Mullard technical handbook

 ω
Book one

Semiconductor devices

Part three

Diodes

DIODES

CONTENTS
SELECTION GUIDE BS 9000, CECC approved types
GENERAL SECTION A
SILICON WHISKERLESS DIODES B
VOLTAGE REGULATOR DIODES (Low power)
VOLTAGE REFERENCE DIODES D
RECTIFIER DIODES (Low power) E
GERMANIUM DIODES Point contact Gold bonded
TUNER DIODESG
SPECIAL TYPE

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.
'Mullard' is the trademark of Mullard Limited and is registered in most of the principal countries of the world.

© Mullard Limited 1981

Book 1 comprises the following parts-

Part 1A	Small-signal transistors
Part 18	Low-frequency power transistors
Pari 1C	Field-effect transistors
Part 10	Microminiature semiconductors for hybrid circuits
Part 2	R.F. power devices
Part 3	Diodes
Part 4	Power diodes, thyristors, triacs
Part 5	Discontinued (combined with Part 4)
Part 6A	
Pari 6B	S
Part 7A	See new Book 4 lintegrat
Part 78	
Part 8	Microwave semiconductors and components
Part 9	Opto-electronic devices

∇
 BOOK 1 (Part 3)

SEMICONDUCTOR DEVICES

Diodes

Mullard manufacture and market electronic components under the Mullard, Philips and Signetics brands.

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE,
LONDON, WC1E 7HD

DATA HANDBOOK SYSTEM

The Mullard data handbook system is made up of four sets of books, each comprising several parts; plus the Signetics technical handbooks.
The four sets of books, easily identifiable by the colours on their covers, are as follows:

Book 1	(blue)	Semiconductor devices.
Book 2	(oranga)	Valves and tubes.
Book 3	(green)	Passive components, materials and assemblies.
Book 4	(purple)	Integrated circuits.

Each part is completely reviewed annually: revised and reprinted where necessary. Revisions to previous data are indicated by an arrow in the margin.

The data contained in these books are as accurate and up to date as it is reasonably possible to make them at the time of going to press. It must however be understood that no guarantee can be given here regarding the availability of the various devices or that their specifications may not be changed before the next edition is published.

The devices on which full data are given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs, but generally available for equipment production are listed separately with abridged data. Data sheets for these types may be obtained on request. Older devices on which data may still be obtained on request are also included in the index of the appropriate part of each book.

Requests for information on the data handbook system (including Signetics data) and for individual data sheets should be made to

Technical Publications Department
Mullard Limited
New Road
Mitcham
Surrey CR4 4XY
Telex: 22194

Information regarding price and availability of devices must be obtained from our authorised agents or from our representatives.

Products approved to BS9000 and CECC available on request:

WHISKERLESS DIODES

DO-35 outline; quoted values are max.

VOLTAGE REGULATOR DIODES

Stabistors

type	working voltage (nom.) V	max. mW	$\mathrm{P}_{\text {tot }}$ at $\mathrm{T}_{\text {amb }}$	IFRM max. mA	case
BA314	0.7	-	-	250	DO.35
BZV46-1V5	1.5	250	55	120	DO-35
BZV46-2V0	2	250	55	80	DO.35

Voltage regulator diodes (small signal, low power)

type	working voltage range V	$P_{\text {tot }}$ at $T_{\text {amb }}$ max. mW ${ }^{\circ} \mathrm{C}$		IFRM max. mA	case
BZV85	5.1 to 75	1300	25	250	DO-41
BZX61*	7.5 to 130	1300	25	1000	DO. 15
	150 to 200	1000	25	1000	DO. 15
BZ×79	2.4 to 75	400	50	250	DO-35
BZX87	5.1 to 75	1750	25	400	SOD-51
BZY88	2.7 to 33	400	50	250	D0.7

- Available for current production only; not recommended for new designs.

VOLTAGE REFERENCE DIODES

DO-35 outine; voltage tolerance $\pm 5 \%$

type	reference voltage at I_{2} V (nom) mA	IZM max $\left(\right.$ IZRM $_{\text {mA }}$	$\begin{array}{lll} \left\|\mathrm{S}_{\mathrm{Z}}\right\| & \text { at } & \mathrm{IZ} \\ \% /{ }^{\circ} \mathrm{C} & & \mathrm{~mA} \end{array}$	$\begin{aligned} & r_{\text {diff }} \text { at } I_{Z} \\ & \max _{\Omega} \quad \mathrm{mA} \end{aligned}$
82×90			<0.01	
BZX91			<0.005	
BZX92	6.57 .5	50	<0.002 7.5	157.5
8ZX93			<0.001	
B2X94			<0.0005	
1 1821			<0.01	
1 N823			<0.005	
1N825	6.27 .5	50	$<0.002 \quad 7.5$	157.5
1 N827			<0.001	
1N829			<0.0005	
8ZV10			<0.01	
BZV11			<0.005	
8ZV12	6.52	50	<0.002 2	$50 \quad 2$
82V13			<0.001	
82V14			<0.0005	

RECTIFIER DIODES

General purpose	type	$\underset{\mathrm{mA}}{\mathrm{I}_{\mathrm{F}}(\mathrm{AV}) \max }$	$\underset{V}{V_{R R M} \max }$	outline
	$\begin{aligned} & \text { BYX10 } \\ & \cdot B Y \times 36 \end{aligned}$	$\begin{array}{r} 360 \\ 1000 \end{array}$	$\begin{array}{r} 1600 \\ 150 \\ 300 \\ 600 \end{array}$	$\begin{aligned} & \text { DO. } 14 \\ & \text { DO. } 15 \end{aligned}$
	1N4001		50	
	1N4002		100	
	1 N4003		200	
	1N4004	1000	400	DO-15
	1N4005		600	
	1N4006		800	
	1 N4007		1000	
Controlled avalanche	BYW54	2000	600	SOD-57
	BYW55	2000	800	SOD-57
	BYW56	2000	1000	SOD-57
Fast soft-recovery	- BY206	400	350	DO-14/DO-15
	- BY207	400	600	DO-14/DO-15
	- BY210-	1000	400	DO-15
			600	
			800	
	8Y×55-	1200	350	SOD-18
			600	
	BYV95A	1500	200	SOD-57
	B		400	
	C		600	
	BYV96D	1500	800	SOD-57
	E		1000	
	BYW95A	3000	200	SOD-64
	B		400	
	C		600	
	BYW96D	3000	800	SOD-64
	E		1000	
Ultra fast soft-recovery	BYV27-	2000	50	SOD. 57
			100	
			150	
			200	
	BYV28-	3500	50	SOD-64
			100	
			150	
			200	

[^0]
RECTIFIER DIODES (Cont.)

Parallel afficiency

type	I^{\prime} FWM max A	$V_{\text {RRM max }}$ V	outline
BY448	4	1500	SOD-57
BY458	4	1200	SOD-57
BY228	5	1500	SOD-64
BY438	5	1200	SOD-64

E.H.T. soft-recovery

type	$I_{F}(A V)_{\max }$ mA	$V_{\text {RRM max }}$ kV	outline
BY409	2.5	12.5	SOD-34
BY476	2.5	18	SOD-56
BY509	4	12.5	SOD. 61
BY 184	5	1.8	SOD-34
BYX90	200	7.5	SOD.18B
BYX91.90k	200	115	$\mathrm{L} \leqslant 143 \mathrm{~mm}$
-120k	200	150	$\leqslant 171 \mathrm{~mm}$
-150k	200	190	$<231 \mathrm{~mm}$
-180k	200	225	$<231 \mathrm{~mm}$

*GERMANIUM SMALL SIGNAL DIODES

Point contact	Quoted values are max.						
	type	$\begin{gathered} V_{R} \\ V \end{gathered}$	$\begin{aligned} & I_{F} \\ & \mathrm{~mA} \end{aligned}$	IFRM mA	$\begin{aligned} & V_{F} \\ & V \end{aligned}$	at	$\begin{aligned} & I_{F} \\ & m A \end{aligned}$
	OA90	20	8	45	1.5		10
general purpose	OA91	90	50	150	1.9		10
	OA95	90	50	150	1.5		10
a.m. and f.m. detection	AA119	30	35	100	2.2		10

Gold bonded
general purpose
general purpose and switching

type	$\begin{aligned} & V_{R} \\ & V \end{aligned}$	$\begin{gathered} I_{F} \\ m A \end{gathered}$	IFRM mA	$t_{r r}$ ns	C_{d} pF	$\begin{aligned} & V_{F} \text { at } \\ & V \end{aligned}$	I_{F} mA
AAZ13	8	30	50	-	2	1.0	30
AAZ15	75	140	250	-	2	1.1	250
AAZ17	50	140	250	-	2	1.1	250
OA47	25	110	150	70	3.5	1.1	150

[^1]
TUNER DIODES

Variable capacitance diodes
a.f.c.
radio f.m. band II
radio a.m. bands
television v.h.f.
band It 88 MHz
band III to 230 MHz
television u.h.f.

All television varicaps will be supplied in matched sets.
Over the voltage range 0.5 V to 28 V the diodes in a unit are capacitance matched to within 3\%: BB105B; BB405B; BB405G;

6\%: BB105G

- Available for current production only: not recommended for new designs.

GENERAL SECTION

Type designation Rating systems
Letter symbols Colour codes

Packing
Mounting and soldering

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices - as opposed to integrated circuits -, multiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.
A. GERMANIUM or other material with band gap of 0,6 to $1,0 \mathrm{eV}$.
B. SILICON or other material with band gap of 1,0 to $1,3 \mathrm{eV}$.
C. GALLIUM-ARSENIDE or other material with band gap of $1,3 \mathrm{eV}$ or more.
R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.
A. DIODE; signal, low power
B. DIODE; variable capacitance
C. TRANSISTOR; low power, audio frequency ($R_{\text {th } j \text {-mb }}>15^{\circ} \mathrm{C} / \mathrm{W}$)
D. TRANSISTOR; power, audio frequency ($\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{mb}} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
E. DIODE; tunnel
F. TRANSISTOR; low power, high frequency ($R_{\text {th }}$ j-mb $>15^{\circ} \mathrm{C} / \mathrm{W}$)
G. MULTIPLE OF DISSIMILAR DEVICES - MISCELLANEOUS; e.g. oscillator
H. DIODE; magnetic sensitive
L. TRANSISTOR; power, high frequency ($R_{\text {th j-mb }} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
N. PHOTO-COUPLER
P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power ($R_{\text {th } j \text { j-mb }}>15^{\circ} \mathrm{C} / W$)
S. TRANSISTOR; low power, switching ($R_{\text {th } j-m b}>15^{\circ} \mathrm{C} / \mathrm{W}$)
T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power ($R_{\text {th } j \text { j-mb }} \leqslant 15^{\circ} \mathrm{C} / W$)
U. TRANSISTOR; power, switching ($R_{\text {th } j-m b} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
X. DIODE: multiplier, e.g. varactor, step recovery
Y. DIODE; rectifying, booster
Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

SERIAL NUMBER

Three figures, running from 100 to 999 , for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99 , for devices primarily intended for industrial/professional equipment.
This letter has no fixed meaning except W , which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER
The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
A. 1\% (according to IEC 63: series E96)
B. 2% (according to IEC 63: series E48)
C. 5% (according to IEC 63: series E24)
D. 10% (according to IEC 63: series E12)
E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.
The letter ' V ' is used instead of the decimal point.
2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_{R}. The letter ' V ' is used as above.
3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER
The NUMBER indicates the rated maximum repetitive peak reverse voltage ($V_{\text {RRM }}$) or the rated repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.
4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-)

The NUMBER indicates the depletion layer in $\mu \mathrm{m}$. The resolution is indicated by a version LETTER.
5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).
The NUMBER indicates how many basic devices are assembled into the array.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which.determine their interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer ard the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absoiute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES
 based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:
I, i = current
$\mathrm{V}, \mathrm{v}=$ voltage
$\mathrm{P}, \mathrm{p}=$ power .

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.
In all other instances upper-case basic letters shall be used.

Subscripts

A, a	Anode terminal
(AV), (av)	Average value
B, b	Base terminal, for MOS devices: Substrate
(BR)	Breakdown
C, c	Collector terminal
D, d	Drain terminal
E, e	Emitter terminal
F, f	Forward
G, g	Gate terminal
K, k	Cathode terminal
M, m	Peak value
O, o	As third subscript: The terminal not mentioned is open circuited
R, r	As first subscript: Reverse. As second subscript: Repetitive. As third subscript: With a specified resistance between the terminal not mentioned and the reference terminal.
(RMS), (rms)	R.M.S. value
S, s	$\left\{\begin{array}{l} \text { As first or second subscript: Source terminal (for FETS only) } \\ \text { As second subscript: Non-repetitive (not for FETS) } \end{array}\right.$
	As third subscript: Short circuit between the terminal not mentioned and the reference terminal
X, x	Specifled circuit
Z, z	Replaces R to indicate the actual working voltage, current or power of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

Upper-case subscripts shall be used for the indication of:
a) continuous (d.c.) values (without signal)

$$
\text { Example } I_{B}
$$

b) instantaneous total values

$$
\text { Example } \mathrm{i}_{\mathrm{B}}
$$

c) average total values

Example $I_{B(A V)}$
d) peak total values

> Example IBM
e) root-mean-square total values

Example $I_{B(R M S)}$
Lower-case subscripts shall be used for the indication of values applying to the varying component alone:
a) instantaneous values

Example i_{b}
b) root-mean-square values

$$
\text { Example } \mathrm{I}_{\mathrm{b}}(\mathrm{rms})
$$

c) peak values

$$
\text { Example } \mathrm{I}_{\mathrm{bm}}
$$

d) average values

$$
\text { Example } I_{b}(a v)
$$

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should be done by the first subscript (conventional current flow from the external circuit into the terminal is positive).

$$
\text { Examples : } \mathrm{I}_{\mathrm{B}}, \mathrm{i}_{\mathrm{B}}, \mathrm{i}_{\mathrm{b}}, \mathrm{I}_{\mathrm{bm}}
$$

Diodes: To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r should be used.

$$
\text { Examples: } \mathrm{I}_{\mathrm{F}}, \mathrm{I}_{\mathrm{R}}, \mathrm{i}_{\mathrm{F}}, \mathrm{I}_{\mathrm{f}}(\mathrm{rms})
$$

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of confusion, the second subscript may be omitted.

$$
\text { Examples: } \mathrm{V}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{be}}, \mathrm{~V}_{\text {bem }}
$$

Diodes: \quad To indicate a forward voltage (anode positive with respect to cathode), the subscript F or f should be used; for a reverse voltage (anode negative with respect to cathode) the subscript R or r should be used.

$$
\text { Examples: } \mathrm{V}_{\mathrm{F}}, \mathrm{~V}_{\mathrm{R}}, \mathrm{v}_{\mathrm{F}}, \mathrm{~V}_{\mathrm{rm}}
$$

Subscripts for supply voltages or supply currents
Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

$$
\text { Examples: } \mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{EE}}
$$

Note: If it is necessary to indicate a reference terminal, this should the done by a third subscript

$$
\text { Example: } \mathrm{V}_{\mathrm{CCE}}
$$

Subscripts for devices having more than one terminal of the same kind
If a device has more than one terminal of the same kind, the subscript is formed by the appr.jpriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

$$
\text { Examples: } \left.\begin{array}{rl}
\mathrm{I}_{\mathrm{B} 2}= & \text { continuous (d.c.) current flowing } \\
\text { into the second base terminal }
\end{array}\right)
$$

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: \begin{tabular}{rl}

$\mathrm{I}_{2 \mathrm{C}}=$ \& | continuous (d.c.) current flowing |
| :--- |
| into the collector terminal of the |
| |
| second unit |

$\mathrm{V}_{1 \mathrm{C}-2 \mathrm{C}}=$| continunus (d.c.) voltage between |
| :--- |
| the collector terminals of the |
| first and the second unit. |

\end{tabular}

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.
$B, b=$ susceptance; imaginary part of an admittance
$\mathrm{C}=$ capacitance
$\mathrm{G}, \mathrm{g}=$ conductance; real part of an admittance
$\mathrm{H}, \mathrm{h}=$ hybrid parameter
$\mathrm{L}=$ inductance
$\mathrm{R}, \mathrm{r}=$ resistance; real part of an impedance
$X, X=$ reactance; imaginary part of an impedance
$\mathrm{Y}, \mathrm{y}=$ admittance;
$Z, z=$ impedance;

Upper-case letters shall be used for the representation of:
a) electrical parameters of external circuits and of circuits in which the device forms only a part;
b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

$$
\begin{array}{ll}
\mathrm{F}, \mathrm{f} & =\text { forward; forward transfer } \\
\mathrm{I}, \mathrm{i}(\text { or } 1) & =\text { input } \\
\mathrm{L}, \mathrm{l} & =\text { load } \\
\mathrm{O}, \mathrm{o}(\text { or } 2) & =\text { output } \\
\mathrm{R}, \mathrm{r} & =\text { reverse; reverse transfer } \\
\mathrm{S}, \mathrm{~s} & =\text { source } \\
\text { Examples: } & \mathrm{Z}_{\mathrm{S}}, \mathrm{~h}_{\mathrm{f}}, \mathrm{~h}_{\mathrm{F}}
\end{array}
$$

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

$$
\begin{aligned}
\text { Examples: } \begin{aligned}
\mathrm{h}_{\mathrm{FE}} & =\text { static value of forward current transfer ratio in common- } \\
& \text { emitter configuration (d.c. current gain) } \\
\mathrm{R}_{\mathrm{E}} & =\text { d.c. value of the external emitter resistance. }
\end{aligned}
\end{aligned}
$$

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

$$
\begin{aligned}
\text { Examples: } \mathrm{h}_{\mathrm{fe}} \quad=\begin{array}{l}
\text { small-signal value of the short-circuit forward } \\
\\
\\
\\
\text { current transfer ratio in common-emitter confi- } \\
\text { guration }
\end{array} \\
\mathrm{Z}_{\mathrm{e}}=\mathrm{R}_{\mathrm{e}}+\mathrm{j} \mathrm{X}_{\mathrm{e}}=\text { small-signal value of the external impedance }
\end{aligned}
$$

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

$$
\text { Examples: } h_{F E}, y_{R E}, h_{f e}
$$

\square

Subscripts for four-pole matrix parameters
The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

$$
\text { Examples: } \left.\begin{array}{rl}
& h_{i}\left(\begin{array}{ll}
\text { or } & h_{11}
\end{array}\right) \\
& h^{(}\left(\text {or } h_{22}\right) \\
& h_{\mathrm{f}}^{0}\left(\text { or } h_{21}\right.
\end{array}\right)
$$

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

$$
\text { Examples: } \mathrm{h}_{\mathrm{fe}}\left({\text { or } h_{21 e}}\right), \mathrm{h}_{\mathrm{FE}}\left(\text { or } \mathrm{h}_{21 \mathrm{E}}\right)
$$

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

$$
\text { Examples: } \begin{aligned}
Z_{i} & =R_{i}+j X_{i} \\
y_{f e} & =g_{f e}+j b_{f e}
\end{aligned}
$$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

> Examples: Re $\left(h_{i b}\right)$ etc. for the real part of $h_{i b}$ $$
\operatorname{Im}\left(h_{i b}\right) \text { etc. for the imaginary part of } h_{i b}
$$

PRO ELECTRON COLOUR CODING SYSTEM FOR PROFESSIONAL SMALL SIGNAL DIODES

Letter combination-background colour

```
BAV - green
BAW - blue
BAX - black
BAS - orange
```

Figure combination-colour bands

```
0 - black
1 - brown
2 - red
3 - orange
4-yellow
5 - green
6 - blue
7 - violet
8 - grey
9 - white
```

The cathode side is indicated by a broad band which is at the same time the first digit of the figure combination.

Note: For BA types see individual type publications.

JEDEC assigned type numbers

(EIA-standard RS-236-B; June, 1963)

1. Prefix identification

The prefix identification consisting of a first number symbol and the letter " N " shall not be indicated in the coding.
2. Banding systems

The sequence number consisting of a two, three, or four digit number after the letter ' N ' may be coded as follows:
2.1 Two-digit sequence numbers shall consist of a first black band and the sequence number in second and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
2.2 Three-digit sequence numbers shall consist of the sequence number in first, second, and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
2.3 Four-digit sequence numbers shall consist of the sequence number in four bands of the colours indicated in Table 1.
If a suffix letter is required it shall be indicated as the fifth band.
3. Cathode identification and reading sequence
3.1 A double-width band shall be used as the first band reading from cathode to anode ends.
3.2 An alternative method is provided where equal width bands may be used. The bands shall be clearly grouped toward the cathode end, and shall be read from cathode to anode ends.
3.3 Either of the above colour banding methods may be used in stead of the cathode designating symbol or other marking.
4. Colour bands

The sequence numbers of the type numbers and suffix letters shall be indicated by the colours in Table 1.

TABLE 1

NUMBER	COLOUR	SUFFIX LETTER
0	black	not applicable
1	brown	A
2	red	B
3	orange	C
4	yellow	D
5	green	E
6	blue	F
7	violet	G
8	grey	H
9	white	J

BANDOLIER AND REEL SPECIFICATION

This specification concerns all axial leaded diodes in this handbook.
The taped and reeled products fulfil the requirements of IEC 286: packaging of components on continuous tapes.

Dimensions in mm

Fig. 1 Configuration of bandolier.

The red tape indicates the diode cathode side.

1. Displacement between any two diodes; for DO-34 maximum 0,4 .
2. For SOD-18, $10 \pm 0,5$.
3. For outlines SOD-34, SOD-56 and SOD-61 this dimension is 58 ± 2.

The cumulative space (S) measured over ten spacings $=50 \pm 2$, and for SOD-18 specified as 100 ± 2. The diodes are centred so that $\left|L_{1}-L_{2}\right| \leqslant 1,2 \mathrm{~mm}$. DO-14 not specified.
On the white tape of the bandolier per 50 diodes a black marker is printed.
The axial taping specification described above is compatible with automatic insertion equipment as manufactured by Universal, U.S.M. (Dynapert) and M.E.I. (Panasert).

Fig. 2 Reel dimensions (mm).
(1) Diode
(4) Flange
(2) Bandolier
(3) Paper
(5) Cylinder

Outline		quantity per reel
SOD-2	DO-14	5000
SOD-7	DO-7	7000
SOD-17	DO-35	9000
SOD-18	-	1250
SOD-22	-	7000
SOD-27	DO-35	9000
SOD-34	-	5000
SOD-40	DO-15	5000
SOD-51	-	5000
SOD-56	-	4000
SOD-57	-	4500
SOD-61	-	8000
SOD-64	-	4000
SOD-66	DO-41	7000
SOD-68	DO-34	9000

RULES FOR MOUNTING AND SOLDERING

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting the following rules should be followed.

General

Perpendicular forces on the body of the diode must be avoided.
Avoid sudden forces on the leads or body. These forces often are much higher than allowed.
High acceleration forces as a result of any shock (dropping on a hard surface for instance) must be prevented.

Bending

During bending the leads must be supported between body or stud and bending point.
Axial forces on the body during the bending process must not exceed 20 N .
Bending the leads through 90° is allowed at any distance from the body when it is possible to support the leads during bending without contacting the envelope
Bending close to the body or stud without supporting the leads only is allowed if the bend radius is greater than $0,5 \mathrm{~mm}$; in practice this limit will be met by hand bending without applying high pulling or pressing forces.

Twisting

Twisting the leads is allowed at any distance from the body or stud if the lead is properly clamped between body or stud and twisting point.
Without clamping, twisting the leads is only allowed at a distance of greater than 3 mm from the body; the torque angle must not exceed 30°, the applied force not higher than 15 mNm .

Straightening

Straightening the leads is allowed if the applied pulling force in the axial direction does not exceed 20 N and the total duration is not longer than 5 seconds.

Soldering

Avoid any force on the body or leads during or just after soldering.
Do not correct the position of an already soldered device by pushing, pulling or twisting the body.
Do not solder a diode upright with one end of the body directly on the surface of the printed-circuit board, there should be at least $0,5 \mathrm{~mm}$ between body end and print surface.
When the device is to be mounted with straight or short-cropped leads, solder the leads individually. Bent leads may be soldered simultaneously.
The diode can be mounted flat on the printed-circuit board when the body temperature of the diode will not exceed:
a. The maximum allowed storage temperature, where this is higher than $175^{\circ} \mathrm{C}$;
 where the maximum storage temperature is less than $175^{\circ} \mathrm{C}$.

Any contact between diode body and hot spots on the printed-circuit board (such as copper layers) must be avoided.

Prevent fast cooling after soldering.

Minimum distance soldering point to seal and maximum allowable soldering time for several envelopes.

* 2 mm permissible from anode (upright mounting) if bath temperature $\leqslant \mathbf{2 6 0}^{\circ} \mathrm{C}$.

10 V, 30 V and 50 V GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes intended for general purpose applications.
They have reverse voltages up to 10 V for BA $316,30 \mathrm{~V}$ for BA 317 and 50 V for BA 318 .

QUICK REFERENCE DATA						
			BA 316	BA317	BA318	
Continuous reverse voltage	V_{R}	max.	10	30	50	V
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	max.		225		mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65	+200		${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	max.		200		${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	=		0,60		${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=1,0 \mathrm{~mA}$	V_{F}	$<$		700		mV
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	<		850		mV
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	V_{F}	$<$		1100		mV
Diode capacitance at $V_{R}=0 ; f=1 \mathrm{MHz}$	$\mathrm{C}_{\text {d }}$	<		2		pF
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	${ }^{\text {tr }}$	<		4		ns

MECHANICAL DATA

Dimensions in mm
DO-35

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage

Continuous reverse voltage

Currents

Average rectified forward current (averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
\begin{aligned}
& t=1 \mu \mathrm{~s} \\
& \mathrm{t}=1 \mathrm{~s}
\end{aligned}
$$

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=1,0 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}
\end{aligned}
$$

Reverse current
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$
Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	max.	100	mA	$1)$
I_{F}	\max.	100	mA	
$\mathrm{I}_{\mathrm{FRM}}$	\max.	225	mA	
$\mathrm{I}_{\text {FSM }}$	max.	2000	mA	
$\mathrm{I}_{\mathrm{FSM}}$	\max.	500	mA	

$R_{\text {th } \mathrm{j}-\mathrm{a}}=\quad 0,60 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$\mathrm{V}_{\mathrm{R}} \quad \max$.

BA 316	BA 317	BA318
10	30	50 V

$\mathrm{T}_{\text {stg }}$		-65 to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max.	200	${ }^{\circ} \mathrm{C}$

$$
R_{t h j-a}=\quad 0,60
$$

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

V_{F}	$<$	700	mV
V_{F}	$<$	850	mV
V_{F}	$<$	1100	mV

		BA316	BA317	BA318
I_{R}	$<$	200	50	-
nA				
I_{R}	$<$	-	200	50 nA
I_{R}	$<$	-	-	200 nA

$\mathrm{C}_{\mathrm{d}} \quad<$

2

1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

CHARACTERISTICS (continued)

$T_{j}=25^{\circ} \mathrm{C}$
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
Measured at $I_{R}=1 \mathrm{~mA}$
${ }^{\mathrm{t}} \mathrm{rr}<4 \mathrm{~ns}$

Test circuit and waveforms:

input signal

output signal

Input signal : Rise time of the reverse pulse

$$
\begin{aligned}
& \mathbf{t}_{\mathbf{r}}=0,6 \mathrm{~ns} \\
& { }^{t_{\mathrm{p}}}=100 \mathrm{~ns} \\
& \delta=0,05
\end{aligned}
$$

*) $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
12 BI 38.1

Oscilloscope: Rise time
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

SILICON GLASS PASSIVATED AVALANCHE DIODE

Diode in a DO-35 envelope. It is primarily intended for general purpose applications, e.g. scan and flyback rectifiers, protection diodes etc. in television circuits. An advantage of this diode is its capability of absorbing reverse transient energy.

QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	\max.	300 V
Average rectified forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	\max.	300 mA
Non-repetitive peak forward current	$I_{\text {FSM }}$	\max.	4 A
Repetitive peak reverse power dissipation	$\mathrm{P}_{\text {RRM }}$	\max.	75 W
Reverse recovery time	t_{rr}	$<$	$1 \mu \mathrm{~s}$

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour-coded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working reverse voltage
Continuous reverse voltage (see Fig. 2)
Forward current (d.c.)
Average forward current (averaged over any 20 ms period)
Repetitive peak forward current
$t=10 \mathrm{~ms} ; \mathrm{f}=50 \mathrm{~Hz}$
$\delta=0,1 ; f=15 \mathrm{kHz}$
Non-repetitive peak forward current
($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge
($\mathrm{t}=10 \mu \mathrm{~s}$; square wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge
Repetitive peak reverse current
$\mathrm{t}=10 \mu \mathrm{~s}$ (square wave; $\mathrm{f}=50 \mathrm{~Hz}$) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Repetitive peak reverse power dissipation
$\mathrm{t}=10 \mu \mathrm{~s}$ (square wave; $\mathrm{f}=50 \mathrm{~Hz}$) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air mounted on printed board at 8 mm lead length

$V_{\text {RW }}$	max.	300 V
V_{R}	max.	300 V
I_{F}	max.	350 mA
$I_{\text {F }}(\mathrm{AV})$	max.	300 mA
$\begin{aligned} & \text { IFRM } \\ & \text { IFRM } \end{aligned}$	max. max.	$\begin{gathered} 900 \mathrm{~mA} \\ 2 \mathrm{~A} \end{gathered}$

IFSM	max.	4 A
IFSM	max.	30 A

$I_{\text {RRM }} \max .150 \mathrm{~mA}$

PRRM	max.	75 W
$T_{\text {stg }}$	-65 to	$+150{ }^{\circ} \mathrm{C}$
T_{j}	max.	150

Fig. 2 Maximum permissible continuous reverse voltage versus junction temperature.

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=300 \mathrm{~mA}$	V_{F}	$<$	1,1 V
$\mathrm{I}_{\mathrm{F}}=900 \mathrm{~mA}$	V_{F}	$<$	1,3 V
everse avalanche breakdown voltage $I_{R}=100 \mu \mathrm{~A}$	$V_{(B R) R}$	>	300 V
everse current $V_{R}=300 \mathrm{~V} ; \mathrm{T}_{j}=100^{\circ} \mathrm{C}$	I_{R}	$<$	$20 \mu \mathrm{~A}$
iode capacitance at $f=1 \mathrm{MHz}$ $\begin{aligned} & V_{R}=0 \\ & V_{R}=50 V \end{aligned}$	$\mathrm{C}_{\text {d }}$ $\mathrm{C}_{\text {d }}$	typ. typ.	$\begin{aligned} & 10 \mathrm{pF} \\ & 1,5 \mathrm{pF} \end{aligned}$

Reverse recovery when switched from $I_{F M}=400 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$; with $-\mathrm{d} I_{\mathrm{F}} / \mathrm{dt}=400 \mathrm{~mA} / \mu \mathrm{s}$ Recovery charge

$\mathrm{O}_{\mathbf{s}}$	typ.	70 nC
t_{rr}	$<$	$1 \mu \mathrm{~s}$
$\left\|\mathrm{dt} \mathrm{R}_{\mathrm{R}} / \mathrm{dt}\right\|$	typ.	$2,0 \mathrm{~N} / \mu \mathrm{s}$

Fig. 3 Definitions of $Q_{s}, t_{r r}$ and $\mathrm{d}_{\mathrm{R}} / \mathrm{dt}$.

Fig. 4.
From the left-hand graph the total power dissipation can be found as a function of the average output current.
The parameter $a=\frac{I_{F}(R M S) \text { per diode }}{I_{F}(A V) \text { per diode }}$ depends on $n \omega R_{L} C_{L}$ and $\frac{R_{t}+r_{\text {diff }}}{n R_{L}}$ and can be found from existing graphs.
Once the power dissipation is known, the maximum permissible ambient temperature follows from the right-hand graph.

Fig. $5 — \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$.

Fig. $6 \quad f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$.

1283060

Fig. 7 Maximum permissible repetitive peak reverse power as a function of pulse duration. $\mathrm{T} \geqslant 20 \mathrm{~ms}$; $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$.
-_ rectangular waveform, $\delta \leqslant 0,01$.
----- triangular waveform, $\delta \leqslant 0,02$.

ULTRA-HIGH-SPEED DIODE

Silicon planar epitaxial, ultra-high-speed, high-conductance diode in a DO-35 envelope. The BAV10 is primarily intended for core gating in very fast memories.

