Mullard technical handbook

Book 1 Part 3

Book one

Semiconductor devices

Part three Diodes

DIODES

CONTENTS

SELECTION GUIDE BS 9000, CECC approved types	
GENERAL SECTION	A
SILICON WHISKERLESS DIODES	в
VOLTAGE REGULATOR DIODES (Low power)	С
VOLTAGE REFERENCE DIODES	D
RECTIFIER DIODES (Low power)	E
GERMANIUM DIODES Point contact Gold bonded	F
TUNER DIODES	G
SPECIAL TYPE	н
INDEX	

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.

'Mullard' is the trademark of Mullard Limited and is registered in most of the principal countries of the world.

© Mullard Limited 1981

Book 1 comprises the following parts-

Part 1A	Small-signal transistors
Part 1B	Low-frequency power transistors
Part 1C	Field-effect transistors
Part 1D	Microminiature semiconductors for hybrid circuits
Part 2	R.F. power devices
Part 3	Diodes
Part 4	Power diodes, thyristors, triacs
Part 5	Discontinued (combined with Part 4)
Part 6A	
Part 6B	See new Book 4 (Integrated circuits)
Part 7A	
Part 7B	
Part 8	Microwave semiconductors and components
Part 9	Opto-electronic devices

SEMICONDUCTOR DEVICES

Diodes

Mullard manufacture and market electronic components under the Mullard, Philips and Signetics brands.

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD

Telephone 01-580 6633

Telex: 264341

DATA HANDBOOK SYSTEM

The Mullard data handbook system is made up of four sets of books, each comprising several parts; plus the Signetics technical handbooks.

The four sets of books, easily identifiable by the colours on their covers, are as follows:

Book 1	(blue)	Semiconductor devices.
Book 2	(orange)	Valves and tubes.
Book 3	(green)	Passive components, materials and assemblies.
Book 4	(purple)	Integrated circuits.

Each part is completely reviewed annually; revised and reprinted where necessary. Revisions to previous data are indicated by an arrow in the margin.

The data contained in these books are as accurate and up to date as it is reasonably possible to make them at the time of going to press. It must however be understood that no guarantee can be given here regarding the availability of the various devices or that their specifications may not be changed before the next edition is published.

The devices on which full data are given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs, but generally available for equipment production are listed separately with abridged data. Data sheets for these types may be obtained on request. Older devices on which data may still be obtained on request are also included in the index of the appropriate part of each book.

Requests for information on the data handbook system (including Signetics data) and for individual data sheets should be made to

Technical Publications Department Mullard Limited New Road Mitcham Surrey CR4 4XY Telex: 22194

Information regarding price and availability of devices must be obtained from our authorised agents or from our representatives.

Products approved to BS9000 and CECC available on request:

	Specification No.	Type No.
BS9000	BS9305 – N041 BS9305 – F0087	BZY88 series BZY88 series
CECC	CECC 50 001 - 020	CV8308, CV8805
	CECC 50 001 - 021	BAW62 CV7367, CV7368, CV7756 CV7757, CV8617, CV9637 1N914, 1N916, 1N4148 1N4446, 1N4448
	CECC 50 001 - 022	BAV18, BAV19, BAV20, BAV21 BAX16, BAX17 CV8790
	CECC 50 001 - 026	BA314 PO33
	CECC 50 001 - 037	CV9638
	CECC 50 001 - 038	CV7875
	CECC 50 005 - 005	BZX79 series CV7138 to CV7146 CV7099 to CV7106
	CECC 50 008 - 015	BYW54, BYW55, BYW56 CVA7026 to CVA7030 CVA7476

Mullard

WHISKERLESS DIODES

DO-35 outline; quoted values are max.

	type	v _R v	l F mA	IFRM mA	t _{rr} ns	C _đ pF	V _F á V	nt IF mA
	BA316	10	100	225	4	2 2	1.1	100 100
	BA317	30		225	4	2	1.1	
	BA318	50	100 160	225 250		25	1.1	100 30
general purpose	OA200 OA202	50 150	160	250	3.5 3.5	25	1.15	30
	1N914	75	75	250	3.5	4	1.15	10
	1N914 1N916	75	75 75	225	4	2		10
	110910	75	/5	225	4	2		10
general purpose				1				
avalanche	BAS11	300	350	2000	1000	10 typ.	1.1	300
avaialitie	DASTI	500	550	2000	1000	TO typ.	1.1	300
	I BAW62	75	200	450	4	2	1	100
high-speed	1N4148	75	200	450	4	4	l i	10
switching;	1N4446	75	200	450	4	4	1	20
general purpose	1N4448	75	200	450	4	4		100
	1 114440	15	200	450				100
high-speed	1.00						-	
core-gating	BAV10	60	300	600	6	2.5	1.25	500
core garing	BAVIO	00	000	000	Ŭ	2.0	1.20	000
	BAV18	50	250	625	50	5	1.25	200
high speed;	BAV19	100	250	625	50	5	1.25	200
high voltage	BAV20	150	250	625	50	5	1.25	200
	BAV21	200	250	625	50	5	1.25	200
					1.10			
	BAX13	50	75	150	4	3	1.53	75
general	BAX16	150	200	300	120	10	1.5	200
industrial	BAX17	200	200	300	120	10	1.2	200
		2.						
avalanche for								
telephony	BAX12A	90	400	800	50	35	1	200
			-					

1

Mullard

VOLTAGE REGULATOR DIODES

Stabistors

type	working voltage (nom.) V	P _{tot} at max. mW	T _{amb} oC	IFRM max. mA	case
BA314	0.7	-	-	250	DO-35
BZV46-1V5	1.5	250	55	120	DO 35
BZV46-2V0	2	250	55	80	DO-35

Voltage regulator diodes (small signal, low power)

type	working voltage range V	P _{tot} a max. mW	t T _{amb} oC	IFRM max. mA	case
BZV85	5.1 to 75	1300	25	250	DO-41
BZX61•	7.5 to 130	1300	25	1000	DO-15
	150 to 200	1000	25	1000	DO-15
BZX79	2.4 to 75	400	50	250	DO-35
BZX87	5.1 to 75	1750	25	400	SOD-51
BZY88	2.7 to 33	400	50	250	DO-7

*Available for current production only; not recommended for new designs.

Mullard

VOLTAGE REFERENCE DIODES

DO-35 outline; voltage tolerance ± 5%

type	referer voltage		IZM max (IZRM)	S _Z	at IZ	fdiff max	at IZ
	V (nom)		mA	%/°C	mA	Ω	mA
BZX90				<0.01			
BZX91				<0.005			
BZX92	6.5	7.5	50	<0.002	7.5	15	7.5
BZX93				<0.001			
BZX94				<0.0005			
1N821			1	<0.01			
1N823				<0.005			
1N825	6.2	7.5	50	<0.002	7.5	15	7.5
1N827			1	<0.001			
1N829	1.50			<0.0005		100	
BZV10				<0.01			
BZV11	1.0			<0.005			
BZV12	6.5	2	50	<0.002	2	50	2
BZV13				<0.001			
8ZV14				<0.0005			

Mullard

RECTIFIER DIODES

General purpose			V _{RRM max}	
	type	mA	V	outline
	BYX10	360	1600	DO-14
	*BYX36-	1000	150	DO-15
			300	
	1N4001	a filmer and	600 50	
	1N4001	h	100	
	1N4002		200	
	1N4004	1000	400	DO-15
	1N4005		600	
	1N4006		800)
	1N4007		1000	
Controlled avalanche	BYW54	2000	600 800	SOD-57
	BYW55 BYW56	2000	1000	SOD-57 SOD-57
		400	350	DO-14/DO-15
Fast soft-recovery	*BY206 *BY207	400	600	DO-14/DO-15
	•BY210-	1000	400	DO-15
			600	States and the
			800	
	BYX55-	1200	350	SOD-18
	BYV95A	1500	600 200	SOD-57
	BTV95A	1500	400	300-57
	c		600	1.10
	BYV96D	1500	800	SOD-57
	E		1000	
	BYW95A	3000	200	SOD-64
	B	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400 600	
	BYW96D	3000	800	SOD-64
	E		1000	
Ultra fast soft-recovery	BYV27-	2000	50	SOD-57
A Design of the second			100	
			150	
	DVV/20	3500	200 50	SOD-64
	BYV28-	3500	100	300.04
			150	
			200	

*Available for current production only; not recommended for new designs.

Mullard

RECTIFIER DIODES (Cont.)

Parallel efficiency

type	IFWM max A	VRRM max V	outline
BY448	4	1500	SOD-57
BY458	4	1200	SOD-57
BY228	5	1500	SOD-64
BY438	5	1200	SOD-64

E.H.T. soft-recovery

type	IF(AV) max mA	VRRM max kV	outline
BY409	2.5	12.5	SOD-34
BY476	2.5	18	SOD 56
BY509	4	12.5	SOD-61
BY184	5	1.8	SOD-34
BYX90	200	7.5	SOD-18B
BYX91-90k	200	115	L < 143 mm
-120k	200	150	< 171 mm
-150k	200	190	< 231 mm
-180k	200	225	< 231 mm

5

Mullard

*GERMANIUM SMALL SIGNAL DIODES

Point contact

Quoted values are max.

	type	V _R V	I _F mA	IFRM mA	V _F V	at I _F mA
	r OA90	20	8	45	1.5	10
general purpose	OA91	90	50	150	1.9	10
	OA95	90	50	150	1.5	10
a.m. and f.m. detection	AA119	30	35	100	2.2	10

Gold bonded

	type	V _R V	l _F mA	IF RM mA	t _{rr} ns	C _d pF	V _F at V	اد mA
general purpose	AAZ13 AAZ15 AAZ17	8 75 50	30 140 140	50 250 250		2 2 2	1.0 1.1 1.1	30 250 250
general purpose and switching	0 A47	25	110	150	70	3.5	1.1	150

*Available for current production only; not recommended for new designs.

TUNER DIODES

Variable capacitance diodes	type	envelope	V _R max. V	C _d at V _R pF V	C _d ratio at V _R .V/V
a.f.c.	BB119	DO-35	15	20 - 25 4	> 1.3 4/10
radio f.m. band II	BB110B* BB110G*	SOD-23 SOD-23	30 30	29 - 33 3 27 - 31 3	> 2.5 3/30 > 2.5 3/30
radio a.m. bands television v.h.f.	BB212	TO-92	12	500-620 0.5	> 23 0.5/8
band I to 88 MHz band III to 230 MHz	BB809 BB405G BB105G*	DO-34 DO-34 SOD-23	28 28 28	4.5-6 25 1.8-2.5 25 1.8-2.8 25	> 5 3/25 > 4.3 3/25 > 4.0 3/25
television u.h.f.					
band IV and V to 860 MHz	BB105B* BB405B	SOD-23 DO-34	28 28	2.0 2.3 25 2.0 2.3 25	>4.5 3/25 >4.8 3/25
Band switching diodes					r _D at I _F (Ω) (mA)
I.f. switching	BA223	DO-35	20	< 3.5 6	< 1.5 10
v.h.f. switching	BA182* BA243 BA244 BA482 BA483	SOD 23 DO 35 DO 35 DO 35 DO 34 DO 34	35 20 20 35 35	<1.0 20 <2.0 15 <2.0 15 <1.2 3 <1.0 3	$\begin{array}{ccc} < 0.7 & 5 \\ < 1.0 & 10 \\ < 0.5 & 10 \\ < 0.7 & 3 \\ < 1.2 & 3 \end{array}$
V.H.F U.H.F. mixer diode	BA280	SOD-23	4	< 1.0 0	<15 5
Attenuator (p·i-n diode)	BA379	SOD-52	30	= 0.3 0	< 6.5 10

All television varicaps will be supplied in matched sets.

Over the voltage range 0.5 V to 28 V the diodes in a unit are capacitance matched to within 3%: BB105B; BB405B; BB405G;

6%: BB105G

*Available for current production only; not recommended for new designs.

Mullard

GENERAL SECTION

Type designation Rating systems Letter symbols Colour codes Packing Mounting and soldering

.

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices – as opposed to integrated circuits –, multiples of such devices and semiconductor chips.

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency (R_{th j-mb} > 15 °C/W)
- D. TRANSISTOR; power, audio frequency (R_{th i-mb} ≤ 15 °C/W)
- E. DIODE; tunnel
- F. TRANSISTOR; low power, high frequency (Rth i-mb > 15 °C/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency (R_{th i-mb} ≤ 15 °C/W)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rth j-mb > 15 °C/W)
- S. TRANSISTOR; low power, switching (R_{th i-mb} > 15 °C/W)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth i-mb ≤ 15 °C/W)
- U. TRANSISTOR; power, switching (R_{th i-mb} ≤ 15 °C/W)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage

- A. 1% (according to IEC 63: series E96)
- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)
- E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R . The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- 4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-) The NUMBER indicates the depletion layer in µm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

BATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:

I, i = current V, v = voltage P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

Subscripts

A, a	Anode terminal
(AV), (av)	Average value
B, b	Base terminal, for MOS devices: Substrate
(BR)	Breakdown
С, с	Collector terminal
D, d	Drain terminal
Е, е	Emitter terminal
F , f	Forward
G,g	Gate terminal
K, k	Cathode terminal
M, m	Peak value
0,0	As third subscript: The terminal not mentioned is open circuited
R, r	As first subscript: Reverse. As second subscript: Repetitive.
	As third subscript: With a specified resistance between the terminal
	not mentioned and the reference terminal.
(RMS), (rms)	R.M.S. value
	As first or second subscript: Source terminal (for FETS only)
S, s	As second subscript: Non-repetitive (not for FETS)
	As third subscript: Short circuit between the terminal not mentioned
	and the reference terminal
Х, х	Specified circuit
Z, z	Replaces R to indicate the actual working voltage, current or power
	of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

LETTER SYMBOLS

Upper-case subscripts shall be use	ed for the indication of:
a) continuous (d.c.) values (without	: signal) Example I _B
b) instantaneous total values	Example i _B
c) average total values	Example I _{B(AV)}
d) peak total values	Example I _{BM}
e) root-mean-square total values	Example I _{B(RMS)}
Lower-case subscripts shall be use component alone:	ed for the indication of values applying to the varying
a) instantaneous values	Example i _b
b) root-mean-square values	Example I _b (rms)
c) peak values	Example I _{bm}
d) average values	Example I _{b(av)}

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should be done by the first subscript (conventional current flow from the external circuit into the terminal is positive).

Examples: I_B, i_B, i_b, I_{bm}

Diodes: To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r should be used.

Examples: IF, IR, iF, If(rms)

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of confusion, the second subscript may be omitted.

Examples: V_{BE}, v_{BE}, v_{be}, V_{bem}

Diodes: To indicate a forward voltage (anode positive with respect to cathode), the subscript F or f should be used; for a reverse voltage (anode negative with respect to cathode) the subscript R or r should be used.

Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

```
Examples: I<sub>B2</sub> = continuous (d. c.) current flowing
into the second base terminal
V<sub>B2-E</sub> = continuous (d. c.) voltage between
the terminals of second base and
emitter
```

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I ₂	I _{2C}	= continuous (d.c.) current flowing into the collector terminal of the second unit
	v _{1C-2C}	= continuous (d.c.) voltage between the collector terminals of the

first and the second unit.

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

- B, b = susceptance; imaginary part of an admittance
- C = capacitance
- G, g = conductance; real part of an admittance
- H, h = hybrid parameter
- L = inductance
- R, r = resistance; real part of an impedance
- X, x = reactance; imaginary part of an impedance
- Y, y = admittance;
- Z, z = impedance;

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

> F, f = forward; forward transfer I, i (or 1) = input L, 1 = load O, o (or 2) = output R, r = reverse; reverse transfer S, s = source Examples: Z_S , h_f , h_F

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

Examples : h_{FE} = static value of forward current transfer ratio in commonemitter configuration (d.c. current gain) R_E = d.c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples: h_{fe} = small-signal value of the short-circuit forward current transfer ratio in common-emitter configuration

 $Z_{\rho} = R_{\rho} + jX_{\rho}$ = small-signal value of the external impedance

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

```
Examples: h<sub>FE</sub>, y<sub>RE</sub>, h<sub>fe</sub>
```

Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

 $\begin{array}{c} \text{Examples: } h_{i} \ (\text{or } h_{1}) \\ h_{i}^{i} \ (\text{or } h_{22}) \\ h_{i}^{0} \ (\text{or } h_{21}) \\ h_{r}^{i} \ (\text{or } h_{12}) \end{array}$

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples: h_{fe} (or h_{21e}), h_{FE} (or h_{21E})

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples:
$$Z_i = R_i + jX_i$$

 $y_{fe} = g_{fe} + jb_{fe}$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

Examples: Re (h_{ib}) etc. for the real part of h_{ib} Im (h_{ib}) etc. for the imaginary part of h_{ib}

PRO ELECTRON COLOUR CODING SYSTEM FOR PROFESSIONAL SMALL SIGNAL DIODES

Letter combination-background colour

- BAV green
- BAW blue
- BAX black
- BAS orange

Figure combination-colour bands

- 0 black
- 1 brown
- 2 red
- 3 orange
- 4 yellow
- 5 green
- 6 blue
- 7 violet
- 8 grey
- 9 white

The cathode side is indicated by a broad band which is at the same time the first digit of the figure combination.

Note: For BA types see individual type publications.

COLOUR CODES

JEDEC assigned type numbers

(EIA-standard RS-236-B; June, 1963)

1. Prefix identification

The prefix identification consisting of a first number symbol and the letter "N" shall not be indicated in the coding.

2. Banding systems

The sequence number consisting of a two, three, or four digit number after the letter "N' may be coded as follows:

- 2.1 Two-digit sequence numbers shall consist of a first black band and the sequence number in second and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.2 Three-digit sequence numbers shall consist of the sequence number in first, second, and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.3 Four-digit sequence numbers shall consist of the sequence number infour bands of the colours indicated in Table 1.

If a suffix letter is required it shall be indicated as the fifth band.

3. Cathode identification and reading sequence

- 3.1 A double-width band shall be used as the first band reading from cathode to anode ends.
- 3.2 An alternative method is provided where equal width bands may be used. The bands shall be clearly grouped toward the cathode end, and shall be read from cathode to anode ends.
- 3.3 Either of the above colour banding methods may be used in stead of the cathode designating symbol or other marking.

4. Colour bands

The sequence numbers of the type numbers and suffix letters shall be indicated by the colours in Table 1.

		-
NUMBER	COLOUR	SUFFIX LETTER
0	black	not applicable
1	brown	А
2	red	В
3	orange	С
4	yellow	D
5	green	E
6	blue	F
7	violet	G
8	grey	н
9	white	J

TABLE 1

BANDOLIER AND REEL SPECIFICATION

This specification concerns all axial leaded diodes in this handbook.

The taped and reeled products fulfil the requirements of IEC 286: packaging of components on continuous tapes.

Dimensions in mm

Fig. 1 Configuration of bandolier.

The red tape indicates the diode cathode side.

1. Displacement between any two diodes; for DO-34 maximum 0,4.

2. For SOD-18, 10 ± 0,5.

3. For outlines SOD-34, SOD-56 and SOD-61 this dimension is 58 \pm 2.

The cumulative space (S) measured over ten spacings = 50 ± 2, and for SOD-18 specified as 100 ± 2. The diodes are centred so that $|L_1 - L_2| \le 1,2$ mm. DO-14 not specified.

On the white tape of the bandolier per 50 diodes a black marker is printed.

The axial taping specification described above is compatible with automatic insertion equipment as manufactured by Universal, U.S.M. (Dynapert) and M.E.I. (Panasert).

Fig. 2 Reel dimensions (mm).

- (1) Diode
- (2) Bandolier
- (3) Paper

- (4) Flange
- (5) Cylinder

Outline		quantity per reel
SOD-2	DO-14	5000
SOD-7	DO-7	7000
SOD-17	DO-35	9000
SOD-18	-	1250
SOD-22	-	7000
SOD-27	DO-35	9000
SOD-34	-	5000
SOD-40	DO-15	5000
SOD-51	-	5000
SOD-56	-	4000
SOD-57	-	4500
SOD-61	-	8000
SOD-64	-	4000
SOD-66	DO-41	7000
SOD-68	DO-34	9000

2

RULES FOR MOUNTING AND SOLDERING

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting the following rules should be followed.

General

Perpendicular forces on the body of the diode must be avoided.

Avoid sudden forces on the leads or body. These forces often are much higher than allowed.

High acceleration forces as a result of any shock (dropping on a hard surface for instance) must be prevented.

Bending

During bending the leads must be supported between body or stud and bending point.

Axial forces on the body during the bending process must not exceed 20 N.

Bending the leads through 90° is allowed at any distance from the body when it is possible to support the leads during bending without contacting the envelope

Bending close to the body or stud without supporting the leads only is allowed if the bend radius is greater than 0,5 mm; in practice this limit will be met by hand bending without applying high pulling or pressing forces.

Twisting

Twisting the leads is allowed at any distance from the body or stud if the lead is properly clamped between body or stud and twisting point.

Without clamping, twisting the leads is only allowed at a distance of greater than 3 mm from the body; the torque angle must not exceed 30°, the applied force not higher than 15 mNm.

Straightening

Straightening the leads is allowed if the applied pulling force in the axial direction does not exceed 20 N and the total duration is not longer than 5 seconds.

Soldering

Avoid any force on the body or leads during or just after soldering.

Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

Do not solder a diode upright with one end of the body directly on the surface of the printed-circuit board, there should be at least 0,5 mm between body end and print surface.

When the device is to be mounted with straight or short-cropped leads, solder the leads individually. Bent leads may be soldered simultaneously.

The diode can be mounted flat on the printed-circuit board when the body temperature of the diode will not exceed:

a. The maximum allowed storage temperature, where this is higher than 175 °C;

b. 115 °C for more than 2 minutes (with an absolute peak temperature for the junction of 160 °C), where the maximum storage temperature is less than 175 °C.

Any contact between diode body and hot spots on the printed-circuit board (such as copper layers) must be avoided.

Prevent fast cooling after soldering.

Minimum distance soldering point to seal and maximum allowable soldering time for several envelopes.

	↓ -	→	on printed-	ring iron therwise than circuit board er temp.: 300 ^o C)	or wave so on printed	ering iron, dip Idering, mounted circuit board er temp.: 300 °C)
			time	distance	time	distance
			S	mm	S	mm
SOD-2	DO-14	plastic	5	5,0	5	5,0
SOD-7	DO-7	glass	3	5,0	5	5,0 *
SOD-17	DO-35	glass	3	1,5	5	1,5
SOD-18	-	plastic	3	5,0	5	5,0
SOD-22	-	plastic	3	5,0	5	5,0
SOD-23	-	plastic	3	0,5	5	0,5
SOD-27	DO-35	glass	3	1,5	5	1,5
SOD-34	-	plastic	3 3	2,0	5	2,0
SOD-40	DO-15	plastic	3	5,0	5	5,0
SOD-51	-	glass	3	3,0	5	3,0
SOD-52	-	plastic	3	0,5	5	0,5
SOD-56	_	plastic	3	2,0	5	2,0
SOD-57	_	glass	3 3	1,5	5	1,5
SOD-61	_	glass	3	2,0	5	2,0
SOD-64	_	glass	3	1,5	5	1,5
SOD-66	DO-41	glass	3	3,0	5	3,0
SOD-68	DO-34	glass	3	1,5	5	1,5
TO-18	_	metal	3	0,5	5	0,5
TO-92		plastic	3	2,5	5	2,5

* 2 mm permissible from anode (upright mounting) if bath temperature \leq 260 °C.

November 1979

SILICON WHISKERLESS DIODES

10 V, 30 V and 50 V GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes intended for general purpose applications.

They have reverse voltages up to 10 V for BA316, 30 V for BA317 and 50 V for BA318.

QUICK REFERENCE DATA							
			BA 316	BA317	BA318		
Continuous reverse voltage	v _R	max.	10	30	50	v	
Repetitive peak forward current	IFRM	max.		225			
Storage temperature	т _{stg}		-65 t	-65 to +200			
Junction temperature	тј	max.		200		оС	
Thermal resistance from junction to ambient	R _{th j-a}	=	0, 60			⁰ C/mW	
Forward voltage at $I_F = 1,0$ mA	v _F	<	700			mV	
$I_F = 10 \text{ mA}$	v _F	<		850		mV	
$I_F = 100 \text{ mA}$	v _F	<		1100		mV	
Diode capacitance at $V_R = 0$; f = 1 MHz	C _d	<		2		pF	
Reverse recovery time when switched from $I_F = 10 \text{ mA to}$ $I_R = 60 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<		4		ns	

MECHANICAL DATA

DO-35

The diodes may be either type-branded or colour-coded.

Dimensions in mm

BA316 BA317 BA318				_
RATINGS Limiting values in accordance	e with the	Absol	ute Maximum Syste	m (IEC134)
Voltage			BA316 BA317 BA3	
Continuous reverse voltage	v _R	max.	10 30	50 V
Currents				
Average rectified forward current				
(averaged over any 20 ms period)	^I F(AV)	max.	100	mA 1)
Forward current (d.c.)	I _F	max.	100	mA
Repetitive peak forward current	IFRM	max.	225	mA
Non-repetitive peak forward current				
t = 1 μs t = 1 s	^I FSM ^I FSM	max. max.	2000 500	mA mA
Temperatures	1 0.01			
Storage temperature	Tstg		65 to +200	°C
Junction temperature	- sig T _i	max.	200	°C
THERMAL RESISTANCE	_1			-
From junction to ambient in free air	P.	=	0,60	^o C/mW
	R _{thj-a}	_	0,00	
CHARACTERISTICS				T _j = 25 °C
Forward voltage				
$I_{\rm F} = 1,0 ~{\rm mA}$	v _F	<	700	mV
$I_F = 10 \text{ mA}$	v_F	<	850	mV
$I_F = 100 \text{ mA}$	v _F	<	1100	mV
Reverse current			BA316 BA317 BA3	18
$v_R = 10 V$	I _R	<	200 50 -	nA
$v_R = 30 v$	I _R	<	- 200	50 n.A
$V_R = 50 V$	I _R	<	- - 2	00 n.A
Diode capacitance				_
$V_{R} = 0; f = 1 MHz$	Cd	<	2	pF
==				

1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

	BA316 BA317 BA318
CHARACTERISTICS (continued)	T _j = 25 ^o C
Reverse recovery time when switched from $I_F = 10 \text{ mA to } I_R = 60 \text{ mA}; R_L = 100 \Omega;$ Measured at $I_R = 1 \text{ mA}$ Test circuit and waveforms:	t _{rr} < 4 ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2761383}$ output signal
Input signal : Rise time of the reverse pulse $t_r = 0, 6 \text{ ns}$ Reverse pulse duration $t_p = 100 \text{ ns}$ Duty factor $\delta = 0, 05$	*) ¹ _R = 1 mA
Oscilloscope: Rise time $t_r = 0, 35 \text{ ns}$	

Circuit capacitance $C \leq 1 \text{ pF}(C = \text{oscilloscope input capacitance} + \text{parasitic capacitance})$

•

BA316 BA317 BA318

BA316

BA316 BA317 BA318

June 1975

SILICON GLASS PASSIVATED AVALANCHE DIODE

Diode in a DO-35 envelope. It is primarily intended for general purpose applications, e.g. scan and flyback rectifiers, protection diodes etc. in television circuits. An advantage of this diode is its capability of absorbing reverse transient energy.

QUICK REFERENCE DATA

V _{RW}	max.	300	V ·
^I F(AV)	max.	300	mΑ
I FSM	max.	4	Α
PRRM	max.	75	W
t _{rr}	<	1	μs
	IF(AV) IFSM PRRM	I _{F(AV)} max. I _{FSM} max. P _{RRM} max.	I _{F(AV)} max. 300 I _{FSM} max. 4 P _{RRM} max. 75

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour-coded.

BAS11

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working reverse voltage	VRW	max.	300	v
Continuous reverse voltage (see Fig. 2)	VR	max.	300	v
Forward current (d.c.)	۱ _F	max.	350	mA
Average forward current (averaged over any 20 ms period)	IF(AV)	max.	300	mA
Repetitive peak forward current t = 10 ms; f = 50 Hz δ = 0,1; f = 15 kHz	IFRM IFRM	max. max.	900 2	mA A
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T_j = 150 ^o C prior to surge (t = 10 μ s; square wave) T_j = 150 ^o C prior to surge	^I FSM ^I FSM	max. max.	4 30	A A
Repetitive peak reverse current $t = 10 \ \mu s$ (square wave; f = 50 Hz) T _{amb} = 25 °C	IRRM	max.	150	mA
Repetitive peak reverse power dissipation t = 10 μ s (square wave; f = 50 Hz) T _{amb} = 25 °C	P _{RRM}	max.	75	w
Storage temperature	T _{stg}	-65 to +	- 150	°C
Junction temperature	т _ј	max.	150	°C

THERMAL RESISTANCE

From junction to ambient in free air mounted on printed board at 8 mm lead length

R_{th}j₋a

=

0,34 °C/mW

Fig. 2 Maximum permissible continuous reverse voltage versus junction temperature.

BAS11

CHARACTERISTICS	
-----------------	--

 $T_i = 25 \text{ °C}$ unless otherwise specified

VF	<	1,1 V
ν _F	<	1,3 V
V(BR)R	>	300 V
I _R	<	20 µA
Cd	typ.	10 pF
Cd	typ.	1,5 pF
Qs	typ.	70 nC
trr	<	1 μs
di _R /dt	typ.	2,0 A/µs
	I _R C _d C _d C _s	V _{(BR)R} > I _R < C _d typ. C _d typ. Q _s typ. t _{rr} <

Fig. 3 Definitions of Ω_s , t_{rr} and dI_R/dt.

Fig. 4.

From the left-hand graph the total power dissipation can be found as a function of the average output current.

The parameter $a = \frac{I_F(RMS) \text{ per diode}}{I_F(AV) \text{ per diode}}$ depends on $n\omega R_L C_L$ and $\frac{R_t + r_{diff}}{nR_L}$ and can be found from existing graphs.

Once the power dissipation is known, the maximum permissible ambient temperature follows from the right-hand graph.

Silicon glass passivated avalanche diode

BAS11

Mullard

BAS11

Fig. 7 Maximum permissible repetitive peak reverse power as a function of pulse duration. T \ge 20 ms; T_j = 25 °C.

----- rectangular waveform, $\delta \leq 0,01$.

---- triangular waveform, $\delta \leq 0,02$.

ULTRA-HIGH-SPEED DIODE

Silicon planar epitaxial, ultra-high-speed, high-conductance diode in a DO-35 envelope. The BAV10 is primarily intended for core gating in very fast memories.

QUICK REFERENCE DATA						
Continuous reverse voltage	v _R	max.	6 0	v		
Repetitive peak reverse voltage	V _{RRM}	max.	60	v		
Repetitive peak forward current	IFRM	max.	600	mA		
Junction temperature	Тj	max.	200	• C		
Forward voltage at $I_F = 200 \text{ mA}$	v _F	<	1,0	v		
Reverse recovery time when switched from $I_F = 400 \text{ mA}$ to $I_R = 400 \text{ mA}$; $R_L = 100 \Omega$;			,			
measured at $I_R = 40 \text{ mA}$	trr	<	6	ns		
Recovery charge when switched from $I_F = 10 \text{ mA to } V_R = 5 \text{ V}; \text{ R}_L = 500 \Omega$	Qs	<	50	рC		

MECHANICAL DATA

DO -35

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Mullard

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages

Continuous reverse voltage	v _R	max.	60	v	
Repetitive peak reverse voltage	V _{RRM}	max.	60	v 1)	
Currents					
Average rectified forward current	I: AV)	max.	300	mA ²)	
Forward current (d.c.)	Ι _F	max.	300	mA	
Repetitive peak forward current	IFRM	max.	600	mA	
Non-repetitive peak forward current t = 1 μ s t = 1 s	I _{FSM} I _{FSM}	max. max.	4000 1000	mA mA	
Temperatures					
Storage temperature	T _{stg}	- 65 t	o +200	°C	
Junction ^t emperature	Тј	max.	200	°C	
THERMAL RESISTANCE					
From junction to ambient in free air at maximum lead length	R _{th j-a}	=	0,5	^o C/mW	,
CHARACTERISTICS	$T_{j} = 25 \ ^{o}C \ u$	inless oth	erwise	specified	
Forward voltage					
$I_F = 10 \text{ mA}$	v_F	<	0,75	v	
$I_F = 200 \text{ mA}$	v_F	<	1,00	v	
$I_F = 200 \text{ mA}; T_j = 100 ^{0}\text{C}$	v _F	<	0,95	v	
$I_F = 500 \text{ mA}$	v _F	<	1,25	v	
Reverse current					
$V_R = 60 V$	I _R	<	100	nA	
$V_{R} = 60 V; T_{j} = 150 °C$	^I R	<	100	μ A	
Diode capacitance					
$V_R = 0$; f = 1 MHz	Cd	<	2,5	pF	

¹) Measured at zero life time at $I_R = 10 \ \mu$ A; $V_R = 75 \ V$.

