Broadcast Systems

UHF-Television Equipment

UHF Transmitters, Exciters Remote Control Equipment Input and Monitoring Test and Measuring UHF Filters and Filterplexers UHF Antennas, Towers, Accessories

About This Catalog

This is one of several catalogs published by RCA Broadcast Systems. It describes RCA products appropriate to the transmitter facility of UHF-TV broadcast systems: transmitter to antenna and tower except for transmission line. (Transmission line is the subject of a separate catalog.)

There are seven other catalogs in the series: VHF-TV Transmitter Equipment; Camera and Telecine Equipment; Video Tape Equipment; Television Control Equipment; Transmission Line Equipment; Broadcast Audio Equipment and, Radio Equipment.

These catalogs are available at all RCA Regional Offices. Each office is staffed with a sales representative of broad experience in the broadcast business. He can help you plan your equipment facilities and supply the product information you need. (See list of offices on next page.)

Contents

Transmitter	Equipment
-------------	-----------

UHF-TV Transmitter, Type TTU-30C	TT.3200B
UHF-TV Transmitter, Type TTU-55B	TT.3400A
UHF-TV Transmitter, Type TTU-60C	TT.3600A
UHF-TV Transmitter, Type TTU-60C2	TT.3650B
UHF-TV Transmitter, Type TTU-110B	TT.3700A
UHF-TV Transmitter, Type TTU-165C	TT.3800B
UHF-TV Transmitter, Type TTU-220C	TT.3900B

Exciters and Modulator Equipment

UHF-TV Exciter-Modulator, Type TTUE-4A TT.4400A

Remote Control Equipment

Planning TV Remote Control	6000B
Remote Control System, Moseley Type DRS-1 TT.5	300A
Remote Control System, Moseley Type DCS-2 TT.5	5400A
Remote Control Accessories	600A

Input and Monitoring Equipment

TV Transmitter Input and Monitoring Equipment TT.6000A
Transmitter Control Console, Type TTC-5TT.6300A
Carrier-Frequency and Aural Modulation Monitors,
Types TFT-701, TFT-702
Frequency and Modulation Monitor Systems,
Belar Types TVM-1, -2, -3 and RFA-3

Harmonic Filters, Filterplexers, Loads and Wattmeters	
Envelope Delay Measuring Equipment, Type BW-8A	TT.6900A
TV Sideband Response Analyzers, Types BW-5C2/BWU-5C2	TT.6800A
Diode Demodulators and Directional Couplers	TT.6700A
Television Demodualtor, Rohde & Schwarz Type AMF	TT.6560A
Television Demodulator, Telemet Model 4501	TT.6550A
Vertical Interval Electronic Chopper	TT.6510A
Visual Sideband Demodulator, Types BW-4C1/BWU-4C1	TT.6500A

Harmonic Filters for UHF-TV Transmitters	200A
60 kW Hybrid Filterplexer	600A
Waveguide Filterplexers, 60 and 120 kW	650A
Loads and Wattmeters	200A

Antennas and Towers

UHF-Pylon Antennas, Type TFU	TT.9200A
Panel Antennas, "Vee-Zee" and "Zee-Panel"	TT.9220A
"Polygon" UHF-TV Antennas, Type TZP-500	TT.9240A
Rosemount Antenna Ice Detector	TT.9320A
Automatic Sleet Melter Control Unit	TT.9340A
Antenna Towers for Television; Strobe Tower	
Lighting	TT.9400A

Atlanta, Ga. 30329 14 Executive Park Dr., N.E. 404-634-6131

Austin, Tex. 78758 3409 Executive Center Dr. 512-345-2224, 5

Birmingham, Ala. 35223 Office Park Bldg. #10 Office Park Circle 205-871-1155

Boston Area: Wellesley, Mass. 02181 Wellesley Office Park 617-237-6050

Camden, N. J. 08102 Front & Cooper Sts. 609-963-8000, Ext. PC-3592

Charlotte, N. C. 28210 6230 Fairview Rd., Suite 104 704-366-0626

Chicago, III. 60606 Gateway II Bldg., Suite 1400 120 S. Riverside Plaza 312-782-0700 Cincinnati, O. 45231 11430 Hamilton Ave. 513-825-1550

Dallas, Tex. 75247 RCA Center 8700 Stemmons Freeway 214-638-6200

Denver, Colo. 80211 2701 Alcott St., Suite 231-S 303-433-8484

Detroit: Southfield, Mich. 48075 24333 Southfield Rd., Suite 209 313-357-0080

Hollywood, Calif. 90028 RCA Corp., Suite 531 6363 Sunset Blvd. 213-461-9171

Indianapolis, Ind. 46205 RCA Broadcast Sales, Bldg. Q-1 2511 E. 46th St. 317-546-4001

Jacksonville, Fla. 32207 2747 Art Museum Dr., Suite 5 904-398-4588

Kansas City Area: Overland Park, Kans. 66207 5750 West 95th St., Suite 111 913-642-3185, 6, 7

Regional Offices

(Subject to change without notice)

Pittsburgh, Pa. Area: McMurray, Pa. 15317 761 N. Washington Rd. 412-941-5570, Ext. 453

Minneapolis, Minn. 55416 4522 Excelsior Blvd. 612-920-6395, 6

New York, N. Y. 10036 1133 Avenue of the Americas, 11th Floor 212-586-3000

San Francisco, Calif. Area: Burlingame, Calif. 94010 330 Primrose Rd. 415-343-2741, Ext. 333, 4

St. Louis, Mo. 63105 7701 Forsyth Blvd., Suite 455 314-862-3660

Seattle, Wash. 98119 408 Second Ave., W. 206-285-2375

Washington, D. C. Area: Arlington, Va. 22209 1901 North Moore St. 703-558-4212

West Palm Beach, Fla. 33403 Palm Beach Gardens 3900 RCA Bivd. 305-622-1100, Ext. 2891, 2

RCA International Marketing Subsidiaries (Subject to change without notice)

Argentina

Buenos Aires RCA International Limited Casila de Correo, 4400 Telephone: 70-4171

Australia 2113

North Ryde, N.S.W. RCA Limited 11 Khartoum Road Telephone: 888-5444

Australia 3121

Richmond, Victoria RCA Limited 2-4 Stephenson Street Telephone: 42-4586

Brazil

Rio de Janeiro-GB RCA Telesistemas Ltda. Rua Correa Dutra, 126-4And Telephone: 245-9209

Canada

Ste. Anne de Bellevue, 810 P.Q. RCA Limited 21001 North Service Road Telephone: (514) 457-9000

Toronto 15, Ontario RCA Limited 1450 Castlefield Avenue Telephone: (416) 651-6550

Vancouver, British Columbia RCA Limited 2876 Rupert Street at Grandview Highway Telephone: (604) 433-0541

Hong Kong

RCA International Limited 1927 Prince's Building Chater Road, G.P.O. 112 Telephone: H 234181

Mexico

Mexico 17, D.F. RCA S.A. de C.V. Avenida Cuitlahuac 2519 Telephone: 5-27-60-20 Ext. 104

Switzerland

Geneva RCA International Marketing S.A. 118 rue du Rhone, CH 1204 Telephone: 35-82-00

United Kingdom

RCA Limited Lincoln Way, Windmill Rd. Sunbury-on-Thames, U.K. Telephone: Sunbury-on-Thames 8-5511

catalog TT.3200B

(Replaces TT.3200A)

UHF-TV Transmitter, 30kW Visual, 16kW Aural, Type TTU-30C

The Type TTU-30C is a klystronpowered transmitter for UHF-TV systems with up to one megawatt ERP. The transmitter provides 30 kilowatt peak visual power with an aural power capability ranging from 3.3 to 16 kW. The transmitter uses entirely solid-state circuitry for all functions except the four-cavity, klystron power amplifiers.

Ready for remote-control operation, the TTU-30C includes the appropriate metering points, motor-driven operational controls and necessary wiring for interface with remotecontrol systems.

The TTU-30C is designed for future expansion to higher power through the addition of a second visual klystron amplifier and certain other components. This expansion takes place at minimum investment and is designed to be effected without loss of air time in a normal operating schedule.

- Intermediate-frequency modulation
- Solid-state exciter and intermediate power amplifier
- Quick, one-man klystron change
- Vapor-cooled klystron power amplifiers
- Ready for remote control

-21	and the second sec
CALL LANS	
and the second	

At left is control center and exciter; visual klystron amplifier in center with aural amplifier in right-hand cabinet. Meters along top edge are visible with doors open or closed. Solid-state IPA is in upper right-hand corner of control-center cabinet. The TTU-30C Transmitter represents the latest advances in UHF technology. Incorporating all the benefits of reliable solid state devices, broadband amplifier tubes with high gain and powerhandling capability, intermediate-frequency modulation and high-level sideband shaping, the transmitter achieves operational simplicity and small physical size for its power capabilities.

Economical Power

The TTU-30C is economical and easy to operate. Though the physical size is small, effective layout of component placement for maximum accessibility results in ease of maintenance. These features result in direct savings in installation and operating costs. The optional offering of a new development in high-efficiency klystrons results in an even greater savings in operating cost. Every effort has been made to incorporate mechanical and electrical features to simplify operation and maintenance of the transmitter.

The TTU-30C is housed in three, lowprofile, 77-inch cabinets with eye-level meters and convenient fingertip controls. Built-in remote-control circuitry, including metering points for remotely monitored operating parameters, permits operation from an auxiliary control console or remote point. All required operating controls are motor driven and may be operated by a remote control system.

Circuit Description

Ease of installation, operation, and maintenance is enhanced by the use of modern, reliable circuitry. The heart of the TTU-30C transmitter is the Type TTUE-4A, an entirely solid-state exciter-modulator employing an advanced method of intermediate-frequency modulation. The visual and aural modulators always operate at 45.75 and 50.25 MHz. Final frequency is achieved by up-conversion of the modulated signals with an RF "pump" frequency chain. Up-conversion occurs at the 15 watt visual, 5 watt aural level, resulting in RF carrier frequency output from the exciter of 4 watts visual and 0.8 watts aural.

The TTUE-4A Exciter-Modulator package is an integral part of the TTU-30C Exciter Control cabinet. It consists of a main frame with modularized circuits housed in four vertical, slide-out drawers. By sliding each drawer forward, the associated modules are exposed for visual examination, test, or adjustment without removal from service or the use of a module extender. A comprehensive metering system is incorporated to enable observation of the operating condition ot each exciter-modulator module and circuit function individually. Temperature compensated crystal oscillators are employed in the intermediate-frequency sections and in the RF pump chain, eliminating the requirement for crystal heaters or ovens and assuring immediate, on-frequency operation of the transmitter from a cold start.

Solid State Intermediate Power Amplifier

The aural power output of the excitermodulator unit drives the aural amplifier klystron stage to full rated power output. As a result the aural transmitter contains only one amplifier stage between the exciter-modulator output and the transmitter output.

The visual output of the exciter modulator drives a solid state intermediate power amplifier. This modular IPA unit is a broadband amplifier capable of a minimum of 10 watts output, which is more than adequate to drive the visual klystron power output stage to 30 kW peak visual output power. The solid state IPA is factory-tuned and no operating controls or adjustments are required or available on the unit. The IPA operates from a 24 Vdc power supply incorporated in the Exciter-Control Cabinet.

Klystron Power Amplifier

The aural and visual power amplifiers use vapor-cooled, integral-cavity klystrons. RCA pioneered in the development of vapor-cooled UHF television transmitters and many thousands of hours of cumulative operating time have proven their efficiency and reliability. The use of integral cavities eliminates tedious assembly and pre-tuning. The spare klystron is complete and ready for installation in the transmitter when required.

Easy Klystron Change

The integral cavity klystrons are easily removed or installed by one operator. The

factory-tuned klystron is transferred in a horizontal position directly from the shipping crate to the klystron carriage, which is furnished with the transmitter. By way of a built-in loading device, the klystron is easily installed in the transmitter from the klystron carriage, from the front of the transmitter cabinets. No unusual ceiling height or horizontal clearance is required. The klystron remains in a horizontal position until it is completely installed in the magnet assembly in the transmitter. It is then tilted into the vertical position by a simple device which is a part of the aural or visual amplifier cabinet.

Long Life Power Supplies

Solid state rectifiers are used throughout. These and other power supply components are located on vertical panels which form the transmitter rear enclosure. This arrangement provides ease of accessibility for inspection and maintenance, and effective cooling for long life.

Klystron carriage stores spare klystron safely and securely.

Klystron transfers from crate to carriage quickly and easily.

Transfer from carriage to socket is at table-top height.

Cooling System

A heat exchanger, equipped with one water and two steam coils and a lowvelocity high-capacity blower is furnished with the TTU-30C transmitter. Main and standby water pumps are supplied, with all plumbing material required for installation.

Monitoring and Protection

The TTU-30C transmitter incorporates an electronic, high-speed, fault-protection system capable of removing RF excitation within 20 microseconds in the event of an RF-load disturbance and the klystron amplifiers are protected by instantaneous overload relays which recycle but remain tripped if the fault continues. Instantaneous protection is also provided against excessive water temperature, excessive klystron body current, and failure of magnet current. A system of front panel indicator lamps indicate normal and abnormal conditions. These indicator lamps have a separate reset to provide an indication of an intermittent condition.

Spare Exciter Group

A Spare Exciter Group is available optionally for use with the TTU-30C Transmitter. The spare exciter group consists of a TTUE-4A Exciter-Modulator Unit installed in a cabinet matching the styling of the TTU-30C, with a manual control and metering panel. Also included are fault sensing and automatic switchover equipment providing instant transfer to the spare exciter in the event of a failure in the main exciter.

This is the spare exciter group offered as an option (Door removed to reveal exciter unit). The group includes fault-sensing and automatic switchover facilities. See text.

With door closed, the exciter group appears as shown here.

Space Saving Floor Layout for the TTU-30 UHF Television Transmitter.

Specifications

Visual Performance

Type of Emission (FCC Designation)	A5
Operating ChannelAny channe and	l between 14 69 inclusive
Power Output (At filterplexer output)	
Output Impedances: Power Amplifier Filterplexer (61/8" coaxial connection)	
Video Input: Impedance (unbalanced) Level (min., sync positive) Return Loss (60 Hz to 6 MHz) Carrier Frequency Stability	0.7V p-p 35 dB

±1 dB
±0.5 dB
–20 dB
2 dB
–20 dB
42 dB
±60 ns
±30 ns
<u>+</u> 60 ns
1, +1.5 dB

Modulation Depth Capability5% Differential Phase⁷+3° Harmonic Attenuation¹⁰-60 dB Aural Performance Output Impedances: Audio Input: Level (for ± 25 kHz deviation)+10 ± 2 dBm FM Noise (Below ±25 kHz deviation)-60 dB Environmental

Operational Altitude (Max. above sea level)7500 ft. (2286m) Ambient Operating Temperature:

At Sea Level	1 to 45°C (34 to 113°F)
At 3300 ft. (1006m)	1 to 40°C (34 to 104°F)
	1 to 35°C (34 to 95°F)
At 7500 ft. (2286m)	1 to 30°C (34 to 86°F)
Heat Exchanger Inlet	Temperature10 to 45°C (50 to 113°F)

Electrical Requirements

Power Requirements	.440/460/480V, 60 Hz, 3-phase, 128 kW
	(Three- or four-wire connection)
Line Voltage Regulation	
Slow Variations	<u>+</u> 3% max.
Rapid Variations	±3% max.
Power Factor (Approx.)	

Mechanical

Dimensions:

Transmitter Cabinet136" L; 105" D; 77" H (4.57, 2.66, 1.95m)
Heat Exchanger
Filterplexer
Beam Power Transformers (each)
(711, 813, 1245 mm)

Weights:	
Transmitter	
Heat Exchanger	
Filterplexer	
Beam Power Transformers (each)	
Shipping Data:	_
Total Weight	13,250 lbs. (6010 kg)
Total Volume	

¹ Maximum variation for 10 days without circuit adjustment within an ambient temperature range of 10 to 45°C. Meets or exceeds FCC Specs in 1 to 45°C ambient.

²With respect to response at visual carrier frequency plus 0.2 MHz as measured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at midcharacteristic, Measured response at filterplexer output.

^a Departure from standard curve. Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing measurement. Minor, multilobed delay ripples-originating in the correction network—are excluded from this specification.

⁴Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 67.5% of sync peak. Peak-to-peak modulation level adjusted to approximately 20 percent of sync level.

⁵Change in blanking level relative to sync peak for change in brightness from all black to all white picture.

⁶Max. variation of 3.58 MHz mod. frequency-20 percent p-p nominal amplitude-when superimposed on "stairstep' or "ramp" signal adjusted for brightness excursion of 20 to 75 percent of sync peak.

⁷Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator.

⁸Maximum departure from the theoretical when reproducing saturated primary colors and their complements at 75 percent amplitude.

⁹ Hum and noise, 50 Hz to 15 kHz. Extraneous modulation—unrelated to video —above 15 kHz but within the visual passband: 40 dB below 100% modulation.

¹⁰ Ratio of any single harmonic to peak visual fundamental power.

 $^{11}\,\mathrm{Maximum}$ variation with respect to separation between aural and visual carriers.

Accessories

... . . .

Standby Exciter Cabinet Group, Type TTUE-4	
Primary Voltage Regulator (Three Required, if used)MI-56049	93
Spare Klystron Power Tube (Please Specify channel))7
Spare Solid-State IPA (Please specify channel)MI-56089 Color Phase Equalizer, Type TTS-1MI-56050	99

Ordering Information

UHF-TV Transmi	tter, 30 kW	Visual, 17	/ kW Aura	I.
Type TTU-30C				ES-560958

catalog TT.3400A (Replaces B.5045)

UHF-TV Transmitter, 55 kW Visual, 12 kW Aural, Type TTU-55B

The TTU-55B is a 55-kilowatt UHF-television broadcast transmitter using integral-cavity, vapor-cooled klystrons as aural and visual power amplifiers. The klystrons are high gain five cavity units arranged for easy interchange when replacement is necessary.

The TTU-55B uses three in-line cabinets for the signal-handling and RF-amplifier circuits plus a rear walk-in enclosure for power supply and control components. This increases accessibility to all systems for routine maintenance and inspection, and provides more efficient cooling of components.

A standby exciter/modulator is available as an option in a group which includes fault-sensing and automatic switchover to the standby system.

- Vapor-cooled integral cavity klystrons
- Solid-state exciter/modulator
- Intermediate frequency modulation
- Ready for remote-control operation

Connected to an antenna system of suitable gain, the TTU-55B transmitter is capable of an effective radiated power of as much as 1.8 megawatts. The transmitter is entirely transistorized except for two klystron power tubes and uses modern solid-state components in an innovative design in both circuitry and packaging. The transmitter features vapor-cooled fivecavity klystrons (in which the cavities are integral to the tube structure), identical aural-visual power stages and built-in readiness for remote control operation.

The TTU-55B is designed for future expansion to higher power through the addition of a second visual klystron amplifier and certain other components. This expansion takes place at minimum investment and is designed to be effected without loss of air time in a normal operating schedule.

Modular, Solid-State Exciter/Modulator

Modern, solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature-compensated crystals that eliminate the limitations of crystal heaters or ovens and assure on-frequency operation from the moment of turn-on. A spare oscillator module is provided for the pump-generator section of the unit for use in the event of an outage.

Aural and visual modulation takes place at an intermediate frequency and is upconverted to carrier frequency at a 15 watt visual and 5 watt aural power level. The exciter/modulator power output is 4W visual and 800 mV aural (see exciter/ modulator block diagram). A separate catalog section on the exciter/modulator is available (see Type TTUE-4).

Vapor-Cooled Klystrons

The TTU-55B Transmitter uses identical klystrons in the aural and visual channel. These are vapor-cooled, five-cavity units of integral-cavity design with a reputation for stability, reliability, and long life. Because of their high gain, the aural and visual klystrons are driven directly by the output of the exciter-modulator without the requirement for intermediate power amplification. This results in an all solid-state transmitter with the exception of the visual and aural klystrons, and with no intermediate, linear, RFamplifier stages.

Easy Klystron Change

Klystron replacement in the TTU-55B Transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. The factory-tuned klystron is transferred in a horizontal position directly from the shipping crate to the klystron carriage, which is furnished with the transmitter. By way of a built-in loading device, the klystron is easily installed from the front of the transmitter cabinet. It remains in a horizontal position until it is completely installed in the magnet assembly, and then tilted into the vertical position by a simple mechanism which is a part of the aural or visual amplifier cabinet.

High-Level Sideband Shaping

Sideband shaping and visual/aural diplexing is accomplished at the transmitter output in a hybrid filterplexer. This is a temperature compensated, passive device employing waveguide cavities and sections of coaxial line in the filter portion. It is pretuned during manufacture and requires no operationl adjustments. The inputs have a constant impedance over the band of frequencies involved.

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use. The heat exchanger (condenser) removes the latent heat of the steam and dissipates it to outdoor air. A motor-driven pump circulates the condensed water to the storage tank and thence to the klystrons. A standby pump and motor is connected in the system for immediate use in the event of pump system failure. A system of manually operated valves effects the pump changeover. These valves make periodic switchover practical to let both pumps share in the hours of use.

Temperature control of the condensate returning to the klystrons and their magnets contributes to the gain and bandwidth stability of the amplifier stages.

The heat exchanger requires ductwork between it and outdoor air. This ductwork is ordinarily provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The transmitter incorporates electronic, high-speed fault protection systems capable of removing RF excitation within 20 microseconds in the event of an RFload disturbance. The klystron amplifiers are protected with instantaneous relays which trip on overload and automatically reset unless the overload continues beyond two reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation. Front-panel indicator lamps identify specific overloads or other abnormal conditions. These remain lit until manually reset, even if the overload reset or the fault cleared, to indicate the source of alarm condition.

Exciter/modulator functional diagram.

Klystron Power Supply

The klystron power supply for the TTU-55B Transmitter is a unitized assembly containing the power transformer, rectifier stacks, filter reactor and a-c snubbing networks in an oil-filled tank. The diode stacks are mounted in modular form, one for each phase, with access through a port at the top of the tank. The power supply unit is designed for outdoor installation.

Optional Spare Exciter Group

For those who want redundancy extended into the exciter/modulator section of the transmitter a spare exciter group is available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing and automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style of the transmitter to allow installation adjacent to the exciter/control cabinet of the transmitter. The fault-sensing and switchover equipment monitors main exciter/modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Modularized exciter/modulator circuits are keyed to prevent inadvertent module interchange.

Integral-cavity klystrons tilt down for easy replacement by one man, working alone.

Specifications

Visual Performance

Type of Emission (FCC Designation)
Operating Channel Any channel between 14 and 69 inclusive
Power Output (At filterplexer output)
Output Impedances: Power Amplifier
Video Input: Impedance (Unbalanced)
Carrier Frequency Stability ¹ ±500 Hz
Amplitude vs. Frequency Response:2 Upper Sideband Response Characteristic: Between 0.2 and 4.1 MHz above carrier ±1 dB At 3.58 MHz above carrier ±0.5 dB At 4.75 MHz above carrier Lower Sideband Response Characteristic: At 0.5 MHz below carrier -2 dB At 1.25 MHz below carrier -20 dB At 3.58 MHz below carrier
Envelope Delay vs. Frequency: ³ Between 0.2 and 2 MHz
Variation in Frequency Response with Brightness ⁴
Amplitude Variation (Over one frame, ref: sync peak) 2%
Output Regulation
Pedestal Level Variation ⁵ 1.5% Differential Gain ⁶ 0.75 dB
Low Frequency Linearity
Differential Phase ⁷
Subcarrier Amplitude (Color Bars) 0.7 dB
Burst vs. Subcarrier Phase (Color Bars) ⁸
AM Noise (rms below 100% modulation) ⁹ 50 dB
Harmonic Attenuation ¹⁰
Aural Performance
Type of Emission (FCC Designation)
Power Output (At filterplexer input)
Output Impedances: Power Amplifier
Filterplexer
Impedance (Balanced)
Carrier Frequency Stability ¹
Intercarrier Frequency Stability ¹¹ ±500 Hz
Modulation Capability
Frequency Response Characteristic (30 Hz to 15 kHz)±1 dB max.
Distortion (30 Hz to 15 kHz)
FM Noise (Below ± 25 kHz deviation)60 dB max.
AM Noise (rms)
Harmonic Attenuation ¹⁰

Environmental

Environmental
Operational Altitude (Max. above sea level). 7500 ft. (2286 m)
Ambient Operating Temperatures:
At Sea Level
At 3300 ft. (1006 m)1 to 40°C (34 to 104°F)
At 5000 ft. (1524 m) 1 to 35°C (34 to 95°F)
At 7500 ft. (2286 m)1 to 30°C (34 to 86°F)
Heat Exchanger Air Inlet
Temperature
Electrical Requirements
Power Requirements
218 kW max. (Three- or four-wire connection)
Line Voltage Regulation
Variations (Slow or Rapid) $\ldots \pm 3\%$ max.
Power Factor (Approx.)
Mechanical
Dimensions:
Transmitter
(3 /5 2 67 1 95 m)
Heat Exchanger
(262, 1.57, 1.14 m)
Filterplexer (Frequency Dependent)
Dependent)
(1.78-1.88, 1.58-1.68, 1.02-1.27 m)
Weights of Major Units (Approx.):
Transmitter 1200 lbs. (5443 kg)
Heat Exchanger
Filterplexer 600 lbs. (272 kg)
Beam Supply Transformer
Shipping Data:
Total Weight (Approx.) 22,000 lbs. (10,000 kg) Total Volume (Approx.) 1600 ft ³ (45 m ³)
¹ Maximum variation for 10 days without circuit adjustment within an am- bient temperature range of 10 to 45°C (50 to 113°F). Meets or exceeds FCC
Specs in 1 to 45°C ambient (34 to 113°F). Meets or exceeds FCC
² With respect to response at visual carrier frequency plus 0.2 MHz as meas-
ured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid-characteristic. Mcasured response at filterplexer output.
^a Departure from standard curve. Tolerances vary linearly between 2.1 MHz
and color subcarrier frequency and between color subcarrier frequency and
upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing the measure-
ment. Minor, multi-lobed delay ripples—originating in the delay network— are excluded from this specification.
⁴ Maximum change with response at mid-characteristic when measured to

are excluded from this specification. ⁴ Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 67.5 percent of sync peak. Peak-to-peak modu-lation level adjusted to approximately 20 percent of sync level. ⁵ Change in blanking level relative to sync peak for change in brightness from all black to all white picture. ⁴ Maximum variation of 3.50 MHz modulation frequency -20 percent p-p nom-inal amplitude-when superimposed on "stairstep" or "ramp" signal ad-justed for brightness excursion of 20 to 75 percent of sync peak. ⁷ Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator. ⁸ Maximum departure from the thogretical when reproducing saturated pri-

*Maximum departure from the theoretical when reproducing saturated pri-mary colors and their complements at 75 percent amplitude. *Hum and noise, 50 Hz to 15 kHz. Extraneous modulation—unrelated to video —above 15 kHz but within the visual passband: 40 dB below 100%

modulation.

"Ratio of any single harmonic to peak visual fundamental power.

¹¹ Maximum variation with respect to separation between aural and visual carriers.

Accessories

Spare Klystron Power Tube (Specify Channel) ... MI-560569 Primary Voltage Regulator (Three req'd if used)...MI-560571 Standby Exciter Cabinet Group, Type TTUE-4 ES-560937

Ordering Information

UHF-TV Transmitter, 55 kW Visual, 12 kW Aural, Туре ТТU-55В ES-560927

catalog TT.3600A

(Replaces B.5040)

UHF-TV Transmitter, 60 kW Visual, 16 kW Aural, Type TTU-60C

Vapor-cooled integral-cavity klystrons

Solid-state exciter/modulator and IPA

Ready for remote-control operation

Intermediate-frequency modulation

Redundant visual amplifiers

.

.

The TTU-60C is a 60-kilowatt UHF-television broadcast transmitter using integral-cavity, vapor-cooled klystrons as aural and visual power amplifiers. The klystrons are fourcavity units arranged for easy interchange when replacement is necessary.

The TTU-60C uses four in-line cabinets for the signal-handling and RF-amplifier circuits. Power-supply components are in a walk-in enclosure to the rear of the cabinets. This arrangement assures maximum accessibility and efficient cooling of the power-supply elements.

A standby exciter/modulator is available as an option in a group which includes fault-sensing and automatic switchover to the standby system.

Transmitter control cabinet at left houses exciter/modulator unit and twin, solid-state intermediate power amplifiers.

This is the fully solid-state exciter/modulator unit.

Connected to an antenna system of suitable power gain, the TTU-60C transmitter is capable of an effective radiated power (ERP) of more than two megawatts. The exciter/modulator section is entirely transistorized, using modern solidstate components in an innovative design in both circuitry and packaging. The transmitter features solid-state intermediate power amplifiers, vapor-cooler, fourcavity klystrons (in which the cavities are integral to tube structure), identical auralvisual power stages (redundant visual) and built-in readiness for remote-control operations.

The TTU-60C uses four front-line cabinets and a rear, walk-in enclosure for all power supply and switching components except for three beam-power transformers (see floor layout drawing). This arrangement provides convenient access to the rear of the in-line cabinets and to the power supply rectifiers and filter components during inspection and/or maintenance.

Modular, Solid-State Exciter/Modulator

Modern, solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature-compensated crystals that eliminate the limitations of crystal heaters

All exciter/modulator circuits are modularized.

or ovens and assure on-frequency operation from the moment of turn-on. A spare oscillator module is provided for the pump-generator section of the unit for use in the event of an outage.

Aural and visual modulation takes place at an intermediate frequency and is

up-converted to carrier frequency at a 15 watt visual and 5 watt aural power level. The exciter/modulator power eutput is 4W visual and 800 mW aural (see exciter/modulator block diagram). A separate catalog section on the exciter/modulator is available (see Type TTUE-4).

Exciter/modulator functional diagram.

Solid-State Intermediate PA

The exciter/madulator aural output drives the aural klystron amplifier directly without intermediate amplification. On the visual side, the modulated carrier is split into two separate outputs and routed to two intermediate power amplifiers. These are solid-state units, each capable of 10 watts power output. The IPA units are tuned to channel during manufacture and require no readjustments or operating controls. The IPA units operate from a 24 volt, dc power supply housed within the exciter/control in the cabinet.

Vapor-Cooled Klystrons

The transmitter uses three identical klystrons: one in the aural channel and two in the visual. These are vapor-cooled, four-cavity units of integral-cavity design with a reputation for stability, reliability and long life. The visual klystrons operate

Klystron carriage stores spare klystron safely and securely.

Klystron transfers from crate to carriage quickly and easily.

Transfer from carriage to socket is at table-top height.

in a diplexed arrangement with each klystron contributing independently to the transmitter power output. The diplex arrangement is such that an outage in either visual amplifier merely reduces transmitter power output. Through an optional co-ax switcher, one of the visual stages can replace a failed aural klystron on a temporary basis while the other visual amplifier serves the visual channel.

With all three klystrons identical, a single spare serves all three amplifiers. And, the fact that aural and visual tubes are interchangeable allows operation of retired visual tubes as aural amplifiers for extended tube life.

Easy Klystron Change

Klystron replacement in the TTU-60C transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. This is the result of several factors: integral cavities, tilt-down magnet construction, quick-disconnect connections and a tube dolly that carries the entire load of the klystron (see photos).

Ghost-Cancelling Final Amplifier

The klystron visual amplifiers operate in parallel, each contributing one-half of the visual power output. A line-stretcher device, in the RF drive to Visual Amplifier Number 2, shifts the relative phase of the RF by 90 degrees. As a result, the Close-up of control cabinet. Exciter/modulator unit at lower left; solidstate IPA units at upper right.

power output from both amplifiers is in phase-quadrature. The input circuits of the combiner re-establish the in-phase relationship of the energy.

This arrangement makes any reflected power from the load appear at the two klystron outputs with a 90-degree phase difference. When re-reflected toward the load the reflection is shifted another 90 degrees. As a result, the reflected energy appears at the combiner inputs in phase opposition and is dissipated in the combiner reject load. The end result is, essentially, the elimination of any ghosting effect from reflected power due to load discontinuities.

High-Level Sideband Shaping

Sideband shaping and visual/aural diplexing is accomplished at the transmitter output in a hybrid filterplexer. This is a temperature compensated, passive device employing waveguide cavities and sections of coaxial line in the filter portion. It is pretuned during manufacture and requires no operational adjustments. The inputs have a constant impedance over the band of frequencies involved.

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use. The heat exchanger (condenser) removes the latent heat of the steam and dissipates it to outdoor air. A motor-driven pump circulates the condensed water to the storage tank and thence to the klystrons. A standby pump and motor is connected in the system for immediate use in the event of pump system failure. A system of manually operated valves effects the pump changeover. These valves make periodic switchover practical to let both pumps share in the hours of use.

Temperature control of the condensate returning to the klystrons and their magnets contributes to the gain and bandwidth stability of the amplifier stages.

The heat exchanger requires ductwork between it and outdoor air. This ductwork is ordinarily provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The transmitter incorporates an elec-

tronic, high-speed fault protection system capable of removing RF excitation within 20 microseconds in the event of an RF load disturbance. The klystron amplifiers are protected with instantaneous relays which trip on overload and automatically reset unless the overload continues beyond two or three reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation, Front-panel indicator lamps identify specific overloads or other abnormal conditions. These remain lit until manually reset, even if the overload reset or the fault cleared, to indicate the source of alarm condition.

Optional Spare Exciter Group

For those who want redundancy extended into the exciter/modulator section of the transmitter a spare exciter group is available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing and automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style

The exciter/modulator is available optionally in a free-standing cabinet for use as a spare exciter/ modulator system. The cabinet matches that of the transmitter.

Modularized silicon rectifiers in power supply mount on inside walls of power supply enclosure for easy access and efficient convection cooling.

of the transmitter to allow installation adjacent to the exciter/control cabinet of the transmitter. The fault-sensing and switchover equipment monitors main exciter/modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Standby Power Kit Optional

Offered for those who expect to operate the transmitter under remote control, once-a-week inspection and "20-percent standby power" requirements, the Standby Power Kit includes spare exciter group described above and input/output switching in the klystron amplifier stages to let visual amplifier #2 substitute for a failed aural amplifier.

Should one of the visual amplifiers fail, the option allows disconnection of it from the power supply to allow continued operation at reduced power.

The option includes fault-detection facilities that identify a failed amplifier via the remote control system to let the transmiter operator perform the correct switching action. Local alarms and switching control are also included.

Plot of transmitter input power vs. output power under two operational conditions.

Typical floor layout for transmitter. Ductwork between heat exchanger and outside wall not supplied unless ordered specifically.

Specifications

Visual Performance

Type of Emission (FCC Designation)
Operating Channel Any channel between 14 and 69 inclusive
Power Output (At filterplexer output)
Output Impedances: Power Amplifier
Video Input: Impedance (Unbalanced)
Carrier Frequency Stability ¹ ±500 Hz
Amplitude vs. Frequency Response: ² Upper Sideband Response Characteristic: Between 0.2 and 4.1 MHz above carrier+0.5, -1 dB At 3.58 MHz above carrier+0, -0.5 dB At 4.75 MHz above carrier20 dB
Lower Sideband Response Characteristic: At 0.5 MHz below carrier
Envelope Delay vs. Frequency: ³ Between 0.2 and 2 MHz ±60 ns At 3.58 MHz ±30 ns At 4.18 MHz ±60 ns
Variation in Frequency Response with Brightness ⁴
Modulation Depth Capability
Amplitude Variation (Over one frame, ref: sync peak) 2%
Output Regulation
Pedestal Level Variation ⁵ 1.5%
Differential Gain ⁶
Low Frequency Linearity
Differential Phase ⁷ ±3°
Subcarrier Amplitude (Color Bars)0.7 dB
Burst vs. Subcarrier Phase (Color Bars) ⁸ ±3°
AM Noise (rms below 100% modulation) ⁹ 50 dB
Harmonic Attenuation ¹⁰

Aural Performance

Type of Emission (FCC Designation)F3
Power Output (At filterplexer input)
Output Impedances: Power Amplifier
Audio Input: Impedance (Balanced)
Carrier Frequency Stability ¹
Intercarrier Frequency Stability ¹¹ ±500 Hz
Modulation Capability
Frequency Response Characteristic (30 Hz to 15 kHz)±1 dB max.
Distortion (30 Hz to 15 kHz)1% max.
FM Noise (Below ±25 kHz deviation)60 dB max.
AM Noise (rms)
Harmonic Attenuation ¹⁰

Environmental

Environmental
Operational Altitude (Max. above sea level)7500 ft. (2286 m) Ambient Operating Temperatures:
At Sea Level 1 to 45°C (34 to 113°F)
At 3300 ft. (1006 m) 1 to 40°C (34 to 104°F)
At 5000 ft. (1524 m)1 to 35°C (34 to 95°F)
At Sea Level 1 to 45°C (34 to 113°F) At 3300 ft. (1006 m) 1 to 40°C (34 to 104°F) At 5000 ft. (1524 m) 1 to 35°C (34 to 95°F) At 7500 ft. (2286 m) 1 to 30°C (34 to 86°F)
Heat Exchanger Air Inlet Temperature
Electrical Requirements
Power Requirements
Line Voltage Regulation 3% max. Variations (Slow or Rapid) ±3% max.
Variations (Slow or Rapid) $\dots \pm 3\%$ max.
Power Factor (Approx.)
Mechanical
Dimensions:
Transmitter
Heat Exchanger
Filterplexer (Frequency
Dependent) 70-74" L, 62-66" D, 40-50" H (1.78-1.88, 1.58-1.68, 1.02-1.27 m)
Beam Supply Transformer (Three used)57" H, 41" W, 33" D (1.45, 1.04, 0.84 m)
Weights of Major Units (Approx.):
Transmitter
Heat Exchanger
Filterplexer
Beam Supply Transformer (each) 1570 lbs. (712 kg)
Shipping Data: Total Weight (Approx.)
Total Volume (Approx.)
¹ Maximum variation for 10 days without circuit adjustment within an am- bient temperature range of 10 to 45°C (50 to 113°F). Meets or exceeds FCC Specs in 1 to 45°C ambient (34 to 113°F).
² With respect to response at visual carrier frequency plus 0.2 MHz as meas- ured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid characteristic. Measured response at filterplexer output.
⁴ Departure from standard curve. Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between color subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing the measure- ment. Minor, multi-lobed delay ripples-originating in the delay network- are excluded from this specification.
⁴ Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 67.5 percent of sync peak. Peak-to-peak modu- lation level adjusted to approximately 20 percent of sync level.
^a Change in blanking level relative to sync peak for change in brightness from all black to all white picture.
*Maximum variation of 3.50 MHz modulation frequency -20 percent p-p nom- inal amplitude-when superimposed on "stairstep" or "ramp" signal ad- justed for brightness excursion of 20 to 75 percent of sync peak.
⁷ Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of succ
peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator.
⁸ Maximum departure from the theoretical when reproducing saturated pri- mary colors and their complements at 75 percent amplitude.
⁹ Hum and noise, 50 Hz to 15 kHz. Extraneous modulation-unrelated to video —above 15 kHz but within the visual passband: 40 db below 100% modulation.
¹⁰ Ratio of any single harmonic to peak visual fundamental power. ¹¹ Maximum variation with respect to separation between aural and visual carriers.
Accessories
Spare Klystron Power Tube (Specify Channel) MI-560407
Spare Solid-State IPA (Specify Channel)
Primary Voltage Regulator (Three Req'd)
Standby Exciter Cabinet Group, Type TTUE-4 ES-560937 Standby Power Option (for 20% Standby Power)On Request
Calledy Fower Option (ior 2078 Standby Fower). On Request

Ordering Information

UHF-TV	Transmitter,	60 kW	Visual,	16kW	Aural,	
Туре	TTULEOC				-	ES-560961

UHF-TV Transmitter 60 kW Visual, 16 kW Aural, Type TTU-60C2

catalog TT.3650B (Replaces TT.3650A)

The TTU-60C2 is a 60-kilowatt UHF-television broadcast transmitter using integral-cavity, vapor-cooled klystrons as aural and visual power amplifiers. The klystrons are fourcavity units arranged for easy interchange when replacement is necessary.

The TTU-60C2 uses four in-line cabinets for the signal-handling and RF-amplifier circuits plus a separate, walk-in enclosure for power-supply components. This increases accessibility to all systems and increases installation flexibility.

A standby exciter/modulator is available as an option in a group which includes fault-sensing and automatic switchover to the standby system.

		0 - 0		
ALC: A				
			A Star Billing	
	Sa an and		We have been a set	
	- A Star - A Star			

• Redundant visual amplifiers

- Vapor-cooled integral-cavity klystrons
- Solid-state exciter/modulator and IPA
- Ready for remote-control operation
- Intermediate-frequency modulation

Transmitter control cabinet at left houses exciter/modulator unit and twin, solid-state intermediate power amplifiers.

This is the fully solid-state exciter/modulator unit.

Connected to an antenna system of suitable power gain, the TTU-60C2 transmitter is capable of an effective radiated power (ERP) of more than two megawatts. The exciter/modulator section is entirely transistorized, using modern solidstate components in an innovative design in both circuitry and packaging. The transmitter features solid-state intermediate power amplifiers, vapor-cooled, fourcavity klystrons (in which the cavities are integral to tube structure), identical auralvisual power stages (redundant visual) and built-in readiness for remote-control operations.

The TTU-60C2 uses a mechanical design that separates the power-supply components from the signal-handling sections (see foor layout). This arrangement increases rear-side access to the transmitter cabinets (even while the transmitter operates) and allows extra installation flexibility as to location of the power-supply components relative to the transmitter circuits. A special switching system—using vacuum switches—disconnects the klystron tubes from the beampower supply individually to isolate a failed klystron without interrupting program transmission.

All exciter/modulator circuits are modularized.

Exciter/modulator functional diagram.

Modular, Solid-State Exciter/Modulator

Modern. solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature-compensated crystals that eliminate the limitations of crystal heaters or ovens and assure on-frequency operation from the moment of turn-on. A spare oscillator module is provided for the pump-generator section of the unit for use in the event of an outage.

Aural and visual modulation takes place at an intermediate frequency and is up-converted to carrier frequency at a 15 watt visual and 5 watt aural power level. The exciter/modulator power output is 4W visual and 800 mW aural (see exciter/modulator block diagram). A separate catalog section on the exciter/modulator is available (see Type TTUE-4).

Solid-State Intermediate PA

The exciter/modulator aural output drives the aural klystron amplifier directly without intermediate amplification. On the visual side, the modulated carrier is split into two separate outputs and routed to two intermediate power ampliers. These are solid-state units, each capable of 10 watts power output. The IPA units are tuned to channel during manufacture and require no readjustment or operating controls. The IPA units operate from a 24 volt, dc power supply housed within the exciter/control cabinet.

Vapor-Cocled Klystrons

The transmitter uses three identical klystrons: one in the aural channel and two in the visual. These are vapor-cooled, four-cavity units of integral-cavity design with a reputation for stability, reliability and long life. The visual klystrons operate

Klystron carriage stores spare klystron safely and securely.

Klystron transfers from crate to carriage quickly and easily.

Transfer from carriage to socket is at table-top height.

Close-up of control cabinet. Exciter/modulator unit at lower left; solid-state IPA units at upper right.

in a diplexed arrangement with each klystron contributing independently to the transmitter power output. The diplex arrangement is such that an outage in either visual amplifier merely reduces transmitter power output. Through an optional co-ax switcher, one of the visual stages can re-

RF by 90 degrees. As a result, the power output from both amplifiers is in phasequadrature. The input circuits of the combiner re-establish the in-phase relationship of the energy.

This arrangement makes any reflected power from the load appear at the two

Built-in switch disconnects individual power amplifier cubicle from operating transmitter.

place a failed aural klystron on a temporary basis while the other visual amplifier serves the visual channel.

With all three klystrons identical, a single spare serves all three amplifiers. And, the fact that aural and visual tubes are interchangeable allows operation of retired visual tubes as aural amplifiers for extended tube life.

Ghost-Cancelling Final Amplifier

The klystron visual amplifiers operate in parallel, each contributing one-half of the visual power output. A line-stretcher device, in the RF drive to Visual Amplifier Number 2, shifts the relative phase of the

klystron outputs with a 90-degree phase difference. When re-reflected toward the load the reflection is shifted another 90 degrees. As a result, the reflected energy appears at the combiner inputs in phase opposition and is dissipated in the combiner's reject load. The end result is, essentially, the elimination of any ghosting effect from reflected power due to load discontinuities.

Easy Klystron Change

Klystron replacement in the TTU-60C2 transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. This is the result of several factors: integral cavities, tilt-down magnet construction, quick-disconnect connections and a tube dolly that carries the entire load of the klystron (see photos).

Stage Isolation Switching Included

Each of the three klystron cabinets includes a "disable switch" that allows effective electrical isolation of that cabinet from the remainder of the transmitter. Operating this switch disconnects the high voltage (through a vacuum relay), automatically adjusts the magnet current and disables the interlocks for that cabinet. A klystron replacement requires closing of a steam-gate valve for that cabinet.

High-Level Sideband Shaping

Sideband shaping and visual/aural diplexing is accomplished at the transmitter output in a hybrid filterplexer. This is a temperature compensated, passive device employing waveguide cavities and sections of coaxial line in the filter portion. It is pretuned during manufacture and requires no operational adjustments. The inputs have a constant impedance over the band of frequencies involved.

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use. The heat exchanger (condenser) removes the latent heat of the steam and dissipates it to outdoor air. A motor-driven pump circulates the condensed water to the storage tank and thence to the klystrons. A standby pump and motor is connected in the system for immediate use in the event of pump system failure. A system of manually operated valves effects the pump changeover. These valves make periodic switchover practical to let both pumps share in the hours of use.

Temperature control of the condensate returning to the klystrons and their mag-

signal-handling sections of transmitter.

Modularized silicon rectifiers in power supply mount on inside walls of power supply enclosure for easy access and efficient convection cooling.

The exciter/modulator is available optionally in a free-standing cabinet for use as a spare exciter/modulator system. The cabinet matches that of the transmitter.

nets contributes to the gain and bandwidth stability of the amplifier stages.

The heat exchanger requires ductwork between it and outdoor air. This ductwork is ordinarily provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The transmitter incorporates an electronic, high-speed, fault protection system capable of removing RF excitation within 20 microseconds in the event of an RFload disturbance. The klystron amplifiers are protected with instantaneous relays which trip on overload and automatically reset unless the overload continues beyond two or three reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation. Front-panel indicator lamps identify specific overloads or other abnormal conditions. These remain lit unti manually reset, even if the overload reset or the fault cleared, to indicate the source of alarm condition.

Optional Spare Exciter Group

For those who want redundancy extended into the exciter/modulator section of the transmitter a spare exciter group is available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing and automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style of the transmitter to allow installation adjacent to the exciter/control cabinet of the transmitter. The fault-sensing and switchover equipment monitors main exciter/modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Standby Power Kit Optional

Offered for those who expect to operate the transmitter under remote control, once-a-week inspection and "20-percent standby power" requirements, the Standby Power Kit includes spare exciter group described above and input/output switching in the klystron amplifier stages to let visual amplifier #2 substitute for a failed aural amplifier.

Should one of the visual amplifiers fail, the option allows disconnection of it from the power supply to allow continued operation at reduced power.

The option includes fault-detection facilities that identify a failed amplifier via the remote control system to let the transmitter operator perform the correct switching action. Local alarms and switching control are also included.

Typical floor layout for transmitter. Ductwork between heat exchanger and outside wall not supplied unless ordered specifically.

Specifications

Visual Performance

visual Performance
Type of Emission (FCC Designation)
Operating Channel Any channel between 14 and 69 inclusive
Power Output (At filterplexer output)
Output Impedances:
Power Amplifier
Filterplexer (6 ¹ / ₈ -inch coaxial connection) 75 ohms
Video Input:
Impedance (Unbalanced)
Level (min., sync positive) 0.7V p-p
Return Loss (60 Hz to 6 MHz) -35 dB
Carrier Frequency Stability ¹ ±500 Hz
Amplitude vs. Frequency Response:2
Upper Sideband Response Characteristic:
Between 0.2 and 4.1 MHz above carrier +0.51 dB
At 3.58 MHz above carrier $+0, -0.5$ dB
At 4.75 MHz above carrier
Lower Sideband Response Characteristic:
At 0.5 MHz below carrier +0, -1.5 dB
At 1.25 MHz below carrier -20 dB
At 3.58 MHz below carrier
Envelope Delay vs. Frequency: ³
Between 0.2 and 2 MHz
At 3.58 MHz ±30 ns At 4.18 MHz ±60 ns
Variation in Frequency Response
with Brightness ⁴
Modulation Depth Capability 5%
Amplitude Variation (Over one frame, ref: sync peak) 2%
Output Regulation 3%
Pedestal Level Variation ⁵ 1.5%
Differential Gainfi 0.75 (D
Differential Gain ⁶ 0.75 dB
Low Frequency Linearity
Differential Phase ⁷ ±3°
Subcarrier Amplitude (Color Bars) 0.7 dB
Burst vs. Subcarrier Phase (Color Bars) ⁸
AM Noise (rms below 100% modulation) ⁹
Harmonic Attenuation ¹⁰
Aural Performance
Type of Emission (FCC Designation)
Power Output (At filterplexer input) 6 to 16 kW

Power Output (At filterplexer input)	6 to 16 kW
Output Impedances:	
Power Amplifier	
Filterplexer	
Audio Input:	
Impedance (Balanced)	
Level (For ±25 kHz deviation)	+10 ±2 dBm
Carrier Frequency Stability ¹	±500 Hz
Intercarrier Frequency Stability ¹¹	±500 Hz
Modulation Capability	
Frequency Response Characteristic	
(30 Hz to 15 kHz)	
Distortion (30 Hz to 15 kHz)	
FM Noise (Below ± 25 kHz deviation)	
AM Noise (rms)	
Harmonic Attenuation ¹⁰	
	and the second second

Environmental

Operational Altitude (Max. above sea level) 7500 ft. (2286 m) Ambient Operating Temperature 1 to 45°C (34 to 113°F) Heat Exchanger Air Inlet

Temperature

Electrical Requirements

Power Requirements	ion)
Line Voltage Regulation	nax.
Line Variations (Slow or Rapid)	nax.
Power Factor (Approx.)	10%

Mechanical

Dimensions: Transmitter ("Front Line") Cabinets 180" L; 45" D; 77" H
(4.57, 1.14, 1.95 m) Heat Exchanger
(2.62, 1.57, 1.14 m) Filterplexer (Frequency Dependent)
(1.78-1.88, 1.58-1.68, 1.02-1.27 m) Power Supply Enclosure
Beam Supply Transformer (2.13, 1.77, 1.95 m)
(Three used)
Weights of Major Units (Approx.): Transmitter ("Front Line" cabinets,
total)
Filterplexer 600 lbs. (272 kg) Power Supply Enclosure 3300 lbs. (1497 kg)
Beam Supply Transformer
Total Weight (Approx.)

¹Maximum variation for 10 days without circuit adjustment within an ambient temperature range of 10 to 45°C (50 to 113°F). Meets or exceeds FCC Spece in 1 to 45°C ambient (34 to 113°F).

²With respect to response at visual carrier frequency plus 0.2 MHz as measured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid characteristic. Measured response at filterplexer output.

^a Departure from standard curve. Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between color subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing the measure-ment. Minor, multi-lobed delay ripples-originating in the delay network-are excluded from this specification.

⁴Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 67.5 percent of sync peak. Peak-to-peak modu-lation level adjusted to approximately 20 percent of sync level.

⁵Change in blanking level relative to sync peak for change in brightness from all black to all white picture.

⁶ Maximum variation of 3.50 MHz modulation frequency -20 percent p-p nom-inal amplitude-when superimposed on "stairstep" or "ramp" signal adjusted for brightness excursion of 20 to 75 percent of sync peak.

⁷ Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator.

⁸ Maximum departure from the theoretical when reproducing saturated primary colors and their complements at 75 percent amplitude.

⁹Hum and noise, 50 Hz to 15 kHz. Extraneous modulation-unrelated to video -above 15 kHz but within the visual passband: 40 dB below 100% modulation.

¹⁰Ratio of any single harmonic to peak visual fundamental power.

¹¹Maximum variation with respect to separation between aural and visual carriers.

Accessories

Spare Klystron Power Tube (Specify Channel) MI-560407
Spare Solid-State IPA (Specify Channel No.) MI-560899
Primary Voltage Regulator (Three req'd if used) MI-560493
Standby Exciter Cabinet Group, Type TTUE-4 ES-560937
Standby Power Option (for 20% Standby Power) on Request

Ordering Information

UHF-TV Transmitter,	60	kW	Visual	16	kW	Aural	
Type TTU-60C2			· · · · · · · · · · · · · · · · · · ·				ES-560961

catalog TT.3700A (Replaces B.5046)

UHF-TV Transmitter, 110 kW Visual, 24 kW Aural, Type TTU-110B

The TTU-110B is a 110-kilowatt UHF-Television transmitter using integral-cavity klystrons as aural and visual power amplifiers. The klystrons are five cavity units arranged for easy interchange when replacement is necessary.

The TTU-110B uses four front-line cabinets and a rear walk-in enclosure for the transmitter power supply and switching components with external filterplexer, heat exchanger and unitized beam-voltage supplies. The ensemble is designed for convenient accessibility to all functions.

A standby exciter/modulator is available in a group which includes fault sensing and automatic switchover to the standby system.

	0 • 0	
The second		
Provide and		
		a safe on the
State State	and the second	

- Redundant visual amplifiers
- Vapor-cooled, integral-cavity klystrons
- Solid-state exciter/modulator
- Ready for remote-control operation
- Intermediate-frequency modulation

Connected to an antenna of suitable power gain, the TTU-110B transmitter is capable of an effective radiated power (ERP) of 5 megawatts. The exciter/ modulator section is entirely transistorized, using modern, solid-state components in an innovative design in both circuitry and packaging. The transmitter features vaporcooled, five-cavity klystrons (in which the cavities are integral to the tube structure), identical aural and visual power stages (redundant visual) and built-in readiness for remote control operation.

The TTU-110B uses high-gain fivecavity klystrons which operate at full output with the RF drive from the exciter/modulator aural and visual outputs. This extra power gain avoids the need for intermediate power amplifiers in the visual channel which, in turn, results in reduced transmitter complexity and increased transmitter reliability.

Modular, Solid-State Exciter/Modulator

Modern, solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature-compensated crystals that eliminate the limitations of crystal heaters or ovens and assure on-frequency operation from the moment of turn-on. A spare oscillator module is provided for the pump-generator section for use in the event of an outage.

Aural and visual modulation takes place at an intermediate frequency and is up-converted to carrier frequency at a 15-watt visual and a 5-watt aural power level. As a result of the high level of upconversion, the exciter/modulator produces output levels of 4W visual and 800mW aural without linear amplification (see exciter/modulator block diagram). A separate catalog section is available on the exciter/modulator (see Type TTUE-4).

Vapor Cooled Klystrons

The transmitter uses three identical klystrons: one in the aural channel and two in the visual. These are vapor-cooled, five-cavity units of integral-cavity design with a reputation for stability, reliability and long life. The visual klystrons operate in a diplexed arrangement with each klystron contributing independently to transmitter output. The diplex arrangement is such that an outage in either visual amplifier merely reduces transmitter power output. Through the optional addition of coaxial switching, one of the visual stages can replace a failed aural klystron temporarily while the other visual amplifier serves the visual channel.

Exciter/modulator control panel.

