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Preface

This book is not for microwave engineers; the engineering literature on the
subject of microwave measurements is already ample, This book has been written
for three groups of readers. First, for students, who it is hoped will find it a
readable introduction to laboratory procedures, Second, for technicians who are
working with coaxial instruments and components. Third, for scientists and
engineers from other fields who must make microwave measurements in the
course of their research,

Throughout most of the book we have assumed of the reader only a famili-
arity with the basic theory of alternating currents, including the representation
of ac quantities by complex phasors and the elementary algebra of complex
numbers. An exception is the optional Chapter 4, where we have presented some
theoretical material. Even here, an acquaintance with the solutions to the one-
dimensional wave equation will see the reader through quite adequately.

The efforts of many persons besides the author have gone into the creation
of this handbook. Mrs, Gladys J. Carter typed the manuscript (several times),
Mrs, Barbara R. Mucciaccio set the text and equations in type, and Mrs, Jane S.
Putnam prepared the drawings, Layout was done by Mrs, Wilna |. Tannahill, and
editorial supervision was capably performed by Miss Audrey J, Boyan. The en-
tire handbook was read both in draft and in proof by Mr. Douglas M. Woodard
of General Radio’s Microwave Group, He has made an invaluable contribution
to the book by ensuring the accuracy of formulas and numerical examples (but
by the same token he cannot escape responsibility for any errors that remain).

D.A.G.
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CHAPTER 1

Introduction
to Coaxial Transmission Lines

Traveling Waves

1.1 FIELDS IN COAXIAL LINES

Although an infinite number of electromagnetic field configurations, or
modes, as they are called, can propagate along a coaxial transmissicn line, the,
one we are almost always interested in is the principal or transverse electro-
magnetic (TEM) mode, because except in rare instances coaxial lines are intended
to operate in this mode. The name ‘‘transverse electromagnetic’’ derives from
the fact that both the electric and magnetic fields belonging to the TEM mode
are entirely normal to the direction of propagation. All the higher modes have,
in addition to the transverse fields, components of either the electric or magnetic
field in the direction of propagation.

Not only coaxial lines but also parallel-wire lines, strip lines, in fact all
transmission lines having two or more conductors, allow propagation of TEM
waves, Like the coaxial line, these other multiconductor transmission lines are
almost invariably intended to work in the TEM mode, although they too have
higher modes of propagation. Hollow waveguides, on the other hand, are trans-
mission lines that have just a single conductor, and they will not support TEM
waves, Waveguide transmission must therefore utilize a higher mode, T

Unguided waves in an unbounded medium (that is, free electromaanetic
radiation) are transverse electromagnetic and share all the properties that char-
acterize principal mode waves on transmission lines,

Waves of any frequency, from dc upward, can propagate in the principal
mode. Higher-mode waves propagate only above certain cutoff frequencies that
depend on the cross section of the guiding structure and on the particular mode.
The possibility of propagation in the higher modes normally limits the usefulness
of a coaxial line to frequencies below the lowest higher-mode cutoff,

Figures 1.1-1 and 1.1-2 show the fields belonging to the principal mode in
an ideal, lossless coaxial line, The electric field has radial lines of force which
terminate on the conducting surfaces. The magnetic field is tangential; its lines
of force are concentric, circular loops around the inner conductor. Both fields

TProperly speaking, any transmission line is a waveguide, and we should probably be talking
about "“coaxial waveguides,’” To most people, however, ""waveguide” still connotes a hollow
pipe, and we hope we may be forgiven for using old-fashioned terminology when we talk
about coaxial "transmission lines,"
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Figure 1.1-3(a) shows in longitudinal section the essential features of a
sinusoidal traveling wave that is propagating toward the right along a coaxial line.
Immediately below, in (b), graphs show the axial distribution of voltage and cur-
rent at the same instant. The distance between two planes such as aa’ and ee’
that are exactly one spatial cycle apart is the wavelength, X. The +and — signs in
(a) indicate the charge on the conductors and the radial lines are electric lines of
force. We have chosen to call the voltage positive when the center conductor is
positive, as it is at the plane aa’. The arrows drawn on the conductors in (a) in-
dicate current direction, The symbols © and ® between the conductors indicate
magnetic lines of force; O is a line going into the paper, ® is one coming out. We
have taken the current as positive when it flows to the right in the center con-
ductor. Notice that currents, charges, and fields all reverse from one half-cycle
to the next. Notice too that the electric and magnetic fields, hence voltage and
current, are in phase.T This relation is characteristic of a traveling wave although
not of a standing wave, as we shall see later in the chapter,

Is there something about the fields of Figure 1,1-3 that tells us that the
wave is traveling to the right rather than to the left? The answer is yes, Consider
for example the plane aa’. Current is flowing from left to right in the positive
wire (center conductor) and from right to left in the negative wire (outer con-
ductor), Now, we know that current flows out of the positive terminal of a
source and into the negative terminal, and that it flows into the positive terminal
of a load and out of the negative terminal. Hence we conclude that energy is
flowing from left to right at aa’. At a plane such as cc’, where the voltage and
current are both reversed, the same argument again shows that energy is flowing
from left to right. |f we wanted to change the figure to show a wave moving to-
ward the left we wolild have to reverse either the electric fields (charges and volt-
ages) or the magnetic fields (currents), but not both.

1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH

The velocity of propagation of principal-mode waves on a uniform, lossless
line is the same as the velocity of unguided waves (which, as we have said, are
also TEM) in the medium that separates the conductors. Thus, if the space be-
tween the conductors of a lossless coaxial line were evacuated, the waves would
travel at a speed vygpm (vac) = 2.998 — ., , X 10% =3 X 10® meters/second, the
much publicized velocity of light in vacuum, for which physicists usually write c.

Loss due to imperfect conductors slows down the waves. In practical high-
frequency lines this effect is too small to be of any consequence except under

TThis is equivalent to saylng that the characteristic immittance is real, which, as we shall see
in Section 1,3, is not quite true of a |ossy line,

1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH 2]






The velocity of TEM waves is determined by two properties of the medium
according to the relation

v= LA (meters/second) (1.2-3)
JTE

where ( is the medium'’s magnetic permeability (henrys/meter) and € is its electric
permittivity (farads/meter),? The permeability of vacuum, plvac), is a defined
number exactly equal to 47 X 1077 henry/meter. The permittivity of vacuum,
elvac), is an experimental number equal to 8.85 + ... X 107 '? farad/meter.

In dielectric media the permeability has its vacuum value but e(diel) is al-
ways larger than e{vac), often many times larger. The dimensionless ratio
€e(diel)/e(vac) is called the relative permittivity or dielectric constant of the ma-
terial in question and is represented variously by €., k, k, K, and, regrettably,
quite often by e.

(1.2-4)

Since the velocity of TEM waves depends inversely on the square root of €, the
velocity in a dielectric medium may be written

vren (diel) = XM V2! (1.2:5)

€r

Example: The dielectric constant of dry air at one atmosphere and 23
degrees Celsius is 1,00068, What is the velocity factor of an air-dielectric
coaxial line?

If we compare (1,2-2) with (1.2-6) we see that the velocity factor is
equal to 1/VE,. One can find the square root of a number that is very
close to unity simply by taking the first term of a binomial series:
(1+x)¥% 21 £ % x. Thus the velocity factor of an air-dielectric line is
1 — %(0.00068) = 0.99966, which is so close to unity that the difference
between air and vacuum can almost always be ignored.

Vrem (8ir) = vygy (vac)

tThe basic system of units used by electrical engineers is the meter-kilogram-second-
ampere (mksA) system, The practical electrical units — volts, amperes, watts, farads, chms,
#tc — belong to the mksA system, The reader should be wary of two things: First, physi-
cists and chemists frequently continue to use the older Gaussian electrical units, a centi-
meter-gram-second (cgs) system based on the electrostatic unit (esu) of charge and the
electromagnetic unit (emu) of current, Formulas in the Gaussian system have different con-
stants and quantities have different sizes and different units, Second, in practice nobody
bothers to stick to a single system anyway, Thus in this book we shall use centimeters and
inches as well as meters, degrees and decibels as well as radians and nepers, and so forth,
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Example: \What is the velocity factor of a flexible cable filled with poly-
ethylene, €, = 2.25?

velocity factor = 1/V2.25 = 0.67

We have already pointed out that vrep(diel) varies with frequency, and
so, therefore, must the dielectric “constant’ €,. We shall say no more about this
except to remark that variations in €. with frequency are accompanied by high
dielectric,_rloss, and low-loss dielectrics such as polyethylene, polystyrene, and
TeflonT have relative permittivities that are constant with frequency.

The wavelength A of a periodic wave is related to its frequency f and veloc-
ity v by the well-known formula

M=v (1.2-6)

Since the velocity of TEM waves is the velocity in vacuum divided by J€,, the
wavelength of principal-mode waves on a coaxial line is given by

A _UTgm{VaC] - ?LTEm(VEC:l
My - T e

r iF

(1.2-7)

Thus the wavelength in an air-dielectric coaxial line is the same as the free-space
wavelength, while that in a solid dielectric line is shorter by the factor 1/J€,.
(But this is not true of waves in hollow waveguides, which are not transverse
electromagnetic. The phase velocity of non-TEM waves is greater than that of
TEM waves, and it depends on the frequency. Therefore the guide wavelength is
longer than the free-space wavelength and is not simply proportional to 1/f.)

The phase factor or phase constant 8 tells how rapidly the phase of a sinus-
oidal traveling wave changes with distance along the line. |f we imagine the
traveling wave ""frozen’' at a particular instant of time, B is the amount of phase
change per unit distance. Since the phase changes by 2 m radians or 360 degrees
in one wavelength, we have

B(radians/meter) = 2%

B(degrees/meter) = %Oe

(1.2-8)

Example: What is the phase constant of waves in a flexible cable whose
velocity factor is 0.67 if the frequency is 300 MHz?

T Registered trademark of E,|, duPont de Nemours and Company.

8 5 1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH






If ¥ is the phasor that represents the instantaneous voltage v(t) due to a
traveling wave on a transmission line, the angle ¢ of I will be found to increase
as V is observed at points closer and closer to the source of the wave. This is be-
cause the time at which v(¢) reaches a particular angle in its cycle becomes pro-
gressively earlier at points closer and closer to the source, The rate at which ¢
changes with distance is the phase constant 3,

phase shift of
traveling wave

= b =
in line segment =i
of length [ (1.2-11)
+ toward }
source of wave
— away from

The terms electrical length and electrical distance are used in two really
quite different senses. One meaning, which applies to a device or a component
of a transmission system, is the length of air-dielectric line that has the same
delay time as the device in question. Electrical lengths in this sense are measured
in units of length: inches, centimeters, etc. The electrical length of a connector
with a solid dielectric support bead, for example, will be longer than its physical
length because the waves propagate more slowly in the solid dielectric than they
do in air,

Example: What is the electrical length, in the sense just defined, of a foot
of cable whose dielectric is solid polyethylene (e, = 2.25)7
From equation 1.2-5 we see that

electrical length = IV€_ (1.2-12)

where [ is the physical length, so that a foot of the cable in question has
an electrical length of 1 foot X V2,25 = 1.5 feet.

The second and more common use of “electrical length” or “electrical
distance" is to refer to the phase difference gl between two points on a trans-
mission line. Thus one speaks of a section of line that is 7/4 radian or 45 degrees
in electrical "length.”

