Mullard technical handbook

Book three

Components, materials and assemblies

Part five

Loudspeakers, television assemblies and modules

August 1978

LOUDSPEAKERS, TELEVISION ASSEMBLIES AND MODULES
 CONTENTS

SELECTION GUIDE
LOUDSPEAKERSA
TELEVISION TUNERSB
MONOCHROME TELEVISION ASSEMBLIESCOLOUR TELEVISION ASSEMBLIESD
MODULES E
INDEX

The issue of the information contained in this publication does not imply any authority or licence for the utilisation of any patented feature.
'Mullard' is the trademark of Mullard Limited and is registered in most of the principal countries of the world.
(C) Mullard Limited August 1978

Book 3 comprises the following parts -

Part 1 Canacitors, resistors
Part 2 Magnetic materials and components, piezoelectric ceramics
Part 3 Vinkor inductor cores
Part 4 RM inductor cores
Part 5 Loudspeakers, television assemblies and modules
Part 6 Circuit blocks, input and output devices, peripheral devices,

BOOK 3 (Part 5)

COMPONENTS MATERIALS AND ASSEMBLIES

Loudspeakers, television assemblies and modules

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD

DATA HANDBOOK SYSTEM

The Mullard data handbook system is made up of three sets of books, each comprising several parts; plus the Signetics technical handbook.

The three sets of books, easily identifiable by the colours on their covers, are as follows:

Book 1	(blue)	Semiconductor devices and integrated circuits
Book 2	(orange)	Valves and tubes
8ook 3	(green)	Passive components, materials, and assemblies.

Each part is completely reviewed annually; revised and reprinted where necessary. Revisions to previous data are indicated by an arrow in the margin.

The data contained in these books are as accurate and up to date as it is reasonably possible to make them at the time of going to press. It must however be understood that no guarantee can be given here regarding the availability of the various devices or that their specifications may not be changed before the next edition is published.

The devices on which full data are given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equiprnent designs, but generally available for equipment production are listed separately with abridged data. Data sheets for these types may be obtained on request. Older devices on which data may still be obtained on request are also included in the index of the appropriate part of each book.

Requests for information on the data handbook system (including Signetics data) and for individual data sheets should be made to

Technical Publications Department
Mullard Limited
New Road
Mitcham
Surrey CR4 4XY

Telex: 22194

Information regarding price and availability of devices must be obtained from our authorised agents or from our representatives.

SELECTION GUIDE

SELECTION GUIDE

Section A

LOUDSPEAKERS

High power ($\geqslant 10$ watts) to DIN45500 requirements for high fidelity speakers.

Cone diameter (inches)	Type No.	Shape of flange	Impedance versions $(S 2)$	Maximum power (W)	Type of use
1	AD0140/T	round	4,8	20,40	Tweeter
1	AD0162/T	round	8,15	20.4	Tweeter
1	AD0163/T	round	8,15	20,4	Tweeter
2	AD0210/Sq	round	4,8	60	Squawker
2	AD0211/Sq	round	4,8	60	Squawker
4	AD4050/W	round	4,8	15	Woofer
5	AD5060/Sq	octagonal	4,8	40	Squawker
5	AD5061/Sq	octagonal	4,8	10	Squawker
7	AD7060/W	octagonal	4.8	30	Woofer
7	AD7066/W	ocragonal	4.8	40	Woofer
8	AD8000	octagonal	-	-	Passive resonator
8	AD8061/W	octagonal	4.8	30	Woofer
8	AD8066/W	octagonal	4,8	40	Woofer
8	AD8067/W	octagonal	4.8	40	Woofer
10	AD1065/W	round	4.8	30	Woofer
10	AD10100/W	round	4,8	40	Woofer

High power >10 watts) full range loudspeakers

5	AD5061/M	octagonal	4.8	10	7 litre enclosures
7	AD7062/M	octagonal	4.8	30	7 litre enclosures
7	AD7063/M	octagonal	4.8	10	25 litre enclosures
$81 / 2$	$9710 / M 8$	round	8	20	Studio monitors,etc.
10	AD1065/M	round	$4.8,15$	10	20 litre enclosures
12	AD1265/M	round	$4.8,15$	20	P.A. systems
12	AD12100/HP	round	4.8	50	Guitar amplifier,
electronic organs.					
12	AD12100/M	round	$4.8,15$	25	50 litre enclosures

Medium power (2 - 10 watts) dual cone loudspeakers

Cone diameter (inches)	Type No.	Shape of flange	Impedance versions (Ω)	Maximum power
4×6	AD4681/M	oval	$4,8,25$	W)
4×6	AD4691/M	oval	$4,8,15,25$	6
5×7	AD5780/M	oval	$4,8,15,25$	4
5×7	AD5790/M	oval	$4,8,15$	6
7	AD7080/M	octagonal	$4,8,15$	4
7	AD7091/M	octagonal	4,8	6

Medium power (2-10 watts) loudspeakers

3×5	AD3591/X	oval	$4,8,15,25$	3
3×5	AD3595/X	oval	$4,8,15,25$	3
3×8	AD3880/X	oval	$4,8,15$	4
3×8	AD3890/X	oval	$4,8,15,25$	4
4	AD4080/X	round	$4,8,15,25$	3
4	AD4480/X	square	$4,8,15,25$	3
4	AD4085/X	round	$4,8,15$	3
4	$A D 4485 / X$	square	$4,8,15$	3
4	$A D 4090 / X$	round	8,15	2
4	$A D 4481 / X 4$	square	4	8
4×6	$A D 4681 / X$	oval	$4,8,15,25$	6
4×6	$A D 4691 / X$	oval	$4,8,15,25$	4
4×8	$A D 4890 / X$	oval	$4,8,15,25$	10
5×7	$A D 5780 / X$	oval	$4,8,15,25$	6
5×7	$A D 5790 / X$	oval	4,8	4
7	$A D 7080 / X$	octagonal	4,8	6
7	$A D 7091 / X$	octagonal	4,8	3

Low power (1-3 watts) plastic frame loudspeakers

$21 / 2$	AD2071/Z	round	$4,8,15,25$	1
3	AD3071/Y	round	$4,8,15,25$	2
3	AD3371/Y	square	$4,8,15,25$	2
4	AD4072/X	round	$4,8,15,25$	3
4	AD4472/X	square	$4,8,15,25$	3

Crossover networks

Crossover frequency (Hz)	Type No.	Impedance versions (Ω)	Maximum power (W)	Tweeter impedance for high sensitivity tweeters (Ω)
1500	ADF 1500/4	4	80	8
1800	ADF 1500/8	8	80	15
2400	ADF $2400 / 4$	4	20	8
2400	ADF $2400 / 8$	8	20	15
650 and 2800	ADF 700/2600/4	4	80	8
700 and 2600	ADF 700/2600/8	8	80	15