With all three klystrons identical, a single spare serves all three amplifiers. And, the fact that aural and visual tubes are interchangeable allows operation of retired visual tubes as aural amplifiers for extended tube life.

Ghost Cancelling Final Amplifier

The klystron visual amplifiers operate in parallel, each contributing one-half of the visual power output. The length of the transmission line from each amplifier to the waveguide hybrid combiner is selected so that the power from the two is in phase quadrature for proper combining. A line stretcher is provided in the RF drive to visual amplifier number 2 to precisely establish this relationship.

As a result of this arrangement, any reflected power from transmitter load discontinuities will be divided in the combiner and re-reflected from the klystron output. In this process, the divided reflected power is subjected to relative phase shifts due to the differences in electrical line lengths so that the two halves appear in phase opposition in the combiner and are dissipated in the combiner reject load. Thus any ghosting effect due to load discontinuities is virtually eliminated.

Easy Klystron Change

Klystron replacement in the transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. This is the result of several factors: integral cavities, tilt-down magnet construction, quick-disconnect connections and a tube dolly that carries the entire load of the klystron.

High-Level Sideband Shaping

Sideband shaping and visual/aural diplexing is accomplished at the transmitter output in a waveguide filterplexer. This is a temperature-compensated, passive device, pre-tuned during manufacture and requiring no operational adjustment. The input ports have a constant impedance over the band of frequencies involved. Due to its inherent high power capability, the waveguide filterplexer requires no gassing or pressurization. Free convection cooling is accomplished by the special cavity-fin design, requiring no blowers. (See separate catalog section on waveguide filterplexer.)

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use. The heat exchanger (condenser) removes the latent heat of the steam and dissipates it to outdoor air. A motordriven pump circulates the condensed water to the storage tank and thence to the klystrons. A standby pump and motor is connected in the system for immediate use in the event of pump system failure. A system of manually operated valves effects pump changeover. These valves make periodic switchover practical to let both pumps share in the hours of use.

The condensate returning to the klystrons and their magnets is temperature controlled. The resulting temperature stabilization of the magnets and klystrons cavities contributes substantially to the gain and bandwidth stability of the power amplifier stages.

Ductwork required between the heat exchanger and outdoor air is normally provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The transmitter incorporates an electronic, high-speed fault protection system capable of removing RF excitation within 20 microseconds in the event of an RF load disturbance. The klystron amplifiers are protected by instantaneous relays which trip on overload and automatically reset unless the overload continues beyond three reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation. Front-panel indicator lamps identify specific overloads or other abnormal conditions. These remain lit until manually reset, even if the overload or the fault cleared, to indicate the source of alarm condition.

Optional Spare Exciter Group

For additional redundancy and increased system reliability, a spare exciter group is available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing, automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style of the transmitter for installation adjacent to the exciter/control cabinet of the transmitter. The fault-sensing and switchover equipment monitors main exciter/modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Klystron Power Supply

The klystron power supply for the TTU-110B Transmitter consists of two unitized power supply units, operating

Functional diagram: transmitter system.

from a 440/460/480-volt, three-phase primary power source. Each unit contains the power transformer, rectifier units, filter reactor and a-c snubbing networks in an oil-filled tank. The diode rectifier stacks are mounted in modular form, one for each phase, with access through a port at the top of the tank. The power supply units are for outdoor installation and are identical except for the transformers. One has a delta-delta and the other a delta-wye primary winding. The output voltages are in parallel in normal operation, but a switching system is provided to operate the transmitter at reduced power from a single supply.

Transmitter system needs only 800 square feet (74m³) of floor area with 12-foot (3.7m) headroom.

Specifications

Visual Performance

Type of Emission (FCC Designation)
Operating Channel Any channel between 14 and 69 inclusive
Power Output (At filterplexer output)
Output Impedances:
Power Amplifier
Filterplexer (6 ¹ / ₈ -inch coaxial connection)
Video Input: Impedance (Unbalanced)
Level (min., sync positive)
Return Loss (60 Hz to 6 MHz) -35 dB
Carrier Frequency Stability ¹ ±500 Hz
Amplitude vs. Frequency Response: ²
Upper Sideband Response Characteristic:
Between 0.2 and 4.1 MHz above carrier +0.5, -1 dB
At 3.58 MHz above carrier+0, -0.5 dB At 4.75 MHz above carrier
Lower Sideband Response Characteristic: At 0.5 MHz below carrier+0, -1.5 dB
At 1.25 MHz below carrier
At 3.58 MHz below carrier
Envelope Delay vs. Frequency: ³
Between 0.2 and 2 MHz ±60 ns
At 3.58 MHz
At 4.18 MHz
Variation in Frequency Response with Brightness ⁴
Modulation Depth Capability
Amplitude Variation (Over one frame, ref: sync peak)
Output Regulation
Pedestal Level Variation ⁵ 1.5%
Differential Gain ⁶ 0.75 dB
Low Frequency Linearity 1 dB
Differential Phase ⁷
Subcarrier Amplitude (Color Bars) ⁸
Burst vs. Subcarrier Phase (Color Bars) ⁸
AM Noise (rms below 100% modulation) ⁹
Harmonic Attenuation ¹⁰
Aural Performance
Type of Emission (FCC Designation)F3
Type of Emission (FCC Designation) F3 Power Output (At filterplexer input) 12 to 24 kW
Power Output (At filterplexer input)
Power Output (At filterplexer input)
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer75 ohms
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: 50 ohms
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: 600/150 ohms
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: Impedance (Balanced) Level (For ±25 kHz deviation) +10 ±2 dBm
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer75 ohmsAudio Input: Impedance (Balanced)600/150 ohms Level (For ± 25 kHz deviation)Level (For ± 25 kHz deviation) $+10 \pm 2$ dBmCarrier Frequency Stability1 ± 500 Hz
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer75 ohmsAudio Input: Impedance (Balanced) $600/150$ ohms Level (For ±25 kHz deviation)Level (For ±25 kHz deviation) $+10 \pm 2$ dBmCarrier Frequency Stability1 ± 500 HzIntercarrier Frequency Stability11 ± 500 Hz
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: Impedance (Balanced) Impedance (Balanced) 600/150 ohms Level (For ±25 kHz deviation) +10 ±2 dBm Carrier Frequency Stability1 ±500 Hz Intercarrier Frequency Stability11 ±500 Hz Modulation Capability ±50 kHz
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: Impedance (Balanced) Impedance (Balanced) 600/150 ohms Level (For ±25 kHz deviation) +10 ±2 dBm Carrier Frequency Stability1 ±500 Hz Intercarrier Frequency Stability11 ±500 Hz Modulation Capability ±50 kHz Frequency Response Characteristic ±50 kHz
Power Output (At filterplexer input) 12 to 24 kW Output Impedances: 50 ohms Power Amplifier 50 ohms Filterplexer 75 ohms Audio Input: Impedance (Balanced) Impedance (Balanced) 600/150 ohms Level (For ±25 kHz deviation) +10 ±2 dBm Carrier Frequency Stability1 ±500 Hz Intercarrier Frequency Stability11 ±500 Hz Modulation Capability ±50 kHz Frequency Response Characteristic (30 Hz to 15 kHz) ±1 dB max.
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer50 ohmsAudio Input: Impedance (Balanced)600/150 ohmsLevel (For ± 25 kHz deviation) $+10 \pm 2$ dBmCarrier Frequency Stability1 ± 500 HzIntercarrier Frequency Stability11 ± 500 HzModulation Capability ± 50 kHzFrequency Response Characteristic (30 Hz to 15 kHz) ± 1 dB max.Distortion (30 Hz to 15 kHz)1% max.
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer75 ohmsAudio Input: Impedance (Balanced)600/150 ohms ±00/150 ohms Level (For ± 25 kHz deviation)Carrier Frequency Stability1 ± 500 HzIntercarrier Frequency Stability11 ± 500 HzModulation Capability ± 50 kHzFrequency Response Characteristic (30 Hz to 15 kHz) ± 1 dB max.Distortion (30 Hz to 15 kHz)1% max.FM Noise (Below ± 25 kHz deviation) -60 dB max.
Power Output (At filterplexer input)12 to 24 kWOutput Impedances: Power Amplifier50 ohmsFilterplexer50 ohmsAudio Input: Impedance (Balanced)600/150 ohmsLevel (For ± 25 kHz deviation) $+10 \pm 2$ dBmCarrier Frequency Stability1 ± 500 HzIntercarrier Frequency Stability11 ± 500 HzModulation Capability ± 50 kHzFrequency Response Characteristic (30 Hz to 15 kHz) ± 1 dB max.Distortion (30 Hz to 15 kHz)1% max.

Environmental Operational Altitude (Max, above sea level) ... 7500 ft. (2286 m) Ambient Operating Temperatures:1 to 45°C (34 to 113°F) At Sea Level At 3300 ft. (1006 m)1 to 40°C (34 to 104°F) At 5000 ft. (1524 m)1 to 35°C (34 to 95°F) At 7500 ft. (2286 m) 1 to 30°C (34 to 86°F) Heat Exchanger Air Inlet Electrical Requirements Power Requriements 440/460/480V, 60 Hz, 3-phase 475 kW (Approx.) (Three- or four-wire connection) Variations (Slow or Rapid)±3% max. Mechanical Dimensions: Filterplexer (Frequency Dependent) 214" L; 140" D; 26" H (5.44, 3.56, 0.66 m) Beam Current Supply (Two Used) 48" L; 43" D; 85" H (1.22, 1.09, 2.16 m) Weights (Approx.):14,350 lbs. (6510 kg) Transmitter
 Heat Exchanger
 2,100 lbs.
 (953 kg)

 Filterplexer
 1,200 lbs.
 (544 kg)
 Shipping Data:
 Total Weight (Approx.)
 36,900 lbs.
 (16,738 kg)

 Total Volume (Approx.)
 2612 ft³ (74 m³)
 ¹Maximum variation for 10 days without circuit adjustment within an am-bient temperature range of 10 to 45°C (50 to 113°F). Meets or exceeds FCC Specs in 1 to 45°C ambient (34 to 113°F). ²With respect to response at visual carrier frequency plus 0.2 MHz as meas-ured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid-characteristic. Measured response at filterplexer output. at mid-characteristic. Measured response at filterplexer output. ³ Departure from standard curve. Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between color subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing the measure-ment. Minor, multi-lobed delay ripples-originating in the delay network-are excluded from this specification. ⁴ Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 67.5 percent of sync peak. Peak-to-peak modu-lation level adjusted to approximately 20 percent of sync level. ⁵Change in blanking level relative to sync peak for change in brightness from all black to all white picture. ⁶ Maximum variation of 3.58 MHz modulation frequency -20 percent p-p nom-inal amplitude-when superimposed on "stairstep" or "ramp" signal ad-justed for brightness excursion of 20 to 75 percent of sync peak. ⁷ Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-modulation indicated on a conventional diode demodulator. ⁸Maximum departure from the theoretical when reproducing saturated pri-mary colors and their complements at 75 percent amplitude. ^D Hum and noise, 50 Hz to 15 kHz. Extraneous modulation-unrelated to video —above 15 kHz but within the visual passband: 40 dB below 100% modulation. ¹⁰ Ratio of any single harmonic to peak visual fundamental power. ¹¹Maximum variation with respect to separation between aural and visual carriers. Accessories

Spare Klystron Power Tube (Specify Channel) MI-560569 Primary Voltage Regulator (Three reg'd if used) ... MI-560571 Standby Exciter Cabinet Group, Type TTUE-4 ES-560937 Standby Power Option (for 20% Standby Power) ... On Request **Ordering Information**

UHF-TV Transmitter, 110 kW Visual, 24 kW Aural,

catalog TT.3800B (Replaces TT.3800A)

UHF TV Transmitter, 165kW Visual, 26kW Aural, Type TTU-165C

The TTU-165C is a 165 kilowatt UHF-Television broadcast transmitter capable of producing an effective omnidirectional radiated power of 5 megawatts with an antenna system of practical gain.

The TTU-165C uses integral fivecavity vapor cooled klystrons with an established record of stability and long life. The transmitter is entirely solid-state except for the power amplifier klystrons. The visual power amplifier consists of three klystrons, each contributing independently to the power output by means of a triplexing system. The aural power amplifier is a single klystron, identical to those used as visual power amplifiers.

- Redundant, triplexed visual amplifiers
- Vapor-cooled, integral cavity klystrons
- Solid-state exciter/modulator and IPA
- Ready for remote control operation
- Intermediate-frequency modulation

			0 0
ueu -			
	Carlos Andrews	Contraction of the second	
Marian States	All and a state		Philip States
	State State		and the second second

The TTU-165C uses five in-line cabinets for the signal handling and RF amplifier circuits, and a rear walk-in enclosure for power supply and switching components. This arrangement provides maximum cooling of components and easy access for maintenance.

Modular, Solid-State Exciter/Modulator

Modern, solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature compensated crystals that eliminate the necessity for heaters or ovens

and assure on-frequency operation without warm-up. A spare oscillator module is provided for the pump-generator section of the exciter.

Aural and visual modulation takes place at an intermediate frequency and is upconverted to carrier frequency at a 15 watt visual and 5 watt aural power level. Because of this high level of up-conversion, the exciter/modulator produces output levels of 4 watts visual and 0.8 watts aural without linear amplification. (See exciter/modulator block diagram). A separate catalog section on the exciter/modulator is available (see Type TTUE-4).

Solid-State Intermediate PA

The exciter/modulator aural output drives the aural klystron amplifier directly without intermediate power amplification. The visual output is routed to a solid-state intermediate power amplifier in which the signal is amplified to a 10-watt level. The output of the IPA is split into three equal signal paths to drive each of the three visual power amplifier klystrons. (See functional diagram). The IPA is tuned to the specified channel during manufacture and requires no adjustment or operating controls. It operates from a 24-volt d.c. power supply which is a part of the exciter-control cabinet.

exciter/modulator.

Vapor-Cooled Klystrons

The transmitter uses four identical klystrons; one in the aural channel and three in the visual. These are vaporcooled, high-gain, five-cavity units of integral cavity design. The three visual klystrons operate in a triplex arrangement with each klystron contributing independently to the transmitter power output. The peak power output of each visual klystron is 55 kilowatts. The power output from the first two visual klystrons is combined in a waveguide hybrid diplexer to produce a power of 110 kilowatts. This power is then combined with the power from the third visual klystron

in a 4.8 dB waveguide combiner to produce a power output of 165 kW. This arrangement is such that a failure of any visual amplifier results in only a power output reduction, and not a loss of the visual signal. By the addition of an optional coaxial switching system, one of the visual amplifiers may be used in aural service in the event of an aural amplifier failure

With all klystrons identical, a single spare serves all four amplifiers and, because aural and visual tubes are interchangeable, retired visual tubes may be used in aural service for extended tube life.

Ghost Cancelling Final Amplifier

A line stretcher device is incorporated in the RF drive to the visual #2 amplifier, for proper phasing of the output to the first visual combiner. A second line stretcher is provided in the RF drive to the visual #3 amplifier, for proper phasing of its output to the second combiner. The characteristics of the combining system are such that the two inputs to each combiner are in phase quadrature, with the in-phase relationship re-established at the combiner output.

This arrangement has the advantage that any power reflected from the transmitter load is divided in the RF combiner,

Exciter/modulator functional diagram.

and each part subjected to a relative phase shift in being re-reflected from the power amplifier outputs, so that they appear in phase opposition at the combiner and are dissipated in the reject load. The result is essentially the elimination of any ghosting effect caused by reflected power from a load mismatch.

Easy Klystron Change

Klystron replacement in the TTU-165C transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. This is the result of several factors: integral cavities, tilt-down magnet construction, quick-disconnect connections and a tube dolly that carries the entire load of the klystron.

Unitized Beam Power Supplies

The klystron power supply for the TTU-165C Transmitter consists of three unitized power supply units, operating from a 440/460/480 volt, 60 Hz, three-phase primary. Each unit contains the power transformer, rectifier stacks, filter reactor and a-c snubbing networks in an oil-filled tank. The diode stacks are mounted in modular form, one for each phase, with access through a port at the top of the tank.

The power supply units are designed

for outdoor installation and are identical. Two of the three unitized supplies are connected in a delta-delta configuration and the third is switchable between either a delta-delta or a delta-wye configuration. When the third supply is operated in delta-wye and the other two supplies are disconnected, a reduced beam voltage is produced to facilitate initial klystron tuning.

The power supplies normally operate in parallel, but a switching system is provided to operate the transmitter at reduced power from a one- or two-supply configuration. The filter capacitors for the high-voltage supply are located in the transmitter rear enclosure.

handling sections of the transmitter.

This is the spare exciter group offered as an option (Door removed to reveal exciter unit). The group includes faultsensing and automatic switchover facilities. See text.

High Level Sideband Shaping

Visual sideband shaping and visual/ aural diplexing is accomplished at the transmitter output in a waveguide filterplexer. This is a temperature compensated, passive device, pretuned during manufacture and requiring no operational adjustments. The inputs are designed to have a constant impedance over the band of frequencies produced. (See separate catalog description of waveguide filterplexer.)

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use.

The TTU-165C cooling system consists of two identical heat exchangers, each equipped with two steam coils and a water coil. A low-velocity air system is utilized for minimum noise. A spare, on-line water pump is incorporated in the water system,

With door closed, the exciter group appears as shown here.

with provision for quick changeover. Protection against excessive pressure or surges is provided by pressure regulators and a pump bypass.

The condensate returning to the klystrons and their magnets is temperature controlled. The resulting temperature stabilization of the magnets and klystron cavities contributes substantially to the gain and bandwidth stability of the power amplifier stages.

Ductwork required from the heat exchangers to the outdoor air is normally provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The TTU-165C transmitter incorporates an electronic, high-speed, fault-protection system capable of removing RF excitation within 20 microseconds in the event of an RF load disturbance. The klystron amplifiers are protected by instantaneous relays which trip on overload and automatically reset unless the overload continues beyond three reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation. Front panel indicator lamps are provided to identify specific overload or other off-normal conditions. These indicators remain lit until manually reset, even if the overload has reset and the fault cleared, to indicate the source of alarm condition.

Optional Spare Exciter Group

For additional redundancy and increased system reliability a spare exciter group is

Typical floor layout for transmitter. Ductwork between heat exchangers and outside wall not supplied unless ordered specifically.

available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing and automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style of the transmitter for installation adjacent to the exciter-control cabinet of the transmitter. The fault-sensing and switchover equipment monitors the main exciter/ modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Standby Power Option

This option expands the transmitter facility to meet the requirements for "20percent standby power" and once-a-week inspection when the transmitter is operated via remote control. It includes the spare exciter group option described above, which provides continuity of service in the event of failure of the main exciter.

Klystron input and output RF switching permits the visual #3 amplifier to be substituted for a failed aural amplifier. In

the event of failure of one of the redundant visual amplifiers, the failed stage can be disconnected from the power supply and operation continued at reduced power using the remaining two visual power amplifiers.

Fault-detection circuits are included to provide remote identification of a failed amplifier, enabling the remote operator to initiate the correct switching action. Local alarms and switching control are also provided.

Visual Performance		
Type of Emission (FCC Designation)		A5
Operating Channel Any channel between 14 and 69	inclus	ive
Power Output (At filterplexer output)	. 165	kW
Output Impedances:		
Power Amplifier	75 oh	ms
Filterplexer	Note	12
Video Input:	75	
Impedance (unbalanced)	15 01	ims n-n
Level (min., sync positive) Return Loss (60 Hz to 6 MHz)	35	dB
	-500 I	H71
Carrier Frequency Stability	_300 1	12-
Amplitude vs. Frequency Response: ² Upper Sideband Response Characteristic:		
Between 0.2 and 4.1 MHz above carrier +.0	5 _1	dB
At 3.58 MHz above carrier +0,	0.5	dB
At 4.75 MHz above carrier	-20	dB
Lower Sideband Response Characteristic:		
At 0.5 MHz below carrier $\dots +0$,	-1.5	dB
At 1.25 MHz below carrier	. –20	dB
At 3.58 MHz below carrier	42	dB
Envelope Delay vs. Frequency:3		
Between 0.2 and 2 MHz	±60	ns
At 3.58 MHz At 4.18 MHz		ns
Variation in Frequency Response	00	115
with Brightness ⁴	+1.5	dB
Modulation Depth Capability		5%
Amplitude Variation (over one frame, ref. sync peak)		2%
Output Regulation		
Pedestal Level Variation ⁵		
Differential Gain ⁶	0.75	dB
Low Frequency Linearity		
Differential Phase ⁷		+3°
Subcarrier Amplitude (Color Bars)		
Burst vs. Subcarrier Phase (Color Bars) ⁸		
Durst vs. Dubcarrier mase (Dolor Dars).		_

AM Noise (rms below 100% modulation) ⁹
Aural Performance Type of Emission (FCC Designation)
Output Impedances: Power Amplifier
Audio Input: Impedance (balanced)
Carrier Frequency Stability1±500 HzIntercarrier Frequency Stability11±500 HzModulation Capability±50 kHz
Frequency Response Characteristic (30 Hz - 15 kHz) ±1 dB Distortion (30 Hz to 15 kHz) 1% FM Noise (Below ±25 kHz deviation) -60 dB AM Noise (rms) -50 dB Harmonic Attenuation ¹⁰ -60 dB
Environmental Operational Altitude (Max. above sea level) 7500 ft. (2286m) Ambient Operating Temperature 1 to 45°C (34 to 113°F) Heat Exchanger Inlet Temperature 10 to 45°C (50 to 113°F)
Electrical Requirements Power Requirements 440/460/480V, 60 Hz, 3-phase, 705 kW (Approx.) (Three- or four-wire connection) Line Voltage Regulation 3% max. Slow Line Variations ±3% max. Rapid Line Variations ±3% max. Power Factor (Approx.) 90%
(Continued on next page)

Mechanical

Dimensions:

Transmitter

- Cabinet 242" L; 105" D; 77" H (6.15, 2.66, 1.95m) Heat Exchanger (Each) 149" L; 86" D; 96" H (3.8, 2.2, 2.4m) Filterplexer 228" L; 140" D; 36" H (5.8, 3.6, 0.91m) Beam Power Supply
- (Each) 74" x 43" x 86" (1.9, 1.1, 2.2m) Weights:
- Transmitter16,800 lbs. (7620 kg)Heat Exchanger (Each, Approx.)1800 lbs. (816 kg)Filterplexer (Approx.)1200 lbs. (544 kg)Beam Power Supply (Each, Approx.)6700 lbs. (3039 kg)

Shipping Data:

- Total Weight
 48,000 lbs.
 (21773 kg)

 Total Volume
 3,160 ft.3 (42m3)
- ¹ Maximum variation for 10 days without circuit adjustment within an ambient temperature range of 10 to 45°C. Meets or exceeds FCC Specs in 1 to 45°C ambient.
- ²With respect to response at visual carrier frequency plus 0.2 MHz as measured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid-characteristic. Measured response at filterplexer output.
- ^a Departure from standard curve, Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing measurement. Minor, multi-lobed delay ripples-originating in the correction network-are excluded from this specification.
- *Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 65% of sync peak. Peak-to-peak modulation level adjusted to approximately 20 percent of sync level.

- ⁶Change in blanking level relative to sync peak for change in brightness from all black to all white picture.
- "Max, variation of 3.58 MHz mod, frequency-20 percent p-p nominal amplitude-when superimposed on "stairstep" or "ramp" signal adjusted for brightness excursion of 20 to 75 percent of sync peak.
- Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator.
- *Maximum departure from the theoretical when reproducing saturated primary colors and their complements at 75 percent amplitude.
- "Hum and noise, 50 Hz to 15 kHz. Extraneous modulation—unrelated to video —above 15 kHz but within the visual passband: 40 dB below 100% modulation.
- ¹⁰Ratio of any single harmonic to peak visual fundamental power.
- ¹¹ Maximum variation with respect to separation between aural and visual carriers.
- ¹²Output of visual diplexers and filterplexer are waveguide. Transition to co-ax line may be selected as required.

Accessories

Standby Exciter Cabinet Group, Type TTUE-4	ES-560937
Primary Voltage Regulator (Three Required, if used)	On Request
Spare Klystron Power Tube	•
(Please specify channel) Spare Solid-State IPA (Please specify channel)	MI-561569 MI-560899
Video Delay Equalizer, Type TTS-1	

Ordering Information

UHF-TV Transmitter, 165 kW Visual, 26 kW Aural,

Type TTU-165C	ES-560950
---------------	-----------

UHF TV Transmitter, 220kW Visual 24kW Aural, Type TTU-220C

The TTU-220C is a 220-kilowatt UHF-Television broadcast transmitter capable of producing an effective omnidirectional radiated power of 5 megawatts with an antenna system of practical gain.

The TTU-220C uses integral fivecavity vapor cooled klystrons with an established record of stability and long life. The transmitter is entirely solid-state except for the power amplifier klystrons. The visual power amplifier consists of four klystrons, each contributing independently to the power output by means of a quadruplex system. The aural power amplifier is a single klystron, identical to those used as visual power amplifiers.

- Redundant, quadruplexed, visual amplifiers
- Vapor-cooled, integral-cavity klystrons
- Solid-state exciter/modulator and IPA
- Ready for remote control operation
- Intermediate frequency modulation

			8066666 9		0 === 0
200		March Ser Pi			
38.6 Carrie			UNSIGN SER		Sel 15 Balling
	BELLY BRANK		The set Rives	A State State	
		Sale and the	a line line	Service States	States Land
					A SA COM
	Large Law				
	And the second		A PR SEL	and the second	

catalog TT.3900B

(Replaces TT.3900A)

The TTU-220C uses six in-line cabinets for the signal handling and RF amplifier circuits, and a rear walk-in enclosure for power supply and switching components. This arrangement provides maximum cooling of components and easy access for maintenance.

Modular, Solid-State Exciter/Modulator

Modern, solid-state circuitry in the exciter/modulator unit combines reliability with operating ease. The oscillators use temperature compensated crystals that eliminate the necessity for heaters or ovens

and assure on-frequency operation without warm-up. A spare oscillator module is provided for the pump-generator section of the exciter.

Aural and visual modulation takes place at an intermediate frequency and is upconverted to carrier frequency at a 15 watt visual and 5 watt aural power level. Because of this high level of up-conversion, the exciter/modulator produces output levels of 4 watts visual and 0.8 watts aural without linear amplification. (See exciter/modulator block diagram), A separate catalog section on the exciter/modulator is available (see Type TTUE-4).

Solid-State Intermediate PA

The exciter/modulator aural output drives the aural klystron amplifier directly without intermediate power amplification. The visual output is routed to a solid-state intermediate power amplifier in which the signal is amplified to a 10-watt level. The output of the IPA is split into four equal signal paths to drive each of the four visual power amplifier klystrons. (See functional diagram). The IPA is tuned to the specified channel during manufacture and requires no adjustment or operating controls. It operates from a 24-volt (dc) power supply which is a part of the exciter-control cabinet.

Vapor-Cooled Klystrons

The transmitter uses five identical klystrons; one in the aural channel and four in the visual. These are vaporcooled, high-gain, five-cavity units of integral cavity design. The four visual klystrons operate in a quadruplex arrangement with each klystron contributing independently to transmitter power output. The peak power output of each visual klystron is 55 kilowatts. The power from each pair of visual klystrons is combined in a waveguide hybrid diplexer to produce a power outputs are then combined to produce a 220 kW power output. This arrangement is such that a failure of any visual amplifier results in only a power reduction, not a loss of the visual signal.

With the addition of an optional coaxial switching system, one of the visual amplifiers may be used in aural service in the event of an aural amplifier failure.

With all klystrons identical, a single spare serves all five amplifiers, and because aural and visual tubes are interchangeable, retired visual tubes may be used in aural service for extended tube life.

Ghost Cancelling Final Amplifier

A line stretcher device is incorporated

in the RF drive to one of each pair of visual amplifiers for phasing of the output to the first visual combiners. Another line stretcher is provided in the RF drive to the second pair of visual amplifiers, so that these are driven in phase quadrature with the first pair. The in-phase relationship is re-established at the final combiner output.

This arrangement has the advantage that any power reflected from the transmitter load is divided in the RF combiner, and each part subjected to a relative phase shift in being re-reflected from the power amplifier outputs, so that they appear in phase opposition at the combiner and are

The five-cavity, vapor-cooled klystron.

Exciter/modulator functional diagram.

dissipated in the reject load. The result is essentially the elimination of any ghosting effect caused by reflected power from a load mismatch.

Easy Klystron Change

Klystron replacement in the TTU-220C transmitter is accomplished easily by one man, working alone, in a matter of a few minutes. This is the result of several factors: integral cavities, tilt-down magnet construction, quick-disconnect connections and a tube dolly that carries the entire load of the klystron.

Unitized Beam Power Supplies

The Klystron Power Supply for the

TTU-220C Transmitter consists of four unitized power supply units, operating from a 440/460/480 volt, 60 Hz, threephase primary. Each unit contains the power transformer, rectifier stacks, filter reactor and a-c snubbing networks in an oil-filled tank. The diode stacks are mounted in modular form, one for each phase, with access through a port at the top of the tank.

The power supply units are designed for outdoor installation and are identical. Three of the four unitized supplies are connected in a delta-delta configuration and the fourth is switchable between a delta-delta or a delta-wye configuration. When the fourth supply is operated in delta-wye and the other three supplies are disconnected, a reduced beam voltage is produced to facilitate initial klystron tuning.

The power supplies normally operate in parallel but, a switching system is provided to operate the transmitter at reduced power from a two or three supply configuration. The filter capacitors for the high-voltage supply are located in the transmitter rear enclosure.

High Level Sideband Shaping

Visual sideband shaping and visual/ aural diplexing is accomplished at the

signal-handling sections of the transmitter.

This is the spare exciter group offered as an option (Door removed to reveal exciter unit). The group includes faultsensing and automatic switchover facilities. See text.

transmitter output in a waveguide filterplexer. This is a temperature compensated, passive device, pretuned during manufacture and requiring no operational adjustments. The inputs are designed to have a constant impedance over the band of frequencies produced. (See separate catalog description of waveguide filterplexer.)

Efficient Klystron Cooling

Klystron cooling is accomplished with the conversion of water to steam which is, in turn, condensed back to water for re-use.

The TTU-220C cooling system consists of two identical heat exchangers, each equipped with two steam coils and a water coil. A low-velocity air system is utilized for minimum noise. A spare, on-line water pump is incorporated in the water system, with provision for quick changeover. Pro-

With door closed, the exciter group appears as shown here.

tection against excessive pressure or surges is provided by pressure regulators and a pump bypass.

The condensate returning to the klystrons and their magnets is temperature controlled. The resulting temperature stabilization of the magnets and klystron cavities contributes substantially to the gain and bandwidth stability of the power amplifier stages.

Ductwork required from the heat exchangers to the outdoor air is normally provided by the purchaser unless specifically ordered from RCA.

High-Speed Fault Protection

The transmitter incorporates an electronic, high-speed fault-protection system capable of removing RF excitation within 20 microseconds in the event of an RF load disturbance. The klystron amplifiers are protected by instantaneous relays which trip on overload and automatically reset unless the overload continues beyond three reset cycles. Excessive water inlet temperature, excessive klystron body temperature and inordinate magnet current are sensed as indicators of faulty operation. Front panel indicator lamps are provided to identify specific overload or other offnormal conditions. These indicators remain lit until manually reset, even if the overload has reset and the fault cleared, to indicate the source of alarm condition.

Optional Spare Exciter Group

For additional redundancy and increased

Typical floor layout for transmitter. Ductwork between heat exchanger and outside wall not supplied unless ordered specifically.

system reliability a spare exciter group is available as an extra-cost option. This group consists of a free-standing cabinet containing an exciter/modulator unit, fault-sensing and automatic switchover equipment and an exciter/modulator power supply. The cabinet matches the style of the transmitter for installation adjacent to the exciter-control cabinet of the transmitter (see floor layout). The fault-sensing and switchover equipment monitors the main exciter/modulator output and, in the event of outage, automatically switches over to the spare exciter/modulator system.

Standby Power Option

This option expands the transmitter facility to meet the requirements for "20percent standby power" and once-a-week inspection when the transmitter is operated via remote control. It includes the spare exciter group option described above, which provides continuity of service in the event of failure of the main exciter.

Klystron input and output RF switching

permits visual #4 amplifier to be substituted for a failed aural amplifier. In the event of failure of one of the redundant visual amplifiers, the failed stage can be disconnected from the power supply and operation continued at reduced power with the remaining two power amplifiers.

Fault-detection circuits are included to provide remote identification of a failed amplifier, enabling the remote operator to initiate the correct switching action. Local alarms and switching control are also provided.

Specifications

Visual Performance
Type of Emission (FCC Designation)
Operating Channel Any channel between 14 and 69 inclusive
Power Output (At filterplexer output)
Output Impedances:
Power Amplifier
Filterplexer
Video Input:
Impedance (unbalanced)
Level (min., sync positive) 0.7V p-p
Return Loss (60 Hz to 6 MHz)
Carrier Frequency Stability±500 Hz1
Amplitude vs. Frequency Response:2
Upper Sideband Response Characteristic:
Between 0.2 and 4.1 MHz above carrier +0.05, -1 dB
At 3.58 MHz above carrier
Lower Sideband Response Characteristic:
At 0.5 MHz below carrier
At 1.25 MHz below carrier
At 3.58 MHz below carrier
Envelope Delay vs. Frequency: ³
Between 0.2 and 2 MHz
At 3.58 MHz
At 4.18 MHz±60 ns
Variation in Frequency Response
with Brightness ⁴
Modulation Depth Capability
Amplitude Variation (over one frame, ref. sync peak) 2%
Output Regulation
Pedestal Level Variation ⁵
Differential Gain ⁶ 0.75 dB

Low Frequency Linearity
Subcarrier Amplitude (Color Bars)
Burst vs. Subcarrier Phase (Color Bars) ⁸ ±3°
AM Noise (rms below 100% modulation) ⁹
Harmonic Attenuation ¹⁰
Aural Performance
Type of Emission (FCC Designation)
Power Output (At filterplexer input)
Output Impedances:
Power Amplifier
Filterplexer
Audio Input:
Impedance (balanced)
Level (for ± 25 kHz deviation) $\dots + 10 \pm 2$ dBm
Carrier Frequency Stability ¹
Intercarrier Frequency Stability ¹¹ ±500 Hz
Modulation Capability
Frequency Response Characteristic (30 Hz - 15 kHz) ±1 dB
Distortion (30 Hz to 15 kHz)
FM Noise (Below ±25 kHz deviation)60 dB
AM Noise (rms)
Harmonic Attenuation ¹⁰
Environmental
Operational Altitude (Max. above sea level)7500 ft. (2286m)
Ambient Operating Temperature 1 to 45°C (34 to 113°F)
Heat Exchanger Inlet
Temperature

(Continued on next page)

Electrical Requirements

	440/460/480V, 60 Hz, 3-phase,
850 kW (Approx.) (Three- or four-wire connection)
Line Voltage Regulation	
	±3% max.
•	±3% max.
Power Factor (Approx.)	

Mechanical

Dimensions:
Transmitter
Cabinet
Heat Exchanger (Each) 149" L: 86" D: 96" H (3.8. 2.2. 2.4m)
Filterplexer 228" L; 140" D; 36" H (5.8, 3.6, 0.91m)
Beam Power Transformers
(Each)
Weights:
Transmitter
Heat Exchanger (Each, Approx.)
Filterplexer (Approx.)
Beam Power Supply (Each, Approx.) 6700 lbs. (3039 kg)
Shipping Data:
Total Weight
Total Volume

¹Maximum variation for 10 days without circuit adjustment within an ambient temperature range of 10 to 45°C. Meets or exceeds FCC Specs in 1 to 45°C ambient.

ambient. ² With respect to response at visual carrier frequency plus 0.2 MHz as meas-ured with RCA BWU-5C Sideband Response Analyzer. Transmitter operating at mid-characteristic. Measured response at filterplexer output. ³ Departure from standard curve, Tolerances vary linearly between 2.1 MHz and color subcarrier frequency and between subcarrier frequency and upper sideband limit. A properly terminated phase-correction network is required in the video input of the transmitter while performing measurement. Minor, multi-lobed delay ripples-originating in the correction network-are excluded from this specification.

⁴Maximum change with response at mid-characteristic when measured to brightness levels of 22.5 and 65% of sync peak. Peak-to-peak modulation level adjusted to approximately 20 percent of sync level.

^a Change in blanking level relative to sync peak for change in brightness from all black to all white picture.

⁶Max. variation of 3.58 MHz mod, frequency-20 percent p-p nominal ampli-tude-when superimposed on "stairstep" or "ramp" signal adjusted for brightness excursion of 20 to 75 percent of sync peak.

Drightness excursion of 20 to 75 percent of sync percent.
⁷ Maximum phase difference with respect to burst, measured following the sideband filter, for any brightness level between 75 and 15 percent of sync peak using 10 percent, p-p modulation. This is equivalent to 5 percent p-p modulation indicated on a conventional diode demodulator.

*Maximum departure from the theoretical when reproducing saturated pri-mary colors and their complements at 75 percent amplitude.

*Hum and noise, 50 Hz to 15 kHz. Extraneous modulation—unrelated to video above 15 kHz but within the visual passband: 40 dB below 100% modulation.

¹⁰ Ratio of any single harmonic to peak visual fundamental power.

 $^{\rm II}\,\text{Maximum}$ variation with respect to separation between aural and visual carriers.

2°Output of visual diplexers and filterplexer are waveguide. Transition to co-ax line selected as required.

Accessories

Standy Exciter Cabinet Group, Type TTUE-4	ES-560937
Primary Voltage Regulator (Three Required, if used)	On Request
Spare Klystron Power Tube (Please specify channel)	MI-561569
Spare Solid-State IPA (Please specify channel)	
Video Delay Equalizer, Type TTS-1	MI-560503

Ordering Information

UHF-TV Transmitter, 220 kW Visual, 24 kW Aural Type TTU-220 ES-560975

UHF-TV Solid-State Exciter-Modulator, Type TTUE-4A

- Full 4-watt visual, 0.8-watt aural output
- Temperature-compensated crystal oscillators
- Modularized plug-in construction
- Comprehensive metering and monitoring system
- Unexcelled performance specifications
- Modern, state-of-the-art components and design
- Modulation at IF with high-level up-conversion

The TTUE-4A UHF Television Exciter-Modulator, an integral part of all new RCA UHF Television Transmitters, represents an entirely new and original design approach. It incorporates modern design techniques and state-of-the-art components to provide a new standard of performance and reliability.

Advanced technology has been applied to the design of the TTUE-4A wherever a definite advantage can be utilized. An advanced method of IF modulation is employed. The visual and aural modulators always operate at 45.75 and 50.25 MHz respectively, regardless of final output frequency. Final frequency is achieved by up-conversion of the modulated IF signals with an RF "pump" frequency chain. Up-conversion occurs at the 15-watt visual, 5-watt aural level resulting in RF carrier frequency output signals of 4 watts visual and 0.8 watt aural.

The TTUE-4A Exciter uses a new idea in packaging. Each of the basic circuit functions is contained on an individual circuit module. These plug into "mother boards" which are, in turn, mounted in drawers such as the one shown here. Each is keyed to prevent insertion of a module into any but the correct connector.

Modularized Construction

A new concept in exciter-modulator packaging was developed for the TTUE-4A consisting of a main frame with the modularized circuits housed in four vertical, slide-out drawers. By sliding each drawer forward, the associated modules are exposed for visual examination and test without removal from service or use of an extender board. The plug-in modules employ matched-impedance, edgeboard connectors with an inlaid gold contact design for high reliability and long life. Connectors are keyed to prevent insertion of a module into any but the correct connector.

Integrated Circuits and FET Devices

Junction field-effect transistors are used in an active IF filter, in which any component can be replaced without the requirement for realignment. Integrated circuits are utilized in a unique, untuned FM chain. The use of a dual-gate, field-effect transistor in the visual modulator results in an extremely simple, highly stable and reliable circuit.

Constant impedance, RF stripline circuits are used extensively, to avoid the problems of reliability usually associated with coaxial cables and connectors. Printed-circuit radio-frequency coils are used in the IF power amplifiers, assuring high reliability.

Metal film resistors, used throughout the equipment, achieve a high-reliability, low aging rate and precise temperaturecoefficient control.

The exciter-modulator, although only a small part of the complete television transmitter, is where the picture and sound quality is established. The TTUE-4A Exciter-Modulator offers the high-precision performance, stability, and dependability required in this important function.

Separate Power Supply

The TTUE-4A UHF TV Exciter- Modulator consists of two main units; the Exciter-Modulator and the Power Supply unit.

The exciter is divided into five basic sections: Aural Processing, Video Processing, Visual IF Generation, RF Generation and Power Control and Monitoring.

The exciter control and monitoring circuits are contained in the control-andmeter panel drawer in the upper portion of the exciter main frame assembly. The remainder of the exciter circuits are located on the four vertical pull-out drawers located directly below the control and meter panel.

Individual Circuit Board Modules

Each of the basic circuit functions of the aural processing section, the video processing section, and the visual IF section is contained on an individual circuit board module. In addition, the first three stages of the RF section, as well as all of the voltage regulators in the power control and monitoring section are contained on individual modules. These modules are plugged into connectors located on "mother boards", or connector modules. These connector modules are mounted in three of the vertical drawers with the RF pump circuitry mounted in the remaining drawer.

No Crystal Heaters or Ovens

Temperature compensated crystal oscillators (TCXO) are employed in the visual and aural IF sections and as a frequency source for the RF pump chain. The use of the TCXO eliminates the requirement for crystal heaters or ovens and assures immediate on-frequency operation from a cold start. It maintains operating specifications for long periods of time, even when the equipment is cycled over the ambient temperature range of 0° to 45° C.

Convenient Metering System

A comprehensive metering system enables observation of the operating condition of each module and circuit function individually. A nine position function switch selects the circuit function to be metered and a 10 position selector switch provides metering from individual circuits associated with the selected function. Because of the unique and functional mechanical arrangement, each module is accessible without the use of module extenders.

Regulator on Each Connector Module

The Power Supply furnishes unregulated dc voltages to the various circuits. Each circuit incorporates a voltage-regulator, and, through connector wiring, automatically supplies correct regulated voltages. There are only two types of regulator cards, one for positive voltages and another for negative.

Circuit Description

Aural Processing Section

The audio is amplified, processed, and applied to a series of five modulators. Each modulator consists of a saw-tooth generator and pulse former, the latter fed from a square-wave output of the aural TCXO. The output of each modulator consists of a series of time-positioned, modulated pulses, in accordance with the audio input signal. The four succeeding modulators raise the phase shift to a value required to produce the desired deviation.

The output of the fifth modulator drives a univibrator which produces a square wave varying, in time, with the modulated input pulse rate. This square wave is fed to an integrator, followed by three frequency-doubler circuits. The output of the third doubler is routed through the filter which produces (at its output) a modulated sine-wave at 10.05 MHz. This is applied to a frequency quintupler, providing the aural output frequency of 50.25 MHz. This signal is applied, through a buffer amplifier, to the broadband IF amplifier, which supplies the frequency modulated signal to the aural up-converter.

Visual Processing Section

The video signal is amplified by a differential amplifier and routed to a driver amplifier through the video-gain control. The output of the driver amplifier feeds a differential-gain driver.

A sample of the incoming video signal is applied to the clamp-pulse generator, which generates a pulse coincident with the trailing edge of sync. This clamp pulse is applied to the video clamp amplifier where it develops a bias level for application to the differential-gain driver: The clamp pulse assures that pedestal level remains at a constant amplitude independent of video. The clamped video signal then goes through two separate differential-gain correctors and a differential-phase corrector, to the video-output amplifier.

Visual IF Section

The basic visual IF frequency of 45.75 MHz is generated by the visual-carrier TCXO, and is applied through a buffer amplifier and a two-stage broadband am-

plifier to become one of two inputs to the visual modulator. The other input is supplied by the video-output amplifier described above. The resultant amplitudemodulated, IF signal is routed through the active filter and linearly amplified to a level suitable to drive the visual upconverter.

RF Section

The pump TCNO produces the fundamental frequency from which the UHF drive is produced. The exact TCNO frequency depends on the operating channel. The TCXO signal is amplified and frequency multiplied to the final pump frequency. This is the carrier frequency minus the IF frequency. It is applied to the aural and visual up-converters through a directional coupler and circulators to produce the final aural- and visual-UHF output signals. The pump RF power is maintained at a constant level by means of a power sensor (which constantly samples the power level), an automatic level control circuit, and a pin-diode attenuator. Visual power output is 4 watts (peak of sync) and 0.8 watts aural.

For Retrofit or Spare-Exciter Duty

The TTUE-4A Exciter-Modulator, and its companion Power Supply, are an integral part of current RCA UHF Television Transmitters. The TTUE-4A is available for retrofit into previous transmitter types, replacing the original tubetype aural and visual exciter in transmitter types such as the Type TTU-30A, TTU-50C, TTU-60A and TTU-110A. The complete retrofit equipment incorporates the TTUE-4A Exciter-Modulator plus installation material and instructions.

A Spare Exciter Cabinet Group is also available to provide complete exciter redundancy. The spare exciter, with its associated sensing, switchover, and metering circuitry, is mounted in a matching cabinet, which may be installed adjacent to the exciter and control cabinet of the RCA transmitters listed above. The spare exciter cabinet provides automatic switchover to the spare exciter in event of a fault. It also may be switched manually or by means of a remote-control system. It can be used in conjunction with either a tube-type exciter or another TTUE-4A as the main exciter unit.

Solid-State Exciter/Modulator Block Diagram.

Specifications

Frequency Range470-806 MHz (U.S. Ch. 14-69) Power Output:
Visual
RF Output Impedance
Input Impedance:
Visual
Aural (balanced or unbalanced)150/600 ohms
Input Level:
Visual0.7 V p-p min.
Aural+10 \pm 2 dBm
Frequency Response:
Visual±0.25 dB –1 MHz to 5.0 MHz (200 kHz Ref.)
Aural60-3,000 Hz, ±0.5 dB; 30-15,000 Hz, ±1.0 dB
Audio Distortion (30-15,000 Hz)1% Max.
Ambient Temperature0° to 45° C
Altitude, Operating
Modulation Capability:
Visual
Aural±50 kHz max.
Differential Phase
Differential Gain
U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.

Frequency Stability: Visual Carrier Aural Carrier Intercarrier FM Noise (Below ±25 kHz)	Better than ± 0.5 ppm Better than ± 500 Hz
AM Noise:	
Visual (Below 100% modulation)	
Aural (Below carrier)	
Power Requirement	
Dimensions: Exciter Modulator Unit	.18¾″ W x 28½″ H x 12″ D (476, 724, 305 mm)
Power Supply Unit	.19" W x 10½" H x 105%" D
	(483 267 270 mm)
Cabinet	H; 30″ D (559, 1956, 762 mm)
Weights (Approx.);	
Exciter/Modulator Unit	
Power Supply Unit	
Cabineted System	
Ordering Information	
UHE-TV Retrofit Exciter-Modulator	Type TTUE 44.

UHF-IV Retrofit Exciter-Modulator, Type TTUE-4A:	
(For TTU-30, TTU-50, TTU-60,	
TTU-110 UHF Transmitters)	ES-560938
Spare Exciter Cabinet Group, Type TTUE-4	ES-560937

Planning TV Transmitter Remote Control

- The needs and equipment of TV remote control
- Wireless or telco-line coupled systems
- Test signals and test equipment
- Functional diagrams of typical systems

On the pages following, you'll find information valuable in setting up a remote-control system for a television transmitter: the requirements, the equipment, the operation and maintenance of a system. Included also are functional diagrams of typical systems.

Planning of remote control facilities for a television transmitter should be based on a careful review of the specific needs of the individual station. After careful analysis of applicable FCC regulations, a logical first step would be to contact your RCA broadcast field sales representative. You will find that he is qualified to assist in planning remote control facilities for current model RCA television transmitters. Exact equipment requirements will vary with the type of television transmitter to be controlled. The following information is intended to provide an introduction to TV transmitter remote control systems rather than a specific equipment list for any one type transmitter or station.

Equipment required for television transmitter remote control includes not only the remote control units but also equipment for remote monitoring of the visual and aural signals and for generation of vertical interval test signals in accordance with applicable regulations.

A brief description of the requirements of each family of equipment is provided in the following paragraphs.

Remote Control System

This is the equipment which handles the basic command functions for operation of the transmitter and the means of returning the necessary metering and alarm signals. The regulations require a sufficient number of remote control functions to perform all transmitter adjustments normally required on a daily basis to assure strict compliance with the technical requirements of the FCC rules. Remote metering is required for all parameters which must be entered in the TV transmitter operating log. Means are required for determining that any required obstruction lighting of the antenna and supporting tower is operating normally.

Fail-safe protection is required to assure that any fault or failure which results in loss of control will cause the transmitter to cease operation. Loss of metering of any of the parameters which are required for transmitter logging must activate an automatic device which will terminate operation of the transmitter not more than one hour after the loss.

Individual stations may wish to provide more control and metering functions than the minimum required. For this reason, and to allow for added functions that may be desired in the future, it is recommended that provision be made for spare control and metering functions.

Interconnection between the transmitter and remote control point is available by a choice of methods. Fig. 1 is a simplified block diagram of a Moseley Type DRS-1 30-function remote control system with interconnection between the studio and transmitter by means of a voice quality telephone circuit. A maximum of 20 dB of line attenuation is allowable between the transmitter and remote control location.

Fig. 2 is a block diagram showing interconnection by means of a TV microwave STL link from the remote control point to the transmitter. A separate audio subcarrier modulator and demodulator are required in the TV microwave system to carry the audio control tones to the transmitter site. Metering and alarm signals are returned to the remote control point by means of a subcarrier on the aural channel of the TV transmitter. The audio tones representing the telemetry information are modulated on a 39 kHz subcarrier and applied to the TV aural transmitter along with aural program. The subcarrier generator is a part of the Type DRS-1 Transmitter Control Unit. At the remote control point, the subcarrier is recovered from the transmitted aural signal at the output of an off-air multiplex receiver containing a subcarrier demodulator. The recovered telemetry information is then applied to the Type DRS-1 Studio Control Unit.

The wireless interconnection system has the obvious disadvantage that metering and status information is unavailable in the event of failure of the TV aural transmitter or, after sign-off. On the other hand, in some transmitter locations it may be difficult to obtain a telephone circuit with sufficient reliability for transmitter remote control purposes, and in this case wireless interconnection will be preferred.

For parallel TV transmitters, consideration should be given to the use of duplicate remote control systems and telephone lines for 100% redundance of the control system as well as the transmitter. An alternate method of achieving system redundancy would be to have one control system interconnected by wire line and another by TV relay and aural channel subcarrier.

Automatic Logging (Optional)

Automatic logging equipment increases the benefits of remote control of the television transmitter by relieving the studio operating personnel of the manual logging task except for observation of the VIT signals and logging of the observations. In the event that automatic loging is provided, the functions which must be logged are the same as those which must be logged in a manually operated transmitter. Automatic tolerance alarms must be provided for those parameters which are subject to tolerance limitations in accordance with FCC regulations, i.e., visual output power and aural final amplifier plate voltage and current. Transmitter visual and aural carrier frequency need only be measured once each calendar month with not more than 40 days between measurements. Frequency measurements need not be alarmed if logged manually. If logged automatically, they must be alarmed.

Fig. 3 shows a Type DLS-1 Automatic Logging System and a Type TAU-2 Tolerance Alarm Unit used in conjunction with a Type DRS-1 Status Alarm System to provide 24 status or alarm channels which may be used to report any abnormal condition which can be initiated with a contact closure. LED (light-emittingdiode) indicators, at both transmitter and studio sites, indicate an alarm condition on any channel.

The automatic logging equipment uses a separate FSK tone signal to transmit metering and alarm information to the remote control location where the logged digital information is printed in columnar form on an electric typewriter. Logging is initiated at preset intervals by a clock system. The digital control, telemetry and logging signals are combined for transmission over a common telephone line between the DRS-1 Studio and Transmitter Control units.

If preferred, a microwave STL audio channel may be used for the transmission of control information to the transmitter site and a 39 kHz subcarrier on the aural transmitter for the transmission of the telemetry, logging and status information to the studio site, similar to the system depicted in Fig. 2.

Remote Monitoring Equipment

A block diagram indicating the monitoring equipment items required at the remote control location is shown in Fig. 5. A type-approved aural modulation monitor is required with continuous indication of peak and guasi-peak percentage of modulation of the aural signal. Equipment for measuring aural and visual frequency is not required if a hired frequency-measuring service is used and the results of these measurements recorded in the maintenance log at the required intervals. An aural and visual carrier-frequency monitor, located at either the studio or transmitter site, is usually considered desirable. Aural modulation monitors and frequency monitors are available with sufficient sensitivity for off-air monitoring of the transmitted

Fig. 1. Remote Control Via Voice-Quality Telephone Wire Line.

Fig. 2. Control Via Microwave and Metering Via Aural Subcarrier.

Fig. 3. Remote Control, Automatic Logging and Status Reporting Via Voice-Quality Telephone Wire Line.

signal. Older monitors intended for use at the transmitter location may not have sufficient RF gain for off-air monitoring service. An audio amplifier and loudspeaker are needed for aural monitoring of the received audio signal.

An off-air visual demodulator is required at the remote control location to permit continuous monitoring of the waveform and other characteristics of the transmitted visual signal. As a practical requirement, a separate visual demodulator is needed at the transmitter site for use in making measurements of transmitter performance and for making transmitter setup adjustments.

A video waveform monitor is required for continuous monitoring of the transmitted visual signal. This monitor must be capable of both full field displays and displays of test signals inserted on selected lines in the vertical blanking interval. In addition a vectorscope is required if any portion of the transmission is in color. A picture monitor is recommended for a visual display of the received signal. A color monitor should be provided if color program material is transmitted. It is suggested that both a monochrome and a color picture monitor be provided if space permits.

Vertical Interval Test Generating Equipment

The FCC rules governing remote control require that a series of test signals be generated and inserted in the vertical interval of the visual signal at the remote control point in the feed to the transmitter. The signal must be observed at the remote control point after extraction from the received RF signal. This signal is normally obtained at the output of the off-air visual demodulator and viewed on a video waveform monitor and vectorscope (see *Monitoring Equipment*).

The required test signals consist of multiburst on Field 1, Line 18, color bars on Field 2, Line 18 and a composite signal on Field 1, Line 19. The composite signal contains a stair step with superimposed color subcarrier frequency, a 2T sine squared pulse, a 12.5T sine squared pulse and white bar. Normally the composite signal is also fed to Field 2, Line 19 at the remote control point. However, FCC regulations permit insertion of the composite test signal of field 2 to be inserted at the transmitter to provide a comparison of the degradation of the signal caused by the microwave up-link against that contributed by the transmitter. Alternatively, a licensee may insert any suitable test signal on Field 2, Line 19, either at the transmitter or at the remote control point.

Fig. 4. Vertical Interval Test Signal Generating System.

The alternate test signal should have approximately the same APL as the composite test signal.

A block diagram of a representative vertical interval test signal generating system is shown in Figure 4. The composite video output signal from Studio Master Control is fed to a Tektronix Model 149A Option 01 television signal generator. This unit genlocks to the incoming signal and is capable of deleting an incoming VITS signal. It inserts all of the required test signals. In the event that the composite test signal of Field 2 is inserted at the transmitter input, a second Tektronix 149A Option 01 signal generator is needed at the transmitter location. The monitoring equipment required for observation of the vertical interval test signal at the remote control point is described above under Remote Monitoring Equipment.