Example: A simple way to measure the velocity v of propagation in a
cable (at moderate frequencies) is to short both ends of a length of the
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cable and then to measure two or more resonant frequencies of the
shorted line with a wavemeter or loosely coupled generator and indica-
tor. Resonance will occur when 2 I, the electrical round-trip “distance”
(that is, phase shift) down the shorted cable and back again, is a multiple
of 360 degrees. Thus the resonant frequencies fes Will be given by

v

il- (?‘!':1’2,.__]

fres=n+

If Af is the difference between two adjacent resonant frequencies,

v = 2IAf (1.2-13)

1.3 CHARACTERISTIC IMMITTANCE?

The ratio of voltage V to current I in a traveling wave is a constant, a prop-
erty of the transmission line called the characteristic impedance, Z_.

Z, = (;—/) (ohms) (1.3-1)
traveling wave

Its reciprocal is called the characteristic admittance.

v,=(L (ohms 1) (1.3-2)
¥ traveling wave

So that there is no misunderstanding, let us emphasize that we are talking about
a traveling wave, not a standing wave. A standing-wave distribution of voltage
and current is due to the superposition of two traveling waves moving in opposite
directions, and the ratio of total voltage to total current in a standing wave is not
constant at all but varies from point to point along the line.

The voltage and current due to a traveling wave on an ideal lossless line are
exactly in phase, a fact that we remarked upon in Section 1.1. Thus the charac-
teristic impedance and admittance of such an ideal line—and as a matter of fact
for nearly all practical purposes the characteristic impedance and admittance of
actual lines as well—are real numbers. One might therefore have preferred to
call them characteristic resistance and conductance. The characteristic imped-

TThe term “immittance’ means “impedance’’ and/or *“admittance,’
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ance of a lossless coaxial line with perfectly smooth conducting surfaces is given
by

_ 1 Juvad) | 1
= 20 e(vac) Ve, %

|

= 1 b
= {59.9‘50 Oth} Fr ler d—
£ ! b
= (138.03 chms) —Jf_r_ l0g;q = (1.3-3)

where €, is the relative permittivity of the dielectric, and a and b are the radii of
the inner and outer conducting surfaces, as in Figure 1.1-2,

Notice that the dimensions of the line enter into equation 1.3-3 only
through the ratio b/a, so that the over-all size of the line has nothing to do with
Z.. Fifty-ohm, rigid, air-dielectric coaxial line is manufactured in standard sizes
from 7 millimeters to 9 inches in diameter, With a given outer conductor |D, the
smaller the inner conductor, the higher the characteristic impedance. Type
RG-8A/U and Type RG-11A/U flexible cables, for example, both have a nominal
diameter, measured inside the braided copper outer conductor, of 0.284 inch.
The inner conductor of the Type 8A/U, which is a 50-chm cable, consists of
seven strands of 0.0206-inch copper wire, whereas that of the Type 11A/U, a
75-0hm cable, consists of seven strands of 0.0159-inch wire.

The appearance of the factor 1/J€; in (1.3-3) shows that the presence of
dielectric material between the conductors lowers the characteristic impedance.
The decrease in Z; is in the same ratio as the decrease in the velocity of propaga-
tion.

Z_(solid dielectric) = velocity factor X Z_(air dielectric) (1.3-4)

Equation 1.3-3 is derived under the assumption of an ideal, lossless line,
whereas in fact losses and imperfections in the conducting surfaces do influence
the characteristic impedance. At high frequencies these effects are very small in
lines with solid, smooth conducting surfaces,"' but they nevertheless can be signi-
ficant, for example in a precision air-dielectric line that is used as a standard of
impedance. Although a quantitative discussion of conductor loss must wait until
Chapter 4, this seems like an appropriate place to describe, in a physical way at

TAlthough at low frequencies the influence of finite conductivity on transmission-line char-
acteristic impedances Is appreciable; telephone lines, for example, have characteristic im-
pedances with sizeable imaginary components at volce and carrler frequencies,
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least, the effect that imperfect conductors have on the flow of current and the
way in which they influence the line's characteristic impedance.

Electromagnetic fields are rapidly attenuated in conducting media, and
consequently they penetrate only very small distances into conductors. In a per-
fect conductor the field would not penetrate at all, and the current that forms
the boundary of the field would flow in a surface layer of zero thickness, The
attenuation of the field beneath the surface of a real conductor depends on the
conductivity of the metal, the frequency, and the geometry of the surface; but
at frequencies higher than a few kilohertz, the attenuation in a good conductor
is very rapid and the current distribution below the surface can be treated as
though it were a uniform layer of very small thickness é that is virtually indepen-
dent of surface geometry. In the case of a flat, perfectly smooth, non-ferromag-
netic metal surface, th& distance 8, called the skin depth, is related to the
frequency £ (hertz) and conductivity o (ohm™* meter™*) by

% 1 )
o meters : —
) —(503.3 henrys"ﬁ) o (meters) T -, (1.35)

Notice that larger skin depths occur with lower frequencies and poorer conduc-
tivities, In copper plate, whose direct-current conductivity is approximately
6 X 107 ohm 'meter !, (1.3-5) gives skin depths of about

8 mm at 60 Hz .
0.7 mm at 10 kHz I v of] (M
0.02 mm at 10 MHz
0.0007 mm at 10 GHz v by

In a coaxial line with perfect conductors the currents would flow only in
infinitely thin layers on the conducting surfaces and the field would stay in the
dielectric space between the conductors, But when the conductivities are finite
the current flow extends somewhat below the metal surfaces and the field pene-
trates a little into the metal. One effect of the field penetration is that the mag-
nitude of Z. is slightly higher than the value that (1.3-3) gives for an ideal ling,
somewhat as though the conductor separation had increased. Less easy to ex-
plain on simple physical grounds is the fact that conductor loss causes a slight
phase lag of the electric field behind the magnetic field. This gives rise to a small
negative imaginary (capacitive) component in Z., If the conductor surfaces are
compact and smooth by comparison with dimensions on the order of the skin
depth, the real and negative imaginary components of the increment in Z. are
equal.

An idea of the size of the effect we are talking about can be gained from
Figure 1,3-1, which shows the increment in Z. due to conductor loss as a func-
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One can often ignore the second terms in these formulas, for if Gy = G,, the
conductance term disappears from the first expression on the right of (1.4-8),
and if Ry = R, the resistance term disappears from the second expression.

: nepers log |
RIRREE decibels} = e f AT (ifG1=Ga) (1.49)
in power ratio Py /P, Y10 A
g (Ll i =Ry (1.4-10)
20'0910 rI?. I - < -

Textbooks often state as the condition for the validity of (1.4-9) and (1.4-10)
that the impedances must be equal. This is incorrect. |f what is meant is that
Z, = Z,, we can see that it is not necessary. If [Z; 1= 1z, is meant, it is clearly
neither necessary nor sufficient,

The decibel is also used to express voltage and current ratios without re-
gard for the amounts of power involved. Thus

number of decibels  _ v,
in voltage ratio V;/V, 20 logro A (1.4-11)

and likewise for currents. Standing-wave ratios, for example, are commonly ex-
pressed in decibels,

Attenuation, applied to a transmission line, means the decrease in traveling-
wave power in the direction of the wave's propagation. If a section of line has an
attenuation expressed in decibels of A(dB), or in nepers of A(nep), the ratio of
traveling-wave power leaving to traveling-wave power entering the section, which
has to be a number less than unity, is

traveling-wave

power leaving _ . —jg5 A@B) o~ 2Anep)
traveling-wave
power entering

(1.4-12)

The corresponding voltage or current ratio is equal to the square root of the
power ratio:

traveling-wave

V{orl) leaving _ 0-21—0A(d3i _ A
traveling-wave

V (or I) entering

(1.4-13)
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The attenuation constant or attenuation factor, &, is the attenuation per
unit length of line, Thus a length I(meters) of line has an attenuation of A(dB) =
aldB/m)l or A(nep) = a{nep/m)L In practice one often finds the attenuation of
lines and cables given in decibels per foot or per 100 feet or per mile.

Two kinds of loss are responsible for the attenuation in coaxial lines: loss
due to the finite conductivity of conductors and loss due to dielectric relaxa-
tion — friction experienced by the alternating polarization in the dielectric.

Conductor loss depends of course on the metal from which the conductors
are made or with which they are plated, but it also depends on the frequency,
because of the frequency-dependent skin depth, The part of the attenuation
constant due to conductor 10ss, Geeng, iN an otherwise ideal coaxial line is given
by

v Hlvac 1 1 nepers

®cona = Yo 16m 37 (aJ ola) " o, UIb)) meter (14728
where Y, is the characteristic admittance, a and b are the radii of the inner and
outer conducting surfaces, and o{a) and o(b) are the conductivities of the inner
and outer conductors, The formula shows that oq,q increases with the square
root of the frequency. The first and second terms within the parentheses in
(1.4-14) are associated respectively with the inner and outer conductors, and, as
one would expect, the first term is likely to be the larger. Notice that small lines
have higher conductor loss than larger lines with the same Y.

Equation 1.4-14 accurately describes the conductor loss in a real coaxial
line if suitable values are used for the conductivities o(a) and o(b). Such values
are sometimes considerably lower than the dc conductivities of the conductor
metals, an effect that is presumably due to the condition of the surface, since the
effective conductivity of a rough or porous surface is found to be lower than that
of a smooth, compact one and, furthermore, is focund to decrease with rising fre-
quency and concomitantly decreasing skin depth. A few examples are given in
Table 1.4-1.

The attenuation constant of General Radio 9/16-inch 50-ohm precision
silver air-dielectric line is shown as a function of frequency in Figure 1.4-1. The
attenuation in air-dielectric lines is due entirely to conductor |oss,

o~

@ ong (nepers/ meler)

1072 /
- i ‘
/ Figure 1.4-1. The attenuation constant
7 of General Radio 9/16-inch 50-ohm pre-
<y L~ cision silver air-dielectric line.
/ (After Zorzy, loc. cit. Figure 1,2-1,)
S N jae ok
frequency COARHB-3S
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The real and imaginary parts of €, are just the corresponding parts of €, divided
by e(vac). The loss factor is minus the imaginary part of the complex relative
permittivity:

loss factor = €, (1.4-21)

The attenuation in a coaxial line due to dielectric loss is

Qyie) = T Vg (diel) f tan & (nepers/meter) (1.4-22)

When we compare this formula with (1.4-14) for the conductor loss we notice
two differences, First, iy does not depend at all on the dimensions of the line,
Second, 0 increases proportionally with frequency rather than with the square
root of frequency, as a.qnq does. At frequencies below 10 GHz, losses are due
mostly to the conductors rather than the dielectric, even in solid dielectric cables,

1.5 DISTRIBUTED CIRCUIT MODEL

Transmission lines are very often represented by the immensely useful dis-
tributed circuit model, which is capable of describing the propagation not only
of TEM waves but also, with appropriate definitions of current and voltage,
of dominant-mode waves in hollow waveguides.

Figure 1.5-1 shows symbolically an elementary length Ax of line with its
associated inductance [Ax, capacitance cAx, resistance rAx and conductance
ghx. The model is justified in the following way. The magnetic field between
the line's conductors links the circuit formed by generator, line, and termination,
and hence is represented by series inductance per unit length of line. The elec-
tric field fills the dielectric space between the conductors and thus gives rise in
the model to parallel capacitance per unit length. Conductor loss is accounted
for by adding resistance in series with inductance, and dielectric loss by shunting
the capacitance with conductance. We will write these parameters with lower-

l Ax rax

—_—YYYTY A

VA

Figure 1.5-1. Distributed parameters of
an elementary length of transmission CAX T
line.

