AM/FM Radio Station Application Data and Reference Guide

RСЛ

for Broadcast Transmitter, Antenna, Remote Pickup and STL Systems

AM/FM

RADIO STATION APPLICATION DATA AND REFERENCE GUIDE

for

BROADCAST TRANSMITTER, ANTENNA, REMOTE PICKUP

and

STL SYSTEMS

5th Edition—RAD-75

Prepared by

Broadcast Systems

Front & Cooper Streets, Camden, New Jersey, U.S.A. 08102

PRICE: TWO DOLLARS

CHANGES IN DESIGN—In order to make improvements in design and to effect economies in manufacture, RCA reserves the right to change the design of its products at any time, and in accordance with its sole judgment, while adhering in good faith to the intent of the Information contained herein.

Data included in this book are primarily for use in filing applications with the U. S. Federal Communications Commission. However, the general information included also has world-wide application. Rules and requirements, of course, vary with individual government regulatory bodies.

Complete information on referenced equipment is included in the current RCA Radio Equipment Catalog. Copies are available on request from RCA Broadcast Systems, Camden, N. J. 08102, U. S. A.

FOREWORD

This filing information manual presents the equipment engineering data necessary to complete FCC Form 313 and Sections V-A and V-B of Forms 301 and 340. As such, it should provide a quick reference for the specific filing data required. Detailed descriptions and specifications of the complete line of broadcast equipment manufactured by RCA for AM and FM stations are contained in RCA AM and FM broadcast catalogs. RCA also offers custom built equipment to meet special requirements.

A brief explanation of FCC rules is included to assist the reader in planning remote pickup and STL equipment facilities. However, reference should be made directly to the FCC rules to assure compliance and accuracy wherever necessary.

CONTENTS

Sample A	M Broadcast A	pplica	tion (Eng	ineerir	g Dat	a, F	CC	Forms	301,	340)		•	٠	•	\mathbf{x}	•		•	•	5
Sample F	M Broadcast A	pplica	tion (Eng	ineerir	g Dat	a, F	CC	Forms	301,	340)										6
Transmitt	er Power Rating	gs .		•					o .					•							8
Monitor E	quipment	,																•			8
Remote (Control Systems									41 19			,								9
FM Anter	ınae																				
T IN AIRCO	Circularly Pola	rized	Radia	tor	Speci	ficatio	ns.	BEC	Serie	ς .											12
	Circularly Pola	rized	Radia	tor	Speci	fication	ns.	BFG	Serie	5	- 5		2	2							14
	Circularly Pola	rized	Radia	tor	Speci	ficatio	ns.	BFI	Series									ŝ			15
	Circularly Pola																				16
	Circularly Pola														-						
	Vertical Radiat															0			0		19
	AM/FM Isolation	on Un	its .																		23
	Deicer Cables	and F	ower,	BFC	C. BFG	, BFH	Se	ries								0	3		2		24
Coaxial T	ransmission Lin	_																			
	Coaxial Line Ty	pes a	nd Sp	ecifi	ication	s .		. 5											ž		25
	Rigid Coaxial I	_ine, S	Specif	icati	ions a	nd Att	enu	atio	n .												26
	Attenuation an	d Pov	ver Cu	irves	s, And	rews 5	60 C	hm	Air D	ielec	tric I	Heli	ax								28
	Attenuation an	d Pov	ver Cu	irves	s, And	rews 5	0 C	hm	Foam	Heli	ax		¥		4						29
	Attenuation an	d Pow	ver Cu	rves	, Cabl	ewave	Air	· We	ellflex	Cable	е .					4					30
	Attenuation an	d Pow	ver Cu	irves	s, Cabl	ewave	Fo	am	Wellfle	ex Ca	able										31
Auxiliary	Broadcast Servi																				
	STL Frequenci	es.					4				*								÷		32
	Remote Pickup	Allo	cation	s ar	nd Aut	horiza	tion	S .									241				33
	Sample Remot	e Pick	kup or	ST	L App	licatio	n (I	FCC	Form	313)			*	*	18	20			•		35
	Remote Pickup	and	STL A	Appl	ication	n Data	Ta	ble	¥				÷			7	7	¥	6		37
_ =																					
Reference						_															
	FM Broadcast												8					•			39
	Distance to Re																				
	for Various	FM A	ntenna	a He	eights	3			Y .					•		2.					40
	FM Range Char	t .														*					
	FM Estimated	Field	Stren	gth	Chart		• .	e :	* *	*			*		34	*	•		4.	•	42
	Footage Table	tor B	roadca	ast	Tower	Heigh	nts					•						*			43
	Minimum Wind	lload	мар а	ind	Table										4	¥					44
	dB/Efficiency	onve	rsion	Cha	rt .		•			K .	*	٠	٠		•			•		-	45
	kW/dBk Conve	rsion	lable							. ,				*		7.					
	FM Transmitte	r Floo	r Plai	ns					·		*		•		*	4				•	48
	AM Transmitte	r Floo	or Plai	ns							-		_	1.00				1.0	117		49

SAMPLE AM BROADCAST APPLICATION

ENGINEERING DATA (FCC FORMS 301, 340)*

FCC Form 301		FEDERAL COMMUNICA	ATIONS COMMISSION	Section V-A
STANDARD BRO ENGINEERING		Name of applicant		
for, each category as Construct a new Change station locity or town Change power Change transmitt Change frequency Change from DA Change from Non Change in antenn (including increa	re shown to the right of station ocation to a different er location by to Non-DA to DA to DA to DA to DA to DA to to DA to to DA to to DA to to height	of the category.)	Install new Auxiliary Transmi Install new Alternate Main Transmitter Change transmitter (non type accepted) Change Main Studio Location point outside city limits and nat transmitter site Change Hours of Operation Other (specify):	2 thru 7, and 10
by addition of FM		summarize briefly the na	ature of the changes proposed	other items)
2. Facilities requested			10. Antenna system, including gr	
Prequency	Hours of operation	Power in kilowatts Night Day	Non-Directional Antenna: Day Night	Day only (DA-D) Night only (DA-N)
3. Station location State	City or town			Same constants and power day and night (DA-1) Different constants or power day and night (DA-2)
4. Transmitter location	County		whether directional operation is for	
City or town	Street Address (or oth	er identification)	Type radiator	Height in feet of complete radiator above base insulator, or above base if grounded.
- W-/	1			
5. Main studio location State	County		Overall height in feet above ground. (Without obstruction lighting)	Overall height in feet above mean sea level. (Without obstruction lighting)
City or town	Street and number, if	kno s n	Overall height in feet above ground. obstruction lighting)	(With
6. Remote control point lostate Street Address (or other iden	City or town		If antenna is either top loaded or sectionalized, describe fully as Exhibit No.	Overall height in feet above mean sea level. (With obstruction lighting)
7. Transmitter			Excitation	Series Shunt
Nake Se	e Page 8	Rated Power	Geographic coordinates to neares For direction antenna give coordina For single vertical radiator give t North latitude	tes of center of array.
(If the above transmitter has tach as Exhibit No. Showing should include schema changes are to be made in lic full details of change.)	a complete showing	of transmitter details. ils of frequency control. If	No. (Height fi	rther details and dimensions including any associated isolation circuits as Exhibit gures should not include obstruction lighting.)
8. Modulation monitor		Thurso No.	lines, and roads, railroads, or other	a plat of the transmitter site showing boundary obstructions; and also layout of the ground dimensions of ground radials or if a counterions.
9. Frequency monitor S	ee Page	Type No.	tion of all structures in the vic show compass directions, exact be tions of the proposed 1000 mv/m c graphs taken in eight different d	a sufficient number of aerial photographs riate attitudes and angles to permit identificatinty. The photographs must be marked so as to nundary lines of the proposed site, and location of the proposed site, and location for both day and night operation. Photographs from an elevated position on the of the aerial photographs if the data referred

SAMPLE FM BROADCAST APPLICATION

ENGINEERING DATA (FCC FORMS 301, 340)*

FCC Form 301	FEDERAL COMMUNICA	ATIONS COMMISSION	Section V-B
FM BROADCAST ENGINEERING DATA	Name of applicant		
1. Purpose of authorization applied	for: (Indicate by check mark)		
character which will change cov wise complete only paragraphs 2	arage or increase the overall height of	B through D, complete all paragraphs of this the antenna structure more than 20 feet, ans graphs; for changes F through H, complete or and 5.)	wer all paragraphs, other-
A. Construct a new station B. Change effective radiate height above average te C. Change transmitter locat D. Change frequency	rrain	E. Change antenna system F. Change transmitter G. Install auxiliary or alternate main H. Other changes (specify) I. Change studio location anges proposed.	trans mitter
I this is not to a new station,			
2. Facilities requested		9. Frequency monitor	
Frequency	Channel No.	See Page 8	Type No.
		10. (a) Antenna structure:	WE 2 1
Mc/s.	Antenna height above average terrain	Is the proposed construction in the immediate vicinity or does it serve to modify the construction of any standard b broadcast station, television broadcast st	
Horizontal kw	Horizontal feet	radio station? If "Yes", attach as Exhib	
Vertical kw	Vertical feet	engineering data thereon.	
3. Station location			
State	City or town		100
		Submit as Exhibit No. a vertica proposed total structure (including support	I plan sketch for the ing building if any)
4. Transmitter location (principal	community)	giving heights above ground in feet for all	
State	County	0	l height in feet above
City or town	Street Address (or other identification)	B. C. C.	etion lighting)
5. Main studio location		Overall height pove	height in feet above sealevel. (With obstruc-
State	County	ground. (With Setruction lighting)	
City or town	Street address	Height of antenna radiation center in feet	above mean level.
6. Remote control point location		Horizontal Vertical	
State	City or town	Geographical coordinates of antenna (to ne North latitude West long	
Street Address (or other identific	ation)		
		(b) Antenna data	
		Make	o. or description
7. Transmitter	0	Danes 16	
7. Transmitter Make See Page	Type No. Rated Power	(b) Antenna data Make Type No. of sections Horizontal Vertical If directional antenna is proposed, give ful horizontal and vertical plane radiation patterns	neal
F.C.C., attach as Exhibit No. transmitter details. Showing show	peen accepted for licensing by the a complete showing of uld include schematic diagram rol. If changes are to be made in	If directional antenna is proposed, give ful horizontal and vertical plane radiation patte	l details including erns, as Exhibit No.
	matic diagram and give full details	Is electrical or mechanical beam tilting pro If so, describe fully in Exhibit No. including horizontal and pertinent vertical r	radiation patterns.
8. Modulation monitor		Will antenna be altered to provide null fill-	in? YES NO
See Page	Z 8 Type No.	If yes, describe fully in Exhibit No.	

SAMPLE FM BROADCAST APPLICATION

ENGINEERING DATA (FCC FORMS 301, 340)*
(Continued)

FCC Form 301		FM BROADCAST E	NGINEERING DATA	Section \	/-B, Page 2		
11. Transmission line pro from the transmitter	posed to supply p		15. Attach as Exhibit No. nautical Charts where o served and show drawn	map(s) (Sectional Aero-		
Make	Type No.	Description	(a) Proposed transmitter the profile graphs ha (b) The 3.16 mv/m and to (c) Scale pf miles.	r location and the ra			
Size (nominal transverse dimension) in inches	Length in feet	Rated efficiency in percent for this	Areas and population: (1960 or later census	s.)		
		length	Area (sq. mi.) within 1 mv/m contour	Population wi 1 mv/m conto	ithin		
12. Proposed operation			16. (a) Attach as Exhibit No.	a map(s) (topographic		
Transmitter power output in kilowatts Anterna deut poweruit kilowat	Power diss transmission	ipation within on line in kilowatts	where obtainable, such as U. S. Geological Survey quadrangles) for the area within 15 miles of the proposed transmitter location and show drawn thereon the following data:				
13. Will the studios, micro	Vertical phones, and	YES NO	1. Proposed transmitte 2. Transmitter location (except amateur) and mercial and governm of the proposed tran 3. Proposed location o 4. Character of the are mitter location, suit business, industrial 5. At least circle add.	and call letters of a difference of estimate the location of estimater location; f main studio; a within 2 miles of pably designated as to and mural nature.	all radio stations ablished com- ns within 2 miles proposed trans- o residential,		
other equipment propos of programs be designe Technical Standards?	ed for transmission	on L	5. At least eight radial ten or more miles fro one or more of which city or cities to be s	om the proposed tran n must extend through served.	Smitter Incetion		
14. If this application is for state briefly as Exhibit status of construction a construction will be co	: No. and indicate when	the present	(b) Attach as Exhibit N the radials in (a) (5) ab elevation of the antenn graph by its bearing fro Direction true north she sured clockwise. Show each.	oove. Each graph sha radiation center. I am the proposed trans	Identify each smitter location.		
17. From the profile graphs in accordance with the procedure	16(b), for the eight e prescribed in Sec	mile distance between tion 73.313 of the Com	two and ten miles from the prop mission Rules, supply the follo	osed transmitter locati wing tabulation of data	ion, and in		
Radial bearing (degrees true)	Average ele of radial (2- in feet abov sea lev	10 mi.) ar e mean co el a	ntenna radiation ta	Predicted dis- ance in miles the 3.16mv/m contour	Predicted distance in miles to the lmv/m con- tour		
0		feet _			.1		
45				mi.	m1.		
90							
135							
180	-						
225							
270							
315							
(*)			-				
			- -				
Av	erage	(Ave	nna height above average terrai	in feet	t (horizontal) t (vertical) Paragraph 2)		
statement of technical	esent the applic information and Signature	that it is true to the	y indicated below and than ne best of my knowledge a	I I have examined and belief.	the foregoing		
date	_		(check appropriate box				
Tech	nical Director	Chief Operator [Registered Professional	Engineer Const	ulting Engineer		

TRANSMITTER POWER RATINGS

AM TRANSMITTERS (Medium Wave)

Туре	Rated	Output	Power kW
BTA-1S and BTA-1N1 (Operating 250W)			.25
BTA-1S and BTA-1N1 (Operating 500W)			.50
BTA-1S and BTA-1N1			1
BTA-5L1			5
BTA-10L1		1	0
BTA-20L1*		2	20
BTA-50J		5	0
BTA-100J		10	00
BTA-200J*		20	00

^{*}Parallel Systems.
All RCA AM (Medium Wave) Transmitters are available as parallel systems.