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	max.	60	V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	60	V
Repetitive peak forward current	$\mathrm{I}_{\text {FRM }}$	max.	600	mA
Junction temperature	T_{j}	max.	200	${ }^{0} \mathrm{C}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	V_{F}	<	1,0	V
Reverse recovery time when switched from $I_{F}=400 \mathrm{~mA}$ to $I_{R}=400 \mathrm{~mA}$; $\mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=40 \mathrm{~mA}$	t_{rr}	<	6	ns
Recovery charge when switched from $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	Qs	<	50	pC

MECHANICAL DATA

Dimensions in mm
DO-35

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Continuous reverse voltage
Repetitive peak reverse voltage

V_{R}	max.	60	V	
$\mathrm{~V}_{\mathrm{RRM}}$	\max.	60	V	$1)$

Currents

Average rectified forward current
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current $t=1 \mu \mathrm{~s}$
$\mathrm{t}=1 \mathrm{~s}$

$\left.I_{i}, A V\right)$	max.	300	mA

Temperatures

Storage temperature
Junction'temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max. $\quad 200$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air at maximum lead length
$R_{t h j-a}=0,5 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=200 \mathrm{~mA} \\
& I_{F}=200 \mathrm{~mA} ; T_{j}=100{ }^{\circ} \mathrm{C} \\
& I_{F}=500 \mathrm{~mA}
\end{aligned}
$$

V_{F}	$<$	$0,75 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}$	$<$	$1,00 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}$	$<$	$0,95 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}$	$<$	$1,25 \mathrm{~V}$

Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=60 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=60 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

I_{R}	$<$	100 nA
I_{R}	$<$	$100 \mu \mathrm{~A}$

Diode capacitance

$V_{R}=0 ; f=1 \mathrm{MHz}$
$C_{d}<2,5 \mathrm{pF}$

[^2]
CHARACTERISTICS (continued)

Forward recovery voltage when switched to
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=30 \mathrm{~ns}$
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r} 2}=100 \mathrm{~ns}$
$\begin{array}{lll}V_{f r} & < & 2,0 \\ V_{f r} & < \\ 1,5 & V\end{array}$

Test circuit and waveforms:

input signal

output signal

Input signal : 1st rise time of the forward pulse $\mathrm{t}_{\mathrm{rl}}=30 \mathrm{~ns}$
2nd rise time of the forward pulse $\mathrm{t}_{\mathrm{r} 2}=100 \mathrm{~ns}$
Forward current pulse duration $t_{p}=300 \mathrm{~ns}$
Duty factor
$\delta=0,01$

Oscilloscope: Rise time
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Input capacitance
$C_{i} \leq 1 \mathrm{pF}$
Circuit capacitance $\mathrm{C} \leq 20 \mathrm{pF}$ ($\mathrm{C}=\mathrm{C}_{\mathrm{i}}$ + parasitic capacitance)
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$ to $\mathrm{IR}^{2}=400 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
measured at $I_{R}=40 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{rr}}<6 \mathrm{~ns}$
Test circuit and waveforms:

output signal
Input signal : Total pulse duration
Duty factor

$$
\begin{aligned}
\mathrm{t}_{\mathrm{p}(\mathrm{tot})} & =0,2 \mu \mathrm{~s} \\
\delta & =0,0025 \\
\mathrm{t}_{\mathrm{r}} & =0,6 \mathrm{~ns} \\
\mathrm{t}_{\mathrm{p}} & =30 \mathrm{~ns} \\
\mathrm{t}_{\mathbf{r}} & =0,35 \mathrm{~ns}
\end{aligned}
$$

$$
\text { Rise time of the reverse pulse } \quad t_{r}=0,6 \mathrm{~ns}
$$

$$
\text { Reverse pulse duration } \quad \mathrm{t}_{\mathrm{p}}=30 \mathrm{~ns}
$$

Oscilloscope: Rise time
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
CHARACTERISTICS (continued)
Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{S}}<50 \mathrm{pC}
$$

Test circuit and waveform:

D1 $=$ BAW62
D2 = diode with minority carrier life time at $10 \mathrm{~mA}:<200 \mathrm{ps}$

$$
\begin{array}{rll}
\text { Input signal }: & \text { Rise time of the reverse pulse } & t_{\mathbf{r}}=2 \mathrm{~ns} \\
& \text { Reverse pulse duration } & { }^{t_{p}}=400 \mathrm{~ns} \\
& \text { Duty factor } & \delta=0,02
\end{array}
$$

Circuit capacitance $C \leq 7 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

220678.1

GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes; intended for switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

QUICK REFERENCE DATA

			BAV18	BAV19	BAV20	BAV21	
Continuous reverse voltage	V_{R}	max.	50	100	150	200	V
Forward current (d.c.)	${ }^{\prime}{ }_{F}$	max.		250			mA
Junction temperature	T_{j}	max.		175			${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j} \cdot \mathrm{a}}$	=		0,375			K/mW
Fonward voltage at $I_{F}=100 \mathrm{~mA}$	V_{F}	$<$		1.0			V
Reverse current at $V_{R}=V_{R \max }$	${ }^{\prime} \mathrm{R}$	$<$		100			nA
Diode capacitance at $V_{R}=0 ; f=1 M H z$	C_{d}	$\stackrel{\text { typ. }}{<}$		1,5 5,0			$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Reverse recovery time when switched from $I_{F}=30 \mathrm{~mA}$ to $I_{R}=30 \mathrm{~mA} ; R_{L}=100 \Omega$; measured at $I_{R}=3 \mathrm{~mA}$	$t_{\text {rr }}$	$<$		50	0		ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour coded.
Products approved to CECC 50 001-022, available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BAV18	BAV19	BAV20	BAV21	
Continuous reverse voltage	V_{R}	max.	50	100	150	200	V
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	max.	60	120	200	250	V
Currents							
Average rectified forward current					max.	250	$\mathrm{mA} \mathrm{1)}$
Forward current (d.c.)			I_{F}		max.	250	mA
Repetitive peak forward current			I_{FR}		max.	625	mA
Non-repetitive peak forward current $t<1 \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			I_{F}		max.	1	A
$t=1 \mu s ; T_{j}=25^{\circ} \mathrm{C}$			I_{F}		max.	5	A

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .400 \mathrm{~mW}$

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th } j-a}=0,375 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

[^3]
CHARACTERISTICS

Forward voltage

$$
\begin{aligned}
& I_{F}=100 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}
\end{aligned}
$$

Reverse breakdown voltage
$I_{R}=100 \mu \mathrm{~A} \quad \mathrm{~V}_{(\mathrm{BR}) \mathrm{R}}$

Reverse current

$$
\begin{aligned}
& V_{R}=V_{R \max } \\
& V_{R}=V_{R \max } ; T_{j}=150^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \quad \mathbf{r}_{\text {diff }} \quad \text { typ. } \quad 5 \quad \Omega
$$

Diode capacitance

$$
\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz} \quad \mathrm{C}_{\mathrm{d}} \quad \stackrel{\text { typ. }}{<} \quad \underset{l l l}{1,5} \mathrm{pF}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

V_{F}	$<$
V_{F}	$<$
1,0	V
V	

BAV18	BAV19	BAV20	BAV21	
60	120	200	250	V $\quad 1)$

Differential resistance

Reverse recovery time when switched from

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \\
& \text { measured at } \mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA} \quad \mathrm{t}_{\mathrm{rr}}<50 \mathrm{~ns}
\end{aligned}
$$

Test circuit and waveforms:

Input signal :Total pulse duration
Duty factor
Rise time of the reverse pulse
Reverse pulse duration

$t_{p(t o t)}=2 \mu \mathrm{~s}$
${ }^{*} I_{R}=3 \mathrm{~mA}$

output signal
$\delta=0,0025$
$t_{r}=0,6 \mathrm{~ns}$
$t_{p}=100 \mathrm{~ns}$
$t_{r}=0,35 \mathrm{~ns}$
Oscilloscope: Rise time
Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

[^4]

 forward current versus ambient temperature

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in a DO-35 envelope. The BAW62 is primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	75 V
Repetitive peak forward current	$I_{\text {FRM }}$	max.	450 mA
Junction temperature	T_{j}	max.	$200{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=100 \mathrm{~mA}$	V_{F}	<	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	$t_{\text {rr }}$	<	4 ns

Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour-coded.

Products, approved to CECC 50 001-021, available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Continuous reverse voltage
Repetitive peak reverse voltage

Currents

Average rectified forward current

Non-repetitive peak forward current; $\begin{aligned} \mathrm{t} & =1 \mu \mathrm{~s} \\ \mathrm{t} & =1 \mathrm{~s}\end{aligned}$

$$
t=1 \mathrm{~s}
$$

Forward current (d.c.)
 $\equiv \rightarrow$ Forward current (d.c.) \equiv Repetitive peak forward current

V_{R}	max.	75	V	
$\mathrm{~V}_{\mathrm{RRM}}$	\max.	75	V	$1)$

$I_{F(A V)}$	\max.	150	$\mathrm{~mA}^{2}$)
I_{F}	\max.	200	mA
$\mathrm{I}_{\text {FRM }}$	\max.	450	mA
$\mathrm{I}_{\text {FSM }}$	max.	2000	mA
$\mathrm{I}_{\text {FSM }}$	max.	500	mA

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max. $\quad 200$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air at maximum lead length

CHARACTERISTICS

$R_{\text {th } j-a}=0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Forward voltages

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

V_{F}	0,62 to 0,75	
V_{F}	$<$	1,00
V_{F}	$<$	0,93

Reverse currents

$V_{R}=20 \mathrm{~V}$	I_{R}	$<$	25 nA
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	I_{R}	$<$	$50 \mathrm{\mu A}$
$\mathrm{~V}_{\mathrm{R}}=50 \mathrm{~V}$	I_{R}	$<$	200 nA
$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	I_{R}	$<$	$5 \mathrm{nA}^{2}$
$\mathrm{~V}_{\mathrm{R}}=75 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	I_{R}	$<$	$100 \mu \mathrm{~A}$

Diode capacitance

$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}<2 \mathrm{pF}$

[^5]
CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Forward recovery voltage when switched to

$$
I_{F}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}
$$

$$
\mathrm{V}_{\mathrm{fr}}<2,5 \mathrm{~V}
$$

Test circutt and waveforms:

ingert signal

1261384
outpert signal
$\begin{array}{rll}\text { Input signal }: & \text { Rise time of the forward pulse } & \mathbf{t}_{\mathbf{r}}=20 \mathrm{~ns} \\ & \text { Forward current pulse duration } & \mathbf{t}_{\mathbf{p}}=120 \mathrm{~ns} \\ & \begin{array}{l}\text { Duty factor }\end{array} & =0,01 \\ \text { Oscilloscope : Rise time } & \mathbf{t}_{\mathbf{r}} & =0,35 \mathrm{~ns}\end{array}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from

$$
\begin{aligned}
& I_{F}=10 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \\
& \text { measured at } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}
\end{aligned} \quad \mathrm{t}_{\mathrm{rr}} \ll \quad 4 \mathrm{~ns}
$$

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse Reverse pulse duration Duty factor

Oscilloscope: Rise time

$t_{r}=0,6 \mathrm{~ns}$

$$
t_{p}=100 \mathrm{~ns}
$$

$$
\delta=0,05
$$

$$
\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}
$$

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)

$$
T_{j}=25^{\circ} \mathrm{C}
$$

Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{s}} \quad \text { typ. } 50 \mathrm{pC}
$$

Test circuit and waveform:

$\mathrm{D} 1=\mathrm{D} 2=\mathrm{BAW} 62$
Input signal : Rise time of the reverse pulse $t_{r}=2 \mathrm{~ns}$

Reverse pulse duration
Duty factor

$$
t_{p}=400 \mathrm{~ns}
$$

$$
\delta=0,02
$$

output signal nesomal

Circuit capacitance $C \leq 7 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

Fig. 8 Maximum permissible average rectified forward current as a function of the duty factor (pulse operated).

Fig. 9 Maximum permissible repetitive peak forward current as a function of the duty factor (pulse operated).

Fig. 10 Maximum permissible average rectified forward current.

Fig. 12 Forward current as a function forward voltage. $-T_{j}=25^{\circ} \mathrm{C} ;---\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$.

Fig. 11 Maximum permissible continuous forward current.

Fig. 13 Typical values forward voltage as a function of junction temperature.

SILICON PLANAR EPITAXIAL CONTROLLED-AVALANCHE DIODE

Diode in a DO- 35 envelope primarily intended for switching inductive loads in semi-electronic telephone exchanges.

QUICK REFERENCE DATA				
Repetitive peak forward current	$\mathrm{I}_{\text {FRM }}$	max.		A
Repetitive peak reverse energy $\mathrm{t}_{\mathrm{p}} \geq 50 \mu \mathrm{~s} ; \mathrm{f} \leq 20 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{E}_{\text {RRM }}$	max.		mJ
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j} \text {-a }}$	$=$	0,38	${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	V_{F}	$<$	1,00	V
Reverse avalanche breakdown voltage $I_{R}=100 \mu \mathrm{~A}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	120 to		V
Reverse recovery time when switched from $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$ measured at $\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$	$\mathrm{trr}_{\text {r }}$	$<$	50	ns

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Continuous reverse voltage
V_{R} max. 90 V

Currents

Average rectified forward current (averaged over any 20 ms period)

Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current
$t=1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge
$\mathrm{t}=1 \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge
Repetitive peak reverse current

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	\max.	0,4	A
I_{F}	\max.	0,4	A
$\mathrm{I}_{\mathrm{FRM}}$	\max.	0,8	A
$\mathrm{I}_{F S M}$	\max.	6,0	A
$\mathrm{I}_{\mathrm{FSM}}$	\max.	1,5	A
$\mathrm{I}_{\text {RRM }}$	\max.	0,6	A

Reverse energy

Repetitive peak reverse energy
$\mathrm{t}_{\mathrm{p}} \geq 50 \mu \mathrm{~s} ; \mathrm{f} \leq 20 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
ERRM max. 5,0 mJ
Temperatures
Storage temperature
Junction temperature

| $T_{\text {stg }}$ | -65 to +200 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | ---: | ---: |
| T_{j} | max. $\quad 200$ | ${ }^{\circ} \mathrm{C}$ |

THERMAL RESISTANCE

From junction to ambient in free air
$\dot{R}_{\text {th } \mathrm{j}-\mathrm{a}}=0,38 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th } \mathrm{j}-\mathrm{a}}=0,30 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
(1) It is allowed to exceed this value as described on page 4. Care should be taken not to exceed the IRRM rating.

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<0,75 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<0,84 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<00,90 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<01,00 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$
		$1,25 \mathrm{~V}$

Reverse avalanche breakdown voltage

$$
I_{R}=100 \mu \mathrm{~A}
$$

Reverse current

$\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$

I_{R}	$<$	100 nA
I_{R}	$<$	100

<100 - A

Diode capacitance
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
C_{d}
$\begin{array}{lll}\text { typ. } & 15 & \mathrm{pF} \\ < & 35 & \mathrm{pF}\end{array}$
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \mathrm{\Omega}$;
measured at $I_{R}=3 \mathrm{~mA}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
$V_{(B R) R} 120$ to 175 V

Test circuit and waveforms :

Fig. 2.

Fig. 3.

Input signal : Total pulse duration
Duty factor
Rise time of the reverse pulse
Reverse pulse duration

Oscilloscope : Rise time

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{p}(\mathrm{tot})}=2 \mu \mathrm{~s} \\
& \delta=0,0025 \\
& \mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns} \\
& \mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA} \\
& \mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}
\end{aligned}
$$

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

Reverse voltages higher than the V_{R} ratings are allowed, provided:
a. the transient energy $\leqslant 7,5 \mathrm{~mJ}$ at $\mathrm{P}_{R R M} \leqslant 30 \mathrm{~W} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
the transient energy $\leqslant 5 \mathrm{~mJ}$ at $P_{R R M} \leqslant 120 \mathrm{~W} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see Fig. 8).
b. $\mathrm{T} \geqslant 5 \mathrm{~ms} ; \delta \leqslant 0,01$ (rectangular waveform)
$\delta \leqslant 0,02$ (triangular waveform).
With increasing temperature, the maximum permissible transient energy must be decreased by $0,03 \mathrm{~mJ} /{ }^{\circ} \mathrm{C}$.

Fig. 4.

Fig. 5.

Fig. $6 I_{F}$ as a function of V_{F} at $T_{j}=25^{\circ} \mathrm{C}$.

Fig. $7 \mathrm{~V}_{\mathrm{F}}$ as a function of T_{j}.

Fig. 8 Maximum permissible repetitive peak reverse power as a function of the pulse duration
$T \geqslant 50 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.__rectangular waveform; $\delta \leqslant 0,01 ;--$ - triangular waveform; $\delta \leqslant 0,02$.
(1) Limited by $I_{\text {RRM }}=600 \mathrm{~mA}$.

Fig. 9 Typical values reverse current as a function of junction temperature at $\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V}$.

SILICON OXIDE PASSIVATED DIODE

Whiskerless diode in a glass subminiature envelope.
The BAX13 is primarily intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	50 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50 V
Repetitive peak forward current	IFRM	max.	150 mA
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	=	0,60 ${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $I_{F}=20 \mathrm{~mA}$	V_{F}	<	1,0 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$ measured at $I_{R}=1 \mathrm{~mA}$	$t_{\text {rr }}$	$<$	4 ns
$\begin{aligned} & \text { Recovery charge when switched } \\ & \text { from } I_{F}=10 \mathrm{~mA} \text { to } V_{R}=5 \mathrm{~V} \text {; } \\ & R_{L}=500 \Omega \end{aligned}$	Q_{s}	$<$	45 pC

MECHANICAL DATA
Dimensions in mm

DO-35

The coloured end indicates the cathode
The diodes may be type-branded or colour coded.

BAXI3

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Continuous reverse voltage
Repetitive peak reverse voltagé

Currents

Average rectified forward current
(averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
\begin{aligned}
& t=1 \mu \mathrm{~s} \\
& \mathrm{t}=1 \mathrm{~s}
\end{aligned}
$$

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage
$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{IF}=75 \mathrm{~mA}$
Reverse current
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$
Diode capacitance (see also page 7)
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
C_{d}
3 pF

[^6]2) Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward recovery voltage (see also page 7)
At $\mathrm{t}_{\mathrm{r}}>20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{fr}}$ will not exceed V_{F} corresponding to $\mathrm{I}_{\mathrm{F}}=1$ to 75 mA
Test circuit and waveforms :

Input signal : Rise time of the forward pulse
$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$ Forward current pulse duration Duty factor
$\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$
$\delta=0,01$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Oscilloscope : Rise time
Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$

$$
\begin{aligned}
& \left.\operatorname{trr}_{\mathrm{rr}}<6 \mathrm{~ns}^{1}\right) \\
& \operatorname{trrr}^{2}<4 \mathrm{~ns}
\end{aligned}
$$

$I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$ measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
Test circuit and waveforms :

Input signal : Rise time of the reverse pulse
$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
*) $\mathrm{IR}_{\mathrm{R}}=1 \mathrm{~mA}$
Reverse pulse duration
$t_{p}=100 \mathrm{~ns}$
Duty factor
$\delta=0,05$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Oscillosc ope : Rise time
Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

[^7]
CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{s}}<45 \mathrm{pC}
$$

Test circuit and waveform:

D1 = D2 = BAW62
Input signal : Rise time of the reverse pulse
$\mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns}$
Reverse pulse duration
Duty factor
$\mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns}$
$\delta=0,02$
Circuit capacitance $\mathrm{C} \leq 7 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

7206236.2

||||||||

SILICON WHISKERLESS DIODES

Whiskerless diffused silicon diodes intended for general purpose industrial applications.

Unless otherwise stated, data is applicable to both types
OUTLINE AND DIMENSIONS Dimensions in mm
DO-35

The coloured end indicates the cathode
The diodes may be either type-branded or colour-coded.

RATINGS

Limiting values of operation according to the absolute maximum system.
Electrical
BAX16
BAX17

Temperature

$$
\begin{array}{lr}
\mathrm{T}_{\text {stg }} \text { range } & -65 \text { to }+200 \\
\mathrm{~T}_{\mathrm{j}} \text { max. } & +200
\end{array}
$$

THERMAL CHARACTERISTIC

$\mathrm{R}_{\text {th(} \mathbf{j}-\mathrm{amb})}$
$0.50 \quad \mathrm{deg} \mathrm{C} / \mathrm{mW}$
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

BAX16	BAX17
Max.	Max.

$\mathrm{V}_{\mathrm{F}} \quad$ Forward voltage

$I_{F}=1.0 \mathrm{~mA}$	0.65	0.65	V
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	0.85	0.75	V
$\mathrm{tI}_{F}=100 \mathrm{~mA}$	1.3*	1.1	V
$\dagger \mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	1.5	1.2*	V
$\dagger I_{F}=200 \mathrm{~mA}, T_{j}=175^{\circ} \mathrm{C}$	1.4	1.2	V

$L_{R} \quad$ Reverse current

V_{R}	$=50 \mathrm{~V}$	25	25
$\mathrm{~V}_{\mathrm{R}}$	$=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	25	nA
$\mathrm{V}_{\mathrm{R}}=150 \mathrm{~V}$	$100^{* *}$	$100^{* *}$	nA
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$ max., $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	100	100	$\mu \mathrm{~A}$

$\mathrm{C}_{\mathrm{d}} \quad$ Diode capacitance $\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz} 10 \quad 10 \quad \mathrm{pF}$
*These are the characteristics which are recommended for acceptance testing purposes.
\dagger Measured under pulse conditions to prevent excessive dissipation.

Reverse recovery time when switched from $I_{F}=30 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ measured at $I_{R}=1.0 \mathrm{~mA}$

Test circuit

Circuit capacitance $\leq 1.0 \mathrm{pF}$ (C.R.O. + stray capacitance)

$$
\text { C.R.O. rise time }=0.35 \mathrm{~ns}
$$

$$
\mathrm{V}=\mathrm{V}_{\mathrm{R}}+\mathrm{I}_{\mathrm{F}} \times \mathrm{R}_{\mathrm{S}}
$$

Input pulse

$\mathbf{t}_{\mathbf{r}}$	Rise time	0.6	ns
$\mathbf{t}_{\mathbf{p}}$	Pulse duration	100	ns
\mathbf{d}	Duty cycle	0.05	

Output waveform

Qs \quad| Recovered charge when |
| :--- |
| switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$, |
| $R_{L}=500 \Omega$ |

Test circuit

Circuit capacitance $\leq 30 \mathrm{pF}$ (C. R.O. + stray capacitance)

$$
\mathrm{V}=\mathrm{V}_{\mathrm{R}}+\mathrm{I} \mathrm{~F} \times \mathrm{R}_{\mathbf{B}}
$$

Output waveform

$$
V_{p}=\frac{Q_{s}}{C}
$$

*These are the characteristics which are recommended for acceptance testing purposes.

CONTINUOUS FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE

AVERAGE RECTIFIED FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE

MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

BAXI6
BAXI7

MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT
PLOTTED AGAINST DUTY CYCLE

BAXI6

TYPICAL FORWARD VOLTAGE PLOTTED AGAINST JUNC'IION TEMPERATURE WITH FORWARD CURRENT AS A PARAMETER

DIODE CAPACITANCE PLOTTED AGAINST REVERSE VOLTAGE

BAX16
BAXI7

REVERSE RECOVERY TIME PLOTTED AGAINST FORWARD CURRENT AND JUNCTION TEMPERATURE

SILICON DIODES

Silicon general purpose diodes in all-glass DO-35 envelopes.

QUICK REFERENCE DATA

			OA200	OA202	
Continuous reverse voltage	V_{R}	max.	50	150	v
Repetitive peak forward current	IfRM	max.	250		mA
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	=	0.4		${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage $I_{F}=30 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	V_{F}	typ.	0,9		V
Reverse recovery time when switched from $I_{F}=30 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=35 \mathrm{~V}$; $R_{L}=2,5 \mathrm{k} \Omega$; measured at $I_{R}=4 \mathrm{~mA}$	$t_{\text {rr }}$	typ.		5	$\mu \mathrm{s}$

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

The diodes are type-branded; the cathode being indicated by a coloured band.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$\begin{aligned} & V_{R} \\ & V_{R} \end{aligned}$	max max	$\begin{array}{r} 50 \\ 150 \end{array}$		v
			$\mathrm{b}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$	
Average rectified forward current (averaged over any 20 ms period)	If(AV)	max.	160	48	mA
Average forward current for sinusoidal operation	$I^{\prime}(A V)$	max.	80	40	mA
Forward current (d.c.; see page 4)	$I_{\text {F }}$	max.	160	48	mA
Repetitive peak forward current	${ }^{\text {I FRM }}$	max.	250	125	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +1		${ }^{\circ} \mathrm{C}$
Operating junction temperature	T_{j}	max.			${ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE					
From junction to ambient in free air	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	$=$, 4	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

		$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$	
Forward voltage $I_{F}=0,1 \mathrm{~mA}$	V_{F}	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,52 \\ & 0,62 \end{aligned}$	$0, \overline{30}$	V
$I_{F}=10 \mathrm{~mA}$	V_{F}	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,80 \\ & 0,96 \end{aligned}$	0,65	V
$I_{F}=30 \mathrm{~mA}$	V_{F}	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,90 \\ & 1,15 \end{aligned}$	0,80	v
Reverse current $V_{R}=V_{R \max }$ OA200	${ }^{\prime} \mathrm{R}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,02 \\ & 0,10 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \end{array}$	$\mu \mathrm{A}$
OA202	I^{\prime}	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,01 \\ & 0,10 \end{aligned}$	$\begin{array}{r} 0,5 \\ 10 \end{array}$	${ }_{\mu}^{\mu} \mathbf{A}$
Diode capacitance at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $V_{R}=0,75 \mathrm{~V} ; f=0,5 \mathrm{MHz}$	C_{d}	$\stackrel{\text { typ. }}{<}$		5	pF

CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Reverse recovery current when switched from
$I_{F}=5 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=2,5 \mathrm{k} \Omega$;
measured at $\mathrm{t}_{\mathrm{rr}}=3,5 \mu \mathrm{~s} \quad \mathrm{I}_{\mathrm{R}}$ typ. $1,2 \mathrm{~mA}$
measured at $\mathrm{t}_{\mathrm{rr}}=10 \mu \mathrm{~s}$
Reverse recovery current when switched from
$I_{F}=30 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=\mathbf{3 5} \mathrm{V} ; \mathrm{R}_{\mathrm{L}}=\mathbf{2 , 5} \mathrm{k} \Omega$
measured at $t_{r r}=3,5 \mu \mathrm{~s}$
I_{R} typ. $\quad 4 \mathrm{~mA}$
measured at $\mathrm{t}_{\mathrm{rr}}=10 \mu \mathrm{~s}$

Fig. 2 Waveforms.

Fig. 3.

Fig. 4.

Fig. 5.

HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	100 V
Repetitive peak forward current	IFRM	max.	225 mA
Forward voltage $I_{F}=10 \mathrm{~mA}$	V_{F}	$<$	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	$t_{\text {rr }}$	<	4 ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Continuous reverse voltage
Repetitive peak reverse voltage

V_{R}	\max.	75	V
$V_{R R M}$	\max.	100	V

Currents

Average rectified forward current
(averaged over any 20 ms period) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{IF}(\mathrm{AV}) \quad \max . \quad 75 \mathrm{~mA}$ $\mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{F}(\mathrm{AV})} \max . \quad 10 \mathrm{~mA}$
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current ($t=1$ s)
Total power dissipation

Temperatures

Storage temperature
Operating ambient temperature

CHARACTERISTICS

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltages
$I_{F}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}}<1 \quad \mathrm{~V}$
Reverse avalanche breakdown voltage
$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}} \gg 100 \mathrm{~V}$
Reverse currents

$$
\begin{aligned}
\mathrm{V}_{\mathrm{R}} & =20 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =75 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}
\end{aligned}
$$

I_{R}	$<$	25	$n A$
I_{R}	$<$	5	μA
I_{R}	$<$	50	μA

Diode capacitance
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

$$
\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=30 \mathrm{~ns} \quad \mathrm{~V}_{\mathrm{fr}}<2,5 \mathrm{~V}
$$

Test circuit and waveforms :

Input signal : Rise time of the forward pulse Forward current pulse duration
Duty factor
Oscilloscope: Rise time

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from
$\begin{array}{llll}I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega ; \text { measured at } I_{R}=1 \mathrm{~mA} & \mathrm{t}_{\mathrm{rr}} \ll 8 & \mathrm{~ns} \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \text { measured at } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} & \mathrm{t}_{\mathrm{rr}} \ll 4 \mathrm{~ns}\end{array}$
Test circuit and waveforms:

Input signal : Rise time of the reverse pulse

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns} \\
& \delta=0,05 \\
& \mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}
\end{aligned}
$$

$$
\text { *) } I_{R}=1 \mathrm{~mA}
$$

Reverse pulse duration
Duty factor
$\mathrm{t}_{\mathrm{I}}=20 \mathrm{~ns}$
$t_{p}=120 \mathrm{~ns}$
$\delta=0,01$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

Test

Oscilloscope: Rise time
Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Rectifying efficiency

$$
\begin{aligned}
& \eta=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{i}(\mathrm{rms})} \sqrt{2}} \\
& \mathrm{f}=100 \mathrm{MHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{rms})}=2 \mathrm{~V}
\end{aligned}
$$

Test circuit:

HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	100 V
Repetitive peak forward current	IFRM	max.	225 mA
Forward voltage $I_{F}=10 \mathrm{~mA}$	V_{F}	$<$	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	$\mathrm{trr}^{\text {r }}$	$<$	4 ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Continuous reverse voltage $\quad V_{R} \max \quad 75 \mathrm{~V}$
Repetitive peak reverse voltage
$V_{R R M} \max .100 \mathrm{~V}$

Currents

Average rectified forward current

(averaged over any 20 ms period) $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	\max.	75	mA	
	$\mathrm{~T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	\max.	10	mA
		I_{F}	\max.	75	mA
Forward current (d.c.)		$\mathrm{I}_{\mathrm{FRM}}$	\max.	225	mA
Repetitive peak forward current		$\mathrm{I}_{\mathrm{FSM}}$	\max.	500	mA
Non-repetitive peak forward current $(\mathrm{t}=1 \mathrm{~s})$		$\mathrm{P}_{\text {tot }}$	\max.	250	mW

Temperatures

Storage temperature

Operating ambient temperature

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{stg}} & -65 \text { to }+200 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -65 \text { to }+175 & { }^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS

Forward voltages
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}}<1 \mathrm{~V}$

Reverse avalanche breakdown voltage

$I_{R}=100 \mu \mathrm{~A}$
$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}} \gg 100 \mathrm{~V}$

Reverse currents

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=75 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

I_{R}	$<$	25	nA
I_{R}	$<$	5	$\mu \mathrm{~A}$
I_{R}	$<$	50	$\mu \mathrm{~A}$

Diode capacitance

$$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

$\mathrm{C}_{\mathrm{d}}<2 \mathrm{pF}$

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

$$
\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns} \quad \mathrm{~V}_{\mathrm{fr}}<2,5 \mathrm{~V}
$$

Test circuit and waveforms :

input signal

output signal

Input signal : Rise time of the forward pulse Forward current pulse duration Duty factor
$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$
$\delta=0,01$
Oscilloscope: R ise time
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
measured at $I_{R}=1 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{rr}}<4 \mathrm{~ns}$

Test circuit and waveforms :

Input signal : Rise time of the reverse pulse Reverse pulse duration Duty factor

Oscilloscope : Rise time

$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
*) $I_{R}=1 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$
$\delta=0,05$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)
Rectifying efficiency

$$
\begin{aligned}
& \eta=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{i}(\mathrm{rms})} \sqrt{2}} \\
& \mathrm{f}=100 \mathrm{MHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{rms})}=2 \mathrm{~V}
\end{aligned}
$$

Test circuit:

HIGH-SPEED SILICON DIODES

Whiskerless diodes in subminiature DO-35 envelopes.
These diodes are primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	75 V
Repetitive peak forward current	IfRM	max.	450 mA
Forward voltage 1 N 4148 : $I_{F}=10 \mathrm{~mA}$			
1N4446: $I_{F}=20 \mathrm{~mA}$ 1N4448: $I_{F}=100 \mathrm{~mA}$	V_{F}	<	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	t_{rr}	$<$	4 ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

1N4148: yellow brown yellow grey 1N4446: yellow yellow yellow blue 1N4448: yellow yellow yellow grey (cathode)

The diodes may be either type-branded or colour-coded.

Products, available to CECC 50 001-021, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Repetitive peak reverse voltage
Average rectified forward current
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
\begin{aligned}
& t=1 \mu \mathrm{~s} \\
& \mathrm{t}=1 \mathrm{~s}
\end{aligned}
$$

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Derating factor
Storage temperature
Junction temperature
$V_{R} \quad \max \quad 75 \mathrm{~V}$
$V_{R R M} \max .75 \mathrm{~V}$
$I^{\prime}(A V)$ max. 150 mA
$I_{F} \quad \max .200 \mathrm{~mA}$
IFRM max. 450 mA
IFSM max. 2000 mA
IFSM max. 500 mA
$P_{\text {tot }} \max .500 \mathrm{~mW}$
$2,85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$T_{\text {stg }} \quad-65$ to $+200^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max \quad 200^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltages
1N4148: $I_{F}=10 \mathrm{~mA}$
1N4446: $I_{F}=20 \mathrm{~mA}$
1N4448: $I_{F}=100 \mathrm{~mA}$
1 N 4448 : $I_{F}=5 \mathrm{~mA}$
Reverse avalanche breakdown voltage

$$
\begin{aligned}
& I_{R}=100 \mu \mathrm{~A} \\
& I_{R}=5 \mu \mathrm{~A}
\end{aligned}
$$

Reverse currents

$$
\begin{aligned}
& V_{R}=20 \mathrm{~V} \\
& V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

V_{F}	$<$
V_{F}	0,62 to $0,72 \mathrm{~V}$

Diode.capacitance

$$
V_{R}=0 ; f=1 M H z
$$

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

$$
I_{F}=50 \mathrm{~mA} ; \mathrm{t}_{\mathbf{r}}=20 \mathrm{~ns}
$$

$$
\mathrm{V}_{\mathrm{fr}}<2,5 \mathrm{~V}
$$

Test circuit and waveforms :

input signal

out put aignal

Input signal : Rise time of the forward pulse Forward current pulse duration Duty factor

Oscilloscope : Rise time
$t_{r}=20 \mathrm{~ns}$
$t_{p}=120 \mathrm{~ns}$
$\delta=0,01$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \\
& \text { measured at } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}
\end{aligned} \quad \operatorname{trr}<4 \mathrm{~ns}
$$

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse
Reverse pulse duration
Duty factor
Oscilloscope: Rise time

output signal
$t_{r}=0,6 \mathrm{~ns}$
*) $I_{R}=1 \mathrm{~mA}$
$t_{p}=100 \mathrm{~ns}$
$\delta=0,05$
$\mathrm{t}_{\mathbf{r}}=0,35 \mathrm{~ns}$

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

VOLTAGE REGULATOR DIODES
 (Low power)

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in DO-35 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	$I_{\text {FR }}$	max.	250	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to $+200^{\circ} \mathrm{C}$		
Junction temperature	T_{j}	max.	200	${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$		0,38	${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage $I_{F}=0,1 \mathrm{~mA}$	V_{F}		\% 690	
$I_{F}=1,0 \mathrm{~mA}$	V_{F}	680	760	
$I_{F}=10 \mathrm{~mA}$	V_{F}		830	
$I_{F}=100 \mathrm{~mA}$	V_{F}		960	
Diode capacitance $V_{R}=0 ; f=1 M H z$	C_{d}	<	140	pF

MECHANICAL DATA
Dimensions in mm
DO-35.

The diodes may be either type-branded or colour coded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
I_{F}=0,1 \mathrm{~mA}
$$

$$
I_{F}=1,0 \mathrm{~mA}
$$

$$
I_{F}=5,0 \mathrm{~mA}
$$

$$
I_{F}=10 \mathrm{~mA}
$$

$$
I_{F}=100 \mathrm{~mA}
$$

Reverse current

$$
V_{R}=4 V
$$

Temperature coefficient

$$
I_{F}=1 \mathrm{~mA}
$$

Differential resistance at $\mathrm{f}=\mathbf{1} \mathbf{k H z}$

$$
I_{F}=1 \mathrm{~mA}
$$

$$
I_{F}=10 \mathrm{~mA}
$$

Diode capacitance $V_{R}=0 ; f=1 \mathrm{MHz}$

IFRM max. 250 mA
$T_{\text {stg }}$
T_{j}
$R_{\text {th j-a }}=0,38{ }^{\circ} \mathrm{C} / \mathrm{mW}$

LOW VOLTAGE STABISTORS

Silicon planar integrated voltage regulator diodes, intended for low power clipping, level shifting, voltage regulation and temperature stabilization of transistor base-emitter biasing network. The stabistors operate in the forward mode thus the cathode must be adjacent to the negative connection.

