Diodes

Mullard

technical handbook

Book 1

Semiconductor devices

Part 3 Diodes

3

DIODES CONTENTS	
SELECTION GUIDE	
GENERAL SECTION	А
SILICON WHISKERLESS DIODES	В
VOLTAGE REGULATOR DIODES (Low power)	С
VOLTAGE REFERENCE DIODES	D
RECTIFIER DIODES (Low power)	E
SCHOTTKY-BARRIER DIODES	F
MICROMINIATURE DIODES	G
TUNER DIODES	н
GERMANIUM DIODES (Gold bonded)	1
PICOAMPERE DIODE	J
INDEX	•

© Mullard Limited, January 1983

Printed by Eyre & Spottiswoode Ltd., at Grosvenor Press, Portsmouth

Semiconductor devices

Diodes

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD

Telephone 01-580 6633

Telex: 264341

The Mullard technical handbook system..

The Mullard Technical Handbook is made up of four sets of Books, each comprising several parts:-

Book 1 (light blue)	Semiconductor Devices
Book 2 (orange)	Valves and Tubes
Book 3 (green)	Components, Materials and Assemblies
Book 4 (purple or dark blue)	Integrated Circuits

Book 1, Semiconductor Devices, comprises the following parts:-

Part 1a S	mall-signal	transistors
-----------	-------------	-------------

- Part 1b Low-frequency power transistors
- Part 1c Field-effect transistors
- Part 1d Microminiature semiconductors for hybrid circuits
- Part 2a R.F. wideband devices
- Part 2b R.F. power devices
- Part 3 Diodes
- Part 4 Power diodes, thyristors and triacs
- Part 5 Microwave transistors, diodes and sub-assemblies
- Part 6 Optoelectronic devices

a comprehensive data library

Most of the devices for which full data is given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs but generally available for equipment production, are listed separately. Data sheets for these types may be obtained on request. Older devices for which data may be obtained on request are also included in the index of the appropriate part of each book.

Because the Technical Handbook system forms a comprehensive data reference library the current Mullard Quick Reference Guides should always be consulted for details of the Mullard preferred range.

> The data contained in these books is as accurate and up to date as possible at the time of going to press. It must be understood, however, that no guarantee can be given on the availability of the various devices, or that their specifications may not be changed before the next edition is published.

Each part is reviewed regularly, and revised and re-issued where necessary. Revisions to previous data are indicated by an arrow in the margin.

Requests for copies of Quick Reference Guides and individual data sheets (please quote the type number) should be sent to:-

Technical Publications Department, Mullard Limited, New Road, Mitcham, Surrey CR4 4XY, Telex 22194.

Prices and availability information for Mullard components should be obtained from Mullard House, or from one of the Mullard Distributors listed on the back cover.

The Mullard Data Base

For the equipment designer, technical information on electronic components is vital. Mullard market the widest range of components in the U.K., supported by a comprehensive information service — the Mullard Data Base.

Brief details are given here. For further information and an order form, please write to:-

Technical Publications Dept. Mullard Limited, New Road, Mitcham, Surrey CR4 4XY.

Regular Publications Mullard Bulletin

A must for designers, this bi-monthly, newspaper-style publication briefly describes new components and offers further information on subjects of interest.

Consumer Electronics

A review, in newspaper style, published every four months. Articles and features of interest to those in the consumer electronics industry, with emphasis on television technology and allied subjects.

Mullard Bulletin

ECTORS . NEW 4 WALL

: T.V. Delay

illard Bulletin

Technical Brochures and Range Leaflets

Mullard publish hundreds of different brochures on components and their application. Make sure your name is on the mailing list for the Mullard Bulletin, which describes and offers new publications.

Prestel too!

Mullard publications may also be ordered directly through PRESTEL. The Mullard data base begins on page 556201.

Mand

Electronic Components and Applications

A quarterly technical journal covering, in depth, developments in electronics based on the work of Philips, Signetics and Mullard laboratories. Please ask for a sample copy and subscription form.

Quick reference guides

All products marketed by Mullard are listed alpha-numerically and described briefly in these guides. Part 1 covers passive components, discrete semiconductors, and valves and tubes; Part 2 deals with integrated circuits, including Signetics.

Technical Data Service

This service provides detailed, up-to-date information on the characteristics and performance of Mullard components.

Subscribers to any or all of the four handbook sections receive all relevant handbooks, looseleaf binders, monthly mailings of new data sheets, and new handbook parts as they are published.

For those not wishing to subscribe to the Data Service, handbook parts can be purchased individually.

Individual data sheets are available free-of-charge, and can be obtained by quoting the type number.

CECC

Products approved to CECC available on request:

Specification No.	Type No.
CECC 50 001 - 020	CV8308, CV8805
CECC 50 001 – 021	BAW62 CV7367, CV7368, CV7756 CV7757, CV8617, CV9637 1N914, 1N916, 1N4148 1N4446, 1N4448
CECC 50 001 - 022	BAV18, BAV19, BAV20, BAV21 BAX16, BAX17 CV8790
CECC 50 001 - 026	BA314 PO33
CECC 50 001 - 037	CV9638
CECC 50 001 - 038	CV7875
CECC 50 005 - 005	BZX79 series CV7138 to CV7146 CV7099 to CV7106
CECC 50 005 - 010	BZV85 series
CECC 50 005 - 017	BZT03 series
CECC 50 008 - 015	BYW54, BYW55, BYW56 CVA7026 to CVA7030

BZY88 series to BS9305-N041 is no longer available - replaced by CECC 50 005 - 005, BZX79 series.

CVA7476

Mullard

SELECTION GUIDE

WHISKERLESS DIODES

Outline: DO-35

									_
-		VR	IF	IFRM	t _{rr}	Cd	VF	at	١۶
	type	max.	max.	max.	max.	max.	max.		
	1	V	mA	mA	ns	pF	V		mA
	BA316	10	100	225	4	2	1.1		100
	BA317	30	100	225	4	2	1.1		100
	BA318	50	100	225	4	2	1.1		100
	BAV10	60	300	600	6	2.5	1.25		500
	BAW62	75	200	450	4	2	1		100
	BAX13	50	75	150	4	3	1.53		75
	BAX16	150	200	300	120	10	1.5		200
general purpose	BAX17	200	200	300	120	10	1.2		200
	OA200	50	160	250	typ.3.5	25	1.15		30
	OA202	150	160	250	typ.3.5	25	1.15		30
	1N914	75	75	225	4	4	1		10
	1N916	75	75	225	4	2	1		10
	1N4148	75	200	450	4	4	1		10
	1N4446	75	200	450	4	4	1		20
	1N4448	75	200	450	4	4	1		100
	BAV18	50	250	625	50	5	1.25		200
high speed;	BAV19	100	250	625	50	5	1.25		200
high voltage	BAV20	150	250	625	50	5	1.25		200
	BAV21	200	250	625	50	5	1.25		200
	BAX12A	90	400	800	50	35	1		200
	CV7367	100	75	450	5	2.8	1		10
	CV7368	100	75	450	5	1.5	1		10
	CV7756	75	75	450	8	4	1		10
for telephony	CV7757	75	75	450	8	2	1		10
applications	CV7875	150	150	750	-	35	1.2		100
	CV8617	20	75	450	-	6	1.5		50
	CV8790	150	150	625	-	10	1.2		100
	CV9637	75	100	450	5	2.8	1.2		100
	CV9638	65	200	750	70	15	0.9		200
general purpose avalanche	BAS11	300	350	2000	1000	10 тур.	1.1		300

2

VOLTAGE REGULATOR DIODES

Stabistors

type	working voltage (nom.) V	P _{tot} at max. mW	T _{amb} oC	IFRM max. mA	outline
BA314	0.7		-	250	DO-35
BZV46-1V5	1.5	250	55	120	DO-35
BZV46-2V0	2	250	55	80	DO-35

Voltage regulator diodes (low power)

type	working voltage range V	P _{tot} at max. mW	T _{amb} oc	IFRM max. mA	outline
BZT03	9.1 to 270	3.25 W	25		SOD-57
BZV85	3.6 to 75	1300	25	250	DO-41
BZW03	7.5 to 270	6 W	25	-	SOD-64
BZX61*	7.5 to 130	1300	25	1000	DO-15
52.1.01	150 to 200	1000	25	1000	DO-15
BZX79	2.4 to 75	400	50	250	DO-35
BZX87	5.1 to 75	1750	25	400	SOD-51
BZY88*	2.7 to 33	400	50	250	DO-7
				IF(AV) max.	100
CV7138	3.3				
CV7139	3.6				1
CV7140	3.9	400	25	200	DO-35
CV7141	4.3				
CV7099	4.7	Concerning of the local			
CV7100					
CV7100	5.1 5.6				
CV7101	6.2	400	25	200	DO 35
CV7102	6.8	400	25	200	00.35
CV7103					
	7.5	A			
CV7105	8.2				
CV7142	9.1	1.1.2.2			
CV7143	10.0	400	25	200	DO-35
CV7144	11.0				
CV7145	12.0				
CV7146	13.0	400	25	200	DO 35
CV7106	15.0	400	20	200	00-35

Mullard

•Available for current production only; not recommended for new designs.

VOLTAGE REFERENCE DIODES

voltage tolerance ± 5%

SELECTION GUIDE

Outline: DO-34

type	reference voltage at IZ V (nom) mA	IZM max (IZRM) mA	S <mark>∠</mark> a max. %/ ^O C	t ^I Z mA	rdiff max. Ω	at IZ mA
BZX90 BZX91 BZX92 BZX93 BZX94	6.5 7.5	50	0.01 0.005 0.002 0.001 0.0005	7.5	15	7.5
1N821 1N823 1N825 1N827 1N829	6.2 7.5	50	0.01 0.005 0.002 0.001 0.0005	7.5	15	7.5
BZV10 BZV11 BZV12 BZV13 BZV14	6.5 2	50	0.01 0.005 0.002 0.001 0.0005	2	50	2

RECTIFIER DIODES

	type	^I F(AV)max mA	V _{RRM max} V	outline
	BYX10° CVA7026 CVA7027 CVA7028	360	1600 100 200 400	DO 14 SOD-57
general purpose	CVA7029 CVA7030 CVA7476** 1N4001G	/30	600 800 1200 50	300-57
	1N4002G 1N4003G 1N4004G 1N4005G 1N4006G	1000	100 200 400 600 800	SOD-57
	1N4007G	1	1000	-
controlled avalanche	8YW54 8YW55 8YW56	2000 2000 2000	600 800 1000	SOD-57 SOD 57 SOD-57
The second	CV8308 CV8805	250 250	60 150	SOD 57 SOD 57
	BYV95A B C	1500	200 400 600	SOD-57
fast soft-recovery	BYV96D E BYW95A	1500 3000	800 1000 200	SOD 57 SOD-64
	B C BYW96D E	3000	400 600 800 1000	SOD 64
	BYV27- 50 - 100 - 150 - 200	2000	50 100 150 200	SOD-57
ultra fast soft-recovery	-200 BYV28-50 -100 -150 -200	3500	50 50 100 150 200	SOD 64

Available for current production only; not recommended for new designs.

** Controlled avalanche

RECTIFIER DIODES (Cont.)

Parallel efficiency diodes

type	^I FWM max A	VRRM max V	outline
BY448	4	1500	SOD-57
BY458	4	1200	SOD-57
BY228	5	1500	SOD 64
BY438	5	1200	SOD-64

E.H.T. rectifiers

	type	^I F(AV) max mA	V _{RRM max} kV	outline	
The second second	BY476*	2.5	18	SOD-56	
soft recovery	BY509	4	15	SOD-61	
	BY584	85	1.8	SOD 61A	

SCHOTTKY-BARRIER DIODES

Outline: DO-34

	type	V _R max. V	l _F max. mA	C _d a max. pF	t V _R V	t _{rr} max. ns	VF max. mV	at IF mA
u.h.f. mixer	BA481	4	30	1.1	0	-	400	1
switching	BAT81 BAT82 BAT83 BAT85	40 50 60 30	30 100	1.6 10	1 1	1 5	410 400	1 10

*Available for current production only; not recommended for new designs.

MICROMINIATURE DIODES

Switching diodes	-									Outlin	ne : S	SOT-23
	type	V _R max.		l _F max.		t _{rr} max		C _d max		VF max.	at	IF
and the second second		V		mΑ		ns		pF	_	mV	_	mA
high-speed	BAS16	75		250		e	5	2		855		10
	BAS19	100		200		50	D	5		1000		100
general purpose	BAS20	150		200		50) C	5		1000		100
	BAS21	200		200		50	ו נ	5		1000		100
Schottky-barrier	BAT17	4		30		-	-	1		600		10
band switch	BAT18	35		100		-		1		1200		100
common cathode double diode	BAV70	70		250		e	6	1.5		855		10
wo diodes in series	BAV99	70		250		e	6	1.5		855		10
common anode double diode	BAW56	70		250		e	5	2		855		10
Low-voltage stabilizer											ne : :	SOT-2
		IFR	RM		Cd	1		SF		VF	at	IF
	type	ma			max			yp.				
		m/	4	+	pF	-	n	nV/K	-	mV	_	mA
general purpose	BAS17	25	0		140	D	-	-1.8)-810		5
			_	-	_	_	_		8/0	0-960	-	100
Variable capacitance d	iodes									Outlin	ne : 1	SOT-2
		VR	I Ip	1	(Cd	at	VR	ſD	1 Ip	2 7	at VR
	type	max.	ma	x.		-			max	. ma	x.	
	Sec. 1	V	m	A	1	pF		V	Ω	n/	4	V
	BBY31	28	24		typ	. 11.	5	3	1.2	6	0	28
the function	DETJI	28	20		1.8	8–2.8	3	25	1.2	9	0	20
v.h.f. tuning					~			2				
	B8Y40	28	20	0		6–32 1.3–6		3 25	0.6	5	50	28
10						1.3-0		25		1	_	_
Voltaga regulator dioc	les; tolerance	± 5%				_			-			
					ot		FRM			t IF		
	type	range	e		ax.		max.		lax.		0	utline
		V		-	W	-	mA	-	/	mA	+	
general purpose	BZV49	2.4-7			00		250		1	50		OT-89
	BZX84	2.4-7	75	3	50		250	0	.9	10	S	OT 23

SELECTION GUIDE

TUNER DIODES

Variable capacitance di	odes				_		
	type	outline	V _R max. V	C _d at pF	V _R V		io at V _R /V
a.f.c.	BB119	DO 35	15	20.25	4	>1.3	4/10
radio a.m.	BB212	TO 92	12	500-620	0.5	>22.5	0.5/8
television v.h.f.	BB809 BB405G	DO-34 DO-34	28 28	4.5-5.6 1.8-2.5	25 25	>5 >4.3	3/25 3/25
television u.h.f.	8B405B	DO-34	28	2.0.2.3	25	>4.8	3/25
Band switching diodes						rp at (Ω)	t IF (mA)
a.m. switching	BA223	DO-34	20	<3.5	6	<1.5	10
v.h.f. switching	BA243 BA244 BA482 BA483	DO-35 DO-35 DO-34 DO-34	20 20 35 35	<2.0 <2.0 <1.2 <1.0	15 15 3 3	<1.0 <0.5 <0.7 <1.2	10 10 3 3

All television varicaps are supplied in matched sets.

Over the voltage range 0.5 V to 28 V the diodes are capacitance matched to within 3%: BB405B; BB405G

GERMANIUM SMALL SIGNAL DIODES

(MAINTENANCE TYPES)

Gold bonded diodes			_				Ou	tline	: DO-7
	type	V _R max. V	lF max. mA	IFRM max. mA	t _{rr} max. ns	Cd max. pF	VF max. V	at	۱ _F mA
general purpose	AAZ15 AAZ17	75 50	140 140	250 250	-	2 2	1.1 1.1		250 250
general purpose and switching	OA47	25	110	150	70	3.5	1.1		150

A≣

GENERAL SECTION

Type designation Rating systems Colour codes Packing Mounting and soldering Microminiature diodes (soldering recommendations and thermal characteristics)

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices – as opposed to integrated circuits –, multiples of such devices and semiconductor chips.

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency ($R_{th i-mb} > 15 \text{ °C/W}$)
- D. TRANSISTOR; power, audio frequency ($R_{th i-mb} \le 15 \text{ °C/W}$)
- E. DIODE; tunnel
- F. TRANSISTOR; low power, high frequency ($R_{th j-mb} > 15 \text{ °C/W}$)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency ($R_{th i-mb} \le 15 \text{ °C/W}$)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (R_{thj-mb} > 15 °C/W)
- S. TRANSISTOR; low power, switching ($R_{th j-mb} > 15 \text{ °C/W}$)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power ($R_{th j-mb} \le 15 \text{ °C/W}$)
- U. TRANSISTOR; power, switching ($R_{th i-mb} \le 15 \text{ °C/W}$)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage A. 1% (according to IEC 63: series E96)

- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)
- E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R . The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- 4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-) The NUMBER indicates the depletion layer in µm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

RATING

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

PRO ELECTRON COLOUR CODING SYSTEM FOR PROFESSIONAL SMALL SIGNAL DIODES

Letter combination-background colour

- BAV green
- BAW blue
- BAX black
- BAS orange

Figure combination-colour bands

- 0 black
- 1 brown
- 2 red
- 3 orange
- 4 yellow
- 5 green
- 6 blue
- 7 violet
- 8 grey
- 9 white

The cathode side is indicated by a broad band which is at the same time the first digit of the figure combination.

Note: For BA types see individual type publications.

JEDEC assigned type numbers

(EIA-standard RS-236-B; June, 1963)

1. Prefix identification

The prefix identification consisting of a first number symbol and the letter "N" shall not be indicated in the coding.

2. Banding systems

The sequence number consisting of a two, three, or four digit number after the letter "N" may be coded as follows:

- 2.1 Two-digit sequence numbers shall consist of a first black band and the sequence number in second and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.2 <u>Three-digit</u> sequence numbers shall consist of the sequence number in first, second, and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.3 Four-digit sequence numbers shall consist of the sequence number infour bands of the colours indicated in Table 1.If a suffix letter is required it shall be indicated as the fifth band.

3. Cathode identification and reading sequence

- 3.1 A double-width band shall be used as the first band reading from cathode to anode ends.
- 3.2 An alternative method is provided where equal width bands may be used. The bands shall be clearly grouped toward the cathode end, and shall be read from cathode to anode ends.
- 3.3 Either of the above colour banding methods maybe used in stead of the cathode designating symbol or other marking.

4. Colour bands

The sequence numbers of the type numbers and suffix letters shall be indicated by the colours in Table 1.

	1110 22	÷.
NUMBER	COLOUR	SUFFIX LETTER
0	black brown	not applicable
2	red	A B
3 4	orange yellow	C D
5	green	E
6	blue	F
7 8	violet	G H
9	grey white	J

PACKING

BANDOLIER AND REEL SPECIFICATION FOR AXIAL-TAPED DIODES

This specification concerns all axial-leaded diodes in this handbook.

The taped and reeled products fulfil the requirements of IEC 286-1: Tape packaging of components with axial leads on continuous tapes.

Dimensions in mm

Fig. 1 Configuration of bandolier.

The red tape indicates the diode cathode side.

1. Displacement between any two diodes; for DO-34 maximum 0,4.

2. For outlines SOD-34, SOD-56 and SOD-61 this dimension is 58 \pm 2.

The cumulative space (S) measured over ten spacings = 50 ± 2 .

The diodes are centred so that $|L_1 - L_2| \le 1,2$ mm.

A black marker is printed on the white tape of the bandolier every 50 diodes.

The axial taping specification described above is compatible with automatic insertion equipment as manufactured by Universal, U.S.M. (Dynapert) and M.E.I. (Panasert).

(1) For outlines SOD-34, SOD-56 and SOD-61 this dimension is 75.

- (1) Diode
- (2) Bandolier
- (3) Paper

- (4) Flange
- (5) Cylinder

outline		quantity per reel
SOD-27	DO-35	10 000
SOD-34	_	5 000
SOD-51	-	5 000
SOD-56	_	4 000
SOD-57	-	5 000
SOD-61	-	7 000
SOD-64	-	4 000
SOD-66	DO-41	5 000
SOD-68	DO-34	10 000

Fig. 2 Detail configuration of component shape.

break force of carrier tape > 15 N extraction force > 5 N

ΣΔΡΟ	=	deviation of 20 spacings	± 1
F	=	lead-to-lead distance	^{5,08} ^{+0,6} -0,1
H ₁	=	top of component to tape centre	< 27,5
н	=	bottom of component to	
		tape centre	19 ± 1
но	=	lead-wire clinch height	16 ± 0,5
L	=	length of cropped lead	<11
l	=	lead-wire protrusion	<1
Р	=	pitch of components	12,7 ± 1
P2	=	feed hole centre to the middle	
_		of the leads	6,35 ± 1
P1	=	feed hole centre to lead	3,81 ± 0,7
Po	=	feed hole pitch	12,7 ± 0,3
Τt	=	total tape thickness	< 1,5
t	=	thickness tape + hold down tape	0,7 ± 0,2
DO	=	feed hole diameter	4 ± 0.2
W_2	=	hold down tape position	0 to 1,5
WO		hold down tape width	> 12,5
W1		feed hole position	9 ± 0,5
w	=	tape width	18 ^{+1,0} -0,5
••	_		¹⁸ —0,5
Δ_q	=	component alignment	0 + 5 ⁰
Δ_{h}^{v}	=	component alignment	± 2

3

4

This specification concerns radial-taped diodes in DO-34 and DO-35 envelopes. The taped and reeled products fulfil the requirements of IEC 286-2: Tape packaging of components with unidirectional leads.

Fig. 3 Reel dimensions (mm) for radial-taped diodes.

(1) Diode	(3) Flange
(2) Bandolier	(4) Cylinder

Quantity per reel for DO-34 and DO-35 encapsulations 5000 diodes.

The diodes can be delivered on request with anode-leading (+ leading) or with cathode-leading (- leading) configuration.

-	
_	-
=	
_	_
_	

RULES FOR MOUNTING AND SOLDERING

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting the following rules should be followed.

General

Perpendicular forces on the body of the diode must be avoided.

Avoid sudden forces on the leads or body. These forces often are much higher than allowed.

High acceleration forces as a result of any shock (dropping on a hard surface for instance) must be prevented.

Bending

During bending the leads must be supported between body or stud and bending point.

Axial forces on the body during the bending process must not exceed 20 N.

Bending the leads through 90^o is allowed at any distance from the body when it is possible to support the leads during bending without contacting the envelope or weldings.

Bending close to the body or stud without supporting the leads only is allowed if the bend radius is greater than 0,5 mm.

Twisting

Twisting the leads is allowed at any distance from the body or stud if the lead is properly clamped between body or stud and twisting point.

Without clamping, twisting the leads is only allowed at a distance of greater than 3 mm from the body; the torque angle must not exceed 30° .

Straightening

Straightening the leads is allowed if the applied pulling force in the axial direction does not exceed 20 N and the total duration is not longer than 5 seconds.

Soldering

Avoid any force on the body or leads during or just after soldering.

Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

Prevent fast cooling after soldering.

Maximum allowable soldering time and minimum distance soldering point to seal for several envelopes

Hand iron soldering

			mounted o <i>therwise than</i> on printed-circuit board (max. solder temp.: 300 ^o C)		ed on printed	soldering, <i>mount</i> - circuit board emp.: 300 °C)
			time	distance	time	distance
			S	mm	S	mm
SOD-27	DO-35	qlass	3	0,5	5	0,5
SOD-40	DO-15	plastic	3	5,0	3	5,0
SOD-51	-	glass	3	3,0	5	3,0
SOD-56	_	plastic	3	2,0	5	2,0
SOD-57	-	glass	3	0,5	5	0,5
SOD-61	-	glass	3	2,0	5	2,0
SOD-64	_	glass	3	0,5	5	0,5
SOD-66	DO-41	glass	3	3,0	5	3,0
SOD-68	DO-34	glass	3	0,5	5	0,5
TO-18	-	metal	3	0,5	5	0,5
TO-92	-	plastic	3	2,5	5	2,5

MOUNTING

If the rules for mounting and soldering are observed properly, the following mounting or process methods are allowed:

- Preheating of the printed circuit board before soldering, up to a maximum of 100 °C.
- Flat mounting with the diode body in direct contact with the printed circuit board with or without metal tracks on both sides and/or plated-through holes.
- Flat mounting with the diode body in direct contact with hot spots or hot tracks during soldering.
- Upright mounting with the diode body in direct contact with the printed circuit board if the body is not in contact with metal tracks or plated-through holes.

General

Parts of the general mounting and soldering rules can be overruled by individual type mounting and soldering rules, mentioned with the type description.

June 1982

Hand iron soldering, dip, wave

MICROMINIATURE

SOLDERING RECOMMENDATIONS SOT-23, SOT-143 AND SOT-89 ENVELOPES

SOT-23, SOT-143 and SOT-89 devices are ideally suited for placement onto thick and thin film substrates and printed circuit boards.

To assure reliable and consistent connections particular attention should be paid to:

1. Flux

A non-active flux is recommended. Where active fluxes are employed, great care in subsequent substrate cleaning must be exercised.

2. Metal-alloy solder or solder paste

Correct choice of solder alloy or solder paste to be employed e.g. 62% Sn, 36% Pb, 2% Ag or 60% Sn/40% Pb. Any paste used should contain at least 85% metal dry weight.

3. Soldering temperature

This will vary according to the actual method employed.

REFLOW SOLDERING

The preferred technique for mounting microminiature components on hybrid thick and thin-film is the method of reflow soldering.

The tags of SOT-23, SOT-143 and SOT-89 envelopes are pre-tinned and the best results are obtained if a similar solder is applied to the corresponding soldering areas on the substrate. This can be done by either dipping the substrate in a solder bath or by screen printing a solder paste.

The maximum temperature of the leads or tab during the soldering cycle should not exceed 285 °C. The most economic method of soldering is a process in which all different components are soldered simultaneously for example SOT-23, SOT-143 or SOT-89 devices, capacitors and resistors.

Having first been fluxed, all components are positioned on the substrate. The slight adhesive force of the flux is sufficient to keep the components in place. Solder paste contains a flux and has therefore good inherent adhesive properties which eases positioning of the components.

With the components in position the substrate is heated to a point where the solder begins to flow. This can be done on a heating plate or on a conveyor belt running through an infrared tunnel. The maximum allowed temperature of the plastic body of a device must be kept below 280 °C during the soldering cycle. For further temperature behaviour during the soldering process see Figs 2 and 3.

The surface tension of the liquid solder tends to draw the tags of the device towards the centre of the soldering area and has thus a correcting effect on slight mispositionings. However, if the layout leaves something to be desired the same effect can result in undesirable shifts; particularly if the soldering areas on the substrate and the components are not concentrally arranged. This problem can be solved using a standard contact pattern, which leaves sufficient scope for the self-positioning effect (see Figs 4 and 5).

After cooling the connections may be visually inspected and, where necessary, repaired with a light soldering iron. Finally any remaining flux must be removed carefully.

IMMERSION SOLDERING

Where a complete substrate or printed circuit board is immersed in solder:

- a. The temperature of the soldering bath should not exceed 280 °C.
- b. The duration of the soldering cycle should not exceed 10 seconds.
- c. Forced cooling may be applied (see Fig. 1).

HAND SOLDERING

It is possible to solder microminiature devices with a light hand-held soldering iron, but this method has obvious drawbacks and should therefore be restricted to laboratory use and/or incidental repairs on production circuits.

- 1. It is time-consuming and expensive.
- 2. The device cannot be positioned accurately and therefore the connecting tags may come into contact with the substrate and damage it.
- 3. There is a great risk of breaking either substrate or even internal connections inside the encapsulation.
- 4. The envelope may be damaged by the iron.

Fig. 1 Device temperature during immersion soldering.

Maximum time of immersion in soldering bath is 10 seconds at an ambient temperature of 25 $^{\circ}$ C. a = free convection cooling; b = forced cooling.

- T_{b max} = maximum bath temperature (280 °C).
- T_m = melting temperature of solder (179 °C).

Fig. 3 Reflow soldering with preheating.

Dimensions in mm

Minimum required dimensions of metal connection pads on hybrid thick and thin-film substrates.

Fig. 4 SOT-23 pattern.

Fig. 5 SOT-89 pattern.

Fig. 6 SOT-143 pattern.

Mullard

4

MICROMINIATURE DIODES

THERMAL CHARACTERISTICS OF SOT-23 AND SOT-143 ENVELOPES

The heat generated in a semiconductor chip normally flows by various paths to the surroundings (ambient).

- Heat radiation from the envelope to ambient (1). This heat transfer can be neglected when the envelope is mounted on a substrate or printed circuit board.
- 2. Heat transmission via leads (2) soldering points (3) and substrate (4).

Fig. 2 Thermal behaviour of heat flow when the device is mounted on a substrate or printed circuit board.

- $R_{th j-t}$ = Thermal resistance from junction to tab.
- Rth t-s = Thermal resistance from tab to soldering points.
- Rth s-a = Thermal resistance from soldering points to ambient.
- Rth j-a = Thermal resistance from junction to ambient.

Heat transfer directly from envelope to ambient

This depends on the difference between the temperatures of envelope and the surroundings. When the device is mounted on a substrate or printed circuit board direct heat flow can usually be neglected in relation to the heat flow via leads and substrate.

Thus the thermal model can be as in Fig. 3.

Fig. 3 Basic thermal model.

Heat transfer from junction to tab

This is an internal heat transfer and has been measured for SOT-23 envelopes. In general, for low-power diodes it is: 60~ K/W

Heat transfer from tab to soldering points

This value has also been measured for SOT-23 with $P_{ ext{tot}}$ < 350 mW:	280	K/W
for types of semiconductors in a SOT-143 envelopes this value is:	310	K/W

Heat transfer from soldering points to ambient

This depends on the shape and material of tracks and substrate. In figures 4 and 5 standard mounting conditions are given to set up the maximum power ratings for SOT-23 encapsulation.

2

Fig. 4 Test circuit SOT-23 mounting conditions on a ceramic substrate.

Fig. 5 Heat transfer from soldering points to ambient.

Point A on the curve in Fig. 5 is for an area of the ceramic substrate of 8 mm x 10 mm x 0,7 mm for the maximum rating of all high-frequency, low-frequency and switching transistors and also for all diodes in SOT-23 encapsulation.

Point B on the curve in Fig. 5 is for an area of the ceramic substrate of 15 mm x 15 mm x 0,7 mm for the maximum rating of low-frequency medium-power semiconductors.

The values for the thermal resistance from junction to tab, and tab to soldering points, are mentioned on page 2 and Fig. 5.

The formula for devices in SOT-23 with one crystal can be generalized:

 $T_{j} = P(R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Fig. 6 Thermal model of SOT-23 envelopes with one crystal.

Fig. 7 Thermal model of SOT-23 envelopes with two crystals (double diode).

The formulae for devices with two crystals (double diodes) are:

 $\begin{array}{l} T_{tab} = P_{tot} \cdot (R_{th} t_{\cdot s} + R_{th} s_{\cdot a}) + T_{amb} = P_{tot} \left(280 + 90\right) + T_{amb} \\ T_{j1} = (P_1 \times R_{th} j_{\cdot t}) + T_{tab} = P_1 \cdot 60 + T_{tab} \\ T_{j2} = (P_2 \times R_{th} j_{\cdot t}) + T_{tab} = P_2 \cdot 60 + T_{tab} \\ \text{As mentioned on page 2:} \\ R_{th} j_{\cdot t} \text{ for diodes is 60 K/W.} \end{array}$

 $R_{th s-a}$ (area 8 mm x 10 mm x 0,7 mm) = 90 K/W.

Rth t-s for all semiconductors in SOT-23 = 280 K/W.

Thus:

 $T_{j1} = 60 P_1 + 370 P_{tot} + T_{amb}$

 $T_{j2} = 60 P_2 + 370 P_{tot} + T_{amb}$.

SILICON WHISKERLESS DIODES

(

10 V, 30 V and 50 V GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes intended for general purpose applications.

They have reverse voltages up to 10 V for BA316, 30 V for BA317 and 50 V for BA318.

QUICK REFERENCE DATA								
			BA 316	BA 317	BA318			
Continuous reverse voltage	VR	max.	10	30	50	v		
Repetitive peak forward current	I _{FRM}	max.		225		mA		
Storage temperature	T _{stg}		- 65 t	o +200		°C		
Junction temperature	Тј	max.	200			oС		
Thermal resistance from junction to ambient	R _{th j-a}	=	0,60		^o C/mW			
Forward voltage at I_F = 1,0 mA	v _F	<	700			mV		
$I_F = 10 \text{ mA}$	v _F	<		850		mV		
$I_{\rm F} = 100 {\rm mA}$	VF	<	1100			mV		
Diode capacitance at $V_R = 0$; f = 1 MHz	Cd	<		2		pF		
Reverse recovery time when switched from $I_F = 10 \text{ mA to}$ $I_R = 60 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<		4		ns		

MECHANICAL DATA

DO -35

The diodes may be either type-branded or colour coded.

Dimensions in mm

BA316 BA317 BA318

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage	with the	1.000010		BA317		(1201	.,
Continuous reverse voltage	v _R	max.	10	30	50	v	
	R					-	
Currents							
Average rectified forward current (averaged over any 20 ms period)	^I F(AV)	max.		100		mA	1)
Forward current (d.c.)	1 _F	max.		100		mA	
Repetitive peak forward current	IFRM	max.		225		mA	
Non-repetitive peak forward current t = 1 μs t = 1 s	l _{FSM} l _{FSM}	max. max.		2000 500		mA mA	
Temperatures							
Storage temperature	T _{stg}		~ 65 i	to +200		⁰ C	
Junction temperature	Тj	max.		200		°C	
THERMAL RESISTANCE							
From junction to ambient in free air	^R thj-a	=		0,60		⁰ C/r	nW
CHARACTERISTICS					Т	j = 25	°C
Forward voltage							
$I_{F} = 1, 0 \text{ mA}$	$v_{\rm F}$	<		700		mV	
$I_{\rm F} = 10 \rm mA$	V _F	<		850		mV	
$I_F = 100 \text{ mA}$	v _F	<		1100		mV	
Reverse current			BA316	BA317	BA 318		
$V_R = 10 V$	I _R	<	200	50	-	nA	
$V_R = 30 V$	I _R	<	-	200	50	nA	
$V_R = 50 V$	I _R	<	-	- 1	200	nA	
Diode capacitance							
$V_{R} = 0; f = 1 MHz$	Cd	<		2		pF	

1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

January 1977

Mullard

BA316 BA317 BA318

CHARACTERISTICS (continued)

 $T_{j} = 25 \ ^{O}C$

trr

< 4 ns

Reverse recovery time when switched from

```
I_{\rm F} = 10 mA to I_{\rm R} = 60 mA; R_{\rm L} = 100 \Omega;
Measured at I_R = 1 \text{ mA}
```

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse	t _r = 0,6 ns	*) I _R = 1 mA
Reverse pulse duration	$t_p = 100 \text{ ns}$	
Duty factor	$\delta = 0,05$	
Oscilloscope: Rise time	t _r = 0, 35 ns	

Circuit capacitance $C \leq 1 pF$ (C = oscilloscope input capacitance + parasitic capacitance)

June 1975

)

June 1975

BA316 BA317 BA318

Mullard

June 1975

SILICON GLASS PASSIVATED AVALANCHE DIODE

Diode in a DO-35 envelope. It is primarily intended for general purpose applications, e.g. scan and flyback rectifiers, protection diodes etc. in television circuits. An advantage of this diode is its capability of absorbing reverse transient energy.

QUICK REFERENCE DATA

Working reverse voltage	VRW	max.	300 V
Average rectified forward current	IF(AV)	max.	300 mA
Non-repetitive peak forward current	IFSM	max.	4 A
Repetitive peak reverse power dissipation	PRRM	max.	75 W
Reverse recovery time	t _{rr}	<	1 μs

MECHANICAL DATA

Fig. 1 DO-35 (SOD-27).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

BAS11

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Working reverse voltage	V _{RW}	max.	300	v
Continuous reverse voltage (see Fig. 8)	VR	max.	300	v
Forward current (d.c.)	١ _F	max.	350	mA
Average forward current (averaged over any 20 ms period)	IF(AV)	max.	300	mA
Repetitive peak forward current t = 10 ms; f = 50 Hz δ = 0,1; f = 15 kHz	IFRM IFRM	max. max.	900 2	mA A
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = 150 ^{O}\text{C}$ prior to surge (t = 10 μ s; square wave) $T_j = 150 ^{O}\text{C}$ prior to surge	^I FSM ^I FSM	max. max.	4 30	A A
Repetitive peak reverse current t = 10 μ s (square wave; f = 50 Hz) T _{amb} = 25 ^o C	IRRM	max.	150	mA
Repetitive peak reverse power dissipation $t = 10 \ \mu s$ (square wave; f = 50 Hz) T _{amb} = 25 °C	PRRM	max.	75	w
Storage temperature	⊤ _{stg}	-65 to	+ 150	оС
Junction temperature	т _ј	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient in free air mounted on printed board at 8 mm lead length	R _{th} j-a	=	0,34	°C/mW
CHARACTERISTICS				
T _i = 25 ^o C unless otherwise specified				
Forward voltage IF = 300 mA IF = 900 mA	V _F VF	< <	1,1 1,3	
Reverse avalanche breakdown voltage I _R ≈ 100 μA	V _{(BR)R}	>	300	v
Reverse current				
V	IR I _R	< <	100 20	nA μA
Diode capacitance at f = 1 MHz V _R = 0 V _R = 50 V	C _d C _d	typ. typ.	10 1,5	pF pF
Reverse recovery when switched from $I_{FM} = 400 \text{ mA to V}_R = 30 \text{ V}$; with $-dI_F/dt = 400 \text{ mA/}\mu s$ Recovery charge Recovery time	Q _s t _{rr}	typ. <		nC μs
Maximum slope of reverse recovery current when switched from I_{FM} = 400 mA to V_R = 30 V; with $-dI_F/dt$ = 400 mA/µs	dl _R /dt	typ.	2,0	A∕µs

Mullard

* Pulse measurement only.