> g Aax

k AX o
COAX-HB-5
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case letters as a reminder that each is a quantity per unit length of line. Thusl,
¢, r, and g are respectively the series inductance (henrys/meter), shunt capaci-
tance (farads/meter), series resistance (ohms/meter), and shunt conductance
(ohms™!/meter). Perhaps we should emphasize that these parameters are linearly
distributed, not lumped into coils, capacitors, etc that are periodically disposed
along the line, as Figure 1.5-1 might misleadingly imply. Any length Ax of line,
no matter how short, contains series inductance equal to IAx, shunt capacitance
equal to e/Ax and so forth.
The inductance per unit length of a lossless coaxial line is

H(vac) b
o log, —

[ = (henrys/meter) {1.5-1)
and the capacitance per unit length is

¢ = 2m e(vac) {farads/meter) {1.5-2)

b
log, =

Both these parameters are independent of frequency, except insofar as €, may be
a function of frequency. If losses and non-ideal conducting surfaces are taken
account of, one obtains expressions for the dissipative parameters r and g and
also for an additional component of I, These quantities are all frequency-depend-
ent. (We shall discuss the theory of the distributed-circuit model in detail in
Chapter 4.)

In the zero-loss approximation the characteristic impedance is given in
terms of the distributed parameters by

Z, = \/Ci_ (ohms) (1.53)

and the velocity of propagation by

v = 1/VTc  (meters/second) (1.5-4)

Example: What is the capacitance per foot of a 50-ohm cable with solid
polyethylene (e, = 2.25) dielectric?
From (1.5-3) and (1.5-4) we have

o

I
A
|.;.n
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The velocity is given by (1.2-5):

= 2va) _ (3% 108 m/s) VDB =2 X 10 mls.
iy
Thus
1 S

= 107 '° tarad/meter =

€T ox10° m/s 50 ohms

100 pF/meter = 100 pF/3.28 feet = 30.5 pF/foot.

Example: RG-71A/U is a low-capacitance cable with a dielectric of air-
spaced polyethylene which gives a velocity factor of 0.84. The capaci-
tance is 13.5 pF/foot, What is the characteristic impedance?

z:.]_.‘l_
v

€ c

The capacitance per meter is 13.5 pF/0.306 meter = 44,5 pF/meter.
Therefore

1 1
o2 : , = = 89 oh
c ” 084 X3XI10° mls 445 X 10-*2 F/m I

1.6 HIGHER MODES

We said in Section 1.1 that there are, in addition to the principal or TEM
mode, infinitely many higher modes (or waveguide modes) that can propagate on
a coaxial line at sufficiently high frequencies. Let us recapitulate the ways in
which TEM and higher-mode waves differ, 1) Both the electric and magnetic
fields of TEM waves are perpendicular to the direction of propagation. Higher-
mode waves also have a field component in the direction of propagation. 2) A
transmission line that is to transmit TEM waves must have two or more conduc-
tors (the cross section of its conducting surfaces must be a multiply-connected
curve). Higher-mode waves can propagate on any kind of transmission line, in-
cluding single-conductor (simply connected) structures such as hollow wave-
guides. 3) TEM waves may have any frequency; higher-mode waves can propa-
gate only above certain cutoff frequencies that depend on the particular mode
and the cross section of the transmission line. 4) The velocity of TEM waves is
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independent of frequency, while velocities of waves belonging to the higher
modes are frequency-dependent.

The importance of higher modes in coaxial lines is that the onset of wave-
guide propagation sets an upper limit to the coaxial line's normal useful frequen-
cy range. This is so because there is no practical way to prevent the higher modes
from interfering with propagation in the principal mode, since any discontinuity
in the coaxial systems is likely to couple the TEM fields with those of higher
modes,

The coaxial waveguide mode with the lowest cutoff frequency is the Hq,
(or TE;4) mode, whose fields are shown in Figure 1.6-1. The cutoff frequency
of the H,; mode is given approximately by

. VTeEm
Toirpr s Tatbl (1.6-1)

where vy is the velocity of TEM waves in the medium that fills the space be-
tween the conductors. One can see fram (1.6-1) that f ..« is the frequency at
which the mean circumference of the conductors is approximately equal to a
wavelength. |f we take as an example standard 9/16-inch 50-ohm air-dielectric
line (a = 0.122 inch, b = 0.281 inch), equation 1.6-1 gives a cutoff frequency of
about 9.4 GHz. If this same line is now filled with polystyrene, whose dielectric
constant is approximately 2.5, the cutoff frequency is reduced by a factor of
1/ 2.5 to about 6 GHz.

The phase velocity? of non-TEM waves is higher than that of TEM waves;
it is infinite at the cutoff frequency and approaches the TEM velocity as the fre-
quency gets higher”.

Vhigher mode 3 1
S 48] fcmff)2 (1.6-2)
£

tPhase velocity is the velocity of propagation of any given point of an infinitely long sinus-
oidal travaling wave, When phase velocity is constant with fraquency (as jt fs in the case of
TEM waves) sinusoidal waves, pulses, and modulation envelopes all travel at the same speed
and there is no ambiguity when the term “velocity' is used without qualification, But when
phase velocity changes with frequency, as it does in the case of higher-mode waves, pulses
and modulation envelopes travel more slowly than sine waves and become distorted. There
Is then said to be "dispersion'” and one must distinguish between phase velocity and the
velocity of, say, the center of a pulse,

T1In case the reader thinks this statement conflicts with relativity theory: it doesn't,
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Standing Waves

In the preceding sections we have been talking about sinusoidal traveling
TEM waves in coaxial transmission lines, and we have introduced the parameters
that describe their propagation: the volacity v (or the phase constant f), the
characteristic impedance Z,, and the attenuation constant a. f

A pure traveling wave can exist only on a section of line that is terminated
at the receiving, or load, end by a device that reflects no energy back toward the
generator. Since in practice there are no perfectly reflectionless terminations,
there are always two traveling waves at any point on a transmission line, a for-
ward (or incident) wave propagating from the generator toward the load and a
reflected wave propagating back toward the generator. It is the interference of
the forward and reflected waves—constructive here, destructive a quarter wave-
length away—that produces the distribution of fields along the line that is called
a standing wave,

1.7 THE REFLECTED WAVE

Any discontinuity in the uniform construction of the transmission line
generates reflections, Thus, not only the terminating load but also connectors,
junctions, bends, probes, holes, transitions, tuning screws, support beads, and so
on are all sources of reflected waves, In Chapter 3 we shall have something to
say about the reflections contributed by individual discontinuities, but for the
present we shall consider the simple situation, depicted in Figure 1.7-1, in which
a uniform line is terminated in a load which is the only source of reflections.

Before going on to talk about the generation of a reflected wave, we must
stop for a moment and discuss the lumped impedance that we show at the end
of the line in Figure 1.7-1, Of course this is just a convenient fiction that we use
to represent the actual state of affairs at the end of the line. One might think
that this goes without saying, since one is so used to seeing a one-port device rep-
resented at low frequencies by a lumped impedance equal to the impedance that
the device presents at its terminals. A transistor is shown schematically with a

TLet us point out here ‘that, although the primary concern of this book is coaxial lines,
nearly everything we shall have to say in the rest of the book is applicable to all kinds of
transmission lines whether they work in the TEM mode or not, The reason is that non-TEM
as well as TEM waves are described by an appropriately defined ““voltage’ that is propor-
tional to the electric field, a “current” that is proportional to the magnetic field, a character-
istic impedance Z., a phase constant f§, and an attenuation constant @ Thus the reader who
is also Interested in waveguides will find the material in the remainder of this chapter and in
succeeding chapters relevant,
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zig-zag line in its collector circuit marked “load,” although the load actually
might be a loudspeaker. So far as the transistor is concerned, all that matters is
the ratio of voltage to current at the load terminals, and the effects of the loud-
speaker and the acoustical circuit of the cabinet and its environment are of no
interest except insofar as they affect this ratio.

But at microwave frequencies the situation is not quite so simple. We may
still represent a one-port device with a lumped impedance equal to the ratio of
voltage to current at its terminals provided terminals are chosen at which it is
possible to define a voltage and a current, But surely there is no problem in
talking about voltage and current anywhere we please! This is a prejudice one
acquires as a result of a low-frequency upbringing, and it is not true. In micro-
wave circuits the concepts of voltage and current are meaningful only in a trans-
mission line and only when a single mode is propagating. For this reason two
strict conditions must be met before we can talk about the impedance of a micro-
wave one-port. First, the device must have a piece of transmission line sticking
out of it. Second, somewhere in this transmission line, far enough from the
physical termination that the TEM fields are not distorted, a transverse reference
plane or terminal plane t must be established, The plane ¢ defines the device's
port or ““terminals,’ and the ratio of voltage to current at f is what we shall mean
by the device's impedance, The value of the impedance will, as we shall see in
the next section, depend on the location that is chosen for the terminal plane.

In practice, the piece of transmission line may be provided by the device's
connector. The terminal plane might then be specified at the outer surface of a
bead supporting the connector's inner conductor. Alternatively, in a connector
that makes a butt contact, a mating contact surface can provide the reference
plane. However the terminal plane may be defined, it is important for the reader
to realize that the impedance of a microwave one-port is a meaningless number

forward wave

BIAY S P

. t;gnerofc:r 3 termination

4—\/\/\/'\

reflected wave COAX-HB-8

Figure 1.7-1. Forward and reflected waves on a terminated line.
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We will now introduce several quantities that are used to express the mag-
nitude and phase or just the magnitude of the reflection. The ratio of the re-
flected to the incident voltages is called the reflection coefficient. We shall
represent it with a I, although p is often used.

IN=— (1.7-10)

Equation 1.7-9 gives the reflection coefficient at the termination:

Iatt) = ; (1.7-11)

(We shall have a good deal more to say about this extremely important formula
in the next section and in Chapter 2.) Reflection coefficients, like immittances,
are ratios of phasors and are consequently complex quantities. We shall use 8 for
the angle of I'.

I'= lPI&B (1.7*12]

8 is the angle by which the reflected voltage leads the incident voltage. The mag-
nitude of I" can have values from zero, which corresponds to a reflectionless
termination, to unity, which corresponds to a totally reflecting termination, that
is, an open, a short, or a pure reactance. The relation between the reflection
coefficient and the forward and reflected currents is

e
I

o (1.7-13)

as one can see by comparing (1.7-10) with (1.7-1) and (1.7-4),

We shall give a proper definition of standing-wave ratio (SWR) in Section
1.9, but for completeness we must mention it here since it is one of the com-
monest ways of describing the magnitude of the reflection. The standing-wave
ratio r (S and ¢ are also used) is related to the magnitude Il of the reflection
coefficient by

_ 1+l _r=1 "
P m |[‘| = r+1 “.714)
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A graphical comparison of the four quantities—reflection coefficient,
standing-wave ratio, return loss, and reflection loss—that describe the magnitude
of a reflection is presented in Figure 1.7-5. The reader may be surprised to note
that a reflection coefficient as high as 0.45 resultsin a reflection loss of only 1 dB.

A special case of considerable practical interest is that in which the reflec-
tion is very small. The following approximations can often be used when the
standing-wave ratio is less than about 1.1.

SWR return reflection
el r r(dB) loss, R loss
1.0 4 ® T+ ®© -0 -

- 40.
40.1 30 - 10,
09 20. s
" 10.4 20. s
Eiia Lao
O - 15. l‘ 30 ~3.0
5.0
40
05 40 1 22
50
= 10, |
05+ 30 6.0
e rlo
04 - 8.0
- 90
2.0+ 60 -0.5
0.3 - 10.
1.8
- 12.

16 +40
0.2 - 14

4 L 0.1

-2.0
0.1+ 12 - 20,
| ~30.
0- olo ) Lo

COAX-HB-20

Figure 1.7-5. Graphical comparison of the magnitude Il of the reflection coef-
ficient, the standing-wave ratio, the return loss, and the reflection loss.