 2) For sinusoidal operation see page 6. For pulse operation see page 5.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Circuit capacitance $C \leq 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes; intended for switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

QUICK REFERENCE DATA

			BAV18	BAV19	BAV20	BAV21	
Continuous reverse voltage	٧ _R	max.	50	100	150	200	v
Forward current (d.c.)	١ _F	max.		25	60		mA
Junction temperature	т	max.		17	'5		°C
Thermal resistance from junction to ambient	R _{th} j₋a	=		0,37	'5		K/mW
Forward voltage at I _F = 100 mA	VF	<		1	,0		v
Reverse current at VR = VRmax	I _R	<		10	00		nA
Diode capacitance at V _R = 0; f = 1 MHz	Cd	typ. <			,5 ,0		pF pF
Reverse recovery time when switched from I _F = 30 mA to I _B = 30 mA; R _I = 100 Ω ;							
measured at $I_R = 3 \text{ mA}$	t _{rr}	<		5	60		ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour coded.

Products approved to CECC 50 001-022, available on request.

RATINGS Limiting values in account	rdance wi	th the	Absolu	ute Max	cimum	System	(IEC 1	34)
Voltages		E	AV18	BAV19	BAV2	0 BAV2 1		
Continuous reverse voltage	v _R	max.	50	100	150	200	v	
Repetitive peak reverse voltage	V _{RRM}	max.	60	120	200	250	v	
Currents								
Average rectified forward current			I _F (AV)	max.	250	mA	1)
Forward current (d.c.)			I_{F}		max.	2 50	mA	
Repetitive peak forward current			I _{FF}	RM	max.	625	mA	
Non-repetitive peak forward current $t < 1 \text{ s}$; $T_j = 25 ^{O}\text{C}$	ıt		lFS	SM	max.	1	A	
$t = 1 \ \mu s; T_j = 25 \ ^{O}C$			IFS	M	max.	5	A	
Power dissipation								
Total power dissipation up to T_{amb}	= 25 °C		Pto	t	max.	40 0	mW	
Temperatures								
Storage temperature			Tst	g	-65 t	o +175	°C	
Junction temperature			Тj		max.	175	٥C	
THERMAL RESISTANCE								
From junction to ambient in free ai	r		R _{th}	i j-a	=	0, 375	°C/r	nW

 ${\bf l})$ For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

2

January 1977

CHARACTERISTICS	$T_j = 25$ ^o C unless otherwise specified					ed		
Forward voltage								
$I_F = 100 \text{ mA}$				$\mathbf{v}_{\mathbf{F}}$	<	1,0	v	
$I_F = 200 \text{ mA}$				v _F	<	1, 25	v	
Reverse breakdown voltage		I	BAV18	BAV19	BAV20	BAV21		-
I _R = 100 μA	V _{(BR)R}	>	60	120	200	250	v	1)
Reverse current								
$V_R = V_{Rmax}$				I _R	<	100	nA	
$V_R = V_{Rmax}; T_j = 150 \text{ °C}$				^I R	<	Í00	μΑ	
Differential resistance								
$I_F = 10 \text{ mA}$				r _{diff}	typ.	5	Ω	
Diode capacitance								
$V_{\mathbf{R}} = 0$; f = 1 MHz				Сd	typ. <	1,5 5,0	pF pF	

Reverse recovery time when switched from

 $I_F = 30 \text{ mA to } I_R = 30 \text{ mA}; R_L = 100 \Omega;$ measured at $I_R = 3 \text{ mA}$

Test circuit and waveforms:

Circuit capacitance $C \leq 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

50

trr

<

ns

¹) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited at 275 V.

June 1975

June 1979

7262311.2 104 V_R = V_{Rmax} Ι_R (μΑ) 103 10² max typ 10 1 10-1 10⁻² L 100 ⊤_j (℃) 200

June 1975

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in a DO-35 envelope. The BAW62 is primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	75	v	
Repetitive peak reverse voltage	V _{RRM}	max.	75	v	
Repetitive peak forward current	^I FRM	max.	450	mA	-
Junction temperature	т _і	max.	200	°C	
Forward voltage at I _F = 100 mA	V _F	<	1	v	
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$;					
measured at $I_R = 1 \text{ mA}$	trr	<	4	ns	

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour-coded.

Products, approved to CECC 50 001-021, available on request.

June 1979

	Voltages				
	Continuous reverse voltage	v _R	max.	75	v
	Repetitive peak reverse voltage	V _{RRM}	max.	75	V ¹)
	Currents				
-	Average rectified forward current	I _{F(AV)}	max.	150	mA ²)
•	Forward current (d.c.)	١ _F	max.	200	mA
	Repetitive peak forward current	IFRM	max.	450	mA
	Non-repetitive peak forward current: t = 1 μ s t = 1 s	^I FSM ^I FSM	max. max.	2000 500	m A m A
	Temperatures				
	Storage temperature	T _{stg}	- 65 t	:o + 200	°C
	Junction temperature	Τj	max.	200	٥C
	THERMAL RESISTANCE				
	From junction to ambient in free air at maximum lead length	R _{th} j-a	=	0,6	⁰C/m₩
	CHARACTERISTICS	Τ _j = 25 ^o C ι	unless oth	erwise	specified
	Forward voltages				
	$I_F = 5 mA$	v _F	0,62	to 0, 75	v
	$I_F = 100 \text{ mA}$	v _F	<	1,00	v
	$I_{\rm F}$ = 100 mA; $T_{\rm j}$ = 100 °C	VF	<	0,93	v
	Reverse currents				
	$V_R = 20 V$	IR	<	25	nA
	$V_{R} = 20 V; T_{j} = 150 {}^{o}C$	IR	<	50	μ A
	$V_{\rm R}$ = 50 V	IR	<	200	nA
	$V_R = 75 V$	IR	<	5	μA
	$V_R = 75 V; T_j = 150 °C$	IR	<	100	μA
	Diode capacitance				
	$V_{R} = 0; f = 1 MHz$	Cd	<	2	pF

¹) Measured at zero life time at I_R = 100 µA; V_R > 100 V.

 $^{2}\)$ For sinusoidal operation see page 6. For pulse operation see page 5.

measured at $I_R = 1$ mA

Test circuit and waveforms:

trr

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

ns

Circuit capacitance C ≤ 7 pF (C = oscilloscope input capacitance + parasitic capacitance)

High-speed silicon diode

BAW62

Fig. 8 Maximum permissible average rectified forward current as a function of the duty factor (pulse operated).

Fig. 9 Maximum permissible repetitive peak forward current as a function of the duty factor (pulse operated).

20

June 1975

BAW62

œ

SILICON PLANAR EPITAXIAL CONTROLLED-AVALANCHE DIODE

Diode in a DO-35 envelope primarily intended for switching inductive loads in semi-electronic telephone exchanges.

QUICK REFERENCE DATA					
Repetitive peak forward current	lFRM	max. 0,8	Α		
Repetitive peak reverse energy $t_p \ge 50 \ \mu s; \ f \le 20 \ Hz; \ T_j = 25 \ ^oC$	ERRM	max. 5,0	mJ		
Thermal resistance from junction to ambient	R _{th j-a}	= 0,38	°C/mW		
Forward voltage at $I_F = 200 \text{ mA}$	VF	< 1,00	v		
Reverse avalanche breakdown voltage I_R = 100 μ A	V _(BR) R	120 to 175	v		
Reverse recovery time when switched from I_F = 30 mA to I_R = 30 mA; R_L = 100 Ω ; measured at I_R = 3 mA	t _{rr}	< 50	ns		

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the	Absolute M	aximum	System	(IEC 134)
Voltage				
Continuous reverse voltage	VR	max.	90	V (1)
Currents				
Average rectified forward current (averaged over any 20 ms period)	l _{F(AV)}	max.	0,4	A
Forward current (d.c.)	$I_{\rm F}$	max.	0,4	Α
Repetitive peak forward current	I _{FRM}	max.	0,8	Α
Non-repetitive peak forward current $t = 1 \mu s; T_j = 25 {}^{o}C$ prior to surge $t = 1 s; T_j = 25 {}^{o}C$ prior to surge	IFSM IFSM	max. max.	6,0 1,5	A A
Repetitive peak reverse current	IRRM	max.	0,6	Α
Reverse energy				
Repetitive peak reverse energy $t_p \ge 50 \ \mu s; f \le 20 \ Hz; T_j = 25 \ ^oC$	E _{RRM}	max.	5,0	mJ
Temperatures				
Storage temperature	T _{stg}	-65 to	» +200	°C
Junction temperature	Тj	max.	200	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0, 3 8	^o C/mW
From junction to ambient in free air Tlead = 25 °C at 8 mm from the body	R _{th j-a}	=	0, 30	°C/mW

(1) It is allowed to exceed this value as described on page 4. Care should be taken not to exceed the I_{RRM} rating.

CHARACTERISTICS	T_j = 25 °C unless otherwise specified				
Forward voltage					
$I_F = 10 \text{ mA}$	v_F	<	0,75	v	
$I_F = 50 \text{ mA}$	v _F	<	0,84	v	
$I_F = 100 \text{ mA}$	v _F	<	0,90	v	
$I_F = 200 \text{ mA}$	v _F	<	1,00	v	
$I_F = 400 \text{ mA}$	v _F	<	1,25	v	
Reverse avalanche breakdown voltage					
I _R = 100 μA	V(BR)R	120 t	o 175	v	
Reverse current					
$V_R = 90 V$	IR	<	100	nA	
$V_{R} = 90 V; T_{j} = 150 \text{ °C}$	IR	<	100	μA	
Diode capacitance					
$V_{\mathbf{R}} = 0; \mathbf{f} = 1 \text{ MHz}$	Cd	typ. <	15 35	pF pF	
Reverse recovery time when switched from					

 $I_F = 30 \text{ mA to } I_R = 30 \text{ mA}; R_L = 100 \Omega;$ measured at $I_R = 3 \text{ mA}$

Test circuit and waveforms :

Fig. 2.

Fig. 3.

trr

Input signal : Total pulse duration *) I_R = 3 mA 2 µs $t_{p(tot)} =$ Duty factor = 0,0025δ Rise time of the reverse pulse 0,6 ns tr = Reverse pulse duration tp 100 ns = Oscilloscope: Rise time = 0,35 ns tr

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

50 ns

<

Reverse voltages higher than the ${\sf V}_{\sf R}$ ratings are allowed, provided:

- a. the transient energy \leqslant 7,5 mJ at $P_{RRM} \leqslant$ 30 W; T_j = 25 °C the transient energy \leqslant 5 mJ at $P_{RRM} \leqslant$ 120 W; T_j = 25 °C (see Fig. 8). b. T \geq 5 ms; $\delta \leqslant$ 0,01 (rectangular waveform)
 - - $\delta \leq 0.02$ (triangular waveform).

With increasing temperature, the maximum permissible transient energy must be decreased by 0,03 mJ/°C.

Fig. 4.

Fig. 5.

Silicon planar epitaxial controlled-avalanche diode

BAX12A

Fig. 9 Typical values reverse current as a function of junction temperature at V $_{\rm R}$ = 90 V.

SILICON OXIDE PASSIVATED DIODE

Whiskerless diode in a glass subminiature envelope. The BAX13 is primarily intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	٧R	max.	50 V
Repetitive peak reverse voltage	VRRM	max.	50 V
Repetitive peak forward current	I _{FRM}	max.	150 mA
Thermal resistance from junction to ambient	R _{th i-a}	=	0,60 ^o C/mW
Forward voltage at I _F = 20 mA	VF	<	1,0 V
Reverse recovery time when switched from $I_F = 10$ mA to $I_R = 60$ mA; $R_L = 100 \Omega$ measured at $I_R = 1$ mA	t _{rr}	<	4 ns
Recovery charge when switched from I _F = 10 mA to V _R = 5 V; $R_L = 500 \Omega$	Qs	<	45 pC

MECHANICAL DATA

DO - 35

Dimensions in mm

Mullard

The coloured end indicates the cathode The diodes may be type-branded or colour coded.

September 1980

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages Continuous reverse voltage VR v max. 50 Repetitive peak reverse voltage VRRM 50 ν max. Currents Average rectified forward current mA^{1} (averaged over any 20 ms period) IF(AV) max. 75 Forward current (d.c.) 75 mA IF max. Repetitive peak forward current 150 mA IFRM max. Non-repetitive peak forward current $t = 1 \mu s$ 2000 mA IFSM max, t = 1 sIFSM 500 mA max. Temperatures Storage temperature Tstg -65 to + 200°C 200 °C Junction temperature Τi max. THERMAL RESISTANCE From junction to ambient in free air 0,60 °C/mW R_{th i-a} **CHARACTERISTICS** $T_i = 25$ °C unless otherwise specified Forward voltage $I_F = 2 mA$ ٧F < 0,7 v $I_F = 10 \text{ mA}; T_i = 100 \text{ }^{\circ}\text{C}$ < 0,8 v VF 2) $I_F = 20 \text{ mA}$ VF < 1.0 v 2) 1.53 v $I_{F} = 75 \text{ mA}$ ۷F < Reverse current $V_{R} = 10 V$ IR < 25 nA $V_{R} = 10 \text{ V}; T_{i} = 150 \text{ °C}$ < 10 µА IR $V_{R}^{-} = 25 V$ IR < 50 nA $V_{R} = 50 V$ < 200 nA IR $V_R = 50 V; T_i = 150$ °C IR < 25 μA Diode capacitance (see also page 7) $V_{R} = 0; f = 1 MHz$ Cd < 3 pF

For sinusoidal operation see page 5.
 For pulse operation see page 6.

2) Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery voltage (see also page 7)

At t_{T} > 20 ns, V_{fr} will not exceed V_{F} corresponding to l_{F} = 1 to 75 mA

Test circuit and waveforms :

Input signal	: Rise time of the forward pulse	$t_r = 20 \text{ ns}$
	Forward current pulse duration	$t_p = 120 \text{ ns}$
	Duty factor	$\delta = 0,01$

Oscilloscope: Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; R_L = 100 \Omega; \text{ measured at } I_R = 1 \text{ mA} \qquad t_{rr} < 6 \text{ ns} \ ^1) \\ I_F = 10 \text{ mA to } I_R = 60 \text{ mA}; R_L = 100 \Omega; \text{ measured at } I_R = 1 \text{ mA} \qquad t_{rr} < 4 \text{ ns}$

Test circuit and waveforms :

Oscilloscope: Rise time

 $t_{r} = 0, 35 \text{ ns}$

 $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \leq 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

 $T_{1} = 25 \text{ °C}$

¹⁾ See also page 8.

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

July 1975

Tomb (°C) 250

July 1975

July 1975

July 1975

$T_j = 25^{\circ}C$

10

June 1968

BAX13

SILICON WHISKERLESS DIODES

Whiskerless diffused silicon diodes intended for general purpose industrial applications.

QUICK REFERENCE I	DATA	
	BAX16	BAX17
V _R max.	150	200 V
V_F max. I_F = 100mA	1.3	- v
$I_F = 200 \text{ mA}$	-	1.2 V
FRM ^{max.}	300	mA
t_{rr} max. (when switched from $I_{r} = 30 \text{ mA}$		
to $V_R = 3.0V$)	120	nБ
Q_{s} max. (when switched from I_{F} = 10mA		
to $V_R = 5.0V$	0	.7 nC

Unless otherwise stated, data is applicable to both types

OUTLINE AND DIMENSIONS

Dimensions in mm

DO-35

The coloured end indicates the cathode The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-022, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

		,		-	em.
	Electric		BAX16	BAX17	
	v _R	Max. continuous reverse voltage	150	200	v
	V _{RRM}	Max. repetitive peak reverse voltage	150	200	v
	L F(AV)	Max. average forward current (averaging time=20ms)	200		mA
	I _F	Max. continuous forward current	200		mA
	I FRM	Max. repetitive peak forward current	300		mA
	I FSM	Max. non-repetitive peak forward current	l		
		max. duration $1.0\mu s$	2500		mA
	`	max. duration 1.0s	500		mA
,	Tempera	ature			
	T rai	nge	-65 to +200		°c
	T _i max.		+200		°c
		IARA CTERISTIC			
·	R		0.5	0 degC	/mW
ELEC	R th(j-an TRICAL	nb) CHARACTERISTICS ($T_j = 25^{\circ}C$ un	less otherwise a	•	
		······································	BAX16	BAX17	
		`	Max,	Max.	
	v _F	Forward voltage			
	r	$I_{\mathbf{F}} = 1.0 \mathrm{mA}$	0.65	0.65	v
		$I_{F} = 10 \text{ mA}, T_{i} = 100^{\circ} \text{ C}$	0.85	0.75	v
		$\dagger I_{F} = 100 \text{mA}$	1.3*	1.1	v
		$\dagger \mathbf{I}_{\mathbf{k}} = 200 \mathrm{mA}$	1.5	1.2*	v
		$t_{\rm F}^{\rm T} = 200 {\rm mA}, \ {\rm T}_{\rm j} = 175^{\rm O}{\rm C}$	1.4	1.2	v
	R	Reverse current V _R = 50V	25	25	nA
		$V_{R} = 50V, T_{j} = 150^{\circ}C$	25	25	μA
		$V_{R} = 150V$	100**	100**	nA
		$V_{R} = V_{RRM}$ max., $T_{j} = 150^{\circ}C$	100	100	μA
	C _d	Diode capacitance $V_R = 0$, f=1.0MHz	10	10	pF
*	These a	re the characteristics which are	recommended	for accent	ance

*These are the characteristics which are recommended for acceptance testing purposes.

†Measured under pulse conditions to prevent excessive dissipation.

Mullard

BAX16-Page 2

SILICON WHISKERLESS DIODES

BAX16 BAX17

	Typ.	Max.	
Reverse recovery time when switched from $I_F = 30 \text{ mA}$	70	120	ns
to $V_R = 3.0V$, $R_L = 100\Omega$			
measured at $I_R = 1.0 \text{mA}$			

Test circuit

trr

Circuit capacitance $\leq 1.0pF$ (C.R.O. + stray capacitance) C.R.O. rise time = 0.35ns $V = V_R + I_F \times R_s$

0.6 ns

0.05

ns

Input pulse

t r	Rise time	0.
tp	Pulse duration	100
ď	Duty cycle	0.

VR

Output waveform

Mullard

BAX16-Page 3

Max.
Recovered charge when 0.7* nC
switched from
$$I_F = 10$$
 mA to $V_R = 5.0V$,
 $R_L = 500\Omega$

Test circuit

Q

Circuit capacitance ≤30pF (C.R.O. + stray capacitance)

$$V = V_R + I_F \times R_s$$

Output waveform V_{c} $V_{p} = \frac{Q_{s}}{C}$

*These are the characteristics which are recommended for acceptance testing purposes.

Mullard

BAX16-Page 4

t

BAX16

BAX17

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

Mullard

BAX16-Page 6

SILICON WHISKERLESS DIODES

BAX16 BAX17

Mullard

BAX16-Page 7

REVERSE CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE WITH REVERSE VOLTAGE AS A PARAMETER

Mullard

SILICON WHISKERLESS DIODES

BAXI6 BAXI7

TYPICAL FORWARD VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE WITH FORWARD CURRENT AS A PARAMETER

Mullard ----

DIODE CAPACITANCE PLOTTED AGAINST REVERSE VOLTAGE

Mullard

BAX16-Page 10

B9620 trr BAX16 (ns) BAX17 150 VR =3V = 100 <u>Ω</u> 100 25°C 50 ot ō 20 40 60 80 100 1_F(mA) B9621 trr BAX16 (ns) L BAX17 300 200 I_F = 30mA ′_R = 3V R, = 100 Ω 100 7) ⁰∄ 50 150 200 100 т_і (°с)

REVERSE RECOVERY TIME PLOTTED AGAINST FORWARD CURRENT AND JUNCTION TEMPERATURE

Mullard

BAX16

BAX17

SILICON DIODES

Silicon general purpose diodes in all-glass DO-35 envelopes.

QUICK REFERENCE DATA

			0A200	OA202	
Continuous reverse voltage	VR	max.	50	150	v
Repetitive peak forward current	I FRM	max.	2	50	mA
Thermal resistance from junction to ambient	R _{th j-a}	=	C),4	oC/mW
Forward voltage I _F = 30 mA; T _{amb} = 25 ^o C	VF	typ.	C),9	v
Reverse recovery time when switched from $I_F = 30 \text{ mA to } V_R = 35 \text{ V};$ $R_1 = 2.5 \text{ k}\Omega;$					
measured at $I_R = 4 \text{ mA}$	t _{rr}	typ.	3	9,5	μs

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes are type-branded; the cathode being indicated by a coloured band.

OA200 OA202

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	OA200 OA202	V _R V _R	max. max.		50 50	v v
				T _{amb} = 25 °C	T _{amb} = 125 °C	
Average rectified forward current (averaged over any 20 ms period)		^I F(AV)	max.	160	48	mA
Average forward current for sinusoidal operation		IF(AV)	max.	80	40	mA
Forward current (d.c.; see page 4)	IF.	max.	160	48	mA
Repetitive peak forward current	-	I FRM	max.	250	125	mA
Storage temperature		T _{stg}		-55 to + 12	25	°C
Operating junction temperature		тј	max.	1	50	°C
THERMAL RESISTANCE						
From junction to ambient in free	air	R _{th j-a}	=	C),4	°C/mW
CHARACTERISTICS						
				T _{amb} ≠ 25 °C	T _{amb} = 125 °C	
Forward voltage I _F = 0,1 mA		٧ _F	typ. <	0,52 0,62	0,30	v v
I _F = 10 mA		٧ _F	typ. <	0,80 0,96		v v
I _F = 30 mA		۷F	typ. <	0,90 1,15	0,80	v v
Reverse current VR = VRmax	OA200	I _R	typ. <	0,02 0,10	1 10	μΑ μΑ
	OA202	۱ _R	typ. < `	0,01 0,10	0,5 10	μΑ μΑ
Diode capacitance at T _{amb} = 25 V _R = 0,75 V; f = 0,5 MHz	°C	Cd	typ. <		10 25	pF pF

Silicon diodes

OA200 OA202

CHARACTERISTICS (continued)

T _{amb} = 25 °C			
Reverse recovery current when switched from			
$I_F = 5 \text{ mA to } V_R = 5 \text{ V}; R_L = 2,5 \text{ k}\Omega;$			
measured at $t_{rr} = 3,5 \mu s$	^I R	typ.	1,2 mA
measured at $t_{rr} = 10 \ \mu s$	۱ _R	typ.	35 µA
Reverse recovery current when switched from			
$I_{F} = 30 \text{ mA to } V_{R} = 35 \text{ V}; \text{ R}_{L} = 2,5 \text{ k}\Omega$			
measured at $t_{rr} = 3,5 \mu s$	I _R	typ.	4 mA
measured at $t_{rr} = 10 \mu s$	IR	typ.	230 µA

Fig. 3.

August 1979

Fig. 4.

Fig. 5.

1N914

HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

V _R	max.	75 V
VRRM	max.	100 V
^I FRM	max.	225 mA
V _F	<	1 V
trr	<	4 ns
	V _{RRM} ^I FRM V _F	V _{RRM} max. I _{FRM} max. V _F <

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-021 available on request.

1N914

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages Continuous reverse voltage 75 v VR max. Repetitive peak reverse voltage VRRM max. 100 v Currents Average rectified forward current (averaged over any 20 ms period) $T_{amb} = 25 \text{ }^{\circ}\text{C}$ 75 mA IF(AV) max. Tamb = 150 °C 10 mA IF(AV) max. Forward current (d.c.) 75 mA IF max. Repetitive peak forward current IFRM max. 225 mΑ Non-repetitive peak forward current (t = 1 s)500 mΑ IFSM max. Total power dissipation Ptot 250 mW max. Temperatures Tstg -65 to + 200°C Storage temperature -65 to +175°C Operating ambient temperature Tamb **CHARACTERISTICS** $T_i = 25$ °C unless otherwise specified Forward voltages $I_F = 10 \text{ mA}$ v VF < 1 Reverse avalanche breakdown voltage $I_{R} = 100 \ \mu A$ 100 v V_{(BR)R} > **Reverse** currents $V_R = 20 V$ < 25 IR nA $V_R = 75 V$ I_R < 5 μA $V_{R} = 20 V; T_{i} = 150 \circ C$ IR < 50 μA Diode capacitance

Cd

<

 $V_{\mathbf{R}} = 0; \mathbf{f} = 1 \text{ MHz}$

pF

 $T_{i} = 25 \ ^{o}C$

2.5 V

Vfr

<

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $I_{F} = 50 \text{ mA}$; $t_{r} = 30 \text{ ns}$

Test circuit and waveforms:

Input signal	: Rise time of the forward pulse	$t_r = 20 \text{ ns}$
	Forward current pulse duration	t _p = 120 ns
	Duty factor	$\delta = 0,01$

Oscilloscope: Rise time

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

 $t_{r} = 0,35 \text{ ns}$

Reverse recovery time when switched from

 $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; R_L = 100 \Omega; \text{ measured at } I_R = 1 \text{ mA} \quad t_{rr} < 8 \text{ ns}$ $I_F = 10 \text{ mA to } I_R = 60 \text{ mA}; R_L = 100 \Omega; \text{ measured at } I_R = 1 \text{ mA} \quad t_{rr} < 4 \text{ ns}$

Test circuit and waveforms:

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)

 $T_{j} = 25 \ ^{O}C$

Rectifying efficiency

$$\eta = \frac{V_0}{V_{i(rms)}\sqrt{2}}$$

f = 100 MHz; V_{i(rms)} = 2 V

Test circuit:

n > 45 %

HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	75 V
Repetitive peak reverse voltage	V _{RRM}	max.	100 V
Repetitive peak forward current	^I FRM	max.	225 mA
Forward voltage I _F = 10 mA	V _F	<	1 V
Reverse recovery time when switched from I _F = 10 mA to I _R \approx 60 mA; R _L = 100 Ω ; measured at I _R = 1 mA	^t rr	<	4 ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-021 available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages

Continuous reverse voltage		VR	max.	75	v
Repetitive peak reverse voltage		V _{RRM}	max.	100	v
Currents					
Average rectified forward current (averaged over any 20 ms period)	$T_{amb} = 25 \ ^{o}C$ $T_{amb} = 150 \ ^{o}C$	^I F(AV) ^I F(AV)	max. max.	75 10	mA mA
Forward current (d.c.)		IF	max.	75	mA
Repetitive peak forward current		IFRM	max.	225	mA
Non-repetitive peak forward curren	t (t = 1 s)	^I FSM	max.	500	mA
Total power dissipation		Ptot	max.	250	mW
Temperatures					
Storage temperature		T _{stg}	-65 to	+ 200	°C
Operating ambient temperature		Tamb	-65 to	+ 175	٥C
CHARACTERISTICS	Т	j = 25 °C u	inless oth	herwise	e specified
CHARACTERISTICS Forward voltages	Т	j = 25 °C u	inless oth	herwise	e specified
	Ţ	j = 25 °C u VF	nless ott	herwise 1	e specified V
Forward voltages		-			
Forward voltages I _F = 10 mA		-			
Forward voltages I _F = 10 mA Reverse avalanche breakdown voltag		VF	<	1	v
$\frac{Forward \ voltages}{I_F = 10 \ mA}$ $\frac{Reverse \ avalanche \ breakdown \ voltage}{I_R = 100 \ \mu A}$		VF	<	1	v
$\frac{Forward \ voltages}{I_F = 10 \ mA}$ $\frac{Reverse \ avalanche \ breakdown \ voltage}{I_R = 100 \ \mu A}$ $\frac{Reverse \ currents}{I_R = 100 \ mA}$		V _F V _(BR) R	~	1 100	v v
$\frac{Forward \ voltages}{I_F = 10 \ mA}$ $\frac{Reverse \ avalanche \ breakdown \ voltage}{I_R = 100 \ \muA}$ $\frac{Reverse \ currents}{V_R = 20 \ V}$		V _F V _{(BR)R} I _R	< >	1 100 25	V V nA
$\frac{Forward \ voltages}{I_F = 10 \ mA}$ $\frac{Reverse \ avalanche \ breakdown \ voltage}{I_R = 100 \ \muA}$ $\frac{Reverse \ currents}{V_R = 20 \ V}$ $V_R = 75 \ V$		V _F V _{(BR)R} I _R I _R	< > < <	1 100 25 5	V V nA µA

June 1975

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $I_{F} = 50 \text{ mA}; t_{r} = 20 \text{ ns}$

Test circuit and waveforms :

Oscilloscope: Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

 $t_r = 0.35 \text{ ns}$

Reverse recovery time when switched from

 $I_F = 10 \text{ mA to } I_R = 60 \text{ mA}; R_L = 100 \Omega;$ measured at $I_R = 1 \text{ mA}$

Test circuit and waveforms:

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

1N916

 $T_{i} = 25 \ ^{o}C$

v

2,5

Vfr

$$t_{rr} < 4 ns$$

CHARACTERISTICS (continued)

T_j = 25 °C

Rectifying efficiency

$$\eta = \frac{V_0}{V_{i(rms)} \sqrt{2}}$$

$$f = 100 \text{ MHz}; V_{i}(\text{rms}) = 2 \text{ V}$$

 $\eta > 45 \%$

Test circuit:

1N4148 1N4446 1N4448

HIGH-SPEED SILICON DIODES

Whiskerless diodes in subminiature DO-35 envelopes. These diodes are primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	75	V
Repetitive peak reverse voltage	V _{RRM}	max.	75	V
Repetitive peak forward current	FRM	max.	450	mΑ
Forward voltage 1N4148: I _F = 10 mA				
1N4446: I _F = 20 mA	VF	<	1	v
1N4448: $I_F = 100 \text{ mA}$ Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 60 \text{ mA}$;				
$R_L = 100 \Omega$; measured at $I_R = 1 mA$	t _{rr}	<	4	ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products, available to CECC 50 001-021, available on request.

1N4148 1N4446 1N4448

RATINGS				
Limiting values in accordance with the Absolute Maximu	Im System (IEC 134)			
Continuous reverse voltage	V _R	max.	75	v
Repetitive peak reverse voltage	V _{RRM}	max.	75	v
Average rectified forward current	F(AV)	max.	150	mA
Forward current (d.c.)	¹ F	max.	200	mA
Repetitive peak forward current	^I FRM	max.	450	mA
Non-repetitive peak forward current				
t = 1 μs	^I FSM	max.	2000	mA
t = 1 s	^I FSM	max.	500	mA
Total power dissipation up to T _{amb} = 25 ^o C	P _{tot}	max.	500	mW
Derating factor			2,85	mW/ºC
Storage temperature	T _{stg}	-65 to	+ 200	°C
Junction temperature	тј	max.	200	°C
CHARACTERISTICS				
T _i = 25 ^o C unless otherwise specified				
Forward voltages 1N4148: I _F = 10 mA 1N4446: I _F = 20 mA 1N4448: I _F = 100 mA	۷ _F	<	1	v
1N4448: I _F = 5 mA	VF	0,62 te	o 0,72	v
Reverse avalanche breakdown voltage I $_{\rm R}$ = 100 μ A		>	100	v

	V(BR)R	>	100 V
	V(BR)R	>	75 V
	I _R	<	25 nA
1N4448	I _R	<	3 μΑ
	I _R	<	50 µA
	Cd	<	4 pF
	1N4448	V _{(BR)R} ^I R 1N4448 I _R ^I R	I _R < 1N4448 I _R < I _R <

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $I_{\rm F} = 50 \, {\rm mA}; t_{\rm r} = 20 \, {\rm ns}$

Test circuit and waveforms:

 $t_{r} = 0,35 \text{ ns}$

Vfr

<

Input signal	: Rise time of the forward pulse	t _r =	20 ns
	Forward current pulse duration	t _p =	120 ns
	Duty factor	δ =	0,01

Oscilloscope: Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 $I_F = 10 \text{ mA to } I_R = 60 \text{ mA}; R_L = 100 \Omega;$

measured at $I_R = 1 mA$

Test circuit and waveforms:

Duty factor

Oscilloscope: Rise time

 $t_{r} = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

1N4148 1N4446 **IN4448**

 $T_{i} = 25 \ ^{o}C$

2.5 v

trr ns

VOLTAGE REGULATOR DIODES (Low power)

÷

*

BA314

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in DO-35 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	FRM	max.	250	mA
Storage temperature	T _{stg}	-65 to	+ 200	°C
Junction temperature	τ _j	max.	200	°C
Thermal resistance from junction to ambient	R _{th j-a}	=	0,38	°C/mW
Forward voltage				
$I_{\rm F} = 0.1 {\rm mA}$	VF	610	to 690	mV
Ι _F = 1,0 mA	٧ _F	680	to 760	mV
I _F = 10 mA	٧F	750	to 830	mV
I _F = 100 mA	VF	870	to 960	mV
Diode capacitance				
V _R = 0; f = 1 MHz	Сd	<	140	рF

MECHANICAL DATA DO-35. **Dimensions in mm**

The diodes may be either type-branded or colour coded.