OUICK REFERENCE DATA

		BZV46-1V5		2 V 0	
Regulation voltage ranges	V_{F}	<	1,35 1,55	2,00 2,30	v
Continuous reverse voltage	V_{R}	max.	4	4	v
Repetitive peak forward current	IfRM	max.	120	80	mA
Total power dissipation up to $\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	250	250	mW
Differential resistance $I_{F}=5 \mathrm{~mA} ; f=1 \mathrm{kHz}$	${ }^{\text {diff }}$	$<$	20	30	Ω

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-27 (DO-35).

Cathode indicated by coloured end.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Repetitive peak reverse voltage
Repetitive peak forward current
Total power dissipation
up to $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$
Storage temperature
Junction temperature
V_{R}
$V_{\text {RRM }}$
IFRM
$P_{\text {tot }}$
$\mathrm{T}_{\text {stg }}$
T_{j}

BZV46-1V5		2V0
max.	4	4
max.	4	4
max.	120	80
max.		
	-65	+ 150
max.		

THERMAL RESISTANCE
From junction to ambient in free air

7278072

Fig. 2 Thermal resistance as a function of the lead length for various mounting.

curve	mounting
1	Infinite heatsink at end of lead.
2	Typical printed-circuit board with large area of copper ($>100 \mathrm{~mm}^{2}$).
3	Tag mounting.
4	Typical printed-circuit board with small area of copper (<50 mm $).$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Regulation voltage ranges$I_{F}=5 \mathrm{~mA}$	V_{F}	BZV46-1V5		2V0	
		<	$\begin{aligned} & 1,35 \\ & 1,55 \end{aligned}$	2,00	$\begin{aligned} & v \\ & v \end{aligned}$
Temperature coefficient at $I_{F}=5 \mathrm{~mA}$	S_{F}	typ.	-3,65	-5,60	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Differential resistance at $f=1 \mathrm{kHz} ; 1_{F}=5 \mathrm{~mA}$	${ }^{\text {diff }}$	<	20	30	Ω
Reverse current $V_{R}=4 V$	I_{R}	$<$	500	500	nA

\|III\|

Fig. 3 Typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 4 Regulation characteristics at $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed DO-41 glass envelopes intended for stabilization purposes. The series covers the normalized E24 ($\pm 5 \%$) range of nominal working voltages ranging from $5,1 \mathrm{~V}$ to 75 V .

QUICK REFERENCE DATA

Working voltage range	V_{Z}	nom.	5,1 to 75 V
Total power dissipation	$P_{\text {tot }}$	max.	$1,3 \mathrm{~W}$
Non-repetitive peak reverse power dissipation $t_{p}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			
Junction temperature	$P_{Z S M}$	max.	60 W
Thermal resistance from junction to tie-point	T_{j}	max.	$200{ }^{\circ} \mathrm{C}$
	$R_{\text {th } j \text {-tp }}$	$=$	$110{ }^{\circ} \mathrm{C} / \mathrm{W}^{*}$

* If leads are kept at $T_{t p}=55^{\circ} \mathrm{C}$ at 4 mm from body.

MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-41 (SOD-66).

Cathode indicated by coloured band.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Working current (d.c.)
Non-repetitive peak reverse current
${ }^{\mathrm{t}} \mathrm{p}=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Repetitive peak forward current
Total power dissipation (see also Fig. 2)
Iz
limited by $P_{\text {tot max }}$

Non-repetitive peak reverse power dissipation

$$
\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Storage temperature
Junction temperature

IZSM	see table below
IFRM	max.
	250 mA,
$P_{\text {tot }}$	max.
	$1,30 \mathrm{~W}^{*}$
	max.
	$1 \mathrm{~W}^{* *}$

THERMAL RESISTANCE

From junction to tie-point
From junction to ambient
mounted on a printed-circuit board

BZV85-. . .	Non-repetitive peak reverse current IZSM (mA) max.
C5V1	1750
C5V6	1700
C6V2	1620
C6V8	1550
C7V5	1500
C8V2	1400
C9V1	1340
C10	1200
C11	1100
C12	1000
C13	900
C15	760
C16	700
C18	600
C20	540

| PZSM | max. $\quad 60 \mathrm{~W}$ |
| :--- | :--- | ---: |
| $T_{\text {stg }}$ | -65 to $+200{ }^{\circ} \mathrm{C}$ |
| T_{j} | max. $\quad 200^{\circ} \mathrm{C}$ |

$R_{\text {th j-tp }}=110{ }^{\circ} \mathrm{C} / \mathrm{W}^{*}$
$R_{\text {th j-a }}=175{ }^{\circ} \mathrm{C} / \mathrm{W}^{* *}$

BZV85-...	Non-repetitive peak reverse current IZSM (mA) max.
C22	500
C24	450
C27	400
C30	380
C33	350
C36	320
C39	296
C43	270
C47	246
C51	226
C56	208
C62	186
C68	171
C75	161

- If the temperature of the leads at 4 mm from the body are kept up to $\mathrm{T}_{\mathrm{tp}}=55^{\circ} \mathrm{C}$.
** Measured in still air up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ and mounted on printed-circuit board with lead length of 10 mm and print copper area of $1 \mathrm{~cm}^{2}$ per lead.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=50 \mathrm{~mA}$

	working voltage$\begin{array}{r} \mathrm{E} 24(\pm 5 \%) \\ \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \end{array}$at IZtest			test current IZtest (mA)	differential resistance $r_{\text {diff }}(\Omega)$ at IZest	tempe coeffic S_{Z} (m at I_{Z}	rature icient $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$ test	reverse current $I_{R}(n A)$ at V_{R}	test voltage $V_{R}(V)$
BZV85-...	min.	nom.	max.		max.	min.	max.	max.	
C5V1	4,8	5,1	5,4	45	10	-0,5	2,2	3000	2,0
C5V6	5,2	5,6	6,0	45	7	0	2,7	2000	2,0
C6V2	5,8	6,2	6,6	35	4	0,6	3,6	2000	3,0
C6V8	6,4	6,8	7.2	35	3,5	1,3	4,3	2000	4,0
C7V5	7,0	7.5	7,9	35	3	2,5	5,5	1000	4.5
C8V2	7.7	8,2	8,7	25	5	3,1	6,1	700	5,0
C9V1	8,5	9,1	9,6	25	5	3,8	7,2	700	6,5
C10	9.4	10	10,6	25	8	4,7	8,5	200	7.0
C11	10.4	11	11,6	20	10	5,3	9,3	200	7.7
C12	11,4	12	12,7	20	10	6,3	10,8	200	8,4
C13	12,4	13	14,1	20	10	7.4	12,0	200	9,1
C15	13,8	15	15,6	15	15	8,9	13,6	50	10,5
C16	15,3	16	17.1	15	15	10,7	15,4	50	11,0
C18	16,8	18	19,1	15	20	11,8	17.1	50	12,5
C20	18,8	20	21,2	10	24	13,6	19,1	50	14,0
C22	20,8	22	23,3	10	25	16,6	22,1	50	15,5
C24	22,8	24	25,6	10	30	18,3	24,3	50	17
C 27	25,1	27	28,9	8	40	20,1	27,5	50	19
C30	28	30	32	8	45	22,4	32,0	50	21
C33	31	33	35	8	45	24,8	35,0	50	23
C36	34	36	38	8	50	27,2	39,9	50	25
C39	37	39	41	6	60	29,6	43,0	50	27
C43	40	43	46	6	75	34,0	48,3	50	30
C47	44	47	50	4	100	37.4	52,5	50	33
C51	48	51	54	4	125	40,8	56,5	50	36
C56	52	56	60	4	150	46,8	63,0	50	39
C62	58	62	66	4	175	52,2	72,5	50	43
C68	64	68	72	4	200	60,5	81,0	50	48
C75	70	75	80	4	225	66,5	88,0	50	53

Fig. 2 Maximum permissible power dissipation versus ambient temperature.

Mounting methods (see Figs 2 and 3)

1. To tie-points (lead length $=4 \mathrm{~mm}$ in Fig. 2).
2. Mounted on a printed-circuit board (with lead length of 10 mm in Fig. 2) and print copper area of $1 \mathrm{~cm}^{2}$ per lead.

Fig. 4 Half sine-wave; $T_{a m b}=25^{\circ} \mathrm{C}$.

Fig. 5 Thermal impedance from junction to tie-point with a lead length of 4 mm .

Fig. 6 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 7 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 8 Static characteristics; typical values; $\mathrm{T}_{\text {amb }}=\mathbf{2 5}^{\circ} \mathrm{C}$.

Fig. 9 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 10 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 11 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 12 Typical values.

Fig. $13 \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.

Fig. $14 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$; typical values.
For types above 7.5 V the temperature coefficient is independent of current and can be read from the table on page 3.

Fig. $15 \mathrm{I} \mathrm{Z}=\mathrm{I}_{\text {test }} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Fig. $16 \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.

VOLTAGE REGULATOR DIODES

Plastic encapsulated silicon diodes intended for general purpose use as medium power voltage regulators. They are suitable for use as transient suppressor diodes.

QUICK REFERENCE DATA

Working voltage range

(5 PERCENT, Ref. B.S. 3494, appendix C)
Total power dissipation; $\mathrm{T}_{\mathrm{amb}} \leqslant 25^{\circ} \mathrm{C}$
BZX61-C7V5 to C130
BZX61-C150 to C200
Repetitive peak reverse power dissipation
Non-repetitive peak reverse power dissipation
$\mathrm{t}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
MECHANICAL DATA
Fig. 1 DO-15; the diodes are type branded

v_{Z}	nom.	7.5 to 200	V
$P_{\text {tot }}$	max.	1.3	w
$P_{\text {tot }}$	max.	1.0	W
PZRM	max.	6	W
PZSM	max.	300	w

Dimensions in mm

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZV85 are recommended.

The sealing of this plastic envelope fulfils the accelerated damp heat test, according to I.E.C. recommendation $68-2$ (test D, severity IV, 6 cycles).

RATINGS

Limiting values of operation in accordance with the Absolute Maximum System (IEC134)
Repetitive peak forward current
\rightarrow Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ BZX61-C7V5 to C130 BZX61-C150 to C200
Repetitive peak reverse power dissipation
Non-repetitive peak reverse power dissipation

$$
\mathrm{t}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{amb}}=-55 \text { to }+25^{\circ} \mathrm{C}
$$

Storage temperature
Junction temperature
BZX61-C7V5 to C130
BZX61-C150 to C200

THERMAL RESISTANCE

${ }^{1} \mathrm{FRM}$	max.	1	A
$\mathrm{P}_{\text {tot }}$	max.	1.3	w
$P_{\text {tot }}$	max.	1.0	w
PZRM	max.	6	w
PZSM	max.	300	w
$\mathrm{T}_{\text {stg }}$	-65 to +175		${ }^{\circ} \mathrm{C}$
T ${ }_{\text {j }}$	max.	175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	150	${ }^{\circ} \mathrm{C}$

see pages 6, 8
\rightarrow CHARACTERISTICS
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Fonward voltage

$$
I_{F}=100 \mathrm{~mA}
$$

CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

OPERATING NOTES

Dissipation and heatsink considerations

a) Steady-state conditions

The maximum allowable steady-state dissipation P_{S} is given by the relationship:-

$$
P_{s \text { max }}=\frac{T_{j \text { max }}-T_{a m b}}{R_{t h j-a}}
$$

Where $T_{j \text { max }}$ is the maximum permissible operating junction temperature,
$T_{\text {amb }}$ is the ambient temperature,
$R_{t h} \mathrm{j}$ a a is the total thermal resistance between junction and ambient.
b) Pulse conditions (see Fig.2)

The maximum pulse power P_{m} max. is given by the formula

$$
P_{\text {m max. }}=\frac{\left(T_{j \max }-T_{a m b}\right)-\left(P_{\mathrm{s}} \cdot R_{\mathrm{th} \mathrm{j} \cdot \mathrm{a}}\right)}{Z_{\mathrm{th}}}
$$

Where P_{s} is the steady-state dissipation, excluding that in the pulses,
$Z_{\text {th }}$ is the effective transient thermal resistance of the device between junction and ambient and is a function of the pulse duration t and duty cycle δ (see Fig.7).
δ is the duty cycle and is equal to the pulse duration t divided by the periodic time T.
The steady-state power P_{s} when biased in the zener direction at a given zener current can be found from Fig.6. With the additional pulsed power dissipation $P_{m} \max$ calculated from the above expression, the total peak zener power dissipation $P_{\text {tot }}$ is $P_{s}+P_{m \text { max }}$. From Fig. 6 the peak zener current at $P_{\text {tot }}$ can now be read.
For pulse durations longer than the temperature stabilisation time of the diode $t_{s t a b}$, the maximum allowable pulse power is equal to the steady-state power $P_{s} \max$. The temperature stabilisation time for the BZX61 is 100s (see Fig.7).

OPERATING NOTES (contd.)

Fig. 2

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

DIP SOLDERING

At a maximum solder temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point of contact is $125^{\circ} \mathrm{C}$.

Fig. 3 Continuous power rating.
For types in excess of 130 V the continuous reverse dissipation should be kept within the area II.

Fig. 4 Mounting methods

1. Infinite heatsink at end of lead.
2. Typical printed circuit board with large area of copper ($1 \mathrm{~cm}^{2}$ per lead).
3. Tag mounting.

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. $11 \mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V} ; \mathrm{f}=500 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$

Fig. $12 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$

Fig. $13 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$
Mullard

Fig. $14 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$

BZX79 SERIES

VOLTAGE REGULATOR DIODES

Silicon planar diodes in DO-35 envelopes intended for use as low voltage stabilizers or voltage references. They are available in two series; one to the international standardized E24 ($\pm 5 \%$) range and the other with $\pm 2 \%$ tolerance on working voltage. Each series consists of 37 types with nominal working voltages ranging from $2,4 \mathrm{~V}$ to 75 V .

QUICK REFERENCE DATA

Working voltage range	V_{Z}	nom.	2,4 to 75 V
Total power dissipation	$P_{\text {tot }}$	max.	$500 \mathrm{~mW}=$
Non-repetitive peak reverse power dissipation	$P_{Z S M}$	\max.	30 W
Junction temperature	T_{j}	\max.	$200{ }^{\circ} \mathrm{C}$
Thermal resistance from junction to tie-point	$R_{\text {th } j \text {-tp }}$	$=$	$0,30{ }^{\circ} \mathrm{C} / \mathrm{mW}$

* If leads are kept at $T_{t p}=50^{\circ} \mathrm{C}$ at 8 mm from body.

MECHANICAL DATA Dimensions in mm
Fig 1 DO-35.

Cathode indicated by coloured band.
The diodes are type-branded

Products approved to CECC 50 005-005, available on request.
Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Average forward current laveraged
over any 20 ms period)
Repetitive peak forward current
\rightarrow Total power dissipation
Non-repetitive peak reverse power dissipation

$$
t=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
$$

Storage temperature
Junction temperature

I^{\prime} ($\left.A V\right)$	max.	250	mA
IFRM	max.	250	mA
$P_{\text {tot }}$	max. max.	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & m W * \\ & m W \end{aligned}$
PZSM	max.	30	W
$\mathrm{T}_{\text {stg }}$	-65 to	200	
T_{j}	max.	200	${ }^{\circ} \mathrm{C}$

\longrightarrow THERMAL RESISTANCE

From junction to tie-point
From junction to ambient

$R_{\text {th j-tp }}=0,30{ }^{\circ} \mathrm{C} / \mathrm{mW}^{*}$	
$R_{\text {th } \mathrm{j}-\mathrm{a}}=$	$0,38{ }^{\circ} \mathrm{C} / \mathrm{mW} \mathrm{**}^{*}$

CHARACTERISTICS
$T_{j}=25^{\circ} \mathrm{C}$
Forward voltage
$I_{F}=10 \mathrm{~mA}$
Reverse current
BZX79. 2V4

.2 V 7	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.2 V 0	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.3 V 3	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.3 V 6	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.3 V 9	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.4 V 3	$\mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V}$
.4 V 7	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$
.5 V 1	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$
.5 V 6	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$
.6 V 2	$\mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}$
.6 V 8	$\mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}$
.7 V 5	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$
.8 V 2	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$
.9 V 1	$\mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}$
.10	$\mathrm{~V}_{\mathrm{R}}=7 \mathrm{~V}$
.11 to .13	$\mathrm{~V}_{\mathrm{R}}=8 \mathrm{~V}$
.15 to .75	$\mathrm{~V}_{\mathrm{R}}=0.7 \mathrm{~V}$ Znom

. $=\mathrm{B}$ for 2% tolerance
. $=\mathrm{C}$ for E24 ($\pm 5 \%$) tolerance
$\mathrm{V}_{\mathrm{F}}<0,9 \mathrm{~V}$

I_{R}	$<$	$50 \mu \mathrm{~A}$
I_{R}	$<$	$20 \mu \mathrm{~A}$
I_{R}	$<$	$10 \mu \mathrm{~A}$
I_{R}	$<$	$5 \mu \mathrm{~A}$
I_{R}	$<$	$5 \mu \mathrm{~A}$
I_{R}	$<$	$3 \mu \mathrm{~A}$
I_{R}	$<$	$3 \mu \mathrm{~A}$
I_{R}	$<$	$3 \mu \mathrm{~A}$
I_{R}	$<$	$2 \mu \mathrm{~A}$
I_{R}	$<$	$1 \mu \mathrm{~A}$
I_{R}	$<$	$3 \mu \mathrm{~A}$
I_{R}	$<$	$2 \mu \mathrm{~A}$
I_{R}	$<$	$1 \mu \mathrm{~A}$
I_{R}	$<$	$700 \mu \mathrm{nA}$
I_{R}	$<$	500
I_{R}	$<$	200 nA
I_{R}	$<$	100 nA
I_{R}	$<$	$50 \mu \mathrm{nA}$

Voltage regulator diodas
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
こ24 ($\pm 5 \%$) logarithmic range (for $\pm \mathbf{2 \%}$ tolerance range see page 5).

BZX79-...	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{\text {Ztest }}=5 \mathrm{~mA} \end{gathered}$		differential resistance $r_{\text {diff }}(\Omega)$ at $I_{\text {Ztest }}=5 \mathrm{~mA}$		temperature coefficient$\begin{aligned} & \mathrm{S}_{\mathrm{Z}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ & \text { at } I_{\text {Ztest }}=5 \mathrm{~mA} \end{aligned}$			diode capacitance$\begin{gathered} C_{d}(p F) ; i=1 M H z \\ V_{R}=0 \end{gathered}$		
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.	
C2V4	2,2	2,6	70	100	$-3,5$	-1,6	0	375	450	
C2V7	2,5	2.9	75	100	$-3,5$	-2,0	0	350	450	
C3vo	2,8	3,2	80	95	-3,5	-2,1	0	350	450	\leftarrow
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450	
C3V6	3,4	3, $¢$	85	90	-3,5	-2,4	0	300	450	
C3V9	3,7	4,1	85	90	-3,5	-2,5	0	300	450	
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450	
C4V7	4.4	5,0	50	80	-3,5	-1,4	0,2	130	180	
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	110	160	
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140	
C6V2	5,8	6,6	6	10	0.4	2,3	3,7	90	130	
C6V8	6,4	7.2	6	15	1,2	3,0	4,5	85	110	
C7V5	7.0	7.9	6	15	2,5	4,0	5,3	80.	100	
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75°	95	
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90	
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90	
C11	10,4	11,6	10	20	5,4	7.4	9,0	65	85	
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85	
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80	
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75	
C16	15,3	17.1	10	40	10,4	12,4	14,0	52	75	
C18	16,8	19.1	10	45	12,4	14,4	16,0	47	70	
C20	18,8	21,2	15	55	14,4	16.4	18,0	36	60	
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60	
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55	
	at $I_{\text {Ztest }}=2 \mathrm{~mA}$		at $I_{\text {test }}=2 \mathrm{~mA}$		at $I_{\text {Itest }}=2 \mathrm{~mA}$					
C27	25,1	28,9	25	80	21.4	23,4	25,3	30	50	
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50	
c33	31,0	35,0	35	80	27.4	29,7	33,4	25	45	
C36	34,0	38,0	35	90	30,4	33,0	37.4	23	45	
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45	
C43	40,0	46,0	45	150	37,6	41,2	46,6	21	40	
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40	
C51	48,0	54,0	60	180	46,6	51,0	57,2	19	40	
C56	52,0	60.0	70	200	52,2	57,0	63,8	18	40	
C62	58,0	66,0	80	215	58,8	64.4	71,6	17	35	
C68	64,0	72,0	90	240	65,6	71,7	79,8	17	35	
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35	

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
E24 ($\pm 5 \%$) logarithmic range (for $\pm 2 \%$ tolerance range see page 6).

B2X79....	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=1 \mathrm{~mA} \end{gathered}$			$\begin{aligned} & \text { differential } \\ & \text { resistance } \\ & \text { rdiff }(\Omega) \\ & \text { at } I_{Z}=1 \mathrm{~mA} \end{aligned}$		working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$			differential resistance $r_{\text {diff }}(\Omega)$ at $I_{Z}=20 \mathrm{~mA}$	
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C2V4	1.7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
$\rightarrow \mathrm{C3VO}$	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3V9	2,9	3,2	3,5	400	600	4.1	4,4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4.2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6
C6V8	6,3	6.7	7,2	30	80	6,4	6,9	7,4	2.5	6
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6
C9V1	8,4	9,0	9,6	40	100	8,5	9,2	9,7	4	8
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	15
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	20
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	25
	at $\mathrm{I}_{\mathrm{Z}}=0,1 \mathrm{~mA}$			at $I_{\mathbf{Z}}=0,5 \mathrm{~mA}$		at $12=10 \mathrm{~mA}$			at $I_{Z}=10 \mathrm{~mA}$	
C27	25,0	26,9	28,9	65	300	25,2	27.1	29,3	10	45
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
C36	33,8	35,9	38,0	80	350	34,1	36.1	38,4	25	60
C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	70
C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
C47	43,7	46,8	50,0	85	375	44,1	47,1	50,5	30	90
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110
C62	57.4	61,7	66,0	120	450	58,2	62,1	67,0	60	120
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\pm 2 \%$ tolerance range.

BZX79-...	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z \text { test }}=5 \mathrm{~mA} \end{gathered}$		differential resistance$\begin{gathered} \text { rdiff }^{(\Omega)} \\ \text { at IZtest }=5 \mathrm{~mA} \end{gathered}$		temperature coefficient$\begin{aligned} & \mathrm{S}_{\mathrm{Z}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ & \text { at } \mathrm{I}_{\text {Ztest }}=5 \mathrm{~mA} \end{aligned}$			diode capacitance$\begin{gathered} C_{d}(p F) ; f=1 M H z \\ V_{R}=0 \end{gathered}$	
	min.	max.		max.	min.	typ.	max.	typ.	max.
B2V4	2,35	2,45	70	100	-2,6	$-1,6$	-0,6	375	450
B2V7	2,65	2,75	75	100	$-3,0$	-2,0	$-1,0$	350	450
B3V0	2,94	3,06	80	95	$-3,0$	-2,1	$-1,2$	350	450
B3V3	3,23	3,37	85	95	-3,2	-2,4	-1.5	325	450
B3V6	3,53	3,67	85	90	-3,2	-2,4	$-1,5$	300	450
B3V9	3.82	3,98	85	90	-3,2	-2,5	$-1,5$	300	450
B4V3	4,21	4,39	80	90	-3,2	-2,5	$-1,2$	275	450
B4V7	4,61	4,79	50	80	-2,0	-1,4	-0,8	130	180
B5V1	5,00	5,20	40	60	-1,6	-0,8	0,5	110	160
B5V6	5,49	5,71	15	40	-0,7	1,2	2,2	95	140
B6V2	6,08	6,32	6	10	1,0	2,3	3,2	90	130
B6V8	6,66	6,94	6	15	2,0	3,0	4,0	85	110
B7V5	7,35	7,65	6	15	3,0	4,0	4,8	80	100
B8V2	8,04	8,36	6	15	3,6	4,6	5,5	75	95
B9V1	8,92	9,28	6	15	4,3	5,5	6,5	70	90
B10	9,80	10,20	8	20	5,2	6,4	7.4	70	90
B11	10,80	11,20	10	20	6,2	7,4	8,5	65	85
B12	11,80	12,20	10	25	7,0	8,4	9,5	65	85
B13	12,70	13,30	10	30	7,8	9,4	10,5	60	80
B15	14,70	15,30	10	30	10,0	11,4	12,4	55	75
B16	15,70	16,30	10	40	10,9	12,4	13,5	52	75
B18	17,60	18,40	10	45	12,8	14,4	15,6	47	70
B20	19,60	20,40	15	55	14,8	16,4	17,6	36	60
B22	21,60	22,40	20	55	16,8	18,4	19,6	34	60
B24	23,50	24,50	25	70	18,7	20,4	21,6	33	55
	at IZte	2 mA	at 1	mA		est $=2$			
B27	26,50	27,50	25	80	21,4	23,4	25,3	30	50
B30	29,40	30,60	30	80	24,4	26,6	29,0	27	50
B33	32,30	33,70	35	80	27.4	29,7	32,5	25	45
B36	35,30	36,70	35	90	30,4	33,0	36,0	23	45
B39	38,20	39,80	40	130	33,4	36,4	40,0	21	45
B43	42,10	43,90	45	150	38,0	41,2	45,0	21	40
B47	46,10	47,90	50	170	42,5	46,1	50,0	19	40
B51	50,00	52,00	60	180	47,0	51,0	55,0	19	40
B56	54,90	57,10	70	200	52,5	57,0	62,0	18	40
B62	60,80	63,20	80	215	59,0	64,4	69,0	17	35
B68	66,60	69,40	90	240	66,0	71,7	77,0	17	35
B75	73,50	76,50	95	255	74,0	80,2	86,0	16,5	35

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\pm 2 \%$ tolerance range.

BZX79-...	working voltage $\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=1 \mathrm{~mA} \end{gathered}$ nom.	differential resistance $r_{\text {diff }}(\Omega)$ at $I_{Z}=1 \mathrm{~mA}$		working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$ nom.	differential resistance	
				$\begin{gathered} r_{\text {diff }}(\Omega) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$		
		typ.	max.	typ.	max	
B2V4	1,9	275	600	2,9	25	50
B2V7	2,2	300	600	3,3	25	50
\rightarrow B3vo	2,4	325	600	3,6	25	50
B3V3	2,6	350	600	3,9	20	40
B3V6	3,0	375	600	4,2	20	40
B3V9	3,2	400	600	4,4	15	30
B4V3	3,6	410	600	4,7	15	30
B4V7	4,2	425	500	5,0	8	15
B5V1	4,7	400	480	5,4	6	15
B5V6	5,4	80	400	5,7	4	10
B6V2	6,1	40	150	6,3	3	6
B6V8	6,7	30	80	6,9	2.5	6
B7V5	7.4	30	80	7.6	2,5	6
B8V2	8,1	40	80	8,3	3	6
B9V1	9,0	40	100	9,2	4	8
B10	9,9	50	150	10,1	4	10
B11	10,9	50	150	11.1	5	10
B12	11,9	50	150	12,1	5	10
B13	12,9	50	170	13,1	5	15
B15	14,9	50	200	15,1	6	20
B16	15,9	50	200	16,1	6	20
B18	17,9	50	225	18,1	6	20
B20	19,9	60	225	20,1	7	20
B22	21,9	60	250	22.1	7	25
B24	23,9	60	250	24,1	7	25
	at $12=0,1 \mathrm{~mA}$	at Iz	0.5 mA	at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$	at I_{2}	0 mA
B27	26,9	65	300	27,1	10	45
B30	29,3	70	300	30.1	15	50
$\rightarrow 833$	32,9	75	325	33,1	20	55
B36	35.9	80	350	36,1	25	60
B39	38,9	80	350	39,1	25	70
B43	42,9	85	375	43,1	25	80
B47	46,8	85	375	47,1	30	90
\rightarrow B51	50,8	90	400	51,1	35	100
B56	55,7	100	425	56,1	45	110
B62	61,7	120	450	62.1	60	120
- 868	67.7	150	475	68,2	75	130
B75	74,7	170	500	75,3	90	140

Fig. 2.

Fig. 3.

```
BZX79 SERIES
```


Fig. 4 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}^{\circ} \mathrm{C}$.

Fig. 5 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}^{\circ} \mathrm{C}$.

Fig. 6.

Fig. 7.

Fig. 9.

Fig. 10 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 11.

BZX79 SERIES

Fig. $12 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 13.

Fig. 14 Typical values; $\mathrm{T}_{\mathrm{j}}=25$ to $150{ }^{\circ} \mathrm{C}$.

Fig. 15 Typical values; $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$; $\mathrm{f}=\mathbf{1} \mathrm{kHz}$.

Fia. 16 Typical change of working voltage under operating conditions at $T_{a m b}=25^{\circ} \mathrm{C}$.

Fig. 17 Typical change of working voltage under operating conditions at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed glass envelopes intended for stabilization purposes.
The series covers the normalized range of nominal working voltages from $5,1 \mathrm{~V}$ to 75 V with a tolerance of $\pm 5 \%$ (international standard E24).

QUICK REFERENCE DATA					
Working voltage range	V_{Z}	nom.	5,1 to 75	V	
Working voltage tolerance (E24)			± 5	$\%$	
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	2,75	W	
Junction temperature	T_{j}	\max.	200	${ }^{\circ} \mathrm{C}$	

MECHANICAL DATA

Dimensions in mm
SOD-51

Cathode indicated by coloured band
The diodes are type-branded

RATINGS Liniting values in accordance with the Absolute Maximum System (IEC 134)

Currents

Working current (d.c.)
Repetitive peak working current
Repetitive peak forward current

Power dissipation (see also graphs on pages 5 and 6)

Total power dissipation
Repetitive peak reverse power dissipation up to $\mathrm{T}_{\mathrm{am}{ }^{\prime} \mathrm{J}}=175{ }^{\circ} \mathrm{C}: \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}: \delta=0.001$
Non-repetitive peak reverse power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$

I_{Z}	limited by $\mathrm{P}_{\text {tot }} \max$
$\mathrm{I}_{\text {ZRM }}$	limited by $\mathrm{P}_{\text {ZRMmax }}$
$\mathrm{I}_{\text {FRM }}$	nax. $\quad 400 \quad \mathrm{~mA}$

$\left.\max . \quad 1,5 \quad \mathrm{~W}{ }^{1}\right)$ $\max .2,75$ W 2)
$\mathrm{P}_{\mathrm{ZKM}} \max \quad 7,5 \mathrm{~W}$

PZSM max. 100 W

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	$-65 \mathrm{to}+200$	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	$\max .200$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE (see also graphs on pages 5 and 6)
From junction to ambient
when soldered to tags
at max. lead length
$R_{\text {th j-a }} \max .117 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Forward voltage at $\mathrm{I}_{\mathrm{F}}=0,2 \mathrm{~A}$
$\mathrm{V}_{\mathrm{F}}<1 \mathrm{~V}$

Reverse current

BZX87-C5V1		I_{R}	$<$	10	$\mu \mathrm{A}$
C5V6	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	I_{R}	$<$	5	$\mu \mathrm{A}$
C6V2		I_{R}	<	3	$\mu \mathrm{A}$
C6V8		I_{R}	$<$	1,5	$\mu \mathrm{A}$
C7V5	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	IR	$<$	0,6	$\mu \mathrm{A}$
C8V2		I_{R}	<	0, 4	$\mu \mathrm{A}$
C9V1	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	$<$	0, 3	$\mu \mathrm{A}$
C10 to C75	$\mathrm{V}_{\mathrm{R}}=\frac{2}{3} \mathrm{~V}_{\text {Znom }}$	I_{R}	<	0,2	$\mu \mathrm{A}$

[^8]${ }^{2}$) If the temperature of the leads at 10 mm from the body is kept at $25^{\circ} \mathrm{C}$.