Silicon glass passivated avalanche diode

BAS11

From the left-hand graph the total power dissipation can be found as a function of the average output current.

The parameter $a = \frac{I_F(RMS)}{I_F(AV)}$ depends on $n\omega R_L C_L$ and $\frac{R_t + r_{diff}}{nR_L}$ and can be found from existing graphs.

Once the power dissipation is known, the maximum permissible ambient temperature follows from the right-hand graph.

BAS11

Fig. 8 Maximum permissible continuous reverse voltage versus ambient temperature.

.

ULTRA-HIGH-SPEED DIODE

Silicon planar epitaxial, ultra-high-speed, high-conductance diode in a DO-35 envelope. The BAV10 is primarily intended for core gating in very fast memories.

QUICK REFERENCE DATA						
Continuous reverse voltage	VR	max.	60	v		
Repetitive peak reverse voltage	V _{RRM}	max.	60	v		
Repetitive peak forward current	IFRM	max.	600	m A		
Junction temperature	Тj	max.	200	°C		
Forward voltage at $I_F = 200 \text{ mA}$	v _F	<	1,0	v		
Reverse recovery time when switched from $I_F = 400$ mA to $I_R = 400$ mA; $R_{I_c} = 100 \Omega$;						
measured at $I_R = 40 \text{ mA}$	trr	<	6	ns		
Recovery charge when switched from IF = 10 mA to V _R = 5 V; R _L = 500 Ω	Qs	<	50	pC		

MECHANICAL DATA

DO-35

Dimensions in mm

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Al	bsolute Maxi	mum Sys	tem (IEC	C 134)
Voltages				
Continuous reverse voltage	V _R	max.	60	v
Repetitive peak reverse voltage	V _{RRM}	max.	60	V ¹)
Currents				
Average rectified forward current	I _F (AV)	max.	300	mA ²)
Forward current (d.c.)	IF	max.	300	mA
Repetitive peak forward current	IFRM	max.	600	mA
Non-repetitive peak forward current t = 1 μ s t = 1 s	I _{FSM} I _{FSM}	max. max.	4000 1000	m A m A
Temperatures				
Storage temperature	T _{stg}	- 65 t	o +200	°C
Junction temperature	Тj	max.	200	°C
THERMAL RESISTANCE				
From junction to ambient in free air at maximum lead length	^R th j-a	=	0,5	°C∕m₩
CHARACTERISTICS	T _j = 25 ^o C u	inless oth	erwise s	specified
Forward voltage				
$I_F = 10 \text{ mA}$	v _F	<	0,75	v
$I_F = 200 \text{ mA}$	v _F	<	1,00	v
$I_F = 200 \text{ mA}; T_j = 100 ^{\circ}C$	v _F	<	0,95	v
$I_F = 500 \text{ mA}$	v_F	<	1,25	v
Reverse current				
$V_R = 60 V$	IR	<	100	nA
$v_{\rm R}$ = 60 v; $T_{\rm j}$ = 150 °C	IR	<	100	μA
Diode capacitance				
$V_R = 0; f = 1 MHz$	Cd	<	2,5	pF

¹) Measured at zero life time at $I_R = 10 \ \mu\text{A}$; $V_R = 75 \ \text{V}$.

 $^{2}\)$ For sinusoidal operation see page 6. For pulse operation see page 5.

Mullard

 \Box

Ultra-high-speed diode

BAV10

 $T_{i} = 25 \ ^{o}C$

v

v

2,0

1,5

Vfr

Vfr

trr

<

<

<

Forward recovery voltage when switched to

 $I_F = 400 \text{ mA}; t_{r1} = 30 \text{ ns}$

 $I_F = 400 \text{ mA}; t_{r2} = 100 \text{ ns}$

Test circuit and waveforms:

Input signal :	Input signal : 1st rise time of the forward pulse t_{r1}				
	2nd rise time of the forward pulse t_{r2}				
	Forward current pulse duration	tp	=	300 ns	
	Duty factor	δ	=	0,01	
Oscilloscope:	Rise time	tr	=	0,35 ns	
	Input capacitance	Ci	≤	l pF	

Circuit capacitance $C \le 20 \text{ pF}$ (C = C_i + parasitic capacitance)

Reverse recovery time when switched from

 $I_{\rm F}$ = 400 mA to $I_{\rm R}$ = 400 mA; $R_{\rm L}$ = 100 Ω ; measured at $I_R = 40 \text{ mA}$

Test circuit and waveforms:

output signal

*) $I_R = 40 \text{ mA}$

6 ns

Circuit capacitance C \leq 7 pF (C = oscilloscope input capacitance + parasitic capacitance)

Mullard

June 1975

6

June 1975

8

Mullard

 $\mathbf{\nabla}$

GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes; intended for switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

QUICK REFERENCE DATA

			BAV18	BAV 19	BAV20	BAV21	
Continuous reverse voltage	٧ _R	max.	50	100	150	200	V
Forward current (d.c.)	١F	max.		25	0		mA
Junction temperature	т _і	max.		17	'5		°C
Thermal resistance from junction to ambient	R _{th j-a}	=		0,375			
Forward voltage at I _F = 100 mA	VF	<		1,0			v
Reverse current at VR = V _{Rmax}	1 _R	<		10	0		nA
Diode capacitance at V _R = 0; f = 1 MHz	c _d	typ. <		1,5 5,0			pF pF
Reverse recovery time when switched from I _F = 30 mA to I _R = 30 mA; R ₁ = 100 Ω ;							
measured at $I_R = 3 \text{ mA}$	t _{rr}	<		5	0		ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour coded.

Products approved to CECC 50 001-022, available on request.

RATINGS Limiting values in account	rdance wi	th the	Absolu	ute Max		Sy <i>s</i> tem	(IEC I	.34)
Voltages		E	BAV18	BAV19	BAV20	BAV21		
Continuous reverse voltage	v _R	max.	50	100	150	200	v	
Repetitive peak reverse voltage	V _{RRM}	max.	60	120	200	250	v	
Currents					~			
Average rectified forward current			^I F(AV)	max.	250	mA	1)
Forward current (d.c.)			١ _F		max.	250	mA	
Repetitive peak forward current			IFF	RM	max.	625	mA	
Non-repetitive peak forward current $t < 1 \mbox{ s}$; T_j = 25 oC	t		I_{FS}	5M	max.	1	A	
$t = 1 \ \mu s; T_j = 25 \ ^{O}C$			I _{FS}	м	max.	5	А	
Power dissipation	,							
Total power dissipation up to T_{amb}	= 25 ^O C		P _{to}	t	max.	40 0	mW	
Temperatures								
Storage temperature			Tst	tg	-65 to	+175	°C	
Junction temperature			Тj		max.	175	°C	
THERMAL RESISTANCE								
From junction to ambient in free ai	r		R _t ł	ıj-a	=	0, 3 75	°C/1	mW

 1) For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

Oscilloscope: Rise time

BAV18 to 21

CHARACTERISTICS	T _j = 25 ^o C	unless of	herwise s	pecified
Forward voltage	·			
$I_F = 100 \text{ mA}$	v _F	< '	1,0	v
$I_F = 200 \text{ mA}$	v _F		1,25	v
Reverse breakdown voltage BAV	18 BAV19	BAV20	BAV21	
$I_{R} = 100 \ \mu A$ $V_{(BR)R} > 60$	120	200	250	V ¹)
Reverse current				
V _R = V _{Rmax}	I _R	<	100	nA
$V_R = V_{Rmax}$; $T_j = 150$ °C; pulse conditions	IR	<	100	μA
Differential resistance				
$I_F = 10 \text{ mA}$	r _{diff}	typ.	5	Ω
Diode capacitance				
$V_R = 0; f = 1 MHz$	Cd	typ. <	1,5 5,0	pF pF
Reverse recovery time when switched from				
$l_F = 30 \text{ mA to } l_R = 30 \text{ mA} : R_L = 100 \Omega;$				
measured at $I_R = 3 \text{ mA}$	trr	<	50	ns
Test circuit and waveforms:				
			٦	
R _S =50Ω 	90%	7273201	1	
7261719	input signal		outpu	t signal
Input signal : Total pulse duration	t _{p(tot)} =	2 µs	*) I _R	= 3 mA
Duty factor	δ = 0, 0	0025		
Rise time of the reverse pulse	t _r =	0,6 ns		
Reverse pulse duration	t _p =	100 ns		

Circuit capacitance $C \leq 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

tr

=

0,35 ns

 At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited at 275 V.

Mullard

June 1975

 $\mathbf{\nabla}$

General purpose diodes

BAV18 to 21

 $\mathbf{\nabla}$

Mullard

June 1975

Mullard

U

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in a DO-35 envelope. The BAW62 is primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	75	v
Repetitive peak reverse voltage		V _{RRM}	max.	75	v
Repetitive peak forward current		^I FRM	max.	450	mA
Junction temperature	-	тi	max.	200	°C
Forward voltage at I _F = 100 mA		v _F	<	1	v
Reverse recovery time when switched from I_F = 10 mA to I_R = 10 mA; R_L = 100 Ω ;					
measured at I _R = 1 mA		t _{rr}	<	4	ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour-coded.

Products, approved to CECC 50 001-021, available on request.

RATINGS Limiting values in accordance with the A	Absolute Maxi	mum Sysi	tem (IEC	C 134)
Voltages				
Continuous reverse voltage	VR	max.	75	v
Repetitive peak reverse voltage	V _{RRM}	max.	75	V ¹)
Currents				
Average rectified forward current	I _{F(AV)}	max.	150	mA ²)
Forward current (d.c.)	$I_{\rm F}$	max.	200	mA
Repetitive peak forward current	^I FRM	max.	450	mA
Non-repetitive peak forward current; t = 1 μs t = 1 s	I _{FSM} I _{FSM}	max. max.	2000 500	m A m A
Temperatures				
Storage temperature	T_{stg}	- 65 t	o +200	oC
Junction temperature	т _ј	max.	200	٥C
THERMAL RESISTANCE				
From junction to ambient in free air at maximum lead length	R _{th j-a}	=	0,6	⁰ C∕m₩
-	R _{th} j-a T _j = 25 ^o C u			-,
at maximum lead length	-			-,
at maximum lead length	-	inless oth		-,
at maximum lead length CHARACTERISTICS Forward voltages	$T_j = 25 \ ^{o}C \ u$	inless oth	erwise s	specified
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$	T _j = 25 ^o C u V _F	nless oth 0,62 t	erwise s	specified V
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$	$T_j = 25 \ ^{o}C \ ^{o}C$	nless oth 0,62 t <	erwise s 0 0, 75 1, 00	specified V V
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}; T_j = 100 ^{O}\text{C}$	$T_j = 25 \ ^{o}C \ ^{o}C$	nless oth 0,62 t <	erwise s 0 0, 75 1, 00	specified V V
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}$; $T_j = 100 ^{\circ}\text{C}$ Reverse currents	$T_j = 25 \circ C u$ V_F V_F V_F	unless oth 0,62 t < <	erwise s o 0, 75 1, 00 0, 93	specified V V V
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}; T_j = 100 ^{O}\text{C}$ Reverse currents $V_R = 20 \text{ V}$	$T_j = 25 \circ C u$ V_F V_F V_F I_R	unless oth 0,62 u < <	erwise s 0 0, 75 1, 00 0, 93 25	specified V V V nA
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}; T_j = 100 ^{\text{O}}\text{C}$ Reverse currents $V_R = 20 \text{ V}; T_j = 150 ^{\text{O}}\text{C}$	$T_j = 25 \circ C u$ V_F V_F V_F I_R I_R	unless oth 0,62 u < < <	erwise s to 0, 75 1, 00 0, 93 25 50	specified V V V nA µA
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}; T_j = 100 \text{ °C}$ Reverse currents $V_R = 20 \text{ V}$ $V_R = 20 \text{ V}; T_j = 150 \text{ °C}$ $V_R = 50 \text{ V}$	$T_j = 25 \circ C u$ V_F V_F V_F I_R I_R I_R I_R	unless oth 0,62 u < < <	erwise s 0 0, 75 1, 00 0, 93 25 50 200	specified V V V nA µA nA
at maximum lead length CHARACTERISTICS Forward voltages $I_F = 5 \text{ mA}$ $I_F = 100 \text{ mA}$ $I_F = 100 \text{ mA}; T_j = 100 ^{\text{O}}\text{C}$ Reverse currents $V_R = 20 \text{ V}; T_j = 150 ^{\text{O}}\text{C}$ $V_R = 50 \text{ V}$ $V_R = 75 \text{ V}$	$T_{j} = 25 \text{ °C u}$ V_{F} V_{F} V_{F} I_{R}	unless oth 0,62 u < < < < <	erwise s o 0, 75 1, 00 0, 93 25 50 200 5	specified V V V nA µA nA µA

 $^{1})$ Measured at zero life time at I_{R} = 100 $\mu A;$ V_{R} > 100 V.

 $^{2})$ For sinusoidal operation see page 6. For pulse operation see page 5.

 $T_{1} = 25 \ ^{o}C$

v

2,5

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $I_F = 50 \text{ mA}; t_r = 20 \text{ ns}$

Test circuit and waveforms:

trr

<

4 ns

Vfr

<

Input signal	: Rise time of the forward pulse	tr	=	20 ns	
	Forward current pulse duration	tp	=	120 ns	
	Duty factor	δ	=	0, 01	
Oscilloscope	e:Risetime	tr	=	0,35 ns	

Oscilloscope: Rise time

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 I_F = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at $I_R = 1 \text{ mA}$

Test circuit and waveforms:

Oscilloscope: Rise time

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

tr =

Circuit capacitance $C \leq 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

High-speed silicon diode

BAW62

Fig. 8 Maximum permissible average rectified forward current as a function of the duty factor (pulse operated).

Mullard

\Box

High-speed silicon diode

 \mathbf{n}

BAW62

Mullard

June 1975

 \Box

SILICON PLANAR EPITAXIAL CONTROLLED-AVALANCHE DIODE

Diode in a DO-35 envelope primarily intended for switching inductive loads in semi-electronic telephone exchanges.

QUICK REFERENCE DATA				
Repetitive peak forward current	lFRM	max. 0,8	A	
Repetitive peak reverse energy $t_p \ge 50 \ \mu s$; $f \le 20 \ Hz$; $T_j = 25 \ ^oC$	E _{RRM}	max. 5,0	mJ	
Thermal resistance from junction to ambient	R _{th} j-a	= 0,38	°C/mW	
Forward voltage at $I_F = 200 \text{ mA}$	v_F	< 1,00	V	
Reverse avalanche breakdown voltage $I_R = 100 \ \mu A$	V _(BR) R	120 to 175	v	
Reverse recovery time when switched from I_F = 30 mA to I_R = 30 mA; R_L = 100 Ω ; measured at I_R = 3 mA	trr	< 50	ns	

MECHANICAL DATA Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

BAX12A

 $RATINGS\ Limiting\ values\ in\ accordance\ with\ the\ Absolute\ Maximum\ System\ (IEC\ 134)$

Voltage				
Continuous reverse voltage	VR	max.	90	V (1)
Currents				
Average rectified forward current (averaged over any 20 ms period)	IF(AV)	max.	0,4	A
Forward current (d.c.)	$I_{\rm F}$	max.	0,4	А
Repetitive peak forward current	I _{FRM}	max.	0,8	А
Non-repetitive peak forward current $t = 1 \ \mu s$; $T_j = 25 \ ^{o}C$ prior to surge $t = 1 \ s$; $T_j = 25 \ ^{o}C$ prior to surge Repetitive peak reverse current	I _{FSM} I _{FSM} I _{RRM}	max. max. max.	6,0 1,5 0,6	A A A
Reverse energy				
Repetitive peak reverse energy t _p ≥50 μs; f ≤ 20 Hz; T _j = 25 ^o C	E _{RRM}	max.	5,0	mJ
Temperatures				
Storage temperature	T _{stg}	-65 to	+200	°C
Junction temperature	т _ј	max.	200	оC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th} j-a	=	0,38	^o C/mW
From junction to ambient in free air $T_{lead} = 25$ °C at 8 mm from the body	R _{th j-a}	=	0, 30	oC/mW

(1) It is allowed to exceed this value as described on page 4. Care should be taken not to exceed the IRRM rating.

Mullard

Silicon planar epitaxial controlled-avalanche diode

BAX12A

CHARACTERISTICS	T _j = 25 °C unless	otherw	ise spe	cified
Forward voltage				
$I_F = 10 \text{ mA}$	v _F	<	0,75	v
$l_F = 50 \text{ mA}$	v _F	<	0,84	v
$I_{\rm F}$ = 100 mA	v _F	<	0,90	v
$I_F = 200 \text{ mA}$	v _F	<	1,00	v
$I_F = 400 \text{ mA}$	v_F	<	1,25	v
Reverse avalanche breakdown voltage				
$I_{\mathbf{R}} = 100 \ \mu \mathbf{A}$	V _(BR) R	120	to 175	v
Reverse current				
$V_R = 90 V$	IR	<	100	nA
V_{R} = 90 V; T _j = 150 °C	IR	<	100	μA
Diode capacitance				
$V_R = 0; f = 1 MHz$	Cd	typ. <	15 35	pF pF

Reverse recovery time when switched from

 $I_F = 30 \text{ mA to } I_R = 30 \text{ mA}; R_L = 100 \Omega;$ measured at $I_R = 3 \text{ mA}$ t_{rr}

Test circuit and waveforms:

Fig. 2.

<

50 ns

Input signal : Total pulse duration 2 µs *) $I_{R} = 3 \, mA$ tp(tot) = δ Duty factor = 0,00250,6 ns Rise time of the reverse pulse = tr Reverse pulse duration 100 ns tp = Oscilloscope: Rise time = 0.35 ns tr

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

BAX12A

Reverse voltages higher than the V_R ratings are allowed, provided:

- a. the transient energy \leq 7,5 mJ at P_{RRM} \leq 30 W; T_j = 25 °C the transient energy \leq 5 mJ at P_{RRM} \leq 120 W; T_j = 25 °C (see Fig. 8).
- b. T \geq 5 ms; $\delta \leq$ 0,01 (rectangular waveform)
 - $\delta \leq 0.02$ (triangular waveform).

With increasing temperature, the maximum permissible transient energy must be decreased by 0,03 mJ/°C.

Fig. 5.

Mullard

$\mathbf{\nabla}$

August 1979

BAX12A

Fig. 9 Typical values reverse current as a function of junction temperature at V_R = 90 V.

Mullard

SILICON OXIDE PASSIVATED DIODE

Whiskerless diode in a glass subminiature envelope. The BAX13 is primarily intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	50 V
Repetitive peak reverse voltage	VRRM	max.	50 V
Repetitive peak forward current	FRM	max.	150 mA
Thermal resistance from junction to ambient	R _{th j-a}	=	0,60 ^o C/mW
Forward voltage at $I_F = 20 \text{ mA}$	VF	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 60 \text{ mA}$; $R_L = 100 \Omega$ measured at $I_R = 1 \text{ mA}$	trr	<	4 ns
Recovery charge when switched from $I_F = 10 \text{ mA to } V_B = 5 \text{ V};$	-11		
$R_L = 500 \Omega$	0,s	<	45 pC

MECHANICAL DATA

Dimensions in mm

DO - 35

Mullard

The coloured end indicates the cathode The diodes may be type-branded or colour coded.

RATINGS Limiting values	in accordance with the	e Absolute Maxi	mum Sy	stem (I	EC 13	4)
Voltages						
Continuous reverse voltag	e	v _R	max.	50	v	
Repetitive peak reverse ve	oltage	VRRM	max.	50	v	
Currents						
Average rectified forward (averaged over any 20 n		^I F(AV)	max.	75	mA	¹)
Forward current (d.c.)		۱ _F	max.	75	mA	
Repetitive peak forward co	urrent	IFRM	max.	150	mA	
Non-repetitive peak forwa	t = 1 µs	I _{FSM}	max,	2000	mA	
	t = 1 s	IFSM	max.	500	mA	
Temperatures						
Storage temperature		T _{stg}	-65 to	+200	°C	
Junction temperature		т _ј	max.	200	٥C	
THERMAL RESISTANCE						
From junction to ambient	in free air	R _{th j-a}	=	0,60	°C/:	mW
CHARACTERISTICS		T _j = 25 °C u	nless ot	herwise	e spec	ified
Forward voltage						
$I_F = 2 mA$		VF	<	0,7	v	
$I_F = 10 \text{ mA}; T_j = 100 ^{0}\text{C}$ $I_F = 20 \text{ mA}$		V _F V _F	< <	0,8 1,0	V V	2 ₎
$I_F = 20 \text{ mA}$		v _F V _F	<	1,53		2)
Reverse current						
$V_{R} = 10 V$		IR	<	25	nA	
$V_{R} = 10 V; T_{i} = 150 °C$		I _R	<	10	μA	
$V_R = 25 V$		IR	<	50	nA	
$V_{\rm R} = 50 \text{ V}$		I _R	<	200	nA	
$V_{R} = 50 V; T_{j} = 150 \text{ °C}$		^I R	<	25	μA	
Diode capacitance (see als	o page 7)					
$V_R = 0; f = 1 MHz$		Cd	<	3	pF	

For sinusoidal operation see page 5.
 For pulse operation see page 6.

2) Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery voltage (see also page 7)

At $t_r > 20$ ns, V_{fr} will not exceed V_F corresponding to $I_F = 1$ to 75 mA

Test circuit and waveforms:

Input signal : Rise time of the forward pulse t_r = Forward current pulse duration $t_{\rm D} = 120 \, \rm ns$ Duty factor $\delta = 0,01$

Oscilloscope: Rise time

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$ 6 ns ¹) < $I_F = 10 \text{ mA to } I_R = 60 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$ trr < ns

Test circuit and waveforms:

 $t_r = 0.6 \text{ ns}$ Input signal : Rise time of the reverse pulse *) $I_{R} = 1 \, mA$ Reverse pulse duration $t_{\rm p} = 100 \, \rm ns$ Duty factor $\delta = 0.05$

Oscilloscope: Rise time

 $t_{r} = 0,35 \text{ ns}$

20 ns

 $t_{r} = 0,35 \text{ ns}$

Circuit capacitance $C \le I pF$ (C = oscilloscope input capacitance + parasitic capacitance)

1) See also page 8.

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Silicon oxide passivated diode

BAX13

6

١

 $\mathbf{\nabla}$

Silicon oxide passivated diode

BAX13

$\mathbf{\nabla}$

SILICON WHISKERLESS DIODES

E

Whiskerless diffused silicon diodes intended for general purpose industrial applications.

QUICK REFERENCE I	DATA	
	BAX16	BAX17
V _R max.	150	200 V
$V_{\rm F}$ max. $I_{\rm F}$ = 100mA	1.3	- v
$I_F = 200 m A$	-	1.2 V
IFRM max.	300	mA
t_{rr} max. (when switched from I_{F} = 30mA		
to $V_R = 3.0V$)	120	ns
Q_{g} max. (when switched from $I_{F} = 10 \text{ mA}$		
to $V_R = 5.0V$	0.7	7 nC

Unless otherwise stated, data is applicable to both types

OUTLINE AND DIMENSIONS

Dimensions in mm

DO-35

The coloured end indicates the cathode The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-022, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

Electric	al	BAX16	BAX17	
v _R	Max. continuous reverse voltage	150	200	v
V _{RRM}	Max. repetitive peak reverse voltage	150	200	v
I _{F(AV)}	Max. average forward current (averaging time=20ms)	200		mA
I _F	Max. continuous forward current	200		mA
I _{FRM}	Max. repetitive peak forward current	300		mA
^I FSM	Max. non-repetitive peak forward current	i i		
	max. duration $1.0\mu s$ max. duration $1.0s$	2500 500		mA mA
Temper		-65 to +200		°c
T rai stg		+200		°c
T. max. j	HARACTERISTIC	200		Ũ
		0.5	0 degC	/mW
R th(j-ar ELECTRICA1	nb) CHARACTERISTICS ($T_j = 25^{\circ}C$ w	nless otherwise s	-	•
	.]	BAX16 Max.	BAX17 Max.	
v _F	Forward voltage			
r	$I_F = 1.0 mA$	0.65	0.65	v
	$I_{F} = 10 \text{ mA}, T_{j} = 100^{\circ} \text{C}$	0.85	0.75	v
	$\dagger I_{F} = 100 m A$	1.3*	1.1	v
	$I_{\rm F} = 200 {\rm mA}$	1.5	1.2*	v
	$T_{\rm F} = 200 {\rm mA}, \ T_{\rm j} = 175^{\rm O} {\rm C}$	1.4	1.2	v
$^{\rm L}_{ m R}$	Reverse current V _R =50V	25	25	nA
	$V_{R} = 50V, T_{i} = 150^{\circ}C$	25	25	μA
	$V_{R} = 150V$	100*	100*	nA
	$V_{R} = V_{RRM}$ max., $T_{j} = 150^{\circ}C$	100	100	μA
° _d	Diode capacitance $V_R = 0$, $f = 1.0 M Hz$	10	10	pF

*These are the characteristics which are recommended for acceptance testing purposes.

Mullard

†Measured under pulse conditions to prevent excessive dissipation.

Typ. Max.

120

September 1980

3

70

ns

t rr

Test circuit

Reverse recovery time when

switched from $I_F = 30 \text{ mA}$ to $V_R = 3.0 \text{ V}$, $R_L = 100 \Omega$ measured at $I_R = 1.0 \text{ mA}$

Circuit capacitance $\leq 1.0pF$ (C.R.O. + stray capacitance) C.R.O. rise time = 0.35ns $V = V_R + I_F \times R_s$

Circuit capacitance ≤30pF (C.R.O. + stray capacitance)

 $V = V_R + I_F \times R_s$ tr Input pulse t 10% t r **Rise time** 15 ns t p f Pulse duration 35 μs Frequency 25 kHz 90% VR

Output waveform

 $V_p = \frac{Q_s}{C}$

*These are the characteristics which are recommended for acceptance testing purposes.

September 1980

AVERAGE RECTIFIED FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE

IIII

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

Mullard

6

 $\mathbf{\nabla}$

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

Mullard

September 1980

September 1980

8

Mullard

 $\mathbf{\nabla}$

Silicon whiskerless diodes

BAX16 BAX17

TYPICAL FORWARD VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE WITH FORWARD CURRENT AS A PARAMETER

BAX16 BAX17

BAX16

BAX17

89619

DIODE CAPACITANCE PLOTTED AGAINST REVERSE VOLTAGE

BAX16 BAX17

REVERSE RECOVERY TIME PLOTTED AGAINST FORWARD CURRENT AND JUNCTION TEMPERATURE

HIGH-SPEED SILICON DIODES

Planar epitaxial high-speed diodes in DO-35 envelopes, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	see page 2	
Forward current (d.c.; see also derating curves)	١ _F	max.	100	mΑ
Repetitive peak forward current;				
$t_p = 10 ms; \delta = 0.5$	⁽ FRM	max.	450	mA
Non-repetitive peak forward current;				
$t_p = 1 s$	¹ FSM	max.	500	mΑ
$t_p = 1 \ \mu s$	^I FSM	max.	2	Α
Junction temperature	τ _j	max.	200	°C
Operating ambient temperature				
(see also derating curves)	Tamb		-65 to +175	٥C
Storage temperature	T _{stg}		-65 to +200	٥C

MECHANICAL DATA

Fig.1 DO-35

Dimensions in mm

CV9637;CV8617 CV7756;CV7757 CV7367;CV7368

Diodes may be either type-branded or clour-coded.

Products approved to CECC 50 001-021 (specification available on request).

CHARACTERISTICS

Tamb = 25 °C unless otherwise stated

For design and use purposes - these limits must not be exceeded.

			CV9637	CV8617	CV7756 CV7757	CV7367 CV7368	
۲ ۲ _{amb} = 150 °C; ۱	∨ _R = 20 ∨ ∨ _R = 20 ∨	IRM IR IR IR IR IR	- - - - -	- - <125 <10 ~	<5.0 <25 <50	<100 <5.0 <100 <25 <50	μΑ μΑ μΑ ηΑ μΑ
1	F = 100 mA F = 50 mA F = 10 mA F = 1 mA	VF VF VF	<1200 - 650-870 500-700	<1500 - 500-750	- - <1000 -	_ <1000 _	mV mV mV mV
V _R = 1 V; f = 1 MHz V _R = 1.5 V; f = 1 MHz;	7757, 7368	C _{tot} C _{tot} C _{tot} C _{tot} C _{tot}	<2.8	 <6.0 	<4.0 <2.0 - -	<4.0 <2.0 - <2.8 <1.5	pF pF pF pF
Reverse recovery time IF = 10 mA; I _{RM} = 10 m measured at I _R = 1 mA	mA;	^t rr	<5.0	-	<8.0	<5.0	ns
Recovered charge $I_F = 1 \text{ mA}; \text{ V}_R = 10 \text{ V};$ $I_F = 10 \text{ mA}; \text{ V}_R = 5 \text{ V};$ $t_r = 5 \text{ ns}; t_p = 400 \text{ ns}; f$	R ₁ ≈ 500 Ω;	Q _s Q _s	_ <75	<1 00 -	-	-	рС pC
Forward recovery voltage I F = 50 mA; t _r = 2 ns; t _p = 100 ns; f = 100 kH		V _{fr}	_	_	_	<5.0	v

Fig.3 Maximum allowable continuous forward current versus ambient temperature.

Mullard

3

SILICON AVALANCHE DIODE

Silicon avalanche diode in a DO-35 glass envelope, intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage	ν _R	max.	150	v
Repetitive peak reverse voltage	VRRM	max.	see note	
Forward current (d.c.; see also derating curve, Fig. 2)	۶F	max.	150	mΑ
Repetitive peak forward current; $t_p \leqslant 10 \text{ ms}; \delta \leqslant 0.2$	¹ FRM	max.	750	mA
Repetitive peak reverse power dissipation (see also derating curve, Fig. 3)	PRRM	max.	60	w
Junction temperature	т _ј	max.	100	oC
Operating ambient temperature	Tamb	-55 to	+100	оC
Storage temperature	T _{stg}	–55 to	+100	oC

Note: The repetitive peak reverse voltage may be higher than V_R, provided the allowed peak reverse power dissipation will not be exceeded.

MECHANICAL DATA

Fig. 1 DO-35

Diodes may be either type-branded or colour-coded.

Mullard

Products approved to CECC 50 001-038 (specification available on request).

Dimensions in mm

June 1982

THERMAL CHARACTERISTIC Thermal resistance, junction to ambient	R _{th j-a}	=	0.38	^o C/mW
CHARACTERISTICS				
$T_{amb} = 25 \text{ oC}$ unless otherwise stated.				
Reverse current V _R = 150 V V _R = 150 V; T _{amb} = 100 ^o C	I _R I _R	< <	100 5.0	nΑ μΑ
Forward voltage $I_F = 100 \text{ mA}; t_p = 300 \ \mu\text{s}; \delta \le 0.02$ $I_F = 15 \text{ mA}; t_p = 300 \ \mu\text{s}; \delta \le 0.02$ $I_F = 0.1 \text{ mA}$	VF VF VF	< > <	1.2 0.65 0.75	v v v
Capacitance V _R = 1 V; f = 1 MHz	C _{tot}	<	35	pF

.

PLANAR EPITAXIAL SILICON DIODE

Planar epitaxial diode in a DO-35 envelope, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Continuous reverse voltage (see also derating curve, Fig. 3)	VR	max.	150	v	
Repetitive peak reverse voltage	VRRM	max.	150	v	
Forward current (d.c.; see also derating curve, Fig. 2)	١F	max.	150	mA	
Repetitive peak forward current ($t_p = 10 \text{ ms}; \delta = 0.5$)	FRM	max.	625	mA	
Junction temperature	τ _j	max.	150	٥C	
Operating ambient temperature	⊤ _{amb}	-55 te	o +150	٥C	
Storage temperature	т _{stg}	-55 te	o +150	٥C	

MECHANICAL DATA

Fig. 1 DO-35

Dimensions in mm

Diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-022 (specification available on request).

THERMAL CHARACTERISTIC

Thermal resistance, junction to ambient	R _{th} j-a	=	375	oC/M
CHARACTERISTICS				
T_{amb} = 25 ^o C unless otherwise stated				
Reverse current				
V _B = 150 V	I R	<	0.1	μA
V _R = 150 V; T _{amb} = 100 ^o C	1 _R	<	0.1 5.0	μA
Forward voltage				
l _F = 100 mA; t _p = 300 μs; δ = 0.02	VF	<	1.2 0.65 0.75	ν
$I_F = 15 \text{ mA}$	VF	>	0.65	V
I _F = 0.1 mA	VF	<	0.75	V
Capacitance				
V _R = 1 V; f = 1 MHz	C _{tot}	<	10	рF

0 ∐ -75

-50

Fig. 3 Maximum allowable continuous reverse voltage versus ambient temperature.

0

50

100 T_{amb}(°C)

150

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in DO-35 envelope, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage	VR	max.	65	V
Forward current (d.c.; see also derating curve)	١ _F	max.	200	mA
Repetitive peak forward current $t_p = 100 \ \mu s; \delta = 0.1$	^I FRM	max.	750	mA
Non-repetitive peak forward current; $t_p = 10 \ \mu s$	^I FSM	max.	15	Α
Junction temperature	т _ј	max.	150	٥C
Operating ambient temperature (see also derating curve)	Tamb	0	to 150	°C
Storage temperature	⊤ _{stg}	0	to 150	٥C

MECHANICAL DATA

Fig. 1 DO-35

Dimensions in mm

Diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-037 (specification available on request).

CHARACTERISTICS

Tamb = 25 °C unless otherwise stated

Reverse current				
V _B = 65 V	I _R	<	10	μA
V _R = 65 V; T _{amb} = 100 ^o C	I _R	<	50	μA
$V_{R} = 50 V$	I _R	<	0.1	μA
Forward voltage				
lϝ = 500 mA; t _p = 300 μs; δ ≤ 0.02	VF	900-	-1200	mV
$l_{F} = 200 \text{ mA}; t_{p} = 300 \mu \text{s}; \delta \leq 0.02$	VF	750	0–950	mV
$I_{F} = 200 \text{ mA}$	VF	<	900	mV
l _F = 30 mA	VF	< .	790	mV
$I_F = 1 \text{ mA}$	v _F	500	0-700	mV
Capacitance				
V _R = 0; f = 1 MHz	C _{tot}	<	15	рF
Reverse recovery time				
$I_F = 200 \text{ mA}; I_{RM} = 200 \text{ mA};$ measured at $I_R = 20 \text{ mA}$	t _{rr}	<	70	ns

High-speed silicon diode

CV9638

Fig. 2 Maximum allowable continuous forward current versus ambient temperature.

SILICON DIODES

Silicon general purpose diodes in all-glass DO-35 envelopes.

QUICK REFERENCE DATA

			OA200	OA202	
Continuous reverse voltage	VR	max.	50	150	v
Repetitive peak forward current	FRM	max.	2	50	mA
Thermal resistance from junction to ambient	R _{th j-a}	=	C),4	°C/mW
Forward voltage I _F = 30 mA; T _{amb} = 25 ^o C	VF	typ.	c),9	v
Reverse recovery time when switched from I _F = 30 mA to V _R = 35 V; R ₁ = 2,5 kΩ;					
measured at $I_R = 4 \text{ mA}$	trr	typ.	3	8,5	μs
MECHANICAL DATA				Dimensi	ons in mm

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

The diodes are type-branded; the cathode being indicated by a coloured band.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	OA200 OA202	V _R VB	max. max.		50 50	v v
				T _{amb} = 25 °C	T _{amb} = 125 °C	
Average rectified forward current (averaged over any 20 ms period	d)	I _{F(AV)}	max.	160	48	mA
Average forward current for sinusoidal operation		IF(AV)	max.	80	40	mA
Forward current (d.c.; see page 4)		IF	max.	160	48	mA
Repetitive peak forward current		 FRM	max.	250	125	mA
Storage temperature		T _{stg}		-55 to + 12	25	°C
Operating junction temperature		тј	max.	1!	50	оС
THERMAL RESISTANCE						
From junction to ambient in free a	air	R _{th j-a}	=	C),4	^o C/mW
CHARACTERISTICS						
				T _{amb} = 25 °C	T _{amb} = 125 °C	
Forward voltage			typ.	0,52	_	v
l _F = 0,1 mA		۷F	<	0,62	0,30	v
(r = 10 mA		VF	typ.	0,80	-	v
·F ··• ··· ·		· F	<	0,96	0,65	V
I _F = 30 mA		۷ _F	typ. <	0,90 1,15	_ 0,80	v v
Reverse current			typ.	0,02	1	μA
$V_{R} = V_{Rmax}$	OA200	^I R	<	0,10	10	μA
	OA202	۱ _R	typ. <	0,01 0,10	0,5 10	μΑ μΑ
Diode capacitance at T_{amb} = 25 ° V _R = 0,75 V; f = 0,5 MHz	с	C _d	typ. <		10 25	pF pF

Mullard

2

Silicon diodes

OA200 OA202

-- --

$T_{amb} = 25 {}^{\circ}C$			
Reverse recovery current when switched from			
I _F = 5 mA to V _R ≈ 5 V; R ₁ = 2,5 kΩ;			
measured at $t_{rr} = 3.5 \mu s$	IR.	typ.	1,2 mA
measured at $t_{rr} = 10 \mu s$	^I R	typ.	35 µA
Reverse recovery current when switched from			
$I_{\rm F}$ = 30 mA to $V_{\rm R}$ = 35 V; $R_{\rm L}$ = 2,5 k Ω			
measured at $t_{rr} = 3,5 \ \mu s$	I _R	typ.	4 mA
measured at $t_{rr} = 10 \ \mu s$	1 _R	typ.	230 µA

Fig. 3.

