{\mathrm{B}_{2}}=0.5 \mathrm{ma}\right) \end{aligned}$							-0.1 volts
Delay and Rise Time	$t \mathrm{ta}+\mathrm{tr}_{5}$			0.9			
Fall Time	ts t_{5}			0.35			0.28 msec

Thermal Characteristics

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N396, 2N397
Outline Drawing No. 2

The General Electric types 2N396, 2N397 are PNP alloy junction high frequency switching transistors intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

Thermal Characteristics

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N45O
Outline Drawing No. 8

The General Electric Type 2N450 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages Collector to Base	$V_{\text {cb }}$	-20 volts
Collector to Emitter	Voe	-12 volts
Emitter to Base	Veb	-5 volts
Collector Current	Ic	-125 ma
Temperature Storage Junction	$\mathrm{Tstg}_{\mathrm{T}}$	-65 to $855^{\circ}{ }^{\circ} \mathrm{C}$
Power Total Transistor Dissipation	Pav	150 mw

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
High Frequency Characteristics (Common Base) ($\mathrm{VCB}=-5 \mathrm{r} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$)
Alpha Cutoff Frequency
Collector Capacity ($\mathbf{f}=1 \mathrm{mc}$)
Voltage Feedback Ratio ($f=1 \mathrm{mc}$)

Cutoff Characteristics

Breakdown Voltage Collector to Base to Base Emitter Open (Ic $=-100 \mu \mathrm{mmps}$)
Breakdown Voltage Collector to Emitter Base Open (Ic $=-600 \mu \mathrm{amps}$)
Collector Cutoff Current ($\mathrm{VCBO}=-6 \mathrm{v}$)
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EBO}}=-5 \mathrm{v}\right)$
D-C Choracteristics
D-C Base Current Gain
(VCE =-lv; IC =-10ma) hre 30

Saturation Voltage
($\mathrm{I}_{\mathrm{B}}=-5 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$)
$f_{a b}$
Ciob
hrb

MIN. MAX. CENTER

16	12	$\mathrm{mc}_{\mu \mu \mathrm{f}}$
13	10	$\times 10^{-8}$

$\mu \mu \mathbf{f}$ $\times 10^{-3}$

The General Electric Type 2N451 is an NPN silicon power transistor intended for general application at low to medium-high frequencies where large amounts of power are required at high operating temperatures. The high collector current rating in combination with the low saturation resistance and low thermal resistance of this device make it useful in a wide variety of applications. A single Type 2N451 in a Class A circuit is capable of 25 watts output at a mounting base temperature of $+30^{\circ} \mathrm{C}$. A pair of Type 2 N 451 units in Class B will deliver 50 watts output at mounting base temperatures up to $+100^{\circ} \mathrm{C}$. The high cut-off frequency of the Type 2N451 makes it useful in common-emitter amplifier circuits at frequencies up to 500 kc or more. The Type 2 N 451 transistor is a diffused-junction device manufactured by the General Electric vapor diffusion process. It is hermetically sealed in a welded case which is designed for mounting on an external heat sink by means of a simple threaded stud. The type 2 N 451 transistor is designed to meet the requirements of MIL-T-19500A.

ABSOLUTE MAXIMUM RATINGS

Temperature Range

Storage (Operating)
Voltages
Collector-Base
Emitter-Base
Collector-Emitter (RBE $\leqq 50$ ohms.)

Currents

Base
Collector
Collector DC Power Dissipation
$25^{\circ} \mathrm{C}$ Mounting Base Temp.
$100^{\circ} \mathrm{C}$ Mounting Base Temp.
ELECTRICAL CHARACTERISTICS

D-C Characteristics

$\left(25^{\circ} \mathrm{C} \mathrm{Mtg}\right.$. Base Temp, except where otherwise indicated)
Collector Reverse Current ($\mathrm{VcB}=+65 \mathrm{v}$) ($V_{C E}=+30 \mathrm{v} ; \mathrm{R}_{\mathrm{BE}} \leqq 50 \Omega$; $T_{A}=+125^{\circ} \mathrm{C}$)
Collector Saturation Resistance ($\left.\mathrm{IC}_{\mathrm{C}}=1 \mathrm{amp} ; \mathrm{I}_{\mathrm{s}}=0.3 \mathrm{amp}.\right)$
Forward Current Transfer Ratio ($\mathrm{Ic}=1 \mathrm{amp} ; \mathrm{VCE}_{\mathrm{C}}=10 \mathrm{v}$)
Input Resistance ($\mathrm{Ic}=1 \mathrm{amp} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}$)
A-C Characteristics (Common Emitter)
$\left(\mathbf{V}_{\mathrm{CE}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=1 \mathrm{amp}\right)$
Forward Current Transfer Ratio
(Ic $=0.5 \mathrm{amp} \mathrm{rms} ; \mathrm{f}=1 \mathrm{kc}$)
Input Resistance
($\mathrm{IC}=0.5 \mathrm{amp} \mathrm{rms} ; \mathrm{f}=1 \mathrm{kc}$)
Frequency Cutoff (3db)

Thermal Characteristics

Thermal resistance from collector junction to mounting base

Outline Drawing No. 6

2N451

-0.2 volts
olts
volts
volts

-6	-2	$\mu \mathrm{amps}$
-6	-2	μ amps

μ amps

$$
{ }^{\circ}
$$

$\underset{T}{T} \underset{T}{T s G}$			$-65 \text { to }+$	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \end{aligned}$
Vob				65 volts
Veb				10 volts
				65 volts
				$\begin{array}{r} 0.5 \mathrm{amps} \\ 5 \mathrm{amps} \end{array}$
				85 watts 35 watts
	MIN.	NOM.	MAX	
Icbo			20	ma
Icer			20	ma
Rsfe		2	4	ohms
hee	10			
hie		25		ohms
		14		
$\mathrm{fac}_{\text {c }}$		$\begin{array}{r} 20 \\ 400 \end{array}$		ohms kc

$\underset{T}{T} \underset{T}{T s G}$			$-65 \text { to }+$	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \end{aligned}$
Vob				65 volts
Veb				10 volts
				65 volts
				$\begin{array}{r} 0.5 \mathrm{amps} \\ 5 \mathrm{amps} \end{array}$
				85 watts 35 watts
	MIN.	NOM.	MAX	
Icbo			20	ma
Icer			20	ma
Rsfe		2	4	ohms
hee	10			
hie		25		ohms
		14		
$\mathrm{fac}_{\text {c }}$		$\begin{array}{r} 20 \\ 400 \end{array}$		ohms kc

$\underset{T}{T} \underset{T}{T s G}$			$-65 \text { to }+$	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 150^{\circ} \mathrm{C} \end{aligned}$
Vob				65 volts
Veb				10 volts
				65 volts
				$\begin{array}{r} 0.5 \mathrm{amps} \\ 5 \mathrm{amps} \end{array}$
				85 watts 35 watts
	MIN.	NOM.	MAX	
Icbo			20	ma
Icer			20	ma
Rsfe		2	4	ohms
hee	10			
hie		25		ohms
		14		
$\mathrm{fac}_{\text {c }}$		$\begin{array}{r} 20 \\ 400 \end{array}$		ohms kc

SPECIFICATIONS

Vcb 65 volts

2N452
Outline Drawing No. 6

The General Electric Type 2N452 features very low collector saturation resistance and high current capability. These characteristics make this transistor particularly suitable for high power amplifier and switching applications. The Type 2N452 transistor is a diffused-junction device manufactured by the General Electric vapor diffusion process. It is hermetically sealed in a welded case which is designed for mounting on an external heat sink by means of a simple threaded stud. The Type 2N452 transistor is designed to meet the requirements of MIL-T-19500A.

ABSOLUTE MAXIMUM RATINGS

Temperature Range

Storage
 Junction (Operating)

Voltages

SPECIFICATIONS

Collector-Base
Emitter-Base
Collector-Emitter (Rbe $\leqq 50$ ohms)

Currents

Base

Collector
Collector DC Power Dissipation 85 watts
$25^{\circ} \mathrm{C}$ Mounting Base Temp.
$100^{\circ} \mathrm{C}$ Mounting Base Temp.