FM TRANSMITTERS

Туре	No. of Outputs	Rated Power, kW	Each Output dBk
BTF-1E2	1	1.00	0.00
BTF-1/1E2	2	1.00	0.00
BTF-1 plus 1E2	1	2.00	3.01
BTF-1.5E1	1	1.50	1.76
BTF-1.5/1.5E1	2	1.50	1.76
BTF-1.5 plus 1.5E1	1	3.00	4.77
BTF-3E1	1	3.00	4.77
BTF-3/3E1	2	3.00	4.77
BTF-3 plus 3E1	1	6.00	7.78
BTF-5E1	ī	5.00	6.99
BTF-5/5E1	2	5.00	6.99
BTF-5 plus 5E1	T	10.00	10.00
BTF-5E2	T	5.00	6.99
BTF-5/5E2	2	5.00	6.99
BTF-5 plus 5E2	1	10.00	10.00
BTF-10E1	1	10.00	10.00
BTF-10/10E1	2	10.0 0	10.00
BTF-10 plus 10E1	1	20.00	13.01
BTF-20E1	1	20.00	13.01
BTF-20/20E1	2	20.00	13.01
BTF-40E1	1	40.00	16.02
BTE-10CT (Tube)	1	.01	-20.00
BTE-15A (Solid State) 1	.01	-20.00

MONITORING EQUIPMENT

AM MONITOR DATA

Description	Make	Туре
Modulation Monitor	RCA)	BW-50
Frequency Monitor	RCA }	511-30
RF Amplifier*	RCA	BW-60
Phase Monitor, Analog Readout	Potomac	AM-19 (204)
Phase Monitor, Digital Readout	Potomac	AM-19-D (210)
Phase Monitor, Precision System	Potomac	PM-19

FM MONITOR DATA

Description	Make	Type
Monaural Frequency		
& Modulation Monitor	RCA	BW-75A
Stereo Frequency		
& Modulation Monitor	RCA	BW-85A
SCA Frequency		
& Modulation Monitor	RCA	BW-95A
RF Amplifier*	RCA	BW-100

^{*}Required when monitors are located at other than transmitter site.

BTR-15B REMOTE CONTROL SYSTEMS

(For AM/FM Transmitters)

15 metering functions; 30 control functions (15 On/Raise; 15 Off/Lower)

BTR-15BW SYSTEM

Audible Control and Audible Metering Return Over Voice Grade Telephone Line
(DC continuity not required)

ES-561157

Quantity	Descri ptio n	Reference
1	Transmitter Unit	MI-561187
1	Studio Unit	MI-561188
1	Meter**	MI-561444-120

BTR-15BR SYSTEM

Audible Control Over Internal Subcarrier Generator and Demodulator, and Subaudible Metering Return Over Optional Internal Subcarrier Generator and Demodulator

ES-561158-*

(Choice of Control Subcarrier Frequency*)

Quantity	Description	Reference
1	Transmitter Unit	MI-561187-*
1	Studio Unit	MI-561190-*
1	Meter**	MI-561444-120

Block Diagram of BTR-15BR/BTR-15BW

^{*}When ordering, specify desired control subcarrier frequency as part of ES- and MI-Numbers. Custom systems can be supplied with any specified subcarrier frequency from 26 to 185 kHz. Standard systems are available with optional frequencies of 26, 41, 42, 67, 110, 135, 185 kHz. Can also be supplied for use with external subcarrier.

^{**}This item to be installed in Studio Unit.

BTR-30A REMOTE CONTROL SYSTEMS

(For AM/FM Transmitters)

30 metering functions; 60 control functions (30 On/Raise; 30 Off/Lower)

AM Radio Systems using BTR-30A

Control via		Telen	netry via		
	STL S	ubcarrier			System
Land Lines	26 kHz ¹	External Generator ²	Land Lines	Transmitter ³	Catalog Identification
•			•		ES-561446-1
	•		•		ES-561446-5
	•			•	ES-561446-6
		•	•		ES-561446-15
		•		•	ES-561446-16

¹Subcarrier generator included in system.

²Subcarrier generator not included in system (optional item).
³Subaudible telemetry equipment not included in system (optional item).

FM Mono Radio Systems using BTR-30A

Control via				Telemetry	via		
	STL S	ubcarrier		Transmitte	er Subcarrier	System	
Land Lines	26 kHz¹	External Generator ²	Land Lines	67 kHz1	External Generator ²	Catalog Identification	
•			•			ES-561446-1	
	•			•		ES-561446-3	
	•				•	ES-561446-4	
	•		•			ES-561446-5	
		•		•		ES-561446-13	
		•			•	ES-561446-14	
		•	•			ES-561446-15	

¹Subcarrier generator included in system.

²Subcarrier generator not included in system (optional item).

FM-Stereo Radio Systems using BTR-30A

Control via			via Telemetry via			
	STL S	ubcarrier		Transmitte	er Subcarrier	Custom
Land Lin es	110 kHz1	External Generator ²	Land Lines	67 kHz1	External Generator ²	System Catalog Identification
•			•			ES-561446-1
	•			•		ES-561446-8
	•				•	ES-561446-9
	•		•			ES-561446-10
		•		•		ES-561446-13
		•			•	ES-561446-14
		•	•			ES-561446-15

¹Subcarrier generator included in system.

²Subcarrier generator not included in system (optional item).

REMOTE CONTROL SYSTEMS

(For AM/FM Transmitters)

ACCESSORIES FOR REMOTE CONTROL SYSTEMS

Extra Meters (specify ranges)	MI-561444
Meter Panels:	
One-Meter	ES-561443-1
Two-Meter	ES-561443-2
Three-Meter	ES-561443-3
Telemetry Subcarrier Generator (67 Hz)	MI-561181-1
Telemetry Subcarrier Generator (specified frequency)	MI-561181-(Frequency)
MIU-Metering Insertion Unit (for AM carrier telemetry)	MI-561458
MIU-Metering Recovery Unit (for AM carrier telemetry)	MI-561459
BTX-1A Subcarrier Generator (program plus telemetry)	ES-27295

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFC SERIES

Mechanical Data, BFC Series

			Dimension	s in Feet (Meters) ¹		Windload ¹ at	50/30 lbs/ft ² (244	/146 kg/m²)
Antenna	Freq.	Hc Top	Hc Side	H Top	H Side	Less De-Icers	With De-Icers	With Radomes
Type	MHz	Feet Meters	Feet Meters	Feet Meters	Feet Meters	Lbs. Kg.	Lbs. Kg.	Lbs. Kg.
BFC-1B	88	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	178 81	198 90	332 151
	98	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	178 81	198 90	332 151
	108	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	178 81	198 90	332 151
BFC-2B	88	10.6 3.23	6.4 1.95	19.2 5.85	12.8 3.90	337 153	377 171	645 293
	98	10.0 3.05	5.8 1.77	19.0 5.79	11.7 3.57	327 148	367 167	635 288
	108	9.5 2.90	5.4 1.65	18.0 5.49	10.8 3.29	319 145	359 163	627 284
BFC-3B	88	16.2 4.93	11.9 3.63	30.4 9.27	23.9 7.28	495 225	555 252	957 434
	98	15.0 4.57	10.9 3.32	28.9 8.81	21.8 6.64	475 215	535 243	937 425
	108	14.1 4.30	9.9 3.02	27.5 8.38	19.9 6.07	459 208	519 235	921 418
BFC-4B	88	21.7 6.61	17.6 5.36	41.5 12.65	35.2 10.73	653 296	723 328	1269 576
	98	20.0 6.10	15.9 4.85	38.4 11.70	31.8 9.69	623 283	703 319	1239 562
	108	18.6 5.67	14.5 4.42	36.8 11.22	29.0 8.84	599 272	679 308	1215 551
BFC-5B	88	27.3 8.32	23.2 7.07	52.7 16.06	46.4 14.14	810 367	911 413	1581 717
	98	25.0 7.62	20.9 6.37	49.4 15.06	41.8 12.74	791 359	871 395	1541 699
	108	23.2 7.07	19.0 5.79	46.1 14.05	38.1 11.61	763 346	839 381	1510 685
BFC-6B	88	32.9 10.03	28.8 8.78	63.9 19.48	57.6 17.56	970 440	1090 494	1874 850
	98	30.0 9.14	25.4 7.74	59.3 18.07	50.9 15.51	920 417	1040 472	1824 827
	108	27.7 8.44	23.6 7.19	54.9 16.73	47.2 14.39	882 400	1000 454	1784 809
BFC-7B	88	38.5 11.73	34.3 10.45	75.0 22.86	68.7 20.94	1128 512	1268 575	2183 990
	98	35.1 10.70	30.9 9.42	68.7 20.94	61.9 18.87	1068 484	1208 548	2123 963
	108	32.3 9.85	28.1 8.56	64.2 19.57	56.3 17.16	1020 463	1160 526	2075 941
BFC-8B	88	44.0 13.41	40.0 12.19	86.2 26.27	80.0 24.38	1308 593	1468 666	2514 1140
	98	40.1 12.22	35.9 10.94	78.9 24.05	71.9 21.92	1238 562	1398 634	2454 1113
	108	36.8 11.22	32.7 9.97	73.2 22.31	65.4 19.93	1182 536	1342 609	2390 1084
BFC-10B	88	55.2 16.82	51.1 15.58	108.6 33.22	102.2 33.22	1625 737	1875 851	3165 1436
	98	50.1 15.27	46.0 14.02	98.6 30.05	92.0 28.04	1535 696	1735 787	3075 1395
	108	45.9 13.99	41.8 12.74	91.2 27.80	83.7 25.51	1483 673	1663 754	3003 1362
BFC-12B	88	66.4 20.24	62.3 18.99	131.0 39.93	124.7 38.10	1942 881	2182 990	3790 1719
	98	60.1 18.32	56.0 17.07	119.8 36.58	112.1 34.14	1832 831	2072 940	3680 1669
	108	55.0 16.76	51.0 15.54	109.6 33:53	101.9 31.09	1744 791	1984 900	3592 1629
BFC-14B	88	POLE MOUNT	73.5 22.40	POLE MOUNT	147.0 44.81	2258 1024	2538 1151	4414 2002
	98	NOT	66.1 20.15	NOT	132.2 40.23	2128 965	2408 1092	4284 1943
	108	RECOMMENDED	60.0 18.29	RECOMMENDED	120.1 36.58	2088 947	2304 1045	4244 1925
BFC-16B	88	POLE MOUNT	84.7 25.82	POLE MOUNT	169.4 51.51	2575 1168	2895 1313	5039 2286
	98	NOT	76.1 23.20	NOT	152.3 46.33	2425 1100	2745 1245	4889 2218
	108	RECOMMENDED	69.1 21.06	RECOMMENDED	138.3 42.06	2205 1000	2625 1191	4669 2118

Interpolate dimensions and windload for antennas of intermediate frequency.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFC SERIES

Electrical Data

11				Power Rating ³				
Antenna –		Power Gain ¹		Field Intensity ²	with I	Radomes	without	Radomes
Туре	Power	dB	Field	mV/m	kW	dBk	kW	dBk
BFC-1B	0.46	-3.37	0.678	93.2	10	10.0	4	6.02
BFC-2B	1.0	0	1.00	137.5	20	13.01	8	9.03
BFC-3B	1.5	1.76	1.23	169.1	30	14.77	12	10.79
BFC-4B	2.1	3.22	1.45	199.4	40	16.02	16	12.04
BFC-5B	2.7	4.31	1.64	225.5	40	16.02	20	13.01
BFC-6B	3.2	5.05	1.79	246.1	40	16.02	24	13.80
BFC-7B	3.8	5.80	1.95	268.1	40	16.02	28	14.47
BFC-8B	4.3	6.34	2.07	284.6	40	16.02	32	15.05
BFC-10B	5.5	7.40	2.35	323.1	40	16.02	40	16.02
BFC-12B	6.6	8.20	2.57	353.4	40	16.02	40	16.02
BFC-14B	7.8	8.92	2.79	383.6	40	16.02	40	16.02
BFC-16B	8.9	9.49	2.98	409.8	40	16.02	40	16.02

¹Power gain in each polarization.

Deadweight in Pounds (kg)1: Lo		With De-Icers	With Radomes
Single Section	109 (49)	197 (89)	130 (59)
Two Sections	173 (78)	322 (146)	215 (98)
Three Sections	237 (108)	424 (215)	300 (136)
Four Sections	301 (137)	599 (272)	385 (175)
Five Sections	365 (166)	751 (341)	470 (213)
Six Sections	429 (195)	876 (397)	555 (252)
Seven Sections	493 (224)	1028 (466)	640 (290)
Eight Sections	582 (264)	1178 (534)	750 (340)
Ten Sections	710 (322)	1455 (660)	920 (417)
Twelve Sections	838 (380)	1732 (786)	1090 (494)
Fourteen Sections	966 (438)	2009 (911)	1260 (572)
Sixteen Sections	1094 (496)	2286 (1037)	1430 (649)

Weight includes feed system to antenna input connection and 13-to-18-inch (330 to 457 mm) extension brackets for mounting.

² For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity in mV/m at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

^a Power Rating based on a 40°C ambient. Multiply values listed by 0.8 for 50°C ambient. BFC-5 and larger antennas with greater power ratings are available on special order.