34 1.7 THE REFLECTED WAVE















which is the desired relation between the reflection coefficient at w, and that at
w,. Note that the angle of I' changes in the negative (clockwise) sense and the
magnitude diminishes toward the generator, Also note the factor 2. The angle
of I' changes with position on the line twice as fast as the phase of a traveling
wave, and the magnitude of I varies as the power, rather than the voltage, of a
traveling wave,

One can almost always neglect the attenuation of air-dielectric lines. To
the extent that this approximation is valid, the magnitude of the reflection coef-
ficient is constant everywhere on the:line while the angle changes with distance
at a rate 26, in the negative sense (clockwise) toward the generator.

F(WQ_‘J = P(Wl ’ | K-Zﬂ{w: =z wI) “DSS‘ESS Iine] “.8‘11]

The standing-wave ratio and return loss, defined in the preceding section,
may be used to express the magnitude of the reflection at any point on a trans-
mission line as well as at the termination. On a lossless line they are both con-
stant. On lossy lines the SWR gets smaller and the return loss larger as we get
farther from the load. The return: loss is affected by the line's attenuation in a
particularly simple way: as we move away from the load the return loss increases
by just twice the added line attenuation. The relation is expressed by

R(wy) = Rlwy) + 2a X (w3 — wy), (1.8-12)

where the R's are in decibels if @ is in decibels/meter and in nepers if @ is in
nepers/meter. The corresponding formula in terms of standing-wave ratios is
considerably more complicated:

r(w,) = ctnh [ctnh™ ' rlw;) + alnep/m) X (wy — wy)] (1.8-13)

If the reflection is small and if the attenuation is small, (1.8-13) is approximated
by

rlwy)=1=[rlwy) =1] [1 — 2alnap/m) X (w; — w,)] (1.8-14)

When we turn to immittances we find that their dependence upon position
is not nearly so simple as that of the reflection coefficient. Even on a lossless
line, the relation between the impedances at two reference planes is complicated:

= Z +j -
F g m b St by = sh v =i (1.8-15)
1+jZ(wy) tanf (wq — wy)
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= Z,t Ftan gl
Zin = =
I+ #7Zy tan g1

e A
WA
N

- l >
COAX-HB.9 | ¥

Figure 1.8-3. A transmission-line section of length [ transforms the normalized
terminal impedance Z; into a normalized input impedance Z;,.

Equation 1.8-15 expresses the impedance-transforming property of a piece of
transmission line, |f we assume that w, >wy, 50 that the plane wy is nearer than
w, 1o the load, then one way of looking at (1.8-15) is to regard the length
w, — wy of line as a transformer which sees an impedance Z(w; ) connected to
its output and presents a transformed impedance Z(w,) at its input. Let us re-
write (1.8-15) so as to emphasize this transformer point of view, If a length I of
lossless line is terminated in an impedance f,, {1.8-15) shows that its input im-
pedance is

. Zy+jtanpl

et il Seasy 1.8-16
Zn =% i Z, tanpl ‘ ]

One can see from (1.8-15) or (1.8-16) that the transmission line is a differ-
ent kind of transformer from the low-frequency sort that consists of two coupled
coils. For one thing, the transmission line's ““turns ratio” is in general a complex
number. For another, the ““turns ratio’”" is not fixed; it depends on the load im-
pedance and also on the frequency. Unfortunately there is no microwave equiva-
lent to the low-frequency transformer with its fixed turns ratio, and this makes
the problem of broadband impedance matching a difficult one at microwave
frequencies.

Equations 1.8-15 and 1.8-16 are hard to use for computation, and the most
practical way of performing transmission-line impedance calculations is provided
by the Smith chart, the subject of the next chapter. But we can learn quite a lot
about the impedance-transforming property of a piece of line by looking at
(1.8-16) in a few interesting special cases.

To begin with, if Z, = 1, that is, if Z, = Z., (1.8-16) gives Z,(l) = 1, or
Zin(l) = Z. for any length I of line. The impedance anywhere on a reflectionless
line is equal 1o Z..

When 1 is a half wavelength (or any multiple of a half wavelength), I = 180
degrees (or a multiple of 180 degrees), the tangents in (1.8-16) are zero, and we
have
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and a distance of 10 em, or (10 em)/(50 cm/wavelength) = 0.20 wave-
length, shifts the phase of a traveling wave through an angle of
360 deg/wavelength X 0.20 wavelength = 72 degrees.

We saw in Section 1.8 that II'l is everywhere the same on a lossless
line, while 8 changes with position twice as fast as the phase of a traveling
wave, The change in @ is positive (counterclockwise) in the direction of
the load. Thus to find the points I’y and I, on the reflection-coefficient
chart, we start at I'y, and move clockwise and counterclockwise respec-
tively in circular arcs about the chart’'s center through angles of
2 X 72 =144 degrees (Figure 2.1-3).

Move two degrees around the chart for each degree along the line, Move
counterclockwise toward the load, clockwise toward the generator,

Example: Where are the voltage standing-wave minima on the line of the
preceding example?

A voltage minimum occurs where the forward and reflected voltages
are in phase opposition, that is, where 8 = 180 degrees, A maximum oc-
curs where they are in phase—where § = 0 degrees. To get to the
nearest 8 = 180-degree radial from ' (Figure 2.1-3), we move counter-
clockwise on the chart through 120 degrees. This corresponds to moving
along the line toward the load through an electrical *“distance” of 60
degrees, Therefore there is a voltage minimum

60 deg X
or

L wavelength/degree = 0,167 wavelength
360
0.167 wavelength X 50 cm/wavelength = 8.35 cm

toward the load from plane b,

2.2 THE IMPEDANCE GRID

A Smith chart is a reflection-coefficient chart on which has been superim-
posed a set of impedance (or admittance) coordinates, It thus combines the
properties of the reflection-coefficient chart with a graphical means for perform-
ing the important impedance—reflection-coefficient transformation expressed in
equations 1,8-3 and 4,

Figure 2.2-1 shows a Smith chart with a normalized impedance grid. The
loci of constant E, the resistive component of Z= Z[Z., and constant X, the re-
active component, are sets of mutually orthogonal circles, as shown in Figure
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a circular arc about the chart's center through an angle equal to twice the
line's phase shift, that is, through

2 X % wavelength X 360 degrees/wavelength = 180 degrees.
This brings us to the normalized impedance 0.09 — j0.48, which we
multiply by 50 ohms to get the input impedance of 4.5 — j24 ohms.

The foregoing example shows how the Smith chart is used to calculate the
impedance anywhere on a lossless line. The impedance makes a full circle of the
chart for each half wavelength of line.

2.3 THE RADIAL SCALES

In addition to the reflection-coefficient scale, Smith charts usually include
a number of radial scales on which are marked off other parameters that depend
on the relative magnitude of the reflection. Paper charts have these scales printed
at the bottom of the sheet so that the parameters can easily be picked up with
dividers. Some of them are included on the radial arms of the calculators,

In addition te the magnitude of the reflection coefficient, three other
quantities are commonly used to express the amount of reflection from a termi-
nation. They are the standing-wave ratio, the return loss, and the reflection loss,
all of which were defined in Section 1.7. Many Smith charts have scales for
these quantities.

Example: What is the standing-wave ratio due to a terminating imped-
ance of 27.5 + j60 ohms on a 50-chm line? What is the return loss?
What proportion of the power incident on the Ioad is reflected?

The normalized terminal impedance is 0.55 +71.0. If we locate this
paint on the Smith chart (Figure 2.3-1) and carry the radius down to the
appropriate radial scales we get a standing-wave ratio of 4.0 (12dB), a
return loss of 4.4 dB, and a reflection loss of 1.9 dB. Now, a reflection
loss of 1.9 dB corresponds to a power ratio of 1.5, so that the power in-
cident on the load is 1.5 times the power absorbed by the load. Thus one
third of the incident power is reflected.

Actually we can read standing-wave ratios from the Smith chart without
referring to the SWR scale. We saw in Section 1.9 {(equation 1.9-7) that the nor-
malized impedance at a voltage maximum is equal to the standing-wave ratio.
Thus we can read SWR's from the normalized-resistance scale along the 6 = 0
radial.

The scale marked “attenuation: 1-dB steps” (or "transmission loss: 1-dB
steps’’) facilitates taking into account the effect of the line's attenuation. As we
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Figure 2.5-2. Smith chart with normalized admittance grid.

Equation 2,5-3 also shows us how to make a Smith chart with a normalized
admittance grid, If we rotate the grid of the normalized impedance chart through
180 degrees, so that the grid coordinates that used to be at the point I" are now
at—TI', the numbers that we read otf the rotated grid at a given point on the chart
are the normalized admittance belonging to that point. |f we also change the
labels from “‘resistive component’ to “‘conductive component” and from “reac-
tive component” to “‘susceptive component’ we have the admittance chart

shown in Figure 2,5-2.
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Figure 2.6-3. The admittance chart of Figure 2.5-2 after it has been rotated 180
degrees. The fO-circle now has its zero on the left-hand side,

Admittance charts are available, and so are charts with superposed imped-
ance and admittance grids. We do not need special admittance charts, however,
for we can plot normalized admittances directly on the normalized impedance
grid without going through the additional step of transferring the point across
the chart, Let us take the admittance chart of Figure 2.5-2 and rotate it—the
whole chart this time, not just the grid—through 180 degrees, The result of this
rotation is shown in Figure 2.5-3. Now, if we compare Figure 2.5-3 with Figure
2.2-1 we see that the combined effect of the two transformations—a 180-degree
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rotation of the grid and a 180-degree rotation of the whole chart—is to leave us
with something that looks just like the impedance chart that we started with,
There are two differences. First, the resistance coordinates have become con-
ductance coordinates and the reactance coordinates are now susceptance coordi-
nates. Second, since the reflection-coefficient plane itself has been rotated
through 180 degrees, the angle @ of the reflection cozfficient is now zero at the

left side of the chart (though it still increases counterclockwise),

%
O;,\\\ $=1.0+,189 %
Q %
o
o
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Figure 2.5-4, One can use the normalized impedance chart for admittances
simply by reading “conductive component” for “resistive component” and
“susceptive component” for “reactive component * and remembering that 180
degrees must be added to readings on the “‘angle of reflection coefficient” circle,

COAX-HB-45
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Apparently, then, we can use the normalized impedance chart when we are
working with admittances simply by reading ""conductive component” for “re-
sistive component’ and “'susceptive component’ for “reactive component.” All
the properties of the Smith chart that we have discussed in the previous section
of this chapter are retained when the chart is used in this way except that the
"angle of reflection coefficient' circle does not apply as it is printed. Anales
read from this scale must have 180 degrees added or subtracted before they are
correct, The “‘wavelengths toward generator’ and “‘wavelengths toward load"
circles are correct as they stand, though one should bear in mind that voltage
minima, which occur at @ = 180 degrees, are now at the right-hand side of the
chart,

Example: A capacitance of 10 pF in parallel with a resistance of 300
ohms constitutes the termination of a 300-ohm line that we will consider
lossless. If the line is driven at 100 MHz, will the standing-wave extremum
nearest to the termination be a voltage maximum or minimum? Where
will it be?

The characteristic admittance of the line is Y, = 1/300 ohms =
3.33 X 10~ mho. The susceptance of a 10-pF capacitance at 100 MHz is

B=2nfC=6.28 X 100 X 10° s~' X 10 X 107" farad
= 6.28 X 1072 mho,
and the normalized susceptance B is
6.28 X 102 mho/3.33 X 10~ mho = 1.89.

The normalized conductance corresponding to the resistance of 300
ohms is 1. The normalized terminal admittance Y; of 1 + j1.89 is
plotted on the Smith chart of Figure 2.5-4. As we move around the chart
from the termination toward the generator we first cross the horizontal
axis on its right-hand side. Since this is now the # = 180-degree radial,
the first extremum is a voltage minimum. It is 0.065 wavelength from
the termination.