ELECTRICAL CHARACTERISTICS

D-C Characteristics

($25^{\circ} \mathrm{C}$ Mtg. Base Temp. except where otherwise indicated)
Collector Reverse Current ($\mathrm{V}_{\mathrm{CB}}=+65 \mathrm{v}$) $\left(\mathrm{V}_{\mathrm{CE}}=+65 \mathrm{v} ; \mathrm{RBE}_{\mathrm{BE}} \leqq 50 \Omega ;\right.$ $\mathrm{T}_{\mathbf{A}}=+125^{\circ} \mathrm{C}$)
Collector Saturation Resistance ($\mathrm{Ic}=2 \mathrm{amp} ; \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{amp}$.)
Forward Current Transfer Ratio $\left(I_{\mathrm{C}}=2 \mathrm{amp} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{v}\right.$)
Input Resistance $\left(\mathrm{Ic}_{\mathrm{c}}=2 \mathrm{amp} ; \mathrm{Vce}_{\mathrm{ce}}=20 \mathrm{v}\right.$)

Thermal Characteristics

Thermal resistance from collector junction to mounting base

	MIN.	NOM.	MAX.	
ICBO			50	ma
ICER			50	ma
RSE			2.5	ohms
hFe	8			
hit		15		ohms
			1.5	${ }^{\circ} \mathrm{C} /$ watt

Outline Drawing No. 6

The General Electric Type 2N453 features a high forward current transfer ratio. This transistor is especially well suited as a series regulator element in d-c regulated power supplies and generally as a high gain, medium power amplifier at frequencies up to several hundred kc. The Type 2N453 transistor is a diffused-junction device manufactured by the General Electric vapor diffusion process. It is hermetically sealed in a welded case which is designed for mounting on an external heat sink by means of a simple threaded stud. The Type 2N453 transistor is designed to meet the requirements of MIL-T-19500A.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

 Temperature Range Storage Junction (Operating)
Voltages

Collector-Base
Emitter-Base
Collector-Emitter (RBE $\leqq 50$ ohms)

Currents

Base

$$
\begin{aligned}
-65 \text { to } & +150^{\circ} \mathrm{C} \\
& +150^{\circ} \mathrm{C}
\end{aligned}
$$

30 volts
10 volts
30, volts

Collector (For good performance, maximum collector current should be limited to 2 amps.)					
Collector DC Power Dissipation $25^{\circ} \mathrm{C}$ Mounting Base Temp.					5 amps
$100^{\circ} \mathrm{C}$ Mounting Base Temp.					85 watts
ELECTRICAL CHARACTERISTICS					35 watts
D-C Characteristics					
$\left(25^{\circ} \mathrm{C} \mathrm{Mtg}\right.$. Base Temp, except where otherwise indicated)		MIN.	NOM.	MAX.	
Collector Reverse Current $\left(\mathbf{V}_{\mathbf{c e}}=+30 \mathrm{v} ; \mathrm{V}_{\mathrm{Bb}}=+30 \mathrm{v}\right)$ $\left(\mathrm{VCE}_{\mathrm{CE}}=+30 \mathrm{~V} ; \mathrm{R}_{\mathrm{BE}} \leqq 50 \Omega\right.$	Icró			20	ma
Collector Saturation Resistance	Icer			20	ma
($\left.\mathrm{IC}=1 \mathrm{amp} ; \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{amp}.\right)$	Rse				
Forward Current Transfer Ratio ($\mathrm{Ic}=1 \mathrm{amp} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{v}$)	RSE			6	ohms
Input Resistance $\left(\mathrm{Ic}=1 \mathrm{amp} ; \mathrm{V}_{\mathrm{CE}}=20 \mathrm{v}\right)$	hFE $\mathrm{h}_{\text {IE }}$	20			
Thermal Characteristics			50		ohms
Thermal resistance from collector junction to mounting base				1.5	${ }^{\circ} \mathrm{C} /$ watt

The General Electric Type 2N454 is an NPN silicon power transistor intended for use as a general purpose, medium power amplifier at frequencies up to several hundred kc. The Type 2N454 transistor is a diffused-junction device

2N454

Outline Drawing No. 6 manufactured by the General Electric vapor diffusion process. It is hermetically sealed in a welded case which is designed for mounting on an external heat sink by means of a simple threaded stud. The Type 2N454 transistor is designed to meet the requirements of MIL-T-19500A.

ABSOLUTE MAXIMUM RATINGS

Temperature Range

Storage
Junction (Operating)
Voltages
Collector-Base
Emitter-Base
Collector-Emitter (${ }^{\prime}$ RBe $\leqq 50$ ohms)
Curren

Currents

Base

Collector (For good performance, maximum collector current should be limited to 2 amps.)

Collector DC Power Dissipation	5 amps
$25^{\circ} \mathrm{C}$ Mounting Base Temp.	85 watts
$100^{\circ} \mathrm{C}$ Mounting Base Temp.	35 watts

CTERISTICS

$125^{\circ} \mathrm{C}$ Mtg. Base Temp. except where otherwise indicated)

Collector Reverse Current ($\mathrm{VCB}_{\mathrm{CB}}=+65 \mathrm{v}$) $\left(\begin{array}{c}\mathrm{V}_{\mathrm{CE}}=+30 \mathrm{v} ; \mathrm{R}_{\mathrm{BE}} \leqq 50 \Omega ; \\ \left.\mathrm{T}_{\Delta}=+125^{\circ} \mathrm{C}\right)\end{array}\right.$
Collector Saturation Resistance
($\mathrm{Ic}=1 \mathrm{amp} ; \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{amp}$.)
Forward Current Transfer Ratio
($\mathrm{Ic}=1 \mathrm{amp}, V_{\mathrm{CE}}=20 \mathrm{v}$)
Input Resistance
($\mathrm{I}_{\mathrm{C}}=1 \mathrm{amp}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{v}$)

Thermal Characteristics

Thermal resistance from collector junction to mounting base

SPECIFICATIONS

2N489-2N494

Outline Drawing No. 5

The General Electric Silicon Unijunction Transistor is a hermetically sealed three terminal device having a stable " N " type negative resistance charactistic over a wide temperature range. A high peak current rating makes this device useful in medium power switching and oscillator applications, where it can serve the purpose of two conventional silicon transistors. These transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment. The Silicon Unijunction Transistor consists of an " N " type silicon bar mounted between two ohmic base contacts with a " P " type emitter near base-two. The device operates by conductivity modulation of the silicon between the emitter and base-one when the emitter is forward biased. In the cutoff, or standby condition, the emitter and interbase power supplies establish potentials between the base contacts, and at the emitter, such that the emitter is back biased. If the emitter potential is increased sufficiently to overcome this bias, holes (minority carriers) are injected into the silicon bar. These holes are swept towards base-one by the internal field in the bar. The increased charge concentration, due to these holes, decreases the resistance and hence decreases the internal voltage drop from the emitter to base-one. The emitter current then increases regeneratively until it is limited by the emitter power supply. The effect of this conductivity modulation is also noticed as an effective modulation of the interbase current.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
RMS Power Dissipation
RMS Power Dissipation - Stabilized**
RMS Emitter Current
Peak Emitter Current $* * *$ ($\mathrm{T} s=150^{\circ} \mathrm{C}$)
Emitter Reverse Voltage ($\mathrm{TJ}=150^{\circ} \mathrm{C}$)
Operating Temperature Range
Storage Temperature Range
Interbase Voltage (VBB)
*Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**Total power dissipation must be limited by external circuit.
***Capacitor discharge $-10 \mu \mathrm{fd}$ or less.

Types 2N489-2N494 are specified primarily in three ranges of stand-off and two ranges of interbase resistance. Each range of stand-off ratio has limits of $\pm 10 \%$ from the center value and each range of interbase resistance has limits of $\pm 20 \%$ from the center value.

