technical handbook

Book 1

Semiconductor devices

Part 3

Diodes

DIODES

SELECTION GUIDE

GENERAL SECTION

SILICON WHISKERLESS DIODESBVOLTAGE REGULATOR DIODES (Low power)
VOLTAGE REFERENCE DIODES
RECTIFIER DIODES (Low power)E
SCHOTTKY-BARRIER DIODESF
MICROMINIATURE DIODES G
TUNER DIODES
GERMANIUM DIODES (Gold bonded)
PICOAMPERE DIODE1

INDEX
(C) Mullard Limited, January 1983

Printed by Eyre \& Spottiswoode Ltd., at Grosvenor Press, Portsmouth

Book 1 Part3

Semiconductor devices

Diodes

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD

The Mullard technical handbook system. .

The Mullard Technical Handbook is made up of four sets of Books, each comprising several parts:-

Book 1 (light blue) Semiconductor Devices
Book 2 (orange) Valves and Tubes
Book 3 (green) Components, Materials and Assemblies

Book 4 (purple or Integrated Circuits dark blue)

Book 1, Semiconductor Devices, comprises the following parts:-

Part 1a Small-signal transistors

Part 1b Low-frequency power transistors
Part 1c Field-effect transistors
Part 1d $\begin{aligned} & \text { Microminiature semiconductors for hybrid } \\ & \text { circuits }\end{aligned}$
Part 2a R.F. wideband devices
Part 2b R.F. power devices
Part 3 Diodes
Part 4 Power diodes, thyristors and triacs

Part 5 Microwave transistors, diodes and sub-assemblies

Part 6 Optoelectronic devices

a comprehensive data library

Most of the devices for which full data is given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs but generally available for equipment production, are listed separately. Data sheets for these types may be obtained on request. Older devices for which data may be obtained on request are also included in the index of the appropriate part of each book.

Because the Technical Handbook system forms a comprehensive data reference library the current Mullard Quick Reference Guides should always be consulted for details of the Mullard preferred range.

The data contained in these books is as accurate and up to date as possible at the time of going to press. It must be understood, however, that no guarantee can be given on the availability of the various devices, or that their specifications may not be changed before the next edition is published.

Each part is reviewed regularly, and revised and re-issued where necessary. Revisions to previous data are indicated by an arrow in the margin.

Requests for copies of Quick Reference Guides and individual data sheets (please quote the type number) should be sent to:-

Technical Publications Department, Mullard Limited, New Road, Mitcham, Surrey CR4 4XY. Telex 22194.

Prices and availability information for Mullard components should be obtained from Mullard House, or from one of the Mullard Distributors listed on the back cover.

The Mullard Data Base

For the equipment designer, technical information on electronic components is vital. Mullard market the widest range of components in the U.K., supponed by a comprehensive information service - the Mullard Data Base

Brief details are given here. For further information and an order form, please write to:-

Technical Publications Dept.
Mullard Limited,
New Road. Mitcham. SurreyCR4 4XY.

Regular Publications

Mullard Bulletin
A must for designers, this bi-monthly, newspaper-style publication briefly describes new components and offers further information on subjects of interest.

Consumer Electronics

A review, in newspaper style. published every four months. Articles and features of interest to those in the consumer electronics industry. with emphasis on television technology and allied subjects.

Mirlard Bulletin

 ECTORS . .NEW 4. WALL IESIGN $\mathrm{N}=$

Electronic Components and Applications

A quarterly technical journal covering, in depth. developments in electronics based on the work of Philips, Signetics and Muliard laboratories. Please ask for a sample copy and subscription form.

Quick reference guides

All producis marketed by Mullard are listed alpha-numerically and described briefly in these guides. Part 1 covers passive components, discrete semiconductors, and valves and lubes: Part 2 deals with integrated circuits, including Signetics.

Technical Data Service

This service provides detailed. up-to-date information on the characteristics and performance of Mullard components.

Subscribers to any or all of the four handbook sections receive all relevant handbooks. looseleaf binders, monthly mailings of new data sheets. and new handbook parts as they are published.

For those not wishing to subscribe to the Data Service, handbook parts can be purchased individually.

Individual data sheets are available free-of-charge. and can be obtained by quoting the type number.

Products approved to CECC available on request:

Specification No.	Type No.
CECC 50 001-020	CV8308, CV8805
	BAW62
	CV7367, CV7368, CV7756
CECC 50001-021	CV7757, CV8617, CV9637
	1N914, 1N916, IN4148
	1N4446, 1N4448
	BAV 18, BAV19, BAV20, BAV21
CECC 50001-022	BAX16, BAX 17
	CV8790
CECC 50001 - 026	BA314
	PO33
CECC 50001-037	CV9638
CECC 50001 - 038	CV7875
	BZX79 series
CECC $50005-005$	CV7138 to CV7146
	CV7099 to CV7106
CECC $50005-010$	BZV85 series
CECC 50005-017	BZT03 series
	BYW54, BYW55, BYW56
CECC $50008-015$	CVA7026 to CVA7030
	CVA7476

BZY88 series to BS9305-N041 is no longer available - replaced by CECC 50005 - 005, BZX79 series.

WHISKERLESS DIODES

Outline: DO-35

	type	V_{R} max. V	IF max. mA	IFRM max. mA	$t_{r r}$ max. ns	C_{d} max. pF	V_{F} \max V	IF $m A$
general purpose	BA316	10	100	225	4	2	1.1	100
	BA317	30	100	225	4	2	1.1	100
	BA318	50	100	225	4	2	1.1	100
	BAV10	60	300	600	6	2.5	1.25	500
	BAW62	75	200	450	4	2	1	100
	BAX 13	50	75	150	4	3	1.53	75
	BAX16	150	200	300	120	10	1.5	200
	BAX17	200	200	300	120	10	1.2	200
	OA200	50	160	250	typ. 3.5	25	1.15	30
	OA202	150	160	250	typ. 3.5	25	1.15	30
	IN914	75	75	225	4	4	1	10
	1N916	75	75	225	4	2	1	10
	1N4148	75	200	450	4	4	1	10
	1N4446	75	200	450	4	4	1	20
	1N4448	75	200	450	4	4	1	100
high speed; high voltage	BAV18	50	250	625	50	5	1.25	200
	BAV19	100	250	625	50	5	1.25	200
	BAV20	150	250	625	50	5	1.25	200
	BAV21	200	250	625	50	5	1.25	200
for telephony applications	BAX12A	90	400	800	50	35	1	200
	CV7367	100	75	450	5	2.8	1	10
	CV7368	100	75	450	5	1.5	1	10
	CV7756	75	75	450	8	4	1	10
	CV7757	75	75	450	8	2	1	10
	CV7875	150	150	750	-	35	1.2	100
	CV8617	20	75	450	-	6	1.5	50
	CV8790	150	150	625	-	10	1.2	100
	CV9637	75	100	450	5	2.8	1.2	100
	CV9638	65	200	750	70	15	0.9	200
general purpose avalanche	BAS 11	300	350	2000	1000	10 iyp.	1.1	300

VOLTAGE REGULATOR DIODES

Stabistors

type	working voltage (nom.) V	Ptot at $T_{\text {amb }}$ max. mW		o $^{\circ} \mathrm{C}$	IFRM max. mA
BA314	0.7	-	-	250	outline
BZV46-1V5	1.5	250	55	120	00.35
BZV46-2V0	2	250	55	80	$00-35$

Voltage regulator diodes (low power)

type	working voltage range V	$P_{\text {max. }} \text { at } T_{\text {amb }}$		$\begin{gathered} \text { IFRM }_{\text {max }} \\ \text { mA } \end{gathered}$	outline
BZT03	9.1 to 270	3.25 W	25	-	SOD. 57
BZV85	3.6 to 75	1300	25	250	DO.41
BZW03	7.5 to 270	6 W	25	-	SOD. 64
BZX61*	7.5 to 130	1300	25	1000	00.15
	150 to 200	1000	25	1000	DO. 15
BZX79	2.4 to 75	400	50	250	DO. 35
B2X87	5.1 to 75	1750	25	400	SOD. 51
BZY88*	2.7 to 33	400	50	250	D0.7
				$I^{\prime}(A V)$ max.	
CV7138	3.3				
CV7139	3.6				
CV7140	3.9	400	25	200	DO.35
CV7141	4.3				
CV7099	4.7				
CV7100	5.1				
CV7101	5.6				
CV7102	6.2	400	25	200	DO-35
CV7103	6.8				
CV7104	7.5				
CV7105	8.2				
CV7142	9.1				
CV7143	10.0	400	25	200	DO-35
CV7144	11.0				
CV7145	12.0				
CV7146	13.0	400	25	200	DO-35
CV7106	15.0	400	25	200	DO-35

[^0]
VOLTAGE REFERENCE DIODES

voltage tolerance $£ 5 \%$
Outline: DO-34

RECTIFER DIODES

	type	$\underset{m A}{I_{F}(A V)_{\text {max }}}$	$V_{\text {RRM max }}$ v	outline
general purpose	BYX10. CVA7026 CVA7027 CVA7028 CVA7029 CVA7030 CVA7476.* 1N4001G 1N4002G IN4003G 1N4004G 1N4005G 1N4006G iN4007G	$\begin{aligned} & 360 \\ & 750 \\ & 1000 \end{aligned}$	$\begin{array}{r} 1600 \\ 100 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1200 \\ 50 \\ 100 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \end{array}$	DO 14 SOD-57 SOD-57
controlled avalanche	BYW54 BYW55 BYW56 CV8308 CV8805	$\begin{array}{r} 2000 \\ 2000 \\ 2000 \\ 250 \\ 250 \end{array}$	$\begin{array}{r} 600 \\ 800 \\ 1000 \\ 60 \\ 150 \end{array}$	$\begin{aligned} & \text { SOD. } 57 \\ & \text { SOD } 57 \\ & \text { SOD. } 57 \\ & \text { SOD } 57 \\ & \text { SOD- } 57 \end{aligned}$
fast soft recovery	BYV95A B C BYV96D E BYW95A B C BYW96D E	1500 1500 3000 3000	$\begin{array}{r} 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \end{array}$	SOD. 57 SOD 57 SOD 64 SOD 64
ultra fast soft-recovery	BYV27-50 -100 -150 -200 BYV28- 50 -100 -150 -200	$\begin{aligned} & 2000 \\ & 3500 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \\ 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & \text { SOD } 57 \\ & \text { SOD } 64 \end{aligned}$

- Available for current production only; not recommended for new designs.
- Controlled avalanche

RECTIFIER DIODES (Cont.)

Parallel efficiency diodes

| type | IFWM max
 A | VRRM max
 V | outline |
| :---: | :---: | :---: | :---: | :---: |
| BY448 | 4 | 1500 | SOD-57 |
| BY458 | 4 | 1200 | SOD-57 |
| BY228 | 5 | 1500 | SOD 64 |
| BY438 | 5 | 1200 | SOD-64 |

E.H.T. rectifiers

type	$I_{F}(A V) \max$ mA	$V_{\text {RRM max }}$ kV	outline	
soft recovery	BY476			
	BY509	2.5	18	SOD-56
	BY584	4	15	SOD-61
	85	1.8	SOD 61A	

SCHOTTKY-BARRIER DIODES

Outline: DO-34

	type	V_{R} \max. V	I_{F} max. mA	C_{d} \max. pF		V_{R} v	$t_{r r}$ max. ns	V_{F} max mV	at	If mA
u.h.f. mixer	BA481	4	30	1.1		0	-	400		1
switching	BAT81	40	30	1.6		1	1	410		1
	BAT82	50								
	BAT83	60								
	BAT85	30	100	10		1	5	400		10

- Available for current production only; not recommended for new designs.

MICROMINIATURE DIODES

Low-voltage stabilizer

	type	IfRM max. mA	$\begin{gathered} \mathrm{C}_{\mathrm{d}} \\ \max . \\ \mathrm{pF} \end{gathered}$		V_{F} $m V$	at If mA
general purpose	BAS17	250	140	-1.8	$\begin{aligned} & \hline 730-810 \\ & 870-960 \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \\ 100 \\ \hline \end{array}$

Variable capacitance diodes
Ourline: SOT-23

	type	$\begin{gathered} V_{R} \\ \max . \\ V \end{gathered}$	I_{F} max. mA	$\overline{C_{d}}$ pF	$\begin{gathered} V_{R} \\ V \end{gathered}$	$\begin{gathered} \mathrm{rD} \\ \max . \\ s \Omega \end{gathered}$	$\underset{\max _{\mathrm{nA}}}{\mathrm{I}_{1}}$	V V
v.h.f. tuning	BBY31	28	20	$\begin{gathered} \text { tyo. } 11.5 \\ 1.8-2.8 \end{gathered}$	3 25	1.2	50	28
	B8Y40	28	20	$\begin{array}{r} 26-32 \\ 4.3-6 \end{array}$	$\begin{array}{r} 3 \\ 25 \end{array}$	0.6	50	28

Voltege regulator diodes; tolerance : $\pm 5 \%$

	type	$\begin{gathered} \text { range } \\ \mathrm{V} \end{gathered}$	Ptot max. mW	IFRM max. mA	$\begin{aligned} & V_{F} \\ & \max . \\ & V \end{aligned}$		I_{F} mA	outline
general purpose	82V49	2.4-75	1000	250	1		50	SOT. 89
	B2X84	2.4-75	350	250	0.9		10	SOT-23

TUNER DIODES

All television varicaps are supplied in matched sets.
Over the voltage range 0.5 V to 28 V the diodes are capacitance matched to within 3% : B8405B; BB405fs

GERMANIUM SMALL SIGNAL DIODES
(MAINTENANCE TYPES)

Gold bonded diodes

	type	$\begin{gathered} V_{R} \\ \max . \\ V \end{gathered}$	If max. mA	Ifrm max. mA	t_{18} \max. ns	$\begin{gathered} \mathrm{C}_{\mathrm{d}} \\ \max . \\ \mathrm{pF} . \end{gathered}$	$\begin{gathered} V_{F} \\ \max . \\ V \end{gathered}$	at	If mA
general purpose	AAZ15	75	140	250	-	2	1.1		250
	AAZ17	50	140	250	-	2	1.1		250
general purpose and switching	OA47	25	110	150	70	3.5	1.1		150

GENERAL SECTION

Type designation Rating systems Colour codes Packing
Mounting and soldering
Microminiature diodes (soldering recommendations and thermal characteristics)

$$
\underline{\underline{I}}
$$

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices - as opposed to integrated circuits - , multiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.
A. GERMANIUM or other material with band gap of 0,6 to $1,0 \mathrm{eV}$.
B. SILICON or other material with band gap of 1,0 to $1,3 \mathrm{eV}$.
C. GALLIUM-ARSENIDE or other material with band gap of $1,3 \mathrm{eV}$ or more.
R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.
A. DIODE; signal, low power
B. DIODE; variable capacitance
C. TRANSISTOR; low power, audio frequency ($R_{\text {th } j-m b}>15^{\circ} \mathrm{C} / \mathrm{W}$)
D. TRANSISTOR; power, audio frequency ($R_{\text {th } \mathrm{j}-\mathrm{mb}} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
E. DIODE; tunnel
F. TRANSISTOR; low power, high frequency ($R_{\text {th } j-m b}>15^{\circ} \mathrm{C} / \mathrm{W}$)
G. MULTIPLE OF DISSIMILAR DEVICES - MISCE LLANEOUS; e.g. oscillator
H. DIODE; magnetic sensitive
L. TRANSISTOR; power, high frequency ($\left.R_{\text {th } \mathrm{j} \cdot \mathrm{mb}} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}\right)$
N. PHOTO-COUPLER
P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power ($R_{\text {th }} \mathrm{j}-\mathrm{mb}>15^{\circ} \mathrm{C} / \mathrm{W}$)
S. TRANSISTOR; low power, switching ($R_{\text {th } j-\mathrm{mb}}>15^{\circ} \mathrm{C} / \mathrm{W}$)
T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power ($R_{\text {th } j-m b} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
U. TRANSISTOR; power, switching ($R_{\text {th } j-m b} \leqslant 15^{\circ} \mathrm{C} / \mathrm{W}$)
X. DIODE: multiplier, e.g. varactor, step recovery
Y. DIODE; rectifying, booster
Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment.
 industrial/professional equipment.
This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER
The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
A. 1% (according to IEC 63: series E96)
B. 2% (according to IEC 63: series E48)
C. 5\% (according to IEC 63: series E24)
D. 10% (according to IEC 63: series E12)
E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.
The letter ' V ' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_{R}. The letter ' V ' is used as above.
3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER
The NUMBER indicates the rated maximum repetitive peak reverse voltage ($V_{R R M}$) or the rated repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.
4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-)

The NUMBER indicates the depletion layer in $\mu \mathrm{m}$. The resolution is indicated by a version LETTER.
5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).
The NUMBER indicates how many basic devices are assembled into the array.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Nate
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

PRO ELECTRON COLOUR CODING SYSTEM FOR PROFESSIONAL SMALL SIGNAL DIODES

Letter combination-background colour

```
BAV - green
BAW - blue
BAX - black
BAS - orange
```

Figure combination-colour bands

```
0 - black
1 - brown
2 - red
3 - orange
4- yellow
5 - green
6 - blue
7 - violet
8 - grey
9 - white
```

The cathode side is indicated by a broad band which is at the same time the first digit of the figure combination.

Note: For BA types see individual type publications.

JEDEC assigned type numbers

(EIA -standard RS-236-B; June, 1963)

1. Prefix identification

The prefix identification consisting of a first number symbol and the letter " N " shall not be indicated in the coding.
2. Banding systems

The sequence number consisting of a two, three, or four digit number after the letter " N " may be coded as follows:
2.1 Two-digit sequence numbers shall consist of a first black band and the sequence number in second and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
2.2 Three-digit sequence numbers shall consist of the sequence number in first, second, and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
2.3 Four-digit sequence numbers shall consist of the sequence number in four bands of the colours indicated in Table 1.
If a suffix letter is required it shall be indicated as the fifth band.
3. Cathode identification and reading sequence
3.1 A double-width band shall be used as the first band reading from cathode to anode ends.
3.2 An alternative method is provided where equal width bands may be used. The bands shall beclearly grouped toward the cathode end, and shall be read from cathode to a node ends.
3.3 Either of the above colour banding methods may be used in stead of the cathode designating symbol or other marking.
4. Colour bands

The sequence numbers of the type numbers and suffix letters shall be indicated by the colours in Table 1.

TABLE 1

NUMBER	COLOUR	SUFFIX LETTER
0	black	not applicable
1	brown	A
2	red	B
3	orange	C
4	yellow	D
5	green	E
6	blue	F
7	violet	G
8	grey	H
9	white	J

BANDOLIER AND REEL SPECIFICATION FOR AXIAL-TAPED DIODES

This specification concerns all axial-leaded diodes in this handbook.
The taped and reeled products fulfil the requirements of IEC 286-1: Tape packaging of components with axial leads on continuous tapes.

Dimensions in mm

Fig. 1 Configuration of bandolier.
The red tape indicates the diode cathode side.

1. Displacement between any two diodes; for DO-34 maximum 0,4.
2. For outlines SOD-34, SOD-56 and SOD-61 this dimension is 58 ± 2.

The cumulative space (S) measured over ten spacings $=50 \pm 2$.
The diodes are centred so that $\left|L_{1}-L_{2}\right| \leqslant 1,2 \mathrm{~mm}$.
A black marker is printed on the white tape of the bandolier every 50 diodes.
The axial taping specification described above is compatible with automatic insertion equipment as manufactured by Universal, U.S.M. (Dynapert) and M.E.I. (Panasert).

(1) For outlines SOD-34, SOD-56 and SOD-61 this dimension is 75 .

Fig. 2 Reel dimensions (mm) for axial-leaded components.
(1) Diode
(4) Flange
(2) Bandolier
(5) Cylinder

outline		quantity per reel
SOD-27	DO-35	10000
SOD-34	-	5000
SOD-51	-	5000
SOD-56	-	4000
SOD-57	-	5000
SOD-61	-	7000
SOD-64	-	4000
SOD-66	DO-41	5000
SOD-68	DO-34	10000

BANDOLIER AND REEL SPECIFICATION FOR RADIAL-TAPED DIODES

Fig. 2 Detail configuration of component shape.
break force of carrier tape $>15 \mathrm{~N}$ extraction force $>5 \mathrm{~N}$

$\Sigma \Delta P_{0}$	$=$ deviation of 20 spacings	± 1
F	$=$ lead-to-lead distance	$5,08+0,6$
H_{1}	$=$ top of component to tape centre	$<27,5$
H	$\begin{aligned} = & \text { bottom of component to } \\ & \text { tape centre } \end{aligned}$	19 ± 1
H_{0}	$=$ lead-wire clinch height	$16 \pm 0,5$
L	$=$ length of cropped lead	< 11
ℓ	= lead-wire protrusion	<1
P	$=$ pitch of components	$12,7 \pm 1$.
P_{2}	$=$ feed hole centre to the middle of the leads	6,35 ± 1
P_{1}	$=$ feed hole centre to lead	3,81 $\pm 0,7$
P_{0}	$=$ feed hole pitch	$12,7 \pm 0,3$
T_{t}	$=$ total tape thickness	<1,5
t	$=$ thickness tape + hold down tape	0,7 $\pm 0,2$
D_{0}	$=$ feed hole diameter	$4 \pm 0,2$
W_{2}	$=$ hold down tape position	0 to 1,5
W_{0}	= hold down tape width	> 12,5
W_{1}	$=$ feed hole position	$9 \pm 0,5$
W	$=$ tape width	18 $+1,0$ $-0,5$
Δ_{g}	= component alignment	$0+50$
$\Delta_{\text {h }}$	= component alignment	± 2

PACKING

This specification concerns radial-taped diodes in DO-34 and DO-35 envelopes. The taped and reeled products fulfil the requirements of IEC 286-2: Tape packaging of components with unidirectional leads.

Fig. 3 Reel dimensions (mm) for radial-taped diodes.
(1) Diode
(3) Flange
(2) Bandolier
(4) Cylinder

Quantity per reel for DO-34 and DO-35 encapsulations 5000 diodes.
The diodes can be delivered on request with anode-leading (+ leading) or with cathode-leading (- leading) configuration.

Fig. $4+$ leading.

Fig. 5 - leading.

RULES FOR MOUNTING AND SOLDERING

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting the following rules should be followed.

General

Perpendicular forces on the body of the diode must be avoided.
Avoid sudden forces on the leads or body. These forces often are much higher than allowed.
High acceleration forces as a result of any shock (dropping on a hard surface for instance) must be prevented.

Bending

During bending the leads must be supported between body or stud and bending point.
Axial forces on the body during the bending process must not exceed 20 N .
Bending the leads through 90° is allowed at any distance from the body when it is possible to support the leads during bending without contacting the envelope or weldings.
Bending close to the body or stud without supporting the leads only is allowed if the bend radius is greater than $0,5 \mathrm{~mm}$.

Twisting

Twisting the leads is allowed at any distance from the body or stud if the lead is properly clamped between body or stud and twisting point.
Without clamping, twisting the leads is only allowed at a distance of greater than 3 mm from the body; the torque angle must not exceed 30°.

Straightening

Straightening the leads is allowed if the applied pulling force in the axial direction does not exceed 20 N and the total duration is not longer than 5 seconds.

Soldering

Avoid any force on the body or leads during or just after soldering.
Do not correct the position of an already soldered device by pushing, pulling or twisting the body.
Prevent fast cooling after soldering.

Maximum allowable soldering time and minimum distance soldering point to seal for several envelopes

SOD-27	DO-35	glass	3	0,5	5	0,5
SOD-40	DO-15	plastic	3	5,0	3	5,0
SOD-51	-	glass	3	3,0	5	3,0
SOD-56	-	plastic	3	2,0	5	2,0
SOD-57	-	glass	3	0,5	5	0,5
SOD-61	-	glass	3	2,0	5	2,0
SOD-64	-	glass	3	0,5	5	0,5
SOD-66	DO-41	glass	3	3,0	5	3,0
SOD-68	DO-34	glass	3	0,5	0,5	
TO-18	-	metal	3	0,5	5	0,5
TO-92	-	plastic	3	2,5	5	2,5

MOUNTING

If the rules for mounting and soldering are observed properly, the following mounting or process methods are allowed:

- Preheating of the printed circuit board before soldering, up to a maximum of $100^{\circ} \mathrm{C}$.
- Flat mounting with the diode body in direct contact with the printed circuit board with or without metal tracks on both sides and/or plated-through holes.
- Flat mounting with the diode body in direct contact with hot spots or hot tracks during soldering.
- Upright mounting with the diode body in direct contact with the printed circuit board if the body is not in contact with metal tracks or plated-through holes.

General

Parts of the general mounting and soldering rules can be overruled by individual type mounting and soldering rules, mentioned with the type description.

SOLDERING RECOMMENDATIONS

SOT-23, SOT-143 AND SOT-89 ENVELOPES

SOT-23, SOT-143 and SOT-89 devices are ideally suited for placement onto thick and thin film substrates and printed circuit boards.

To assure reliable and consistent connections particular attention should be paid to:

1. Flux

A non-active flux is recommended. Where active fluxes are employed, great care in subsequent substrate cleaning must be exercised.

2. Metal-alloy solder or solder paste

Correct choice of solder alloy or solder paste to be employed e.g. 62\% $\mathrm{Sn}, 36 \% \mathrm{~Pb}, 2 \% \mathrm{Ag}$ or 60% $\mathrm{Sn} / 40 \% \mathrm{~Pb}$. Any paste used should contain at least 85% metal dry weight.

3. Soldering temperature

This will vary according to the actual method employed.

REFLOW SOLDERING

The preferred technique for mounting microminiature components on hybrid thick and thin-film is the method of reflow soldering.

The tags of SOT-23, SOT-143 and SOT-89 envelopes are pre-tinned and the best results are obtained if a similar solder is applied to the corresponding soldering areas on the substrate. This can be done by either dipping the substrate in a solder bath or by screen printing a solder paste.
The maximum temperature of the leads or tab during the soldering cycle should not exceed $285^{\circ} \mathrm{C}$. The most economic method of soldering is a process in which all different components are soldered simultaneously for example SOT-23, SOT-143 or SOT-89 devices, capacitors and resistors.
Having first been fluxed, all components are positioned on the substrate. The slight adhesive force of the flux is sufficient to keep the components in place. Solder paste contains a flux and has therefore good inherent adhesive properties which eases positioning of the components.
With the components in position the substrate is heated to a point where the solder begins to flow. This can be done on a heating plate or on a conveyor belt running through an infrared tunnel. The maximum allowed temperature of the plastic body of a device must be kept below $280{ }^{\circ} \mathrm{C}$ during the soldering cycle. For further temperature behaviour during the soldering process see Figs 2 and 3.

The surface tension of the liquid solder tends to draw the tags of the device towards the centre of the soldering area and has thus a correcting effect on slight mispositionings. However, if the layout leaves something to be desired the same effect can result in undesirable shifts; particularly if the soldering areas on the substrate and the components are not concentrally arranged. This problem can be solved using a standard contact pattern, which leaves sufficient scope for the self-positioning effect (see Figs 4 and 5).

After cooling the connections may be visually inspected and, where necessary, repaired with a light soldering iron. Finally any remaining flux must be removed carefully.

IMMERSION SOLDERING

Where a complete substrate or printed circuit board is immersed in solder:
a. The temperature of the soldering bath should not exceed $280^{\circ} \mathrm{C}$.
b. The duration of the soldering cycle should not exceed 10 seconds.
c. Forced cooling may be applied (see Fig. 1).

HAND SOLDERING

It is possible to solder microminiature devices with a light hand-held soldering iron, but this method has obvious drawbacks and should therefore be restricted to laboratory use and/or incidental repairs on production circuits.

1. It is time-consuming and expensive.
2. The device cannot be positioned accurately and therefore the connecting tags may come into contact with the substrate and damage it.
3. There is a great risk of breaking either substrate or even internal connections inside the encapsulation.
4. The envelope may be damaged by the iron.

Fig. 1 Device temperature during immersion soldering.
Maximum time of immersion in soldering bath is 10 seconds at an ambient temperature of $25^{\circ} \mathrm{C}$.
a = free convection cooling; $b=$ forced cooling.
$T_{b \text { max }}=$ maximum bath temperature $\left(280^{\circ} \mathrm{C}\right)$.
$T_{m}=$ melting temperature of solder $\left(179^{\circ} \mathrm{C}\right)$.

a $\quad=$ free convection cooling.
b = permissible forced cooling.
$T_{I_{\text {max }}}=$ Maximum lead or tab temperature $=$ $285^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{m}} \quad=$ Melting point of the solder is $179^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Time of heat supply:
without preheating max. 14 s
with preheating max. 10 s
Maximum time of preheating 45 s

Fig. 2 Reflow soldering without preheating.

Fig. 3 Reflow soldering with preheating.
Mullard

Minimum required dimensions of metal connection pads on hybrid thick and thin-film substrates.
||||||||

Fig. 4 SOT- 23 pattern.

Dimensions in mm

Fig. 5 SOT-89 pattern.

Fig. 6 SOT-143 pattern.

THERMAL CHARACTERISTICS OF SOT-23 AND SOT-143 ENVELOPES

The heat generated in a semiconductor chip normally flows by various paths to the surroundings (ambient).

Fig. 1.

1. Heat radiation from the envelope to ambient (1).

This heat transfer can be neglected when the envelope is mounted on a substrate or printed circuit board.
2. Heat transmission via leads (2) soldering points (3) and substrate (4).

Fig. 2 Thermal behaviour of heat flow when the device is mounted on a substrate or printed circuit board.
$R_{\text {th j-t }}=$ Thermal resistance from junction to tab.
$R_{\text {th } t-s}=$ Thermal resistance from tab to soldering points.
$R_{\text {th } s-a}=$ Thermal resistance from soldering points to ambient.
$R_{\text {th } j-a}=$ Thermal resistance from junction to ambient.

Heat transfer directly from envelope to ambient

This depends on the difference between the temperatures of envelope and the surroundings. When the device is mounted on a substrate or printed circuit board direct heat flow can usually be neglected in relation to the heat flow via leads and substrate.
Thus the thermal model can be as in Fig. 3.

7289077

Fig. 3 Basic thermal model.

Heat transfer from junction to tab

This is an internal heat transfer and has been measured for SOT-23 envelopes. In general, for low-power
diodes it is: 60 K/W
Heat transfer from tab to soldering points
This value has also been measured for SOT- 23 with $P_{\text {tot }}<350 \mathrm{~mW}$: 280 K/W
for types of semiconductors in a SOT-143 envelopes this value is: $310 \mathrm{~K} / \mathrm{W}$

Heat transfer from soldering points to ambient

This depends on the shape and material of tracks and substrate. In figures 4 and 5 standard mounting conditions are given to set up the maximum power ratings for SOT-23 encapsulation.

Fig. 4 Test circuit SOT-23 mounting conditions on a ceramic substrate.

Fig. 5 Heat transfer from soldering points to ambient.
Point A on the curve in Fig. 5 is for an area of the ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$ for the maximum rating of all high-frequency, low-frequency and switching transistors and also for all diodes in SOT-23 encapsulation.
Point B on the curve in Fig. 5 is for an area of the ceramic substrate of $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0,7 \mathrm{~mm}$ for the maximum rating of low-frequency medium-power semiconductors.

The values for the thermal resistance from junction to tab, and tab to soldering points, are mentioned on page 2 and Fig. 5.
The formula for devices in SOT-23 with one crystal can be generalized:

$$
T_{j}=P\left(R_{t h j-t}+R_{t h t-s}+R_{t h s-a}\right\}+T_{a m b}
$$

7289077

7289074

Fig. 6 Thermal model of SOT- 23 envelopes with one crystal.

Fig. 7 Thermal model of SOT-23 envelopes with two crystals (double diode).

The formulae for devices with two crystals (double diodes) are:

$$
\begin{aligned}
& T_{\text {tab }}=P_{\text {tot }} \cdot\left(R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{a m b}=P_{\text {tot }}(280+90)+T_{\text {amb }} \\
& T_{j 1}=\left(P_{1} \times R_{\text {th } j-t}\right)+T_{\text {tab }}=P_{1} \cdot 60+T_{\text {tab }} \\
& T_{j 2}=\left(P_{2} \times R_{\text {th } j-t}\right)+T_{\text {tab }}=P_{2} \cdot 60+T_{\text {tab }}
\end{aligned}
$$

As mentioned on page 2 :
$R_{\text {th } \mathrm{j}-\mathrm{t}}$ for diodes is $60 \mathrm{~K} / \mathrm{W}$.
$R_{\text {th s-a }}($ area $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm})=90 \mathrm{~K} / \mathrm{W}$.
$R_{\text {th } t-s}$ for all semiconductors in SOT-23 $=280 \mathrm{~K} / \mathrm{W}$.
Thus:

$$
\begin{aligned}
& T_{j 1}=60 P_{1}+370 P_{\text {tot }}+T_{a m b} \\
& T_{j 2}=60 P_{2}+370 P_{\text {tot }}+T_{\text {amb }}
\end{aligned}
$$

SILICON WHISKERLESS DIODES

B

$10 \mathrm{~V}, 30 \mathrm{~V}$ and 50 V GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes intended for general purpose applications.
They have reverse voltages up to 10 V for $\mathrm{BA} 316,30 \mathrm{~V}$ for BA 317 and 50 V for BA 318 .

QUICK REFERENCE DATA						
			BA 316	BA 317	BA 318	
Continuous reverse voltage	V_{R}	\max.	10	30	50	V
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	\max.		225		mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65	$+200$		${ }^{0} \mathrm{C}$
Junction temperature	T_{j}	\max.		200		${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient	$R_{\text {th }} \mathrm{j}-\mathrm{a}$	=		0,60		${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=1,0 \mathrm{~mA}$	V_{F}	$<$		700		mV
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	$<$		850		mV
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	V_{F}	$<$		1100		mV
Diode capacitance at $\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	C_{d}	$<$		2		pF
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	${ }^{\text {r }}$ r	$<$		4		nS

MECHANICAL DATA

Dimensions in mm
DO-35

The diodes may be either type-branded or colour coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage
Continuous reverse voltage

Currents

Average rectified forward current (averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
t=1 \mu \mathrm{~s}
$$

$\mathrm{t}=1 \mathrm{~s}$
$V_{R} \quad$ max.

BA 316	BA317	BA318
10	30	50 V

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	max.	100	mA	$1)$
I_{F}	max.	100	mA	
$\mathrm{I}_{\mathrm{FRM}}$	\max.	225	mA	

IFSM	max.	2000	mA
I FSM $^{\text {IF }}$	max.	500	mA

THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {thj-a }}=$
0,60
${ }^{\circ} \mathrm{C} / \mathrm{mW}$

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=1,0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	700	mV
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	850	mV
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$	1100	mV

Reverse current
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$

Diode capacitance

$V_{R}=0 ; f=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}<$
2 pF

1) For sinusoidal operation see page 6 . For pulse operation see pages 4 and 5 .

BA316	BA317	BA318	
200	50	-	nA
-	200	50 nA	
-	-	200 nA	

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$
Measured at $I_{R}=1 \mathrm{~mA}$ ${ }^{t_{r r}}<4$ ns

Test circuit and waveforms:

input signal

output signal

次 $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$

Reverse pulse duration

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns} \\
& \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns} \\
& \delta=0,05
\end{aligned}
$$

Oscilloscope: Rise time

$$
\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}
$$

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}(\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance $)$

SILICON GLASS PASSIVATED AVALANCHE DIODE

Diode in a DO-35 envelope. It is primarily intended for general purpose applications, e.g. scan and flyback rectifiers, protection diodes etc. in television circuits. An advantage of this diode is its capability of absorbing reverse transient energy.

QUICK REFERENCE DATA

Working reverse voltage	$V_{R W}$	max.	300 V
Average rectified forward current	$I_{F(A V)}$	\max.	300 mA
Non-repetitive peak forward current	$I_{F S M}$	\max.	4 A
Repetitive peak reverse power dissipation	$P_{R R M}$	\max.	75 W
Reverse recovery time	$t_{r r}$	$<$	$1 \mu \mathrm{~s}$

MECHANICAL DATA
Dimensions in mm
Fig. 1 DO-35 (SOD-27).

The diodes may be either type-branded or colour-coded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working reverse voltage
Continuous reverse voltage (see Fig. 8)
Forward current (d.c.)
Average forward current (averaged over any 20 ms period)
Repetitive peak forward current

$$
\begin{aligned}
& t=10 \mathrm{~ms} ; f=50 \mathrm{~Hz} \\
& \delta=0,1 ; f=15 \mathrm{kHz}
\end{aligned}
$$

Non-repetitive peak forward current
($\mathrm{t}=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge
($\mathrm{t}=10 \mu \mathrm{~s}$; square wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge
Repetitive peak reverse current

$$
\mathrm{t}=10 \mu \mathrm{~s} \text { (square wave; } \mathrm{f}=50 \mathrm{~Hz} \text {) } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

Repetitive peak reverse power dissipation
$t=10 \mu \mathrm{~s}$ (square wave; $f=50 \mathrm{~Hz}$) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Storage temperature
Junction temperature

THERMAL RESISTANCE

From junction to ambient in free air
mounted on printed board at 8 mm lead length

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=300 \mathrm{~mA} \\
& I_{F}=900 \mathrm{~mA}
\end{aligned}
$$

Reverse avalanche breakdown voltage

$$
I_{R}=100 \mu \mathrm{~A}
$$

Reverse current

$$
\begin{aligned}
& V_{R}=300 \mathrm{~V} \\
& V_{R}=300 \mathrm{~V} ; T_{j}=125^{\circ} \mathrm{C} *
\end{aligned}
$$

Diode capacitance at $f=1 \mathrm{MHz}$

$$
\begin{aligned}
& V_{R}=0 \\
& V_{R}=50 \mathrm{~V}
\end{aligned}
$$

Reverse recovery when switched from
$I_{F M}=400 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$; with $-\mathrm{d} I_{\mathrm{F}} / \mathrm{dt}=400 \mathrm{~mA} / \mu \mathrm{s}$
Recovery charge
Recovery time
Maximum slope of reverse recovery current when switched from $\mathrm{I}_{\mathrm{FM}}=400 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$; with $-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=400 \mathrm{~mA} / \mu \mathrm{s}$

$V_{\text {RW }}$	max.	300 V
$V_{\text {R }}$	max.	300 V
$I_{\text {F }}$	max.	350 mA
$I^{\prime}(A V)$	max.	300 mA
IfRM	max.	900 mA
IFRM	max.	2 A
${ }^{\prime}$ FSM	max.	4 A
IFSM	max.	30 A
IRRM	max.	150 mA
PRRM	max.	75 W
$\mathrm{T}_{\text {stg }}$	-65 to + 150	
T_{j}	max.	$150{ }^{\circ} \mathrm{C}$

$$
R_{\text {th j-a }}=0,340^{\circ} \mathrm{C} / \mathrm{mW}
$$

V_{F}	$<$	$1,1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}$	$<$	$1,3 \mathrm{~V}$
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{R}}$	$>$	300 V
I_{R}	$<$	100 nA
I_{R}	$<$	$20 \mu \mathrm{~A}$
C_{d}	typ.	10 pF
C_{d}	typ.	$1,5 \mathrm{pF}$

Q_{s}	typ.	70 nC
t_{rr}	$<$	$1 \mu \mathrm{~s}$

[^1]

Fig. 2 Definitions of $Q_{s}, t_{r r}$ and $\mathrm{dl}_{\mathrm{R}} / \mathrm{dt}$.

Fig. 3.
From the left-hand graph the total power dissipation can be found as a function of the average output current.
The parameter $a=\frac{I^{\prime} F(R M S)}{I^{\prime}(A V)}$ depends on $n \omega R_{L} C_{L}$ and $\frac{R_{t}+r_{\text {diff }}}{n R_{L}}$ and can be found from existing graphs.
Once the power dissipation is known, the maximum permissible ambient temperature follows from the right-hand graph.

Fig. $6 \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 7 Maximum permissible repetitive peak reverse power as a function of pulse duration. $T \geqslant 20 \mathrm{~ms}$; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. rectangular waveform, $\delta \leqslant 0,01 ;-\ldots$ triangular waveform, $\delta \leqslant 0,02$.

Fig. 8 Maximum permissible continuous reverse voltage versus ambient temperature.

ULTRA-HIGH-SPEED DIODE

Silicon planar epitaxial, ultra-high-speed, high-conductance diode in a DO-35 envelope. The BAV10 is primarily intended for core gating in very fast memories.

QUICK REFERENCE DATA				
Continuous reverse voltage	V_{R}	max.	60	V
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	max.	60	V
Repetitive peak forward current	$\mathrm{I}_{\text {FRM }}$	max.	600	mA
Junction temperature	T_{j}	max.	200	${ }^{\circ} \mathrm{C}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	V_{F}	<	1,0	V
Reverse recovery time when switched from $I_{F}=400 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=400 \mathrm{~mA}$; $\mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $I_{R}=40 \mathrm{~mA}$	${ }^{\text {tr }}$	<	6	ns
Recovery charge when switched from $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	Qs	<	50	pC

MECHANICAL DATA

Dimensions in mm
DO-35

The diodes may be either type-branded or colour-coded.

