

GENERAL ELECTRIC

TRANSISTOR

MANUAL

fifth edition

CONTRIBUTORS:

H. R. Lowry, Manager
J. Giorgis
E. Gottlieb
F. W. Gutzwiller
D. V. Jones
G. E. Snyder
R. A. Stasior
T. P. Sylvan

APPLICATION ENGINEERING

EDITED BY:

Semiconductor Products Department
Advertising and Sales Promotion
General Electric Company
Charles Building
Liverpool, New York

The circuit diagrams included in this manual are included for illustration of typical transistor applications and are not intended as constructional information. For this reason, wattage ratings of resistors and voltage ratings of capacitors are not necessarily given. Similarly, shielding techniques and alignment methods which may be necessary in some circuit layouts are not indicated. Although reasonable care has been taken in their preparation to insure their technical correctness, no responsibility is assumed by the General Electric Company for any consequences of their use.

The semiconductor devices and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of semiconductor devices by General Electric Company conveys any licease under patent claims covering combinations of semiconductor devices with other devices or elements. In the absence of an express written agreement to the contrary General Electric Company assumes no liability for patent infringement arising out of any use of the semiconductor devices with other devices or elements by any purchaser of semiconductor devices or others.

contents

Page

1. BASIC SEMICONDUCTOR THEORY 5
2. TRANSISTOR CONSTRUCTION TECHNIQUES 12
Metal Preparation 12
Junction Formation 13
Lead Attachment 17
Encapsulation 20
Reliability 21
3. SMALL SIGNAL CHARACTERISTICS 25
4. LARGE SIGNAL CHARACTERISTICS 32
Parameters 32
Basic Equations 33
Collector Leakage Current ($\mathrm{I}_{\text {сео }}$) 33
Collector Leakage Current ($\mathbf{I}_{\text {Crs }}$) 33
Collector and Emitter Leakage Current -
Collector and Emitter Junctions Reverse Biased 34
Collector Leakage Current ($\mathrm{I}_{\text {cer }}$) 34
Collector Leakage Current - Silicon Diode in Series with Emitter 34
Collector to Emitter Voltage - Collector Open Circuited 35
Base Input Characteristics 35
Voltage Comparator Circuit 35
5. BIASING 36
Thermal Runaway 40
6. AUDIO AMPLIFIERS 43
Single Stage Audio Amplifier 43
Two Stage R-C Coupled Amplifier 43
Class B Push-Pull Output Stages 44
Class A Oútput Stages 45
Class A Driver Stages 46
Design Charts 46
Amplifier Circuit Diagrams 54
7. "HI-FI' CIRCUITS 58
Preamplifiers 58
Power Amplifiers 63
Stereophonic System 65
8. RADIO RECEIVER CIRCUITS 67
Autodyne Converter Circuits. 67
IF Amplifiers 68
Automatic Volume Control Circuits 69
Detector Stage 71
Reflex Circuits 72
Complete Radio Receiver Circuit Diagrams 73

FOREWORD

In the past few years the transistor has become the symbol of the modern electronics industry. The wide spread usage of transistors is well deserved. It answers the equipment designers desire for a small, light, active and truly reliable electronic component having low heat dissipation, small power requirements and almost infinite life. Indeed, the transistor has opened an unlimited array of new application areas beyond those normally considered truly electronic.
With new transistors coming onto the market almost everyday, there is an urgent and continuing need for sound, basic information. With this in mind the first edition Transistor Manual was introduce by General Electric early in 1957 to provide a handy reference guide on available transistors and the basic principles of using them.
Since that time, General Electric has distributed over a half million copies all over the world and the manual has been translated into four different languages.
Again, we take pleasure in presenting the newest Transistor Manual, the fifth edition. This edition has been expanded by over 100 pages to include all new available transistor material. It is our hope that you find the manual informative and of continuing usefulness.

H. Brainard Fancher

General Manager
Semiconductor Products Department
Syracuse, New York

1. BASIC SEMICONDUCTOR THEORY

In the few years since its introduction, the junction transistor has played a steadily increasing part in every branch of electronics. First applied in hearing aids and portable radios, the transistor now sees service in such diverse applications as industrial control systems, digital computers, automatic telephone exchanges, and telemetering transmitters for satellites. The next few years promise an equally spectacular growth since a "second generation" of semiconductor devices is now being introduced which will complement the junction transistor and extend the capabilities of semiconductor electronics. The frequency range of transistors will be extended into the UHF range by such devices as the tunnel diode and the "mesa" transistor. The power range will be extended by new devices such as the Silicon Controlled Rectifier which will make possible control circuits capable of operating to over 50 amperes, 400 volts, and 20 kilowatts. Devices such as the tunnel diode and the unijunction transistor will make possible simpler and more economical timing and switching circuits. Figure 1.1 lists the names and symbols for most of the semiconductor devices which are commercially available at the present time.

A complete understanding of semiconductor physics and the theory of transistor operation is, of course, not necessary for the construction or design of transistor circuits. However, both the electronics engineer and the hobbyist can obtain practical benefits from a general understanding of the basic theory of semiconductors. Such an understanding will often aid in solving special circuit problems and will prove of great assistance in the successful application of the newer semiconductor devices which become available. This chapter is concerned with the terminology and theory of semiconductors as it pertains to rectifiers and junction transistors. The theory and characteristics of other types of semiconductor devices such as the silicon controlled rectifier, the unijunction transistor, and the tumel diode are discussed in later chapters of this manual.

The basic materials used in the manufacture of transistors are the semiconductors materials which lie between the metals and the insulators in their ability to conduct electricity. The two semiconductors now being used are germanium and silicon. Both of these materials have four electrons in the outer shell of the atom (valence electrons). Germanium and silicon form crystals in which each atom has four neighboring atoms with which it shares its valence electrons to form four covalent bonds. Since all the valence electrons are required to form the covalent bonds there are no electrons free to move in the crystal and the crystal will be a poor electrical conductor. The conductivity can be increased by either heating the crystal or by adding other types of materials (impurities) to the crystal when it is formed.

Heating the crystal will cause vibration of the atoms which form the crystal. Occasionally one of the valence electrons will acquire enough energy (ionization energy) to break away from its parent atom and move through the crystal. When the parent atom loses an electron it will assume a positive charge equal in magnitude to the charge of the electron. Once an atom has lost an electron it can acquire an electron from one of its neighboring atoms. This neighboring atom may in turn acquire an electron from one of its neighbors. Thus it is evident that each free electron which results from the breaking of a covalent bond will produce an electron deficiency which can move through the crystal as readily as the free electron itself. It is convenient to consider these electron deficiencies as particles which have positive charges and which are called holes. Each time an electron is generated by breaking a covalent bond a hole is generated at the same time. This process is known as the thermal generation of hole-electron pairs. If a hole and a free electron collide, the electron will fill the electron deficiency which the hole represents and both the hole and electron will cease to exist as free charge carriers. This process is known as recombination.

The conductivity of a semiconductor material can also be increased by adding impurities to the semiconductor crystal when it is formed. These impurities may either be donors such as arsenic which "donate" extra free electrons to the crystal or acceptors such as aluminum which "accept" electrons from the crystal and produce free holes. A donor atom, which has five valence electrons, takes the place of a semiconductor atom in the crystal structure. Four of the five valence electrons are used to form covalent bonds with the neighboring semiconductor atoms. The fifth electron is easily freed from the atom and can move through the crystal. The donor atom assumes a positive charge, but remains fixed in the crystal. A semiconductor which contains donor atoms is called an n-type semiconductor since conduction occurs by virtue of free electrons (negative charge).

An acceptor atom, which has three valence electrons, can also take the place of a semiconductor atom in the crystal structure. All three of the valence electrons are used to form covalent bonds with the neighboring atoms. The fourth electron which is needed can be acquired from a neighboring atom, thus giving the acceptor atom a negative charge and producing a free hole in the crystal. A semiconductor which con-
tains acceptor atoms is called a p-type semiconductor since conduction occurs by virtue of free holes in the crystal (positive charge).

ELEMENT (SYMBOL)	GROUP IN PERIODIC TABLE	NUMBER VALENCE ELECTRONS	APPLICATIONS IN SEMICONDUCTOR DEVICES
boron (B) aluminum (Al) gallium (Ga) indium (In)	III	3	acceptor elements, form p-type semiconductors, each atom substitutes for a Ge or Si atom in the semiconductor crystal and can take on or accept an extra electron thus producing a hole
$\begin{aligned} & \text { germanium }(\mathrm{Ge}) \\ & \text { silicon }(\mathrm{Si}) \end{aligned}$	IV	4	basic semiconductor materials, used in crystal form with controlled amounts of donor or acceptor impurities
phosphorus (P) arsenic (As) antimony (Sb)	V	5	donor elements, form n-type semiconductors, each atom substitutes for a Ge or Si atom in the semiconductor crystal and can give up or donate an extra electron to the crystal

MATERIALS USED IN THE CONSTRUCTION OF TRANSISTORS AND OTHER SEMICONDUCTOR DEVICES

FIGURE 1.2

To summarize, conduction in a semiconductor takes place by means of free holes and free electrons (carriers) in the semiconductor crystals. These holes or electrons may originate either from donor or acceptor impurities in the crystal or from the thermal generation of hole-electron pairs. During the manufacture of the crystal, it is possible to control the conductivity and make the crystal either n-type or p-type by adding controlled amounts of donor or acceptor impurities. On the other hand, the thermally generated hole electron pairs cannot be controlled other than by varying the temperature of the crystal.

One of the most important principles involved in the operation of semiconductor devices is the principle of space charge neutrality. In simple terms, this principle states that the total number of positive charges (holes plus donor atoms) in any region of a semiconductor must equal the total number of negative charges (electrons plus acceptor atoms) in the same region provided that there are no large differences in voltage within the region. Use of this principle can frequently result in a simpler and more accurate interpretation of the operation of semiconductor devices. For example, in explaining
the characteristics of an n-type semiconductor it is usually stated that the function of the donor atoms is to produce free electrons in the crystal. However, using the principle of space charge neutrality it is more accurate to say that the function of the donor atoms is to provide positive charges within the crystal which permit an equal number of free electrons to flow through the crystal.

Carriers can move through a semiconductor by two different mechanisms: diffusion or drift. Diffusion occurs whenever there is a difference in the concentration of the carriers in any adjacent regions of the crystal. The carriers have a random motion owing to the temperature of the crystal so that carriers will move in a random fashion from one region to another. However, more carriers will move from the region of higher concentration to the region of lower concentration than will move in the opposite direction. Drift of carriers occurs whenever there is a difference in voltage between one region of the semiconductor and another. The voltage difference produces a force on the carriers causing the holes to move toward the more negative voltage and the electrons to move toward the more positive voltage. The mechanism of drift is illustrated in Figure 1.3 for both n-type and p-type semiconductors. For the n-type material, the electrons enter the semiconductor at the lower electrode, move upwards through the semiconductor and leave through the upper electrode, passing then through the wire to the positive terminal of the battery. Note that in accordance with the principle of space charge neutrality, the total number of electrons in the semiconductor is determined by the total number of acceptor atoms in the crystal. For the case of the p-type semiconductor, hole-electron pairs are generated at the upper terminal. The electrons flow through the wire to the positive terminal of the battery and the holes move downward through the semiconductor and recombine with electrons at the lower terminal.

CONDUCTION IN N-TYPE AND P-TYPE SEMICONDUCTORS

FIGURE 1.3

If a p-type region and an n-type region are formed in the same crystal structure, we have a device known as a rectifier or diode. The boundary between the two regions is called a junction, the terminal connected to the p-region is called the anode, and the terminal connected to the n-region is called the cathode. A rectifier is shown in Figure 1.4 for two conditions of applied voltage. In Figure 1.4A the anode is at a negative voltage with respect to the cathode and the rectifier is said to be reverse biased. The holes in the p-region are attracted toward the anode terminal (away from the junction) and the electrons in the n-region are attracted toward the cathode terminal (away from the junction). Consequently, no carriers can flow across the junction and no current
will flow through the rectifier. Actually a small leakage current will flow because of the few hole-electron pairs which are thermally generated in the vicinity of the junction. Note that there is a region near the junction where there are no carriers (depletion layer). The charges of the donor and acceptor atoms in the depletion layer generate a voltage which is equal and opposite to the voltage which is applied between the anode and cathode terminals. As the applied voltage is increased, a point will be reached where the electrons crossing the junction (leakage current) can acquire enough energy to produce additional hole-electron pairs on collision with the semiconductor atoms (avalanche multiplication). The voltage at which this occurs is called the avalanche voltage or breakdown voltage of the junction. If the voltage is increased above the breakdown voltage, large currents can flow through the junction and, unless limited by the external circuitry, this current can result in destruction of the rectifier.

In Figure 1.4B the anode of the rectifier is at a positive voltage with respect to the cathode and the rectifier is said to be forward biased. In this case, the holes in the p-region will flow across the junction and recombine with electrons in the n-region. Similarly, the electrons in the n-region will flow across the junction and recombine with the holes in the p-region. The net result will be a large current through the rectifier for only a small applied voltage.

CONDUCTION IN A PN JUNCTION RECTIFIER

FIGURE 1.4

An NPN transistor is formed by a thin p-region between two n-regions as indicated in Figure 1.5. The center p-region is called the base and in practical transistors is generally less than .001 inch wide. One junction is called the emitter junction and the other junction is called the collector junction. In most applications the transistor is used in the common emitter configuration as shown in Figure 1.5 where the current through the output or load $\left(\mathrm{R}_{\mathrm{L}}\right)$ flows between the emitter and collector and the control or input signal ($\mathrm{V}_{\mathbf{B E}}$) is applied between the emitter and base. In the normal mode of operation, the collector junction is reverse biased by the supply voltage $V_{c c}$ and the emitter junction is forward biased by the applied base voltage V_{be}. As in the case of the rectifier, electrons flow across the forward biased emitter junction into the base region. These electrons are said to be emitted or injected by the emitter into the base. They diffuse through the base region and flow across the collector junction and then through the external collector circuit.

CONDUCTION IN A NPN JUNCTION TRANSISTOR

(COMMON EMITTER CONFIGURATION)
FIGURE 1.5

If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. As the base voltage V_{Be} is increased the positive charge in the base region will be increased, which in turn will permit an equivalent increase in the number of electrons flowing between the emitter and collector across the base region. In an ideal transistor it would only be necessary to allow base current to flow for a short time to establish the desired positive charge. The base circuit could then be opened and the desired collector current would flow indefinitely. The collector current could be stopped by applying a negative voltage to the base and allowing the positive charge to flow out of the base region. In actual transistors, however, this can not be done because of several basic limitations. Some of the holes in the base region will flow across the emitter junction and some will combine with the electrons in the base region. For this reason, it is necessary to supply a current to the base to make up for these losses. The ratio of the collector current to the base current is known as the current gain of the transistor $\mathrm{h}_{\mathrm{FE}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$. For a-c signals the current gain is $\beta=\mathrm{h}_{\mathrm{fe}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}}$. The ratio of the a-c collector current to a-c emitter current is designated by $a=h_{\mathrm{fb}}=\mathbf{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{e}}$.

When a transistor is used at higher frequencies, the fundamental limitation is the time it takes for carriers to diffuse across the base region from the emitter to the collector. Obviously, the time can be reduced by decreasing the width of the base region. The frequency capabilities of the transistor are usually expressed in terms of the alpha cutoff frequency ($\mathrm{f}_{\mathrm{hfb}}$). This is defined as the frequency at which a decreases to 0.707 of its low frequency value. The alpha cutoff frequency may be related to the base charge characteristic and the base width by the equations:

$$
\mathrm{T}_{\mathrm{E}}=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{E}}}=\frac{\mathrm{W}^{2}}{2 \mathrm{D}}=\frac{0.19}{\mathbf{f}_{\mathrm{hfb}}}
$$

where T_{E} is the emitter time constant, Q_{B} is the base charge required for an emitter current I_{E}, W is the base width, and D is the diffusion constant which depends on the semiconductor material in the base region.

As evident from Figure 1.5, the NPN transistor has some similarity with the vacuum tube triode. Positive voltage is applied to the collector of the transistor which corresponds to the plate of the tube, electrons are "emitted" by the cathode and are "collected" by the plate of the tube, and the control signal is applied to the base of the transistor which corresponds to the grid of the tube. One important difference between transistors and tubes is that the input impedance of the transistor is generally much lower than that of a tube. It is for this reason that transistors are usually considered as current controlled devices and tubes are usually considered as voltage controlled devices. Another important difference between transistors and tubes is the existence of complementary transistors. That is, a PNP transistor will have characteristics similar to a NPN transistor except that in normal operation the polarities of all the voltages and currents will be reversed. This permits many circuits which would not be possible with tubes (since no tube can operate with negative plate voltage). Examples of complementary circuits can be found in other parts of this manual.

The operation of the transistor has been described in terms of the common emitter configuration. The term grounded emitter is frequently used instead of common emitter, but both terms mean only that the emitter is common to both the input circuit and output circuit. It is possible and often advantageous to use transistors in the common base or common collector configuration. The different configurations are shown in Figure 1.6 together with their comparative characteristics in class A amplifiers.
$\rightarrow C$ CASS
A

CIRCUIT CONFIGURATION		CHARACTERISTICS*	
COMMON EMITTER (CE)		moderate input impedance moderate output impedance high current gain high voltage gain highest power gain	$\begin{array}{r} (1.3 \mathrm{~K}) \\ (50 \mathrm{~K}) \\ (35) \\ (-270) \\ (40 \mathrm{db}) \end{array}$
COMMON BASE (CB)		lowest input impedance highest output impedance low current gain high voltage gain moderate power gain	$\begin{array}{r} (35 \Omega) \\ (1 \mathrm{M}) \\ (-0.98) \\ (380) \\ (26 \mathrm{db}) \end{array}$
COMMON COLLECTOR (CC) (EMITTER FOLLOWER)		highest input impedance lowest output impedance high current gain unity voltage gain lowest power gain	$\begin{array}{r} (350 \mathrm{~K}) \\ (500 \Omega) \\ (-36) \\ (1.00) \\ (15 \mathrm{db}) \end{array}$
*Numerical values are typical for the 2 N 525 at audio frequencies with a hias of 5 volts and I ma., a load resistance of 10 K , and a source (generator) resistance of 1 K .			

2. TRANSISTOR CONSTRUCTION TECHNIQUES

The knowledge of many sciences is required to build transistors. Physicists use the mathematics of atomic physics for design. Metallurgists study semiconductor alloys and crystal characteristics to provide data for the physicist. Chemists contribute in every facet of manufacturing through chemical reactions which etch, clean and stabilize transistor surfaces. Mechanical engineers design intricate machines for precise handling of microminiature parts. Electronic engineers test transistors and develop new uses for them. Statisticians design meaningful life test procedures to determine reliability. Their interpretation of life test and quality control data leads to better manufacturing procedures.

The concerted effort of this sort of group has resulted in many different construction techniques. All these techniques attempt to accomplish the same goal - namely to construct two parallel junctions as close together as possible. Therefore, these techniques have in common the fundamental problems of growing suitable crystals, forming junctions in them, attaching leads to the structure and encapsulating the resulting transistor. The remainder of this chapter discusses these problems and concludes with their bearing on reliability as illustrated by examples.

METAL PREPARATION

Depending on the type of semiconductor device being made, the structure of the semiconductor material varies from highly perfect single crystal to extremely polycrystalline. The theory of transistors and rectifiers, however, is based on the properties of single crystals. Defects in a single crystal produce effects much the same as impurities and are generally undesirable.

Germanium and silicon metal for use in transistor manufacture must be so purified that the impurity concentration ranges from about one part in 10^{3} to one part in 10^{11}. Then a dominant impurity concentration is obtained by doping. Finally, the metal must be grown into a single highly perfect crystal.

The initial purification of germanium and silicon typically involves reactions which produce the chemical compounds germanium and silicon tetrachloride or dioxide. These compounds can be processed to give metallic germanium or silicon of relatively high purity. The metal so prepared is further purified by a process called zone refining. This technique makes use of the fact that many impurities are more soluble when the metal is in its liquid state, thus enabling purification to result by progressive solidification from one end of a bar of metal.

In practical zone refining a narrow molten zone is caused to traverse the length of a bar. A cross-sectional view of a simplified zone refining furnace is shown in Figure 2.1. High purity metal freezes out of the molten zone as the impurities remain in solution. By repeating the process a number of times, the required purity level can be reached. During the process it is important that the metal be protected from the introduction of impurities. This is done by using graphite or quartz parts to hold the metal, and by maintaining an inert atmosphere or vacuum around it. The heating necessary to produce a narrow molten zone is generally accomplished by induction heating, i.e., by coils carrying radio frequency energy and encircling the metal bar in which they generate heat.

The purified metal is now ready for doping and growing into a single crystal. A common method for growing single crystals is the Czochralski method illustrated in Figure 2.2. In it a crucible maintains molten metal a few degrees above its melting point. A small piece of single crystal called a seed is lowered into the molten metal and then slowly withdrawn. If the temperature conditions are properly maintained a single crystal of the same orientation, i.e., molecular pattern as the seed grows on it until all the metal is grown into the crystal. Doping materials can be added to the molten metal in the crucible to produce appropriate doping. The rate at which doping impurities are transferred from the molten metal to the crystal can be varied by the crystal growing rate, making it possible to grow transistor structures directly into the single crystal. This is discussed in detail in the next section.

The floating zone technique for both refining and growing single crystals has recently been introduced. It is quite similar in principle to zone refining except that the graphite container for the bar is eliminated, reducing the risk of contamination. In place of it, clamps at both ends hold the bar in a vertical position in the quartz tube. The metal in the molten zone is held in place by surface tension. Doping agents added at one end of the bar can be uniformly distributed through the crystal by a single cycle of zone refining. This technique has had much success in producing high quality silicon metal.

JUNCTION FORMATION

A junction may be defined as the surface separating two parts of a semiconductor with different properties. P-type or N-type doping usually defines the different properties. Transistors generally utilize PN junctions; however, metal to semiconductor junctions are used to manufacture point contact and surface barrier transistors. A transistor can be defined as a structure with two junctions so close together that they interact with one another. For example, the collector junction is close enough to the emitter to collect the current that diffuses into the base region.

Techniques for forming junctions may be subdivided into two basic types, impurity contact or grown junction. The impurity contact method involves treating a homogeneous crystalline wafer with impurities to generate the different properties which form the junction. The grown junction technique involves incorporating into the crystal during its growth the impurities necessary to produce junctions. Alloy transistors, surface barrier transistors, as well as transistors using surface diffusion are examples of

the impurity contact process. Rate grown, meltback and grown diffused transistors are examples of the grown process. These processes, illustrated in Figure 2.3, are discussed below.

	INITIAL CONDITIONS	INTERMEDIATE STAGE	FINISHED STRUCTURE
ALLOY (IMPURITY CONTACT) DIFFUSION (IMPURITY CONTACT)	एाएाए DOTS APPLIED GASEOUS DOPING AGENTS APPLIED	HEAT MELTS DOTS \square DOUBLE DIFFUSION COMPLETED	DOTS REECRYSTALLIZE ETCHING EXPOSES BASE
RATE GROWING (GROWN) MELTBACK (GROWN) GROWN DIFFUSED (GROWN)	CYCLE JUST COMPLETED DOUBLE DOPED PELLET MOLTEN METAL DOPED WITH EMITTER AND BASE IMPURITIES	$78+2$ HEAT REMOVAL GIVES RAPID GROWTH HEAT MELTS TIP BASE IMPURITY DIFFUSES RAPIDLY INTO COLLECTOR	HEAT REAPPLIED TO FORM JUNCTIONS TIP FREEZING FORMS JUNCTIONS EMITTER REGION ALONE CONTINUES TO GROW

IMPURITY CONTACT AND GROWN JUNCTION TECHNIQUES FIGURE 2.3

The alloy transistor process starts with a wafer of semiconductor material doped to a desired level. Alloying contacts or dots containing impurities are then pressed on either side of the wafer. Heat is applied to the assembly, melting the dots which dissolve some of the wafer, giving an alloy solution. Heat is removed and the solution allowed to freeze. Due to the behavior of impurities during recrystallization, a heavy concentration of donors or acceptors is left at the alloy-semiconductor material boundary. The boundaries are the emitter and collector junctions. The larger dot is the collector. Indium, an acceptor type impurity, when alloyed to antimony doped germa-
nium results in PNP alloy transistors such as the 2N123, 2N396 and 2N525. The final structure of surface barrier and microalloy transistors is similar to that of the alloy transistor. The difference lies in initial etching of the wafer to minimize its thickness followed by plating of the emitter and collector dots. Microalloy transistors melt the dots, generating a recrystallized region which results in normal semiconductor to semiconductor junctions. Surface barrier transistors do not melt the dots and therefore have metal to semiconductor junctions.

In diffusion processes, a wafer of semiconductor material is inserted into a capsule containing one or more impurity elements. The starting material has an impurity concentration suitable for the collector of the transistor. Heat is applied to this system with the result that the impurity elements diffuse into the semiconductor material. If only one impurity element is used, it generates a diffused base region. Subsequently, an emitter region must be added to the structure to form a complete transistor. If two impurity elements are used with germanium wafers, the donor elements will diffuse faster than the acceptor elements and a PNP structure will result. If silicon wafers are used, the acceptor element will diffuse faster than the donor element, resulting in a NPN structure. After the diffusion cycle, proper cutting and etching of the wafer yields transistor structures.

The rate grown process has been applied successfully to germanium yielding transistors such as the 2 N78 and 2 N167. The molten metal in the crucible contains both donor and acceptor elements. The donor element is sensitive to growth rate so that the amount of this impurity being deposited in the crystal varies as the growing conditions are varied. While a single crystal is being grown from the molten metal, the power is turned off and the crystal is permitted to grow very rapidly. Then excessive power is applied. Growth stops and the crystal starts to remelt. Again the power is turned off. As the metal cools, melting stops and the crystal begins to grow. At the point where the growth rate is zero, the acceptor element predominates and a P region is established across the germanium crystal. Repeating this process, it is possible to grow multiple NPN structures in a single crystal.

In the meltback process, a single crystal doped with both donor and acceptor elements is grown. The crystal is then waferized and diced into small pellets or bars. Each pellet has both donors and acceptors in it. Heat is applied to the tip of the pellet, producing a small drop of molten metal held on by surface tension. Heat is removed and the drop recrystallizes. By taking advantage of the differences in the rate of deposition of the donor and acceptor elements in the drop, a very thin base region is formed, The meltback process yields NPN transistors such as the germanium 2N1289.

The grown diffused process is started by growing a crystal which is doped to the desired collector resistivity. Donor and acceptor elements are added to the molten metal at the same time. Growth continues, but the concentration of impurities has vastly increased. During the growing period, advantage is taken of the different diffusion rates of donor and acceptor elements. In silicon the more rapid acceptors generate diffused base NPN transistors such as the 2N335 and 2N338.

Figure 2.4 lists some of the attributes of junction formation processes. It is seen that the grown processes yield bar shaped transistor structures. Also, all but the now obsolete double-doped process give accelerating base fields to enhance high frequency performance. The rate grown process alone gives more than one wafer from each crystal. Grown diffused and double-doped processes give one wafer per crystal while the meltback process requires melting of each individual bar. Among the limitations of the grown processes is the fact that complimentary types generally are not possible. Also, the bar structure is relatively difficult to heatsink. However, the introduction of the fixed bed construction has resulted in thermal impedances lower than those of many alloy transistors.

Transistors utilizing a surface diffused region have a flat collector surface facilitating heatsink attachment. Because theoretically diffusion can be applied in a variety of ways, great design flexibility is possible. Practically, however, process complexity has limited the number of types being made.

Alloy and microalloy transistors yield two-sided structures which most nearly approximate ideal switches in DC characteristics. Both types have been combined with diffused bases to enhance high frequency performance.

It is seen that many of the structures give similar resistivity profiles and therefore are capable of similar results. For example, both meltback and microalloy diffused transistors have a sharp emitter to base emitter junction, an accelerating field in the base and a low resistivity collector. This results in excellent high frequency characteristics while maintaining relatively high voltage ratings and a moderate saturation resistance. Comparing these with the grown diffused transistor, the latter has the same abrupt emitter junction and graded base resistivity for good high frequency performance, but it does not have a low saturation resistance. Therefore, it is best suited for amplifier applications. On the other hand, the combination of grown diffused bars and fixed bed construction has led to respectable NPN silicon switching transistors such as the G-E 2N338.

The diffused alloy and alloy diffused structures differ in that the former is essentially a conventional alloy transistor with the addition of a diffused base region on the emitter side. The alloy diffused structure, however, has a wafer doped to the required collector resistivity and generates the base region by diffusion out of the emitter dot which has initially been doped with both donor and acceptor impurities.

The diffused base and diffused emitter-and-base structures have the same profiles. However, the former has the emitter junction formed by microalloying a semiconductor junction onto the surface of the base; the latter has the emitter already formed by diffusion.

Generally uniformity in transistor characteristics is attributed to processes capable of forming a large number of transistor structures simultaneously, but this uniformity can only be exploited if there is corresponding uniformity in pellet mounting and lead attachment.

LEAD ATTACHMENT

Both ohmic and semiconductor type contacts are required for attaching leads to a transistor structure. Ohmic contacts, i.e., normal non-rectifying contacts, are used to attach leads to exposed regions such as the emitter and collector dots of an alloy transistor or the emitter and collector portions of grown transistor bars. The connection between the mounting base or header leads, and the leads from the transistor structure should also be ohmic. Unless care is taken, leads may form additional PN junctions. If the PN junction is in the collector a PNPN structure results. The same structure is found in the Silicon Controlled Rectifier and therefore it may cause the transistor to turn on regeneratively either at high temperatures or at high collector currents. If the PN junction is in the base lead, it results in a higher base to emitter input voltage, which is a strong function of temperature. This additional junction also affects the base turn off drive in switching circuits and will increase storage time and fall time beyond that of a normal transistor.

On the other hand, semiconductor contacts, i.e., PN junctions, can be useful. They make possible contact with the base region when overlapping the emitter or collector region by the base lead is unavoidable. Grown transistors have extremely narrow base regions so that rugged base leads generally overlap adjacent regions. By doping the base lead heavily with the same impurity as the base, an ohmic type contact is formed

PROCESS DESIGNATION	GEOMETRICAL SHAPE B $=$ Bar D = Double Sided Wafer $S=$ Single Sided Wafer	CROSS-SECTIONAL VIEW SHOWING JUNCTIONS (Not to scale)	RESISTIVITY* PROFILE (Horizontal line is intrinsic resistivity and separates regions. Emitter always on the left.)
RATE GROWN	B	$\begin{array}{c\|l} \text { E B C } \\ \square & \\ \hline \end{array}$	
MELTBACK	B		
MELTBACK - DIFFUSED	B		
GROWN DIFFUSED	B		$-\sqrt{------}$
DOUBIE DOPED	B		
Alloy	D		
DIFFUSED ALLOY (DRIFT)	D		
ALLOY DIFFUSED	5		$-\sqrt{--\cdots}+$
DIFFUSED BASE (MESA)	5	$8 \pm$ E	
DIFFUSED EMITTER-BASE (MESA)	S	B $E \square$	
SURFACE BARRIER	D		
MICRO ALLOY	D		
MICRO AlLOY DIFFUSED	D		

*Profiles are typical and not necessarily to the same scale since processing details can alter profiles considerably.
\ddagger Diffused alloy and alloy diffused are capable of identical profiles.

$\begin{gathered} \text { ACCELERATING } \\ \text { BASE } \\ \text { FIELD } \end{gathered}$	TYPES THEORETICALLY POSSIBLE (Bracketed Types Unavailable Commercially)		NUMBER OF STRUCTURES FORMED SIMULTANEOUSLY	REPRESENTATIVE TRANSISTOR TYPES
	GERMANIUM	SILICON		
YES	NPN	-	MULTIPLE	2N167
YES	NPN	(NPN) (PNP)	INDIVIDUAL	2N1289
YES	PNP	NPN	INDIVIDUAL	\longrightarrow
YES	PNP	NPN	multiple	2N335
NO	(NPN) (PNP)	$\begin{aligned} & \text { NPN } \\ & \text { (PNP) } \end{aligned}$	MULTIPLE	903
NO	PNP NPN	PNP NPN	INDIVIDUAL	2N525
YES	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	(PNP) (NPN)	INDIVIDUAL	2N247
YES	PNP	(NPN)	INDIVIDUAL	-
YES	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	(PNP) (NPN)	MULTIPLE	2N695
YES	(PNP) (NPN)	PNP NPN	MULTIPLE	-
NO	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	(PNP) (NPN)	INDIVIDUAL	2N344
NO	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	INDIVIDUAL	2N393
YES	$\begin{gathered} \text { PNP } \\ \text { (NPN) } \end{gathered}$	$\begin{gathered} \text { NPN } \\ \text { (PNP) } \end{gathered}$	INDIVIDUAL	2N501

to the base region while semiconductor contacts are simultaneously made to the emitter and collector. With normal transistor biasing, the collector to base PN junction so formed is normally reverse biased. Its primary effect is to increase the collector capacitance. The emitter junction, however, is forward biased, permitting a portion of the base current to be shunted through the overlap diode rather than to be injected into the base region. However, emitter overlap can be completely eliminated by electrolytic etching as in the 2N1289. Mesa-like transistors can also use advantageously heavily doped base leads to permit deep penetration of the base region.

Many materials are suitable for leads, especially if they are doped appropriately. Aluminum, gold, indium, nickel have been used successfully. Gold, which is readily doped P or N-type, is used successfully with both germanium and silicon.

Leads of circular and rectangular cross sections are common. Circular leads offer ease of handling; rectangular, offer a lower base resistance. With rate grown transistors, a circular lead is placed along the full length of the base region to combine the low base resistance of a ribbon contact with the advantages of the circular cross-section.

Alloying, soldering, welding and thermo compression bonding (TCB) are used for attaching leads to header terminals and to the transistor structure. Gold and aluminum are alloyed with germanium and silicon. In some cases, fluxless soldering is the preferred method, for example, in attaching leads to the indium dots on PNP alloy transistors. Welding finds an application primarily in attaching leads to the header terminals. Thermo compression bonding (TCB), which forms contacts by crushing the leads into the transistor structure at elevated temperatures, is of interest since it permits the very shallow surface penetration by the leads which is essential in extremely high frequency transistors. TCB also minimizes potential damage to the junctions because the leads are attached at relatively low temperatures. Close process control is necessary, however, since a precise balance between plastic and elastic deformation must be held to prevent contact failure during thermal cycling.

ENCAPSULATION

The term encapsulation is used here to describe the processing from the completion of the transistor structure to the final sealed unit. The primary purpose of encapsulation is to ensure reliability. This is accomplished by protecting the transistor from mechanical damage and providing a seal against harmful impurities. Encapsulation also governs thermal ratings and the stability of electrical characteristics.

The transistor structure is prepared for encapsulation by etching to dissolve the surface metal which may have acquired impurities during manufacture. Following etching, a controlled atmosphere prevents subsequent surface contamination. The transistor now is raised to a high temperature, is evacuated to eliminate moisture and is refilled with a controlled atmosphere. Then the cap, into which a getter may be placed, is welded on.

In some respects the design of the case, through its contribution to transistor reliability, is as important as that of the transistor structure. Mechanically, users expect to drop transistors, snap them into clips or bend their leads without any damage. Thermally, users expect the header lead seals to withstand the thermal shock of soldering, the junctions to be unaffected by heating during soldering, and the internal contacts to be unchanged by thermal cycling. Considerable design skill and manufacturing cost is necessary to meet the users expectations. Within the transistor structure, coefficients of expansion are matched to prevent strain during thermal cycling. Kovar lead seals withstand the shock of soldering and do not fatigue and lose their effectiveness after thermal cycling. Hard solders and welds maintain constant thermal impedance with time, avoiding possible crystallization of soft solders.

For the stability of electrical characteristics, hermetic seals cannot be over-
emphasized. They not only preserve the carefully controlled environment in which the transistor is sealed but they exclude moisture which causes instability. While some transistors can tolerate pure water vapor, water makes possible the ionization and migration of other harmful contaminants. Moisture can be responsible for slow reversible drifts in electrical characteristics as operating conditions are changed. Also, while a transistor is warming up after exposure to low temperatures, moisture may precipitate on the transistor surfaces, causing a large temporary increase in $I_{c o}$. Kovar-hard glass lead seals are used in transistors designed for reliability. Kovar does not have the low thermal impedance or ductility of copper, however, and therefore seal integrity is paid for by a lower dissipation rating and a lower tolerance to lead bending.

The case design governs the transistor's thermal impedance, which should be as low as possible and consistent from unit to unit. Very small cases minimize the junction to case impedance while increasing the case to air impedance. Larger cases such as the JEDEC 370 mil TO-9 combine a lower case to air impedance, with a lead configuration and indexing tab permitting automatic insertion of transistors into printed circuit boards.

RELIABILITY

Transistors have no known failure mechanism which should limit their life expectancy. Sufficient data has been collected to date to show that with careful construction techniques, transistors are capable of operation in excess of 30,000 hours at maximum ratings without appreciable degradation. Since transistors can perform logical operations at very low dissipation and amplify at high efficiency, the resulting low dissipation reduces the ambient temperature for other components, enhancing their reliability as well. The transistor's small physical size and its sensitivity to small voltage changes at the base, results in low circuit capacitances and low power requirements, permitting large safety factors in design. The variety of manufacturing processes being used by the industry permits choosing the optimum transistor for any circuit requirement. For example, rate grown transistors offer low \mathbf{I}_{Co} and low C_{C} for applications requiring low collector current. Alloy transistors offer high peak power capabilities, great versatility in application, and are available in both PNP and NPN types. Meltback or mesa transistors give high speed at high voltage ratings while microalloy transistors give high speed and good saturation characteristics in lieu of high voltages.

Reliability is a measure of how well a device or a system satisfies a set of electrical requirements for a given period of time under a specified set of operating conditions. Because reliability involves the element of time, only life tests can provide data on reliability. Life tests, however, indicate what the transistor was and how much it has changed during the life test, but they are only a measure of reliability if correlations have been established between the deterioration during life tests and reliability. Life tests alone are inadequate in guaranteeing reliability because they cannot check all potential causes of failure. For example, they will not detect intermittent contacts or the excessive moisture which may cause erratic low temperature performance. Fortunately, other tests detect such conditions, but these problems have led to the adage that reliability cannot be tested in.

While it is true that reliability must be built in, it has seldom proved practical in the past to make an absolute measurement of a specific transistor's reliabilit,. Transistors currently are sufficiently reliable that huge samples and considerable expense in manpower, equipment, and inventory are necessary to get a true measure of their reliability. However, tests can readily show if a transistor falls far short of the required reliability; therefore, they are useful in assigning ratings, in obtaining rate of degradation measurements, and as a measure of quality control or process variability. Figures $2.5,2.6,2.7$ show some of the considerations in designing reliable transistors.

(1) kovar metal for best hermetic seal
(2) RIDGE ASSURES bETTER PRECISION IN WELDING
(3) COPPER CLAD STEEL FOR STRAIN FREE FABRICATION, SALT SPRAY RESISTANCE AND MECHANICAL STRENGTH
WELDED CONTACTS BETWEEN COLLECTOR AND EMITTER TABS, AND HEADER LEADS
SPECIAL ALLOYS AND PROCESSING TO PREVENT POOR WETTING AND CONSEQUENT INTERMITTENT CONTACT
SPECIAL ALLOYS BETWEEN WAFER AND SUPPORTING WINDOW TO CONTROL STRESSES DUE TO THERMAL EXPANSION, TO GET GOOD WETTING BETWEEN WINDOW AND WAFER' REDUCING THERMAL IMPEDANCE AND SERIES BASE RESISTANCE, TO GET PURELY OHMIC CONTACT
(7) CRYSTAL ORIENTATION CHOSEN TO PREVENT DOT SPREADING
(8) COLLECTOR DOT CENTERED EXACTLY OPPOSITE EMITTER DOT FOR HIGH CURRENT GAIN
(9) THICK WINDOW TO MINIMIZE THERMAL IMPEDANCE TO CASE
(10) TWO LARGE WELDS PROVIDE HEAT PATH FROM WINDOW TO CASE
(II) Shoulder on seal for strength
(12) KOVAR TO HARD GLASS MATCHED COEFFICIENT SEAL
(13) KOVAR LEADS HELP RE DUCE JUNCTION HEATING DURING SOLDERING
(14) GASEOUS ATMOSPHERE AVOIDS THE MIGRATION OF IONS POSSIBLE WITH FLUID TYPE FILLERS
(15) GETTER TABLET TO PERMANENTLY ABSORB ANY MOISTURE dUE TO OUTGASSING
(16) SPECIAL ETCHING AND SURFACE TREATMENT RESULTS IN STABLE Ico AT ALL TEMPERATURES, VERY LOW NOISE FIGURE, AND small ico variation with collector voltage.

dESIGN FOR RELABILITY (TYPES 2N43, 2N396, 2N525)

FIGURE 2.5

While a transistor's design must be inherently reliable to yield a reliable product, the design must be coupled with vigorous quality control in manufacturing and accelerated life tests to verify that the process is truly under control.

There are a number of tests which appear to correlate with reliability; however, their significance and applicability to any specific transistor type will vary and must be assessed on this basis.

Storage of transistors at their maximum rated temperature can be a measure of process cleanliness, since chemical activity doubles approximately every ten degrees centigrade. Caution should be used since some organic fillers decompose if the rated temperature is exceeded.

FIXED BED MOUNTING DESIGN FOR RELIABILTY (TYPES 2N335, 2N337, 2N491) FIGURE 2.6

When operating transistors under dissipation, it is preferable to turn the transistors off for approximately ten minutes every hour in order to induce thermal cycling. Thermal cycling will tend to fatigue compression seals, will detect intermittent contacts or poor welds and, by establishing thermal gradients, will accelerate migration of any impurities that may be present.

Some transistors find operation at high voltages and high junction temperatures simultaneously most deleterious. Thermal runaway can be avoided without invalidating the test by applying a collector to base potential and disconnecting the emitter.

To determine the safety factor in the manufacturer's dissipation rating, life tests at 20% over-rating should detect marginal units. Caution should be exercised with transistors using organic fillers such as greases or oils, since the cases may rupture if the transistors overheat.

With some transistors, a drift in I_{co} at room temperature is believed to correlate with reliability. In germanium transistors, a drift of more than 1μ a in 15 seconds after power is applied is considered excessive where reliability is of paramount importance.

A transistor may pass the high temperature tests readily even though it will malfunction at low temperatures due to moisture. Moisture can be detected by monitoring Ico while a transistor warms up after being cooled to dry ice temperatures. A significant increase in I_{co} while the transistor is warming up is indicative of moisture. Care should be taken, however, that vapor condensation on the outside of the transistor case is not responsible for the increase in I_{co}. Two tests of hermetic seal which are widely used in the industry are the detergent pressure bomb and the Radiflo test. The former involves pressurizing transistors in water to which a small quantity of detergent has been added. On penetrating leaky seals, the detergent contaminates the junctions. To be significant, the test should use a relatively high pressure for a long period of time, particularly if organic fillers are used which might protect the junction temporarily. The Radiflo test forces a gas with a radioactive tracer into the transistor through leaky seals. A Geiger counter detects the presence of the radioactive gas within the leaky transistors.

Another measure of potential reliability are the distribution curves of the major parameters. Except where screening has been done to narrow limits, the distribution curves should be approximately Gaussian, indicating that the transistors represent good process control and statistically will ensure non-critical circuit performance.

The above tests can be made more significant by selecting the samples from several sources over a period of time. This permits a realistic appraisal of the manufacturing process control.

(1) KOVAR HEADER RESEMBLES THAT FOR $2 N 335$
(2) STEP ETCH REVEALS bASE REGION PREVENTING EMITTER OVERLAP
(3) THE HEAT SINK IS A METAL TAB WELDED TO THE header lead and alloyed to the emitter of MELTBACK BAR
(4) CANTILEVER CONSTRUCTION MINIMIZES MECHANICAL AND THERMAL STRAINS ON BAR
(5) GOLD RIBBON BASE LEAD FOR DUCTILITY, LOW ELECTRICAL RESISTANCE AND LINE CONTACT TO base region
(6) COLLECTOR LEAD

3. SMALL SIGNAL CHARACTERISTICS

A major area of transistor applications is in various types of low level a-c amplifiers. One example is a phonograph preamplifier where the output of a phonograph pickup (generally about 8 millivolts) is amplified to a level suitable for driving a power amplifier (generally 1 volt or more). Other examples of low level or small signal amplifiers include the IF and RF stages of radio and TV receivers and preamplifiers for servo systems.

As described in Chapter 4 on large signal characteristics a transistor can have very nonlinear characieristics when used at low current and voltage levels. For example, if conduction is to take place in an NPN transistor the base must be positive with respect to the emitter. Thus, if an a-c signal were applied to the base of an NPN transistor, conduction would take place only during the positive half cycle of the applied signal and the amplified signal would be highly distorted. To make possible linear or undistorted amplification of small signals, fixed d-c currents and voltages are applied to the transistor simultaneously with the a-c signal. This is called biasing the transistor, and the d-c collector current and d-c collector to emitter voltage are referred to as the bias conditions.

The bias conditions are chosen so that the largest a-c signal to be amplified is small eompared to the d-c bias current and voltage. Transistors used in small signal amplifiers are normally biased at currents between 0.5 and 10 ma . and voltages between 2 and 10 volts. Bias currents and voltages below this range can cause problems of distortion, while bias currents and voltages above this range can cause problems of excessive noise and power dissipation.

A typical circuit for a single stage low level a-c amplifier is shown in Figure 3.1. Resistors R_{1}, R_{2}, and R_{3} form the biasing circuit, the design of which is described in Chapter 5. The capacitors serve to block the d-c voltages, but offer a low impedance path to the a-c signal voltages. Thus, as far as the a-c signals are concerned, the circuit of Figure 3.1 is equivalent to the much simpler circuit of Figure 3.2. Resistor R_{A} represents the parallel resistance of R_{1} and R_{2}, while v and i designate the values of the a-c voltage and current.

typical low level a-c amplifier circuit and a-c equivalent circuit FIGURES 3.1 AND 3.2

For the purpose of circuit design any amplifier, whether a single transistor stage or a complete circuit, can be considered as a "black box" which has two input terminals and two output terminals as indicated in Figure 3.3. The circuit designer, knowing the electrical characteristics of the "black box", can calculate the performance of the amplifier when various signal sources are applied to its input and various loads are connected to its output.

bLACK box representaition of an amplifier circuit FIGURE 3.3

Network theory tells us that the complete electrical characteristics of a "black box" such as Figure 3.3 can be specified in terms of four parameters. The parameters which are frequently used for specifying the characteristics of transistors and in the analysis of transistor circuits are the "hybrid" or " h " parameters. The " h " parameters are defined by the equations:

$$
\begin{align*}
& v_{1}=h_{11} i_{1}+h_{12} v_{2}=h_{\mathrm{r}} i_{1}+h_{\mathrm{r}} \mathrm{v}_{\mathrm{i}} \tag{1}\\
& \mathbf{i}_{2}=\mathrm{h}_{21} \mathrm{i}_{1}+\mathrm{h}_{22} \mathrm{v}_{2}=\mathrm{h}_{\mathrm{f}} \mathrm{i}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{v}_{2} \tag{2}
\end{align*}
$$

where

$$
\begin{array}{ll}
\mathrm{h}_{12} \equiv \mathrm{~h}_{1} & \begin{array}{l}
\text { is the input impedance with the output a-c short circuited (ohms) } \\
\mathrm{h}_{12} \equiv \mathrm{~h}_{7}
\end{array} \\
\begin{array}{ll}
\text { is the reverse voltage transfer ratio with the input a-c open cir-- } \\
\text { cuited (dimensionless) }
\end{array} \\
\mathrm{h}_{21} \equiv \mathrm{~h}_{\mathrm{f}} & \begin{array}{l}
\text { is the forward current transfer ratio with the output a-c short } \\
\text { circuited (dimensionless) }
\end{array} \\
\mathrm{h}_{22} \equiv \mathrm{~h}_{\mathrm{o}} & \begin{array}{l}
\text { is the output admittance with the input a-c open circuited (mhos) }
\end{array}
\end{array}
$$

The letter and numerical subscripts for the " h " parameters are completely equivalent and may be used interchangeably. Common practice is to use the numerical subscripts for general circuit analysis and the letter subscripts for specifying the characteristics of transistors. Since transistors can be measured and used in either the common base, common emitter, or common collector configuration an additional subscript (b, e, or c) is added to the "h" parameters to indicate the particular configuration involved. For example, the forward current transfer ratio in the common emitter configuration is designated by either h_{fe} or $\mathrm{h}_{\mathrm{ze} \mathrm{e}}$.

It is frequently advantageous to use equivalent circuits for transistors to aid in circuit design or to gain understanding of transistor operation. The equivalent circuit for the " h " parameters in the common base configuration is shown in Figure 3.4. In this circuit the voltage transfer ratio, h_{rb}, appears as a voltage generator in the input circuit and the current transfer ratio, h_{fb}, appears as a current generator in the output circuit. Figure 3.5 shows another form of equivalent circuit for the transistor, the " T " equivalent circuit. This equivalent circuit is of interest since it approximates the actual
transistor structure. Thus r_{e} and r_{e} represent the ohmic resistances of the emitter and collector junction while r_{b} represents the ohmic resistance between the base contact and the junctions. The current generator aie represents the transfer of current from the emitter junction to the collector junction across the base region.

HYBRID EQUIVALENT CIRCUIT
(COMMON BASE CONFIGURATION)

"T'" EQUIVALENT CIRCUIT

FIGURES 3.4 AND 3.5

If the " h " parameters are measured or specified for one configuration (e.g., common emitter) the values of the " h " parameters for the other configurations or the values of the parameters in the " T " equivalent circuit may be calculated. Figure 3.6 gives simple conversion equations for all possible cases. Also given in Figure 3.6 are typical values for all the parameters of the 2 N 525 transistor biased at 1 ma and 5 volts. The " h " parameters are dependent upon the biasing conditions and it is important in circuit design to correct the values of the parameters from the bias conditions under which they are specified to the bias conditions under which the transistors are used. The correction factors can be obtained from a graph such as Figures 3.7 and 3.8.

APPROXIMATE CONVERSION FORMULAE
H PARAMETERS AND T EQUIVALENT CIRCUIT
(NUMERICAL VALUES ARE TYPICAL FOR THE $2 N 525$ AT (MA, 5V)

SYMBOLS		COMMON EMITTER	COMMON BASE	COMMON COLLECTOR	$\begin{aligned} & \text { T EQUIVALENT } \\ & \text { CIRCUIT } \end{aligned}$
IRE	OTHER				
$h_{i e}$	$n_{\text {lle }} \cdot \frac{1}{\gamma_{\text {Ile }}}$	1400 OHMS	$\frac{h_{i b}}{1+h_{f b}}$	$h_{\text {ic }}$	$r_{b}+\frac{r_{e}}{1-a}$
hre	$h_{12 e} \mu_{b c}$	3.37×10^{-4}	$\frac{h_{i b} h_{o b}}{1+h_{f b}}-h_{r b}$	$1-h_{\text {re }}$	$\frac{r_{e}}{(1-a) r_{c}}$
$h_{\text {fe }}$	${ }^{2} 1 \mathbf{e}, \beta$	44	$-\frac{h_{f b}}{1+h_{f b}}$	$-\left(1+h_{\text {fc }}\right)$	$\frac{a}{1-a}$
hoe	$n_{228} \frac{1}{222 e}$	$27 \times 10^{-6} \mathrm{MHOS}$	$\frac{h_{\text {ob }}}{1+h_{f b}}$	$h_{0 c}$	$\frac{1}{(1-a) r_{c}}$
$h_{i b}$	$h_{11}, \frac{1}{r_{11}}$	$\frac{h_{i e}}{1+h_{\text {fe }}}$	31 OHMS	$=\frac{h_{i c}}{h_{\text {fc }}}$	$r_{e}+(1-a) r_{b}$
$h_{r b}$	$\mathrm{h}_{12},{ }_{\text {ec }}$	$\frac{h_{i e} h_{o e}}{1+h_{f e}}-n_{r e}$	5×10^{-4}	$h_{r c}-1-\frac{h_{i c} h_{o c}}{h_{\text {cc }}}$	$\frac{\mathrm{rb}^{\text {b }}}{\mathrm{ra}_{\mathrm{c}}}$
$h_{\text {fb }}$	${ }^{\mathrm{h}} 21, \mathrm{a}$	$-\frac{h_{f e}}{1+h_{f e}}$	-0.978	$-\frac{1+h_{f b}}{h_{f b}}$	-a
hob	$n_{22}, \frac{1}{z_{22}}$	$\frac{h_{o e}}{1+h_{f e}}$	0.60×10^{-6} MHOS	$-\frac{h_{0 c}}{h_{\text {f }}}$	$\frac{1}{r_{c}}$
$h_{\text {ic }}$	$\mathrm{n}_{\text {IIC }}, \frac{1}{Y_{\text {IIC }}}$	$h_{\text {ie }}$	$\frac{h_{i b}}{1+h_{f b}}$	1400 OHMS	$r_{b}+\frac{\mathrm{re}}{1-\mathrm{a}}$
$h_{\text {rc }}$	${ }^{1} 2 \mathrm{cc}, \mu_{\text {be }}$	1-Mre	1	1.00	$1-\frac{r_{e}}{(1-a) r_{c}}$
$\mathrm{hfc}_{\mathrm{fc}}$	$h_{21 c} \cdot{ }^{\text {e }}$ b	$-\left(1+h_{\text {fe }}\right)$	$-\frac{1}{1+h_{f b}}$	-45	$-\frac{1}{1-a}$
hoc	${ }^{n} 22 c \cdot \frac{1}{Z_{226}}$	hoe	$\frac{h_{o b}}{1+h_{f b}}$	27×10^{-6} MHOS	$\frac{1}{(1-a) r_{c}}$
	0	$\frac{h_{f e}}{1+h_{\text {fe }}}$	- $\mathrm{hfo}^{\text {f }}$	$=\frac{1+h_{f s}}{h_{f c}}$	0.978
	${ }^{\text {r }}$	$\frac{1+h_{\mathrm{fe}_{e}}}{\text { hoe }}$	$\frac{1-h_{r b}}{h_{0 b}}$	$-\frac{h_{f c}}{h_{0 C}}$	1.67 MEG
	T0	$\frac{h_{\text {re }}}{h_{\text {oe }}}$	$h_{i b}-\frac{h_{r b}}{h_{0 b}}\left(1+h_{f b}\right)$	$\frac{1-h_{r c}}{h_{\text {Oc }}}$	12.5 OHMS
	${ }^{\text {b }}$ b	$h_{\text {ie }}-\frac{h_{\text {ree }}}{h_{\text {cee }}}\left(1+h_{\text {fe }}\right)$	$\frac{n_{\text {rb }}}{n_{\text {ob }}}$	$h_{i c}+\frac{h_{\text {fc }}}{h_{\text {Oc }}}\left(1-h_{r c}\right)$	840 OHMS

FIGURE 3.6

For example, suppose that it is desired to find the typical value of $h_{o b}$ for the 2N525 at 0.5 ma and 10 volts. From Figure 3.6 the typical value of $h_{\text {oh }}$ at 1 ma and 5 volts is 0.6×10^{-6} mhos. From Figure 3.7 the correction factor at 0.5 ma is 0.6 and
from Figure 3.8 the correction factor at 10 volts is 0.75 . The value of $h_{o b}$ is then calculated from:

$$
\begin{aligned}
\mathrm{h}_{\mathrm{ob}}(0.5 \mathrm{ma}, 10 \mathrm{v}) & =0.60 \times 10^{-6} \times 0.6 \times 0.75 \\
& =0.27 \times 10^{-6} \text { mhos }
\end{aligned}
$$

Once the " h " parameters are known for the particular bias conditions and configuration being used, the performance of the transistor in an amplifier circuit can be found for any value of source or load impedance. Figure 3.9 gives the equations for determining the input and output impedance, as well as the current, voltage, and power gain of a transistor amplifier stage directly from the " h " parameters. The particular " h " parameters used in these equations must correspond to the particular circuit configuration used. For example, if it is desired to calculate the voltage gain of a common emitter amplifier stage the values $\mathrm{h}_{\mathrm{ie}}, \mathrm{h}_{\mathrm{re}}, \mathrm{h}_{\mathrm{fe}}, \mathrm{h}_{\mathrm{oe}}$ must be used in equation 8 .

With the exception of equation 9 all of the equations in Figure 3.9 are valid at any frequency provided that the values of the " h " parameters at that particular frequency are used. At the higher frequencies " h " parameters become complex and the low frequency " h " parameters are no longer valid. The matched power gain given by equation 10 requires that both the input and the output of the amplifier stage be tuned and the input and output resistances be matched to the generator and load resistance respectively. This situation is seldom met exactly in practice, but it is generally met closely enough to permit accurate results from equation 10.

If the voltage feedback ratio, h_{r}, is very small or is balanced out by external feedback the circuit is said to be unilateral. This means that no signal transmission can take place from the output of the circuit to the input. Under these conditions the input impedance of the circuit will be equal to h_{i} and the output impedance will be equal to $1 / h_{o}$. The power gain under matched, unilateral conditions is given by equation 11 . This power gain is a good figure of merit for the transistor since it is independent of circuit conditions and transistor configuration. It represents the maximum power gain that can be obtained from a transistor under conditions of absolute stability.

As an example of the use of these equations suppose that it is desired to design a tuned amplifier using the 3 N 37 operating at 150 mc . What power gain can be obtained and what input and output impedances should be used for the matching transformer? From the 3 N 37 specifications (converting from polar to rectangular form when necessary): $\mathrm{a}_{\mathrm{ie}}=80, \mathrm{a}_{\mathrm{re}}=0.00187, \mathrm{a}_{\mathrm{fe}}=-0.191, \mathrm{a}_{00}=5.5 \times 10^{-4}, \mathrm{~b}_{\mathrm{ie}}=-10$, $\mathrm{b}_{\mathrm{re}}=0.0179, \mathrm{~b}_{\mathrm{fe}}=-1.08, \mathrm{~b}_{0 \mathrm{e}}=12.5 \times 10^{-4}$. Putting these numbers into the equations in Figure 3.9 gives:

$$
\begin{aligned}
& \mathrm{C}=-0.062 \\
& \mathrm{D}=0.75 \\
& \mathrm{~F}=0.43 \\
& \mathrm{G}_{\mathrm{m}}=8.75 \\
& \mathrm{Z}_{\mathrm{im}}=60-\mathrm{j} 5.0 \text { ohms } \\
& \mathrm{Y}_{\mathrm{om}}=(4.15+\mathrm{j} 12.8) \times 10^{-4} \mathrm{mhos}
\end{aligned}
$$

In a tuned circuit the reactive part of the output admittance would be tuned out so that:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=60 \text { ohms } \\
& \mathrm{R}_{\mathrm{a}}=2400 \text { ohms } \\
& \mathrm{G}_{\mathrm{m}}=10 \log (8,75)=9.43 \mathrm{db}
\end{aligned}
$$

INPUT IMPEDANCE

$$
\begin{equation*}
z_{i}=\frac{v_{i}}{i_{i}}=h_{i}-\frac{h_{f} h_{r} z_{L}}{1+h_{o} z_{L}} \tag{3}
\end{equation*}
$$

MATCHED INPUT IMPEDANCE* $\quad z_{i m}=o_{i}[D-j C]+j b_{i}$

OUTPUT ADMIT TANCE

$$
\begin{equation*}
Y_{0}=\frac{i_{0}}{V_{0}}=h_{0}-\frac{h_{i} h_{r}}{h_{i}+Z_{g}} \tag{5}
\end{equation*}
$$

MATCHED OUTPUT ADMITTANCE*

$$
\begin{equation*}
Y_{o m}=o_{o}[D-j C]+j b_{o} \tag{6}
\end{equation*}
$$

CURRENT GAIN

$$
\begin{equation*}
A_{i}=\frac{i_{0}}{i_{i}}=\frac{h_{f}}{1+h_{0} Z_{L}} \tag{7}
\end{equation*}
$$

VOLTAGE GAIN

$$
\begin{equation*}
A_{v}=\frac{v_{0}}{v_{i}}=\frac{1}{h_{r}-\frac{h_{i}}{Z_{L}}\left(\frac{1+h_{0} Z_{L}}{h_{f}}\right)} \tag{8}
\end{equation*}
$$

OPERATING POWER GAIN (LOW FREQUENCY ONLY, $Z_{g}=R g, Z_{L}=R_{L}$)
$G=\frac{\text { POWER INTO LOAD }}{\text { POWER INTO TRANSISTOR }}=A_{V} A_{i}=\frac{\left(\frac{h_{f}}{1+h_{0} R_{L}}\right)}{h_{r}-\frac{h_{i}}{R_{L}}\left(\frac{1+h_{0} R_{L}}{h_{f}}\right)}$
MATCHED POWER GAIN*

$$
\begin{equation*}
G_{m}=\frac{o^{2}+b_{f}^{2}}{a_{i} a_{0}\left[(1+D)^{2}+C^{2}\right]} \tag{10}
\end{equation*}
$$

MATCHED UNILATERAL POWER GAIN

$$
\left(h_{r}=0\right)
$$

$$
\begin{equation*}
G_{m u}=\frac{a_{f}^{2}+b_{f}^{2}}{4 a_{i} a_{0}}=\frac{\left|h_{f}\right|^{2}}{4 a_{i} a_{0}} \tag{ii}
\end{equation*}
$$

$z_{g}=R_{g}+j x_{g}=$ OUTPUT IMPEDANCE OF GENERATOR
$Z_{L}=R_{L}+j X_{L}=$ IMPEDANCE OF LOAD

* FOR MATCHED CONDITIONS

$$
\begin{array}{ll}
z_{i m}=R_{q}-j x_{g} & c=\frac{o_{r} b_{f}+a_{f} b_{r}}{2 a_{i} a_{o}} \\
z_{o m}=R_{L}-j x_{L} & F=\frac{a_{r} a_{f}-b_{r} b_{f}}{a_{i} o_{o}} \\
h_{i}=a_{i}+j b_{i} & \\
h_{r}=o_{r}+j b_{r} & 0=\sqrt{1-F-C^{2}} \\
h_{f}=o_{f}+j b_{f} &
\end{array}
$$

4. LARGE SIGNAL CHARACTERISTICS

The large signal or d-c characteristics of junction transistors can be described in many cases by the equations derived by Ebers and Moll (Proc. IRE, December, 1954). These equations are useful for predicting the behavior of transistors in bias circuits, switching circuits, choppers, d-c amplifiers, etc. Some of the more useful equations are listed below for reference. They apply with a high degree of accuracy to germanium alloy junction transistors operating at low current and voltage levels, but are also useful for analyzing other types of transistors.

PARAMETERS

The parameters used in the following large signal equations are listed below and indicated in Figure 4.1.

FIGURE 4.1

$\mathrm{I}_{\text {co }} \equiv \mathrm{I}_{\text {cro }}$	Collector leakage current with reverse voltage applied to collector and emitter open circuited (I_{co} has a positive sign for NPN transistors and a negative sign for PNP transistors)
$\mathrm{I}_{\mathrm{EO} O} \equiv \mathrm{I}_{\mathrm{EBO}}$	Emitter leakage current with reverse voltage applied to emitter and collector open circuited (I_{Eo} has a positive sign for NPN transistors and a negative sign for PNP transistors)
$\alpha_{\text {N }} 3$	Normal alpha, small signal common base forward current transfer ratio from emitter to collector with output a-c short circuited, low current and voltage levels (α has a positive sign for NPN transistors and PNP transistors)
a_{1}	Inverted alpha, same as α_{N} but with emitter and collector interchanged
$\mathrm{R}_{\text {B, }} \mathrm{R}_{\text {Et, }} \mathbf{R}_{\mathrm{C}}$	Ohmic resistance internal to transistor in series with base, emitter and collector leads respectively
$\mathrm{I}_{\mathrm{B},} \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{0}$	D-C currents in base, emitter and collector leads respectively, positive sense of current corresponds to current flow into terminals
¢c	Bias voltage across collector junction, collector to base voltage exclusive of ohmic drops (across R_{B}, R_{C}), forward bias is positive polarity
ϕ_{E}	Bias voltage across emitter junction, emitter to base voltage exclusive of ohmic drops (across $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{E}}$), forward bias is positive polarity
$\mathrm{V}_{\mathrm{EB}}, \mathrm{V}_{\mathrm{CP}}, \mathrm{V}_{\mathrm{CE}}$	Terminal voltages, emitter to base, collector to base, collector to emitter
$\Lambda=\frac{\mathrm{q}}{\mathrm{KT}}$	$1 / \Lambda=26$ millivolts at $25^{\circ} \mathrm{C}$

q
K
T

Electronic charge $=1.60 \times 10^{-19}$ coulomb
Boltzmann's constant $=1.38 \times 10^{-23}$ watt sec $/{ }^{\circ} \mathrm{C}$
Absolute temperature, degrees Kelvin $={ }^{\circ} \mathrm{C}+273$

BASIC EQUATIONS

$$
\begin{align*}
& a_{\mathrm{N}} \mathrm{I}_{\mathrm{EO}}=a_{\mathrm{I}} \mathrm{I}_{\mathrm{CO}} \tag{4a}\\
& \mathrm{I}_{\mathrm{E}}=-\frac{\mathrm{I}_{\mathrm{EO}}}{1-\alpha_{\mathrm{N}} a_{\mathrm{I}}}\left(\mathrm{e}^{A \phi \mathrm{E}}-1\right)+\frac{a_{\mathrm{I}} \mathrm{I}_{\mathrm{co}}}{1-\alpha_{\mathrm{N}} a_{\mathrm{I}}}\left(\mathrm{e}^{\mathrm{A} \phi \mathrm{O}}-1\right) \tag{4b}\\
& \mathrm{I}_{\mathrm{E}}=+\frac{a_{\mathrm{N}} \mathrm{I}_{\mathrm{EO}}}{1-a_{\mathrm{N}} a_{\mathrm{I}}}\left(\mathrm{e}^{\mathrm{A} \phi \mathrm{E}}-1\right)-\frac{\mathrm{I}_{\mathrm{CO}}}{1-a_{\mathrm{N}} a_{\mathrm{I}}}\left(\mathrm{e}^{\mathrm{A} \phi \mathrm{C}}-1\right) \tag{4c}
\end{align*}
$$

Under normal operating conditions, the collector is reverse biased so $\phi \mathrm{c}$ is negative. If the collector is reverse biased by more than 0.10 volts, then $\mathrm{e}^{\Lambda \phi_{\mathrm{C}}} \ll 1$ and can be eliminated from equations $4 b$ and $4 c$. The equations given below are derived from equations $4 a, 4 b$ and $4 c$.

COLLECTOR LEAKAGE CURRENT (Iceo)

$$
\begin{equation*}
I_{C E O}=\frac{I_{C O}}{1-\alpha_{N}} \tag{4~d}
\end{equation*}
$$

$\mathrm{I}_{\text {ceo }}$ is the collector leakage current with the base open circuited and is generally much larger than Ico.

COLLECTOR LEAKAGE CURRENT (Ices)

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CES}}=\frac{\mathrm{I}_{\mathrm{CO}}}{1-a_{\mathrm{N}} a_{\mathrm{I}}} \tag{4e}
\end{equation*}
$$

$I_{\text {Ces }}$ is the collector leakage current with the base shorted to the emitter and equals the leakage current the collector diode would have if the emitter junction was not present. Accurate values of a_{N} and a_{I} for use in the equations in this section are best obtained by measurement of $I_{C O}, I_{\text {Ceo }}$ and $I_{\text {Ces }}$ and calculation of a_{N} and a_{y} from equations $4 d$ and 4 e . The value of I_{EO} may be calculated from equation 4 a .

COLLECTOR AND EMITTER LEAKAGE CURRENT -

COLLECTOR AND EMITTER JUNCTIONS REVERSE BIASED

$$
\begin{align*}
& \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{CO}}\left(1-\alpha_{\mathrm{I}}\right)}{1-\alpha_{\mathrm{N}} \alpha_{\mathrm{I}}} \tag{4f}\\
& \mathrm{I}_{\mathrm{E}}=\frac{\mathrm{I}_{\mathrm{EO}}\left(1-\alpha_{\mathrm{N}}\right)}{1-\alpha_{\mathrm{N}} \alpha_{1}} \tag{4g}
\end{align*}
$$

Equation $4 f$ indicates that if both the emitter and the collector are reverse biased the collector leakage current will be less than Ico and the emitter leakage current will be less than I_{EO}. The reverse base current will be greater than I_{co}, but will be less than $\mathrm{I}_{\mathrm{Co}} / a_{\mathrm{x}}$. For example, if $a_{N}=0.99$ and $\alpha_{\mathrm{I}}=0.90$ then $\mathrm{I}_{\mathrm{C}}=0.92 \mathrm{I}_{\mathrm{C},}, \mathrm{I}_{\mathrm{E}}=0.09 \mathrm{I}_{\mathrm{EO}}$ and $\mathbf{I}_{\mathrm{B}}=-1.004 \mathrm{I}_{\mathrm{co}}$. This relationship indicates the advantage of using transistors in the inverted connection (collector and emitter interchanged) when a low leakage current is desired in switching circuits.

COLLECTOR LEAKAGE CURRENT (IcER)

$I_{\text {CER }}$ is the collector leakage current measured with the emitter grounded and a resistor R between base and ground. The size of the resistor is generally about 10K. From equation 4 h , it is seen that as R becomes very large $\mathrm{I}_{\text {cer }}$ approaches $\mathrm{I}_{\text {cro }}$ (Equation 4 d). Similarly as R approaches zero, $I_{\text {Cres }}$ approaches Ices (Equation 4e).

COLLECTOR LEAKAGE CURRENT-
SILICON DIODE IN SERIES WITH EMITTER

This circuit is useful in some switching applications where a low collector leakage current is required and a negative supply voltage is not available for reverse biasing the base of the transistor. The diode voltage V_{D} used in the equation is measured at a forward current equal to the $\mathbf{I}_{\text {co }}$ of the transistor. This equation holds for values of \mathbf{I}_{C} larger than I_{co}.

COLLECTOR TO EMITTER VOLTAGECOLLECTOR OPEN CIRCUITED

$$
\begin{equation*}
\mathrm{V}_{\mathrm{CR}}=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{E}}+\frac{1}{\Lambda} \ln \frac{1}{\alpha_{\mathrm{I}}} \tag{4j}
\end{equation*}
$$

The second term in equation $4 j$ indicates that the value of $V_{\text {cr }}$ for small values of I_{B} is determined by the value of α_{1}. As α_{1} approaches unity, the second term in equation $4 j$ will approach zero. This indicates the advantage of using a transistor in the inverted connection if a low voltage drop in a switching circuit is desired. Equation 4j also indicates that the series emitter resistance may be obtained by measuring the a-c resistance $\mathrm{R}_{\mathrm{E}}=\Delta \mathrm{V}_{\mathrm{CR}} / \Delta \mathrm{I}_{\mathrm{B}}$. The series collector resistance can be measured in the same manner if the transistor is inverted.

BASE INPUT CHARACTERISTICS

for $\mathrm{I}_{\mathrm{C}}=0$:
$\mathrm{V}_{\mathrm{RE}}=\mathrm{I}_{\mathrm{E}}\left(\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{B}}\right)+\frac{1}{\Lambda} \ln \left(\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{EO}}}+1\right)$
for $\mathrm{V}_{\mathrm{CF}}>0.1$ volt:

$$
\begin{equation*}
V_{B E}=I_{B}\left(R_{B}+\frac{\mathrm{R}_{E_{E}}}{1-\alpha_{N}}\right)+\frac{1}{\Lambda} \ln \left[\frac{\mathrm{I}_{\mathrm{B}}\left(\mathrm{l}-\alpha_{N} \alpha_{1}\right)}{\mathrm{I}_{\mathrm{EO}}\left(1-\alpha_{\mathrm{N}}\right)}+1+\frac{\alpha_{\mathrm{N}}\left(1-\alpha_{\mathrm{I}}\right)}{\alpha_{1}\left(1-\alpha_{N}\right)}\right] \tag{41}
\end{equation*}
$$

A comparison of equations 4 k and 4 l indicates that they are approximately equal if R_{E} is small and a_{N} is smaller than $a_{I}\left(1-\alpha_{X} \gg 1-a_{1}\right)$. For this condition, the base input characteristic will be the same whether the collector is reverse biased or open circuited.

VOLTAGE COMPARATOR CIRCUIT

$$
\begin{gathered}
\text { for } V_{o}=V_{c e} \\
I_{B}=\frac{V_{\mathrm{ce}}}{R_{L}}\left[1+\left(\frac{a_{N}}{a_{I}}\right)\left(\frac{1-a_{I}}{1-a_{N}}\right)\right](4 \mathrm{~m})
\end{gathered}
$$

If an emitter follower is overdriven such that the base current exceeds the emitter current the emitter voltage can be made exactly equal to the collector voltage. For example, if a square wave with an amplitude greater than $V_{c c}$ is applied to the base of the transistor the output voltage V_{0} will be a square wave exactly equal to V_{ce}. Equation 4 m gives the base current required for this condition and indicates that the transistor should be used in the inverted connection if the required base current is to be minimized. This circuit is useful in voltage comparators and similar circuits where a precise setting of voltage is necessary.

5. BIASING

One of the basic problems involved in the design of transistor amplifiers is establishing and maintaining the proper collector to emitter voltage and emitter current (called the biasing conditions) in the circuit. These biasing conditions must be maintained despite varations in ambient temperature and variations of gain and leakage current between transistors of the same type. The factors which must be taken into account in the design of bias circuits would include:

1. The specified maximum and minimum values of current gain (h_{FE}) at the operating point for the type of transistor used.
2. The variation of $\mathrm{h}_{\text {Fe }}$ with temperature. This will determine the maximum and minimum values of $h_{\text {Fr }}$ over the desired temperature range of operation. The variation of h_{FE} with temperature is shown in Figure 10.7 for the 2N525 transistor.
3. The variation of collector leakage current (I_{co}) with temperature. For most transistors, $\mathrm{I}_{\text {co }}$ increases at approximately $6.5-8 \% /{ }^{\circ} \mathrm{C}$ and doubles with a temperature change of $9-11^{\circ} \mathrm{C}$. In the design of bias circuits, the minimum value of I_{co} is assumed to be zero and the maximum value of I_{co} is obtained from the specifications and from a curve such as Figure 10.6. If silicon transistors are used, it is best to use the specified high temperature I_{co} for estimating the maximum I_{co}.
4. The variation of base to emitter voltage drop (V_{BE}) with temperature. Under normal bias conditions, $V_{\text {re }}$ is about 0.2 volts for germanium transistors and 0.7 volts for silicon transistors and has a temperature coefficient of about -2.5 millivolts per ${ }^{\circ} \mathrm{C}$. Figure 5.1 shows the variation of $\mathrm{V}_{\text {be }}$ with collector current at several different temperatures for the 2 N 525 . Note that for some conditions of high temperature it is necessary to reverse bias the base to get a low value of collector current.
5. The tolerance of the resistors used in the bias networks and the tolerance of the supply voltages.

Two of the simpler types of bias circuits are shown in Figures 5.2 and 5.3. These circuits can be used only in cases where a wide range of collector voltage can be tolerated (for Figure 5.2 at least as great as the specified range of h_{FE}) and where $\mathrm{h}_{\mathrm{FE}}{ }^{\text {max }}$ times $\mathrm{I}_{\text {Co }}{ }^{\text {max }}$ is less than the maximum desired bias current. Neither circuit can be used with transistors which do not have specifications for maximum and minimum h_{FE} unless the bias resistors are selected individually for each transistor. The circuit of Figure 5.3 provides up to twice the stability in collector current with changes in h_{Fs} or $I_{c o}$ than the circuit of Figure 5.2. However, the circuit of Figure 5.3 has a-c feedback through the bias network which reduces the gain and input impedance slightly. This feedback can be reduced by using two series resistors in place of Ro and connecting a capacitor between their common point and ground.

In cases where more stability is desired than is provided by the circuits of Figure 5.2 or 5.3 , it is necessary to use a resistor in series with the emitter of the transistor as shown in Figure 5.4. There are several variations of this circuit, all of which may be obtained by the general design procedure outlined below.

BASIC TRANSISTOR BIAS CIRCUIT FIGURE 5.4

For the circuit of Figure 5.4, the following equations apply:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{E}}=\left(\mathrm{h}_{\mathrm{FE}}+1\right)\left(\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CO}}\right) \tag{5a}\\
& \mathrm{V}_{\mathrm{B}}=\left[\frac{\mathrm{R}_{\mathrm{B}}}{\left(\mathrm{~h}_{\mathrm{FE}}+1\right)}+\mathrm{R}_{\mathrm{E}}\right] \mathrm{I}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{C} O} \mathrm{R}_{\mathrm{B}} \tag{5b}
\end{align*}
$$

Considering bias conditions at the temperature extremes, at the minimum temperature, I_{E} will have its minimum value and the worst conditions would occur for $\mathrm{h}_{\mathrm{FE}}=\mathrm{h}_{\mathrm{FE}}{ }^{\mathrm{min}}, \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}{ }^{\max }, \mathrm{I}_{\mathrm{Co}}=0$ or

$$
\begin{equation*}
\text { at lowest temperature: } \quad \mathrm{V}_{\mathrm{B}}=\left[\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{~h}_{\mathrm{FE}}^{\mathrm{min}}+1}+\mathrm{R}_{\mathrm{E}}\right] \mathrm{I}_{\mathrm{E}^{\mathrm{min}}}+\mathrm{V}_{\mathrm{BE}^{\text {max }}}^{\text {mix }} \tag{5c}
\end{equation*}
$$

and at the highest temperature of operation I_{E} will have its maximum value and the worst conditions would occur for $h_{F E}=h_{\mathrm{FE}_{\mathrm{E}}}^{\max }, \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}}{ }^{\text {min }}, \mathrm{I}_{\mathrm{CO}}=\mathrm{I}_{\mathrm{Co}}{ }^{\text {max }}$.

> at highest
> temperature:
from these two equations the value of R_{B} can be calculated:

As an example, consider the following bias circuit design:

1. Select the transistor type to be used (2N525).
2. Determine the required range of temperature

$$
0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}
$$

3. Select the supply voltage and load resistance

$$
\mathrm{V}_{\mathrm{Cc}}=20 \text { volts; } \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{~K}
$$

4. Determine $\mathbf{I}_{\mathrm{Co}}{ }^{\text {max }}$:

From the specifications the upper limit of I_{CO} is $10 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ and from Figure $10.6 \mathrm{I}_{\mathrm{co}}$ will increase by a factor of 10 at $55^{\circ} \mathrm{C}$, thus $\mathrm{I}_{\mathrm{C} 0^{\text {max }}}=10 \times 10=$ $100 \mu \mathrm{a}$.
5. Determine the values of $h_{F_{E}}{ }^{\text {min }}$ and $h_{F E}{ }^{\text {max }}$

From the specifications, the range of h_{FE} at $25^{\circ} \mathrm{C}$ is 34 to 65 . From Figure $10.7 \mathrm{~h}_{\mathrm{FE}}$ can change by a factor of 0.75 at $0^{\circ} \mathrm{C}$ and by a factor of 1.3 at $+55^{\circ} \mathrm{C}$. Thus $\mathrm{h}_{\mathrm{FE}}{ }^{\mathrm{min}}=0.75 \times 34=25$ and $\mathrm{h}_{\mathrm{FE}}{ }^{\text {max }}=1.3 \times 65=85$.
6. Determine the allowable range of I_{E} :

In general, the variation of the circuit performance with emitter current determines the allowable range of emitter current. In some cases the allowable range of emitter current is determined by the peak signal voltage required across R_{L}.

Assume that the minimum current is .67 ma which gives a minimum voltage of 5 volts across R_{L} and the maximum emitter current is 1.47 ma which gives a maximum voltage of 11 volts across R_{L}. The allowable range of emitter current must be modified to take into account the tolerance of the bias resistors. Assuming a bias network using three $\mathbf{5 \%}$ resistors, then

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}^{\min }=(1+3 \times .05)(0.67)=0.77 \mathrm{ma} \text { and } \\
& \mathrm{I}_{\mathrm{E}}^{\max }=(\mathrm{I}-3 \times .05)(1.47)=1.25 \mathrm{ma}
\end{aligned}
$$

7. Estimate the values of $V_{\mathrm{BE}^{\mathrm{min}}}$ and $\mathrm{V}_{\mathrm{BE}}{ }^{\text {max }}$

From Figure $5.1 \mathrm{~V}_{\mathrm{BE}}{ }^{\mathrm{min}}$ at $55^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{E}}=1.47 \mathrm{ma}$ is about 0.08 volt, $\mathrm{V}_{\mathrm{BE}}{ }^{\text {max }}$ at $0^{\circ} \mathrm{C}$ and $\mathrm{I}_{E}=0.67 \mathrm{ma}$ is about 0.17 volt.
8. Calculate the value of R_{B} from equation $5 e$

$$
\mathrm{R}_{\mathrm{B}}=4.17 \mathrm{R}_{\mathrm{E}}-0.78 \mathrm{~K}
$$

9. Using the equation trom (8), choose a suitable value of R_{B} and R_{E}. This involves a compromise since low values of R_{E} require a low value of R_{B} which shunts the
input of the stage and reduces the gain. A high value of R_{E} reduces the collector to emitter bias voltage which limits the peak signal voltage across R_{L}.

Choose $\mathrm{R}_{\mathrm{E}}=2.7 \mathrm{~K}$ for which $\mathrm{R}_{\mathrm{r}}=10.4 \mathrm{~K}$. This gives a minimum collector to emitter voltage of $20-(2.7+7.5) 1.47=5$ volts.
10. Calculate V_{B} using equation 5 c

$$
\mathrm{V}_{\mathrm{B}}=2.56 \text { volts }
$$

11. If the bias circuits of either Figures 5.5 or 5.6 are to be used, the values of the bias resistors can be calculated from the values of R_{B}, R_{E} and V_{B} obtained in the preceding design by the use of the conversion equations which are given. In these figures R_{S} represents a series resistance which would be present if transformer coupling were used in which case R_{s} would be the d-c resistance of transformer secondary. In cases where capacitor coupling is used R_{S} will usually be equal to zero. A comparison of Figures 5.5 and 5.6 indicates that the circuit of Figure 5.6 is superior in that for a given bias stability, it allows a lower value of the emitter resistor or larger values of the base resistors than the circuit of Figure 5.5. On the other hand, the circuit of Figure 5.6 gives a-c feedback through the bias circuits which may be a disadvantage in some cases.

For the circuit of Figure 5.5, assume $\mathrm{R}_{\mathrm{S}}=0$. Then $\mathrm{R}_{3}=\mathrm{R}_{\mathrm{E}}=2.7 \mathrm{~K}$, $\mathrm{K}_{1}=77 \mathrm{~K}$ or, choosing the next lowest standard value, $\mathrm{R}_{1}=68 \mathrm{~K}$. Using this value, calculate $R_{2}=10 \mathrm{~K}$. For the circuit of Figure 5.6 as before $R_{1}^{\prime}=68 \mathrm{~K}$ and $R^{\prime}{ }_{2}=10 \mathrm{~K}$. Resistor R^{\prime} is calculated as 1.73 K or, using the next highest standard value, $\mathrm{R}_{s}^{\prime}=1.8 \mathrm{~K}$.

VOLTAGE DIVIDER TYPE BIAS CIRCUIT
FIGURE 5.5

THERMAL RUNAWAY

When a transistor is used at high junction temperatures (high ambient temperatures and/or high power dissipation) it is possible for regenerative heating to occur which will result in thermal run-away and possible destruction of the transistor. In any circuit the junction temperature (T_{J}) is determined by the total power dissipation in the transistor (P), the ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$, and the thermal resistance (K).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{KP} \tag{5f}
\end{equation*}
$$

If the ambient temperature is increased, the junction temperature would increase an equal amount provided that the power dissipation was constant. However, since both h_{FE} and I_{CO} increase with temperature, the collector current can increase with*increasing temperature which in turn can result in increased power dissipation. Thermal runaway will occur when the rate of increase of junction temperature with respect to the power dissipation is greater than the thermal resistance ($\Delta T_{J} / \Delta P>K$).

Thermal run-away is generally to be avoided since it can result in failure of the circuit and possibly in destruction of the transistor. By suitable circuit design it is possible to ensure either that the transistor can not run away under any conditions or that the transistor can not run away below some specified ambient temperature. A different circuit analysis is required depending on whether the transistor is used in a linear amplifier or in a switching circuit.

In switching circuits such as those described in Chapter 10, it is common to operate the transistor either in saturation (low collector to emitter voltage) or in cutoff (base to emitter reverse biased). The dissipation of a transistor in saturation does not change appreciably with temperature and therefore run-away conditions are not possible. On the other hand, the dissipation of a transistor in cutoff depends on Ico and therefore can increase rapidly at higher temperatures. If the circuit is designed to ensure that the emitter to base junction is reverse biased at all temperatures (as for the circuit of Figure 5.7) the following analysis can be used:

FIGURE 5.7
The transistor power dissipation will be,

$$
\begin{equation*}
\mathrm{P}=\mathrm{I}_{\mathrm{CO}} \mathrm{~V}_{\mathrm{CE}}=\mathrm{I}_{\mathrm{CO}}\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CO}} \mathrm{R}_{\mathrm{L}}\right) \tag{5~g}
\end{equation*}
$$

The rate of change of power dissipation with temperature will be,

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dT}}=\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{I}_{\mathrm{Co}} \mathrm{R}_{\mathrm{L}}\right)_{\mathrm{k}} \frac{\mathrm{~d} \mathrm{I}_{\mathrm{CO}}}{\mathrm{dT}}=\left(\mathrm{V}_{\mathrm{Co}}-2 \mathrm{I}_{\mathrm{Co}} \mathrm{R}_{\mathrm{L}}\right) \delta \mathrm{I}_{\mathrm{co}} \tag{5h}
\end{equation*}
$$

where $\delta \cong 0.08$ is the fractional increase in $I_{\text {co }}$ with temperature. The condition for run-away occurs when $\mathrm{dP} / \mathrm{dT}=1 / \mathrm{K}$ or,

$$
\begin{equation*}
\left(\mathrm{V}_{\mathrm{CC}}-2 \mathrm{I}_{\mathrm{Com}} \mathrm{R}_{\mathrm{L}}\right) \delta \mathrm{I}_{\mathrm{com}}=1 / \mathrm{K} \tag{5i}
\end{equation*}
$$

where $\mathrm{I}_{\text {com }}$ is the value of $\mathrm{I}_{\text {co }}$ at the run-away point. Solving for $\mathrm{I}_{\text {com }}$ gives,

$$
\begin{equation*}
I_{\mathrm{COM}}=\frac{\mathrm{V}_{\mathrm{CC}} \pm \sqrt{\left(\overline{\left(\mathrm{V}_{\mathrm{CC}}\right)^{2}-\left(8 \overline{\mathrm{R}}_{\mathrm{L}}\right) /(\delta \mathrm{K})}\right.}}{4 \overline{\mathrm{R}}_{\mathrm{t}}} \tag{5j}
\end{equation*}
$$

In this equation the solution using the negative sign gives the value of $\mathrm{I}_{\text {сом }}$, while the solution using the positive sign gives the value of Ico after run-away has occurred. It is
seen from the equation that the value of $I_{\text {co }}$ after run-away can never be greater than $\mathrm{V}_{\mathrm{cc}} / 2 \mathrm{R}_{\mathrm{L}}$ so that the collector voltage after run-away can never be less than one half of the supply voltage $V_{c c}$. If the term under the square root sign in the above equation is zero or negative, thermal run-away cannot occur under any conditions. Also, if thermal run-away does occur it must occur when the collector voltage is greater than $0.75 \mathrm{~V}_{\text {cc. }}$. Once the value of $I_{\text {com }}$ is determined from Equation (5 j) the corresponding junction temperature can be determined from a graph such as Figure 10.6. The heating due to $\mathrm{I}_{\text {com }}$ is found by substituting $\mathrm{I}_{\text {cos }}$ for $\mathrm{I}_{\text {co }}$ in Equation (5g). Finally, the ambient temperature at which run-away occurs can be calculated from Equation (5f).

In circuits which have appreciable resistance in the base circuit such as the circuit of Figure 5.8 the base to emitter junction will be reverse biased only over a limited temperature range. When the temperature is increased to the point where the base to emitter junction ceases to be reverse biased emitter current will flow and the dissipation will increase rapidly. The solution for this case is given by:

FIGURE 5.8
where $I_{x}=V_{B} / R_{B}$.
In the analysis of run-away in linear amplifiers it is convenient to classify linear amplifiers into preamplifiers and power amplifiers. Preamplifiers are operated at low signal levels and consequently the bias voltage and current are very low particularly in stages where good noise performance is important. In capacitor coupled stages a large collector resistance is used to increase gain and a large emitter resistance is used to improve bias stability. Accordingly, thermal run-away conditions are seldom met in preamplifier circuits.

In contrast, power amplifiers invariably require transistors to operate at power levels which are near the run-away condition. The conditions are aggravated by the use of biasing networks of marginal stability which are required for power efficiency and by the use of transformer coupling to the load which reduces the effective collector series resistance. Since thermal run-away in power stages is likely to result in destruction of the transistors, it is wise to use worst case design principles to ensure that thermal run-away cannot occur. The worst case conditions are with $h_{f e} \rightarrow \infty, V_{B E}=0$, $\mathrm{R}_{\mathrm{T}_{\mathrm{t}}}=0$, and $\mathrm{I}_{\mathrm{CO}}=\mathrm{I}_{\mathrm{co}}{ }^{\text {max }}$. If these conditions are applied to a transistor in the general bias circuit shown in Figure 5.9 the total transistor dissipation is given by:

FIGURE 5.9

$$
\begin{equation*}
\mathrm{P}=\mathrm{V}_{\mathrm{CE}} \mathrm{I}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{B}}-\mathrm{I}_{\mathrm{CO}} \mathrm{R}_{\mathrm{B}}\right)\left(\mathrm{I}_{\mathrm{co}}+\frac{\mathrm{V}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CO}} \mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{E}}}\right) \tag{51}
\end{equation*}
$$

Equating $\mathrm{dP} / \mathrm{dT}$ with $1 / \mathrm{K}$ and solving for $\mathrm{I}_{\text {сом }}$ as before,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{Cow}}=\frac{\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{1} \mathrm{~V}_{\mathrm{B}}\right) \pm \sqrt{\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{1} \mathrm{~V}_{\mathrm{B}}\right)^{2}-\left(\mathrm{R}_{2}\right) /(\delta \mathrm{K})}}{4 \mathrm{R}_{\mathrm{B}}} \tag{5~m}
\end{equation*}
$$

where

$$
\mathrm{R}_{1}=\frac{\mathrm{R}_{\mathrm{E}}+2 \mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{B}}} \quad \quad \mathrm{R}_{\mathbf{L}}=\frac{8 \mathrm{R}_{\mathrm{E}} \mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{B}}}
$$

As before, the solution of Equation (5m) using the negative sign gives the value of $\mathrm{I}_{\text {com }}$, while the solution using the positive sign gives the final value of I_{c} after run-away has occurred. If the quantity under the square root sign is zero or negative, run-away cannot occur under any conditions.

In class-B power amplifiers the maximum transistor power dissipation occurs when the power output is at 40% of its maximum value at which point the power dissipation in each transistor is 20% of the maximum power output. In class-A power amplifiers on the other hand, the maximum transistor dissipation occurs when there is no applied signal. The maximum power dissipation is obtained by substituting Icom in Equation (51) and the maximum junction temperature is obtained from Equation (5f).