2N489, 2N49O

MAJOR ELECTRICAL CHARACTERISTICS:

Interbase Resistance at $25^{\circ} \mathrm{C}$ Junction

$$
\text { Temperature } \quad \mathbf{R B B}_{\mathrm{B}}
$$

Intrinsic Stand-off Ratio η
Modulated Interbase Current ($\mathrm{I}_{\mathrm{t}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}$; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Emitter Reverse Current $\left(\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$ $\left(\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$

MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)

Emitter Saturation Voltage
($I_{\mathrm{m}}=50 \mathrm{ma} ; \mathrm{Vbb}_{\mathrm{b}}=10 \mathrm{v}$; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Peak Point Emitter Current $\left(\mathrm{V}_{\mathrm{Bb}}=25 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
Valley Voltage
Valley Current
Maximum Frequency of Oscillation ($\mathrm{IB}_{2}=4.5 \mathrm{ma}$, Relaxation Oscillator) Osilat (fmax

2N489
MIN. NOM. MAX
MAX

MIN.	NOM. MAX	MIN. NOM. MAX.				
4.7	5.6	6.8	6.2	7.5	9.1	kilohms
.51	.56	.62	.51	.56	.62	
6.8	12	22	6.8	12	22.	ma
	.07	1.0		.07	1.0	$\mu \mathrm{a}$
	28	100		28	100	$\mu \mathrm{a}$

2N491, 2N492

MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)

$\begin{aligned} & \text { Emitter Saturation Voltage } \\ & \left(I_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v} ;\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$		1.7	2.6	3.8				
Peak Point Emitter Current	VE (SAT)	1.7	2.6	3.8	1.8	2.8		
$\left(\mathrm{V}_{\text {Bb }}=25 v ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)	IP		4	12		4	12	
Valley Voltage	V_{V}	1.2	2.2	3.9	1.2	2.2	3.9	volts
Valley Current	IV	13	20	37	12	20		
Maximum Frequency of Oscillation ($\mathrm{IB}_{2}=4.5 \mathrm{ma}$; Relaxation								
Oscillator)	fmax		0.8			0.7		me

2N493. 2N494

MAJOR ELECTRICAL CHARACTERISTICS:		2N493			2N494			
		MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Interbase Resistance at $25^{\circ} \mathrm{C}$ Ju							MAX.	
Temperature	$\mathrm{RBE}_{\mathrm{O}}$	4.7	5.6	6.8	6.2	7.5	9.1	kilohms
Intrinsic Stand-off Ratio	η	. 62	. 68	. 75	. 62	. 68	. 75	
$\begin{aligned} & \text { Modulated Interbase Current } \\ & \left(\mathrm{I}_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}\right. \\ & \left.\mathrm{T}_{\Delta}=25^{\circ} \mathrm{C}\right) \end{aligned}$	IB_{g} (MOD)	6.8	12		62 6.8	12	. 29	
Emitter Reverse Current	IB_{2} (MOD)	6.8	12	22	6.8	12		
$\left(\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{TJ}=25^{\circ} \mathrm{C}\right)$	$\mathrm{IEO}_{\mathrm{O}}$. 07	1.0		. 07		
$\left(\mathrm{VB}_{\mathrm{S}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{TJ}=150^{\circ} \mathrm{C}\right)$	IEO		28	100		28	100	

MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)

Emitter Saturation Voltage
$\left(\mathrm{I}_{\mathrm{T}}=50 \mathrm{ma} ; \mathrm{VBB}_{\mathrm{B}}=10 \mathrm{v} ;\right.$

$$
\begin{aligned}
& \mathrm{TA}_{A}=25^{\circ} \mathrm{C} \text {, } \\
& \text { ak Point Emitter Current }
\end{aligned}
$$

Peak Point Emitter Current
$\left(V_{B B}=25 v ; T_{\Delta}=25^{\circ} \mathrm{C}\right.$) $) ~$
Valley Voltage
Valley Current $\quad \mathrm{V}_{\mathrm{V}}$
Maximum Frequency of Oscillation ($\mathrm{IB}_{2}=4.5 \mathrm{ma}$; Relaxation Oscillator)
$V_{E}(S A T)$
I_{p}
V_{y}
I_{V}
$f_{\text {MAX }}$

2.0	3.0	4.5	2.1	3.2	4.6	volts
	4	12		4	12	Ma
1.4	2.5	4.4	1.4	2.5	4.3	volts
14	24	40	12	21	35	ma
	0.7			0.65	snc	

FIGURE A

2N5O8

Outline Drawing No. 2

The 2 N 508 is an alloy junction PNP transistor intended for driver service in audio amplifiers. It is a miniaturized version of the 2N265 G.E. transistor. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages Collector to Emitter Collector to Base	$\begin{aligned} & \mathrm{VCH} \\ & \mathrm{VCB} \end{aligned}$	$\begin{aligned} & -16 \text { volts } \\ & -16 \text { volts } \end{aligned}$
Collector Current	Ic	$-100 \mathrm{ma}$
Power Collector Dissipation	Pcm	140 mw
Temperature Operating and Storage Range	Ta-Tstg	-65 to $+65^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
D.C. Characteristics

Base Current Gain ($\mathrm{Ic}=-20 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v}$) h FE
Collector to Emitter Voltage
($\mathrm{Reb}_{\mathrm{Pb}}=10 \mathrm{~K} ; \mathrm{Ic}_{\mathrm{c}}=-.6 \mathrm{ma}$) Voer
($\mathrm{ReB}=10 \mathrm{~K} ; 10=-.6 \mathrm{ma})-16 \mathrm{v}$) \quad ©er
-16 volts
Collector Cutoff Current (VCB $\overline{(V)}-16 \mathrm{~V})$
Max. Collector Cutoff Current $(\mathrm{VCB}=-16 \mathrm{v})$ Ico

Small Signal Characteristics

$\overline{F r}$ requency Cutoff ($\mathrm{VCr}=-5 \mathrm{y} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$) $\mathrm{fab}_{\mathrm{ab}}$ Collector Capacity ($\mathrm{VCB}_{\mathrm{CB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$) Cob Noise Figure ($\mathrm{VCB}=-5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$) NF
Input Impedance ($\bar{V}_{C E}=-5 v ; I_{E}=1 \mathrm{ma}$) hie
Current Gain (VOE $=-5 v ; I_{E}=1 \mathrm{ma}$) hee
3.5 mc
$24 \quad \mu \mu \mathrm{f}$ K ohms
3 K ohms

Thermal Characteristics
Thermal Resistance Junction to Air
$.25{ }^{\circ} \mathrm{C} / \mathrm{mw}$

Performance Data Common Emitter
Power Gain Driver ($\mathrm{Vcc}=9 \mathrm{v}$)
Ge
Po
db
Power Output
1 mw

The General Electric Type 2N518 is a germanium PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime

Outline Drawing No. 8

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltages

Volfages		
Collector to Base	Vcb	
Collector to Emitter	$\begin{aligned} & V_{C B} \\ & V_{C E} \end{aligned}$	-45 volts
Emitter to Base	V_{EB}	-12 volts
		-30 volts
Collector Current	Io.	$-125 \mathrm{ma}$
Temperature		
Storage Junction	Tist	$\begin{array}{r} -65 \text { to } 85^{\circ} \mathrm{C} \\ 85{ }^{\circ} \mathrm{C} \end{array}$
Power		
Total Transistor Dissipation	Pay	150 mw

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
High Frequency Characteristics (Common Base)

$\left(V_{C B}=-5 v ; I_{E}=1 \mathrm{ma}\right)$ Alpha Cutoff Frequency Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$) Voltage Feedback Ratio ($\mathbf{f}=$	

MIN.	MAX.	DESIGN CENTER	
10			me
	16	12	$\mu \mu \mathrm{f}$
	13	10	$\times 10^{-8}$

Cutoff Characteristics

$\left.\begin{array}{llll}\begin{array}{lll}\text { Breakdown Voltage Collector to Base } \\ \text { Emitter Open (IO } \\ \text { Emitter } \mu \text { amps })\end{array} & \text { BV } & & \\ \text { Breakdown Voltage Emitter to Base }\end{array}\right)$

D-C Characteristics

D-C Base Current Gain

Thermal Characteristics

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$,

2N524, 2N525

Outline Drawing No. 2

The General Electric types 2N524 and 2N525 are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the frequency range from audio to 100 KC . This series of transistors is intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance. The 2 N 524 and 2 N 525 are equivalent to the 2 N 44 and 2 N 43 respectively and may be directly substituted in most applications.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages		-45 volts
Collector to Base	Vcro	-30 volts
Collector to Emitter	Vcer	-15 volts
Emitter to Base	Vebo	
Collector Current	ICM	$-500 \mathrm{ma}$
Temperatures		-65 to $100^{\circ} \mathrm{C}$
Storage	Tsta	$85^{\circ} \mathrm{C}$
Operating	TJ	
Power		225 mw
Total Transistor Dissipation	Pav	

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
(Uniess otherwise specified $V_{C}=-5 V$ common base; $\mathrm{It}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}$)