Mullard

ഹ Ë.

HIGH-SPEED SILICON DIODES

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VB	max.	75 V
Repetitive peak reverse voltage	V _{RRM}	max.	100 V
Repetitive peak forward current	^I FRM	max.	225 mA
Forward voltage IF = 10 mA	VF	<	1 V
Reverse recovery time when switched from I _F = 10 mA to I _R = 60 mA;			
$R_L = 100 \Omega$; measured at $I_R = 1 mA$	trr	<	4 ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-21 available on request.

April 1982

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	75	v
Repetitive peak reverse voltage	VRRM	max.	100	v
Average rectified forward current (averaged over any 20 ms period) T _{amb} = 25 °C T _{amb} = 150 °C	IF(AV)	max. max.		mA mA
Forward current (d.c.)	IF	max.	75	mA
Repetitive peak forward current	I F R M	max.	225	mA
Non-repetitive peak forward current (t = 1 s)	FSM	max.	500	mA
Total power dissipation	Ptot	max.	2 50	mW
Storage temperature	т _{stg}	-65 to +	200	°C
Operating ambient temperature	Tamb	-65 to +	- 175	°C
CHARACTERISTICS T _j = 25 ^o C unless otherwise specified				
Forward voltages I _F = 10 mA	٧F	<	1	v
Reverse avalanche breakdown voltage I _R = 100 μA	V _{(BR)R}	>	100	v
Reverse currents $V_R = 20 V$ $V_R = 75 V$ $V_R = 20 V; T_i = 150 °C$	IR IR IR	< < <	5	nΑ μΑ μΑ
Diode capacitance V _R = 0; f = 1 MHz 1N914 1N916	C _d C _d	< <		pF PF
Forward recovery voltage when switched to I _F = 50 mA; t _r = 20 ns	V _{fr}	<	2,5	v

Fig. 2 Test circuit and waveforms forward recovery voltage. Input signal: Rise time of the forward pulse, $t_r = 20$ ns; forward current pulse duration, $t_p = 120$ ns; duty factor, d = 0,01. Oscilloscope rise time, $t_r = 0,35$ ns. Circuit capacitance < 1 pF (oscilloscope input capacitance and parasitic capacitance).

Fig. 3 Test circuit and waveform reverse recovery time. Input signal: Rise time of the reverse pulse, $t_r = 0.6$ ns; reverse pulse duration, $t_p = 100$ ns; duty factor, d = 0.05. Oscilloscope rise time, $t_r = 0.35$ ns. Circuit capacitance < 1 pF (oscilloscope input capacitance + parasitic capacitance).

Rectifying efficiency

η > 45 %

HIGH-SPEED SILICON DIODES

Whiskerless diodes in subminiature DO-35 envelopes. These diodes are primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	∨ _R	max.	75 V
Repetitive peak reverse voltage	VRRM	max.	75 V
Repetitive peak forward current	(FRM	max.	450 mA
Forward voltage 1N4148: I _F = 10 mA			
1N4446 : I _F = 20 mA	VF	<	1 V
1N4448: IF = 100 mA			
Reverse recovery time when switched			
from I _F = 10 mA to I _R = 60 mA;			
$R_L = 100 \Omega$; measured at $I_R = 1 mA$	trr	<	4 ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products, available to CECC 50 001-021, available on request.

1N4148 1N4446 1N4448

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)			
Continuous reverse voltage	VR	max.	75	v
Repetitive peak reverse voltage	VRRM	max.	75	v
Average rectified forward current	F(AV)	max.	150	mA
Forward current (d.c.)	١F	max.	200	mA
Repetitive peak forward current	FRM	max.	450	mA
Non-repetitive peak forward current				
$t = 1 \ \mu s$	FSM	max.	2000	mA
t = 1 s	FSM	max.	500	mA
Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$	Ptot	max.	500	mW
Derating factor			2,85	mW/ºC
Storage temperature	T _{stg}	-65 to	+ 200	°C
Junction temperature	тј	max.	200	°C
CHARACTERISTICS				
$T_j = 25 \ ^{O}C$ unless otherwise specified				
Forward voltages				
1N4148: I _F = 10 mA 1N4446: I _F = 20 mA	VF	<	1	v
$1N4448: J_F = 100 \text{ mA}$	۲ ۲		'	v
1N4448: I _F = 5 mA	٧F	0,62 to	0,72	v
Reverse avalanche breakdown voltage				
Ι _R = 100 μA	V(BR)R	>	100	v
I _R ≖ 5μA	V(BR)R	>	75	V

I _R ≈ 5μA		V _{(BR)R}	>	75 V
Reverse currents				
V _R = 20 V		I _R	<	25 nA
V _R = 20 V; T _j = 100 °C	1N4448	^I R	<	3 μΑ
V _R = 20 V; T _j = 150 ^o C		I R	<	50 μA
Diode capacitance				
V _R = 0; f = 1 MHz		Cd	<	4 pF

Mullard

 $\mathbf{\nabla}$

 $T_{i} = 25 \ ^{o}C$

2,5 V

CHARACTERISTICS (continued)

Forward recovery voltage when switched to

 $l_{\rm F} = 50 \, {\rm mA}; t_{\rm r} = 20 \, {\rm ns}$

Test circuit and waveforms:

 $t_p = 120 \text{ ns}$ $\delta = 0,01$

 $t_{r} = 0,35 \text{ ns}$

trr

<

4 ns

 v_{fr}

Input signal : Rise time of the forward pulse Forward current pulse duration Duty factor

Oscilloscope: Rise time

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 I_F = 10 mA to I_R = 60 mA; R_L = 100 Ω ;

measured at IR = 1 mA

Test circuit and waveforms:

Duty factor

 $\delta = 0,05$ t_r = 0,35 ns

Oscilloscope : Rise time

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

VOLTAGE REGULATOR DIODES (Low power)

_ _ _ _ _ _

C

~

BA314

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in DO-35 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	^I FRM	max.	250 mA
Storage temperature	T _{stg}	-65 to	o + 200 °C
Junction temperature	Τį	max.	200 °C
Thermal resistance from junction to ambient	R _{th j-a}	=	0,38 ^o C/mW
Forward voltage	,		
I _F = 0,1 mA	٧F	610	to 690 mV
IF = 1,0 mA	VF	680	to 760 mV
/F = 10 mA	۷F	750	to 830 mV
I _F = 100 mA	٧F	870	to 960 mV
Diode capacitance			
V _R = 0; f = 1 MHz	с _d	<	140 pF

MECHANICAL DATA

Fig. 1 DO-35 (SOD-27).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-026 available on request.

1

BA314

RATINGS

Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)		
Repetitive peak forward current	^I FRM	max.	250 mA
Storage temperature	T _{stg}	-65 to	o + 200 °C
Junction temperature	тj	max.	200 °C
THERMAL RESISTANCE			
From junction to ambient in free air	R _{th j-a}	=	0,38 ^o C/mW
CHARACTERISTICS			
$T_j = 25 \ ^{O}C$ unless otherwise specified			
Forward voltage			
$I_{F} = 0.1 \text{ mA}$	VF	610	to 690 mV
1 _F = 1,0 mA	VF	680	to 760 mV
I _F = 5,0 mA	VF	730	to 810 mV
I _F = 10 mA	VF	750	to 830 mV
I _F = 100 mA	۷ _F	870	to 960 mV
Reverse current			
V _R ≈ 4 V	^I R	<	5 µA
Temperature coefficient			
1 _F = 1 mA	SF	typ.	–1,8 mV/ºC
Differential resistance at $f = 1 \text{ kHz}$		•	20.0
I _F = 1 mA	r diff	typ.	30 Ω
I _F = 10 mA	r _{diff}	typ.	3,5 Ω
·		<	6,0 Ω
Diode capacitance $V_{B} = 0$; f = 1 MHz	Cd	<	140 pF
	Sa		

2

Low voltage stabistor

BA314

$\mathbf{\nabla}$

E

REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diode in medium power regulation and transient suppression circuits.

The series consists of BZT03-C9V1 to BZT03-C270.

QUICK REFERENCE DATA

			voltage regulator	transient suppressor	
Working voltage range	٧Z	nom.	9,1 to 270		v
Stand-off voltage	ν _R			7,5 to 220	v
Total power dissipation	Ptot	max.	3,25		W
Non-repetitive peak reverse power dissipation $T_j = 25 \text{ °C}$; $t_p = 100 \ \mu s$	Pzsm	max.		600	w

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode. The diodes are type-branded

Products approved to CECC 50 005-017 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Total power dissipation				
T _{tp} = 25 ^o C; lead length 10 mm	Ptot	max.	3,25	W
T _{amb} = 45 °C; p.c.b. mounting (Fig. 2)	Ptot	max.	1,3	W
Repetitive peak reverse power dissipation	PZRM	max.	10	W
Non-repetitive peak reverse power dissipation				
$t_p = 100 \ \mu s$ square pulse; $T_j = 25 \ ^{o}C$ (prior to surge)	PZSM	max.	600	W
Storage temperature	⊤ _{stg}	-65 to +	+ 175	oC
Junction temperature	тj	max.	175	٥C
THERMAL RESISTANCE				
Influence of mounting method (see also page 6, operating notes)				
1. Thermal resistance from junction to				
tie-point at a lead length of 10 mm	^R th j₋tp	=	46	K/W

2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness \ge 40 μ m; Fig. 2

Mullard

CHARACTERISTICS

December 1981

Forward	i voltag	e	
۱ _F = (),5 A; T	i = 25	oC

V_F < 1,2 V

R_{th j-a}

=

100 K/W

3

CHARACTERISTICS when used as voltage regulator diodes; $T_i \approx 25 \text{ °C}$

BZT03- working voltage		e V _Z	differential resistance ^r diff		temperature coefficient S _Z		test current Z	reverse current at R	reverse voltage VR	
		v		5	2	%	5/K	mA	μA	V.
	min.	typ.	max.	typ.	max.	mín.	max.		max.	
C9V1	8,5	9,1	9,6	2	4	0,03	0,08	50	10	6,8
C10	9,4	10,0	10,6	2	4	0,05	0,09	50	5	7,5
C11	10,4	11,0	11,6	4	7	0,05	0,10	50	4	8,2
C12	11,4	12,0	12,7	4	7	0,05	0,10	50	3	9,1
C13	12,4	13,0	14,1	5	10	0,05	0,10	50	2	10
C15	13,8	15,0	15,6	5	10	0,05	0,10	50	1	11
C16	15,3	16,0	17,1	6	15	0,06	0,11	25	1	12
C18	16,8	18,0	19,1	6	15	0,06	0,11	25	1	13
C20	18,8	20,0	21,2	6	15	0,06	0,11	25	1	15
C22	20,8	22,0	23,3	6	15	0,06	0,11	25	1	16
C24	22,8	24,0	25,6	7	15	0,06	0,11	25	1	18
C27	25,1	27,0	28,9	7	15	0,06	0,11	25	1	20
C30	28	30	32	8	15	0,06	0,11	25	1	22
C33	31	33	35	8	15	0,06	0,11	25	1	24
C36	34	36	38	21	40	0,06	0,11	10	1	27
C39	37	39	41	21	40	0,06	0,11	10	1	30
C43	40	43	46	24	45	0,07	0,12	10	1	33
C47	44	47	50	24	45	0,07	0,12	10	1	36
C51	48	51	54	25	60	0,07	0,12	10	1	39
C56	52	56	60	25	60	0,07	0,12	10	1	43
C62	58	62	66	25	80	0,08	0,13	10	1	47
C68	64	68	72	25	80	0,08	0,13	10	1	51
C75	70	75	79	30	100	0,08	0,13	10	1	56
C82	77	82	87	30	100	0,08	0,13	10	1	62
C91	85	91	96	60	200	0,09	0,13	5	1	68
C100	94	100	106	60	200	0,09	0,13	5	1	75
C110	104	110	116	80	250	0,09	0,13	5	1	82
C120	114	120	127	80	250	0,09	0,13	5	1	91
C130	124	130	141	110	300	0,09	0,13	5	1	100
C150	138	150	156	130	300	0,09	0,13	5	1	110
C160	153	160	171	150	350	0,09	0,13	5	1	120
C180	168	180	191	180	400	0,09	0,13	5	1	130
C200	188	200	212	200	500	0,09	0,13	5	1	150
C220	208	220	233	350	750	0,09	0,13	2	1	160
C240	228	240	256	400	850	0,09	0,13	2	1	180
C270	251	270	289	450	1000	0,09	0,13	2	1	200

Mullard

IJ

December 1981

Regulator diodes

BZT03 SERIES

lamping voltage	non-repetitive	revers	e current	BZT03
t _p = 500 μs	at peak reverse	at reco	ommended	XXXX
exp. pulse	current	stand-	off voltage	
V _(CL) R	IRSM	I R	VR	
V	Α	μÀ	v	
max.		max.		
11,5	10	50	7,5	C9V1
12,7	10	10	8,2	C10
14,1	10	5	9,1	C11
15,5	10	5	10	C12
16,9	10	5	11	C13
19,6	10	5	12	C15
21,1	10	5 5	13	C16
24	10	5	15	C18
24	5	5	16	C20
27	5	5	18	C22
30	5	5	20	C24
34	5	5	22	C27
38	5	5	24	C30
43	5	5	27	C33
48	5	5	30	C36
47	2	5	33	C39
53	2	5	36	C43
59	2	5	39	C47
64	2	5	43	C51
72	2	5	47	C56
80	2	5	51	C62
89	2	5	56	C68
97	2 2 2 2	5	62	C75
108	2	5	68	C82
121	2	5	75	C91
120	1	5	82	C100
135	1	5	91	C110
150	1	5	100	C120
165	1	5	110	C130
194	1	5	120	C150
209	1	5	130	C160
240	1	5	150	C180
240	0,5	5	160	C200
271	0,5	5	180	C220
300	0,5	5	200	C240
343	0,5	5	220	C270

CHARACTERISTICS when used as transient suppressor diodes; $T_i = 25 \text{ °C}$

BZT03 SERIES

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 6 Thermal model.

By using this thermal model any temperature can be calculated.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal			lead length			unit
resistance	5	10	15	20	25	mm
R _{th e-tp} R _{th e-a}	15 580	30 445	45 350	60 290	75 245	к/W K/W

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness $\ge 40 \,\mu m$, the following values apply:

Mullard

1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.

2. Mounted with copper laminate of 1 cm² per lead R_{th} tp-a is 55 K/W.

3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

LOW VOLTAGE STABISTORS

Silicon planar integrated voltage regulator diodes, intended for low power clipping, level shifting, voltage regulation and temperature stabilization of transistor base-emitter biasing network. The stabistors operate in the forward mode thus the cathode must be adjacent to the negative connection.

QUICK REFERENCE DATA

			6–1V5	2V0		
Regulation voltage ranges	٧ _F	> <	1,35 1,55	2,00 2,30	v v	
Continuous reverse voltage	VR	max.	4	4	v	
Repetitive peak forward current	FRM	max.	120	80	mA	
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	250	250	mW	
Differential resistance $I_F = 5 \text{ mA}; f = 1 \text{ kHz}$	^r diff	<	20	30	Ω	

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Cathode indicated by coloured end. The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BZV46-1V5		2V0		
Continuous reverse voltage	VR	max.	4	4	v	
Repetitive peak reverse voltage	V _{RRM}	max.	4	4	v	
Repetitive peak forward current	FRM	max.	120	80	mA	
Total power dissipation			·	. <u> </u>	·	
up to T _{amb} = 55 °C	P _{tot}	max.	250		mW	
Storage temperature	⊤ _{stg}		65 to + 150		oC	
Junction temperature	тј	max.	1	°C		

THERMAL RESISTANCE

From junction to ambient in free air

Fig. 2 Thermal resistance as a function of the lead length for various mounting. curve | mounting

1	Infinite heatsink at end of lead.
2 3	Typical printed-circuit board with large area of copper (> 100 mm ²). Tag mounting.
4	Typical printed-circuit board with small area of copper ($<$ 50 mm ²).

Low voltage stabistors

Fig. 3 Typical values; $T_i = 25 \text{ °C}$.

Fig. 4 Regulation characteristics at $T_j = 25$ °C.

E

VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed DO-41 glass envelopes intended for stabilization purposes. The series covers the normalized E24 (\pm 5%) range of nominal working voltages ranging from 3.6 V to 75 V.

QUICK REFERENCE DATA

Working voltage range	٧ _Z	nom.	3.6 to 75 V
Total power dissipation	Ptot	max.	1.3 W*
Non-repetitive peak reverse power dissipation $t_p = 100 \ \mu s; T_j = 25 \ ^{o}C$	Pzsm	max.	60 W
Junction temperature	τ _i	max.	200 °C
Thermal resistance from junction to tie-point	R _{thj-tp}	=	110 °C/W

* If leads are kept at T_{tp} = 55 °C at 4 mm from body.

MECHANICAL DATA

Fig. 1 DO-41 (SOD-66).

Dimensions in mm

Cathode indicated by coloured band.

The diodes are type-branded

Products approved to CECC 50 005-010 available on request.

BZV85 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Working current (d.c.)	۶	limited by P _{tot} m		
Non-repetitive peak reverse current t _p = 10 ms; half sine-wave; T _{amb} = 25 ^o C	^I ZSM	SM see table below		
Repetitive peak forward current	FRM	max. 250) mA	
Total power dissipation (see also Fig.2)	P _{tot}	max. 1.30 max.) W* W**	
Non-repetitive peak reverse power dissipation $t_p = 100 \ \mu s; T_j = 25 \ ^{\circ}C$	Pzsm	max. 60	w w	
Storage temperature	T _{stg}	-65 to + 200) ^o C	
Junction temperature	Τj	max. 200) oC	

		Non-repetitive peak reverse current		Non-repetitive peak reverse current
		IZSM (mA)		^I ZSM (mA)
	BZV85	max.	BZV85	max.
	C3V6	2000	C18	600
	C3V9	1950	C20	540
	C4V3	1850	C22	500
	C4V7	1800	C24	450
	C5V1	1750	C27	400
	C5V6	1700	C30	380
	C6V2	1620	C33	350
	C6V8	1550	C36	320
	C7V5	1500	C39	296
	C8V2	1400	C43	270
	C9V1	1340	C47	246
	C10	1200	C51	226
	C11	1100	C56	208
	C12	1000	C62	186
	C13	900	C68	171
	C15	760	C75	161
	C16	700		
тн	IERMAL RESISTANCE			1

THERMAL RESISTANCE				
From junction to tie-point	R _{th j-tp}	=	110	°C/W*
From junction to ambient				
mounted on a printed-circuit board	R _{th j-a}	=	175	°C/W**

* If the temperature of the leads at 4 mm from the body are kept up to $T_{tp} = 55 \text{ }^{\circ}\text{C}$. ** Measured in still air up to $T_{amb} = 25 \text{ }^{\circ}\text{C}$ and mounted on printed circuit board with lead length of 10 mm and print copper area of 1 cm² per lead.

Mullard

November 1982

Voltage regulator diodes

BZV85 SERIES

1.0

v

CHARACTERISTICS

T_j = 25 °C

Forward voltage at I_F = 50 mA

		rking vol 24 (± 59		test current	differential resistance		erature icient	reverse current	test voltage	
		V _Z (V) at I <mark>Ztes</mark> t		IZtest (mA)	r _{diff} (Ω) at I <mark>Ztest</mark>	Sz (m at Iz	nV∕¤C) test	I _R (nA) at V _R	V _R (V)	
BZV85	min.	nom.	max.	1	max.	min.	max.	max.		
C3V6 C3V9	3.4 3.7	3.6 3.9	3.8 4.1	60 60	15 15		-2.4 -2.2	50 000 10 000	1.0 1.0	
C4V3 C4V7 C5V1	4.0 4.4 4.8	4.3 4.7	4.6 5.0	50 45	13 13	typ. typ.	-1.4 -0.7	5000 3000	1.0 1.0	4
C5V6 C6V2	4.8 5.2 5.8	5.1 5.6 6.2	5.4 6.0 6.6	45 45 35	10 7 4	0.5 0 0.6	2.2 2.7 3.6	3000 2000 2000	2.0 2.0 3.0	
C6V8 C7V5 C8V2	6.4 7.0 7.7	6.8 7.5 8.2	7.2 7.9 8.7	35 35 35 25	3.5 3 5	0.8 1.3 2.5 3.1	3.0 4.3 5.5 6.1	2000 1000	4.0 4.5	
C9V1 C10	8.5 9.4	9.1 10	9.6 10.6	25 25	5 8	3.8 4.7	7.2 8.5	700 700 200	5.0 6.5 7,0	
C11 C12 C13	10.4 11.4 12.4	11 12 13	11.6 12.7 14.1	20 20 20	10 10 10	5.3 6.3 7.4	9.3 10.8 12.0	200 200 200	7.7 8.4 9.1	
C15 C16 C18 C20 C22	13.8 15.3 16.8 18.8 20.8	15 16 18 20 22	15.6 17.1 19.1 21.2 23.3	15 15 15 10 10	15 15 20 24 25	8.9 10.7 11.8 13.6 16.6	13.6 15.4 17.1 19.1 22.1	50 50 50 50 50	10.5 11.0 12.5 14.0 15.5	
C24 C27 C30 C33 C36	22.8 25.1 28 31 34	24 27 30 33 36	25.6 28.9 32 35 38	10 10 8 8 8 8 8	30 40 45 45 50	18.3 20.1 22.4 24.8 27.2	24.3 27.5 32.0 35.0 39.9	50 50 50 50 50 50	17 19 21 23 25	
C39 C43 C47 C51 C56	37 40 44 48 52	39 43 47 51 56	41 46 50 54 60	6 6 4 4 4	60 75 100 125 150	29.6 34.0 37.4 40.8 46.8	43.0 48.3 52.5 56.5 63.0	50 50 50 50 50 50	27 30 33 36 39	
C62 C68 C75	58 64 70	62 68 75	66 72 80	444	175 200 225	52.2 60.5 66.5	72.5 81.0 88.0	50 50 50 50	43 48 53	

<

٧F

 $\mathbf{\nabla}$

November 1982

BZV85 SERIES

Δ

Fig. 3 Thermal resistance versus lead length.

Mounting methods (see Figs 2 and 3)

- 1. To tie-points (lead length = 4 mm in Fig. 2).
- 2. Mounted on a printed-circuit board (with lead length of 10 mm in Fig. 2) and print copper area of 1 cm² per lead.

Fig. 4 Half sine-wave; $T_{amb} = 25 \text{ °C}$.

BZV85 SERIES

Fig. 5 Thermal impedance from junction to tie-point with a lead length of 4 mm.

BZV85 SERIES

Fig. 7 Dynamic characteristics; typical values; $T_j = 25 \text{ °C}$.

Mullard

Voltage regulator diodes

 $\mathbf{\nabla}$

BZV85 SERIES

BZV85 SERIES

I

November 1982

BZV85 SERIES

For types above 7,5 V the temperature coefficient is independent of current and can be read from the table on page 3.

10 November 1982

Voltage regulator diodes

I

BZV85 SERIES

BZV85 SERIES

10³ 7282194 ^rdiff **(**Ω) <u>C</u>546 Nor' 10² C75 -C62 C6V2 C6V8 -C43 10 C30 C20 C10 C6V2; C8V2; C9V1 C6V8: C7V5 1 10² 1 10 IZ (mA)

Fig. 16 f = 1 kHz; T_i = 25 °C; typical values.

Mullard

REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diodes in medium power regulation and transient suppression circuits.

The series consists of the following types: BZW03-C7V5 to BZW03-C270 with a tolerance of \pm 5% (international standard E24).

QUICK REFERENCE DATA

			voltage regulator	transient suppressor	
Working voltage range	٧ _Z	nom.	7.5 to 270	_	v
Stand-off voltage	VR			6.2 to 220	v
Total power dissipation	Ptot	max.	6		W
Non-repetitive peak reverse power dissipation T_j = 25 °C; t_p = 100 μ s	PRSM	max.		1000	w

MECHANICAL DATA Fig.1 SOD-64 Dimensions in mm

The marking band indicates the cathode.

BZW03 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Total power dissipation				
T _{tp} = 25 ^o C; lead length 10 mm	Ptot	max.	6	w
$T_{amb} = 45 {}^{o}C; p.c.b. mounting (Fig.2)$	P _{tot}	max.	1.75	w
Repetitive peak reverse power dissipation	Pzrm	max.	20	w
Non-repetitive peak reverse power dissipation $t_p = 100 \ \mu s square pulse; T_j = 25 \ ^{O}C prior to surge$	PRSM	max.	1000	w
exponential pulse, waveform 10/1000 (Fig.3)	PRSM	max.	500	W
Non-repetitive peak reverse current T _i = 25 °C prior to surge;				
Exponential 10/1000 pulse (Fig.3)	IRSM	max.	see pag	je 5
Storage temperature	T _{stg}	-65	-65 to +175	
Junction temperature	τ _j	max.	175	٥C

THERMAL RESISTANCE

Influence of mounting method (see also page 6, operating notes)

- 1. Thermal resistance from junction to 25 °C/W tie-point at a lead length of 10 mm R_{th j-tp}
- 2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit board; Cu-thickness \geq 40 μ m; Fig.2

Fig.2 Mounted on a printed-circuit board.

75

°C/W

R_{th j-a}

Regulator diodes

BZW03 SERIES

Fig.4 Maximum total power dissipation as a function of temperature.

Fig.5 Typical forward voltage drop $T_j = 25 \text{ °C}$

Mullard

October 1982

BZW03 SERIES

CHARACTERISTICS when used as voltage regulator diodes; $\rm T_{j}$ = 25 $^{\rm O}\rm C$

	working voltage V _Z			resis	ential stance diff	temperature coefficient S _Z		test current IZ	reverse current IR	t reverse voltage VR
BZW03-		v		Ω		%/ºC		mA	μA	v
	min.	nom.	max.	typ.	max.	min.	max.		max.	
C7V5	7.0	7.5	7.9	0.7	1.5	0	0.07	175	1500	5.6
C8V2	7.7	8.2	8.7	0.8	1.5	0.03	0.08	150	1200	6.2
C9V1	8.5	9.1	9.6	0.9	2	0.03	0.08	150	40	6.8
C10	9.4	10.0	10.6	1	2	0.05	0.09	125	20	7.5
C11	10.4	11.0	11.6	1.1	2.5	0.05	0.10	125	15	8.2
C12	11.4	12.0	12.7	1.1	2.5	0.05	0.10	100	10	9.1
C13	12.4	13.0	14.1	1.2	2.5	0.05	0.10	100	4	10
C15	13.8	15.0	15.6	1.2	2.5	0.05	0.10	75	2	11
C16	15.3	16.0	17.1	1.3	2.5	0.06	0.11	75	2 2	12 13
C18	16.8	18.0	19 .1	1.3	2.5	0.06	0.11	65		
C20	18.8	20.0	21.2	1.5	3	0.06	0.11	65	2	15
C22	20.8	22.0	23.3	1.6	3.5	0.06	0.11	50	2	16
C24	22.8	24.0	25.6	1.8	3.5	0.06	0.11	50	2	18
C27	25.1	27.0	28.9	2.5	5	0.06	0.11	50	2	20
C30	28	30	32	4	8	0.06	0.11	40	2	22
C33	31	33	35	5	10	0.06	0.11	40	2	24
C36	34	36	38	6	11	0.06	0.11	30	2	27
C39	37	39	41	7	14	0.06	0.11	30	2	30
C43	40	43	46	10	20	0.07	0.12	30	2	33
C47	44	47	50	12	25	0.07	0.12	25	2	36
C51	48	51	54	14	27	0.07	0.12	25	2	39
C56	52	56	60	18	35	0.07	0.12	20	2	43
C62	58	62	66	20	42	0.08	0.13	20	2	47
C68	64	68	72	22	44	0.08	0.13	20	2	51
C75	70	75	7 9	25	45	0.08	0.13	20	2	56
C82	77	82	87	30	65	0.08	0.13	15	2	62
C91	85	91	96	40	75	0.09	0.13	15	2	68
C100	94	100	106	45	90	0.09	0.13	12	2	75
C110	104	110	116	65	125	0.09	0.13	12	2	82 91
C120	114	120	127	90	170	0.09	0.13	10		
C130	124	130	141	100	190	0.09	0.13	10	2	100
C150	138	150	156	150	260	0.09	0.13	8	2	110 120
C160	153	160	171	180	350	0.09	0.13 0.13	85	2	120
C180	168 188	180 200	191 212	210 250	430 500	0.09	0.13	5	2	150
C200				Į.						
C220	208	220	233	350	700	0.09	0.13	5 5	2	160 180
C240	228	240	256	450 600	900 1200	0.09	0.13 0.13	5	2	200
C270	251	270	289	000	1200	0.09	0.13			200
	I			I		I		I	1	

Mullard

 $\mathbf{\nabla}$

BZW03 SERIES

clamping voltage t _p = 1 ms (10/1000 pulse)	at	non-repetitive peak reverse current	at recon	current imended f voltage	
V(CL)R		RSM	I _R	VR	
V		Α	μΑ	V	BZW0
max.		max.	max.		
11.3		44.2	3000	6.2	C7V5
12.3		40.6	2400	6.8	C8V2
13.3		37.6	100	7.5	C9V1
14.8		34	40	8.2	C10
15.7		31.8	30	9.1	C11
17		29.4	20	10	C12
18.9		26.4	10	11	_C13
20.9		23.9	10	12	C15
22.9		21.8	10	13	C16
25.6		19.5	10	15	C18
28.4		17.6	10	16	C20
31		16.1	10	18	C22
33.8		14.8	10	20	C24
38.1		13.1	10	22	C27
42.2		11.8	10	24	C30
46.2		10.8	10	27	C33
50.1		10.0	10	30	C36
54.1		9.2	10	33	C39
60.7		8.2	10	36	C43
65.5		7.6	10	39	C47
70.8		7.0	10	43	C51
78.6		6.3	10	47	C56
86.5		5.8	10	51	C62
94.4		5.3	10	56	C68
103.5		4.8	10	62	C75
114		4.3	10	68	C82
126		3.9	10	75	C91
139		3.6	10	82	C100
152		3.3	10	91	C110
167		3.0	10	100	C120
185		2.7	10	110	C130
204		2.4	10	120	C150
224		2.2	10	130	C160
249		2.0	10	150	C180
276		1.8	10	160	C200
305		1.6	10	180	C220
336		1.5	10	200	C240
380		1.3	10	220	C270

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 7

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	°C/W
R _{th e-a}	410	300	230	185	155	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounting similar to method given in Fig. 2: Rth tp-a = 70 °C/W.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}$$

2,25 cm² R_{th tp-a} = 45 °C/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 4) and the above thermal model.

VOLTAGE REGULATOR DIODES

Plastic encapsulated silicon diodes intended for general purpose use as medium power voltage regulators. They are suitable for use as transient suppressor diodes.

QUICK REFERENCE DATA

٧ _Z	nom.	7.5 to 200	v	
P _{tot} Ptot	max. max.	1.3 1.0	w w	
Pzrm	max.	6	w	
PZSM	max.	300	w	
	P _{tot} P _{tot} PZRM	P _{tot} max. ^P tot max. ^P ZRM max.	P _{tot} max. 1.3 P _{tot} max. 1.0 PZRM max. 6	P _{tot} max. 1.3 W P _{tot} max. 1.0 W P _{ZRM} max. 6 W

MECHANICAL DATA

Dimensions in mm

Fig.1 DO-15; the diodes are type branded

D 2523b

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZV85 or BZT03 are recommended.

The sealing of this plastic envelope fulfils the accelerated damp heat test, according to I.E.C. recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS

Limiting values of operation in accordance with the Absolute Maximum System (IEC134)

Repetitive peak forward current	¹ FRM	max.	1	A
Total power dissipation up to T _{amb} = 25 ^o C BZX61–C7V5 to C130 BZX61–C150 to C200	P _{tot} P _{tot}	max. max.	1.3 1.0	w w
Repetitive peak reverse power dissipation	Pzrm	max.	6	W
Non-repetitive peak reverse power dissipation t = 100 μ s; T _{amb} = -55 to +25 °C	Pzsm	max.	300	w
Storage temperature	T _{stg}	65 to	+175	• °C
Junction temperature BZX61–C7V5 to C130 BZX61–C150 to C200	τ _j τ _j	max. max.	175 150	°C °C
THERMAL RESISTANCE		see pag	es 6, 8	

CHARACTERISTICS

T_i = 25 °C

Forward voltage I_F = 100 mA

٧F	<	1.1

v

BZX61	working voltage		ltage	differential resistance	temperature coefficient	reve Curr		clamping voltage
		v _z (v		r _{diff} (Ω)	S _Z (%/ºC)	I _R (μΑ)a	nt V _R (V)	at t _p = 1 ms; 80 W V _{CL(R)} (V)
	at ¹ Z	test = 2	20 mA	at I _{Ztest} = 20 mA	at I _{Ztest} = 20 mA			
	min.	nom.	max.	max.	typ.	max.		typ.
C7V5	7.0	7.5	7.9	5.0	+0.04	5	3	9.9
C8V2	7.7	8.2	8.7	7.5	+0.04	5	3	10.9
C9V1	8.5	9.1	9.6	8.0	+0.05	5	5	12.0
C10	9.4	10	10.6	8.5	+0.05	5	7	13.3
C1 1	10.4	11	11.6	9.0	+0.05	5	7	14.5
C12	11.4	12	12.7	9.0	+0.05	5	8	15.9
C13	12.4	13	14.1	10	+0.05	5	9	17.6
C15	13.8	15	15.6	14	+0.06	5	10	19.5

CHARACTERISTICS (continued)

т_ј = 25 °С

i

BZX61	working voltage	differential	temperature	reverse	clamping
		resistance	coefficient	current	voltage
)	at t _o = 1 ms; 80 W
	V _Z (V)	r _{diff} (Ω)	S _Z (%/ºC)	I_{R} (μ A) at V_{R} (V)	VCL(R) (V)
	at I _{Ztest} = 10 mA	at I _{Ztest} ≠ 10 mA	at I _{Ztest} = 10 mA		
	min. nom. max.	max.	typ.	max.	typ.
C16	15.3 16 17.1	16	+0.06	5 11	21.4
C18	16.8 18 19.1	20	+0.06	5 13	23.9
C20	18.8 20 21.2	22	+0.06	5 14	26.5
C22	20.8 22 23.3	23	+0.06	5 15	29.1
C24	22.7 24 25.9	25	+0.06	5 17	32.4
C27	25.1 27 28.9	35	+0.06	5 19	36.1
C30	28 30 32	40	+0.07	5 21	40.0
ന്ദാ	31 33 35	45	+0.07	5 23	43.8
C36	34 36 38	50	+0.07	5 25	47.5
	at I _{Ztest} = 5 mA	at I _{Ztest} ≠ 5 mA	at I _{Ztest} = 5 mA		
C39	37 39 41	60	+0.07	5 27	51.2
C43	40 43 46	70	+0.08	5 30	57.5
C47	44 47 50	80	+0.08	5 33	62.5
C51	48 51 54	95	+0.08	5 36	67.5
C56	52 56 60	105	+0.08	5 39	75.0
C62	58 62 66	110	+0.08	5 43	82.5
C68	64 68 72	120	+0.08	5 48	90.0
C75	70 75 79	145	+0.08	5 52	98.8
C82	77 82 87	175	+0.09	5 55	108.8
C91	85 91 96	200	+0.09	5 60	120.0
C100	94 100 106	220	+0.09	5 66	132.5
C1 10	104 110 116	250	+0.09	5 70	145.0
C120	114 120 127	270	+0.10	5 80	158.8
C130	124 130 141	300	+0.10	5 90	176.2
	at I _{Ztest} = 2 mA	at I _{Ztest} = 2 mA	at I _{Ztest} = 2 mA		
C150	138 150 156	950	+0.11	5 100	195.0
C160	153 160 171	1000	+0.11	5 110	213.8
C180	168 180 191	1100	+0.11	5 120	238.8
C200	188 200 212	1250	+0.11	5 140	265.0

OPERATING NOTES

Dissipation and heatsink considerations

a) Steady-state conditions

The maximum allowable steady-state dissipation Ps is given by the relationship!--

$$P_{s max.} = \frac{T_{j max} - T_{amb}}{R_{th i-a}}$$

Where T_{i max} is the maximum permissible operating junction temperature,

Tamb is the ambient temperature,

Rth j-a is the total thermal resistance between junction and ambient.

b) Pulse conditions (see Fig.2)

The maximum pulse power Pm max. is given by the formula

$$P_{m max.} = \frac{(T_{j max} - T_{amb}) - (P_{s}.R_{th} j_{-a})}{Z_{th}}$$

Where Ps is the steady-state dissipation, excluding that in the pulses,

 Z_{th} is the effective transient thermal resistance of the device between junction and ambient and is a function of the pulse duration t and duty cycle δ (see Fig.7).