Digital Remote Control System, Moseley Model DRS-1

Here is a totally digital control, telemetry, and status-alarm system for remote control of television transmitters. The building-block design permits initial installation of a basic system and expansion at a later date. Interconnection between the studio and transmitter site may be a voice quality telephone line, or an STL Microwave audio channel for control and a TV-aural subcarrier for telemetry return. Use of the optional Type BRF-1 TV Failsafe Unit makes the DRS-1 System fully compliant with the FCC Rules for remote control.

- Digital control and telemetry
- Channel capability: 30 channels
- 24 independent status channels
- Automatic logging option
- Wire line or RF subcarrier interconnect

The DRS-1 Digital System has a capability of 30 metering channels and 30 control (30 on/raise; 30 off/lower) channels. The system is composed of a Transmitter Control Terminal and three 10-channel Selector Units at the TV transmitter site, and a Studio Control Terminal at the studio site. A 24-channel status/alarm system is available which is activated by an external contact closure for each channel, providing a separate LED status indication at both the transmitter and studio site. The status/alarm information is sent to the studio along with the telemetry information as a segment of the digital telemetry. The telemetry and status information is updated every 250 milliseconds.

The DRS-1 System is available as a basic 10-channel telemetry and control system, to which additional selector units may be added to increase the capacity in 10-channel increments to the maximum of 30 channels. The status/alarm system also may be added to the remote control system if not required initially.

Digital Command and Telemetry

Selection of the desired control and telemetry channel is accomplished by a two digit thumbwheel selector on the front panel of the Studio Control Terminal. Once the desired channel is selected, a digital display of the metered parameter associated with that channel appears in the readout window. Depressing the raise or lower pushbutton then accomplishes the command function assigned to that channel. Simultaneously, a duplicate digital readout of the parameter value sent to the Studio Control Terminal is displayed at the Transmitter Control Terminal.

Local control of the command and telemetry functions at the transmitter location is accomplished through the local control pushbutton at the Transmitter Control Terminal. This activates the channelselect thumbwheels and control of the raise/lower functions on the Transmitter Control Terminal. This feature permits easy, one-man calibration of the system from the transmitter site.

When local contral is in effect, the

raise/lower pushbuttons at the Studio Control Terminal are inoperative, however, the telemetry readout corresponding to the channel selected at the Transmitter Control Terminal is displayed on the Studio Control Terminal. The operator verifies the channel being displayed by pressing the "Channel Echo" pushbutton, which makes the channel number appear in the readout window. Upon release of this pushbutton, the numeric display of the metered parameter will reappear. A visual indication is provided at the Studio Control Terminal by means of the control override lamp, to indicate that the Transmitter Control Terminal has assumed local control.

The telemetry system samples and transmits the selected parameter at intervals of 250 milliseconds. Integrity of transmission is assured through repeated parity checks of the digital telemetry pulses. The accuracy of the telemetry system is 0.1 percent.

Each telemtery input is isolated and floating, and is bipolar with a minus sign preceding the numeric display for reversepolarity input voltages. A one-volt d-c input produces a full scale (999) display with 100% over-range capability (2 volts d-c for a 1999 display).

Failsafe Operation

The DRS-1 includes protection against the loss of command or telemetry information caused by a failure in the system or an interruption of the transmission facility.

The loss of command data is sensed by failsafe circuitry in the Transmitter Control Terminal at the TV transmitter site. After a delay of 20 seconds, to provide protection against momentary interruptions, relay contacts open which, connected in series with the transmitter interlock circuits, remove the transmitter from the air.

Similarly, any loss of telemetry data is sensed at the Studio Terminal, and this information is sent to the Transmitter Terminal as part of the command data. Relay contacts operate in the Transmitter Terminal which initiate a one-hour, integrated circuit timer in the Type BRF-1 TV Failsafe Unit (see "Accessories"). When this timer fully cycles, the TV transmitter turns off. If the telemetry information is restored before the timer fully cycles, it automatically resets and normal operation resumes.

Wire Line or Subcarrier Service

The DRS-1 Remote Control system is available for operation over a voice grade telephone line or, for utilizing an STL microwave program subcarrier channel for the transmission of command signals to the transmitter, and a 39 kHz subcarrier on the TV aural carrier for telemetry return. In the latter case, the required 39 kHz subcarrier generator and detector are provided as subassemblies which are a part of the DRS-1 System. The 39 kHz SCA output of an aural modulation monitor at the TV studio may be used to feed the Studio Control Terminal for telemetry.

Status/Alarm System

The 24-channel Status System may be ordered with the Remote Control System, or added later to an existing system. The Status System reports any status, fault, or alarm condition that can be initiated by a contact closure to the Status System. A Light Emitting Diode (LED) indicator, for each channel at both the remote (transmitter) and control (studio) terminal, indicates off-normal conditions. Each channel is latched-on when activated until the condition reported is normal and the "Clear" pushbutton is depressed.

Power for the DRS-1 Status System comes from the Remote Control terminal at each location. The status information is transmitted as a part of the digital telemetry information.

Tolerance Alarms

The Type TAU-2 Tolerance Alarm Unit is used in conjunction with the DRS-1 Status System, or the DLS-1 Automatic Parameter Logging System described below, to permit the simultaneous monitoring of up to 10 selected metering samples, and actuating an alarm when the monitored parameter is above or below preset limits. The unit is normally located at the transmitter site, con-

This is the transmitter control unit of the system. It requires only 3.5 inches (89 mm) of rack space.

This is one of three selector units that operate at the transmitter end of the system. It uses only 1.75 inches (44 mm) of rack space.

This is the transmitter unit of the optional Status/Alarm system. It provides 24 channels of monitoring. Indicators are light-emitting diodes.

sists of a main frame unit and from one to ten plug-in modules, depending on the number of parameters to be monitored and alarmed. An out-of-tolerance condition is displayed visually and, when interfaced with the DLS-1 Status System, is indicated on the control terminal at the studio.

DLS-1 Automatic Parameter Logging

The DLS-1 Automatic Parameter Logging system works with the DLS-1 Remote Control to provide hard-copy logging of 20 selected parameters plus time of entry at preselected intervals. The copy is in the time-proven columnar format The time interval between logging entries may be programmed from 10 minutes to 3 hours.

Used in conjunction with the Type TAU-2 Tolerance Alarm unit, a parameter that is out of tolerance initiates an immediate print-out with the out-oftolerance parameter printed in red color for extra contrast.

The DLS-1 Parameter Logging System consists of a Logging Transmitter Termi-

nal, a Logging Receiver and an output writer. The logging data is transmitted over the same transmission facility as that used for the DRS-1 Remote Control, without additional subcarrier modem equipment.

TV Transmitter Interface

A comprehensive selection of components and devices is available to meet almost any requirement to interface a TV Transmitter to the remote control system. (See separate catalog section for Remote Control Accessories.)

Specifications

Remote Control System, Moseley Model DRS-1
Telemetry Channels
Control Channels (each with on/raise,
off/lower function)
Telemetry Accuracy
Telemetry Input Voltage (for 999 dispaly)1.0 Vdc
Telemetry Update Interval
Command Output (Raise/Lower)Relay Contact Closure; (50W Non-Inductive Load)
Interconnection Requirements:
Telephone Line
Radio Circuit:
Control Separate STL Audio Channel
TelemetryTV Aural Subcarrier, 39 KHz Failsafe:
Control
Telemetry Used with BRF-1 TV Failsafe
(Meets FCC Rules 73.676)
Power Requirements

Specifications

Status System, Moseley Model DRS-1

Status Channels	Status
Input Requirements (each channel)Contact Closure	Input
Response Time	Respo
Indicator LED for each channel	Indicat
Power Requirements	Power
Remote Control System	

Specifications

Automatic Parameter Logging, Moseley Model DLS-1 Type
Channels
Interconnection Requirement Uses modem in DRS-1 Remote Control System
Accuracy ±0.1%
Input
Power Requirements 120/240V, 50-60 Hz, 125W
Accessories
TV Failsafe Unit, Type BRF-1MI-561484
TV Failsafe Interface Panel MI-561192
Tolerance Alarm Unit Main Frame, Type TAU-2 MI-561469
Comparator Module for TAU-2 MI-561184
Tower Light Sensing Kit, Type TLK-2 MI-561462-A
Line Voltage Sampling Kit, Type LVK-2 MI-561463-A
Temperature Sensing Kit, Type TSK-3 MI-561465-A
DC Amplifier and Linear Converter,
Type PLC-1
Relay, DPDT, 24V DC Coil, with socket MI-561448-1
Relay, DPDT, 120V AC Coil, with socket MI-561448-2
Relay, Latching, DPDT, 24V DC Coil,
with socket
Relay, Time Delay, 24Vdc Coil,
0.1 to 2.0 seconds delay
Ordering Information
Digital Remote Control System Moseley Model DRS-1 (Specify for 10, 20, or 30 control and telemetry chanels.) Status System Option

Remote Control System, Moseley Type DCS-2

- Digital data transmission and readout
- Fail-safe design—expandable control and metering
- Multiple status/alarm channels
- Parameter logging optional
- Computer display optional
- Two-site transmitter control optional

catalog TT.5400A

Moseley Associates' Type DCS-2 is a remote-control system for television transmitters. It uses advanced, state-of-the-art digital and computer principles with anticipation of the need for future expansion. The basic system expands from 60 to 120 remote-control functions and from 30 to 60 status-alarm channels. The DCS-2 basic system includes control, telemetry and status indications. It expands to include automatic parameter logging through options. Full digital techniques and circuitry result in operational accuracy and stability. The DCS-2 uses three levels of digital encoding, including parity, to assure transmission integrity. A special feature of an DCS-2 system is the accommodation of two remote

terminals. This is particularly useful in situations where one remote control system operates two transmitters at separated locations.

Capable of totally automated operation, the DCS-2 Digital Remote Control System uses state-of-the-art digital and computer electronic devices. The system offers an expandable approach to the operation of a transmitter plant via remote control. Several levels of capability are available. The first level includes the basic hardware for a fully operative system; the second involves additional hardware to increase the number of control, telemetry and status channels. The third level includes the addition of automatic parameter logging or a computer option which provides a cathode-ray display of telemetry or status parameters along with hard copy and tolerance alarms,

Of particular note is the fact that adding the computer option to the basic system sacrifices none of the operational attributes of the basic system. In the event of an outage in the equipment in the computer option, the basic system operation is unaffected and operates normally under manual control.

The DCS-2 system encompasses control and telemetry capabilities plus status indications. Automatic parameter logging facilities are available optionally in two forms: one with a teleprinter and the other, through a computer.

The DCS-2 uses digital and computer electronics devices and design to assure accuracy and stability. Three levels of digital encoding, including parity, must be satisfied which, in turn, assures transmission integrity. A DCS-2 system accommodates two separate control points with the addition of a second control terminal.

Basic, Three-Unit System

Equipment provided for the basic DCS-2 system consists of a Control Terminal, Remote Terminal, and Selector Unit. This hardware provides telemetry and control. as well as status functions. Channel selection is easily accommodated via a centrally located keyboard. Telemetry information is displayed as a full, four-digit number. A programmable decimal point can be added to each display. Additionally, most standard identification units may be pre-programmed to appear as part of the display (kV, Hz, A, %,etc.). As the system is bipolar, a minus sign appears when appropriate. Provisions are included for independent control and telemetry fail-safe functions as required in the FCC Rules.

Thirty telemetry channels are provided by the DCS-2. Associated with each telemetry channel is a "raise/on", as well as a "lower/off" command function. Each of these command outputs is an isolated, dry-contact closure. The system capabilities described here apply to each transmitter site controlled by the DCS-2.

Each telemetry input accepts a dc sample voltage representing the parameter under scrutiny. These inputs are floating and bipolar. All telemetry inputs are sampled, sequentially, every 1.8 seconds and their data sent to the studio for display. When an actual command function is activated, the telemetry associated with that channel is then interlaced, resulting in an update of the display on the control terminal unit once every 200 milliseconds. A separate function on the system enables the fast updating of any selected channel without the actual activation of a command.

Calibration potentiometers are provided on each telemetry input and enable exact system calibration. Since a digital parameter display is also a part of the remote terminal, one-man calibration of the system is possible. Provisions are incorporated in the remote terminal for acceptance of an external "BCD" input.

Data Connections

In the design of the DCS-2 system, careful consideration was given to the requirements placed on the interconnecting link between the studio and transmitter. This system utilizes either radio or telephone circuits. For the maximum in system reliability, the DCS-2 provides, as standard equipment, automatic switching between main and alternate interconnecting links. As a result, a telephone circuit m ght serve as the main link, with an RF subcarrier system for backup. Actual command and telemetry functions are transmitted as audio frequency-shift signals. Data mocems are included in the terminals. As a precaution against errors the system uses three levels of encoding, including parity.

Status Subsystem

The status subsystem included in the DCS-2 enables exact duplication at the studio of a change-of-state at the transmitter site. Thirty such indications are provided as standard equipment. Expansion is possible to 60 channels from each transmitter site. This subsystem functions separately from the control system.

The data is returned to the studio as a segment of the digital word used for telemetry return. Each channel of the status subsystem in encoded from normally open external contacts. The input is also compatible with TTL logic level signals. At the studio unit, individual LED indicators are provided, as well as a duplicate display at the remote terminal unit. Each channel at the studio may activate external relays, lamps, or other indicating devices through extension.

Direct Command Channel

Included in the DCS-2 system is a singlechannel, dedicated-command function not directly associated with the keyboardselected control channels. This directcommand channel is activated with a toggle switch on the control terminal unit panel, or by parallel terminals on the rear panel for local extension of this function. At the remote terminal, a corresponding output is provided, which can be used to energize an external 24Vdc relay. Possible uses for this direct command channel include emergency program switching, activating an alerting device, or for any often-performed command operation.

System Capability

The DCS-2 system provides several levels of system capability which may be selected to meet the immediate and future requirements of the remote-control transmitter plant. The first level provides basic hardware for a fully operative system, consisting of thirty telemetry channels, 60 control channels, providing 30 on/raise and 30 off/lower functions, and a thirtychannel status/alarm system with individual LED indicators.

The second level of capability includes

the addition of a selector unit at the

System Expansion

transmitter site to increase the number of control and telemetry channels to 60. A status subsystem (optional) increases the number of status/alarm channels to 60.

Automatic Parameter Logging

The Model PLU-1 Parameter Logging Unit is available optionally for use with the DCS-2 Remote Control System. This

Parameter Logging Unit. Samples parameters for automatic logkeeping. Below is Selector Unit for remote control system (see functional diagram). logging option records up to 20 preselected telemetry channels. It records each entry as a full-four-digit number. Minus-sign and preprogrammed decimal point are also printed. Time of day is recorded as a part of each line entry. The system programs to make entries at predetermined time intervals. The log format is individual vertical columns for each of the 20 parameters. Selective muting of any channel is provided to prevent inactive channels, such as those associated with standby transmitters, from contributing meaningless entries. Also provided with the PLU-1

Parameter Logging system is a ten-channel tolerance-alarm subsystem. This device, located at the remote terminal, allows adustment of upper and lower tolerance limits on predetermined channels. An out-of-tolerance condition causes that particular log entry to print in red ink.

The teleprinter of the PLU-1 is a Teletype Model 38ASR Data Terminal. Parameter logging may be provided at the transmitter site, as well as at the studio control point, by the addition of a data terminal at each location. (See functional diagram.)

Computer Option

The Computer Option for the DCS-2 includes a central data processing unit, a CRT terminal, a Teletype Model 38ASR Data Terminal, and software. The CRT display provides simultaneous presentation of 30 parameters or status inputs. The central processing unit and all peripheral equipment operate independently of the basic DCS-2 control terminal and remote terminal. Thus, a malfunction in the central processing unit, or other peripheral equipment, causes no outage in the DCS-2. This redundancy is extremely important to

maintain control of the remote-controlled transmitter. In the design of this option, careful consideration was given to the actual location of the central processing unit. The studio, or remote control point was selected because the typical studio environment is much better than that of the transmitter site. The susceptibility to external forces such as lightning, etc., is drastically reduced. Further, any software changes desired are usually more readily accomplished at the studio location. Two transmitter-site operation is possible without the addition of other central processing units.

Computer Option Software

The software provided with the computer option performs a number of functions. It establishes upper and lower limits on every telemetry channel. This provides a continuous check of all parameters under observation. The parameters are displayed on the CRT in page format; any reading beyond preset limits flashes on the CRT, for easy recognition, and sounds an aural alarm. A Teletype Model 38ASR Data Terminal is provided for hardcopy printout. Each telemetry page accommodates 30 parameters, and each status page accommodates 30 status channels. At any given time the CRT displays 30 parameters or 30 status channels simultaneously. A keyboard is provided with the CRT, and serves initial programming of the CRT display and for the issuance of command functions and channel selection. This is in addition to the command capability provided on the DCS-2 control terminal. The CRT has 16 dedicated displays near

Optional Video Reader. Connects to Central Processing Unit at studio site and includes command capability through keyboard.

the actual tube face, which are utilized for alerting functions such as out of tolerance conditions and status alarms.

The Model 38ASR Data Terminal provides standard telemetry printout of telemetry information identical to that described for the PLU-1 Parameter Logging Unit. It also includes paper tape punch and read capability. This facility can be used for punching a tape representing all the information stored in the central processing unit, including display information. This tape can then be stored and used for re-programming.

Fail-Safe Features

The DCS-2 system incorporates fail-safe features which fully comply with current regulations for the remote control of television transmitters. The remote terminal continuously monitors the presence of the FSK (Frequency Shift Keyed) digital signal, and in the event this signal is interrupted, a control fail-safe relay is de-energized in approximately 20 seconds, opening contacts which interface with the control circuits of the controlled TV transmitter. This places the TV transmitter in a non-radiating condition.

If the digital telemetry information from the TV transmitter site in interrupted, its absence is sensed by the studio control terminal unit and the telemetry failure is sent to the remote terminal unit as a segment of the digital word, along with control information. At the remote terminal end, the telemetry fail-safe relay is de-energized. Its contacts are interfaced with an external Type BRF-1 Fail-Safe

Unit, which is actuated to start a one-hour, integrated-circuit timer. At the end of the one-hour interval, the TV transmitter shuts down unless telemetry is restored during the one-hour interval. In that event the clock resets automatically and normal operation is resumed.

Alarm information indicating a telemetry failure, and the start of the one-hour timing cycle, may be relayed to the control terminal unit through selected channel of the status alarm subsystem.

System Interconnection

The DCS-2 system remote and control terminals may be interconnected by a communication grade, two-wire telephone line. DC continuity is not essential. Control data may be transmitted to the remote site by means of an additional audio channel on an STL microwave system. If microwave facilities are available from the transmitter site to the studio, the telemetry data may be returned in a similar manner. Alternatively, the telemetry data may get to the studio on a subcarrier on the TV aural carrier through the use of a Type SCG-8 Subcarrier Generator unit.

In this unit, the telemetry data is modulated on a 39kHz subcarrier inserted into the aural transmitter, along with the normal aural program material. Telemetry recovery at the studio is accomplished with an off-air receiver, such as the TMR-2 Multiplex Receiver, or with a Type SCD-2 Subcarrier Detector Unit connected to a TV aural modulation monitor equipped with an SCA output.

Functional diagram, typical two-site system. Some items included are optional units.

Specifications

Control Channels (Expandable to 60)
Control Sites (30 Channels min, per site)
Control Output:
Contact Rating (Non-inductive load)
Connections
Fusing
Telemetry Inputs (Each input floating):
Sensitivity (For full-scale) ±1Vdc
Maximum Level ±10Vdc max.
Common-Mode Voltage ±350Vdc max.
Input Resistance
Telemetry Display: Indicators
Indicators LED Devices Significant Figures (Plus polarity indication) 4
Telemetry Accuracy (Per Week)
Telemetry Resolution (Excluding cal. potentiometer) 0.01%
Decimal Point Programable at transmitter site
External Digital Input (Parallel, BCD)
Status Channels (Expandable to 60)
Status Input (For each channel)
Status Display (On both units; control and transmitter):
Indicators LED Devices
Indicators per Channel1
External Drive 150mA sink to gnd; 28Vdc max.
Fail-Safe Facilities—Control:
Relay contacts, closed in operational position. Open 20
seconds following control failure to remote terminal.
Fail-Safe Facilities—Telemetry:
Provisions for use with BRF-1 Fail-Safe Unit, complying with

Provisions for use with BRF-1 Fail-Safe Unit, complying with current FCC requirements for telemetry fail-safe operation.

Response Time (30 Channels):
Control 0.1 second
Telemetry Update (0.2s during control
or "Fast Read")
Status (Maximum Update) 2.3 second
Interconnection Requirements:
Wire Unconditioned Series 3002 Data Circuit ¹
Radio Two-Way; 3 kHz min. bandwidth
Redundant Interconnection Switching:
Automatic (After loss of vaild data) 5 seconds
Manual
Manual Override Switch on Control Terminal
Ambient Operating Temperature 0 to 50°C (32 to 122°F)
Power Requirements (30-Channel Units):
Control Terminal 120/240V, 50-60 Hz, 120W
Transmitter Terminal 120/240V, 50-60 Hz, 120W
Dimensions:
Control Terminal7" H, 19" W, 17" D (178, 483, 432 mm)
Remote Terminal 7" H, 19" W, 17' D (178, 483, 432 mm)
Selector Unit
Selector Onic
¹ Control: 150 band; telemetry 1200 band

Accessories

Parameter	Logging	Unit,	Туре	PLU-1	 	 		
Computer	Option				 	 	 	

Ordering Information

Type DCS-2 Digital Remote Control Systems are arranged according to the transmitter control situation and your desires. As a result, each package is unique. Your RCA salesman has material that is most useful in arranging a system for your needs, budget and desires.

Remote Control Accessories

- Transmitter interface devices
- Current-to-voltage converters
- Overtemperature and overvoltage sensors
- Voltage- and signal-sampling kits
- Status reporting/alarm devices

Here are devices and accessories for use with RCA Type BTR-30 and Moseley Types DRS-1 and DCS-2 Remote Control Systems when they control television transmitters.

The equipment interfaces the transmitter with the remote control system and extends the system scope with telemetry of additional data associated with the operation and security of the transmitter plant.

Individual unit application depends on the transmitter systems involved, the environment of the transmitter plant and user preference based on his knowledge of operating conditions.

The description on the next few pages allow selection of the appropriate devices in the implementation of a new system or the expansion and/or updating of an existing system.

Interface requirements depend largely on the transmitter type involved in the system. Generally, the remote control system provides a single-contact-closure for each control function and a pair of terminals for each sample voltage. If the transmitter control and metering provisions aren't compatible with these requirements, interface relays and/or metering samplers are necessary.

Relays and Sockets

These relays isolate or interface the remote control system and the system under control. Alternatively, these relays increase the current capabilities of the remote control system circuitry. All are double-pole, double-throw (DPDT) with 5 ampere contact rating. (Not illustrated.)

Ordering Information

Relay	Туре	Coil	Cat. No.
Momentary	Contact .		MI-561488-1
Momentary	Contact		MI-561488-2
Latching			MI-561488-3
Time Delay	0.1 to 2s		MI-561488-4

Relay Panels

Aluminum panels for rack mount. Require 3.5 inches (89 mm) rack space. Mount up to eight relays (described above).

Specifications

Ordering Information

Relay Panel (less relays) MI-561449

Direct-Current Amplifier, Type CSA-3

A chopper-stabilized, d-c amplifier for voltage amplification and/or isolation of the sensitive meter circuits in frequency monitors and reflectometers without interference to sampled device operation. A "floating" input circuit allows use with positive, negative or isolated-from-ground source circuits.

Accessory

Mounti	ng	Panel	(described	below)	
-					

Specifications

Voltage Gain (Adjustable)	
Input Resistance	
Sensitivity (For 1.5V output)	
Ambient Operating Temperature0-150°	F (-18 to 66°C)
Power Requirements	V, 50-60 Hz, 4W
Dimensions	
Weight	
Shipping Weight	. 3 lbs. (1.4 kg)

Ordering Information

Chopper-Stabilized DC Amplifier, Type CSA-3 MI-561461

DC Amplifier/Linear Converter, Type PLC-1

Amplifies and converts a non-linear sample voltage to a linear sample for metering a power circuit with a digital readout system such as the Moseley DRS-1 or DCS-2 or ADP-220 systems. The output voltage is proportional to the antilog of the input voltage. (Not illustrated.)

Specifications

Input Impedance	
Input Level	
Output Load (minimum)	
Output Level (log. and lin.)	
Ambient Operating Temperature	.0-150°F (-18 to 66°C)
Power Requirements	. 120Vac, 50-60 Hz, 5W
Dimensions	'2" x 2" (127, 191, 51 mm)
Weight (Approx.)	
Shipping Weight (Approx.)	

Ordering Information

DC Amplifier/Linear (Converter,	Туре	PLC-1	MI-561179
-----------------------	------------	------	-------	-----------

Amplifier Mounting Panels

Requiring only 51/4 inches (133 mm) rack space, this panel mounts two Type CSA-3 or two Type PLC-1 amplifiers. Alternatively, the panel mounts one of each amplifier types.

Specifications

Ordering Information

Plate Current Metering Kits

Used with earlier design transmitter where a plate-current metering sample is unavailable, these kits sample plate current and convert it to a voltage compatible with a remote control system. Available in four ranges.

Ordering Information

Plate Current Metering Kits:

Range: 0 to 1	Ampere	. MI-561481-1
Range: 0 to 2	Amperes	MI-561481-2
Range: 0 to 5	Amperes	MI-561481-3
Range: 0 to 10	Amperes	MI-561481-4

Plate Voltage Metering Kits

The voltage counterpart of the unit described above, these kits generate a plate voltage sample compatible with remote control systems. Available in three voltage ranges.

Ordering Information

Plate Voltage Sampling	Kits:	
Range: 1 to 3 kV		
Range: 3 to 10 kV		2
Range: 10 to 20 kV		

Remote Control Failsafe Module, Type BRF-1

In the event of an outage in the control tone as the result of a malfunction in the remote control equipment or the transmission medium, the BRF-1 circuitry shuts the transmitter down. If any of four logged metering parameters fails or drops below a preset value, or, if telemetry information fails to arrive at the studio control point, a one-hour, integratedcircuit times (in the BRF-1) starts. If this timer completes its cycle, the system dumps the transmitter. Correction of the failure problem before full timer cycle resets the timer and allows resumption of normal operation. (Not illustrated.)

Specifications

Metering Inputs	4
Input Impedance	
Input Voltage	
Metering Voltage Trip Level	
Telemetry Failsafe Input	
Failsafe Output (Normally Closed)	
Failsafe Output Delay (Internal Timer)	1 hour
Status Output	SPDT Contacts
Status Output Delay	
Ambient Operating Temperature 0 to 140°	F (-18 to 60°C)
Power Requirements	50/60 Hz, 30W
Dimensions	39, 483, 178 mm)
Weight (Approx.)	15 lb. (6.8 kg)

Ordering Information

Remote Control Failsafe Module, Type BRF-1 MI-561484

Failsafe Interface Panel

Used with the Type BRF-1 Remote Control Failsafe Unit (see above), the Failsafe Interface Panel provides a latching relay to sense transmitter shutdown due to telemetry failure. It operates at the conclusion of the one-hour failsafe cycle the BRF-1 provides and indicates failsafe condition with a lighted, front-panel indicator. Reset button on front panel.

Specifications

Dimensions	
Weight	

Ordering Information

Aural Subcarrier Insertion Kits

Used to add a 39kHz subcarrier to the aural section of this transmitter to use the aural carrier as a telemetry path. The kits are engineered for specific transmitter models. Dual transmitters require two kits.

Ordering Information

Aural Subcarrier Insertion Kits: For TT-15FL, TT-25FL, TT-30FL, TT-5EH1S,	
TT-6ELS, TT-12EHS, TT-25ELS	
Transmitters	MI-560851-15
For TT-17FH, TT-25FH, TT-35FH,	
TT-50FH Transmitters	MI-560851-18
For All "D" and "E" Transmitters	
equipped with tubed exciter systems	MI-34326-30

Tolerance Alarm Unit, Type TAU-2

- Monitors parameter limits—upper and lower
- Each frame holds 10 units in 7.5" (191 mm) rack space
- Compatible with ADP-220 automatic logging
- Interfaces with SCS-2 status indicator system

Used in combination with a BTR-30 remote control or an ADP-220 automatic logging system, the TAU-2 simultaneously monitors selected metering samples. When any of the samples exceeds preset limits—upper or lower—the TAU-2 actuates an alarm.

The TAU-2 rack-mounts at the transmitter site and each rack-frame holds up to 10 plug-in units—one unit for each parameter monitored. The TAU-2 is particularly valuable in facilities equipped with automatic logging printers.

Under FCC rules, a system equipped with an automatic logging facility must have an automatic alarm on parameters with defined upper and lower limits (visual and aural power output, for example). The TAU-2 is ideally suited for such duty as well as for monitoring parameters where an alarm of abnormal operation is desirable for system management.

Where an abnormal parameter exists, the TAU-2 displays a visual alarm. When the parameter is logged automatically (via the ADP-220) the TAU-2 instructs the printer to note the beyond-tolerance reading in red and sound an alarm for the transmitter operator.

Interfaced with an SCS-2 status indicator system, the TAU-2 relays an out-of-tolerance condition to the control point, even if automatic logging isn't part of the system.

Specifications

Channels
Input Impedance
Alarm Transistor Switch Relay Power (Relay not supplied) 16V dc, 600 ohm load
External Reference Voltage (If Used)Twice Sample Voltage but less than +8V dc External Ref. Input Impedance
Ambient Operating Temperature
Power Requirements
Weight (Frame & 10 Modules, approx.) 9 lbs. (4.1 kg) Shipping Weight (Approx.) 13 lbs. (5.9 kg)

Ordering Information

Tolerance Alarm System, Type TAU-2:	
Module	. MI-561184
Main Frame (For 1 to 10 modules)	. MI-561469

Tolerance Alarm Interface Relay

Interfaces a TAU-2 Tolerance Alarm Unit (see above) and an SCS-2 Status Indicator System (see below) when tolerance alarms are reported to the studio control point via an SCS-2 system. A relay is required for each alarm channel; eight or fewer relays fit the accessory rack-mount panel.

Accessory

Rack-Mount Relay Panel	
-------------------------------	--

Ordering Information

Tolerance Alarm Interface RelayMI-561448-5

Line-Voltage Sampling Kit, Type LVK-2

Samples power line voltage for remote monitoring. Converts single-phase voltage into proportional d-c voltage for telemetry. Unit required for each phase in three-phase systems.

Specifications

Voltage Range	
Dimensions	" x 5" x 2.5" (76, 127, 64 mm)
Weight (Approx.)	
Shipping Weight (Approx.)	

Ordering Information

Line-Voltage Sampling Kit, Type LVK-2 MI-561463

Temperature Sensing Kit, Type TSK-3

Provides an accurate measurement of building, air inlet, air exhaust or similar air temperatures. The linear proportional output is compatible with the BTR-30, DRS-1 and DCS-2 remote control systems.

Tower Light Monitor Kit, Type TLK-2

Monitors a-c currents in tower-lighting systems. Uses current transformer for inductive sampling and requires no physical connection to the monitored circuit.

Specifications

Temperature Range	0-140°F (-18 to 60°C)
Power Requirements	
Dimensions	2" × 2" × 7" (89, 51, 178 mm)
Weight (Approx.)	
Shipping Weight	

Ordering Information

Temperature Ser	nsing Kit	
-----------------	-----------	--

Specifications

Sensitivity Range	o 20Aac
Dimensions	57 mm)
Weight (Approx.)1 lb	. (454 g)
Shipping Weight (Approx.)	. (671g)

Ordering Information

Tower	Light	Monitor	Kit,	Туре	TLK-2	
-------	-------	---------	------	------	-------	--

Status Indicator System, Type SCS-2

- Expands the alarm/status capability of BTR-30
- Automatically scans 14 on/off functions
- Adjustable for "automatic reset" or "latch"
- Complete scan every 400 milliseconds
- Lighted indicators signal abnormal situation

The SCS-2 Status Indicator System consists of rackmounted transmitter and receiver units. It automatically scans fourteen "on-off" functions once every 0.4 seconds. In the event that any or all of the 14 functions are abnormal, the SCS-2 lights an individual panel indicator for each abnormality. The sensing circuit for each function is a simple contact-closure in the appropriate channel. In effect, a short circuit in the external circuit lights the indicator.

A front-panel control sets the indicator system for "automatic reset" or "latch". With automatic reset, the indicator lights as long as the abnormality lasts; in the "latch" condition, the indicator holds until manually reset even if the abnormality was a transient condition.

The SCS-2 ordinarily requires a telephone pair between the transmitter and receiver. However, adding an MSC-1 (30) Combiner (described below) to the system lets it share the interconnection facility of a BTR-30 remote control system.

Specifications

Indicator Channels
•
Interconnection Requirements:
Wire
Radio Continuous one-way
Response 2 to 3 kHz
Path Loss
Signal Levels:
Transmitter Unit (Output)
1.5V rms, 600 ohms, unbal.
Receiver (Studio) Unit (Input) 0 dBm, 600 ohms bal. or
0.5V rms, 600 ohms, unbal.
Transmitter Unit Input Normally closed external contacts.
Open circuits for alarm. Reversible in the field by re-
strapping.
Receiver Unit Output
rear-apron terminals
External Alarm Output One set SPDT contacts, rear apron
Ambient Operating Temperature
(-7 to 57°C)
Power Requirements
(Each unit)
Dimensions (Each unit)
(483, 89, 267 mm)
Weight (each unit, approx.)
Shipping Weight (Approx.)
Ordering Information

World Radio History

catalog TT.6000A

TV Transmitter Input and Monitoring Equipment

The proper selection and use of transmitter input and monitoring equipment helps the station determine compliance with FCC requirements and assure good operating condition of the transmitter. The input and monitoring equipment items listed here mount in two RCA Type BR-77 cabinet racks, which match RCA TV transmitters. They may be used in conjunction with an optional transmitter control console, Type TTC-5B. (The console is described in a separate catalog section).

A recommended list of input and monitoring equipment is included in the accompanying specifications. The suggested rack layout (see drawing, next page) improves operational convenience, grouping unit relationships and ease of connection. The function of each item and typical interconnection is shown in the typical system drawing on Page 3 of this section.

A Sideband RCA To Cate Street Demodulator 4.4.00 -----.... Audio Limiter/Clipper 0 2 3 8 Delay Equalizer ů 111 C1 Frequency and Aural Modulation Monitor HILLE THE Audio Monitor Amplifier Sideband **Response Analyzer**

- Carrier frequency monitoring
- Suggested equipment lists
- Suggested rack arrangements
- Typical system diagram

Carrier Frequency and Aural Modulation Monitor, Type TFT-701.

Audio Monitor Amplifier, Type BA-44.

Remote Control Operation

When a TV Transmitter operates via remote control, FCC Rules require certain monitoring equipment (a visual demodulator, aural modulation monitor, waveform monitors, picture monitors, vectorscope, and equipment for vertical-interval test signals) be located at the control location. Even though this equipment permits evaluation of the quality of the radiated signal at the studio site, good engineering practice dictates the availability of appropriate monitoring equipment at the transmitter site to allow quantitative measurements for optimum transmitter adjustment.

Although a visual- and aural-carrier frequency monitors are not required if frequency measurements are made periodically in accordance with current FCC requirements, the use of a carrier frequency monitor is recommended to provide a continuous indication of operation within carrier frequency tolerances.

Input Equipment

The transmitter input processing equipment includes:

- a. Limiter/Clipper Amplifer (Type BA-147) for Audio processing before application to the transmitter.
- b. Video Processing Amplifier (Type TA-19) for processing the video input signal.
- c. Video Delay Equalizer System (Type TTS-1), including video low pass filter and receiver equalizer, to provide envelope delay correction.

This equipment provides complete facilities for automatic control, processing and pre-correction of the audio and video information prior to its application to the transmitter. Control and test points are provided to routinely observe the operation and adjustment of the equipment,

Typical rack arrangements: UHF system on left; VHF on right.

World Radio History

Monitoring Equipment

The transmitter monitoring equipment includes:

- a. Monitor Amplifier (Type BA-44) for audio signal monitoring.
- b. VU Meter Panel (Type BI-5) for audio level monitoring.
- c. TV Frequency and Aural Modulation Monitor (Type TFT-701) to provide a continuous check of visual and aural carrier frequency and aural modulation.
- d. Visual Sideband Demodulator (Type BW-4 or BWU-4) for qualitative and quantitative observation of the demodulated RF output of the transmitter.
- e. Sideband Response Analyzer (Type BW-5 or BWU-5) and (ES-597267) Sync and Blanking Adder for swept frequency response characteristics of the visual transmitter system.
- f. Audio and video jack panels and cords for signal access and routing.

The BW-/BWU-4 Visual Sideband Demodulator and the BW-/BWU-5 Sideband Response Analyzer utilize a sample of the modulated visual RF, which is provided by directional couplers at appropriate points in the coaxial transmission line system. A list of suitable directional couplers and monitoring line sections is included under "Accessories".

For more detailed descriptive information and specifications of the individual items of recommended Input and Monitor-Equipment, refer to the appropriate catalog section for each item.

Ordering Information

Transmitter Input and Manitoring Equipments

Transmitter Input and Monitoring Equipment:							
		ntity VHF	Catalog Number	Q UH		ntity VHF	Catalog Number
Cabinet Rack, 24", with Rear				Sideband Response Analyzer			
Door, Side Panels and top				(Type BW-5C2)	1	х	MI-34000C2
cover (Type BR-77P)	1	1	ES-36591-P77	Sideband Response Analyzer			
Cabinet Rack, 24", with Rear				(Type BWU-5C2)	х	1	ES-34009C2
Door & Top Cover (Type BR-77S)	1	1	ES-36591-S77	Sync and Blanking Adder			
Electrical Shield		2	MI-36546-A21	(for BW-5C2 or BWU-5C2)	1	1	ES-597267B
Electrical Shield	1	2	MI-36546-A28	Module Frame	1	1	MI-557300
Single Trim Strip	2	2	MI-30566-A77	Visual Sideband Demodu-			
e ,	-	1		lator, VHF (Type BW-4C1)	1	Х	ES-34048C
Double Trim Strip	1		MI-30568-A77	Visual Sideband Demodu-	~		
Pair of Mounting Angles	2	2	MI-30526-A77	lator, UHF (Type BWU-4C1)	Х	1	ES-34049C
Terminal Board Brackets	3	3	MI-4570-A2	Blank Panel, 3½" (89 mm)	3	3	MI-36547-2
Audio Terminal Block	1	1	MI-4569-A4	Blank Panel 5¼" 133 mm)	7	6	MI-36547-3
Power Terminal Block	6	6	MI-4568	Biank Panel 8¾" (222 mm)	3	3	MI-36547-5
Audio Patch Cord (Tip, Ring,	•	3	NU 4050 D0	Directional Couplers:			
Sleeve)	3	3	MI-4652-D2	(For Use With BW-/BWU-4 or	RW_/	BWH.5)	
Jack Panel, 20 Jacks (Type BJ-20TRS)	1	1	MI-11666	VHF/UHF, 50/51.5 ohm, for us			
Limiter/Clipper Amplifier	•	•		unpressurized 3 ¹ / ₈ " line only	V		MI-19396-1B
(Type BA-147)	1	1	ES-11141	VHF/UHF, 50/51.5 ohm, for u			
Monitor Amplifier with guide		·		31/8" line. May be pressurize	ed		MI-27390
(Type BA-44)	1	1	ES-11134	VHF/UHF, 75 ohm, for 61/8"	line.		
Shelf (Type BR-22)	1	1	MI-11597				MI-27389
Self Normalizing Dual Video				VHF/UHF, 75 ohm, for 8-3/16	6″ line.	•	
Jack Panel, Less Jacks (Type				May be pressurized			MI-561577
112)	1	1	MI-556582-8	VHF/UHF, 75 ohm, for 9-3/16	i" line.		
Dual, Normalled-through				May be pressurized		• • • • • •	MI-561578
Jacks (Type 22T)		22	MI-556582-1	Transmission Line Sections:			
Patch Cord (Type 57)		6	MI-556582-2	(For Use With Directional Cou			
Test Probe, BNC (Type 5B)	2	2	MI-556582-3	VHF, 51.5-ohm 3 ¹ /8", 12" long			MI-19396-3
VU Meter Panel (Type BI-5)	1	1	MI-12265	UHF, 50-ohm, 31/8", 12" long E	IA flan	ged .	MI-19089-22
Video Processing Amplifier				VHF/UHF 50-ohm, 3 ¹ /8", 12 lo	ong fla	nged,	
(Type TA-19)	1	1	MI-556630B1	•			MI-27791D-9A
Burst Regenerator (for TA- 19)	1	1	MI-556646A	VHF, 50-ohm, 3 ¹ / ₈ ", 12" long			
Automatic Video Gain Con-		•	WII-220040A	<u> </u>			
trol (for TA-19)	1	1	MI-556647A	VHF, 51.5-ohm, 6 ¹ / ₈ ", 12" long			MI-19314C-25
Color Phase Equalizer, in-	•	•		UHF, 75 ohm, 6 ¹ / ₈ ", 12" long E	IA flan	•	14 40007 00
cluding low-pass filter				Teflon insulated			
(Type TTS-1)	1	1	MI-560503	VHF/UHF, 75 ohm, 61/8", 12" Universal flanges	long t	langed,	
Module Extender for TTS-1	1	1	MI-560541B	VHE/11HE 75 obm 8.3/16 11	2// 1054	flang	MI-27792D-9A
TFT-701 TV Frequency and				VHF/UHF, 75 ohm, 8-3/16, 12 Universal flanges	- 1011	y nange	ea, MI-561566D-9A
Aural Modulation Monitor	1	1	TFT-701	VHF/UHF, 75 ohm, 9-3/16", 12	2" Ione	1 flance	
Rack Adaptor (for TFT-701) .	1	1	TFT-701-1	Universal flanges	- iong	, nange	

Transmitter Control Console, Type TTC-5

- Centralized transmitter control
- Audio and video monitoring
- Wideband picture and waveform monitors
- Program audio and video input switching
- Transmitter metering display
- For single or parallel transmitters

Type TTC-5 Transmitter Consoles provide central control and monitoring for RCA television transmitters. Used in conjunction with recommended input and monitoring equipment (see separate catalog section) the TTC-5 provides a planned control facility exactly suited to each transmitter. Models are available for VHF or UHF television transmitters in either single or parallel configuration.

The TTC-5 Transmitter Control Console is made up of equipment according to type of transmitter and includes a Transmitter-Control Panel, picture and waveform monitors, a Monitor Control Panel and an attractively styled modular console housing. The console proper is made up of a 40-inch (1016 mm) base section and two 20-inch (508 mm) turret sections for a single transmitter, or two base sections and four turret sections for a parallel transmitter. The upper sections of the console turret contain the Monitor Control Panel and the picture and waveform monitors, while the lower, sloping sections contain the Transmitter Control Panel, For parallel transmitters, a Monitor Control Panel and a Transmitter Control Panel are supplied for each transmitter, as well as facilities for combined power metering, combined visual monitoring, exciter and mode switching and EBS control.

Centralized Transmitter Control

The Transmitter Control Panel contains pushbutton switches for transmitter supervisory control and operation. All operating control functions may be extended to the console such as: "Transmitter on/off", "PA Plate", "Overload Reset", and "Raise/Lower" functions for "RF excitation", "Sync Gain", and "Video Gain". Tally lights operated by voltages from the transmitter indicate functional status. A series of transmitter control panels are available, each designed for a specific transmitter. (See "Ordering Information".) In the case of parallel transmitters, a separate panel is supplied to accomplish exciter switching, EBS control and mode switching ("AB air"; "A air, B test"; "A test, B air").

Monitor Control Panel

The Monitor Control Panel operates in conjunction with standard input and monitoring equipment associated with the TV transmitter. (See separate catalog section for input and monitoring equipment.) The monitor control panel contains four meters for continuous indication of visual power output, aural power output, audio input level and aural modulation precentage. The power output meters duplicate the reflectometer meters on the transmitter. The audio input level is indicated with a VU meter with a suitable multiplier pad for connection to the input line of the aural transmitter. The aural modulation percentage meter provides a remote indication from the aural modulation monitor which is a part of the Input and Monitoring Equipment. An overmodulation indicator lamp is available for external connection to the aural modulation monitor.

The Monitor Control Panel provides front panel switches for the independent selection of one of two incoming audio and two video lines. Switching of each is controlled by a three position key switch to select "Line 1" or "Line 2", with a center-off position.

Video line switching is accomplished with a Program Line Selector Unit, a 5¼ inch (133 mm) rack-mount unit furnished with the TTC-5 Transmitter Control Console, and should be located in the input equipment rack near the termination of incoming video lines. The Program Line Selector Unit contains video switching relays which the Video Input Selector switch controls. It is equipped with input connectors for video lines "1" and "2" and a program output connector. Tally lights, on the Program Line Selector, indicate the selected line and connectors are available for monitor lines to the Console for observation of the video signal directly from the unused line.

Video and Audio Monitoring

The Monitor Control Panel, in addition to the audio metering described above, includes an Audio Gain Control, adjustable over a 20dB range in 1 dB steps, to control the program audio input level to the transmitter. This control usually connects in the audio line ahead of an audio limiting amplifier. An Audio Monitor Selector switch permits connection of the input of an audio monitoring amplifier and speaker system to any of seven points in the aural system. An Audio Monitor Gain Control provides adjustment of audio monitoring level. A nine position video monitor switcher is provided on the Monitor Control Panel to provide connection of the picture and waveform monitors to selected points in the video system from the video input lines to the monitoring diode or visual demodulator output, Since the video monitoring inputs to the TTC-5 Console terminate, video distribution am-

A close-up of the monitor-control and transmitter-control panels. The pushbuttons at the lower edge of the picture control transmitter functions and indicate control status.

plifiers are required (not included) where it is desired to monitor on a bridging basis, such as program video line or transmitter video input. The video monitoring section of the TTC-5 Console consists of a Tektronix 529 Waveform Monitor and a Conrac 9-inch picture monitor mounted side-by-side. For parallel transmitters, picture and waveform monitors located in the center turret sections are supplied for each transmitter. The video signal from the video Monitor Selector Switch loops through the waveform monitor to the picture monitor where it terminates. The waveform monitor has a graticule calibrated for indicating modulation depth. A switch on the Monitor Control Panel controls an internal relay chopper which may be inserted in the video line to the monitors to establish a white-reference pulse. This switch, in the "External" position provides a contact closure for activation of an external chopper (not supplied) such as the Catalog No. ES-560653 Vertical Interval Chopper (See separate catalog section).

Specifications

Impedances:

 Audio Line Input (2)
 600 ohms, balanced

 Audio Line Output
 600 ohms, balanced

 Audio Monitor Input
 10,000 ohms, balanced

 Audio Monitor Output
 250 ohms, balanced

 VU Meter Circuit (across transmitter input)
 7,500 ohms

 Video Monitor Inputs (8)
 75 ohms, unbalanced

 Volume Controls:
 200 to 200 ohms

Power Requirements:

Indicator Lights	•	
Dimensions (overall):		
Width	 . 41″	(1041 mm)
Depth	 441/2"	(1130 mm)
Height	 45¼″	(1150 mm)
Weight (Approx.)	 500 lb	s. (227 kg)

Ordering Information

Transmitter Control Console, Type TTC-5 ES-561900

(Please specify transmitter type number and whether single or parallel. For RCA Transmitters only.)

.

catalog TT.6400A (Replaces B.4714)

Carrier-Frequency and Aural Modulation Monitors, Types TFT-701, TFT-702

For any designated VHF or UHF channel

On-site or off-air monitoring capability

Digital carrier-frequency-error readout

Aural modulation calibrator built-in

Optional SCA output facility

The Types TFT-701 and TFT-702 are instruments for monitoring visual and aural carrier frequencies and aural modulation of television broadcast transmitters.

The TFT-701 monitors carrier frequencies and aural modulation; the TFT-702 monitors aural modulation only.

As a result of excellent input sensitivity and selectivity, these two monitors can use an off-air signal, if convenient.

In a situation where a transmitter operates via remote control, the monitor operates at the control point from an off-air signal picked up with a rooftop receiving antenna. For transmitter site monitoring, a sample of transmitter output is used.

TFT-701

TFT-702

The two instruments described here monitor certain television-transmitter operating parameters. The TFT-701 monitors aural modulation plus the frequency of the aural and visual carriers plus the intercarrier frequency. The TFT-702 mon itors aural modulation only. Both units are FCC Type-Approved for use as aural modulation monitors on TV transmitters operating in the U.S.A.

Available for VHF or UHF

Each TFT-701 and -702 Monitor is factory tuned and optimized to the frequencies it is to monitor. The instruments have ample selectivity to reject strong, undesired signals and the sensitivity to allow monitoring at a remote location.

On-Site or Off-Air Monitoring

As a result of the sensitivity built into the TFT-701 and TFT-702, both instruments operate equally well as on-site or off-air monitors. As an on-site monitor, the instrument requires a small RF sample derived from transmitter output. As a remote, off-air monitor, the instrument uses a common rooftop receiving antenna with a 75-ohm transmission line. An RF input signal of 250 microvolts is required.

The monitor input consists of a channel filter and a double-balanced, Schottky barrier-diode mixer, providing increased immunity from intermodulation products caused by strong, undesired signals.

Precision Frequency Reference

The TFT-701 monitors visual, aural and intercarrier frequencies using a precision, five-megahertz, oven-controlled, crystal oscillator to synthesize the local oscillators. It has an aging rate of one part per million per year and normally requires frequency recalibration only every six months for UHF and once in 18 months on VHF. The frequency counters may be used as a six-digit, 10-MHz, general-purpose frequency counter.

The frequency errors are displayed as direct digital readouts with "plus" or "minus" sign for both aural and visual carriers. The aural or intercarrier frequency error may be selected with a front-panel pushbutton.

SCA and Alarm Option

For use with a remote control system using an aural subcarrier for telemetry, the TFT-701 and -702 are available with an SCA demodulator. This option is a plug-in printed-circuit assembly. It provides the 39 kHz output which feeds the subcarrier detector, a part of the remotecontrol system equipment.

The monitors are also available with an alarm option which actuates an external aural or visual alarm device when a preset limit is exceeded in frequency deviation or modulation percentage.

Peak-Reading Meter; Two Flashers

The aural modulation monitor uses a peak-reading meter and two flasher-type indicators. The flashers indicate positive and negative modulation peaks simultaneously and adjust, through a thumbwheel register on the front panel, to any threshold between 50 and 129 percent modulation in increments of one percent. A special feature allows a check on the intercarrier noise as the result of visual carrier modulation.

TFT-702 mounted in accessory rack-mount adapter.

Functional diagram, TFT-702.

World Radio History

Specifications

Frequency Range Tuned to any U.S. Channel be- tween Ch. 2 and 69 (Factory tuned to your channel; not field retunable to another channel) Input Sensitivity (Approx.) 250 μV1 Image Rejection 60 db Spurious Response -80 dB Input Impedance 75 ohms Input Connector Type BNC
Carrier Frequency Measurement
Deviation Display Range 0 to ±9.99 kHz Readout Increments 1 or 10 Hz Accuracy:
VHF Channels ±500 Hz/18 months UHF Channels ±500 Hz/6 months Internal Frequency Standard 5 MHz xtal osc. ²
External Frequency Standard
Intercarrier Frequency Measurement
Deviation Display Range 0 to ±9.99 kHz Readout Increments 1 or 10 Hz Intercarrier Accuracy ±100 Hz/60 months
Aural Modulation Meter
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Aural Peak-Modulation Indicator
Indicator

Indicator Threshold Range
Threshold Adjustment Increments
Response Time ⁶

Modulation Calibrator Accuracy±2%7

Audio Output Characteristics

Level (100% modulation)
Impedance
Distortion (100% modulation)
Signal-Noise Ratio
De-emphasis Network Time Constant

Frequency Counter Section

Range
Input Level Range
Input Impedance
Resolution
Display Accuracy
Time-Base Aging Rate 1 x 10-8 per day
Power Requirements:
Type TFT-701
Type TFT-702 115/230V, 50-400 Hz, 45W
Dimensions
Dimensions
Weight (Approx.)
Weight (Approx.) 22 lbs. (10 kg) ¹ Automatic gain-control range 60 dB. Fixed 40-dB attenuator included for on- site monitoring. ² High-precision, oven-controlled crystal. A 1-MHz output is included for cali- bration against WWVB or other precision frequency standard. ³ Input connector at rear of unit.
Weight (Approx.) 22 lbs. (10 kg) ¹ Automatic gain-control range 60 dB. Fixed 40-dB attenuator included for on- site monitoring. ² High-precision, oven-controlled crystal. A 1-MHz output is included for cali- bration against WWVB or other precision frequency standard.

"Shortest pulse indicator can resolve. Pulse rise and fall times $1\mu s$ or less. 7At 100% deviation.

Accessories

For TFT-701:

Rack-Mount Adapter Alarm Option SCA Option	Option 02 Option 03
AGC Meter Option	Option 04
Remote Meter and Peak Flasher	
For TFT-702:	
Rack-Mount Adapter	Option 01
Alarm Option	Option U2
SCA Option	Option 03
AGC Meter Option	
Remote Meter and Peak Flasher	Type TFT-704

Ordering Information

TV Frequency and Aural Modulation	
Monitor Type	TFT-7018
Aural Modulation Monitor	TFT-7028

*Please specify channel and frequency offset.

Frequency and Modulation Monitor Systems, Belar Types TVM-1-2-3 and RFA-3

- Aural modulation monitor, Type TVM-1
- VHF carrier frequency monitor, Type TVM-2
- UHF carrier frequency monitor. Type TVM-3
- RF amplifier unit, Type RFA-3

These are instruments for accurate monitoring and observation of television transmitter aural modulation and carrier frequencies, including the intercarrier frequency. A solid-state amplifier is available that allows monitoring operations from an off-air pickup. Each monitor includes built-in calibration facilities and is tuned to a specific operating frequency during manufacture.

Aural Modulation Monitor, Belar Type TVM-1

- Built-in calibration facilities
- Measures positive and negative peaks
- Peak-reading meter and flasher
- Lamps indicate instantaneous peak polarity
- For on-site or off-air monitoring

A wideband, all solid-state unit for aural channel monitoring, the TVM-1 monitors both positive and negative peaks simultaneously and automatically selects the greater of the two for display on a peak-reading meter and flasher. "Positive" and "Negative" lamps indicate the instantaneous polarity of the displayed peak. Built-in calibration facilities, actuated through a front-panel pushbutton switch, allow calibration recheck at any time.

The TVM-1 input sensitivity is for use at the transmitter site. Using an external RF amplifier (see Type RFA-3 in this section) increases the sensitivity for use as an off-air monitor.

Specifications

Input Sensitivity (rms)	۷
Input Impedance	ns
Modulation Meter Range (100% = 25 kHz dev.) 0-133	%

Modulation Meter Accuracy±5% max.
Peak Modulation Indicator Range (Adj)
Audio Freqeuncy Response (50-75,000 Hz)
Audio Distortion (50-15,000 Hz) 0.1% max.
Signal-Noise Ratio (75 µs de-emphasis)
Audio Output Level (600 ohms)+10 dBm
Remote Metering Loop Resistance
Dimensions
Weight (Approx.)
Shipping Weight

Accessories

RF	Amplifier,	Туре	RFA-3		MI-560548
----	------------	------	-------	--	-----------

Ordering Information

Aural Modulation Monitor, Belar Type TVM-1 MI-560544 (Please specify operating channel and frequency offset, if any.)