	2N524			2N525			$\mu \mathrm{mhos}$
	MIN.	M.	MAX.	MIN.		AX.	
hob	10	. 65	1.3	,1	. 6	1.2	
hit	26	31	36	26	31	35	ohms
$\mathrm{hrib}_{\text {b }}$	1	4.0	10	1	5.0	11	$\times 10^{-\frac{1}{3}}$
$\begin{aligned} & \mathrm{h}_{\mathrm{fe}} \\ & \text { fab } \end{aligned}$	16 .8	30 2.0	$\begin{array}{r} 41 \\ 5.0 \end{array}$	30 1	44 2.5	$\begin{array}{r} 64 \\ \mathbf{5 . 5} \end{array}$	mc
Cob	18	25	40	18	25	40	$\mu \mu \mathrm{f}$
NF	1.	6	15	1	6	15	db

D-C Characteristics
Forward Current Gain

$\left.V_{C E}=-1 v ; I_{C}=-20 \mathrm{ma}\right)$
$\begin{array}{llllll} & & & & & \\ 19 & 35 & 42 & 34 & 52 & 65 \\ & & & 30 & 45 & \end{array}$
($\mathrm{VCE}_{\mathrm{CE}}=-1 \mathrm{~V} ; \mathrm{Ic}=-100 \mathrm{ma}$) $\quad \mathrm{hf}_{\mathrm{f}}$
Base Input Voltage,
Common Emitter -20 ma)
Vbe $-.220-.255-.320-.200-.243-.300$
Collector Cutoff Current
$($ Vcbo $=-30 \mathrm{v})$
Emitter Cutoff Current
Ico
($\mathrm{V}_{\text {gbo }}=-15 \mathrm{~V}$)
IEO
Collector to Emitter Voltage
($\mathrm{R}_{\mathrm{Be}}=10 \mathrm{~K}$ ohms;
Ic $=-.6 \mathrm{ma})$
Punch-through Voltage

V gerr	-30
$\mathrm{~V}_{\mathrm{I} T \mathrm{~T}}$	-30

-5	-10

$-5 \quad-10 \quad \mu a$
$\begin{array}{llll}-4 & -10 & -4 & -10\end{array}$
$\mu \mathrm{a}$

Thermal Resistance (k)
Junction Temperature Rise/.
Total Transistor Dissipation:
Free Air
.27
$\begin{array}{ll}.27 & { }^{\circ} \mathrm{C} / \mathrm{mw} \\ .11 & { }^{\circ} \mathrm{C} / \mathrm{mw} \\ .20 & { }^{\circ} \mathrm{C} / \mathrm{mw}\end{array}$
Infinite Heat Sink
Clip-on Heat Sink in
Free Air

The General Electric types 2N526 and 2N527 are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the frequency range from audio to 100 KC . This series

2N526, 2N527

Outline Drawing No. 2 of transistors is intended for military; industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Collector to Base	Vcbo	
Collector to Emitter	$V_{\text {cer }}$	-45 voits
Emitter to Base	Vebo	$-30 \text { volts }$
Collector Current	$\mathrm{ICM}_{\text {ch }}$	-500 ma
Temperatures		
Storage Operating	$\mathrm{T}_{\mathrm{T}}^{\mathrm{T}} \mathrm{Jtg}$	$-65 \text { to } 100{ }^{\circ}{ }^{\circ} \mathrm{C}$
Power		
Total Transistor Dissipation	Pay	225 mw
ELECTRICAL CHARACTERISTICS: $\left(25{ }^{\circ} \mathrm{C}\right)$		
Small Signal Characteristics		
(Unless otherwise specifi common base; le $=-1$	$\begin{aligned} & =-5 \mathrm{~V} \\ & =270 \end{aligned}$	

Output Admittance (Input AC Open Circuited)	$\mathrm{h}_{\text {ob }}$	2N526			2N527			$\mu \mathrm{mhos}$
		MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
		. 1	. 42	1.0	. 1	37	9	
(Output AC Short							,9	
Circuited)	His	26	30					
Reverse Voltage Transfer Ratio (Input AC Open Circuited)		26	30	33	26	29	31	ohms
Forward Current Transfer Ratio (Common Emitter; Output	hrb	1	6.5	12	1	8.0	14	$\times 10^{-4}$
Freque Short Circuited)	$h_{\text {fe }}$	44	64	88				
Frequency Cutoff Output Capacity ($\mathrm{f}=1 \mathrm{mc}$;	$\mathrm{f}_{\text {ab }}$	1.3	3.0	6.5	1.5	3.3	12	
Input AC open circuited)	Cob	I8						
Noise Figure ($\mathrm{f}=1 \mathrm{kc}$;	Cob	18	25	40	18	25	40	$\mu \mu \mathrm{f}$
$\mathrm{BW}=1$ cycle $)$	NF'	1	6	15	1	6	15	db

D-C Characteristics
Forward Current Gain
(Common Emitter, $\mathrm{IC}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$)
($\mathrm{V}_{\mathrm{CE}}=-1 \mathbf{v} ; \mathrm{Ic}_{\mathrm{c}}=-20 \mathrm{ma}$
$\begin{array}{llllllll}\left(V C E=-1 v ; I_{c}=-100 \mathrm{ma}\right) & \mathrm{h}_{\mathrm{Fv}} & 53 & 73 & 90 & 72 & 91 & 121\end{array}$
Base Input Voltage,
Common Emitter
$(\mathrm{Vce}=-1 \mathrm{v} ; \mathrm{Ic}=-20 \mathrm{ma})$
Vbe $\quad-.190-.230-.280-.180-.216-.260$
(Vector Cutoft Current
Ico
(Vcbo $=-30 \mathrm{v}$)
Emitter Cutoff Current
(Vebo $=-15 \mathrm{v}$) $\quad \mathrm{I}_{\mathrm{EO}}$
Collector to Emitter Voltage
($\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$ ohms;
$\mathrm{IG}=-.6 \mathrm{ma})$
Punch-through Voltage
$\begin{array}{ll}\mathrm{V} \text { (enr } & -30 \\ \mathrm{~V} \cdot \mathbf{T} & -30\end{array}$

-5	-10			
-4	-10	-5	-10	$\mu \mathrm{a}$
	-4	-10	$\mu \mathrm{a}$	

(k)

Junction Temperature Rise/
Total Transistor Dissipation:
Free Air
Infinite Heat Sink
.27
-30
volts

Clip-on Heat Sink in

.27	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.11	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.20	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

2N634
Outline Drawing No. 2

The General Electric type 2 N 634 is an NPN germanium alloy triode transistor designed for high speed switching applications.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Voltages	VEB	20 volts
Collector to Base	VEB	15 volts
Emitter to Base	VEB	20 volts

Currents
Collector
300 ma
50 ma
Base
$\stackrel{\mathrm{Ic}}{\mathrm{Ib}}$
300 ma

Temperoture
Storage

$\mathrm{T}_{\mathrm{STG}}$	-65 to $85{ }^{\circ} \mathrm{C}$
T_{A}	
${ }^{\circ} \mathrm{C}$	

Power
Dissipation Par 150 mw
ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
Collector Voltage
$\left(\mathrm{Ic}=15 \mu \mathrm{amp} ; \mathrm{It}_{\mathrm{E}}=0\right)$
Emitter Voltage
(I e $=10 \mu \mathrm{amp} ;$ Ic $=0$)
Collector to Emitter Voltage ($\mathrm{Ic}=600 \mu \mathrm{amp} ; \mathrm{R}=10 \mathrm{~K}$)
Collector Cutoff Current $\left(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0\right)$
Punch Through Voltage
D-C Current Gain
($\mathrm{I}_{\mathrm{c}}=200 \mathrm{ma} ; \mathrm{Vce}_{\mathrm{ce}}=0.75 \mathrm{v}$)
Alpha Cutoff Frequency
($\mathrm{VCB}_{\mathrm{Cb}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{m}}=-1 \mathrm{ma}$)

	MIN.	NOM.	MAX,	
Vcbo	20			volts
Vebo	15			volts
Voer	20			volts
$\begin{aligned} & \text { Icbo } \\ & \mathbf{V}_{\mathbf{P T}} \end{aligned}$	20		5	$\mu \mathrm{amp}$ volts
hre	15			
$\mathbf{f a b}^{\text {b }}$	5	8		mic

Thermal Characteristic

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N635
Outline Drawing No. 2

The General Electric type 2 N 635 is an NPN germanium alloy triode transistor designed for high speed switching applications.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages		
Collector to Base	Vob	20 volts
Emitter to Base	VEB	15 volts
Collector to	20 volts	