 $^{^2\,\}mbox{De-lcer}$ power: 750 watts per bay, nominal. May be wired for 208 or 240 V service.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFG SERIES

Mechanical Data, BFG Series

			Dimensions1	(See Drawing)		Windload ¹ at	$50/30~\mathrm{lbs/ft^2}$ (24	4/146 kg/m ²)
Antenna Type	Freq. MHz	Hc Top Feet Meters	Hc Side Feet Meters	H Top Feet Meters	H Side Feet Meters	Less De-Icers Lbs. Kg.	With De-Icers Lbs. Kg.	With Radomes Lbs. Kg.
BFG-1A	88 98 108	5.0 1.52 5.0 1.52 5.0 1.52	0.8 0.24 0.8 0.24 0.8 0.24	8.0 2.44 8.0 2.44 8.0 2.44	1.7 0.52 1.7 0.52 1.7 0.52	178 81 178 81 178 81	198 90 198 90 198 90	
BFG-2A	88 98 108	10.6 3.23 10.0 3.05 9.5 2.90	6.4 1.95 5.8 1.77 5.4 1.65	19.2 5.85 19.0 5.79 18.0 5.49	12.8 3.90 11.7 3.57 10.8 3.29	337 153 327 148 319 145	377 171 367 167 359 163	
BFG-3A	88 98 108	16.2 4.93 15.0 4.57 14.1 4.30	11.9 3.63 10.9 3.32 9.9 3.02	30.4 9.27 28.9 8.81 27.5 8.38	23.9 7.28 21.8 6.64 19.9 6.07	495 225 475 215 459 208	555 252 535 243 519 235	
BFG-4A	88 98 108	21.7 6.61 20.0 6.10 18.6 5.67	17.6 5.36 15.9 4.85 14.5 4.42	41.5 12.65 38.4 11.70 36.8 11.22	35.2 10.73 31.8 9.69 29.0 8.84	653 296 623 283 599 272	723 328 703 319 679 308	N A S B L E M E S
BFG-5A	88 98 108	27.3 8.32 25.0 7.62 23.2 7.07	23.2 7.07 20.9 6.37 19.0 5.79	52.7 16.06 49.4 15.06 46.1 14.05	46.4 14.14 41.8 12.74 38.1 11.61	810 367 791 359 763 346	911 413 871 395 839 381	ZAO
BFG-6A	88 98 108	32.9 10.28 30.0 9.14 27.7 8.44	28.8 8.78 25.4 7.74 23.6 7.19	63.9 19.48 59.3 18.07 54.9 16.73	57.6 17.56 50.9 15.51 47.2 14.39	970 440 920 417 882 400	1090 494 1040 472 1000 454	Z > R ⊢ A R □ _ O
BFG-7A	88 98 108	38.5 11.73 35.1 10.70 32.3 9.85	34.3 10.45 30.9 9.42 28.1 8.56	75.0 22.86 68.7 20.94 64.2 19.57	68.7 20.94 61.9 18.87 56.3 17.16	1128 512 1068 484 1020 463	1268 575 1208 548 1160 526	4 4 I
BFG-8A	88 98 108	44.0 13.41 40.1 12.22 36.8 11.22	40.0 12.19 35.9 10.94 32.7 9.97	86.2 26.27 78.9 24.05 73.2 22.31	80.0 24.38 71.9 21.92 69.4 21.15	1308 593 1238 562 1182 536	1468 666 1398 634 1342 609	B + - ≥
BFG-10A	88 98 108	55.2 16.82 50.1 15.27 45.9 13.99	51.1 15.58 46.0 14.02 41.8 12.74	108.6 33.10 98.6 30.05 91.2 27.80	102.2 31.15 92.0 28.04 83.7 25.51	1625 737 1535 692 1483 673	1875 851 1735 787 1663 754	m _Z s
BFG-12A	88 98 108	66.4 20.24 60.1 18.32 55.0 16.76	62.3 18.99 56.0 17.07 51.0 15.54	131.0 39.92 119.8 36.52 109.6 33.41	124.7 38.01 112.1 34.17 101.9 31.06	1942 881 1832 831 1744 791	2182 990 2072 1234 1984 900	
BFG-14A	88 98 108	POLE MOUNT NOT RECOMMENDED	73.5 22.40 66.1 20.15 60.0 18.29	POLE MOUNT NOT RECOMMENDED	147.0 44.81 132.2 40.29 120.1 36.61	2258 1024 2128 965 2088 947	2538 1151 2408 1092 2304 1045	
BFG-16A	88 98 108	POLE MOUNT NOT RECOMMENDED	84.7 25.82 76.1 23.20 69.1 21.06	POLE MOUNT NOT RECOMMENDED	169.4 51.63 152.3 46.42 138.3 42.15	2575 1168 2425 1100 2205 1000	2895 1313 2745 1245 2625 1191	

¹ Interpolate dimensions and windload for antennas of intermediate frequency.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFG SERIES

Electrical Data

Type BFG-

Antenna	Power	Gain ¹	Power	${\sf Rating}^2$
Туре	Power	dB	kW	dBk
BFG-1	0.9	-0.45	6	7.78
BFG-2A	2.0	3.01	12	10.79
BFG-3A	3.0	4.77	18	12.55
BFG-4A	4.2	6.23	24	13.80
BFG-5A	5.4	7.32	30	14.77
BFG-6A	6.4	5.06	36	15.56
BFG-7A	7.6	8.80	40 ²	16.02
BFG-8A	8.6	9.34	40 ²	16.02
BFG-10A	11.0	10.41	40 ²	16.02
BFG-12A	13.2	11.20	40 ²	16.02
BFG-14A	15.6	11.93	40 ²	16.02
BFG-16A	17.8	12.50	40 ²	16.02

Horizontal and vertical gain combined. Horizontally polarized gain may be specified at any level between 50 and 75 percent of total gain listed. Vertical power gain is then equal to the combined gain less the horizontal gain. For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

Weight in Pounds (kg):1	Less De-Icers	With De-Icers ²
Single Section	111 (50)	200 (91)
Two Sections	127 (80)	328 (149)
Three Sections	243 (110)	483 (219)
Four Sections	309 (140)	611 (277)
Five Sections	375 (170)	766 (347)
Six Sections	441 (200)	894 (406)
Seven Sections	507 (230)	1049 (476)
Eight Sections	598 (271)	1202 (545)
Ten Sections	730 (331)	1485 (674)
Twelve Sections	862 (391)	1768 (802)
Fourteen Sections	994 (451)	2051 (930)
Sixteen Sections	1126 (511)	2334 (1059)

¹ Weight includes feed system to antenna input and 13- to 18-inch (330 to 457mm) extension brackets for mounting.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFI SERIES

ANTENNA INPUT (TYPE N CONNECTOR) T.FITTING M_C

Mechanical Data, BFI Series

		Dimensions (See Drawing)			Windlo 50/30 II (244/14	s/ft2	
Antenna	Freq.	Hc	Side	H	Side	Less De	e-Icers
Type	MHz	Feet	Meters	Feet	Meters	Lbs.	Kg.
BFI-1C	88	0.8	0.24	1.25	0.52	32	15
	98	0.8	0.24	1.25	0.52	32	15
	108	0.8	0.24	1.25	0.52	32	15
BFI-2C	88	6.4	1.95	12.8	3.90	69	31
	98	5.8	1.77	11.7	3.57	69	31
	108	5.4	1.65	10.8	3.29	69	31
BFI-1H	88	0.8	0.24	1.25	0.52	32	15
	98	0.8	0.24	1.25	0.52	32	15
	108	0.8	0.24	1.25	0.52	32	15
BFI-2H	88	6.4	1.95	12.8	3.90	69	31
	98	5.8	1.77	11.7	3.57	69	31
	108	5.4	1.65	10.8	3.29	69	31

Electrical Data

Antenna	ı	Power Gain		Field	Power Rating	
Туре	Power	dB	Field	Intensity ¹	kW	dBk
BFI-1C	0.46	-3.37	0.68	93.2	0.5	-3
BFI-2C	1.00	0	1.00	137.5	0.5	-3
BFI-1H	0.90	-0.45	0.95	130.0	0.5	-3
BFI-2H	1.90	3.01	1.41	194.0	0.5	-3

¹ For each polarization, the field gain is equal to the square root of the power gaia. The effective field intensity in mV/m at one mile (1.604 km) for 1kW input is equal to 137.5 times the field gain.

² Power Rating based on a 40°C ambient. Multiply values listed by 0.8 for 50°C ambient. BFG-7 and larger antennas with greater power ratings are available on special order.

 $^{^2\,\}mathrm{De\text{-}lcer}$ power: 750 watts per bay, nominal. May be wired for 208 or 240 V service.

CIRCULARLY POLARIZED RADIATOR SPECIFICATIONS, BFH SERIES

Mounting Dimensions and Feed Line Locations, BFH Series FM Antennas.

^{*}Can be made to dimension desired to bring input line in line with main vertical run.

Electrical Data

Antenna		Power Gain	1	Field	Power Rating	
Туре	Power	dB	Field	Intensity ²	kW	dBk
BFH-1	0.46	-3.37	0.678	93.2	2	3.01
BFH-2	1.0	0	1.00	137.5	4	6.02
BFH-3	1.5	1.76	1.23	168.4	6	7.78
BFH-4	2.1	3.22	1.45	199.2	8	9.03
BFH-5	2.7	4.31	1.64	225.2	8	9.03
BFH-6	3.2	5.05	1.79	246.0	8	9.03
BFH-7	3.8	5.80	1.95	268.0	8	9.03
BFH-8	4.3	6.34	2.07	285.2	8	9.03

¹Power gain in each polarization.

²For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity in mV/m at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

Weight in Pounds (Kg):	Less De-icers	With De-icers ²	With Radomes
Single Section	42 (19)	130 (59)	57 (26)
Two Sections	89 (40)	238 (108)	119 (54)
Three Sections	136 (62)	373 (160)	181 (82)
Four Sections	183 (83)	481 (218)	243 (110)
Five Sections	230 (104)	616 (279)	305 (138)
Six Sections	277 (126)	724 (328)	367 (167)
Seven Sections	324 (147)	859 (390)	429 (195)
Eight Sections	371 (168)	967 (439)	491 (223)
Seven Sections	324 (147)	859 (390)	429 (195)

 $^{^{\}rm I}$ Weight includes elements, feed system to antenna input and 13- to 18-inch (330- to 457mm) extension brackets for mounting.

Mechanical Data, BFH Series

			Dimensions ¹	Windload ¹ at 50/30 lbs/ft ² (244/146/kg ²)			
Antenna	Freq.	Hc Top	Hc Side	H Top	H Side	Less De-Icers	With De-Icers ²
Type	MHz	Feet Meters	Feet Meters	Feet Meters	Feet Meters	Lbs. Kg.	Lbs. Kg.
BFH-1	88	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	116 53	139 63
	98	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	116 53	139 63
	108	5.0 1.52	0.8 0.24	8.0 2.44	1.7 0.52	116 53	139 63
BFH-2	88	10.6 3.23	6.4 1.95	19.2 5.85	12.8 3.90	220 100	264 120
	98	10.0 3.05	5.8 1.77	19.0 5.79	11.7 3.57	213 97	257 117
	108	9.5 2.90	5.4 1.65	18.0 5.49	10.8 3.29	208 94	252 114
BFH-3	88	16.2 4.93	11.9 3.63	30.4 9.27	23.9 7.28	322 146	389 176
	98	15.0 4.57	10.9 3.32	28.9 8.81	21.8 6.64	309 140	375 170
	108	14.1 4.30	9.9 3.02	27.5 8.38	19.9 6.07	299 136	364 165
BFH-4	88	21.7 6.61	17.6 5.36	41.5 12.65	35.2 10.73	425 193	507 259
	98	20.0 6.10	15.9 4.85	38.4 11.70	31.8 9.69	405 184	493 224
	108	18.6 5.67	14.5 4.42	36.8 11.22	29.0 8.84	390 177	476 216
BFH-5	88	27.3 8.32	23.2 7.07	52.7 16.06	46.4 14.14	527 239	638 289
	98	25.0 7.62	20.9 6.37	49.4 15.06	41.8 12.74	515 234	610 277
	108	23.2 7.07	19.0 5.79	46.1 14.05	37.1 11.61	496 225	588 267
BFH-6	88	32.9 10.28	28.8 8.78	63.9 19.48	57.6 17.50	631 286	763 346
	98	30.0 9.14	25.4 7.74	59.3 18.07	51.9 15.51	599 272	728 330
	108	27.7 8.44	23.6 7.19	54.9 16.73	47.2 14.39	574 260	700 318
BFH-7	88	38.5 11.73	34.3 10.45	75.0 22.86	68.7 20.94	734 333	888 403
	98	35.1 10.70	30.9 9.42	68.7 20.94	61.9 18.87	695 315	846 384
	108	32.3 9.85	28.1 8.56	64.2 19.57	56.3 17.16	663 301	812 368
BFH-8	88	44.0 13.41	40.0 12.19	86.2 26.27	80.0 24.38	851 386	1028 466
	98	40.1 12.22	35.9 10.94	78.9 24.05	71.9 21.92	805 365	979 445
	108	36.8 11.22	32.7 9.97	73.2 22.31	65.4 21.15	769 349	940 426

 $^{^1\,\}rm Interpolate$ dimensions and windload for antennas of intermediate frequencies. $^2\,\rm De\text{-}lcer$ power: 750 watt per bay, nominal. May be wired for 208 or 240 V service.

CIRCULARLY POLARIZED PANEL RADIATORS SPECIFICATIONS, BFB SERIES

		ELECTRI	CAL SPECIF	ICATIONS							MECI	HANICAL S	PECIFICAT	ions			
			GAII	N				Арр	rox.	V	Vindload at	50/33 PSI	£2	T	We	eight ²	
Antenna		Horizontal			Vertical		Field	Array	Height ³		thout ome(s)		Vith ome(s)		thout ome(s)		Mith Iome(s)
Туре	Power	dB	Field	Power	dB	Field	Intensity ¹	FT	М	LBS	KG	LBS	KG	LBS	KG	LBS	KG
BFB-1	0.46	-3.37	0.678	0.46	3.37	0.678	93.2	8	2.44	1425	647	1730	785	800	363	850	386
BFB-2	1.0	0	1.0	1.0	0	1.0	137.5	18	5.49	2835	1287	3445	1564	1500	621	1600	727
BFB-3	1.5	1.76	1.23	1.5	1.76	1.23	169.1	28	8.53	4240	1925	5155	2340	2300	1044	2450	1114
BFB-4	2.1	3.22	1.45	2.1	3.22	1.45	199.4	38	11.6	5725	2599	6945	3153	3200	1453	3400	1545
BF8-5	2.7	4.31	1.64	2.7	4.31	1.64	225.5	48	14.6	7640	3469	9160	4159	4000	1816	4250	1932
BFB-6	3.3	5.19	1.82	3.3	5.19	1.82	250.2	58	17.7	8655	3929	10485	4760	4700	2134	5000	2273
BFB-7	3.9	5.91	1.97	3.9	5.91	1.97	270.9	68	20.7	10745	4878	12880	5848	5600	2542	5950	2705
BFB-8	4.4	6,43	2.10	4.4	6.43	2.10	288.8	78	23.8	11990	5443	14430	6551	6400	2906	6800	3091
BFB-10	5.5	7.40	2.35	5.5	7.40	2.35	323.1	98	29.9	15600	7082	18650	8467	8000	3632	8500	3864
BFB-12	6.6	8.20	2.57	6.6	8.20	2.57	353,4	118	35.9	18560	8426	22220	10088	9500	4313	10100	4591
BFB-14	7.7	8.86	2.77	7.7	8.86	2.77	380.9	138	42.1	23430	10637	27700	12576	12000	5448	12700	5773
BFB-16	8.8	9.44	2.97	8.8	9.44	2.97	408.4	158	48.2	27110	12308	31990	14523	14200	6446	15000	6818

For each polarization, the field gain is equal to the square root of the power gain. The effective field intensity in mV/m at one mile (1.604 km) for 1 kW input is equal to 137.5 times the field gain.