 δ is the duty cycle and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_s when biased in the zener direction at a given zener current can be found from Fig.6. With the additional pulsed power dissipation P_m max calculated from the above expression, the total peak zener power dissipation P_{tot} is $P_s + P_m$ max. From Fig.6 the peak zener current at P_{tot} can now be read.

For pulse durations longer than the temperature stabilisation time of the diode t_{stab} , the maximum allowable pulse power is equal to the steady-state power P_s max. The temperature stabilisation time for the BZX61 is 100s (see Fig.7).

October 1979

Mullard

OPERATING NOTES (contd.)

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

DIP SOLDERING

At a maximum solder temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point of contact is 125 °C.

Fig.3 Continuous power rating.

For types in excess of 130 V the continuous reverse dissipation should be kept within the area II.

Fig.4 Mounting methods

- 1. Infinite heatsink at end of lead.
- 2. Typical printed circuit board with large area of copper (1 cm² per lead).
- 3. Tag mounting.

Fig.7

8

Mullard

ワ

Fig.8

Mullard

October 1979

12

Mullard

 ∇

VOLTAGE REGULATOR DIODES

Silicon planar diodes in DO-35 envelopes intended for use as low voltage stabilizers or voltage references. They are available in two series; one to the international standardized E24 (\pm 5%) range and the other with \pm 2% tolerance on working voltage. Each series consists of 37 types with nominal working voltages ranging from 2,4 V to 75 V.

QUICK REFERENCE DATA

Working voltage range	٧ _Z	nom.	2,4 to 75 V
Total power dissipation	P _{tot}	max.	500 mW *
Non-repetitive peak reverse power dissipation	Pzsm	max.	30 W
Junction temperature	т _ј	max.	200 ^o C
Thermal resistance from junction to tie-point	R _{th j-tp}	=	0,30 ^o C/mW

* If leads are kept at T_{tp} = 50 °C at 8 mm from body.

MECHANICAL DATA

Fig. 1 DO-35.

Dimensions in mm

Cathode indicated by coloured band. The diodes are type-branded

Products approved to CECC 50 005-005, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

•		•	-		
Average forward current	-			25.0	0
over any 20 ms perio		lF(AV)	max.	250	
Repetitive peak forward	l current	^I FRM	max.	250	
Total power dissipation		Ptot	max.		mW *
			max.	400	mW **
Non-repetitive peak reve		-			
t = 100 μs; T _j = 150 C	۰C	Pzsm	max.	30	
Storage temperature		T _{stg}	-65 to	o + 200	oC
Junction temperature		т _ј	max.	200	oC
THERMAL RESISTAN	CE				
From junction to tie-po	int	R _{th j-tp}	=	0,30	°C/mW *
From junction to ambie	ent	R _{th} j-a	=	0,38	°C/mW **
•		, 2			
CHARACTERISTICS					
Т _ј = 25 ^о С					
Forward voltage					
I _F = 10 mA		VF	<	0,9	v
Reverse current					
BZX792V4	V _R = 1 V	۱ _R	<	50	
.2V7	V _R = 1 V	^I R	<	20	
.3V0	$V_{R} = 1 V$	^l R	<	10	•
.3∨3 .3∨6	$V_R = 1 V$	IR IR	< <		μΑ μΑ
	V _R = 1 V	IR			•
.3∨9 .4∨3	$V_R = 1 V$	IR In	< <		μΑ μΑ
.4V3	V _R = 1 V V _R = 2 V	I _R I _R	$\overline{\langle}$		μ <u>Α</u> μΑ
.5V1	$V_R = 2V$	I _R	<		μA
.5V6	$V_{\rm R} = 2 V$		<		μA
.6V2	V _B = 4 V	I _R	<	3	uА
.6V2	$V_{R} = 4 V$	IR	<		μA
.7V5	$V_{R} = 5 V$	^I R	<		μA
.8V2	V _R ≃ 5 V	I _R	<	700	nA
.9V1	V _R = 6 V	^I R	<	500	nA
.10	V _R = 7 V	I _R	<	200	nA
.11 to .13	V _R = 8 V	1R	<	100	
.15 to .75	$V_R = 0.7 V_{Znom}$	١R	<	50	nA
. = B for 2%					
. = C for E24	(± 5%) tolerance				

* If leads are kept at $T_{tp} = 50 \text{ }^{\circ}\text{C}$ at 8 mm from body. For the types 2V4 and 2V7 the power * dissipation is limited by $T_{j\ max} = 150 \text{ }^{\circ}\text{C}$. ** In still air at maximum lead length up to $T_{amb} = 50 \text{ }^{\circ}\text{C}$.

T_j = 25 ^oC

E24 (± 5%) logarithmic range (for ± 2% tolerance range see page 5).

BZX79	workin	g voltage		erential stance	temper	ature coef	ficient	diode ca	pacitanc e
	V _Z	(V)	rd	iff (Ω)	Sz	_ (mV/ºC)		C _d (pF);	f = 1 MHz
	at IZtes	nt = 5 mA	at IZte	est = 5 mA	at I	Ztest = 5 r	nA	V F	q = 0
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450
C3V9	3,7	4,1	85	90	3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450
C4V7	4,4	5,0	50	80	-3,5	-1,4	0,2	125	180 🛋
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	125	180 🖛
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	125	180 🖛
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	at IZtes	t = 2 mA	at I _{Zte}	st = 2 mA	at I	Ztest = 2 r	nA		
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45
C43	40,0	46,0	45	150	37.6	41,2	46,6	21	40
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40
C51	48,0	54,0	60	180	46,6	51,0	57,2	19	40
C56	52,0	60,0	70	200	52,2	57,0	63,8	18	40
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35
C68	64.0	72.0	90	240	65.6	71,7	79,8	17	35
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35

т_ј = 25 °С

E24 (\pm 5%) logarithmic range (for \pm 2% tolerance range see page 6).

BZX79	wor	king volta	ige	differ resist	ential tance	wo	rking vol	tage		rential tance
		V _Z (V)		r _{dift}	; (Ω)		v _Z (v)		^r dif	f (Ω)
	at	1 _Z = 1 m/	۹ ا	at Iz =	=1 mA	at	l _Z = 20 r	nA	at Iz =	20 mA
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C2V4	1,7	1,9	2,1	275	600	2,6	2, 9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
C3V0	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3V9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15 10
C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3		
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6
C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7,4	2,5	6
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6 8
C9V1	8,4	9,0	9,6	40	100	8,5	9,2	9,7		-
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	15 20
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7		
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25 25
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	/	25
	at	I _Z = 0,1 i	mA	at Iz =	0,5 mA	at	l _Z = 10 m	nA	at I _Z =	= 10 mA
C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	45
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60
C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	70
C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
C47	43,7	46,8	50,0	85	375	44,1	47,1	50,5	30	90
C51	47,6	50,8	54,0	9 0	400	48,1	51,1	54,6	35	100
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110
C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	120
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140

Mullard

T_j = 25 °C

± 2% tolerance range.

		•							
BZX79	working	y voltage	1	rential stance	temper	ature coef	ficient	diode ca	pacitance
	V _Z	(V)	rdif	f (Ω)	S ,	- (mV/ºC)		C _d (pF);	f = 1 MHz
	at IZtes	t = 5 mA		st = 5 mA	at	Ztest = 5	mA	. –	= 0
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
B2V4 B2V7 B3V0 B3V3	2,35 2,65 2,94 3,23	2,45 2,75 3,06 3,37	70 75 80 85	100 100 95 95	-2,6 -3,0 -3,0 -3,2	1,6 2,0 2,1 2,4	-0,6 -1,0 -1,2 -1,5	375 350 350 325	450 450 450 450
B3V6	3,53	3,67	85	90	-3,2	-2,4	-1,5	300	450
B3V9 B4V3 B4V7 B5V1 B5V6	3,82 4,21 4,61 5,00 5,49	3,98 4,39 4,79 5,20 5,71	85 80 50 40 15	90 90 80 60 40	-3,2 -3,2 -2,0 -1,6 -0,7	-2,5 -2,5 -1,4 -0,8 1,2	-1,5 -1,2 -0,8 0,5 2,2	300 275 125 125 125 125	450 450 180
B6V2 B6V8 B7V5 B8V2 B9V1	6,08 6,66 7,35 8,04 8,92	6,32 6,94 7,65 8,36 9,28	6 6 6 6	10 15 15 15 15	1,0 2,0 3,0 3,6 4,3	2,3 3,0 4,0 4,6 5,5	3,2 4,0 4,8 5,5 6,5	90 85 80 75 70	130 110 100 95 90
B10 B11 B12 B13 B15	9,80 10,80 11,80 12,70 14,70	10,20 11,20 12,20 13,30 15,30	8 10 10 10 10	20 20 25 30 30	5,2 6,2 7,0 7,8 10,0	6,4 7,4 8,4 9,4 11,4	7,4 8,5 9,5 10,5 12,4	70 65 65 60 55	90 85 85 80 75
B16 B18 B20 B22 B24	15,70 17,60 19,60 21,60 23,50	16,30 18,40 20,40 22,40 24,50	10 10 15 20 25	40 45 55 55 70	10,9 12,8 14,8 16,8 18,7	12,4 14,4 16,4 18,4 20,4	13,5 15,6 17,6 19,6 21,6	52 47 36 34 33	75 70 60 60 55
	at IZtes	t = 2 mA	at IZtes	_{st} = 2 mA	at l	Ztest = 2 r	nA		
B27 B30 B33 B36 B39 B43 B47	26,50 29,40 32,30 35,30 38,20 42,10	27,50 30,60 33,70 36,70 39,80 43,90	25 30 35 35 40 45	80 80 90 130 150	21,4 24,4 27,4 30,4 33,4 38,0	23,4 26,6 29,7 33,0 36,4 41,2	25,3 29,0 32,5 36,0 40,0 45,0	30 27 25 23 21 21	50 50 45 45 45 45 40
847 851 856 862 868	46,10 50,00 54,90 60,80 66,60	47,90 52,00 57,10 63,20 69,40	50 60 70 80 90	170 180 200 215 240	42,5 47,0 52,5 59,0 66,0	46,1 51,0 57,0 64,4 71,7	50,0 55,0 62,0 69,0 77,0	19 19 18 17 17	40 40 40 35 35
B75	73,50	76,50	95	255	74,0	80,2	86,0	16,5	35

T_j = 25 °C

± 2% tolerance range.

BZX79	working voltage	differential resistance	working voltage	differential resistance
	 V_Z (V) 	r _{diff} (Ω)	V _Z (V)	r _{diff} (Ω)
	at Iz = 1 mA	at Iz = 1 mA	at I _Z = 20 mA	at I _Z = 20 mA
	nom.	typ. max.	nom.	typ. max.
B2V4	1,9	275 600	2,9	25 50
B2V7	2,2	300 600	3,3	25 50
B3V0	2,4	325 600	3,6	25 50
B3V3	2,6	350 600	3,9	20 40 20 40
B3V6	3,0	375 600	4,2	
B3∨9	3,2	400 600	4,4	15 30
B4V3	3,6	410 600	4,7	15 30
B4V7	4,2	425 500	5,0	8 15
B5V1	4,7	400 480	5,4	6 15
B5V6	5,4	80 400	5,7	4 10
B6V2	6,1	40 150	6,3	3 6
B6∨8	6,7	30 80	6,9	2,5 6
B7V5	7,4	30 80	7,6	2,5 6
B8V2	8,1	40 80	8,3	3 6
B9V1	9,0	40 100	9,2	4 8
B10	9,9	50 150	10,1	4 10
B11	10,9	50 150	11,1	5 10
B12	11,9	50 150	12,1	5 10
B13	12,9	50 170	13,1	5 15
B15	14,9	50 200	15,1	6 20
B16	15,9	50 200	16,1	6 20
B18	17,9	50 225	18,1	6 20
B20	19,9	60 225	20,1	7 20
B22	21,9	60 250	22,1	7 25
B24	23,9	60 250	24,1	7 25
	at I _Z = 0,1 mA	at I _Z = 0,5 mA	at I _Z = 10 mA	at I _Z = 10 mA
B27	26,9	65 300	27,1	10 45
B30	29,9	70 300	30,1	15 50
B33	32,9	75 325	33,1	20 55
B36	35,9	80 350	36,1	25 60
B39	38,9	80 350	39,1	25 70
B43	42,9	85 375	43,1	25 80
B47	46,8	85 375	47,1	30 90
B51	50,8	90 400	51,1	35 100
B56	55,7	100 425	56,1	45 110
B62	61,7	120 450	62,1	60 120
B68	67,7	150 475	68.2	75 130
B75	74,7	170 500	75,3	90 140
	•			1

Mullard

December 1978

6

Mullard

December 1978

December 1978

Voltage regulator diodes

BZX79 SERIES

Mullard

r

BZX79 SERIES

 \Box

BZX79 SERIES

Fig. 16 Typical change of working voltage under operating conditions at T_{amb} = 25 °C.

14

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed glass envelopes intended for stabilization purposes.

The series covers the normalized range of nominal working voltages from 5.1 V to 75 V with a tolerance of $\pm 5\%$ (international standard E24).

QUICK REFER	ENCE DATA			
Working voltage range	vz	nom.	5,1 to 75	v
Working voltage tolerance (E24)			± 5	%
Total power dissipation	Prot	max.	2,75	w
Junction temperature	Тj	max.	200	°C

MECHANICAL DATA

Dimensions in mm

SOD-51

Cathode indicated by coloured band The diodes are type-branded

BZX87 SERIES

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

^I Z	limite	d by P _{to}	ot max
^I ZRM	limite	d by ^p z	RMmax
I _{FRM}	max.	400	mA
Ptot			W ¹) W ²)
^p zrm	max.	7,5	W
Pzsm	max.	100	W
T _{stg}	-65 te	o +200	°C
Тj	ma x .	200	°C
i 6)			
R _{th} j-a	max.	117	°C/W
		Тj	= 25 ^o C
VF	<	1	v
I _R I _R I _R I _R I _R I _R	< < < < < < <	10 5 3 1,5 0,6 0,4 0,3 0,2	μΑ μΑ μΑ μΑ μΑ μΑ μΑ
	^I ZRM ^I FRM ^P tot ^P ZRM ^P ZSM ^T stg ^T j ^I 6) ^R th j-a ^V F ^I R ^I R ^I R ^I R ^I R ^I R ^I R ^I R ^I R	IZRMlimiteIZRMlimiteIFRMmax. P_{tot} max. P_{ZRM} max. $PZRM$ max. $PZSM$ max. T_{stg} -65 to T_j max. T_{stg} -65 toT_jmax. I_6 max. V_F <	IZRM limited by P_Z IFRM max. 400 P_{tot} max. 1,5 P_{tot} max. 2,75 P_ZRM max. 7,5 P_ZSM max. 100 T_{stg} -65 to +200 7j T_j max. 200 16) Rth j-a max. 117 V_F 1 I_R <

 2) If the temperature of the leads at 10 mm from the body is kept at 25 °C.

Mullard

April 1977

 $^{^{\}rm l})$ Measured in still air up to $\rm T_{amb}$ = 25 °C and mounted to solder tags at maximum lead length.

 $T_{j} = 25 \text{ oC}$

CHARACTERISTICS (continued)

	Workin	g voltage	1	mperati efficient			rential tance		capaci- C _d (pF)
	V Z	(V)	s _z	(mV/0	C)	rdif	f (\$2)	at f =	1 MHz
	at I _Z =	= 50 mA	at	l <u>z</u> = 50 r	nA	at I _Z =	50 mA	VF	R = 0
BZX 87	min.	max.	min.	typ.	max.	typ.	max.	typ.	max.
C5V1	4.8	5.4	-1.5	0	1.5	4	10	200	250
C5V6	5.2	6.0	-0.2	1.5	2.5	2	5	180	225
C6V2	5.8	6.6	1,5	2,4	3.3	1.5	3	350	400
	at IZ =	= 20 mA	at	I _Z = 20 r	nA	at I _Z =	= 20 mA		
C6V8	6.4	7.2	2.2	3,1	3.9	1	3	300	350
C7V5	7,0	7.9	2.8	3,8	4.7	1	3	270	310
C8V2	7.7	8.7	3.5	4,5	5,5	1,5	4	250	280
C9V1	8,5	9.6	4,3	5,4	6,5	2	4	210	250
C10	9,4	10,6	5.2	6,3	7,5	2	5	190	230
C11	10.4	11.6	6.2	7,4	8.6	3	5	170	220
C12	11.4	12.7	7.2	8.4	9.8	3	6	165	200
C13	12.4	14.1	8.2	9,4	11,2	3	7	165	200
C15	13,8	15.6	9,6	11,4	12,8	4	10	160	190
	at I _Z =	= 10 mA	at	l _Z = 10 r	nA	at IZ =	= 10 mA		
C16	15,3	17.1	11,1	12,5	14.4	4	10	140	180
C18	16.8	19,1	12,6	14,5	16.6	5	15	120	160
C20	18,8	21.2	14,6	16,6	18,8	5	15	110	150
C22	20.8	23,3	16,6	18,6	20.9	5	20	100	135
C24	22, 8	25,6	18,6	20, 7	2.3, 4	6	20	95	130
C27	25, 1	28,9	21,0	23, 8	26,8	7	25	90	120
C30	28	32	23,8	26,9	30,6	8	25	80	110
C33	31	35	26,6	30,0	34,2	10	30	75	95
C36	34	38	29,6	33,4	38,0	10	35	70	90
	at IZ =	5 mA	at	l _Z = 5 r	nA	at Iz =	5 mA		
C39	37	41	32,6	37,0	41.6	15	40	65	80
C43	40	46	36.0	41,6	47,6	15	50	62	75
C47	44	50	40,4	46, 1	52,6	20	60	60	75
C51	48	54	44,6	51.0	57,6	30	70	55	70
C56	52	60	49, 2	56,6	64,8	35	80	52	65
C62	58	66	56,0	63, 4	72,0	40	50	50	60
C68	64	72	62.4	70.4	79, 2	45	110	46	58
C75	70	79	69,2	78,4	88.0	45	125	44	55

CHARACTERISTICS (continued)

Tj = 25 °C

	Wor	king vol	tage		rential tance	Wor	king vol	tage	1	rential stance
		$V_{Z}(V)$		rdif	f (Ω)		$V_{Z}(V)$		rdif	f (SS)
	at	Iz = 1 m	A	at IZ =	= 1 mA	at l	z = 100 i	mA	at I _Z =	100 mA
BZX87	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C5V1 C5V6 C6V2 C6V8 C7V5	3, 3 4, 1 5, 6 6, 3 6, 9	3,8 5,3 6,0 6,7 7,4	4,3 5,8 6,5 7,1 7,8	425 400 40 40 20	500 500 200 120 100	4,9 5,3 5,9 6,5 7,1	5,2 5,7 6,3 6,9 7,6	5,5 6,1 6,7 7,3 8,0	1,2 1.0 0,8 0,6 0,5	2.5 2,0 2,0 2,0 1,5
C8V2 C9V1 C10 C11 C12	7,6 8,4 9,3 10,3 11,2	8,1 9,0 9,9 10,9 11,9	8,6 9,6 10,5 11,5 12,6	20 25 30 30 30	100 100 120 120 150	7,8 8,6 9,5 10,5 11,5	8,3 9,2 10,1 11,1 12,1	8,8 9,8 10,8 11,8 12,9	0,5 0.8 0,8 0,8 1,0	1,5 2,0 2,0 2,0 2,0 2,0
C13 C15	12,2 13,6	12,9 14,9 Iz = 1 m	14,0 15,4	30 30	150 150 = 1 mA	12, 5 13, 9 at I	13, 1 15, 1 7 = 50	14, 3 15, 8 mA	1,2 1,2 at Iz =	2, 5 2, 5 50 mA
C16 C18 C20 C22 C24 C27	15,2 16,7 18,7 20,7 22,6 24,9	15, 9 17, 9 19, 9 21, 9 23, 9 26, 9	17,0 19,0 21,1 23,2 25,5 28,8	30 30 30 30 30 30 30	150 150 150 150 150 150	15, 4 16, 9 19, 0 21, 0 23, 0 25, 3	16, 1 18, 1 20. 2 22, 2 24. 2 27, 2 20. 2	17, 3 19, 3 21, 5 23, 7 26, 0 29, 2	1, 2 2, 0 2, 5 2, 5 3, 0 4, 0	3,0 5,0 6.0 8.0 8,0 8,0
C30 C33 C36 C39	27,8 29,8 33,8 36,8	29,9 32,9 35,9 38,9	31,9 34,9 37,9 40,9	30 30 30 40	150 150 150 150	28, 2 31, 2 34, 2 37, 5	30, 2 33, 3 36, 3 39, 5	32,5 35,5 38,5 42,0	4,0 5,0 5,0 6.0	8,0 10 10 12
C43 C47 C51 C56 C62 C68	39,8 43,8 47,8 51,8 57,6 63,5	42,9 46,9 50,9 55,9 61,8 67,6	45,9 49,9 53,8 59,8 65,8 71,7	50 55 60 60 70 80	150 200 200 200 200 200 225	40, 5 44, 5 48, 5 52, 5 58, 5 65, 0	43.5 47,5 51.8 56.8 62.8 69.0	47,0 51,0 55,5 61,5 67,5 74,0	8 10 12 15 16 18	15 20 25 30 30 35
C75	69,3	07,0 74.5	78,6	100	250	73.0	77,5	84,0	20	35

MOUNTING METHODS

- 1. to tie-points
- 2. to solder tags
- 3. on a printed-circuit board with minimum soldering area necessary for good electrical conductance
- a. lead length = 10 mm
- b. at maximum lead length

Silicon planar voltage regulator diodes

BZX87 SERIES

April 1977

VOLTAGE REGULATOR DIODES

Silicon diodes in all-glass DO-7 envelope intended for voltage stabilization purposes. The series consists of 27 types with nominal working voltages ranging from 2,7 V to 33 V within the normalized E24 $(\pm 5\%)$ range

QUICK REFERENCE DATA

Working voltage range	v _z	nom.	2,7 to 33	V
Total power dissipation up to $T_{amb} = 50 ^{\circ}\text{C}$	P _{tot}	max.	400	mW
Non-repetitive peak reverse power dissipation $T_j = 25 \ ^{\circ}C$; t = 10 μ s	Pzsm	max.	1,1	kW
Operating junction temperature	т _і	max.	200	°C
Thermal resistance from junction to ambient in free air	R _{th j-a}	=	0,37	°C/mW

MECHANICAL DATA

Fig. 1 DO-7.

The diodes are type-branded

Cathode indicated by coloured band

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZX79 are recommended.

Mullard

BZY88 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

١F	max.	250	mΑ
I FRM	max.	250	mA
P _{tot}	max.	400	mW
Pzsm	max.	1,1	kW
⊤ _{stg}	65 to	+ 175	°C
τ _j	max.	200	°C
	, IFRM P _{tot} PZSM T _{stg}	IFRM max. P _{tot} max. PZSM max. T _{stg} —65 to	IFRM max. 250 P _{tot} max. 400 P _{ZSM} max. 1,1 T _{stg} -65 to + 175

THERMAL RESISTANCE

From junction to ambient in free air

R_{th}j₋a ~ 0,37 °C/mW

Fig. 2 Power derating curve.

Mullard

CHARACTERISTICS

 $T_j = 25 \text{ °C}$ unless otherwise specified

Forward voltage

I_F = 10 mA

٧F	<	0,9 V
----	---	-------

BZY88	worl	king vol	tane V-			temperatu oefficient	differential resistance r _{diff}					
	1	t 1 ₇ = 1				it iz = 1 n	at $I_7 = 1 \text{ mA}$					
	min.	nom.	max.		min.	-			min.	typ.	max.	
C2V7	1,9	2,15	2.4	v	-4.5	-1,7	0,6	mV/ºC	260	310	390	Ω
C3V0	2,1	2,4	2,7	v	-5.0	-1,8	-0,6	mV/°C	280	340	420	Ω
C3V3	2,4	2,75	3,0	v	-4.5	-1.9	0.5	mV/°C	300	350	440	Ω
C3V6	2,7	3,0	3,3	v	-4.5	-2,05	-0,5	mV/°C	380	410	430	Ω
C3V9	3,0	3,3	3,6	v	-3,5	-2,4	-0,5	mV/ºC	380	410	430	Ω
C4V3	3,3	3,6	3,9	v	-2,7	-2,25	-0,5	mV/ºC	340	410	430	Ω
C4V7	3,7	4,1	4,3	v	-2,5	-2,0	-0,3	mV/ºC	360	390	420	Ω
C5V1	4,3	4,65	5,0	V	-2,1	-1,9	-0,3	mV/ºC	300	340	370	Ω
C5∨6	4,8	5,3	5,7	v	-1,8	-1,4	0	mV/ºC	160	310	350	Ω
C6V2	5,7	5,9	6,5	v	0	+ 1,6	+ 3,0	mV/ºC	10	100	250	Ω
C6V8	6,3	6,7	6,9	v	+2	+3,2	+ 3,7	mV/ºC	5,0	15	70	Ω
C7V5	7,0	7,45	7,8	v	+3	+4,2	+ 5,9	mV/ºC	4,0	8,6	20	Ω
C8V2	7,8	8,1	8,5	v	+4,3	+ 5,0	+ 6,0	mV/ ⁰ C	4,0	10	20	Ω
C9V1	8,55	9,0	9,5	v	+4,5	+6,0	+ 7,0	mV/ºC	7,0	12	24	Ω
C10	9,3	9,9	10,5	v	+6,0	+6,6	+ 7,0	mV/ºC	5,0	20	50	Ω
C11	10,3	10,9	11,5	v	+7,1	+ 8,3	+ 9,0	mV/°C	5,0	25	70	Ω
C12	11,3	11,9	12,5	v	+7,6	+8,7	+ 9,2	mV/ºC	10	25	80	Ω
C13	12,3	12,9	13,0	V	+9,1	+ 10,1	+11,1	mV/ºC	10	25	90	Ω
C15	13,8	14,9	15,5	V	+ 11	+ 12,5	+ 13	mV/ºC	19	35	95	Ω
C16	15,3	15,8	16,9	V	+ 12	+13	+ 14	mV/ºC	20	45	100	Ω
C18	16,7	17,8	18,9	v	+ 14	+ 15	+ 16,5	mV/ ⁰ C	20	50	120	Ω
C20	18,7	19,8	21,0	V	+ 16	+ 17	+ 18,5	mV/ºC	20	60	140	Ω
C22	20,6	21,8	23,1	V	+ 17	+ 19	+21	mV/ºC	25	70	150	Ω
C24	22,5	23,8	25,7	v	+ 19	+21	+ 23	mV/ºC	30	85	200	Ω
C27	24,7	26,6	28,5	V	+21	+ 22,5	+ 25	mV/ºC	35	90	300	Ω
C30	27,5	29,5	31,5	V	+ 22	+24	+ 29	mV/ºC	50	180	350	Ω
C33	29,5	32,5	34,5	v	+ 23	+26	+ 35	mV/ºC	60	250	450	Ω

BZY88 SERIES

CHARACTERISTICS (continued)

 $T_j = 25 \text{ }^{O}C$ unless otherwise specified

BZY 88	working voltage V _Z					emperatu oefficient	differential resistance r _{diff}					
	8	t I _Z = 5	mA		a	t I _Z = 5 n	at I _Z = 5 mA					
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max	
C2V7	2,5	2,7	2,9	v	-4,0	-2,2	-0,6	mV/ºC	68	80	120	Ω
C3V0	2,8	3,0	3,2	V	-4,5	-2,4	-0,6	mV/ºC	70	84	120	Ω
C3V3	3,1	3,3	3,5	v	4,0	-2,3	-0,5	mV/ºC	70	86	110	Ω
C3V6	3,4	3,6	3,8	V	-3,5	-2,0	-0,5	mV/ºC	65	76	105	Ω
C3V9	3,7	3,9	4,1	v	-2,5	-2,05	-0,5	mV/ºC	60	76	100	Ω
C4V3	4,0	4,3	4,6	V	-2,5	-1,8	-0,5	mV/ºC	55	70	90	Ω
C4V7	4,4	4,7	5,0	V	-2,0	-1,55	0	mV/ºC	49	62	85	Ω
C5V1	4,8	5,1	5,4	v	-1,75		0	mV/ºC	34	46	75	Ω
C5V6	5,2	5,6	6,0	v	-1,5	-0,2	+ 1,0	mV/ºC	10	22	55	Ω
C6V2	5,8	6,2	6,6	V	+0,5	+ 2,0	+ 3,5	mV/ºC	1,0	7,0	27	Ω
C6V8	6,4	6,8	7,2	V	+2,3	+ 3,2	+ 3,8	mV/ºC	0,5	3,0	15	Ω
C7V5	7,0	7,5	7,9	V	+3,1	+ 4,2	+ 5,9	mV/ºC	0,5	3,0	15	Ω
C8V2	7,7	8,2	8,7	v	+4,2	+ 5,0	+6,0	mV/ºC	0,9	3,5	20	Ω
C9V1	8,5	9,1	9,6	v	+ 4,8	+6,0	+ 7,0	mV/ºC	1,0	4,75	25	Ω
C10	9,4	10	10,6	v	+6,0	+ 7,0	+7,5	mV/ºC	2,0	5,0	25	Ω
C11	10,4	11	11,6	V	+7,0	+8,7	+9,1	mV/ºC	3,0	7,0	25	Ω
C12	11,4	12	12,7	v	+8,5	+9,0	+ 9,6	mV/ºC	4,0	8,0	35	Ω
C13	12,4	13	14,1	v	+ 10	+ 10,5	+ 11,5	mV/ºC	4,0	10	35	Ω
C15	13,8	15	15,6	V	+ 12	+ 12,5	+ 14	mV/ºC	4,0	15	35	Ω
C16	15,3	16	17,1	V	+ 12	+ 13	+ 14	mV/ºC	5,0	20	40	Ω
C18	16,8	18	19,1	V	+ 14	+ 15	+ 18	mV/ºC	7,0	25	45	Ω
C20	18,8	20	21,2	v	+ 16	+ 17	+ 19	mV/ºC	10	30	50	Ω
C22	20,8	22	23,3	V	+17	+ 19	+21	mV/ºC	15	35	60	Ω
C24	22,7	24	25,9	V	+ 20	+21	+ 24	mV/ºC	20	40	75	Ω
C27	25,1	27	28,9	v	+22	+ 23,5	+ 27	mV/ºC	25	50	85	Ω
C30	28	30	32	V	+ 25	+ 26	+ 29	mV/ºC	30	60	95	Ω
C33	31	33	35	v	+ 27	+ 28	+ 36	mV/ºC	35	75	120	Ω

Mullard

November 1979

Voltage regulator diodes

BZY88 SERIES

BZY88	working voltage V _Z at I _Z = 20 mA					temperatu oefficient		differential resistance r _{diff}				
					a	t i _Z = 20	at I _Z = 20 mA					
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max	
C2V7	3,0	3,25	3,5	v	-3,5	-2,4	0,6	mV/ºC	18	22	26	Ω
C3V0	3,3	3,6	3,9	V	-3,5	-2,5	0,6	mV/ºC	17	21	24	Ω
C3V3	3,5	4	4,2	V	-3,3	-2,4	-0,5	mV/°C	16	20	22	Ω
C3V6	3,9	4,2	4,4	V	-2,5	-1,55	0,5	mV/ºC	16	18	20	Ω
C3V9	4,2	4,45	4,65	V	-2,4	-1,55	0,5	mV/ºC	14	16	18	Ω
C4V3	4,45	4,7	4,95	V	-2,0	-1,5	-0,5	mV/ºC	13	15	17	Ω
C4V7	4,9	5,1	5,3	V	-1,5	0,85	0	mV/ºC	12	15	17	Ω
C5V1	5,1	5,35	5,7	V	-1,5	-0,8	0	mV/bC	4,0	7,0	1.1	Ω
C5V6	5,45	5,75	6,1	V	-1,0	+1,0	+ 3,0	mV/ºC	1,5	4,0	8,0	Ω
C6V2	5,95	6,4	6,7	V	+ 1,0	+ 2,2	+ 4,0	mV/ºC	0,8	1,4	3,1	Ω
C6V8	6,6	6,9	7,25	V	+ 2,8	+ 3,2	+ 3,8	mV/ºC	0,7	1,3	3,0	Ω
C7V5	7,2	7,65	7,95	V	+ 2,5	+4,2	+ 5,9	mV/°C	0,5	1,6	5,0	Ω
C8V2	7,9	8,4	8,75	V	+4,0	+ 5,0	+6,0	mV/ºC	0,9	1,8	6,0	Ω
C9V1	8,7	9,4	9,7	V	+ 5,0	+6,0	+7,0	mV/ºC	1,0	1,85	7,0	Ω
C10	9,5	10,1	10,8	V	+7,0	+7,3	+7,5	mV/ºC	1,0	2,0	8,0	Ω
C11	10,5	11,1	11,8	V	+8,5	+9,1	+ 9,5	mV/ºC	1,0	3,0	10	Ω
C12	11,6	12,2	12,8	V	+8,9	+9,6	+ 10,3	mV/ºC	2,0	3,5	25	Ω
C13	12,6	13,2	14,3	V	(+11	+ 11,5	+ 12,5	mV/ºC	2,0	4,5	25	Ω
C15	14,1	15,3	15,9	V	+ 12	+ 13,5	+ 14,5	mV/ºC	2,0	6,0	25	Ω
C16	15,6	16,3	17,4	V	+ 13	+ 14	+ 15	mV/ºC	5,0	10	30	Ω
C18	17,2	18,4	19,6	V	+ 15	+ 16	+ 18	mV/ºC	5,0	12	30	Ω
C20	19,3	20,5	21,9	V	+ 17,5	+ 18,5	+ 20,5	mV/ºC	5,0	15	35	Ω
C22	21,3	22,6	24,1	V	+ 19	+ 20,5	+ 22,5	mV/ºC	10	18	35	Ω
C24	23,3	24,7	26,7	V	+ 20	+23	+ 25	mV/ºC	10	20	40	Ω
C27	25,8	28,1	30,1	V	+ 23	+ 25,5	+ 28	mV/ºC	10	25	45	Ω
C30	29,0	31,3	33,4	V	+ 25	+ 28	+ 32	mV/ºC	10	35	50	Ω
C33	32,0	34,5	36,6	V	+27	+ 30	+ 38	mV/ºC	10	45	60	Ω

$\mathbf{\nabla}$

CHARACTERISTICS (continued)

 $T_i = 25 \text{ oC}$ unless otherwise specified

BZY88	typ. C _d	rever	se current	I _R	typ. noise voltage **			
	V _R = 3 V	at V _R =	typ.	max.		I _Z = 1 mA		z = 5 mA
C2V7	490 pF *	1 V	4	25	μA	22	12	μV r.m.s.
C3V0	430 pF *	1 V	2	5	μA	20	11	μV r.m.s.
C3V3	380 pF *	1 V	0,51	3,0	μA	19	10	µV r.m.s.
C3V6	360 pF *	1 V	0,25	3,0	μA	18	9	μV r.m.s.
C3V9	335 pF	1 V	0,11	3,0	μA	16	8	μV r.m.s.
C4V3	270 pF	1 V	0,1	3,0	μA	15	8	μV r.m.s.
C4V7	290 pF	2 V	0,25	3,0	μA	14	7	µV r.m.s.
C5V1	275 pF	2 V	0,15	1,0	μA	13	8	μV r.m.s.
C5V6	260 pF	2 V	0,6	1,0	μA	13	9	µV r.m.s.
C6V2	240 pF	2 V	0,1	1,0	μA	14	10	μV r.m.s.
C6V8	220 pF	3 V	0,025	1,0	μA	25	15	µV r.m.s.
C7V5	190 pF	3 V	15	500	nA	33	20	μV r.m.s.
C8V2	150 pF	3 V	11	400	nA	55	28	µ∨ r.m.s.
C9V1	140 pF	5 V	8	400	nΑ	79	35	µ∨ r.m.s.
C10	110 pF	7 V	-	2,5	μA	87	43	µV r.m.s.
C11	90 pF	7∨	-	2,5	μA	92	48	µV r.m.s.
C12	80 pF	8 V		2,5	μA	100	50	µV r.m.s.
C13	65 p F	9 V	-	2,5	μA	110	52	μV r.m.s.
C15	60 pF	10 V	-	2,5	μA	120	54	μV r.m.s.
C16	55 p F	10 V	-	2,5	μA	135	56	μV r.m.s.
C18	50 p F	13 V	-	2,5	μA	160	58	μV r.m.s.
C20	45 pF	14 V	-	2,5	μA	210	60	μV r.m.s.
C22	43 pF	15 V	-	2,5	μA	255	62	μV r.m.s.
C24	42 pF	17 V	_	2,5	μA	290	65	μV r.m.s.
C27	40 pF	19 V	-	2,5	μA	320	69	μV r.m.s.
C30	35 pF	21 V	_	2,5	μA	350	73	μV r.m.s.
C33	32 pF	23 V	-	2,5	μA	380	78	µV r.m.s.

* Diode capacitance at V $_R$ = 2 V. ** Noise voltage measured using a bandwidth \pm 3 dB of 10 Hz to 50 kHz.