Currents

Collector
Base
Emitter

Temperature

Storage Operating Junction	$\mathrm{T}_{\mathrm{Tsta}}$	$\begin{array}{r} -65 \text { to } 85^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$
Power		
Dissipation	Pm_{m}	150 mw

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Collector Voltage ($\mathrm{IC}_{\mathrm{C}}=15 \mu \mathrm{amp} ; \mathrm{I}_{\mathrm{E}}=0$)		MIN.	NOM:	MAX.	
Emitter Voltage ${ }^{\text {amp }}$ ($I_{\text {e }}=0$)	V Cbo	20			volts
(Ie $=10 \mu \mathrm{amp}$; $\mathrm{Ic}=0$)	Vebo	15			volts
($\mathrm{I} \mathrm{C}=600 \mu \mathrm{amp} ; \mathrm{R}=10 \mathrm{~K}$)	Vcer	20			
Collector Cutoff Current $\left(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0\right)$ Punch Through Voltage	$\mathrm{I}_{\text {cbo }}$	20		5	volts μ amps
Punch Through Voltage	VPr	20			volts
${ }_{\text {Alpha }}^{\text {(}} \mathrm{C}$	$\mathrm{hFE}^{\text {en }}$	25			
$\left(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=-1 \mathrm{ma}\right)$	fab	10	12		

Thermal Characteristic

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric type 2N636 is an NPN germanium alloy triode transistor designed for high speed switching applications.

2N636

Outline Drawing No. 2

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltages
Collector to Base

> VGB Vebe $^{\prime}$ \mathbf{V}_{CE}

Collector to Emitter
I_{C}
I_{B}
I_{E}
300 ma
50 ma
300 ma

Temperature

Storage
Operating Junction
$\underset{\mathrm{T}_{\mathbf{A}}}{\mathrm{Tstg}}$
-65 to $85^{\circ} \mathrm{C}$
$85^{\circ} \mathrm{C}$

Power

Dissipation
$\mathbf{P}_{\mathbf{M}}$
150 mw

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)

Collector Voltage
(Io $=15 \mu \mathrm{amp} ; \mathrm{I}_{\mathrm{E}}=0$)
VCbo MI
($I_{E}=10 \mu \mathrm{amp} ; \mathrm{I}_{\mathrm{C}}=0$)
$\begin{array}{ll}\text { Vebo } & 20 \\ & 15\end{array}$
($\mathrm{I}_{\mathrm{C}}=600 \mu \mathrm{amp} ; \mathrm{R}=10 \mathrm{~K}$)
Collector Cutoff Current
$\left(\mathrm{VCb}_{\mathrm{c}}=5 \mathrm{v}_{\mathrm{i}} \mathrm{I}_{\mathrm{E}}=0\right.$)
Punch Through Voltage
D-C Current Gain
Vcer
15
(Ic $=200 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=0.75 \mathrm{v}$)
$\stackrel{1}{V_{P T}}$
15

Alpha Cutoff Frequency
hee
35
($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$)
$f_{a b}$
15
NOM. MAX.
volts
volts
volts
5
$\mu \mathrm{amps}$
volts

17
mc

Thermal Characteristic

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

Outline Drawing No. 7

The General Electric Type 3 N36 is a germanium meltback NPN transistor designed for high frequency use as an amplifier, oscillator or mixer. It is recommended for use in the frequency range from 30 mc to 100 mc . The 3 N 36 is excellent for wide band video amplifiers from low frequency to 10 mc . All units are subjected to a rigorous mechanical drop test to control mechanical reliability. These transistors are hermetically sealed in welded cases. The case dimensions conform to the JETEC TO-12 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages		
Collector to Base 1 or Base 2	VCB	7 volts
Emitter to Base 1 or Base 2	VeB	6 volts
Colletor to		

Currents ${ }^{\text {a ma }}$			
Collector	Ic		
Emitter	IE		-20 ma
Base 2 IB_{2} ma			
Temperature ${ }^{\text {a }}$			
Storage		$\begin{aligned} & \mathrm{T}_{\mathrm{stg}} \\ & \mathrm{~T}_{\mathrm{J}} \end{aligned}$	$\begin{array}{r} -65 \text { to }+85^{\circ} \mathrm{C} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{array}$
Power 30 mmw			
Total Transistor Dissipation		$\mathrm{Pm}_{\mathbf{m}}$	30 mw

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified $\mathrm{V}_{\mathrm{CB}}=+5 \mathrm{v} ;$
$\left.\mathrm{I}_{\mathrm{E}}=-1.5 \mathrm{ma} ; \mathrm{V}_{\mathrm{B}_{2} \mathrm{~B}_{1}}=-2 \mathrm{v} ; \mathbf{f}=60 \mathrm{mc}\right)$
Small Signal High Frequency Parameters
Output Capacity
Noise Figure (Common Base)
Base Spreading Resistance

Common Emitter "h" Parameters
Input Impedance

D-C Characteristics

Voltage Collector to Emitter					
($\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$;	Vcer	5			volts
Collector Cutoff Current ($\mathrm{VCB}_{1} \mathrm{~B}_{2}=7 \mathrm{~V}$)	Ico		3	10	$\mu \mathrm{amps}$
Cross Base Resistance	$\mathrm{RB}_{\mathrm{B}_{1} \mathrm{~B}_{2}}$	2.4 K	4 K	10K	ohms

Thermal Characteristic

Derate $.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric Type 3N37 is a germanium meltback NPN transistor designed for high frequency use as an amplifier, oscillator or mixer. It is recommended for use in the frequency range of 100 mc to 200 mc . The 3 N 37 is excellent for wide band video amplifiers from low frequency to l0mc. All units are subjected to a rigorous mechanical drop test to control mechanical reliability. These transistors are hermetically sealed in welded cases. The case dimensions conform to the JETEC TO- 12 package and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltages

Collector to Base 1 or Base 2	VCB	
Emitter to Base 1 or Base 2	volts	
Collector to Emitter	V $_{\text {EB }}$	7 volts

Currents

Collector	IC_{2}	20 ma
Emitter	IE_{E}	-20 ma
Base 2	IB_{2}	2 ma

Temperature
Storage
Operating Junction

$$
\begin{array}{lr}
\mathbf{T}_{\text {STG }} & -65 \text { to }+85{ }^{\circ}{ }^{\circ} \mathrm{C} \\
\mathbf{T}_{\mathbf{J}} & +85{ }^{\circ} \mathrm{C}
\end{array}
$$

Power

Total Transistor Dissipation $\quad \mathbf{P}_{\mathbf{M}} \quad 30 \mathrm{mw}$

ELECTRICAL CHARACTERISTICS: $\quad\left(25^{\circ} \mathrm{C}\right)$
(Unless otherwise specified $\mathrm{VCB}_{1}=+5 \mathrm{v} ;$
$\left.\mathrm{I}_{\mathrm{E}}=-1.5 \mathrm{ma} ; \mathrm{V}_{\mathrm{B}_{2} \mathrm{~B}_{1}}=-2 \mathrm{v} ; \mathrm{f}=150 \mathrm{mc}\right)$

Small Signal High Frequency Porameters

Output Capacity
Noise Figure (Common Base)
Base Spreading Resistance

$\stackrel{\text { Cob }}{\mathrm{NF}}$	

Common Emitter "h" Parameters

Input Impedance
Reverse Voltage Transfer Ratio
Current Transfer Ratio

$\begin{aligned} & \mathbf{l i f o}_{0} \\ & h_{r e} \\ & h_{r} \\ & h_{o b} \\ & f_{a b} \\ & G_{e} \end{aligned}$

$80-\mathrm{j10}$	ohms
$.018 \angle 84^{\circ}$	
$5.5+\mathrm{j} 12.514$	$\times 10^{-4}$ mhos
9	mc
9	db

D-C Characteristics

Voltage Collector to Emitter
($\mathrm{RBE}_{\mathrm{BE}}=10 \mathrm{~K}$;
$\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=-2 \mathrm{v} ; \mathrm{Ic}_{\mathrm{C}}=25 \mu \mathrm{amp}$)

$\mathrm{V}_{\text {CER }}$	5			volts ICo^{2}
$\mathrm{R}_{\mathrm{B}_{1} \mathrm{~B}_{2}}$	2.5 K	8	10	μ amps ohms

Thermal Characteristic

Derate $.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

TYPICAL IST I. F AMPL.

TYPICAL 2ND I. F. AMPL.