BAV10

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Continuous reverse voltage	V_{R}	\max.	60	V	
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{R} R \mathrm{M}}$	\max.	60	V	$1)$

Currents

Average rectified forward current	$\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$	max.	300	$\mathrm{mA}{ }^{2}$)
Forward current (d.c.)	I_{F}	max.	300	mA
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	max.	600	mA
Non-repetitive peak forward current $\begin{aligned} \mathrm{t} & =1 \mu \mathrm{~s} \\ \mathrm{t} & =1 \mathrm{~s}\end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{FSM}} \\ & \mathrm{I}_{\mathrm{FSM}} \end{aligned}$	max. max.	$\begin{aligned} & 4000 \\ & 1000 \end{aligned}$	mA

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$	
T_{j}	\max.	200	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air at maximum lead length

CHARACTERISTICS

Forward voltage

$$
R_{t h ~ j-a}=0,5 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{array}{llll}
I_{F}=10 \mathrm{~mA} & \mathrm{~V}_{\mathrm{F}} & < & 0,75 \mathrm{~V} \\
\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA} & \mathrm{~V}_{\mathrm{F}} & < & 1,00 \mathrm{~V} \\
\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100{ }^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{F}} & < & 0,95 \mathrm{~V} \\
\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA} & \mathrm{~V}_{\mathrm{F}} & < & 1,25 \mathrm{~V}
\end{array}
$$

Reverse current
$\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$

I_{R}	$<$	100 nA
I_{R}	$<$	$100 \mathrm{\mu A}$

Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}} \quad<\quad 2,5 \mathrm{pF}$

[^2]
CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Forward recovery voltage when switched to

$$
\begin{array}{llll}
I_{F}=400 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r} 1}=30 \mathrm{~ns} \\
I_{F}=400 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r} 2}=100 \mathrm{~ns} & \mathrm{~V}_{\mathrm{fr}} & < & 2,0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{fr}} & < & 1,5 \mathrm{~V}
\end{array}
$$

Test circuit and waveforms:

Input signal : lst rise time of the forward pulse $t_{r l}=30 \mathrm{~ns}$ 2nd rise time of the forward pulse tr2 $=100 \mathrm{~ns}$ Forward current pulse duration $t_{p}=300 \mathrm{~ns}$ Duty factor $\delta=0,01$

Oscilloscope: Rise time ${ }^{t_{r}}=0,35 \mathrm{~ns}$
Input capacitance $\quad \mathrm{C}_{\mathrm{i}} \leq 1 \mathrm{pF}$
Circuit capacitance $\mathrm{C} \leq 20 \mathrm{pF}$ ($\mathrm{C}=\mathrm{C}_{\mathrm{i}}$ + parasitic capacitance)
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$ to $\mathrm{IR}_{\mathrm{R}}=400 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
measured at $I_{R}=40 \mathrm{~mA}$

$$
\operatorname{trr}_{\mathrm{rr}}<6 \mathrm{~ns}
$$

Test circuit and waveforms:

Input signal : Total pulse duration
Duty factor
Rise time of the reverse pulse
Reverse pulse duration

Oscilloscope: Rise time

${ }^{t} p($ tot $)=0,2 \mu \mathrm{~s}$
$\delta=0,0025$
$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
${ }^{t} p=30 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)
Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega
$$

Test circuit and waveform:

D1 = BAW62
D2 = diode with minority carrier life time at $10 \mathrm{~mA}:<200 \mathrm{ps}$

Input signal $:$	Rise time of the reverse pulse	t_{r}	$=2 \mathrm{~ns}$
	Reverse pulse duration	${ }^{t_{p}}=400 \mathrm{~ns}$	
	Duty factor	$\delta=0,02$	

Circuit capacitance $\mathrm{C} \leq 7 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes; intended for switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

QUICK REFERENCE DATA

			BAV18	BAV19	BAV20	\|BAV21	
Continuous reverse voltage	V_{R}	max.	50	100	150	200	v
Forward current (d.c.)	${ }^{\prime} \mathrm{F}$	max.		250			mA
Junction temperature	T_{j}	max.		175			${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j} \cdot \mathrm{a}}$	=		0,375			K/mW
Forward voltage at $I_{F}=100 \mathrm{~mA}$	V_{F}	$<$		1,0			V
Reverse current at $V_{R}=V_{R \max }$	I_{R}	<		100			nA
Diode capacitance at $V_{R}=0 ; f=1 M H z$	C_{d}	typ.		$\begin{aligned} & 1,5 \\ & 5,0 \end{aligned}$			pF pF
Reverse recovery time when switched from $I_{F}=30 \mathrm{~mA}$ to $I_{R}=30 \mathrm{~mA} ; R_{L}=100 \Omega$; measured at $I_{R}=3 \mathrm{~mA}$	$t_{\text {rr }}$	<		50	0		ns

Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour coded.
Products approved to CECC 50 001-022, available on request.

BAV18 to 21

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Continuous reverse voltage
Repetitive peak reverse voltage

		BAV18	BAV19	BAV20	BAV21	
V_{R}	max.	. 50	100	150	200	V
$\mathrm{V}_{\text {RRM }}$	max.	. 60	120	200	250	V

Currents

Average rectified forward current
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$\mathrm{t}<1 \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{FSM}}$	\max.	1	A
$\mathrm{t}=1 \mu \mathrm{~s}: \mathrm{T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{FSM}}$	\max.	5	A

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .400 \mathrm{~mW}$

Temperatures

Storage temperature
Junction temperature

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	max.	250	mA	$\mathrm{l})$
I_{F}	max.	250	mA	
$\mathrm{I}_{\text {FRM }}$	max.	625	mA	
$\mathrm{I}_{\mathrm{FSM}}$	\max.	1	A	
$\mathrm{I}_{\mathrm{FSM}}$	\max.	5	A	

THERMAL RESISTANCE

From junction to ambient in free air

$$
\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}=0,375 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5 .

$T_{\text {stg }}$	-65	to +175	${ }^{\circ} \mathrm{C}$
T_{j}	max.	175	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Forward voltage
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$
Reverse breakdown voltage
$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
$\mathrm{V}_{\mathrm{F}}<$
$\mathrm{V}_{\mathrm{F}}<1,0$
V
V

Reverse current

$$
\begin{array}{lllll}
\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} \max } & \mathrm{I}_{\mathrm{R}} & < & 100 & \mathrm{nA} \\
\mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} \max } ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} ; \text { pulse conditions } & \mathrm{I}_{\mathrm{R}} & < & 100 & \mu \mathrm{~A}
\end{array}
$$

Differential resistance

$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$r_{\text {diff }}$ typ. $\quad \Omega$
Diode capacitance
$\mathrm{V}_{\mathrm{R}}=0 ; \mathbf{f}=1 \mathrm{MHz}$

C_{d}	typ.	1,5	pF
	$<$	5,0	pF

Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA}: \mathrm{R}_{\mathrm{L}}=100 \Omega ;$
measured at $I_{R}=3 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{rr}}<\quad 50 \mathrm{~ns}$
Test circuit and waveforms:

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

[^3]

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in a DO-35 envelope. The BAW62 is primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	75 V
Repetitive peak forward current	IfRM	max.	450 mA
Junction temperature	T_{j}	max.	$200{ }^{\circ} \mathrm{C}$
Forward voltage at $I^{\prime}=100 \mathrm{~mA}$	V_{F}	<	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA}: R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	$t_{\text {rr }}$	<	4 ns

Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour-coded.

Products, approved to CECC $50001-021$, available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Continuous reverse voltage
Repetitive peak reverse voltage

Currents

Average rectified forward current
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current; $t=1 \mu s$
$\mathrm{t}=1 \mathrm{~s}$

V_{R}	\max.	75	V	
$\mathrm{~V}_{\mathrm{RRM}}$	\max.	75	V	$\left.{ }^{1}\right)$

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	max.	150	$\mathrm{~mA}^{2}$)
I_{F}	\max.	200	mA
$\mathrm{I}_{\mathrm{FRM}}$	\max.	450	mA
$\mathrm{I}_{\mathrm{FSM}}$	\max.	2000	mA
$\mathrm{I}_{\mathrm{FSM}}$	\max.	500	mA

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
T_{j}	max. $\quad 200$	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air at maximum lead length

CHARACTERISTICS

$$
R_{t h j-a}=0,6 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltages

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

V_{F}	0,62 to 0,75	
V_{F}	$<$	1,00
V_{F}	$<$	0,93

Reverse currents

$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	I_{R}	<	25	$n \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	I_{R}	$<$	50	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	I_{R}	$<$	200	nA
$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	I_{R}	$<$	5	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	${ }^{1} \mathrm{R}$	<	100	$\mu \mathrm{A}$

Diode capacitance

$$
\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}
$$

$\mathrm{C}_{\mathrm{d}}<2 \mathrm{pF}$

[^4]
CHARACTERISTICS (continued)

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward recovery voltage when switched to
$I_{F}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$V_{f r}<2,5 \quad V$

Test circuit and waveforms:

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$
measured at $I_{R}=1 \mathrm{~mA} \quad{ }^{t}{ }_{r r}<4 \mathrm{~ns}$
Test circuit and waveforms:

$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
${ }^{t} \mathbf{p}=100 \mathrm{~ns}$
$\delta=0,05$
${ }^{t_{r}}=0,35 \mathrm{~ns}$
Oscilloscope: Rise time

Input signal : Rise time of the reverse pulse Reverse pulse duration

Duty factor

12613:81
output signal

Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Circuit capacitance $C \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{s}} \text { typ. } 50 \quad \mathrm{pC}
$$

Test circuit and waveform:

$\mathrm{D} 1=\mathrm{D} 2=\mathrm{BAW} 62$

Input signal $:$	Rise time of the reverse pulse	${ }^{\mathrm{t}_{\mathbf{r}}}=2 \mathrm{~ns}$	
	Reverse pulse duration	${ }^{\mathrm{t}_{\mathrm{p}}}=0400 \mathrm{~ns}$	
	Duty factor	δ	$=0,02$

$$
\delta=0,02
$$

Circuit capacitance $C \leq 7 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

output signal respoes.,

Input signal : Rise time of the reverse pulse

Reverse pulse duration Duty factor

High-speed silicon diode

Fig. 8 Maximum permissible average rectified forward current as a function of the duty factor (pulse operated).

Fig. 9 Maximum permissible repetitive peak forward current as a function of the duty factor (pulse operated).

BAW62

Fig. 10 Maximum permissible average rectified forward current.

Fig. 12 Forward current as a function forward voltage. $-\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$.

Fig. 11 Maximum permissible continuous forward current.

Fig. 13 Typical values forward voltage as a function of junction temperature.

SILICON PLANAR EPITAXIAL CONTROLLED-AVALANCHE DIODE

Diode in a DO- 35 envelope primarily intended for switching inductive loads in semi-electronic telephone exchanges.

QUICK REFERENCE DATA				
Repetitive peak forward current	$\mathrm{I}_{\text {FRM }}$	max.		A
Repetitive peak reverse energy $t_{p} \geq 50 \mu \mathrm{~s} ; \mathrm{f} \leq 20 \mathrm{~Hz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$E_{\text {RRM }}$	max.		mJ
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	$=0$		${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	V_{F}	$<$	1,00	V
Reverse avalanche breakdown voltage $I_{R}=100 \mu \mathrm{~A}$	$V_{(B R) R}$	120 to		V
Reverse recovery time when switched from $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$	$\mathrm{trr}_{\text {r }}$	<	50	ns

MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).

The diodes mav be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Continuous reverse voltage
$\mathrm{V}_{\mathrm{R}} \quad \max \quad 90 \mathrm{~V}$

Currents

Average rectified forward current (averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current
$\mathrm{t}=1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge
$\mathrm{t}=1 \mathrm{~s}: \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge
Repetitive peak reverse current

IF(AV)	max.	0,4	A
IF	\max.	0,4	A
IFRM	\max.	0,8	A
IFSM	max.	6,0	A
IFSM	max.	1,5	A
IRRM	max.	0,6	A

Reverse energy

Repetitive peak reverse energy
$\mathrm{t}_{\mathrm{p}} \geq 50 \mu \mathrm{~s} ; \mathrm{f} \leq 20 \mathrm{~Hz}: \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
ERRM max. 5,0 mJ

Temperatures

Storage temperature
Junction temperature

| $\mathrm{T}_{\text {stg }}$ | -65 to +200 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | ---: | ---: |
| T_{j} | max. $\quad 200$ | ${ }^{\circ} \mathrm{C}$ |

THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th } j-a}=0,38 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
From junction to ambient in free air
$\mathrm{T}_{\text {lead }}=25^{\circ} \mathrm{C}$ at 8 mm from the body
$R_{\text {th } j-a}=0,30 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$
(1) It is allowed to exceed this value as described on page 4. Care should be taken not to exceed the IRRM rating.

CHARACTERISTICS

Forward voltage

$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<0,75 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<0,84 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<00,90 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<$
$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$<00 \mathrm{~V}$
		$1,25 \mathrm{~V}$

Reverse avalanche breakdown voltage

$$
\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}
$$

$V_{(B R) R} 120$ to 175 V
Reverse current

$$
\begin{array}{lllll}
\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V} & \mathrm{I}_{\mathrm{R}} & < & 100 \mathrm{nA} \\
\mathrm{~V}_{\mathrm{R}}=90 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{R}} & < & 100 & \mu \mathrm{~A}
\end{array}
$$

Diode capacitance

$$
\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}
$$

$$
\begin{array}{llll}
\mathrm{C}_{\mathrm{d}} & \text { typ. } & 15 & \mathrm{pF} \\
& < & 35 & \mathrm{pF}
\end{array}
$$

Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=30 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$;
measured at $\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$

Test circuit and waveforms :

Fig. 2.
Input signal : Total pulse duration
Duty factor
Rise time of the reverse pulse
Reverse pulse duration
Oscilloscope: Rise time

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ($\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

Reverse voltages higher than the V_{R} ratings are allowed, provided:
a. the transient energy $\leqslant 7,5 \mathrm{~mJ}$ at $\mathrm{P}_{\mathrm{RRM}} \leqslant 30 \mathrm{~W} ; \mathrm{T}_{j}=25^{\circ} \mathrm{C}$
the transient energy $\leqslant 5 \mathrm{~mJ}$ at $\mathrm{P}_{\mathrm{RRM}} \leqslant 120 \mathrm{~W} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see Fig. 8).
b. $T \geqslant 5 \mathrm{~ms} ; \delta \leqslant 0,01$ (rectangular waveform)
$\delta \leqslant 0,02$ (triangular waveform).
With increasing temperature, the maximum permissible transient energy must be decreased by $0,03 \mathrm{~mJ} /{ }^{\circ} \mathrm{C}$.

Fig. 4.

Fig. 5.

Silicon planar epitaxial controlled-avalanche diode

Fig. $6 \mathrm{I}_{\mathrm{F}}$ as a function of V_{F} at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. $7 \mathrm{~V}_{\mathrm{F}}$ as a function of T_{j}.

Fig. 8 Maximum permissible repetitive peak reverse power as a function of the pulse duration
$\mathrm{T} \geqslant 50 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. - rectangular waveform; $\delta \leqslant 0,01$; - - - triangular waveform; $\delta \leqslant 0,02$.
(1) Limited by IRRM $=600 \mathrm{~mA}$.

Fig. 9 Typical values reverse current as a function of junction temperature at $\mathrm{V}_{\mathrm{R}}=90 \mathrm{~V}$.

SILICON OXIDE PASSIVATED DIODE

Whiskerless diode in a glass subminiature envelope.
The BAX13 is primarily intended for general purpose applications.