In the design of power amplifiers the usual procedure is to design the circuit to meet the requirements for gain, power output, distortion, and bias stability as described in the other sections of this manual. The circuit is then analyzed to determine the conditions under which run-away can occur to determine if these conditions meet the operating requirements. As a practical example, consider the analysis of the class-A output stage of the receiver shown in Figure 8.16. The transistor is the 2N241A for which $\mathrm{K}=250^{\circ} \mathrm{C} /$ watt and $\mathrm{I}_{\mathrm{co}}{ }^{\mathrm{max}}=16 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ and 25 volts. Calculating the circuit yalues corresponding to Figure 5.9 and Equation (5m):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=9 \mathrm{v}, \quad \mathrm{R}_{\mathrm{E}}=100 \Omega \\
& \mathrm{~V}_{\mathrm{B}}=\frac{(1000)(9)}{1000+4700}=1.58 \mathrm{v} \\
& \mathrm{R}_{\mathrm{E}}=\frac{100+2(825)}{100+825}=1.89
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{B}}=\frac{(1000)(4700)}{1000+4700}=825 \Omega \\
& \mathrm{R}_{z}=\frac{8(100)(825)}{100+825}=713 \Omega
\end{aligned}
$$

Calculating $I_{\text {coss }}$ from Equation (5m),

$$
I_{\mathrm{COM}}=\frac{6 \pm \sqrt{0.47}}{3300}=1.61 \mathrm{ma} \text { or } 2.02 \mathrm{ma}
$$

Since the quantity under the square root is positive, thermal run-away can occur. The two solutions give the value of $\mathrm{I}_{\text {cos }}(1.61 \mathrm{ma})$ and the value of I_{co} after run-away has occurred (2.02 ma). The fact that these two currents are very nearly equal indicates that the change in power dissipation when run-away occurs will not be very large. Using the value $\mathrm{I}_{\mathrm{coan}} / \mathrm{I}_{\mathrm{Co}}{ }^{\text {max }}=100$ the junction temperature at run-away from Figure $10.6(\mathrm{~A})$ is about $92^{\circ} \mathrm{C}$. The dissipation at run-away, calculated from Equation (51), is about 187 milliwatts. The rise in junction temperature due to this power dissipation is $(0.25)(187)=46.7^{\circ} \mathrm{C}$. The ambient temperature at run-away is then calculated to be $92-46.7=45.3^{\circ} \mathrm{C}$. The above value of maximum transistor power dissipation is calculated under the assumption that the series collector resistance is zero. In the circuit under consideration the transformer primary will have a small d-c resistance (R_{T}) which will reduce the transistor power dissipation by approximately $\left(\mathrm{I}_{C}\right)^{2} \mathrm{R}_{\mathrm{T}}$ where I_{C} is given by the second term in Equation (51). Assuming that the d-c resistance of the transformer is 20 ohms the reduction in power dissipation for the case just considered will be 18.8 milliwatts and the ambient temperature at run-away will be increased to $50.0^{\circ} \mathrm{C}$.

6. AUDIO AMPLIFIERS

SINGLE STAGE AUDIO AMPLIFIER

Figure 6.1 shows a typical single stage audio amplifier using a 2NI90 PNP transistor.

SINGLE STAGE AUDIO AMPLIFIER
FIGURE 6.1
With the resistance values shown, the bias conditions on the transistor are 1 ma of collector current and six volts from collector to emitter. At frequencies at which C_{1} provides good by-passing, the input resistance is given by the formula: $\mathrm{R}_{\mathrm{in}}=\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{h}_{\mathrm{fb}}$. At 1 ma for a design center 2 N 190 , the input resistance would be 43×29 or about 1250 ohms.

The a-c voltage gain $\frac{e_{\text {out }}}{e_{i n}}$ is approximately equal to $\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{h}_{\mathrm{ib}}}$. For the circuit shown this would be $\frac{5000}{29}$ or approximately 172.

The frequency at which the voltage gain is down 3 db from the 1 Kc value depends on r_{g}. This frequency is given approximately by the formula:

$$
\text { I ow } f_{3 \mathrm{db}} \approx \frac{1+h_{\mathrm{fe}}}{6.28\left(\mathrm{r}_{\mathrm{g}} C_{f}\right)}
$$

TWO STAGE R-C COUPLED AMPLIFIER

The circuit of a two stage R-C coupled amplifier is shown by Figure 6.2. The input impedance is the same as the single stage amplifier and would be approximately 1250 ohms.

FIGURE 6.2

The load resistance for the first stage is now the input impedance of the second stage. The voltage gain is given approximately by the formula:

$$
A_{v} \approx h_{\mathrm{fe}} \frac{R_{L}}{h_{j b}}
$$

More exact formulas for the performance of audio amplifiers may be found in Chapter 3 on small signal characteristics.

CLASS B PUSH-PULL OUTPUT STAGES

In the majority of applications, the output power is specified so a design will usually begin at this point. The circuit of a typical push-pull Class B output stage is shown in Figure 6.3.

FIGURE 6.3
The voltage divider consisting of resistor, R and the 47 ohm resistor gives a slight forward bias on the transistors to prevent cross-over distortion. Usually about $1 / 10$ of a volt is sufficient to prevent cross-over distortion and under these conditions, the no-signal total collector current is about 3.0 ma . The 8.2 ohm resistors in the emitter leads stabilize the transistors so they will not go into thermal runaway when the junction temperature rises to $75^{\circ} \mathrm{C}$. Typical collector characteristics with a load line are shown below:

FIGURE 6.4
It can be shown that the maximum amc output power without clipping using a pushpull stage is given by the formula:

$$
P_{\text {out }}=\frac{I_{\max } V_{C E}}{2}
$$

Since the load resistance is equal to

Where $\mathrm{V}_{\mathrm{cm}}=$ collector to emitter voltage at no signal.

$$
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{CE}}}{\mathrm{I}_{\mathrm{muax}}}
$$

and the collector to collector impedance is four times the load resistance per collector the output power is given by the formula:

$$
\begin{equation*}
P_{\mathrm{o}}=\frac{2 \mathrm{~V}_{\mathrm{CR}}{ }^{2}}{\mathbf{R}_{\mathrm{c}-\mathrm{c}}} \tag{6a}
\end{equation*}
$$

Thus, for a specified output power and collector voltage the collector to collector load resistance can be determined. For output powers in the order of 50 mw to 850 mw , the load impedance is so low that it is essentially a short circuit compared to the output impedance of the transistors. Thus, unlike small signal amplifiers, no attempt is made to match the output impedance of transistors in power output stages. The power gain is given by the formula:

$$
\text { Power Gain }=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\mathrm{in}}}=\frac{\mathrm{I}_{0}{ }^{2}}{\mathrm{I}_{\text {in }}{ }^{2}} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{in}}}
$$

Since $I_{I_{0}}$ is equal to the current gain, Beta, for small load resistance, the power gain $\overline{I_{i n}}$ formula can be written as:

$$
\begin{equation*}
\text { P. G. }=\beta^{2} \frac{\mathrm{R}_{\mathrm{c}-\epsilon}}{\mathrm{R}_{\mathrm{b}-\mathrm{b}}} \tag{6b}
\end{equation*}
$$

where $\mathbf{R}_{c-\mathrm{c}}=$ collector to collector load resistance.
$\mathrm{R}_{\mathrm{b}-\mathrm{b}}=$ base to base input resistance.
$\beta=$ grounded emitter current gain.
Since the load resistance is determined by the required maximum undistorted output power, the power gain can be written in terms of the maximum output power by combining equations (6 a) and (6 b) to give:

$$
\begin{equation*}
P, G=\frac{2 \beta^{2} V_{C E^{2}}}{R_{b-b} P_{o u t}} \tag{6c}
\end{equation*}
$$

CLASS A OUTPUT STAGES

A Class A output stage is biased as shown on the collector characteristics below:

FIGURE 6.5
The operating point is chosen so that the output signal can swing equally in the positive and negative direction. The maximum output power without clipping is equal to:

$$
P_{\text {out }}=\frac{V_{C E} I_{e}}{2}
$$

$$
P_{\text {out }}=\frac{V_{C E} I_{e}}{2}
$$

The load resistance is then given by the formula:

$$
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{GE}}}{\mathrm{I}_{\mathrm{c}}}
$$

Combining these two equations, the load resistance can be expressed in terms of the collector voltage and power output by the formula below:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{CE}^{2}}}{2 \mathrm{P}_{\mathrm{o}}} \tag{6d}
\end{equation*}
$$

For output powers of 10 mw and above, the load resistance is very small compared to the transistor output impedance and the current gain of the transistor is essentially the short circuit current gain Beta. Thus for a Class A output stage the power gain is given
by the formula:

$$
\begin{equation*}
\text { P. G. }=\frac{\beta^{2} \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{in}}}=\frac{\beta^{2} \mathrm{~V}_{\mathrm{CE}^{2}}}{2 \mathrm{R}_{\mathrm{in}} \mathrm{P}_{o}} \tag{6e}
\end{equation*}
$$

CLASS A DRIVER STAGES

For a required output power of 250 mw , the typical gain for a push-pull output stage would be in the order of 23 db . Thus the input power to the output stage would be about 1 to 2 mw . The load resistance of a Class A driver stage is then determined by the power that must be furnished to the output stage and this load resistance is given by equation (6 d). For output powers in the order of a few milliwatts, the load resistance is not negligible in comparison to the output impedance of the transistors, therefore, more exact equations must be used to determine the power gain of a Class A driver stage. From four terminal network theory, after making appropriate approximations, it can be shown that the voltage gain is given by the formula:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{F}}=\frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{~h}_{\mathrm{ib}}} \tag{6f}
\end{equation*}
$$

where $\mathrm{h}_{\mathrm{ib}}=$ grounded base input impedance,
The current gain is given by the formula:

$$
\begin{equation*}
A_{I}=\frac{a}{1-a+R_{L} h_{o b}} \tag{6~g}
\end{equation*}
$$

$$
\text { where } \mathrm{h}_{\mathrm{ob}}=\text { grounded base output conductance. }
$$

The power gain is the product of the current gain and the voltage gain, thus unlike the formula for high power output stages, there is no simple relationship between required output power and power gain for a Class A driver amplifier.

DESIGN CHARTS

Figures 6.6 through 6.16 are design charts for determination of transformer impedances and typical power gains for Class A driver stages, Class A output stages, and Class B push-pull stages. The transformer-power output charts take into account a transformer efficiency of 75% and therefore may be read directly in terms of power delivered to the loudspeaker. Power gain charts show the ratio of output power in the collector circuit to input power in the base circuit and therefore do not include transformer losses. Since the output transformer loss is included in the one chart and the design procedure used below includes the driver transformer loss, it can be seen that the major losses are accounted for.

The charts can best be understood by working through a typical example. Assume a 500 mw output is desired from a 9 v amplifier consisting of a driver and push-pull output pair. Also the signal source has an available power output of $156 \mathrm{~m} \mu \mathrm{w}$ (156×10^{-9} watts). Overall power gain required then is:

$$
\text { P.G. }=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{500 \mathrm{mw}}{156 \mathrm{~m} \mu \mathrm{~W}}=\frac{500 \times 10^{-3}}{156 \times 10^{-0}}=3.2 \times 10^{6}
$$

or approximately 65 db .
To obtain 500 mw in the loudspeaker, the output pair must develop 500 mw plus the transformer loss.

$$
P_{\text {collector }}=\frac{P_{\text {out }}}{\text { transformer eff. }}=\frac{500 \mathrm{mw}}{.75}=667 \mathrm{mw}
$$

From Figure 6.10, a pair of 2 N 321 's in Class B push-pull has a power gain of approximately 24.5 db at 667 mw . This is a numerical gain of 280 so the power required by the output stage is:

$$
P_{\text {in }}=\frac{P_{\text {out }}}{\text { Gain }}=\frac{667 \mathrm{mw}}{280}=2.88 \mathrm{mw}
$$

If the driver transformer is 75% efficient, the driver must produce:

$$
P_{\mathrm{driver}}=\frac{\text { P into output stage }}{75 \%}=\frac{2.38 \mathrm{mw}}{.75}=3.18 \mathrm{mw}
$$

The remaining power gain to be obtained from the driver is $65 \mathrm{db}-24.5 \mathrm{db}=40.5 \mathrm{db}$. From Figure 6.15 the 2 N 322 has a power gain of 40.5 db at a power output of 3.18 mw .

The output transformer primary impedance is obtained from Figure 6.6, on the 9 volt supply line at 500 mw output, and is 212 ohms or approximately 200 ohms. The secondary should, of course, match the loudspeaker. From Figure 6.12 the driver transformer primary impedance is 7000 ohms . Therefore, a 7000 ohm or even a 5000 ohm transformer can be used. The secondary must be center-tapped. Typical values of impedance run from 1200 ohms to 4000 ohms . See the specification sheet of the specific output type used for the exact value of input impedance. When this procedure is used for commercial designs it must be remembered that it represents full battery voltage, typical power gain and input impedance, and therefore does not account for end-limit points.

FIGURE 6.6

FIGURE 6.7

FIGURE 6.8

FIGURE 6.9

AUDIO AMPLIFIERS

FIGURE 6.10

FIGURE 6.11

FIGURE 6.12

FIGURE 6.13

FIGURE 6.14

FIGURE 6.15

FIGURE 6.16

AMPLIFIER CIRCUIT DIAGRAMS

SIMPLE AUDIO AMPLIFIER
FIGURE 6.17

R SHOULD BE ADJUSTED FOR OPTIMUN RESULTS

direct coupled "battery saver" Amplfier

FIGURE 6.18

CODE PRACTICE OSCILLATOR
FIGURE 6.19

LOUDSPEAKER AUDIO AMPUFIER
FIGURE 6.20

THREE TRANSISTOR PHONO AMPUFIER
FIGURE 6.21

FIVE TRANSISTOR•PHONO AMPLIFIER

7. "HI-FI" CIRCUITS

Transistors are ideally suited for high fidelity amplifiers since there is no problem with microphonics or hum pick-up from filaments as there is with tubes. Transistors are inherently low impedance devices and thus offer better matching to magnetic pick-ups and loudspeakers for more efficient power transfer.

Transistor circuits with negative feedback can give the wide frequency response and low distortion needed in hi-fi equipment. In general, the distortion reduction is about equal to the gain reduction for the circuit to which negative feedback is applied. The input and output impedances of amplifiers with feedback are either increased or decreased, depending on the form of feedback used. Voltage feedback, over one or several transistor stages, from the collector decreases the output impedance of that stage; whereas current feedback from the emitter increases the output impedance of that stage. If either of these networks are fed back to a transistor base the input impedance is decreased, but if the feedback is to the emitter then the impedance is increased. The feedback can be applied to the emitter for effective operation with a low generator impedance, whereas the feedback to the base is effective with a high impedance (constant current) source. If the source impedance was low in the latter case then most of the feedback current would flow into the source and not into the feedback amplifier. The feedback connections must be chosen to give a feedback signal that is out-of-phase with the input for negative feedback.

Care must be used in applying feedback around more than two transistor stages to prevent high frequency instability. This instability results when the phase shift through the transistor amplifiers is sufficient to change the feedback from negative to positive. The frequency response of the feedback loop is sometimes limited to stabilize the circuit. At the present time, the amount of feedback that can be applied to most audio power transistors is limited because of the poor frequency response in the common emitter and common collector connections. The common collector connection offers the advantage of local voltage feedback that is inherent with this connection. Local feedback (one stage only) can be used on high phase shift amplifiers to increase the frequency response and decrease distortion.

PREAMPLIFIERS

Preamplifiers have two major functions: (1) increasing the signal levei from a pick-up device to 1 or 2 volts rms, and (2) providing compensation if required to equalize the input signal for a constant output with frequency.

The circuit of Figure 7.1 meets these requirements when the pick-up device is a magnetic phono cartridge (monaural or stereo), or a tape head. The total harmonic distortion of the preamp is less than $1 / 2 \%$.

This preamp will accommodate most magnetic pick-up impedances. The input impedance to the preamp increases with frequency because of the frequency selective negative feedback to the emitter of TR1. The impedance of the magnetic pick-ups will also increase with frequency but are below that of the preamp.

The first two stages of this circuit have a feedback bias arrangement for current stabilization of both stages at ambient temperatures less than $40^{\circ} \mathrm{C}\left(105^{\circ} \mathrm{F}\right)$. R2 from the emitter of TR2 provides this DC current feedback to the base of TR1. R2 should be adjusted to give 2 volts at the collector of TR1. The output stage is well stabilized with a 5 K emitter resistance.

The AC negative feedback from the collector of TR2 to the emitter of TR1 is frequency selective to compensate for the standard NARTB recording characteristic

PHONO-TAPE PREAMPLIFIER
FIGURE 7.1
for tape or the standard RIAA for phonograph records. The flat response from a standard NARTB pre-recorded tape occurs with the Treble Control (R12) at mid-position or 12 K ohms (see Figure 7.2). There is about 8 db of treble boost with the Control at 25 K maximum position, and approximately 20 db of treble cut with $\mathrm{K} 12=0$. Mid-position of the Treble Control also gives flat response from a standard RIAA recording.

FIGURE 7.2

The voltage feedback from the collector of TR2 decreases at low frequencies because of the increasing reactance of the feedback capacitor in series with the Treble Control. Each of the two feedback networks give the desired increase in gain at the lower frequencies to accomplish the correct compensation. If this feedback capacitor were shunted by an electrolytic capacitor, the preamplifier would give constant gain at all frequencies (in the "Tape" switch position) and the gain will decrease as R12 is decreased. With this flat preamp response a tuner may be connected to the preamp input with a variable attenuator network. This network might consist of a 50 K potentiometer in series with a 1 K resistor across the tuner output to ground, connect the preamp input across the 1 K resistor which has one side on ground.

The RIAA feedback network (with Treble Control at mid-position) has a net feedback resistance of 6 K to decrease the gain because of the higher level input. This resistance has a . $01 \mu \mathrm{f}$ capacitor in parallel for decreasing the amplifier gain at the higher frequencies in accordance with RIAA requirements. This eliminates the need to load a reluctance pick-up with the proper resistance for high frequency compensation. If it is desirable to build the preamplifier for phonograph use only, the compensating feedback network would consist only of a $.04 \mu \mathrm{f}$ feedback capacitor in series with a 6 K resistor (or a 10 K Treble Control) which has a $.01 \mu \mathrm{f}$ capacitor in parallel.

The emitter-follower output stage of the preamp gives a low impedance output for a cable run to a power amplifier (transistor or tube) and acts as a buffer so that any preamp loading will not affect the equalization characteristic.

The Treble Control should have a linear taper and the Level Control an audio taper. Two 9 volt batteries will give good life in this application since the total supply drain is approximately 3.5 ma DC. This 18 volts may also be obtained by suitable decoupling from a higher voltage supply that is available.

The preamplifier of Figure 7.1 may be altered to compensate for tapes recorded at $33 / 4$ inches per second by setting R12 at 25 K ohms and making the feedback capacitor $.02 \mu \mathrm{f} \pm 20 \%$. In addition, the 47 ohm resistor from the emitter of TR1 to ground may be shunted with $.5 \mu \mathrm{f}$ to attain a relatively flat response to 10 Kc . The value needed for this shunt capacitor will depend somewhat on the high frequency response of the tape head that is used, since this capacitor contributes to increased circuit gain above 3 Kc .

BASS BOOST CIRCUIT

The bass boost circuit of Figure 7.3 operates on the output of the preamp (Figure 7.1). With this addition, the operator now has the necessary treble and bass control

bass boost circuit
FIGURE 7.3
to compensate for listening levels, or deficiencies in program material, pick-up, speakers, etc. This bass boost circuit gives the operator independent control of the level, or amount of bass boost desired, or the level control can be used as a loudness control.

It is usually desirable to have some method of boosting the level of the lower portion of the audio spectrum as the overall sound level is decreased. This is to compensate for the non-linear response of the human ear as shown in the Fletcher-Munson curves that are often referred to in the audio industry. The ear requires a higher level for the low frequency sound to be audible as the frequency is decreased and also as the overall spectrum level is decreased.

Figure 7.4 shows the frequency characteristics of this bass boost circuit. With the level control set for zero attenuation at the output there is no bass boost available, but as the output level is attenuated, the available bass boost increases.

Figure 7.4 shows the frequency response (lower dashed curve) when the output is attenuated 40 db and the Bass Boost Control is set for minimum (50 K ohms). The solid curve immediately above represents the frequency response when the Bass Boost Control is set at maximum (zero ohms). Thus a frequency of 30 cycles can have anything from zero to 27 db of boost with respect to 1 KC , depending on the adjustment of the Bass Boost Control.

The Fletcher-Munson contours of equal loudness level show most of the contour changes involve a boost of the bass frequencies at the lower levels of intensity. Therefore, this circuit combination fulfills the requirements of level control, bass boost and loudness control. This boost circuit operates with the preamp (Figure 7.1) Level Control performing the same function as the Level Control in Figure 7.3. The Bass Boost Control may be a standard 50 K potentiometer with a linear taper. The desired inductance may be obtaincd by using the green and yellow leads on the secondary of Argonne transistor transformer \#AR-128.

HYBRID PREAMPLIFIER

The hybrid preamplifier circuit of Figure 7.5 uses a similar feedback equalization technique to that of Figure 7.1 and therefore will accommodate most magnetic pick-up
impedances. There is a small amount of treble boost above 10 KC due to the $.01 \mu \mathrm{f}$ capacitor from the $12 A X 7$ cathode to ground. The Treble Control is set near midposition for à compensated output from a standard RIAA recording or an NARTB recorded tape.

HYBRID PHONO-TAPE PREAMPLIFIER
FIGURE 7.5

The 2 N 508 transistor is biased at approximately .6 ma from a constant current source for good current stability with temperature and transistor interchangeability. R1 and R2 bias the base for the desired $\mathrm{V}_{\text {ce. }} \mathrm{V}_{\mathrm{ce}}$ is in the range of .5 to 5 volts. This voltage varies with leakage current of Cl , also with h_{Fe} and I_{co} for different transistors. This range of V_{Cs} bias has little effect on the operation of the preamplifier. V_{CB} may reach saturation at ambient temperatures above $55^{\circ} \mathrm{C}$.

The standard reference level for S / N (signal-to-noise) measurements in tape recording is the maximum level at which a 400 cycle signal can be recorded at 2% harmonic - distortion. The hybrid preamplifier of Figure 7.5 is capable of a S / N of 60 db . The signal output from this reference level is approximately 1.5 volts and the total harmonic distortion of the preamp at this level is under 1%.

A dual preamp for a stereophonic disc or tape system could be built with two identical preamps as in Figure 7.5, using only one tube (12AX7) and two transistors (2N508).

NPN PREAMPLIFIER FOR MAGNETIC PICKUPS

In vacuum tube circuitry there is a problem in maintaining high S / N ratio at low audio frequencies because of the lower signal transfer from a magnetic pickup (tape, phono, or microphone) to the tube grid.

The lower input impedance of the transistor more nearly matches the source at low frequencies for a better signal transfer and thus improved S / N ratio. The input signal level at 100 cps has about 40 db of amplification in Figure 7.6 before it reaches the tube grid.

This circuit has a constant collector bias current that is independent of transistor parameters. The collector to emitter voltage, V_{CF}, is biased with a DC feedback network from the collector which helps to stabilize V_{CE}. This circuit should operate to about $50^{\circ} \mathrm{C}$ ambient temperature with the 2 N 169 and to $60^{\circ} \mathrm{C}$ with the 2 N 167 .

NPN PREAMPLIFIER FOR MAGNETIC PICKUPS
FIGURE 7.6

The circuit has an input impedance of about 3 K ohms, and frequency compensation of the input signal may be accomplished in a following stage.

POWER AMPLIFIERS

A great deal of effort has gone into developing transformerless push-pull amplifiers using vacuum tubes. Practical circuits, however, use many power tubes in parallel to provide the high currents necessary for direct driving of low impedance loudspeakers.

The advent of power transistors has given new impetus to the development of transformerless circuits since the transistors are basically low voltage, high current devices. The emitter follower stage, in particular, offers the most interesting possibilities since it has low inherent distortion and low output impedance.

Figure 7.7 is a direct coupled power amplifier with excellent low frequency response, and also has the advantage of a feedback arrangement for current stabilization of all stages. The feedback system also stabilizes the voltage division across the power output transistors TR4 and TR6 which operate in a Class B push-pull arrangement. TR3 and TR5 also operate Class B in the Darlington connection to increase the current gain. Using an NPN for TR5 gives the required phase inversion for driving TR6 and also has the advantage of push-pull emitter follower operation. TR4 and TR6 have a small forward bias to minimize crossover distortion. This bias is set by the voltage drop across the 100 ohm resistors that shunt the input to TR4 and TR6. TR3 and TR5 are biased for the same reason with the voltage drop across the 1 N 91 . A 68 ohm resistor would serve the same function as the 1 N 91 except there would be no temperature compensation. Thermistors have also been used to compensate for the temperature variation of the emitter-base resistance, but they do not track this variation as well as a germanium junction diode which has temperature characteristics similar to the transistor.

TR2 is a Class A driver requiring a very low impedance drive which is accomplished by an emitter follower TR1. TRI needs a current source for low distortion, thus R1 and the Level Control supply the desired drive impedance. The Level Control should be set for a value of approximately 2 K ohms when this amplifier is driven by the preamplifier of Figure 7.1. This will permit the amplifier to be driven to full output, TR1 has an emitter current of 1 to 1.5 ma , and TR2 has a 2 to 3 ma bias.

SEVEN WATT POWER AMPUFIER
FIGURE 7.7

The bias adjust R2 is set for one-half the supply voltage across TR6 and can be trimmed for symmetrical clipping at maximum power output. TR4 and TR6 have a beta cut-off at approximately 7 Kc . The phase shift and drop in beta gives rise to a decline in transistor efficiency which causes an elevation of junction temperature. The $.001 \mu \mathrm{fd}$ feedback capacitor from collector to base of TR2 aids in stabilizing this circuit by reducing the phase shift and high frequency gain of this stage. The $220 \mu \mu \mathrm{fd}$ capacitor shunting the bias network further aids the stabilization with high frequency negative feedback from output to input. This circuit has approximately 15 db of overall voltage feedback with the 27 K resistor from load to input. The speaker system is shunted by 22 ohm in series with $.2 \mu \mathrm{fd}$ to prevent the continued rise of the amplifier load impedance and its accompanying phase shift beyond the audio spectrum.

The overall result, from using direct-coupling, no transformers, and ample degeneration, is an amplifier with output impedance of $1 / 2 \mathrm{ohm}$ for good speaker damping, and very low total harmonic distortion. The frequency response at average listening levels is flat over the audio spectrum.

When checking for maximum power out at the higher frequencies, a sinewave can be applied only for a short duration before sufficient heating for runaway results as indicated above. To protect the power transistors, a current meter should be used in series with the voltage supply for quick, visual indication of runaway while checking power output above approximately 2 Kc . There is not sufficient sustained high fre-
quency power in regular program material to precipitate this instability. Thus the actual performance of the amplifier does not suffer since the power level in music and speech declines as the frequency increases beyond about 1 Kc .

This amplifier is capable of a 7 watt output with less than 1% harmonic distortion ints a 4,8 or 16 ohm speaker when used with the power supply of Figure 19.3, page 202.

The power transistors TR4 and TR6 should each be mounted on an adequate heat radiator such as used for transistor output in an automobile radio, or mounted on a $3^{\prime \prime} \times 3^{\prime \prime} \times 32^{\prime \prime}$ aluminum plate that is insulated from the chassis.

STEREOPHONIC SYSTEM

A complete semiconductor, stereophonic playback system may be assembled by using the following circuits in conjunction with a stereophonic tape deck or phono player.

BLOCK DIAGRAM OF STEREOPHONIC SYSTEM
FIGURE 7.8

Two identical preamplifier circuits can use a common 18 volt battery supply. The circuitry of Figure 7.1 may be used with the switch and RIAA network eliminated if the preamps are to be used for tape only.

The output of each preamp is fed to a power amplifier as indicated in Figure 7.8. Two identical power amplifiers with circuitry as in Figure 7.7 can use a common power supply as shown in Figure 19.4, page 202. The output of each amplifier fed to its respective speaker completes the stereo system as shown in Figure 7.8.

DUAL 10 WATT STEREO SYSTEM

A dual 10 watt stereo system consists of two identical amplifiers with circuitry of Figure 7.9 using the common power supply of Figure 19.5, page 202. This power supply has separate decoupled outputs for each amplifier. The stereo system uses the same preamplifiers as that of Figures 7.1 and 7.3.

The power amplifier of Figure 7.9 is similar to that of Figure 7.7. Figure 7.9 uses transistors with a higher voltage rating, and also the 2 N 553 transistor has a beta cut-off frequency of approximately 25 Kc . Thus the 2N553's in Figure 7.9 give increased
efficiency and thus better stability at the higher frequencies. This amplifier with power supply of Figure 19.5, page 202, is capable of a 10 watt output with less than 1% distortion into an 8 or 16 ohm speaker.

TEN WATT POWER AMPLIFIER
FIGURE 7.9

8. RADIO RECEIVER CIRCUITS

AUTODYNE CONVERTER CIRCUITS

The converter stage of a transistor radio is a combination of a local oscillator a mixer and an IF amplifier. A typical circuit for this stage is shown in Figure 8.1.

FOR ADDITIONAL INFORMATION SEE PAGE 226

AUTODYNE CONVERTER

FIGURE 8.1

Redrawing the circuit to illustrate the oscillator and mixer sections separately, we obtain Figures 8.2 and 8.3.

The operation of the oscillator section (8.2) is as follows:
Random noise produces a slight variation in base current which is subsequently amplified to a larger variation of collector current. This A.C. signal in the primary of L_{2} induces an A.C. current into the secondary of L_{2} tuned by C_{B} to the desired oscillator frequency. Co then couples the resonant frequency signal back into the emitter circuit. If the feedback (tickler) winding of L_{2} is properly phased the feedback will be positive (regenerative) and of proper magnitude to cause sustained oscillations. The secondary of L_{2} is an auto-transformer to achieve proper impedance match between the high impedance tank circuit of L_{2} and the relatively low impedance of the emitter circuit.
\mathbf{C}_{1} effectively bypasses the biasing resistors \mathbf{R}_{2} and \mathbf{R}_{3} to ground, thus the base is A.C. grounded. In other words, the oscillator section operates essentially in the grounded base configuration.

The operation of the mixer section (8.3) is as follows:
The ferrite rod antenna L_{1} exposed to the radiation field of the entire frequency spectrum is tuned by \mathbf{C}_{Δ} to the desired frequency (broadcast station).

The transistor is biased in a relatively low current region, thus exhibiting quite non-linear characteristics. This enables the incoming signal to mix with the oscillator signal present, creating signals of the following four frequencies:

1. The local oscillator signal.
2. The received incoming signal.
3. The sum of the above two.
4. The difference between the above two.

The IF load impedance T_{1} is tuned here to the difference between the oscillator and incoming signal frequencies. This frequency is called the intermediate frequency (I.F.) and is conventially $455 \mathrm{KC} / \mathrm{S}$. This frequency will be maintained fixed since C_{a} and C_{B} are mechanically geared (ganged) together. R_{4} and C_{a} make up a filter to prevent undesirable currents flowing through the collector circuit. C_{2} essentially bypasses the biasing and stabilizing resistor \mathbf{R}_{1} to ground. Since the emitter is grounded and the incoming signal injected into the base, the mixer section operates in the "grounded emitter" configuration.

IF AMPLIFIERS

A typical circuit for a transistor IF amplifier is shown by Figure 8.4.

FIGURE 8.4
The collector current is determined by a voltage divider on the base and a large resistance in the emitter. The input and output are coupled by means of tuned IF transformers. The .05 capacitors are used to prevent degeneration by the resistance in the emitter. The collector of the transistor is connected to a tap on the output transformer to provide proper matching for the transistor and also to make the performance of the stage relatively independent of variations between transistors of the same type. With a rate-grown NPN transistor such as the 2 N 293 , it is unnecessary to use neutralization to obtain a stable IF amplifier. With PNP alloy transistors, it is necessary to use neutralization to obtain a stable amplifier and the neutralization capacitor depends on the collector capacitance of the transistor. The gain of a transistor IF amplifier will decrease if the emitter current is decreased. This property of the transistor can be used to control the gain of the IF amplifier so that weak stations and strong stations will produce the same audio output from a radio. Typical circuits for changing the gain of an IF amplifier in accordance with the strength of the received signal are explained in the A.V.C. section of this chapter.

AUTOMATIC VOLUME CONTROL CIRCUITS

A.V.C. is a system which automatically varies the total amplification of the signal in a radio receiver with changing strength of the received signal carrier wave.

From the definition given, it would be correctly inferred that a more exact term to describe the system would be automatic gain control (A.G.C.).

Since broadcast stations are at different distances from a receiver and there is a great deal of variation in transmitted power from station-to-station, the field strength around a receiver can vary by several orders of magnitude. Thus, without some sort of automatic control circuit, the output power of the receiver would vary considerably when tuning through the frequency band. It is the purpose of the A.V.C. or A.G.C. circuit to maintain the output power of the receiver constant for large variations of signal strengths,

Another important purpose of this circuit is its so-called "anti-fading" properties. The received signal strength from a distant station depends on the phase and amplitude relationship of the ground wave and the sky wave. With atmospheric changes this relationship can change, yielding a net variation in signal strength. Since these changes may be of periodic and/or temporary nature, the A.V.C. system will maintain the average output power constant without constantly adjusting the volume control.

The A.V.C. system consists of taking, at the detector, a voltage proportional to the incoming carrier amplitude and applying it as a negative bias to the controlled amplifier thereby reducing its gain.

In tube circuits the control voltage is a negative going DC grid voltage creating a loss in transconductance (Gm).

In transistor circuits various types of A.V.C. schemes can be used:

EMITTER CURRENT CONTROL

As the emitter current of a transistor is reduced (from 1.0 ma to .1 ma for instance) various parameters change considerably (see Figure 8.5).

CHARAGTERISTICS VS EMITTER CURRENT
FIGURE 8.5
The effect of these changes will be twofold:

1. A change in maximum available gain and
2. A change in impedance matching since it can be seen that both $h_{o k}$ and $h_{i b}$ vary radically.
Therefore, a considerable change in power gain can be obtained as shown by Figure 8.6.

FIGURE 8.6
On the other hand, as a result of I_{co} (collector leakage current) some current always flows, thus a transistor can be controlled only up to a point and cannot be "cut-off" completely. This system yields generally fair control and is, therefore, used more than others. For performance data see Figure 8.7.

FIGURE 8.7
AUXILIARY A.V.C. SYSTEMS
Since most A.V.C. systems are somewhat limited in performance, to obtain improved control, auxiliary diode A.V.C. is sometimes used. The technique used is to shunt some of the signal to ground when operating at high signal levels, as shown by Figure 8.8.

FIGURE 8.8
In the circuit of Figure 8.8 diode CR_{1} is back-biased by the voltage drops across R_{1} and R_{2} and represents a high impedance across T_{1} at low signal levels. As the signal strength increases, the conventional emitter current control A.V.C. system creates a bias change reducing the emitter current of the controlled stage. This current reduction coupled with the ensuing impedance mismatch creates a power gain loss in the stage. As the current is further reduced, the voltage drop across R_{2} becomes smaller thus changing the bias across CR_{1}. At a predetermined level CR_{1} becomes forward biased, constituting a low impedance shunt across T_{1} and creating a great deal of additional A.V.C. action. This system will generally handle high signal strengths as can be seen from Figure 8.7. Hence, almost all radio circuit diagrams in the circuit section of this manual use this system in addition to the conventional emitter current control.

DETECTOR STAGE

In this stage (see Figure 8.9), use is made of a slightly forward biased diode in order to operate out of the square law detection portion of the I-E characteristics. This stage is also used as source of AGC potential derived from the filtered portion of the signal as seen across the volume control (R9). This potential, proportional to the signal level, is then applied through the AGC filter network C4, R7 and C5 to the base of the 1st IF transistor in a manner to decrease collector current at increasing signal levels. R8 is a bias resistor used to fix the quiescent operating points of both the 1st IF and the detector stage, while C6 couples the detected signal to the audio amplifier. (See Chapter 6 on Audio Amplifiers.)

FIGURE 8.9

REFLEX CIRCUITS

"A reflex amplifier is one which is used to amplify at two frequencies - usually intermediate and audio frequencies."*

The system consists of using an I.F. amplifier stage and after detection to return the audio portion to the same stage where it is then amplified again. Since in Figure 8.10,

bLock diagram of receiver
FIGURE 8. 10
two signals of widely different frequencies are amplified, this does not constitute a "regenerative effect" and the input and output loads of these stages can be split audio - I.F. Ioads. In Figure 8.11, the I.F. signal ($455 \mathrm{Kc} / \mathrm{s}$) is fed through T2 to the detector circuit CRI, C3 and R5. The detected audio appears across the volume control R5 and is returned through C 4 to the cold side of the secondary of TI .

FIGURE 8.11
Since the secondary only consists of a few turns of wire, it is essentially a short circuit at audio frequencies. CI bypasses the I.F. signal otherwise appearing across the parallel combination of RI and R2. The emitter resistor R3 is bypassed for both audio and I.F. by the electrolytic condenser C2. After amplification, the audio signal appears across R4 from where it is then fed to the audio output stage. C5 bypasses R4 for I.F. frequencies and the primary of T 2 is essentially a short circuit for the audio signal.

The advantage of "reflex" circuits is that one stage produces gain otherwise requiring two stages with the resulting savings in cost, space, and battery drain. The disadvantages of such circuits are that the design is considerably more difficult, although once a satisfactory receiver has been designed, no outstanding production difficulties should be encountered. Other disadvantages are a somewhat higher amount of playthrough (i.e. signal output with volume control at zero setting), and a minimum volume effect. The latter is the occurrence of minimum volume at a volume control setting slightly higher than zero. At this point, the signal is distorted due to the balancing out of the fundamentals from the normal signal and the out-of-phase playthrough component. Schematics of complete radios are on pages 73 through 83.

[^0]
COMPLETE RADIO RECEIVER CIRCUIT DIAGRAMS

DIRECT COUPLED VEST POCKET RADIO FIGURE 8.12

SIMPLE RADIO RECEIVER FIGURE 8.13

TWO TRANSISTOR RADIO RECEIVER FIGURE 8.14

three transistor reflex receiver

$R_{1}, R_{7}, R_{9},-10,000$ OHM
$R_{12},-$ VOLUME CONTROL
R_{12}, -VOLUME CONTROL 10,000 OHM
$R_{2},-27,000$ OUDM TAPER
$R_{3}=1500$
$\left.\begin{array}{l}\Delta C_{1},-190.6 \\ \Delta C_{2}-89.3\end{array}\right\}$ AN MODEL 242

CR, CR ${ }_{2}$-DRII7, IN64G,OR CK706A OR EQUIV.

* FOR FURTHER COMPONENT INFORMATION SEE PAGE 328
FIGURE 8.17

FOUR TRANSISTOR SUPERHETERODYNE BROADCAST RRCEIVER
FIGURE 8.18

FIVE TRANSISTOR SUPERHETERODYNE BROADCAST RECEIVER

-

SIX TRANSISTOR SIX YOIT BROADCAST RECEIVER

$* L_{1}=435 \mu h \pm 10 \%$
$* L_{2}=250 \mu h \pm 10 \%$
${ }^{2}=2 R_{2}-$ ORIIT, IN64G,
${ }^{*}-2 R_{1}, C R_{2}$ - DRIIT, ING4G, OR CK7G6A OR EQUIV.
$\left.\begin{array}{l}* \Delta C_{1}-190.6 \\ * \Delta C_{2}-89.3\end{array}\right\}$ R/C MODEL 242
NOMINAL SENSITIVITY = 200 MICROVOLTS / METER
(MEASURED WITH 50 MILLIWATTS REFERENCE POWER OUTRUT) MAXIMUM POWER OUTPUT . 6 WATTS.

ZERO SIGNAL BATTERY DRAIN 7.0 MILLIAMPS

* for further component information see page 328
$\mathrm{R}_{18}, \mathrm{R}_{19}=8.2 \mathrm{OHM}$
$C_{1},-.02 \mu \mathrm{fd}$
$\mathrm{C}_{2}, \mathrm{C}_{3},-.01 \mu \mathrm{fd}$
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8},-.05 \mu \mathrm{fd}$
5, $\mathrm{C}_{10},-6 \mu \mathrm{fd}, 12 \mathrm{~V}$
$\mathrm{C}_{11},-.003 \mu \mathrm{fd}$
$C_{12}, C_{13}, C_{14},-50 \mu \mathrm{fd}, 12 \mathrm{~V}$
G.E. 2NIO87 CONVERTER
TR3, G.E. 2NI69 OR 2NII2I 2NDIF,
TR4, -G.E. 2NI92 OR 2N324 DRIVER
$* T_{1},-5,000 / 2600 \Omega \mathrm{CT}$
$* T_{2},-250 \Omega \mathrm{CT} / \mathrm{V} . \mathrm{C}$.
SIX TRANSISTOR NINE VOLT SUPERHETERODYNE BROADCAST RECEIVER

TROL
FIGURE 824

SIX TRANSISTOR, 12 VOLT I WATT RECEIVER

9. TRANSISTOR RADIO SERVICING TECHNIQUES

The major function of a radio receiver is to pick up modulated electromagnetic energy and transform its intelligence (modulation) into acoustical energy. Most modern receivers are of the "Superheterodyne" type, and consist of an Autodyne Converter or Oscillator-Mixer, one or two stages of IF Amplification, a Detector (which also provides a source of Automatic Volume Control power), and finally, one or more stages of Audio Amplification.

The components making up the AC circuitry of these stages include the antenna, oscillator coil, IF and audio transformers, tuning, coupling or bypass capacitors, and the speaker. Troubles in these components can usually be spotted by a DC test after the trouble area has been located by using signal tracing techniques.

Since the transistor is probably the most reliable component in the receiver, it should be the last component to be suspected. This is contrary to the long established rule of thumb used in tube radios, where the tubes are normally checked first. This is especially true in personal portable receivers using subminiature components, i.e., coils using extremely fine wire, electrolytics of extremely small dimension with low voltage ratings, etc. Because of their reliability, transistors are generally soldered into the circuit in printed circuit transistor radios. Removing and testing each transistor, as usually done in a tube set, will not only unnecessarily subject the transistor to high peak heating, but will probably damage some other component, particularly the printed circuit board.

Now that the ground rules are laid for a trouble-shooting procedure, proceed with it in a logical sequence.

First determine whether the battery voltage under load is high enough to operate the receiver. Although most receivers are designed to operate down to one-half the battery voltage, severe distortion, low sensitivity and reduced power output, as well as possible "motorboating", may result from a low supply voltage. Also make a quick visual inspection to locate possible loose, dirty, or intermittent battery, speaker, or antenna connections. The set can now be analyzed further.

The fastest trouble-shooting technique is to inject an appropriate signal into each transistor base going from speaker to antenna. Starting at the audio stages (the volume control, for instance), apply a 400 or 1000 cycle audio signal. If a clean sine-wave with adequate power output appears at the speaker as indicated by an oscilloscope presentation or listening test, both audio circuits and speaker are in operating condition. In this event take an RF/IF generator and apply a $455 \mathrm{Kc} / \mathrm{s}$ signal (30% modulation 400 or $1000 \mathrm{c} / \mathrm{s}$) to the high frequency section of the receiver. As soon as the applied signal is not passed by a stage of amplification, this stage should be investigated on a DC basis. Note: Care must be taken that the generator's leads have a series DC blocking condenser in order not to change the bias condition in the circuit under investigation.

As a first check, it should be determined that both the magnitude and polarity of the supply voltage are appropriately applied. If NPN transistors are used, the collector will be positive with respect to emitter and base. The latter two will be very close voltage-wise, the base being somewhat more positive than the emitter. The opposite polarity applies to PNP transistors.

Figure 9.1 shows collector current vs. base to emitter bias voltage. Notice that a very small increase in $V_{b e}$ produces a large increase in collector current. Thus, there will generally be from .1 to .2 volts between the base and emitter. Either the positive or negative side of the battery may be grounded, especially in sets using both NPN and PNP transistors.

FIGURE 9.1

The next step is to determine bias current. Since base, emitter and collector current are dependent on each other, it generally suffices to measure only one, the collector current for instance. This should be almost equal to the emitter current while the base current, being the difference between the two ($I_{B}=I_{E}-I_{C}$), will generally be very small. Looking at Figure 8.6, it appears that since power gain is maximum between 1.5 and 3.0 ma , most stages will operate in this region. Actually, most RF/IF stages may have operating points down to .5 ma without serious loss of gain. An easy way to measure emitter current in most circuits is to measure to voltage drop across either the emitter resistor or possibly a collector resistor and calculating the current by Ohm's law. For example, if the emitter resistor is 1000 ohms and the measured voltage drop is 1.0 volt then the emitter current is $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}}=\frac{1.0}{1000}=.001$ ampere $=1.0$ milliamp. The insertion of a milliammeter into the emitter circuit will change the bias in the stage and is not a satisfactory testing technique.

If a stage (with the exception of the output stages) operates considerably below .5 ma or above 3.0 ma , it is fairly certain that the stage is operating improperly. Note: Care should be taken to measure these currents in the absence of signal since in AVC controlled stages, current will vary with signal strength.

In an improperly biased circuit, an ohmmeter check of the resistors and capacitors is in order next. If this fails to isolate the problem, the transistor can be replaced. Since it normally takes highly specialized equipment to test transistors (especially high frequency types) it is more practical to test by substitution.

If the trouble is located in the oscillator section of the converter, an IF signal can be passed through the mixer but an RF signal will not produce the necessary IF to get a signal through. In this case it should be determined at once whether the oscillator is operating at all. In the case of the autodyne converter in Figure 8.1, any AC VTVM, such as the Hewlett-Packard 400 C , D, or H, or the Ballantine Models $310-\mathrm{A}$ or 314 , is sensitive enough to measure down to 50 mv and can be connected to the emitter of the converter transistor. If these instruments are not available, use a Vacuum Tube Voltmeter such as the Heathkit Model V-7A on the lowest AC-RMS Scale.

Since the local oscillator operates from $.99-2.075 \mathrm{Mc} / \mathrm{s}$, this VTVM should be provided with an RF probe (Heathkit Model 309C or equivalent). The presence or absence
of oscillator injection voltage can, however, be determined even without the use of such a probe.

The proper magnitude of oscillation should be somewhere between 50 and 500 mv rms, and oscillation must be present over the entire broadcast band. (This can easily be checked by rotating the variable condenser from end to end.) No voltage at this point indicates the absence of oscillator injection, and an ohmmeter check of the oscillator coil should prove it faulty.

To trouble-shoot or align a transistor radio, it is generally helpful to know how much signal strength should be applied at a given stage in order to evaluate the gain of the receiver. The following is a measurement procedure useable for this purpose.

1. An AC VTVM should be connected across the speaker terminals (speaker remaining connected).
2. Applying the signal at any test point, the generator attenuator should be adjusted to get .13 or .4 volts rms reading on the output VTVM. (Since most speaker voice coil impedances are 3.2 ohms , this means that the "reference power output"* is either $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{Z}} \cong \frac{.13^{2}}{3.2} \cong 5 \mathrm{mw}$ or $\mathrm{P}=\frac{.4^{2}}{3.2}=50 \mathrm{mw}$

In various subminiature sets, however, the voice coil impedance is about 16 ohms $^{* *}$ in which case the reference AC voltage becomes $\mathrm{V}=\sqrt{5} \times 10^{-3} \times 16$ $\approx .28$ volts rms for 5 mw reference and $\mathrm{V}=\sqrt{50 \times 10^{-3} \times 16} \approx .89$ volts rms for 50 mw reference.
3. The signal can then be applied to any base as shown in Figures 9.2 and 9.3.

AUDIO STAGE MEASUREMENT

FIGURE 9.2

rf/if stage measurement
FIGURE 9.3

[^1]By having a reference power output, it is now possible to read the input voltage at the generator and obtain the receiver sensitivity at this point. The sensitivity, the operational condition, and the quality of the receiver under test can now be assessed. This assumes the use of audio and RF generators having calibrated and metered attenuators (like Heathkit Model LG-1). In the absence of this type of equipment, two very simple attenuators can be built for RF/IF and for audio. See Figures 9.4 and 9.5. The attenuation will permit the injection of small signal into any circuit under test while the relatively unsensitive VTVM measures RMS voltages 10 or 100 times larger.

TYPICAL INPUT VOLTAGES FOR REFERENCE OUTPUT

	Audio Output Base	Audio Driver Base	Detector Base	2nd IF Base	1st IF Base	Converter Base
6 Transistor Radio\#	150 mv	2.5 mv	50 mv	2.5 mv	$50-100 \mu \mathrm{v}$	$5-10 \mu \mathrm{v}$
5 Transistor Radio	20 mv	5.0 mv	50 mv	2.5 mv	$50 \mu \mathrm{v}$	$5-10 \mu \mathrm{v}$
4 Transistor Radio	20 mv	.5 mv	$5-10 \mathrm{mv}$	-	$200 \mu \mathrm{v}$	$10-20 \mu \mathrm{v}$
\#Reference output is 50 mw, all others 5 mw.						

It will be found that sensitivities will vary from set to set because this measurement is only an indication of the order of magnitude of appropriate sensitivities. Even a 5/I deviation at times can be normal. Deviations larger than $10 / 1$ are strong indications of trouble.
Broadcast Receiver Alignment Procedure:
A conventional set-up procedure is as follows:
a) Connect the output of the IF/RF generator to a radiating loop (Hazeltine \#1150 or equivalent). :

[^2]b) The output meter (AC VTVM) should be connected across the voice coil terminals, the speaker remaining connected.
c) The receiver should be placed one to two feet away from the radiating loop in a plane that optimizes the coupling between the receiving and radiating antennas.
d) Set the volume control of the receiver at maximum volume.
e) Turn the Variable Condenser to the high frequency end of the dial (Gang wide open).
The set is now ready to be aligned.

1. Set the signal generator to $455 \mathrm{Kc} / \mathrm{s}$ and at maximum signal output. At this point there should be considerable output from the receiver.

If the set is operative but does not show enough output, reduce the distance between the receiver antenna and radiating element.

If the output is much larger than the standard reference value (.4 volts across 3.2 ohms $\approx 50 \mathrm{mw}$), reduce the output of the signal generator.
2. Peak the last IF transformer, then the interstage IF transformer, and finally the 1st IF transformer while maintaining an output voltage close to the reference value by gradually reducing the signal generator output voltage.
3. Repeat the same operation going from the Ist IF to the last IF this time. The IF strip is now aligned.
4. Set the generator frequency to $1630 \mathrm{Kc} / \mathrm{s}$. The variable condenser in the receiver should still be tuned to the high frequency end. Adjust the oscillator "trinmer" for maximum output at this point.
5. Now set the variable condenser to its lowest frequency point (gang fully meshed) and tune the signal generator until output is observed from the set (this should be around $530-540 \mathrm{Kc} / \mathrm{s}$).

Should the low frequency fall below $520 \mathrm{Kc} / \mathrm{s}$ or above $540 \mathrm{Kc} / \mathrm{s}$, the oscillator coil slug should be adjusted to move the low frequency end to $530 \mathrm{Kc} / \mathrm{s}$. If this is done, operation number 4 must be repeated. This means that the set was thoroughly misaligned and it may require repeating operations 4 and 5 two or three times before a full frequency range is obtained.
6. Set the generator to $1400 \mathrm{Kc} / \mathrm{s}$ and tune the receiver in very carefully. Now peak the antenna trimmer. The set is now "tracked" *(fully aligned) at $1400 \mathrm{Kc} / \mathrm{s}$.
7. Since it should also be "tracked" at $600 \mathrm{Kc} / \mathrm{s}$,** set the generator to this frequency, tune in the set, and observe whether the sensitivity of the receiver is close to its $1400 \mathrm{Kc} / \mathrm{s}$ value. If this is not the case, then peak the oscillator coil slug (providing the coil is slug tuned) while rocking the gang back and forth around $600 \mathrm{Kc} / \mathrm{s}$. Although this procedure will somewhat reduce the frequency range of the set, it will yield the greatest sensitivity at the tracking points.
8. In case the oscillator coil is not tunable, the variable condenser will have to be "knifed", a procedure of bending the plates on the RF section of the air capacitor, plus realignment, that requires a high degree of experience and is not generally recommended.

[^3]
10. SWITCHING CHARACTERISTICS

A switch is characterized by a high resistance when it is open and a low resistance when it is closed. Transistors can be used as switches. They offer the advantages of no moving or wearing parts and are easily actuated from various electrical inputs. Transistor collector characteristics as applied to a switching application is shown in Figure 10.1. The operating point A at which $I_{c}=I_{C o} / 1-a$ indicates the transistor's high resistance

FIGURE 10.1
when $I_{B}=O$. Since $1-a$ is a small number, I_{c} may be many times greater than $I_{\text {co }}$. Shorting the base to the emitter results in a smaller I_{c}. If the base to emitter junction is reversed biased by more than .2 v , I_{c} will approach I_{c}. Reverse biasing achieves the highest resistance across an open transistor switch.

When the transistor switch is turned on, the voltage across it should be a minimum. At operating point B of Figure 10.1, the transistor is a low resistance. Alloy transistors such as the 2 N 525 have about one ohm resistance when switched on. Grown junction transistors, such as the 2 N 167 have approximately 80 ohms resistance which makes them less suitable for high power switching although they are well suited for high speed computer applications. In order that a low resistance be achieved, it is necessary that point B lie below the knee of the characteristic curves. The region below the knee is referred to as the saturation region. Enough base current must be supplied to ensure that this point is reached. It is also important that both the on and off operating points lie in the region below the maximum rated dissipation to avoid transistor destruction. It is permissible, however, to pass through the high dissipation region very rapidly since peak dissipations of about one watt can be tolerated for a few microseconds with a transistor rated at 150 mw . In calculating the $\mathbf{I}_{\boldsymbol{B}}$ necessary to reach point B, it is necessary to know how $h_{\text {Fe }}$ varies with I_{C}. Curves such as

Figure 10.2 are provided for switching transistors. Knowing $h_{\text {Fe }}$ from the curve gives $I_{B m i n}$ since $I_{B m i n}=\frac{I_{C}}{h_{F E}}$. Generally I_{B} is made two or three times greater than $I_{B \text { min }}$ to allow for variations in $h_{\text {FE }}$ with temperature or aging. The maximum rated collector voltage should never be exceeded since destructive heating may occur once a transistor breaks down. Inductive loads can generate injurious voltage transients. These can be avoided by connecting a diode across the inductance to absorb the transient as shown in Figure 10.3.

FIGURE 10.2

DIODE USED TO PROTECT TRANSISTOR FROM INDUCTIVE voltage transients.

FIGURE 10.3

Lighted incandescent lamps have about 10 times their off resistance. Consequently, I_{B} must be increased appreciably to avoid overheating the switching transistor when lighting a lamp.

A typical switching circuit is shown in Figure 10.4. The requirement is to switch a

Typical transistor switch application FIGURE 10.4

200 ma current in a 25 volt circuit, delivering 5 watts to the load resistor. The mechanical switch contacts are to carry a low current and be operated at a low voltage to minimize arcing. The circuit shown uses a 2 N 525 . The 1 K resistor from the base to ground reduces the leakage current when the switch is open. Typical values are indicated in Figure 10.4.

TEMPERATURE EFFECTS ON SWITCHING CIRCUITS

At high junction temperatures, Ico can become a problem. In the off condition, both the emitter and collector junctions are generally reverse-biased. As a rule, the bias source has an appreciable resistance permitting a voltage to be developed across the resistance by Ico. The voltage can reduce the reverse bias to a point where the base becomes forward biased and conduction occurs. Conduction can be avoided by reducing the bias source resistance, by increasing the reverse bias voltage or by reducing $I_{c o}$ through a heat sink or a lower dissipation circuit design.

The $I_{\text {co }}$ of a transistor is generated in three ways. One component originates in the semiconductor material in the base region of the transistor. At any temperature, there are a number of interatomic energy bonds which will spontaneously break into a hole-electron pair. If a voltage is applied, the hole and electron drift in opposite directions and can be seen as the $I_{\text {co current. If no voltage is present, the hole and }}$ electron eventually recombine. The number of bonds that will break can be predicted theoretically to double about every $10^{\circ} \mathrm{C}$ in germanium transistors and every $6^{\circ} \mathrm{C}$ in silicon. Theory also indicates that the number of bonds broken will not depend on voltage over a considerable voltage range. At low voltages, $I_{c o}$ appears to decrease because the drift field is too small to extract all hole-electron pairs before they recombine. At very high voltages, breakdown occurs.

A second component of $I_{c o}$ is generated at the surface of the transistor by surface energy states. The energy levels established at the center of a semiconductor junction cannot end abruptly at the surface. The laws of physics demand that the energy levels adjust to compensate for the presence of the surface. By storing charges on the surface, compensation is accomplished. These charges can generate an I_{co} component; in fact, in the processes designed to give the most stable $I_{c o}$, the surface energy levels contribute much I_{co} current. This current behaves much like the base region component with respect to voltage and temperature changes. It is described as the surface thermal component in Figure 10.5.

A third component of I_{00} is generated at the surface of the transistor by leakage across the junction. This component can be the result of impurities, moisture or surface imperfections. It behaves like a resistor in that it is relatively independent of temperature but varies markedly with voltage. Figure 10.5(A) shows the regions which contrib. ute to the three components. Figure 10.5(B) illustrates how the components vary with voltage. It is seen that while there is no way to measure the base region and surface energy state components separately, a low voltage $I_{c o}$ consists almost entirely of these two components. Thus, the surface leakage contribution to a high voltage $I_{c o}$ can be readily determined by subtracting out the low voltage value of I_{co}.

(A)

collector voltage
VARIATION OF I I_{CO} COMPONENTS with collector voltage
(B)

(c)

FIGURE 10.5

Figure $10.5(\mathrm{C})$ shows the variation of I_{co} with temperature. Note that while the surface thermal and base $I_{\text {co }}$ components have increased markedly, the leakage component is unchanged. For this reason, as temperature is changed the high voltage I_{co} will change by a smaller percentage than the low voltage Ico.

Figure 10.6 shows the variation of \mathbf{I}_{co} with temperature and voltage for a number of transistor types. Note that the three curves for the 2 N 396 agree with the principles above and show a leakage current less than one microampere.

The variation of current gain at high temperatures is also significant. Since $h_{\text {FE }}$ is defined as $I_{C} / I_{B}, h_{F E}$ depends on $I_{C O}$ since $I_{C} \approx h_{h_{e}}\left(I_{B}+I_{C O}\right)$. If $I_{B}=0$ i.e., if the base is open circuited, a collector current still flows, $\mathrm{I}_{\mathrm{C}}=\mathrm{h}_{\mathrm{te}} \mathrm{I}_{\mathrm{Co}}$. Thus h_{FE} is infinite when $\mathrm{I}_{\mathrm{B}}=0$. As base current is applied, the ratio $\mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{B}}$ becomes more meaningful. If h_{FE} is measured for a sufficiently low I_{C}, then at a high temperature $h_{f_{f}} I_{c o}$ will become equal to I_{c}. At this temperature $h_{F E}$ becomes infinite since no I_{B} is required to maintain

Ic. The AC current gain $h_{f e}$, however, is relatively independent of $I_{c o}$ and generally increases about 2:1 from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FIGURE 10.6

The different electrical properties of the base, emitter and collector regions tend to disappear at high temperatures with the result that transistor action ceases. This temperature usually exceeds $85^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ in germanium and silicon transistors respectively.

When a transistor is used at high junction temperatures, it is possible for regenerative heating to occur which will result in thermal run-away and possible destruction of the transistor. For the maximum overall reliability, circuits should be designed to preclude the possibility of thermal run-away under the worst operating conditions. The subject of thermal run-away is discussed in detail in Chapter 5.

In accordance with theory the collector saturation voltage, $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$, decreases linearly with temperature for most transistors. In the case of alloy transistors, this is a result of the increase of I_{co} with temperature which increases the effective base charge at high temperatures. However, transistors which have an appreciable ohmic resistance in series with the collector or silicon transistors which have a low $\mathbf{I}_{c o}$, generally exhibit a positive temperature coefficient for $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$.

The base to emitter voltage, $\mathrm{V}_{\mathbf{B E}}$, has a negative temperature coefficient which is about 2.0 millivolts per degree Centrigrade for both silicon and germanium transistors. Figure 5.1 shows the emitter to base characteristics of the 2N525 at several different temperatures. The series base resistance and emitter resistance ($\mathrm{r}_{\mathrm{b}}{ }^{\prime}, \mathrm{r}_{\mathrm{e}}{ }^{\prime}$) have a positive temperature coefficient so that the IR drops across these resistances can offset the normal variation of V_{BE} at high values of base current.

The increase in $\mathrm{V}_{\mathrm{CE}}{ }^{\left({ }^{(5 A T)}\right)}$ and the decrease in V_{BE} at high temperatures can lead to instability in DCTL circuits such as shown in Figure 10.9 and result in operation closer to saturation in circuits such as those shown in Figure 10.11.

A major problem encountered in the operation of switching circuits at low temperatures is the reduction in both the a-c and d-c current gain. Figure 10.7 shows the variation of $h_{\text {Fe }}$ with temperature for the 2 N 525 and indicates that at $-55^{\circ} \mathrm{C}$ the value of $h_{\text {FE }}$ drops to about 50% of its value at $25^{\circ} \mathrm{C}$. Most germanium and silicon transistors show approximately this variation of h_{FE} and h_{fe} with temperature. In the design of switching circuits the decrease of h_{FE} and the increase of V_{BE} at the lower temperatures must be taken into account to guarantee reliable circuit operation.

FIGURE 10.7

POWER DISSIPATION

As with most electrical components, the transistor's range of operating conditions is limited by the transistor power dissipation.

Because the transistor is capable of a very low $V_{C E}$ when it is in saturation it is possible to use load lines which exceed the maximum rated dissipation during the switching transient, but do not exceed it in the steady state. Such load lines can be used safely if the junction temperature does not rise to the runaway temperature during the switching transient. If the transient is faster than the thermal time constant of the junction, the transistor case may be considered to be an infinite heatsink. The junction temperature rise can then be calculated on the basis of the infinite heatsink derating factor. Since the thermal mass of the junctions is not considered, the calculation is conservative.

In some applications there may be a tränsient over-voltage applied to transistors when power is turned on or when circuit failure occurs. If the transistor is manufactured to high reliability standards, the maximum voltages may be exceeded provided the dissipation is kept within specifications. While quality alloy transistors and grown junction transistors can tolerate operation in the breakdown region, low quality alloy transistors with irregular junctions should not be used above the maximum voltage ratings.

Quality transistors can withstand much abuse. In experimental work, a 2N43 was operated at a peak power of 15 watts and a peak current of 0.5 amperes with no change in characteristics. 2 N 396 Transistors in an avalanche mode oscillator were operated at peak currents of one ampere. 3N37 Tetrodes rated at 50 milliwatts and 25 milliamperes maximum were operated at a peak power of one watt and a peak current of 200 milliamperes without change in characteristics. Standard production units however should be operated within ratings to ensure consistent circuit performance and long life.

It is generally desirable to heatsink a transistor to lower its junction temperature since life expectancy as well as performance decreases at high temperatures. Heat sinks also minimize thermal fatigue problems, if any exist.

SATURATION

A transistor is said to be in saturation when both junctions are forward biased. Looking at the common emitter collector characteristics shown in Figure 10.8(A) the saturation region is approximately the region below the knee of the curves, since $h_{\text {Fe }}$ usually falls rapidly when the collector is forward biased. Since all the characteristic curves tend to become superimposed in the saturation region, the slope of the curves is called the saturation resistance. If the transistor is unsymmetrical electrically and most transistors are unsymmetrical - then the characteristics will not be directed towards the zero coordinates but will be displaced a few millivolts from zero. For ease of measurement, generally the characteristics are assumed to converge on zero so that the saturation resistance is $\mathrm{r}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SATP})}}{\mathrm{I}_{\mathrm{C}}}$.

While the characteristic curves appear superimposed, an expanded scale shows that $V_{C E}{ }^{(\operatorname{SATP})}$ depends on I_{B} for any given I_{C}. The greater I_{B} is made, the lower $V_{C E}{ }^{(S A T)}$ becomes until I_{B} is so large that it develops an appreciable voltage across the ohmic emitter resistance and in this way increases $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$. In most cases the saturation voltage, $\mathrm{V}_{\mathbf{C E}}{ }^{\left({ }^{(S A T)}\right)}$, is specified rather than the saturation resistance. Figure $10.8(\mathrm{~B})$ showing the collector characteristics in the saturation region, illustrates the small voltage off-set due to asymmetry and the dependence of r_{s} on I_{B}. Note also that r_{s} is a low resistance to both AC and DC.

FIGURE 10.8 (A)

FIGURE 10.8 (B)

Some circuits have been designed making specific use of saturation. The direct coupled transistor logic (DCTL) flip-flop shown in Figure 10.9 utilizes saturation. In saturation $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$ can be so low that if this voltage is applied between the base and emitter of another transistor, as in this flip-flop, there is insufficient forward bias to cause this transistor to conduct appreciably. The extreme simplicity of the circuit

is self evident and is responsible for its popularity. However, special requirements are placed on the transistors. The following are among the circuit characteristics:

First, the emitter junction is never reverse biased permitting excessive current to flow in the off transistor at temperatures above $40^{\circ} \mathrm{C}$ in germanium. In silicon, however, operation to $150^{\circ} \mathrm{C}$ has proved feasible.

Second, saturation is responsible for a storage time delay, slowing up circuit speed. In the section on transient response we see the importance of drawing current out of the base region to increase speed. In DCTL, this current results from the difference between $V_{C E}{ }^{(S A T)}$ and $V_{B E}$ of a conducting transistor. To increase the current, $\mathrm{V}_{\mathrm{CE}}{ }^{(S A T)}$ should be small and r^{\prime} should be small. However, if one collector is to drive more than one base, $r^{\prime}{ }_{b}$ should be relatively large to permit uniform current sharing between bases since large base current unbalance will cause large variations in transient response resulting in circuit design complexity.

Third, since $V_{\text {os }}{ }^{(S a t)}$ and $V_{b e}$ differ by less than .3 volt, in germanium, stray voltage signals of this amplitude can cause faulty performance. While stray signals can be minimized by careful circuit layout, this leads to equipment design complexity. Silicon transistors with a .7 volt difference between $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{sAT})}$ and V_{BE} are less prone to being turned on by stray voltages but are still susceptible to turn off signals. This is somewhat compensated for in transistors with long storage time delay since they will remain on by virtue of the stored charge during short turn-off stray signals. This leads to conflicting transistor requirements - long storage time for freedom from noise; short storage time for circuit speed.

Another application of saturation is saturated flip-flops of conventional configuration. Since $\mathrm{V}_{\mathrm{CF}}{ }^{(\mathrm{SAT})}$ is generally very much less than other circuit voltages, saturating the transistors permits the assumption that all three electrodes are nearly at the same potential making circuit voltages independent of transistor characteristics. This yields good temperature stability, and good interchangeability. The stable voltage levels are useful in generating precise pulse widths with monostable flip-flops. The section on flip-flop design indicates the ease with which saturated circuits can be designed.

In general, the advantages of saturated switch design are: (a) simplicity of circuit design, (b) well defined voltage levels, (c) fewer parts required than in non saturating circuits, (d) low transistor dissipation when conducting, and (e) immunity to short
stray voltage signals. Against this must be weighed the reduction in circuit speed. Speed is affected in a number of ways: (a) much higher trigger power is required to turn off a saturated transistor than an unsaturated one, (b) since $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{SAT})}$, h_{FE} and V_{be} all vary markedly with temperature, circuit speed also depends on temperature.

DIODE COLLECTOR
CLAMPING CIRCUIT TO AVOID SATURATION

COLLECTOR CHARACTERISTICS SHOWING LOAD LINE AND OPERATING POINTS

Collector voltage clamp
FIGURE 10.10

A number of techniques are used to avoid saturation. The simplest is shown in Figure 10.10. The diode clamps the collector voltage so that it cannot fall below the base voltage to forward bias the collector junction. Response time is not improved appreciably over the saturated case since I_{C} is not clamped but rises to $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B}}$. With typical variations of I_{B} and $h_{F E}$ with temperature and life for a standard transistor, I_{C} may vary by as much as $10: 1$. Care should be taken to ensure that the diode prevents saturation with the highest I_{c}. When the transistor is turned off, I_{C} must fall below the value given by $\left(\mathrm{E}_{\mathrm{cc}}-\mathrm{E}_{\mathrm{D}}\right) / \mathrm{R}_{\mathrm{L}}$ before any change in collector voltage is observed. The time required can be determined from the fall time equations in the section on transient response. The diode can also have a long recovery time from the high currents it has to handle. This can further increase the delay in turning off.

Collector current clamp without bias
supply
FIGURE 10.11(A)

A much better way of avoiding saturation is to control I_{B} in such a way that I_{C} is just short of the saturation level. This can be achieved with the circuit of Figure 10.11(A). The diode is connected between a tap on the base drive resistor and the collector. When the collector falls below the voltage at the tap, the diode conducts diverting base current into the collector, preventing any further increase in I_{c}. The voltage drop across R_{2} is approximately $I_{C} R_{2} / h_{\text {FE }}$ since the current in R_{2} is I_{B}. Since the voltage drop across the diode is approximately the same as the input voltage to the transistor, V_{CE} is approximately $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{2} / \mathrm{h}_{\text {FE }}$. It is seen that if the load decreases (I_{C} is reduced) or $\mathrm{h}_{\text {FE }}$ becomes very high, $\mathrm{V}_{\text {CE }}$ decreases towards saturation. Where the change in $h_{F E}$ is known and the load is relatively fixed, this circuit prevents saturation.

Collector current using bias supply
FIGURE 10.11(B)

To avoid the dependence of $V_{C E}$ on I_{C} and $h_{F E}, R_{3}$ may be added as in Figure $10.11(\mathrm{~B})$. By returning R_{3} to a bias voltage, an additional current is drawn through R_{2}. Now $V_{C E}$ is approximately $\left(\frac{I_{C}}{h_{F E}}+I_{3}\right) R_{2} . I_{3}$ can be chosen to give a suitable minimum $V_{C E}$.

Collector current clamp using silicon and germanium diodes FIGURE 10.11(C)

The power consumed by R_{3} can be avoided by using the circuit of Figure 10.11(C). The silicon diode replaces R_{2}. Since the silicon diode has a forward voltage drop of approximately .7 volts over a considerable range of current, it acts as a constant voltage source making $\mathrm{V}_{\text {CE }}$ approximately .7 volts. If considerable base drive is used, it may be necessary to use a high conductance germanium diode to avoid momentary
saturation as the voltage drop across the diode increases to handle the large base drive current.

In applying the same technique to silicon transistors with low saturation resistance, it is possible to use a single germanium diode between the collector and base. While this permits V_{GE} to fall below V_{be}, the collector diode remains essentially nonconducting since the .7 volt forward voltage necessary for conduction cannot be reached with the germanium diode in the circuit.

The diode requirements are not stringent. The silicon diode need never be back biased, consequently, any diode will be satisfactory. The germanium diode will have to withstand the maximum circuit V_{CE}, conduct the maximum base drive with a low forward voltage and switch rapidly under the conditions imposed by the circuit, but these requirements are generally easily met.

Care should be taken to include the diode leakage currents in designing these circuits for high temperatures. All the circuits of Figure 10.11 permit large base drive currents to enhance switching speed, yet they limit both I_{B} and \mathbf{I}_{C} just before saturation is reached. In this way, the transistor dissipation is made low and uniform among transistors of differing characteristics.

It is quite possible to design flip-flops which will be non-saturating without the use of clamping diodes by proper choice of components. The resulting flip-flop is simpler than that using diodes but it does not permit as large a load variation before malfunction occurs. The design procedure for an unclamped non-saturating flip-flop can be found in Transistor Circuit Engineering by R. F. Shea, et al (Wiley).

Stored charge neutralization by capacitor
FIGURE 10.12

Another circuit which is successful in minimizing storage time is shown in Figure 10.12. If the input is driven from a voltage source, it is seen that if the input voltage and capacitor are appropriately chosen, the capacitor charge can be used to neutralize the stored charge, in this way avoiding the storage time delay. In practical circuits, the RC time constant in the base necessary for this action limits the maximum pulse repetition rate.

TRANSIENT RESPONSE TIME

The speed with which a transistor switch responds to an input signal depends on the load impedance, the gain expected from the transistor, the operating conditions just prior to the input signal, as well as on the transistor's inherent speed. The following discussion will assume that the collector load resistance is sufficiently small that $2 \pi R_{L} C_{c} f_{a} \ll 1$ where C_{C} is the collector capacitance. If this is not the case, the rise and fall time equations must be multiplied by the correction factor ($1+2 \pi \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{c}} \mathrm{f}_{a}$).

> (a) TYPICAL CIRCUIT
> $I_{B I}=I_{B 2} \approx 0.5 \mathrm{ma}$
> $I_{C}=10 \mathrm{ma}$
> $I_{C} / I_{B I}<h_{\text {FE }}$
(b) WAVEFORM GENERATED AT A BY SWITCH
(c) WAVEFORM AT B SHOWING FORWARD BIAS ON BASE DURING saturation
(d) BASE CURRENT WAVEFORM NOTE REVERSE CURRENT $I_{\text {B2 }}$ DUE TO BASE BIAS dURING SATURATION
(e) COLLECTOR WAVEFORM SHOWING STANDARD DEFINITIONS OF RESPONSE TIMES

Transient response
FIGURE 10:13

Consider the simple circuit of Figure 10.13(a). Closing and opening the switch to generate a pulse as shown in Figure 10.13(b), gives the other waveforms shown in the figure. When the switch closes, current flows through the 20 K resistor to turn on the transistor. However there is a delay before collector current can begin to flow since the 20 K must discharge the emitter capacitance which was charged to -10 volts prior to closing the switch. Time must also be allowed for the emitter current to diffuse across the base region. A third factor adding to the delay time is the fact that at low emitter current densities current gain and frequency response decrease. The total delay from all causes is called the "delay time" and is measured conventionally from the beginning of the input pulse to the 10% point on the collector waveform as shown in Figure $10.13(\mathrm{e})$. Delay time can be decreased by reducing the bias voltage across the emitter capacitance, and by reducing the base drive resistor in order to reduce the
charging time constant. At high emitter current densities, delay time becomes negligible. Figure 10.14 shows typical delay times for the 2N396 transistor.

FIGURE 10.14

The rise time refers to the turn-on of collector current. By basing the definition of rise time on current rather than voltage it becomes the same for NPN and PNP transistors. The collector voltage change may be of either polarity depending on the transistor type. However, since the voltage across the collector load resistor is a measure of collector current, it is customary to discuss the response time in terms of the collector voltage. The theoretical analysis of rise time suggests that a single exponential curve as defined in Figure 10.15 fits the experimental results.

GRAPHICAL ANALYSIS OF RISE TIME
SYMBOLS DEFINED IN FIGURE 109
THE INTERCEPT OF IC AND THE CURVE GIVES t_{r}.
FIGURE 10.15

If the load resistor R_{L} in Figure $10.13(\mathrm{a})$ is small enough that a current, $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 1}$, through it will not drive the transistor into saturation, the collector current will rise exponentially to $h_{\mathrm{fe}_{\mathrm{e}}} \mathrm{I}_{\mathrm{BI}}$ with a time constant, $\mathrm{h}_{\mathrm{FE}} / 2 \pi \mathrm{f}_{\mathrm{a}}$. However, if R_{L} limits the current to
less than $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{Bt}}$, the same exponential response will apply except that the curve will be terminated at $I_{C}=\frac{V_{C C}}{R_{\mathrm{L}}}$. Figure 10.15 illustrates the case for $I_{C} \approx h_{F E} I_{B 1} / 2$. Note that the waveform will no longer appear exponential but rather almost linear. This curve can be used to demonstrate the roles of the circuit and the transistor in determining rise time. For a given $h_{F E}$ and f_{a}, it is seen that increasing $h_{F E} I_{B 1} / I_{C}$ will decrease rise time by having I_{c} intersect the curve closer to the origin. On the other hand, for a given $I_{B 1}$ and I_{C}, speed will be proportional to f_{a} but nearly independent of $h_{F E}$ since its effect on the time constant is balanced by its effect on the curve amplitude. A useful expression for rise time is $t_{r}=I_{c} / I_{B 1} 2 \pi f_{a}$. It is valid for $I_{C} / I_{B}<h_{F E} / 5$. Since this analysis assumes that $h_{F E}$ and f_{a} are the same for all operating points the calculated results will not fit experimental data where these assumptions are invalid. Figure 10.16 shows that the rise time halves as the drive current doubles, just as the expression for t_{r} suggests. However the calculated value for t_{r} is in error by more than 50%. This shows that even though the calculations may be in error, if the response time is specified for a circuit, it is possible to judge fairly accurately how it will change with circuit modifications using the above equations.

FIGURE 10.16

Storage time is the delay a transistor exhibits before its collector current starts to turn off. In Figure 10.13, R_{B} and R_{L} are chosen so that R_{L} rather than h_{FE} will limit the collector current. The front edge of the collector waveform, Figure 10.13(e), shows the delay time followed by the nearly linear risetime. When the collector voltage falls below the base voltage, the base to collector diode becomes forward biased with the result that the collector begins emitting. By definition, the transistor is said to be in saturation when this occurs. This condition results in a stored charge of carriers in the base region. Since the flow of current is controlled by the carrier distribution in the base, it is impossible to decrease the collector current until the stored carriers are removed. When the switch is open in Figure 10.13, the voltage at A drops immediately to -10 volts. The base voltage at B however cannot go negative since the transistor is kept on by the stored carriers. The resulting voltage across R_{B} causes the carriers to flow out of the base to produce a current $\mathrm{I}_{\mathrm{B} 2}$. This is illustrated in Figure $10.13(\mathrm{c})$ and $10.13(\mathrm{~d})$. As soon as the stored carriers are swept out, the transistor starts
to turn off; the base voltage dropping to -10 volts and the base current decreasing to zero. The higher $I_{B 1}$ is, the greater the stored charge; the higher $I_{\mathbf{B} 2}$ is, the faster it is swept out. Since both junctions are forward biased during storage time, the inverse characteristics of the transistor are involved. The inverse characteristics are obtained by interchanging the collector and emitter connections in any test circuit. They are identified by the subscript I following the parameter, e.g., $h_{\text {FEI }}$ is the inverse DC beta. Figure 10.17 shows a curve which is useful for calculating storage time graphically. The maximum value is $\mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}\right)$ where $\mathrm{I}_{\mathrm{B} 2}$ is given the same sign as I_{Bl}, ignoring the fact it flows in the opposite direction. The time constant of the curve involves the forward and inverse current gain and frequency cut-off. The storage time corresponds to the time required to reach the current $\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B} 1}-\mathrm{I}_{\mathrm{C}}$. It can be seen that for a given frequency response, high h_{FE} gives long storage time. The storage time also decreases as $\mathrm{I}_{\mathrm{B} 2}$ is increased or $\mathrm{I}_{\mathrm{B} 1}$ is decreased.

gRaphical analysis of storage time
THE intercept of ($h_{\text {FE }} I_{B I}-I_{C}$) AND THE CURVE GIVES t_{S}
FIGURE 10.17

The time constant for a very unsymmetrical transistor is approximately $\frac{h_{\text {FEI }}+1}{2 \pi f_{a I}}$. It is seen that the generally specified normal $h_{F E}$ and f_{a} are of little use in determining storage time. For a symmetrical transistor, the time constant is approximately $\frac{h_{F E}+1}{2 \pi f_{a}}$. It is possible for a symmetrical transistor to have a longer storage time than

FIGURE 10.18
an unsymmetrical transistor with the same $\mathbf{h}_{F E}$ and f_{a}. Figure 10.18 shows the dependence of storage time on I_{BI} and $\mathrm{I}_{\mathrm{B} 2}$ for the 2 N 396 transistor.

GRAPHICAL ANALYSIS OF FALL TIME THE INTERCEPT OF IC AND THE CURVE GIVES \boldsymbol{I}_{f}.

FIGURE 10.19

The collector current fall time can be analyzed in much the same manner. Figure 10.19 indicates the exponential curve of amplitude $\mathrm{I}_{\mathrm{C}}+\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{E} 2}$, and a time constant, $\mathrm{h}_{\mathrm{FE}} / 2 \pi f_{a}$. The fall time is given by the time it takes the exponential to reach I_{c}. If $h_{\mathrm{FE}_{\mathrm{E}}} \mathrm{I}_{\mathrm{B} 2} \gg \mathrm{I}_{\mathrm{c}}$, fall time is given by the expression,

$$
t_{\mathrm{F}}=\frac{1}{2 \pi f_{a}} \frac{\mathrm{~h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B} 2}}{\mathrm{~h}_{\mathrm{FE}}+\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B} 2}}
$$

As $h_{\text {FE }}$ becomes large, this expression reduces to,

$$
\mathrm{t}_{\mathrm{F}}=\frac{\mathrm{l}}{2 \pi \mathrm{f}_{a}} \frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B} 2}}
$$

which is identical to the expression for t_{r} except that $I_{B 2}$ replaces $I_{B 1}$. Figure 10.20 shows typical fall time measurements for a 2 N 396 .

FIGURE 10.20

11. BASIC COMPUTER CIRCUITS

Computers are generally classified as either analog or digital. An example of an analog computer is the slide rule where the numerical values involved in the calculations are represented by the distance along the scales of the slide rule. For the slide rule, distance is the analog of the numerical values. In an electronic analog computer the voltage or current in the circuit is used as the analog of the numerical values involved in the calculation. Analog computers are used primarily in cases where minimum cost is important and high accuracy is not required.

In a digital computer the numerical values change in discrete steps rather than continuously as in an analog computer. An example of a digital computer is the ordinary desk calculator or adding machine. In an electronic digital computer numerical values involved in the calculation are represented by the discrete states of flip-flops and other switching circuits in the computer. Numerical calculations are carried out in digital computers according to the standard rules of addition, subtraction, multiplacation and division. Digital computers are used primarily in cases where high accuracy is required such as in standard accounting work. For example, most desk ca'culators are capable of giving answers correct to one part in one million, but a slide rule (analog computer) would have to be about $1 / 6$ of a mile long to be read to the same accuracy.

The transistor's small size, low power requirements and inherent reliability have resulted in its extensive use in digital computers. Special characteristics of the transistor such as low saturation resistance, low input impedance, and complementary NPN and PNP types, have permitted new types of digital circuits which are simple, efficient and fast. Computers operating at speeds of 5 megacycles are a commercial reality, and digital circuits have been proved feasible at 160 megacycles.

This chapter offers the design engineer practical basic circuits and design procedures based on proven techniques and components. Flip-flops are discussed in detail because of their extensive use in digital circuits.

FLIP.FLOP DESIGN PROCEDURES

SATURATING FLIP-FLOPS

The simplest flip-flop possible is shown in Figure 10.9, however, for standard transistor types the circuit in Figure 11.1(A) is preferable at moderate temperatures. We shall refer to the conducting and non-conducting transistors as the on and off

SATURATED FLIP-FLOPS
transistors respectively. For stability, the circuit depends on the low collector to emitter voltage of the saturated on transistor to reduce the base current of the off transistor to a point where the circuit gain is too low for regeneration. The 220Ω emitter resistor can be removed if emitter triggering is not used. By adding resistors from base to ground as in Figure 11.1(B), the off transistor has both junctions reverse biased for greater stability. While the 33 K resistors divert some of the formerly available base current, operation no longer depends on a very low saturation voltage consequently less base current may be used. Adding the two resistors permits stable operation beyond $50^{\circ} \mathrm{C}$ ambient temperature.

SATURATED FLIP-FLOP
FIGURE 11.1 (C)
The circuit in Figure $11.1(\mathrm{C})$ is stabilized to $100^{\circ} \mathrm{C}$. The price that is paid for the stability is (1) smaller voltage change at the collector, (2) more battery power consumed, (3) more trigger power required, (4) a low I I_{co} transistor must be used. The capacitor values depend on the trigger characteristics and the maximum trigger repetition rate as well as on the flip-flop design.

By far, the fastest way to design saturating flip-flops is to define the collector and emitter resistors by the current and voltage levels generally specified as load requirements. Then assume a tentative cross-coupling network. With all components specified, it is easy to calculate the on base current and the off base voltage. For example, the circuit in Figure 11.1(B) can be analyzed as follows. Assume $\mathrm{V}_{\mathrm{BE}}=.3$ volt and $\mathrm{V}_{\mathrm{CE}}=$.2 volt when the transistor is on. Also assume that $\mathrm{V}_{\mathrm{EB}}=.2$ volts will maintain the off transistor reliably cut-off. Transistor specifications are used to validate the assumptions.
I. Check for the maximum temperature of stability.

$$
\begin{aligned}
& V_{E}=\frac{R_{4} V_{C C}}{R_{1}+R_{4}}=\frac{220}{2200+220}(25)=2.3 \text { volts } \\
& V_{C \text { on }}=V_{E}+V_{C E}=2.3+.2=2.5 \text { volts }
\end{aligned}
$$

Assuming no I_{co}, the base of the off transistor can be considered connected to a potential,

$$
\begin{aligned}
& V_{B}^{\prime}=V_{C \text { on }} \frac{R_{3}}{R_{2}+R_{3}} \text { through a resistor } R_{B}^{\prime}=\frac{R_{2} R_{3}}{R_{2}+R_{3}} \\
& V_{B}^{\prime}=\frac{(2.5)(33 \mathrm{~K})}{(42 \mathrm{~K}+33 \mathrm{~K})}=1_{4} 1 \text { volts } \\
& \mathrm{R}_{\mathrm{B}}^{\prime}=\frac{(33 \mathrm{~K})(42 \mathrm{~K})}{75 \mathrm{~K}}=18.5 \mathrm{~K}
\end{aligned}
$$

The Ico of the off transistor will flow through R_{B} reducing the base to emitter potential. If the I_{co} is high enough, it can forward bias the emitter to base junction causing the off transistor to conduct. In our example, $\mathrm{V}_{\mathrm{E}}=2.3$ volts and $\mathrm{V}_{\mathrm{EB}}=.2$ volts will maintain off conditions. Therefore, the base potential can rise from 1.1 volts to 2.1 volts ($2.3-.2$) without circuit malfunction, This potential is developed across R_{B} by $\mathrm{I}_{\mathrm{co}}=\frac{2.1-1.1}{18.5 \mathrm{~K}}=54 \mu \mathrm{a}$. A germanium transistor with $\mathrm{I}_{\mathrm{co}}=10 \mu \mathrm{a}$ at $25^{\circ} \mathrm{C}$ will not exceed $54 \mu \mathrm{a}$ at $50^{\circ} \mathrm{C}$. If a higher operating temperature is required, R_{2} and R_{3} may be decreased and/or R_{4} may be increased.
II. Check for sufficient base current to saturate the on transistor.

$$
\mathrm{V}_{\mathrm{B} \text { on }}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE} \text { on }}=2.3+.3=2.6 \text { volts }
$$

The current through $\mathrm{R}_{3}=\mathrm{I}_{3}=\frac{2.6 \mathrm{v}}{33 \mathrm{~K}}=.079 \mathrm{ma}$
The current through R_{1} and R_{2} in series is $I_{2}=\frac{V_{C C}-V_{B \text { of }}}{R_{1}+R_{2}}=\frac{25-2.6}{42 K+2.2 K}$

$$
=.506 \mathrm{ma}
$$

The available base current is $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{2}-\mathrm{I}_{5}=.43 \mathrm{ma}$
The coilector current is $\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{C}} \text { on }}{\mathrm{R}_{1}}=\frac{25-2.5}{2.2 \mathrm{~K}}=10.25 \mathrm{ma}$
The transistor will be in saturation if h_{FE} at 10 ma is greater than

$$
\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{B}}}=\frac{10.25}{.43}=24
$$

If this circuit were required to operate to $-55^{\circ} \mathrm{C}$, allowance must be made for the reduction of $\mathrm{h}_{\text {FE }}$ at low temperatures. The minimum allowable room temperature h_{FE} should be 50% higher or $\mathrm{h}_{\mathrm{FE} \text { m in }}=36$.

Generally it is not necessary to include the effect of $I_{\text {co }}$ flowing through R_{t} when calculating I_{2} since at temperatures where I_{co} subtracts from the base drive it simultaneously increases $h_{\text {FE }}$. If more base drive is required, R_{2} and R_{3} may be decreased. If their ratio is kept constant, the off condition will not deteriorate, and so need not be rechecked.
III. Check transistor dissipation to determine the maximum junction femperature.

The dissipation in the on transistor is

$$
V_{B E ~ o n ~} I_{B}+V_{C E} \text { on } I_{C}=\frac{(.3)(.43)}{1000}+\frac{(.2)(10.25)}{1000}=2.18 \mathrm{mw}
$$

The dissipation in the off transistor resulting from the maximum $I_{c o}$ is

$$
\mathrm{V}_{\mathrm{CB}} \mathrm{I}_{\mathrm{Co}} \approx \frac{(25)(55)}{10^{8}}=1.4 \mathrm{mw}
$$

Generally the dissipation during the switching transient can be ignored at speeds justifying saturated circuitry. In both transistors the junction temperature is within $1^{\circ} \mathrm{C}$ of the ambient temperature if transistors in the $2 \mathrm{~N} 394-97$ or $2 \mathrm{~N} 524-27$ series are used.

NON-SATURATED FLIP-FLOP DESIGN

The abundance of techniques to prevent saturation makes a general design procedure impractical if not impossible. While it is a simple matter to design a flip-flop as shown above, it becomes quite tedious to check all the worst possible combinations of component change to ensure manufacturability and long term reliability. Often the job is assigned to a computer which calculates the optimum component values and tolerances. While a number of flip-flop design procedures have been published, they generally make simplifying assumptions concerning leakage currents and the voltages developed across the conducting transistors.

CIRCUIT CONFIGURATION FOR NON-SATURATING FLIP-FLOP DESIGN PROCEDURE

Characteristics:

Trigger input at points E
Trigger steering by D_{2} and R_{5}
Collector clamping by D_{1} and R_{3}
Connect points A, B, C, D, E as shown in Figure 11.3 to get counter or shift register operation
C1 and C2 chosen on basis of speed requirements

FIGURE 11.2 (A)
The design procedure described here is for the configuration in Figure 11.2(A). No simplifying assumptions are made but all the leakage currents and all the potentials are considered. The design makes full allowance for component tolerances, voltage fluctuations, and collector output loading. The anti-saturation scheme using one resistor (R3) and one diode (D1) was chosen because of its effectiveness, low cost and simplicity. The trigger gating resistors (R5) may be returned to different collectors to get different circuit functions as shown in Figure 11.3. This method of triggering offers the trigger sensitivity of base triggering and the wide range of trigger amplitude permissible in collector triggering. The derivation of the design procedure would require much space, therefore for conciseness, the procedure is shown without any substantiation. The procedure involves defining the circuit requirements explicitly then determining the transistor and diode characteristics at the anticipated operating points. A few astute guesses of key parameters yield a fast solution. However, since the procedure deals with only one section of the circuit at a time, a solution is readily reached by cut and try methods without recourse to good fortune. A checking procedure permits verification of the calculations. The symbols used refer to Figure 11.2(A) or in some cases are used only to simplify calculations. A bar over a symbol denotes its maxinum value; a bar under it, its minimum. The example is based on polarities associated with NPN transistors for clarity. The result is that only E_{2} is negative. While the procedure is lengthly, its straightforward steps lend themselves to computation by technically unskilled personnel and the freedom from restricting assumptions guarantees a working circuit when a solution is reached. The circuit designed by this procedure is shown in Figure 11.2(B).

NON-SATURATED FLIP-FLOP
FIGURE 11.2 (B)

The same procedure can be used to analyze existing flip-flops of this configuration by using the design check steps.