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

	Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=50 \mathrm{~mA} \end{gathered}$		Temperature coefficient $\mathrm{S}_{\mathrm{Z}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ at $I_{Z}=\mathbf{5 0} \mathbf{m A}$			Differential resistance $r_{\text {diff }}(\Omega)$ at $I_{Z}=\mathbf{5 0} \mathbf{m A}$		Diode capacitance $\mathrm{C}_{\mathrm{d}}(\mathrm{pF})$ at $\mathrm{f}=1 \mathrm{MHz}$ $V_{R}=0$	
BZX87-	min.	max.	min.	typ.	max.		n.ax.	typ.	max.
C5V1	4, 8	5,4	-1. 5	0	1.5		10	200	250
C5V6	5, 2	6,0	-0.2	1,5	2.5	2	5	180	225
Cóv2	5,8	6.6	1,5	2, 4	3.3	1.5	3	350	400
	at $\mathrm{I}_{\mathrm{Z}}=\mathbf{3 0} \mathrm{mA}$		at $\mathrm{I}_{\mathrm{Z}}=\mathbf{2 0} \mathbf{~ m A}$			at $\mathrm{I}_{\mathrm{Z}}=20 \mathrm{~mA}$			
C6V8	6,4	7,2	2, 2	3,1	3, 9		3	300	350
C7V5	7, 0	7,9	2,8	3, 8	4,7	1	3	270	310
C8V2	7,7	8,7	3,5	4.5	5,5	1, 5	4	250	280
C9V1	8,5	9,6	4,3	5, 4	6. 5	2	4	210	250
010	9, 4	10,6	5, 2	6,3	7.5	2	5	190	230
C11	10, 4	11.6	6,2	7, 4	8, 6	3	5	170	220
C12	11,4	12,7	7,2	8, 4	9.8	3	6	165	200
C13	12, 4	14, 1	8.2	9, 4	11,2	3	7	165	200
C15	13, δ	15.6	9.6	11.4	12,8		10	160	190
	at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$		at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$			at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$			
C16	15.3	17, 1	11.1	12,5	14,4		10	140	180
C18	16, 8	19, 1	12,6	14,5	16,6	5	15	120	160
C20	18, 8	21, 2	14,6	16, 6	18,8	5	15	110	150
C22	20, 8	23, 3	16,6	18, 6	20,9	5	20	100	135
C24	22, ε	25,6	18,6	20, 7	23, 4	6	20	95	130
C27	25,1	28,9	21,0	23, 8	26,8	7	25	90	120
C30	28	32	23, 8	26,9	30, 6	8	25	80	110
C33	31	35	26,6	30, 0	34, 2	10	30	75	95
C36	34	38	29,6	33, 4	38,0	10	35	70	90
	$\text { at } \mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$		$\text { at } I_{Z}=5 \mathrm{~mA}$						
C39	37	41	32, 6	37, 0	41,6	15	40	65	80
C43	40	46	36.0	41, 6	47, 6	15	50	62	75
C47	44	50	40, 4	46, 1	52,6	20	60	60	75
C51	48	54	44,6	51,0	57, 6	30	70	55	70
C56	52	60	49.2	56, 6	64,8	35	80	52	65
C62	58	66	56,0	63, 4	72,0	40	90	50	60
C68	64	72	62.4	70, 4	79, 2	45	110	46	58
C75	70	79	59, 2	78, 4	88, 0	45	125	44	55

CHARACTERISTICS (continued)
$T_{j}=25^{\circ} \mathrm{C}$

BZX87-....	Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=1 \mathrm{~mA} \end{gathered}$			Differential resistance $\mathbf{r}_{\text {diff }}(\Omega)$ at $I_{Z}=1 \mathrm{~mA}$		Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=100 \mathrm{~mA} \end{gathered}$			Differential resistance $r_{\text {diff }}(\Omega)$ at $\mathrm{I}_{\mathrm{Z}}=100 \mathrm{~mA}$	
	min.	nom.	max.		max.	\min.	nom.	max.	typ.	max
C5V1	3,3	3, 8	4,3	425	500	4,9	5, 2	5,5	1,2	2,5
C5V6	4,1	5, 3	5,8	400	500	5, 3	5,7	6,1	1,0	2,0
C6V2	5,6	6,0	6,5	40	200	5,9	6, 3	6,7	0,8	2,0
C6V8	6, 3	6,7	7,1	40	120	6,5	6,9	7, 3	0,6	2, 0
C7V5	6,9	7,4	7,8	20	100	7,1	7,6	8, 0	0,5	1,5
C8V2	7,6	8, 1	8,6	20	100	7.8	8, 3	8, 8	0,5	1,5
C9V1	8,4	9, 0	9,6	25	100	8,6	9, 2	9,8	0, 8	2, 0
C10	9.3	9,9	10,5	30	120	9,5	10,1	10, 8	0, 8	2,0
C11	10,3	10,9	11,5	30	120	10,5	11,1	11,8	0,8	2,0
C12	11,2	11,9	12,6	30	150	11,5	12, 1	12,9	1,0	2,0
C13	12,2	12,9	14,0	30	150	12,5	13, 1	14,3	1,2	2,5
C15	13,6	14,9	15,4	30	150	13, 9	15,1	15,8	1,2	2,5
		= 1		at I	mA		$=50$		at $\mathrm{I}_{\mathrm{Z}}=$	50 mA
C16	15,2	15,9	17,0	30	150	15, 4	16, 1	17,3	1,2	3, 0
C18	16,7	17.9	19,0	30	150	16,9	18, 1	19,3	2, 0	5,0
C20	18,7	19,9	21, 1	30	150	19,0	20, 2	21,5	2,5	6,0
C22	20,7	21,9	23, 2	30	150	21,0	22, 2	23,7	2,5	6,0
C24	22,6	23,9	25, 5	30	150	23, 0	24,2	26,0	3, 0	8,0
C27	24,9	26,9	28,8	30	150	25, 3	27, 2	29.2	4,0	8,0
C30	27, 8	29,9	31,9	30	150	28, 2	30, 2	32,5	4,0	8, 0
C33	29,8	32, 9	34,9	30	150	31,2	33, 3	35,5	5, 0	10
C36	33, 8	35, 9	37, 9	30	150	34,2	36, 3	38,5	5, 0	10
C39	36,8	38,9	40,9	40	150	37, 5	39, 5	42,0	6,0	12
C43	39,8	42,9	45,9	50	150	40,5	43, 5	47, 0	8	15
C47	43, 8	46,9	49,9	55	200	44,5	47, 5	51,0	10	20
C51	47, 8	50,9	53, 8	60	200	48, 5	51, 8	55, 5	12	25
C56	51,8	55,9	59, 8	60	200	52,5	56, 8	61,5	15	30
C62	57,6	61,8	65, 8	70	200	58,5	62, 8	67,5	16	30
C68	63,5	67, 6	71,7	80	225	65, 0	69,0	74,0	18	35
C75	69,3	74,5	78,6	100	250	73,0	77,5	84,0	20	35

MOUNTING METHODS

1. to tie-points
2. to solder tags
3. on a printed-circuit board with minimum soldering area necessary for good electrical conductance
a. lead length $=10 \mathrm{~mm}$
b. at maximum lead length

VOLTAGE REGULATOR DIODES

Silicon diodes in all-glass DO-7 envelope intended for voltage stabilization purposes. The series consists of 27 types with nominal working voltages ranging from $2,7 \mathrm{~V}$ to 33 V within the normalized E24 $(\pm 5 \%$) range

QUICK REFERENCE DATA

Working voltage range	V_{Z}	nom.	2,7 to 33 V
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	400 mW
Non-repetitive peak reverse power dissipation $T_{j}=25^{\circ} \mathrm{C} ; \mathrm{t}=10 \mu \mathrm{~s}$	$P_{\text {ZSM }}$	max.	$1,1 \mathrm{~kW}$
Operating junction temperature	T_{j}	max.	$200{ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient in free air	$R_{\text {th j-a }}$	=	0,37 0 C/mW

MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-7.
The diodes are type-branded

Cathode indicated by coloured band
For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

BZY88 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current (d.c.)
Repetitive peak forward current
Tetal power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$
Non-repetitive peak reverse power dissipation

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{t}=10 \mu \mathrm{~s}
$$

Storage temperature
Operating junction temperature
THERMAL RESISTANCE
From junction to ambient in free air
I_{F}
IfRM
$P_{\text {tot }}$
PZSM
$T_{\text {stg }}$
T_{i}
max. $\quad 250 \mathrm{~mA}$
max. 250 mA
max. 400 mW
$\max \quad 1,1 \mathrm{~kW}$
-65 to $+175{ }^{\circ} \mathrm{C}$
rnax. $200{ }^{\circ} \mathrm{C}$
$R_{\text {th } \mathrm{j} \cdot \mathrm{a}}$
$=$
$0,37{ }^{\circ} \mathrm{C} / \mathrm{mW}$

Fig. 2 Power dera ing curve.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Forward voltage											
BZY88-..	working voltage V_{Z} at $1 \mathrm{z}=1 \mathrm{~mA}$				temperature coefficient S_{Z} at $I_{Z}=1 \mathrm{~mA}$				differential resistance $\mathrm{r}_{\text {diff }}$ at $I_{z}=1 \mathrm{~mA}$		
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max.
C2V7	1.9	2,15	2,4	V	-4,5	$-1,7$	-0,6	$m \mathrm{~m} /{ }^{\circ} \mathrm{C}$	260	310	390 ת
C3VO	2,1	2,4	2,7	V	-5,0	$-1,8$	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$. 280	340	420Ω
C3V3	2,4	2,75	3,0	V	-4,5	$-1,9$	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	300	350	440Ω
C3V6	2,7	3,0	3,3	V	-4,5	-2,05	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	380	410	430Ω
C3V9	2,0	3,3	3,6	V	-3,5	-2,4	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	380	410	430Ω
C4V3	3,3	3,6	3,9	V	$-2,7$	-2,25	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	340	410	430Ω
C4V7	3,7	4,1	4,3	V	-2,5	--2,0	-0,3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	360	390	420Ω
C5V1	4,3	4,65	5,0	V	$-2,1$	-1,9	-0,3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	300	340	370 ת
C5V6	4,8	5,3	5,7	V	$-1,8$	-1,4	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	160	310	350Ω
C6V2	5,7	5,9	6,5	V	0	+1,6	+3,0	$m V /{ }^{\circ} \mathrm{C}$	10	100	250Ω
CEV8	6,3	6,7	6,9	V	+2	+3,2	+3,7	$\mathrm{m} / \mathrm{V} /{ }^{\circ} \mathrm{C}$	5,0	15	70Ω
C7V5	7.0	7.45	7.8	V	+3	+4,2	+5,9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	8,6	20Ω
C8V2	7,8	8,1	8,5	V	+4,3	+5,0	+6,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4.0	10	20Ω
C9V1	8.55	S,0	9,5	V	$+4,5$	+6,0	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	7,0	12	24Ω
C10	9,3	9,9	10,5	V	+6,0	+6,6	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	20	50Ω
C11	10,3	10,9	11,5	V	+7,1	+8,3	+9,0	$m V /{ }^{\circ} \mathrm{C}$	5,0	25	70Ω
C12	11,3	11,9	12,5	V	+7,6	+8,7	+9,2	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	25	80Ω
C13	12,3	12,9	13,0	V	+9,1	+10,1	+11,1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	25	90Ω
C15	13,8	14,9	15,5	V	+ 11	+12,5	$+13$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	19	35	95 ת
C16	15,3	15,8	16,9	V	+ 12	$+13$	$+14$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	20	45	100Ω
C18	16,7	17,8	18,9	V	+14	$+15$	+16,5	$m V /{ }^{\circ} \mathrm{C}$	20	50	120Ω
C20	18,7	19,8	21,0	V	+16	$+17$	+ 18,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	20	60	140Ω
C22	20,6	21,8	23,1	V	$+17$	+19	$+21$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	25	70	150Ω
C24	22,5	23,8	25,7	V	+ 19	+21	$+23$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	30	85	200Ω
C27	24,7	26,6	28,5	V	$+21$	+22,5	$+25$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	35	90	300Ω
C30	27,5	29.5	31,5	V	+ 22	+24	$+29$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	50	180	350Ω
C33	29,5	32,5	34,5	V	+23	+26	$+35$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	60	250	450Ω

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

BZY88-...	working voltage V_{Z} at $I_{Z}=5 \mathrm{~mA}$				temperature coefficient S_{Z} at $I_{Z}=5 \mathrm{~mA}$				differential resistance $\mathrm{r}_{\text {diff }}$ at $I_{Z}=5 \mathrm{~mA}$			
	min.		max.		min.	typ.	max.		min.	typ.	max.	
C2V7	2.5	2,7	2,9	V	-4,0	-2,2	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	68	80	120	Ω
C3V0	2,8	3,0	3,2	V	-4,5	-2,4	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	70	84	120	Ω
C3V3	3,1	3,3	3,5	V	-4,0	-2,3	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	70	86	110	Ω
C3V6	3,4	3,6	3,8	V	-3,5	-2,0	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	65	76	105	Ω
C3V9	3,7	3,9	4,1	V	-2,5	-2,05	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	60	76	100	Ω
C4V3	4,0	4,3	4,6	V	-2,5	$-1,8$	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	55	70	90	Ω
C4V7	4,4	4,7	5,0	V	-2,0	$-1,55$	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	49	62	85	Ω
C5V1	4,8	5,1	5,4	V	-1,75	$-1,2$	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	34	46	75	Ω
C5V6	5,2	5,6	6,0	V	-1,5	-0,2	+1,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	22	55	Ω
C6V2	5,8	6,2	6,6	V	+0,5	+2,0	+3,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	7,0	27	Ω
C6V8	6,4	6,8	7.2	V	+2,3	+3,2	+3,8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	3,0	15	Ω
C7V5	7,0	7,5	7,9	V	+3,1	+4,2	+5,9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	3,0	15	Ω
C8V2	7,7	8,2	8,7	V	+4,2	+5,0	+6,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,9	3,5	20	Ω
C9V1	8,5	9,1	9,6	V	+4,8	+6,0	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	4,75	25	Ω
C10	9,4	10	10,6	V	+6,0	+7,0	+7,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	5,0	25	Ω
C11	10,4	11	11,6	V	+7,0	+8,7	+9,1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	3,0	7,0	25	Ω
C12	11,4	12	12,7	V	+8,5	+9,0	+9,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	8,0	35	Ω
C13	12,4	13	14,1	V	+10	+10,5	+11,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	10	35	Ω
C15	13,8	15	15,6	V	+ 12	+ 12,5	+14	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	15	35	Ω
C16	15,3	16	17,1	V	+ 12	+13	+14	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	20	40	Ω
C18	16,8	18	19,1	V	+14	+15	$+18$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	7,0	25	45	Ω
C20	18,8	20	21,2	V	+16	+17	+19	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	30	50	Ω
C22	20,8	22	23,3	V	+17	+19	+21	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	15	35	60	Ω
C24	22,7	24	25,9	V	+20	+21	+24	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	20	40	75	Ω
C27	25,1	27	28,9	V	+22	+ 23,5	+27	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	25	50	85	Ω
C30	28	30	32	V	+25	+26	+29	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	30	60	95	Ω
C33	31	33	35	V	+27	$+28$	+36	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	35	75	120	Ω

BZY88.	working voltage V_{Z} at $\mathrm{I} Z=20 \mathrm{~mA}$				temperature coefficient S_{Z} at $\mathbf{I Z}_{\mathbf{Z}}=\mathbf{2 0} \mathbf{~ m A}$				differential resistance ${ }^{\text {diff }}$ at $I_{Z}=\mathbf{2 0} \mathbf{m A}$			
	min .	nom	ma		min.	typ.	max.		min.	typ	max	
C2V7	3,0	3,25	3,5	V	-3,5	-2,4	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	18	22	26	Ω
C3V0	3,3	3,6	3,9	V	-3,5	-2,5	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	17	21	24	Ω
C3V3	3,5	4	4,2	V	-3,3	-2,4	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	16	20	22	Ω
C3V6	3,9	4,2	4,4	V	-2,5	-1,55	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	16	18	20	Ω
C3V9	4,2	4,45	4,65	V	-2,4	-1,55	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	14	16	18	Ω
C4V3	4,45	4,7	4,95	v	-2,0	-1,5	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	13	15	17	Ω
C4V7	4,9	5,1	5,3	V	-1,5	-0,85	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	12	15	17	Ω
C5V1	5,1	5,35	5,7	V	-1,5	-0,8	0	$\mathrm{mV} /{ }^{\mathrm{b}} \mathrm{C}$	4,0	7,0	11	Ω
C5V6	5,45	5,75	6,1	v	-1,0	+1,0	+3,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,5	4,0	8,0	Ω
C6V2	5,95	6,4	6,7	V	+1,0	+2,2	+4,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,8	1,4	3,1	Ω
C6V8	6,6	6,9	7,25	V	+2,8	+3,2	+3,8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,7	1,3	3,0	Ω
C7V5	7,2	7,65	7,95	V	+2,5	+4,2	+5,9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	1,6	5,0	Ω
C8V2	7,9	8,4	8,75	V	+4,0	+5,0	+6,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,9	1,8	6,0	Ω
C9V1	8,7	9,4	9,7	v	+5,0	+6,0	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	1,85	7,0	Ω
C10	9,5	10,1	10,8	v	+7,0	+7,3	+7,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	2,0	8,0	Ω
C11	10,5	11,1	11,8	v	+8,5	+9,1	+9,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	3,0	10	Ω
C12	11,6	12,2	12,8	v	+8,9	+9,6	+10,3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	3,5	25	Ω
C13	12,6	13,2	14,3	V	+11	+11,5	+12,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	4,5	25	Ω
C15	14,1	15,3	15,9	v	+ 12	+13,5	+14,5	חiv/ ${ }^{\circ} \mathrm{C}$	2,0	6,0	25	Ω
C16	15,6	16,3	17,4	v	+13	+14	$+15$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	10	30	Ω
C18	17,2	18,4	19,6	V	+15	+16	$+18$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	12	30	Ω
C20	19,3	20,5	21,9	v	+17,5	+18,5	+ 20,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	15	35	Ω
C22	21,3	22,6	24,1	v	+19	+20,5	+22,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	18	35	Ω
C24	23,3	24,7	26,7	v	+20	$+23$	+25	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	20	40	Ω
C27	25,8	28,1	30,1	v	+ 23	+25,5	+28	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	25	45	Ω
C30	29,0	31,3	33,4	v	+25	$+28$	+32	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	35	50	Ω
C33	32,0	34,5	36,6	v	+27	$+30$	+38	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	45	60	Ω

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}^{\circ} \mathrm{C}$ unless otherwise specified

BZY88-.	$\begin{gathered} \text { typ. } C_{d} \\ V_{R}=3 V \end{gathered}$	reverse current I_{R}				typ. noise voltage **		
		at $V_{R}=$	typ.	max		$\mathrm{I}=1 \mathrm{~mA}$		$=5 \mathrm{~mA}$
C2V7	490 pF *	1 V	4	25	$\mu \mathrm{A}$	22	12	$\mu \mathrm{V}$ r.m.s.
C3V0	430 pF *	1 V	2	5	$\mu \mathrm{A}$	20	11	$\mu \mathrm{V}$ r.m.s.
C3V3	380 pF *	1 V	0,51	3,0	$\mu \mathrm{A}$	19	10	$\mu \mathrm{V}$ r.m.s.
C3V6	360 pF *	1 V	0,25	3,0	$\mu \mathrm{A}$	18	9	$\mu \mathrm{V}$ r.m.s.
C3V9	335 pF	1 V	0,11	3,0	$\mu \mathrm{A}$	16	8	$\mu \mathrm{V}$ r.m.s.
C4V3	270 pF	1 V	0,1	3,0	$\mu \mathrm{A}$	15	8	$\mu \mathrm{V}$ r.m.s.
C4V7	290 pF	2 V	0,25	3,0	$\mu \mathrm{A}$	14	7	$\mu \mathrm{V}$ r.m.s.
C5V1	275 pF	2 V	0,15	1,0	$\mu \mathrm{A}$	13	8	$\mu \mathrm{V}$ r.m.s.
C5V6	260 pF	2 V	0,6	1,0	$\mu \mathrm{A}$	13	9	$\mu \mathrm{V}$ r.m.s.
C6V2	240 pF	2 V	0,1	1,0	$\mu \mathrm{A}$	14	10	$\mu \mathrm{V}$ r.m.s.
C6V8	220 pF	3 V	0,025	1,0	$\mu \mathrm{A}$	25	15	$\mu \mathrm{V}$ r.m.s.
C7V5	190 pF	3 V	15	500	nA	33	20	$\mu \mathrm{V}$ r.m.s.
C8V2	150 pF	3 V	11	400	nA	55	28	$\mu \mathrm{V}$ r.m.s.
C9V1	140 pF	5 V	8	400	nA	79	35	$\mu \mathrm{V}$ r.m.s.
C10	110 pF	7 V	-	2,5	$\mu \mathrm{A}$	87	43	$\mu \mathrm{V}$ r.m.s.
C11	90 pF	7 V	-	2,5	$\mu \mathrm{A}$	92	48	$\mu \mathrm{V}$ r.m.s.
C12	80 pF	8 V	-	2,5	$\mu \mathrm{A}$	100	50	$\mu \mathrm{V}$ r.m.s.
C13	65 pF	9 V	-	2,5	$\mu \mathrm{A}$	110	52	$\mu \mathrm{V}$ r.m.s.
C15	60 pF	10 V	-	2,5	$\mu \mathrm{A}$	120	54	$\mu \vee$ r.m.s.
C16	55 pF	10 V	-	2,5	$\mu \mathrm{A}$	135	56	$\mu \mathrm{V}$ r.m.s.
C18	50 pF	13 V	-	2,5	$\mu \mathrm{A}$	160	58	$\mu \vee$ r.m.s.
C20	45 pF	14 V	-	2,5	$\mu \mathrm{A}$	210	60	$\mu \vee$ r.m.s.
C22	43 pF	15 V	-	2,5	$\mu \mathrm{A}$	255	62	$\mu \mathrm{V}$ r.m.s.
C24	42 pF	17 V	-	2,5	$\mu \mathrm{A}$	290	65	$\mu \mathrm{V}$ r.m.s.
C27	40 pF	19 V	-	2,5	$\mu \mathrm{A}$	320	69	$\mu \mathrm{V}$ r.m.s.
C30	35 pF	21 V	-	2,5	$\mu \mathrm{A}$	350	73	$\mu \mathrm{V}$ r.m.s.
C33	32 pF	23 V	-	2,5	$\mu \mathrm{A}$	380	78	$\mu \vee$ r.m.s.

- Diode capacitance at $V_{R}=2 \mathrm{~V}$.
* Noise voltage measured using a bandwidth $\pm 3 \mathrm{~dB}$ of 10 Hz to 50 kHz .

OPERATING NOTES

1. Dissipation and heatsink considerations

a. Steady-state conditions

The maximum allowable steady-state dissipation P_{S} max is given by the relationship

$$
P_{s \text { max }}=\frac{T_{j \text { max }}-T_{a m b}}{R_{\text {th } j-a}}
$$

where: $T_{j \text { max }}$ is the maximum permissible operating junction temperature;
$T_{\text {amb }}$ is the ambient temperature;
$\mathrm{R}_{\mathrm{th}} \mathrm{j}-\mathrm{a}$ is the total thermal resistance from junction to ambient.
b. Pulse conditions (see Fig. 3)

The maximum allowable additional pulse power P_{m} max is given by the formula

$$
P_{\text {m max }}=\frac{\left(T_{j \text { max }}-T_{a m b}\right)-\left(P_{s} \cdot R_{t h} j-a\right)}{Z_{t h}}
$$

where: P_{S} is the steady-state dissipation, excluding that in the pulses;
$Z_{\text {th }}$ is the effective transient thermal resistance of the device from junction to ambient. It is a function of the pulse duration t and duty factor δ (see Fig. 9);
δ is the duty factor and is equal to the pulse duration t divided by the periodic time T.
The steady-state power P_{s} when biased in the zener direction at a given zener current can be found from Fig. 18. With the additional pulsed power dissipation $P_{m \text { max }}$ calculated from the above expression, the total repetitive peak zener power dissipation $P_{Z R M}=P_{s}+P_{\text {m max }}$. From Fig. 18 the corresponding maximum repetitive peak zener current at $P_{\text {ZRM }}$ can now be read. For pulse durations longer than the temperature stabilization time of the diode $\mathrm{t}_{\text {stab }}$, the maximum allowable repetitive peak dissipation $P_{\text {ZRM }}$ is equal to the maximum steady-state power $P_{\text {s max }}$. The temperature stabilization for the BZY88series is 100 s (see Fig. 9).

Fig. 3.

OPERATING NOTES (continued)

Example

The following example illustrates how to calculate the maximum permissible repetitive peak zener current of a BZY88-C7V5 zener diode mounted in free air at a maximum ambient temperature of $60^{\circ} \mathrm{C}$. The steady-state zener current is 10 mA , the duty factor $\delta=0,1$ and the pulse duration $\mathrm{t}=1 \mathrm{~ms}$.
The steady-state dissipation P_{s} at a zener current is 10 mA (from Fig. 18) $=76 \mathrm{~mW}$.
The thermal resistance from junction to ambient $R_{\text {th }} j-a=0,31{ }^{\circ} \mathrm{C} / \mathrm{mW}$.
The thermal impedance $Z_{\text {th }}$ with a duty factor $\delta=0,1$ and a pulse duration $t=1 \mathrm{~ms}$ (from Fig. 9).

$$
\mathrm{z}_{\mathrm{th}}=41,5^{\circ} \mathrm{C} / \mathrm{w}
$$

The maximum additional pulse power dissipation

$$
P_{\text {m max }}=\frac{\left(T_{j \max }-T_{a m b}\right)-P_{s} \cdot R_{t h} \text { j-a }}{} Z_{\text {th }}
$$

If $P_{S}=76 \mathrm{~mW}, Z_{\text {th }}=41,5^{\circ} \mathrm{C} / \mathrm{W}$,

$$
P_{\operatorname{m} \max }=\frac{(200-60)-(0,076 \times 310)}{41,5}=2,8 \mathrm{~W}
$$

therefore, the total repetitive peak power dissipation,

$$
P_{Z R M}=0,076+2,8=2,88 \mathrm{~W} .
$$

From Fig. 18 the corresponding repetitive peak zener current is 350 mA .

2. Zener characteristics

The basic characteristic of a zener diode is the dynamic zener characteristic, that is, the variation of zener voltage when a current pulse is applied in the reverse direction. The slope of this characteristic is r_{z}. Typical dynamic characteristics at $T_{j}=25$ and $150^{\circ} \mathrm{C}$ are given on pages 12 and 13 for each type of diode. Because of the temperature sensitivity of the zener characteristics, the dynamic characteristics at any other operating temperature will be displaced from those at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ by a voltage corresponding to $S_{Z} \times\left(T_{n}-25\right){ }^{\circ} \mathrm{C}$, where S_{Z} is the temperature coefficient of the diode and T_{n} is a nominal operating temperature (Figs 4 and 5).

Dynamic characteristics

Fig. 4 Dynamic characteristics.

Static characteristic

Fig. 5 Static characteristics.

The static characteristic of the diode is obtained by connecting the steady-state zener voltages at various direct zener currents and may, therefore, be used to determine the operating point at any zener current. This is shown above. The slope of the static characteristic will depend on
(1) the differential resistance, r_{2};
(2) the rise in junction temperature due to internal dissipation and the thermal resistance from junction to ambient, $V_{Z} \cdot I_{Z} \cdot R_{\text {th }}$ j-a;
(3) the temperature coefficient of the diode, S_{Z}.

From the above, the static slope resistance r_{Z} is found to be

$$
r_{Z}=r_{Z}+V_{Z} \cdot R_{\text {th } j-a} \cdot S_{Z}
$$

where r_{Z} is the differential resistance, V_{Z} is the steady-state zener voltage and is equal to

$$
\frac{V_{Z^{\prime}}}{1-I_{Z} \cdot R_{t h} j-a \cdot S_{Z}}
$$

$V_{Z^{\prime}}$ being the zener voltage at $T_{j}=T_{n}$ at the working current $I Z$.
The position of this static characteristic in relation to the dynamic characteristic at $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ is dependent on the ambient temperature and the temperature coefficient, the low-current voltage being displaced by

$$
S_{Z} \times\left(T_{n}-25\right)^{\circ} \mathrm{C}
$$

from the low current voltage, V_{ZO} on the dynamic characteristic at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see Fig. 6).

Fig. 6 Example for positive S_{Z}.

OPERATING NOTES (continued)

Figure 7 shows typical dynamic characteristics at $T_{j}=25,150$ and a nominal temperature, $T_{n}{ }^{\circ} \mathrm{C}$. It also shows static characteristics at ambient temperatures of 25 and $\mathrm{T}_{\mathrm{n}}{ }^{\circ} \mathrm{C}$.

Fig. 7 Example for positive S_{Z}.
Typical static characteristics for each type of diode are given on page 14. These curves were obtained with the device mounted in free air at an ambient temperature of $25^{\circ} \mathrm{C}$.

The slope resistance for pulse operation can be calculated by incorporating the thermal impedance $Z_{\text {th }}$ into the formula for r_{Z}. Curves of $Z_{\text {th }}$ plotted against pulse duration and duty factor are given in Fig. 9.
3. When using a soldering iron, the diode may be soldered directly into a circuit, but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
4. Diodes may be dip-soldered at a solder temperature of $245^{\circ} \mathrm{C}$ for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a diode with the anode end mounted flush on the beard with punched-through holes. For mounting the cathode end onto the board the diode must be spaced 5 mm from the underside of the printed circuit board in the case of punchedthrough holes or 5 mm from the top of the board for plated-through holes.
5. Care should be taken not to bend the leads nearer than $1,5 \mathrm{~mm}$ from the seals.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

BZY88 SERIES

Fig. 15.

Fig. 16.

Fig. 17 Non-repetitive surge pulse power as a function of pulse duration. Rectangular pulse: $\mathbf{2}$ pulses per minute; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 18.

Fig. 19.

VOLTAGE REFERENCE DIODES

VOLTAGE REFERENCE DIODES

The BZV10to 14 are temperature compensated voltage reference diodes in a DO- 35 envelope. They are primarily intended for use as voltage reference squrces in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA						
			min.	nom.	max.	
Reference voltage at $\mathrm{I}_{\mathrm{Z}}=2,0 \mathrm{~mA}$		$\mathrm{V}_{\text {ref }}$	6,175	6,5	6,825	V
Reference voltage excursion at $\mathrm{I} \mathrm{Z}=2,0 \mathrm{~mA}$						
Ambient temperature test points:	BZV10	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	46,0		mV
$0 ;+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	BZV11	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	23,0		mV
(see notes 1 and 2 on page 3 and the graph on page 4)	BZV12	$\left\|\Delta V_{\text {ref }}\right\|$	<	9,0		mV
	BZV13	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	4,6		mV
	BZV14	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	2,3		mV
Operating ambient temperature		T amb (0 to +70				${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm
DO-35

Cathode indicated by coloured band The diodes are type-branded

BZV10 to 14

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Currents

Working current (d.c.)
Working current (peak value)

I_{Z}	\max.	50	mA
I_{ZM}	\max.	50	mA

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$

$$
P_{\text {tot }} \quad \max . \quad 400 \mathrm{~mW}
$$

Temperatures

Storage temperature
Operating ambient temperature

$$
\begin{array}{lrr}
\mathrm{T}_{\text {stg }} & -65 \text { to }+200 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & 0 \text { to }+70 & { }^{\circ} \mathrm{C}
\end{array}
$$

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Reference voltage at $I_{Z}=2,0 \mathrm{~mA}$

$$
R_{t h j-a}=0,375 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

$$
\begin{array}{c|c|c}
& \text { min. } & \text { nom. } \\
\hline \text { max. } \\
\hline \text { Vref } & 6,175 & 6,5 \\
\hline 6,825
\end{array} \quad \mathrm{~V}
$$

Reference voltage excursion at $\mathrm{IZ}=2,0 \mathrm{~mA}$

Ambient temperature test points:	BZV10	$\Delta V_{\text {ref }}$	<	46,0	mV
$0 ;+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	BZV11	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	23,0	mV
(see notes 1 and 2 on the next page and the graph	BZV12	$\Delta V_{\text {ref }} \mid$	<	9,0	mV
on page 4)	BZV13	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	4,6	mV
	BZV14	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	2,3	mV

Temperature coefficient at $\mathrm{IZ}=2,0 \mathrm{~mA}$

(see notes 1 and 2 on the next page and the graph on page 4)	BZV10	S_{Z}		$\pm 0,01$	\% $/{ }^{\circ} \mathrm{C}$
	BZV11	S_{Z}		$\pm 0,005$	\%/ ${ }^{\circ} \mathrm{C}$
	BZV12	S_{Z}		$\pm 0,002$	$\% /{ }^{\circ} \mathrm{C}$
	BZV13	S_{Z}		$\pm 0,001$	$\% /{ }^{\circ} \mathrm{C}$
	BZV14	S_{Z}		$\pm 0,0005$	\%/ ${ }^{\circ} \mathrm{C}$
Differential resistance at $\mathrm{I}_{\mathrm{Z}}=2,0 \mathrm{~mA}$		$\mathbf{r}_{\text {diff }}$	typ.	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

BZV10 to 14

Note $1^{1}{ }^{\mathrm{I}}$ tolerance and stability of IZ .
The quoted values of $\Delta V_{\text {ref }}$ are based on a constant current IZ. Two factors can cause $V_{\text {ref }}$ to change, namely the differential resistance $r_{\text {diff }}$ and the temperature coefficient S_{Z}.
a As the max. $r_{\text {diff }}$ of the device can be 50Ω, a change of $0,01 \mathrm{~mA}$ in the current through the reference diode will result in a $\Delta V_{\text {ref }}$ of $0,01 \mathrm{~mA} \times 50 \Omega=0,5 \mathrm{mV}$. This level of $\Delta V_{\text {ref }}$ is not significant on a BZV10 ($\Delta V_{\text {ref }}<46 \mathrm{mV}$), it is however very significant on a BZV14 ($\Delta V_{\text {ref }}<2,3 \mathrm{mV}$).
b The temperature coefficient of the reference voltage S_{Z} is a function of I_{Z}. Reference diodes are classified at the specified test current and the S_{Z} of the reference diode will be different at different levels of I_{Z}. The absolute value of ${ }^{\mathrm{I}} \mathrm{Z}$ is important, however, the stability of I_{Z}, once the level has been set, is far more significant. This applies particularly to the BZV13 and BZV14. The effect of IZ stability on SZ is shown in the graph on page 4.

Note 2 Voltage excursion ($\Delta V_{\text {ref }}$ and temperature coefficient).
All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion ($\Delta \mathrm{V}_{\text {ref }}$) over the specified temperature range, at the specified test current (I Z), verified by tests at indicated temperature points within the range. V_{Z} is measured and recorded at each temperature specified. The $\Delta \mathrm{V}_{\text {ref }}$ between the highest and lowest values must not exceed the maximum $\Delta V_{\text {ref }}$ given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$
S_{Z}=\frac{\left(V_{\text {ref } 1}-V_{\text {ref } 2}\right) \times 100}{\left(T_{a m b 2}-T_{a m b 1}\right) \times V_{\text {ref nom }}} \% /^{\circ} \mathrm{C}
$$

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a whiskerless glass envelope. They have a very low temperature coefficient and are primarily intended for use as reference sources.

QUICK REFERENCE DATA

Fig. 1 SOD-27 (DO-35).

Cathode indicated by coloured band; the diodes are type branded.

* For accuracy of I_{Z} see graphs on page 5.

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	Iz	max.	50
Working current (peak value)	IZM	max.	50
Total power dissipation up to $\mathrm{T}_{\text {amb }}=50{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	400
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to	+ 200
Operating ambient temperature	T amb	-55 to	+ 100

THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th } j-a}=0,4 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified

Reference voltage at $I_{Z}=7,5 \mathrm{~mA}$

	min.	nom.	max.
$V_{\text {ref }}$	6,2	6,5	$6,8 \mathrm{~V}$

Reference voltage excursion at $\mathrm{I}=7,5 \mathrm{~mA}$ *
$T_{\text {amb }}=-55$ to $+100^{\circ} \mathrm{C}$
mperature coefficient at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$ *
$T_{\text {amb }}=-55$ to $+100^{\circ} \mathrm{C}$

Differential resistance at $\mathrm{I}_{\mathrm{Z}}=\mathbf{7 , 5} \mathrm{mA}$

BZX90:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	100	mV
BZX91:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	50	mV
BZX92:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	20	mV
BZX93:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	10	mV
BZX94:	$\left\|\Delta V_{\text {ref }}\right\|<$	5	mV	

BZX90:	$\left\|S_{Z}\right\|$	$<$	0,01	$\% /{ }^{\circ} \mathrm{C}$
BZX91:	$\left\|S_{Z}\right\|$	$<$	0,005	$\% /{ }^{\circ} \mathrm{C}$
BZX92:	$\left\|S_{Z}\right\|$	$<$	0,002	$\% /{ }^{\circ} \mathrm{C}$
BZX93:	$\left\|S_{Z}\right\|$	$<$	0,001	$\% /{ }^{\circ} \mathrm{C}$
BZX94:	$\left\|S_{Z}\right\|$	$<$	0,0005	$\% /{ }^{\circ} \mathrm{C}$
	$r_{\text {diff }}$	$<$	15	Ω

NOTE

The temperature coefficient (S_{z}) of the reference voltage ($\mathrm{V}_{\text {ref }}$) is obtained from the following equation:

$$
S_{Z}=\frac{V_{\text {ref1 }}-V_{\text {ref2 }}}{\left(T_{a m b 2}-T_{\text {amb1 }}\right) \times V_{\text {ref nom }}} \times 100 \% /{ }^{\circ} \mathrm{C}
$$

[^9]

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.
Fig. 6.

Fig. 7.

Fig. 10.