Section B

TELEVISION TUNERS

Channel coverage	Supply voltage (V)		Power gain (dB)	Noise factor (dB)	Type No.
	transistors	tuning diodes			
V.H.F.	+12	+0.3 $10+28$	20	7	ELC1042
V.H.F.	+12	+0.3 $10+25$	20	7	ELC1042/05
$\begin{aligned} & \text { U.H.F. } \\ & 21-69 \end{aligned}$	+12	+0.3 to +25	22	7	ELC1043/05
$\begin{aligned} & \text { U.H.F. } \\ & 21-69 \end{aligned}$	+12	+0.3 to +25	12	7	ELC1043/06
```U.H.F./V.H.F. E2 to C E5 to E12 E21 to E69```	+12	+0.5 to +28	29	6.5	ELC2000
$\begin{aligned} & \text { U.H.F. } \\ & \text { E21 to E69 } \end{aligned}$	$+12$	$+110+28$	18	7.5	U321/321LO
$\begin{aligned} & \text { U.H.F. } \\ & \text { E21 to E69 } \end{aligned}$	+12	$+110+28$	19	7.5	U322/322 LO
V.H.F.   NZ1 to E4   1A to 1C   E5 to E12   10 to 1 J	+12	$+110+28$	20	6.5	V311
$\begin{aligned} & \text { V.H.F. } \\ & \text { E2 to C } \\ & \text { Morocco } 4 \text { to E12 } \end{aligned}$	+12	+1 $10+28$	20	6.5	V314
$\begin{aligned} & \text { V.H.F. } \\ & \text { E2 to S1 } \\ & \text { S2 to }(\mathrm{min}) \mathrm{S} 17 \end{aligned}$	+12	+1 to +28	20	6.5	V315:315LO

## Section C

MONOCHROME TELEVISION ASSEMBLIES
(for use with $110^{\circ}$ picture tubes with a neck diameter of 28 mm )

Description	Tyne No.
Deflection coil assembly   Deflection unit   Line output transformer   Line linearity control unit (adjustable)   Line linearity control unit (fixed)	AT1040/15

Industrial monochrome assemblies for monitors, V.D.U. etc.

Deflection unit
AT1071/01
Deflection unit
AT1074
Line output transformer
AT2102/01
Line output transformer
AT2140/10
Line linearity control unit (adjustable)
AT4034/01
Line linearity control unit (adjustable)
AT4036
Line linearity control unit (adjustable)
AT4042/08
Line driver transformer
AT4043:59

## Section D

## COLOUR TELEVISION ASSEMBLIES

$110^{\circ}$ self converging system (20AX)

Description	Type No.
Deflection coil assemblies	AT1080, 1083/01, 1085
Line output transformers	AT2080/10, 2080/15
Line output transformers (diode split)	AT2076/35, 2076/55
Multipole unit	AT1081
Line linearity control unit	AT4042/38
Line driver transformer	AT4043/29
Twist compensation unit	AT4043/34
Bridge coil	AT4043/38
Balancing coil (E - W)	AT4044/20
Balancing coil	AT4044/26
Four pole adjusting coil	AT4044/27
Switched mode power supply transformer	AT2095

Delay lines and crystals

Chrominance delay line	DL50
Chrominance delay line	DL51
Chrominance delay line	OL60
Chrominance delay line	DL700
Luminance delay lines	VS340/1, 400/1, 470/1,550/1,600/1
4.4 MHz crystal	432215201100
8.8 MHz crystal	432214303120

## Section E <br> MODULES

Description	Type No.
Voltage multiplying module	BG100
Voltage multiplying module	LP1174 Series
Voltage multiplying module	LP1194 Series
Voltage multiplying module	LP1196 Series

## LOUDSPEAKERS



A


迷	－		

＂

 0

兰为人

	连	
	为	
	2	
＂10	－	


＂		年

＂
르N
 N理
 ＂， 릉 ＂ OM，


## INTRODUCTION

A correctly chosen loudspeaker is essential to obtain acoustic results from electroacoustic equipment.
The following factors should be considered when choosing a loudspeaker:

- Shape, size and attachment with reference to the available space:
- Quality and sensitivity, a compromise between fidelity of reproduction and price:
- The frequency response characteristic in relation to the kind of application:
- Impedance and power handling capacity, which should be adapted to the output stage of the equipment:
- Appearance and finish.

To assist customers in making their choice our loudspeakers have been divided into three main groups:

- High power $\quad \geq 10$ watt): (hi-fi /full range)
- Medium power (2-10 watt)
- Low power ( $\leq 2$ watt)


## High power types

High power types: tweeters, woofers, squawkers
These speakers have been specially designed for use in hi-fi equipment, where a high power-handling capacity, a very wide frequency range and a negligible distortion level are required. They all conform to the high fidelity standards of IEC268 and DIN45500. Examples of application: sealed hi-fi enclosures with cross-over networks.

## High power full range types

These types offer more than the medium and low power types and some of them meet the hi-fi standards of IEC268 and DIN45500. Examples of application: discotheques, public address systems, monitoring and hi-fi equipment in open or sealed enclosures.
Medium and low power types
The medium and low power speakers form an extensive group offering a diversity in characteristics, size and price for all kinds of radio and television sets, music centres, tape recorders, sound columns, etc.
Most of the medium and low power speakers contain a ferrite magnet (Magnadur). For television sets and other applications where the external magnetic field should be as small as possible, there are loudspeakers having a metal (Ticonal) magnet in a pot system.

## LOUDSPEAKER CODING




## RESPONSE CURVES

For the medium and low power range one curve (a), showing the sound pressure as a function of the frequency is given in the Data sheets.
For the high power range the curves $a, b$ and $c$ are given, and for the squawkers and tweeters a directional response curve (d).

Measuring conditions concerning mounting of the loudspeaker:

		curve a	sound pressure curve b	curve d	distortion curve c
range	measured in	anechoic room	half free field/ anechoic room	anechoic room	anechoic room
Medium/now power		unmounted			
High power full range		unmounted	baffle or enclosure		baffle or enclosure
High power range	tweeters   squawkers   woofers	unmounted   unmounted   unmounted	baffle baffle or enclosure enclosure	unmounted unmounted	baffle   baffle or enclosure   enclosure

## TERMS AND DEFINITIONS

"Unmounted": The loudspeaker is placed in a clamping set-up which does not influence its radiation characteristics.
" Mounted in enclosure": The loudspeaker with the gasket outside the enclosure of dimensions specified on the data sheet (flush mounted or front mounted as specified).
"Baffle": The loudspeaker is fitted to a baffle, dimensions of which are specified on the data sheet (flush mounted or front mounted).
"Half free field": The acoustical conditions on the forward side approach those of free space.
"Anechoic room" : The acoustical conditions approach those of free space. (IEC publication 268, part 5, section 1).

[^0]
## TEST METHODS AND MEASUREMENTS

The atmospheric conditions for measurement are:

Temperature	15 to $35^{\circ} \mathrm{C}$
Relative humidity:	45 to $75 \%$
Pressure:	860 to 1060 mbar

1 Impedance
The impedance is the modulus of the lowest value of the electrical impedance in the frequency range above the bass resonance frequency of the loudspeaker as determined by the method specified in para. 3 below.
1.1 Measuring apparatus

- Audio frequency sinewave signal generator with a constant output voltage over the range from 0 to 20000 Hz .
- Linear amplifier with an output impedance not greater than $1 / 3$ of the rated loudspeaker impedance and a power output of approx. $0.1 \times$ the power handling capacity of the loudspeaker.
- A $1 \Omega$ resistor connected in series with the loudspeaker.
- An electronic voltmeter shunted across the $1 \Omega$ resistor.


### 1.2 Conditions

- The loudspeaker is unmounted.
- The power input to the loudspeaker will not exceed $0.1 \times$ the power handling capacity as determined in para. 4 below.

1. 3 Measuring result

Rated impedance is stated on the data sheets. The measured impedance will not be lower than $20 \%$ of the rated impedance.

2 Voice coil resistance
The voice coil resistance is the (d.c.) resistance of the voice coil.

### 2.1 Measuring apparatus

Low current d.c. Ohm-meter.

## 2. 2 Conditions

The d.c. power input to the loudspeaker does not exceed $0.1 \times$ the power handling capacity.

## 2. 3 Measuring circuit

The rated resistance is given on the data sheets, tolerance $\pm 10 \%$

## Resonance frequency

The resonance frequency is that frequency where the modulus of the electrical impedance has its first principal maximum in an ascending scale, the electrical input being such as to have no significant effect on the resonant frequency.

## 3. 1 Measuring apparatus

Same as for "Impedance". See para. 1.

## 3. 2 Conditions

- The loudspeaker is measured unmounted.
- The resonance frequency is determined after applying to the loudspeaker for a duration of 5 s a test signal equal to that required to test the power handling capacity.


## 3. 3 Measuring result

The resonance frequency is that frequency at which the voltmeter indicates the first minimum deflection as the frequency is swept slowly from 0 Hz , the output voltage of the amplifier being such that the voltmeter reads for the resonance frequency:

> 40 to 60 mV for loudspeakers with a rated impedance less than $20 \Omega$ :

15 to 25 mV for loudspeakers with a rated impedance between $20 \Omega$ and $100 \Omega$ :

4 to 6 mV for loudspeakers with a rated impedance greater than $100 \Omega$.

The rated resonance frequency is stated on the data sheets.
4 Power handling capacity
The power handling capacity is the nominal power which the loudspeaker will satisfactorily handle as checked by an accelerated life test:

## 4. 1 Test apparatus

- Generator supplying test signal in accordance with IEC268, para. 9. 3.
- Power amplifier with an output impedance not greater than $1 / 3$ of the rated impedance of the loudspeaker.
- Voltmeter indicating the r.m.s. value of the voltage.


## 4. 2 Conditions

- A test voltage is applied to the loudspeaker for an uninterrupted period of 100 hrs . The r.m.s. value of this voltage corresponds with the specified power handling capacity of the loudspeaker.
- The test voltage has a frequency distribution corresponding with that of the output of a filter as specified in IEC Publication 268 , part 5 para. 9.3 when fed from a white noise source.
- If the loudspeaker is designed to operate in a restricted frequency range, the corresponding network (filter) which is connected to the loudspeaker during the test, is spectfied on the data sheet. The test voltage is measured at the input terminals of the network.
- The method of mounting is as specified on the data sheet.


## 4. 3 Test result

To pass this test the loudspeaker has to function properly at the end of the test period. Deviation from the specified resonance frequency is allowed.

5 Total non-linear distortion
This is the ratio between the $\mathrm{r} . \mathrm{m} . \mathrm{s}$. value of the harmonic content of the sound pressure to the value of the total sound pressure over the frequency range of the loudspeaker.
The difference in dB between fundamentals and harmonic contents, can be converted into a distortion percentage with the aid of the following nomogram.


## 5. 1 Conditions

- The loudspeaker is mounted as specified on the data sheet.
- The power input to the loudspeaker is the operating power.
- The microphone distance is as specified on the data sheet. (See also definition of "Operating power").

5. 2 Measuring result

The distortion curve with its limit of high power loudspeakers is given on the data sheet.

6 Sweep voltage
The sweep voltage test imposes on the loudspeaker a sinusoidal test signal of specified constant amplitude. The frequency of this signal is swept through the specified frequency range.
6. 1 Test apparatus

- Audio frequency sinewave signal generator with a constant output voltage over the range from 0 to 20000 Hz .
- Linear amplifier with an output power appropriate to the loudspeaker under test and an output impedance not greater than $1 / 3 \times$ the rated loudspeaker impedance. For power see 6. 2.
- An electronic voltmeter with high input impedance.


## 6. 2 Conditions

- The loudspeaker is tested unmounted.
- The input voltage is
a) for the medium and low power range such that the power input to the loudspeaker is $0.5 \times$ the specified power handling capacity.
b) for the high power range as specified on the data sheets.
- If the loudspeaker is designed to operate in a restricted frequency range, the corresponding network (filter) which is connected to the loudspeaker during the test, is specified on the data sheet. The test voltage is measured at the input terminals of the network.


## 6. 3 Test result

To pass this test the loudspeaker has to function properly during the test.
7 Flux density
This is the magnetic flux density measured in the air gap.

## 7. 1 Measuring apparatus

- Differential search coil
- Galvanometer

7. 2 Conditions

- The distance between the centres of the two coils is equal to the air gap height minus 1 mm .
- The two coils are put into the air gap symmetrical with respect to the poleplate.


## 7. 3 Measuring result

The minimum flux density as measured on production samples is stated on the data sheet.

8 Frequency response
The frequency response is the graph representing the sound pressure as a function of frequency applying to the loudspeaker a constant sine-wave signal V .

## 8. 1 Measuring apparatus

- Microphone
-. Microphone amplifier
- Cathode follower
- Sine/random generator
- Level recorder

Bruel and Kjaer, type 413, 4145
Bruel and Kjaer, type 2606, 2607, 2608
Bruel and Kjaer, type 2619
Bruel and Kjaer, type 1024
Bruel and Kjaer, type 2305, 2307

The apparatus is set as follows:

- Writing speed
- Paper speed
- Range potentiometer
- Lower limiting frequency
- Rectifier response
- Writing width
- Compressor speed
$125 \mathrm{~mm} / \mathrm{s}$
$3 \mathrm{~mm} / \mathrm{s}$
50 dB
10 Hz
r.m.s.

100 mm
$300 \mathrm{~dB} / \mathrm{s}$

## 8. 2 Conditions

- Sine-wave signal $V=\sqrt{W \cdot Z_{r}}$ where
- for anechoic room measurements $\mathrm{W}=50 \mathrm{~mW}$, unless otherwise stated on the data sheets.
$\mathrm{V}=$ test voltage
$\mathrm{Z}_{r}=$ rated impedance as specified on the data sheet
- Microphone position: in axds of loudspeaker on a distance of 50 cm for anechoic room measurements
- Curve a is measured in a anechoic room; loudspeaker unmounted
- Curve bis measured in a half free field; loudspeaker mounted as specified on the data sheet
- Curve $d$ is measured in a anechoic room; loudspeaker unmounted.


## LOUDSPEAKERS

8. 3 Measuring result

A description of the sensitivity and the frequency response curve(s), together with the limits for curve a are given on the data sheet.

9 Direction of magnetisation
The magnet is so magnetised that the centrepole is south for systems with a ring magnet, and north for systems with a slug magnet.

10 Polarity
The cone of the loudspeaker will move outward when a d.c. voltage is applied to the terminals so that the red marked terminal is positive.
The voltage applied does not exceed the "sweep voltage".

## 1 inch HIGH POWER DOME TWEETER LOUDSPEAKER

## APPLICATION

For the reproduction of audio frequencies from 1600 Hz to 22000 Hz in multi-way highfidelity Inudspeaker systems. Minimum recommended cross-over frequency 1600 Hz with 12 dB /octave slope.

## TECHNICAL DATA



Operating power		W
Sweep voltage ( 500 to 20000 Hz )	3	V
Energy in air gap		mJ
Flux density		T
Air-gap height		mm
Voice coil height	2,4	mm
Core diameter		mm
Magnet material diameter mass		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~kg} \end{aligned}$
Mass of loudspeaker		kg

The loudspeaker has a polycarbonate dome and a voice coil of aluminium wire.
Connection to the loudspeaker is by means of 3.2 mm ( 0.12 inch ) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1
One tag is indicated by a red mark for in-phase connection
Baffle hole diameter 75 mm .
Face of loudspeaker should lic in line with plane of baffle.

## FREQUENCY RESPONSE CURVES

Curve b: Snund pressure measured in half free field, input at operating power. Loudspeaker mounted on baffle, dimensions $50 \times 50 \mathrm{~mm}$.

Curve c: 2nd and 3rd harmonic distortion, measured at the operating power of 4 W in anechoic room. Loudspeaker unmounted.
7270506.1

Fig. 2
200
100
ㅇ ○ o
$\infty$
70
8

## 1 INCH HIGH POWER <br> DOME TWEETER LOUDSPEAKER

## APPLICATION

For use in direct and indirect radiating systems for reproduction of audio frequencies from 2000 Hz to 22000 Hz with very low distortion in multi-way high fidelity loudspeaker systems in accordance with DIN 45500 . Minimum recommended cross-over frequency 1600 Hz . The loudspeaker has a very high sensitivity.

## TECHNICAL DATA



The loudspeaker has a polycarbonate dome and a diffusor integrated in the cover.
Connection to the loudspeaker by means of $2,8 \mathrm{~mm}(0,11 \mathrm{mch})$ Fastons or soldering.


Fig. 1. Measuring circuit.
$a=$ system power handling capacity
$\mathrm{b}=$ loudspeaker power handling capacity.

## Dimensions (mm)

Fig. 2.


One tag is indicated by a red mark for in-phase connection.
Face of loudspeaker should not lie behind plane of baffle.

## FREQUENCY RESPONSE CURVES (see Fig. 3)

Curve b: Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz , over the width of one octave, the sound pressure may be a maximum of 2 dB lower than indicated.

Curve c: 2nd and 3rd harmonic distortion, measured at the operating power of 2 W in anechoic room, loudspeaker unmounted.


Fig. 3.

## 1 INCH HIGH POWER DOME TWEETER LOUDSPEAKERS

## APPLICATION

For use in direct and indirect radiating systems for reproduction of frequencies from 2000 Hz to 22000 Hz with very low distortion in multi-way high-fidelity loudspeaker systems in accordance with DIN 45500 . Minimum recommended crossover frequency 2000 Hz . The loudspeaker has a very high sensitivity.

TECHNICAL DATA	version		
	T8	T15	
Rated impedance	8	15	$\Omega$
Voice coil resistance	6,3	12,5	$\Omega$
Rated frequency range	2000 to 22000		Hz
Resonance frequency	1300		Hz
Power handling capacities, $\mathrm{a} / \mathrm{b}$ (see Fig.1), loudspeaker unmounted,   at $2000 \mathrm{~Hz} ; \mathrm{C}=8 \mu \mathrm{~F} ; \mathrm{L}=0,5 \mathrm{mH}$ at $2000 \mathrm{~Hz} ; \mathrm{C}=3,3 \mu \mathrm{~F} ; \mathrm{L}=1 \mathrm{mH}$ at $4000 \mathrm{~Hz} ; \mathrm{C}=3,2 \mu \mathrm{~F} ; \mathrm{L}=0,35 \mathrm{mH}$ at $4000 \mathrm{~Hz} ; \mathrm{C}=1,5 \mu \mathrm{~F} ; \mathrm{L}=0,8 \mathrm{mH}$	$20 / 4$ 50/6	$20 / 4$ 50/6	$w$ $w$ $w$ $w$
Operating power	2		W
Sweep voltage, frequency range: 500 to $\mathbf{2 0 0 0 0 ~ H z}$ high pass filter: $8 \mu \mathrm{~F}-0,5 \mathrm{mH}$ $3,3 \mu \mathrm{~F}-1 \mathrm{mH}$	4,5	5,5	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Energy in air gap			mJ
Flux density			T
Air-gap height			mm
Voice coil height	2,4	3.4	mm
Core diameter			mm
Magnet material diameter mass			${ }_{\text {kg }}^{\text {mm }}$
Mass of loudspeaker			kg

The loudspeaker has an impregnated textile dome and a diffuser integrated in the cover. Connection to the loudspeaker by means of $\mathbf{2 , 8} \mathbf{~ m m}(\mathbf{0 , 1 1}$ inch) Fastons or soldering.


Fig. 1 Measuring circuit.
$a=$ system power handling capacity.
b = loudspeaker power handling capacity.

## Dimensions (mm)



Fig. 2
One tag is indicated by a red mark for in-phase connection. Face of loudspeaker should not lie behind plane of baffle.

## FREQUENCY RESPONSE CURVES (see Fig.3)

Curve b: Sound pressure measured in anechoic room, loudspeaker unmounted.
Curve c: 2 nd and 3 rd harmonic distortion, measured at the operating power of $\mathbf{2} \mathbf{W}$ in anechoic room, loudspeaker unmounted.


## 2 inch HIGH POWER DOME SQUAWKER LOUDSPEAKER

AD0210/Sq.

## APPLICATION

For the reproduction of audio (requencies from 500 to 5000 Hz with very low distortion in multi-way high-fidelity loudspeaker systems according to DIN45500.
The loudspeaker has an excellent spherical radiation pattern.


The loudspeaker has a paper dome, textile rim and a sealed pot: no acoustic isolation required.
Connection to the loudspeaker is by means of $5,1 \mathrm{~mm}(0,2$ inch) Fastons or soldering.


Fig. 1

## ${ }^{1}$ ) Baffle hole diameter 110 mm

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

Sece Fig. 2 Input procer 50 niW
Curve b: Sound pressure ne:asured in anechoic rown. loudspeaker mounted on DIN baffle at operating power.
Curve e: 2nd and 3 rd harmonic distortion. neasured at the operating power of 5 W in. anceloic roum. Loudspeaker front munted on DIN baffle.

## 2 INCH HIGH POWER DOME SQUAWKER LOUDSPEAKER

## APPLICATION

For the reproduction of audio frequencies from 500 to 5000 Hz with very low distortion in multi-way high-fidelity loudspeaker systems according to DIN 45500 . The loudspeaker has an excellent spherical radiation pattern.

TECHNICAL DATA	version		
	Sq4	Sq8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3,4	6,6	$\Omega$
Resonance frequency	340	370	Hz
Rated frequency range	550 to 5000 Hz		
Power handling capacity, loudspeaker unmounted, measured with filter $\begin{aligned} & 50 \mu \mathrm{~F}-1,6 \mathrm{mH} \\ & 24 \mu \mathrm{~F}-3,2 \mathrm{mH} \end{aligned}$	60	60	W
Power handling capacity of speaker only	20 W		
Operating power	5 W		
Sweep voltage ( 100 to 10000 Hz , filter $50 \mu \mathrm{~F}-1,6 \mathrm{mH}$ $24 \mu \mathrm{~F}-3,2 \mathrm{mH}$ )	4,5	6,3	
Energy in air gap	250 mJ		
Flux density	0,8		
Air-gap height	mm		
Voice coil height	3,3		mm
Core diameter	50 mm		
Magnet material	Magnadur		
diameter	$\begin{array}{r} 102 \\ 0,42 \end{array}$		mm
mass			kg
Mass of loudspeaker	1 kg		

The loudspeaker has a textile dome and surround, and a sealed pot; no acoustic isolation required. Connection to the loudspeaker is by means of $5,1 \mathrm{~mm}(0,2$ inch $)$ Fastons or soldering.

Dimensions (mm)


Fig. 1

* Baffle hole diameter 110 mm .

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve a: Sound pressure measured in anechoic room, loudspeaker mounted on IEC baffle at operating power.
Curves d2 and d3: 2nd and 3rd harmonic distortion, measured at the operating power in anechoic room. Loudspeaker front mounted on IEC baffle.


## 2½ $\operatorname{INCH}$ LOW POWER LOUDSPEAKER

## APPLICATION

For portable receivers and intercoms.

TECHNICAL DATA	24	version			
		28	215	225	
Rated impedance	4	8	15	25	$\Omega$
Voice coil resistance	3.5	7,1	13,7	22,8	$\Omega$
Rated frequency range	180 to 4000				Hz
Resonance frequency	360				Hz
Power handling capacity, loudspeaker unmounted, measured without filter	1				W
Operating power (sound level $90 \mathrm{~dB}, 0,5 \mathrm{in}$ )	0,25				
Sweep voltage (frequency range: $\mathbf{2 4 0}$ to $\mathbf{1 5 0 0 0 ~ H z}$ )	1	1.4	1.9	2,5	$\checkmark$
Energy in air gap	12.7				mJ
Flux density	0.74				T
Air-gap height	2,5				mm
Voice coil height	2.7	2,2	3,0	3,6	mm
Core diameter	10				
Magnet material	Magnadur				
diameter	31 mm				
mass	0,02 kg				
Mass of loudspeaker	0,064				kg

The loudspeaker has a plastic frame, and a paper cone and surround. Connection to the loudspeaker by means of $2,8 \mathrm{~mm}(0,11$ inch) Fastons or soldering.

Dimensions (mm)


Fig. 1.
*Baffle hole and clearance depth required for cone movement at the specified power handling capacity. One tag is indicated by + sign for in-phase connection.

## FREQUENCY RESPONSE CURVE (see Fig. 2)

Sound pressure measured in anechoic room, loudspeaker mounted on IEC baffle.
1276888

Fig.2.

## 3 INCH LOW POWER LOUDSPEAKER

## APPLICATION

For portable receivers and intercoms.

## TECHNICAL DATA

	version				
	Y4	Y8	Y15	Y25	
Rated impedance	4	8	15	25	$\Omega$
Voice coil resistance	3.5	7.1	13.7	22.8	$\Omega$
Rated frequency range		to 6			Hz
Resonance frequency			250		Hz
Power handling capacity, loudspeaker unmounted, measured without filter			2		W