Weights and wind loads are estimated for three panels per layer on a triangular cross section tower. Other factors could increase or decrease estimate. Please verify weight and windloads data with your RCA Rep-

Accommodates Split-Feed System

The BFB- antenna is designed to operate with a single 3-1/8, 4-1/16 or 6-1/8-inch coaxial transmission line between array input and transmitter. However, the array may be arranged to operate from two transmission lines from the transmitter so that, in the event of failure of some array component, the inoperable section can be switched out of service and operation continued, with circular polarization, from the other "half" of the array at reduced ERP until the outage is corrected. See block diagram, next page.

Power Rating Considerations

Two factors determine the power rating of a BFB- antenna array: each panel in an array has a 5 kW (rms) power-input limitation and an "equivalent peak-power" (EPP) rating of 22 kW. EPP is expressed as: EPP = $(\sqrt{P_1} + \sqrt{P_2} + \sqrt{P_3} \dots)^2$ where P_1 , P_2 , P_3 ... is the power (in watts) of each station sharing the array. For situations where all sharing stations have equal power EPP is expressed as:

$$EPP = n^2P$$

where n is the number of stations sharing and P the power of each station.

To illustrate, assume a 12-layer array with three panels per layer or 36 panels with a power gain of 6.6 and a per-panel EPP of 22 kW Array:

$$EPP = (36) (22) = 792 \text{ kW}.$$

Thus, a 36-panel array is rated at 792 kW EPP. The equivalent peak power of seven 100-kW ERP stations, each with 15.2 kW (100/6.6) into the array is:

Array EPP =
$$7^2$$
 (15.2) = 745 kW.

Therefore, a 12-layer, 36-panel array can handle seven 100-kW ERP stations, each with 15.2 kW of transmitter power. The rms power per panel is:

$$P = 7(15.2)/36 = 2.96$$
 kW per panel.

Since the individual panel rating is 5 kW, 2.96 kW per panel is well within rating.

Specifications

Frequency Range88-108	MHz
Panel Bandwidth (Adjustable)6	MHz
Power Input Rating (per panel)5 kW rms: 22 kW	/ EPP

³ See illustration, next page.

HORIZONTAL RADIATION PATTERNS, BFB ANTENNA MOUNTED ON 10 FT. FACE OF TRIANGULAR TOWER

SPLIT FEED SYSTEM

TO ANTENNA DIPOLE HYBRID COUPLER A STATION I - TEE COMBINER STATION 2 -NOTCH DIPLEXER NOTCH DIPLEXER STATION 5 NOTCH DIPLEXER EMERGENCY PORT

Typical five-station shared-antenna scheme for FM-broadcast stations using a Type BFB- Panel Antenna.

VERTICAL RADIATION PATTERNS, BFC SERIES

Above drawing to be used with tabulation on next page.

VERTICAL RADIATION PATTERNS, BFC SERIES

Antenna Type*	No. of Sections	Pattern Number	Power Gain**		Beam Tilt A°	В°	c°	1st Null D%	2nd Nu E%
BFC-1B	1	61667-DRW	.46		(0	84	_	5.0	_
BFC-2B	2	61667-ERW	1.0		0	30	-	0	_
BFC-3B	3	3-0-0	1.5		0	19.5	41.5	0	0
BFC-4B	4	61667-FRW	2.1		0	14.5			
BFC-4B	4	4-0-10	2.1		0	14.5	30.0 30.0	0	0
BFC-4B	4	4-0-15	2.0		0	14.3		10.0	0
BFC-4B	4	4-1-10	2.0		i	15.7	30.0 30.0	15.0 10.0	0 2.0
BFC-5B	5	5-0-0	2.7		0	11.5	37.0	0	0
BFC-6B	6	6-0-0	3.2		0	9.6	19.5	0	0
BFC-6B	6	6-0-10	3.1		0	9.6	19.0	10.0	5.0
BFC-6B	6	6-0-12.5	3.14		0	9.8	19.0	12.0	6.0
BFC-6B	6	6-0-15	2.95		0	9.7	19.0	15.0	7.5
BFC-6B	6	6-05-11-5	3.1		0.5	10.3	19.0	11.0	4.5
BFC-6B	6	6-1-12-4	3.1		1.0	11.0	19.0	12.0	4.0
BFC-7B	7	7-0-0	3.8		0	8.2	16.5	0	0
BFC-8B	8	8-0-0	4.3	page.	0	7.2	14.5	0	0
BFC-8B	8	8-0-5	4.3	g	0	7.2	14.5	5.0	3.0
BFC-8B	8	8-0-10	4.1		0	7.3	14.5	10.0	7.5
BFC-8B	8	8-0-15.5-11	3.95	preceding	0	7.5	14.0	15.0	11.0
BFC-8B	8	8-0.5-00	4.28	-	0.5	8.0	14.5	0	0
BFC-8B	8	8-0.75-00	4.22	ě	0.75	8.2	14.5	ŏ	ŏ
BFC-8B	8	8-1.0-00	4.18	ě	1.0	8.6	14.5	Ō	ŏ
BFC-8B	8	8-0.5-10-6	4.1	ā	0.5	7.9	14.5	10.0	6.0
BFC-8B	8	8-0.75-10-5.5	4.1	_	0.75	8.3	14.5	10.0	5.5
BFC-8B	8	8-1.0-10	4.1	o	1.0	8.6	_	10.0	
BFC-8B	8	8-1.0-15	3.9	٤	1.0	9.0	14.0	15.0	6.5
BFC-10B	10	10-0-0	5.5	pattern	0	5.8	11.5	0	0
BFC-10B	10	10-0-10-8.5-5.5	5.19	g	l 0	6.0	11.5	10.0	8.5
BFC-10B	10	10-0.5-0	5.44		0.5	6.4	11.5	0	0
BFC-10B	10	10-0.75-0	5.36	Ö	0.75	6.8	11.5	0	Ö
BFC-10B	10	10-1.0-0	5.26	三语:	1.0	7.1	11.5	Ö	Ö
BFC-10B	10	10-0.5-10-7	5.21	radiation	0.5	6.6	11.5	10.0	7.0
BFC-12B	12	12-0-0	6.6		0	4.8	9.6	0	0
BFC-12B	12	12-0-10-4	6.37	vertical	0	4.9	9.5	10.5	5.0
BFC-12B	12	12-0.5-0	6.48	.ŏ	0.5	5.5	9.5	0	0
BFC-12B	12	12-0.75-0	6.36	Ė	0.75	5.8	9.6	0	Ó
BFC-12B	12	12-1-0	6.19	×	1.0	6.1	9.6	0	0
BFC-12B	12	12-0.3-6.5	6.50	υ.	0.3	5.1	9.7	6.5	Ö
BFC-12B	12	12-0.4-20-6	5.7	see	0.4	5.5	9.3	20.0	6.0
BFC-12B	12	12-0.5-11-6-4	6.3		0.5	5.4	10.0	11.0	6.5
BFC-12B	12	12-0.6-15-9	5.93	ü	0.6	5.8	10.0	15.0	9.0
BFC-12B	12	12-1-10	6.0	ΞĚ	1.0	6.2	9.6	10.0	0
BFC-12B	12	12-1-13-6.5-7	6.0	finition,	1.0	6.3	9.9	13.0	6.5
BFC-12B	12	12-1-17-9-9	5.78	def	1.0	6.5	10.0	16.5	8.5
8FC-12B	12	12-1.5-12	5.53		1.5	7.3	9.8	12.0	0
BFC-14B	14	14-0-0	7.8	For	0	4.1	8.2	0	0
BFC-14B	14	14-0-10-6	7.52		0	4.2	8.2	10.0	6.0
BFC-14B	14	14-0-15	7.1		0	4.2	8.0	15.5	9.0
BFC-14B	14	14-0.5-0	7.64		0.5	4.7	8.2	0	0
BFC-14B	14	14-0.75-0	7.45		0.75	5.0	8.2	0	0
BFC-148	14	14-1.0-0	7.19 7.2		1.0	5.5	8.2	0	0
BFC-14B BFC-14B	14	14-0.5-15	7.3 6.35		0.5	4.8	8.2	15.0	2.5
BFC-14B	14 14	14-0.5-20	6.35 7.1		0.5	5.2	7.9	20.0	7.5
BFC-14B	14	14-0.75-14 14-1-10-6	7.1		0.75 1.0	5.3 5.4	8.0 8.4	14.0 10.0	3.5 6.0
BFC-16B	16	16-0-0	8.9		o	3.6	7.2	0	0
BFC-16B	16	16-0-10-7-3	8.46		ŏ	3.6	7.1	10.5	7.0
BFC-16B	16	16-0-15-10-4	8.25		ŏ	3.7	7.0	15.0	10.0
BFC-16B	16	16-0.25-0	8.85		0.25	4.0	7.1	2.0	2.0
BFC-16B	16	16-0.5-0	8.69		0.5	4.2	7.0	0	0
BFC-16B	16	16-0.75-0	8.41		0.75	4.6	7.2	ŏ	ŏ
BFC-16B	16	16-1.0-0	8.09		1.0	4.8	7.2	ŏ	ő
BFC-16B	16	16-0.75-15-3	8.1		0.75	4.7	7.1	15.0	3.0

^{*}Patterns listed apply to BFB, BFC, BFG, BFH and BFI antennas.

^{**}Gain of main lobe.

VERTICAL RADIATION PATTERNS, BFC. SERIES

BFC-6 Pattern Number 6-0-0

BFC-6B Pattern Number 6-1-12-4

VERTICAL RADIATION PATTERNS, BFC SERIES

VERTICAL RADIATION PATTERNS, BFC SERIES

AM/FM ISOLATION UNIT

Type BAF-15A (10kW)

Mechanical Specifications

Mounting	Vertical
Maximum Gas Pressure for Pressurizing	30 PSIG
Weight (approx.)	55 lbs.
ConnectorsCoaxial	
Accessory Adapter required to connect to MI-19112	lineMI-19112-62
Electrical Specifications	
Frequency Range	88-108 MHz
Impedance	50 ohms

VSWR	10 kW
Maximum Tower Base Voltage AM	10 kV Peak
Internal Capacitance at AM	
Insertion Loss	
2nd Harmonic Rejection	70 dB
4th Harmonic Rejection	50 dB
6th Harmonic Rejection	30 dB
Arc Gap Setting at Factory	0.08 inches

Type BAF-16A (40 kW)

Mechanical Specifications

Mounting Maximum Gas Pressure for Pressurizing Weight (approx.)	12 PSIG 100 lbs.
ConnectorsCoaxia	I Line (3½ inch) EIA
Electrical Specifications	
Frequency Range	88-108 MHz
Frequency Range	88-108 MHz

Maximum Power FM	40 kW
Maximum Tower Base Voltage AM	
Internal Capacitance at AM	130 PF
Insertion Loss	
2nd Harmonic Rejection	80 dB
4th Harmonic Rejection	
6th Harmonic Rejection	40 dB
Arc Gap Setting at Factory	0.08 inches

DE-ICER CABLES AND POWER, BFC, BFG, BFH SERIES

COAXIAL LINE TYPES AND SPECIFICATIONS

Nominal Diameter	Recommended Service	Coupling Device	Pressure Tight	Power 1 MHz ¹	Rating 100 MHz	Effi- ciency	Weight per 100 Ft Lbs/kg	Type Number	Catalog Reference ²
RIGID 50-	OHM IMPEDANCE	-TEFLON INS	ULATED						
15%" 3½" 3½" 3½" 6½" 4-1/16" 4-1/16"	FM, VHF-TV AM, FM, TV AM, FM, VHF-TV FM, TV FM, VHF-TV FM, TV FM, VHF-TV	Unflanged Universal Unflanged Bolt Flange Unflanged Universal Unflanged	No Yes No Yes No Yes No	28.5 94 94 94	See Curves	See Curves	115/52 280/127 230/104 270/122 625/284	MI-561565 MI-27791D MI-27791K MI-19089 MI-561579 MI-561673E MI-561673K	RA.5011 RA.5011 RA.5011 TR.2301 RA.5011

15%" 15%" 31%" 31%" 31%"* 31%"* 61%"	AM, FM AM, FM, VHF-TV AM, FM AM, FM AM, FM, VHF-TV* AM, FM, VHF-TV AM, FM, VHF-TV AM, FM, VHF-TV	Bolt Flange Unflanged Bolt Flange Unflanged Bolt Flange* Unflanged* Bolt Flange Unflanged	Yes No Yes No Yes* No* Yes	25 25 94 94 92 92 288 288	See Curves	See Curves	125/57 120/54 250/113 265/120 255/115* 240/109* 730/331 695/316	MI-19112 MI-19113C MI-19113C MI-19313C* MI-19313C* MI-19314C MI-19314C	TR.2401 TR.2401 RA.5011 RA.5011 RA.5011 TR.2401 TR.2401
--	---	--	--	--	------------	------------	--	--	---

SEMI-R	RIGID 50-OHM IM	PEDANCE-POLYET	HYLENE	INSULATE	D				
1/2" 7/8" 15/8" 3" 5"	AM, FM AM, FM AM, FM AM, FM AM, FM	Continuous ³ Continuous ³ Continuous ³ Continuous ³ Continuous ³	Yes Yes Yes Yes Yes	10.0 44.0 145.0 320.0 830.0	See Curves	See Curves.	27/12 53/24 104/47 178/81 330/150	HJ4-50 HJ5-50 HJ7-50 HJ8-50 HJ9-50	RA.5011 RA.5011 RA.5011 RA.5011 RA.5011

1/4" 3/8"	AM, FM	Continuous ³	No	5.0	/es	es.	7/3	FHJ1-50	RA.5011
1/2"	AM, FM AM, FM	Continuous ³ Continuous ³	No No	8.0 19.0	Ä	n n	12/5 18/8	FHJ2-50 FHJ4-50	RA.5011 RA.5011
7/8"	AM, FM	Continuous ³	No	44.0	9	8	44/20	FHJ5-50	RA.501
.5/8"	AM, FM	Continuous ³	No	145.0	Š	Se	130/59	FHJ7-50	RA.501

RIGID COAXIAL LINE SPECIFICATIONS

RIGID COAXIAL LINE - ATTENUATION AT FM FREQUENCIES

Attenuation and Power Curves for Andrews 50-Ohm Air Dielectric Heliax at Unity VSWR

100.