OUICK REFERENCE DATA

Continuous reverse voltage	V_{R}	max.	50 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50 V
Repetitive peak forward current	$I_{\text {FRM }}$	max.	150 mA
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	=	0,60 ${ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	V_{F}	<	1,0 V
```Reverse recovery time when switched from IF = 10 mA to IR = 60mA; R measured at IR = 1 mA```	$\mathrm{trr}_{\text {r }}$	$<$	4 ns
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$; $R_{L}=500 \Omega$	$\mathrm{Q}_{\text {s }}$	$<$	45 pC

MECHANICAL DATA
Dimensions in mm

DO - 35


The coloured end indicates the cathode
The diodes may be type-branded or colour coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Continuous reverse voltage
Repetitive peak reverse voltage

$V_{R}$	$\max$.	50	$V$
$V_{R R M}$	$\max$.	50	$V$

## Currents

Average rectified forward current
(averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$\mathrm{t}=1 \mu \mathrm{~S}$	$\mathrm{I}_{\mathrm{FSM}}$	$\max$.	2000	mA
$\mathrm{t}=1 \mathrm{~s}$	$\mathrm{I}_{\mathrm{FSM}}$	$\max$.	500	mA

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max. 200	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

Forward voltage

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=100{ }^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}}=75 \mathrm{~mA}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{F}}$	$<$	0,7	V	
$\mathrm{~V}_{\mathrm{F}}$	$<$	0,8	V	
$\mathrm{~V}_{\mathrm{F}}$	$<$	1,0	V	2
$\mathrm{~V}_{\mathrm{F}}$	$<$	1,53	V	$2)$

## Reverse current

$$
\begin{aligned}
\mathrm{V}_{\mathrm{R}} & =10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{R}} & =25 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =50 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{R}} & =50 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance (see also page 7)
$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}<3 \mathrm{pF}$

$\mathrm{I}_{\mathrm{R}}$	$<$	25	nA
$\mathrm{I}_{\mathrm{R}}$	$<$	10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}$	$<$	50	nA
$\mathrm{I}_{\mathrm{R}}$	$<$	200	nA
$\mathrm{I}_{\mathrm{R}}$	$<$	25	$\mu \mathrm{~A}$

[^5]2) Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward recovery voltage (see also page 7)
At $\mathrm{t}_{\mathrm{r}}>20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{fr}}$ will not exceed $\mathrm{V}_{\mathrm{F}}$ corresponding to $\mathrm{I}_{\mathrm{F}}=1$ to 75 mA
Test circuit and waveforms :


input signal


Input signal : Rise time of the forward pulse Forward current pulse duration Duty factor

Oscilloscope: Rise time
$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$
$\delta=0,01$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
$I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$

$$
\begin{aligned}
& \left.\mathbf{t r r}_{\mathrm{rr}}<6 \mathrm{~ns}^{1}\right) \\
& \mathbf{t r r r}^{2}<4 \mathrm{~ns}
\end{aligned}
$$

Test circuit and waveforms :


Input signal : Rise time of the reverse pulse Reverse pulse duration
Duty factor
Oscilloscope : Rise time

$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$
*) $I_{R}=1 \mathrm{~mA}$
$t_{p}=100 \mathrm{~ns}$
$\delta=0,05$
$\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

[^6]
## BAX13

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{s}}<45 \mathrm{pC}
$$

## Test circuit and waveform :


$\mathrm{D} 1=\mathrm{D} 2=$ BAW62

Input signal : Rise time of the reverse pulse
$\mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns}$
Reverse pulse duration
Duty factor
$\mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns}$
$\delta=0,02$
Circuit capacitance $\mathrm{C} \leq 7 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)





7206245.1




## SILICON WHISKERLESS DIODES

Whiskerless diffused silicon diodes intended for general purpose industrial applications.


Unless otherwise stated, data is applicable to both types
OUTLINE AND DIMENSIONS
Dimensions in mm
DO-35


The coloured end indicates the cathode
The diodes may be either type-branded or colour-coded.

## RATINGS

Limiting values of operation according to the absolute maximum system.
Electrical
BAX16
BAX17

$\mathrm{V}_{\mathrm{R}}$	Max. continuous reverse voltage	150	200	V
$\mathrm{V}_{\mathrm{RRM}}$	Max. repetitive peak reverse   voltage			
	150	200	V	

$L_{\text {F(AV) }} \quad \begin{aligned} & \text { Max. average forward current } \\ & \text { (averaging time }=20 \mathrm{~ms} \text { ) }\end{aligned}$ 200 mA
$I_{F}$ Max. continuous forward current 200 mA
FRM Max. repetitive peak forward current 300 mA
LFSM Max. non-repetitive peak forward current
max. duration $1.0 \mu \mathrm{~s} \quad 2500 \mathrm{~mA}$
max. duration $1.0 \mathrm{~s} \quad 500 \mathrm{~mA}$
Temperature
$\mathrm{T}_{\text {stg }}$ range
-65 to +200
$\mathrm{T}_{\mathrm{j}} \max$.
$+200$

## THERMAL CHARACTERISTIC

$\mathrm{R}_{\text {th(j-amb }}$
$0.50 \quad \operatorname{deg} \mathrm{C} / \mathrm{mW}$
ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

BAX16	BAX17
Max.	Max.

$\mathrm{V}_{\mathrm{F}} \quad$ Forward voltage

$$
\begin{aligned}
I_{F} & =1.0 \mathrm{~mA} \\
\mathrm{~L}_{\mathrm{F}} & =10 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\
\dagger \mathrm{I}_{\mathrm{F}} & =100 \mathrm{~mA} \\
\dagger \mathrm{I}_{\mathrm{F}} & =200 \mathrm{~mA} \\
{ }^{\dagger} I_{F} & =200 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{j}}=175{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
0.65 \quad 0.65 \quad \mathrm{~V}
$$

$$
0.85
$$

$$
0.75 \quad \mathrm{~V}
$$

$$
1.3^{*}
$$

1.1 V
1.5
1.2* V
1.4
1.2 V
$I_{R} \quad$ Reverse current

$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	25	25	nA
$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	25	25	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}=150 \mathrm{~V}$	$100^{*}$	$100^{*}$	nA
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$ max., $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	100	100	$\mu \mathrm{~A}$
Diode capacitance			
$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	10	10	pF

*These are the characteristics which are recommended for acceptance testing purposes.
$\dagger$ Measured under pulse conditions to prevent excessive dissipation. switched from $I_{F}=30 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ measured at $L_{R}=1.0 \mathrm{~mA}$

Test circuit


Circuit capacitance $\leq 1.0$ pF (C.R.O. + stray capacitance)
C.R.O. rise time $=0.35 \mathrm{~ns}$
$\mathrm{V}=\mathrm{V}_{\mathrm{R}}+\mathrm{I}_{\mathrm{F}} \times \mathrm{R}_{\mathrm{s}}$

Input pulse

$\mathbf{t}_{\mathbf{r}}$	Rise time	0.6	ns
$\mathbf{t}_{\mathbf{p}}$	Pulse duration	100	ns
$\mathbf{d}$	Duty cycle	0.05	

$v_{R}$


Output waveform

$Q_{s}$

## Recovered charge when

0.7* nC switched from $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$,

$$
R_{L}=500 \Omega
$$

Test circuit


Circuit capacitance $\leq 30 \mathrm{pF}$ (C. R.O. + stray capacitance)

$$
\mathrm{V}=\mathrm{V}_{\mathrm{R}}+\mathrm{I} \mathrm{~F} \times \mathrm{R}_{\mathrm{S}}
$$

Input pulse

$\mathbf{t}_{\mathbf{r}}$	Rise time	15	ns
$\mathbf{t}_{\mathbf{p}}$	Pulse duration	35	$\mu \mathrm{~s}$
$\mathbf{f}$	Frequency	25	kHz



Output waveform

$$
V_{p}=\frac{Q_{s}}{C}
$$



[^7]

CONTINUOUS FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE


AVERAGE RECTIFIED FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE


MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE


MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE


MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE


MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE


REVERSE CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE WITH REVERSE VOLTAGE AS A PARAMETER



TYPICAL FORWARD VOLTAGE PLOTTED AGAINST JUNC'IION TEMPERATURE WITH FORWARD CURRENT AS A PARAMETER

diode capacitance plotted against reverse voltage



REVERSE RECOVERY TIME PLOTTED AGAINST FORWARD CURRENT AND JUNCTION TEMPERATURE

## HIGH-SPEED SILICON DIODES

Planar epitaxial high-speed diodes in DO-35 envelopes, primarily intended for telephony applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$V_{R}$	max.	see page 2	
Forward current (d.c.; see also derating curves)	$I_{F}$	max.	100	$m A$
Repetitive peak forward current; $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} ; \delta=0.5$	IFRM	max.	450	$m A$
Non-repetitive peak forward current; $t_{p}=1 \mathrm{~s}$	IFSM	max.	500	$m A$
$t_{p}=1 \mu \mathrm{~s}$	IFSM	$\max$.	2	A
Junction temperature	$T_{j}$	max.	200	${ }^{\circ} \mathrm{C}$
Operating ambient temperature (see also derating curves)	Tamb		-65 to +175	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$		-65 to +200	${ }^{\circ} \mathrm{C}$
MECHANICAL DATA			Dimensio	in mm

Fig. 1 DO- 35


Diodes may be either type-branded or clour-coded.

## CHARACTERISTICS

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise stated
For design and use purposes - these limits must not be exceeded.

		CV9637	CV8617	$\left\lvert\, \begin{aligned} & \text { CV7756 } \\ & \text { CV7757 } \end{aligned}\right.$	$\begin{aligned} & \text { CV7367 } \\ & \text { CV7368 } \end{aligned}$	
Reverse current $t_{\mathrm{p}}=5 \mathrm{~ms} ; \delta=0.1 ; \quad V_{R}=100 \mathrm{~V}$	IRM	-	-	-	$<100$	$\mu \mathrm{A}$
( $\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	$I_{R}^{R}$	$<0.8$	-	$<5.0$	<5.0	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{amb}}=150{ }^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	IR	-	-	-	$<100$	$\mu \mathrm{A}$
V $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	'R	-	$<125$	$<25$	$<25$	nA
$T_{\text {amb }}=100{ }^{\circ} \mathrm{C} ; \mathrm{V}_{R}=20 \mathrm{~V}$	IR	-	$<10$	$<50$	$<50$	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	$I_{R}$	-	-	$<50$	$<50$	$\mu \mathrm{A}$
Forward voltage $t_{\mathrm{D}}=300 \mu \mathrm{~s} ; \delta=0.02 ; \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$V_{F}$	<1200	-	-	-	mV
	$V_{F}$	-	<1500	-	-	mV
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	650-870	-	<1000	<1000	mV
$I_{F}=1 \mathrm{~mA}$	$V_{F}$	500-700	500-750	-	-	mV
Capacitance						
$V_{R}=0 ; f=1 \mathrm{MHz} ; C V 7756,7367$	$\mathrm{C}_{\text {tot }}$	-	-	$<4.0$	$<4.0$	pF
${ }_{R}$ CV7757, 7368	$C_{\text {tot }}$	-	-	$<2.0$	$<2.0$	pF
$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {tot }}$	<2.8	$<6.0$	-	-	pF
$\mathrm{V}_{\mathrm{R}}=1.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{CV} 7367$	$\mathrm{C}_{\text {tot }}$	-	-	-	$<2.8$	pF
CV7368	$\mathrm{C}_{\text {tot }}$	-	-	-	<1.5	pF
Reverse recovery time						
$\begin{aligned} & I_{F}=10 \mathrm{~mA} ; I_{R M}=10 \mathrm{~mA} ; \\ & \text { measured at } I_{R}=1 \mathrm{~mA} \end{aligned}$	$t_{r r}$	<5.0	-	<8.0	$<5.0$	ns
Recovered charge						
$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{t}_{\mathrm{p}}=1 \mu \mathrm{~s}$	$\mathrm{Q}_{\text {s }}$	-	<100	-	-	pC
$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \\ & \mathrm{t}_{\mathrm{r}}=5 \mathrm{~ns} ; \mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns} ; f=50 \mathrm{~Hz} \end{aligned}$	$\mathrm{O}_{\mathrm{s}}$	$<75$	-	-	-	pC
Forward recovery voltage						
$I_{F}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=2 \mathrm{~ns} ;$ $\mathrm{t}_{\mathrm{n}}=100 \mathrm{~ns}: \stackrel{f}{f}=100 \mathrm{kHz}$	$V_{\text {fr }}$	-	-	-	<5.0	v



Fig. 2 Maximum allowable continuous forward current versus ambient temperature.


Fig. 3 Maximum allowable continuous forward current versus ambient temperature.

## SILICON AVALANCHE DIODE

Silicon avalanche diode in a DO-35 glass envelope, intended for telephony applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)
Continuous reverse voltage
Repetitive peak reverse voltage
Forward current (d.c.; see also derating curve, Fig. 2)
Repetitive peak forward current;
$t_{p} \leqslant 10 \mathrm{~ms} ; \delta \leqslant 0.2$
Repetitive peak reverse power dissipation
(see also derating curve, Fig. 3)
Junction temperature
Operating ambient temperature
Storage temperature

$V_{R}$	max.	150	$V$
$V_{R R M}$	max.	see note	
$I_{F}$	max.	150	mA
$I_{\text {FRM }}$	max.	750	mA
$P_{R R M}$	max.	60	W
$T_{j}$	max.	100	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	-55 to +100	${ }^{\circ} \mathrm{C}$	
$T_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$	

Note: The repetitive peak reverse voltage may be higher than $V_{R}$, provided the allowed peak reverse power dissipation will not be exceeded.

## MECHANICAL DATA <br> Dimensions in mm

Fig. 1 DO-35


Diodes may be either type-branded or colour-coded.

## THERMAL CHARACTERISTIC

Thermal resistance, junction to ambient
$R_{\text {th j-a }}=0.38 \quad 0^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise stated.
Reverse current

$$
\begin{aligned}
& \mathrm{V}_{R}=150 \mathrm{~V} \\
& \mathrm{~V}_{R}=150 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$I_{R}$
$I_{R}$
$<\quad 100$
nA

Forward voltage

$$
\begin{aligned}
& I_{F}=100 \mathrm{~mA} ; \mathrm{t}_{p}=300 \mu \mathrm{~s} ; \delta \leqslant 0.02 \\
& I_{F}=15 \mathrm{~mA} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \delta \leqslant 0.02 \\
& I_{F}=0.1 \mathrm{~mA}
\end{aligned}
$$

Capacitance

$$
V_{R}=1 \mathrm{~V} ; f=1 \mathrm{MHz}
$$

$C_{\text {tot }}$
$<\quad 35$
pF


Fig. 2 Maximum allowable continuous forward current versus ambient temperature.


Fig. 3 Maximum repetitive peak reverse power dissipation versus conduction time of the diode; $T_{\text {amb }}=0$ to $+55^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{F}}=0$; pulse repetition frequency is such that mean reverse power does not exceed 100 mW .


## PLANAR EPITAXIAL SILICON DIODE

Planar epitaxial diode in a DO-35 envelope, primarily intended for telephony applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Continuous reverse voltage (see also derating curve, Fig. 3)
Repetitive peak reverse voltage
Forward current (d.c.; see also derating curve, Fig. 2)
Repetitive peak forward current ( $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} ; \delta=0.5$ )
Junction temperature
Operating ambient temperature
Storage temperature
MECHANICAL DATA

$V_{R}$	max.	150	$V$
$V_{R R M}$	$\max$.	150	$V$
$I_{F}$	$\max$.	150	mA
$I_{F R M}$	$\max$.	625	mA
$T_{j}$	$\max$.	150	$o_{\mathrm{C}}$
$\mathrm{T}_{\text {amb }}$	-55 to +150	$o_{\mathrm{C}}$	
$T_{\text {stg }}$	-55 to +150	$o_{\mathrm{C}}$	

Dimensions in mm

Fig. 1 DO-35


Diodes may be either type-branded or colour-coded.

## THERMAL CHARACTERISTIC

Thermal resistance, junction to ambient
$R_{\text {th j-a }}=375 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise stated
Reverse current
$V_{R}=150 \mathrm{~V}$
$V_{R}=150 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$
Forward voltage
$I_{F}=100 \mathrm{~mA} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \delta=0.02$
$I_{F}=15 \mathrm{~mA}$
$I_{F}=0.1 \mathrm{~mA}$

$I_{R}$	$<$	0.1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}$	$<$	5.0	$\mu \mathrm{~A}$
$V_{F}$	$<$	1.2	V
$V_{F}$	$>$	0.65	V
$\mathrm{~V}_{\mathrm{F}}$	$<$	0.75	V

Capacitance
$V_{R}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {tot }}<10 \quad \mathrm{pF}$


Fig. 2 Maximum allowable continuous forward current versus ambient temperature.


Fig. 3 Maximum allowable continuous reverse voltage versus ambient temperature.

## HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in DO-35 envelope, primarily intended for telephony applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)
Continuous reverse voltage
Forward current (d.c.; see also derating curve)

$V_{R}$	$\max$	65	$V$
$I_{F}$	$\max$.	200	$m A$

Repetitive peak forward current

$$
t_{p}=100 \mu \mathrm{~s} ; \delta=0.1
$$

IFRM
max. 750 mA
Non-repetitive peak forward current; $\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$
Junction temperature
Operating ambient temperature (see also derating curve)
Storage temperature
IFSM
$T_{j}$
$\max \quad 15 \quad A$
max. $150 \quad{ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$
$T_{\text {stg }}$

## MECHANICAL DATA

0 to 150	${ }^{\circ} \mathrm{C}$
0 to 150	${ }^{\circ} \mathrm{C}$

Dimensions in mm
Fig. 1 DO-35


Diodes may be either type-branded or colour-coded.

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise stated
Reverse current

$$
\begin{aligned}
& V_{R}=65 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=65 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{R}}=50 \mathrm{~V}
\end{aligned}
$$

Forward voltage

$$
\begin{aligned}
& I_{F}=500 \mathrm{~mA} ; t_{p}=300 \mu \mathrm{~s} ; \delta \leqslant 0.02 \\
& I_{F}=200 \mathrm{~mA} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \delta \leqslant 0.02 \\
& I_{F}=200 \mathrm{~mA} \\
& I_{F}=30 \mathrm{~mA} \\
& I_{F}=1 \mathrm{~mA}
\end{aligned}
$$

$I_{R}$	$<$	10	$\mu \mathrm{~A}$
$I_{R}$	$<$	50	$\mu \mathrm{~A}$
$I_{R}$	$<$	0.1	$\mu \mathrm{~A}$
$V_{F}$	$900-1200$	mV	
$V_{F}$	$750-950$	mV	
$V_{F}$	$<$	900	mV
$V_{F}$	$<$	790	mV
$V_{F}$	$500-700$	mV	

## Capacitance <br> $$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

$C_{\text {tot }}<15 \quad \mathrm{pF}$
Reverse recovery time
$I_{F}=200 \mathrm{~mA} ; I_{R M}=200 \mathrm{~mA} ;$
measured at $I_{R}=20 \mathrm{~mA}$
$t_{r r}<\quad 70$
ns


Fig. 2 Maximum allowable continuous forward current versus ambient temperature.

## SILICON DIODES

Silicon general purpose diodes in all-glass DO-35 envelopes.
QUICK REFERENCE DATA


Fig. 1 SOD-27 (DO-35).


The diodes are type-branded; the cathode being indicated by a coloured band.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$\begin{aligned} & V_{R} \\ & V_{R} \end{aligned}$	max. max.	$\begin{array}{r} 50 \\ 150 \end{array}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
			$\mathrm{b}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$	
Average rectified forward current (averaged over any 20 ms period)	$I^{\prime}(\mathrm{AV})$	max.	160	48	mA
Average forward current for sinusoidal operation	$I^{\prime}$ ( $\left.A V\right)$	max.	80	40	mA
Forward current (d.c.; see page 4)	$I_{\text {F }}$	max.	160	48	mA
Repetitive peak forward current	IFRM	max.	250	125	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +1		${ }^{\circ} \mathrm{C}$
Operating junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.			${ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE					
From junction to ambient in free air	$R_{\text {th } \mathrm{j}-\mathrm{a}}$	=		4	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

			$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$	
Forward voltage $I_{F}=0,1 \mathrm{~mA}$	$V_{F}$	typ. $<$	$\begin{aligned} & 0,52 \\ & 0,62 \end{aligned}$	$0, \overline{30}$	v
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,80 \\ & 0,96 \end{aligned}$	0,65	v
$I_{F}=30 \mathrm{~mA}$	$V_{F}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,90 \\ & 1,15 \end{aligned}$	0,80	V
Reverse current $\begin{equation*} V_{R}=V_{R \max } \tag{OA200} \end{equation*}$	$I^{\prime}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,02 \\ & 0,10 \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
OA202	${ }^{\prime} \mathrm{R}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,01 \\ & 0,10 \end{aligned}$	$\begin{array}{r} 0,5 \\ 10 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Diode capacitance at $T_{a m b}=25^{\circ} \mathrm{C}$ $V_{R}=0,75 \mathrm{~V} ; f=0,5 \mathrm{MHz}$	$C_{d}$	$\stackrel{\text { typ. }}{<}$		10	pF pF

CHARACTERISTICS (continued)
$T_{\text {amb }}=25^{\circ} \mathrm{C}$
Reverse recovery current when switched from
$I_{F}=5 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2,5 \mathrm{k} \Omega$;
measured at $\mathrm{t}_{\mathrm{rr}}=3,5 \mu \mathrm{~s}$
measured at $\mathrm{t}_{\mathrm{rr}}=10 \mu \mathrm{~s}$
Reverse recovery current when switched from
$I_{F}=30 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=35 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2,5 \mathrm{k} \Omega$
measured at $\mathrm{t}_{\mathrm{rr}}=3,5 \mu \mathrm{~s}$
measured at $\mathrm{t}_{\mathrm{rr}}=10 \mu \mathrm{~s}$
$I_{R}$ typ. $\quad 1,2 \mathrm{~mA}$
$I_{R} \quad$ typ. $\quad 35 \mu \mathrm{~A}$
$I_{R}$ typ. $\quad 4 \mathrm{~mA}$
$I_{R} \quad$ typ. $\quad 230 \mu \mathrm{~A}$


Fig. 2 Waveforms.


Fig. 3.



## HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	100 V
Repetitive peak forward current	IFRM	max.	225 mA
Forward voltage $I_{F}=10 \mathrm{~mA}$	$V_{F}$	<	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	${ }_{\text {tr }}$	<	4 ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-27 (DO-35).


The diodes may be either type-branded or colour-coded.

Products approved to CECC 50001-21 available on request.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Continuous reverse voltage
Repetitive peak reverse voltage
Average rectified forward current
(averaged over any 20 ms period)
$T_{a m b}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}=150^{\circ} \mathrm{C}$
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current ( $\mathrm{t}=1 \mathrm{~s}$ )
Total power dissipation
Storage temperature
Operating ambient temperature

$V_{R}$	$\max$.	75 V
$V_{\text {RRM }}$	$\max$.	100 V

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltages

$$
I_{F}=10 \mathrm{~mA}
$$

$\mathrm{V}_{\mathrm{F}}<1 \mathrm{~V}$

Reverse avalanche breakdown voltage

$$
I_{\mathrm{R}}=100 \mu \mathrm{~A}
$$

Reverse currents
$V_{R}=20 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$

${ }^{1} \mathrm{~F}(\mathrm{AV})$	max.	75 mA
$I^{\prime}(A V)$	max.	10 mA
$I_{\text {F }}$	max.	75 mA
$I_{\text {FRM }}$	max.	225 mA
IFSM	max.	500 mA
$P_{\text {tot }}$	max.	250 mW
$\mathrm{T}_{\text {stg }}$	-65 to	$200{ }^{\circ} \mathrm{C}$
Tamb	-65 t	${ }_{175}{ }^{\circ} \mathrm{C}$

Diode capacitance
$V_{R}=0 ; f=1 M H z$
1N914
1N916
Forward recovery voltage
when switched to $I_{F}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$

$\mathrm{C}_{\mathrm{d}}$	$<$	4 pF
$\mathrm{C}_{\mathrm{d}}$	$<$	2 pF
$\mathrm{V}_{\mathrm{fr}}$	$<$	$2,5 \mathrm{~V}$





Fig. 2 Test circuit and waveforms forward recovery voltage. Input signal: Rise time of the forward pulse, $t_{r}=20 \mathrm{~ns}$; forward current pulse duration, $t_{p}=120 \mathrm{~ns}$; duty factor, $d=0,01$. Oscilloscope rise time, $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$. Circuit capacitance $<1 \mathrm{pF}$ (oscilloscope input capacitance and parasitic capacitance).

> Reverse recovery time
> when switched from
> $I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA}, R_{L}=100 \Omega$, measured at $I_{R}=1 \mathrm{~mA}$
> $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}, R_{L}=100 \Omega$, measured at $I_{R}=1 \mathrm{~mA}$

	1N914	1N916	
$\mathrm{t}_{\mathrm{rr}}$	8	-	ns
$\mathrm{t}_{\mathrm{rr}}$	4	4	ns




Fig. 3 Test circuit and waveform reverse recovery time. Input signal: Rise time of the reverse pulse, $t_{r}=0,6 \mathrm{~ns}$; reverse pulse duration, $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$; duty factor, $d=0,05$. Oscilloscope rise time, $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$. Circuit capacitance $<1 \mathrm{pF}$ (oscilloscope input capacitance + parasitic capacitance).
Rectifying efficiency
$f=100 \mathrm{MHz} ; V_{i(r m s)}=2 \mathrm{~V} \quad \eta \quad 75 \%$


Fig. 4 Test circuit. $\eta=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}(\mathrm{rms}) \sqrt{2}}}$

## HIGH-SPEED SILICON DIODES

Whiskerless diodes in subminiature DO-35 envelopes.
These diodes are primarily intended for fast logic applications.
QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	75 V
Repetitive peak forward current	IFRM	max.	450 mA
Forward voltage $1 \mathrm{~N} 4148: I_{F}=10 \mathrm{~mA}$			
1N4446: $I_{F}=20 \mathrm{~mA}$   1N4448: $I_{F}=100 \mathrm{~mA}$	$V_{F}$	<	1 V
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=60 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$	$t_{r r}$	<	4 ns

Fig. 1 SOD-27 (DO-35).


1N4148:	yellow	brown	yellow	grey
1N4446:	yellow	yellow	yellow	blue
1N4448:	yellow   (cathode)	yellow	yellow	grey

The diodes may be either type-branded or colour-coded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Repetitive peak reverse voltage
Average rectified forward current
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
\begin{aligned}
& t=1 \mu \mathrm{~s} \\
& \mathrm{t}=1 \mathrm{~s}
\end{aligned}
$$

Total power dissipation up to $T_{a m b}=25^{\circ} \mathrm{C}$
Derating factor
Storage temperature
Junction temperature
$V_{R} \quad \max \quad 75 \mathrm{~V}$
$V_{R R M} \max .75 \mathrm{~V}$
$I_{F}(A V)$ max. 150 mA
IF
IFRM

IFSM
IFSM
$P_{\text {tot }}$
$\mathrm{T}_{\mathrm{stg}}$
Tj

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltages
1N4148: $I_{F}=10 \mathrm{~mA}$
1N4446: $I_{F}=20 \mathrm{~mA}$
1N4448: $I_{F}=100 \mathrm{~mA}$
1N4448: $I_{F}=5 \mathrm{~mA}$
Reverse avalanche breakdown voltage

$$
\begin{aligned}
& I_{R}=100 \mu \mathrm{~A} \\
& I_{R}=5 \mu \mathrm{~A}
\end{aligned}
$$

Reverse currents
$V_{R}=20 \mathrm{~V}$
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$
1 N4448

Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$
$V_{F}$
$V_{F} \quad 0,62$ to $0,72 \mathrm{~V}$
$V_{(B R) R}>100 \mathrm{~V}$

$$
V_{(B R) R}>\quad 75 \mathrm{~V}
$$

$$
I_{R} \quad<\quad 25 n A
$$

$I_{R}<$
$<$
$50 \mu \mathrm{~A}$

4 pF

## CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Forward recovery voltage when switched to

$$
\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns} \quad \mathrm{~V}_{\mathrm{fr}}<2,5 \mathrm{~V}
$$

Test circuit and waveforms:


Input signal : Rise time of the forward pulse
Forward current pulse duration
Duty factor
$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$
$\delta=0,01$

Oscilloscope: R ise time
$\mathrm{t}_{\mathbf{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $C \leq 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=60 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ;$
measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
$\operatorname{trr}<4 \mathrm{~ns}$
Test circuit and waveforms:


$\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$

output signal
*) $I_{R}=1 \mathrm{~mA}$

Input signal : Rise time of the reverse pulse
Reverse pulse duration
Duty factor
Oscilloscope: Rise time

Circuit capacitance $\mathrm{C} \leq 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)

## VOLTAGE REGULATOR DIODES <br> (Low power)

$\square$
ninn

## LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in DO-35 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

## QUICK REFERENCE DATA

Repetitive peak forward current	$I_{F R M}$	max. $\quad 250 \mathrm{~mA}$	
Storage temperature	$T_{\text {stg }}$	-65 to $+200{ }^{\circ} \mathrm{C}$	
Junction temperature	$T_{j}$	max. $200{ }^{\circ} \mathrm{C}$	
Thermal resistance from junction to ambient	$R_{\text {th } j \text { ja }}$	$=$	$0,38{ }^{\circ} \mathrm{C} / \mathrm{mW}$
Forward voltage			
$I_{F}=0,1 \mathrm{~mA}$	$V_{F}$	610 to 690 mV	
$I_{F}=1,0 \mathrm{~mA}$	$V_{F}$	680 to 760 mV	
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	750 to 830 mV	
$I_{F}=100 \mathrm{~mA}$	$V_{F}$	870 to 960 mV	
Diode capacitance			
$V_{R}=0 ; f=1 \mathrm{MHz}$	$C_{d}$	$<$	140 pF

## MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-35 (SOD-27).


The diodes may be either type-branded or colour-coded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current
Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=0,1 \mathrm{~mA} \\
& I_{F}=1,0 \mathrm{~mA} \\
& I_{F}=5,0 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=100 \mathrm{~mA}
\end{aligned}
$$

Reverse current

$$
V_{R}=4 V
$$

Temperature coefficient

$$
I_{F}=1 \mathrm{~mA}
$$

Differential resistance at $f=1 \mathrm{kHz}$

$$
I_{F}=1 \mathrm{~mA}
$$

$I_{F}=10 \mathrm{~mA}$

## Diode capacitance

$$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

IFRM
$\mathrm{T}_{\mathrm{stg}}$
$\mathrm{T}_{\mathrm{j}}$
$R_{\text {th j-a }}$
max. $\quad 250 \mathrm{~mA}$
-65 to $+200^{\circ} \mathrm{C}$
$\max \quad 200^{\circ} \mathrm{C}$
$=0,38{ }^{\circ} \mathrm{C} / \mathrm{mW}$


## REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diode in medium power regulation and transient suppres sion circuits.
The series consists of BZT03-C9V 1 to BZT03-C270.

## QUICK REFERENCE DATA

			voltage regulator	transient suppressor	
Working voltage range	$v_{Z}$	nom.	9,1 to 270		V
Stand-off voltage	$V_{\text {R }}$			7,5 to 220	$v$
Total power dissipation	$P_{\text {tot }}$	max.	3,25		w
Non-repetitive peak reverse power dissipation $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$	PZSM	max.		600	W

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded

## BZTO3 SERIES

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Total power dissipation

$\mathrm{T}_{\text {tp }}=25^{\circ} \mathrm{C}$; lead length 10 mm	$P_{\text {tot }}$	max.	3.25 W
$\mathrm{T}_{\text {amb }}=45^{\circ} \mathrm{C}$; p.c.b. mounting (Fig. 2)	$P_{\text {tot }}$	max.	1,3 W
Repetitive peak reverse power dissipation	PZRM	max.	10 W
Non-repetitive peak reverse power dissipation $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$ square pulse; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (prior to surge)	$P_{\text {ZSM }}$	max.	600 W
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to	+175 ${ }^{\circ} \mathrm{C}$
Junction temperature	Ti	max.	$175{ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

Influence of mounting method (see also page 6, operating notes)

1. Thermal resistance from junction to tie-point at a lead length of 10 mm $R_{\text {th j-tp }}=46 \mathrm{~K} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

Fonward voltage
$I_{F}=0,5 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$V_{F}$
$1,2 \mathrm{~V}$


Fig. 3 Maximum total power dissipation as a function of temperature.


Fig. 4 Typical forward voltage drop $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$.


Fig. 5 Maximum non-repetitive peak reverse power dissipation; square current pulse; $T_{j}=25^{\circ} \mathrm{C}$ prior to surge.

CHARACTERISTICS when used as voltage regulator diodes; $T_{j}=25^{\circ} \mathrm{C}$

$\begin{aligned} & \text { BZTO3- } \\ & \text { XXXX } \end{aligned}$	working voltage $\mathrm{V}_{\mathrm{Z}}$			differential resistance $r_{\text {diff }}$ $\Omega$		temperature coefficient $S_{Z}$$\% / K$		test current IZ   mA	```reverse current IR \muA```	reverse voltage $V_{R}$   V.
	min.	typ.	max.	typ.	max.	min.	max.		max.	
C9V1	8,5	9,1	9,6	2	4	0,03	0,08	50	10	6,8
C10	9,4	10,0	10,6	2	4	0,05	0,09	50	5	7,5
C11	10,4	11,0	11,6	4	7	0,05	0,10	50	4	8,2
C12	11,4	12,0	12,7	4	7	0,05	0,10	50	3	9,1
C13	12,4	13,0	14,1	5	10	0,05	0,10	50	2	10
C15	13,8	15,0	15,6	5	10	0,05	0,10	50	1	11
C16	15,3	16,0	17,1	6	15	0,06	0,11	25	1	12
C18	16,8	18,0	19,1	6	15	0,06	0,11	25	1	13
C20	18,8	20,0	21,2	6	15	0,06	0,11	25	1	15
C22	20,8	22,0	23,3	6	15	0,06	0,11	25	1	16
C24	22,8	24,0	25,6	7	15	0,06	0,11	25	1	18
C27	25,1	27,0	28,9	7	15	0,06	0,11	25	1	20
C30	28	30	32	8	15	0,06	0,11	25	1	22
C33	31	33	35	8	15	0,06	0.11	25	1	24
C36	34	36	38	21	40	0,06	0,11	10	1	27
C39	37	39	41	21	40	0,06	0,11	10	1	30
C43	40	43	46	24	45	0,07	0,12	10	1	33
C47	44	47	50	24	45	0,07	0,12	10	1	36
C51	48	51	54	25	60	0,07	0,12	10	1	39
C56	52	56	60	25	60	0,07	0,12	10	1	43
C62	58	62	66	25	80	0,08	0,13	10	1	47
C68	64	68	72	25	80	0,08	0,13	10	1	51
C75	70	75	79	30	100	0,08	0,13	10	1	56
C82	77	82	87	30	100	0,08	0,13	10	1	62
C91	85	91	96	60	200	0,09	0,13	5	1	68
C100	94	100	106	60	200	0,09	0,13	5	1	75
C110	104	110	116	80	250	0,09	0,13	5	1	82
C120	114	120	127	80	250	0,09	0,13	5	1	91
C130	124	130	141	110	300	0,09	0,13	5	1	100
C150	138	150	156	130	300	0,09	0,13	5	1	110
C160	153	160	171	150	350	0,09	0,13	5	1	120
C180	168	180	191	180	400	0,09	0,13	5	1	130
C200	188	200	212	200	500	0,09	0,13	5	1	150
C220	208	220	233	350	750	0,09	0,13	2	1	160
C240	228	240	256	400	850	0,09	0,13	2	1	180
C270	251	270	289	450	1000	0,09	0,13	2	1	200

CHARACTERISTICS when used as transient suppressor diodes; $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$

clamping voltage $t_{p}=500 \mu \mathrm{~s}$ exp. pulse	non-repetitive peak reverse current	reverse current at recommended stand-off voltage		$\begin{gathered} \text { BZTO3- } \\ X X X X \end{gathered}$
$\underset{V}{V_{(C L) R}}$	$\begin{gathered} \mathrm{I}_{\mathrm{ASM}} \\ \hline \end{gathered}$			
max.		max.		
11,5	10	50	7,5	C9V1
12,7	10	10	8,2	C10
14,1	10	5	9,1	C11
15,5	10	5	10	C12
16,9	10	5	11	C13
19,6	10	5	12	C15
21,1	10	5	13	C16
24	10	5	15	C18
24	5	5	16	C20
27	5	5	18	C22
30	5	5	20	C24
34	5	5	22	C27
38	5	5	24	C30
43	5	5	27	C33
48	5	5	30	C36
47	2	5	33	C39
53	2	5	36	C43
59	2	5	39	C47
64	2	5	43	C51
72	2	5	47	C56
80	2	5	51	C62
89	2	5	56	C68
97	2	5	62	C75
108	2	5	68	C82
121	2	5	75	C91
120	1	5	82	C100
135	1	5	91	C110
150	1	5	100	C120
165	1	5	110	C130
194	1	5	120	C150
209	1	5	130	C160
240	1	5	150	C180
240	0,5	5	160	C200
271	0,5	5	180	C220
300	0.5	5	200	C240
343	0,5	5	220	C270

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 6 Thermal model.
By using this thermal model any temperature can be calculated.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal   resistance	lead length					unit
	5	10	15	20	25	mm
$R_{\text {the-tp }}$	15	30	45	60	75	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	580	445	350	290	245	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $45 \mathrm{~K} / \mathrm{W}$.

## LOW VOLTAGE STABISTORS

Silicon planar integrated voltage regulator diodes, intended for low power clipping, level shifting, voltage regulation and temperature stabilization of transistor base-emitter biasing network. The stabistors operate in the forward mode thus the cathode must be adjacent to the negative connection.

## QUICK REFERENCE DATA

Regulation voltage ranges	$V_{F}$	BZV46-1V5		$\frac{2 \mathrm{VO}}{2,00}$	
		$\rangle$	1,35 1,55	$\begin{aligned} & 2,00 \\ & 2,30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Continuous reverse voltage	$V_{R}$	max.	4	4	$V$
Repetitive peak forward current	IFRM	max.	120	80	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	250	250	mW
Differential resistance $I_{F}=5 \mathrm{~mA} ; f=1 \mathrm{kHz}$	「diff	$<$	20	30	$\Omega$

Fig. 1 SOD-27 (DO-35).


Cathode indicated by coloured end.
The diodes are type-branded

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BZV46-1V5		2V0	
Continuous reverse voltage	$V_{R}$	max.	4	4	$v$
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	4	4	$\checkmark$
Repetitive peak forward current	IfRM	max.	120	80	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.			mW
Storage temperature	$\mathrm{T}_{\text {stg }}$			+ 150	${ }^{\circ} \mathrm{C}$
Junction temperature	T ${ }_{\text {j }}$	max.			${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air
see Fig. 2


Fig. 2 Thermal resistance as a function of the lead length for various mounting.

curve	mounting
1	Infinite heatsink at end of lead.
2	Typical printed-circuit board with large area of copper $\left(>100 \mathrm{~mm}^{2}\right)$.
3	Tag mounting.
4	Typical printed-circuit board with small area of copper $\left(<50 \mathrm{~mm}^{2}\right)$.

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Regulation voltage ranges$I_{F}=5 \mathrm{~mA}$	$V_{F}$	BZV46-1V5		2vo	
		$>$	$\begin{aligned} & 1,35 \\ & 1,55 \end{aligned}$	2,00	$\begin{aligned} & v \\ & v \end{aligned}$
Temperature coefficient at $I_{F}=5 \mathrm{~mA}$	$\mathrm{S}_{F}$	typ.	-3,65	-5,60	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Differential resistance at $f=1 \mathrm{kHz} ; 1_{F}=5 \mathrm{~mA}$	rdiff	<	20	30	$\Omega$
Reverse current $V_{R}=4 V$	1 R	<	500	500	nA



Fig. 3 Typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 4 Regulation characteristics at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

## VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed D0-41 glass envelopes intended for stabilization purposes. The series covers the normalized $\mathrm{E} 24( \pm 5 \%)$ range of nominal working voltages ranging from 3.6 V to 75 V .

## QUICK REFERENCE DATA

Working voltage range	$V_{2}$	nom.	3.6 to 75 V
Total power dissipation	$P_{\text {tot }}$	max.	1.3 W*
Non-repetitive peak reverse power dissipation $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$P_{\text {ZSM }}$	max.	60 W
Junction temperature	$\mathrm{T}_{j}$	max.	$200{ }^{\circ} \mathrm{C}$
Thermal resistance from junction to tie-point	$\mathrm{R}_{\text {th j-tp }}$	=	$110{ }^{\circ} \mathrm{C} / \mathrm{W}^{*}$

* If leads are kept at $T_{t p}=55^{\circ} \mathrm{C}$ at 4 mm from body.


## MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-41 (SOD-66).


Cathode indicated by coloured band.
The diodes are type-branded

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)
Working current (d.c.)
Non-repetitive peak reverse current

$$
t_{p}=10 \mathrm{~ms} \text {; half sine-wave; } T_{a m b}=25^{\circ} \mathrm{C}
$$

Repetitive peak forward current
Total power dissipation (see also Fig.2)
Non-repetitive peak reverse power dissipation

$$
t_{p}=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Storage temperature
Junction temperature
$I_{2}$

IZSM
IFRM
$P_{\text {tot }}$
$P_{\text {ZSM }}$
$\mathrm{T}_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$
limited by $\mathrm{P}_{\text {tot }}$ max
see table below

max.	250	mA
max.	1.30	$\mathrm{~W}^{*}$
max.	1	$\mathrm{~W}^{* *}$

max. $60 \quad W$
-65 to $+200 \quad{ }^{\circ} \mathrm{C}$
$\max \quad 200 \quad{ }^{\circ} \mathrm{C}$

	BZV85-...	Non-repetitive peak reverse current $\operatorname{IZSM}(\mathrm{mA})$ max.	BZV85-...	Non-repetitive peak reverse current $\operatorname{IZSM}(\mathrm{mA})$   max.
$\checkmark$	C3V6	2000	C18	600
	C3V9	1950	C20	540
$\cdots$	C4V3	1850	C22	500
$\cdots$	C4V7	1800	C24	450
	C5V1	1750	C27	400
	C5V6	1700	C30	380
	C6V2	1620	C33	350
	C6V8	1550	C36	320
	C7V5	1500	C39	296
	c8V2	1400	C43	270
	c9V1	1340	C47	246
	C10	1200	C51	226
	C11	1100	C56	208
	C12	1000	C62	186
	C13	900	C68	171
	$\begin{aligned} & \text { C15 } \\ & \text { C16 } \end{aligned}$	$\begin{aligned} & 760 \\ & 700 \end{aligned}$	C75	161

## THERMAL RESISTANCE

From junction to tie-point
From junction to ambient
mounted on a printed-circuit board

$R_{\text {th } j-t p}$	$=$	110	${ }^{\circ} \mathrm{C} / W^{*}$
$R_{\text {th } j-a}$	$=$	175	${ }^{\circ} \mathrm{C} / W^{* *}$

* If the temperature of the leads at 4 mm from the body are kept up to $T_{\text {tp }}=55^{\circ} \mathrm{C}$.
** Measured in still air up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and mounted on printed-circuit board with lead length of 10 mm and print copper area of $1 \mathrm{~cm}^{2}$ per lead.


## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=50 \mathrm{~mA}$

	working voltage$\begin{gathered} \text { E24 ( } \pm 5 \%) \\ V_{Z}(V) \\ \text { at } l_{\text {Ztest }} \end{gathered}$			test current $I_{\text {Ztest }}(\mathrm{mA})$	differential resistance   $r_{\text {diff }}(\Omega)$   at IZtest	temp   coe   $\mathrm{S}_{\mathrm{Z}}($   at 1	ature ient $/^{\circ} \mathrm{C}$ )   st	reverse current $I_{R}(n A)$ at $V_{R}$	test voltage $V_{R}$ (V)
BZV85-....	min.	nom.	max.		max.	min.	max.	max.	
C3v6	3.4	3.6	3.8	60	15		-2.4	50000	1.0
C3V9	3.7	3.9	4.1	60	15		-2.2	10000	1.0
C4V3	4.0	4.3	4.6	50	13		-1.4	5000	1.0
C4V7	4.4	4.7	5.0	45	13		-0.7	3000	1.0
C5V1	4.8	5.1	5.4	45	10	-0.5	2.2	3000	2.0
C5V6	5.2	5.6	6.0	45	7	0	2.7	2000	2.0
C6V2	5.8	6.2	6.6	35	4	0.6	3.6	2000	3.0
C6V8	6.4	6.8	7.2	35	3.5	1.3	4.3	2000	4.0
C7V5	7.0	7.5	7.9	35	3	2.5	5.5	1000	4.5
C8V2	7.7	8.2	8.7	25	5	3.1	6.1	700	5.0
C9V1	8.5	9.1	9.6	25	5	3.8	7.2	700	6.5
C10	9.4	10	10.6	25	8	4.7	8.5	200	7.0
C11	10.4	11	11.6	20	10	5.3	9.3	200	7.7
C12	11.4	12	12.7	20	10	6.3	10.8	200	8.4
C13	12.4	13	14.1	20	10	7.4	12.0	200	9.1
C15	13.8	15	15.6	15	15	8.9	13.6	50	10.5
C16	15.3	16	17.1	15	15	10.7	15.4	50	11.0
C18	16.8	18	19.1	15	20	11.8	17.1	50	12.5
C20	18.8	20	21.2	10	24	13.6	19.1	50	14.0
C22	20.8	22	23.3	10	25	16.6	22.1	50	15.5
C24	22.8	24	25.6	10	30	18.3	24.3	50	17
C27	25.1	27	28.9	8	40	20.1	27.5	50	19
C30	28	30	32	8	45	22.4	32.0	50	21
C33	31	33	35	8	45	24.8	35.0	50	23
C36	34	36	38	8	50	27.2	39.9	50	25
C39	37	39	41	6	60	29.6	43.0	50	27
C43	40	43	46	6	75	34.0	48.3	50	30
C47	44	47	50	4	100	37.4	52.5	50	33
C51	48	51	54	4	125	40.8	56.5	50	36
C56	52	56	60	4	150	46.8	63.0	50	39
C62	58	62	66	4	175	52.2	72.5	50	43
C68	64	68	72	4	200	60.5	81.0	50	48
C75	70	75	80	4	225	66.5	88.0	50	53




Fig. 2 Maximum permissible power dissipation versus ambient temperature.



Fig. 3 Thermal resistance versus lead length.

## Mounting methods (see Figs 2 and 3)

1. To tie-points (lead length $=4 \mathrm{~mm}$ in Fig. 2).
2. Mounted on a printed-circuit board (with lead length of 10 mm in Fig. 2) and print copper area of $1 \mathrm{~cm}^{2}$ per lead.

Fig. 4 Half sine-wave; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.


Fig. 5 Thermal impedance from junction to tie-point with a lead length of 4 mm .

## BZV85 SERIES



Fig. 6 Static characteristics; typical values; $T_{a m b}=25^{\circ} \mathrm{C}$.


Fig. 7 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 8 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.


Fig. 9 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

## BZV85 SERIES



Fig. 10 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.


Fig. 11 Dynamic characteristics; typical values; $T_{j}=25^{\circ} \mathrm{C}$.


Fig. 12 Typical values.


Fig. $13 \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.


Fig. $14 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$; typical values.
For types above $7,5 \mathrm{~V}$ the temperature coefficient is independent of current and can be read from the table on page 3.


Fig. $15 \mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\text {Ztest }} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.


Fig. $16 \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; typical values.

## REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diodes in medium power regulation and transient suppression circuits.
The series consists of the following types: BZW03-C7V5 to BZW03-C270 with a tolerance of $\pm 5 \%$ (international standard E24).

## QUICK REFERENCE DATA

			voltage regulator	transient suppressor	
Working voltage range	$v_{Z}$	nom.	7.5 to 270		v
Stand-off voltage	$V_{R}$			6.2 to 220	V
Total power dissipation	$P_{\text {tot }}$	max.	6		W
Non-repetitive peak reverse power dissipation $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$	$P_{\text {RSM }}$	max.		1000	W

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64


The marking band indicates the cathode.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)
Total power dissipation
$T_{t p}=25^{\circ} \mathrm{C} ;$ lead length 10 mm
$T_{\mathrm{amb}}=45^{\circ} \mathrm{C}$; p.c.b. mounting (Fig.2)

Repetitive peak reverse power dissipation
Non-repetitive peak reverse power dissipation
$t_{p}=100 \mu \mathrm{~s}$ square pulse; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge
exponential pulse, waveform 10/1000 (Fig.3)
Non-repetitive peak reverse current
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge;
Exponential 10/1000 pulse (Fig.3)
Storage temperature
Junction temperature

$P_{\text {tot }}$	max.	6	$W$
$P_{\text {tot }}$	max.	1.75	$W$
$P_{\text {ZRM }}$	max.	20	$W$
$P_{\text {RSM }}$	max.	1000	$W$
$P_{\text {RSM }}$	max.	500	$W$

## THERMAL RESISTANCE

Influence of mounting method (see also page 6, operating notes)

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=$ 25
${ }^{\circ} \mathrm{C} / \mathrm{N}$
2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2


Fig. 2 Mounted on a printed-circuit board.


Fig. 3 Pulse waveform 10/1000.

## CHARACTERISTICS

Forward voltage

$$
I_{F}=1 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Regulator diodes


Fig. 4 Maximum total power dissipation as a function of temperature.