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a DO-35 envelope. They have a very low temperature coefficient and are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA						
		min. ${ }^{\text {nom. }}$ \| \max.				V
Reference voltage at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$		$\mathrm{V}_{\text {ref }}$	5,89	6,20	6,51	
Reference voltage excursion at $\mathrm{l}_{\mathrm{Z}}=7,5 \mathrm{~mA} \mathrm{1)}$						
(see notes 1 and 2	1N821	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	96		mV
on page 3 and the graphs on pages 4	1N823	$\left\|\Delta V_{\text {ref }}\right\|$	<	48		mV
and 5)	1N825	$\mid \Delta V_{\text {ref }}$	$<$	19		mV
	1N827	$\left\|\Delta V_{\text {ref }}\right\|$	<	9		mV
	1N829	$\mid \Delta V_{\text {ref }}$	<	5		mV
Operating ambient temperature		$\mathrm{T}_{\mathrm{amb}}$	-55 to	+100		${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm
DO-35

Cathode indicated by coloured band
The diodes are type-branded

[^10]RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Currents

Working current (d.c.)	I_{Z}	\max.	50	mA
Working current (peak value)	I_{ZM}	\max.	50	mA

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max . \quad 400 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature

$$
\mathrm{T}_{\text {stg }} \quad-65 \text { to }+200 \quad{ }^{\circ} \mathrm{C}
$$

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Reference voltage at $\mathrm{I} \mathrm{Z}=7,5 \mathrm{~mA}$
$R_{\text {th } j-a}=0,375 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{array}{c|c|c}
\text { min. } & \text { nom. } & \text { max. } \\
\hline 5,89 & 6,20 & 6,51 \mathrm{~V}
\end{array}
$$

Reference voltage excursion at $I_{Z}=7,5 \mathrm{~mA}$ 1)

ambient temperature test points:	1N821	$\left\|\Delta V_{\text {ref }}\right\|<$	96	mV
$-55 ;+25 ;+75 ;+100^{\circ} \mathrm{C}$	1 N 823	$\left\|\Delta V_{\text {ref }}\right\|<$	48	mV
(see notes 1 and 2 on the	1 N 825	$\left\|\Delta V_{\text {ref }}\right\|<$	19	mV
next page and the graphs	1 N 827	$\left\|\Delta V_{\text {ref }}\right\|<$	9	mV
on pages 4 and 5)	IN829	$\left\|\Delta V_{\text {ref }}\right\|<$	5	mV

Effective temperature coefficient at $\mathrm{IZ}=7,5 \mathrm{~mA} \quad 1$)

(see notes 1 and 2 on the	lN821	SZ	$\pm 0,01$	$\% /{ }^{\circ} \mathrm{C}$
next page and the graphs on pages 4 and 5)	1 N 823	SZ	$\pm 0,005$	$\% /{ }^{\circ} \mathrm{C}$
	1 N 825	SZ	$\pm 0,002$	$\% /{ }^{\circ} \mathrm{C}$
	1 N 827	SZ	$\pm 0,001$	$\% /{ }^{\circ} \mathrm{C}$
	1 N 829	$\mathrm{~S}_{\mathrm{Z}}$	$\pm 0,0005$	$\% /{ }^{\circ} \mathrm{C}$
Differential resistance at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$		$\mathrm{r}_{\text {diff }}<$	15	Ω

[^11]Note 1 I Z tolerance and stability of I_{Z}.
The quoted values of $\Delta \mathrm{V}_{\text {ref }}$ are based on a constant current $\mathrm{l} Z$. Two factors can cause $V_{\text {ref }}$ to change, namely the differential resistance $r_{\text {diff }}$ and the temperature coefficient SZ .
a As the max. $r_{\text {diff }}$ of the device can be 15Ω, a change of $0,01 \mathrm{~mA}$ in the current through the reference diode will result in a $\Delta V_{\text {ref }}$ of $0,01 \mathrm{~mA} \times 15 \Omega=0,15 \mathrm{mV}$. This level of $\Delta V_{\text {ref }}$ is not significant on a $1 N 821$ ($\Delta V_{\text {ref }}<96 \mathrm{mV}$), it is however very significant on a $1 \mathrm{~N} 829\left(\Delta \mathrm{~V}_{\text {ref }}<5 \mathrm{mV}\right)$.
b The temperature coefficient of the reference voltage S_{Z} is a function of I_{Z}. Reference diodes are classified at the specified test current and the S_{Z} of the reference diode will be different at different levels of l_{Z}. The absolute value of I_{Z} is important, however, the stability of I_{Z}, once the level has been set, is far more significant. This applies particularly to the 1 N 829. The effect of I_{2} stability on S_{Z} is shown in the graph on page 5 .

Note 2 Voltage excursion ($\Delta V_{\text {ref }}$ and temperature coefficient).
All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion ($\Delta \mathrm{V}_{\text {ref }}$) over the specified temperature range, at the specified test current (I_{Z}), verified by tests at indicated temperature points within the range. V_{Z} is measured and recorded at each temperature specified. The $\Delta \mathrm{V}_{\text {ref }}$ between the highest and lowest values must not exceed the maximum $\Delta \mathrm{V}_{\text {ref }}$ given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$
\mathrm{S}_{\mathrm{Z}}=\frac{\left(\mathrm{V}_{\text {ref } 1}-\mathrm{V}_{\text {ref } 2}\right) \times 100}{\left(\mathrm{~T}_{\mathrm{amb} 2}-\mathrm{T}_{\mathrm{amb} 1}\right) \times \mathrm{V}_{\text {ref nom }}} \% /^{\circ} \mathrm{C}
$$

Maximum reference voltage variation (line section) caused by temperature variations within the range from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ at a constant working current of $7,5 \mathrm{~mA}$. The voltage variations may shift horizontally within the shaded area. The zero point may vary from 5890 mV to 6510 mV and differs from diode to diode.

RECTIFIER DIODES
 (Low power)

工＂

SILICON HIGH-VOLTAGE DIODE

Diode in a plastic envelope. It is intended for use as $\mathbf{V}_{\mathbf{g} 2}$ supply in colour television receivers.
QUICK REFERENCE DATA

Crest working reverse voltage	$V_{\text {RWM }}$	max	1500 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max	1800 V
Average forward current	$I^{\prime}(A V)$	max	$5,0 \mathrm{~mA}$
Repetitive peak forward current	IFRM	max	400 mA
Operating junction temperature	$\mathrm{T}_{\boldsymbol{j}}$	max	$85^{\circ} \mathrm{C}$
Reverse recovery charge	$\mathrm{O}_{\mathbf{s}}$	typ	1 nC

MECHANICAL DATA
Dimensions in mm
SOD-34 (long leads)

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation $68-2$ (test D, severity IV, 6 cycles).

Cathode indicated by coloured band. The diodes are type-branded

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Crest working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage (t $\leqslant 10 \mathrm{~ms}$)

Currents

Average forward current (averaged over any 20 ms period)
Repetitive peak forward current
Non-repetitive peak forward current

$$
(\mathrm{t} \leqslant 10 \mathrm{~ms})
$$

Temperatures

Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage at $I_{F}=100 \mathrm{~mA} ; \mathrm{T}_{j}=75^{\circ} \mathrm{C}$
Reverse current at $V_{R}=1500 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=75^{\circ} \mathrm{C}$
Reverse recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$ with

$$
\frac{d l_{F}}{d t}=5 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

$V_{\text {RWM }}$	\max	1500 V
$V_{\text {RRM }}$	\max	1800 V
$V_{\text {RSM }}$	\max	1800 V

$I_{F(A V)}$	\max	$5,0 \mathrm{~mA}$
I FRM	\max	400 mA
$I_{\text {FSM }}$	\max	5 A

$\mathrm{T}_{\text {stg }}$	-65 to $+100{ }^{\circ} \mathrm{C}$	
T_{j}	max	
$\mathrm{R}_{\text {thj-a }}$	=	

V_{F}	$<$	5 V
I_{R}	$<$	$10 \mu \mathrm{~A}$

$a_{s} \quad$ typ $\quad 1 n C$

APPLICATION INFORMATION

Basic circuit for $\mathbf{V}_{\mathbf{g} 2}$ supply in colour television receivers

Stable continuous operation is ensured at an ambient temperature up to $70^{\circ} \mathrm{C}$.

Silicon double-diffused rectifier diodes in plastic envelopes.
They are intended for use as top level detector, scan rectifier for the supply of smallsignal parts in television and other h.f. power supplies. The devices feature non-snapoff characteristics.

QUICK REFERENCE DATA					
			BY206	BY207	
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	\max.	350	600	v
Average forward current	IF (AV)	\max.	0.5	0,5	A
Non-repetitive peak forward current	$\mathrm{I}_{\mathrm{FSM}}$	\max.	15	15	A
Reverse recovery time	$\mathrm{trr}_{\text {r }}$	<	300	300	ns

MECHANICAL DATA

Dimensions in mm
Conforms to B.S. 3934 SO-8 J.E.D.E.C. DO-14
The diodes are type branded

The sealing of these plastic envelopes withstands the accelerated damp heat test of I. E. C. recommendation 68-2 (test D, severity IV, 6 cycles)

Available for current production only; for new designs successors BYV95 or BAS11 are recommended.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Non-repetitive peak reverse voltage ($t \leq 10 \mathrm{~ms}$)

Repetitive peak reverse voltage ($t \leq 12 \mu s$)
Working reverse voltage
Continuous reverse voltage

		BY206		BY207
$\mathrm{V}_{\mathrm{RSM}}$	max.	350	600	V
$\mathrm{~V}_{\mathrm{RRM}}$	max.	350	600	V
$\mathrm{~V}_{\mathrm{RW}}$	max.	300	500	V
$\mathrm{~V}_{\mathrm{R}}$	max.	300	500	V

Currents

Average forward current (averaged over
any 20 ms period; see also pages $4,5,8$)
$\mathrm{V}_{\mathrm{RW}}=\mathrm{V}_{\mathrm{R}} \mathrm{Wmax}$
$\mathrm{V}_{\mathrm{RW}} \leq 80 \mathrm{~V}$
Repetitive peak forward current
Repetitive peak forward current
($\delta \leq 0,03$; f $\geq 15 \mathrm{kHz}$)
Non-repetitive peak forward current
($\mathrm{t}=10 \mathrm{~ms}$; half sine-wave)
$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge
Temperatures
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	150	${ }^{\circ} \mathrm{C} \mathrm{C}$

See page 3

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	V_{F}	$<$	1,55		(${ }^{1}$)
Reverse current			BY206	BY207	
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RW} \text { max }} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	I_{R}	$<$	200	125	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	I_{R}	$<$	2	2	$\mu \mathrm{A}$

Reverse recovery when switched from
$\mathrm{I}_{\mathrm{F}}=0,4 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geq 50 \mathrm{~V}$ with
$-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=0,4 \mathrm{~A} / \mu \mathrm{S} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery charge

Q_{S}	$<$	60	nC
t_{rr}	$<$	1,0	$\mu \mathrm{~s}$
t_{f}	$>$	60	ns

[^12]
FAST SOFT-RECOVERY RECTIFIER DIODES

CHARACTERISTICS (continued)

Reverse recovery when switched from
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}} \geq 50 \mathrm{~V}$ with
$-\mathrm{dl} / \mathrm{dt}=0,5 \mathrm{~A} / \mu \mathrm{R} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery time ${ }^{t_{\mathrm{rr}}}<300$ ns

THERMAL RESISTANCE (influence of mounting method)
The quoted values of $R_{\text {th }} j$-a should be used only when no other leads run to the tie-points. If leads of other dissipating components share the same tie-points, the thermal resist ance will be higher than that quoted.

1. Mounted to solder tags at a lead-length $\mathrm{a}=10 \mathrm{~mm}$

$$
R_{t h} j-a=150^{\circ} \mathrm{C} / \mathrm{W}
$$

2. Mounted to solder tags at a = maximum lead-length

$$
R_{t h ~ j-a}=200^{\circ} \mathrm{C} / \mathrm{W}
$$

3. Mounted on printed-wiring board with a small area of copper at a lead-length a $>5 \mathrm{~mm}$

$$
\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}=200^{\circ} \mathrm{C} / \mathrm{W}
$$

SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 5 mm from the seal:
2. The maximum permissible temperature of the soldering bath is $300^{\circ} \mathrm{C}$; it must not be in contact with the joint for more than 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than $125^{\circ} \mathrm{C}$.

EXAMPLE OF OPERATION WITH C LOAD EXAMPLE OF OPERATION WITH R LOAD

FAST SOFT-RECOVERY RECTIFIER DIODES

IIIII]

IIIIIII

FAST SOFT-RECOVERY DIODES

A range of plastic-encapsulated fast-switching silicon rectifier diodes with "non snap-off" characteristics. The diodes are intended for use in scan rectification, switched-mode power supplies and high-speed converter applications.

QUICK REFERENCE DATA

Fig. 1 DO-15

AVAILABLE FOR CURRENT PRODUCTION ONLY

FOR NEW DESIGNS THE FOLLOWING SUCCESSOR TYPES ARE RECOMMENDED:

$$
\begin{aligned}
& \text { BY210-400 }=\text { BYV95B } \\
& \text { BY210-600 }=\text { BYV95C } \\
& \text { BY210-800 }=\text { BYV96D }
\end{aligned}
$$

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages		BY210-400		600	800
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	400	600	800 V
Non-repetitive peak reverse voltage $(t \leqslant 10 \mathrm{~ms})$	$V_{\text {RSM }}$	max.	400	600	800 V

Currents

Forward current (d.c.)*	$I_{\text {F }}$	max.	1.0	A
Repetitive peak forward current	${ }^{\prime}$ FRM	max.	5.0	A
Non-repetitive peak forward current $(t \leqslant 10 \mathrm{~ms})$	$I_{\text {FSM }}$	max.	30	A

Temperatures

Storage temperature		$T_{\text {stg }}$	-65 to +125
Junction temperature	T_{j}	max.	${ }^{\circ} \mathrm{C}$
		$+125\|+125\|+100{ }^{\circ} \mathrm{C}$	

THERMAL RESISTANCE

CHARACTERISTICS

Fonward voltage

$$
I_{F}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Reverse current

$V_{R}=V_{R R M} m_{\text {max. }}, T_{j}=25{ }^{\circ} \mathrm{C}$	I_{R}	$<$	10	μA
$V_{R}=V_{R R M^{\max ., ~}} T_{j}=T_{j} \max$.	I_{R}	$<$	200	μA

Capacitance

$$
V_{R}=150 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=+25 \text { to }+125^{\circ} \mathrm{C} \quad \mathrm{C}_{\mathrm{d}} \quad \text { typ. } \quad 4.0 \quad \mathrm{pF}
$$

CHARACTERISTICS (continued)

Reverse recovery when switched from

$I_{F}=400 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 50 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Recovered charge
Recovery time
Fall time

$-\frac{d l_{F}}{d t}$	$=$	$5 A / \mu \mathrm{s}$	$0.4 \mathrm{~A} \mu \mathrm{~s}$
$\mathrm{O}_{\mathbf{s}}$	$<$	160	60
$\mathrm{t}_{\mathbf{r r}}$	$<$	0.4	nC
$\mathrm{t}_{\mathbf{f}}$	$>$	100	1.0
	$\mu \mathrm{~s}$		

Fig. 2 Definition of reverse recovery

Fig. 3 Thermal resistance plotted against lead length for various mountings.

Curve
Mounting

1
2
3
Infinite heatsink at end of lead

Tag mounting

Typical printed circuit with large area of copper ($\geqslant 1.5 \mathrm{~cm}^{2}$)
N.B. The values of $R_{\text {th }}$ apply only if no other dissipating components share the same mounting point.

OPERATING NOTES

1. Total power dissipation comprises 3 parts, namely:-

$$
P_{\text {tot }}=P_{F}(A V)+P_{R}(A V)+\left(V_{R} \times I_{R} \times \text { duty cycle }\right)
$$

where $P_{F}(A V)$ and $P_{R}(A V)$ are derived from graphs on page 6.
$P_{F}(A V)$ is the normal forward power dissipation.
$P_{R(A V)}$ is the switching loss due to hole storage. This appears as a charge which builds up in the junction after forward current has been flowing. The combination of stored charge and reverse voltage results in reverse power loss which contributes to an increase in T_{j}.
2. Thermal resistance may be derived from:-

$$
R_{\text {th }}=\frac{T_{j} \text { max. }-T_{\text {amb }} \text { max. }}{P_{\text {tot }}}
$$

Once $R_{\text {th }}$ has been determined, reference to graph on page 4 will show the practical mounting condition required.
3. Practical example

Consider a diode used as a scan rectifier:-

frequency	$=16 \mathrm{kHz}$
duty cycle	$=\frac{52 \mu \mathrm{~s}}{64 \mu \mathrm{~s}}=0.8$ (scan rectification)
$\mathrm{T}_{\text {amb max. }}=$	$55^{\circ} \mathrm{C}$
Switched from	
to	0.5 A (assume a square wave)
	400 V
at a rate of	$-5 \mathrm{~A} / \mu \mathrm{s}$

therefore

$$
\begin{aligned}
& P_{F}(A V) \text { from graph on page } 6=0.5 \mathrm{~W} \\
& P_{R}(A V) \text { from graph on page } 6=0.26 \mathrm{~W}
\end{aligned}
$$

therefore

$$
P_{\text {tot }}=0.76 \mathrm{~W}
$$

(Ignore $V_{R} \times I_{R} \times$ duty cycle as this is very small compared to $P_{F}(A V)+P_{R}(A V)$. In practice the worst case is, in example, $400 \times 200 \times 10^{-6} \times \frac{12}{64}=0.015 \mathrm{~W}$)
therefore
Maximum allowable thermal resistance is:-

$$
\frac{T_{j \text { max. }}-T_{\text {amb max. }}}{P_{\text {tot }}}=\frac{125-55}{0.76}=92{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

i.e. Curve 2 on the Mounting Conditions graph.

Fig. 5

Fig. 6 Nomogram: power loss $\mathrm{P}_{\mathrm{R}(\mathrm{AV})}$ due to switching only (to be added to forward and reverse power losses.

PARALLEL EFFICIENCY DIODE

Double-diffused passivated rectifier diode in a hermetically sealed axial-leaded glass envelope, intended for use as efficiency diode in transistorized horizontal deflection circuits of television receivers. The device features high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

The marking band indicates the cathode.
The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Non-repetitive peak reverse voltage
during flashover of picture tube
Repetitive peak reverse voltage
Working reverse voltage
Working peak forward current
Repetitive peak forward current
Non-repetitive peak forward current $t=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$
prior to surge; with reapplied $V_{\text {RWmax }}$
Storage temperature
Junction temperature

$V_{\text {RSM }}$	max.	1650 V
V RRM	\max.	1500 V
V $_{\text {RW }}$	\max.	1500 V
IFWM	\max.	5 A
IFRM	\max.	10 A

IFSM	max.	50 A
$T_{\text {stg }}$	-65 to $+175{ }^{\circ} \mathrm{C}$	
T_{j}	max.	$140{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influences of mounting method

The quoted value of $R_{\text {th }} \mathrm{j}$-a should be used only when no leads of other dissipating components run to the same tie-points.
Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}=75{ }^{\circ} \mathrm{CNW}$

Fig. 2.

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N . Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N . Bending the leads through 900 is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance $>5 \mathbf{~ m m}$ from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is $\mathbf{2} \mathbf{~ m m}$, the maximum allowed solder temperature is $300^{\circ} \mathrm{C}$, and the soldering time must not be longer than 10 seconds.
Prevent fast cooling after soldering.
When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$	V_{F}	$<$	1,5 V*
Reverse current			
$V_{R}=V_{\text {RWmax }} \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$	I_{R}	$<$	$200 \mu \mathrm{~A}$
Total reverse recovery time when switched from $I_{F}=1 A ;-d I_{F} / d t=0,05 A / \mu s ; T_{j}=140^{\circ} \mathrm{C}$	$t_{\text {tot }}$	<	$20 \mu \mathrm{~s}$

Fig. 3 Definition of $t_{\text {tot }}$.

[^13]
CHARACTERISTICS (continued)

Forward recovery time when switched to
$I_{F}=5 A$ with $t_{r}=0,1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{t}_{\mathrm{fr}} \quad<\quad 1 \mu \mathrm{~s}$

Fig. 4 Definition of t_{fr}.

Fig. $5 — \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$.

Fig. $6 P_{\text {tot }}=$ power dissipation including switching losses; --- 819 lines; - 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; IFWM is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.
Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than $\mathbf{2 5 \%}$. For that reason the dissipation graph (Fig. 6) is based on the nominal $I_{\text {FWM }}$; 25\% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

Fig. 8 Basic conventional horizontal deflection circuit.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-volage $\mathrm{E}-\mathrm{W}$ modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {the-tp }}$	7,5	15	22,5	30	37,5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {the-a }}$	310	230	190	160	145	${ }^{\circ} \mathrm{C} / \mathrm{N}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given on page 2: $R_{t h} \mathrm{tp}-\mathrm{a}=72^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate of $1 \mathrm{~cm}^{2}: R_{\text {th }}$ tp-a $=58{ }^{\circ} \mathrm{C} / \mathrm{W}$.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers (e.g. tripler circuits) and as focus rectifiers in colour television receivers. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 6 kV , see page 3.

QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	max	11.5 kV
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max	12.5 kV
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max	2,5 mA
Junction temperature	T_{j}	max	$100^{\circ} \mathrm{C}$
Reverse recovery			
Recovery charge	$\mathrm{O}_{\text {s }}$	typ	$2,5 \mathrm{nC}$
Recovery time	t_{rr}	typ	0,4 $\mu \mathrm{s}$

MECHANICAL DATA
Dimensions in mm
SOD-34

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage ($\mathrm{t} \leqslant 10 \mathrm{~ms}$)

$V_{\text {RW }}$	max	$11,5 \mathrm{kV}$
$V_{\text {RRM }}$	\max	$12,5 \mathrm{kV}$
$V_{\text {RSM }}$	\max	$12,5 \mathrm{kV}$

Currents

Average forward current (averaged over any 20 ms period)

Repetitive peak forward current

IF(AV) $\quad \max$	$2,5 \mathrm{~mA} *$
IFRM	\max
$500 \mathrm{~mA} *$	

Temperatures

Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }}$
T_{j}

CHARACTERISTICS

Forward voltage at $I_{F}=100 \mathrm{~mA} ; T_{j}=100^{\circ} \mathrm{C}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=10 \mathrm{kV} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
$<$
$5 \mu \mathrm{~A}$
Reverse recovery when switched from
$I_{F}=200 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery charge

Q_{s}	typ	$2,5 \mathrm{nC}$
t_{rr}	typ	$0,4 \mu \mathrm{~s}$
t_{f}	$>$	$0,15 \mu \mathrm{~s}$

[^14]

When used at voltages above 6 kV the diode should be potted in such a way that $R_{t h} j-a$ is less than $120^{\circ} \mathrm{C} / \mathrm{W}$.

Typical operating circuit

Typical applied voltage

PARALLEL EFFICIENCY DIODE

Double-diffused passivated rectifier diode in a hermetically sealed axial-leaded glass envelope, intended for use as efficiency diode in transistorized horizontal deflection circuits of television receivers. The device features high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

Repetitive peak reverse voltage	VRRM	max.	1200 V
Working peak forward current	IFWM	max.	5 A
Repetitive peak forward current	IFRM	max.	10 A
Total reverse recovery time	t $_{\text {tot }}$	$<$	$20 \mu \mathrm{~s}$
MECHANICAL DATA		Dimensions in mm	

Fig. 1 SOD-64.

The marking band indicates the cathode.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Non-repetitive peak reverse voltage
during flashover of picture tube
Repetitive peak reverse voltage
Working peak forward current
Repetitive peak forward current
Non-repetitive peak forward current $t=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{i}}=140^{\circ} \mathrm{C}$
prior to surge; with reapplied $V_{\text {RWmax }}$
Storage temperature
Junction temperature

$V_{\text {RSM }}$	max.	1300 V
$\mathrm{~V}_{\text {RRM }}$	\max.	1200 V
I FWM	\max.	5 A
$I_{\text {FRM }}$	max.	10 A

IFSM	max.	50 A
$\mathrm{~T}_{\text {stg }}$	-65 to	$+175{ }^{\circ} \mathrm{C}$
T_{j}	max.	$140^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method
The quoted value of $R_{\text {th }} j$-a should be used only when no leads of other dissipating components run to the same tie-points.
Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}=75^{\circ} \mathrm{C} / \mathrm{N}$

Fig. 2.

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N . Perpendicular force on the body must be avoided as much as possible, however, if present, it shail not exceed 10 N . Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance $>5 \mathrm{~mm}$ from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm , the maximum allowed solder temperature is $300^{\circ} \mathrm{C}$, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soidering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	V_{F}	<	$1,5 \mathrm{~V}$
Reverse current			
$V_{R}=V_{\text {RWmax }} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$	IR	$<$	$200 \mu \mathrm{~A}$
Total reverse recovery time when switched from $!_{F}=1 \mathrm{~A} ;-d \mathrm{l}_{\mathrm{F}} / \mathrm{dt}=0,05 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$	${ }^{\text {tot }}$	$<$	$20 \mu \mathrm{~s}$

Fig. 3 Definition of tot .

[^15]CHARACTERISTICS (continued)
Forward recovery time when switched to

$$
I_{F}=5 A \text { with } t_{r}=0,1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}
$$

Fig. 4 Definition of $t_{f r}$.

Fig. $5 — T_{j}=25^{\circ} \mathrm{C} ;-\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$.

Fig. $6 P_{\text {tot }}=$ power dissipation including switching losses; --- 819 lines; - 625 lines;
S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; IFWM is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.
Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal $I_{\text {FWM }} ; \mathbf{2 5 \%}$ safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

Fig. 8 Basic conventional horizontal deflection circuit. D1 $=$ BY438.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage $\mathrm{E}-\mathrm{W}$ modulator circuit. $\mathrm{D} 1=\mathrm{BY} 438$.

Fig. 10 Basic self-regulating time base circuit (S.R.T.). $\mathrm{D} 1=\mathrm{BY} 438$.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {the-tp }}$	7,5	15	22,5	30	37,5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {the-a }}$	310	230	190	160	145	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $\mathbf{1 . 5} \mathrm{mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given on page 2: $R_{\text {th tp-a }}=72{ }^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate of $1 \mathrm{~cm}^{2}: R_{\text {th tp-a }}=58^{\circ} \mathrm{C} / \mathrm{W}$.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits and PPS (power-pack system) circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY458	BY448	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	1200	1500	V
Working peak forward current	$I_{\text {FWM }}$	max.			A
Repetitive peak forward current	IfRM	max.			A
Total reverse recovery time	$t_{\text {tot }}$	<			$\mu \mathrm{s}$

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.

The marking band indicates the cathode.
The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BY458		BY448
Non-repetitive peak reverse voltage during flashover of picture tube	$V_{\text {RSM }}$	max. 1300		1650 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max. 1200		1500 V
Working peak forward current	$I_{\text {FWM }}$	max.	4	A
Repetitive peak forward current	IFRM	max.	8	A
Non-repetitive peak forward current $t=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ prior to surge; with reapplied $V_{\text {RRMmax }}$	$I_{\text {FSM }}$	max.	30	A
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +175		${ }^{\circ} \mathrm{C}$
Operating junction temperature	T_{j}	max.	140	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method (see also OPERATING NOTES and Fig. 11)

The quoted value of $R_{\text {th } j \text {-a }}$ should be used only when no leads of other dissipating components run to the same tie-points.
Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epcxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2

$$
R_{\text {th j-a }}=
$$

$$
100^{\circ} \mathrm{C} / \mathrm{W}
$$

Fig. 2.

MOUNTING AND SOLDERING NOTES
 Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N . Perpendicular force on the body must be avoided as much as possible, however, if present, it sha! not exceed 10 N . Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance $>5 \mathrm{~mm}$ from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm , the maximum allowed solder temperature is $300^{\circ} \mathrm{C}$, and the soldering time must not be longer than 10 seconds.
Prevent fast cooling after soldering.
When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{F}}<1,6 \mathrm{~V}
$$

Reverse current
$V_{R}=V_{R R M m a x} ; T_{j}=140^{\circ} \mathrm{C} \quad I_{R}<200 \mu A$
Total reverse recovery time when switched from
$I_{F}=1 \mathrm{~A} ;-\mathrm{dl} / \mathrm{F} / \mathrm{dt}=0,05 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{t}_{\text {tot }}<20 \mu \mathrm{~s}$

Fig. 3 Definition of $t_{\text {tot }}$.

* Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery time when switched to

$$
I_{F}=4 A \text { with } t_{r}=0,1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{t}_{\mathrm{fr}} \quad<1 \mu \mathrm{~s}
$$

Fig. 4 Definition of t_{fr}.

Fig. $5 \longrightarrow \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$.

Fig. $6 \mathrm{P}_{\text {tot }}=$ maximum power dissipation including switching losses; $-\quad-819$ lines; __ 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; IFWM = the nominal peak diode current, for tolerances and spreads 25\% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.
Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal ${ }^{1}$ FWM; 25% safety margin for tolerance and spreads is taken into account. .

Fig. 7 Basic waveforms.

Fig. 8 Basic conventional horizontal deflection circuit.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {the-tp }}$	15	30	45	60	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {the-a }}$	580	445	350	290	245	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given on page 2: $R_{\text {th tp-a }}=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$
1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}
$$

$2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}$.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers and for use in tiny vision black-and-white television receivers. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 9 kV , see page 3 .

QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	max	16 kV
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max	18 kV
Average forward current	$I F(A V)$	max	$2,5 \mathrm{~mA}$
Junction temperature	T_{j}	max	$100{ }^{\circ} \mathrm{C}$
Reverse recovery			
Recovery charge	Q_{s}	typ	2,5 nC
Recovery time	$t_{r r}$	typ	$0.4 \mu \mathrm{~s}$

MECHANICAL DATA
Dimensions in mm
SOD-56

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage ($t \leqslant 10 \mathrm{~ms}$)

Currents

Average forward current (averaged
over any 20 ms period)
Repetitive peak forward current

Temperatures

Storage temperature
Junction temperature

CHARACTERISTICS

Forward voltage at $I_{F}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{kV} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
Reverse recovery when switched from
$I_{F}=200 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery, charge

Q_{s}	typ	$2,5 \mathrm{nC}$
t_{rr}	typ	$0,4 \mu \mathrm{~s}$
t_{f}	$>$	$0,15 \mu \mathrm{~s}$

[^16]

When used at voltages above 9 kV diode should be potted in such a way that $R_{\text {th }} j$-a is less than $120^{\circ} \mathrm{C} / \mathrm{W}$.

Typical operating circuit

Typical applied voltage

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODE

E.H.T. rectifier diode in a glass envelope intended for use in high-voltage applications such as multipliers, e.g. tripler circuits, diode-split transformers. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be used in a suitable dielectric medium (resin, oil, SF6 gas).

QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	max.	$11,5 \mathrm{kV}$
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	$12,5 \mathrm{kV}$
Average forward current	I^{\prime} (AV)	max.	4 mA
Junction temperature	T_{j}	max.	$120{ }^{\circ} \mathrm{C}$
Reverse recovery charge	a_{s}	<	1 nC
Reverse recovery time	$t_{\text {rr }}$	typ.	0,2 $\mu \mathrm{s}$

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-61.

The cathode is indicated by a coloured band on the lead

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).
Working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage; $t \leqslant 10 \mathrm{~ms}$
Average forward current (averaged over any 20 ms period)
Repetitive peak forward current
Storage temperature
Junction temperature

$V_{\text {RW }}$	max.	11.5 kV
$V_{\text {RRM }}$	max.	12.5 kV
$V_{\text {RSM }}$	max.	$12,5 \mathrm{kV}$
I^{\prime} ($\left.A V\right)$	max.	4 mA
IFRM	max.	500 mA
$\mathrm{T}_{\text {stg }}$	-65	$+120{ }^{\circ} \mathrm{C}$
Tj	max.	$120{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Forward voltage

$I_{F}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C}$
Reverse current
$\mathrm{V}_{\mathrm{R}}=11,5 \mathrm{kV} ; \mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C}$
$V_{F} \quad<$
43 V**

Reverse recovery when switched from
$I_{F}=100 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 100 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
recovery charge
$\mathrm{O}_{\mathrm{s}} \quad<$
1 nC
recovery time
fall time
$t_{r r}$
t_{f}
typ.
$0,2 \mu \mathrm{~s}$
$>\quad 0,1 \mu \mathrm{~s}$

Fig. 2 Definitions of $Q_{s}, t_{r r}$ and t_{f}.

- The device can withstand peak currents occurring at flashover in the picture tube.
** Measured under pulse conditions to avoid excessive dissipation.

Fig. 4 Typical operation circuit.

Fig. 5 Typical applied voltage.

Fig. $6 \longrightarrow T_{j}=25^{\circ} \mathrm{C} ;-\mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C}$.

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV27-50		100	150	200	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50	100	150	200	V
Continuous reverse voltage	V_{R}	max.	50	100	150	200	V
Average forward current	$I^{\prime}(A V)$	max.					A
Non-repetitive peak reverse energy	$E_{\text {RSM }}$	max.					mJ
$\underline{\text { Reverse recovery time }}$	t_{rr}	$<$					ns
MECHANICAL DATA					nensi	s in m	

Fig. 1 SOD-57. The diodes are type branded

The marking band indicates the cathode.
Marking: BYV27-50 = BYV27-5
BYV27-100 = BYV2710
BYV27-150 = BYV2715
BYV27-200 = BYV2720

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage	$V_{\text {RRM }}$	BYV27-50		100	150	200
		max.	50	100	150	200 V
Continuous reverse voltage	V_{R}	max.	50	100	150	200 V
Average forward current (averaged over any 20 ms period)						
$\mathrm{T}_{\text {tp }}=76^{\circ} \mathrm{C}$; lead length $=10 \mathrm{~mm}$	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.			2	A
$\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$; Fig. 2	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.			, 25	A
Repetitive peak forward current	IFRM	max.			15	A
Non-repetitive peak forward current ($t=10 \mathrm{~ms}$; half sine wave) $\mathrm{T}_{j}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; with reapplied $V_{\text {RRM }}$	${ }^{\prime}$ FSM	max.			50	A

Non-repetitive peak reverse avalanche energy; $I_{R}=600 \mathrm{~mA} ; \mathrm{T}_{j}=\mathrm{T}_{\mathrm{j}}$ max prior to surge; with inductive load switched off
Storage temperature
Junction temperature

E RSM	max.	20	mJ
$\mathrm{~T}_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th } j \text {-tp }}=46 \quad 0^{\circ} \mathrm{C} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}$
100
${ }^{\circ} \mathrm{C} / \mathrm{N}$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse avalanche breakdown voltage $I_{R}=0,1 \mathrm{~mA}$
Forward voltage*

$$
\begin{aligned}
& I_{F}=2,5 A ; T_{j}=T_{j \text { max }} \\
& I_{F}=5 A
\end{aligned}
$$

	BYV27-50	100	150	200
$V_{(B R) R}$	55	110	165	220
V_{F}	$<$	0,85		
V_{F}	$<$	1,25		

> Reverse current $$
\begin{array}{l}V_{R}=V_{R R M \max } ; T_{j}=25{ }^{\circ} \mathrm{C} \\ V_{R}\end{array}=V_{R R M \max ;} T_{j}=165^{\circ} \mathrm{C}
$$

R
$<$
$<$
$\mu \mathrm{A}$
Reverse recovery time when switched from
$I_{F}=0,5 \mathrm{~A}$ to $I_{R}=1 \mathrm{~A}$; measured at $I_{R}=0,25 \mathrm{~A}$
for definition see Figs 3 and 4

Fig. 3 Test circuit.
Input impedance oscilloscope $1 \mathrm{M} \Omega ; 22 \mathrm{pF}$. Rise time $\leqslant 7 \mathrm{~ns}$.
Source impedance 50Ω. Rise time $\leqslant 15 \mathrm{~ns}$.