Operating power (sound level $90 \mathrm{~dB}, 0.5 \mathrm{in}$ )			0.225		W
Sweep voltage (frequency range 170 to 15000 Hz )	1.4	2.0	2.7	3.5	V
Energy in air gap			12.7		mJ
Flux density			0.74		$T$
Air-gap height			2.5		mm
Voice coil height	2.7	2.2	3.0	3.6	mm
Core diameter			10		mm
Magnet material diameter mass			$\begin{gathered} \text { nadur } \\ 31 \\ 0.02 \end{gathered}$		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~kg} \end{aligned}$
Mass of loudspeaker			0.069		kg

The loudspeaker has a plastic frame, and a paper cone and surround. Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) Fastons or soldering.

Dimensions (mm)
AD3071/Y


AD3371/Y
Fig. 1


Baffle hole 72 mm diameter
Fig. 2

FREQUENCY RESPONSE CURVE
(1)

Sound pressure measured in anechoic room, loudspeaker mounted on IEC baffle.

3
$\overline{\bar{N}} \mathbf{2}$

## $3 \times 5$ INCH OVAL MEDIUM POWER LOUDSPEAKER

## AD3591/X

## APPLICATION

For use in portable radios, tape recorders and, due to absence of stray magnetic field, this loudspeaker can also be used in television sets. High sensitivity.

TECHNICAL DATA	version				$\boldsymbol{\Omega}$
	$\times 4$	X8	$\times 15$	$\times 25$	
Rated impedance	4	8	15	25	
Voice coil resistance	3.4	7.2	13,8	22,6	$\boldsymbol{\Omega}$
Rated frequency range		85 to 12000			Hz
Resonance frequency		180			Hz
Power handling capacity, measured without filter, loudspeaker unmounted		3			w
Sweep voltage	2,4	3,5	4.7	6.1	$\checkmark$
Energy in air gap		39			mJ
Flux density		0,8			T
Air-gap height		3			mm
Voice coil height	2	1.8	2,55	2,8	mm
Core diameter		18			mm
Magnet material diameter mass	Ticonal	Ticonal	$\begin{array}{r} \text { Ticonal } \\ 18 \\ 0,027 \end{array}$	Ticonal	$\underset{\mathbf{k g}}{\mathrm{mm}}$
Mass of loudspeaker			0.13		kg
The loudspeaker has a paper cone and surround					

Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


Fig. 1.
One tag is indicated by a red mark for in-phase connection.

FREQUENCY RESPONSE CURVE (see Fig. 2)
Curve a: Sound pressure.
Curves d2 and d3: 2nd and 3rd harmonic distortion.
The curves are measured in anechoic room, loudspeaker mounted on IEC baffle.
20
7276938

						71					
		,	-			-					
		3									
		4									
			$\%$								${ }_{7}$
			S								
			$\beta$								
			\%								
		,									
						$\bigcirc$	1	-			
		\%									

Fig. 2.

## $3 \times 5$ INCH <br> MEDIUM POWER LOUDSPEAKER

## APPLICATION

For use in portable radios, tape recorders and, due to absence of stray magnetic field, this loudspeaker can also be used in television sets. High sensitivity.


The loudspeaker has a paper surround and a foam plastic gasket on the flange. Connection to the loudspeaker by means of $2,8 \mathrm{~mm}(0,11$ inch) Fastons, or sotdering.


Fig. 1.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve a: Sound pressure.
Curves d2 and d3: 2nd and 3rd harmonic distortion, measured at the operating power of 1,5 W.
The curves are measured in anechoic room, loudspeaker mounted on IEC baffle.
1278911


# $3 \times 8$ INCH OVAL MEDIUM POWER LOUDSPEAKERS 

## APPLICATION

For use in portable radios and tape recorders
TECHNICAL DATA


The loudspeaker has a paper cone and a treated paper surround.
Connection to the loudspeaker by means of $\mathbf{2 . 8} \mathbf{~ m m}$ ( 0.11 inch ) tag connectors or by soldering.


Fig. 1

1) Baffle hole and clearance depth required for cone movement at specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

## See Fig. 2. Input power 50 mW

Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated.

## AD3890/X <br> Saries

## APPLICATION

For use in portable radios and tape recorders.
The absence of stray field due to ticonal sinterpot magnet system, makes this loudspeaker also suitable for use in television sets.

## TECHNICAL DATA

	version				
	X4	X8	X 15	X25	
Rated impedance	4	8	15	25	$\Omega$
Voice coil resistance	3,4	7,1	13,5	22,7	$\Omega$
Resonance frequency	120	120	120	120	Hz
Power handling capacity, measured without filter, loudspeaker unmounted	4	4	4	4	w
Sweep voltage	2,8	4	5,5	7,1	V
Energy in airgrap	39	39	39	39	m]
Flux density	0.8	0.8	0,8	0, 8	T
Airgap height	3	3	3	3	mm
Voice coil height	2,4	2, 8	2,5	2,8	mm
Core diameter	18	18	18	18	mm
Magnet material diameter	Ticonal $18$	Ticonal 18	Ticonal $18$	Ticonal 18	mm
weight	0,027	0,027	0,027	0,027	kg
Weight of loudspeaker	0,21	0,21	0,21	0,21	kg

The loudspeaker has a paper cone and a treated paper surround.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


1) Baffle hole and clearance depth required for cone movement at specified power handling Capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

See Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted. Above 1000 Hz the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated.
7Z69097.1

$10 \mathrm{kHz} \quad 20$
Fig. 2

## 4 INCH HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

The absence of stray field due to Ticonal sinterpot magnet system makes this loudspeaker very suitable for use in television sets. It can be used in sealed acoustic enclosures and in bass reflex enclosures of maximum 7 litres.

## TECHNICAL DATA

	version			
	W4		W8	
Rated impedance	4		8	$\Omega$
Voice coil resistance	3.2		7	$\Omega$
Rated frequency range		35 to 2000		Hz
Resonance frequency		60		Hz
Power handling capacity measured without filter, mounted in 71 bass reflex enclosure		15		W
Operating power		8		W
Sweep voltage, frequency range; 30 to 6000 Hz	5.5		7.75	V
Energy in air gap		100		mJ
Flux density		0.85		T
Air-gap height		5		mm
Voice coil height		6		mm
Core diameter		25		mm
Magnet material diameter mass		$\begin{gathered} \text { Ticonal } \\ 25 \\ 0.06 \end{gathered}$		mm
Mass of loudspeaker		0.42		kg

The loudspeaker has a rubber surround and a sealing strip at the rear of the basket. Connection to the loudspeaker by means of $\mathbf{2 . 8} \mathbf{~ m m}$ ( 0.11 inch) Fastons, or soldering.

## AD4050/W

Dimensions (mm)

(1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve a: Sound pressure measured in anechoic room, loudspeaker mounted in 7 | bass reflex enclosure. Curves d2 and d3: 2nd and 3rd harmonic distortion, measured at the operating power.


Fig. 2.

## 4 INCH MEDIUM POWER LOUDSPEAKERS

## APPLICATION

For portable receivers and intercoms.

TECHNICAL DATA	version				
	$\times 4$	X8	$\times 15$	$\times 25$	
Rated impedance	4	8	15	25	$\Omega$
Voice coil resistance	3,5	7.1	13,7	22,8	$\Omega$
Rated frequency range	80 to 15000 Hz				
Resonance frequency	170 Hz				
Power handling capacity, loudspeaker unmounted, measured without filter	3 W				
Operating power (sound level $90 \mathrm{~dB}, 0,5 \mathrm{in}$ )	0,18 W				
Sweep voitage (frequency range 100 to $\mathbf{2 0 0 0 0 ~ H z )}$	1.4	2	2.7	3,5	V
Energy in air gap	12,7 mJ				
Flux density	0,74				
Air-gap height	2,5 mm				
Voice coil height	2,7	2,2	3.0	3,6	mm
Core diameter	$10 \quad \mathrm{~mm}$				
Magnet material					
diameter mass	31   mm				
Mass of loudspeaker, round flange version square flange version					kg kg

The loudspeakers have a plastic frame, and a paper cone and surround. Connection to the loudspeakers is by means of $\mathbf{2 , 8} \mathbf{~ m m}$ ( 0,11 inch) Fastons or soldering.

Dimensions (mm)


Fig. 1 a .


Fig. 1b.
One tag is indicated by a red mark for in-phase connection.


Fig.2.
,

## 4 INCH MEDIUM POWER LOUDSPEAKERS

AD4080/X<br>AD4480/X<br>Series

## APPLICATION

For portable receivers, small tape recorders and intercoms.

## TECHNICAL DATA

	version				
	X4	X8	X 15	X25	
Rated impedance	4	8	15	25	$\Omega$
Voice coil resistance	3,4	7,1	13, 8	22, 6	$\Omega$
Resonance frequency	165	165	165	165	Hz
Power handling capacity, measured without filter loudspeaker unmounted	3	3	3	3	W
Sweep voltage	2,45	3,5	4,75	6, 1	V
Energy in airgap	55	55	55	55	m]
Flux density	1	1	1	1	T
Airgap height	3	3	3	3	mm
Voice coil height	2,4	3, 1	2, 55	2, 8	mm
Core diameter	18	18	18	18	mm
Magnet material		Mag			
diameter	53	53	53	53	mm
weight	0,1	0,1	0,1	0,1	kg
Weight of loudspeaker	0, 25	0,25	0, 25	0,25	kg

The loudspeaker has a paper cone and surround.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


Fig. 1a Round flange version


Fig. 1b Square flange version Baffle hole diameter 96 mm .


One tag is indicated by a red mark for in-phase connection.
 FREQUENCY RESPONSE CURVE
Sound pressure measured in anechoic room, loudspeaker unmounted. Above 1000 Hz , the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated. Input power 50 mW

AD4085/X

## APPLICATION

For auaio equipment in general. Frequency response up to 12 kHz, high sensitivity in bass region.

TECHMICAL DATA	version			
	$\times 4$	X8	$\times 15$	
Rated impedance	4	8	15	$\Omega$
Voice coil resistance	3,4	7.1	13,5	$\boldsymbol{\Omega}$
Rated frequency range	80 to 14000			Hz
Resonance frequency	150			Hz
Power handling capacity, measured without filter, loudspeaker unmounted	3			w
Operating power (sound level $90 \mathrm{~dB}, 1 \mathrm{~m}$ )	0.7			$w$
Sweep voltage ( 75 to $\mathbf{2 0 0 0 0 ~ H z ) ~}$	2,5	3,5	4,7	$v$
Energy in air gap	38			mJ
Flux density	1,1			T
Air-gap height	2.5			mm
Voice coil height	3,5	4.1	2,7	mm
Core diameter	14			mm
Magnet material diameter mass	$\begin{aligned} & \text { Magnadur } \\ & 0,053 \end{aligned}$			mm
Mess of loudspeaker	0,16			kg

The loudspeaker has a paper rim. Connections to the loudspeaker can be made by means of Fastons or by soldering.


Fig. 1a Round flange type AD4085/X.


Fig. 1b Square flange type AD4485/X.
Baffle hole diameter 96 mm .
One tag is indicated by a red mark for in-phase connection.



## 4 INCH LOW POWER LOUDSPEAKERS

## AD4090/X. Series

## APPLICATION

For portable receivers.

## TECHNICAL DATA

	version		
	X8	X15	
Rated impedance	8	15	$\Omega$
Voice coil resistance	7, 2	13.8	$\Omega$
Resonance frequency	190	190	Hz
Power handling capacity, measured without filter loudspeaker unmounted	2	2	W
Sweep voltage	2,8	3,9	V
Energy in airgap	39	39	inJ
Flux density	0,8	0,8	T
Airgap height	3	3	mm
Voice coil height	1,8	2,55	mm
Core diameter	18	18	mm
Magnet material	Ticonal	Ticonal	
diameter	18	18	mm
weight	0,027	0,027	kg
Weight of loudspeaker	0,125	0,125	kg

The loudspeaker has a paper cone and surround.

Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1

${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Ahove 1000 Hz the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated.


## 4 INCH MEDIUM POWER LOUDSPEAKER

## APPLICATION

With its excellent power handling capacity very suitable for car radios.

## TECHNICAL DATA

Rated impedance	4
Voice coil resistance	3,4
Rated frequency range	90 to 14000
Resonance frequency	140
Power handling capacity, measured without filter loudspeaker unmounted	8
Operating power (sound level $90 \mathrm{~dB}, 1 \mathrm{~m}$ )	0.8
Sweep voltage ( 80 to 20000 Hz )	3,5
Energy in air gap	50
Flux density	0,95


Air gap height	3	mm
Voice coil height	4,4	mm
Core diameter	18	mm
Magnet material	Magnadur	
diameter	54	mm
mass	0,1	kg
Mass of loudspeaker	0,25	$\mathbf{~ k g}$

The loudspeaker has a paper cone and a textile surround.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room, loudspeaker mounted on baffle according to IEC268-5, par. 4.4.
Curve c: 2nd and 3rd harmonic distortion, measured at the operating power of $0,8 \mathrm{~W}$. Loudspeaker front mounted on IEC baffle.

## APPLICATION

A full range loudspeaker for car and domestic radios, tape recorders and portable record players.
This speaker has an extended frequency response up to 20 kHz .
TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency
Power handling capacity, measured without filter
loudspeaker unmounted
Sweep voltage

M4	M8	M25	
4	8	25	$\Omega$
3,4	7,1	22,7	$\Omega$
135	135	135	Hz
6	6	6	W
2,8	4	7,1	V
55	55	55	mJ
1	1	1	T
3	3	3	mm
3	3,9	4	mm
18	18	18	mm
53	53	53	mm
0,1	0,1	0,1	kg
0,26	0,26	0,26	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


1) Baffle hole and clearance depth required for cone movement at specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Sound pressure measured in anechoic room, loudspeaker unmounted. Above 1000 Hz the sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated.
Input power 50 mW .
7268179.1


## $4 \times 6$ inch OVAL MEDIUM POWER LOUDSPEAKER

## APPLICATION

For car and domestic radios, tape recorders and portables. Frequency range up to 12 kHz . High sensitivity at 3000 Hz .

## TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency
Power handling capacity,
measured without filter
loudspeaker unmounted
Sweep voltage
Energy in airgap
Flux density
Airgap height
Voice coil height
Core diameter
Magnet material
diameter
weight
Weight of loudspeaker:

version				
X4	X8	X15	X25	
4	8	15	25	$\Omega$
3, 1	7,1	13,5	22,7	$\Omega$
140	140	140	140	Hz
6	6	- 6	6	W
3. 5	4,9	6,7	8.7	V
55	55	55	55	mJ
1	1	1	1	T
3	3	3	3	mm
3	3, 9	3,2	4	mm
18	18	18	18	mm
Magnadur				
53	53	53	53	mm
0,1	0,1	0, 1	0.1	kg
0,26	0.26	0,26	0,26	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) tag connectors or by soldering.

Mullard

Dimensions (mm)


Fig. 1


1) Bafile hole and clearance depth required for cone movement at specified power handling capacity
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room. loudspeaker unmounted. Above 1000 Hz the sensitivity may be. over the width of one octave, maximum 2 dB lower than indicated.
7268181.1

			+	1	-						-
			,								
			$\delta$								
			1								
			,								
囲	$\times$										-
$\boxminus$	\%										
	¢										
											-

## APPLICATION

A full range loudspeaker with an extended frequency response up to 20 kHz . Due to absence of stray tic onal sinterpot magnetic field, this loudspeaker can be used for black and white as well as colour television sets.

TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency
Power handling capacity, measured without filter loudspeaker unmounted

Sweep voltage
Energy in airgap
Flux density
Airgap height

Voice coil height	3
Core diameter	18
Magnet material	Ticonal
diameter	18
weight	0,027
Weight of loudspeaker	0,16


M4	M8	M15	M25	
4	8	15	25	$\Omega$
3,4	7,1	13,5	22,7	$\Omega$
135	135	135	135	Hz
4	4	4	4	W
				V
2,8	4	5,5	7,1	mJ
39	39	39	39	T
0,8	0,8	0,8	0,8	mm
3	3	3	3	mm
3	3,9	3,2	4	mm
18	18	18	18	
Ticonal	Ticonal	Ticonal	Ticonal	18
18	18	18	0,027	0,027
0,027	0,027	0,02	mm	
0,16	0,16	0,16	0,16	kg
				kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated.
Input power 50 mW
7268182.1



## $4 \times 6$ INCH OVAL <br> MEDIUM POWER LOUDSPEAKER

AD4691/X

## APPLICATION

Due to absence of stray magnetic ticonal sinterpot field, the loudspeaker can be used in black and white as well as colour television sets.
High sensitivity at 3000 Hz . Frequency response up to 12 kHz .

## TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency

	version			
X4	X 8	X 15	X 25	
4	8	15	25	$\Omega$
3,4	7,1	13,5	22,7	$\Omega$
140	140	140	140	Hz
4	4	4	4	W
2,8	4	5,5	7,1	V
39	39	39	39	mJ
0,8	0,8	0,8	0,8	T
3	3	3	3	mm
3	3,9	3,2	4	mm
18	18	18	18	mm
Ticonal	Ticonal	Ticonal	Ticonal	
18	18	18	18	mm
0,027	0,027	0,027	0,027	kg
0,16	0,16	0,16	0,16	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.

Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted. Above 1000 Hz sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated.

	TW\#		$\square$	T\#	-	$\square$	+	
	${ }^{\text {ADL } 491 / \mathrm{x} \text {. }}$							
	,							
				1			$\sim$	
				1				
			,					
		-						V
		-					$4$	+

## Fig. 2

200
100
50

## AD4890/X

## APPLICATION

For colour television sets. Low stray field. low resonance frequency, high sensitivity in bass region.

## TECHNICAL DATA

	version				19
	X4	X8	X15	$\times 25$	
Rated impedance	4	8	15	25	
Voice coil resistance	3.4	7.1	13.5	22.7	$\bigcirc$
Rated frequency range	55 to 13000				$\mathrm{Hz}^{2}$
Resonance frequency	110				Hz
Power handling capacity, measured without filter, loudspeaker unmounted	10				W
Operating power (sound level $90 \mathrm{~dB}, 1 \mathrm{~m}$ )	0.7				W
Sweep voltage ( 55 to 20000 Hz )	4	5,7	7, 8	10,	V
Energy in air gap	39				mJ
Flux density	0,8				T
Air gap height	3				mm
Voice coil height	4,5	3,9	3, 2	4	mm
Core diameter	18				mm
Magnet material diameter mass			- 8		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~kg} \end{aligned}$
Mass of loudspeaker	0,23				kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.

## Dimensions (mm)



Baffle hole


Fig. 1
${ }^{1}$ ) Clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room, loudspeaker mounted on baffle according to IEC268-5, par. 4.4.

Curve c: 2nd and 3rd harmonic distortion, measured at the operating power of $0,7 \mathrm{~W}$ in anechoic room. Loudspeaker front mounted on IEC baffle.

## 5 inch HIGH POWER SQUAWKER LOUDSPEAKER

## APPLICATION

For the reproduction of audio frequencies from 500 to 4500 Hz with very low distortion in multi-way high-fidelity loudspeaker systems in accordance with DIN45500. The loudspeaker has an excellent spherical radiation pattern. Rated frequency range 500 to 5000 Hz .

## TECHNICAL DATA

	version		
	Sq4	Sq8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3,4	6, 4	$\Omega$
Resonance frequency	210	210	Hz
```Power handling capacity measured with filter: 72 \muF - 2,1 mH (40) 36 \muF-4.5 mH (8C) loudspeaker unmounted```	40	$\overline{40}$	$\begin{aligned} & \mathrm{w} \\ & \mathrm{w} \end{aligned}$
Operating power	4	4	W
```Sweep voltage frequency range: 400-5000 Hz filter high pass : }72\mu\textrm{F}-2,1\textrm{mH}(4\textrm{s} 36 \muF-4,5 mH (8\Omega)```	3,5	5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Energy in air gap	140	140	m]
Flux density	0,93	0,93	T
Air-gap height	5	5	mm
Voice coil height	6, 8	6, 8	mm
Core diameter	25	25	mm
Magnet material	Mag	adur	
diameter	72	72	mm
mass	0,23	0,23	kg
Mass of loudspeaker	0, 8	0,8	kg

The loudspeaker has a paper cone, a rubber surround and a sealed pot; no acoustic isolation required.
Connection to the loudspeaker by means of $6.3 \mathrm{~mm}(0.25 \mathrm{inch})$ tag connectors or by soldering.


Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in half free field at operating power of 4 W in anechoic room, loudspeaker mounted on IEC baffle.
Curve c: 2nd and 3rd harmonic disturtion, measured at the operating power of 4 W in anechoic room.
7261794.1


## 5 inch HIGH POWER FULL RANGE LOUDSPEAKER

## APPLICATION

A full range loudspeaker for small sealed enclosures of maximum 7 litres and also suitable for use in bookshelves enclusures.
Extended frequency response $75-20 \mathrm{kHz}$ in 7 litres enclosures.

TECHNICAL DATA	version		
	M4	M8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3,4	7	$\bigcirc$
Resonance frequency	85	85	Hz
Power handling capacity measured without filter. loudspeaker unmounted	10	10	W
Operating power	2	2	W
Sweep voltage	3. 2	4.5	V
Energy in airgap	127	127	mJ
Flux density	0.87	0.87	T
Airgap height	5	5	mm
Voice coil height	6,5	6,5	mm
Core diameter	25	25	mm
Magnet material			
diameter	72	72	mm
weight	0.26	0.26	kg
Weight of loudspeaker	0.665	0.665	kg

The loudspeaker has a paper cone, a textile surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.

Mullard

## AD5061/M.



Fig. 1

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Curve b: Sound pressure measured in anechoic room at input power of 2 W . Loudspeaker mounted on IEC baffle.
7268185.2


Fig. 2
Fig. 2

100

50

20

10
,
50



## 5 INCH HIGH POWER SOUAWKER LOUDSPEAKER

## AD5061/Sq

## APPLICATION

For the reproduction of alldio frequencies from 1300 to 5000 Hz with very low distortion in multi-way high-fidelity loudspeaker systems in accerdance with DIN45500. The loudspeaker has an excellent spherical radiation pattern.

## TECHNICAL DATA

technicaldata	version		
	Sg4	Sq8	
Rated impedance	4	8	!
$V$ Oice coil resistance	3,4	7	?
Resonance frequency	680		Hz
Rated frequency range	1300 to 5000		Hz

Power handling capacity,
measured with fitter: $24 \mu \mathrm{~F}-0,4 \mathrm{mH} \quad 10 \mathrm{~W}$
$12 \mu \mathrm{~F}-0,8 \mathrm{mH} \quad 10 \mathrm{~W}$
loudspeaker unmounted
Operating power $\quad 2$ W
Sweep voltage
frequency range: $300-5000 \mathrm{~Hz}$
high pass filter: $24 \mu \mathrm{~F}-0.4 \mathrm{mH}$
$3.5 \quad \mathrm{~V}$ $12 \mu \mathrm{~F}-0.8 \mathrm{mH}$

5 V

Energy in air gap	140	mJ
Flux density	0,93	T
Air-gap height	5	mm
Voice coil height	6,8	mm
Core diameter	25	mm
Magnet material	Magnadur	
diameter   mass	0,23	mm
Mass of loudspeaker	0,8	kg

The loudspeaker has a sealed frame and a textile rim.
Connection to the loudspeaker is by means of $2,8 \mathrm{~mm}$ ( 0,11 inch) Fastons or soldering.


Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in half free field at operating power of 2 W in anechoic room, loudspeaker mounted on IEC baffle.

Curve c: 2nd and 3rd harmonic distortion, measured at the operating power of 2 W in anechoic room.


## $5 \times 7$ inch OVAL MEDIUM POWER LOUDSPEAKER

## APPLICATION

A full range loudspeaker for car and domestic radins, tape recorders and portable record players.
Due to its dual-cone construction, this loudspeaker has an extended frequency response up to 20 kHz .

TECHNICAL DATA	version				
	M4	M8	M15	M25	
Rated impedance	4	8	15	25	$\bigcirc$
$V$ oice coil resistance	3,4	7,1	13,5	22,7	$\Omega$
Resonance frequency	100	100	100	100	Hz
Power handling capacity, measured without filter loudspeaker unmounted	6	6	6	6	W
Sweep voltage	2.8	4	5,5	8,7	V
Energy in air gap	53	53	53	53	mJ
Flux density	0,98	0,98	0,98	0,98	T
Air-gap height	3	3	3	3	mm
Voice coil height	3	3, 9	3, 2	4	mm
Core diameter	18	18	18	18	mm
Magnet material		Mag			
diameter	53	53	53	53	mm
mass	0,1	0,1	0,1	0,1	kg
Mass of loudspeaker	0, 32	0,32	0,32	0,32	kg

The loudspeaker has a paper cone and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 0.28 mm ( 0.11 inch ) tag connectors or by soldering.

Dimensions (mm)



Fig. 1

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sensitivity may be over the width of one octave, maximum 2 dB lower than indicated.


## $5 \times 7$ inch OVAL MEDIUM POWER LOUDSPEAKER

## APPLICATION

For car and domestic radios. tape recorders and portable record players. High sensitivity at 4000 Hz . Frequency range up to 10 kHz .

## TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency
Power handling capacity, measured without filter, loudspeaker unmounted

Sweep voltage

version				
X 4	X 8	X 15	X 25	
4	8	15	25	$\Omega$
3,4	7,1	13,5	22,7	$\Omega$
115	115	115	115	Hz
6	6	6	6	W
3,4	3,5	4,8	6,1	V
55	55	55	55	mJ
0,98	0,98	0,98	0,98	T
3	3	3	3	mm
3	3,9	3.2	4	mm
18	18	18	18	mm
53	53	53	53	mm
0,1	0,1	0,1	0,1	kg
0,32	0,32	0,32	0,32	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1

1) Bafile hole and clearance depth required for cone movement at the specified power handling capacity.

Onc tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

l:ig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated.


## $5 \times 7$ INCH OVAL MEDIUM POWER LOUDSPEAKERS

## AD5790/M <br> Series

## APPLICATION

Due to absence of stray magnetic ticonal sinterpot field, the loudspeaker can be used in black and white as well as colour television sets. High sensitivity at 3000 Hz .

## TECHNICAL DATA

Rated impedance
Voice coil resistance

M4	M8	M15	
4	8	15	$\Omega$
3,4	7,1	13,5	$\Omega$
100	100	100	Hz
4	4	4	W
2,8	4	5,5	V
39	39	39	mJ
0,8	0,8	0,8	T
3	3	3	mm
3	3,9	3,2	mm
18	18	18	mm
Ticonal	Ticonal	Ticonal	
18	18	18	mm
0,027	0,027	0,027	kg
0,22	0,22	0,22	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.

## Dimensions (mm)




Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated. Input power 50 mW