Fig. 5 Typical forward voltage drop $T_{j}=25^{\circ} \mathrm{C}$


Fig. 6 Maximum non-repetitive peak reverse power dissipation; square current pulse; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge.

CHARACTERISTICS when used as voltage regulator diodes; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

BZW03-	working voltage $\mathrm{V}_{\mathrm{Z}}$			differential resistance「diff $\Omega$		temperature coefficient $\mathrm{S}_{Z}$$\text { \%/ }{ }^{\circ} \mathrm{C}$		$\begin{gathered} \text { test } \\ \text { current } \\ \mathrm{I}_{\mathrm{Z}} \\ \mathrm{~mA} \end{gathered}$	reverse current ${ }^{\prime}$ R $\mu \mathrm{A}$	reverse voltage $V_{R}$ V
	min.	nom.	max.	typ.	max.	min.	max.		max.	
C7V5	7.0	7.5	7.9	0.7	1.5	0	0.07	175	1500	5.6
C8V2	7.7	8.2	8.7	0.8	1.5	0.03	0.08	150	1200	6.2
c9V1	8.5	9.1	9.6	0.9	2	0.03	0.08	150	40	6.8
C10	9.4	10.0	10.6	1	2	0.05	0.09	125	20	7.5
C11	10.4	11.0	11.6	1.1	2.5	0.05	0.10	125	15	8.2
C12	11.4	12.0	12.7	1.1	2.5	0.05	0.10	100	10	9.1
C13	12.4	13.0	14.1	1.2	2.5	0.05	0.10	100	4	10
C15	13.8	15.0	15.6	1.2	2.5	0.05	0.10	75	2	11
C16	15.3	16.0	17.1	1.3	2.5	0.06	0.11	75	2	12
C18	16.8	18.0	19.1	1.3	2.5	0.06	0.11	65	2	13
C20	18.8	20.0	21.2	1.5	3	0.06	0.11	65	2	15
C22	20.8	22.0	23.3	1.6	3.5	0.06	0.11	50	2	16
C24	22.8	24.0	25.6	1.8	3.5	0.06	0.11	50	2	18
C27	25.1	27.0	28.9	2.5	5	0.06	0.11	50	2	20
C30	28	30	32	4	8	0.06	0.11	40	2	22
C33	31	33	35	5	10	0.06	0.11	40	2	24
C36	34	36	38	6	11	0.06	0.11	30	2	27
C39	37	39	41	7	14	0.06	0.11	30	2	30
C43	40	43	46	10	20	0.07	0.12	30	2	33
C47	44	47	50	12	25	0.07	0.12	25	2	36
C51	48	51	54	14	27	0.07	0.12	25	2	39
C56	52	56	60	18	35	0.07	0.12	20	2	43
C62	58	62	66	20	42	0.08	0.13	20	2	47
C68	64	68	72	22	44	0.08	0.13	20	2	51
C75	70	75	79	25	45	0.08	0.13	20	2	56
C82	77	82	87	30	65	0.08	0.13	15	2	62
C91	85	91	96	40	75	0.09	0.13	15	2	68
C100	94	100	106	45	90	0.09	0.13	12	2	75
C110	104	110	116	65	125	0.09	0.13	12	2	82
C120	114	120	127	90	170	0.09	0.13	10	2	91
C130	124	130	141	100	190	0.09	0.13	10	2	100
C150	138	150	156	150	260	0.09	0.13	8	2	110
C160	153	160	171	180	350	0.09	0.13	8	2	120
C180	168	180	191	210	430	0.09	0.13	5	2	130
C200	188	200	212	250	500	0.09	0.13	5	2	150
C220	208	220	233	350	700	0.09	0.13	5	2	160
C240	228	240	256	450	900	0.09	0.13	5	2	180
C270	251	270	289	600	1200	0.09	0.13	5	2	200

CHARACTERISTICS when used as transient suppressor diodes; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$


## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 7

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given in Fig. 2: $R_{t h} t p-a=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:
$1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}$
$2,25 \mathrm{~cm}^{2} \mathrm{R}_{\text {th tp-a }}=45^{\circ} \mathrm{C} / \mathrm{W}$

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 4) and the above thermal model.

## VOLTAGE REGULATOR DIODES

Plastic encapsulated silicon diodes intended for general purpose use as medium power voltage regulators. They are suitable for use as transient suppressor diodes.

## QUICK REFERENCE DATA



Fig. 1 DO-15; the diodes are type branded


For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZV85 or BZTO3 are recommended.

The sealing of this plastic envelope fulfils the accelerated damp heat test, according to I.E.C. recommendation 68-2 (test D, severity IV, 6 cycles).

## RATINGS

Limiting values of operation in accordance with the Absolute Maximum System (IEC134)

Repetitive peak forward current	$I_{\text {FRM }}$	max.	1	A
Total power dissipation up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$				
BZX61-C7V5 to C130	$P_{\text {tot }}$	max.	1.3	w
BZX61-C150 to C200	$P_{\text {tot }}$	max.	1.0	W
Repetitive peak reverse power dissipation	PZRM	max.	6	W
Non-repetitive peak reverse power dissipation				
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to		${ }^{\circ} \mathrm{C}$
Junction temperature				
BZX61-C7V5 to C130	Tj	max.	175	${ }^{\circ} \mathrm{C}$
BZX61-C150 to C200	$\mathrm{T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
THERMAL RESISTANCE		see pag	6, 8	

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Forward voltage

$$
I_{F}=100 \mathrm{~mA}
$$

$V_{F}<1.1 \quad V$

B2X61-...	working voltage			differential resistance$\begin{gathered} r_{\text {diff }}(\Omega) \\ \text { at } I_{Z_{\text {test }}}=20 \mathrm{~mA} \\ \max . \end{gathered}$	temperature coefficient$\begin{gathered} \mathrm{S}_{Z}\left(\% /{ }^{\circ} \mathrm{C}\right) \\ \text { at } \mathrm{I}_{\text {Zest }}=20 \mathrm{~mA} \\ \text { typ. } \end{gathered}$	reverse current $I_{R}(\mu A) \text { at } V_{R}(V)$   max.		clamping voltage   at $t_{p}=1 \mathrm{~ms} ; 80 \mathrm{~W}$ $V_{C L(R)}(V)$ typ.
	$\begin{aligned} & V_{Z}(V) \\ & \text { at } I_{Z \text { test }}=20 \mathrm{~mA} \\ & \text { min. nom. max. } \end{aligned}$							
C7V5	7.0	7.5	7.9	5.0	+0.04	5	3	9.9
C8V2	7.7	8.2	8.7	7.5	+0.04	5	3	10.9
Cav1	8.5	9.1	9.6	8.0	+0.05	5	5	12.0
C10	9.4	10	10.6	8.5	+0.05	5	7	13.3
C11	10.4		11.6	9.0	+0.05	5	7	14.5
C12	11.4	12	12.7	9.0	+0.05	5	8	15.9
C13	12.4	13	14.1	10	+0.05	5	9	17.6
C15	13.8	15	15.6	14	+0.06	5	10	19.5

CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$


## OPERATING NOTES

## Dissipation and heatsink considerations

## a) Steady-state conditions

The maximum allowable steady-state dissipation $P_{\mathbf{S}}$ is given by the relationship!-

$$
P_{s \text { max }}=\frac{T_{j \max }-T_{a m b}}{R_{\text {th } j-a}}
$$

Where $T_{j \text { max }}$ is the maximum permissible operating junction temperature,
$T_{\text {amb }}$ is the ambient temperature,
$R_{\text {th } j-a}$ is the total thermal resistance between junction and ambient.
b) Pulse conditions (see Fig.2)

The maximum pulse power $P_{m}$ max. is given by the formula

$$
P_{\text {m max }}=\frac{\left(T_{j \max }-T_{a m b}\right)-\left(P_{\mathbf{s}} \cdot R_{\text {th } j-a}\right)}{Z_{\text {th }}}
$$

Where $P_{\mathbf{S}}$ is the steady-state dissipation, excluding that in the pulses,
$Z_{t h}$ is the effective transient thermal resistance of the device between junction and ambient and is a function of the pulse duration $t$ and duty cycle $\delta$ (see Fig.7).
$\delta$ is the duty cycle and is equal to the pulse duration $\mathbf{t}$ divided by the periodic time T .
The steady-state power $P_{s}$ when biased in the zener direction at a given zener current can be found from Fig.6. With the additional pulsed power dissipation $P_{m \text { max }}$ calculated from the above expression, the total peak zener power dissipation $P_{\text {tot }}$ is $P_{s}+P_{m}$ max. From Fig. 6 the peak zener current at $P_{\text {tot }}$ can now be read.
For pulse durations longer than the temperature stabilisation time of the diode $t_{\text {stab }}$, the maximum allowable pulse power is equal to the steady-state power $P_{s}$ max. The temperature stabilisation time for the BZX61 is 100 s (see Fig.7).

## OPERATING NOTES (contd.)



Fig. 2

## SOLDERING RECOMMENDATIONS

At a maximum iron temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

## DIP SOLDERING

At a maximum solder temperature of $300^{\circ} \mathrm{C}$, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point of contact is $125^{\circ} \mathrm{C}$.


Fig. 3 Continuous power rating.
For types in excess of 130 V the continuous reverse dissipation should be kept within the area II.


Fig. 4 Mounting methods

1. Infinite heatsink at end of lead.
2. Typical printed circuit board with large area of copper ( $1 \mathrm{~cm}^{2}$ per lead).
3. Tag mounting.




Fig. 7


Fig. 8


Fig. 9


Fig. 10 Typical values; $-T_{j}=25^{\circ} \mathrm{C} ;--\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$


Fig. $11 \mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V} ; \mathrm{f}=500 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$


Fig. $12 \mathrm{~T}_{\mathrm{j}}=\mathbf{2 5}^{\circ} \mathrm{C}$; $\mathrm{f}=1 \mathrm{kHz}$


Fig. $13 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$


Fig. $14 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}: f=1 \mathrm{kHz}$

## VOLTAGE REGULATOR DIODES

Silicon planar diodes in DO-35 envelopes intended for use as low voltage stabilizers or voltage references. They are available in two series; one to the international standardized E24 ( $\pm 5 \%$ ) range and the other with $\pm 2 \%$ tolerance on working voltage. Each series consists of 37 types with nominal working voltages ranging from $2,4 \mathrm{~V}$ to 75 V .

## QUICK REFERENCE DATA

Working voltage range
Total power dissipation
Non-repetitive peak reverse power dissipation Junction temperature
Thermal resistance from junction to tie-point

$V_{Z}$	nom.	2,4 to 75 V
$P_{\text {tot }}$	max.	$500 \mathrm{~mW} *$
$P_{Z S M}$	max.	30 W
$\mathrm{~T}_{j}$	max.	$200{ }^{\circ} \mathrm{C}$
$R_{\text {th j-tp }}$	$=$	$0,30{ }^{\circ} \mathrm{C} / \mathrm{mW}$

* If leads are kept at $T_{t p}=50^{\circ} \mathrm{C}$ at 8 mm from body.

MECHANICAL DATA Dimensions in mm
Fig. 1 DO-35.


Cathode indicated by coloured band.
The diodes are type-branded

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Average forward current laveraged
over any 20 ms period)
Repetitive peak forward current
Total power dissipation
Non-repetitive peak reverse power dissipation

$$
t=100 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
$$

Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to tie-point
From junction to ambient

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	
Forward voltage$I_{F}=10 \mathrm{~mA}$	
Reverse current	
BZX79-.2V4	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.2V7	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.3V0	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
. 3 V 3	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.3V6	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.3V9	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.4V3	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
.4V7	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
. 5 V 1	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
.5V6	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
.6V2	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
.6V8	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
.7V5	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
.8V2	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
.9V1	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
. 10	$\mathrm{V}_{\mathrm{R}}=7 \mathrm{~V}$
. 11 to . 13	$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$
. 15 to. 75	$\mathrm{V}_{\mathrm{R}}=0,7 \mathrm{~V}_{\text {Znom }}$
. B for $2 \%$ tolerance	
= C for E2	( $\pm 5 \%$ ) tolerance

## $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Forward voltage
Reverse current

If(AV)	max.	250	mA
IFRM	max.	250	
$\mathrm{P}_{\text {tot }}$	max. max.		$\begin{aligned} & \mathrm{mW} \text { * } \\ & \mathrm{mW} \end{aligned}$
PZSM	max.		W
$\mathrm{T}_{\text {stg }}$	-65 to	200	
T ${ }_{\text {j }}$	max.	200	


$\mathrm{R}_{\text {th j-tp }}$		0,30	${ }^{\circ} \mathrm{C} / \mathrm{mW}$ *
$R_{\text {th j-a }}$	=	0,38	${ }^{\circ} \mathrm{C} /$

* If leads are kept at $\mathrm{T}_{\mathrm{tp}}=50^{\circ} \mathrm{C}$ at 8 mm from body. For the types 2 V 4 and 2 V 7 the power
* dissipation is limited by $\mathrm{T}_{\mathrm{j} \text { max }}=150{ }^{\circ} \mathrm{C}$.
** In still air at maximum lead length up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$.

Voltage regulator diodes
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
E24 ( $\pm 5 \%$ ) logarithmic range (for $\pm 2 \%$ tolerance range see page 5 ).

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
E24 ( $\pm 5 \%$ ) logarithmic range (for $\pm 2 \%$ tolerance range see page 6 ).

BZX79-...	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=1 \mathrm{~mA} \end{gathered}$			$\begin{gathered} \text { differential } \\ \text { resistance } \\ r_{\text {diff }}(\Omega) \\ \text { at } I_{Z}=1 \mathrm{~mA} \end{gathered}$		working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$			$\begin{gathered} \text { differential } \\ \text { resistance } \\ r_{\text {diff }}(\Omega) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$	
	min.	nom.	max.			min.	nom.	max.	typ.	max.
C2V4	1,7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
c3vo	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3v9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4.4	4.7	5.1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6
C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7.4	2,5	6
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6
c9V1	8,4	9,0	9,6	40	100	8,5	9,2	9,7	4	8
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	15
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	20
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	25
	at $\mathrm{I}_{\mathrm{Z}}=0,1 \mathrm{~mA}$			at $\mathrm{I}_{\mathbf{Z}}=0,5 \mathrm{~mA}$		at $12=10 \mathrm{~mA}$			at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$	
C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	45
C30	27,8	29,9	32,0	70	300	28,1	30.1	32,4	15	50
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60
C39	36,7	38,9	41,0	80	350	37.1	39,1	41,5	25	70
C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
C47	43,7	46,8	50,0	85	375	44,1	47.1	50,5	30	90
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110
C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	120
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\pm 2 \%$ tolerance range.

BZX79-...	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{\text {Ztest }}=5 \mathrm{~mA} \end{gathered}$		differential resistance   $r_{\text {diff }}(\Omega)$   at $I_{\text {Ztest }}=5 \mathrm{~mA}$		temperature coefficient$\begin{aligned} & \mathrm{S}_{Z}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ & \text { at I I Ztest }=5 \mathrm{~mA} \end{aligned}$			diode capacitance$\begin{gathered} C_{d}(p F) ; f=1 M H z \\ V_{R}=0 \end{gathered}$	
	min .	max.	typ.	max.	min.	typ.	max.	typ.	max.
B2V4	2,35	2,45	70	100	-2,6	-1,6	-0,6	375	450
B2V7	2,65	2,75	75	100	-3,0	-2,0	-1,0	350	450
B3V0	2,94	3,06	80	95	-3,0	-2,1	-1,2	350	450
B3V3	3,23	3,37	85	95	-3,2	-2,4	-1,5	325	450
B3V6	3,53	3,67	85	90	-3,2	-2,4	-1,5	300	450
B3V9	3,82	3,98	85	90	-3,2	-2,5	-1,5	300	450
B4V3	4,21	4,39	80	90	-3,2	-2,5	-1,2	275	450
B4V7	4,61	4,79	50	80	-2,0	-1,4	-0,8	125	180
B5V1	5,00	5,20	40	60	-1,6	-0,8	0,5	125	180
B5V6	5.49	5,71	15	40	-0,7	1,2	2,2	125	180
B6V2	6,08	6,32	6	10	1,0	2,3	3,2	90	130
B6V8	6,66	6,94	6	15	2,0	3,0	4,0	85	110
B7V5	7,35	7,65	6	15	3,0	4,0	4,8	80	100
B8V2	8,04	8,36	6	15	3,6	4,6	5,5	75	95
B9V1	8,92	9,28	6	15	4,3	5,5	6,5	70	90
B10	9,80	10,20	8	20	5,2	6,4	7,4	70	90
B11	10,80	11,20	10	20	6,2	7.4	8,5	65	85
B12	11,80	12,20	10	25	7,0	8,4	9,5	65	85
B13	12,70	13,30	10	30	7,8	9,4	10,5	60	80
B15	14,70	15,30	10	30	10,0	11.4	12,4	55	75
B16	15,70	16,30	10	40	10,9	12,4	13,5	52	75
B18	17,60	18,40	10	45	12,8	14,4	15,6	47	70
B20	19,60	20,40	15	55	14,8	16,4	17,6	36	60
B22	21,60	22,40	20	55	16,8	18,4	19,6	34	60
B24	23,50	24,50	25	70	18,7	20,4	21,6	33	55
	at $I_{\text {Z }}^{\text {test }}$ $=2 \mathrm{~mA}$		at $I_{\text {Ztest }}=2 \mathrm{~mA}$		at $I_{\text {Itest }}=\mathbf{2 m A}$				
B27	26,50	27,50	25	80	21,4	23,4	25,3	30	50
B30	29,40	30,60	30	80	24,4	26,6	29,0	27	50
B33	32,30	33,70	35	80	27,4	29,7	32,5	25	45
B36	35,30	36,70	35	90	30,4	33,0	36,0	23	45
B39	38,20	39,80	40	130	33,4	36,4	40,0	21	45
843	42,10	43,90	45	150	38,0	41,2	45,0	21	40
B47	46,10	47,90	50	170	42,5	46,1	50,0	19	40
B51	50,00	52,00	60	180	47,0	51,0	55,0	19	40
B56	54,90	57,10	70	200	52,5	57,0	62,0	18	40
B62	60,80	63,20	80	215	59,0	64,4	69,0	17	35
B68	66,60	69,40	90	240	66,0	71,7	77,0	17	35
B75	73,50	76,50	95	255	74,0	80,2	86,0	16,5	35

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\pm 2 \%$ tolerance range.

BZX79...	working voltage $\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=1 \mathrm{~mA} \end{gathered}$   nom.	differential		working voltage	differential resistance	
		$r_{d i f f}(\Omega)$		$V_{Z}(\mathrm{~V})$	$\begin{gathered} r_{\text {diff }}(\Omega) \\ \text { at } \mathrm{l}_{\mathrm{Z}}=20 \mathrm{~mA} \end{gathered}$	
		at $\mathrm{I}_{\mathrm{Z}}$		at $I_{Z}=20 \mathrm{~mA}$		
		typ.	max.	nom.	typ.	max.
B2V4	1,9	275	600	2,9	25	50
B2V7	2,2	300	600	3,3	25	50
B3V0	2,4	325	600	3,6	25	50
B3V3	2,6	350	600	3,9	20	40
B3V6	3,0	375	600	4,2	20	40
B3V9	3,2	400	600	4.4	15	30
B4V3	3,6	410	600	4.7	15	30
B4V7	4,2	425	500	5,0	8	15
B5V1	4,7	400	480	5,4	6	15
B5V6	5,4	80	400	5,7	4	10
B6V2	6.1	40	150	6,3	3	6
B6V8	6,7	30	80	6,9	2,5	6
B7V5	7.4	30	80	7,6	2,5	6
B8V2	8,1	40	80	8,3	3	6
B9V1	9,0	40	100	9,2	4	8
B10	9,9	50	150	10,1	4	10
B11	10,9	50	150	11,1	5	10
B12	11,9	50	150	12,1	5	10
B13	12,9	50	170	13.1	5	15
B15	14,9	50	200	15.1	6	20
B16	15,9	50	200	16,1	6	20
B18	17,9	50	225	18,1	6	20
B20	19,9	60	225	20,1	7	20
B22	21,9	60	250	22,1	7	25
B24	23,9	60	250	24,1	7	25
	at $1 \mathrm{Z}=0,1 \mathrm{~mA}$	at $1 \mathbf{z}$	$0,5 \mathrm{~mA}$	at $\mathrm{I}^{2}=10 \mathrm{~mA}$	at 12	0 mA
B27	26,9	65	300	27.1	10	45
B30	29,9	70	300	30,1	15	50
B33	32,9	75	325	33,1	20	55
B36	35,9	80	350	36,1	25	60
B39	38,9	80	350	39.1	25	70
B43	42,9	85	375	43,1	25	80
B47	46,8	85	375	47,1	30	90
B51	50,8	90	400	51.1	35	100
B56	55,7	100	425	56,1	45	110
B62	61,7	120	450	62.1	60	120
B68	67,7	150	475	68,2	75	130
B75	74,7	170	500	75,3	90	140



Fig. 2.


Fig. 3.


Fig. 4 Static characteristics; typical values; $T_{a m b}=25^{\circ} \mathrm{C}$.


Fig. 5 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 6.


Fig. 7.


Fig. 8.


Fig. 9.


Fig. 10 Static characteristics; typical values; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.


Fig. 11.


Fig. $12 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 13.


Fig. 14 Typical values; $\mathrm{T}_{\mathrm{j}}=25$ to $150^{\circ} \mathrm{C}$.


Fig. 15 Typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$.


Fig. 16 Typical change of working voltage under operating conditions at $T_{a m b}=25^{\circ} \mathrm{C}$.


Fig. 17 Typical change of working voltage under operating conditions at $T_{a m b}=25^{\circ} \mathrm{C}$.

## SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed glass envelopes intended for stabilization purposes.
The series covers the normalized range of nominal working voltages from 5.1 V to 75 V with a tolerance of $\pm 5 \%$ (international standard E24).

QUICK REFERENCE DATA				
Working voltage range	$\mathrm{v}_{\mathrm{Z}}$	nom.	5.1 to 75	V
Working voltage tolerance (E24)			$\pm 5$	兄
Total power dissipation	Prot	max.	2. 75	W
Junction temperatice	$\mathrm{T}_{\mathrm{j}}$	max.	200	${ }^{\circ} \mathrm{C}$

## MECHANICAL DATA

Dimensions in mm
SOD-51


Cathode indicated by coloured band
The diodes are type-branded

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Currents

Working current (d.c.)
Repetitive peak working current
Repetitive peak forward current
Power dissipation (see also graphs on pages 5 and 6 )
Total power dissipation
Repetitive peak reverse power dissipation
up to $\mathrm{T}_{\mathrm{amb}}=175^{\circ} \mathrm{C}: \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}: \delta=0,001$
Non-repetitive peak reverse power dissipation
up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}: \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$

## Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Iunction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	200
${ }^{\circ} \mathrm{C}$			

THERMAL RESISTANCE (see also graphs on pages 5 and 6)
From junction to ambient
when soldered to tags
at max. lead length $\quad R_{t h j-a} \max .117 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS

Forward voltage at $\mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~A}$

## Reverse current

BZX87-C5V1		$\mathrm{I}_{\mathrm{R}}$	$<$	10	$\mu \mathrm{A}$
C5V6	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	IR	<	5	$\mu \mathrm{A}$
C6V2		$\mathrm{I}_{\mathrm{R}}$	$<$	3	$\mu \mathrm{A}$
C6V8		$\mathrm{I}_{\mathrm{R}}$	<	1.5	$\mu \mathrm{A}$
C7V5	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	$\mathrm{I}_{\mathrm{R}}$	$<$	0,6	$\mu \mathrm{A}$
C8V2		$\mathrm{I}_{\mathrm{R}}$	$<$	0, 4	$\mu \mathrm{A}$
C9V1	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	IR	$<$	0, 3	$\mu \mathrm{A}$
C10 to C75	$\mathrm{V}_{\mathrm{R}}=\frac{2}{3} \mathrm{~V}_{\text {Znom }}$	$\mathrm{I}_{\mathrm{R}}$	$<$	0, 2	$\mu \mathrm{A}$

[^8]CHARACTERISTICS (continued)

BZX $87-.$.	Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=\mathbf{5 0} \mathbf{~ m A} \end{gathered}$		Temperature coefficient$\begin{aligned} & \mathrm{S}_{\mathrm{Z}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ & \text { at } \mathrm{I}_{\mathrm{Z}}=\mathbf{5 0} \mathbf{~ m A} \end{aligned}$			Differential resistance $\mathrm{r}_{\text {diff }}(\mathrm{S})$ at $\mathbf{I}_{\mathrm{Z}}=\mathbf{5 0} \mathbf{~ m A}$		Diode capacitance $\mathrm{C}_{\mathrm{d}}(\mathrm{pF})$   at $\mathrm{f}=1 \mathrm{MHz}$ $\mathbf{V}_{\mathbf{R}}=\mathbf{0}$	
	min.	max.	min.	typ.	max.	typ.	max.	typ.	max.
C5V1	4. 8	5.4	-1.5	0	1.5		10	200	250
C5V6	5. 2	6.0	-0.2	1.5	2.5	2	5	180	225
C6V2	5.8	6.6	1,5	2.4	3.3	1.5	3	350	400
	at $\mathbf{I}_{\mathbf{Z}}=\mathbf{2 0} \mathbf{~ m A}$		at $I_{Z}=20 \mathrm{~mA}$			at $I_{Z}=20 \mathrm{~mA}$			
C6V8	6.4	7.2	2. 2	3,1	3.9		3	300	350
C7V5	7.0	7.9	2.8	3.8	4.7	1	3	270	310
C8V2	7.7	8.7	3.5	4, 5	5, 5	1,5	4	250	280
C9V1	8.5	9.6	4.3	5, 4	6,5	2		210	250
C10	9, 4	10.6	5.2	6,3	7,5	2	5	190	230
C11	10.4	11.6	6.2	7,4	8.6	3	5	170	220
C12	11.4	12.7	7. 2	8.4	9.8	3	6	165	200
C13	12.4	14.1	8.2	9.4	11.2	3	7	165	200
C15	13,8	15.6	4.6	11.4	$1 \because 8$		10	160	190
	at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$		at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$			at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$			
C16	15.3	17.1	11,1	12,5	14.4	4	10	140	180
C18	16.8	19,1	12,6	14,5	16.6	5	15	120	160
C20	18,8	21.2	14,6	16.6	18.8	5	1.5	110	150
C22	20.8	23.3	16,6	18.6	20, 9	5	20	100	135
C24	22,8	25,6	18,6	20,7	2.3, 4	6	20	95	130
C27	25,1	28,9	21,0	23, 8	26,8	7	25	90	120
C 30	28	32	23,8	26,9	30, 6	8	25	80	110
C33	31	35	26, 6	30, 0	34, 2	10	30	75	95
C36	34	38	29, 6	33,4	38,0	10	35	70	90
				$\mathrm{Z}=5$		at $\mathrm{I}_{2}$	5 mA		
C39	37	41	32.6	37, 0	41.6	15	40	65	80
C43	40	46	36. 0	41.6	47,6	15	50	62	75
C47	44	50	40, 4	46.1	52,6	20	60	60	75
C51	48	54	44,6	51.0	57, 6	30	70	55	70
C56	52	60	49, 2	56.6	64, 8	35	s0	52	65
C62	58	66	56, 0	63, 4	72,0	40	90	50	$6{ }^{6}$
C68	64	72	62.4	70.4	79, 2	45	110	46	58
C75	70	79	69, 2	78, 4	88.0	45	125	44	55

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

	Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=1 \mathrm{~mA} \end{gathered}$			Differential resistance   $r_{\text {diff }}$ (?)   at $I_{Z}=1 \mathrm{~mA}$		Working voltage$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\mathrm{Z}}=100 \mathrm{~mA} \end{gathered}$			$\begin{gathered} \text { Differential } \\ \text { resistance } \\ r_{\text {diff }}(\Omega) \text { ) } \\ \text { at } I_{Z}=100 \mathrm{~mA} \end{gathered}$	
BZX87-....	min.	nom.	max.	typ.	$\max$.	min.	nom	max.	typ.	x.
C.5V1	3, 3	3, 8	4, 3	425	500	4.9	5, 2	5, 5	1,2	2.5
C5V6	4,1	5,3	5,8	400	500	5, 3	5.7	6,1	1.0	2,0
C6V2	5.6	6,0	6,5	40	200	5,9	6, 3	6.7	0,8	2, 0
C6V8	6.3	6,7	7.1	40	120	6, 5	6.9	7.3	0,6	2,0
C7V5	6,9	7,4	7,8	20	100	7,1	7,6	8,0	0,5	1,5
C 8 V 2	7, 6	8,1	8,6	20	100	7,8	8, 3	8,8	0, 5	1,5
C9V1	8,4	9, 0	9, 6	25	100	8, 6	$\mathrm{c}_{\text {, }}, 2$	9,8	0, 8	2,0
C10	¢, 3	9,9	10,5	30	120	9, 5	10,1	10,8	0, 8	2,0
C11	10,3	10,9	11.5	30	120	10,5	11,1	11,8	0,8	2, 0
C12	11,2	11,9	12,6	30	150	11,5	12,1	12,9	1,0	2,0
C13	12,2	12.9	14,0	30	150	12,5	13,1	14, 3	1.2	2, 5
C15	13.6	14,9	15,4	30	150	13,9	15.1	15, 8	1.2	2,5
		= 1		at $\mathrm{I}_{\mathrm{Z}}$			$=50$		at $\mathrm{I}_{\mathrm{Z}}$	50 mA
C16	15,2	15,9	17.0	30	150	15,4	16,1	17.3	1,2	3, 0
C18	16.7	17,9	19,0	30	150	16.9	18.1	19,3	2, 0	5, 0
C20	18.7	19.9	21,1	30	150	19.0	20.2	21.5	2.5	6. 0
C22	20.7	21,9	23, 2	30	150	21.0	22, 2	23,7	2.5	6.0
C.24	22,6	23,9	25,5	30	150	23.0	24.2	26.0	3. 0	8.0
C27	24,9	26,9	28,8	30	150	25,3	27. 2	29, 2	4,0	8, 0
C30	27,8	25,9	31,9	30	150	28, 2	30, 2	32,5	4,0	8, 0
C.33	29, 8	32,9	34,9	30	150	31,2	33, 3	35,5	5.0	10
C. 30	33, 8	35,9	37, 9	30	150	34.2	36, 3	38,5	5. 0	10
C. 39	36,8	38,9	40,9	40	150	37, 5	39,5	42.0	6.0	12
C43	39.8	42,9	45,9	50	150	40, 5	43.5	47,0	8	15
C47	43, 8	46, 9	49,9	55	200	44.5	47, 5	51.0	10	20
C51	47.8	50, 9	53.8	60	200	48.5	51.8	55.5	12	25
C56	51,8	55,9	59.8	60	200	52, 5	56.8	61.5	15	30
C62	57.6	61,8	65,8	70	200	58, 5	62.8	67,5	16	30
C68	63,5	67,6	71.7	80	225	65, 0	69,0	74.0	18	35
C75	69.3	74.5	78,6	100	250	73.0	77, 5	84,0	20	35






## MOUNTING METHODS

1. to tie-points
2. to solder tags
3. on a printed-circuit board with minimum soldering area necessary for good electrical conductance
a. lead length $=10 \mathrm{~mm}$
b. at maximum lead length




## VOLTAGE REGULATOR DIODES

Silicon diodes in all-glass DO-7 envelope intended for voltage stabilization purposes. The series consists of 27 types with nominal working voltages ranging from $2,7 \mathrm{~V}$ to 33 V within the normalized E24 $( \pm 5 \%)$ range

## QUICK REFERENCE DATA

Working voltage range	$V_{Z}$	nom.	2,7 to 33	
Total power dissipation up to $\mathrm{Tamb}=50^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	400	
Non-repetitive peak reverse power dissipation $T_{j}=25^{\circ} \mathrm{C} ; \mathrm{t}=10 \mu \mathrm{~s}$	PZSM	max.	1,1	
Operating junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	200	${ }^{\circ} \mathrm{C}$
Thermal resistance from junction to ambient in free air	$R_{\text {th } \mathrm{j}-\mathrm{a}}$	=	0,37	${ }^{\circ} \mathrm{C} / \mathrm{mW}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 DO-7.
The diodes are type-branded


Cathode indicated by coloured band
For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZX79 are recommended.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current (d.c.)
Repetitive peak forward current
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$
Non-repetitive peak reverse power dissipation

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{t}=10 \mu \mathrm{~s}
$$

Storage temperature
Operating junction temperature
THERMAL RESISTANCE
From junction to ambient in free air

I	max.	250 mA
$I_{\text {FRM }}$	max.	250 mA
$P_{\text {tot }}$	max.	400 mW
$P_{\text {ZSM }}$	max.	$1,1 \mathrm{~kW}$
$T_{\text {stg }}$	-65 to	$+175{ }^{\circ} \mathrm{C}$
$T_{j}$	max.	$200^{\circ} \mathrm{C}$

$R_{\text {th j-a }}=0,37{ }^{\circ} \mathrm{C} / \mathrm{mW}$


Fig. 2 Power derating curve.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage
$I_{F}=10 \mathrm{~mA} \quad V_{F}<0,9 \mathrm{~V}$


CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

BZY88-...	working voltage $\mathrm{V}_{\mathrm{Z}}$   at $\mathrm{IZ}_{\mathrm{Z}}=5 \mathrm{~mA}$				temperature coefficient $\mathrm{S}_{\mathbf{Z}}$ at $I_{Z}=5 \mathrm{~mA}$				differential resistance ${ }^{\text {diff }}$ at $I_{Z}=5 \mathrm{~mA}$			
	min.	nom	max.		min.	typ.	max.		min.	typ.	max.	
C2V7	2,5	2,7	2,9	V	-4,0	-2,2	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	68	80	120	$\Omega$
C3VO	2,8	3,0	3,2	V	-4,5	-2,4	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	70	84	120	$\Omega$
c3v3	3,1	3,3	3,5	V	-4,0	-2,3	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	70	86	110	$\Omega$
C3V6	3,4	3,6	3,8	V	-3,5	-2,0	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	65	76	105	$\Omega$
C3V9	3,7	3,9	4,1	v	-2,5	-2,05	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	60	76	100	$\Omega$
C4V3	4,0	4,3	4,6	V	-2,5	-1,8	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	55	70	90	$\Omega$
C4V7	4,4	4,7	5,0	v	-2,0	-1,55	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	49	62	85	$\Omega$
C5V1	4,8	5,1	5,4	v	-1,75	-1,2	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	34	46	75	$\Omega$
C5V6	5,2	5,6	6,0	V	-1,5	-0,2	+1,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	22	55	$\Omega$
C6V2	5,8	6,2	6,6	V	+0,5	+2,0	+3,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	7,0	27	$\Omega$
C6V8	6,4	6,8	7,2	V	+2,3	+3,2	+3,8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	3,0	15	$\Omega$
C7V5	7,0	7,5	7,9	V	+3,1	+4,2	+5,9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	3,0	15	$\Omega$
C8V2	7,7	8,2	8,7	V	+4,2	+5,0	+6,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,9	3,5	20	$\Omega$
C9V1	8,5	9,1	9,6	V	+4,8	+6,0	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	4,75	25	$\Omega$
C10	9.4	10	10.6	V	+6,0	+7,0	+7,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	5,0	25	$\Omega$
C11	10,4	11	11,6	$v$	+7,0	+8,7	+9,1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	3,0	7,0	25	$\Omega$
C12	11,4	12	12,7	$v$	+8,5	+9,0	+9,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	8,0	35	$\Omega$
C13	12,4	13	14,1	$v$	+10	$+10,5$	+11,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	10	35	$\Omega$
C15	13,8	15	15,6	V	+12	+12,5	+14	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	4,0	15	35	$\Omega$
C16	15,3	16	17.1	V	+12	+13	+14	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	20	40	$\Omega$
C18	16,8	18	19,1	$v$	+14	+15	+18	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	7,0	25	45	$\Omega$
C20	18,8	20	21,2	$v$	+16	$+17$	+ 19	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	30	50	$\Omega$
C22	20,8	22	23,3	V	+17	+19	+21	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	15	35	60	$\Omega$
C24	22,7	24	25,9	V	+20	$+21$	+24	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	20	40	75	$\Omega$
C27	25,1	27	28,9	$v$	+22	+23,5	+27	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	25	50	85	$\Omega$
C30	28	30	32	V	+25	+26	+29	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	30	60	95	$\Omega$
C33	31	33	35	$v$	+27	$+28$	+36	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	35	75	120	$\Omega$


BZY88-. .	working voltage $V_{Z}$   at $\mathrm{I}_{\mathrm{Z}}=20 \mathrm{~mA}$				temperature coefficient $\mathrm{S}_{\mathbf{Z}}$ at $I_{Z}=20 \mathrm{~mA}$				differential resistance ${ }^{\text {diff }}$ at $I_{Z}=20 \mathrm{~mA}$			
	min.	nor	max		min.	typ.	max.		min.	typ.		
C2V7	3,0	3,25	3,5	V	-3,5	-2,4	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	18	22	26	$\Omega$
C3V0	3,3	3,6	3,9	V	-3,5	-2,5	-0,6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	17	21	24	$\Omega$
C3V3	3,5	4	4,2	$v$	-3,3	-2,4	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	16	20	22	$\Omega$
C3V6	3,9	4,2	4,4	V	-2,5	-1,55	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	16	18	20	$\Omega$
C3V9	4,2	4,45	4,65	V	-2,4	$-1,55$	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	14	16	18	$\Omega$
C4V3	4,45	4.7	4,95	V	-2,0	-1,5	-0,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	13	15	17	$\Omega$
C4V7	4,9	5,1	5,3	V	-1,5	-0,85	0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	12	15	17	$\Omega$
C5V1	5,1	5,35	5,7	V	-1,5	-0,8	0	$\mathrm{mV} /{ }^{\text {b }} \mathrm{C}$	4,0	7,0	11	$\Omega$
C5V6	5,45	5,75	6,1	V	-1,0	+1,0	+3,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,5	4,0	8,0	$\Omega$
C6V2	5,95	6,4	6,7	V	+1,0	+2,2	+4,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,8	1,4	3,1	$\Omega$
C6V8	6,6	6,9	7,25	V	+2,8	+3,2	+3,8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,7	1,3	3,0	$\Omega$
C7V5	7,2	7,65	7,95	V	+2,5	+4,2	+5,9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	0,5	1,6	5,0	$\Omega$
C8V2	7,9	8,4	8,75	V	+4,0	$+5,0$	+6,0	$\mathrm{mV}{ }^{\circ} \mathrm{C}$	0,9	1,8	6,0	$\Omega$
C9V1	8,7	9.4	9,7	V	+5,0	$+6,0$	+7,0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	1,85	7.0	$\Omega$
C10	9,5	10,1	10,8	V	+7,0	+7,3	+7,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1,0	2,0	8,0	$\Omega$
C11	10,5	11,1	11,8	V	+8,5	$+9,1$	+9,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	1.0	3,0	10	$\Omega$
C12	11,6	12,2	12,8	V	+8,9	+9,6	+10,3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	3,5	25	$\Omega$
C13	12,6	13,2	14,3	V	+11	+11,5	+12,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	4,5	25	$\Omega$
C15	14,1	15,3	15,9	$\checkmark$	+12	+13,5	+14,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	2,0	6,0	25	$\Omega$
C16	15,6	16,3	17,4	$v$	+13	$+14$	+15	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	10	30	$\Omega$
C18	17,2	18,4	19,6	V	+15	+16	$+18$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	12	30	$\Omega$
C20	19,3	20,5	21,9	V	+17,5	+18,5	+20,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	5,0	15	35	$\Omega$
C22	21,3	22,6	24,1	V	+19	$+20,5$	+22,5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	18	35	$\Omega$
C24	23,3	24,7	26,7	V	$+20$	$+23$	$+25$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	20	40	$\Omega$
C27	25,8	28,1	30,1	V	+ 23	+25,5	$+28$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	25	45	$\Omega$
C30	29,0	31,3	33,4	$v$	+25	$+28$	+32	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	35	50	$\Omega$
C33	32,0	34,5	36,6	V	$+27$	$+30$	+38	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	10	45	60	$\Omega$

CHARACTERISTICS (continued)
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

BZY88-	$\begin{aligned} & \text { typ. } C_{d} \\ & V_{R}=3 V \end{aligned}$	reverse current $\mathrm{I}_{\mathrm{R}}$				typ. noise voltage **		
		at $\mathrm{V}_{\mathrm{R}}=$	typ.	max.		$\mathrm{I}=1 \mathrm{~mA}$		$=5 \mathrm{~mA}$
C2V7	490 pF *	1 V	4	25	$\mu \mathrm{A}$	22	12	$\mu \vee$ r.m.s.
C3vo	430 pF *	1 V	2	5	$\mu \mathrm{A}$	20	11	$\mu \vee$ r.m.s.
C3V3	380 pF *	1 V	0,51	3,0	$\mu \mathrm{A}$	19	10	$\mu \mathrm{V}$ r.m.s.
C3V6	360 pF *	1 V	0,25	3,0	$\mu \mathrm{A}$	18	9	$\mu \mathrm{V}$ r.m.s.
C3V9	335 pF	1 V	0,11	3,0	$\mu \mathrm{A}$	16	8	$\mu \mathrm{V}$ r.m.s.
C4V3	270 pF	1 V	0,1	3,0	$\mu \mathrm{A}$	15	8	$\mu \mathrm{V}$ r.m.s.
C4V7	290 pF	2 V	0,25	3,0	$\mu \mathrm{A}$	14	7	$\mu \mathrm{V}$ r.m.s.
C5V1	275 pF	2 V	0,15	1,0	$\mu \mathrm{A}$	13	8	$\mu \mathrm{V}$ r.m.s.
C5V6	260 pF	2 V	0,6	1,0	$\mu \mathrm{A}$	13	9	$\mu \mathrm{V}$ r.m.s.
C6V2	240 pF	2 V	0,1	1,0	$\mu \mathrm{A}$	14	10	$\mu \mathrm{V}$ r.m.s.
C6V8	220 pF	3 V	0,025	1,0	$\mu \mathrm{A}$	25	15	$\mu \mathrm{V}$ r.m.s.
C7V5	190 pF	3 V	15	500	nA	33	20	$\mu \mathrm{V}$ r.m.s.
C8V2	150 pF	3 V	11	400	nA	55	28	$\mu \mathrm{V}$ r.m.s.
C9V1	140 pF	5 V	8	400	nA	79	35	$\mu \mathrm{V}$ r.m.s.
C10	110 pF	7 V	-	2,5	$\mu \mathrm{A}$	87	43	$\mu \mathrm{V}$ r.m.s.
C11	90 pF	7 V	-	2,5	$\mu \mathrm{A}$	92	48	$\mu \mathrm{V}$ r.m.s.
C12	80 pF	8 V	-	2,5	$\mu \mathrm{A}$	100	50	$\mu \mathrm{V}$ r.m.s.
C13	65 pF	9 V	-	2,5	$\mu \mathrm{A}$	110	52	$\mu \mathrm{V}$ r.m.s.
C15	60 pF	10 V	-	2,5	$\mu \mathrm{A}$	120	54	$\mu \mathrm{V}$ r.m.s.
C16	55 pF	10 V	-	2,5	$\mu \mathrm{A}$	135	56	$\mu \mathrm{V}$ r.m.s.
C18	50 pF	13 V	-	2,5	$\mu \mathrm{A}$	160	58	$\mu \mathrm{V}$ r.m.s.
C20	45 pF	14 V	-	2,5	$\mu \mathrm{A}$	210	60	$\mu \mathrm{V}$ r.m.s.
C22	43 pF	15 V	-	2,5	$\mu \mathrm{A}$	255	62	$\mu \mathrm{V}$ r.m.s.
C24	42 pF	17 V	-	2,5	$\mu \mathrm{A}$	290	65	$\mu \mathrm{V}$ r.m.s.
C27	40 pF	19 V	-	2,5	$\mu \mathrm{A}$	320	69	$\mu \mathrm{V}$ r.m.s.
C30	35 pF	21 V	-	2,5	$\mu \mathrm{A}$	350	73	$\mu \mathrm{V}$ r.m.s.
C33	32 pF	23 V	-	2,5	$\mu \mathrm{A}$	380	78	$\mu \mathrm{V}$ r.m.s.

* Diode capacitance at $\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$.
"* Noise voltage measured using a bandwidth $\pm 3 \mathrm{~dB}$ of 10 Hz to 50 kHz .


## OPERATING NOTES

## 1. Dissipation and heatsink considerations

a. Steady-state conditions

The maximum allowable steady-state dissipation $P_{S \text { max }}$ is given by the relationship

$$
P_{\mathrm{s} \text { max }}=\frac{T_{j \max }-T_{\mathrm{amb}}}{R_{\mathrm{th} j-a}}
$$

where: $T_{j \text { max }}$ is the maximum permissible operating junction temperature;
Tamb is the ambient temperature;
$\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{a}$ is the total thermal resistance from junction to ambient.
b. Pulse conditions (see Fig. 3)

The maximum allowable additional pulse power $P_{m \text { max }}$ is given by the formula

$$
P_{\text {m max }}=\frac{\left(T_{j \text { max }}-T_{a m b}\right)-\left(P_{s} \cdot R_{t h ~ j-a}\right)}{Z_{t h}}
$$

where: $P_{\mathrm{S}}$ is the steady-state dissipation, excluding that in the pulses;
$Z_{t h}$ is the effective transient thermal resistance of the device from junction to ambient. It is a function of the pulse duration $t$ and duty factor $\delta$ (see Fig. 9);
$\delta$ is the duty factor and is equal to the pulse duration t divided by the periodic time T .
The steady-state power $P_{S}$ when biased in the zener direction at a given zener current can be found from Fig. 18. With the additional pulsed power dissipation $P_{m \text { max }}$ calculated from the above expression, the total repetitive peak zener power dissipation $P_{Z R M}=P_{s}+P_{m \text { max }}$. From Fig. 18 the corresponding maximum repetitive peak zener current at $P_{Z R M}$ can now be read. For pulse durations longer than the temperature stabilization time of the diode $\mathrm{t}_{\text {stab }}$, the maximum allowable repetitive peak dissipation $P_{Z R M}$ is equal to the maximum steady-state power $P_{S}$ max . The temperature stabilization for the BZY88series is $100 . s$ (see Fig. 9).


Fig. 3.

## OPERATING NOTES (continued)

## Example

The following example illustrates how to calculate the maximum permissible repetitive peak zener current of a BZY88-C7V5 zener diode mounted in free air at a maximum ambient temperature of $60^{\circ} \mathrm{C}$. The steady-state zener current is 10 mA , the duty factor $\delta=0,1$ and the pulse duration $\mathrm{t}=1 \mathrm{~ms}$.
The steady-state dissipation $P_{s}$ at a zener current is 10 mA (from Fig. 18) $=\mathbf{7 6} \mathrm{mW}$.
The thermal resistance from junction to ambient $R_{\text {th } j-a}=0,31{ }^{\circ} \mathrm{C} / \mathrm{mW}$.
The thermal impedance $Z_{\text {th }}$ with a duty factor $\delta=0,1$ and a pulse duration $t=1 \mathrm{~ms}$ (from Fig. 9).

$$
Z_{t h}=41,5^{\circ} \mathrm{C} / \mathrm{w} .
$$

The maximum additional pulse power dissipation

$$
P_{\text {m max }}=\frac{\left(T_{j \max }-T_{a m b}\right)-P_{s} \cdot R_{t h} \text { ja }}{Z_{t h}}
$$

If $P_{S}=76 \mathrm{~mW}, Z_{\text {th }}=41,5^{\circ} \mathrm{C} / \mathrm{W}$,

$$
P_{\max }=\frac{(200-60)-(0,076 \times 310)}{41,5}=2,8 \mathrm{~W}
$$

therefore, the total repetitive peak power dissipation,

$$
P_{Z R M}=0,076+2,8=2,88 \mathrm{~W} .
$$

From Fig. 18 the corresponding repetitive peak zener current is 350 mA .

## 2. Zener characteristics

The basic characteristic of a zener diode is the dynamic zener characteristic, that is, the variation of zener voltage when a current pulse is applied in the reverse direction. The slope of this characteristic is $r_{z}$. Typical dynamic characteristics at $T_{j}=25$ and $150^{\circ} \mathrm{C}$ are given on pages 12 and 13 for each type of diode. Because of the temperature sensitivity of the zener characteristics, the dynamic characteristics at any other operating temperature will be displaced from those at $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ by a voltage corresponding to $S_{Z} \times\left(T_{n}-25\right)^{\circ} \mathrm{C}$, where $\mathrm{S}_{Z}$ is the temperature coefficient of the diode and $T_{n}$ is a nominal operating temperature (Figs 4 and 5 ).



Fig. 5 Static characteristics.

The static characteristic of the diode is obtained by connecting the steady-state zener voltages at various direct zener currents and may, therefore, be used to determine the operating point at any zener current. This is shown above. The slope of the static characteristic will depend on
(1) the differential resistance, $\mathrm{r}_{\mathrm{z}}$;
(2) the rise in junction temperature due to internal dissipation and the thermal resistance from junction to ambient, $\mathrm{V}_{\mathrm{Z}} \cdot \mathrm{I}_{\mathrm{Z}} \cdot \mathrm{R}_{\text {th }}^{\mathrm{j}-\mathrm{a}}$
(3) the temperature coefficient of the diode, $\mathrm{S}_{\mathrm{Z}}$.

From the above, the static slope resistance $r_{Z}$ is found to be

$$
r_{Z}=r_{Z}+V_{Z} \cdot R_{t h j} \cdot a \cdot S_{Z}
$$

where $r_{Z}$ is the differential resistance, $V_{Z}$ is the steady-state zener voltage and is equal to

$$
\frac{V_{Z^{\prime}}}{1-I_{Z} \cdot R_{\text {th } j-a} \cdot S_{Z}}
$$

$\mathrm{V}_{\mathrm{Z}^{\prime}}$ being the zener voltage at $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{n}}$ at the working current $\mathrm{I} \mathbf{Z}$.
The position of this static characteristic in relation to the dynamic characteristic at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ is dependent on the ambient temperature and the temperature coefficient, the low-current voltage being displaced by

$$
S_{Z} \times\left(T_{n}-25\right)^{\circ} \mathrm{C}
$$

from the low current voltage, $\mathrm{V}_{\mathrm{ZO}}$ on the dynamic characteristic at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see Fig. 6).


Fig. 6 Example for positive $\mathbf{S}_{\mathbf{Z}}$.

## OPERATING NOTES (continued)

Figure 7 shows typical dynamic characteristics at $T_{j}=25,150$ and a nominal temperature, $T_{n}{ }^{\circ} \mathrm{C}$. It also shows static characteristics at ambient temperatures of 25 and $T_{n}{ }^{\circ} \mathrm{C}$.


Fig. 7 Example for positive $\mathrm{S}_{\mathrm{Z}}$.
Typical static characteristics for each type of diode are given on page 14. These curves were obtained with the device mounted in free air at an ambient temperature of $25^{\circ} \mathrm{C}$.

The slope resistance for pulse operation can be calculated by incorporating the thermal impedance $\mathrm{Z}_{\mathrm{th}}$ into the formula for $\mathrm{r}_{\mathrm{Z}}$. Curves of $\mathrm{Z}_{\text {th }}$ plotted against pulse duration and duty factor are given in Fig. 9.
3. When using a soldering iron, the diode may be soldered directly into a circuit, but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
4. Diodes may be dip-soldered at a solder temperature of $245{ }^{\circ} \mathrm{C}$ for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a diode with the anode end mounted flush on the board with punched-through holes. For mounting the cathode end onto the board the diode must be spaced 5 mm from the underside of the printed circuit board in the case of punchedthrough holes or 5 mm from the top of the board for plated-through holes.
5. Care should be taken not to bend the leads nearer than $1,5 \mathrm{~mm}$ from the seals.


Fig. 8.


Fig. 9.


Fig. 10.


Fig. 11.


Fig. 12.


Fig. 13.


Fig. 14.


Fig. 15.


Fig. 16.


Fig. 17 Non-repetitive surge pulse power as a function of pulse duration. Rectangular pulse: 2 pulses per minute; $T_{j}=25^{\circ} \mathrm{C}$.


Fig. 18.


Fig. 19.

## VOLTAGE REGULATOR DIODES

Silicon planar regulator diodes in DO-35 envelopes, intended for use as low-voltage stabilisers or voltage references. The series consists of types with nominal working voltages ranging from 3.3 to 15 V .

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).


Fig. 1 DO-35


Cathode indicated by coloured band.
The diodes are type-branded.

Products approved to CECC 50005 -005 (specification available on request).

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated

	working voltage*					differential resistance	
	$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z \text { test }}=5 \mathrm{~mA} \end{gathered}$			$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z \text { test }}=1 \mathrm{~mA} \end{gathered}$		$\begin{gathered} r_{\text {diff }}(\Omega) \\ \text { at } \mathrm{I}_{\mathrm{Z} \text { test }}=5 \mathrm{~mA} \end{gathered}$	$\begin{gathered} r_{\text {diff }}(\Omega) \\ \text { at } Z_{Z} \text { test }=1 \mathrm{~mA} \end{gathered}$
	min.	nom.	max.	min .	max.	max.	max.
CV7138	3.1	3.3	3.5	2.1	3.0	120	600
CV7139	3.4	3.6	3.8	2.4	3.3	110	600