Products approved to CECC 50 001-026 available on request

BA314

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)		
Repetitive peak forward current	¹ FRM	max.	250 mA
Storage temperature	Tstg	-65 to	+ 200 °C
Junction temperature	тj	max.	200 °C
THERMAL RESISTANCE			
From junction to ambient in free air	R _{th j-a}	=	0,38 °C/mW
CHARACTERISTICS			
T _j = 25 ^o C unless otherwise specified			
Forward voltage I _F = 0,1 mA	VF	610	to 690 mV
I _F = 1,0 mA	VF		to 760 mV
I _F = 5,0 mA	, VF		to 810 mV
I _F = 10 mA	VF	750	to 830 mV
I _F = 100 mA	VF	870	to 960 mV
Reverse current			
$V_{R} = 4 V$	I _R	<	5 µA
Temperature coefficient IF = 1 mA	SF	typ.	–1,8 mV/ºC
Differential resistance at f = 1 kHz I _F = 1 mA	^r diff	typ.	30 Ω
I _F = 10 mA	rdiff	typ. <	3,5 Ω 6,0 Ω
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	140 pF

Low voltage stabistor

 $10^{2} \xrightarrow{7262816.1}_{T_{j}} = 25^{\circ}C \xrightarrow{H_{j}} BA314$

BA314

December 1979

LOW VOLTAGE STABISTORS

Silicon planar integrated voltage regulator diodes, intended for low power clipping, level shifting, voltage regulation and temperature stabilization of transistor base-emitter biasing network. The stabistors operate in the forward mode thus the cathode must be adjacent to the negative connection.

QUICK REFERENCE DATA

		BZV46	6 —1 V5	2∨0	
Regulation voltage ranges	۷ _F	> <	1,35 1,55	2,00 2,30	v v
Continuous reverse voltage	V _R	max.	4	4	v
Repetitive peak forward current	IFRM	max.	1 20	80	mA
Total power dissipation up to T _{amb} = 55 ^o C	P _{tot}	max.	250	250	mW
Differential resistance I _F = 5 mA; f = 1 kHz	ſdiff	<	20	30	Ω

MECHANICAL DATA Fig. 1 SOD-27 (DO-35). Dimensions in mm

Cathode indicated by coloured end. The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BZV46	6–1V5	2V0	
Continuous reverse voltage	VR	max.	4	4	v
Repetitive peak reverse voltage	V _{RRM}	max.	4	4	v
Repetitive peak forward current	FRM	max.	120	80	mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	2	50	mW
Storage temperature	T _{stg}		-65 t	o + 150	°C
Junction temperature	Тј	max.	1	50	°C

THERMAL RESISTANCE

Fig. 2	Thermal resistance as a function of the lead length for various mounting.
curve	mounting

1	Infinite heatsink at end of lead.
23	Typical printed-circuit board with large area of copper (> 100 mm ²). Tag mounting.
4	Typical printed-circuit board with small area of copper ($< 50 \text{ mm}^2$).

BZV46-1V5 BZV46-2V0

CHARACTERISTICS

 $T_i = 25 \text{ °C}$ unless otherwise specified

Developing website in the				2V0
Regulation voltage ranges I _F = 5 mA	VF	> <	1,35 1,55	2,00 V 2,30 V
Temperature coefficient at I _F = 5 mA	SF	typ.	-3,65	-5,60 mV/⁰C
Differential resistance at $f = 1 \text{ kHz}$; $I_F = 5 \text{ mA}$	rdiff	<	20	30 Ω
Reverse current V _R = 4 V	I _R	<	500	500 nA

Fig. 3 Typical values; T_j = 25 °C.

Fig. 4 Regulation characteristics at $T_j = 25 \ ^{o}C$.

VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed DO-41 glass envelopes intended for stabilization purposes. The series covers the normalized E24 (\pm 5%) range of nominal working voltages ranging from 5,1 V to 75 V.

QUICK REFERENCE DATA

Working voltage range	V7	nom.	5.1 to 75 V
Total power dissipation	P _{tot}	max.	1,3 W*
Non-repetitive peak reverse power dissipation $t_p = 100 \ \mu s; T_j = 25 \ ^{\circ}C$	PZSM	max.	60 W
Junction temperature	т _і	max.	200 °C
Thermal resistance from junction to tie-point	R _{th j-tp}	=	110 °C/W*

* If leads are kept at $T_{tp} = 55 \text{ °C}$ at 4 mm from body.

MECHANICAL DATA

Fig. 1 DO-41 (SOD-66).

Dimensions in mm

Cathode indicated by coloured band. The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) limited by Ptot max Working current (d.c.) 17 Non-repetitive peak reverse current tp = 10 ms; half sine-wave; Tamb = 25 °C see table below ^IZSM Repetitive peak forward current FRM max. 250 mA max. 1,30 W* Total power dissipation (see also Fig. 2) Ptot 1 W** max. Non-repetitive peak reverse power dissipation t_p = 100 μs; T_i = 25 °C PZSM max. 60 W Storage temperature Tstg -65 to + 200 °C 200 °C Junction temperature T; max.

THERMAL RESISTANCE

From junction to tie-point	R _{th j-tp}	=	110 °C/W*
From junction to ambient			

R_{th j-a}

•	i oni junetie	/// LC	amplent	
	mounted o	on a	printed-circuit	board

	Non-repetitive peak reverse current		Non-repetitive peak reverse current
	IZSM (mA)		IZSM (mA)
BZV85	max.	BZV85–	max.
C5V1	1750	C22	500
C5V6	1700	C24	450
C6V2	1620	C27	400
C6V8	1550	C30	380
C7V5	1500	C33	350
C8V2	1400	C36	320
C9V1	1340	C39	296
C10	1200	C43	270
C11	1100	C47	246
C12	1000	C51	226
C13	900	C56	208
C15	760	C62	186
C16	700	C68	171
C18	600	C75	161
C20	540		

If the temperature of the leads at 4 mm from the body are kept up to $T_{tp} = 55$ °C. Measured in still air up to $T_{amb} = 25$ °C and mounted on printed-circuit board with lead length ** of 10 mm and print copper area of 1 cm² per lead.

Mullard

175 ºC/W **

Voltage regulator diodes

CHARACTERISTICS

т_і = 25 °С

Forward voltage at IF = 50 mA

	working voltage E24 (± 5%)			test current	differential resistance	tempe coeff	erature icient	reverse current	test voltage
	V7 (V)		IZtest (mA)	r _{diff} (Ω)	S _Z (m	V/ºC)	I _R (nA)	V _R (V)	
		at IZtes	t		at IZtest	at I _Z	test	at V _R	
BZV 85	min.	nom.	max.		max.	min.	max.	max.	
C5V1	4,8	5,1	5,4	45	10	-0,5	2,2	3000	2,0
C5V6	5,2	5,6	6,0	45	7	0	2,7	2000	2,0
C6V2	5,8	6,2	6,6	35	4	0,6	3,6	2000	3,0
C6V8	6,4	6,8	7,2	35	3,5	1,3	4,3	2000	4,0
C7V5	7,0	7,5	7,9	35	3	2,5	5,5	1000	4,5
C8V2	7,7	8,2	8,7	25	5	3,1	6,1	700	5,0
C9V1	8,5	9,1	9,6	25	5	3,8	7,2	700	6,5
C10	9,4	10	10,6	25	8	4,7	8,5	200	7,0
C11	10,4	11	11,6	20	10	5,3	9,3	200	7,7
C12	11,4	12	12,7	20	10	6,3	10,8	200	8,4
C13	12,4	13	14,1	20	10	7,4	12,0	200	9,1
C15	13,8	15	15,6	15	15	8,9	13,6	50	10,5
C16	15,3	16	17,1	15	15	10,7	15,4	50	11,0
C18	16,8	18	19,1	15	20	11,8	17,1	50	12,5
C20	18,8	20	21,2	10	24	13,6	19,1	50	14,0
C22	20,8	22	23,3	10	25	16,6	22,1	50	15,5
C24	22,8	24	25,6	10	30	18,3	24,3	50	17
C27	25,1	27	28,9	8	40	20,1	27,5	50	19
C30	28	30	32	8	45	22,4	32,0	50	21
C33	31	33	35	8	45	24,8	35,0	50	23
C36	34	36	38	8	50	27,2	39,9	50	25
C39	37	39	41	6	60	29,6	43,0	50	27
C43	40	43	46	6	75	34,0	48,3	50	30
C47	44	47	50	4	100	37,4	52,5	50	33
C51	48	51	54	4	125	40,8	56,5	50	36
C56	52	56	60	4	150	46,8	63,0	50	39
C62	58	62	66	4	175	52,2	72,5	50	43
C68	64	68	72	4	200	60,5	81,0	50	48
C75	70	75	80	4	225	66,5	88,0	50	53

BZV85 SERIES

VF < 1,0 V

Fig. 2 Maximum permissible power dissipation versus ambient temperature.

Fig. 3 Thermal resistance versus lead length.

Mounting methods (see Figs 2 and 3)

- 1. To tie-points (lead length = 4 mm in Fig. 2).
- 2. Mounted on a printed-circuit board (with lead length of 10 mm in Fig. 2) and print copper area of 1 cm² per lead.

Fig. 4 Half sine-wave; $T_{amb} = 25 \text{ °C}$.

Fig. 5 Thermal impedance from junction to tie-point with a lead length of 4 mm.

Fig. 9 Dynamic characteristics; typical values; $T_j = 25 \text{ °C}$.

7

August 1979

August 1979

9

For types above 7,5 V the temperature coefficient is independent of current and can be read from the table on page 3.

7282194 10³ ^rdiff (Ω) <u>C546</u> 10² C75 C62 C6∨2 C6∨8 C43 10 C30 C20 C10 C6V2; C8V2; C9V1 C6V8; C7V5 1 10² 10 1 IZ (mA)

Fig. 16 f = 1 kHz; $T_i = 25 \text{ °C}$; typical values.

August 1979

VOLTAGE REGULATOR DIODES

Plastic encapsulated silicon diodes intended for general purpose use as medium power voltage regulators. They are suitable for use as transient suppressor diodes.

QUICK REFERENCE DATA

Working voltage range (5 PERCENT, Ref. B.S. 3494, appendix C)	Vz	nom.	7.5 to 200	v
Total power dissipation; T _{amb} ≤ 25 °C BZX61–C7V5 to C130 BZX61–C150 to C200	P _{tot} P _{tot}	max. max.	1.3 1.0	w w
Repetitive peak reverse power dissipation	PZRM	max.	6	w
Non-repetitive peak reverse power dissipation $t = 100 \ \mu s; T_{amb} = 25 \ ^{o}C$	Pzsm	max.	300	w

MECHANICAL DATA

Dimensions in mm

Fig.1 DO-15; the diodes are type branded

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZV85 are recommended.

The sealing of this plastic envelope fulfils the accelerated damp heat test, according to I.E.C. recommendation 68-2 (test D, severity IV, 6 cycles).

BZX61 SERIES

RATINGS

Limiting values of operation in accordance with the Absolute Maximum System (IEC134)

	Repetitive peak forward current	^I FRM	max.	1	А
→	Total power dissipation up to T _{amb} = 25 ^o C BZX61–C7V5 to C130 BZX61–C150 to C200	P _{tot} P _{tot}	max. max.	1.3 1.0	w w
	Repetitive peak reverse power dissipation	PZRM	max.	6	W
	Non-repetitive peak reverse power dissipation t = 100 μ s; T _{amb} = -55 to +25 ^o C	Pzsm	max.	300	w
	Storage temperature	T _{stg}	-65 to	+175	°C
→	Junction temperature BZX61–C7V5 to C130 BZX61–C150 to C200	т _ј т _ј	max. max.	175 150	°C 00
	THERMAL RESISTANCE		see pag	es 6, 8	

→ CHARACTERISTICS

T_i = 25 °C

Forward voltage

V_F < 1

1.1

v

BZX61	. working voltage			differential resistance	temperature coefficient		erse rent	clamping voltage
	V _Z (V) at I _{Ztest} = 20 mA				S _Z (%/ ^o C)	I _R (μΑ) :	at V _R (V)	at t _p = 1 ms;80 W V _{CL(R)} (V)
				at I _{Ztest} = 20 mA	at I _{Ztest} = 20 mA			A
	min.	nom.	max.	max.	typ.	max.	:	typ.
C7V5	7.0	7.5	7.9	5.0	+0.04	5	3	9.9
C8V2	7.7	8.2	8.7	7.5	+0.04	5	3	10.9
C9V1	8.5	9.1	9.6	8.0	+0.05	5	5	12.0
C10	9.4	10	10.6	8.5	+0.05	5	7	13.3
C1 1	10.4	11	11.6	9.0	+0.05	5	7	14.5
C12	11.4	12	12.7	9.0	+0.05	5	8	15.9
C13	12.4	13	14.1	10	+0.05	5	9	17.6
C15	13.8	15	15.6	14	+0.06	5	10	19.5

BZX61 SERIES

CHARACTERISTICS (continued)

т_ј = 25 ^оС

BZX61	work	cing vo	oltage	differential	temperature	reve	erse	clamping
				resistance	coefficient	Curi	rent	voitage
								at t _p = 1 ms; 80 W
		٧Ζ (۱		r _{diff} (Ω)	S _Z (%/ºC)	I _R (μΑ)	at V _R (V)	VCL(R) (V)
	at IZ1	est =	10 mA	at I _{Ztest} = 10 mA	at I _{Ztest} = 10 mA			
	min.	nom	, max.	max.	typ.	max.		typ.
C16	15.3	16	17.1	16	+0.06	5	11	21.4
C18	16.8	18	19.1	20	+0.06	5	13	23.9
C20	18.8	20	21.2	22	+0.06	5	14	26.5
C22	20.8	22	23.3	23	+0.06	5	15	29.1
C24	22.7	24	25 .9	25	+0.06	5	17	32.4
C27	25.1	27	28.9	35	+0.06	5	19	36.1
C30	28	30	32	40	+0.07	5	21	40.0
C33	31	33	35	45	+0.07	5	23	43.8
C36	34	36	38	50	+0.07	5	25	47.5
	at IZt	est =	5 mA	at I _{Ztest} = 5 mA	at l _{Ztest} ≈ 5 mA			
C39	37	39	41	60	+0.07	5	27	51.2
C43	40	43	46	70	+0.08	5	30	57.5
C47	44	47	50	80	+0.08	5	33	62.5
C51	48	51	54	95	+0.08	5	36	67.5
C56	52	56	60	105	+0.08	5	39	75.0
						, ,		
C62	58	62	66	110	+0.08	6	43	82.5
C68	64	68	72	120	+0.08	5	48	90.0
C75	70	75	79	145	+0.08	5	52	98.8
C82	77	82	87	175	+0.09	5	55	108.8
C91	85	91	96	200	+0.09	5	60	120.0
C100	94	100	106	220	+0.09	5	66	132.5
C110	104	110	116	250	+0.09	5	70	145.0
C120	114	120	127	270	+0.10	5	80	158.8
C1 30	124	130	141	300	+0.10	5	90	176.2
	at I _{Ztest} ≖ 2 mA		2 mA	at I _{Ztest} = 2 mA	at I _{Ztest} = 2 mA			
	21	621		Ztest	· Z (est =			
C150	138		156	950	+0.11	5	100	195.0
C160	153		171	1000	+0.11	5	110	213.8
C180	168		191	1100	+0.11	5	120	238.8
C200	188	200	212	1250	+0.11	5	140	265.0

~

OPERATING NOTES

Dissipation and heatsink considerations

a) Steady-state conditions

The maximum allowable steady state dissipation P_s is given by the relationship?-

$$P_{s max.} = \frac{T_{j max} - T_{amb}}{R_{th j-a}}$$

Where T_{i max} is the maximum permissible operating junction temperature,

Tamb is the ambient temperature,

Rth i-a is the total thermal resistance between junction and ambient.

b) Pulse conditions (see Fig.2)

The maximum pulse power ${\rm P}_{\rm m}$ max. is given by the formula

$$P_{m max.} = \frac{(T_{j max} - T_{amb}) - (P_{s}.R_{th})}{Z_{th}}$$

Where Ps is the steady-state dissipation, excluding that in the pulses,

 Z_{th} is the effective transient thermal resistance of the device between junction and ambient and is a function of the pulse duration t and duty cycle δ (see Fig.7).

 δ is the duty cycle and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_s when biased in the zener direction at a given zener current can be found from Fig.6. With the additional pulsed power dissipation $P_{m\ max}$ calculated from the above expression, the total peak zener power dissipation P_{tot} is $P_s + P_m\ max$. From Fig.6 the peak zener current at P_{tot} can now be read.

For pulse durations longer than the temperature stabilisation time of the diode t_{stab} , the maximum allowable pulse power is equal to the steady-state power P_s max. The temperature stabilisation time for the BZX61 is 100s (see Fig.7).

October 1979

OPERATING NOTES (contd.)

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

DIP SOLDERING

At a maximum solder temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point of contact is 125 °C.

Fig.3 Continuous power rating.

For types in excess of 130 V the continuous reverse dissipation should be kept within the area II.

Fig.4 Mounting methods

- 1. Infinite heatsink at end of lead.
- 2. Typical printed circuit board with large area of copper (1 cm² per lead).
- 3. Tag mounting.

Mullard

Mullard

Fig.7

Mullard

 $\mathbf{\nabla}$

Fig.8

Mullard

Fig.14 T_j = 25 °C; f = 1 kHz

12

Mullard

 \Box

VOLTAGE REGULATOR DIODES

Silicon planar diodes in DO-35 envelopes intended for use as low voltage stabilizers or voltage references. They are available in two series; one to the international standardized E24 (\pm 5%) range and the other with \pm 2% tolerance on working voltage. Each series consists of 37 types with nominal working voltages ranging from 2,4 V to 75 V.

QUICK REFERENCE DATA

				-
Working voltage range	٧ _Z	nom.	2,4 to 75 V 🛛	
Total power dissipation	Ptot	max.	500 mW * ◄	
Non-repetitive peak reverse power dissipation	PZSM	max.	30 W	
Junction temperature	т _і	max.	200 °C	
Thermal resistance from junction to tie-point	R _{th j-tp}	=	0,30 °C/mW 🚽	

* If leads are kept at T_{tD} = 50 °C at 8 mm from body.

MECHANICAL DATA

Fig. 1 DO-35.

Dimensions in mm

Cathode indicated by coloured band. The diodes are type-branded

Products approved to CECC 50 005-005, available on request.

RATINGS

Limiting values in accor	dance with the Absolute Max	kimum System (IEC 134	•)		
Average forward current	•				
over any 20 ms period	d)	^I F(AV)	max.	250	mA
Repetitive peak forward	current	IFRM	max.	250	mA
Total power dissipation		P _{tot}	max. max.		mW * mW **
Non-repetitive peak reve t = 100 μs; T _j = 150 ^C		Pzsm	max.	30	w
Storage temperature		T _{stg}	-65 to	+ 200	°C
Junction temperature	Storage temperature Junction temperature - THERMAL RESISTANCE From junction to tie-point From junction to ambient - CHARACTERISTICS $T_j = 25 \text{ °C}$ Forward voltage $I_F = 10 \text{ mA}$ - Reverse current BZX79 . 2V4 $V_R = 1 V$. 2V7 $V_R = 1 V$. 3V0 $V_R = 1 V$. 3V0 $V_R = 1 V$. 3V3 $V_R = 1 V$			20 0	°C
	CE				
From junction to tie-po	int	R _{th j-tp}	=	0,30	°C/mW *
From junction to ambie	nt	R _{th j-a}	=	0,38	°C/mW **
Tj ≈ 25 °C					
5		V _F	<	0,9	v
		^I R	<	50	
		IR.	<		μA
	••	IR In	< <		μA μA
.3V6	$V_{R} = 1 V$	lR I _R	<		μΑ μΑ
.3V9					-
.4V3	V _R = 1 V V _R = 1 V	I R	< <		μΑ μΑ
.4V7	$V_{\rm R} = 2 V$	IR IR	$\overline{\langle}$		μ <u>Α</u>
.5V1	$V_{R} = 2V$	I _R	<		μA
.5V6	V _R = 2 V	1 ₈	<		μA
.6V2	V _R = 4 V	IR	<	3	μA
.6V8	$V_{R} = 4 V$	I _B	<		μA
.7V5	V _R = 5 V	I _R	<	1	μA
.8V2	V _R = 5 V	I _R	<	700	
.9V1	V _R = 6 V	^I R	<	500	nA
.10	V _R = 7 V	1 _R	<	200	nA
.11 to .13	V _R = 8 V	R	<	100	
.15 to .75 . = B for 2% t . = C for E24	$V_R = 0.7 V_{Znom}$ olerance (± 5%) tolerance	۱ <mark>R</mark>	<	50	nA

• If leads are kept at T_{tp} = 50 °C at 8 mm from body. For the types 2V4 and 2V7 the power • dissipation is limited by T_j max = 150 °C. •* In still air at maximum lead length up to T_{amb} = 50 °C.

T_j = 25 ^oC

 Ξ 24 (± 5%) logarithmic range (for ± 2% tolerance range see page 5).

BZX79	working V7	y voltage	differential resistance r _{diff} (Ω)			ature coef > (mV/ºC)			pacitance f = 1 MHz	,	
	-				_	-		ŭ	R = 0	•	
	1	t = 5 mA		st = 5 mA		Ztest = 5 r			•		
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.		
C2V4	2,2	2,6	70	100		-1,6	0	375	450		
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450		
C3V0	2,8	3,2	80	95	3,5	-2,1	0	350	450	-	
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450		_
C3V6	3,4	3,8	85	90	3,5	-2,4	0	300	450		
C3V9	3,7	4,1	85	90	-3,5	2,5	0	300	450	_	Ξ
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450		
C4V7	4,4	5,0	50	80	-3,5	-1,4	0,2	130	180		
C5V1	4,8	5,4	40	60	-2,7	0,8	1,2	110	160		
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140		
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130		
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110		
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100		
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95		
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90		
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90		
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85		
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85		
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80		
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75		
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75		
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70		
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60		
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60		
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55		
	at IZtes	t = 2 mA	at I _{Zte}	st = 2 mA	atl	Ztest = 2	mA				
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50		
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50		
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45		
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45		
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45		
C43	40.0	46.0	45	150	37,6	41,2	46.6	21	40		
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40		
C51	48.0	54,0	60	180	46,6	51,0	57,2	19	40		
C56	52,0	60.0	70	200	52,2	57,0	63,8	18	40		
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35		
C68	64,0	72,0	90	240	65,6	71,7	79,8	17	35		
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35		
	1	, 5			1			1	-		

т_ј = 25 °С

E24 (± 5%) logarithmic range (for ± 2% tolerance range see page 6).

	BZX79	woi	rking volta	age	differ resis	ential tance	wo	orking vol	tage		rential stance
			V _Z (V)		rdiff	f (Ω)		V _Z (V)		rdi	ff (Ω)
		at	Iz = 1 m	A	1	= 1 mA	at	1 _Z = 20 r	πA		= 20 mA
		min.	nom.	max.	typ.	max.	mi n .	nom.	max.	typ.	max.
	C2V4	1,7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
	C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
	C3V0	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
	C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
Ξ	C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
_	C3V9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30
-	C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
	C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
	C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
	C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10
	C6V2	5,6	·6,1	6,6	40	150	5,8	6,3	6,8	3	6
	C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7,4	2,5	6
	C7V5	, 6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6
	C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6
	C9V1	8,4	9,0	9,6	40	100	8,5	9,2	9,7	4	8
	C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
	C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
	C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
	C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	15
	-C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	20
	.C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
	C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
	C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20
	C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25
	C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	25
		at	iz = 0,1 i	mA	at Iz =	0,5 mA	at	I _Z = 10 n	nA	at IZ	= 10 mA
	C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	45
	C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50
	C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
	C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60
	C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	70
	C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
	C47	43,7	46,8	50,0	85	375	44,1	47,1	50,5	30	90
	C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100
	C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110
	C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	120
	C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130
	C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140
		1,					•	- • -			-

т_ј = 25 °С

± 2% tolerance range.

BZX79	working	voltage		rential stance	temper	ature coef	ficient	diode ca	pacitance	
	٧Z	(V)	rdit	ff (Ω)	Sz	(mV/ºC)		Cd(pF);	f = 1 MHz	
	at IZtes	t = 5 mA		st = 5 mA	at l	Ztest = 5 i	mA	V _R	= 0	
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.	
B2V4	2,35	2,45	70	100	-2,6	-1,6	-0,6	375	450	
B2V7	2,65	2,75	75	100	-3,0	-2,0	-1,0	350	450	
B3V0	2,94	3,06	80	95	-3,0	-2,1	-1,2	350	450 🖛	-
B3V3	3,23	3,37	85	95	-3,2	-2,4	-1,5	325	450	
B3V6	3,53	3,67	85	90	-3,2	-2,4	—1,5	300	450	Ξ
B3V9	3,82	3,98	85	90	-3,2	-2,5	-1,5	300	450	
B4V3	4,21	4,39	80	90	-3,2	-2,5	-1,2	275	450	
B4V7	4,61	4,79	50	80	-2,0	-1,4	-0,8	130	180	
B5V1	5,00	5,20	40	60	-1,6	0,8	0,5	110	160	
B5V6	5,49	5,71	15	40	-0,7	1,2	2,2	95	140	
B6V2	6,08	6,32	6	10	1,0	2,3	3,2	90	130	
B6V8	6,66	6,94	6	15	2,0	3,0	4,0	85	110	
B7V5	7,35	7,65	6	15	3,0	4,0	4,8	80	100	
B8V2	8,04	8,36	6	15	3,6	4,6	5,5	75	95	
B9V1	8,92	9,28	6	15	4,3	5,5	6,5	70	90	
B10	9,80	10,20	8	20	5,2	6,4	7,4	70	90	
B11	10,80	11,20	10	20	6,2	7,4	8,5	65	85	
B12	11,80	12,20	10	25	7,0	8,4	9,5	65	85	
B13	12,70	13,30	10	30	7,8	9,4	10,5	60	80	
B15	14,70	15,30	10	30	10,0	11,4	12,4	55	75	
B16	15,70	16,30	10	40	10,9	12,4	13,5	52	75	
B18	17,60	18,40	10	45	12,8	14,4	15,6	47	70	
B20	19,60	20,40	15	55	14,8	16,4	17,6	36	60	
B22	21,60	22,40	20	55	16,8	18,4	19,6	34	60	
B24	23,50	24,50	25	70	18,7	20,4	21,6	33	55	
	at IZtes	t = 2 mA	at IZte	st = 2 mA	at l	Ztest = 2	mA			
B27	26,50	27,50	25	80	21,4	23,4	25,3	30	50	
B30	29,40	30,60	30	80	24,4	26,6	29,0	27	50	
B33	32,30	33,70	35	80	27,4	29,7	32,5	25	45	
B36	35,30	36,70	35	90	30,4	33,0	36,0	23	45	
B39	38,20	39,80	40	130	33,4	36,4	40,0	21	45	
B43	42,10	43,90	45	150	38,0	41,2	45,0	21	40	
B47	46,10	47,90	50	170	42,5	46,1	50,0	19	40	
B51	50,00	52,00	60	180	47,0	51,0	55,0	19	40	
B56	54,90	57,10	70	200	52,5	57,0	62,0	18	40	
B62	60,80	63,20	80	215	59,0	64,4	69,0	17	35	
B68	66,60	69,40	90	240	66,0	71,7	77,0	17	35	
B75	73,50	76,50	95	255	74,0	80,2	86,0	16,5	35	

T_j = 25 °C

± 2% tolerance range.

	V _Z (V) Fai:				tance
		וסי איי	ff (Ω)	V _Z (V)	rdiff	(Ω)
	at _Z = 1		= 1 mA	at I _Z = 20 mA	at Iz =	20 mA
	nom		max.	nom.	typ.	max.
B2\	/4 1,9	275	60 0	2,9	25	50
B2\	/7 2,2	300	600	3,3	25	50
B3\	/0 2,4	325	600	3,6	25	50
B3\	/3 2,6	350	600	3,9	20	40
B3\	/6 3,0	375	600	4,2	20	40
B3\	/9 3,2	400	600	4,4	15	30
== → _{B4\}			600	4,7	15	30
B4\			500	5,0	8	15
B5\			480	5,4	6	15
B5\			400	5,7	4	10
B6\	/2 6,1	40	150	6,3	3	6
B6\			80	6,9	2,5	6
B7\			80	7,6	2,5	6
B8\			80	8,3	3	6
B9\			100	9,2	4	8
B10			150	10,1	4	[′] 10
B11			150	11,1	5	10
B12			150	12,1	5	10
B13			170	13,1	5	15
B15			200	15,1	6	20
в16			200	16,1	6	20
B18			225	18,1	6	20
B20			225	20,1	7	20
B22			250	22,1	7	25
B24			250	24,1	7	25
	at I _Z = 0,	1 mA at I _Z =	= 0,5 mA	at I _Z = 10 mA	at I _Z =	10 mA
B27	26,9	65	300	27,1	10	45
B30) 29,9	70	300	30,1	15	50
B33	32,9	75	325	33,1	20	55
B36			350	36,1	25	60
B39	38,9	80	350	39,1	25	70
B43	3 42,9	85	375	43,1	25	80
B47		85	375	47,1	30	90
B51			400	51,1	35	100
B56	5 55,7	100	425	56,1	45	110
862	2 61,7	120	450	62,1	60	120
B68	3 67,7	150	475	68,2	75	130
B75			500	75,3	90	140

December 1978

Fig. 6.

Fig. 7.

Fig. 9.

December 1978

Fig. 11.

12 December 1978

Fig. 15 Typical values; $T_j = 25 \text{ °C}$; f = 1 kHz.

Fig. 16 Typical change of working voltage under operating conditions at $T_{amb} = 25$ °C.

Fig. 17 Typical change of working voltage under operating conditions at $T_{amb} = 25 \text{ °C}$.

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed glass envelopes intended for stabilization purposes.

The series covers the normalized range of nominal working voltages from 5, 1 V to 75 V with a tolerance of $\pm 5\%$ (international standard E24).

QUICK REFERENCE DATA										
Working voltage range	vz	nom.	5,1 to 75	v						
Working voltage tolerance (E24)			±5	%						
Total power dissipation	P _{tot}	max.	2, 75	W						
Junction temperature	т _ј	max.	200	٥C						

MECHANICAL DATA

Dimensions in mm

SOD-51

Cathode indicated by coloured band The diodes are type-branded

Mullard

1

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

		-		
Currents				
Working current (d.c.)	IZ	limite	d by P _{to}	ot max
Repetitive peak working current	IZRM	limite	d by P _Z	RMmax
Repetitive peak forward current	I _{FRM}	max.	400	mA
Power dissipation (see also graphs on pages 5 and 6)				
Total power dissipation	P _{tot}	max. max.		/
Repetitive peak reverse power dissipation up to T_{amb} = 175 °C; $t_p = 100 \ \mu s$; $\delta = 0.001$	^P zrm	max.	7,5	w
Non-repetitive peak reverse power dissipation up to $T_{amb} = 25 \text{ °C}$: $t_p = 100 \ \mu s$	^P ZSM	max.	100	w
Temperatures				
Storage temperature	T _{stg}	-65 to	; +200	٥C
Junction temperature	т _ј	max.	200	°C
THERMAL RESISTANCE (see also graphs on pages 5 and	16)			
From junction to ambient				
when soldered to tags				
at max. lead length	R _{th} j-a	max.	117	°C/W
CHARACTERISTICS			Тj	= 25 ^o C
Forward voltage at $I_{\rm F} \approx 0, 2$ A	v _F	<	1	v
Reverse current				
BZX87-C5V1	IR	<	10	μA
$C5V6$ $V_{R} = 2V$	IR	<.	5	μA
C6V2	IR	<	3	μA
C6V8	IR	<	1,5	μA
$V_{R} = 3 V$	IR	<	0,6	μA
C8V2	IR	<	0,4	μA
$V_{R} = 5 V$	IR	<	0,3	μΑ
$ \begin{array}{cccc} C5V6 \\ C6V2 \\ C6V2 \\ C6V8 \\ C7V5 \\ C8V2 \\ C9V1 \\ C10 \text{ to } C75 \\ V_R = 3 V \\ V_R = 5 V \\ V_R = \frac{5}{3} V_{Znom} \end{array} $	IR	<	0,2	μA

 $^2)$ If the temperature of the leads at 10 mm from the body is kept at 25 °C.

¹⁾ Measured in still air up to T_{amb} = 25 °C and mounted to solder tags at maximum lead length.