Mullard

OPERATING NOTES

- 1. Dissipation and heatsink considerations
- a. Steady-state conditions

The maximum allowable steady-state dissipation Ps max is given by the relationship

$$P_{s \max} \approx \frac{T_{j \max} - T_{amb}}{R_{th j-a}}$$

where: Timax is the maximum permissible operating junction temperature;

Tamb is the ambient temperature;

Rth i-a is the total thermal resistance from junction to ambient.

b. Pulse conditions (see Fig. 3)

The maximum allowable additional pulse power Pm max is given by the formula

$$P_{m \max} = \frac{(T_{j \max} - T_{amb}) - (P_s \cdot R_{th j-a})}{Z_{th}}$$

where: Ps is the steady-state dissipation, excluding that in the pulses;

 Z_{th} is the effective transient thermal resistance of the device from junction to ambient. It is a function of the pulse duration t and duty factor δ (see Fig. 9);

 δ is the duty factor and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_s when biased in the zener direction at a given zener current can be found from Fig. 18. With the additional pulsed power dissipation $P_{m max}$ calculated from the above expression, the total repetitive peak zener power dissipation $P_{ZRM} = P_s + P_{m max}$. From Fig. 18 the corresponding maximum repetitive peak zener current at P_{ZRM} can now be read. For pulse durations longer than the temperature stabilization time of the diode t_{stab} , the maximum allowable repetitive peak dissipation P_{ZRM} is equal to the maximum steady-state power $P_{s max}$. The temperature stabilization for the BZY88series is 100.s (see Fig. 9).

Fig. 3.

OPERATING NOTES (continued)

Example

The following example illustrates how to calculate the maximum permissible repetitive peak zener current of a BZY88-C7V5 zener diode mounted in free air at a maximum ambient temperature of 60 °C. The steady-state zener current is 10 mA, the duty factor δ = 0,1 and the pulse duration t = 1 ms.

The steady-state dissipation P_s at a zener current is 10 mA (from Fig. 18) = 76 mW. The thermal resistance from junction to ambient R_{th} j-a = 0,31 °C/mW.

The thermal impedance Z_{th} with a duty factor $\delta = 0,1$ and a pulse duration t = 1 ms (from Fig. 9).

$$Z_{th} = 41,5 \,^{o}C/W.$$

The maximum additional pulse power dissipation

$$P_{m max} = \frac{(T_{j max} - T_{amb}) - P_{s} \cdot R_{th j \cdot a}}{Z_{th}}$$

If $P_s = 76 \text{ mW}$, $Z_{th} = 41.5 \text{ }^{\circ}\text{C/W}$,

$$P_{m max} = \frac{(200-60) - (0,076 \times 310)}{41,5} = 2,8 W$$

therefore, the total repetitive peak power dissipation,

$$P_{ZRM} = 0,076 + 2,8 = 2,88 W.$$

From Fig. 18 the corresponding repetitive peak zener current is 350 mA.

2. Zener characteristics

The basic characteristic of a zener diode is the dynamic zener characteristic, that is, the variation of zener voltage when a current pulse is applied in the reverse direction. The slope of this characteristic is r_z . Typical dynamic characteristics at $T_j = 25$ and 150 °C are given on pages 12 and 13 for each type of diode. Because of the temperature sensitivity of the zener characteristics, the dynamic characteristics at any other operating temperature will be displaced from those at $T_j = 25$ °C by a voltage corresponding to $S_Z \times (T_n - 25)$ °C, where S_Z is the temperature coefficient of the diode and T_n is a nominal operating temperature (Figs 4 and 5).

Mullard

The static characteristic of the diode is obtained by connecting the steady-state zener voltages at various direct zener currents and may, therefore, be used to determine the operating point at any zener current. This is shown above. The slope of the static characteristic will depend on

- (1) the differential resistance, r_z;
- the rise in junction temperature due to internal dissipation and the thermal resistance from junction to ambient, Vz. Iz. R_{th} i-a;
- (3) the temperature coefficient of the diode, SZ.

From the above, the static slope resistance r_Z is found to be

$$r_Z = r_z + V_Z R_{th i-a} S_Z$$

where rz is the differential resistance, Vz is the steady-state zener voltage and is equal to

 V_{Z} being the zener voltage at $T_{j} = T_{n}$ at the working current I_{Z} .

The position of this static characteristic in relation to the dynamic characteristic at $T_j = 25$ °C is dependent on the ambient temperature and the temperature coefficient, the low-current voltage being displaced by

from the low current voltage, V_{ZO} on the dynamic characteristic at T_i = 25 ^oC (see Fig. 6).

Fig. 6 Example for positive SZ.

OPERATING NOTES (continued)

Figure 7 shows typical dynamic characteristics at $T_j \approx 25$, 150 and a nominal temperature, $T_n \, {}^{\text{o}}\text{C}$. It also shows static characteristics at ambient temperatures of 25 and $T_n \, {}^{\text{o}}\text{C}$.

Fig. 7 Example for positive S7.

Typical static characteristics for each type of diode are given on page 14. These curves were obtained with the device mounted in free air at an ambient temperature of 25 °C.

The slope resistance for pulse operation can be calculated by incorporating the thermal impedance Z_{th} into the formula for r_Z . Curves of Z_{th} plotted against pulse duration and duty factor are given in Fig. 9.

- 3. When using a soldering iron, the diode may be soldered directly into a circuit, but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
- 4. Diodes may be dip-soldered at a solder temperature of 245 °C for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a diode with the anode end mounted flush on the board with punched-through holes. For mounting the cathode end onto the board the diode must be spaced 5 mm from the underside of the printed circuit board in the case of punched-through holes or 5 mm from the top of the board for plated-through holes.
- 5. Care should be taken not to bend the leads nearer than 1,5 mm from the seals.

Voltage regulator diodes

BZY88 SERIES

Fig. 8.

Mullard

BZY88 SERIES

Fig. 12.

Mullard

$\mathbf{\nabla}$

BZY88 SERIES

Fig. 13.

Fig. 14.

BZY88 SERIES

Mullard

November 1979

BZY88 SERIES

VOLTAGE REGULATOR DIODES

200

max.

Silicon planar regulator diodes in DO-35 envelopes, intended for use as low-voltage stabilisers or voltage references. The series consists of types with nominal working voltages ranging from 3.3 to 15 V.

F(AV)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Average forward current

type number	ⁱ Zmax. (mA)	type number	Zmax. (mA)
CV7138	100	CV7105	45
CV7139	95	CV7142	40
CV7140	90	CV7143	38
CV7141	85	CV7144	34
CV7099	80	CV7145	32
CV7100	70	CV7146	28
CV7101	65	CV7106	25
CV7102	60		
CV7103	55		
CV7104	50		

Power dissipation (see also derating curve, Fig.2)	
Operating ambient temperature	
Storage temperature	

MECHANICAL DATA

Fig.1 DO-35

7266721

Dimensions in mm

Cathode indicated by coloured band. The diodes are type-branded.

Mullard

Products approved to CECC 50 005–005 (specification available on request).

mΑ

July 1982

CHARACTERISTICS

Tamb = 25 °C unless otherwise stated

working voltage*			1	differential	resistance
V _Z (V)		٧ ₂ (۱	v)	r _{diff} (Ω)	$r_{diff}(\Omega)$
IZ test = 5	mA	at Z test	= 1 mA	at I _{Z test} = 5 mA	at IZ test = 1 mA
nom.	max.	min.	max.	max.	max.
3.3	3.5	2.1	3.0	120	600
3.6	3.8	2.4	3.3	110	600
3.9	4.1	2.8	3.7	100	600
4.3	4.5	3.3	4.2	90	600
4.7	5.0	3.6	4.6	85	500
-					480
5.6	6.0	4.6			400
6.2	6.6	5.1	6.5	40	150
6.8	7.2	6.0	7.2	15	80
7.5	7.9	6.7	7.9	15	80
	0.7	74	07	15	80
-	-				100
					150
					150
12.0	12.6	11.1	12.5	60	150
13.0	14.1	12.0	14.1	75	170
					200
	V _Z (V) I _{Z test} = 5 nom. 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1	$V_{Z} (V)$ $I_{Z test} = 5 mA$ nom. max. 3.3 3.5 3.6 3.8 3.9 4.1 4.3 4.5 4.7 5.0 5.1 5.4 5.6 6.0 6.2 6.6 6.8 7.2 7.5 7.9 8.2 8.7 9.1 9.6 10.0 10.6 11.0 11.6 12.0 12.6 13.0 14.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

* $t_{\rm D}$ = 300 μ s; $\delta \le 2\%$.

CV7099 to 7106 CV7138 to 7146

CHARACTERISTICS (continued)

Tamb = 25 °C unless otherwise stated.

	temperature		reverse current			
	coefficient			at V _R		
	S _Z (%/⁰C) (mA)	(mA)	, (V) ,		
	at _{Z test} = 5 r	nA	T _{amb} = 100 °C			
	min. ma	x. max.	max.			
CV7138	-0.1 -0	.04 500	1000	2.0		
CV7139	0.10	.03 250	500	2.0		
CV7140	-0.09 -0	.02 100	200	2.0		
CV7141	-0.08 -0	.00 50	100	2.0		
CV7099	-0.07 +0	.01 400	800	3.3		
CV7100	0.055 +0	.03 250	500	3.9		
CV7101		.045 250	500	4.3		
CV7102		.06 150	300	4.7		
CV7103		.075 150	300	5.6		
CV7104		.085 100	200	6.2		
CV7105	10.005 10	005 100	· 200			
CV7105	+0.035 +0 +0.03 +0	.095 100	200 200	6.8		
CV7142 CV7143				7.5		
CV7143 CV7144	+0.03 +0		200	8.2		
	+0.03 +0		200	9.1		
CV7145	+0.04 +0	.11 20	200	10.0		
CV7146	+0.04 +0	.11 20	200	11.0		
CV7106	+0.04 +0	.11 20	200	12.0		

- ---- /

* T_{amb} = 25 to 60 °C; t_p = 300 µs; $\delta \le 2\%$.

Fig.2 Maximum allowable power dissipation versus ambient temperature.

July 1982

VOLTAGE REFERENCE DIODES

VOLTAGE REFERENCE DIODES

The BZV10 to 14 are temperature compensated voltage reference diodes in a DO-34 envelope. They are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA

			min. n	om.	max.
Reference voltage at $I_Z = 2,0 \text{ mA}$		V _{ref}	6,175 6	5 6,	825 V
Temperature coefficient at I7 = 2,0 mA			1	•	
(see notes 1 and 2 on page 3 and	BZV10	S _Z	< (),01	%/K
the graph on page 4)	BZV11	IS _Z	< 0	,005	%/K
	BZV12	ISZI	< 0	,002	%/ K
	BZV13	SZ!	< 0	,00 1	%/K
	BZV14	SZI	< 0	,0005	%/ K
Operating ambient temperature		T _{amb}	0 to + 70)	°C

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes are type-branded.

BZV10 to 14

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	١z	max.	50 mA
Working current (peak value)	^I ZM	max.	50 mA
Total power dissipation up to T_{amb} = 50 °C	Ptot	max.	400 mW
Storage temperature	⊤ _{stg}	-65	to +200 °C
Operating ambient temperature	Tamb	C	to +70 °C

THERMAL RESISTANCE

From junction to ambient in free air

R_{thj-a}

0,375 K/mW

CHARACTERISTICS

$T_{amb} \approx 25 ^{O}C$ unless otherwise specified		_	min.	nom.	max.	_
Reference voltage at $I_Z = 2,0 \text{ mA}$		V _{ref}	6,175	6,5	6,825	v
Reference voltage excursion at $I_Z = 2,0 \text{ mA}^*$					1	
Ambient temperature test points:	BZV10	j∆V _{ref} i	<	46,0		mV
$0; +25 ^{\circ}\text{C}$ and $+70 ^{\circ}\text{C}$	BZV11	∆V _{ref} i	<	23,0		mV
(see notes 1 and 2 on the next page)	BZV12	∣∆V _{ref} i	<	9,0		mν
	BZV13	∆V _{ref}	<	4,6		mV
	BZV14	∆V _{ref}	<	2,3		mν
Temperature coefficient at I _Z = 2,0 mA*						
(see notes 1 and 2 on the next page)	BZV10	S _Z	<	± 0,01		%/K
	BZV11	S _Z	<	± 0,005	5	%/K
	BZV12	¦S _Z I	< ,	± 0,002	2	%/K
	BZV13	S _Z	< :	± 0,001	l	%/K
	BZV14	S _Z	<	± 0,000)5	%/K
Differential resistance at I_Z = 2,0 mA		^r diff	tур. <	30 50		Ω Ω

Mullard

* For accuracy of Iz see Fig. 3.

Notes

1. Iz tolerance and stability of Iz.

The quoted values of ΔV_{ref} are based on a constant current Iz. Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient Sz.

- a. As the max. r_{diff} of the device can be 50 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 50 Ω = 0,5 mV. This level of ΔV_{ref} is not significant on a BZV10 ($\Delta V_{ref} \le 46$ mV), it is however very significant on a BZV14 ($\Delta V_{ref} \le 2.3$ mV).
- b. The temperature coefficient of the reference voltage S_Z is a function of I_Z . Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at the different levels of I_Z . The absolute value of I_Z is important, however, the stability of I_Z , once the level has been set, is far more significant. This applies particularly to the BZV13 and BZV14. The effect of I_Z stability on S_Z is shown in Fig. 3.
- 2. Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_{Z} = \frac{(V_{ref1} - V_{ref2}) \times 100}{(T_{amb2} - T_{amb1}) \times V_{refnom}} %/K.$$

-	-	-	
-		-	
-			
-		-	
=			-

BZV10 to 14

 ΔS_7

7267121 60 $T_{amb} = 25 \ ^{o}C$ rdiff **(**Ω**)** 40 typ 20 0 1.5 2,0 2,5 $I_Z(mA)$ Fig. 2 Typical values differential resistance. 7Z67120.A +0,3typical change of temperature coefficient +0,004versus working current 0 - 0

 ΔS_7

Fig. 3 Typical change of temperature coefficient.

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a whiskerless glass envelope. They have a very low temperature coefficient and are primarily intended for use as reference sources.

QUICK REFERENCE DATA

			min.	typ.	max	
Reference voltage at I_Z = 7,5 mA		V _{ref}	6,2	6,5	6,8	v
Temperature coefficient at $I_7 = 7,5$ mA *	BZX90:	S7	<	0,01		%/ºC
_	BZX91:		<	0,005		%/°C
	BZX92:	S ₇	<	0,002		%/ºC
	BZX93:	IS7	<	0,001		%/°C
	BZX94:	SZ	<	0,0005	i	%/°C
Operating ambient temperature		Tamb	-55	to + 100		oC

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes are type-branded.

* For accuracy of 1_Z see graphs on page 5.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	۲Z	max. 50) mA
Working current (peak value)	^I ZM	max. 50) mA
Total power dissipation up to T _{amb} = 50 ^o C	Ptot	max. 🕔 400) mW
Storage temperature	T _{stg}	-65 to +200) ^o C
Operating ambient temperature	Tamb	-55 to +100) oC
THERMAL RESISTANCE			

R_{th j-a}

0,4

°C/mW

From junction to ambient in free air

CHARACTERISTICS

 $T_{amb} = 25 \ ^{o}C$ unless otherwise specified

22			min.	nom.	max	
Reference voltage at I _Z = 7,5 mA		V _{ref}	6,2	6,5	6,8	v
Reference voltage excursion at $I_7 = 7.5$ mA *						
$T_{amb} = -55 \text{ to } + 100 ^{\circ}\text{C}$	BZX90:	$ \Delta V_{ref} $	<	100)	mV
	BZX91:	ΔV_{ref}	<	50)	mV
	BZX92:	$ \Delta V_{ref} $	<	20)	mV
	BZX93:	ΔV_{ref}]		10)	mV
	BZX94:	ΔV_{ref}	<	5	5	mV
Temperature coefficient at $I_7 = 7,5 \text{ mA}^*$						
$T_{amb} = -55 \text{ to } + 100 \text{ °C}^{-1}$	BZX90:	S _Z	<	0,01		%/°C
4.00	BZX91:	SZ	<	0,005		%/°C
	BZX92:	SZ	<	0,002		%/ ^o C
	BZX93:	Sz	<	0,001		%/ ⁰ C
	BZX94:	S _Z	<	0,0005	5	%/°C
Differential resistance at $I_Z = 7,5 \text{ mA}$		^r diff	<	15	5	Ω

NOTE

The temperature coefficient (S_Z) of the reference voltage (V $_{\rm ref}$) is obtained from the following equation:

Mullard

 $S_{Z} = \frac{V_{ref1} - V_{ref2}}{(T_{amb2} - T_{amb1}) \times V_{ref nom}} \times 100 \%^{\circ}C$

* For accuracy of I_Z see graphs on page 5.

Voltage reference diodes

BZX90 to 94

 $\mathbf{\nabla}$

 \Box

Fig. 10.

November 1979

6

Mullard

 $\mathbf{\nabla}$

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a DO-34 envelope. They have a very low temperature coefficient and are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA

			min.	nom. max.	
Reference voltage at $I_Z = 7,5 \text{ mA}$		V _{ref}	5,89	6,20 6,51	v
Effective temperature coefficient at $I_7 = 7,5 \text{ mA}^*$					
(see notes 1 and 2 on page 3 and the graphs	1N821	S _Z	<	0,01	%/K
on pages 4 and 5)	1N823	IS _Z I	<	0,005	%/K
	1N825	S _Z	<	0,002	%/K
	1N827	IS _Z I	<	0,001	%/K
	1N829	1S _Z I	<	0,0005	%/K
Operating ambient temperature		Tamb		-55 to + 100	оC

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

0,55 max 1,27 ⁽¹⁾ 1,27 (1) A 2.6 max max max 25.4 3,04 25,4 min 7283041 max min

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band

The diodes are type-branded.

Mullard

Dimensions in mm

^{*} For accuracy of Iz see graphs on pages 4 and 5.

1N821 to 1N829

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	١z	max.	50	mA
Working current (peak value)	IZМ	max.	50	mA
Total power dissipation up to T_{amb} = 50 ^o C	Ptot	max.	400	mW
Storage temperature	⊤ _{stg}	-65 to + 200		٥C
Operating ambient temperature	T _{amb}	-55 to	+ 100	°C

R_{th j-a}

=

0,375 K/mW

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

 $T_i = 25 \text{ oC}$ unless otherwise specified

,			min.	nom. max.	
Reference voltage at $I_Z = 7,5 \text{ mA}$		V _{ref}	5,89	6,20 6,51	v
Reference voltage excursion at $I_Z = 7,5 \text{ mA}^*$ ambient temperature test points: -55; + 25; + 75; + 100 °C (see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)	1N821 1N823 1N825 1N827 1N829	ΔV _{ref} ΔV _{ref} ΔV _{ref} ΔV _{ref}	<	48 19 9	mV mV mV mV mV
Effective temperature coefficient at I ₇ = 7,5 mA ⁺		∆V _{ref}		5	III V
(see notes 1 and 2 on page 3 and	1N821	S _Z	<	0,01	%/K
the graphs on pages 4 and 5)	1N823	SZI	<	0,005	%/K
	1N825	SZ I	<	0,002	%/K
	1N827	S _Z	<	0,001	%/K
	1N829	S _Z	<	0,0005	%/K
Differential resistance at I _Z = 7,5 mA 1N821 to 1N829		rdiff	<	15	Ω

Mullard

* For accuracy of IZ see graphs on pages 4 and 5.

Notes

1. Iz tolerance and stability of Iz.

The quoted values of ΔV_{ref} are based on a constant current I_Z. Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient S_Z.

- a. As the max. r_{diff} of the device can be 15 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 15 Ω = 0,15 mV. This level of ΔV_{ref} is not significant on a 1N821 ($\Delta V_{ref} < 96$ mV), it is however very significant on a 1N829 ($\Delta V_{ref} < 5$ mV).
- b. The temperature coefficient of the reference voltage S_Z is a function of I_Z . Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at different levels of I_Z . The absolute value of I_Z is important, however, the stability of I_Z , once the level has been set, is far more significant. This applies particularly to the 1N829.

The effect of Iz stability on Sz is shown in the graph on page 5.

2. Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_Z = \frac{(V_{ref 1} - V_{ref 2}) \times 100}{(T_{amb 2} - T_{amb 1}) \times V_{ref nom}} %/K$$

-	-	
	_	
-		-
-		

1N821 to 1N829

Maximum reference voltage variation (line section) caused by temperature variations within the range from -55 °C to +100 °C at a constant working current of 7,5 mA. The voltage variations may shift horizontally within the shaded area. The zero point may vary from 5890 mV to 6510 mV and differs from diode to diode.

Voltage reference diodes

1N821 to 1N829

Mullard

 \Box

June 1982

1N821 to 1N829

Mullard

June 1982

RECTIFIER DIODES (Low power)

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY438	BY228	
Repetitive peak reverse voltage	VRRM	max.	1200	1500	v
Working peak forward current	FWM	max.		5	А
Repetitive peak forward current	^I FRM	max.		10	А
Total reverse recovery time	^t tot	<		20	μs

MECHANICAL DATA

Fig.1 SOD 64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type branded.

BY228 BY438

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Non-repetitive peak reverse voltage			BY438	BY228	-
during flashover of picture tube	V _{RSM}	max.	1300	1650	v
Repetitive peak reverse voltage	VRRM	max.	1200	1500	v
Working reverse voltage	VR₩	max.	1200	1500	v
Working peak forward current		FWM	max.	5	Α
Repetitive peak forward current		FRM	max.	10	Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _j = 140 °C prior to surge; with reapplied VRWmax		^I FSM	max.	50	A
Storage temperature		T _{stg}	-65	to +175	ос
Junction temperature		тј	max.	140	٥C
THERMAL RESISTANCE					
Influence of mounted method					
1. Thermal resistance from junction to tie-point at a lead length of 10 mm		R _{th} j-tp	=	25	κ/w
2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu there are 240 um 5 in 2		в.,		76	
Cu-thickness ≥ 40 µm; Fig. 2		R _{th j-a}	=	75	K/W

CHARACTERISTICS

Forward voltage *			
I _F = 5 A; T _j = 25 °C	VF	<	1,5 V*
Reverse current			
V _R = V _{RWmax} ; T _j = 140 °C	I _R	<	200 μA
Total reverse recovery time when switched from			
l F = 1 A;dl F/dt = 0,05 A/μs; T _j = 140 °C	t _{tot}	<	20 μs
Forward recovery time when switched to			
$I_F = 5 A \text{ with } t_r = 0,1 \ \mu s; T_j = 140 \ ^{\circ}C$	tfr	<	1 μs

* Measured under pulse conditions to avoid excessive dissipation.

Fig. 5 — $T_j = 25 \text{ °C};$ --- $T_j = 140 \text{ °C}.$

Fig. 6 P_{tot} = power dissipation including switching losses: ---- 819 lines; <u>625 lines;</u>

2

S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage

0 0

E-W modulator circuit;

IFWM is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

Mullard

4

FWM (A)

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal IFWM; 25% safety margin for tolerance and spreads is taken into account.

Mullard

Time base circuit (S.R.T. D1 = BY228 or BY438.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

		-	
	-		
÷			
-			
-			

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	к/W
R _{th e-a}	410	300	230	185	155	к/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{th tp-a}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{th to-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits and PPS (power-pack system) circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY458	1	BY448	
Repetitive peak reverse voltage	VRRM	max.	1200		1500	v
Working peak forward current	^I FWM	max.		4		Α
Repetitive peak forward current	⁽ FRM	max.		8		Α
Total reverse recovery time	^t tot	<		20		μs

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting value in accordance with the Absolute Maximum System (IEC 134)

		BY458	E	3Y448	
Non-repetitive peak reverse voltage during flashover of picture tube	V _{RSM}	max. 1300		1650	v
Repetitive peak reverse voltage	V _{RRM}	max. 1200		1500	v
Working peak forward current	I FWM	max.	4		Α
Repetitive peak forward current	I FRM	max.	8		Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 ^o C					
prior to surge; with reapplied VRRMmax	IFSM	max.	30		Α
Storage temperature	т _{stg}	–65 to ·	+175		oC
Operating junction temperature	тј	max.	140		٥C

THERMAL RESISTANCE

Influence of mounting method (see also OPERATING NOTES and Fig. 11)

The quoted value of $R_{th j-a}$ should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness $\ge 40 \,\mu$ m; Fig. 2

R_{thi-a} =

100 °C/W

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N. Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N. Bending the leads through 90° is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

Mullard

April 1979

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance > 5 mm from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm, the maximum allowed solder temperature is **300** °C, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soldering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage			
I _F = 3 A; T _j = 25 °C	٧F	<	1,6 ∨*
Reverse current			
V _R = V _{RRMmax} ; T _j = 140 °C	⁽ R	<	200 µA
Total reverse recovery time when switched from			
l _F = 1 A; -dl _F /dt = 0,05 A/μs; T _j = 140 °C	^t tot	<	20 µs
-			

* Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

< 1 μs

Fig. 6 P_{tot} = maximum power dissipation including switching losses; - - - 819 lines; ---- 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; I_{FWM} = the nominal peak diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal I_{FWM} ; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

Fig. 8 Basic conventional horizontal deflection circuit.

BY448 BY458

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{the-tp}	15	30	45	60	75	°C/W
R _{the-a}	580	445	350	290	245	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting similar to method given on page 2: R_{th tp-a} = 70 °C/W.

2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ °C/W}.$$

2,25 cm² R_{th tp-a} = 45 °C/W

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

Dimensions in mm

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers and for use in tiny vision black-and-white television receivers. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 9 kV, see page 3.

QUICK REFERENCE DATA

Working reverse voltage	V _{RW}	max	16 kV
Repetitive peak reverse voltage	VRRM	max	18 kV
Average forward current	lF(AV)	max	2,5 mA
Junction temperature	т	max	100 °C
Reverse recovery			
Recovery charge	۵ _s	typ	2,5 nC
Recovery time	t _{rr}	typ	0,4 μs

MECHANICAL DATA

SOD-56

Available for current production only; not recommended for new designs.

BY476

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Working reverse voltage	V _{RW}	max	16	kV
Repetitive peak reverse voltage	VRRM	max	18	kV
Non-repetitive peak reverse voltage (t \leq 10 ms)	V _{RSM}	max	21	kV
Currents				
Average forward current (averaged				
over any 20 ms period)	^I F(AV)	max	2,5	mA
Repetitive peak forward current	^I FRM	max	500	mA *
Temperatures				
Storage temperature	T _{stg}	-65 to	o +100	oC
Junction temperature	т _ј	max	100	°C
CHARACTERISTICS				
Forward voltage at I _F = 100 mA; T _j = 100 $^{\circ}$ C	۷F	<	44	v
Reverse current at V_R = 15 kV; T_j = 100 °C	۱ _R	<	5	μA
Reverse recovery when switched from				
I _F = 200 mA to V _R = 100 V with				
$-dI_{F}/dt = 200 \text{ mA}/\mu s; T_{i} = 25 ^{O}C$				
Recovery charge	Qs	typ	2,5	nC
Recovery time	trr	typ	0,4	μs
		~	0 1 5	-

tf

>

0,15 µs

* The rectifier can withstand peak currents occurring at flashover in the picture tube.

Mullard

Fall time

When used at voltages above 9 kV diode should be potted in such a way that $R_{\mbox{th}\ j\mbox{-a}}$ is less than 120 $^{\rm O}C/W.$

Typical operating circuit

Typical applied voltage

BY476

Mullard

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODE

E.H.T. rectifier diode in a glass envelope intended for use in high-voltage applications such as multipliers, e.g. tripler circuits. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be used in a suitable insulating medium (resin, oil or special arrangements in test-cases).

QUICK REFERENCE DATA

Working reverse voltage	∨ _{RW}	max.	11,5 kV	
Repetitive peak reverse voltage	V _{RRM}	max.	15 kV	-
Average forward current	^I F(AV)	max.	4 mA	
Junction temperature	т	max.	120 °C	
Reverse recovery charge	Qs	<	1 nC	
Reverse recovery time	t _{rr}	typ.	0,2 μs	

MECHANICAL DATA

Fig. 1 SOD-61. L = min. 29; G = max. 8,2. Dimensions in mm

The cathode is indicated by a purple band on the lead.

BY509

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Working reverse voltage	∨ _{RW}	max.	11,5 kV
Repetitive peak reverse voltage	V _{RRM}	max.	12,5 kV
Repetitive peak reverse voltage; t = 1 min; T _{amb} = 25 °C	V _{RRM}	max.	15 kV
→ Non-repetitive peak reverse voltage; t ≤ 10 ms	V _{RSM}	max.	15 kV
Average forward current (averaged over any 20 ms period)	^I F(AV)	max.	4 mA
Repetitive peak forward current	FRM	max.	500 mA*
Storage temperature	T _{stg}	-65 t	to +120 °C
Junction temperature	тј	max.	120 °C
CHARACTERISTICS			
Forward voltage I _F = 100 mA; T _j = 120 ^o C	VF	<	43 ∨**

 $I_F = 100 \text{ mA; } T_j = 120 \text{ }^{\circ}\text{C}$ Reverse current $V_R = 11,5 \text{ kV; } T_j = 120 \text{ }^{\circ}\text{C}$ Reverse recovery when switched from

 $F = 100 \text{ mA to } V_R \ge 100 \text{ V with}$ -dI_F/dt = 200 mA/ μ s; T_i = 25 °C

recovery charge recovery time fall time

IR

Q,

t_{rr}

tŕ

<

<

>

typ.

3 µA

1 nC

0,2 µs

0,1 µs

Fig. 2 Definitions of Os, trr and tf.

* The device can withstand peak currents occurring at flashover in the picture tube.

Mullard

** Measured under pulse conditions to avoid excessive dissipation.

Silicon e.h.t. soft-recovery rectifier diode

BY509

May 1982

BY509

May 1982

4

Mullard

HIGH VOLTAGE SOFT RECOVERY RECTIFIER DIODE

Glass-passivated rectifier diode in hermetically sealed axial-lead glass envelope. For high voltage applications such as grid 2 supply in colour television picture tubes and as general purpose rectifiers for high frequencies. The diode has non-snap-off characteristics.

QUICK REFERENCE DATA

Working reverse voltage	V _{RW}	max.	1500 V
Repetitive peak reverse voltage	VRRM	max.	1800 V
Average forward current	^I F(AV)	max.	85 mA
Repetitive peak forward current	IFRM	max.	800 mA
Junction temperature	т _і	max.	120 °C
Reverse recovery charge	Q _s	<	1,0 nC

MECHANICAL DATA

Fig. 1 SOD-61A.

G = max. 4,9; L = min. 32,5.

The cathode is indicated by a black band on the lead. Diodes are type branded.

Dimensions in mm

BY584

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Limiting values in accordance with the Absolute wa	ximum System (ie	:0 1347.		
Working reverse voltage		VRW	max.	1500 V
Repetitive peak reverse voltage		VRRM	max.	1800 V
Non-repetitive peak reverse voltage		VRSM	max.	1800 V
Average forward current (averaged over any 20 ms)				95 — A
$T_{tp} = 25 \text{ °C}$; lead length = 10 mm		⁽ F(AV)	max.	85 mA
$T_{amb} = 60 \ ^{\circ}C$; p.c.b. mounting see Fig. 2		¹ F(AV)	max.	50 mA
Repetitive peak forward current		FRM	max.	800 mA
Non-repetitive peak forward current				
t < 10 ms, half sinewave, T _i = T _{i max} prior to surge		FSM	max.	5 A
Storage temperature		T _{stg}	65 te	o +120 ℃
Junction temperature		т _ј	max.	120 °C
		J		
THERMAL RESISTANCE				
From junction to ambient when mounted				
on a 1,5 mm thick epoxy-glass p.c.b.; Cu thick prove \geq 40 ym; see Fig. 2		R.L.	=	155 K/W
Cu-thickness $>$ 40 μ m; see Fig. 2		R _{th j-a}		100 10/10
CHARACTERISTICS				
Forward voltage * I _F = 100 mA; T _i = 120 ^o C		VF	<	8,5 V
Reverse current				
V _R = V _{RW} ; T _i = 120 °C		I _R	<	3 μΑ
Reverse recovery when switched from IF = 100 mA to V _R > 100 V with _dIF/dt = 200 mA/µs; Tj = 25 °C				
recovery charge		۵s	<	1 nC
recovery time		trr	typ. >	0,2 μs 0,1 μs
fall time		tf	/	0,1 μ5
$\begin{array}{c} \bullet & 50 \\ \bullet & 25 \\ \bullet & 25 \\ \bullet & 1 \\ \bullet & 7 \\ \bullet & 1 \\ \bullet & 0 \\ \bullet & $	I _F I _F dI _F	t _{rr} -		time
	1	١		

dl_R dt 10% 90%

7272671.1

Fig. 2 Device mounted on a printed circuit board.

* Measured under pulse conditions to avoid excessive dissipation.

Mullard

High voltage soft recovery rectifier diode

Fig. 4 Maximum permissible average forward current as a function of the ambient temperature; $V_R = V_{RW}$ max; a = 1,42, mounting Fig. 2.

 $a = \frac{1}{F(RMS)} / \frac{1}{F(AV)}; V_R = V_{RW max}; \delta = 0.5.$

Fig. 5 -----
$$T_j = 25 \,^{\circ}C;$$
 ---- $T_j = 120 \,^{\circ}C.$

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

$$a = 1,42; V_{R} = V_{RW max}; \delta = 0,5^{*}.$$

* Figs 4 and 7 apply to switched mode application.

APPLICATION INFORMATION

Fig. 8 Basic circuit for voltage supply of grid 2 incolour television picture tubes. $D_1 = BY584$. Stable continuous operation is ensured at an ambient temperature up to 70 °C.

Fig. 10 Maximum permissible average forward current as a function of ambient temperature. $V_B = 1500 \text{ V}$; diode used in circuit Fig. 8 mounted as in Fig. 2.

Mullard

April 1982

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

_		
	-	

Fig. 11 Thermal model. R_{th j-e} = 35 K/W.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	38	76	114	152	190	K/W
R _{th e-a}	750	560	410	330	280	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance Rth tp-a is 70 K/W.

2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.

3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

Reverse recovery time	trr	<		2	5	ns
Non-repetitive peak reverse energy	ERSM	max.		4	0	mJ
Average forward current	F(AV)	max.			2	A
Continuous reverse voltage	VR	max.	50	100	150	200 V
Repetitive peak reverse voltage	VRRM	max.	50	100	150	200 V
		BYV2	7-50	100	150	200

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

a 3,81 max min a 4,57 28 min min a 4,57 28 min 72725512

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	7-50 100 150	200
Repetitive peak reverse voltage	VRRM	max.	50 100 150	200 V
Continuous reverse voltage	۷ _R	max.	50 100 150	200 V
Average forward current (switching losses negligible up to 200 kHz) square wave; δ = 0,5				
T _{tp} = 85 ^o C; lead length = 10 mm T _{amb} = 60 ^o C; Fig. 2	^I F(AV) ^I F(AV)	max. max.	2 1,3	A A
Repetitive peak forward current	^I FRM	max.	15	А
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; with reapplied V _{RRM}	FSM	max.	50	A
Non-repetitive peak reverse avalanche energy; I _R = 600 mA; prior to surge; with inductive load switched off:				
at <u>T</u> j = 25 ^o C	ERSM	max.	40	mJ
at Tj = Tj max	ERSM	max.	20	mJ
Storage temperature	T _{stg}		65 to + 175	٥C
Junction temperature	т _ј	max.	175	٥C
THERMAL RESISTANCE				
Influence of mounting method				
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=	46	K/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 				
Cu-thickness ≥ 40 µm; Fig. 2	R _{th j-a}	=	100	K/W

Fig. 2 Mounted on a printed-circuit board.

Mullard

April 1981

CHARACTERISTICS

 $T_i = 25 \text{ oC}$ unless otherwise specified

		BYV27-50	100	150	200	
Reverse avalanche breakdown voltage						
1 _R = 0,1 mA	V(BR)R	55	110	165	220	V
Forward voltage*						
I _F = 3 A; T _j = T _{j max}	VF	<	0	,88		V
I _F = 3 A	٧F	<	່ 1	,07		V
Reverse current						
V _R = V _{RRMmax} ; Tj ≈ 25 ºC V _R = V _{RRMmax} ; Tj = 165 ºC	I R	<		1		μA
V _R = V _{RRMmax} ; T _j = 165 °C	I _R	<		50		μA
Reverse recovery time when switched from						
$I_F = 0.5 \text{ A to } I_R = 1 \text{ A}$; measured at $I_R = 0.25 \text{ A}$	t _{rr}	<		25		ns
for definition see Figs 3 and 4						

Fig. 3 Test circuit.

Input impedance oscilloscope 1 M Ω ; 22 pF. Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

Reverse recovery when switched from $I_F = 1 A \text{ to } V_R \ge 30 \text{ V with}$ $-dI_F/dt = 20 \text{ A}/\mu \text{s}$ (see Fig. 5) recovered charge recovery time

 $\begin{array}{ccc} Q_{s} & < & 15 \ nC \\ t_{rr} & < & 50 \ ns \end{array}$

Mullard

Fig. 7 a = $I_F(RMS)/I_F(AV)$; $V_R = V_RRMmax$ Pulsed reverse voltage; $\delta = 0.5$.

(Including reverse current losses and switching losses up to f = 200 kHz).

Epitaxial avalanche diodes

BYV27 SERIES

Fig. 8 Maximum average forward current. The curves include losses due to reverse current and switching up to f = 200 kHz. Pulsed reverse voltage, δ = 0,5. V_R = V_{RRMmax}.