Notice in the example that a capacitive admittance falls in the upper half
of the chart because it has a positive susceptive part. A capacitive impedance,
which has a negative reactive part, would fall in the lower half.

In this chapter we have given the reader only a sketchy introduction to the
most commonly used kind of Smith chart. We have not discussed the many dif-
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ferent varieties of the chart that are in use, nor the many kinds of calculation
that can be done with the chart’s help. We leave it to the reader to instruct him-
self as the need arises.

COAX-HB-A
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CHAPTER 3

Two-Ports and Discontinuities

3.1 THE SCATTERING PARAMETERS

We saw in Section 1.7 that we may characterize a one-port device by 1)
choosing a convenient reference plane in the associated transmission line and 2)
specifying the reflection coefficient or immittance that the device presents at
this reference plane. Such a characterization ignores what is actually going on in-
side the termination, but it allows us to predict the effect that the termination
will have on the system to which it is connected. A two-port presents us with an
analogous situation. We are often not concerned with the details of wave propa-
gation inside the device itself; we simply want to know what the effect will be of
inserting the two-port into the microwave system.

Now, while a single reference plane and a single complex number — a re-
flection coefficient or immittance — completely characterize a one-port, two
reference planes and two or three or four complex numbers are needed for a
complete representation of a two-port. The reader is undoubtedly familiar with
some of the many sets of two-port parameters, the y- or h-parameters, for
example, used in transistor circuit design at lower frequencies. But of all the
two-port representations, by far the most useful at microwave frequencies is the
set of four numbers called scattering parameters, or s-parameters. Scattering
parameters were invented in 1937 by a physicist, who used them to solve a
problem in nuclear physics. When physicists went to work on microwave prob-
lems during the World War || development of radar, they brought the s-parame-
ters with them into electrical engineering.

Figure 3.1-1 shows a two-port “black box" with two transmission lines
sticking out of it; reference planes t; and t;, located in these lines, define ports
1 and 2. In the most general possible case there will be both an incident and an
outgoing (scattered) wave at each port, We have written Vf and V7 to stand for
the incident and outgoing voltages at port 1, and ¥, and V; for those at port 2.

Whereas the outgoing wave at a passive termination is due entirely to re-
flection of energy from the incident wave, this is not generally true at the ports
of a two-port. The outgoing wave at port 1, for example, can be due partly to
reflection of energy that is incident at port 1 and partly to transmission through
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Figure 3.1-2. When port 2 sees a reflectionless termination, the reflection coeffi-
cient I'; presented by port 1 is equal to sy;.

cident wave at port 2 is just the wave reflected from the termination, which in
the present case is zero. When V3 = 0, equation 3.1-1 becomes

Wi =suW (15 =0)

But 14/ Vf is the reflection coefficient I'y that we measure when we look into
port 1, so that we have

si1 = Iy {with reflectionless load on port 2) (3.1-3)

The coefficient s,y is the reflection coefficient presented by port 1 when port 2
has a reflectionless termination. The same argument would obviously be valid if
we put the reflectionless load on port 1 instead of port 2, so that

saa = I'y (with reflectionless load on port 1) (3.1-4)

Since sy; and s,y are reflection coefficients measured at one port when there is
no incident wave at the other, they represent reflections that are intrinsic to the
two-port,

Let us once again put a reflectionless load on port 2. When there is no in-
cident wave at port 2, the outgoing wave there is due entirely to transmission
through the two-port of energy incident at port 1, and the ratio 5/ V4 that we
measure under these circumstances is the voltage gain that a traveling wave expe-
riences as it traverses the two-port from port 1 to port 2. |If V; = 0, equation
3.1-2 becomes

Vs = suWi (V2 = 0)
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Figure 3.3-1. The amount of power : '
that the source delivers to the load de- junction
pends on the reflection coefficients I';
of the source and T'; of the load. sl
plane
of the
junction

ohms will deliver maximum power to a load impedance of 50 — j25 ohms. If the
source and load impedances are complex conjugates of each other, so are the
source and load reflection coefficients, Thus we may state the maximum power
transfer theorem by saying that maximum power is extracted from a source by a
load whose reflection coefficient is the complex conjugate of the source reflec-

tion coefficient.

VA

I

The maximum amount of power that the source can deliver is called the source’s

]

comp. conj. Z;

condition for maximum power transfer (3.3-1)

I

comp. conj. Iy

available power,

80

Example: A source and load are connected at a junction whose charac-
teristic impedance is 50 ohms. When the load is reflectionless (I'; = 0),
the power delivered to the load is 0.02 watt, A measurement of the re-
flection coefficient I'; of the source yields a value of 0.5% + 30 deg. How
much power will the source deliver to a conjugate load?

When the source is terminated in a reflectionless load there is only
one wave crossing the source-load junction. This is the primary wave
emitted by the source, It is totally absorbed by the load, and we calcu-
late that it must have an amplitude of

+/0.02 watt X 50 ohms = 1.0 volt rms

Let us see what happens when the load is a conjugate match to the
source: I'j = comp. conj, T’y = 0.5 % — 30 deg. Now the 1-volt primary
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Example: The specified output power of a signal generator is conven-
tionally assumed to be the power that the generator would deliver to a
reflectionless load. How large a mismatch error do we make if we use a
power meter whose SWR is 1.3 to measure the output power of a signal
generator whose SWR is 1.27

From (3.3-2) we have

power that source would conjugate-mismatch-loss ratio
deliver to a reflectionless load _ of source and actual load
power delivered to " conjugate-mismatch-loss ratio
actual load of source and reflectionless load
(3.3-5)

As we saw above, we can calculate an upper and a lower limit to the nu-
merator on the right of (3.3-5). Using the two relations in (3.3-4), we
have

maximum
conjugatemismatch- _ (12X 13-1% _ . o
loss ratio of source 4.%X:1,2 X 1.3 :
and actual load
and
minimum
conjugate-mismatch- (1.2=1.3)2
= P e
loss ratio of source ! 4X1.2X1.3 10810

and actual load

The denominator on the right of (3.3-5) has a definite value that is inde-
pendent of the angle of the source’s reflection coefficient, When r; = 1,
either of the formulas in (3.3-4) gives

conjugate-mismatch-
loss ratio of source = 1 +
and reflectionless load

i3 =rf*

AXT2 1.0083

Thus the power thet the generator would deliver to a reflectionless load
is somewhere between 1.05/1.0083 = 1.041 and 1.0016/1.0083 =
(1 — 0.0067) times the measured power, that is, between 4.1 percent
above and 0.67 percent below the measured power.
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A loss quantity that, unlike the insertion and transducer losses, is a proper-
ty of the two-port alone is the one that has usually been called attenuationT and
more recently has had the name characteristic insertion loss given 10 it.

available power from

reflectionless source
power delivered to reflectionless
load by reflectionless source with
two-port inserted between them

attenuation ratjo or
characteristic-insertion- =
loss ratio

(3.4-6)

Comparison with (3.4-2) reveals that attenuation is the same as transducer loss
when the source and load are reflectionless. |f the source and load are directly
mate-able, and if the source and load ports have the same characteristic imped-
ance, the attenuation is also equal to the insertion loss when the source and load
are reflectionless.

attenuation or : 5

charcteristic = transducer loss _ insertion loss (3.47)
) ! whenI;=T7=0 whenIs\=Iy=0 ’
insertion loss

In contrast to the complicated formulas (3.4-3) and (3.4-4), the characteristic
insertion loss depends in a very simple way upon quantities that are properties of
the two-port alone. If we put I'y = I} = 0 in either (3.4-3) or (3.4-4) we have

attenuation ratio or Z
P . c2 1
characteristic-insertion- = L o— (3.4-8)
- Z [521 l
loss ratio c1

The reader might like to verify that (3.4-8) also follows from the definition
(3.4-6) of the characteristic insertion loss and the definition (3.1-5) of the for-
ward transmission coefficient s,;.

Notice that none of the losses we have defined thus far is a loss in the sense
of dissipation. Each is a loss only in the sense of a comparison with some hypo-
thetical coupling of source and load. To say that the insertion loss of a compo-
nent of a microwave system is 3 dB does not mean that it dissipates half the
power that is delivered to it. |t means that when the component is put into the
system the power arriving at its load side is cut in half. This ambiguity in the
meaning of the word "loss” gives rise to the apparent paradox that a |ossless—

TThe trouble with the term ‘‘attenuation’ is that it is used to designate almost any com-
parison of power levels.
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This equation shows that the characteristic insertion loss is due to reflection or
dissipation or both, It is important for the reader to bear in mind that the ex-
pressions given in (3.4-12) for the reflection- and dissipation-loss ratios are valid
only when I's ="y = 0.

Formulas, such as (3.4-3) and (3.4-4), that express the various loss guanti-
ties in terms of [, I, and the s-parameters of the two-port are usually of no use
for computation. Apart from the fact that these formulas are extremely compli-
cated, we usually do not know the angles of the complex numbers that they de-
pend upon. As an example of the sort of computational use to which this sort of
eguation can be put, we shall discuss the mismatch error that arises in the inser-
tion measurement of attenuation (characteristic insertion loss).

A practical way to measure attenuation is to insert the unknown compo-
nent into a nominally matched system and record the decrease in transmitted
power. Of course what this method actually measures is insertion loss, and when
the result is taken as the attenuation there is an error that is due to the mismatch
that inevitably exists. Comparison of equations 3.4-8 and 3.4-3 shows that

characteristic-

insertion-loss
(attenuation) ratio _ 11 = 533 Te) (1 — 522 Ty) —s1as2 Ty 1 (3.4.13)
insertion-loss 11— rny? 1
ratio

We can also express this ratio in terms of the input reflection coefficient I'; that
the device presents at port 1 or the output reflection coefficient Iy that it pre-
sents at port 2:

characteristic-

insertion-loss 3 2 2 .
(attenuation) ratio _ |1 =i Isl” 11— s 01° 11 =5y 1" 11 - 1T
ins&rtiqn-loss I —r,m? 11 —1,myl?
ratio

(3.4-14)

The reflection coefficients Iy and I'; are measured with the respective opposite
terminations in place (we shall go into the subject of input and output reflection
coefficients in the next section). If we know the magnitudes but not the angles
of the various complex quantities in (3,4-13) and (3.4-14) we can still calculate
the limits of the mismatch error.t

TLet us warn the reader that this problem Is sometimes treated incorrectly in the literature,
One can find discussions that ignore the fact that dissipation loss depends on the load, or
assume erroneously that insertion loss is the sum of either dissipation |oss or attenuation and
& mismatch loss at each port. These mistakes have led to wrong answers in publications that
have an obligation to be more reliable,
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Example: What can we say about the attenuation (characteristic inser-
tion loss) of an attenuator if the measured insertion loss is 20 dB, the
measuring system SWR is 1.05 in either direction, and the insertion SWR
of the attenuator is 1.15 at each end?