CHARACTERISTICS (continued)

25 °C

	•	-						•	,
	Workin	g voltage		mperatu efficient			rential stance		capaci- C _d (pF)
	v _z	g (V)	SZ	g (mV/0	C)	rdif	f (Ω)	at f =	1 MHz
	at IZ =	= 50 mA	at	I _Z = 50 i	nA	at I _Z =	= 50 mA	v _F	R = 0
BZX87	min.	max.	min.	typ.	max.	typ.	n.ax.	typ.	max.
C5V1	4,8	5,4	-1.5	0	1,5	4	10	200	250
C5V6 C6V2	5,2	6,0 6,6	-0,2	1,5 2,4	2,5 3,3	2	5 3	180 350	225 400
0012	5,8	= 20 mA		2, 4 Iz = 20 i			= 20 mA	330	400
	at 12 -	30 MA	a	12 - 201	IIA	at 1Z	- 20 MA		
C6V8	6,4	7,2	2,2	3, 1	3, 9	1	3	300	350
C7V5	7,0	7,9	2,8	3,8	4,7	1	3	270	310
C8V2	7,7	8,7	3,5	4.5	5,5	1,5	4	250	280
C9V1 C10	8,5 9,4	9,6 10,6	4, 3 5, 2	5,4 6,3	6,5 7.5	2 2	4 5	210 190	250 230
	1		!					i i	
C11	10, 4	11,6	6,2	7,4	8,6	3	5	170	220
C12	11,4	12,7	7,2	8,4	9,8	3	6	165	200
C13	12,4	14,1	8,2 9,6	9,4 11,4	11,2	3	7 10	165 160	200 190
C15	13,8	15.6			12,8	4	10	100	190
	at IZ =	= 10 mA	at	$I_Z = 10 r$	nA	at JZ *	= 10 mA		
C16	15,3	17,1	11,1	12,5	14,4	4	10	140	180
C18	16, 8	19,1	12,6	14,5	16,6	5	15	120	160
C20	18,8	21,2	14,6	16,6	18,8	5	15	110	150
C22	20,8	23, 3	16,6	18,6	2 0, 9	5	20	100	135
C24	22 , 8	25,6	18,6	20,7	23, 4	6	20	95	130
C27	25, 1	28,9	21,0	23,8	26,8	7	25	90	120
C30	28	32	23,8	26, 9	30,6	8	25	80 80	110 95
C33 C36	31 34	35 38	26, 6 29, 6	30,0 33,4	34,2 38,0	10 10	30 35	70	93 90
000	1		1	Iz = 51		i	= 5 mA		20
	at 1Z -	= 5 mA	at	1Z - 51	nA	aliz	- 5 IIIA		
C39	37	41	32,6	37,0	41,6	15	40	65	80
C43	40	46	36.0	41,6	47,6	15	50	62	75
C47	44	50	40,4	46,1	52,6	20	60	60	75
C51	48	54	44,6	51,0	57,6	30	70	55	70
C56	52	60	49.2	56, 6	64,8	35	80	52	65
C62	58	66	56,0	63,4	72,0	40	90	50	60
C68	64	72	62,4	70,4	79,2	45	110	46	58
C75	70	79	69, 2	78,4	88,0	45	125	44	55

BZX87 SERIES

CHARACTERISTICS (continued)

Tj = 25 °C

	Wor	Working voltage			Differential resistance		king vol	tage	1	rential stance
		$v_Z(v)$		rdifi	f (Ω)		V _Z (V)		rdif	f (Ω)
	at	IZ = 1 m	A	at IZ =	= 1 mA	at I	at I _Z = 100 mA			100 mA
BZX87	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C5V1	3, 3	3, 8	4, 3	425	500	4,9	5,2	5,5	1,2	2, 5
C5V6	4,1	5,3	5,8	400	500	5, 3	5,7	6,1	1,0	2,0
C6V2	5,6	6,0	6,5	40	200	5,9	6,3	6,7	0,8	2,0
C6V8 C7V5	6,3	6,7	7,1	40	120	6,5	6,9	7,3	0,6	2,0
C/V5	6,9	7,4	7,8	20	100	7,1	7,6	8,0	0,5	1,5
C8V2	7,6	8,1	8,6	20	100	7,8	8,3	8,8	0,5	1,5
C9V1	8,4	9,0	9,6	25	100	8,6	9,2	9, 8	0,8	2,0
C10	9,3	9,9	10,5	30	120	9,5	10, 1	10,8	0,8	2,0
C11	10,3	10,9	11,5	30	120	10,5	11,1	11,8	0,8	2,0
C12	11,2	11,9	12,6	30	150	11,5	12, 1	12,9	1,0	2,0
C13	12,2	12,9	14,0	30	150	12, 5	13, 1	14, 3	1,2	2, 5
C15	13,6	14,9	15,4	30	150	13,9	15,1	15,8	1,2	2,5
	at	IZ = 1 m	A	at IZ =	= 1 mA	at I	Z = 50	mA	at IZ =	50 mA
C16	15,2	15,9	17,0	30	150	15,4	16, 1	17,3	1,2	3,0
C18	16,7	17,9	19,0	30	150	16,9	18,1	19, 3	2,0	5,0
C20	18,7	19,9	21, 1	30	150	19,0	20, 2	21,5	2,5	6,0
C22	20,7	21,9	23, 2	30	150	21,0	22, 2	23, 7	2,5	6,0
C24	22,6	23, 9	25,5	30	150	23,0	24, 2	26 , 0	3,0	8,0
C27	24,9	26, 9	28,8	30	150	25, 3	27, 2	29, 2	4,0	8,0
C30	27,8	2 9, 9	31,9	30	150	28, 2	30, 2	32,5	4,0	8,0
C33	29,8	32, 9	34,9	30	150	31, 2	33, 3	35,5	5,0	10
C36	33,8	35, 9	37,9	30	150	34, 2	36, 3	38,5	5,0	10
C39	36,8	38, 9	40,9	40	150	37, 5	39, 5	42,0	6,0	12
C43	39,8	42, 9	45,9	50	150	40, 5	43, 5	47,0	8	15
C47	43,8	46, 9	49, 9	55	200	44, 5	47, 5	51,0	10	20
C51	47, 8	50, 9	53,8	60	200	48, 5	51,8	55, 5	12 [.]	25
C56	51,8	55,9	59,8	60	200	52, 5	56, 8	61,5	15	30
C62	57,6	61,8	65,8	70	200	58, 5	62, 8	67,5	16	30
C68	63, 5	67,6	71,7	80	225	65,0	69,0	74,0	18	35
C75	69, 3	74, 5	78,6	100	250	73, 0	77,5	84,0	20	35

BZX87 SERIES

April 1977

5

BZX87 SERIES 7272307.2 7272306.1 3 maximum permissible power dissipation versus ambient 1 temperature 200 Ptot (W) Rth (°C/W) max, values 2 150 3 j∙a 2a, 15 2 25 ς. 100 1 3a. 3b j-a j-tie-point 50

to solder tags
 on a printed-circuit board with minimum soldering area necessary for good electrical conductance

200

T_{amb} (^oC)

100

0

0

10

20

l = lead length (mm)

30

a. lead length = 10 mm

MOUNTING METHODS

1. to tie-points

0

0

b. at maximum lead length

BZX87 SERIES

7

VOLTAGE REGULATOR DIODES

Silicon diodes in all-glass DO-7 envelope intended for voltage stabilization purposes. The series consists of 27 types with nominal working voltages ranging from 2,7 V to 33 V within the normalized E24 (± 5%) range

QUICK REFERENCE DATA

MECHANICAL DATA	•		Dimensions in	mm
Thermal resistance from junction to ambient in free air	R _{th j-a}	=	0,37 °C/n	nW
Operating junction temperature	т _ј	max.	200 °C	
Non-repetitive peak reverse power dissipation $T_j = 25 \ ^{\circ}C; t = 10 \ \mu s$	Pzsm	max.	1,1 kW	
Total power dissipation up to $T_{amb} = 50 \text{ oC}$	P _{tot}	max.	400 mW	
Working voltage range	ν _Z	nom.	2,7 to 33 V	

MECHANICAL DATA

Fig. 1 DO-7.

The diodes are type-branded

Cathode indicated by coloured band

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Also available to BS 9305-N041, BS9305-F0087

1

BZY88 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum S	ystem (IEC 134)	
Forward current (d.c.)	١F	max. 250 mA
Repetitive peak forward current	(FRM	max. 250 mA
Total power dissipation up to $T_{amb} = 50 ^{\circ}C$	P _{tot}	max. 400 mW
Non-repetitive peak reverse power dissipation $T_j = 25 \ ^{o}C$; t = 10 μ s	Pzsm	max. 1,1 kW
Storage temperature	T _{stq}	65 to + 175 °C
Operating junction temperature	τ _j	rnax. 200 ^o C

THERMAL RESISTANCE

From junction to ambient in free air

R_{th j-a} =

0,37 °C/mW

0,9 V

CHARACTERISTICS

 $T_{j} = 25 \ ^{o}C$ unless otherwise specified

Forward voltage

 $l_{\rm F} = 10 \, {\rm mA}$

15 - 10 1								• F		0,0		
BZY88	worl	king vol	tage V Z		temperature coefficient Sz				differential resistance r _{diff}			
	at Iz = 1 mA				at I _Z = 1 mA				at I _Z = 1 mA			
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max.	
C2V7	1,9	2,15	2,4	V	-4,5	-1,7	-0,6	mV/ºC	260	310	390	Ω
C3V0	2,1	2,4	2,7	v	-5,0	-1,8	-0,6	mV/ºC	.280	340	420	Ω
C3V3	2,4	2,75	3,0	V 4	-4,5	-1,9	-0,5	mV/ºC	300	360	440	Ω
C3V6	2,7	3,0	3,3	V	-4,5	-2,05	-0,5	mV/ºC	380	410	430	Ω
C3V9	3,0	3,3	3,6	V	-3,5	-2,4	-0,5	mV/ºC	380	410	430	Ω
C4V3	3,3	3,6	3,9	V	-2,7	-2,25	-0,5	mV/ºC	340	410	430	Ω
C4V7	3,7	4,1	4,3	V	2,5	2,0	-0,3	mV/ºC	360	390	420	Ω
C5V1	4,3	4,65	5,0	V	-2,1	-1,9	-0,3	mV/ºC	300	340	370	Ω
C5V6	4,8	5,3	5,7	v	-1,8	-1,4	0	mV/ºC	160	310	350	Ω
C6V2	5,7	5,9	6,5	V	0	+ 1,6	+ 3,0	mV/°C	10	100	250	Ω
CEV8	6,3	6,7	6,9	V	+2	+ 3,2	+ 3,7	mV/ºC	5,0	15	70	Ω
C7V5	7,0	7,45	7,8	V	+3	+4,2	+ 5,9	mV/ºC	4,0	8,6	20	Ω
C8V2	7,8	8,1	8,5	V	+4,3	+ 5,0	+6,0	mV/ºC	4,0	10	20	Ω
C9V1	8,55	9,0	9,5	V	+4,5	+6,0	+ 7,0	mV/°C	7,0	12	24	Ω
C10	9,3	9,9	10,5	V	+6,0	+ 6, 6	+7,0	mV/ºC	5,0	20	50	Ω
C11	10,3	10,9	11,5	V	+7,1	+8,3	+9,0	mV/ºC	5,0	25	70	Ω
C12	11,3	11,9	12,5	V	+7,6	+8,7	+ 9,2	mV/ºC	10	25	80	Ω
C13	12,3	12,9	13,0	V	+9,1	+ 10,1	+11,1	mV/ºC	10	25	90	Ω
C15	13,8	14,9	15,5	V	+ 11	+ 12,5	+ 13	mV/ºC	19	35	95	Ω
C16	15,3	15,8	16,9	V	+ 12	+ 13	+ 14	mV/ºC	20	45	100	Ω
C18	16,7	17,8	18, 9	V	+ 14	+ 15	+ 16,5	mV/ºC	20	50	120	Ω
C20	18,7	19,8	21,0	V	+ 16	+ 17	+ 18,5	mV/ºC	20	60	140	Ω
C22	20,6	21,8	23,1	V	+ 17	+ 19	+21	mV/ºC	25	70	150	Ω
C24	22,5	23,8	25,7	V	+ 19	+21	+ 23	mV/ºC	30	85	200	Ω
C27	24,7	26,6	28,5	V	+21	+ 22,5	+ 25	mV/ºC	35	90	300	Ω
C30	27,5	29,5	31,5	v	+ 22	+ 24	+ 29	mV/ºC	50	180	350	Ω
C33	29,5	32,5	34,5	V	+ 23	+ 26	+ 35	mV/ºC	60	250	450	Ω

٧F

<

BZY88 SERIES

CHARACTERISTICS (continued)

.

T_i = 25 ^oC unless otherwise specified

BZY88	worl	king vol	tage V _Z		temperature coefficient S _Z				differential resistance r _{diff}			
	a	t I _Z = 5	mA		at I _Z = 5 mA				at iz = 5 mA			
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max	
C2V7	2,5	2,7	2,9	v	-4,0	-2,2	-0,6	mV/ºC	68	80	120	Ω
C3V0	2,8	3,0	3,2	V	-4,5	-2,4	-0,6	mV/ºC	70	84	120	Ω
C3V3	3,1	3,3	3,5	V	-4,0	-2,3	-0,5	mV/ºC	70	86	110	Ω
C3V6	3,4	3,6	3,8	V	-3,5	-2,0	-0,5	mV/ºC	65	76	105	Ω
C3V9	3,7	3,9	4,1	V	-2,5	-2,05	-0,5	mV/ºC	60	76	100	Ω
C4V3	4,0	4,3	4,6	V	-2,5	-1,8	-0,5	mV/ºC	55	70	90	Ω
C4V7	4,4	4,7	5,0	V	-2,0	-1,55	0	mV/ºC	49	62	85	Ω
C5V1	4,8	5,1	5,4	V	-1,75	-1,2	0	mV/ºC	34	46	75	Ω
C5V6	5,2	5,6	6,0	V	-1,5	-0,2	+ 1,0	mV/ºC	10	22	55	Ω
C6V2	5,8	6,2	6,6	v	+0,5	+2,0	+ 3,5	mV/ºC	1,0	7,0	27	Ω
C6V8	6,4	6,8	7,2	V	+2,3	+ 3,2	+ 3,8	mV∕⁰C	0,5	3,0	15	Ω
C7V5	7,0	7,5	7,9	V	+3,1	+ 4,2	+ 5,9	mV/ºC	0,5	3,0	15	Ω
C8V2	7,7	8,2	8,7	V	+4,2	+5,0	+6,0	mV/ºC	0,9	3,5	20	Ω
C9V1	8,5	9,1	9,6	V	+4,8	+6,0	+7,0	mV/ºC	1,0	4,75	25	Ω
C10	9,4	10	10,6	V	+6,0	+7,0	+7,5	mV/ºC	2,0	5,0	25	Ω
C11	10,4	11	11,6	V	+ 7,0	+8,7	+9,1	mV/ºC	3,0	7,0	25	Ω
C12	11,4	12	12,7	V	+8,5	+9,0	+9,6	mV/ºC	4,0	8,0	35	Ω
C13	12,4	13	14,1	v	+ 10	+ 10,5	+ 11,5	mV/ºC	4,0	10	35	Ω
C15	13,8	15	15,6	V	+ 12	+ 12,5	+ 14	mV/ºC	4,0	15	35	Ω
C16	15,3	16	17,1	V	+ 12	+ 13	+ 14	mV/ºC	5,0	20	40	Ω
C18	16,8	18	19,1	V	+ 14	+ 15	+ 18	mV/ºC	7,0	25	45	Ω
C20	18,8	20	21,2	ν	+ 16	+ 17	+ 19	mV/ºC	10	30	50	Ω
C22	20,8	22	23,3	V	+17	+ 19	+21	mV/ºC	15	35	60	Ω
C24	22,7	24	25,9	V	+ 20	+21	+ 24	mV/ºC	20	40	75	Ω
C27	25,1	27	28,9	V	+ 22	+ 23,5	+ 27	mV/ºC	25	50	85	Ω
C30	28	30	32	V	+ 25	+ 26	+ 29	mV/ºC	30	60	95	Ω
C33	31	33	35	v	+27	+28	+ 36	mV/ºC	35	75	120	Ω

.

Voltage regulator diodes

BZY88 SERIES

BZY88	wor	king vol	tage V _Z			emperatu oefficient			r	differe esistanc		
	at	t I _Z = 2) mA		8	t I _Z = 20	mA		a (t I _Z = 2	0 mA	
	min.	nom.	max.	_	min.	typ.	max.		min.	typ.	max	•
C2V7	3,0	3,25	3,5	v	-3,5	-2,4	-0,6	mV/ºC	18	22	26	Ω
C3V0	3,3	3,6	3,9	V	-3,5	-2,5	-0,6	mV/ºC	17	21	24	Ω
C3V3	3,5	4	4,2	V	-3,3	-2,4	-0,5	mV/ºC	16	20	22	Ω
C3V6	3,9	4,2	4,4	V	-2,5	-1,55	-0,5	mV/ºC	16	18	20	Ω
C3V9	4,2	4,45	4,65	V	-2,4	-1,55	-0,5	mV/⁰C	14	16	18	Ω
C4V3	4,45	4,7	4,95	V	-2,0	-1,5	0,5	mV/ºC	13	15	17	Ω
C4V7	4,9	5,1	5,3	V	-1,5	-0,85	0	mV/ºC	12	15	17	Ω
C5V1	5,1	5,35	5,7	v	-1,5	-0,8	0	mV/bC	4,0	7,0	11	Ω
C5V6	5,45	5,75	6,1	V	-1,0	+ 1,0	+ 3,0	mV/ºC	1,5	4,0	8,0	Ω
C6V2	5,95	6,4	6,7	V	+ 1,0	+ 2,2	+ 4,0	mV/ºC	-0,8	1,4	3,1	Ω
C6V8	6,6	6,9	7,25	v	+ 2,8	+ 3,2	+ 3,8	mV/ºC	. 0,7	1,3	3,0	Ω
C7V5	7,2	7,65	7,95	V	+2,5	+ 4,2	+ 5,9	mV/ºC	0,5	1,6	5,0	Ω
C8V2	7,9	8,4	8,75	V	+ 4,0	+ 5,0	+6,0	mV/ºC	0,9	1,8	6,0	Ω
C9V1	8,7	9,4	9,7	V	+ 5,0	+6,0	+7,0	mV/°C	1,0	1,85	7,0	Ω
C10	9,5	10,1	10,8	V	+ 7,0	+7,3	+7,5	mV/ºC	1,0	2,0	8,0	Ω
C11	10,5	11,1	11,8	V	+ 8,5	+9,1	+9,5	mV/ºC	1,0	3,0	10	Ω
C12	11,6	12,2	12,8	V	+ 8,9	+9,6	+ 10,3	mV/ºC	2,0	3,5	25	Ω
C13	12,6	13,2	14,3	V	+11	+ 11,5	+ 12,5	mV/ºC	2,0	4,5	25	Ω
C15	14,1	15,3	15,9	V	+ 12	+ 13,5	+ 14,5	mV/ºC	2,0	6,0	25	Ω
C16	15,6	16,3	17,4	v	+ 13	+ 14	+ 15	mV/ºC	5,0	10	30	Ω
C18	17,2	18,4	19,6	V	+ 15	+ 16	+ 18	mV/ºC	5,0	12	30	Ω
C20	19,3	20,5	21,9	V	+ 17,5	+ 18,5	+ 20,5	mV∕⁰C	5,0	15	35	Ω
C22	21,3	22,6	24,1	V	+ 19	+20,5	+ 22,5	mV/ºC	10	18	35	Ω
C24	23,3	24,7	26,7	V	+ 20	+ 23	+ 25	mV∕⁰C	10	20	40	Ω
C27	25,8	28,1	30,1	V	+ 23	+ 25,5	+ 28	mV/ºC	10	25	45	Ω
C30	29,0	31,3	33,4	v	+ 25	+28	+ 32	mV/ºC	10	35	50	Ω
C33	32,0	34,5	36,6	V	+27	+ 30	+ 38	mV/ºC	10	45	60	Ω

November 1979

CHARACTERISTICS (continued)

T_j = 25 ^oC unless otherwise specified

BZY88	typ. C _d	rever	se current	I _R		typ. noise voltage **		ge **
	V _R = 3 V	at V _R =	typ.	max.		$I_Z = 1 \text{ mA}$		z = 5 mA
C2V7	490 pF *	1 V	4	25	μA	22	12	μV r.m.s.
C3V0	430 pF *	1 V	2	5	μA	20	11	μV r.m.s.
C3V3	380 pF *	1V	0,51	3,0	μA	19	10	μV r.m.s.
C3V6	360 pF *	1 V	0,25	3,0	μA	18	9	μV r.m.s.
C3V9	335 pF	1 V	0,11	3,0	μA	16	8	μV r.m.s.
C4V3	270 pF	1 V	0,1	3,0	μA	15	8	μV r.m.s.
C4V7	290 pF	2 V	0,25	3,0	μA	14	7	μV r.m.s.
C5V1	275 pF	2 V	0,15	1,0	μA	13	8	μV r.m.s.
C5V6	260 pF	2 V	0,6	1,0	μA	13	9	μV r.m.s.
C6V2	240 pF	2 V	0,1	1,0	μA	14	10	μV r.m.s.
C6V8	220 pF	3 V	0,025	1,0	μA	25	15	μV r.m.s.
C7V5	190 pF	3 V	15	500	'nΑ	33	20	μV r.m.s.
C8V2	150 pF	3 V	11	400	пA	55	28	μV r.m.s.
C9V1	140 pF	5 V	8	400	nA	79	35	μV r.m.s.
C10	110 pF	7 V	_	2,5	μA	87	43	μV r.m.s.
C11	90 pF	7 V	-	2,5	μA	92	48	μV r.m.s.
C12	80 pF	8 V	-	2,5	μA	100	50	μV r.m.s.
C13	65 p F	9 V	_	2,5	μA	110	52	μV r.m.s.
C15	60 pF	10 V	-	2,5	μA	120	54	μV r.m.s.
C16	55 pF	10 V	-	2,5	μA	135	56	μV r.m.s.
C18	50 pF	13 V	-	2,5	μA	160	58	μV r.m.s.
C20	45 pF	14 V	_	2,5	μA	210	60	μV r.m.s.
C22	43 pF	15 V	-	2,5	μA	255	62	μV r.m.s.
C24	42 pF	17 V	-	2,5	μA	290	65	μV r.m.s.
C27	40 pF	19 V	_	2,5	μA	320	69	μV r.m.s.
C30	35 pF	21 V	-	2,5	μA	350	73	μV r.m.s.
C33	32 pF	23 V	-	2,5	μA	380	78	μV r.m.s.

Diode capacitance at V $_R$ = 2 V. Noise voltage measured using a bandwidth \pm 3 dB of 10 Hz to 50 kHz. **

OPERATING NOTES

- 1. Dissipation and heatsink considerations
- a. Steady-state conditions

The maximum allowable steady-state dissipation P_{s max} is given by the relationship

$$P_{s \max} = \frac{T_{j \max} - T_{amb}}{R_{th j-a}}$$

where: T_{j max} is the maximum permissible operating junction temperature; T_{amb} is the ambient temperature;

Rth i-a is the total thermal resistance from junction to ambient.

b. Pulse conditions (see Fig. 3)

The maximum allowable additional pulse power $\mathrm{P}_{\mathrm{m}\,\mathrm{max}}$ is given by the formula

$$P_{m max} = \frac{(T_{j max} - T_{amb}) - (P_{s} \cdot R_{th j-a})}{Z_{th}}$$

where: Ps is the steady-state dissipation, excluding that in the pulses;

 Z_{th} is the effective transient thermal resistance of the device from junction to ambient. It is a function of the pulse duration t and duty factor δ (see Fig. 9);

 δ is the duty factor and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_s when biased in the zener direction at a given zener current can be found from Fig. 18. With the additional pulsed power dissipation $P_{m max}$ calculated from the above expression, the total repetitive peak zener power dissipation $P_{ZRM} = P_s + P_{m max}$. From Fig. 18 the corresponding maximum repetitive peak zener current at P_{ZRM} can now be read. For pulse durations longer than the temperature stabilization time of the diode t_{stab}, the maximum allowable repetitive peak dissipation P_{ZRM} is equal to the maximum steady-state power $P_{s max}$. The temperature stabilization for the BZY88series is 100 s (see Fig. 9).

Fig. 3.

OPERATING NOTES (continued)

Example

The following example illustrates how to calculate the maximum permissible repetitive peak zener current of a BZY88-C7V5 zener diode mounted in free air at a maximum ambient temperature of 60 °C. The steady-state zener current is 10 mA, the duty factor δ = 0,1 and the pulse duration t = 1 ms.

The steady-state dissipation P_{s} at a zener current is 10 mA (from Fig. 18) = 76 mW. The thermal resistance from junction to ambient $R_{th\ j-a}$ = 0,31 °C/mW.

The thermal impedance Z_{th} with a duty factor $\delta = 0,1$ and a pulse duration t = 1 ms (from Fig. 9).

The maximum additional pulse power dissipation

$$P_{m max} = \frac{(T_{j max} - T_{amb}) - P_{s} \cdot R_{th j \cdot a}}{Z_{th}}$$

If $P_s = 76 \text{ mW}$, $Z_{th} = 41,5 \text{ }^{\circ}\text{C/W}$,

$$P_{m max} = \frac{(200-60) - (0,076 \times 310)}{41.5} = 2,8 W$$

therefore, the total repetitive peak power dissipation,

From Fig. 18 the corresponding repetitive peak zener current is 350 mA.

2. Zener characteristics

The basic characteristic of a zener diode is the dynamic zener characteristic, that is, the variation of zener voltage when a current pulse is applied in the reverse direction. The slope of this characteristic is r_z . Typical dynamic characteristics at $T_j = 25$ and 150 °C are given on pages 12 and 13 for each type of diode. Because of the temperature sensitivity of the zener characteristics, the dynamic characteristics at any other operating temperature will be displaced from those at $T_j = 25$ °C by a voltage corresponding to $S_Z \times (T_n - 25)$ °C, where S_Z is the temperature coefficient of the diode and T_n is a nominal operating temperature (Figs 4 and 5).

Fig. 5 Static characteristics.

The static characteristic of the diode is obtained by connecting the steady-state zener voltages at various direct zener currents and may, therefore, be used to determine the operating point at any zener current. This is shown above. The slope of the static characteristic will depend on

- (1) the differential resistance, r_z;
- (2) the rise in junction temperature due to internal dissipation and the thermal resistance from junction to ambient, Vz. Iz. R_{th} i.a;
- (3) the temperature coefficient of the diode, SZ.

From the above, the static slope resistance r_Z is found to be

$$r_Z = r_z + V_Z R_{this} S_Z$$

where r_z is the differential resistance, V_Z is the steady-state zener voltage and is equal to

 V_{Z} being the zener voltage at $T_{i} = T_{n}$ at the working current I_{Z} .

The position of this static characteristic in relation to the dynamic characteristic at $T_j = 25$ °C is dependent on the ambient temperature and the temperature coefficient, the low-current voltage being displaced by

from the low current voltage, V_{ZO} on the dynamic characteristic at $T_i = 25 \text{ }^{O}C$ (see Fig. 6).

Fig. 6 Example for positive SZ.

_		
-		•
-		•
-	-	
-		•
-		
-		j

OPERATING NOTES (continued)

Figure 7 shows typical dynamic characteristics at $T_j = 25$, 150 and a nominal temperature, T_n °C. It also shows static characteristics at ambient temperatures of 25 and T_n °C.

Fig. 7 Example for positive SZ.

Typical static characteristics for each type of diode are given on page 14. These curves were obtained with the device mounted in free air at an ambient temperature of 25 °C.

The slope resistance for pulse operation can be calculated by incorporating the thermal impedance Z_{th} into the formula for r_Z . Curves of Z_{th} plotted against pulse duration and duty factor are given in Fig. 9.

- 3. When using a soldering iron, the diode may be soldered directly into a circuit, but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
- 4. Diodes may be dip-soldered at a solder temperature of 245 °C for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a diode with the anode end mounted flush on the board with punched-through holes. For mounting the cathode end onto the board the diode must be spaced 5 mm from the underside of the printed circuit board in the case of punched-through holes or 5 mm from the top of the board for plated-through holes.
- 5. Care should be taken not to bend the leads nearer than 1,5 mm from the seals.

Fig. 8.

Fig. 10.

Fig. 12.

12 November 1979

Fig. 13.

Fig. 14.

14 November 1979

Voltage regulator diodes

BZY88 SERIES

November 1979

VOLTAGE REFERENCE DIODES

VOLTAGE REFERENCE DIODES

The BZV10 to 14 are temperature compensated voltage reference diodes in a DO-35 envelope. They are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA					
			min.	nom. ma	x
Reference voltage at $I_Z = 2,0 \text{ mA}$		Vref	6,175	6,5 6,8	25 V
Reference voltage excursion at $I_Z = 2$,	0 mA				
Ambient temperature test points:	<u>BZV10</u>	$ \Delta V_{ref} $	<	46,0	mV
0; +25 °C and +70 °C	BZV11	$ \Delta V_{ref} $	<	23,0	mV
(see notes 1 and 2 on page 3 and the graph on page 4)	<u>BZV12</u>	$ \Delta V_{ref} $	<	9,0	mV
81 1-8/	BZV13	$ \Delta V_{ref} $	<	4,6	mV
	BZV14	$ \Delta V_{ref} $	<	2,3	mV
Operating ambient temperature		Tamb	0 to -	+70	°C

MECHANICAL DATA

Dimensions in mm

DO-35

Cathode indicated by coloured band The diodes are type-branded

BZV10 to 14

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134) <u>Currents</u>

Working current (d.c.)	$I_{\mathbb{Z}}$	max.	50	mĄ
Working current (peak value)	IZM	max.	50	mA
Power dissipation				
Total power dissipation up to $T_{amb} = 50 \ ^{o}C$	Ptot	max.	400	mW
Temperatures				
Storage temperature	T _{stg}	-65 to	+200	°C
Operating ambient temperature	Tamb	0 to	o +70	٥C

THERMAL RESISTANCE

From junction to ambient in free air $R_{\text{th }j-a} = 0.375 \text{ °C/mW}$

CHARACTERISTICS

 $T_{amb} = 25 \ ^{o}C$ unless otherwise specified

<u>Reference voltage</u> at $I_Z = 2.0 \text{ mA}$		V _{ref}		nom. max. 6,5 6,825	v
Reference voltage excursion at $I_Z = 2,0$	mA				
Ambient temperature test points: 0: $+25 {}^{\circ}\text{C}$ and $+70 {}^{\circ}\text{C}$	<u>BZV10</u>	$ \Delta V_{ref} $	<	46,0	mV
	<u>BZV11</u>	$ \Delta V_{ref} $	<	23,0	mV
(see notes 1 and 2 on the next page and the graph	BZV12	$ \Delta V_{ref} $	<	9,0	mV
on page 4)	<u>BZV13</u>	$ \Delta V_{ref} $	<	4,6	mV
	<u>BZV14</u>	$ \Delta V_{ref} $	<	2,3	mV
Temperature coefficient at $I_Z = 2.0 \text{ mA}$					
(see notes 1 and 2 on the	BZV10	s _z		±0,01	%/°C
next page and the graph on page 4)	<u>BZV11</u>	s _z		±0,005	% ∕° C
	BZV12	s _z		±0,002	%∕°C
	BZV13	SZ		±0,001	%/⁰C
	BZV14	s _z		±0,0005	%/°C
<u>Differential resistance</u> at $I_Z = 2.0 \text{ mA}$		rdiff	typ. <	30 50	Ω Ω

Note 1 Iz tolerance and stability of Iz.

The quoted values of ΔV_{ref} are based on a constant current IZ. Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient SZ.

- a As the max. rdiff of the device can be 50 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 50 Ω = 0,5 mV. This level of ΔV_{ref} is not significant on a BZV10 ($\Delta V_{ref} < 46$ mV), it is however very significant on a BZV14 ($\Delta V_{ref} < 2,3$ mV).
- b The temperature coefficient of the reference voltage S_Z is a function of I_Z . Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at different levels of I_Z . The absolute value of I_Z is important, however, the stability of I_Z , once the level has been set, is far more significant. This applies particularly to the BZV13 and BZV14. The effect of I_Z stability on S_Z is shown in the graph on page 4.

Note 2 Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_Z = \frac{(V_{ref 1} - V_{ref 2}) \times 100}{(T_{amb 2} - T_{amb 1}) \times V_{ref nom}} \% ^{OC}$$

BZV10 to 14

March 1974

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a whiskerless glass envelope. They have a very low temperature coefficient and are primarily intended for use as reference sources.