Square wave current, a = 1,42.

Mullard

April 1981

Fig. 13 Maximum values reverse current.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model.

By using this thermal model and the dissipation graph (Fig. 7) any temperature can be calculated.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

		unit				
thermal resistance	5	10	15	20	25	mm
R _{the-tp}	15	30	45	60	75	K/W
R _{th e-a}	580	445	350	290	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{th tp-a}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead $R_{th tp-a}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead $R_{th tp-a}$ is 45 K/W.

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general in high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV2	8-50	100	150	200	
Repetitive peak reverse voltage	VRRM	max.	50	100	150	200	v
Continuous reverse voltage	۷ _R	max.	50	100	150	200	۷
Average forward current	F(AV)	max.		3,	5		А
Non-repetitive peak reverse energy	ERSM	max.	40				mJ
Reverse recovery time	t _{rr}	<		3	0		ns

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	8-50	100	150	200	
Repetitive peak reverse voltage	V _{RRM}	max.	50	100	150	200	ν
Continuous reverse voltage	VR	max.	50	100	150	2 0 0	V
Average forward current (averaged over any 20 ms period)							
$T_{tp} = 85 ^{o}C$; lead length = 10 mm	F(AV)	max.			3,5		A
$T_{amb} = 60 {}^{o}C; p.c.b. mounting (see Fig. 2)$	^I F(AV)	max.			1,9		А
Repetitive peak forward current	^I FRM	max.			25		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; with reapplied V _{RRM}	^I FSM	max.			90		A
Non-repetitive peak reverse avalanche energy; I _R = 600 mA; with inductive load switched off							
prior to surge; T _j = 25 ^o C	ERSM	max.			40		mJ
prior to surge; $T'_j = T_j \max$	ERSM	max.			20		mJ
Storage temperature	T _{stg}		-6	5 to +1	75		oC
Junction temperature	тј	max.		1	75		°C
THERMAL RESISTANCE							
Influence of mounting method							
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=			25		K/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 							
Cu-thickness \geq 40 μ m; Fig. 2	R _{th} j₋a	×			75		K/W

Mullard

April 1982

μA μA

CHARACTERISTICS

T _i = 25 ^o C, unless otherwise specified							
Poueros evelescho brestudever velteres		BYV	28-50	100	150	200	
Reverse avalanche breakdown voltage I _R = 0,1 mA	V(BR)R	>	55	110	165	220	v
Forward voltage*							
Ι _F = 5 A;	VF	<		1,	10		۷
I _F = 5 A; T _j = T _{j max}	٧F	<		0,		v	
Reverse current							
$V_R = V_{RRMmax}; T_j = 25 ^{o}C$	I _R	<			1		μA
$V_R = V_{RRMmax}$; $T'_j = 165 {}^{\circ}C$	I _R	<		1	50		μA
Reverse recovery time when switched from I _F = 0,5 A to I _R = 1 A; measured at I _R = 0,25 A for definition see							
Figs 3 and 4	trr	<			30		ns

Fig. 3 Test circuit.

Input impedance oscilloscope 1 M Ω ; 22 pF; Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

Fig. 4 Reverse recovery time characteristic.

* Measured under pulse conditions to avoid excessive dissipation.

Reverse recovery when switched from $I_F = 1 A \text{ to } V_R \ge 30 \text{ V}$ with $-dI_F/dt = 20 \text{ A}/\mu \text{s}$ (see Fig. 5) recovered charge recovery time

Fig. 5 Definitions of t_{rr} and Q_s.

current. Pulsed reverse voltage; $\delta = 50\%$.

a = |F(RMS)/IF(AV); VR = VRRMmax.

Mullard

Fig. 6 Forward current as a function of the maximum forward voltage.

Fig. 8 Reverse current as a function of the junction temperature

Fig. 9 Maximum average forward current. The curves include losses due to reverse current and switching up to f = 200 kHz. Pulsed reverse voltage; δ = 0,5 V_R = V_{RRM} max-Square-wave current; a = 1,42.

-		
-		
-	-	
		-
-		
÷		-

Fig. 10 Maximum average forward current. The curve includes losses due to reverse current and switching up to f = 200 kHz; mounting method see Fig. 2.

Pulsed reverse voltage; $\delta = 0.5 V_R = V_{RRM}$ max. Square-wave current; a = 1,42.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12 Thermal model. $R_{th j-e} = 12 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal	lead length					unit
resistance	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	K/W
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness $\ge 40 \ \mu$ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{th\ tp-a}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 7) and the above model.

Mullard

April 1982

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV95A	В	с
Repetitive peak reverse voltage	VRRM	max.	200	400	600 V
Continuous reverse voltage	VR	max.	200	400	600 V
Average forward current	IF(AV)	max.		1,5	А
Non-repetitive peak forward current	^I FSM	max.		35	А
Non-repetitive peak reverse energy	ERSM	max.		10	mJ
Reverse recovery time	trr	<		250	ns

MECHANICAL DATA Fig. 1 SOD-57. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

BYV95A; B; C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYV95A	в	С	
Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	v
Continuous reverse voltage	VR	max.	200	400	600	ν
Average forward current (averaged over any 20 ms period) T _{to} = 65 °C: lead length 10 mm	I S (A V)	max.		1.5		A
$T_{amb} = 65 ^{\circ}C;$ Fig. 2		max.		0,8		A
Repetitive peak forward current	FRM	max.		10		А
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_j max$ prior to surge; $V_R = V_{RRMmax}$	FSM	max.		35		A
Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_j \text{ max}$ prior to surge; with inductive						
load switched off	ERSM	max.		10		mJ
Storage temperature	T _{stg}		-65 to	+ 175		oC
Operating junction temperature	т _ј	max.		175		°C
THERMAL RESISTANCE						
Influence of mounting method						
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=		46		°C/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 						
Cu-thickness \geq 40 μ m; Fig. 2	R _{th} j-a	=		100		°C/W
	Continuous reverse voltage Average forward current (averaged over any 20 ms period) $T_{tp} = 65 ^{\circ}$ C; lead length 10 mm $T_{amb} = 65 ^{\circ}$ C; Fig. 2 Repetitive peak forward current Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j max}$ prior to surge; $V_R = V_{RRMmax}$ Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_{j max}$ prior to surge; with inductive load switched off Storage temperature Operating junction temperature THERMAL RESISTANCE Influence of mounting method 1. Thermal resistance from junction to tie-point at a lead length of 10 mm 2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board;	Continuous reverse voltageVRAverage forward current (averaged over any 20 ms period)VR $T_{tp} = 65 ^{\circ}C$; lead length 10 mmIF(AV) $T_{amb} = 65 ^{\circ}C$; Fig. 2IF(AV)Repetitive peak forward currentIFRMNon-repetitive peak forward current (t = 10 ms; half sine-wave) Tj = Tj max prior to surge; VR = VRRMmaxIFSMNon-repetitive peak reverse avalanche energy; IR = 400 mA; Tj = Tj max prior to surge; with inductive load switched offERSMStorage temperatureTstgOperating junction temperatureTjTHERMAL RESISTANCE Influence of mounting methodI. Thermal resistance from junction to tie-point at a lead length of 10 mmRth j-tp2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board;Ith Influence of mounting method	Continuous reverse voltageVRmax.Average forward current (averaged over any 20 ms period)Ttp = 65 °C; lead length 10 mmIF(AV)max.Tamb = 65 °C; Fig. 2IF(AV)max.Repetitive peak forward currentIFRMmax.Non-repetitive peak forward current (t = 10 ms; half sine-wave) Tj = Tj max prior to surge; VR = VRRMmaxIFSMmax.Non-repetitive peak reverse avalanche energy; IR = 400 mA; Tj = Tj max prior to surge; with inductive load switched offERSMmax.Storage temperatureTstgOperating junction temperatureTjmax.THERMAL RESISTANCE Influence of mounting method1.Thermal resistance from junction to tie-point at a lead length of 10 mmRth j-tp2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board;Rth j-tp	Repetitive peak reverse voltage V_{RRM} max.200Continuous reverse voltage V_R max.200Average forward current (averaged over any 20 ms period) $T_{tp} = 65 ^{\circ}C$; lead length 10 mm $I_F(AV)$ max. $T_{amb} = 65 ^{\circ}C$; Fig. 2 $I_F(AV)$ max.IF(AV)Repetitive peak forward current I_FRM max.Non-repetitive peak forward current I_FRM max.Non-repetitive peak forward current I_FSM max.Non-repetitive peak reverse avalanche energy; $I_R = 400 $ mA; $T_j = T_j $ max prior to surge; with inductive load switched offERSMmax.Storage temperature T_{stg} -65 toOperating junction temperature T_j max.THERMAL RESISTANCE Influence of mounting method1.Thermal resistance from junction to tie-point at a lead length of 10 mm $R_{th j-tp} =$ 2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; A_{th} A_{th}	Repetitive peak reverse voltageVRRMmax.200400Continuous reverse voltageVRmax.200400Average forward current (averaged over any 20 ms period)Ttp = 65 °C; lead length 10 mmIF(AV)max.1,5Tamb = 65 °C; Fig. 2IF(AV)max.0,811Repetitive peak forward currentIFRMmax.10Non-repetitive peak forward current (t = 10 ms; half sine-wave) Tj = Tj max prior to surge; VR = VRRMmaxIFSMmax.35Non-repetitive peak reverse avalanche energy; IR = 400 mA; Tj = Tj max prior to surge; with inductive load switched offERSMmax.10Storage temperatureTstg-65 to + 175Operating junction temperatureTjmax.175THERMAL RESISTANCE 	Repetitive peak reverse voltage V_{RRM} max. 200 400 600 Continuous reverse voltage V_R max. 200 400 600 Average forward current (averaged over any 20 ms period) $T_{tp} = 65 ^{\circ}C$; lead length 10 mm $I_{F}(AV)$ max. $1,5$ $T_{amb} = 65 ^{\circ}C$; Fig. 2 $I_{F}(AV)$ max. $0,8$ Repetitive peak forward current I_{FRM} max. $0,8$ Non-repetitive peak forward current I_{FRM} max. 10 Non-repetitive peak forward current I_{FSM} max. 35 Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{mA}; T_j = T_j \text{max}$ prior to surge; with inductive load switched off E_{RSM} max. 10 Storage temperature T_{stg} $-65 \text{to} + 175$ Operating junction temperature T_j max. 175 THERMAL RESISTANCE Influence of mounting method $R_{th j:tp} = 46$ 2. Thermal resistance from junction to tie point at a lead length of 10 mm $R_{th j:tp} = 46$

Fig. 2 Mounted on a printed-circuit board.

BYV95A; B; C

CHARACTERISTICS

T_i = 25 ^oC unless otherwise specified

			BYV95A	В	C	
Forward voltage						
I _F = 3 A	٧F	<	1,6	1,6	1,6	
$I_F = 3 A; T_j = T_j max$	۷F	<	1,35	1,35	1,35	v *
Reverse avalanche breakdown voltage					1	
I _R = 0,1 mA	V(BR)R	>	300	500	700	v
Reverse current						
V _R = V _{RRMmax} ; T _j = 165 ^o C	۱R	<		150		μA
Reverse recovery when switched from $I_F = 1 A$ to $V_R \ge 30 V$ with $-dI_F/dt = 20 A/\mu s$						
recovered charge	Qs	<		250		nC
recovery time	t _{rr}	<		250		ns
Maximum slope of reverse recovery current when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$						
with $-dI_F/dt = 1 A/\mu s$	dl _R /dt	<		6		A∕µs

 $\begin{array}{c} & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & &$

* Measured under pulse conditions to avoid excessive dissipation.

 Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

a = IF(RMS)/IF(AV); VR = VRRMmax

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Mullard

Avalanche fast soft-recovery rectifier diodes

Fig. 7 Maximum slope of reverse recovery current. $T_i = 25 \text{ °C}$

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application. $V_R \approx V_{RRMmax}; \delta = 50\%; a = 1,57.$

Mullard

BYV95A; B; C

Fig. 11 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

6

Avalanche fast soft-recovery rectifier diodes

BYV95A; B; C

H

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model R_{th i-e} = 18 K/W.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	к/w
R _{th e-a}	580	445	350	290	245	к/w

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

Mullard

April 1982

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

		B	YV96D	BYV96E
Repetitive peak reverse voltage	VRRM	max.	800	1000 V
Continuous reverse voltage	٧ _R	max.	800	1000 V
Average forward current	^I F(AV)	max.	1,5	Α
Non-repetitive peak forward current	FSM	max.	35	А
Non-repetitive peak reverse energy	ERSM	max.	10	mJ
Reverse recovery time	trr	<	300	ns

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

				BYV96D	BYV	96E
	Repetitive peak reverse voltage	VRRM	max.	800	100	0 V
	Continuous reverse voltage	V _R	max.	800	100	0 V
	Average forward current (averaged over any 20 ms period)					
	T _{tp} = 55 °C; lead length 10 mm	F(AV)	max.	1,	5	Α
	$T_{amb} = 55 $ °C; Fig. 2	F(AV)	max.	0,	8	Α
	Repetitive peak forward current	FRM	max.	1	0	Α
	Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_j max$ prior to surge; $V_R = V_{RRM} max$	^I FSM	max.	3	5	А
	Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_{j \text{ max}}$ prior to surge; with inductive load switched off	F	-	1	0	
		ERSM	max.			mJ
	Storage temperature	⊤ _{stg}		-65 to	+ 1/5	oC
-	Operating junction temperature	т _ј	max.	17	5	°C
	THERMAL RESISTANCE					
	Influence of mounting method					
	 Thermal resistance from junction to tie-point at a lead length of 10 mm 		Rt	hj-tp =	- 46	K/W
	2. Thermal resistance from junction to ambient when					

_

R_{th j-a}

= 100 K/W

mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness \ge 40 μ m; Fig. 2

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

 $T_i = 25 \text{ oC}$ unless otherwise specified

		BYV960) BY\	V96E
Forward voltage IF = 3 A IF = 3 A; Tj = Tj max	V _F V _F	< 1,6 < 1,35		1,6 V* 35 V*
Reverse avalanche breakdown voltage IR ≈ 0,1 mA	V(BR)R	> 900	11	00 V
Reverse current $V_R = V_{RRM max}$; $T_j = 165 {}^{O}C$ Reverse recovery when switched from $I_F = 1 A$ to $V_R \ge 30 V$ with $-dI_F/dt = 20 A/\mu s$	^I R	<	150	 μΑ
recovered charge recovery time	Q _s t _{rr}		400 300	nC ns
Maximum slope of reverse recovery current when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$; $-dI_F/dt = 1 \text{ A}/\mu \text{s}$	dl _R /dt	<	5	A/µs

BYV96D BYV96E

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current. The graph is for switched-mode application.

Mullard

Avalanche fast soft-recovery rectifier diodes

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRM max}$; $\delta = 50\%$; a = 1,57.

BYV96D

BYV96E

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.

Mounting method see Fig. 2.

The graph is for switched-mode application. $V_{R} = V_{RRM max}; \delta = 50\%; a = 1,57.$

April 1982

Ξ

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model. R_{th j-e} = 18 K/W.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th} e-tp	15	30	45	60	75	K/W
R _{th} e-a	580	445	350	290	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead $R_{th tp-a}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead $R_{th tp-a}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

CONTROLLED AVALANCHE RECTIFIER DIODES

Double-diffused glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, capable of absorbing reverse transients.

They are intended for rectifier applications in colour television circuits as well as general purpose applications in telephony equipment.

QUICK REFERENCE DATA

			BYW54	BYW55	BYW56	
Crest working reverse voltage	VRWM	max.	600	800	1000	v
Reverse avalanche breakdown voltage	V(BR)R	> <	650 1000	900 1300	1100 1600	V V
Average forward current	^I F(AV)	max.	2	2	2	А
Non-repetitive peak forward current	I _{FSM}	max.		50		Α
Non-repetitive peak reverse power dissipation	PRSM	max.		1		kW
Junction temperature	тј	max.		165		oC

MECHANICAL DATA Fig. 1 SOD-57. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Products approved to CECC 50 008-015 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BY	W54	BYW55	BYW56	
Crest working reverse voltage	VRWM	max.	600	800	1000	v
Continuous reverse voltage (Fig. 9)	VR	max.	600	800	1000	V
Average forward current (averaged over any 20 ms period); —— T _{tp} = 35 ^o C; lead length 10 mm	^I F(AV)	max.				A
$T_{amb} = 75 ^{\circ}C$; Fig. 2 mounting	^I F(AV)	max.		- 0,8		A
Repetitive peak forward current	FRM	max.		12		A
Non-repetitive peak forward current (Figs 7 and 12) t = 10 ms, half sinewave	FSM	max.		50		A
Non-repetitive peak reverse power dissipation (t = 20 μs; half sine-wave); T _j = T _{j max} prior to surge	PRSM	max.		1		kW
Non-repetitive peak reverse avalanche mode pulse energy; I _R = 1 A; T _j = T _j max prior to surge; with	c.			20		mJ
inductive load switched off	E _{RSM}	max.		20		оС шл
Storage temperature Junction temperature	T _{stg} Tj	max.	-05	to +175 165		°C
- THERMAL RESISTANCE						
Influence of mounting method						
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=		46		K/W
2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed				100		
circuit board; Cu-thickness \geq 40 μ m; Fig. 2	R _{th j-a}	=		100		K/W

Fig. 2 Device mounted on a printed circuit board.

Mullard

April 1982

Controlled avalanche rectifier diodes

BYW54 to 56

CHARACTERISTIC	СН	HAR	ACT	TER	IST	ICS
----------------	----	-----	-----	------------	-----	-----

			BYW54	BYW55	BYW56
Forward voltage; T _j = 25 ^o C *					
I _F = 1 A	VF	<	1	1	1 V
ί _F = 10 A	VF	<	1,65	1,65	1,65 V
Reverse avalanche breakdown voltage I _R = 0,1 mA; T _j = 25 ºC	V _{(BR)R}	> <	650 1000	900 1300	1100 V 1600 V
Reverse current				~	
VR = V _{RWM max} ; T _j = 25 °C** VR = V _{RWM max} ; T _j = 100 °C	I _R I _R	< <		1,0 10	μΑ μΑ
Reverse recovery charge when switched from $I_F = 1 A$ to $V_R \ge 30 V$ with $-dI_F/dt = 5 A/\mu s; T_j = 25 ^{\circ}C$	Q _s	typ.		3	μC
Reverse recovery time when switched from I _F = 1 A to V _B ≥ 30 V					
with $-dl_F/dt = 5 A/\mu s; T_j = 25 °C$	t _{rr}	typ.		2,5	μs
Diode capacitance					
V _R = 0 V; f = 1 MHz; T _j = 25 ^o C	c _d	typ.		50	pF

Fig. 3 Definitions of trr and Qs.

* Measured under pulse conditions to avoid excessive dissipation.

** Illuminance ≤ 500 lux (daylight); relative humidity < 65%.

Mullard

April 1982

Fig. 4 Steady state power dissipation (forward plus leakage current excluding switching losses) as a function of the average forward current.

 $a = I_F(RMS)/I_F(AV); V_R = V_RWMmax$.

Fig. 5 Maximum average forward current as a function of the temperature. The curves include losses due to reverse current.

---- T = ambient temperature and

Mullard

device mounted as shown in Fig. 2.

April 1982

Mullard

April 1982

April 1982

Controlled avalanche rectifier diodes

BYW54 to 56

Fig. 12 Minimum values of series resistance (R_t), including the transformer resistance, required to limit the initial peak rectifier current with capacitive load. The possibility of the following spreads are taken into account: mains voltage + 10%; capacitance + 50%, resistance - 10%.

Fig. 14. Device mounted on a printed circuit board (see Fig. 2).

April 1982

8

Mullard

 $\mathbf{\nabla}$

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model. ($R_{th j-e} = 18 \text{ K/W}$).

By using this thermal model and the dissipation graph (Fig. 4) any temperature can be calculated.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal		unit				
resistance	5	10	15	20	25	mm
R _{the-tp} R _{the-a}	15 580	30 445	45 350	60 290	75 245	K/W K/W

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness $\ge 40 \ \mu m$:

1. Mounted as given in Fig. 2 the thermal resistance $R_{th\ tp-a}$ is 70 K/W.

2. Mounted with copper laminate of 1 cm² per lead $R_{th\ tp-a}$ is 55 K/W.

3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW95A	В	С	
Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	v
Continuous reverse voltage	VR	max.	200	400	600	v
Average forward current	^I F(AV)	max.		3		А
Non-repetitive peak forward current	I FSM	max.		70		А
Non-repetitive peak reverse energy	ERSM	max.		10		mJ
Reverse recovery time	trr	<		250		ns

MECHANICAL DATA Fig. 1 SOD-64. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Mullard

April 1982

BYW95A; B; C

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

				BYW95A	В	С	
	Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	v
	Continuous reverse voltage	VR	max.	200	400	600	v
	Average forward current (averaged over any 20 ms period)						
	T _{tp} = 60 °C; lead length 10 mm	I _F (AV)	max.		3		Α
	T _{amb} = 65 °C; Fig. 2	IF(AV)	max.		1,25		Α
	Repetitive peak forward current	^I FRM	max.		15		Α
	Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _{j max} prior to surge; VR = VRRMmax	IFSM	max.		70		A
	Non-repetitive peak reverse avalanche energy; I _R = 400 mA; T _j = T _{j max} prior to surge; with inductive load switched off	E _{RSM}	max.		10		mJ
	Storage temperature	T _{stq}		-65 to	+ 175		٥C
-	Operating junction temperature	т _ј	max.		175		oC
	THERMAL RESISTANCE						
	Influence of mounting method						
	 Thermal resistance from junction to tie-point at a lead length of 10 mm 	^R th j₋tp	=		25		к/W
	 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 						
	Cu-thickness \geq 40 μ m; Fig. 2	R _{th} j-a	=		75		K/W

Mullard

April 1982

BYW95A; B; C

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage $I_F = 5 A$ $I_F = 5 A$; $T_j = T_j \max$ Reverse avalanche breakdown voltage $I_R = 0,1 \max$ Reverse current $V_R = V_{RRMmax}$; $T_j = 165^{\circ}C$ Reverse recovery when switched from

 $I_F = 1 A \text{ to } V_R \ge 30 V \text{ with}$

 $-dI_F/dt = 20 A/\mu s$

recovered charge recovery time

Fig. 3 ----- $T_j = 25 \text{ °C}; --- T_j = T_j \text{ max}.$

* Measured under pulse conditions to avoid excessive dissipation.

5

Mullard

April 1982

BYW95A; B; C

Mullard

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

a = IF(RMS)/IF(AV); VR = VRRMmax

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 7 Maximum slope of reverse recovery current. $T_i = 25 \text{ °C}$.

April 1982

Avalanche fast soft-recovery rectifier diodes

Fig. 8 Maximum average forward current as *i*-function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_{RRM}$ max.

Fig. 11 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Mullard

April 1982

Avalanche fast soft-recovery rectifier diodes

BYW95A; B; C

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model. Rth j-e = 12 K/W.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	к/w
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance $R_{th tp-a}$ is 70 K/W.

2. Mounted with copper laminate of 1 cm² per lead $R_{th tp-a}$ is 55 K/W.

3. Mounted with copper laminate of 2,25 $cm^2\,$ per lead $R_{th\,tp\text{-a}}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW96D	BYW96E	
Repetitive peak reverse voltage	V _{RRM}	max.	800	1000	v
Continuous reverse voltage	VR	max.	800	1000	v
Average forward current	IF(AV)	max.		3	A
Non-repetitive peak forward current	FSM	max.	70		А
Non-repetitive peak reverse energy	ERSM	max.	1	0	mJ
Reverse recovery time	t _{rr}	<	30	0	ns

MECHANICAL DATA Fig. 1 SOD-64. Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

BYW96D BYW96E

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYW96D	BYW96E	_
Repetitive peak reverse voltage	VRRM	max.	800	1000	v
Continuous reverse voltage	VR	max.	800	1000	v
Average forward current (averaged over any 20 ms period)					_
T _{tp} = 50 °C; lead length 10 mm T _{amb} = 55 °C; Fig. 2	lF(AV) F(AV)	max. max.	1,2	3 5	A A
Repetitive peak forward current	I _{FRM}	max.		5	Α
Non-repetitive peak forward current (t = 10 ms; half sine wave) T _j = T _{j max} prior to surge; V _R = V _{RRMmax}	FSM	max.	7	0	А
Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}; T_j = T_j \max$ prior to surge; with inductive					
load switched off	ERSM	max.		0	mJ
Storage temperature	T _{stg}		–65 to	+ 175	οC
 Operating junction temperature 	т _ј	max.	17	5	°C
THERMAL RESISTANCE					
Influence of mounting method					
 Thermal resistance from junction to tie-point at a lead length of 10 mm 			R _{th j-t}	p = 25	K/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness ≥ 40 μm; 					
Fig. 2			R _{th j-a}	a = 75	K/W

Fig. 2 Mounted on a printed-circuit board.

Mullard

BYW96D BYW96E

CHARACTERISTICS

 $T_j = 25 \text{ oC}$ unless otherwise specified

Forward voltage

I_F = 5 A

 $I_F = 5 A; T_i = T_{i max}$

Reverse avalanche breakdown voltage

 $I_{R} = 0,1 \, mA$

Reverse current

 $V_R = V_{RRMmax}; T_i = 165 \, {}^{o}C$

Reverse recovery when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V with}$ $-dI_F/dt = 20 \text{ A}/\mu \text{s}$ recovered charge

recovery time

Maximum slope of reverse recovery current when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$ with $-dI_F/dt = 1 \text{ A}/\mu s$

Fig. 3 ----- $T_j = 25 \circ C; --- T_j = T_j \max$

		BYW96D	BYW96E	
V _F V _F	< <	1,5 1,25	1,5 1,25	v * v *
V _{(BR)R}	>	900	1100	V
۱ _R	<	15	μA	
Q _s t _{rr}	< <	40 30	nC ns	
dl _R /dt	<		5	A∕µs

* Measured under pulse conditions to avoid excessive dissipation.

BYW96D BYW96E

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

a = IF(RMS)/IF(AV); VR = VRRMmax

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_{R} = V_{RRMmax}; \delta = 50\%; a = 1,57.$

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_{R} = V_{RRMmax}; \delta = 50\%; a = 1,57.$

Mullard

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_{RRM max}$

BYW96D BYW96E

April 1982

 $\mathbf{\nabla}$

BYW96D

BYW96E

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model. $R_{th j-e} = 12 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	κ/w
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.

2. Mounted with copper laminate of 1 cm² per lead $R_{th tp-a}$ is 55 K/W.

3. Mounted with copper laminate of 2,25 cm² per lead $R_{th tp-a}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

SILICON RECTIFIER DIODE

Double-diffused silicon diode in a DO-14 plastic envelope. It is intended for low current rectifier applications.

QUICK REFERENC	E DATA			
Repetitive peak reverse voltage	V _{RRM}	max.	1600	v
Average forward current	^I F(AV)	max.	0,5	A
Non-repetitive peak forward current	^I FSM	max.	15	A

MECHANICAL DATA

Dimensions in mm

DO-14

The rounded end indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

BYX10

All information applies to frequencies up to 400 Hz.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages					
Crest working rev	erse voltage	V _{RWM}	max.	800	v
Repetitive peak re	V _{RRM}	max.	1600	v	
Non-repetitive pe	V _{RSM}	max.	1600	v	
Currents Average forward over any 20 ms pe with R load;	riod) V _{RWM} = V _{RWMmax}	^I F(AV)		0.36	
	$V_{RWM} = 60 V$	^I F(AV)	max.	0.5	A
Repetitive peak fo Non-repetitive pe	Repetitive peak forward current				А
• •	sine wave) $T_j = 150 ^{\circ}$ C prior to surge	I _{FSM}	max.	15	А
Temperatures					
Storage temperati	ire	T _{stg}	-65 to	+ 150	°C
Junction temperat	Т _ј	max.	150	°C	

CHARACTERISTICS

Forward voltage			
$I_{\rm F}$ = 2 A; $T_{\rm j}$ = 25 °C	v _F	<	1.6 V ¹)
Reverse current			
$V_{R} = 800 V; T_{j} = 125 °C$	^I R	<	50 µA
$V_{R} = 800 V; T_{j} = 25 °C$	IR	<	1 μA

Mullard

 $\overline{I_{j}}$ Measured under pulse conditions to avoid excessive dissipation.

2

SILICON CONTROLLED AVALANCHE DIODES

Silicon controlled avalanche diodes in glass envelopes, intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Continuous reverse voltage; CV8805	VR	max.	150	v
CV8308	VR	max.	60	v
Repetitive peak reverse voltage	VRRM	max.	see n	ote
Forward current (d.c.)				
(see also derating curve, Fig. 3)	١F	max.	250	mA
Repetitive peak forward current;	•			
$t_p \le 10 ms; \delta \le 0.025$	FRM	max.	10	Α
Non-repetitive peak forward current				
half-sinewave; t = 10 ms	IFSM	max.	20	Α
Power dissipation				
(see also derating curve, Fig. 4)	P _{tot}	max.	250	mW
Repetitive peak reverse power dissipation	PRRM	max.	see n	ote
Non-repetitive peak reverse power dissipation				
(duration 10 μs)	PRSM	max.	600	w
Operating ambient temperature	T _{amb}	0	to 100	°C
Storage temperature	T _{stg}	0	to 100	°C

Note: The repetitive peak reverse voltage and the peak reverse current are limited by the peak reverse power dissipation (see Fig. 5).

MECHANICAL DATA

Fig. 1

5.0 25.4 7.62 25.4 min w0420

The standard registered CV8805, 8308 outline is as shown above. The Mullard outline, SOD-57, conforms fully with this. For details see page 2.

Products approved to CECC 50 001-020 (specification available on request).

1

Dimensions in mm

CV8805 CV8308

CHARACTERISTICS

Fig. 2 SOD-57

Dimensions in mm

The marking band indicates the cathode

CHARACTERISTICS

 $T_{amb} = 25 \ ^{O}C$ unless otherwise stated

Reverse current

V _R = 150 V V _R = 60 V V _R = 150 V; T _{amb} = 100 ^o C; V _R = 60 V; T _{amb} = 100 ^o C;	CV8805 CV8308 CV8805 CV8308	IR IR IR IR	< < < <	1.0 1.0 100 100	μΑ μΑ μΑ μΑ
Forward voltage					
I _F = 250 mA	both types	٧F	<	0.9	v
I _F = 25 mA	both types	VF	>	0.5	v
Avalanche breakdown voltage					
I _R = 1.0 mA	CV8805	V _{(BR)R}	>	200	v
	CV8805	V(BR)R	<	280	V
ι _B = 2.0 mA	CV8308	V _(BR) R	>	80	v
	CV8308	V(BR)R	<	140	v
Capacitance					
V _R = 10 V; f = 1 MHz	both types	C _{tot}	<	150	рF

Silicon controlled avalanche diodes

Fig. 5 Repetitive peak reverse power versus conduction time of the diode; $P_F = 0$; $T_{amb} = 0$ to +55 °C; The pulse repetition frequency is such that the mean reverse power does not exceed 250 mW.

Mullard

CV8805 CV8308

CVA7026 to 7030 CVA7476

ann diadar in dae anvolana, canabla of abaarbiga rayara transianta, intended for general -----

SILICON AVALANCHE RECTIFIER DIODES

Silicon diodes in glass envelopes, capable of absorbing reverse transients, intended for general purpose applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

			CVA7026	7027	7028	7029	7030	7476	
Crest working reverse voltage	VRWM	max.	100	200	400	600	800	1000	v
Repetitive peak reverse voltage	VRRM	max.	100	200	400	600	800	1200	v
Non-repetetive peak reverse voltage; t ≤ 10 ms	V _{RSM}	max.	100	200	400	600	800	1200	v
Continuous reverse voltage (see Fig. 2)	∨ _R	max.	-	_	_	_	_	1000	v
Average forward current; sinusoidal conduction; resistive load; see derating curve, Fig. 3					/)	max.	0.7	 '5	A
Repetitive peak forward curr	ent			FRM		max.	1	2	Α
Non-repetitive peak forward t = 10 ms; half sinewave;	current;								
without reapplied VRWMr		A7026- A7476	-7030	IFSM IFSM		max. max.		5 20	A A
Operating ambient temperatu		A7026- A7476	-7030	T _{amb} T _{amb}) to +12 5 to +17	-	°C °C
Storage temperature;		A7026- A7476	-7030	T _{stg} T _{stg}) to +12 5 to +17		°C °C

MECHANICAL DATA

Fig. 1 SOD-57

Dimensions in mm

The marking band indicates the cathode

Mullard

Products approved to CECC 50 008-015 (specification available on request).

CHARACTERISTICS

Tamb = 25 °C unless otherwise stated

Reverse current

at VRRMmax	all types	^I R	<	20	μA
at V _{RRMmax} ; T _{amb} = 125 ^o C	CVA7026 to 7030	^I R	<	300	μA
at V _{RRMmax} ; T _{amb} = 175 ^o C	CVA7476	۱ _R	<	300	μA
Forward voltage					
I _F = 2.5 A		۷F	<	1.15	v
Breakdown voltage					
I _R = 0.5 mA	CVA7476	V _{(BR)R}	>	1250	v
	CVA7476	V _{(BR)R}	<	2000	v

NOTE

The CVA7026–7030 and CVA7476 are in some minor aspects specified differently from the types CV7026–7030 and CV7476. They are, however, regarded by the original approval authority as direct replacements and may be used as such.

Fig.3 Maximum allowable average forward current versus ambient temperature.

SILICON DIFFUSED RECTIFIER DIODES

A range of silicon rectifier diodes for general purpose use.

QUICK REFERENCE DATA

			1N4001G	4002 G	4003G	4004 G	4005G	4006G	4007G
Repetitive peak reverse voltage	V _{RRM}	max.	50	100	200	400	600	800	1000 V
Continuous reverse voltage	v _R	max.	50	100	200	400	600	800	1000 V
Average forward cu	urrent			I _F (AV)		max.			A
Repetitive peak for	rward curr	ent		FRM		max.	10)	Α
Non-repetitive peal	k forward	current		IFSM		max.	30)	Α

MECHANICAL DATA

Dimensions in mm

Fig.1 SOD-57 The diodes are type branded.

band indicates cathode

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				40000	40000		40050	40000	40070
			1N4001G	4002G	4003G	4004G	4005G	4006G	4007G
Repetitive peak reverse voltage	V _{RRM}	max.	50	100	200	400	600	800	1000 V
Continuous reverse voltage	VR	max.	50	100	200	400	600	800	1000 V
Currents			<u> </u>			~~~	·	·	·
Average forward cu (averaged over a up to T _{amb} = 75 at T _{amb} = 100 °	ny 20 ms p 5 ^o C	period)		^I F(AV ^I F(AV		ma: ma		1 9.75	A A
Forward current (d.c.) up to T _{amb} = 75 ^o C				١ _F		max	ĸ.	1	А
Repetitive peak for	ward curre	ent		IFRM		max.		10 · A	
Non-repetitive peak forward current (half-cycle sinewave, 60 Hz		:)	IFSM		ma	ĸ .	30	A	
Temperatures									
Storage temperatur	re			T _{stq}		-	-65 to +	175	oC
Junction temperate	ure			тј		max	ĸ.	175	٥C
CHARACTERISTI									
T _{amb} = 25 °C unle	ess otherwi	se stated	1						
Forward voltage I _F = 1 A d.c.				٧F		<		1.1	v
Full-cycle average f ^I F(AV) ⁼ 1 A	orward vo	ltage		VF(A)	/)	<		0.8	v
Reverse current V _R = V _{Rmax} ; T V _R = V _{Rmax} ; T				IR IR		< <		10 50	μΑ μΑ
Full-cycle average r V _R = V _R RMmax				IR (AV	()	<		30	μA

2 December 1981

SCHOTTKY-BARRIER DIODES

F

.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

U.H.F. MIXER DIODE

Silicon epitaxial Schottky barrier diode with low forward voltage in a DO-34 glass envelope. The diode is especially designed for u.h.f. mixer applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	4	v
Forward current (d.c.)	١F	max.	30	mΑ
Junction temperature	т _і	max.	125	°C
Forward voltage I _F = 1 mA	V _F	max.	400	mV

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2 E (5,08 mm) pitch. The cathode is indicated by a coloured band.

BA481

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage				
I _R = 10 μA	VR	max.	4	V
Reverse voltage (peak value)	VRM	max.	4	v
Forward current (d.c.)	١F	max.	30	mΑ
Junction temperature	т	max.	125	٥C
CHARACTERISTICS				
$T_{amb} = 25 \ ^{o}C$ unless otherwise specified				
Forward voltage				
$I_F = 1 \text{ mA}$	VF	< <	400 550	mV
I _F = 10 mA	۷ _F		550	mV
Reverse current				
V _R = 3 V	I R	<	2	μA
Diode capacitance				
$V_{\rm R}$ = 0; f = 1 MHz	Сd	<	1,1	рF
	-			
Noise figure at f = 900 MHz *	F	<	8	dB
Carica -solitana				
Series resistance IF = 5 mA; f = 1 kHz	rs	<	16	Ω
	'S		.0	

* The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise F_{if} = 1,5 dB; f = 35 MHz.

Mullard

 \Box

May 1982

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SCHOTTKY BARRIER SWITCHING DIODES

BAT81, 82 and 83 are Schottky barrier diodes in miniature DO-34 glass envelopes with an extra integral pn-junction for protection against excessive voltages such as static discharges. Typical uses are ultra-fast switching and detection.