(A) FLIP-FLOP

INPUT

(B) INTER CONNECTION AS COUNTER

(C) INTERCONNECTION AS SHIFT REGISTER

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE

DEFINITION OF OPERATION

(A) Circuit Requirements and Device Characteristics

> Assume maximum voltage design tolerance
Assume maximum resistor design tolerance
Assume maximum ambient temperature
Assume maximum load current out of the off side
Assume maximum load current into the on side
Let $\mathrm{I}_{1} \leq 17.5 \mathrm{ma}$
Let $\Delta \mathbf{r}= \pm 7 \%$ (assuming $\pm 5 \%$ resistors)
Let $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$
Let $I_{0}=1 \mathrm{ma}$
Let $\mathrm{I}_{\mathrm{i}}=0.2 \mathrm{ma}$
Let $\mathrm{I}_{1} \leq 17.5 \mathrm{ma}$
Let $\mathrm{T}_{J}=60^{\circ} \mathrm{C}$

$\mathrm{I}_{2}=6 \mathrm{e}^{00 \mathrm{~T} \mathrm{~T}}=71 \mu \mathrm{a} ;$ Let $\mathrm{I}_{3}=100 \mu \mathrm{a}$
Let $\mathrm{I}_{3}=100 \mu \mathrm{a}$
2N396 is derated at $3.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. The junction temperature rise is estimated at $20^{\circ} \mathrm{C}$ therefore 67 mw can be allowed. Let $\mathrm{P}_{\mathrm{C}}=67 \mathrm{mw}$

β_{mani}	Let $a_{\mathrm{min}}=\overline{0.94 \text { or } \beta_{\mathrm{min}}=15: 67}$
$\mathrm{~V}_{1}$	Let $\mathrm{V}_{1}=0.35$ volts
	Let the level separation be ≥ 7 volts

NON-SATURATING FLIP-FLOP DESIGN PROCEDURE (CONTINUED)

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
15	Choose the maximum collector voltage permissible for the "on" transistor	V_{2}	Let $\mathrm{V}_{2} \leq 2.0$ volts
16	Choose suitable diode types		Let all diodes be 1N198
17	Estimate the maximum leakage current of any diode	I_{4}	Maximum leakage estimated as $\leq 25 \mu \mathrm{a}$. Let $\mathbf{I}_{4}=40 \mu \mathrm{a}$ at end of life
18	Calculate $\mathrm{I}_{5}=\mathrm{I}_{3}+\mathrm{I}_{4}$	J_{5}	$40+100=140 \mu \mathrm{a}$
19a	Choose the minimum collector voltage for the "off" transistor keeping in mind 14 and 15 above	V_{8}	Let $\mathrm{V}_{8} \geq 9.0$ volts
19b	Choose the maximum collector voltage for the "off" transistor	V_{*}	Let $\mathrm{V}_{4} \leq 13.0$ velts
20	Choose the minimum design base to emitter reverse bias to assure off conditions	75	Let $\mathrm{V}_{5}=0.5$ volt
21a	Estimate the maximum forward voltage across the diodes	V_{0}	Let $V_{8}=0.8$ volt
21 b	Estimate the minimum forward voltage	V_{T}	Let $\mathrm{V}_{7}=0.2 \mathrm{volt}$
22	Estimate the worst saturation conditions that can be tolerated.		
22a	Estimate the minimum collector voltage that can be tolerated	V_{8}	Let $\mathrm{V}_{8}=0.1$ volt
223	Estimate the maximum base to collector forward bias voltage that can be tolerated	V_{s}	Let $\mathrm{V}_{\mathrm{B}}=0.1$ volt
23a	Calculate $\mathrm{V}_{3}+\mathrm{V}_{7}$	V_{10}	$2+0.2=2.2$ volts
23b	Calculate $\mathrm{V}_{3}+\mathrm{V}_{6}$	$V^{\text {ar }}$	$2+0.8=2.8$ volts
24 a	Calculate $\mathrm{V}_{8}+\mathrm{V}_{7}$	V_{12}	$0.1+0.2=0.3$ volt

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2 N396 TRANSISTOR
24b	Calculate $\mathrm{V}_{6}+\mathrm{V}_{6}$	V_{13}	$0.1+0.8=0.9$ volt
25	Calculate $\mathrm{V}_{8}+\mathrm{V}_{8}$	V_{4}	$0.1+0.1=0.2$ volt
(B) Cut and Try Circuit Design			
1	Assume E_{2}	\mathbf{E}_{i}	Let $\mathrm{E}_{2}=-16$ volts $\pm 5 \% ; \overline{\mathrm{E}_{2}}=-15.2 \mathrm{v} ; \underline{\mathrm{E}_{2}}=-16.8 \mathrm{v}$
2a	Calculate $\frac{\left(1+\Delta_{\mathbf{r}}\right)}{\left(1-\Delta_{\mathbf{r}}\right)}$	K_{1}	$\frac{1.07}{0.93}=1.15$
2 b	Calculate $\frac{(1+\Delta \mathrm{e})}{\left(1-\Delta_{\mathrm{e}}\right)}$	$K_{\text {K }}$	$\frac{1.05}{0.95}=1.105$
2e	Calculate $\frac{\mathrm{I}_{1}}{\beta_{\text {min }}}$	K_{3}	$\frac{17.5}{15.67}=1.117 \mathrm{ma}$
2 d	Calculate $\mathrm{I}_{2}+\mathrm{I}_{0}+2 \mathrm{I}_{4}$	K_{4}	$0.1+1.0+0.08=1.18 \mathrm{ma}$
2 e	Cälculate $\frac{\mathrm{V}_{6}-\mathrm{V}_{8}}{\mathrm{~V}_{\mathrm{B}_{\mathrm{i}}}+\mathrm{V}_{8}-\overline{\mathrm{E}_{2}}}$	K_{5}	$\frac{0.8-0.1}{0.1+0.1+15.2}=0.0454 \text { volts }$
3	Cdeulate $\overline{\mathrm{R}_{4}} \leq \frac{1}{\mathrm{~K}_{3}}\left[\frac{\mathrm{~V}_{10}-\mathrm{V}_{1}}{\mathrm{~K}_{1} \mathrm{~K}_{5}}-\mathrm{K}_{1}\left(\mathrm{~V}_{1}-\mathrm{E}_{0}\right)\right]$		$\frac{1}{1.117}\left[\frac{2.2-0.35}{(1.15)(0.0454)}-1.15(0.35+16.8)\right]=14.03 \mathrm{~K}$
4	Choose R,	R_{4}	Let $\mathrm{R}_{4}=13 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{4}}=13.91 \mathrm{~K} ; \underline{\mathrm{R}_{4}}=12.09 \mathrm{~K}$
5	Calculate $\underline{\mathrm{R}_{3}} \geq \mathrm{K}_{5} \overline{\mathrm{R}_{4}}$		(0.0454) (13.91K) $=0.632 \mathrm{~K}$
6	Choose R ${ }_{3}$	R_{4}	Let $\mathrm{R}_{3}=0.68 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{3}}=0.7276 \mathrm{~K} ; \underline{\mathrm{R}_{3}}=0.6324 \mathrm{~K}$
7	$\text { Check } R_{3} \text { by calculating } \overline{R_{3}} \leq \frac{\mathrm{R}_{4}\left(\mathrm{~V}_{10}-V_{1}\right)}{\mathrm{V}_{1}-\underline{E_{2}}+\mathrm{K}_{3} \underline{R_{4}}}$		$\begin{aligned} & \frac{(12.09 \mathrm{~K})(2.2-0.35)}{0.35+16.8+(1.117)(12.09)}=0.730 \mathrm{~K} \text {; choice of } \\ & \mathrm{R}_{3} \text { satisfactory } \end{aligned}$
8	Calculate $\frac{\overline{\mathrm{R}_{4}}}{-\mathrm{V}_{5}-\overline{\mathrm{E}_{2}}-\mathrm{I}_{5} \overline{\mathrm{R}_{1}}}$	K_{6}	$\frac{13.91 \mathrm{~K}}{-0.5+15.2-(0.14)(13.91)}=1.091 \mathrm{~K} / \mathrm{V}$

NON-SATURATING

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
9	$\text { Calculate } \underline{\mathrm{R}_{2}} \geq \frac{\mathrm{K}_{6}\left(\mathrm{~V}_{2}+\mathrm{V}_{5}\right)-\underline{\mathrm{R}_{3}}}{1-\mathrm{K}_{6} \mathrm{I}_{4}}$		$\frac{(1.091)(2.0+0.5) \mathrm{K}-0.632 \mathrm{~K}}{1-(1.091)(0.04)}=2.19 \mathrm{~K}$
10	Choose \mathbf{R}_{2} - If there are difficulties at this point, assume a different E_{2}.	P\%	Let $\mathrm{R}_{2}=2.7 \mathrm{~K} \pm 7 \% ; \overline{\mathrm{R}_{2}}=2.889 \mathrm{~K} ; \underline{\mathrm{R}_{2}}=2.511 \mathrm{~K}$
11	$\text { Calculate } \frac{\mathrm{K}_{1}^{2}\left[\mathrm{~V}_{3}-\mathrm{V}_{12}+\mathrm{K}_{4} \underline{\mathrm{R}_{2}}\right]}{\mathrm{V}_{4}-\mathrm{V}_{11}}$	K*	$\frac{(1.15)^{2}[9.0-0.3+(1.18)(2.511)]}{13.0-2.8}=1.51$
12	$\text { Calculate } \overline{\mathrm{E}_{\mathrm{r}}} \leq \frac{\mathrm{K}_{7} \mathrm{~V}_{4}-\mathrm{V}_{3}}{\mathrm{~K}_{7}-1 / \mathrm{K}_{2}}$		$\frac{(1.51)(13.0)-9.0}{1.51-1 / 1.105}=17.63$
13	Choose E_{1}	Er	Let $\mathrm{E}_{1}=16$ volts $\pm \mathbf{5} \%$; $\overline{\mathrm{E}_{1}}=16.8$ volts; $\underline{\mathrm{E}_{1}}=15.2$ volts
14	Calculate $\overline{\mathrm{R}_{1}} \leq \frac{\left(\mathrm{E}_{1}-\mathrm{V}_{3}\right) \underline{\mathrm{R}_{2}}}{\mathrm{~V}_{3}-\mathrm{V}_{12}+\overline{\mathrm{K}_{4}} \underline{\mathrm{R}_{2}}}$		$\frac{(15.2-9.0)(2.511)}{9.0-0.3+(1.18)(2.511)}=1.335 \mathrm{~K}$
15	Calculate $\underline{R}_{1} \geq \frac{\left(\overline{E_{1}}-V_{4}\right) \overline{\left(\overline{R_{2}}\right)}}{\mathrm{V}_{4}-\mathrm{V}_{11}}$		$\frac{(16.8-13.0)(2.889)}{13.0-2.8}=1.077^{\mathrm{K}}$
16	Choose R11	R	Let $\mathbf{R}_{1}=1.2 \mathrm{~K} \pm 7 \% ; \overline{\mathbf{R}_{1}}=1.284 \mathrm{~K} ; \mathbf{R}_{1}=1.116 \mathrm{~K}$
(C) Design Checks			
1	Check "off" stability. Reverse bias voltage is given by: $\left.V_{\mathrm{EB}} \leq \overline{\mathrm{E}_{2}}+\frac{\overline{\mathrm{R}_{4}}}{\overline{\mathrm{R}_{4}}+\underline{\mathrm{R}_{3}}+\underline{\mathrm{R}_{2}}}\left[\mathrm{~V}_{2}-\overline{\mathrm{E}_{2}}+\mathrm{I}_{4} \underline{\mathrm{R}_{2}}+\mathrm{I}_{5} \underline{\left(\mathrm{R}_{2}\right.}+\underline{\mathrm{R}_{3}}\right)\right]$ Circuit stable if $\mathrm{V}_{\mathrm{EB}}^{\prime} \leq-\mathrm{V}_{\mathrm{s}}$	$\mathrm{V}_{\text {Es }}$	$\begin{aligned} & -15.2+\frac{13.91}{17.05} \\ & {[2+15.2+(0.04)(2.511)+(0.14)(3.14)]=-0.7 \text { volts }} \\ & \text { The design value of } \mathrm{V}_{5} \text { was } 0.5 \text { volts. Therefore, the "off" } \\ & \text { condition is stable. } \end{aligned}$

STEP	DEFINITION OF OPERATION	SYMBOL	SAMPLE DESIGN FOR 2N396 TRANSISTOR
2	Check for non-saturation under the worst conditions. $\mathrm{V}_{\mathrm{BE}} \leq \overline{\mathrm{E}_{2}}+\frac{\overline{\mathrm{R}_{4}}\left(\mathrm{~V}_{13}-\overline{\mathrm{E}_{2}}\right)}{\overline{\mathrm{R}_{4}}+\underline{\mathrm{R}_{3}}}$ Circuit non-saturated if $\mathrm{V}_{\mathrm{BE}} \leq \mathrm{V}_{14}$	Vax	$-15.2+\frac{13.91(0.9+15.2)}{14.54}=0.19 \mathrm{volts}$ The design maximum of V_{14} was 0.2 volts.
$\begin{aligned} & 3 \\ & 3 \mathrm{a} \end{aligned}$	Check for stability. Calculate: $\mathrm{R}_{\mathrm{A}}=\overline{\mathrm{R}_{1}}+\overline{\mathrm{R}_{2}}$	$\mathrm{R}_{\text {A }}$	$1.284+2,889=4.173 \mathrm{~K}$
3 b	$\mathrm{R}_{\mathrm{B}}=\overline{\mathrm{R}_{1}}+\overrightarrow{\mathrm{R}_{2}}+\overline{\mathrm{R}_{3}}+\underline{\mathrm{R}_{4}}$	$\mathrm{R}_{\text {B }}$	$1.284+2.889+.728+12.09=16.99 \mathrm{~K}$
3 c	$\mathrm{R}_{\mathrm{c}}=\overline{\mathrm{R}_{3}}+\underline{\mathrm{R}_{4}}$	$\mathrm{R}_{\text {e }}$	$.728+12.09=12.82 \mathrm{~K}$
3 d	$\mathrm{E}^{\prime}{ }_{1}=\underline{\mathrm{E}_{1}}-\overline{\mathrm{K}_{4}} \overline{\mathrm{R}_{1}}$	\mathbf{E}^{*}	$15.2-(1.18)(1.284)=13.68$ volts
3 e	$\mathrm{R}_{\mathrm{D}}=\underline{\mathrm{R}_{1}}+\overline{\mathrm{R}}_{2}+\overline{\mathrm{R}}_{3}+\overline{\mathrm{R}}_{4}$	$\mathrm{n}_{\text {d }}$	$1.116+2.889+.728+13.91=18.643 \mathrm{~K}$
3 F	$I_{5}=\frac{\mathrm{R}_{\mathrm{B}}\left(\overline{\mathrm{E}_{1}}-\mathrm{V}_{2}\right)-\underline{\mathbf{R}_{1}}\left[\overline{\bar{E}_{1}}-\underline{\mathrm{E}_{2}}-I_{5} \overline{\mathrm{R}_{4}}-\mathrm{I}_{4} \overline{\left(\overline{R_{3}}+\overline{\mathbf{R}_{4}}\right]}\right.}{\underline{\overline{R_{1}}\left(\mathrm{R}_{\mathrm{D}}-\underline{R_{1}}\right)}}$	I_{8}	$\left\{\begin{array}{l} 18.64(16.8-2)-1.116[16.8+16.8-(0.14)(13.91) \\ 1.116(18.64-1.116) \\ -\frac{(.04)(.728+13.91)]}{}=12.34 \mathrm{ma} \end{array}\right.$
3 g	$\mathrm{I}_{7}=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}}}\left(\mathrm{E}^{\prime}-\mathrm{V}_{10}\right)-\frac{1}{\mathrm{R}_{\mathrm{C}}}\left(\mathrm{E}_{1}^{\prime}-\underline{\mathrm{E}_{\mathrm{q}}}\right)$	χ_{7}	$\frac{16.99}{(4.173)(12.82)}(13.68-2.2)-\frac{(13.68+16.8)}{12.82}=1.266 \mathrm{ma}$
3h	$\mathbf{I}_{8}=\frac{\mathrm{I}_{1}+\mathrm{I}_{8}+\mathrm{I}_{7}}{\beta_{\mathrm{min}}+\underline{\mathrm{R}_{4}} \mathrm{R}_{\mathrm{c}}}$	18	$\frac{0.2+12.34+1.266}{15.67+12.09 / 12.82}=0.831 \mathrm{ma}$
3 i	$\begin{aligned} & \mathrm{V}_{B E}^{\prime}=\underline{\mathrm{E}_{2}}+\frac{\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{B}}}\left(1+\frac{\mathrm{R}_{A}}{\mathrm{R}_{\mathrm{C}}}\right)\left(\mathrm{E}_{1}^{\prime}-\underline{\mathrm{E}_{2}}\right) \\ & -\frac{\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{O}}}\left(\mathrm{E}_{2}^{\prime}-\mathrm{V}_{10}\right)-\mathrm{I}_{8} \frac{\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{B}}}\left(\frac{\mathrm{R}_{\Delta} \underline{\mathrm{R}_{4}}}{\mathrm{R}_{\mathrm{C}}}-\mathrm{R}_{\mathrm{A}}-\overline{\mathrm{R}_{3}}\right) \end{aligned}$	$\mathrm{V}^{\prime} \mathrm{BHz}$	$\left(\begin{array}{l} -16.8+\frac{12.09}{16.99}\left(1+\frac{4.173}{12.818}\right)(13.683+16.8) \\ -\frac{12.09}{12.818}(13.683-2.2)-0.831 \frac{12.09}{16.99} \\ \left(\frac{(4.173)(12.09)}{12.818}-4.173-0.7276\right)=.55 \mathrm{~V} \end{array}\right.$.55 V is greater than $\mathrm{V}_{1}=.35 \mathrm{~V}$, therefore the design is satisfactory.

CIRCUIT CONFIGURATIONS FOR NON-SATURAT/NG
FUP-FLOP WITH CLAMPED OFF VOLTAGE
FIGURE 11.4

The non-saturating flip-flop design procedure just discussed has been extended to the circuit in Figure 11.4. This circuit is identical to that in Figure 11.2(A) except that a diode clamp ($\mathrm{D}_{3} \mathrm{E}_{3}$) determines the collector off voltage. A number of design solutions which have been calculated for a nominal 10 ma flip-flop and 5 volt logic level are shown in Figure 11.5. The standard conditions chosen are wide enough to include diode and transistor parameter variations from $-55^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ junction temperature. The solutions use only standard RTMA resistor values which are permitted to change up to $\pm 10 \%$ during life.

	\qquad	Deviation from STD Conditions	$\Delta \mathrm{e}= \pm 5 \% \quad \Delta_{\mathrm{r}}= \pm 7 \%$				$\Delta_{e}= \pm 5 \% \quad \Delta_{r}= \pm 10 \%$				$\Delta \mathrm{e}= \pm 10 \%$		$\Delta_{\mathbf{r}}= \pm 7 \%$	
$\max _{\substack{\text { max }}}$			R_{1}	R	Rs	R4	R_{t}	R	R_{3}	R_{4}	R_{1}	R_{2}	R_{8}	R.
10	1.0	-	2.7	2.4	82	11	2.2	2.0	. 68	9.1	2.4	2.2	. 75	10
10	1.5	-	2.4	2.4	. 82	11	2.2	2.2	. 68	9.1	2.2	2.4	. 75	10
15	1.0	-	1.8	1.5	. 56	7.5	1.5	1.2	. 47	6.2	1.8	1.5	. 51	6.8
15	1.5	-	1.8	I. 5	. 56	7.5	1.5	1.3	. 47	6.2	1.8	1.5	. 51	6.8
10	1.25	$\mathrm{V}_{\mathrm{a}}=.2 \mathrm{v}_{\text {max }}$	3.0	3.0	. 91	13	2.2	2.0	. 68	9.1	2.2	2.2	. 75	10
10	1,25	$\mathrm{V}_{1}=.5 \mathrm{v}$ max	2.7	2.7	. 91	12	2.4	2.7	. 82	11	2.4	2.7	. 82	11
10	1.25	$\mathrm{V}_{1}=.4 \mathrm{v}$ max	3.3	3.6	1.1	15	2.4	2.7	. 91	12	2.7	3.0	1.0	13
10	1.25	$\mathrm{V}_{\mathrm{in}}=.6 \mathrm{v}$ max	4.7	8.2	1.3	24	4.3	7.5	1.20	22	4.3	9.1	1.3	24

Standard Conditions: $\mathrm{E}_{1}=18 \mathrm{v}, \mathrm{E}_{3}=-12 \mathrm{v}, \mathrm{E}_{3}=6 \mathrm{v}, 0.8 \mathrm{v}>\mathrm{V}_{\mathrm{dione}}\left(\mathrm{V}_{\mathrm{G}}, \mathrm{V}_{7}\right)>0.2 \mathrm{v}$, $\mathrm{I}_{\text {diode teakaf: }}\left(\mathrm{I}_{4}<.04\right.$ ma, $\mathrm{I}_{\mathrm{CO}}<.1 \mathrm{ma}, 2 \mathrm{v}>\mathrm{V}_{\mathrm{CE} \text { on }}\left(\mathrm{V}_{\mathrm{z}}, \mathrm{V}_{\mathrm{B}}\right)>0 \mathrm{v}, \mathrm{V}_{\mathrm{BE}}\left(\mathrm{V}_{\mathrm{i}}\right)<.55 \mathrm{v}, \mathrm{V}_{\mathrm{Eb}}\left(\mathrm{V}_{\mathrm{B}}\right)>.2 \mathrm{v}, \mathrm{V}_{\mathrm{BC}}\left(\mathrm{V}_{\mathrm{g}}\right)<.1 \mathrm{y}, \mathrm{I}_{\text {Load in }}\left(\mathrm{I}_{1}\right)=.2 \mathrm{ma}, 7.1 \mathrm{v}$ $>\mathrm{V}_{\mathrm{CE}} \arg \left(\mathrm{V}_{3}, \mathrm{~V}_{1}\right)>5.9 \mathrm{v}, \mathrm{h}_{\mathrm{FE}}=18 \mathrm{~min}$. All resistor values in kilohms.

PRACTICAL CIRCUITS, BASED ON FLIP-FLOP CONFIGURATION IN FIGURE 11.4 (SYMBOLS DEFINED IN NON-SATURATING FLIP-FIOP DESIGN PROCEDURE)

FIGURE 11.5

The high on voltage ($\mathrm{V}_{\mathrm{CE}} \mathrm{sat}, \mathrm{V}_{\mathrm{y}}$) when the transistor is conducting is primarily the result of the assumed forward voltage of the diode. It is seen that raising the minimum collector to emitter voltage (V_{8}) from 0 to 0.2 volts has a minor effect on the solutions. $\mathrm{V}_{\mathrm{s}}=0.1 \mathrm{v}$ gave identical solutions to $\mathrm{V}_{8}=0.2 \mathrm{v}$.

The last solution in Figure 11.5 shows that a high conductance diode permits more efficient design.

The capacitors in the circuit are determined by the frequency response of the transistor or by the maximum trigger pulse repetition rate.

Type Number	Ambient Temperature Range in Degrees Centigrade Assuming Worst Case Ico and $h_{\text {fe }}$	Potential Switching Speed	Type
2N43	-55 to 45	low	PNP
2N123	-55 to 60	med	PNP
2N396	-55 to 60	med	PNP
2N397	-55 to 60	high	PNP
2N404	-10 to 75	med	PNP
2N450	-55 to 60	med	PNP
2N524	25 to 55	low	PNP
2N525	-55 to 55	low	PNP
2N526	-55 to 55	low	PNP
2N527	-55 to 55	low	PNP
2N634,	25 to 60	low	NPN
2N635	-55 to 60	med	NPN
2N636	-55 to 60	high	NPN
2N1289	-55 to 60	high	NPN

TRANSISTORS SUITABLE FOR FLIP-FLOP SOLUTIONS IN FIGURE II. 5

FIGURE 11.6

Figure 11.6 lists a number of military and industrial transistors which meet the conditions of the solution. In all cases the maximum ambient temperature is limited by $\mathrm{I}_{\mathrm{c} O}$ while the minimum ambient temperature is limited by h_{FE}. No switching speeds are given because they depend on the trigger power available as well as on the inherent transistor speed.

TRIGGERING

Flip-flops are the basic building blocks for many computer and switching circuit applications. In all cases it is necessary to be able to trigger one side or the other into conduction. For counter applications, it is necessary to have pulses at a single input make the two sides of the flip-flop conduct alternately. Outputs from the flip-flop must have characteristics suitable for triggering other similar flip-flops. When the counting period is finished, it is generally necessary to reset the counter by a trigger pulse to one side of all flip-flops simultaneously. Shift registers, and ring counters have similar triggering requirements.

In applying a trigger to one side of a flip-flop, it is preferable to have the trigger turn a transistor off rather than on. The off transistor usually has a reverse-biased emitter junction. This bias potential must be overcome by the trigger before switching can start. Furthermore, some transistors have slow turn on characteristics resulting in a delay between the application of the trigger pulse and the actual switching. On the other hand, since no bias has to be overcome, there is less delay in turning off a transistor. As turn-off begins, the flip-flop itself turns the other side on.

A lower limit on trigger power requirements can be determined by calculating the base charge required to maintain the collector current in the on transistor. The trigger source must be capable of neutralizing this charge in order to turn off the transistor. It has been determined that the base charge for a non-saturated transistor is approximately $Q_{B}=1.22 \mathrm{I}_{\mathrm{c}} / 2 \pi \mathrm{f}_{a}$. The turn-off time constant is approximately $\mathrm{h}_{\mathrm{Fe}} / 2 \pi \mathrm{f}_{\text {a }}$. This indicates that circuits utilizing high speed transistors at low collector currents will require the least trigger power. Consequently, it may be advantageous to use high speed transistors in slow circuitry if trigger power is critical. If the on transistor was in saturation, the trigger power must also include the stored charge. The stored charge is given by

$$
\mathrm{Qs}=\frac{1}{2 \pi}\left(\frac{1}{\mathrm{f}_{\alpha}}+\frac{1}{\mathrm{f}_{\alpha I}}\right)\left(\frac{1}{1-a_{N} a_{\mathrm{I}}}\right)\left(\mathrm{I}_{\mathrm{BI}}-\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~h}_{\mathrm{FA}}}\right)
$$

where the symbols are defined in the section on transient response time.
Generally, the trigger pulse is capacitively coupled. Small capacitors permit more frequent triggering but a lower limit of capacitance is imposed by base charge considerations. When a trigger voltage is applied, the resulting trigger current causes the charge on the capacitor to change. When the change is equal to the base charge just calculated, the transistor is turned off. If the trigger voltage or the capacitor are too small, the capacitor charge may be less than the base charge resulting in incomplete turn-off. In the limiting case $C=\frac{Q_{B}}{V_{T}}$. The speed with which the trigger turns off a transistor depends on the speed in which Q_{B} is delivered to the base. This is determined by the trigger source impedance and $r^{\prime}{ }_{b}$.

In designing counters, shift registers or ring counters, it is necessary to make alternate sides of a flip-flop conduct on alternate trigger pulses. There are so-called steering circuits which accomplish this. At low speeds, the trigger may be applied at the emitters as shown in Figure 11.7. It is important that the trigger pulse be shorter than the cross coupling time constant for reliable operation. The circuit features few parts and a low trigger voltage requirement. Its limitations lie in the high trigger current required.

At this point, the effect of trigger pulse repetition rate can be analyzed. In order that each trigger pulse produce reliable triggering, it must find the circuit in exactly the same state as the previous pulse found it. This means that all the capacitors in the circuit must stop charging before a trigger pulse is applied. If they do not, the result is equivalent to reducing the trigger pulse amplitude. The transistor being turned off presents a low impedance permitting the trigger capacitor to charge rapidly. The capacitor must then recover its initial charge through another impedance which is generally much higher. The recovery time constant can limit the maximum pulse rate.

Steering circuits using diodes are shown in Figures 11.8 and 11.9. The collectors are triggered in 11.8 by applying a negative pulse. As a diode conducts during triggering, the trigger pulse is loaded by the collector load resistance. When triggering is accomplished, the capacitor recovers through the biasing resistor $\mathbf{R}_{\mathbf{T}}$. To minimize

EMITTER TRIGGERING
MAXIMUM TRIGGER RATE EXCEEDS 500 KCS WITH TRIGGER AMPLITUDE FROM $2 V$ TO I2V

FIGURE 11.7
trigger loading, R_{T} should be large; to aid recovery, it should be small. To avoid the recovery problem mentioned above, R_{T} can be replaced by a diode as shown in 11.10 . The diode's low forward impedance ensures fast recovery while its high back impedance avoids shunting the trigger pulse during the triggering period.

FIGURE 11.8

MAXIMUM TRIGGER RATE EXCEEDS I MC WITH TRIGGER AMPLITUDE FROM 0.75 TO 3 VOLTS.

FIGURE 11.9

Collector triggering requires a relatively large amplitude low impedance pulse but has the advantage that the trigger pulse adds to the switching collector waveform to enhance the speed. Large variations in trigger pulse amplitude are also permitted.

In designing a counter, it may be advantageous to design all stages identically the same to permit the economies of automatic assembly. Should it prove necessary to increase the speed of the early stages, this can be done by adding a trigger amplifier as shown in Figure 11.11 without any change to the basic stage.

FIGURE 11.10

FIGURE 11.11

Base triggering shown in Figure 11.9 produces steering in the same manner as collector triggering. The differences are quantitative with base triggering requiring less trigger energy but a more accurately controlled trigger amplitude. A diode can replace the bias resistor to shorten the recovery time.

Hybrid triggering illustrated in Figure 11.12 combines the sensitivity of base triggering and the trigger amplitude variation of collector triggering. In all the other steering circuits, the bias potential was fixed, in this one the bias potential varies in

FIGURE 11.12
order to more effectively direct the trigger pulse. By returning the bias resistor to the collector, the bias voltage is $V_{\text {cb. }}$. For the conducting transistor, V_{CB} is much less than for the off transistor, consequently, the trigger pulse is directed to the conducting transistor. This steering scheme is particularly attractive if V_{Cb} for the conducting transistor is very small as it is in certain non-saturating circuits such as shown in Figure 10.11.

Care should be taken that the time constant $\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{t}}$ does not limit the maximum counting rate. Generally R_{T} can be made approximately equal to R_{K} the cross-coupling resistor.

To design a shift register or a ring counter, it is only necessary to return R_{T} to the appropriate collector to achieve the desired switching pattern. The connections for the shift register are shown in Figure 11.3(A) and (B). A ring counter connection results from connecting the shift register output back to its input as shown in Figure 11.3(C).

FIGURE 11.13 (A)

TRIGGER TRANSISTORS SIMULTANEOUSLY SUPPLY CURRENT TO TURN OFF ONE SIDE OF FLIP-FLOP AND TO OEVELOP A VOLTAGE ACROSS THE COLLECTOR LOAD ON THE OTHER SIDE

FIGURE 11.13 (B)

CIRCUIT OF FIGUREIIJ3(E) WITH TRIGGER STEERING AOOED FOR COUNTER APPLICATION

trigger circuits

USING tRigger power to increase switching speed FIGURE 11.13 (C)

By using transistors as trigger amplifiers, some circuits superpose the trigger on the output of the flip-flop so that an output appears even if the flip-flop is still in the transient condition. Figure 11.13(A) shows a symmertical transistor used for steering. The transistor makes the trigger appear in opposite phase at the flip-flop collectors speeding up the transition. The circuit in Figure 11.13(B) can have R_{c} and R_{k} so chosen so that a trigger pulse will bring the collector of the transistor being turned on to ground even though the transistor may not have started conducting. The circuit in 11.13(B) may be converted to a steering circuit by the method shown in 11.13(C).

SPECIAL PURPOSE CIRCUITS
 SCHMITT TRIGGER

A Schmitt trigger is a regenerative bistable circuit whose state depends on the amplitude of the input voltage. For this reason, it is useful for waveform restoration ${ }_{x}$ signal level shifting, squaring sinusoidal or non-rectangular inputs, and for DC level detection. Practical circuits are shown in Figure 11.14.

FREQUENCY RANGE O-500KC
OUTPUT AT COLLECTOR HAS $8 V$ MINIMUM LEVEL CHANGE
Q_{1} ALWAYS CONDUCTS IF INPUT IS MORE NEGATIVE THAN -5V
Q_{2} ALWAYS CONDUCTS IF INPUT IS MORE POSITIVE THAN -2V
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$

FREQUENCY RANGE O TO IMC OUTPUT AT COLLECTOR HAS $2 V$ MINIMUM LEVEL CHANGE Q ALWAYS CONDUCTS IF INPUT EXCEEDS 6.8 V
0_{2} ALWAYS CONDUCTS IF INPUT IS BELOW 5.2V
AMBIENT TEMPERATURE $0^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$

SCHMITT TRIGGERS

FIGURE 1.1.14
Circuit operation is readily described using Figure 11.14(B). Assuming Q1 is nonconducting, the base of Q2 is biased at approximately +6.8 volts by the voltage divider consisting of resistors $3.3 \mathrm{~K}, 1.8 \mathrm{~K}$ and 6.8 K . The emitters of both transistors are then at 6.6 volts due to the forward bias voltage required by Q2. If the input voltage is less than 6.6 volts, Q1 is off as was assumed. As the input approaches 6.6 volts, a critical voltage is reached where Q1 begins to conduct and regeneratively turns off Q2. If the input voltage is now lowered below another critical value, Q 2 will again conduct.

ASTABLE MULTIVIBRATOR

The term multivibrator refers to a two stage amplifier with positive feedback. Thus a flip-flop is a bistable multivibrator; a "one-shot" switching circuit is a monostable
multivibrator and a free-running oscillator is an astable multivibrator. The astable multivibrator is used for generating square waves and timing frequencies and for frequency division. A practical circuit is shown in Figure 11.15. The circuit is symmetrical with the transistors DC biased so that both can conduct simultaneously. The cross-coupling capacitors prevent this, however, forcing the transistors to conduct alternately. The period is approximately $\mathrm{T}=\frac{\mathrm{C}_{\mathrm{T}}+100}{40}$ microseconds where C_{T} is measured in $\mu \mu \mathrm{f}$. A synchronizing pulse may be used to lock the multivibrator to an external oscillator's frequency or subharmonic.

FREQUENCY RANGE I CPS T'O 250 KCPS BY CHANGING C_{T}
OUTPUT AT COLLECTOR HAS B VOLT
MINIMUM LEVEL CHANGE
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$ SYNCHRONIZING PULSES PERMIT GENERATING SUBHARMONICS

SYNG PULSE AMPLITUDE MUSt Exceed 1.5V POSITIVE; RISETIME MUST BE LESS THAN $1.0 \mu \mathrm{SEC}$

ASTABLE MULTIVIBRATOR

FIGURE 11.15

MONOSTABLE MULTIVIBRATOR

On being triggered a monostable multivibrator switches to its unstable state where it remains for a predetermined time before returning to its original stable state. This makes the monostable multivibrator useful in standardizing pulses of random widths or in generating time delayed pulses. The circuit is similar to that of a flip-flop except that one cross-coupling network permits AC coupling only. Therefore, the flip-flop can only remain in its unstable state until the circuit reactive components discharge. Two circuits are shown in Figure 11.16 to illustrate timing with a capacitor and with an inductor. The inductor gives much better pulse width stability at high temperatures.

INDICATOR LAMP DRIVER

The control panel of a computer frequently has indicator lamps to permit monitoring the computer's operation. The circuit in Figure 11.17 shows a bistable circuit which permits controlling the lamp by short trigger pulses.

A negative pulse at point A turns on the lamp, which remains on due to regenerative feedback in the circuit. A positive pulse at A will turn off the lamp. The use of complementary type transistors minimizes the standby power while the lamp is off.

mONOSTABLE MULTIVIBRATOR

FIGURE 11.16

TRIGGER 'PULSE REQUIREMENT 2 VÓLTS MAXIMUM.
AMBIENT TEMPERATURE $-55^{\circ} \mathrm{C}$ TO $71^{\circ} \mathrm{C}$
RESISTOR TOLERANCE $\pm 10 \%$ AT END OF LIFE:
BISTABLE INDICATOR LAMP DRIVER
FIGURE 11.17

12. LOGIC

Large scale scientific computers, smaller machine control computers and electronic animals all have in common the facility to take action without any outside help when the situation warrants it. For example, the scientific computer recognizes when it has completed an addition, and tells itself to go on to the next part of the problem. A machine control computer recognizes when the process is finished and another part should be fed in. Electronic animals can be made to sense obstructions and change their course to avoid collisions. Mathematicians have determined that such logical operations can be described using the conjunctives AND, OR, AND NOT, OR NOT, Boolean algebra is the study of these conjunctives, the language of logic. A summary of the relations and operations of Boolean algebra follow the example of its use below.

Transistors can be used to accomplish logic operations. To illustrate this, an example from automobile operation will be used. Consider the interactions between the ignition switch, the operation of the motor and the oil pressure warning light. If the ignition is off, the motor and light will both be off. If the ignition is turned on, but the starter is not energized the warning lamp should light because the motor has not generated oil pressure. Once the motor is running, the ignition is on and the lamp should be off. These three combinations of ignition, motor and lamp conditions are the only possible combinations signifying proper operation. Note that the three items discussed have only two possible states each, they are on or off. This leads to the use of the binary arithmetic system, which has only two symbols corresponding to the two possible states. Binary numbers will be discussed later in the chapter.

	I	M	L	Result	
1	0	0	0	\checkmark	$I=16 N T T I O N$ $==$ NOTOR
2	0	\bigcirc	1	\times	$M=$ MOTOR $L=$ LAMP
4	-	,	;	x \times \times \times	
5	1	-	-	x	O $=0$ OFF
${ }^{6}$	1	\bigcirc	1	\checkmark	$x=$ UNACCEPTABL
7 8	!	!	0	\checkmark	$\mathrm{N}=3=\mathrm{No}$. of VARIAbles $2^{N}=8$

Table of all possible combinations of ignition, motor and lamp conditions
 FIGURE 12.1

To write the expressions necessary to derive a circuit, first assign letters to the variables, e.g., I for ignition, M for motor and L for lamp. Next assign the number one to the variable if it is on; assign zero if it is off. Now we can make a table of all possible combinations of the variables as shown in Figure 12.1. The table is formed by writing ones and zeros alternately down the first column, writing ones and zeros in series of two down the second; in fours down the third, etc. For each additional variable, double the number of ones or zeros written in each group. Only 2^{N} rows are written, where N is the number of variables, since the combinations will repeat if more rows are added. Indicate with a check mark in the result column if the combination represented in the row is acceptable. For example, combination 4 reads, the ignition is off and the motor is running and the warning light is on. This obviously is an unsatisfactory
situation. Combination 7 reads, the ignition is on and the motor is running and the warning light is off. This obviously is the normal situation while driving. If we indicate that the variable is a one by its symbol and that it is a zero by the same symbol, with a bar over it and if we use the symbol plus (+) to mean "OR" and multiplication to mean "AND" we can write the Boolean equation $\overline{\mathrm{I}} \overline{\mathrm{M}} \overline{\mathrm{L}}+\mathrm{I} \overline{\mathrm{M}} \mathrm{L}+\mathrm{IM} \overline{\mathrm{L}}=\mathrm{R}$ where R means an acceptable result. The three terms on the left hand side are combinations 1,6 , and 7 of the table since these are the only ones to give a check mark in the result column. The plus signs indicate that any of the three combinations individually is acceptable. While there are many rules for simplifying such equations, they are beyond the scope of this book.

FIGURE 12.2

FIGURE 12.3

To express this equation in circuitry, two basic circuits are required. They are named gates because they control the signal passing through. An "AND" gate generates an output only if all the inputs representing the variables are simultaneously applied and an "OR" gate generates an output whenever it receives any input. Our equation translated into gates would be as shown in Figure 12.2. Only if all three inputs shown for an "AND" gate are simultaneously present will an output be generated. The output will pass through the "OR" gate to indicate a result. Note that any equation derived from the table can be written as a series of "AND" gates followed by one "OR" gate.

It is possible to rearrange the equation to give a series of "OR" gates followed by one "AND" gate. To achieve this, interchange all plus and multiplication signs, and remove bars where they exist and add them where there are none. This operation gives us,

$$
(\mathbf{I}+\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}+\overline{\mathrm{L}})(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\overline{\mathrm{R}}}
$$

In ordinary language this means if any of the ignition or motor or lamp is on, and simultaneously either the ignition is off or the motor is on or the lamp is off, and simultaneously either the ignition is off or the motor is off or the lamp is on, then the result is unacceptable. Let us apply combination 4 to this equation to see if it is acceptable. The ignition is off therefore the second and third brackets are satisfied. The first bracket is not satisfied by the ignition because it requires that the ignition be on. However, the motor is on in combination 4, satisfying the conditions of the first bracket. Since the requirements of all brackets are met, an output results. Applying combination 7 to the equation we find that the third bracket cannot be satisfied since its condi-
tions are the opposite of those in combination 7. Consequently, no output appears. Note that for this equation, an output indicates an unacceptable situation, rather than an acceptable one, as in the first equation. In gate form, this equation is shown in Figure 12.3.

Table 12.1 summarizes the definitions used with the Boolean equations above and indicates some of the rules which were used to convert the equation represented in Figure 12.2 to that of Figure 12.3. The more conventional symbols a, b, c are used in place of I, M, and L.

DEFINITIONS	
$\begin{aligned} & a, b, c, \text { etc. } \\ & a b \text { or } a \cdot b \text { or }(a)(b) \\ & \frac{a}{a}+b \\ & 1 \\ & 0 \end{aligned}$	Symbols used in equations Reads as "a and b" Reads as "a or b" Reads as "not a" Reads as "true" or "on" Reads as "false" or "off"
LAWS	
Commutative Laws $\mathrm{a}+\overline{\mathrm{b}=\mathrm{b}+\mathrm{a}}$ $\mathrm{ab}=\mathrm{ba}$ $\frac{\text { Distributive Law }}{\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}}$ Associative Laws $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}$ $(\mathrm{ab}) \mathrm{c}=\mathrm{a}(\mathrm{bc})$ $\frac{\text { Special Distributive Law }}{(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{c})=\mathrm{a}+\mathrm{bc}}$ De Morgan's Theorem $\mathrm{a}+\mathrm{b}=(\overline{\mathrm{b}}) \quad \overline{\mathrm{ab}}=(\overline{\mathrm{a}}+\overline{\mathrm{b}})$	
RELATIONSHIPS	
$\begin{aligned} & 1=\overline{0} \\ & a+a=a \\ & a+1=1 \\ & a+\bar{a}=1 \\ & \hline a=a \end{aligned}$	$\begin{aligned} & 0=\overline{1} \\ & \mathrm{a} \cdot \mathrm{a}=\mathrm{a} \\ & \mathrm{a} \cdot \mathrm{l}=\mathrm{a} \\ & \mathrm{a} \cdot \mathrm{a}=0 \\ & \mathrm{a}+\mathrm{ab}=\mathrm{a}(1+\mathrm{b})=\mathrm{a} \end{aligned}$

TABLE 12.1

Methods for using transistors in gate circuits are illustrated in Figure 12.4. The base of each transistor can be connected through a resistor either to ground or a positive voltage by operating a switch. In Figure 12.4(A) if both switches are open, both transistors will be non-conducting except for a small leakage current. If either switch A or switch B is closed, current will flow through R_{L}. If we define closing a switch as being synonymous with applying an input then we have an "OR" gate. When either switch is closed, the base of the transistor sees a positive voltage, therefore, in an "OR" gate the output should be a positive voltage also. In this circuit it is negative, or "NOT OR". The circuit is an "OR" gate with phase inversion. It has been named a "NOR" circuit. Note that if we define opening a switch as being synonymous with applying an input, then we have an "AND" circuit with phase inversion since both switch A and switch B must be open before the current through R_{L} ceases. We see that the same circuit can be an "AND" or an "OR" gate depending on the polarity of the input.

(A) GATE USING NPN TRANSISTORS
if CLOSING A SWITCH IS AN INPUT, THIS IS AN "OR" GATE if opening a switch is an input, this is an "and" gate NOTE: PHASE INVERSION OF INPUT

(B) GATE USING PNP TRANSISTORS
IF CLOSING A SWITCH IS AN INPUT THIS IS AN "AND" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN "OR" GATE NOTE: PHASE INVERSION OF INPUT

basic logic circuits using parallel transistors
 FIGURE 12.4

The circuit in Figure 12.4(B) has identically the same input and output levels but uses PNP rather than NPN transistors. If we define closing a switch as being an input, we find that both switches must be closed before the current through R_{L} ceases. Therefore, the inputs which made the NPN circuit an "OR" gate make the PNP circuit an "AND" gate. Because of this, the phase inversion inherent in transistor gates does not complicate the overall circuitry excessively.

Figure $12.5(\mathrm{~A})$ and (B) are very similar to Figure $12.4(\mathrm{~A})$ and (B) except that the "transistors are in series rather than in parallel. This change converts "OR" gates into "AND" gates and vice versa.

(A) GATE USING NPN TRANSISTORS

IF CLOSING A SWITCH IS AN INPUT THIS IS AN "AND" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN "OR"GATE NOTE: PHASE INVERSION OF INPUT

(B) GATE USING PNP TRANSISTORS

IF CLOSING A SWITCH IS AN INPUT THIS IS AN "OR" GATE IF OPENING A SWITCH IS AN INPUT THIS IS AN "AND"GATE NOTE: PHASE INVERSION OF INPUT

BASIC LOGIC CIRCUITS USING SERIES tRANSISTORS

FIGURE 12.5

Looking at the logic of Figure 12.3, let us define an input as a positive voltage; a lack of an input as zero voltage. By using the circuit of Figure $12.4(\mathrm{~A})$ with three
transistors in parallel, we can perform the "OR" operation but we also get phase inversion. We can apply the output to an inverter stage which is connected to an "AND" gate of three series transistors of the configuration shown in Figure 12.5(A). An output inverter stage would also be required. This is shown in Figure 12.6(A).

By recognizing that the circuit in Figure 12.4(A) becomes an "AND" gate if the input signal is inverted, the inverters can be eliminated as shown in Figure 12.6(B).

(A) inverters compensate for phase inversion of gates

(B) PHASE INVERSION UTILIZED TO ACHIEVE "AND" AND "OR" FUNCTIONS FROM THE SAME CIRCUIT,

$$
\text { Circuits representing }(\mathrm{I}+\mathrm{M}+\mathrm{L})(\overline{\mathrm{I}}+\mathrm{M}+\overline{\mathrm{L}}) \cdot(\overline{\mathrm{I}}+\overline{\mathrm{M}}+\mathrm{L})=\overline{\mathrm{R}}
$$

FIGURE 12.6

If the transistors are made by processes yielding low saturation voltages and high base resistance, the series base resistors may be eliminated. Without these resistors the logic would be called direct-coupled transistor logic DCTL. While DCTL offers extreme circuit simplicity, it places severe requirements on transistor parameters and does not offer the economy, speed or stability offered by other logical circuitry.

The base resistors of Figure 12.6 relax the saturation voltage and base input voltage requirements. Adding another resistor from each base to a negative bias potential would enhance temperature stability.

Note that the inputs include both "on" and "off" values of all variables e.g., both I and \bar{I} appear. In order that the gates function properly, I and \bar{I} cannot both be positive simultaneously but they must be identical and oppositely phased, i.e. when I is positive \bar{I} must be zero and vice versa. This can be accomplished by using a phase inverter to generate $\overline{\mathrm{I}}$ from I. Another approach, more commonly used, is to take I and $\overline{\mathrm{I}}$ from opposite sides of a symmetrical flip-flop.

IF A OR B OR C IS RAISED FROM ZERO TO 12 VOLTS THE TRANSISTOR WILL CONDUCT.

BASIC NOR CIRCUIT
 FIGURE 12.7

"NOR" logic is a natural extension of the use of resistors in the base circuit. In the circuit of Figure 12.7, if any of the inputs is made positive, sufficient base current results to cause the transistor to conduct heavily. The "OR" gating is performed by the resistors; the transistor amplifying and inverting the signal. The logic of Figure 12.3 can now be accomplished by combining the "NOR" circuit of Figure 12.7 with the "AND" circuit of Figure 12.5(A). The result is shown in Figure 12.7. In comparing the circuits in Figure 12.6(A) and 12.8, we see that the "NOR" circuit uses one-fourth as many transistors and one-half as many resistors as the brute force approach. In fact if we recall that the equation we are dealing. with gives \bar{R} rather than R, we see that we can get R by removing the output phase inverter and making use of the inherent inversion in the "NOR" circuit.

(A)

(B)

Nor logic using inversion for "and" gate

Nor logic using series transistors for

Because of the fact that a generalized Boolean equation can be written as a series of "OR" gates followed by an "AND" gate as was shown, it follows that such equations can be written as a series of "NOR" gates followed by a "NOR" gate. The low cost of the resistors used to perform the logic and the few transistors required make "NOR" logic attractive.

DEFINITIONS

$$
\begin{aligned}
I_{K}= & \text { MINIMUM CURRENT THROUGH R } \\
& \text { TURNING FOR TRANSISTOR ON } \\
I_{B}= & \text { MINIMUM BASE CURRENT FOR } \\
& \text { TURNING TRANSISTOR ON } \\
I_{T}= & \text { BIAS CURRENT TO KEEP TRANSISTOR } \\
& \text { OFF AT HIGH TEMPERATURES } \\
M= & \text { MAX. NUMBER OF INPUTS PERMITTED } \\
N= & \text { MAX. NUMBER OF OUTPUTS PERMITTED } \\
V_{B E}= & \text { MAX. BASE TO EMITTER VOLTAGE WHEN } \\
& \text { THE TRANSISTOR IS ON. } \\
V_{C E}= & \text { MAX. COLLECTOR TO EMITTER VOLTAGE WHEN } \\
& \text { THE TRANSISTOR IS ON. }
\end{aligned}
$$

Circuit used for design of NOR circuitry
FIGURE 12.9

A detailed "NOR" building block is shown in Figure 12.9. The figure defines the basic quantities. The circuit can readily be designed with the aid of three basic equations. The first derives the current I_{K} under the worst loading conditions at the collector of a stage.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{K}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{COM}} \mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{K}}+\ldots \mathrm{NR}_{\mathrm{C}}} \ldots \ldots \text { where } \mathrm{I}_{\mathrm{COM}} \tag{12a}
\end{equation*}
$$

is the maximum I_{co} that is expected at the maximum junction temperature. The second equation indicates the manner in which I_{K} is split up at the base of the transistor.

$$
\begin{equation*}
I_{K}=I_{B}+\frac{M\left(V_{C E M}-V_{C E N}+V_{B E}-V_{E B}\right)-\left(V_{\mathrm{BE}}-V_{C E N}\right)}{R_{K}}+I_{\text {COM }} \tag{12b}
\end{equation*}
$$

where $V_{\text {CEN }}$ is the minimum expected saturation voltage, $V_{\text {CEM }}$ is the maximum expected saturation voltage and V_{EB} is the reverse bias required to reduce the collector current to $I_{C o} V_{E b}$ is a negative voltage. The third equation ensures that $V_{E b}$ will be reached to turn off the transistor.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{COM}}+\frac{\left(\mathrm{V}_{\mathrm{CEM}}-\mathrm{V}_{\mathrm{EB}}\right) \mathrm{M}}{\mathrm{R}_{\mathrm{K}}}=\mathrm{I}_{\mathrm{T}} \tag{12c}
\end{equation*}
$$

Knowing I_{T} and choosing a convenient bias potential permits calculation of R_{T}. In using these equations, first select a transistor type. Assume the maximum possible supply voltage and collector current consistent with the rating of the transistor and the maximum anticipated ambient temperature. This will ensure optimization of N and M. From the transistor specifications, values of $I_{\text {com, }}, V_{b e}, V_{C E N}$, and I_{B} (min) can be calculated. $\mathrm{I}_{\mathrm{B}}(\mathrm{min})$ is the minimum base current required to cause saturation. R_{C} is calculated from the assumed collector current. In equation (12a) solve for I_{K} using the desired value of N and an arbitrary value for \mathbf{R}_{K}. Substitute the value for I_{K} in equation (12b) along with a chosen value for M and solve for I_{B}. While superficially I_{B} need only be large enough to bring the transistor into saturation, increasing I_{B} will improve the rise time.

(A)
(B)

FIGURE 12.10

Circuit speed can also be enhanced by using a diode as shown in Figure 12.10(A) to prevent severe saturation or by shunting R_{K} by a capacitor as in 12.10 (B). The capacitors may cause malfunction unless the stored charge during saturation is carefully controlled; they also aggravate crosstalk between collectors. For this reason it is preferable to use higher frequency transistors without capacitors when additional speed is required.

Table 12.2 lists the characteristics of common logic systems employing transistors,

DESCRIPTION	FEATURES	SUITABLE TRANSISTORS	
		GERMANIUM	SILICON
Logic is performed by resistors. Any positive input produces an inverted output irrespective of the other inputs. Resistor Re gives temperature stability. (See p. 131)	The circuit design is straightforward. All logical operations can be performed with only this circuit. Many transistors readily meet the steady state requirements.	$\begin{aligned} & \text { 2N43A* } \\ & \text { 2N78* } \\ & \text { 2N167* } \\ & \text { 2N169A } \\ & \text { 2N396* } \\ & \text { 2N525 } \\ & \text { 2N526* } \\ & \text { 2N635 } \\ & \text { 2N1057 } \end{aligned}$	2N335*
Same as RTL except that capacitors are used to enhance switching speed. The capacitors increase the base current for fast collector current turn on and minimize storage time by supplying a charge equal to the stored base charge.	Faster than RTL at the expense of additional components and stringent stored charge requirements.	No standard types are characterized specifically for this logic2N404*2N5252N6342N1115	
Logic is performed by transistors. VCe and Vbe, measured with the transistor in saturation, define the two logic levels. VCE must be much less than VBe to ensure stability and circuit flexibility. (See p. 130)	Very low supply voltages may be used to achieve high power efficiency and miniaturization. Relatively fast switching speeds are practical.	4JDI A68 (PNP Alloy) Surface barrier types	
Logic is performed by diodes. The output is not inverted. Amplifiers are required to maintain the correct logic levels through several gates in series.	Several gates may be used between amplifiers. High speeds can be attained. Non-inversion simplifies circuit design problems. Relatively inexpensive components are used.	$\begin{aligned} & \text { 2N43A* } \\ & \text { 2N78* } \\ & \text { 2N123* } \\ & \text { 2N167* } \\ & \text { 2N396* } \\ & \text { 2N525 } \\ & \text { 2N635 } \end{aligned}$	$\begin{aligned} & \text { 2N333** } \\ & \text { 2N337* } \end{aligned}$
Logic is performed by diodes. The output is inverted. The diode \mathbf{D} isolates the transistor from the gate permitting R to turn on the collector current. By proper choice of components only small voltage changes occur.	The number of inputs to the diode gate does not affect the transistor base current thus giving predictable performance. The small voltage excursions minimize the effects of stray capacitance and enhance switching speed.	$\begin{aligned} & \text { 2N123* } \\ & \text { 2N396* } \\ & \text { 2N525 } \\ & \text { 2N526* } \\ & \text { 2N635 } \\ & \text { 2N1115 } \end{aligned}$	$\begin{aligned} & \text { 2N335* } \\ & \text { 2N338* } \end{aligned}$
Logic is performed by transistors which are biased from constant current sources to keep them far out of saturation. Both inverted and non-inverted outputs are available.	Very high switching speeds are possible because the transistors are operated at optimum operating conditions. Although the voltage excursion is small the circuitry is relatively unaffected by noise.	2N1289 Mesa Types	$\begin{aligned} & \text { 2N337* } \\ & \text { 2N338* } \end{aligned}$

*Military types.

BINARY ARITHMETIC

Because bistable circuits can be readily designed using a variety of components from switches to transistors, it is natural for counters to be designed to use binary numbers, i.e., numbers to the base, or radix, 2 . In the conventional decimal system, a number written as 2904 is really a contraction for $2 \times 10^{3}+9 \times 10^{2}+0 \times 10^{1}+4 \times 1$. Each place refers to a different power of 10 in ascending order from the right. In the binary system, only two symbols are permitted, 0 and 1 . All numbers are constructed on the basis of ascending powers of 2 . For example, 11011 means $1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 1$. This is 27 in the decimal system.

This notation applies also to decimal fractions as well as integers. For example, the number 0.204 is a contraction of $2 \times 10^{-1}+0 \times 10^{-2}+4 \times 10^{-3}$. Similarly, the binary number 0.1011 is a contraction of $1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4}$. Using this construction, a table of equivalent binary and decimal numbers can be obtained as shown below.

Binary	Decimal	Binary	Decimal
0	0	0.000	0.000
1	1	0.001	0.125
10	2	0.010	0.250
11	3	0.011	0.375
100	4	0.100	0.500
101	5	0.101	0.625
110	6	0.110	0.750
111	7	0.111	0.875

Arithmetic operations can best be described by comparative examples.

Addition	Súbtraction		
42	101010	44	101100
+18	$\frac{10010}{111100}$	-18	10010
60		26	11010

During addition, the digits in a column are added to the carry from the previous column. The result is expressed as a sum digit which is recorded and a carry digit which is applied to the next column. The term digit generally refers to the figures in a decimal number; the term bit (an abbreviation of binary digit) is used with binary numbers. If the digit being subtracted is the larger of the two in the column, the techniques used to handle this situation in decimal subtraction are also applicable in the binary system.

Multiplication		Division	
42	101010	1.35	$\frac{1.0101}{}$
$\frac{21}{42}$	101010	$5 \sqrt{6.7500}$	$101 \sqrt{110.11000}$
$\frac{84}{882}$	101010	$\frac{5}{17}$	$\frac{101}{111}$
	11010	$\frac{15}{25}$	$\frac{101}{1000}$
		25	$\frac{101}{110}$

Multiplying a binary number by two is equivalent to adding a zero to its right hand
side, just as multiplying a decimal number by 10 adds a zero. This is equivalent to shifting the number one place to the left. In computers, this operation is done by a shift register. Division can be readily understood since it involves the operations of additions, subtraction and multiplication only.

Computers generally employ circuits called adders which can perform the operation of addition. Adders can also perform other arithmetic operations besides addition. For example, an adder can perform subtraction by the use of a number's complement. The complement is obtained numerically by interchanging all ones and zeros. In equipment the complement can be obtained by taking the output from the opposite side of flip-flops.

The manner in which subtraction with an adder is accomplished is given by the following example:

Problem:	Calculate $1101-1001$
Complement of	1001 is 0110 $(1111-1001=0110)$
Add:	$1101+0110=10011$
Add 1	$10011+1=10100$

Omit left hand digit to obtain

$$
1101-1001=100
$$

Flip-flops can be connected in series so that the first flip-flop will alternate states with each input pulse, and successive flip-flops will alternate states at half the rate of the preceding flip-flop. In this way the flip-flops assume a unique configuration of states for a given number of input pulses. The flip-flops actually perform the function of binary counting. A practical circuit of a binary counter is shown in Figure 11.3(B) The count in a binary counter can be determined by noting whether each stage is in the 1 or 0 condition, and then assigning the appropriate power of 2 to the stage to reconstruct the number as in the examples above.

If it is required to count to a base other than 2 , a binary counter can be modified to count to the new base.

The rules for accomplishing the modification will be illustrated for a counter to the base 10 .

Rule	Example
1) Determine the number of binary stages	$\mathrm{M}=10$
(N) required to count to the desired	$2^{3}<10<2^{4}$
new base (M)	$\mathrm{N}=4$
2) Subtract M from 2^{N}	$2^{4}-10=6$
3) Write the remainder in binary form	$6=110$
4) When the count reaches 2^{N-1}, feed	$2^{N-1}=2^{3}=1000$
back a one to each stage of the counter	Feedback added gives
having a one in the remainder shown in 3)	1110

As additional pulses are added beyond the count 2^{N-1}, they will count through to M and then recycle to zero. This method is based on advancing the count at the point $2^{\mathrm{N}-1}$ to the extent that the indicated count is 2^{N} when M input pulses are applied. The feedback is applied when the most significant place becomes a one but it is imperative that feedback be delayed until the counter settles down in order to avoid interference with the normal counter action.

13. UNIJUNCTION TRANSISTOR CIRCUITS

The unijunction transistor is a three-terminal semiconductor device which has electrical characteristics that are quite different from those of conventional two-junction transistors. Its most important feature is its highly stable negative resistance characteristic which permits its application in oscillator circuits, timing circuits and bistable circuits. Circuits such as sawtooth generators, pulse generators, delay circuits, multivibrators, one-shots, trigger circuits and pulse rate modulators can be greatly simplified by the use of the unijunction transistor.

THEORY OF OPERATION

The construction of the unijunction transistor is shown in Figure 13.2. Two ohmic contacts, called base-one (B1) and base-two (B2) are made at opposite ends of a small bar of n-type silicon. A single rectifying contact, called the emitter (E), is made on the opposite side of the bar close to base-two. An interbase resistance, R_{BB}, of between 5 K and 10 K exists between base-one and base-two. In normal circuit operation, base-one is grounded and a positive bias voltage, $\mathrm{V}_{\mathbf{B E}}$, is applied at base-two. With no emitter current flowing, the silicon bar acts like a simple voltage divider (Figure 13.3) and a certain fraction, η of $V_{\text {вв }}$ will appear at the emitter. If the emitter voltage, V_{E}, is less than $\eta \mathrm{V}_{\mathrm{BB}}$, the emitter will be reverse-biased and only a small emitter leakage current will flow. If V_{E} becomes greater than $\eta V_{B B}$, the emitter will be forward biased and emitter current will flow. This emitter current consists primarily of holes injected into the silicon bar. These holes move down the bar from the emitter to base-one and result in an equal increase in the number of electrons in the emitter to base-one region. The net result is a decrease in the resistance between emitter and base-one so that as the emitter current increases, the emitter voltage decreases and a negative resistance characteristic is obtained (Figure 13.5).

Symbol for unijunction transistor with indentification of principle voltages and currents
FIGURE 13.1

Construction of unijunction transistorcross sectional view

FIGURE 13.2

The operation of the unijunction transistor may be best understood by the representative circuit of Figure 13.3. The diode represents the emitter diode, $\mathbf{R}_{\mathrm{B} 1}$ represents the resistance of the region in the silicon bar between the emitter and base-one and $R_{B 2}$ represents the resistance between the emitter and base-two. The resistance $R_{B 1}$ varies with the emitter current as indicated in Figure 13.4.

Unijunction transistor representative circuit
FIGURE 13.3

I_{E}	$R_{B I}$			
$(M A)$			$(O H M S)$	
:---:	$	$	0	4600
:---:	:---:			
1	2000			
2	900			
5	240			
10	150			
20	90			
50	40			

Variation of $R_{R_{1}}$ with $I_{E 1}$ in representative circuit (typical 2N492)

FIGURE 13.4

The large signal properties of the unijunction transistor are usually given in the form of characteristic curves. Figure 13.5 gives typical emitter characteristic curves as plots of emitter voltage vs. emitter current for fixed values of interbase voltage. Figure 13.6 gives typical interbase characteristic curves as plots of interbase voltage vs. basetwo current for fixed values of emitter current. On each of the emitter characteristic curves there are two points of interest, the peak point and the valley point. On each of the emitter characteristic curves the region to the left of the peak point is called the cutoff region; here the emitter is reverse biased and only a small leakage current flows. The region between the peak point and the valley point is the negative resistance region. The region to the right of the valley point is the saturation region; here the dynamic resistance is positive and lies in the range of 5 to 20Ω.

Typical emitter characteristics (type 2N492)
FIGURE 13.5

Typical interbase characteristics
(type 2N492)
FIGURE 13.6

PARAMETERS - DEFINITION AND MEASUREMENT

1. R_{BB} - Interbase Resistance. The interbase resistance is the resistance measured between base-one and base-two with the emitter open circuited. It may be measured with any conventional ohmmeter or resistance bridge if the applied voltage is five volts or less. The interbase resistance increases with temperature at about $0.8 \% /{ }^{\circ} \mathrm{C}$. This temperature variation of R_{B} may be utilized for either temperature compensation or in the design of temperature sensitive circuits.
2. η - Intrinsic Stand-off Ratio. This parameter is defined in terms of the peak point voltage, V_{P}, by means of the equation: $V_{P}=\eta V_{B B}+V_{D} \ldots$ where V_{D} is about 0.70 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 3 millivolts $/{ }^{\circ} \mathrm{C}$. It is
found that η is constant over wide ranges of temperature and interbase voltage. A circuit which may be used to measure η is shown in Figure 13.7. In this circuit $\mathrm{R}_{1}, \mathrm{C}_{1}$ and the unijunction transistor form a relaxation oscillator and the remainder of the circuit serves as a peak voltage detector with the diode automatically subtracting the voltage V_{D}. To use the circuit, the voltage V_{1} is set to the value desired, the "cal." button is pushed and R_{3} adjusted to make the meter read full scale. The "cal" button is then released and the value of η is read directly from the meter (1.0 full scale). If the voltage V_{1} is changed, the meter must be recalibrated.
3. I_{P} - Peak Point Current. The peak point current corresponds to the emitter current at the peak point. It represents the minimum current which is required to fire the unijunction transistor or required for oscillation in the relaxation oscillator circuit. I_{P} is inversely proportional to the interbase voltage. I_{P} may be measured in the circuit of Figure 13.8. In this circuit, the voltage V_{1} is increased until the unijunction transistor fires as evidenced by noise from the loudspeaker. V_{1} is then reduced slowly until the unijunction ceases to fire and the current through the meter is read as I_{P}.

TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)
FIGURE 13.7

TEST CIRCUIT FOR PEAK POINT EMITTERS CURRENT (IP)
FIGURE 13.8
4. V_{P} - Peak Point Emitter Voltage. This voltage depends on the interbase voltage as indicated in (2). V_{F} decreases with increasing temperature because of the change in V_{D} and may be stabilized by a small resistor in series with base-two.
5. V_{E} (sat) - Emitter Saturation Voltage. This parameter indicates the forward drop of the unijunction transistor from emitter to base-one when it is conducting the maximum rated emitter current. It is measured at an emitter current of 50 ma and an interbase voltage of 10 volts.
6. $\mathrm{I}_{\mathrm{B} 2}(\mathrm{mod})$ - Interbase Modulated Current. This parameter indicates the effective current gain between emitter and base-two. It is measured as the base-two current under the same condition used to measure V_{E} (sat).
7. I_{Eo} - Emitter Reverse Current. The emitter reverse current is measured with 60 volts between base-two and emitter with base-one open circuit. This current varies with temperature in the same way as the $I_{c o}$ of a conventional transistor.
8. V_{v} - Valley Voltage. The valley voltage is the emitter voltage at the valley point. The valley voltage increases as the interbase voltage increases, it decreases with resistance in series with base-two and increases with resistance in series with base-one.
9. I_{v} - Valley Current. The valley current is the emitter current at the valley point. The valley current increases as the interbase voltage increases and decreases with resistance in series with base-one or base-two.

RELAXATION OSCILLATOR

The relaxation oscillator circuit shown in Figure 13.9 is a basic circuit for many applications. It is chiefly useful as a timing circuit, a pulse generator, a trigger circuit or a sawtooth wave generator.

BASIC RELAXATION OSCILLATOR WITH TYPICAL WAVEFORMS FIGURE 13.9

Conditions for Oscillation.

$$
\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{P}}}{\mathrm{R}_{1}}>\mathrm{I}_{\mathrm{p}}, \quad \frac{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{F}}}{\mathrm{R}_{1}}<\mathrm{I}_{\mathrm{V}}
$$

It is found that these conditions are very broad permitting a 1000 to 1 range of R_{1} from about 2 K to $2 \mathrm{M} . \mathrm{R}_{2}$ is used for temperature compensation, its value may be calculated from the equation:

$$
\mathrm{R}_{2} \cong \frac{0.65 \mathrm{R}_{\mathrm{BB}}}{\eta \mathrm{~V}_{1}} \text { (units are ohms, volts) }
$$

The maximum and minimum voltages of the emitter voltage waveform may be calculated from:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}(\max .)=\mathrm{V}_{\mathrm{p}}=\eta \mathrm{V}_{\mathrm{BB}}+0.7 \text { volt } \\
& \mathrm{V}_{\mathrm{R}}(\min .) \cong 0.5 \mathrm{~V}_{\mathrm{E}}(\mathrm{sat})
\end{aligned}
$$

The frequency of oscillation is given by the equation;

$$
\mathrm{f} \cong-\frac{1}{R_{1} \mathrm{C} \ln \left(\frac{1}{1-\eta}\right)}
$$

and may be obtained conveniently from the nomogram of Figure 13.10.

Nomogram for calculating frequency of relaxation oscillation
FIGURE 13.10

The emitter voltage recovery time, tre, is defined as the time between the 90% and 10% points on the emitter voltage waveform. The value of $t_{v e}$ is determined primarily by the size of the capacitor C in Figure 13.9 and may be obtained from Figure 13.11.

\xrightarrow{I}

Recovery time of unijunction transistor relaxation oscillator vs, capacity FIGURE 13.11

The pulse amplitude at base-one or base-two may be determined from the equations:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}(\mathrm{p}, \mathrm{AK})} \cong \frac{\left[\mathrm{V}_{\mathrm{p}}-1 / 2 \mathrm{~V}_{\mathrm{B}}(\mathrm{sat})\right] \mathrm{C}}{\mathrm{t}_{\mathrm{VE}}} \\
& \mathrm{I}_{\mathrm{B} 2(\mathrm{peak})} \cong \frac{\mathrm{I}_{\mathrm{B} 2}(\mathrm{mod})}{7} \sqrt{\mathrm{I}_{\mathrm{E}(\mathrm{peak})}}
\end{aligned}\left\{\begin{array}{l}
\text { Units are ma, } \\
\text { volts, m} \mu \mathrm{f}, \mu \mathrm{sec} .
\end{array}\right.
$$

SAWTOOTH WAVE GENERATOR

The circuit of Figure 13.12 may be used as a linear sawtooth wave generator. The NPN transistor serves as an output buffer amplifier with the capacitor C_{2} and resistor R_{2} serving in a bootstrap circuit to improve the linearity of the sawtooth. R_{1} and C_{1} give integrator type feedback which compensates for the loading of the output stage. Optimum linearity is obtained by adjusting \mathbf{R}_{1}. Linearity is 0.3% or more depending on h_{FE} of the NPN transistor.

SAWTOOTH GENERATOR WITH HIGH LNEARITY
FIGURE 13.12

STAIRCASE WAVE GENERATOR

Figure 13.13 shows a simple staircase wave generator which has good stability and a wide operating range. The unijunction transistor Q_{1} operates as a free running oscillator which generates negative pulses across R_{2}. These pulses produce current pulses from the collector of Q_{2} which charge capacitor C_{1} in steps. When the voltage across C_{1} reaches the peak point voltage of Q_{3} this transistor fires and discharges C_{5}.

Resistor R_{1} determines the frequency of the steps and resistor R_{2} determines the number of steps per cycle. The circuit shown can be adjusted for a step frequency from 100 cps to 2 KC and the number of steps per cycle can be adjusted from one to several hundred. This circuit can also be adapted to a frequency divider by cascading stages similar to the stage formed by Q_{2} and Q_{3}.

TIME DELAY RELAY

Figure 13.14 shows how the unijunction transistor can be used to obtain a precise delay in the operation of a relay. When the switch SW1 is closed, capacitor C_{T} is

TIME DELAY CIRCUIT WITH RELAY
FIGURE 13.14
charged to the peak point voltage at which time the unijunction transistor fires and the capacitor discharges through the relay thus causing it to close. One set of relay coniacts hold the relay closed and the second set of contacts can be used for control functions. To be used in this circuit, relays must have fast operating times, low coil resistance and low operating power.

The time delay of this circuit is determined by R_{T}, about one second of delay is obtained for each 10 K of resistance, R_{T}. The time delay is quite independent of temperature and supply voltage.

MULTIVIBRATOR

Figure 13.15 shows a unijunction transistor multivibrator circuit which has a frequency of about 1 Kc . The conditions for oscillation of this circuit are the same as for the relaxation oscillator. The length of time during which the unijunction transistor is off (no emitter current flowing) is determined primarily by R_{1}. The length of time during

UNIJUNCTION TRANSISTOR MULTIVIBRATOR WITH TYPICAL WAVE FORMS

FIGURE 13.15

Unijunction transistor multivibrator used to drive NPN transistor
FIGURE 13.16
which the unijunction transistor is on is determined primarily by R_{2}. The periods may be calculated from the equations:

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{R}_{1} \mathrm{C} \ln \left[\frac{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{p}}}\right] \\
& \mathrm{t}_{2}=\mathrm{R}_{2} \mathrm{C} \ln \left[\frac{\mathrm{~V}_{1}+\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{E}}}{\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{p}}}\right]
\end{aligned}
$$

Where V_{E} is measured at an emitter current of $I_{E}=\frac{V_{1}\left(R_{1}+R_{2}\right)}{R_{1} \mathbf{R}_{2}}$ and may be obtained from the emitter characteristic curves.

An NPN transistor may be direct coupled to the multivibrator circuit by replacing the diode as shown in Figure 13.16. This circuit has the advantage that the load does not have any effect on the timing of the circuit.

HYBRID TIMING CIRCUITS

The unijunction transistor can be used in conjunction with conventional PNP or NPN transistors to obtain versatile timing circuits such as symmetrical and unsymmetrical multivibrators, one-shot multivibrators, variable frequency oscillators and time delay circuits. The advantages of these circuits include: (1) The output at the collector of each transistor is very nearly an ideal rectangular waveform. (2) The circuits will tolerate large variations in h_{FE} or \mathbf{I}_{Co} of the transistors as compared to conventional circuits. (3) The circuits are not prone to "lock-up" or non-oscillation. (4) The timing stability is excellent. (5) A single small timing capacitor C_{T} can be used, avoiding the use of electrolytic capacitors in many applications.

The hybrid timing circuits can use either germanium or silicon transistors as desired. The basic circuits for PNP or NPN transistors are shown in Figures 13.17 and 13.18. In both of these circuits, the junction transistors form a conventional flip-flop with the unijunction transistor serving the timing and triggering functions. Each time the unijunction transistor fires the discharge current from the capacitor C_{T} develops a pulse across R_{A} which triggers the flip-flop from one state to the other.

The basic circuits as shown in Figures 13.17 and 13.18 will operate at frequencies from about 1 cps to 500 cps and at temperatures above $75^{\circ} \mathrm{C}$. Frequencies from 1 cycle per minute to 100 KC can be obtained by proper choice of C_{T} and R_{A} and suitable flipflop design. The operating temperature range may be extended to $150^{\circ} \mathrm{C}$ by the use of silicon transistors.

BASIC HYBRID TIMING CIRCUITS USING PNP AND NPN TRANSISTORS
FIGURE 13.17

The basic hybrid timing circuits in Figures 13.17 and 13.18 can be adapted to perform desired functions by connecting resistors or potentiometers between the points in the circuit ($\left.C_{1}, C_{2}, E, G\right)$ as indicated below.
(A) Symmetrical Multivibrator - Square Wave Generator

Connecting the resistor between points E and G in the basic circuits gives a square wave generator which has perfect symmetry. By the use of a 2 megohm potentiometer the frequency may be varied continuously from 1 cps to 500 cps . The frequency is $f=1 / 2 R_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$.
(B) One-Shot Multivibrator

(VARIABLE)

$\stackrel{N}{=} R_{T} C_{T}$

The collector of Q_{2} will be positive in the quiescent state. A positive pulse at the base of Q_{2} in Figure 13.17 or a negative pulse at the base of Q_{1} in Figure 13.18 will trigger the circuit. At the end of the timing interval, the unijunction transistor will fire and cause the circuit to revert to its quiescent state. This circuit has the advantage of a fast recovery time so it may be operated at a high duty ratio without any loss of accuracy.
(C) Non-symmetrical Multivibrator

(VARIABLE)

$$
\begin{aligned}
& t_{1} \cong\left(R_{T 1}+R_{1}\right) C_{T} \\
& t_{2} \cong\left(R_{T 2}+R_{1}\right) C_{T}
\end{aligned}
$$

$$
\begin{aligned}
& t_{1} \cong R_{1} C_{T} \\
& t_{2} \cong \frac{R_{1} R_{2} C_{T}}{R_{1}+R_{2}}
\end{aligned}
$$

The timing capacitor C_{T} will be charged through the resistor $\mathrm{R}_{\mathrm{T}_{1}}$ or $\mathrm{R}_{\mathrm{T}_{2}}$ which is connected to the positive collector. The diodes will isolate the other resistor from the
timing capacitor. The two parts of the period $\left(t_{1}, t_{2}\right)$ can thus be set independently by $\mathrm{R}_{\mathrm{T}_{1}}$ and $\mathrm{R}_{\mathrm{T}_{2}}$ and may differ by as much as 1000 to 1 .
(D) Non-symmetrical Multivibrator - Constant Frequency

This configuration gives a multivibrator which has a constant frequency but a variable duty cycle.
(E) Variable Frequency Oscillator

In the equations V_{Bb} is the voltage between base-one and base-two of the unijunction transistor. These circuits give a variable frequency square wave output. For the first two circuits the frequency is proportional to the input current. The first circuit has a higher effective current gain than the second circuit, but the temperature stability is not as good. The third circuit is useful if only a small range of frequency variation is desired. The variation of frequency with input voltage is linear only for small changes in input voltage.

Further information on the characteristics and circuit applications of the unijunction transistor is given in application note ECG-380, "Notes on the Application of the Silicon Unijunction Transistor". Available on written request.

14. TUNNEL DIODE THEORY AND SWITCHING CIRCUITS

The tunnel diode is a new semiconductor device which offers the device engineer a unique physical mechanism for semiconductor operation and at the same time offers the circuit engineer a unique set of electrical characteristics for improved circuit design. In comparison with conventional types of transistors, the tunnel diode offers advantages of extremely high frequency operation, low noise, small size, low operating power levels, together with a potential low cost and high reliability.

Physically, the tunnel diode is a two terminal device consisting of a single PN junction. The essential difference between a tunnel diode and a conventional diode is due to the fact that the conductivity of the P and N material used in the fabrication of a tunnel diode is more than 1,000 times as high as the conductivity of the material used in the fabrication of conventional diodes. This higher conductivity is obtained by increasing the concentration of acceptor and donor impurities in the semiconductor material when it is formed as explained in Chapter 1 and 2.

Owing to the very high conductivity of the P and N materials used in fabricating tunnel diodes the width of the junction (the depletion layer) is very small, of the order of 10^{-6} inch. Because of the extremely narrow junction it is possible for electrons to tumnel through the junction even though they do not have enough energy to surmount the potential barrier of the junction. Although tunneling is impossible in terms of classical physics, it can be explained in terms of quantum mechanics. For this reason the mechanism is commonly called quantum mechanical tunneling.

Referring to the diagram of a rectifier shown in Figure 1.4, it is seen that under conditions of reverse bias there are no free electrons in the P region and no free holes in the N region to conduct charge across the junction. In the tunnel diode however, a small reverse bias will cause the valence electrons of the semiconductor atoms near the junction to tunnel across the junction into the N region and thus the tunnel diode will conduct under reverse bias. Similarly, for a low value of applied forward voltage the conventional rectifier will not conduct since the holes and electrons do not have enough energy to overcome the potential barrier of the junction. In the tunnel diode a small forward bias will cause the electrons in the N region to tunnel across the junction into the P region (appearing as valence electrons in the semiconductor atoms), and thus the tunnel diode will also conduct under small values of forward bias. If the forward bias on a tunnel diode is increased (e.g. above 50 millivolts for germanium) the energy of the free electrons of the N region will become greater than the energy of the valence electrons in the P region and consequently the tunneling current will decrease. The decrease in tunnel current with increasing forward bias causes the negative conductance characteristic which is typical of the tunnel diode. As the forward bias is increased further (above 300 millivolts for germanium) the free holes and electrons will have enough energy to flow over the potential barrier of the junction in a manner identical to that of a conventional diode.

Quantum mechanical tunneling, with a theoretical frequency limit of 10^{7} megacycles per second, is inherently a much higher frequency mechanism than the drift and diffusion mechanisms involved in the operation of conventional diodes and transistors. In practice, the frequency limitation of the tunnel diode is determined by the parasitic capacity, inductance and resistance of the device rather than by the tunneling mechanism itself.

ELECTRICAL CHARACTERISTICS

A static characteristic curve for a typical germanium tunnel diode is shown in Figure 14.1. It is seen from this figure that the tunnel diode exhibits a low a-c resistance under reverse bias and for low values of forward voltage. With intermediate values of forward voltage the diode exhibits a negative conductance characteristic. At higher values of forward bias the diode characteristic approaches the forward characteristic of a conventional diode shown by the dotted line. The points on the characteristic curve where the a-c conductance is zero are called the peak point and the valley point. The voltages and currents at these points are called the peak point voltage $-V_{P}$, the valley point voltage $-V_{v}$, the peak point current $-I_{P}$, and the valley point current -- I_{V}. The forward voltage at a current equal to the peak point current is designated by V_{FP}.

STATIC CHARACTERISTIC OF TYPICAL GERMANIUM TUNNEL DIODE FIGURE 14.1

The voltages of the tunnel diode characteristic are determined by the semiconductor material of which the tunnel diode is made and can only be controlled over a small range. The currents of the tunnel diode characteristics can be varied over a very wide range however. The peak current which is the characteristic commonly specified can be varied from 10μ a to 10 amperes or more although most applications require peak currents in the range of 1 to 50 ma . It is generally desired that the ratio of the peak current to valley current have a high value although the maximum value is determined by the semiconductor material.

The small signal (ac) equivalent circuit of a tunnel diode biased in the negative conductance region is shown in Figure 14.2. The inductance, L_{s}, is determined primarily by the package and the leads. For a TO-18 transistor package L_{s} is about 6×10^{-9} henries if connections are made to the leads only and about 3×10^{-9} henries if connections are made to the case and the two common leads. For a microstrip package L_{a} is about 3×10^{-10} henries. The resistance, R_{8}, is determined by the bulk resistance of the semiconductor material and is generally less than 2 ohms. The capacity, C, is primarily due to the capacity of the junction although a small portion is due to the package and the leads. The negative conductance, $-g_{a}$, in the equivalent circuit is equal to the slope of the voltage-current characteristic at the particularly bias point under consideration. The value of the negative conductance can be assumed to be independent of frequency, the chief limitations in the frequency response of the tunnel diode being determined by the parasitic elements in the equivalent circuit ($\mathrm{R}_{\mathrm{s}}, \mathrm{L}_{\mathrm{s}}, \mathrm{C}$).

Some of the more important electrical parameters of germanium and gallium arsenide tunnel diodes are summarized in Figure 14.3 together with their temperature coefficients. The variation of the peak current with temperature is shown in Figures 14.4 and 14.5 .

CHARACTERISTIC	SYMBOL	GERMANIUM	GALLIUM ARSENIDE
PEAK POINT VOLTAGE	V_{P}	55 MV	150 MV
TEMPERATURE COEFFICIENT	$\triangle V P / \triangle T$	-80MV/ ${ }^{\circ} \mathrm{C}$	$-120 \mathrm{MV} /{ }^{\circ} \mathrm{C}$
VALLEY POINT VOLTAGE	V	350 MV	500 MV
TEMPERATURE COEFFICIENT	$\triangle V_{V} / \triangle^{T}$	$-1.0 \mathrm{MV} /{ }^{\circ} \mathrm{C}$	$-1.0 \mathrm{MV} /{ }^{\circ} \mathrm{C}$
FORWARD VOLTAGE AT PEAK CURRENT	VFP	500 MV	1100 MV
TEMPERATURE COEFFICIENT	$\Delta V_{F P} / \Delta{ }^{T}$	$-1.0 \mathrm{MV} /{ }^{\circ} \mathrm{C}$	$-1.0 \mathrm{MV} /{ }^{\circ} \mathrm{C}$
PEAK TO VALLEY RATIO	I_{p} / I_{V}	B	15
VALLEY CURRENT TEMPERATURE COEFFICIENT	$\Delta^{I_{v} /} \Delta^{T}$	$+1.0 \%{ }^{\circ} \mathrm{C}$	$+0.5 \% /{ }^{\circ} \mathrm{C}$
CONDUCTANCE TO PEAK CURRENT RATIO	9, $/$ IP	6.5 MHO / AMP	5.0 MHO/AMP
CONDUCTANCE TEMPERATURE COEFFICIENT	$\triangle^{9} d^{\prime} \Delta^{T}$	$-.5 \% /{ }^{\circ} \mathrm{C}$	-
CAPACITANCE TO PEAK CURRENT RAT10	$\overline{c / I} \mathrm{I}_{\mathrm{P}}$	$5 \mathrm{Pf} / \mathrm{mol}$	1.5 pf/ma

TYPICAL ELECTRICAL CHARACTERISTICS OF GERMANIUM AND GALLIUM ARSENIDE TUNNEL DIODES

FIGURE 14.3

peak current vs. temperature germanium tunnel diode

PEAK CURRENT VS. TEMPERATURE GALLIUM ARSENIDE TUNNEL DIODE' FIGURE 14.5

SWITCHING CIRCUITS

One of the most promising areas for the application of tunnel diodes is in switching circuits, particularly in large scale computers where the tunnel diode can economically perform both the logic and memory functions. Here the tunnel diode offers the advantages of small size, low operating power, high speed and potential low cost and high reliability.

TUNNEL DIODE THRESHOLD LOGIC
FIGURE 14.6
It is possible to form a simple bistable circuit by connecting a tunnel diode in series with a voltage source and a resistor as indicated in Figure 14.6. Here the load line is chosen to intersect the tunnel diode characteristic at two points where the dynamic resistance is positive. The circuit then has two stable states represented by " 0 " and " 1 " and can be switched from one state to the other by means of appropriate positive or negative signals. As indicated in Figure 14.6, the circuit can be used to perform analog threshold logic. Current from two or more inputs may cause the diode to switch to the high voltage state depending on the amplitude of the input signals and the biasing conditions of the diode. If the circuit is designed so that only a single input current is required to switch the diode an "OR" function is obtained, whereas if currents are required from all the inputs, an "AND" function is obtained. The chief limitation of this type of logic is that it places difficult requirements on the stability of the diodes and the other circuit components. This problem can be alleviated to some extent by connecting a second tunnel diode in parallel with R_{1}. This tunnel diode should have about twice the peak current of the first tunnel diode and the supply volt-
age V_{1} should be low enough so that both diodes can not be in the high voltage state. When the first diode is switched to the high voltage state, the second diode provides a low resistance across R_{1} and thus permits a greater range of current to be drawn from the output. ${ }^{3}$

BASIC TUNNEL DIODE MAJORITY LOGIC CIRCUIT "GOTO PAIR" FIGURE 14.7

An example of the use of tunnel diodes in a majority logic circuit is shown in Figure 14.7. Here the tunnel diodes are periodically turned on and off by an AC supply which may furnish either a sinewave or a square wave. The voltage of the supply has a sufficiently low value so that only one of the diodes can switch to the high voltage state. The diode which switches to the high voltage state will be determined by the majority decision of the inputs. For example, if the majority of the input currents are flowing to the right then the net current will be a positive current into the common point of the two diodes. This will cause a larger current to flow into the lower diode and when the upper side of the transformer goes positive the lower diode will switch to the high voltage state producing a positive output.

BASIC TUNNEL DIODE FLIP-FLOP CIRCUIT FIGURE 14.8

The circuit of Figure 14.8 can operate as a flip-flop or multivibrator depending on the biasing conditions chosen. As a flip-flop, the circuit is designed so that only one diode can be in the high voltage state and only one diode can be in the low voltage state. The current through the inductor will then flow through the diode which is in the low voltage state. When a negative pulse occurs at the trigger input, one diode will switch so they will both be in the low voltage state. At the end of the trigger pulse the current flowing in the inductor will cause a larger current to flow through the diode which was originally in the low voltage state thus causing it to switch to the high voltage state. The circuit thus operates as a counter stage. The output can be differentiated and used to trigger similar circuits as indicated in the figure.

> HYBRID TRIGGER CIRCUIT AND INPUT CHARACTERISTIC
> (Using Germanium Alloy Transistor and Germanium Tunnel Diode) FIGURE 14.9

The tunnel diode may also be combined with a transistor to perform many practical types of switching functions. A simple, graphical analysis of a circuit using a germanium tunnel diode in parallel with the input to a germanium transistor is shown in Figure 14.9. The characteristic of the tunnel diode in series with a 50 ohm resistor is first plotted. The input characteristic of the transistor is then plotted on the same graph but is displaced by 0.15 volts to account for the bias generated across the 50 ohm resistor. The net input characteristic is then obtained by adding the two curves together (add currents at each voltage for a parallel combination). The net input characteristic may then be analyzed by means of load lines for bistable or astable operation as desired. A flip-flop circuit can be obtained by connecting a resistor of suitable value from the base of the transistor to the $+V_{1}$ supply such that the current flowing through the resistor is slightly less than the peak current of the tunnel diode.

Additional details on the design of tunnel diode switching circuits can be obtained by writing for ECG-488 "Tunnel Diodes as Amplifiers and Switches."

REFERENCES

1. Lesk, Holonyak, Davidsohn, Aarons, "Germanium and Silicon Tunnel Diodes Design, Operation and Application", 1959 IRE WESCON Convention Record, Part 3.
2. Sylvan, T. P., Gottlieb, E., "Tunnel Diodes as Amplifiers and Switches", Electronic Equipment Engineering, May 1960.
3. Chow, W. F., "Tunnel Diode Logic and Memory Circuits", 7th Annual Symposium on Computers and Data Processing, University of Denver, July 1960.

15. TUNNEL DIODE AMPLIFIERS

BIASING

Examining the tunnel diode V-I characteristics (see Figure 14.1), it becomes evident that for amplifier operation the "operating point" must be chosen in the negative conductance region. Furthermore, to secure a stable operating point, the bias must be derived from a voltage source. The location of this operating point will depend on the magnitude of the anticipated signal swing, the required signal-to-noise ratio, and the operating temperature range.

Biasing at the center of the more linear portion of the negative conductance slope will allow the greatest signal swing (about 100 mv for Ge and 150 mv for GaAs). For high temperature operation, the large signal distortion will increase, as a result of the increase in valley current. (See Figure 14.3 for valley current temperature coefficient). If this increased distortion is unacceptable, smaller signal swings and/or a higher current operating point will alleviate this problem. Another important bias consideration is the noise figure of the device. From Equation (1) on page 155 it can be seen that a lower operating current will provide a lower noise figure. This is only true if the reduction in diode conductance, resulting from this bias change, is smaller than the change in current. The above statement is predicated on a condition of match between $-g_{d}$ and the generator conductance g_{g} as outlined in the section on noise.

If low noise is of paramount importance, a device with inherently high Ip/Iv ratio, refrigerated to further improve this ratio, and operated at the lowest permissible bias current, will give best results.

In most cases, it will be quite adequate to select the bias around the inflection point. This is the point of maximum negative conductance and occurs at about 130 mv for germanium and 250 mv for gallium arsenide.

The greatest bias problem is that the negative conductance region is not linear. In amplifier circuits it is necessary to match the diode conductance closely to the circuit conductance if high gain is to be achieved. Slight variations in bias point with the consequent variations in diode conductance can cause large changes in circuit gain. Hence it is important to ensure a very stable bias voltage.

Some of the possible methods for obtaining stable, low impedance bias supply voltages are;

1) the use of mercury cells
2) the use of forward biased diodes as voltage regulators
3) the use of breakdown diodes as voltage regulators

An example of the use of a forward biased diode for bias stabilization is shown in Figure 15.1. Here an inexpensive silicon diode is biased heavily in the forward direction so that it exhibits a low voltage and a low dynamic resistance. A low impedance voltage divider is used to reduce the diode voltage to the value desired for biasing of the tunnel diode.

SILICON DIODE VOLTAGE REGULATOR
FIGURE 15.1

TEMPERATURE CHARACTERISTICS

Figure 14.3 in the previous chapter gives the temperature coefficients of the various tunnel diode parameters. Each specific application may be dependent on the temperature coefficient of a different parameter. For example, in switching circuits the primary concern is the stability of the peak current since it determines the switching threshold, although the changing forward voltage can effect the amplitude of the output voltage.