To begin with, let us note that considerable simplification of this
problem results from the fact that 20 dB of attenuation between the
ports are enough to swamp the interaction between the small mismatches
at each end of the attenuator. Thus, as the reader can easily verify, the
interaction term syas71 I<I'7 in (3.4-13) is negligible compared with the
rest of the numerator. We then have the approximation

characteristic-
insertion-loss

(attenuation) ratio . 11— s T 11 = s Ty1? neglecting
insertion-loss 1 = r,ryl? interaction
ratio
(3.4-15)

The maximum value of (3.4-15) would occur if the quantities sy, I's and
s22 ' both had angles of 180 degrees and the quantity I':I'; had an angle
of O degrees:

characteristic-

maximum insertion-loss 3
value | (attenuation) ratio | . (1+ lsgg 101 * (1 + Lsg 1Ty 2
- - = =
of msertpn-loss (1= 1T,y
ratio

The minimum value would occur if s;; I's and s, '} had angles of 0 de-
grees and I'.I'; had an angle of 180 degrees:

characteristic-
minimum insertion-loss

2
value | (attenuation) ratio | . (1= lsuITsD? (1 — ls, 11 1)
of insertion-loss 2 (14 1T 11y 2
ratio
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In the present case the numbers we need are

1.15—-1
|511| = |522| = W = (0.070
and
(L = (s 28— 1 2 o b
s 1065+1

and the maximum and minimum values of (3,4-15) are

maximum _ (1 + 0.070 X 0,024)% (1 + 0.070 X 0.024)°

value (1 — 0.024 X 0.024)°

_ (1+0.00168)*
(1 — 0.000576)?

(we now make labor-saving use of the binomial theorem)
=1+ 4 X 0.00168 + 2 X 0.000576 = 1 + 0.00787

and

minimum _ (1 — 0.070 X 0.024)% (1 —0.070 X 0.024)>

value (1 + 0.024 X 0.024)%

= 1 -4 X 000168 — 2 X 0.000676 = 1 — 0.00787

Thus the true attenuation is between 0.79 percent above and 0.79 per-
cent below the measured insertion loss, or, in other words, mismatch
causes an error of £ 0,79 percent or £ 0.034 dB,

3.5 INPUT AND OUTPUT REFLECTION COEFFICIENTS

We have seen that when port 2 has a nonreflecting termination the reflec-
tion coefficient that one sees when one looks into port 1 is sy3. The standing-
wave ratio corresponding to sy, is called the insertion SWR.

; , 1+ syl _ SWR at port 1 with

UEEUenv BERREE 1= Isu - nonreflecting load on port 2 (26:1)
Likewise

: : 1+ syl SWR at port 2 with

O mRpie 1 — lspp|  nonreflecting load on port 1 (862
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cient would at the very least confront us with a complicated calculation, and,
more often than not, such a calculation would not be possible at all because we
would not have enough information about the phases of the component
reflections. )

Figure 3.6-8 shows schematically a measuring arrangement that can some-
times be used to separate the reflection due to a termination from that due to an
intervening discontinuity. The reflection coefficient that we see when we ook
through the discontinuity toward the load is I'pu: and the corresponding
standing-wave ratio is rj,pue. The reflection coefficient and SWR of the termina-
tion are I'igryy @nd regem, and the insertion SWR of the discontinuity is

1 + sn

(3.6-7)
1— S

Tinsertion —

As the length of the variable-length line saction changes, I'j,put moves in a
circular locus on the reflection-coefficient plane, making one complete circle for
a half-wavelength change in line length. The circle will not in general be centered
at the origin of the I'-plane. Whether or not the circle encloses the origin depends
on the relative size of lsy; | and |Tyerm L. When | Tygem > Isyg |, the Tgem-circle
encloses the origin of the I*-plane; when ITygem | < 511 1, it does not,

At some point on the Tjpgyecircle, | Tinpuel is maximum; and at the dia-
metrically opposite point, II‘,np“l is minimum. |f the s-parameters of the dis-
continuity satisfy the conditions (3.6-1) through (3.6-4) for a lossless, reciprocal

o =1 Vrerml—
rinput = Nerm —

dissipationless

discontinuity e

% %ize %21 B2 = termination

7 insertion b TFOI’i'CIhIe 2
electrical
length

COAX-HB-45

Figure 3.6-8, A variable-length line section between the termination and the
discontinuity makes possible the separation of the reflection due to the termina-
tion from that due to the discontinuity.
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CHAPTER 4

Some Theoretical Background

In this chapter we provide, for those readers who wish it, a little of the
theory that underlies material that is presented without much justification else-
where in the book, We shall confine ourselves to just two topics, The first four
sections of the chapter give an account of the theory of distributed parameter
transmission lines, and the last two sections provide an introduction to flow
graphs and their application to microwave systems. Readers who are not con-
cerned with theory and who are willing to take on faith some of the formulas
quoted elsewhere in the hook are invited to omit this chapter,

4,1 TRAVELING WAVES ON DISTRIBUTED PARAMETER LINES

In our brief discussion of the distributed circuit model in Section 1.5 we
described how the line is represented by a circuit having one-dimensional physi-
cal extension along the length of the line and containing linearly distributed
series inductance and resistance and shunt capacitance and conductance. |f we

l dx r dx

—_——— e — —, YY) AAA — — ——

vV

G

Al
/1

—— dx e

COAX-HB-56

Figure 4.1-1. An infinitessimal length dx of line in the distributed parameter
model,

¢
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write z for the series impedance per unit length and y for the shunt admittance
per unit length, then

z =r+ jwl ' (4.1-1)
and
y =g+ jwe (4.1-2)

where r, I, g, and ¢ are respectively the series resistance, series inductance, shunt
conductance, and shunt capacitance, all per unit length of line.

Let w be the variable of position along the line's axis, increasing from
right to left as shown in Figure 4.1-2. If V(w) and I(w) are the voltage and cur-
rent in the line at w, defined as in Figure 4.1-2, then their rates of change with
position will be given by

Lo T (4.1-3)
dw

and

dl{w) _

W = yV(W) (4.1'4}

Elimination of I(w) between (4.1-3) and (4.1-4) leads to a second-order differen-
tial equation in V(w),

d;:;(wi . ,Yz V(wi =0 (4.1‘5)
where
§& Hay (4.1-6)
T(w+dw) I(w)
—— — e W P — ——
zZdw i
wwa} Sydw  Viw)
W - - ! l
w+dw w COAX-HB-52

Figure 4.1-2.

-
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When the line is lossless, the only contribution to the variation of voltage
with distance is the changing magnetic flux in the space between the conductors,
and, as we saw in the preceding section, this leads to an inductive component
jwl, of z. Conductor loss causes the electric field to have a small tangential com-
ponent at the conducting surfaces. This tangential field component gives rise to
an additional contribution to dV/dw which we account for in the model by add-
ing a small impedance in series with I,.

We shall assume that it is possible to define a surface impedance Z, as the
ratio of the tangential component E,, = of the electric field at the surface of the
metal to the surface current density K (amperes/metzr).

E
Z, = R, + jX, = }‘s“ (4.3-1)
The surface impedance of an ideal, plane-conducting surface is given byT
. fou
= 4 -
z, s+ ) e (4.32)

where u is equal to pivac) for a nonferromagnetic conductor and ¢ is the con-
ductivity in ohms=!/meter, An interesting aspect of (4.3-2) is that the resistive
and reactive components of Z_ are equal.

The case of a real conductor is complicated by the degree of compactness
and the surface finish. The irregularities of a rough or porous surface may well
extend to depths on the order of, or even much greater than, the skin depth.
Then not only is the surface impedance much greater than the ideal value given
by (4.3-2), but it is also no longer accurate to assume that the real and imaginary
parts of Z_are equal. It has nevertheless become customary to talk about surface
impedance in terms of "effective conductivities” as though (4.3-2) applied rigor-
ously. Accordingly, let us define Oeff R and Ocff x SO that the real and imaginary
parts of Z, are given by

_ [ wn
R /2% - (4.3-3)

and

Wi
= e 4,34
XS zo-e-ﬁ; X { :l

tSee for example Ramo and Whinnery, "Fields and Waves in Modern Radio,” (second
edition), John Wiley and Sons, New York, 1953, p 239,
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and then use these expressions, evaluated at w =0, to eliminate ¥*(0) and V7(0)
from (4.4-1) and (4.4-2), we get

V(w) = V(0) coshyw + Z_I(0) sinhyw (4.4-8)

I{w) = I(0) coshyw + Y_V(0) sinhyw (4.4-9)

Equations (4.4-8) and (4.4-9) put in prominence the 2-port-network aspect of a
length of line, since they may be thought of as relations between the voltage and
current at an input port and the voltage and current at an output port.

The reflection coefficient I'(w) at the reference plane w is defined by

Tw) = L) (4.4-10)
Viw)
and the impedance Z(w) is defined by
= Vw)
Z(w) 1w (4.4-17)

Impedance and reflection coefficient are mathematically equivaient. |f we com-
bine the definitions (4.4-10) and (4.4-11) with either (4.4-1) and (4.4-2) or
(4.4-6) and (4.4-7), we get

Zlw)
__Z Zw) _ 1+T(w)
(w) Ziw) 22 ; Z. T—Tw) (4.4-12)
Zc

Readers who are acquainted with the theory of conformal mapping will recog-
nize (4.4-12) as a bilinear transformation which maps the right-hand half of the
Z-plane into the interior of the unit circle about the origin of the I'-plane.

From (4.4-1) we have

Viw) _ V(0 "
Viw)  p*0)et 7™

so that the relation between the reflection coefficient I'(w) at any plane w and
that at the terminal plane w =0 is

D(w) = [(0)e 2" (4.4-13)
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The relation between the impedance Z(w) at w and that at w = 0 can be obtained
by dividing (4.4-8) by (4.4-9). We get

zi,o) + tanh yw
Zéwl P (4.4-14)
< 1+ 210 tanh yw
Ze

The voltage and current relations (4.4-8) and (4.4-9) and the impedance
relation (4.4-14) are really quite complicated because the arguments of the hy-
perbolic functions are complex. We can obtain simpler expressions that are valid
when the attenuation is small. Making use of well known identities, we have

cosh yw = cosh (a+ jf)w = coshaw cosfw + jsinhaw sin (4.4-15)
and
sinh yw = sinh (a + jf)w = sinhaw cosfw + j cosh aw sin fw (4.4-16)

If & is small enough that (aw)? is negligible compared with aw, we can make the
approximations cosh oaw = 1 and sinh aw = ow. When we do so, (4.4-8) and
(4.4-9) become

Viw) = (V(0) + Z_I(0)aw) cos fw + j (Z.1(0) + V(0)aw) sin fw (4.4-17)

Ilw) = (I(0) + Y, V(0)aw) cos fw + j (Y, V(0) + I(0)aw) sin fw (4.4-18)

and (4.4-14) becomes

Z(0 ; Z(0
Zw) _ (—éc-’.+aw) s (1 ks éc} aw) tan fw

Ze (1 +Zg:j aw) + j(ZzI?l + aw) tan fw

(4.4-19)

The standing-wave pattern on the line is most appropriately expressed in
terms of the reflection coefficient I'(w) = [l"{w) |ej3("'). Making use of the ex-
pressions (4,4-3) and (4.4-4) for the voltage and current, and writing * to denote
a complex conjugate, we have

1V (w)l Viw) V¥(w)

I

V*(0)| /e + T(0)Pe>®™ + 2I1'(0)l cos (2Bw — 0(0)) (4.4-20)

I
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coefficients, losses, phase shifts, etc — in microwave systems, By means of the
nontouching loop rule one can write down expressions for these quantities more
or less from an inspection of the flow graph.T

We shall require a few definitions.

The branches are the directed line segments out of which the flow graph is
made,

The nodes of the graph are the points at which the branches begin and end.

A source node is a node to which are attached only exiting branches.

A node value or signal is the value of the variable associated with a node.
We practice the economy of using the letter that stands for the value also to label
the node, The V" 'sand V" 's in our graphs are node values,

A branch transmission is the value of the coefficient that is associated with
a branch. The s’s of Figure 4,.6-7 are branch transmissions,

A path is a set of consecutive, codirectional branches along which no node
is encountered more than once,

A path transmission is the product of the branch transmissions along a
path.

A first-order loop is a closed path on which any node is encountered just
once per circuit.

The meaning of first-order loop transmission will be obvious.