CV7140	3.7	3.9	4.1	2.8	3.7	100	600
CV7141	4.0	4.3	4.5	3.3	4.2	90	600
CV7099	4.4	4.7	5.0	3.6	4.6	85	500
CV7100	4.8	5.1	5.4	4.2	5.1	80	480
CV7101	5.3	5.6	6.0	4.6	5.4	75	400
CV7102	5.8	6.2	6.6	5.1	6.5	40	150
CV7103	6.4	6.8	7.2	6.0	7.2	15	80
CV7104	7.1	7.5	7.9	6.7	7.9	15	80
CV7105	7.7	8.2	8.7	7.4	8.7	15	80
CV7142	8.6	9.1	9.6	8.3	9.6	15	100
CV7143	9.4	10.0	10.6	9.1	10.6	20	150
CV7144	10.4	11.0	11.6	10.4	11.5	40	150
CV7145	11.4	12.0	12.6	11.1	12.5	60	150
CV7146	12.4	13.0	14.1	12.0	14.1	75	170
CV7106	13.9	15.0	15.6	13.6	15.4	90	200

[^9]CHARACTERISTICS (continued)
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

	temperature coefficient*$\left\|\mathrm{S}_{\mathrm{z}}\right\| \quad\left(\% /{ }^{\mathrm{O}} \mathrm{C}\right)$		reverse current		$\begin{aligned} & V_{R} \\ & \text { (V) } \end{aligned}$
			$\begin{gathered} I_{R} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} I_{R} \\ (\mathrm{~mA}) \end{gathered}$	
	at Z test	$=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$		
	min.	max.	max.	max.	
CV7138	-0.1	-0.04	500	1000	2.0
CV7139	-0.1	-0.03	250	500	2.0
CV7140	-0.09	-0.02	100	200	2.0
CV7141	-0.08	-0.00	50	100	2.0
CV7099	-0.07	+0.01	400	800	3.3
CV7100	-0.055	+0.03	250	500	3.9
CV7101	-0.035	+0.045	250	500	4.3
CV7102	-0.015	+0.06	150	300	4.7
CV7103	+0.005	+0.075	150	300	5.6
CV7104	+0.02	+0.085	100	200	6.2
CV7105	+0.035	+0.095	100	200	6.8
CV7142	+0.03	+0.1	50	200	7.5
CV7143	+0.03	+0.1	50	200	8.2
CV7144	+0.03	+0.1	20	200	9.1
CV7145	+0.04	+0.11	20	200	10.0
CV7146	+0.04	+0.11	20	200	11.0
CV7106	+0.04	+0.11	20	200	12.0

${ }^{*} \mathrm{~T}_{\mathrm{amb}}=25$ to $60^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \delta \leqslant 2 \%$.

CV7099 to 7106 CV7138 to 7146


Fig. 2 Maximum allowable power dissipation versus ambient temperature.

## VOLTAGE REFERENCE DIODES

## VOLTAGE REFERENCE DIODES

The BZV10 to 14 are temperature compensated voltage reference diodes in a DO-34 envelope. They are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

## QUICK REFERENCE DATA

Reference voltage at $\mathrm{I}^{\prime} \mathrm{C}=2,0 \mathrm{~mA}$		$V_{\text {ref }}$	min.	nom. ${ }^{\text {max. }}$		
			6,175	6,5	6,825	V
Temperature coefficient at $I_{Z}=2,0 \mathrm{~mA}$ (see notes 1 and 2 on page 3 and the graph on page 4)	BZV10	$\left\|S_{2}\right\|$		0,01		\%/K
	BZV11	$\left\|S_{z}\right\|$		0,005		\%/K
	BZV12	$\left\|S_{z}\right\|$		0,002		\%/K
	BZV13	$\left\|S_{z}\right\|$		0,00		\%/K
	BZV14	$\left\|S_{Z}\right\|$		0,000		\%/K
Operating ambient temperature		$T_{\text {amb }}$	0 to			${ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.
The diodes are type-branded.

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)
Working current (peak value)
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$
Storage temperature
Operating ambient temperature
THERMAL RESISTANCE
From junction to ambient in free air

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reference voltage at $\mathrm{I}_{\mathrm{Z}}=2,0 \mathrm{~mA}$
Reference voltage excursion at $I_{Z}=2,0 \mathrm{~mA}^{*}$
Ambient temperature test points:
$0 ;+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
(see notes 1 and 2 on the next page)

Temperature coefficient at $\mathrm{I} Z=2,0 \mathrm{~mA}$ * (see notes 1 and 2 on the next page)

Differential resistance at $\mathrm{I}_{\mathrm{Z}}=2,0 \mathrm{~mA}$

lZ	max.	50 mA
$\mathrm{I}_{\mathrm{ZM}}$	max.	50 mA
$\mathrm{P}_{\text {tot }}$	max.	400 mW
$\mathrm{~T}_{\text {stg }}$	-65 to $+200{ }^{\circ} \mathrm{C}$	
$T_{\text {amb }}$		0 to $+70{ }^{\circ} \mathrm{C}$

$R_{\text {th } j-a}=0,375 \mathrm{~K} / \mathrm{mW}$

BZV10	$\left\|\Delta V_{\text {ref }}\right\|$	$<46,0$	mV
BZV11	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	23,0
BZV12	$\mid \Delta V_{\text {refi }}$	$<$	mV
BZV13	$\left\|\Delta V_{\text {ref }}\right\|$	$<0$	mV
BZV14	$\left\|\Delta V_{\text {ref }}\right\|$	$<6$	mV


BZV10	$\left\|S_{Z}\right\|$	$< \pm 0,01$	$\% / K$
BZV11	$\left\|S_{Z}\right\|$	$< \pm 0,005$	$\% / K$
BZV12	$\left\|S_{Z}\right\|$	$< \pm 0,002$	$\% / K$
BZV13	$\left\|S_{Z}\right\|$	$< \pm 0,001$	$\% / K$
BZV14	$\left\|S_{Z}\right\|$	$< \pm 0,0005$	$\% / K$

$r_{\text {diff }}$ typ. $30 \quad \Omega$

[^10]
## Notes

1. IZ tolerance and stability of $I_{Z}$.

The quoted values of $\Delta \mathrm{V}_{\text {ref }}$ are based on a constant current I Z . Two factors can cause $\mathrm{V}_{\text {ref }}$ to change, namely the differential resistance $r_{\text {diff }}$ and the temperature coefficient $S_{Z}$.
a. As the max. $r_{\text {diff }}$ of the device can be $50 \Omega$, a change of $0,01 \mathrm{~mA}$ in the current through the reference diode will result in a $\Delta V_{\text {ref }}$ of $0,01 \mathrm{~mA} \times 50 \Omega=0,5 \mathrm{mV}$. This level of $\Delta V_{\text {ref }}$ is not significant on a BZV10 $\left(\Delta V_{\text {ref }}<46 \mathrm{mV}\right)$, it is however very significant on a BZV14 $\left(\Delta V_{\text {ref }}<2,3 \mathrm{mV}\right)$.
b. The temperature coefficient of the reference voltage $S_{Z}$ is a function of $I_{Z}$. Reference diodes are classified at the specified test current and the $S_{Z}$ of the reference diode will be different at the different levels of $I_{Z}$. The absolute value of $I_{Z}$ is important, however, the stability of $I_{Z}$, once the level has been set, is far more significant. This applies particularly to the BZV13 and BZV14. The effect of $I_{Z}$ stability on $\mathrm{S}_{Z}$ is shown in Fig. 3.
2. Voltage excursion ( $\Delta V_{\text {ref }}$ and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion ( $\Delta V_{\text {ref }}$ ) over the specified temperature range, at the specified test current ( $\mid Z$ ), verified by tests at indicated temperature points within the range. $V_{Z}$ is measured and recorded at each temperature specified. The $\Delta V_{\text {ref }}$ between the highest and lowest values must not exceed the maximum $\Delta V_{\text {ref }}$ given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$
S_{Z}=\frac{\left(V_{\text {ref } 1}-V_{\text {ref 2 }}\right) \times 100}{\left(T_{\text {amb2 }}-T_{a m b 1}\right) \times V_{\text {ref nom }}} \% / K .
$$



Fig. 2 Typical values differential resistance.


Fig. 3 Typical change of temperature coefficient.

## vOLTAGE REFERENCE DIODES

Voltage reference diodes in a whiskerless glass envelope. They have a very low temperature coefficient and are primarily intended for use as reference sources.

QUICK REFERENCE DATA

			min.	typ.	max.	
Reference voltage at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$		$V_{\text {ref }}$	6,2	6,5	6,8	$\checkmark$
Temperature coefficient at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$ *	BZX90:	$\left\|S_{z}\right\|$	<	0,01		$\% /{ }^{\circ} \mathrm{C}$
	BZX91:	$\left\|S_{2}\right\|$	$<$	0,005		\%/ ${ }^{\circ} \mathrm{C}$
	BZX92:	$\left\|S_{2}\right\|$	<	0,002		\%/ ${ }^{\circ} \mathrm{C}$
	BZX93:	$\left\|S_{z}\right\|$	$<$	0,001		$\% /{ }^{\circ} \mathrm{C}$
	BZX94:	$\left\|S_{z}\right\|$	<	0,0005		\%/ ${ }^{\circ} \mathrm{C}$
Operating ambient temperature		Tamb	-55	to +100		${ }^{\circ} \mathrm{C}$
MECHANICAL DATA				Dimens	ons in	mm

Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.
The diodes are type-branded.

[^11]
## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Working current (d.c.)
Working current (peak value)
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$
Storage temperature
Operating ambient temperature

IZ	max.	50	mA
$I_{\mathrm{ZM}}$	max.	50	mA
$\mathrm{P}_{\text {tot }}$	max.	400	mW
$\mathrm{~T}_{\text {stg }}$	-65 to	+200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-55 to	+100	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

## From junction to ambient in free air

$R_{\text {th } j-\mathrm{a}}=0.4 \quad{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

		min.	nom.	max
Reference voltage at $I^{2}=7,5 \mathrm{~mA}$	$V_{\text {ref }}$	6,2	6,5	6,8

Reference voltage excursion at $\mathrm{I} \mathrm{Z}=7.5 \mathrm{~mA}$ *
$\mathrm{T}_{\mathrm{amb}}=-55$ to $+100^{\circ} \mathrm{C}$
Temperature coefficient at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$ *
$\mathrm{T}_{\text {amb }}=-55$ to $+100^{\circ} \mathrm{C}$

Differential resistance at $I_{Z}=7,5 \mathrm{~mA}$

BZX90:	$\left\|\Delta V_{\text {ref }}\right\|<$	100	mV	
BZX91:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	50	mV
BZX92:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	20	mV
BZX93:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	10	mV
BZX94:	$\left\|\Delta V_{\text {ref }}\right\|$	$<$	5	mV
BZX90:	$\left\|\mathrm{S}_{Z}\right\|$	$<$	0,01	$\% /{ }^{\circ} \mathrm{C}$
BZX91:	$\left\|\mathrm{S}_{Z}\right\|$	$<$	0,005	$\% /{ }^{\mathrm{C}}$
BZX92:	$\left\|\mathrm{S}_{Z}\right\|$	$<$	0,002	$\% /{ }^{\mathrm{C}}$
BZX93:	$\left\|\mathrm{S}_{Z}\right\|$	$<$	0,001	$\% /{ }^{\mathrm{C}}$
BZX94:	$\left\|\mathrm{S}_{Z}\right\|$	$<$	0,000	$\% /{ }^{\circ} \mathrm{C}$
	$r_{\text {diff }}$	$<$	15	$\Omega$

## NOTE

The temperature coefficient $\left(\mathrm{S}_{\mathrm{Z}}\right)$ of the reference voltage $\left(\mathrm{V}_{\text {ref }}\right)$ is obtained from the following equation:

$$
S_{Z}=\frac{V_{\text {ref1 }}-V_{\text {ref2 }}}{\left(T_{\text {amb2 }}-T_{\text {amb1 }} \times V_{\text {ref nom }}\right.} \times 100 \% /{ }^{\circ} \mathrm{C}
$$

[^12]

Fig. 2.


Fig. 3.


Fig. 4.


Fig. 5.


Fig. 6.


Fig. 7.




Fig. 10.

## VOLTAGE REFERENCE DIODES

Voltage reference diodes in a DO-34 envelope. They have a very low temperature coefficient and are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA

			min.	nom.	1 max.	
Reference voltage at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$		$V_{\text {ref }}$	5,89	6,20	6,51	$v$
Effective temperature coefficient at $I_{Z}=7,5 \mathrm{~mA}^{*}$ (see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)	1N821	$\left\|S_{z}\right\|$	$<$		0,01	\%/K
	1N823	$\left\|S_{Z}\right\|$	$<$		0,005	\%/K
	1N825	$\left\|S_{\boldsymbol{z}}\right\|$	$<$		0,002	\%/K
	1 N827	$\left\|S_{z}\right\|$	$<$		0,001	\%/K
	1N829	$\left\|S_{z}\right\|$	$<$		0,0005	\%/K
Operating ambient temperature		Tamb		-55 to $+100{ }^{\circ} \mathrm{C}$		

MECHANICAL DATA
Dimensions in mm
Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band
The diodes are type-branded

[^13]
## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)
Working current (peak value)
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$
Storage temperature
Operating ambient temperature

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Reference voltage at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$
Reference voltage excursion at $I_{Z}=7,5 \mathrm{~mA}^{*}$ ambient temperature test points:
$-55 ;+25 ;+75 ;+100^{\circ} \mathrm{C}$
(see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)

1N821
1 N823
1N825
1N827
1 N829
Effective temperature coefficient at $I_{Z}=7,5 \mathrm{~mA}$ *
(see notes 1 and 2 on page 3 and
the graphs on pages 4 and 5)
1N821
1N823
1 N825
1N827
1N829
Differential resistance at $\mathrm{I}_{\mathrm{Z}}=7,5 \mathrm{~mA}$
1N821 to 1 N829

l	max.	50 mA
$\mathrm{I}_{\mathrm{ZM}}$	max.	50 mA
$\mathrm{P}_{\text {tot }}$	max.	400 mW
$\mathrm{~T}_{\text {stg }}$	-65 to $+200{ }^{\circ} \mathrm{C}$	
$T_{\text {amb }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

$R_{\text {th } j \cdot a}=0,375 \mathrm{~K} / \mathrm{mW}$

	min.	nom.	max.		
$V_{\text {ref }}$				$\quad$	5,89
:---					


$\left\|\Delta V_{\text {ref }}\right\|$	$<$	96 mV
$\left\|\Delta V_{\text {ref }}\right\|$	$<$	48 mV
$\left\|\Delta V_{\text {ref }}\right\|$	$<$	19 mV
$\left\|\Delta V_{\text {ref }}\right\|<$	9 mV	
$\left\|\Delta V_{\text {ref }}\right\|<$	5 mV	


$\left\|S_{\mathbf{Z}}\right\|$	$<$	$0,01 \% / K$
$\left\|\mathbf{S}_{\mathbf{Z}}\right\|$	$<$	$0,005 \% / \mathrm{K}$
$\left\|\mathbf{S}_{\mathbf{Z}}\right\|$	$<$	$0,002 \% / \mathrm{K}$
$\left\|S_{\mathbf{Z}}\right\|$	$<$	$0,001 \% / \mathrm{K}$
$\left\|\mathrm{S}_{\mathbf{Z}}\right\|$	$<$	$0,0005 \% / \mathrm{K}$
$\mathbf{r}_{\text {diff }}$	$<$	$15 \Omega$

[^14]
## Notes

1. IZ tolerance and stability of $I_{Z}$.

The quoted values of $\Delta V_{\text {ref }}$ are based on a constant current $I Z$. Two factors can cause $V_{\text {ref }}$ to change, namely the differential resistance $r_{d i f f}$ and the temperature coefficient $\mathrm{S}_{\mathrm{Z}}$.
a. As the max. $r_{\text {diff }}$ of the device can be $15 \Omega$, a change of $0,01 \mathrm{~mA}$ in the current through the reference diode will result in a $\Delta V_{\text {ref }}$ of $0,01 \mathrm{~mA} \times 15 \Omega=0,15 \mathrm{mV}$. This level of $\Delta \mathrm{V}_{\text {ref }}$ is not significant on a $1 \mathrm{~N} 821\left(\Delta \mathrm{~V}_{\text {ref }}<96 \mathrm{mV}\right)$, it is however very significant on a 1 N 829 ( $\Delta V_{\text {ref }}<5 \mathrm{mV}$ ).
b. The temperature coefficient of the reference voltage $S_{Z}$ is a function of $I_{Z}$. Reference diodes are classified at the specified test current and the $S_{Z}$ of the reference diode will be different at different levels of $I_{Z}$. The absolute value of $I_{Z}$ is important, however, the stability of $I_{Z}$, once the level has been set, is far more significant. This applies particularly to the 1 N829.

The effect of $I_{Z}$ stability on $\mathrm{S}_{Z}$ is shown in the graph on page 5 .
2. Voltage excursion ( $\Delta \mathrm{V}_{\text {ref }}$ and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion ( $\left.\Delta \mathrm{V}_{\text {ref }}\right)$ over the specified temperature range, at the specified test current ( $1 Z$ ), verified by tests at indicated temperature points within the range. $V_{Z}$ is measured and recorded at each temperature specified. The $\Delta V_{\text {ref }}$ between the highest and lowest values must not exceed the maximum $\Delta V_{\text {ref }}$ given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$
S_{Z}=\frac{\left(V_{\text {ref } 1}-V_{\text {ref } 2}\right) \times 100}{\left(T_{\text {amb } 2}-T_{\text {amb } 1}\right) \times V_{\text {ref nom }}} \% / K
$$



Maximum reference voltage variation (line section) caused by temperature variations within the range from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ at a constant working current of $7,5 \mathrm{~mA}$. The voltage variations may shift horizontally within the shaded area. The zero point may vary from 5890 mV to 6510 mV and differs from diode to diode.





## RECTIFIER DIODES <br> (Low power)

## PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY438	BY228	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	1200	1500	V
Working peak forward current	$I_{\text {FWM }}$	max.		5	A
Repetitive peak forward current	$I_{\text {FRM }}$	max.	10	A	
Total reverse recovery time	$\mathrm{t}_{\text {tot }}$	$<$	20	$\mu \mathrm{~s}$	

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD. 64.


The marking band indicates the cathode.
The diodes are type branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Non-repetitive peak reverse voltage
during flashover of picture tube
Repetitive peak reverse voltage
Working reverse voltage
Working peak forward current
Repetitive peak forward current
Non-repetitive peak forward current $t=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ prior to surge; with reapplied $V_{\text {RWmax }}$
Storage temperature
Junction temperature

		BY438	BY228
$V_{\text {RSM }}$	max.	1300	1650 V
$V_{\text {RRM }}$	max.	1200	1500 V
$\mathrm{V}_{\text {RW }}$	max.	1200	1500 V
	IFWM	max.	5 A
	IFRM	max.	10 A
	IFSM	max.	50 A
	$\mathrm{T}_{\text {stg }}$	-65	\% $+175{ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\mathrm{j}}$	max.	$140{ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

## Influence of mounted method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board;
Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2


Fig. 3 Definition of $t_{\text {tot }}$.


Fig. $5-\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$;
$---T_{j}=140^{\circ} \mathrm{C}$.


Fig. 4 Definition of $\mathrm{t}_{\mathrm{fr}}$.


Fig. $6 P_{\text {tot }}=$ power dissipation including switching losses:
---- 819 lines; $\qquad$ 625 lines;
S.R.T. = self regulating time-base circuit;
normal = conventional deflection circuit or high-voltage
E-W modulator circuit;
$I_{\text {I WM }}$ is the nominal diode current, for tolerances and spreads $25 \%$ safety margin is taken into account.

## APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.
Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than $25 \%$. For that reason the dissipation graph (Fig. 6) is based on the nominal IFWM; 25\% safety margin for tolerance and spreads is taken into account.


Fig. 7 Basic waveforms.


Fig. 8 Basic conventional horizontal deflection circuit.
$\mathrm{D} 1=\mathrm{BY} 228$ or BY 438 .


Fig. 9 Basic high-voltage E-W modulator circuit. $\mathrm{D} 1=\mathrm{BY} 228$ or BY438.


Fig. 10 Basic self-regulating time base circuit (S.R.T.). D1 $=$ BY228 or BY438.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 11 Thermal model. $R_{\text {th } j-\mathrm{e}}=12 \mathrm{~K} / \mathrm{W}$.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {the-tp }}$	7	14	21	28	35	KNW
$R_{\text {the-a }}$	410	300	230	185	155	KNW

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{t h} t p-a$ is $45 \mathrm{~K} / W$.

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

## PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits and PPS (power-pack system) circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY458	BY448	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	1200	1500	V
Working peak forward current	$I_{\text {FWM }}$	max.			A
Repetitive peak forward current	IfRM	max.			A
Total reverse recovery time	$\mathrm{t}_{\text {tot }}$	<			$\mu \mathrm{s}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting value in accordance with the Absolute Maximum System (IEC 134)

Non-repetitive peak reverse voltage during flashover of picture tube
Repetitive peak reverse voltage
Working peak forward current
Repetitive peak forward current

	BY458	BY448
$V_{\text {RSM }}$	max. 1300	1650
$V_{\text {RRM }}$	max. 1200	1500
$I_{\text {FWM }}$	max.	4
IFRM	max.	8

Non-repetitive peak forward current
$t=10 \mathrm{~ms}$; half sine-wave; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$
prior to surge; with reapplied $V_{\text {RRMmax }}$

I FSM	max.	30	A
$T_{\text {stg }}$	-65 to	+175	${ }^{\circ} \mathrm{C}$
$T_{j}$	max.	140	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

## Influence of mounting method (see also OPERATING NOTES and Fig. 11)

The quoted value of $R_{\text {th } j \text {-a }}$ should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. $2 \quad R_{\text {th j-a }}=\quad 100{ }^{\circ} \mathrm{C} / \mathrm{W}$


Fig. 2.

## MOUNTING AND SOLDERING NOTES

## Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

## Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N . Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N . Bending the leads through $90^{\circ}$ is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

## Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance $>5 \mathrm{~mm}$ from the studs, the torque-angle must not exceed $30^{\circ}$.

## Soldering

The minimum distance of soldering point to stud is 2 mm , the maximum allowed solder temperature is $300^{\circ} \mathrm{C}$, and the soldering time must not be longer than 10 seconds.
Prevent fast cooling after soldering.
When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

## CHARACTERISTICS

## Forward voltage

$$
\begin{aligned}
& I_{F}=3 \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{F}}<1,6 \mathrm{~V}^{*} \\
& \text { Reverse current } \\
& \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{R}}<200 \mu \mathrm{~A} \\
& \text { Total reverse recovery time when switched from } \\
& I_{F}=1 \mathrm{~A} ;-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=0,05 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{t}_{\text {tot }}<20 \mu \mathrm{~s}
\end{aligned}
$$



Fig. 3 Definition of $t_{\text {tot }}$.

[^15]
## CHARACTERISTICS (continued)

Forward recovery time when switched to
$I_{F}=4 \mathrm{~A}$ with $\mathrm{t}_{\mathrm{r}}=0,1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C} \quad \mathrm{t}_{\mathrm{fr}} \quad<\quad 1 \mu \mathrm{~s}$


Fig. 4 Definition of $\mathrm{t}_{\mathrm{fr}}$.


Fig. $5 — \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;---\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$.


Fig. $6 P_{\text {tot }}=$ maximum power dissipation including switching losses; $-\quad-819$ lines; -625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; IFWM = the nominal peak diode current, for tolerances and spreads $25 \%$ safety margin is taken into account.

## APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.
Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than $25 \%$. For that reason the dissipation graph (Fig. 6) is based on the nominal $I_{\text {FWM }}$ : $25 \%$ safety margin for tolerance and spreads is taken into account.


Fig. 7 Basic waveforms.


Fig. 8 Basic conventional horizontal deflection circuit.

## APPLICATION INFORMATION (continued)



Fig. 9 Basic high-voltage $\mathrm{E}-\mathrm{W}$ modulator circuit.


Fig. 10 Basic self-regulating time base circuit (S.R.T.).

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 11.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$\mathrm{R}_{\text {th e-tp }}$	15	30	45	60	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th e-a }}$	580	445	350	290	245	${ }^{\circ} \mathrm{C} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounting similar to method given on page 2: $R_{\text {th tp-a }}=70^{\circ} \mathrm{C} / \mathrm{W}$.
2. Mounted on a printed-circuit board with a copper laminate (per lead) of:
$1 \mathrm{~cm}^{2} R_{\text {th tp-a }}=55^{\circ} \mathrm{C} / \mathrm{W}$.
$2,25 \mathrm{~cm}^{2} R_{\text {th } \mathrm{tp}-\mathrm{a}}=45^{\circ} \mathrm{C} / \mathrm{W}$.
Note
Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

## SILICON EH.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers and for use in tiny vision black-and-white television receivers. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 9 kV , see page 3 .

## QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	max	16 kV
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max	18 kV
Average forward current	If(AV)	max	2,5 mA
Junction temperature	$T_{j}$	max	$100{ }^{\circ} \mathrm{C}$
Reverse recovery			
Recovery charge	$\mathrm{Q}_{\mathbf{s}}$	typ	2.5 nC
Recovery time	$\mathrm{t}_{\mathrm{rr}}$	typ	0,4 $\mu \mathrm{s}$

MECHANICAL DATA
Dimensions in mm
SOD-56


## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage ( $\mathrm{t} \leqslant 10 \mathrm{~ms}$ )

$V_{R W}$	$\max$	16 kV
$V_{\text {RRM }}$	$\max$	18 kV
$V_{\text {RSM }}$	$\max$	21 kV

## Currents

Average forward current (averaged over any 20 ms period)
Repetitive peak forward current

$I^{\prime}(A V)$	$\max$	$2,5 \mathrm{~mA}$
$I_{F R M}$	$\max$	500 mA

## Temperatures

Storage temperature
Junction temperature
$T_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$
$V_{F}$
$I_{R}$
$<$
-65 to $+100{ }^{\circ} \mathrm{C}$
$\max \quad 100^{\circ} \mathrm{C}$

## CHARACTERISTICS

Forward voltage at $I_{F}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{i}}=100^{\circ} \mathrm{C}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{kV} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$
Reverse recovery when switched from
$I_{F}=200 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
Recovery charge
Recovery time
Fall time

$Q_{s}$	typ	$2,5 \mathrm{nC}$
$\mathrm{t}_{\mathrm{rr}}$	typ	$0,4 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}$	$>$	$0,15 \mu \mathrm{~s}$



[^16]

When used at voltages above 9 kV diode should be potted in such a way that $R_{\text {th }} \mathrm{j}$-a is less than $120^{\circ} \mathrm{C} / \mathrm{W}$.

Typical operating circuit


Typical applied voltage



## SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODE

E.H.T. rectifier diode in a glass envelope intended for use in high-voltage applications such as multipliers, e.g. tripler circuits. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be used in a suitable insulating medium (resin, oil or special arrangements in test-cases).

## QUICK REFERENCE DATA

Working reverse voltage	$V_{\text {RW }}$	max.	11.5 kV
Repetitive peak reverse voltage	$V_{\text {RRM }}$	$\max$.	15 kV
Average forward current	IF(AV)	max.	4 mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$120{ }^{\circ} \mathrm{C}$
Reverse recovery charge	$\mathrm{O}_{5}$	<	1 nc
Reverse recovery time	$t_{\text {rr }}$	typ.	0,2 $\mu \mathrm{s}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-61.
$L=\min .29 ; G=\max .8,2$.


The cathode is indicated by a purple band on the lead.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).
Working reverse voltage
Repetitive peak reverse voltage
Repetitive peak reverse voltage;

$$
\mathrm{t}=1 \mathrm{~min} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

Non-repetitive peak reverse voltage;

$$
t \leqslant 10 \mathrm{~ms}
$$

$\mathrm{V}_{\text {RW }}$	max.	$11,5 \mathrm{kV}$
$V_{\text {RRM }}$	max.	$12,5 \mathrm{kV}$
$V_{\text {RRM }}$	max.	15 kV
$\mathrm{V}_{\text {RSM }}$	max.	15 kV
If(AV)	max.	4 mA
IFRM	max.	$500 \mathrm{~mA}{ }^{*}$
$\mathrm{T}_{\text {stg }}$	-65	$+120{ }^{\circ} \mathrm{C}$
Ti	max.	$120{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

Forward voltage
$I_{F}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{F}} \ll 43 \mathrm{~V}^{* *}$
Reverse current

$$
V_{R}=11,5 \mathrm{kV} ; \mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C}
$$

$I_{R}<$ $3 \mu \mathrm{~A}$
Reverse recovery when switched from $I_{F}=100 \mathrm{~mA}$ to $V_{R} \geqslant 100 \mathrm{~V}$ with $-\mathrm{d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
recovery charge recovery time fall time

$\mathrm{a}_{\mathrm{s}}$	$<$	1 nC
$\mathrm{t}_{\mathrm{rr}}$	typ.	$0,2 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}$	$>$	$0,1 \mu \mathrm{~s}$



Fig. 2 Definitions of $\mathrm{O}_{\mathrm{s}}, \mathrm{t}_{\mathrm{rr}}$ and $\mathrm{t}_{\mathrm{f}}$.

[^17]Fig. 3 Maximum permissible average forward current as a function of ambient temperature. $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RW} \text { max }}$. The device should be mounted in such a way that $R_{\text {th } j-a} \leqslant 120^{\circ} \mathrm{C} / \mathrm{W}$.



Fig. 4 Typical operation circuit.


Fig. 5 Typical applied voltage.


Fig. $6 — T_{j}=25^{\circ} \mathrm{C} ;--T_{j}=120^{\circ} \mathrm{C}$.

## high voltage soft recovery rectifier diode

Glass-passivated rectifier diode in hermetically sealed axial-lead glass envelope. For high voltage applications such as grid 2 supply in colour television picture tubes and as general purpose rectifiers for high frequencies. The diode has non-snap-off characteristics.

QUICK REFERENCE DATA

Working reverse voltage	$V_{R W}$	$\max$.	1500 V
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{R} R M}$	$\max$.	1800 V
Average forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$\max$.	85 mA
Repetitive peak forward current	$\mathrm{I}_{\mathrm{FRM}}$	max. 800 mA	
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$120^{\circ} \mathrm{C}$
Reverse recovery charge	$\mathrm{Q}_{\mathrm{s}}$	$<$	$1,0 \mathrm{nC}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-61A.
$G=\max .4,9 ; L=\min .32,5$.


The cathode is indicated by a black band on the lead.
Diodes are type branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Working reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
Average forward current
(averaged over any 20 ms )
$T_{t p}=25^{\circ} \mathrm{C}$; lead length $=10 \mathrm{~mm}$
$T_{a m b}=60^{\circ} \mathrm{C}$; p.c.b. mounting see Fig. 2
Repetitive peak forward current
Non-repetitive peak forward current

$$
\mathrm{t}<10 \mathrm{~ms} \text {, half sinewave, }
$$

$T_{j}=T_{j \text { max }}$ prior to surge
Storage temperature
Junction temperature
$V_{\text {RW }}$
$V_{\text {RRM }}$
$V_{\text {RSM }}$
$I^{\prime}(A V) \quad \max . \quad 85 \mathrm{~mA}$
${ }^{\prime} F(A V)$
IFRM

IFSM
$T_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$
max. 1500 V
max. 1800 V
max. 1800 V max. $\quad 50 \mathrm{~mA}$ max. $\quad 800 \mathrm{~mA}$ $\max \quad 5 \mathrm{~A}$
-65 to $+120^{\circ} \mathrm{C}$
$\max . \quad 120^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass p.c.b.;
Cu-thickness $>40 \mu \mathrm{~m}$; see Fig. 2
$R_{\text {th j-a }}=155 \mathrm{~K} / \mathrm{W}$

## CHARACTERISTICS

Forward voltage *

$$
I_{F}=100 \mathrm{~mA} ; T_{j}=120^{\circ} \mathrm{C}
$$

## Reverse current

$$
V_{R}=V_{R W} ; T_{j}=120^{\circ} \mathrm{C}
$$

$V_{F}$	$<8,5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R}}$	$<$

Reverse recovery when switched from

$$
I_{F}=100 \mathrm{~mA} \text { to } V_{R}>100 \mathrm{~V} \text { with }
$$

$$
-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~mA} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

recovery charge
recovery time
fall time


Fig. 2 Device mounted on a printed circuit board.

$\mathrm{Q}_{\mathrm{s}}$	$<$	1 nC
$\mathrm{t}_{\mathrm{rr}}$	typ.	$0,2 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}$	$>$	$0,1 \mu \mathrm{~s}$



Fig. 3 Definitions of $\mathrm{O}_{\mathrm{s}}, \mathrm{t}_{\mathrm{rr}}$ and $\mathrm{t}_{\mathrm{f}}$.

* Measured under pulse conditions to avoid excessive dissipation.


Fig. 4 Maximum permissible average forward current as a function of the ambient temperature; $V_{R}=V_{R W}$ max; $a=1,42$, mounting Fig. 2.


Fig. 6 Steady state power dissipation (forward plus leakage current but excluding switching losses) as a function of average forward current.
$a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R W}$ max $; \delta=0,5$.


Fig. $5 — \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ;-\mathrm{T}_{\mathrm{j}}=120^{\circ} \mathrm{C}$.


Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
$\mathrm{a}=1,42 ; \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RW} \text { max }} ; \delta=0,5^{*}$.

* Figs 4 and 7 apply to switched mode application.


## APPLICATION INFORMATION



Fig. 8 Basic circuit for voltage supply of grid 2 incolour television picture tubes. $D_{1}=B Y 584$. Stable continuous operation is ensured at an ambient temperature up to $70^{\circ} \mathrm{C}$.


Fig. 9 Waveform.


Fig. 10 Maximum permissible average forward current as a function of ambient temperature. $V_{R}=1500 \mathrm{~V}$; diode used in circuit Fig. 8 mounted as in Fig. 2.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 11 Thermal model. $R_{\text {th } \mathrm{j}-\mathrm{e}}=35 \mathrm{~K} / \mathrm{W}$.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	38	76	114	152	190	KNW
$R_{\text {th e-a }}$	750	560	410	330	280	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{t h} t p-a$ is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $45 \mathrm{~K} / \mathrm{W}$.

Note
Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

## EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

## QUICK REFERENCE DATA

		BYV27-50		100	150	200	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50	100	150	200	V
Continuous reverse voltage	$V_{R}$	max.	50	100	150	200	V
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.					A
Non-repetitive peak reverse energy	$E_{\text {RSM }}$	max.					mJ
Reverse recovery time	$t_{\text {rr }}$	$<$					ns
MECHANICAL DATA					ensi	s in m	

Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Repetitive peak reverse voltage

Continuous reverse voltage

	BYV27-50		100	150	200
$V_{R R M}$	max.	50	100	150	$200 \vee$
$V_{R}$	$\max$.	50	100	150	200 V

## Average forward current

(switching losses negligible up to 200 kHz )
square wave; $\delta=0,5$

$\mathrm{T}_{\mathrm{tp}}=85^{\circ} \mathrm{C}$; lead length $=10 \mathrm{~mm}$	$I^{\prime}(A V)$	$\max$	2	A
$\mathrm{~T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$; Fig. 2	$I_{F(A V)}$	$\max$.	1,3	A
epetitive peak forward current	$I_{F R M}$	$\max$.	15	A

Non-repetitive peak forward current
( $\mathrm{t}=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; with reapplied $V_{\text {RRM }}$
IFSM max.
50
Non-repetitive peak reverse avalanche energy; $I_{R}=600 \mathrm{~mA}$; prior to surge; with inductive load switched off:

at $T_{j}=25^{\circ} \mathrm{C}$	$E_{R S M}$	$\max$	40	mJ
at $T_{j}=T_{j \text { max }}$	$E_{R S M}$	$\max$	20	mJ
torage temperature	$T_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
Unction temperature	$T_{j}$	max.	175	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

## Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm $R_{t h j-t p}$ 46
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}=100 \mathrm{~K} / \mathrm{W}$


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Forward voltage*

$$
\begin{aligned}
& I_{F}=3 A ; T_{j}=T_{j \text { max }} \\
& I_{F}=3 A
\end{aligned}
$$

	$\quad$ BYV27.50	100	150	200
	55	110	165	220

Reverse current
$V_{R}=V_{R R M m a x} ; T_{j}=25^{\circ} \mathrm{C}$
$\begin{array}{lll}V_{F} & < & 0,88 \\ 1,07 & V\end{array}$
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRMmax }} ; \mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$
$V_{F}$
$<$ 1,07 v

Reverse recovery time when switched from $I_{F}=0,5 A$ to $I_{R}=1 A$; measured at $I_{R}=0,25 A \quad t_{r r} \quad<\quad 25 \quad$ ns for definition see Figs 3 and 4
D.U.T.


Fig. 3 Test circuit.
Input impedance oscilloscope $1 \mathrm{M} \Omega ; 22 \mathrm{pF}$. Rise time $\leqslant 7 \mathrm{~ns}$. Source impedance $50 \Omega$. Rise time $\leqslant 15 \mathrm{~ns}$.


Fig. 4 Reverse recovery time characteristic.

* Measured under pulse conditions to avoid excessive dissipation.


## Reverse recovery when switched from

$I_{F}=1 \mathrm{~A}$ to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-d I_{F} / d t=20 A / \mu$ s (see Fig. 5)
recovered charge

$\mathrm{Q}_{\mathrm{s}}$	$<$	15 nC
$\mathrm{t}_{\mathrm{rr}}$	$<$	50 ns



Fig. 5 Definitions of $t_{r r}$ and $\mathrm{Q}_{\mathbf{s}}$.


Fig. 6 Forward current as a function of the maximum forward voltage.


Fig. $7 a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M m a x}$. Pulsed reverse voltage; $\delta=0,5$.
(Including reverse current losses and switching losses up to $f=200 \mathrm{kHz}$ ).



Fig. 8 Maximum average forward current.
The curves include losses due to reverse current and switching up to $f=200 \mathrm{kHz}$.
Pulsed reverse voltage, $\delta=0,5$.
$V_{R}=V_{\text {RRMmax }}$.
Square wave current, $a=1,42$.

Fig. 9 Maximum average forward current.
The curve includes losses due to reverse current and switching up to $f=200 \mathrm{kHz}$.
Mounting method see Fig. 2.
Pulsed reverse voltage, $\delta=0,5$
$V_{R}=V_{\text {RRMmax }}$.
Square wave current, $a=1,42$.


Fig. 10 Maximum values reverse recovery charge. For definition see Fig. 5.


Fig. 11 Maximum values reverse recovery time. For definition see Fig. 5.


Fig. 12 Typical values diode capacitance at $f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 13 Maximum values reverse current.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 14 Thermal model.
By using this thermal model and the dissipation graph (Fig. 7) any temperature can be calculated.
The thermal resistances betweenenvelope and tie-point, and between envelope and ambient depend on lead length.

thermal   resistance	lead length					unit
	5	10	15	20	25	mm
	15	30	45	60	75	$\mathrm{~K} / \mathrm{W}$
$R_{\text {the-a }}$	580	445	350	290	245	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method.
For components on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$ :

1. Mounted as given in fig. 2 the thermal resistance $R_{\text {th tp-a }}$ is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $45 \mathrm{~K} / \mathrm{W}$.

## EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general in high-frequency circuits, where low conduction and switching losses are essential.

## QUICK REFERENCE DATA

		BYV28-50		100	150	200	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50	100	150	200	V
Continuous reverse voltage	$V_{R}$	max.	50	100	150	200	$V$
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.					A
Non-repetitive peak reverse energy	ERSM	max.					m
Reverse recovery time	$\mathrm{t}_{\mathrm{rr}}$	$<$					ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV28.50		100	150	200	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50	100	150	200	V
Continuous reverse voltage	$V_{R}$	max.	50	100	150	200	V
Average forward current (averaged over any 20 ms period)							
$\mathrm{T}_{\mathrm{tp}}=85^{\circ} \mathrm{C}$; lead length $=10 \mathrm{~mm}$	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.					A
$\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}$; p.c.b. mounting (see Fig. 2)	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.					A
Repetitive peak forward current	IFRM	max.					A
Non-repetitive peak forward current ( $\mathrm{t}=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; with reapplied $V_{\text {RRM }}$	IFSM	max.					A
Non-repetitive peak reverse avalanche energy; $I_{R}=600 \mathrm{~mA}$; with inductive load switched off							
prior to surge; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$E_{\text {RSM }}$	max.					mJ
prior to surge; $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$	$E_{\text {RSM }}$	max.					mJ
Storage temperature	$\mathrm{T}_{\text {stg }}$			to +			${ }^{\circ} \mathrm{C}$
Junction temperature	T ${ }_{\text {j }}$	max.					${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

$$
R_{\text {th } j-t p}=
$$

$$
25
$$

2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2
$R_{\text {th j-a }}=75 \quad \mathrm{~K} / \mathrm{W}$


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified
Reverse avalanche breakdown voltage

$$
I_{\mathrm{R}}=0,1 \mathrm{~mA}
$$

Forward voltage*

$$
\begin{aligned}
& I_{F}=5 A ; \\
& I_{F}=5 A ; T_{j}=T_{j \text { max }}
\end{aligned}
$$

## Reverse current

$$
V_{R}=V_{\text {RRMmax }}: T_{j}=25^{\circ} \mathrm{C}
$$

$V_{(B R) R}$	BYV28-50		100	150	200
	>	55	110	165	220
$V_{F}$	$<$				
$V_{F}$	<				

$$
V_{R}=V_{R R M m a x} ; T_{j}=165{ }^{\circ} \mathrm{C}
$$

Reverse recovery time when switched from
$I_{F}=0,5 \mathrm{~A}$ to $I_{R}=1 A ;$ measured at
$I_{R}=0,25 \mathrm{~A}$ for definition see

Figs 3 and 4
$\mathrm{t}_{\mathrm{rr}}<$
30
ns


Fig. 3 Test circuit.
Input impedance oscilloscope $1 \mathrm{M} \Omega ; 22 \mathrm{pF}$; Rise time $\leqslant 7$ ns.
Source impedance $50 \Omega$. Rise time $\leqslant 15 \mathrm{~ns}$.


Fig. 4 Reverse recovery time characteristic.

[^18]Reverse recovery when switched from
$I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with
$-d I_{F} / d t=20 A / \mu s$ (see Fig. 5)
recovered charge
recovery time


Fig. 5 Definitions of $t_{r r}$ and $Q_{s}$.


Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta=50 \%$. $a=I_{F(R M S)} / I_{F(A V):} V_{R}=V_{R R M m a x}$.

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{s}}<20 \mathrm{nC} \\
& \mathrm{t}_{\mathrm{rr}}<50 \mathrm{~ns}
\end{aligned}
$$



Fig. 6 Forward current as a function of the maximum forward voltage.


Fig. 8 Reverse current as a function of the junction temperature



Fig. 9 Maximum average forward current. The curves include losses due to reverse current and switching up to $f=200 \mathrm{kHz}$.
Pulsed reverse voltage; $\delta=0,5 \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} \mathrm{RM}$ max . Square-wave current; $a=1,42$.

Fig. 10 Maximum average forward current. The curve includes losses due to reverse current and switching up to $f=200 \mathrm{kHz}$; mounting method see Fig. 2.
Pulsed reverse voltage; $\delta=0,5 \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} R M}$ max. Square-wave current; $a=1,42$.


Fig. 11 Typical values diode capacitance at $\mathrm{f}=1 \mathrm{MHz} . \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 12 Thermal model. $R_{\text {th } \mathrm{j}-\mathrm{e}}=12 \mathrm{~K} / \mathrm{W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal   resistance	lead length					unit
	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{t h} t p-a$ is $45 \mathrm{~K} / \mathrm{W}$.

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 7) and the above model.

## AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV95A	B	C	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	200	400	600	$V$
Continuous reverse voltage	$V_{R}$	max.	200	400	600	V
Average forward current	$I^{\prime}(A V)$	max.		1,5		A
Non-repetitive peak forward current	$l^{\prime}$ FSM	max.		35		A
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	$\mathrm{trrr}^{\text {r }}$	<		250		ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage

		BYV95A	B
	C		
$V_{R R M}$	max.	200	400
$V_{R}$	max.	200	400
			600 V

Average forward current (averaged over any 20 ms period)
$\mathrm{T}_{\mathrm{tp}}=65^{\circ} \mathrm{C}$; lead length 10 mm
$\mathrm{T}_{\mathrm{amb}}=65^{\circ} \mathrm{C}$; Fig. 2
Repetitive peak forward current

$I_{F}(A V)$	$\max$.	1,5	$A$
$I_{F}(A V)$	$\max$.	0,8	$A$
$I_{F R M}$	$\max$.	10	$A$

Non-repetitive peak forward current
( $t=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$
prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ Mmax
IFSM max. 35
A
Non-repetitive peak reverse avalanche
energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; with inductive load switched off
Storage temperature
$\rightarrow$ Operating junction temperature

## THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=$ 46
${ }^{\circ} \mathrm{C} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{aligned}
& \text { Forward voltage } \\
& \qquad \begin{array}{l}
I_{F}=3 A \\
I_{F}=3 A ; T_{j}=T_{j \text { max }}
\end{array}
\end{aligned}
$$

Reverse avalanche breakdown voltage $I_{\mathrm{R}}=0,1 \mathrm{~mA}$
Reverse current
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}} ; \mathrm{T}_{\mathrm{j}}=165^{\circ} \mathrm{C}$
Reverse recovery when switched from
$I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time
Maximum slope of reverse recovery current when switched from $I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with $-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$


Fig. $3 — — T_{j}=25^{\circ} C ;--T_{j}=T_{j \text { max }}$.

		BYV95A	B	C	
$V_{F}$	$<$	1,6	1,6	1,6	V*
$V_{F}$	$<$	1,35	1,35	1,35	$V$ *
$V_{\text {(BR)R }}$	$>$	300	500	700	V
$I_{\text {R }}$	$<$		150		$\mu \mathrm{A}$


$\mathrm{O}_{\mathbf{s}}$	$<$	250	nC
$\mathrm{t}_{\mathrm{rr}}$	$<$	250	ns

6
A/ $\mu \mathrm{s}$


Fig. 4 Definitions.

- Measured under pulse conditions to avoid excessive dissipation.



Fig. 5 Steady state power dissipation (forward plus leakage current)
excluding switching losses as a function of the average forward current.
The graph is for switched-mode application. $a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M m a x}$


Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $V_{R}=V_{R R M m a x} ; \delta=50 \%$; $a=1,57$.


Fig. 7 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$


Fig. 9 Reverse current as a function of junction temperature. $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} R} \mathrm{M}$.


Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.
The graph is for switched-mode application. $V_{R}=V_{R R M m a x} ; \delta=50 \% ; a=1,57$.


Fig. 10 Maximum junction temperature as a function of reverse voltage.


Fig. 11 Nomogram: power loss ( $\Delta \mathrm{P}_{\mathrm{R}}(\mathrm{AV})$ ) due to switching only. To be added to steady state power losses (see also Fig. 4).