Attenuation and Power Curves for Andrews 50-Ohm Foam Heliax at Unity VSWR

Attenuation and Power Curves for Cablewave Air Wellflex Cable

COAXIAL TRANSMISSION LINE

Attenuation and Power Curves for Cablewave Foam Wellflex Cable.

AUXILIARY BROADCAST SERVICES

FCC rules provide for the use of radio transmitting apparatus to supply a uxiliary services in connection with AM and FM broadcasting. These include:

Remote Pickup Mobile Stations, which may be used for relaying aural broadcast program material.

Remote Pickup Base Stations, used principally to provide communication with remote mobile stations, and for other uses under special circumstances. Equipment, frequency assignments, technical operation and channel availability are identical with those for the mobile stations. Base stations, however, are permanently installed at a fixed location and do not normally carry program material.

Studio-to-Transmitter Links, which are available to the licensees of AM and FM broadcast stations and are used to relay programs from the studio to the transmitter of the station. The licensee of both an AM and FM station may use the same STL for both stations. The STL may also be used to provide communication between studio and transmitter when no programs are being transmitted, or if multiplexing is employed, may be used for communication during program transmission.

Radio Order Circuits, which are authorized for use over remote pickup base stations for two-way communication between the studio and transmitter of a broadcast station which has a radio STL. Radio order circuits are licensed for unlimited time operation, but their use is secondary to other needs for the same frequencies.

FM Inter-City Relay Stations, which are authorized only when suitable common carrier facilities are not available. Radio or wire lines may be used. Frequencies are the same as those used for broadcast STL's. Directional antennas are required, and they may be operated by remote control.

The brief explanations of FCC rules contained in this data book are intended to assist the reader in planning remote pickup and STL equipment, and should not be considered authoritative for every purpose. Feference should be made to the full text of Part 4 of the FCC rules to assure accuracy when necessary. Outside U.S.A., local rules should prevail.

STL FREQUENCIES

(Emission: 430-F-3; Frequency in MHz)

942.5*	944.5*		948.5
943.0*	945.0*	947.0	949.0
943.5*	945.5*	947.5	949.5
944.0*	946.0*	948.0	950.0
	946.5*		950.5
			951.0
			951.5

^{*}Frequencies assigned to Land Mobile requiring waiver application to FCC for use by STL in areas where all STL frequencies are assigned.

RADIO ORDER CIRCUIT FREQUENCIES

Group	Frequency	Type Emission
ļ	26.07	20-A-3
	26.09	or 20-F-3
	26.11	
	26.45	
	24.2	
J	26.13	20-A-3
<i>*</i>	26.47	or 20-F-3

AUXILIARY BROADCAST SERVICES

REMOTE PICKUP ALLOCATIONS AND AUTHORIZATIONS

The following groups of frequencies are allocated for assignment to remote pickup broadcast stations. A licensee may have one or more frequencies assigned for operation in the same area, but is limited within each "division" to assignments from a single "group".

Division	Group	Frequencies	Type Emission	Shared	l Remarks
1	Α	1606 kHz ¹	10-A-3	No	
		1622 kHz		No	
		1646 kHz		No	
2	D	25.87 MHz ²	20-A-3/20-F-3	No	
		26.15 MHz		No	
		26.25 MHz		No	
		26.35 MHz		No	
2	E	25.91 MHz ²	20-A-3/20-F-3	No	
		26.17 MHz		No	
		26.27 MHz		No	
		26.37 MHz		No	
2	F	25.95 MHz ²	20-A-3/20-F-3	No	
_	•	26.19 MHz	20 A 0/ 20-1-0	No	
		26.29 MHz		No	
		26.39 MHz		No	
2	G	25.99 MHz ²	20-A-3/20-F-3	No	
	•	26.21 MHz	20-7-37 20-1-3	No	
		26.31 MHz		No	
		26.41 MHz		No	
2	н	26.03 MHz ²	20-A-3/20-F-3	No	
-	**	26.23 MHz	20-A-3/20-1-3	No	
		26.33 MHz		No	
		26.43 MHz		No	
3	1	26.07 MHz ²	20-A-3/20-F-3	No	When used for
		26.11 MHz	20-A-3/20-1-3	No	radio order cir-
		26.45 MHz		No	cuits such use is
		20.40 /////2			secondary to all
3	J	26.09 MHz ²	20-A-3/20-F-3	No	other permis-
		26.13 MHz		No	sible uses.
		26.47 MHz		No	
4	K	152.87 MHz ³	30-A-3/60-F-3	Yes	
		152.93 MHz		Yes	
		152.99 MHz		Yes	
		153.05 MHz		Yes	Shared with Indus-
		153.11 MHz		Yes	trial Radio Services
		153.17 MHz		Yes	which have first
		153.23 MHz		Yes	priority on the
		153.29 MHz		Yes	frequencies.
		153.35 MHz		Yes	
		161.64 MHz⁵		Yes	
		161.67 MHz		Yes	
		161.70 MHz		Yes	
		161.73 MHz		Yes	
(= II		161.76 MHz		Yes	
(Following	requencie	s used in Puerto Rico	& Virgin Islands only)		
		160.89 MHz		Yes	
		160.95 MHz		Yes	
		161.01 MHz		Yes	
		161.07 MHz 161.13 MHz		Yes	
		TOTALS MITZ		Yes	
		161 10 MH-		V ~ -	
		161.19 MHz 161.25 MHz		Yes	
		161.19 MHz 161.25 MHz 161.31 MHz		Yes Yes Yes	

AUXILIARY BROADCAST SERVICES

REMOTE PICKUP ALLOCATIONS AND AUTHORIZATIONS

Division	Group	Frequencies	Type Emission	Shared	Remarks
5	L	166.25 MHz ⁴	30-A-3/60-F-3	No	
5	M	170.15 MHz	30-A-3/60-F-3	No	
6	N	450.05 MHz	30-A-3/100-F-3	No	
		450.15 MHz		No	
		450.25 MHz		No	
		450.35 MHz		No	
		450.45 MHz		No	
		450.55 MHz		No	
		450.65 MHz		No	
		450.75 MHz		No	
		450.85 MHz		No	
		450.95 MHz		No	
6	Ν	455.05 MHz	30-A-3/100-F-3	No	
		455.15 MHz		No	
		455.25 MHz		No	
		545.35 MHz		No	
		455.45 MHz		No	
		455.55 MHz		No	
		455.65 MHz		No	
		455.75 MHz		No	
		455.85 MHz		No	
		455.95 MHz		No	

¹ Subject to the condition that no harmful interference is caused to the reception of standard broadcast stations.

USES AUTHORIZED FOR BROADCAST REMOTE PICKUP

Broadcasters may use remote pickup stations at their discretion and the choice does not depend on whether or not wire lines are available.

Remote pickup broadcast stations may be used for:

- (A) Transmission of AM, FM, or the aural portion of TV program material originating outside a regular studio.
 (Normally only Mobile stations are used)
- (B) Orders and related communications directly concerning such transmissions

(Both Base and Mobile stations may be so used)

- They may not be used to provide mobile telephone systems to station personnel.
- (C) Emergency program or order circuits from studios in the event of failure of regular wire circuits.

(Both Base and Mobile stations may be so used) They may not be so used on a regular basis.

- (D) Coordination of the activities of portable or mobile stations.
- (E) Two-way communication between the studio and transmitter of a broadcast station which has a radio STL.
 (Base stations only)
- (F) Mobile communications in connection with adjustment and maintenance of antenna system, or in connection with field intensity surveys. (Both Base and Mobile stations may be so used) Authorized only under STA.
- (G) In Alaska, Hawaii, Puerto Rico and Virgin Islands for Intercity Relay and STL.

(Both Base and Mobile stations may be so used)

(H) Low power broadcast auxiliary stations such as: cue and control signal transmitters and wireless microphones.

² Subject to the condition that no harmful interference is caused to the reception of broadcasting stations

³ Subject to the condition that no harmful interference is caused to stations operating in accordance with the Table of Frequency Allocations.

Operation on the frequencies 166.25 MHz and 170.15 MHz is not authorized (I) within the area bounded on the west by the Mississippi River, on the north by the parallel of latitude 37°30′ N., and on the east and south by that arc of the circle with center at Springfield, III., and radius equal to the airline distance between Springfield, III., and Montgomery, Aiabama, subtended between the foregoing west and north boundaries: (II) within 150 miles of New York City; and (III) in Alaska or outside the continental United States; and is subject to the condition that no harmful interference is caused to government radio stations in the band 162–174 MHz. These frequencies may not be used by remote pickup stations in Puerto Rico or the Virgin Islands. In other areas, certain existing stations in the Public Safety and Land Transportation Radio Services have been permitted to continue operation on these frequencies on condition that no harmful interference is caused to remote pickup broadcast stations.

SAMPLE REMOTE PICKUP OR STL APPLICATION (FCC FORM 313)

This sample contains information for both the Model PCL-303 Monaural STL and Model PCL-303/C Composite Stereo STL. Bracketed [] information applies only to the Model PCL-303/C Composite Stereo STL

FCC Form 313 January 1971	Form Approved Budget Bureau No. 52-R0100	(FOR CO	DMMISSION USE O	NLY)		
	ations Commission	File No.				
	N, D. C. 20554	Name of applicant (see Instruction E)				
	JTHORIZATION IN THE BROADCAST SERVICES		,			
	O NOT USE THIS BOX					
AFFERNAL SHOOT.	NOT USE THIS BOX					
		Post Office address (Numbe	er, Street, City, Stat	e and ZIP Code)		
c.		1 Durance of this population	er - Zr-drigge balanA	7 1467		
INSTRUC A. This form is to be used by lices	TIONS usees or permittees of existing Stand	1. Purpose of this applicat				
ard (AM), FM, and Television Broa		(a) Type of station requeste	ed (see Instruction A	A):		
Remote Pick-up, STL, and other st						
Radio Broadcast Services (See Par B. A separate FCC Form 313 must	t 74 of the Rules). be filed for each station authoriza-	(b) Call Sign of existing Pe	ermit or of License t	being renewed:		
tion being requested. Complete all						
	mit or license; complete paragraphs	(c) Kind of authorization re	equested:			
1, 3, 4, and 7 if for a license. (This license ONLY when there have been	is form is to be used for RENEWAL of changes in the information shown on	New Station (for mobile Modification of				
the station license being renewed;	_	and fixed stations)		ting Authorization		
	form is filed for renewal, complete all	License (for fixed s	stations Rene	ewal and Modification		
paragraphs necessary to indicate of	hanges. ree for Television), with the Federal	only)		Instruction B)		
Communications Commission, Wash	• •					
D. Number exhibits serially in the	spaces provided in the body of the					
form and date each exhibit. E. The name of the applicant must	to stated exactly as it appears in	(d) Modification of existing authorization:				
	station with which the auxiliary sta-	Call				
tion is to be used.	·	Change frequency				
	nally signed by the applicant, if the	Replace equipment				
	of the partners, if the applicant is a plicant is a corporation; by a member	Change power				
	s an unincorporated association; by	Change transmitter location				
	cials as may be competent to do so	Install different antenna system				
gible government entity; or by the a	risdiction, if the applicant is an eli- applicant's attorney in case of the	Other modification (expl				
	f his absence from the United States.	THE RESERVE OF				
	signs for the applicant, separately	(e) Broadcast station(s) with Call Sign(s)	th which auxiliary a	tation is to be used:		
	ation is not signed by the applicant. on the basis of the attorney's belief		- At 000 automit ac	D-Likis No.		
only (rather than his knowledge), he	e shall separately set forth his rea-	2. If cost involved exceeds \$1,000, submit as Exhibit No. a statement itemizing cost and a balance sheet of the applicant				
G. Items 4(a) and 4(b) apply to sta	ents are true, tions at fixed locations only and Item	as at the close of a mon	nth within 90 days of	f the date of the		
4(c) applies to mobile stations only		application.				
must be answered on all application cations thereof. Item 4(b) means the	ns for new fixed stations and modifi-					
	Remote Pickup stations, the point of					
communication is normally the base	station location for mobile units					
and the mobile units for base statio	as.)					
3. Facilities requested						
FREQUENCIES	POWER 1	TYPE OF EMISSION		JNICATION BAND - IDTH (kHz)3		
				IDIH (KIIZ)-		
¹ For amplitude modulation te	levision (A5), give maximum antenna i	nout nower during synchroniz	zing pulses. If parti	culars are not fully		
	d visual carrier frequencies for televis					
2**	· · · · · · · · · · · · · · · · · · ·					
	in Part 2 of Commission's Rules. the actual bandwidth of the emission	-to a suite the frequency told	/S-2 20000	' '		
permissible bandwidth.)	the actual bandwinth of the emission	plus twice the frequency tore	erance, (see approp	riate service rules for		
4. Location of proposed transmitt	er					
(a) For stations with fixed locatio		(b) Receiving point (See Inst	truction G)			
City County	State		ounty	State		
			,			
Street and number (or other descrip	tion of location)	Street and number (or other description of location)				
		(a) For restable or Tabil				
NORTH LATITUDE	WEST LONGITUDE	(c) For portable or mobile operation				
0 "	0 " "	Area in which station is to be used;				