TYPICAL IF TEST CIRCUIT

TYPICAL AUTODYNE CONVERTER

ANTENNA - DELTA COIL *I- IO5A OR EQUIVALENT
OSCILLATOR COIL - E. STANWYCK CO. \#\| 129 (MODIFIED) OR EQUIVALENT
CAPACITOR - RADIO CONDENSER \# 242 OR EQUIVALENT
I. F TRANSFORMER - AUTOMATIC $\mathbf{7 2 5 (E X O - 3 9 2 6)}$ OR EQUIVALENT
REGISTERED JETEC TRANSISTOR TYPES
For explanation of symbols, ratings and mfg. symbols see page 160.
MAX. RATINGS
MAY 1
TYPICAL VALUES

1958
Closest GE

$\begin{gathered} \text { JETEC } \\ \text { No. } \end{gathered}$	Type	Mif.	Use	Dwg. No.	Pcmw @ $25^{\circ} \mathrm{C}$	$\underline{B V_{\mathrm{CE}}}$	Ioma	$\underline{T J}{ }^{\circ} \mathrm{C}$	hre	$\mathrm{fabm}^{\text {ma }}$	$\mathrm{G}_{\mathrm{e}} \mathrm{db}$	$\begin{gathered} \mathbf{P}_{0} \mathrm{mw} \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \text { Class } \\ \text { B } \end{gathered}$	Closest GE
2 N 160	NPN	GP	Si IF		150	40.	25	150	14	4	34			
2 N 160 A	NPN	GP	Si IF		150	40	25	150	14	4	34			$\begin{aligned} & \text { 2N332 } \\ & \text { 2N332 } \end{aligned}$
2N161	NPN	GP			150	40	25	150	28	5	37			$\begin{aligned} & 2 \mathrm{~N} 332 \\ & 2 \mathrm{~N} 333 \\ & \hline \end{aligned}$
2N161A	NPN	GP	Si RF		150	40	25	150	28	5	37			2N333
2N162	NPN	GP	Si RF		150	40	25	150	38	8	38			2N335
2N162A	NPN	GP	Si RF		150	40	25	150	38	8	38			${ }_{2} \mathrm{~N} 335$
2N163	NPN	GP	Si RF		150	40	25	150	50	6	40			2N335
2N163A	NPN	GP	Si RF		150	40	25	-150	50	6	40			2N335
2N164A	NPN	GE	Obsolete		65	15	20	- 85	40	8	39 max			2N168A
2N165	NPN	GE	Obsolete		65	15	20	85	72	5	36 max			2N169
2N166	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\underset{\mathrm{GE}}{\mathrm{GE}}$	Obsolete		25	6	20	50	32	5				2N170
2N168	NPN			3	75	30	75	85	30	9				2N167
2 N 168 A	NPN	$\underset{\mathrm{GE}}{\mathbf{G E}}$	Obsolete		55 65	15	20	75	20	6	39 max			use 2N293
2N169	NPN	GE	IF	3	65 65	15	20 20	85 85	72	8 9	39 max 35 max			2 N 168 A
2N169A	NPN	GE	IF	3	65	25	20	85	72	9				
2N170	NPN	GE	RF	3	55	6	20	50	20	4	${ }_{27}{ }^{\text {max }}$			${ }_{\text {2N169A }}$
2N172	NPN	TI	IF		65	16	5	75			28			2 N 168 A
2N173	PNP	DIc	Pwr		40 W	-60	$-7 \mathrm{~A}$	90	100					
2 N 174	PNP	Dic	Pwr		40 W	-80	$-7 \mathrm{~A}$	90	45	. 2		$2{ }^{8}$	$\begin{aligned} & 20 \mathrm{~W} \\ & 80 \mathrm{~W} \end{aligned}$	
2N175	PNP	RCA	AF		20	-10	-2	50	65	. 8	43			2N192
2N176	PNP	Motor	Pwr			-12	-600	80			25	3W		
2N178	PNP	Motor	Pwr		10W	-12	-600	80	30		29			
2N179	PNP	Motor	Pwr			-20	-60	88			32			
2N180	PNP	CBS	AF Out		150	-30	-25	75	60	. 7	37	3W	300	
2N181 2N182	PNP	CBS	AF Out		250	-30	-38	75	60	. 7	34	110	600	2N188A $25 V$
2N183		CBS	$1 F$		100	25	10	75	25	3.5				2N167
2 N 184	NPN	CBS	${ }_{\text {S }} \mathbf{w}$		100	25	10	75	40	7.5				2N167
2N185	PNP	TI	$\stackrel{\text { Sw }}{\text { AF }}$		100	25 -20	$\begin{array}{r}10 \\ -150 \\ \hline\end{array}$	75 50	60 55	12	40.5			2N167
2N186	PNP	GE	AF Out									2	250	2N188A
2N186A	PNP	GE	AF Out	1	100	-25 -25	-200	85	${ }_{24}$	8			300	2N186
2N187	PNP	GE	AF Out	1	100	-25	-200	85	24 36	$\stackrel{8}{1}$	30 30		750 300	${ }_{2} \mathbf{N} 1864$
2N187A	PNP	GE	AF Out	1	200		-200							
2N188	PNP	GE	AF Out	1.	100	-25	-200	85						
2N188A	PNP	GE	AF Out	1	200	-25	-200	85	54	1.2	$\begin{aligned} & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 300 \\ & 750 \end{aligned}$	2N188
2N189	PNP	GE	AF		75									
2N190	PNP	GE	AF	1	75	-25	-50	85	$\stackrel{24}{ }$	$\stackrel{8}{1}$	37 39	1		2 N 189 N 190
2N191	PNP	GE	AF	1	75	-25	-50	85	54	1.2	41	1		${ }_{2} \mathrm{~N} 191$
2N192		GE	${ }_{\text {AF }}$	1	75	-25	-50	85	75		43	1		
2N193 2N194	NPN	Syl	Osc		50	15		75	6	1.5				2N167
2 N 194	NPN	Syl	Osc		50	15	50	75	7.5	3.5	15			2N169