Fig. 4 Reverse recovery time characteristic.

[^17]
Reverse recovery when switched from

$I_{F}=1$ A to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{d} I_{F} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$ (see Fig. 5)
recovered charge
recovery time

O_{s}	$<$
t_{rr}	$<$

Fig. 5 Definitions of $t_{r r}$ and Q_{s}.

Fig. 6 Forward current as a function of the maximum forward voltage.

Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta=50 \%$. $a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M m a x}$.

Fig. 8 Reverse current as a function of the junction temperature.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated on page 6.

Fig. 9 Thermal model.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal resistance	lead length					unit
	5	10	15	20	25	mm
$\mathrm{R}_{\text {th e-tp }}$	15	30	45	60	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {the-a }}$	580	445	350	290	245	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{\text {th tp-a }}=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:
$1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}$
$2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}$

Note
Any temperature can be calculated by using the dissipation graph (Fig. 7) and the thermal model (Fig. 9).

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very' suitable for use in switched-mode power supplies and in general in high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV28-50		100	150	200	
Repetitive peak reverse voitage	$v_{\text {RRM }}$	max.	50	i00	150	200	V
Continuous reverse voltage	V_{R}	max.	50	100	150	200	V
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.					A
Non-repetitive peak reverse energy	$E_{\text {RSM }}$	max.					mJ
Reverse recovery time	$i_{\text {r }}$	$<$					ns

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-64. The diodes are type-branded

The marking band indicates the cathode.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134;

Repetitive peak reverse voltage
Continuous reverse voltage
Average forward current (averaged over any 20 ms period) $T_{\text {tp }}=75^{\circ} \mathrm{C}$; lead length $=10 \mathrm{~mm}$
$\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$; p.c.b. mounting (see Fig. 2)
Repetitive peak forward current
Non-repetitive peak forward current
($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; with reapplied $V_{\text {RRM }}$
Non-repetitive peak reverse avalanche
energy; $I_{R}=600 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; with inductive
load switched off
Storage temperature
Junction temperature

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit hoard; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2

BYV28-50	100	150	200	
\max.	50	100	150	$200 \vee$
\max.	50	100	150	200 V

$I_{F(A V)}$	max.	3,5	A
$I_{F(A V)}$	max.	1,8	A
$I_{F R M}$	\max.	25	A

IFSM max. 80
A

$E_{\text {RSM }}$	max.	20	mJ
$\mathrm{~T}_{\text {stg }}$		-65 to +175	o^{C}
T_{j}	max.	165	o $^{\mathrm{C}}$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified
Reverse avalanche breakdown voltage $I_{R}=0,1 \mathrm{~mA}$
Forward voltage*
$I_{F}=3 A ; T_{j}=T_{j \text { max }}$
$I_{F}=5 A$

	BYV28-50		100	150	200
$V_{(B R) R}$	>	55	110	165	220
V_{F}	$<$				
V_{F}	$<$				

Reverse current
$V_{R}=V_{\text {RRMmax }} ; T_{j}=25^{\circ} \mathrm{C}$
$V_{R}=V_{R R M m a x} ; T_{j}=165^{\circ} \mathrm{C}$

I_{R}	$<$	1	μA
I_{R}	$<$	150	μA

Reverse recovery time when switched from
$I_{F}=0,5 A$ to $I_{R}=1 A$; measured at
$I_{R}=0,25 A$ for definition see
Figs 3 and 4

30

Fig. 3 Test circuit.
Input impedance oscilloscope $1 \mathrm{M} \Omega ; 22 \mathrm{pF}$; Rise time $\leqslant 7 \mathrm{~ns}$.
Source impedance 50Ω. Rise time $\leqslant 15 \mathrm{~ns}$.

Fig. 4 Reverse recovery time characteristic.

[^18]Reverse recovery when switched from
$I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-d i_{F} / d t=20 A / \mu$ (see Fig. 5)
recovered charge $\quad \mathrm{O}_{\mathrm{s}}<20 \mathrm{nC}$
recovery time
$\mathrm{t}_{\mathrm{rr}}<50 \mathrm{~ns}$

Fig. 5 Definitions of $t_{r r}$ and Q_{s}.

Fig. 6 Forward current as a function of the maximum forward voltage.

Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta=50 \%$. $a=I_{F(R M S)} / I_{F}(A V) ; V_{R}=V_{R R M m a x}$.

Fig. 8 Reverse current as a function of the junction temperature.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated on page 6.

Fig. 9 Thermal model.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal resistance	lead length					unit
	5	10	15	20	25	mm
	7	14	21	28	35	${ }^{\circ} \mathrm{C} / \mathrm{w}$
	410	300	230	185	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following vaiues apply:

1. Mounting similar to method given in Fig. 2: $R_{\text {th }}$ tp-a $=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:
$1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}$
$2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}$.

Note
Any temperature can be calculated by using the dissipation graph (Fig. 7) and the thermal model (Fig. 9).

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV95A	B	C	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	200	400	600	V
Continuous reverse voltage	V_{R}	max.	200	400	600	V
Average forward current	If(AV)	max.		1,5		A
Non-repetitive peak forward current	IFSM	max.		35		A
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	$\mathrm{trr}^{\text {r }}$	<		250		ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.

The marking band indicates the cathode.
The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYV95A	B	C
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	200	400	600 V
Continuous reverse voltage	V_{R}	max.	200	400	600 V
Average forward current (averaged over any 20 ms period)					
$\mathrm{T}_{\text {tp }}=55^{\circ} \mathrm{C}$; lead length 10 mm	$l f(A V)$	max.		1,5	A
$\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$; Fig. 2	$I^{\prime}(A V)$	max.		0,8	A
Repetitive peak forward current	IFRM	max.		10	A
Non-repetitive peak forward current ($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ RMmax	IFSM	max.		35	A

Non-repetitive peak reverse avalanche
energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; with inductive
load switched off
Storage temperature
Operating junction temperature

$E_{\text {RSM }}$	max.	10	mJ
$T_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=\quad 46$
${ }^{\circ} \mathrm{C} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{r}$; Fig. 2

100
${ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{aligned}
& \text { Forward voltage } \\
& \qquad \begin{array}{l}
I_{F}=3 \mathrm{~A} \\
I_{F}=3 \mathrm{~A} ; T_{j}=165{ }^{\circ} \mathrm{C}
\end{array}
\end{aligned}
$$

Reverse avalanche breakdown voltage $I_{R}=0,1 \mathrm{~mA}$

$$
\begin{aligned}
& \text { Reverse current } \\
& \qquad V_{R}=V_{R R M m a x} ; T_{j}=165{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Reverse recovery when switched from
$I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with
$-d I_{F} / d t=20 A / \mu s$
recovered charge
recovery time
Maximum slope of reverse recovery current
when switched from $I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$
with $-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$

Fig. $3 \longrightarrow T_{j}=25^{\circ} \mathrm{C} ;---T_{j}=165^{\circ} \mathrm{C}$.

		BYV95A	B	C	
V_{F}	$<$	1,6	1,6	1,6	V*
V_{F}	$<$	1,35	1,35	1,35	V *
$V_{(B R) R}$	$>$	300	500	700	V
I_{R}	$<$		150		$\mu \mathrm{A}$

$$
\begin{array}{llll}
\mathrm{O}_{\mathrm{s}} & < & 250 & \mathrm{nC} \\
\mathrm{t}_{\mathrm{rr}} & < & 250 & \mathrm{~ns}
\end{array}
$$

Fig. 4 Definitions

[^19]7282243

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application. $a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M m a x}$

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_{R}=V_{R R M m a x} ; \delta=50 \%$; $a=1,57$.

Fig. 7 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application. $V_{R}=V_{R R M m a x} ; \delta=50 \% ; a=1,57$.

Fig. 9 Nomogram: power loss ($\Delta \mathrm{P}_{\mathrm{R}(\mathrm{AV})}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Fig. 10 Maximum values (see also Fig. 4).

Fig. 11 Maximum values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see also Fig. 4).

Fig. 12 Maximum values at $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ (see also Fig. 4).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 13.
The thermal resistances hetween envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	15	30	45	60	75	$0 \mathrm{C} / \mathrm{W}$
$R_{\text {th e-a }}$	580	445	350	290	245	$0 \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{\text {th } t p-a}=70^{\circ} \mathrm{C} / \mathrm{W}$
2. Mounted on a printed-circuit board with copper laminate (per lead) of:

$$
\begin{aligned}
& 1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W} \\
& 2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Note

Any temperature can be calcu'ated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV96D	BYV96E
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	800	1000 V
Continuous reverse voltage	V_{R}	max.	800	1000 V
Average forward current	$I^{\prime}(\mathrm{AV})$	max.	1.5	A
Non-repetitive peak forward current	'FSM	max.	35	A
Non-repetitive peak reverse energy	ERSM	max.	10	mJ
Reverse recovery time	$\mathrm{t}_{\mathbf{r r}}$	<	300	ns
MECHANICAL DATA Dimensions in mm				

Fig. 1 SOD-57.

The marking band indicates the cathode.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage
Average fonward current (averaged over any 20 ms period) $\mathrm{T}_{\mathrm{tp}}=55^{\circ} \mathrm{C}$; lead length 10 mm $\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$; Fig. 2
Repetitive peak forward current
Non-repetitive peak forward current ($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} \mathrm{MM}_{\text {max }}$
Non-repetitive peak reverse avalanche
energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{j}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; with inductive load switched off
Storage temperature
Operating junction temperature

BYV96D	BYV96E
max. 800	1000 V
max. 800	1000

$V_{\text {RRM }}$
V_{R}
max. 800
1000 V

$I_{F}(A V)$	max.	1,5	A
$I_{F}(A V)$	max.	0,8	A
$I_{F R M}$	max.	10	A

| IFSM max. | 35 | A |
| :--- | :--- | :--- | :--- |

$E_{\text {RSM }}$	max.	10	mJ
$\mathrm{~T}_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

A
A
A

A
'FSM max
A
mJ
${ }^{\circ} \mathrm{C}$
$\mathrm{o}^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=46^{\circ} \mathrm{C} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Forward voltage

$$
\begin{aligned}
& I_{F}=3 \mathrm{~A} \\
& I_{F}=3 \mathrm{~A}: T_{j}=165^{\circ} \mathrm{C}
\end{aligned}
$$

Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Reverse current
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM} \text { max } ;} \mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$
Reverse recovery when switched from
$I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time

		BYV96D		BYV96E	
V_{F}	$<$	1,6		1,6	
V_{F}	$<$	1,35		1,35	
$V_{(B R) R}$	>	900		1100	v
I_{R}	<		150		$\mu \mathrm{A}$
O_{5}	$<$		400		$n \mathrm{C}$
${ }_{\text {tr }}$	$<$		300		ns
$\left\|\mathrm{dl}_{\mathrm{R}} / \mathrm{dt}\right\|$	$<$		5		A/ $/$ S

Fig. $3 — — T_{j}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$.

Fig. 4 Definitions of $t_{r r}$ and Q_{s}.

- Measured under pulse conditions to avoid excessive dissipation.

Fig. 5.

Fig. 7.

Fig. 6.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.
$a=I_{F}(R M S) / I_{F}(A V): V_{R}=V_{R R M \max }$

Fig. 6 Maximum average forward current as a function of the tie-point temperature: the curves include losses due to reverse leakage.

The graph is for switched-mode application; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM} \text { max }} ; \delta=50 \%$; $a=1,57$.

Fig. 7 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application.
$V_{R}=V_{R R M}$ max $; \delta=50 \% ; a=1,57$.

Fig. 9 Maximum values (see also Fig. 4).

Fig. 10 Maximum values; $T_{j}=25^{\circ} \mathrm{C}$ (see also Fig. 4).

Fig. 11 Maximum values; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ (see also Fig. 4).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {the-tp }}$	15	30	45	60	75	$\circ 0 \mathrm{CW}$
$R_{\text {the-a }}$	580	445	350	290	245	$0 \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $\mathbf{R}_{\text {th tp-a }}=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with copper laminate (per lead) of:

$$
\begin{aligned}
& 1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W} \\
& 2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

CONTROLLED AVALANCHE RECTIFIER DIODES

Double-diffused glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, capable of absorbing reverse transients.
They are intended for rectifier applications in colour television circuits as well as general purpose applications in telephony equipment.

QUICK REFERENCE DATA

			BYW54	BYW55	BYW56	
Crest working reverse voltage	$V_{\text {RWM }}$	max.	600	800	1000	V
Reverse avalanche breakdown voltage	$V_{\text {(BR)R }}$	$\stackrel{ }{<}$	$\begin{array}{r} 650 \\ 1000 \end{array}$	900 1300	$\begin{aligned} & 1100 \\ & 1600 \end{aligned}$	V
Average forward current	$I_{\text {F (}}$ (V)	max.	2	2	2	A
Non-repetitive peak forward current	IfSM	max.		50		A
Non-repetitive peak reverse power dissipation	$P_{\text {RSM }}$	max.		1		kW
Junction temperature	T_{j}	max.		165		${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.

The marking band indicates the cathode.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Crest working reverse voltage
Continuous reverse voltage *
Average forward current (averaged
over any 20 ms period);
$T_{\text {lead }}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\text {th } \mathrm{j} \cdot \mathrm{tp}}=50^{\circ} \mathrm{C} / \mathrm{W}$
(mounting method 1) $100{ }^{\circ} \mathrm{CN}$
$T_{\text {amb }}=75^{\circ} \mathrm{C}$; $R_{\text {th } j-a}=100^{\circ} \mathrm{C} / \mathrm{W}$
(mounting method 3)
Repetitive peak forward current
Non-repetitive peak forward current **
($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathbf{0}$
$I_{\text {FSM }}$ max.
50
Non-repetitive peak reverse power dissipation ($\mathrm{t}=20 \mu \mathrm{~s}$; half sine-wave);
$T_{j}=T_{j \text { max }}$ prior to surge
PRSM max. 1 kW
Non-repetitive peak reverse avalanche
mode pulse energy; $I_{R}=1 A$;
$T_{j}=T_{j \text { max }}$ prior to surge; with
inductive load switched off
Storage temperature
Junction temperature *

$E_{\text {RSM }}$	max.	20	$m J$
$T_{\text {stg }}$		-65 to $+17 \mathrm{~m}_{\mathrm{j}}$	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

Notes

- See also Fig. 12.
* The device is capable of withstanding inrush currents when a $200 \mu \mathrm{~F}$ capacitor is connected to a 220 V mains with a series resistance of $2,4 \Omega$.

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length $a=10 \mathrm{~mm}$; Fig. 2
2. Thermal resistance from junction to ambient when mounted to solder tags at a lead length $a=10 \mathrm{~mm}$; Fig. 3
3. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 4

Fig. 2 Mounting method 1.

Fig. 3 Mounting method 2.

Fig. 4 Mounting method 3.

Fig. 5 Thermal resistance as a function of lead length for mounting methods 1,2 and 3.

CHARACTERISTICS

Forward voltage; $T_{j}=25{ }^{\circ} \mathrm{C}$ *
$I_{F}=1 \mathrm{~A}$
$I_{F}=10 \mathrm{~A}$

Reverse avalanche breakdown voltage $\mathrm{I}_{\mathrm{R}}=0,1 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Reverse current

$V_{R}=V_{\text {RWM max }} ; T_{j}=25^{\circ}{ }^{\circ}{ }^{* *}$
$V_{R}=V_{R W M}$ max $; T_{j}=100^{\circ} \mathrm{C}$

		BYW54	BYW55	BYW56
	$<$	1	1	1 V
V_{F}	$<$	1,65	1,65	$1,65 \mathrm{~V}$
V_{F}	$<$	650	900	1100 V
$V_{\text {(BR)R }}$	$<$	1000	1300	1600 V
I_{R}	$<$		1,0	$\mu \mathrm{~A}$
I_{R}	$<$		10	$\mu \mathrm{~A}$

Reverse recovery charge when switched from $I_{F}=1 A$ to $V_{R} \geqslant 50 \mathrm{~V}$ with $-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=5 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ a_{s}
typ.
3
$\mu \mathrm{C}$
Reverse recovery time when switched from $I_{F}=1 A$ to $V_{R} \geqslant 50 V$ at $i_{r r}=10 \%$ of I_{R} with -d $I_{F} / d t=5 A / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{t}_{\mathrm{rr}} \quad$ typ. $\quad 2,5 \mathrm{~s}$

Fig. 6 Definitions of $t_{r r}$ and Q_{s}.
Diode capacitance
$V_{R}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{C}_{\mathrm{d}} \quad$ typ. $\quad 50 \quad \mathrm{pF}$

[^20]

Fig. 7 Interrelation between the steady-state power dissipation excluding power in avalanche region (left-hand graph), and the maximum permissible ambient temperature (no leads of other dissipating components running to the same tie-points) in accordance with the mounting methods mentioned in Figs 3 and 4.

Fig. 8 Interrelation between the steady-state power dissipation excluding power in avalanche region (left-hand graph) and the maximum permissible lead temperature.

Fig. 9 Maximum permissible non-repetitive peak reverse power dissipation in the avalanche region.

7277660

Fig. 10 Maximum permissible non-repetitive peak forward current based on sinusoidal currents ($f=50 \mathrm{~Hz}$) -

- - - - - $T_{j}=T_{j \max }$ prior to surge; $V_{R}=0$
$\mathrm{T}_{\mathrm{j}}=25^{\circ}{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RWM}}$ max

Fig. 11.

Fig. 13.

Fig. 12.

Fig. 14.

Fig. 15.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 16

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	15	30	45	60	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {the-a }}$	580	445	350	290	245	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant \mathbf{4 0} \mu \mathrm{m}$, the following values apply:

1. Mounting similar to method given in Fig. 4: $R_{\text {th tp-a }}=70^{\circ} \mathrm{C} N$.
2. Mounted on a printed-circuit board with copper laminate (per lead) of:

$$
\begin{aligned}
& 1 \mathrm{~cm}^{2} R_{\text {th }} \text { tp-a } \\
& 2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Note

Any temperature can be calculated by using the dissipation graph (Figs. 7 and 8) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW95A	8	C	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	200	400	600	V
Continuous reverse voltage	V_{R}	max.	200	400	600	V
Average forward current	$I_{\text {F }}(\mathrm{AV})$	max.		3		A
Non-repetitive peak forward current	'FSM	max.		70		A
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	$t_{\text {rr }}$	<		250		ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64.

The marking band indicates the cathode.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage
Average forward current (averaged over any 20 ms period)
$T_{t p}=50^{\circ} \mathrm{C}$; lead length 10 mm
$\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$; Fig. 2
Repetitive peak forward current

		BYW95A	B	C
	max.	200	400	600
$V_{\text {RRM }}$				
V_{R}	max.	200	400	600 V

$I^{\prime}(A V)$	max.	3	A
$I_{F(A V)}$	max.	1,25	A
IFRM	max.	15	A

Non-repetitive peak forward current
($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}}$
IFSM max.
70
A
Non-repetitive peak reverse avalanche
energy: $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \max }$
prior to surge; with inductive
load switched off

Storage temperature

Operating junction temperature

$E_{\text {RSM }}$	max.	10	mJ
$T_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=$
25
${ }^{\circ} \mathrm{C} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2

$$
R_{\text {th } j-a}=
$$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

I_{F}	$=5 \mathrm{~A}$
I_{F}	$=5 \mathrm{~A} ; T_{j}=165{ }^{\circ} \mathrm{C}$

Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Reverse current

$$
V_{R}=V_{R R M \max } ; T_{j}=165^{\circ} \mathrm{C}
$$

Reverse recovery when switched from
$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with
$-d I_{F} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time
Maximum slope of reverse recovery current
when switched from $I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$
with $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$

Fig. $3-\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$.

		BYW95A	B	C
V_{F}	$<$	1.5	1,5	1,5
V_{F}	$<$	1,25	1,25	1,25
$V_{(B R) R}$	$>$	300	500	700

$$
\begin{array}{llll}
I_{R} & < & 150 & \mu A
\end{array}
$$

$\mathrm{a}_{\mathbf{s}}$	$<$	250	nC
$\mathrm{t}_{\mathbf{r r}}$	$<$	250	ns

* Measured under pulse conditions to avoid excessive dissipation.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.
$a=I_{F(R M S)} / I_{F}(A V) ; V_{R}=V_{R R M m a x}$

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $V_{R}=V_{R R M m a x} ; \delta=50 \% ; a=1,57$.

Fig. 7 Maximum slope of reverse
recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application;
$V_{R}=V_{R R M \max } ; \delta=50 \% ; a=1,57$.

Fig. 9 Nomogram: power loss $\left(\Delta P_{R}(A V)\right)$ due to switching only. To be added to steady state power losses (see also Fig. 4).

Fig. 10 Maximum values; for definitions see Fig. 4.

Fig. 11 Maximum values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. For definitions see Fig. 4.

Fig. 12 Maximum values; $\mathrm{T}_{\mathrm{j}}=140{ }^{\circ} \mathrm{C}$. For definitions see Fig. 4.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 13.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tiepoint and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{\text {th } t p-a}=700^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:
$1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}$
$2,25 \mathrm{~cm}^{2} R_{\text {th }} \mathrm{tp}-\mathrm{a}=45^{\circ} \mathrm{C} / \mathrm{W}$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW96D	BYW96E	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	800	1000	v
Continuous reverse voltage	V_{R}	max.	800	1000	v
Average forward current	$I_{\text {f (}}(\mathrm{AV})$	max.		3	A
Non-repetitive peak forward current	${ }^{\text {I FSM }}$	max.			A
Non-repetitive peak reverse energy	ERSM	max.		0	mJ
Reverse recovery time	$t_{\text {rr }}$	<			ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64.

The marking band indicates the cathode.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage
Average forward current 〈averaged over any 20 ms period) $T_{t p}=50^{\circ} \mathrm{C}$; lead length 10 mm $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$; Fig. 2
Repetitive peak forward current
Non-repetitive peak forward current
($t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; $V_{R}=V_{R} R M \max$
Non-repetitive peak reverse avalanche energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \max }$ prior to surge; with inductive load switched off
Storage temperature
Operating junction temperature

		BYW96D	BYW96E
$V_{\text {RRM }}$	max.	800	1000
V_{R}	max.	800	1000

I'F(AV)	max.	3	A
IF(AV)	max.	1,25	A
IFRM	max.	15	A

IFSM max. 70 A

$E_{\text {RSM }}$	max.	10	mJ
$T_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	165	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

$$
R_{\text {th } j-t p}=25^{\circ} \mathrm{C} / \mathrm{W}
$$

2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit board; Cu -thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}=75{ }^{\circ} \mathrm{C} / \mathrm{W}$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{aligned}
& \text { Forward voltage } \\
& \qquad \begin{array}{l}
I_{F}=5 \mathrm{~A} \\
I_{F}=5 \mathrm{~A} ; T_{j}=165^{\circ} \mathrm{C}
\end{array}
\end{aligned}
$$

Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Reverse current

$$
V_{R}=V_{R R M \max } ; T_{j}=165{ }^{\circ} \mathrm{C}
$$

Reverse recovery when switched from

$$
I_{F}=1 A \text { to } V_{R} \geqslant 30 \mathrm{~V} \text { with }
$$

$-d I_{F} / d t=20 A / \mu s$
recovered charge
recovery time
Maximum slope of reverse recovery current when switched from $I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with $-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$

Fig. $3 \longrightarrow \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$.

Fig. 4 Definitions.

- Measured under pulse conditions to avoid excessive dissipation.

Fig. 5.

Fig. 7.

Fig. 6.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.
The graph is for switched-mode application.
$a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M \max }$

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}} ; \delta=50 \% ; a=1,57$.

Fig. 7 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application; $V_{R}=V_{R R M m a x} ; \delta=50 \% ; a=1,57$.

Fig. 9 Maximum values. For definitions see Fig. 4.

Fig. 10 Maximum values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see also Fig. 4).

Fig. 11 Maximum values at $T_{j}=140^{\circ} \mathrm{C}$ (see also Fig. 4).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{\text {th }} \mathrm{tp}-\mathrm{a}=70^{\circ} \mathrm{C} / \mathrm{w}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$
\begin{aligned}
& 1 \mathrm{~cm}^{2} R_{\text {th } t p-a}=55^{\circ} \mathrm{C} / \mathrm{W} \\
& 2,25 \mathrm{~cm}^{2} R_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

SILICON RECTIFIER DIODE

Double-diffused silicon diode in a DO-14 plastic envelope. It is intended for low current rectifier applications.

QUICK REFERENCE DATA					
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	\max.	1600	V	
Average forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	\max.	0,5	A	
Non-repetitive peak forward current	$\mathrm{I}_{\mathrm{FSM}}$	\max.	15	A	

MECHANICAL DATA

DO-14 The diodes are type-branded

The rounded end indicates the cathode
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

MOUNTING METHODS see page 3.

All information applies to frequencies up to 400 Hz .
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Crest working reverse voltage
Repetitive peak reverse voltage ($\delta \leq 0.01$)
Non-repetitive peak reverse voltage ($\mathrm{t}<10 \mathrm{~ms}$)

V_{R}	ax. 800
VRRM	max. 1600
$\mathrm{V}_{\text {RS }}$	max. 1600

Currents

Average forward current (averaged
over any 20 ms period)

Non-repetitive peak forward current
($\mathrm{t}=10 \mathrm{~ms}$; half-sine wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge $\mathrm{I}_{\mathrm{FSM}} \max .15 \mathrm{~A}$
Temperatures
Storage temperature
Junction temperature

THERMAL RESISTANCE

$T_{\text {stg }} \quad-65$ to $+150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max . \quad 150{ }^{\circ} \mathrm{C}$

See page 3

CHARACTERISTICS

Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{F}} \quad<\quad 1.6 \mathrm{~V} \text { l) }
$$

Reverse current

$\mathrm{V}_{\mathrm{R}}=800 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	I_{R}	$<$	$50 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}^{\prime}=800 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	I_{R}	$<$	$1 \mu \mathrm{~A}$

1) Measured under pulse conditions to avoid excessive dissipation.

THERMAL RESISTANCE (influence of mounting method)

The quoted values apply when no other leads run to the tie-points. If leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

1. Mounted to solder tags at a lead-length $\mathrm{a}=10 \mathrm{~mm} . \mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{a}=150^{\circ} \mathrm{C} / \mathrm{W}$

2. Mounted to solder tags at a = meximum lead-length. R th $^{j-a}=200^{\circ} \mathrm{C} / \mathrm{W}$
3. Mounted on printed-wiring with a small area of copper at any lead-length a. $R_{\text {th } j-a}=200^{\circ} \mathrm{C} / \mathrm{W}$

SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is $300^{\circ} \mathrm{C}$; it must be in contac: with the joint for no more than 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than $150^{\circ} \mathrm{C}$.
\square

EXAMPLE: Rectifier with C-load
mounting method 1 (see page 3)

Circuit III

	$V_{I(R M S)}$	R_{t}	C_{L}
Circuit I	220 V	8.2Ω	$100 \mu \mathrm{~F}$
	280 V	15Ω	$100 \mu \mathrm{~F}$
Circuit II	42 V	1.5Ω	1500 F
Circuit III	127 V	5.6Ω	$200 \mu \mathrm{~F}$

From the left hand graph on page 6 the total power dissipation can be found as a function of the average output current.
The parameter $a=\frac{I F(R M S) \text { per diode }}{I_{F A V} \text { per diode }}$ depends on $n \omega R_{L} C_{L}$ and $\frac{R_{t}+R_{\text {diff }}}{n R_{L}}$ and can be found from existing graphs.

See Application Book: RECTIFIER DIODES

Once the power dissipation is known, the max. permissible ambient temperature follows from the right hand graph.
For the series resistance, added to limit the initial peak rectifier current, the required minimum value can be found from the upper graph.
$\mathrm{R}_{\text {diff }}$ is shown on page 5 upper figure.

SILICON RECTIFIER DIODES

Diffused silicon rectifier diodes in DO-15 plastic envelopes for general purposes. The series consists of the following types: BYX36-150, BYX36-300, BYX36-600.

QUICK REFERENCE DATA						
.		BYX 36	150	300	600	
Crest working reverse voltage	$\mathrm{V}_{\text {RWM }}$	max.	100	200	400	V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	150	300	600	V
Average forward current with R load up to $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$	max.		1,0		A
Non-repetitive peak forward current $\mathrm{t}=10 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ prior to surge	$\mathrm{I}_{\text {FSM }}$	max.		30		A
Junction temperature	Tj	max.		125		${ }^{\circ} \mathrm{C}$

MECHANICAL DATA

Dimensions in mm
DO-15 (SOD - 40) The diodes are type-branded

Cathode indicated by coloured band

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes.
They are intencied for use in inverter and converter applications, and in switched-mode power supplies, scan rectifiers in television receivers and other h.f. power supplies. The devices feature non-snap-ofi characteristics.

QUICK REFERENCE DATA					
		BYX55	-350	600	
W orking reverse voltage	$V_{\text {R }}$ W	max.		500	V
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	\max.	350	600	V
Average forward cur rent	${ }^{1} \mathrm{~F}(\mathrm{AV})$	\max.			A
Non-repetitive peak forward current $\mathrm{t}=10 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ prior to surge	${ }^{1} \mathrm{FSM}$	\max.		0	A
Junction temperature		max.			${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Reverse recovery charge when switched } \\ & \text { from } \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \text { to } \mathrm{V}_{\mathrm{R}} \geq 50 \mathrm{~V} \text { with } \\ & -\mathrm{dt} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	Q_{5}	<			nC

MECHANICAL DATA

Dimensions in mm
SOD - 18 The diodes are type-branded

The rounded end indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).
For current production only; for new designs successors BYV95 and BYW95 are recommended.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		BYX55-350		-600	
Continuous reverse voltage	V_{R}	max.	300	500	V
Working reverse voltage	$\mathrm{V}_{\text {RW }}$	max.	300	500	V
Repetitive peak reverse voltage ($\mathrm{t} \leq 10 \mu \mathrm{~s}$)	$\mathrm{V}_{\text {RRM }}$	max.	350	600	V
Non-repetitive peak reverse voltage $(t \leq 10 \mathrm{~ms})$	$\mathrm{V}_{\text {RSM }}$	max.	350	600	V

Currents

Average forward current (averaged over any 20 ms period), see also pages 4 and 5
Repetitive peak forward current
\rightarrow Repetitive peak forward current ($\delta \leq 0.04$; f $>15 \mathrm{kHz}$)

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	max.	1.2	A
$\mathrm{I}_{\mathrm{FRM}}$	max.	8	A
$\mathrm{I}_{\text {FRM }}$	\max.	15	A

Non-repetitive peak forward current
($\mathrm{t}=10 \mathrm{~ms}$; half sine wave)
$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ prior to surge $\quad \mathrm{I}_{\mathrm{FSM}} \quad \max . \quad 40 \quad \mathrm{~A}$
Rate of change of commutation current
See also nomogram on page 6
$-\frac{\mathrm{dI}}{\mathrm{dt}} \max$.
$20 \mathrm{~A} / \mu \mathrm{s}$

Temperatures

Storage temperature
Junction temperature
$\begin{array}{lrr}\mathrm{T}_{\text {stg }} & -40 \text { to }+125{ }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{j}} & \max . & 125{ }^{\circ} \mathrm{C}\end{array}$

THERMAL RESISTANCE

CHARACTERISTICS

Forward voltage
$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$$
\left.\mathrm{V}_{\mathrm{F}} \quad<\quad 1.25 \mathrm{v}^{\mathrm{l}}\right)
$$

Reverse current

$V_{R}=V_{R W \max } ; T_{j}=125{ }^{\circ} \mathrm{C}$
$V_{R}=V_{R W \text { max }} ; T_{j}=25{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}} \quad<$
0.75 mA
$\mathrm{I}_{\mathrm{R}} \quad<$
$10 \mu \mathrm{~A}$
Capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}_{\mathrm{R}}=250 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25$ to $125^{\circ} \mathrm{C} \quad \mathrm{C}_{\mathrm{d}} \quad$ typ. $\quad 8 \mathrm{pF}$

[^21]
CHARACTERISTICS (continued)

Reverse recovery when switched from
$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geq 50 \mathrm{~V}$ with $-\mathrm{dI} / \mathrm{dt}=$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery charge

	1	20	$\mathrm{~A} / \mu \mathrm{s}$
$\mathrm{Q}_{\mathbf{s}}$	<120	400	nC
t_{rr}	<750	350	ns
t_{f}	>120	100	ns

Fall time

THERMAL RESISTANCE (influence of mounting method)
The quoted values of $R_{t h} j$-a should be used only when no other leads run to the tie-points. If the leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

1. Mounted on solder tags at a lead-length: $a=10 \mathrm{~mm}$

$$
a=\max . \text { lead length }
$$

$$
\begin{aligned}
& R_{\text {th } j-a}=60^{\circ} \mathrm{C} / \mathrm{w} \\
& R_{\text {th } \mathrm{j}-\mathrm{a}}=70^{\circ} \mathrm{C} / \mathrm{w}
\end{aligned}
$$

2. Mounted on printed-wiring board at
$a=$ maximum lead-length and heatsinks
($0,3 \mathrm{~mm} \mathrm{Cu}$) on leads.
Heatsink size $2 \mathrm{~cm}^{2}$ (per side)
Heatsink size $1 \mathrm{~cm}^{2}$ (per side)

$$
\begin{aligned}
& R_{\text {th } j-a}=60^{\circ} \mathrm{C} / \mathrm{w} \\
& R_{\text {th } j-a}=70^{\circ} \mathrm{C} / \mathrm{w}
\end{aligned}
$$

3. Mounted on printed-wiring board at
$a=$ maximum lead-length.
4. Mounted on printed-wiring board at a lead-length $a=10 \mathrm{~mm}$.

$$
\begin{aligned}
& R_{\text {th } j-\mathrm{a}}=85^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{R}_{\text {th } j-\mathrm{a}}=95^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is $300^{\circ} \mathrm{C}$; it must be in contact with the joint for no more than 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than $150^{\circ} \mathrm{C}$.