QUICK REFERENCE DATA

			min.	typ.	max	<u>.</u>
Reference voltage at $I_Z = 7,5 \text{ mA}$		∨ _{ref}	6,2	6,5	6,8	v
Temperature coefficient at $I_7 = 7,5 \text{ mA}^*$	BZX90:	S ₇	<	0,01		%/°C
	BZX91:	SZ	<	0,005		%/ºC
	BZX92:	S7	<	0,002		%/°С
	BZX93:	S7	<	0,001		%/°С
	BZX94:	SZ	<	0,0005		%/°C 🖛
Operating ambient temperature		Tamb	-55	to + 100		oC

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Cathode indicated by coloured band; the diodes are type branded.

* For accuracy of I_Z see graphs on page 5.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Working current (d.c.) 50 mΑ ١z max. Working current (peak value) ZM max. 50 mΑ Total power dissipation up to Tamb = 50 °C Ptot 400 mW max. Storage temperature -65 to +200 oC T_{sta} Operating ambient temperature -55 to +100 °C Tamb THERMAL RESISTANCE From junction to ambient in free air °C/mW 0,4

Rth j-a

min 1 nom 1 may

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

			min.	nom.	max	•
Reference voltage at $I_Z = 7,5 \text{ mA}$		V _{ref}	6,2	6,5	6,8	v
Reference voltage excursion at 17 = 7,5 mA *						
T _{amb} = -55 to + 100 °C	BZX90:	∆V _{ref}	<	10	0	mV
	BZX91:	ΔV_{ref}		5	0	mν
	BZX92:	AV _{ref}	<	20	0	mV
	BZX93:	∆V _{ref}	<	10	0	mV
	BZX94:	∆V _{ref}	<	9	5	mν
Temperature coefficient at $1_7 = 7,5$ mA *		·				
$T_{amb} = -55 \text{ to } + 100 \text{ °C}^{-1}$	BZX90:	S _Z	<	0,01		%/°C
	BZX91:	SZ	<	0,005		%/°C
	BZX92:	SZ	<	0,002		%/°С
	BZX93:	ISZ	<	0,001		%/°C
	BZX94:	(Sz)	<	0,000	5	%/ºC
Differential resistance at $I_Z = 7,5 \text{ mA}$		^r diff	<	1	5	Ω

NOTE

The temperature coefficient (S_Z) of the reference voltage (V_{ref}) is obtained from the following equation:

 $S_{Z} = \frac{V_{ref1} - V_{ref2}}{(T_{amb2} - T_{amb1}) \times V_{ref nom}} \times 100 \%^{\circ}C$

* For accuracy of I₇ see graphs on page 5.

November 1979

November 1979

Fig. 10.

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a DO-35 envelope. They have a very low temperature coefficient and are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA					
			min.	nom. max.	
Reference voltage at $I_Z = 7, 5$ m	nA	V _{ref}	5,89	6, 20 6, 51	v
Reference voltage excursion at	$l_{\rm Z}$ = 7,5 mA l)				
(see notes 1 and 2	1N821	$ \Delta V_{ref} $	<	96	mV
on page 3 and the graphs on pages 4	1N823	$ \Delta V_{ref} $	<	48	mV
and 5)	1N825	$ \Delta V_{ref} $	<	19	mV
	1N827	$ \Delta V_{ref} $	<	9	mV
	1N829	$ \Delta V_{ref} $	<	5	mV
Operating ambient temperature	:	Tamb	-55 to	o+100	٥C

MECHANICAL DATA

Dimensions in mm

DO-35

Cathode indicated by coloured band The diodes are type-branded

1) For accuracy of l_Z see graphs on pages 4 and 5.

Mullard

RATINGS Limiting values in accordance v	with the A	bsolute Maxi	mum System	(IEC134)
Currents				
Working current (d.c.)		$\mathbf{I}_{\mathbf{Z}}$	max. 50	mA
Working current (peak value)		IZM	max. 50	mA
Power dissipation				
Total power dissipation up to T_{amb} = 50 ^{o}C		P _{tot}	max. 400	mW
Temperatures				
Storage temperature		T _{stg}	-65 to +200	°C
Operating ambient temperature		Tamb	-55 to +100	°C
THERMAL RESISTANCE				
From junction to ambient in free air		R _{th} j-a	= 0, 375	⁰C/mW
CHARACTERISTICS	Т	j = 25 ^o C unle	ess otherwise	specified
		mi	n. nom. max	·
Reference voltage at IZ = 7,5 mA		V _{ref} 5,8	n. nom. max 39 6, 20 6, 51	v
Reference voltage excursion at $I_Z = 7,5$ mA	1)			
ambient temperature test points:	1N821	$ \Delta V_{ref} <$	96	mV
-55; +25; +75; +100 ^o C (see notes 1 and 2 on the	1N823	$ \Delta V_{ref} <$	48	mV
next page and the graphs	1N825	$ \Delta V_{ref} <$	19	mV
on pages 4 and 5)	1N827	$ \Delta V_{ref} <$	9	mV
	1N829	$ \Delta V_{ref} <$	5	mV
Effective temperature coefficient at $I_Z = 7$,	5 mA 1)			
(see notes 1 and 2 on the	1N821	SZ	±0,01	%/°C
next page and the graphs on pages 4 and 5)	1N823	SZ	±0,005	%/°C
···· [1N825	SZ	±0, 002	%/°C
	1N827	SZ	±0,001	%/°C
	1N829	SZ	±0,0 005	%/°C
Differential resistance at I_Z = 7,5 mA		r _{diff} <	15	Ω

1) For accuracy of IZ see graphs on pages 4 and 5.

1N821 ; 1N823 1N825; 1N827 1N829

Note 1 Iz tolerance and stability of l_z .

The quoted values of ΔV_{ref} are based on a constant current l_Z . Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient S_Z .

- a As the max. rdiff of the device can be 15 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 15 $\Omega = 0,15$ mV. This level of ΔV_{ref} is not significant on a 1N821 ($\Delta V_{ref} < 96$ mV), it is however very significant on a 1N829 ($\Delta V_{ref} < 5$ mV).
- b The temperature coefficient of the reference voltage S_Z is a function of I_Z. Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at different levels of I_Z. The absolute value of I_Z is important, however, the stability of I_Z, once the level has been set, is far more significant. This applies particularly to the 1N829.

The effect of I_Z stability on S_Z is shown in the graph on page 5.

Note 2 Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_{Z} = \frac{(V_{ref 1} - V_{ref 2}) \times 100}{(T_{amb 2} - T_{amb 1}) \times V_{ref nom}} \%^{O}C$$

Maximum reference voltage variation (line section) caused by temperature variations within the range from -55 °C to +100 °C at a constant working current of 7, 5 mA. The voltage variations may shift horizontally within the shaded area. The zero point may vary from 5890 mV to 6510 mV and differs from diode to diode.

March 1974

RECTIFIER DIODES (Low power)

Dimensions in mm

1

SILICON HIGH-VOLTAGE DIODE

Diode in a plastic envelope. It is intended for use as Vg2 supply in colour television receivers.

QUICK REFERENCE DATA

Crest working reverse voltage	V _{RWM}	max	1500 V
Repetitive peak reverse voltage	VRRM	max	1800 V
Average forward current	^I F(AV)	max	5,0 mA 🛥
Repetitive peak forward current	IFRM	max	400 mA
Operating junction temperature	т _і	max	85 °C
Reverse recovery charge	O _s	typ	1 nC

MECHANICAL DATA

SOD-34 (long leads) 3.5 max min 3.5 max min 3.5 max max

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

Cathode indicated by coloured band. The diodes are type-branded

BY184

RATINGS Limiting values in accordance with the Absolute Maximu	um System (I	IEC 134)		
Voltages				
Crest working reverse voltage	VRWM	max	1500	ν
Repetitive peak reverse voltage	VRRM	max	1800	v
Non-repetitive peak reverse voltage (t \leq 10 ms)	VRSM	max	1800	v
Currents				
 Average forward current (averaged over any 20 ms period) 	^I F(AV)	max	5,0	mA
Repetitive peak forward current	FRM	max	400	mA
Non-repetitive peak forward current (t \leq 10 ms)	IFSM	max	5	A
Temperatures				
Storage temperature	Tstg	-65 to	+100	°C
Operating junction temperature	тј	max	85	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{thj-a}	=	175	°C/W
CHARACTERISTICS				
Forward voltage at $I_F = 100 \text{ mA}$; $T_{\hat{I}} = 75 ^{O}\text{C}$	٧F	<	5	v
Reverse current at V _R = 1500 V; T _i = 75 ^o C	۱ _R	<	10	μA
Reverse recovery charge when switched from $I_F = 10 \text{ mA to V}_R = 2 \text{ V with}$				
$\frac{dI_F}{dt} = 5 \text{ mA}/\mu\text{s}; T_j = 25 \text{ °C}$	0,s	typ	1	nC

BY184

APPLICATION INFORMATION

Basic circuit for V_{g2} supply in colour television receivers

Stable continuous operation is ensured at an ambient temperature up to 70 °C.

.

7277101 t

April 1977

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes.

They are intended for use as top level detector, scan rectifier for the supply of smallsignal parts in television and other h.f. power supplies. The devices feature non-snapoff characteristics.

QUICK REFERENCE DATA						
			BY206	BY207		
Repetitive peak reverse voltage	V _{RRM}	max.	350	600	v	
Average forward current	^I F(AV)	max.	0,5	0,5	A	
Non-repetitive peak forward current	I _{FSM}	max.	15	15	A	
Reverse recovery time	trr	<	300	300	ns	

MECHANICAL DATA

Conforms to B.S. 3934 SO-8 J.E.D.E.C. DO-14 The diodes are type branded

The sealing of these plastic envelopes withstands the accelerated damp heat test of I.E.C. recommendation 68-2 (test D, severity IV, 6 cycles)

Available for current production only; for new designs successors BYV95 or BAS11 are recommended.

Dimensions in mm

RATINGS Limiting values in accordance with the	Absolute	Maximu	ım Syste	m (IEC)	l 34)
Voltages			BY206	BY207	
Non-repetitive peak reverse voltage ($t \le 10 \text{ ms}$)	V _{RSM}	max.	350	600	v
Repetitive peak reverse voltage (t ≤ 12 μ s)	V _{RRM}	max.	350	600	v
Working reverse voltage	V _{RW}	max.	300	500	v
Continuous reverse voltage	VR	max.	300	500	v
Currents					
Average forward current (averaged over any 20 ms period; see also pages 4,5,8)	1	max	0,	4	A
$V_{RW} = V_{RWmax}$ $V_{RW} \le 80 V$	^I F(AV) ^I F(AV)	max. max.	0, 0,		A
Repetitive peak forward current	IFRM	max.	3,	0	Α
Repetitive peak forward current ($\delta \le 0,03$; f ≥ 15 kHz)	I _{FRM}	max.	5,	0	A
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = 150$ °C prior to surge	IFSM	max.	1	15	A
Temperatures					
Storage temperature	T _{stg}	-6	65 to +12	25	٥C
Operating junction temperature	Тj	max.	15	50	٥C
THERMAL RESISTANCE	See page	3			
CHARACTERISTICS					
Forward voltage					
$I_{F} = 2 A; T_{j} = 25 \text{ °C}$	VF	<	1,5	55	V ¹)
Reverse current			BY206	BY207	
$V_{\mathbf{R}} = V_{\mathbf{R}} W_{\mathbf{max}}; T_{\mathbf{j}} = 125 ^{\mathrm{o}}\mathrm{C}$ $T_{\mathbf{j}} = 25 ^{\mathrm{o}}\mathrm{C}$	IR IR	< <	200 2	125 2	μA μA
Reverse recovery when switched from					
$I_{\rm F}$ = 0, 4 A to $V_{\rm R} \ge 50$ V with -dI _F /dt = 0, 4 A/µs; T _j = 25 °C					
Recovery charge	Qs	<		50	nC
Recovery time Fall time	t _{rr} t _f	< >	1, 6	0 50 -	µs ns
	-				

1) Measured under pulse conditions to avoid excessive dissipation.

Mullard

....

FAST SOFT-RECOVERY **RECTIFIER DIODES**

BY206 BY207

ns

CHARACTERISTICS (continued)

Reverse recovery when switched from

 $I_F = 10 \text{ mA to } V_R \ge 50 \text{ V with}$ $-dI/dt = 0,5 \text{ A}/\mu \text{s}; T_i = 25 \text{ }^{O}\text{C}$

Recovery time

THERMAL RESISTANCE (influence of mounting method)

The quoted values of $R_{th i-a}$ should be used only when no other leads run to the tie-points. If leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

- 1. Mounted to solder tags at a lead-length a = 10 mm
- 2. Mounted to solder tags at a = maximum lead-length
- 3. Mounted on printed-wiring board with a small area of copper at a lead-length a > 5 mm

<

300

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 5 mm from the seal.
- The maximum permissible temperature of the soldering bath is 300 °C; it must not 2. be in contact with the joint for more than 3 seconds.
- 3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 125 °C.

Mullard

FAST SOFT-RECOVERY RECTIFIER DIODES

BY206 BY207

Mullard

BY206 Page 5

1

Mullard

2

V_F (V)

0 L 0 ____

BY206 Page 6

FAST SOFT-RECOVERY RECTIFIER DIODES

BY206 BY207

Mullard

. -.

FAST SOFT-RECOVERY RECTIFIER DIODES

Mullard

BY206 Page 10

FAST SOFT-RECOVERY DIODES

A range of plastic-encapsulated fast-switching silicon rectifier diodes with "non snap-off" characteristics. The diodes are intended for use in scan rectification, switched-mode power supplies and high-speed converter applications.

QUICK REFERENCE DATA

			<u>BY210-400 600 800</u>	
Repetitive peak reverse voltage	V _{RRM}	max.	400 600 800	v
Repetitive peak forward current	IFRM	max.	5.0	A
Non-repetitive peak forward current (t = 10 ms)	^I FSM	max.	30	А
Reverse recovery time	trr	<	400	ns

MECHANICAL DATA Fig.1 DO-15 Dimensions in mm

The diodes are type branded. D2523C

AVAILABLE FOR CURRENT PRODUCTION ONLY

FOR NEW DESIGNS THE FOLLOWING SUCCESSOR TYPES ARE RECOMMENDED:

BY210-400 = BYV95B BY210-600 = BYV95C BY210-800 = BYV96D

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BY210-400	600	800
Repetitive peak reverse voltage	VRRM	max.	400	600	800 V
Non-repetitive peak reverse voltage (t \leq 10 ms)	VRSM	max.	400	600	800 V
Currents					
Forward current (d.c.)*	iF	max.		1.0	А
Repetitive peak forward current	¹ FRM	max.		5.0	А
Non-repetitive peak forward current (t ≤ 10 ms)	IFSM	max.		30	А
Temperatures					
Storage temperature	T _{stg}		`−65 t	o +125	°C
Junction temperature	тј	max.	+125	+125	+100 °C
THERMAL RESISTANCE	See page	4			
CHARACTERISTICS					
Forward voltage					
I _F = 1.0 A, T _j = 25 °C	٧ _F	<		1.3	v
Reverse current					
VR = VRRM ^{max.,} T _j = 25 ^o C	۱ _R	<		10	μA
$V_{R} = V_{RRM}$ max., $T_{j} = T_{j}$ max.	I _R	<		200	μA
Capacitance					
V_{R} = 150 V, T_{j} = +25 to +125 °C	Сd	typ.		4.0	pF

_

*Provided leads are maintained at 25 °C 1 cm from the diode body

CHARACTERISTICS (continued)

Reverse recovery when switched from $I_F = 400 \text{ mA to } V_R \ge 50 \text{ V}, T_j = 25 \text{ °C}$	·	dl <u>F</u> dt	=	5A/µs	0.4	A/µs
Recovered charge	(0,s	<	160	60	nC
Recovery time	1	t _{rr}	<	0.4	1.0	μs
Fall time	1	t _f	>	100	100	ns

Curve

Mounting

1	Infinite heatsink at end of lead
2	Typical printed circuit with large area of copper ($\ge 1.5 \text{ cm}^2$)
3	Tag mounting

N.B. The values of Rth apply only if no other dissipating components share the same mounting point.

OPERATING NOTES

1. Total power dissipation comprises 3 parts, namely:-

 $P_{tot} = P_{F(AV)} + P_{R(AV)} + (V_R \times I_R \times duty cycle)$

where $P_{F(AV)}$ and $P_{R(AV)}$ are derived from graphs on page 6.

 $P_{F(AV)}$ is the normal forward power dissipation.

 $P_{R}(AV)$ is the switching loss due to hole storage. This appears as a charge which builds up in the junction after forward current has been flowing. The combination of stored charge and reverse voltage results in reverse power loss which contributes to an increase in T_i.

2. Thermal resistance may be derived from:-

$$R_{th} = \frac{T_j \max. -T_{amb} \max.}{P_{tot}}$$

Once $R_{\mbox{th}}$ has been determined, reference to graph on page 4 will show the practical mounting condition required.

3. Practical example

Consider a diode used as a scan rectifier:-

frequency	=	16 kHz
duty cycle	=	$\frac{52 \ \mu s}{64 \ \mu s} = 0.8 \ (scan \ rectification)$
T _{amb} max.	=	55 °C
Switched from		0.5 A (assume a square wave)
to		400 V
at a rate of		5 Α/μs

therefore

 $P_{F(AV)}$ from graph on page 6 = 0.5 W $P_{R(AV)}$ from graph on page 6 = 0.26 W

therefore

(Ignore V_R × I_R × duty cycle as this is very small compared to P_F(AV) + P_R(AV). In practice the worst case is, in example, 400 × 200 × 10⁻⁶ × $\frac{12}{64}$ = 0.015 W)

 $P_{tot} = 0.76 W$

therefore

Maximum allowable thermal resistance is:-

$$\frac{T_{j \text{ max.}} - T_{amb} \text{ max.}}{P_{tot}} = \frac{125 - 55}{0.76} = 92 \text{ °C/W}$$

i.e. Curve 2 on the Mounting Conditions graph.

Fig.6 Nomogram: power loss P_{R(AV)} due to switching only (to be added to forward and reverse power losses.

PARALLEL EFFICIENCY DIODE

Double-diffused passivated rectifier diode in a hermetically sealed axial-leaded glass envelope, intended for use as efficiency diode in transistorized horizontal deflection circuits of television receivers. The device features high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

Repetitive peak reverse voltage	VRRM	max.	1500 V
Working peak forward current	FWM	max.	5 A
Repetitive peak forward current	¹ FRM	max.	10 A
Total reverse recovery time	^t tot	<	20 µs

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

Mullard

RATINGS

...

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Non-repetitive peak reverse voltage during flashover of picture tube	Vacu	-	1650	v
	V _{RSM}	max.	1000	v
Repetitive peak reverse voltage	VRRM	max.	1500	. V
Working reverse voltage	VRW	max.	1500	V
Working peak forward current	FWM	max.	5	A
Repetitive peak forward current	IFRM	max.	10	Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 ^o C				
prior to surge; with reapplied VRWmax	FSM	max.	50	Α
Storage temperature	T _{stg}	-65 t	o +175	°C
Junction temperature	Тј	max.	140	0C

THERMAL RESISTANCE

Influence of mounting method

The quoted value of $R_{\mbox{th}\mbox{j-a}}$ should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness \geq 40 μ m; Fig. 2

 $R_{thi-a} = 75 \, ^{\circ}C/W$

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diòde. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N. Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N. Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

June 1978

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance > 5 mm from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm, the maximum allowed solder temperature is 300 °C, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soldering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage			
I _F = 5 A; T _j = 25 °C	VF	<	1,5 V*
Reverse current			
V _R = V _{RWmax} ; T _j = 140 °C	I _R	<	200 µA
Total reverse recovery time when switched from			
lբ = 1 A;dlբ/dt = 0,05 A/µs; Tj = 140 °C	t _{tot}	<	20 µs

* Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

<

1 µs

Fig. 6 P_{tot} = power dissipation including switching losses; ---- 819 lines; ---- 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; I_{FWM} is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal I_{FWM} ; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7,5	15	22,5	30	37,5	°C/₩
R _{th e-a}	310	230	190	160	145	

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given on page 2: $R_{th tp-a} = 72 \text{ °C/W}$.

2. Mounted on a printed-circuit board with a copper laminate of 1 cm²: R_{th tp-a} = 58 °C/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers (e.g. tripler circuits) and as focus rectifiers in colour television receivers. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 6 kV, see page 3.

QUICK REFERENCE DATA

VRW	max	11,5 kV
VRRM	max	12,5 kV
IF(AV)	max	2,5 mA
тј	max	100 °C
0 _s	typ	2,5 nC
t _{rr}	typ	0,4 μs
	V _{RRM} ^I F(AV) T _j O _s	V _{RRM} max ^I F(AV) max Tj max Q _s typ

MECHANICAL DATA

SOD-34

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			
Working reverse voltage	VRW	max	11,5 kV
Repetitive peak reverse voltage	VRRM	max	12,5 kV
Non-repetitive peak reverse voltage (t \leq 10 ms)	VRSM	max	12,5 kV
Currents			
Average forward current (averaged over any 20 ms period)	IF(AV)	max	2,5 mA *
Repetitive peak forward current	FRM	max	500 mA **
Temperatures			
Storage temperature	T _{stg}	—65 t	o +100 ° C
Junction temperature	тј	max	100 °C
CHARACTERISTICS			
Forward voltage at I $_{\rm F}$ = 100 mA; T $_{\rm j}$ = 100 $^{\rm O}{\rm C}$	VF	<	36 V
Reverse current at V_R = 10 kV; T _j = 100 °C	1 _R	<	5 µA
Reverse recovery when switched from			
$I_F = 200 \text{ mA to } V_R = 100 \text{ V with}$			
$-dI_F/dt = 200 \text{ mA}/\mu s; T_i = 25 \text{ °C}$			
Recovery charge	0,s	typ	2,5 nC
Recovery time	trr	typ	0,4 μs
Fall time	tf	>	0,15 μs

For use as clamping diode in tripler circuits the maximum value for $I_{F(AV)} = 4$ mA up to $T_{amb} = 77$ °C.

.

** The rectifier can withstand peak currents occurring at flashover in the picture tube.

When used at voltages above 6 kV the diode should be potted in such a way that $R_{th\ j-a}$ is less than 120 °C/W.

Typical operating circuit

Typical applied voltage

PARALLEL EFFICIENCY DIODE

Double-diffused passivated rectifier diode in a hermetically sealed axial-leaded glass envelope, intended for use as efficiency diode in transistorized horizontal deflection circuits of television receivers. The device features high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

Repetitive peak reverse voltage	VRRM	max.	1200	v
Working peak forward current	^I FWM	max.	5	Α
Repetitive peak forward current	^I FRM	max.	10	A
Total reverse recovery time	^t tot	<	20	μs

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Non-repetitive peak reverse voltage during flashover of picture tube	V _{RSM}	max.	1300	v
Repetitive peak reverse voltage	VRRM	max.	1200	v
Working peak forward current	FWM	max.	5	Α
Repetitive peak forward current	İFRM	max.	10	Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 ^o C				
prior to surge; with reapplied VRWmax	I FSM	max.	50	Α
Storage temperature	T _{stg}	—65 t	o +175	оС
Junction temperature	тј	max.	140	°C

THERMAL RESISTANCE

Influence of mounting method

The quoted value of $R_{th j-a}$ should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness $\ge 40 \,\mu$ m; Fig. 2

 $R_{thi-a} = 75 \text{ °C/W}$

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N. Perpendicular force on the body must be avoided as much as possible, however, if present, it shail not exceed 10 N. Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

BY438

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance > 5 mm from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm, the maximum allowed solder temperature is 300 °C, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soldering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage $I_F = 5 A; T_j = 25 \ ^{\circ}C$	VF	<	1,5 V*
Reverse current V _R = V _{RWmax} ; T _j = 140 °C	I _R	<	200 µA
Total reverse recovery time when switched from $I_F = 1 A$; $-dI_F/dt = 0.05 A/\mu s$; $T_j = 140 \ ^{\circ}C$	^t tot	<	20 µs

Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery time when switched to $l_F = 5 \text{ A}$ with $t_r = 0,1 \ \mu s$; $T_i = 140 \ ^{\circ}\text{C}$

< 1 μs

tfr

4 September 1979

Fig. 6 P_{tot} = power dissipation including switching losses; ---- 819 lines; ---- 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; I_{FWM} is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal IFWM; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

D1 = BY438.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit. D1 = BY438.

Fig. 10 Basic self-regulating time base circuit (S.R.T.). D1 = BY438.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
^R th e-tp	7,5	15	22,5	30	37,5	°C/W
^R th e-a	310	230	190	160	145	

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given on page 2: Rth tp-a = 72 °C/W.

2. Mounted on a printed-circuit board with a copper laminate of 1 cm²: R_{th tp-a} = 58 °C/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits and PPS (power-pack system) circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY458	BY448	
Repetitive peak reverse voltage	VRRM	max.	1200	1500	v
Working peak forward current	I FWM	max.		4	Α
Repetitive peak forward current	FRM	max.		8	Α
Total reverse recovery time	^t tot	<	2	20	μs

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

BY448 BY458

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BY458	BY44	8
Non-repetitive peak reverse voltage during flashover of picture tube	VRSM	max. 1300	165	
Repetitive peak reverse voltage	VRRM	max. 1200	150	0 V
Working peak forward current	FWM	max.	4	Α
Repetitive peak forward current	FRM	max.	8	Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 ^o C				
prior to surge; with reapplied V _{RRMmax}	IFSM	max.	30	Α
Storage temperature	T _{stg}	-65 to	+175	°C
Operating junction temperature	тj	max.	140	°C

THERMAL RESISTANCE

Influence of mounting method (see also OPERATING NOTES and Fig. 11)

The quoted value of $R_{th j-a}$ should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness \geq 40 μ m; Fig. 2

R_{th j-a}

100 °C/W

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N. Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N. Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

April 1979

Parallel efficiency diodes

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance > 5 mm from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm, the maximum allowed solder temperature is 300 °C, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soldering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage I _F = 3 A; T _j = 25 °C	VF	<	1,6 V*
Reverse current VR = VRRMmax; Tj = 140 °C	¹ R	<	200 µA
Total reverse recovery time when switched from $I_F = 1 A; -dI_F/dt = 0.05 A/\mu s; T_j = 140 °C$	ttot	<	20 µs

* Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

< 1 µs

April 1979

Fig. 6 P_{tot} = maximum power dissipation including switching losses; - - - 819 lines; ---- 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; I_{FWM} = the nominal peak diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal I_{FWM}; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

BY448 BY458

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

7

BY448 BY458

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{the-tp}	15	30	45	60	75	°C/W
R _{the-a}	580	445	350	290	245	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given on page 2: $R_{th tp-a} = 70 \text{ °C/W}$.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}.$

 $2,25 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 45 \text{ }^{\text{o}}\text{C/W}.$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers and for use in tiny vision black-and-white television receivers. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 9 kV, see page 3.

QUICK REFERENCE DATA

Recovery time	t _{rr}	typ	0,4 μs
Recovery charge	Qs	typ	2,5 nC
Reverse recovery			
Junction temperature	т _ј	max	100 °C
Average forward current	^I F(AV)	max	2,5 mA
Repetitive peak reverse voltage	VRRM	max	18 kV
Working reverse voltage	V _{RW}	max	16 kV

MECHANICAL DATA

SOD-56

22 min 18,4 max 22 min not tinned max → 2 max 0,56 max ۵ k ŧ 0 Ĥ 112011 🗕 4,2 max Ü min. mounting width 25 -77697011

Dimensions in mm

BY476

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Working reverse voltage	V _{RW}	max	16	kV
Repetitive peak reverse voltage	VRRM	max	18	kV
Non-repetitive peak reverse voltage (t \leq 10 ms)	V _{RSM}	max	21	kV
Currents				
Average forward current (averaged over any 20 ms period)	IF(AV)	max	2,5	mA
Repetitive peak forward current	^I FRM	max	500	mA *
Temperatures				
Storage temperature	Tstg	-65 to	+100	°C
Junction temperature	τj	max	100	°C
CHARACTERISTICS				
Forward voltage at I_F = 100 mA; T_j = 100 °C	VF	<	44	٧
Reverse current at V_R = 15 kV; T_j = 100 °C	1 _R	<	5	μA
Reverse recovery when switched from $I_F = 200 \text{ mA to } V_R = 100 \text{ V with}$ $-dI_F/dt = 200 \text{ mA/}\mu s; T_j = 25 \text{ °C}$				
Recovery charge Recovery time Fall time	Q _s t _{rr} t _f	typ typ >	2,5 0,4 0,15	μs

* The rectifier can withstand peak currents occurring at flashover in the picture tube.

When used at voltages above 9 kV diode should be potted in such a way that $R_{\mbox{th}\,j\mbox{-}a}$ is less than 120 $^{\rm O}C/W.$

Typical operating circuit

Typical applied voltage

BY476

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODE

E.H.T. rectifier diode in a glass envelope intended for use in high-voltage applications such as multipliers, e.g. tripler circuits, diode-split transformers. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be used in a suitable dielectric medium (resin, oil, SF6 gas).

QUICK REFERENCE DATA

Reverse recovery time	∽s ^t rr	typ.	0,2 μs
Junction temperature Reverse recovery charge	т _ј Ок	max. <	120 °C 1 nC
Average forward current	^I F(AV)	max.	4 mA
Repetitive peak reverse voltage	VRRM	max.	12,5 kV
Working reverse voltage	VRW	max.	11,5 kV

MECHANICAL DATA

Fig. 1 SOD-61.

Dimensions in mm

The cathode is indicated by a coloured band on the lead

BY509

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Working reverse voltage	VRW	max.	11,5	kV
Repetitive peak reverse voltage	VRRM	max.	12,5	kV
Non-repetitive peak reverse voltage; t ≤ 10 ms	VRSM	max.	12,5	kV
Average forward current (averaged over any 20 ms period)	^I F(AV)	max.	4	mA
Repetitive peak forward current	I _{FRM}	max.	500	mA*
Storage temperature	Tstg	-65 to	+120	oC
Junction temperature	тј	max.	120	°C
CHARACTERISTICS				
Forward voltage I _F = 100 mA; T _i = 120 ^o C	VF	<	43	v**
Reverse current $V_R = 11.5 \text{ kV}; T_j = 120 ^{\circ}\text{C}$	I _R	<	3	μA
Reverse recovery when switched from $I_F = 100 \text{ mA to } V_R \ge 100 \text{ V with}$ $-dI_F/dt = 200 \text{ mA/}\mu s; T_j = 25 \text{ °C}$				
recovery charge recovery time fall time	O _s t _{rr} t _f	< typ. >	1 0,2 0,1	

Fig. 2 Definitions of Q_s , t_{rr} and t_f .

* The device can withstand peak currents occurring at flashover in the picture tube.

** Measured under pulse conditions to avoid excessive dissipation.

2

July 1979

Silicon e.h.t. soft-recovery rectifier diode

BY509

July 1979

Fig. 6 —— $T_j = 25 \text{ °C};$ —— $T_j = 120 \text{ °C}.$

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV2	7-50	100	150	200	
Repetitive peak reverse voltage	VRRM	max.	50	100	150	200	٠ ٧
Continuous reverse voltage	V _R	max.	50	100	150	200	v
Average forward current	F(AV)	max.			2		Α
Non-repetitive peak reverse energy	ERSM	max.		2	0		mJ
Reverse recovery time	t _{rr}	<		2	5		ns

MECHANICAL DATA

Fig. 1 SOD-57. The diodes are type branded

Dimensions in mm

The marking band indicates the cathode.

Marking: BYV27-50 = BYV27-5 BYV27-100 = BYV2710 BYV27-150 = BYV2715 BYV27-200 = BYV2720

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	7-50 100	150	200
Repetitive peak reverse voltage	VRRM	max.	50 100	150	200 V
Continuous reverse voltage	VR	max.	50 100	150	200 V
Average forward current (averaged over any 20 ms period)					
$T_{tp} = 75 \text{ °C}; \text{ lead length} = 10 \text{ mm}$	F(AV)	max.		2	A
$T_{amb} = 60 {}^{\circ}C; Fig. 2$	^I F(AV)	max.	1	,25	Α
Repetitive peak forward current	IFRM	max.		15	Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; with reapplied V _{RRM}	IFSM	max.		50	A
Non-repetitive peak reverse avalanche energy; I _R = 600 mA; T _j = T _j max prior to surge; with inductive load switched off	Frou	max.		20	mJ
	E _{RSM}	max.			
Storage temperature	T _{stg}		-65 to +	175	٥C
Junction temperature	т _ј	max.		165	oC
THERMAL RESISTANCE					
Influence of mounting method					
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=		46.	°C/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 					
Cu-thickness ≥ 40 µm; Fig. 2	R _{th j-a}	=		100	°C/W

Mullard

.