In oscillators where matching is not required, it may be important only to make sure that, at the lowest operating temperatures, the device is driven from a voltage source. This requires the source resistance supplying the voltage to the tunnel diode to be much smaller than the negative resistance of the diode. Oscillators have been operated successfully over a temperature range from $4^{\circ} \mathrm{K}$ to over $573^{\circ} \mathrm{K}$ - a remarkably wide operating range. In amplifiers where some degree of match between the diode conductance and the circuit conductance is required, it is obvious that this match must be maintained over the required operating temperature range. Stable amplification can be achieved by using either negative feedback, direct temperature compensation with thermistors or other temperature sensitive devices or taking advantage of the non-linearity of g_{d} vs. bias by making the bias network deliberately temperature sensitive.

FREQUENCY LIMITATIONS

Two significant frequency figures of merit can be assigned to the tunnel diode. ${ }^{1}$

$$
\begin{array}{ll}
\text { a) resistive cut-off frequency } & \mathrm{f}_{\mathrm{ro}}=\frac{\left|\mathrm{g}_{\mathrm{d}}\right|}{2 \pi \mathrm{C}} \sqrt{\frac{\mathrm{l}}{\mathrm{R}_{s}\left|\mathrm{~g}_{\mathrm{d}}\right|}-1} \\
\text { b) self-resonant frequency } & \mathrm{f}_{\mathrm{x} 0}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{l}}{\mathrm{~L}_{\mathrm{s}} \mathrm{C}}-\left(\frac{\mathrm{g}_{\mathrm{a}}}{\mathrm{C}}\right)^{2}}
\end{array}
$$

Both of these frequencies are derived from the equivalent circuit of Figure 14.2. The resistive cut-off frequency is the frequency at which the real part of the diode impedance, measured at its terminals, goes to zero. The tunnel diode can not amplify above this frequency. The self-resonant frequency is the frequency at which the imaginary part of the diode impedance goes to zero. It should be pointed out that both frequencies are reduced by external circuit components and therefore the highest possible operating frequency is very circuit dependent. In a transistor package the tunnel diode is limited to operating frequencies in the order of I KMc, this limit being due primarily to the lead inductance. Microstrip or microwave packaging, owing to its inherently lower inductance, can raise the frequency capabilities by an order of magnitude or more.

NOISE PERFORMANCE

In the tunnel diode, one of the major contributions to noise is shot noise. The noise figure in a correctly designed amplifier can be in the range of 3 or 4 db provided that the source conductance is matched to the negative conductance of the tunnel diode. The noise figure is also dependent on the load conductance which might be a mixer or converter stage and be relatively noisy. It is possible, for example, to connect the tunnel diode in parallel with the input of an RF amplifier stage and obtain both reduced noise and increased gain. The noise figure ${ }^{2}$ is given by the equation:

$$
\begin{equation*}
\mathrm{N} . \mathrm{F} . \cong \mathrm{I}+\frac{20 \mathrm{I}_{\mathrm{de}}}{\mathrm{~g}_{\mathrm{g}}}+\frac{\mathrm{T}_{1} \cdot \mathrm{~g}_{1}}{\mathrm{~T}_{\mathrm{g}} \cdot g_{\mathrm{g}}} \tag{1}
\end{equation*}
$$

where $I_{d c}$ is the DC bias current through the tunnel diode, g_{g} and g_{g} are the conductances of the generator and the load, the T_{g} and T_{1} are the effective noise temperatures of the generator and the load. From this equation it can be seen that it is desirable
to make g_{g} large and g_{1} small. To achieve high gain it is necessary that $g_{g}+g_{1}$ be very nearly equal to the conductance of the diode, $\left|-\mathrm{g}_{\mathrm{a}}\right|$. Thus to minimize the noise figure it is desirable to make g_{g} very nearly equal to $\left|-\mathrm{g}_{\mathrm{d}}\right|$. The value of I_{dc} should be chosen as low as possible, consistent with a reasonable value of $\left|-g_{d}\right|$. To satisfy this requirement, tunnel diodes with high values of peak current to valley current ratios are desirable.

NUCLEAR RADIATION EFFECTS

Encouraging results have been obtained from preliminary investigations of the effects of nuclear radiation on the characteristics of some germanium tunnel diodes. Under a doseage of 3×10^{14} NVT (90% thermal, 10% fast), no apparent change in the electrical characteristics were observed except for the noise figure which increased by approximately 20% at the point of maximum negative conductance and by 100% near the valley point.

At a dosage of 5×10^{15} NVT, the valley current increased by about 25% while the other DC characteristics had not changed. The noise figure increased by a factor of 3 at the point of maximum negative conductance while the noise figure in the vicinity of the valley point was extremely high. Further tests on gallium arsenide tunnel diodes shows that they are still quite useful in switching circuits around 10^{17} NVT fast neutrons $/ \mathrm{cm}^{2}$. In general, the radiation resistance of tunnel diodes appears to be higher than some tubes (especially glass envelope types) and transistors and should be of definite value for military applications. Also it appears that GaAs units are more resistant to nuclear radiation than germanium or silicon units.

NEGATIVE CONDUCTANCE AMPLIFIER IN THE PARALLEL CONNECTION

A graphical analysis of this connection can be seen in Figure 15.2. The diode charactertstic is represented by curve $\# 1$; the positive circuit conductance is shown by curve \#2. Adding these conductances algebraically the resultant net input characteristic of the amplifier stage can be seen in curve \#3. The slope of the input characteristic in the active region (between A "and B") is close to horizontal indicating a high input impedance. The value of this input impedance is given by:

$$
Z_{\mathrm{in}}=\frac{\mathrm{l}}{\mathrm{~g}_{\mathrm{t}}}=\frac{\mathrm{l}}{\mathrm{~g}_{9}+\mathrm{g}_{\mathrm{i}}-\mathrm{g}_{\mathrm{a}}}
$$

and the available power gain is:

$$
\mathrm{PG}_{\mathrm{ar} .}=\frac{4 \mathrm{~g}_{\mathrm{g}} \mathrm{~g}_{1}}{\left(\mathrm{~g}_{\mathrm{t}}\right)^{2}}
$$

It can be seen both graphically and mathematically that to obtain a high value of available stable power gain it is necessary for Z_{in} to be very large and positive. This requires $\mathrm{g}_{g}+\mathrm{g}_{1}$ to be very nearly equal to but larger than $\left|-\mathrm{g}_{\mathrm{d}}\right|$. Since the voltage is the same across all the conductances in the circuit, the voltage gain of the parallel circuit will be unity.

The closer $g_{g}+g_{1}$ is to $\left|-g_{d}\right|$, the greater is the current amplification obtained. A similar graphical analysis can be applied to the series connection resulting in a "low" input impedance circuit and voltage gain. The basic low frequency equivalent circuit of the parallel connection can be seen in Figure 15.3(A). Essentially it consists of a signal current source driving the parallel combination of the load resistance (rl) and the diode resistance (-rd).

Figure $15.3(\mathrm{~B})$ shows the actual circuit yielding about 30 db gain. It is relatively difficult to build a stable low frequency amplifier circuit. since the tunnel diode is

PARALLEL AMPLIFIER STAGE AND EQUIVALENT CIRCUIt
FIGURE 15.2
inherently trying to oscillate at very high frequencies (see Stability Criteria). The use of audio components and audio type layouts, generally result in enough stray inductance to enable the circuit to oscillate freely at high frequencies, since bypassing is not a simple matter in the UHF range.

graphical analysis of parallel amplifier stage
FIGURE 15.3

STABILITY CRITERIA

Successful linear operation of a tunnel diode amplifier depends on the stability of the complete system, including in particular the internal impedance of the bias supply and the signal source impedance. The basic amplifier circuit can be reduced to that shown in Figure 15.4 where $R_{T}=R_{g}+R_{1}+R_{s}, L_{T}=L_{s}+L_{t}, C$ is the total diode capacitance and $-g_{d}$ the negative conductance of the diode at the operating current and voltage.

To determine the system stability one can examine the distribution of poles or zeros of the circuit determinant in the complex S-plane. ${ }^{1}$

(B) SIMPLIFIED SERIES CONFIGURATION
(A) SERIES CONFIGURATION OF AMPLIFIER OR OSCILLATOR CIRCUIT

FIGURE 15. 4

If the zeros of Z seen at the input, fall in the right half side of the S plane, the system is unstable. Conversely, if the zeros fall in the left half side of the S-plane the circuit is stable.

The input impedance is given as:

$$
\mathrm{Z}_{(\mathrm{s})}=\frac{\mathrm{S}^{2} \mathrm{~L}_{\mathrm{T}} \mathrm{C}+\mathrm{S}\left(\mathrm{R}_{\mathrm{T}} \mathrm{C}-\mathrm{L}_{\mathrm{T}}\left|-\mathrm{g}_{\mathrm{d}}\right|\right)+\left(1-\mathrm{R}_{\mathrm{T}}\left|-\mathrm{g}_{\mathrm{d}}\right|\right)}{\mathrm{SC}-\left|-\mathrm{g}_{\mathrm{d}}\right|}
$$

and the zeros are:

$$
S=-\frac{1}{2}\left(\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}_{\mathrm{T}}}-\frac{-\mathrm{g}_{\mathrm{a}} \mid}{\mathrm{C}}\right) \pm \sqrt{4\left(\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}_{\mathrm{T}}}-\frac{\left|-\mathrm{g}_{\mathfrak{a}}\right|}{\mathrm{C}}\right)^{2}-\frac{1-\mathrm{R}_{\mathrm{T}}\left|-\mathrm{g}_{d}\right|}{\mathrm{L}_{\mathrm{T}} \mathrm{C}}}
$$

Then S will have a negative real part only if both: $\frac{\mathbf{R}_{T}}{L_{T}}-\frac{\left|-g_{d}\right|}{C}>0$ and $1-R_{T}\left|-g_{d}\right|>0$. This can be rewritten as $\frac{1}{\left|-\bar{g}_{d}\right|}>R_{T}>\frac{L_{T}\left|-g_{d}\right|}{C}$
Figure 15.5 portrays the stability criteria graphically.

It is therefore important to remember that L_{T} must be smaller than.

$$
\mathrm{L}_{\mathrm{T}}<\frac{\mathrm{R}_{\mathrm{r}} \mathrm{C}}{\left|-\mathrm{g}_{\mathrm{d}}\right|}
$$

in order to provide stable amplification. Spelling out the many stability criteriaz

STABLE AMPLIFICATION

1) The circuit inductance must be smaller than, $\left(L_{T}\right)<\frac{R_{7} C}{\left|-g_{d}\right|}$
2) The sum of the positive circuit conductances must be nearly equal to, but always greater than the negative conductance of the diode.

$$
g_{\mathrm{s}}+\mathrm{g}_{1}+\mathrm{g}_{\mathrm{x}}=1-\mathrm{g}_{\mathrm{d}} \mid \text { or } \mathrm{R}_{\mathrm{T}}<\frac{1}{\left|-\mathrm{g}_{\mathrm{a}}\right|}
$$

3) The total DC loop resistance must be less than the negative diode resistance (voltage source).
4) All above requirements must remain satisfied over a range of supply voltages and temperature conditions.

Amplifier circuits have been built from audio frequencies up to several hundred megacycles with gains in the 30 db range having excellent bandwidth.

The following design procedure will treat such a $100 \mathrm{Mc} / \mathrm{s}$ amplifier circuit in the series configuration.

AMPLIFIER DESIGN PROCEDURE

In this circuit (see Figure 15.6), the source is a 50 ohm generator, the load is also 50Ω while the series resistance (R_{s}) of the device is 2Ω. Hence $\mathrm{R}_{\mathrm{T}}=50+50+2=102 \Omega$. Use is made of a IN2939 having a $5 \mu \mu \mathrm{fd}$ capacitance and a negative conductance of 7 millimhos $(-\mathrm{rd}=143 \Omega)$ at the inflection point.

A.C. SERIES LOOP CIRCUIT
 FIGURE 15.6

In order to abide by the previously mentioned stability criteria, the real part of the negative conductance must be made equal to zero at the operating frequency. This also means that the circuit cut-off frequency is made equal to the operating frequency.

Hence,

$$
\mathrm{R}_{\mathfrak{X}}-\frac{\left|-\mathrm{g}_{d}\right|}{\left|-\mathrm{g}_{\mathrm{d}}\right|^{2}+\omega^{2} \mathrm{C}^{2}}=0 \text {, thus } \mathrm{R}_{\mathrm{T}}=\frac{1}{\left|-\mathrm{g}_{\mathrm{d}}\right|\left(\frac{1+\omega^{2} \mathrm{C}^{2}}{\mathrm{~g}_{a^{2}}}\right)}
$$

R_{T} must be therefore be made equal to:

$$
\mathbf{R}_{\mathrm{T}}=\frac{143}{1.21} \cong 118 \Omega
$$

Since the present series loop only exhibits a $R_{T} \cong 102 \Omega$, a 16Ω series resistance must be added to meet the previously outlined gain and stability criteria.

The last component in this AC circuit design procedure is the choice of the tuning inductance $L_{\text {. }}$. To get the highest value of stable gain L_{T} total must be only slightly smaller than the oscillation criteria $\mathrm{L}_{\boldsymbol{T}}<\mathrm{R}_{\mathbb{T}} \mathrm{C} /\left|-\mathrm{g}_{\mathrm{d}}\right|$ which here must be:

$$
\mathrm{L}_{\mathrm{T}}<\frac{118 \times 5 \times 10^{-12}}{7 \times 10^{-3}}=84.3 \mathrm{~m} \mu \mathrm{~h}
$$

Since $2-12 \mathrm{~m} \mu \mathrm{~h}$ are inherent in the leads of the device (depending on lead length) and some stray circuit inductance will be found in the circuit, the actual coil (L_{2}) will have to present a slightly smaller inductance value.

A.C. CIRCUIT OF $100 \mathrm{MC} / \mathrm{S}-\mathrm{AMPLFIER}$ STAGE

FIGURE 15.7
The bias arrangement can be derived in the following manner:

D.C. BIAS CIRCUIT FOR $100 \mathrm{MC} / \mathrm{S}$ AMPLIFIER STAGE FIGURE 15.8

Assuming that the inflection point occurs at 130 mv and .7 ma , then $\mathrm{V}_{3}=130 \mathrm{mv}$ and I_{D} is .7 ma and V_{Z} is $\left(\mathrm{R}_{\mathrm{Ta}}+\mathrm{R}_{\mathrm{L}}\right) \mathrm{I}_{\mathrm{D}}=(16+50) .7 \times 10^{-3}=44 \mathrm{mv}$; therefore, V_{I} $=130+44=174 \mathrm{mv}$.
I_{G} therefore is $174 \times 10^{-3} / 50=3.48 \mathrm{ma}$, and the total DC current $\mathrm{I}_{\mathrm{DG}}=\mathrm{I}_{G}+\mathrm{I}_{\mathrm{D}}$ $=3.48+.7=4.18 \mathrm{ma}$. If one were to use a 6.3 v battery, then $\mathrm{R}_{\mathrm{B}}=6.3-.174 / 4.18$ $\times 10^{-3}=6.126 / 4.18 \times 10^{-3} \cong 1.5 \mathrm{~K} \Omega$. In order to decouple the DC supply from the amplifier by at least a $10 \mathrm{~K} \Omega$ inductive reactance,

$$
\mathrm{L}_{\mathrm{RF}} \text { choke }>\frac{\mathrm{X}_{\mathrm{L}}}{\omega} \approx \frac{10^{4}}{6 \times 10^{8}} \approx 15 \mu \mathrm{~h}
$$

Figure 15.9 shows the complete circuit.

COMPLETE $100 \mathrm{MC} / \mathrm{S}$ "SERIES" AMPLIFIER CIRCUIT

FIGURE 15.9
The measured results were 32 db gain at $100 \mathrm{Mc} / \mathrm{s}$ with a $20 \mathrm{Mc} / \mathrm{s}$ symmetrical bandwidth. As L_{1} is increased toward $L_{1}=R_{T} C /\left|-g_{a}\right|$, the gain increases at the expense of bandwidth magnitude and symmetry.

TUNNEL DIODE OSCILLATORS

Oscillators can be divided into two major groupings:

1) the relaxation oscillator
2) the sinusoidal oscillator

The distinction is that sinusoidal oscillators just barely satisfy the criterion for supplying the losses, therefore do not swing far off the linear region of the negative conductance portion of the V-I characteristic. Relaxation oscillators traverse large loops about the static characteristic (see Figure 15.10).

OSCILLATOR LUMIT CYCLES
FIGURE 15.10

RELAXATION OSCILLATORS

If the real component of the input impedance of the circuit is quite negative, the oscillation amplitude will be large, resulting in significant limiting (i.e. relaxation oscillation). A tunnel diode circuit employing this principal is shown in Figure 15.11.

The voltage swing of such a circuit could be as high as one volt (for GaAs units where $\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{p}} \approx \mathrm{lv}$), while the current swing depends on the peak current of the device and could be as high as several amperes.

SINEWAVE OSCILLATORS

The mathematical condition for "free" sinusoidal oscillations requires the real and imaginary part of the circuit input impedance to be equal to zero.

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{R}_{\mathrm{e}}\left(\mathrm{Z}_{\mathrm{in}}\right)+\mathrm{I}_{\mathrm{M}}\left(\mathrm{Z}_{\mathrm{in}}\right)=0
$$

Practically, if the real part is slightly negative, good sinusoidal oscillations occur.

$$
\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}_{\mathrm{T}}}-\frac{\left|-\mathrm{ga}_{\mathrm{d}}\right|}{\mathrm{G}} \approx 0
$$

and the resonant frequency is:

$$
\mathrm{f}_{\mathrm{e}}=\frac{1}{2 \pi}\left(\frac{1-\mathrm{R}_{\mathrm{T}}\left|-\mathrm{g}_{\mathrm{d}}\right|}{\mathrm{L}_{\mathrm{T}} \mathrm{C}}\right)^{\mathrm{T} / 2}
$$

The frequency limit of the circuit is determined by the self-resonant frequency ($\mathrm{f}_{x_{0}}$) and the resistive cut-off frequency (f_{ro}) of the device. Since f_{xo} is determined largely by L_{S} and C both terms will have to be minimized for microwave applications. Hence for such applications, the use of the highest available $\mid-\mathrm{g}_{\mathrm{a}} / / \mathrm{C}$ ratio (presently GaAs yields the highest commercially available $\left|-\mathrm{g}_{d}\right| / \mathrm{C}$) and extremely low L_{s} (microwave package) is recommended.

TUNNEL DIODE CCRYSTAL CONTROLLED OSCFLLATOR

The circuit of Figure 15.12^{3} works basically as per above conditions with the exception of the criteria for R_{T}.

R_{1} and R_{2} are identical and are chosen to be about twice the value required for R_{T}, As a result, oscillation is not possible "off resonance." At resonance, the crystal becomes a short circuit and R_{1} is in parallel with R_{u}, essentially halving R_{T}. This value of $R_{\mathbb{E}}$ will now permit the circuit to oscillate stably.

The power output of such oscillators is limited by the allowable voltage and current excursions. The voltage swing has to be smaller than the length of the negative portion of the V-I characteristic. The current swing depends on the I_{p} of the device. Since the latter is a direct function of area, for any given material, it also determines the device capacity. It follows then, that given a constant package (lead and structure) inductance, the capacitance must be small for higher frequency performance, hence it will take a low current device to extend the frequency limits.

The power outpui of a sinewave oscillator is given by the following expression:

$$
P_{\text {out }} \cong\left(\frac{V_{v}-V_{\mathrm{B}}}{2 \sqrt{2}}\right)^{2} \frac{C}{L_{T}} R_{\mathrm{L}}
$$

TUNNEL DIODE FM TRANSMITTER

A simple micropower FM transmitter using the 1N2939 tunnel diode is shown in Figure 15.13.

88-108 MC/S WIRELESS F.M. MICROPHONE

FIGURE 15.13
Operation may be best explained by separating the circuit into two portions. Part A is a basic tunnel diode oscillator whose frequency is primarily determined by the resonant circuit in the cathode. Resistors R1 and R2 provide a stable low impedance voltage for the anode of approximately 150 mv . Capacitor C_{1} is the RF bypass for the anode.

Part B is a transistor emitter follower stage to amplify the audio signal from the -microphone. The amplified audio is fed through capacitor C2 to the anode of the tunnel diode. FM modulation is accomplished by the audio signal instantaneously changing the anode bias. Since the characteristic curve is not perfectly linear in the negative resistance region, the negative conductance changes slightly with bias. As can
be seen from the self-resonant frequency equation, f_{xo} is a function of $\left|-\mathrm{g}_{\mathrm{a}}\right|$ and therefore the resonance of the circuit is affected. FM deviations of $\pm 75 \mathrm{KC}$ are readily obtainable with this type of circuit.

The transmitter shown in the diagram has been successfully used as a wireless portable microphone. Its great advantage is that it allows complete mobility on the part of the speaker, and of course has no wires or cords. When used with an average FM receiver having a sensitivity of $10 \mu \mathrm{v}$, an operating range in excess of 100 feet was obtained. With the introduction of gallium arsenide tumnel diodes, this operating range can be appreciably extended due to the larger dynamic voltage swing possible with the gallium arsenide diodes, as well as their improved $\left|-\mathrm{g}_{\mathrm{d}}\right| / \mathrm{C}$ ratio.

TUNNEL DIODE CONVERTERS

The following simultaneous functions must be performed by a single tunnel diode when used as a high gain self-oscillating converter ${ }^{3}$:
a) oscillation at the L.O. frequency
b) amplification at the R.F. frequency
c) mixing due to non-linearities
d) amplification at the I.F. frequency

Rephrasing the above on a mathematical basis:

1) The imaginary part of the external circuit admittance across the negative conductance of the diode should ideally have zeros at the local oscillator and I.F. frequencies.
2) The real term of the external circuit admittance Y across $\left|-g_{a}\right|$ at the L.O. frequency must be smaller than the negative conductance of the diode.
3) The real part of the external admittance across $\left|-g_{a}\right|$ must be larger than the magnitude of $\left|-g_{d}\right|$ at the I.F. frequency.

According to condition \#1, $\operatorname{Im}\{\mathbf{Y}\}$ as a function of ω has the characteristic shown in Figure 15.14. In addition to the property of $\operatorname{Im}\{Y\}$ of Figure 15.14, conditions \#2 and $\# 3$ make it possible to operate the two resonant circuits for oscillations at the L.O. frequency and amplification at the I.F. frequency.

IM (Y) AS A FUNCTION OF FREQUENCY FOR TWO RESONANT CIRCUITS FIGURE 15.14

If the R.F. signal is introduced at a frequency close to the L.O., R_{T} is slightly different from $\left|-g_{a}\right|$ and $\operatorname{Im}\{\mathbf{Y}\}$ is small. Therefore, amplification can be obtained provided that the R.F. signal does not interfere with the L.O. signal. This latter could occur if the R.F. signal is strong, (and its frequency close to the L.O.). Figure 15.15 shows the non-linear conductance variation vs. local oscillator swing for mixing.

CONDUCTANCE VARIATIONS VERSUS LOCAL OSCILLATOR SWING
 FIGURE 15.15

The operating point in Figure 15.15 is chosen around the inflection point since this would yield considerable non-linearity and low noise. Operation near the peak point current also seems quite practical however.

A possible tunnel diode converter circuit is shown in Figure 15.16.

TUNNEL DIODE CONVERTER CIRCUIT

$$
\text { FIGURE } 15.16
$$

Since C_{2} is chosen to be a short circuit at the R.F. and L.O. Figure 15.16 can be reduced to Figure 15.17.

The condition for oscillation is $\left|-g_{d}\right| \geqq\left(C_{1} / L_{1}\right) R_{T}$. Off resonance, $\left|Y_{r e}\right|$ becomes larger than $\left|-g_{d}\right|$ and no oscillations occur.

If a small R.F. signal is introduced, since $\left|Y_{r e}\right|$ is slightly larger than $\left|-g_{d}\right|$ amplification can occur.
L_{1} is a short circuit at the I.F. frequency and since C_{1} is very small the circuit can further be simplified to the one shown in Figure 15.18.

SIMPLIFIED CONVERTER CIRCUIT @IF FIGURE 15.18

It is assumed that the effect of R_{T} is small enough to be neglected at the I.F. frequency.

If the load g_{1} is chosen so that it is only slightly larger than $\left|-g_{a}\right|$ and $\operatorname{Im}\{Y\}$ is zero at I.F. frequency, amplification of the I.F. signal can also be obtained.

REFERENCES

1. Davidsohn, U. S., Hwang, Y. C., Ober, G. B., "Designing With Tunnel Diodes" ${ }_{2}$ Electronic Design, February 3, 1960.
2. Tiemann, J. J. Watters, R. L., "Noise Considerations of Tunnel Diode Amplifiers" presented at the 1959 IRE-AIEE Solid State Devices Research Conference, Cornell University, June 17, 1959.
3. Chow, W. F., Davidsohn, U. S., Hwang, Y. C., Kim, C. S., Ober, G. B., "Tunnel Diode Circuit Aspects and Applications", AIEE, January 1960, Conference Paper \#СР-60-297.

16. FEEDBACK AND SERVO AMPLIFIERS

USE OF NEGATIVE FEEDBACK IN TRANSISTOR AMPLIFIERS

Negative feedback is used in transistor amplifiers to fix the amplifier gain, increase the bandwidth (if the number of transistors is less than three), reduce distortion, and change the amplifier input and output impedances. Feedback is used in servo amplifiers to obtain one or more of these characteristics.

Gain is reduced at the midband frequencies as the feedback is increased, and the predictability of the midband gain increases with increasing feedback. Thus, the greater the feedback, the less sensitive will be the amplifier to the gain changes of its transistors with operating point and temperature, and to the replacement of transistors.

The output and input impedances of the amplifier are dependent upon the type of feedback. If the output voltage is fed back, the output impedance is lowered. In contrast, feedback of the output current raises the output impedance. If the feedback remains a voltage, the input impedance is increased, while if it is a current, the input impedance is decreased.

FIGURE 16.1
A convenient method for evaluating the external gain of an amplifier with feedback is the single loop servo-type system as shown in Figure 16.1. (The internal feedback of transistors can be neglected in most cases.) The forward loop gain of the amplifier without feedback is given by G and it includes the loading effects of the feedback network and the load. H is the feedback function, and is usually a passive network. In using this technique, it is assumed that the error current or voltage does not affect the magnitude of the feedback function. The closed loop gain is then:

$$
\frac{\mathrm{C}}{\mathrm{R}}=\frac{\mathrm{G}}{1+\mathrm{CH}}=\frac{1}{\mathrm{H}} \quad \frac{\mathrm{GH}}{1+\mathrm{GH}}
$$

where C is the output function and R is the input. If GH is made much larger than one, the closed loop response approaches $1 / \mathrm{H}$ and becomes independent of the amplifier gain. Thus, GH determines the sensitivity of the closed loop gain to changes in amplifier gain.

Since GH is a complex quantity whose magnitude and phase are a function of frequency, it also determines the stability of the amplifier. The phase shift of GH for all frequencies must be less than 180° for a loop gain equal to or greater than one or the amplifier will become unstable and oscillate. Therefore, if the number of transistors in the amplifier is greater than two, the phase shift of GH can exceed 180° at some frequency, and stabilization networks must be added to bring the loop gain to one before the phase shift becomes 180°.

(B) SIMPLIFIED EQUIVALENT CIRCUIT

GAIN AND IMPEDANCE RELATIONSHIPS

$$
\begin{aligned}
& \frac{I_{L}}{i_{G}} \approx \frac{\gamma A_{i}}{1+A_{i} \gamma z_{L}} \\
& \frac{Z_{F}}{} \approx \frac{z_{F}}{Z_{L}} \\
& \frac{e_{L}}{e_{g}}=\frac{z_{L}}{z_{G}}\left(\frac{I_{L}}{I_{g}}\right) \approx \frac{z_{F}}{z_{g}} \\
& z_{i n} \approx \frac{z_{1}}{1+G H} \approx \frac{z_{G}}{1+A_{i} \gamma Z_{L}}
\end{aligned}
$$

$$
z_{0} \approx \frac{Z_{\text {on }}}{1+\frac{A_{i} Z_{\text {on }}}{Z_{F}}}
$$

$$
G H=\frac{A_{i} \gamma Z_{L}}{Z_{f}+\gamma Z_{L}}
$$

$$
i_{L} \uparrow\left\{\begin{array}{l}
R_{L} \quad y=\frac{1}{1+\frac{z_{L}}{Z o n}} \\
\text { cONDITIONS: } \frac{z_{1}}{z_{g}} \ll 1
\end{array}\right.
$$

$$
\frac{Z_{1}}{Z_{F}} \ll G H+I
$$

VOLTAGE FEEDBACK AMPLIFIER

FIGURE 16.2

Figure 16.2 shows a voltage feedback amplifier where both the input and output impedances are lowered. A simplified diagram of the amplifier is shown in 16.2(B), which is useful in calculating the various gains and impedances. Z_{i} is the input impedance of the first stage without feedback, and Z_{on} is the output impedance of the last stage without feedback. Ai is the short circuit current gain of the amplifier without feedback (the current in the load branch with $\mathrm{R}_{\mathrm{L}}=0$ for a unit current into the base of the first transistor). Any external resistors, such as the collector resistor which are not part of the load can be combined with Z_{on}. The gain and impedance equations shown are made assuming that the error voltage ($\mathrm{i}_{\mathrm{b}} \mathrm{Z}_{\mathrm{l}}$) is zero which is nearly correct in most cases. If this assumption is not made, the loop gain of the amplifier can be derived by breaking the loop at $y-y^{\prime}$ and terminating the point y with Z_{1}. The loop gain is then $\mathrm{i}_{r} / \mathrm{i}_{\mathrm{br}}$ with the generator voltage set equal to zero. Since the loop is a numeric, the voltage and current loop gains are identical. The loop gain is then:

$$
\operatorname{Ai}\left(\frac{\mathrm{Z}_{\mathrm{L}^{\prime}}}{\mathrm{Z}_{\mathrm{L}^{\prime}}+\mathrm{Z}_{\mathrm{F}}+\mathrm{Z}_{\mathrm{Z}^{\prime}}^{\prime}}\right) \quad\left(\frac{\mathrm{Z}_{\mathrm{g}}}{\mathrm{Z}_{\mathrm{g}}+\mathrm{Z}_{1}}\right)
$$

where

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{i}}^{\prime}=\frac{\mathrm{Z}_{\mathrm{L}} \mathrm{Z}_{\mathrm{on}}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{on}}}=\mathrm{Z}_{\mathrm{L}} \gamma, \text { and } \\
& \mathrm{Z}_{1}^{\prime}=\frac{\mathrm{Z}_{\mathrm{g}} \mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{g}}+\mathrm{Z}_{1}}
\end{aligned}
$$

Notice that if $\mathrm{Z}_{\mathbf{g}} \gg \mathrm{Z}_{1}$ and $\mathrm{Z}_{\mathrm{F}} \gg \mathrm{Z}_{1}$, then the loop gain is very nearly equal to GH as given in Figure 16.2.

The input impedance of the amplifier is reduced by $1+G H$, while the output impedance is also decreased.

Figure 16.3 shows a current amplifier where both the output and input impedances are increased. The loop is obtained by breaking the circuit at $y-y^{\prime}$ and terminating points y-a with Z_{i}. The loop gain is $i_{t} / i_{\text {}}$, and is approximately equal to:

$$
\frac{\gamma \mathrm{Ai}_{\mathrm{F}}}{\mathrm{Z}_{\mathrm{g}}+\mathrm{Z}_{\mathrm{L}}}
$$

GAIN AND IMPEDANCE
RELATIONSHIPS RELATIONSHIPS

$$
\frac{i_{L}}{i_{g}}=\frac{\frac{A_{i} \gamma Z_{g}}{Z_{g}+Z_{i}}}{1+\frac{A_{i} \gamma Z_{F}}{Z_{1}+Z_{g}}}
$$

(A) BLOCK DIAGRAM

$$
\begin{aligned}
& \frac{\theta_{L}}{\theta_{g}}=\frac{A_{i} \gamma Z_{L}}{1+\frac{A_{i} \gamma Z_{F}}{Z_{1}+Z_{g}}} \\
& Z_{\text {in }}=Z_{1}\left(\frac{1+A_{i} \gamma Z_{F}}{Z_{I}}\right)
\end{aligned}
$$

$Z_{\phi}=Z_{o n}\left(1+\frac{A_{i} Z_{F}}{Z_{1}+Z_{g}}\right)$
(B) SIMPLIFIED EQUIVALENT CIRCUIT

CURRENT FEEDBACK AMPLIFIER

FIGURE 16.3

SERVO AMPLIFIER FOR TWO PHASE SERVO MOTORS

PREAMPLIFIERS

Figure 16.4 shows a two stage preamplifier which has a low input impedance, and which is quite stable in bias point and gain over wide temperature ranges. In addition, no selection of transistors is required.

Because only two stages are involved, the amplifier is stable, and frequency stabilization networks are not required. The current gain i_{6} / i_{11} is approximately $\mathbf{R}_{E} / \mathbf{R}_{F}$ if the generator impedance and R_{R} are much larger than the grounded emitter input impedance of $Q_{1} . R_{F}$ should not exceed a few hundred ohms because it contributes to the loss of gain in the interstage coupling network. The loss of gain in the interstage coupling is:

400 CYCLE PREAMPLIFIER FOR OPERATION IN AMBIENTS OF - 55 TO $125^{\circ} \mathrm{C}$.
FIGURE 16.4

$$
\mathrm{K}=\frac{\mathrm{Z}_{\mathrm{o} 1}^{\prime}}{\mathrm{Z}_{\mathrm{oi} 1}^{\prime}+\mathrm{h}_{\mathrm{ie} 2}+\mathrm{h}_{\mathrm{fe} 2} \mathrm{R}_{\mathrm{F}}}
$$

where Z_{01} ' is the parallel combination of R_{2} and the output impedance of Q . The loop gain then is approximately:

$$
\left(\frac{h_{\mathrm{Te} 1} h_{\mathrm{fe} 2} K \mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{F}}}\right) \quad\left(\frac{\mathrm{R}_{\overline{5}}}{\mathrm{~h}_{\mathrm{Te} 1}+\mathrm{R}_{5}}\right)
$$

Because the feedback remains a current, the input impedance of this circuit is quite low; less than 100 ohms in most cases. This preamplifier will work well where current addition of signals is desired and "cross-talk" is to be kept to a minimum.

Figure 16.5 shows a three stage, 400 cycle direct-coupled preamplifier with good bias stability from -55 to $125^{\circ} \mathrm{C}$. If the dc conditions shown in the figure are met, the collector voltage of Q3 is approximately:

$$
V_{G_{3}} \approx \frac{\left[\left(R_{1}+R_{8}+R_{9}\right) R_{2}\right]\left(E_{G}-V_{B_{1}}\right)}{\alpha_{1} R_{1} R_{3}}+\frac{\left(R_{1}+R_{8}+R_{9}\right) V_{B_{1}}}{R_{1}}
$$

where $\mathrm{V}_{\mathrm{B} 1}$ is the breakdown voltage of the first avalanche diode. The various ac gains and impedances can be calculated from the equations of Figure 16.1 with the exception that the ac feedback is now approximately:

$$
\left(\frac{\mathrm{R}_{\mathrm{L}^{\prime}}}{\mathrm{R}_{8}}\right) \quad\left(\frac{\mathrm{R}_{10}}{\mathrm{R}_{9}}\right)
$$

where $1 / R_{L}^{\prime}=1 / R_{L}+1 / R_{03}+1 / R_{T}$ and R_{03} is the output impedance of $Q 3$. This assumes that the input impedance of $Q 1$ is much less than R_{1} and R_{0}. The value of R_{10} determines the closed loop gain, while the values of $C_{s 1}, C_{s 2}, R_{4}$, and R_{6} are used to bring the magnitude of the loop gain to unity before the phase shift reaches 180°. The values required for these capacitors and resistors are dependent upon the maximum expected loop gain.

DRIVER STAGE

Because the output stages of servo amplifiers are usually operated either Class B or a modified Class B, the driver must provide phase inversion of the signal. In most

THREE STAGE DIRECT COUPLED $400 \sim$ PREAMPLIFIER FIGURE 16.5
cases, this is accomplished by transformer coupling the driver to the output stage. The phase shift of the carrier signal in passing through the transformer must be kept small. However, since the output impedance of the transistor can be quite large, the phase shift can be large if the transformer shunt inductance is small, or if the load resistance is large as shown in Figure 16.6. The inductance of most small transformers decreases very rapidly if a dc current flows in the transformer. Therefore in transformer coupling, the phase shift of the carrier is reduced to a minimum if the dc current through the coupling transformer is zero, or feedback is used to lower the output impedance of the driver.

TWO STAGE CLASS "A" PUSH-PULL DRIVER
FIGURE 16.7
Figure 16.7 shows a modified "long tail pair" driver. In this case Q1 and Q2 operate Class A, and the quiescent collector current of Q1 and Q2 cancel magnetically in the transformer. Transistor Q1 operates grounded emitter, while Q2 operates grounded base. Separate emitter resistors R_{1} and R_{2} are used rather than a common emitter resistor in order to improve the bias stability. The collector current of QI is approximately $h_{\mathrm{fe}_{\mathrm{e} 1}} \mathrm{i}_{\mathrm{b} 1}$, while the emitter current of Q 2 is $\left(\mathrm{h}_{\mathrm{fe} 1}+1\right) \mathrm{i}_{\mathrm{b} 1}$. Since Q 2 operates grounded base, the collector current of Q 2 is $-\mathrm{h}_{\mathrm{fb} 2} /\left(\mathrm{h}_{\mathrm{fe} 1}+\mathrm{I}\right) \mathrm{i}_{\mathrm{b} 1}$ or $-\mathrm{h}_{\mathrm{fe}} \mathrm{i}_{\mathrm{b} 1}$ if the current gain of Q1 and Q2 are equal. Thus push-pull operation is obtained.

"STABLE" 400 CYCLE DRIVER
FIGURE 16.8

In order to stabilize the driver gain for variations in temperature and interchangeability of transistors, another transistor can be added to form a stage pair with Q1 as shown in Figure 16.8. The gain of the driver is then very stable and is given approximately by:

$$
\frac{i_{\mathrm{cl}}}{i_{s}} \cong \frac{-i_{i_{2}}}{i_{s}} \cong \frac{R_{E}}{R_{F}}
$$

OUTPUT STAGE

The output stages for servo amplifiers can be grounded emitter, grounded collector or grounded base. Output transformers are generally not required because most servo motors can be supplied with split control phase windings. Feedback of the motor control phase voltage to the driver or preamplifier is very difficult if transformer coupling is used between the driver and output stages. If a high loop gain is desired, the motor and transformer phase shifts make stabilization of the amplifier very difficult. One technique which can be used to stabilize the output stage gain is to use a grounded emitter configuration where small resistors are added in series with the emitter and the feedback is derived from these resistors. The motor time constants are thas eliminated and stabilization of the amplifier becomes more practical.

SERVO MOTOR DRIVE CIRCUIT (I TO 4 WATTS) FIGURE 16.9

A second technique which results in a stable output stage gain and does not require matched transistor characteristics is the emitter follower (common collector) push-pull amplifier as shown in Figure 16.9. Also it offers the advantage of a low impedance drive to the motor. A forward bias voltage of about 1.4 volts is developed across D1 and D2, and this bias on the output transistors gives approximately 20 ma of no signal current. At lower levels of current the cross-over distortion increases and the current gain of the 2 N 656 A decreases. D3 and D4 protect the 2 N 656 A 's from the inductive load generated voltages that exceed the emitter-base breakdown. The efficiency of this circuit exceeds 60% with a filtered DC voltage supply and can be increased further by ising an unfiltered rectified ac supply. This unfiltered supply results in lower operating junction temperatures for the 2N656A's, and in turn permits operation at a higher ambient temperature. The maximum ambient operating temperature varies
with the power requirements of the servo motor and the type of heat radiator used with the G-E 2N656A. It is practical to attain operation in ambients to $125^{\circ} \mathrm{C}$.

The most effective heat radiator for the 2 N 656 A results by placing the header of the package with intimate contact to a radiating surface of copper or aluminum. Figure 16.10 indicates a practical method.

> NOTE : APPLYA LAYER OF G.E. SILICONE
> DIELECTRIC. GREASE SS-4005 OR EQUIVALENT BETWEEN THE TRANSISTOR AND THE FIN.

TRANSISTOR HEAT RADIATOR
FIGURE 16.10
Another technique which results in a stable output amplifier gain over wide ambient temperature extremes and which is compatible with low gain transistors is shown in Figure 16.11. In this case, a grounded base configuration and a split control phase motor winding are used. The driver is coupled to the output stage by means of a stepdown transformer, and the current gain occurs in the transformer since the current gain of the transistors is less than one. The current gain is $2 a \mathrm{~N}_{\mathrm{P} 1} / \mathrm{N}_{\mathrm{S} 1}$ if the drivers are operated Class A such as shown in figures 16.7 or 16.8. The negative unfiltered de supply and diode D1 are used to operate the transistor Class $A B$ and eliminate crossover distortion. As the signal increases the diode D1 becomes conductive and shunts the bias supply. The operation of the output stage thus goes from Class A to Class B.

An unfiltered dc is used for the collector supply to reduce transistor dissipation. If saturation resistance and leakage currents are neglected, 100% efficiency is possible under full load conditions with an unfiltered supply. The transistor dissipation is given by:

$$
\mathrm{P} \approx \frac{\mathrm{E}_{\mathrm{CM}}{ }^{2}}{4 \mathbf{R}_{\mathrm{L}}}\left[\mathrm{a}-\mathfrak{a}^{2}\left(1+\frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{L}}}\right)\right]+\mathrm{P}_{\mathrm{L}}
$$

where P_{L} is the dissipation due to leakage current during the half-cycle when the transistor is turned off, a is the fraction of maximum signal present and varies from 0 to $1, R_{s}$ is the saturation resistance, R_{L} is the load resistance, and $E_{C M}$ is the peak value of the unfiltered collector supply voltage. If P_{L} is negligible and $R_{s} / R_{L} \ll 1$,

then maximum dissipation occurs at $a=1 / 2$ or when the signal is at 50% of its maximum. Thus for amplifiers which are used for position servos, the signal under steadystate conditions is either zero or maximum which are the points of least dissipation.

The peak current which each transistor must supply in Figure 16.11 is given by:

$$
\mathrm{i}_{\mathrm{m}}=\frac{2 \mathrm{~W}}{\mathrm{E}_{\mathrm{CM}}}
$$

where W is the required control phase power. The transistor dissipation can then be written in terms of the control phase power:

$$
\mathrm{P}=\frac{\mathrm{W}}{2}\left[\mathrm{a}-\mathrm{a}^{2}\left(1+\frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{r}}}\right)\right]+\mathrm{P}_{\mathrm{T}}
$$

The driver must be capable of supplying a peak current of;

$$
\frac{i_{i_{11}}}{\alpha}\left(\frac{N_{\mathrm{s}_{1}}}{N_{1^{\prime}, 2}}\right)
$$

where a is the grounded base current gain of the output transistor.
Figure 16.12 shows a complete servo amplifier capable of driving a 2 watt servo motor in an ambient of -55 to $125^{\circ} \mathrm{C}$ (if capacitors capable of operation to $125^{\circ} \mathrm{C}$ are used). The gain can be adjusted from 20,000 to 80,000 amperes/ampere by adjusting R_{F} in the driver circuit. The variation of gain for typical servo amplifiers of this design is less than 10% from -55 to $25^{\circ} \mathrm{C}$, and the variation in gain from 25 to $125^{\circ} \mathrm{C}$ is within measurement error. The variation in gain at low temperature can be reduced if solid tantalum capacitors are used instead of wet tantalum capacitors. The reason is that the effective series resistance of wet tantalum capacitors increases quite rapidly at low temperatures thus changing the amount of preamplifier and driver feedback. The effective series resistance of solid tantalum capacitors is quite constant with temperature. Many $85^{\circ} \mathrm{C}$ solid tantalum capacitors can be operated at $125^{\circ} \mathrm{C}$ if they are derated in voltage.

The amplifier in Figure 16.12 can be used to drive a three watt servo motor in an ambient of -55 to $125^{\circ} \mathrm{C}$ if the output transistors, are changed to G-E 2N498A's and the unfiltered collector supply voltage is changed from 30 to 50 volts peak.

17. TEST CIRCUITS

Few occupations are superficially more prosaic and in reality more challenging than precise measurement. A pertinent electronic illustration of this is the high fidelity record player. Playing a record can be considered measuring groove undulations and converting them precisely into air pressure undulations. High fidelity literature is profuse with advice on shielding, avoiding ground loops, negative feedback amplifiers, nonlinearities in loudspeakers and amplifiers, microphonics, ete. This advice is largely applicable to all measurement techniques.

This chapter will discuss proven transistor test circuits, but will stress possible pitfalls as well.

Test circuits are commonly divided into two groups: those which measure the actual value of a parameter, and those which indicate that the parameter exceeds a specified value. The latter are often referred to as go-no go tests. They are particularly useful in checking components against specifications. Actual parameter values are of interest in reliability, quality control and parameter distribution studies.

Generally go-no go tests are simpler, less likely to damage the transistor, and require less skill in interpretation. Most of the circuits discussed in this chapter can measure actual parameter values or serve for go-no go testing.

Precision is generally very difficult to achieve. Typically, even if 1% tolerance components are used, the cumulative error may be 5%.

For a fast thorough semi-quantitative evaluation of a semiconductor device, a curve tracer such as the Tektronix 575 is extremely useful and convenient. It measures DC parameters such as leakage currents, breakdown voltages and saturation voltage and permits estimating small signal, low frequency h parameters. Tunnel diodes, unijunction transistors and controlled rectifiers can be tested. Anomalous negative resistance regions on conventional transistors can also be detected.

BREAKDOWN VOLTAGES

JUNCTION BREAKDOWNS BVcbo, BVebo

Figure 17.1 shows the current-voltage characteristics of a typical P-N junction. The equations of Chapters 3,4 and 10 utilize the solid portion of the characteristic curve. The dotted region shows a rapidly increasing current in the reverse biased junction due to breakdown. If breakdown occurs at low voltages (below 6 volts), it is generally attributed to tunnelling or zener breakdown. Tunnelling is discussed in Chapter 14. At higher voltages, the holes and electrons making up the leakage current are accelerated sufficiently by the voltage across the junction to knock electrons out of the semiconductor atoms leaving holes behind. The holes and electrons so created add to the total current. The additional current is in turn accelerated and can dislodge other electrons. This causes an "avalanching" of current. The term "avalanche breakdown" describes this process. The breakdown voltage can be controlled by varying the doping of the P-N junction. While theory predicts a sudden "sharp" breakdown, in practice breakdown often occurs gradually giving a "soft knee" or "soft" breakdown. This is shown in Figure 17.2 along with other variations of the breakdown characteristic.

The collector and emitter junctions being $\mathrm{P}-\mathrm{N}$ junctions, exhibit this form of breakdown. Their breakdown voltages $B V_{\text {cro }}$ and $B V_{\text {ebo }}$ are measured at a specified current in the range of 25 to 100μ a for low power transistors. The current is chosen substantially higher than Ico in order to indicate true breakdown and yet low enough to avoid excessive dissipation. Figure 17.3 illustrates two practical test circuits for measuring avalanche breakdown. Circuit A approximates a constant current source. The VTVM

TYPICAL VOLTAGE CURRENT CHARACTERISTIC OF A P-N JUNCTION FIGURE 17.1

TYPICAL VARIATIONS IN BREAKDOWN CHARACTERISTIC OF A R-N JUNCTION FIGURE 17.2
indicates the breakdown voltage. When the transistor is out of the circuit the voltage across the socket will rise charging the stray capacitance C_{s}. The high voltage is an operator hazard and the discharge of C_{y} into the next transistor tested may damage the transistor. To avoid these problems a normally closed push button should be connected as shown and depressed only to take a reading. Some traisistors show a negative resistance in the breakdown region which may cause oscillations. These are best detected on a cathode ray oscilloscope curve tracer. Circuit B is more convenient for go-no go testing in checking transistors against specifications. The specified collector supply voltage is applied. The junction current is monitored by the VTVM. R_{s} is chosen to give a VTVM reading of one volt at the rated breakdown current. R_{s} is generally large enough to protect the transistor from damage even if its breakdown voltage is considerably exceeded. A VTVM is used because it will not be damaged by accidental overvoltage. Precision decade resistance boxes are convenient for giving R_{I} and R_{s}. Since circuit B does not take the transistor into breakdown, precautions to avoid transistor damage or circuit oscillation are less important.

MEASUREMENT OF bVcbo

 FIGURE 17.3To measure the emitter junction breakdown, the same circuits and considerations apply. The emitter and collector can simply be interchanged in the test socket.

COLLECTOR TO EMitter breakdown BVceo, BVcer, BVces, BVcex, Vrt

 Collector to emitter breakdown is a more complex phenomenon. Figure 17.4 shows an idealized family of breakdown characteristics for an alloy transistor. Since conventional circuits reverse bias the collector junction, it is useful to compare breakdown voltages with $B V_{\text {cbo. }} B V_{\text {ero }}$ is shown to illustrate that I_{EO} is generally less than I_{co} and that $B V_{\text {ebo }}$ is approximately equal to $B V_{\text {Cbo }}$ in alloy transistors. There are five common measurements for collector to emitter breakdown. Four are shown in Figure 17.4 with the fifth, reach-through voltage, implied by the dotted curves. The most stringent test is $B V_{\text {CEO }}$ in which the collector to emitter breakdown voltage is measured while the base is open circuited. In this circuit configuration the collector current ($\mathrm{I}_{\mathrm{CEO}}$) is approximately $h_{h_{f}} \mathrm{I}_{\mathrm{Co}}$ as indicated by equation (4d), Chapter 4 . If the product $\mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{Co}}$ is large, $I_{\text {cro }}$ may exceed 100μ a at a voltage which is far below breakdown. Therefore,the breakdown sensing current must be chosen substantially above the $h_{\mathrm{f} \alpha}$ Ico product. A common value is 600μ a while specialized low leakage transistors like the G-E 2N167A use $300 \mu \mathrm{a}$. The G-E 2N335A, on the other hand, in spite of its extremely low $I_{\text {co }}$, uses 1 ma for reasons to be discussed in connection with BV Ces . Figure 17.4 shows the significant increase in voltage due to 600μ a rather than 100μ as the sensing current. $\mathrm{BV}_{\text {eeo }}$ has little meaning since it is impractical to operate transistors with the base open. $I_{\text {Geo }}$ approximately doubles every $10^{\circ} \mathrm{C}$ because of its dependence on $\mathrm{I}_{\text {co. }}$. Consequently, $\mathrm{BV}_{\text {eeo }}$ is a very conservative rating primarily applicable to very poorly stabilized circuits.

typical family of alloy transistor breakdown characteristics FIGURE 17.4
$B V_{\text {CEs }}$ is measured with the base shorted to the emitter. It is an attempt to indicate more accurately the voltage range in which the transisor is useful. In practice, using a properly stabilized circuit such as those described in Chapter 5, the emitter junction is normally forward biased to give the required base current. As temperature is increased, the resulting increase in I_{co} and h_{fe} requires that the base current decrease if a constant i.e. stabilized emitter current is to be maintained. In order that base current decrease, the forward bias voltage must decrease. A properly designed biasing circuit performs this function. If temperature continues to increase the biasing circuit will have to reverse bias the emitter junction to control the emitter current. This is illustrated by Figure 5.1 which shows that $\mathrm{V}_{\mathrm{BE}}=0$ when $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{ma}$ at $70^{\circ} \mathrm{C}$ for the 2 N 525 . $\mathrm{V}_{\mathrm{BE}}=0$ is identically the same condition as a base to emitter short as far as analysis is concerned. Therefore, the BV ces rating indicates what voltage can be applied to the transistor when the base and emitter voltages are equal, regardless of the circuit or environmental conditions responsible for making them equal. Figure 17.4 indicates a negative resistance region associated with $\mathrm{I}_{\text {CEs. }}$. At sufficiently high currents the negative resistance disappears. The $600 \mu \mathrm{a}$ sensing current intersects $\mathrm{I}_{\text {ces }}$ in the negative resistance region in this example. Oscillations may occur depending on the circuit stray capacitance and the circuit load line. In fact, "avalanche" transistor oscillators are operated in just this mode.

Conventional circuit designs must avoid these oscillations. If the collector voltage does not exceed V_{A} in Figure 17.4, there is no danger of oscillation. V_{A} is the voltage at which the negative resistance disappears at high current.

The 1 ma sensing current for the $\mathrm{G}-\mathrm{E} 2 \mathrm{~N} 335 \mathrm{~A} \mathrm{BV}_{\text {ceo }}$ is meant to measure V_{A}. The 2N335A $\mathrm{I}_{\text {ceo }}$ is very small. As the transistor breaks down the transistor's current
gain increases with increasing collector current. This in turn enhances the avalanche effect generating a negative resistance region. The 1 ma sensing current measures V_{A} and insures that the full rated voltage will not cause oscillations.

To avoid the problems of negative resistance associated with $B V_{\text {CES }}, B V_{\text {CER }}$ was introduced. The base is connected to the emitter through a specified resistor. This condition falls between $\mathrm{BV}_{\text {CEO }}$ and $\mathrm{BV}_{\text {CES }}$ and for most germanium alloy transistors avoids creating a negative resistance region. For most low power transistors the resistor is $10,000 \Omega$. The significance of $\mathrm{BV}_{\text {cer }}$ requires careful interpretation. At low voltages the resistor tends to minimize the collector current as shown by equation (4h), in Chapter 4. Near breakdown the resistor becomes less effective permitting the collector current to increase rapidly.

Both the value of the base resistor and the voltage to which it is returned are important. If the resistor is connected to a forward biasing voltage the resulting base drive may saturate the transistor giving the illusion of a collector to emitter short. Returning the base resistor to the emitter voltage is the standard $\mathrm{BV}_{\text {CER }}$ test condition. If the resistor is returned to a voltage which reverse biases the emitter junction, the collector current will approach I_{co}.

For example, many computer circuits use an emitter reverse bias of about 0.5 volts to keep the collector current at cut-off. The available power supplies and desired circuit functions determine the value of base resistance. It may range from 100 to 100,000 ohms with equally satisfactory performance provided the reverse bias voltage is maintained.

In discussing the collector to emitter breakdown so far, in each case the collector current is Ico multiplied by a circuit dependent term. In other words all these collector to emitter breakdowns are related to the collector junction breakdown. They all depend on avalanche current multiplication.

There is another collector to emitter breakdown mechanism called reach-through (V_{Rt}). Recently, the term "reach-through voltage" $\left(\mathrm{V}_{\mathrm{RT}}\right)$ has been submitted to replace "punch-through voltage" because it is more descriptive of the actual phenomenon and because it cannot be confused with other terms such as punch-through in dielectrics. As the collector voltage is increased, the depletion layer which is discussed in Chapter 1 spreads into the base region. If the doping of the base region is appropriate, the depletion layer will spread into the emitter junction causing a large collector current before avalanche breakdown can occur. The dotted lines in Figure 17.4 indicate the breakdown characteristics of a reach-through limited transistor. Several methods are used to detect reach-through. $\mathrm{BV}_{\mathrm{cex}}$ (Breakdown voltage collector to emitter with base reverse biased) is one practical method. The base is reverse biased by one volt. The collector current $I_{\text {cex }}$ is monitored. If the transistor is avalanche limited $B V_{\text {cex }}$ will approach $B V_{\text {cro }}$. If it is reach-through limited it will approach $B V_{\text {CEs }}$.

Note that $I_{\text {CEX }}$ before breakdown is less than Ico. Therefore, if $I_{\text {Co }}$ is measured at a specified test voltage and then the emitter is connected with a reverse bias of one volt, the $I_{\text {co }}$ reading will decrease if reach-through is above the test voltage and will increase if it is below.
"Emitter floating potential" is another test for reach-through. If the voltage on an open-circuited emitter is monitored while the collector to base voltage is increased, it will remain within 500 mv of the base voltage until the reach-through voltage is reached. The emitter voltage then increases at the same rate as the collector voltage. $V_{r T}$ is defined as $V_{C b}-1$ where $V_{C r}$ is the voltage at which $V_{F r}=1 \cdot V_{i}$

Figure 17.5 shows the details of a practical go-no go test set for breakdown and leakage current measurements.

EXAMPLE BASED ON GE2NI289 GERMANIUM NPN HIGH SPEED SWITCHING TRANSISTOR SPECIFICATION SHEET

$I_{C O}$	1	$15+1=16 \mathrm{~V}$	$1 \div 5 \mu \mathrm{~A}=200 \mathrm{~K}$	
$B V_{C B O}$	1	$20+1=21 \mathrm{~V}$	$1-1 \mathrm{~mA}=10 \mathrm{~K}$	
$\mathrm{I}_{\text {EO }}$	4	$5+1=6 \mathrm{~V}$	$1 \div 5 \mu \mathrm{~A}=200 \mathrm{~K}$	
$B V_{C E R}$	5	$15+1=16 \mathrm{~V}$	$1-6 \mathrm{~mA}=11.67 \mathrm{~K}$	
$\mathrm{~V}_{P T}$	6	$15+1=16 \mathrm{~V}$	$1-5 \mu \mathrm{~A}=200 \mathrm{~K}$	

CIRCUIT FOR GO-NO GO TESTING OF leakage currents and breakdown voltages

FIGURE 17.5

LEAKAGE CURRENTS, lco, leo, Iceo, Ices
The test set shown in Figure 17.5 can also be used to measure $\mathrm{I}_{\mathrm{co}}, \mathrm{I}_{\mathrm{EO}}, \mathrm{I}_{\mathrm{ceo}}$ and $\mathrm{I}_{\mathrm{cms}}$. The circuit is identical to that in Figure 17.3(B). For precise measurements the ambient temperature should be controlled. Also handling should be minimized since it can heat the transistor. To measure millimicroampere currents a VTVM is useful since one hundred millimicroamperes develop one volt across its 10 megohm input impedance.

DC CURRENT GAIN, SATURATION CHARACTERISTICS, hfe, Vbe, Vce (SAT) AND Rsc

In switching applications, the leakage currents and breakdown voltages determine circuit conditions when a transistor is off or non-conducting.

When a transistor is turned on, it is generally necessary to know the base input required to produce the desired collector current. In switching circuits the minimum collector to emitter voltage that can be achieved is often important. This data is provided by $\mathrm{h}_{\mathrm{Fe}}, \mathrm{V}_{\mathrm{be}}, \mathrm{V}_{\mathrm{ce}}(\mathrm{SAT})$ or R_{sc}.

DC beta or $h_{\text {FE }}$ is defined as I_{C} divided by I_{B}. Since $h_{F E}$ varies with both collector current and collector voltage, test conditions must specify the operating conditions precisely. Generally either the base current or the collector current is specified along with the collector to emitter voltage. The unspecified current is then varied to produce the specified collector voltage. The ratio $I_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ under these conditions is h_{FE}. Since accurate microammeters are expensive and prone to damage, if carelessly used, it is often more convenient to use precision decade resistors along with a stable power supply. Figure 17.6 shows this principle applied to measuring the h_{Fs} of the G-E 2N525 transistor.

$$
\begin{aligned}
& \text { EXAMPLE FROM GE 2N525 SPEC:FICATIONS } \\
& 34<h_{F E}<65 \text { AT } I_{C}=-20 \mathrm{MA} V_{C E}=-1 V \\
& -2 \mathrm{~V}<\mathrm{V}_{\mathrm{BE}}<3 \mathrm{VAT} \mathrm{I}_{\mathrm{C}}=-20 \mathrm{MA} \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\
& R_{C}=\frac{V_{C C}-V_{C E}}{I_{C}}=\frac{10-1}{20 \times 10^{-3}}=450 \Omega \\
& \text { ADJUST R } \mathrm{R}_{\mathrm{B}} \text { UNTIL } V_{C E}=I V \\
& V_{B E}=-25 \mathrm{~V} \pm 05 V \text { (IGNORING VARIATION IN V } V_{B E} \text { CAUSES LESS THAN } 1 \% \text { ERROR } \\
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \\
& \mathrm{~h}_{\mathrm{FE}}=\frac{I_{C}}{I_{B}}=\frac{20}{1000} \div \frac{10-.25}{R_{B}}=2.05 \mathrm{R}_{\mathrm{B}} \times 10^{-3}
\end{aligned}
$$

to CHECK if transistors are within specifications
k SET $I_{B=}=\frac{I_{C}}{h_{\text {FE MIN }}}=\frac{20 \mathrm{MA}}{34}$ OR $R_{B}=16.6 \mathrm{~K}$
$V_{C E}$ MUST READ LESS THAN IV
2. $\operatorname{SET} I_{B}=\frac{I_{C}}{h_{\text {FE }} \text { MAX }}=\frac{20 \mathrm{MA}}{65}$ OR $R_{B}=31.7 \mathrm{~K}$
$V_{\text {GE }}$ MUST READ MORE THAN IV

measurement of hfe and vbe

FIGURE 17.6

While the measurement in Figure 17.6 can be done precisely, it requires interpretation. The transistor dissipates approximately 20 mw at the specified operating point. This raises the junction temperature about $5^{\circ} \mathrm{C}$ making this no longer a $25^{\circ} \mathrm{C}$ electrical characteristic. It might be argued that the increase in junction temperature is unimpor-
tant because the measurement represents the actual h_{FE} in a $25^{\circ} \mathrm{C}$ ambient. This argument is only valid for amplifier applications since short pulses at low duty factors such. as found in computer circuits will not heat up the junction because of its thermal time constants and thermal capacity. Since $h_{\text {FE }}$ increases with temperature the pulsed $h_{\text {Fe }}$ will be lower than that measured in Figure 17.6. While the difference is generally small, this factor should not be overlooked.

The base input voltage is often specified at the same operating point as specified for h_{Fe} and therefore can be read as shown in Figure 17.6.

The G-E INI692 diodes limit the maximum transistor dissipation while R_{B} is being adjusted. The G-E IN1692 current is approximately 10 microamperes at 0.35 volts forward bias, therefore the diodes introduce a negligible error at $\mathrm{V}_{\mathrm{CF}}=1$ volt. At 0.75 volts forward bias the G-E IN1692 current is approximately 100 milliamperes. This clamps $\mathrm{V}_{\text {CE }}$ maximum to approximately 2 volts in Figure 17.6.

The collector saturation voltage $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$ is measured in the same circuit as h_{FE}. The main difference is that both I_{B} and I_{C} are specified for V_{CE} (SAT). No adjustments are required. The collector voltage is read directly and compared with the specifications. Figure 17.7 illustrates this for the G-E 2N525. The calibration of the VTVM can be checked against a precision voltage divider as shown.

Note that checking hre against fixed limits is best done as a Von (SAT) test as shown in Figure 17.6.

The saturation resistance $R_{s c}$ is basically a restatement of V_{Cl} (SAT). $\mathrm{R}_{s c}$ is the equivalent resistance of a transistor when it is in saturation. $\mathrm{R}_{\mathrm{sc}}=\mathrm{V}_{\mathrm{cb}}(\mathrm{SAT}) / \mathrm{I}_{\mathrm{C}}$. For the G-E $2 \mathrm{~N} 525, \mathrm{R}_{\mathrm{sc} \text { mix. }}=110 \mathrm{mv} / 20 \mathrm{ma}=5.5 \mathrm{ohms}$. Unfortunately R_{sc} varies with current and temperature which limits its usefulness. To illustrate the variation with current, the G-E 2N396 specifications show $\mathrm{R}_{\mathrm{sc}}<4 \Omega$ at $\mathrm{I}_{\mathrm{C}}=50 \mathrm{ma}$. Redefining the $200 \mathrm{ma} \mathrm{h}_{\text {re }}$ rating in terms of R_{sc} gives $\mathrm{R}_{\mathrm{sc}}<1.75 \Omega$ at $\mathrm{I}_{\mathrm{C}}=200 \mathrm{ma}$.

Instead of measuring \mathbf{R}_{sc}, measure V_{CE} (SAT) and convert to \mathbf{R}_{sc} by $\mathbf{R}_{\mathrm{Hc}}=\mathrm{V}_{\mathrm{OB}}$ $(\mathrm{SAT}) / \mathrm{I}_{\mathrm{C}}$.

h PARAMETERS

Historically it proved convenient to describe transistor small signal characteristics by specially selected pairs of equations. The transistor is considered as a "black box" with input and output terminals. One set of two equations can fully describe the performance of the "black box". This is discussed in Chapter 3 on small signal characteristics.

Each set of two equations contains four variables; the input voltage and current, and the output voltage and current. It also contains four constants, or parameters, describing the "black box". To be useful, the equations must have only two unknown variables, therefore the equations depend on two of the four variables being arbitrarily assigned. Solving the equations determines the other two variables and provides a complete description of the "black box" performance. By carefully chosing the arbitrarily assigned variables to suit the requirements of the circuit application, the mathematics for solving the equations can be simplified.

There are six ways in which the assigned variables can be chosen. Each way results in different values for the parameters. The sets of parameters are identified as the "a", "b", " g ", " h ", " y " and " z " parameters. Because each set of equations describes the same "black box" it is possible to convert from one set of parameters to another as desired. Hence by knowing one set, all sets are known.

With transistors the most convenient parameters to measure are the h parameters. They are discussed in detail in Chapter 3. Specification sheets most often show the h parameters for the common base configuration. This is partially due to the high precision with which the two assigned variables, the emitter current and the collector to base voltage, can be maintained.

On the other hand, common emitter configurations are used more frequently in actual circuits. For this reason the test circuits to be described measure common emitter parameters which can be converted to common base parameters with the conversion factors in Chapter 3.

Common emitter parameters should be measured at a constant collector current and a specified collector to emitter voltage. However, for convenience of measurement the DC operating conditions are generally obtained from a common base configuration. That is, the emitter current and collector to base voltage are controlled. The AC test signal nevertheless is applied in the common emitter mode.

The circuits in Figure 17.8 apply a constant 1 ma emitter current through the 50 K resistor and a 5 volt collector to base voltage from a separate power supply. The capacitors must be non-polarized if the circuitry is used for both PNP and NPN tramsistors by reversing the battery and diode connections. The base must be at ground to direct current but not to the test signal. This is achieved by the tuned circuit from base to ground. The inductor is a high Q toroid such as the UTC HQB-12 which is tuned by the capacitor to the test frequency of either 270 cps or 1000 cps . If large base currents are encountered, care should be taken to avoid saturating the toroid.

Initially 270 cps was chosen because it was "a low frequency" to even the lowest frequency transistors, and because it was harmonically unrelated to 60 cps thus avoiding power line interference. All presently available transistors however still have their low frequency parameters unchanged at 1000 cps , and components for this frequency are more readily available. The circuits in Figure 17.8 may be used at either frequency providing the inductor is tuned accordingly.

MEASUREMENT OF SMALL SIGNAL AUDIO COMMON EMITTER h PARAMETER
EQUATIONS DEFINING $\left\{\mathrm{vbe}_{\mathrm{e}}=\mathrm{h}_{\mathrm{i}} \mathrm{i}_{\mathrm{i}}+\mathrm{h}_{\mathrm{re}} \mathrm{v}_{\mathrm{ce}}\right.$
h PARAMETERS $\quad\left\{\begin{array}{l}\mathbf{i}_{c}=h_{f e} i_{b}+h_{\text {oe }} \text { vee }\end{array}\right.$
OPERATING POINT: $\mathrm{Im}_{\mathrm{m}}=1 \mathrm{ma} \mathrm{V} \mathrm{Cb}=5 \mathrm{~V}$
FIGURE 17.8

MEASUREMENT OF SMALL SIGNAL AUDIO COMMON EMITTER h PARAMETER

$\underset{\text { hPARAMETERS }}{\text { EQUATIONS DEFINING }}\left\{\begin{array}{l}v_{b e}=h_{i e} i_{b}+h_{r e} v_{c e} \\ i_{c}=h_{f e} i_{b}+h_{o e} v_{c e}\end{array}\right.$
h PARAMETERS $\quad\left\{i_{c}=h_{\text {fe }} i_{b}+h_{\text {oe }} v_{c e}\right.$
OPERATING POINT: $I_{E}=1 \mathrm{ma} \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$
FIGURE 17.8
The 1 N1692 diodes prevent the emitter bypass capacitor from charging to -50 v when the transistor under test is removed. If the diodes werc removed, discharging the capacitor through the next transistor tested might damage the transistor. One diode is sufficient if only germanium transistors are tested. Two are required for silicon transistors. The VTVM is an audio high impedance voltmeter such as the Ballantine Model 310A or Hewlett-Packard 400D. The voltmeter can be switched to calibrate the input signal. The center ground position on the switch is used as a shield between input and
output. For measuring $h_{r e}$ and $h_{b e}$, the resistance of the transformer winding supplying e_{s} should be minimized.

If $B V_{\text {Ces }}$ or $V_{R T}$ are less than 5 volts, there is a possibility of damaging the transistor in these circuits. Breakdown voltages should be measured before h parameter measurements are attempted.

BASE SPREADING RESISTANCE AND COLLECTOR CAPACITY rb' AND Có

One of the more useful common emitter transistor equivalent circuits contains a series base input resistance called $\mathrm{r}_{\mathrm{b}}{ }^{\prime}$, A capacitor C_{ob} is connected in series with $\mathrm{r}_{\mathrm{b}}{ }^{\prime}$ to the collector. This collector to base time constant $\mathrm{r}_{\mathrm{b}}{ }^{\prime} \mathrm{C}_{\mathrm{ob}}$ can control a transistor's high frequency performance. A well known expression for the maximum available power gain of a tuned amplifier is $G \approx \frac{0.04}{f^{2}} \times \frac{f_{h f b}}{r_{b}{ }^{\prime} C_{o b}}$ where $f_{h f b}$ is the alpha cut-off frequency and f is an operating frequency between $1 / 20$ and $2 f_{\text {hfb }}$. The equation shows that a large $\mathrm{r}_{\mathrm{b}}{ }^{\prime} \mathrm{C}_{\mathrm{ob}}$ product can offset the advantage of a high $\mathrm{f}_{\mathrm{lff}}$.

At high frequencies, $\mathrm{h}_{\mathrm{rb}} \approx 2 \pi \mathrm{f} \mathrm{r}_{\mathrm{b}}{ }^{\prime} \mathrm{C}_{\mathrm{ob}}$. Doubling the test frequency will double $h_{r b}$ if the test frequency is high enough. For alloy transistors 1 mc is a suitable test frequency. Figure 17.9 shows a suitable test circuit for high frequency $h_{r b}$. The shield is essential.

MEASUREMENT OF rb^{\prime} Cob

FIGURE 17,9
To determine $\mathbf{r}_{\mathrm{k}}{ }^{\prime}$ and C_{e} separately, two measurements are made. The base switch is closed giving $h_{r b 1}=\frac{e_{a 1}}{e_{s}}=2 \pi f C_{o b} x_{b}^{\prime}$. The switch is opened giving $h_{r b 2}=\frac{e_{02}}{e_{s}}=2 \pi \mathrm{f}_{\text {palk }}$ $\left(r_{b}{ }^{\prime}+R_{s}\right)$. Solving for $r_{b}{ }^{\prime}$ gives $r_{b}{ }^{\prime}=\frac{e_{01} R_{s}}{\left(e_{02}-e_{01}\right)}$. Solving for $C_{o b}$ gives $C_{o b}=\frac{e_{02}-e_{01}}{2 \pi f_{s} R_{s}}$

The significance and validity of $\mathrm{r}_{\mathrm{b}}{ }^{\prime}$ and C_{b} as measured above depends entirely on the validity of the equivalent circuit assumed for the transistor under test.

ALPHA CUT-OFF FREQUENCY fnew

The alpha cut-off frequency, $\mathrm{f}_{\mathrm{h} i \mathrm{~b}}$, was the earliest measure of a transistor's frequency response. It is defined as the frequency at which alpha, the small signal common base current gain, decreases in amplitude by 3 db . In modern transistors $\mathrm{f}_{\mathrm{h} \text { rı }}$ ranges from

100 Kcs to 2000 mcs . Since at frequencies over 100 mcs accurate measurements become exceedingly difficult, low frequency data is often extrapolated instead of measuring $f_{h: b}$ at higher frequencies.

In itself $f_{h f b}$ is of little importance, since for example, $f_{h f b}$ along with $r_{b}{ }^{\prime}$ and $C_{o b}$ determine high frequency amplifier power gain. Special amplifier transistors therefore are often characterized directly in terms of power gain.

In switching circuits, transient response times become shorter when $f_{n f b}$ increases. But they do not correlate well because of $f_{h f b}$ variations with operating point and also because of the effects of C_{ob} and voltage bias.

While $f_{\text {hfb }}$ can be increased considerably by grading the base impurity distribution as discussed in Chapter 2, common emitter performance does not increase proportionately. Transient response time, for example, appears to correlate better with common emitter frequency response rather than with $f_{\text {htb }}$. This leads to specifying a common emitter gain-bandwidth product, or high frequency $h_{f e}$, or the frequency at which $h_{\mathrm{fe}}=\mathrm{L}$.

MEASUREMENT OF $\boldsymbol{f}_{\text {hfb }}$

FIGURE 17.10
The circuit in 17.10 is suitable for measuring $f_{\text {ufil }}$ to 100 mes. The 3 db pad is switched in and the base is connected to the VTVM. The signal generator is adjusted to give 1 mv across the VTVM. The 3 db pad is switched out and the base grounded. The VTVM will read 1 mv if the input frequency is $\mathrm{f}_{\mathrm{h} f}$. It will read over 1 mv for lower frequencies and less than 1 mv for higher. This circuit is best for go-no go testing. Care should be taken to minimize stray capacitance and inductance. The test as outlined assumes the low frequency alpha is very close to unity. If this assumption is not valid, an additional attenuator will compensate for low alpha. The 3 db pad is switched in, the attenuator is switched out, the base is grounded and the signal generator is adjusted to give 1 mv output at a low frequency. The base is then connected to 50Ω. The attenuator is switched in and adjusted until the output is again 1 mv . The signal

PRINCIPLE OF MEASUREMENT OF HIGH FREQUENCY hfe FIGURE 17.11
generator frequency is raised and the output again adjusted to 1 mv. Finally the attenuator and 3 db pad are switched out, the base is grounded and the output reads 1 nv if the signal generator frequency is $f_{\text {hitb }}$.

Figure 17.11 indicates the principle used to measure high frequency $h_{\text {fe }}$. Since the resonant circuit at the base must be retuned with every change in frequency the measurement is tedius. The principle is similar to that in Figure 17.10. The input attenuator is used to offset the gain of the transistor so that the reference meter reads the same during calibration and test. This avoids errors due to non-linearities in the amplifier, detector or meter. Calibration is achieved by removing the transistor, connecting a capacitor jumper from base to collector and tuning the resonant circuit for maximum output. The signal generator level is adjusted to approximately $10 \mu \mathrm{a}$ and the meter deflection is recorded. The jumper is removed and the VTVM is used to retune the resonant circuit. The transistor is reinserted and the attenuator increased until the meter reading returns to its calibration value. The attenuation added is equal to the gain of the transistor at the test frequency.

TRANSIENT RESPONSE TIME $t_{0}, t_{r}, t_{s}, t_{f}$

Chapter 10 on switching characteristics defines and discusses transient response times. Because they are strongly circuit dependent, transistor manufacturers have had considerable scope in specifying response time. Figure 17.12 shows five basic circuits currently in use. Capacitor overdrive (A) gives the fastest response times but small inaccuracies in component values or pulse generator characteristics result in large changes in response time. Also in practical circuits it is seldom possible to simulate these overdrive conditions.

Current drive (B) for $\mathrm{I}_{\mathrm{B} 1}$ and $\mathrm{I}_{\mathrm{B} 2}$ gives the slowest response times but is much less sensitive to pulse generator characteristics. If a high amplitude input pulse is used to define the currents accurately the delay time becomes long. Also the emitter junction breakdown voltage may be exceeded. For these reasons, it is not sufficient to define the currents; the entire circuit must be specified.

Storage time can be minimized by a high $\mathrm{I}_{\mathrm{B} 2}$ current. In complex flip-flop circuits using several transistors, it is possible to design for high I_{Eg}. Circuit C simulates this condition by combining voltage and current drives.

As noted in Chapter 12 on Logic, current mode logic circuits are extremely fast although expensive in transistors. Circuit D is useful in measuring the delay i.e. the propagation time through one level of logic. It is difficult with this circuit to measure the performance of an individual transistor.

DCTL offers the simple logic chain in E for measuring the propagation time through several stages. The circuit averages the transistors' performance and permits reasonably accurate hịgh speed measurements with relatively slow pulse generators and oscilloscopes.

In order to avoid the expense or risetime limitations of pulse generators, mercury wetted relays capable of 0.25 nanoseconds (millimicroseconds) risetime are sometimes specified. Most relays operate at 60 cps and generate pulses with approximately a 50% duty factor. The 60 cycle pulse rate results in low CRT trace intensity while the 50% duty factor may cause appreciable heating. The relay pulse generators in the Tektronix R unit and type 110 pulse generator minimize these problems.

There has been considerable work done to separate transient response time into circuit and transistor dependent parts. It is hoped that once the intrinsic transistor characteristics of significance in response time are known and specified, the performance of any circuit can be predicted. While considerable progress has been made, no analysis is valid for the majority of transistors available today. For typical transistors from a specific manufacturing process however, response times can be predicted quite accurately over a moderate range of operating points. But the typical transistors have never been a problem since their response time can be measured directly at the desired operating point, and the designer can base his circuit on the measured data. The prob= lem lies with the small percentage of units which do not follow the typical variation, This problem has not been satisfactorily resolved to date.

Since no one transient response test circuit is widely accepted, none is shown in this section. To test any specific transistor the manufacturer's test circuit should be followed explicitly. In some cases, however, the circuit may be incompletely specified leading to ambiguity or error. The check list in Figure 17.13 suggests the considerations underlying an accurate measurement. It can be used to assess the adequacy of either the manufacturer's or circuit designer's specified test conditions.

As the check list suggests the input pulse must be precisely specified. Whether a conventional pulse generator or a relay type is used generally determines the rest of the circuit. The pulse risetime, width and repetition rate are essentially predetermined if a relay is used, but all of these parameters should be given for conventional pulse generators.

Component characteristics should be defined. Precision high stability components should be used.

At high frequencies the shunt capacitance of resistors may become significant. The self-resonant frequency of capacitors, their power factor and series inductance may have to be considered. Also, if any diodes are used it should be ascertained that their leakage current, capacitance and recovery time do not introduce significant errors.

PULSE GENERATOR	- type of generator - PULSE WIDTH - PULSE RISETIME (MAX MIN LIMITS: - PULSE AMPLITUDE - pulse repetition rate - GENERATORIMPEDANCE
COMPONENTS	- tolerance - FREquencr response - Layout - DISSIPATION
INITIAL CONDITIONS	- VOLTAGE BIAS - EMITTER JUNCTION PROTECTION
DRIVE CONDITIONS	- SERIES BASE IMPEDANCE - time constants in drive circuit - FORWARD BIAS CURRENT OR CHARGE - reverse blas volt age, current or charge - Danger of overdrive - PU_SE REPETITION RATE SENSITIVITY - PULSE WIDTH SENSITIVITY
OUTPUT	- ac and dC load - LOADING EFFECT OF MEASURING EQPT - output time constant due to stray and OUTPUT LOADING CAPACITANCES - Reference times - TERMS DEFINED
MISC	- POWER SUPPLY DECOUPLING - RINGING

CHECK LIST FOR RESPONSE TIME MEASUREMENT CIRCUITS

 FIGURE 17.13Circuit layout may be important. For example, adding two picofarads (micromicrofards) stray capacity from collector to base increases the rise time approximately 40% in typical high speed mesa transistor test circuits.

The voltage bias on the base before the input pulse is applied largely determines the delay time and in some circuits affects the rise time. Also if the bias voltage exceeds the emitter junction breakdown voltage this must either be allowed by the transistor manufacturer or a protective diode voltage clamp should be specified.

The input pulse characteristic together with the series base impedance determines the drive conditions. If capacitors are used as part of the drive impedance, the transient response times may be strongly dependent on the input pulse width and repetition rate. In measuring risetime, the test circuit generally specifies a forward bias current or base charge. By knowing the current or charge, performance can be predicted at other operating points. Reverse bias conditions are equally important in predicting storage time and fall time. If voltage drives are used, precaution should be taken to avoid transistor damage due to equipment misadjustment.

In measuring very fast response times (in the order of one to five nanoseconds) it may be necessary to make the oscilloscope input impedance part of the collector load. For slower speeds, conventional low capacitance probes may be used but their contribution to the response time should be checked. The reference times from which measurements are made should be carefully noted. Some specifications lump together delay and risetime. Some circuit engineers think of storage time in terms of the delay it causes and refers to it as "delay time." Pulse width may be measured across the base of the pulse or at 50% of full amplitude.

It is important that the DC biasing power supplies be able to supply fast transient currents without ringing. The power supplies may have to be decoupled right at the transistor socket with several paralleled capacitors. Each capacitor is chosen to extend
the frequency of effective bypass; electrolytics for low frequencies, button stand-off capacitors for high frequencies. The pulse generator should be checked for overshoot or ringing. Ringing makes the pulse amplitude indeterminate particularly if the pulse is capacitively coupled to the base of the transistor under test.

SIMPLE TRANSISTOR TESTER

Occasionally after an accidental overvoltage or slip of a test probe the need arises to quickly check if a transistor has been damaged. The circuit in Figure 17.14 is designed to meet this need. The 100μ a meter is in a network which results in a nearly linear scale to $20 \mu \mathrm{a}$, a highly compressed scale from $20 \mu \mathrm{a}$ to 1 ma and a nearly linear scale to full scale at 10 ma. The network permits reading $I_{\text {CO }}, I_{\text {EO }}, I_{\text {CEs }}$ and $I_{\text {CEO }}$ to within 10% on all transistors from mesas to power alloys without switching meter ranges or danger to the meter movement.

SIMPLE TRANSISTOR TESTER FIGURE 17.14

CALCULATE hFE in POSITIONS 2 AND 3

$$
h_{\text {FE }}=\frac{I_{C}}{I_{B}}
$$

CALCULATE h fo in POSITIONS 2 AND 3 WITHS4 OPEN $I_{C}=I_{C I}$ WITH S4 CLOSED $I_{C}=I_{C 2}$ $h_{f e}=\frac{I_{C 1}-I_{C 2}}{(0.2\} I_{B}}$

The test set also measures h_{Fs} with $20 \mu \mathrm{a}$ and $100 \mu \mathrm{a}$ base current. Depressing the h_{fe} button decreases the base drive 20% permitting h_{fe} to be estimated from the corresponding change in collector current. The tests are done with a 330Ω resistor limiting the collector current to approximately 12 ma and maximum transistor dissipation to approximately 20 mw . Therefore, this test set can not harm a transistor regardless of how it is plugged in or how the switches are set.

By making $R_{m}+R_{1}$ equal to 12 K the scale will be compressed only 1μ at $20 \mu \mathrm{a}$. The potentiometer should be adjusted to give 10 ma full scale deflection. The scale can then be calibrated against a standard conventional meter.

If the NPN-PNP switch is in the wrong position, the collector and emitter junctions will be forward biased during the \mathbf{I}_{co} and $\mathbf{I}_{\mathrm{E} 0}$ tests respectively. The high resulting current can be used as a check for open or intermittent connections within the transistor.

18. SILICON CONTROLLED RECTIFIER

The Silicon Controlled Rectifier (SCR) has a PNPN device structure and is the semiconductor equivalent of a gas thyratron. It is constructed by making both an alloyed PN junction and a separate ohmic contact to a diffused PNP silicon pellet as shown in Figure 18.1. This structure is typical of the 16 ampere SCR shown with its circuit symbol in this same figure.

FIGURE 18.1

In addition to the 16 ampere SCR, General Electric also offers a complete family of SCR's capable of carrying load currents from a few hundred milliamperes to $70 \mathrm{am}-$ peres average. SCR's are also classified within any basic current rating by the maximum voltage they can block. For a list of condensed specifications on SCR's see page

FIGURE 18.2

The electrical characteristics of the SCR are shown in Figure 18.2. With reverse voltage impressed on the device (cathode positive), it blocks the flow of current until the avalanche voltage is reached as in an ordinary rectifier. With positive voltage applied to the anode, the SCR blocks the flow of current until the forward breakover voltage (V_{ro}) is reached. At this point the SCR switches into a high conduction state and the voltage across the device drops to about one volt. In the high conduction state, the current flow is limited only by the external circuit impedance and supply voltage. At anode to cathode voltages less than the breakover voltage, the SCR can be switched into the high conduction mode by a small pulse (typically 1.5 volts and 30 milliamperes) applied from gate to cathode. This method of "turning-on" the SCR by means of a gate is used in the majority of applications since it permits the control of large amounts of power from low power signal sources. Once the SCR is in the high conduction state, it continues conduction indefinitely after removal of the gate signal until the anode current is interrupted or diverted by some external means for about 20 micro seconds. This permits the SCR to regain its forward blocking capability.

The magnitude of gate-pulse neected to turn on an SCR varies with temperature and also from unit to unit. In order to achieve precise firing, it is desirable to use a short gate pulse with an amplitude of at least 3 volts and capable of delivering the maximum firing current requirements of the SCR. A simple and economical source of these pulses is the unijunction relaxation oscillator shown in Figure 13.9. A typical value for capacitor C in this diagram is 0.2 microfarad, and the gate triggering pulse is taken off at $V_{B 1}$. The gate and cathode of the SCR are connected to $V_{B_{1}}$ and ground respectively, or are coupled to the unijunction transistor circuit by a pulse transformer where isolation is necessary.

This circuit produces pulses spaced roughly $\mathrm{R}_{1} \mathrm{C}$ seconds apart and is the basis for SCR firing circuits in DC to $A C$ inverters or other equipment operating from $D C$ supplies. The major advantage of the unijunction circuit is that the interval between pulses depends primarily on the values of R_{1} and C and is essentially constant with changes in supply voltage or temperature.

When SCR's are used in AC circuits, it is necessary that the firing pulses have a precisely determined phase relationship with the supply voltage. A means for synchronizing is illustrated in Figure 18.3 which shows a 150 Watt AC phase controlled voltage regulator. This simple type of circuit is particularly suitable for controlling incandescent lights and electric furnaces, ovens, and heaters operated from 60 cps sources.

The 117 volt AC supply is connected to the load through the single phase bridge formed by rectifiers CR1 through CR4. This bridge applies full wave rectified DC to the anode of SCR. Through the clipping action of zener diode CR5 in conjunction with R3, the unijunction oscillator circuit formed by UJT, R1, and C is energized by a 20 volt clipped voltage supply as indicated. C begins charging at the start of the AC wave and UJT produces a pulse after a time interval depending on the value of R1 in the UJT emitter circuit. As soon as SCR fires, it shorts out the voltage supply to UJT and prevents C from charging up until the start of the next half cycle, when SCR returns to its blocking state by virtue of the supply voltage momentarily dipping to zero. Thus, the timing of the UJT is always synchronized to the start of each half cycle of the supply voltage. For proper operation, it is essential that inductance in series with SCR inside the rectifier bridge be kept to a minimum. The circuit will operate properly however with any reasonable value of inductive load in the AC circuit.

Since the bridge applies full wave voltage to SCR, the firing angle for both half cycles is controlled by this single UJT, and symmetrical phase controlled AC voltage

150 Watt Voltage regulator

FIGURE 18.3
is delivered to the load. The firing angle, and therefore the power to the load, can be adjusted by varying R1. Alternately, the power output can be controlled by an NPN transistor connected across C as shown. If a small current is injected into the base of the NPN transistor, an amplified current will flow from collector to emitter, thus diverting some charging current from C. Reducing the charging current to the capacitor delays the firing of the UJT and SCR, and less average current flows to the load. The power gain from the base circuit of the NPN transistor to the output of the SCR is over ten million. Because of this high gain, this basic circuit can be readily adapted to high performance regulated power supplies, temperature controls, and other similar applications requiring feedback.

Through use of a pair of back-to-back connected SCR's of higher current rating than the C10, loads as high as 10 kilowatts on 117 volts may be controlled. By using two SCR's and two conventional rectifiers in a full wave phase controlled bridge circuit, it is possible to obtain a continuously variable DC output.

Figure 18.4 shows the circuit of a $1 / 2$ kilowatt, 50 volt regulated power supply that will maintain the output DC voltage constant within $\pm 1 / 2 \%$ for wide variations of load current or supply voltage. By making the feedback voltage to Q1 proportional to current rather than voltage, a constant current supply will result.

phase controlled constant voltage power supply

D.C. TO A.C. PARALLEL INVERTER

FIGURE 18.5
Figure 18.5 is the circuit of a 100 watt parallel type inverter suitable for converting 28 volt DC to 60 cycle AC or else to DC at a higher or lower voltage level.

UJT1 is the primary oscillator and UJT2 is synchronized to UJT1 through the common resistor R4 in their base two circuits. As a result, UJT2 fires at exactly holf the frequency of UJT1. Since UJT1 produces the first pulse, SCR1 will turn on first and SCR2 will remain in a blocking condition. The current from the 28 volt supply will then flow through the upper side of transformer Tl. The transformer action will produce a voltage of approximately $2 \times 28=56$ volts at the anode of SCR2 and across capacitor C3. When the next trigger pulse is applied to the gate of SCR2, it will turn on and the voltage at the anode of SCR2 will fall to a value equal to the forward conduction drop. The voltage at the anode of SCR1 will fall to approximately -56 volts because of the action of commutating capacitor C3. Capacitor C3 will maintain a reverse bias across SCRI long enough for SCR1 to recover its forward blocking
state. The next trigger pulse will occur at the gate of SCR1 and cause the circuit to revert to the original state. In this manner, the current from the DC supply will flow alternately through the two sides of the transformer primary and produce an AC volt= age in the secondary.

The inductance L serves as a ballast to prevent excessive current flow during switching. During the switching interval, opposing currents can flow in both halves of the transformer primary to the commutating capacitor C3 and to the anode of the SCR which has been turned on. If this current is not limited, the charging time for the commutating capacitor will be very short and the SCR which is to be turned off will not be reverse biased long enough for it to recover. Large values of L on the other hand prevent the supply from adjusting to rapid changes in load. For example, if load current is suddenly decreased, a voltage will be induced across L which will also appear at the anode of the SCR which is in the blocking condition. If this transient is greater than the breakover voltage of this SCR, it will turn on and the inverter will fail. This condition can be prevented by placing a free-wheeling rectifier in parallel with L .

Many other applications make use of the unique static power handling capabilities of the SCR. A partial list of some of these applications follows:

Radar and Beacon Modulators
DC Transformers
Ultrasonic Generators
Pulse Width Modulation of Power
DC Motor Armature Control
Generator Field Control
AC and DC Static Switching
Latching Relays
Power Flip-Flops
$20 \mu \mathrm{sec}$ Current-Limiting Circuit Breakers

Servo Systems
Temperature Controls
Reversing Drives
Transient Voltage Protection Currents
Squib Firing
Regulated Power Supplies
Ignitron Firing
Lamp Dimmers
Variable Frequency Inverters
Electronic Ignition Systems

The use of SCR's in these and other types of applications is discussed in detail in the General Electric "Controlled Rectifier Manual" ECG-442, available for $\$ 1.00$,

19. POWER SUPPLIES

The low power requirements and portability of many transistorized circuits make operation from batteries feasible and desirable. However, where heavier load current requirements and the relatively short life of batteries prohibit their use, DC loads can be operated from 117 volt 60 cycle power systems through use of silicon or germanium rectifiers. A discussion of several general types of rectifier power supplies follows.

NON-ISOLATED POWER SUPPLIES FOR CLASS A FIXED LOADS

For load requirements less than about $1 / 4$ ampere, low cost circuits of the type shown in Figures 19.1 and 19.2 can be used provided the load is fixed and provided adequate safety precautions are incorporated to prevent shock hazard due to lack of isolation of the load from the 117 volt line. Both sides of the DC load should be isolated from possible accidental contact by the user. These circuits utilize series dropping resistors instead of transformers to reduce the line voltage to the required level. For this reason, it is essential that these power supplies always be operated with rated load across the output terminals. Absence of this load current, even momentarily, will apply excessive voltage to the filter capacitors and rectifiers. Thus this type of power supply is limited to class A loads in which the average load current does not vary with the amplitude of the input signal.