Carrier Frequency Monitor, Belar Types TVM-2, TVM-3

- Digital readout: aural and visual carrier deviation
- Monitors intercarr er frequency as alternative to aural
- Built-in off-frequency alarm circuits
- Monitors carriers independently
- Optional telemetry output for remote control systems

The TVM-2 and TVM-3 are frequency monitors for the aural and visual carriers of television transmitters. The TVM-2 monitors VHF carriers while the TVM-3 operates with UHF carriers.

The two digital displays readout aural and visual carrier deviation from assigned frequency, indicating positive or negative with appropriate signs. A built-in off-frequency alarm system requires three successive frequency errors to signal an alarm condition. This, of course, prevents false off-frequency alarms.

The units use true frequency-counter circuits to monitor carrier frequencies. Each carrier is monitored independently. As a result, the monitor displays frequency error even when one carrier or the other is disabled. If error is beyond tolerance, the unit sends out an off-frequency alarm in addition to a carrier off alarm.

For remote-control situations, both monitors offer a telemetry output as an extra cost option. This output is a buffered, parallel "BCD" or analog. Both units include a 1 MHz output for comparison with a frequency standard.

The TVM-2 and TVM-3 input sensitivity requires transmitter site use. Adding an RF amplifier (see RFA-3, below) increases input sensitivity to allow use as an off-air monitor.

Specifications

Time Base Accuracy: ±1x10-7 0-30°C Ambient ±1x10-6 Per Year ±1x10-6
Off-Frequency Alarm Sensitivity (Selectable)
Carrier-Off Alarm Gate Time
Dimensions
Weight (Approx.)
Shipping Weight (Approx.)15 lbs. (6.8 kg)

Accessories

RF Amplifier, Type RFA-3 MI-560548

Oldering Information

Carrier Frequency Monitor:

For VHF Operations, Type TVM-2	Mi-560545
For UHF Operations, Type TVM-3	MI-560546
(Please specify operating channel and	I frequency offset, if any.)

RF Amplifier, Belar Type RFA-3

- Excellent input sensitivity
- Wide dynamic range
- Remarkable adjacent-channel rejection
- Front-panel output meter

A sensitive, high-gain, solid-state radio frequency amplifier for use with the TVM-1, -2 and -3 as off-air monitors, the RFA-3 utilizes separate intermediate-frequency amplifiers for the aural and visual channels. This design minimizes crosstalk, improves selectivity and reduces selective fading of either carrier. It is tuned to operating frequency at time of manufacture and requires no operating adjustments. One amplifier is capable of serving two units: a modulation monitor and a carrier frequency monitor.

Specifications

Input Sensitivity	 .100 µV min.
Input Impedance	 50-75 ohms

Adjacent Channel Rejection	
Dynamic Range	.100 to 500,000 µV
Intermediate Frequency Rejection	
Power Requirements	234V, 50-60 Hz, 5W
Dimensions	D (89, 483, 178 mm)
Weight (Approx.)	
Shipping Weight (Approx.)	10 lbs. (4.5 kg)

Ordering Information

RF Amplifier, Belar Type	RFA-3	MI-560548
(Please specify operating	channel and	frequency offset, if any.)

Visual Sideband Demodulator, Types BW-4C1/BWU-4C1

- Provides video source for high quality monitoring
- High quality envelope detector—linear phase-and-amplitude characteristics
- Built-in, integrated-circuit, vertical interval chopper
- Makes possible accurate measurements for system evaluation
- Available for any channel (54-890 MHz)

catalog TT.6500A

(Replaces B.4932)

The RCA BW-4C1/BWU-4C1 Visual Demodulator is designed for use at the television transmitter location as a means of deriving a video signal from the output of a visual transmitter. This signal can be regarded as an accurate representation of the video information contained in the modulated picture carrier as it exists in the feed line to the antenna system. The demodulator is used as a measuring instrument to allow vestigial sideband amplitude and delay measurements (including differences at various luminance levels) on the transmitter facility; as a video source for continuous, accurate waveform monitoring; and as a video source for driving a color monitor to provide a high quality color receiver for viewing the transmitted signal.

The Models BW-4C1 and BWU-4C1 Demodulators are identical with the exception of the built-in converters used for VHF or UHF channels. They are basically superheterodyne receivers with controlled IF and RF characteristics. A sound notch is provided for monitoring the transmitted signal with aural carrier present in the transmission line. Insertion of the notch provides delay characteristics compatible with industry standard receiver delay characteristics. With the notch operating, the aural carrier is rejected by 50 dB and inter-modulation products with 75% saturated colors are typically better than 40 dB down.

Delay Corrected

The IF frequency is 25.0 MHz for visual carrier and 20.5 MHz for sound carrier. The maximally flat IF amplifier cascade provides uniform frequency response. Low and high frequency video delay errors introduced in the lower skirt and nyquist slope regions of the IF passband are delay corrected in an allpass network in the video output circuity.

Series Tuned Wing Trap

A series tuned trap is adjusted to provide maximum skew symmetry on the nyquist slope. This allows optimum frequency response in the video frequency region around 0.75 MHz, the frequency at which the vestigial sideband recedes. The wing trap, as this circuit is named, precedes the IF amplifier and sound rejection circuits and is driven by the mixer output of either the VHF or UHF converter.

Each converter contains a crystal controlled oscillator, multipliers, and mixer. The converter receives power from the main IF power chassis on which the reg-

ulated dc supply is located. A singlephase, full-wave bridge rectifier utilizing silicon diodes is employed.

A vertical interval electronic chopper provides reference information synchronously in the vertical blanking interval.

Standard Rack Mounting

The BW-4C1/BWU-4C1 is designed for rack mounting in a standard 19-inch

Specifications

Electrical

Frequency Range:

BW-4C1	Channels 2 to 13 (54-216 MHz)
BWU-4C1	Channels 14 to 83 (470-890 MHz)
RF Input Required	Approximately 1.0V (rms)
Video Output2.0	volt max. peak-to-peak across 75 ohms
from chopper zero re	eference to sync peak (sync negative)

- Amplitude vs. Frequency Response With sound notch out±0.5 dB from 0.20 MHz to 4.5 MHz
- With sound notch in<u>+</u>0.7 dB from 0.20 MHz to 4.0 MHz
- Differential Gain10% between reference white, 12.5% and peak of sync, 100%
- Phase vs. AmplitudeThree (3.0) degrees or less for modulating signals having luminance levels from 12.5% to 75% of sync peak
- Low Frequency ResponseLess than 2% tilt on 50 Hz square wave
- Envelope Delay
- With sound notch outFlat within ±30 ns up to 4.18 MHz compared to the average delay between 0.05 MHz and 0.20 MHz
- With sound notch inFollows within ± 30 ns of standard receiver curve over chrominance sideband frequencies to 3.8 MHz. The tolerance increases linearly with respect to frequency to ± 200 , -0 ns at 4.0 MHz. Fixed low frequency delay of 50 ± 15 ns present
- Output Hum and Noise50 dB rms below 2 volts peak-to-peak output
- Intermodulation40 dB below 2 volts peak-to-peak output
- Sound RejectionMore than 50 dB aural signal rejection at ± 25 kHz deviation from carrier frequency
- Power Source Required105 to 125 volts AC, 50/60 Hz, 250 Watts (3A slo-blo fuse)

equipment rack. It connects to the transmission line through a directional coupler (not supplied, see separate catalog section). The coupler must be compatible with the transmission line used. Normally, the coupler is installed at a point following the vestigial sideband filter or filter-plexer, where the lower sideband attenuation has been established.

The video output of the demodulator is adjustable by the use of an attenuator

located on the delay equalizer assembly at the rear of the unit. In the "out" position, 2.0 volts of video is obtained for use with measuring equipment such as the BW-8A or BW-8A1 Envelope Delay Measuring Set. For routine monitoring, (when the unit is used as a high quality receiver with the sound notch turned on) the video attenuator switch is placed in the "in" position to provide 0.8 to 1 volt peak-to-peak output.

Mechanical

IF, Video and Power Supply Chassis:

Dimensions (overall)	
Weight	(483 x 356 x 356 mm)
Environment:	
Ambient Temperature	
Relative Humidity	0 to 95%

Accessories

Directional Couplers: For unpressurized 31/8"	
transmission line	MI-19396-1B
For pressurized 3 ¹ / ₈ "	
transmission line	.MI-27390
For 61/8" transmission line	.MI-27389
Transmission-Line Sections, 12" (305 mm) longs	
For MI-19396-1B in MI-19113NF	
T/L (VHF)	MI-19396-3
For MI-19396-1B or MI-27390 in	
MI-19089 T/L (UHF)	.MI-19089-22
For MI-27389 in MI-193140	
T/L (VHF)	.MI-19314C-25
For MI-27389 in MI-19389	
T/L (UHF)	MI-19387-20

(See catalog section on "Diodes, Directional Couplers" for details on above and other combinations of couplers and line sections).

Ordering Information

VHF Visual Sideband Demodulator, Type BW-4C1

catalog TT.6510A (Replaces B.4933)

Vertical Interval Electronic Chopper

Aids in modulation-depth measurement

- For demodulator, diode or tuner systems
- Establishes accurate zero-modulation level
- Short-term chop unobtrusive yet precise

The Vertical Interval Electronic Chopper (VIEC) is an all-electronic device used to establish a "zero-modulation" reference point in the measurement of televisiontransmitter modulation depth. It is an accessory for the RCA Types BW-4 and BWU-4 Visual Sideband Demodulators. It installs in the demodulator to replace the mechanical chopper, A kit, supplied with the chopper, simplifies conversion.

The VIEC also works with RF-monitoring diodes and tuners (such as the Conrac AV-12E). For such application, it is available with a suitable power supply (see Ordering Information).

Aids in Modulation-Depth Measurement

In effect, the VIEC creates three successive "white" pulses—one on each of three lines—near the end of the vertical blanking interval. Displayed on a CRO, the three white "pulses" serve as a zeromodulation (or zero-signal) reference point on the CRO screen (see drawing and off-CRO-screen photo). With such a reference, the relationship of various modulation parameters become quantitative.

Chops Only During Vertical Blanking

Unlike mechanical choppers, the VIEC chops a video waveform but three times

during each picture field, between successive H-sync pulses, just prior to the end of the vertical blanking interval (see drawing). Since the chopper short-circuits the demodulated video waveform, it generates — in effect — a zero-modulation, "white" pulse some 7 microseconds long during three successive lines in each field during blanking.

Chop Unobtrusive Yet Precise

As a result of the chopper's short duty cycle in the blanking interval, its use has no effect on the demodulator's synctriggering or sync-tip and backporchclamp circuits. This increases measurement precision demonstrably.

Adjustable Chopper Timing

Ordinarily adjusted so that the three pulses fall on the last three lines of vertical blanking, the timing adjustment range allows placement of the pulses somewhat "earlier" than usual for whatever occasion warrants it.

All Electronic—Fully Solid State

The VIEC is an electronic device, using integrated and discrete circuitry, with many advantages over a mechanical chopper. The VIEC allows continous display of modulation depth whether or not the waveform is monitored at the field or line rate.

Oscillographic reproduction of vertical interval with chopper in operation. See drawing below.

Line representation of "chopped" vertical interval.

VIEC installed at rear of Conrac AV-12E Tuner. Chopper unit at left; power supply unit at right.

Specifications

Number of Pulses per Cycle	
Pulse Duration (nominal)	
Pulse Timing (nominal)7	
	edge of H-sync pulse
Power Requirements	117 V, 60 Hz, 5 W

Ordering Information

Vertical Interval Electronic Chopper:

For use with BW/BWU-4 Sideband DemodulatorES-560654 For use with monitoring diodes or Conrac AV-12E Tuner (includes power-supply assembly)ES-560653

Television Demodulator, Telemet Model 4501

- RF sensitivity 5 mV
- Loss-of-signal alarm
- Envelope-delay corrected
- Internal, synchronous chopper

The Telemet Model 4501 Broadcast Demodulator produces a demodulated video and audio signal which is representative of the modulation characteristics of the television transmitter. These signals may be used for evaluation of chrominance gain and delay, "K" factor, modulation depth, and differential phase and gain, as well as continuous monitoring of the video and audio signal.

The Model 4501 Demodulator is supplied for any one selected channel in the VHF or UHF television band. It is usable over a wide range of input levels, from 5 millivolts for use at a studio or other remote point for off-air applications, to 5 volts with suitable attenuators from an RF sampling point in the transmitter plant.

Sound traps preceding the main IF circuit switch in or out. With the sound traps switched out, video response is within ± 0.5 dB to 4.5 MHz, and envelope delay within ± 25 nanoseconds. With the sound traps switched in, the envelope delay is inversely proportional to the required delay characteristic of the television transmitter.

A video chopper provides a zero reference pulse, which is synchronous to line frequency, to assist in transmitter modulation-depth measurements. A front-panel alarm lamp indicates loss of input signal.

Specifications

Frequency Range (Specify Channel and Offset):
Model 4501A1 Any VHF channel (2 to 13)
Model 4501A2Any UHF channel (14 to 69)
Frequency Stability±.002%
Ambient Operating Temperature5 to 50°C (41 to 122°F)
Frequency Response: Sound Trap out, 0 to 4.5 MHz ±0.5 dB Sound Trap in, 0 to 3.6 MHz ±0.5 dB Sound Trap in, at 4.08 MHz3.0 dB max.
Group Delay Response: Sound Trap out, 0 to 4.5 MHz
0 to 3.0 MHz

Differential Gain	max.
Differential Phase	max.
AGC Range	20 dB
Video Output Level (Peak-to-peak, adjustable)	1.0V
Video Output Impedance	ohms
Audio Output Level (Adjustable)) dBm
Audio Output Impedance (Balanced)	ohms
Power Requirements	2, 25W
Dimensions	1 mm)
Weight (Approx.)	.8 kg)

Ordering Information

Telemet Television Demod	lulator:
For VHF-TV Channels* For UHF-TV Channels*	Telemet Model 4501A1

*(Specify Channel No. and frequency offset.)

Television Demodulator, Rohde and Schwarz Type AMF

- Quality visual and aural demodulation
- Vestigial sideband with Nyquist slope
- Switchable sound trap
- Synchronous zero reference pulse
- RF or IF input

The Type AMF Television Demodulator is a high quality monitoring and measuring instrument for the demodulation of the visual and aural signal from the TV transmitter. It is a vestigial sideband receiver with Nyquist slope, having response and group delay characteristics to very close tolerances. It may be used at the transmitter location for precise quality observation and measurement of the transmitted signal or, with the optional RF Receiver Type HS-2064, at a point remote from the transmitter.

The Type AMF Television Demodulator operates on any specific channel in the VHF or UHF TV bands (see "Ordering Information"). The unit consists of an RF section, picture IF section, filter and sound section plus a power supply. In addition to the RF input, the AMF Demodulator accepts an IF frequency input of 45.75 MHz, selectable by a front-panel switch which is used for measurement and observation of the visual IF signal in transmitters using IF modulation at that frequency.

The RF or IF signals to be demodulated are applied to the input via individually adjustable dividers. The crystal-controlled RF oscillator is followed by a frequency multiplier appropriate to the operating channel, so that the final multiplier frequency is offset from the visual carrier by 45.75 MHz. This signal and the visual carrier go to the mixer.

The IF signals pass through a lowpass filter and an IF buffer amplifier, after which the visual and aural IF signals are separated and amplified individually. The visual IF signal goes to a filter subassembly incorporating a high-pass filter section, two all-pass filters (for delay correction) and a filter for the Nyquist slope. A front-panel, sound-trap on/off switch selects the filters for the desired characteristic. After amplification, the visual IF signal is demodulated and applied to a low-pass filter that removes any residual IF voltages. The video signal is amplified by d-c coupled amplifiers and is available at two isolated outputs on switch selectable front or rear panel connectors.

A line-synchronous, zero-reference pulse provides for the determination of visual modulation depth. The pulse width is 3 to 4 microseconds and can be shifted within the duration of one-third of a line.

The aural intercarrier signal is derived by diode mixing the visual and aural IF in the sound section. It is then amplified, limited and demodulated. The audio output level is +6 dBm and is available on three output connectors on the rear panel.

RF Receiver Unit, Type HS-2064

An RF receiver is a companion unit

Specifications

Type AMF Television Demodulator

Frequency Range (Specify Channel and offset):
Model 100.7593.51 VHF Channels 2-6
Model 100.7606.51
Model 100.7612.51 UHF Channels 14-69
Frequency Stability
RF Input Level
IF Input Level
Input Impedance
Picture IF Frequency
Video Output Impedance
Video Output Level
Differential Gain
Differential Phase±1.0°
Signal to Noise (unweighted)
Group Delay (without sound trap)±15 nsec, 0-5.5 MHz
Audio Frequency Response (30 Hz to 15 KHz)±1.0 dB
Dimensions
Power Requirements 115/230V, 47-63 Hz, 50W

Specifications

HS-2064 RF Receiver

Frequency Range (Specify Channel and offset):

Type HS-2064-1	VHF Channels 2-6
Type HS-2064-3	VHF Channels 7-13
Type HS-2064-5	UHF Channels 14-69

to the Demodulator and provides the required sensitivity to permit operation of the demodulator unit at a location remote from the transmitter site. Like the Demodulator, it employs a crystal-controlled local oscillator and an RF section factorytuned to a specific channel in the VHF or UHF spectrum. The HS-2064 offers excellent frequency stability and image rejection, and low local oscillator radiation. It operates on an RF input voltage greater than 350 microvolts. The HS-2064 down-converts the RF input signal to an intermediate frequency, which is amplified and corrected for group delay and then applied to the IF input of the De-

For off-air use of the demodulator, a receiver unit is available. It is the lower unit in this photo. modulator. Thus, the HS-2064 RF Receiver and the RF section of the AMF Demodulator may be specified for different TV channels providing the utility of a receiver system for one channel and a demodulator for another channel.

The Type AMF Television Demodulator is a precision instrument suitable for quantitative measurements of transmitter performance. It is designed and manufactured to close performance tolerances which assure long-term stability and reliability. Its characteristics make it suitable for use in a closed-loop feedback system for automatic correction of video signal parameters.

Noise Figure:

VHF	
Preselection	
Image Rejection	
Oscillator Radiation	
Frequency Stability (per month)	
Picture IF Frequency	
Sound IF Frequency	
RF Input Impedance (unbalanced)	
RF Input Voltage	
IF Output Impedance (BNC connector, unbalanced)50 ohms	
IF Output Voltage	
Dimensions	
Power Requirements	

Ordering Information

Television Demodulator, Rohde & Schwarz, Type AMF:
VHF Channels 2-6 (Model 100.7593.51) MI-560534L
VHF Channels 7-13 (Model 100.7606.51) MI-560534H
UHF Channels 14-69 (Model 100.7612.51) MI-560534U
RF Receiver, Rohde & Schwarz, Type HS-2064:
ni necewer, nonde a ochwarz, rype no-2004.
VHF Channels 2-6 (Model HS-2064/1) Mi-560536L

catalog TT.6700A (Replaces B.4510, B.4726, B.5510)

Diode Demodulators and Directional Couplers

- For TV transmitter monitoring
- Easily installed and adjusted
- Facilitates transmitter testing
- Models available for UHF and VHF
- For line sizes from 1-5/8" to 9-3/16"

Diode Demodulators, Directional Couplers and accessory devices provide RF sampling and monitoring facilities for tune-up adjustments and operational performance monitoring of the television signal. They locate at strategic points in the transmission line system between the output of the visual amplifier to the output of the sideband filter or filterplexer. Directional Couplers provide an RF sample voltage to indicate forward or reflected power or a proportional voltage for use as an input signal to transmitter monitoring or test equipment such as a visual demodulator, sideband response analyzer, or TV frequency and modulation monitor.

Diode Demodulators demodulate an RF sample from the transmission line system to provide a video signal which accurately represents the modulation characteristics of the TV transmitter. A series of these demodulators, in combination with picture and waveform monitors and a video switcher, allows observation of the demodulated video signal at various points in the signal path.

Diode Demodulators

Diode Demodulators are available in several versions for applications depending on the operating TV Channel (UHF or VHF) and the transmission line diameter.

VHF Diode Demodulators operate on TV Channels 2 through 13, and mount directly to either a $1\frac{5}{6}$ " or $3\frac{1}{6}$ " diameter transmission line. A separate directional coupler is not required. The unit mounts to the line in which a coupling hole is cut or, to a monitoring line section which is supplied with coupling holes already cut. (See "Monitoring Line Sections," on opposite page.)

The demodulator consists of a dual-diode with cathodes capacitively coupled, through the probe, to the inner conductor of the transmission line. The diode anodes connect, through a load resistor network, to a 75-ohm output circuit.

UIIF Diode Demodulators operate on UHF-TV Channels 14 through 69. Each demodulator consists of a diode unit and a directional coupler furnished for a specific transmission line diameter. Clamps are provided for mounting the diode unit on the transmission line adjacent to the directional coupler. The input circuit is compensated for uniform RF response on all UHF channels. A UHF "pencil" triode, (diode-connected), serves as the RF demodulator.

UHF Diode Demodulators are available for line sizes from $3\frac{1}{8}$ " to 9-3/16" diameter.

Ordering Information

Diode Demodulators:

VHF Diode Demodulator for 15%" or 31%" line (Includes RF pickup probe)	MI-19051B
UHF Diode Demodulator for 3 ¹ / ₈ " line (Includes MI-27390 Directional Coupler)	MI-19364
UHF Diode Demodulator for 6 ¹ / ₈ " line (Includes MI-27389 Directional Coupler)	MI-560486
UHF Diode Demodulator for 8%" line (Includes MI-561577 Directional Coupler)	MI-560529
UHF Diode Demodulator for 9%" line (Includes MI-561578 Directional Coupler)	MI-561269

Monitoring Diodes

UHF Monitoring Diodes are for use with separate directional couplers. The diode is a solid-state device, and requires no external power. The small physical size increases its usefulness for monitoring the video signal at various points in the system. These diodes are not intended for precise measurement of signal parameters but are useful for providing a visual signal check at convenient points in the RF system, such as the low-power stages of a TV transmitter. (Not illustrated.)

Ordering Information

Directional Couplers

VHF/UHF Directional Couplers couple external monitoring equipment to the output lines of either VHF or UHF television transmitters to allow measurements required for tuning, test and maintenance of the transmitter system. The coupling loop may be set in positions to intercept either incident or reflected power.

With the installation of several couplers, at appropriate points in the output transmission lines, measuring or monitoring equipment may be coupled to the output of each visual amplifier, the visual diplexer, or the sideband filter or filterplexer.

The couplers include etched scales for setting precisely the penetration depth and the angular position of the coupling loop for accurate output voltage calibration.

The directional property of the couplers permit sampling from a transmitter output line without any of the attendant variations in frequency response observed with non-directional couplers. The monitor voltage obtained represents the amplitude of either the incident or reflected wave, as chosen by the angle of the coupling loop. The couplers present a source impedance of 50 ohms to the monitor cable.

Reflectometers for the indication of power output and VSWR require two directional couplers: one for the indication of incident power, and another for reflected power.

The directional couplers install easily with the proper holes cut in the transmission line at the points where the couplers are placed. Monitoring line sections are also available in various line sizes. These line sections are 12 inches (305 mm) long, with pre-cut mounting holes for the directional coupler.

Ordering Information

Directional Couplers: VHF/UHF, 50/51.5 ohm, for use with	14 40000 4
3 ¹ / ₈ " unpressurized line	MI-19396-1
VHF/UHF, 50/51.5 ohm, for use with 3½" pressurized line	.MI-27390
VHF/UHF, 75-ohm, for use with 6 ¹ /a" pressurized line	MI-27389
VHF/UHF, 75-ohm, for use with 8%" pressurized line	. MI-561577
VHF/UHF, 75-ohm, for use with $9\%_6''$ pressurized line	

Monitoring Line Sections

Sections of flanged or unflanged transmission line 12 inches (305 mm) long predrilled to accommodate the diode demodulators and directional couplers described above.

Ordering Information

VHF, 51.5-ohm, 3 ¹ / ₈ " unflanged	MI-19396-3
UHF, 50-ohm, 31/8" EIA flange	MI-19089-22
VHF/UHF, 50-ohm, 31/8" Universal flange	MI-27791D-9A
VHF, 50-ohm, 31/8" Universal unflanged	MI-37791K-9A
VHF, 51.5-ohm, 61/8" unflanged	MI-19314C-25
UHF, 75-ohm, 61/8" Teflon EIA flange	
VHF/UHF, 75-ohm, 61/8" Universal flange	MI-27792D-9A
VHF/UHF, 75-ohm, 8⅔ ["] Universal flange	
VHF/UHF, 75-ohm, 9⅔,″ Universal flange	MI-27793D-9A

World Radio History

TV Sideband Response Analyzers, Types BW-5C2/BWU-5C2

- Measures transmitter system amplitude vs. frequency response
- Indispensable broadband RF circuits
- Continuously variable frequency marker
- Used with optional sync and blanking adder, measures response at predetermined brightness levels
- Solid-state sweep oscillator

The TV Sideband Response Analyzers BW-5/BWU-5 measure the overall amplitude-versus-frequency characteristic of a television transmitter. In conjunction with an oscilloscope it visually presents the upper and lower sideband response. Its primary use is for tuning the over-coupled broadband RF circuits of television transmitters and measuring their amplitude response characteristic. Since it includes a video sweep oscilator, it can also be used in adjusting video amplifiers, modulators, etc. The Type BW-5 Analyzer is for VHF-TV while the Type BWU-5 Analyzer is for UHF-TV frequencies.

The Sideband Response Analyzers provide for the display, on a suitable oscilloscope, of the entire sideband frequency response characteristics of any TV transmitter including the sideband filter. Such visual presentation permits immediate evaluation of transmitter adjustment without laborious point-by-point curve plotting. This facilitates transmitter tuning. The BW-5 tunes to 45.75 MHz for use with transmitters equipped with intermediate-frequency exciter-modulators.

Quality Video Sweep Oscillator

The BW-5 includes a video sweepfrequency generator for transmitter modulation; a calibrated, variable-frequency marker generator, a synchronized receiver system for high definition sideband response; a retrace blanker circuit and a baseline generator for the associated oscilloscope. The unit is packaged in a recessed-box ("bathtub") chassis suitable for rack mounting. The front panel swings down for access to the unit's interior. Two BNC- type connectors, on the front panel, provide for the oscilloscope vertical and horizontal input connections. Power cord and transmitter connections are at the rear of the unit.

Available for UHF-TV Too

The BW-5 instrument is a VHF-only

unit. For UHF-TV operations, it is available with an outboard unit that interfaces the VHF input of the BW-5 to the frequencies of UHF. This ensemble is designated the Type BWU-5, see "Ordering Information", below. The only difference between the two is the outboard unit and the additional 5.25 inches (133 mm) of rack space required for the UHF system.

Specifications

Analyzer RE Input-

RF Input:		
Frequency45.75	·83.25 MHz (channels 2 to 6)
17	4-212 MHz (a	channels 7 to 13)
Voltage		100 mV
Impedance		50/51.5 ohms
Outputs:		
Receiver Signal		
Output TerminationHigh in	npedance os	scilloscope input
LinearityErro	r referred to	14-V carrier pip
	Indicated	Actual Response
	—25 dB	-24 dB
		-28 dB
		—33 dB
Noise Level (below 14V)		50 dB min.
Receiver Gain Control Range		10 dB
Video Sweep:		
Voltage		0 to 2V p-p
Frequency	10-0-10 M	Hz sweep width
	continu	ously adjustable
Center Frequency	Ad	justable ±4 MHz
Sweep Rate	Powe	r line frequency
Repetition Rate2	times powe	er line frequency
Frequency Response	70 kHz to	5 MHz ±0.5 dB
	50 kHz to	7 MHz ±1.0 dB
Distortion (at 2V p-p)		
Oscilloscope Sweep:		
Open Circuit Voltage		4.5V p-p
Frequency	Sar	ne as power line
Wave Form	San	ne as power line
Internal Impedance		12,000 ohms
Phase Adjustment		<u>+</u> 70°
Operating Conditions	5°C to	45°C, 0-95% RH
Supply Voltage		5-125/208-250V ac
Supply Frequency		
Power Consumption	••••••	200W

Mounting-Relay Rack	supplied)1" male motor-plug 10½" H, 19" W, 14½" D (267, 483, 368 mm)
Weight	
UHF Converter	
Input and Output Impedances	
Frequency Range	
Response (-1.5 to +6 MHz of	±½ dB of center frequency
to the attenuator ranging from input is 1V with input of 2.0V	
Output	0.3V across 50 ohm load with 2.0V rms input to attenuator
Power Requirements	
UHF Converter: Dimensions19" W, 51/	4" H, 7¾" D (483, 133, 197 mm) 14 lbs. (6 kg)

Accessories

Directional Coupler for 31/8" Line	MI-19396-1B
Directional Coupler for Pressurized 31/8" Line	MI-27390
Directional Coupler for 61/8" Line	M1-27389
VHF Line Section (12" long, 31/8" dia.)	MI-19396-3
UHF Line Section (12" long, 31/8" dia.)	
UHF Line Section (12" long, 61/8" dia.)	

Ordering Information

Sideband Response Analyzer, Type BW-5C2: VHF Channels 2-13	MI-34000-C2
Sideband Response Analyzer, Type BWU-5C2: UHF Channels 14-83	ES-34009-C2
Less directional coupler and transmission-line	section.

Please specify assigned channel.

Sync and Blanking Adder

- Facilitates TV transmitter tests
- Mounts in standard module frame
- Self-contained power supply
- Regenerated pulses—bridging inputs

The Sync and Blanking Adder module increases the capabilities of an RCA Type BW-5/BWU-5 Sideband Response Analyzer: it allows convenient sideband response measurements with the transmitter modulator clamp circuit in normal operation; it permits rapid frequency response vs. brightness level measurements and it provides switched selection of standardblack and standard-picture level for observation of output regulation and blanking-level stability. Used with an external audio oscillator set at 59 IIz, it provides test for low frequency dynamic video characteristics.

Modularized, Plug-In Packaging

Requiring only 1.8 inches (46 mm) of rack-module space, the Adder mounts in an RCA module frame with other similarly packaged equipment such as video amplifiers, pulse amplifiers and the like.

Built-In Regenerator

The unit regenerates sync and blanking as part of its function. This makes it insensitive to pulse input-level variations and prevents distorted pulses from reaching the transmitter during test. The sync and blanking inputs are a-c coupled with an impedance exceeding 6000 ohms. As a result, the Adder conects in any loopthrough circuit to other operating equipment. (Specifications and Ordering Information, next page.)

Specifications Input Characteristics:

Video Input0.25V peak-to-peak to	0.50V peak-to-peak
nominal of video sweep from Sideband	Response Analyzer
Input Impedances:	
Video Connection	75 o hm s
Dune Connection (Min)	6000 I
Sync Connection (Min.)	
Blanking Connection (Min.)	
Sync Level (Nominal)	
Blanking Level (Nominal)	4V p-p
Availa Imarch Laurel (March 1)	
Audio Input Level (Nominal)	IV p-p
Audio Input Impedance600	ohms (unbalanced)

Output Characteristics: 1V p-p composite Output Level (Nominal) 1V p-p composite Power Requirements 115V, 60Hz, 2W Dimensions 4.7" H, 1.8" W, 13.2" D (119, 46, 34 mm) Weight 2 lbs. (910g)	
Module Mounting Frame	
Sync and Blanking Adder	

World Radio History

Envelope Delay Measuring Equipment, Type BW-8A

- Convenient and simple to operate
- Single frequency method of measurement
- Direct reading dial
- Excellent performance—Envelope delay 0 to 670 ns; accuracy __3 percent, 10 nanoseconds

The BW-8A Envelope Delay Measuring Equipment is designed for field measurement of the incremental slope of the phase-versus-frequency characteristic (usually referred to as envelope delay) of television transmitter systems. It can also be used to measure the absolute delay of video equipment. By maintaining proper phase relationship between the various frequencies in the TV system, such effects as leading white, trailing smear, ringing and misregristration can be corrected.

The BW-8 equipment is a rackmounted unit, easy to use. It provides a low frequency phase reference in order to measure the relative envelope delay in the region from 1.3 MHz to 4.3 MHz defined as the average delay between 0 and 189 kHz (F_A). The instrument is direct reading. All operating controls are located on the front panel for ease of operation. The unit mounts in a standard rack mounting where it occupies only $10\frac{1}{2}$ inches (267 mm).

When measuring a video system or any other equipment having input and output at video frequencies, no auxiliary equipment is required. When a complete transmitter is being measured the only auxiliary unit required is an RF demodulator to provide video signal feed to the receiver portion of the BW-8. The RCA BW-4 Series of Visual Sideband Demodulators or MI-19051-B/19364 Diode Demodulator can be used for this purpose. When sync and blanking are desired, they may be obtained from a studio sync generator, fed to the BW-8 generator section and combined with the BW-8 generator signal components to supply a composite test signal.

Built-in Power Supply

The BW-8 consists of a generator that feeds the system to be measured, and a receiver section which evaluates the envelope delay of the signals after they have passed through the system under test. The generator section provides two signal sources. One is a reference frequency (F_A) derived from an internal crystal oscillator or from the twelfth harmonic of the horizontal sync frequency supplied from an external source. The second is a carrier signal (F_C) which may be varied. The receiver section contains two amplifierlimiter chains to detect and amplify video from the unit under test. A phase shifter consisting of an RLC network may be switched into either amplifier chain to permit compensation of either positive or negative time delay. It is calibrated to read delay in microseconds. The generator section occupies the left section of the chassis, the receiver chains are on the right. An electronically regulated power supply is built in on the rear of the chassis.

Front Panel Control

All controls of the BW-8 Envelope Delay Measuring Set are located on the front panel, those of the generator being on the left side and those of the receiver on the right. The output and input connectors, as well as the external sync input, the power connector and the fuse holder, are located on the rear of the chassis. The dial on the left controls the carrier frequency F_C and is directly calibrated. The right-hand dial drives a precision 3-turn potentiometer that controls the phase shifter. The dial is calibrated in delay, from 10 to 670 nanoseconds and may be measured with an accuracy of ± 3 percent (± 10 nanoseconds).

The VTVM (null indicator) is connected to a 5-position switch. Position 1 measures peak amplitude of the output test signal fed to the transmitter. Position 2 measures the amplitude of the signal at the input of the receiver. Position 3 is for balancing the VTVM and positions 4 and 5 are for use as a null indicator for the phase detector. Position 4 is of lower sensitivity for initial balancing of the phase detector. By means of another switch, the phase shifter network can be introduced into either one of the two receiver chains, allowing matching of positive or negative phase delay encountered in the system under test.

Other controls located on the front panel include an AC line switch; "Sync Amplitude" which regulates the amount of sync incorporated in the test signal; a "Zero Set" used to balance the VTVM when its switch is in position 3; and a "Delay Set", used to balance the delay of the measuring set when the operation switch is in the "direct" position.

Specifications

Performance Envelope Delay	0 to \pm 0.67 microseconds
Frequency Range	
Reference Frequency	Average Envelope Delay between 0 and 0.189 kHz
Delay Accuracy	$\pm 3\% \pm 0.01$ microseconds
Carrier Frequency Accuracy	<u>+</u> 2% <u>+</u> 0.05 MHz
Output Test Signal	0 to 2 Volt, peak-to-peak
Output Impedance	
Input Test Signal	0.1 Volt, peak-to-peak min.
Input Impedance	
Horizontal Sync and Blanking	1 Volt peak-to-peak, min.
Input Impedance (Sync)	
Power Requirements	

Mechanical

in o o na noan	
Mounting	Standard 19" (483 mm) rack
Operating Conditions	5°C to 45° C (41°F to 113°F), 0-95% relative humidity
Dimensions	W, 14 ¹ / ₂ " D (267, 483, 368 mm)
Weight (Approx.)	
Accessories	
VHF Visual Sideband Demodula Type BW-4C1	
UHF Visual Sideband Demodula Type BWU-4C1	
VHF Monitoring Diode	MI-19051-B
UHF Monitoring Diode	MI-19364
Ordering Information	
Envelope Delay Measuring Set	

Envelope Delay Measuri	ng Set	
(1.3 to 4.3 MHz), Type	BW-8A	MI-34063

World Radio History

catalog TT.7200A (Replaces B.5514)

Harmonic Filters for UHF-TV Transmitters

• Effective harmonic suppression

- Pretuned during manufacture for optimum VSWR
- Easy installation-small relative size, light weight
- Standard equipment on RCA UHF-TV transmitters

Essentially bandpass filters using resonant cavities instead of lumped-constant circuits, these harmonic filters provide effective harmonic suppression for UHF-TV transmitters. Harmonic attenuation is accomplished in a series of radial cavities in a reflective-type circuit. The cavities are fabricated of high tensilestrength aluminum with a precisionmachined interior. The individual cavities are assembled into a series of fixedtuned sections terminated with standard transmission-line flanges.

Harmonic filters operate with power flow in either direction and should connect as close as practical to the transmitter output.

Four harmonic filters in use in an RCA transmitter.

Specifications

Power Rating: Average	
VSWR	ax.
Harmonic Suppression'	n.
Connections: Input & Output	1X2
Mounting Position	ny
Ambient Operating Temperature	F)

Dimensions:						
Ch. 14-43 Filter	529 mm)					
Ch. 44-83 Filter	48 6 mm)					
Weight (Approx.)	13.6 kg)					
With RCA transmitter and filterplexer. PMates with RCA Cat. No. MI-19089 transmission line.						

Ordering Information Harmonic Filter:

larmo	onic F	ilter:			
For	U.S.	Ch.	14-43	incl.	MI-5 61 549L
For	U.S.	Ch.	44-8 3	incl.	MI-5 61 54 9 H

Please specify channel number.

60 kW UHF Hybrid Filterplexer

- Combines functions of sideband filter and diplexer
- Non-pressurized no gassing required
- Insertion loss 0.5 dB or less at visual and aural carriers
- Fully assembled and pretuned
- Temperature compensated
- Constant input impedance over channel

This filterplexer connects aural and visual outputs of a UHF television transmitter to a common antenna feedline with negligible interaction and crosstalk and shapes the frequency response to conform to vestigial sideband television transmission standards.

The filterplexer combines the high quality performance characteristics of both a sideband filter and a diplexer. The inputs have a constant input impedance over the band of frequencies in the channel.

Since resonant circuits of the lumped inductive-capacitance type are impractical at UHF frequencies, the filter sections consist of lengths of probe-excited waveguide and sections of coaxial transmission line making it a hybrid filterplexer. The system uses an ungassed, unpressurized design.

The filterplexer is suitable for floor or ceiling mounting (horizontal position with 6¹/₄-inch connections upwards only). The filterplexer is fully factory assembled.

World Radio History

Outline drawings show dimensions in inches and millimeters for channels 14 through 70.

AURAL INPUT -

PARENTHETICAL DIMENSIONS ARE IN MILLIMETERS.

Outline drawing. Letters refer to chart at left below.

Dimension	Chart
Inches (m	(m)

Dimensions	A	в	с	D	E
Ch. 14 thru 22	26.00(660)	49.50(1257)	77.36(1965)	66.36(1686)	6.61(168)
Ch. 23 thru 30	25.00(635)	46.50(1181)	73.30(1862)	69.71(1771)	5.59(142)
Ch. 31 thru 41	24.00(610)	44.50(1130)	68.36(1736)	63.95(1624)	5.59(142)
Ch. 42 thru 54	23.00(584)	40.50(1029)	74.36(1889)	63.36(1609)	5.59(142)
Ch. 55 thru 70	23.00(584)	40.50(1029)	73.36(1863)	64.36(1635)	5.59(142)

Shipping container increases dimensions thus:

C: 9.62"(244 mm); B: 4.5"(114 mm); D: 6.75"(171 mm).

Specifications

Operating Frequency	Any 6 MHz channel between 470-812 MHz
Power Rating (Peak Visual)	
Aural to Visual Power Ratio	
Minimum Efficiency: ¹ Aural and Visual	90% (0.46 dB loss)
Visual Input VSWR (Ref. visual carrier	frequency):
-4.5 MHz to -1.25 MHz	
—1.25 MHz to +4.2 MHz	
+4.2 MHz to +4.5 MHz	1.3:1 max.

Letters refer to chart at left below.

Aural Input VSWR (Ref. visual carrier frequency):

4.5 MHz ±100 kHz	1.3:1 max.
Ambient Temperature Range0 to 45°	C (32-113°F)
Blower Power Requirements	single phase
Interlock Circuit	0V, 5A max.
DimensionsSee Chart and Outlin	ne Drawings
Access Clearance (all sides)	57 mm) min.
MountingFloor	or ceiling ²
Coaxial Connections and Impedance: Input (Aural)	d (MI-19387)
Weight (Approximate)	bs. (386 kg)
Shipping Container DimensionsSee	e Chart note
Visual losses (not aural) included in transmitter peak power r	ration

¹ Visual losses (not aural) included in transmitter peak power rating. ² Horizontal position with 61/8" connections facing upward only.

Ordering Information

UHF Hybrid Filterplexer, 60 kW	MI-561543
Please specify operating channel.	Shipped fully assembled.

Waveguide Filterplexers, 60 and 120 kW Visual

- High Efficiency-90% and greater
- Ceiling mount saves floor space
- No pressurization required
- Topside or bottomside connections
- Combined sideband filter and aural/visual diplexer

catalog TT.7650A (Replaces B.5530)

Waveguide filterplexers connect aural and visual transmitter outputs to a single antenna feedline with high efficiency and negligible interaction between the two transmitter outputs. The filterplexer also shapes visual carrier sidebands to conform with vestigial sideband transmission standards.

Designed for Ceiling Mount

Constructed of high conductivity aluminum, the filterplexer is designed for ceiling mount to save floor space. Dimensions in all three planes are a function of operating frequency (see *Specifications*).

Pretuned During Manufacture

All waveguide filterplexers are fully assembled and pretuned to operating frequency. They are, however, disassembled to facilitate shipment.

Combines Sideband Filter with Diplexer

Waveguide filterplexers combine the high-quality performance characteristics of a well-designed sideband filter and an efficient visual/aural diplexer. The filter attenuates the lower sideband of the visual carrier more than 20 dB from the lower edge of the channel (carrier minus 1.25 MHz) to a frequency 4.25 MHz below visual carrier frequency. So the transmitter outputs "see" a constant load, the filterplexer inputs are designed for constant impedance over the frequency bands produced by the transmitter carriers.

Convection Cooled, Unpressurized System

The filterplexer consists of two identical waveguide transmission lines with three waveguide cavities. Hybrid junctions at the inputs and output provide for connection of coaxial transmission line components. The waveguides operate without pressurization and are cooled with convection currents in the surrounding air. Special cooling fins on the cavities eliminate the need for any active cooling system.

(Specs and ordering information, next page.)

Typical installation of 60-kW, Channel 48 filterplexer.

Note: Coaxial connections made from above the filterplexer.

Bodelications

Catalog Number	MI-5	MI-561550		MI- 56 1551		61552	MI-561553	
Frequency Range	Ch.	14-42	Ch.	43-69	Ch. 14-42		Ch. 43-69	
Power Rating	Visual	Aural	Visual	Aural	Visual	Aural	Visual	Aural
Toner Rating	60 kW	12 kW	60 kW	12 kW	120 kW1	24 kW	120 kW1	20 kW
Efficiency (Min.)	94%	92%	93%	90%	94%	92%	93%	90%
Visual Input VSWR (Max.)								
-4.5 to -1.2 MHz	1.2:1	—	1.2:1		1.2:1	—	1.2:1	
-1.2 to $+4.2$ MHz	1.15:1	—	1.15:1	-	1.15:1	-	1.15:1	
+4.2 to +4.5 MHz	1.2:1		1.2:1		1.2:1	—	1.2:1	—
Aural Input VSWR (Max.)	-	1.2:1	_	1.2:1	—	1.2:1	_	1.2:1
Connections Input								
Nominal Diameter (inches)	61/8	31/8	61⁄8	31/8	WR-1500	6½	WR-1150	61⁄/8
Impedance (ohms)	75	50	75	50	_	75		75
Mating Components (Cat. No.)	MI-19387	MI-19089	MI-19387	MI-19089	WR-1500	MI-19387	WR-1150	MI-1938
Output								
Nominal Diameter (inches)	61	-		/8	WR-	1500	WR-1150	
Impedance (ohms)	7	*	75					
Mating Components (Cat. No.)	M1-1	9387	MI-19387		WR-1500		WR-1150	
Dimension in Inches (mm)								
Length ²	228-195 (5791-4953) 198-168 (5029-4267)		228-195 (5		198-168 (5			
Width ²	140-10 0 (3		105-81 (2		140-100 (3556-254 0)		105-81 (2667-2057)	
Depth	36 (9	14)	36 (9	914)	36 (9	14)	36 (9	914)
Weight (Approx.) in Pounds (kg)	1200 (5	(44)	900 (4	08)	1200 (5	(44)	900 (4	(80

¹Visual power rating increases with a reduction in aural power level.

²Dimensions vary with operating frequency: Lower channel no. = larger dimensions.

Ordanna Information (Please specify visual and aural carrier frequencies)

Waveguide Filterp	lexers:			Channels	14-42,	120	kW	Rating	MI-561552
Channels 14-42,	60 kW	Rating	MI-561550	Channels	43-69,	120	kW	Rating	MI-561553
Channels 43-69,	60 kW	Rating	MI-561551						

World Radio History

catalog TT.8200A (Replaces B.5520, B.5522, B.5524)

RF Loads and Wattmeters for UHF-TV

- Combination dummy antenna and power meter
- Indicate incident or reflected power
- Air-cooled and water-cooled systems
- Power levels to 110 kW TV power (80 kW CW)

Here are four RF load and indicator devices for UHF-television broadcast operations. The smallest is a 1200-watt, air-cooled unit suitable as a reject load in a diplexer or as a test load for TV power stages up to 2000 watts; the largest is an 80kilowatt device suitable for use with a 110-kilowatt UHF-television transmitter.

World Radio History

Air-Cooled, 1200-Watt Load/Wattmeter

- For up to 2000 watts TV power
- Fully self-contained, air cooled
- Wattmeter in separate housing
- Measures incident or reflected power

An air-cooled device for measuring the power output of the aural and visual sections of UHF-television transmitters. The load terminates the transmitter output and the wattmeter indicates the average power dissipated in the load.

Air Cooled Load Resistor

The load resistor is immersed in a liquid which transfers the heat from the resistor to the finned case which, in turn, dissipates the heat to the surrounding air. The liquid volume is only 1.7 gallons (6.4 liter) and ordinarily requires no maintenance.

Reflectometer Wattmeter Element

A coupling loop, a semi-conductor detector and a filter network make up the wattmeter element. The element is reversible in its socket to allow measurement of reflected as well as incident power. The element fits into a recess in the length of transmission line (see photo) that serves as the power-measuring section. Two wattmeter elements are supplied: 0-150W and 0-1500W. Also supplied is a thermo switch for interlock connection as overload protection for the load.

Specifications

Operating Frequency Range	470 to 890 MHz
Power Rating (Average)	1200W max.
Input Impedance	50 oh ms
Mating Connection	31/8", 50-oh m F langed ¹
Operational Altitude	7500 ft. (2286m) ASL max.
Ambient Operating Temperature	10 to 45°C
Minimum Storage Temperature	
Mounting	Horizontal
	W; 10¾" H (930, 162, 273 mm)
Weight .	

¹Matches RCA Cat. No. MI-19089 components.

Accessories

Reducer, 50-ohm, 31/8" to Type NMI-19089-17Adapter, Type N to Type HN ConnectorMI-19089-19Inner Connector, Anchor InsulatorMI-19089-10A

Ordering Information

Water-Cooled, 15/25-kW Load-Wattmeter

- Uses ordinary tap water as coolant
- Indicates power level directly in kilowatts
- For transmitters to 30 kW TV power.
- Choice of two wattmeter ranges.

Recommended for use with transmitters with up to 30 kilowatts of TV power, this load and wattmeter uses running water as coolant. It is equipped with a $3\frac{1}{8}$ -inch, 50-ohm flanged component that mates with RCA Catalog No. MI-19089 transmission line components. An accessory reducer-transformer adapts the connection to $6\frac{1}{8}$ -inch, 75-ohm components. (See "Accessories".]

The load is available in two versions; one for use where a potable tap water supply and a drain are available, the other uses a closed water system that recirculates the coolant in a coil attached to the heat exchanger of an RCA Type TTU-110 transmitter.

Open Water System

The system consists of an RF load, a calorimetric measurement kit, a flow interlock and a reducer. No interconnecting water plumbing items supplied.

Closed Water System

The system consists of the same items as supplied with the open-water system plus the items shown in the "Functional

Wattmeter Range Choice

The load and wattmeter are sold separately to allow a choice of two wattmeters: one for 0-15 kW range and another for 0-25 kW. The inner conductor connector, see "Accessories", is required to connect the Thruline to the load. Both wattmeter options measure incident as well as reflected power.

Specifications

Operating Frequency Range
Power Rating (Average)
Input Impedance
Operational Altitude
Mating Connection
Ambient Operating Temperature
Mounting
Water Requirements ²
Water Connections

Diagram" and water plumbing fittings for a typical system. Straight lengths of water tubing and elbows are not supplied.

Specifications

Operating Frequency	Any 6 MHz channel between 470 and 728 MHz
Power Rating (CW)	
Input Impedance	
Operational Altitude	
Mating Connection	
Ambient Operating Temperature	
Mounting	Any Position
Water Flow Rate10) U.S. Gal/min. (630 ml/s) ²
Weight (Load only, approx.)	
 'Matches RCA Cat. No. MI-19387 components	s. Reducer included for either 8 A "

matches KCA Cat. No. Mi-1930 components, keducer included for either $8.4^{\circ\circ}$ (RCA MI-27793) "Universal" line. Please specify which reducer you require.

"Water of potable quality; requirement varies with inlet water temperature. (Water hardness not to exceed 200 PPM or 11.8 grains per gallon.)

Ordering Information

Water-Cooled, 80-kW Load:	
Open-Water System	ES-561800
Closed-Water System	ES-561812
(Please specify operating channel and either $8\frac{3}{16}$	or 9%-inch
reducer, male or female.)	

Dimensions (Approx.)	104" L; 5¾"	dia. (2641, 146 mm)
Weight (Approx.)		50 lbs. (23 kg)

¹ Matches RCA Cat. No. MI-19089 components.

²Water of potable quality; requirement varies with inlet water temperature. (Water hardness not to exceed 200 PPM or 11.8 grains per gallon.)

Accessories

Reducer-Transformer	MI-19387-4-CH
Inner Conductor Connector	MI-19089-10A
Wattmeter, "Thruline", 0-15 kW	MI-27350 ³
Wattmeter, "Thruline", 0-25 kW	MI-273634

 3 Includes line section, wattmeter and two wattmeter elements: 0-1.5 kW and 0-15 kW.

 $^{\rm t}$ Includes line section, wattmeter and one 0-25 kW wattmeter element.

Ordering Information

Water-Cooled 15/25-kW Load MI-561733 (Wattmeter, wattmeter element and "Thruline" line section not included. Select appropriate ensemble from "Accessories", above.)

The load wattmeter is available in two versions; one for use where a potable tap water supply and a drain are available, the other uses a closed water system that recirculates the coolant in a coil attached to the heat exchanger of an RCA Type TTU-55 or TTU-60 transmitter.

Open Water System

The system consists of a transformer, a Thruline/Wattmeter, three wattmeter elements, a reducer and an RF Load equipped with a thermo switch. No interconnecting water plumbing items supplied.

Closed Water System

The system consists of the same items as supplied with the open-water system plus the remaining items shown in the "Functional Diagram" and water plumbing fittings for a typical system. Straight lengths of water tubing and elbows are not supplied.

Specifications

opeenteurons		
Operating Frequency	Any 6 MHz chann	el
	between 470 and 842 MH	١z
Power Rating (Average)		х.
Operational Altitude	8000 ft. (2438m) ASL ma	x.
Mating Connection	61/8", 75 ohm Bolt-Flanged	d1
Ambient Operating Temperature		x.
Mounting Horizo	ontal, water outlet upward	ds
Water Flow Rate) U.S. Gal/min. (630 ml/s	$)^{2}$
Weight (Approx., open-water system	em)	g)
¹ Matches RCA Cat. No. MI-19387 componen	nts.	

"Water of potable quality; requirement varies with inlet water temperature, (Water hardness not to exceed 200 PPM or 11.8 grains per gallon.)

Accessories

Reducer-Transformer		MI-19387-43
---------------------	--	-------------

⁸Please specify channel number.

Ordering Information

Water-Cooled 50-kW Load-Wattmeter:

Open-Water System	ES-561813
Closed-Water System	ES-561810

(Please specify channel number.)

"UHF-Pylon" Antennas, Type TFU- Series

- Stotted cylinder design
- Low relative windload and weight
- High aperture efficiency
- Single feedpoint 220 kW power capability
- Available in omni or directional pattern types
- Vertical patterns smooth or null-filled

The reliable standard of UHF-TV broadcasting for more than 20 years, the UHF-Pylon antenna is the choice of more than 400 stations. Available in many vertical and horizontal pattern combinations, the Pylon antenna design lends itself to almost any market coverage requirement. Each antenna is built to order. Special antenna requirements are incorporated routinely.

Every antenna is tested for radiation pattern and impedance characteristics during manufacture. Data recorded during these tests is furnished to the purchaser. Pylon antennas are shipped completely assembled with respect to radiation and impedance-determining components. Antennas are groundchecked, after delivery, by RCA, to confirm shipment integrity.

The UHF Pylon Antenna, is basically a coaxial transmission line with radiating slots in outer conductor fed by simple aluminum-bar couplers bolted to the inside edge of each slot.1 The number of slots (per layer) around the circumference is determined by the horizontal pattern such as one slot for a skullshaped pattern, two for a peanut-shaped pattern, three for a "'trilobe" pattern and four or more slots, depending on outer cylinder diameter, for an omidirectional pattern. The layers are located at one wavelength spacings along the antenna with the number of lavers determined by the vertical gain and pattern. The radiation parameters of phase and amplitude are determined basically by a combination of slot length and coup er bar diameter. This feature allows discreet control of the illumination along the antenna aperture at every wavelength resulting in the ultimate in vertical pattern control and shaping. It also allows for maximum aperture efficiency and, in conjunction with the extremely low crosspolarized radiation component of a slot, produces the highest vertical gain for a given antenna length.

Feed System

All UHF Pytons use a single feed point. In a "center-fed" Pylon, the innerconductor is a harness-type feed system with a Teflon end-seal feed point at the electrical center of the antenna. The end seal is at the end of a coaxial transmission line input to the antenna, the namess ranges, nominally, from 318 to 9-3/16 inches (79 to 233 mm in diameter as a function of antenna input-power capability. End-fed, high-power Pylon directional antennas use a "tee" feed system with a standard transmission line gas stop at the "tec" input. All input-impedance shaping, broadbanding and matching is accomplished in the coaxial feed portions of the harness and "tee's feed systems and is independent of antenna radiation parameters.

Mechanical Design

The UHF Pylon uses a flange-mounted, seamless-steel pipe as its structural member. The pipe is slotted and serves as the outer conductor of the antenna. The inner conductor is of copper tubing, positioned concentrically within the outer conductor by ceramic, Teflon-capped,

centering pins and locked in place vertically with a clamping spoke short at the base of the antenna. A sliding spoke short at the antenna top allows movement of the inner conductor with respect to the steel outer owing to temperature changes. Steel and copper have different coefficients of expansion.) Should the inner conductor and/or the feed point require servicing, they can be lowered out of the antenna without antenna removal from the tower. Subsequent reinstallation results in negligible changes in the antenna pattern and impedance characteristics. These are determined primarily by the slots, coupler bars and feed-point position.