BROADCAST APPLICATION (Form 313)							
5. Antenna syste			6. If this application is for a television remote pick-up or television				
		cturer and type number, if any)	STATE STATES A STATE OF THE STATES AND A STA				
			7. Transmitting apparatus propo	osed to b	e instelle	d	
Is a directional antenna system to be used? YES NO If "Yes," specify antenna gain in the main lobe of radiation, preferably in terms of free-space field in millivolts per meter for 1 kilowatt at 1 mile.			Manufacturer	Type N		Maximum rated power output	
			Oscillator:				
Direction of radiation of the main lobe of the transmitting antenna in degrees, measured in a clockwise direction with true north as zero azimuth. (If more than one antenna is used, give direction for each.)			Tubes;			y	
			Make	Tues	_	N	
(b) Supply the f	ollowing for fixed	installations only:	Mare	Type		Number	
Over-all height a	bove ground	Over-all height above mean sea	Last radio stage:				
level in feet		level in feet	Tubes				
			Make	The state of the s			
	w existent and tha	ing structure (differentiate between at to be erected.) Attach as Exhibit rtical plan, showing heights of	Normal total plate current	Plate voltage		Method of modula-	
significant :			in last radio stage			tion	
			8. Frequency and modulation	uency and modulation			
			For what percentage of modulation or swing is the transmitter designed?				
			What is the guaranteed frequency tolerance in percent?				
			Describe means incorporated in the transmitter for maintaining the frequency tolerance stated above.				
system of	ng structure to be another class of s ver is "Yes," giv						
Class of sta	tion(s)	Call letters	What external means will be employed by the applicant to insure that the assigned frequency is maintained with the tolerance specified by the Commission's Rules?				
THE APPLICANT hereby waives any claim to the use of any particular frequency or of the ether as against the regulatory power of the United States because of the previous use of the same, whether by license or otherwise, and requests an authorization in accordance with this application. (See Section 304 of the Communications Act of 1934.) THE APPLICANT represents that this application is not filed for the purpose of impeding, obstructing, or delaying determination on any other application with which it may be in conflict. THE APPLICANT acknowledges that all the statements made in this application and attached exhibits are considered material representations, and that all the exhibits are a material part hereof and are incorporated herein as if set out in full in the application. CERTIFICATION I certify that the statements in this application are true, complete, and correct to the best of my knowledge and belief, and							
are made in good faith.							
Signed and dated this day of, 19							
APPLICATION. SEE PART 1 OF FCC RULES FOR AMOUNT OF FEE. (NAME OF APPLICANT)							
WILLFUL FALSE STATEMENTS MADE ON THIS FORM ARE PUNISHABLE BY FINE AND IMPRISONMENT. U.S. CODE,			(SIGNATURE)				
TITLE 18 SEC	110N 1001.	Title					
Exhibits furnish	ed as required by	this form					
Exhibit No.	Para. No. of Form	Name of officer or employee (1) by direction exhibit was prepared		Officia	l title		
	-						

AUXILIARY BROADCAST SERVICES

CHART A PCL-303 STL EQUIPMENT APPLICATION DATA Information for Section 3 (Facilities Requested) of FCC Form 313

	SYSTEM CONFIGURATION Covered by Application	Frequency with Respect to channel center	Emission	Bandwidth
-	SINGLE STL — Monaural Use	On Center	110F3	120 kHz
2	SINGLE STL — Monaural Use with Type II Control	On Center	110F9	120 kHz
က	SINGLE STL — Monaural with 67 kHz SCA (same if Type III control is included)	On Center	230F9	240 kHz
4	DUAL STL — FM Stereo L or R channel L or R channel	+125 kHz -125 kHz	110F3 110F3	120 kHz 120 kHz
5	DUAL STL — FM Stereo & SCA L or R channel L or R channel & 67 kHz SCA	+125 kHz -125 kHz	110F3 230F9	120 kHz 240 kHz
9	DUAL STL — FM Stereo & SCA with Type III Remote Control System L or R channel & control L or R channel & 67 kHz SCA	+125 kHz -125 kHz	110F9 230F9	120 kHz 240 kHz
7	DUAL STL — FM Stereo with Type II Remote Control System L or R channel & control L or R channel	+125 kHz -125 kHz	110F9 110F3	120 kHz 120 kHz
8	COMPOSITE STEREO STL – FM Stereo	On Center	246F9	255 kHz
6	COMPOSITE STEREO STL – FM Stereo & (67 kHz)	On Center	290F9	300 kHz
2	COMPOSITE STEREO STL with Type 11/C Radio Remote Control System	On Center	360F9	370 kHz
Ξ	COMPOSITE STEREO STL with Type 11/C Radio Remote Control System and program subcarrier channel	On Center	490F9	500 kHz
200				

*In the near future, PCL-303 will be replaced by PCL-505. At the time this book was published, complete information on PCL-505 was not available. Contact RCA for current information.

AUXILIARY BROADCAST SERVICES

REMOTE PICKUP AND STL EQUIPMENT APPLICATION DATA

Equipment Type No.	RPL-3T	PCL-303*		
Form 313 Reference:				
Purpose of this application: Type of Station STL Remote Pickup (Mobile) Remote Pickup (Base)	Remote Pickup (Mobile)	(See Chart A)		
 Facilities Requested Frequencies (MHz) Power (W) Type Emission Bandwidth (kHz)⁷ 	(150) ⁴ 10 F3 30	(950) ⁴ 5 (See Chart) (See Chart)		
 Antenna System Manufacturer (See Notes 5, 6) 		Andrew, Scala ⁵ Mark Products ⁶		
7. Transmitting Equipment Manufacturer Equipment Type No. Rated Power Out (W) Oscillator Circuit Oscillator Frequency Tubes: Make Type Number Last Radio Stage: Tubes: Make Type Number Plate mA Plate Volts Modulation Method	Moseley RPL-3 15 VCXO F°/36 various 2N7159 1 various B12-12 1 1.4A 13.5VDC FM	Moseley PCL-303 8 VCO F%12 various 2N4259 1 various 2N5016		
8. Frequency & Modulation: Percent Modulation or Swing Guaranteed Frequency Tolerance Frequency Control Method	±5 kHz ±.0005% See Sample 313	±40 kHz ±.001% T-C crystal		

Recommended Service: 1, Broadcast 2. Communications 3. Rack Mounted Version for Remote Pickup (Bose)

^{4.} Customer assigned frequency 5. Type PR450, directional, gain over reference dipole:17.5

^{6.} Type P948G, directional, gain over reference dipole:18.9 7. Refer to FCC Rule Section 74.436

^{*}In the near future, PCL-303 will be replaced by PCL-505. At the time this book was published, complete information on PCL-505 was not available. Contact RCA for current information.

FM BROADCAST STATION CLASSES & FREQUENCIES

Channel No.	Frequency	For Class	Channel No.	Frequency	For Clas
201	88.1 MHz	†	251*	98.1 MHz	B-C
202	88.3 MHz	†	252*	98.3 MHz	Α
203	88.5 MHz	†	253*	98.5 MHz	B-C
204	88.7 MHz	†	254*	98.7 MHz	B-C
205	88.9 MHz	,	255*	98.9 MHz	B-C
206	89.1 MHz	÷	256*	99.1 MHz	B-C
207	89.3 MHz	+	257*	99.3 MHz	A
208	89.5 MHz	'	258*	99.5 MHz	B-C
209	89.7 MHz	+	259*	99.7 MHz	B-C
210	89.9 MHz	'	260*	99.9 MHz	B-C
211	90.1 MHz	'	261*	100.1 MHz	A
212	90.3 MHz	†	262*	100.3 MHz	B-C
213	90.5 MHz	†	263*	100.5 MHz	B-C
214	90.7 MHz	†	264*	100.7 MHz	B-C
215	90.9 MHz	†	265*	100.9 MHz	<u>Б-С</u> А
216	91.1 MHz	†	266*	101.1 MHz	
217	91.3 MHz	†	267*	101.1 MHz	B-C
218	91.5 MHz	†	268*		B-C
219	91.7 MHz	†	269*	101.5 MHz	B-C
220	91.9 MHz	†		101.7 MHz	A
221	92.1 MHz	† A	270*	101.9 MHz	B-C
222	92.1 MHz		271*	102.1 MHz	B-C
223	92.5 MHz	B-C	272*	102.3 MHz	A
224	92.5 MHz 92.7 MHz	B-C	273*	102.5 MHz	B-C
225	92.7 MHz 92.9 MHz	A	274*	102.7 MHz	B-C
226	93.1 MHz	B-C	275*	102.9 MHz	B-C
227		B-C	276*	103.1 MHz	Α -
227	93.3 MHz	B-C	277*	103.3 MHz	B-C
	93.5 MHz	A	278*	103.5 MHz	B-C
229	93.7 MHz	B-C	279*	103.7 MHz	B-C
230	93.9 MHz	B-C	280*	103.9 MHz	Α
231	94.1 MHz	B-C	281*	104.1 MHz	B-C
232	94.3 MHz	A	282*	104.3 MHz	B-C
233	94.5 MHz	B-C	283*	104.5 MHz	B-C
234	94.7 MHz	B-C	284*	104.7 MHz	B-C
235	94.9 MHz	B-C	285*	104.9 MHz	Α
236	95.1 MHz	B-C	286*	105.1 MHz	B-C
237	95.3 MHz	A	287*	105.3 MHz	B-C
238	95.5 MHz	B-C	288*	105.5 MHz	Α
239	95.7 MHz	B-C	289*	105.7 MHz	B-C
240	95.9 MHz	A	290*	105.9 MHz	B-C
241	96.1 MHz	B-C	291*	106.1 MHz	B-C
242	96.3 MHz	B-C	292*	106.3 MHz	Α
243	96.5 MHz	B-C	293*	106.5 MHz	B-C
244	96.7 MHz	A	294*	106.7 MHz	B-C
245	96.9 MHz	B-C	295*	106.9 MHz	B-C
246	97.1 MHz	B-C	296*	107.1 MHz	Α
247	97.3 MHz	B-C	297*	107.3 MHz	B-C
248	97.5 MHz	B-C	298*	107.5 MHz	B-C
249'	97.7 MHz	Α	299*	107.7 MHz	B-C
250	97.9 MHz	B-C	300*	107.9 MHz	B-C

[†]For classes of noncommercial educational stations and their definition, refer to FCC Rules and Regulations, Paragraph 73.504.

^{*}In Hawaii, the band 98-108 MHz is allocated for non-broadcast use, and the frequencies 98.1-107.9 MHz will not be assigned in Hawaii for use by FM broadcast stations.

0.36 0.43 0.65 1.46 15° 0.29 0.50 0.58 0.72 0.87 1.00 1.16 1.30 3.60 0.21 DISTANCE IN MILES TO RECEIVING LOCATION AND DEPRESSION ANGLES FOR VARIOUS FM ANTENNA HEIGHTS 140 0.23 0.39 0.46 0.53 69.0 3.84 1.56 0.92 1.06 1.23 1.38 0.31 0.61 0.77 13° 0.17 0.25 0.75 1.15 4.15 0.33 0.42 0.50 0.57 0.67 0.83 9. 1.32 1.48 1.70 12° 0.45 4.50 0.18 0.27 0.36 0.54 0.62 0.72 0.90 1.08 1.24 1.4 1.62 1.83 0.81 DEPRESSION A ANGLE 0.30 1.75 4.90 0.50 1.36 1.55 0.20 0.40 0.59 0.68 0.78 0.88 0.98 1.18 2.00 DISTANCE IN MILES 0.33 0.46 0.55 0.65 0.74 0.86 1.45 1.72 1.94 2.13 5.40 00 0.22 1.08 0.97 1.29 d 2.15 0.24 0.49 0.83 9.00 0 0.37 0.61 0.73 1.09 1.18 1.44 1.63 2.38 0.97 1.91 œ 0.27 0.41 0.54 0.68 0.81 0.94 1.05 1.19 1.32 1.59 1.85 2.13 2.39 2.68 6.73 Δ H FT 10 0.31 0.46 2.40 3.04 0.62 0.78 0.92 2.11 2.69 7.75 1.06 1.22 1.36 1.52 1.8 9 3.19 0.36 0.55 3.60 0.73 0.92 1.45 2.15 2.48 9.01 1.09 1.25 1.62 1.79 2.84 gives approximate distances to intercept at various depression angles. The relationship D=:0109 H 0.43 0.64 10.90 0.86 1.09 1.75 2.15 3.00 3.40 3.90 4.30 °s 1.31 35 1.96 2.61 Depression Angle 12.10 0.48 0.71 2.85 3.35 3.80 4.80 0.94 1.42 1.68 1.90 2.13 2.39 4.30 1.21 13.75 0.54 0.80 3.19 5.45 2.45 4.35 ° 1.06 1.36 1.63 1.90 2.70 4.90 2.17 3.77 15.85 0.61 6.25 1.55 1.86 2.16 3.10 5.02 5.65 0.92 1.24 2.50 3.77 4.33 2.80 0.71 18.75 4.39 2.15 5.13 1.82 3.28 3.65 9.60 7.30 ° 1.07 1.42 2.54 2.89 5.85 2.5° 22.80 5.32 98.0 1.30 1.75 2.16 4.39 6.12 7.10 8.89 2.64 3.08 3.52 3.98 89.8 .0216H ۵ 1.64 7.66 9.10 10.25 11.25 1.07 2.18 2.72 5.05 20 3.87 4.49 3.61 5.51 6.75 29.5 A_n-Depression angle to horizon == **\2H** .5. 1.45 2.18 2.90 3.65 H-Height in feet to Electrical 8. 5.2 5.9 6.7 7.4 10.4 12.0 13.6 15.4 42.9 9.0 11 3.35 $D_{\rm b}$ —Distance to horizon (4/3 earth radius) 2.21 4.49 5.60 6.81 7.98 -9.2 10.5 1.6 22.3 7. 25.4 16.7 19.4 center of antenna 1 0.5 29.5 4.6 7.2 6.6 12.6 16.0 24.2 36.2 19.9 1 1 .216 343 375 1.080 .405 650 Y .268 .435 .452 530 620 .683 304 577 487 100.0 24.5 28.3 31.6 34.6 37.4 0.0 45.0 0.09 63.2 20.0 49.0 53.0 56.6 42.4 9 theight Itest 1400 1800 2000 5000 200 300 9 28 909 90 1200 1600 700 900 8

FM RANGE CHART

The ground wave signal range chart, shown on the opposite page, is intended to be used for determining approximate coverage of FM broadcast stations operating in the 88-108 MHz band. The effect of transmitting antenna height and radiated power on field strength is indicated, and field strength vs. distance from the transmitting antenna is also shown.