```
5\times7 INCH OVAL MEDIUM POWER LOUDSPEAKERS
```

Fig. 2

## $5 \times 7$ inch OVAL MEDIUM POWER LOUDSPEAKER

## APPLICATION

Due to absence of stray magnetic Ticonal sinterpot field, the loudspeaker can be used in black and white as well as colour television sets. High sensitivity at 3000 Hz .

## TECHNICAL DATA

	version		
	X4	X8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3, 4	7,1	$\Omega$
Resonance frequency	115		Hz
Power handling capacity, measured without filter. loudspeaker unmounted	4		W
Operating power	0,7		W
Sweep voltage	2, 45	4	V
Energy in air gap	39		mJ
Flux density	0,8		T
Air-gap height	3		mm
Voice coil height	3	3,9	mm
Core diameter	18		mm
Magnet material diameter mass	180,027		${ }_{\mathrm{kg}}^{\mathrm{mm}}$
Mass of loudspeaker	0,22		kg

The loudspeaker has a paper cone, a treated paper surround and a foam plastic gasket on the flange.

Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES(see Fig. 2)

Curve b: Sound pressure measured in anechoic room at input power of $2,2 \mathrm{~W}$. Loudspeaker mounted on IEC baffle.

Curve c: 2nd and 3rd harmonic distortion, measured at input power of 2, 2 W in anechoic room. Loudspeaker mounted on IEC baffle.


## 7 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures.
Maximum enclosure volume 7 litres; maximum recommended cross-over frequency .3000 Hz .
Rated frequency range 40 to 3000 Hz .

## TECHNICAL DATA

	version		
	W 4	W8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3.4	6, 8	S2
Resonance frequency	45	45	Hz
Power handling capacity, measured without filter, mounted in $7 \ell$ sealed enclosure	30	30	W
Operating power	6, 3	6, 3	W
Sweep voltage frequency range $35-5000 \mathrm{~Hz}$	3.8	5,3	V
Energy in airgap	135	140	mJ
Flux density	0, 87	0.93	T
Airgap height	5	5	mm
Voice coil height	9,7	9.7	mm
Core diameter	25	25	mm
Magnet material		dur	
diameter	72	72	mm
weight	0, 26	0, 26	kg
Weight of loudspeaker	0,68	0,68	kg

The loudspeaker has a rubber surround.
Connection to the loudspeaker by means of $6,3 \mathrm{~mm}(0,25 \mathrm{inch})$ Fastons or soldering.

${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room, input at an operating power of $6,3 \mathrm{~W}$. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.

Curve $c: 2$ nd and $3 \underline{\text { rd }}$ harmonic distortion, measured at the operating power of $6,3 \mathrm{~W}$ in anechoic room, loudspeaker mounted in sealed 801 enclosure with 1 kg of glass wool.

Fig. 2

## 7 INCH HIGH POWER FULL RANGE LOUDSPEAKER

## AD7062/M

## APPLICATION

For high fidelity reproduction in scaled acoustic enclosures. Maximum enclosure volume 7 litres. High power handling capacity with very low distortion.

## TECHNICAL DATA

	version		
	M4	M8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	4, 3	8	$\Omega$
Resonance frequency	45	45	Hz
Power handling capacity, measured without filter, mounted in 71 sealed enclosure	30	30	W
Operating power	5	5	w
Sweep roltage	3, 8	5,3	V
Energy in air gap	135	140	mJ
Flux density	0,87	0,93	T
Air-gap height	5	5	mm
Voice coil height	11	11	mm
Core diameter	25	25	mm
Magnet material		dur	
diameter	72	72	mm
mass	0,26	0,26	kg
Mass of loudspeaker	0,68	0,68	kg

The loudspeaker has a rubber surround and a double cone.
Connection to the loudspeaker by means of $6,3 \mathrm{~mm}(0,25$ inch) Fastons or soldering.


1) Baffle hole and clearance depth required for cone movement at the specificd power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

## See Fig. 2

Curve b: Sound pressure measured in anechoic room at operating power. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve c: $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonic distortion, measured at the operating power of 5 w anechoic room, loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
7270287. 1


## Fig. 2

## 7inch HIGH POWER FULL RANGE LOUDSPEAKER

## AD7063/M

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures. Maximum enclosure volume 25 litres.

## TECHNICAL DATA



The loudspeaker has a textile surround and a double cone.
Connection to the loudspeaker by means of $6,3 \mathrm{~mm}(0,25$ inch $)$ Fastons or soldering.


Baffle hole diameter 141 mm
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

Curve b: Sound pressure measured in anechoic room at input prower of $2,2 \mathrm{w}$. Loudspeaker mounted on IEC baffle.
Curve $\mathrm{c}: 2$ ad and $3^{\text {rd }}$ harmonic distortion, measured at inpur power of 2.2 W in anechoic room. Loudspeaker mounted on IEC baffle.


## 7 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures in accordance with DIN 45500. Maximum enclosure volume 71.
Maximum recommended cross-over frequency 2000 Hz . High power handling capacity with very low distortion.

## TECHNICAL DATA

	version		
	W 4	W8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	4,3	8	$\Omega$
Resonance frequency	45	45	Hz
Power handling capacity, measured without filter mounted in 71 sealed enclosure	40	40	W
Operating power	4	4	W
Sweep voltage	3, 8	5,3	V
Energy in air gap	225	207	mJ
Flux density	1,1	1,2	T
Air-gap height	5	5	mm
Voice coil height	11	11	mm
Core diameter	25	25	mm
Magnet material		adur	
diameter	90	90	mm
mass	0,45	0,45	kg
Mass of loudspeaker	1,15	1,15	kg

The loudspeaker has a paper cone and rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch$)$ tag connectors or by soldering.


Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

Fig. 2
Curve b: Sound pressure measured in anechoic room, loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve c: Total non-linear distortion, measured at the operating power of 4 W in anechoic room, loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool. Loudspeaker front mounted on baffle, dimensions $640 \times 540 \mathrm{~mm}$.


## 7 inch OCTAGONAL MEDIUM POWER LOUDSPEAKER

## APPLICATION

For car and domestic radios, acoustic enclosures and public address systems.
Frequency range up to 15 kHz .

## TECHNICAL DATA

	version			
	M4	M8	M15	
Rated impedance	4	8	15	$\Omega$
Voice coil resistance	3,4	7, 1	13,5	$\Omega$
Resonance frequency	105	105	105	Hz
Power handling capacity, measured without filter loudspeaker unmounted	6	6	6	W
Sweep voltage	2,8	4	6,7	V
Energy in airgap	55	55	53	mJ
Flux density	0,98	0,98	0,98	T
Airgap height	3	3	3	mm
Voice coil height	3	3,9	3, 2	mm
Core diameter	18	18	18	mm
Magnet material diameter weight	$\begin{array}{r} 53 \\ 0,1 \end{array}$	Magnad 53 0,1	$\begin{array}{r} 53 \\ 0,1 \end{array}$	${ }_{\mathrm{kg}}^{\mathrm{mm}}$
Weight of loudspeaker	0,29	0,29	0,29	kg

The loudspeaker has a dual paper cone and a paper surround and has a foam plastic gasket on the flange.

Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


Fig. 1.

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sensitivity may be over the width of one octave, maximum 2 dB lower than indicated.

Fig. 2

## 7inch OCTAGONAL MEDIUM POWER LOUDSPEAKER

## AD7080/X

## APPLICATION

For car and domestic radios and accoustic enclosures.
High sensitivity at 4000 Hz .

TECHNICAL DATA	version		$\Omega$
	X4	X8	
Rated impedance	4	8	
Voice coil resistance	3.4	7.1	$\bigcirc$
Resonance frequency	115	115	Hz
Power handling capacity. measured without filter loudspeaker unmounted	6	6	W
Sweep voltage	3.5	4,9	V
Energy airgap	55	55	mJ
Flux density	0,98	0,98	T
Airgap height	3	3	mm
Voice coil height	3	3,9	mm
Core diameter	18	18	mm
Magnet material	Magnadur		
diameter	53	53	mm
weight	0.1	0,1	kg
Weight of loudspeaker	0.29	0,29	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1.

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for on-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2. Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker is unmounted. Above 1000 Hz the sensitivity may be, over the width of one octave, maximum 2 dB lower than indicated.

7inch OCTAGONAL MEDIUM POWER LOUDSPEAKER


## 7 INCH ROUND MEDIUM POWER LOUDSPEAKERS

## APPLICATION

For television sets and record players.

## TECHNICAL DATA

Rated impedance
Voice coil resistance
Resonance frequency

version		
M4	M8	
4	8	$\Omega$
3,4	7,1	$\Omega$
105	105	Hz
3	3	W
2,45	3,5	V
39	39	mJ
0,8	0,8	T
3	3	mm
2,4	3,1	mm
18	18	mm
Ticonal	Ticonal	
18	18	mm
0,027	0,027	kg
0,22	0,22	kg

The loudspeaker has a dual paper cone, a paper surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.


Fig. 1

${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated.
7Z68297.1


$$
\text { Fig. } 2
$$

## APPLICATION

For television sets and record players.
TECHNICAL DATA

Rated impedance	4	8	S
Voice coil resistance	3,4	7,1	$\Omega$
Resonance frequency	115	115	Hz
Power handling capacity, measured without filter loudspeaker unmounted	3	3	W
Sweep voltage	2,45	3,'5	v
Energy in airgap	39	39	mJ
Flux density	0,8	0, 8	T
Airgap height	3	3	mm
Voice coil height	2, 4	3,1	mm
Core diameter	18	18	mm
Magnet material	Ticonal	Ticonal	
diameter	18	18	mm
. weight	0,027	0,027	kg
Weight of loudspeaker	0,22	0,22	kg

The loudspeaker has a paper cone and surround and a foam plastic gasket on the flange.
Connection to the loudspeaker by means of 2.8 mm ( 0.11 inch ) tag connectors or by soldering.
${ }^{1}$ ). Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVE

Fig. 2 Input power 50 mW
Sound pressure measured in anechoic room, loudspeaker unmounted.
Above 1000 Hz the sound pressure may be, over the width of one octave, maximum 2 dB lower than indicated.

## AD7091/X



## APPLICATION

To be used in combination with 8 inch woofer loudspeakers in a sealed enclosure for an improved bass response.

## TECHNICAL DATA

Effective area	$2,5 \times 10^{-2}$	$\mathrm{~m}^{2}$
Moving mass:		
$\quad$ tuned mass	21.5	g
$\quad$ cone mass		
total moving mass	9.8	g
Mass of radiator	31,3	g


${ }^{1}$ ) Baffle hole and clearance depth required for cone movement.

## 8 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures. Maximum enclosure volume 25 litres. Maximum recommended cross-over frequency 2000 Hz .
Rated frequency range 30 to 5000 Hz .

## TECHNICAL DATA



The loudspeaker has a paper cone and a rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch ) tag connectors or by soldering.

l) Baffle hole and clearance depth required for cone movement at the specifjed power handling capacity.

One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

## See Fig. 2

Curve b: Sound pressure measured in anechoic room at operating power. Loudspeaker mounted in sealed 80 l enclosure, filled with 1 kg of glass wool.
Curve c: $2^{\text {nd }}$ and 3 rd harmonic distortion, measured at the operating power of $3,4 \mathrm{~W}$ in anechoic room, loudspeaker mounted in 801 enclosure, filled with 1 kg of glass wool.
7Z 70286.1


## 8 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures. Maximum enclosure volume 25 litres. Maximum recommended cross-over frequency 2500 Hz . Rated frequency range 30 to 5000 Hz .

## TECHNICAL DATA

	version		
	W4	W8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	4,3	8	$\Omega$
Resonance frcquency	39	39	Hz
Power handling capacity,   measured without filter, mounted in 251 sealed enclosurce	40	40	W
Operating power	2, 5	2, 5	W
Sweep voltage	5	7	V
Energy in air gap	229	20.3	mJ
Flux density	], 1	1, 2	T
入ir-gap height	5	5	mm
Voice coil height	11	11	mm
Core diameter	2.5	2.5	mm
Magnet material			
diameter	90	90	nim
mass	(0,4.5	0, 45	kg
Mass of loudspeaker	1,15	1,1.5	kg

The loudspeaker has a paper cone and rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch) tag connectors or by soldering.


Fig. 1
${ }^{1}$ ) Batifle hole and elearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

Sce Fig. 2
Curve b: Sound pressure measured in anechoic room at operating power. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve $\mathrm{c}: 2 \mathrm{nd}$ and 3 rd harmonic distortion, measured at the operating power of $2,5 \mathrm{~W}$ in anechoic room, loudspeaker mounted in sealed 80 l enclosure, filled with 1 kg of glass wool.


## 8 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction according to DIN 45500 in sealed acoustic enclosures. Maximum enclosure volume 25 litres. Maximum recommended cross -over frequency 3000 Hz .

## TECHNICAL DATA

Rated impedance
Voice coil resistance


The loudspeaker has a paper cone and a rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch ) tag connectors or by soldering.

${ }^{1}$ ) Baffle hole and clearance depth 1 equired for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

## See Fig. 2

Curve a : Sound pressure measured in anechoic room, loudspeaker unmounted. Above 1000 Hz the sound pressure may be, over the width of one octive, maximum 2 dB lower than indicated. Input power $50 \mathrm{~mW}(0,44 \mathrm{~V})$.

Curveb: Sound pressure measured in half free field at operating power. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve c: 2nd and 3rd liarmonic distortion, measured at the operating power of 6 W in anechoic room, loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.

Curve e: Maximum distortion according DIN4.550), Blatt 7.


[^1]
## 81/2INCH HIGH POWER FULL RANGE LOUDSPEAKER

## APPLICATION

A full range loudspeaker for studio monitoring equipment and domestic bass reflex enclosures for high fidelity reproluction from 45 Hz to 19 kHz .

## TECHNICAL DATA

Rated impedance	8	$\Omega$
Voice coil resistance	5	$\Omega$
Resonance frequency	50	Hz
Power handling capacity,   measured without filter,   loudspeaker mounted in sealed enclosure < 301   loudspeaker mounted in sealed enclosure > 301	20 10	W
Operating power	1, 3	W
Sweep voltage	5,9	V
Energy in airgap	361	mJ
Flux density	0,75	T
Airgap height	11	mm
Voice coil height	7	mm
Core diameier	34	mm
Magnet material   diameter weight	$\begin{gathered} \text { Magnadur } \\ 105 \\ 0,4 \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~kg} \end{aligned}$
Weight of loudspeaker	1,75	kg

The loudspeaker has a paper surround and a cork gasket on the flange.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch) tag connectors or by soldering.


Fig. 1

${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES

## See Fig. 2 :

Curve b: Sound pressure measured in anechoic roon, loudspeaker mounted in sealed 801 enclusure. Input power at operating power of $1,3 \mathrm{~W}$.
Curve c: 2 nd and 3 rd harmonic distortion, measured at the operating power of $0,7 \mathrm{~W}$ in anechoic room, loudspeaker mounted in sealed 80 l enclosure, filled with 1 kg of glass wool.


## IO INCH HIGH POWER <br> FULL RANGE LOUDSPEAKERS

## AD1065/ M Series

## APPLICATION

A full range loudspeaker with high sensitivity for public address systeins in enclosures greater than 20 litres.
Smooth response from 60 Hz to 18000 Hz .
TECHNICAL DATA

	version			
	M4	M8	M15	
Rated impedance	4	8	15	$\Omega$
Voice coil resistance	3,4	7	1.3	$\Omega$
Resonance frequency	55	55	55	Hz
Power handling capacity, measured without filter, loudspeaker unmounted	10	10	10	W
Operating power	1.5	1.5	1.5	W
Sweep voltage	4,5	6,3	8.7	V
Energy in airgap.	225	225	225	mJ
Flux density	1,12	1.12	1.12	T
Airgap height	5	5	5	mm
Voice coil height	6,5	6,5	4.5	mm
Core diameter	25	25	25	mm
Magnet material		Magnadu		
diameter	90	90	90	mm
weight	0, 45	0,45	0, 45	kg
Weight of loudspeaker	1,52	1,52	1,52	kg

The loudspeaker has a paper surround and a double cone.
Connection to the loudspeaker by means of $6,3 \mathrm{~mm}(0,25 \mathrm{inch})$ Fastons or soldering.

## Dimensions (mm)



Fig. 1
Baffle hole diameter 227 mm
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve $b$ : Sound pressure measured in anechoic room at operating power of $1,5 \mathrm{~W}$. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve $c: 2 \underline{n d}$ and $3 \underline{\text { rd }}$ harmonic distortion, measured at operating power of $1,5 \mathrm{~W}$ in anechoic room. Loudspeaker mounted in 801 enclosure, filled with 1 kg of glass wool.


## 10 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures in accordance with DIN 45500. Recommended enclosure volume 35 titres. Maximum recommended cross -over frequency 1000 Hz . Rated frequency range 40 to 3000 Hz .

## TECHNICAL DATA

TEChnical data	version		
	W4	W8	
Rated impedance	4	8	$\Omega$
Voice coil resistance	3,2	6,8	$\Omega$
Resonance frequency	20	20	Hz
Power handling capacity, measured without filter, mounted in 351 sealed enclosure	30	30	W
Operating power	5	5	W
Sweep voltage	5	7	V
Energy in airgap	280	280	mJ
Flux density	0,94	0,94	T
Airgap height	5	5	mm
Voice coil height	12,1	13,5	mm
Core diameter	25	25	mm
Magnet material			
diameter	90	90	mm
weight	0,45	0.45	kg
Weight of loudspeaker	1,8	1,8	kg

The loudspeaker has a paper cone and a rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch) tag connectors or by soldering.


Fig. 1
${ }^{1}$ ) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room at operating power of 5 W . Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve c : 2 nd and 3 rd harmonic distortion, measured at operating power of 5 W in anechoic room. Loudspeaker mounted in 801 enclosure, filled with 1 kg of glass wool.
7268174.1


## 10 inch HIGH POWER WOOFER LOUDSPEAKER

## APPLICATION

For high fidelity reproduction in sealed acoustic enclosures in accordance with DIN45500. Recommended enclosure volume 35 litres. Maximum recommended cross-over frequency 800 Hz . Rated frequency range 35 to 800 Hz .

## TECHNICAL DATA

TECHNICAL DATA	version		$\Omega$
	W4	W8	
Rated impedance	4	8	
Voice coil resistance	3,4	6.5	$\Omega$
Resonance frequency	25	25	Hz
Power handling capacity. measured without filter mounted in 351 sealed enclosure	40	40	W
Operating power	2.5	2,5	w
Sweep voltage	5	7	V
Energy in airgap	820	820	mJ
Flux density	1,03	1,03	T
Airgap height	8	8	mm
Voice coil height	15	17.2	mm
Core diameter	50	50	mm
Magnet material	Magnadur		
diameter	130	130	mm
weight	1,05	1,05	kg
Weight of loudspeaker	3,0	3, 0	kg

The loudspeaker has a paper cone and a rubber surround.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch) tag connectors or by soldering.

## Dimensions (mm)



Fig. 1
Baflle hole diameter 227 mm
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b : Sound pressure measured in anechoic room at operating power of $2,5 \mathrm{~W}$. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.
Curve c:2nd and 3rd harmonic distortion, measured at operating power of $2,5 \mathrm{~W}$ in anechoic room. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.

Fig. 2

## 12 INCH HIGH POWER <br> FULL RANGE LOUDSPEAKERS

## APPLICATION

Public address systems.

## TECHNICAL DATA

	version			
	M4	M8	M15	
Rated impedance	4	8	15	S
Voice coil resistance	3.4	7	13	$\Omega$
Resonance frequency	45	45	45	Hz
Power handling capacity, measured without filter, loudspeaker unmounted	20	20	20	W
Operating power	1,44	1.44	1.44	w
Sweep voltage	6.3	9	12,2	V
Energy in airgap	225	225	225	mJ
Flux density	1,12	1,12	1.12	T
Airgap height	5	5	5	mm
Voice coil height	6.5	6,5	4.5	mm
Core diameter	25	25	25	mm
Magnet material		Magnadu		
diameter	90	90	90	mm
weight	0,45	0,45	0,45	kg
Weight of loudspeaker	1,8	1,8	1,8	kg

The loudspeaker has a paper surround and a double cone.
Connection to the loudspeaker by means of $6,3 \mathrm{~mm}(0,25 \mathrm{inch})$ Fastons or soldering.

## Dimensions (mm)



「ig. 1

1) Baffle hole and clearance depth required for cone movement at the spec ified power handling capacity.
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room at operating power of $1,44 \mathrm{~W}$. Loudspeaker mounted in sealed 80 l enclosure, filled with 1 kg of glass wool.

Curve $\mathrm{c}: 2$ nd and 3 rd harmonic distortion, measured at operating power of $1,44 \mathrm{~W}$ in anechoic room. Loudspeaker mounted in sealed 801 enclosure, filled with 1 kg of glass wool.


## 12 inch HIGH POWER FULL RANGE LOUDSPEAKER

## APPLICATION

A dual cone loudspeaker for high power applications such as guitar amplifiers and electronic organs.

TECHNICAL DATA	version		$\Omega$
	HP4	HP8	
Rated impedance	4	8	
Voice coil resistance	3,5	7.2	$\Omega$
Resonance frequency	60	60	Hz
Pover handling capacity, measured without filter loudspeaker unmounted	50	50	W
Operating power	1	1	W
Sweep voltage	10	14	V
Energy in airgap	820	820	mJ
Flux density	1,03	1,03	T
Airgay height	8	8	mm
Voice coil height	12, 2	12,5	mm
Core diameter	50	50	mm
Magnet material	Magnadur		
diameter	130	130	mm
weight	1	1	kg
Weight of loudspeaker	3,27	3,27	kg

The loudspeaker has a paper cone, a textile surround and a cork gasket on the flange.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch ) tag connectors or by soldering.


Fig. 1

Baffle hole diameter 278 mm
One tag is indicated by a red mark for in-phase connection.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room at operating power of 1 W .
Loudspeaker mounted in sealed 80 l enclosure, filled with 1 kg of glass wool.
Curve c:2nd and 3rd harmonic distortion, measured at operating power of 1 W in anechoic room. Loudspeaker mounted in 801 enclosure, filled with 1 kg of glass wool.


[^2]
## 12 inch HIGH POWER FULL RANGE LOUDSPEAKER

## APPLICATION

A dual-cone loudspeaker with extremely high sensitivity for power applications such as public address systems, discotheques and domestic enclosures greater than 50 litres, and open baffles.

TECHNICAL DATA	version			
	M4	M8	M15	
Rated impedance	4	8	15	$\Omega$
Voice coil resistance	3, 2	7	13,2	$\Omega$
Resonance frequency	45	45	45	Hz
Power handling capacity measured without filter, loudspeaker unmounted	25	25	25	W
Operating power	0,55	0.55	0,6	W
Sweep voltage	6,3	9	12, 2	V
Energy in airgap	970	970	970	mJ
Flux density	1,15	1,15	1,15	T
Airgap height	8	8	8	mm
Voice coil height	9, 1	10, 3	13,3	mm
Core diameter	33.4	33, 4	33, 4	mm
Magnet material		agnadu		
diameter	130	130	130	mm
weight	1	1	1	kg
Weight of loudspeaker	3, 3	3, 3	3, 3	kg

The loudspeaker has a paper cone and surround and a cork gasket on the flange.
Connection to the loudspeaker by means of 6.3 mm ( 0.25 inch ) tag connectors or by soldering.


Baffle hole diameter 278 mm
Onc bag is indicated by a red mark for in-ianse conncetion.

## FREQUENCY RESPONSE CURVES (see Fig. 2)

Curve b: Sound pressure measured in anechoic room at operating power of $0,55 \mathrm{~W}$. Loudspeaker mounted in sealed 80 I enclosure, filled with 1 kg of glass wool.
Curve c : 2nd and 3rd harmonic distortion, measured at operating power of 0.55 W in anechoic room. Loudspeaker mounted in $\delta 01$ enclosure, filled with 1 kg of glass wool.


## 2-WAY CROSS-OVER NETWORK

## APPLICATION

For use in 2-way loudspeaker systems with high fidelity woofers and dome tweeters. The latter with increased impedance to obtain a higher power handling capacity for the system.

## TECHNICAL DATA

Rated impedance
type ADF 1500/4
$4 \Omega$
type ADF1500/8
$8 \Omega$
Cross-over frequency
type ADF 1500/4
1500 Hz
type ADF1500/8
1800 Hz
Power handling capacity 80 W

## Slope

low pass 6 dB /octave
high pass
12 dB/octave

## Circuit diagram



## Frequency characteristics



Dimensions (mm) and connections
Total height 35 mm
6 soldering tags for connection


## 2-WAY CROSS-OVER NETWORK

## APPLICATION

For use in 2-way loudspeaker systems with high fidelity or high quality woofers and cone tweeters AD2071/T., AD2090/T. or AD2095/T.

## TECHNICAL DATA

Rated impedance
type ADF2400/4 $4 \Omega$
type ADF2400/8
Cross-over frequency
Power handling capacity
2400 Hz

Slope
$\begin{array}{ll}\text { low pass } & 6 \mathrm{~dB} / o c t a v e \\ \text { high pass } & 6 \mathrm{~dB} / o c t a v e\end{array}$

## Circuit diagram



ADF2400

Frequency characteristics


Dimensions (mm) and connections
Total height 35 mm
6 soldering tags for connection


## 3-WAY CROSS-OVER NETWORK

## APPLICATION

For use in 3-way loudspeaker systems with high fidelity woofers, squawkers and dome tweeters; the high sensitivity type tweeters AD0162/0163 should have twice the impedance of the woofer and squawker to obtain a higher power handling capacity.

## TECHNICAL DATA

Rated impedance
type ADF700/2600/4
$4 \Omega$
type ADF700/2600/8
$8 \Omega$
Cross-over frequencies
type ADF700/2600/4 $\quad 650$ and 2800 Hz
type ADF700/2600/8 700 and 2600 Hz
Power handling capacity 80 W
Slope
low pass
band pass (mid-range)
high pass
6 dB/octave
12 dB/octave

Circuit diagram


	version		
	$4 \Omega$	$8 \Omega$	
L1	2,1	3	mH
L2	1,2	2,1	mH
L3	0,35	0,8	mH
L4	0,5	0,8	mH
C1	36	24	$\mu \mathrm{~F}$
C2	8	5	$\mu \mathrm{~F}$
C3	5	3,3	$\mu \mathrm{~F}$

Frequency characteristics


Dimensions (mm) and connections
See also circuit diagram for connection to the 8 soldering tags.
Total height 36 mm


## TELEVISION TUNERS

## B



为
有
 $\therefore \approx$相 $\therefore \underset{\sim 2}{20}$ N
 $=\frac{10}{2}$
为 $\underset{\sim}{2} \approx$
为 ＝1～NO人10 $\approx \underset{\sim}{2}$
 0 $\approx$
有 0维系
昰

为为为 0首里筑
 OOM $\underset{\sim}{2}$

## QUICK REFERENCE DATA

Designed to cover the present 405 line v.h.f. and 625 line (wired distribution) channels. It also covers the CCIR v.h.f. channels required for export recelvers.

Systems
Channel coverage
band I
band III
Supply voltages
transistors and switching diodes
tuning diodes
Noise factor, typical
hand I
band III
Power gain, typical
band I
hand III
U. K. and CCIR

1 to 5 and $A$ to $C$
6 to 14, D to I and CCIR E 12

+12	$V$
+0.3 to +28	$V$



Piercing diagram viewed from component side of board

Pin	Connection	Pin	Connection
2	A.G.C. , positive	8	+12 V, oscillator + mixer supply
3	+12 V switching voltage, band III	9	Test point
4	+12 V, r.f. transistor supply	10	I. F. output
5	+0.3 to +28 V tuning diode supply		

## V.H.F. TELEVISION TUNER with diode tuning

## CIRCUIT DESCRIPTION

The tuner is of the three transistor type, comprising an r.f. stage, a mixer and an oscillator. The tuning of the r.f./mixer bandpass filter and the oscillator stage is accomplished by variable capacity diodes.

Switching from band I to band III is achieved by applying a 12 V supply to five diodes, via pin 3 of the tuner.

## ELECTRICAL DATA

Unless otherwise specified, all characteristics apply at an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $75 \%$ max. All values are typical unless otherwise specified.

	Conditions	Value
Channel coverage band I (see note l)	41.5MHz sound carrier	channel 1
	63.25 MHz sound carrier	channel 5
Channel coverage band III (see note 1)	175.25 MHz vision carrier	channel D
	224.25 MHz vision carrier	CCIR E12
Input impedances	asymmetrical	$75 \Omega$
Intermediate frequencies, vision	405 line system	34.65 MHz
	625 line system	39.5 MHz
Intermediate frequencies, sound	405 Iine system	38.15 MHz
	625 line system	33.5 MHz
Supply voltages	$\begin{aligned} & \text { transistors } \\ & \text { tuning diodes (see note 2) } \\ & \text { switching diodes (band III only) } \end{aligned}$	$\begin{gathered} +12 \mathrm{~V} \pm 10 \% \\ +0.3 \mathrm{~V} \text { to }+28 \mathrm{~V} \\ +12 \mathrm{~V} \end{gathered}$
Supply currents	r.f. amplifier at nominal gain	3.4 mA
	oscillator plus mixer at nominal gain	6.8 mA
	tuning diodes	$35 \mu \mathrm{~A}$
	switching diodes	12 mA
A. G. C. voltage (see figs. 3 and 4)	band I at nominal gain	2.5 V
	band I at 40 dB gain reduction	4.9 V
	band III at nominal gain	2.5 V
	band III at 40 dB gain reduction	4.3V

ELECTRICAL DATA (contd.)

	Conditions	Value
A.G.C. current	band I at 40dB gain reduction	max. 0.8 mA
	band III at 40dB gain reduction	max. 0.6 mA
A.G.C. range	both bands	min. 40 dB
V.S.W.R.	both bands at nominal gain, or with a.g.c. except channel 1	max. 3.5
R.F. bandwidth	bend I channels 2 to 5 and A to C band III all channels	$10 \text { to } 12 \mathrm{MHz}$ $10 \text { to } 25 \mathrm{MHz}$
Relative levels of sound and vision carriers (tilt)	any channel except channels 1 and CCIR E12	max. 3dB
	channel 3	1 dB
	channel 8	1 dB
Power gain	any channel except channel 1	min. 18dB
	channel 1	min. 16dB
	channel 2	20 dB
	CCIR E4	22 dB
	CCIR E5	23 dB
	CCIR E12	22 dB
Noise figure	any channel	max. 10 dB
	channel 3	7 dB
	channel 10	7 dB
I. F. rejection	channel 2	min . 30dB
	channel 5	min. 40 dB
	CCIR E12	min . 60 dB
Image rejection	band I any channel band III any channel	$\begin{aligned} & \min .60 \mathrm{~dB} \\ & \min .40 \mathrm{~dB} \\ & \hline \end{aligned}$
Signal handling, signal input level producing $1 \%$ cross modulation (see note 3)	in channel at nominal gain, on wanted vision carrier from interfering accompanying sound carrier	band I 10 mV band III 8 mV
	in band at nominal gain, on wanted vision carrier channel ( X ) from interfering vision carrier channel ( $\mathrm{X}-2$ )	band I 80 mV band III 25 mV
Signal handling, signal input level producing overloading (see note 4)	band I any channel at nominal gain	20 mV
	band III any channel at nominal gain	13 mV
	both bands at 40dB gain reduction	min. 200 mV
I. F. output detuning	after band switching and tuning	max. 200kHz

ELECTRICAL DATA (contd.)

Oscillator   frequency   drift	Conditions	Value
	3 to 60 second warm up after switch on	max. 300 kHz
	input signal of 20 to 50 mV at   nominal gain	50 kHz
	temperature change from 25 to $40^{\circ} \mathrm{C}$	20 kHz
Temperature   ranges	operating ambient	max. 400 kHz

## NOTES

1. There is a tuning margin of 2 MHz at the extremes of Band III (including CCIR channel E12) and Band I (including channel C) below channel 1 and 1 MHz above channel 5.
2. A stabilised supply of +28 V is required for the tuning diodes to minimise tuning variations caused by mains fluctuations. See figures 1 and 2 for tuning voltages plotted against channel settings and frequencies.
3. This is the aerial e.m.f. (referred to $75 \Omega$ ), which will cause the transference of $1 \%$ of the modulation of an unwanted signal to the carrier of the wanted signal.
4. A signal causing overloading is that aerial e.m.f. (referred to $75 \Omega$ ) which produces a $30 \%$ compression of the synchronisation pulses (of a standard television signal) or a noticeable deterioration of the picture quality.

## Oscillator radiation

The tuner is designed to meet the oscillator radiation quoted in BS905 (1969), providing the conditions for relaxation are adhered to, and no permanent connection is made to the tuner test point (pin 9). Connections between the tuner and i.f. amplifier should be kept as short as possible.

## ACCESSORIES (dimensions in millimetres)

Immunity shield
In order to meet the immunity requirements of BS 905 (1969) it is recommended that the aerial connection should be screened. A suitable screening shield, fixed by a screw to the tuner is available under type No. 431313501170.

Baluns
A balun transformer, type number ELC1094, is available to convert the aerial input from $75 \Omega$ asymmetric to $300 \Omega$ balanced, for tuners incorporated into export (CCIR) receivers.


MOUNTING

The most suitable method of mounting the tuner is soldering directly on to a printed wiring board using the piercing diagram shown under DIMENSIONS AND CONNECTIONS.


Figure 1. TYPICAL BAND I TUNING VOLTAGE PLOTTED AGAINST CHANNEL SETTING WITH A

SOUND I. F. OF 38.15 MHz


Figure 2. TYPICAL BAND III TUNING VOLTAGE PLOTTED AGAINST CHANNEL SETTING WITH A VISION I. F. OF 34.65 MHz


Figure 3. TYPICAL I A.G.C. VOLTAGE PLOTTED AGAINST GAIN REDUCTION


Figure 4. TYPICAL BAND III A.G.C. VOLTAGE PLOTTED AGAINST GAIN REDUCTION

# V.H.F. TELEVISION TUNER <br> with diode tuning 

## QUICK REFERENCE DATA

Designed to cover 405 lines v.h.f., and 625 lines (wired distribution) channels, and the u.h.f. channels of the C.C.I.R. system B.

Systems	C.C. I. R. systems A, B and I		
Channels	System A	System B	System I
band I	B1 to B5	E2 to E 4	IA to IC
band III	B6 to B14	E5 to E12	ID to IJ
Intermediate frequencies			
picture	34.65 MHz	38.9 MHz	39.5 MHz
sound	38.15 MHz	33.4 MHz	33.5 MHz

## DESCRIPTION

A v.h.f. tuner with electronic tuning and band switching, covering the v.h.f. band I (frequency range 41.5 to 68 MHz , and the v.h.f. band III (frequency range 174 to 230 MHz ).

Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components and housed in a metal case consisting of a rectangular frame and front and rear covers (see Fig. 2). The aerial connection is on the frame side, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages) are made via feedthrough capacitors in the underside. The mounting method is described below.

The v.h.f. aerial signal is fed via an i.f. trap to a tuned input circuit, which is connected to the emitter of the input transistor BF264. The collector load of this transistor is formed by a double tuned circuit, transferring the signal to the base of the mixer transistor BF195. The oscillator is equipped with a BF194 transistor. The three r.f. circuits are tuned by three capacitance diodes BB105G. Switching between v.h.f. I and III is achieved by five switching diodes BA182.

The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is capacitively coupled out of the tuner.
The tuner requires transistor supply voltages of +12 V , a switching voltage of +12 V , a.g.c. voltages variable from +2.5 V (normal operating point) to about +6 V (maximum a.g.c. ), and a tuning voltage variable from +0.3 V to +25 V .

The aerial input of the tuner is asymmetrical. For use in symmetrical aerial systems, aerial transformers (baluns) are available (see ACCESSORIES).

DIMENSIONS (millimetres)


Fig. 1


Fig. 2. Piercing diagram viewed from solder side of board.

## V.H.F. TELEVISION TUNER with diode tuning

## TERMINATIONS