QUICK REFERENCE DATA

			BAT81	82	83	
Continuous reverse voltage	VR	max.	40	50	60	v
Forward current (d.c.)	۱F	max.		30		mA
Junction temperature	т _і	max.		125		°C
Diode capacitance at $V_{R} = 1 V$	Cd	<		1,6		рF

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BAT81 82 83	
Continuous reverse voltage	VR	max.	40 50 60	v
Forward current (d.c.)	١F	max.	30	mA
Non-repetitive peak forward current $t < 1 s$	FSM	max.	150	mA
Storage temperature	T _{stg}		-55 to + 150	٥C
Junction temperature	тј	max.	+ 125	°C
THERMAL RESISTANCE				
From junction to ambient when mounted on a 1,5 mm thick epoxy-glass p.c.b.; Cu-thickness $>$ 40 μ m; see Fig. 2	R _{th j-a}	=	320	K/W
CHARACTERISTICS				
$T_{amb} = 25 \ ^{o}C$ unless otherwise specified				
Forward voltage				
$I_F = 1 \text{ mA}$	VF	< <	410	mV
IF = 15 mA	VF	<	1000	mV
Reverse current V _R = 30 V	I B	<	200	nA
Reverse breakdown voltage				
Ι _R = 10 μA	V(BR)R	>	40 50 60	V
Diode capacitance	•			-
$V_R = 1 V; f = 1 MHz$	Сd	<	1,6	рF
Reverse recovery* when switched from I _F = 10 mA to				
$I_{\rm R}$ = 10 mA; R _L = 100 Ω				
measured at $I_R = 1 \text{ mA}$	t _{rr}	<	1	ns

* Due to the lack of minority carrier injection reverse recovery time only depends on junction capacitance and circuit resistance.

Mullard

April 1982

2

Fig. 3 Waveforms. * I_B = 1 mA.

Input signal

Rise time of the reverse pulse $t_r = 0.6$ nsReverse pulse duration $t_p = 500$ nsDuty factor $\delta = 0.05$ Oscilloscope
Rise time $t_r = 0.35$ ns

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Fig. 4 Typical forward current as a function of forward voltage at $T_{amb} = 25 \text{ °C}$.

Fig. 5 Typical reverse current as a function of reverse voltage at $T_{amb} = 25 \text{ °C}$.

ł

 $\mathbf{\nabla}$

DEVELOPMENT SAMPLE DATA This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SCHOTTKY BARRIER SWITCHING DIODE

BAT85 is a Schottky barrier diode in miniature DO-34 glass envelope with an extra integral pn-junction for protection against excessive voltages such as static discharges. This diode replaces point contact and gold-bonded diodes.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	30 V
Forward current (d.c.)	١ _F	max.	100 mA
Junction temperature	т _і	max.	125 ° C
Storage temperature	Tstg	max.	–55 to 150 °C
Diode capacitance at V_R = 1 V	Cd	<	10 pF

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

BAT85

RATINGS

Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Continuous reverse voltage	VR	max.	30	v
Forward current (d.c.)	١F	max.	100	mA
Repetitive peak forward current	FRM	max.	300	mA
Non-repetitive peak forward current				
t < 1 s	IFSM	max.	600	mΑ
Storage temperature	T _{stg}	–55 to	+ 150	°C
Junction temperature	т _ј	max.	+ 125	°C
THERMAL RESISTANCE				
Measured on an infinite heatsink; at the leads 4 mm from the body T _{amb} = 25 °C	R _{th j-a}	=	320	к/w
CHARACTERISTICS				
T _{amb} = 25 ^o C unless otherwise specified				
Forward voltage				
$I_F = 1 mA$	VF	typ.		mV
I _F = 10 mA	VF	<	400	
I _F = 100 mA	VF	typ. <	500 1000	mV mV
Reverse current				
V _R = 25 V	۱ _R	<	2	μA
Reverse breakdown voltage				
$I_{R} = 10 \mu A$	V(BR)R	>	30	v
Diode capacitance V _R = 1 V, f = 1 MHz	Cd	<	10	рF
Reverse recovery time when switched from I _F = 10 mA to I _R = 10 mA				
R_{L} = 100 Ω , measured at I _R = 1 mA	t _{rr}	<	5	ns

2

MICROMINIATURE DIODES

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODE

Silicon epitaxial high-speed diode in a microminiature plastic envelope. It is intended for high-speed switching in hybrid thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	75 V
Repetitive peak reverse voltage	V _{RRM}	max.	85 V
Repetitive peak forward current	^I FRM	max.	250 mA
Junction temperature	т _і	max.	175 ^o C
Forward voltage at I _F = 50 mA	VF	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; \text{ R}_L = 100 \Omega;$ measured at $I_R = 1 \text{ mA}$	trr	<	6 ns
Recovery charge when switched from $I_F = 10 \text{ mA to } V_R = 5 \text{ V}; \text{ R}_L = 500 \Omega$	O _s	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

n c

See also Soldering recommendations.

RATINGS Limiting values in accordance with the Absolute Maximum System (II	EC 134)			
Continuous reverse voltage	VR	max.	75	v
Repetitive peak reverse voltage	VRRM	max.	85	v
Average rectified forward current A (averaged over any 20 ms period)	F(AV)	max.	250	mA
Forward current (d.c.)	IF.	max.	250	mA
Repetitive peak forward current	I _{FRM}	max.	250	mA
Storage temperature	Tstg	-65 to	+175	°C
Junction temperature	тј	max.	175	oC
THERMAL CHARACTERISTICS *				
$T_j = Px (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$				
Thermal resistance				
From junction to tab	R _{th j-t}	-	60	°C/W
From tab to soldering points	R _{th t-s}	=	280	°C/W
From soldering points to ambient **	R _{th s-a}	=	90	°C/W

CHARACTERISTICS

 $T_i = 25 \text{ }^{\text{O}}\text{C}$ unless otherwise specified.

Forward voltage			
l _F = 1 mA	VF	<	715 mV
$l_{\rm F} = 10 \rm mA$	VF	<	855 mV
$l_{\rm F} = 50 \rm mA$	VF	<	1000 mV
I _F = 150 mA	∨ _F	<	1250 mV
Reverse current			
V _R = 25 V; T _i = 150 ^o C	۱ _R	<	30 µA
$V_{B} = 75 V$	I _R	< <	1 µA
V <mark>R</mark> = 75 V; T _j = 150 °C	^I R	<	50 µA
Diode capacitance			
V _R = 0; f = 1 MHz	с _d	<	2 pF
Forward recovery voltage (see also Fig. 2)			
when switched to $I_F = 10 \text{ mA}$; $t_p = 20 \text{ ns}$	∨ _{fr}	<	1,75 V
Reverse recovery time (see also Fig. 3)			
when switched from I _F = 10 mA to I _R = 10 mA;			
$R_L = 100 \Omega$; measured at $I_R = 1 mA$	t _{rr}	<	6 ns
Recovery charge (see also Fig. 4)			
when switched from I _F = 10 mA to V _R = 5 V;			_
RL = 500 Ω	Qs	<	45 pC

A Measured under pulse conditions. tp \leq 0,5 ms. 1F(AV) = 150 mA, t(av) \leq 1 ms, for sinusoidal operation.

* See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Fig. 2 Forward recovery voltage test circuit and waveforms.

Input signal: forward pulse rise time = t_r = 20 ns; forward current pulse duration t_p = 120 ns; duty factor = δ = 0,01.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 3 Reverse recovery time test circuit and waveforms.

Input signal: reverse pulse rise time = $t_r \approx 0.6$ ns; reverse pulse duration = $t_p = 100$ ns; duty factor = $\delta = 0.05$. * t_{rr} up to $I_R = 1$ mA.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 4 Recovery charge test circuit and waveform.

D1 = BAW62; D2 = diode with minority carrier life time at 10 mA: < 200 ps Input signal

Rise time of the reverse pulse	t _r	=	2 ns
Reverse pulse duration	t _D	=	400 ns
Duty factor	δ	=	0,02

Mullard

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

March 1978

3

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in SOT-23 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	^I FRM	max.	250 mA
Storage temperature	T _{stq}	-65 to	+ 150 °C
Junction temperature	ті	max.	150 ^o C
Forward voltage IF = 0,1 mA	V _F	610 t	to 690 mV
I _F ≈ 1,0 mA	VF	680	to 760 mV
ι _F = 10 mA	VF	750	to 830 m∖v
I _F = 100 mA	VF	870	to 960 m v
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	1 40 pF

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BAS17 = A91

See also chapter Soldering Recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current	^I FRM	max.	250	mΑ
Storage temperature	⊤ _{stg}	-65 to	o +150	٥C
Junction temperature	тj	max.	150	°C

THERMAL CHARACTERISTICS*

 $T_{j} = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance From junction to tab R_{th j-t} 60 °C/W = R_{th t-s} 280 °C/W From tab to soldering points = oC/W From soldering points to ambient** 90 R_{th s-a} =

____ С

CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Forward voltage				
I _F = 0.1 mA	VF	610) to 690	
I _F = 1.0 mA	VF	680) to 760	
I _F = 5.0 mA	VF	730) to 810	
1 _F = 10 mA	VF	750) to 830	
1 _F = 100 mA	VF	870 to 960		
Reverse current				
V _R = 4 V	1 _R	<	5	
Temperature coefficient				
I _F = 1 mA	SF	typ.	-1.8	
Diode capacitance				
V _R = 0; f = 1 MHz	Cd	<	140	

* See Thermal characteristics in GENERAL SECTION.

**Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Mullard

2

m٧ m٧ mν m٧ m٧

μA

pF

mV/K

BAS17

Fig. 2 Forward current as a function of forward voltage.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

Silicon epitaxial high-speed diodes in a microminiature plastic envelope. They are intended for switching and general purposes.

QUICK REFERENCE DATA

			BAS19	BAS20	BAS2	1
Continuous reverse voltage	VR	max.	100	150	200	v
Repetitive peak reverse voltage	VRRM	max.	120	200	250	v
Repetitive peak forward current	^I FRM	max.		625		mA
Junction temperature	т _і	max.		150		°C
Forward voltage at I_F = 100 mA	VF	<		1		v
Reverse recovery time when switched from I _F = 30 mA to I _R = 30 mA; R _L = 100 Ω measured at I _R = 3 mA	t _{rr}	<		50		ns

Dimensions in mm

Mullard

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code BAS19 = A8 BAS20 = A81

BAS21 = A82

See also Soldering recommendations.

August 1980

BAS19 BAS20 BAS21

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute i	viaximum 5					
			BAS19	BAS20	BAS21	
Continuous reverse volage	ν _R	max.	100	150	200	V
Repetitive peak reverse voltage	VRRM	max.	120	200	250	v
Average rectified forward current (1) (averaged over any 20 ms period)	^I F(AV)	max.		200		mA
Forward current (d.c.)	F(AV)	max.		200		mA
Repetitive peak forward current	'F IFRM	max.		625		mA
Storage temperature	T _{stg}		-	-65 to +1	50	٥C
Junction temperature	T _i	max.		150		οC
Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$	P _{tot}	max.		200		mW
THERMAL CHARACTERISTICS*						
$T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$						
Thermal resistance						
From junction to tab	R _{th j-t}			=	60	°C/W
From tab to soldering points	R _{th t-s}			=	280	°C/W
From soldering points to ambient **	R _{th s-a}			=	90	°C/W
CHARACTERISTICS						
T _j = 25 ^o C unless otherwise specified						
Forward voltage						
IF = 100 mA IF = 200 mA	VF VF			< <	1.0 1.25	V V
rF = 200 mA Reverse breakdown voltage (1)	۷F				1.20	v
BAS19; $ _{\rm B} = 100 \mu {\rm A}$	V(BR)R			>	120	v
BAS20; I _R = 100 μA	V(BR)R			>	200	V
BAS21; I _R = 100 μA (2)	V(BR)R			>	250	v
Reverse current	1-			<	100	- 4
V	^I R I _R			<	100	nΑ μΑ
Differential resistance	. п					•
I _F = 10 mA	^r diff			typ.	5	Ω
Diode capacitance V _R = 0; f = 1 MHz	Cd			<	5	ρF
Reverse recovery time (see Figs 2 and 3)	_					
when switched from $ _F = 30 \text{ mA to } _R = 30 \text{ m}$. R ₁ = 100 Ω ; measured at $ _R = 3 \text{ mA}$	A; ^t rr			<	50	ns
- ''						

* See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

(1) Measured under pulse conditions; Pulse time = $t_p \le 0.3$ ms. (2) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited to 275 V.

Mullard

Fig. 3 Waveforms; IR = 3 mA.

Input signal total pulse duration duty factor rise time of reverse pulse reverse pulse duration	^t p(tot) δ t _r t _p	= 2 µs = 0,0025 = 0,6 ns = 100 ns
Oscilloscope rise time circuit capacitance*	t _r C	= 0,35 ns < 1 pF

*C = oscilloscope input capacitance + parasitic capacitance.

Mullard

Mullard

of the duty factor at V_R = 100 V.

August 1980

BAS19 BAS20

BAS21

Fig. 6 BAS20/21; maximum permissible average rectified forward current for pulse operation as a function of the duty factor.

δ

0,5

0

0

125 °C

1

FRM

 $\delta = \frac{t}{T}$

Fig. 7 BAS20/21; maximum permissible repetitive peak forward current for pulse operation as a function of the duty factor.

6

Fig. 8 Maximum permissible continuous forward current as a function of the ambient temperature.

Fig. 9 Maximum permissible average rectified forward current as a function of the ambient temperature.

Fig. 10 Maximum permissible continuous reverse voltage as a function of the ambient temperature.

Silicon planar epitaxial high-speed diodes

max

50

Fig. 11.

10²

١R

(µA)

10

1

10-1

10-2

0

7282318

typ

т_ј (°с) ¹⁵⁰

100

_		
_	÷	
-		

Fig. 13.

Fig. 11 Continuous reverse current as a function of the junction temperature.

Fig. 12 Forward current as a function of forward voltage.

Fig. 13 Forward voltage as a function of the junction temperature.

Mullard

BAS19 BAS20 BAS21

Fig. 14.

8

Mullard

SCHOTTKY BARRIER DIODE

Silicon epitaxial diode in a microminiature plastic envelope. Intended for u.h.f. mixer and fast switching applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	4 V
Forward current (d.c.)	۱۴	max.	30 mA
Junction temperature	т _і	max.	100 °C
Forward voltage at I _F = 10 mA	VF	<	600 mV
Diode capacitance at $V_R = 0$; f = 1 MHz	Сd	<	1,0 pF
Noise figure at f = 900 MHz	F	<	8,0 dB

MECHANICAL DATA

Dimensions in mm

Marking code

BAT17 = A3

Fig.1 SOT-23.

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Limiting values in accordance with the Absolute Maximum c	bystem (ILC 134)			
	Continuous reverse voltage	VR	max.	4	v
	Forward current (d.c.)	١ _F	max.	30	mA
	Storage temperature	T _{stg}	65 to	+100	оС
	Junction temperature	тј	max.	100	٥C
-	THERMAL CHARACTERISTICS*				
	$T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$				
	Thermal resistance				
	From junction to tab	R _{th j-t}	=	60	°C/W
	From tab to soldering points	R _{th t-s}	=	280	oC/M
	From soldering points to ambient**	R _{th s-a}	=	90	oC/M
	CHARACTERISTICS				
	$T_{amb} = 25 \ ^{O}C$ unless otherwise specified				
	Reverse current				
	V _R = 3V	IR	<	0.25	μA
	V _R = 3 V; T _{amb} = 60 ^o C	1 _R	<	1.25	μA
	Reverse breakdown voltage				
	I _R = 10 μA	V(BR)R	>	4	V
	Forward voltage			050	- 14
	I _F = 0.1 mA	VF	<	350	mV

IF = 1.0 mA ٧F < 450 < IF = 10 mA ٧F 600 Diode capacitance $V_{R} = 0; f = 1 MHz$ Cd < 1.0 Noise figure at f = 900 MHz[▲] F < 8.0 Series resistance at f = 1 kHz < 15 IF = 5 mA rD

* See Thermal characteristics in GENERAL SECTION.

- ** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.
- The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise F_{if} = 1.5 dB; f = 35 MHz.

November 1982

m٧

m٧

pF

dB

Ω

 $\mathbf{\nabla}$

BAT17

Fig. 2 Typical values.

August 1980

SILICON PLANAR DIODE

Band switching diode in a microminiature plastic envelope. Intended for thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	35 V
Forward current (d.c.)	۱۴	max.	100 mA
Junction temperature	т _і	max.	100 °C
Diode capacitance at f = 1 MHz V _R = 20 V	C _d	typ. <	0,8 рF 1,0 рF
Series resistance at f = 200 MHz $I_F \approx 5 \text{ mA}$	۲D	typ. <	0,5Ω 0,7Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code

BAT18 = A2

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	35	v
Forward current (d.c.)	١ _F	max.	100	mA
Storage temperature	T _{stg}	-55 te	o +100	°C
Junction temperature	тј	max.	100	oC
► THERMAL CHARACTERISTICS*				
$T_{j} = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$				
Thermal resistance				
From junction to tab	R _{th j-t}	=	60	°C/W
From tab to soldering points	R _{th t-s}	=	280	°C/W
From soldering points to ambient**	R _{th s-a}	=	90	°C/W
CHARACTERISTICS				
$T_j = 25$ °C unless otherwise specified				
Forward voltage at I _F = 100 mA	VF	<	1.2	v
Reverse current				
V _R = 20 V	^I R	<	100	nA
$V_{R} = 20 V; T_{j} = 60 °C$	^I R	<	1	μA
Diode capacitance at $f = 1 MHz$	Cd	typ. <	0.8	рF
V _R = 20 V			1.0	рF
Series resistance at f = 200 MHz $I_F = 5 mA$	۲D	typ. <	0.5 0.7	Ω Ω

* See Thermal characteristics in GENERAL SECTION.

**Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

Fig. 6.

Mullard

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV70 consists of two diodes in a microminiature plastic envelope. The cathodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	VR	max.	70 V
Repetitive peak reverse voltage	VRRM	max.	70 V
Repetitive peak forward current	FRM	max.	250 mA
Junction temperature	т _і	max.	175 °C
Forward voltage at $I_F = 50 \text{ mA}$	V _F	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; \text{ R}_L = 100 \Omega;$ measured at $I_R = 1 \text{ mA}$	trr	<	6 ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; RL = 500 Ω	Q _s	<	45 pC

MECHANICAL DATA Fig. 1 SOT-23. Dimensions in mm

Mullard

Marking code BAV70 = A4

See also Soldering recommendations.

June 1980

RATINGS (per diode)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Continuous reverse voltage	v _R	max.	70	v
	Repetitive peak reverse voltage	V _{RRM}	max.	70	v
	Average rectified forward current [▲] (averaged over any 20 ms period)	IF(AV)	max.	250	mA
	Forward current (d.c.)	I _F	max.	250	mA
	Repetitive peak forward current	FRM	max.	250	mA
	Storage temperature	T _{stg}	-65 to +	175	°C
	Junction temperature	т _ј	max.	175	°C
	THERMAL CHARACTERISTICS*				
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
	From junction to tab	R _{th j-t}	=	60	oC/M
	From tab to soldering points	R _{th t-s}	=	280	oC/M
	From soldering points to ambient**	R _{th s-a}	=	90	°C/W
	CHARACTERISTICS (per diode)				
	$T_j = 25 ^{O}C$ unless otherwise specified				
	Forward voltage				
	I _F = 1mA	۷ _F	<	715	mV
	I _F = 10 mA	۷ _F	<	855	mV
	I _F = 50 mA	VF	<	1000	mV
	I _F = 150 mA	۷ _F	<	1250	mV
	Reverse current				
	V _R = 25 V; T _i = 150 ^o C	I _R	<	60	μA
	V _R = 70 V	I _R	<	5	μA
	V _R = 70 V; T _j = 150 ^o C	I _R	<	100	μA
	Diode capacitance				
	V _R = 0; f = 1 MHz	Cd	<	1,5	рF
	Forward recovery voltage when switched to				
	I _F = 10 mA; t _r = 20 ns	v _{fr}	<	1,75	v
	▲ Measured under pulse conditions : pulse time $t_p \le 0.5$ ms. For sinusoidal operation $I_{F(AV)} = 150$ mA; averaging time t_f	_{av)} ≤ 1 ms.			
•	* See <i>Thermal characteristics</i> in GENERAL SECTION. **Mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm				

Fig. 2 Test circuit and waveforms; forward recovery voltage,

Input signal : Rise time of the forward pulse $t_r = 20$ ns; Forward current pulse duration $t_n = 120$ ns; Duty factor $\delta = 0.01$

Oscilloscope : Rise time t_r = 0,35 ns

Circuit capacitance $C \le 1 pF$ (C = oscilloscope input capacitance + parasitic capacitance) Reverse recovery time when switched from

Input signal : Rise time of the reverse pulse $t_r = 0.6$ ns; reverse pulse duration $t_D = 100$ ns; duty factor $\delta = 0.05$

Oscilloscope : Rise time t_r = 0,35 ns

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance) Recovery charge when switched from

Fig. 4 Test circuit and waveform; recovery charge.

D1 = BAW62

D2 = diode with minority carrier life time at 10 mA: < 200 ps

Input signal : Rise time of the reverse pulse = $t_r = 2$ ns; Reverse pulse duration = $t_p = 400$ ns; Duty factor = $\delta = 0.02$

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Mullard

45

рC

7269096.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV99 consists of two diodes in a microminiature plastic envelope. The diodes are connected in series and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	V _R	max.	70 ∨ 70 ∨
Repetitive peak reverse voltage Repetitive peak forward current	VRRM	max. max.	70 V 250 mA
Junction temperature	^I FRM T;	max.	175 °C
Forward voltage at $I_F = 50 \text{ mA}$	VF	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; \text{ R}_L = 100 \Omega;$ measured at $I_R = 1 \text{ mA}$	trr	<	6 ns
Recovery charge when switched from	-11	-	- 110
$I_{\rm F} = 10 {\rm mA}$ to $V_{\rm R} = 5 {\rm V}$; $R_{\rm L} = 500 \Omega$	Qs	<	45 pC

MECHANICAL DATA Fig. 1 SOT-23. Dimensions in mm

Mullard

Marking code BAV99 = A7

See also Soldering recommendations.

	RATINGS (per diode)				
	Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
	Continuous reverse voltage	VR	max.	70	v
	Repetitive peak reverse voltage	VRRM	max.	70	V
	Average rectified forward current (averaged over any 20 ms period)	IF(AV)	max.	250	mA
	Forward current (d.c.)	١F	max.	250	mA
	Repetitive peak forward current	FRM	max.	250	mA
	Storage temperature	T _{stg}	-65 to	+ 175	°C
	Junction temperature	тj	max.	175	oC
	THERMAL CHARACTERISTICS *				
	$T_{j1} = P_1 (R_{th j-t}) + T_{tab}$				
	$T_{j2} = P_2 (R_{th j,t}) + T_{tab}$				
	$T_{tab} = P_{tot} (R_{th t-s} + R_{th s-a}) + T_{amb}$				
+	Thermal resistance				
	From junction to tab	Rth j-t	=	60	°C/W
	From tab to soldering points	R _{th t-s}	=	280	°C/W
	From soldering points to ambient **	R _{th s-a}	=	90	oC/M
	CHARACTERISTICS (per diode)				
	$T_j = 25 ^{O}C \text{ unless otherwise specified}$				
	Forward voltage				
	I _F = 1 mA	٧F	<	715	
	I _F = 10 mA	۷F	<	855	
	I _F = 50 mA	٧F	<	1000	mV
	I _F = 150 mA	۷F	<	1250	mV
	Reverse current			~~	
	$V_{R} = 25 V; T_{j} = 150 °C$	I _R	<		μA
	V _R = 70 V	I _R	<	2,5	
	$V_{\rm R} = 70 \text{ V}; \text{ T}_{\rm j} = 150 \text{ °C}$	I R	<	50	μA
	Diode capacitance V _B = 0; f = 1 MHz	C.	<	1,5	٥Ē
	$V_{R} = 0, T = T R R$ Forward recovery voltage when switched to	Сd		1,9	μr
	$I_F = 10 \text{ mA; } t_r = 20 \text{ ns}$	V _{fr}	<	1,75	v
	• • • • •				

▲ Measured under pulse conditions: pulse time t_p ≤ 0,5 ms. For sinusoidal operation $I_{F(AV)}$ = 150 mA; averaging time t_(av) ≤ 1 ms.

* See Thermal characteristics in GENERAL SECTION.

**Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Fig. 2 Test circuit and waveforms; forward recovery voltage.

Input signal: Rise time of the forward pulse $t_r = 20$ ns; Forward current pulse duration = $t_p = 120$ ns. Duty factor = $\delta = 0,01$. Oscilloscope: Rise time $t_r = 0,35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$;

measured at I_R = 1 mA

Fig. 3 Test circuit and waveforms; reverse recovery time.

Input signal: Rise time of the reverse pulse $t_r = 0.6$ ns Reverse pulse duration $t_p = 100$ ns. Duty factor $\delta = 0.05$. *) I_R = 1 mA

45 pC

6 ns

<

trr

Q,

<

Oscilloscope: Rise time $t_r = 0.35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Recovery charge when switched from

 $I_F = 10 \text{ mA to } V_R = 5 \text{ V}; \text{ R}_L = 500 \Omega$

Fig. 4 Test and waveform; recovery charge.

D2 = diode with minority carrier life time at 10 mA: < 200 ps; D1 = BAW62.

Input signal: Rise time of the reverse pulse $t_r = 2$ ns

Reverse pulse duration $t_p = 400$ ns. Duty factor $\delta = 0,02$.

Citcuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

June 1980

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAW56 consists of two diodes in a microminiature plastic envelope. The anodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	VR	max.	70 V
Repetitive peak reverse voltage	VRRM	max.	70 V
Repetitive peak forward current	^I FRM	max.	250 mA
Junction temperature	т _і	max.	175 °C
Forward voltage at I _F = 50 mA	VF	<	1,0 V
Reverse recovery time when switched from I _F = 10 mA to I _R = 10 mA; R _L = 100 Ω ; measured at I _R = 1 mA	t _{rr}	<	6 ns
Recovery charge when switched from	-11		0
$I_F = 10 \text{ mA to } V_R = 5 \text{ V}; \text{ R}_L = 500 \Omega$	 0,s	<	45 pC

MECHANICAL DATA Fig. 1 SOT-23. Dimensions in mm

Mullard

Marking code BAW56 = A1

See also Soldering recommendations.

BAW56

RATINGS (per diode)				
Limiting values in accordance with the Absolute Maximum	System (IEC 134)			
Continuous reverse voltage	VR	max.	70	v
Repetitive peak reverse voltage	VRRM	max.	70	v
Average rectified forward current [▲] (averaged over any 20 ms period)	^I F(AV)	max.	250	mA
Forward current (d.c.)	۴F	max.	250	mA
Repetitive peak forward current	FRM	max.	250	mA
Storage temperature	⊤ _{stg}	-65 to	+ 175	°C
Junction temperature	тј	max.	175	٥C
THERMAL CHARACTERISTICS *				
Tj1 = P1 (R _{th j-t}) + T _{tab}				
$T_{j2} = P_2 (R_{th j-t}) + T_{tab}$				
$T_{tab} = P_{tot} (R_{th t-s} + R_{th s-a}) + T_{amb}$				
Thermal resistance				
From junction to tab	R _{th j-t}	=	60	°C/W
From tab to soldering points	R _{th t-s}	=	280	oC/M
From soldering points to ambient **	R _{th s-a}	=	90	°C/W
CHARACTERISTICS (per diode)				
T _i = 25 ^o C unless otherwise specified				
Forward voltage				
1 _F = 1 mA	VF	<	715	
I _F = 10 mA	VF	<		mV
1 _F = 50 mA	VF	<	1000	
I _F = 150 mA	۷F	<	1250	mν
Reverse current	1-	/	20	
$V_{R} = 25 V; T_{j} = 150 °C$	I _R	<		μA A
V _R = 70 V	I _R	<		μA
$V_R = 70 V; T_j = 150 °C$	۱ _R	<	50	μA
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	2	рF
Forward recovery voltage when switched to	ŭ			
I _F = 10 mA; t _r = 20 ns	V _{fr}	<	1,75	v

▲ Measured under pulse conditions: pulse time $t_p \le 0,5$ ms. For sinusoidal operation $I_{F(AV)} = 150$ mA; averaging time $t_{(av)} \le 1$ ms. ★ See Thermal characteristics in GENERAL SECTION.

Mullard

**Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

BAW56

6 ns

*) i_R = 1 mA

45 pC

Input signal: Rise time of the forward pulse $t_r = 20$ ns Forward current pulse duration $t_p = 120$ ns. Duty factor $\delta = 0,01$ Oscilloscope: Rise time $t_r = 0,35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$;

measured at I_R ≈ 1 mA

Fig. 3 Test circuit and waveforms; reverse recovery time.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Recovery charge when switched from

 $I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_L = 500 \Omega$

<

<

trr

Q,

Fig. 4 Test circuit and waveform; recovery charge.

D2 = diode with minority carrier life time at 10 mA; < 200 ps. D1 = BAW62.

Input signal: Rise time of the reverse pulse $t_r = 2$ ns

Reverse pulse duration t_p = 400 ns. Duty factor δ = 0,02

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Mullard

June 1980

BAW56

VARIABLE CAPACITANCE DIODE

Silicon planar variable capacitance diode in a microminiature envelope. It is intended for electronic tuning applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Reverse voltage	VR	max.	28 V
Reverse current at V _R = 28 V	^I R	<	50 nA
Diode capacitance at f = 1 MHz V _R = 25 V	C _d		1,8 to 2,8 pF
Capacitance ratio at f = 1 MHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$) /) typ.	5
Series resistance at f = 470 MHz V _R = that value at which C_d = 9 pF	۲D	<	1,2 Ω

MECHANICAL DATA Fig. 1 SOT-23. Dimensions in mm

Marking code BBY31 = S1

See also Soldering recommendations.

BBY31

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Continuous reverse voltage	VR	max.	28	v
	Reverse voltage (peak value)	V _{RM}	max.	30	v
	Forward current (d.c.)	۱F	max.	20	mA
	Storage temperature	T _{stg}	65 t	o +100	oC
	Operating junction temperature	Τį	max.	85	٥C
•	THERMAL CHARACTERISTICS*				
	$T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$				
	Thermal resistance				
	From junction to tab	R _{th j-t}	=	60	°C/W
	From tab to soldering points	R _{th t-s}	=	280	°C/W
	From soldering points to ambient**	R _{th s-a}	=	90	°C/W
	CHARACTERISTICS				
	$T_j = 25 ^{O}C$ unless otherwise specified				
	Reverse current				
	V _R = 28 V	l _R	<	50	nA
	V _R = 28 V; T _j = 85 °C	۱ _R	<	1000	nA
	Diode capacitance at f = 1 MHz				
	V _R = 1 V	Cd	typ.	17.5	рF
	V _R = 3 V	C _d	typ.	11.5	рF
	V _R = 25 V	Cd	1.8 to 2.8		рF
	Capacitance ratio at $f = 1 \text{ MHz}$	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	typ.	5	
	Series resistance				
	at f = 470 MHz and at that value of V_R at				
	which C _d = 9 pF	۲D	<	1.2	Ω

* See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

Variable capacitance diode

BBY31

BBY31

May 1972

Mullard

 $\mathbf{\nabla}$

ļ

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BBY40 is a variable capacitance diode in a plastic envelope intended for electronic tuning in v.h.f. television tuners with extended band 1 (FCC and O)RT-norm).

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	28 V
Reverse current at V _R = 28 V	I _R	<	50 nA
Diode capacitance at f = 1 MHz			
V _R = 3 V	Сd	26	Sto32 pF
V _R = 25 V	Сd	4,3 to 6	
Capacitance ratio at f = 1 MHz	$\frac{C_d (V_R = 3 V)}{C_d (V_R = 25 V)}$	- 5	to 6,5
Series resistance at f = 200 MHz V_R is that value at which C_d = 25 pF	rD	<	0,6 Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BBY40 = S2

See also Soldering recommendations.

BBY40

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

	Continuous reverse voltage	V _R	max.	28	v
	Reverse voltage (repetitive peak value)	VRRM	max.	30	v
	Forward current (d.c.)	۱ _F	max.	20	mA
	Storage temperature	T _{stg}	-55 to +100		°C
	Operating junction temperature	тј	max.	85	٥C
•	THERMAL CHARACTERISTICS*				
	$T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$				
	Thermal resistance				
	From junction to tab	R _{th j-t}	=	60	°C/W
	From tab to soldering points	R _{th t-s}	=	280	°C/W
	From soldering points to ambient**	R _{th s-a}	=	90	°C/W
	CHARACTERISTICS				
	$T_{amb} = 25 ^{O}C \text{ unless otherwise specified}$				
	Reverse current		typ.	0.1	nA
	V _R = 28 V	I _R	<	50	nA
	V _R = 28 V; T _{amb} = 60 ^o C	۱ _R	<	500	nA
	Diode capacitance at f = 1 MHz				
	V _R = 3 V	с _d	26 to 32		рF
	V _R = 25 V	Cd	4.3 to 6		рF
	Capacitance ratio at $f = 1 \text{ MHz}$	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	5 t	o 6.5	
	Series resistance at f = 200 MHz		typ.	0.4	Ω
	V_R is that value at which $C_d = 25 \text{ pF}$	۲D	<	0.6	Ω

* See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

Mullard

2

Silicon planar variable capacitance diode

BBY40

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes, in a SOT-89 plastic envelope, intended for stabilization applications in thick and thin-film circuits.

The series covers the normalized range of nominal working voltages from 2,4 V to 75 V with a tolerance of \pm 5% (international standard E24 range).

QUICK REFERENCE DATA

Working voltage range	٧ _Z	nom.	2,4 to 75 V
Working voltage tolerance (E24 range)			±5 %
Total power dissipation up to T _{amb} ≈ 25 ^o C	Ptot	max.	1 W
Junction temperature	т _ј	max.	150 ^o C

Mullard

December 1981

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			1	
Repetitive peak forv	vard current	I FRM	max.	250 mA
Average forward cur (averaged over an		IF(AV)	max.	250 mA
Working current (d.	c.)	IZ	limited I	^{by P} tot max
Total power dissipat up to T _{amb} = 25		P _{tot}	max.	1 W
Non-repetitive peak T _j = 25 ^o C; t _p = 1	reverse power dissipation * $00 \ \mu s$	PZSM	max.	40 W
Storage temperature		T _{stg}	65 1	to +150 ^o C
Junction temperatur	re	Τj	max.	150 ^o C
THERMAL RESIST	ANCE			
From junction to co	llector tab	R _{thj-tab}	=	15 K/W
From junction to an	nbient in free air *	R _{thj-a}	=	125 K/W
CHARACTERISTIC	S			
T _j = 25 °C				
Forward voltage I _F = 50 mA		VF	<	1,0 V
Reverse current BZV49-C2V4 C2V7 C3V0 C3V3 C3V6 C3V9 C4V3 C4V7 C5V1 C5V6 C6V2 C6V8 C7V5 C8V2 C9V1 C10 C11 to C	••	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50 μA 20 μA 10 μA 5 μA 3 μA 3 μA 3 μA 2 μA 1 μA 3 μA 2 μA 1 μA 700 nA 500 nA 100 nA 50 nA
		'n		

* Device mounted on a ceramic substrate: area = 2,5 cm²; thickness = 0,7 mm.

Mullard

т_ј = 25 °С

E24 logarithmic range (tolerance ± 5%)

BZV49∙	working	voltage		erential stance	tempera	ature coeff	icient	diode ca	pacitance
	٧z	(V)		ff (Ω)	S7	(mV/K)		Ca(pE):	f = 1 MHz
	atiztar	t = 5 mA	atizm	st = 5 mA		Ztest = 5 r	nA	$V_{\rm R} = 0$	
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
								1	
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	3,5	-2,4	0	300	450
C3V9	3,7	4,1	85	90	-3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0 0	275	450
C4V7	4,4	4,0 5,0	50	80	-3,5	- <u>2,5</u> -1,4	0,2	130	180
C5V1	4,8	5,0	40	60	-2,7	-0,8	1,2	110	160
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	
C6V2	6,4	0,0 7,2	6	10			3,7 4,5	85	130 110
C7V5	7,0	7,2 7,9	6	15	1,2 2,5	3,0 4,0	4,5 5,3	80	100
C8V2	7,0	7,9 8,7	6	15	3,2	4,0	5,3 6,2	75	95
C9V1	8,5	9,6	6	15	3,2 3,8	4,0 5,5	0,2 7,0	70	90
					1			1	
C10 C11	9,4 10,4	10,6	8	20	4,5	6,4	8,0	70	90
	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85
C13 C15	12,4 13,8	14,1 15,6	10 10	30 30	7,0	9,4 11.4	11,0	60	80
					9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	at I _{Ztes}	t = 2 mA	at ^I Zte	st = 2 mA	at I _{Ztest} = 2 mA				
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	20,9 32,0	30	80 80	21,4	23,4 26,6	25,3 29,4	27	50 50
C33	31,0	35,0	35	80	27,4	20,0 29,7	23,4 33,4	25	45
C36	34,0	38,0	35	90	30,4	23,7 33,0	33,4 37,4	23	45 45
C39	37,0	41,0	40	130	33,4	36,4	41,2	23	45
C43									
C43 C47	40,0 44,0	46,0	45 50	150 170	37,6	41,2	46,6	21	40 40
C47 C51	44,0 48,0	50,0 54,0	50 60	180	42,0	46,1	51,8 57.2	19	40 40
C56	48,0 52,0	54,0 60,0	70	200	46,6 52,2	51,0 57.0	57,2 63,8	19	40 40
C50 C62	52,0 58,0	66,0	80	200	52,2 58,8	57,0 64,4	63,8 71,6	18 17	40 35
C68	64,0 70.0	72,0	90 05	240	65,6	71,7	79,8	17	35
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35

Mullard

Model for calculating the static working voltage (Vz stat).