JETEC No.	Type	Mfr.	Use $\begin{gathered}\text { Dwg. } \\ \text { No. }\end{gathered}$											Closest GE
					Pcmw @ $25^{\circ} \mathrm{C}$	$\mathrm{BV}^{\text {ch }}$	If ma	$\underline{T J}{ }^{\circ} \mathrm{C}$	hee	$\underline{\text { fab me }}$	$\mathrm{G}_{\mathrm{e}} \mathbf{d b}$	$\begin{gathered} P_{0} m w \\ A \end{gathered}$	$\begin{gathered} \text { Class } \\ \mathbf{B} \\ \hline \end{gathered}$	
2N311	PNP	Motor	Sw		75	-15								$\begin{aligned} & \text { 2N123 } \\ & \text { 2N167 } \end{aligned}$
${ }_{2} \mathrm{~N} 312$	NPN	Motor	Sw Obsolete		75	15		85	50 25	5	36 max			${ }_{2} \mathrm{~N} 292$
2 N 313	NPN	GE			65		20				36 max			2N293
2N314	NPN	GE	Obsolete		${ }^{65}$	15 -15	20 -200	85	25 20	8	39 max			2N23
2N315	PNP	GT	Sw		100	-15 -10	-200 -200	${ }_{85}^{85}$	30	12				
2N316	PNP	GT												
2N317	PNP	GT	Sw		100 50	-6 -12	$\begin{array}{r} -200 \\ -20 \end{array}$	85	$\begin{array}{r} 30 \\ 100 \end{array}$	$\begin{array}{r} 20 \\ .75 \end{array}$				
2N318	PNP	GT	Photo AF Out		50 240	-12 -20	$\begin{array}{r} -20 \\ -200 \end{array}$	85	$\begin{array}{r} 100 \\ 33 \end{array}$	$\begin{array}{r} 15 \\ \hline \end{array}$	30		750	2N187A
2N319	PNP	GE	AF Out 2		240	-20	-200	85			32		750	2N188A
${ }^{2 N} \mathbf{N} 322$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \end{aligned}$	GE		2	140	-16	-100	85	70	2	39			
2N323	PNP	GE	$\begin{aligned} & \mathbf{A F} \\ & \mathbf{A F} \end{aligned}$	$\stackrel{2}{2}$	140	-16	-100	85	90	2.5 3	41			$\begin{aligned} & \text { 2N191 } \\ & \text { 2N192 } \end{aligned}$
2N324	PNP	GE			${ }^{140} \mathrm{~W}$	-16 -35	-100 $-2 A$	85	40	. 2				
2N325	PNP	Syl	Pwr		12 W									
2N326	NPN	Syl			${ }_{335} \mathrm{~W}$	35 -50	$-100{ }^{2 \mathrm{~A}}$	85 160	14	. 2	32			
2N327	PNP	Ray	SiAF		335 335	-30 -35	-100	160	24	. 35	34			
2N328	PNP	Ray	AF				-100	160	50	. 5	36			
2 N 329	PNP	Ray Ray			335 335	-30 -45	- -50	160	30	.25	${ }_{44}{ }^{4} 5$			2N188A
$\begin{aligned} & \text { 2N330 } \\ & \text { 2N331 } \end{aligned}$	PNP	Ray	AF		200	$-30 *$	-10	85	48	. 7	44.5			$2 \mathrm{Ni83A}$
2N332	NPN	TI-GE	SiAF	4	150	45*	25	200	15	30	${ }_{39}^{35}$			2N332
2N333	NPN	TI-GE	SiAF	4	150	45**	$\stackrel{25}{ }$	200 175		88 min				2N334
2 N 334	NPN	TI-GE	SiAF		150	45*	25				42			
2 N 335	NPN	TI-GE	SiAF	4	150	45**	$\stackrel{25}{25}$	200 175	$\stackrel{50}{99}$ a	38	42			2N336
2N336	NPN	TI-GE	SiAF	101)	150	-5	-5	-85	22	50				
2N344	PNP	Phil	RF ($=$	102)			-5	85	60	50				
2N345	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \end{aligned}$	Phil Phil	RFF ($=$	103)	20 20	-5	-5	85	15	75			8W	
$\begin{aligned} & \text { 2N346 } \\ & \text { 2N350 } \end{aligned}$	PNP	Motor	$\mathrm{Parr}^{\text {Pr }}$	(03)	10W	-40*	$-3 \mathrm{~A}$	90	30	5 Kc min	31		8 W	
2N351	PNP	Motor	Pwr		10W	-40 *	$-3 \mathrm{~A}$	90	4.5	5 Kc min	33	2.5W	${ }^{\text {10W }}$	
2N352	PNP	Phil	Pwr		${ }^{25 W}$	-40 -40	-2 A -2 A	100	65 90		36	5W	10W	
2N353	PNP	Phil	Pwr		30 W	-40		10						
2N354	PNP	Phil	Si Osc		150	-25 -10	-50 -50	140 140	18	$25 \mathrm{f}_{\text {max }}$				
2N355	PNP	Phil	$\mathrm{Si} \mathrm{Sw}_{\text {Sw }}$		150 100	-18	-500	85	30	3				
2N356	NPN	GT	Sw		100	15								2N634
2N357	NPN	GT	$\stackrel{\text { Sw }}{\text { Sw }}$		100 100	12	500	85 85	30 60	${ }_{5}^{9} \mathrm{Kc}$ min	35		8W	2N635
2N376	PNP	Motor	Pwr		10W	-40 *	$-3 \mathrm{~A}$	90	60	5 Kc min	35			
2N378	PNP	TS	Sw		15W	-20	-3 A -3 A	85	35 30	${ }_{7}^{7} \mathrm{Kc}{ }^{\text {K }}$ (β)				
2N379	PNP	TS	Sw		15W	-40 -30	-3 A -3 A	85	60	${ }_{7} \mathrm{Kc}$ (β)				
2N380	PNP	TS	Sw		15 W	-30								

JETEC No.	Type	Mfr.	Use	Dwg. No.	Pemw @ $25^{\circ} \mathrm{C}$	X. RA BVoe	NGS It ma	Tj ${ }^{\circ} \mathrm{C}$	hife	T $f_{a b} \mathrm{me}$	VALU Gedb	Por A	$\begin{aligned} & \text { Class } \\ & \text { B } \end{aligned}$	Closest GE
2N532	NPNPND	GT	AF		100	15		85	32	4.0				
2N533	NPN-	GT	AF		100	15		85	37					
${ }^{2 N 538 A}$	PNP PNP	M-H	${ }_{\text {Pwr }}^{\text {Pwr }}$		10 W	$-80 *$	-20	95 95		${ }_{8}^{8} \mathrm{Kc}$				
2 N 539 A	PNP	M-H	Pwr		10W	$\frac{-80^{*}}{-80^{*}}$	-20 -20	95		7 Kc				
$\begin{aligned} & 2 \mathrm{~N} 510 \\ & 2 \mathrm{~N} 540 \mathrm{~A} \\ & \hline \end{aligned}$	PNP PNP	M-H $\mathrm{M}-\mathrm{H}$	${ }_{\text {Pwr }}^{\text {Pwr }}$		10W	$-80 *$ $-30 *$ $-80 *$	$\begin{array}{r}-20 \\ -20 \\ \hline\end{array}$	95		7 Rc 6 Kc				
2 N 544	PNP	RCA	RF		10 W	$-80 *$	-20	95		6 Kc				
${ }^{2} \mathrm{~N} 554$	PNP	Motor	Pwr		10 W	$-18 *$ -40^{*}	-10	85	60	30	30.1			
2N574	PNP	Motor	Pwr		10 W	-40 *	-3A	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	30 30	${ }_{8}^{8} \mathrm{Kc}$	34			
2N574A	PNP	$\stackrel{\text { M-H }}{\text { M-H }}$	Pwr		100W	-60^{*}	$-15 \mathrm{~A}$	95						
2N575	PNP	M-H	Pwr		100W	$-80 *$	-15A	95		6 Kc				
2N575A	PNP	$\overline{\mathbf{M}}$ - $\overline{\mathrm{H}}$	Pwr			- - $^{\text {a }}$	$-15 \mathrm{~A}$	95		5 Kc				
2N577	PNP	Mu	Photo		25	-80 -25	-15 A -10	95		5 Kc				
2N578	PNP	RCA	Sw		120	- 14	-10 -400	$\begin{aligned} & 55 \\ & 85 \end{aligned}$	15					
2N579 2N580	PNP	RCA	${ }_{\text {Sw }}$		120	-14	-400	85	30					2N395
2N581	PNP	RCA	$\stackrel{\text { Sw }}{\text { Sw }}$		120	-14	-400	85	45	15				${ }_{2}$ N N 396
2N582	PNP	RCA	Sw		120	-15	-100	85	30	8				$\begin{aligned} & \text { 2N397 } \\ & 2 N 396 \end{aligned}$
2N583	PNP	RCA	Sw		80	-14	-100 -100	85	60	18				
2N584	PNP	RCA	Sw		120	-14	-100 -100	885	30 60	8				
2N585	NPN	RCA	Sw		120				60	18				
2 N 634	NPN	GE	Sw	2	150	20	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	8	40	5				
2N635	NPN	GE	Sw	2	150	20	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		15 25	8 12				2N634
$\begin{aligned} & \text { 2N636 } \\ & \text { 3N21 } \end{aligned}$	$\mathrm{NPN}^{\text {Pr }}$	GE	${ }_{\text {Sww }}$	2	150	20	300		35	17				2N635
3N22	NPN	WE	${ }_{\text {RF }}$		100	-60		50		17				2N636
3 N 23	NPN	GP				15*		85	$96 a$	24				
3N23A	NPN	GP				30 30	5			10	$\overline{2}$			
3 N 23 B	NPN	GP			50	30	5			20	4			
3N23C	NPN	GP								35	5			
3 N 29	NPN	GE	Obsolete		50	30	5			50	7			
3 N 30	NPN	GE	Obsolete			6	20 20	85	100	40	0			
3N37	NPN	GE	RF	7	30 30	6	20	85 85	$\stackrel{100}{2.2 ~} \frac{1}{} 81^{\circ}$	${ }^{20} 50 \mathrm{~min}$	1			
					30	6	20	85	$1.1 \angle-100^{\circ}$	90 min				$\begin{aligned} & \text { 3N36 } \\ & \text { 3N37 } \end{aligned}$
NOTE: Closest GE types are given only as a general guide and are based on available published electrical specifications. However, General Electric Company makes no representation as to the accuracy and completeness of such information. Since manufacturin Electric Company referred to. transistors are exact														

EXPLANATION OF SYMBOLS

MANUFACTURERS:

Am-Amperex

Bendix-Bendix Aviation Corp.
CBS-CBS-Hytron.
Cle-Clevite Transistor Products.
Dic-Delco Radio Div., General Motors Corp. GE-General Electric Company. GP-Germanium Products Corp. Mall-P. R. Mallory and Company, Inc. Mar-Marvelco, National Aircraft Corp.
M-H-Minneapolis-Honeywell Regulator Co. Motor-Motorola, Inc. Mu-Mullard Ltd.
Phi-Philo.
Ray-Raytheon Manufacturing Company. RCA-RCA.
Sprague-Sprague Electronics Company. Syl-Sylvania Electric Products Company. TI-Texas Instruments, Inc.
W-Westinghouse Electric Corp,
WE-Western Electric Company.