SWITCHED-MODE APPLICATION

nomogram: power loss $\Delta P_{R}(A V)$ due to switching only (to be added to forward and reverse power losses)

SILICON E.H.T. RECTIFIER DIODE

The BYX90 is a 6 kV silicon diode in a plastic envelope, only intended as subassembly for very high voltage stacks in X -ray equipment (in oil).

QUICK REFERENCE DATA

Crest working reverse voltage	$V_{\text {RWM }}$	max.	6 kV
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	7.5 kV
Average forward current up to $\mathrm{T}_{\text {oil }}=50^{\circ} \mathrm{C}$	I^{\prime} (AV)	max.	200 mA
Non-repetitive peak forward current $\mathrm{t}=10 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ prior to surge	IFSM	max.	25 A
Junction temperature	Tj	max.	$125{ }^{\circ} \mathrm{C}$

MECHANICAL DATA .
Dimensions in mm
Fig. 1 SOD-18B.

Cathode indicated by coloured band
The diodes are type-branded

Mullard

All information applies to frequencies from 40 Hz to $\mathbf{4 0 0 ~ H z}$

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Crest working reverse voltage

$V_{\text {RWM }}$	max.	6 kV
$V_{\text {RRM }}$	max.	$7,5 \mathrm{kV}$
$V_{\text {RSM }}$	\max.	8 kV

Non-repetitive peak reverse voltage ($\mathrm{t} \leqslant 10 \mathrm{~ms}$)
Average forward current (averaged over any 20 ms period) up to $\mathrm{T}_{\text {oil }}=55^{\circ} \mathrm{C}$ (stirring oil) continuous operation
Repetitive peak forward current intermittent operation
$I^{\prime}(A V)$ max. 200 mA
IFRM max. 3 A see application information Figs 6 and 7
Non-repetitive peak forward current ($\mathrm{t}=10 \mathrm{~ms}$; half sine wave) $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ prior to surge
Storage temperature
Junction temperature

$l_{\text {FSM }}$	max.	25 A
$T_{\text {stg }}$	-40 to $+125{ }^{\circ} \mathrm{C}$	
T_{j}	max.	$125{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to cooling oil (in stirring oil)
$R_{\text {th j-o }}=30^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	V_{F}	$<$	15 V
Peak reverse current $V_{R}=6 \mathrm{kV} ; T_{j}=100^{\circ} \mathrm{C}$	I_{R}	$<$	$10 \mu \mathrm{~A}$
Reverse recovery charge when switched from $I_{F}=200 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 50 \mathrm{~V}$ with $-\mathrm{d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{Q}_{\mathbf{s}}$	$<$	125 nC

SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is $300^{\circ} \mathrm{C}$; it must not be in contact with the joint for more than 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than $150^{\circ} \mathrm{C}$.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

APPLICATION INFORMATION

The BYX90 used in very high voltage stacks applied in X-ray equipment.

\|lll\|l].

Fig. 6 Maximum current through a 3-phase rectifier bridge as a function of pulse duration.
The exposure time $\mathbf{T}=1 \mathrm{~s}$.

Fig. 7 Maximum current through a 3-phase rectifier bridge as a function of pulse duration.
The exposure time $\mathrm{T}=3 \mathrm{~s}$.

Fig. 8 Maximum permissible output current in a 3-phase rectifier bridge with a minimum time between exposures of 20 s .

SERIES

SILICON E.H.T. RECTIFIER DIODES

The BYX91 series are silicon high-voltage rectifiers capable of absorbing transients. They are primarily intended for X-ray applications. This series is a direct replacement of the BYX29 series. Each rectifier consists of an appropriate number of diodes encapsulated in a synthetic resin-bonded paper tube.
For cooling and insulation reasons, the devices can only be used when immersed in oil. The series consists of the following types:

BYX91-90K (replaces BYX29-75000); BYX91-150K (replaces BYX29-125000);
BYX91-120K (replaces BYX29-100000); BYX91-180K (replaces BYX29-150000).

QUICK REFERENCE DATA							
		BYX91	1-90K	120K	150K	180K	
Crest working reverse voltage	$\mathrm{V}_{\text {RWM }}$	max.		120	150	180	kV
Average forward current	$\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$	max.		200	200	200	mA
Non-repetitive peak forward current; $\mathrm{t}=10 \mathrm{~ms}$	${ }^{\text {I }}$ FSM	max.		25	25	25	A
Junction temperature		max.		125	125	125	${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to cooling oil	$\mathrm{R}_{\text {th j-o }}$	$=$	2	1,5	1,2	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MECHANICAL DATA

Dimensions in mm

The diodes are type-branded

BYX91-90K
L: 141 to 143 mm
BYX91-120K
BYX91-150K
BYX91-180K

L: 169 to 171 mm
L: 229 to 231 mm
L: 229 to 231 mm

Weight: 47 g
Weight: 54 g
Weight: 65 g
Weight: 70 g

All information applies to frequencies up to 400 Hz

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		BYX 9	-90K	120K	150K	180K	
Crest working reverse voltage	$\mathrm{V}_{\text {RWM }}$	ax.	90	120	150	180	kV
Crest working reverse voltage; $\mathrm{t} \leq 10 \mathrm{~min}$	$V_{\text {RWM }}$	max.	100	130	165	195	kV
Repetitive peak reverse voltage; $\delta \leq 0,01$	$V_{\text {RRM }}$	x.	115	150	190	225	kV
Non-repetitive peak reverse voltage: $\mathrm{t}=10 \mathrm{~ms}$	VRSM	max.	120	160	200	240	kV

Currents

Average forward current (averaged over
any 20 ms period) at $\mathrm{T}_{\text {oil }}=50^{\circ} \mathrm{C}$
continuous operation $\quad \mathrm{I}_{\mathrm{F}(\mathrm{AV})} \max .200 \mathrm{~mA}$
intermittent operation ($t \leq 0,1 \mathrm{~s}$, once every 20 s) $\quad \mathrm{I}_{\mathrm{F}}(\mathrm{AV}) \quad \max .800 \mathrm{~mA}$
Repetitive peak forward current
continuous operation
intermittent operation $(\mathrm{IF}(\mathrm{AV})=800 \mathrm{~mA}$; $t \leq 0,1$ s once every 20 s)

Non-repetitive peak forward current; $t=10 \mathrm{~ms}$
$\mathrm{I}_{\mathrm{FRM}} \quad \max . \quad 600 \mathrm{~mA}$
$I_{\text {FRM }} \max .2400 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{FSM}} \quad \max$. 25 A

Temperatures

Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to cooling oil (stirring oil)

$\mathrm{T}_{\text {stg }}$	-30 to +125	${ }^{\circ} \mathrm{C}$
T_{j}	\max.	125

BYX91-90K	120 K	150 K	180 K
$\mathrm{R}_{\text {th j-o }}=2$	1,5	1,2	$1 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

Forward voltage
$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Peak reverse current at $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{WRMmax}}$ at $\mathrm{t}=10 \mathrm{~min}$

BYX91-90K	120 K	150 K	180 K
$\mathrm{~V}_{\mathrm{F}}<225$	300	375	450
		V	
$\mathrm{I}_{\mathrm{RM}}<10$	10	10	$10 \mu \mathrm{~A}$

MOUNTING NOTES

1. The rectifier stack shall be used in cooling (insulating) oil.
2. It should be made possible that the oil can circulate freely through the stacks.
3. Horizontal mounting should be avoided.

A range of plastic encapsulated silicon diffused rectifier diodes for general purpose use.

QUICK REFERENCE DATA							
	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007
$\mathrm{V}_{\mathrm{R}} \mathrm{max}$.	50	100	200	400	600	800	1000 V
$\mathrm{V}_{\text {RRM }}{ }^{\text {max }}$	50	100	200	400	600	800	1000 V
$I_{F(A V)}{ }^{\text {max }}$	$\mathrm{mb}=-65$	to $+75^{\circ}$		1.0			A
$\mathrm{T}_{\mathrm{j}} \max$.				175			${ }^{0} \mathrm{C}$

Unless otherwise shown data are applicable to all types in the series

OUTLINE AND DIMENSIONS

All dimensions in mm
D2523a

The diodes are type branded

RATINGS

Limiting values of operation according to the absolute maximum system
Electrical

| | 1N4001 | 1N4002 | 1N4003 | 1N4004 | 1N4005 | 1N4006 | 1N4007 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\mathrm{I}_{\mathbf{F}}$ max. D.C. forward current See graph on page 3
$\mathrm{I}_{\mathrm{FRM}}$ max. Repetitive peak forward current $\quad 10 \quad$ A
$\begin{array}{lllll}\mathrm{I}_{\mathrm{FSM}} \text { max. } & \begin{array}{l}\text { Non-repetitive peak forward } \\ \text { current (half-cycle surge, } 60 \mathrm{c} . \mathrm{p} . \mathrm{s} .)\end{array} & 30 & \text { A }\end{array}$
Temperature

$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j} max.	Junction temperature	175	${ }^{\mathrm{O}} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (${ }_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise stated)

V_{F}	Forward voltage drop		
	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Ad.c}$.	1.1	v
$\mathrm{V}_{\mathrm{F}(\mathrm{AV})}$	Full-cycle average forward voltage drop $\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=1.0 \mathrm{~A}$	0.8	V
${ }^{\text {I }}$ R	Reverse current $\mathrm{V}_{\mathrm{R}}=\max ., \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$	50	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{R}(\mathrm{AV})}$	Full-cycle average reverse current $\mathrm{V}_{\mathrm{RRM}}=\max ,, \mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$	30	$\mu \mathrm{A}$

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, provided the soldering spot is at least 5 mm from the seal.

DIP SOLDERING

At a maximum solder temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, the soldering spot being not less than 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point is $175^{\circ} \mathrm{C}$.

GERMANIUM DIODES Point contact Gold bonded

工

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope primarily intended for use in a.m. detector and ratio detector circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	\max.	30 V
Repetitive peak reverse voltage	$\mathrm{V}_{R R M}$	\max.	45 V
Forward current (d.c.)	I_{F}	\max.	35 mA
Repetitive peak forward current	$I_{F R M}$	\max.	100 mA
Operating ambient temperature	$T_{a m b}$	\max.	$60{ }^{\circ} \mathrm{C}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	$2,2 \mathrm{~V}$

MECHANICAL DATA
Dimensions in mm-
Fig. 1 DO-7.

The diodes may be supplied either type branded or with a broad white cathode band.

Available for current production only; not recommended for new designs.

AA119

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Continuous reverse voltage
Repetitive peak reverse voltage
Forward current (d.c.)
Average rectified forward current
(averaged over any 50 ms period)
Repetitive peak forward current
Non-repetitive peak forward current ($\mathrm{t}<1$ s)
Storage temperature
Operating ambient temperature

THERMAL RESISTANCE

From junction to ambient in free air

Dynamic characteristics

$\mathrm{V}_{\text {im }}$	1	3	3	V
f	0,47	10,7	38,15	MHz
C_{L}.	50	330	33	pF
R_{L}	1,0	0,033	0,082	$\mathrm{M} \Omega$
η	85	85	85	$\%$
$R_{\text {d }}$	370	15	30	$\mathrm{k} \Omega$

CHARACTERISTICS

Forward voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& I_{F}=0,1 \mathrm{~mA} \\
& I_{F}=1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA}
\end{aligned}
$$

V_{F}	typ.	0,23	V
	<	0,30	V
V_{F}	typ.	0,56	V
	<	0,88	V
V_{F}	typ.	1,5	V
	$<$	2,2	V
V	typ.	2,8	V
	<	4,0	v

Forward voltage at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$

$$
\begin{aligned}
& I_{F}=0,1 \mathrm{~mA} \\
& I_{F}=1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA}
\end{aligned}
$$

Reverse current at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{R}=0,1 \mathrm{~V} \\
& V_{R}=1,5 \mathrm{~V} \\
& V_{R}=10 \mathrm{~V} \\
& V_{R}=30 \mathrm{~V} \\
& V_{R}=45 \mathrm{~V}
\end{aligned}
$$

Reverse current at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$

$$
\begin{aligned}
& V_{R}=0,1 \mathrm{~V} \\
& V_{R}=1,5 \mathrm{~V} \\
& V_{R}=10 \mathrm{~V} \\
& V_{R}=30 \mathrm{~V} \\
& V_{R}=45 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& I_{R} \\
& I_{R} \\
& I_{R} \\
& I_{R} \\
& I_{R}
\end{aligned}
$$

$$
I_{R}
$$

$\begin{array}{lr}\text { typ. } & 0,23 \mathrm{~V} \\ < & 0,30 \mathrm{~V} \\ \text { typ. } & 0,56 \mathrm{~V} \\ < & 0,88 \mathrm{~V} \\ \text { typ. } & 1,5 \mathrm{~V} \\ < & 2,2 \mathrm{~V} \\ \text { typ. } & 2,8 \mathrm{~V} \\ < & 4,0 \mathrm{~V}\end{array}$
typ. $0,16 \mathrm{~V}$
< 0,25 V
typ. $0,50 \mathrm{~V}$
$<0,80$ V
typ. $1,4 \mathrm{~V}$
$<\quad 2,1 \mathrm{~V}$
$\begin{array}{ll}\text { typ. } & 2,6 \mathrm{~V} \\ < & 3,8 \mathrm{~V}\end{array}$
$\begin{array}{ll}\text { typ. } & 0,35 \mu \mathrm{~A} \\ < & 1,0 \mu \mathrm{~A}\end{array}$ typ. $\quad 0,8 \mu \mathrm{~A}$
$<\quad 2,8 \mu \mathrm{~A}$ typ. $\quad 4,5 \mu \mathrm{~A}$ $<\quad 18 \mu \mathrm{~A}$ typ. $\quad 35 \mu \mathrm{~A}$ $<\quad 150 \mu \mathrm{~A}$
typ. $\quad 90 \mu \mathrm{~A}$ $<\quad 350 \mu \mathrm{~A}$

typ. $\quad \begin{array}{l}4,5 \mu \mathrm{~A} \\ < \\ 12 \mu \mathrm{~A}\end{array}$

typ. $\quad 6 \mu \mathrm{~A}$
$<\quad 25 \mu \mathrm{~A}$
typ. $\quad 16 \mu \mathrm{~A}$
$<\quad 60 \mu \mathrm{~A}$
typ. $\quad 60 \mu \mathrm{~A}$
$<\quad 300 \mu \mathrm{~A}$
$\begin{array}{ll}\text { typ. } & 170 \mu \mathrm{~A} \\ < & 500 \mu \mathrm{~A}\end{array}$

[^22]

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope for use as video detector and for general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	20 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	30 V
Forward current (d.c.)	$I_{\text {F }}$	max.	8 mA
Repetitive peak forward current	IFRM	max.	45 mA
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	max.	$75{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=30 \mathrm{~mA}$	V_{F}	<	3,2

MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad black cathode band.

Available for current production only; not recommended for new designs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Average reverse voltage laveraged over any 50 ms period)
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
Average forward current (averaged over any 50 ms period)
Repetitive peak forward current
Non-repetitive peak forward current ($\mathrm{t}<1 \mathrm{~s}$)
Storage temperature
Operating ambient temperature

CHARACTERISTICS

Forward voltage	
I_{F}	$=0,1 \mathrm{~mA}$
I_{F}	$=10 \mathrm{~mA}$
I_{F}	$=30 \mathrm{~mA}$
Reverse current	V_{F}
V_{R}	$=1,5 \mathrm{~V}$
V_{R}	$=10 \mathrm{~V}$
V_{R}	$=20 \mathrm{~V}$
V_{R}	$=30 \mathrm{~V}$

$V_{\text {R }}$	max. 20 V
$V_{\text {RRM }}$	max. 30 V
$V_{\text {RSM }}$	max. 40 V
I^{\prime} (${ }^{\text {aV }}$)	max. 10 mA
IFRM	max. 45 mA
IFSM	max. 200 mA
$\mathrm{T}_{\text {stg }}$	-65 to $+90{ }^{\circ} \mathrm{C}$
T ${ }_{\text {amb }}$	-55 to $+75{ }^{\circ} \mathrm{C}$

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$
typ.	0,18	typ. 0,12
0,1 to	0,25	< 0,20
typ.	1,0	typ. 0,95
0,5	to 1,5	0,4 to 1,4
typ.	2,0	typ. 1,95
1.1	to 3,2	1,0 to 3,1
typ.	2,4	typ. $11 \mu \mathrm{~A}$
$<$	10	$<\quad 40 \mu \mathrm{~A}$
typ.	20	typ. $45 \mu \mathrm{~A}$
$<$	135	$<270 \mu \mathrm{~A}$
typ.	90	typ. $140 \mu \mathrm{~A}$
$<$	450	< $650 \mu \mathrm{~A}$
typ:	300	typ. $400 . \mu \mathrm{A}$
<	1100	< 1500

Fig. 2 Derating curve.

Dynamic characteristics

	f	30	40	40	40	MHz
(1)	$V_{\text {in }}(\mathrm{pk})$	5,0	5,0	1,4	0,5	V
	R_{L}	3,9	3,0	3,0	3,0	$k \Omega$
$v_{i} \uparrow C_{L}=R_{L}$	C_{L}	10	10	10	10	pF
	η	60	63	54	34	\%
203025	R_{d}	2,9	2,4	2,8	3,7	k Ω

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope intended for general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	\max.	90 V
Repetitive peak reverse voltage	$V_{R R M}$	\max.	115 V
Forward current (d.c.)	I_{F}	\max.	50 mA
Repetitive peak forward current	$I_{\text {FRM }}$	\max.	150 mA
Operating ambient temperature	T_{amb}	\max.	75 oC
Forward voltage at $I_{F}=30 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	$3,3 \mathrm{~V}$

MECHANICAL DATA
Dimensions in mm
Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad red cathode band.

Available for current production aty, not reiempanended for how designs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Average reverse voltage (averaged
over any 50 ms period)

Repetitive peak reverse voltage
Average forward current (averaged over any 50 ms period)

Repetitive peak forward current
Non-repetitive peak forward current ($\mathrm{t}<1 \mathrm{~s}$)
Storage temperature
Ambient temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage

$$
\begin{aligned}
& I_{F}=0.1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA}
\end{aligned}
$$

Reverse current
$V_{R}=1,5 \mathrm{~V}$
$V_{R}=10 \mathrm{~V}$
$V_{R}=75 \mathrm{~V}$
$V_{R}=100 \mathrm{~V}$

$V_{\text {R }}$	max. $90 \vee$
$V_{\text {RRM }}$	max. 115 V
${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max. 50 mA
${ }^{\text {I FRM }}$	max. 150 mA
IFSM	max. 500 mA
$\mathrm{T}_{\text {stg }}$	-65 to $+75{ }^{\circ} \mathrm{C}$
Tamb	-55 to $+75{ }^{\circ} \mathrm{C}$

$R_{\text {th j-a }}=0,55{ }^{\circ} \mathrm{C} / \mathrm{mW}$

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
V_{F}	typ. 0,18	typ. 0,1 V
	0,1 to 0,25	0,05 to 0,2 V
V_{F}	typ. 1,2	typ. 1,05 V
	0,65 to 1,9	0,55 to $1,8 \mathrm{~V}$
V_{F}	typ. 2,1	typ. 1,9 V
	1,0 to 3,3	0,9 to $3,15 \mathrm{~V}$
I_{R}	typ. 1,5	typ. $\quad 15 \mu \mathrm{~A}$
	0,3 to 7	6 to $45 \mu \mathrm{~A}$
I_{R}	typ. 4	typ. $\quad 20 \mu \mathrm{~A}$
	0,5 to 11	9 to $60 \mu \mathrm{~A}$
I_{R}	typ. 40	typ. $\quad 115 \mu \mathrm{~A}$
	5,5 to 180	35 to $260 \mu \mathrm{~A}$
$I_{\text {R }}$	typ. 75	typ. $\quad 190 \mu \mathrm{~A}$
	10 to 275	60 to $450 \mu \mathrm{~A}$

					1.	$5^{\circ} \mathrm{C}$														
					= $=60$															
				,	=60														1	
		+				1													1	
					+				-										,	
					$+$					5										
																	1			
					+	-														
																,				
		$-V_{R}$				0.5							-	-						
										1					0,5					$V_{F}(V)$
										1										
											20									
											$\stackrel{\sim}{\mu}$									

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope intended for general purposes.

QUICK REFERENCE DATA

Con inuous reverse voltage	V_{R}	\max.	90 V
Repetitive peak reverse voltage	$V_{R R M}$	\max.	115 V
Forward current (d.c.)	I_{F}	\max.	50 mA
Repetitive peak forward current	$I_{F R M}$	\max.	150 mA
Operating ambient temperature	$T_{\text {amb }}$	\max.	$75{ }^{\circ} \mathrm{C}$
Ferward voltage at $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	$2,6 \mathrm{~V}$

MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad green cathode band.

Available for current production only; not recommended for new designs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Average reverse voltage (averaged over any 50 ms period)
Repetitive peak reverse voltage
Average forward current
(averaged over any 50 ms period)
Repetitive peak forward current
Non-repetitive peak forward current ($\mathrm{t}<1 \mathrm{~s}$)
Storage temperature
Ambient temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage

$$
\begin{aligned}
& I_{F}=0,1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA}
\end{aligned}
$$

Reverse current

$V_{R}=1,5 \mathrm{~V}$
$V_{R}=10 \mathrm{~V}$
$V_{R}=75 \mathrm{~V}$
$V_{R}=100 \mathrm{~V}$

$V_{\text {R }}$	max. 90 V
$V_{\text {RRM }}$	max. 115 V
$I^{\prime}(A V)$	max. 50 mA
IFRM	max. 150 mA
IFSM	max. 500 mA
$\mathrm{T}_{\text {stg }}$	-65 to $+75{ }^{\circ} \mathrm{C}$
Tamb	-55 to $+75{ }^{\circ} \mathrm{C}$

$R_{\text {th j-a }}=0,55{ }^{\circ} \mathrm{C} / \mathrm{mW}$

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	Tar
typ. 0,18	typ. 0,1
0,1 to 0,25	0,05 to 0,2
1,05	typ. 0,95
0,65 to 1,5	0,55 to 1,4
yp. $\quad 1,85$	typ. 1,75
1,0 to 2,6	0,9 to 2,5
typ. 1,2	typ. $\quad 12 \mu \mathrm{~A}$
0,4 to 4,5	5,5 to $26 \mu \mathrm{~A}$
typ. 2,5	typ. $\quad 17 \mu \mathrm{~A}$
0,8 to 7	8 to $40 \mu \mathrm{~A}$
p. 35	typ. $100 \mu \mathrm{~A}$
5,7 to 110	20 to $250 \mu \mathrm{~A}$
80	typ. $200 \mu \mathrm{~A}$
10 to 250	30 to 430

Fig. 5.

Fig. 6.

GOLD-BONDED DIODE

Gold-bonded germanium diode in all-glass construction for use in high-speed switching applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	8 V
Average forward current	$I_{\text {F }}(\mathrm{AV})$	max.	20 mA
Repetitive peak forward current	IFRM	max.	50 mA
Junction temperature	T_{j}	max.	$85{ }^{\circ} \mathrm{C}$
Forward voltage at $\mathrm{I}_{F}=30 \mathrm{~mA}$	V_{F}	<	1 V
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $V_{R}=5 \mathrm{~V}$	O_{s}	<	30 pC

Fig. 1 DO-7.

The diode is type-branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.
Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Average rectified forward current
(averaged over any 50 ms period)

$$
T_{a m b}=25^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
Non-repetitive peak forward current ($\mathrm{t}<\mathbf{5 m s}$)

$$
\begin{aligned}
& T_{a m b}=25^{\circ} \mathrm{C} \\
& T_{a m b}=60^{\circ} \mathrm{C}
\end{aligned}
$$

Storage temperature
Junction temperature

THERMAL RESISTANCE

from junction to ambient in free air

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified
Forward voltage.

$$
\begin{aligned}
& I_{F}=0,1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA}
\end{aligned}
$$

Reverse current
$V_{R}=3 V$
$V_{R}=3 V_{i} T_{j}=60^{\circ} \mathrm{C}$
$V_{R}=8 \mathrm{~V}$
$V_{R}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=60^{\circ} \mathrm{C}$
Diode capacitance
$V_{R}=1 \mathrm{~V}$
$V_{R}=3 V$
Forward recovery voltage (see Fig. 4)
measured at 10 mm from seal
at $I_{F}=20 \mathrm{~mA}: \mathrm{t}_{\mathrm{r}}=5 \mathrm{~ns}$
Recovery charge (see Fig. 2)
when switched from
$I_{F}=10 \mathrm{~mA}$ to $V_{R}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{r}}=500 \Omega 2 ; \mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}$
$R_{\text {th j.a }}=0,55{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$R_{\text {th j.a }}=0,55{ }^{\circ} \mathrm{C} / \mathrm{mW}$

${ }^{\prime} \mathrm{f}(\mathrm{AV})$	max. 30 mA
${ }^{\prime} \mathrm{F}$ (AV)	max. 20 mA
${ }^{\prime}$ FSM	max. 100 ma
'FSM	max. 50 mA
$\mathrm{T}_{\text {stg }}$	-65 to $+75{ }^{\circ} \mathrm{C}$
Ti	max. 750

V_{R}
$\max 8 \because$
F :

	!yp.	max.
V_{F}	27	32 mV
V_{F}	500	600 mV
V_{F}	0,6	1.0 V
I_{R}	5	25 :A
in	30	$85 \mu \mathrm{~A}$
${ }^{\prime} \mathrm{R}$	30	$150 \mu \mathrm{~A}$
${ }^{\prime} \mathrm{R}$	190	- $\mu \mathrm{A}$
$\mathrm{C}_{\text {d }}$	3,3	- pF
$\mathrm{C}_{\text {d }}$	1,3	2 pF
$V_{\text {FR }}$	0.7	1.5 V
Q_{5}	20	30 pC

Fig. 2 Test circuit.

Fig. 3 Output waveform.

Fig. 4 Waveform.

Soldering instructions

Diodes may be soldered directly into the circuit but the heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
Diodes may be dip-soldered at a solder temperature of $240^{\circ} \mathrm{C}$ for a maximum of 10 seconds up to a point 5 mm from the seal.
Care should be taken not to bend the leads nearer than 1.5 mm from the seal.
Diodes are inherently sensitive to incident illumination, care should be taken to ensure that the external coating is not damaged.

AAZ13

Fig. 5 Typical reverse current as a function of the reverse voltage.

Fig. 6 Typical forward current as a function of the forward voltage.

GOLD BONDED DIODES

Germanium diodes in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

			AAZ15	AAZ17	
Continuous reverse voltage	V_{R}	max.	75	50	\checkmark
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	100	75	V
Forward current (d.c.)	If	max.	140	140	$m A$
Repetitive peak forward current	IFRM	max.	250	250	mA
Junction temperature	T_{j}	max.	85	85	${ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=250 \mathrm{~mA}$	V_{F}	<	1.1	1,1	V
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	O_{s}	$<$	1800	900	pC

MECHANICAL DATA
Dimensions in mm
Fig. 1 DO-7.

The diodes are type branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages		AAZ15	AAZ17
Continuous reverse voltage	V_{R}	max. 75	50 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	$\max .100$	75 V
Non-repetitive peak reverse voltage ($\mathrm{t}<1 \mathrm{~s}$)	VRSM	max. 115	75 V
Currents			
Forward current (d.c.)	IF	max. 140	mA
Average rectified forward current (averaged over any 20 ms period)	I^{F} (AV)	max. 140	mA
Repetitive peak forward current	IFRM	max. 250	mA
Non-repetitive peak forward current ($\mathrm{t}<1 \mathrm{~s}$)	$\mathrm{I}_{\text {FSM }}$	\max. 500	mA
Temperatures			
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +85	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	max. 85	${ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE			
From junction to ambient in free air	$R_{\text {th j-a }}$	0.55	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

Forward voltage at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=0,1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}
\end{aligned}
$$

Forward voltage at $\mathrm{T}_{\mathrm{j}}=60{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=0,1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}
\end{aligned}
$$

Reverse current at $T_{j}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{R}} & =1,5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =50 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =75 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =100 \mathrm{~V}
\end{aligned}
$$

Reverse current at $T_{j}=60^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{R}} & =1,5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =50 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =75 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =100 \mathrm{~V}
\end{aligned}
$$

Diode capacitance at $\mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}_{\mathrm{F}}<0,20 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<0,45 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<1,10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<0,15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<0,40 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}<1,07 \mathrm{~V}$

	AAZ $15 \mid A A Z 17$		
I_{R}	$<$	2,5	2,5 $\mu \mathrm{A}$
I_{R}	$<$	4	$15 \mu \mathrm{~A}$
I_{R}	$<$	15	$150 \mu \mathrm{~A}$
I_{R}	$<$	25	$300 \mu \mathrm{~A}$
I_{R}	$<$	100	- $\mu \mathrm{A}$
I_{R}	$<$	30	$30 \mu \mathrm{~A}$
I_{R}	$<$	40	$60 \mu \mathrm{~A}$
${ }^{\text {I }}$ R	$<$	80	$300 \mu \mathrm{~A}$
${ }^{1} \mathrm{R}$	$<$	120	$500 \mu \mathrm{~A}$
I_{R}	$<$	300	- $\mu \mathrm{A}$
C_{d}	$<$	2	2 pF

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

CHARACTERISTICS (continued)

Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$
measured at $I_{R}=1 \mathrm{~mA}$
AAZ15 t_{r}
rr
rr
$<$
350 ns
AAZ17 $\mathrm{t}_{\mathrm{rr}}<350$ ns

Test circuit and waveforms :

$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$

*) $I_{R}=1 \mathrm{~mA}$
$t_{p}=500 \mathrm{~ns}$
$\delta=0,05$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

$$
\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}
$$

Input signal : Rise time of the reverse pulse

Oscilloscope: Rise time
Reverse pulse duration
Duty factor

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance) Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega
$$

AAZ15	Q_{S}	$<$	1800	pC
AAZ 17	Q_{S}	$<$	900	pC

Test circuit and waveform :

$\mathrm{DI}=\mathrm{D} 2=$ BAW62

$$
\begin{array}{cl}
\text { Input signal }: & \text { Rise time of the reverse pulse } \\
& \text { Reverse pulse duration } \\
& \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns} \\
& \delta=0,02
\end{array}
$$

GOLD BONDED DIODE

Germanium diode in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	25 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	25 V
Forward current (d.c.)	I^{\prime}	max.	110 mA
Repetitive peak forward current	IFRM	max.	150 mA
Junction temperature	T_{j}	max.	$75{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=150 \mathrm{~mA}$	V_{F}	<	$1,1 \mathrm{~V}$
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	$\mathrm{Q}_{\text {S }}$	$<$	600 pC
MECHANICAL DATA		Dimen	ons in mm

Fig. 1 DO-7.

The diodes are type-branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages

Continuous reverse voltage	V_{R}	\max.	25	V
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{RRM}}$	\max.	25	V
Non-repetitive peak reverse voltage $(\mathrm{t}<1 \mathrm{~s})$	$\mathrm{V}_{\mathrm{RSM}}$	\max.	30	V

Currents

Forward current (d.c.) $\quad \mathrm{I}_{\mathrm{F}} \max 110 \mathrm{~mA}$
Average rectified forward current
(averaged over any 20 ms period)
Repetitive peak forward current
Non-repetitive peak forward current ($\mathrm{t}<\mathrm{l}$ s)
${ }^{\mathrm{I}} \mathrm{F}(\mathrm{AV}) \quad \max .110 \mathrm{~mA}$
IFRM max. 150 mA
IFSM max. 200 mA

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +75	${ }^{\circ} \mathrm{C}$
T_{j}	\max.	75

THERMAL RESISTANCE
From junction to ambient in free air $\quad R_{\text {th } j-a}=0.55{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

Forward voltage at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$\mathrm{I}_{\mathrm{F}}=0,1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}<0,20 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=1,0 \mathrm{~mA}$	$V_{F}<0,31 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$V_{F}<0,45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$	$V_{F}=0,65 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}<1,10 \mathrm{~V}$

Forward voltage at $T_{j}=60^{\circ} \mathrm{C}$
$I_{F}=0,1 \mathrm{~mA}$
$I_{F}=1,0 \mathrm{~mA}$
$I_{F}=10 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$
$V_{F}<0,14 V$
$V_{\mathrm{F}}<0,28 \mathrm{~V}$
$v_{F}=0.43 \mathrm{~V}$
$V_{F}<0.62 \mathrm{~V}$
$v_{F}<1,10 \mathrm{~V}$
Reverse current at $T_{j}=25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=1,5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V}
\end{aligned}
$$

$I_{R}<3,5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}<15 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}<50 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}<100 \mu \mathrm{~A}$

Reverse current at $T_{j}=60^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=1,5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V}
\end{aligned}
$$

Diode capacitance at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$$
V_{R}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}
$$

$I_{R}<20 \mu \mathrm{~A}$
$I_{R}<40 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}<90 \mu \mathrm{~A}$
$I_{R}<160 \mu \mathrm{~A}$
$C_{d}<3,5 \mathrm{pF}$

CHARACTERISTICS (c ontinued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Reverse recovery time when switched from

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega \\
& \text { measured at } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}
\end{aligned} \quad \mathrm{t}_{\mathrm{rr}}<70 \mathrm{~ns} .
$$

Test circuit and waveforms :

$\begin{array}{lll}\text { Input signal }: & \text { Rise time of the reverse pulse } & \mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns} \\ \text { Reverse pulse duration } & \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns} & *) \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \\ \text { Duty factor } & \delta=0,05 \\ \text { Oscilloscope : Rise time } & \mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}\end{array}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \quad \mathrm{Q}_{\mathrm{s}}<600 \mathrm{pC}
$$

Test circuit and waveform :

$\mathrm{D} 1=\mathrm{D} 2=\mathrm{BAW} 62$

$$
\begin{aligned}
& \text { Input signal : Rise time of the reverse pulse } \\
& \text { Reverse pulse duration } \\
& \text { Duty factor } \\
& \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns} \\
& t_{p}=400 \mathrm{~ns} \\
& \delta=0,02
\end{aligned}
$$

TUNER DIODES

\qquad

SILICON PLANAR DIODE

The BA182 is a switching diode in a plastic envelope. It is intended for band switching in v.h.f. television tuners.