A second-order loop is two first-order loops that do not touch,

The meaning of second-order loop transmission will be obvious.

A third-order loop is three first-order loops that do not touch, etc,

The graph determinant is given by

graph determinant = 1 — E first-order loop transmissions

all first-
order loops

+ Zsecond-order loop transmissions —... (4.5-13)

all second-
order loops

The cofactor of a path is the graph determinant of the part of the graph
that does not touch the path at any point.

A graph transmission can be defined from a source node to a non-source
node. The graph transmission from source node § to non-source node R is the
amount of signal or node value R due to a unit of signal or node value S. That is
to say,

TAn excellent introduction to flow graphs Is to be found In Mason and Zimmerman,
""Electronic Circuits, Signals, and Systems,” John Wiley and Sons, Inc,, New York, 1960,
Chapter 4,
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If a two-port is inserted between the source and the load, the load power
will be
1
‘Pl = ”i'
where Y., is the characteristic admittance of the port-2-to-load junction and
- + . .
V, = Vp is the voltage of the wave leaving port 2 and entering the load. If we
substitute (4.5-17), which gives the ratio ¥3/S, into (4.6-2) we get

Y., W3R (1-11y12) (4.6-6)

1 2 ISzl [2 ( 1— II‘IP",‘
P = = - 4.6-7
l 2 YCZ ISi I{.I—Sur‘:] |:1—522PI)—821 S12 I‘sr‘ll2 ( ]
comparing (4.6-7) with (4.6-4), we have
. Pgayan (source)
transducer-loss ratio = ———
Py

2l A [(1 =513 T5) (1 =595 T7) — s 512 T Ty (4.6:8)

i Vilgglt (1= IT,P) (1— ;)

When the source and load can be mated directly, so that it is meaningful to talk
about insertion loss, we have, from a comparison of (4,6-7) with (4.6-3),

insertion-loss _ Pj with load connected directly to source
ratio - Py with two-port inserted

; (1 = 511 T) (1 = 522T)) — 531 512 T Ty
ISzl |2 |1 = FSF[IZ

(4.6-9)

assuming that Z.; = Z,.
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Figure 5.2-1. The General Radio
Type 874-LBB Slotted Line.

5.2 STANDING-WAVE MEASURING EQUIPMENT

The General Radio 874-LBB coaxial slotted line is shown in Figure 5.2-1,
It is a B0-centimeter section of rigid, 50-ohm air-dielectric line with a narrow
axial slot in the outer conductor. A probe, which protrudes through the slot into
the region between the conductors, samples the electric field in the line, The
probe is mounted on a carriage that travels the length of the line. The slot is
clearly seen in the close-up of Figure 5.2-2, which also shows how the microm-
eter is swung into position in order to make small, precise displacements of the
carriage. The probe carriage slides on the outer conductor, thus ensuring con-
stancy of probe penetration as the carriage is moved along the line.

Figure 5.2-2. The slot along the top of the line's outer conductor is clearly visi-
ble in this close-up of the carriage assembly, which also shows the micrometer in
position.
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Figure 5.2-4. (a) When the Type 874-LBB Slotted Line is used with a standing-
wave meter, the rf-probe subassembly (Figure 5,2-3) is replaced by the probe-and-
tuner (Type 900-DP). The micrometer at the top of the 800-DP adjusts probe
depth. (b) Close up of 900-DP removed from its seat in the probe carriage.

probe-depth adjustment is not important, an inexpensive alternative to the
900-DP is the rf-probe subassembly with a GR Type 874-D20L Adjustable Stub
attached to its connector,

Modulation of the rf generator usually consists in keying the signal on and
off with a fifty-percent duty cycle at a rate of 1 kHz. Sine-wave amplitude mod-
ulation of an oscillator is usually accompanied by an objectional amount of fre-
quency modulation.

A standing-wave meter is a 1-kHz tuned amplifier preceded by a calibrated
adjustable attenuator and followed by a rectifier and meter. The GR 1234
Standing-Wave Meter is shown in Figure 5,2-5. The numbers on the meter’'s SWR
scales are proportional to the reciprocal of the square of the 1-kHz voltage at the
input; if the detector has a square-law response—a point we shall take up pres-
ently—the meter readings are therefore proportional to the reciprocal of the
prabe voltage. Thus, if the meter reading is 1.0 (0 dB) when the probe is at a
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voltage maximum, the meter reading at a voltage minimum is equal to the
standing-wave ratio r (or r(dB)).

Large SWR's (greater than 4.0) can be read on the Type 1234 if the '‘meter
scale” switch is turned to 3.2 — 10" or 10 — 40" to obtain the minimum
reading. In these positions of the switch, the voltage gain ahead of the meter is
increased by factors of 3.16 (10 dB) and 10 (20 dB) respectively. Small SWR's
(from 1.2 down to about 1.001) can be read accurately on the expanded scales
"1 —=1.2" and "1 — 1.05.” In these positions of the "'meter scale’’ switch, the
gain ahead of the meter is increased, but bias currents are applied to the meter

FREQ kM= P EANDWIDTH

1294 STANDING

Figure 5.2-5. The GR Type 1234 Standing-Wave Meter,
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Figure 5.2-6. The General Radio Type 874-LBB Slotted Line with Type 900-DP
probe-and-tuner and Type 1234 SWR Meter in a typical laboratory setup. Behind
the slotted line on the left is the modulating power supply and next to it is the
oscillator. The device under test is mounted in the shielded component mount
attached to the right-hand end of the slotted line.

that offset its reading downscale, The combined effect of the increased gain and
the offset is that a full-scale reading of 1.0 (0 dB) on the expanded scales occurs
for the same detector voltage as on the "1 — 4"’ scales but, because of the higher
gain, decreases in the probe voltage by factors of anly 1.2 and 1.05 move the
needle all the way downscale in these ranges.

If gross errors are to be avoided, two additional components must be in-
cluded in the slotted-line setup. These are an attenuator or isolator and a low-
pass harmonic filter, both inserted between the generator and the slotted line,
The attenuator, 6 or 10 dB, serves to pad the oscillator from changes in its load
impedance as various loads, including shorts and opens, are attached to the
slotted line. Without the pad the oscillator frequency would be likely to change
with such wide variations in load impedance. A ferrite isolator answers for this
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Figure 5.2-8. Typical rectification characteristic of a silicon point-con-
tact microwave diode. In this particular case the diode exhibited a
square-law response up to about 100 mV of rf input,
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whence we get

SWR-scale
reading
due to

signal + noise

SWR-scale
reading
due to
noise

< 0.45

Thus the SWR-scale reading due to both signal and noise must not be
more than 0.45 times the reading due to noise alone (meter deflection
due to both signal and noise must be at least 1/{0.45)? = 4 times the
deflection due to noise alone),

The noise reading should be made by turning off the rf generator; discon-
necting the SWR meter from the detector would radically change the source im-
pedance that the 1-kHz amplifier sees and hence also the amount of noise that it
generates.

The dynamic range of a point-contact diode used as a SWR detector,
limited at the bottom by noise and at the top by deviation from square-law re-
sponse, is typically 30 dB or better, A bolometer, while it is on the order of 10
dB less sensitive than a diode, has a dynamic range of about 50 dB. The bolom-
eters that are usually used as SWR detectors are barretters rather than thermis-
tors. The barretter is an ohmic device consisting of a piece of very fine platinum
wire installed in the same kind of package that houses a point-contlact diode,
When the barretter is used as a standing-wave detector, it is supplied with a bias
current of a few milliamperes by the SWR meter. The presence of an rf current
in the wire causes a temperature rise— in addition to the already-elevated
temperature due to the bias current. The increase in temperature causes an in-
crease in the wire's dc resistance, which in turn causes an increase in the dc volt-
age drop along it. The thermal time constant of the barretter wire is short
enough that the resistance changes can follow the 1-kHz modulation of the rf
signal, and the 1-kHz fluctuations in the dc voltage drop across the barretter are
applied to the input of the 1-kHz amplifier, The barretter's response is very pre-
cisely square-law as long as the dc bias current is very much larger than the rf
current.

Heterodyne detection can be used as an alternative to the SWR meter when
greater sensitivity and more accuracy are wanted, as is the case, for example, in
the measurement of very high standing-wave ratios,
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Figure 5.2-13. The 874-LBB Slotted Line in a typical laboratory setup using
heterodyne detection. The Type 874-MRAL Mixer is attached to the left-hand
connector on the probe carriage. The local oscillator (extreme right) is supplied
with power from an auxiliary power take-off plug on the Type 1236 I-F Ampli-
fier. To the left of the Type 1236 is the oscillator that drives the slotted line,
and its power supply (extreme left) is switched to the cw mode since an unmodu-
lated signal is detected by the heterodyne method.

30 MHz, correct i-f signals will be observed at two local-oscillator frequencies,
60 MHz apart, one on either side of the slotted-line frequency. |f the i-f signal is
due to the nt™ harmonic of the slotted-line signal beating with the n™ harmonic
of the local oscillator, the local-oscillator frequency will be

fi=fi %f,- (spurious i-f signal due to n™ harmonic) (6.2-6)

These pairs of spurious images occur between the pair of correct local-oscillator
frequencies. Any doubt about the local-oscillator setting can be resolved quickly
by a check of the slotted-line wavelength to see that it corresponds to the genera-
tor’'s fundamental frequency.

We have seen that when a microwave diode is used as a demodulator it is
operated at low enough levels—a few millivolts—that its detection characteris-
tic is square-law. But as a mixer the diode functions as a switch that is turned on
and off by the local oscillator, The conversion characteristic of the mixer is
linear; that is, the level of the i-f signal is proportional to the level of the rf signal
from the probe.

The functioning of the diode as an efficient mixer requires a relatively large
local-oscillator signal, since the local-oscillator voltage has to push the diode
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quite far into its forward conduction region and quite far into its back-biased
"off" region. |f conversion is to be linear, the change in diode resistance due to
the probe signal must be negligible compared with that due to the local-oscillator
signal; in other words, the probe voltage must be very much smaller than the
|ocal-oscillator voltage.

The rectified direct current that flows through the diode is a measure of
the mixer's conversion efficiency. Of course the diode current depends primarily
on the local-oscillator signal level, but it is also somewhat frequency dependent—
more power is needed to produce a given diade current at higher frequencies.
Furthermare, as one can see from the schematic diagram of the mixer in Figure
5.2-11, the probe arm of the mixer shunts the path over which the local-oscillator
signal gets to the diode, and the impedance of this shunt at the local-oscillator
frequency affects the coupling of local-oscillator power to the diode. The
amount of diode current that is optimum is a question of signal-to-noise ratio:
larger currents generate more diode noise and smialler currents yield lower con-
version efficiency. This is not a crucial matter and a diode current of about half
a milliampere is satisfactory. The “dc mixer current’’ position of the “meter
scale’” switch on the Type 1236 |-F Amplifier puts the front-panel meter in
series with the center conductor of the i-f input so that the diode current in the
Type 874-MRBAL Mixer can be checked. Since the probe is an open circuit for
direct current, the local-oscillator output must provide a dec path to ground for
the diode current.

5.3 MEASUREMENT OF ONE-PORT REFLECTION COEFFICIENTS AND
IMMITTANCES BY THE STANDING-WAVE METHOD

In Section 1.9, Chapter 1, we discussed the way in which the terminal re-
flection coefficient on a lossless line determines the relative amount of standing-
wave voltage variation and also the position of the standing wave. We saw there
that the magnitude of the terminal reflection coefficient determines the standing-
wave ratio, while its angle determines the position of the standing wave,

When the standing-wave ratio is neither too large nor too small it can be
read directly from the scale of a standing-wave indicator in a completely
straightforward manner. Very large or small SWR's may require some special
techniques that we shall take up presently.