OUTPUT VOLTAGE V	OUTPUT CURRENT	RI	CI	R2	APPROX. RIPPLE
12 VOLTS	1 MA	$43 \mathrm{~K}, \mathrm{~V} / 2 \mathrm{~W}$	$250 \mu \mathrm{~F}$ 15 VOLT ELECTROLYTIC	180 K $1 / R W$	0.1%
12 VOLTS	2 MA	$22 \mathrm{~K}, 1 / 2 \mathrm{~W}$	$250 \mu \mathrm{~F}$ 15 VOLT ELECTROLYTIC	100 K $1 / 2 W$	0.1%
25 VOLTS	2 MA	$18 \mathrm{~K}, 1 / 2 \mathrm{~W}$	$250 \mu \mathrm{f}$ 30 VOLT ELECTROLYTIC	180 K $1 / 2 \mathrm{~W}$	0.1%

* TO ADJUST VOLTAGE OUTPUT FOR OTHER OUTPUT CURRENTS, ADJUST R2.

OUTPUT VOLTAGE V	OUTPUT* CURRENT	Rl	R2	R3	$\begin{array}{\|c\|} \hline \text { CI } \\ 200 \text { VOLT } \\ \text { METALLIZED } \\ \text { PAPER } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { C2 } \\ \text { ELECTRO- } \\ \text { LYTIC } \end{array}$	$\left\|\begin{array}{c} \text { C3 } \\ \text { ELECTRO- } \\ \text { LYTIC } \end{array}\right\|$	APPROX. RIPPLE
12 VOLTS	100 MA	$\begin{aligned} & 2 \Omega \\ & 1 W \end{aligned}$	$\begin{gathered} 100 \Omega \\ 2 W \end{gathered}$	2200Ω IW	$\begin{gathered} \text { THREE } \\ 2-\mu \mathrm{f} \text { IN } \\ \text { PARALLEL } \end{gathered}$	250μ 15 VOLT	$\begin{aligned} & 250 \mu \mathrm{f} \\ & 15 \text { VOLT } \end{aligned}$	0.5\%
12 VOLTS	I5OMA	$\begin{aligned} & 2 \Omega \\ & 1 W \end{aligned}$	$\begin{aligned} & 100 \Omega \\ & 10 \mathrm{~W} \end{aligned}$	$\begin{gathered} 2200 \Omega \\ 1 W \end{gathered}$	$\begin{gathered} \text { FOUR } \\ 2-\mu \mathrm{f} \text { IN } \\ \text { PARALLEL } \end{gathered}$	$250 \mu \%$ 15 VOLT	$\begin{aligned} & 250 \mu \mathrm{f} \\ & 15 \mathrm{VOLT} \end{aligned}$	0.5\%
25 VOLTS	50 MA	$\begin{aligned} & 2 \Omega \\ & 1 W \end{aligned}$	$\begin{gathered} 250 \Omega \\ 2 \mathrm{~W} \end{gathered}$	$\begin{aligned} & \text { IOK } \\ & \text { IW } \end{aligned}$	TWO $2-\mu \mathrm{f}$ iN PARALLEL	$\begin{gathered} 100 \mu \mathrm{f} \\ 50 \mathrm{VOLT} \end{gathered}$	$\begin{gathered} 250 \mu \mathrm{f} \\ 30 \mathrm{VOLT} \end{gathered}$	0.5\%

TO ADJUST VOLTAGE OUTPUT FOR OTHER OUTPUT CURRENTS, ADJUST R3.

GENERAL PURPOSE TRANSISTOR POWER SUPPLIES

FIGURE 19.2

RC filters reduce the output ripple to very low values as indicated in the charts in Figures 19.1 and 19.2. The use of silicon rectifiers results in high reliability at minimum cost.

Since one side of the 117 volt line is carried through to the load, reversal of the line plug may be necessary in high gain amplifiers to reduce hum. Also, these two power supplies develop a negative output voltage with respect to the common line between the AC and the load. To develop a positive output voltage with respect to this line, it is only necessary to reverse the rectifiers and electrolytic capacitors in the circuit.

When a silicon rectifier feeds a capacity input filter as in Figures 19.1 and 19.2, it is necessary to limit the high charging current that flows into the input capacitor when the circuit is first energized. Otherwise this surge current may destroy the rectifier. Resistor R1 is used in these circuits to limit this charging current to safe values.

ISOLATED POWER SUPPLIES WITH TRANSFORMER STEP-DOWN

Class B loads require a stiffer voltage source than the resistance-capacity combinations of Figures 19.1 and 19.2 can provide. For this and other types of load that require good voltage regulation, the line voltage should be dropped through a transformer rather than series resistance or capacitance. For loads greater than about one ampere, choke type filters are also desirable for good zegulation.

Figures 19.3 through 19.5 illustrate the use of a step-down transformer in conjunction with a rectifier bridge to secure reasonably stiff well-filtered voltage for class B audio amplifiers illustrated elsewhere in this manual.

POWER SUPPIY FOR SEVEN-WATT AMPLIFIER
FIGURE 19.3

POWER SUPPLY FOR DUAL SEVEN-WATT AMPLIFIER
FIGURE 19.4

$\mathrm{Cl}-1500 \mu \mathrm{f}, 50$ VOLTS
C2- $1500 \mu \mathrm{f}, 50$ VOLTS
c3- 1500 رf, 50 VOLTS
C4- $1500 \mu \mathrm{f}, 50$ VOLTS
SILICON BRIDGE-FOUR-IN537'S

POWER SUPPLY FOR DUAL TEN-WATT AMPLIFIER

FIGURE 19.5

REGULATED POWER SUPPLIES

For optimum voltage regulation and ripple reduction, active elements must be introduced to the power supply. The 12 volt 1 ampere power supply in Figure 19.6 uses a power transistor as an active element in series with the load to maintain the output voltage constant. A 1 watt zener diode is used as the voltage reference. At full load, the output voltage ripple is less than 0.1%, and voltage regulation from no load to full load is 2%.


```
CRI - (4) G-E IN9| RECTIFIERS
CR2 - INI524A ZENER DIODE,I2V, IWAT T
QI - 2N277 POWER TRANSISTOR
T1 - STANCOR P-6469 117/2.7 VAC TRANSFORMER
RI - 220\Omega,5WATT RESISTOR
R2 - 150\Omega, IWATT RESISTOR
CI - 1000 MFD, 50 VOLT ELECTROLYTIC CAPACITOR
```


12 VOLT, 1 AMPERE REGULATED POWER SUPPLY

 FIGURE 19.6Efficiency and cost considerations in regulated power supplies above a few hundred watts generally dictate active regulating elements that operate in a high speed switching mode to minimize thermal losses in the active element. A 500 watt power supply of this type that uses silicon controlled rectifiers as switches is shown in Figure 18.4.

20. TRANSISTOR SPECIFICATIONS

HOW TO READ A SPECIFICATION SHEET

Semiconductors are available in a large variety of different types, each with its own unique characteristics. At the present time there are over 2200 different types of diodes and rectifiers and over 750 different types of transistors being manufactured.

The Characteristics of each of these devices are usually presented in specification sheets similar to the ones represented on page 205 and page 306 respectively. These specifications, particularly the transistor specification on the next page, contain many terms and ratings that are probably new to you, so we have selected several of the more important ones and explained what they mean.

NOTES ON TRANSISTOR SPECIFICATION SHEET

(1) The lead paragraph is a general description of the device and usually contains three specific pieces of information - The kind of transistor, in this case a silicon NPN triode, - A few major application areas, amplifier and switch, - General sales features, electrical stability and a standard size hermetically sealed package.
(2) The Absolute Maximum Ratings are those ratings which should not be exceeded under any circumstances. Exceeding them may cause device failure.
(3) The Power Dissipation of a transistor is limited by its junction temperature. Therefore, the higher the temperature of the air surrounding the transistor (ambient temperature), the less power the device can dissipate. A factor telling how much the transistor must be derated for each degree of increase in ambient temperature in degrees centigrade is usually given. Notice that this device can dissipate 125 mw at $25^{\circ} \mathrm{C}$. By applying the given derating factor of 1 mw for each degree increase in ambient temperature, we find that the power dissipation has dropped to 0 mw at $150^{\circ} \mathrm{C}$, which is the maximum operating temperature of this device.
(4) All of the remaining ratings define what the device is capable of under specified test conditions. These characteristics are needed by the design engineer to design matching networks and to calculate exact circuit performance.
(5) Current Transfer Ratio is another name for beta. In this case we are talking about an a-c characteristic, so the symbol is $h_{f e}$. Many specification sheets also list the d -c beta using the symbol h_{FE}. Beta is partially dependent on frequency, so some specifications list beta for more than one frequency.
(6) The Frequency Cutoff $f_{\text {hfb }}$ of a transistor is defined as that frequency at which the grounded base current gain drops to .707 of the 1 kc value. It gives a rough indication of the useful frequency range of the device.
(7) The Collector Cutoff Current is the leakage current from collector to base when no emitter current is being applied. This leakage current varies with temperature changes and must be taken into account whenever any semiconductor device is designed into equipment used over a wide range of ambient temperature.
(8) The Switching Characteristics given show how the device responds to an input pulse under the specified driving conditions. These response times are very dependent on the circuit used. The terms used are explained in the curves at right.

The General Electric Types 2N337 and 2N338 are high-frequency silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for high-speed switching cir-

2N337, 2N338
Outline Drawing No. 4 cuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. For electrical reliability and parameter stability, all transistors are subjected to a minimum 160 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.

SPECIFICATIONS

(2)- - ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage

Collector to Base
Emitter to Base

> Vobo

Current
Collector

Power

Collector Dissipation*
Temperature
Storage
Operating

Tsta

T_{A}

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
(Unless otherwise specified;
$V_{C B}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$;
$f=\mathbf{1} \mathbf{k c}$)
Small-Signal Characteristịcs

Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
High-Frequency Characteristics
(6)-

Alpha Cutoff Frequency	$\mathrm{fluf}^{\text {b }}$	10	30		20	45		me
Collector Capacitance ($\mathrm{f}=1 \mathrm{mc}$)	Cob		1.4	3		1.4	3	$\mu \mu \mathrm{f}$
Common Emitter Current Gain ($f=2.5 \mathrm{mc}$)	h_{H} \%	14	24.		20	26		

D-C Characteristics
Common Emitter Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{Ic}=10 \mathrm{ma}\right)$
Collector Breakdown Voltage $\left(\right.$ Iсво $\left.=50 \mu a ; \mathrm{Ie}_{\mathrm{E}}=0\right)$

h_{FE}	20	35	55	4
$\mathrm{~V}_{\mathrm{CBO}}$	45			
$\mathrm{~V}_{\mathrm{ErO}}$	1			
RSC		75	150	
$\mathrm{RSC}_{\mathrm{SC}}$				

(Іено $=-50 \mu \mathrm{a}$; Ic $=0$)
Collector Saturation Resistance ($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{IC}_{\mathrm{C}}=10 \mathrm{ma}$) ($\mathrm{I} \mathrm{B}=.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$)

Rsc
2N337

Min.	Typ.	Max.	Min.	Typ.	Max.	
19	55		39	99		
30	47	80	30	47	80	ohms
	180	2000		200	2000	$\times 10^{-6}$
	.1	1		.1	1	μ mho

Cutoff Characteristics

Collector Current
$\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad \mathrm{I}_{\mathrm{CB}}$
Collector Current
$\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{CbO}}$
.002
1 100

20 ma

125 mw
-65 to $200{ }^{\circ}{ }^{\circ} \mathrm{C}$

EXPLANATION OF PARAMETER SYMBOLS

SMALL SIGNAL \& HIGH FREQUENCY PARAMETERS (at specified tias)

$\substack{\text { Symbols } \\ h_{o b}}$	Com, base - small signal output admittance, input AC open-circuited

SWITCHING CHARACTERISTICS (at specified bios)

UNIJUNCTION TRANSISTOR MEASUREMENTS

$\mathrm{I}_{\mathbf{B} 2}(\mathrm{MOD})$	Modulated interbase current
$\mathrm{I}_{\mathbf{P}}$	Peak point emitter current
$\mathrm{IV}_{\mathbf{V}}$	Valley current
$\mathrm{R}_{\mathrm{BB} O}$	Interbase resistance
V_{BB}	Interbase voltage
V_{V}	Valley voltage
η	Intrinsic stand-off ratio. Defined by $\mathrm{V}_{\mathrm{P}}=\eta \mathrm{V}_{\mathrm{BB}}+\frac{200}{\mathrm{~T}_{\mathrm{J}}}$ (in ${ }^{\circ}$ Kelvin)

DC MEASUREMENTS

$\mathrm{Ic}, \mathrm{IE}_{\mathrm{E}}, \mathrm{Ib}$	DC currents into collector, emitter, or base terminal
$V_{c b}, V_{\text {bi }}$	Voltage collector to base, or emitter to base
Vee	Voltage collector to emitter
Vbi	Voltage base to emitter
Vcro	Voltage, collector to base junction reverse biased, emitter open-circuited (value of Ic should be specified)
Vceo	Voltage, collector to emitter, at zero base current, with the collector junction reverse biased. Specify Ic.
Veeo	Voltage, collector to emitter, with base open-circuited. This may be a function of both " m " (the charge carrier multiplication factor) and the h_{fb} of the transistor. Specify Ic.
Vcer	Similar to Vceo except a resistor of value " R " between base and emitter.
Vees	Similar to Vceo but base shorted to emitter.
Vrt	Reach-through voltage, collector to base voltage at which the collector space charge layer has widened until it contacts the emitter junction.
V Cob Vcce Vbbe	$\left.\begin{array}{l}\begin{array}{l}\text { Supply voltage collector to base } \\ \text { Supply voltage collector to emitter } \\ \text { Supply voltage base to emitter }\end{array}\end{array}\right\} \quad$NOTE - third subscript may be omitted if no confusion results.
Ico, Icbo	Collector currert when collector junction is reverse biased and emitter is DC open-circuited.
Leo, Iero	Emitter current when emitter junction is reverse biased and collector is DC open-circuited.
ICe 0	Collector current with collector junction reverse biased and base open-circuited.
ICes	Collector current with collector junction reverse biased and base shorted to emitter
Iecs	Emitter current with emitter junction reverse biased and base shorted to collector*
Rsse	Collector saturation resistance

OTHER SYMBOLS USED

por	Peak collector power dissipation for a specified time duration duty cycle and wave shape.
P_{T}	Average continuous total power dissipation.
P_{C}	Average continuous collector power dissipation
Z_{O}	Power output
zo_{0}	Input impedance
$\mathrm{T}_{\mathbf{A}}$	Output impedance
T_{J}	Operating Temperature (ambient)
$\mathrm{T}_{\mathrm{STG}}$	Junction Temperature

NOTE: In devices with several electrodes of the same type, indicate electrode by number. Example: $\mathrm{I}_{\mathrm{R} 2}$. In multiple unit devices, indicate device by number preceding electrode subscript. Example: I2c. Where ambiguity might arise, separate complete electrode designations by hyphens or commas. Example: $\mathrm{V}_{1 \mathrm{Cl} 1-2 \mathrm{Cl}}$ (Voltage between collector \#1 of device \#1 and collector \#1 of device \#2.)
NOTE: Reverse biased junction means biased for current flow in the high resistance direction,

GENERAL ELECTRIC TRANSISTOR SPECIFICATIONS

2N43

Outline Drawing No. 1

The General Electric Type 2N43 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for high gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base	Vcbo	-45	volts
Collector to Emitter ($\mathrm{Rbs} \leqq 10 \mathrm{~K}$)	Vcer	-30	volts
Emitter to Base	Vebo	-5	volts
Current			
Collector	İ	-300	ma
Power			
Total Transistor Dissipation*	$\mathrm{P}_{\text {f }}$	240	mw
Temperature			
Storage Operating Junction	$\begin{aligned} & \mathrm{TstG} \\ & \mathrm{~T}_{J} \end{aligned}$	-65 to 100	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
Small Signal Characteristics
Desigif
(Unless otherwise specified; $V \mathrm{c}=-5 v$ common base; le $=-1 \mathrm{ma}$; $f=270 \mathrm{cps}$. or 1 kc)
Common base output admittance
(input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance (output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input
A-C open circuited; $£=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathbf{B W}=1$ cycle)
Frequency cutoff (Common Base)

D-C Characteristics

Collector cutoff current ($\mathrm{Vcro}=-45 \mathrm{v}$)	Ico		-8	-16	$\mu \mathrm{amps}$
	İOO			--10	$\mu \mathrm{mmps}$
Collector Saturation Voltage	$\mathrm{VCE}^{(S A T)}$	-65	-90	-130	mv
($\mathrm{Ic}=-20 \mathrm{ma}$; Is as indicated)	@ $\mathrm{IB}_{\mathrm{B}}=$	-1.3	-1.3	-1.3	ma
Base input voltage, common emitter ($\mathrm{Vce}_{\mathrm{ce}}=-1$ volt; Ic $=-20 \mathrm{ma}$)	Vber	-180	-230	-280	mv
Common emitter static forward current transfer ratio (VCE $=-1$ volt; $y_{0}=-20 \mathrm{ma}$)	hee	34	53	6.5	
Common emitter static forward current transfer ratio (Vce $=-1$ volt; $\mathrm{I}_{\mathrm{c}}=-100 \mathrm{ma}$)	hfe	30	48		
Collector to emitter voltage (10 K ohms resistor base to emitter; Ic $=-0.6 \mathrm{ma}$) Reach-through Voltage	$\mathrm{V}_{\text {Vfrer }}$	-30 -30			volts volts

${ }^{*}$ Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The 2 N 43 A is identical to the 2 N 43 except that h_{fe} is guaranteed to be between 30 and 66. It is therefore electrically identical to the USAF 2N43A.

2N43A

Outline Drawing No. I

Outline Drawing No. I

The General Electric Type 2N44 Germanium Alloy Junction Transistor Triode is a PNP unit particularly recommended for medium gain, low power applications. A hermetic enclosure is provided by use of glass-to-metal seals and welded seams.

2N44

Outline Drawing No. I

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\mathbf{2 5} 5^{\circ}$ C)

Voltage

Collector to Base
Collector to Emitter (Rbe $\leqq 10 \mathrm{~K}$)
Emitter to Base
VCbo
VCER
Vero

Le

Pr

Tstg
Storage
Operating Junction
TJ

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Small Signal Characteristics
(Unless otherwise specified; $\mathbf{V}_{\mathrm{C}}=-5 \mathrm{v}$ common base; $\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$; $\mathbf{f}=\mathbf{2 7 0} \mathbf{c p s}$. or $1 \mathbf{k c}$)
Common base output admittance (input A-C open circuited)
Forward current transfer ratio
(output A-C short circuited)
Common base input impedance (output A-C short circuited)
Common base reverse voltage transfer ratio (input A-C open circuited)
Common base output capacity (input
A-C open circuited; $f=1 \mathrm{mc}$)
Noise Figure ($\mathrm{f}=1 \mathrm{Kc} ; \mathrm{BW}=1$ cycle)
Frequency cutoff

D-C Choracteristics

Collector cutoff current ($\mathrm{VCBO}=-4.5 \mathrm{v}$)	Icor		-8	-16	$\mu \mathrm{maps}$
Emitter cutoff current ($\mathrm{Vero}_{\text {e }}=-5 \mathrm{v}$)	IEO		-4	-10	$\mu \mathrm{mmps}$
Collector Saturation Voltage	$\mathrm{Vce}{ }^{\text {(Sat) }}$	-55	-90	-130	mv
($1 \mathrm{c}=-20 \mathrm{ma} ; \mathrm{I}_{\mathrm{s}}$ as indicated)	$@ \mathrm{I}_{\mathrm{B}}=$	-2	-2	-2	ma
Base input voltage, common emitter	Vbe	-200	-250	--300	mv
Common emitter static forward current transfer ratio ($\mathrm{VCE}=-1$ volt; $I_{C}=-20 \mathrm{ma}$)	hre	18	31	43	
Common emitter static forward current transfer ratio (Vce $=-1$ volt; $\mathrm{Ic}_{\mathrm{c}}=-100 \mathrm{ma}$)	hre	13	25		
Collector to emitter voltage (10 K ohms resistor base to emitter; $\mathrm{Ic}=-0.6 \mathrm{ma}$)	Vemr	-30			volts
Reach-through Voltage	V_{RT}	-30			volts

[^4]Outline Drawing No. 1

2N78
Outline Drawing Now,

The General Electric 2 N 78 is a rate grown NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The exclusive G-E rate-growing process used in the manufacture of the 2N78 enhances the stable and uniform characteristics required for military and industrial service. The $2 \mathrm{NFP}^{\prime}$'s low collector cutoff current and controlled D-C Beta simplifies bias stabilization. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 78 is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10 G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-S-19500B.

SPECIFICATIONS

ABSOLUTE AAAKIMUM RATINGS: ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$).			
Voltoge			
Collector to Emitter (base open)	Vcro	15	volts
Collector to Base (emitter open)	Vcbo	15	volts
Emitter to Base	Vebo	5	volts
Current			
Collector	Io	20	ma
Emitter	IE	-20	ma
Power			
Collector Dissipation*	PG	65	mw
Temperature			
Storage	Tstg	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Low Frequency Characteristics (Common Bose)

$\left(V_{C B}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma;} \mathrm{f}=270 \mathrm{cps}\right.$)(See Note)	
nput Impedance (output short circuited)	
oltage Feedback Ratio (input short circuited)	
Current Amplification (output short circuited),	
Output Admittance (input open circuited	hob

Min.
25
.8
.97
.1

Nom

Max,	
82	ohms
10	$\times 10^{-4}$
.995	
.7	μ mhos

High Frequency Characteristics (Common Base)

(VCB=5v; $\mathrm{IE}_{\mathrm{E}}=1 \mathrm{ma}$					
Alpha Cutoff Frequency	flitb	5	9		mc
Output Capacity ($\mathrm{f}=1 \mathrm{mc}$)	Cob		3	6	$\mu \mu \mathrm{f}$
Voltage Feedback Ratio ($\mathbf{f}=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {rb }}$			14	$\times 10^{-8}$
Noise Figure $\left(\mathrm{VCB}=1.5 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}=-0.5 \mathrm{ma} ; \mathrm{f}=1 \mathrm{kc}\right)$	NF		12		db
Power Gain in Typical IF Test Circuit (455 kc)	Ge	29	31	34	d b
D-C Characteristics					
Collector Cutoff Current (Vcb $=15 \mathrm{v}$)	Ico		. 7	3	$\mu \mathrm{a}$
Emitter Cutoff Current (Veb $=5 \mathrm{v}$)	IEO		. 6	5	$\mu \mathrm{a}$
$\begin{aligned} & \text { D-C Base Current Gain } \\ & \quad(\mathrm{Ic}=1 \mathrm{ma} ; \text { Vce }=1 \mathrm{v}) \end{aligned}$	hFEe	45	70	135	
Typical Operation (Common Emitter) is Ampa					
($\mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$)		IF Amp.	IF Amp.	RF Amp.	
Input Frequency		262	455	1600	
Input Impedance (resistive)		300	350	700	ohms
Output Impedance (resistive)'		30	15	7	K ohms
Matched Power Gain		37	30	23	db

Note: The Low Frequency Characteristics are design limits within which 98% of production normally falls.
*Derate $1.1 \mathrm{~m}, \mathrm{w} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

The General Electric 2N78A is a rate grown NPN high frequency transistor intended for high gain RF and IF amplifier service and general purpose applications. The exclusive G.E. rate-growing process used in the manu-

Outline Drawing No. 3 facture of the 2N78A enhances the stable and uniform characteristics required for military and industry service. The 2N78A's low collector cutoff current and controlled D-C Beta simplifies bias stabilization. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 78 A is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10 G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-S-19500B.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Emitter (base open)	Veeo	20	volts
Collector to Base (emitter open)	Vebo	20	volts
Emitter to Base	Vebo	5	volts
Current			
Collector	Ic	20	ma
Emitter	IE	-20	${ }_{\text {ma }}$
Power			
Collector Dissipation*	PC	65	mw
Temperature			
Storage	Tstg	85	${ }^{9} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ unless otherwise specified

D-C Characteristics		Min.	Typ.	Max.	
Collector Cutoff Current					
($\left.\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v} ; \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)$	Ico		. 7	3	$\mu \mathbf{a}$
Collector Cutoff Current ${ }^{\text {a }}$ - $\mu \mathrm{a}$					
Emitter Cutoff Current ($\mathrm{V}_{\text {eb }}=5 \mathrm{~V}$)	I6o		15	39	$\mu \mathrm{a}$
D-C Base Current Gain					
($\mathrm{Ic}=1 \mathrm{ma}$; Vce $=1 \mathrm{v}$)	hes	45	70	135	
Collector to Emitter Voltage (Base open Ic $=.3 \mathrm{ma}$)	Veeo	20			volts
Low Frequency Characteristics (Common Base)					
$\left(V_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-\mathbf{1} \mathrm{ma} ; \mathbf{f}=\mathbf{2 7 0} \mathbf{~ c p s}\right)$ (See Note)					
Input Impedance (Output short circuited)	hib	25	55	82	ohms
Voltage Feedback Ratio					
(Input open circuited)	$h_{\text {rb }}$. 8	2	10	$\times 10^{-6}$
Current Amplification (Output short circuited)	h_{fb}	. 97	. 983	. 995	
Output Admittance (Input open circuited)	hob	. 1	. 2	. 7	$\mu \mathrm{mhos}$
High Frequency Characteristics (Common Base)					
Output Capacity ($\mathrm{f}=1 \mathrm{mc}$)	Cob		3	6	
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)	$\mathrm{h}_{\mathrm{r}} \mathrm{b}$			14	$\times 10^{-9}$
Noise Figure					
Power Gain in Typical IF Test Circuit					
Typical Operation (Common Emitter) IF Amp. IF Amp. RFAmp.					
Input Frequency		262	455	1600	kc
Input Impedance (resistive)		300	350	700	ohms
Output Impedance (resistive) Matched Power Gain		30	15	7	K ohms
Matched Power Gain		37	31	23	db

Note: The Low Frequency Characteristics are design limits within which 98% of production normally falls.
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

2N1O7

Outline Drawing No. 1

The General Electric type 2N107 is an alloy junction PNP transistor particularly suggested for students, experimenters, hobbyists, and hams. It is available only from franchised General Electric distributors. The 2N107 is hermetically sealed and will dissipate 50 milliwatts in $25^{\circ} \mathrm{C}$ free air.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATİNGS: ($25^{\circ} \mathrm{C}$)			
Voltage			
Collector (referred to base)	Veb	-12	volts
Current			
Collector	Ic	-10	ma
Emitter	In	10	ma
Temperature			
Junction	Ts	60	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Common Base, $f=270 \mathrm{cps}$

$\begin{aligned} & \left.V_{\mathrm{cB}}=-5 \mathrm{v}, I_{\mathrm{E}}=1 \mathrm{ma}\right) \\ & \text { Collector Voltage } \end{aligned}$	Vcb	-5.0	volts
Emitter Current	IE	1.0	ma
Output Admittance (input open circuit)	hob	1.0	μ mhos
Current Amplification (output short circuit)	hab	. 95	
Input Impedance (output short circuit)	hib	32	ohms
Voltage Feedback Ratio (input open circuit)	$\mathrm{hr}_{\mathbf{r}}$	3	$\times 10^{-4}$
Collector Cutoff Current	Ico	10	$\mu \mathrm{a}$
Output Capacitance	Cob	40	$\mu \mu \mathbf{f}$
Frequency Cutoff	furb	06	me
Common Emitter ($\left.\mathrm{VCE}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right)$			
Base Current Gain	hie	20	

Outline Drawing No. 7

The General Electric Type 2N123 is a PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance. (Not recommended for new designs, use 2 N 396 A)

SPECIFICATIONS

High Frequency Characteristics (Common Base)
$\left(\mathrm{VCB}=-5 \mathrm{y} ; \mathrm{IE}_{\mathrm{C}}=1 \mathrm{ma}\right)$

Alpha Cutoff Frequency	$\mathrm{fl}_{\mathrm{ffb}}$	5	8		me.
Alpha Cutoff Frequency (Inverse)	$\mathrm{fh}_{\text {fo }}{ }^{\text {(1NV) }}$				me.
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)	Cob		12	20	
Voltage Feedback Ratio ($f=1 \mathrm{mc}$)	$\mathrm{hrb}_{\text {rb }}$		9		$\times 10^{-8}$
Base Spreading Resistance	$\mathrm{r}^{\prime} \mathrm{s}$		90	150	${ }_{\text {ohms }}$
Low Frequency Characteristics (Common Base)					
$\left(V_{\mathrm{cb}}=-5 \mathrm{v} ; \mathrm{Ita}=1 \mathrm{ma} ; \mathbf{f}=270 \mathrm{cps}\right)$					
Input Impedance	$\mathrm{hie}^{\text {e }}$		3000		ohms
Voltage Feedback Ratio	$\mathrm{h}_{\text {re }}$		6.0		$\times 10^{-4}$
Forward Current Transfer Ratio	$h_{f \text { e }}$		90		
Output Admittance	hoe		65		$\mu \mathrm{mho}$

Switching Choracteristics

Delay Time
Rise Time
Storage Time
Fall Time
td
t_{r}
t
.18
.18
.95
.90
. .35
$\mu \mathrm{sec}$
μ sec
μ sec
μ sec Msec
*Derate $8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
${ }^{* *}$ Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

Per MIL-T-19500/30

USAF 2N123

Outline Drawing No. 7

The General Electric types 2N135, 2N136 and 2N137 are PNP alloy junction germanium transistors intended for RF and IF service in broadcast receivers. Special control of manufacturing processes provides a narrow spread of characteristics, resulting in uniformly high power gain at radio frequencies. These types are obsolete and available for replacement only.

2N135, 2N136, 2N137

Outline Drawing No. 7

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$		2N135	2N136	2N137	
Voltage					
Collector to Base (emitter open)	Vobo	-20	-20	-10	volts
Collector to Emitter ($\mathrm{RBE}^{\text {E }}=100$ ohms)	Vorer	-20	-20	-10	volts
Collector to Emitter ($\mathrm{R}_{\text {be }}=1$ megohm)	Voer	-12	-12	-6	volts
Current					
Collector	Ic	-50	-50	-50	ma
Emitter	Im	-50	50	-50	$\mathrm{ma}_{\mathrm{ma}}$
Power					
Collector Dissipation	Pc	100	100	100	H\%
Temperature					
Storage	Tstg	85	85	85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: Design Center Values (Common Base, $\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GB}}=\mathbf{5 v}, \mathrm{I}_{\mathrm{E}}=1 \mathbf{m o}$)					
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {r }}$	7	7		
Output Capacitance ($f=1 \mathrm{mc}$) Alpha Cutoff Frequency	$\mathrm{Cob}^{\text {fob }}$	14	14	14	$\underset{\mu \mu \mathrm{f}}{\times 1}$
Alpha Cutoff Frequency	$\mathrm{flifb}^{\text {fin }}$	4.5	6.5	10	mc
Mollector Cutoff Current Crequency	$\mathrm{frib}^{\text {b }}$	3	5	7	me min
(Vcr $=6 v$, Emitter open)	Ico	5	5	5	$\mu \mathrm{a}$ min
Base Current Amplification (Common Emitter, $f=270 \mathrm{cps}$)	hife	20	40	60	

2N167
Outline Drawing No. 3

The General Electric Type 2N167 is an NPN germanium high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 167 is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10 G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-T-19500A.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	Vcbo	30	volts
Collector to Emitter	Vceo	30	volts
Emitter to Base	Vero	5	volts
Current			
Collector	I_{C}	75	ma
Emitter	IE	-75	ma
Power			
Collector Dissipation ($25^{\circ} \mathrm{C}$)*	Pc	65	mw
Total Transistor Dissipation ($25^{\circ} \mathrm{C}$)**	$\mathrm{P}_{\text {T }}$	75	mw
Temperature			
Storage	Tsta	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right.$

D-C Characteristics

Min. Typ. Max
Forward Current Transf
(IC $=8$ ma; VCe $=$
Base Input Voltage
\quad ($\mathrm{I}_{\mathrm{B}}=.47$ ma; $\mathrm{I}_{\mathrm{C}}=8$
Collector to Emitter Vol
(Base Open; $\mathrm{I}_{\mathrm{C}}=.3$
Saturation Voltage (IB
Cutoft Characteristics

Collector Current ($\mathrm{Im}=0 ; \mathrm{Vcb}=15 \mathrm{v}$)	Ico		. 6	1.5	$\mu \mathrm{a}$
Emitter Current ($\mathrm{Ic}=0 ; \mathrm{V}_{\mathrm{EB}}=5 \mathrm{v}$)	Izo		. 35	5	$\mu \mathrm{a}$
High Frequency Characteristics (Common Base)					
$\left(V_{C R}=5 \mathrm{v} ; 1_{\mathrm{E}}=1 \mathrm{ma}\right)$					
Alpha Cutoff Frequency	fhib	5.0	9.0		
Collector Capacity ($\mathrm{f}=\mathrm{I} \mathrm{mc}$)	Cob		2.5	6	
Voltage Feediback Ratio ($f=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {b }}$		7.3		$\times 10^{-3}$

($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; ~ ¢=270 \mathrm{cps}$)				
Forward Current Transfer Ratio	hffb	. 952	. 985	.995***
Output Admittance	hob	.1***	. 2	.7*** mhos $^{\text {a }}$
Input Impedance	hib	$25^{* * *}$	55	82***ohms
Reverse Voltage Transfer Ratio	$\mathrm{hrb}^{\text {b }}$		1.5	$\times 10^{-4}$

Switching Characteristics

$\left(\mathrm{IC}=8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=.8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 2}=.8 \mathrm{ma}\right)$			
Turn-on Time	to	4	$\mu \mathrm{sec}$
Storage Time	ts_{s}	.7	$\mu \mathrm{sec}$
Fall Time	t_{t}	.2	$\mu \mathrm{sec}$

[^5]The General Electric Type 2N167A is an isolated case, NPN germanium high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 167 A is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G of vibration fatigue and 10 G variable frequency vibration, as well as temperature cycling, moisture resistance, and operating and storage life tests as outlined in MIL-S-19500B, The 2N167A is available to MIL-S19500/11 specification as USAF 2N167A.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\mathbf{(2 5}{ }^{\circ} \mathrm{C}$)

Voltage			
Collector to Base	Vcbo	30	volts
Collector to Emitter	Vcbo	30	volt
Emitter to Base	Vebo	5	volts
Current			
Collector	1 c	75	ma
Emitter	IE	-75	ma
Power			
Collector Dissipation ($\mathbf{2 5}^{\circ} \mathrm{C}$)*	Po	65	mw
Total Transistor Dissipation ($25^{\circ} \mathrm{C}$)**	$\mathrm{Pr}_{\mathbf{r}}$	75	mw
Temperature Storage	Tsta	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ unless otherwise specified

D-C Characteristics		Min.	Typ.	Max.	
Forward Current Transfer Ratio $\left(\mathrm{I}_{\mathrm{C}}=8 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=\mathrm{lv}\right)$	hre	17	30	90	
Base Input Voltage					
	$V^{\text {b }}$.3***	. 41		volts
Collector to Emitter Voltage (Base open; $\mathrm{I}_{\mathrm{c}}=.3 \mathrm{ma}$)	Vce	30			volts
Saturation Voltage $(\mathrm{Ir}=.8 \mathrm{ma} ; \mathrm{Ic}=8 \mathrm{ma})$	Vges ${ }^{\text {(Sat }}$)		. 35		volts
Cutoff Characteristics					
Collector Current $\left(\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Ico		. 6	1.5	ma
Collector Current $\left(\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=71^{\circ} \mathrm{C}\right)$	Ico		11	29	$\mu \mathrm{a}$
Emitter Current $\left(\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=5 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Ieo		. 4	1.5	$\mu \mathrm{a}$
Emitter Current $\left(I_{C}=0 ; \hat{V}_{E B}=5 v ; T_{\Delta}=71^{\circ} \mathrm{C}\right)$	Ieo		8		$\mu \mathrm{a}$

High Frequency Charocteristics (Common Base)

$\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{y} ; \mathrm{I}_{\mathrm{m}}=1 \mathrm{ma}\right.$) Alpha Cutoff Frequency	furb	5.0	9.0		mc
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$)	Cob		2.5	6	$\mu \mu \mathrm{f}$
Voltage Feedback Ratio ($\mathrm{f}=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {b }}$		7.3		$\times 10$

$\mathrm{V}_{\mathrm{cB}}=5 \mathrm{v} ; \mathrm{Ie}^{=}=-1 \mathrm{ma} ; \mathrm{f}=270 \mathrm{cps}$)				
Forward Current Transfer Ratio	hib	$.952^{* * *}$. 985	$\begin{gathered} .995^{* * *} \\ .7^{* * *} \mu \text { mhos } \end{gathered}$
Output Admittance	hob	25***	. 25	$\dot{82^{* * *}}$ ohms
Input Impedance ${ }_{\text {Reve }}$	hib $\mathrm{hrb}^{\text {a }}$	$25^{* *}$	1.5	${ }^{8} \times 10^{-4}$

Switching Characteristics
($I_{\mathrm{C}}=8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=.8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 2}=.8 \mathrm{me}$)
Turn-on Time

to_{o}	.4	$\mu \mathrm{sec}$
t_{s}	.7	$\mu \mathrm{sec}$
tf	.2	$\mu \mathrm{sec}$

Storage Time
ts
Fall Time

[^6]2N168A
Outline Drawing No. 3

The 2N168A is a rate-grown NPN germanium transistor intended for mixer/oscillator and IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The 2N168A has a frequency cutoff control to provide proper operation as an oscillator or autodyne mixer. For IF amplifier service the range in power gain in controlled to 3 db . This type is obsolete and is not recommended for new designs. For new designs we recommend type 2N1086.

CONVERTER TRANSISTOR SPECIFICATIONS

Converter Service
Maximum Ratings
Collector Suppiy Voltage \quad Vec $12 \quad$ volts

Design Center Characteristics

Input Impedance ($\mathrm{I}_{\mathrm{t}}=1 \mathrm{ma} ; \mathrm{VCE}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{~K}$			
Output Impedance ($\mathrm{Ie}_{\mathrm{e}}=1 \mathrm{ma}$; VCE $=5 \mathrm{v} ; \mathrm{f}=455$		400 12	ohms
Voltage Feedback Ratio $\left(I_{\mathrm{v}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}\right)$	$\mathrm{hrby}^{\text {rem }}$	12 5	
Collector to Base Capacitance ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	$\mathrm{C}_{\text {arb }}$	5	※ 10^{-8}
Frequency Cutoff ($\mathrm{IE}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$)	$\mathrm{Cab}^{\text {a }}$	2.4	$\mu \mu \mathrm{f}$
Minimum Frequency Cutoff ($\mathrm{IE}=1 \mathrm{ma}$; $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$)	fhfb	8	
	fhet	5 40	me min
Minimum Base Current Gain	$\mathrm{hFE}^{\text {f }}$	23	
Maximum Base Current Gain	$\mathrm{hfe}^{\text {ene }}$	135	
Conversion Gain	CGe	25	db
IF Amplifier Performance			
Collector Supply Voltage	Vcc	5	
Collector Current	Ic	1	ma
Input Frequency	.	455	KC
Available Power Gain	Ge	39	db
Minimum Power Gain in typical IF circuit	Ge	28	db min
Power Gain Range of Variation in typical IF circuit	Ge	3	db

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$) Ico
Collector Cutoff Current
. $5 \quad \mu \mathrm{a}$
5. $\mu \mathrm{a} \max$
*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric Type 2N169 transistor is a rate-grown NPN germanium device, intended for use as an IF amplifier in broadcast radio receivers. The collector capacity is controlled to a uniformly low value so that neutralization in

2N169

Outline Drawing No. 3 most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. The 2 N 169 has special high beta characteristics required in the final stage of reflex IF circuits where large audio gain is desired.

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left.\quad 25^{\circ} \mathrm{C}\right)$			
Voltage			
Collector to Emitter ($\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$)	V ${ }_{\text {cer }}$	15	volts
Collector to Base (emitter open)	Vcbo	15	voits
Current			
Collector	Ie	$-\overline{20}$	ma
Power			
Collector Dissipation at $25^{\circ} \mathrm{C}$ \%	Pq	65	mw
Temperature			
Operating and Storage	$\mathrm{T}_{\mathrm{A},} \mathrm{T}_{\text {STG }}$	-55 to 85	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS:** (25 ${ }^{\circ} \mathrm{C}$)			
Reflex IF Amplifier Service			
Maximum Ratings			
Collector Supply Voltage	Vcc	9	volts
Design Center Characteristics			
Input Impedance	Z_{1}	700	ohms
Output Impedance	Zo	7	K ohms
Voltage Feedback Ratio ($\mathrm{Vcm}_{\text {ch }}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	$\mathrm{hrb}^{\text {b }}$	10	$\times 10^{-3}$
Collector to Base Capacitance ($\mathrm{Vcb}_{\mathbf{c b}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$).	Cob	2.4	$\mu \mu \mathrm{f}$
Frequency Cutoff (Vcb $=5 \mathrm{v}$)	$\mathrm{fhfb}^{\text {b }}$	8	mc
Base Current Gain ($\mathrm{Ic}=1 \mathrm{ma}$; $\mathrm{V}_{\mathrm{ce}}=1 \mathrm{l}$)	hFe	72	
Minimum Base Current Gain	hee	32	
Reflex IF Amplifier Performance			
Collector Supply Voltage	Vcc	5	volts
Collector Current	Ic_{c}	2	ma
Input Frequency	f	455	KC
Minimum Power Gain in Typical IF Circuit	Ge	27	db
Power Gain Range of Variation in Typical IF Circuit	G。	2.5	db
Cutoff Characteristics			
Collector Cutoff Current ($\mathrm{Vcb}_{\mathrm{cb}}=5 \mathrm{v}$)	Ico	. 5	$\mu \mathrm{a}$
Collector Cutoff Current ($\mathrm{VCB}_{\text {ce }}=15 \mathrm{v}$)	Ico	5	$\mu \mathrm{a}$ max

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**All values are typical unless indicated as a min. or max.

2N169A

Outline Drawing No. 3

The General Electric type 2N169A is a rate-grown NPN germanium transistor recommended for high gain RF and IF amplifier service and general purpose industrial applications where high beta, high voltage, low collector capacity and extremely low collector cutoff current are of prime importance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage			
Collector to Base	Vcbo	25	volts
Collector to Emitter	Vceo	25	volts
Emitter to Base	Vebo	5	volts
Current Collector	16	-20	ma
Power Collector Dissipation*	Pc	65	mw
Temperature Storage Operating Junction	$\begin{aligned} & \mathrm{T}_{\mathrm{TsTg}} \\ & \mathrm{~T}_{\mathrm{J}} \end{aligned}$	-55 to 85 -55 to 85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
DC Characteristics

		Min.	Center	Max.	
$\left(\mathrm{R}_{\mathrm{BF}}=10 \mathrm{~K}_{i} \mathrm{I}_{\mathrm{c}}=.3 \mathrm{ma}\right)$	Veer	25			
Reach-through Voltage	Vrt	25			
Forward Current Transfer Ratio $\left(\mathrm{Ic}=1 \mathrm{ma} \cdot \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}\right)$	hFE	34	72		
Base Input Voltage ($\mathrm{Ic}=1 \mathrm{ma} ; \mathrm{V}_{\text {ce }}=1 \mathrm{l}$)	Vbe	.1***	. 14	$.2^{* *}$	
Saturation Voltage ($\mathrm{Ir}^{\text {a }}=.5$; Ic $=5 \mathrm{ma}$)	$\mathrm{V}_{\text {ce }}{ }^{\text {(Sat) }}$.13**	. 23	. ${ }^{* *}$	
Collector Current ($(1 \mathrm{IE}=0 ; \mathrm{VCB}=15 \mathrm{v})$	Ico		.9	5	${ }_{\mu a}$
Emitter Current ($\mathrm{Ic}=0 ; \mathrm{Veb}_{\text {c }}=5 \mathrm{v}$)	Ino		. 9		
Low Frequency Characteristics					
Forward Current Transfer Ratio	hfe		50		$\mu \mathrm{mhos}$
Output Admittance	hob		$\stackrel{5}{5}$		${ }_{\text {ohms }}$
Input Impedance ${ }_{\text {Reverse Voltage Transfer Ratio }}$	$\mathrm{h}_{\mathrm{hrb}}$		2		$\times 10^{-4}$
High Frequency Characteristics					
$\left(\mathrm{V}_{\mathrm{GB}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{f}=455 \mathrm{KC}\right)$					
Base Spreading Resistance	$\stackrel{r^{\prime}}{\text { Cob }}$		250 2.4		${ }_{\mu \mu \mathrm{f}}^{\text {ohms }}$
Output Capacity Forvard Current Transfer Ratio	$\mathrm{Cob}_{\mathrm{hfe}}$		2.4 30		
Forward Current Transter Ratio Output Admittance	hie ${ }_{\text {hoe }}$		140		$\mu \mathrm{mhos}$
Input Impedance	hie		700		${ }^{\text {ohms }}$
Reverse Voltage Transfer Ratio	hrb		10		$\times 10^{-3}$
Noise Figure ($\mathrm{Bw}_{\mathrm{w}}=1$ cycle) ($\mathrm{f}=1 \mathrm{KC} ; \mathrm{VCB}_{\mathrm{CB}}=1.5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-0.5 \mathrm{ma}$)					
(Common Emitter)			12		$\frac{d b}{d b}$
Power Gain (Typical IF Test Circuit) Available Power Gain	$\mathrm{Ge}_{\mathrm{Ge}}$	27	38		db
Available Power Gain Cutoff Frequency	fhe		9		mc

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**These limits are design limits within which 98% of production normally falls:

2N17O
Outline Drawing No. 3

The 2N170 is a rate grown NPN germanium transistor intended for use in high frequency circuits by amateurs, hobbyists, and experimenters. The 2 N 170 can be used in any of the many published circuits where a low voltage, high frequency transistor is necessary such as for regenerative receivers, high frequency oscillators, etc. If you desire to use the 2 Nl 170 NPN transistor in a circuit showing a PNP type transistor, it is only necessary to change the connections to the power supply.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($\mathbf{2 5}^{\circ} \mathrm{C}$)

Voltoge Collector to Emitter ($\mathrm{Rbe}=10 \mathrm{~K}$)	Vcer	9	volts
Current Collector	Ie	20	ma
Power Collector Dissipation*	Pe	25	mw
Temperature Operating and Storage	Ta, Tsta	-55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
High Frequency Characteristics
($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$ VCE $=5 \mathrm{y} ; \mathbf{f}=\mathbf{4 5 5} \mathbf{K C}$ except as noted)
Input Impedance (Common Emitter)
Output Impedance (Common Emitter)
Collector to Base Capacitance ($\mathbf{f}=1 \mathrm{mc}$)

Z_{i}	800	ohms
Z_{o}	15	Kohmms
C_{ob}	2.4	$\mu \mu \mathrm{f}$
f_{hr}	4	mc
G_{e}	22	db

Power Gain (Common Emitter)
db
Low Frequency Characteristics
($\left.\mathrm{It}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathbf{5} ; \mathbf{f}=270 \mathrm{cps}\right)$
Input Impedance

$h_{\text {lb }}$	55	ohms
$h_{\text {rb }}$	4	$\times 10^{-t}$
$h_{\text {fb }}$.95	$\times 10^{-6} \mu$ mhos

Current Gain
Output Admittance
Common Emitter Base Current Gain
he
20

Cutoff Characteristics

Collector Cutoff Current ($\mathrm{VCB}=5 \mathrm{v}$)
*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.

The 2N186A, 2N187A, and 2N188A are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits. These types may be substituted for Types 2N186, 2N187, 2N188 respectively.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage

Collector to Base (emitter open)
Collector to Emitter ($\mathrm{RBE}_{\mathrm{BE}} \leqq 10 \mathrm{~K}$)
Vcbo
Emitter to Base (collector open)
Vcer

Current

Collector
Power

Collector Dissipation*	Pe	200	mw
Temperature			
Operating	$\mathrm{T}_{\mathbf{A}}$	-55 to 75	${ }^{\circ} \mathrm{C}$
Storage	$\mathrm{T}_{\text {STG }}$	-55 to 85	${ }^{\circ} \mathrm{C}$

Storage
$T_{\text {STG }}^{A}$
$\left.25^{\circ} \mathrm{C}\right)$
Class B Audio Amplifier Operation
2N186A 2N187A
2N188A

Yalues for two transistors. Note that matching is not required to hold distortion to less than 5% for any two transistors from a type)

Maximum Class B Ratings (Common Emitter)

Collector Supply Voltage VCo
Power Output (Distortion less than 5\%)
P_{0}
Design Center Characteristics

Input Impedance (large signal base ($\triangle \mathrm{I}_{\mathrm{E}}=100 \mathrm{ma}$)	$\mathrm{h}_{\text {ite }}$	1200	2000	2600	ohms
Base Current Gain					
$\left(\mathrm{V}_{\mathrm{ce}}=-1 \mathrm{v} ; \mathrm{Ic}=-20 \mathrm{ma}\right)$	$h_{\text {Fe }}$	19-31	25-42	34-65	
Base Current Gain 250					
Collector Capacity $\left(\mathrm{VCB}_{\mathrm{CB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=\right.$	Cob	40	40	40	$\mu \mu \mathrm{f}$
Frequency Cutoff (VcB $=-5 \mathrm{v}$; $\mathrm{IE}=$	fitb	. 8	1.0	1.2	me
Class B Circuit Performance (Common Emitter)					
Collector Voltage	VCC	-12	-12	-12	volts
Minimum Power Gain at 100 mw power output	Ge	24	26	28	$\min d \mathrm{~b}$
Class A Audio Amplifier Operation (Common Emitter)					
$\left(V_{c c}=12 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=10 \mathrm{ma}\right)$					
Power Gain at 50 mw power output	Ge	34	36	38	(13)
Cutoff Characteristics					
Maximum Collector Cutoff Current (Vcbo $=-25 \mathrm{~V}$) $\begin{array}{lllll}\text { Ico } & -16 & -16 & -16 & \max \mu \mathrm{a}\end{array}$					
$\left(\mathrm{V}_{\text {ebo }}=-5 \mathrm{v}\right)$	IEO	-10	-10	-10	$\max \mu \mathrm{a}$

*Derate $4.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

2N189, 2N19O, 2N191, 2N192

Outline Drawing No. I

The $2 \mathrm{~N} 189,2 \mathrm{~N} 190,2 \mathrm{~N} 191$, and 2 N 192 are alloy junction PNP transistors intended for service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage Collector to Emitter ($\mathrm{R}_{\mathrm{BE}} \leqq 10 \mathrm{~K}$)	Verr	-25
Current Collector	Ic	-50
Power Collector Dissipation ($25^{\circ} \mathrm{C}$)*	Pc,	75
Temperature Operating Storage	${ }_{\text {Tsta }}^{\text {TJ }}$	-55 to 80 -55 to 85

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
$\frac{\text { Audio Driver Closs A Operation }}{\text { (Values for one transistor driving a transformer }}$ coupled output stage)
Maximum Class A Ratings (Common Emitter)

Collector Supply Voltage	Vec	-12	-2	-12	-12	volts
Design Center Characteristics						
	hfe	25-42	34-65	50-125	70-176	
Collector Capacity ($\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$)	Cob	40	40	40	40	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{Vcb}=-5 \mathrm{v}$; $\mathrm{Im}_{\mathrm{s}}=-1 \mathrm{ma}$)	furb	. 8	1.0	1.2	1.5	mc
Noise Figure ($\mathrm{Vcb}=-5 \mathrm{v}$; $\mathrm{Im}=-1 \mathrm{ma}$; $\mathrm{f}=\mathrm{I} \mathrm{KC} ; \mathrm{BW}=1$ cycle)	NF*	15	15	15	15	dib
Audio Circuit Performance (Common Emitter)						
Collector Supply Voltage	Vcc	-12	-12	-12	-12	volts
Emitter Current	IE_{E}	-1	-1	-1	-1	
Small Signal Characteristics						
$\left(\mathrm{V}_{\mathrm{c}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{KC}\right)$						
Input Impedance	his	29	29	189	29	
Input Impedance base to emitter	$\mathrm{h}_{1 \mathrm{e}}$.	1000	1400	1800	2200	ohms
Voltage Feedback Ratio	h_{rb}	4	4	4	4	$\times 10^{-4}$
Forward Current Transfer Ratio	hre	32	42	67	90	
Current Amplification	hrb	-. 97	$-.977$	-. 985	-. 989	
Output Admittance	$h_{\text {ob }}$	1.0	. 8	. 6	. 5	$\mu \mathrm{mhos}$
Cutoff Choracteristics						
Maximum Collector Cutoff Current $(\mathrm{VCB}=-25 \mathrm{v})$	Ico	-16	-16	-16	-16	max $\mu \mathrm{a}$

2N241A
Outline Drawing No. 1

The $2 N 241 \mathrm{~A}$ is a medium power PNP transistor intended for use as an audio output amplifier in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain insures low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\mathbf{(2 5}{ }^{\circ} \mathrm{C}$)

Voltage			
Collector to Base (emitter open)	$\mathrm{V}_{\text {cbo }}$	-25	volts
Collector to Emitter ($\mathrm{RbE} \leqq 10 \mathrm{~K}$)	$\mathrm{V}_{\text {cer }}$	-25	volts
Emitter to Base (collector open)	Vebo	-5	volts
Current Collector	Ie	-200	ma
Power Collector Dissipation	Pc	200^{*}	mw
Temperature Operating Storage	$\underset{\mathrm{Tsta}}{\mathrm{T}}$	-55 to 75 -55 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
Class B Audio Amplifier Operation
(Values for two transistors. Note that matching
is not required to hold distortion to less than
5% for any two transistors from a type)
Maximum Class B Ratings (Common Emitter)
Collector Supply Voltage

Collector Supply Voltage	Vcc	-12	volts
Power Output (Distortion less than 5\%)	Pa	750	mw
Design Center Characteristics			
Forward Current Gain ($\mathrm{Vce}=-1 \mathrm{v}_{\mathrm{j}} \mathrm{Ic}=20 \mathrm{ma}$)	hfe	50 to 125	
Current Gain (Vee $\overline{=}-1 \mathbf{v} ; \mathbf{I c}=-100 \mathrm{ma}$)	$\mathrm{h}_{\text {FE }}$	73	
Collector Capacity ($\mathrm{V}_{\text {CB }}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc}$)	Cob	40	$\mu \mu \mathrm{f}$
Frequency Cutoff ($\mathrm{V}_{\mathrm{Ce}}=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{e}}=1 \mathrm{ma}$)	fufo	1.3	me
Class B Circuit Performance (Common Emitter)			
Collector Voltage	Vco	-12	
Minimum Power Gain at 100 mw power output	Ge	31	min db
Class A Audio Amplifier Operation (Common Emitter)			
$\left(\mathrm{V}_{\mathrm{cc}}=-12 \mathrm{Y} ; \mathrm{IE}=10 \mathrm{ma}\right)$			
Power Gain at 50 mmv power output	Ge	40	db
Cutoff Characteristics			
Maximum Collector Cutoff Current (V сво $^{\text {C }}=-25 \mathrm{~V}$)	Ico	-16	max $\mu \mathrm{a}$
Maximum Emitter Cutoff Current (Vebo $=-5 \mathrm{v}$)	ILeo	-10	max $\mu \mathrm{a}$

Design Center Characteristics
*Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature within range $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.

The 2N265 is an alloy junction PNP transistor intended for driver service in transistorized audio amplifiers. By control of transistor characteristics during manufacture, a specific power gain is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

2N265

Outline Drawing No. 1

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage
Collector to Emitter ($\mathrm{R}_{\mathrm{BE}} \leq 10 \mathrm{~K}$) Veer $\quad-25$ volts

Current

Collector

Veer	-25	volts
Ie	--50	ma
P c	75	mw
$\stackrel{\mathrm{TJ}_{\text {TSTG }}}{ }$	-55 to 60 -55 to 85	${ }^{\circ}{ }^{\circ} \mathrm{C}$

Power

Collector Dissipation ($25^{\circ} \mathrm{C}$) *
Temperature
Operating
T
-55 to 85
${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ}\right)^{* *}$
Audio Driver Class A Operation
(Values for one transistor driving a transformer coupled output stage)
Maximum Class A Ratings (Common Emitter)
Collector Supply Voltage

Vcc	-12	volts
hie	4000	ohms
hres	99-176	
Cob	40	$\mu \mu \mathbf{f}$
$\mathrm{flifb}^{\text {d }}$	1.5	mc
NF	8	db
Vcc	-12	volts
IE	I	
Ge	45	min $d b$

Input Impedance base to emitted ($\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$)
Current Gain (VCe $=-1 \mathrm{~V}$; $\mathrm{I}_{\mathrm{c}}=-20 \mathrm{ma}$)
Collector Capacity ($\bar{V}_{\mathrm{CB}}=-5 \vee ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$)
Frequency Cutoff ($\mathrm{VCB}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$)
Noise Figure (Vcr $=-5 \mathrm{v}$; Im $=-1 \mathrm{ma}$;
$\mathbf{f}=1 \mathrm{KC} ; \mathrm{BW}=1$ cycle)

Collector Supply Voltage
Emitter Current
Minimum Power Gain at 1 mw power output
Small Signal Characteristics (Common Base)
$\left(V_{c}=-5 V_{j} I_{F}=-1 \mathrm{ma} ; f=1 \mathrm{KC}\right)$
Input Impedance
Voltage Feedback Ratio
Forward Current Transfer Ratio
Output Admittance
Cutoff Characteristics
Maximum Collector Cutoff Current (VCbo $=-25 v$) ICo
$\min \mathrm{db}$
ohms
$\times 10^{-4}$
μ mhos
*Derate $2.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
**Values are typical unless indicated as minimum or maximum.

2N292, 2N293

Outline Drawing No. 3

Types 2 N 292 and 2 N 293 are rate grown NPN germanium transistors intended for amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. The type 2N293 is intended for receiver circuits where high gain is needed. In IF amplifier service the range in power gain is controlled to 2.5 db .

IF TRANSISTOR SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage
Collector to Emitter (REB = 10K)
Collector to Base (emitter open)
Current
Collector
Power
Collector Dissipation*
Temperoture
Operating and Storage
ELECTRICAL CHARACTERISTICS: $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right) * *$
IF Amplifier Service

Moximum Ratings Collector Supply Voltage	Vec	12	12	volts
Input lmpedance ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{VCE}^{\text {c }}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}$)	Zi	500		
Output Impedance $\left(\mathrm{IV}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{VCH}_{\mathrm{V}}=5 \mathrm{v} ; f=455 \mathrm{KC}\right)$	Zo	15	15	K ohms
Voltage Feedback Ratio ($\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; £=1 \mathrm{mc}$)	hrb	10	5	$\times 10^{-3}$
Collector to Base Capacitance ($\mathrm{Iv}=1 \mathrm{ma} ; \mathrm{VCB}_{\mathrm{cs}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$)	$\mathrm{C}_{\text {Cob }}^{\text {fhrb }}$	2.4	2.4	m ${ }_{\text {me }}$
	fhrb $\mathrm{hre}^{\text {en }}$	25	25	
Base Current Gain (Vce $=1 \mathbf{v}$; $1 \mathrm{c}=1 \mathrm{ma}$) Minimum Base Current Gain	hre	8	8	
Maximum Base Current Gain	hre	51	51	
IF Amplifier Performance 5_{5}				
Collector Supply Voltage	Vrc	1		ma
Collector Current	${ }_{f} \mathrm{f}$	455	455	KC
Input Frequency Gain in Typical IF Test Circuit	Ge	25.5	28	${ }^{\text {d }}{ }^{\text {min }}$
Minimum Power Gain in Typical In Typical IF Circuit	Ge	2.5	2.5	
Cutoff Characteristics				
Collector Cutoff Current ($\mathrm{Vcs}=5 \mathrm{v}$)	Ico	5	. 5	${ }_{\mu}^{\mu} \mathrm{a}_{\text {max }}$

${ }^{*}$ Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min. or max.

2N319, 2N32O, 2N321

Outline Drawing No. 2

The 2N319, 2N320, and 2N321 are miniaturized versions of the 2N186A series of G-E transistors. Like the prototype versions, the $2 \mathrm{~N} 319,2 \mathrm{~N} 320$, and 2N32l are medium power PNP transistors intended for use as audio output amplifiers in radio receivers and quality sound systems. By unique process controls the current gain is maintained at an essentially constant value for collector currents from 1 ma to 200 ma . This linearity of current gain provides low distortion in both Class A and Class B circuits, and permits the use of any two transistors from a particular type without matching in Class B Circuits.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage	Voer	-20	volts
Collector to Emitter ($\mathrm{RBE} \leqq 10 \mathrm{~K}$)	Vcero	-30	volts
Collector to Base Emitter to Base	Vebo	-3	volts
Current Collector	Ic	-200	ma

Power

Collector Dissipation*	Hecmen		225		mw			
Temperature ${ }_{\text {Operating }}$								
Storage	${ }_{\text {Tsta }}$		$\begin{aligned} & -65 \text { to } 85 \\ & -65 \text { to } 100 \end{aligned}$		${ }^{\circ} \mathrm{C}$			
TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ D.C. Characteristies								
Current Gain (IC $=-20 \mathrm{ma}$;		2N319	2N320	2N321				
$\begin{aligned} & \text { VCe } \\ & \text { Current Gain } \\ & \text { (} \\ & \text { Ic }\end{aligned}=-100 \mathrm{ma}$;	$h_{\text {fe }}$	25-42	34-65	53-121				
	hre	25-42	-34-65	53-121				
Collector to Emitter Voltage ($\mathrm{RbE}^{\text {Ic }}=10 \mathrm{~K}$; \%	$\mathrm{V}_{\text {CHR }}$	31 -20	45	70				
Collector Cutoff Cuxrent ($\mathrm{V}_{\mathrm{CB}}-25 \mathrm{v}$)	$\mathrm{V}_{\text {Cer }}^{\text {Ico }}$	-20	-20	-20	volts			
Maximum Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}_{\mathrm{B}}}=-25 \mathrm{~V}$)		-8	-8	-8	$\mu \mathrm{a}$			
Emitter Cutoff Current ($\mathrm{VEB}_{\text {er }}=-3 \mathrm{v}$)	Ieo	-16 -2	-16	-16	$\mu \mathrm{a}$			
$\mathrm{V}_{\text {cre }}=-\mathbf{5 v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{f}=\mathbf{2 7 0} \mathbf{c p s}$)								
Collector Capacity ($\mathrm{f}=1 \mathrm{mc}$) Noise Figure	Cob	25	25	25	mef			
Input Impedance	$\underset{\mathrm{hib}}{\mathrm{NF}}$	6 30	3^{6}	${ }^{6}$	db			
Thermal Chargeteristics 30 ohms								
Thermal Resistance								
Without Heat Sink (Junction to Air)		. 27						
Performance Data (Common Emitter)		. 2	.2	. 27	${ }^{\circ} \mathrm{C} \mathbf{C} / \mathrm{mw}$			
Class A Power Gain ($\mathrm{V}_{\mathrm{CC}}=-9 \mathrm{v}$)	G_{e}							
Power Output	$\mathrm{P}_{\text {o }}$	50	50	38 50	db			
Class B Power Gain ($\mathrm{Vcc}^{\text {c }}=-9 \mathrm{v}$)	Ge	26	28	30 31	mw			
Power Output	Po	100	100	100	mw			

The $2 \mathrm{~N} 322,2 \mathrm{~N} 323,2 \mathrm{~N} 324$ are alloy junction PNP transistors intended for service in audio amplifiers. They are miniaturized versions of the 2N190 series of G.E. transistors. By control of transistor characteristics during manufacture, a specific power gain is provided for each type.
Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ($25^{\circ} \mathrm{C}$)

Voltage

Collector to Emitter ($\mathrm{R}_{\mathrm{BE}} \leqq 10 \mathrm{~K}$) Collector to Base	Vcer	-16	volts
Current			volts
Collector	Ic	100	ma
Power Collector Dissipation		-100	ma
Collector Dissipation	Pc	140	mw
Temperature Operating		140	mw
Storage	$\stackrel{\text { TA }}{\text { TSTG }}$	-65 to 60 -65 to 85	${ }^{\circ}{ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D.C. Characteristics

	2N322	2N323	2N324	
$\mathrm{hfe}^{\text {fe }}$	34-65	53-121	72-198	
Vcer	--16	-16	-16	volts
Ico	-10	-10	-10	pa
Ico	-16	-16	-16	$\mu \mathrm{x}$
$\mathrm{fl}_{\text {fb }}$	2.0	2.5	3.0	me
Cob	25	25	25	$\mu \mu \mathbf{f}$
NF	6	6	6	
hie	2200	2600	3300	ohms
hife	45	68	85	
	4	4	4	$\mathrm{mw} /{ }^{\circ} \mathrm{C}$
P_{Ge}	42	43	44	db

2N332
Outline Drawing No. 4

The General Electric Type 2N332 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMÜM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltoge			
Collector to Base (Emitter Open)	Vcho	45	volts
Emitter to Base (Collector Open)	Vero	1	
Current			
Collector	10	25	ma
Power			
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pc	150	mw
Collector Dissipation ($100^{\circ} \mathrm{C}$)	${ }^{\mathrm{Pc}}$	100	mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)	Pc	50	mw
Temperature			
Storage	Tsta	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating	$\mathrm{T}_{\text {A }}$	-65 to 175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
(Unless otherwise specified $V_{\mathrm{CB}}=5 \mathrm{~V}$;
$\mathbf{I}_{\mathbf{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathbf{k c}$)
Small Signal Characteristics
Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
$\left(\mathrm{VCE}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; £=1 \mathrm{kc} ;\right.$
$\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms $; \bar{R}_{\mathrm{L}}=20 \mathrm{~K}$ ohms)
Noise Figure

High Frequency Characteristics

 ($\mathrm{V}_{\mathrm{CR}}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; f=1 \mathrm{mc}$)
Power Gain (Conmon Emitter) ($\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}$)
D.C Characteristics

Common Emitter Current Gain (Vce $=5 v ;$ Ic $=1 \mathrm{ma}$)
Collector Breakdown Voltage (Ісво $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Collector Cutoff Current
($\mathrm{VCr}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

VCBO	45			volts
ICBO		.002	$\boxed{2}$	$\mu \mathrm{a}$
ICbO			50	$\mu \mathrm{a}$
Rsc		90	200	ohms

Collector Saturation Resistance ($\mathrm{I}_{\mathrm{B}}=\mathrm{I} \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=\mathbf{5} \mathrm{ma}$)
flifb
Cobi

	Min.	Nom.	Max.	
he	9	15	22	
his	30	43	80	ohms
hrb	. 25	1.5	5.0	$\times 10^{-4}$
hob	0.0	. 25	1.2	. m mhos
G		35		db
NF		20		db

10
7
14

90

200
me
$\mu \mu \mathrm{f}$
db
db
ohms

Switching Characteristics.
($\mathrm{IB}_{\mathrm{L}}=0.5 \mathrm{ma}$; $\mathrm{I}_{\mathrm{B}_{2}}=-0.5 \mathrm{ma}$;
$\mathrm{Ic}=5.0 \mathrm{ma})$
Delay Time
Rise Time
Storage Time
Fall Time

The General Electric Type 2N333 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and

2N333

Outline Drawing No. 4 are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$					
Voltage					
Collector to Base (Emitter Open) Emitter to Base (Collector Open)	$\begin{aligned} & \text { Vcro } \\ & \text { Vebo } \end{aligned}$			45 1	volts volt
Current					
Collector	It			25	ma
Power					
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pc_{c}				
Collector Dissipation ($100^{\circ} \mathrm{C}$)	${ }_{\text {Pc }}$			100	mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)					now
Temperoture					
Storage Operating	$\underset{\text { Tiste }}{\text { Tile }}$			$\begin{aligned} & \text { to } 200 \\ & \text { to } 175 \end{aligned}$	${ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$) (Unless otherwise specified $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$; $\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathbf{k c}$)					
Small Signal Characteristics		Min.	Nom.	Max.	
Current Transfer Ratio	hie	18	30	44	
Input Impedance	hib	30	43	80	
Reverse Voltage Transfer Ratio	hrb	. 25	2.0	10.0	$\times 10^{-4}$
Output Admittance	hob	0.0	. 2	1.2	¢ mhos
($\mathrm{V}_{\mathrm{CE}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=\mathrm{I} \mathrm{kc} ;$ $\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K}$ ohms; $\mathrm{RL}_{\mathrm{L}}=20 \mathrm{~K}$ ohms $)$	Ge		39		
Noise Figure	NF		15		$\xrightarrow{\text { db }}$
High Frequency Characteristics					
Frequency Cutoff					
(Vcb $=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{e}}=-1 \mathrm{ma}$)	flif		12		mc
$\begin{aligned} & \text { Collector to Base Capacity } \\ & \text { (VcB }=5 \mathrm{v} ; \mathrm{IE}=-1 \mathrm{ma}, \mathrm{f}=1 \mathrm{mc} \text {) } \end{aligned}$	Cob		7		$\mu \mu f$
Power Gain (Common Emitter) $\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right)$	$\mathrm{G}_{\text {e }}$		14		${ }^{\mu} \mathrm{db}$
D-C Characteristics					
Common Emitter Current Gain					
Collector Breakdown Voltage hra 31					
	Vcro	45			volts
($\mathrm{V}_{\mathrm{CB}}=30 \mathrm{v} ; \mathrm{Im}=0 ; \mathrm{Ta}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Collector Cutoff Current				
	Icro			50	$\mu \mathrm{a}$
Collector Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=5 \mathrm{ma}\right)$	Rsc		80	200	ohms
Switching Characteristics					
$\begin{aligned} & \left(\mathrm{I}_{\mathrm{B}_{1}}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{R}_{2}}=-0.5 \mathrm{ma} ;\right. \\ & \left.\mathrm{Ic}_{\mathrm{c}}=5.0 \mathrm{ma}\right) \end{aligned}$					
Delay Time	${ }_{\text {td }}$. 65		$\mu \mathrm{sec}$
${ }_{\text {Rise Time }}$	$\mathrm{tr}_{\text {r }}$. 55		$\mu \mathrm{sec}$
Storage Time Fall Time	ts 4 4		. 75		$\mu \mathrm{sec}$ $\mu \mathrm{sec}$

Outline Drawing No. 4

Outline Drawing No. 4

The General Electric Type 2N334 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

Voltage			
Collector to Base (Emitter Open)	Vebo	45	volts
Emitter to Base (Collector Open)	Vebo	1	volt
Current			
Collector	Is	2.5	ma
Power			
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pc	150	mw
Collector Dissipation ($100^{\circ} \mathrm{C}$)	$\mathrm{Pc}_{\text {c }}$	100	mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)	Pc	50	mw
Temperature			
Storage	Tstg	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating	$\mathrm{T}_{\text {A }}$	-6.5 to 175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ($25^{\circ} \mathrm{C}$)
(Unless otherwise specified $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$;
$\mathbf{l e}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=1 \mathrm{kc}$)
Small Signal Characteristics

Noise Figure
High Frequency Characteristics.

Frequency Cutoff $\left(V_{C B}=5 v ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}\right)$	firla	8.0	13		me
Collector to Base Capacity (VCr $=5 \mathrm{y} . \mathrm{Ir}=-1 \mathrm{ma}, \mathrm{f}=1 \mathrm{mc}$)					
$(\mathrm{Vcr}=5 \mathrm{v} ; \mathrm{Ie}=-1 \mathrm{ma} ; \mathrm{f}=1 \mathrm{mc})$ Power Gain (Common Emitter)	Cob		7		$\mu \mu \mathrm{f}$
$\left(\mathrm{V}\right.$ CB $=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}$)	Ge		13		db
D-C Characteristics					
Common Emitter Current Gain $\left(V_{C E}=5 v ; I c=1 m a\right)$	hre		38		
Collector Breakdown Voltage	VCbo	45			volts.
	Cbo				volts
$\left(\mathrm{VCh}_{\text {ch }}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Ifbo		. 002	2	$\mu \mathrm{a}$
$\left(\mathrm{VCB}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right.$)	Ícoo			50	$\mu \mathrm{a}$
Collector Saturation Resistance ($\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=5 \mathrm{ma}$)	Rsco		75	200	ohms

Switching Characteristics

$$
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{B}_{1}}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.5 \mathrm{ma}_{2}\right. \\
& \mathrm{I} \mathrm{C}=5.0 \mathrm{ma})
\end{aligned}
$$

Delay Time
Rise Time
Storage Time
Fall Time

Min.	Nom.	Max.	
18	39	90	
30	43	80	ohms
.5	2.5	10.0	$\times 10-\mathbf{1}$
0.0	.18	1.2	μ mhos
	40		db
	4.5		db
8.0	13		me
	7		$\mu \mu \mathrm{f}$
	13		db

The General Electric Type 2N335 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits． They are grown junction devices with a diffused base and are manufactured in the Fixed－Bed Mounting design for extremely high mechanical reliability under severe conditions of shock，vibration， centrifugal force，and temperature．These transistors are hermetically sealed in welded cases．The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment．All tran－ sistors are cycle－aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability．

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS：（ $25^{\circ} \mathrm{C}$ ）

Voltage

Collector to Base（Emitter Open）	Vebo	45	volts
Emitter to Base（Collector Open）	Vero		volt
Current			
Collector	Ic	25	ma
Power			
Collector Dissipation（ $25^{\circ} \mathrm{C}$ ）	Pc	150	mw
Collector Dissipation（ $100^{\circ} \mathrm{C}$ ）	Pc_{c}	100	mw
Collector Dissipation（ $150{ }^{\circ} \mathrm{C}$ ）	Pe	50	mw
Temperature			
Storage Operating	$\mathrm{TSTG}_{\text {T }}^{\text {ata }}$	－65 to 200	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS：（ $25^{\circ} \mathrm{C}$ ）
（Unless otherwise specified $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$ ；
$\left.\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=\mathbf{1} \mathbf{k c}\right)$
Small Signal Characteristics
Current Transfer Ratio
Input Impedance
Reverse Voltage Transfer Ratio
Output Admittance
Power Gain
（ $\mathrm{VCe}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=-2 \mathrm{ma} ; \mathbf{f}=1 \mathrm{kc} ;$
$\mathrm{Rg}_{\mathrm{G}}=1 \mathrm{~K}$ ohms； $\mathrm{Rt}_{\mathrm{L}}=20 \mathrm{~K}$ ohms）
Noise Figure

	Min．	Nom．	Max．	
$\mathrm{hfe}^{\text {e }}$	37	60	90	
hib	30	43	80	ohms
$\mathrm{h}_{\text {rb }}$	． 5	3.0	10.0	$\times 10^{-4}$
hob	0.0	． 15	1.2	$\mu \mathrm{mhos}$
$\mathrm{G}_{\text {e }}$		42		db
NF		12		db

High Frequency Charactexisties

Frequency Cutoff $\left.V_{C B}=5 v ; I_{\mathrm{E}}=-1 \mathrm{ma}\right)$
Collector to Base Capacity
$(\mathrm{Vcb}=5 \mathrm{v} ; \mathrm{Im}=-1 \mathrm{ma} ; \mathbf{f}=1 \mathrm{mc})$
Power Gain（Common Erwitter） $\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right)$

D－C Characteristics
Common Emitter Current Gain （ $\mathrm{Vce}=5 \mathrm{v} ; \mathrm{Ic}_{\mathrm{c}}=1 \mathrm{ma}$ ）
$h_{\text {FE }}$
56
Collector Breakdown Voltage
（ Íro $=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{e}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）
Collector Cutoff Current
$\left(\begin{array}{l}\left.\mathrm{VCB} \equiv 30 \mathrm{v} ; \mathrm{Iv}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ \left(\mathrm{VCB}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}} \equiv 150^{\circ} \mathrm{C}\right)\end{array}\right.$
Collector Saturation Resistance
（ $\mathrm{I}_{\mathrm{b}}=1 \mathrm{ma}$ ； $\mathrm{Ic}=5 \mathrm{ma}$ ）
Vcro
Icbo
volts．
Icbo ． 002
${ }_{\mu \mathrm{a}}^{\mu \mathrm{a}}$
Rsc
70
200
ms
$\mu \mu \mathbf{f}$
db

Switching Characteristics

$$
\begin{aligned}
& \left(\mathrm{Is}_{1}=0.5 \mathrm{ma} ; \mathrm{IB}_{2}=-0.5 \mathrm{ma} ;\right. \\
& \mathrm{Ic}=5.0 \mathrm{ma})
\end{aligned}
$$

Delay Time
Rise Time
Storage Time
Fall Time

Outline Drawing No. 4

2N336

Outline Drawing No. 4

The General Electric Type 2N336 is a silicon NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base (Emitter Open)	Vcbo	45	volts
Emitter to Base (Collector Open)	Vebo		
Current			ma
Collector	It	2	ma
Power			
Collector Dissipation ($25^{\circ} \mathrm{C}$)	Pc_{P}	100	mw
Collector Dissipation ($100^{\circ} \mathrm{C}$)	Pc	100 50	mw
Collector Dissipation ($150^{\circ} \mathrm{C}$)	Pc		
Temperature			
Storage	Tstg	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating	TA	-65 to 175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
 (Unless otherwise specified $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$; $\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} \mathbf{f}=\mathbf{1} \mathbf{k c}$)