Fig. 12 Maximum values (see also Fig. 4).


Fig. 13 Maximum values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see also Fig. 4).


Fig. 14 Maximum values at $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ (see also Fig. 4).

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 15 Thermal model $R_{\text {th } j-e}=18 \mathrm{~K} / \mathrm{W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	15	30	45	60	75	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	580	445	350	290	245	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th tp-a }}$ is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $45 \mathrm{~K} / \mathrm{W}$.

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

## AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

## QUICK REFERENCE DATA

		BYV96D		BYV96	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	800	1000	V
Continuous reverse voltage	$V_{R}$	max.	800	1000	$\checkmark$
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.	1,5		A
Non-repetitive peak forward current	IFSM	max.	35		A
Non-repetitive peak reverse energy	$E_{\text {RSM }}$	max.	10		mJ
Reverse recovery time	${ }_{\text {tr }}$	<	300		ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage	$V_{R R M}$
Continuous reverse voltage	$V_{R}$


BYV96D	BYV96E
$\max$.	800
$\max .800$	1000 V
1000 V	

Average forward current (averaged over any 20 ms period)
$\rightarrow \quad T_{t p}=55^{\circ} \mathrm{C}$; lead length 10 mm
IF $(A V)$
IF(AV)
IFRM
max.
max.
max.

IFSM max. 35 A
Non-repetitive peak reverse avalanche energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; with inductive load switched off
Storage temperature
$\rightarrow$ Operating junction temperature

$\mathrm{E}_{\text {RSM }}$	max.	10	mJ
$\mathrm{~T}_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max.	175	$\mathrm{o}^{\mathrm{C}}$

## THERMAL RESISTANCE

## Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

$$
R_{\text {th } j \cdot t \mathrm{tp}}=46 \mathrm{~K} / \mathrm{W}
$$

2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

## Forward voltage



Fig. $3 \longrightarrow T_{j}=25^{\circ} C_{;}---T_{j}=T_{j \text { max }}$.

$I_{F}=3 \mathrm{~A}$
$I_{F}=3 A ; T_{j}=T_{j \text { max }}$
Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Reverse current
$V_{R}=V_{R R M \text { max }} ; T_{j}=165^{\circ} \mathrm{C}$

$V_{F}$	$<$	1,6		
$V_{F}$	$<$	1,35	1,35	
$V_{(B R) R}$	>	900	1100	v
IR	$<$			$\mu \mathrm{A}$

Reverse recovery when switched from
$I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time
Maximum slope of reverse recovery current when switched from $I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ :
$-d_{F} / d t=1 A / \mu s$

$\mathrm{O}_{\mathrm{s}}$	$<$	400	nC
$\mathrm{t}_{\mathrm{rr}}$	$<$	300	ns

$\left|d I_{R} i d t\right|<\quad 5 \quad \mathrm{~A} / \mu \mathrm{S}$

[^19]

Fig. 6 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $V_{R}=V_{R R M}$ max $; \delta=50 \%$; $a=1,57$.


Fig. 9 Reverse current as a function of junction temperature. $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} \mathrm{MM}$ max .


Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application.
$V_{R}=V_{R R M \text { max }} ; \delta=50 \% ; a=1,57$.


Fig. 10 Maximum values junction temperature.


Fig. 11 Maximum values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see also Fig. 4).


Fig. 12 Maximum values; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ (see also Fig. 4).


Fig. 13 Maximum values (see also Fig. 4).

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 14 Thermal model. $R_{\text {th } \mathrm{j} \cdot \mathrm{e}}=18 \mathrm{~K} / \mathrm{W}$.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	15	30	45	60	75	$\mathrm{~K} / \mathrm{W}$
$R_{\text {the-a }}$	580	445	350	290	245	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $45 \mathrm{~K} / \mathrm{W}$.

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

## CONTROLLED AVALANCHE RECTIFIER DIODES

Double-diffused glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, capable of absorbing reverse transients.

They are intended for rectifier applications in colour television circuits as well as general purpose applications in telephony equipment.

## QUICK REFERENCE DATA

			BYW54	BYW55	BYW56	
Crest working reverse voltage	$V_{\text {RWM }}$	max.	600	800	1000	$\checkmark$
Reverse avalanche breakdown voltage	$V_{(B R) R}$	>	$\begin{array}{r} 650 \\ 1000 \end{array}$	$\begin{array}{r} 900 \\ 1300 \end{array}$	$\begin{aligned} & 1100 \\ & 1600 \end{aligned}$	V
Average forward current	${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.	2	2	2	A
Non-repetitive peak forward current	$I_{\text {FSS }}$	max.		50		A
Non-repetitive peak reverse power dissipation	$P_{\text {RSM }}$	max.		1		kW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.		165		${ }^{\circ} \mathrm{C}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Crest working reverse voltage
Continuous reverse voltage (Fig. 9)
Average forward current (averaged over any 20 ms period);
$T_{\text {tp }}=35^{\circ} \mathrm{C}$; lead length 10 mm
$T_{\text {amb }}=75^{\circ} \mathrm{C}$; Fig. 2 mounting
Repetitive peak forward current
Non-repetitive peak forward current
(Figs 7 and 12) $\mathrm{t}=10 \mathrm{~ms}$, half sinewave

	BYW54		BYW55	BYW56
$V_{\text {RWM }}$	max	600	800	1000
$V_{R}$	max.	600	800	1000

Non-repetitive peak reverse power dissipation ( $\mathrm{t}=20 \mu \mathrm{~s}$; half sine-wave);
$T_{j}=T_{j \text { max }}$ prior to surge

I'F(AV) max.	2	A	
IF(AV) max.	0,8	A	
IFRM	max.	12	A
IFSM	max.	50	A

Non-repetitive peak reverse avalanche
mode pulse energy; $l_{R}=1 \mathrm{~A}$;
$T_{j}=T_{j \text { max }}$ prior to surge; with inductive load switched off $\quad$ ERSM max. 20 mJ
Storage temperature
Junction temperature

$T_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$	
$T_{j}$	max.	165	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

$$
R_{\text {th j-tp }}=
$$

K/W
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printedcircuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. $2 \quad R_{\text {th j-a }}=100 \quad \mathrm{~K} / \mathrm{W}$


Fig. 2 Device mounted on a printed circuit board.

## CHARACTERISTICS

Forward voltage; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ *

$$
\begin{aligned}
& I_{F}=1 \mathrm{~A} \\
& I_{F}=10 \mathrm{~A}
\end{aligned}
$$

Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

## Reverse current

$V_{R}=V_{R W M}$ max $; T_{j}=25^{\circ}{ }^{\circ}$ **
$V_{R}=V_{R W M}$ max $; T_{j}=100^{\circ} \mathrm{C}$

		BYW54	BYW55	BYW56
		$<$	1	1
$V_{F}$	$<$	1,65	1,65	$1,65 \mathrm{~V}$
$V_{F}$			650	900
		1100 V		
$V_{\text {(BR)R }}$	$<$	1000	1300	1600 V
		0	1,0	$\mu \mathrm{~A}$
$I_{R}$	$<$		10	$\mu \mathrm{~A}$

Reverse recovery charge when switched
from $I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{R} \geqslant 30 \mathrm{~V}$ with
$-d I_{F} / d t=5 A / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\mathrm{Q}_{\mathrm{S}} \quad$ typ.
3
$\mu \mathrm{C}$
Reverse recovery time when switched from $I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$

Diode capacitance
$V_{R}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{C}_{\mathrm{d}} \quad$ typ. $\quad 50 \quad$ pF


Fig. 3 Definitions of $t_{r r}$ and $Q_{s}$.

[^20]


Fig. 4 Steady state power dissipation (forward plus leakage current excluding switching losses) as a function of the average forward current.
$a=I_{F}(R M S) I_{F}(A V) ; V_{R}=V_{R W M m a x}$.

Fig. 5 Maximum average forward current as a function of the temperature.
The curves include losses due to reverse current.
$a=1,57 ; V_{R}=V_{R W M m a x} ; I=$ lead length
—— $T=$ tie-point temperature
---- T = ambient temperature and
device mounted as shown in Fig. 2.


Fig. 6 Maximum permissible non-repetitive peak reverse power dissipation in the avalanche region.


7277560


Fig. 7 Maximum permissible non-repetitive peak forward current based on sinusoidal currents ( $f=50 \mathrm{~Hz}$ ).
$----T_{j}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=0$.
—— $T_{j}=T_{j \text { max }}$ prior to surge; $V_{R}=V_{R W M}$ max.


Fig. 8.


Fig. 10.


Fig. 9.


Fig. 11.


Fig. 12 Minimum values of series resistance ( $\mathrm{R}_{\mathrm{t}}$ ), including the transformer resistance, required to limit the initial peak rectifier current with capacitive load. The possibility of the following spreads are taken into account: mains voltage $+10 \%$; capacitance $+50 \%$, resistance $-10 \%$.


Fig. 13 Test circuit series resistance ( $\mathrm{R}_{\mathrm{t}}$ ).


Fig. 14.
Device mounted on a printed circuit board (see Fig. 2).

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 15 Thermal model. $\left(R_{\text {th }}^{\mathrm{j}-\mathrm{e}} \mathrm{e}=18 \mathrm{~K} / \mathrm{W}\right)$.
By using this thermal model and the dissipation graph (Fig. 4) any temperature can be calculated.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal   resistance	lead length					
	5	10	15	20	25	mnit
$R_{\text {th e-tp }}$	15	30	45	60	75	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	580	445	350	290	245	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$ :

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th }}$ tp-a is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $45 \mathrm{~K} / \mathrm{W}$.

## AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW95A	B	C	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	200	400	600	$V$
Continuous reverse voltage	$V_{R}$	max.	200	400	600	V
Average forward current	$I_{F}(A V)$	max.		3		A
Non-repetitive peak forward current	IFSM	max.		70		A
Non-repetitive peak reverse energy	$E_{\text {RSM }}$	max.		10		mJ
Reverse recovery time	$\mathrm{t}_{\mathrm{rr}}$	<		250		ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage
Average forward current (averaged over any 20 ms period)

## $\rightarrow \quad T_{t p}=60^{\circ} \mathrm{C}$; lead length 10 mm <br> $\rightarrow T_{\mathrm{amb}}=65^{\circ} \mathrm{C}$; Fig. 2

Repetitive peak forward current
Non-repetitive peak forward current ( $\mathrm{t}=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; $V_{R}=V_{R R M m a x}$
Non-repetitive peak reverse avalanche energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; with inductive load switched off
Storage temperature
Operating junction temperature

## THERMAL RESISTANCE

## Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$; Fig. 2

		BYW95A	B	C
	max.	200	400	600 V
$V_{\text {RRM }}$	max.	200	400	600 V


$I_{F}(A V)$	max.	3	A
$I_{F}(A V)$	$\max$.	1,25	A
$I_{F R M}$	max.	15	A

IFSM max. 70
A

$E_{\text {RSM }}$	max.	10	mJ
$T_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
$T_{j}$	max.	175	${ }^{\circ} \mathrm{C}$



Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage
$I_{F}=5 \mathrm{~A}$
$I_{F}=5 A ; T_{j}=T_{j \text { max }}$
Reverse avalanche breakdown voltage

$I_{R}$	$=0,1 \mathrm{~mA}$
Reverse current	
$V_{R}$	$=V_{R R M m a x} ; T_{j}=165^{\circ} \mathrm{C}$

Reverse recovery when switched from
$I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time
Maximum slope of reverse recovery current
when switched from $I_{F}=1 \mathrm{~A}$ to $\mathrm{V}_{\mathrm{R}} \geqslant 30 \mathrm{~V}$ with $-d I_{F} / d t=1 A / \mu s$


		BYW95A	B	C	
$V_{F}$	$<$	1,5	1,5	1,5	V*
$V_{F}$	<	1,25	1,25	1,25	V*
$V_{(B R) R}$	$>$	300	500	700	$v$
${ }^{\prime} \mathrm{R}$	$<$		150		$\mu \mathrm{A}$


$\mathrm{Q}_{\mathrm{s}}$	$<$	250	nC
$\mathrm{t}_{\mathrm{rr}}$	$<$	250	ns

$\left|d I_{R} / d t\right|<$
6
A/ $\mu \mathrm{S}$


Fig. 4 Definitions.

Fig. $3-T_{j}=25^{\circ} \mathrm{C} ;---\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$.

[^21]

Fig. 5.



Fig. 6.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.
The graph is for switched-mode application.
$a=I_{F}(R M S) / I^{\prime}(A V) ; V_{R}=V_{R R M m a x}$


Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM} \text { max }} ; \delta=50 \% ; \mathrm{a}=1,57$.

Fig. 7 Maximum slope of reverse recovery current. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 7.


Fig. 8 Maximum average forward current as : function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRMmax}} ; \delta=50 \% ; \mathrm{a}=1,57$.


Fig. 9 Reverse current as a function of junction temperature. $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} R} \mathrm{~m}_{\text {max }}$.


Fig. 10 Maximum values junction temperature as a function of reverse voltage.


Fig. 11 Nomogram: power loss ( $\Delta \mathrm{P}_{\mathrm{R}}(\mathrm{AV})$ ) due to switching only. To be added to steady state power losses (see also Fig. 4).


Fig. 12 Maximum values; for definitions see Fig. 4.


Fig. 13 Maximum values; $\mathrm{T}_{\mathrm{j}}=\mathbf{2 5}^{\circ} \mathrm{C}$. For definitions see Fig. 4.


Fig. 14 Maximum values; $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$. For definitions see Fig .4.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 15 Thermal model. $R_{\text {th je }}=12 \mathrm{~K} / \mathrm{W}$.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{\text {th tp-a }}$ is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $45 \mathrm{~K} / \mathrm{W}$.

## Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

## AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

## QUICK REFERENCE DATA

			BYW96D	BYW96E	
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	800	1000	$v$
Continuous reverse voltage	$V_{R}$	max.	800	1000	$\checkmark$
Average forward current	${ }^{\prime} F(A V)$	max.		3	A
Non-repetitive peak forward current	IfSM	max.			A
Non-repetitive peak reverse energy	ERSM	max.			mJ
Reverse recovery time	$\mathrm{t}_{\mathrm{rr}}$	<			ns

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-64.


The marking band indicates the cathode.
The diodes are type-branded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak reverse voltage
Continuous reverse voltage
Average forward current (averaged over any 20 ms period)
$T_{t p}=50^{\circ} \mathrm{C}$; lead length 10 mm
$\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$; Fig. 2
Repetitive peak forward current
Non-repetitive peak forward current
( $\mathrm{t}=10 \mathrm{~ms}$; half sine-wave) $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \text { max }}$ prior to surge; $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} \mathrm{RMmax}$
Non-repetitive peak reverse avalanche energy; $I_{R}=400 \mathrm{~mA} ; \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j} \max }$ prior to surge; with inductive load switched off

Storage temperature
Operating junction temperature

		BYW96D	BYW96E
$V_{\text {RRM }}$	max.	800	1000
$V_{\text {R }}$	max.	800	1000


$I_{F(A V)}$	max.	3	A
$I_{F(A V)}$	$\max$.	1,25	$A$
$I_{F R M}$	max.	15	A

A

$E_{\text {RSM }}$	max.	10	mJ
$\mathrm{~T}_{\text {stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max.	175	$o^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm
$R_{\text {th j-tp }}=25 \mathrm{~K} / \mathrm{W}$
2. Thermal resistance from junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board; Cu-thickness $\geqslant 40 \mu \mathrm{~m}$;
Fig. 2
$R_{\text {th } j-\mathrm{a}}=75 \mathrm{~K} / \mathrm{W}$


Fig. 2 Mounted on a printed-circuit board.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=5 A$
$I_{F}=5 A ; T_{j}=T_{j \text { max }}$

Reverse avalanche breakdown voltage

$$
I_{R}=0,1 \mathrm{~mA}
$$

Reverse current
$V_{R}=V_{R R M m a x} ; ~$

Reverse recovery when switched from
$I_{F}=1 A$ to $V_{R} \geqslant 30 \mathrm{~V}$ with
$-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
recovered charge
recovery time
Maximum slope of reverse recovery current when switched from $I_{F}=1$ A to $V_{R} \geqslant 30 \mathrm{~V}$ with $-\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$


Fig. $3 — T_{j}=25^{\circ}{ }^{\circ}{ }_{;}---T_{j}=T_{j}$ max


Fig. 4 Definitions.

[^22]

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.
$a=I_{F}(R M S) / I_{F}(A V) ; V_{R}=V_{R R M m a x}$


Fig. 6 Maximum slope of reverse recovery current. $T_{j}=25^{\circ} \mathrm{C}$.


Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.
The graph is for switched-mode application; $V_{R}=V_{R R M m a x} ; \delta=50 \% ; a=1,57$.


Fig. 9 Reverse current as a function of junction temperature. $V_{R}=V_{R R M}$ max .


Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.
Mounting method see Fig. 2.
The graph is for switched-mode application;
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R} \text { RMmax }} ; \delta=50 \% ; a=1,57$.


Fig. 10 Maximum values junction temperature as a function of reverse voltage.


Fig. 11 Maximum values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (see also Fig. 4).


Fig. 12 Maximum values at $\mathrm{T}_{\mathrm{j}}=140^{\circ} \mathrm{C}$ (see also Fig. 4).


Fig. 13 Maximum values. For definitions see Fig. 4.

## OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.


Fig. 14 Thermal model. $R_{\text {th } j-e}=12 \mathrm{~K} / \mathrm{W}$.
The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
$R_{\text {th e-tp }}$	7	14	21	28	35	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th e-a }}$	410	300	230	185	155	$\mathrm{~K} / \mathrm{W}$

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a $1,5 \mathrm{~mm}$ thick epoxy-glass printed-circuit board with a copper-thickness $\geqslant 40 \mu \mathrm{~m}$, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{t h t p-a}$ is $70 \mathrm{~K} / \mathrm{W}$.
2. Mounted with copper laminate of $1 \mathrm{~cm}^{2}$ per lead $R_{\text {th tp-a }}$ is $55 \mathrm{~K} / \mathrm{W}$.
3. Mounted with copper laminate of $2,25 \mathrm{~cm}^{2}$ per lead $R_{\text {th }}$ tp-a is $45 \mathrm{~K} / \mathrm{W}$.

Note
Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

## SILICON RECTIFIER DIODE

Double-diffused silicon diode in a DO-14 plastic envelope.
It is intended for low current rectifier applications.

QUICK REFERENCE DATA				
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	max.	1600	v
Average forward current	${ }^{\mathrm{I}} \mathrm{F}(\mathrm{AV})$	max.	0,5	A
Non-repetitive peak forward current	${ }^{\text {I }}$ FSM	max.	15	A

## MECHANICAL DATA

Dimensions in mm
DO-14


The rounded end indicates the cathode
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

All information applies to frequencies up to 400 Hz .
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltages

Crest working reverse voltage
Repetitive peak reverse voltage ( $\delta \leq 0.01$ )

$V_{\text {RWM }}$	$\max$.	800	V
$\mathrm{~V}_{\text {RRM }}$	$\max$.	1600	V
$\mathrm{~V}_{\text {RSM }}$	$\max$.	1600	V

Currents
Average forward current (averaged over any 20 ms period)
$\begin{array}{llllll}\text { with } \mathrm{R} \text { load; } & V_{R W M}=V_{R W M \max } & \mathrm{I}_{\mathrm{F}(\mathrm{AV})} & \max . & 0.36 & \mathrm{~A} \\ & V_{R W M}=60 \mathrm{~V} & \mathrm{I}_{\mathrm{F}(\mathrm{AV})} & \max . & 0.5 & \mathrm{~A}\end{array}$

Repetitive peak forward current
$I_{F R M} \max .3 \mathrm{~A}$
Non-repetitive peak forward current
( $\mathrm{t}=10 \mathrm{~ms}$; half-sine wave) $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ prior to surge $\mathrm{I}_{\mathrm{FSM}} \max . \quad 1.5 \mathrm{~A}$

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	$-65 \operatorname{to}+150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	$\max . \quad 150,{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

Forward voltage

$$
\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{F}} \quad<\quad 1.6 \mathrm{~V} \mathrm{l}_{\text {) }}
$$

## Reverse current

$V_{R}=800 \mathrm{~V}: \mathrm{T}_{\mathrm{j}}=125{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{R}}$	$<$	$50 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V}: \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{R}}$	$<$	$1 \mu \mathrm{~A}$

1) Measured under pulse conditions to avoid excessive dissipation.

## SILICON CONTROLLED AVALANCHE DIODES

Silicon controlled avalanche diodes in glass envelopes, intended for telephony applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).
Continuous reverse voltage; CV8805

## CV8308

Repetitive peak reverse voltage
Forward current (d.c.)
(see also derating curve, Fig. 3)
Repetitive peak forward current; $\mathrm{t}_{\mathrm{p}} \leqslant 10 \mathrm{~ms} ; \delta \leqslant 0.025$
Non-repetitive peak forward current half-sinewave; $\mathrm{t}=10 \mathrm{~ms}$
Power dissipation
(see also derating curve, Fig. 4)
Repetitive peak reverse power dissipation
Non-repetitive peak reverse power dissipation (duration $10 \mu \mathrm{~s}$ )
Operating ambient temperature
Storage temperature

$V_{R}$	max.	150	V
$V_{R}$	max.	60	V
$V_{\text {RRM }}$	max.	see note	
${ }^{\prime} \mathrm{F}$	max.	250	mA
IFRM	max.	10	A
${ }^{\prime}$ FSM	max.	20	A
$P_{\text {tot }}$ PRRM	max. max.	$\begin{gathered} 250 \\ \text { see } \end{gathered}$	$\mathrm{mW}$
PRSM	max.	600	W
$\begin{aligned} & \mathrm{T}_{\mathrm{amb}} \\ & \mathrm{~T}_{\text {sta }} \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	${ }^{\circ} \mathrm{O}$

Note: The repetitive peak reverse voltage and the peak reverse current are limited by the peak reverse power dissipation (see Fig. 5).

## MECHANICAL DATA

Dimensions in mm
Fig. 1


The standard registered CV8805, 8308 outline is as shown above. The Mullard outline, SOD-57, conforms fully with this. For details see page 2.

## CIHARACTERISTICS

Fig. 2 SOD-57


The marking band indicates the cathode

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise stated
Reverse current

$$
\begin{array}{ll}
V_{R}=150 \mathrm{~V} & \text { CV8805 } \\
\mathrm{V}_{R}=60 \mathrm{~V} & \mathrm{CV} 8308 \\
\mathrm{~V}_{R}=150 \mathrm{~V} ; T_{a m b}=100^{\circ} \mathrm{C} ; & \mathrm{CV} 8805 \\
\mathrm{~V}_{\mathrm{R}}=60 \mathrm{~V} ; T_{a m b}=100^{\circ} \mathrm{C} ; & \mathrm{CV8308}
\end{array}
$$

$I_{R}$	$<$	1.0	$\mu A$
$I_{R}$	$<$	1.0	$\mu A$
$I_{R}$	$<$	100	$\mu A$
$I_{R}$	$<$	100	$\mu \mathrm{~A}$

## Forward voltage

$$
\begin{aligned}
& I_{F}=250 \mathrm{~mA} \\
& I_{F}=25 \mathrm{~mA}
\end{aligned}
$$

both types
both types
$V_{F}$
$<$
0.9
0.5
$V$
$V$
Avalanche breakdown voltage

$$
\begin{array}{ll}
I_{R}=1.0 \mathrm{~mA} & \text { CV8805 } \\
& \text { CV8805 } \\
I_{R}=2.0 \mathrm{~mA} & \text { CV8308 } \\
& \text { CV8308 }
\end{array}
$$

$V_{(B R) R}$
$V_{(B R) R}$
$V_{(B R) R}$
$V_{(B R) R}$
$>$
$<$
$>$
$<$
200
280
V
V

## Capacitance

$$
V_{R}=10 \mathrm{~V} ; f=1 \mathrm{MHz} \quad \text { both types } \quad C_{\text {tot }} \quad<\quad 150 \quad \mathrm{pF}
$$



Fig. 3 Max. allowable forward current versus ambient temperature.


Fig. 4 Max. allowable power dissipation versus ambient temperature.


Fig. 5 Repetitive peak reverse power versus conduction time of the diode; $\mathrm{P}_{\mathrm{F}}=0 ; \mathrm{T}_{\mathrm{amb}}=0$ to $+55^{\circ} \mathrm{C}$; The pulse repetition frequency is such that the mean reverse power does not exceed 250 mW .

## SILICON AVALANCHE RECTIFIER DIODES

Silicon diodes in glass envelopes, capable of absorbing reverse transients, intended for general purpose applications.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

			CVA7026	7027	7028	7029	7030	7476
Crest working reverse voltage	$V_{\text {RWM }}$	max.	100	200	400	600	800	1000
Repetitive peak reverse voltage	VRRM	max.	100	200	400	600	800	1200
Non-repetetive peak reverse voltage; $t \leqslant 10 \mathrm{~ms}$	$V_{\text {RSM }}$	max.	100	200	400	600	800	1200
Continuous reverse voltage (see Fig. 2)	$V_{R}$	max.	-	-	-		-	1000

Average forward current; sinusoidal conduction; resistive load; see derating curve, Fig. 3
Repetitive peak forward current
$I_{F(A V)}$
$I_{F R M}$
$\begin{array}{lr}\text { max. } & 0.75 \\ \max . & 12\end{array}$
A
A
Non-repetitive peak forward current; $\mathrm{t}=10 \mathrm{~ms}$; half sinewave;

\begin{tabular}{|c|c|c|c|c|c|}
\hline without reapplied $\mathrm{V}_{\text {RWMmax }}$; \& $$
\begin{aligned}
& \text { CVA7026-7030 } \\
& \text { CVA7476 }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { IFSM } \\
& \text { IFSSM }
\end{aligned}
$$ \& max. max. \& 15
20 \& $$
\begin{aligned}
& \text { A } \\
& \text { A }
\end{aligned}
$$ <br>
\hline Operating ambient temperature; \& $$
\begin{aligned}
& \text { CVA7026-7030 } \\
& \text { CVA7476 }
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{T}_{\mathrm{amb}} \\
& \mathrm{~T}_{\mathrm{amb}}
\end{aligned}
$$ \& \multicolumn{2}{|r|}{$$
\begin{aligned}
& -40 \text { to }+125 \\
& -65 \text { to }+175
\end{aligned}
$$} \& ${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$

O <br>

\hline Storage temperature; \& $$
\begin{aligned}
& \text { CVA7026-7030 } \\
& \text { CVA7476 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& T_{\text {stg }} \\
& T_{\text {sta }}
\end{aligned}
$$

\] \& \multicolumn{2}{|r|}{\[

$$
\begin{aligned}
& -40 \text { to }+125 \\
& -65 \text { to }+175
\end{aligned}
$$
\]} \& ${ }^{\circ} \mathrm{C}$

o
C <br>
\hline MECHANICAL DATA \& \& \& \& \& <br>
\hline
\end{tabular}

Fig. 1 SOD-57


The marking band indicates the cathode
三 Products approved to CECC $50008-015$ (specification available on request).

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated
Reverse current

at $V_{R R M m a x}$	all types	$I_{R}$	$<$	20	$\mu \mathrm{~A}$
at $V_{R R M m a x} ; T_{a m b}=125^{\circ} \mathrm{C}$	CVA7026 to 7030	$I_{R}$	$<$	300	$\mu \mathrm{~A}$
at $V_{R R M m a x} ; T_{a m b}=175^{\circ} \mathrm{C}$	CVA7476	$I_{R}$	$<$	300	$\mu \mathrm{~A}$

Forward voltage
$I_{F}=2.5 \mathrm{~A}$
$\mathrm{V}_{\mathrm{F}} \quad<$
1.15

Breakdown voltage

$I_{R}=0.5 \mathrm{~mA}$	CVA7476	$V_{(B R) R}$	$>$	1250	$V$
CVA7476	$V_{(B R) R}$	$<$	2000	$V$	

## NOTE

The CVA7026-7030 and CVA7476 are in some minor aspects specified differently from the types CV7026-7030 and CV7476. They are, however, regarded by the original approval authority as direct replacements and may be used as such.


M0417


Fig. 2 Maximum continuous reverse voltage versus ambient temperature.


Fig. 3 Maximum allowable average forward current versus ambient temperature.

## SILICON DIFFUSED RECTIFIER DIODES

A range of silicon rectifier diodes for general purpose use.

## QUICK REFERENCE DATA

			1N4001G	4002G	4003G	4004G	4005G	4006G	4007G
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	50	100	200	400	600	800	1000 V
Continuous reverse voltage	$V_{R}$	$\max$.	50	100	200	400	600	800	1000 V
Average forward current				${ }^{\prime} \mathrm{F}(\mathrm{AV})$		max.		1	A
Repetitive peak forward current				IFRM		max.	10		A
Non-repetitive peak forward current				IFSM		max.	30		A

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-57 The diodes are type branded.

band indicates cathode

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Voitages			1 N 4001 G	4002 G	4003 G	4004 G	4005 G	4006 G	4007 G
Repetitive peak   reverse voltage	$\mathrm{V}_{\mathrm{R} R} \mathrm{~m}$	max.	50	100	200	400	600	800	1000 V
Continuous   reverse voltage	$\mathrm{V}_{\mathrm{R}}$	max.	$\underbrace{50}$	100	200	400	600	800	1000 V

## Currents

Average forward current
(averaged over any 20 ms period)
up to $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$
at $\mathrm{T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$
Forward current (d.c.)
up to $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$
Repetitive peak forward current
$I_{f(A V)}$
max.
A
$I_{F}(A V)$
max.
0.75

A

Non-repetitive peak forward current (half-cycle sinewave, 60 Hz )
$I_{F}$
$\max \quad 1$
IFRM max. 10
A
A

A

## Temperatures

Storage temperature
Junction temperature
$T_{\text {stg }}$
-65 to +175
max. $\quad 175$
$\mathrm{T}_{\mathrm{j}}$
$\max . \quad 30$

## CHARACTERISTICS

$T_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise stated
Forward voltage
$I_{F}=1$ A d.c.

$\mathrm{V}_{\mathrm{F}}$	$<$	1.1	V
$\mathrm{~V}_{\mathrm{F}(\mathrm{AV})}$	$<$	0.8	V
$\mathrm{I}_{\mathrm{R}}$	$<$	10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}$	$<$	50	$\mu \mathrm{~A}$
$I_{R(A V)}$	$<$	30	$\mu \mathrm{~A}$



Fig. 3 Typical values


Fig. 4 Maximum permissible d.c. forward current

## SCHOTTKY-BARRIER DIODES



## U.H.F. MIXER DIODE

Silicon epitaxial Schottky barrier diode with low forward voltage in a DO-34 glass envelope. The diode is especially designed for u.h.f. mixer applications.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	$\max$.	4	V
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	$\max$.	30	mA
Junction temperature	$T_{j}$	$\max$.	125	${ }^{\circ} \mathrm{C}$
Forward voltage   $\mathbf{I}_{\mathrm{F}}=1 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	$\max$.	400	mV

## MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2 E (5,08 mm) pitch.
The cathode is indicated by a coloured band.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Continuous reverse voltage

$\quad I_{R}=10 \mu A$		$\max$.	4	$V$
Reverse voltage (peak value)	$V_{R}$	$\max$.	4	$V$
Fonward current (d.c.)	$I_{R M}$	$\max$.	30	$m A$
Junction temperature	$T_{j}$	$\max$.	125	${ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise sperified

## Forward voltage

$I_{F}=1 \mathrm{~mA}$
$I_{F}=10 \mathrm{~mA}$
$V_{F}$
Reverse current
$V_{R}=3 V$
$I_{R}$

Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$
Noise figure at $f=900 \mathrm{MHz}$ *
Series resistance
$I_{F}=5 \mathrm{~mA} ; f=1 \mathrm{kHz}$
$C_{d}$
F
$r_{s}$
$<\quad 400$
400 mV
550
mV
$<$
$2 \mu A$
$<$
$1,1 \mathrm{pF}$
$8 d B$
$<$
$<$
$16 \Omega$

* The local oscillator is adjusted for a diode current of 2 mA .
I.F. amplifier noise $F_{\text {if }}=1,5 \mathrm{~dB} ; f=35 \mathrm{MHz}$.


## SCHOTTKY BARRIER SWITCHING DIODES

BAT81, 82 and 83 are Schottky barrier diodes in miniature DO-34 glass envelopes with an extra integral pn-junction for protection against excessive voltages such as static discharges. Typical uses are ultra-fast switching and detection.

QUICK REFERENCE DATA

|  |  |  | BAT81 | 82 | 83 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| Continuous reverse voltage | $\mathrm{V}_{\mathrm{R}}$ | $\max$. | 40 | 50 | 60 | V |
| Forward current (d.c.) | $\mathrm{I}_{\mathrm{F}}$ | $\max$. |  | 30 | mA |  |
| Junction temperature | $\mathrm{T}_{\mathrm{j}}$ | $\max$. | 125 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Diode capacitance at $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ | $\mathrm{C}_{\mathrm{d}}$ | $<$ |  | 1,6 | pF |  |

## MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BAT81	82	83	
Continuous reverse voltage	$V_{R}$	max.	40	50	60	$v$
Forward current (d.c.)	$I_{\text {F }}$	max.		30		mA
Non-repetitive peak forward current $t<1 s$	IFSM	max.		150		mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150			${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.		125		${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient when mounted on a $1,5 \mathrm{~mm}$ thick epoxy-glass p.c.b.;
Cu-thickness $>40 \mu \mathrm{~m}$; see Fig. 2
$R_{\text {th j-a }}=320 \mathrm{~K} / \mathrm{W}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=1 \mathrm{~mA} \\
& I_{F}=15 \mathrm{~mA}
\end{aligned}
$$

Reverse current

$$
V_{R}=30 \mathrm{~V}
$$

Reverse breakdown voltage

$$
I_{R}=10 \mu \mathrm{~A}
$$

Diode capacitance

$$
V_{R}=1 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}
$$

Reverse recovery*
when switched from $I_{F}=10 \mathrm{~mA}$ to
$I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega$
measured at $I_{R}=1 \mathrm{~mA} \quad \mathrm{t}_{\mathrm{rr}} \quad<\quad 1 \quad$ ns

[^23]

Fig. 2 Test circuit.

input signal

output signal

Fig. 3 Waveforms. * $I_{R}=1 \mathrm{~mA}$.
Input signal
Rise time of the reverse pulse
$t_{r}=0,6 \mathrm{~ns}$
Reverse pulse duration
Duty factor
$t_{p}=500 \mathrm{~ns}$

Oscilloscope
Rise time
$t_{r}=0,35 \mathrm{~ns}$
Circuit capacitance $C \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)


Fig. 4 Typical forward current as a function of forward voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.


Fig. 5 Typical reverse current as a function of reverse voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## SCHOTTKY BARRIER SWITCHING DIODE

BAT85 is a Schottky barrier diode in miniature DO-34 glass envelope with an extra integral pn-junction for protection against excessive voltages such as static discharges. This diode replaces point contact and gold-bonded diodes.

QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	max.	30 V
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	$\max$.	100 mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	$125{ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	max.	-55 to $150{ }^{\circ} \mathrm{C}$
Diode capacitance at $\mathrm{V}_{R}=1 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$	$<$	10 pF

MECHANICAL DATA
Dimensions in mm
Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Repetitive peak forward current
Non-repetitive peak forward current

$$
t<1 s
$$

Storage temperature
Junction temperature

## THERMAL RESISTANCE

Measured on an infinite heatsink;
at the leads 4 mm from the body $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=1 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=100 \mathrm{~mA}
\end{aligned}
$$

## Reverse current

$$
V_{R}=25 \mathrm{~V}
$$

Reverse breakdown voltage

$$
I_{R}=10 \mu \mathrm{~A}
$$

Diode capacitance

$$
V_{R}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}
$$

Reverse recovery time when switched

$$
\text { from } I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA}
$$

$$
R_{L}=100 \Omega \text {, measured at } I_{R}=1 \mathrm{~mA}
$$

$R_{\text {th j-a }}=320 \mathrm{~K} / \mathrm{W}$

$V_{R}$	max.	30	V
If	max.	100	
IFRM	max.	300	
IFSM	max.	600	
$\mathrm{T}_{\text {stg }}$	-55 to	150	
$\mathrm{T}_{\mathrm{j}}$	max.	125	${ }^{\circ} \mathrm{C}$


$V_{F}$	typ.	250 mV
$V_{F}$	$<$	400 mV
$V_{F}$	typ.	500 mV
	$<$	1000 mV
$\mathrm{I}_{\mathrm{R}}$	$<$	$2 \mu \mathrm{~A}$

$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}>\quad 30 \mathrm{~V}$
$\mathrm{C}_{\mathrm{d}}<10 \mathrm{pF}$
$\mathrm{t}_{\mathrm{rr}}<\quad 5 \mathrm{~ns}$

## MICROMINIATURE DIODES

## BAS16

## SILICON PLANAR EPITAXIAL HIGH-SPEED DIODE

Silicon epitaxial high-speed diode in a microminiature plastic envelope. It is intended for high-speed switching in hybrid thick and thin-film circuits.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	max.	75 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	85 V
Repetitive peak forward current	IFRM	max.	250 mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$175{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=50 \mathrm{~mA}$	$V_{F}$	$<$	$1,0 \mathrm{~V}$
Reverse recovery time when switched from $\begin{aligned} & I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega \\ & \text { measured at } I_{R}=1 \mathrm{~mA} \end{aligned}$	$\mathrm{trg}_{\text {r }}$	$<$	6 ns
Recovery charge when switched from $I_{F}=10 \mathrm{~mA} \text { to } V_{R}=5 \mathrm{~V}: R_{L}=500 \Omega$	$\mathrm{O}_{\mathrm{s}}$	$<$	45 pC

MECHANICAL DATA

Fig. 1 SOT-23.


## Marking code

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Continuous reverse voltage

Repetitive peak reverse voltage
Average rectified forward current ${ }^{\Delta}$
(averaged over any $\mathbf{2 0 ~ m s ~ p e r i o d ) ~}$
Forward current (d.c.)
Repetitive peak forward current
Storage temperature
Junction temperature

$V_{R}$	max.	75	$v$
$V_{\text {RRM }}$	max.	85	V
${ }^{\prime} \mathrm{F}(\mathrm{AV})$	max.	250	mA
If	max.	250	mA
IfRM	max.	250	mA
$\mathrm{T}_{\text {stg }}$	-65 to	+175	
Tj	max.	175	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS *

$T_{j}=P_{x}\left(R_{\text {th } j-t}+R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{\text {amb }}$

## $\rightarrow$ Thermal resistance

From junction to tab
From tab to soldering points

$R_{\text {th j-t }}=$	$60^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=280^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
$\begin{aligned} & \text { Forward voltage } \\ & I_{F}=1 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA} \\ & I_{F}=50 \mathrm{~mA} \\ & I_{F}=150 \mathrm{~mA}\end{aligned}$
Reverse current
$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$
$V_{R}=75 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$
Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$

$V_{F}$	$<$	715 mV
$V_{F}$	$<$	855 mV
$V_{F}$	$<$	1000 mV
$V_{F}$	$<$	1250 mV

Forward recovery voltage (see also Fig. 2)
when switched to $I_{F}=10 \mathrm{~mA} ; \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ns}$
Reverse recovery time (see also Fig. 3)
when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA}$;
$R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$

$I_{\text {R }}$	$<$	$30 \mu \mathrm{~A}$
$I_{R}$	<	$1 \mu \mathrm{~A}$
$I^{\text {R }}$	$<$	$50 \mu \mathrm{~A}$
$C_{d}$	$<$	2 pF
$v_{f r}$	$<$	1,75 V

Recovery charge (see also Fig. 4) when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$;
$R_{L}=500 \Omega \quad \mathrm{O}_{\mathrm{S}}<45 \mathrm{\rho C}$

[^24]

Fig. 2 Forward recovery voltage test circuit and waveforms.
Input signal: forward pulse rise time $=t_{r}=20 \mathrm{~ns}$; forward current pulse duration $t_{p}=120$ ns; duty factor $=\delta=0,01$.
Oscilloscope: rise time $=t_{r}=0,35 \mathrm{~ns}$.
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).


Fig. 3 Reverse recovery time test circuit and waveforms.
Input signal: reverse pulse rise time $=t_{r}=0,6 \mathrm{~ns}$; reverse pulse duration $=t_{p}=100 \mathrm{~ns}$; duty factor $=\delta=0,05$. $t_{r r}$ up to $I_{R}=1 \mathrm{~mA}$.
Oscilloscope: rise time $=t_{r}=0,35 \mathrm{~ns}$.
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).


Fig. 4 Recovery charge test circuit and waveform.
D 1 = $\mathrm{BAW} 62 ; \mathrm{D} 2$ = diode with minority carrier life time at $10 \mathrm{~mA}:<\mathbf{2 0 0} \mathbf{~ p s}$ Input signal

Rise time of the reverse pulse
Reverse pulse duration
Duty factor

$t_{r}$	$=$	2 ns
$t_{p}$	$=$	400 ns
$\delta$	$=$	0,02

Circuit capacitance $C \leqslant 7$ pF ( $C=$ oscilloscope input capacitance + parasitic capacitance).


Fig. 5.


Fig. 6 Typical values.

Fig. 7.



Fig. 8 Current derating curve.

## LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in SOT-23 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

## QUICK REFERENCE DATA

Repetitive peak forward current	$I_{F R M}$	max. 250 mA
Storage temperature	$T_{\text {stg }}$	-65 to $+150{ }^{\circ} \mathrm{C}$
Junction temperature	$T_{j}$	max.
Forward voltage		
$I_{F}=0,1 \mathrm{~mA}$	$V_{F}$	610 to 690 mV
$I_{F}=1,0 \mathrm{~mA}$	$V_{F}$	680 to 760 mV
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	750 to 830 mV
$I_{F}=100 \mathrm{~mA}$	$V_{F}$	870 to 960 mV
Diode capacitance		
$V_{R}=0 ; f=1 \mathrm{MHz}$	$C_{d}$	$<$

## MECHANICAL. DATA

Fig. 1 SOT-23.
Dimensions in mm

> Marking code
> BAS17 = A91


See also chapter Soldering Recommendations.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current
Storage temperature
Junction temperature

I	max	250	mA
$T_{\text {stg }}$	-65	to	+150
${ }^{\circ} \mathrm{C}$			
$T_{j}$	max.	150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS*

$T_{j}=P \times\left(R_{\text {th } j-t}+R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{\text {amb }}$

## Thermal resistance

From junction to tab
From tab to soldering points
From soldering points to ambient**

$R_{\text {th } j \cdot \mathbf{t}}$	$=$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{w}$
$R_{\text {th } \mathrm{s}-\mathrm{a}}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
\begin{aligned}
& I_{F}=0.1 \mathrm{~mA} \\
& I_{F}=1.0 \mathrm{~mA} \\
& I_{F}=5.0 \mathrm{~mA} \\
& I_{F}=10 \mathrm{~mA} \\
& I_{F}=100 \mathrm{~mA}
\end{aligned}
$$

$V_{F}$

$$
610 \text { to } 690
$$

$$
m V
$$

$V_{F}$

$$
680 \text { to } 760
$$

$$
\mathrm{mV}
$$

$V_{F}$

$$
730 \text { to } 810
$$

$$
m V
$$

$V_{F}$

$$
750 \text { to } 830
$$

$$
m V
$$

$V_{F}$

$$
870 \text { to } 960
$$

$$
\mathrm{mV}
$$

Reverse current

$$
V_{R}=4 V
$$

${ }^{1} R$
Temperature coefficient

$$
I_{F}=1 \mathrm{~mA}
$$

$S_{F}$
Diode capacitance

$$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

$$
C_{d}
$$

$$
<
$$

$$
140
$$

[^25]

Fig. 2 Forward current as a function of forward voltage.

## SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

Silicon epitaxial high-speed diodes in a microminiature plastic envelope. They are intended for switching and general purposes.

## QUICK REFERENCE DATA



## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BAS19	BAS20	BAS21	
Continuous reverse volage	$V_{\text {R }}$	max.	100	150	200	V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	120	200	250	V
Average rectified forward current (1) (averaged over any 20 ms period)	$I_{\text {F }}(\mathrm{AV})$	max.		200		mA
Forward current (d.c.)	${ }^{\prime} \mathrm{F}$	max.		200		$m A$
Repetitive peak forward current	IFRM	max.		625		mA
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150			${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	150			${ }^{\circ} \mathrm{C}$
Total power dissipation up to $\mathrm{Tamb}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	200			mW

$\rightarrow$ THERMAL CHARACTERISTICS*
$T_{j}=P \times\left(R_{t h j-t}+R_{t h t-s}+R_{t h s-a}\right)+T_{a m b}$
Thermal resistance

From junction to tab	$R_{\text {th } j-t}$	$=$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
From tab to soldering points	$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
From soldering points to ambient ${ }^{* *}$	$R_{\text {th s-a }}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage
$I_{F}=100 \mathrm{~mA}$
$I_{F}=200 \mathrm{~mA}$
Reverse breakdown voltage (1)
BAS19; $I_{R}=100 \mu \mathrm{~A}$
BAS20; $I_{R}=100 \mu \mathrm{~A}$
BAS21; $I_{\mathrm{R}}=100 \mu \mathrm{~A}(2)$
Reverse current
$V_{R}=V_{\text {Rmax }}$
$V_{R}=V_{R_{\text {max }} ;} T_{j}=150^{\circ} \mathrm{C}$ (1)
Differential resistance $I_{F}=10 \mathrm{~mA}$
Diode capacitance
$V_{R}=0 ; f=1 \mathrm{MHz}$
Reverse recovery time (see Figs 2 and 3) when switched from $I_{F}=30 \mathrm{~mA}$ to $I_{R}=30 \mathrm{~mA}$; $R_{L}=100 \Omega$; measured at $I_{R}=3 \mathrm{~mA}$

$<$	1.0	V
$<$	1.25	V

$>\quad 120$ V
$>\quad 200 \mathrm{~V}$
$>250$ V

$I_{R}$	$<$	100	$n A$
$I_{R}$	$<$	100	$\mu \mathrm{~A}$

$r_{\text {diff }}$ typ. $5 \Omega$
$\mathrm{C}_{\mathrm{d}}<\quad<\mathrm{pF}$
$<\quad 50$
ns

* See Thermal characteristics in GENERAL SECTION.
** Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.
(1) Measured under pulse conditions; Pulse time $=t_{p} \leqslant 0.3 \mathrm{~ms}$.
(2) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited to 275 V .


Fig. 2 Test circuit.


output signal

## Input signal

total pulse duration
duty factor
rise time of reverse pulse reverse pulse duration
Oscilloscope rise time circuit capacitance*

$$
\begin{aligned}
\mathrm{t}_{\mathrm{p}(\text { tot })} & =2 \mu \mathrm{~s} \\
\delta & =0,0025 \\
\mathrm{t}_{\mathrm{r}} & =0,6 \mathrm{~ns} \\
\mathrm{t}_{\mathrm{p}} & =100 \mathrm{~ns} \\
& \\
\mathrm{t}_{\mathrm{r}} & =0,35 \mathrm{~ns} \\
\mathrm{C} & <1 \mathrm{pF}
\end{aligned}
$$

* $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance.


Fig. 4 BAS19; maximum permissible average rectified forward current for pulse operation as a function of the duty factor at $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$.


Fig. 5 BAS19; maximum permissible repetitive peak forward current for pulse operation as a function of the duty factor at $V_{R}=100 \mathrm{~V}$.


Fig. 6 BAS20/21; maximum permissible average rectified forward current for pulse operation as a function of the duty factor.


Fig. 7 BAS20/21; maximum permissible repetitive peak forward current for pulse operation as a function of the duty factor.