To find the approximate radius of an area within a given field strength contour, proceed as follows:

- 1. Determine field strength in $\mu V/m$ required and find this figure along extreme right-hand vertical column.
- 2. Follow the diagonal line corresponding to required field strength until it intersects with the vertical line representing radiated power.
- 3. From this point, lay a ruler or straight edge across the chart and along the vertical line corresponding to antenna height, read distance in miles to the μ V/m contour selected.

The chart may also be used to find the value of radiated power required to cover a given area.

For example:

Find radiated power required to produce 1000 μ V/m signal at a distance of 30 miles with an antenna 500 feet high.

- 1. From the 500 foot mark on the "antenna height" scale, follow the vertical line upwards and locate the 30 mile point.
- 2. Lay a ruler or straight-edge across the chart from this point, taking care that the ruler is parallel with the bottom edge of the chart.
- 3. Mark the point where the ruler intersects with the diagonal line representing $1000 \, \mu \text{V/m}$ and then from this point, place the ruler vertically on the chart and read approximately 18 kW radiated power on the scale at the upper right of the chart.

FM ESTIMATED FIELD STRENGTH CHART

(Receiving Antenna Height: 30 feet)

	550 kHz TO 1070	kHz			1080	1080 kHz TO 1600 kHz) kHz	
METERS	1 WAVE	√2 WAVE	1/4 WAVE	kH _z	METERS	1 WAVE	1/2 WAVE	1/4 WAVE
545 536	1787.6 1758.0	893.8 879.0	446.8	1080	277.8	911.1	455.5	227.7
526	1725.3	862.6	431.3	1100	272.7	894.4	2.1.54	223.0
509	1669.5	847.8	423.9	1110	270.3	886.5	443.2	221.6
500	1640.0	820.0	410.0	1120	267.9	879.0	439.5	219.7
492	1612.7	806.3	403.1	1140	263.3	870.8	435.4	217.7
484	1587.5	7.99.7	396.8	1150	260.9	855.7	427.8	213.0
476	1561.2	780.6	390.3	1160	258.6	847.8	423.9	211.9
467	15153	757.4	386.5	1170	256.4	840.9	420.4	210.2
455	1492.4	746.2	373.1	1180	254.2	834.7	417.3	208.6
448	1469.4	734.7	367.3	1200	250.0	0.020.0	413.4	206.7
441	1446.4	723.2	361.1	1210	247.9	820.0	410.0	205.0
435	1426.8	713.4	356.2	1220	245.9	806.3	403.1	203.2
429	1407.1	703.5	351.2	1230	243.9	799.1	399.5	1997
423	1387.4	693.7	346.8	1240	241.9	793.7	396.8	198.4
417	1348.0	683.8	341.9	1250	240.0	787.2	393.6	196.8
405	1328.4	664.0	337.0	1250	238.1	780.9	390.4	195.2
400	1312.0	656.0	328.0	1280	236.2	7.4.7	387.3	193.6
395	1295.6	647.8	323.4	1290	232.6	762.9	381.4	190.7
385	12/9.2	639.6	319.8	1300	230.8	757.0	378.5	189.2
380	1246.4	623.2	311.6	1310	229.0	751.1	375.5	187.7
375	1230.0	615.0	307.5	1320	227.3	746.2	373.1	186.5
370	1213.6	606.8	303.4	1340	223.9	734.7	367.9	184.9
366	1200.4	600.2	300.1	1350	222.2	728.8	364.4	182.2
361	1184.0	592.0	296.0	1360	220.6	723.2	361.1	180.5
353	1157.8	578.0	292.7	1370	219.0	718.3	359.1	179.5
349	1144.7	572.3	286.1	1390	217.4	707.0	356.2	178.1
345	1131.6	565.8	282.9	1400	0.614	707.6	1333.1	1/0.5
341	1118.4	559.2	279.6	1410	212.8	606.0	331.2	174.2
33/	1105.3	552.6	276.3	1420	211.3	693.7	346.8	173.4
333	1092.2	546.1	273.0	1430	209.8	688.1	344.0	172.0
326	1069.2	534.6	2/0.6	1440	208.3	683.8	341.9	170.9
323	1059.4	529.7	264.8	1450	206.9	6/8.6	339.3	169.6
319	1046.3	523.1	261.5	1470	204.1	669.4	334.7	168.5
316	1036.4	518.2	259.1	1480	202.7	664.2	332.1	166.5
313	1026.6	513.3	256.6	1490	201.3	660.2	330.1	165.0
306	1003.6	501.8	253.3	1500	200.0	656.0	328.0	164.0
303	993.8	496.9	248.4	1510	198.7	651.7	325.8	162.9
300	0840	402.0	244.0	1530	197.4	647.8	323.4	161.7
297	974.1	487.5	243.7	1540	194.8	639.6	319.8	159.9
294.1	964.6	482.3	241.1	1550	193.5	634.6	317.3	158.6
291.3	955.3	477.6	238.8	1560	192.3	631.4	315.7	157.8
288.5	946.2	473.1	236.5	1570	191.1	626.8	313.4	156.7
283.0	928.2	468.5	234.2	1500	169.9	023.2	311.6	155.8
				222	/ 00	> × - <	V OUR	

MINIMUM WINDLOAD MAP AND TABLE

This map and table, extracted from EIA Standard RS-222B, gives minimum horizontal design windload pressures in pounds per square foot, on flat surfaces and with no ice for the zones indicated. The map, as well as the table, must be interpreted in view of local knowledge and applicable building codes. See RS-222B for zone boundaries defined by state and county.

Wind pressure specified in pounds per square foot only shall be assumed to be uniform over the entire height of the tower. Wind pressures specified by both zone and pressures, in pounds per square foot shall be designed for the more severe loading. (From Page 3 of RS-222B.)

dB/EFFICIENCY CONVERSION CHART

KILOWATTS VERSUS dBk CONVERSION TABLE

kW	dBk	kW	dBk	kW	dBk	kW	dBk	kW	dBk	kW	dBk	kW	dBk
0.5	-3.00	8.2	9.14	15.9	12.01	23.6	13.73	31.3	14.95	39.0	15.91	46.7	16.69
0.6	-2.20	8.3	9.19	16.0	12.04	23.7	13.75	31.4	14.97	39.1	15.92	46.8	16.70
0.7	-1.52	8.4	9.24	16.1	12.07	23.8	13.77	31.5	14.98	39.2	15.93	46.9	16.71
0.8	-0.96	8.5	9.29	16.2	12.09	23.9	13.78	31.6	15.00	39.3	15.94	47.0	16.72
0.9	-0.45	8.6	9.34	16.3	12.12	24.0	13.80	31.7	15.01	39.4	15.95	47.1	16.73
1.0	0.00	8.7	9.39	16.4	12.15	24.1	13.82	31.8	15.02	39.5	15.97	47.2	16.74
1.1	0.41	8.8	9.44	16.5	12.17	24.2	13.84	31.9	15.04	39.6	15.98	47.3	16.75
.2	0.79	8.9	9.49	16.6	12.20	24.3	13.86	32.0	15.05	39.7	15.99	47.4	16.76
.3	1.14	9.0	9.54	16.7	12.23	24.4	13.87	32.1	15.06	39.8	16.00	47.5	16.77
.4	1.46	9.1	9.59	16.8	12.25	24.5	13.89	32.2	15.08	39.9	16.01	47.6	16.78
.5	1.76	9.2	9.64	16.9	12.28	24.6	13.91	32.3	15.09	40.0	16.02	47.7	16.78
.6	2.04	9.3	9.68	17.0	12.30	24.7	13.93	32.4	15.10	40.1	16.03	47.8	16.7
.7	2.30	9.4	9.73	17.1	12.33	24.8	13.94	32.5	15.12	40.2	16.04	47.9	16.8
.8	2.55	9.5	9.78	17.2	12.35	24.9	13.96	32.6	15.13	40.3	16.05	48.0	16.8
.9	2.79	9.6	9.82	17.3	12.38	25.0	13.98	32.7	15.14	40.4	16.06	48.1	16.8
.0	3.01	9.7	9.87	17.4	12.40	25.1	14.00	32.8	15.16	40.5	16.07	48.2	16.8
2.1	3.22	9.8	9.91	17.5	12.43	25.2	14.01	32.9	15.17	40.6	16.08	48.3	16.8
2.2	3.42	9.9	9.96	17.6	12.45	25.3	14.03	33.0	15.18	40.7	16.10	48.4	16.8
.3	3.62	10.0	10.00	17.7	12.48	25.4	14.05	33.1	15.20	40.8	16.11	48.5	16.8
2.4	3.80	10.1	10.04	17.8	12.50	25.5	14.06	33.2	15.21	40.9	16.12	48.6	16.8
2.5	2.00	10.0	10.09	17.9	12.53	25.6	14.08	33.3	15.22	41.0	16.13	48.7	16.8
	3.98	10.2	10.09	18.0	12.55	25.6 25.7	14.00	33.4	15.24	41.1	16.14	48.8	16.8
.6	4.15	10.3					14.10	33.4	15.25	41.1	16.15	48.9	16.8
.7	4.31	10.4	10.17	18.1	12.58	25.8							
.8	4.47	10.5	10.21	18.2	12.60	25.9	14.13	33.6	15.26	41.3	16.16	49.0	16.9
.9	4.62	10.6	10.25	18.3	12.62	26.0	14.15	33.7	15.28	41.4	16.17	49.1	16.9
.0	4.77	10.7	10.29	18.4	12.65	26.1	14.17	33.8	15.29	41.5	16.18	49.2	16.9
.1	4.91	10.8	10.33	18.5	12.67	26.2	14.18	33.9 34.0	15.30	41.6	16.19	49.3 49.4	16.9 16.9
.2	5.05	10.9	10.37	18.6	12.69	26.3	14.20		15.31	41.7	16.20		
.3	5.18	11.0	10.41	18.7	12.72	26.4	14.22	34.1	15.33	41.8	16.21	49.5	16.9
.4	5.31	11.1	10.45	18.8	12.74	26.5	14.23	34.2	15.34	41.9	16.22	49.6	16.9
.5	5.44	11.2	10.49	18.9	12.76	26.6	14.25	34.3	15.35	42.0	16.23	49.7	16.9
.6	5.56	11.3	10.53	19.0	12.79	26.7	14.26	34.4	15.37	42.1	16.24	49.8	16.9
.7	5.68	11.4	10.57	19.1	12.81	26.8	14.28	34.5	15.38	42.2	16.25	49.9	16.9
.8	5.79	11.5	10.61	19.2	12.83	26.9	14.30	34.6	15.39	42.3	16.26	50.0	16.9
.9	5.91	11.6	10.64	19.3	12,86	27.0	14.31	34.7	15.40	42.4	16.27	50.1	17.0
.0	6.02	11.7	10.68	19.4	12.88	27.1	14.33	34.8	15.42	42.5	16.28	50.2	17.0
.1	6.13	11.8	10.72	19.5	12.90	27.2	14.35	34.9	15.43	42.6	16.29	50.3	17.0
1.2	6.23	11.9	10.75	19.6	12.92	27.3	14.36	35.0	15.44	42.7	16.30	50.4	17.0
1.3	6.33	12.0	10.79	19.7	12.94	27.4	14.38	35.1	15.45	42.8	16.31	50.5	17.0
1.4	6.43	12.1	10.83	19.8	12.97	27.5	14.39	35.2	15.46	42.9	16.32	50.6	17.0
1.5	6.53	12.2	10.86	19.9	12.99	27.6	14.41	35.3	15.48	43.0	16.33	50.7	17.0
4.6	6.63	12.3	10.90	20.0	13.01	27.7	14.42	35.4	15.49	43.1	16.34	50.8	17.0
4.7	6.72	12.4	10.93	20.1	13.03	27.8	14.44	35.5	15.50	43.2	16.35	50.9	17.0
1.8	6.81	12.5	10.97	20.2	13.05	27.9	14.46	35.6	15.51	43.3	16.36	51.0	17.0
1.9	6.90	12.6	11.00	20.3	13.07	28.0	14.47	35.7	15.53	43.4	16.37	51.1	17.0
5.0	6.99	12.7	11.04	20.4	13.10	28.1	14.49	35.8	15.54	43.5	16.38	51.2	17.0
5.1	7.08	12.8	11.07	20.5	13.12	28.2	14.50	35.9	15.55	43.6	16.39	51.3	17.1
.2	7.16	12.9	11.11	20.6	13.14	28.3	14.52	36.0	15.56	43.7	16.40	51.4	17.1
.3	7.24	13.0	11.14	20.7	13.16	28.4	14.53	36.1	15.57	43.8	16.41	51.5	17.
.4	7.32	13.1	11.17	20.8	13.18	28.5	14.55	36.2	15.59	43.9	16.42	51.6	17.
.5	7.40	13.2	11.21	20.9	13.20	28.6	14.56	36.3	15.60	44.0	16.43	51.7	17.
.6	7.48	13.3	11.24	21.0	13.22	28.7	14.58	36.4	15.61	44.1	16.44	51.8	17.
.7	7.56	13.4	11.27	21.1	13.24	28.8	14.59	36.5	15.62	44.2	16.45	51.9	17.
.8	7.63	13.5	11.30	21.2	13.26	.28.9	14.61	36.6	15.63	44.3	16.46	52.0	17.
.9	7.71	13.6	11.33	21.3	13.28	29.0	14.62	36.7	15.65	44.4	16.47	52.1	17.
.o	7.78	13.7	11.37	21.4	13.30	29.1	14.64	36.8	15.66	44.5	16.48	52.2	17.
.1	7.85	13.8	11.40	21.5	13.32	29.2	14.65	36.9	15.67	44.6	16.49	52.3	17.
2	7.92	13.9	11.43	21.6	13.34	29.3	14.67	37.0	15.68	44.7	16.50	52.4	17.
3	7.99	14.0	11.46	21.7	13.36	29.4	14.68	37.1	15.69	44.8	16.51	52.5	17.
.4	8.06	14.1	11.49	21.8	13.38	29.5	14.70	37.2	15.70	44.9	16.52	52.6	17.
.5	8.13	14.2	11.52	21.9	13.40	29.6	14.71	37.3	15.72	45.0	16.53	52.7	17.
6	8.19	14.3	11.55	22.0	13.42	29.7	14.73	37.4	15.73	45.1	16.54	52.8	17.
.7	8.26	14.4	11.58	22.1	13.44	29.8	14.74	37.5	15.74	45.2	16.55	52.9	17.
.8	8.32	14.5	11.61	22.2	13.46	29.9	14.76	37.6	15.75	45.3	16.56	53.0	17.
.9	8.39	14.6	11.64	22.3	13.48	30.0	14.77	37.7	15.76	45.4	16.57	53.1	17.
.0	8.45	14.7	11.67	22.4	13.50	30.1	14.79	37.8	15.77	45.5	16.58	53.2	17.
.1	8.51	14.8	11.70	22.5	13.52	30.2	14.80	37.9	15.79	45.6	16.59	53.3	17.
.2	8.57	14.9	11.73	22.6	13.54	30.3	14.81	38.0	15.80	45.7	16.60	53.4	17.
.3	8.63	15.0	11.76	22.7	13.56	30.4	14.83	38.1	15.81	45.8	16.61	53.5	17.
4	8.69	15.1	11.79	22.8	13.58	30.5	14.84	38.2	15.82	45.9	16.62	53.6	17.
	8.75								15.83	46.0	16.63	53.7	17.
.5		15.2	11.82	22.9	13.60	30.6	14.86	38.3			16.64	53.8	17.
.6	8.81	15.3	11.85	23.0	13.62	30.7	14.87	38.4	15.84	46.1		53.8	17.
.7	8.86	15.4	11.87	23.1	13.64	30.8	14.89	38.5	15.85	46.2	16.65		
.8	8.92	15.5	11.90	23.2	13.65	30.9	14.90	38.6	15.87	46.3	16.66	54.0	17.
.9	8.97	15.6	11.93	23.3	13.67	31.0	14.91	38.7	15.88	46.4	16.66	54.1	17.
.0	9.03	15.7	11.96	23.4	13.69	31.1	14.93	38.8	15.89	46.5	16.67	54.2	17.: 17.
.1	9.08	15.8	11.99	23.5	13.71	31.2	14.94	38.9	15.90	46.6	16.68	54.3	17