```
\(2=\) a.g.c. voltage, +2.5 to +6.0 V
3 = switching voltage, v.h.f. III, +12 V (approx. 12.5 mA)
4 = r.f. supply voltage, +12 V (approx 3.2 to 10 mA)
\(5=\) tuning voltage, +0.3 to +25 V
\(8=\) mixer/oscillator supply voltage, +12 V (approx. 6.7 mA)
\(9=\) test point
\(10=\) i.f. output
\(\mathrm{E}=\) earth
```


## MOUNTING

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 2. The tuner may also be mounted by means of a snap-in mount or a bracket; information will be supplied upon request.

The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
Dimensions in millimetres


Fig. 4 Recommended fixing method of the aerial cable.

## ACCESSORIES

Aerial input transformer (balun) for converting the aerial input from $75 \Omega$ asymmetric to $300 \Omega$ symmetric - type no. E LC1094.

Immunity shield for screening the aerial connection - type no. 431313201910

## ELECTRICAL DATA

Unless otherwise specified, all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a supply voltage of $12 \pm 0.3 \mathrm{~V}$.

Semiconductors,
r.f. amplifier BF264
mixer BF195
oscillator BF194
tuning diodes $3 \times$ BB105G
switching diodes $5 \times$ BA182
Ambient temperature range
operating
+5 to $+55^{\circ} \mathrm{C}$
storage

## V.H.F. TELEVISION TUNER with diode tuning

ELECTRICAL DATA (Contd.)
Supply voltage
Current drawn from +12 V supply
band I
band III
A. G.C. voltage (Figs. 5 and 6)
band I
at nominal gain
at 40 dB gain reduction
band III
at nominal gain
at 40 dB gain reduction
A. G.C. current at 40 dB gain reduction band I
band III
Tuning voltage range (Figs. 7 and 8)
Current drawn from 25 V tuning voltage supply
Switching voltage
band I
band III
Frequency ranges
band I
band III
$+12 \mathrm{~V}, \pm 10 \%$

$$
+12 \mathrm{~V}, \pm 10 \%
$$

10 to 16.5 mA$\}$ depending on 22.5 to 29 mA$\}$ a.g.c. voltage
$\max . \quad 0.8 \mathrm{~mA}$
$\max .0 .6 \mathrm{~mA}$
+0. 3 to +25 V
$\max .30 \mu \mathrm{~A}$
open circuit
$+12 \mathrm{~V}, \pm 10 \%$

band I	channel B1 (picture carrier 45 MHz ) to channel B5 (picture carrier 66.75 MHz )	channel E2 (picture carrier 48.25 MHz ) to channel E4 (picture carrier 62.25 MHz )	channel IA (picture carrier 45.75 MHz ) to channel IC (picture carrier 61.75 MHz )
band III	channel B6 (picture   carrier 179.75 MHz )   to channel B14   (picture carrier   219.75 MHz )	channel E5 (picture carrier 175.25 MHz ) to channel E12 (picture carrier 224.25 MHz )	channel D (picture   carrier 175.25 MHz   to channel IJ   (picture carrier   215.25 MHz )
Intermediate frequ	cies		
picture	34.65 MHz	38.9 MHz	39.5 MHz
sound	38.15 MHz	33.4 MHz	33.5 MHz






# V.H.F. TELEVISION TUNER with diode tuning 

## ELC1042/05

ELECTRICAL DATA (Contd.)
Input impedance
asymmetrical
symmetrical
V.S.W.R. (between picture carrier and sound carrier)
band I (ecept channel B1)
band III
A. G. C. range
band I
band III
R.F. curves
bandwidth
band I, except channel BI
band III
tilt
band I, except channel B1
band III, except channel E12
Power gain (see also MEASURING METHOD
OF POWER GAIN)
band I, except channel BI
channel Bl
channel IA
channel IC
band III
channel ID
channel IJ
Noise figure
band I, except channel Bl
channel IB
band III
channel IG
I. F. rejection
band I, channel B2
channel B5
band III
Image rejection
band I
band III
$75 \Omega$
$300 \Omega$ (see ACCESSORIES)

v.s.w.r. at   nom. gain.	max. v.s.w.r.   during gain control
max. 3.5	max. 3.5
$\operatorname{max.} 3.5$	max. 3.5

min. 40 dB
min. 40 dB
typ. 10 to 12 MHz
typ. 9 to 20 MHz
$\max .3 \mathrm{~dB}$
max. 3 dB
min. 18 dB
min. 16 dB
typ. 20 dB
typ. 22 dB
min. 18 dB
typ. 25 dB
typ. 24 dB
max. 10 dB
typ. 7.5 dB
$\max .10 \mathrm{~dB}$
typ. 7.0 dB
min. 30 dB
min. 40 dB
min. 60 dB
min. 60 dB
min. 40 dB

## ELECTRICAL DATA (Contd.)

Signal handling (see also Figs. 9 and 10)
Minimum input signal (e.m.f.) producing
cross modulation ( $1 \%$ ) at nominal gain,
in channel
wanted signal: picture carrier frequency. interfering signal: sound carrier frequency,
v.h.f. I
v.h.f. III

> in band wanted signal of channel X, interfering si channel X-2 v.h.f. I v.h.f. III
wanted signal: picture carrier frequency interfering signal: picture carrier of

Minimum input signal (e.m.f.) producing overloading, at nominal gain

> v.h.f. I
> v.h.f. III

Minimum input signal (e.m.f.) at nominal gain producing a shift of the oscillator frequency of 20 kHz
typ. 20 to 50 mV (note 3 overleaf)
Detuning of the i.f. output circuit as a result of bandswitching and tuning
$\max .200 \mathrm{kHz}$
Shift of oscillator frequency at a change of the supply voltage of $10 \%$
band I
$\max .300 \mathrm{kHz}$
band III
$\max .300 \mathrm{kHz}$
during warm -up time (measured between
3 s and 60 s after switching on)
band I
$\max .50 \mathrm{kHz}$
band III
Drift of oscillator frequency at a change of the ambient temperature from 25 to $40^{\circ} \mathrm{C}$
band I
$\max .400 \mathrm{kHz}$
band III
$\max .400 \mathrm{kHz}$
Oscillator radiation (oscillator voltages at the aerial terminal)

The oscillator radiation will be within the limits of BS905: 1969 provided no connection has been made to the test point and the circuit connected to the i.f. output is carefully shielded.
For the oscillator fundamentals, use is made of the relaxed limits, assuming that the design of the i.f. amplifier of the receiver is such that a detuning of the oscillator of $>-2.0 \mathrm{MHz}$ or $>+0.6 \mathrm{MHz}$ from the nominal frequency will result in unacceptable picture and/or sound degradation.

## V.H.F. TELEVISION TUNER with diode tuning

## ELC1042/05

## ELECTRICAL DATA (Contd.)

Immunity from radiated interference
If the tuner, including the aerial connection (see Fig. 4), is installed in a professional manner, the immunity from radiated interference will be within the limits specified in BS905: 1969.
If a higher safety margin, or another cable connection is required, use can be made of an immunity shield (see ACCESSORIES).

Microphonics
If the tuner is installed in a professional manner, there will be no noticeable microphonics.

## NOTES:

1. This e.m.f. is referred to an impedance of $75 \Omega$.
$1 \%$ cross modulation means that $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
2. This e.m.f. is referred to an impedance of $75 \Omega$.

Criterion of overloading: $30 \%$ compression of the synchronization pulses of a standard television signal or a noticeable deterioration of the picture quality.
3. This e. m.f. is referred to an impedance of $75 \Omega$.


Fig. 9. Cross modulation, in channel.


Fig. 10. Cross modulation, in band; the interfering channels are given between brackets.

## V.H.F. TELEVISION TUNER with diode tuning

ELC1042/05

## MEASURING METHOD OF POWER GAIN

1. The i.f. output of the tuner should be terminated with the circuit given below, the test -point (terminal 9) not being connected.


Fig. 11 .
2. Feed an i.f. sweep signal to the v.h.f. I - mixer coupling coil.


Fig. 12.
3. Adjust the trimmer (Fig. 11), tunable coil La/Lb, i.f. output coil of the tuner L18 (Fig. 1), and the coupling between La and Lb to get the resonant curve as given below.


Fig. 13.

## MEASURING METHOD OF POWER GAIN <br> (Contd.)

Display the r.f. and i.f. curve of the tuner at 190 MHz (picture carrier frequency) and make, if necessary, small corrections in the alignment of the i.f. coils $L_{a} / L_{b}$ and L18 to get the markers 39.5 MHz and 33.5 MHz symmetrically on the slopes of the curve, and the peaks at equal amplitude.

Because the output impedance of the dummy circuit is 50 to $75 \Omega$, the power gain can be measured in the conventional manner by inserting the tuner and dummy circuits between a $75 \Omega$ source and a $75 \Omega$ detector, or between a $50 \Omega$ source, a matching pad $50 / 75 \Omega$, and a $50 \Omega$ detector.

OTHER AVAILABLE VERSIONS
ELC1042: This is identical with the ELC1042/05 except that the i.f. coil L18 of the ELC1042 has four additional turns.

QUICK REFERENCE DATA		
Designed for use in colour and monochrome television receivers.		
Systems	C.C.I.R. systems G and I	
Channels	21 to 69	
Intermediate frequencies	$\underline{\text { System } \mathrm{G}}$	

## DESCRIPTION

A u.h.f. tuner with electronic tuning covering the u.h.f. bands IV and $V$ (frequency range 470 to 860 MHz ).

Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, and housed in a metal case consisting of a rectangular frame and front and rear covers (see Fig. 1). The aerial connection is on the frame side, and all other connections (supply voltages, a.g.c. voltage and tuning voltage) a re made via feedthrough capacitors in the underside. The mounting method is described below.

The tuner is of the three transistor type, comprising two r.f. stages and an oscillator/ mixer. The input circuit is untuned, so that optimum noise figures may be realised, whilst the additional r.f. stage compensates for the increased insertion loss associated with diode tuned circuits.

The coupling between the first and second r.f. stages is by a half-wave tuned line; the coupling between the second r.f. stage and the mixer is by bandpass half-wave tuned lines. The secondary of the passband is coupled to the emitter of the oscillator/mixer stage via a coupling loop, which also provides the inductive feedback for the oscillator.
Half-wave lines, terminated at one end by a fixed capacitor and tuned at the other end by a variable capacitance diode, are used throughout.

The tuner requires transistor supply voltages of $+12 \mathrm{~V}, \mathrm{a} . \mathrm{g} . \mathrm{c}$. voltages variable from +2.5 V (normal operating point) to about +7.5 V (maximum a.g.c.), and a tuning voltage variable from +0.3 V to +25 V .

The aerial input of the tuner is asymmetrical. For use in symmetrical aerial systems, aerial transformers (baluns) a re available (see ACCESSORIES).


Fig. 1.


Fig. 2. Piercing diagram viewed from solder side of board.


Fig. 3.

## TERMINATIONS

$$
\begin{aligned}
2 & =\text { a.g. c. voltage, }+2.5 \text { to }+7.5 \mathrm{~V} \\
4 & =\text { r.f. supply voltage, }+12 \mathrm{~V} \text { (approx. } 8.8 \text { to } 13 \mathrm{~mA} \text { ) } \\
5 & =\text { tuning voltage, }+0.3 \text { to }+25 \mathrm{~V} \\
8 & =\text { mixer/oscillator supply voltage, }+12 \mathrm{~V} \text { (approx. } 3.6 \mathrm{~mA} \text { ) } \\
10 & =\text { i.f. output } \\
\mathrm{E} & =\text { earth }
\end{aligned}
$$

## MOUNTING

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 2. The tuner may also be mounted by means of a snap-in mount or a bracket; information will be supplied on request.

The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

Dimensions in millimetres


Fig. 4. Recommended fixing method of the aerial cable.

## ACCESSORIES

Aerial input transformer (balun) for converting the aerial input from $75 \Omega$ asymmetric to $300 \Omega$ symmetric - type no. ELC 1095.
Immunity shield for screening the aerial connection - type no. 431313201910.

## ELECTRICAL DATA

Unless otherwise specified, all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a supply voltage of $12 \pm 0.3 \mathrm{~V}$.

Semiconductors,
r.f. amplifiers $2 \times$ BF362
mixer/oscillator
BF363
tuning
$4 \times$ BB105B
Ambient temperature range
operating
+5 to $+55^{\circ} \mathrm{C}$
storage
-25 to $+85{ }^{\circ} \mathrm{C}$
Supply voltage
Current drawn from +12 V supply
r.f. amplifiers
mixer/oscillator
$+12 \mathrm{~V} \pm 10 \%$
8.8 mA (at nominal gain) to 12 to

17 mA (at 30 dB gain reduction)
3.6 mA

## U.H.F. TELEVISION TUNER with diode tuning

ELECTRICAL DATA (Contd.)
A. G.C. voltage (Fig. 5)
at nominal gain
at 30 dB gain reduction
A. G.C. current at 30 dB gain reduction

Tuning voltage range
Slope of tuning characteristic
Current drawn from 25 V tuning voltage supply
Frequency range

Margin at the extreme channels
Intermediate frequencles
picture
sound
Input impedance
asymmetrical
symmetrical
V.S.W.R. (between picture carrier and sound carrier)


Fig. 5.
+2.5 V
6 V (max. 7.5 V )
$\max .1 .2 \mathrm{~mA}$
+0.3 to +25 V
$\min .5 \mathrm{MHz} / \mathrm{V}$
$\max .20 \mu \mathrm{~A}$
channel 21 (picture carrier 471.25 MHz ) to channel 69 (picture carrier 855.25 MHz ).
$\min .3 \mathrm{MHz}$

system G	System I
38.9 MHz	39.5 MHz
33.4 MHz	33.5 MHz

$75 \Omega$
$300 \Omega$ (see ACCESSORIES)

$\begin{array}{l}\text { at nom. gain } \\ \text { without a.g.c. }\end{array}$	$\begin{array}{c}\text { during gain control } \\ \text { up to } 30 \mathrm{~dB}\end{array}$
max. 4	$\max .6$



Fig. 6.

## ELECTRICAL DATA (Contd.)

A.G.C. range min .30 dB
R. F. curves bandwidth tilt

Power gain (see also ME ASURING METHOD
OF POWER GAIN)
min. $\quad 17 \mathrm{~dB}$
channel 21
channel 50
channel 69
Noise figure
typ. 10 to 20 MHz
4 dB (0 to 2 dB typical)
channel 21
channel 50
channel 69
I. F. rejection

Image rejection, channels 21 to 61
$\mathrm{n}+4$ rejection (obtained between the picture carrier of the wanted channel $n$ and the sound carrier of an unwanted signal spaced 4 channels above the wanted channel).

Signal handling
Minimum input signal (e.m.f.) producing cross modulation of $1 \%$ at nominal gain, in channel
wanted signal: picture carrier frequency, interfering signal: sound carrier frequency. typ. 8 mV (note 1 overleaf)
in band
wanted signal: picture carrier frequency of channel X ,
interfering signal: picture carrier of channel X-5

Minimum input signal (e.m.f.) producing overloading,
at nominal gain
at maximum a.g.c.
Minimum input signal (e.m.f.) at nominal gain producing a shift of the oscillator frequency of 20 kHz

Detuning of the i.f. output circuit as a result of tuning

Shift of oscillator frequency at a change of the supply voltage of $10 \%$
during warm -up time (measured between 3 s
and 60 s after switching on)
at a gain reduction of 30 dB
Drift of oscillator frequency at a change of the ambient temperature from 25 to $50^{\circ} \mathrm{C}$
$\min . \quad 53 \mathrm{~dB}$
typ. $\quad 22 \mathrm{~dB}$
typ. $\quad 22 \mathrm{~dB}$
typ. $\quad 22 \mathrm{~dB}$
$\max .10 \mathrm{~dB}$
typ. $\quad 6 \mathrm{~dB}$
typ. 6.5 dB
typ. $\quad 7 \mathrm{~dB}$
min. 60 dB
min. $\quad 53 \mathrm{~dB}$
typ. 25 mV (note 1 overleaf)
typ. 5 to 15 mV (note 3 overleaf)
$\max .150 \mathrm{kHz}$
typ. 15 to 20 mV (note 2 overleaf)
min .250 mV (note 2)
$\max .500 \mathrm{kHz}$
$\max .200 \mathrm{kHz}$
$\max .100 \mathrm{kHz}$
$\max .1000 \mathrm{kHz}$

## U.H.F. TELEVISION TUNER with diode tuning

## ELECTRICAL DATA (Contd.)

Oscillator radiation (oscillator voltages at the aerial terminal)

The oscillator radiation will be within the limits of BS905: 1969 provided the circuit, connected to the i.f. output, is carefully shielded.
For the oscillator fundamentals, use is made of the relaxed limits, assuming that the design of the i.f. amplifier of the receiver is such that a detuning of the oscillator of $>-2.0 \mathrm{MHz}$ or $>+0.6 \mathrm{MHz}$ from the nominal frequency will result in unacceptable picture and/or sound degradation.

Immunity from radiated interference
If the tuner, including the aerial connection (see Fig. 4) is installed in a professional manner, the immunity from radiated interference will be within the limits specified in BS905: 1969.
If a higher safety margin or another cable connection is required, use can be made of an immunity shield (see ACCESSORIES).

## Microphonics

If the tuner is installed in a professional manner, there will be no noticeable microphonics.

## NOTES:

1. This e.m.f. is referred to an impedance of $75 \Omega$.
$1 \%$ cross modulation means that $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
2. This e.m.f. is referred to an impedance of $75 \Omega$.

Criterion of overloading: $30 \%$ compression of the synchronization pulses of a standard television signal or a noticeable deterioration of the picture quality.
3. This e.m.f. is referred to an impedance of $75 \Omega$.

## MEASURING METHOD OF POWER GAIN

(1) The i.f. output of the tuner should be terminated with the circuit given below.


Detector probe
$(Z=50 \Omega)$

Fig. 7
(2) Feed an i.f. sweep signal to the emitter of the BF363 (mixer/oscillator) and make the oscillator inoperative (e.g. ferrite core in resonant chamber)


Fig. 9.
(4) Display the r.f. and i.f. curve of the tuner at 470 MHz and make, if necessary, small corrections in the alignment of C1, C2, and L and L21 to get the markers 38.9 MHz and 33.4 MHz symmetrically on the slopes of the curve and the peaks at equal amplitude.
Because the output impedance of the dummy circuit is 50 to $75 \Omega$, the power gain can be measured in the conventional manner by inserting the tuner and the dummy circuit between a $75 \Omega$ source and a $75 \Omega$ detector, or between a $50 \Omega$ source, a matching pad $50 / 75 \Omega$ and a $50 \Omega$ detector.

## OTHER AVAILABLE VERSION

ELC1043/06

## U.H.F. TELEVISION TUNER with diode tuning

ELC1043/06

This type is identical to ELC1043/05 except for the following:-

1. The i.f. output circuit consists of an i.f. coil with increased turns damped by a $680 \Omega$ resistor. This changes the tuning range and ' $Q$ ' of the i.f. output coil, making it suitable for coupling to a block filter input i. f. amplifier.
2. The power gain is reduced to a nominal of 12 dB and a minimum of 9 dB by the damping resistor mentioned above.
3. The same dummy circuit is used for measuring power gain but, as a result of damping the i.f. coil, a single tuned response will appear at the output, instead of the double tuned response, as in the case of ELC1043/05. (see below).


# V.H.F./U.H.F.TELEVISION TUNER with diode tuning 

## QUICK REFERENCE DATA

Designed to cover the v.h.f. and u.h.f. channels of the C.C.I.R. systems B and G. including the Italian channels.

Systems	C.C.I.R. systems B and G
Channels	E2 to C (band I)
	E5 to E12 (band III)
	E21 to E69 (bands IV and V)
Intermediate frequencies	
$\quad$ picture	38.9 MHz
sound	33.4 MHz

## DESCRIPTION

A combined v.h.f./u.h.f. tuner with electronic tuning and band switching, covering the v.h.f. band I including the Italian channel C (frequency range 47 to 88 MHz ), the v.h.f. band III (frequency range 174 to 230 MHz ), and the $u . h . f$. band (frequency range 470 to 860 MHz ).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, and housed in a metal case consisting of a rectangular frame and front and rear covers (see Fig. 1). The two aerial connections (v.h.f. and u.h.f.) are on the two frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages) are made via feedthrough capacitors in the underside. The mounting method is described below.
Electrically, the tuner consists of a v.h.f. and u.h.f. part. The v.h.f. aerial signal is fed via an i.f. trap, combined with a high pass filter, to a tuned input circuit, which is connected to the emitter of the input transistor BF200. The collector load of this trans istor is formed by a double tuned circuit, transferring the signal to the base of the mixer transistor BF182. The oscillator is equipped with a transistor BF194. The four r.f. circuits are tuned by four capacitance diodes BB106. Switching between v.h.f. I and III is a chieved by four switching diodes BA243/244.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is capacitively coupled out of the tuner. An i.f. injection point is provided at the collector of the mixer, for aligning this circuit together with the i.f. amplifier of the television receiver.
The u.h.f. part of the tuner consists of a tuned input circuit, connected to the emitter of the amplifier transistor BF180. The interstage network between this transistor and the self-oscillating mixer stage is formed by a double tuned circuit. A transistor BF181 a cts as a self-oscillating mixer. The four tuned $u$.h.f. circuits are tuned by four capacitance diodes BB105B.
The output of the self-oscillating mixer is fed to a double tuned i.f. circuit which is connected to the emitter of the $v . h$.f. mixer transistor BF182, now operating as an i.f. amplifier in grounded base configuration. Band switching between v.h.f. and u.h.f. is a chieved by another diode BA243.
The tuner requires transistor supply voltages of +12 V , a switching voltage of +12 V , a.g.c. voltages, variable from +2.4 V (normal operating point) to about +7.5 V (maximum a.g.c.) and a tuning voltage, variable from +0.5 V to +28 V .

The aerial inputs of the tuner are assymmetrical. For use in symmetrical aerial systems, aerial transformers* (ba luns) a re available (see ACCESSORIES).


Fig. 1.


Fig. 2. Piercing diagram viewed from solder side of board. No connection must be made to terminals 7,9 and 11 , as otherwise the oscillator radiation would increase.

## CIRCUIT DIAGRAM



## TERMINATIONS