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	max.	35	V
Forward current (d.c.)	I_{F}	\max.	100	mA
Junction temperature	T_{j}	\max.	100	${ }^{\circ} \mathrm{C}$
Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	C_{d}	typ. $<$	$\begin{aligned} & 0,8 \\ & 1,0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Series resistance at $\mathbf{f}=\mathbf{2 0 0} \mathbf{~ M H z}$ $I_{F}=5 \mathrm{~mA}$	${ }^{1} \mathrm{D}$	typ.	$\begin{aligned} & 0,5 \\ & 0,7 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

MECHANICAL DATA
Dimensions in mm
SOD-23

7261372.3

The blue band indicates the cathode
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

Available for current production only, not recommended for new designs.

BA182

RATINGS (Limiting values) ${ }^{1}$)

Voltage

Continuous reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max \quad 35 \mathrm{~V}$
Current
Forward current (d.c.)
Temperatures
Storage temperature
Junction temperature
$\mathrm{T}_{\text {stg }} \quad-55$ to $+100{ }^{\circ} \mathrm{C}$
Junction temprat

THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th j-a }}=0.4{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

Forward voltage at $I_{F}=100 \mathrm{~mA}$
V_{F}
$<1.2 \mathrm{~V}$
Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=60^{\circ} \mathrm{C}
\end{aligned}
$$

I_{R}
I_{R}
$<\quad 100 \mathrm{nA}$

Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}
$$

C_{d}
typ.
$\begin{array}{rr}0.8 & \mathrm{pF} \\ 1 & \mathrm{pF}\end{array}$
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}
$$

1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

SILICON A.M. BAND SWITCHING DIODE

The BA223 is a switching diode in whiskerless glass DO-35 construction. It is intended for band switching in a.m. radio receivers.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	\max.	20 V
Forward current (d.c.)	I_{F}	\max.	50 mA
Junction temperature	T_{j}	\max.	$150{ }^{\circ} \mathrm{C}$
Diode capacitance at $f=1 \mathrm{MHz}$ $V_{R}=6 \mathrm{~V}$	C_{d}	$<$	$3,5 \mathrm{pF}$
Series resistance at $\mathrm{f}=1 \mathrm{MHz}$ $I_{F}=10 \mathrm{~mA}$	r_{D}	$<$	$1,5 \Omega$

MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-35 (SOD-27).

The diodes may be either type-branded or colour-coded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage

Forward current (d.c.)
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=50 \mathrm{~mA}$	V_{F}	$<$	1,0 V
Reverse current			
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	${ }_{1} \mathrm{R}$	$<$	100 nA
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	I_{R}	$<$	$20 \mu \mathrm{~A}$
Diode capacitance at $f=1 \mathrm{MHz}$ $V_{R}=6 \mathrm{~V}$	C_{d}	$<$	$3,5 \mathrm{pF}$
Series resistance at $f=1 \mathrm{MHz}$ $I_{F}=10 \mathrm{~mA}$	「D	$<$	1,5 Ω

> Reverse current
> $V_{R}=20 \mathrm{~V}$
> $V_{R}=20 \mathrm{~V} ; T_{j}=125^{\circ} \mathrm{C}$

Diode capacitance at $f=1 \mathrm{MHz}$
$V_{R}=6 V$
Series resistance at $f=1 \mathrm{MHz}$ $I_{F}=10 \mathrm{~mA}$
$I_{F} \quad \max \quad 50 \mathrm{~mA}$
$\mathrm{T}_{\text {stg }} \quad-55$ to $+150^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}} \quad \max \quad 150{ }^{\circ} \mathrm{C}$
$R_{\text {th j-a }}=0,5^{\circ} \mathrm{C} / \mathrm{mW}$

V_{R}	max.	20 V
I_{F}	max.	50 mA
$\mathrm{~T}_{\text {stg }}$	-55 to	$+1500^{\circ} \mathrm{C}$
T_{j}	max.	$150{ }^{\circ} \mathrm{C}$

-

Fig. $2 \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. $3 \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

SILICON PLANAR DIODES

Switching diodes in a DO-35 envelope, intended for band switching in v.h.f. television tuners.

QUICK REFERENCE DATA					
Continuous reverse voltage	V_{R}		max.	20	V
Forward current (d.c.)	I_{F}		max.	100	mA
Junction temperature	T_{j}		max.	150	${ }^{\circ} \mathrm{C}$
Diode capacitance at $f=1$ to 100 MHz $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	C_{d}		$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{array}{r} 1,1 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
			BA243	BA2 44	
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	${ }^{\text {r }}$ D	typ $<$	0.7 1	0,4 0,5	Ω Ω

MECHANICAL DATA
Dimensions in mm
DO-35

BA243: red yellow orange natural

BA244: red yellow yellow natural (cathode)

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Continuous reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max \quad 20 \mathrm{~V}$
Current
Forward current (d.c.) $\quad \mathrm{I}_{\mathrm{F}} \max \quad 100 \mathrm{~mA}$

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	max.	150

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}
$$

Diode capacitance at $\mathrm{f}=1$ to 100 MHz
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$
C_{d}
typ.
$<$

$\frac{\Delta \mathrm{C}_{\mathrm{d}}}{\mathrm{C}_{\mathrm{d}} \cdot \Delta \mathrm{~V}_{\mathrm{R}}}$		typ.		\%/V
		BA243	BA244	
	typ.	0,7	0,4	Ω
${ }^{\text {r }}$ D	$<$	1	0,5	ת

Relative series resistance variation
$\frac{\text { due to forward current variation }}{\text { at } \mathrm{I}_{\mathrm{F}}=2 \text { to } 40 \mathrm{~mA} ; \mathrm{f}=200 \mathrm{MHz}}$
related to $I_{F}=2 \mathrm{~mA}$

Series inductance (measured on envelope)
$R_{\text {th } \mathrm{j}-\mathrm{a}}=0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
$\mathrm{V}_{\mathrm{F}}<1 \mathrm{~V}$
I_{R}
${ }^{I_{R}}$
$<\quad 100 \mathrm{nA}$
$<\quad 1 \mu \mathrm{~A}$
$\begin{array}{rl}1,1 & \mathrm{pF} \\ 2 & \mathrm{pF}\end{array}$
Relative capacitance variation
$\frac{\text { due to reverse voltage variation }}{\text { at } \mathrm{V}_{\mathrm{R}}=7 \text { to } 20 \mathrm{~V} ; \mathrm{f}=1 \text { to } 100 \mathrm{MHz}}$ related to $\mathrm{V}_{\mathrm{R}}=7 \mathrm{~V}$

Series resistance at $\mathbf{f}=\mathbf{2 0 0} \mathbf{~ M H z}$

$$
{ }^{1} \mathrm{~F}=10 \mathrm{~mA}
$$

$\frac{\Delta r_{D}}{r_{D} \cdot \Delta I_{F}} \quad$ typ. $\quad 2 \% / m A$
L_{s}
typ.
$2,5 \mathrm{nH}$

U.H.F. MIXER DIODE

Silicon epitaxial Schottky barrier diode in a plastic envelope intended for mixer applications in u.h.f. tuners.

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	max.	4	V
Forward current (d.c.)	IF	max.	30	mA
Junction temperature	T ${ }_{\mathbf{j}}$	max.	100	${ }^{\circ} \mathrm{C}$
Noise figure at $f=900 \mathrm{MHz}$	F	$<$	8	dB

MECHANICAL DATA

Dimensions in mm
SOD-23

The orange band indicates the cathode
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Continuous reverse voltage

Current

Forward current (d.c.) $\quad \mathrm{I}_{\mathrm{F}} \quad \max \quad 30 \mathrm{~mA}$

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +100	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	100	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$$
R_{\text {th } j-a}=
$$

$$
0,25
$$

$$
{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

Reverse current

$$
\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}}<$
< 0.25
$\mu \mathrm{A}$
IR
$<$
1,25
$\mu \mathrm{A}$
Forward voltage
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}}<6600 \mathrm{mV}$
Series resistance at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
$r_{D}<\quad 15 \quad \Omega$
Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$
Noise figure at $\mathrm{f}=900 \mathrm{MHz}$
$C_{d}<1,0 \mathrm{pF}$
F $<\quad 8 \quad d B \quad 1)$

1) The local oscillator is adjusted for a diode current of 2 mA .
I. F. amplifier noise $F_{\text {if }}=1,5 \mathrm{~dB}$; $f=35 \mathrm{MHz}$.

SILICON P-I-N DIODE

Primarily for use in controlled attenuators in v.h.f. and u.h.f. television tuners.

	QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	\max.	30	V	
Forward current (d.c.)	I_{F}	\max.	20	mA	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	\max.	60	${ }^{\circ} \mathrm{C}$	
Diode capacitance					
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=900 \mathrm{MHz}$	C_{d}	typ.	0,3	pF	
$\mathrm{R} . \mathrm{F}$. forward resistance					
$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A} ; \mathrm{f}=35 \mathrm{MHz}$	rD_{D}	typ.	1,7	$\mathrm{k} \Omega$	
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=35 \mathrm{MHz}$		rD_{D}	typ.	4,5	Ω

MECHANICAL DATA

Dimensions in mm
SOD-52

The coloured end indicates the cathode

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage

Continuous reverse voltage

Current

Forward current (d.c.)

Temperatures

Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}
$$

$\mathrm{V}_{\mathrm{F}}<1 \mathrm{~V}$

Reverse current

$$
\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}
$$

I_{R}
$<$
$1 \mu \mathrm{~A}$
Diode capacitance

$V_{R}=1 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$	C_{d}	typ.	0,34	pF
$\mathrm{V}_{\mathrm{R}}=0$	$; \mathrm{f}=900 \mathrm{MHz}$	C_{d}	typ.	0,30
pF				

R.F. forward resistance

$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A} ; \mathrm{f}=35 \mathrm{MHz}$	r_{D}	typ.	1,7	$\mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=35 \mathrm{MHz}$	r_{D}	typ.	4,5	Ω
Series inductance 1)		L_{s}	typ.	2

$$
\mathrm{f}_{\mathrm{O}}=55 \mathrm{MHz} ; \mathrm{f}_{\text {int }}=50 \mathrm{MHz}
$$

V_{R} max. 30 V

IF max. 20 mA

Tstg -55 to $+100{ }^{\circ} \mathrm{C}$
Tamb max. $60{ }^{\circ} \mathrm{C}$

R

$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A} ; \mathrm{f}=35 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{f}=35 \mathrm{MHz}
$$

L_{s}
typ.
2 nH

Cross modulation ${ }^{2)}$

$$
\mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A} \quad \mathrm{~V}_{\text {int }} \quad \text { typ. } \quad 0.5 \mathrm{~V}
$$

1) Measured directly to the envelope.
2) Cross modulation is defined as the interfering voltage with 80% modulation depth over the p-i-n diode, causing $0,8 \%$ modulation depth on the wanted signal. ($K=1 \%$)

SILICON PLANAR DIODES

Switching diodes in the subminiature DO-34 glass envelope, intended for band switching in v.h.f. television tuners. Special feature of the diodes is their low capacitance.

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	35 V
Forward current (d.c.)	I_{F}	max.	100 mA
Junction temperature	T_{j}	max.	$150{ }^{\circ} \mathrm{C}$
		BA482	BA483
Diode capacitance			
$V_{R}=3 \mathrm{~V} ; \mathrm{f}=1$ to 100 MHz	$C_{\text {d }}$	$<1,2$	1,0 pF
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$			
$I_{F}=3 \mathrm{~mA}$	「D	< 0,7	1,2 2 ,
$I_{F}=10 \mathrm{~mA}$	rD	typ. 0,4	$0,5 \Omega$

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-58 (DO-34).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.
BA482: red on a natural background.
BA483: orange on a natural background.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Junction temperature

V_{R}	max. $\quad 35 \mathrm{~V}$	
I_{F}	max.	100 mA
$T_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$	
T_{j}	max.	$150{ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient mounted on printed board lead length $=\mathbf{5 , 0} \mathbf{~ m m}$
$R_{\text {th } j-a}=0,60^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage
$I_{F}=100 \mathrm{~mA}$
Reverse current
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$
$V_{R}=20 \mathrm{~V}: \mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

Diode capacitance
$V_{R}=3 \mathrm{~V} ; \mathrm{f}=1$ to 100 MHz
Series resistance at $f=200 \mathrm{MHz}$ $I_{F}=3 \mathrm{~mA}$

V_{F}	$<$	$1,2 \mathrm{~V}$
I_{R}	$<$	100 nA
I_{R}	$<$	$1 \mu \mathrm{~A}$

$\mathrm{C}_{\text {d }}$	BA482		BA483
	typ.	0,8	0,7 pF
	<	1.2	1,0 pF
	typ.	0,6	0,8 Ω
'D	$<$	0,7	1,2 Ω

Fig. 2 Typical values.

Fig. $3 V_{R}=20 \mathrm{~V}$.

Fig. 4 Typical values; $f=1$ to $100 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=2{ }^{\circ} \mathrm{C}$.

Fig. 5 Typical values; $f=200 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

SILICON PLANAR VARIABLE CAPACITANCE DIODES

The BB105B and BB105G are variable capacitance diodes in plastic envelopes.
The BB105B is meant for u.h.f. tuners up to frequencies of 860 MHz . The BB105G is intended for use in v.h.f. tuners. Diodes will be supplied in matched sets. The capacitance difference between any two diodes in one set is less than 3% for the BB105B, and less than 6% for the BB105G, over the voltage range from $0,5 \mathrm{~V}$ to 28 V . These diodes are supplied in minimum quantities of 6000 .

QUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	28		\checkmark
Reverse current at $\mathrm{V}_{\mathrm{R}}=28 \mathrm{~V}$	I_{R}	<	10		nA
			BB105B	BB105G	
Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$$V_{R}=25 \mathrm{~V}$		>	2,0	1,8	pF
	$\mathrm{C}_{\text {d }}$	$<$	2,3	2,8	pF
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$	$C_{d}\left(V_{R}=3 \mathrm{~V}\right)$	$>$	4,5	4	
	$\overline{C_{d}\left(V_{R}=25 V\right)}$	$<$	6,0	6	
Series resistance at $f=470 \mathrm{MHz}$ V_{R} is that value at which $\mathrm{C}_{\mathrm{d}}=\mathbf{9 p F}$		typ.	0,7	0,9	Ω
	'D	$<$	0,8	1,2	Ω

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-23.

BB105B: marked on packing
BB105G: green dot on the envelope

7261372.3

The white band indicates the cathode.

Available for current production only; not recommended for new designs.
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Continuous reverse voltage

Reverse voltage (peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to ambient in free air
V_{R}
$V_{R M}$
I_{F}
$T_{s t g}$
T_{j}
$R_{\text {th j-a }} \quad=\quad 0,4 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$V_{R}=28 \mathrm{~V}$	I_{R}	$<$	10		nA
$\mathrm{V}_{\mathrm{R}}=28 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=85{ }^{\circ} \mathrm{C}$	I_{R}	<	200		nA
Diode capacitance at $f=1 \mathrm{MHz}$			BB105B	BB105G	
$V_{R}=1 \mathrm{~V}$	$C_{\text {d }}$	typ.	17,5	17,5	pF
$V_{R}=3 \mathrm{~V}$	C_{d}	typ.	11,5	11,5	pF
$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$	C_{d}	$>$	2,0 2,3	$\begin{aligned} & 1,8 \\ & 2,8 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$	$\frac{C_{d}\left(V_{R}=3 V\right)}{C_{d}\left(V_{R}=25 V\right)}$	$>$	4,5 6,0	4	
Series resistance at $\mathrm{f}=\mathbf{4 7 0 \mathrm { MHz } \text { and at that value } , ~}$ of V_{R} at which $C_{d}=9 \mathrm{pF}$	'D	$\stackrel{\text { typ. }}{<}$	0,7 0,8	0,9 1,2	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
at $f=200 \mathrm{MHz}$ and $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	rD	typ.	0,4	0,4	Ω

Fig. $2 V_{R}=28 \mathrm{~V}$.

Fig. 3.

Fig. 4.
Fig. 5.

SILICON PLANAR VARIABLE CAPACITANCE DIODES

The BB 110 B and BB 110 G are variable capacitance diodes in a plastic envelope primarily intended for electronic tuning in band II (f.m.). They are recommended for r.f. and interstage circuits:

QUICK REFERENCE DATA			
Continuous reverse voltage	V_{R}	max. 30	V
Junction temperature	T_{j}	max. 100	${ }^{\circ} \mathrm{C}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$	I_{R}	< 20	nA
Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$		BB110G ${ }^{\text {BBI }} 10 \mathrm{~B}$	
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	$\mathrm{C}_{\text {d }}$	$\underline{27-31 \mid 29-33}$	pF
Capacitance ratio	$\frac{C_{d}\left(V_{R}=3 \mathrm{~V}\right)}{C_{d}\left(V_{R}=30 \mathrm{~V}\right)}$	2,5 to 2, 8	
Series resistance at $\mathrm{f}=100 \mathrm{MHz}$ V_{R} is that value at which $\mathrm{C}_{\mathrm{d}}=30 \mathrm{pF}$	${ }^{\text {r }}$ D	$\begin{array}{ll} \text { typ. } & 0,3 \\ < & 0,4 \end{array}$	\bigcirc

MECHANICAL DATA

Dimensions in mm
SOD-23
RR110R: blue dot
BFI10G: green dot

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).
Available for current production only; not recommended for new designs.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Continuous reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max . \quad 30 \mathrm{~V}$
Current
Forward current (d.c.) $\quad \mathrm{I}_{\mathrm{F}} \quad \max \quad 100 \mathrm{~mA}$

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$	
Junction temperature	T_{j}	max.	100	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air
$R_{t h j-a} \quad=\quad 0,40^{\circ} \mathrm{C} / \mathrm{mW}$
CHARACTERISTICS
Reverse current at $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	typ.	1	$n A$
I_{R}	$<$	20	$n A$
	typ.	5	$n A$
I_{R}	$<$	200	$n A$

Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$

	BB110G	BB110B
$C_{\text {d }}$	27-31	29-33
C_{d}	typ.	11

$$
\frac{\mathrm{C}_{d}\left(V_{R}=3 \mathrm{~V}\right)}{\mathrm{C}_{\mathrm{d}}\left(\mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V}\right)} \quad 2,5 \text { to } 2,8
$$

Series resistance at $\mathrm{f}=100 \mathrm{MHz}$
V_{R} is that value at which $\mathrm{C}_{\mathrm{d}}=30 \mathrm{pF}$

$$
\mathbf{r}_{\mathrm{D}}
$$

typ.	0,3	Ω
$<$	0,4	Ω

Temperature coefficient of the diode capacitance
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$
n
typ. $\quad 0,04 \quad \% /{ }^{\circ} \mathrm{C}$

BB119

SILICON VARIABLE CAPACITANCE DIODE

Planar-diffused diode in a DO-35 envelope intended for automatic frequency control in radio and television receivers.

QUICK REFERENCE DATA			
Continuous reverse voltage	V_{R}	max. 15	V
Junction temperature	T_{j}	max. 200	${ }^{\circ} \mathrm{C}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	I_{R}	< 2,0	$\mu \mathrm{A}$
Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$ $V_{R}=4 \mathrm{~V}$	$\mathrm{C}_{\text {d }}$	20 to 25	pF
Capacitance ratio at $\mathrm{f}<300 \mathrm{MHz}$	$\frac{C_{d}\left(V_{R}=4 \mathrm{~V}\right)}{C_{d}\left(V_{R}=10 \mathrm{~V}\right)}$	$\geq \quad 1,3$	
Series resistance at $\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V} ; \mathrm{f}=200 \mathrm{MHz}$	$r_{\text {D }}$	$<1,5$	Ω

MECHANICAL DATA

Dimensions in mm
DO-35

The coloured band indicates the cathode
The diodes are type-branded

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

$\begin{array}{lllll}\text { Continuous reverse voltage } & \mathrm{V}_{\mathrm{R}} & \max . & 15 & \mathrm{~V}\end{array}$

Current

Forward current (d.c.) $\quad \mathrm{I}_{\mathrm{F}} \quad \max \quad 200 \quad \mathrm{~mA}$

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	$\max . \quad 200$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text { unless otherwise specified }
$$

Reverse current

$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$
I_{R}
$<\quad 2,0$
$\mu \mathrm{A}$

Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{F}} \quad<\quad 950 \mathrm{mV}
$$

Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$V_{R}=4 V$
C_{d}
20 to 25 pF
Capacitance ratio at $\mathrm{f}<\mathbf{3 0 0} \mathbf{M H z}$

$$
\frac{C_{d}\left(V_{R}=4 \mathrm{~V}\right)}{C_{d}\left(V_{R}=10 \mathrm{~V}\right)} \geq 1,3
$$

Series resistance at $\mathrm{f}=200 \mathrm{MHz}$
$V_{R}=4 V$
r_{D}

typ.	0,9	Ω
$<$	1,5	Ω

Simplified equivalent circuit:

$\mathrm{L}=$ lead inductance $\approx 6 \mathrm{nH}$
$r_{D}=$ series resistance
$\mathrm{C}_{\mathrm{d}}=$ diode capacitance (see page 3)
frequency independent
up to $\mathrm{f}=300 \mathrm{MHz}$

These data apply for a distance of 10 mm between the two measuring points.

A.M. VARIABLE CAPACITANCE DOUBLE DIODES

The BB212 is a silicon mesa profiled epitaxial double tuning diode with common cathode in a plastic TO. 92 variant.
A special feature is the low tuning voltage which makes the device particularly suited to car and domestic receivers in the L.W., M.W. and S.W. bands.

QUICK REFERENCE DATA

For each diode:

Continuous reverse voltage
Operating junction temperature
Reverse current at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

$$
V_{R}=10 \mathrm{~V}
$$

Diode capacitance at $f=1 \mathrm{MHz}$

$$
V_{R}=0,5 V
$$

$$
V_{R}=8,0 \mathrm{~V}
$$

Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$
Series resistance at $f=500 \mathrm{kHz}$ V_{R} is that value at which $C_{d}=500 \mathrm{pF}$

MECHANICAL DATA
Fig. 1 TO-92 variant.

V_{R}	\max.	12 V
T_{j}	\max.	$85{ }^{\circ} \mathrm{C}$
I_{R}	$<$	50 nA

C_{d}	500 to 620 pF
C_{d}	$<\quad 22 \mathrm{pF}$
$\mathrm{C}_{d}\left(\mathrm{~V}_{R}=0,5 \mathrm{~V}\right)$	23 to 36

diameter within $2,5 \mathrm{max}$ is uncontrolled

The anode of the diode with the higher capacitance C_{1} at $V_{R}=3 V$, i.e. a more positive mismatch, is identified by a white dot.

RATINGS (for each diode)
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Operating junction temperature

V_{R}	max.	12 V
I_{F}	max.	100 mA
$T_{\text {stg }}$	-55 to $+100{ }^{\circ} \mathrm{C}$	
T_{j}	max.	$85^{\circ} \mathrm{C}$

CHARACTERISTICS (for each diode)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& V_{R}=10 \mathrm{~V} \\
& V_{R}=10 \mathrm{~V} ; T_{a m b}=60{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $f=1 \mathrm{MHz}$
$V_{R}=0,5 \mathrm{~V}$
$V_{R}=3,0 \mathrm{~V}$
$V_{R}=5,5 \mathrm{~V}$
$V_{R}=8,0 \mathrm{~V}$
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$
Series resistance at $f=500 \mathrm{MHz}$
V_{R} is that value at which $C_{d}=500 \mathrm{pF}$
${ }^{r} D$
$<$
$2,5 \Omega$
Temperature coefficient of the diode capacitance
at $\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
$\begin{array}{ll}V_{R}=0,5 \mathrm{~V} & \eta \\ V_{R}=8,0 \mathrm{~V} & \eta\end{array}$
typ. $0,054 \% /{ }^{\circ} \mathrm{C}$
typ. $\quad 0,050 \% /{ }^{\circ} \mathrm{C}$

MATCHING PROPERTIES

The capacitance of the two diodes in their common envelope may differ within certain limits. The total, relative capacitance difference between the two diodes in one envelope may be found in Fig. 2. The anode a1 or a2 with the higher capacitance at $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$, is identified by a white dot.

Fig. 2 The shaded area represents the maximum tolerance of the two diodes in one envelope as a function of the reverse voltage.

Fig. 3 Typical values.

Fig. $4 \mathrm{f}=1 \mathrm{MHz}$.

VARIABLE CAPACITANCE DIODES

The BB405B and BB405G are silicon variable capacitance diodes in hermetically sealed glass DO-34 envelopes.
The BB405B is intended for u.h.f. tuning up to frequencies of 860 MHz . The BB405G is intended for v.h.f. tuning.

Diodes are supplied in matched sets and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

QUICK REFERENCE DATA

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a $2 E(5,08 \mathrm{~mm})$ pitch.
BB405B: white cathode ring; body black coloured
BB405G: additional green band.
Maximum soldering iron or solder bath temperature $300^{\circ} \mathrm{C}$; maximum soldering time 3 s . Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

CHARACTERISTICS

$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& V_{R}=28 \mathrm{~V} \\
& V_{R}=28 \mathrm{~V} ; T_{a m b}=85^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $f=500 \mathrm{kHz}$ *

$$
\begin{aligned}
& V_{R}=1 V \\
& V_{R}=3 V
\end{aligned}
$$

$$
V_{R}=25 \mathrm{~V}
$$

Capacitance ratio at $\mathrm{f}=500 \mathrm{kHz}$

		BB405B	BB405G	
I_{R}	$<$	10	10	$n A$
I_{R}		1	1	μA

[^23]

Fig. 2 Reverse current as a function of the junction temperature.

Fig. 3 Diode capacitance at $f=500 \mathrm{kHz}$.

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB809 is a variable capacitance diode in a glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).
Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

QUICK REFERENCE DATA

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by yellow band.

Maximum soldering iron or solder bath temperature $300^{\circ} \mathrm{C}$; maximum soldering time 3 s . Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Reverse voltage (peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& V_{R}=28 \mathrm{~V} \\
& V_{R}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $f=500 \mathrm{kHz}$

$$
\begin{aligned}
& V_{R}=3 V \\
& V_{R}=25 V
\end{aligned}
$$

Capacitance ratio at $\mathrm{f}=500 \mathrm{kHz}$
Series resistance at $f=200 \mathrm{MHz}$ V_{R} is that value at which $C_{d}=25 \mathrm{pF}$
$R_{\text {th } j-a}$

V_{R}	\max.	28 V
$V_{R M}$	\max.	30 V
I_{F}	\max.	20 mA
$T_{\text {stg }}$	-55 to $+150^{\circ} \mathrm{C}$	
T_{j}	max. $100^{\circ} \mathrm{C}$	

$=\quad 0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$
max. $\quad 30 \mathrm{~V}$
max. $\quad 20 \mathrm{~mA}$
max. $\quad 100^{\circ} \mathrm{C}$
-

Fig. 2 Typical values.

Fig. $4 f=500 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. 3 Temperature coefficient of the diode capacitance; $\mathrm{T}_{\mathrm{amb}}=0$ to $85^{\circ} \mathrm{C}$.

Fig. $5 \mathrm{~V}_{\mathrm{R}}=28 \mathrm{~V}$.

SPECIAL TYPE

BAV45

PICOAMPERE DIODE

Silicon diode in a metal envelope. It has an extremely low leakage current over a wide temperature range combined with a low capacitance and is not sensitive for light. It is intended for clamping, holding, peak follower, time delay circuits as well as for logarithmic amplifiers and protection of insulated gate field-effect transistors.

QUICK REFERENCE DATA								
Continuous reverse voltage	V_{R}	\max.	20	V				
Forward current (d.c.)	I_{F}	\max.	50	mA				
Forward voltage at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	1.0	V				
Reverse current								
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$	I_{R}	$<$	5	pA				
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	I_{R}	$<$	10	pA				
Diode capacitance								
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	C_{d}	$<$	1.3	pF				

MECHANICAL DATA

Dimensions in mm
TO-18 (except for the two leads)

Handle the device with care during soldering into the circuit. The extremely low leakage current can only be guaranteed when the bottom is free from solder flux or other contaminations.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Continuous reverse voltage	V_{R}	\max	20	V
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{RRM}}$	\max.	35	V

Currents

Forward current (d.c. or average)	I_{F}	\max.	50	mA
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	\max.	100	mA

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65	to	+125	${ }^{\circ} \mathrm{C}$
T_{j}	max.	125	${ }^{\circ} \mathrm{C}$	

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

$R_{\text {th j-a }}=$
$0.5 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}
$$

$\mathrm{V}_{\mathrm{F}}<1.0 \mathrm{~V}$

Reverse currents

$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	$<$	5
$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=80^{\circ} \mathrm{C}$	I_{R}	$<$	250
$\mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}$	I_{R}	$<$	10
pA			
	pA		

Diode capacitance
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
C_{d}
$<$
1.3 pF

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Forward recovery voltage when switched to

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}
$$

$$
\mathrm{V}_{\mathrm{fr}}<1,25 \mathrm{~V}
$$

Test circuit and waveforms :

Circuit capacitance $\mathrm{C} \leq 20 \mathrm{pF}$ ($\mathrm{C}=\mathrm{C}_{\mathrm{i}}+$ parasitic capacitance)
Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{rr}}<350 \mathrm{~ns}$
Test circuit and waveforms :

Input signal : Rise time of the reverse pulse Reverse pulse duration Duty factor

Oscilloscope: Rise time

$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
*) $I_{R}=1 \mathrm{~mA}$
$t_{p}=500 \mathrm{~ns}$
$\delta=0,05$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

INDEX

Type No.	Section	Suggested alternative
AA119	F*	
AAZ13	F*	
AAZ15	F*	
AAZ17	F*	
BA182	G*	
BA223	G	
BA243	G	
BA244	G	
BA280	G	
BA314	C	
BA316	B	
BA317	B	
BA318	B	
BA379	G	
BA482	G	
BA483	G	
BAS11	B	
BAV10	B	
BAV18	B	
BAV19	B	
BAV20	B	
BAV21	B	
BAV45	H	
BAW62	B	
BAX12A	B	
BAX13	B	
BAX16	B	
BAX17	B	
BB 105B,G	G*	
BB110B,G	G*	
BB1 19	G	
BB212	G	
BB405B,G	G	
BB809	G	
BY126M	*	BYW54

Type No.	Section	Suggested alternative
BY127M	*	BYW56
BY184	E	
BY206	E*	BAS11, BYV95B
BY207	E*	BYV95C
BY210 series	E*	BYV95/96 series
BY226	*	BYW54
BY227	*	BYW56
BY228	E	
BY409	E	
BY438	E	
BY448	E	
BY458	E	
BY476	E	
BY509	E	
BYV27 series	E	
BYV28 series	E	
BYV95A, B, C	E	
BYV96D,E	E	
BYW54	E	
BYW55	E	
BYW56	E	
BYW95A,B,C	E	
BYW96D,E	E	
BYX10	E	
BYX36 series	E*	BYW54 to 56
BYX55 series	E*	BYV95 series
BYX90	E	
BYX91 series	E	
BYX94	*	BYW56
BZV10	D	
BZV11	D	
B2V12	D	
BZV13	D	
BZV14	D	
BZV46-1V5, 2V0	C	

*Not recommended for the design of new equipment.

Type No.	Section	Suggested alternative
BZV85 series BZX61 series BZX79 series	C	C
BZX87 series	C	BZV85 series
BZX90	D	
BZX91	D	
BZX92	D	
BZX93	D	
BZX94	D	
BZY88-COV7	$*$	BA314
BZY88-C1V3	$*$	BZV46-1V5
BZY88 series	C	
OA47	F*	
OA90	F*	
OA91	F*	
OA95	F*	
OA200	B	
OA202	B	

Type No.	Section	Suggested alternative
1N821	D	
1N823	D	
1N825	D	
1N827	D	
1N829	D	
1N914	B	
1N916	B	
1N4001	E	
1N4002	E	
1N4003	E	
1N4004	E	
1N4005	E	
1N4006	E	
1N4007	E	
1N4148	B	
1N4446	B	
1N4448	B	

*Not recommended for the design of new equipment.

DIODES

CONTENTS

	SELECTION GUIDE $\begin{aligned} & \text { BS 9000, CECC } \\ & \text { approved types }\end{aligned}$
A	GENERAL SECTION
B	SILICON WHISKERLESS DIODES
C	VOLTAGE REGULATOR DIODES (Low power)
D	VOLTAGE REFERENCE DIODES
E	RECTIFIER DIODES (Low power)
F	GERMANIUM DIODES ${ }^{\text {P }} \begin{aligned} & \text { Point contact } \\ & \text { Gold bonded }\end{aligned}$
G	TUNER DIODES
H	SPECIAL TYPE
	INDEX

Mullard Limited
Mullard House, Torrington Place, London, WC1E 7HD

[^0]: - Available for current production only; not recommended for new designs.

[^1]: -Available for current production only; not recommended for new designs.

[^2]: 1) Measured at zero life time at $I_{R}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$.
 ${ }^{2}$) For sinusoidal operation see page 6 . For pulse operation see page 5.
[^3]: 1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.
[^4]: ${ }^{1}$) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited at 275 V .

[^5]: ${ }^{1}$) Measured at zero life time at $I_{R}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}>100 \mathrm{~V}$.
 ${ }^{2}$) For sinusoidal operation see page 6 . For pulse operation see page 5.

[^6]: 1) For sinusoidal operation see page 5 . For pulse operation see page 6.
[^7]: 1) See also page 8 .
[^8]: ${ }^{1}$) Measured in still air up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and mounted to solder tags at maximum lead length.

[^9]: * For accuracy of I_{Z} see graphs on page 5.

[^10]: 1) For accuracy of 1_{Z} see graphs on pages 4 and 5 .
[^11]: 1) For accuracy of IZ see graphs on pages 4 and 5 .
[^12]: 1) Measured under pulse conditions to a void excessive dissipation.
[^13]: - Measured under pulse conditions to avoid excessive dissipation.

[^14]: * For use as clamping diode in tripler circuits the maximum value for $I_{F}(A V)=4 \mathrm{~mA}$ up to $\mathrm{T}_{\mathrm{amb}}=77^{\circ} \mathrm{C}$.
 ** The rectifier can withstand peak currents occurring at flashover in the picture tube.

[^15]: - Measured under pulse conditions to avoid excessive dissipation.

[^16]: *The rectifier can withstand peak currents occurring at flashover in the picture tube.

[^17]: - Measured under pulse conditions to avoid excessive dissipation.

[^18]: - Measured under pulse conditions to avoid excessive dissipation.

[^19]: * Measured under pulse conditions to avoid excessive dissipation.

[^20]: - Measured under pulse conditions to avoid excessive dissipation.
 *- Illuminance $\leqslant 500$ lux (daylight); relative humidity $<\mathbf{6 5 \%}$.

[^21]: 1) Measured under pulse conditions to avoid excessive dissipation.
[^22]: * Measured under pulsed conditions to prevent excessive dissipation.

[^23]: * Matching: Devices are supplied on a bandolier with a space between matched sets (minimum quantity 120 devices, total divisible by 12; maximum quantity is $\mathbf{6 0 0 0}$ per reel). Capacitance difference between any two diodes in one set is less than 3% over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