Small Signal Characteristics		Min.	Nom.	Max.	
Current Transfer Ratio	hre	76	120	333 80	
Input Impedance	hib	30	4.0	80 10.0	ohms $\times 10^{-4}$
Reverse Voltage Transfer Ratio	$\mathrm{hrbb}^{\text {b }}$	0.5	. 13	1.2	$\mu \mathrm{mhos}$
Output Admittance	hob		.13		
```Power Gain (Vce = 20v; IE =-2 ma; f=1 kc; RG}=1\textrm{K}\mathrm{ ohms; RL}=20\textrm{K}\mathrm{ ohms)```	$\mathrm{G}_{\text {e }}$		43		$\frac{\mathrm{db}}{\mathrm{db}}$
Noise Figure	NF				
High Frequency Characteristics					
Frequency Cutoff $\left(V C B=5 v ; I_{E}=-1 m a\right)$	flifb		15		me
$\begin{aligned} & \text { Collector to Base Capacity } \\ & \text { (VCR } \left.=5 \mathrm{v} ; \mathrm{IE}^{=}=-1 \mathrm{ma}, \mathrm{mc}\right) \end{aligned}$	Cob		7		$\mu \mu \mathrm{f}$
Power Gain (Common Emitter)   $\left(\mathrm{Vcb}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma} ; \mathrm{f}=5 \mathrm{mc}\right)$	Ge		12		db
D-C Characteristics					
Common Emitter Current Gain $\left(V_{C E}=5 \mathrm{v} ; \mathrm{Ic}_{\mathrm{c}}=1 \mathrm{ma}\right)$	hfe		100		
Collector Breakdown Voltage $\left(I_{\mathrm{CBO}}=50 \mu \mathrm{a} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Vcbo	45			volts
$\begin{aligned} & \text { Collector Cutof Current } \\ & \quad\left(V_{C B}=30 v ; \mathrm{I}_{E}=0 ; \mathrm{T}_{A}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{VCB}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {cbo }} \\ & \text { Ícbo }^{2} \end{aligned}$		. 002	2 50	$\mu \mathrm{a}$
Collector Saturation Resistance	Rsc		70	200	ohms:

Switching Characteristics

$$
\begin{aligned}
& \left(\mathrm{I}_{\mathrm{B}_{1}}=0.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{2}}=-0.5 \mathrm{ma}\right. \\
& \mathrm{Ic}=5.0 \mathrm{ma})
\end{aligned}
$$

Delay Time
Rise Time
Storage Time
Fall Time

.5	$\mu s e c$
.4	$\mu s e c$
1.4	$\mu s e c$
.2	$\mu s e c$

The General Electric Types 2N332A, 2N333A, 2N334A, 2N335A, 2N336A, are silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the FixedBed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	Vcbo	45	volts
Collector to Emitter	Vceo	45	volts
Emitter to Base	Vebo	4	volts
Current Collector	Ic	25	ma
Power   Collector Dissipation RMS	$\begin{aligned} & \mathrm{P}_{\mathrm{c}} @ \\ & \mathrm{P}_{\mathrm{C}} @ 155^{\circ} \mathrm{C}(\text { (Free Air }) \end{aligned}$	500 83	$\begin{aligned} & \text { mw } \\ & \mathrm{mw} \end{aligned}$
Temperature Storage Operating Junction	$\mathrm{Tstg}_{\text {Tju }}$	-65 to 200	${ }^{\circ}{ }^{\circ} \mathrm{C}$

## 2N332A. 2N333A

## ELECTRICAL CHARACTERISTICS: ( $\mathbf{2 5}^{\circ}$ C)



## Cutoff Characteristics

Collector Current

$$
\left(V C B=30 v ; I_{E}=0\right. \text {; }
$$

$$
\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad \text { ICBO }
$$

Íbo ' 500
$1500 \mathrm{~m} \mu \mathrm{a}$
Collector Current
(high temperature)
( $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0$;
$\mathrm{TA}=150^{\circ} \mathrm{C}$ )
Collector Emitter Current
$\left(V_{C E}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{B}}=0\right.$;
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ )
Iero

Iceo
60
60
$\mu a$
ow Frequency Characteristics
$\left(V_{C B}=5 v ; I_{\mathrm{E}}=-1 \mathrm{ma}\right.$;
$f=1000 \mathrm{cps}$ )
Forvard Current Transfer Ratio
Input Impedance
Output Admittance
Voltage Feedback Ratio
Input Impedance
Output Admittance
Reverse Voltage Transfer Ratio
Noise Figure ( $\mathrm{B}_{\mathrm{w}}=1$ cycle)

$h_{\text {fe }}$	9	16	22
$h_{\text {fe }}$	270	750	1760
$h_{\text {oe }}$	0.0	3.5	20
$h_{\text {re }}$	30	.7	
$h_{i b}$	40	80	
$h_{o b}$	0.0	.25	1.2
$h_{r b}$	.25	1.2	5
NF		16	30


18	30	44	
540	1300	3520	ohms
0.0	5.0	25	$\mu \mathrm{mhos}$
	1.0		$\times 10^{-4}$
30	40	80	ohms
0.0	. 2	1.2	$\mu \mathrm{mhos}$
. 25	1.2	10	$\times 10^{-4}$
	13	30	db
	1	15	$\mu \mu \mathrm{f}$
2.5	11		mc
11continuednext page			


$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CB}} \overline{=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}} \overline{\overline{\mathrm{C}}}=1 \mathrm{ma}\right) \\ & \text { Output Capacity }(\mathrm{f} \\ & =1 \mathrm{mc}) \end{aligned}$	Cob		7	15		7	15	$\mu \mu$
Cutoff Frequency	fhrb	2.5	, 10		2.5	11		mc
Power Gain (Common Emitter) $\left(V_{C E}=20 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}=-2 \mathrm{ma}\right.$								
$\mathrm{f}=5 \mathrm{mc}$ )	${ }_{6}$		11			11		db

2N334A, 2N335A

## ELĖCTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$

## D-C Characteristics

Collector to Base Voltage
Min.
2N335A
2N334A
Typ. Max.
(Ic $=50 \mu \mathrm{a}, \mathrm{IE}=0$ )
( $\mathrm{I}_{\mathrm{H}}=0, \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma}$ )
Emitter to Base Voltage
( $\mathrm{I}=100 \mu \mathrm{a}, \mathrm{I} \mathbf{C}=0$ )
Forward Current Transfer Ratio

$$
\begin{align*}
& \text { (low current) } \left.{ }^{(\text {Ic }=1} \mathrm{man}_{\mathrm{CE}}=5 \mathrm{v}\right) \tag{42}
\end{align*}
$$

Saturation Voltage
( $\mathrm{I}_{\mathrm{B}}=\mathrm{I} \mathrm{ma}, \mathrm{Ic}=5 \mathrm{ma}$ )
Vcbo 45

Veeo 45
Vebo 4
hFE 36
$\mathrm{V}_{\mathrm{CE}}{ }^{(S \Delta T)}$
1.0

45 45 4

45
4 1.0 volts
Cutoff Characteristics
Collector Current

$$
\begin{aligned}
& \left(V \mathrm{CB}=30 \mathrm{v} ; \mathrm{I}_{E}=0 ;\right. \\
& \left.\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Iсso
Cllector Current
(high temperature)
$\left(\mathrm{V}_{\mathbf{C B}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0\right.$; $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ )
Collector Emitter Current $\left(\mathrm{V} C e=30 \mathrm{v}_{\mathrm{j}} \mathrm{I}_{\mathrm{b}}=0\right.$; $\mathrm{T}_{\mathbf{A}}=150^{\circ} \mathrm{C}$ )

Icbo

Iceo 60
Low Frequency Characteristics
$\left(\dot{V}_{C B}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}\right.$;
$f=1000 \mathrm{cps})$
Forward Current Transfer Ratio
Input Impedance
Output Admittance
Voltage Feedback Ratio
Input Impedance
Output Admittance
Reverse Voltage Transfer Ratio
Noise Figure ( $\mathrm{B}_{\mathrm{w}}=1$ cycle)
$\mathrm{h}_{1 \mathrm{e}}$
$\mathrm{h}_{1 \mathrm{e}}$
$\mathrm{h}_{\text {oe }}$
$\mathrm{h}_{\text {re }}$
$\mathrm{h}_{1 b}$
$\mathrm{~h}_{\text {ob }}$
$\mathrm{h}_{\mathrm{rb}}$
NF

18	38	90
540	1700	7200
0.0	6.0	30
	1.3	
30	40	80
0.0	.18	1.2
.50	1.2	10
	12	30

volts volts
volts

37	52	90	
1110	2000	7200	ohms
0.0	7.0	30	$\mu \mathrm{mhos}$
30	1.5	80	$\times 10^{-\star}$
0.0	40	80	ohms
.50	1.2	1.2	$\mu \mathrm{mhos}$
	10	$\times 10^{-4}$	
	11	30	db

Low Frequency Characteristics (Common Base)
$\left(V_{c B}=5 v ; I_{E}=-1 \mathbf{m a}\right)$
Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )
Cutoff Frequency
Cob $\quad 7 \quad 15$
Power Gain (Common Emitter)
$\left(\mathrm{VCe}=20 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=-2 \mathrm{ma}\right.$;
$\mathrm{f}=5 \mathrm{mc}$ )
$G_{e}$
12

## 2N336A

## ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ )

## D-C Characteristics

Collector to Base Voltage
(Ic $=50 \mu \mathrm{a}, \mathrm{Iz}=0$ )
Collector to Emitter Voltage
( $\mathrm{Ib}=0, \mathrm{Ic}=1 \mathrm{ma}$ )
Emitter to Base Voltage
( $\mathrm{It}=100 \mu \mathrm{a}, \mathrm{IC}=0$ )
$V_{\text {cbo }}$

Forward Current Transfer Ratio
(low current)
( $\mathrm{Ic}=\mathrm{I}$ ma, $\mathrm{Vce}=5 \mathrm{v}$ )
Saturation Voltage
$\left(\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{ma}\right.$ )
hre
$\mathrm{VCE}^{(\mathrm{Sat})}$

## Cutoff Characteristics

Collector Current
$\left(\mathrm{VCB}=30 \mathrm{v} ; \mathrm{IE}_{\mathrm{C}}=\mathrm{O}_{\mathrm{i}}\right.$,
$\left.\mathrm{T}=25^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )
Collector Current
(high temperature)
$\left(\mathrm{VCB}_{\mathrm{T}}=30 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=0\right.$;
$\mathrm{T}_{\mathbf{A}}=150^{\circ} \mathrm{C}$ )
$\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{v} ; \mathrm{I}_{\mathrm{B}}=0\right.$;
$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ )

Іево

Iсво
$I_{\text {CEO }}$

2N336A
Min. Typ. Max.
volts
volts
volts

75
.41 .0 volts
' $500 \mathrm{~m} \mu \mathrm{a}$

Low Frequency Characteristics

$$
\left(\mathbf{V}_{c s}=5 v ; \mathbf{I}_{\mathrm{E}}=-1 \mathrm{ma} ;\right.
$$

Forward Current Transfer Ratio Input Impedance
Output Admittance
Voltage Feedback Ratio
Input Impedance
Output Admittance
Reverse Voltage Transfer Ratio
Noise Figure ( $\mathrm{B}_{\mathbf{w}}=1$ cycle)

$h_{\text {fe }}$	76	95	333	
$h_{\text {fe }}$	2280	3700	15,000	ohms
$h_{\text {og }}$	0.0	8.0	35	$\mu$ mhos
$h_{\text {hre }}$		2.3		$\times 10^{-4}$
$h_{\text {ib }}$	00	40	80	ohms
$h_{\text {ob }}$	0.0	13	1.2	$\mu$ mhos
$h_{\text {Hb }}$	.50	1.2	10	$\times 10^{-4}$
NF		11	30	db



The General Electric Type 2N335B is a silicon high voltage NPN transistor intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junc-

## 2N335B

Outline Drawing No. 4 tion devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment. All transistors are cycle-aged at a temperature of $200^{\circ} \mathrm{C}$ for a minimum of 160 hours to enhance their electrical stability.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Collector to Base	$V_{\text {cbo }}$	60	volts
Collector to Emitter	Vceo	60	volts
Emitter to Base	Vebo	4	volts
Current			
Collector	IG	25	ma
Power			
Collector Dissipation RMS	$\begin{aligned} & \mathrm{Pc} @ \\ & \text { Pc } @ 155^{\circ} \mathrm{C} \text { ( Free Air) } \\ & \text { (Free Air }) \end{aligned}$	500 83	$\mathrm{mw}_{\mathrm{mw}}$
Temperature			
Storage ${ }^{\text {Operating Junction }}$	$\mathbf{T}_{\mathrm{TSTG}}$	-65 to 200 -65 to 175	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min.	Typ.	Max.	
Collector to Base Voltage					
$(\mathrm{Ic}=50 \mu \mathrm{a}, \mathrm{IE}=0)$	Vcbo	60			volts
Collector to Emitter Voltage					
Emitter to Base Voltage   ( $\mathrm{I}_{\mathbf{E}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0$ )	Vgeo	60			volts
	Vebo	4			volts
Forward Current Transfer Ratio 4 volts					
(low current) ( $\mathrm{Ic}=5 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{v}$ )	$\mathrm{hre}^{\text {Fem }}$	28	45	90	
Saturation Voltage ( $\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \mathrm{Ic}^{\text {c }}=5 \mathrm{ma}$ )	$\mathrm{V}_{\text {Ce }}{ }^{(\mathrm{SAT}}$ )		. 4	1.0	volts
Input Impedance ( $\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=0$ )	Vbe			1.0	volts

## Cutoff Characteristics

Collector Current
$\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
Collector Current (high temperature)

Ifro	1	500	$\mathrm{m} \mu \mathrm{a}$
Itroó	1	20	$\mu \mathrm{a}$
Icea	60		

Low Frequency Characteristics

Forward Current Transfer Ratio	$\mathrm{hfo}^{\text {e }}$	37	52	90	
Input Impedance	hie	1110	2000	7200	ohms
Output Admittance	$\mathrm{h}_{0} \mathrm{e}$	0.0	7.0	30	amhos
Voltage Feedback Ratio	hre		1.5		$\times 10^{-4}$
Input Impedance	hib	30	40	80	ohms
Output Admittance	hob	0.0	. 15	1.2	umhos
Reverse Voltage Transfer Ratio	hrb	. 50	1.2	10	$\times 10^{-4}$
Noise Figure ( $\mathrm{B}_{w}=1$ cycle)	NF		11	30	db

High Frequency Characteristics (Common Bose)

$\left(V_{\text {cn }}=5 \mathrm{v} ; \mathrm{If}_{\mathrm{e}}=-1 \mathrm{ma}\right)$					
Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )	Cob		7	15	$\mu \mu \mathrm{f}$
Cutoff Frequency	furb	2.5	13		me
Power Gain (Common Emitter) $\left(\mathrm{VCE}_{\mathrm{E}}=20 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=-2 \mathrm{ma}, \mathrm{f}=5 \mathrm{mc}\right)$	$\mathrm{G}_{\text {ө }}$		12		db

## 2N337, 2N338

Outline Drawing No. 4

The General Electric Types 2N337 and 2N338 are high-frequency silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for high-speed switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. For electrical reliability and parameter stability, all transistors are subjected to a minimum 160 hour $200^{\circ} \mathrm{C}$ cycled aging operation included in the manufacturing process. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base Emitter to Base	$\begin{aligned} & \mathrm{V}_{\text {cbo }} \\ & \mathrm{V}_{\mathrm{eb}} \end{aligned}$						45 1	volts   volt
Current								
Collector	If						20	ma
Power								
Collector Dissipation*	Pc						125	mw
Temperature								
Storage   Operating	$\mathrm{T}_{\mathrm{St}}^{\mathrm{A}}$					$-65$	to 200	${ }^{\circ}{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS: $125^{\circ} \mathrm{C}$   (Unless otherwise specified; $\mathrm{V}_{\mathrm{Cb}}=20 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$; $f=1 \mathrm{kc}$ )		2N337		2N338				
Small-Signal Characteristics		Min.	Typ.	Max.	Min.	Typ.	Max.	
Current Transfer Ratio	$\mathrm{h}_{\text {fib }}$	19	55		39	99		
Input Impedance	hib	30	47	80	30	47	80	ohms
Reverse Voltage Transfer Ratio	hrb		180	2000		200	2000	$\times 10^{-6}$
Output Admittance	hob		. 1	1		. I	1	$\mu \mathrm{mho}$
High-Frequency Characteristics								
Alpha Cutoff Frequency	flifle	10.	30		20	45		me
Collector Capacitance ( $f=1 \mathrm{mc}$ )	Cob		1.4	3		1.4	3	$\mu \mu \mathrm{f}$
$(\mathrm{f}=2.5 \mathrm{mc})$	hie	14	24		20	26		

## D-C Characteristics

Common Emitter Current Gain (Vce $=5 \mathrm{v} ; \mathrm{Ic}=10 \mathrm{ma}$ )	$\mathrm{hfe}^{\text {er }}$	20	35	55	45	75	150	
Collector Breakdown Voltage					4	75	150	
Emitter Breakdown Voltage	Vebo	45			45			volls
( Iebo $=-50 \mu \mathrm{a}$; Ic $=0$ )	Vebo	1			I			volt
Collector Saturation Resistance   ( $\mathrm{I} \boldsymbol{r}=\frac{1}{\mathrm{ma}}$; $\mathrm{Ic}=10 \mathrm{ma}$ )   ( $\mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$ )	Rsc Rso		75	150		75	150	ohms
Cutoff Characteristics								
Collector Current $\left(V_{C B}=20 \mathrm{v} ; \mathrm{IE}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	Íbo		. 002	1		. 002	1	$\mu \mathrm{a}$
$\begin{aligned} & \text { Collector Current } \\ & \left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{I}_{\mathbf{E}}=0 ; \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	Íbo			100			100	$\mu \mathrm{a}$
Switching Characteristics								
Rise Time	$\mathrm{tr}_{\mathrm{r}}$		. 02			. 06		$\mu \mathrm{secs}$
Storage Time	$t_{s}$		. 02			. 02		${ }_{\mu \text { secs }}$
Fall Time	$\mathrm{tr}_{5}$		. 04			. 14		$\mu \mathrm{secs}$

*Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$

Per MIL-S-19500/69B

The General Electric 2N377 is a germanium NPN alloy transistor. It is designed for computer switching and general purpose usages where tight control of current gain is important.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

Voltage

Voltage			
Collector to Base	Vcbo	25	volts
Collector to Emitter	Vcer ( $\mathrm{R}=5 \mathrm{~K}$ )	20	volts
Emitter to Base	Vebo	15	volts
Power			
Dissipation*	$\mathrm{P}_{\mathrm{T}}$	150	mw
Temperature			
Storage	Tste	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise above $25^{\circ} \mathrm{C}$ ambient temperature.

2N388
Outline Drawing No. 2

The General Electric 2N388 is a germanium NPN alloy transistor designed for low power, medium speed switching service where high gain and control of switching parameters is important.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right.$ :

## Voltage

Collector to Base	VCbo	25	volts
Collector to Emitter	VCer $_{\text {Ce }}(\mathrm{R},=10 \mathrm{~K})$	20	volts
Emitter to Base	Vebo	15	volts

## Current

Collector Ic $200 \quad \mathrm{ma}$

Power

| Total Transistor Dissipation* | $\mathrm{P}_{T}$ | 150 | mw |
| :--- | :--- | :--- | :--- | :--- | :--- |

Temperature

Storage	TsTG	-65 to $+\mathbf{1 0 0}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating Junction	TJ	+100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

D-C Characteristics		Min:	Typ.	Max.	
Forward Current Transfer Ratio $\left(\mathrm{Ic}_{\mathrm{c}}=30 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=0.5 \mathrm{v}\right)$	hew	60		180	
Forward Current Transfer Ratio $\left(\mathrm{I}_{\mathrm{C}}=200 \mathrm{ma}, \mathrm{~V}_{\mathrm{CD}}=0.75 \mathrm{v}\right)$	hre	30.			
Base Input Voltage $\left(\mathrm{T}_{\mathrm{B}}=4 \mathrm{ma}, \mathrm{Ic}_{\mathrm{c}}=100 \mathrm{ma}\right)$	Vbe			0,8	volts
Base Input Voltage $\left(\mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}, \mathrm{Ic}=200 \mathrm{ma}\right)$	Vbe		0.8	1.5	volts

## Cutoff Characteristics

Collector Current ( $\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=25 \mathrm{v}$ )	Iog	10	$\mu \mathrm{a}$
Collector Current ( $\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{cb}}=1 \mathrm{~V}$ )	Ico	5	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{I}_{\mathrm{c}}=0, \mathrm{~V}_{\mathrm{Eb}}=15 \mathrm{v}$ )	IEO	10	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{eb}}=1 \mathrm{v}$ )	IEo	5	$\mu \mathrm{a}$
Collector to Emitter Current $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{v}, \mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}\right)$	Icer	50	$\mu \mathrm{a}$


$\left(\mathrm{V}_{\mathrm{CB}}=\mathbf{6 v}, \mathrm{IE}=1 \mathrm{ma}\right)$		5		
Alpha Cutoff, Frequency	frib			
Collector Capacity ( $\mathrm{f}=2 \mathrm{mc}$ )	Cob		12.0	20

Switching Characteristies

$\quad\left(I_{C}=200 \mathrm{ma}, I_{\mathrm{B} 1}=10 \mathrm{ma}, \mathrm{in}_{\mathrm{B} 2}=10 \mathrm{ma}\right)$				
Rise Time	$\mathrm{t}_{\mathrm{r}}$	.50	1.0	$\mu \mathrm{sec}$
Storage Time	$\mathrm{t}_{\mathrm{s}}$	.40	.70	$\mu \mathrm{sec}$
Fall Time	$\mathrm{t}_{\mathrm{f}}$	.20	.70	$\mu \mathrm{sec}$

*Derate $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise above $25^{\circ} \mathrm{C}$ ambient temperature.

The General Electric Type 2N394 is a germanium PNP alloy junction high frequency switching transistor intended for general purpose applications where economy is of prime importance. As a special control in manufacture, all 2N394

Outline Drawing No. 2 transistors are subjected to a high pressure detergent test to enhance reliable hermetic seals and are also aged at a temperature of $100^{\circ} \mathrm{C}$ for 96 hours minimum.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base	$V_{\text {cbo }}$	-30	volts
Collector to Emitter	Vceo	$-10$	volts
Emitter to Base	Vebo	-20	volts
Current			
Collector	Ic $/$	-200	ma
Power			
Power Dissipation*	$\mathrm{P}_{\text {t }}$	150	now
Peak Power Dissipation** ( $50 \mu \mathrm{sec}$. Max $20 \%$ duty cycle)	pe	500	mw
Temperature			
Storage Operating Junction	Tstg TJ	-65 to 100	${ }^{\circ}{ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

## D-C Characteristics

D-C Base Current Gain

$\left(\mathrm{VCE}=-\mathrm{l}_{\mathrm{v}} ; \mathrm{Ic}=-10 \mathrm{ma}\right)$	hre	20	70		
$(\mathrm{Vce}=-\mathrm{lv}$; $\mathrm{Ic}=-100 \mathrm{ma}$ )	hrem	10	40		
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=-1.0 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=-10 \mathrm{ma}\right)$	Vee ${ }^{(S A T)}$		-. 04	$-.15$	volts
Base Input Voltage $\left(\mathrm{I}_{\mathrm{B}}=-1.0 \mathrm{ma} ; \mathrm{Ic}=-10 \mathrm{ma}\right)$	Vbe		-. 27	-. 35	volts
Collector to Base Voltage $(\mathrm{Ic}=-100 \mu \mathrm{a})$	V ${ }_{\text {cbo }}$	$-30$			volts
Emitter to Base Voltage $(\mathrm{Ic}=-100 \mu \mathrm{a})$	Vero	$-20$			volts
Collector to Emitter Voltage   ( $\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$ ohms; $\mathrm{I} \mathrm{C}=-600 \mu \mathrm{a}$ )   Collector to Emitter Voltage	Veer	-15	-26		golts
( $\mathrm{I} \mathbf{c}=-600 \mu \mathrm{a}$ )	Vobo	$-10$			
Cutoff Characteristics					
Collector Current ( $\mathrm{VCB}_{\mathrm{CB}}=-10 \mathrm{v}$ )	$\mathrm{I}_{\text {cro }}$		--2.5	$-6$	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{VEB}^{\text {e }}=-5 \mathrm{v}$ )	Iebo		-2.0	-6	$\mu \mathrm{a}$
Reach-through Voltage	VRT	$-10$	-25		volts


gh Frequency Charocteristics	(Common Base)				
$\left(\mathrm{V}_{\mathrm{CB}}=-5 \mathbf{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right)$					
Alpha-Cutoff Frequency	$f_{\text {fit }}$	4	9		me
Collector Capacitance ( $\mathbf{f}=1 \mathrm{mc}$ )	Cob		12	20	/f
Base Spreading Resistance	$\mathbf{r}^{\prime}{ }^{\text {b }}$		150		ohms

[^7]
## 2N395

Outline Drawing No. 2

The General Electric type 2 N 395 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Voltage

Collector to Emitter $(\mathrm{R} \leqq 10 \mathrm{~K})$	VCer	-15	volts
Collector to Base	VCbo	-30	volts
Emitter to Base	VEBO	-20	volts

## Current

| Collector | Ic | -200 | ma |
| :--- | :---: | :---: | :---: | :---: |
| Power <br> Dissipation <br> Peak Power Dissipation* <br> $(50 \mu$ sec. max. $20 \%$ duty cycle $)$ | Pr | 200 | mw |
|  | po | 500 | $m$ |

## Temperatures

Storage	Tssa	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating Junction	$\mathrm{T} \boldsymbol{y}$	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

D-C Characteristics		Min.	Typ.	Max.	
D-C Base Current Gain					
( $\mathrm{V}_{\text {ce }}=-1 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}$ )	hre	20		150	
( $\mathrm{V}_{\mathrm{CE}}=-0.35 \mathrm{v} ; \mathrm{Ic}=-200 \mathrm{ma}$ )	hFe	10			
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=-5 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=-50 \mathrm{ma}\right)$			-0.1	$-0.2$	volts
Cutoff Characteristics					
Collector Cutoff Current					
$\mathrm{V}_{\mathrm{CB}}=-15 \mathrm{v}$ )	Íbo		-2.5	-6	$\mu \mathrm{mmps}$
Emitter Cutoff Current ( $\mathrm{Veb}_{\text {e }}=-10 \mathrm{v}$ )	Iebo		-2.0	-6	$\mu \mathrm{maps}$
Reach-through Voltage	Vrt	-15	-30		volts

High Frequency Characteristics (Common hase)
$\left(\mathbf{V}_{\mathrm{CB}}=-5 \mathrm{y} ; \mathbf{I}_{\mathrm{E}}=1 \mathrm{ma}\right)$

Alpha Cutoff Frequency	$\mathrm{ffib}^{\text {f }}$	3	4.5		me
Collector Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )	Cob		12	20	$\mu \mu \mathbf{f}$
Voltage Feedback Ratio ( $f=1 \mathrm{mc}$ )	hrb		9		$\times 10^{-3}$
Base Spreading Resistance	$r^{\prime}{ }_{b}$		130	200	ohms

Switching Characteristics
$\left(I_{C}=-10 \mathrm{ma} ; I_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1 \mathbf{0} \mathbf{m a}\right)$
Delay Time

$\mathrm{ta}_{\mathrm{ta}}$	.21	$\mu \mathrm{sec}$
$\mathrm{t}_{\mathrm{t}}$	.55	$\mu \mathrm{sec}$
$\mathrm{t}_{\mathrm{t}}$	.50	$\mu \mathrm{sec}$
$\mathrm{t}_{\mathrm{f}}$	.40	$\mu \mathrm{sec}$

$\mathrm{t}_{\mathrm{f}}$
$\mu \mathrm{sec}$
*Derate $8.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

The General Electric type 2N396 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reliability and extreme stability of characteristics are of prime

## 2N396

Outline Drawing No. 2

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )
Voltage

Collector to Emitter ( $\mathrm{R} \leqq 10 \mathrm{~K}$ )	V $_{\text {Cer }}$	-20	volts
Collector to Base	Vero	-30	volts
Emitter to Base	Vero	-20	volts

## Current

Collector

## Power

Dissipation	$\mathrm{P}_{\mathrm{T}}$	200	mw
Peak Power Dissipation*	$\mathrm{pc}_{\mathrm{c}}$	500 mw	
$(50 \mu \mathrm{sec}$. max. $20 \%$ duty cycle $)$			

## Temperatures

Storage	TsTG	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	+85	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

D-C Characteristics
D-C Base Current Gain


Cutoff Characteristics

Collector Cutoff Current $(\mathrm{VCb}=-20 \mathrm{v})$	$\mathrm{I}_{\text {cro }}$		-2.5	-6	mamps
Emitter Cutoff Current ( $\mathrm{Vex}^{\text {e }}=-10 \mathrm{v}$ )	Ifebo		$-2.0$	-6	$\mu \mathrm{amps}$
Reach-through Voltage	$\mathrm{V}_{\mathrm{RT}}$	-20	-35		volts


$\left(V_{c b}=-5 \mathrm{v} \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right.$ )					
Alpha Cutoff Frequency	fuit	5	8		mc
Collector Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )	Cob		12	20	$\mu \mu \mathrm{f}$
Voltage Feedback Ratio ( $f=1 \mathrm{mc}$ )	$\mathrm{hr}_{\mathrm{rb}}$		10		$\times 10^{-3}$
Base Spreading Resistance	r'b		140	200	ohms

Switching Characteristics

$$
\left(1 \mathrm{c}=-10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{ma}\right)
$$

Delay Time

$\mathrm{ta}_{\mathrm{d}}$	.19	$\mu \mathrm{sec}$
$\mathrm{tr}_{\mathrm{r}}$	.40	$\mu \mathrm{sec}$
$\mathrm{t}_{\mathrm{s}}$	.60	$\mu \mathrm{sec}$
$\mathrm{tr}_{\mathrm{r}}$	.31	$\mu \mathrm{Sec}$

*Derate $8.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

2N396A
Outline Drawing No. 2

The General Electric Type 2N396A transistor is a PNP alloy medium frequency germanium triode intended primarily for industrial switching applications,

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Emitter	Vceo	-20	volts
Collector to Base	Vcbo	-30	volts
Emitter to Base	$V_{\text {ebo }}$	-20	volts
Current			
Collector	lc	$-200$	ma
Power			
Dissipation*	Pr	200	mw
Peak Dissipation**	pe	500	mw
Temperature			

## ELECTRICAL CHARACTERISTICS: (25 ${ }^{\circ}$ C)

## D-C Characteristics <br> D-C Forward Current Transfer Ratio

Min. Mox.

$$
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{CE}}=-\mathrm{lv} ; \mathrm{Ic}_{\mathrm{c}}=-10 \mathrm{ma}\right) \\
& \left(\mathrm{V}_{\mathrm{CE}}=-.35 \mathrm{v} ; \mathrm{I}_{\mathrm{c}}=-200 \mathrm{ma}\right)
\end{aligned}
$$

$$
\text { hev } \quad 30
$$150

$$
\text { hFe } \quad 15
$$

Low Temperature D-C Forward Current
Transfer Ratio

$$
\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v} ; \mathrm{Ic}=-10 \mathrm{ma}\right) \quad \mathrm{hFD}_{\mathrm{Fi}} \quad 20
$$

Saturation Voltage Collector-Emitter
( $\mathrm{I}_{\mathrm{C}}=-50 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}}=3.3 \mathrm{ma}$ )


Emitter to Base ( $\mathrm{Iz}=-100 \mu \mathrm{a}$ )
Collector to Emitter ( $\mathrm{I}_{\mathrm{c}}=-600 \mu \mathrm{a}$ )
Cutoff Characteristics
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=-20 \mathrm{v}$ )
High Temperature Collector Cutoff Current
$\left(\mathrm{T}_{\mathrm{A}}=+71^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CB}}=-20 \mathrm{v}\right)$
Collector Cutoff Current
$\left(\mathrm{V}_{\mathrm{BE}}=+2.0 \mathrm{v} ; \mathrm{V}_{\mathrm{CE}}=-20 \mathrm{v} ; \mathrm{R}=10 \mathrm{~K}\right)$
Emitter Cutoff Current (Veb $=-10 \mathrm{v}$ )
Reach-through Voltage

## High Frequency Characteristics Common Base)


$\begin{array}{lllll}\text { Alpha Cutoff Frequency } & \mathrm{f}_{\mathrm{fb}} & 5 & \mathrm{mcs} \\ \text { Open Circuit Output, Capacitance }(\mathrm{f}=1 \mathrm{mc}) & \mathrm{Cob}^{2} & & 20 & \text { pf }\end{array}$
Switching Characteristics

$\left(\mathrm{Ic}=-10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{ma}\right)$				
Delay Time	${ }^{\text {ta }}$	0.10	0.20	$\mu \mathrm{sec}$
Rise Time	$t \mathrm{r}$	0.20	0.65	$\mu \mathrm{sec}$
Storage Time	$t$ s.	0.25	0.80	$\mu \mathrm{sec}$
Fall Time	ti	0.20	0.40	$\mu \mathrm{sec}$

[^8]The General Electric type 2N397 is a PNP alloy junction high frequency switching transistor intended for military, industrial, and data processing applications where high reli-

2N397
Outline Drawing No. 2 ability and extreme stability of characteristics are of prime importance,

## SPECIFICATIONS

Voltage			
Collector to Emitter ( $\mathrm{K} \leqq 10 \mathrm{~K}$ )	Vcer	-15	volts
Collector to Base	Vcro	-30	volts
Emitter to Base	Vebo	-20	volts
Current			
Collector	Ie	-200	ma
Power			
Dissipation	Pr	200	mw
Peak Power Dissipation*   ( $50 \mu \mathrm{sec}$. max. $20 \%$ duty cycle)	pe	500	mw
Temperatures			
Storage	Tstg	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating Junction	Ts	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(\mathbf{2 5} 5^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min.	Typ.	Max.	
D-C Base Current Gain					
( $\mathrm{Vce}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$ )	hew	40		150	
$(\mathrm{V} \mathrm{Ce}=-0.35 \mathrm{v} ; \mathrm{Ic}=-200 \mathrm{ma})$	$\mathrm{hre}^{\text {e }}$	20			
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=-50 \mathrm{ma}\right)$	$\left.\mathrm{VCE}^{(S A T}\right)$		-0.07	$-0.2$	volts
Cutoff Characteristics					
Collector Cutoff Current $(\mathrm{Vcs}=-15 \mathrm{v})$	Icro		-2.5	-6	$\mu \mathrm{amps}$
Emitter Cutoff ( $\mathrm{VEB}_{\text {er }}=-10 \mathrm{v}$ )	Iebo		-2.0	-6	$\mu \mathrm{amps}$
Reach-through Voltage	Vrt	-15	-20		volts


$\left(V_{C B}=-5 \mathrm{v} \mathrm{l}_{\mathrm{If}}=1 \mathrm{ma}\right)$					
Alpha Cutoff Frequency	fhib	10	12		mc
Collector Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )	Cob		12	20	$\mu \mu \mathrm{f}$
Voltage Feedback Ratio ( $\mathrm{f}=1 \mathrm{mc}$ )	$\mathrm{h}_{\mathrm{rb}}$		11		$\times 10^{-8}$
Base Spreading Resistance	$r^{\prime} \mathbf{b}$		160		ohms

## Switching Characteristics

$\left(I_{C}=-10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{ma}\right)$			
Delay Time	ta	. 17	$\mu \mathrm{sec}$
Rise Time	tr	. 3	$\mu \mathrm{sec}$
Storage Time	$t$ s	. 7	$\mu \mathrm{sec}$
Fall Time	$t{ }_{\text {t }}$	28	$\mu \mathrm{sec}$

2N4O4
Outlinne Drawing No. 2

The General Electric Type 2 N 404 is a germanium PNP alloy junction high frequency switching transistor, intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

Voltage			
Collector to Emitter	Vceo	-24	volts
Collector to Base	Vcbe	-25	volts
Emitter to Base	Vero	-12	volts
Current Collector	Io	-100	ma
Power			
Dissipation*	$\mathrm{P}_{\text {t }}$	120	mw
Temperature Storage	Tstg	-65 to 85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min	Typ.	Max.	
Collector to Base Voltage ( $\mathrm{Ic}=-20 \mu \mathrm{a}$ )	Vebo	-25	-45		volt's
Emitter to Base Voltage ( $\mathrm{IE}_{\mathrm{E}}=-20 \mu \mathrm{a}$ )	Vebo	-12	-40		volts
Saturation Voltage					
( $\mathrm{Ib}=-4 \mathrm{ma} ; \mathrm{Ic}=-12 \mathrm{ma}$ )	Vce ${ }^{\text {(Sat) }}$		-. 1	-. 15	volts
$\left(\mathrm{Ib}_{\mathrm{B}}=-1 \mathrm{ma} ; \mathrm{Ic}_{\mathrm{c}}=-24 \mathrm{ma}\right)$	VGE ${ }^{\text {(Sat) }}$		$-.14$	$-.20$	volts
Base Input Voltage					
	$\underset{\text { Vbe }}{\text { Vbe }}$		-. 24	-.35 -.40	volts
$\left(\mathrm{I}_{\mathrm{B}}=-1 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=-24 \mathrm{ma}\right)$	Vbe		-. 32	-. 40	volts

## Cutoff Characteristics

Collector Current
(Vcb $\mathrm{V}=-12$ volts; $\mathrm{I}_{\mathrm{E}}=0$ ) $\quad \mathrm{I}_{\mathrm{cbo}}$
( $\mathrm{V}_{\mathrm{CB}}=-12$ volts; $\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$ )
Emitter Current
( $\mathrm{V} \mathrm{EB}=-2.5$ volts; $\mathrm{I}_{\mathrm{C}}=0$ )
Reach-through Voltage
$\begin{array}{lll}\mathrm{I}_{\mathrm{Ebo}} & -24 & -40\end{array}$

## High-Frequency Characteristics

Alpha-Cutoff Frequency
Collector Capacitance

$$
\left(V_{G B}=-6 \text { volts; } I_{E}=1 \mathrm{ma}\right)
$$

$f_{h f b}$
Cob
Qsb

	-2	-5	$\mu \mathrm{a}$
	-90	$\mu \mathrm{a}$	
-24	-40	-2.5	$\mu \mathrm{a}$
$-401 t s$			

Veeo
-24 volts
-25 volts
-100 ma

120 mw
-65 to $85{ }^{\circ} \mathrm{C}$

Icbo
IーBo
Iebo
Tstg

Current   Collector   Peak Collector	$\mathrm{Ic}_{\text {ic }}$	$\begin{array}{r} -200 \\ -400 \end{array}$	ma
Power			
Total Transistor Dissipation*	Pr	150	mw
Temperature			
Storage	Tstg	-65 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS: ( $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

## D-C Characteristics

Collector to Base Voltage ( $\mathrm{Ic}_{\mathrm{c}}=-100 \mu \mathrm{a}$ )
Emitter to Base Voltage ( $\mathrm{IE}=-100 \mu \mathrm{a}$ )
Collector to Emitter Voltage
(Ic $=-600 \mu \mathrm{a})$
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=-12 \mathrm{v}$ )

	Min.	Typ.	Max.	
$\mathrm{V}_{\text {cbo }}$	$-30$			volts
Vebo	$-20$			volts
Vceo	-18			volts
Icbo			-5	$\mu \mathrm{a}$
Iero			-5	$\mu \mathrm{a}$

A-C Characteristics

$$
V_{\mathrm{CB}}=-6 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}, f=1 \mathrm{kc}
$$ unless otherwise noted)

Common Emitter Current Gain

$\mathrm{hfe}^{\text {Cob }}$

Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )
Voltage Feedback Ratio ( $\mathrm{f}=1$ mic) ,
Cob
30
Base Spreading Resistance
$h_{\mathrm{r}} \mathrm{b}$
.6
Input Resistance
Alpha Cutoff Frequency
$\mathrm{r}^{\prime} \mathrm{b}$
$\stackrel{p f}{\times 10^{-3}}$
$\times 10^{-1}$
ohms
mes
*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for increase in ambient temperature above $25^{\circ} \mathrm{C}$.

This is a PNP Germanium Alloy Triode transistor intended for general use as a medium speed switch or amplifier.

Outline Drawing No. 2

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Collector to Base
Emitter to Base
Collector to Emitter
Collector to Emitter ( $\mathrm{VBe}_{\mathrm{Be}}=+0.1 \mathrm{v}$ )
Current
Collector IC
Peak Collector ic

$\mathrm{V}_{\text {cbo }}$	-30	volts
Vebo	--20	volts
Vceo	--15	volts
Veex	-20	
Ic	$-200$	ma
ic	-400	ma
PT	150	now
Tsxg	-65 to 85	${ }^{9} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\mathbf{1 2 5}^{\circ} \mathrm{C}$ )
D-C Characteristics

D-C Characteristics		Min.	Typ.	Max.	
Collector to Base Voltage ( $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{a}$ )	Vero	-30			volts
Emitter to Base Voltage ( $\mathrm{IE}_{\mathrm{E}}=-100 \mu \mathrm{a}$ )	Vebo	-20			volts
Collector to Emitter Voltage $(\mathrm{Ic}=-600 \mu \mathrm{a})$	Vcro	-15			volts
Collector Cutoff Current ( $\mathrm{VCB}_{\text {ce }}=-12 \mathrm{v}$ )	Itro	-15		-5	ua
Emitter Cutoff Current ( $\mathrm{V}_{\mathrm{eb}}=-12 \mathrm{v}$ )	Iebeg			-5	$\mu \mathrm{a}$

## A-C Characteristics <br> $1 \mathrm{~V}_{\mathrm{CB}}=-6 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$ <br> unless otherwise noted)

Common Emitter Current Gain
Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )
Voltage Feedback Ratio ( $\mathrm{f}=1 \mathrm{mc}$ )
Base Spreading Resistance
Input Resistance
Alpha Cutoff Frequency

$h_{f e}$	60
$C_{o b}$	12
$h_{r b}$	88
$r_{r b}^{\prime}$	120
$h_{\text {fb }}$	28
$\mathbf{f}_{\text {hfb }}$	7

p ${ }^{*}$
$\times 10^{-8}$
ohms ohms mes
${ }^{*}$ Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for increase in ambient temperatures above $25^{\circ} \mathrm{C}$.

2N448
Outline Drawing No. 3

The General Electric Type 2N448 transistor is a rate-grown NPN germanium device intended for IF amplifier applications in radio receivers. Special manufacturing techniques provide a low value and a narrow spread in collector capacity so that neutralization in many circuits is not required. In IF amplifier service, the range in power gain is controlled to 2.5 db .

## IF TRANSISTOR SPECIFICATIONS

Voltage			
Collector to Emitter ( $\mathrm{Reb}^{\text {a }}$ - 10K )	Vcer	15	volts
Collector to Base (emitter open)	Vсbo	15	volts
Current			
Collector	Ie	-20	ma
Power			
Collector Dissipation at $25^{\circ} \mathrm{C}$ *	$\mathrm{Pa}_{\mathrm{c}}$	65	mw
Temperature			
Operating and Storage	$\mathrm{T}_{\mathbf{A}}, \mathrm{T}_{\text {stg }}$	-55 to 85	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS:**

IF Amplifier Service

Maximum Ratings
Collector Supply Voltage Vcc 12 volts

## Design Center Characteristics

Input Impedance ( $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$; $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{v}$;	$\mathrm{Z}_{1}$	500	ohms
Output Impedance ( $\mathrm{IE}_{\mathrm{E}}=1 \mathrm{ma}$; $\mathrm{VCE}=5 \mathrm{v}$;	Zo	15	K ohms
Voltage Feedback Ratio $\left(\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; f=1 \mathrm{mc}\right)$	hrb	10	$\times 10^{-3}$
Collector to Base Capacitance $\left(\mathrm{I}_{\mathrm{E}}=\mathrm{I} \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v} ; \mathbf{f}=1 \mathrm{mc}\right)$	Cob	2.4	$\mu \mu \mathrm{f}$
Frequency Cutoff ( $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$ )	fhrb	5	mc
Base Current Gain ( $\mathrm{Ic}=\mathrm{I} \mathrm{ma}$; $\mathrm{V}_{\mathrm{cm}}=\mathrm{Iv}$ )	hfe	25	
Minimum Base Current Gain	$\mathrm{hfe}^{\text {fer }}$	8	
Maximum Base Current Gain	hfes	51	

IF Amplifier Performance

Collector Supply Voltage	Vec	$\mathbf{5}$	volts
Collector Current	$I_{0}$	I	ma
Input Frequency	f	455	KC
Minimum Power Gain in Typical IF Test Circuit	Ge $_{e}$	23	db min
Power Gain Range of Variation in Typical IF Circuit	Ge $_{e}$	2.5	db

## Cutoff Characteristics

Collector Cutoff Current $\left(V_{C B}=5 \mathrm{v}\right)$	Ico	.	$\mu \mathrm{a}$
Collector Cutoff Current $\left(V_{C B}=15 \mathrm{v}\right)$	ICo	5	$\mu \mathrm{a} \max$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.
**All values are typical unless indicated as a min. or max.

The General Electric Type 2N449 transistor is a rate-grown NPN germanium device, intended for use as an IF amplifier in broadcast radio receivers. The collector capacity is con-

2N449
Outline Drawing No. 3 trolled to a uniformly low value so that neutralization in most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. Type 2 N 449 has special high beta characteristics required in the final stage of reflex IF circuits where large audio gain is desired.

## IF TRANSISTOR SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Collector to Emitter ( $\mathrm{Rbe}_{\mathrm{be}}=10 \mathrm{~K}$ ) VCER 15 volts
Collector to Base (emitter open)

VCer	15	volts
VCbo	15	volts

## Current

Collector
Ic -20
ma

## Power

Collector Dissipation at $25^{\circ} \mathrm{C} *$
Pc
65
mw

Temperature
Operating and Storage
Th, Tsta
-55 to $85 \quad{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS:** ( $25^{\circ} \mathrm{C}$ )
Reflex IF Amplifier Service

Maximum Ratings
Collector Supply Voltage Voc $\quad 9 \quad$ volts

Design Center Characteristics
$\left(I_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v}\right.$;
$f=455 \mathrm{KC}$ except as noted ${ }^{\prime}$

Input Impedance	$\mathrm{Z}_{1}$	700	ohms
Output Impedance	Z 。	7	K ohms
Voltage Feedback Ratio ( $\mathrm{Vcb}_{\text {cs }}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$ )	$\mathrm{hrb}^{\text {b }}$	10	$\times 10^{-3}$
Collector to Base Capacitance ( $\mathrm{Vcb}_{\mathrm{cb}}=5 \mathrm{v} ; \mathbf{f}=1 \mathrm{mc}$ )	Cob	2.4	$\mu \mu \mathbf{f}$
Frequency Cutoff (Vcb $=5 \mathrm{v}$ )	fhrb	8	mc
Base Current Gain ( $\mathrm{Ic}_{\mathrm{c}}=1 \mathrm{ma} ; \mathrm{V}_{\text {ce }}=1 \mathrm{v}$ )	hre	72	
Minimum Base Current Gain	hFe.	32	

Reflex IF Amplifier Performance

Collector Supply Voltage	Vco	5	volts
Collector Current	Ic	2	ma
Input Frequency	f	455	KC
Minimum Power Gain in Typical IF Circuit	Ge	24.5	db
Power Gain Range of Variation in Typical IF Circuit	Ge	2.5	$d b$
Cutoff Characteristics			
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$ )	Ico	. 5	$\mu \mathrm{a}$
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}$ )	Ico	5	$\mu \mathrm{a}$ m

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**All values are typical unless indicated as a min. or max.

2N45O
Outline Drawing No. 7

The General Electric Type 2N450 is a germanium PNP alloy junction high frequency switching transistor intended for military, industrial and data processing applications where high reliability at the maximum ratings is of prime importance. As a special control in manufacture, all 2 N 450 transistors are subjected to a high pressure detergent test to enhance reliable hermetic seals and are also aged at a temperature of $100^{\circ} \mathrm{C}$ for 96 hours minimum.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Voltage

Emitter to
veo
-12 volts

## Current

Collector
Peak Collector Current ( $50 \mu \mathrm{sec} 20 \%$ Duty Cycle)

Power
Dissipation
Peak Power Dissipation ( $50 \mu \mathrm{sec} 20 \%$ Duty Cycle)

$\mathrm{P} \mathbf{T}$	150	$\mathrm{mw}^{*}$
pc	350	$\mathrm{mw}^{*}$

## Temperature

Storage
Operating Junction

## Tsta TJ

-65 to 85	${ }^{\circ} \mathrm{C}$
85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

## D-C Characteristics

D-C Base Current Gain		Min.	Typ.	Max.	
( Vce $=-1 \mathrm{v} ; \mathrm{I}_{\text {c }}=-10 \mathrm{ma}$ )	hafe	30	110		
$($ Voe $=-1 \mathrm{v} ; \mathrm{Ic}=-100 \mathrm{ma})$	hee	15			
$\left(\mathrm{VEC}_{\mathrm{E}}=-\mathrm{lv} ; \mathrm{Im}_{\mathrm{e}}=-10 \mathrm{ma}\right)$	$\hbar_{\text {FE }}$ (INV)		17		
Saturation Voltage $\left(\mathrm{Ib}=-.5 \mathrm{ma} ; \mathrm{I}_{c}=-10 \mathrm{ma}\right)$	$V_{\text {ce }}{ }^{\text {(SAT) }}$		-.04	-2	volts
Base Input Voltage   ( $\mathrm{Ib}=-.5 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$ )	Vbe ${ }^{\text {(Sat) }}$		$-.23$	-. 35	volts
Collector to Base Voltage ( $\mathrm{Ic}=-100 \mu \mathrm{a}$ )	Vcbo	-20			yolts
Emitter to Base Voltage ( $\mathrm{Ic}_{\mathrm{c}}=-100 \mu \mathrm{a}$ )	Vebo	-10			volts
Collector to Emitter Voltage $(\mathrm{Ic}=-600 \mu \mathrm{a})$	Vceo	$\rightarrow 12$			volts
Collector Cutoff Current $\left(\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=-12 \mathrm{v}\right)$	Ico			-6	$\mu 2$
Emitter Cutoff Current $\left(\mathrm{Ic}=0 ; \mathrm{V}_{\mathrm{EB}}=-6 \mathrm{v}\right)$	IEO			$-6$	$\mu \mathrm{a}$
Reach-through Voltage	Vrt	-12			volts

## High Frequency Characteristics (Common Base)

$$
\left(V_{C B}=-5 v ; t_{\mathrm{E}}=1 \mathrm{ma}\right)
$$

Alpha-Cutoff Frequency Inverse
Collector Capacitance ( $f=1 \mathrm{mc}$ )
Base Spreading Resistance ( $\mathrm{f}=\mathrm{I} \mathrm{mc}$ )

$\mathrm{flufb}^{\text {fr }}$	5	10		me
$\mathrm{flitb}^{\text {(INV) }}$		4		me
Cob		12	20	$\mu \mu \mathrm{f}$
$\mathrm{r}^{\prime} \mathrm{b}$		100	200	ohms

*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
$* *$ Derate $5.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric Silicon Unijunction Transistor is a hermetically sealed three terminal device having a stable " $N$ " type negative resistance charactistic over a wide temperature range. A

## 2N489-2N494

Outline Drawing No. 5 high peak current rating makes this device useful in medium power switching and oscillator applications, where it can serve the purpose of two conventional silicon transistors. These transistors are hermetically sealed in a welded case. The case dimensions and lead configuration are suitable for insertion in printed boards by automatic assembly equipment. The Silicon Unijunction Transistor consists of an "N" type silicon bar mounted between two ohmic base contacts with a " $P$ " type emitter near base-two. The device operates by conductivity modulation of the silicon between the emitter and base-one when the emitter is forward biased. In the cutoff, or standby condition, the emitter and interbase power supplies establish potentials between the base contacts, and at the emitter, such that the emitter is back biased. If the emitter potential is increased sufficiently to overcome this bias, holes (minority carriers) are injected into the silicon bar. These holes are swept towards base-one by the internal field in the bar. The increased charge concentration, due to these holes, decreases the resistance and hence decreases the internal voltage drop from the emitter to base-one. The emitter current then increases regeneratively until it is limited by the emitter power supply. The effect of this conductivity modulation is also noticed as an effective modulation of the interbase current.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$ Voltage

Emitter Reverse Interbase	$\underset{\mathrm{V}_{\mathrm{BB}}}{\mathrm{~T}_{J}}=150^{\circ} \mathrm{C}$	$\begin{array}{r} 60 \\ \text { See Fig. } 1 \end{array}$	voltrs
Current RMS Emitter			
Peak Emitter*	$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	70 2	ma
Power   AV Dissipation			
AV Dissipation - Stabilized***		450 600	$\mathrm{mw}^{*} *$
Temperature Operating			
Storage		$\begin{aligned} & -65 \text { to } 150 \\ & -65 \text { to } 175 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$

*Capacitor discharge $-10 \mu \mathrm{fd}$ or less.
${ }^{* * *}$ Derate $3.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
***Total power dissipation must be limited by external circuit.
Types 2N489-2N494 are specified primarily in three ranges of stand-off and two ranges of interbase resistance. Each range of stand-off ratio has limits of $\pm 10 \%$ from the center value and each range of interbase resistance. has limits of $\pm 20 \%$ from the center value.

## 2N489. 2N490



## 2N491. 2N492

		2N491		2N492				
MAJOR ELECTRICAL CHARACTERISTICS:		Min.	Nom.	Max.	Min.	Nom.	Max.	
Interbase Resistance at $25^{\circ} \mathrm{C}$								
Junction Temperature	$\mathrm{RrE}_{\mathrm{O}}$	4.7	5.6	6.8	6.2	7.5	9.1	kilohms
Intrinsic Stand-off Ratio	$\eta$	. 56	. 62	. 68	. 56	. 62	. 68	
$\begin{aligned} & \text { Modulated Interbase Current } \\ & \left(\mathrm{I}_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v} ;\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{IB}_{\mathrm{g}_{2}}(\mathrm{MOD})$	6.8	12	22	6.8	12	22	ma
Emitter Reverse Current (Bl open circuit)	,							
( $\mathrm{VB}_{\mathrm{B}_{2} \mathrm{E}}=60 \mathrm{v} ; \mathrm{TJ}^{\prime}=25^{\circ} \mathrm{C}$ )	Imo		,03	12		. 03	12	$\mu \mathrm{a}$
$\left(\mathrm{V}_{\mathrm{B}_{2} \mathrm{E}}=10 \mathrm{v} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right)$	IEO		1.8	20		1.8	20	$\mu \mathrm{a}$

MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)
Emitter Saturation Voltage

$\begin{aligned} & \left(\mathrm{I}_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v} ;\right. \\ & \left.\mathrm{T}_{\Delta}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {E }} \mathrm{SAATX}^{\text {d }}$	2.5	3.4	4.3	2.7	3.6	$4: 5$	volts
Peak Point Emitter Current								
( $\mathrm{VBb}=25 \mathrm{v} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )	$\mathrm{IP}_{\mathrm{V}}$		4	12		4	12	$\mu \mathrm{a}$
Valley Voltage	Vv	1.2	2.2	3.9	1.2	2.2	3.9	volts
Valley Current	Iv	13	20	37	12	20	38	ma
Maximum Frequency of Oscillation ( $\mathrm{IB}_{\mathrm{B}_{2}}=4.5 \mathrm{ma}$; Relaxation								
Oscillator)	$\mathrm{f}_{\mathrm{MAX}}$		0.8			0.7		mc

## 2N493. 2N494

MAJOR ELECTRICAL CHARACTERISTICS;
Interbase Resistance at $25^{\circ} \mathrm{C}$

Junction Temperature	$\mathrm{R}_{\mathrm{RB}_{\mathrm{O}}}$	4.7	5.6	6.8	6.2	7.5	9.1	kilohms
ntrinsic Stand-off Ratio	$\eta$	. 62	. 68	. 75	. 62	. 68	. 75	
Modulated Interbase Current $\left(\mathrm{I}_{\mathrm{w}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v} ;\right.$								
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )	$\mathrm{IB}_{\mathrm{i}^{\prime}}$ (MOD)	6.8	12	22	6.8	12	22	ma
mitter Reverse Current   (Bl open circuit)								
$\left(\mathrm{VB}_{2} \mathrm{E}=60 \mathrm{v} ; \mathrm{TJ}=25^{\circ} \mathrm{C}\right)$	Imo		. 03	12		. 03	12	$\mu \mathrm{a}$
$\left(\mathrm{VB}_{2} \mathrm{E}=10 \mathrm{v} ; \mathrm{TJ}=150^{\circ} \mathrm{C}\right)$	IEo		1.8	20		1.8	20	$\mu \mathrm{a}$

## MINOR ELECTRICAL CHARACTERISTICS: (Typical Values)

Emitter Saturation Voltage $\left(I_{\mathrm{E}}=50 \mathrm{ma} ; \mathrm{V}_{\mathrm{BB}}=10 \mathrm{v} ;\right.$ $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad \mathrm{V}_{\mathrm{E}}(\mathrm{SaTY}$
Peak Point Emitter Current ( $\mathrm{V}_{\mathrm{BB}}=25 \mathrm{v} ; \mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ )
Valley Voltage
Valley Current
Maximum Frequency of Oscillation ( $\mathrm{IB}_{2}=4.5 \mathrm{ma}$; Relaxation Oscillator)

$\dot{V}_{\text {e }}(\mathrm{Saty}$
Ip
$\mathrm{V}_{\mathrm{v}}$
Iv
$\mathrm{f}_{\text {MAX }}$

$2.8 \quad 3.8$
$4.6 \quad 3.0-3.8$
4.8 volts
$\begin{array}{rrr}12 & & 4 \\ 4.4 & 1.4 & 2.5\end{array}$
$\begin{array}{ll}12 & \mu \mathrm{a} \\ 4.3 & \text { volts }\end{array}$
ma
me


RMS EMITTER POWER DISSIPATION < $4 O M W$


FIGURE 1

Outline Drawing No. 5

The General Electric 2N497 and 2N498 are silicon NPN double diffused transistors designed for

## 2N497, 2N498

Outline Drawing No. 8 audio to medium frequency applications. The low saturation voltage and low input impedance make these devices especially suited for either high level linear amplifier or switching applications. Typical applications include servo driver and output stages, pulse amplifiers, solenoid drivers, D.C. to A.C. converters, etc.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS		2N497	2N498	
Voltage				
Collector to Base	Vсbo	60	100	volts
Collector to Emitter	Vceo	60	100	volts
Emitter to Base	Vebo	8	8	volts
Power				
Transistor Dissipation   (Free Air @ $25^{\circ} \mathrm{C}$ )* $\mathrm{Pit}^{*} \quad .8 \quad .8$ watt				
Transistor Dissipation				
Temperature				
Storage	Tsta	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating Junction	T ${ }^{\text {r }}$	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$


		2N497		2N498		
D-C Characteristics		Min.	Max.	Min.	Max.	
Collector to Base Voltage $\left(\mathrm{Ic}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0\right)$	Vcbo	60		100		volts
Collector to Emitter Voltage $(\mathrm{IC}=250 \mu \mathrm{a})$	Vceo	60		100		volts
Emitter to Base Voltage $\left(\mathrm{Im}_{\mathrm{E}}=250 \mu \mathrm{a}, \mathrm{I}_{\mathrm{c}}=0\right)$	Vebo	8		8		volts.
Forward Current Transfer Ratio $\left(\mathrm{Ic}=200 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{v}\right)$	hfe	12	36	12	36	
Base Input Resistance $\left(\mathrm{I}_{\mathrm{B}}=8 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{v}\right)$	$\mathrm{hag}^{\text {e }}$		500		500	ohms
Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=40 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=200 \mathrm{ma}\right)$	$\mathbf{r}_{\text {CE }}(\mathrm{SAT})$		25		25	ohms

## Cutoff Characteristics

$$
\begin{aligned}
& \text { Collector Current }\left(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V} \mathrm{CB}=30 \mathrm{v}\right) \text { ICo } \\
& \because \text { Derate } 4.57 \mathrm{mw} /{ }^{\circ} \text { Cincrease in ambient temperature above } 25^{\circ} \mathrm{C} . \\
& \% \text { Derate } 22.8 \mathrm{mw} /{ }^{\circ} \mathrm{C} \text { increase in case temperature above } 25^{\circ} \mathrm{C} .
\end{aligned}
$$

2N497A, 2N498A
Outline Drawing No. 8

The General Electric 2N497A and 2N498A are Silicon NPN double diffused transistors designed for Military and Industrial service for medium power audio to medium frequency applications. The low saturation voltage and low input impedance make these devices especially suited for either high level linear amplifier or switching applications. Typical applications include servo driver and output stages, pulse amplifiers, solenoid drivers, D.C. to A.C. converters, etc.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

Voltage		2N497A	2N498A	
Collector to Base	VCbO	60	100	volts
Collector to Emitter	Vceo	60	100	volts
Emitter to Base	Vebo	8	8	volts

## Power

Transistor Dissipation   (Free Air@ $25^{\circ} \mathrm{C}$ )* $\mathrm{PT}_{\mathrm{T}}$	1	1	watt
Transistor Dissipation   (Case Temperature @ $25^{\circ} \mathrm{C}$ )**PT	5	5	watt


Temperature				
Storage	TSTG	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHASACTERISTICS: ( $25^{\circ} \mathrm{C}$ ) unless otherwise specified

D-C Characteristics		2N497A		2N498A		
		Min.	Max.	Min.	Max.	
Collector to Base Voltage $(\mathrm{Ic}=100 \mu \mathrm{a}, \mathrm{Is}=0)$	Vebo	60		100		volts
Collector to Emitter Voltage $\left(\mathrm{I}_{\mathrm{c}}=250 \mu \mathrm{a}\right)$	Veeo	60.		100		volts
Collector to Emitter Voltage $\left(\mathrm{I}_{\mathrm{c}}=16 \mathrm{ma}\right)$	Vceo	60				volts
Collector to Emitter Voltage $\left(\mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}\right)$	Vceo			100		volts
Emitter to Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0\right)$	Vebo	8		8		volts
Forward Current Transfer Ratio $\left(\mathrm{Ic}=200 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{v}\right)$	hfe	12	36	12	36	
Base Input Resistance $\left(\mathrm{I}_{\mathrm{B}}=8 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{v}\right)$	hie		200		200	ohms
Saturation Resistance $\left(\mathrm{I}_{\mathrm{B}}=40 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{ma}\right)$	$\mathrm{r}_{\mathrm{CE}}{ }^{(S A T)}$		10		10	ohms

## Cutoff Characteristics

Collector Current $\left(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V} \mathrm{CB}=30 \mathrm{v}\right)$	Tco	10	10	$\mu \mathrm{a}$
Collector Current   (High Temperature)				
$\begin{aligned} & \left(\mathrm{Ie}=0, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{v}\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	Teo	250	250	$\mu \mathrm{a}$

*Derate $5.72 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
**Derate $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in case temperature above $25^{\circ} \mathrm{C}$.

The 2N508 is an alloy junction PNP transistor intended for driver service in audio amplifiers. It is a miniaturized version of the 2N265 G.E. transistor. By control of transistor characteristics during manufacture, a specific power gain

## 2N5O8

Outline Drawing No. 2 is provided for each type. Special processing techniques and the use of hermetic seals provides stability of these characteristics throughout life.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Collector to Emitter ( $\mathrm{R}_{\mathrm{BE}} \leqq 10 \mathrm{~K}$ ) VCER $\quad-16 \quad$ volts
Collector to Base $\quad$ Vcbo -16 volts

Current

Collector | Ié | $-100 \quad$ ma |
| :--- | :--- |

Power
Collector Dissipation $\quad$ PC 140 mw

Temperature

Operating	TA $_{\mathbf{A}}$	-65 to 60
Storage	Tsta $^{\circ} \mathrm{C}$	
	-65 to 85	${ }^{\circ} \mathrm{C}$

TYPICAL ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

## D-C Characteristics

Furward Current Transfer Ratio $\left(\mathrm{I} \mathrm{c}=-20 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=-\mathrm{lv}\right)$	hfe	99-198
Collector to Emitter Voltage ( $\mathrm{Rre}=10 \mathrm{~K}$; $\mathrm{Ic}=-.6 \mathrm{ma}$ )	Vcer	$-16$
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{Cb}}=-16 \mathrm{v}$ )	Ico	$-10$
Maximum Collector Cutoff Current ( $\mathrm{VCB}=-\mathrm{l} 6 \mathrm{v}$ )	Ieo	-16

## Small Signal Charaeteristies

Frequency Cutoff ( $\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$ )
Collector Capacity ( $\mathrm{V} \mathrm{CB}=-5 \mathrm{v}$; $\mathrm{IE}_{\mathrm{E}}=1 \mathrm{ma}$ )
Noise Figure ( $\mathrm{V}_{\mathrm{Cb}}=-5 \mathrm{v}$; $\mathrm{I}_{\mathrm{r}}=1 \mathrm{ma}$ )
Input Impedance ( $\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$ )
Current Gain (Vce $=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{e}}=1 \mathrm{ma}$ )

Thermal Characteristies
Thermal Resistance Junction to Air

furb	3.5	mc
Cob	24	$\mu \mu \mathrm{f}$
NF	6	db
hie	3	K ohms
hfe	112	

$\mathrm{mw} /{ }^{\circ} \mathrm{C}$

## Performance Data Common Emitter

Power Gain Driver $(\mathrm{VCC}=-9 \mathrm{~V})$	$\mathrm{G}_{\mathrm{e}}$	(55	db
Power Output	Po $_{0}$	1	mw

$\mathrm{P}_{0}$
1
mw

## 2N524, 2N525

Outline Drawing No. 2

The General Electric types 2N524 and 2N525 are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the frequency range from audio to 100 KC . This series of transistors is intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance. The 2 N 524 and 2 N 525 are equivalent to the 2 N 44 and 2 N 43 respectively and may be directly substituted in most applications.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

Voltage			
Collector to Base	Vcbo	-45	volts
Collector to Emitter $\left(\mathrm{RBE}^{2}=10 \mathrm{~K}\right)$	Veer	-30	volts
Emitter to Base	Vebo	-15	volts
Current Collector	Te.	-500	ma
Power   Total Transistor Dissipation*	$\mathrm{P}_{\text {T }}$	225	mw
Temperature Storage Operating	$\begin{aligned} & \mathrm{T}_{\mathrm{STG}} \\ & \mathrm{~T}_{\mathrm{T}} \end{aligned}$	-65 to 100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $\left.25^{\circ} \mathrm{C}\right)$

## Small Signal Characteristics

(Unless otherwise specified $V_{C}=-5 \mathbf{v}$
common base; $\left.I_{\mathrm{E}}=1 \mathrm{ma}_{\mathrm{i}} \boldsymbol{f}^{-1} \mathbf{1} \mathrm{KC}\right)$

		Min.		Max.	Min.	N5 25 Nom.	Max.	
Output Admittance   (Input AC Open Circuited)	$h_{\text {ob }}$	،10	. 65	1.3	. 1	. 6	1.2	$\mu \mathrm{mhos}$
Input Impedance   (Output AC Short   Circuited)	his	26	31	36	26	31	35	ohms
Reverse Voltage Transfer Ratio (Input AC Open Circuited)	hrb	1	4.0	10	1	$5: 0$	11	$\times 10^{-4}$
Forward Current Transfer Ratio (Common Emitter; Output AC Short Circuited)	hre	16	30	41	30	44	64	
Frequency Cutoff	$\mathrm{f}_{\mathrm{hf}} \mathrm{b}$	. 8	2.0	5.0	1	2.5	5.5	me
Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$; Input AC open circuited)	Cob	18	25	40	18	23	40	$\mu \mu \mathrm{f}$
Noise Figure ( $\mathrm{f}=1 \mathrm{kc}$; $B W=1$ cycle)	N玉	1	6	15	1	6	15	db

## D-C Characteristics

Forward Current Gain


## Thermal Resistance ( $k$ )

Junction Temperature Rise/
Total Transistor Dissipation:
Free Air
Infinite Heat Sink
Clip-on Heat Sink in Free Air
. 27

.27	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.11	${ }^{\circ} \mathrm{C} / \mathrm{mw}$
.20	${ }^{\circ} \mathrm{C} / \mathrm{mw}$

*Derate $3.7 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric types 2N526 and 2N527 are germanium PNP alloy junction transistors particularly recommended for low to medium power amplifier and switching application in the

## 2N526, 2N527

Outline Drawing No. 2 frequency range from audio to 100 KC . This series of transistors is intended for military, industrial and data processing applications where high reliability and extreme stability of characteristics are of prime importance.

## SPECIFICATIONS

Voltage			
Collector to Base	Vcro		
Collector to Emitter $\left(\mathbf{R}_{\text {RE }}=10 \mathrm{~K}\right)$	-8о	-45	volts
Emitter to Base	$\stackrel{\mathrm{V}}{\mathrm{V} \text { cer }}$	-30	volts
Current - $\quad 15$ volts			
Collector	IC		
Power m-500 ma			
Total Transistor Dissipation*	$\mathrm{P}_{\text {T }}{ }^{\text {a }}$ ( 225		
Temperature 225 naw			
Storage Operating	TStG		
Operating	$\mathrm{T}_{\mathrm{J}}$	-65 to 100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $\left.25^{\circ} \mathrm{C}\right)$
$\frac{\text { Small Signal Characteristics }}{\text { Unless otherwise specified }} \mathrm{V}_{\mathrm{C}}=-5 \mathrm{~V}$


Thermal Resistance ( $\mathbf{k}$ )
Junction Temperature Rise/
Total Transistor Dissipation:
Free Air
Infinite Heat Sink
Clip-on Heat Sink in Free Air
$\begin{array}{ll}.27 & { }^{\circ} \mathrm{C} / \mathrm{mw} \\ .11 & { }^{\circ} \mathrm{C} / \mathrm{mw}\end{array}$
*Derate $3.7 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

## 2N634

Outline Drawing No. 2

The General Electric type 2N634 is an NPN germanium alloy triode transistor designed for high speed switching applications.

## SPECIFICATIONS



## Thermal Characteristic

Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

## 2N634A

Outline Drawing No. 2

The General Electric Type 2N634A is an NPN alloy transistor designed for low power medium speed switching service where control of switching parameters is important.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: ( $\mathbf{2 5}^{\circ} \mathrm{C}$ ) <br> Voltage

Collector to Base	Vcbo	25	volts
Collector to Emitter	Veer ( $\mathrm{R}=10 \mathrm{~K}$ )	20	volts
Emitter to Base	$V_{\text {Ebo }}$	25	volts
Current			
Collector	Ic	300	ma
Emitter	$\mathrm{I}_{\text {E }}$	300	ma
Power			
Dissipation*	$\mathrm{P}_{\mathrm{t}}$	150	suw
Temperature			
Storage	$\mathrm{T}_{\text {Stg }}$	-65 to 100	${ }^{\circ} \mathrm{C}$
Operating Junction	T.	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ ) except as noted

C Characteristics		Min.	Typ.	Max.	
$\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{VCE}_{\text {ce }}=1 \mathrm{v}, \mathrm{T}_{\Delta}=-55^{\circ} \mathrm{C}\right)$		25	42		
( $\mathrm{Ic}=200 \mathrm{ma}, \mathrm{V}_{\mathrm{CE}}=.35 \mathrm{v}$ )		20			
Base Input Voltage					
( $\mathrm{Ic}=10 \mathrm{ma}$, $\mathrm{Ir}^{\text {e }}=.5 \mathrm{ma}$ )	Vbe	. 20	. 25	. 35	volts
$\left(\mathrm{Ic}_{\mathrm{c}}=200 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}\right.$ )				1.5	volts
'Saturation Voltage ( $\mathrm{Ic}=10 \mathrm{ma}, \mathrm{Ib}^{\prime}=.25$ )	Vce ${ }^{(S a t)}$		. 10	0.2	volts
Cutoff Characteristics					
Collector Current ( $\mathrm{VCB}=25 \mathrm{v}, \mathrm{IE}_{\mathrm{L}}=0$ )	Icbo			6	$\mu \mathrm{a}$
( $\left.\mathrm{VCB}=25 v, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\Delta}=71^{\circ} \mathrm{C}\right)$				80	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{Veb}_{\text {eb }}=25 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=0$ )	Iebo			6	$\mu \mathrm{a}$
Collector to Emitter Voltage $\left(\operatorname{ICER}=100 \mu \mathrm{a}, \mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}\right)$	Vcer	20			volts

*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise above $25^{\circ} \mathrm{C}$ ambient temperature.

The General Electric type 2N635 is an NPN germanium alloy triode transistor designed for high speed switching applications.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base	Vcró			20	
Emitter to Base	Vebo			15	volts
Collector to Emitter	Vceo			20	volts volts
Current					
Collector	Ic			300	
Base	In			50	ma
Emitter	IE			300	ma
Temperature					
Storage	Tstg			-65 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction	TA			-65 to 85	C
Power					
Dissipation	$\mathrm{F}_{\text {T }}$			150	mw
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$					
Collector Voltage   ( $\mathrm{Ic}=15 \mu \mathrm{amp} ; \mathrm{I}_{\mathrm{E}}=0$ )	$\mathrm{V}_{\mathrm{CB}}$	Min.   20	Nom.	Mox.	
	$\checkmark$	20			volts
	Vebo	15			volts
Collector to Emitter Voltage $\left(\mathrm{Ic}_{\mathrm{c}}=600 \mu \mathrm{mp} ; \mathrm{R}=10 \mathrm{~K}\right.$ )	Collector to Emitter Voltage 15 volts				
Collector Cutoff Current $\left(\mathrm{Vcs}=5 \mathrm{v} ; \mathrm{Ie}_{\mathrm{e}}=0\right)$	ICBo	20			volts
Reach-through Voltage		20		5	Mamps
D-C Current Gain 20 volts					
${ }^{(I c}=200 \mathrm{ma} ; \mathrm{VCE}=0.75 \mathrm{v}$ )	hes	25			
Alpha Cutoff Frequency					
( $\mathrm{VCB}=5 \mathrm{Y} ; \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}$ )	FhFb	10	12		mac

## Thermal Characteristic

The General Electric Type 2N635A is an NPN alloy transistor designed for low power medium speed switching service where control of switching parameters is important.

2N635A
Outline Drawing No. 2

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage
Collector to Base
Collector to Emitter
Emitter to Base

## Current

Collector
Emitter
Power
Dissipation

## Temperature

Storage
Operating Junction
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$
D-C Characteristics
Forward Current Transfer Ratio

$$
\begin{aligned}
& \left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{Iv}\right) \\
& \left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{v}_{\mathrm{A}} \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right)
\end{aligned}
$$

hғw
$\underset{\underset{V E B O}{\operatorname{VCBO}}}{\underset{\text { VCER }}{ }}(\mathrm{R}=10 \mathrm{~K})$
ase Input Voltage
( $\mathrm{Ic}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}$ )
(Ic $=200 \mathrm{ma}, \mathrm{Ib}=10 \mathrm{ma})$
$V_{B E}$
TstG
T.J

Saturation Voltage ( $\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.17$ ) $\mathrm{V}_{\mathrm{CE}}{ }^{(\mathrm{Sat})}$

## Cutoff Characteristics

Collector Current (VCB $\equiv 25 v, \mathrm{I}_{\mathrm{E}}=0$ )
Icbe
(VCB $=25 v, I_{E}=0, T_{A}=71^{\circ} \mathrm{C}$ )
Emitter Current (Ver $=25 v, I_{c}=0$ )
Collector to Emitter Voltage
(ICRR $=100 \mu \mathrm{a}, \mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$ )
*Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise above $25^{\circ} \mathrm{C}$ ambient temperature.

2N636
Outline Drawing No. 2

The General Electric type $2 N 636$ is an NPN germanium alloy triode transistor designed for high speed switching applications.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage
Collector to Base

Vero	20	volts
Vebo	15	volts
Vceo	15	volts
Ic	300	ma
$\mathrm{If}_{\text {c }}$	50 300	ma
IEt	300	ma
Tstg	-65 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{Ta}_{\text {a }}$	85	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {t }}$	150	mw

## Current <br> Collector

Base
Emitter

## Temperat ure

Storage
Operating Junction
Power
Dissipation


Thermal Characteristic
Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$,

## 2N636A

Oütline Drawing No. 2

The General Electric Type 2N636A is an NPN alloy transistor designed for low power medium speed switching service where control of switching parameters is important.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	Vcbo (R-10K)	25	volts
Collector to Emitter	Vcer ( $\mathrm{R}=10 \mathrm{~K}$ )	15	volts
Emitter to Base	Vebo	25	volts
Current			
Collector	$\mathrm{Ic}_{\mathrm{IE}}$	300 300	ma
Emitter		300	
Power   Dissipation*	Pr	150	mw
Temperature Storage Operating Junction	$\mathrm{T}_{\mathrm{T} \text { stg }}$	-65 to 100	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ except as noted

D-C Characteristics
Forward Current Transfer Ratio ( Ic = $10 \mathrm{ma}, \mathrm{V}_{\mathrm{CE}}=1 \mathrm{v}$ )
( $\mathrm{Ic}=10 \mathrm{ma}, \mathrm{VCE}_{\mathrm{c}}=1 \mathrm{v}, \mathrm{T}_{\mathrm{a}}=-55^{\circ} \mathrm{C}$ )
( $\mathrm{Ic}=200 \mathrm{ma}, \mathrm{Vce}=.35 \mathrm{v}$ )
Base Input Voltage
( $\mathrm{Ic}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}$ )
( $\mathrm{I}_{\mathrm{c}}=200 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}$ )
Saturation Voltage ( $\mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.13$ )
Cutoff Characteristics

*Derate $2.5 \mathrm{mw} \gamma^{\circ} \mathrm{C}$ rise above $25^{\circ} \mathrm{C}$ ambient temperature.

The General Electric 2N656, and 2N657 are silicon NPN double diffused transistors designed for Military and Industrial service for medium power audio to medium frequency applications. The low

2N656, 2N657

Outline Drawing No. 8 these devices especially suited for either high level linear amplifier or switching applications. Typical applications include servo driver and output stages, pulse amplifiers, solenoid drivers, D.C. to A.C. converters, etc.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS:		2N656	2N657	
Voltage				
Collector to Base	Vebo	60	100	volts
Collector to Emitter	Vceo	60	100	volts
Emitter to Base	Vero	8	8	volts
Power				
Transistor Dissipation				
Transistor Dissipation   (Case Temperature @ $25^{\circ} \mathrm{C}$ )**	Pt	4	4	watt
Temperature				
Storage	Tswg	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating Junction	'Tj	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$


D-C Characteristics		2N656		2N657		
		Min.	Max,	Min.	Max.	
Collector to Base Voltage						
( $\mathrm{IC}=100 \mu \mathrm{a}, \mathrm{IE}=0)$	Vebo	60		100		volts
( $\mathrm{Io}=250 \mu \mathrm{a}$ )	Vceo	60		100		volts
Emitter to Base Voltage   ( $\mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0$ )	$\mathrm{V}_{\text {ero }}$	8		8		volts
Forward Current Transfer Ratio	hpt	30	90	30	90	
Base Input Resistance ${ }_{\text {( }}=8$ ma, $\mathrm{V}_{\text {ce }}=10 \mathrm{v}$ )			0		500	ohms
Saturation Resistance (IB $=40 \mathrm{ma}$ IC -200 ma )	$\mathrm{rcx}^{\text {(sid }}$		500 25		25	ohms
Cutoff Characteristics						
Collector Current ( $\mathrm{IE}=0, \mathrm{~V}$ cb $=30 \mathrm{v}$ )	Ico		10		10	на

*Derate $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
*\%Derate $22.8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in case temperature above $25^{\circ} \mathrm{C}$.

The General Electric 2N656A and 2N657A are silicon NPN double diffused transistors designed for Military and Industrial Service for medium power audio to medium frequency applications. The low saturation voltage and low input impedance make these devices especially suited for either high level linear amplifier or switching applications. Typical applications include servo driver and output stages, pulse amplifiers, solenoid drivers, D.C. to A.C. converters, etc.

## SPECIFICATIONS



ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ unless otherwise specified

*Derate $5.72 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
**Derate $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in case temperature above $25^{\circ} \mathrm{C}$.

2N1O57
Outline Drawing No. 1

The General Electric Type 2N1057 is a germanium PNP alloy junction switching transistor intended for low to medium power switching applications at low frequencies. A hermetic enclosure is provided by the use of glass-to-metal seals and welded seams,

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	Vcbo	-45	volts
Collector to Emitter ( $\mathrm{R}_{\mathrm{BE}} \leqq 10 \mathrm{~K}$ )	Vcer	-30	volts
Collector to Emitter ( $\mathrm{V}_{\mathrm{BE}} \equiv 2 \mathrm{v}$ )	Veex	-45	volts
Emitter to Base	Vebo	-5	volts
Current Collector	Ic	$-300$	ma
Power   Total Transistor Dissipation*	Pr	240	mw
Temperatures Storage Operating Junction	$\underset{\mathrm{Ts}}{\text { Tspg }}$	-65 to 100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ}{ }^{\circ}$ )


[^9]The General Electric Types 2N1086, 2N1086A, and 2 N 1087 are NPN rate grown germanium transistors intended for mixer/oscillator or autodyne converters in radio broadcast receivers. Special manufacturing techniques provide

## 2N1086, 2N1086A, 2N1O87

Outline Drawing No. 3 a low value and a narrow spread in collector capacity. Minimum conversion gain and narrow conversion gain spreads are guaranteed.

## CONVERTER TRANSISTOR SPECIFICATIONS

Voltage		2N1086	2N1086A	2N1087	
Collector to Emitter ( $\mathrm{Rex}_{\text {be }}=10 \mathrm{~K}$ )	Vcer	9	9	9	volts
Collector to Base (emitter open)	Vebo	9	9	9	volts
Current					
Collector	$\mathrm{I}_{\mathrm{c}}$	$-20$	-20	-20	ma
Power					
Collector Dissipation at $25^{\circ} \mathrm{C} *$	$\mathrm{Pc}_{\mathrm{c}}$	65	65	65	mw
Temperature					
Operating and Storage	Ts	-55 to 85	-55 to 85	-55 to 85	${ }^{\circ} \mathrm{C}$
ELECTRICAL Characteristics:**					
Converter Service					
Maximum Ratings					
Collector Supply Voltage	Vce	9	9	9	woils
Design Center Characteristics					
Input Impedance $\left(\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}\right)$	Z:	350	350	350	ohmis
Output Impedance $\left(\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=455 \mathrm{KC}\right)$	Z。	15	15	15	K ohms
Voltage Feedback Ratio $\left(\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cb}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}\right)$	$\mathrm{hr}_{\mathbf{r}}$	5	5	5	$\times 10^{-3}$
Collector Capacitance   ( $\mathrm{Ie}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{cb}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$ )	Cob	2.4	2.4	2.4	${ }_{\mu \mu} \mathrm{f}$
Frequency Cutoff ( $\mathrm{IE}=1 \mathrm{ma}$; $\mathrm{V}_{\text {ce }}=5 \mathrm{v}$ )	findo	8	8	8	mc
Base Current Gain (Ic = 1 ma ; $\mathrm{Vcm}=1 \mathrm{v}$ )	hre'	40	40	40	
Minimum Base Current Gain	hfig	17	17	17	
Maximum Base Current Gain	ham	195	195	195	
Converter Performance ( 1600 kcls )					
Conversion Gain in Typical Converter Test Circuit	$\mathrm{CG}_{\text {g }}$	24	24	26	db
Conversion Gain Range of Variation in Typical Converter Circuit		4	2	2	db
Cutoff Characteristics					
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$ ) Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}$ )	$\begin{aligned} & \text { Ico } \\ & \text { Ico } \end{aligned}$	$\begin{array}{r}3 \\ \hline\end{array}$	. 3	$\stackrel{3}{.}$	$\begin{aligned} & \mu a \max . \\ & \mu \mathrm{a} \end{aligned}$

*Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$. **All values are typical unless indicated as a min. or max.

## 2N1097, 2N1098

Outline Drawing No. 2
$2 N 322$ and $2 N 323$ except for $\mathrm{h}_{\mathrm{FE}}$ limits.

The General Electric Types 2N1097 and 2N1098 are alloy junction PNP transistors intended for low power output and audio driver service in entertainment equipment. These types are similar to the General Electric Types

## SPECIFICATIONS

Voltage				
Collector to Emitter ( $\mathrm{Rbe} \leqq 10 \mathrm{~K}$ )	Vcer		-16	volts
Collector to Base	Vcbo		-16	volts
Current				
Collector	Ic		-100	ma
Temperoture				
Storage	Tstg		-65 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ		85	${ }^{\circ} \mathrm{C}$
Power				
Transistor Dissipation*	Pat		140	mw
ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )				
D-C Characteristics		2N1097	2N1098	
Collector Current (Vcr $=-16 \mathrm{v}$ )	Icbo	-16	-16	$\mu \mathrm{a}$ max.
Forward Current Transfer Ratio $\left(\mathrm{Ic}=-20 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=-\mathrm{lv}\right)$	hfe	34-90	25-90	
Low Frequency Characteristics				
$\left(\mathrm{V}_{\mathrm{C}}=-5 \mathrm{v}_{\boldsymbol{\prime}} \mathrm{I}_{\mathrm{E}}=-1 \mathrm{mo} ; \mathrm{f}=1 \mathrm{KC}\right)$				
Output Capacity (Typical) ${ }_{\text {Forward }}$ Current Transfer Ratio (Typical)	$\mathrm{Cob}^{\text {b }}$	25	25	$\mu \mu \mathrm{f}$
Forward Current Transfer Ratio (Typical)	$\mathrm{hf}_{\text {fe }}$	55	45	

*Derate $2.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$. type intended for highly reliable service in missile and other military equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Voltage

Collector to Base
Collector to Emitter
Emitter to Base

## Current

Collector
Emitter
Peak Collector*
Peak Base*

## Power

Peak Collector Dissipation
Total Transistor Dissipation
Temperoture
Storage
ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

## DC Choracteristics

Base Input Voltage (for low current condition)
( $\mathrm{I}_{\mathrm{B}}=-0.25 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$ )
Base Input Voltage (for high current condition)
( $\mathrm{Is}=-1.7 \mathrm{ma} ; \mathrm{Ic}=-60 \mathrm{ma}$ )
Saturation Voltage (low level)
( $\mathrm{I}_{\mathrm{B}}=-0.25 \mathrm{ma} ; \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$ )
Saturation Voltage (high current)
( $\mathrm{I}_{\mathrm{B}}=-1.7 \mathrm{ma} ; \mathrm{I}_{\mathrm{C}}=-60 \mathrm{ma}$ )

Vebo	-20	volts
Voeo	-15	volts
Vebo	-10	volts
Ia	-125	ma
IE	125	ma
ie	-500	ma
ib	-500	ma
$\mathrm{p}_{\text {c }}$	500	mw
Pt	150	mw


	Min.	Max.	
Vbe		-0.4	volts
Vbe		-0.5	yolts
$\mathrm{V}_{\text {CE }}{ }^{\text {(SAT) }}$		$-0.15$	volts
$\mathrm{V}_{\text {ce }}(\mathrm{Sat})$		$-0.35$	volts

## Cutoff Characteristics

Emitter Current Ves $=1-10$ )	Imo	-6
$\begin{aligned} & \text { ollector to Emitter Current } \\ & \left(\mathrm{VCE}=-20 ; \mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K} ; \mathrm{V}_{\mathrm{B}}=3\right) \end{aligned}$	Icex	-6



## Thermal Characteristics

Derate $2.5 \mathrm{mw}^{\circ} / \mathrm{C}$ for temperatures above $25^{\circ} \mathrm{C}$
*Duration of intermittent current peaks is limited by the thermal transient response of
of the transistor.

The General Electric Type 2N1121 transistor is a rategrown NPN germanium device, intended for use as IF amplifiers in broadcast radio receivers. The collector capacity is controlled to a uniformly low value so that

2N1121
Outline Drawing No.-3 neutralization in most circuits is not required. Power gain at 455 KC in a typical receiver circuit is restricted to a 2.5 db spread. The uniformity provided by the controls of collector capacity and power gain allows easy and economical incorporation of this type into receiver circuits. Type 2 N 1121 has special high beta characteristics required in the final stage of reflex IF circuits where large audio gain is desired.

## IF TRANSISTOR SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage
Collector to Emitter ( $\mathrm{RBE}_{\mathrm{BE}}=10 \mathrm{~K}$ )
Collector to Base (emitter open)

$\begin{aligned} & \text { VCer } \\ & \text { VCbo } \end{aligned}$	15 15	volts volts
Ic	-20	ma
Pc	65	mw
TA, Tşg	-55 to 85	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS:** $\left(25^{\circ} \mathrm{C}\right)$

Reflex IF Amplifier Service.

## Maximum Ratings

Collector Supply Voltage
Vcc
9 volts

## Design Center Characteristics

( $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{v} ; \mathrm{f}=\mathbf{4 5 5 \mathrm { KC } \text { except as noted) } ) ~}$ Input Impedance

$\mathrm{Z}_{1}$	700	ohms
Z ${ }_{0}$	7	K ohm
$\mathrm{hrib}^{\text {r }}$	10	$\times 10^{-2}$
Cob	2.4	$\mu \mu \mathrm{f}$
$\mathrm{fh}_{\text {f }}$ b	8	me
hFE	72	
$\mathrm{h}_{\text {FE }}$	32	
Veo	5	volts
Ic	2	ma
${ }^{\text {f }}$	455	KC
Ge	29.5	db
Ge	2.5	db

Output Impedance

Voltage Feedback Ratio ( $V_{C B}=5 v ; f=1 \mathrm{mc}$ )
Collector to Base Capacitance ( $\mathrm{VCR}_{\mathrm{CR}}=5 \mathrm{v} ; \mathrm{f}=1 \mathrm{mc}$ )
Frequency Cutoff ( $\mathrm{V}_{\mathrm{cb}}=5 \mathrm{~V}$ )
Base Current Gain (IC =1 ma; Vce $=1 \mathrm{~V}$ )
TA, Ts, $\mathbf{T G}_{\mathbf{G}}$
-55 to 85
${ }^{\circ} \mathrm{C}$

Minimum Base Current Gain

## Reflex IF Amplifier Performance

Collector Supply Voltage
Collector Current
Input Frequency
Minimum Power Gain in Typical IF Circuit
Power Gain Range of Variation in Typical IF Circuit
$\mathrm{G}_{\mathrm{G}}$

## Cutoff Characteristics

Collector Cutoff Current ( $\mathrm{Vcr}=5 \mathrm{v}$ )   Collector Cutoff Current (VcB $=15 \mathrm{v}$ )	$\begin{aligned} & \text { Ico } \\ & \text { Ico } \end{aligned}$	. 5

[^10]
## 2N1144, 2N1145

Outline Drawing No. I

The General Electric Types 2N1144 and 2N1145 are alloy junction PNP transistors intended for low power output and audio driver service in entertainment equipment. These types are similar to General Electric Types 2N1097 and 2N1098 except for package configuration.
$\left.\begin{array}{llllll} & \text { SPECIFICATIONS } \\ \text { ABSOLUTE MAXIMUM RATINGS: } \\ \left(25^{\circ} \mathrm{C}\right)\end{array}\right)$
*Derate $2.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature over $25^{\circ} \mathrm{C}$.

## 2N1198

Outline Drawing No. 3

The General Electric Type 2N1198 is an NPN germanium high frequency, high speed switching transistor intended for industrial and military applications where reliability is of prime importance. In order to achieve the high degree of reliability necessary in industrial and military applications, the 2 N 1198 is designed to pass 500 G 1 millisecond drop shock, $10,000 \mathrm{G}$ centrifuge, 10 G variable frequency vibration, as well as temperature cycling, moisture resistance and operating and storage life tests as outlined in MIL-T-19500A. The 2N1198 has the same low collector cutoff current and reliability as the 2N167 and is identical to the 2 N 167 on all parameters except voltage.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	Vcro	25	volts
Collector to Emitter	Vceo	25	volts
Emitter to Base	Vebo	5	volts
Current			
Collector	Ic	75	ma
Emitter	$\mathrm{If}_{6}$	-75	ma
Power			
Collector Dissipation ( $25^{\circ} \mathrm{C}$ ) *	Pc	65	mw
Total Transistor Dissipation ( $\left.25^{\circ} \mathrm{C}\right)^{* *}$	$\mathrm{P}_{\text {T }}$	75	mw
Temperature			
Storage	Tstg	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )
D-C Characteristics


## Cutoff Characteristics

$\overline{\text { Collector Current ( }} \mathrm{IE}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}$ )	İơ	. 6	1.5	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{Ic}=0$; Ver $=5 \mathrm{v}$ )	Ino	. 35	5	$\mu \mathbf{a}$

High Frequency Characteristics (Common Base)
$\left(V_{\mathrm{CB}}=5 \mathrm{y} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}\right)$

Alpha Cutoff Frequency	fifb
Collector Capacity $(f)$	
Voltage Feedback Ratio	$(\mathrm{fc}=1 \mathrm{mc})$

Low Frequency Characteristics (Common Base)
( $V_{\text {cb }}=5 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=1 \mathrm{ma} ; \mathbf{4}=\mathbf{2 7 0} \mathbf{c p s}$ )

Forward Current Transfer Ratio	$h_{t b}$	.952	.985	.995
Output Admittance	$h_{\mathrm{b}}$	$.1 * * *$	.2	$.7 * * * \mu \mathrm{mhos}$
Input Impedance	$h_{\mathrm{ib}}$	$25 * * *$	55	$82 * * * \mathrm{hms}$
Reverse Voltage Transfer Ratio	$\mathrm{h}_{\mathrm{rb}}$		1.5	$\times 10^{-4}$

## Switching Characteristics

(Ic $=8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 1}=.8 \mathrm{ma} ; \mathrm{I}_{\mathrm{B} 2}=.8 \mathrm{ma}$ )
Turn-on Time
Storage Time Storage Time
Fall Time
5.0

Chf
ob
b
9.0 2.5 6 $m \mathrm{~m}$
$\mu \mu \mathrm{f}$
$\times 10^{-3}$

[^11]Forward Current Transfer Ratio
Output Admittance
Input Impedance
Reverse Voltage Transfer Ratio
to
ts
$t$
$\mu$ sec
$\mu \mathrm{sec}$ $\mu \mathrm{sec}$
*Derate 1.1 mw/ ${ }^{\circ} \mathrm{C}$ increase in ambient temperature.
**Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
***These limits are design limits within which $98 \%$ of production normally falls.

The General Electric Type 2 N 1217 is an NPN isolated case germanium high frequency, high speed, low level

## 2N1217

Outline Drawing No. 3 applications where reliability is of prime importance. The 2N1217 features extremely low collector cutoff current, high D.C. Beta at very low collector current, and low collector capacity. All transistors are baked 100 hours at $85^{\circ} \mathrm{C}$ to stabilize characteristics.

## SPECIFICATIONS

Voltage			
Collector to Base	Vebo	20	volts
Collector to Emitter	Vceo	20	volts
Emitter to Base	Vebo	5	volts
Current Collector	Ic	25	ma
Power   Total Transistor Dissipation*	$\mathrm{P}_{\mathrm{t}}$	75	mw
Temperature   Storage   Lead ( $1 / 16^{\prime \prime}+1 / 32^{\prime \prime}$ from case for 10 seconds )	${ }_{\text {Tist }}^{\text {Tit }}$	85 230	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$ unless otherwise specified

D-C Characteristics		Min.	Typ.	Max.	
Collector to Emitter Voltage ( $\mathrm{Ic}=300 \mu \mathrm{a}$ )	Vceo	20			volts
Collector Current ( $\mathrm{IE}=0, \mathrm{~V}_{\text {cb }}=15 \mathrm{v}$ )	Íro		. 6	1.5	$\mu \mathrm{adc}$
Emitter Current ( $\mathrm{Ic}=0, \mathrm{~V}_{\mathrm{er}}=5 \mathrm{v}$ )	Iebo		. 4	1.5	$\mu \mathrm{adc}$
Collector Current $\left(\mathrm{I} \mathrm{E}=0, \mathrm{VCB}_{\mathrm{CB}}=15 \mathrm{v}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)$	Letro		11	29	$\mu \mathrm{adc}$
Forward Current Transfer Ratio $(\mathrm{Ic}=.5 \mathrm{ma}, \mathrm{Vce}=1 \mathrm{v})$	hre	40		100	
Forward Current Transfer Ratio ( $\mathrm{Ic}=2 \mathrm{ma}, \mathrm{V}_{\mathrm{Ce}}=\mathrm{IV}$ )	hFe	40	60	100	
Forward Current Transfer Ratio $\left(\mathrm{Ic}=2 \mathrm{ma}, \mathrm{vec}^{2}=\mathrm{Iv}, \mathrm{TA}=-55^{\circ} \mathrm{C}\right)$	hfe	20			
Base Input Voltage $\left(\mathrm{I}_{1}=.2 \mathrm{ma}, \mathrm{IC}=2 \mathrm{ma}\right)$	Vre		. 26		volts
Saturation Voltage $(\mathrm{In}=.2 \mathrm{ma}, \mathrm{I} \mathrm{c}=2 \mathrm{ma})$	Vce ${ }^{\text {(Sat) }}$		. 10		volts
High Frequency Characteristics Common	ase)				
Alpha Cutoff Frequency	fuft	6.0	9.0		me
Collector Capacity ( $\mathrm{f}=1 \mathrm{mc}$ )	Cob		2.5	6	$\mu \mu \mathrm{f}$
Switching Characteristics					
$\left(\mathrm{IC}=2 \mathrm{ma}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=.2 \mathrm{ma}\right)$					
Rise Time	$\mathrm{tr}_{\mathbf{r}}$		. 4	6	$\mu \mathrm{sec}$
Storage Time	ts		. 9	1.6	$\mu \mathrm{sec}$
Fall Time	tr		. 3	. 4	$\mu \mathrm{seo}$

*Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature ahove $25^{\circ} \mathrm{C}$.

## 2N1276, 2N1277

Outline Drawing No. 4

The General Electric Types 2N1276 and 2N1277, are silicon NPN transistors intended for amplifier applications in the audio and radio frequency range and for general purpose switching circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for exteremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right.$ ?

Voltage			
Collector to Base	Vcbo	40	volts
Collector to Emitter	Vceo	30	volts
Emitter to Base	Vebo	1	volt
Current Collector	le	25	ma
Power Collector Dissipation RMS*	Pc	150	mw
Temperature Storage Operating Junction	${ }_{\text {Tstg }}$	-65 to 200	${ }^{\circ}{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristies		Min.	$2 N 1276$   Typ.	Max.	Min.	2N1277   Typ.	Max*	
Collector to Base Voltage $(\mathrm{Ic}=50 \mu \mathrm{a}, \mathrm{Ie}=0)$	Vcbo	40			40			volts
Collector to Emitter Voltage	Vceo	80			30			volts
Emitter to Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{a}, \mathrm{Ic}=0\right)$	Vebo	1.0	4.0		1.0	4.0		volts
Forward Current Transfer Ratio   (low current)   $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{V}_{\mathrm{ce}}=5 \mathrm{v}\right)$	hite		10			20		
Saturation Voltage (low level) $\left(\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}\right)$	$\mathrm{Vce}^{(S A T)}$		. 49	1.0		. 53	1.0	volts
Cutoff Characteristics								
Collector Current $\left(\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{v}\right)$	Ieo		. 001	1		. 001	1	$\mu \mathrm{a}$
Collector Current   (high temperature) $\begin{aligned} \left(\mathrm{I}_{\mathrm{E}}\right. & =0, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{v} \\ \mathrm{~T}_{\mathrm{A}} & =150^{\circ} \mathrm{C} \end{aligned}$	Ico		i	50		1	50	$\mu \mathrm{a}$

Low Frequency Characteristics (Common Base)

$\mathrm{V}_{\text {cb }}=5 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}, \mathrm{f}=$	(eps)							
Forward Current Transfer Ratio	hie	9	14	22	18	33	44	
Output Admittance	hob		. 37	1		. 30	1	$\mu \mathrm{mhos}$
Input Impedance	his	30	44	80	30	44	80	ohms
Reverse Voltage Transfer Ratio	$\mathrm{hrb}^{\text {b }}$		2.4	10		2.6	10	$\times 10^{-4}$
Noise Figure ( $\mathbf{B}_{w}=1$ cycle), (Common Base or Common Emitter)	NF		22			18		db
Power Gain $\left(V_{C E}=5 \mathrm{v}, \mathrm{Ic}_{\mathrm{c}}=+1 \mathrm{ma}\right.$ $f=1000 \mathrm{cps})$	$\mathrm{Ge}_{\mathrm{e}}$		37			39		db

High Frequençy Characteristics (Common Base)

$\mathrm{C}^{\mathrm{VBB}}=20 \mathrm{v}_{\text {f }}$,	Cma)							
Output Capacity	$\underset{\text { fob }}{\substack{\text { Cob }}}$		2.0 30	5.0			5.	mc
Cutoff Frequency	fufb	15	30		15	30		mc

*Derate $1.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric Types 2N1278 and 2N1279 are silicon N.PN transistors intended for amplifier applications in the audio and radio frequency range and for general purpose switch-

## 2N1278, 2N1279

Outline Drawing No. 4 ing circuits. They are grown junction devices with a diffused base and are manufactured in the Fixed-Bed Mounting design for extremely high mechanical reliability under severe conditions of shock, vibration, centrifugal force, and temperature. These transistors are hermetically sealed in welded cases. The case dimensions and lead configuration conform to JEDEC standards and are suitable for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$			
Voltage			
Collector to Base	Vcbo	40	
Collector to Emitter	Vceo	30	volts
Emitter to Base	Vebo	1	volt
Current			
Collector	Ic	25	ma
Power			
Collector Dissipation RMS*	Pc	150	mw
Temperature			
Storage Operating Junction	$\mathrm{TSTG}_{\text {St }}$		
Operating Junction	Ts	$150$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS ( $25^{\circ} \mathrm{C}$ )

## D-C Characteristics

Min. $\stackrel{\text { 2N1278 }}{\text { Typ. }}$ Max, Min. $\stackrel{\text { 2N1279 }}{\text { Typ. }}$ Max:

Collector to Base Voltage $\left(\mathrm{Ic}=50 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0\right)$   Collector to Emitter Voltage	$\mathrm{V}_{\text {cbo }}$	40	,		40	Tp.	,	volts
	Vceo	30			30			volts
Emitter to Base Voltage $(\mathrm{IE}=100 \mu \mathrm{a}, \mathrm{Ic}=0)$	Vebo	1.0	4.0		1.0	40		volts
Forward Current Transfer Ratio (low current)								volts
(Ic $=10 \mathrm{ma}, \mathrm{VcE}=5 \mathrm{v})$	$h_{\text {hee }}$		33			80		
Saturation Voltage (low level) $\left(\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{ma}\right)$	VCEs (SAT)		. 56	1.0		. 47	1.0	volts
Cutoff Characteristics								
Collector Current $\left(I_{\mathrm{t}}=0, V_{C B}=30 v\right)$	Ico		. 001	1		. 001	1	$\mu \mathrm{a}$
$\begin{aligned} & \text { Collector Current } \\ & \text { (high temperature) } \\ & \left(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{v},\right. \\ & \left.\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	I¢		1 1	50		.001	1	$\mu \mathrm{a}$



*Derate $1.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

2N1288
Outline Drawing No. 10

The General Electric type 2 N 1288 is a germanium meltback NPN transistor designed for high speed computer switching. All units are aged 150 hours at a temperature of $100^{\circ} \mathrm{C} \mathrm{min}$. to stabilize characteristics. The 2N1288 is designed to meet the requirements of MIL-T-19500A. The case dimensions conform to the TO-39 outline and the units are for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage
Collector te Emitter
Emitter to Base
Collector to Base

$\operatorname{VCER}(\mathrm{R}=10 \mathrm{~K})$	10	volts
Vero	5	volts
Vcbo	15	volts

ma

75
mw

$$
\begin{array}{ll}
-65 \text { to }+85 & { }^{\circ} \mathrm{C} \\
-55 \text { to }+85 & { }^{\circ} \mathrm{C}
\end{array}
$$

## ELECTRICAL CHARACTERISTICS:

Reach-through Voltage	$\mathrm{V}_{\mathrm{Rt}}$	10			volts
Collector to Emitter Voltage $\left(\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}, \mathrm{l} \mathrm{c}=.6 \mathrm{ma}\right)$	Vcer	10			volts
Forward Current Transfer Ratio $\left(\mathrm{IC}=10 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{lv}\right)$	hre	50.	150	300	
Forward Current Transfer Ratio $\left(\mathrm{Ic}=25 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{lv}\right)$	$\mathrm{hfe}^{\text {fe }}$	30	100		
Base to Emitter Voltage $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	Vbe		.25	0.5	volts
Collector Saturation Voltage $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{s}}=.5 \mathrm{ma}\right)$	$V_{C E}{ }^{(S A T)}$		. 2	0.3	volts
Collector Cutoff Frequency $\left(\mathrm{I}_{\mathrm{v}}=5 \mathrm{ma}, \mathrm{v}_{\mathrm{c}}=1 \mathrm{v}\right)$	furb	40	60		
Collector Capacitance $\left(\mathrm{I}_{\mathrm{E}}=5 \mathrm{ma}, \mathrm{~V}_{\mathrm{c}}=1 \mathrm{v}, \mathrm{f}=2 \mathrm{mc}\right)$	Cob		6	10	$\mu \mu \mathrm{f}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}, \mathrm{IE}_{\mathrm{E}}=0\right)$	Icó		2	5	$\mu \mathrm{a}$
Emitter Cutoff Current ( $\mathrm{VER}^{\text {e }}=5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=0$ )	Ieo		3	10	$\mu \mathrm{a}$
Switching Speeds $\left(\mathrm{Ic}_{c}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1 \mathrm{ma}\right)$					
Rise Time	tr		60 200	100 300	m $\mu \mathrm{sec}$
Storage Time	$\mathrm{ts}_{\text {s }}$		200 60	300 100	m $\mu$ sec
Fall Time	tp		60	100	musec

*Derate $1.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric type 2 N 1289 is a germanium meltback NPN transistor designed for high speed computer switching. All units are aged 150 hours at a

2N1289
Outline Drawing No, 10 temperature of $100^{\circ} \mathrm{C} \mathrm{min}$. to stabilize characteristics. The 2 N 1289 is designed to meet the requirements of MLL-S-19500B. The case dimensions conform to the TO-5 outline and the units are for insertion in printed boards by automatic assembly equipment.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right.$ )			
Voltage			
Collector to Emitter	Vcer	15	volts
Emitter to Base	Vebo	15	volts
Collector to Base	Vebo	20	volts
Current			
Collector	16	50	ma
Power			
Dissipation*	PT	75	mw
Temperature			
Storage	$\mathrm{T}_{\text {stg }}$	-65 to +100	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	-55 to +85	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS ( $25^{\circ} \mathrm{C}$ ) unless otherwise specified

D-C Characteristics		Min.	Typ.	Max.	
Reach-through Voltage	VRT	15			volts
Collector to Emitter Voltage					
$\left(\mathrm{R}_{\mathrm{Be}}=10 \mathrm{~K}, \mathrm{Ic}=600 \mu \mathrm{a}\right)$	Verr	15			volts
Emitter to Base Voltage ( $\mathrm{Im}=100 \mu \mathrm{a}$ )	Vebo	15			volts
Forward Current Transfer Ratio $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{~V}_{\mathrm{ce}}=1 \mathrm{v}\right)$	$\mathrm{hem}_{\text {en }}$	50	150	300	
Forward Current Transfer Ratio $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{v}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right)$	hre	30	80		
Forward Current Transfer Ratio $\left(\mathrm{Ic}_{\mathrm{c}}=25 \mathrm{ma}, \mathrm{~V}_{\mathrm{cE}}=1 \mathrm{v}\right)$	hate	40	130		
Base to Emitter Voltage $\left(\mathrm{Ic}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	Vbig		. 25	0.4	volts
Collector Saturation Voltage $\left(\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(SAT }}$ )		2	0.3	volts
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0\right)$	Ico		2	5	$\mu \mathrm{a}$
Emitter Cutoff Current ( $\mathrm{V}_{\mathrm{fB}}=\mathbf{5 v}, \mathrm{Ic}=0$ )	Ieo		2	5	$\mu \mathrm{a}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)$	Ico		40	70	$\mu 2$

High Frequency Characteristics

Alpha Cutoff Frequency   $\left(\mathrm{I}_{\mathrm{E}}=5 \mathrm{ma}, \mathrm{Vc}=\mathrm{IV}\right)$	fufb	40	60		me
Collector Capacitance $\left(\mathrm{I}_{\mathrm{E}}=5 \mathrm{ma}, \mathrm{~V}_{\mathrm{c}}=\mathrm{l}_{\mathrm{v}}, \mathrm{f}=2 \mathrm{ma}\right)$	Cob		6	10	$\mu \mu \mathrm{f}$
Switching Speeds $\left(\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{0} \mathrm{ma}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1 \mathrm{ma}\right)$					
Rise Time	$t \mathrm{r}$		60	100	$\mathrm{m} \mu \mathrm{sec}$
Storage Time	ts		200	300	m $\mu \mathrm{sec}$
Fall Time	$\mathrm{tf}_{f}$		60	100	musec

*Derate $1.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

2N13O4
Outline Drawing No. 2

The General Electric Type 2N1304 is an NPN alloy transistor designed for low power medium speed switching service when control of switching parameters is important.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Voltage

Collector to Base	Vcbo	25	volts
Collector to Emitter	$\mathrm{V}_{\text {cer }}(\mathrm{R}=10 \mathrm{~K})$	20	volts
Emitter to Base	Vebo	25	volts
Current			
Collector	Ic.	300	ma
Power			
Total Transistor Dissipation* ( $25^{\circ} \mathrm{C}$ Case Temperature)	$P_{T}$	300	mw
Temperature			
Storage	Tsta	-65 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

D-C Characteristics		Min.	тур.	Aax.	
Forward Current Transfer Ratio					
( $\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{v}$ )	hee	40	70	200	
( $\mathrm{IC}=200 \mathrm{ma} ; \mathrm{V}_{\mathrm{ce}}=.35 \mathrm{v}$ )		15			
Base Input Voltage $\left(\mathrm{I}_{\mathrm{c}}=10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	$V_{b e}$	20.	.25	. 35	volts
Total Base Reverse Current $\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{V}_{\mathrm{eB}}=10 \mathrm{v}\right)$	Ibx		3	8	$\mu \mathrm{a}$
Saturation Voltage ( $\mathrm{Ic}_{\mathrm{C}}=10 \mathrm{ma}$; $\mathrm{I}_{\mathrm{B}}=.25$ )	$\mathrm{Vce}^{\text {(sat }}$ )		.10	0.2	volts
Reach-through Voltage	Vrt	20			volts

## Cutoff Characteristics

Collector Current $\left(\mathrm{V}_{\mathrm{CB}}=25 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{C B O}$	1.5	6	$\mu \mathrm{a}$
Emitter Current $\left(\mathrm{V}_{\mathrm{EB}}=25 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\mathrm{EBO}}$	1.2	6	$\mu \mathrm{a}$

[^12]2N1306
Outline Drawing No. 2

The General Electric Type 2N1306 is an NPN alloy transistor designed for low power medium speed switching service when control of switching parameters is important.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Voltage

Collector to Base	VCro	25	volts
Collector to Emitter	VCer $_{\text {Cer }}(R=10 \mathrm{~K})$	20	volts
Emitter to Base	Vebo 2	25	volts

## Current

Collector Ic

## Power

Total 'Transistor Dissipation* ( $25^{\circ} \mathrm{C}$ Case Temperature)	$\mathrm{P}_{8}$			300	mw
Temperature	Tstg		-65 to +100		${ }^{\circ} \mathrm{C}$
Storage					
ELECTRICAL CHARACTERISTICS: ( $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )		Min.	Typ:	Max.	
D-C Choracteristics					
Forward Current Transfer Ratio	hfe		100	300	volts
( $\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma} ; \mathrm{V}_{\mathrm{cE}}=1 \mathrm{v}$ )		60			
( $\mathrm{I}_{\mathrm{C}}=200 \mathrm{ma} ; \mathrm{V}_{\text {Ce }}=.35 \mathrm{v}$ )		20			
Base Input Voltage $\left(\mathrm{Ic}=10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	Vibe	20	. 24	. 32	
Total Base Reverse Current $\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{V}_{\mathrm{EB}}=10 \mathrm{v}\right)$	Ibx		3	8	$\mu \mathrm{a}$
Saturation Voltage ( $\mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$; $\mathrm{I}_{\mathrm{B}}=.17$ )	$\mathrm{VCE}^{(\mathrm{SAT}}$ )		. 085	0.2	volts
Reach-through Voltage	Vrt	15			volts
Cutoff Characteristics					
Collector Current ( $\mathrm{V}_{\mathrm{CB}}=25 \mathrm{v} ; \mathrm{IE}_{\mathrm{E}}=0$ )	Icbo		1.5	6	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{V}_{\mathrm{EB}}=25 \mathrm{v}$; $\mathrm{Ic}=0$ )	Iebo		1.2	6	$\mu \mathrm{a}$

[^13]The General Electric Type 2N1308 is an NPN alloy transistor designed for low power medium speed switching service when control of switching parameters is

## 2N1308

Outline Drawing No. 2 important.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage			
Collector to Base	$V_{\text {cbo }}$	25	volts
Collector to Emitter	$\mathrm{V}_{\text {CER }}(\mathrm{R}=10 \mathrm{~K}$ )	20	volts
Emitter to Base	Vebo	25	volts
Current			
Collector	Ic	300	ma
Power			
Total Transistor Dissipation*			
Temperature			
Storage	Tstg	-65 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min.	Typ.	Max.	
Forward Current Transfer Ratio					
( $\mathrm{Ic}=10 \mathrm{ma} ; \mathrm{V}_{\text {ce }}=1 \mathrm{l}$ )	hFE	80	150		
( $\mathrm{IC}=200 \mathrm{ma}$; $\mathrm{V}_{\text {CE }}=.35 \mathrm{v}$ )		20			
Base Input Voltage $\left(\mathrm{I}_{\mathrm{c}}=10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}}=.5 \mathrm{ma}\right)$	VBe	. 20	. 23	. 30	volts
Total Base Reverse Current $\left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v} ; \mathrm{V}_{\mathrm{EB}}=10 \mathrm{v}\right)$	Inx		3	8	$\mu \mathrm{a}$
Saturation Voltage ( $\mathrm{Ic}=10 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}}=.13$ )	VCE ${ }^{\text {(Sait }}$ )		. 075	0.15	volts
Reach-through Voltage	Vrt	15			volts

## Cutoff Characteristics

Collector Current ( $\mathrm{V}_{\mathrm{CB}}=25 \mathrm{v} ; \mathrm{I}_{\mathrm{E}}=0$ )	Ícbo	1.5	6	$\mu \mathrm{a}$
Emitter Current ( $\mathrm{V}_{\text {Eb }}=25 \mathrm{v}$; $\mathrm{I}_{\mathrm{C}}=0$ )	Iebo	1.2	6	$\mu \mathrm{a}$

[^14]2N1413
Outline Drawing No. 2

The General Electric Type 2N1413 is a PNP alloy intended for those industrial audio amplifiers and low frequency switching applications where cost is of prime importance. All units are hermetically sealed and are subjected to 100 hours of high temperature bake as well as a detergent pressure test, thus assuring reliable performance under adverse environmental conditions. Efficient thermal characteristics are assured by welding the transistor base to the case.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage

Collector to Base	Vero	-35	volts
Collector to Emitter	$\mathrm{V}_{\text {Cer }}(\mathrm{Rbe} \leqq 10 \mathrm{~K})$	-25	volts
Emitter to Base	Vebo	-10	volts
Current			
Collector	Ie	$-200$	ma
Power			
Collector Dissipation*	Pe	200	mw
Temperature			
Storage	Tstg	-65 to +85	${ }^{\circ} \mathrm{C}$
Operating	TJ	$+85$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Small Signal Characteristics		Min.	Typ.	ax	
(Unless otherwise specified $\mathbf{V e}_{e}=-5 \mathbf{v}$ $\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=1000 \mathrm{cps}$ )	mmon bas				
Output Admittance   (Input AC Open Circuited)	how	. 1	. 65	1.3	$\mu \mathrm{mhios}$
Input Admittance   (Output AC Short Circuited)	$\mathrm{h}_{1}$	26	29	36	ohms
Reverse Voltage Transfer Ratio (Input AC Open Circuited)	heb	1	4.8	10	$\times 10^{-4}$
Forward Current Transfer Ratio (Common Emitter; Output AC Short Circuited)	$\mathrm{hfe}^{\text {e }}$	20	30	41	
Frequency Cutoff	$\mathrm{fh}_{\text {fb }}$	0.8	3.2		c
Output Capacity ( $\mathrm{f}=1 \mathrm{mc}$; Input AC Open Circuited)	Cob		26	40	$\mu \mu \mathrm{f}$
Noise Figure ( $f=1 \mathrm{kc} ; \mathrm{B}_{\mathbf{w}}=1$ cycle )	$\mathrm{NF}^{\text {i }}$		6		db
D-C Characteristics					
Forward Current Gain (Common Emitter $\begin{aligned} & \left(\begin{array}{l} \left.\mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=-20 \mathrm{ma}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=-100 \mathrm{ma}\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \end{aligned}$	36	42	
Collector Saturation Voltage   ( $\mathrm{Ie}=-20 \mathrm{ma} ; \mathrm{Is}$ as indicated)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}\left(\mathrm{SA}^{T}\right) \\ & @ \mathrm{I}_{\mathrm{B}}= \end{aligned}$		$\begin{array}{r} -70 \\ -2.0 \end{array}$		$\begin{aligned} & \text { mv } \\ & \text { na } \end{aligned}$
Base Input Voltage, Common Emitter $\left(\mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=-20 \mathrm{ma}\right)$	Vre		-. 255		volts
Collector Cutoff Current ( $\mathrm{Vcbo}^{\text {a }}=-30 \mathrm{v}$ )	Ico		-8	$-12$	$\mu \mathrm{a}$
Emitter Cutoff Current ( $\mathrm{V}_{\text {riso }}=-10 \mathrm{v}$ )	Ifoo		-5	$-10$	$\mu \mathrm{a}$
Collector to Emitter Voltage   $\left(\mathrm{R}_{\mathrm{be}}=10 \mathrm{~K}\right.$ ohms; $\left.\mathrm{Ic}=-.6 \mathrm{ma}\right)$	VCer Vrt	$\begin{aligned} & -25 \\ & -25 \end{aligned}$			volts volts

*Derate $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric Type 2N1414 is a PNP alloy intended for those industrial audio amplifiers and low frequency switching applications where cost is of prime importance. All units are hermetically sealed and are

2N1414
Outline Drawing No. 2 subjected to 100 hours of high temperature bake as well as a detergent pressure test, thus assuring reliable performance under adverse environmental conditions. Efficient thermal characteristics are assured by welding the transistor base to the case.

## SPECIFICATIONS

## ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

Voltage

Collector to Base	$\mathrm{V}_{\text {cbo }}$	-35	volts
Collector to Emitter	Vcer ( $\mathrm{Rbe}_{\text {be }} \leqq 10 \mathrm{~K}$ )	-25	volts
Emitter to Base	Vebo	-10	volts
Current			
Collector	Io	-200	ma
Power			
Collector Dissipation*	Po	200	mw
Temperature			
Storage	Tstg	-65 to +85	${ }^{\circ} \mathrm{C}$
Operating	Ts	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

Small Signal Characteristics		Min.	Typ.	Mox.	
(Unless otherwise specified $V_{C}=-5$ $\mathbf{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=1000 \mathrm{cps}$ )					
Output Admittance   (Input AC Open Circuited)	bob	. 1	. 62	1.2	$\mu \mathrm{mh}$ os
Input Admittance (Output AC Short Circuited)	hin	26	29	35	Obms
Reverse Voltage Transfer Ratio (Input AC Open Circuited)	hrb	1.	5.2	11	$\times 10^{-4}$
Forward Current Transfer Ratio (Common Emitter; Output AC Short Circuited.)	hie	30	44	64	
Frequency Cutoff	$\mathrm{fhfb}^{\text {f }}$	1.0	3.6		me
Output Capacity ( $f=1 \mathrm{mc}$; Input AC Open Circuited)	Cob		26	40	$\mu \mu \mathrm{f}$
Noise Figure ( $\mathrm{f}=1 \mathbf{k c} ; \mathrm{B}_{\mathbf{w}}=1$ cycle )	NF		6		db

## D-C Characteristics

Forward Current Gain (Common Emitter)					
$\left(\mathrm{V}_{\mathrm{ce}}=-1 \mathrm{~V} ; \mathrm{Ic}_{\mathrm{c}}=-100 \mathrm{ma}\right)$	hFe	30			
Collector Saturation Voltage					
( $\mathrm{Ic}=-20 \mathrm{ma}$; I в as indicated)	$V_{\text {cei }}{ }^{\text {Sat }}$ )		$-75$		mv
	@ $\mathrm{IB}_{\text {B }}=$		-1.33		ma
Base Input Voltage, Common Emitter.   $\left(\mathrm{V}_{\mathrm{CE}}=-1 \mathrm{v} ; \mathrm{I}_{\mathrm{C}}=-20 \mathrm{ma}\right)$					
Collector Cutoff Current ( $\mathrm{Vcbo}^{\text {cra }}=-30 \mathrm{v}$ )	Ico		-8	-12	$\mu \mathrm{a}$
Emitter Cutoff Current ( $\mathrm{V}_{\text {ubo }}=-10 \mathrm{v}$ )	Tmo		-5	-10	$\mu \mathrm{a}$
Collector to Emitter Voltage   $\left(\mathrm{R}_{\mathrm{be}}=10 \mathrm{~K}\right.$ ohms; $\left.\mathrm{I}_{\mathrm{C}}=-.6 \mathrm{ma}\right)$	Vcer	- 25			volts
Reach-through Voltage	Vrt	-25			volts

*Derate $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

2N1415
Outline Drawing No. 2

The General Electric Type 2 N 1415 is a PNP alloy intended for those industrial audio amplifiers and low frequency switching applications where cost is of prime importance. All units are hermetically sealed and are subjected to 100 hours of high temperature bake as well as a detergent pressure test, thus assuring reliable performance under adverse environmental conditions. Efficient thermal characteristics are assured by welding the transistor base to the case.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Collector to Base	Vcbo	-35	volts
Collector to Emitter	Vcer ( $\mathrm{Rbe}^{\text {¢ }}$ ¢ 10 K )	-25	volts
Emitter to Base	Vebo	-10	volts
Current			
Collector	İ	-200	ma
Power			
Collector Dissipation*	Po	200	naw
Temperature			
Storage	Tstg	-65 to +85	${ }^{\circ} \mathrm{C}$
Operating	Tr	$+85$	${ }^{6} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS: ( $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

Small Signal Characteristics		Min.	Typ.	Max.	
(Unless otherwise specified $\mathrm{V}_{\mathrm{c}}=-5 \mathrm{v}$ common base; $t_{\mathrm{E}}=-1 \mathrm{ma} ; \mathbf{f}=1000 \mathrm{cps}$ ),					
Output Admittance   (Input AC Open Circuited)	hob	. 1	. 55	1.0	$\mu \mathrm{mhos}$
Input Admittance   (Output AC Short Circuited)	hib	26	29	33	ohms
Reverse Voltage Transfer Ratio (Input AC Open Circuited)	hrb	1	5.7	12	$\times 10^{-6}$
Forward Current Transfer Ratio   (Common Emitter; Output AC					
Short Circuited)	hre	44	64	88	
Frequency Cutoff	$\mathrm{fhfb}^{\text {f }}$	1.3	4.0		me
Output Capacity   ( $\mathrm{f}=1 \mathrm{mc}$; Input AC Open Circuited)	Cobr		26	40	${ }_{\text {unf }}$
Noise Figure ( $f=1 \mathrm{kc} ; \mathrm{B}_{\mathrm{w}}=1$ cycle)	NF		6		db

## D-C Characteristics


*Derate $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

The General Electric Type 2N1510 is a germanium NPN rate grown transistor intended for industrial, military and data processing applications where operation at high voltages and low currents is required. A low value of collector

Outline Drawing No. 3 leakage current at high voltages plus very stable voltage with life make this transistor especially suited for use in neon indicator and direct indicating counter circuits where high ambient temperatures are encountered and reliability is of prime importance.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: ( $25^{\circ} \mathrm{C}$ )

## Volfage

Collector to Emitter $(\mathrm{R}=10 \mathrm{~K})$	VCer $^{\prime}$	70	volts
Collector to Base	Vcbo	75	volts
Emitter to Base	Vebo	8	volts


| Current |  |  |
| :--- | :--- | :--- | :--- |
| Collector | Ic | $20 \quad \mathrm{ma}$ |

## Power

Dissipation*
Pa
75
mw

Temperature

Storage	Tsxg	-55 to +85	${ }^{\circ} \mathrm{C}$
Operating Junction	TJ	+85	${ }^{\circ} \mathrm{C}$
Lead Temperature $1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}$ from Case for 10 Seconds	Tr	230	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

D-C Characteristics		Min.	Typ.	Max.	
Base Current Gain ( $\mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}, \mathrm{Vce}^{\text {c }}=1 \mathrm{l}$ )	hfe	8	30	90	
Base Current Gain ( $\mathrm{Ic}=4 \mathrm{ma}, \mathrm{Vce}=1 \mathrm{v}$ )	hfe	4			
Saturation Voltage $\left(\mathrm{I}_{\mathrm{B}}=1.0 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{ma}\right)$	$\mathrm{VCE}^{(S A T Y}$		26		volts
Base Input Voltage $\left(\mathrm{I}_{\mathrm{B}}=1.0 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=4 \mathrm{ma}\right)$	Vbe		. 38		volts
Reach-through Voltage ( $\mathrm{Veb}^{\text {a }}=1 \mathrm{~V}$ )	Vrt	75			volts

## Cutoff Characteristics

Collector Cutoff Current $\left(\mathrm{VCE}=70 \mathrm{v}, \mathrm{~V}_{\mathrm{BE}}=-5 \mathrm{v}\right)$	Icex		. 5	5	$\mu \mathrm{a}$
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=75 \mathrm{v}$ )	Ícbo		. 6	5	$\mu \mathrm{a}$
Emitter Cutoff Current ( $\mathrm{VEB}_{\mathrm{EB}}=8 \mathbf{v}$ )	Iеbo			10	$\mu$ а
Collector to Emitter Voltage $(\mathrm{R}=10 \mathrm{~K}, \mathrm{I} \mathrm{c}=300 \mu \mathrm{a})$	Vcer	70			volts

2N1614
Outline Drawing No. 1

The General Electric Type 2 N 1614 is a germanium PNP Alloy Junction Triode Switching Transistor. It is intended for military, industrial and data processing systems where high voltage, reliability, and excellent stability of characteristics are of prime importance. Applications include neon indicator circuits, relay driver circuits and direct indicating counter circuits.

## SPECIFICATIONS



$\left(\mathrm{V}_{\mathrm{C}}=-5 \mathrm{v} ; \mathrm{Im}_{\mathrm{e}}=-1 \mathrm{mo} ; \mathrm{f}=1 \mathrm{kc}\right.$ )					
Forward Current Transfer Ratio	hfe		25		
Output Admittance	hob	0.1	0.9	1.5	$\mu \mathrm{mhos}$
Input Impedance	$\mathrm{hib}_{\text {b }}$	27	31	38	ohms
Reverse Voltage Transfer Ratio	hrb	1.0	4.0	13	$\times 10^{-4}$
Noise Figure ( $\mathrm{B}_{\mathrm{w}}=1 \mathrm{cyc}$ ), ( $\mathrm{f}=1 \mathrm{lkc}$ )	NF			20	
High Frequency Characteristics (Common Base)					
$\left(V_{C B}=-5 v ; I_{\mathrm{E}}=-1 \mathrm{ma} ; f=1 \mathrm{me}\right)$   Output Capacity	Cob	20	40	60	$\mu \mu \mathrm{f}$
Cutoff Frequency   ( $\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{v} ; \mathrm{I}_{\mathrm{m}}=-1 \mathrm{ma} ;$ $\mathrm{f}=1000 \mathrm{cps}$ )	fnfb	0.5	1.0	3.0	me

[^15]The General Electric Silicon Unijunction Transistor is a three terminal device having a stable " N " type negative resistance characteristic over a wide temperature range. A stable peak point voltage, a low peak point

## 2N1671, 2N1671A, 2N1671B

Outline Drawing No. 5 current, and a high pulse current rating make this device useful in oscillators, timing circuits, trigger circuits and pulse generators where it can serve the purpose of two conventional silicon or germanium transistors.
The 2N1671 is intended for general purpose industrial applications where circuit economy is of primary importance. The 2N1671A is intended for industrial use in firing circuits for Silicon Controlled Rectifiers and other applications where a guaranteed minimum pulse amplitude is required. The 2 N 1671 B is intended for applications where a low emitter leakage current and a low peak point emitter current (trigger current) are required.

These transistors feature Fixed-Bed Construction and are hermetically sealed in a welded case. All leads are electrically isolated from the case.

## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage

Emitter Reverse	30	volts
Interbase	35	volts
Current		
RMS Emitter	50	ma
Peak Emitter*	2	amps


Power		
RMS Dissipation**	450	
Temperature	-65 to +140	${ }^{\circ} \mathrm{C}$
Operating Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Capacitor discharge $-10 \mu \mathrm{fd}$ or less, 30 volts or less-Total interbase power dissipation must be limited by external circuitry,
**Derate $3.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
(Thermal resistance to case $=0.16^{\circ} \mathrm{C} / \mathrm{mw}$.)

## 2N1671

## ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)$

Parameter		Note	Min.	Max.	
Intrinsic Standoff Ratio ( $\mathrm{V}_{\mathrm{br}}{ }^{\prime}=10 \mathrm{v}$ )	$\eta$	1	0.47	0.62	
Interbase Resistance ( $\mathrm{V}_{\mathbf{B b}}=3 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$ )	Rbbo	2	4.7	9.1	kilohms
Emitter Saturation Voltage $\left(\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\mathrm{VE}^{\text {(sat) }}$			5	volts
Modulated Interbase Current $\left(\mathrm{V}_{\mathrm{bB}}=\mathbf{I} 0 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\mathrm{IBr}^{\text {(MOD }}$ (		6.8	22	ma
Emitter Reverse Current $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{E}}=30 \mathrm{v}, \mathrm{I}_{\mathrm{B} 1}=0\right)$	Leo			12	$\mu \mathrm{a}$
$\left(\mathrm{V}_{\mathrm{BB}}=20 \mathrm{v}, \mathrm{R}_{\mathrm{B} 2}=100 \Omega\right)$	Iv		8		ma

## 2N1671A

ELECTRICAL CHARACTERISTICS: ( $25^{\circ} \mathrm{C}$ )

Parameter		Note	Min.	Max.	
Intrinsic Standoff Ratio ( $\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}$ )	$n$	1	0.47	0.62	
Interbase Resistance ( $\mathrm{Vbb}_{\mathrm{br}}=3 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$ )	Rbbo	2	4.7	9.1	kilohms
Emitter Saturation Voltage $\left(\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\mathrm{VF}_{\mathrm{E}}(\mathrm{SAT})$			5	volts
Modulated Interbase Current $\left(\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\left.\mathrm{IBE}^{(\mathrm{MOD}}\right)$		6.8	22	ma
Emitter Reverse Current $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{E}}=30 \mathrm{v}, \mathrm{I}_{\mathrm{B} 1}=0\right)$	Ieo			12	$\mu \mathbf{a}$
Peak Point Emitter Current ( $V_{\text {BB }}=25 \mathrm{~s}$ )	If			25	$\mu \mathrm{a}$
Valley Point Current $\left(\mathrm{V}_{\mathrm{BB}}=20 \mathrm{v}, \mathrm{R}_{\mathrm{B} 2}=100 \Omega\right)$	I		8		ma
Base-One Peak Pulse Voltage	Vob1	3	2.0		volts

## 2N1671B

## ELECTRICAL CHARACTERISTICS: (25 $\left.{ }^{\circ} \mathrm{C}\right)$

Parameter		Note	Min.	Max.	
Intrinsic Standoff Ratio ( $\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}$ )	$\eta$	1	0.47	0.62	
Interbase Resistance ( $\mathrm{Vbb}_{\mathrm{b}}=3 \mathrm{v}, \mathrm{IE}=0$ )	Rebo	2	4.7	9.1	kilohms
Emitter Saturation Voltage $\left(\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\mathrm{VE}_{\mathrm{E}}(\mathrm{sat})$			5	Volts
Modulated Interbase Current $\left(\mathrm{V}_{\mathrm{BB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}\right)$	$\mathrm{IBr}^{(\mathrm{MOD})}$		6.8	22	ma
Emitter Reverse Current $\left(\mathrm{V}_{\mathrm{B} 2 \mathrm{E}}=30 \mathrm{v}, \mathrm{I}_{\mathrm{B} 1}=0\right)$	IEo			0.2	$\mu \mathrm{a}$
Peak Point Emitter Current ( $\mathrm{V}_{\mathrm{Bb}}=25 \mathrm{v}$ )	$\mathrm{I}_{\mathrm{P}}$			6	$\mu \mathrm{a}$
Valley Point Current $\left(\mathrm{V}_{\mathrm{BB}}=20 \mathrm{v}, \mathrm{R}_{\mathrm{B} 2}=100 \Omega\right)$	Iv		8		ma
Base-One Peak Pulse Voltage	Vob1	3	3.0		volts

## NOTES:

1. The intrinsic standoff ration, $\eta$, is essentially constant with temperature and interbase voltage. $\eta$ is defined by the equation:

$$
\mathrm{V}_{\mathrm{L}}=\eta \mathrm{V}_{\mathrm{LB}}+\frac{200}{\mathrm{~T}_{\mathrm{J}}}
$$

Where $\quad \mathrm{V}_{\mathrm{P}}=$ Peak point emitter voltage
$V_{B B}=$ interbase voltage
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature (Degrees Kelvin)
2. The interbase resistance is nearly ohmic and increases with temperature in a well defined manner. The temperature coefficient at $25^{\circ} \mathrm{C}$ is approximately $0.8 \% /{ }^{\circ} \mathrm{C}$.
3. The base-one peak pulse voltage is measured in the circuit below. This specification on the 2N1671A is used to ensure a minimum pulse amplitude for applications in SCR firing circuits and other types of pulse
 circuits.

## TUNNEL DIODES

The 1N2939 is a germanium tunnel diode which makes use of the quantum mechanical tunneling phenomenon thereby attaining a unique negative conductance characteristic and very high frequency performance. The

## 1N2939

Outline Drawing No. 9 1N2939 is designed for low level switching and small signal applications with frequency capabilities up to 2.2 Kmc . It features a closely controlled peak point current, good temperature stability and extreme resistance to nuclear radiation.


ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltoge

Forward Voltage*
Reverse Voltage*
Power

Dissipation**	Pc	50	maw
Temperoture			
Storage	$\mathrm{TsTG}^{*}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Junction	$\mathrm{T}_{J}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)\left(1 / 8^{\prime \prime}\right.$ Leads $)$

		Min.	Typ.	Max.	
Peak Point Current	$\mathrm{I}_{\mathrm{p}}$	0.9	1.0	1.1	ma
Valley Point Current	$\mathrm{I}_{V}$		0.10	0.14	ma
Peak Point Voltage	$V_{p}$		55		mv
Valley Point Voltage	$V_{v}$		350		mv
Forward Peak Point Current Voltage	Vip		500		mv
Peak Point Current to Valley					
Point Current Ratio	$\mathrm{I}_{\mathrm{p}} / \mathrm{IV}_{V}$		10		
Negative Conductance	-g		6.6		mho
Total Capacity	C		5.0	15	$\mu \mu \mathrm{fd}$
Series Inductance	Ls***				henry
Series Resistance	Rs		1.5		ohm

[^16]1N2940
Outline Drawing No. 9

The 1N2940 is a germanium tunnel diode which makes use of the quantum mechanical tunneling phenomenon thereby attaining a unique negative conductance characteristic and very high frequency performance. The 1N2940 is designed for low level switching and small signal applications with frequency capabilities up to 2.2 Kmc . It features a closely controlled peak point current, good temperature stability and extreme resistance to nuclear radiation.


SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Forward Voltage*
Reverse Voltage*

## Power

Dissipation**	Pc	50	mw
Temperature			
Storage	Tswa	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Junction	$\mathrm{T}_{\mathrm{J}}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: ( $\left.25^{\circ} \mathrm{C}\right)\left(1 / 8^{\prime \prime}\right.$ Leads)

		Min.	Typ.	Max.	
Peak Point Current	$\mathrm{I}_{\mathrm{p}}$	0.9	1.0	1.1	ma
Valley Point Current	Iv			0.22	ma
Peak Point Voltage	$V_{0}$		55		mv
Valley Point Voltage	$V_{v}$		350		mv
Forward Peak Point Current Voltage	Vfp		500		my
Peak Point Current to Valley Point Current Ratio	$\mathrm{I}_{\mathbf{p}} / \mathrm{I}_{\mathbf{v}}$		8		
Negative Conductance	-g		6.6		mho
Total Capacity	C		5.0	15	$\mu \mu \mathrm{fd}$
Series Inductance	Ls****				henry
Series Resistance	Rs		1.5		ohm

*Limited by dissipation.
**Derate $.66 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
${ }^{* * *}$ Inductance will vary ( 2 to 12 ) $\times 10^{-9}$ henry depending on lead lêngth.

The 1 N 2941 is a germanium tunnel diode which makes use of the quantum mechanical tunneling phenomenon thereby attaining a unique negative conductance characteristic and very high frequency performance. The

## 1N2941

Outline Drawing No. 9 1N2941 is designed for low level switching and small signal applications. It features a closely controlled peak point current, good temperature stability and extreme resistance to nuclear radiation.


SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$

## Voltage

Forward Voltage*
Reverse Voltage*

## Power

Dissipation**	Pc	50	mw
Temperature			
Storage	TsTG	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Junction	T I	-55 to +100	${ }^{\circ} \mathrm{C}$


		Min.	Typ.	Max.	
Peak Point Current	$\mathrm{I}_{\mathrm{p}}$	4.2	4.7	5.2	má
Valley Point Current	Iv		0.6	1.04	ma
Peak Point Voltage	$V_{p}$		55		mv
Valley Point Voltage	$\mathrm{V}_{V}$		350		mv
Forward Peak Point Current Voltage	Vep		500		mv
Peak Point Current to Valley Point Current Ratio	$\mathrm{Ip}_{p} / \mathrm{I}_{\mathbf{v}}$		8		mv
Negative Conductance	-g		30		
Total Capacity	C		25	60	mho   $\mu \mu \mathrm{fd}$
Series Inductance	$\mathrm{Ls}^{* * *}$			6	henry
Series Resistance	$\mathrm{R}_{\text {s }}$		0.5		ohm

*Limited by dissipation.
${ }^{* *}$ Derate $.66 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
***Inductance will vary ( 2 to 12 ) $\times 10^{-9}$ heary depending on lead length.

1N2969
Outline Drawing No. 9

The 1N2969 is a germanium tunnel diode which makes use of the quantum mechanical tunneling phenomenon thereby attaining a unique negative conductance characteristic and very high frequency performance. The 1N2969 is designed for low level switching and small signal applications with frequency capabilities up to 2.5 Kmc . It features a closely controlled peak point current, good temperature stability and extreme resistance to nuclear radiation.


## SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS: $\left(25^{\circ} \mathrm{C}\right)$
Voltage
Forward Voltage*
Reverse Voltage*

## Power

Dissipation**	Pc	50	mw
Temperature			
Storage	$\mathrm{TSTG}^{*}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Junction	Ts	-55 to +100	${ }^{\circ} \mathrm{C}$

ELĖCTRICAL CHARACTERISTICS: $\left(25^{\circ} \mathrm{C}\right)\left(1 / 8^{\prime \prime}\right.$ Leads)

-		Min.	Typ.	Max.	
Peak Point Current	$\mathrm{I}_{\mathrm{p}}$	2.0	2.2	2.4	ma
Valley Point Current	Iv		. 285	. 480	ma
Peak Point Voltage	$\mathrm{V}_{\mathrm{p}}$		55		mv
Valley Point Voltage	$\mathrm{V}_{\mathrm{r}}$		350		mv
Forward Peak Point Current Voltage	$V_{f p}$		500		mv
Peak Point Current to Valley Point Current Ratio	$\mathrm{I}_{\mathrm{p}} / \mathrm{I}_{\mathrm{v}}$		8		
Negative Conductance	-g				mho
Total Capacity	C		8	30	$\mu \mu \mathrm{fd}$
Series Inductance	$\mathrm{L}_{5}$ ***				henry
Series Resistance	Rs		1.0		ohm.

[^17]REGISTERED JEDEC TRANSISTOR TYPES


JEDEC No.	Type	Mfr.	Use	$\begin{gathered} \text { Dwg. } \\ \text { No. } \end{gathered}$	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	$\begin{aligned} & \text { Dwg. } \\ & \text { No. } \end{aligned}$
					Pc mw   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{B V}_{\mathrm{CE}} \\ & \mathbf{B V}_{\mathrm{CB}}{ }^{*} \end{aligned}$	Io ma	Ti ${ }^{\circ} \mathrm{C}$	MIN. $h_{\text {fo-hFR }}$	@ Ie ma	MIN. fintome	MIN.   $\mathrm{G}_{\mathrm{e}} \mathrm{db}$	MAX.   $\operatorname{ICO}(\mu \mathrm{a})$	@ $\mathbf{V}_{\text {cb }}$		
2N59C	PNP	W	AF Out	${ }_{\text {C }}$	180 180	$-60^{*}$ -25	-200 -200	85 85	$90 \mathrm{~T}^{*}$ $65 \mathrm{~T}^{*}$			$\begin{aligned} & 35 \mathrm{~T} \\ & 35 \mathrm{~T} \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	-20 -20		
${ }_{2} \mathrm{~N}^{\mathrm{N} 60}$	PNP	$\stackrel{\text { W }}{\text { W }}$	AF Out	${ }_{C}^{C}$	180 180	$-25^{*}$ -40	-200 -200	85 85	$65 \mathrm{~T}^{*}$	$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$		$\begin{aligned} & 35 \mathrm{~T} \\ & 35 \mathrm{~T} \end{aligned}$	$\begin{array}{r} -15 \\ -15 \\ \hline \end{array}$	-20 -20	$\begin{aligned} & 2 \mathrm{~N} 321 \\ & 2 \mathrm{~N} 321 \end{aligned}$	4
2 N 60 A	PNP	W			180	-40*	--200					35 T	-15	$-20$		
$\begin{aligned} & 2 \mathrm{~N} 60 \mathrm{~B} \\ & 2 \mathrm{~N} 60 \mathrm{C} \\ & 2 \mathrm{~N} 61 \end{aligned}$	PNP	W	AF Out	C	180 180	$-50^{*}$ -60	-200 -200	85 85	${ }_{655} 6 \mathrm{~T}^{*}$	-100 100		${ }^{35 \mathrm{~T}}$	-15	-20 -20		
	PNP	W	AF Out	${ }_{C}$	180	- $25 *$	-200	85	45 T *	100		35 T	-15	-20	2N320	4
$\begin{aligned} & 2 \mathrm{~N} 61 \mathrm{~A} \\ & 2 \mathrm{~N} 61 \mathrm{~B} \\ & 2 \mathrm{~N} 61 \mathrm{C} \end{aligned}$	PNP	W	AF Out	C	180	-40*	-200	85	45 T *	100		${ }^{35 T}$	-15	-20	2N320	4
	PNP	W	AF Out	C	180	$-50^{*}$	-200	85	${ }^{45 \mathrm{~T}}{ }^{*}$	100		${ }^{355}$	-15	-20 -20		
	PNP	W	AF Out	C	180	-60*	-200	85	45 T *	100		35 T	-15			
$\begin{aligned} & \text { 2N62 } \\ & \text { 2N63 } \\ & \text { 2N64 } \end{aligned}$	PNP	Phil	Obsolete	D	50	-35*	-20 -10		$.975 \alpha^{\prime} \mathrm{T}$ 22 T				-6	-6	2N107	1
	PNP	Ray	${ }^{\text {AF }}$	A	100	-22 -15	-10 -10	${ }_{85}^{85}$	45 T	1		417	-6	-6	2N322	4
	PNP	Ray	${ }^{\text {AF }}$	A	100	-12	-10			1		92 T	-6	-6	2 N 323	4
$\begin{aligned} & \text { 2N65 } \\ & \text { 2N66 } \\ & \text { 2N6? } \end{aligned}$	PNP	Ray	${ }_{\text {AF }}$	A	100	-12 -40	$\begin{array}{r} -10 \\ .8 \mathrm{~A} \end{array}$	88	90 T	1	2		$-300$	$-40$		
	PNP	WE	Obsolete Pwr	A	${ }_{2} \mathbf{W}$	-40 *	-1.5A	70				23T				
	PNP	Syl		A	2 W	-25*	$-1.5 \mathrm{~A}$						- 150 ma			
$\begin{aligned} & \text { 2N68 } \\ & \text { 2N71 } \\ & \text { 2N } 72 \end{aligned}$	PNP	$\stackrel{\text { W }}{\text { RCA }}$	Pwr Obsolete		50	-50 -40	-250 -20	55			2.5					
	Pt	RCA	Obsolete												2N1614	
$\begin{aligned} & \text { 2N73 } \\ & \text { 2N74 } \\ & \text { 2N75 } \end{aligned}$	PNP	W	Sw		200	-50									2N1614	1
	PNP	W	Sw		200 200	-50 -20									2N1614	,
	PNP	W	Sw		200									-20	2N322	4
$\begin{aligned} & \text { 2N76 } \\ & \text { 2N77 } \\ & \text { 2N78 } \end{aligned}$	PNP	GE	Obsolete		50	$-20^{*}$ -25	-10 -15	60 85			. 70	44 T	-10	-12	2N324	4
	PNP	RCA	${ }_{\text {AF }}^{\text {AF }}$ / ${ }^{\text {c }}$	C 3	65	${ }_{-15}$	- 20	85	45*	1	5	27	3	15	2N78	3
	NPN	GE	RF/IF		65	15	20			1			3	15	2N78A	3
$\begin{aligned} & \text { 2N78A } \\ & 2 \mathrm{~N} 79 \\ & \text { 2N80 } \end{aligned}$	NPN	GE	RF/IF	3	65	20 -30	20 -50	85	46		. 7	44			2N321	4
	PNP	RCA	${ }_{\text {AF }}^{\text {AF }}$	C	35 50	-30	-50 -8	100	80 T				$-30$	-10	2N508	2
	PNP	CBS	AF		50								-16	-30	2N1098	
$\begin{aligned} & \text { 2N81 } \\ & \text { 2N82 } \\ & \text { 2N94 } \end{aligned}$	PNP	GE	Obsolete			-20			20	1			$-16$	$-30$	2N1098	2
	PNP	CBS		A	35 at ${ }_{30}{ }^{\circ} \mathrm{C}$	-20	-15	15		. 5	3 T	$25 T$	3	10	2N634	
	NPN	Syl	RF	A						. 5	6 T	25 T	3	10	2N634	2
$\begin{aligned} & \text { 2N94A } \\ & \text { 2N95 } \\ & \text { 2N96 } \end{aligned}$	NPN	$\stackrel{\text { Syl }}{\text { RCA }}$	${ }_{\text {Owr }}^{\text {Obsolete }}$		50	$-30$	-20	55	35		. 5					
	PNP											38 T	10	4.5	2N169 15V	
$\begin{aligned} & \text { 2N97 } \\ & 2 \mathrm{~N} 97 \mathrm{~A} \\ & 2 \mathrm{~N} 98 \end{aligned}$	NPN	GP							. $85 \alpha$		. 5	38 T	5	30	2N169A 25 V	3
	NPN	GP	IF	A	50 50	40	10	${ }_{75}$	. 950		. 8	47 T	10	4.5	2N169A 25 V	3
	NPN	GP	IF	A	50	40	10					47 T	10	4.5	2N169A 25 V	3
$\begin{aligned} & \text { 2N98A } \\ & \text { 2N99 } \\ & \text { 2N100 } \end{aligned}$	NPN	GP	IF	A	50	40	10		${ }^{.96 \alpha}$		2.0	47 T	10	4.5	2N169A 25 V	3
	NPN	GP	IF	A	50 25		10	75 50			2.5	53 T	10	4.5	2N170 6V	
	NPN	GP	IF	A		25	5									
$\begin{aligned} & \text { 2N101 } \\ & \text { 2N102 } \\ & \text { 2N103 } \end{aligned}$	PNP	Syl	Pwr	A	1W	-25*		70				23 T				
	NPN	Syl	${ }_{\text {Pwr }}$	A	$5_{50}{ }^{\text {W }}$	${ }_{35}{ }^{25}$	1.5	70	.60\%		.75T		50	35	2 N 1706 V	3
	NPN	GP	$1 F$	A	50											


$\begin{gathered} \text { JEDEC } \\ \text { No. } \end{gathered}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE	Dwg. No.
					$\mathbf{P C m w}_{\mathrm{C}}$   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & B V_{C E} \\ & \mathbf{B V}_{\mathrm{CB}} \end{aligned}$	Ic ma	$\mathbf{T} \widetilde{\sim}^{\circ} \mathbf{C}$	MIN.   $h_{f e-h F E *}{ }^{*}$   @ Icma	MIN.   fufb me	MIN.   $\mathrm{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   lCo ( $\mu \mathrm{a}$ )	@ $\mathrm{V}_{\mathrm{CB}}$		
2N104	PNP	RCA	AF	A	150	$-30$	$-50$	85	44	7	33 T	$-10$	$-12$	2 N 1415	2
2N105	PNP	RCA	AF	C	35	-25	-15	85	55 . 7	. 75	42	-5	-12	2N321	4
2N106	PNP	Ray	AF	A	100	-6	-10	85	25	. 8	28	-12	-6	2N1097	2
2N107	PNP	GE	AF	1	50	-6	-10	60	20	6		-10	$-12$	2N107	1
2N108	PNP	CBS	AF Out	B	50	-20	-15							2N322	4
2N109	PNP	RCA	AF	A	150	-25	$-70$	85	75*		30T			2N320	4
2N110	Pt	WE	Sw	A	200	-50*	-50	85	32	1.5					
2N1I1	PNP	Ray	IF	A	150	$-15$	200	85	15	3 T	33 T	-5	$-12$	2 N 394	2
2N1I1A	PNP	Ray	IF	A	150	-15	-200	85	15	3 T	33 T	-5	-12	2 N 394	2
2N112	PNP	Ray	IF	A	150	-15	$-200$	85	15	5 T	35T	-5	$-12$	2N394	2
2N112A	PNP	Ray	IF	A	150	-15	$-200$	85	15	5 T	35T	-5	$-12$	2 N 394	2
2N113	PNP	Ray	RF	A	100	-6	-5	85	45 T	10 T	33 T			2 N 394	2
2N114	PNP	Ray	RF Sw	A	100	-6	-5	85	65 T	20 T				2N394	2
2N117	NPN	TI	Si ( $=903$ )	A	150	$30^{*}$	25	150	.90~ 1	1		10	30	2 N 332	4
2N118	NPN	TI	Si (=904)	A	150	30*	25	150	.950 1	2		10	30	2 N 333	4
2N119	NPN	TI	Si AF	A	150	30*	25	150	.974 1	2		10	30	2N335	4
2N120	NPN	TI	Si AF	A	150	45*	25	175	.987 1	7 T		2	30		
2N122	NPN	TI	Pwi		8.75W		140 A	150	3100			10 ma	50		
2N123	PNP	GE	Sw	7	150	-15	-125	85	$30^{*}-10$	5		-6	$-20$	2N123	7
2N124	NPN	TI	Sw	A	50	10*	8	75	12* 5	3		2	5	2 N 293	3
2N125	NPN	TI	Sw	A	50	10*	8	75	24* 5	5		2	5	2N167	3
2N126	NPN	TI	Sw	A	50	10*	8	75	48* 5	5		2	5	2N167	3
2N127	NPN	TI	Sw	A	50	10*	8	75	$100^{*} 5$	5		2	5	2N167	3
2N128	PNP	Phil	SB Osc	D	30	-4.5	-5	85	.95 . 5	$45 \mathrm{fmax}^{\text {max }}$		-3	-5		
2N129	PNP	Phil	SB RF	D	30	-4.5	-5	85	. 92 . 5	$30 \mathrm{f}_{\text {max }}$		$-3$	-5		
2N130	PNP	Ray	AF	B	85	-22	-10	85	22 T		39 T			2N1413	2
2N130A	PNP	Ray	AF	B	100	-40	$-100$	85	$14 \times 1$	. 7 T	40 T	-15	-20	2N1413	2
2N131	PNP	Ray	AF	B	85	-15	-10	85	45 T		41 T			2N1413	2
2N131A	PNP	Ray	AF	B	100	-30	$-100$	85	27 l	. 8 T	42 T	$-15$	-20	2N1413	2
2N132	PNP	Ray	AF	B	85	-12	-10	85	90 T		42 T			2N321	4
2NI32A	PNP	Ray	AF	B	100	-20	$-100$	85	56 1	$1 T$	44 T	-15	$-20$	2N321	4
2N133	PNP	Ray	$\mathrm{AF}^{\text {F }}$	B	85	-15	$-10$	85	25		36 T	-12	-15	2N1414	3
2N133A	PNP	Ray	AF	B	100	-20	$-100$	85	50 T 1	.8T	38 T	-15	$-20$	2N1414	3
2N135	PNP	GE	Obsolete	7	100	- 12	$-50$	85	20 T	4.5 T	29 T			2N394	2
2N136	PNP	GE	Obsolete	7	100	-12	$-50$	85	40 T	6.5 T	31 T			2N394:	2
2N137	PNP	GE	Obsolete	7	100	-6	$-50$	85	60 T	10T	33 T			2N394	2
2N138	PNP	Ray	AF Out	B	50	-12	$-20$	50	140 T		30 T			2N508	2
2N138A	PNP	Ray	AF Out	B	150	-30	$-100$	85			29 T			2N50	
2N138B	PNP	Ray	AF Out	B	100	-30	$-100$	85			29 T				
2N139	PNP	RCA	IF	A	80	-16	-15	85	48 1	6.8	30				2
2N140	PNP	RCA	Osc	A	35	-16	-15	85	45 . 4	7	27	-6	-12	$2 N 394$	2
2N141	PNP	Syl	Pwr		4W	-30	$-.8 \mathrm{~A}$	65	.975 T T 50	.4T	18 T	-100	$\begin{array}{r}120 \\ \hline\end{array}$	2N394	



JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{B V}_{\mathrm{CE}} \\ & \mathbf{B V}_{\mathrm{CB}} \end{aligned}$	It ma	$\mathrm{TJ}^{\circ} \mathrm{C}$	$\underset{h_{\mathrm{re}}-\mathrm{hFE}^{*}}{\operatorname{MIN}} @ \mathrm{Ic} \text { ma }$		MIN. fheb me	MIN. $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	AAX.   Ico $(\mu \mathrm{a})$	@ Vcb		
2N180	PNP	CBS	$\mathrm{AF}_{7}$ Out	B	150	-30	-25	75	60 T		. 7	37T			2N321	4
2 N 181	PNP	CBS	AFOut	B	250	-30	-38	75	60 T		. 7	34 T			2N321	4
2N182	NPN	CBS	Sw	B	100	25*	10	85	25T*		2.5		3 T	10	2N634	2
2 N 183	NPN	CBS	Sw	H	100	25*	10	85	$50 \mathrm{~T}^{*}$		5		3 T	10	${ }_{2} \mathrm{~N} 634$	2
2N184	NPN	CBS	Sw	B	100	25*	10	85	100 ${ }^{*}$		10		3 T	10	2N635	2
2N185	PNP	TI	AF Out	A	150	-20	-150	75	35	$-100$		26	15	-20	2N320	4
2N186	PNP	GE	Obsolete	1	100	-25	200	85	24T*	-100	.8T	28	-16	-25	2N186A	1
2 N 186 A	PNP	GE	AF Out	1	200	-25	200	85	$24 \mathrm{~T}^{*}$	-100	.8T	28	-16	-25	2N186A	1
2N187	PNP	GE	Obsolete	1	100	-25	200	85	36T*	$-100$	$1 T$	30	-16	-25	2N187A	1
2N187A	PNP	GE	AF Out	1	200	-25	200	85	36T*	-100	$1 T$	30	-16	-25	2N187A	1
2N188	PNP	( CE	Obsolete	1	100	-25	$-200$	85	54T*	100	1.2 T	32	-16	-25	2N188A	1
2N188A	PNP	(iE	AF Out	1	200	-25	-200	85	54T*	100	1.2 T	32	-16	-25	2N188A	1
2N189	PNP	GE	AF	1	75	-25	-50	85	24T*	1	. 8 T	37	$-16$	-25	2N189	1
2N190	PNP	GE	AF	1	75	-25	-50	85	$36{ }^{*}$	1	1.0 T	39	-16	-25	2N190	1
2N191	PNP	GE	AF	1	75	-25	-50	85	54T*	1	1.2 T	41	-16	-25	2N191	1
2 N 192	PNP	GE	$\mathrm{AF}^{\text {r }}$	1	75	-25	-50	85	75T*	1	1.5 T	43	$-16$	-25	2N192	1
2N193	NPN	Syl	Osc	A	50	15		75	3.8	1	2		40	15	2N1086	3
2N194	NPN	Syl	Osc	A	50	15		75	4.8	1	2	15T	40	15	2N1086	3
2N194A	NPN	Syl	Ose	A	50	20	100	75	5	1	2	20	50	18	2N1087	3
2N206	PNP	RCA	AF	A	75	-30	$-50$	85	47 T		. 8				${ }_{2} \mathrm{~N} 1414$	2
2N207	PNP	Phil	AF	D	50	-12	-20	65	35	1	2 T		-15	-12	2N1415	2
2N207A	PNP	Phil	AF	D	50	-12	$-20$	65	35	1	2 T		-15	-12	2N1415	2
2N207B	PNP	Phil	AF	D	50	-12	-20	65	35	1	2 T		-15	-12	2 N 1415	2
2N211	NPN	Syl	Osc	A	50	10	50	75	3.8	1	2		20	10	2N293	3
2N212	NPN	Syl	Osc	A	50	10	50	75	7	1	4	22 T	20	10	2N293	3
2 N 213	NPN	Syl	AF	A	50	25	100	75	70	1		39	200	40	2N169A	3
2N213A	NPN	Syl	AF	A	150	25	100	85	100	1	10 Ke	38	50	20	None	
2N214	NPN	Syl	AF Out	A	125	25	75	75	50	35	. 6	26	200	40	None	
2 N 215	PNP	RCA	$\mathrm{AF}^{\mathbf{2}}$	A	150	-30	-50	85	44		. 7	33 T	$-10$	-12	2N1415	${ }^{2}$
2N216	NPN	Syl	IF	A	50	15	50	75	3.5	1	2	26 T	40	15	2N292	3
2N217	PNp	RCA	AF	A	150	-25	-70	85	75*			30 T			${ }^{2} \mathrm{~N} 321$	
2N218	PNP	RCA	IF	A	80	-16	-15	85	48	1	6.8	30	-6	- 12	2N394	2
2N219	PNP	RCA	Osc	A	80	-16	-15	85	75	4	10	32	$-6$	-12	2 N 344	2
2N 220	PNP	RCA	AF	A	50	-10	-2	85	65		. 8	43			2N323	4
2N223	PNP	Phil	AF	D	100	-18	$-150$	65	39	$-2$	. 6 T		-20	-9	2N323	4
2N224	PNP	Phil	AF Out	D	250	-25*	150	75	60*	$-100$	. 5 T		-25	$-12$	2N321	4
2N225	PNP	Phil	AF Out	D	250	-25*	150	75	60 *	-100	.5T		-25	-12	2N321	4
2N226	PNP	Phil	AF Out	D	250	-30*	150	75	35*	$-100$	.4T		-25	-30	2N321	4
2N227	PNP	Phil	AF Out	D	250	$-30 *$	150	75	35*	$-100$	. 4 T		-25	-30	2N321	4
2 N 228	NPN	Syl	AF Out	A	50	25	50	75	50	35	. 6	23	200	40	2N169	3
2 N 229	NPN	Syl	${ }_{\text {AF }}$	A	50	12	40	75	9\%	1	. 55		200	5	2N169	3
2N231	PNP	Phil	SB RF	D	9	-4.5	-3	55	19	-. 5	20 fos		-3	-5		



JEDEC No.	Type	Mfr	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE	Dwg. No.
					Pc mw   @ $25^{\circ} \mathrm{C}$	$\mathrm{BVCE}^{*}$   $\mathrm{BV}_{\mathrm{CB}}{ }^{*}$	Icma	$\mathrm{Ts}^{\circ} \mathrm{C}$	MIN.   $h_{\text {fe-hFE }}{ }^{*}$   @ Icma	MIN.   fheb me	MIN.   Gedb	MAX.   Ico ( $\mu \mathrm{a}$ )	@ V $\mathrm{V}_{\text {cb }}$		
2N271	PNP	Ray	RF	A	150	-10	-200	85	$45 \mathrm{~T} \quad 1$	10 T	29 T	-5	-12		
2N271A	PNP	Ray	IF	A	150	$-10$	$-200$	85	$45 \mathrm{~T} \quad 1$.	10 T	39 T	-5	-12		
2N272	PNP	Ray	AF	A	150	-24	$-100$	85	60	1 T	12 T	-6T	-20	2N324	4
2N 273	PNP	Ray	RF	A	150	$-30$	-100	85	$10 \quad 50$		29	-6T	-20	2N1098	2
2 N 274	PNP	RCA	Drift RF	D	80	-12	-10	85	$60 \mathrm{~T} \quad 1$	30 T	45 T	$-20$	-12		
2N277	PNP	Dico	$\mathrm{P}_{\text {wr }}$		55W	-40	12A	95	$85 \mathrm{~T} \quad 1.2 \mathrm{~A}$	.5T	34 T	-. 5 ma T	$-30$		
2N278	PNP	Dlco	Pwr		55 W	$-50$	12A	95	$85 \mathrm{~T} \quad 1.2 \mathrm{~A}$	. 5 T	34 T	$-.5 \mathrm{ma} \mathrm{T}$	-20		
2 N 285	PNP	Bendix	Pwr		25 W	-40	3A	95		6 Kc	38	-1 ma	-25		
2N285A	PNP	Bendix	Pwr		25 W	-40	3A	95		6 Kc	38	-1 ma	-25		
2 N 290	PNP	Dlco	Pwr		55 W	-70	$-12 \mathrm{~A}$	95	72T* 1.2 A	.4T	37 T	-1 ma T	-60		
2 N 291	PNP	TI	${ }_{\text {AF }}$	A	180	-25	$-200$	85	$30^{*} 100$		31	-25	-25	2N320	4
2N292	NPN	GE	IF	3	65	15	$-20$	85	8 1	5T	25.5	5	15	2N292	3
2N2933	NPN	GE	IF	3	65	15	$-20$	85	8 - 1	8 T	28	5	15	2N293	3
2N297	PNP	Cle	Pwr		35W	-50	$-5 \mathrm{~A}$	95	$40^{*}$. 5	5 Kc		3 ma	-60		
2N297A	PNP	Cle	Pwr		35W	-50	-5A	95	$40 *$. 5	5 Kc		3 ma	-60		
2N299	PNP	Phil	SB RF	E	20	$-4.5$	-5	85		90 fos	20	-3	-5		
2N300	PNP	Phil	SB RF	E	20	$-4.5$	-5	85	11 * . 5	85 fos		-3	-5		
2 N 301	PNiP	RCA	Pwr		11W	-20	$-1.5 \mathrm{~A}$	91	70T* 1A		33 T	$-3 \mathrm{ma}$	$-30$		
${ }_{2} \mathrm{~N} 301 \mathrm{~A}$	PNP	RCA	Pwr		11W	-30	$-1.5 \mathrm{~A}$	91	70T* 1A		33 T	-3 ma	-30		
${ }_{2} \mathrm{~N} 302$	PNP	Ray	Obsolete	A	150	$-10$	$-200$	85	45 T	7		-1T	-. 12	2N186A	1
2 N 303	PNP	Ray	Obsolete	A	150	-10	-200	85	75 T	14		-1T	$-.12$	2N186A	1
2 N 306	NPN	Syl	AF	A	50	15		75	2511	. 6	34	50	20	2N292	3
2 N 307	PNP	Syl	${ }^{\text {Pwr }}$		10W	$-35$	-1A	75	$20 \quad 200$	3 Kc		15 ma	$-35$		
2N307A	PNP	Syl	Pwr		17 W	-35	$-2 \mathrm{~A}$	75	20.200	3.5 Kc	22	7 raa	-35		
${ }_{2} \mathrm{~N} 308$	PNP	TI	IF	A	30	$-20$	-5	55			39	-10	-9		
2 N 309	PNP	TI	IF	A	30	$-20$	-5	55			41	$-10$	-9		
2 N 310	PNP	TI	IF	A	30	-30	$-5$	55	28 T		37 T	$-10$	-9		
2 N 311	PNP	Motor	Sw	C	75	-15		85	25			-60	-15	2N123	7
2 N 312	NPN	Motor	Sw	C	75	15		85	25			60	15	2N167	3
2 N 313	NPN	GE	Obsolete		65	15	20	85	25	5	36 max			Use 2N292	3
2N314	NPN	GE	Obsolete		65	15	20	85	25	8	39 max			Use 2N293	
${ }_{2} \mathrm{~N} 315$	PNP	GT	Sw	C	100	-15	$-200$	85	15100	${ }^{51} \mathrm{~T}$		-2	-5	2N396	2
2 N 316	PNP	GT	Sw	C	100	$-10$	$-200$	85	$20 \quad 200$	12T		-2	-5	2N397	2
2N317	PNP	GT	Sw	C	100	-6	$-200$	85	20400	20 T		-2	-5		
2N318	PNP	G'T	Photo	A	50	-12	$-20$			${ }^{75 \mathrm{~T}}$					
2N319	PNP	GE	AF	4	225	$-20$	-200	85	34T* -20	2 T		-16	$-25$	2N319.	4
2N320	PNP	GE	AF	4	225	-20	-200	85	50T* - 20	2.5 T		-16	-25	2N320	4
2 N 21	PNP	GE	AF	4	225	-20	-200	85	$80 \mathrm{~T} *-20$	3.0 T		-16	-25	2 N 321	4
2N322	PNP	GE	AF	4	140	-16	$-100$	60	$45 \mathrm{~T}-20$	2 T		-16	-16	2N322	4
2N323:	PNP	GE	AF	4	140	-16	$-100$	60	$68 \mathrm{~T}-20$	2.5 T		-16	-16	${ }_{2} \mathrm{~N} 323$	4
2 N 324	PNP	${ }_{\text {GE }}$	${ }_{\text {AF }}$	4	140	$-16$	$-100$	60	${ }_{30 *}^{85 \mathrm{~T}}-20$	3.0 T		$-16$	$-16$	2N324	,
2N325	PNP	Syl	Pwr		12W	-35	$-2 \mathrm{~A}$	85	$30^{*}-500$	. 15		$-500$	-30		


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	BVee BVCB*	Ioma	T3 ${ }^{\circ} \mathrm{C}$	MIN.   $h_{\text {fe-hre }}{ }^{*}$	@ Icma	MIN. fhfb mic	MIN. $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   ICo( $\mu \mathrm{a})$	@ $\mathbf{V}_{\mathrm{CB}}$		
2N326	NPN	Syl	Pwr		7W	35	2A	85	30*	500	. 15		500	30		
2N327	PNP	Ray	Si AF	C	335	$-50^{*}$	$-100$	160	9	1	.3T	30	-. 1	$-30$		
2N327A	PNP	Ray	Si AF	C	350	-50*	- 100	160	9*	. 1	.2T		-. 1	-30		
2N328	PNP	Ray	$\mathrm{Si} A F$	C	335	-35*	$-100$	160	18	1	.35T	32	-. 1	$-30$		
2N328A	PNP	Ray	Si AF	C	350	$-50 *$	-100	160	18*	1	. 3 T		-. 1	$-30$		
2N329	PNP	Ray	Si AF	C	335	$-30 *$	-100	160	36	I	.6T	34	$-.1$	$-30$		
2N329A	PNP	Ray	Si AF	C	350	-50*	-100	160	36*	1	. 5 T		$-.1$	-30		
2N330	PNP	Ray	Si AF	C	335	-45*	-50	160	9	1	. 5	30	-. 1	$-30$		
2N330A	PNP	Ray	Si AF	C	350	-50 *	-100	160	25 T	1	. 5	34 T	-. 1	$-30$		
2 N 331	PNP	RCA	AF	C	200	$-30^{*}$	-200	85	50 T			44 T	-16	-30	2 NI415	2
2N332	NPN	TI-GE	Si AF	4	150	45*	25	200	9	1	107	14 T	2	30	2N332	4
2 N 332 A	NPN	CE	Si AF	4	500	45	25	175	9		2.5	11	. 500	30	2 N 332 A	4
2N333	NPN	TI-GE	Si AF	4	150	45*	25	200	18	1	12*	14 T	2	30	2 N 333	1
2N333A	NPN	GF	Si AF	4	500	45	25	175	18		2.5	11	. 500	30	2 N 333 A	4
2 N 334	NPN	TI-GE	Si AF	4	150	45*	25	200	18	1	8	13T	2	30	$2 \mathrm{~N} 3: 34$	4
2N334A	NPN	GE	Si AF	4	500	45	25	175	18		8.0	12	. 500	30	2N334A	4
2 N 335	NPN	TI-GE	Si AF	4	150	45*	25	200	37	1	14*	13T	$\stackrel{2}{2}$	30	2N335	4
2N335A	NPN	GE	Si AF	4	500	45	25	175	37		2.5	12	. 500	30	2N335A	4
2N335B	NIPN	GE	Si AF	4	500	60	25	175	37		2.5	12T	. 500	30	2N3.3513	4
2 N 336	NPN	TI-GE	Si AF	4	150	4.5*	25	200	76	1	15*	12 T	${ }^{2}$	30	2N3:36	4
2N336A	NPTV	GE	Si AF	4	500	45	25	175	76		2.5	12	. 500	30	2N336A	4
2N337	NP]	TI-GE	Si AF	4	125	4.5*	20	200	19	1	10		1	20	2N337	4
2N338	NPly	TI-GE	Si AF	4	125	45*	20	200	39	1	20		1	20	2 N 338	4
2N339	NPN	TI	Si AF	C	IW	55*	60	150	. $9 \alpha$	-5		30	,	30		
2N340	NPN	TI	Si AF	C	1W	85*	60	150	.9a	-5		30	1	30		
2 N 341	NPN	TI	Si AF	C	1W	125*	60	150	. $9 \alpha$	- 5		30	1	30		
2N342	NPN	TI	Si AF	C	1W	$60^{*}$	60	150	.9 $\alpha^{\prime}$	$-5$		30	1	30		
2N343	NPN	TI	Si AF	C	1W	60*	60	150	. $966 \alpha$	-5		30	1	30	2N335B	4
2N344	PNP	Phil	RF	D	40	-5	-5	85	11		30 fos		-3	-5		
2N345	PNP	Phil	RF	D	40	-5	-5	85	25		30 fos		$-3$	-5		
2N346	PNP	Phil	RF	D	40	-5	-5	85	10		$60 \mathrm{f}_{0}$		$-3$	-5		
2N350	PNP	Motor	Pwr		10W	$-40^{*}$	$-3 \mathrm{~A}$	90	20*	$-700$	5 Kc	30	$-3 \mathrm{ma}$	-30		
2N351	PNP	Motor	Pwr		10W	-40*	-3A	90	25*	-700	5 Kc	32	$-3 \mathrm{ma}$	-30		
2 N 352	PNP	Phil	Pwr		25W	-40	$-2 \mathrm{~A}$	100	30	-1A	10 Kc	30	-5 ma -	-1@85 ${ }^{\circ} \mathrm{C}$		
2 N 353	PNP	Phil	Pwr		30W	-40	$-2 \mathrm{~A}$	100	40	-1A	7 Kc	30	$-5 \mathrm{ma}-$	$-1 @ 85^{\circ} \mathrm{C}$		
2 N 354	PNP	Phil	Si AF	D	150	-25*	$-50$	140	9	1	8 fos		$-.1$	$-10$		
2N355	PNP	Phil	Si AF	D	150	$-10^{*}$	$-50$	140	9	1	$8 \mathrm{f}_{\text {os }}$		$-.1$	$-10$		
2N356	NPN	GT	Sw	C	120	18	100	85	20	100	3T		5	5	2N634	2
2N357	NPN	GT	Sw	C	120	15	100	85	20	200	6 T		5	5	2 N 634	2
2N358	NPN	GT	Sw	C	120	12*	100	85	20	300	9 T		5	5	2N635	2
2N364	NPN	TI	AF	A	150	30*	50	85	9	-1	1		10	30		
2N365	NPN	TI	AF	A	150	$30^{*}$	50	85	19	-1	1		10	30		


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Affr.	Use	Dwg. No.	MAXIAMM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					$\mathrm{Pa}_{\mathrm{c}} \mathrm{mw}$   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{B} \mathbf{V C H}_{\mathrm{CH}} \\ & \mathbf{B V}_{\mathbf{C B}} \end{aligned}$	lcma	$\mathbf{T} 3^{\circ} \mathrm{C}$	MIN.   $h_{\text {re-hFi }}{ }^{*}$   @ IC ma		MIN.   fhrb me	MIN.   $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   $\operatorname{lco}(\mu a)$	@ $\mathbf{V}_{\text {cb }}$		
2N366	NPN	TI	AF	A	150	$30^{*}$	50	85	49	-1	1		10	30		
2N367	PNP	TI	AF	A	100	$-30^{*}$	-50	75	9	1	. 3		$-30$	$-30$	2N1413	2
2N368	PNP	TI	AF	A	150	$-30^{*}$	-50	75	19	1	. 4		-20	-30	2N1.413	
${ }^{2} \mathrm{~N} 369$	PNP	TI	AF	A	150	$-30^{*}$	-50	75	49	1	. 5		-20	-30	2N1415	2
2 N 370	PNP	RCA	Drift RF	A	80	-24*	-20	85	60 T	1	30 T	31 M	-10	-12	2N1415	2
2N371	PNP	RCA	Drift RF	A	80	-24*	-20	85	.984T	1	30 T	17.6 M	-10	-12		
2N372	PNP	RCA	Drift RF	A	80	-24*	$-20$	85	60 T	1	30 T	12.5 M	-10	-12		
2N373	PNP	RCA	Ose	A	80	$-24 *$	-10	85	60 T	1	30 T	40 T	-16	-12		
2N374	PNP	RCA	Drift Osc	A	80	-24*	-10	85	60 T	1	30 T	40 T	-16	-12		
2N375	PNP	Motor	${ }^{\text {P/wr }}$		45W	$-60$	$-3 \mathrm{~A}$	95	35	1 A	7 Kc		$-3 \mathrm{ma}$	-60		
2N376	PNP	Motor	Pwr		10 W	-40*	$-3 \mathrm{~A}$	90	60 T	1A	5 Kc	35 T	-			
2N377	NPN	Syl-GE	Sw	2	150	20	200	100	$20^{*}$	30	6 T		5	1	2N377	2
$2{ }^{2 N 377 A}$	NPN	Syl	$\bar{S}_{\text {w }}$	E	150	40	200	100	20*	200	6 T		40	40		
2N378	PNP	TS	$\mathrm{P}^{\text {P/wr }}$		50W	-40	-5A	100	15*	2 A	5 Kc		$-500$	-25		
2N379	PNP	TS	Pwr		50 W	-80	$-5 \mathrm{~A}$	100	20*	2A	5 Kc		$-500$	-25		
2N380	PNP	TS	Pwr		${ }_{2} 50 \mathrm{~W}$	-60	$-5 \mathrm{~A}$	100	${ }^{30 *}$	2 A	${ }^{7} \mathrm{Kc}$		$-500$	-25		
2N381	PNP	TS	AF Out	C	200	-25	$-200$	85	50 T	20	1.2 T	31 T	$-10 \mathrm{~T}$	-25	2N320	4
2N382	PNP	TS	AF Out	C	200	-25	$-200$	85	75T	20	1.5 T	33 T	$-10 \mathrm{~T}$	-25	2N321	4
2 N 383	PNP	TS	AF Out	C	200	-25	$-200$	85	100 T	20	1.8 T	35 T	$-10 \mathrm{~T}$	-25	2N321	4
2N384	PNP	RCA	Drift Osc	C	120	-30	$-10$	85	60 T	1.5	100 T	15	-16	-12		
2N385	NPN	Syl	Sw	C	150	25	200	100	30*	30	4		35	25	2N634	2
2 N 386	PNP	Phil	Pwr		12.5 W	$-60$	$-3 \mathrm{~A}$	100	20	$-2.5 \mathrm{~A}$	7 Kc		$-5 \mathrm{ma}$	-60		
2N387	PNP	Phil	Pwr		12.5 W	-80	$-3 \mathrm{~A}$	100	20	$-2.5 \mathrm{~A}$	${ }_{6} \mathrm{Kc}$		-5 ma	-80		
2N388	NPN	Syl-Cx	Sw	2	150	20	200	100	60*	30	5		10	25	2N388	2
2 N 388 A	NPN	Syl	$\mathrm{SW}_{\text {w }}$	E	150	40	200	100	$30^{*}$	200	5		40	40		
2 N 389	NPN	T1	Si Pwr		85W	60		200	12	1A			10 ma 60	(a) $100^{\circ} \mathrm{C}$		
2N392	PNP	Dlc	Pwr		70 W	$-60^{*}$	$-5 \mathrm{~A}$	95	60	3A	6 Kc		$-8 \mathrm{ma}$	-60		
${ }_{2} \mathrm{~N} 393$	PNP	${ }^{\text {Phil }}$	Sw		50	-6	$-50$	85	$20^{*}$	$-50$	40 fos		-5.	-5		
2 N 394	PNP	GE	Sw	2	150	-10	$-200$	85	$20 *$	-10	4		-6	-10	2N391	2
2N395	PNP	GE	Sw	2	200	-15	$-200$	100	20*	$-10$	3		-6	-15	2N395	2
${ }_{2} \mathrm{~N} 396$	PNP	GE	Sw	2	200	-20	-200	100	30*	$-10$	5		-6	-20	2N396	2
2N396A	PNP	re	Sw	2	200	20	200	100	$30^{*}$	10	5		-6	-20	${ }_{2}{ }^{\text {N }} 3964$	2
2N397	PNP	GE	Sw	2	200	-15	-200	100	40*	-10	10		-6	-15	2 N 397	
2N398	PNP	RCA	Sw	C	50	-105	$-110$	85	20*	-5 ma			-14	-2.5	2NI614	1
2N399	PNP	Bendix	Pwr		25W	-40	$-3 \mathrm{~A}$	90			8 Kc	33 T	-1 ma	-25		
2 N 400	INP	Bendix	Pwr		25 W	-40	3.0 A	95	1			40	2 ma	-25		
2 N 40 I	PNP	Bendix	Pwr		25W	$-40$	$-3 \mathrm{~A}$	90			8 Kc	30 T		-25		
2N402	PNP	W	AF	C	180	$-20$	$-150$	85	.96~T	1	.6T	37 T	-15	-20	${ }^{2} \mathrm{~N} 320$	4
2N403	PNP	W	AF	C	180	-20	$-200$	85	. $97 \alpha$ T	1	.85T	32	-15	-20	2N319	4
$2 \mathrm{N404}$	PNP	RCA-GE	Sw	2	120	-24	$-100$	85			4		-5	-12	2 N 404	
2 N 405	PNP	RCA	AF	A	150	-18	-35	85	35T*	1	65T	43T	$-14$	-12	2 N 322	4
2N406	PNP	RCA	AF	C	150	-18	$-35$	85	35T*	1	65 T	43 T	-14	-12	2N322	4


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	BVCe BVCB*	Icma	$\mathbf{T} \mathrm{s}^{\circ} \mathbf{C}$	MIN.   $h_{\text {e }}-\mathrm{hFE}^{*}$   @ Idma		MIN,   fhet me	MIN. Gedb	MAX.   lco( $\mu \mathrm{a}$ )	@ $\mathbf{V C b}^{\text {ch }}$		
2N407	PNP	RCA	AF	A	150	$-18$	$-70$	85	$65 \mathrm{~T} *$	$-50$		33 T	-14	-12	2N323	4
2N408	PNP	RCA	AF	C	150	-18	-70	85	$65 \mathrm{~T} *$	- 50		33T	-14	-12	2N 323	4
2N409	PNP	RCA	IF	A	80	-13	-15	85	.98\% T		6.7 T	38 T	-10	-13	2N394	2
2N410	PNP	RCA	IF	C	80	$-13$	-15	85	. $98 \alpha \mathrm{~T}$	1	6.7'T	38T	$-10$	-13	2N394	2
2 N 411	PNP	RCA	Ose	A	80	-13	-15	85	${ }^{75 \mathrm{~T}}$	. 6		32 T	$-10$	-13	2N394	2
2 N 412	PNP	RCA	Osc	C	80	-13	--15	85	75 T	. 6		32 T	$-10$	-13	2N 394	2
2 N 413	PNP	GE	IF Sw	2	150	-18	-200		30		6T		-5	-12	2 N 413	2
2 N 413 A	PNP	Ray	IF	C	150	-15	$-200$	85	30 T	1	2.5 T	33T	-5	-12	2 N 394	2
2N414	PNP	GE	IF Sw	2	150	-15	$-200$		60		7 T		-5	-12	2N414	2
2 N 414 A	PNP	Ray	IF	C	150	-15	$-200$	85	60 T	I	7 T	35 T	-5	-12	2 N 394	2
2 N 415	PNP	Ray	Osc	C	150	-10	$-200$	85	80 T	1	10 T	30 T	-5	$-12$	2N394	2
2N415A	PNP	Ray	IF	C	150	-10	-200	85	80 T	1	10 T	39 T	-5	-12	2N394	2
2N416	PNP	Ray	RF	C	150	$-12$	$-200$	85	80T	1	10 T	20 T	-5	- I2	2N394	2
2N417	PNP	Ray	RF	C	150	$-10$	$-200$	85	140 T	1	20 T	27 T	-5	-12	2N394	2
2N418	PNP	Bendix	Pwr		25W	80	5A	100	40*	4A	400 Kc		15 ma	-60		
2N420	PNP	Bendix	Pwr		25W	45	5A	100	$40^{*}$	4 A	400 Kc	10 m	10 ma	-25		
2N420A	PNP	Bendix	$\mathrm{P}_{\mathrm{wr}}$		25 W	70	5A	100	40 *	4 A	400 Kc		15 ma	-60		
2N422	PNP	Ray	AF	C	150	-20	$-100$	85	$50^{\prime} \mathrm{T}$	1	. 3 T	38 T	-15	-20	2N320	4
2N425	PNP	Ray	Sw	C	150	-20	$-400$	85	$20^{*}$	1	2.5		-25	$-30$	2N394	2
2N 426	PNP	Ray	Sw	C	150	--18	$-400$	85	$30 *$	,	3		-25	$-30$	2N395	2
2N427	PNP	Ray	Sw	C	150	-15	-400	85	40*	1	5		-25	$-30$	2N396	2
2N428	PNP	Ray	Sw	C	150	$-12$	$-400$	85	$60^{*}$	1	10		-25	$-30$	2N397	2
2 N 438	NPN	CBS	Sw	C	100	25		85	$20 *$	50	2.5		10	-25	2N634	2
2 N 4.38 A	NPN	CBS	Sw	C	150	25		85	20*	50	2.5		10	25	2N634	2
2N439	NPN	CBS	Sw	C	100	20		85	30	50	5		10	25	2N634	2
2 N 439 A	NPN	CBS	Sw	C	150	20		85	$30 *$	50	5		10	25	2 N 634	2
2N440	NPN	CBS	Sw	C	100	15		85	40*	50	10		10	25	2N635	2
2 N 440 A	NPN	CBS	Sw	C	150	15		85	40*	50	10		10	25	2N635	2
2N444	NPN	GT	Sw	C	120	15		85	15T		. 5 T		2 T	10		
2N445	NPN	GT	Sw	C	100	12		85	35 T		2 T		2 T	10		
2 N 446	NPN	GT	Sw	C	100	10		85	60 T		5 T		2 T	10	2N634	
2N447	NPN	GT	Sw	C	100	6		85	125 T		9 T		2 T	10	2N635	2
2N448	NPN	GE	IF	3	65	15	20	85	8*	$l$	5 T	23	5	15	2N448	3
2N449	NPN	GE	IF	3	65	15	20	85	34*	1	87	24.5				
2N450	PNP	GE	Sw	7	150	-12	- -125	85	$30^{*}$	$-10$	${ }_{5}$		-6	-12	2N450	7
2N456	PNP	TI	Pwr		50	$-40$	5A	95	130 ${ }^{*}$	1 A			-2 ma	-40		
2 N 457	PNP	TI	Pwr		50	-60	5A	95	130T*	1A			-2 ma	-60		
2 N 458	PNP	TI	Pwr		50	$-80$	5A	95	$130 \mathrm{~T} *$	1A			$-2 \mathrm{ma}$	$-80$		
2N459	PNP	TS	Pwr		50	-60	5A	100	20*	2A	5 Kc		100 ma	-60		
2N460	PNP	TS	AF	C	200	- 45*	$-400$	100	.94 $\alpha$	1	1.2 T	34 T	$-15$	-45		2
2N461 2N462	PNP	TS	AF	C	200	-45*	$-400$	100	. $97 \boldsymbol{\alpha}$	1	1.2 T	37 T	-15	-45	20	
2N462	PNP	Phil	Sw	F	150	-40*	$-200$	75	20*	$-200$	. 5		-35	-35	2N1614	1


JEDEC No.	Type	Mfr.	Use	Dwg: No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pc mw   @ $25^{\circ} \mathrm{C}$	BYce BYcB*	If ma	T ${ }^{\circ} \mathrm{C}$	MIN.   $h_{\mathrm{fe}}-\mathrm{h}_{\mathrm{FE}}{ }^{*} @ 10 \mathrm{ma}$		MIN. $\boldsymbol{f}_{\mathrm{hfb}} \mathrm{mc}$	MIN.   $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   Ico ( $\mu \mathrm{a}$ )	@ $\mathrm{V}_{\text {cB }}$		
2 N 463	PNP	WE	Pwr		37.5 W	$-60$	5A	100	20*	- 2 A	4 mc		$-300$	-40		
2N464	PNP	Ray	AF	C	150	-40	$-100$	85	14	1	. 7 T	40 T	- -15	-40 -20		
2N465	PNP	Ray	AF	C	150	-30	100 -100	85	27	1	.8T	${ }_{42 \mathrm{~T}}$	-15	-20	${ }_{2}{ }^{\text {NN1414 }}$	1