```
 1 =a.g.c. voltage, v.h.f., +2.4 to +7.5 V
 2 = tuning voltage, +0.5 to +28 V
 3 = switching voltage, +12 V (approx. 20 mA)
 4 = r.f. supply voltage, v.h.f., + 12 V (approx. 3 to 10 mA)
 5 = oscillator supply voltage, v.h.f., +12 V (approx. }6\textrm{mA}
 6 = mixer supply voltage, v.h.f., +12 V (approx. 5 mA)
 7 = test point l, v.h.f.
 = i.f. output
 9 = test point 2 (alignment short)
10 = oscillator supply voltage, u.h.f., +12 V (approx. 4 mA)
11 = test point 3, u.h.f.
12 = r.f. supply voltage, u.h.f., +12 V (approx. 2.5 to 9.5 mA)
13 =a.g.c. voltage, u.h.f., +2.4 to +7.5 V
 E = earth
```


## MOUNTING

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 2. The tuner may also be mounted by neans of a snap-in mount or a bracket; information will be supplied upon request.
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

Dimensions in millimetres


Fig. 4. Recommended fixing method of the aerial cables.

## ACCESSORIES

Aerial input transformer (balun) v.h.f. - type no. E LC1094
Aerial input transformer (balun) u.h.f. - type no. ELC2092

## V.H.F./U.H.F.TELEVISION TUNER with diode tuning

## ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a supply voltage of $12 \pm 0.3 \mathrm{~V}$.

Semiconductors
bands I and III, r.f. amplifier BF200
mixer BF182
oscillator BF194
tuning diodes
switching diodes
bands IV and $V$,
r.f. amplifier
mixer/oscillator
BF 181
tuning diodes
drift compensating diode
$4 \times$ BB106
$5 \times$ BA243/244

BF 180
BF 181
$4 \times$ BB105B
BAW 62
Ambient temperature range
operating
storage
Supply voltage
Current drawn from +12 V supply
band I
band III
bands IV and V
A. G. C. voltage (Figs. 5, 6 and 7)
band I,
at nominal gain
at 40 dB ga in reduction
band III,
at nominal gain
at 40 dB ga in reduction
bands IV and V,
at nominal gain
at 30 dB ga in reduction
+5 to $+55^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
$+12 \mathrm{~V} \pm 10 \%$
\(\left.\begin{array}{r}14 to 21 \mathrm{~mA} <br>
34 to 41 \mathrm{~mA} <br>

31.5 to 38 \mathrm{~mA}\end{array}\right\} \quad\)| depending |
| :--- |
| on a.g.c. |
| voltage |

A. G. C. current
band I at 40 dB gain reduction
band III at 40 dB gain reduction
bands IV and V at 30 dB gain reduction
Tuning voltage range (Figs. 8, 9 and 10 )
Current drawn from 28 V tuning voltage supply
$\max .0 .8 \mathrm{~mA}$
$\max .0 .6 \mathrm{~mA}$
$\max .0 .7 \mathrm{~mA}$
+0.5 to +28 V
$\max .36 \mu \mathrm{~A}$
Switching voltage
band I
band III
band IV and V
open circuit
$+12 \mathrm{~V}$
$+12 \mathrm{~V}$


Fig. 5


Fig. 7

## V.H.F./U.H.F.TELEVISION TUNER <br> with diode tuning



Fig. 9
Fig. 8


Fig. 10

ELECTRICAL DATA (continued)

Frequency ranges
band I
margin at the extreme channels band III
margin at the extreme channels
bands IV and V
margin at the extreme channels
Intermediate frequencies
picture
sound
Input impedance
a symmetrical
symmetrical
V.S.W.R. (between picture carrier and sound carrier)
band I (except channel C)
band III (except channel E12)
bands IV and V
A.G.C. range
band I
band III
bands IV and V
R. F. curves
bandwidth
band I
band III
bands IV and V
tilt
band I
band III
bands IV and V, channels E21 to E60 channels E61 to E69
channel E2 (picture carrier 48.25 MHz ) to channel C (picture carrier 82.25 MHz ).
$\min .1 .2 \mathrm{MHz}$
channel E5 (picture carrier
175.25 MHz ) to channel E12
(picture carrier 224.25 MHz ).
$\min .2 \mathrm{MHz}$
channel E21 (picture carrier
471.25 MHz ) to channel E69
(picture carrier 855.25 MHz ).
min . 3 MHz
38.9 MHz
33.4 MHz
$75 \Omega$
$300 \Omega$ (see ACCESSORIES)

at nom. gain		during gain control	
best   value	worst   value	best   value	worst   value
(max.)	$($ max. $)$	$($ max. $)$	$($ max. $)$
3	4	4	5
3	4	4	5
-	4	-	5

min. 40 dB
min. 40 dB
min. 30 dB
typ. 10 to 15 MHz
typ. 10 to 15 MHz
typ. 15 to 25 MHz
$\max .3 \mathrm{~dB}$
max. 3 dB
$\max .3 \mathrm{~dB}$
max. 4 dB

## V.H.F./U.H.F.TELEVISION TUNER with diode tuning

ELECTRICAL DATA (continued)
Power ga in (see also MEASURING METHOD OF POWER GAIN)
band I
channel E2
channel C
band III
channel E5
channel E11
bands IV and V
channel E21
channel E31
channel E69
Noise figure
band I
channel E4
band III
channel E9
bands IV and V
channel E21
channel E51
channel E68
I. F. rejection
band I, channel E2
channel C
band III
bands IV and V
Image rejection
band I
band III
bands IV and V
Signal handling (see also Figs. 12 and 13)
Minimum input signal (e.m.f.) producing
cross modulation of $1 \%$ at nominal gain,
in channel
wanted signal: picture carrier frequency,
interfering channel: sound carrier
frequency, v.h.f. I
v.h.f. III
u.h.f.
continued on next page)
min. $\quad 26 \mathrm{~dB}$
typ. $\quad 29 \mathrm{~dB}$
typ. $\quad 32 \mathrm{~dB}$
min. $\quad 25 \mathrm{~dB}$
typ. $\quad 28 \mathrm{~dB}$
typ. $\quad 28 \mathrm{~dB}$
min. $\quad 25 \mathrm{~dB}$
typ. $\quad 32 \mathrm{~dB}$
typ. $\quad 29 \mathrm{~dB}$
typ. $\quad 33 \mathrm{~dB}$
$\max . \quad 8.5 \mathrm{~dB}$
typ. $\quad 6.5 \mathrm{~dB}$
max. $\quad 8 \mathrm{~dB}$
typ. $\quad 6.5 \mathrm{~dB}$
max. $\quad 12 \mathrm{~dB}$
typ. $\quad 8.0 \mathrm{~dB}$
typ. $\quad 9.5 \mathrm{~dB}$
typ. $\quad 10.5 \mathrm{~dB}$
min. $\quad 40 \mathrm{~dB}$
min. $\quad 60 \mathrm{~dB}$
min. $\quad 60 \mathrm{~dB}$
min. $\quad 60 \mathrm{~dB}$
min. $\quad 40 \mathrm{~dB}$
min. $\quad 60 \mathrm{~dB}$
min. $\quad 40 \mathrm{~dB}$

Signal handling, (continued)
in band
wanted signal: picture carrier frequency
of channel X ,
interfering signal: picture carrier of
channel X-2 (v.h.f.), X-5 (u.h.f.)

> v.h.f. I
> v.h.f. III
> u.h.f.
$\left.\begin{array}{l}\text { typ. } 15 \text { to } 60 \mathrm{mV} \\ \text { typ. } 10 \text { to } 50 \mathrm{mV} \\ \text { typ. } 15 \text { to } 50 \mathrm{mV}\end{array}\right\}$ note 1
Minimum input signal (e.m.f.) producing overloading,
at nominal gain
at maximum a.g.c.
$\left.\begin{array}{lr}\text { typ. } & 10 \mathrm{mV} \\ \text { min. } & 200 \mathrm{mV}\end{array}\right\} \quad$ note 2
Minimum input signal (e.m.f.) at nominal
gain producing a shift of the oscillator frequency of 10 kHz .
band I
band III
bands IV and V
Detuning of the i.f. output circuit as a result of bandswitching and tuning with respect of channel E8


Shift of oscillator frequency at a change of the
supply voltage of $10 \%$
band I max. 300 kHz
band III
bands IV and V
$\max .300 \mathrm{kHz}$
$\max .600 \mathrm{kHz}$
during warm-up time (measured between 5 s
and 15 min after switching on)
band I
band III
bands IV and V
$\max .100 \mathrm{kHz}$
$\max .100 \mathrm{kHz}$
$\max .250 \mathrm{kHz}$
at a gain reduction of 30 dB
$\max .100 \mathrm{kHz}$
Drift of oscillator frequency at a change of
the ambient temperature from 25 to $40^{\circ} \mathrm{C}$
band I
band III
bands IV and V
$\max .300 \mathrm{kHz}$
max. 300 kHz
max. 500 kHz
Oscillator radiation
The tuner conforms with the radiation requirements of C.I.S.P.R. Recommendation No. 24/3, provided the following conditions a re fulfilled:
A low-pass filter (Fig. 11) with a cut-off frequency of about 300 MHz has to be inserted between the v.h.f. aerial terminal of the tuner and the aerial terminal of the receiver. Television receivers with a common v.h.f./u.h.f. connector in combination with a low-pass/high-pass splitter do not need this additional filter.

## V.H.F./U.H.F.TELEVISION TUNER with diode tuning



Fig. 11

No connections must be made to the terminals 7, 9 and 11.
Earthing of the tuner and connection to the i.f. amplifier must be made in such a way, that additional radiation is prevented.

## Microphonics

If the tuner is installed in a professional manner, there will be no appreciable microphonics.

## NOTES

1. This e,m.f. is referred to an impedance of $75 \Omega$.
$1 \%$ cross modulation means that $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
2. This e.m.f. is referred to an impedance of $75 \Omega$.

Criterion of overloading: $30 \%$ compression of the synchronization pulses of a standard television signal or a noticeable deterioration of the picture quality.
3. This e.m.f. is referred to an impedance of $75 \Omega$.


Fig. 12. Cross modulation, in channel.


Fig. 13. Cross modulation in band; the interfering channels are given between brackets.

## APPLICATION

Connection of the tuner
For connection of the tuner, see terminal location in Fig. 1. If the tuner is used in receivers, the chassis of which is connected to the mains, isolating capacitors according to the safety rules have to be inserted in the aerial leads.
Five ways of connecting, depending on the number of switches available, a re given below.


Fig. 14. Connection diagram with three switches.


Fig. 15. Connection diagram with two switches.
All diodes: BAX13, BA 217 or comparable silicon diodes.


Fig. 16. Connection diagram with two switches.
All diodes: BAX13, BA217 or comparable silicon diodes.
The values of $R_{1}, R_{2}$ and $R_{3}$ are depending on a.g.c. circuit.


Fig. 17. Connection diagram with one switch.
All diodes: BAX13, BA217 or comparable silicon diodes.

# V.H.F./U.H.F.TELEVISION TUNER <br> with diode tuning 



Fig. 18. Connection diagram with one switch.
All diodes: BAX13, BA 217 or comparable silicon diodes.
The values of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and $\mathrm{R}_{3}$ a re depending on a.g.c. circuit.
Alignment of i.f. circuit
The tuner is provided with an i.f. injection point at the collector of the mixer, for aligning the i.f. circuit together with the i.f. amplifier of the television receiver (for the position of the i.f. injection point see Fig. 1).
The aligning should be done with the v.h.f. III band tuned. The tuning voltage should be 15 to 20 V .
If this injection method cannot be employed in the television receiver, e.g. because the injection point is not accessible or there is not enough i.f. signal available, the i.f. signal can be fed to test point 3 (terminal 11) via a capacitor of 0.82 to 1 pF .
The tuner must be switched to the u.h.f. position; the tuning voltage should be approx. 10 V . This injection method requires approx. 14 dB less signal than the first method.
No permanent connection must be made to test point 3, otherwise the tuner may exceed the oscillator radiation limits.

## MEASURING METHOD OF POWER GAIN

The i.f. output of the tuner should be terminated with the circuit given below. The terminals 7, 9 and 11 should not be connected.


Fig. 19

Switch the tuner to the v.h.f. III band; the tuning voltage should be 15 to 20 V . Feed an i.f. sweep signal (e.m.f. 500 to 1000 mV ) to the i.f. injection point. Adjust the trimmer (Fig. 19), tunable coil ( $\mathrm{L}_{\mathrm{a}} / \mathrm{L}_{\mathrm{b}}$ ), i.f. output coil of the tuner L 19 (Fig. 3) a nd the coupling between $L_{a}$ and $L_{b}$ to get the resonant curve as given below.


Fig. 20

Then display the r.f. and i.f. curve of the tuner at 190 MHz (picture carrier frequency) and make small corrections in the alignment of the i.f. coils ( $L_{a} / L_{b}$ and $L 19$, if necessary, to get the markers 38.9 MHz symmetrically on the slopes of the curve and the peaks, at equal amplitude.

Because the output impedance of the dummy circuit is 50 to $75 \Omega$, the power gain can be measured in the conventional manner by inserting the tuner and the dummy circuit between a $75 \Omega$ source and a $75 \Omega$ detector (or between a $50 \Omega$ source, a matching pad $50 / 75 \Omega$, and a $50 \Omega$ detector).

## DEVELOPMENT SAMPLE DATA

	QUICK REFERENCE DATA
Systems	United Kingdom system
Channels	E21 to E69
	systems I and K
Intermediate frequencies	
picture	39.5 MHz
sound	33.5 MHz

## APPLICATION

This tuner is designed to cover the u.h.f. charnels E21 to E69 to meet the special requirements of the United Kingdom.


# U.H.F. TELEVISION TUNER <br> with diode tuning 

## DESCRIPTION

The U321 is a u.h.f. tuner with electronic tuning, covering the u.h.f. band from 470 to 860 MHz (channels E21 to E69).
Mechanically, the tuner is built on a printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover (see Fig. 2).
A shielded aerial terminal is on one of the shorter sides of the frame, all the other terminals (supply input stage, a.g.c., tuning voltage, supply oscillatorA.f. stage, i.f. injection and i.f. output) are made via connecting pins ( 1.32 mm diameter) on the bottom side. Mounting is shown in Fig. 2 and 3.
Electrically the tuner consists of an input circuit with high pass characteristic, followed by a P.I.N. diode attenuator ( 2 diodes BA379), and a transistor BF480 in grounded base configuration (see Fig. 5). This transistor is operating at an emitter current of about 5 to 8 mA , featuring good noise figures and good handling properties as well. The a.g.c. current for driving the P.I.N. diode attenuator is directly controlled by the a. g.c. system of the receiver. The collector load of the input transistor is formed by a double tuned circuit, transferring the signal to the mixer diode BA280. The selectivity of this circuit at the image frequency has been improved by special means, so that the stringent requirements of the U.K. can be met. The mixer diode is driven by an oscillator, equipped with a transistor BF480. The i.f. signal, originated in the mixer, is amplified by a transistor BF324 in grounded base configuration. The combination of the Schottkybarrier diode BA280 and transistor BF324 features good noise figures and good signal handling properties as well. 3 capacitance diodes BB205B tune the double tuned circuit and the oscillator.
The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner.
Ad.c. path to ground for the collector current of the i.f. transistor has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistor and a parallel capacitor outside the tuner. For details see page 11.
An i.f. injection point is available at the collector of the i.f. transistor, connected to a terminal on the bottom side.


Fig. 2a

$$
\begin{aligned}
2 & =\text { r.f. supply voltage, }+12 \mathrm{~V} \\
3 & =\text { a.g. c. voltage, }+9.2 \text { to }+1.5 \mathrm{~V} \\
4 & =\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
6 & =\text { oscillator } A \text { f. supply voltage, }+12 \mathrm{~V} \\
7 & =\text { i.f. injection point } \\
10 & =\text { i.f. output }
\end{aligned}
$$



Fig. 2b. I. F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force : $\geq 10 \mathrm{~N}$

## U.H.F. TELEVISION TUNER <br> with diode tuning

## Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket, information will be supplied upon request).
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IRC68-2, test Ta $\left(230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0.5 \mathrm{~s}\right)$. The resistance to soldering heat is according to IEC68-2, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.


Hole pattern of the printed wiring board
(viewed on solder side)


Fig. 4

## Fixing of the aerial cable

Recommended cable: DAVU wire CX4004 (outer sheath diameter 5.32 mm )
The aerial cable should be connected as follows:

- strip the cable according to Fig. 4B
- fix the cable as indicated in Fig. 4C and solder the inner conductor on the aerial tag.
- insert lugs on immunity shield under the tabs on tuner body, push the shield into posithon 80 that the locating tags snap into place in the tuner body.


# U.H.F. TELEVISION TUNER with diode tuning 

## ELECTRICAL DATA

The electrical values are measured on the u.h.f. tuner alone. Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$ and an a.g.c. current of $-9 \mathrm{~mA} \pm 0.2 \mathrm{~mA}$.
Within the given tolerance range of supply voltage and a.g.c. current, only insignificant deviations from the specified values can be expected.
Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

## General

Semiconductors

P.I.N. diode	$2 \times$ BA379
r.f. amplifier	BF480
tuning diode	$3 \times$ BB205B
mixer diode	BA280
oscillator	BF480
1.f. amplifier	BF 324

## Environmental conditions

Temperature, operating
Temperature, storage
Humidity, operating
+5 to $+55^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$ max. $90 \%$ R. H.

Voltages and currents
Supply voltage
Voltage

$$
+12 \mathrm{~V} \pm 10 \%(+10 \%-15 \%)^{*}
$$

Note: The supply voltage of the input stage should be filtered to avoid hum modulation in one of the P.I.N. diodes when the attenuator is blased to higher attenuation ratios. Under most unfavourable conditions a ripple of $\geq 7.5 \mathrm{mV}$ peak-to-peak may produce a just visible disturbance.

Current drawn from +12 V supply
Current for r.f. stage terminal 2 at nominal gain

$$
\begin{aligned}
\text { typ. } & 16 \mathrm{~mA} \\
\text { typ. } & 13 \mathrm{~mA} \\
6 \leqslant & 16 \mathrm{~mA}
\end{aligned}
$$ at 26 dB gain reduction

Current for oscillator and 1.f. stage terminal

## A. G. C. current <br> at nominal gain <br> at 26 dB gain reduction

$$
\begin{array}{r}
-9 \pm 0.5 \mathrm{~mA} \\
\text { typ. } \quad-5.6 \mathrm{~mA}
\end{array}
$$

For a.g.c. characteristics see Fig. 7

[^3]
## DEVELOPMENT SAMPLE DATA



Fig. 4
A.G.C. characteristic

Tuning voltage range (Fig. 5)
Current drawn from +28 V tuning voltage supply
Slope of tuning characteristic


Fig. 5
Tuning characteristic
+1 to +28 V
$\max .0 .5 \mu \mathrm{~A}$
$\mathrm{min} .5 \mathrm{MHz} / \mathrm{V}$

Note: The source impedance of the tuning voltage offered to terminal 4 musi be max. $47 \mathrm{k} \Omega$ at tuning voltages below 3 V .

## Frequencies

Frequency range

Immediate frequency
picture
sound
channel E21 (picture carrier 471.25 MHz )
to channel E69 (picture carrier 855. 25 MHz ).
Margin at the extreme channels: $\min .3 \mathrm{MHz}$
39.5 (38.9) MHz
33.5 (33.4) MHz

The oscillator frequency is higher than the aerial signal frequency.

Note: The tuner is allgned in such a way that the i.f. of both systems can be applied. The tilt limit is valid for $39.5 / 33.5 \mathrm{MHz}$.

## U.H.F. TELEVISION TUNER with diode tuning

Wanted signal characteristics	
Input impedance asymmetrical	$75 \Omega$
V.S.W.R. at picture carrier frequency, at nominal gain	$\max 5$
Refiection coefficient at picture carrier frequency, at nominal gain	max. 66\%
A.G.C. range	min. 26 dB ; typ. 31 dB
R.F. curves bandwidth tilt (only for i.f. $38.9 / 33.4 \mathrm{MHz}$ )	typ. 18 MHz on any channel the amplitud the top of the r.f. resonant picture carrier marker, the marker, or any frequency b not exceed 3 dB at nominal a.g.c. range between nomi gain reduction.
Power gain (see also Measuring method of power gain)   channel E21   channel E40   channel E69	min. 18 dB   typ. 23 dB   typ. 22 dB   typ. 24 dB
Gain difference between any two channels	typ. 3dB
Noise figure channel E21 channel E40 channel E69	max. 10 dB   typ. 6.5 dB   typ. 7.5 dB   typ. 8.0 dB
Overloading Input signal producing 1 dB gain compression at nominal gain	typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain	typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

## Unwanted signal characteristics


mage rejection (measured at picture
carrier frequency)
channels E21 to E60 min. 53 dB
I. F. rejection (measured at picture
carrier and colour sub-carrier frequency) min. 60 dB
$\mathrm{N} \pm 4$ rejection
terference signal for an interference
referred to
of 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner
Gross modulation
Input signal producing $1 \%$ cross modulation, i.e. $1 \%$ of the modulation depth of the
interfering signal is transferred to the wanted signal.
In channel cross modulation
(wanted signal: picture carrier frequency;
interfering signal: sound carrier frequency)
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 26 dB gain reduction
(wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$ )
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
min. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
min. $108 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
$\min .94 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
$\max .500 \mathrm{kHz}$

# U.H.F. TELEVISION TUNER <br> with diode tuning 

## Oscillator characteristics (Contd.)

Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after switching on the oscillator/1.f. stage)
$\max .250 \mathrm{kHz}$
at a change of the ambient temperature from +25 to $+40^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $\left.+55^{\circ} \mathrm{C}\right)$
$\max .250 \mathrm{kHz}$

## I. F. circult characteristics

Bandwidth of i.f. output circuit ${ }^{l}$ )
Bandwidth variation of i.f. output circuit as a result of r.f. tuning
$5 \mathrm{MHz} \pm 500 \mathrm{kHz}$

Note: I. F. output of the tuner terminated with a modified circuit of Fig. 6, i.e. a 100 pF capacitor is connected in parallel with C1, R1 is short circuited, tuning voltage is 15 V .


Fig. 6

[^4]Detuning of the i.f. output circuit
as a result of $r$.f. tuning
$\max .350 \mathrm{kHz}$
Note: I. F. output of the tuner terminated with a modified circuit of Fig. 6, i. e. a 100 pF capacitor is connected in parallel with Cl, R1 is short circuited; tuning voltage is 15 V .

Tuning range of $\mathbf{i}$.f. output coil ${ }^{l}$ )
Attenuation between i.f. injection point and i.f. output of the tuner

Miscellaneous
Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages
$\max .33$ to $\min .40 \mathrm{MHz}$
typ. 23 dB

Within the limits of C.I.S.P.R. $24 / 3$ (1970) and VDE 0872/7. 72. For the oscillator radiation use is made of the relaxed limit of $3 \mathrm{mV} / \mathrm{m}(70 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$.

There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Three discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
$\max .30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

## ADDITIONAL INFORMATION

I. F. injection

The tuner is provided with an i.f. injection point at the collector of the i.f. transistor (coupled via a capacitor to terminal 7). The i.f. generator can be connected directly to this point (Fig. 7).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 6.


Fig. 7

[^5]
## U.H.F. TELEVISION TUNER <br> with diode tuning

## Connection of the $i_{\text {a }}$ f. amplifier

The tuner needs a d.c. path from the i.f. output terminal (10) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig. 8).
In the case where the tuner is used in combination with a v.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 8 should be used.


Fig. 8
Measuring method of power gain
The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 6.


Fig. 9
The RC-circuit roughly matches the i.f. output impedance to $75 \Omega$ at the resonant frequency of the i.f. output circuit, which should be tuned to 36.15 MHz ; the bandwidth should be approx. . 5 MHz (Fig. 9).
Because the input and output impedances of the tuner are now $75 \Omega$, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a $75 \Omega$ source and a $75 \Omega$ detector.

Alignment of the i.f. output coil
The i.f. output coll should be adjusted with a brass tool with a blade as shown in Fig. 10. A suitable tool is available under catalogue number 712200947680.



Fig. 10

## ACCESSORIES

Immunity shield

## DEVELOPMENT SAMPLE DATA

This all electronic tuner is identical to the U321, but has been designed for use in colour or monochrome television receivers fitted with closed loop digital tuning systems requiring an oscillator sample output. The tuner features good noise figure and improved signal handling properties, particularly for cross-modulation, by the use of a large signal r.f. transistor and schotthy diode mixer. The tuner is equipped with a F.I.N. diode attenuator in the input circuit which is controlled by the A.G.C. system of the receiver.


## OUTLINE AND DIMENSIONS

See Page 4

## ACCESSORIES

Immunity shield
Code No. 312212124911

## ELECTRICAL DATA

Supply voltage +12 V
Tuning voltage range $\quad$ +1 to +28 V
Current drawn from +28 V tuning voltage supply $<0.5 \quad \mu \mathrm{~A}$
Frequency range Channels 21-69
V.S.W.R. $\leq 5$

Power gain	typ.	23	$d B$
Noise factor	typ.	7	$d B$
Image rejection		$\geq 53$	$d B$
A.G.C. control range		$\geq 26$	$d B$

A.G.C. control current maximum gain typ. 9 mA $-26 \mathrm{~dB} \quad 5 \mathrm{~mA}$

Cross modulation :
Input signal e.m.f. , $75 \Omega$, which will cause the transference of $1 \%$ of the modulation of an unwanted signal to the carrier of the wanted signal.

In channel cross-modulation :
(wanted signal: vision carrier frequency;
interfering signal: sound carrier frequency)

At maximum gain	typ.	25	mV
with a.g.c.	typ.	$\geq 100$	mV

In band cross-modulation :
(wanted signal: vision carrier of channel $N$;
interfering signal : vision carrier of channel $\mathrm{N} \pm 3$ )
$\begin{array}{cccc}\text { At maximum gain } & \text { typ. } & 50 & \mathrm{mV} \\ \text { with a.g.c. } & \text { typ. } & \geq 200 & \mathrm{mV}\end{array}$
Out of band cross-modulation :

VHF I	typ.	$>500$	mV
VHF III	typ.	>100	mV
$\pm 14$ : Interfering vision carrier, e.m.f., $75 \Omega$, for -53 dB : (at maximum gain)	typ.	20	mV
Oscillator stability :			
Shift for a change in supply voltage of $\pm 5 \%$		$\leq 500$	kHz
Drift for a change of ambient temperature from $25^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C}$		$\leq 1000$	kHz

## ELECTRICAL DATA (Uscillator sample)

Oscillator sample voltage, p.d., $75 \Omega$
$\begin{aligned} \mathrm{V}_{\text {supply }} & =+10.8 \text { to }+13.2 \mathrm{~V}, \mathrm{~V}_{\text {tuning }}+0.5 \text { to }+28 \mathrm{~V} \text {, } \\ \mathrm{T}_{\mathrm{amb}} & =+5 \text { to }+55^{\circ} \mathrm{C}\end{aligned}$
$\mathrm{V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Impedance of oscillator sample port
V.S.W.R. at oscillator sample port

Oscillator frequency $<600 \mathrm{MHz}$	-	3	4
Oscillator frequency $>600 \mathrm{MHz}$	-	2	3

75
$\Omega$

$$
4
$$

Oscillator frequency $>600 \mathrm{MHz}$

$$
3
$$

Reflection coefficient at oscillator sample port
$\begin{aligned} \text { Oscillator frequency } & <600 \mathrm{MHz} \\ & >600 \mathrm{MHz}\end{aligned}$

- $\quad 50 \quad 60 \quad \%$
$>600 \mathrm{MHz}$
Harmunic content of oscillator sample
Harmonics below 1000 MHz (2nd harmonic of fundamental
R.F. rejection at oscillator sample port

Tuner input of wanted frequency, 5 mV e.m.f., $75 \Omega$, tuner operated at nominal gain.
$V_{\text {signal }}$ at sample port reference oscillator fundamental
I.F. rejection at oscillator sample port
I. F. signal converted from tuner input of wanted frequency, 5 mV e.m.f. , $75 \Omega$; tuner opt $i_{i}$ ated at nominal gain.
I.F. signal at sample port, reference oscillator fundamental
$-20$
Radio interference
Oscillator port open or terminated $75 \Omega$ oscillator radiation

Min. Typ. Max.
13 - 100 mV

33 - mV

## fundamentals $\leq 500 \mathrm{MHz}$ ) with reference to

$\begin{array}{llll}-15 & -20 & - & d B\end{array}$

MECHANICAL DATA (Provisional dimensions in mm)


CONNECTIONS
2. V supply
+12 V
3. A.G.C.
4. tuning
9 mA to 1 mA
+1 V to +28 V
6. V supply oscillator/1.f.
+12 V
7. I. F. injection.
10. I. F. output


Hole pattern of the printed wiring board.
(viewed on solder side)

## U.H.F. TELEVISION TUNERS

## QUICK REFERENCE DATA

Systems	C.C.I.R. systems G, H, I and K	
Channels	E21 to E69	
Intermediate frequencies	systems G and H	systems I and K
picture	$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
sound	$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

## APPLICATION

These tuners are designed to cover the u.h.f. channels E21 to E69 of C.C.I.R. systems G, H, I and K. In combination with a suitable v.h.f. tuner, e.g. V311, V314 or V315 they can be used in v.h.f./u.h.f. receivers. The aerial inputs and i.f. outputs of both tuners can then be connected in parallel without additional circuitry.
The U322LO is a special version of the U322: an output voltage from the local oscillator is made available for driving digital tuning systems. Apart from this the tuners are identical.

## DESCRIPTION

The tuners are u.h.f. tuners with electronic iuning, covering the u.h.f. band from 470 to 860 MHz .
Mechanically, the tuners are built on a printed-wiring board, carrying all components, in metal housing made of a rectangular frame and front and rear cover (see Fig. 2a). All connections (aerial, supply voltages, a.g.c. voltage, tuning voltage, i.f. injection, i.f. output) are made via terminals on the underside. The mounting method is shown in Fig. 3. Tuner U322LO has a coaxial socket on the top of the frame for coupling out the oscillator sample.
Electrically, the tuner consists of an input circuit with a high-pass characteristic, followed by a P-I.N diode attenuator ( 1 diode BA379) and the input transistor BF480 in grounded-base configuration. This transistor operates at an emitter current of about 8 to 10 mA , featuring good noise figures and good signal handling properties. It also supplies the current drive for the P-I-N diode attenuator, controlled by an a.g.c. voltage fed to the transistor's base. This combination has good signal handling properties throughout the a.g.c. range. The collector load of the input transistor is formed by a double tuned circuit, transferring the signal to the mixer diode BA280 (or MBD102). The selectivity of this circuit at the image frequency has been improved by special means. The mixer diode BA280 (or MBD102) is driven by an oscillator, equipped with a transistor BF480. At the U322LO the oscillator sample is coupled out of the mixer via a small capacitor in series with a resistor.
The i.f. signal, originated in the mixer, is amplified by a transistor BF324 in grounded-base configutation. The combination of the Schottky-barrier diode BA280 (or MBD102) and the i.f. transistor BF324 also features good noise figures and good signal handling properties. Three capacitance diodes BB105B tune the double tuned circuit and the oscillator.

The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner. A d.c. path to earth for the collector current of the i.f. transistor BF324 has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.
An i.f. injection point has been provided at the collector of the i.f. transistor, connected to terminal 7.


## MECHANICAL DATA

Dimensions in mm


Fig. 2a The oscillator sample socket, drawn with dotted lines, applies only to tuner U322LO.

$$
\text { Terminal } \begin{aligned}
1 & =\text { aerial } \\
2 & =\text { r.f. supply voltage, }+12 \mathrm{~V} \\
3 & =\text { a.g.c. voltage, }+9,2 \text { to }+1,5 \mathrm{~V} \\
4 & =\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
6 & =\text { oscillator/i.f. supply voltage, }+12 \mathrm{~V} \\
7 & =\text { i.f. injection point } \\
10 & =\text { i.f. output }
\end{aligned}
$$

Note: When the tuner is operated together with a v.h.f. tuner, only the supply voltage at terminal 6 should be switched off during v.h.f. operation.


Fig. 2b I.F. output coil.
Torque for alignment : 2 to 15 mNm Press-through force $: \geqslant 10 \mathrm{~N}$

## Mass

 approx. 75 g
## Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$ : The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.


Fig. 3 Piercing diagram viewed from solder side of board.
For connection to the socket on the top of tuner U322LO a coaxial plug has to be used; type 3/2-50 (manufacturer: Daut und Rietz) is recommended.

## ELECTRICAL DATA

The electrical values are measured on the u.h.f. tuner alone, but they are also valid for the u.h.f. tuner in combination with a v.h.f. tuner V311, V314 or V315. Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.e. voltage of $9,2 \pm 0,2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

## General

## Semiconductors

P-I-N diode	BA379
r.f. amplifier	BF480
mixer	BA280 (or MBD102)
oscillator	BF480
tuning diodes   i.f. amplifier	$3 \times$ BB105B
Ambient temperature range	BF324
operating   storage	
Relative humidity	+5 to $+55^{\circ} \mathrm{C}$
	-25 to $+85^{\circ} \mathrm{C}$
	max. $90 \%$

## Voltages and currents

## Supply voltage

 $+12 \mathrm{~V} \pm 10 \%$Note: The supply voltage at terminal 2 (input stage) should be filtered to avoid hum modulation in the P-I-N diode when the attenuator is biased to higher attenuation ratios.
Current drawn from +12 V supply
r.f. amplifier, at nominal gain
r.f. amplifier, at 30 dB gain reduction
oscillator/i.f. amplifier
A.G.C. voltage (Fig. 4), at nominal gain
A.G.C. voltage, at 30 dB gain reduction
typ. $\quad 13 \mathrm{~mA}$
typ. $\quad \mathbf{4}, 5 \mathrm{~mA}$
$\max .16 \mathrm{~mA}$
$+9,2 \pm 0,5 \mathrm{~V}$
min. $+1,5 \mathrm{~V}$

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.

A.G.C. current (Fig. 4) during gain control ( 0 to 30 dB )<br>at nominal gain<br>at 30 dB gain reduction

max. + 1 mA

$$
\begin{aligned}
& \text { typ. }+0,76 \text { to }+0,97 \mathrm{~mA} \\
& \text { typ. } \quad+0,20 \mathrm{~mA}
\end{aligned}
$$



Fig. 4.
Tuning voltage range (Fig. 5)
Current drawn from +28 V tuning voltage supply
Slope of tuning characteristic


Fig. 5.
+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
$\min .5 \mathrm{MHz} / V$

Note: The source impedance of the tuning voltage offered to terminal 4 must be maximum $47 \mathrm{k} \Omega$ at tuning voltages below 3 V .
Oscillator sample signal; only valid for U322LO at +12 V supply voltage and $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
within the given tolerance range of supply voltage and given operating temperature range, and within the tuning voltage range
$+0,5$ to +30 V
min. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
max. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Note: A tuning voltage higher than +28 V will not be harmful for the tuner and may be applied at the user's own risk. Under this condition the published reverse voltage limit of the oscillator tuning diode will be exceeded; the oscillator frequency will never decrease with increasing tuning voltage.

## Frequencies

Frequency range
Intermediate frequencies
picture
sound
channel E21 (picture carrier $471,25 \mathrm{MHz}$ ) to channel E69 (picture carrier 855, 25 MHz ). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

systems $\mathrm{G}, \mathrm{H}$	systems $\mathrm{I}, \mathrm{K}$
$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

The oscillator frequency is higher than the aerial signal frequency.

Note. The tuner is aligned in such a way that the i.f. frequencies of the four systems can be applied.

## Wanted signal characteristics

Input impedance
asymmetrical
$75 \Omega$
Input impedance of oscillator sample socket; only valid for U322LO
asymmetrical $75 \Omega$
V.S.W.R. and reflection coefficient
at picture carrier frequency, at
nominal gain
v.s.w.r. $\max 5$
reflection coefficient max. 66\%
V.S.W.R. and reflection coefficient at oscillator sample socket; only valid for U322LO
v.s.w.r. at $\mathrm{f}_{\text {osc }}<600 \mathrm{MHz}$
max. 4 (typ. 3)
v.s.w.r. at $\mathrm{f}_{\mathrm{osc}}>600 \mathrm{MHz}$
reflection coefficient at $f_{\text {osc }}<600 \mathrm{MHz}$
reflection coefficient at $\mathrm{f}_{\mathrm{osc}}>600 \mathrm{MHz}$
max. 3 (typ. 2)
max. 60\% (typ. 50\%)
max. 50\% (typ. 33\%)
R.F. curves, bandwidth
R.F. curves, tilt (only for i.f. $38,9 / 33,4 \mathrm{MHz}$ )
A.G.C. range
typ. 18 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture carrier marker, the sound carrier marker, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .30 \mathrm{~dB}$
U.H.F. television tuners

Power gain (see also Measuring method of power gain)
channel E21
channel E40
channel E69
Gain difference between any two channels
Noise figure
channel E21
channel E40
channel E69

## Overloading

Input signal producing 1 dB gain compression at nominal gain

Input signal producing either a detuning of the oscillator of $\mathbf{+ 3 0 0} \mathbf{~ k H z}$ or -1000 kHz or stopping of the oscillations at nominal gain

## Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
channels E21 to E60
min. 19 dB
typ. 23 dB
typ. 22 dB
typ. 26 dB
max. 4 dB
$\max .10 \mathrm{~dB}$
typ. 7 dB
typ. $7,5 \mathrm{dE}$
typ. 8 dB
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

Harmonic content of oscillator sample; only valid for U322LO
Suppression of harmonics which fall
into the frequency range below 1000 MHz
(second harmonics of fundamentals
below 500 MHz )
min. 15 dB (typ. 20 dB ) below oscillator fundamental
R.F. rejection at oscillator sample socket; only valid for U322LO

Signal voltage at oscillator sample socket
(input signals of wanted frequency
$70 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$; tuner operating
at nominal gain)
I.F. rejection (measured at picture carrier and colour sub-carrier frequency)
min. 17 dB (typ. 24 to 34 dB )
below oscillator fundamental
min. 60 dB
I.F. rejection at oscillator sample socket; only valid for U322LO
I.F. signals at oscillator sample socket
(converted from input signals of wanted
frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$; tuner
operating at nominal gain)
min. 20 dB (typ. 35 dB ) below oscillator fundamental
$\mathrm{N} \pm 4$ rejection
Interference signal for an interference
ratio of 53 dB referred to wanted picture
carrier (picture to sound carrier ratio
of 10 dB ; wanted signal $\mathbf{6 0 ~ d B ~ ( ~} \mu \mathrm{V}$ ); tuner
operating at nominal gain)
$\max .80 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Cross modulation
Input signal producing $1 \%$ cross modulation, i.e. $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
at 26 dB gain reduction
(wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V}) \quad$ tyo. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
In band cross modulation (wanted signal: picture carrier of channel $N$; interfering signal: picture carrier of channel $\mathrm{N} \pm 5$ )
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V}))$
at $\mathbf{2 6 ~ d B}$ gain reduction
(wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$ )
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Out of band cross modulation, at nominal gain
v.h.f. I
v.h.f. III
min. $108 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
min. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

## Oscillator characteristics

## Pulling

Input signal of tuned frequency producing
a shift of the oscillator frequency of
10 kHz , at nominal gain
Shift of oscillator frequency
at a change of the supply voltage of $5 \%$
typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
$\max .500 \mathrm{kHz}$

Drift of oscillator frequency during warm-up time lafter the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on) $\quad \max .250 \mathrm{kHz}$
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after switching.on the oscillator/i.f. stage)
max. 250 kHz
at a change of the ambient temperature from +25 to $+40^{\circ} \mathrm{C}$
(measured after 3 cycles from
+25 to $+55^{\circ} \mathrm{C}$ )
470 to $790 \mathrm{MHz} \max .500 \mathrm{kHz}$
790 to 860 MHz
$\max 650 \mathrm{kHz}$
I.F. circuit characteristics

Bandwidth of i.f. output circuit
$5 \mathrm{MHz} \pm 500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .


Fig. 6.
Bandwidth variation of i.f. output circuit
as a result of r.f. tuning
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 6, i.e. a 100 pF capacitor is connected in parallel with C 1 and R 1 is short-circuited; tuning voltage 15 V .

Detuning of the i.f. output circuit
as a result of r.f. tuning
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 6, i.e. a 100 pF capacitor is connected in parallel with C1 and R1 is short-circuited; tuning voltage 15 V .

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .
Attenuation between i.f. injection point
and i.f. output of the tuner

Miscellaneous
Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages
Within the limits of C.I.S.P.R. 13 (1975) and VDE 0872/7.72.* For the oscillator radiation use is made of the relaxed limit of $3 \mathrm{mV} / \mathrm{m}(70 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$.
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Three discharges of a 470 pF capacitor into the aerial termihal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for $\mathbf{3 0} \mathrm{s}$ is connected to the aerial terminal.

[^6]
## ADDITIONAL INFORMATION

## I.F. injection

The tuner is provided with an i.f. injection point at the collector of the i.f. transistor (coupled via a capacitor to terminal 7). The i.f. generator can be connected directly to this point (Fig. 7).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 6.


Fig. 7.

## Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal (10) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig. 8). Where the tuner is used in combination with a v.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched-off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 8 should be used.


Fig. 8.

Messuring method of power gain
The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 6.


Fig. 9.
The RC-circuit roughly matches the i.f. output impedance to $75 \Omega$ at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth should be approx. 5 MHz (Fig. 9). Because the input and output impedances of the tuner are now $75 \Omega$, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a $75 \Omega$ source and a $75 \Omega$ detector.

## Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 10. A suitable tool is available under catalogue number 712200547680.


Fig. 10.

## ACCESSORIES

Connector assembly for use of tuner U322 or U322LO in combination with v.h.f. tuner V311 (or VD1), V314 or V315: connector, catalogue number 3112200 20720;
washer, catalogue number 3112221 01220;
clamp, catalogue number 311227413220.
V.H.F. TELEVISION TUNER
with diode tuning

DEVELOPMENT SAMPLE DATA

QUICK REFERENCE DATA	
Systems	C.C.I.R. systems B and I
Channels	$\frac{\text { system B }}{}$
v.h.f. I	system I
v.h.f. III to E4	IA to IC
Intermediate frequencies	E5 to E12
picture	
sound	

## APPLICATION

This-tuner is designed to cover the v.h.f. channels of C.C.I.R. systems B and I. In combination with the u.h.f. tuner U322 it can be used in v.h.f./u.h.f. receivers. The aerial inputs and i.f. outputs of both tuners can then be connected in parallel without additional circuitry.


## DESCRIPTION

The V311 is a v.h.f. tuner with electronic tuning, covering the v.h.f. band I (44 to 68 MHz ) and the v.h.f. band III ( 174 to 230 MHz ). Switching between the bands is done automatically by a built-in comparator circuit.

Mechanically, the tuner is built on a printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover (see Fig. 2). All connections (aerial, supply voltage, a.g.c. voltage, tuning voltage, i.f. injection, i. f. output) are made via terminals on the under side. The mounting method is shown in Fig. 3.

Electrically the tuner consists of two input circuits in parallel (bands I and III) with band-pass characteristics, followed by a P-I-N diode attenuator (2 diodes BA379) and the input transistor AF 379 in grounded-base configuration. This transistor operates at an emitter current of about 4 to 12 mA , featuring good noise figures and good signal handling properties. It also supplies the current drive for the P-I-N diode attenuator, controlled by an a.g.c. voltage fed to the transistor's base. This combination has good signal handling properties throughout the a.g.c. range.
The collector load of the input transistor is formed by a double tuned circuit, transferring the signal to the self-oscillating mixer AF 367 . The selectivity of this circuit at the intermediate frequency has been improved.
Four capacitance diodes BB106 tune the double-tuned circuit and the oscillator.
The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner. A d.c. -path to earth for the collector current of the mixer has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.

An i.f. injection point has been provided at the collector of the mixer transistor, connected to terminal $S$.

A comparator circuit supplying the automatic switching-over between bands 1 and III consists of two $p-n-p$ transistors, the emitters of which have the same stabilized $5,6 \mathrm{~V}$ reference voltage, thereby supplying a very good temperature and supply voltage dependence. The voltage divider at the input of the circuit consists of two high-ohmic resistors to prevent unacceptable loading of the tuning voltage.


Fig. 2a.