Pole steps, installed on the outer surface, provide a means of ascent for servicing the antenna and the beacon on top. A standard 300 millimeter beacon mount is provided at the top of the antenna and a factory-installed cable connects the beacon to a tower-top junction box. The beacon is not supplied with the antenna since it is normally part of the tower-lighting equipment.

[&]quot;"DL" and "DM" type Pylon antennas use loop couplers instead of bar couplers.

Anti-Corrosion Measures

Thorough consideration is given to all aspects of weather corrosion. The slotted cylinder is hot dip galvanized after fabrication; the inner conductor is of copper. Slot covers are virgin polyethylene or fiberglass, as required, both compounded with anti-oxident and ultraviolet inhibitors. Pylon hardware and metal parts are of corrosion-resistant metals such as hot-dip galvanized pole steps, lightning rods, mounting bolts, trim strips, de-icer covers and clamps; corrosion resistant aluminum coupler bars and de-icer power junction boxes; brass and bronze spoke shorts, tinned where they contact the galvanized pipe; leveling shims and small bolts of stainless steel.

Lightning Protection

A branching lightning protector, at the top of the antenna, protects the beacon and antenna. With a well-grounded tower, it is highly improbable that lightning can damage the antenna since the steel pole is grounded to the tower through the mounting flange, the coupler bars are bolted to the steel pole and the inner conductor is short-circuited to the outer steel pole (from a d-c viewpoint) through the spoke shorts at the top and bottom of the antenna. The steel outer jacket of the de-icer elements contacts the pole full length. Power to the beacon and de-icer elements is fed through circuits and cables isolated from the antenna and tower structure.

"Calrod" De-icers

When the antenna serves areas or at heights where icing is likely, we recommend that the antenna be equipped with a factory-installed de-icing system. The de-icing system, operated properly, prevents or removes ice from the Pylon. The ice, if allowed to build up, increases antenna windload and increases tower load. De-icing also provides for a more stable operation of the antenna during adverse weather conditions. The de-icing system uses "Calrod" heaters, clamped longitudinally to the outside of the Pylon under asbestos-lined steel covers and heavy, galvanized-steel clamps. Power connections use weatherproof junction boxes and connectors. A thermostatic de-icer control, or ice detector de-icer control (see separate catalog sections) is supplied, as ordered, to activate the de-icer system power control. The necessary power-control contactor is not supplied unless ordered specifically. The ice detector control is recommended since it operates the deicers only as required during actual icing conditions—at the antenna—for a considerable saving in power consumption. Manual operation of the de-icer system is not recommended as a normal operating procedure since it is unreliable, does not take into account conditions at the antenna and, could result in damaged de-icers or antenna slot covers if operated at ambient temperatures in excess of 36 degrees F. $(2.2^{\circ}C)$.

Windload Specifications

The windload data listed in this catalog is calculated for a wind pressure of 50 lbs/ft² (pounds per square foot) (244 kg/m²) on flats and 33.3 lbs/ft² (161 kg/m²) on round surfaces. This pressure is equivalent to approximately a 110 mph (177 km/h) wind velocity with no ice. Data for other conditions is available on request. The Pylon product line is designed in accordance with EIA Standards, Section RS-222 and is independently certified as to structural integrity for rated condition.

Input Power Specifications

The input power ratings listed here are calculated for normal operating conditions for a temperature rise of 80°C (176°F) over a 40°C (104°F) ambient. Sufficient safety factor is included for FCC-allowable operating power fluctuations and normal VSWR variations. The rated input power is based on peak TV power (visual power at sync peak) using 20% aural power.

Pattern and Gain Specifications

RCA Pylon antennas have one of three basic vertical-pattern characteristics:

Left, a TFU-24J antenna in close -up. A "G"-type antenna is shown on the cover page of this section.

Below, a close-up of the input and mounting flange of a typical Pylon antenna. Box at center right is part of the optional de-icer system.

- 1. Null-filled vertical pattern ("D" and "J" types)
- 2. Smooth vertical pattern ("G" and "K" types)
- 3. Smooth vertical pattern ("DAS" type)

The azimuthal pattern of the antenna is either omnidirectional (calculated circularity of ± 1.0 dB max. to min.) or directional with a so-called "skull", "peanut" or "trilobe" pattern.

Electrical beam-tilt is built into each Pylon as desired by the customer and is determined with respect to the center of the main vertical lobe at its half-power point (i.e. 0.707 relative voltage).

Pylon antenna power gain is based on the rms value of the azimuthal pattern and takes into account:

- 1. Radiation at all vertical angles from $+90^{\circ}$ to -90° .
- 2. Radiation at all azimuthal angles.
- 3. Vertically polarized radiation.
- 4. Antenna feed-system losses.

At time of manufacture, when each Pylon is pattern tested, the actual gain is determined in accordance with the above and is not less than that shown on the calculated pattern.

Pattern Demonstration Option

This extra-cost option is specified at the time of antenna purchase. During the demonstration, all recorded measurements may be inspected and reviewed for compliance with contract specifications. Demonstration measurements will be performed for the customer or his representative of a typical vertical pattern and horizontal pattern values in the principal azimuths at mid-channel frequency.

Input VSWR Specifications

Input VSWR is tuned and optimized during manufacture to minimize reflections to a specification of 3% or less, measured with a 0.25 microsecond RF pulse at visual carrier frequency.

The antenna input VSWR specification for UHF Pylons is:

Frequency	VSW R
Visual carrier +0.5 MHz	1.05:1
Chrominance subcarrier	1.08:1
Remainder of Channel ²	1.10:1

-The "K" and "DAS" Pylon antennas have a VSWR specification of 1.20:1 at channel edges.

UHF-Pylon antenna loaded for transport.

World Radio History

Input Power Ratings By Antenna Feed Types

The input-power rating of a UHF-Pylon antenna is a function of the antenna's inner-conductor diameter. There are two types of feed system: "Harness" and "Tee". The harness type is used in the center-fed

antenna types while the tee-type serves the end-fed antenna. See "Feed System" on Page 2 and drawings on Page 3 of this catalog section.

PEAK TV INPUT POWER RATING

(Based on black level visual power and 20 percent aural power for 40°C ambient temp.)

			A N		ΓE	N	I N	Α	F	Ε	Ε	D	Т	Y	Ρ	Ε	S			
				ΗA	RN	ES	_	FEED										EE		
Ch. No.	31∕a′ kW d	" Bk k\	41∕8″ ₩ dBk	kW	5″ dBk	kW	61⁄8″ dBk	71⁄2″ kW dBk	B-3, kW	/16'' dBk	9-3 kW	/16'' dBk	kW	61⁄8″ dBk	cı kW	JSTOM dBk	B kW	-3/16'' dBk	9 kW	-3/16'' dBk
14 15 16 17 18 19 20	18 12 18 12 18 12 18 12 18 12 18 12	2.79 39 2.55 38 2.55 38 2.55 38 2.55 37 2.55 37 2.55 37	15.80 15.80 15.80 15.68 15.68 15.68	60 59 58 58 57 57 56	17.78 17.71 17.63 17.63 17.56 17.56 17.48	80 79 78 77 77 76 75	19.03 18.98 18.92 18.86 18.86 18.81 18.75	N/A N/A N/A N/A N/A N/A	136 134 133 133 132 131 130	21.34 21.27 21.24 21.24 21.24 21.21 21.17 21.14	157 155 154 153 152 150 149	21.96 21.90 21.88 21.85 21.82 21.76 21.73	80 79 78 77 77 76 75	19.03 18.98 18.92 18.86 18.86 18.81 18.75	1 1 1 1	N/A N/A N/A N/A N/A N/A	110 110 110 110 110 110 110	20.41 20.41 20.41 20.41 20.41 20.41 20.41	110 110 110 110 110 110 110	20.41 20.41 20.41 20.41 20.41 20.41 20.41
21 22 23 24 25 26 27 28 29 30	18 12 18 12 18 12 18 12 18 12 18 12 18 12 18 12 18 12 18 12 18 12 17 12	2.55 37 2.55 36 2.55 36 2.55 36 2.55 36 2.55 36 2.55 36 2.55 35 2.55 35 2.55 35 2.55 35 2.55 35 2.30 34	$\begin{array}{c} 15.56\\ 5 15.56\\ 5 15.56\\ 5 15.56\\ 5 15.56\\ 5 15.44\\ 5 15.44\\ 5 15.44\\ 5 15.44\\ 5 15.44\end{array}$	56 55 54 54 53 53 52 52	17.48 17.40 17.32 17.32 17.32 17.24 17.24 17.16 17.16	75 74 73 72 71 71 70 70	18.75 18.69 18.69 18.63 18.57 18.57 18.51 18.51 18.45 18.45	N/A N/A N/A N/A N/A N/A N/A N/A	129 128 127 126 125 125 124 123 122 121	21.11 21.07 21.04 21.00 20.97 20.93 20.90 20.86 20.83	148 147 146 145 144 143 142 141 141 140	21.70 21.67 21.64 21.61 21.58 21.55 21.52 21.49 21.49 21.46	75 74 73 72 72 71 71 70 70	18.75 18.69 18.69 18.63 18.57 18.57 18.57 18.51 18.51 18.45 18.45	ז יי יי יי	N/A N/A N/A N/A N/A N/A N/A	110 110 110 110 110 110 110 110 110	20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41	110 110 110 110 110 110 110 110 110	20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41
31 32 33 34 35 36 37 38 39 40	17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 16 12	2.30 34 2.30 34 2.30 34 2.30 33 2.30 33 2.30 33 2.30 33 2.30 33 2.30 33 2.30 33 2.30 33 2.30 33 2.04 32 2.04 32	15.31 15.31 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19 15.19	51 50 50 49 48 48 48	17.08 17.08 16.99 16.99 16.90 16.90 16.90 16.81 16.81 16.81	69 68 68 68 67 67 66 66 66	18.39 18.33 18.33 18.33 18.26 18.26 18.20 18.20 18.20 18.20	N/A N/A N/A N/A N/A N/A N/A	120 120 119 118 118 117 116 116 115 114	20.79 20.79 20.76 20.72 20.72 20.68 20.64 20.64 20.64 20.61 20.57	139 138 137 136 136 135 134 133 133 132	21.43 21.40 21.37 21.34 21.34 21.30 21.27 21.24 21.24 21.21	69 68 68 68 67 67 66 66 66	18.39 18.33 18.33 18.33 18.26 18.26 18.20 18.20 18.20 18.20	1 1 1 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A	110 110 110 110 110 110 110 110 110 110	20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41 20.41		/A /A /A /A /A /A /A /A
41 42 43 44 45 46 47 48 49 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04 32 2.04 31 2.04 31 2.04 31 2.04 32 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30 2.04 30	14.91 14.91 14.91 14.91 14.91 14.77 14.77 14.77 14.77 14.77	47 46 46 45 45 45 45 44	$\begin{array}{c} 16.72 \\ 16.72 \\ 16.63 \\ 16.63 \\ 16.53 \\ 16.53 \\ 16.53 \\ 16.53 \\ 16.43 \\ 16.43 \\ 16.43 \end{array}$	65 64 64 63 63 63 62 62	18.13 18.13 18.06 18.06 17.99 17.99 17.99 17.92 17.92	N/A N/A N/A N/A N/A N/A N/A	113 113 112 112 111 110 110 109 109	20.53 20.53 20.49 20.49 20.45 20.41 20.41 20.41 20.37 20.37 20.33		V/A V/A V/A V/A V/A V/A V/A	65 64 64 63 63 63 62 62	18.13 18.13 18.06 18.06 18.06 17.99 17.99 17.99 17.92 17.92	82	19.19 19.14 19.08 19.08 19.03 19.03 19.03 19.03 18.98 18.98		N/A N/A N/A N/A N/A N/A N/A N/A		/A /A /A /A /A /A /A /A
51 52 53 55 56 57 58 59 60	15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11	1.76 29 1.76 29 1.76 29 1.76 29 1.76 29 1.76 28 1.76 28 1.76 28 1.76 28 1.76 28 1.76 28 1.76 28 1.76 27 1.76 27 1.76 27	 14.62 14.62 14.62 14.62 14.62 14.47 14.47 14.47 14.47 14.31 	44 43 43 43 42 42 41 41 41	$\begin{array}{c} 16.43 \\ 16.43 \\ 16.33 \\ 16.33 \\ 16.23 \\ 16.23 \\ 16.13 \\ 16.13 \\ 16.13 \\ 16.13 \end{array}$	61 61 60 60 60 59	17.92 17.85 17.85 17.85 17.78 17.78 17.78 17.78 17.71 17.71 17.71	N/A N/A N/A N/A 93 19.68 93 19.68 92 19.64 92 19.64	1 1 1	20.29 20.25 20.25 20.21 20.21 20.17 V/A V/A V/A		V/A V/A V/A V/A V/A V/A V/A	62 61 61 60 60 60 59 59 59	17.92 17.85 17.85 17.85 17.78 17.78 17.78 17.78 17.71 17.71 17.71	78 78 78 77 77 76 76 76	18.98 18.92 18.92 18.86 18.86 18.81 18.81 18.81 18.81 18.75	1 1 1 1 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A		/A /A /A /A /A /A /A
61 62 63 64 65 66 67 68 69 70	14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11	76 27 46 26 46 26 46 26 46 26 46 26 46 25 46 25 46 25	7 14.31 5 14.15 5 14.15 5 14.15 5 14.15 5 14.15 5 13.98 5 13.98	41 40 40 39 39 39 39 38 38 38 38	16.13 16.02 16.02 15.91 15.91 15.91 15.80 15.80 15.80	59 58 58 57 57 57 57 57 56 56	17.71 17.63 17.63 17.56 17.56 17.56 17.56 17.56 17.48 17.48	91 19.59 91 19.59 90 19.54 90 19.54 90 19.54 89 19.49 89 19.49 89 19.49 88 19.44 88 19.44	יז יי יי יי	N/A N/A N/A N/A N/A N/A N/A N/A		N/A N/A N/A N/A N/A N/A N/A N/A	59 58 58 57 57 57 57 57 56 56	17.71 17.63 17.63 17.56 17.56 17.56 17.56 17.56 17.48 17.48	74 r r r r	18.75 18.69 N/A N/A N/A N/A N/A N/A N/A N/A		N/A N/A N/A N/A N/A N/A N/A		/A /A /A /A /A /A /A /A

N/A = Not Applicable

Mechanical Specifications

Mechanical Symbol Definitions

YMBOL	UNIT	DEFINITION
D1	feet or meters	Distance from tower top to center of wind-loaded area of antennal
H_2	feet or meters	Height of pole (only) above tower top.
H₃	feet or meters	Height of electrical center above tower top. $(H_3 = 0.5H_2)$
H4	feet or meters	Height of antenna above tower top including lightning protector.
J	inches or millimeters	Pole diameter excluding slot covers.
м	foot-pounds or meter-kilograms	Overturn moment.
N		Number of sections in which pole is shipped.
R1	pounds or kilograms	Wind reaction at center of wind-loaded area.
U	inches or millimeters	Diameter of bolt circle of base flange.
v	inches or millimeters	Bolt diameter used in base flange.
w	tons or metric tons	Weight of complete antenna including inner conductor.
х		Number of equally spaced bolts used in base flange.
Y ₁	inches or millimeters	Clearance hole diameter required in tower top.

Standard Omnidirectional UHF Pylon Antennas

The antenna types are listed in the table below in increasing gain value by null filled and smooth vertical pattern categories. The null-filled types have vertical patterns derived from high aperture efficiency uniform illuminations. The illuminations are modified to provide desired null fill while retaining relatively high gain. In the smooth vertical pattern types, the illumination is intricately shaped to produce a pattern in which the nulls and peaks are smoothed out. The smooth pattern provides for more uniform signal especially desirable for antennas located in metropolitan areas or close to their principal coverage area.

Omnidirectional Pattern Antennas

(See outline drawings, preceding page.)

Antenna	Channel	Harness	Vertic	al Gain	Vertical Pattern	Outline	N	J	U	v	х	Y
Туре	Range	Diameter	Beam Till	Gain	Туре	Drawing	No. of Sections	Pole Diameter	Bolt-Circle Diameter	Bolt Diameter	No. of Bolts	Clearance Hole Diameter
TFU-6D	14-57	3½8″ (79)	0.0°	6	Null Filled	A	1	4″ (102)	8″ (203)	5⁄8″ (16)	8	6'' (152)
TFU-24DL	14-30	31⁄8″ (79)	0.0°	24	Null Filled	А	1	103/4"	151/4"	$1\frac{1}{8}''$	16	10"
TFU-24DM	31-50	31/8"	0.0°	24	Null Filled	А	1	(273) 85⁄8″	(387) 13"	(29) 1"	12	(254) 8"
TFU-24J	14-70	(79) 5" (127)	0.0°	24	Null Filled	A	1	(219) 10¾″ (273)	(330) 15¼" (387)	(25) 1½8″ (29)	16	(203) 10'' (254)
TFU-30J	14-50	6½8" (155)	0.0°	30	Null Filled	А	1	123/4″	173⁄4″	11/4"	16	12"
TFU-30J	51- 7 0	6 ¹ /8" (155)	0.0°	30	Null Filled	A	1	(324) 10¾" (273)	(451) 15¼″ (387)	(32) 1½8″ (29)	16	(305) 10'' (254)
TFU-36J	14-50	61/8"	0.0°	36	Null Filled	А	1	123/4"	173⁄4″	11/4"	16	12"
TFU-36J	51- 7 0	(155) 6½" (155)	0.0°	36	Null Filled	A	1	(324) 10¾" (273)	(451) 15¼″ (387)	(32) 1½8″ (29)	16	(305) 10" (254)
TFU-42J	14-25	6¼8″ (155)	0.0°	42	Null Filled	В	2	14"	201/4"	11/4"	20	151/4"
TFU-42J	26-50	6½″	0.0°	42	Null Filled	А	1	(356) 123⁄4″	(514) 1 73 ⁄4″	(32) 1¼″	16	(387) 12″
TFU-42J	51-60	(155) 6 ¹ /8"	0.0°	42	Null Filled	А	1	(324) 113⁄4″	(451) 17 3 ⁄4″	(32) 1¼″	16	(305) 12''
TFU-42J	61-70	(155) 6½8" (155)	0.0°	42	Null Filled	Α	1	(298) 10¾" (273)	(451) 15¼″ (387)	(32) 1¼8″ (29)	16	(305) 10" (254)
TFU-45J	14-34	6¼8″ (155)	0.0°	45	Null Filled	В	2	14"	201⁄4″	1¼″	20	15¼"
TFU-45J	35-50	6 ¹ /8″ (155)	0.0°	45	Null Filled	А	1	(356) 123⁄4″	(514) 17¾"	(32) 1¼″	16	(387) 12"
TFU-45J	51-70	6 ¹ / ₈ " (155)	0.0°	45	Null Filled	А	1	(324) 14" (356)	(451) 20¼″ (514)	(32) 1¼″ (32)	20	(305) 15¼″ (38 7)
TFU-50J	14-50	6¼″ (155)	0.0°	50	Null Filled	В	2	14"	201/4"	11/4″	20	15¼"
TFU-50J	51-70	6 ¹ / ₈ " (155)	0.0°	50	Null Filled	A	1	(356) 14" (356)	(514) 20¼" (514)	(32) 1¼" (32)	20	(387) 15¼" (387)
TFU-25G	14-56	8316′′ (208)	All	25	Smooth	Α	4	14"	201/4"	11/4"	20	15¼"
TFU-25G	57-70	7 ¹ /2" (191)	All	25	Smooth	А	1	(356) 14" (356)	(514) 20¼" (514)	(32) 1¼″ (32)	20	(387) 15¼″ (387)
TFU-25GA	14-50	6¼" (155)	All	25	Smooth	А	1	123⁄4″	173⁄4"	1¼"	16	12"
TFU-25GA	51-70	(155) 6½8″ (155)	All	25	Smooth	A	1	(324) 10¾" (273)	(451) 15¼″ (387)	(32) 1½8″ (29)	16	(305) 10'' (254)
TFU-35G	14-50	8¾₅" (208)	All	35	Smooth	В	2	16"	233/4"	13⁄4″	20	151/4"
TFU-35G	51-56	8%" (208)	All	35	Smooth	Α	1	(406) 16"	(603) 233⁄4″	(44) 13⁄4″	20	(387) 15¼"
TFU-35G	57-70	(208) 7½" (191)	Ali	35	Smooth	A	1	(406) 14" (356)	(603) 20¼″ (514)	(44) 1¼4″ (32)	20	(387) 15¼″ (387)
TFU-40/46K	14-40	99 ₁₆ " (233)	AH	40/46	Smooth	В	2	18"	253/4"	13/4"	20	18″
TFU-40/46K	41-56	(233) 8¾" (208)	AII	40/46	Smooth	В	2	(457) 16″	(654) 23¾"	(44) 13⁄4″	20	(45 7) 15¼″
TFU-40/46K	57- 7 0	(208) 7½2″ (191)	All	40/46	Smooth	В	2	(406) 14" (356)	(603) 20¼″ (514)	(44) 1¼″ (32)	20	(387) 15¼″ (387)

Skull Shaped Pattern Antennas

(Outline drawings on Page 7, this section.)

Antenna	Channel	Harness or Tee	Vertica	Gain	Vertical Pattern	Outline	N No. of	J Pole	U Bolt-Circle	V Bolt	X No. of	Y ₁ Clearance
Туре	Range	Diameter	Beam Tilt	Gain	Туре	Drawing	Drawing Sections		Diameter	Diameter	Bolts	Hole Diameter
TFU-30JDA	14-30	4¼8″ (105)	0.0°	30	Null Filled	A	1	85⁄8″ (219)	13¾″ (349)	1¼″ (29)	12	10″ (254)
TFU-36JDA	14-18	41⁄/8″ (105)	0.0°	3 6	Null Filled	A	1	10¾″ (2 73)	15¼″ (387)	1½8″ (29)	16	10″ (254)
TFU-36JDA	19-23	4¼8″ (105)	0.0°	3 6	Null Filled	A	1	95⁄8″ (244)	15¼″ (38 7)	1¼8″ (29)	16	10″ (254)
TFU-36JDA	24-30	4½8″ (105)	0.0°	36	Null Filled	A	1	85⁄8″ (219)	13¾" (349)	1¼8″ (29)	12	10″ (254)
TFU-30JDAS	14-30	6/8/9" Tee (152/203/229)	0.0°	30	Null Filled	С	1	10¾″ (2 73)	15¼″ (387)	1½8″ (29)	16	10″ (254)
TFU-30JDAS	14-40	6/8″ Tee (152/203)	0.0°	30	Null Filled	с	1	95⁄8″ (244)	15¼" (387)	1¼8″ (29)	16	10′′ (254)
TFU-30JDAS	31-50	6/8″Tee (152/203)	0.0°	3 0	Null Filled	с	1	85⁄8" (219)	13¾" (349)	1¼8″ (29)	12	10'' (254)
TFU-30JDAS	51- 7 0	6″ Tee (152)	0.0°	30	Null Filled	с	1	6%/ (168)	10%8″ (2 7 0)	7⁄8″ (22)	12	85⁄8″ (219)
TFU-28DAS	14-30	6/8/9″Tee (152/203/229)	AII	28	Smooth	С	1	10¾″ (2 73)	15¼″ (387)	1¼8″ (29)	16	10'' (254)
TFU-28DAS	20-40	6/8″ Tee (152/203)	All	28	Smooth	с	1	95⁄8″ (244)	15¼″ (387)	1¼8″ (29)	16	10'' (254)
TFU-28DAS	31-52	6/8″ Te e (152/203)	All	28	Smooth	с	1	85⁄8″ (219)	13¾" (349)	1¼8″ (29)	12	10'' (254)

Symbol Definitions: D = Pole outer diameter; λ = Mid-channel wavelength. (Note: Gain and pattern vary with D/ λ ratio.)

Antenna	Channel	Harness or Tee	Vertical	Gain	Vertical Pattern Type	Outline Drawing	N No. óf	L	U	V	X	Y ₁ Clearance Hole Diameter
Туре	Range	Diameter	Beam Tilt	Gain			Sections	Pole Diameter	Bolt-Circle Diameter	Bolt Diameter	No. of Bolts	
TFU-30JDA	14-25	5″ (12 7)	0.0°	30	Null Filled	A	1	10¾″ (273)	15¼″ (387)	1¼″ (29)	16	10″ (254)
TFU-30JDA	1 4-3 6	5″ (127)	0.0°	30	Null Filled	A	1	95⁄8″ (244)	15¼" (387)	1¼″ (29)	16	10″ (254)
TFU-30JDA	37-50	4½″ (105)	0.0°	30	Null Filled	A	1	85⁄/8″ (219)	13¾″ (349)	1½″ (29)	12	10″ (254)
TFU-30JDA	51-70	3½8″ (79)	0.0°	30	Null Filled	A	1	65⁄8″ (168)	105⁄/8″ (270)	⁷ ⁄8″ (22)	12	85⁄8″ (219)
TFU-30JDAS	14-25	6/8/9" Tee (152/203/229)	0.0°	30	Null Filled	С	1	10¾″ (273)	15¼″ (387)	1½8″ (29)	16	10'' (254)
TFU-30JDAS	14-36	6/8″ Tee (152/203)	0.0°	30	Null Filled	С	1	95⁄8″ (244)	15¼" (387)	1½″ (29)	16	10″ (254)
TFU-30JDAS	27-50	6/8″ Tee (152/203)	0.0°	30	Null Filled	С	1	85⁄8″ (219)	13¾″ (349)	1¼″ (29)	12	10″ (254)
TFU-30JDAS	51-70	6″ Tee (152)	0.0°	30	Null Filled	С	1	65%″ (168)	105⁄8″ (270)	^{7⁄8} ″ (22)	12	85⁄8″ (219)
TFU-28DAS	14-25	6/8/9" Tee (152/203/229)	All	28	Smooth	С	1	10¾″ (273)	15¼″ (387)	11⁄8″ (29)	16	10'' (254)
TFU-28DAS	26- 3 6	6/8″ Tee (152/203)	All	28	Smooth	С	1	95⁄8″ (244)	15¼″ (387)	1½8″ (29)	16	10'' (254)
TFU-28DAS	37-50	6/8″ Tee (152/203)	All	28	Smooth	С	1	85⁄8″ (219)	13¾″ (349)	1½″ (29)	12	10″ (254)

Peanut Shaped Pattern Antennas

(Outline drawings on Page 7, this section.)

Symbol Definitions: D = Pole outer diameter; λ = Mid-channel wavelength. (Note: Gain and pattern vary with D/ λ ratio.)

Antenna	Channel	Harness or Tee	Vertical	Gain	Vertical Pattern	Outline	N	J	U	V	X	Y ₁ Clearance
Туре	Range	Oiameter	Beam Tilt	Gain	Туре	Drawing.	No. of Sections	Pole Diameter	Bolt-Circle Diameter	Bolt Diameter	No. of Bolts	Hole Diameter
TFU-30JDA	14-22	6¼s″ (156)	0.0°	30	Null Filled	A	1	12¾″ (324)	17¾″ (451)	1¼" (32)	16	12″ (305)
TFU-30JDA	14-35	5″ (127)	0.0°	30	Null Filled	A	1	10¾″ (273)	15¼″ (387)	1½″ (29)	16	10'' (254)
TFU-30JDA	22-50	5″ (127)	0.0°	30	Null Filled	A	1	95⁄8″ (244)	15¼″ (387)	1½″ (29)	16	10″ (254)
TFU-30JDA	30-62	4½8″ (105)	0.0°	30	Null Filled	A	1	85⁄8″ (219)	13¾″ (349)	1½″ (29)	12	10'' (254)
TFU-30JDAS	14-35	6/8/9" Tee (152/203/229)	0.0°	30	Null Filled	С	1	10¾″ (273)	15¼″ (387)	1½″ (29)	16	10'' (254)
TFU-30JDAS	22-50	6/8″ Tee (152/203)	0.0°	30	Null Filled	С	1	95⁄8″ (244)	15¼" (387)	1½″ (29)	16	10'' (254)
TFU-30JDAS	30-62	6/8″ Tee (152/203)	0.0°	30	Null Filled	С	1	85⁄8″ (219)	13¾″ (349)	1½″ (29)	12	10″ (254)
TFU-28DAS	14-35	6/8/9" Tee (152/203/229)	All	28	Smooth	С	1	10¾″ (273)	15¼" (387)	1½″ (29)	16	10'' (254)
TFU-28DAS	22-50	6/8″ Tee (152/203)	All	28	Smooth	С	1	95⁄8″ (244)	15¼″ (387)	1½″ (29)	16	10″ (254)
TFU-28DAS	35-62	6/8″ Tee (152/203)	All	28	Smooth	С	1	85⁄8″ (219)	13¾″ (349)	1½8″ (29)	12	10'' (254)

Trilobe Pattern Antennas

(Outline drawings on Page 7, this section.)

Omnidirectional, UHF Pylon, Type TFU-6D

- Low gain for local, atellite or standby service
- Radome included no de-icer power required
- Lightning rod equipped grounded through tower
- Mounting flange attachment to tower top
- Maximum input power 10 kW

The TFU-6D is a low gain, light weight, broad-beam, omnidirectional antenna. The input power rating is 10 kW peak visual with 2 kW aural.

The basic antenna design is similar to the end-fed Pylon (see drawing opposite) except that the input is directly into the bottom of the antenna instead of through a gas stop and tee as shown in the drawing on Page 3. The antenna is protected and made pressure-tight with a tubular radome. No provision is made for beacon mount on the antenna since obstruction lighting at the tower top is sufficient for antenna length in the TFU-6D range. A rod at the top of the antenna provides lightning protection.

Shown here without the tubular radome included as standard equipment, the TFU-6D Antenna is excellently suited for local service or as a satellite station antenna.

Symbol	Unit	Definition
H_2	Feet or meters	Height of pole (only) above tower top
D_1	Feet or meters	Distance from tower top to center of wind-loaded area of antenna
R ₁	Pounds or kilograms	Wind reaction at center of wind-loaded area

(For other definitions, see Page 7 of this section)

Mechanical Specifications Type TFU-6D Omnidirectional Pattern

Ch.	H ₂		D ₁		R.		Moment		-	Weight	
No.	Ft	M	Ft	M	Lbs	Kg	Ft-Lbs	M-Kg	Lbs	Kg	
14 15 16 17 18 19 20	15.6 15.4 15.2 15.0 14.8 14.7 14.5	4.7 4.6 4.6 4.5 4.5 4.4	7.9 7.8 7.7 7.6 7.5 7.5 7.4	2.4 2.4 2.3 2.3 2.3 2.3 2.2	176 174 172 170 168 165 163	80 78 80 78 76 75 76	1390 1357 1324 1292 1260 1238 1206	192 187 184 179 175 172 167	101 100 99 99 98 97 97	46 45 45 45 44 44 44	
21 22 23 24 25 26 27 28 29 30	14.3 14.2 14.0 13.9 13.7 13.6 13.4 13.3 13.2 13.0	4.4 4.3 4.2 4.2 4.1 4.1 4.1 4.0 4.0	7.3 7.2 7.1 7.0 6.9 6.8 6.8 6.8 6.7 6.6	2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0	161 161 159 156 154 154 152 150 150 147	74 73 71 73 71 70 68 67 69 67	1175 1159 1129 1108 1078 1063 1034 1020 1005 970	163 161 156 153 149 147 143 141 138 134	96 95 94 93 93 92 92 91 91	44 43 43 42 42 42 42 41 41	
31 32 33 34 35 36 37 38 39 40	12.9 12.8 12.6 12.5 12.4 12.3 12.2 12.1 11.9 11.8	3.9 3.9 3.8 3.8 3.7 3.7 3.7 3.6 3.6	6.6 6.5 6.4 6.3 6.3 6.2 6.2 6.1 6.0	2.0 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	145 145 143 141 141 138 138 136 134 134	66 65 63 65 63 62 61 63 62	957 943 915 902 888 869 856 843 817 804	132 130 126 125 123 120 118 116 113 112	90 89 88 88 88 87 87 87 86 86	41 40 40 40 39 39 39 39	
41 42 43 44 45 46 47 48 49 50	11.7 11.6 11.5 11.4 11.3 11.2 11.1 11.0 10.9 10.8	3.6 3.5 3.5 3.5 3.4 3.4 3.3 3.3	6.0 5.9 5.8 5.8 5.7 5.6 5.6 5.5	1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7	132 132 130 130 127 127 125 125 125 123 123	61 60 59 58 57 59 58 57 58 57 56 55	792 779 767 754 737 724 712 700 689 677	110 108 106 104 103 100 99 97 95 93	85 85 84 84 83 83 82 82 82	39 38 38 38 38 38 38 38 37 37 37	
51 52 53 54 55 56 57	10.8 10.7 10.6 10.5 10.4 10.3 10.3	3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.1	5.5 5.4 5.4 5.3 5.3 5.3 H ₄ =	1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.6 H ₂ +	123 121 121 118 118 116 116 1.5'	55 54 55 54 53 53 (4.57	677 666 653 637 625 615 . 615 mm)	93 92 90 88 86 85 85	81 81 80 80 79 79	37 37 36 36 36 36 36	

Calculated Vertical Pattern, Type TFU-6D

Calculated Vertical Patterns: Omnidirectional Pylon, TFU-24DL or TFU-24DM

22) Calculated Vertical Patterns: Omnidirectional Pylon, Type TFU-30J Directional Pylons, Type TFU-30JDA - 30JDAS (Type 30JDA Skull on Page

Calculated Vertical Patterns: Omnidirectional Pylon, Type TFU-42

Omnidirectional Pylon, Type TFU-50J

Calculated Vertical Patterns: Omnidirectional Pylon, Types TFU-25G/25GA

Omnidirectional Pylon, Type TFU 35G

Calculated Vertical Patterns: Omnidirectional Pylon, Type TFU-40K

Omnidirectional Pylon, Type TFU-46K

Calculated Vertical Patterns: Skull Pattern Directional Pylon, Type TFU-300DA

Calculated Vertical Patterns: Directional Pylon, Type TFU-28DAS

Mechanical Symbol Definitions

(See outline drawings on Page 7, this section.)

SYMBOL	UNIT	DEFINITION
ō	feet or meters	Distance from tower top to center of wind-loaded area of antenna.
H2	feet or meters	Height of pole (only) above tower top.
ĩ	feet or meters	Height of electrical center above tower top. $(H_3 = 0.5H_2)$
Η	feet or meters	Height of antenna above tower top including lightning protector.
7	inches or millimeters	Pole diameter excluding slot covers.
Σ	foot-pounds or meter-kilograms	Overturn moment.
z		Number of sections in which pole is shipped.
ц.	pounds or kilograms	Wind reaction at center of wind-loaded area.
Э	inches or millimeters	Diameter of bolt circle of base flange.
>	inches or millimeters	Bolt diameter used in base flange.
≥	tons or metric tons	Weight of complete antenna including inner conductor.
×		Number of equally spaced bolts used in base flange.
۲ı	inches or millimeters	Clearance hole diameter required in tower top.

Here and on pages following are tabulations of the various mechanical parameters for the several Pylon antenna types listed in this catalog section. For definition of the symbols at the head of each column refer to the chart on Page 23 and the outline drawings on Page 7 of this catalog section.

Мес	Mechanical Specifications										
Type TFU-24DL Omnidirectional Pylon											
Ch.	н	-	D	1	R		Mom	tne	Wei	ght	
No.	Ft	M	Ft	M	Lbs	Kg	Ft-Lbs	M-Kg	Ton	MT	
14 15 16 17 18 19 20	52.9 52.3 51.7 51.1 50.5 49.9 49.3	16.1 15.9 15.8 15.6 15.4 15.2 15.0	28.3 28.0 27.7 27.4 27.1 26.8 26.5	8.6 8.5 8.4 8.3 8.2 8.1	1931 1910 1890 1869 1849 1829 1829 1808	879 870 851 843 835 826 818	54647 53480 52353 51211 50108 49017 47912	7559 7395 7234 7081 6930 6773 6626	1.6 1.6 1.6 1.6 1.5 1.5	1.5 1.5 1.5 1.4 1.4 1.4 1.4	
21 22 23 24 25 26 27 28 29 30	48.8 48.3 47.7 47.2 46.7 46.2 45.7 45.3 44.8 44.3	14.9 14.7 14.5 14.4 14.2 14.1 13.9 13.8 13.7 13.5	26.3 26.0 25.7 25.5 25.2 25.0 24.7 24.5 24.3 24.0	8.0 7.9 7.8 7.8 7.7 7.6 7.5 7.5 7.5 7.4 7.3	1788 1774 1754 1733 1720 1699 1686 1672 1652 1638	813 807 799 783 778 773 768 755 750 745	47024 46124 45078 44192 43344 42475 41644 40964 40144 39312	6504 6375 6232 6107 5991 5875 5760 5663 5550 5438	1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4	1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	

 $H_4 = H_2 + 4'$ (1.2 m)

Mechanical Specifications

Type TFU-24DM Omnidirectional Pylon

•							
H2	D ₁	R	1	Mom	ent	Weig	ght
M	Ft	M Lbs	Kg	Ft-Lbs	M-Kg	Топ	MT
13.1 13.0 3 12.9 9 12.8 5 12.6 1 12.5 7 12.4 3 12.3	23.8 7 23.6 7 23.4 7 23.2 7 23.0 7 23.0 7 22.8 6 22.6 6 22.4 6	1340 12 1329 1 1317 1 1306 10 1295 5.9 1284 5.9 1272 5.8 1261	617 613 602 600 590 588 586 576 574 567	32568 31892 31364 30818 30299 29785 29275 28747 28246 27861	4504 4414 4334 4260 4189 4116 4043 3974 3903 3856	1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7	1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.5
3 12.0 9 11.9 5 11.8 2 11.7 9 11.6 5 11.5 3 11.4 9 11.3	21.9 6 21.7 6 21.5 6 21.3 6 21.2 6 21.0 6 20.9 6 20.7 6 20.5 6	1233 1233 1211 1212 1216 1216 1217 1218 12193 12193 12105 12105 12105 12105 12105 12105 12105 11106	565 557 555 548 546 538 539 531 529 522 ' (1.2 n	27368 27003 26517 26144 25666 25292 24948 24578 24115 23780 n)	3785 3732 3663 3617 3549 3497 3450 3398 3333 3289	1.7 1.6 1.6 1.6 1.6 1.6 1.5 1.5	1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4
	5 13.3 13.1 13.0 3 12.9 9 12.8 5 12.6 12.9 12.8 9 12.8 12.5 12.4 3 12.3 0 12.2 5 12.1 3 10.9 5 11.9 5 11.8 2 11.7 9 11.6 5 11.4 9 11.3	M Ft 5 13.3 24.0 7 1 13.1 23.8 7 1 13.0 23.6 7 3 12.9 23.4 7 5 12.9 23.4 7 5 12.6 23.0 7 5 12.6 23.0 7 1 12.5 22.8 6 7 12.2 22.2 6 6 12.2 22.2 6 6 12.0 21.9 6 6 12.0 21.9 6 11.9 21.7 6 6 11.8 21.5 6 6 11.6 21.2 6 6 11.6 21.2 6 6 11.4 20.9 6 11.3 20.7 6 11.2 20.5 6 11.2 20.5	M Ft M Lbs 5 13.3 24.0 7.3 1357 13.1 23.8 7.2 1340 7 13.0 23.6 7.2 1329 3 12.9 23.4 7.1 1306 5 12.8 23.2 7.1 1306 5 12.6 23.0 7.0 1295 12.5 22.8 6.9 1284 7 12.4 22.6 6.9 1272 3 12.3 22.4 6.8 1261 0 12.2 22.2 6.8 1255 5 12.1 22.0 6.7 1244 3 12.0 21.9 6.7 1244 3 12.0 21.9 6.7 1222 5 11.8 21.5 6.6 1216 2 11.7 21.3 6.5 1205 3 11.6 21.2 6.5 1193	M Ft M Lbs Kg 5 13.3 24.0 7.3 1357 617 13.1 23.8 7.2 1340 613 7 13.0 23.6 7.2 1329 602 3 12.9 23.4 7.1 1317 600 9 12.8 23.2 7.1 1306 590 5 12.6 23.0 7.0 1295 588 12.5 22.8 6.9 1284 586 7 12.4 22.6 6.9 1272 576 3 12.3 22.4 6.8 1261 574 0 12.2 22.2 6.8 1255 567 5 12.1 22.0 6.7 1244 565 3 12.0 21.7 6.6 1216 548 2 11.7 21.3 6.5 1205 546 9 11.6 21.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Mechanical Specifications Type TFU-24J Omnidirectional Pylon

	1 Y	pe	IFU-Z	4J	Umnie	airec	clional	Pylo	n	
Ch.	н		D		R		Mom		Wei	ght
No. 14	F1 46.4	м 14.1	Ft 25.1	м 7.6	Lbs 1706	к ө 779	Ft-Lbs 42821	м-к 9 5920	Ton 1.5	мт 1.4
15 16	45.8 45.3	14.0 13.8	24.8	7.6	1686 1672	761 755	41813 40964	5784 5663	1.5 1.5	1.4
17	44.7	13.6	24.2	7.4	1652	747	39978	5528	1.5	1.4 1.3
18 19	44.2 43.7	13.5 13.3	23.7	7.3 7.2	1631 1618	741 736	39144 38347	5409 5299	1.5 1.5	1.3 1.3
20	43.2	13.2		7.2	1597	721	37530	5191	1.4	1.3
21 22	42.7 42.3	13.0 12.9	23.0	7.1 7.0	1584 1570	715 713	36749 36110	5076 4991	1.4 1.4	1.3 1.3
23 24	41.8 41.3	12.7 12.6		6.9 6.9	1549 1536	708 693	35317 34560	4885 4782	1.4 1.4	1.3 1.3
25 26	40.9 40.5	12.5 12.3		6.8 6.7	1522 1508	690 688	33941 33327	4692 4610	1.4 1.4	1.2 1.2
27 28	40.0 39.6	12.2 12.1	21.9 21.7	6.7 6.6	1488 1475	673 670	32587 32007	4509	1.3 1.3	1.2 1.2 1.2
29 30	39.2	12.0	21.5	6.5	1461	668	31412	4342	1.3	1.2
30 31	38.8 38.4	11.8 11.7	21.3 21.1	6.5 6.4	1447 1434	656 654	30821 30257	4264 4186	1.3 1.3	1.2 1.2
32 33	38.1	11.6	20.9	6.4	1427	644	29824	4122	1.3	1.2
34	37.7 37.3	11.5 11.4	20.5	6.3 6.3	1413 1400	642 630	29249 28700	4045 3969	1.3 1.3	1.2 1.1
35 36	37.0 36.6	11.3 11.2	20.2	6.2 6.1	1386 1372	630 628	28274 27714	3906 3831	1.3 1.2	$1.1 \\ 1.1$
37 38	36.3 35.9	11.1 11.0	20.0 19.8	6.1 6.0	1365 1352	619 617	27300 26770	3776 3702	1.2 1.2	$1.1 \\ 1.1$
39 40	35.6 35.3	10.9 10.8		6.0 5.9	1338 1331	608 608	26359 25955	3648 3587	1.2 1.2	$1.1 \\ 1.1$
41	35.0	10.7		5.9	1318	599	25569	3534	1.2	1.1
42 43	34.7 34.4	10.6 10.5	19.1	5.9 5.8	1311 1297	590 591	25171 24773	3481 3428	1.2 1.2	1.1 1.1
44 45	34.1 33.8	10.4		5.8 5.7	1290 1277	581 582	24381 24008	3370 3317	1.2 1.2	1.1 1.0
46 47	33.5 33.2	10.2		5.7 5.6	1270 1256	573 574	23622 23236	3266 3214	1.1 1.1	1.0 1.0
48 49	32.9 32.6	10.0	18.3	5.6 5.5	1250 1236	565 566	22875 22495	3164 3113	1.1 1.1	1.0 1.0
50	32.4	9.9	18.1	5.5	1229	559	22245	3075	1.1	1.0
51 52	32.1 31.8	9.8 9.7	17.8	5.5 5.4	1209	550 551	21874 21520	3025 2975	$1.1 \\ 1.1$	1.0 1.0
53 54	31.6 31.3	9.6 9.5		5.4 5.3	1202 1195	545 546	21275 20913	2943 2894	$1.1 \\ 1.1$	$1.0 \\ 1.0$
55 56	31.1 30.8	9.5 9.4	17.4	5.3 5.3	1188	539 530	20671 20327	2857 2809	1.1 1.1	1.0 1.0
57 58	30.6	9.3 9.3	17.2	5.2 5.2	1168	534 528	20090 19853	2777 2746	1.1 1.1 1.1	1.0 1.0 1.0
59	30.4 30.1	9.2	16.9	5.2	1154	519	19503	2699	1.0	1.0
60 61	29.9 29.7	9.1 9.0		5.1 5.1	1147 1140	523 516	19270 19038	2667 2632	1.0 1.0	0.9 0.9
62 63	29.5 29.2	9.0	16.6	5.1 5.0	1133	510 511	18808 18480	2601 2555	1.0 1.0 1.0	0.9 0.9 0.9
64	29.0	8.8	16.4	5.0	1113	505	18253	2525	1.0	0.9
65 66	28.8 28.6	8.8 8.7	16.2	5.0 4.9	1100	499 503	18028 17820	2495 2465	1.0 1.0	0.9
67 68	28.4 28.2	8.7 8.6	16.0	4.9 4.9	1086	496 490	1759 7 17376	2430 2401	1.0 1.0	0.9 0.9
69 70	28.0 27.8	8.5	5 15.9	4.8 4.8		494 488	17156 16938	2371 2342	1.0 1.0	0.9 0.9
			н	. =	$H_{0} + 4$	(1.2	m)			

 $H_4 = H_2 + 4'$ (1.2 m)

.

Mechanical Specifications

Omnidirectional Patterns, Types TFU-30J, -36J

(For 0.0° to 0.75° beam tilt; data for other values of beam tilt available on request.)

		p <mark>ecifica</mark> ti FU-30J (ional Pylo	י ז	Med		Specificat TFU-36J(tional Pylo	า
Ch. No. F	H₂ Fr M	Dı Ft M	R₂ Lbs Kg	Moment	Weight Top MT	Ch. No.	Ha Ft M	Dı Ft M	R	Moment	Weight
14 56 15 55 16 54 17 54 18 53	5.3 17.2 5.6 16.9 1.9 16.7 1.3 16.5 3.6 16.3 3.0 16.1	29.8 9.1 29.4 9.0 29.1 8.9 28.8 8.8 28.4 8.7 28.1 8.6 27.8 8.5	Lbs Kg 2355 1066 2332 1053 2300 1040 2276 1030 2253 1017 2229 1007 2205 997	Ft-Lbs M-Kg 70179 9701 68561 9477 66930 9256 65549 9064 63985 8848 62635 8660 61299 8475	Ton MT 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.2 2.9 3.2 2.9	14 15 16 17 18 19 20	66.7 20.3 65.9 20.1 65.1 19.8 64.3 19.6 63.5 19.4 62.8 19.1 62.1 18.9	35.0 10.7 34.6 10.5 34.2 10.4 33.8 10.3 33.4 10.2 33.0 10.1	Lbs Kg 2767 1251 2735 1246 2704 1229 2672 1212 2641 1195 2617 1182 2585 1169	Ft-Lbs M-Kg 96845 13386 94631 13083 92477 12782 90314 12484 88209 12189 86361 11938 84529 11690	Ton MT 4.0 3.6 4.0 3.6 3.9 3.6 3.9 3.5 3.8 3.5 3.8 3.4 3.8 3.4
22 51 23 50 24 50 25 49 26 49 27 48 28 48 29 47	0.1 15.3 0.5 15.1 0.0 14.9 0.5 14.8 0.0 14.6	27.58.427.28.326.98.226.78.126.48.026.18.025.97.925.67.825.47.725.17.7	2181 987 2158 978 2134 968 2110 962 2087 952 2071 934 2047 928 2031 922 2007 915 1991 897	59978 8291 58698 8117 57405 7938 56337 7792 55097 7616 54053 7472 53017 7331 51994 7192 50978 7045 49974 6907	3.2 2.9 3.1 2.8 3.1 2.8 3.0 2.8 3.0 2.7 3.0 2.7 3.0 2.7 2.9 2.7 2.9 2.7 2.9 2.6	21 22 23 24 25 26 27 28 29 30	61.4 18.7 60.7 18.5 60.0 18.3 59.3 18.1 58.7 17.9 58.0 17.7 57.4 17.5 56.8 17.3 56.2 17.1 55.6 17.0	32.0 9.7 31.6 9.6 31.3 9.5 31.0 9.4 30.6 9.3 30.3 9.2 30.0 9.2 30.0 9.2 30.7 9.1	2561 1155 2529 1154 2506 1140 2474 1127 2450 1117 2427 1104 2403 1094 2379 1073 2356 1063 2332 1053	82720 11434 80928 11194 79190 10944 77436 10707 75950 10500 74266 10267 72811 10065 71370 9872 69973 9673 68561 9477	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31 46 32 46 33 45 34 45 35 44 36 44 37 43 38 43 39 43 40 42	i.0 14.0 i.6 13.9 i.1 13.8 i.7 13.6 i.2 13.5 i.8 13.4 i.4 13.2 i.0 13.1	24.97.624.67.524.47.424.27.424.07.323.77.223.57.223.37.123.17.122.97.0	1968 891 1952 885 1936 883 1913 865 1896 862 1881 856 1865 842 1849 839 1833 825 1817 822	49003 6772 48019 6638 47238 6534 46295 6401 45504 6293 44580 6163 43828 6062 43082 5957 42342 5857 41609 5754	2.9 2.6 2.8 2.6 2.8 2.5 2.8 2.5 2.7 2.5 2.7 2.5 2.7 2.4 2.7 2.4 2.7 2.4 2.6 2.4	31 32 33 34 35 36 37 38 39 40	$\begin{array}{cccccc} 55.1 & 16.8\\ 54.5 & 16.6\\ 54.0 & 16.5\\ 53.4 & 16.3\\ 52.9 & 16.1\\ 52.4 & 16.0\\ 51.9 & 15.8\\ 51.4 & 15.7\\ 50.9 & 15.5\\ 50.5 & 15.4 \end{array}$	28.9 8.8 28.6 8.7 28.3 8.6 28.1 8.6 27.8 8.5 27.6 8.4 27.3 8.3	2308 1047 2284 1037 2268 1031 2245 1021 2221 1003 2205 997 2182 991 2166 985 2142 967 2126 964	673949318660089126648658970635338781624108626612998475602238324591328175580488026571897905	3.4 3.0 3.3 3.0 3.3 3.0 3.3 3.0 3.2 2.9 3.2 2.9 3.2 2.9 3.1 2.9 3.1 2.8 3.1 2.8
42 41 43 41 44 41 45 40 46 40 47 40 48 39 49 39	.5 12.6 .1 12.5 0.7 12.4 0.4 12.3 0.0 12.2 0.7 12.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1802 819 1786 805 1770 806 1754 792 1738 789 1730 778 1715 776 1698 777 1683 762 1675 763	40905 5651 40185 5554 39648 5481 38939 5386 38236 5286 37714 5213 37044 5122 36507 5051 35848 4953 35342 4883	2.6 2.4 2.6 2.3 2.6 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.3 2.5 2.2 2.4 2.2	41 42 43 44 45 46 47 48 49 50	$\begin{array}{ccccc} 50.0 & 15.2 \\ 49.5 & 15.1 \\ 49.1 & 15.0 \\ 48.6 & 14.8 \\ 48.2 & 14.7 \\ 47.8 & 14.6 \\ 47.4 & 14.4 \\ 47.0 & 14.3 \\ 46.6 & 14.2 \\ 46.2 & 14.1 \end{array}$	26.4 8.0 26.2 8.0 25.9 7.9 25.7 7.8	2110 958 2087 952 2071 938 2055 931 2039 929 2023 914 2007 912 1991 897 1976 895 1960 892	56126 7760 55097 7616 54260 7504 53224 7355 52402 7246 51587 7129 50777 7022 49974 6907 49202 6802 48412 6690	3.1 2.8 3.0 2.8 3.0 2.7 3.0 2.7 3.0 2.7 2.9 2.6 2.9 2.6 2.9 2.6 2.9 2.6 2.9 2.6 2.9 2.6 2.9 2.6
	.1 11.6 .8 11.5 .5 11.4 .2 11.3 .9 11.2 .6 11.1	$\begin{array}{cccc} 21.4 & 6.5 \\ 21.2 & 6.5 \\ 21.1 & 6.4 \\ 20.9 & 6.4 \\ 20.8 & 6.3 \\ 20.6 & 6.3 \\ 20.5 & 6.2 \\ 20.3 & 6.2 \\ 20.2 & 6.1 \\ 20.0 & 6.1 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	311164303306764245302364179298244122293904063289644007285363949281363887277143831273003776	1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2	51 52 53 54 55 56 57 58 59 60	46.0 14.0 45.6 13.9 45.2 13.8 44.9 13.7 44.5 13.6 44.1 13.5 43.8 13.3 43.4 13.2 43.1 13.1 42.8 13.0	24.9 7.6 24.7 7.5 24.5 7.5 24.3 7.4 24.1 7.4 23.9 7.3 23.8 7.2 23.6 7.2 23.4 7.1 23.3 7.1	1692 767 1679 764 1665 752 1658 753 1645 741 1631 738 1617 739 1604 727 1597 728 1583 718	421315829414715730407935640402895572396445483389815387384855321378545234373705169368845098	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
62 35. 63 35. 64 35. 65 35. 66 34. 67 34. 68 34. 69 34.	.8 10.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1352 610 1345 614 1338 604 1325 605 1318 599 1304 594 1291 584 1277 579 2 4' (1.2 m)	26905 3721 26631 3684 26225 3624 25838 3569 25569 3534 25171 3481 24906 3445 24249 3352 23880 3300 n)	1.3 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1	61 62 63 64 65 66 67 68 69 70	42.4 12.9 42.1 12.8 41.8 12.7 41.5 12.6 41.2 12.5 40.9 12.5 40.6 12.4 40.3 12.3 40.0 12.2 39.7 12.1	22.3 6.8 22.2 6.8 22.0 6.7 21.9 6.7 21.7 6.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36267 5012 35793 4949 35317 4885 34872 4823 34403 4753 33941 4692 33478 4631 33044 4569 32587 4502 32138 4442 n)	1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.2 1.4 1.2

•

Omnidirectional Patterns, Types TFU-42J, -45J

Mechanical Specifications

MEL		TFU-42J		tional Pylo	า
Ch.	H ₂	D 1	R 1	Moment	Weight
No. 14 15 16 17 18	Ft M 77.1 23.5 76.1 23.2 75.2 22.9 74.3 22.7 73.4 22.4	2 39.6 12.1 39.1 11.9 38.7 11.8 38.2 11.6	Lbs Kg 3443 1565 3401 1539 3366 1529 3323 1507 3289 1497	Ft-Lbs M-Kg 138064 19093 134680 18622 131611 18195 128600 17783 125640 17365	Ten MT 7.1 6.5 7.1 6.4 7.0 6.3 6.9 6.3 6.8 6.2
19 20 21	72.6 22.1 71.7 21.9 70.9 21.6	37.4 11.4 37.0 11.3	3254 1479 3211 1457 3177 1438	123001 17009 120091 16610 117549 16249	6.7 6.1 6.7 6.0 6.6 6.0
22 23 24 25 26 27 28 29 30	70.1 21.4 69.3 21.1 68.6 20.9 67.8 20.7 67.1 20.4 66.4 20.2 65.7 20.0 65.0 19.8 64.3 19.6	36.2 11.0 35.8 10.9 35.4 10.8 35.2 10.7 35.4 10.8 35.2 10.7 2 34.8 10.6 34.5 10.5 34.1 10.4 33.8 10.3		114997 15895 112510 15554 110336 15249 107899 14915 97962 13546 96013 13271 94082 13010 92206 12750 90314 12484	6.5 5.9 6.5 5.9 6.4 5.8 6.3 5.7 4.0 3.7 4.0 3.6 3.9 3.6 3.9 3.5
31 32 33 34 35 36 37 38 39 40	63.6 19.4 63.0 19.2 62.4 19.0 61.7 18.8 61.1 18.6 60.5 18.5 60.0 18.3 59.4 18.1 58.8 17.5 58.3 17.8	2 33.1 10.1 32.8 10.0 3 32.5 9.9 5 32.2 9.8 5 31.9 9.7 8 31.6 9.6 1 31.3 9.6 9 31.0 9.5	2546 1156 2522 1147 2506 1140 2482 1119 2459 1109	88443 12230 86887 12009 85313 11790 83493 11543 81981 11329 80452 11126 79190 10944 77687 10742 76229 10536 74998 10368	3.8 3.5 3.8 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.6 3.3 3.6 3.2 3.5 3.2
41 42 43 44 45 46 47 48 49 50	57.7 17.6 57.2 17.4 56.7 17.3 56.2 17.3 55.7 17.0 55.2 16.8 54.9 16.7 54.4 16.6 54.0 16.4 53.5 16.3	30.2 9.2 30.0 9.1 29.7 9.1 29.7 9.1 29.5 9.0 30.0 29.2 30.0 9.1 <td>2395 1087 2371 1081 2355 1063 2332 1057 2316 1050 2300 1040 2284 1034 2268 1031</td> <td>73536 10165 72329 10000 71130 9837 69943 9673 68794 9513 67627 9345 66930 9256 65779 9099 64865 8970 63758 8813</td> <td>3.5 3.2 3.5 3.2 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.3 3.0</td>	2395 1087 2371 1081 2355 1063 2332 1057 2316 1050 2300 1040 2284 1034 2268 1031	73536 10165 72329 10000 71130 9837 69943 9673 68794 9513 67627 9345 66930 9256 65779 9099 64865 8970 63758 8813	3.5 3.2 3.5 3.2 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.3 3.0
51 52 53 54 55 56 57 58 59 60	53.1 16. 52.6 16.0 52.2 15.9 51.8 15.0 51.3 15.0 50.9 15.1 50.5 15.4 50.1 15.3 49.7 15.3 49.3 15.0	0 28.0 8.5 9 27.8 8.5 8 27.6 8.4 5 27.2 8.3 4 27.0 8.2 3 26.8 8.2 2 26.6 8.1 0 26.4 8.0	2068 942 2053 928 2038 926 2017 909 2002 907 1987 905 1972 891 1958 889 1943 887	51295 7096	2.0 1.8 2.0 1.8 1.9 1.8 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7
61 62 63 65 66 67 68 69 70	48.9 14. 48.6 14. 48.2 14. 47.8 14. 47.5 14. 47.1 14. 46.8 14. 46.4 14. 45.8 14.	8 26.2 8.0 7 26.0 7.9 6 25.8 7.9 5 25.6 7.8 4 25.4 7.8 3 25.3 7.7 2 25.1 7.6 1 24.9 7.6 0 24.8 7.6	1781 806 1767 804 1754 792 1747 793 1734 780 1720 781 1706 779 1699 770	44044 6084 43516 6014 42821 5920 42305 5852 41813 5776	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Mechanical Specifications

мес		Specifica					
			Omnidirec		-		
Ch. No.	H2 Ft M	D1 Ft M	Rı Lbs Kg	Mom Ft-Lbs	ent M-Kg	Weig Ton	ght MT
14 15 16 17 18 19 20	83.3 25. 82.3 25. 81.3 24. 79.4 24. 78.4 23. 77.5 23.	4 43.2 13.1 1 42.7 13.0 8 42.2 12.0 5 41.7 12.1 2 41.2 12.0 9 40.7 12.1	2 3710 1679 0 3667 1665 9 3624 1639 7 3581 1626 6 3547 1603 4 3504 1590	160272 156581 152933 149328 146136 142613	22163 21645 21143 20650	7.7 7.6 7.5 7.4 7.3 7.3 7.2	7.0 6.9 6.8 6.7 6.7 6.6 6.5
21 22 23 24 25 26 27 28 29 30	76.6 23. 75.8 23. 74.9 22. 74.1 22. 73.3 22. 71.7 21. 70.2 21. 69.5 21.	1 39.4 12.1 8 39.0 11.1 6 38.6 11.4 3 38.2 11.1 1 37.8 11.2 9 37.4 11.2 6 37.0 11.2 4 36.6 11.1	0 3392 1540 9 3349 1517 8 3314 1499 6 3280 1493 5 3246 1475 4 3211 1457 3 3177 1438 2 3151 1424	133645 130611 127920 125296 122699 120091 117549	18852 18480 18052 17688 17319 16963 16610 16249 15949 15640	7.1 7.0 6.9 6.8 6.7 6.7 6.6 6.5 6.5	6.4 6.3 6.2 6.1 6.0 5.9 5.9
31 32 33 34 35 36 37 38 39 40	68.8 21. 68.1 20. 67.4 20. 66.7 20. 66.1 20. 65.4 19. 64.8 19. 63.6 19. 63.0 19.	7 35.6 10. 5 35.2 10. 3 34.9 10. 1 34.7 10. 9 34.3 10. 7 34.0 10. 6 33.7 10. 4 33.4 10.	8 3056 1393 7 3030 1378 6 2996 1364 6 2743 1241 5 2720 1228 4 2696 1218 3 2672 1209 2 2648 1199	108794 106656 104560 95182 93296 91664 90046 88443	15336 15044 14745 14458 13155 12894 12667 12453 12230 12009	6.4 6.3 6.2 4.0 3.9 3.9 3.9 3.8 3.8	5.8 5.7 5.6 3.6 3.5 3.5 3.5 3.5
41 42 43 44 45 46 47 48 49 50	62.4 19. 61.8 18. 61.2 18. 60.7 18. 59.6 18. 59.3 18. 58.8 17. 58.3 17. 57.8 17.	8 32.5 9. 7 32.2 9. 5 32.0 9. 3 31.7 9. 2 31.4 9. 1 31.3 9. 9 31.0 9. 8 30.8 9.	9 2577 1170 8 2554 1160 7 2530 1154 7 2514 1136 6 2490 1126 5 2474 1127 5 2458 1109 4 2435 1103	83753 82239 80960 79694 78186 77436 76198 74998	11790 11583 11368 11194 11019 10810 10707 10536 10368 10202	3.8 3.7 3.7 3.6 3.6 3.6 3.6 3.5 3.5	3.4 3.4 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2
51 52 53 54 55 56 57 58 59 60	57.3 17. 56.8 17. 56.4 17. 55.9 17. 55.4 16. 54.5 16. 54.1 16. 53.7 16. 53.3 16.	3 29.9 9. 2 29.7 9. 0 29.5 9. 9 29.2 8. 8 29.0 8. 6 28.8 8. .5 28.6 8. .4 28.4 8.	1 2575 1170 1 2557 1154 0 2531 1147 9 2514 1141 8 2497 1138 8 2471 1118 7 2454 1115 6 2437 1113	76992 75943 74665 73409	10819 10647 10501 10323 10155 10014 9838 9700 9572 9434	2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6	2.5 2.5 2.5 2.5 2.5 2.5 2.4 2.4 2.4 2.4
61 62 63 64 65 66 67 68 69 70	52.9 16 52.5 16 52.1 15 51.7 15 50.9 15 50.5 15 50.1 15 50.4 15 50.5 15 49.4 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2385 1078 4 2368 1076 3 2351 1073 3 2333 1057 2 2316 1054 2 2299 1039 1 2282 1036 0 2273 1037	67256 66303 65357 64417 63458 62532 61613 60701 60007 59107 m)	9299 9163 9038 8906 8773 8643 8520 8392 8296 8176	2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2

 $H_4 = H_2 + 4' (1.2 \text{ m})$

 $H_4 = H_2 + 4'$ (1.2 m)

.