KILOWATTS VERSUS dBk CONVERSION TABLE

				KILOW	7113	VERSUS d	IDK CO	IN A EK 210	NIAD	LE			
kW	dBk	kW	dBk	kW	dBk	kW	dBk	kW	d8k	kW	dBk	kW	dBk
54.4	17.36	62.3	17.94	70.1	18.46	77.9	18.91	85.6	19.32	93.3	19.70	300	24.77
54.5	17.36	62.4	17.95	70.2	18.46	78.0	18.92	85.7	19.33	93.4	19.70	316	25.00
54.6	17.37	62.5	17.96	70.3	18.47	78.1	18.93	85.8	19.33	93.5	19.71	320	25.05
54.7	17.38	62.6	17.97	70.4	18.48	78.2	18.93	85.9	19.34	93.6	19.71	340	25.31
54.8 54.9	17.39 17.40	62.7 62.8	17.97	70.5	18.48	78.3	18.94	86.0	19.34	93.7	19.72	360	25.56
55.0	17.40	62.8	17.98 17.99	70.6	18.49	78.4	18.94	86.1	19.35	93.8	19.72	380	25.80
55.1	17.41	63.0	17.99	70.7 70.8	18.49	78.5	18.95	86.2	19.35	93.9	19.73	400	26.02
55.2	17.42	63.1	18.00	70.8	18.50 18.51	78.6 78.7	18.95 18.96	86.3	19.36	94.0	19.73	420	26.23
55.3	17.43	63.2	18.01	71.0	18.51	78.8	18.96	86.4 86.5	19.36 19.37	94.1	19.74	440	26.43
55.4	17.43									94.2	19.74	460	26.63
55.5	17.43	63.3	18.01	71.1	18.52	78.9	18.97	86.6	19.37	94.3	19.74	480	26.81
55.6	17.44	63.4 63.5	18.02 18.03	71.2	18.52	79.0	18.98	86.7	19.38	94.4	19.75	500	26.99
55.7	17.46	63.6	18.03	71.3 71.4	18.53	79.1	18.98	86.8	19.38	94.5	19.75	520	27.16
55.8	17.47	63.7	18.04	71.4	18.54 18.54	79.2	18.99	86.9	19.39	94.6	19.76	540	27.32
55.9	17.47	63.8	18.05	71.6	18.55	79.3 79.4	18.99 19.00	87.0	19.39	94.7	19.76	560	27.48
56.0	17.48	63.9	18.05	71.7	18.55	79.4 79.5	19.00	87.1 87.2	19.40	94.8	19.77	580	27.63
56.1	17.49	64.0	18.06	71.8	18.56	79.6	19.00	87.2 87.3	19.40 19.41	94.9	19.77	600	27.78
56.2	17.50	64.1	18.07	71.9	18.57	79.7	19.01	87.4	19.41	95.0	19.78	620	27.92
56.3	17.50	64.2	18.07	72.0	18.57	79.8	19.02	87.5	19.42	95.1 95.2	19.78	640	28.06
54.4	17.51										19.79	660	28.19
56.4 56.5	17.51 17.52	64.3	18.08	72.1	18.58	79.9	19.02	87.6	19.42	95.3	19.79	680	28.32
56.6	17.52	64.4 64.5	18.09 18.10	72.2	18.58	80.0	19.03	87.7	19.43	95.4	19.79	700	28.45
56.7	17.53	64.6	18.10	72.3	18.59	80.1	19.04	87.8	19.43	95.5	19.80	720	28.57
56.8	17.54	64.7	18.10	72.4 72.5	18.60 18.60	80.2	19.04	87.9	19.44	95.6	19.80	740	28.69
56.9	17.55	64.8	18.12	72.5 72.6	18.61	80.3 80.4	19.05 19.05	88.0	19.44	95.7	19.81	760	28.81
57.0	17.56	64.9	18.12	72.7	18.61	80.4	19.05	88.1 88.2	19.45	95.8	19.81	780	28.92
57.1	17.57	65.0	18.13	72.8	18.62	80.6	19.06	88.3	19.45 19.46	95.9	19.82	800	29.03
57.2	17.57	65.1	18.14	72.9	18.63	80.7	19.07	88.4	19.46	96.0 96.1	19.82 19.83	820	29.14
57.3	17.58	65.2	18.14	73.0	18.63	80.8	19.07	88.5	19.47	96.1	19.83	840	29.24
57.4	17.50									70.2	17.03	860	29.34
57.4 57.5	17.59	65.3	18.15	73.1	18.64	80.9	19.08	88.6	19.47	96.3	19.84	880	29.44
57.6	17.60 17.60	65.4	18.16	73.2	18.64	81.0	19.08	88.7	19.48	96.4	19.84	900	29.54
57.7	17.61	65.5 65.6	18.16 18.17	73.3	18.65	81.1	19.09	88.8	19.48	96.5	19.84	920	29.64
57.8	17.62	65.7	18.17	73.4 73.5	18.66	81.2	19.10	88.9	19.49	96.6	19.85	940	29.73
57.9	17.63	65.8	18.18	73.5 73.6	18.66 18.67	81.3	19.10	89.0	19.49	96.7	19.85	960	29.82
58.0	17.63	65.9	18.19	73.7	18.67	81.4 81.5	19.11 19.11	89.1 89.2	19.50	96.8	19.86	980	29.91
58.1	17.64	66.0	18.19	73.8	18.68	81.6	19.11	89.3	19.50 19.51	96.9	19.86	1000	30.00
58.2	17.65	66.1	18.20	73.9	18.69	81.7	19.12	89.4	19.51	97.0	19.87	1100	30.41
58.3	17.66	66.2	18.21	74.0	18.69	81.8	19.13	89.5	19.51	97.1 97.2	19.87	1200	30.79
58.4	17.44										19.88	1300	31.14
58.5	17.66 17.67	66.3	18.21	74.1	18.70	81.9	19.13	89.6	19.52	97.3	19.88	1400	31.46
58.6	17.68	66.4 66.5	18.22 18.23	74.2 74.3	18.70	82.0	19.14	89.7	19.53	97.4	19.89	1500	31.76
58.7	17.69	66.6	18.23	74.3 74.4	18.71 18.72	82.1 82.2	19.14 19.15	89.8	19.53	97.5	19.89	1600	32.04
58.8	17.69	66.7	18.24	74.5	18.72	82.2 82.3	19.15	89.9 90.0	19.54	97.6	19.89	1700	32.30
58.9	17.70	66.8	18.25	74.6	18.73	82.4	19.16	90.1	19.54 19.55	97.7 97.8	19.90 19.90	1800 1900	32.55 32.79
59.0	17.71	66.9	18.25	74.7	18.73	82.5	19.16	90.2	19.55	97.9	19.91	2000	33.01
59.1	17.72	67.0	18.26	74.8	18.74	82.6	19.17	90.3	19.56	98.0	19.91	2100	33.22
59.2	17.72	67.1	18.27	74.9	18.74	82.7	19.17	90.4	19.56	98.1	19.92	2200	33.42
59.3	17.73	67.2	18.27	*75.0	18.75	82.8	19.18	90.5	19.57	98.2	19.92	2300	33.62
59.4	17.74	67.3	18.28	75.1	18.76	82.9	19.19	90.6	19.57	98.3			
59.5	17.74	67.4	18.29	75.2	18.76	83.0	19.19	90.7	19.58	98.4	19.93 19.93	2400	33.80
59.6	17.75	67.5	18.29	75.3	18.77	83.1	19.20	90.8	19.58	98.5	19.93	2500 2600	33.98 34.15
59.7	17.76	67.6	18.30	75.4	18.77	83.2	19.20	90.9	19.59	98.6	19.94	2700	34.13
59.8	17.77	67.7	18.31	75.5	18.78	83.3	19.21	91.6	19.59	98.7	19.94	2800	34.47
59.9	17.77	67.8	18.31	75.6	18.78	83.4	19.21	91.1	19.59	98.8	19.95	2900	34.62
60.0	17.78	67.9	18.32	75.7	18.79	83.5	19.22	91.2	19.60	98.9	19.95	3000	34.77
60.1	17.79	68.0	18.32	75.8	18.80	83.6	19.22	91.3	19.60	99.0	19.96	3100	34.91
60.2	17.80	68.1	18.33	75.9	18.80	83.7	19.23	91.4	19.61	99.1	19.96	3200	35.05
60.3	17.80	68.2	18.34	76.0	18.81	83.8	19.23	91.5	19.61	99.2	19.96	3300	35.18
60.4	17.81	68.3	18.34	76.1	18.81	83.9	19.24	91.6	19.62	99.3	19.97	3400	35.31
60.5	17.82	68.4	18.35	76.2	18.82	84.0	19.24	91.7	19.62	99.4	19.97	3500	35.44
60.6	17.82	68.5	18.36	76.3	18.82	84.1	19.25	91.8	19.63	99.5	19.98	3600	35.56
60.7	17.83	68.6	18.36	76.4	18.83	84.2	19.25	91.9	19.63	99.6	19.98	3700	35.68
8.00	17.84	68.7	18.37	76.5	18.84	84.3	19.26	92.0	19.64	99.7	19.99	3800	35.80
60.9	17.85	68.8	18.38	76.6	18.84	84.4	19.26	92.1	19.64	99.8	19.99	3900	35.91
61.0	17.85	68.9	18.38	76.7	18.85	84.5	19.27	92.2	19.65	99.9	20.00	4000	36.02
61.1	17.86	69.0	18.39	76.8	18.85	84.6	19.27	92.3	19.65	100	20.00	4100	36.13
61.2 61.3	17.87 17.87	69.1	18.39	76.9	18.86	84.7	19.28	92.4	19.66	120	20.79	4200	36.23
		69.2	18.40	77.0	18.86	84.8	19.28	92.5	19.66	140	21.46	4300	36.33
61.4	17.88	69.3	18.41	77.1	18.87	84.9	19.29	92.6	19.67	160	22.04	4400	36.43
61.5	17.89	69.4	18.41	77.2	18.88	85.0	19.29	92.7	19.67	180	22.55	4500	36.53
61.6	17.90	69.5	18.42	77.3	18.88	85.1	19.30	92.8	19.67	200	23.01	4600	36.63
61.8	17.91	69.6	18.43	77.4	18.89	85.2	19.30	92.9	19.68	220	23.42	4700	36.72
61.9	17.92	69.7	18.43	77.5	18.89	85.3	19.31	93.0	19.68	240	23.80	4800	36.81
62.0	17.92	69.8	18.44	77.6	18.90	85.4	19.31	93.1	19.69	260	24.15	4900	36.90
62.1 62.2	17.93 17.94	69.9	18.44	77.7	18.90	85.5	19.32	93.2	19.69	280	24.47	5000	36.99
04.4	17.74	70.0	18.45	77.8	18.91								

FM TRANSMITTER EQUIPMENT LAYOUTS

FM Transmitter Floor Plans
BTF-15E1
BTF-3E1
BTF-5E2
BTF-5E1
BTF-10E1
BTF-20E1
BTF-40E1

DRAWINGS NOT CERTIFIED FOR CONSTRUCTION USE

SCALE: 3/8 INCH = ONE FOOT

AM TRANSMITTER EQUIPMENT LAYOUTS

AM TRANSMITTER EQUIPMENT LAYOUTS

= NOTES =

= NOTES=