July 1980

CHARACTERISTICS

T_j = 25 ^oC unless otherwise specified

		BYV27-50	100	150	200	
Reverse avalanche breakdown voltage I _R = 0,1 mA	V _{(BR)R}	55	110	165	220	v
Forward voltage*						
I _F = 2,5 A; T _j = T _{j max}	VF	<	0	,85		v
IF = 5 A	V _F	<	1	,25		v
Reverse current	•					
VR = VRRMmax; Ti = 25 °C	I _R	<		1		μA
VR [≈] VRRM _{max} ; T _j = 25 ºC VR = VRRMmax; T _j = 165 ºC	I _R	<		150		μA
Reverse recovery time when switched from						
$I_F = 0,5 \text{ A to } I_R = 1 \text{ A}$; measured at $I_R = 0,25 \text{ A}$ for definition see Figs 3 and 4	trr	<		25		ns

Fig. 3 Test circuit.

Input impedance oscilloscope 1 M Ω ; 22 pF. Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

* Measured under pulse conditions to avoid excessive dissipation.

Reverse recovery when switched from $I_F = 1 A \text{ to } V_R \ge 30 \text{ V}$ with $-dI_F/dt = 20 \text{ A}/\mu \text{s}$ (see Fig. 5) recovered charge recovery time

 $\begin{array}{ccc} Q_{s} & < & 15 \ nC \\ t_{rr} & < & 50 \ ns \end{array}$

Mullard

Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta = 50\%$. $a = \frac{1}{F}(RMS)/\frac{1}{F}(AV); VR = VRRMmax$

Fig. 8 Reverse current as a function of the junction temperature.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated on page 6.

Fig. 9 Thermal model.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

		unit				
thermal resistance	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	°C/W
R _{thea}	580	445	350	290	245	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth tp-a = 70 °C/W.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ oC/W}$ 2,25 cm² R_{th tp-a} = 45 oC/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 7) and the thermal model (Fig. 9).

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general in high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		ΒΥν2	8-50	100	150	200	
Repetitive peak reverse voitage	VRRM	max.	50	100	150	200	v
Continuous reverse voltage	٧ _R	max.	50	100	150	200	v
Average forward current	IF(AV)	max.		3,	5		Α
Non-repetitive peak reverse energy	ERSM	max.	20				mJ
Reverse recovery time	t _{rr}	<	30				ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-64. The diodes are type-branded

Dimensions in mm

The marking band indicates the cathode.

July 1980

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	8-50	100	150	200	
Repetitive peak reverse voltage	VRRM	max.	50	100	150	200	v
Continuous reverse voltage	VR	max.	50	100	150	200	v
Average forward current (averaged over any 20 ms period)							
T _{tp} = 75 ^o C; lead length = 10 mm	F(AV)	max.			,5		Α
T _{amb} = 60 ^o C; p.c.b. mounting (see Fig. 2)	^I F(AV)	max.		1	,8		Α
Repetitive peak forward current	FRM	max.		2	25		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; with reapplied V _{RRM}	FSM	max.		8	80		A
Non-repetitive peak reverse avalanche energy; I _R = 600 mA; T _j = T _j max prior to surge; with inductive	_						
load switched off	ERSM	max.		2	20		mJ
Storage temperature	⊤ _{stg}		65	i to + 17	/5		оС
Junction temperature	Tj	max.		16	65		٥C
THERMAL RESISTANCE							
Influence of mounting method							
1. Thermal resistance from junction to tie-point at a lead length of 10 mm	R _{thj-tp}	=		2	25		°C/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 	, +						
Cu-thickness \geq 40 μ m; Fig. 2	R _{th j-a}	=		7	'5		°C/W

Mullard

ns

CHARACTERISTICS

 $T_i = 25 \text{ °C}$, unless otherwise specified

		BYV	28-50	100	150	200	
Reverse avalanche breakdown voltage I _R = 0,1 mA	V(BR)R	>	55	110	165	220	v
Forward voltage* IF = 3 A; Tj = T _{j max} I _F = 5 A	V _F VF	< <			.75 .10		v v
Reverse current VR = V _{RRMmax} ; T _j = 25 °C VR = V _{RRMmax} ; T _j = 165 °C	IR IR	< <		1	1 50		μΑ μΑ
Reverse recovery time when switched from $L_{c} = 0.5 A$ to $L_{c} = 1 A$; measured at							

 $I_R = 0.25 \text{ A for definition see}$

Figs 3 and 4

Fig. 3 Test circuit.

Input impedance oscilloscope 1 M Ω ; 22 pF; Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

* Measured under pulse conditions to avoid excessive dissipation.

July 1980

Reverse recovery when switched from

 $I_F = 1 A \text{ to } V_R \ge 30 \text{ V}$ with -dI_F/dt = 20 A/ μ s (see Fig. 5) recovered charge recovery time

 $\begin{array}{rcl} {
m Q_S} & < & 20 \ {
m nC} \\ {
m t_{rr}} & < & 50 \ {
m ns} \end{array}$

Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta = 50\%$. $a = \frac{1}{F(RMS)} \frac{1}{F(AV)}; V_R = \frac{1}{F(RMS)} \frac{1}{F(AV)}$

Epitaxial avalanche diodes

BYV28 SERIES

Fig. 8 Reverse current as a function of the junction temperature.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated on page 6.

Fig. 9 Thermal model.

July 1980

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal	lead length					unit
resistance	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	°C/W
R _{the-a}	410	300	230	185	155	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{th tp-a} = 70 \text{ }^{\circ}\text{C/W}$.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}$ 2,25 cm² R_{th tp-a} = 45 °C/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 7) and the thermal model (Fig. 9).

6

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			8YV95A	В	с	
Repetitive peak reverse voltage	VRRM	max.	200	400	600	v
Continuous reverse voltage	VR	max.	200	400	600	v
Average forward current	^I F(AV)	max.		1,5		Α
Non-repetitive peak forward current	^I FSM	max.		35		Α
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	t _{rr}	<		250		ns

MECHANICAL DATA Fig. 1 SOD-57. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded

Mullard

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYV95A	в	C	
Repetitive peak reverse voltage	VRRM	max.	200	400	600	v
Continuous reverse voltage	ν _R	max.	200	400	600	v
Average forward current (averaged over any 20 ms period)						
$T_{tp} = 55 ^{\circ}\text{C}$; lead length 10 mm	I _{F(AV)}	max.		1,5		Α
$T_{amb} = 55 ^{o}C; Fig. 2$	^I F(AV)	max.		8,0		А
Repetitive peak forward current	^I FRM	max.		10		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; V _R = V _{RRMmax}	IFSM	max.		35		A
Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_{j max}$ prior to surge; with inductive						
load switched off	ERSM	max.		10		mJ
Storage temperature	⊤stg		-65 to	+ 175		°C
Operating junction temperature	τ _j	max.		165		оС
THERMAL RESISTANCE						
Influence of mounting method						
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=		46		°C/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 						
Cu-thickness \geq 40 μ rn; Fig. 2	R _{th} j₋a	*		100		°C/W

Fig. 2 Mounted on a printed-circuit board.

Ξ

December 1979

2

Mullard

U

BYV95A; B; C

CHARACTERISTICS

T_i = 25 ^oC unless otherwise specified

BYV95A В С Forward voltage $I_F = 3A$ VF VF < 1,6 1,6 1.6 V* I_F = 3 A; T_i = 165 °C < 1,35 1,35 1,35 V* Reverse avalanche breakdown voltage $V_{(BR)R} >$ 300 500 700 V $I_{R} = 0,1 \, mA$ **Reverse current** μA V_R = V_{RRMmax}; T_j = 165 ^oC < 150 IR Reverse recovery when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V with}$ $-dI_F/dt = 20 A/\mu s$ ٥s < < 250 nC recovered charge 250 ns recovery time trr Maximum slope of reverse recovery current when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$ |d1_R/dt| < 6 A/µs with $-dI_F/dt = 1 A/\mu s$ 7282242 6 ۱_F dlF/dt max typ F ٧F ۷F (A) t 10% 4 Q dl_R/dt 1_R ۷_F 2 t VR 7282613 0 0 1 2 $V_{F}(V)$

Measured under pulse conditions to avoid excessive dissipation.

 $\mathbf{\nabla}$

December 1979

BYV95A; B; C

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

a = IF(RMS)/IF(AV); VR = VRRMmax

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

4

Avalanche fast soft-recovery rectifier diodes

BYV95A; B; C

Fig. 7 Maximum slope of reverse recovery current. $T_j = 25$ °C.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.

Mounting method see Fig. 2.

The graph is for switched-mode application. $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Mullard

BYV95A; B; C

Fig. 12 Maximum values at T_j = 140 ^OC (see also Fig. 4).

Mullard

December 1979

BYV95A; B; C

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Ξ

Fig. 13.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{the-tp}	15	30	45	60	75	°C/W
R _{the-a}	580	445	350	290	245	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth tp-a = 70 °C/W

2. Mounted on a printed-circuit board with copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ oC/W}$ 2,25 cm² R_{th tp-a} = 45 oC/W

Note

8

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV96D	BYV96E
Repetitive peak reverse voltage	VRRM	max.	800	1000 V
Continuous reverse voltage	VR	max.	800	1000 V
Average forward current	IF(AV)	max.	1,5	A
Non-repetitive peak forward current	FSM	max.	. 35	Α
Non-repetitive peak reverse energy	ERSM	max.	. 10	mJ
Reverse recovery time	t _{rr}	<	300	ns

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYV96D	BYVS	96E
Repetitive peak reverse voltage	VRRM	max.	800	1000	<u>v</u>
Continuous reverse voltage	VR	max.	800	1000	o v
Average forward current (averaged over any 20 ms period)					_
$T_{tp} = 55 ^{\circ}C$; lead length 10 mm	F(AV)	max.			A
$T_{amb} = 55 {}^{o}C$; Fig. 2	^I F(AV)	max.	0,	8	Α
Repetitive peak forward current	^I FRM	max.	1	0	Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; V _R = V _{RRM max}	^I FSM	max.	3	5	А
Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_j \max_{prior to surge; with inductive}$					
load switched off	ERSM	max.	1	0	mJ
Storage temperature	T _{stg}		-65 to	+ 175	٥C
Operating junction temperature	т _і	max.	16	5	°C
THERMAL RESISTANCE					
Influence of mounting method					

- 1. Thermal resistance from junction to the point at a lead length of 10 mm Rth j tp = 46 °C/W
- Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness ≥ 40 μm; Fig. 2

R_{th j-a} = 100 °C/W

Fig. 2 Mounted on a printed-circuit board.

2

BYV96D BYV96E

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

·]		E	8YV96D	BYV96	6E
Forward voltage		-			
I _F = 3 A	VF	<	1,6	1,6	۷*
I _F = 3 A; T _j = 165 ^o C	VF	<	1,35	1,35	۷*
Reverse avalanche breakdown voltage					
I _R = 0,1 mA	V(BR)R	>	900	1100	V
Reverse current					
V _R = V _{RRM max} ; T _j = 165 °C	^I R	<	15	D <u>i</u>	μA
Reverse recovery when switched from $I_F = 1 A \text{ to } V_R \ge 30 V \text{ with}$ $-dI_F/dt = 20 A/\mu s$					
recovered charge	Ο,	<	40	0	nC
recovery time	t _{rr}	<	30	0	ns
Maximum slope of reverse recovery current when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V};$ $-dI_F/dt = 1 \text{ A}/\mu \text{s}$	dI _R /dt	<	!	5	A/μs

Fig. 3 — $T_j = 25 \ ^{o}C; - - T_j = 165 \ ^{o}C.$

* Measured under pulse conditions to avoid excessive dissipation.

BYV96D BYV96E

The graph is for switched-mode application.

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRM max}$; $\delta = 50\%$; a = 1,57.

Fig. 7 Maximum slope of reverse recovery current. $T_i = 25$ °C.

4

Avalanche fast soft-recovery rectifier diodes

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.

Mounting method see Fig. 2.

The graph is for switched-mode application. $V_R = V_{RRM max}$; $\delta = 50\%$; a = 1,57.

Mullard

BYV96D

BYV96E

December 1979

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	°C/₩
R _{th e-a}	580	445	350	290	245	°C/₩

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth to-a = 70 °C/W.

2. Mounted on a printed-circuit board with copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}$ 2,25 cm² R_{th tp-a} = 45 °C/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

Mullard

;

.

.

CONTROLLED AVALANCHE RECTIFIER DIODES

Double-diffused glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, capable of absorbing reverse transients.

They are intended for rectifier applications in colour television circuits as well as general purpose applications in telephony equipment.

QUICK REFERENCE DATA

			BYW54	BYW55	BYW56	
Crest working reverse voltage	VRWM	max.	600	800	1000	v
Reverse avalanche breakdown voltage	V _(BR) R	> <	650 1000	900 1300	1 100 1600	v v
Average forward current	I _{F(AV)}	max.	2	2	2	Α
Non-repetitive peak forward current	FSM	max.		50		Α
Non-repetitive peak reverse power dissipation	PRSM	max.		1		kW
Junction temperature	т _ј	max.		165		°C

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

Products approved to CECC 50 008-015 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		B	YW54	BYW55	BYW56	
Crest working reverse voltage	V _{RWM}	max.	600	800	1000	v
Continuous reverse voltage *	VR	max.	600	800	1000	v
Average forward current (averaged over any 20 ms period); T _{lead} = 25 °C; R _{th i-tD} = 50 °C/W				·		
(mounting method 1) $T_{amb} = 75 ^{\circ}\text{C}; \text{R}_{th i-a} = 100 ^{\circ}\text{C/W}$	IF(AV)	max.		2		Α
(mounting method 3)	^I F(AV)	max.		0,8		Α
Repetitive peak forward current	FRM	max.		12		Α
Non-repetitive peak forward current ** (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; V _R = 0	^I FSM	max.		50		A
Non-repetitive peak reverse power dissipation (t = 20 µs; half sine-wave); Tj = T _{j max} prior to surge	PRSM	max.		1		kW
Non-repetitive peak reverse avalanche mode pulse energy; I _R = 1 A; T _j = T _{j max} prior to surge; with	F					
inductive load switched off	ERSM	max.		20		mJ
Storage temperature	⊤ _{stg}			-65 to +17	5	°C
Junction temperature *	т _ј	max.		165		°C

Notes

* See also Fig. 12.

^{**} The device is capable of withstanding inrush currents when a 200 μ F capacitor is connected to a 220 V mains with a series resistance of 2,4 Ω .

BYW54 to 56

THERMAL RESISTANCE

Influence of mounting method

- 1. Thermal resistance from junction to tie-point at a lead length a = 10 mm; Fig. 2
- Thermal resistance from junction to ambient when mounted to solder tags at a lead length a = 10 mm; Fig. 3
- Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness ≥ 40 µm; Fig. 4

Fig. 2 Mounting method 1.

Fig. 3 Mounting method 2.

Fig. 4 Mounting method 3.

 $\mathbb{R}_{th} (^{\circ}C/W) = 0$ $\mathbb{R}_{th} (^{\circ}C$

CHARACTERISTICS

			BYW54	BYW55	BYW5	6
Forward voltage; T _i = 25 ^o C *						-
I _F = 1 A '	VF	<	1	1	1	V
I _F = 10 A	VF	<	1,65	1,65	1,65	V
Reverse avalanche breakdown voltage		>	650	900	1100	v
I _R = 0,1 mA; T _i = 25 °C	V(BR)R	2	1000	1300	1600	•
Reverse current	1				1000	v
$V_R = V_{RWM max}; T_j = 25 °C^{**}$	1 _B	<		1,0		μA
$V_R = V_{RWM max}; T_j = 100 ^{\circ}C$	I _R	<		10		μA
Reverse recovery charge when switched from I _F = 1 A to V _R \ge 50 V with dI _F /dt = 5 A/µs; T _j = 25 °C	Qs	typ.		3		μC
Reverse recovery time when switched from I _F = 1 A to $V_R \ge 50$ V at i _{rr} = 10% of I _R with -dI _F /dt = 5 A/µs; T _i = 25 °C	trr	typ.		2,5		μs
				-,-		•

Fig. 6 Definitions of t_{rr} and Ω_s .

Diode capacitance $V_R = 0 V$; f = 1 MHz; T_j = 25 °C

Cď typ. 50

pF

Measured under pulse conditions to avoid excessive dissipation.
 Illuminance < 500 lux (daylight); relative humidity < 65%.

September 1980

 $T_j = 25 \text{ °C}; V_R = V_RWM \text{ max}$

September 1980

Controlled avalanche rectifier diodes

BYW54 to 56

7272727.1

[∨]rwm

V_R

1500

 $v_{\rm R}, v_{\rm RWM}(v)$

f = 1 MHz T_i = 25 °C

7277556

September 1980

V_R (V)

BYW54 to 56

Fig. 15.

Controlled avalanche rectifier diodes

BYW54 to 56

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

_	
-	
_	
_	
_	
_	

Fig. 16

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{the-tp}	15	30	45 、	60	75	°C/W
R _{the-a}	580	445	350	290	245	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 4: $R_{th tp-a} = 70 \text{ °C/W}$.

2. Mounted on a printed-circuit board with copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}$ 2,25 cm² R_{th tp-a} = 45 °C/W

Note

Any temperature can be calculated by using the dissipation graph (Figs. 7 and 8) and the above thermal model.

\$

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BY W95 A	В	С	
Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	v
Continuous reverse voltage	۷ _R	max.	200	400	600	V
Average forward current	^I F(AV)	max.		3		A
Non-repetitive peak forward current	FSM	max.		70		Α
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	trr	<		250		ns

MECHANICAL DATA Fig. 1 SOD-64. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded

Mullard

December 1979

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYW95A	В	С	
Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	v
Continuous reverse voltage	VR	max.	200	400	600	v
Average forward current (averaged over any 20 ms period)						
$T_{tp} = 50 ^{\circ}\text{C}$; lead length 10 mm	F(AV)	max.		3		A
$T_{amb} = 55 ^{\circ}C; Fig. 2$	^I F(AV)	max.		1,25		Α
Repetitive peak forward current	^I FRM	max.		15		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; V _R = V _{RRMmax}	IFSM	max.		70		A
Non-repetitive peak reverse avalanche energy; I _R = 400 mA; T _j = T _{j max} prior to surge; with inductive	F			10		
load switched off	ERSM	max.		10		mJ
Storage temperature	T _{stg}		–65 to	+ 175		٥C
Operating junction temperature	тj	max.		165		°C
THERMAL RESISTANCE						
Influence of mounting method						
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=		25		oc/w
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 						
Cu-thickness ≥ 40 µm; Fig. 2	R _{th j-a}	=		75		°C/₩

Fig. 2 Mounted on a printed-circuit board.

Mullard

2

CHARACTERISTICS

T_i = 25 ^oC unless otherwise specified

Fig. 3 — $T_i = 25 \text{ °C}; - - T_i = 165 \text{ °C}.$

* Measured under pulse conditions to avoid excessive dissipation.

 7282248 $^{1}F(AV)$ $^{(A)}$ $^{2}5$ 2 $^{1}E(AV)$ $^{2}5$ 2 $^{1}E(AV)$ $^{2}5$ 2 $^{1}E(AV)$ $^{2}5$ 2 $^{1}E(AV)$ $^{2}5$ 2 2 Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

 $a = I_F(RMS)/I_F(AV); V_R = V_{RRMmax}$

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Mullard

 $\mathbf{\nabla}$

Fig. 7 Maximum slope of reverse recovery current. $T_j = 25$ °C.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Fig. 12 Maximum values; $T_j = 140$ °C. For definitions see Fig. 4.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Ē

Fig. 13.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{the-tp}	7 410	14 300	21 230	28 185	35 155	°C/W
R _{th e-a}	410	300	230	185	155	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth tp-a = 70.ºC/W.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}$ 2,25 cm² R_{th tp-a} = 45 °C/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

8

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

				BYW96E		
Repetitive peak reverse voltage	VRRM	max.	800	1000	v	
Continuous reverse voltage	VR	max.	800	1000	v	
Average forward current	IF(AV)	max.		3	A	
Non-repetitive peak forward current	FSM	max.	70		Α	
Non-repetitive peak reverse energy	ERSM	max.	10		mJ	
Reverse recovery time	t _{rr}	<	30	0	ns	

MECHANICAL DATA Fig. 1 SOD-64. Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

Mullard

BYW96D BYW96E

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYW96D	BYW96E	
Repetitive peak reverse voltage	V _{RRM}	max.	800	1000	v
Continuous reverse voltage	VR	max.	800	1000	v
Average forward current (averaged over any 20 ms period) T _{to} = 50 °C; lead length 10 mm	F(AV)	max.		3	_
$T_{amb} = 55 ^{o}C; Fig. 2$	F(AV)	max.	1,2	25	Α
Repetitive peak forward current	FRM	max.	1	5	А
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_j max$ prior to surge; $V_R = V_RRMmax$	¹ FSM	max.	7	0	A
Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_j \text{ max}$ prior to surge; with inductive load switched off	ERSM	max.	1	0	mJ
Storage temperature	T _{stg}	max.	-65 to	-	°C
Operating junction temperature	T _j	max.	16		°C
THERMAL RESISTANCE					
Influence of mounting method					
1. Thermal resistance from junction to tie-point at a lead length of 10 mm			R _{th j-t}	p = 25	°C/W
2. Thermal resistance from junction to ambient			-		

when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness $\ge 40 \ \mu$ m; Fig. 2

Fig. 2 Mounted on a printed-circuit board.

2

Mullard

U

BYW96D BYW96E

CHARACTERISTICS

 $T_i = 25 \text{ oC}$ unless otherwise specified

			BYW96
Forward voltage I _F = 5 A I _F = 5 A; T _j = 165 °C	V _F V _F	< <	1,5 1,25
Reverse avalanche breakdown voltage I _R = 0,1 mA	V _(BR) R	>	900
Reverse current V _R = V _{RRMmax} ; T _j = 165 ^o C	ⁱ R	<	
Reverse recovery when switched from $ _F = 1 A \text{ to } V_R \ge 30 \text{ V with}$ $-dI_F/dt = 20 A/\mu s$			
recovered charge recovery time	O _s trr	< <	
Maximum slope of reverse recovery current			

when switched from I_F = 1 A to $V_R \ge 30 V$ with $-dI_F/dt = 1 A/\mu s$

Fig. 3 — $T_j = 25 \text{ °C}; - - T_j = 165 \text{ °C}.$

5

dIR/dt <

A/µs

* Measured under pulse conditions to avoid excessive dissipation.

BYW96D BYW96E

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

a = IF(RMS)/IF(AV); VR = VRRMmax

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 7 Maximum slope of reverse recovery current. $T_j = 25 \text{ }^{O}\text{C}.$

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

BYW96D BYW96E

Mullard

December 1979

6

 $\mathbf{\nabla}$

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	°C/W
R _{th e-a}	410	300	230	185	155	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth tp-a = 70 °C/W.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

 $1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ oC/W}$ 2,25 cm² R_{th tp-a} = 45 oC/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

Dimensions in mm

SILICON RECTIFIER DIODE

Double-diffused silicon diode in a DO-14 plastic envelope. It is intended for low current rectifier applications.

QUICK REFERENCE DATA						
Repetitive peak reverse voltage	V _{RRM}	max.	1600	v		
Average forward current	^I F(AV)	max.	0,5	A		
Non-repetitive peak forward current	^I FSM	max.	15	A		

MECHANICAL DATA

DO-14 The diodes are type-branded

iot tinned `2 max 2 ກົດເ a 0.56 ο i m'ax 25,4 7,3 3,4 29 max min max min 7269748

The rounded end indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of iEC recommendation 68-2 (test D, severity IV, 6 cycles).

MOUNTING METHODS see page 3.

Mullard

All information applies to frequencies up to 400 Hz.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages Crest working reverse voltage V_{RWM} max. 800 v Repetitive peak reverse voltage ($\delta \leq 0.01$) VRRM max. 1600 v Non-repetitive peak reverse voltage (t < 10 ms) max. 1600 V VRSM Currents Average forward current (averaged over any 20 ms period) with R lead; $V_{RWM} = V_{RWMmax}$ max. 0.36 A IF(AV) $V_{RWM} = 60 V$ IF(AV) max. 0.5 A for capacitive load see page 4 Repetitive peak forward current 3 A IFRM max. Non-repetitive peak forward current (t = 10 ms; half-sine wave) $T_1 = 150 \text{ °C prior to surge } I_{FSM}$ 15 A max. Temperatures -65 to + 150 °C Storage temperature Tstg Junction temperature Тi max. 150 °C THERMAL RESISTANCE See page 3 **CHARACTERISTICS** Forward voltage $I_F = 2 A; T_i = 25 °C$ v_{F} < 1.6 V lReverse current $V_R = 800 V; T_i = 125 °C$ IR < 50 µA V_{R} = 800 V; T₁ = 25 °C < I_R 1 μA

1, Measured under pulse conditions to avoid excessive dissipation.

THERMAL RESISTANCE (influence of mounting method)

The quoted values apply when no other leads run to the tie-points. If leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

- 1. Mounted to solder tags at a lead-length a = 10 mm. Rth j-a = 150 $^{\circ}C/W$
- 2. Mounted to solder tags at a = maximum lead-length. Rth j-a = 200 °C/W
- 3. Mounted on printed-wiring with a small area of copper at any lead-length a. Rth j-a = 200 $^{\circ}C/W$

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 5 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 300 °C; it must be in contact with the joint for no more than 3 seconds.
- 3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.

EXAMPLE: Rectifier with C-load

From the left hand graph on page 6 the total power dissipation can be found as a function of the average output current.

The parameter $a = \frac{I_F(RMS) \text{ per diode}}{I_FAV \text{ per diode}}$ depends on $n \omega R_L C_L$ and $\frac{R_t + R_{diff}}{nR_L}$ and can be found from existing graphs.

See Application Book: RECTIFIER DIODES

Once the power dissipation is known, the max. permissible ambient temperature follows from the right hand graph.

For the series resistance, added to limit the initial peak rectifier current, the required minimum value can be found from the upper graph. R_{diff} is shown on page 5 upper figure.

SILICON RECTIFIER DIODES

Diffused silicon rectifier diodes in DO-15 plastic envelopes for general purposes. The series consists of the following types: BYX36-150, BYX36-300, BYX36-600.

QUICK REFERENCE DATA									
		BYX 36	5-150	300	600				
Crest working reverse voltage	V _{RWM}	max.	100	200	400	v			
Repetitive peak reverse voltage	V _{RRM}	max.	ax. 150 300 600			v			
Average forward current with R load $^{\circ}$ up to T _{amb} = 45 $^{\circ}$ C	^I F(AV)	max.	nax. 1,0			A			
Non-repetitive peak forward current t = 10 ms; T _j = 125 ^o C prior to surge	I _{FSM}	max.	max. 30			A			
Junction temperature	тj	max.		125		°C			

MECHANICAL DATA

Dimensions in mm

Cathode indicated by coloured band

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

Successor types are BYW54

, e

.

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use in inverter and converter applications, and in switched-mode power supplies, scan rectifiers in television receivers and other h.f. power supplies. The devices feature non-snap-off characteristics.

QUICK REFERENCE DATA								
	BYX55	-350	6 00					
V _{RW}	max.	300	500	v				
V _{RRM}	max. 350 600			v				
^I F(AV)	max.	1,2		А				
¹ FSM	max.	40		A				
Τ _j	max.	. 125		٥C				
witched th Q _s < 120		nC						
	V _{RW} V _{RRM} ^I F(AV) ^I FSM T _j	$W_{RW} = \frac{BYX55}{Max}$ $W_{RRM} = max.$ $W_{RRM} = max.$ $W_{F(AV)} = max.$ $W_{FSM} = max.$ $W_{j,} = max.$	$\begin{array}{c c} & & & & & \\ & & & & \\ V_{RW} & & & max. & 300 \\ V_{RRM} & & & max. & 350 \\ \\ I_{F(AV)} & & max. & & 1, \\ \\ I_{FSM} & & max. & & 4 \\ T_{j}, & & max. & & 12 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

MECHANICAL DATA

Dimensions in mm

SOD - 18 The diodes are type-branded

The rounded end indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

For current production only; for new designs successors BYV95 and BYW95 are recommended.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)	
--	--

			•	
Voltages		BYX	55 - 350 - 600	
Continuous reverse voltage	v _R	max.	300 500	v
Working reverse voltage	V _{RW}	max.	300 500	v
Repetitive peak reverse voltage (t ≤ 10 µs)	V _{RRM}	max.	350 600	v
Non-repetitive peak reverse voltage (t < 10 ms)	V _{RSM}	max.	350 600	v
Currents				
Average forward current (averaged over any 20 ms period), see also pages 4 and 5	I _{F(AV)}	max.	1.2	A
Repetitive peak forward current	IFRM	max.	8	Α
Repetitive peak forward current (δ ≤ 0.04; f > 15 kHz)	I _{FRM}	max.	15	A
Non-repetitive peak forward current (t = 10 ms; half sine wave) T _j = 125 ^o C prior to surge	I _{FSM}	max.	40	A
Rate of change of commutation current See also nomogram on page 6	- dI dt	max.	20	A/µs
Temperatures				
Storage temperature	Tstg		-40 to +125	°C
Junction temperature	т _ј	max.	125	°C
THERMAL RESISTANCE	See page 3			
CHARACTERISTICS				
$\frac{\text{Forward voltage}}{\text{I}_{\text{F}} = 5 \text{ A; } \text{T}_{\text{j}} = 25 ^{\text{O}}\text{C}$	v _F	<	1.25	V ¹)
Reverse current				
$V_R = V_{RWmax}$; $T_j = 125 °C$	I _R	<	0.75	mA
$V_R = V_{RWmax}; T_j = 25 \ ^{\circ}C$	IR	<	10	μA
$\frac{\text{Capacitance}}{\text{V}_{\text{R}}} \text{ = 250 V; } \text{T}_{\text{j}} \text{ = 25 to 125 } ^{\text{O}}\text{C}$	Cd	typ.	8	pF

1) Measured under pulse conditions to avoid excessive dissipation.

BYX55
SERIESCHARACTERISTICS (continued)Reverse recovery when switched from
 $I_F = 1 \text{ A to } V_R \ge 50 \text{ V with } -dI/dt =$ $T_1 = 25 \text{ °C}$

Recovery charge Recovery time Fall time

THERMAL RESISTANCE (influence of mounting method)

The quoted values of $R_{th j-a}$ should be used only when no other leads run to the tie-points. If the leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

 $\begin{array}{c} R_{\text{th }j\text{-}a} = 60 \text{ }^{\text{o}}\text{C/W} \\ R_{\text{th }j\text{-}a} = 70 \text{ }^{\text{o}}\text{C/W} \end{array}$

 R_{th} i-a = 60 °C/W

 $R_{\text{th j-a}} = 70 \text{ }^{\circ}\text{C/W}$

- Mounted on solder tags at a lead-length: a = 10 mm a = max. lead length
- Mounted on printed-wiring board at

 a = maximum lead-length and heatsinks
 (0, 3 mm Cu) on leads.

Heatsink size 2 cm^2 (per side)

Heatsink size 1 cm² (per side)

- Mounted on printed-wiring board at a = maximum lead-length.
- Mounted on printed-wiring board at a lead-length a = 10 mm.

¥777

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 5 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 300 °C; it must be in contact with the joint for no more than 3 seconds.
- 3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 $^{\rm OC}$.

400 nC

350

100 ns

ns

RW = VRW max $a = \frac{I_F(RMS)}{I_F(AV)}$ P = steady-state dissipation excluding switching losses RV = VRW max row from the left-hand graph) and the maximum permissible ambient temperature (no leads of other dissipating components running to the same tie-points) P = steady-state dissipation excluding switching losses RV = VRW max row from the left-hand graph) and the maximum permissible ambient temperature (no leads of other dissipating components running to the same tie-points) P = steady-state dissipation excluding switching losses RV = VRW max RV = VRW max row from the left-hand graph) and the maximum permissible ambient temperature (no leads of other dissipating components running to the same tie-points) RV = VRW max R

October 1975

nomogram: power loss $\Delta PR(AV)$ due to switching only (to be added to forward and reverse power losses)

July 1972

BYX55 SERIES

July 1972

SILICON E.H.T. RECTIFIER DIODE

The BYX90 is a 6 kV silicon diode in a plastic envelope, only intended as subassembly for very high voltage stacks in X-ray equipment (in oil).

QUICK REFERENCE DATA

Crest working reverse voltage	V _{RWM}	max.	6 kV
Repetitive peak reverse voltage	V _{RRM}	max.	7,5 kV
Average forward current up to Toil = 50 °C	^I F(AV)	max.	200 mA
Non-repetitive peak forward current $t = 10 \text{ ms; } T_j = 125 ^{O}\text{C} \text{ prior to surge}$	FSM	max.	25 A
Junction temperature	т _і	max.	125 ^o C

MECHANICAL DATA .

Fig. 1 SOD-188.