Omnidirectional Patterns, Types TFU-50J, -25G

Mechanical Specifications

	Т	ype 1	FU-5	DJ (Omni	direc	tional	Pylor	า	
Ch.		2	D1			l1		nent	Wei	
No. 14 15 16 17 18 19 20	Ft 94.5 93.4 92.2 91.1 90.1 89.0 88.0	M 28.8 28.5 28.1 27.8 27.5 27.1 26.8	48.2 47.6 47.1 46.6	14.0	Lbs 4192 4149 4097 4046 4003 3960 3917	κ ₉ 1898 1881 1860 1842 1816 1799 1773	Ft-Lbs 204570 199982 195017 190567 186540 182160 178224	27651 26970 26341 25787 25186	Ten 8.7 8.6 8.5 8.4 8.3 8.2 8.1	мт 7.9 7.8 7.7 7.6 7.5 7.4 7.4
21 22 23 24 25 26 27 28 29 30	87.0 86.0 85.1 84.1 83.2 82.3 81.4 80.6 79.7 78.9	26.5 26.2 25.9 25.6 25.4 25.1 24.8 24.6 24.3 24.1	44.1 1 43.6 1 43.1 1 42.7 1 42.2 1	13.6 13.4 13.3 13.1 13.0 12.9 12.7 12.6	3874 3831 3787 3745 3710 3667 3633 3598 3555 3521	1759 1733 1723 1697 1688 1665 1643 1637 1615 1597	174330 170480 167007 163282 159901 156581 153313 150396 147177 144361	23569 23088 22570 22113 21645 21195 20790	8.0 7.9 7.8 7.8 7.7 7.6 7.5 7.4 7.4 7.3	7.3 7.2 7.1 7.0 7.0 6.9 6.8 6.8 6.7 6.6
31 32 33 34 35 36 37 38 39 40	78.1 77.3 76.6 75.8 75.1 74.3 73.6 72.9 72.3 71.6	23.8 23.6 23.3 23.1 22.9 22.7 22.4 22.2 22.0 21.8	39.8 1 39.4 1 39.1 1 38.7 1 38.3 1 38.0 1 37.7 1	12.4 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4	3487 3452 3426 3392 3357 3323 3297 3263 3237 3211	1578 1573 1558 1540 1525 1507 1492 1478 1467 1453	141572 138770 136355 133645 131259 128600 126275 123994 122035 119770	19567 19191 18852 18480 18147 17783 17456 17145 16871 16564	7.2 7.2 7.1 7.0 6.9 6.8 6.8 6.7 6.7	6.6 6.5 6.4 6.3 6.3 6.2 6.1 6.1 6.0
41 42 43 44 45 46 47 48 49 50	70.9 70.3 69.6 69.0 68.4 67.8 67.2 66.7 66.1 65.5	21.6 21.4 21.2 21.0 20.9 20.7 20.5 20.3 20.1 20.0	36.7 1 36.3 1 36.0 1 35.7 1 35.4 1 35.1 1 34.9 1 34.6 1	1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4	3074 3048	1438 1427 1413 1402 1392 1381 1371 1364 1353 1343	115642 113437 111564 109742 107899 106072 104560 102762	16249 15982 15684 15422 15173 14915 14670 14458 14207 13967	6.6 6.5 6.4 6.3 6.3 6.2 6.2 6.1	6.0 5.9 5.8 5.8 5.7 5.7 5.6 5.6 5.5
51 52 53 54 55 56 57 58 59 60	65.0 64.4 63.9 63.4 62.9 62.4 61.9 61.4 60.9 60.4	19.8 19.6 19.5 19.3 19.2 19.0 18.9 18.7 18.6 18.4	33.7 1 33.5 1 33.2 1 33.0 1 32.7 1 32.5 32.2 32.0 31.7	0.4 0.2 0.1 0.0 9.9 9.8 9.7 9.7	2815 2789 2772 2747	1323 1313 1306 1299 1292 1273 1266 1259 1253 1233	97797 96346 94886 93489 92050 90643 89258	13759 13524 13321 13120 12920 12730 12533 12338 12154 11960	6.0 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.6 5.6	5.4 5.3 5.3 5.3 5.2 5.2 5.1 5.1 5.1
61 62 63 64 65 66 67 68 69 70	60.0 59.5 59.1 58.6 58.2 57.8 57.3 56.9 56.5 56.1	18.3 18.1 18.0 17.9 17.7 17.6 17.5 17.3 17.2 17.1	31.3 31.1 30.8 30.6 30.4 30.2 30.0 29.8 29.6	9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 – H	2669 2652 2635 2617 2592 2575	1224 1208 1201 1199 1183 1176 1173 1158 1155	81682 80631 79557 78278 77250 76199 75184	11628 11476 11289 11151 11002 10819 10674 10538	5.5 5.4 5.4	5.0 5.0 4.9 4.9 4.8 4.8 4.8 4.8 4.7 4.7

Mechanical Specifications Type TFU-25G Omnidirectional Pylon										
Ch.	-	12 12						•		
No.	Ft	12 M	D Ft	" M	Lbs	lı Kg	Mor Ft-Lbs	nent M⋅Kg	Wei Ton	ight MT
14 15 16 17 18 19 20	69.1 68.2 67.4 66.6 65.8 65.0 64.3	21.1 20.8 20.5 20.3 20.1 19.8 19.6	34.8 34.4 34.0	11.0 10.9 10.7 10.6 10.5 10.4 10.3	3099 3065 3031 2996 2962 2927 2893	1406 1384 1378 1360 1342 1323 1309	111874 109114 106691 104261 101893 99518 97494	15466 15086 14745 14416 14091 13759 13483	3.7 3.6 3.5 3.5 3.5 3.5 3.4	3.3 3.3 3.2 3.2 3.2 3.1 3.1
21 22 23 24 25 26 27 28 29 30	63.6 62.9 62.2 61.5 60.8 60.2 59.5 58.9 58.3 57.7	19.4 19.2 18.9 18.7 18.5 18.3 18.1 17.9 17.8 17.6	33.3 33.0 32.6 32.3 31.9 31.6 31.3 31.0 30.7 30.4	10.2 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.3	2867 2832 2807 2772 2747 2721 2686 2660 2635 2609	1294 1292 1278 1263 1249 1238 1224 1213 1202 1179	95471 93456 91508 89536 87629 85984 84072 82460 80894 79314	13199 12920 12652 12377 12115 11885 11628 11402 11179 10965	3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.1 3.1	3.1 3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.8 2.8
31 32 33 34 35 36 37 38 39 40	57.1 56.5 56.0 55.4 54.9 54.3 53.8 53.8 53.3 52.8 52.3	17.4 17.2 17.1 16.9 16.7 16.6 16.4 16.2 16.1 15.9	30.1 29.8 29.5 29.2 29.0 28.7 28.4 28.2 27.9 27.7	9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4	2583 2557 2540 2514 2488 2463 2445 2420 2402 2402 2377	1168 1158 1151 1140 1134 1123 1104 1097 1090 1084	77748 76199 74930 73409 72152 70688 69438 68244 67016 65843	10746 10538 10359 10146 9979 9770 9605 9434 9265 9106	3.1 3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.9 2.9	2.8 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.6
41 42 43 44 45 46 47 48 49 50	51.8 51.4 50.9 50.5 50.0 49.6 49.1 48.7 48.3 47.9	15.8 15.7 15.5 15.4 15.2 15.1 15.0 14.8 14.7 14.6	27.4 27.2 27.0 26.8 26.5 26.3 26.1 25.9 25.7 25.5	8.4 8.3 8.2 8.2 8.1 8.0 7.9 7.9 7.8 7.8	2299 2282 2265	1064 1061 1054 1039 1032 1029 1023 1007 1004 989	64664 63702 62532 61613 60473 59569 58438 57550 56668 55769	8938 8806 8643 8520 8359 8232 8082 7955 7831 7714	2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.6 2.6	2.5 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.4 2.4
51 52 53 54 55 56 57 58 59 60	47.5 47.1 46.7 46.3 46.0 45.6 45.2 44.9 44.5 44.2	14.5 14.4 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5	25.3 25.1 24.9 24.7 24.5 24.3 24.1 24.0 23.8 23.6	7.7 7.6 7.5 7.5 7.4 7.3 7.3 7.2 7.2	2170 2153 2136 2119 2110 2093 2076 2058 2041 2032	986 983 967 953 950 947 935 933 921	54901 54040 53186 52339 51695 50860 50032 49392 48576 47955	7592 7471 7349 7238 7148 7030 6913 6825 6718 6631	2.6 2.5 2.5 3.4 3.4 3.4	2.4 2.3 2.3 2.3 2.3 3.1 3.1 3.1 3.0
61 62 63 64 65 66 67 68 69 70	43.8 43.5 43.2 42.9 42.5 42.2 41.9 41.6 41.3 41.0	13.4 13.3 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5	23.4 23.3 23.1 23.0 22.8 22.6 22.5 22.3 22.2 22.0 H ₄	7.1 7.0 7.0 6.9 6.9 6.8 6.8 6.8 6.8 6.7 = H	$\begin{array}{r} 2015 \\ 1998 \\ 1989 \\ 1972 \\ 1955 \\ 1946 \\ 1929 \\ 1921 \\ 1903 \\ 1895 \\ \underline{} \\ \underline{} + 4' \end{array}$	918 907 908 896 893 881 883 871 859 860 (1.2	47151 46553 45946 45356 44574 43980 43403 42838 42247 41690 m)	6518 6440 6356 6272 6162 6079 6004 5923 5841 5762	3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9

 $H_4 = H_2 + 4'$ (1.2 m)

Omnidirectional Patterns, Types TFU-25GA, -35G

Mechanical Specifications

	Type TI	-U-25GA	Omnidire	ctional Pylo	n
Ch.	Ha	D 1	R ₁	Moment	Weight
No. 14 15 16 17 18	FI M 69.1 21.1 68.2 20.8 67.4 20.5 66.6 20.3 65.8 20.1	Ft M 36.2 11.0 35.7 10.9 35.3 10.8 34.9 10.6 34.5 10.5	Lbs Kg 2862 1302 2830 1282 2799 1265 2767 1260 2735 1243	Ft-Lbs M-K9 103604 14322 101031 13974 98805 13662 96568 13356 94358 13052	Ton MT 4.2 3.8 4.1 3.7 4.1 3.7 4.0 3.6 4.0 3.6
19 20 21 22 23	65.0 19.8 64.3 19.6 63.6 19.4 62.9 19.2 62.2 18.9	34.1 10.4 33.8 10.3 33.4 10.2 33.1 10.1 32.7 10.0	2704 1226 2672 1212 2648 1199 2616 1186 2593 1172	92206 12750 90314 12484 88443 12230 86590 11979 84791 11720	3.9 3.6 3.9 3.5 3.8 3.5 3.8 3.4 3.8 3.4
23 24 25 26 27 28 29 30	62.218.961.518.760.818.560.218.359.518.158.917.958.317.857.717.6	32.7 10.0 32.4 9.9 32.0 9.8 31.7 9.7 31.4 9.6 31.1 9.5 30.8 9.4 30.5 9.3	2593 1172 2561 1159 2538 1146 2514 1136 2482 1122 2458 1113 2435 1103 2411 1093	84791 11720 82976 11474 81216 11231 79694 11019 77935 10771 76444 10574 74998 10368 73536 10165	3.8 3.4 3.7 3.4 3.7 3.3 3.6 3.3 3.6 3.3 3.6 3.2 3.5 3.2 3.5 3.2 3.5 3.2
31 32 33 34 35 36 37 38 39 40	57.1 17.4 56.5 17.2 56.0 17.1 55.4 16.9 54.9 16.7 54.3 16.6 53.8 16.4 53.3 16.2 52.8 16.1 52.3 15.9	30.2 9.2 29.9 9.1 29.6 9.C 29.3 8.9 29.1 8.9 28.8 8.8 28.5 8.7 28.3 8.6 28.0 8.5	2387 1083 2364 1074 2347 1067 2324 1058 2300 1040 2277 1030 2261 1024 2237 1018 2221 1012 2197 994	72087 9964 70684 9773 69471 9603 68093 9416 66930 9256 65578 9064 64439 8909 63307 8755 62188 8602 61077 8449	3.5 3.2 3.4 3.1 3.4 3.1 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.3 3.0 3.3 3.0 3.2 2.9 3.2 2.9
41 42 43 44 45 46 47 48 49 50	51.8 15.8 51.4 15.7 50.9 15.5 50.5 15.4 50.0 15.2 49.6 15.1 49.1 15.0 48.7 14.8 48.3 14.7 47.9 14.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2182987216598521429672126964211095820949442071938205593520399212023918	60005 8291 59104 8175 58048 8026 57189 7905 56126 7760 55282 7664 53430 7386 52606 7276 51789 7160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51 52 53 54 55 56 57 58 59 60	$\begin{array}{rrrr} 47.5 & 14.5 \\ 47.1 & 14.4 \\ 46.7 & 14.2 \\ 46.3 & 14.1 \\ 46.0 & 14.0 \\ 45.6 & 13.9 \\ 45.2 & 13.8 \\ 44.9 & 13.7 \\ 44.5 & 13.6 \\ 44.2 & 13.5 \end{array}$	25.6 7.8 25.4 7.8 25.2 7.7 25.0 7.6 24.9 7.6 24.5 7.5 24.5 7.5 24.3 7.4 24.1 7.4 24.0 7.3	1747 793 1733 780 1720 778 1706 776 1692 767 1665 752 1658 753 1645 741 1631 741	44723 6185 44018 6084 43344 5991 42650 5898 42131 5829 41471 5730 40793 5640 40289 5572 39644 5483 39144 5409	$\begin{array}{ccccccc} 1.6 & 1.5 \\ 1.6 & 1.4 \\ 1.6 & 1.4 \\ 1.6 & 1.4 \\ 1.5 &$
61 62 63 64 65 66 67 68 69 70	43.8 13.4 43.5 13.3 43.2 13.2 42.9 13.1 42.5 13.0 42.2 12.9 41.9 12.8 41.6 12.7 41.3 12.6 41.0 12.5	23.8 7.2 23.6 7.2 23.5 7.2 23.1 7.0 23.0 7.0 22.8 7.0 22.7 6.9 22.5 6.9 22.5 6.9 22.4 6.8	1618 739 1611 730 1597 721 1597 721 1577 719 1563 710 1556 701 1543 702 1526 692 1522 693	38508 5321 38020 5256 37530 5191 37047 5119 36429 5033 35949 4970 35477 4907 35026 4844 34560 4775 34093 4712	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $H_4 = H_2 + 4'$ (1.2 m)

 $H_4 = H_2 + 4'$ (1.2 m)

Mechanic al				
			ectional Pylo	
Ch. H± No. Ft M	D1 Ft M	R₁ Lbs Kg	Moment Ft-Lbs M-Kg	Weight Ton MT
14 98.7 30.1 15 97.5 29.7 16 96.3 29.4 17 95.1 29.0 18 94.0 28.7 19 92.9 28.3 20 91.8 28.0	50.7 15.5 50.1 15.3 49.5 15.1 48.9 14.9 48.3 14.7 47.8 14.6 47.2 14.4	4923 2226 4865 2202 4807 2178 4749 2155 4700 2135 4642 2101 4593 2081	249596 34503 243736 33691 237947 32888 232226 32109 227010 31384 221888 30675 216790 29966	11.0 9.9 10.8 9.8 10.7 9.7 10.6 9.6 10.5 9.5 10.4 9.4 10.3 9.3
21 90.8 27.7 22 89.8 27.4 23 88.8 27.1 24 87.8 26.8 25 86.8 26.5 26 85.9 26.2 27 85.0 25.9 28 84.1 25.6 29 83.2 25.4 30 82.3 25.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4544 2066 4496 2037 4447 2021 4399 1992 4350 1977 4302 1952 4263 1926 4214 1916 4175 1890 4127 1865	212205 29337 207715 28722 203228 28092 198835 27490 194445 26887 190579 26352 186719 25808 182888 25291 179107 24759 175398 24245	$\begin{array}{cccccc} 10.1 & 9.2 \\ 10.0 & 9.1 \\ 9.9 & 9.0 \\ 9.8 & 8.9 \\ 9.7 & 8.8 \\ 9.6 & 8.7 \\ 9.5 & 8.6 \\ 9.4 & 8.6 \\ 9.3 & 8.5 \\ 9.3 & 8.4 \end{array}$
31 81.5 24.8 32 80.6 24.6 33 79.8 24.3 34 79.0 24.1 35 78.3 23.9 36 77.5 23.6 37 76.8 23.4 38 76.0 23.2 39 75.3 23.0 40 74.6 22.7	42.1 12.8 41.6 12.7 41.2 12.6 40.8 12.5 40.5 12.3 40.1 12.2 39.7 12.1 39.3 12.0 39.0 11.9 38.6 11.8	4088 1859 4049 1834 4010 1813 3972 1792 3932 1790 3894 1769 3864 1753 3826 1732 3787 1716 3758 1699	172105 23795 168438 23292 165212 22844 162058 22400 159246 22017 156149 21582 153401 21211 150362 20784 147693 20420 145059 20048	9.2 8.3 9.1 8.2 9.0 8.2 8.9 8.1 8.8 8.0 8.8 7.9 8.6 7.8 8.5 7.7 8.5 7.7
41 73.9 22.5 42 73.2 22.3 43 72.6 22.1 44 71.9 21.9 45 71.3 21.7 46 70.6 21.5 47 70.0 21.3 48 69.4 21.2 49 68.8 21.0 50 68.2 20.8	38.3 11.7 37.9 11.6 37.6 11.5 37.3 11.4 37.0 11.3 36.6 11.2 36.3 11.1 36.0 11.0 35.7 10.9 35.4 10.8	3719 1683 3690 1667 3661 1655 3622 1638 3593 1626 3564 1610 3534 1598 3505 1586 3476 1574 3447 1562	142438 19691 139851 19337 137654 19033 135101 18673 132941 18374 130442 18032 128284 17738 126180 17446 124093 17157 122024 16870	8.4 7.6 8.3 7.5 8.2 7.5 8.2 7.4 8.1 7.4 8.0 7.2 7.9 7.2 7.9 7.1 7.8 7.1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3398 1537 3369 1525 3350 1517 3321 1505 3292 1498 3272 1476 2884 1313 2867 1294 2841 1287 2824 1281	118930 16446 116904 16165 115240 15929 113246 15652 111599 15429 109939 15429 96902 13393 95471 13199 94037 12999 92627 12810	7.4 6.7 7.3 6.6 7.2 6.5 7.2 6.5 7.1 6.4 4.8 4.3 4.7 4.3 4.7 4.3 4.7 4.2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	32.6 9.9 32.3 9.8 32.1 9.8 31.9 9.7 31.6 9.6 31.4 9.6 31.2 9.5 31.0 9.4 30.8 9.4 30.8 9.4 30.5 9.3	2798 1274 2781 1267 2755 1248 2738 1245 2721 1238 2703 1222 2678 1216 2660 1213 2643 1197 2626 1191 H + 4' (1	91215 12613 89826 12417 88435 12230 87342 12076 85984 11885 84874 11731 83554 11552 82460 11402 81404 11252 80093 11076 2 m)	$\begin{array}{ccccccc} 4.6 & 4.2 \\ 4.6 & 4.2 \\ 4.6 & 4.1 \\ 4.5 & 4.1 \\ 4.5 & 4.0 \\ 4.4 & 4.0 \\ 4.4 & 4.0 \\ 4.4 & 4.0 \\ 4.3 & 3.9 \end{array}$

Omnidirectional Patterns, Types TFU-40K/-46K

Mechanical Specifications

	Types TFU-40/-46K Omnidirectional Pylon									
Ch.	H ₂	Dı	R1	Moment	Weight					
No. 14 15 16 17 18 19 20	Ft M 123.7 37.7 122.1 37.2 120.6 36.8 119.2 36.3 117.8 35.9 116.4 35.5 115.0 35.1	Ft M 63.1 19.2 62.3 19.0 61.5 18.7 60.8 18.5 60.1 18.3 59.4 18.1 58.7 17.9	Lbs Kg 6820 3099 6734 3053 6658 3027 6582 2991 6506 2954 6430 2918 6355 2881	Ft-Lbs M-Kg 430342 59501 419528 58007 409467 56605 400186 55334 391011 54058 381942 52816 373038 51570	Ton MT 14.3 13.0 14.2 12.8 14.0 12.7 13.8 12.5 13.7 12.4 13.5 12.3 13.4 12.1					
21 22 23 24 25 26 27 28 29 30	113.7 34.7 112.4 34.3 111.1 33.9 109.9 33.5 108.7 33.1 107.5 32.8 106.4 32.4 105.2 32.1 104.1 31.7 103.1 31.4	$\begin{array}{ccccccc} 58.1 & 17.7 \\ 57.4 & 17.5 \\ 56.8 & 17.3 \\ 56.2 & 17.1 \\ 55.6 & 16.9 \\ 55.0 & 16.8 \\ 54.4 & 16.6 \\ 53.8 & 16.4 \\ 53.3 & 16.2 \\ 52.8 & 16.1 \end{array}$	6279 2850 6214 2818 6138 2786 6073 2760 6008 2733 5944 2690 5889 2668 5825 2642 5760 2620 5705 2587	364810 50445 356684 49315 348638 48198 341303 47196 334045 46188 326920 45192 320362 44289 313385 43329 307008 42444 301224 41651	$\begin{array}{c} 13.2 & 12.0 \\ 13.1 & 11.9 \\ 13.0 & 11.7 \\ 12.8 & 11.6 \\ 12.7 & 11.5 \\ 12.6 & 11.4 \\ 12.4 & 11.3 \\ 12.3 & 11.2 \\ 12.2 & 11.1 \\ 12.1 & 10.9 \end{array}$					
31 32 33 34 35 36 37 38 39 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} 52.2 & 15.9 \\ 51.7 & 15.8 \\ 51.2 & 15.6 \\ 50.7 & 15.4 \\ 50.2 & 15.3 \\ 49.7 & 15.2 \\ 49.3 & 15.0 \\ 48.8 & 14.9 \\ 48.4 & 14.7 \\ 47.9 & 14.6 \end{array}$	5651 2565 5597 2532 5532 2510 5478 2494 5435 2465 5381 2432 5327 2420 5283 2392 5229 2380 5186 2352	294982 40783 289365 40006 283238 39156 277735 38408 272837 37714 267436 36966 262621 36300 257810 35641 253084 34986 248409 34339	$\begin{array}{c} 12.0 & 10.8 \\ 11.8 & 10.7 \\ 11.7 & 10.6 \\ 11.6 & 10.5 \\ 11.5 & 10.4 \\ 11.4 & 10.3 \\ 11.3 & 10.3 \\ 11.2 & 10.2 \\ 11.1 & 10.1 \\ 11.0 & 10.0 \end{array}$					
41 42 43 44 45 46 47 48 49 50	92.5 28.2 91.6 27.9 90.8 27.7 90.0 27.4 88.2 27.2 88.4 26.9 87.6 26.7 86.9 26.5 86.1 26.2 85.4 26.0	47.6 14.5 47.1 14.4 46.7 14.2 46.3 14.1 45.9 14.0 45.5 13.9 45.1 13.8 44.8 13.7 44.4 13.5 44.0 13.4	46222098458320734544206645062045446720254428200443891983435019674311196042821944	220007 30421 215859 29851 212205 29337 208628 28834 205035 28350 201474 27856 197944 27365 194880 26948 191408 26460 188408 26050	$\begin{array}{ccccccc} 10.3 & 9.4 \\ 10.2 & 9.3 \\ 10.1 & 9.2 \\ 10.1 & 9.1 \\ 10.0 & 9.0 \\ 9.9 & 9.0 \\ 9.8 & 8.9 \\ 9.7 & 8.8 \\ 9.7 & 8.8 \\ 9.6 & 8.7 \end{array}$					
51 52 53 54 55 56 57 58 59 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 43.6 & 13.3 \\ 43.3 & 13.2 \\ 42.9 & 13.1 \\ 42.6 & 13.0 \\ 42.3 & 12.9 \\ 41.9 & 12.8 \\ 41.8 & 12.7 \\ 41.5 & 12.6 \\ 41.2 & 12.5 \\ 40.8 & 12.4 \end{array}$	4244 1923 4205 1907 4175 1890 4137 1874 4107 1862 4078 1846 3590 1634 3564 1623 3538 1612 3512 1598	185038 25576 182076 25172 179107 24759 176236 24362 173726 24020 170868 23629 150062 20752 147906 20450 145766 20150 143290 19815	9.5 8.6 9.4 8.6 9.3 8.4 9.2 8.4 9.1 8.3 5.9 5.4 5.9 5.3 5.8 5.3 5.8 5.3					
61 62 63 64 65 66 67 68 69 70	78.0 23.8 77.4 23.6 76.8 23.4 76.3 23.2 75.7 23.1 75.1 22.9 74.6 22.7 74.0 22.6 73.5 22.4 72.9 22.2	$\begin{array}{c} 40.5 \ 12.3 \\ 40.2 \ 12.3 \\ 39.9 \ 12.2 \\ 39.7 \ 12.1 \\ 39.4 \ 12.0 \\ 39.1 \ 11.9 \\ 38.8 \ 11.8 \\ 38.5 \ 11.7 \\ 38.3 \ 11.7 \\ 38.0 \ 11.6 \\ H_4 = H \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141224 19520 139132 19237 137056 18947 135337 18707 133290 18432 131259 18147 129592 17912 127589 17644 125930 17410 123994 17145 2 m)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					

World Radio History

Skull Directional Patterns, Types TFU-30JDA, -36JDA

		Туре	e TF	U-30)JDA	Skul	I Patte	ern	
Ch.	н	2	D	t	R	1	Mom	ent	
No.	Ft	м	Ft	Μ	Lbs	Kg	Ft-Lbs	M-Kg	
14 15 16 17 18 19 20	57.1 56.4 55.7 55.1 54.4 53.8 53.2	17.4 17.2 17.0 16.8 16.6 16.4 16.2	30.8 30.4 30.1 29.8 29.4 29.1 28.8	9.4 9.3 9.2 9.1 9.0 8.9 8.8	1735 1718 1695 1678 1662 1644 1628	786 776 767 760 750 743 736	53438 52227 51019 50004 48863 47840 46886	7388 7217 7056 6916 6750 6613 6477	
21 22 23 24 25 26 27 28 29 30	52.6 52.0 51.5 50.9 50.4 49.8 49.3 48.8 48.3 47.8	16.0 15.9 15.7 15.5 15.3 15.2 15.0 14.9 14.7 14.6	28.5 28.2 28.0 27.7 27.4 27.1 26.9 26.6 26.4 26.1 H	8.7 8.6 8.5 8.4 8.4 8.3 8.2 8.1 8.0 8.0	1611 1594 1577 1560 1548 1532 1515 1504 1487 1475	729 723 718 711 698 691 687 683 678 665	45914 44951 44156 43212 42415 41517 40753 40006 39257 38497 m)	6342 6218 6103 5972 5863 5735 5633 5532 5424 5320	

 $H_4 = H_2 + 4'$ (1.2 m)

Mechanical Specifications

Mechanical Specifications Type TFU-36JDA Skull Pattern

3ht .	Ch.	н	2	0)1	R	1	Mon	nent	Wei	ght
MT	No.	Ft	м	Ft	M	Lbs	Kg	Ft-Lbs	M-Kg	Ton	MT
2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1	14 15 16 17 18 19 20	67.5 66.7 65.9 65.1 64.3 63.6 62.9	20.6 20.3 20.1 19.8 19.6 19.4 19.2	35.2 34.8 34.4 34.0 33.9	10.9 10.7 10.6 10.5 10.4 10.3 10.2	2373 2346	1096 1092 1077 1063 1048 952 941	82580 80702	11684 11416	4.3 4.2 4.2 4.1 4.1 3.2 3.2	3.9 3.8 3.7 3.7 2.9 2.9
2.0 2.0 2.0 2.0 1.9 1.9 1.9 1.9 1.9	21 22 23 24 25 26 27 28 29 30	62.2 61.5 60.8 60.1 59.5 58.8 58.2 57.6 57.0 56.4	18.9 18.7 18.5 18.3 18.1 17.9 17.7 17.6 17.4 17.2	32.8 32.5 32.3 32.0 31.7 31.4 31.1 30.8 30.5	10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.3	2048 2030 2005 1819 1802 1780 1763 1746 1729 1712	931 920 910 829 814 813 797 790 783 776	67994 66584 65163 58754 57664 55358 54301 53253 52216	9403 9200 9009 8124 7977 7805 7651 7505 7360 7217	3.2 3.1 2.5 2.5 2.5 2.5 2.4 2.4 2.4	2.9 2.8 2.3 2.3 2.3 2.2 2.2 2.2 2.2 2.2
				н	$^{1} \equiv \Pi$	2 + 4	F (1.2	m)			

World Radio History

Weig Ton

2.4 2.4 2.3 2.3 2.3 2.3

Skull Directional Patterns, Types TFU-30JDAS, -28DAS

Mechanical Specifications

		Туре	TFU	-30J	DAS	Sku	II Pati	tern	
Ch.	H		D1		R		Morr		Weight
No. 14 15 16 17 18 19 20	Ft 58.2 57.5 56.8 56.1 55.4 54.8 54.1	M 17.7 17.5 17.3 17.1 16.9 16.7 16.5	29.6 29.3	M 9.4 9.2 9.1 9.0 8.9 8.8	Lbs 2108 2087 2060 2040 2013 1992 1972	κ ₉ 961 949 938 927 915 907 895	Ft-Lbs 65348 63862 62418 60996 59585 58366 56991	м-к9 9033 8826 8630 8436 8235 8072 7876	Ton MT 3.7 3.4 3.7 3.3 3.6 3.3 3.6 3.3 3.6 3.2 3.5 3.2 3.5 3.2 3.5 3.2
21 22 23 24 25 26 27 28 29 30	53.5 52.9 52.3 51.7 51.2 50.6 50.1 49.6 49.0 48.5	16.3 16.1 15.9 15.8 15.6 15.4 15.3 15.1 14.9 14.8	28.3 28.0 27.7 27.5 27.2 26.9 26.7 26.4	8.7 8.6 8.5 8.5 8.4 8.3 8.2 8.1 8.0 8.0	1951 1931 1910 1890 1869 1849 1835 1815 1795 1781	887 878 870 852 846 838 832 827 819 803	55799 54647 53480 52353 51398 50293 49361 48460 47388 46484	7717 7551 7395 7242 7106 6955 6822 6699 6552 6424	3.4 3.1 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.2 2.9 3.2 2.9 3.2 2.9 3.2 2.9 3.1 2.9 3.1 2.9 3.1 2.9
31 32 33 34 35 36 37 38 39 40	48.0 47.6 47.1 46.6 46.2 45.7 45.3 44.8 44.4 44.0	14.6 14.5 14.3 14.2 14.1 13.9 13.8 13.7 13.5 13.4	25.8 25.6 25.4 25.1 24.9 24.7 24.5 24.2	7.9 7.9 7.7 7.7 7.6 7.5 7.5 7.5 7.4 7.3	1609 1603 1584 1566 1559 1541 1529 1510 1504 1504 1492	735 724 719 714 703 698 696 682 680 678	41995 41357 40550 39776 39131 38371 37766 36995 36397 35808	5806 5720 5608 5498 5413 5305 5220 5115 5032 4949	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
41 42 43 44 45 46 47 48 49 50	43.6 43.2 42.8 42.4 42.0 41.7 41.3 41.0 40.6 40.3	13.3 13.2 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3	23.8 23.6 23.4 23.2 23.1 22.9 22.7 22.5	7.3 7.3 7.2 7.1 7.0 7.0 6.9 6.9 6.8	1357 1346 1334 1323 1312 1300 1289 1283 1272 1261	617 607 605 593 593 583 583 584 574 574	32568 32035 31482 30958 30438 30030 29518 29124 28620 28246	4504 4431 4356 4281 4210 4151 4081 4030 3961 3903	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51 52 53 54 55 56 57 58 59 60	39.9 39.6 39.3 38.9 38.6 38.3 38.0 37.7 37.4 37.1	12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3	22.5 22.3 22.1 22.0 21.8 21.7 21.5 21.4	6.9 6.9 6.8 6.7 6.7 6.6 6.5 6.5	1028 1023 1018 1009 1000 996 987 982 973 968	467 461 452 454 454 448 448 448 442 443 437	23336 23018 22701 22299 22000 21713 21418 21113 20822 20522	3222 3181 3142 3087 3042 3002 2957 2917 2880 2841	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
61 62 63 64 65 66 67 68 69 70	36.8 36.5 36.3 35.7 35.5 35.2 34.9 34.7 34.4	11.2 11.1 11.1 11.0 10.9 10.8 10.7 10.6 10.6 10.5	20.9 20.8 20.7 20.5 20.4 20.3 20.1 20.0 19.9	6.4 6.3 6.3 6.3 6.2 6.2 6.1 6.1 6.1 6.1	959 955 950 941 937 932 923 918 914 905	437 431 434 427 421 424 418 418 418 414 408 (1.2 n	20235 19959 19760 19479 19209 19013 18737 18452 18280 18009	2797 2758 2734 2690 2652 2629 2592 2592 2550 2525 2489	$\begin{array}{ccccc} 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \end{array}$
			*	-					

Mechanical Specifications Type TFU-28DAS Skull Pattern

		i yhe		0-20	DAS	SKU	n Pau	ern		
Ch.	н		D		R	-	Mon	nent	Wei	ght
No.	Ft	м	Ft	M	Lbs	Kg	Ft-Lbs	M-Kg	Ton	MT
14 15 16 17 18 19 20	68.6 67.7 66.9 66.1 65.3 64.5 63.8	20.9 20.6 20.4 20.1 19.9 19.7 19.4	36.2 35.7 35.3 34.9 34.5 34.1 33.8	11.0 10.9 10.8 10.6 10.5 10.4 10.3	2462 2435 2407 2380 2353 2326 2298	1069 1054	84967 83062 81179 79317	12320 12012 11750 11480 11225 10962 10743	4.3 4.2 4.2 4.1 4.1 4.1	3.9 3.9 3.8 3.8 3.7 3.7 3.7
21 22 23 24 25 26 27 28 29 30	63.1 62.4 61.7 61.0 60.3 59.7 59.0 58.4 57.8 57.2	19.2 19.0 18.8 18.6 18.4 18.2 18.0 17.8 17.6 17.4	33.1	10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3	2278 2250 2230 2183 2162 2135 2115 2094 2074	1031 1020 1008 997 985 977 965 957 949 940	76085 74475 72921 71377 69856 68535 67039 65776 64495 63257	10516 10302 10080 9870 9653 9477 9264 9092 8921 8742	4.0 3.9 3.8 3.8 3.8 3.8 3.7 3.7 3.7	3.6 3.6 3.5 3.5 3.4 3.4 3.3 3.3
31 32 33 34 35 36 37 38 39 40	56.6 56.0 55.5 54.9 54.4 53.8 53.3 52.8 52.3 51.8	17.2 17.1 16.9 16.7 16.6 16.4 16.3 16.1 15.9 15.8	30.4 30.1 29.8 29.5 29.3 29.0 28.7 28.5 28.2 28.0	9.3 9.2 9.1 9.0 8.9 8.8 8.8 8.8 8.7 8.6 8.5	1875 1857 1844 1826 1807 1789 1776 1758 1745 1727	847 840 835 827 822 815 801 796 791 786	57000 55896 54951 53867 52945 51881 50971 50103 49209 48356	7877 7728 7598 7443 7316 7172 7049 6925 6803 6681	2.9 2.9 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.7	2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5
41 42 43 44 45 46 47 48 49 50	51.3 50.9 50.4 50.0 49.5 49.1 48.6 48.2 47.8 47.8	15.6 15.5 15.4 15.2 15.1 15.0 14.8 14.7 14.6 14.4	27.9 27.7 27.4 27.2 27.0 26.8 26.5 26.3 26.1 25.9	8.5 8.4 8.3 8.2 8.2 8.1 8.0 8.0 7.9	1571 1560 1549 1537 1520 1509 1498 1487 1475 1464	713 711 698 696 692 682 678 676 665 665 664	43831 43212 42443 41806 41040 40441 39697 39108 38497 37918	6061 5972 5863 5777 5674 5592 5492 5408 5320 5246	2.2 2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1	2.0 2.0 2.0 1.9 1.9 1.9 1.9 1.9 1.9
51 52	47.0 46.6	14.3 14.2	25.7 25.5 H ₄	7.8 7.8 H	1453 1442 + ⁴	662 652 (1.2	37342 36771 m)	5164 5086	2.0 2.0	1.9 1.8

Peanut Directional Patterns, Type TFU-30JDA

Symbol Definitions (Drawing above):

D = Pole outer diameter

 $\lambda = Mid$ -channel wavelength

Note: Gain and pattern vary with D/λ ratio.

Mec	chanical S			_	
	Туре	TFU-30.	JDA Pean	ut Pattern	
Ch. No.	H2 Ft M	Dı Ft M	Ri Lbs Kg	Moment Ft-Lbs M-Kg	Weight Ton MT
14 15 16 17 18 19 20	57.1 17.4 56.4 17.2 55.7 17.0 55.1 16.8 54.4 16.6 53.8 16.4 53.2 16.2	30.4 9.3 30.1 9.2 29.7 9.1 29.4 9.0 29.1 8.9 28.8 8.8 28.5 8.7	2074 937 2047 926 2026 914 2006 906 1979 894 1958 886 1938 878	63050 8714 61615 8519 60172 8317 58976 8154 57589 7957 56390 7797 55233 7639	3.6 3.3 3.6 3.3 3.6 3.2 3.5 3.2 3.5 3.2 3.4 3.1 3.4 3.1
21 22 23 24 25 26 27 28 29 30	52.6 16.0 52.0 15.9 51.5 15.7 50.9 15.5 50.4 15.3 49.8 15.2 49.3 15.0 48.8 14.9 48.3 14.7 47.8 14.6	28.2 8.6 27.9 8.5 27.6 8.4 27.3 8.3 27.1 8.3 27.0 8.2 26.7 8.1 26.2 8.0 26.0 7.9	1917 869 1897 861 1883 855 1863 847 1842 832 1655 758 1634 739 1622 734 1603 729	54059 7473 52926 7319 51971 7182 50860 7030 49918 6906 44955 6216 44135 6099 43301 5986 42496 5872 41678 5759	$\begin{array}{ccccc} 3.4 & 3.1 \\ 3.3 & 3.0 \\ 3.3 & 3.0 \\ 3.3 & 3.0 \\ 3.2 & 2.9 \\ 2.6 & 2.3 \\ 2.6 & 2.3 \\ 2.5 & 2.3 \\ 2.5 & 2.3 \\ 2.5 & 2.3 \end{array}$
31 32 33 34 35 36 37 38 39 40	47.3 14.4 46.9 14.3 46.4 14.1 46.0 14.0 45.5 13.9 45.1 13.7 44.7 13.6 44.2 13.5 43.8 13.4 43.4 13.2	25.7 7.8 25.5 7.8 25.0 7.6 24.8 7.6 24.6 7.5 24.6 7.5 24.6 7.5 24.3 7.4 24.1 7.4 23.9 7.3	1591 725 1578 713 1560 709 1553 706 1535 693 1522 690 1385 628 1374 624 1363 614 1352 612	40889 5655 40239 5561 39468 5459 38825 5366 38068 5267 37441 5175 34071 4710 33388 4618 32848 4544 32313 4468	2.5 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.1 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7
41 42 43 44 45 46 47 48 49 50	43.0 13.1 42.7 13.0 42.3 12.9 41.9 12.8 41.6 12.7 41.2 12.6 40.8 12.4 40.5 12.3 40.2 12.2 39.8 12.1	23.7 7.2 23.6 7.2 23.4 7.1 23.2 7.1 23.0 7.0 22.8 7.0 22.5 6.8 22.3 6.8 22.1 6.7	1340 610 1329 602 1317 600 1306 590 1300 591 1289 581 1278 579 1267 579 1261 572 1250 570	31758 4392 31364 4334 30818 4260 30299 4189 29900 4137 29389 4067 28883 3995 28508 3937 28120 3890 27625 3819	1.9 1.7 1.8 1.7 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.7 1.6 1.7 1.6 1.7 1.6
51 52 53 54 55 56 57 58 59 60	39.5 12.0 39.2 11.9 38.9 11.8 38.6 11.8 38.3 11.7 38.0 11.6 37.7 11.5 37.4 11.4 37.1 11.3 36.8 11.2	22.4 6.8 22.3 6.8 22.1 6.7 22.0 6.7 21.8 6.7 21.7 6.6 21.4 6.5 21.2 6.5 21.1 6.4	1023 466 1014 460 1009 460 1000 454 995 448 986 448 982 442 973 443 968 437 959 437	2291531692261231282299308220003042216913002213962957211132917208222880205222841202352797	$\begin{array}{ccccc} 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \end{array}$
61 62 63 64 65 66 67 68 69 70	$\begin{array}{ccccc} 36.5 & 11.1 \\ 36.3 & 11.0 \\ 36.0 & 11.0 \\ 35.7 & 10.9 \\ 35.5 & 10.8 \\ 35.2 & 10.7 \\ 35.0 & 10.7 \\ 34.7 & 10.6 \\ 34.5 & 10.5 \\ 34.2 & 10.4 \\ \end{array}$	20.9 6.4 20.8 6.3 20.7 6.3 20.5 6.3 20.4 6.2 20.2 6.1 20.9 6.1 19.9 6.1 19.4 6.0	955 431 950 434 941 427 937 421 923 424 923 418 918 420 914 414 909 410 900 411	19959 2758 19760 2734 19479 2690 19209 2652 19013 2629 18737 2592 18544 2562 18280 2525 18089 2501 17820 2466	$\begin{array}{ccccc} 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 0.9 & 0.9 \\ 0.9 & 0.9 \\ 0.9 & 0.8 \\ 0.9 & 0$

 $H_4 = H_2 + 4'$ (1.2 m)

Peanut Directional Patterns, Types TFU-30JDAS, -28DAS

Mechanical Specifications

	Туре	•	DAS Pear	nut Pattern	
Ch.	H ₂	D1	R	Moment	Weight
No. 14 15 16 17 18 19 20	Ft M 58.7 17.9 58.0 17.7 57.3 17.5 56.6 17.2 55.9 17.0 55.3 16.8 54.6 16.6	Ft M 31.2 9.5 30.9 9.4 30.5 9.3 30.2 9.2 29.8 9.1 29.5 9.0 29.2 8.9	Lbs Kg 2128 966 2101 955 2080 943 2053 932 2033 920 2012 912 1985 901	Ft-Lbs M-Kg 66394 9177 64921 8977 63440 8770 62001 8574 60583 8372 59354 8208 57962 8019	Ton MT 3.7 3.4 3.7 3.4 3.7 3.3 3.6 3.3 3.6 3.2 3.5 3.2 3.5 3.2
21 22 23 24 25 26 27 28 29 30	$\begin{array}{cccc} 54.0 & 16.5 \\ 53.4 & 16.3 \\ 52.8 & 16.1 \\ 52.2 & 15.9 \\ 51.6 & 15.7 \\ 51.1 & 15.6 \\ 50.5 & 15.4 \\ 50.0 & 15.2 \\ 49.5 & 15.1 \\ 49.0 & 14.9 \end{array}$	28.9 8.8 28.6 8.7 28.3 8.6 28.0 8.5 27.7 8.4 27.6 8.4 27.1 8.2 26.8 8.2 26.6 8.1	1965892194488419248751904867188385917087761690768167176416597491640745	56788 7850 55598 7691 54449 7525 53312 7370 52159 7216 47141 6518 46137 6374 45284 6265 44461 6142 43624 6034	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31 32 33 34 35 36 37 38 39 40	$\begin{array}{rrrrr} 48.5 & 14.8 \\ 48.0 & 14.6 \\ 47.5 & 14.5 \\ 47.0 & 14.3 \\ 46.6 & 14.2 \\ 46.1 & 14.1 \\ 45.7 & 13.9 \\ 45.2 & 13.8 \\ 44.8 & 13.7 \\ 44.4 & 13.5 \end{array}$	26.3 8.0 26.1 7.9 25.8 7.9 25.6 7.8 25.1 7.7 25.1 7.6 24.8 7.6 24.4 7.4	1628 740 1609 735 1597 721 1578 716 1572 714 1554 700 1413 645 1402 633 1391 631 1379 629	42816 5920 41995 5806 41203 5696 40397 5585 39772 5498 39005 5390 35466 4902 34770 4811 34219 4733 33648 4655	2.52.32.52.32.52.22.42.22.42.22.01.82.01.81.91.8
41 42 43 44 45 46 47 48 49 50	$\begin{array}{cccc} 44.0 & 13.4 \\ 43.6 & 13.3 \\ 43.2 & 13.2 \\ 42.8 & 13.0 \\ 42.4 & 12.9 \\ 42.0 & 12.8 \\ 41.7 & 12.7 \\ 41.3 & 12.6 \\ 41.0 & 12.5 \\ 40.6 & 12.4 \\ \end{array}$	24.2 7.4 24.0 7.3 23.8 7.3 23.6 7.2 23.4 7.1 23.2 7.1 23.1 7.0 22.9 7.0 22.7 6.9 22.5 6.9	1368 619 1357 617 1346 607 1334 605 1323 603 1312 593 1300 593 1289 583 1283 584 1272 574	33106 4581 32568 4504 32035 4431 31482 4356 30958 4281 30438 4210 30030 4151 29518 4081 29124 4030 28620 3961	$\begin{array}{ccccccc} 1.9 & 1.8 \\ 1.9 & 1.7 \\ 1.9 & 1.7 \\ 1.9 & 1.7 \\ 1.9 & 1.7 \\ 1.9 & 1.7 \\ 1.8 & 1.7 \\ 1.8 & 1.6 \\ 1.8 & 1.6 \\ 1.8 & 1.6 \\ \end{array}$
51 52 53 54 55 56 57 58 59 60	40.3 12.3 39.9 12.2 39.6 12.1 39.3 12.0 39.0 11.9 38.6 11.8 38.3 11.7 38.0 11.6 37.7 11.5 37.4 11.4	22.8 7.0 22.7 6.9 22.5 6.9 22.3 6.8 22.2 6.8 22.0 6.7 21.8 6.7 21.5 6.6 21.5 6.6 21.4 6.5	1041 469 1028 467 1023 461 1018 462 1009 455 1000 454 996 448 987 449 982 442 973 443	23735 3283 23336 3222 23018 3181 22701 3142 22400 3094 22000 3042 21713 3002 21418 2963 21113 2917 20822 2880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
61 62 63 64 65 66 67 68 69 70	37.2 11.3 36.9 11.2 36.6 11.2 36.3 11.1 36.0 11.0 35.8 10.9 35.5 10.8 35.2 10.7 35.0 10.7 34.7 10.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	968 439 964 439 955 433 950 427 941 428 936 423 932 424 923 418 918 420 914 414 + 4' (1.2 c	20618 2854 20340 2810 20055 2771 19760 2733 19479 2696 19282 2665 19013 2629 18737 2592 18544 2562 18280 2525 n)	$\begin{array}{ccccccc} 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \\ 1.0 & 0.9 \end{array}$

Mechanical Specifications Type TFU-28DAS Peanut Pattern

Ch.		le le	0) 1	R	li -	Мол	nent	We	ight
No.	Ft	M	Ft	M	Lbs	Kg	Ft-Lbs	M-Kg	Ton	MT
14 15 16 17 18 19 20	69.1 68.2 67.4 66.6 65.8 65.0 64.3	21.1 20.8 20.5 20.3 20.1 19.8 19.6	36.4 36.0 35.6 35.2 34.8 34.4 34.0		2339	1125 1108 1103 1089 1074 1060 1048	90345 88128 86188 84269 82337 80462 78846	12487 12188 11912 11652 11384 11130 10899	4.4 4.3 4.2 4.2 4.1 4.1	3.9 3.9 3.8 3.8 3.7 3.7
21 22 23 24 25 26 27 28 29 30	63.5 62.8 62.1 61.4 60.8 60.1 59.5 58.8 58.2 57.6	19.4 19.1 18.9 18.7 18.5 18.3 18.1 17.9 17.7 17.6	33.6 33.3 32.9 32.6 32.3 32.1 31.8 31.5 31.2 30.9	10.3 10.1 10.0 9.9 9.8 9.8 9.7 9.6 9.5 9.4	2292 2264 2244 2217 2196 1987 1968 1943 1925 1906	1034 1032 1021 1009 1001 900 892 882 874 866	77011 75391 73828 72274 70931 63783 62582 61205 60060 58895	10650 10423 10210 9989 9810 8820 8652 8467 8303 8140	4.0 3.9 3.9 3.1 3.0 3.0 3.0 3.0	3.7 3.6 3.5 3.5 2.8 2.7 2.7 2.7
31 32 33 34 35 36 37 38 39 40	57.0 56.4 55.9 55.3 54.8 54.2 53.7 53.2 52.7 52.2	17.4 17.2 17.0 16.9 16.7 16.5 16.4 16.2 16.1 15.9	30.6 30.3 30.0 29.7 29.5 29.2 29.1 28.8 28.6 28.3	9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.6	1888 1869 1857 1838 1819 1801 1639 1628 1611 1599	859 851 846 829 825 817 741 736 732 728	57773 56631 55710 54589 53661 52589 47695 46886 46075 45252	7989 7829 7699 7544 7425 7271 6595 6477 6368 6261	2.9 2.9 2.9 2.8 2.8 2.3 2.3 2.3 2.3	2.7 2.6 2.6 2.6 2.5 2.1 2.1 2.1 2.1 2.0
41 42 43 44 45 46 47 48 49 50	51.7 51.3 50.8 50.3 49.9 49.4 49.0 48.6 48.2 47.8	15.8 15.6 15.5 15.3 15.2 15.1 14.9 14.8 14.7 14.6	28.1 27.9 27.6 27.4 27.2 26.9 26.7 26.5 26.3 26.1 H.	8.6 8.5 8.4 8.3 8.3 8.2 8.1 8.1 8.0 8.0 8.0 8.0	$ \begin{array}{r} 1583\\ 1571\\ 1560\\ 1543\\ 1532\\ 1521\\ 1509\\ 1498\\ 1486\\ 1475\\ + 4' \end{array} $	715 713 709 704 694 690 688 677 676 665 (1.2	44482 43831 43056 42278 41670 40915 40290 39697 39082 38497 m)	6149 6061 5956 5843 5760 5658 5573 5484 5408 5320	2.2 2.2 2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1	2.0 2.0 2.0 2.0 1.9 1.9 1.9 1.9 1.9

 $H_{4} = H_{2} + 4'$ (1.2 m)

Trilobe Directional Pattern, Type TFU-30JDA

Symbol	Definitions	(Drawing	above):
--------	-------------	----------	---------

D == Pole outer diameter

 $\lambda = Mid-channel wavelength$

Note: Gain and pattern vary with D/λ ratio.