TYPES AND USES:

Si-Silicon High Temperature Transistors (all others germanium)
Pt-Point contact types
AF-Audio Frequency Amplifier-Driver
AF Out-High current AF Output
Pwr-Power output 1 watt or more
RF--Radio Frequency Amplifier
Osc-High gain High frequency RF oscillator
IF-Intermediate Frequency Amplifier
lo IF-Low IF (262 Kc) Amplifier
Sw-High current High frequency switch
AF Sw-Low frequency switch

RATINGS:

$\mathrm{P}_{\mathrm{C}}=$ Maximum collector dissipation at $25^{\circ} \mathrm{C}\left(76^{\circ} \mathrm{F}\right)$ ambient room temperature. Secondary designations are ratings with connection to an appropriate heat sink.
$\mathrm{BV}_{\mathrm{CE}}=$ Minimum collector-to-emitter breakdown voltage. GE transistors measured with Base-to-emitter resistance as follows;
10 K for AF and AF Out PNP
*Under $\mathrm{BV}_{\mathrm{CE}}=$ Minimum collector-to-base breakdown voltage (for
$\mathrm{I}_{\mathrm{e}}=$ Maximum collector current. (Negative for PNP, Positive for
$\mathrm{T}_{J}=$ Maximum centigrade junction temperature. P_{c} must be derated
$h_{f e}=$ Small signal base to collector current-gain, or Beta (except
where emitter to collector gain, alpha a, is given).
$\mathrm{f}_{a b}=$ Alpha cut-off-frequency. Frequency at which the emitter to collector current gain, or alpha, is down to $1 \sqrt{2}$ or .707 of its low frequency audio value. For some power transistors, the Beta or base-to-collector current-gain cutoff-frequency is given as noted.

OUTLINE DRAWINGS

> DIMENSIONS WITHIN JETEC OUTLINE JETEC BASE
TO-5 E3-44

DIMENSIONS WITHIN JETEC OUTLINE TO-5 JETEC BASE E3-44

mote I: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 .
note 2: Measured from max. diameter of the actual device.
note 3: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between 250 and 1.5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

DIMENSIONS WITHIN
JETEC OUTLINE....TO-5
JETEC BASE......E3-53

Note 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 .
note 2: Measured from max. diameter of the actual device.
note 3: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between 250 and 1.5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

max. ALLOWABLE TORQUE ON STUD - I5 IN. LBS

DIMENSIONS WITHIN JETEC OUTLINE TO-12 JETEC BASE E4-54

ноTE 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 .
note 2: Measured from max. diameter of the actual device.
note 3: The specitied lead diameter ap. plies in the zone between . 050 and .250 from the base seat. Between .250 and .5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

$$
\begin{aligned}
& \text { * } \\
& \text { CUT TO O.2OO" FOR USE IN SOCKETS. } \\
& \text { LEADS TINNED DIA. OIB } \\
& \text { MOUNTING POSITION - ANY } \\
& \text { WEIGHT: .OS OZ. } \\
& \text { BASE CONNECTED TO TRANSISTOR SHELL. } \\
& \text { DIMENSIONS IN INCHES. }
\end{aligned}
$$

CIRCUIT DIAGRAM INDEX

AMPLIFIERS: Page
Audio, Five Transistor 29
Audio, Loudspeaker 27 27
Audio, Simple 26
Audio, Single Stage 18 18
Direct Coupled "Battery Saver' 26
Phono, Three Transistor 27 27
Phono, Four Transistor 28 28
Power, Six-Watt 34
Power, Ten-Watt 36
AUTODYNE CONVERTER 38
FLIP-FLOPS:
Five Hundred KC Counter Shift Register 81
Non-Saturated
Non-Saturated 80 80
Saturated 77, 78
LOGIC CIRCUITS;
Basic Circuits 93, 94, 95
DCTL 69
MULTIVIBRATORS:
Hybrid 62
Unijunction Transistor 61
OSCILLATORS:
Basic Relaxation 59
Code Practice 26
PREAMPLIFIERS:
Hybrid Phono-Tape 32
NPN for Magnetic Pickups 36
Phono-Tape 30
Preamplifier and Driver 37
POWER SUPPLIES: Page
Class A Transistor Amplifier 106, 107
Dual Six-Watt Amplifier 108
Dual Ten-Watt Amplifier 109
Five-Watt Amplifier 108
General Purpose Transistor 105
Preamplifier 105
RADIOS:
Direct Coupled Vest Pocket 44
Five Transistor Superheterodyne 51
Four Transistor Superheterodyne 47, 48
Four Transistor, Nine Volt, Reflex 50
Four Transistor, Six Volt, Reflex 49
Simple Receiver 44
Six Transistor, One-Watt 55
Six Transistor, Six Volt 53
Six Transistor, Superheterodyne 54
Six Transistor, Three Volt 52
Three Transistor Reflex 45, 46
Two Transistor 44
SAWTOOTH GENERATOR, LINEAR 60
STEREOPHONIC TAPE SYSTEM, BLOCK DIAGRAM 35
TEST CIRCUITS:
Intrinsic Stand-off Ratio (η) 58
Peak Point Emitter Current (IP) 58
Typical Autodyne Converter 149
Typical IF 149
Typical First IF Amplifier 148
Typical Second IF Amplifier 148
TIME DELAY CIRCUIT WITH RELAY 62
TRIGGERING CIRCUITS:
Base Triggering 88
Base Triggering with Hybrid Gate 89
Collector Triggering 88
Collector Triggering with Diode 89
Collector Triggering with Trigger Amplifier 89
Emitter Triggering 88
Using Trigger Power to Increase Switching Speeds 90

NOTES ON THE CIRCUIT DIAGRAMS

TRANSFORMERS

The audio transformers used in these diagrams were wound on laminations of $15 / 8^{\prime \prime}$ by $13 / 8^{\prime \prime}$ and a $1 / 2^{\prime \prime}$ stock size, and having an electrical efficiency of about 80%. Smaller or less efficient transformers will degrade the electrical fidelity of the circuits.

OSCILLATOR COIL

Ed Stanwyck Coil Company \#1265
Onondaga Electronic Laboratories \#A-10047 or equívalent

VARIABLE CONDENSER

Radio Condenser Company Model 242
Onondaga Electronic Laboratories \#A-10053 or equivalent

FERRITE ROD ANTENNA

Onondaga Electronic Laboratories \#A-10067 or equivalent

If you are unable to obtain these components from either your local or a national electronic parts distributor, we suggest you contact:

Onondaga Electronic Laboratories
112 Dewitt Street
Syracuse 3, N. Y.

READING LIST

The following list of semiconductor references gives texts of both elementary (E) and advanced (A) character. Obviously, the list is not inclusive, but it will guide the reader to other references.
Garner, L., Transistor Circuit
Handbook' (E) (Coyne)
Hunter, L. P., Handbook of Semiconductor Electronics (A)
(McGraw-Hill)
Kiver, M. S., Transistors in Radio and Television (E)
(McGraw-Hill)
Krugman, L., Fundamentals of Transistors (E) (Rider)
Lo, A. W., Endres, R.O., Zawels, J.,
Waldhauer, F. D., Cheng, C. C., Transistor Electronics (A)
(Prentice-Hall)
Shockley, W., Electrons and Holes in
Semiconductors (A)
(Van Nostrand)
Shea, R. F., et al., Principles of
Transistor Circuits (A)
(Wiley)
Shea, R. F., Transistor Audio
Amplifiers (A)
(Wiley)
Shea, R. F., Transistor Circuit
Engineering (A)
(Wiley)
Spenke, E., et al., Electronic
Semiconductors (A)
(McGraw-Hill)
Turner, R. P., Transistors - Theory and Practice (E)
(Gernsback)

[^0]: * "Transistor Electronics," Lo, Endres et al (Prentice-Hall).

[^1]: * to adjust voltage output for other output currents, adJust rb.