Dimensions in mm

Cathode indicated by coloured band The diodes are type-branded

Mullard

All information applies to frequencies from 40 Hz to 400 H	lz			
RATINGS				
Limiting values in accordance with the Absolute Maximum	System (IEC 134)			
Crest working reverse voltage	VRWM	max.	6	kV
Repetitive peak reverse voltage ($\delta \leq 0,01$)	VRRM	max.	7,5	kV
Non-repetitive peak reverse voltage (t \leq 10 ms)	V _{RSM}	max.	8	kV
Average forward current (averaged over any 20 ms period) up to T _{oil} = 55 ^o C (stirring oil) continuous operation	1- (max.	200	~^
•	⁽ F(AV)			
Repetitive peak forward current intermittent operation	^I FRM see application i	max. nformati		A 6 and 7
Non-repetitive peak forward current			0111193	o una 7
$(t = 10 \text{ ms; half sine wave}) T_i = 125 ^{\circ}C \text{ prior to surge}$	^I FSM	max.	25	A
Storage temperature	T _{stg}	-40 to	+ 125	°C
Junction temperature	Тј	max.	125	°C
THERMAL RESISTANCE				
From junction to cooling oil (in stirring oil)	R _{th j-o}	=	30	°C/W
CHARACTERISTICS				
Forward voltage I _F = 2 A; T _j = 25 ^o C	۷ _F	<	15	v
Peak reverse current $V_R = 6 kV; T_i = 100 \circ C$	I _R	<	10	μA
Reverse recovery charge when switched from $I_F = 200 \text{ mA}$ to $V_R \ge 50 \text{ V}$				
with $-dI_F/dt = 200 \text{ mA/}\mu\text{s}$; T _j = 25 °C	۵s	<	125	nC

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 5 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 300 °C; it must not be in contact with the joint for more than 3 seconds.
- 3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.

_

BYX90

Fig. 4.

May 1978

BYX90

APPLICATION INFORMATION

The BYX90 used in very high voltage stacks applied in X-ray equipment.

Fig. 6 Maximum current through a 3-phase rectifier bridge as a function of pulse duration. The exposure time T = 1 s.

APPLICATION INFORMATION (continued)

Fig. 7 Maximum current through a 3-phase rectifier bridge as a function of pulse duration. The exposure time T = 3 s.

Fig. 8 Maximum permissible output current in a 3-phase rectifier bridge with a minimum time between exposures of 20 s.

SILICON E.H.T. RECTIFIER DIODES

The BYX91 series are silicon high-voltage rectifiers capable of absorbing transients. They are primarily intended for X-ray applications. This series is a direct replacement of the BYX29 series. Each rectifier consists of an appropriate number of diodes encapsulated in a synthetic resin-bonded paper tube.

For cooling and insulation reasons, the devices can only be used when immersed in oil. The series consists of the following types:

BYX91- 90K (replaces BYX29- 75000); BYX91-120K (replaces BYX29-100000); BYX91-180K (replaces BYX29-150000).

BYX91-150K (replaces BYX29-125000);

QUICK REFERENCE DATA										
		BYX9	1-90K	120K	150K	180K				
Crest working reverse voltage	V _{RWM}	max.	90	120	150	180	kV			
Average forward current	I _F (AV)	max.	200	200	200	200	mA			
Non-repetitive peak forward current; t = 10 ms	I _{FSM}	max.	25	25	25	25	A			
Junction temperature	т _ј	max.	125	125	125	125	°C			
Thermal resistance from junction to cooling oil	R _{th j-0}	=	2	1,5	1,2	1	°C/₩			

MECHANICAL DATA

Dimensions in mm

The diodes are type-branded

BYX91- 90K	L: 141 to 143 mm	Weight: 47 g
BYX91-120K	L: 169 to 171 mm	Weight: 54 g
BYX91-150K	L: 229 to 231 mm	Weight: 65 g
BYX91-180K	L: 229 to 231 mm	Weight: 70 g

Mullard

All information applies to frequencies up to 400 Hz

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		BYXS	91-90K	120K	150K	180K	I
Crest working reverse voltage	v _{rwm}	max.	9 0	120	150	180	kV
Crest working reverse voltage; $t \le 10 \text{ min}$	v _{rwm}	max.	100	130	165	195	kV
Repetitive peak reverse voltage; $\delta \leq 0, 01$	VRRM	max.	115	150	190	225	kV
Non-repetitive peak reverse voltage: t = 10 ms	V _{RSM}	max.	120	160	200	240	kV
Currents							
Average forward current (averaged over any 20 ms period) at $T_{oil} = 50 ^{\circ}\text{C}$							
continuous operation intermittent operation ($t \le 0, 1$ s, once e	every 20		^I F(AV) ^I F(AV)		ax. ax.	200 800	mA mA
Repetitive peak forward current							
continuous operation intermittent operation $(I_{F(AV)} = 800 \text{ m/})$		I _{FRM}	max.			mA	
$t \le 0, 1$ s once every 20 s)		I _{FRM}		max.		2400	mA
Non-repetitive peak forward current; t = 1	0 ms	IFSM			ax.	25	A
Temperatures							
Storage temperature		7	Γ _{stg}		-30 to	+125	°C
Junction temperature		T _j max.			ax.	125	°C
THERMAL RESISTANCE							
		BYX9	1-90K	120K	150K		
From junction to cooling oil (stirring oil)		R _{thj} -	• o = 2	1,5	1,2	1	°C/W
CHARACTERISTICS							
Forward voltage		BYX9	1-90K	120K	150K	180K	-
$I_{F} = 2 A; T_{j} = 25 \ ^{o}C$		v _F	< 225	300	375	450	v
Peak reverse current at $T_j = 125 \text{ °C}$							
$V_{RM} = V_{WRMmax}$ at t = 10 min		IRM	< 10	10	10	10	μA

MOUNTING NOTES

- 1. The rectifier stack shall be used in cooling (insulating) oil.
- 2. It should be made possible that the oil can circulate freely through the stacks.
- 3. Horizontal mounting should be avoided.

April 1974

.

SILICON DIFFUSED RECTIFIER DIODES

1N4001 to 1N4007

A range of plastic encapsulated silicon diffused rectifier diodes for general purpose use.

QUICK REFERENCE DATA								
	1N4001	1N4002	1 N40 03	1 N4004	1N4005	1N4006	1N4007	
V _R max.	50-	100	200	400	600	800	1000 V	
V _{RRM} max.	50	100	200	400	600	800	1000 V	
I _{F(AV)} max. (I	amb = -65	to +75°C	;)	1.0			Α	
T _j max.				175			°c	

Unless otherwise shown data are applicable to all types in the series

OUTLINE AND DIMENSIONS

All dimensions in mm

Mullard

D2523a

The diodes are type branded

RATINGS

Limiting values of operation according to the absolute maximum system

Electrical

		1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	
	$V_{R}^{}$ max .	50	100	200	400	600	800	1000	v
	V _{RRM} max.	50	100	200	400	600	800	1000	v
	I _{F(AV)} max.		ge half-w d currer	1.0	ō	A A			
	I _F max.	D.C.f	orward	Current			See gr	aph on pa	age 3
	I _{FRM} max.	Repeti	tive peak	forward	current		10		А
	IFSM max.		•	pcak for ycle surg).s.)	30		А
Т	emperature								
	T _{stg}	Storag	e temper	ature			-65 to	+175	°c
	T _j max.	Junctio	on tempe	rature			175		°c
ELECT	RICAL CHARACT	ERISTIC	CS (T _{amb}	= 25 ⁰ C u	nless otl	nerwise :	stated)		
V _F	Forward voltage		u				Max.		
r	$I_F = 1.0A d.c$	•					1.1		v
V _{F(AV)}	Full-cycle aver $I_{F(AV)} = 1.0A$		ard volta	ige drop			0.8		v
I_{R}	Reverse current								
	$V_R = max., T$						10		μA
	Т	'amb = 10	0 ⁰ C				50		μA
I _{R(AV)}	Full-cycle aver V _{RRM} = max.			ent			30		μA

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of 300°C, the maximum permissible soldering time is 3 seconds, provided the soldering spot is at least 5mm from the seal.

DIP SOLDERING

At a maximum solder temperature of 300°C, the maximum permissible soldering time is 3 seconds, the soldering spot being not less than 5mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point is $175^{\circ}C$.

Mullard -

SILICON DIFFUSED RECTIFIER DIODES

1N4001 to 1N4007

GERMANIUM DIODES Point contact Gold bonded

F≣

Dimensions in mm-

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope primarily intended for use in a.m. detector and ratio detector circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	30 V
Repetitive peak reverse voltage	V _{RRM}	max.	45 V
Forward current (d.c.)	۱۴	max.	35 mA
Repetitive peak forward current	IFRM	max.	100 mA
Operating ambient temperature	T _{amb}	max.	60 °C
Forward voltage at $I_F = 10 \text{ mA}$	VF	<	2,2 V

MECHANICAL DATA

Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad *white* cathode band.

Available for current production only; not recommended for new designs.

Mullard

AA119

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	30	v
Repetitive peak reverse voltage	VRRM	max.	45	v
Forward current (d.c.)	١F	max.	35	mA
Average rectified forward current (averaged over any 50 ms period)	IF(AV)	max.	35	mA
Repetitive peak forward current	FRM	max.	100	mA
Non-repetitive peak forward current (t $<$ 1 s)	IFSM	max.	200	mA
Storage temperature	T _{stg}	65 to	+ 75	°C
Operating ambient temperature	Tamb	max.	60	°C
THERMAL RESISTANCE				

From junction to ambient in free air R_{th j-a}

= 0,65 °C/mW

Dynamic characteristics

Vim	1	3	3	v
f	0,47	10,7	38,15	MHz
CL	50	330	33	pF
СL. RL	1,0	0,033	0,082	MΩ
η	85	85	85	%
Rd	370	15	30	kΩ

Point contact diode

AA119

CHARA	CTER	ISTICS
UNANA	GIEN	131103

CHARACTERISTICS			
Forward voltage at T _{amb} ≈ 25 °C			
$I_F = 0.1 \text{ mA}$	VF	typ.	0,23 V
	•	<	0,30 V
I _F = 1 mA	VF	typ. <	0,56 V 0,88 V
		typ.	1,5 V
1 _F = 10 mA	٧F	<	2,2 V
I _F = 30 mA*	VF	typ.	2,8 V
	*F	<	4,0 V
Forward voltage at T _{amb} = 60 °C			
I _F = 0,1 mA	VF	typ.	0,16 V
		< typ.	0,25 ∨ 0,50 ∨
I _F = 1 mA	٧F	(yp.	0,80 V
L = 10 = 1		typ.	1,4 V
$I_F = 10 \text{ mA}$	٧F	<	2,1 V
lr = 30 mA*	VF	typ.	2,6 V
·F	• •	<	3,8 V
Reverse current at T _{amb} = 25 °C			
V _R = 0,1 V	I _R	typ.	0,35 μA
		< typ.	1,0 μA 0,8 μA
V _R = 1,5 V	^I R	<	2,8 μA
V _B = 10 V		typ.	4,5 μA
$v_{R} = 10 v$	I _R	<	18 μA
V _R = 30 V	1 _B	typ.	35 µA
	'n	<	150 μA
V _R = 45 V	^I R	typ. <	90 μΑ 350 μΑ
			350 µA
Reverse current at $T_{amb} = 60 {}^{\circ}C$		typ.	4,5 μA
V _R = 0,1 V	I _R	<	12 μA
V _R = 1,5 V		typ.	6 μA
4 R = 1,3 4	^I R	<	25 µA
V _R = 10 V	^I R	typ.	16 μA
		<	60 μA
V _R = 30 V	^I R	typ. <	60 μΑ 300 μΑ
$\mathcal{M} = AE\mathcal{M}$		typ.	170 μA
V _R = 45 V	^I R	<	500 µA

* Measured under pulsed conditions to prevent excessive dissipation.

June 1979

.

.

Dimensions in mm

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope for use as video detector and for general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	20 V
Repetitive peak reverse voltage	VRRM	max.	30 V
Forward current (d.c.)	١F	max.	8 mA
Repetitive peak forward current	¹ FRM	max.	45 m A
Operating ambient temperature	T _{amb}	max.	75 °C
Forward voltage at $I_F = 30 \text{ mA}$	VF	<	3,2 V

MECHANICAL DATA

Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad black cathode band.

Available for current production only; not recommended for new designs.

June 1979

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Average reverse voltage (averaged	,			
over any 50 ms period)	۷ _R	max.	20	v
Repetitive peak reverse voltage	VRRM	max.	30	ν
Non-repetitive peak reverse voltage	VRSM	max.	40	v
Average forward current (averaged				
over any 50 ms period)	^I F(AV)	max.	10	mΑ
Repetitive peak forward current	FRM	max.	45	mΑ
Non-repetitive peak forward current (t < 1 s)	FSM	max.	200	mΑ
Storage temperature	T _{stg}	65 to	5 + 90	°C
Operating ambient temperature	T _{amb}	—55 to	o+75	оС

CHARACTERISTICS

Forward voltage	$T_{amb} = 25 \text{ °C}$	60 °C
I _F = 0,1 mA V	F 0,1 to 0,25	typ. 0,12 V < 0,20 V
I _F = 10 mA V	typ. 1,0 F 0,5 to 1,5	typ. 0,95 V 0,4 to 1,4 V
I _F = 30 mA V	F typ. 2,0 1,1 to 3,2	typ. 1,95 V 1,0 to 3,1 V
Reverse current		
V _R = 1,5 V I _F	typ. 2,4 < 10	typ. 11 μA < 40 μA
V _R =, 10 V I _F	typ. 20 < 135	typ. 45 μA < 270 μA
V _R = 20 V I _R	typ. 90 < 450	typ. 140 μA < 650 μA
V _R = 30 V I _R	typ: 300 < 1100	typ. 400. μA < 1500 μA

06**40**

(mA) 100 'n 20 б П Τ τШ 1 \mathbf{t} 1 + Qi,

Dynamic characteristics

f	30	40	40	40	MHz
V _{in(pk)}	5,0	5,0	1,4	0,5	V
RLÜÜ	3,9	3,0	3,0	3,0	kΩ
Շլ	10	10	10	10	pF
η	60	63	54	34	%
R _d	2,9	2,4	2,8	3,7	kΩ

5 - ¹ - 1

Dimensions in mm

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope intended for general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	Ve	max.	90 \	v
Repetitive peak reverse voltage	VRRM	max.	115 \	v
Forward current (d.c.)	١F	max.	50 n	nΑ
Repetitive peak forward current	^I FRM	max.	150 n	nΑ
Operating ambient temperature	Tamb	max.	75 ⁰	ъС
Forward voltage at I _F = 30 mA	VF	<	3,3 \	V

MECHANICAL DATA

Fig. 1 DO-7.

The diodes may be supplied either type-branded or with a broad red cathode band.

Available for current production any not recommended for new designs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Average reverse voltage (averaged over any 50 ms period)	V _R	max. 90 V
Repetitive peak reverse voltage	VRRM	max. 115 V
Average forward current (averaged over any 50 ms period)	^I F(AV)	max. 50 mA
Repetitive peak forward current	¹ FRM	max. 150 mA
Non-repetitive peak forward current (t $<$ 1 s)	IFSM	max. 500 mA
Storage temperature	⊤ _{stg}	-65 to +75 °C
Ambient temperature	Tamb	-55 to +75 °C

0,55 °C/mW

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS	T _{amb} = 2	T _{amb} = 25 °C		
Forward voltage				
_F = 0,1 mA	V _F ^{typ.} 0,1 to	0,18 0,25	typ. 0,1 V 0,05 to 0,2 V	
I _F = 10 mA	V _F ^{typ.} 0,65 to	1,2 1,9	typ. 1,05 V 0,55 to 1,8 V	
I _F = 30 mA	VF ^{typ.} 1,0 to	2,1 3,3	typ. 1,9 V 0,9 to 3,15 V	
Reverse current				
V _R = 1,5 V	I _R typ. 0,3 to	1,5 7	typ. 15 μΑ 6 to 45 μΑ	
V _R = 10 V	۲۹۵، ^{typ.} R 0,5 to	4 11	typ. 20 μA 9 to 60 μA	
V _R = 75 V	I _R typ. 5,5 to	40 180	typ. 115 μA 35 to 260 μA	
V _R = 100 V	I _R typ. 10 to	75 275	typ. 190 μA 60 to 450 μA	

R_{th j-a}

June 1979

POINT CONTACT DIODE

Germanium diode in all-glass DO-7 envelope intended for general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	90 V
Repetitive peak reverse voltage	VRRM	max.	115 V
Forward current (d.c.)	١F	max.	50 mA
Repetitive peak forward current	IFRM	max.	150 mA
Operating ambient temperature	T _{amb}	max.	75 ^o C
Forward voltage at IF = 30 mA	VF	<	2,6 V

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes may be supplied either type-branded or with a broad *green* cathode band.

Available for current production only; not recommended for new designs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Average reverse voltage				
(averaged over any 50 ms period)	VR	max.	90	v
Repetitive peak reverse voltage	VRRM	max.	115	v
Average forward current				
(averaged over any 50 ms period)	IF(AV)	max.	50	mΑ
Repetitive peak forward current	FRM	max.	150	mA
Non-repetitive peak forward current (t < 1 s)	IFSM	max.	500	mA
Storage temperature	T _{stg}	65 to	+ 75	оС
Ambient temperature	Tamb	-55 to	+ 75	°C

R_{th j-a}

=

0,55 °C/mW

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

Forward voltage		T _{amb} = 25 °C	T _{amb} = 60 °C
l _F = 0,1 mA	۷ _F	typ. 0,18 0,1 to 0,25	typ. 0,1 V 0,05 to 0,2 V
I _F = 10 mA	VF	typ. 1,05 0,65 to 1,5	typ. 0,95 V 0,55 to 1,4 V
1 _F = 30 mA	VF	typ. 1,85 1,0 to 2,6	typ. 1,75 V 0,9 to 2,5 V
Reverse current			
V _R = 1,5 V	۱ _R	typ. 1,2 0,4 to 4,5	typ. 12 μA 5,5 to 26 μA
V _R = 10 V	۱ _R	typ. 2,5 0,8 to 7	typ. 17 μA 8 to 40 μA
V _R = 75 V	^I R	typ. 35 5,7 to 110	typ. 100 μA 20 to 250 μA
V _R = 100 V	۱ _B	typ. 80 10 to 250	typ. 200 μA 30 to 430 μA

26A0

GOLD-BONDED DIODE

Gold-bonded germanium diode in all-glass construction for use in high-speed switching applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	8 V
Average forward current	^I F(AV)	max.	20 mA
Repetitive peak forward current	FRM	max.	50 mA
Junction temperature	т _і	max.	85 °C
Forward voltage at I _F = 30 mA	V _F	<	1 V
Recovery charge when switched from I_F = 10 mA to V_R = 5 V	O _s	<	30 pC

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diode is type-branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.

AAZ13

RATINGS						
Limiting values in accordance with the	Absolute	Maximum System (EC 134)			
Continuous reverse voltage			V _R	max.	8	v
Average rectified forward current (averaged over any 50 ms period) T _{amb} = 25 °C			F(AV)	max.	30	mА
$T_{amb} = 60 ^{\circ}C$			F(AV)	max.		mA
Non-repetitive peak forward current (t	< 5 ms)	4	• (,,,•,•,			
$T_{amb} = 25 \circ_C$ $T_{amb} = 60 \circ_C$			IFSM IFSM	max. max.	100 50	mA mA
Storage temperature			T _{stg}	-65 t	o +75	٥C
Junction temperature			т _ј	max.	75	oC
THERMAL RESISTANCE						
from junction to ambient in free air			R _{thj•a}	=	0,5 5	°C∕m₩
CHARACTERISTICS	• .					
$T_j = 25 \text{ °C}$, unless otherwise specified						
I = 25 °C, unless otherwise specified Forward voltage				typ.	max.	
Forward voltage I _F = 0,1 mA			VF	27	32	mV
Forward voltage IF = 0,1 mA IF = 10 mA			V _F	27 500	32 600	mV
Forward voltage IF = 0,1 mA IF = 10 mA IF = 30 mA			•	27	32	mV
Forward voltage IF = 0,1 mA IF = 10 mA IF = 30 mA Reverse current			VF VF	27 500 0,6	32 600 1,0	mV V
Forward voltage IF = 0,1 mA IF = 10 mA IF = 30 mA Reverse current V _R = 3 V			V _E V _E	27 500 0,6 5	32 600 1,0 25	mV V ⊭A
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$ $V_R = 3 V$; $T_i = 60 \text{ °C}$			V _F V _F I _R I _R	27 500 0,6 5 30	32 600 1,0 25 85	mV V μA μA
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$ $V_R = 3 V$; $T_j = 60 \text{ °C}$ $V_R = 8 V$			VF VF IR IR IR	27 500 0,6 5 30 30	32 600 1,0 25 85 150	mV V μA μA
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$ $V_R = 3 V$; $T_j = 60 \text{ °C}$ $V_R = 8 V$; $V_R = 8 V$; $T_j = 60 \text{ °C}$			V _F V _F I _R I _R	27 500 0,6 5 30	32 600 1,0 25 85	mV V μA μA
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$ $V_R = 3 V; T_j = 60 ^{\circ}C$ $V_R = 8 V; T_j = 60 ^{\circ}C$ Diode capacitance			VF VF IR IR IR IR IR	27 500 0,6 5 30 30 190	32 600 1,0 25 85 150	mV V μΑ μΑ μΑ
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$ $V_R = 3 V$; $T_j = 60 ^{\circ}C$ $V_R = 8 V$; $V_T = 60 ^{\circ}C$ Diode capacitance $V_R = 1 V$			VF VF IR IR IR IR Cd	27 500 0,6 5 30 30 190 3,3	32 600 1,0 25 85 150 -	mV V μΑ μΑ μΑ ρF
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$; $T_j = 60 \text{ °C}$ $V_R = 8 V$; $T_j = 60 \text{ °C}$ Diode capacitance $V_R = 1 V$ $V_R = 3 V$ Forward recovery voltage (see Fig. 4) measured at 10 mm from seal			VF VF IR IR IR Cd Cd	27 500 0,6 5 30 30 190 3,3 1,3	32 600 1,0 25 85 150 - 2	mV V μA μA μA pF pF
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$; $T_j = 60 \text{ °C}$ $V_R = 8 V$; $V_j = 60 \text{ °C}$ Diode capacitance $V_R = 1 V$ $V_R = 3 V$ Forward recovery voltage (see Fig. 4) measured at 10 mm from seal at $I_F = 20 \text{ mA}$; $t_r = 5 \text{ ns}$			VF VF IR IR IR IR Cd	27 500 0,6 5 30 30 190 3,3	32 600 1,0 25 85 150 -	mV V μΑ μΑ μΑ ρF pF
Forward voltage $I_F = 0,1 \text{ mA}$ $I_F = 10 \text{ mA}$ $I_F = 30 \text{ mA}$ Reverse current $V_R = 3 V$; $T_j = 60 \text{ °C}$ $V_R = 8 V$; $T_j = 60 \text{ °C}$ Diode capacitance $V_R = 1 V$ $V_R = 3 V$ Forward recovery voltage (see Fig. 4) measured at 10 mm from seal			VF VF IR IR IR Cd Cd	27 500 0,6 5 30 30 190 3,3 1,3	32 600 1,0 25 85 150 - 2	mV V μΑ μΑ μΑ ρF pF

AAZ13

Fig. 3 Output waveform.

Soldering instructions

Diodes may be soldered directly into the circuit but the heat conducted to the junction should be kept to a minimum by use of a thermal shunt.

Diodes may be dip-soldered at a solder temperature of 240 $^{\rm O}$ C for a maximum of 10 seconds up to a point 5 mm from the seal.

Care should be taken not to bend the leads nearer than 1,5 mm from the seal.

Diodes are inherently sensitive to incident illumination, care should be taken to ensure that the external coating is not damaged.

AAZ13

Fig. 5 Typical reverse current as a function of the reverse voltage.

Fig. 6 Typical forward current as a function of the forward voltage.

GOLD BONDED DIODES

Germanium diodes in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

			AAZ15	AAZ1	7
Continuous reverse voltage	VR	max.	75	50	v
Repetitive peak reverse voltage	VRRM	max.	100	75	v
Forward current (d.c.)	١F	max.	140	140	mΑ
Repetitive peak forward current	^I FRM	max.	250	250	mA
Junction temperature	т _і	max.	85	85	°C
Forward voltage at I _F ≈ 250 mA	V _F	<	1,1	1,1	v
Recovery charge when switched from $I_F = 10 \text{ mA}$ to $V_R = 10 \text{ V}$	Q _s	<	1800	900	рС

MECHANICAL DATA

Fig. 1 DO-7.

The diodes are type branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		AAZ15	AAZ17
Continuous reverse voltage	v _R	max. 75	50 V
Repetitive peak reverse voltage	V _{RRM}	max. 100	75 V
Non-repetitive peak reverse voltage ($t < l s$)	V _{RSM}	m ax . 115	75 V
Currents			
Forward current (d.c.)	$I_{\mathbf{F}}$	max. 140) mA
Average rectified forward current (averaged over any 20 ms period)	I _{F(AV)}	max. 140) mA
Repetitive peak forward current	IFRM	max. 250) mA
Non-repetitive peak forward current (t ≤ 1 s)	I _{FSM}	max. 500) mA
Temperatures			ι.
Storage temperature	Tstg	-65 to +85	o℃
Junction temperature	тј	max. 85	5 °C
THERMAL RESISTANCE			

From junction to ambient in free air

R_{thj-a}

=

0.55 °C/mW

CHARACTERISTICS					
Forward voltage at $T_j = 25 \text{ °C}$					
$I_F = 0, 1 \text{ mA}$		v _F	< 0,	20 V	
$I_F = 10 \text{ mA}$		v _F	< 0,	45 V	
$I_F = 250 \text{ mA}$		v _F	< 1,	10 V	
Forward voltage at $T_j = 60$ °C					
$I_F = 0, I mA$		v _F	< 0,	15 V	
$I_F = 10 \text{ mA}$		v _F	< 0,	40 V	
$I_F = 250 \text{ mA}$		v _F	< 1,	07 V	
<u>Reverse current</u> at $T_j \approx 25 \text{ °C}$		A	A Z 15	AAZ1	7
$V_R = 1,5 V$	$I_{\mathbf{R}}$	<	2,5	2,5	μA
$V_{R} = 10 V$	I _R	<	4	15	μA
$V_{R} = 50 V$	IR	<	15	150	μA
$v_R = 75 v$	I _R	<	25	300	μA
$V_{\mathbf{R}} = 100 V$	IR	<	100	-	μA
<u>Reverse current</u> at $T_j \approx 60 ^{\circ}\text{C}$					
$V_{R} = 1,5 V$	IR	<	30	30	μA
$V_R = 10 V$	1 _R	<	40	60	μA
$V_R = 50 V$	^I R	<	80	300	μA
$V_R = 75 V$	I _R	<	120	500	μA
$V_R = 100 V$	I _R	<	300	-	μA
Diode capacitance at $T_i = 25 \ ^{\circ}C$					
$V_R = 1 V; f = 1 MHz$	Cd	<	2	2	pF

AAZ15 AAZ17

June 1975

$T_i = 25 \circ C$

Reverse recovery time when switched from

$I_{\rm F}$ = 10 mA to $I_{\rm R}$ = 10 mA; $R_{\rm L}$ = 100 Ω ;					
measured at $I_R = 1$ mA	AAZ15				
••	AAZ17	[rr	<	350	ns

Test circuit and waveforms :

CHARACTERISTICS (continued)

Input signal : Rise time of the reverse pulse $t_r = 0.6 \text{ ns}$ *) $I_R = 1 \text{ mA}$ Reverse pulse duration $t_p = 500 \text{ ns}$ Duty factor $\delta = 0.05$

Oscilloscope : Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

 $t_r = 0,35 \text{ ns}$

Recovery charge when switched from

$I_{\rm T} = 10 \text{ mA to } V_{\rm T} = 10 \text{ V} \cdot \text{R}_{\star} = 1 \text{ kO}$	AAZ15	Q_s	<	1800	pC
$I_{\rm F} = 10 \text{ mA to } V_{\rm R} = 10 \text{ V}; \text{ R}_{\rm L} = 1 \text{ k}\Omega$	A A 7 17	Ο.		000	nC

Test circuit and waveform :

output signal "Zeases

D1 = D2 = BAW62

Input signal : Rise time of the reverse pulse $t_r = 2 \text{ ns}$ Reverse pulse duration $t_p = 400 \text{ ns}$ Duty factor $\delta = 0,02$

5

AAZ 15 AAZ 17

April 1968

July 1975

9

April 1968

!1

GOLD BONDED DIODE

Germanium diode in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	25 V
Repetitive peak reverse voltage	VRRM	max.	25 V
Forward current (d.c.)	۱ _۴	max.	110 mA
Repetitive peak forward current	^I FRM	max.	150 mA
Junction temperature	т _і	max.	75 ^o C
Forward voltage at I _F = 150 mA	V _F	<	1,1 V
Recovery charge when switched from $I_F = 10 \text{ m}$ Ä to $V_R = 10 \text{ V}$	۵ _s	<	600 pC

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes are type-branded; the cathode being indicated by a coloured band.

Available for current production only; not recommended for new designs.

OA47

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages				
Continuous reverse voltage	VR	max.	25	v
Repetitive peak reverse voltage	VRRM	max.	25	v
Non-repetitive peak reverse voltage (t < 1 s)	V _{RSM}	max.	30	V
Currents				
Forward current (d.c.)	IF	max.	110	mA
Average rectified forward current (averaged over any 20 ms period)	^I F(AV)	max.	110	mA
Repetitive peak forward current	I _{FRM}	max.	150	mA
Non-repetitive peak forward current $(t < l s)$	IFSM	max.	200	mA
Temperatures				
Storage temperature	Tstg	-65 t	o +75	°C
Junction temperature	т _ј	max.	75	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{thj-a}	=	0.55	^o C/mW

OA47

CHARACTERISTICS

Forward voltage at $T_j = 25 \text{ °C}$	
$I_F = 0, 1 \text{ mA}$	$V_{\rm F}$ < 0,20 V
$l_F = 1,0 mA$	$V_{\rm F}$ < 0,31 V
$I_F = 10 \text{ mA}$	$V_{\mathbf{F}} < 0,45 V$
$I_F = 30 \text{ mA}$	VF < 0,65 V
$I_F = 150 \text{ mA}$	$V_{\rm F}~<~1,10~{\rm V}$
Forward voltage at $T_j = 60$ °C	
$I_F = 0, 1 mA$	$V_{\rm F}$ < 0,14 V
$I_F = 1,0 \text{ mA}$	$V_{\rm F}$ < 0,28 V
$I_F = 10 \text{ mA}$	$V_{\rm F}$ < 0,43 V
$I_F = 30 \text{ mA}$	$V_{\rm F}$ < 0,62 V
$I_F = 150 \text{ mA}$	$V_{F} < 1, 10 V$
Reverse current at $T_j = 25 \ ^{O}C$	
$V_{R} = 1,5 V$	l _R < 3,5 μA
$V_{R} = 10 V$	I _R < 15 µА
$V_R = 20 V$	I _R < 50 µА
$V_R = 25 V$	I_{R} < 100 μ A
Reverse current at $T_j = 60 $ °C	
$V_{R} = 1,5 V$	I _R < 20 μA
$V_{R} = 10 V$	I _R < 40 μA
$V_R = 20 V$	I _R < 90 μA
$V_R = 25 V$	I _R < 160 μA
Diode capacitance at $T_j = 25 \ ^{\circ}C$	
$V_R = 1 V; f = 1 MHz$	C _d < 3,5 pF

CHARACTERISTICS (continued) $T_j = 25 \text{ °C}$ Reverse recovery time when switched from $l_F = 10 \text{ mA to } I_R = 10 \text{ mA}; R_L = 100 \Omega;$
measured at $I_R = 1 \text{ mA}$ $t_{rr} < 70 \text{ ns}$ Test circuit and waveforms : $t_{rr} < 70 \text{ ns}$

Input signal : Rise time of the reverse pulse $t_r = 0,6 \text{ ns}$ *) $I_R = 1 \text{ mA}$ Reverse pulse duration $t_p = 100 \text{ ns}$ Duty factor $\delta = 0,05$

Oscilloscope : Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

 $t_r = 0,35 \text{ ns}$

Recovery charge when switched from

 $I_F = 10 \text{ mA to } V_R = 10 \text{ V}; \text{ R}_L = 1 \text{ k}\Omega$

Test circuit and waveform :

Qs

600

pC

output signal 1289096.1

D1 = D2 = BAW62

Input signal : Rise time of the reverse pulse $t_r = 2$ nsReverse pulse duration $t_p = 400$ nsDuty factor $\delta = 0,02$

TUNER DIODES

Dimensions in mm

SILICON PLANAR DIODE

The BA182 is a switching diode in a plastic envelope. It is intended for band switching in v.h.f. television tuners.