```
Terminal T = i.f. output
 X = tuning voltage, +1 to +28 V
 P = self-oscillating mixer supply voltage, +12 V
 S = i.f. injection point
 N = a.g.c. voltage, +9,2 to +2 V
 L}=r.f. supply voltage, +12 V
 K = aerial
```

Note: When the tuner is operated together with a u.h.f. tuner, only the supply voltage at terminal $P$ should be switched off during u.h.f. operation.


Fig.2b. I.F. output coil. Torque for alignment : 2 to 15 mNm Press-through force : $\geq 10 \mathrm{~N}$

Mass approx. 80 g

## Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC 68-2, test Ta $\left(230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}\right)$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.


Fig. 3. Piercing diagram viewed from solder side of board.

## ELECTRICAL DATA

The electrical values are measured on the v.h.f. tuner alone, but they are also valid for the v.h.f. tuner in combination with a u.h.f. tuner U322.
Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected.
Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

## General

Semiconductors
$\mathrm{P}-\mathrm{I}-\mathrm{N}$ diodes
$2 \times$ BA 379
r.f. amplifier

AF379
self-oscillating mixer
AF367
tuning diodes
switching diodes
$4 \times$ BB 106
bandswitch comparator
BA220; $6 \times$ BA243
Ambient temperature range
operating

$$
+5 \text { to }+55^{\circ} \mathrm{C}
$$

storage
-25 to $+85^{\circ} \mathrm{C}$
Relative humidity
max. $90 \%$
Voltages and currents
Supply voltage

$$
+12 \mathrm{~V} \pm 10 \%
$$

Note : The supply voltage at terminal $L$ (input stage) should be filtered to avoid hum modulation in one of the P-I-N diodes when the attenuator is biased to higher attenuation ratios.

Current drawn from +12 V supply
r.f. amplifier + bandswitch circuit
v.h.f. I, at nominal gain typ. 40 mA
at 40 dB gain reduction typ. 42 mA
v.h.f. III, at nominal gain typ. 40 mA
at 40 dB gain reduction typ. 42 mA
self-oscillating mixer typ. $4,5 \mathrm{~mA}$

## Bandswitching

Switching between v.h.f. I and v.h.f. III is done automatically within the tuner. If the tuner operates together with a $u$.h.f. tuner only the supply voltage at terminal $P$ should be switched off during u.h.f. operation.

## V.H.F. TELEVISION TUNER with diode tuning

A. G.C. voltage (Figs. 4, 5 and 6)
at nominal gain

$$
\begin{aligned}
& +9,2 \pm 0,5 \mathrm{~V} \\
& \min .+2 \mathrm{~V}
\end{aligned}
$$

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.
A. G.C. current (Fig. 7), during gain control
( 0 to 40 dB )
max. +1 mA
at nominal gain
at 40 dB gain reduction
Tuning voltage range (Fig. 8)
Current drawn from +28 V tuning
voltage supply (Fig. 9)

$$
\begin{aligned}
& \text { typ. }+0,8 \mathrm{~mA} \\
& \text { typ. }+0,2 \mathrm{~mA} \\
& +1 \text { to }+28 \mathrm{~V} \\
& -4 \text { to }+11 \mu \mathrm{~A}
\end{aligned}
$$

Note : The source impedance of the tuning voltage offered to terminal X must be max. $47 \mathrm{k} \Omega$.


Fig. 4
A.G.C. voltage characteristic, channel E2; typical curve.


Fig. 5
A.G.C. voltage characteristic, channel E5; typical curve.


Fig. 6
A.G.C. voltage characteristic, channel E12; typical curve.


Fig. 8
Tuning voltage characteristic; typical curve.


Fig. 9
Tuning current characteristic; typical curve.

# V.H.F. TELEVISION TUNER <br> with diode tuning 

Frequencies	
Frequency ranges	
v.h.f. I	channel NZ1 (picture carrier $45,25 \mathrm{MHz}$ ) to channel E4 (picture carrier $62,25 \mathrm{MHz}$ ).
	Margin at the extreme channels: min.
	1 MHz .
v.h.f. III	channel E5 (picture carrier $175,25 \mathrm{MHz}$ )
	to channel E 12 (picture carrier $224,25 \mathrm{MHz}$ ).
	Margin at the extreme channels : min.
	1,5 MHz.
Intermediate frequencies	system B system I
picture	$38,9 \mathrm{MHz} \quad 39,5 \mathrm{MHz}$
sound	$33,4 \mathrm{MHz} \quad 33,5 \mathrm{MHz}$
	The oscillator frequency is higher than the aerial signal frequency.

Note: The tuner is aligned in such a way that the i.f. frequencies of both systems can be applied.

Wanted signal characteristics

Input impedance asymmetrical
V.S.W.R.

Reflection coefficient
A.G.C. range
R.F. curves bandwidth tilt (only for i.f. $38,9 / 33,4 \mathrm{MHz}$ )

## $75 \Omega$

minimum value maximum value between picture at picture carrier carrier and sound frequency carrier frequency
max. 4
$\max .60 \%$
max. 4
$\max .60 \%$
min. 40 dB
typ. 10 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture carrier marker, the sound carrier marker, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.

Power gain (see also 'Measuring method
of power gain')
channel E3
channel E5
channel E12
Gain difference between any two channels
Noise figure
channel E3
channel E5
channel E12

## Overloading

Input signal producing 1 dB gain compression at nominal gain

Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain

## Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
I. F. rejection (measured at picture carrier frequency)
channel IA to El2
min. 20 dB
typ. $\quad 25 \mathrm{~dB}$
typ. $\quad 25 \mathrm{~dB}$
typ. 26 dB
typ. $\quad 4 \mathrm{~dB}$
$\max . \quad 9 \mathrm{~dB}$
typ. $\quad 5 \mathrm{~dB}$
typ. $6,5 \mathrm{~dB}$
typ. $\quad 7 \mathrm{~dB}$
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
min. 53 dB
$\min .60 \mathrm{~dB}$

Note: At colour sub-carrier frequency max. 6 dB less rejection.

## Cross modulation

Input signal producing $1 \%$ cross modulation, i.e. $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction (wanted
input level $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $106 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
In band cross modulation (wanted signal: picture carrier of channel
N ; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$ for $\mathrm{v} . \mathrm{h}$.f. I or
channel $\mathrm{N} \pm 3$ for $v . h . f$. III
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction (wanted
input level $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $106 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

## V.H.F. TELEVISION TUNER with diode tuning

Out of band cross modulation at nominal gain
v.h.f. I, interfering from v.h.f. III interfering from $u$.h.f.
v.h.f. III, interfering from v.h.f. I interfering from u.h.f.

Oscillator characteristics
Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain

v.h.f. I<br>v.h.f. III

Shift of oscillator frequency
at a change of the supply voltage of $5 \%$
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation
for 15 min , measured between 5 s
and 15 min after switching on)
during warm-up time (after the input
stage is in operation for 15 min , measured between 2 s and 15 min
after switching on the self-oscillating mixer stage)
at a change of the ambient temperature from +25 to $+40{ }^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+40^{\circ} \mathrm{C}$ )
to be established
typ. $73 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $73 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
$\max .250 \mathrm{kHz}$
$\max .250 \mathrm{kHz}$
max. 250 kHz
$\max .300 \mathrm{kHz}$

Bandwidth of i.f. output circuit ${ }^{1}$ )
Bandwidth variation of i.f. output circuit as a result of $r$.f. tuning and bandswitching (reference: v.h.f. III)

Note: I. F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with Cl and R 1 is short circuited; tuning voltage is 15 V .


Detuning of the i.f. output clrcuit as a result of r.f. tuning and bandswitching
(reference ; v.h.f. III), excluded channel E2
channel E2
$\max .350 \mathrm{kHz}$
$\max .450 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with Cl and R1 is short circuited; tuning voltage is 15 V .
Tuning range of i.f. output coil ${ }^{1}$ )
$\max .33$ to min .40 MHz
Attenuation between i.f. injection point and i.f. output of the tuner typ. 23 dB

[^7]
# V.H.F. TELEVISION TUNER with diode tuning 

## Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

## Microphonics

## Surge protection <br> Protection against voltages

Within the limits of C.I.S.P.R. 24/3 (1970) and VDE 0872/7. 72. For the oscillator radiation above 200 MHz use is made of the relaxed limit of $2 \mathrm{mV} / \mathrm{m}$ ( $66 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ ).

There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Three discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flash-over circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

## ADDITIONAL INFORMATION

## I. F. injection

The tuner is provided with an i.f. injection point at the collector of the mixer transistor (coupled via a capacitor to terminal S). The i.f. generator can be connected directly to this point (Fig. 11).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 10.


Fig. 11

## Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal ( $T$ ) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Figo 12).
In the case where the tuner is used in combination with a u.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 12 should be used.


Fig. 12

## Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.


Fig. 13
The RC-circuit roughly matches the i.f. output impedance to $75 \Omega$ at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth should be approx. 5 MHz (Fig. 13).
Because the input and output impedances of the tuner are now $75 \Omega$, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a $75 \Omega$ source and a $75 \Omega$ detector.

## V.H.F. TELEVISION TUNER with diode tuning

Alignment of the i.f. output coil
The 1. f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is avallable under catalogue number 712200947680.



Fig. 14

## ACCESSORIES

Connector assembly for use of tuner V311 in combination with u.h.f. tuner U322 (or UD 1): connector, catalogue number 3112200 20720;
washer, catalogue number 311222101220 ;
clamp, catalogue number 311227413220.

## VH.F TELEVISION TUNER

## QUICK REFERENCE DATA

Systems	C.C.I.R. systems B and G
Channels	E2 to C
v.h.f. I	Morocco 4 to E12
v.h.f. III	
Intermediate frequencies   picture   sound	$38,9 \mathrm{MHz}$

## APPLICATION

This tuner is designed to cover the v.h.f. channels of C.C.I.R. systems B and G, including the Italian and Moroccan channels.
In combination with the u.h.f. tuner U322 it can be used in v.h.f./u.h.f. receivers. The aerial inputs and i.f. outputs of both tuners can then be connected in parallel without additional circuitry. The tuner is compatible with tuner V315. It is also compatible with tuner V311 except for the band switching.

## DESCRIPTION

The V314 is a v.h.f. tuner with electronic tuning, covering the v.h.f. band I ( 47 to 88 MHz ) and the v.h.f. band III ( 162 to 230 MHz ). Switching between the bands is done by connecting the supply voltage to terminal $V$ for band $I$ and to terminal $P$ for band III.
Mechanically, the tuner is built on a printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover (see Fig. 2a). All connections (aerial, supply voltage, a.g.c. voltage, tuning voltage, i.f. injection, i.f. output) are made via terminals on the underside. The mounting method is shown in Fig. 3.
Electrically the tuner consists of two input circuits in parallel (bands I and III) with band-pass characteristics, followed by a P-I-N diode attenuator ( 2 diodes BA379) and the input transistor AF379 in grounded-base configuration. This transistor operates at an emitter current of about 4 to 12 mA , featuring good noise figures and good signal handling properties. It also supplies the current drive for the P.I-N diode attenuator, controlled by an a.g.c. voltage fed to the transistor's base. This combination has good signal handling properties throughout the a.g.c. range. The collector load of the input transistor is formed by a double tuned circuit, transferring the signal to the self-oscillating mixer AF367. The selectivity of this circuit at the intermediate frequency has been improved. Three capacitance diodes BB106 tune the double tuned circuit and the oscillator.
The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner. A d.c. path to earth for the collector current of the mixer has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.
An i.f. injection point has been provided at the collector of the mixer transistor, connected to terminal S.

## MECHANICAL DATA

Dimensions in mm


Fig. 2a.

$$
\begin{aligned}
& \text { Terminal } T=\text { i.f. output } \\
& X=\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
& P=\text { supply voltage, band III, }+12 \mathrm{~V} \\
& S=\text { i.f. injection point } \\
& \mathrm{V}=\text { supply voltage, band } \mathrm{I},+12 \mathrm{~V} \\
& \mathrm{~N}=\text { a.g.c. } \text { voltage },+9,2 \text { to }+1,5 \mathrm{~V} \\
& \mathrm{~L}=\text { r.f. stage supply voltage, }+12 \mathrm{~V} \\
& K=\text { aerial }
\end{aligned}
$$

Note: When the tuner is operated together with a u.h.f. tuner, only the supply voltage at terminals $P$ and $V$ should be switched off during u.h.f. operation.


Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force : $\geqslant 10 \mathrm{~N}$

Mass approx. 80 g

## Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.


Fig. 3 Piercing diagram viewed from solder side of board.

## ELECTRICAL DATA

The electrical values are measured on the v.h.f. tuner alone, but they are also valid for the v.h.f. tuner in combination with a uh.f. tuner U322. Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

## General

Semiconductors
P-I.N diodes
$2 \times$ BA379
r.f. amplifier

AF379
self-oscillating mixer
AF367
tuning diodes

$$
3 \times \text { BB } 106
$$

switching diodes
switching transistor
$4 \times$ BA220; $6 \times$ BA243
voltage regulator diode

> BC558

Ambient temperature range
operating
BZX79 - C5V6
storage
Relative humidity

$$
\begin{aligned}
& +5 \text { to }+55^{\circ} \mathrm{C} \\
& -25 \text { to }+85^{\circ} \mathrm{C} \\
& \max 90 \%
\end{aligned}
$$

## Voltages and currents

Supply voltage

$$
+12 V \pm 10 \%
$$

Note: The supply voltage at terminals $P$ and $V$ should be filtered.

Current drawn from + 12 V supply	
r.f. amplifier, v.h.f. I, at nominal gain	typ. $\mathbf{4 0 \mathrm { mA }}$
v.h.f. I, at 40 dB gain reduction	typ. $\mathbf{4 2 \mathrm { mA }}$
r.f. amplifier, v.h.f. 111 , at nominal gain	typ. $\mathbf{4 0 \mathrm { mA }}$
v.h.f. 111 , at 40 dB gain reduction	typ. $\mathbf{4 2 \mathrm { mA }}$
self-oscillating mixer	typ. 5 mA

## Band switching

For operation in band I the supply voltage must be connected to terminal V , for band III operation th terminal $P$. If the tuner operates together with a u.h.f. tuner only the supply voltage at terminals $P$ and V should be switched off during u.h.f. operation.
A.G.C. voltage (Figs 4 to 7 ) at nominal gain

$$
\begin{aligned}
& +9,2 \pm 0,5 \mathrm{~V} \\
& \min .+1,5 \mathrm{~V}
\end{aligned}
$$

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.
A.G.C. current
during gain control ( 0 to 40 dB )
max. +1 mA
at nominal gain
typ. $+0,8 \mathrm{~mA}$
typ. $+0,2 \mathrm{~mA}$
Tuning voltage range (Figs 8 and 9)
Current drawn from +28 V tuning voltage supply
+1 to +28 V
max. $150 n A$
Note: The source impedance of the tuning voltage offered to terminal $X$ must be maximum $47 \mathrm{k} \Omega$.

Switching current


Fig. 4 A.G.C. voltage characteristic, channel E2; typical curve.
$\max .16 \mathrm{~mA}$


Fig 5 A.G.C. voltage characteristic, channel $C_{;}$typical curve.


Fig. 6 A.G.C. voltage characteristic, channel M4; typical curve.


Fig. 8 Tuning voltage characteristic, v.h.f. I; typical curve.


Fig. 7 A.G.C. voltage characteristic, channel E12; typical curve.


Fig. 9 Tuning voltage characteristic, v.h.f. III; typical curve.

## Frequencies

## Frequency ranges

v.h.f. 1
v.h.f. III

Intermediate frequencies
picture
sound
channel E2 (picture carrier $\mathbf{4 8 , 2 5} \mathrm{MHz}$ ) to channel C (picture carrier $82,25 \mathrm{MHz}$ )
Margin at the extreme channels: min. 1 MHz . channel M4 (picture carrier $163,25 \mathrm{MHz}$ ) to channel E12 (picture carrier $\mathbf{2 2 4 , 2 5} \mathbf{~ M H z}$ ) Margin at the extreme channels: min. 1 MHz .
$38,9 \mathrm{MHz}$
$33,4 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics
Input impedance
asymmetrical
V.S.W.R.

Reflection coefficient
R.F. curves, bandwidth
R.F. curves, tilt
$75 \Omega$

minimum value   between picture   carrier and sound   carrier frequency	maximum value   at picture carrier   frequency
max. 4   max. $60 \%$	max. 4   max. $60 \%$

typ. 12 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture carrier marker, the sound carrier marker, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 40 dB
min. 20 dB
typ. 20 dB
typ. 25 dB
typ. 25 dB
typ. 4 dB

Noise figure
channel E3
channel E5
channel E12
max. 9 dB
typ. $\quad 5 \mathrm{~dB}$
typ. $\quad 6,5 \mathrm{~dB}$
typ. $\quad 7 \mathrm{~dB}$
typ. $\quad 88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Input signal producing either a
detuning of the oscillator of +300 kHz
or -1000 kHz or stopping of the
oscillations at nominal gain
typ. $\quad 90 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

## Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
min. $\quad 53 \mathrm{~dB}$
I.F. rejection (measured at picture carrier frequency)
channel E2 to E12 min. 60 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.

## Cross modulation

Input signal producing $1 \%$ cross modulation, i.e. $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V}) \quad$ typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
at 40 dB gain reduction (wanted
input level $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $106 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
In band cross modulation (wanted signal: picture carrier of channel $N$; interfering signal: picture carrier of channel $\mathbf{N} \pm 2$ for v.h.f. I or channel $\mathbf{N} \pm 3$ for v.h.f. III
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction (wanted
input level $100 \mathrm{~dB}(\mu \mathrm{~V})$
Out of band cross modulation at nominal gain
v.h.f. I, interfering from v.h.f. III
$v . h . f .1$, interfering from $u . h . f$.
v.h.f. III, interfering from v.h.f. I
v.h.f. III, interfering from u.h.f.
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
to be established

## Oscillator characteristics

Pulling
Input signal of tuned frequency producing
a shift of the oscillator frequency of
10 kHz , at nominal gain
v.h.f. I
v.h.f. III
typ. $\quad 73 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
typ. $73 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Shift of oscillator frequency at a change of the supply voltage of $5 \%$
$\max .250 \mathrm{kHz}$
Drift of oscillator frequency during warm-up time lafter the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
$\max .250 \mathrm{kHz}$
during warm-up time lafter the input stage is in operation for 15 min , measured between 2 s and 15 min after switching on the self-oscillating mixer stage)
$\max .250 \mathrm{kHz}$
at a change of the ambient temperature from +25 to $+40^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $+60^{\circ} \mathrm{C}$ )
$\max .300 \mathrm{kHz}$
I.F. circuit characteristics

Bandwidth of i.f. output circuit
6 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage is 15 V ; band III at minimum gain.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: v.h.f. III)
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner termirated with a modified circuit of Fig. 10, i.e. a 150 pF capacitor is connected in parallel with Cl and $\mathrm{R1}$ is short-circuited; tuning voltage is 15 V .


Fig. 10.

Detuning of the i.f. output circuit as a result of r.f. tuning and band switching (reference; v.h.f. III)
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with C 1 and R 1 is short-circuited; tuning voltage is 15 V .

Tuning range of i.f. output coil
$\max$. 34 to $\min .41 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage is 15 V .
Attenuation between i.f. injection point and i.f. output of the tuner
typ. $\quad 23 \mathrm{~dB}$

## Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics
Within the limits of C.I.S.P.R. 13
(1975) and VDE 0872/7.72.

For the oscillator radiation above
200 MHz use is made of the relaxed limit of $2 \mathrm{mV} / \mathrm{m}$ ( $66 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ ).
There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection
Protection against voltages
max. 8 kV
Note: Three discharges of a $\mathbf{4 7 0} \mathrm{pF}$ capacitor into the aerial terminal.
Protection against flashes $\quad \max .30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to $\mathbf{2 0 H z}$ for $\mathbf{3 0}$ s is connected to the aerial terminal.

## ADDITIONAL INFORMATION

## I. F. injection

The tuner is provided with an i.f. injection point at the collector of the mixer transistor (coupled via a capacitor and a resistor to terminal S). The i.f. generator can be connected directly to this point (Fig. 11).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 10.


Fig. 11.

## Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal ( $T$ ) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig. 12). Where the tuner is used in combination with a u.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 12 should be used. (During v.h.f. operation the voltage across the $470 \Omega$ resistor is 1 to $1,2 \mathrm{~V}$.)


Fig. 12.

## Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.


Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to $75 \Omega$ at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth should be approx. 6 MHz (Fig. 13).
Because the input and output impedances of the tuner are now $75 \Omega$, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a $75 \Omega$ source and a $75 \Omega$ detector.

## Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is available under catalogue number 712200547680.



Fig. 14.

## ACCESSORIES

Connector assembly for use of tuner V314 in combination with u.h.f. tuner U322:
connector, catalogue number 3112200 20720;
washer, catalogue number 311222101220 ;
clamp, catalogue number 311227413220.

## VH.F. TELEVISION TUNERS

## QUICK REFERENCE DATA

Systems	C.C.I.R. systems B and G
Channels	E2 to S1
v.h.f. I	S2 to min. S17 (typ. S19)
v.h.f. III	
Intermediate frequencies   picture   sound	$38,9 \mathrm{MHz}$

## APPLICATION

These tuners are designed to cover the v.h.f. channels of C.C.I.R. systems B and $G$, including the $S$ channels for cable television.
In combination with the u.h.f. tuner U322 they can be used in v.h.f./u.h.f. receivers. The aerial inputs and i.f. outputs of both tuners can then be connected in parallel without additional circuitry.
The tuners are compatible with tuner V314. They are also compatible with tuner V311, except for the band switching.

The V315LO is a special version of the V315: an output voltage from the local oscillator is made available for driving digital tuning systems. Apart from this the tuners are identical.

## DESCRIPTION

The tuners are v.h.f. tuners with electronic tuning, covering the v.h.f. band I ( 47 to 111 MHz ) and the v.h.f. band III ( 111 to 279 MHz ). Switching between the bands is done by external band switching.

Mechanically, the tuners are built on a printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover (see Fig. 2a). All connections (aerial, supply voltage, a.g.c. voltage, tuning voltage, i.f. injection, i.f. output) are made via terminals on the underside. The mounting method is shown in Fig. 3. Tuner V315LO has a coaxial socket on the top of the frame, for coupling out the oscillator sample.
Electrically the tuner consists of two tunable input circuits in parallel (bands I and III), each followed by an r.f. transistor in grounded base configuration (BF939 for band I, BF967 for band III). The collector load of each input transistor is formed by a double tuned circuit, transferring the signal to the mixer BF324 fed by the oscillator BF 198. Eight capacitance diodes BB209 tune the double-tuned circuit and the oscillator.
The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner. Ad.c. path to earth for the collector current of the mixer has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.
An i.f. injection point has been provided at the collector of the mixer transistor, connected to terminal S.


## MECHANICAL DATA



7276939

Fig. 2a The oscillator sampling socket, drawn with dotted lines, applies only to tuner V315LO.

$$
\begin{array}{ll}
\text { Terminal } & \text { T }=\text { i.f. output } \\
& X=\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
& \mathrm{P}=\text { supply voltage, band } I I I,+12 \mathrm{~V} \\
& \mathrm{~S}=\text { i.f. injection point } \\
\mathrm{V}=\text { supply voltage, band } \mathrm{I},+12 \mathrm{~V} \\
& \mathrm{~N}=\text { a.g.c. voltage, }+9,2 \text { to } 1,5 \mathrm{~V} \\
\mathrm{~L}=\text { r.f. stage supply voltage, }+12 \mathrm{~V} \\
\mathrm{~K}=\text { aerial }
\end{array}
$$

Note: When the tuner is operated together with a u.h.f. tuner, only the supply voltage at terminals $\mathbf{P}$ and $V$ should be switched off during u.h.f. operation.


Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force: $\geqslant 10 \mathrm{~N}$

Mass

## Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.


Fig. 3 Piercing diagram viewed from solder side of board.
For connection to the socket on the top of tuner V315LO a coaxial plug has to be used; type 3/2-50 (manufacturer: Daut und Rietz) is recommended.

## ELECTRICAL DATA

The electrical values are measured on the v.h.f. tuner alone, but they are also valid for the v.h.f. tuner in combination with a u.h.f. tuner U322. Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

## General

Semiconductors
r.f. amplifier, band I BF939
r.f. amplifier, band III BF967
mixer BF324
oscillator BF198
tuning diodes
$8 \times$ BB209
switching diodes
BA 182; $2 \times$ BA244;
$2 \times$ BA220; $2 \times$ BA283
switching transistor
BC558
Ambient temperature range
operating
storage
Relative humidity
+5 to $+55^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 90\%

## Voltages and currents

Supply voltage
$+12 \mathrm{~V} \pm 10 \%$
Note: The supply voltage at terminals P and V shouid be filtered.
Current drawn from +12 V supply

r.f. amplifier, v.h.f. I, at nominal gain	typ. $5,8 \mathrm{~mA}$
v.h.f. I, at 40 dB gain reduction	typ. 12.5 mA
r.f. amplifier, v.h.f. III, at nominal gain	typ. 10 mA
v.h.f. III, at 40 dB gain reduction	typ. 20 mA
mixer and oscillator	typ. 12 mA

## Band switching

For operation in band $I$ the supply voltage must be connected to terminal V , for band III operation to terminal $P$. If the tuner operates together with a u.h.f. tuner only the supply voltage at terminals $P$ and $V$ should be switched off during u.h.f. operation.