2 N 466	PNP	Ray	AF	C	150	$-20$	$-100$	85	56	1	1T	44 T	-15	$-20$	2N321	
2N 167	PNP	Ray	${ }^{\text {AF }}$	C	150	$-15$	$-100$	85	112	1	1.27	45 T	-15	-20	2N508	${ }_{2}^{4}$
2N469	PNP	GT	Photo	C				75	10		1 T		-50	-6		
${ }_{2} \mathrm{~N} 481$	PNP	Ray	$\bigcirc \mathrm{Osc}$	C	150	-12	$-20$	85	50 T	1	3 T		-10	-12	2N395	
2N482	PNP	Ray	IF	C	150	-12	-20	85	50 T	1	3.5 T		- 10	-12	2N395	2 2
2N. 183	PNP	Ray	IF	C	150	-12	-20	85	60 T	1	5.5 T		-10	-12	2 N 394	2
${ }_{2} \mathrm{~N} 484$	PNP	Ray	IF	C	150	-12	-20	85	90 T	1	10 T		-10	-12	2N394	
${ }^{2} \mathrm{~N} 485$	PNP	Ray	IF	C	150	-12	-10	85	50 T	1	7.5 T		-10	-12	2N394	2
2N486	PNP	Ray	$1 F$	C	150	-12	-10	85	100 T	1	12 T		- 10	$-12$	2 N 394	2
2 N 489		GE	Si Uni	5	SEE G-E TRANSISTOR SPECIFICATION SECTION SEE G-E TRANSISTOR SPECIFICATION SECTION SEE G-E TRANSISTOR SPECIFICATION SECTION											
2N 490		GE	Si Uni	5											2N489	5
2 N 49 I		GE	Si Uni	5											${ }^{2} \mathrm{~N} \mathbf{N} 490$	5
${ }_{2} \mathrm{~N} 492$		GE	Si Uni	5	SEE G-E TRANSISTOR SPECIFICATION SECTION SEE G-E TRANSISTOR SPECIFICATION SECTION SEE G-E TRANSISTOR SPECIFICATION SECTION										2N492	
${ }_{2}{ }^{\text {N }} 493$		GE	Si Uni	5											${ }_{2}{ }^{2} \mathbf{N} 492$	5
2N494		GE	Si Uni	5											${ }_{2} \mathrm{~N} 494$	5
${ }^{2} \mathrm{~N} 495$	PNP	Phil	Si RF	C	$\begin{aligned} & 150 \\ & 150 \\ & 4 \mathrm{~W} \end{aligned}$	-25	-50	140	9	1	$\begin{aligned} & 8 \text { fos } \\ & 8 \text { fos }^{2} \end{aligned}$	$-.1$		$-10$		
${ }_{2}^{2} \mathrm{~N} 496$	PNP	Phil	Si Sw	C		$-10$	$-50$	140		1			-. 1	-10		
2 N 497	NPN	TJ-GE	Si AF	8		60	500	200	12*	200			10	30	2N497	8
2 N 497 A	NPN	GE	Si AF	8	5.W			200	12*	200			10	30		
2 N 498	NPN	TI-GE	Si AF	8		100	500	200	12*	200			10	30	${ }_{2} \mathrm{~N} 498$	8
2N498A	NPN	GE	Si AF	8	5W	100	500	200	12*	200			10	30	2 N 498 A	
2N499	PNP	Phil	MAD ${ }^{\text {T }}$	C	$\begin{aligned} & 30 @ 45^{\circ} \mathrm{C} \\ & 50 @ 45^{\circ} \mathrm{C} \\ & 25 @ 45^{\circ} \mathrm{C} \end{aligned}$	$-18$	$-50$	85	6	2		10	100	-30		
2N500	PNP	Phil	MADT	C		-15		85					100	-20		
2 N 501	PNP	Phil	MADT	C		-15*	-50	85	$20^{*}$	$-10$			100	-15		
2 N 501 A	PNP	Phil	MADT	C	$\begin{aligned} & 25 @ 45^{\circ} \mathrm{C} \\ & 25 @ 41^{\circ} \mathrm{C} \end{aligned}$	-15*	-50	100						-15		
2N502	PNP	Phil	MADT	C		$-20$		85	9	-12	200	8	-100	-15 -20		
2N502A	PNP	Phil	MADT	C	25 @ $45^{\circ} \mathrm{C}$	-30*		100	9	2			-100	-30		
2N503	PNP	Phil	MADT	C	25 @ $41{ }^{\circ} \mathrm{C}$	$-20$	$-50$	85	9	2	100	11	-100	-20		
2N506	PNP	Syl	AF	A	5050	- 40 *	$-100$	85	25	$-10$	. 6		-15	$-30$	2N320	4
2N507	NPN	Syl	AF	A		40	100	85	25	10	. 6		15	30		
2N508		GE	${ }_{\text {AF }}$ Out	$\stackrel{2}{ }$		$-16$	$-100$	85	125T*	$-20$	3.5 T		-16	$-16$	2N508	2
2 N 509	PNP	WE	RF	C	225	$-30^{*}$	-40,	100	${ }^{.96 \%}$	10	750 T		-5	-20		
2N514	PNP	TI	Pwr		80 W	-40	$-25 \mathrm{~A}$	95	12*	-25			$-2.0$	-20		
2 N 514 A	PNP	TI	Pwr	A	80 W80 W50	$-60$		95	12*	-25			2.0	-30		
2N514B	PNP	TI	Pwr			-80	$-25 \mathrm{~A}$	95	12*	-25	7.0T		-2.0	-40		
2 N 515	NPN	Syl	IF			18	10	75	4	1	2	23	- 50	18		
2N516	NPN	Syl	IF	A	50	18	10	75	4	1	2	25	50	18		
2 N 517	NPN	Syl	IF	A	50	18	10	75	4	1	2	27	50	18		
2N519	PNP	GT	Sw	C	100	-15		85	15	1	. 5		-2	-5	2N394	2



$\begin{gathered} \text { JEDEC } \\ \text { No. } \end{gathered}$	Type	Mfr	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	BV ${ }_{\text {CE }}$ $B V_{C B}{ }^{*}$	Ic ma	TJ ${ }^{\circ} \mathbf{C}$	MIN.   $h_{\text {re }}-h_{F E}{ }^{*}$   @ Icma	MIN.   fhfb ma	MIN. $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   Ico ( $\mu \mathrm{a})$	(a) $V_{C B}$		
2N563	PNP	GT	AF	A	150	-25	$-300$	85	10* 1	.8T		-5	-10	2N44	
2N564	PNP	GT	AF	C	120	-25	$-300$	85	$10^{*} \quad 1$	.8T		-5	-10	2 N 524	${ }_{2}^{1}$
2N565	PNP	GT	AF	A	150	-25	$-300$	85	$30^{*} \quad 1$	19		-5	-10	2 N 43	2
2N566	PNP	GT	AF	C	120	-25	$-300$	85	30*	1T		-5	$-10$	2N525	2
2N567	PNP	GT	AF	A	150	-25	$-300$	85	$50 * 1$	1.5 T		-5	-10	2 N 43	1
2N568	PNP	GT	AF	C	120	-25	-300	85	$50 * 1$	1.5 T		-5	-10	${ }_{2} \mathrm{~N} 526$	2
${ }^{2} \mathrm{~N} 569$	PNP	GT	AF	A	150	-20	-300	85	70*	2T		-5	$-10$	2N241A	1
$2 N 570$	PNP	GT	AF	C	120	-20	$-300$	85	$70^{*} \quad 1$	2 T		-5	-10	$2 \mathrm{~N} 27{ }^{\text {2 }}$	1
2N571	PNP	GT	AF		150	-10	$-300$	85	$100^{*} \quad 1$	3T		-5	-10	${ }_{2} \mathrm{~N} 508$	2
2N572	PNP	GT	AF	C	120	$-10$	$-300$	85	100* 1	3 T		$-5$	$-10$	2N508	2
2N574	PNP	M-H	Pwr		25W @ $75^{\circ} \mathrm{C}$	-60 *	$-15 \mathrm{~A}$	95	$10 *-10 \mathrm{~A}$	6 Kc T		$-7 \mathrm{ma}$	- 60	2N508	2
2N574A	PNP	M-H	Pwr		25 W (a) $75^{\circ} \mathrm{C}$	$-80^{*}$	$-15 \mathrm{~A}$	95	$10^{*}-10 \mathrm{~A}$	6 KcT		$-20 \mathrm{ma}$	-80		
2N575	PNP	M-H	Pwr		25W@ ${ }^{\circ} 5^{\circ} \mathrm{C}$	-60*	$-15 \mathrm{~A}$	95	19* - 10 A			- 7 ma	-60		
$\begin{aligned} & 2 \mathrm{~N} 575 \mathrm{~A} \\ & 2 \mathrm{~N} 576 \end{aligned}$	PNP	M-H	$\mathrm{P}_{\text {Pwr }}$		25 W @ $75^{\circ} \mathrm{C}$	$-80 *$	$-15 \mathrm{~A}$	95	$19 *-10 \mathrm{~A}$	5 Kct		-20 ma	-60 -80		
2N576	NPN	Syl	Sw	C	- 200	20	400	100	$80 \mathrm{~T}^{*} 30$			20	20		
$2 N 576 \mathrm{~A}$ 2 N 578	NPN PNP	Syl	Sw	C	200	20	400	100	20* 400	5 T		40	40		
$2 N 578$   2 N 579	PNP	RCA	$\stackrel{\text { Sw }}{\text { Sw }}$	C	120 120	144 -14	-400	85	10* 1	3		-5	-12	2 N 394	2
2N580	PNP	RCA	Sw	C	120	-14	$-400$	85	$20^{*}$	5		$-5$	-12	2N396	2
2N58I	PNP	RCA	Sw	${ }^{\text {C }}$	120	-14	-400	85	30* 1	10		-5	-12	2N397	2
2N582	PNP	RCA	Sw	${ }_{C}$	80 120	$-15$	$-100$	85	$20^{*}-20$	4		-6	-6	2N394	2
2N583	PNP	RCA	Sw	C	150	-15	100	8.	$40^{*}-20$	14		-5	-12		
2N584	PNP	RCA	Sw	$\stackrel{C}{C}$	120	-15	-200 -100	85	$\begin{array}{ll}20 * & -20 \\ 40 * & -20\end{array}$	4		-6	-6	2N394	2
2N585	NPN	RCA	Sw	C	120	-14	-100 200	85 85	$\begin{array}{rr}40^{*} & -20 \\ 20 & 20\end{array}$	14		-5	-12	2N634	2
2N586	PNP	RCA	Sw	A	250	-45*	-250	85	35T* -250			-16		2N634	
2N587	NPN	Syl	Sw	C	150	20	200	8	20* 200			-16	-4, 4		
2N588	PNP	Phil	MADT	C	30 @ $45^{\circ} \mathrm{C}$	-15	-50	85				15	- 15		
2N591	PNP	RCA	AF'	C	50	-32	$-20$	100	70T 2	. 7 T	41T	-6.5	-10	2N324	4
2N592	PNP	GT	Sw	C	125	$-20$		85	$20^{*} \quad 1$	4T	,	-6.5	-10 -5	${ }_{2}$ 2N1414	$\stackrel{4}{2}$
2N593	PNP	GT	Sw	C	125	$-30$		85	$30^{*}$. 5	.6T		-5	-5	2N1414	2
2N594	NPN	GT	Sw	C	100	20		85	20* 1	1.5		5	5		
$\begin{aligned} & 2 N 595 \\ & 2 N 596 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\mathrm{GT}^{\text {GT }}$	Sw	C	100	15		85	35* 1	3		5	5		
2N596	NPN	GT	Sw	C	100	10		85	$50^{*} \quad 1$	5		5	5	2N634	2
2N597	PNP	Phil	Sw	C	250	-40	$-400$	100	40* - 100	3		-25	-45		
2N598	PNP	Phil	Sw	C	250	$-20$	$-400$	100	$50 *-100$	5		-25	-30		
2N599	PNP	Phil	Sw	C	250	-20	$-400$	100	$100^{*}-100$	12		-25	-30		
$\begin{aligned} & \text { 2N600 } \\ & \text { 2N601 } \end{aligned}$	PNP	Phil	Sw	C	750	-20	$-400$		$50^{*}-100$	5		-25	-30		
$2 \mathrm{~N} 601$	PNP	Phil	Sw	C	0.75	$-20$	$-400$	100	2.5 - 3	1.2		25	-30		
2N602	PNP	GT	Drift Sw	C	120	-20		85	$20^{*}$. 5	12		-8	- 10	2N395	2
2N603 2N604	PNP	GT	Drift Sw	C	120	$-20$		85	30* . 5			-8	$-10$		2
2N604	PNP PNP	GT	Drift Sw	C	120	-20		85	$40^{*}$ - 5			-88	$-10$	2N397	2
2N605	PNP	GT	Drift RF	C	120	-15		85	$40 \mathrm{~T} \quad-1$		20	-10	-12	2 N 394	2


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS					Closest GE	Dwg. No.
					Pc mw   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{B V C E}_{\mathrm{CE}} \\ & \mathrm{BV}_{\mathrm{CB}} \end{aligned}$	loma	$\mathbf{T J}^{\circ} \mathbf{C}$	MIN.   $h_{\mathrm{re}}-\mathrm{hFe}^{*}$   @ Icma	MIN.   firib me	MIN. $\mathrm{Ge} \mathrm{db}^{\mathrm{db}}$	MAX.   $\operatorname{lco}(\mu \mathrm{a})$	@ $\mathrm{V}_{\text {cb }}$		
2N606	PNP	$G_{\text {GT }}$	Drift RF	C	120	-15		85	60' -1		25	$-10$	-12	2N395	2
2N607	PNP	GT	Drift RF	C	120	-15		85	$80 \mathrm{~T}-1$		30	$-10$	-12	2N396	2
2N608	PNP	GT	Drift RF	C	120	-15		85	$120 \mathrm{~T}-1$		35	-10	-12	2N396	2
2N609	PNP	W	AF Out	C	180	$-20$	$-200$	85	$90 \mathrm{~T} * 100$		30 T	-25	-20	2N321	4
2N610	PNP	W	AF Out	C	180	-20	$-200$	85	65T* 100		28 T	-25	$-20$	2N320	4
2N611	PNP	W	AF Out	C	180	-20	$-200$	85	45 T * 100		$26^{\prime} \mathrm{T}$	-25	-20	2N320	4
2N612	PNP	W	AF	C	180	-20	$-150$	85	.96 $\mathbf{T} \quad 1$	.6T	37	-25	-20	2N319	4
2N613	PNP	W	AF Out	C	180	-20	$-200$	85	.97 $\mathbf{9}$ T 1	.85T	32	-25	-20	2N320	4
2N614	PNP	W	IF	C	125	-15	-150	85	4.5 T . 5	${ }^{3} \mathbf{T}$	26 T	-6	$-20$	2N395	2
2N615	PNP	W	IF	C	125	-15	-150	85	7.5 T . 5	5 T	34 T	-6	-20	2N395	2
2N616	PNP	W	IF	C	125	-12	$-150$	85	25 T . 5	9 T	20 T	-6	-15	2N394	2
2N617	PNP	W	Ose	C	125	-12	$-150$	85	15 T . 5	7.5T	30 T	6	-15	2N394	2
2N618	PNP	Motor	Pwr		45W	$-80^{*}$	$-3 \mathrm{~A}$	90	60* - 1A	5 Kc		-3 ma	$-60$		
2N622	NPN	Ray	Si AF	C	400	50*	50	160	$25 \mathrm{~T} *{ }^{\text {\% }}$	. ${ }^{\text {K }}$	34 T	. 1	30		
2N624	PNP	Syl	RF	C	100	-20	-10	100	20 2	12.5	20 T	-30	$-30$		
2N625	NPN	Syl	Sw	C	2.5 W	30		100	30* 50			100	-40		
2N631	PNP	Ray	AF Out	C	170	-20	$-50$	85	150 T	1.2T	35T	-25	-20	2N508	2
2N632	PNP	Ray	AF Out	C	150	-24	-50	85	$100 \mathrm{~T} \quad 10$	1T	25 T	-25	-20	2N324.	4
2N633	PNP	Ray	AF Out	C	150	$-30$	$-50$	85	$60 \mathrm{~T} \quad 10$	.8T	25T	-25	-20	2N323	4
2N634	NPN	GE	Sw	2	150	20	300	85	15* 200	5		5	5	2N634	2
2N634A	NPN	GE	Sw	2	150	20	300	85	40* 10	5		6	25	2N634A	2
2N635	NPN	GE	Sw	2	150	20	300	85	25* 200	10		5	5	2N635	2
2N635A	NPN	GE	Sw	2	150	20	300	85	80* 10	10		6	25	2N635A	2
2N636	NPN	GE	Sw	2	150.	20	300	85	35* 200	15		5	5	2N636	2
2N636A	NPN	GE	Sw	2	150	15	300	85	100* 10	15		6	25	2N636A	2
2N637	PNP	Bendix	Pwr		25W	-40	$-5 \mathrm{~A}$	100	30* -3A	15		I ma	-25	2N63A	2
2N637A	PNP	Bendix	Pwr		25W	$-70$	$-5 \mathrm{~A}$	100	$30^{*}-3 \mathrm{~A}$			5 ma	-60		
2N637B	PNP	Bendix	Pwr		25W	$-80$	$-5 \mathrm{~A}$	100	30* -3A			5 ma	$-60$		
2N638	PNP	Bendix	Pwr		25W	-40	$-5 \mathrm{~A}$	100	$20^{*}-3 A$			1 ma	$-25$		
2N638A	PNP	Bendix	Pwr		25W	$-70$	$-5 \mathrm{~A}$	100	$20^{*}-3 A$			5 ma	-60		
2N638B	PNP	Bendix	Pwr		25W	$-80$	$-5 \mathrm{~A}$	100	20* -3A			5 ma	-60		
2 N 639	PNP	Bendix	Pwr		25 W	- 40	$-5 A$ $-5 A$	100	15* -3A			5 ma 1 ma	-60 -25		
2N639A	PNP	Bendix	Pwr		25W	-70	-5A -5	100	15* -3A			5 ma	-60		
2N639B	PNP	Bendix	Pwr		25W	$-80$	$-5 \mathrm{~A}$	100	15* -3A						
2N640	PNP	RCA	Drift RF	A	80	$-34 *$	$-10$	85	.984 T T - -1	42 T	28 T	5	-60 -12		
2N641	PNP	RCA	Drift IF	A	80	$-34 *$	$-10$	85	.984 ${ }^{\text {T }}$ T -1	42 T	28 T	$-7$	-12		
2N642	PNP	RCA	Drift Osc	A	80	$-34^{*}$	-10	85	.984 ${ }^{\text {T }}$ - -1	42 T	28 T	$-7$	-12		
2N643	PNP	RCA	Drift Sw	C	120	-29	$-100$	85	- $20 * *$	20		- 10	-7		
2N644	PNP	RCA	Drift Sw	C	120	-29	-100	85	$20^{*}-5$	40		-10	$-7$		
2N645	PNP	RCA	Drift Sw	C	120	-29	$-100$	85	20* -5	6.0		$-10$	-7		
2N647	NPN	RCA	AF	C	100	25	50	85	70T* - 50	6	54 T	14	25		
2N649	NPN	RCA	AF	C	100	18	50	85.	65T* - 50		54 T	14	12		


JEDEC No.	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS					ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$		BVce   $B V_{C B}{ }^{*}$	If ma	Ts ${ }^{\circ} \mathrm{C}$	MIN.   $h_{\text {fe-h }}{ }^{\text {FE }}$ *   @ Ic ma		MIN. fhib me	MIN.   $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   Ico ( $\mu \mathrm{a}$ )	) @ V		
${ }^{2} \mathrm{~N} 656$	NPN	GE-TI	Si AF	8		4W	60										
${ }^{2} \mathrm{~N} 656 \mathrm{~A}$	NPN	GE	Si AF	8		5W	60	500	200	$30 *$	200			10	30	2N656	8
2N657	NPN	GE-TI	Si AF	8		4W	100	500	200	30 *	200			10	30 30	2N656A	8
2 N 657 A	NPN	( PE	Si AF			5W	100		200								
2N658 2N659	PNP	Ray	${ }_{\text {Sw }}^{\text {W }}$	${ }_{C}$		175	-16	$-1 \mathrm{~A}$	85	25*	$-1$	2.5		-6	$\begin{array}{r}30 \\ -12 \\ \hline\end{array}$	${ }_{2}{ }_{2} \mathrm{~N} 3954 \mathrm{~A}$	$\stackrel{8}{2}$
2N660	PNP	Ray	$\frac{\mathrm{Sw}}{\mathrm{Sw}}$	C		175	-14	$-1 \mathrm{~A}$	85	40*	- 1	5.0		-25	- 25	2N396	${ }_{2}^{2}$
2N661	PNP	Hay	Sw	${ }_{C}$		175 175 175	-11	-1A	85	$60 *$	-1	10		-25	-25	2N397	2
2N662	PNP	Ray	Sw	C		175	-9 -11	$-1 A$ $-1 A$	85	$80 *$ $30 *$	$-1$	15		-25	-25		
2N665	PNP	Dlc	Pwr			35W					$-5$	$4{ }^{2}$		-25	-25	2N396	2
${ }_{2} \mathrm{~N} 679$	NPN	$\mathrm{Syl}^{\text {che }}$	${ }_{\text {Sw }} \mathbf{w}$	C		150	$-{ }_{20}$	5A (1E)	95 85		$-.5 \mathrm{~A}$	$\underset{2}{20} \mathrm{Ko}$		-2 ma	-30 @ ${ }^{\text {a }}$ 71 $1^{\circ} \mathrm{C}$		
-2N696	NPN	F-C	Sw	C		150	40		85	20*	$\begin{array}{r}30 \\ 150 \\ \hline\end{array}$	2		$\begin{aligned} & 25 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$		
${ }^{2} \mathrm{~N} 697$	NPN	F-C	Sw	C		2W	40										
$\begin{aligned} & 2 \times 699 \\ & 2 N 702 \end{aligned}$	NPN	F-C	$\mathrm{SF}_{\text {R }} \mathrm{Sw}^{\text {d }}$	C			120*		175	35	1			2.0	60		
2N03	NPN	TI	Sw	C		600	25	50	175	20*	10			0.5	10		
2N70.5	NPN	TI	${ }_{\text {Sw }}^{\text {Sw }}$	$\mathrm{C}_{\mathrm{C}}$		600 300	- 25	50 -50	175	${ }^{10}{ }^{*}$	10			0.5	10		
2 N - 06	NPN	F-C	Sw	${ }_{C}$		0.6 W	$-15 *$	-50	100 300	25*	$-10$	300 T		-3	-5		
2 N 707	NPN	F-C	Osc	C							10			0.5	15		
${ }_{9}^{2} \mathrm{~N} 100$	PNP	TI	Sw	${ }_{C}$		300	-15*	-50	100								
$\underline{2} 1010$	NPN	RCA	AF	C		20	10	2	85	35T	-100	${ }_{200 \mathrm{~T}}$		-3 70	-5 10		
2N1015	NPN	W	Pwr			(3) $45^{\circ} \mathrm{C}$	30	75 A	150	10*	2 A						
2N1015A 2N1015B	NPN	W	$\mathrm{P}_{\text {Pwr }}$		150	(1) $45^{\circ} \mathrm{C}$	60	75 A	150	10*	2 A	20 T Kc		20 ma	60		
2 N 1015 C	NPN	W	Pwr		150	(a) $4.5{ }^{\circ} \mathrm{C}$	100	7.5 A	150	10*	2A	20 T Kc		20 ma	100		
2N1015D	NPN	W	$\mathrm{Pawr}^{\text {w }}$			(a) $45^{\circ} \mathrm{C}$	150 200	7.5 A	150	${ }^{10}{ }^{*}$	2 A	20 T Kc		20 ma	150		
2N1015E	NPN	W	Pwr		150	(a) $45^{\circ} \mathrm{C}$	200 250	7.5 A 7.5 A	150	$10^{*}$	2 A	20 T Kc		20 ma	200		
2N1015F	NPN	W	$\overline{P_{w r}}$			(a) $45^{\circ} \mathrm{C}$					2 A	20 TKC		20 ma	250		
2NL016	NPN	W	Pwr			(a) $45^{\circ} \mathrm{C}$	30	7.5 A		$10 *$	2 A	20T Kc		20 ma	300		
2 N 1016 A	NPN	W	Pwr		150	@ $45^{\circ} \mathrm{C}$	60	7.5 A	150	$10^{*}$	5A	${ }_{20}^{20 \mathrm{~T} \mathrm{Ke}} \mathrm{Kc}$		20 ma 20 ma	$\begin{aligned} & 30 \\ & 60 \end{aligned}$		
2N1016B	NPN	W	Pwr		150	(14) $45^{\circ} \mathrm{C}$	100	7.5A	150	10*	5A						
	NPN	W	$\mathrm{P}_{\text {Pr }}$		150	(a) $45^{\circ} \mathrm{C}$	150	7.5 A	150	$10^{*}$	5A	20 TKc		20 ma	150		
2N1016	NPN	W	Pwr		150	(a) $45^{\circ} \mathrm{C}$	200	7.5A	150	10*	5A	20 T Kc		20 ma	200		
$2 N 1016 \mathrm{E}$ 2 N 1016 F	NPN	W	Pwr		150	(c) $45^{\circ} \mathrm{C}$	250	7.5A	150	10*	5A	20 T Kc		20 ma	250		
2N1017	PNP	Ray	${ }_{\text {Swr }}^{\text {Sw }}$	C	150	(a) $45^{\circ} \mathrm{C}$	300 -10	7.5 A	150	10*	5A	20 T Kc		20 ma	300		
2 N 1021	PNP	TI	Pwr						8	$7{ }^{*}$	1	15		-25	-30		
2 N 1022	PNP	TI	Pwr			50 W	-100 -120	-5 -5	95 95	${ }^{70}{ }^{\text {70 }}{ }^{*}$	$-1 \mathrm{~A}$			$-2 \mathrm{ma}$	$-100$		
2N1038	PNP	TI	Pwr			20 W	-120 -40	$-3 \mathrm{~A}$	95	30\%**	-14 $-1 A$			$-2 \max$	$-120$		
2N1039	PNP	TI	Pwr			20W				35*							
2 N 10.10	PNP	TI	Pwr			20W	$-80$	-3A	95	35*	$-1 \mathrm{~A}$				${ }^{.} 5$		
2N1041	PNP	TI	Pwr			20W	$-100$	$-3 \mathrm{~A}$	95	35*	-1A			-125 -125	. 5		


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \end{aligned}$	Type	Mfr.	Use	$\begin{aligned} & \text { Dwg. } \\ & \text { No. } \end{aligned}$	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						$\begin{gathered} \text { Closest } \\ \text { GE } \end{gathered}$	Pwg.
					$\mathbf{P C D m w}^{\mathrm{m}}$   @ $25^{\circ} \mathrm{C}$	$\stackrel{{ }_{\mathbf{B V C B}} \mathbf{B V}^{*}}{ }$	It ma	$\mathrm{TJ}^{\circ} \mathrm{C}$	$\underset{h_{\mathrm{e}-\mathrm{hFE}}}{\mathrm{MIN} @ \operatorname{Icma}}$		MIN. fhfb me	MIN.   $G_{e} \mathbf{d b}$	$\underset{\operatorname{ICo}(\mu \mathbf{a})}{\operatorname{MAX}}$	@ $\mathbf{V}_{\text {cb }}$		
${ }_{2}^{2 N} 1046$	PNP	T1 T1	${ }_{\substack{\text { Pwwr }}}^{\text {Pwr }}$			${ }_{-8}^{80}{ }_{\text {80* }}$	-3 A 500 500	$\begin{array}{r}65 \\ 200 \\ 200 \\ \hline\end{array}$	$\begin{aligned} & 70^{*} \\ & 122^{2} \end{aligned}$	$\begin{gathered} -0.5 \mathrm{~A} \\ 500 \end{gathered}$			$\begin{array}{r} 1 \mathrm{ma} \\ \hline 15 \\ \hline \end{array}$	$\begin{array}{r} -40 \\ -30 \\ \\ \hline 0 \end{array}$		
2 N 1048	NPN	TI	Pwr		40 W @ ${ }^{\text {a } 25^{\circ} \mathrm{C}}$											
2 N 1049 2 N 1050	NPN	TI	${ }^{\text {Pwr }}$		${ }^{40 W}$ @ ${ }^{25^{\circ}}$	${ }_{10}^{80}$	500 500	200 200	$30 *$ 30	500 500			15	30 30		
${ }_{2} \mathrm{~N} 1056$	PNP	GE	Obsolete	1	${ }^{4}{ }^{2} 0$	-50	-300	100	$18^{*}$	-20	. 5		-25	$-70$	2N1614	1
2N1057	PNP	GE	Sw	1	240	-45	$-300$	100	${ }^{34 *}$	-20	. 5		$-16$	$-45$	2 N 10	I
2 N 1058	NPN	Syl	Osc	A	50	20	50	75	10	${ }_{35}^{1}$	${ }_{10}^{4} \mathrm{Kc}$	${ }_{25}^{22.5}$	5	18 40		
2N1059	NPN	Syl	AF Out	A	180	15	100	75	50*	35						
2N1067	NPN	RCA	Si Pwr	C	${ }^{5} \mathrm{~W}$	30	. 5 A	175	${ }^{15 *}$	200	. 75		500	60		
2N1068	NPN	RCA	Si Pwr	C	10 W	30	1.5 A	175	15**	750	. 75		${ }^{500}$	${ }_{60}^{60}$		
2N1069	NPN	RCA	Si Pwr		50 W	45	4 A	175	10*	1.5 A	. 5		1 ma	60		
2 N1070	NPN	RCA	Si Pwr		50 W	45	${ }^{4 \mathrm{~A}}$	175	${ }_{10 *}{ }^{*}$	1.5 A	.5		1 ma	60		
2N1086	NPN	GE	Osc	3	65	9	20	85	17*	1	${ }^{8 T}$	${ }_{24}^{24 T}$	3	5		3
2 N 1086 A	NPN	GE	Osc.	3	65	9	20	85	17*	1	8 T	24 T	3	5	2N1086A	
2N1087	NPN	GE	Osc	3	65	9	20	85	17*	1	${ }^{8 T}$	26 T	3	5	${ }_{2}^{2 N 1087}$	${ }_{3}^{3}$
${ }_{2} \mathrm{~N} 1090$	NPN	RCA	${ }_{\text {Sw }} \mathrm{w}$	${ }_{C}^{\text {C }}$	120	15 12	400 400	${ }_{85}^{85}$	50**	20 20	10		${ }_{8}^{8}$	12	${ }_{2}{ }^{2 N 635}$	
$\frac{2 \mathrm{~N} 1091}{2 \mathrm{~N} 1092}$	NPN	RCA	$\mathrm{Si} A \overline{\mathrm{~F}}$	C	2 W	30	500	175	15*	200	. 75		500			
${ }_{2} \mathrm{~N}^{2} 1097$	PNP	GE	AF Out	2	140	-16	-100		55 T	1			-16	--16	2N1097	2
2N1098	PNP	GE	AF Out		140	-16	$-100$	85	45 T				-16	-16	2N1098	2
2N1099	PNP	Dic	Pwr		30 W	$80^{*}$		95	$35 *$	5 A	10 Ka		8 ma	-80		
2 N 1100	PNP	Dlc			30 W	$100 *$		95	${ }_{25 *}^{25 *}$	${ }_{35}{ }^{\text {A }}$	${ }_{10}^{10 \mathrm{Kc}}$		8 ma	-100		
2N1101	NPN	Syl	AF Out	A	180	15	100	75	25*	35	10 Kc		50	20		
2 N 1102	NPN	Syl	AF Out	A	180	25.	100	75	${ }^{25 *}$	35	10 Kc		50	40		
2N1107	PNP	TI	1o IF RF	A	30	$16^{*}$	5	85	33	$-0.5$	40		$-10$	-12		
2N1108	PNP	TI	lo IF RE	A	30	16*	5	85	30	-0.5	35		-10	-12		
2 N 1109	PNP	TI	lo IF RF	A	30	$16 *$	5	85	15	-0.5	35		-10	-12		
2 N 1110	PNP	TI	lo 1F RF	A	30	16*	5	85	26	-0.5	35		$-10$	-12		
2 N 1111	PNP	TI	lo IF RF	A	30	$20^{*}$	5	85	22	-0.5	35		$-10$	-12		
2 N 1115	PNP	GE	$\mathrm{Sw}^{\text {w }}$		150	-20	-125	85	35	-60	5		-6	$-20$	${ }_{2}^{2 N 1115}$	7
$\begin{aligned} & 2 \mathrm{~N} 1115 \mathrm{~A} \\ & 2 \mathrm{~N} 1118 \end{aligned}$	PNP	${ }_{\text {Phil }}$	$\mathrm{Sow}_{\mathrm{Osc}}$	$\stackrel{7}{C}$	150	-35 -25	${ }_{-50}$	$\begin{array}{r}85 \\ 140 \\ \hline\end{array}$	35 9	-60	5		-6 1.0	-25		
2 N 1118 A	PNP	Phil	IF RF-	C	150	-25	-50	140	15				0.1	-10		
2 N 1119	PNP	Phil	Sw	C	150	-10	-50	140	6 *	- 15			0.1			
2N1121	NPN	GE	IF	3	65	15	20	85	34*	1	8 Kc		5	15		
2 N 1122	PNP	Phil	$\mathrm{S}_{\text {w }}$	D	-25 @ $45^{\circ} \mathrm{C}$	-10	$-50$	85	35	1.0				-5		
${ }_{2}^{2 N 1122 A}$	PNP	Phil	${ }_{\text {Sw }}$	D	-25 @ $455^{\circ} \mathrm{C}$		-50	${ }^{85}$	${ }_{40}{ }^{3}$	1.0 -100	3			-5 -45		
2 N 1123	PNP	Phil	Sw	C	750	$-40$	-400	100	$40^{*}$	-100	$\stackrel{3}{ }$					
${ }_{2}^{2 N 1141}$	PNP	TI	${ }_{\text {RF }}^{\text {RF }}$	$\mathrm{C}_{\mathrm{C}}^{\mathrm{C}}$	750 750		100 100	100 100	12 10	-10 -10	750 T 600 T		-5	-15 -15		
2 N 1143	PNP	TI	RF	C	750		100	100	,	-10	480 T		-5	-15		


$\begin{gathered} \text { JEDEC } \\ \text { No. } \end{gathered}$	Type	Mfr.	Use	$\begin{aligned} & \text { Dwg. } \\ & \text { No. } \end{aligned}$	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	BVon $B V_{C B}{ }^{*}$	Ic ma	T3 ${ }^{\circ} \mathrm{C}$	MIN. $h_{\text {fe-hee* }}$ @ Ic ma		MIN. fhfb me	MIN. $\mathbf{G}_{\boldsymbol{e}} \mathbf{d b}$	MAX.   Ico ( $\mu \mathbf{a}$ )	@ V CB		
${ }_{2} \mathrm{~N}^{2} 1144$	PNP	GE	AF Out		140	$-16$										
${ }_{2} \mathrm{~N} 1145$	PNP	GE	AF Out	1	140	-16	-100 -100	85	${ }^{55 T}$	1			-16 -16	$\begin{aligned} & -16 \\ & -16 \end{aligned}$	$2 N 1144$ 2N1145	${ }_{1}^{1}$
2N1149	NPN	TI					25	175	-0.9	$-1$	4T	35 T	- 2	$\begin{array}{r} -16 \\ 30 \end{array}$		
${ }_{\text {2N1 }}^{\text {2N150 }}$	NPN	TI	Si AF	A	150	45*	25	175	-0.948	-1	5 T	39 T				
	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \end{aligned}$	TI	Si AF	A	150 150	45*	${ }_{25} 5$	175	$-0.948$	-1	8 T	39 T	2	30		
2 N 1153	NPN	TI	Si AF	A	150	45*	$\frac{25}{25}$	$\frac{175}{175}$	-0.9735	-1	6 T	42 T	2	30		
2 N 1154	NPN	TI	Si AF	A	750	$50 *$	60	150	-0.987 -0.9	-1 $=5$	7 T	42.5 T 30	5	30 50		
2 N 1155	NPN	TI	Si AF	A	750	80*	50	150	-0.9	-5		30	6	80		
$2 \times 1156$	NPN	${ }_{\text {TI }}$	Si AF	A	750	120*	40	150	-0.9	-5		30	8	120		
$\begin{aligned} & 2 \mathrm{~N} 1157 \\ & 2 \mathrm{~N} 1157 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PN } \end{aligned}$	M-H $\mathrm{M}-\mathrm{H}$	Pwr Pwr			$-60 \%$ $-80 *$		95	$38^{*}$	-10A			$-7.0 \mathrm{ma}$	-60		
2N1159	PNP	Dle	Pwr		20W (a) $711^{\circ} \mathrm{C}$		-65			-10			-20 ma	-80		
2N1160	PNP	Dle	Pwr		20 W (a) $71^{\circ} \mathrm{C}$	$80 *$		-65 -65	${ }_{20}{ }^{3}$	3A	${ }_{10 \mathrm{~T}}^{10 \mathrm{~T}} \mathrm{Kc}$		8 ma 8 ma	-80 -80		
2N1168	PNP	Dic	Pwr		4.5 W	-50*	5A (Im)	95	110 T	1 A	10 Ke T	37T	-8 ma	-80 -50		
$\begin{aligned} & 2 N 1171 \\ & 2 N 117 \end{aligned}$	PNP	Ray	Sw	C		-12	400	85	30*	1	10		5	-12	2N397	2
2 N 1177	${ }_{\text {PNP }}$	RCA	Pwift RF LF		80	$40 *$ $-30 *$	-10	-65	30	100		34.7	0.2 ma	- 10		
2N1178	PNP	RCA	Drift RF $1 F$		80											
2N1179	PNP	RCA	Drift RF 1F		80	$-30^{*}$ $-3{ }^{*}$	-10 -10	71	40 80		140		-12	-12		
2 N 1180	PNP	RCA	Drift RF IF		80	$-30^{*}$	-10	71	80		140 100		-12	-12 -12		
2 N 183	PNP	RCA	Pwr	C	1W	-20	$-3.0$	100	20*	$-400$	500 Kc	$-250$	$-250$	-45		
2 N 118.3 A	PNP	RCA	$\mathrm{Pwr}^{\text {Pwr }}$	C	1W	-30	-3.0	100	$20 *$	$-400$	500 Kc		-250	-80		
2N1183B	PNP	RCA	Pwr	C	1W	-40	-3.0	100	$20^{*}$	$-400$	500 Kc		-250	-80		
2N118:   951184		RCA	$\mathrm{P}_{\text {wr }}$	C	1W	$-20$	$-3.0$	100	40*	$-400$	500 Kc		-250	-45		
2N1184A	PNP	$\mathrm{RCA}_{\text {RCA }}$	${ }_{\text {Pwr }}$	${ }_{C}$	1W	-30	-3.0	100	40*	$-400$	500 Kc		-250	-80		
2N1198	NPN	GE	Sw	3		-45	-3.0	100	$40^{*}$	-400	500 Kc		-250	-80		
2N1199	NPN	Phil	Sw	C	100	20	75 100	85 150	$12^{*}$	8 20	5		1.5	15	2N1198	3
2N1202	PNP	M-H	Pwr			-60		150		-0.5A				$\begin{aligned} & -10 \\ & -80 \end{aligned}$		
2 N 1203	PNP	M-H	Pwr			-70			25*	$-2 \mathrm{~A}$				-120		
2 N 1213	PNP	RCA	Sw	C	75	-25	$-100$	71					${ }_{-5}{ }^{-5}$	-12		
2N1214	PNP	RCA	Sw	C	75	-25	$-100$	71						-12		
2N1215	PNP	RCA	Sw	C	75	-25	$-100$	71								
2 N1216	PNP	RCA	Sw	C	75	-25	$-100$	71					-5	-12		
2N1217	NPN	GE		3	75	20			40*	. 5	6.0		29	15	2N1217	3
2N1224	PNP	RCA	RF IF	C	120	-40	$-10$	100								
2 N 1225	PNP	RCA	RF 1F	C	120	$-40$	$-10$	100	20	-1.5	100	15	-12	-12 -12		
2N1226	PNP	RCA	RF IF	C	120	$-60$	$-10$	100	20	-1.5	30	15	-12	-12		
2N1228	PNP	Hughes	Sw	C	400	-15		160			1.2 T			-12		
2N1229	PNP	Hughes	Sw	C	400	-15		160	28		1.2 T		-0.1	-12		
2N1230	PNP	Hughes	Sw	C	400	-35		160	14		1.2 T		-0.1	- 30		


JEDEC No.	Type	Mfr.	Use	Dwg.No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS						$\begin{gathered} \text { Closest } \\ \hline \end{gathered}$	Dwg. No.
					Pc mw   @ $25^{\circ} \mathrm{C}$	$B V_{C E}$ $B V_{C B}{ }^{*}$	Ic ma	$\mathrm{T}^{\circ}{ }^{\circ} \mathrm{C}$	MIN. hte-hre*	@ IC ma	MIN.   fhrb me	MIN.   $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   $\operatorname{ICo}(\mu \mathrm{c})$	@ $\mathbf{V}_{\text {cb }}$		
2N1231	PNP	Hughes	Sw	C	400	$-35$		160	28		1.2 T					
2N1232	PNP	Hughes	Sw	C	400	-60		160	14		1.0 T		-0.1	$-50$		
2 N 1233	PNP	Hughes	Sw	C	400	-60		160	28		1.0 T		-0.1	-50		
${ }_{2} \mathrm{~N} 1234$	PNP	Hughes	Sw	C	400	- 110		160	14		8 T		-0.1	-90		
2N1238	PNP	Hughes	Sw		1W free air	-15		160	14		1.2 T		-0.1	- 12		
2N1239	PNP	Hughes	Sw		1W free air	-15		160	28		1.2 T		-0.1	-12		
2N1240	PNP	Hughes	Sw		1W free air	-35		160	14		1.2 T		-0.1	-30		
2N1241	PNP	Hughes	Sw		1W free air	-35		160	28		1.2 T		-0.1	-30		
2N1242	PNP	Hughes	Sw		1W free air	-60		160	14		1.0 T		-0.1	-50		
2N12.t3	PNP	Hughes	Sw		1W free air	-60		160	28		1.0 T		-0.1	-50		
2 N 1244	PNP	Hughes	Sw		1W free air	-110		160	14		. 8 T		-0.1	-90		
	NPN	Syl	Sw	A	150	15	100	85	70		7.5		50	20		
2 N 1252	NPN	F-C.	${ }_{\text {Sw }}$	C	2 W	20		175	15*	150			10	20		
2N1253	NPN	F-C	Sw	C	2 W	20		175	40 *	150			10	20		
2 N 1261	PNP	M-H	Pwr			-45		95	$20^{*}$							
2N1262	PNP	M-H	Pwr			-45		95	$30^{*}$				$-2.0$	-60		
$\begin{aligned} & 2 \mathrm{~N} 1263 \\ & 2 \mathrm{~N} 1264 \end{aligned}$	PNP	$\xrightarrow[\text { Syl }]{\substack{\text { M-H }}}$	${ }_{\text {Pwr }}^{\text {Drift IF RF }}$			-45		95	45*				-20	$-60$		
	PNP	SyI	Drift IF RF		50	$-20^{*}$	50	75	15	1.5			50	-20		
2N1265 2N1266	PNP	Syl	${ }_{\text {AF }}^{\text {AF }}$		50 80	$-10{ }^{*}$ $-10 *$	100	85	25	1	600		100		${ }^{2} \mathrm{~N} 1097$	
$2 N 1266$ $2 N$	${ }_{\text {NPN }}^{\text {PN }}$	$\xrightarrow[\mathrm{GE}]{\mathbf{S y}}$	${ }_{\text {Si }}^{\text {Si }}$ AF	${ }_{4}^{\text {A }}$	80 150	-10 *	25	85 150	10	10	15		100	$\begin{array}{r}-10 \\ \hline 0\end{array}$	${ }_{2}$ 2N1098	2
2N1277	NPN	GE	Si AF		150	30	25	150	20 T	10	15		1	30	2N1277	4
2N1278	NPN	GE	Si $A^{\text {b }}$	4	150	30	25	150	33 T	10	15	${ }_{44}{ }^{\text {T }}$	1	30	2 N 1278	4
2N1279	NPN	GE	Si AF	4	150	30	25	150	80 T	10	15	${ }_{45} \mathrm{~T}$	1	30	${ }_{2}{ }^{\text {N }} 1278$	4
2N1280	PNP	ITC	Sw	C	200	16	400	85	40	-20	5		-10	-10	2N396	2
2N1281	PNP	ITC	Sw	C	200	12	400	85	60	-20	7		-10	$-10$	${ }_{2}$ N396	2
2N1282	PNP	ITC	Sw	C	200	6	400	85	70	-20	10		-10	-10	2N397	2
2 N 128.4	PNP	ITC	Sw	C	150	15	400	85	30	-10	5		-6	-20	2N396	2
2N1288	NPN	GE	Sw	10	75	5	50	85	50*	10	40		- 5	-20	2 N 1288	10
2N1289	NPN	GE	Sw	10	75	15	50	85	$50^{*}$	10	40		5	15	2N1289	10
2N1291	PNP	CBS	$\mathrm{P}_{\text {wr }}$		20W	30	3	85	40*	0.5			5	2		
2N1293	PNP	CBS	$\mathrm{P}_{\mathrm{wr}}$		20W	60	3	85	$40^{*}$	0.5			5	-2		
2 N 1295	NPN	CBS	Pwr		20W	80	3	85	$40^{*}$	0.5			5	-2		
${ }^{2} \mathrm{~N} 1297$	PNP	CBS	Pwr		20W	100	3	85	40*	0.5			5			
2 N 1299	NPN	Syl	Sw	E	150	20	200	100	35*	50	4.0		100	40	2N377	2
2N1300	PNP	RCA	Sw	C	150	-12	$-100$	85	50	-10.			-3		2N3.7	
${ }^{2} \mathrm{~N} 1301$	PNP	RCA	Sw	C	150	-12	$-100$	85	50	-10			-3			
${ }_{9}^{2} \mathrm{~N} 1304$	NPN	GE-TI	Sw	2	300	20	300	100	40*	10	5		6	25		
${ }^{2} \mathrm{~N} 1306$	NPN	GE-TI	Sw	2	300	15	300	100	$60^{*}$	10	10		6	25		
${ }^{2} \mathrm{~N} 1308$	NPN	GE-TI	Sw	2	300	15	300	100	80*	10	15					
${ }_{2}$ N1310	$\underset{\text { NPN }}{ }$	GT	Neon Indicator		120	90			$20 *$	5	1.5 T		7	5		
2N1313	PNP	T-S	$\mathrm{Sw}$	C	180	-15	400.	100	40*		${ }_{6}$		2.5	-0.5	2N396.	2


$\begin{aligned} & \text { JEDEC } \\ & \text { No. } \\ & \hline \end{aligned}$	Type	Mfr.	Use	Dwg. No.	MAXIMUM RATINGS				ELECTRICAL PARAMETERS							Closest GE	Dwg. No.
					Pcmw   @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{B} \mathbf{V}_{\mathrm{CE}} \\ & \mathbf{B V}_{\mathrm{CB}}{ }^{*} \end{aligned}$	lo ma	$\mathbf{T J}^{\circ}{ }^{\text {C }}$	MIN.   $h_{\text {Re-hFE }}{ }^{*}$   @ Ic.ma		MIN. fheb mc	MIN. $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   Ico( $\mu \mathrm{a}$ )	(a)	Ver		
2 N1316	PNP	ITC	Sw	C	200	15	400										
${ }_{9}^{2 N 1317}$	${ }_{\text {PNP }}$	ITC	${ }_{\text {Sw }}^{\text {Sw }}$	$\stackrel{C}{C}$	200	12	400	85	50**		10 10		-5 -6	$-12$			
2N1318	PNP	ITC			200	6	400	85	$\begin{aligned} & 45 * \\ & 40^{*} \end{aligned}$		10		-6 -7	-12 -10		$\begin{aligned} & 2 \mathrm{~N} 397 \\ & 2 \mathrm{~N} 397 \end{aligned}$	2
2N1343	PNP PNP PNP	ITC	${ }_{\text {Sw }}$ w	C	150	16	400	85	15*	-50	4.		$-6$	-15		2N397	
2N1345	PNP	ITC	$\stackrel{\text { Sw }}{\text { Sw }}$	$\stackrel{C}{C}$	150	10	400	85	$60^{*}$	-20	7		10	-15		2N397	$\stackrel{2}{2}$
2N1346	PNP	ITC	Sw	C	150			85		-400	10		-6	-12		2N397	
2 N 1347	PNP	ITC	Sw	C	150	12	400 200	885	$30^{4}{ }^{*}$	-14	10		-5	-5		2N397	2
2N1352	PNP	ITC	AF	C	150	20	200	85 85	$30 *$ $40 *$		${ }_{2} .5$		-6	$-12$		2N396	2
2N1353	PNP	ITC	Sw		200	10								-30		2N526	
2N1354	PNP	ITC	Sw		200	15	200	85	25*		1.5		6	10	15	${ }^{2} \mathrm{~N} 394$	2
2N1355	PNP	ITC	Sw		200	20	200	85	$30^{*}$	10	3 5		6	15	5	2N395	2
2N1357	PNP	ITC	Sw		200	15	200									2N396	
-2N1358	PNP	Dic	${ }_{\text {Pwr }}$		$5{ }^{\circ}$	$80^{*}$	200	95	$40^{*}$	1.2	100 100					2N397	2
2 N 1411	PNP	Phil	Sw	D	25 @ $45^{\circ} \mathrm{C}$	-5	-50	85	$20^{*}$	-50			5	- 5			
2N1413 2N1414	PNP	GE	AF Sw	2	200	-25	$-200$	85	25*	-20	0.8		$-12$	-30		2N1413	
2N1415	PNP	GE	${ }_{\text {AF }}^{\text {AF }}$ S ${ }_{\text {W }}$	2	200	-25	$-200$	85	34*	$-20$	1.0		-12	$-30$		2N1414	2
2N1427	PNP	Phil	Sw	D	25 (a) $45^{\circ}{ }^{\circ} \mathrm{C}$			85	$53 *$	-20	1.3		$-12$	-30		2N1415	
2 N 1428	PNP	Phil	Sw	C	100	-6	-50	85 140	20*	-50 -5			5	-6			
2N1429	PNP	Phil	Sw	C	100	-6	-50	140	12*	-5			0.1	-6			
${ }^{2} \mathrm{~N} 1431$	NPN	Syl	AF	A	180	15								-6			
2 N 1432	PNP	Syl	AF		100	-45	10	100		35			50	20			
2 N1433	PNP	CBS	Pwr			-50	3.5	+95	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\stackrel{2}{2}$	5		15 0.1	-45			
${ }^{2} \mathrm{~N} 1434$	PNP	CBS	$\mathrm{P}_{\mathrm{wr}}^{-}$			$-50$											
2 N 1435	PNP	CBS	Pwr			-50	3.5	95	$30^{*}$		5		0.1	-2			
2 N 1436	PNP	Phil	Sw	C	50	- 15*	-50	100	$\begin{aligned} & 30^{*} \\ & 20^{*} \end{aligned}$	$\begin{array}{r} 2 \\ -10 \end{array}$				-2			
${ }_{2} 2 \mathrm{Nl4.46}$	PNP	ITC	AF	C	200	25	400	85	16*	20	. 8		10				
${ }_{2}{ }_{2} \mathrm{~N} 14488$	PNP	ITC	${ }_{\text {AF }}$	$\stackrel{C}{C}$	200	25	400	85	35*	20	1.5		10	30		2 N 52.5	2
2 N 1449	PNP	ITC	AF	C	200	25	400	85	50 *	20	2		10	30		2N526	${ }_{2}$
2N1450	PNP	GT	AF	C	200	${ }^{25}$ *	400	85	${ }^{70}{ }^{*}$	20	2.5		10	30		2N527	2
2N1472	NPN	Phil	Sw	C	1200	${ }_{25}^{35}$	100 100	85 150	$20^{*}$	10			10	7			
2N1473	NPN	Syl	Sw							10			0.5	10			
2N1.178	PNP	Phil	Sw	C			-400	${ }^{75}$	25*	400	4		100	40			
2N1479	NPN	RCA	Pwr		${ }^{250}$ W	$-30 *$ $60 *$	$-400$	100	40*	$-100$	3		5	1.5		2N396	2
2NI480	NPN	RCA	Pwr				1.5	175	15*	200	1.5	60	10	30		2N497A	8
2N1481	NPN	RCA	Pwr		4 W	100**	1.5	175	15*	200	1.5	100	10	30		2N497A	8
2N1482	NPN	RCA	Pwr		4 W	100*	1.5	175	35*	200	1.5	60	10	30		2N656A	8
2N1483	NPN	RCA	Pwr			$10{ }^{\text {a }}$	1.5	175	35*	200	1.5	100	10	30		2N656A	${ }_{3}$
2 N 1484	NPN	RCA	Pwr		15 W		3	175	15*	750	1.25		15	30			
2N1485	NPN	RCA	Pwr		15 W	60*	3	175 175	15**	750	1.25		15	30			
							3	175	35*	750	1.25		15	30			


JEDEC No.	Type	Mfr.	Use	Dwg. No.	AAXIMUM RATINGS				ELECTRICAL PARAMETERS						Closest GE	Dwg.   No.
					Pc mw   @ $25^{\circ} \mathrm{C}$	$\mathrm{BV}_{\mathrm{CE}}$ $B V_{C B}{ }^{*}$	Ic ma	$\mathrm{T}_{5}{ }^{\circ} \mathrm{C}$	MIN.   $h_{\text {fe-hfe }}{ }^{*}$   @ Icma		MIN. fhete me	MIN.   $\mathbf{G}_{\mathrm{e}} \mathbf{d b}$	MAX.   Ico( Ha )	@ $\mathrm{V}_{\mathrm{cB}}$		
2N1486	NPN	RCA	Pwr		15W	100*	3	175	35*	750	1.25		15	30		
2 N 1487	NPN	RCA	Pwr		60W	60*	6	175	10*	1.5	1		25	30		
2N1488	NPN	RCA	Pwr		60 W	100*	6	175	10*	1.5	1		25	30		
2N1489	NPN	RCA	Pwr		60W	60*	6	175	25*	1.5	1		25	30		
2N1490	NPN	RCA	Pwr		60 W	100*	6	175	25*	1.5	1		25	30		
2N1499	PNP	Phil	MADT	C	25	-25*	$-50$	85	20*	$-10$			5	-5		
2 N 1500	PNP	Phil	MADT	C	50	-15*	$-50$	100	20*	$-50$			5	-5		
2N1501	PNP	M-H	Pwr			- 60*		95	25*	$-2 \mathrm{~A}$			-2	$-60$		
2 N 1502	PNP	M-H	Pwr			-40*		95	25*	$-2 \mathrm{~A}$			-2	-40		
2 N 1507	NPN	TI			0.6W	$60^{*}$	500	175	100*	150			1	30		
2 N 1510	NPN	GE	Neou Indicator	3	75	70	20	85	8*	1			5	75	2N1510	3
2N1605	NPN	Syl	Sw	C.	150	24	100	100	40*	20	4		5	12		
2N1614	PNP	GE	Sw	1	240	-65*	$-300$	85	18*	-20	0.5		$-25$	-65	2N1614	
2N1671	PN	GE	Si Uni	5	SEE G-E	TRANSIS	TOR S	CIFIC	ION SEC	TION					2N1671	5
2N1671A	PN	GE,	Si Uni	5	SEE G-E	TRANSIS	TOR S	CIFIC	ION SEC	TION					2N1671A	5
2N1671B	PN	GE	Si Uni	5	SEE G-E	TRANSIS	TOR S	CIFICA	ION SEC	TION					2N1671B	5
3N21	Pt	Syl	Sw		100	-60		50	2.5							
3 N 22	NPN	WE	RF			15*		85	. $92 \alpha$		15		10	5		
3 N 23	NPN	GP	Obsolete			30	5				50	14	10	4.5		
3 N 23 A	NPN	GP	Obsolete			30	5				35	12	10	4.5		
3N23B	NPN	Gl	Obsolete			30	5				20	11	10	4.5		
3N23C	NPN	GP	Obsolete			30	5				10	9	10	4.5		
3N29	NPN	GE	Obsolete		50	6	20	85	100 T		40 T	10				
3N30	NPN	GE	Obsolete		50	6	20	85	100 T		80 T	10 T				
3N31	NPN	GE	Obsolete		50	6	20	85	100 T		80 T	10 T				
3N34	NPN	TI	Si RF		125	30	20	150	10	-. 1	100 T		4	20		
3N35	NPN	TI	Si RF		125	30	20	150	10	-1.3	150 T		4	20		
3N36	NPN	GE	RF	6	30	6	20	85			50		10	7	3N36	6
$3 N 37$	NPN	GE	RF	6	30	6	20	85			90		10	7.	3N37	6
3N45	PNP	M-H	$\mathrm{P}_{\text {wr }}$		1W	$-60^{*}$		100	25*	$-5 \mathrm{~A} 1$	16.5T Kc		-0.2	$-2$		
3N46	PNP	M-H	Pwr		1W	$-80^{*}$		100	20*	$-5 \mathrm{~A}$	12 T Kc		-0.2	-2		
TUNNEL DIODES																
1N2939				9	SEE G-E TRANSISTOR SPECIFICATION SECTION										1N2939	9
1 N 2940				9											1 N 2940	9
1 N 2941				9											1N2941	9
1N2969				9	SEE G-E	TRANSISTOR S		CIFIC	ION SEC	TION					1N2969	9

TYPES AND USES:

[^18] MANUFACTURERS:
Bendix-Bendix Aviation Corp.
CBS-CBS-Hytron
Cle-Clevite Transistor Products
Dlc-Delco Radio Div., General Motors Corp.
F-C-Fairchild Semiconductor Corp.
GE-General Electric Corp.
GT-General Transistor Corp.
GP-Germanium Products Corp.
Hughes-Hughes Semiconductors
ITC-Industro Transistor Corp.
T-Typical Values
M-H-Minneapolis-Honeywell Regulator Co. Motor-Motorola, Inc. Phil-Philco Ray-Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company Ray-Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company Ray-Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company Ray-Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company Ray-Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company Ray--Raytheon Manufacturing Company
RCA-RCA
Syl-Sylvania Electric Products Co.
TI-Texas Instruments, Inc.
TS-Tung-Sol.
W-Westinghouse Electric Corp.
WE-Western Electric Company
We-Werter
T-Typical Values
M-H-Minneapolis-Honeywell Regulator Co.正
 MANUFACTURERS:
Bendix-Bendix Aviation Corp.
CBS-CBS--Hytron
Cle-Clevite Transistor Products
Dlc-Delco Radio Div., General Motors Corp.
F-C-Fairchild Semiconductor Corp.
GE-General Electric Corp.
GT-General Transistor Corp.
GP-Germanium Products Corp.
Hughes-Hughes Semiconductors
ITC-Industro Transistor Corp.


#### Abstract

^[ 解 ]



Si-Silicon High Temperature Transistors
(all others germanium)
Pt-Point contact types
AF-Audio Frequency Amplifier and
General Purpose
AF Out-High current AF Output
Pwr-Power output 1 watt or more
RF-Radio Frequency Amplifier
Osc-High gain High frequency RF oscillator
IF-Intermediate Frequency Amplifier
lo IF-Low IF (262 Kc) Amplifier
Sw-High current High frequency switch
AF Sw-Low frequency switch

## OUTLINE DRAWINGS



## (2) <br> DIMENSIONS WITHIN JEDEC OUTLINE TO-5

NOTE I: This zone is controlled for auto matic handling. The variation in actual diameter within this zone shall not exceed .010

NOTE 2: Measured from max. diameter of the actual device.

Nort 3: The specified lead diameter apples in the zone between. 050 and .250 from the base seat. Between .250 and 5 maximum of 021 dameter is held. Outside of these zones the lead diameter is not controlled. Leads may be inserted, without damage, in . 031 holes while transistor enters . 371 hole concentric with lead hole circle.

APPROX WEIGHT: 05 OZ ALL DIMENSIONS IN INCHES



## DIMENSIONS WITHIN JEDEC OUTLINE TO-5

MOTE I: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 .
note 2: Measured from max. diameter of the actual device
note 3: The specified lead diameter applies in the zone between 050 and .250 from the base seat. Between . 250 and 1.5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled. Leads may be inserted, without damage, in .031 holes whle transistor enters 371 hole concentric with lead hole circle.


DIMENSIONS WITHIN JEDEC OUTLINE....TO-33

MOTE 1: This zone is contirolied for automatic handing. The variation in actua! diameter within this zone shall not exceed. .010.
note 2: Measured from max diameter of the actual device.
note 3: The specified lead diameter applies in the zone between . 050 and .250 from the base seat. Between 250 and 1.5 maximum of 021 diameter is held. Outside of these zones the lead diameter is not



# dimensions within JEDEC OUTLINE TO-12 

mOTE I: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 .
mote 2: Measured from max. diameter of the actual device.
HOTE 3: The specified lead diameter applies in the zone between . 050 and .250 from the base seat. Between .250 and .5 maximum of .021 diameter is heid. Outside of these zones the lead diameter is not controlled.

$$
\begin{aligned}
& \text { * } \\
& \text { CUT TO O.200" FOR USE IN SOCKETS } \\
& \text { LEADS TINNED DIA. OIB } \\
& \text { MOUNTING POSITION - ANY } \\
& \text { WEIGHT: O5 OZ } \\
& \text { BASE CONNECTED TO TRANSISTOR SHELL. } \\
& \text { DIMENSIONS IN INCHES. }
\end{aligned}
$$

## DIMENSIONS WITHIN

 JEDEC OUTLINE TO-18MOTE 1: Minimum tab thickness 005.
more 2: Lead diameter is not controlled in the area $1 / 16^{\prime \prime}$ from base seat.
mort 3: Calculated by measuring flange diameter, including tab and excluding tab, and subtracting the larger diameter from the smaller diameter.

APPROX WEIGHT: OI 5 OZ ALL DIMENSIONS IN INCHES




JEDEC OUTLINE TO-39
wore 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shail not exceed .010.
mote 2: Measured from max. diameter of the actual device.
mote 3: The specified lead diameter ap. plies in the zone between .050 and .250 from the base seat. Between 250 and .5 maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

## © <br> 


©

$\oplus$


## 21. RECTIFIER SPECIFICATIONS

## NOTES ON RECTIFIER SPECIFICATION SHEET

The performance of a rectifier is judged primarily on four key measurements, or parameters. They are always given for specific ambient conditions, such as still air and $55^{\circ} \mathrm{C}$, and are based on a 60 cycles per second (A-C) input with the rectifier feeding a resistive or inductive load (see (A) below). A capacitive load will increase the Peak Reverse Voltage duty on the rectifier cell and will therefore necessitate a slightly lower set of ratings than shown here. These key parameters are:
(1) Maximum Peak Reverse Voltage (usually referred to as PRV), the peak a-c voltage which the unit will withstand in the reverse direction; (2) Maximum Allow-


60 CPS (CYCLES PER SECOND) A.C INPUT
able D-C Output Current, which varies with ambient temperature; (3) Maximum Allowable One-cycle Surge Current, representing the maximum instantaneous current which the rectifier can withstand for one cycle, usually encountered when the equipment is turned on; (4) Maximum Full-load Forward Voltoge Drop, measured with maximum d-c output flowing and maximum PRV applied. This is a measure of the rectifier's efficiency.

## EXAMPLE:

> | $1 N 1692,1 N 1693$ |
| :--- |
| $1 N 1694$, |

These alloy junction silicon rectifiers are designed for general purpose applications requiring maximum economy. These rectifiers are hermetically sealed and will perform reliably within the operating specifications.

## RATINGS AND SPECIFICATIONS


(1)-[ Max. Allowable Peak Inverse Voltage Max. Allowable RMS Voltage Max. Allowable Continuous Reverse DC Voltage Max. Allowable DC Output $100^{\circ} \mathrm{C}$ Ambient Max. Allowable DC Output $50^{\circ} \mathrm{C}$ Ambient
(3)- Max. Allowable Onc Cycle Surge Current
(4)- L. Max. Full Load Forward Voltage Drop (Full cycle average at $100^{\circ} \mathrm{C}$ )
Max. Leakage Current at Rated PIV
(Full cycle average at $100^{\circ} \mathrm{C}$ ) Peak Recurrent Forward Current Max. Operating Temperature

1N1692	1 N1693	1 N1694	1 N1 695
100	200	300	400 volts
70	140	210	280 volts
100	200	300	400 volts
250	250	250	250 ma
600	600	600	600 ma
20	20	20	20 amps
.60	.60	.60	.60 volts
0.5	0.5	0.5	0.5 ma
2.0	2.0	2.0	2.0 amps
	$-115^{\circ} \mathrm{C}$		

The other ratings or specifications are additional yardsticks of performance which are more or less critical depending on the operating conditions to be experienced. For instance, the 1N1692 Series for which specifications are shown, being silicon rectifiers, are able to show a higher range of Ambient Operating Temperatures with higher output than a germanium unit would, and are preferred on this basis for many applications. Maximum Leakage Current refers to the reverse current which will flow when voltage is applied, and here, too, can be a critical measure of performance for specific applications such as magnetic amplifiers.

Sometimes there is confusion as to whether a unit is a Diode or a Rectifier. Actually the word Diode means "two" and both rectifiers and diodes have two elements. However, rectifiers are capable of handling much larger currents than diodes. The term diode is used to describe units used in high frequency, low current, signal applications such as in high frequency circuits of television receivers.

## CONDENSED RECTIFIER SPECIFICATIONS

The following condensed specifications covering the General Electric series of Silicon Controlled Rectifiers summarize the most important parameters. For complete detailed specifications of a particular type, please contact the Semiconductor Products Department, Advertising and Sales Promotion, General Electric Company, Charles Building, Liverpool, New York.
For application information covering the General Electric Series of Silicon Controlled Rectifiers, please see Chapter 18.
LOW CURRENT SILICON CONTROLLED RECTIFIERS
The C10 Silicon Low Current Controlled Rectifier is a three junction semiconductor device for use in low power switching and control applications requiring blocking up to 400 volts and RMS load currents up to 7 amperes. Series and parallel circuits may be used for higher power applications.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Outline Drwg. No. \& G-E Type No. \& $$
\underset{\mathbf{V}_{\text {Bo }}}{\operatorname{Min}}
$$ \& PRV \& Max. Peak 1 Cycle Surge Current \& $$
\begin{gathered}
\text { Max. Gate } \\
\text { Current } \\
\text { to Fire } \\
\left(150^{\circ} \mathrm{C} \text { J.T. }\right)
\end{gathered}
$$ \& Max. Rated D-C Current @ $115^{\circ} \mathrm{C}$ Stud Temp.@180 ${ }^{\circ} \mathrm{C}$ Cond. Angle <br>
\hline 1 \& $\mathrm{Cl}^{\text {C10U }}$ \& 25 \& 25 \& 60 A \& 6.0 ma \& 7 A <br>
\hline 1 \& C10A \& 100 \& 100 \& 60 A
60 A \& ${ }_{6}^{6.0} \mathrm{ma}$ \& 7 A <br>
\hline 1 \& C10G \& 150 \& 150 \& 60 A \& 6.0 maa \& ${ }_{7} 7 \mathrm{~A}$ <br>
\hline 1 \& C10B \& 200
250 \& 200
250 \& 60 A \& 6.0 ma \& 7 A <br>
\hline 1 \& ${ }_{\mathrm{Cl} 10 \mathrm{C}}^{\mathrm{C}}$ \& 250
300 \& 250
300 \& 60 A \& 6.0
6.0 ma

cha \& 7 A <br>
\hline 1 \& C10D \& 400 \& 400 \& 60 A \& 6.0 ma \& 7 A <br>
\hline
\end{tabular}

MEDIUM CURRENT SILICON CONTROLLED RECTIFIERS
The C35 Silicon Controlled Rectifier is a three junction semiconductor device for use in power control and power switching applications requiring blocking voltages up to 500 volts and load currents up to 25 amperes. Series and parallel circuits may be used for higher power applications.

Outline Drwg. No.	JEDEC or G-E Type No.	Min. $V_{B O}$	PRV	Max. Peak 1 Cycle Surge Current	Max. Gate Current to Fire ( $125^{\circ} \mathrm{C}$ J.T.)	Max. Rated D-C Current @ $57^{\circ} \mathrm{C}$ Stud Temp.@ $180^{\circ} \mathrm{C}$ Cond. Angle
2	$\begin{aligned} & 2 \mathrm{~N} 681 \\ & (\mathrm{C} 35 \mathrm{U}) \end{aligned}$	25	25	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N682 } \\ & (\mathrm{C} 35 \mathrm{~F}) \end{aligned}$	50	50	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N683 } \\ & \text { (C35A) } \end{aligned}$	100	100	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N684 } \\ & (\mathrm{C} 35 \mathrm{G}) \end{aligned}$	150	150	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N685 } \\ & \text { (C35B) } \end{aligned}$	200	200	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N686 } \\ & \text { (C35H) } \end{aligned}$	250	250	$150 \mathrm{~A}$	25 ma	25 A
2	$\begin{aligned} & \text { 2N687 } \\ & (\mathrm{C} 35 \mathrm{C}) \end{aligned}$	300	300	150 A	25 mm	25 A
2	$\begin{aligned} & \text { 2N688 } \\ & \text { (C35D) } \end{aligned}$	400	400	150 A	25 ma	25 A
2	$\begin{aligned} & \text { 2N689 } \\ & (\mathrm{C} 35 \mathrm{E}) \end{aligned}$	500	500	150 A	25 ma	25 A

MEDIUM CURRENT SILICON CONTROLLED RECTIFIERS
The C36 Silicon Controlled Rectifier is a three junction semiconductor device for use in power control and power switching applications requiring blocking voltages up to 400 volts and RMS load currents up to 16 amperes. Series and parallel circuits may be used for higher power applications.

Outline Drwg. No.	G-E Type No.	Min. $V_{\text {Bo }}$	PRV	Max. Peak 1 Cycle Surge Current	$\begin{aligned} & \text { Max. Gate } \\ & \text { Current } \\ & \text { to Fire } \\ & \left(100^{\circ} \mathrm{C} \text { J.T. }\right) \end{aligned}$	Max. Rafed D-C Current @ $25^{\circ} \mathrm{C}$ Stud Temp.@ $180^{\circ} \mathrm{C}$ Cond. Angle
2	C36U	25	25	125.A	50 ma	16 A
2	C36F	50	50	125 A	50 ma	16 A 16 A
2	C36A	100	100	125 A	50 ma	16 A
2	C36G	150	150	125 A	50 ma	16 A
2	C36B	200	200	125 A	50 ma	16 A
2	C36H	250	250	125 A	50 ma	16 A
2	C36D	300	300	125 A	50 ma	16 A
2	C36D	400	400	125 A	50 ma	16 A

MEDIUM CURRENT SILICON CONTROLLED RECTIFIERS
The C40* series of Silicon Controlled Rectifiers are specially selected to meet inverter circuit applications, as well as other circuitry that requires a maximum limit on turn-off time. Each of these types is tested to insure that the turn-off time is less than 12 microseconds, under the specified test conditions. Turn-off time is defined as the time interval required for the silicon controlled rectifier to regain its forward blocking state after forward current conduction. This time is measured from the point where the forward current reaches zero to the time of reapplication of forward voltage.

The 12 microsecond turn-off time applies to the types listed for the following operating conditions:

Outline Drwg. No.	G-E Type No.	Min.   $V_{\text {во }}$	PRV	Max. Fwd. Cur. Immed. Before Turn-off		Rev. ent Max.	Min. Rate of Rise Rev. Current	Max. Rate of Rise -Re-applied for Voltage
2	$\mathrm{C40U}$	25	25	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	C40F	50	50	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	C40A	100	100	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{S}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	C40G	150	150	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	C40B	200	200	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{S}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	$\mathrm{C40H}$	250	250	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$
2	C40C	300	300	10 A	5 A	20 A	$5 \mathrm{~A} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$

HIGH CURRENT SILICON CONTROLLED RECTIFIERS
The C60 Silicon Controlled Rectifier is a three junction semiconductor device for use in
power control and power switching applications requiring blocking voltage up to 300
volts and RMS load currents up to 110 amperes. Series and parallel circuits may be used
for higher power applications.
An outstanding feature of the C60 is the all hard solder construction affording a high
degree of freedom from thermal fatigue.

Outline Drwg. No.	G-E Type No,	Min. $V_{\text {в }}$	PRV	Max. Peak 1 Cycle Surge Current	$\begin{gathered} \text { Max. Gate } \\ \text { Current } \\ \text { to Fire } \\ \left(150^{\circ} \mathrm{C} \text { J.T. }\right) \end{gathered}$	Max. Rated D-C Current @ 85 ${ }^{\circ} \mathrm{C}$ Stud Temp.@180 ${ }^{\circ} \mathrm{C}$ Cond. Angle
3	C60U	25	25	1000 A	30 ma	110 A
8	C60F	50	50	1000 A	30 ma	110 A
3	C60A	100	100	1000 A	30 ma	110 A
3	C60G	150	150	1000 A	30 ma	110 A
3	C60B	200	200	1000 A	30 ma	110 A
3	C 60 H	250	250	1000 A	30 ma	110 A
3	C60C	300	300	1000 A	30 ma	110 A

HIGH CURRENT SILICON CONTROLLED RECTIFIERS The C50 Silicon Controlled Rectifier is a three junction semiconductor device for use
in power control and power switching applications requiring blocking voltages up to
400 volts and RMS load currents up to 110 amperes. Series and parallel circuits may be
used for higher power applications.
An outstanding feature of the C 50 is the all hard solder construction affording a high
degree of freedom from thermal fatigue.

Outline Drwg. No.	G-E Type No.	Min.   $V_{\text {Bo }}$	PRV	Max. Peak 1 Cycle Surge Current	$\begin{aligned} & \text { Max. Gate } \\ & \text { Current } \\ & \text { to Fire } \\ & \left(125^{\circ} \mathrm{C} \text { J.T. }\right) \end{aligned}$	Max. Rated D-C   Current @ $59^{\circ} \mathrm{C}$   Stud Temp.@180 ${ }^{\circ} \mathrm{C}$ Cond. Angle
3	C50U	25	25	1000 A		
3	C50F	50	50	1000 A	40 ma	110 A
3	C50A	100	100	1000 A	40 ma	110 A
3 3	C50G	150	150	1000 A	40 ma	110 A
3 3	C50B	200	200	1000 A	40 ma	110 A
3 3	$\mathrm{C50H}$	250	250	1000 A	40 ma	110 A
	C50C	300	300	1000 A	40 ma	110 A
3	C50J C50D	350	350	1000 A	40 ma	110 A
	C50D	400	400	1000 A	40 ma	110 A

(A) $10-32$ 日RASS HEX NUT
(9) PLATED
(9) STEEL LOCKWASHER
(c) TERMINAL OIF THICK
(D) TEFLON WASHER

TEFLON WASHER
O32 WALL THICK .032 WALL THICK .270 O. D.
(E) MICA WASHERS (2) .005 THICK


NOTES: (I) STUD IS ANODE CONNECTION
(2) WHEN MOUNTING KIT IS USED

MAXIMUM HEAT SINK THERMAL RESISTANCE TO AMBIENT $=7^{\circ} \mathrm{C} /$ WATT
(3) MICA WASHER IN MOUNTING KIT ADDS $4^{\circ} \mathrm{C}$ /WATT THERMAL RESISTANCE JUNCTION TO HEAT SINK
(4)NET WEIGHT . 33 OZ
(A) $1 / 4-28$ BRASS KEP NUT CADMIUM PLATED
(B) TERMINAL 040 THK COPPER, TIN PLATED
(C) TEFLON WASHER 025 WALL THK. O32 SHOULDER THK
(D) MICA WASHER .005 THK


MOUNTING KIT
OUTLINE DRAWING

C35, C36, C40 SILICON CONTROLLED RECTIFIERS


NOTE
ONE $\frac{1}{2}$-20 erass nickel-plated nut ano
one sllicon bronze spaing lockwasher
SUPPLIED WITH EACH UNIT
APPROX WEIGHT(EXGLUOING HARDWARE) $=307$
CONVENTIONAL RECTIFIERS
LOW CURRENT GERMANHM RECTIFIER CELLS
The following General Electric germanium junction rectifiers have become industry standards of quality. They have demonstrated life for over 25,000 hours with no significant change in characteristics. The General Electric-developed top hat package and associated, hermetic seal coupled with a closely controlled manufacturing process, guarantees continued product excellence. These germanium rectifiers offer extremely low forward resistance that is difficult to match with any other type rectifier.

Drwg. No.	JEDEC   or G-E   Type   No.	PRV	Max: $I_{\text {DC }}$ at $T^{\circ} \mathrm{C}$	Max.   Peak 1 Cycle Surge	Max. Lkge. Current (Full Cycle Avg.)	Max. Full Load Voltage Drop (Full Cycle Avg.)	Max.   Oper.   Temp.   ${ }^{\circ} \mathrm{C}$	Max. Storage Temp. ${ }^{\circ} \mathrm{C}$
1 1 1 1	$\begin{aligned} & \text { 1N93 } \\ & \text { USN1N93 } \\ & \text { 1N315 } \\ & \text { USAF-1N315 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 75 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb} \\ & 75 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb} \\ & 75 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb} . \\ & 75 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb} . \end{aligned}$	$\begin{aligned} & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \end{aligned}$	.6 ma .6 ma Min Forward/Rever Min Forward/Rever	.18 volts .18 volts io $700 @ 55^{\circ} \mathrm{C}$ io-700 $0555^{\circ} \mathrm{C}$	$\begin{aligned} & 95^{\circ} \mathrm{C} \\ & 95^{\circ} \mathrm{C} \\ & 85^{\circ} \mathrm{C} \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \\ & 95^{\circ} \mathrm{C} \\ & 95^{\circ} \mathrm{C} \end{aligned}$
1	$\begin{aligned} & \text { 1N368 } \\ & \text { 1N92 } \end{aligned}$	$\begin{array}{r} 200 \\ 200 \end{array}$	$100 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb}$. 100 ma @ $55^{\circ} \mathrm{C} \mathrm{Amb}$.	$\begin{aligned} & 25 \mathrm{~A} \\ & 25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & .3 \mathrm{ma} @ 150 \\ & .95 \mathrm{ma} \end{aligned}$	$\begin{aligned} & .48 \text { volts } \\ & .19 \text { volts } \end{aligned}$	$\begin{aligned} & 55^{\circ} \mathrm{C} \\ & 95^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 85^{\circ} \mathrm{O} \\ 105^{\circ} \mathrm{C} \end{gathered}$
$)$	1N91	100	$150 \mathrm{ma} @ 55^{\circ} \mathrm{C}$ Amb.	25 A	1.35 ma	. 22 volts	$95^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
2	1N153	300	$750 \mathrm{ma} @ 55^{\circ} \mathrm{C} \mathrm{Amb}$.	25A			$95^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
3	1N158	400	$1000 \mathrm{ma} @ 55^{\circ} \mathrm{C}$ Amb .	25 A			$95^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
4	1N152	200	$1000 \mathrm{ma} @ 55^{\circ} \mathrm{C}$ Amb.	25 A			$95^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
2	1N151	100	1200 ma @ $55^{\circ} \mathrm{C}$ Amb.	25 A			$95^{\circ} \mathrm{C}$	$105{ }^{\circ} \mathrm{C}$

LOW CURRENT SILICON RECTIFIER CELLS (LEAD MOUNTED)


$\begin{aligned} & 00 \\ & 00 \\ & 0 . \end{aligned}$	0000000000000000000000    $\qquad$
$\begin{aligned} & 00 \\ & 80.0 \\ & 80.4 \end{aligned}$	-00000ン0 UVU UVUUUUU  
	UUUUUUUUUUUUUUUVUUUUUU    Breseresersespecserse     
	טUUUUUUUUUUUUUUטUטUUUU Man asersersebserserses     
ed	 
	         Breserespresersises,        
88	8888888888888888888ㅇ  
-ime	

SUBMINIATURE SILICON RECTIFIERS
These double diffused junction subminiature glass rectifiers are designed for maximum thermal conductance over a wide temperature range. Their rugged design is well suited to meet stringent military requirements. They are hermetically sealed for maximum reliability.

LOW CURRENT SILICON RECTIFIER CELLS（STUD MOUNTED）
These low current rectifiers are essentially the same group of rectifiers as the lead mounted rectifiers listed above．It
uses basically the same package（with its inherent dependability and experience factor）mounted on a $7 / 16$ hex with
a $10-32$ stud for mounting convenience．The stud mounted unit offers the advantage of utilizing a heatsink for better
heat transfer and resulting higher current ratings．Military approved units are available in those units asterisked（＊）．

			000000 in in in inioio   気天下だに   かんのんにな	$\begin{aligned} & 00 \\ & 00 \\ & 09 \\ & 1010 \end{aligned}$	
	טUUVUUUUU     		UUUOUO $00^{\circ} 0^{\circ} 0$  	$\begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 00 \\ & 10 \end{aligned}$	טטטטU －0000  
	   888888888      （앙ㅇㅇ아아앙    NNNNNNNNN	$00090000^{\circ}$ $88 \% 8 \circ 8$ 아아앙ㅇㅇㅇㅇㅂ앙    NNNNNNNCUO	000000 is inioinioin NNMNNA   아앙ㅇㅇㅇ PPBPDP ค riniriai		UUUUUU is is is in in NNNNNO   织 E E E E 888888 NMNNNN 우우아    $1010101010 \log$ miririनinini
	UUUUVUUUO $10^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$    （ㅇ），        	UUUUUUOUVU $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ 120 8， 8 8 8搎 ¢	こひひひひひ． is isicisis is NMMNNA   （3）우앙      1001010200.   $\sim^{-1}$ ai os $^{\circ}$		000000 Kio io io io NGNNNN   아아웅          N888영．
		 	  囚   《く＜＜＜＜＜ ザがびが向		  《くく《《＜ NNNNNE
	   טロטण00000 옹ㅇㅇㅇㅇㅇㅇㅇㅇ    아우아웅ㅇㅇㅇ むీ    ㅇ888ㅇㅇㅇ NNMNNNNNN	   UOUOUOUOUO $\circ 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$    아아아아앙    888898ㅇㅇㅇ  	  g ह ह ह   《《＜＜＜   טUUUUU   $\circ^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$   익육윽   앙ㅇㅇ앙         ㅇ8ㅇㅇㅇㅇ  		
量	ㅇ888888  			$\mathrm{S}_{\mathrm{i}}^{8}$	808980
$\frac{6}{2}$	ザずずずずずす！		－+ dram	4	－ixtwix


LOW CURRENT SILICON RECTIFIERS (INSULATED STUD)
These units are the same as the $1 \mathrm{~N} 1115-1 \mathrm{~N} 1120$ series listed above except the stud is insulated from the junction. This offers an easy solution to the customer who desires insulated mounting.

Drwag. No.	JEDEC or G-E Type No.	PRV	Max. $\mathrm{I}_{\mathrm{DC}}$ at $\mathrm{T}^{\circ} \mathrm{C}$	Max.   Peak 1 Cycle Surge	Max. Lkge. Current (Full Cycle Avg.)	Max. Full Load Voltage Drop (Full Cycle Avg.)	Max.   Oper.   Temp.   ${ }^{\circ} \mathrm{C}$	Sforage Temp. ${ }^{\circ} \mathrm{C}$
5	1N2851	500	1.5 A@ $50^{\circ} \mathrm{C}$ Case	15.	. $3 \mathrm{ma} @ 150^{\circ} \mathrm{C}$	. $65 \mathrm{~V} @ 150^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
6	1 N 2852	600	1.5 A@ $50^{\circ} \mathrm{C}$ Case	15 A	$.3 \mathrm{ma} @ 150^{\circ} \mathrm{C}$	$.65 \mathrm{~V} @ 150{ }^{\circ} \mathrm{C}$	$150{ }^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
5	1 N 2847	100	1.5 A $075^{\circ} \mathrm{C}$ Case	15 A	.4 ma @ $150{ }^{\circ} \mathrm{C}$	$.65 \mathrm{~V} @ 150{ }^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
5	1N2848	200	1.5 A ¢ $75^{\circ} \mathrm{C}$ Case	15 A	.3 ma @ $150^{\circ} \mathrm{C}$	.65 V ¢ $150^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
6	1N2849	300	$1.5 \mathrm{~A} @ 75^{\circ} \mathrm{C}$ Case	15 A	$.3 \mathrm{ma} @ 150^{\circ} \mathrm{C}$	.65 V $150^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
6	1N2850	400	1.5 A@ $75^{\circ} \mathrm{C}$ Case	15 A	$.3 \mathrm{ma@} 150^{\circ} \mathrm{C}$	.65V@150 ${ }^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$

applications． ap applications．
permits the use of either a positive or negative heatsink in half－wave and cenled in a highly efficient rectifying junction．
General Electric research，advance development and product design have resulted ing and welds for all internal and external
This feature plus a mechanical design employing high temperature hard solders and and
joints and seals，which eliminates common sources of thermal fatigue failure，has produced a silicon rectifier with outstand－
ing reliability under all operating conditions．Military approved units are available in those units asterisked（＊）．

$\frac{x}{2} \frac{8}{6} \frac{0}{6} 0$		טטטలט    Mrinnorn
	0000000000000000 웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ  	000000 in inioiniois manmma
	   UUUUUUVOUUUUUUVO              	
	马    UOUUUUUUUUUVUVOO       Bercerssedeedees     	以及vinuv U00000 웅․․․    ©     
	    	444444 888888 Nonncma
	0060000000000000	$4 \times 4 \times 4$ 읍웁
	888888웅용888ㅇ  	
		¢888888
\％		00embe


4iving   No.	JEDEC or G-E Type No.	Repetitive PRV	Transient PRV	Max. IDC at $150^{\circ} \mathrm{C}$ Stud $\qquad$ Single Phase	Max.   Peck 1 Cycle Surge	Max. Lkge. Current (Full Cycle Average at Full Load)	Max. Full Load Voltage Drop (Full Cycle Avg.)	Max. Oper. Temp. ${ }^{2} \mathrm{C}$	Max Starape Temp: ${ }^{\circ} \mathrm{C}$
9	1N1199A	50	100	12 A	240 A	3.0 ma @ $150^{\circ} \mathrm{C}$ Stud	. 55 V (a) $150{ }^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1199RA	50	100	12 A	240 A	3.0 ma @ $150^{\circ} \mathrm{C}$ Stud	.55 V a $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1 N 1200 A	100	200	12 A	240 A	2.5 ma (a) $150^{\circ} \mathrm{C}$ Stud	. 55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1200RA	100	200	12 A	240 A	2.5 ma (a) $150^{\circ} \mathrm{C}$ Stud	.55 V @ $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1201A	150	300	12 A	240 A	2.25 ma (a) $150^{\circ} \mathrm{C}$ Stud	.55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
9	1N1201RA	150	300	12 A	240 A	2.25 ma ( $150^{\circ} \mathrm{C}$ Stud	.55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1202A	200	350	12 A	240 A	2.0 ma @ $150^{\circ} \mathrm{C}$ Stud	.55 V ( $150^{\circ} \mathrm{C}$ Stud	$200{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
9	1N1202RA	200	350	12 A	240 A	2.0 ma (a) $150^{\circ} \mathrm{C}$ Stud	. 55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
9	1N1203A	300	450	12 A	240 A	1.75 ma @ $150^{\circ} \mathrm{C}$ Stud	. 55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1203RA	300	450	12 A	240 A	1.75 ma (a) $150^{\circ} \mathrm{C}$ Stud	. 55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1204A	400	600	12 A	240 A	$1.5 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud	.55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1204RA	400	600	12 A	240 A	1.5 ma@ $150{ }^{\circ} \mathrm{C}$ Stud	.55 V @ $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1205A	500	700	12 A	240 A	$1.25 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud	.55 V @ $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1205RA	500	700	12 A	240 A	1.25 ma @ $150^{\circ} \mathrm{C}$ Stud	.55 V @ $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1206A	600	800	12 A	240 A	1.0 ma (a) $150^{\circ} \mathrm{C}$ Stud	.55 V (a) $150^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
9	1N1206RA	600	800	12 A	240 A	$1.0 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud	.55V@150 ${ }^{\circ} \mathrm{C}$ Stud.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
	1N248A	50		20 A	850 A	5 ma (a) $150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
6	1N248RA	50		20 A	350 A	5 ma @ $150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
E	1N249A	100		20 A	350 A	5 ma ( $150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
${ }_{6}$	1N249RA	100	\%	20 A	380 A	5 ma a $150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$170^{\circ} \mathrm{C}$
6	1N250A	200	1	20 A	350 A	$5 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
6	1N250RA	200		20 A	350 A	$5 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud		$175{ }^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
6 6	$\begin{aligned} & \text { 1N2154 } \\ & \text { 1N2154R } \end{aligned}$	50	100	A@145 ${ }^{\circ} \mathrm{C}$	300 A	5 ma @ $145^{\circ} \mathrm{C}$ Stud	$0.60 \mathrm{~V} @ 145^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	$\begin{aligned} & 1 \mathrm{~N} 2155 \\ & \text { 1N2155R } \end{aligned}$	100	200	A@145 ${ }^{\circ} \mathrm{C}$	300 A	$4.5 \mathrm{ma} @ 145^{\circ} \mathrm{C}$ Stud	0.60V@145 ${ }^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	$\begin{aligned} & \text { 1N2156 } \\ & \text { 1N2156R } \end{aligned}$	200	350	A@145 ${ }^{\circ} \mathrm{C}$	300 A	$4.0 \mathrm{ma} @ 145^{\circ} \mathrm{C}$ Stud	0.60 V @ $145{ }^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	$\begin{aligned} & \text { 1N2157 } \\ & \text { 1N2157R } \end{aligned}$	300	450	. A @ $145^{\circ} \mathrm{C}$	300 A	8.5 ma@ $145^{\circ} \mathrm{C}$ Stud	0.60 V @ $145^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	$\begin{aligned} & \text { 1N2158 } \\ & \text { 1N2158R } \end{aligned}$	400	600	A@145 ${ }^{\circ} \mathrm{C}$	300 A	3.0 ma@ $145^{\circ} \mathrm{C}$ Stud	0.60 V@ $145^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
6 6	$\begin{aligned} & 1 \mathrm{~N} 2159 \\ & \text { 1N2159R } \end{aligned}$	500	700	5. ${ }^{1} 145^{\circ} \mathrm{C}$	300 A	$2.5 \mathrm{ma} @ 145^{\circ} \mathrm{C}$ Stud	0.60 V@145 ${ }^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	$\begin{aligned} & \text { 1N2160 } \\ & \text { 1N2160R } \end{aligned}$	600	800	A @ $145^{\circ} \mathrm{C}$	300 A	$2.0 \mathrm{ma} @ 145^{\circ} \mathrm{C}$ Stud	$0.60 \mathrm{~V} @ 145^{\circ} \mathrm{C}$ Stud	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
6	*1N2135A	400		5A	250 A	10 ma @ $175^{\circ} \mathrm{C}$ Stud		$150{ }^{\circ} \mathrm{C}$	$175{ }^{\circ} \mathrm{C}$
6	*1N249B	110		0A	350 A	5 ma ( $150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$
6	*1N250B	220		0 A	350 A	$5 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Stud		$175^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$

 se प.

 drop, minimum thermal impedance $\left(0.8^{\circ} \mathrm{C} /\right.$ watt-junction to

 external cooling required. In many applications, a single three-



Denveg.   相	JEDEC or G-E Type No.	Repetitive PRV	Transient PRV	Max IDC of $160^{\circ} \mathrm{C}$ Stud Single Phase	Max.   Peak 1 Cyale suige	Max. Peak Lkge. Current @ Max.PRV $200^{\circ} \mathrm{C}$ Junction	Max. Forward Volt. Drop@50Amps $200^{\circ} \mathrm{C}$ Junction (Full Cycle Avg.)	Max.   Oper.   Temp.   ${ }^{\circ} \mathrm{C}$	Max.   Stordge Temp. ${ }^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA } 60 \mathrm{~F}^{-} \\ & \text {4JA61F } \end{aligned}$	50	100	50 A	900 A	$70 \mathrm{ma} @ 200^{\circ} \mathrm{C}$ Jet.	$0.60 \mathrm{~V} @ 20{ }^{\circ} \mathrm{O}$ Jet.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{c}$
7	$\begin{aligned} & \text { 4JA60A } \\ & \text { 4JA61A } \end{aligned}$	100	400	50 A	$900 . \mathrm{A}$	60 ma @ $200^{\circ} \mathrm{C}$ Jct,	0.60 V@ $200^{\circ} \mathrm{C}$ Jct.	$200^{\circ} \mathrm{C}$	$200 \%$
8	4JA61G   4JA60G	150	250	50 A	900 A	$50 \mathrm{ma} @ 290^{\circ} \mathrm{C} \mathbf{J c t}$.	$0.60 \mathrm{~V} @ 200^{\circ} \mathrm{C}$ Jct.	$200^{\circ} \mathrm{C}$	2090
7	$\begin{aligned} & \text { 4JA60B } \\ & \text { 4JA61B } \end{aligned}$	200	300	50 A	900 A	$45 \mathrm{ma} @ 200^{\circ} \mathrm{C}$ Jct.	$0.60 \mathrm{~V} @ 200^{\circ} \mathrm{C}$ Jct.	$200^{\circ} \mathrm{C}$	$200^{\circ} 6$
管	$\begin{aligned} & 4 J A 60 \mathrm{H} \\ & 4 \mathrm{JA} 61 \mathrm{H} \end{aligned}$	250	350	50 A	900 A	$40 \mathrm{ma} @ 200^{\circ} \mathrm{C}$ Jct.	0.60V@200 ${ }^{\circ} \mathrm{C}$ Jet.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA60C } \\ & \text { 4JA61C } \end{aligned}$	300	400	$50 . \mathrm{A}$	900 A	$35 \mathrm{ma} @ 200^{\circ} \mathrm{C} \mathrm{Jct}$.	0.60 V@200${ }^{\circ} \mathrm{C}$ Jct.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA60J } \\ & \text { 4JA61J } \end{aligned}$	350	450	50 A	900 A	$32 \mathrm{ma} @ 200^{\circ} \mathrm{C}$ Jct.	$0.60 \mathrm{~V} @ 200^{\circ} \mathrm{C}$ Jet.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
$\frac{7}{7}$	$\begin{aligned} & \text { 4JA60D } \\ & \text { 4JA61D } \end{aligned}$	810	500	50 A	900 A	$28 \mathrm{ma} @ 200^{\circ} \mathrm{C}$ Jet.	0,60 V @ $200^{\circ} \mathrm{C}$ Jct.	$200^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$

ability of a negative polarity (stud is anode) unit, the 4 JA 63.
 construction of bridge circuits and permits the use of either a positive or negative heatsink in half-wave and center-tap applications. Stacked fin assemblies are also available.
Outstanding features of the 4JA60 series are the hard solder and weld construction which offers a high degree of freedom from thermal fatigue, and a high, but conservative surge current rating.

Drwg. No.	JEDEC or G-E Type No.	Repetinue PRV	Transient PRV	Max. Ine at $110^{\circ}$ 형 Stud Single Phase	Max.   Peak Curle Syrge	Max. Peak Lkge. Current @ Max. PRV $150^{\circ} \mathrm{C}$ Junction	Max. Forward Volt. Drop@ 50 Amps $150^{\circ} \mathrm{C}$ Junction (Full Cycle Avg.)	Max.   Oper.   Temp. ${ }^{\circ} \mathrm{C}$	Max, Storage Temp. ${ }^{\circ} \mathrm{C}$
$\frac{7}{7}$	4J A 62 F   4J A 63 F	50	100	50 A	900 A	$70 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Jct.	0.60 V @ $150{ }^{\circ} \mathrm{C}$ Jct.	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
$\frac{7}{7}$	4JA62A   4JA63A	100	200	50 A	900 A	$60 \mathrm{ma} @ 150^{\circ} \mathrm{CJJt}$.	$0.60 \mathrm{~V} @ 150^{\circ} \mathrm{C}$ Jct.	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
$\frac{7}{7}$	4J A62G   4JA63G	150	250	50 A	000 A	$50 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Jct.	0.60 V@150 ${ }^{\circ} \mathrm{C}$ Jct.	$150{ }^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA62B } \\ & \text { 4JA63B } \end{aligned}$	200	300	A	900 A	$45 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Jct.	$0.60 \mathrm{~V} @ 150^{\circ} \mathrm{C}$ Jet.	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA62H } \\ & \text { 4JA63H } \end{aligned}$	250	350	50 A	900 A	$40 \mathrm{ma} \mathrm{OFO}^{150}{ }^{\circ} \mathrm{C}$ Jet.	$0.60 \mathrm{~V} @ 150^{\circ} \mathrm{C}$ Jct.	$150{ }^{\circ} \mathrm{C}$	$200{ }^{\circ} \mathrm{C}$
7	$\begin{aligned} & \text { 4JA62C } \\ & 4 . \mathrm{JA} 63 \mathrm{C} \end{aligned}$	300	400	50 A	900 A	$35 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Jct.	$0.60 \mathrm{~V} @ 150^{\circ} \mathrm{C}$ Jct.	$150{ }^{\circ} \mathrm{C}$	$200 \%$
7	4 JA 62 J   4JA63J		456	50.	900 A	32 ma @ $150^{\circ} \mathrm{CJet}$.	$0.60 \mathrm{~V} @ 150^{\circ} \mathrm{C}$ Jct.	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$
$\frac{7}{7}$	$\begin{aligned} & \text { 4JA62D } \\ & \text { 4JA63D } \end{aligned}$	600	500	50 A	900 A	$28 \mathrm{ma} @ 150^{\circ} \mathrm{C}$ Jet.	$0.50 \mathrm{~V} @ 150^{\circ} \mathrm{CJ} \mathrm{J} \mathrm{c}$.	$150^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$

RECTIFIER STACKS

G-E Type	PIV (Up to)	Max. Ibo at $\mathbf{T}^{\circ} \mathrm{C}$ ( Up to)
4.JA211	630 V	$6 \mathrm{~A} @ 55^{\circ} \mathrm{C}$ Amb.
4JA411	3360 V	18A@25 ${ }^{\circ} \mathrm{C}$ Amb.
4JA421	2000 V	$.75 \mathrm{~A} @ 25^{\circ} \mathrm{C} \mathrm{Amb}$.
4JA422	$10,000 \mathrm{~V}$	. $50 \mathrm{~A} @ 25^{\circ} \mathrm{C}$ Amb .
4JA3011	630 V	$48 \mathrm{~A} @ 55^{\circ} \mathrm{C}$ Amb .
4JA3511	1800 V	67.5 A@ $05^{\circ} \mathrm{C}$ Amb
4JA6011	840 V	573 A @ $35^{\circ} \mathrm{C}$ Amb
4 JA 6211	840 V	430 A @ $35^{\circ} \mathrm{C} \mathrm{Amb}$.

OUTLINE DRAWINGS
(1)


COMPLIES WITH EIA REGISTERED OUTLINE DO-3
APPROX. WEIGHT $=$ OS OZ.


## OUTLINE DRAWINGS (CONTINUED)


©


NOTE: MICA WASHER IN MOUNTING KIT MAY ADD UP TO $4^{\circ} \mathrm{C} /$ WAT T THERMAL RESISTANCE JUNCTION TO STUD
dIRECTION OF EASY CONVENTIONAL CURRENT FLOW-IN2154-IN216O

DIRECTION OF EASY CONVENTIONAL CURRENT FLOW-IN2I54R-IN2I6OR


## 8



NOTES: 1. JEDEC COLOR CODED BANDS
denote cathode end
2. UNIT WEIGHT -. 25 GMS

## MOUNTING KIT

OUTLINE DRAWING



[^0]:    * F. Langford-Smith, Radiotron Designers Handbook, Australia, 1953, p. 1140

[^1]:    *The "reference power output" is the power output conventionally used to make sensitivity measurements This value is fixed by IRE standard at 5 milliwatts for miniature portable receivers and 50 milliwatts for the larger type portables.
    **To determine the voice coil impedance of a speaker, a DC resistance test should yield a value close to the AC impedance of the voice coil, providing the speaker is measured while disconnected from the output transformer. A 3.2 ohm speaker will measure about 2.7 ohms while a 16 ohm speaker measures around 12 ohms in general.

[^2]:    * This loop is a calibrated lahoratory loop used for accurate sensitivity measurements. Since the purpose here is only to align rather than measure, either an air loop or a ferrite rod antenna may be used as a radiating element. If these are not available either, it often suffices to hring the generator leads close to the receiver's antema and induce a signal through capacitive coupling.

[^3]:    *The term "tracking" here applies to the procedure of having the oscillator and antenna circuit tuned to be exactly $455 \mathrm{Kc} / \mathrm{s}$ apart, yielding maximum gain at each tracked point.
    **Most commercial variable condensers are designed to track at three points along the band, 1400
    $\mathrm{Kc} / \mathrm{s}, 1000 \mathrm{Kc} / \mathrm{s}$, and $600 \mathrm{Kc} / \mathrm{s}$.

[^4]:    *Derate 4 nw $/{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

[^5]:    *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
    **Derate $1.25 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
    ***These limits are design limits within which $98 \%$ of production normally fall.

[^6]:    *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
    **Derate $1.55 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
    ***These limits are design limits within which $98 \%$ of production normally fall.

[^7]:    *Derate $2.5 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for temperatures over $25^{\circ} \mathrm{C}$.
    ${ }^{*}$ Derate $8.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for temperatures above $25^{\circ} \mathrm{C}$.

[^8]:    ${ }^{*}$ Derate $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for increase in ambient temperature above $25^{\circ} \mathrm{C}$.
    *** Derate $8.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for increase in ambient temperature above $25^{\circ} \mathrm{C}$.

[^9]:    *Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

[^10]:    *Derate $1.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature.
    **All values are typical unless indicated as a min. or max.

[^11]:    $.7 * * * \mu \mathrm{mhos}$
    $82 * * *$ ohms
    $\times 10^{-4}$

[^12]:    *Derate $5.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise in case temperature above $25^{\circ} \mathrm{C}$ ambient,
    The power rating in free air at $25^{\circ} \mathrm{C}$ is 150 mw .

[^13]:    *Derate $5.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise in case temperature above $25^{\circ} \mathrm{C}$ ambient
    The power rating in free air at $25^{\circ} \mathrm{C}$ is 150 mw .

[^14]:    *Derate $5.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ rise in case temperature above $25^{\circ} \mathrm{C}$ ambient.
    The power rating in free air at $25^{\circ} \mathrm{C}$ is 150 mw .

[^15]:    *Derate $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.

[^16]:    *Limited by dissipation.
    **Derate $.66 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
    ***Inductance will vary ( 2 to 12 ) $\times 10^{-\theta}$ henry depending on lead length.

[^17]:    *Limited by dissipation.
    $* *$ Derate $.66 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$.
    ***Inductance will vary ( 2 to 12 ) $\times 10^{-9}$ henry depending on lead length.

[^18]:    Since manufacturing techniques are not identical, the General transistors are exact equivalents or replacements for the types referred to.