This model can be derived from V_Z stat = V_Z dyn + Δ V_Z of which V_Z dyn is given in the tables on page 3 and can be derived from the typical dynamic characteristic curves (Figs 2, 3, 4 and 5) Δ V_Z = Δ T x S_Z. For S_Z see tables and graphs S_Z versus T_j.

 $\Delta T = P_{tot} \times R_{th} i_{-a} = IZ \times VZ dyn \times R_{th} i_{-a}$ Following $\Delta VZ = IZ \times VZ dyn \times R_{th} i_{-a} \times SZ and the model will be:$

Calculating example

BZV49-C24 mounted on a ceramic substrate of $7 \times 5 \times 0.6$ mm; at $I_Z = 7$ mA.

$$V_{2 \text{ stat}} = 24 + (\frac{7}{1000} \times 24 \times \frac{125}{1000} \times 20,3)$$

= 24 + 0.4 = 24.4 V.

Fig. 6 Power derating curve.

Fig. 7.

Silicon planar voltage regulator diodes

BZV49 SERIES

SILICON PLANAR VOLTAGE REGULATOR DIODES

Low power general purpose voltage regulator diodes in a microminiature plastic envelope intended for application in thick and thin-film circuits. The series covers the normalized range of nominal working voltages from 2,4 V to 75 V with a working voltage tolerance of \pm 5%.

QUICK REFERENCE DATA

Working voltage range	ν _Z	nom.	2,4 to 75 V
Working voltage tolerance			±5 %
Total power dissipation up to T_{amb} = 25 ^o C	P _{tot}	max.	350 mW
Junction temperature	тј	max.	175 ^o C

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

See also Soldering recommendations.

Marking code

BZX84-C2V4 = Z11	BZX84-C5V6 = Z3	BZX84-C13 = Y3	EZX84-C33 = Y12
C2V7 = Z12	C6V2 = Z4	C15 = Y4	C36 = Y13
C3V0 = Z13	C6∨8 ≈ Z5	C16 = Y5	C39 = Y14
C3V3 = Z14	C7V5 = Z6	C18 = Y6	C43 = Y15
C3V6 = Z15	C8V2 = Z7	C20 = Y7	C47 = Y16
C3V9 = Z16	C9V1 = Z8	C22 = Y8	C51 = Y17
C4V3 = Z17	C10 = Z9	C24 = Y9	C56 = Y18
C4V7 = Z1	C11 = Y1	C27 = Y10	C62 = Y19
C5V1 = Z2	C12 = Y2	C30 = Y11	C68 = Y20
			C75 = Y21

Mullard

August 1980

	RATINGS						
	Limiting values in accordan	ce with the Absolute Maximum	System (IEC	: 134)			
	Repetitive peak forward cu	rent		¹ FRM	max.	250	mA
	Repetitive peak working cu	rrent		ZRM	max.	250	mA
	Total power dissipation up			Ptot	max.	350	mW
	Storage temperature			T _{stg}	65 to +		
	Junction temperature			'sig Tj	max.	175	
	Sufferior temperature			'J		175	
	THERMAL CHARACTERI	STICS*					
	$T_j = P \times (R_{th j-t} + R_{th t-s} +$	R _{th s-a}) + T _{amb}					
	Thermal resistance						
	From junction to tab			R _{th j-t}	=	50	oc/w
_	From tab to soldering point	-		•			
	• • •			··ui t-s			°C/W
	From soldering points to an	idient [*]		R _{th} s-a	-	90	°C/W
	CHARACTERISTICS						
	T _j = 25 ^o C unless otherwise	specified					
	Forward voltage						
	I _F = 10 mA			٧F	<	0,9	V
	Reverse current						
	BZX84-C2V4	V _R = 1 V			<	50	•
	C2V7	V _R = 1 V		R	<	20	•
	C3V0	V _R = 1 V		IR	<	10	
	C3V3	$V_R = 1 V$		^I R	<		μA
	C3V6	$V_R = 1 V$		^j R	<		μA
	C3V9	$V_R = 1 V$!R	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		μA
	C4V3	$V_R = 1 V$		¹ R	<		μA
	C4V7	$V_R = 2 V$		IR I	~		μΑ μΑ
	C5V1 C5V6	V _R = 2 V V _R = 2 V		^I R	$\sum_{i=1}^{n}$		μA μA
	C6V2	$V_{R} = 4 V$		ו _R R	$\hat{\epsilon}$		μA
	C6V8	$V_R = 4V$		IR IR	$\hat{\boldsymbol{\epsilon}}$		μA
	C7V5	$V_{R} = 5 V$		'R ^I R	<		μA
	C8V2	$V_R = 5 V$		^r R	<	700	•
	C9V1	$V_{\rm R} = 6 V$		'R	<	500	
	C10	$V_{\rm R} = 7 V$		^I R	<	200	
	C11	V _R =8V			<	100	
	C12	V _R = 8 V		I _R	<	100	
	C13	$V_{R} = 8 V$			<	100	
	C15 to C75	$V_R = 0.7 V_{Znom}$		^I R	<	50	
		=					

* See Thermal characteristics in GENERAL SECTION.

** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Mullard

N

2

November 1982

Silicon planar voltage regulator diodes

BZX84 SERIES

BZX84	working	g voltage	1	rential tance	temper	ature coe	efficient	diode ca	pacitance
	V _Z	(V)		f (Ω)	S	7 (mV/0	C)	$\int C_{d}(pF);$	f = 1 MHz
	at 17test	t = 5 mA		t = 5 mA	at I	– Ztest = 5	mA	V _R = 0	
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			()pi			
C2V4	2,2	2,6	70	100	-3,5	~1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450
C3V9	3,7	4,1	85	90	-3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450
C4V7	4,4	5,0	50	80	-3,5	-1,4	0,2	130	180
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	110	160
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90
C11 C12	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4 12,4	12,7 14,1	10 10	25 30	6,0 7,0	8,4 9,4	10,0 11,0	65 60	85 80
C15	13,8	14,1	10	30	9,2	9,4 11,4	13,0	55	80 75
C16	15,3		10	40				1	
C18	16,8	17,1 19,1	10	40 45	10,4 12,4	12,4 14,4	14,0 16,0	52 47	75 70
C20	18,8	21,2	15	45 55	14,4	14,4	18,0	36	70 60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	,-	-0,0			,.	20,1	22,0		50
	at IZ =	2 mA	at IZ =	= 2 mA	at	I _Z = 2 m	A		
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45
C43	40,0	46,0	45	150	37,6	41,2	46,6	21	40
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40
C51	48,0	54,0	60	180	46,6	51,0	57,2	19	40
C56	52,0	60,0	70	200	52,2	57,0	63,8	18	40
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35
C68	64,0	72,0	90	240	65, 6	71,7	79,8	17	35
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35

 $\mathbf{\nabla}$

Mullard

BZX84	wor	king vol	tage		rential tance	worki	ng voltag	e	differ resist	ential ance
		V _Z (V)		^r diff	(Ω)		v _Z (v)		rdiff	(Ω)
	at	1 _Z = 1 n	nA	at Iz =	= 1 m A	at	1 _Z = 20 n	nA	at I _Z = 20 mA	
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C2∨4	1,7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
C3V0	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3V9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6
C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7,4	2,5	6
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6
C8V2	7,6	8,1	8,7	40 40	80 100	7,7	8,3 9,2	8,8 9,7	3 4	6 8
C9V1	8,4	9,0	9,6			8,5				
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1 12,1	11,8	5 5	10 10
C12 C13	11,2	11,9 12,9	12,7 14,0	50 50	150 170	11,4 12,5	12,1	12,9 14,2	5	15
C13 C15	12,3	12,9	14,0	50	200	13,9	15,1	14,2	6	20
	1					l				
C16	15,2	15,9	17,0	50	200	15,4 16,9	16,1	17,2 19,2	6 6	20 20
C18 C20	16,7	17,9	19,0	50 60	225 225	18,9	18,1 20,1	21,4	7	20
C20	18,7 20,7	19,9 21,9	21,1 23,2	60	225 250	20,9	20,1	21,4	7	20
C22 C24	20,7	21,9	25,2 25,5	60	250	20,9	24,1	25,7	7	25
024	22,7	20,0	23,5		200	12,0	24,1	20,7		
		IZ = 0,1		-	= 0,5 mA		l _Z = 10 n			10 mA
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	45
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55
C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60
C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	70
C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80
C47	43,7	46,8	50,0	85	375	44,1	47,1	50,5	30	90
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100
C56 C62	51,5	55,7	60,0	100	425	52,1	56,1	60,8 67.0	45	110 120
	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140

Mullard

 $\mathbf{\nabla}$

August 1980

4

Fig. 2 Power derating curve.

Model for calculating the static working voltage (VZ stat).

This model can be derived from $V_{Z \text{ stat}} = V_{Z \text{ dyn}} + \Delta V_{Z}$ of which $V_{Z \text{ dyn}}$ is given in the tables on pages 3 and 4 and can be derived from the typical dynamic characteristic curves on pages 6 and 7. $\Delta V_Z = \Delta T \times S_Z$. For S_Z see tables and graphs S_Z versus T_j . $\Delta T = P_{\text{tot}} \times R_{\text{th}} j_{-a} = I_Z \times V_Z \text{ dyn} \times R_{\text{th}} j_{-a}$. Following $\Delta V_Z = I_Z \times V_Z \text{ dyn} \times R_{\text{th}} j_{-a} \times S_Z$ and the model will be:

 V_Z stat = V_Z dyn + I_Z x V_Z dyn x R_{th} j-a x S_Z

Calculating example

BZX84-C24 mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm; at $I_Z = 7$ mA.

$$V_{Z \text{ stat}} = 24 + (\frac{7}{1000} \times 24 \times \frac{420}{1000} \times 20.3)$$

= 24 + 1.43 = 25.43 V.

August 1980

Fig. 6 Dynamic characteristics; typical values; $T_j \approx 25 \text{ °C}$.

Mullard

BZX84 SERIES

Silicon planar voltage regulator diodes

Silicon planar voltage regulator diodes

BZX84 SERIES

Fig. 12.

August 1980

Fig. 13.

Mullard

 \Box

10

TUNER DIODES

SILICON A.M. BAND SWITCHING DIODE

The BA223 is a switching diode in whiskerless glass encapsulation. It is intended for band switching in a.m. radio receivers.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	20 V
Forward current (d.c.)	1F	max.	50 mA
Junction temperature	τ _i	max.	150 ^o C
Diode capacitance at $f = 1 \text{ MHz}$ V _R = 6 V	Cd	<	3,5 pF
Series resistance at f = 1 MHz I _F = 10 mA	۲D	<	1,5 Ω

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes may be either type-branded or colour-coded.

BA223

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Continuous reverse voltage	٧R	max.	20	v
Forward current (d.c.)	١F	max.	50	mA
Storage temperature	T _{stg}	-55 to	+150	oC
Junction temperature	тj	max.	150	οC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,5	°C/mW
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Forward voltage				
1 _F = 50 mA	٧F	<	1,0	V
Reverse current			100	- •
V _R = 20 V	^I R	<	100	
V _R = 20 V; T _j = 125 ^o C	۱R	<	20	μA
Diode capacitance at f = 1 MHz				
V _R = 6 V	Сd	<	3,5	pF
Series resistance at $f = 1 MHz$				
I _F = 10 mA	٢D	<	1,5	Ω

Silicon a.m. band switching diode

BA223

Fig. 2 f = 1 MHz; $T_j = 25 \text{ °C}$.

Fig. 3 f = 1 MHz; $T_j = 25 \text{ °C}$.

July 1979

SILICON PLANAR DIODES

Switching diodes in a DO-35 envelope, intended for band switching in v. h. f. television tuners.

QUICK REFERENCE DATA								
Continuous reverse voltage	VR		max.	20	v			
Forward current (d.c.)	I_{F}		max.	100	mA			
Junction temperature	т _ј		max.	150	оС			
Diode capacitance at f = 1 to 100 MHz V_R = 15 V	Cd		typ. <	1, 1 2	pF pF			
			BA243	BA244				
Series resistance at f = 200 MHz I _F = 10 mA	rD	typ <	0,7	0,4 0,5	2 C			

MECHANICAL DATA

Dimensions in mm

DO-35

Mullard

The diodes may be either type-branded or colour-coded.

March 1974

BA243 BA244

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

<u>Voltage</u> Continuous reverse voltage	V _R	max.	20	v
Current				
Forward current (d.c.)	^I F	max.	100	mA
Temperatures				
Storage temperature	T _{stg}	-55 to	+150	oC
Junction temperature	т _ј	max.	150	٥C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th} j-a	=	0,6	⁰C/m₩
CHARACTERISTICS	T _j = 25 ^o C u	less otherw	ise sp	pecified
Forward voltage at $I_F = 100 \text{ mA}$	v _F	<	1	v
<u>Reverse current</u> at $V_R = 15 V$	IR	<	100	nA
$V_{R} = 15 V; T_{amb} = 60 °C$	I _R	<	1	μA
Diode capacitance at f = 1 to 100 MHz $V_R = 15 V$	Cd	typ. <	1, 1 2	pF pF
$\frac{\text{Relative capacitance variation}}{\text{due to reverse voltage variation}}$ $\frac{\text{due to reverse voltage variation}}{\text{at } \overline{V_R} = 7 \text{ to } 20 \text{ V}; \text{f} = 1 \text{ to } 100 \text{ MHz}}$ $\text{related to } V_R = 7 \text{ V}$	$\frac{\Delta C_d}{C_d \cdot \Delta V_R}$	typ.		%/V
Series resistance at $f = 200 \text{ MHz}$		BA243 B		
$I_{\rm F}$ = 10 mA	r _D typ.	0,7 1	0,4 0,5	Ω
Relative series resistance variation $\frac{\text{due to forward current variation}}{\text{at I}_{\text{F}} = 2 \text{ to } 40 \text{ mA}; \text{f} = 200 \text{ MHz}}$	Δr_{D}			
related to $I_F = 2 \text{ mA}$	$\overline{r_{D} \cdot \Delta I_{F}}$	typ.	2	%/mA
Series inductance (measured on envelope)	L _s	typ.	2,5	nH

Mullard

J

Silicon planar diodes

BA243 BA244

 $\mathbf{\nabla}$

1

0 L 10⁻¹

Mullard

10

1

March 1974

V_R (V)

10²

 \mathbf{U}

SILICON PLANAR DIODES

Switching diodes in the subminiature DO-34 glass envelope, intended for band switching in v.h.f. television tuners. Special feature of the diodes is their low capacitance.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	35 V	
Forward current (d.c.)	١ _F	max. 1	00 mA	
Junction temperature	т _і	max. 150 ^o C		
		BA482 BA483		
Diode capacitance V _R = 3 V; f = 1 to 100 MHz	Cd	< 1,2	1,0 pF	
Series resistance at f = 200 MHz F = 3 mA F = 10 mA	רם נים	< 0,7 typ. 0,4	1,2 Ω 0,5 Ω	

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

BA482: red on a natural background.

BA483: orange on a natural background.

....

RATINGS

Limiting values in accordance with the Absolute Maximum Syste	em (IEC	134)			
Continuous reverse voltage	٧R		max.	35	v
Forward current (d.c.)	١F		max.	100	mA
Storage temperature	T _{stg}		-65 to +	+ 150	°C
Junction temperature	тј		max.	150	°C
THERMAL RESISTANCE					
From junction to ambient mounted on printed board lead length = 5,0 mm	R _{th j} .	a	=	0,6	^o C/mW
CHARACTERISTICS					
$T_j = 25 \text{ oC}$ unless otherwise specified					
Forward voltage IF = 100 mA	٧F		<	1,2	v
Reverse current					
$V_{\rm R} = 20 V$	I R		< <	100	
V _R = 20 V; T _{amb} = 75 °C	IR.			1	μA
			BA482	B	A483
Diode capacitance	•	typ.	0,8		0,7 pF
V _R = 3 V; f = 1 to 100 MHz	Сd	<	1,2		1,0 pF
Series resistance at f = 200 MHz		typ.	0,6		0,8Ω
I _F = 3 mA	۲D	<	0,7		1,2 Ω

Silicon planar diodes

BA482 BA483

Fig. 5 Typical values; f = 200 MHz; T_j = 25 °C.

4

April 1978

Mullard

 $\mathbf{\nabla}$

SILICON VARIABLE CAPACITANCE DIODE

Planar-diffused diode in a DO-35 envelope intended for automatic frequency control in radio and television receivers.

QUICK REFERENCE DATA				
Continuous reverse voltage	v _R	max.	15	v
Junction temperature	т _ј	max.	200	°C
Reverse current at V_R = 15 V : T_j = 150 °C	IR	<	2,0	μA
Diode capacitance at $f = 1$ MHz $V_R = 4$ V	Cd	20	to 25	рF
Capacitance ratio at $f < 300 \text{ MHz}$	$\frac{C_{d}(V_{R} = 4 V)}{C_{d}(V_{R} = 10 V)}$	2	1,3	
Series resistance at V_R = 4 V: f = 200 MHz	r _D	<	1,5	Ω

MECHANICAL DATA

Dimensions in mm

DO-35

The coloured band indicates the cathode

The diodes are type branded.

Mullard

February 1977

BB119

RATINGS Limiting values in accordance with	the Absolute Max	imum Sy	stem (1	EC 134)
Voltage				
Continuous reverse voltage	v _R	max.	15	v
Current				
Forward current (d.c.)	I _F	max.	200	mA
Temperatures				
Storage temperature	T _{stg}	-65 to	+200	°C
Junction temperature	т _ј	max.	200	oC
THERMAL RESISTANCE				
From junction to ambient in free air				
CHARACTERISTICS	$T_j = 25 \ ^{O}C \ u$	nless oth	erwise	specified
Reverse current				
$V_R = 15 V : T_j = 150 °C$	I_{R}	<	2,0	μA
Forward voltage				
$l_{\rm F}$ = 100 mA	VF	<	950	mV
Diode capacitance at $f = 1$ MHz				
$v_R = 4 V$	Cd	20 1	to 25	pF
<u>Capacitance ratio</u> at $f < 300$ MHz	$\frac{C_{d} (V_{R} = 4 V)}{C_{d} (V_{R} = 10 V)}$	≥	1,3	
Series resistance at $f = 200 \text{ MHz}$				
$V_R = 4 V$	r _D	typ. <	0,9 1,5	Ω Ω

Simplified equivalent circuit:

L = lead inductance $\approx 6 \text{ nH}$ r_D = series resistance C_d = diode capacitance (see page 3)

These data apply for a distance of 10 mm between the two measuring points.

Silicon variable capacitance diode

İ.

BB119

February 1977

A.M. VARIABLE CAPACITANCE DOUBLE DIODES

The BB212 is a silicon mesa profiled epitaxial double tuning diode with common cathode in a plastic TO-92 variant.

A special feature is the low tuning voltage which makes the device particularly suited to car and domestic receivers in the L.W., M.W. and S.W. bands.

QUICK REFERENCE DATA

For each diode:			
Continuous reverse voltage	V _R	max.	12 V
Operating junction temperature	т _і	max.	85 ^o C
Reverse current at T _j = 25 ºC V _R = 10 V	'R	<	50 nA
Diode capacitance at f = 1 MHz V _R = 0,5 V V _R = 8,0 V	С _d Сd	500 t <	o 620 pF 22 pF
Capacitance ratio at f = 1 MHz	C _d (V _R = 0,5 V) C _d (V _R = 8,0 V)	>	22,5 🔶
Series resistance at f = 500 kHz V _R is that value at which C _d = 500 pF	rs	<	2,5 Ω

MECHANICAL DATA

Fig. 1 TO-92 variant.

The anode of the diode with the higher capacitance C_1 at $V_R = 3 V$, i.e. a more positive mismatch, is identified by a white dot.

Mullard

April 1982

Dimensions in mm

BB212

RATINGS (for each diode)			
Limiting values in accordance with the Absolute Ma	aximum System (IEC 134)		
Continuous reverse voltage	٧ _R	max.	12 V
Forward current (d.c.)	١F	max.	100 mA
Storage temperature	T _{stg}	-55 te	o+100 °C
Operating junction temperature	тј	max.	85 ^o C
CHARACTERISTICS (for each diode)			
T _j = 25 ^o C unless otherwise specified			
VR = 10 V VR = 10 V; T _{amb} = 60 °C	IR IR	< <	50 nA 200 nA
Diode capacitance at f = 1 MHz V _R = 0,5 V ► V _R = 3,0 V	C _d C _d	500	to 620 pF to 280 pF
► V _R = 5,5 V V _R = 8,0 V	C _d C _d	40 <	to 90 pF 22 pF
Capacitance ratio at f ≈ 1 MHz	C _d (V _R = 0,5 V) C _d (V _R = 8,0 V)	>	22,5
Series resistance at f = 500 MHz \sim V _R is that value at which C _d = 500 pF	rs	<	2,5 Ω
Temperature coefficient of the diode capacitance at f = 1 MHz; T _{amb} = 25 °C to 60 °C $V_R = 0.5 V$ $V_R = 8,0 V$	ກ ກ	typ. typ.	0,054 %/K 0,050 %/K

MATCHING PROPERTIES

The capacitance of the two diodes in their common envelope may differ within certain limits. The total, relative capacitance difference between the two diodes in one envelope may be found in Fig. 2. The anode a1 or a2 with the higher capacitance at $V_{\rm R}$ = 3 V, is identified by a white dot.

BASIC TOLERANCE

The relative deviation of the capacitance value at $V_R = 0.5 V$ is maximum 3.5%.

$$k = \left| \frac{C_1 (0,5 V) - C_2 (0,5 V)}{C_2 (0,5 V)} \right| = <3,5\%.$$

ADDITIONAL TOLERANCE

In the range of V_R = 0,5 to 8 V the following additional tolerances are valid.

$S = \left \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} V_{R} - \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} 0, 5 V \right $	S < 2% for V _R = 0,5 to 3 V S < 4% for V _R = 3 to 5,5 V S < 6% for V _R = 5,5 to 8 V	see Fig. 2
	5 < 0% tor vp = 5,5 to 8 v	

Mullard

C1 is the capacitance of a1 when $a_1 > a_2$

 C_1 is the capacitance of a_2 when $a_2 > a_1$

BB212

VARIABLE CAPACITANCE DIODES

The BB405B and BB405G are silicon variable capacitance diodes in hermetically sealed glass DO-34 envelopes.

The BB405B is intended for u.h.f. tuning up to frequencies of 860 MHz. The BB405G is intended for v.h.f. tuning.

Diodes are supplied in matched sets and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	ma	ax.	28	v
Reverse current at V_R = 28 V	I _R	<		10	nA
			BB405B	BB405G	
Diode capacitance at f = 500 kHz V _R = 25 V	Cd	> <	2,0 2,3	1,8 2,5	рF pF
Capacitance ratio at f = 500 kHz	C _d (V _R = 3 V) C _d (V _R = 25 V)	> <	4,8 5,8	4,3 6,0	
Series resistance at f = 470 MHz V_R is that value at which C_d = 9 pF	rs	<	0,8	1,2	Ω

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2E (5,08 mm) pitch.

BB405B: white cathode ring; body black coloured

BB405G: additional green band.

Maximum soldering iron or solder bath temperature 300 °C; maximum soldering time 3 s. Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

BB405B BB405G

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	28 V
Reverse voltage (peak value)	V _{RM}	max.	30 V
Forward current (d.c.)	١F	max.	20 mA
Storage temperature	T _{stg}		-55 to + 150 °C
Operating junction temperature	τ _j	max.	1 00 °C

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

	Reverse current			BB405B	BB405G	
	V _R = 28 V	I _R	<	10	10	nA
•	V _R = 28 V; T _{amb} = 85 °C	I R	<	200	200	nΑ
	Diode capacitance at f = 500 kHz*					
•	V _R = 1 V	C _d	>	15,5	15,5	рF
	V _R = 3 V	Cd	typ	. 11,5	11,5	рF
	V _R = 25 V	C _d	> <	2,0 2,3	1,8 2,5	pF pF
	Capacitance ratio at $f = 500 \text{ kHz}$	C _d (V _R = 3 V) C _d (V _R = 25 V)	> <	4,8 5,8	4,3 6,0	
	Series resistance at f = 470 MHz and at that value					
	of V_R at which $C_d = 9 pF$	rs	<	0,8	1,2	Ω

* Matching: Devices are supplied on a bandolier with a space between matched sets (minimum quantity 120 devices, total divisible by 12; maximum quantity is 9000 per reel). Capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

Mullard

Variable capacitance diodes

BB405B BB405G

Mullard

BB405B BB405G

4

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB809 is a variable capacitance diode in a glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).

Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	28 V
Reverse current at $V_{\rm R}$ = 28 V	∙R I _R	<	20 V 10 nA
Diode capacitance at f = 500 kHz	'n		
V _R = 3 V	Сd	26	ito 32 pF
V _R = 25 V	Cd	4,5	to 5,6 pF
Capacitance ratio at f = 500 kHz	C _d (V _R = C _d (V _R = 2	n	to 6,5
Series resistance at $f = 200 \text{ MHz}$ V _R is that value at which C _d = 25 pF	rs	<	0,6 Ω

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

Lead diameter in this zone uncontrolled.
 Cathode indicated by yellow band.

BB809

RATINGS

Limiting values in accordance with the Absolute Maximum	System (IEC 134)			
Continuous reverse voltage	V _R	max.	28	v
Reverse voltage (peak value)	∨ _{RM}	max.	30	v
Forward current (d.c.)	IF	max.	20	mA
Storage temperature	T _{sta}	-55 to -	⊦ 150	oC
Operating junction temperature	тј	max.	100	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,6	°C/mW
CHARACTERISTICS				
T _{amb} = 25 ^o C unless otherwise specified				
Reverse current				
V _R = 28 V	IR	<	10	nA
V _R = 28 V; T _{amb} = 85 ^o C	I R	<	200	nA
Diode capacitance at f = 500 kHz				
V _R = 3V	C _d	26	to 32	pF
V _R = 25 V	C _d	4,5 t	o 5,6	pF
Capacitance ratio at f = 500 kHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	5 t	o 6,5	
Series resistance at f = 200 MHz				
V_R is that value at which C_d = 25 pF	r _s	<	0,6	Ω
Relative capacitance difference between two diodes; V _R = 1 to 28 V	$\frac{\Delta C}{C}$	<	3	%

2

Silicon planar variable capacitance diode

BB809

GERMANIUM DIODES Gold bonded

_ _

GOLD BONDED DIODES

Germanium diodes in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

			AAZ15	AAZ1	7
Continuous reverse voltage	VR	max.	75	50	v
Repetitive peak reverse voltage	VRRM	max.	100	75	v
Forward current (d.c.)	١F	max.	140	140	mA
Repetitive peak forward current	FRM	max.	250	250	mA
Junction temperature	Τ _i	max.	85	85	оC
Forward voltage at IF = 250 mA	ÝF	<	1,1	1,1	v
Recovery charge when switched from $I_F = 10 \text{ mA to } V_R = 10 \text{ V}$	Qs	<	1800	900	рС

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes are type branded; the cathode being indicated by a coloured band.

Mullard

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		AAZ15	AAZ17
Continuous reverse voltage	VR	max. 75	50 V
Repetitive peak reverse voltage	V _{RRM}	max. 100	75 V
Non-repetitive peak reverse voltage (t < l s)	V _{RSM}	max. 115	75 V
Currents			
Forward current (d.c.)	IF	max. 140	mA
Average rectified forward current (averaged over any 20 ms period)	l _{F(AV)}	max. 140	mA
Repetitive peak forward current	IFRM	max. 250	mA
Non-repetitive peak forward current $(t \le 1 s)$	IFSM	max. 500	mA
Temperatures			
Storage temperature	Tstg	-65 to +85	oC
Junction temperature	Тj	max. 85	°C
THERMAL RESISTANCE			
From junction to ambient in free air	R _{thj-a}	= 0.55	^o C/mW

MAINTENANCE TYPE

OA47

GOLD BONDED DIODE

Germanium diode in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	25 V
Repetitive peak reverse voltage	V _{RRM}	max.	25 V
Forward current (d.c.)	١ _F	max.	110 mA
Repetitive peak forward current	FRM	max.	150 mA
Junction temperature	Ti	max.	75 °C
Forward voltage at I _F = 150 mA	ν _F	<	1,1 V
Recovery charge when switched from I _F = 10 mA to V _R = 10 V	Q _s	<	600 pC

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes are type-branded; the cathode being indicated by a coloured band.

Mullard

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

-			-	-
Voltages				
Continuous reverse voltage	VR	max.	25	v
Repetitive peak reverse voltage	VRRM	max.	25	v
Non-repetitive peak reverse voltage ($t < 1 s$)	V _{RSM}	max.	30	v
Currents				
Forward current (d.c.)	IF	max.	110	mA
Average rectified forward current (averaged over any 20 ms period)	^I F(AV)	max.	110	mA
Repetitive peak forward current	I _{FRM}	max.	150	mA
Non-repetitive peak forward current $(t < 1 s)$	IFSM	max.	200	mA
Temperatures				
Storage temperature	Τ _{stg}	-65 t	o +75	°C
Junction temperature	т _ј	max.	75	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{thj-a}	=	0.55	°C∕m₩

PICOAMPERE DIODE

٠.

Dimensions in mm

PICOAMPERE DIODE

Silicon diode in a metal envelope. It has an extremely low leakage current over a wide temperature range combined with a low capacitance and is not sensitive to light. It is intended for clamping, holding, peak follower, time delay circuits as well as for logarithmic amplifiers and protection of insulated gate field-effect transistors.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	20 V
Forward current (d.c.)	١ _F	max.	50 mA
Forward voltage at IF = 10 mA	VF	<	1,0 V
Reverse current V R = 5 V; Tj = 25 °C V R = 20 V; Tj = 25 °C	^I R ^I R	< <	5 pA 10 pA
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	1,3 pF

MECHANICAL DATA

Fig. 1 TO-18 (except for the two leads)

Handle the device with care whilst soldering into the circuit. The extremely low leakage current can only be guaranteed when the bottom is free from solder flux or other contaminations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Continuous reverse voltage 20 V VR max. 35 V Repetitive peak reverse voltage VRRM max. Forward current (d.c. or average) IF. max. 50 mA Repetitive peak forward current max. 100 mA FRM T_{stg} -65 to + 125 °C Storage temperature 125 °C Junction temperature Τi max. THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS

T_i = 25 ^oC unless otherwise specified

Forward voltage I _F = 10 mA	VF	<	1,0 V
Reverse current V _R = 5 V	۱ _R	<	5 pA
V _R = 5 V; T _j = 80 ^o C	⁽ R	<	250 pA
V _R = 20 V	۱ _R	<	10 pA
Diode capacitance V _R = 0; f = 1 MHz	Cd	<	1,3 pF
Forward recovery voltage when switched to $I_F = 10 \text{ mA}$	V _{fr}	<	1,25 V

Input signal			
Rise time of the forward pulse	tr	≤	20 ns
Forward current pulse duration	tp	=	300 ns
Duty factor	δ	=	0,01
Oscilloscope			
Rise time	tr	=	0,35 ns
Input capacitance	Сi	≤	1 pF

Mullard

Circuit capacitance $C \le 20 \text{ pF}$ (C = C_i + parasitic capacitance)

500 K/W

R_{th j-a}

=

CHARACTERISTICS (continued)

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

•

Fig. 4.

March 1981

Fig. 6.

Mullard

$\mathbf{\nabla}$

March 1981

Fig. 8.

INDEX

INDEX

	·			r	
Type No.	Section	Suggested alternative	Type No.	Section	Suggested alternative
AA119 AAZ13	•	BAT81	BAX13	B B	
AAZ13 AAZ15	1*	BA481	BAX16 BAX17	в	
AAZ15 AAZ17	1*	BAT85	BB105B.G	• •	BB405B,G
BA182	*	BA482	BB110B,G	•	BB119
BA223	н		BB119	н	
BA243	н		BB212	н	
BA244	н		BB405B,G	н	
BA280	•	BA481	BB809	н	
BA314	С		BBY31	G	
BA316	В		BBY40	G *	DVCOA
BA317	B		BY184 BY228	E	BY584
BA318 BA379	В •		BY228 BY409	С +	BY509
BA481	F		BY438	E	51303
BA482	н		BY448	E	
BA483	н		BY458	E	
BAS11	В		BY476	E⁺	
BAS16	G		BY509	E	
BAS17	G		BY584	E	
BAS19	G		BYV27 series	E	
BAS20	G		BYV28 series	E	
BAS21	G		BYV95A,B,C	E	
BAT17 BAT18	G		BYV96D,E BYW54	E	
BAT81	F		BYW55	E	
BAT82	F		BYW56	E	
BAT83	F		BYW95A,B,C	E	ĺ
BAT85	F		BYW96D,E	E	
BAV10	В		BYX10	E*	
BAV18	В		BYX90	*	
BAV19	B		BYX91 series		
BAV20	B		BZT03 series	C	
BAV21 BAV45	B J		BZV10 BZV11	D D	
BAV70	G		BZV12	D	
BAV99	G		BZV13	D	1
BAW56	G		BZV14	D	
BAW62	В		BZV46-1V5, 2V0	с	
BAX12A	В		BZV49 series	G	ł
	L		J L	L	<u> </u>

Mullard

*Not recommended for the design of new equipment.

INDEX

Type No.	Section	Suggested alternative	Type No.	Section	Suggested alternative
BZV85 series	с		CVA7029	E	
BZW03 series	С		CVA7030	E	}
BZX61 series	C+	BZV85 series	CVA7476	E	}
		or BZT03 series	OA47	1-	BAT85
BZX79 series	с		0A90	*	BAT81
BZX84 series	G		0A91	*	
BZX87 series	С		0A95	*	
BZX90	D		OA200	В	1
BZX91	D		OA202	В	1
BZX92	D		1N821	D	
BZX93	D		1N823	D	
BZX94	D		1N825	D	
BZY88 series	C+	BZX79 series	1N827	D	
CV7099 to 7106	С		1N829	D	
CV7138 to 7146	С		1N914	В	
CV7367,8	в		1N916	в	
CV7756,7	В		1N4001G	E	
CV7875	В		1N4002G	E	
CV8308	E		1N4003G	E	
CV8617	В		1N4004G	E	
CV8790	В		1N4005G	E	
CV8805	E	{	1N4006G	E	{
CV9637	В		1N4007G	E	1
CV9638	В		1N4148	В	
CVA7026	E		1N4446	B	
CVA7027	E		1N4448	в	
CVA7028	E		1=		

*Not recommended for the design of new equipment.

 \Box

_ . _ .

		DIODES	CONTENTS	
		SELECTION GUIDE	• .	
_	Α	GENERAL SECTION	l	
	В	SILICON WHISKERI	LESS DIODES	
	С	VOLTAGE REGULA	TOR DIODES (Low power)	
	D	VOLTAGE REFERENCE DIODES RECTIFIER DIODES (Low power) SCHOTTKY-BARRIER DIODES		
	E			
	F			
	G	MICROMINIATURE	DIODES	
	н	TUNER DIODES GERMANIUM DIODES (Gold bonded)		
	I			
	J	PICOAMPERE DIOD)E	
		INDEX		

Mullard

technical handbook

Book 1

Farnell Electronic Components Ltd. Canal Road, Leeds LS12 2TU. Tel: Leeds (0532) 636311. Telex: 55147.

Gothic Crellon 380 Bath Road, Slough SL1 6JE. Tel: Burnham (06286) 4434, Telex: 847571,

Hawnt Electronics Ltd. Firswood Road. Garretts Green, Birmingham B33 0TO. Tel: Birmingham (021) 784 2485. Telex: 338814.

Intel Electronics Ltd. Trading Estate, Henlow, Bedfordshire SG16 6DS. Tel: Hitchin (0462) 812505. Telex: 825637.

ITT Electronics Services Edinburgh Way, Harlow, Essex CM20 2DF. Tel: Harlow (0279) 26777. Telex: 81525.

Jermyn Vestry Estate, Sevenoaks, Kent TN13 5EU. Tel: Sevenoaks (0732) 450144, Telex: 95142.

Macro-Marketing Ltd. Burnham Lane, Slough SL1 6LN. Tel: Burnham (06286) 4422. Telex: 847945.

Swift-Sasco Ltd. PO. Box 2000. Gatwick Road. Crawley, Sussex RH10 2RU. Tel: Crawley (0293) 28700. Telex: 87131.

Townsend-Coates Ltd. Lunsford Road. Leicester LE5 0HH. Tel: Leicester (0533) 769191. Telex: 34321.

Mullard Limited, Mullard House. Torrington Place. London WC1E 7HD. Telephone: (01) 580 6633. Telex: 26434

Mullard manufacture and market electronic components under their own name and those of associated companies.

Book 1 Part 3, 1983

Printed in England

M82-2080 ES 3.5M 183