QUICK REFEREN	CE DATA			
Continuous reverse voltage	VR	max.	35	v
Forward current (d.c.)	I_F	max.	100	mA
Junction temperature	Тj	max.	100	٥C
Diode capacitance at $f = 1$ MHz $V_R = 20$ V	Cd	typ. <	0,8 1,0	pF pF
Series resistance at f = 200 MHz $I_{\overline{F}}$ = 5 mA	r _D	typ. <	0,5 0,7	Ω Ω

MECHANICAL DATA

The blue band indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68 - 2 (test D, severity IV, 6 cycles).

Available for current production only, not recommended for new designs.

 $\mathbf{\nabla}$

RATINGS (Limiting values) ¹)

Voltage				
Continuous reverse voltage	v _R	max.	35	v
Current				
Forward current (d.c.)	IF	max.	100	mA
Temperatures				
Storage temperature	T _{stg}	-55 to	+100	оС
Junction temperature	т _ј	max.	100	оС
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th} j-a	=	0.4	^o C/mW
CHARACTERISTICS				
Forward voltage at $I_F = 100 \text{ mA}$	v _F	<	1.2	v
Reverse current				
$v_R = 20 V$	I _R	<	100	nA
$V_{R} = 20 V; T_{j} = 60 °C$				
$v_{\rm R} = 20 v_{\rm r} r_{\rm j} = 00 \cdot C$	I _R	<	1	μA
Diode capacitance at $f = 1$ MHz	I _R			
-	I _R C _d	< typ. <		
Diode capacitance at $f = 1$ MHz		typ.	0.8	pF pF

 Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

March 1968

March 1968

4

SILICON A.M. BAND SWITCHING DIODE

The BA223 is a switching diode in whiskerless glass DO-35 construction. It is intended for band switching in a.m. radio receivers.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	20 V
Forward current (d.c.)	۱ _F	max.	50 mA
Junction temperature	т _і	max.	150 °C
Diode capacitance at $f = 1 \text{ MHz}$ V _R = 6 V	C _d	<	3,5 pF
Series resistance at f = 1 MHz IF = 10 mA	۲D	<	1,5 Ω

MECHANICAL DATA

Fig. 1 DO-35 (SOD-27).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Mullard

July 1979

RATINGS

(IEC 134)			
VR	max.	20	v
١F	max.	50	mA
Tstg	—55 to	o +150 4	°C
тј	max.	150	оС
R _{th j-a}	5	0,5	°C∕mW
۷F	<	1,0	v
1-	/	100	~ ^
'R			
1 _R	<	20	μA
Сd	<	3,5	pF
ſD	<	1,5	Ω
	IF T _{stg} Tj R _{thj-a} VF IR IR C _d	V _R max. I _F max. T _{stg} -55 to T _j max. R _{th j-a} = V _F < I _R < I _R < C _d <	$\begin{array}{cccc} V_{R} & max. & 20 \\ I_{F} & max. & 50 \\ T_{stg} & -55 \text{ to } +150 \\ T_{j} & max. & 150 \\ \end{array}$ $\begin{array}{cccc} R_{th j\text{-}a} & = & 0,5 \\ \end{array}$ $\begin{array}{ccccc} V_{F} & < & 1,0 \\ I_{R} & < & 100 \\ I_{R} & < & 20 \\ \end{array}$ $\begin{array}{cccccc} C_{d} & < & 3,5 \\ \end{array}$

Silicon a.m. band switching diode

BA223

Fig. 2 f = 1 MHz; $T_j = 25 \text{ °C}$.

Fig. 3 f = 1 MHz; $T_j = 25 \, {}^{\circ}C$.

LLLLL

BA243 BA244

SILICON PLANAR DIODES

Switching diodes in a DO-35 envelope, intended for band switching in v. h.f. television tuners.

QUICK REFERENCE DATA						
Continuous reverse voltage	VR		max.	20	v	
Forward current (d.c.)	١ _F		max.	100	mA	
Junction temperature	Τj		max.	150	٥C	
Diode capacitance at f = 1 to 100 MHz V _R = 15 V	Cd		typ. <	1, 1 2	pF pF	
			BA243	BA244		
Series resistance at f = 200 MHz I _F = 10 mA	r _D	typ <	0.7	0,4 0,5	Ω Ω	

MECHANICAL DATA

DO-35

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Mullard

BA243 BA244

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage				
Continuous reverse voltage	v _R	max.	20	v
Current				
Forward current (d.c.)	I _F	max.	100	mA
Temperatures			•	
Storage temperature	T _{stg}	-55 to	o +15 0	٥C
Junction temperature	Tj	max.	15 0	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th} j-a	=	0,6	⁰C/mW
CHARACTERISTICS	T _j = 25 ^o C w	nless otherv	vise sp	ecified
Forward voltage at $I_F = 100 \text{ mA}$	v _F	<		v
Reverse current at $V_R = 15 V$	IR	<	100	nA
$V_{\rm R} = 15 \text{ V}; T_{\rm amb} = 60 ^{\circ}\text{C}$	I _R	<	1	μA
Diode capacitance at $f = 1$ to 100 MHz				
$v_{\rm B} = 15 \text{ V}$	Cd	typ. <	1, 1	pF pF
Relative capacitance variation due to reverse voltage variation		-	Z	μı.
at $V_R = 7$ to 20 V; f = 1 to 100 MHz related to $V_R = 7$ V	$\frac{\Delta C_d}{C_d \cdot \Delta V_B}$	typ.	1	%/V
Sovies registered at f - 200 MUz	$\mathcal{O}_{\mathbf{d}}$	BA243	BA244	
Series resistance at $f = 200 \text{ MHz}$ $I_F = 10 \text{ mA}$	r _D typ.		0,4 0,5	Ω
•	~U <	1	0,5	Ω
Relative series resistance variation due to forward current variation				
at $I_F = 2$ to 40 mA; f = 200 MHz related to $I_F = 2$ mA	$\frac{\Delta r_{\rm D}}{r_{\rm D} \cdot \Delta I_{\rm F}}$	typ.	2	%/mA
Series inductance (measured on envelope)	L _S	typ.	2,5	nH

March 1974

BA243 BA244

March 1974

4

U.H.F. MIXER DIODE

Silicon epitaxial Schottky barrier diode in a plastic envelope intended for mixer applications in u.h.f. tuners.

QUICK REFERENCE DATA				
Continuous reverse voltage	VR	max.	4	V
Forward current (d.c.)	IF	max.	30	mA
Junction temperature	тյ	max.	100	°C
Noise figure at $f \approx 900$ MHz	F	<	8	dB

MECHANICAL DATA

Dimensions in mm

The orange band indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

Mullard

RATINGS Limiting values in accordance with the	e Absolute N	laximum	System	(IEC 134)
Voltage				
Continuous reverse voltage	v _R	max.	4	v
Current				
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	30	mA
Temperatures				
Storage temperature	Tstg	-65 to	+100	٥C
Junction temperature	Тј	max.	100	٥C
THERMAL RESISTANCE				
From junction to ambient in free air	^R th j-a	=	0, 25	^o C/mW
CHARACTERISTICS T _a	$amb = 25 ^{\circ}C$	unless oth	erwise	specified
Reverse current				
$V_R = 3 V$	IR	<	0, 25	μA
$V_{R} = 3 V; T_{a mb} = 60 °C$	IR	<	1,25	μA
Forward voltage				
$I_{\rm F}$ = 10 mA	VF	<	600	mV
Series resistance at f = 1 kHz				
$I_F = 5 mA$	r _D	< ,	15	Ω
Diode capacitance				
$V_R = 0; f = 1 MHz$	Cd	<	1,0	pF
Noise figure at f = 900 MHz	F	<	8	dBl)

. —

1) The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise $F_{if} = 1, 5 dB; f = 35 MHz$.

2

-.

January 1977

SILICON P-I-N DIODE

Primarily for use in controlled attenuators in v.h.f. and u.h.f. television tuners.

QUICK REFERENCE DATA				
Continuous reverse voltage	v _R	max.	30	v
Forward current (d.c.)	IF	max.	20	mA
Operating ambient temperature	Tamb	max.	60	°C
Diode capacitance $V_R = 0; f = 900 \text{ MHz}$	Cd	typ.	0,3	pF
R.F. forward resistance IF = $10 \mu A$; f = 35 MHz	rD	typ.	1,7	kΩ
$I_{F} = 10 \text{ mA}; f = 35 \text{ MHz}$	rD	typ.	4,5	Ω

MECHANICAL DATA

SOD-52

The coloured end indicates the cathode

Mullard

RATINGS Limiting values in accordance with the Absolut	e Maxim	um Syst	em (1E	C134)
Voltage				
Continuous reverse voltage	v _R	max.	30	v
Current				
Forward current (d.c.)	IF	max.	20	mA
Temperatures				
Storage temperature	Tstg	-55 to	+100	°C
Operating ambient temperature	Tamb	max.	60	°C
CHARACTERISTICS at $T_{amb} = 25 \text{ °C}$				
Forward voltage				
$I_F = 20 mA$	VF	<	1	v
Reverse current				
$V_{R} = 10 V$	IR	<	1	μA
Diode capacitance				
$V_R = 1 V; f = 100 MHz$	Cd	typ.	0,34	pF
$V_{R} = 0$; f = 900 MHz	Cd	typ.	0,30	pF
R.F. forward resistance				
$I_{F} = 10 \ \mu A$; f = 35 MHz	rD	typ.	1,7	kΩ
$I_{\rm F}$ = 10 mA; f = 35 MHz	rD	typ. <	4,5 6,5	Ω Ω
Series inductance 1)	Ls	typ.	2	nH
Cross modulation ²)				
$f_0 = 55$ MHz; $f_{int} \approx 50$ MHz				
I _F = 50 μA	v_{int}	typ.	0,5	v

1) Measured directly to the envelope.

2) Cross modulation is defined as the interfering voltage with 80% modulation depth over the p-i-n diode, causing 0.8% modulation depth on the wanted signal. (K = 1%)

2

SILICON PLANAR DIODES

Switching diodes in the subminiature DO-34 glass envelope, intended for band switching in v.h.f. television tuners. Special feature of the diodes is their low capacitance.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max. 3	35 V
Forward current (d.c.)	١ _F	max. 10	00 m.A
Junction temperature	т _ј	max. 150 °C	
		BA482	BA483
Diode capacitance V _R = 3 V; f = 1 to 100 MHz	С _d	< 1,2	1,0 pF
Series resistance at f = 200 MHz		ł	
lբ ≍ 3 mÅ	۲D	< 0,7	1,2 Ω
i _F = 10 mA	٢D	typ. 0,4	0,5 Ω

MECHANICAL DATA

Fig. 1 SOD-58 (DO-34).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

BA482: red on a natural background.

BA483: orange on a natural background.

April 1978

BA482 BA483

RATINGS

Limiting values in accordance with the Absolute Maximum Syste	m (IEC	134)			
Continuous reverse voltage	VR		max.	35	v
Forward current (d.c.)	١F		max.	100	mA
Storage temperature	Tstg		65 to +	150	°C
Junction temperature	тј		max.	150	oC
THERMAL RESISTANCE					
From junction to ambient mounted on printed board lead length = 5,0 mm	R _{th j-}	a	=	0,6	⁰C/mW
CHARACTERISTICS					
T _j = 25 ^o C unless otherwise specified					
Forward voltage IF = 100 mA	VF		<	1,2	v
Reverse current VR = 20 V	I _R		<	100	
V _R = 20 V; T _{amb} = 75 °C	۱R		<	1	μA
			BA482	B	A483
Diode capacitance V _R = 3 V; f = 1 to 100 MHz	C _d	typ. <	0,8 1,2	1	0,7 pF 1,0 pF
Series resistance at f = 200 MHz IF = 3 mA	۲D	typ. <	0,6 0,7		0,8Ω 1,2Ω

Silicon planar diodes

٠

BA482 BA483

Fig. 5 Typical values; f = 200 MHz; $T_j = 25 \text{ °C}$.

SILICON PLANAR VARIABLE CAPACITANCE DIODES

The BB105B and BB105G are variable capacitance diodes in plastic envelopes.

The BB105B is meant for u.h.f. tuners up to frequencies of 860 MHz. The BB105G is intended for use in v.h.f. tuners. Diodes will be supplied in matched sets. The capacitance difference between any two diodes in one set is less than 3% for the BB105B, and less than 6% for the BB105G, over the voltage range from 0,5 V to 28 V. These diodes are supplied in minimum quantities of 6000.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	21	В	v	
Reverse current at V _R = 28 V	۱ _R	<	10	0	nA	-
			BB105B	BB105G		
Diode capacitance at f = 1 MHz V _R = 25 V	Cd	> <	2,0 2,3	1,8 2,8	pF pF	
Capacitance ratio at f = 1 MHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	-	4,5 6,0	4 6		
Series resistance at $f = 470 \text{ MHz}$ V _R is that value at which C _d = 9 pF	۲D	typ. <	0,7 0,8	0,9 1,2	Ω Ω	

MECHANICAL DATA

Fig. 1 SOD-23.

Dimensions in mm

The white band indicates the cathode.

Available for current production only; not recommended for new designs.

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

BB105B BB105G

RATINGS

Limiting values in accordance with the Absolute	Maximum System	(IEC 13	4)			
Continuous reverse voltage	VR	max.	2	8	v	
Reverse voltage (peak value)	VRM	max.	3	0	v	
Forward current (d.c.)	IF	max.	2	0	mA	
Storage temperature	T _{stg}	_	-55 to + 100		oC	
Operating junction temperature	тј	max.	85		°C	
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th} j-a	=	0,4		°C/mW	
CHARACTERISTICS						
T _j = 25 ^o C unless otherwise specified						
Reverse current						
V _R = 28 V	۱ _R	<	10		nA	
V _R = 28 V; T _{amb} = 85 °C	I R	<	200		nA	
Diode capacitance at f ≈ 1 MHz			BB105B	BB105G		
$V_{\rm B} = 1 V$	Cd	typ.	17,5	17,5	рF	
V _R = 3 V	Cd	typ.	11,5	11,5	рF	
VR = 25 V	Cd	>	2,0	1,8	pF	
- n	-	<	2,3	2,8	рF	
Capacitance ratio at $f = 1 MHz$	$C_{d}(V_{R} = 3V)$		4,5	4		
	$\overline{C_d (V_R = 25 V)}$	<	6,0	6		
Series resistance						
at $f = 470$ MHz and at that value	_	typ.	0,7	0,9	Ω	
of V_R at which $C_d = 9 pF$	۲D	<	0,8	1,2	Ω	
at f = 200 MHz and IF = 5 mA	۲D	typ.	0,4	0,4	Ω	

BB105B BB105G

BB105B BB105G

September 1979

Dimensions in mm

SILICON PLANAR VARIABLE CAPACITANCE DIODES

The BB110B and BB110G are variable capacitance diodes in a plastic envelope primarily intended for electronic tuning in band II (f.m.). They are recommended for r.f. and interstage circuits.

QUICK REFERENCE DATA					
Continuous reverse voltage	v _R	max. 30	v		
Junction temperature	тј	max. 100	°C		
Reverse current at $V_R = 30 V$	IR	< 20	nA		
Diode capacitance at $f = 1$ MHz V _R = 3 V	Сd	BB110G BB110 27 - 31 29 - 3			
Capacitance ratio	$\frac{C_d (V_R = 3)}{C_d (V_R = 3)}$		-		
Series resistance at f = 100 MHz V_R is that value at which C_d = 30 pF	r _D	typ. 0,3 < 0,4	Ω Q		

MECHANICAL DATA

SOD-23

BB110B: blue dot BE110G: green dot

The violet band indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

Available for current production only; not recommended for new designs.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage						
Continuous reverse voltage	v _R	max.	30	v		
Current						
Forward current (d.c.)	I _F	max.	100	mA		
Temperatures						
Storage temperature	T _{stg}	- 55 to +100		oС		
Junction temperature	Тj	max.	100	٥C		
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th} j-a	=	0,4	^o C/mW		
CHARACTERISTICS	$T_j = 25$ °C unless otherwise specified					
<u>Reverse current</u> at $V_R = 30 V$	IR	typ. <	1 20	nA		
				nA		
$V_{R} = 30 V; T_{j} = 60 °C$	IR	typ. <	5 200	nA nA		
Diode capacitance at $f = 1$ MHz		BB110G E	BB110B			
$V_R = 3 V$	Cd	27-31	29-33	pF		
$V_R = 30 V$	Cd	typ.	11	pF		
Capacitance ratio at $f = 1$ MHz	$\underline{C_d(V_R = 3 V)}$	= 3 V 2, 5 to 2, 8				
	$C_d(V_R = 30 V)$					
Series resistance at $f = 100 \text{ MHz}$				-		
V_R is that value at which C_d = 30 pF	^r D	typ. <	0,3 0,4			
Temperature coefficient of the diode capacitance						
$v_{\rm R} = 3 V$		****	0,04	Ø 10C		
v _R - 3 v	η	typ.	0,04	%/°C		

SILICON VARIABLE CAPACITANCE DIODE

Planar-diffused diode in a DO-35 envelope intended for automatic frequency control in radio and television receivers.

QUICK REFERENCE DATA				
Continuous reverse voltage	v _R	max.	15	v
Junction temperature	т _ј	max.	200	°C
Reverse current at V_R = 15 V; T_j = 150 °C	IR	<	2,0	μA
Diode capacitance at $f = 1$ MHz V _R = 4 V	Cd	20	to 25	pF
Capacitance ratio at $f < 300$ MHz	$\frac{C_{d} (V_{R} = 4 V)}{C_{d} (V_{R} = 10 V)}$	≥	1, 3	
Series resistance at V_R = 4 V; f = 200 MHz	rD	<	1,5	Ω

MECHANICAL DATA

1

Dimensions in mm

DO-35

The coloured band indicates the cathode

The diodes are type-branded

Mullard

BB119

RATINGS Limiting values in accordance with	h the Absolute Max	cimum Sy	stem (IEC 134)
Voltage		1		
Continuous reverse voltage	v _R	max.	15	v
Current				
Forward current (d.c.)	I _F	max.	200	mA
Temperatures				
Storage temperature	T _{stg}	-65 to	+200	°C
Junction temperature	т _ј	max.	200	°C
THERMAL RESISTANCE				
From junction to ambient in free air				
CHARACTERISTICS	$T_j = 25 \ ^{O}C \ u$	nless oth	er wi <i>s</i> e	specified
Reverse current				
Reverse current				
$V_{\rm R}$ = 15 V; T _j = 150 °C	IR	<	2,0	μA
	I _R	<	2,0	μA
$V_{\rm R}$ = 15 V; T _j = 150 °C	I _R VF	<		μA mV
$V_R = 15 V; T_j = 150 °C$ Forward voltage $I_F = 100 mA$				·
$V_R = 15 V; T_j = 150 °C$ Forward voltage	VF	<	950	mV
$V_R = 15 V; T_j = 150 °C$ <u>Forward voltage</u> $I_F = 100 mA$ <u>Diode capacitance</u> at f = 1 MHz	V _F C _d	< 20		·
$V_R = 15 V; T_j = 150 °C$ <u>Forward voltage</u> $I_F = 100 mA$ <u>Diode capacitance</u> at f = 1 MHz	VF	< 20	950	mV
$V_R = 15 V; T_j = 150 °C$ Forward voltage $I_F = 100 mA$ <u>Diode capacitance</u> at f = 1 MHz $V_R = 4 V$	V _F C _d	< 20	950 to 25	mV
$V_R = 15 V; T_j = 150 °C$ Forward voltage $I_F = 100 mA$ Diode capacitance at f = 1 MHz $V_R = 4 V$ Capacitance ratio at f < 300 MHz	V _F C _d	< 20	950 to 25	mV

Simplified equivalent circuit:

 $\begin{array}{ll} L &= lead \ inductance \approx 6 \ nH & freq \\ r_D &= series \ resistance & up \ tc \\ C_d &= diode \ capacitance \ (see \ page \ 3) & \end{array}$

frequency independent up to f = 300 MHz

These data apply for a distance of 10 mm between the two measuring points.

Ξ

BB119

A.M. VARIABLE CAPACITANCE DOUBLE DIODES

The BB212 is a silicon mesa profiled epitaxial double tuning diode with common cathode in a plastic TO-92 variant.

A special feature is the low tuning voltage which makes the device particularly suited to car and domestic receivers in the L.W., M.W. and S.W. bands.

QUICK REFERENCE DATA

V _R	max.	12 V
т _і	max.	85 °C
' _R	<	50 nA
Cd	500 to	620 pF
С _d	<	22 pF
C _d (V _R = 0,5 V) C _d (V _R = 8,0 V)	23 ·	to 36
٢D	<	2,5Ω -
	T _j I _R C _d C _d (V _R = 0,5 V) C _d (V _R = 8,0 V)	$T_{j} max.$ $I_{R} <$ $C_{d} 500 tc$ $C_{d} <$ $C_{d} (V_{R} = 0.5 V) C_{d} (V_{R} = 8,0 V) 23$

MECHANICAL DATA

Fig. 1 TO-92 variant.

The anode of the djode with the higher capacitance C_1 at $V_R = 3 V$, i.e. a more positive mismatch, is identified by a white dot.

Dimensions in mm

BB212

RATINGS (for each diode)			
Limiting values in accordance with the Absolute Max	kimum System (IEC 134)		
Continuous reverse voltage	V _R	max.	12 V
Forward current (d.c.)	IF	max.	100 mA
Storage temperature	T _{stg}	55 t	to + 100 °C
Operating junction temperature	Tj	max.	85 °C
CHARACTERISTICS (for each diode)			
T _i = 25 ^o C unless otherwise specified			
V _R = 10 V V _R = 10 V; T _{amb} = 60 ^o C	I _R I _R	<	50 nA 200 nA
Diode capacitance at f = 1 MHz	'R		200 114
$V_{\rm R} = 0.5 V$	Cd	500) to 620 pF
V _R = 3,0 V	cď	>	140 pF
V _R = 5,5 V	Cd	>	40 pF
V _R = 8,0 V	с _d	<	22 pF
Capacitance ratio at $f = 1 MHz$	C _d (V _R = 0,5 V) C _d (V _R = 8,0 V)	2	23 to 36
Series resistance at f = 500 MHz ► V _R is that value at which C _d ≈ 500 pF	(5)	<	2,5 Ω
Temperature coefficient of the diode capacitance at f = 1 MHz; T _{amb} = 25 °C to 60 °C	, D		2,3 32
$V_{\rm R} = 0.5 \rm V$	η	typ.	0,054 %/°C
V _R = 8,0 V	η	typ.	0,050 %/°C

MATCHING PROPERTIES

The capacitance of the two diodes in their common envelope may differ within certain limits. The total, relative capacitance difference between the two diodes in one envelope may be found in Fig. 2. The anode a1 or a2 with the higher capacitance at $V_R = 3 V$, is identified by a white dot.

Fig. 2 The shaded area represents the maximum tolerance of the two diodes in one envelope as a function of the reverse voltage.

Fig. 3 Typical values.

Fig. 4 f = 1 MHz.

VARIABLE CAPACITANCE DIODES

The BB405B and BB405G are silicon variable capacitance diodes in hermetically sealed glass DO-34 envelopes.

The BB405B is intended for u.h.f. tuning up to frequencies of 860 MHz. The BB405G is intended for v.h.f. tuning.

Diodes are supplied in matched sets and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0.5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	ma	ix.	28	v
Reverse current at VR = 28 V	۱ _R	<		10	nA 🖛
			BB405B) BB405 G	
Diode capacitance at f = 500 kHz V _R = 25 V	Cd	> <	2,0 2,3	1,8 2,5	pF pF
Capacitance ratio at f = 500 kHz	C _d (V _R = 3 \ C _d (V _R = 25	/) > V) <	4,8 5,8	4,3 6,0	.
Series resistance at f = 470 MHz V_R is that value at which C_d = 9 pF	۲D	<	0,8	1,2	Ω

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2E (5,08 mm) pitch.

BB405B: white cathode ring; body black coloured

BB405G: additional green band.

Maximum soldering iron or solder bath temperature 300 °C; maximum soldering time 3 s. Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

BB405B BB405G

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	28 V
Reverse voltage (peak value)	∨ _{RM}	max.	30 V
Forward current (d.c.)	١ _F	max.	20 mA
Storage temperature	T _{stq}		–55 to + 150 °C 🔜
Operating junction temperature	тј	max.	100 °C 🖛

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Reverse current			BB405B	BB405G		
V _R = 28 V	IR	<	10	10	nA	
V _R = 28 V; T _{amb} = 85 °C	I _R	<	1	1	μA	4
Diode capacitance at f = 500 kHz*						
V _R = 1 V	Cd	typ	. 17	17	рF	
V _R = 3 V	Сd	typ	. 11,5	11,5	рF	
V _R = 25 V	Cd	> <	2,0 2,3	1,8 2,5	pF pF	
Capacitance ratio at f = 500 kHz	C _d (V _R = 3 V) C _d (V _R = 25 V)	> <	4,8 5,8	4,3 6,0		4
Series resistance at $f = 470 \text{ MHz}$ and at that value						
of V_R at which $C_d = 9 pF$	٢D	<	0,8	1,2	Ω	

* Matching: Devices are supplied on a bandolier with a space between matched sets (minimum quantity 120 devices, total divisible by 12; maximum quantity is 6000 per reel). Capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

BB405B BB405G

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB809 is a variable capacitance diode in a glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).

Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	28 V
Reverse current at V _R = 28 V	I _R	<	10 nA
Diode capacitance at $f = 500 \text{ kHz}$			
V _R = 3V	Cd	26	ito 32 pF
V _R = 25 V	Сd	4	,5 to 6 pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = C_d (V_R = 2))}{C_d (V_R = 2)}$	~~~ ?	to 6,5
Series resistance at f = 200 MHz V _R is that value at which C _d = 25 pF	٢D	<	0,6 Ω

MECHANICAL DATA Fig. 1 SOD-68 (DO-34). Dimensions in mm

(1) Lead diameter in this zone uncontrolled. Cathode indicated by yellow band.

Maximum soldering iron or solder bath temperature 300 °C; maximum soldering time 3 s. Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

Mullard

BB809

RATINGS

Limiting values in accordance with the Absolute Maximum	System (IEC 134)			
Continuous reverse voltage	VR	max.	28	v
Reverse voltage (peak value)	V _{RM}	max.	30	v
Forward current (d.c.)	iF	max.	20	mA
Storage temperature	T _{stg}	—55 to	+ 150	оС
Operating junction temperature	тј	max.	100	оС
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,6	°C/mW
CHARACTERISTICS				
$T_{amb} = 25 {}^{o}C$ unless otherwise specified				
Reverse current				
V _R = 28 V	I R	<	10	nA
V _R = 28 V; T _{amb} = 85 ^o C	I _R	<	2 0 0	nA
Diode capacitance at f = 500 kHz				
V _R = 3V	с _d	26	i to 32	рF
V _R = 25 V	C _d	4,	,5 to 6	рF
Capacitance ratio at f = 500 kHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	5	to 6,5	
Series resistance at f = 200 MHz				
V_R is that value at which $C_d = 25 \text{ pF}$	٢D	<	0,6	Ω

_

İ

Silicon planar variable capacitance diode

BB809

SPECIAL TYPE

Η

PICOAMPERE DIODE

Silicon diode in a metal envelope. It has an extremely low leakage current over a wide temperature range combined with a low capacitance and is not sensitive for light. It is intended for clamping, holding, peak follower, time delay circuits as well as for logarithmic amplifiers and protection of insulated gate field-effect transistors.

QUICK REFERENCE DATA				
Continuous reverse voltage	v _R	max.	20	v
Forward current (d.c.)	١ _F	max.	50	mA
Forward voltage at $I_F = 10 \text{ mA}$	VF	<	1.0	v
Reverse current $V_R = 5 V; T_j = 25 °C$ $V_R = 20 V; T_j = 25 °C$	I _R I _R	< <	5 10	pA pA
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	1.3	pF

MECHANICAL DATA

TO-18 (except for the two leads)

Handle the device with care during soldering into the circuit. The extremely low leakage current can only be guaranteed when the bottom is free from solder flux or other contaminations.

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Continuous reverse voltage	v _R	max.	20	v
Repetitive peak reverse voltage	VRRM	max.	35	V
Currents				
Forward current (d.c. or average)	IF	max.	50	mA
Repetitive peak forward current	I _{FRM}	max.	100	mA
Temperatures				
Storage temperature	T _{stg}	-65 to	+125	°C
Junction temperature	Тј	max.	125	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0.5	°C/mW
CHARACTERISTICS	T _j = 25 °C	C unless ot	herwise	specified
Engineering walter an				
Forward voltage				
$I_F = 10 \text{ mA}$	v _F	<	1.0	v
	v _F	<	1.0	v
$I_F = 10 \text{ mA}$	v _F I _R	<	1.0 5	V pA
I _F = 10 mA Reverse currents	-			
I _F = 10 mA <u>Reverse currents</u> V _R = 5 V	I _R	<	5	pA
$I_{F} = 10 \text{ mA}$ <u>Reverse currents</u> $V_{R} = 5 \text{ V}$ $V_{R} = 5 \text{ V}; \text{ T}_{j} = 80 ^{\circ}\text{C}$	I _R I _R	< <	5 250	pA pA

 $T_1 = 25 \text{ oC}$

v

1.25

350

 t_{rr} < ns

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $I_F = 10 \text{ mA}$

Test circuit and waveforms:

v_{fr} <

Input signal	: Rise time of the forward pulse	$t_r \le 20 \text{ ns}$
	Forward current pulse duration	$t_{p} = 300 \text{ ns}$
	Duty factor	$\delta = 0,01$
Oscilloscope	: Rise time	t _r = 0,35 ns
	Input capacitance	C _i ≤ 1 pF

Input capacitance

Circuit capacitance C \leq 20 pF (C = C_i + parasitic capacitance)

Reverse recovery time when switched from

 $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; R_L = 100 \Omega;$ measured at $I_R = 1 \text{ mA}$

Test circuit and waveforms:

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

June 1975

May 1971

May 1971

6

INDEX

INDEX

Type No.	Section	Suggested alternative	Type No.	Section	Suggested alternative
AA119	F*		BY127M	*	BYW56
AAZ13	F*		BY184	E	
AAZ15	F+		BY206	E*	BAS11, BYV95B
AAZ17	F*		BY207	E+	BYV95C
BA182	G*		BY210 series	E*	BYV95/96 series
BA223	G		BY226	*	BYW54
BA243	G		BY227	•	BYW56
BA244	G		BY228	E	
BA280	G		BY409	E	
BA314	С		BY438	E	
BA316	В		BY448	Е	
BA317	В		BY458	E	
BA318	В		BY476	E	
BA379	G	1	BY509	E	
BA482	G		BYV27 series	E	
BA483	G		BYV28 series	E	
BAS11	В	1	BYV95A,B,C	E	
BAV10	В		BYV96D,E	E	
BAV18	В		BYW54	E	
BAV19	В		BYW55	E	
BAV20	В		BYW56	E	
BAV21	В		BYW95A,B,C	E	
BAV45	н		BYW96D,E	E	
BAW62	в		BYX10	E	
BAX12A	В		BYX36 series	E*	BYW54 to 56
BAX13	в		BYX55 series	E٠	BYV95 series
BAX16	В		BYX90	E	
BAX17	В		BYX91 series	E]
BB105B,G	G*	1 1	BYX94	*	BYW56
BB110B,G	G*		BZV10	D	
BB1 19	G		BZV11	D	
BB212	G		BZV12	D	
BB405B,G	G	1	BZV13	D	
BB809	G	1	BZV14	D	
BY126M	•	BYW54	BZV46-1V5, 2V0	l c	1

Mullard

*Not recommended for the design of new equipment.

September 1980

INDEX

Type No.	Section	Suggested alternative	Type No.	Section	Suggested alternative
BZV85 series	с		1N821	D	
BZX61 series	C*	BZV85 series	1N823	D	
BZX79 series	c		1N825	D	
BZX87 series	c		1N827	D	
BZX90	D		1N829	D	
BZX91	D		1N914	в	
BZX92	D		1N916	В	
BZX93	D	{ }	1N4001	E	
BZX94	D		1N4002	E	
BZY88-C0V7	•	BA314	1N4003	E	
BZY88–C1V3	•	BZV46-1V5	1N4004	Е	
BZY88 series	l c		1N4005	E	1
OA47	F*		1N4006	E	1
0A90	F+		1N4007	E	
OA91	F.	1	1N4148	В	
0A95	F*		1N4446	в	
OA200	В	{	1N4448	В	1
OA202	в				

*Not recommended for the design of new equipment.

Mullard

DIODES

CONTENTS

Mullard

Diodes

Mullard Limited Mullard House, Torrington Place, London, WC1E 7HD

Printed in England M80-1275