Type TFU-30JDA Trilobe Pattern Ch. D₁ R₁ Moment Weight No. M the Kg Ft-Lbs M-Ka Ton MT 9964 5.0 4.5 57.1 30.2 2387 1083 72087 14 17.4 9.2 56.4 55.7 55.1 9.1 9.0 2364 1070 2332 1057 15 17.2 29.8 70447 9737 4.9 4.5 16 17 29.5 17.0 68794 9513 4.9 4.4 29.2 16.8 8.9 2308 1047 67394 9318 4.8 4.4 18 19 20 28.8 8.8 28.5 8.7 28.2 8.6 4.8 4.7 4.3 4.3 54.4 53.8 53.2 2285 1034 16.6 65808 9099 16.4 2261 1024 64439 8909 16.2 2237 1014 8720 4.2 63083 4.7 2213 1004 2190 995 27.9 27.6 27.3 27.1 26.8 26.5 26.3 21 22 23 24 25 26 27 28 29 30 16.0 8.5 61743 8534 4.6 4.2 52.6 52.0 15.9 8.4 60444 8358 4.6 4.1 15.7 15.5 8.4 8.3 3.3 3.3 51.5 1883 855 51971 7182 3.0 3.0 2.9 2.9 2.9 2.9 2.9 2.8 50.9 1863 847 50860 7030 50.4 15.3 15.2 1842 832 823 49918 3.2 3.2 8.3 8.2 8.1 8.0 7.9 7.9 6906 49.8 1822 48830 6749 15.0 14.9 14.7 1808 1788 1774 818 813 3.2 3.1 47912 49.3 6626 47024 6504 48.8 48.3 26.0 46124 6375 807 3.1 2.8 47.8 14.6 25.8 1754 792 45253 6257 3.1 25.5 25.3 25.1 3.1 3.0 31 32 33 34 35 36 37 38 39 40 47.3 14.4 7.8 7.7 7.6 7.5 7.5 7.5 7.4 7.4 7.3 7.2 1740 787 44370 6139 2.8 2.7 2.7 2.7 2.1 2.1 2.1 2.1 2.1 2.1 1726 1706 784 779 46.9 14.3 43668 6037 46.4 14.1 42821 5920 3.0 24.9 24.6 24.6 24.6 24.2 24.2 24.2 14.0 13.9 13.7 767 761 690 688 675 672 5829 5708 5175 3.0 2.9 2.4 2.3 2.3 2.3 2.3 46.0 1692 42131 1679 1522 1510 41303 45.5 37441 45.1 13.6 13.5 5091 44.7 36844 44.2 1492 36106 4995 1479 43.8 13.4 35496 4906 34915 43.4 13.2 23.8 1467 670 4824 1455 1448 1436 1424 43.0 42.7 42.3 41.9 13.1 13.0 12.9 12.8 12.7 7.2 7.1 7.1 7.0 7.0 41 42 43 44 45 46 47 48 23.6 23.4 23.2 23.0 22.8 22.6 22.4 659 34338 4745 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.0 659 660 649 647 638 33883 4686 33315 32752 32308 4608 4529 41.6 41.2 1417 4466 1405 1393 636 634 6.9 6.8 12.6 31753 4388 40.8 12.4 31203 4311 1.9 6.8 6.7 1.9 1.9 40.5 12.3 22.3 1380 626 30774 4257 49 50 40.2 12.2 22.1 1374 626 30365 4194 6.7 615 29828 2.1 1.9 39.8 12.1 21.9 1362 4120 39.5 39.2 38.9 22.0 1238 27236 1.7 51 52 53 54 55 56 57 58 59 60 6.7 562 3765 1.6 12.0 21.8 21.7 1233 1221 26879 555 1.7 $1.5 \\ 1.5$ 11.9 6.7 3718 555 26496 1.7 11.8 6.6 3663 21.5 21.4 38.6 38.3 38.0 6.6 6.5 1.7 1.7 1216 11.8 547 26144 3610 11.7 25766 25419 1204 548 3562 21.2 6.5 1199 540 3510 1.7 541 534 21.1 20.9 6.4 25046 3462 37.7 1.6 11.5 1187 6.4 6.3 24704 3418 1.6 37.4 11.4 1182 534 20.8 24357 3364 1.6 37.1 11.3 1171 36.8 11.2 20.6 6.3 1165 527 23999 3320 1.6 20.5 6.2 1154 527 3267 3236 1.6 1.4 61 36.5 11.1 23657

Mechanical Specifications

23419 20.4 6.2 1148 522 $H_4 = H_2 + 4'$ (1.2 m)

1.6 1.4

World Radio History

62

36.3 11.0

Trilobe Directional Patterns, Types TFU-28DAS, -30JDAS

Mechanical Specifications

	Type	TFU-30J	DAS Trilo	be Pattern	
Ch.	Ho	D1	R 1	Moment	Weight
No. 14 15 16 17 18 19 20	Ft M 58.7 17.9 58.0 17.7 57.3 17.5 56.6 17.2 55.9 17.0 55.3 16.8 54.6 16.6	Ft M 31.2 9.5 30.9 9.4 30.5 9.3 30.2 9.2 29.8 9.1 29.5 9.0 29.2 8.9	Lbs Kg 2128 966 2101 955 2080 943 2053 932 2033 920 2012 912 1985 901	Ft-Lbs M-Kg 66394 9177 64921 8977 63440 8770 62001 8574 60583 8372 59354 8208 57962 8019	Ton MT 3.7 3.4 3.7 3.4 3.7 3.3 3.6 3.2 3.5 3.2 3.5 3.2
21 22 23 24 25 26 27 28 29 30	$\begin{array}{ccccc} 54.0 & 16.5 \\ 53.4 & 16.3 \\ 52.8 & 16.1 \\ 52.2 & 15.9 \\ 51.6 & 15.7 \\ 51.1 & 15.6 \\ 50.5 & 15.4 \\ 50.0 & 15.2 \\ 49.5 & 15.1 \\ 49.0 & 14.9 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1965892194488419248751904867188385918698431849835182982918158241794819	56788 7850 55598 7691 54449 7525 53312 7370 52159 7216 51211 7081 50108 6930 49200 6798 48279 6674 47362 6552	3.5 3.1 3.4 3.1 3.4 3.1 3.3 3.0 3.3 3.0 3.3 3.0 3.3 3.0 3.2 2.9 3.2 2.9 3.2 2.9
31 32 33 34 35 36 37 38 39 40	$\begin{array}{rrrrr} 48.5 & 14.8 \\ 48.0 & 14.6 \\ 47.5 & 14.5 \\ 47.0 & 14.3 \\ 46.6 & 14.2 \\ 46.1 & 14.1 \\ 45.7 & 13.9 \\ 45.2 & 13.8 \\ 44.8 & 13.7 \\ 44.4 & 13.5 \end{array}$	26.1 8.0 25.9 7.9 25.6 7.8 25.4 7.7 25.2 7.7 25.1 7.7 24.9 7.6 24.7 7.5 24.4 7.5 24.2 7.4	1781 803 1760 798 1747 793 1727 787 1713 775 1554 700 1541 698 1523 693 1516 682 1504 680	46484 6424 45584 6304 44723 6185 43866 6060 43168 5967 39005 5390 38371 5305 37618 5198 36990 5115 36397 5032	3.1 2.9 3.1 2.8 3.1 2.8 3.0 2.8 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.1 2.3 2.1
41 42 43 44 45 46 47 48 49 50	44.013.443.613.343.213.242.813.042.412.942.012.841.712.741.312.641.012.540.612.4	24.0 7.3 23.8 7.3 23.6 7.2 23.4 7.1 23.2 7.1 23.0 7.0 22.7 6.9 22.5 6.9 22.3 6.8	1492 678 1479 667 1467 665 1454 663 1442 652 1430 650 1417 641 1405 639 1399 631 1386 629	35808 4949 35200 4869 34621 4788 34024 4707 33454 4629 32890 4550 32449 4487 31893 4409 31478 4354 30908 4277	2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0
51 52 53 54 55 56 57 58 59 60	40.312.339.912.239.612.139.312.039.011.938.611.838.311.738.011.637.711.537.411.4	$\begin{array}{cccc} 22.4 & 6.8 \\ 22.2 & 6.8 \\ 22.0 & 6.7 \\ 21.9 & 6.7 \\ 21.7 & 6.6 \\ 21.5 & 6.6 \\ 21.4 & 6.5 \\ 21.2 & 6.5 \\ 21.1 & 6.4 \\ 20.9 & 6.4 \end{array}$	$\begin{array}{ccccc} 1261 & 574 \\ 1250 & 564 \\ 1244 & 565 \\ 1233 & 557 \\ 1227 & 558 \\ 1216 & 548 \\ 1205 & 548 \\ 1199 & 541 \\ 1188 & 541 \\ 1182 & 534 \\ \end{array}$	28246 3903 27750 3835 27368 3785 27003 3732 26626 3683 26144 3617 25787 3562 25419 3517 25067 3462 24704 3418	1.8 1.6 1.8 1.6 1.8 1.6 1.7 1.6 1.7 1.6 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5
61 62 63 64 65 66 67 68 69 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24461 3383 24115 3333 20055 2771 19760 2733 19479 2696 19282 2665 19013 2629 18737 2592 18544 2562 18280 2525 n)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Mechanical Specifications Type TFU-28DAS Trilobe Pattern

Ch. No.	H Ft	l ₂ M	C Ft	D1 M	R Lbs		Mon			ight
14 15 16 17 18 19 20	69.1 68.2 67.4 66.6 65.8 65.0 64.3	21.1 20.8 20.5 20.3 20.1 19.8 19.6	36.4 36.0 35.6	11.1 11.0 10.8 10.7 10.6 10.5	2482 2448 2421 2394 2366	1060	Ft-Lbs 90345 88128 86188 84269 82337 80462 78846	м-к ₉ 12487 12188 11912 11652 11384 11130 10899	4.4 4.3 4.2 4.2 4.2 4.1 4.1	мт 3.9 3.9 3.8 3.8 3.8 3.7 3.7
21 22 23 24 25 26 27 28 29 30	63.5 62.8 62.1 61.4 60.8 60.1 59.5 58.8 58.2 57.6	19.4 19.1 18.9 18.7 18.5 18.3 18.1 17.9 17.7 17.6	33.6 33.3 32.9 32.6 32.3 31.9 31.6 31.3 31.0 30.7	10.1	2264	1034 1032 1021 1009 1001 989 981 969 961 943	77011 75391 73828 72274 70931 69414 68098 66606 65348 64071	10650 10423 10210 9989 9810 9593 9418 9206 9033 8864	4.0 3.9 3.9 3.8 3.8 3.8 3.8 3.7 3.7	3.7 3.6 3.5 3.5 3.5 3.4 3.4 3.4 3.3
31 32 33 34 35 36 37 38 39 40	57.0 56.4 55.9 55.3 54.8 54.2 53.7 53.2 52.7 52.2	17.4 17.2 17.0 16.9 16.7 16.5 16.4 16.2 16.1 15.9	30.4 30.1 29.8 29.5 29.3 29.2 28.9 28.7 28.4 28.2	9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.7	2067 2047 2033 2013 1992 1801 1789 1770 1758 1739	934 926 920 912 907 817 812 807 793 788	62837 61615 60583 59384 58366 52589 51702 50799 49927 49040	8686 8519 8372 8208 8072 7271 7146 7021 6899 6777	3.6 3.6 3.5 2.8 2.8 2.9 2.7 2.7	3.3 3.2 3.2 3.2 2.5 2.5 2.5 2.5 2.5
41 42 43 44 45 46 47 48 49 50	51.7 51.3 50.8 50.3 49.9 49.4 49.0 48.6 48.2 47.8	15.8 15.6 15.5 15.3 15.2 15.1 14.9 14.8 14.7 14.6	27.9 27.7 27.5 27.2 27.0 26.8 26.6 26.4 26.1 25.9	8.5 8.4 8.3 8.2 8.2 8.1 8.0 8.0 7.9	1727 1714 1696 1684 1671 1653 1640 1628 1621 1609	784 782 768 761 747 745 743 731 729	48183 47478 46640 45805 45117 44300 43624 42979 42308 41673	6664 6569 6451 6333 6240 6125 6034 5944 5848 5759	2.7 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5	2.4 2.4 2.4 2.3 2.3 2.3 2.3 2.3 2.3
51 52 53 54 55 56 57 58 59 60	47.3 47.0 46.6 46.2 45.8 45.4 45.1 44.7 44.4 44.0	14.4 14.3 14.2 14.1 14.0 13.8 13.7 13.6 13.5 13.4	25.9 25.7 25.5 25.3 25.1 24.9 24.8 24.6 24.4 24.2	7.9 7.8 7.7 7.7 7.6 7.6 7.5 7.4 7.4	1459 1453 1441 1430 1419 1408 1396 1385 1379 1368	661 662 651 650 639 638 630 628 629 619	37788 37342 36746 36179 35617 35059 34621 34071 33648 33106	5222 5164 5078 5005 4920 4849 4788 4710 4655 4581	2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9	1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
61 62	43.7 43.3	13.3 13.2	24.1 23.9 H ₄	7.3 7.3 = H.	$1357 \\ 1346 \\ 2 + 4'$	619 609 (1.2	32704 32169 m)	4519 4446	1.9 1.9	1.7 1.7

.

Antenna De-Icer System	Custom Built
Rosemount Ice Detector	MI-561572
Thermostatic Sleetmaster Control	MI-27369A

UHF-Pylon Antennas are, of necessity, custom built to order. Your RCA Broadcast Equipment Sales Representative is equipped to help you and your engineering consultant in the details of placing your order.

Panel-Type Antennas, "Vee-Zee" and "Zee-Panel"

- For omni- or directional situations
- VSWR stability end loaded radiators
- Simple, rugged construction --- radomes included
- Side- or top-mount --- increased gain with stacked arrays
- Lightning protected grounded through tower

"Vee-Zee" and "Zee-Panel" antennas are side- or top-mount units for either omni- or directional antenna arrays. Antenna arrangements allow close control of the radiation pattern in both planes: vertical and horizontal. Vee-Zee and Zee-Panel antenna arrays are useful side-mounted supplements to the top-mounted "UHF-Pylon" antenna RCA has manufactured for some time. Vee Zee and Zee Panel Type UHF Antennas meet requirements for either an omnidirectional or directional array that sidemounts on a tower which supports antennas for other services. They are also useful as top-mounted directional antennas where it is desirable to control closely or "sculpture" horizontal and vertical patterns. Either type antenna is, therefore, a useful supplement to the standard UHF Pylon antenna that proved ideal for both omnidirectional and certain other types of directional patterns in top-mounted situations.

With each element complete and electrically independent, a great flexibility in application is achieved through a buildingblock approach. Almost any desired antenna pattern can be achieved by the proper placement of one antenna panel relative to other panels and by varying the relative power input and phase of signal. The large aperture of each element, fed from a single end seal, strikes a balance between the mechanical complexity of many feedpoints and a lack of flexibility in pattern shaping resulting from too few feedpoints.

Radiating Elements

These UHF antennas employ two types of radiating elements—the Zee Panel and the Vee Zee Panel. The Zee antenna comprises zig-zag radiating elements branching two ways from a central feedpoint along a flat reflecting plane. The Vee Zee has the same configuration except that both the elements and the reflecting plane are bent in a V along a central longitudinal line. (See photo, preceding page).

The basic radiator operates on the proven traveling wave principle. To assure that the antenna rigorously conforms to this principle, a unique end loading design is incorporated, one at each end of the radiating elements. This strict adherence to the traveling wave principle provides inherent VSWR stability.

While both types of radiating elements are identical in electrical concept, their physical shapes offer advantages for particular requirements. Thus, where several services are stacked requiring relatively large size tower structures, excellent circularity for omnidirectional use and flexibility for directional use, is obtained at UHF frequencies by mounting three Vee Zee radiators, one on each of the three tower legs, so as to fire tangentially around the tower. (See drawings on Page 3 of this section.)

Where the antenna is mounted on top of the tower, either Vee Zee radiators (usually three in number) firing tangentially or Zee Panels (normally four) firing radially can be used.

Cross-section drawings point up the difference between "Vee-Zee" and "Zee-Panel" antennas.

Directivity pattern obtainable with a top-mounted, four-around Zee-Panel array on a square tower. (Gain 2.39 or 3.8 dB.)

Directivity pattern obtainable with a top-mounted, four-around Zee-Panel array on a square tower. (Gain 3.24 or 5.1 dB.)

Horizontal Patterns

Excellent circularities varying between ± 1 and ± 3 dB (depending on application) are achieved by feeding equal power to all elements in a horizontal plane. Directional patterns are obtained by varying the amplitude and phase of the signals radiated and by changing relative spacings and wiring directions of the various elements. Examples of horizontal patterns obtained from Zee panels are shown on Pages 2 and 3 of this section.

These typical, calculated, horizontal patterns are plotted in terms of dB. The broken-line circle on each pattern represents the relative field (in dB) of an omni-directional antenna fed the same power as the directional having the same vertical gain. A great variety of other patterns are available to meet UHF omnidirectional or directional requirements.

Vertical Patterns

The number of elements stacked vertically and the amplitudes and phases of the signals radiated by the elements will determine vertical patterns. Sculpturing can be done to either have zero nulls where distant coverage and maximum gain are desired or, filled nulls where thorough, close-in coverage is necessary.

Beam tilt can be achieved in all directions or in selective directions by tilting individual panels, by electrical phasing of successive radiators or both. Typical calculated vertical patterns obtained by stacking three, four, five, or six-layer standard panels are shown on Pages 4 and 5 of this section.

Electrical Characteristics

Electrical data for the standard Vee Zee antenna is listed under "Specifications" on Page 8 of this section. If desired, antennas with other power gains and power ratings can be supplied on application.

Mechanical Characteristics

Size, weight and wind loading of these antennas varies by channel. The charts on Pages 6 and 7 of this section list mechanical and windload data on the standard Vec Zee panel antennas at 50/33 PSF (244/161 kg/m²). Data at other wind loadings is available on request.

Zee-Panel and Vee-Zee antennas are supplied with top-hat lightning protectors. Whether top- or side-mounted, both ends of each radiating element are grounded. This reduces to a minimum the possibility of lightning damage.

Radome Supplied

An easily removable radome is supplied for protection from atmospheric conditions and possible climbing damage.

A three-layer Vee-Zee array undergoing pattern tests.

Calculated vertical pattern for a five-layer Vee-Zee Panel array.

Calculated vertical pattern for a six-layer Vee-Zee Panel array.

Mechanical Data: "Vee-Zee" Antenna

-		TH	REE LA	YER ARR	AY		a a	FOUR LAYER ARRAY						
Channel	Аре	rture	Wei	ight ⁸	Reacti	DN ^{8, 9}	Channel	A	perture	We	ight	Reacti	on ^{8, 9}	
ช	Ft	Mtrs ⁷	Tons ⁴	Tons ⁵	Lbs	Kg ⁶	5	Ft	Mtrs ⁷	Tons ⁴	Tons ⁵	Lbs	Kg ⁶	
14	57.7	17.59	1.71	1.55	11480	5207	14	77.0	23.47	2.39	2.17	15700	7121	
15	57.0	17.37	1.69	1.53	11230	5094	15	76.0		2.35	2.13	15360	696	
16	56.2	17.13	1.66	1.51	10990	4985	16	75.0		2.32	2.11	15030	6818	
17	55.5	16.91	1.64	1.49	10760	4881	17	74.0	22.56	2.28	2.07	14720	667	
18	54.9	16.73	1.62	1.47	10540	4781	18	73.1		2.25	2.04	14420	654	
19	54.2	16.52	1.59	1.44	10330	4686	19	72.3		2.22	2.02	14140	641	
20	53.6	16.34	1.57	1.43	10130	4595	20	71.4		2.19	1.99	13870	629	
21	52.9	16.12	1.55	1.41	9940	4509	21	70.6		2.17	1.97	13600	616	
22	52.4	15.97	1.53	1.39	9750	4423	22			2.14	1.94	13350	605	
23	51.8	15.79	1.51	1.37	9570	4341	23			2.11	1.92	13110	594	
24	51.2	15.61	1.50	1.36	9400	4264	24	68.2		2.09	1.90	12870	583	
25	50.6	15.42	1.48	1.34	9230	4187	25			2.06	1.87	12640	573	
26	50.1	15.27	1.46	1.33	9060	4110	26			2.04	1.85	12410	562	
27	49.5	15.09	1.44	1.31	8890	4033	27			2.02	1.83	12190	552	
28	48.9	14.90	1.43	1.30	8730	3960	28			1.99	1.81	11970	543	
29	48.4	14.75	1.41	1.28	8570	3887	29			1.97	1.79	11750	533	
30	47.8	14.57	1.39	1.26	8420	3819	30			1.95	1.77	11550	523	
31	47.3	14.41	1.38	1.25	8280	3756	31	63.0	19.20	1.93	1.75	11350	514	
32	46.8	14.26	1.36	1.23	8140	3692	32	62.3	18.99	1.91	1.73	11160	506	
33	46.3	14.11	1.35	1.23	8000	3629	33			1.89	1.72	10980	498	
34	45.8	13.95	1.34	1.22	7870	3570	34	61.0	18.59	1.87	1.70	10800	489	
35	45.3	13.81	1.32	1.20	7740	3511	35	60.4	18.41	1.85	1.68	10630	482	
36	44.8	13.66	1.31	1.19	7620	3456	36			1.83	1.66	10460	474	
37	44.4	13.53	1.30	1.18	7500	3402	37	59.1	18.01	1.82	1.65	10300	467	
38	43.9	13.38	1.28	1.16	7390	3352	38			1.80	1.63	10140	460	
39	43.5	13.26	1.27	1.15	7270	3298	39			1.78	1.62	9990	453	
40	43.1	13.14	1.26	1.14	7160	3248	40			1.77	1.61	9840	446	
41	42.7	13.01	1.25	1.13	7060	3202	41			1.75	1.59	9690	439	
42	42.3	12.89	1.24	1.13	6950	3153	42			1.74	1.58	9550	433	
43	41.9	12.77	1.23	1.12	6850	3107	43			1.72	1.56	9420	427	
44	41.5	12.65	1.22	1.11	6760	3066	44			1.71	1.55	9280	420	
45	41.1	12.53	1.21	1.10	6660	3021	45			1.69	1.53	9150	415	
46	40.7	12.41	1.20	1.09	6570	2980	46			1.68	1.53	9030	409	
47	40.3	12.28	1.19	1.08	6480	2939	47			1.67	1.52	8910	404	
48	40.0	12.19	1.18	1.07	6390	2899	48			1.65	1.50	8790	398	
49	39.6	12.07	1.17	1.06	6310	2862	49			1.64	1.49	8670	393	
50	39.2	11.95	1.16	1.05	6220	2821	50			1.63	1.48	8550	387	
51	38.9	11.86	1.15	1.04	6140	2785	51			1.62	1.47	8440	382	
52	38.5	11.73	1.14	1.03	6060	2749	52			1.60	1.45	8330	377	
53	38.2	11.64	1.14	1.03	5980	2713	53			1.59	1.44	8220	372	
54	37.8	11.52	1.13	1.03	5900	2676	54			1.58	1.43	8120	368	
55	37.5	11.43	1.12	1.02	5830	2644	55			1.57	1.43	8020	363	
56	37.2	11.34	1.11	1.01	5750	2608	56			1.56	1.42	7920	359	
57	36.8	11.22	1.10	1.00	5680	2576	57			1.55	1.41	7820	354	
58	36.5	11.13	1.10	1.00	5620	2549	58			1.54	1.40	7730	350	
59	36.2	11.03	1.09	0.99	5550	2517	59		1	1.53	1.39	7640	346	
60	35.9	10.94	1.08	0.98	5480	2486	60			1.52	1.38	7550	342	
61	35.6	10.85	1.08	0.98	5420	2459	6			1.51	1.37	7460	338	
62	35.3	10.76	1.07	0.97	5360	2431	6			1.50	1.36	7380	334	
63	35.1	10.70	1.06	0.96	5300	2404	6			1.49	1.35	7300	331	
64	34.8	10.61	1.06	0.96	5240	2377	6			1.48	1.34	7220	327	
65	34.5	10.52	1.05	0.95	5180	2350	6			1.47	1.33	7140	323	
66	34.2	10.42	1.04	0.94	5120	2322	6			1.47	1.33	7050	319	
67	33.9	10.33	1.04	0.94	5060	2295	6			1.46	1.33	6970	316	
68	33.6	10.24	1.03	0.94	5010	2273	6			1.45	1.32	6890	312	
69	33.3	10.15	1.03	0.94	4950	224 5	6			1.44	1.31	6820	309	
70	33.0	10.06	1.02	0.93	4890	2218	7) 43.	9 13.38	1.43	1.30	6740	305	

e	FIVE LAYER ARRAY							
Channel	Ар	erture	We	lght	Reaction ^{8,9}			
อ็	Ft	Mtrs ⁷	Tons ⁴	Tons ⁵	Lbs	Kg ⁶		
14	96.3	29.35	3.18	2.87	20298	9207		
15	95.0	28.96	3.13	2.84	19860	9008		
16	93.7	28.56	3.09	2.81	19450	8823		
17	92.6	28.22	3.04	2,76	19050	8641		
18	91.4	27.86	3.00	2.72	18670	8469		
19	90.3	27.52	2.96	2.69	18310	8305		
20	89.3	27.22	2.93	2.66	17960	8147		
21	88.2	26.88	2.89	2.62	17620	7992		
22	87.2	26.58	2.86	2.60	17300	7847		
23	86.2	26.27	2.82	2.56	16990	7701		
24	85.3	26.00	2.79	2.53	16680	7566		
25	84.3	25.69	2.76	2.51	16390	7435		
26	83.4	25.42	2.73	2.48	16100	7303		
27	82.4	25.12	2.69	2.44	15810	7171		
28	81.5	24.84	2.66	2.41	15530	7044		
29	80.5	24.54	2.63	2.39	15260	6922		
30	79.6	24.26	2.61	2.37	14990	6799		
31	78.7	23.99	2.58	2.34	14740	6686		
32	77.9	23.74	2.55	2.31	14500	6577		
33	77.0	23.47	2.53	2.30	14260	6468		
34	76.2	23.23	2.50	2.27	14030	6364		
35	75.4	22.98	2.48	2.25	13810	6264		
36	74.6	22.74	2.45	2.22	13590	6164		
37	73.9	22.52	2.43	2.21	13390	6074		
38	73.1	22.28	2.41	2.19	13180	5978		
39 40	72.4	22.07	2.39	2.17	12990	5892		
40 41	71.7	21.85 21.64	2.37	2.15	12800	5806		
42	70.3	21.64	2.35 2.33	2.13 2.12	12610	5720		
43	69.6	21.43	2.33	2.12	12430	5638		
44	68.9	21.21	2.31	2.10	12250	5557		
45	68.3	20.82	2.29	2.06	12080 11920	5479 5407		
46	67.7	20.62	2.25	2.08	11760	5407 5334		
47	67.0	20.00	2.23	2.04	11600	5262		
48	66.4	20.42	2.24	2.03	11450	5262		
49	65.8	20.06	2.22	2.02	11300	5126		
50	65.2	19.87	2.20	1.99	11150	5058		
51	64.6	19.69	2.13	1.95	11000	4990		
52	64.0	19.51	2.15	1.95	10860	4926		
53	63.4	19.32	2.14	1.94	10720	4863		
54	62.8	19.14	2.12	1.92	10580	4799		
55	62.3	18.99	2.11	1.92	10450	4740		
56	61.7	18.81	2.09	1.90	10330	4686		
57	61.2	18.65	2.08	1.89	10200	4627		
58	60.7	18.50	2.07	1.88	10080	4572		
59	60.2	18.35	2.05	1.86	9970	4522		
60	59.7	18.20	2.04	1.85	9850	4468		
61	59.2	18.04	2.03	1.84	9740	4418		
62	58.7	17.89	2.02	1.83	9630	4368		
63	58.2	17.74	2.01	1.82	9530	4323		
64	57.7	17.59	1.99	1.80	9420	4273		
65	57.3	17.47	1.98	1.80	9320	4228		
66	56.8	17.31	1.97	1.79	9210	4178		
67	56.3	17.16	1.96	1.78	9110	4132		
68	55.8	17.00	1.95	1.77	9010	4087		
69	55.3	16.86	1.94	1.76	8 910	4042		
70	54.8	16.70	1.92	1.74	8800	3992		

ē	SIX LAYER ARRAY							
Channel	Aperture		We	ight	Reaction ^{8,9}			
ວົ	Ft	Mtrs ⁷	Tons ⁴	Tons ⁵	Lbs	Kg ⁶		
14	115.5	35.20	3.95	3.59	26030	11087		
15	114.0	34.74	3.89	3.53	25480	11558		
16	112.5	34.29	3.84	3.49	24970	11326		
17	111.1	33.86	3.79	3.44	24470	11100		
18	109.7	33.44	3.73	3.39	24000	-		
19	108.4	33.04	3.69	3.35	23540	10678		
20 21	107.1 105.9	32.64	3.64 3.59	3.31	23100	10478		
22	105.9	32.28 31.91	3.59	3.26 3.22	22680 22270	10288 10102		
23	103.5	31.55	3.55	3.19	21880	9925		
24	102.3	31.18	3.47	3.15	21500	9752		
25	101.2	30.85	3.43	3.11	21130	9585		
26	100.1	30.51	3.39	3.08	20770	9421		
27	98.9	30.14	3.35	3.04	20440	9272		
28	97.7	29.78	3.31	3.00	20050	9095		
29	96.6	29.44	3.27	2.97	19710	8940		
30	95.5	29.11	3.24	2.94	19380	8791		
31	94.4	28.77	3.20	2.90	19060	8646		
32	93.4	28.47	3.17	2.88	18750	8505		
33	92.4	28.16	3.14	2.85	18450	8369		
34	91.4	27.86	3.11	2.82	18160	8237		
35 36	90.5	27.58	3.08	2.80	17880	8110		
30 37	89.5 88.6	27.28 27.01	3.05 3.02	2.78 2.74	17610 17350	7988 7870		
38	87.7	26.73	2.99	2.74	17350	7752		
39	86.8	26.46	2.93	2.70	16840	7639		
40	86.0	26.21	2.94	2.67	16600	7530		
41	85.1	25.94	2.91	2.64	16370	7425		
42	84.3	25.69	2.89	2.62	16140	7321		
43	83.5	25.45	2.86	2.60	15910	7217		
44	82.7	25.21	2.84	2.58	15700	7122		
45	81.9	24.96	2.82	2.56	15490	7026		
46	81.2	24.75	2.80	2.54	15290	* 6936		
47	80.4	24.51	2.77	2.51	15090	6845		
48	79.7	24.29	2.75	2.50	14890	6754		
49	78.9	24.05	2.73	2.48	14700	6668		
50	78.2	23.84	2.71	2.46	14510	6582		
51 52	77.4 76.7	23.59 23.38	2.69	2.44	14320	6495		
52	76.0	23.36	2.67 2.65	2.42 2.41	14140 13960	6414 6332		
54	75.3	23.10	2.63	2.41	13980	6255		
55	74.7	22.33	2.63	2.39	13620	6255		
56	74.0	22.55	2.60	2.36	13460	6105		
57	73.4	22.37	2.58	2.34	13310	6037		
58	72.7	21.16	2.56	2.32	13150	5965		
59	72.1	21.98	2.55	2.31	13000	5897		
60	71.5	21.79	2.53	2.30	12860	5833		
61	70.9	21.61	2.51	2.28	12720	5770		
62	70.3	21.43	2.50	2.27	12580	5706		
63	69.8·	21.28	2.48	2.35	12440	5643		
64	69.2	21.09	2.47	2.24	12310	5584		
65	68.6	21.91	2.45	2.22	12170	5520		
66 67	68.0 67.4	20.73	2.44	2.22	12040	5461		
68	67.4 66.8	20.54 20.36	2.42 2.41	2.20 2.19	11910	5402		
69	66.2	20.38	2.41	2.19	11770 11640	5339 5280		
70	65.6	19.99	2.40	2.16	11510	5260		
			2.00	2.10	11310	5221		

"Short tons (2000 lbs).

⁵Metric tons (1000 kg) rounded to two decimal places.

eRounded to eliminate decimals.

⁷Rounded to two decimal places.

*Subject to minor revision if special mounting hardware is required. *Reaction in pounds/kilograms for windload 50/33 PSF (244/161 kg/m²).

Fiber glass radome surrounds four-sided Zee-Panel array. Photo taken during assembly.

Specifications

Electrical Data: Vee-Zee Antenna:

Horizontal Circularity (Omni)					
VSWR					
Power Gain					
Peak Power Rating See Chart					
Input Connection Diameter					

Connection type to your order.

*Rms value. For nominal null fill and 0.6° beam tilt.

With 20% aural power, omnid rectional (three panels each layer). Limitation is 1-5/8-inch feedlines to individual panels.

			Peak Power Rating in Kilowatts ³			
Antenna Layers	Power ² Gain	Inputs	Ch. 14-29	Ch. 30-44	Ch. 45-59	Ch. 60-70
3	21.8	1	59	54	50	48
4	29.4	1	59	54	50	48
5	35.9	2	99	90	84	80
6	41.8	2	99	90	84	80

Ordering Information

Vee-Zee and Zee-Panel Antennas are supplied on a custom basis since the size and rumber of panels employed to form an array vary with each station's requirements.

"Polygon" UHF-TV Antennas, Type TZP-500

- ERP to 5,000,000 watts; grounded structure
- Power gain 14 to 55 (rms)
- Available for directional or omnidirectional service
- Stack-able: either supporting or top-mount
- Radome standard equipment

Polygon antennas are for maximumpower UHF-television broadcast. The combination of a 110-kW transmitter and a Polygon antenna of suitable power gain provides 5 megawatts of effective radiated power (ERP) in directional or omnidirectional radiation patterns from towers up to 1500 feet (457 m) tall.

Pentagonal Cross-Section

A Polygon antenna is, basically, a series of panel antennas arranged to form a cylinder with a pentagonal cross-section. Each layer of the antenna consists of five panels; a complete antenna comprises three to eleven layers with power gain proportional to the number of antenna layers.

Rigid Structure

Polygon antennas, as a result of the strength built into the faces, require no internal bracing or other structural members. Fabricated of zinc-sprayed, Cor-Ten¹ steel plates, welded at the edges, Polygon antennas minimize the effects of weathering with corrosion-resistant hardware and components.

¹U.S. Steel trademark.

Typical seven-layer vertical pattern.

Special null-filled vertical pattern.

A close-up of radiator feedpoint.

Internal Power Distribution

Since the Polygon antenna uses no internal bracing, this space encloses the system that distributes transmitter power to the several panels. Each antenna layer uses a single connection to the internal system and distributes the power to each panel in the layer through a "beltline" which encircles the layer at about the midpoint. A metal cover encloses the beltline (see photo). The system uses a traveling-wave distribution principle.

Fiberglass Radome Standard

All Polygon antennas include a remov-

able radome fabricated of fiberglassreinforced resin. The radome eliminates the need for de-icer equipment and protects the radiating elements from weather and damage while climbing the external "ladder" for beacon or other maintenance. Built-in bosun's chair supports are included at antenna top.

Grounded Structure

Polygon antennas operate with an uninsulated structure. This means that the antenna operates at a d-c ground potential through the tower. The great conductivity of the structure and the tower channels lightning discharges harmlessly to ground. A "top hat" lightning rod protects the top beacon from such discharges.

The radiating elements, too, operate at a ground potential from a d-c viewpoint: each element is bonded to the structure at the "far" end, away from the feedpoint.

Omni- or Directional Radiation Patterns

With five radiating surfaces per layer, the Polygon antenna is both directional and omnidirectional. If all five faces receive equal power, the antenna operates with an omnidirectional pattern; reducing the power to one or more faces reduces the radiation from that face and makes the pattern directional.

Omnidirectional pattern circularity exceeds ± 1.5 dB. With slight directionalization, we can obtain the equivalent of an omni pattern over a large area with, what many broadcast consultants regard as more than, ample signal strength over the remaining area. Such a pattern reduces, considerably, the length of the antenna over that for full omni service and yet attains a 5 megawatt ERP with a 110 kW transmitter.

Null-Fill and Beam Tilt Available

Polygon antenna vertical patterns are adjustable, during manufacture, for null fill and beam tilt. A typical seven-layer vertical pattern is shown. Such a pattern is available with an omni or directional horizontal pattern. Various vertical patterns in the five principal azimuthal planes are available, too. The other vertical pattern was designed for a market that needed null fill above the horizon in one principal plane.

Suitable for Diplexed Operation

Two stations can share a Polygon antenna provided they operate within six channels of one another through a system of diplexed operation. Sharing an antenna in this way reduces original investment and maintenance expense for both stations.

For stations with more than a sixchannel separation, Polygon antennas are "stack-able" to share a tower.

Economical Erection Costs

Polygon antennas are manufactured with two or three layers per section and the sections flanged. These lengths improve handling convenience during shipment and erection while the flanges simplify antenna assembly at tower site.

Ordering Information

Polygon Antennas are supplied on a custom basis since the size and number of panels employed to form an array vary with requirements.

Rosemount Antenna Ice Detector

- Dependable ice detection
- Active only when icing conditions exist
- Anticipates antenna ice formation
- Improves de-icer economy and efficiency
- Detects end of icing conditions

Active only during antenna-icing weather, the Rosemount Antenna Ice Detector senses buildup of broadcast antenna ice and generates a signal which, with appropriate power-contactor equipment (not supplied), automatically energizes an antenna's sleetmelters. At the conclusion of icing conditions, the device automatically de-energizes the heaters after an adjustable time-delay period expires.

Dependable Ice Detection

Insensitive to almost everything but ice formation, the detector ignores cold, wind, rain, dry snow, soot, grease, insects and birds. As a result, the detector prevents unnecessary de-icer operation and thus increases the useful life of de-icer equipment by operating it only when necessary.

Active Only When Icing Conditions Exist

Since antenna ice cannot form under any weather condition at temperatures above 50°F. (10°C.), the Antenna Ice Detector ceases to operate. As soon as the ambient temperature drops below 50°F., a thermostat puts the system into operation, automatically.

Anticipates Ice-Forming Conditions

Because the ice-sensing element bears low thermal mass, it cools faster and begins to collect ice earlier than the larger thermal mass of the antenna it protects. As a result, the detector "sees" ice before it begins to form on the antenna surfaces. Because the heaters are warm before ice begins to form, they get a head start on the ice and avoid the burden of a backlog ice accumulation. Only completely still air—extremely rare during icing weather —can shorten materially the detector's ice anticipation.

Improves De-Icer Economy and Efficiency

Since the ice detector ignores all conditions except icing conditions, it never operates de-icer heaters unnecessarily in the way a thermostatic control does. Consequently, the ice detector eliminates needless use of kilowatt hours which increase power costs. Further, because the heater operates only when really required, the device materially extends heater life.

Detects End of Icing Conditions, Too

Unlike most other deicer control systems, the Rosemount Antenna Ice Detector senses the end of ice-forming conditions and sends out an electrical command that ceases de-icer power.

Magnetostrictive Sensor

The sensing element-the probe-of the detector is a 1/4-inch (6 mm) diameter tube precisely 1.10 inches (28 mm) long of a nickel alloy which responds, physically, to a magnetic force in an increase or decrease in axial length. Under the influence of an alternating magnetic field, the tube vibrates at a frequency proportionate to its physcial length-its resonant frequency. If the frequency of the alternating field is adjusted to coincide with the resonant frequency of the little nickel tube, a tuned circuit results.

In the ice detector circuitry, the probe serves as a link in the feedback circuit of an oscillator.

As ice forms on the sensing element, it restricts the magnetostrictive motion and lowers the resonant frequency of the little nickel tube. As the frequency approaches a pre-determined value, solid-state circuitry detects the changes in frequency and energizes a relay which controls a deicing heater-current contactor. This relay holds for a period of 8 to 150* minutes (adjustable manually).

Self-Recycling

During the "hold" period, the ice detector probe de-ices itself and its supporting dome. Because of the low mass of the probe, de-icing takes but a few seconds. Once de-iced, the probe begins the sensing cycle again. If the ice coating accumulates to a thickness of a half millimeter or more, it issues a "sustaining" command for antenna de-icing. This sequence repeats until ice no longer forms.

Fail-Safe Design

In the extremely unlikely event of probe damage or failure, the system automatically issues a continuous de-icing command.

Specifications

*180 on 50 Hz power.

Ico Detector Unit
Ice Sensing Range0.02 to 0.25 inches on probe (0.5 to 6 mm)
Sensing Element MaterialNi-Span C
Maximum Length of Interconnecting Cable
Power Requirements:
Sensing
Signalling
Output Signal
Sensing Element De-Ice Time
Ambient Temperature: Operating
Storage
Ambient Electromagnetic Field Intensity
Physical Dimensions
Weight
Detector Control Unit
Power Requirements: Sensing
Signalling
Output Signal
Time-Delay Timer
Power Relay Current Capacity
Ambient Operation Temperature40 to 120°F (4.4 to 49°C)
ConnectionsBarrier strip and connector
Physical Dimensions
Weight

Ordering Information

Rosemount Antenna Ice Detector System (for 115 V, 50/60 Hz Power) .MI-561572 (Interconnecting cable and contactor not supplied)

Automatic Sleet Melter Control Unit

- Automatic temperature monitoring at actual antenna location
- Adjustable temperature ranges to suit local weather conditions
- Waterproof aluminum housing
- Antenna deicing prevents severe damage to transmission systems

The Automatic Sleet Melter Control Unit prevents severe damage to transmission equipment through automatic thermostatic control of antenna de-icers. The control allows de-icers to be left unattended. Furthermore, the antenna will be in condition for immediate operation following possible icing conditions during the night.

The control unit has adjustable temperature ranges so that it can cut off above and below the temperatures chosen to conserve power when temperatures are higher than iceforming range. A "stay-on" control is incorporated for added protection where rime ice is a problem.

Senses at Antenna Altitude

The control unit mounts in the vicinity of the tower top. Considerable temperature variations often exist between the antenna at the tower top and the ground level, so that ice may form on the antenna while the temperature on the ground remains above the freezing point.

Weather-Tight Construction

The control unit is housed in a small cast-aluminum box. A waterproof cover, sealed with a neoprene gasket and a convenient mounting bracket are furnished. Adjustable terminal connections for selection of temperature ranges are provided.

Only Four Connections

A four-conductor cable, six feet long, is furnished. The cable should terminate

Specifications

Automatic Temperature Li	
Upper Limit	
Lower Limit	
	(−12.6°C or −6.6°C)
Power Line Requirements	
De-icer Control Contact Ra	ating10 A
Dimensions	6 ¹ / ₂ " × 4 ¹ / ₂ " × 3" (165, 114, 76 mm)
Weight (approx.)	5 lbs. (2.27 kg)
FinishWea	therproof cast-aluminum enclosure

Ordering Information

Automatic SI	eet Melter	Control	MI-27369A

in an appropriate junction box where connections are made to the main cable run down the tower. Two of these four conductors connect to 117 volts (ac) for the relay coils; the other two are for the control circuit. The station is required to furnish the connecting cable from the transmitter building to the termination of the six-foot cable furnished with the control unit, as well as the actual relay contactors to switch power to the sleet melters.

Various types of antennas, methods of de-icer connections, etc., make it impractical to furnish the power relay contactors required with the Control Unit. The contacts of the MI-27369 are rated at 10 amperes which is more than adequate for contactor control.

Antenna Towers for Television; Strobe Tower Lighting

- Designs by experienced tower engineers
- Single contract service—complete tower planning, design fabrication, installation and inspection, one responsibility
- Variety of types and heights to fit site, antenna, accessory and load requirements
- Custom designed structures to meet special or unusual requirements
- Complete range of tower accessories

RCA offers a wide selection of towers to support various UHF and VHF television antennas for all situations. Included in the line are self-supporting and guyed designs. Towers for multiple-antenna situations are also part of this line.

RCA, as a representative of several tower manufacturers, is qualified to assist in the planning and selection of the proper tower design and a qualified tower erector for the task at hand. RCA offers a single-contract, single responsibility service that is hard to duplicate.

Tower Design Considerations

Relatively flat country with low surrounding hills lends itself well to the installation of tall supporting structures. Towers over 500 feet (152m) in height are usually guyed and the usual cross-section shape is triangular so that thrre-point guying can be used. Guyed tower costs are lower than for self-supporting structures because less steel is used and erection labor is less costly. The availability of land and the area involved for guy anchorage, however, increases costs of this type of tower. A useful method for estimating the land required for a guyed structure is to consider the distance to the farthest guy anchorage as being approximately 70 percent the tower height. For self-supporting tower the distance between tower legs is usually 10 percent of tower height.

Guyed Towers

Guyed towers normally use a constant cross-section dimension along their entire height. Supported by steel guy cables which span out to steel-reinforced, concrete anchors buried in the earth, such towers are available with either fixed or pivoted bases. Each design has advantages. A pivoted-base tower tapers to a point at the bottom. The tower and the foundation are connected at this single point. The tower remains upright and plumb even if the foundation shifts unevenly. Because of this, pivoted base towers are normally used when the soil at the site has unknown load-bearing qualities. Each leg of a fixed base tower is bolted to the foundation making the tower-tofoundation connection rigid. Fixed-base towers permit direct installation of transmission lines at the ground level. They also allow installation of the elevator bottom-landing closer to the ground.

Self-Supporting Towers

Self-supporting towers are wide at the base and taper gradually to the top. They depend upon their tapered silhouette for stability. Such towers are especially advantageous in city and other congested districts where availability of land is limited.

The use of towers atop tall buildings is often quite practical. This normally results in a smaller tower and shorter transmission lines, especially if the build-

Guyed television towers can achieve great height at less cost than self-supporting structures where land value is not a determining factor. Towers are triangular and are available with either fixed or pivoted base.

Ranger Peak, 1900 feet above average terrain, near El Paso, Texas is an ideal site for KTSM-TV's self-supporting type antenna tower.

ing height is close to the desired antenna height. Building frameworks usually must be reinforced to support the extra load and erection problems sometimes become quite complex.

Mountain-top sites, in general, do not lend themselves to guyed towers due to limited land area available for guy points. As a result, most mountaintop towers are self-supporting. Since market coverage is usually proportional to antenna height, a strategically located mountaintop site is often desirable. A short tower is often acceptable to keep the antenna above close-in reflecting objects.

Multiple-Antenna Towers

Towers carrying a number of antennas, either in a "stacked" arrangement or with all antennas on a top platform at the same height or, with a combination of platform and side mounted antennas are feasible. Multiple antenna towers save each station using the tower land cost and let all use the area's best site. Such towers simplify air-space clearance problems and greatly reduce home-receiver antenna orientation problems.

Tower Foundations

Tower foundation design is based upon a laboratory analysis of the load-bearing capacity of the soil in which the foundation will be placed, along with a determination of the uplift the foundation is required to withstand. It is sometimes necessary to reinforce foundations with piling of steel, wood or concrete. Swampy land is a poor foundation base. Sand, gravel and clay soils are usually satisfactory. Shale or rock are good. A steelreinforced, concrete foundation supports and fixes the base of most towers. Anchor bolts for the tower are cast right into the foundation with just the threaded ends protruding.

Weather Protection

The steel superstructure may be hotdip galvanized steel where corrosion due to fumes, salt air, etc. are known to exist. Galvanizing can be omitted if the tower sections are heavy and painting is done frequently. Ladders should be located inside the tower if at all possible and preferably near one of tower legs. Rungs are spaced for easy ascent or descent.

Tower Elevators

Tower elevators are recommended on towers of 1000 feet (305m) or more in height. An elevator can save much air time during an outage in the antenna system by delivering the repairman to the faulty component fresh and efficient. Elevators also allow the station engineer or

San Francisco's Mt. Sutro Tower stands 977 feet (298m) to place its twelve antennas (five "V's"; three "U's" and four "FM's") 1811 feet (552m) above sea level. See "Broadcast News" (Vol. 150, P21-31 and Vol. 152, P35-41) for other pictures and many facts about the structure and its antennas.

manager to give on-the-spot supervision to work performed on the tower. Elevators also greatly simplify routine maintenance. Conventional passenger elevator safety devices should be included in the tower elevator system.

Service Platforms

Tower platforms are used in most tower designs. Inside platforms, at each light level, provide a safe rest-and-work area for tower maintenance people. Outside platforms with railings install at any level required to provide convenient access to side-mounted equipment. Top platforms that carry multiple-antenna systems use catwalks, railings and ladders to provide easy access to antennas and transmissior lines.

Telephone lines and jack boxes installed on the tower provide quick communication between maintenance workers on the tower and ground level.

Lightning Protection

All RCA antennas mounted on the top of a tower are provided with branching type lightning protectors. These consist of four rods disposed symmetrically about the 300mm beacon and extend above it. The parts are ruggedly built and

1500-foot top platform multiple antenna support tower affords substantially increased coverage for Stations KCRA, KOVR and KXTV in Stockton-Sacramento area. The economies afforded through a single tower, as opposed to three separate structures, are obvious.

TV tower showing horizontal transmission line runs protected by ice shields.

World Radio History

Typical anchorage for pivoted base type of guyed tower. Connected at a single point, the tower will remain upright and plumb even if the foundation shifts unevenly.

are hot-dip galvanized. The branching type design has been used on hundreds of antennas and is highly effective on tall towers in areas of high lightning incidence.

Tower Lighting

Complete tower lighting systems, designed in accordance with FCC and FAA requirements, are supplied with each tower. Lighting systems contain a series of flashing beacons and obstruction lights at intermediate levels. The number of beacons and lights required is proportional to tower height. A photo-electric lighting control, that automatically turns the tower lights on at sunset and off at sunrise, is supplied as a part of each lighting system. A lamp-failure indicator panel installs in the transmitter building as optional equipment.

A pole-socket and guide flange is used to support and steady Superturnstile antennas of the so-called "bury" type. The guide flange mounts at the tower top to keep the antenna perpendicular to the ground. The pole-socket supports the weight of the antenna. It mounts fifteen percent of the pole length below the tower top. RCA furnishes the pole socket and

Vertical run of transmission line inside a triangular cross-section tower. Spring-tensioned hangers allow movement of the line due to thermal expansion and contraction.

Tower elevators greatly simplify maintenance and should be considered for all towers of great height.

WIND VELOCITY AND CORRESPONDING WIND PRES-SURE ON TOWERS-EIA STANDARD SPECIFICATION

Actual Wind Velocity mi/hr (km/hr)		Wind Pressure On Flat Surfaces (P = 0.004 V ²) Ibs/ft ² (kg/m ²)		Wind Pressure On Round Surfaces Ibs/ft² (kg/m²)		Estimated Survival Velocity (F.S. 1.65) mi/hr (km/hr)	
10	16.1	0.4	1.95	0.266	1.29	12.9	20.8
20	32.2	1.6	7.80	1.067	5.21	25.8	41.5
30	48.3	3.6	17.57	2.40	11.71	38.6	62.1
40	64.4	6.4	31.23	4.27	20.83	51.5	82.9
50	80.5	10.0	48.80	6.67	32.55	64.4	103.6
60	96.5	14.4	70.27	9.60	46.85	77.3	124.4
70.7	113.8	20.0	97.60	13.33	65.05	91.1	146.6
80	128.7	25.6	124.9	17.10	83.45	103.0	165.7
86.6	139.3	30.0	146.4	20.00	97.60	111.5	179.4
90	144.8	32.4	158.1	21.60	105.4	115.9	186.5
100	160.9	40.0	195.2	26.70	130.3	128.8	207.2
110	176.9	48.4	236.2	32.30	157.6	141.7	228.0
111.8	179.9	50.0	244.0	33.30	162.5	144.0	231.7
120	193.1	57.6	281.1	38.50	187.9	154.6	248.8
122.5	197.1	60.0	292.8	40.00	195.2	157.8	253.9
130	209.2	67.6	329.9	45.00	219.6	167.4	269.3
132.3	212.9	70.0	341.6	46.67	227.7	170.4	274.2
140	225.3	78.4	382.6	52.33	255.3	180.3	290.1
141.4	227.5	80.0	390.4	53.33	260.3	182.1	293.0
150	241.4	90.0	439.2	60.00	292.8	193.2	310.9
160	257.4	102.2	498.7	68.20	332.8	206.1	331.6
170	273.5	115.6	564.1	77.00	375.8	219.0	352.4
180	289.6	129.6	632.4	86.60	419.7	231.8	373.0
190	305.7	144.4	704.7	96.30	469.9	244.7	393.7
200	321.8	160.0	780.8	106.66	520.5	257.6	414.5

guide flange with each Superturnstile antenna except the Types TF-12AM and TF-12AL. For these two types, tower manufacturers fabricate the pole socket and guide flange.