```
BAS19
BAS2O
BAS21
```



Fig. 8.


Fig. 10.


Fig. 9.

Fig. 8 Maximum permissible continuous forward current as a function of the ambient temperature.

Fig. 9 Maximum permissible average rectified forward current as a function of the ambient temperature.

Fig. 10 Maximum permissible continuous reverse voltage as a function of the ambient temperature.


Fig. 11.


Fig. 13.


Fig. 12.

Fig. 11 Continuous reverse current as a function of the junction temperature.

Fig. 12 Forward current as a function of forward voltage.

Fig. 13 Forward voltage as a function of the junction temperature.


Fig. 15.

## SCHOTTKY BARRIER DIODE

Silicon epitaxial diode in a microminiature plastic envelope. Intended for u.h.f. mixer and fast switching applications in thick and thin-film circuits.

## QUICK REFERENCE DATA

Continuous reverse voltage
Forward current (d.c.)
Junction temperature
Forward voltage at $I_{F}=10 \mathrm{~mA}$
Diode capacitance at $V_{R}=0 ; f=1 \mathrm{MHz}$
Noise figure at $f=900 \mathrm{MHz}$
$V_{R} \quad \max \quad 4 \mathrm{~V}$
$I_{F} \quad$ max. 30 mA
$T_{j} \quad$ max. $100{ }^{\circ} \mathrm{C}$
$V_{F}<600 \mathrm{mV}$
$\mathrm{C}_{\mathrm{d}}<1,0 \mathrm{pF}$
$\mathrm{F}<8,0 \mathrm{~dB}$

## MECHANICAL DATA

Dimensions in mm
Marking code
BAT17 $=\mathrm{A} 3$
Fig. 1 SOT-23.


See also Soldering recommendations.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$V_{R}$	$\max$.	4	$V$
Forward current (d.c.)	$I_{F}$	$\max$.	30	mA
Storage temperature	$T_{\text {stg }}$	-65 to +100	${ }^{\circ} \mathrm{C}$	
Junction temperature	$T_{j}$	$\max . \quad 100$	${ }^{\circ} \mathrm{C}$	

## THERMAL CHARACTERISTICS*

$T_{j}=P \times\left(R_{\text {th } j \cdot t}+R_{\text {th t-s }}+R_{\text {th }-a}\right)+T_{a m b}$
Thermal resistance
From junction to tab
From tab to soldering points
From soldering points to ambient**

$R_{\text {th j-t }}$	$=$	60	${ }^{\circ} \mathrm{C} / W$
$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Reverse current				
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	${ }^{\prime} \mathrm{R}$	$<$	0.25	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$	$I^{\prime}$	$<$	1.25	$\mu \mathrm{A}$
Reverse breakdown voltage $I_{R}=10 \mu \mathrm{~A}$	$V_{(B R) R}$	>	4	V
Forward voltage $I_{F}=0.1 \mathrm{~mA}$	$V_{F}$	$<$	350	mV
$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$	$V_{F}$	$<$	450	mV
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$V_{F}$	<	600	mV
Diode capacitance $V_{R}=0 ; f=1 \mathrm{MHz}$	$\mathrm{C}_{\text {d }}$	$<$	1.0	pF
Noise figure at $\mathrm{f}=900 \mathrm{MHz}^{\text { }}$	F	$<$	8.0	dB
Series resistance at $f=1 \mathrm{kHz}$ $I_{F}=5 \mathrm{~mA}$	${ }^{\text {r }}$	$<$	15	$\Omega$

## * See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.
4. The local oscillator is adjusted for a diode current of 2 mA . I.F. amplifier noise $F_{\text {if }}=1.5 \mathrm{~dB}$; $\mathrm{f}=35 \mathrm{MHz}$.


Fig. 2 Typical values.

## SILICON PLANAR DIODE

Band switching diode in a microminiature plastic envelope. Intended for thick and thin-film circuits.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	max.	35 V
Forward current (d.c.)	${ }^{\prime} \mathrm{F}$	max.	100 mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$100{ }^{\circ} \mathrm{C}$
Diode capacitance at $f=1 \mathrm{MHz}$ $V_{R}=20 \mathrm{~V}$	$C_{\text {d }}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0,8 \mathrm{pF} \\ & 1,0 \mathrm{pF} \end{aligned}$
Series resistance at $f=200 \mathrm{MHz}$ $I_{F}=5 \mathrm{~mA}$	${ }^{\text {r }}$	$\stackrel{\text { typ. }}{<}$	$\begin{array}{ll} 0,5 & \Omega \\ 0,7 & \Omega \end{array}$

## MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm
Marking code
BAT18 = A2


## BAT18

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Junction temperature
$V_{\text {R }}$
$I_{F}$
$T_{\text {stg }}$
Tj
THERMAL CHARACTERISTICS*
$T_{j}=P \times\left(R_{\text {th } j-t}+R_{\text {th } t-s}+R_{\text {th } s-a}\right)+T_{\text {amb }}$

## Thermal resistance

From junction to tab
From tab to soldering points
From soldering points to ambient**
CHARACTERISTICS
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage at $I_{F}=100 \mathrm{~mA}$

$R_{\text {th j-t }}$	$=$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=60^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$
$V_{R}=20 \mathrm{~V}$
Series resistance at $f=200 \mathrm{MHz}$

$$
I_{F}=5 \mathrm{~mA}
$$

$V_{F}$
$I_{R}$
$I_{R}$
$C_{d}$
rD

$\max$.	35	V
$\max$.	100	mA
-55	to	+100
${ }^{\circ} \mathrm{C}$		
max.	100	${ }^{\circ} \mathrm{C}$

max. 100
${ }^{\circ} \mathrm{C}$


Fig. 2 Typical values.


Fig. 4.


Fig. 3.


Fig. 5.


Fig. 6.

## SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV70 consists of two diodes in a microminiature plastic envelope. The cathodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage		$V_{\text {R }}$	max.	70 V
Repetitive peak reverse voltage		$V_{\text {RRM }}$	max.	70 V
Repetitive peak forward current		IFRM	max.	250 mA
Junction temperature		$\mathrm{T}_{\mathrm{j}}$	max.	$175{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=50 \mathrm{~mA}$		$V_{F}$	<	$1,0 \mathrm{~V}$
Reverse recovery time when switched from $I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega$; measured at $I_{R}=1 \mathrm{~mA}$		$\mathrm{t}_{\mathrm{rr}}$	$<$	6 ns
Recovery charge when switched from $I_{F}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$		$\mathrm{Q}_{5}$	$<$	45 pC
MECHANICAL DATA	Dimensions in mm			rking code
Fig. 1 SOT-23.				$\mathrm{V} 70=\mathrm{A} 4$



See also Soldering recommendations.

## RATINGS (per diode)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Continuous reverse voltage

Repetitive peak reverse voltage
Average rectified forward current ${ }^{\text {© }}$
(averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Storage temperature
Junction temperature

$V_{R}$	max.	70 V
$V_{R R M}$	max.	70 V
$I_{F(A V)}$	max.	250 mA
$I_{F}$	max.	250 mA
$\mathrm{I}_{\mathrm{FRM}}$	max.	250 mA
$\mathrm{~T}_{\text {stg }}$	-65 to $+175^{\circ} \mathrm{C}$	
$T_{j}$	max.	$175^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS*

$T_{j 1}=P_{1}\left(R_{\text {th } j \cdot t}\right)+T_{t a b}$
$T_{j 2}=P_{2}\left(R_{t h j-t}\right)+T_{t a b}$
$T_{\text {tab }}=P_{\text {tot }}\left(R_{\text {th t-s }}+R_{\text {th s-a }}\right)+T_{\text {amb }}$
Thermal resistance
From junction to tab
From tab to soldering points
From soldering points to ambient**

$R_{\text {th j-t }}$	$=$	$60^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	$280^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$	$90^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS (per diode)

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=1 \mathrm{~mA}$	$V_{F}$	$<$	715 mV
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	$<$	855 mV
$I_{F}=50 \mathrm{~mA}$	$V_{F}$	$<$	1000 mV
$I_{F}=150 \mathrm{~mA}$	$V_{F}$	$<$	1250 mV

Reverse current

$$
\begin{aligned}
& V_{R}=25 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{R}}=70 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=70 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}
\end{aligned}
$$

$I_{R}$	$<$	$60 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}$	$<$	$5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{R}}$	$<$	$100 \mu \mathrm{~A}$

## Diode capacitance

$$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

$C_{d}$
$<\quad 1,5 \mathrm{pF}$
Forward recovery voltage when switched to $I_{F}=10 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
$V_{\mathrm{fr}}<1,75 \mathrm{~V}$
$\triangle$ Measured under pulse conditions: pulse time $\mathrm{t}_{\mathrm{p}} \leqslant 0,5 \mathrm{~ms}$.
For sinusoidal operation $I^{F}(A V)=150 \mathrm{~mA}$; averaging time $\mathrm{t}_{(\mathrm{av})} \leqslant 1 \mathrm{~ms}$.

* See Thermal characteristics in GENERAL SECTION.
**Mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$.


Fig. 2 Test circuit and waveforms; forward recovery voltage.
Input signal : Rise time of the forward pulse $t_{r}=20 \mathrm{~ns}$; Forward current pulse duration $\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$; Duty factor $\delta=0,01$
Oscilloscope : Rise time $t_{r}=0,35 \mathrm{~ns}$
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from

$$
I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega ;
$$

measured at $I_{R}=1 \mathrm{~mA}$


6 ns


output signal

Fig. 3 Test circuit and waveforms; reverse recovery time.
*) $I_{R}=1 \mathrm{~mA}$
Input signal : Rise time of the reverse pulse $\mathrm{t}_{\mathrm{r}}=0,6 \mathrm{~ns}$; reverse pulse
duration $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$; duty factor $\delta=0,05$
Oscilloscope : Rise time $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ (C = oscilloscope input capacitance + parasitic capacitance)
Recovery charge when switched from

$$
I_{F}=10 \mathrm{~mA} \text { to } V_{R}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{s}} \quad<\quad 45 \mathrm{pC}
$$



Fig. 4 Test circuit and waveform; recovery charge.

D1 = BAW62
D2 = diode with minority carrier life time at $10 \mathrm{~mA}:<200 \mathrm{ps}$
Input signal : Rise time of the reverse pulse $=t_{r}=2 \mathrm{~ns}$; Reverse pulse duration $=t_{p}=400 \mathrm{~ns}$;

$$
\text { Duty factor }=\delta=0,02
$$

Circuit capacitance $\mathrm{C} \leqslant 7 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)


Fig. 5


Fig. 7


Fig. 6


Fig. 8 __ single diode
— — - - double diode, equally loaded.

## SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV99 consists of two diodes in a microminiature plastic envelope. The diodes are connected in series and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)



See also Soldering recommendations.

RATINGS (per diode)
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$V_{R}$	max.		V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.		0 V
Average rectified forward current (averaged over any 20 ms period)	$I^{\prime}$ ( $\left.A V\right)$	max.	250	0 mA
Forward current (d.c.)	$I_{F}$	max.	250	mA
Repetitive peak forward current	IFRM	max.	250	0 mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +175		
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	175	$5^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS *

$T_{j 1}=P_{1}\left(R_{\text {th } j \cdot t}\right)+T_{t a b}$
$T_{j 2}=P_{2}\left(R_{t h j \cdot t}\right)+T_{t a b}$
$T_{\text {tab }}=P_{\text {tot }}\left(R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{\text {amb }}$
$\longrightarrow$ Thermal resistance

From junction to tab	$R_{\text {th j-t }}=$	$60{ }^{\circ} \mathrm{C} / \mathrm{W}$
From tab to soldering points	$R_{\text {th } t-\mathrm{s}}=$	$280{ }^{\circ} \mathrm{C} /: \mathrm{N}$
From soldering points to ambient ${ }^{* *}$	$R_{\text {th s-a }}=$	$90{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS (per diode)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	$V_{F}$	$<$	715 mV
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	$<$	855 mV
$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$V_{F}$	<	1000 mV
$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	$V_{F}$	$<$	1250 mV
Reverse current			
$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	${ }^{1} \mathrm{R}$	$<$	$30 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$	${ }^{\prime} \mathrm{R}$	$<$	2,5 $\mu \mathrm{A}$
$V_{R}=70 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	${ }_{1} \mathrm{R}$	<	$50 \mu \mathrm{~A}$
Diode capacitance $V_{R}=0 ; f=1 \mathrm{MHz}$	$C_{d}$	$<$	1,5 pF
orward recovery voltage when switched to $I_{F}=10 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$	$V_{f r}$	$<$	1,75 V

[^26]

input signal

output signal

Fig. 2 Test circuit and waveforms; forward recovery voltage.
Input signal: Rise time of the forward pulse $\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$;
Forward current pulse duration $=t_{p}=120 \mathrm{~ns}$. Duty factor $=\delta=0,01$.
Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$.
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).
Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega$;
measured at $I_{R}=1 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{rr}}<$ 6 ns



22613201
output signal

Fig. 3 Test circuit and waveforms; reverse recovery time.
Input signal: Rise time of the reverse pulse $t_{r}=0,6 \mathrm{~ns}$
*) $I_{R}=1 \mathrm{~mA}$
Reverse pulse duration $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$. Duty factor $\delta=0,05$.
Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$.
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).
Recovery charge when switched from

$$
I_{F}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{O}_{\mathrm{S}}<45 \mathrm{pC}
$$



Fig. 4 Test and waveform; recovery charge.
D2 = diode with minority carrier life time at $10 \mathrm{~mA}:<200 \mathrm{ps} ;$ D1 = BAW62.
Input signal: Rise time of the reverse pulse $t_{r}=2 \mathrm{~ns}$
Reverse pulse duration $\mathrm{t}_{\mathbf{p}}=400 \mathrm{~ns}$. Duty factor $\delta=0,02$.
Citcuit capacitance $\mathrm{C} \leqslant 7 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).


Fig. 5.


Fig. 7.


Fig. 6 Typical values.


Fig. 8 single diode
---- double diode; equally loaded.

## SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAW56 consists of two diodes in a microminiature plastic envelope. The anodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage		$V_{R}$	max.	70 V
Repetitive peak reverse voltage		$V_{\text {RRM }}$	max.	70 V
Repetitive peak forward current		IFRM	max.	250 mA
Junction temperature		$\mathrm{T}_{\mathrm{j}}$	max.	$175{ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=50 \mathrm{~mA}$		$V_{F}$	<	1.0 V
Reverse recovery time when switched from $\begin{aligned} & I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega ; \\ & \text { measured at } I_{R}=1 \mathrm{~mA} \end{aligned}$		$\mathrm{trr}_{\text {r }}$	$<$	6 ns
Recovery charge when switched from $I_{F}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$		$\mathrm{Q}_{\mathbf{s}}$	$<$	45 pC
MECHANICAL DATA	Dimensions in mm			king code
Fig. 1 SOT-23.				W56 = A1



See also Soldering recommendations.

RATINGS (per diode)
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Repetitive peak reverse voltage
Average rectified forward current ${ }^{4}$
(averaged over any 20 ms period)
Forward current (d.c.)
Repetitive peak forward current
Storage temperature
Junction temperature

$V_{R}$	max.	70	V
$V_{\text {RRM }}$	max.	70	V
$I_{\text {F }}(\mathrm{AV})$	max.		
$I_{\text {F }}$	max.	250	mA
IFRM	max.	250	mA
$\mathrm{T}_{\text {stg }}$	-65 to	+ 175	${ }^{\circ} \mathrm{C}$
Tj	max.	175	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS *

$T_{j 1}=P_{1}\left(R_{\text {th } j-t}\right)+T_{t a b}$
$T_{j 2}=P_{2}\left(R_{\text {th } j \cdot t}\right)+T_{t a b}$
$T_{\text {tab }}=P_{\text {tot }}\left(R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{\text {amb }}$
$\rightarrow \quad$ Thermal resistance
From junction to tab
From tab to soldering points
From soldering points to ambient **

$R_{\text {th j-t }}=$	$60^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}=$	$280^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}=$	$90^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS (per diode)

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$I_{F}=1 \mathrm{~mA}$	$V_{F}$	$<$	715 mV
$I_{F}=10 \mathrm{~mA}$	$V_{F}$	$<$	855 mV
$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$V_{F}$	$<$	1000 mV
$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	$V_{F}$	$<$	1250 mV
Reverse current $V_{R}=25 V_{;} T_{j}=150^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{R}$	$<$	$30 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$	${ }^{1} \mathrm{R}$	$<$	$2,5 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$	$I_{R}$	<	$50 \mu \mathrm{~A}$
Diode capacitance $V_{R}=0 ; f=1 M H z$	$C_{d}$	$<$	2 pF
Forward recovery voltage when switched to $I_{F}=10 \mathrm{~mA} ; \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{fr}}$	$<$	1,75 V

^ Measured under pulse conditions: pulse time $\mathrm{t}_{\mathrm{p}} \leqslant 0,5 \mathrm{~ms}$.
For sinusoidal operation $I^{\prime}(A V)=150 \mathrm{~mA}$;averaging time $\mathrm{t}_{(\mathrm{av})} \leqslant 1 \mathrm{~ms}$.

* See Thermal characteristics in GENERAL SECTION.
$\longrightarrow{ }^{* *}$ Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$.


Fig. 2 Test circuit and waveforms; forward recovery voltage.
Input signal: Rise time of the forward pulse $\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$
Forward current pulse duration $\mathrm{t}_{\mathrm{p}}=120 \mathrm{~ns}$. Duty factor $\delta=0,01$
Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$.
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Reverse recovery time when switched from

$$
I_{F}=10 \mathrm{~mA} \text { to } I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega
$$

measured at $I_{R}=1 \mathrm{~mA} \quad \mathrm{t}_{\mathrm{rr}} \quad<\quad 6 \mathrm{~ns}$


Fig. 3 Test circuit and waveforms; reverse recovery time.
Input signal: Rise time of the reverse pulse $t_{r}=0,6 \mathrm{~ns}$
Reverse pulse duration $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$. Duty factor $\delta=0,05$.
Oscilloscope: Rise time $\mathrm{t}_{\mathrm{r}}=0,35 \mathrm{~ns}$
Circuit capacitance $\mathrm{C} \leqslant 1 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance)
Recovery charge when switched from

$$
\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { to } \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \quad \mathrm{Q}_{\mathrm{S}} \ll 45 \mathrm{pC}
$$



Fig. 4 Test circuit and waveform; recovery charge.
D2 $=$ diode with minority carrier life time at $10 \mathrm{~mA}:<200 \mathrm{ps}$. D1 $=$ BAW62.
Input signal: Rise time of the reverse pulse $t_{r}=2 \mathrm{~ns}$
Reverse pulse duration $\mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns}$. Duty factor $\delta=0,02$
Circuit capacitance $\mathrm{C} \leqslant 7 \mathrm{pF}$ ( $\mathrm{C}=$ oscilloscope input capacitance + parasitic capacitance).


Fig. 5.



Fig. 6 Typical values.


Fig. 8 - single diode;
---- double diode, equally loaded.

## VARIABLE CAPACITANCE DIODE

Silicon planar variable capacitance diode in a microminiature envelope. It is intended for electronic tuning applications in thick and thin-film circuits.

## QUICK REFERENCE DATA

Reverse voltage	$V_{R}$	max.	28 V
Reverse current at $\mathrm{V}_{\mathrm{R}}=28 \mathrm{~V}$	${ }^{\prime} \mathrm{R}$	<	50 nA
Diode capacitance at $f=1 \mathrm{MHz}$			
$V_{R}=25 \mathrm{~V}$	$C_{\text {d }}$		1,8 to 2,8 pF
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$	$\frac{C_{d}\left(V_{R}=3 V\right)}{C_{d}\left(V_{R}=25 V i\right.}$	typ.	5
Series resistance at $f=470 \mathrm{MHz}$			
$\mathrm{V}_{\mathrm{R}}=$ that value at which $\mathrm{C}_{\mathrm{d}}=9 \mathrm{pF}$	${ }^{\text {r }}$ D	$<$	1,2 $\Omega$

MECHANICAL DATA
Fig. 1 SOT-23.


Marking code BBY31 = S 1


See also Soldering recommendations.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Reverse voltage (peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature

## THERMAL CHARACTERISTICS*

$T_{j}=P \times\left(R_{\text {th } j-t}+R_{\text {th t-s }}+R_{\text {th } s-a}\right)+T_{a m b}$

## Thermal resistance

## From junction to tab

From tab to soldering points
From soldering points to ambient**

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=28 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $f=1 \mathrm{MHz}$

$$
\begin{aligned}
& V_{R}=1 \mathrm{~V} \\
& V_{R}=3 \mathrm{~V} \\
& V_{R}=25 \mathrm{~V}
\end{aligned}
$$

Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$
Series resistance
at $f=470 \mathrm{MHz}$ and at that value of $V_{R}$ at which $C_{d}=9 \mathrm{pF}$
$V_{R}$
$V_{R M}$
$I_{F}$
$T_{s t g}$
$T_{j}$
$I_{R}$

$R_{\text {th j-t }}$	$=$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$


max.	28	$V$
max.	30	$V$
max.	20	$m A$
-65 to	+100	${ }^{\circ} \mathrm{C}$
max.	85	${ }^{\circ} \mathrm{C}$

$\max \quad 85 \quad{ }^{\circ} \mathrm{C}$

$\square$
$R_{\text {th } \mathrm{s}-\mathrm{a}}$

$<$	50	$n A$
$<$	1000	$n A$

typ. 17.5 pF
typ. 11.5 pF
1.8 to 2.8 pF
$\frac{C_{d}\left(V_{R}=3 V\right)}{C_{d}\left(V_{R}=25 V\right)} \quad$ typ. $\quad 5$
$r_{D}<1.2 \Omega$

* See Thermal characteristics in GENERAL SECTION.
** Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.






## SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BBY40 is a variable capacitance diode in a plastic envelope intended for electronic tuning in v.h.f. television tuners with extended band ) (FCC and OIRT-norm).

## QUICK REFERENCE DATA




See also Soldering recommendations.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage
Reverse voltage (repetitive peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature
$\rightarrow$ THERMAL CHARACTERISTICS*
$T_{j}=P \times\left(R_{t h j-t}+R_{t h t-s}+R_{t h s-a}\right)+T_{a m b}$

## Thermal resistance

From junction to tab
From tab to soldering points
From soldering points to ambient**

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current
$V_{R}=28 \mathrm{~V} \quad I_{R}$
$V_{R}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
Diode capacitance at $f=1 \mathrm{MHz}$
$V_{R}=3 V$
$V_{R}=25 V$
Capacitance ratio at $f=1 \mathrm{MHz}$
Series resistance at $f=200 \mathrm{MHz}$
$V_{R}$ is that value at which $C_{d}=25 \mathrm{pF}$
$V_{R}$
$V_{R R}$
$I_{F}$
$T_{\text {stg }}$
$T_{j}$
$\mathrm{T}_{\text {stg }}$
$T_{j}$

$R_{\text {th } j-t}$	$=$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }-\mathrm{a}}$	$=$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

$I_{R}$
$\mathrm{C}_{\mathrm{d}}$
$\max \quad 28 \mathrm{~V}$
$\max \quad 30 \quad V$
$\max \quad 20 \mathrm{~mA}$
$\begin{array}{rr}-55 \text { to }+100 & { }^{\circ} \mathrm{C} \\ \text { max } & 85\end{array}$
max. $85 \quad{ }^{\circ} \mathrm{C}$

typ.	0.1	$n A$
$<$	50	$n A$
$<$	500	$n A$

26 to 32 pF
4.3 to 6 pF

5 to 6.5
typ. $0.4 \quad \Omega$
$<$
0.6

* See Thermal characteristics in GENERAL SECTION.
*     * Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.


Fig. 2 Typical values

Fig. 3 Temperature coefficient of the diode capacitance; $T_{\text {amb }}=0$ to $85^{\circ} \mathrm{C}$.


Fig. $4 \mathrm{f}=1 \mathrm{MHz}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Mullard

## SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes, in a SOT-89 plastic envelope, intended for stabilization applications in thick and thin-film circuits.
The series covers the normalized range of nominal working voltages from $2,4 \mathrm{~V}$ to 75 V with a tolerance of $\pm 5 \%$ (international standard E24 range).

QUICK REFERENCE DATA

Working voltage range	$V_{Z}$	nom.	2,4 to 75 V
Working voltage tolerance (E24 range)			$\pm 5 \%$
Total power dissipation up to $T_{a m b}=25{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	max.	1 W
Junction temperature	$T_{j}$	max.	$150{ }^{\circ} \mathrm{C}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOT-89


## Marking code

$$
\begin{array}{rl}
\mathrm{BZV} 49-\mathrm{C} 2 \mathrm{~V} 4=2 \mathrm{Y} 4 & \mathrm{C} 5 \mathrm{~V} 1=5 \mathrm{Y} 1 \\
\mathrm{C} 2 \mathrm{~V} 7=2 \mathrm{Y} 7 & \mathrm{C} 5 \mathrm{~V} 6=5 \mathrm{Y} 6 \\
\mathrm{C} 3 \mathrm{~V} 0=3 \mathrm{YO} & \mathrm{C} 6 \mathrm{~V} 2=6 \mathrm{Y} 2 \\
\mathrm{C} 3 \mathrm{~V} 3=3 \mathrm{Y} 3 & \mathrm{C} 6 \mathrm{~V}=6 \mathrm{Y} 8 \\
\mathrm{C} 3 \mathrm{~V} 6=3 \mathrm{Y} 6 & \mathrm{C} 7 \mathrm{~V} 5=7 \mathrm{Y} 5 \\
\mathrm{C} 3 \mathrm{~V} 9=3 \mathrm{Y} 9 & \mathrm{C} 8 \mathrm{~V} 2=8 \mathrm{Y} 2 \\
\mathrm{C} 4 \mathrm{~V} 3=4 \mathrm{Y} 3 & \mathrm{C} 9 \mathrm{~V} 1=9 \mathrm{Y} 1 \\
\mathrm{C} 4 \mathrm{~V} 7=4 \mathrm{Y} 7 & \mathrm{C} 10=10 \mathrm{Y} \\
& \mathrm{C} 11=11 \mathrm{Y}
\end{array}
$$

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Repetitive peak forward current IFRM max. 250 mA
Average forward current
(averaged over any 20 ms period)
Working current (d.c.)
Total power dissipation *

$$
\text { up to } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

Non-repetitive peak reverse power dissipation *

$$
\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}
$$

Storage temperature
Junction temperature

IFRM	max.	250 mA
IF(AV)	max.	250 mA
$\mathrm{I} Z$	limited by $\mathrm{P}_{\text {tot max }}$	

## THERMAL RESISTANCE

From junction to collector tab
From junction to ambient in free air *

$R_{\text {th } j-t a b}$	$=$
$R_{\text {th j-a }}$	$=$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Forward voltage

$$
I_{F}=50 \mathrm{~mA}
$$

Reverse current

BZV49. C2V4	$V_{R}=1 \mathrm{~V}$
C2V7	$V_{R}=1 \mathrm{~V}$
C3V0	$V_{R}=1 \mathrm{~V}$
C3V3	$V_{R}=1 \mathrm{~V}$
C3V6	$V_{R}=1 \mathrm{~V}$
C3V9	$V_{R}=1 \mathrm{~V}$
C4V3	$V_{R}=1 \mathrm{~V}$
C4V7	$V_{R}=2 \mathrm{~V}$
C5V1	$V_{R}=2 \mathrm{~V}$
C5V6	$V_{R}=2 \mathrm{~V}$
C6V2	$V_{R}=4 \mathrm{~V}$
C6V8	$V_{R}=4 \mathrm{~V}$
C7V5	$V_{R}=5 \mathrm{~V}$
C8V2	$V_{R}=5 \mathrm{~V}$
C9V1	$V_{R}=6 \mathrm{~V}$
C10	$V_{R}=7 \mathrm{~V}$
C11 to $C 13$	$V_{R}=8 \mathrm{~V}$
C15 to $C 75$	$V_{R}=0,7 V_{\text {Znom }}$


$P_{\text {tot }}$	max.	1 W
$P_{\text {ZSM }}$	max.	40 W
$\mathrm{~T}_{\text {stg }}$	-65	to
$\mathrm{T}_{\mathrm{j}}$	max.	${ }^{\circ} \mathrm{C}$
		$150{ }^{\circ} \mathrm{C}$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
E24 logarithmic range (tolerance $\pm 5 \%$ )

BZV49...	working voltage$\begin{aligned} & V_{Z}(V) \\ & \text { at } I_{Z \text { test }}=5 \mathrm{~mA} \\ & \min . \quad \text { max. } \end{aligned}$		differential resistance ${ }^{1}$ diff ( $\Omega$ ) at $I_{\text {test }}=5 \mathrm{~mA}$		temperature coefficient$\begin{aligned} & \mathrm{S}_{\mathrm{Z}}(\mathrm{mV} / \mathrm{K}) \\ & \text { at } \mathrm{I}_{\text {test }}=5 \mathrm{~mA} \end{aligned}$			diode capacitance$\begin{gathered} C_{d}(\mathrm{pF}) ; \mathrm{f}=1 \mathrm{MHz} \\ V_{R}=0 \end{gathered}$	
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450
C3v9	3,7	4,1	85	90	-3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450
C4V7	4.4	5,0	50	80	-3,5	-1,4	0,2	130	180
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	110	160
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6.4	7,2	6	15	1,2	3,0	4,5	85	110
C7V5	7.0	7.9	6	15	2,5	4.0	5,3	80	100
C8V2	7.7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	at $\mathrm{I}_{\text {t }}$	2 mA	at	2 mA		est $=2$			
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45
C43	40,0	46,0	45	150	37,6	41,2	46,6	21	40
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40
C51	48,0	54.0	60	180	46,6	51,0	57,2	19	40
C56	52,0	60,0	70	200	52,2	57,0	63,8	18	40
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35
C68	64,0	72,0	90	240	65,6	71,7	79,8	17	35
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35

## BZV49 SERIES



Fig. 2 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 3 Dynamic characteristics; typical values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 4 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 5 Dynamic characteristics; typical values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Model for calculating the static working voltage ( $\mathrm{V}_{\mathrm{Z}}$ stat $)$.
This model can be derived from $V_{Z \text { stat }}=V_{Z d y n}+\Delta V_{Z}$ of which $V_{Z}$ dyn is given in the tables on page 3 and can be derived from the typical dynamic characteristic curves (Figs 2, 3, 4 and 5)
$\Delta V_{Z}=\Delta T \times S_{Z}$. For $S_{Z}$ see tables and graphs $S_{Z}$ versus $T_{j}$.
$\Delta T=P_{\text {tot }} \times R_{\text {th } j-a}=I_{Z} \times V_{Z \text { dyn }} \times R_{\text {th } j-a}$.
Following $\Delta V_{Z}=I_{Z} \times V_{Z} d_{y n} \times R_{\text {th } j-a} \times S_{Z}$ and the model will be:

$$
V_{Z \text { stat }}=V_{Z \text { dyn }}+I_{Z} \times V_{Z \text { dyn }} \times R_{\text {th } j-a} \times S_{Z}
$$

## Calculating example

BZV49-C24 mounted on a ceramic substrate of $7 \times 5 \times 0,6 \mathrm{~mm}$; at $\mathrm{I}_{\mathrm{Z}}=7 \mathrm{~mA}$.

$$
\begin{aligned}
V_{Z \text { stat }} & =24+\left(\frac{7}{1000} \times 24 \times \frac{125}{1000} \times 20,3\right) \\
& =24+0,4=24,4 \mathrm{~V}
\end{aligned}
$$



Fig. 6 Power derating curve.


Fig. 7.


Fig. $8 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 9.


Fig. 10 Typical values temperature coefficient.


Fig. 11 Typical change of working voltage;


Fig. 13 Typical change of working voltage.


Fig. 14 Typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$.
-

## Silicon planar voltage regulator diodes

Low power general purpose voltage regulator diodes in a microminiature plastic envelope intended for application in thick and thin-film circuits. The series covers the normalized range of nominal working voltages from $2,4 \mathrm{~V}$ to 75 V with a working voltage tolerance of $\pm 5 \%$.

QUICK REFERENCE DATA

Working voltage range	$V_{Z}$	nom.	2,4 to 75 V
Working voltage tolerance			$\pm 5 \%$
Total power dissipation up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	350 mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$175{ }^{\circ} \mathrm{C}$

MECHANICAL DATA
Dimensions in mm
Fig. 1 SOT-23.


See also Soldering recommendations.

Marking code
BZX84-C2V4 = Z11
$\mathrm{C} 2 \mathrm{~V} 7=\mathrm{Z} 12$
$\mathrm{C} 3 \mathrm{~V} 0=\mathrm{Z} 13$
$\mathrm{C} 3 \mathrm{~V} 3=\mathrm{Z} 14$
C3V6 = Z 15
$\mathrm{C} 3 \mathrm{~V} 9=216$
$\mathrm{C} 4 \mathrm{~V} 3=\mathrm{Z17}$
$\mathrm{C} 4 \vee 7=\mathrm{Z1}$
$\mathrm{C5V1}=\mathbf{Z 2}$
$B Z \times 84-C 5 V 6=Z 3$
C6V2 $=24$
C6V8 = 25
C7V5 = 26
C8V2 $=27$
$\mathrm{C} 9 \mathrm{~V} 1=28$
$\mathrm{C} 10=29$
$B Z X 84-C 13=Y 3$
$\mathrm{EZX} 84-\mathrm{C} 33=\mathrm{Y} 12$
$\mathrm{C} 15=\mathrm{Y} 4$
$C 36=Y 13$
$\mathrm{C} 16=\mathrm{Y} 5$
$\mathrm{C} 39=\mathrm{Y} 14$
$\mathrm{C} 18=\mathrm{Y} 6$
$\mathrm{C} 43=\mathrm{Y} 15$
$\mathrm{C} 20=\mathrm{Y} 7$
$\mathrm{C} 47=\mathrm{Y} 16$
$\mathrm{C} 22=\mathrm{Y} 8$
$\mathrm{C} 51=\mathrm{Y} 17$
$\mathrm{C} 24=\mathrm{Y} 9$
$\mathrm{C} 56=\mathrm{Y} 18$
$\mathrm{C} 11=\mathrm{Y} 1$
$\mathrm{C} 27=\mathrm{Y} 10$
$\mathrm{C} 62=\mathrm{Y} 19$
$\mathrm{C} 68=\mathrm{Y} 20$
$\mathrm{C} 75=\mathrm{Y} 21$

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current
Repetitive peak working current
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} * *$
Storage temperature
Junction temperature

IFRM
IZRM
$P_{\text {tot }}$
Tstg
$T_{j}$
max. 250 mA max. 250 mA max. 350 mW
-65 to $+175{ }^{\circ} \mathrm{C}$
max. $175{ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS*

$T_{j}=P \times\left(R_{t h}^{j-t}+R_{t h t-s}+R_{t h s-a}\right)+T_{a m b}$
Thermal resistance

## From junction to tab

From tab to soldering points
From soldering points to ambient**

$R_{\text {th }-\mathrm{t}}$	$=$	$50{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th t-s }}$	$=$	$280{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th s-a }}$	$=$	$90{ }^{\circ} \mathrm{C} / \mathrm{W}$

## CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Forward voltage				
$I^{\prime} \mathrm{F}=10 \mathrm{~mA}$		$V_{F}$	$<$	0,9 V
Reverse current				
BZX84-C2V4	$V_{R}=1 V$	$I_{R}$	$<$	$50 \mu \mathrm{~A}$
C2V7	$V_{R}=1 \mathrm{~V}$	1 R	$<$	$20 \mu \mathrm{~A}$
C3V0	$V_{R}=1 \mathrm{~V}$	$I_{R}$	$<$	$10 \mu \mathrm{~A}$
C3V3	$V_{R}=1 \mathrm{~V}$	$I_{R}$	$<$	$5 \mu \mathrm{~A}$
C3V6	$V_{R}=1 \mathrm{~V}$	$I_{R}$	$<$	$5 \mu \mathrm{~A}$
C3V9	$V_{R}=1 \mathrm{~V}$	$I_{R}$	$<$	$3 \mu \mathrm{~A}$
C4V3	$V_{R}=1 \mathrm{~V}$	$I_{R}$	$<$	$3 \mu \mathrm{~A}$
C4V7	$V_{R}=2 \mathrm{~V}$	$I_{R}$	$<$	$3 \mu \mathrm{~A}$
C5V1	$V_{R}=2 \mathrm{~V}$	$I_{R}$	$<$	$2 \mu \mathrm{~A}$
C5V6	$V_{R}=2 V$	IR	$<$	$1 \mu \mathrm{~A}$
C6V2	$V_{R}=4 \mathrm{~V}$	$I_{R}$	$<$	$3 \mu \mathrm{~A}$
C6V8	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	$I_{R}$	<	$2 \mu \mathrm{~A}$
C7V5	$V_{R}=5 \mathrm{~V}$	$I_{R}$	$<$	$1 \mu \mathrm{~A}$
C8V2	$V_{R}=5 \mathrm{~V}$	$I^{\prime} R$	$<$	700 nA
C9V1	$V_{R}=6 \mathrm{~V}$	$I_{R}$	$<$	500 nA
C10	$V_{R}=7 \mathrm{~V}$	${ }^{1} \mathrm{R}$	$<$	200 nA
C11	$V_{R}=8 \mathrm{~V}$	$l_{R}$	$<$	100 nA
C12	$V_{R}=8 \mathrm{~V}$	1 R	$<$	100 nA
C13	$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	$1 R$	$<$	100 nA
C15 to C75	$V_{R}=0,7 V_{\text {Znom }}$	$I_{R}$	$<$	50 nA

* See Thermal characteristics in GENERAL SECTION.
$\rightarrow \quad *$ Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$.

BZX84-....	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z \text { test }}=5 \mathrm{~mA} \end{gathered}$		differential resistance $r_{\text {diff }}(\Omega)$ at $I_{\text {Ztest }}=5 \mathrm{~mA}$		temperature coefficient$\begin{gathered} \mathrm{S}_{\mathrm{Z}}\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right) \\ \text { at I Ztest }=5 \mathrm{~mA} \end{gathered}$			diode capacitance$\begin{gathered} \mathrm{C}_{d}(\mathrm{pF}) ; f=1 \mathrm{MHz} \\ V_{R}=0 \end{gathered}$	
	min.				min.	typ.	max.	typ.	max.
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450
c3v9	3,7	4,1	85	90	-3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450
C4V7	4.4	5,0	50	80	-3,5	-1,4	0,2	130	180
C5V1	4,8	5,4	40	60	$-2,7$	-0,8	1,2	110	160
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110
C7V5	7.0	7,9	6	15	2,5	4,0	5,3	80	100
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90