The angle of the terminal reflection coefficient is a little more complicated
to find. The procedure invalves the following steps. 1) Determination of the
position of a standing-wave minimum when the unknown load terminates the
slotted line. (One always measures the positions of minima rather than maxima.
This is partly because minima are sharper and partly because they are perturbed
less than maxima by the presence of the probe.) 2) Determination of the posi-
tion of a standing-wave minimum when the slotted line is terminated in a short,
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Table of Symbols

A—
a—
b —

c—

Ilw) —

K-
J=

total attenuation of line section

radius of inner conductor of coaxial line
radius of outer conductor of coaxial line
shunt capacitance/unit length of line
velocity of light

dissipation factor of dielectric

28

electric field strength

phasor electromotive force

frequency

shunt conductance/unit length of line
conductance

magnetic field strength

instantaneous current

phasor current

phasor current of forward (or ingoing) wave
phasor current of reflected (or outgoing) wave
phasor current in the termination

phasor current at the location w
imaginary operator (j=v—1)

surface current density

physical length of a section of line

series inductance/unit length of line
index of refraction

an integer

turns ratio of transformer

power

dielectric Q

standing-wave ratio

series resistance/unit length of line
return loss

resistance

scattering parameter

amplitude of a source

symbol used to label reference plane of the termination
velocity

instantaneous voltage

phasor voltage
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Viw) —

Dw) —

phasor voltage of forward (or ingoing) wave
phasor voltage of reflected (or outgoing) wave
phasor voltage across the termination
phasor voltage at the location w

variable of position on a transmission line
energy/unit length of line associated with the electric field
energy/unit length of line associated with the magnetic field
shunt admittance/unit length of line
admittance

normalized admittance

characteristic admittance of line
admittance of termination

series impedance/unit length of line
impedance

normalized impedance

characteristic admittance of line
admittance of termination

ratio of voltage to current at the location w
attenuation constant

phase constant

propagation constant (y = a + jf)

reflection coefficient

reflection coefficient of the termination
ratio of reflected to forward voltages at the location w
loss angle of dielectric

skin depth

"width" of standing-wave minimum

shift in minimum position

permittivity

relative permittivity

complex permittivity

complex relative permittivity

real part of €

imaginary part of €

real part of €,

imaginary part of €, loss factor

angle of reflection coefficient

angle of a phasor

wavelength

permeability

conductivity

charge/unit length of line

angular frequency
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Index

Adjustable Stub, 138

Admittance: 11, 66-72, 109
normalized, 37, 66, 67
normalized grid, 68
per unit length, 114

Angle, Phase, 9

Attenuation: 14-20, 60-63, 84-90
below cutoff, 256

characteristic insertion loss, 86-91,

102
due to conductor loss, 17, 18
constant or factor, 17, 107
due to dielectric loss, 20
Available Power, 80, 81, 129

Barretter, 145
“Black-Box"’, 73
Bolometer, 145
Branch, 123, 126
Branch Transmission, 126
Breakdown Voltage, 2, 3
Bridges: 131-136
Thurston, 133
UHF, 134

Capacitance Per Unit Length, 21, 22,
109

Characteristic:
admittance, 11, 109
immittance, 11-14
impedance, 28, 37, 109, 113, 115
impedance of lossless line, 12, 21,

111

insertion loss, 86-90, 102

Coaxial Line:
lossless, 109-111
with small losses, 111-115
Coaxial Slotted Line, 136-149
Coefficient:
input and output reflection, 90-96
reflection, 32, 34-42, 44, 51-54, 57,
60, 61, 63, 74, 75
Cofactor, 126
Complex Permittivity, 19
Complex Reflection-Coefficient Plane,
93-95
Conductivity, Effective, 112, 114
Conductor Loss, 5, 6, 12-14, 17, 18,
112,113
Conjugate Mismatch Loss: 81-84, 129
maximum and minimum, 82, 83
Constant;
dielectric, 7
phase, 8, 10,107, 113
propagation, 107, 111
Continuity of Voltage and Current,
30
Current:
displacement, 18
distributions, 47-49
instantaneous, 2, 3
loss, 18
maxima and minima, 47-49
rate of change with position, 106
ratio, 14-16
reactive, 18
surface, density, 112
total, 29, 30
Cutoff Frequency, 23
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Decibel, 14, 16
Dielectric:

constant, 7

power factor, 19

Q,19

velocity in, 7
Directional Coupler, 131
Discontinuities, 96-104
Dissipation:

factor, 19

loss, 87,96
Distance, Electrical, 10
Distributed Circuit Model, 20-22
Distributed Parameter Transmission

Line, 105-109

Effective Conductivity, 112, 114
Efficiency, 87
Electric:
field, 1-3, 109
permittivity, 7
Electrical Distance or Length, 10
Electrically Symmetric Two-Port, 78
Energy Per Unit Length, 109-110
Error:
noise, 144
mismatch, 88-90
External Inductance Per Unit Length,
110

Fields:

electric, 1-3

Hyp. 24

in coaxial lines, 1-5

instantaneous magnitude, 2

magnetic, 1-3

principal mode, 3
Flow Graphs, 120-129
Forward Wave, 26, 28, 29
Frequency:

resonant, 11

cutoff, 23
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Frequency-Domain Reflectometer,
131-132

Gain Ratio, 14

Graph Determinant, 126
Graph Transmissiom, 126
Grid, Impedance, 54-60

Heterodyne Method, 137, 145, 146
Higher-Mode Waves, 1, 22-25
Homogeneity, 107

Ideal Transformer, 76, 77
Immittance, Characteristic, 11-14
measurement of, 135-148
Impedance:
characteristic, 11, 13, 28, 37, 109,
11, 138,15
grid, 54-60
input, 58, 59
lumped, 26
normalized, 37
normalized grid, 54
surface, 112
terminal, 29, 36, 58, B9, 64, 65
transforming property, 40
Incident Wave, 26, 28, 29
Index of Refraction, 6
Inductance Per Unit Length, 21, 110,
113
Insertion Loss: 84-90, 130
standing-wave ratio, 90-92,
102-104
Instantaneous Voltage, 2, 3, 9, 10, 108
Internal Inductance, 110, 113

Length, Electrical, 10
Light, Velocity of, 5



Loop Transmission, 126

Loss:
angle, 18, 19
characteristic insertion, 86-90, 92,

102
conductor, 5, 6, 12-14, 17, 18,
12, 113

conjugate mismatch, 81-84, 129
dissipation, 87, 96
factor,19
formulas (flow graph), 129-130
insertion, 84-90, 130
mismatch, 79-84
ratio, 14
reflection, 33-35, 60, 61
return, 33-35, 60, 61, 84
tangent, 19
transducer, 856-87, 130
transmission, 60
two-port, 84

Lossless Line, 1, 109-111

Lossless Two-Port, 79

Lumped Impedance, 26

Magnetic Field: 1-3, 10
instantaneous magnitude, 2
permeability, 7

Maximum Power Transfer, 79-90

Measuring Equipment, SWR, 136-149

Mismatch:
error, 88-90
loss, 79-84

Mixer, 148

Mode:
principal, 1
higher order, 1, 22-25

Neper, 14, 156

Node, 123, 126

Node Value or Signal, 126
Noise, Error Due To, 144

Nontouching Loop Rule, 126-127
Normalized:
admittance, 37, 66, 67
admittance grid, 68
impedance, 37
impedance chart, 71
impedance grid, 54

One-Port Device, 73
Open Stub, 41, 42

Parameters:
distributed model, 105
normalized scattering, 74
reflection, 74
scattering, 73-78, 120-123
Passive Two-Port, 78
Path, 126
Path Transmission, 126
Permeability, Magnetic, 7, 110
Permittivity:
complex, 19
complex relative, 19
electric, 7
relative, 7, 12
Phase:
angle, 9
constant, 8,9, 107, 113
factor, B
shift, 10
velocity, 8, 23, 108
Phasor, 9, 10
Plane, Terminal or Reference, 27
Power:
available, 80, 81, 129
delivered to load, 129
gain, 14
loss, 14
maximum transfer, 79-80
ratios, 14-16
Principal Mode, 1
Principal Mode Fields, 3
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Probe and Tuner, 137
Propagation Constant, 107, 111

Radial Scales, 60-63
Ratio:
current, 14-16
insertion standing wave, 90-92,
102-104
power, 14-16
standing wave, 32-35, 39, 60, 61
voltage, 14-16
voltage to current, 28
Reactance Per Unit Length, 113
Reciprocal Two-Port, 78
Reference Plane, 27
Reflected Wave, 26-35
Reflection:
loss, 33-35, 60, 61, 84
parameters, 74
Reflections, from Discontinuities,
96-104
Reflection Coefficient: 32, 35-42,
44,57, 60-62, 74,75
chart, 52
complex plane, 93-95
input and output, 90-96
measurement of, 135-163
plane, 51-54
Reflectionless:
source, 84
termination, 31
Reflectometer, 131-136
Refraction, Index of, 6
Relative Permittivity, 7, 12
Resistance Per Unit Length, 113
Resonance, 11
Hyp mode, 25
Return Loss, 33-35, 39, 60, 61

Scattering Matrix: 120-123
normalized parameters, 74
parameters, 73-78
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Shorted Stubs, 41, 43, 93

Shunt Admittance Per Unit Length,
114

Signal-Flow Graphs, 120-129

Skin Depth, 13

Slotted Lines, 131-149

Smith Chart, 51-72

Source:
equivalent circuit and flow graph,
124
node, 126
reflectionless, 84

Square-Law Response, 138, 141, 143
Standing Waves, 5, 11, 26, 42-49
lossless line, 43
meter, 138
technigue, 135, 149-1563

Standing-Wave Ratio 32-35, 44, 60, 61
lossy line, 39
insertion, 90-92, 102-104

Stubs: 41, 42,93

adjustable, 138
Surface Current Density, 112
Surface Impedance, 112
Symmetric Two-Port, 78

Terminal:
impedance, 29, 36, 64, 65
plane, 27
Terminated Line Calculations,
115-119
Termination Reflectionless, 31
Thurston Bridge, 133
Time-Domain Reflectometer, 131-132
Total:
current, 29, 30
voltage, 29, 30, 77

Transducer Loss, 85-87, 130
Transfarmer, |deal, 76, 77
Transmission Laoss, 60



Transverse Electromagnetic Mode, 1,
22,96,97, 101, 110
Traveling Waves:
sinusoidal, 5, 11, 26
fields, 4
power, 16
on distributed parameter lines, 105
Two-Port:
“black box"’, 73
discontinuities, 100-104
electrically symmetric, 78
lossy, 84
lossless, 79
passive, 78
reciprocal, 78

UHF Bridge, 134
Unguided Waves, 1

Velocity Factor, 6-8
Velocity of Light, 5
Velocity of Propagation:

in cable, 10

in dielectric, 7

on lossless line, 5, 21, 22

of TEM waves, 7

of unguided waves, 5
Velocity, Phase, 8, 23, 108

Voltage:

breakdown, 2, 3
distribution, 47-49
instantaneous, 2, 3, 9, 10, 108
maxima and minima, 47-49,

54, 64
rate of change with position, 106
ratio, 14-16
total, 29, 30, 77

Wavelength, 8
Wavelength Circles, 63-65
Waves:

forward (incident), 26, 28

higher-mode, 1

phase shift, 10

reflected, 26-35

standing, 5, 11, 26, 42-49

transverse electromagnetic, 1, 4,
96, 97, 101

traveling, 4, 5, 11, 26

unguided, 1

velocity of propagation, 5, 7

Width-of-Minimum Method, 153-156

Zero-Loss Approximation:

for characteristic impedance, 21
for velocity of propagation, 21
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