Where necessary, arrangements may be made to provide a pedestal-type mount that mounts the antenna effectively on the tower top and eliminates the "bury" section.

Twelve-section Superturnstiles have an RF combining network which the tower accommodates below the top. Provisions are made so that tower cross-bracing does not interfere with the network. Mounting provisions for hangers are supplied to support this network.

Traveling Wave antennas are furnished with a flange at the base for mounting on the tower top.

UHF Antenna Mountings

The standard UHF transmitting antenna is the UHF Pylon. It is flange mounted directly to the tower top plate. Tapered wedges are supplied with the antenna to obtain mechanical beam tilting of the antenna where specified.

Transmission Lines

Careful consideration is given to the layout and support of transmission line on the tower to allow for expansion and contraction of line and ease of maintenance. The tower manufacturer consults with RCA engineers to assure adequate support for the line and that a minimum number of elbows are used between the antenna input and the vertical run down the tower. The tower company supplies supports for tensioned hangers from the tower top to the base. Outline drawings with dimensions are availble for all types of transmission lines and are used in the layout. These drawings are reproduced in the transmission line catalog section.

Wind Load

Most towers are currently built to 50/33 pound loading. This means that tower members are designed to resist a horizontal wind pressure of 50 pounds per square foot (244 kg/m²) of projected area on all flat surfaces and 33 pounds (162 kg/m²) on round surfaces.

Provision is made for all additional loadings caused by antenna, ladders, transmission and power lines, etc. and is applied to the projected area of the structure. The total load specified is applied in the direction which will cause the maximum stress in the various members. Where high winds or heavy icing is prevalent higher loading is often specified.

This map and table, extracted from EIA Standard RS-222B, gives minimum horizontal design windload pressures in pounds per square foot, on flat surfaces and with no ice for the zones indicated. The map, as well as the table, must be interpreted in view of local knowledge and applicable building codes. See RS-222B for zone boundaries defined by state and county.

¹Wind pressure specified in pounds per square foot only shall be assumed to be uniform over the entire height of the tower. Wind pressures specified by both zone and pressures, in pounds per square foot shall be designed for the more severe loading. (From Page 3 of RS-2228.)

Every tower is custom built to meet station requirements. RCA is equipped to supply a tower completely designed to meet those requirements. By specifying RCA as your tower contractor, you are assured a satisfactory installation.

Towers are designed in accordance with EIA Specifications.*

Consultation with RCA Broadcast Representatives helps to determine requirements. Call or write your nearest RCA regional representative.

Tower Considerations

These thoughts may be helpful as a check list for tower requirements.

- 1. Determine station location with respect to service area. This study, which involves, among other things, joint operation with other stations, FAA approval, cost of land, zoning restrictions, local regulations, etc., results in a decision to use:
 - a. A self-supporting tower where land is unavailable as in city limits or on top of a building; or:
 - b. A guyed tower where land is available and a greater height is desired; or:
 - c. A multiple-antenna tower.

Antenna Tower Questionnaire

- 2. Determine these design parameters:
 - a. Wind load for area in which tower is located;
 - b. Deflection at tower top for type of service required;
 - c. Type of antenna to be supported;
 - d. Future additions to the tower.
- Determine tower accessories such as:
 - a. Ladders;
 - b. Platforms;
 - c. Railings;
 - d. Lighting;
 - e. Microwave dishes;
 - f. Circuits.
- 4. Determine method of routing transmission line, considering:
 - a. Line accessibility;
 - b. Relationship of structural members;
 - c. Requirements of special networks below tower top.

Accessories

RCA can furnish, in addition to the antenna supporting tower itself, tower lighting equipment, installation and erection assistance.

*EIA Standard "Structure Standards for Steel Transmitting Antennas, Support-ing Steel Towers" RS-222B.

_ Tower Height
 11. FM Antennas and Transmission Lines: a. Type Line Height Install: Now Later b. Type Line Height Install: Now Later c. Type Line Height Install: Now Later 12. Microwave Reflectors: a. Size Height Install: Now Later
 b. Size Height Install: https://www.mailton.org c. Size Height Install: https://www.mailton.org 13. Required circuits (in addition to lighting system):
Deicing; Deicer control; Com- munications; Auxiliary power; Other (describe)
 14. Design windload: lbs. (kg) 15. Who will install foundations? □ Customer □ RCA Corporation
16. Anticipated construction: Start Finish (date)

- A. Price will not include horizontal bridge nor horizontal transmission-line installation. If included, advise length _ ft., height _ _____ ft. (Bridge foundation responsibility is same as in query 15 above.)
- B. Price includes standard FAA lighting unless indicated otherwise here:
 Please describe.
- C. Price includes standard FAA color-stripe painting unless indicated here:
 (painting is not required.) Unless otherwise advised below, galvanized ladders and horizontal bridge are not painted.

High Intensity Strobe Tower Lighting

- Three light intensities: 200,000, 20,000 and 40,000 candelas
- Automatic intensity reduction at twilight and nightfall
- Eliminates tower candy-stripe painting and repainting*
- All lamps flash simultaneously, 40 flashes per minute
- Economical: Power per luminaire only 210 watts (daytime)

High-intensity strobe tower lighting is the latest in tall-structure air-hazard warning systems.

The lighting operates day and night in flashes of very intense light similar to the familiar electronic photoflash photographers use. The flashes are highly conspicuous to air navigators operating under visual flight rules, day or night.

Multiple Flash Intensities

There are three light intensities from each luminaire: 200,000 candelas for daylight operation; 20,000 candelas for twilight and 4000 candelas for after-dark operation. Intensity reduction at sunset and increase at sunup is completely automatic. The system senses ambient light level with photo sensitive elements located strategically nearby to monitor northlight. As sunlight diminishes below an adjustable level, the system switches over to the lower light levels. At sunup, the process is reversed.

Eliminates Tower Painting and Repainting*

As a result of the high visibility of strobe lighting, even in daylight, the familiar candy stripe tower paint is unnecessary. This can represent a considerable reduction in tower expense initially and subsequently if the tower is corrosion resistant at the outset.

*Subject to government approval.

Strobe Lighting Luminaire

Luminaire Construction

Heavy gauge, corrosion-resistant stainless steel housings and Pyrex* window give the luminaire excellent resistance to the effects of weather. For highly corrosive environments, a fiberglass housing is available instead of the stainless steel. The xenon flash tube has an average life exceeding 18 months of operation at an intensity that exceeds the 200,000, 20,000 and 4000 candela brightness level.

The horizontal beam of each luminaire is adjustable from 0 to 8° above the horizon through an adjustment on the side of the unit. The mounting bracket is integral to the housing for extra installation convenience. Flash tube mounts are quick disconnect for easy tube replacement.

Ordering Information

Strobe tower-lighting systems are arranged to suit the situation at hand and, for this reason, need an exchange of information between you and our engineers. If you can tell us your requirements on the questionnaire below, we'll work up a suitable system for you and include a cost estimate. Please contact your RCA salesman for further details.

Luminaire Power Supply

Compact, all solid-state power supplies are part of every system. Modular design speeds component replacement when the occasion arises and interlock circuitry is included for the protection of servicing personnel. The power supply units usually mount at the base of the lighted structure indoors or out.

Control and Monitor Unit

Lighting system status is monitored with a flashing green indicator on the monitor panel. A separate indicator monitors each luminaire in the system. In the event of luminaire failure (there are three at each level), the flashing green changes to continuous red. Indicators also show operational mode: daylight, twilight or night. Manual override of operational mode uses a four-position switch (see photo). Another indicator monitors alternate timing generator operation. When the built-in spare generator automatically goes into operation, this lamp lights to indicate the switchover and that the main timing generator is inoperative for some reason.

In the event of an outage in the twilight or night operational modes, the system automatically switches the next brighter mode: from night to twilight and so on. As switchover takes place, a panel indicator signals the event and the need for attention.

The control and monitor unit includes an audible system of failure alarm for local announcement. Connections are provided for wiring external alarm systems.

The Control and Monitor Panel usually mounts in the same enclosure with the power supply. However, it mounts in an ordinary equipment rack if so desired.

Name	
Location	
Tower Type	_ Height
Luminare Mounting Preferred: Tower Face Luminaire Housing Preferred: Fiberglass	

Beacon Required? Yes 🗆 No 🗀

^{*}Corning Glass trademark.

Typical strobe-lighting power supply. Transformer is saturablecore regulated. Unit mounts at or near base of lighted structure.

This dual-unit light sensor monitors daylight level to control strobe-lighting level for daytime, twilight and after dark. Note adjustable shutter on each sensor.

TT.9400 Page 12

UHF-TV BROADCAST TRANSMITTER EQUIPMENT DOMESTIC PRICE LIST

Issued January 1, 1975

Reference Number TT.9990U

All sales are subject to RCA's Standard Terms and Conditions of Sale which are available upon request from your Broadcast Equipment Field Sales Representative.

Prices subject to change without notice.

Catalog Number	Type Number	Product Description	Price
		UHF TRANSMITTER, 30 kW VISUAL, 16 kW AURAL—Section TT.3200	
ES-560958	TTU-30C	UHF Transmitter, 30 kW Visual, 16 kW Aural	\$257,500.00
ES-560937	TTUE-4	Standby Exciter Cabinet Group	35,900.0
MI-560925		Primary Voltage Regulator (Two required if used)	2,500.0
MI-560407-1	VA-890H	Spare Klystron Power Tube, Ch. 14-29	13,440.0
MI-560407-2	VA-891H	Spare Klystron Tube, Channels 30-51	13,440.0
MI-560407-3	VA-892H	Spare Klystron Power Tube, Ch. 52-70	13,990.0
MI-560899		Spare Solid-State IPA	2,950.0
		UHF-TV TRANSMITTER, 55 kW VISUAL, 12 kW AURAL—Section TT.3400	
ES-560927	TTU-55B	UHF-TV Transmitter, 55 kW Visual, 12 kW Aural	312,500.0
MI-560569-1	VA-953B	Spare Klystron Power Tube, Channels 14-29	18,065.0
MI-560569-2	VA-954B	Spare Klystron Tube, Channels 30-51	18,065.0
MI-560569-3	VA-955C	Spare Klystron Power Tube, Channels 52-70	18,950.0
MI-560571	_	Primary Voltage Regulator (Three required if used)	5,000.0
ES-560937	TTUE-4	Standby Exciter Cabinet Group	35,900.0
		UHF-TV TRANSMITTER, 60 kW VISUAL, 16 kW AURAL—Section TT.3600	
ES-560961	TTU-60C	UHF-TV Transmitter, 60 kW Visual, 16 kW Aural	352,500.0
MI-560407-1	VA-890H	Spare Klystron Tube, Channels 14-29	13.440.0
MI-560407-1 MI-560407-2	VA-890H VA-891H	Spare Klystron Tube, Channels 30-51	13,440.0
MI-560407-2	VA-892H	Spare Klystron Tube, Channels 52-70	13,990.0
MI-560889		Spare Solid-State IPA	2,950.0
MI-560493	_	Primary Voltage Regulator (Three required if used)	5,000.0
ES-560937	TTUE-4	Standby Exciter Cabinet Group	35,900.0
LO-500957	1102-4	Standby Exerce Cabinet Croup Standby Power Option	On Reque
			0
50 500004		UHF-TV TRANSMITTER, 60 kW VISUAL, 16 kW AURAL—Section TT.3650	005 000 (
ES-560961	TTU-60C2	UHF-TV Transmitter, 60 kW Visual, 16 kW Aural	365,000.0
MI-560407-1	VA-890H	Spare Klystron Power Tube, Ch. 14-29	13,440.0
MI-560407-2	VA-891H	Spare Klystron Tube, Channels 30-51	13,440.0
MI-560407-3	VA-892H	Spare Klystron Power Tube, Ch. 52-70	13,990.0
MI-560899	_	Spare Solid-State IPA	2,950.0 5,000.0
MI-560493	TTUE-4	Primary Voltage Regulator (Three required if used) Standby Exciter Cabinet Group	35,900.0
ES-560937 On Request		Standby Exciter Cabinet Cloup Standby Power Option	On Reque
		UHF TRANSMITTER, 110 kW VISUAL, 24 kW AURAL—Section TT.3700	
F0 50005	TTU 4400		477 500 0
ES-560935	TTU-110B	UHF-TV Transmitter, 110 KW Visual, 24 kW Aural	477,500.0
MI-560569-1	VA-953B	Spare Klystron Power Tube, Ch. 14-29 Spare Klystron Tube, Channels 30-51	18,065.0
MI-560569-2	VA-954B VA-955B	Spare Klystron Power Tube, Ch. 52-70	18,950.0
MI-560569-3	VA-955B	Primary Voltage Regulator (Three required if used)	7,500.0
MI-560571 ES-560937	TTUE-4	Standby Exciter Cabinet Group	35,900.0
		Standby Power Option	On Reque
ES-560950	TTU-165C	UHF TRANSMITTER, 165 kW VISUAL, 26 kW AURAL—Section TT.3800 UHF-TV Transmitter, 165 kW Visual, 26 kW Aural	On Reque
ES-560950 ES-560937	TTUE-4	Standby Exciter Cabinet Group	35,900.0
E3-30093/	TIUE-4	Primary Voltage Regulator	On Reque
MI-560569-1	VA-953B	Spare Klystron Power Tube, Ch. 14-29	18,065.0
MI-560569-2	VA-954B	Spare Klystron Tube, Channels 30-51	18,065.0
MI-560569-2	VA-955B	Spare Klystron Power Tube, Ch. 52-70	18,950.0
MI-560899	VA-555B	Spare Solid-State IPA	2,950.
	TTU 0000	UHF TRANSMITTER, 220 kW VISUAL, 24 kW AURALSection TT.3900 UHF-TV Transmitter, 220 kW Visual, 24 kW Aural	On Reque
ES-560975	TTU-220C	Standby Exciter Cabinet Group	35,900.
ES-560937	TTUE-4	Primary Voltage Regulator	On Reque
		Spare Klystron Power Tube, Ch. 14-29	18,065.0
MI-560569-1	VA-953B	Spare Klystron Tube, Channels 30-51	18,065
MI-560569-2	VA-954B VA-955B	Spare Klystron Power Tube, Ch. 52-70	18,950.
MI-560569-3 MI-560899	VA-955B	Spare Solid-State IPA	2,950.
		·	,
EB 500000		SOLID-STATE EXCITER-MODULATOR—Section TT.4400	30,985.
ES-560938	TTUE-4	UHF-TV Retrofit Exciter-Modulator Spare Exciter Cabinet Group	30,985.
ES-560937	TTUE-4	opare exciter cabillet droup	00,900.

Catalog Number	Type Number	Product Description	Price
		DIGITAL REMOTE CONTROL SYSTEMSection TT.5300	
_	DRS-1	Digital Remote Control System, Moseley:	
_		For Ten Metering and Control Channels	\$ 3,400.00
_	_	For Twenty Metering and Control Channels	3,970.00
_		For Thirty Metering and Control Channels	4,540.00
_		Status System Option, for Type DRS-1	800.00
	DLS-1	Automatic Parameter Logging Option for Type DRS-1	7,350.00
VII-561484	BRF-1	TV Failsafe Unit (Replaced with Type FSU-1, see below)	Discontinue
_	FSU-1	TV Failsafe Unit	475.00
M1-561192		TV Failsafe Interface Panel	200.00
MI-561469	TAU-2	Tolerance Alarm Unit Main Frame	395.00
VI-561184	TAU-2	Comparator Module (for above)	65.00
MI-561462	TLK-2	Tower Light Sensing Kit	60.00
MI-561463	LVK-2	Line Voltage Sampling Kit	35.00 90.00
VI-561465 VI-561179	TSK-3 PLC-1	Temperature Sensing Kit DC Amplifier and Linear Converter	235.00
VII-561448-1	FL0-1	Relay, DPDT, 24V DC Coil, with Socket	15.00
MI-561448-2	_	Relay, DPDT, 240V AC Coil, with Socket	15.00
1-561448-3	_	Relay, Latching, DPDT, 24V DC Coil, with Socket	29.00
VII-561448-4	_	Relay, Time Delay, 24Vdc Coil	62.00
		REMOTE CONTROL SYSTEM—Section TT.5400	
	DCS-2	Digital Remote Control System, Moseley (Single transmitter site)	15,350.00
	DCS-2 DCS-2	As Above but for two transmitter sites	26,250.00
_	PLU-1	Parameter Logging Option	6,400.00
		Computer Option (Single transmitter site) (for Type DCS-2)	22,750.00
		As Above but for two transmitter sites	23,950.00
AI-561448-1		REMOTE CONTROL ACCESSORIES—Section TT.5600 Relay, 24Vdc	15.00
VII-561448-2	_	Relay, 115Vac	15.00
VII-561448-3	_	Relay, Latching, 24Vdc	29.00
11-561448-4	_	Relay, Time-Delay, 24Vdc	62.00
MJ-561449	_	Relay Panel	20.00
	004.0		135.00
MI-561461 MI-561480	CSA-3	Direct-Current Amplifier Mounting Panel	15.00
MI-561179	PLC-1	DC Amplifier/Linear Converter	235.00
VII-561480		Amplifier Mounting Panel	15.00
MI-561481-1		Plate Current Metering Kit	250.00
VI-561481-2		Plate Current Metering Kit	250.00
MI-561481-3		Plate Current Metering Kit	250.00
MI-561481-4		Plate Current Metering Kit	250.00
VII-561482-1		Plate Voltage Sampling Kit	30.00
VI-561482-2		Plate Voltage Sampling Kit	30.00
AI-561483		Plate Voltage Sampling Kit	60.00
MI-561484	BRF-1 FSU-1	Remote Control Failsafe Module (Replaced with Type FSU-1)	Discontinue 475.00
MI-561192		Failsafe Interface Panel	200.00
MI-560851-15		Aural Subcarrier Insertion Kit	75.0
VI-560851-18	_	Aural Subcarrier Insertion Kit	75.0
MI-34326-30		Aural Subcarrier Insertion Kit	10.00
	TAU-2	Tolerance Alarm System Module	
VI-561184 VI-561469	TAU-2 TAU-2	Main Frame	65.00 395.00
MI-561448-5 MI-561449		Tolerance Alarm Interface Relay Rack-Mount Relay Panel	20.00
MI-561463	LVK-2	Line-Voltage Sampling Kit	35.00
MI-561465	TSK-3	Temperature-Sensing Kit	90.0
MI-561462	TLK-2	Tower Light Monitor Kit	60.0
ES-561156		Status Indicator System	Discontinu
	SCS-2	STATUS TROUGATOR SYSTEM	UISCONTINU

Catalog Number	Type Number	Product Description	Price
		TV TRANSMITTER INPUT AND MONITORING EQUIPMENT— Section TT.6000	
ES-36591-P77	BR-77P	Cabinet Rack	¢ 440
ES-36591-S77	BR-77S	Cabinet Rack	\$ 440.
MI-36546-A21		Electrical Shield	315.
VI-36546-A28		Electrical Shield	16.
VI-30566-A77		Electrical Shield	22.
MI-30568-A77		Single Trim Strip	32.
MI-30526-A77		Double Trim Strip	38.
		Mounting Angles	35.
MI-4570-A2		Terminal Board Brackets	15.
MI-4569-A4		Audio Terminal Block	12.
MI-4568		Power Terminal Block	12.
AI-4652-D2		Audio Patch Cord	14.
/I-11666	BJ-20TRS	Jack Panel	75.
S-11141	BA-147	Limiter/Clipper Amplifier	995
S-11134	BA-44	Monitor Amplifier	396.
/I-11597	BR-22	Shelf	70.
11-556582-8	112	Self-Normalling Dual Video Jack Panel	
11-556582-1	22T	Dual Normalied-Through Jacks	42
11-556582-2	57	Dual, Normalled-Through Jacks	27
11-556582-2	5B	Patch Cord	16
11-12265	56 BI-5	Test Probe	16
		VU Meter Panei	295
II-556630B1	TA-19	Video Processing Amplifier	4,500
II-556646A	TA-19	Burst Regenerator	595
11-556647A	TA-19	Automatic Video Gain Control	595.
1-560503	TTS-1	Color Phase Equalizer	6,500
	TFT-701	TV Frequency and Aural Modulation Monitor	4,750
	TFT-701-1	Rack Adapter	55.
II-34000C2	BW-5C2	Sideband Response Analyzer, VHF	3,600
S-34009C2	BWU-5C2	Sideband Response Analyzer, UHF	· ·
S-597267B		Sync and Blanking Adder	4,500.
11-557300		Module Frame	975.
S-34048C	BW-4C1		95.
S-34049C	BWU-4C1	Visual Sideband Demodulator, VHF	Discontin
1-36547-2		Visual Sideband Demodulator, UHF	Discontin
1-36547-3		Blank Panel	8.
11-36547-5		Blank Panel	10.
II-19396-1B		Blank Panel	13.
1-27390		Directional Coupler	180.
		Directional Coupler	220
1-27389		Directional Coupler	230
1-561577		Directional Coupler	285.
1-561578		Directional Coupler	285.
1-19396-3		Transmission Line Section	57.
1-19089-22		Transmission Line Section	89.
I-27791D-9A		Transmission Line Section	76.
I-27791K-9A		Transmission Line Section	28.
I-19314C-25		Transmission Line Section	71.
1-19387-20		Transmission Line Section	
I-27792D-9A		Transmission Line Section	195.
I-561566D-9A		Transmission Line Section	154.
I-27793D-9A		Transmission Line Section	290.
1100/3A		Transmission Line Section	295.
		TRANSMITTER CONTROL CONSOLE—Section TT.6300	
S-561900 S-561900	TTC-5 TTC-5	Transmitter Control Console, Single Transmitter	7,871.
2-201900	110-5	As Above, but for dual transmitter CARRIER-FREQUENCY AND AURAL MODULATION MONITORS—	15,928
	TET 701	Section TT.6400	
	TFT-701	TV Frequency and Aural Modulation Monitor	4,750.
	TF T- 702	Aural Modulation Monitor	2,673.
ption 01		Rack Mount Adapter	55.
ption 02		Alarm Adapter	172.
		DOA Onting	
ption 03		SCA Option	172.
ption 03 ption 04	 TFT-704	SCA Option AGC Meter Option Remote Meter and Peak Flasher	172. 143.

Catalog Number	Type Number	Product Description	Price
		FREQUENCY AND MODULATION MONITOR SYSTEMS—Section TT.6410	
MI-560544	TVM-1	Belar Aural Modulation Monitor	\$ 1,500.00
MI-560548	RFA-3	Belar RF Amplifier	550.00
MI-560545	TVM-2	Belar Carrier Frequency Monitor, VHF	1,500.00
MI-560546 MI-560548	TVM-3 RFA-3	Belar Carrier Frequency Monitor, UHF	1,750.00
111-300340	RFA-3	Belar RF Amplifier	550.00
		VERTICAL INTERVAL ELECTRONIC CHOPPER—Section TT.6510	
ES-560654		Vertical Interval Electronic Chopper	375.00
ES-560653		Vertical Interval Electronic Chopper	495.00
		TELEVISION DEMODULATOR, TELEMET MODEL 4501—Section TT.6550	
	4501A1	Telemet Demodulator, for VHF	3,600.00
	4501A2	Telemet Demodulator, for UHF	3,750.00
		TELEVISION DEMODULATOR, ROHDE & SCHWARZ TYPE AMF	
MI-560534L	AMF	Television Demodulator for Ch. 2-6	8,625.00
MI-560534H	AMF	Television Demodulator for Ch. 7-13	8,625.00
MI-560534U	AMF	Television Demodulator for Ch. 14-69	8,625.00
MI-560536L	HS-2064	RF Receiver, for Ch. 2-6	4,315.00
MI-560536H MI-560536U	HS-2064 HS-2064	RF Receiver, for Ch. 7-13	4,315.00
111-2002200	H3-2064	RF Receiver, for Ch. 14-69	4,830.00
		DIODE DEMODULATORS, DIRECTIONAL COUPLERS—Section TT.6700	
MI-19051B		VHF Diode Demodulator	144.00
MI-19364		UHF Diode Demodulator	436.00
MI-560486		UHF Diode Demodulator	575.00
MI-560529 MI-561269		UHF Diode Demodulator UHF Diode Demodulator	625.00
			625.00
MI-560010		Monitoring Diode	66.00
MI-19396-1 MI-27390	_	Directional Coupler Directional Coupler	180.00 220.00
MI-27389		Directional Coupler	230.00
MI-561577		Directional Coupler	285.00
MI-561578		Directional Coupler	285.00
MJ-19396-3		Monitoring Line Section	57.50
MI-19089-22		Monitoring Line Section	89.00
MI-27791D-9A		Monitoring Line Section	76.50
MI-27791K-9A MI-19314C-25		Monitoring Line Section Monitoring Line Section	28.50
MI-193140-25 MI-19387-20	_	Monitoring Line Section	71.50 195.00
MI-27792D-9A		Monitoring Line Section	154.00
MI-561566D-9A		Monitoring Line Section	290.00
MI-27793D-9A		Monitoring Line Section	295.00
		TV SIDEBAND RESPONSE ANALYZERS—Section TT.6800	
MI-34000C-2	BW-5C2	Sideband Response Analyzer, VHF	3,600.00
ES-34009C-2	BWU-5C2	Sideband Response Analyzer, UHF	4.500.00
MI-19396-1B		Directional Coupler, 3 ¹ / ₈ -inch	180.00
MI-27390 MI-27389		Directional Coupler, 3 ¹ / ₈ -inch, pressurized	220.00
MI-27389 MI-19396-3		Directional Coupler, 6 ¹ / ₂ -inch VHF Line Section	230.00
MI-19089-22		UHF Line Section	57.50 89.00
MI-19387-20		UHF Line Section	195.00
ES-597267		Sync and Blanking Adder	975.00
MI-557300		Module Mounting Frame	95.00
		ENVELOPE DELAY MEASURING EQUIPMENT—Section TT.6900	
MI-34063	BW-8A	Envelope Delay Measuring Set	1,595.00
ES-34048	BW-4C1	VHF Visual Sideband Demodulator UHF Visual Sideband Demodulator	Discontinue
	BWU-4C1	URE VISUAL SIGEDAND DEMOQUIATOR	
ES-34049 MI-19051B	5110-401	VHF Monitoring Diode	Discontinue 144.00

Catalog Number	Type Number	Product Description	Price
MI-561549L MI-561549H	_	HARMONIC FILTERS FOR UHF-TV TRANSMITTERS—Section TT.7200 Harmonic Filter, Ch. 14-43 incl. (Not Sold Separately) Harmonic Filter, Ch. 44-83 incl. (Not Sold Separately)	
MI-561543	_	60 kW HYBRID FILTERPLEXER—Section TT.7600 UHF Hybrid Filterplexer, 60 kW (Not Sold Separately)	
		WAVEGUIDE FILTERPLEXERS—Section TT.7650	
MI-561550 MI-561551 MI-561552 MI-561553	 	Waveguide Filterplexer, Ch. 14-42, 60 kW (Not Sold Separately) Waveguide Filterplexer, Ch. 43-69, 60 kW (Not Sold Separately) Waveguide Filterplexer, Ch. 14-42, 120 kW (Not Sold Separately) Waveguide Filterplexer, Ch. 43-69, 120 kW (Not Sold Separately)	111
		RF LOADS AND WATTMETERS FOR UHF-TV—Section TT.8200	
MI-19197 MI-19089-17 MI-19089-19 MI-19089-10A	 	Air-Cooled, 1200-Watt Load and Wattmeter Reducer, 50-ohm 3 ¹ / ₂ -Inch to Type N Adapter, Type N to Type HN Connector Inner Connector, Anchor Insulator	\$ 825.0 150.0 40.0 28.0
ES-561800 ES-561812		Water-Cooled, 80 kW Load, Open-Water System Water-Cooled, 80 kW Load, Closed-Water System	5,700. 8,250.
MI-561733 MI-19387-4 MI-19089-10A MI-27350 MI-27363	 	Water-Cooled, 15/25-kW Load Reducer-Transformer Inner Conductor Connector Wattmeter, 0-15 kW Wattmeter, 0-25 kW	1,390. 330. 28. 525. 525.
MI-561813 MI-561810 MI-19387-4		Water-Cooled, 50 kW Load-Wattmeter, Open Water System Water-Cooled, 50 kW Load-Wattmeter, Closed Water System Reducer-Transformer	4,400. 6,625. 330.
Custom	TFU-6D	UHF-PYLON ANTENNAS—Section TT.9200 Since all UHF-Pylon Antennas are built to order, the prices listed here are approximate. We list prices here as an aid in the selection of an antenna suitable for your needs and desires. UHF-Pylon Antenna, Ch. 14-52, Radome included	13,145.
Custom Custom Custom	TFU-24DL TFU-24DL TFU-24DL	UHF-Pylon Antenna, Ch. 14-30, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	47,750. 51,050 51,300
Custom Custom Custom	TFU-24DM TFU-24DM TFU-24DM	UHF-Pylon Antenna, Ch. 31-50, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	46,500 49,325 49,575
Custom Custom Custom	TFU-24J TFU-24J TFU-24J	UHF-Pylon Antenna, Ch. 14-70, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	53,725 57,225 57,475
Custom Custom Custom	TFU-25G TFU-25G TFU-25G	UHF-Pylon Antenna, Ch. 14-70, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	130,175 135,725 136,425
Custom Custom Custom	TFU-25GA TFU-25GA TFU-25GA	UHF-Pylon Antenna, Ch. 14-50, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	118,650 123,800 124,525
Custom Custom Custom	TFU-25GA TFU-25GA TFU-25GA	UHF-Pylon Antenna, Ch. 51-70, less de-icers As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	107,800 111,950 112,650
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-52, 110-106 kW Skull Directional less de-icers	133,425
Custom	TFU-28DAS	As Above, with 460V or 230V, 3-phase de-icers	138,575
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-52, 80-61 kW, Skull Directional,	120 575
Custom	TFU-28DAS	less de-icers As Above, with 460V or 230V, 3-phase de-icers	130,575 135,725
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-50, 110-108 kW, Peanut Directional,	154 005
		less de-icers	154,325

Catalog Number	Type Number	Product Description	Price
		UHF-PYLON ANTENNAS—Section TT.9200 (Cont.)	
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-50, 80-56 kW, Peanut Directional, less de-icers	\$151,000.00
Custom	TFU-28DAS	As Above, with 460V or 230V, 3-phase de-icers	155,325.00
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-62, 110-91 kW, Trilobe Directional, less de-icers	162,200.00
Custom	TFU-28DAS	As Above, with 460V or 230V, 3-phase de-icers	167,700.00
Custom	TFU-28DAS	UHF-Pylon Antenna, Ch. 14-62, 80-58 kW, Trilobe Directional, less de-icers	158,775.00
Custom	TFU-28DAS	As Above, with 460V or 230V, 3-phase de-icers	164,250.00
Custom	TFU-30J	UHF-Pylon Antenna, Ch. 14-70, 80-56 kW, Omnidirectional, less de-icers	77,150.00 81,825.00
Custom Custom	TFU-30J TFU-30J	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	81,825.00
Custom	TFU-30JDA	UHF-Pylon Antenna, Ch. 14-30, 39-34 kW, Skull Directional,	
Custom	TFU-30JDA	less de-icers As Above, with 460V, 3-phase de-icers	64,525.00 67,000.00
Custom	TFU-30JDA	As Above, with 230V, 3-phase de-icers	67,425.00
Custom	TFU-30JDA	UHF-Pylon Antenna, Ch. 14-36, 60-49 kW, Peanut Directional,	
	7511 00 10 4	less de-icers	84,775.00
Custom Custom	TFU-30JDA TFU-30JDA	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	88,200.00 88,625.00
Custom	TFU-30JDA	UHF-Pylon Antenna, Ch. 37-50, 33-30 kW, Peanut Directional,	
0		less de-icers	76,725.00 79,575.00
Custom Custom	TFU-30JDA TFU-30JDA	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	80,000.00
Custom	TFU-30JDA	UHF-Pylon Antenna, Ch. 14-50, 80-44 kW, Trilobe Directional,	88,350.00
Custom	TFU-30JDA	less de-icers As Above, with 460V, 3-phase de-icers	92,375.00
Custom	TFU-30JDA	As Above, with 230V, 3-phase de-icers	92,800.00
Custom	TFU-30JDA	UHF-Pylon Antenna, Ch. 30-62, 34-27 kW, Trilobe Directional, less de-icers	79.575.00
Custom	TFU-30JDA	As Above, with 460V, 3-phase de-icers	83,275.00
Custom	TFU-30JDA	As Above, with 230V, 3-phase de-icers	83,725.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-70, 110-88 kW, Skull Directional, less de-icers	105,650.00
Custom Custom	TFU-30JDAS TFU-30JDAS	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	110,225.00 110,650.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-70, 80-56 kW, Skull Directional, less de-icers	102,800.00
Custom	TFU-30JDAS	As Above, with 460V, 3-phase de-icers	107,375.00
Custom	TFU-30JDAS	As Above, with 230V, 3-phase de-icers	107,800.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-70, 110-88 kW, Peanut Directional,	112,850.00
Custom	TFU-30JDAS	less de-icers As Above, with 460V, 3-phase de-icers	118,575.00
Custom	TFU-30JDAS	As Above, with 230V, 3-phase de-icers	119,000.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-70, 80-56 kW, Peanut Directional, less de-icers	110,000.00
Custom	TFU-30JDAS	less de-icers As Above, with 460V, 3-phase de-icers	115,725.00
Custom	TFU-30JDAS	As Above, with 230V, 3-phase de-icers	116,150.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-62, 110-91 kW, Trilobe Directional, less de-icers	115,550.00
Custom	TFU-30JDAS	less de-icers As Above, with 460V, 3-phase de-icers	122,025.00
Custom	TFU-30JDAS	As Above, with 230V, 3-phase de-icers	122,600.00
Custom	TFU-30JDAS	UHF-Pylon Antenna, Ch. 14-62, 80-58 kW, Trilobe Directional,	112,675.00
Custom	TFU-30JDAS	less de-icers As Above, with 460V, 3-phase de-icers	119,175.00
Custom	TFU-30JDAS	As Above, with 230V, 3-phase de-icers	119,750.00
Custom	TFU-35G	UHF-Pylon Antenna, Ch. 14-70, 136-88 kW, Omnidirectional,	012 600 00
Custom	TFU-35G	less de-icers As Above, with 460V, 3-phase de-icers	213,600.00 223,550.00

Catalog Number	Type Number	Product Description	Price
		UHF-PYLON ANTENNAS—Section TT.9200 (Cont.)	
Custom	TFU-36J	UHF-Pylon Antenna, Ch. 14-70, 80-56 kW, Omnidirectional,	
Custom	TFU-36J	As Above, with 460V, 3-phase de-icers	\$ 81,725.00 87,100.00
Custom	TFU-36J	As Above, with 230V, 3-phase de-icers	87,550.0
Custom	TFU-36JDA	UHF-Pylon Antenna, Ch. 14-23, 39-36 kW, Skull Directional, less de-icers	83,375.0
Custom Custom	TFU-36JDA TFU-36JDA	As Above, with 460V, 3-phase de-icers	86,150.0
Custom	TFU-36JDA	As Above, with 230V, 3-phase de-icers UHF-Pylon Antenna, Ch. 24-30, 36-34 kW, Skull Directional,	86,575.0
		less de-icers	69,650.00
Custom Custom	TFU-36JDA TFU-36JDA	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	72,350.00
Custom	TFU-42J	UHF-Pylon Antenna, Ch. 14-25, 80-72 kW, Omnidirectional,	73,030.0
Custom	TFU-42J	less de-icers	125,925.00
Custom	TFU-42J	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	132,375.00
Custom	TFU-42J	UHF-Pylon Antenna, Ch. 26-70, 72-56 kW, Omnidirectional,	
Custom	TFU-42J	less de-icers As Above, with 460V, 3-phase de-icers	102,925.00
Custom	TFU-42J	As Above, with 230V, 3-phase de-icers	108,925.0
Custom	TFU-45J	UHF-Pylon Antenna, Ch. 14-34, 80-68 kW, Omnidirectional,	
Custom	TFU-45J	less de-icers As Above, with 460V, 3-phase de-icers	155,400.0
Custom	TFU-45J	As Above, with 230V, 3-phase de-icers	162,850.0
Custom	TFU-45J	UHF-Pylon Antenna, Ch. 35-50, 68-62 kW, Omnidirectional, less de-icers	134,000.0
Custom	TFU-45J	As Above, with 460V, 3-phase de-icers	139,425.0
Custom Custom	TFU-45J TFU-45J	As Above, with 230V, 3-phase de-icers	140,000.00
	110-455	UHF-Pylon Antenna, Ch. 51-70, 62-56 kW, Omnidirectional, less de-icers	138,950.00
Custom Custom	TFU-45J TFU-45J	As Above, with 460V, 3-phase de-icers As Above, with 230V, 3-phase de-icers	145,325.00
Custom	TFU-46K	UHF-Pylon Antenna, Ch. 14-70, 157-88 kW, Omnidirectional, less de-icers	243,475.00
Custom	TFU-46K	As Above, with 460V, 3-phase de-icers	258,425.00
Custom Custom	TFU-50J TFU-50J	UHF-Pylon Antenna, Ch. 14-70, 80-56 kW, Omnidirectional, less de-icers As Above, with 460V, 3-phase de-icers	161,150.00
		PANEL-TYPE ANTENNAS—Section TT.9220	
_	_	"Vee-Zee" and "Zee-Panel" antennas are supplied on a custom basis	
		since the size and number of panels employed to form an array vary with requirements. This affects purchase price.	
		POLYGON UHF-TV ANTENNAS—Section TT.9240	
	TZP-500	Polygon Antennas are supplied on a custom basis since the size and number of panels employed to form an array vary with requirements. This affects purchase price.	
		ROSEMOUNT ANTENNA ICE DETECTOR—Section TT.9320	
MI-561572		Rosemount Antenna Ice Detector System	926.00
		AUTOMATIC SLEET MELTER CONTROL UNIT—Section TT.9340	
MI-27369A	—	Automatic Sleet Melter Control	300.00
		ANTENNA TOWERS; STROBE LIGHTING—Section TT.9400	
Custom Built Custom Built	200K73-1A3 200K73-2A3	Single-Level Strobe Lighting System	10,526.00
Custom Built	200K73-3A3	Two-Level Strobe Lighting System Three-Level Strobe Lighting System	17,845.00
Custom Built Custom Built	200K73-4A3	Four-Level Strobe Lighting System	32,513.00
Custom Built	200K73-5A3 200K73	Five-Level Strobe Lighting System Beacon (If purchased separately)	39,846.00 2,300.00
Custom Built	200K73	Beacon (If purchased as part of strobe system)	1,725.00

522-68

RG/I 60 KW UHF TV Transmitter, Type TTU-60A

Diplexed Output • Vapor-Cooled Klystrons • Quick Tube Change

1

Modern High Power UHF Transmitter

The TTU-60A UHF Television Transmitter is a 60-kilowatt klystron-powered equipment offering broadcasters the latest techniques in UHF design. Included are features such as the integral cavity, vapor cooled klystron, low profile styling, solid state circuitry, built in provisions for remote control, and diplexed output for added reliability. The increased efficiency and high power sensitivity of the new klystron offers considerable savings in operating costs.

The transmitter provides effective radiated powers of more than two megawatts for metropolitan markets. It meets FCC or CCIR specifications. Model ES-560292 should be specified for FCC standards and 440/460/480 Volt, 60 Hz input. For CCIR standards and 380/400/415 Volt, 50 Hz input, order ES-560293.

The TTU-60A is economical and easy to operate. Though the space required is small, components are located for maximum accessibility. Small physical size and ease of maintenance result in direct savings in installation and operation. New mechanical and electrical features permit oneman operation of this high power transmitter either locally or from a remote point.

Overall reliability is enhanced by use of a diplexed output stage. Redundancy can be further increased by addition of a standby exciter/modulator and RF switching units available as optional accessories.

Description

The transmitter is housed in four new low profile 77-inch cabinets with eye-level meters and convenient finger-tip controls. Built-in remote control circuitry, including metering points for remotely monitoring operating parameters, permits operation at an auxiliary control console or remote point. All normal operating controls are motor-driven and may also be operated from a remote location.

Circuit Description

Ease of installation, operation and maintenance is enhanced by use of modern, reliable circuitry. Video and audio modulation takes place at a low level, thus eliminating the need for a high power modulator. Use of high gain klystron tubes makes it possible to effect a high amplification in a single, pre-tuned RF stage.

Direct-FM Exciter

The modern circuitry used in the TTU-60A transmitter utilizes the standard BTE-10C FM exciter to develop a stable, high quality, direct frequency modulated aural signal.

Aural/Visual Exciter/Modulator Block Diagram.

The newly designed FM exciter uses a total of nine tubes—half as many as used in the previous model. Only four tubes are required to maintain an aural output signal, an indication of the reliability built into the entire transmitter.

The design retains RCA's "Direct-FM" modulation which features ease of adjustment and reliable operation. All RF stages use single-tuned circuits. A built-in meter, and easily accessible test points allow metering and checking during operation. An AFC on-off toggle switch and simplified controls including the power on-off switch are all easily accessible on the chassis of the exciter.

A self-contained silicon power supply is used in the exciter. Premium tubes, carrying a 10,000 hour guarantee are used in the RF circuits for reliability and long life. The BTE 10C lends itself particularly well to unattended and remote operation.

Simplified Exciter Modulator

The exciter/modulator develops a highly stable, crystal-controlled frequency which is heterodyned with both the modulated video and aural signals, resulting in aural and visual output carriers separated by 4.5 MHz (5.5 MHz for CCIR Standards). The aural signal is then fed through a variable motor-driven attenuator to an RF amplifier using a single type 7289 tube. The output of this stage drives the aural klystron to an output of 16 kW.

Visual modulation takes place at the grid of a pencil triode, type 4055. All RF stages preceding this are operated Class "C" and are simply tuned by meter indications for maximum output. The output of the mixer stage is a doubie-tuned cavity. The video modulated output of this stage, a nominal 2 Watts peak, is fed through a variable attenuator, then amplified in the following cavity tuned amplifier using a single type 7289 tube. The variable attenuator is motor-driven and, in addition to providing a good load impedance on the modulated stage, serves as the visual excitation control.

IPA Stages

Following the exciter, the aural and visual signals are amplified separately by identical cavity tuned IPA stages, each employing a Type 7289 triode. The signals are then fed to their respective klystron output stages. Both IPA stages are broadband tuned and capable of operating as a visual amplifier. Therefore, should the need arise, a simple change of small coaxial connectors at the front of the transmitter will permit the visual signal to be fed through either IPA stage while the aural signal may be fed directly to the aural klystron.

Design Features

SIMPLE, PROVED DIRECT FM

Reliable exciter/modulator employs 10,000 hour premium tubes.

LONG LIFE SOLID STATE RECTIFIERS

Silicon rectifiers are modularized for easy maintenance.

BUILT-IN MOTOR DRIVEN CONTROLS

DIPLEXED VISUAL POWER AMPLIFIER

Standard equipment in readiness for remote control.

Diplexed, Pre-Tuned Klystrons

Klystron is easily changed by tilting and sliding into four wheel carriage, then revolving carriage, and easing replacement into transmitter.

Klystron Power Amplifiers

Aural and visual power amplifiers in the TTU-60A each use vapor cooled, integral cavity klystrons of the Varian Type VA-890 Series. Use of integral cavities means that the klystrons are tuned at the factory, eliminating the station site preparation which is required by external -cavity designs. Three identical klystrons are used in the transmitter.

The TTU-60A is the first 60 kW television broadcast transmitter to use the new vapor cooled klystrons. The increased efficiency of a vapor cooling system over either air or water cooled systems results in a considerable saving in operating costs.

The integral cavity klystron is easily installed by one operator. It is transferred in a horizontal position directly from the shipping container into a four-wheel carriage, then by an ingenius loading device, is rolled into the transmitter. The tube remains in a horizontal position until completely installed, after which it is tilted to a vertical position and locked. No unusually high ceilings are required as with some klystrons.

Diplexing Increases Reliability

One of the three klystrons is employed in the aural PA. The visual PA uses two klystrons in a diplexed arrangement. Diplexing is more than just paralleling two tubes. Each tube contributes independently to the output. If either tube fails, the other tube continues to operate unaffected. Diplexing achieves an increased reliability, which according to studies, improves 150 percent in any redundant system employing identical elements. The design also offers the possibility, in an emergency, of patching in one of the diplexed visual amplifiers to take over for a disabled aural PA, and thus keep the transmitter on the air.

These features, plus the interchangeable drivers and optional spare exciter represent a great forward step in design to achieve the dependability required in today's television transmitter operations.

Curve showing power consumption for given power output values.

Specifications

Performance*

Performance*		
The of Factorian	FCC Specs.	CCIR Specs.
Type of Emission: Visual Aural		A5 F3
Frequency Range		470-890 MHz
Rated Power Output: Visual ¹ Aural ²		40 kW 6.0 to 16 kW
RF Output Impedance ³	50 Ohms, 3½" flanged	50 Ohms, 3¼″ flanged
Input Impedance: Visual Aural	. 75 Ohms	75 Ohms 600/150 Ohms
Input Levei: Visual	. 0.7 Volt peak-to-	0.7 Volt peak-to-
Aura!	peak min. +10 ±2 dBm for ± 25 kHz devia- tion	nool/min
Amplitude vs. Fre- quency Response	Uniform ±1 dB from 50 to	
11	15,000 kHz	
Upper Sideband F(Response at Carrier:	5.0 MHz	
		r Separation
+0.5 MHz + +1.25 MHz +	1,1.5 dB +0.5, 1,1.5 dB	1.5 dB +0.5, -1.5 dB
	1, -1.5 dB	Reference
+2.0 MHz +	1, -1.5 dB	<u> </u>
+3.0 MHz + +3.58 MHz +	1, -1.5 dB + 1.0 - 3	1.0 dB +1.0 -1.0 dB
	1, -1.5 dB	
+4.43 MHz _		1.5 dB +0.5, -1.5 dB
+4.75 MHz;	20 dB max	
+5.0 MHz	— +1.0, –	4.0 dB +0.5, -1.5 dB +1.0, -4.0 dB
+5.5 MHz		+1.0, -4.0 dB
+6.25 MHz _		
Lower Sideband		-20 00 1100.
Response at		
Carrier:		
	-1,1.5 dB +0.5, -	-1.5 dB +1.0, -1.0 dB
—0.75 MHz — —1.0 MHz —		4.0 dB +1.0, -1.0 dB +0.5, -1.5 dB
		max. $+0.5, -4.0 \text{ dB}$
—2.25 MHz —		-20 dB max.
	42 dB max	
4.43 MHz		max. –42 dB max.
Variation in Fre- quency Response with Brightness	±1.5 dB	±1.0 dB
Carrier Frequency		
Stability:7	E00 H	±500 Hz
Visual Aural	±500 Hz ⁸	$\pm 200 \text{ Hz}$ +200 Hz ⁸
Modulation Capa-		
bility:		
Visual	12.5 ±2.5%	$12.5 \pm 2.5\%$
Aural	(reference white) ±50 kHz) (reference white) ± 100 kHz
Audio Frequency Distortion	1% may	10/ may 20 Line A-
	30 Hz to 15 kHz	1% max., 30 Hz to 15 kHz
FM Noise	-58 dB below $\pm 25 \text{ kHz swing}$	
AM Noise, r.m.s.: Visual ⁹	48 dB r.m.s. below	
Aural	100% mod.	100% mod. r 50 dB below carrier
* SeesiGentions of an		

Specifications shown are measured and stated in terms of meeting United States FCC requirements. This transmitter can meet various foreign standards.

Amplitude Variation	FCC Specs.	CCIR Specs.
Over One Picture Frame Regulation of Output	Less than 3% of the peak of sync level 3% max.	Less than 3% of the peak of sync level 3% max.
Burst vs. Subcarrier Phase ¹⁰ Subcarrier Phase vs. Brightness ¹¹	+7° max.	±6° max. ±7°, total less
	total less than 10°	than 10°
Subcarrier Amplitude ¹⁰ Linearity (Differ-		±10% max.
ential Gain) ¹² Envelope Delay vs.	1.5 dB max.	See Note ¹²
Frequency ¹³	±80 ns from 0.2 to 2.0 MHz ±40 ns at 3.58 MHz	±80 ns, 0.2 to 2.0 MHz ±40 ns, at 4.43 MHz
	\pm 80 ns at 4.18 MHz	±80 ns, 4.43 MHz to upper side- band limit
Harmonic Attenua- tion, ratio of any single harmonic to peak visual funda-		
mental14	At least -60 dB	At least -60 dB
Electrical AC Line Input	3-phase, 60 Hz 4 wire	380/400/415 V, 3-phase, 50 Hz 4 wire
Slow Line Variations Rapid Line	<u>+</u> 3% max.	±3% max.
Variations Regulation Power Consumption	3% max.	<u>+</u> 3% max. 3% max. 240 kW
Power Factor (approx.)	90%	90%
Crystal Heaters: Line	115 V, 1-phase 50/60 Hz	220 V, 1-phase 50/60 Hz

Power Consumption.... 71/2 Watts

Measured at the output of the filterplexer.

²Measured at the input to the filterplexer. ³Output of RF Amplifier. Output of visual diplexer and filterplexer are δ/a° 75 Ohm EIA flange.

71/2 Watts

01/8" /5 Ohm EIA tlange. "With respect to the response at 200 kHz, as measured by the RCA BWU-5C Sideband Response Analyzer and with the transmitter adjusted for mid-characteristics. An MI-27132-A Low Pass Video Filter is required in the input circuit.

With respect to the response at 1.5 MHz as measured by the RCA BWU-5C Sideband Response Analyzer and with the transmitter adjusted for mid-characteristics. Use of a 5.75 MHz Video Low Pass Filter is required. 5With for mid-characteristics, use of a 2./2 MMZ video Low Pass rifter is required. Maximum variation with respect to the response at mid-characteristic measured with the BWU-5C Sideband Response Analyzer using approxi-mately 20 percent (peak to peak) modulation at brightness levels of 22.5 percent and 67.5 percent of peak for FCC specifications and for brightness levels of 25 percent and 60 percent for CCIR specifications. Maximum variation for a period of 10 days without circuit adjustment Maximum variation for a period of 10 days without circuit adjustment over an ambient temperature range of $\pm 10^{\circ}$ C to $\pm 45^{\circ}$ C. (Meets FCC specifications over an ambient range of $\pm 10^{\circ}$ C to $\pm 45^{\circ}$ C.)

⁸Maximum variation with respect to separation between aural and visual carriers.

carriers. ¹⁰RMS hum and noise level 50 Hz to 15 kHz. Extraneous modulation (un-related to video modulation) above 15 kHz within the visual passband 40 dB below 100% modulation. ¹⁰Maximum departure from the theoretical when reproducing saturated pri-mary colors and their complements at 75% amplitude. ¹⁰Maximum phase difference with respect to burst, measured after the sideband filter, for any brightness level between 75% and 15% of the sync peak to peak as indicated by a conventional diode demodulator. In addition, the total differential phase between any two levels shall not exceed 10°. ¹⁰Maximum variation of amplitude of the sine wave modulation frequency

EXCERT 10⁻⁷. ¹²Maximum variation of amplitude of the sine wave modulation frequency when superimposed on stairstep or ramp modulation which is adjusted for brightness excursion stated. Modulation depth of the sine wave to be 20% peak to peak. CCIR Linearity is 0.85 at 0.2 MHz, 1.5 MHz and 4.43 MHz with Brightness excursion 65 to 17% for 0.2 and 1.5 MHz and 75 to 17% at 4.43 MHz.

¹³ To 1/76 at 4.43 MPZ. ¹³Maximum departure from standard curve. The tolerances vary linearly between 2.1 and color subcarrier frequency and between color subcarrier frequency and upper sideband limit. To meet the specification a properly terminated phase correction network is required in the video input cir-cuit of the transmitter.

¹⁴Referenced to peak visual power.

Mechanical

•

	FCC Specs.	CCIR Specs.
Dimensions Overall:		
Transmitter		_
Cabinet		457 cm long,
	105"" deep,	266.7 cm deep,
	77″ high	195.6 cm high
Finish:	-	-
Transmitter	Powder and	Powder and
	Midnight blue,	Midnight blue, aluminum trim
	aluminum trim	aluminum trim
Maximum Altitude	7500 feet	2286 meters
Ambient		
	100 to 14500	1.7°C to 1.45°C
Temperature ¹⁵		$+1^{\circ}C. to +45^{\circ}C.$
	max.	max.

_ _ _ _

¹³Air Input Temperature to Heat Exchanger +10°C. to +45°C. to 7500 ft. (2286 meters.)
 Air Temperature in transmitter area: 45°C. to 3000 ft. (1005.84 meters); 35°C. to 5000 ft. (1524 meters) 30°C. to 7500 ft. (2286 meters).

Accessories

Complete Set of Spare Tubes	ES-560279
Minimum Set of Spare Tubes	ES-560252
Spare Exciter Group	ES-560281
BWU-4C Demodulator	ES-34049
BWU-5C Sideband Response Analyzer	ES-34009-B
BW-8A Envelope Delay Measuring Set	MI-34063
BW-8A1 Envelope Delay Measuring Set	M1-34068
Transmitter Control Console	ES-561900

Ordering Information

For 440/460/480 Volt, 60 Hz input and FCC standards order ES-560292 TTU-60A UHF TV Transmitter 60 kW visual 6.0 to 16 kW aural with tubes, hybrid filterplexer, two sets crystals, two harmonic filters and low pass filter

For 380/400/415 Volt, 50 Hz input and CCIR standards order ES-560293

Output power and required filters to be determined in accordance with required operating standards

Commercial Electronic Systems Division Front and Cooper Streets, Camden, New Jersey, U.S.A. 08102

NEED ADDITIONAL INFORMATION? Postage-paid, pre-addressed request cards

Request for Additional Information	Date		
Please send additional product informat	ion on:		
I am particularly interested in			
Name			
Firm			
Street			
City	State	Zip	TT.9999
Request for Additional Information	Date		
Please send additional product informat	lion on:		
I am particularly interested in			
Name			
Firm			
Street			
City	State	Zip	TT.99999
			11,9999-
Request for Additional Information			
Please send additional product information	lion on:		
I am particularly interested in			
Name			
Firm			
Street			
City World Radio History	State	Zip _	TT,9999

FIRST CLASS Permit No. 166 Camden, N.J.

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage will be paid by

RCA Television Transmitters Building 2-2 Camden, N.J. 08102

FIRST CLASS
Permit No. 166
Camden, N.J.

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage will be paid by

RCA Television Transmitters Building 2-2 Camden, N.J. 08102

> FIRST CLASS Permit No. 166 Camden, N.J.

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage will be paid by	
RCA Television Transmitters	
Building 2-2	
Camden, N.J. 08102	

RCA | Broadcast Systems Front and Cooper Streets | Camden, N.J. 08102