C11	10,4	11,6	10	20	5,4	7.4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8.4	10,0	65	85
C13	12,4	14,1	10	30	7,0	9.4	11,0	60	80
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75
C18	16,8	19,1	10	45	12.4	14.4	16,0	47	70
C20	18,8	21,2	15	55	14.4	16,4	18,0	36	60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	at $\mathrm{I}_{2}$			mA		$z=2 \mathrm{~m}$			
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C27	25.1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31.0	35,0	35	80	27.4	29.7	33,4	25	45
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45
C39	37.0	41,0	40	130	33,4	36,4	41,2	21	45
C43	40.0	46,0	45	150	37,6	41,2	46,6	21	40
C47	44.0	50,0	50	170	42,0	46,1	51,8	19	40
C51	48.0	54,0	60	180	46,6	51,0	57,2	19	40
C56	52,0	60,0	70	200	52,2	57,0	63,8	18	40
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35
C68	64,0	72,0	90	240	65,6	71,7	79,8	17	35
C75	70.0	79,0	95	255	73,4	80,2	88,6	16,5	35


BZX84-...	working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=1 \mathrm{~mA} \end{gathered}$			$\begin{aligned} & \text { differential } \\ & \text { resistance } \\ & r_{\text {diff }}(\Omega) \\ & \text { at } I_{Z}=1 \mathrm{~mA} \end{aligned}$		working voltage$\begin{gathered} V_{Z}(V) \\ \text { at } I_{Z}=20 \mathrm{~mA} \end{gathered}$			$\begin{gathered} \text { differential } \\ \text { resistance } \\ r_{\text {diff }}(\Omega) \\ \text { at } i_{Z}=20 \mathrm{~mA} \end{gathered}$	
	min.	nom.	max.		max.	min.		max.	typ.	max.
C2V4	1.7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
C3vo	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3V9	2,9	3,2	3,5	400	600	4.1	4.4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
C5V6	4.8	5,4	6.0	80	400	5,2	5,7	6,3	4	10
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6
C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7.4	2,5	6
C7V5	6,9	7.4	7.9	30	80	7,0	7,6	8,0	2,5	5
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6
C9V1	8,4	9,0	9.6	40	100	8,5	9,2	9,7	4	8
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
C13	12,3	12,9	14.0	50	170	12,5	13,1	14,2	5	15
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	20
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	25
	at $\mathrm{I}_{\mathrm{Z}}=0,1 \mathrm{~mA}$			at $l_{Z}=0,5 \mathrm{~mA}$		at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$			at $\mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$	
	min.	nom.	max.	typ.	max.	min .	nom.	max.	typ.	max.
C27	25,0	26,9	28,9	65	300	25,2	27.1	29,3	10	45
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60
C39	36.7	38,9	41,0	80	350	37,1	39,1	41,5	25	70
C43	39.7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
C47	43,7	46,8	50,0	85	375	44,1	47.1	50,5	30	90
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110
C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	120
C68	63,4	67.7	72.0	150	475	64,2	68,2	73,2	75	130
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140



Fig. 2 Power derating curve.
Model for calculating the static working voltage $\left(V_{Z}\right.$ stat $)$.
This model can be derived from $V_{Z \text { stat }}=V_{Z \text { dyn }}+\Delta V_{Z}$ of which $V_{Z}$ dyn is given in the tables on pages 3 and 4 and can be derived from the typical dynamic characteristic curves on pages 6 and 7 .
$\Delta V_{Z}=\Delta T \times S_{Z}$. For $S_{Z}$ see tables and graphs $S_{Z}$ versus $T_{j}$.
$\Delta T=P_{\text {tot }} \times R_{\text {th } j-a}=I_{Z} \times V_{Z d y n} \times R_{\text {th } j-a} \cdot$
Following $\Delta V_{Z}=I_{Z} \times V_{Z}$ dyn $\times R_{\text {th } j \cdot a} \times S_{Z}$ and the model will be:

$$
V_{Z \text { stat }}=V_{Z d y n}+I_{Z} \times V_{Z d y n} \times R_{\text {th } j-a} \times S_{Z}
$$

## Calculating example

$B Z \times 84-\mathrm{C} 24$ mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$; at $I_{Z}=7 \mathrm{~mA}$.

$$
\begin{aligned}
V_{Z \text { stat }} & =24+\left(\frac{7}{1000} \times 24 \times \frac{420}{1000} \times 20.3\right) \\
& =24+1.43=25.43 \mathrm{~V}
\end{aligned}
$$



Fig. 3 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 4 Dynamic characteristics; typical values; $T_{j}=25^{\circ} \mathrm{C}$.


Fig. 5 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 6 Dynamic characteristics; typical values; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 7 Typical values at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Fig. 9 Typical values; $\mathrm{T}_{\mathrm{j}}=25$ to $175^{\circ} \mathrm{C}$.


Fig. 10.


Fig. 12.


Fig. 11.


Fig. 13.

## TUNER DIODES

## SILICON A.M. BAND SWITCHING DIODE

The BA223 is a switching diode in whiskerless glass encapsulation. It is intended for band switching in a.m. radio receivers.

## QUICK REFERENCE DATA

Continuous reverse voltage	$\mathrm{V}_{\mathrm{R}}$	$\max$.	20 V
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	$\max$.	50 mA
Junction temperature			
Diode capacitance at $f=1 \mathrm{MHz}$   $V_{R}=6 \mathrm{~V}$	$\mathrm{~T}_{\mathrm{i}}$	$\max$.	$150{ }^{\circ} \mathrm{C}$
Series resistance at $\mathrm{f}=1 \mathrm{MHz}$   $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{d}}$	$<$	$3,5 \mathrm{pF}$
MECHANICAL DATA	$\mathrm{r}_{\mathrm{D}}$	$<$	$1,5 \Omega$

Fig. 1 DO-34 (SOD-68).

(1) Lead diameter in this zone uncontrolied.

Cathode indicated by coloured band.
The diodes may be either type-branded or colour-coded.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage
$I_{F}=50 \mathrm{~mA}$
Reverse current
$V_{R}=20 \mathrm{~V}$
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
Diode capacitance at $f=1 \mathrm{MHz}$

$$
V_{R}=6 \mathrm{~V}
$$

Series resistance at $f=1 \mathrm{MHz}$

$$
I_{F}=10 \mathrm{~mA}
$$

$V_{R}$	max.	20 V
$\mathrm{I}_{\mathrm{F}}$	max.	50 mA
$\mathrm{~T}_{\text {stg }}$	-55	to
$\mathrm{T}_{\mathrm{j}}$	max.	$1500^{\circ} \mathrm{C}$

$R_{\text {th j-a }}=\quad 0,5{ }^{\circ} \mathrm{C} / \mathrm{mW}$


Fig. $2 f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$.


Fig. $3 f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

## SILICON PLANAR DIODES

Switching diodes in a DO-35 envelope, intended for band switching in v.h.f. television tuners.

QUICK REFERENCE DATA					
Continuous reverse voltage	$\mathrm{V}_{\mathrm{R}}$		max.	20	V
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$		max.	100	mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$		max.	150	${ }^{\circ} \mathrm{C}$
Diode capacitance at $\mathrm{f}=1$ to 100 MHz $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	$\mathrm{C}_{\mathrm{d}}$		$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{array}{r} 1,1 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
			BA243	BA244	
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	${ }^{r} \mathrm{D}$	$\stackrel{\text { typ }}{<}$	0.7 1	$\begin{aligned} & 0,4 \\ & 0,5 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

## MECHANICAL DATA

Dimensions in mm
DO-35


The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Continuous reverse voltage
Current
Forward current (d.c.)
$\mathrm{V}_{\mathrm{R}} \quad \max \quad 20 \mathrm{~V}$

Temperatures
Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max.	150

THERMAL RESISTANCE
From junction to ambient in free air
CHARACTERISTICS
Forward voltage at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
Reverse current at $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$
$R_{\text {th j-a }}=0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$
$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{V}_{\mathrm{F}}$	$<$	1 V
$\mathrm{I}_{\mathrm{R}}$	$<$	100 nA
$\mathrm{I}_{\mathrm{R}}$	$<$	1 HA

Diode capacitance at $\mathrm{f}=1$ to 100 MHz

$$
\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}
$$

$C_{d}$
typ.
$1,1 \mathrm{pF}$

Relative capacitance variation
due to reverse voltage variation
at $\mathrm{V}_{\mathrm{R}}=7$ to $20 \mathrm{~V} ; \mathrm{f}=1$ to 100 MHz
related to $\mathrm{V}_{\mathrm{R}}=7 \mathrm{~V}$
$\frac{\Delta \mathrm{C}_{\mathrm{d}}}{\mathrm{C}_{\mathrm{d}} \cdot \Delta \mathrm{V}_{\mathrm{R}}} \quad$ typ. $\quad 1 \% / \mathrm{V}$
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$

$$
\mathbf{I}_{\mathrm{F}}=10 \mathrm{~mA}
$$

$r_{D} \quad$ typ.

BA243	BA244	
0,7	0,4	$\Omega$
1	0,5	$\Omega$

Relative series resistance variation
due to forward current variation
at $I_{F}=2$ to $40 \mathrm{~mA} ; f=200 \mathrm{MHz}$
related to $\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
$\frac{\Delta r_{D}}{r_{D} \cdot \Delta I_{F}} \quad$ typ. $\quad 2 \% / m A$
Series inductance (measured on envelope)
$\mathrm{L}_{\mathrm{s}}$
typ.
$2,5 \mathrm{nH}$





## SILICON PLANAR DIODES

Switching diodes in the subminiature DO-34 glass envelope, intended for band switching in v.h.f. television tuners. Special feature of the diodes is their low capacitance.

QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	$\max$.	35 V
Forward current (d.c.)	$I^{\prime}$	max.	100 mA
Junction temperature	$T_{i}$	max.	$150{ }^{\circ} \mathrm{C}$
		BA482	BA483
Diode capacitance			
$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V} ; \mathrm{f}=1$ to 100 MHz	$C_{\text {d }}$	$<1,2$	$1,0 \mathrm{pF}$
Series resistance at $f=200 \mathrm{MHz}$			
$I_{F}=3 \mathrm{~mA}$	'D	< 0,7	1,2 $\Omega$
$I_{F}=10 \mathrm{~mA}$	${ }^{1} \mathrm{D}$	typ. 0,4	0,5 $\Omega$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.
BA482: red on a natural background.
BA483: orange on a natural background.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Junction temperature
max. $\quad 35 \mathrm{~V}$
$\max . \quad 100 \mathrm{~mA}$
-65 to $+150{ }^{\circ} \mathrm{C}$
max. $\quad 150{ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient mounted on printed board
lead length $=5,0 \mathrm{~mm}$
$R_{\text {th } j \text {-a }}$
$0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified ${ }^{\prime}$
Forward voltage
$I_{F}=100 \mathrm{~mA}$
Reverse current
$V_{R}=20 \mathrm{~V}$
$V_{R}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

Diode capacitance

$$
V_{R}=3 \mathrm{~V} ; f=1 \text { to } 100 \mathrm{MHz}
$$

Series resistance at $\mathrm{f}=\mathbf{2 0 0} \mathbf{M H z}$

$$
I_{F}=3 \mathrm{~mA}
$$

$V_{F}$		$<$	$1,2 \vee$
$I_{R}$		$<$	100 nA
$I_{\text {R }}$		$<$	$1 \mu \mathrm{~A}$
		BA482	BA483
$\mathrm{C}_{\text {d }}$		0,8	$0,7 \mathrm{pF}$
$c_{\text {d }}$	$<$	1,2	$1,0 \mathrm{pF}$
		0,6	0,8 $\Omega$
'D	<	0,7	1,2 $\Omega$



Fig. 2 Typical values.


Fig. $3 V_{R}=20 \mathrm{~V}$.


Fig. 4 Typical values; $f=1$ to $100 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.


Fig. 5 Typical values; $f=200 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=\mathbf{2 5}^{\circ} \mathrm{C}$.

## SILICON VARIABLE CAPACITANCE DIODE

Planar-diffused diode in a DO-35 envelope intended for automatic frequency control in radio and television receivers.


MECHANICAL DATA
Dimensions in mm
DO-35


The coloured band indicates the cathode
The diodes are type branded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

## Voltage

$\begin{array}{llll}\text { Continuous reverse voltage } & V_{R} & \max . & 15 \\ V\end{array}$

## Current

Forward current (d.c.) $\mathrm{IF}_{\mathrm{F}}^{\mathrm{max}} 200 \mathrm{~mA}$

## Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	200

THERMAL RESISTANCE
From junction to ambient in free air

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}: \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{R}} \quad<\quad 2,0 \quad \mu \mathrm{~A}
$$

Forward voltage
$I_{F}=100 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}}<\quad 950 \mathrm{mV}$

Diode capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
V_{R}=4 \mathrm{~V}
$$

Capacitance ratio at $\mathrm{f}<300 \mathrm{MHz}$.
$\mathrm{C}_{\mathrm{d}} \quad 20$ to 25 pF
$\frac{\mathrm{C}_{\mathrm{d}}\left(\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}\right)}{\mathrm{C}_{\mathrm{d}}\left(\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)} \geq 1,3$
Series resistance at $\mathrm{f}=200 \mathrm{MHz}$
$V_{R}=4 \mathrm{~V}$
$r_{D}$
$\begin{array}{lll}\text { typ. } & 0,9 & \Omega \\ < & 1,5 & \Omega\end{array}$

Simplified equivalent circuit:

$\mathrm{L}=$ lead inductance $\approx 6 \mathrm{nH}$
$r_{D}=$ series resistance
$\mathrm{C}_{\mathrm{d}}=$ diode capacitance (see page 3 )
These data apply for a distance of 10 mm between the two measuring points.
frequency independent up to $\mathrm{f}=300 \mathrm{MHz}$



Mullard

## A.M. VARIABLE CAPACITANCE DOUBLE DIODES

The BB212 is a silicon mesa profiled epitaxial double tuning diode with common cathode in a plastic TO-92 variant.
A special feature is the low tuning voltage which makes the device particularly suited to car and domestic receivers in the L.W., M.W. and S.W. bands.

## QUICK REFERENCE DATA

## For each diode:

Continuous reverse voltage
Operating junction temperature
Reverse current at $T_{j}=25^{\circ} \mathrm{C}$

$$
V_{R}=10 \mathrm{~V}
$$

Diode capacitance at $f=1 \mathrm{MHz}$

$$
\begin{aligned}
& V_{R}=0,5 \mathrm{~V} \\
& V_{R}=8,0 \mathrm{~V}
\end{aligned}
$$

Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$
Series resistance at $f=500 \mathrm{kHz}$
$V_{R}$ is that value at which $C_{d}=500 \mathrm{pF}$

## MECHANICAL DATA

$V_{R}$	$\max$.	12 V
$\mathrm{~T}_{\mathrm{j}}$	$\max$.	$85{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}}$	$<$	50 nA

Fig. 1 TO-92 variant.


$C_{d}$	500 to 620 pF
$C_{d}$	$<$
$C_{d}\left(V_{R}=0,5 \mathrm{~V}\right)$	$>$
$C_{d}\left(V_{R}=8,0 \mathrm{~V}\right)$	22,5

$<\quad 2,5 \Omega$
$r_{s}$

Dimensions in mm

The anode of the diode with the higher capacitance $C_{1}$ at $V_{R}=3 \mathrm{~V}$, i.e. a more positive mismatch, is identified by a white dot.

RATINGS (for each diode)
Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Forward current (d.c.)
Storage temperature
Operating junction temperature
$V_{R}$
IF
Tstg
$T_{j}$
max. 12 V
max. 100 mA
-55 to $+100{ }^{\circ} \mathrm{C}$
max. $85{ }^{\circ} \mathrm{C}$

CHARACTERISTICS (for each diode)
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}
\end{aligned}
$$

IR
$\begin{array}{lr}< & 50 \mathrm{nA} \\ < & 200 \mathrm{nA}\end{array}$
Diode capacitance at $f=1 \mathrm{MHz}$
$V_{R}=0,5 \mathrm{~V}$
$V_{R}=3,0 \mathrm{~V}$
$V_{R}=5,5 \mathrm{~V}$
$V_{R}=8,0 \mathrm{~V}$
Capacitance ratio at $\mathrm{f}=1 \mathrm{MHz}$
Series resistance at $f=500 \mathrm{MHz}$
$V_{R}$ is that value at which $C_{d}=500 \mathrm{pF}$
Temperature coefficient of the diode capacitance
at $f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R}}=0,5 \mathrm{~V} & \eta \\
\mathrm{~V}_{\mathrm{R}}=8,0 \mathrm{~V} & \eta
\end{array}
$$

IR
$C_{d}$
$C_{d}$
$C_{d}$
$C_{d}$
$\frac{C_{d}\left(V_{R}=0,5 \mathrm{~V}\right)}{C_{d}\left(V_{R}=8,0 \mathrm{~V}\right)}$
$r_{s}$
$<\quad 2,5 \Omega$
typ. $\quad 0,054 \% / K$
typ. $\quad 0,050 \% / K$

## MATCHING PROPERTIES

The capacitance of the two diodes in their common envelope may differ within certain limits. The total, relative capacitance difference between the two diodes in one envelope may be found in Fig. 2. The anode al or a2 with the higher capacitance at $V_{R}=3 \mathrm{~V}$, is identified by a white dot.

## BASIC TOLERANCE

The relative deviation of the capacitance value at $V_{R}=0,5 \mathrm{~V}$ is maximum $3,5 \%$.
$k=\left|\frac{C_{1}(0,5 V)-C_{2}(0,5 V)}{C_{2}(0,5 V)}\right|=<3,5 \%$

## ADDITIONAL TOLERANCE

In the range of $V_{R}=0,5$ to 8 V the following additional tolerances are valid.

$$
\left.\left.S=\left\lvert\, \begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right.\right) V_{R}-\binom{C_{1}}{C_{2}} 0,5 V \left\lvert\, \begin{array}{l}
\mathrm{S}<2 \% \text { for } V_{R}=0,5 \text { to } 3 \mathrm{~V} \\
\mathrm{~S}<4 \% \text { for } V_{R}=3 \text { to } 5,5 \mathrm{~V} \\
\mathrm{~S}<6 \% \text { for } V_{R}=5,5 \text { to } 8 \mathrm{~V}
\end{array}\right.\right\} \text { see Fig. } 2
$$

$\mathrm{C}_{1}$ is the capacitance of $\mathrm{a}_{1}$ when $\mathrm{a}_{1}>\mathrm{a}_{2}$
$C_{1}$ is the capacitance of $a_{2}$ when $a_{2}>a_{1}$


Fig. 2 The shaded area represents the maximum tolerance of the two diodes in one envelope as a function of the reverse voltage.

Fig. 3 Typical values.



Fig. $4 \mathbf{f}=1 \mathrm{MHz}$.

## VARIABLE CAPACITANCE DIODES

The BB405B and BB405G are silicon variable capacitance diodes in hermetically sealed glass DO-34 envelopes.
The BB405B is intended for u.h.f. tuning up to frequencies of 860 MHz . The BB405G is intended for v.h.f. tuning.

Diodes are supplied in matched sets and the capacitance difference between any two diodes in one set is less than $3 \%$ over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

## QUICK REFERENCE DATA



## MECHANICAL DATA

Dimensions in mm
Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a $2 \mathrm{E}(5,08 \mathrm{~mm})$ pitch.
BB405B: white cathode ring; body black coloured
BB405G: additional green band.
Maximum soldering iron or solder bath temperature $300^{\circ} \mathrm{C}$; maximum soldering time 3 s . Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Reverse voltage (peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature
$V_{R}$ max.
$V_{R M} \max$
$I_{F}$
$T_{\text {stg }}$
$\mathrm{T}_{\mathrm{j}}$
max.
$\max$.
max.

28 V
30 V
20 mA
-55 to $+150{ }^{\circ} \mathrm{C}$
$100{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current
$V_{R}=28 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{R}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=85{ }^{\circ} \mathrm{C}$

Diode capacitance at $\mathrm{f}=500 \mathrm{kHz}{ }^{*}$
$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V}$

Capacitance ratio at $\mathrm{f}=500 \mathrm{kHz}$

Series resistance
at $f=470 \mathrm{MHz}$ and at that value of $\mathrm{V}_{\mathrm{R}}$ at which $\mathrm{C}_{\mathrm{d}}=9 \mathrm{pF}$

	BB405B	BB405G	
	10	10	$n A$
$<$	200	200	$n A$

15,5 pF
11,5 pF
1,8 pF
2,5 pF
$\frac{C_{d}\left(V_{R}=3 \mathrm{~V}\right)}{C_{d}\left(V_{R}=25 \mathrm{~V}\right)}>\quad 4,8 \quad 4,3$
6,0
$1,2 \quad \Omega$

[^27]

Fig. 2 Maximum values reverse current as a function of the junction temperature. $\mathrm{V}_{\mathrm{R}}=28 \mathrm{~V}$.


Fig. 3 Maximum values diode capacitance at $f=500 \mathrm{kHz}$.


Fig. 4 Maximum values temperature coefficient as a function of reverse voltage. $T_{j}=0$ to $85^{\circ} \mathrm{C}$.

## SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB809 is a variable capacitance diode in a glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).
Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than $3 \%$ over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

## QUICK REFERENCE DATA



(1) Lead diameter in this zone uncontrolled.

Cathode indicated by yellow band.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Reverse voltage (peak value)
Forward current (d.c.)
Storage temperature
Operating junction temperature

## THERMAL RESISTANCE

From junction to ambient in free air

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=28 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}
\end{aligned}
$$

Diode capacitance at $f=500 \mathrm{kHz}$
$V_{R}=3 V$
$V_{R}=25 \mathrm{~V}$
Capacitance ratio at $f=500 \mathrm{kHz}$
Series resistance at $f=200 \mathrm{MHz}$
$V_{R}$ is that value at which $C_{d}=25 \mathrm{pF}$
Relative capacitance difference
between two diodes; $\mathrm{V}_{\mathrm{R}}=1$ to 28 V
$R_{\text {th } j-a}$
$V_{R}$
$V_{R M}$
$I_{F}$
$\mathrm{T}_{\text {stg }}$
$T j$

IR
${ }^{\prime} R$
$C_{d}$
$C_{d}$
$C_{d}\left(V_{R}=3 V\right)$
$\overline{C_{d}\left(V_{R}=25 V\right)}$
$r_{s}$
$\frac{\Delta C}{C}$
$=$
$=0,6{ }^{\circ} \mathrm{C} / \mathrm{mW}$
max. 28 V
$\max \quad 30 \mathrm{~V}$
max. $\quad 20 \mathrm{~mA}$
-55 to $+150{ }^{\circ} \mathrm{C}$
max. $100^{\circ} \mathrm{C}$
$<\quad 10 \mathrm{nA}$
$<\quad 200 \mathrm{nA}$

26 to 32 pF
4,5 to $5,6 \mathrm{pF}$
5 to 6,5
$<$
$0,6 \Omega$
$<\quad 3 \%$


Fig. 2 Typical values.


Fig. $4 \mathrm{f}=500 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 3 Temperature coefficient of the diode capacitance; $\mathrm{T}_{\mathrm{amb}}=0$ to $85^{\circ} \mathrm{C}$.


Fig. $5 \mathrm{~V}_{\mathrm{R}}=28 \mathrm{~V}$.

# GERMANIUM DIODES <br> Gold bonded 

## GOLD BONDED DIODES

Germanium diodes in all.glass DO-7 envelope, intended for switching applications and general purposes.

## QUICK REFERENCE DATA

			AAZ15	AAZ1	
Continuous reverse voltage	$V_{R}$	max.	75	50	$v$
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	100	75	V
Forward current (d.c.)	$I_{\text {F }}$	max.	140	140	mA
Repetitive peak forward current	IFRM	max.	250	250	mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	85	85	${ }^{\circ} \mathrm{C}$
Forward voltage at $I_{F}=250 \mathrm{~mA}$	$V_{F}$	<	1,1	1,1	V
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	$\mathrm{a}_{\text {s }}$	<	1800	900	pC
MECHANICAL DATA			Dimensions in mm		

Fig. 1 DO-7.


The diodes are type branded; the cathode being indicated by a coloured band.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

## Voltages

Continuous reverse voltage
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage ( $t<1 \mathrm{~s}$ ) $\quad V_{\text {RSM }}$

AAZ15		AAZ17	
max.	75	50	V
$\max$.	100	75	V
max.	115	75	V

## Currents

Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	max.	140 mA
Average rectified forward current (averaged over any 20 ms period)	${ }^{1} \mathrm{~F}(\mathrm{AV})$	max.	140
Repetitive peak forward current	IFRM	max.	250
Non-repetitive peak forward current (t<1s)	IFSM	max.	500

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65	to +8.5	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	$\max$.	85	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to a mbient in free air $\quad R_{\text {th j-a }}=0.55{ }^{\circ} \mathrm{C} / \mathrm{mW}$

## GOLD BONDED DIODE

Germanium diode in all-glass DO-7 envelope, intended for switching applications and general purposes.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	25 V
Repetitive peak reverse voltage	$V_{\text {RRM }}$	max.	25 V
Forward current (d.c.)	$I_{\text {F }}$	max.	110 mA
Repetitive peak forward current	$I_{\text {FRM }}$	max.	150 mA
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	$75{ }^{\circ} \mathrm{C}$
Forward voltage at $\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	$V_{F}$	$<$	$1,1 \mathrm{~V}$
Recovery charge when switched from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	$\mathrm{O}_{\text {s }}$	$<$	600 pC
MECHANICAL DATA		Dimen	ions in mm

Fig. 1 DO-7.


The diodes are type-branded; the cathode being indicated by a coloured band.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

## Voltages

Continuous reverse voltage	$V_{R}$	$\max$.	25	V
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{RRM}}$	$\max$.	25	V
Non-repetitive peak reverse voltage $\left(\begin{array}{lll}l<1\end{array}\right)$	$\mathrm{V}_{\mathrm{RSM}}$	$\max$.	30	V

## Currents

Forward current (d.c.) $\mathrm{IF}_{\mathrm{m}} \max .110 \mathrm{~mA}$
Average rectified forward current
(averaged over any 20 ms period)
Reperitive peak forward current
${ }^{1} \mathrm{~F}$ (AV)
$\max .110 \mathrm{~mA}$
IFRM max. 150 mA
Non-repetitive peak forward current ( $\mathrm{t}<1 \mathrm{~s}$ ) $\quad \mathrm{I}_{\mathrm{FSM}}$
$\max$. 200 mA

## Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {stg }}$	-65 to +75	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{j}}$	$\max$.	75	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient in free air

$$
R_{\text {th } j-a}=0.550^{\circ} \mathrm{C} / \mathrm{mW}
$$

## PICOAMPERE DIODE

## PICOAMPERE DIODE

Silicon diode in a metal envelope. It has an extremely low leakage current over a wide temperature range combined with a low capacitance and is not sensitive to light. It is intended for clamping, holding, peak follower, time delay circuits as well as for logarithmic amplifiers and protection of insulated gate field-effect transistors.

## QUICK REFERENCE DATA

Continuous reverse voltage	$V_{\text {R }}$	max.	20 V
Forward current (d.c.)	$\mathrm{I}_{\mathrm{F}}$	max.	50 mA
Forward voltage at $I_{\text {F }}=10 \mathrm{~mA}$	$V_{F}$	$<$	$1,0 \mathrm{~V}$
Reverse current			
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	IR	$<$	5 pA
$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$I^{\prime}$	$<$	10 pA
Diode capacitance			
$V_{R}=0 ; f=1 \mathrm{MHz}$	$\mathrm{C}_{\text {d }}$	$<$	$1,3 \mathrm{pF}$

## MECHANICAL DATA

Dimensions in mm
Fig. 1 TO-18 (except for the two leads)


Handle the device with care whilst soldering into the circuit. The extremely low leakage current can only be guaranteed when the bottom is free from solder flux or other contaminations.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage
Repetitive peak reverse voltage
Forward current (d.c. or average)
Repetitive peak forward current
Storage temperature
Junction temperature

$V_{\text {R }}$	max.	20	$V$
$V_{\text {RRM }}$	max.	35	
$I^{\prime}$	max.	50	
IFRM	max.	100	
$\mathrm{T}_{\text {stg }}$	-65 to	125	
T ${ }_{\text {j }}$	max.	125	

## THERMAL RESISTANCE

From junction to ambient in free air
$R_{\text {th j-a }}=500 \mathrm{~K} / \mathrm{W}$

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Forward voltage

$$
I_{F}=10 \mathrm{~mA}
$$

$$
V_{F} \quad<\quad 1,0 \mathrm{~V}
$$

Reverse current

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=80^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}
\end{aligned}
$$

Diode capacitance

$$
V_{R}=0 ; f=1 \mathrm{MHz}
$$

$V_{F}$	$<$	$1,0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R}}$	$<$	5 pA
$\mathrm{I}_{\mathrm{R}}$	$<$	250 pA
$\mathrm{I}_{\mathrm{R}}$	$<$	10 pA
$\mathrm{C}_{\mathrm{d}}$	$<$	$1,3 \mathrm{pF}$
$\mathrm{V}_{\mathrm{fr}}$	$<$	$1,25 \mathrm{~V}$



Fig. 2 Test circuit and waveforms.

Input signal			
Rise time of the forward pulse	$\mathrm{tr}_{r}$	$\leqslant$	20 ns
Forward current pulse duration	$t_{p}$	=	300 ns
Duty factor	$\delta$	=	0,01
Oscilloscope Rise time	${ }_{t}$	=	0,35 ns
Input capacitance	$\mathrm{C}_{\mathrm{i}}$	$\leqslant$	1 pF

Circuit capacitance $C \leqslant 20$ pF ( $C=C_{i}+$ parasitic capacitance $)$

## CHARACTERISTICS (continued)

Reverse recovery time when switched from
$I_{F}=10 \mathrm{~mA}$ to $I_{R}=10 \mathrm{~mA} ; R_{L}=100 \Omega$;
measured at $I_{R}=1 \mathrm{~mA}$
$t_{r r}$
600 ns

input signal

261328.1
output signal

Fig. 3 Test circuit and waveforms.

$$
{ }^{*} I_{R}=1 \mathrm{~mA} .
$$

## Input signal

Rise time of the reverse pulse
Reverse pulse duration
Duty factor

## Oscilloscope

Rise time
Circuit capacitance $C \leqslant 1 \rho F$ ( $C=$ oscilloscope input capacitance + parasitic capacitance)


Fig. 4.


Fig. 5.


Fig. 6.


Fig. 7.


Fig. 8.

## INDEX

INDEX

Type No.	Section	Suggested alternative
BAX13	B	
BAX16	B	
BAX17	B	
BB105B, G	*	BB405B, G
BB110B, G	-	BB119
BB119	H	
BB212	H	
BB405B, G	H	
BB809	H	
BBY31	G	
BBY40	G	
BY184	*	BY584
BY228	E	
BY409	*	BY509
BY438	E	
BY448	E	
BY458	E	
BY476	E*	
BY509	E	
BY584	E	
BYV27 series	E	
BYV28 series	E	
BYV95A, B, C	E	
BYV96D, E	E	
BYW54	E	
BYW55	E	
BYW56	E	
BYW95A, B, C	E	
BYW960.E	E	
BYX10	E*	
BYX90	*	
BYX91 series	*	
BZT03 series	C	
BZV10	D	
BZV11	D	
BZV12	D	
BZV13	D	
BZV14	D	
BZV46-1V5, 2V0	C	
BZV49 series	G	

[^28]| Type No. | Section | Suggested alternative | Type No. | Section | Suggested alternative |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BZV85 series | C |  | CVA7029 | E |  |
| BZW03 series | C |  | CVA7030 | E |  |
| BZX61 series | C* | BZV85 series | CVA7476 | E |  |
|  |  | or BZT03 series | OA47 | 1* | BAT85 |
| BZX79 series | C |  | OA90 | * | BAT81 |
| BZX84 series | G |  | OA91 | * |  |
| BZX87 series | C |  | OA95 | * |  |
| B2X90 | D |  | OA200 | B |  |
| B2X91 | D |  | OA202 | B |  |
| BZX92 | D |  | 1N821 | D |  |
| B2×93 | D |  | 1N823 | D |  |
| BZX94 | D |  | 1 N825 | D |  |
| BZY88 series | C* | BZX79 series | 1 N827 | D |  |
| CV7099 to 7106 | C |  | 1 N829 | D |  |
| CV7138 to 7146 | C |  | 1 N914 | B |  |
| CV7367,8 | B |  | 1N916 | B |  |
| CV7756,7 | B |  | 1N4001G | E |  |
| CV7875 | B |  | 1N4002G | E |  |
| CV8308 | E |  | 1N4003G | E |  |
| CV8617 | B |  | 1N4004G | E |  |
| CV8790 | B |  | 1N4005G | E |  |
| CV8805 | E |  | 1 N 4006 G | E |  |
| CV9637 | B |  | 1N4007G | E |  |
| CV9638 | B |  | 1N4148 | B |  |
| CVA7026 | E |  | 1 N4446 | B |  |
| CVA7027 CVA 7028 | E |  | 1N4448 | B |  |

*Not recommended for the design of new equipment.

## DIODES

## I SELECTION GUIDE

## A GENERAL SECTION

## B SILICON WHISKERLESS DIODES

## C VOLTAGE REGULATOR DIODES (Low power)

D VOLTAGE REFERENCE DIODES
E RECTIFIER DIODES (Low power)

## F SCHOTTKY-BARRIER DIODES

## G MICROMINIATURE DIODES

H TUNER DIODES

## J GERMANIUM DIODE

INDEX

## Mullard

## technical handbook

## Book



## Famell Electronic Components Lid.

Canal Road. Leeds LS12 2 TU.
Tel: Leeds (0532) 636311. Telex: 55147

## Gothic Crellon

380 Bath Road. Slough SL1 6JE. Tel: Burnham (06286) 4434. Telex: 847571.

## Hawnt Electronics Lid.

Firswood Road. Garretts Green. Birmingham B33 OTQ. Tel: Birmingham (021) 7842485 . Telex: 338814.

## Intel Electronics Lid.

Trading Estate. Henlow. Bedfordshire SG16 6DS
Tel: Hitchin (0462) 812505. Telex: 825637.
ITT Electronics Services
Edinburgh Way. Harlow. Essex CM20 2DF.
Tel: Harlow (0279) 26777. Telex: 81525.
Jermyn
Vestry Estate. Sevenoaks, Kent TN13 5EU.
Tel: Sevenoaks (0732) 450144. Telex: 95142.
Macro-Marketing Lid.
Burnham Lane. Slough SLI 6LN.
Tel: Burnham (06286) 4422. Telex: 847945.

## Swift-Sasco Lid.

P.O. Box 2000. Galwick Road. Crawley. Sussex RH10 2RU Tel: Crawley (0293) 28700. Telex: 87131
Townsend-Coates Lid.
Lunsford Road. Leicester LE5 OHH.
Tel: Leicester (0533) 769191. Telex: 34321


[^0]:    - Available for current production only; not recommended for new designs.

[^1]:    * Pulse measurement only.

[^2]:    1) Measured at zero life time at $I_{R}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$.
    ${ }^{2}$ ) For sinusoidal operation see page 6 . For pulse operation see page 5.
[^3]:    ${ }^{1}$ ) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited at 275 V .

[^4]:    ${ }^{1}$ ) Measured at zero life time at $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}>100 \mathrm{~V}$.
    ${ }^{2}$ ) For sinusoidal operation see page 6 . For pulse operation see page 5.

[^5]:    1) For sinusoidal operation see page 5 .

    For pulse operation see page 6.

[^6]:    1) See also page 8 .
[^7]:    *These are the characteristics which are recommended for acceptance testing purposes.

[^8]:    ${ }^{1}$ ) Measured in still air up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and mounted to solder tags at maximum lead lengti.
    ${ }^{2}$ ) If the temperature of the leads at 10 mm from the body is kept at $25^{\circ} \mathrm{C}$.

[^9]:    ${ }^{*} t_{p}=300 \mu s ; \delta \leqslant 2 \%$.

[^10]:    * For accuracy of IZ see Fig. 3.

[^11]:    * For accuracy of $I_{Z}$ see graphs on page 5.

[^12]:    * For accuracy of $I_{Z}$ see graphs on page 5.

[^13]:    * For accuracy of $I Z$ see graphs on pages 4 and 5 .

[^14]:    * For accuracy of $\mathrm{I}_{\mathrm{Z}}$ see graphs on pages 4 and 5 .

[^15]:    * Measured under pulse conditions to avoid excessive dissipation.

[^16]:    * The rectifier can withstand peak currents occurring at flashover in the picture tube.

[^17]:    * The device can withstand peak currents occurring at flashover in the picture tube.
    ** Measured under pulse conditions to avoid excessive dissipation.

[^18]:    * Measured under pulse conditions to avoid excessive dissipation.

[^19]:    * Measured under pulse conditions to avoid excessive dissipation.

[^20]:    * Measured under pulse conditions to avoid excessive dissipation.
    ** Illuminance $\leqslant 500$ lux (daylight) ; relative humidity $<65 \%$.

[^21]:    - Measured under pulse conditions to avoid excessive dissipation.

[^22]:    - Measured under pulse conditions to avoid excessive dissipation.

[^23]:    * Due to the lack of minority carrier injection reverse recovery time only depends on junction capacitance and circuit resistance.

[^24]:    $\triangle$ Measured under pulse conditions. $\mathrm{t}_{\mathrm{p}} \leqslant 0,5 \mathrm{~ms}$. $I_{F}(A V)=150 \mathrm{~mA}, \mathrm{t}_{(\mathrm{av})} \leqslant 1 \mathrm{~ms}$, for sinusoidal operation.

    * See Thermal characteristics in GENERAL SECTION.
    ** Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$.

[^25]:    - See Thermal characteristics in GENERAL SECTION.
    **Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.7 \mathrm{~mm}$.

[^26]:    $\triangle$ Measured under pulse conditions: pulse time $t_{p} \leqslant 0,5 \mathrm{~ms}$.
    For sinusoidal operation $I^{\prime}(A V)=150 \mathrm{~mA}$; averaging time $\mathrm{t}_{(\mathrm{av})} \leqslant 1 \mathrm{~ms}$.

    * See Thermal characteristics in GENERAL SECTION.
    ** Device mounted on a ceramic substrate of $8 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0,7 \mathrm{~mm}$.

[^27]:    * Matching: Devices are supplied on a bandolier with a space between matched sets (minimum quantity 120 devices, total divisible by 12; maximum quantity is 9000 per reel). Capacitance difference between any two diodes in one set is less than $3 \%$ over the voltage range from $0,5 \mathrm{~V}$ to 28 V .

[^28]:    *Not recommended for the design of new equipment.