```
A.G.C. voltage (Figs 4 to 7)
 at nominal gain
 at 40 dB gain reduction
 +9,2 \pm0,5 V
 min.+1,5 V
```

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.

## A.G.C. current

during gain control ( 0 to $\mathbf{4 0 ~ d B}$ )
at nominal gain
at 40 dB gain reduction
Tuning voltage range (Figs 8 and 9)
Current drawn from +28 V tuning voltage supply
$\max .+0,5 \mathrm{~mA}$
$\min .=2 \mathrm{~mA}$
typ. $+0,3 \mathrm{~mA}$
typ. $-1,2 \mathrm{~mA}$
+1 to +28 V

Note: The source impedance of the tuning voltage offered to terminal X must be max. $47 \mathrm{k} \Omega$.
Switching current
max. 16 mA


Fig. 4 A.G.C. voltage characteristic, channel E2; typical curve.


Fig. 5 A.G.C. voltage characteristic, channel S1; typical curve.


Fig. 6 A.G.C. voltage characteristic, channel S2; typical curve.


Fig. 8 Tuning voltage characteristic, v.h.f. I; typical curve.


Fig. 7 A.G.C. voltage characteristic, channel S2O; typical curve.


Fig. 9 Tuning »oltage characteristic, v.h.f. III; typical curve.

Oscillator sample signal; only valid for V315LO
at +12 V supply voltage and
$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$
within the given tolerance range of
supply voltage and given operating-
temperature range, and within the
tuning voltage range $+0,5$ to +30 V
typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
$\min .80 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
max. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$

Note: A tuning voltage higher than +28 V will not be harmful for the tuner and may be applied at the user's own risk. Under this condition the published reverse voltage limit of the oscillator tuning diode will be exceeded; the oscillator frequency will never decrease with increasing tuning voltage.

Frequency of oscillator sample signal; only valid for V315LO
v.h.f. I
v.h.f. III

87,15 to $144,15 \mathrm{MHz}$
151,15 to $312,15 \mathrm{MHz}$ (typ. $326,15 \mathrm{MHz}$ )

## Frequencies

Frequency ranges
v.h.f. 1 channel E2 (picture carrier $48,25 \mathrm{MHz}$ ) to channel S 1 (picture carrier $105,25 \mathrm{MHz}$ ) Margin at the extreme channels: $\min .1 \mathbf{M H z}$.
v.h.f. III

Intermediate frequencies
picture
channel S2 (picture carrier $112,25 \mathrm{MHz}$ )
to channel S 17 (picture carrier $273,25 \mathrm{MHz}$ )
Margin at the extreme channels: $\min .1 \mathrm{MHz}$.
sound
$38,9 \mathrm{MHz}$
$33,4 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

## Wanted signal characteristics

Input impedance
asymmetrical

Input impedance of oscillator sample socket; only valid for V315LO
$\begin{gathered}\text { asymmetrical } \\ 75 \Omega\end{gathered}$

V.S.W.R. and reflection coefficient	minimum value   between picture   carrier and sound   carrier frequency	maximum value   at picture carrier   frequency
v.s.w.r.   reflection coefficient	max. 4	max. 4   $\max .60 \%$
max. $60 \%$		

V.S.W.R. and reflection coefficient at oscillator sample socket; only valid for V315LO
v.s.w.r., v.h.f. I
v.s.w.r., v.h.f. III
reflection coefficient, v.h.f. I
reflection coefficient, v.h.f. III
$\max .2$
$\max .2$
$\max .33 \%$
$\max .33 \%$
R.F. curves, bandwidth
R.F. curves, tilt
typ. 12 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture carrier marker, the sound carrier marker, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .20 \mathrm{~dB}$
typ. 23 dB
typ. 23 dB
typ. 23 dB
typ. 6 dB
$\min .60 \mathrm{~dB}$

Harmonic content of oscillator sample; only valid for V315LO
Suppression of harmonics which fall
into the frequency range below 1000 MHz .15 dB below oscillator fundamental
R.F. rejection at oscillator sample socket; only valid for V315LO

Signal voltage at oscillator ṣample socket (input signals of wanted frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$
into $75 \Omega$, tuner operating at nominal gain) min. 20 dB below oscillator fundamental
I.F. rejection (measured at picture carrier
frequency), channels E3 to E55 min. 60 dB
channel E2
$\min .55 \mathrm{~dB}$
Note: At colour sub-carrier frequency max. 6 dB less rejection.
I.F. rejection at oscillator sample socket; only valid for V315LO
I.F. signals at oscillator sample socket (input signals of wanted frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$, tuner operating at nominal gain)
min. 20 dB below oscillator fundamental
Cross modulation
Input signal producing $1 \%$ cross modulation, i.e. $1 \%$ of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$ at 40 dB gain reduction (wanted input
level $100 \mathrm{~dB}(\mu \mathrm{~V})$
to be established

In band cross modulation (wanted signal: picture carrier of channel N ; interfering signal: picture
carrier of channel $N \pm 2$ for v.h.f. I or channel $N \pm 3$ for v.h.f. III)
at nominal gain (wanted input
level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction (wanted
input level $100 \mathrm{~dB}(\mu \mathrm{~V})$
to be established
to be established
v.h.f. I, interfering from u.h.f.
v.h.f. III, interfering from v.h.f. I
v.h.f. III, interfering from u.h.f.

## Oscillator characteristics

Pulling
Input signal of tuned frequency producing
a shift of the oscillator frequency of
10 kHz , at nominal gain
v.h.f. I typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
v.h.f. III
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into $75 \Omega$
Shift of oscillator frequency
at a change of the supply voltage of 5\%
$\max .400 \mathrm{kHz}$
Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on) $\quad \max .250 \mathrm{kHz}$
during warm-up time (after the input stage is in operation for 15 min . measured between 2 s and 15 min after switching on the self-oscillating mixer stage) $\max .250 \mathrm{kHz}$
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $\left.+60^{\circ} \mathrm{S}\right) \quad \max .650 \mathrm{kHz}$

## I.F. circuit characteristics

Bandwidth of i.f. output circuit 6 MHz

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10 ; tuning voltage is 15 V ;
band III at minimum gain.
Bandwidth variation of i.f. output circuit
as a result of r.f. tuning and
band switching (reference: v.h.f. IIt)
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor of connected in parallel with C 1 and R 1 is short-circuited; tuning voltage is 15 V .


Detuning of the i.f. output circuit as a result of r.f. tuning in band III
$\max .350 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with C 1 and R1 is short-circuited; tuning voltage is 15 V .

Tuning range of i.f. output coil
max. 34 to min. 41 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage is 15 V .
Attenuation between i.f. injection point
and i.f. output of the tuner
typ. 23 dB

## Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics
Within the limits of C.I.S.P.R. 13 (1975) and VDE 0872/7.72.*
For the oscillator radiation above 200 MHz use is made of the relaxed limit of $2 \mathrm{mV} / \mathrm{m}$ ( $66 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ ).
There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection
Protection against voltages
max. 8 kV
Note: Three discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

[^8]
## ADDITIONAL INFORMATION

## I.F. injection

The tuner is provided with an i.f. injection point at the collector of the mixer transistor (coupled via a capacitor and a resistor to terminal S). The i.f. generator can be connected directly to this point (Fig. 11).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 10.


Fig. 11.

## Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal ( $T$ ) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig. 12). Where the tuner is used in combination with a u.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched-off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 12 should be used (During v.h.f. operation the voltage across the $470 \Omega$ resistor is 1 to $1,2 \mathrm{~V}$.)


Fig. 12.

## Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.


Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to $75 \Omega$ at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth should be approx. 6 MHz (Fig. 13).
Because the input and output impedances of the tuner are now $75 \Omega$, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a $75 \Omega$ source and a $75 \Omega$ detector.

Alignment of the i.f. output coil
The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is available under catalogue number 712200547680.


Fig. 14.

## ACCESSORIES

Connector assembly for use of tener V315 or V315LO in combination with u.h.f. tuner U322 (or UDI): connector, catalogue number 3112200 20720;
washer, catalogue number 311222101220 ;
clamp, catalogue number 311227413220.

# MONOCHROME TELEVISION ASSEMBLIES 

C

## QUICK REFERENCE DATA

Designed for use with $110^{\circ}$ picture tubes with a neck diameter of 28 mm . The unit is suitable for use with line output transformer AT2048/ll for transistor drive, and line linearity control units AT $4042 / 02$ or AT4042/14.
l.Ine deflection coils (parallel connected) inductance $\quad 3.3 \mathrm{mH}$

Ficld deflection coils (parallel connected) resistance
$7.5 \Omega$


GENERAL
The design of the coll is such as to bring the centre of deflection into the conical part of the picture tube; the coll should therefore be pushed right up the neck of the tuhe until it touches the cone. Plcture shift magnets are mounted on the rear moulding of the coil, and adjusmble raster correction magnets a re fitted, mounted on 'stalks' for vertical pincushion correction. Facilitics a re provided on the periphery of the moulding, for mounting small plastic bonded magnets for correcting the corners of the raster.
To orientate the raster correctly, the unit should be rotated by hand on the neck of the picture tube. A screw-tightened clamping ring permits it to be locked in the desired position, both axially and radially.

The assembly is manufa ctured in flame retardant material to conform to BS415 and IR.C. 65.


Fig. 1

## MOUNTING

For optimum raster shape the soldering tag plate must be positioned as shown in Fig. 1.

CONNECTIONS


Fig. 2


Fig. 3
E LECTRICAL DATA (at $25^{\circ} \mathrm{C}$ )
Line deflection coils, parallel connected (see Fig. 2)
Connections to pins 3 and 4
Inductance
$3.3 \pm 5 \% \quad \mathrm{mH}$
Resistance
$6.1 \pm 10 \% \quad \Omega$
Deflection current, peak-to-peak (at 18 kV
and beam deviation of 495 mm on a 61 cm
(24in) reference picture tube)
$2.3 \pm 6.5 \% \quad \mathrm{~A}$
Field deflection coils, parallel connected (see Fig. 3)
Connection to pins
1 and 6
$17 \pm 10 \% \quad \mathrm{mH}$
$7.5 \pm 8 \% \quad \Omega$
Resistance
Deflection current, peak-to-peak (at 18 kV and beam deviation of 390 mm on a 61 cm (24in) reference picture tube
Maximum voltage between line and field coils $(50 \mathrm{~Hz})$
MAXIMUM OPERATING TEMPERATURE
ADJUSTMENT RANGE OF CENTRING MAGNETS

## RASTER DISTORTION

The raster edges fall between the two rectangles, as shown in Fig. 4.


Fig. 4

## ADJUSTMENTS

## Correction of eccentricity

After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable, diametrically magnetised centring magnets. By turning the magnets with respect to each other, the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously. It should be noted that the centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between synchronisation and time base, as otherwise the correction needed becomes excessive and, even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.


Fig. 5

APPLICATION

Deflection   coil	Line output   transformer	Line linearity   control unit	Output   device
AT1040/15	AT2048/11	AT4042/02   or	BU205
		AT4042/14	


QUICK REFERENCE DATA	
Monitor tube, diagonal	
neck diameter	$24 \mathrm{~cm} \mathrm{(9in)}$
Deflection angle	28 mm
Line deflection current, edge to edge at 14 kV	$90^{\circ}$
Inductance of line coils, parallel connected	$8,6 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 14 kV	$93 \mu \mathrm{H}$
Resistance of field coils, series connected	$0,425 \mathrm{~A}(\mathrm{p}-\mathrm{p})$

## APPLICATION

This deflection unit has been designed for use with a $90^{\circ}$ black and white monitor tube type M24-100 W in conjunction with:
line output transformer AT2 102/01;
linearity control unit AT4036 and;
line output transistor BD160.

## DESCRIPTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube.
The field deflection coils are wound on a Ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide.

For centring and pin-cushion distortion see under "Correction facilities".


Fig. 1

The unit is provided with soldering pans for connection. The pin numbering in Fig. 1 corresponds to that in the connection diagram (Figs. 3 and 4).

## MOUNTING

The unit stoould be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone. For optimum raster shape, the coil should be mounted as shown in Fig. 2.
To orientate the raster correctly, the unit may be rotated on the neck of the picture tube. A clamping ring locks the unit both axially and radially.

Fig. 2 Front view of picture tube.


## DEFLECTION UNIT <br> for black and white monitors

## ATIO71/0I

## ELECTRICAL DATA

Line deflection coils, parallel connected (Fig.3) terminals 3 and 4

Inductance
typ. $93 \mu \mathrm{H}$
Resistance
Field deflection coils, series connected (Fig. 4) terminals 1 and 5

Inductance
typ. 56 mH
Resistance
typ. $27 . \Omega$
Maximum peak voltage between terminals of line and field coils ( 50 Hz )

2000 V
Maximum operating temperature
$95{ }^{\circ} \mathrm{C}$

Fig. 3 Line coils



Fig. 4 Field coils

The following characteristics are measured at an e.h.t. of 14 kV on a 24 cm ( 9 in ) reference tube, type M24-100 W.

## Sensitivity

Deflection current edge to edge
in line direction
$8,6 \quad$ A $(p-p)$
0,425 A $(p-p)$
in field direction
Geometric distortion (measured without correction magnets and centring ring)

Pin-cushion, barrel and trapezium distortion

The edges of the raster fall within the two rectangles shown in Fig. 5.

Fig. 5


## CORRECTION FACILITIES

## For centring

After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously.
These centring magnets can not be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.


Fig. 6
For pin-cushion distortion
This can be corrected by moving magnets of plastic-bonded Ferroxdure (catalogue number 312210495000 ) which may be mounted in the rim at the front of the deflection unit.

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube		
diagonal	31 cm (12 in)	24 cm (9 in)
	34 cm (14 in)	31 cm (12 in)
neck diameter	max. $20,9 \mathrm{~mm}$	max. 20,9 mm
Deflection angle	$110^{\circ}$	$90^{\circ}$
Line deflection current for full scan, at 11 kV	5,02 A (p-p)	4,05 A (p-p)
Inductance of line coils, parallel connected	$255 \mu \mathrm{H}$	
Field deflection current for full scan, at 11 kV	1,1 A (p-p)	0,91 A (p-p)
Resistance of field coils, parallel connected	2,7 $\Omega$	

## APPLICATION

The deflection unit has been designed for use with 31 cm ( 12 in ) or 34 cm ( 14 in ) $110^{\circ}$ black and white picture tubes, or $24 \mathrm{~cm}\left(9 \mathrm{in}\right.$ ) or 31 cm ( 12 in ) $90^{\circ}$ black and white monitor tubes. The unit is used in conjunction with:

- line output transformer AT2140/10 or AT2140;
- linearity control unit AT4042/39;
- line driver transformer AT4043/56.


## DESCRIPTION

The saddle shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube. The field deflection coils are wound on a Ferroxdure yoke ring which is flared so that the frame and line deflection centres coincide. Provisions are made for centring, and correction of pin-cushion distortion. The unit meets the self-extinguishing and non-dripping requirements of IEC 65.

## MOUNTING

The unit should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping rina permits it to be locked, both axially and radially, in the desired position.


Fig. 1 Deflection unit AT1074. Facilities for fitting correction magnets:
(1) for bracket with plastic-bonded FXD magnet strip, catalogue number 3122137 10160;
(2) for plastic-bonded FXD magnets, catalogue number 312210494120.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the connection diagrams (Fig. 2).

## ELECTRICAL DATA

The electrical values apply at an ambient temperature of $25^{\circ} \mathrm{C}$.
Line deflection coils, parallel connected (Fig. 2a)
terminals 3 and 4

Inductance	$255 \mu \mathrm{H} \pm 5 \%$
Resistance	$0,56 \Omega$
$L / R$	$455 \mu \mathrm{H} / \Omega \pm 8 \%$

Field deflection coils, parallel connected (Fig. 2b)
terminals 1 and 6

Inductance	$7,7 \mathrm{mH} \pm 8 \%$
Resistance	$2,7 \Omega$
L/R	$2,87 \mathrm{mH} / \Omega \pm 10 \%$
Maximum d.c. voltage between terminals of	
He and field coils	500 V
Maximum operating temperature	$95^{\circ} \mathrm{C}$



Fig. 2a Line coils.


Fiq. 2b Field coils.

The following characteristics are measured at an e.h.t. of 11 kV on a 31 cm ( 12 in ) reference picture tube.

## Sensitivity

Deflection current edge to edge
in line direction
in field direction

$110^{\circ}$	$90^{\circ}$
$5,02 A(p-p)$	$4,05 A(p-p)$
$1,1 A(p-p)$	$0,91 A(p-p)$

Geometric distortion measured without correction magnets, on a 31 cm (12 in) reference picture tube.


Fig. 3.

## CORRECTION FACILITIES

## For centring

After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable centring magnets of plasticbonded Ferroxdure. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resultina magnetic field is adjusted by turning the magnets simultaneously.
These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.


Fig. 4.

## For geometric distortion

The unit has provisions for mounting brackets for magnet strips* to correct pin-cushion distortion and for magnets* * to correct the raster corners, see Fig. 1.

[^9]
## QUICK REFERENCE DATA

Designed for use in a fully transistorised monochrome television receiver to provide the line scan for the $110^{\circ}$ picture tubes with 28 mm neck diameter. Intended for use in conjunction with the deflection coil $\Lambda$ T1040/15, line linearity control units AT4042/02 or AT4042/14, the line output transistor BU205 and a semiconductor e.h.t. rectifier.

Supply voltage	150	V
E.H.T.	18	kV



GENERAL
The primary, secondary and the e.h.t. windings are placed on one limb of the Ferroxcube U and I cores. The e.h.t. coll is encapsulated in a flame retardant polyester.

DIMENSIONS (millimetres)
First angle projection


Fig. 1

## ELECTRICAL DATA

Beam current	35	435	$\mu \mathrm{~A}$
Supply voltage	150	150	V
*Supply current	240	290	mA
E. H. T.	17.8	16.2	kV
Internal resistance of e.h.t.	-	4	$\mathrm{M} \Omega$
Collector to emitter voltage of   BU205, peak to -peak	960	-	V
Deflection current, peak -to-peak   Overscan	2.2	-	A
Low voltage supply	6.5	10	$\%$
$\quad$ pin 5 to earth			
pin 6 to earth	31	-	V
pin 8 to 9	12	-	V

* With 20 W of low voltage power

Note: - The maximum operating temperature of the transformer and core is $105^{\circ} \mathrm{C}$. This allows for a maximum operating temperature of $70^{\circ} \mathrm{C}$.

## MOUNTING

The transformer can be mounted either on a printed-wiring boardor a metal chassis. When mounting on a printed-wiring board (Fig. 2), the transformer is secured by its four mounting pins and two screws.

A separation of at least 25 mm must be maintained between the transformer and any adjacent metal parts, to avoid reducing the efficiency of the transformer. A free passage of air round the transformer is required to allow sufficient cooling to maintain an operating ambient temperature below $70^{\circ} \mathrm{C}$.


Fig. 2

## CIRCUIT DIAGRAM

## See overleaf

## CIRCUIT DIAGRAM



QUICK REFERENCE DATA			
$\mathrm{I}_{\text {eht }}$	0,03	0,23	mA
E.H.T.	14,5	13,2	kV
$\mathrm{R}_{\text {( }}^{\text {eht }}$ )			$\mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{p}-\mathrm{p}}$ deflection	8		A
Supply voltage ( $\mathrm{V}_{\mathrm{B}}$ )   current ( $\mathrm{I}_{\mathrm{B}}$ )	$\begin{aligned} & 12 \\ & 830 \end{aligned}$	$\begin{aligned} & 12 \\ & 1100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
Voltages of auxiliary windings	-102	$V_{(p)}$	

## APPLICATION

This transformer has been designed to provide the required scanning amplitude for 24 cm ( 9 inch) $90^{\circ}$ monitor tubes with a neck diameter of 28 mm in transistor equipped monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).

It is intended for use in conjunction with :

- deflection unit AT 1071/01;
- linearity control unit AT4036;
- line output transistor BD160;
- booster (efficiency) diode BYX55, BYX 71;
- e.h.t. rectifier device TV 18 KT .

See also circuit diagram of Fig. 3.

## DESCRIPTION

The magnetic circuit of the transformer comprises Ferroxcube $U$ and I-cores clamped together with brackets.
The primary windings and the auxiliary windings are situated on one leg of the core, the e.h.t. winding and the coupling winding are situated on the other leg. The e.h.t. winding is encapsulated in flame retardent polyester. The whole transformer meets the selfextinguishing requirements of IEC publication 65, para. 14.4 and UL492, para. 280-SE 1. The transformer is provided with four mounting pins.
External circuit connection is made to connecting pins, positioned as indi cated in Fig. 1 enabling the unit to be soldered directly into a printed-wiring board.


Fig. 1

## MOUNTING

For mounting on a printed-wiring board the fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The transformer core must be earthed

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).
Grid holes $1,3 \pm 0,1 \mathrm{~mm}$.


## LINE OUTPUT TRANSFORMER <br> for black and white monitors

## Temperature

The operating temperature of the core and the coils should not exceeded $95^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the windings;
- low atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high room temperature (up to $45{ }^{\circ} \mathrm{C}$ ).

To satisiy these requirements it may be desirable to provide ample cool air circulation around the transformer.

## Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (it should be noticed that edges of conductive parts must have a greater distance):

- from the e.h.t. winding, radially 20 mm , axially 12 mm ;
- from the e.h.t. cap and lead 20 mm ;
- from the primary coil 10 mm ;
- between the upper edge oi the rectifier socket and the primary coil 10 mm .

The transformer, and the leads and components carrying high voltage pulses should be kept free from metal particles, solder drops, etc.

## ELECTRICAL DATA

Measured in the circuit shown in Fig. 3 (auxiliary windings unloaded).


Application circuit


Fig. 3

## LINE OUTPUT TRANSFORMER

## QUICK REFERENCE DATA

'eht	$0 \mu \mathrm{~A}$		
E.H.T.	11 kV	10,2	
$\mathrm{R}_{\mathrm{i}}($ eht)	$8 \mathrm{M} \Omega$		
Supply voltage ( $\mathrm{V}_{\mathrm{B}}$ )	8,8 V	8,8	
Supply current ( $\mathrm{I}_{\mathrm{B}}$ )	920 mA		mA
Deflection current	4,2 A (p-p)		A (p-p)
Auxiliary voltages	15 V (d.c.), $75 \vee$ (d.c.), $200 \vee$ (d.c.)		

## APPLICATION

This transformer has been designed to provide the required scanning amplitude for $31 \mathrm{~cm}(12 \mathrm{in}$ ) and 34 cm ( 14 in ) $90^{\circ}$ black and white monitor tubes with a neck diameter of $\mathbf{2 0} \mathbf{~ m m}$ in video display monitors presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).
It is intended for use in conjunction with:
deflection unit AT1074;
adjustable linearity control unit AT4042/39;
line driver transformer AT4043/56.

## DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores, clamped together with a bracket. The primary winding, the auxiliary windings and the e.h.t. winding are situated on one leg of the core. An e.h.t. rectifier diode is incorporated in the transformer. All windings are encapsulated in flame retardent polyester. The whole transformer meets the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94SE-1.
The transformer is provided with four mounting pins. External circuit connection is made to connecting pins, enabling the unit to be soldered directly into a printed-wiring board.

MECHANICAL DATA


Fig. 1 Line output transformer AT2140/10.

## MOUNTING

The transformer may be mounted on a printed-wiring board. The fit of the connecting and mounting pins in a printed-wiring grid with a pitch of $2,54 \mathrm{~mm}(0,1 \mathrm{in})$ is illustrated in Fig. 2. The core of the transformer must be earthed.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side).


## Temperature

The operating temperature of the core and the coils should not exceed $90^{\circ} \mathrm{C}$, under worst conditions, i.e. taking into account:
over-voltage on the windings;
low atmospheric pressure (at high altitudes) implying bad cooling by convection;
high room temperature (up to $45^{\circ} \mathrm{C}$ )
To satisfy these requirements it may be desirable to provide ample cool air circulation around the transformer.

## Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (in proportion to their sharpness protruding parts must have a greater distance):
a. From the e.h.t. winding, radially 18 mm , axially $\mathbf{1 0 ~ m m}$.
b. From the e.h.t. lead 15 mm .

The transformer, and the leads and components carrying high-voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (see also Fig. 3)

E.H.T. supply	'eht   E.H.T.   $\mathrm{R}_{\mathrm{i}(\mathrm{eht})}$	$\begin{array}{r} 0 \mu \mathrm{~A} \\ 11 \mathrm{kV} \end{array}$	$\begin{array}{r} 100 \mu \mathrm{~A} \\ 10,2 \mathrm{kV} \end{array}$
Power supply	$\begin{aligned} & V_{B} \\ & I_{B} \end{aligned}$	$\begin{aligned} & 8,8 \mathrm{~V} \\ & 920 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 8,8 \mathrm{~V} \\ 1100 \mathrm{~mA} \end{gathered}$
Output transistor	$\begin{aligned} & V_{\text {CEM }} \\ & \text { ICM } \end{aligned}$	$\begin{array}{r} 220 \mathrm{~V} \\ 3,6 \mathrm{~A} \end{array}$	$\begin{gathered} 220 \mathrm{~V} \\ 3,7 \mathrm{~A} \end{gathered}$
Deflection	Current   Flyback ratio (average) Overscan variation	$\begin{aligned} & 4,2 \mathrm{~A}(p-p) \\ & 9,4 \% \\ & 0 \% \end{aligned}$	$\begin{aligned} & 4,1 \text { A (p-p) } \\ & 9,4 \% \\ & 0 \% \end{aligned}$

Auxiliary windings
connecting pin 1
connecting pin 2
connecting pin 4


Fig. 3 Application circuit.

## ADJUSTABLE LINEARITY CONTROL UNIT

## APPLICATION

This linearity control unit has been designed for use in black and white monitors with $\mathbf{2 4} \mathbf{~ c m ~ ( 9 ~ i n ) ~ o r ~}$ $31 \mathrm{~cm}(12 \mathrm{in}) 90^{\circ}$ monitor tubes. It can be used in conjunction with deflection unit AT1071/03, line output transformer AT2102/02 and line driver transfcrmer AT4043/56.

## DESCRIPTION

The unit consists of a coil wound on a Ferroxcube rod and two Ferroxdure magnets. One of these magnets has the shape of a half ring and is placed around the Ferroxcube rod under the coil. The other magnet is cylindrical; it is placed parallel to and clamped against the Ferroxcube rod opposite the first one. This magnet is provided with a square hole to facilitate turning of it to adjust the biasing field and so the lineari: , it the line deflection.

## MECHANICAL DATA

Dimensions in mm

Fig. 1 Adjustable linearity control unit AT4036.


## ELECTRICAL DATA

When a sawtooth current (without S-correction) of $6 \mathrm{~A}(\mathrm{p} \cdot \mathrm{p})$, frequency 15625 Hz , flyback ratio $18 \%$, flows through the linearity control unit (one connection point to earth), the correction voltage is adjustable between 1,05 and $1,95 \mathrm{~V}$.


Fig. 2 Circuit diagram.

## MOUNTING

The unit can be mounted either on printed-wiring boards by means of its two connection pins and two mounting pins (see Fig. 3), or on metal chassis by bending the two mounting pins and/or by means of a screw through an aperture in the casing (see Fig. 4). To prevent distortion of the maqnetic field no iron part should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a 1 W carbon resistor to damp ringing phenomena.


Fig. 3 Hole pattern for mounting on a printed-wiring board.
(1) Hole for bottom adjustment, if required.


Fig. 4 Hole pattern for mounting on a chassis.

## QUICK REFERENCE DATA

For use in confunction with:

1. Monochrome deflection unit AT 1040/15 and line output transformer AT2048/11
2. Colour deflection units AT1027/AT 1029 Series and line output transformer AT2055 Series.


## GENERAL

The unit can be mounted elther on the printed-wiring board by the two connection and two mounting pins (sce figs. 1 and 2), or on a metal chassis by bending the two mounting pins, and/or by a screw through an aperture in the casing.
To prevent distortion of the magnetic field, a separation of 3 mm must be maintained between the unit and any metal part.

A scries resistor and capacitor a re connected across the coll to damp out ringing. If under tault conditions the coll goes open circuit, the capacitor will limit the scanning coll current and enables a low wattage resistor to be used.


Fig. 1


Enlarged view of mounting pins in direction ' $A$ '

04809

Holes for:
(0.4 in)
(0.4in)
$a=\emptyset 1.5 \mathrm{~min}$ mounting pins
$b=\emptyset 0.6 \mathrm{~min}$ coil connection pins
$c=\$ 5 \mathrm{~min}$ boltom adjustment
05399
Fig. 2
Piercing diagram

## ADJUSTABLE LINE LINEARITY CONTROL UNIT

## ELECTRICAL DATA

When a sawtooth current (without S-correction) of 2.8A peak-to-peak and frequency 15.625 kHz , having a flyback of $18 \%$ flows through the linearity control unit, the correction voltage will be adjustable between 15 V and 26 V .

## APPLICATION CIRCUITS



## APPLICATION

This non-adjustable linearity control unit is designed for use in black and white television sets equipped with $110^{\circ}$ deflection angle picture tube.

It is intended for use in conjunction with:

- deflection unit AT 1040/15;
- line output transformer AT 2048/12.


## DESCRIPTION

The unit consists of a coil wound on a Ferroxcube rod, and a Ferroxdure magnet, which is placed around the rod next to the coil.

Dimensions in mm


Fig. 1

## ELECTRICAL DATA

When a saw-tooth current (without S-correction) of $2,2 \mathrm{~A}(\mathrm{p}-\mathrm{p}$ ), frequency 15625 Hz , flyback ratio $18 \%$, flows through the linearity control unit, the correction voltage is 17 V .

## MOUNTING

The unit can be mounted on printed-iviring boards by means of its two connection pins and two mounting pins (see Fig. 1). To prevent distortion of the magnetic field no iron part should approach the magnetic parts anywere nearer than 3 mm .

## ADJUSTABLE LINEARITY CONTROL UNIT

## APPLICATION

This linearity control unit has been designed for use in black and white monitors with 31 cm ( 12 in ) or 38 cm ( 15 in ) $110^{0}$ monitor tubes. It can be used in conjunction with deflection unit AT1038/20, and line output transformer AT2:02/05.

## DESCRIPTION

The unit consists of a coil wound on a Ferroxcube rod, two Ferroxdure magnets and one magnet of plastic-bonded Ferroxdure. The last mentioned magnet is placed around the Ferroxcube rod, above the coil. One of ine Ferroxdure magnets has the shape of a half ring; it is placed around the Ferroxcube rod under the coil. The other Ferroxdure magnet is cylindrical; it is positioned parallel to and clamped against the Ferroxcube rod opposite the first one. It is provided with a square hole to facilitate turning to adjust the biasing field and so the linearity of the line deflection.

## MECHANICAL DATA

Fig. 1 Adjustable linearity control unit AT4034/01.


## ELECTRICAL DATA

When a sawtooth current (without S-correction) of $2,4 \mathrm{~A}(\mathrm{p}-\mathrm{p})$, frequency 15625 Hz , flyback ratio $18 \%$, flows through the linearity control unit (one connection point to earth), the correction voltage is adjustable between 12 and 24 V .


Fig. 2 Circuit diagram.

## MOUNTING

The unit can be mounted either on printed-wiring boards by means of its two connection pins and two mounting pins (see Fig. 3), or on metal chassis by bending the two mounting pins and/or by means of a screw through an aperture in the casing (see Fig. 4). To prevent distortion of the magnetic field no iron part should approach the magnetic parts nearer than 3 mm . The coil should be shunted with a 1 W carbon resistor of $1500 \Omega$ to damp ringing phenomena.


Fig. 3 Hole pattern for mounting on a printed-wiring board.
(1) Hole for bottom adjustment, if required.


Fig. 4 Hole pattern for mounting on a chassis.

## ADJUSTABLE LINEARITY CONTROL UNIT

## APPLICATION

This linearity control unit has been designed for use in black and white monitors with 31 cm (12 in) or $38 \mathrm{~cm}(15 \mathrm{in}) 110^{\circ}$ monitor tubes. It can be used in conjunction with deflection unit AT1038/40. line output transformer AT2102/04 and line driver transformer AT4043/59. The unit is also to be used in colour television sets with a $110^{\circ}$ colour picture tube.

## DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, two Ferroxdure magnets and one plastoferrite magnet. One magnet has the shape of a ring and is placed around the Ferroxcube rod above the coils. One has the shape of a half ring and is placed around the Ferroxcube rod under the coils. The third magnet is : indrical; it is positioned to and clamped against the Ferroxcube rod opposite the hal ring magnet. It is provided with a square hole to facilitate turning to adjust the biasing field and, therefore, the linearity of the line deflection.

Fig. 1 Adjustable linearity conitrol unit AT4042/08.


## ELECTRICAL DATA

When a sawtooth current of $6 \mathrm{~A}(\mathrm{p}-\mathrm{p})$, frequency 15625 Hz , fly-back ratio 18\% (without S-correction) flows through the linearity control unit (coils connected in parallel, one connection point to earth), the correction voltage is adjustable between 15 and 25 V .
With a sawtooth clirrent of $4,65 \mathrm{~A}(\mathrm{p}-\mathrm{p})$ the correction voltage is adjustable between 8 and 15 V .


Fig. 2 Circuit diagram.

## MOUNTING

The unit can be mounted either on printed-wiring boards by means of its two connection pins and two mounting pins, or on metal chassis by bending the two mounting pins and/or by means of a screw through an aperture in the casing (see Fig. 4). To prevent distortion of the magnetic field, no iron part should approach the magnetic parts nearer than 3 mm . The coils should be shunted with carbon resistors; to damp ringing phenomena; the value of resistor depends on applied line output transformer.


Fig. 3 Hole pattern for mounting on a printed-wiring board.
(1) Hole for bottom adjustment, if required.


Fig. 4 Hole pattern for mounting on a chassis.

## LINE DRIVER TRANSFORMER

## APPLICATION

This transformer has been designed for use in black and white monitors. The required supply voltage is $\mathbf{2 4} \mathrm{V}$. The transformer is used in conjunction with deflection unit AT1038/40, line-output transformer AT2102/04, and linearity control unit AT4042/08.

## MECHANICAL DATA

Dimensions in mm
The magnetic circuit of the transformer comprises two Ferroxcube $\mathbf{U}$-cores. The unit is provided with pins for mounting on a printed-wiring board.


Fig. 1 Line driver transformer AT4043/59.

Fig. 2 Hole pattern for mounting on a printedwiring board (component side). Hole diameter $1,3+0,1 \mathrm{~mm} . e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

ELECTRICAL DATA

Inductance (primary, 1-2)	$\mathbf{6 , 1} \mathrm{mH}$
Leakage inductance (secondary)	$12 \mu \mathrm{H} \pm 15 \%$
Transformation ratio	$4,18: 1$
Maximum operating temperature	$95{ }^{\circ} \mathrm{C}$

Application circuit


Fig. 3 Circuit diagram.


Fig. 4.

# COLOUR TELEVISION ASSEMBLIES 



D




## DEFLECTION UNIT

- with built-in 4-pole coils for symmetrizing of the line and field astigmatism


## QUICK REFERENCE DATA

Picture tube, gun arrangement	in line
diagonal	
neck diameter	$\mathbf{6 6 ~ c m ~ ( 2 6 ~ i n ) ~}$
Deflection angle	$36,5 \mathrm{~mm}$
Line deflection current, edge to edge at 25 kV	$110^{\circ}$
Inductance of line coils, parallel connected	$6,35 \mathrm{~A} \mathrm{p-p}$
Field deflection current, edge to edge at 25 kV	$1,11 \mathrm{mH}$
Resistance of field coils, series connected	$3,4 \mathrm{~A} \mathrm{p-p}$
4-pole coils,	$3,0 \Omega$
sensitivity for line direction   sensitivity for field direction   resistance (series connected)	$\pm . \max .34 \mathrm{~mm} / \mathrm{A}$

## APPLICATION

This deflection unit has been designed for use with the $110^{\circ}$ colour picture tube types A66-500X and A66-510X in CTV receivers in conjunction with:

diode-split line output transformer	AT2076/30 and
line output transistor	BU208A
linearity control unit	AT4042/38
multipole unit	AT1081

## DESCRIPTION

The saddle-shaped line and field deflection coils, and the Ferroxcube yoke ring with 4-pole unit, are supported by a plastic cap. This set is built into a plastic coaxial housing, which is provided with a plastic axial alignment ring. This ring enables the set to be axially adjusted over a distance of 6 mm , after the complete unit has been fastened on the neck of the picture tube with a clamping ring. The screw of the clamping ring is accessible with a screwdriver via a recess in the axial alignment ring. To correct the raster orientation with the complete unit in position on the picture tube neck, the coil assembly can be rotated by means of the protruding parts on the supporting ring, which can be reached by the top and bottom recesses in the coaxial housing. The whole coil assembly is locked in the required position by pushing the levers down until they block.
The unit meets the self-extinguishing requirements of IEC 65 para. 14.4 and UL94, SE1.

MECHANICAL DATA
Outlines


Fig. 1.
The unit is provided with soldering pins for connection.

## Mounting

To obtain easily reproducible and accurate alignment of the picture tube and the deflection unit, the cone of the picture tube has a moulded indexing ridge to centre the deflection unit housing. The deflection unit is brought into correct position by alignment of the protrusion on the housing with the location mark on the cone of the tube. The unit must be pressed against the cone, so that the housing is indexed by the moulded ridge on the cone. The unit is then fixed by tightening the screw in the clamping ring at the rear. The screw should be tightened with a torque of 1,2 to $1,4 \mathrm{Nm}$.

## ELECTRICAL DATA

Line coils, parallel connected
inductance
resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge at 25 kV
Field coils, series connected
inductance
resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge at 25 kV
4-pole coils,
sensitivity for line direction
sensitivity for field direction
resistance (series connected)
Maximum operating temperature
$1,11 \mathrm{mH} \pm 4 \%$
$1,2 \Omega \pm 10 \%$
6,35 A p-p
$3,5 \mathrm{mH} \pm 10 \%$
$3,0 \Omega \pm 7 \%$
3,35 A p-p
$\pm$ max. $34 \mathrm{~mm} / \mathrm{A}$
$\pm \max .23 \mathrm{~mm} / \mathrm{A}$
$1,6 \Omega$
$95^{\circ} \mathrm{C}$


Fig. 2 Connection diagram. $L=$ Line, $F=$ Field.


Fig. 3 Terminal location. The pin numbering corresponds to that in Fig. 2.

## BEAM CORRECTIONS

With the deflection unit AT1080 and the multipole unit AT1081 mounted on the tube A66-500X or A66-510X, the following corrections may be required:

Maximum required horizontal displacement of the electron beams with respect to the phosphor stripes by the purifying magnet of the AT 1081 (note 1)
$45 \mu \mathrm{~m}$
Static convergence deviations must be corrected by the adjustable four-pole and six-pole fields of the AT1081 centred around the tube axis.
Maximum required compensation for static convergence
4-pole device: red opposite to blue (in any direction) $6 \mathbf{m m}$
6 -pole device: red and blue to green (in any direction) 3 mm

North-South raster shape correction circuitry is not required.
To obtain a symmetrical shape for the horizontal lines at the upper and lower parts of the screen, the unit AT1081 comprises an additional two-pole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum

5 mm
Maximum centring error in any direction after colour-purity, static convergence, and horizontal centre line correction

5 mm
With respect to dynamic convergence, the display system, consisting of picture tube A66-500X or A66-510X and deflection unit AT1080, is inherently self converging. However, a small systematic correction is required on the vertical axis, and also small corrections should be made to compensate for tolerances and asymmetries in the tube and deflection unit combination. For this purpose two types of dynamic magnetic four-pole fields can be used. One is generated by additional windings on the yoke ring of the deflection unit energized by adjustable sawtooth currents synchronized with scanning. The other type is generated by sawtooth and parabolic currents which are synchronized with scanning and flow through the deflection coils.

Compensation to be provided by these corrections:

- horizontal red-to-blue distance at the end of the horizontal axis (line symmetry)
- horizontal red-to-blue distance at the top of the vertical axis (field symmetry top)
- horizontal red-to-blue distance at the bottom of
(note 2)
(note 3)
$3,5 \pm 1,5 \mathrm{~mm}$
the vertical axis (field symmetry bottom)
- vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)
vertical red-to-blue distance at the ends of the vertical axis (field balance)
(note 3)
(note 4)
$3,5 \pm 1,5 \mathrm{~mm}$
$0 \pm 1,5 \mathrm{~mm}$
(note 5)
(note 5) $\quad 0 \pm 1,2 \mathrm{~mm}$


## Application information available on request.

## Notes

1. Purity adjustment in vertical direction is not required.
2. This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
3. This correction is made by feeding a rectified sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
4. This correction is made by unbalancing the line deflection coils.
5. This correction is made by unbalancing the field deflection coils.

## AT1081

## MULTIPOLE UNIT

## QUICK REFERENCE DATA

Horizontal beam displacement
for colour purity (2-pole)
Static convergence
red opposite to blue in any direction (4-pole)
red-blue with respect to green in any direction (6-pole)
Vertical displacement for optimum straightness of the horizontal lines (2-pole)
for undeflected beams min. $45 \mu \mathrm{~m}$ min. 8 mm
$\min .4 \mathrm{~mm}$
min. 5 mm

## APPLICATION

This unit has been designed for the colour picture tubes A66-500X, A66-510X, A56-500X, A56-510X, $\sim$ A51-500X and A51-510X, with in-line gun arrangement and the deflection units AT1080, AT1083/01 and AT1085. Its purpose is threefold:

- horizontal colour-purity adjustment
- static convergence adjustment
- adjustment of raster symmetry in N and S or adjustment of the horizontal axis for optimum straightness.


## DESCRIPTION

The unit incorporates four ring-shaped permanent magnets, supported by non-magnetic plastic support rings, and a cam-actuated collet, which enables the unit to be clamped to the neck of the picture tube. The magnetic rings are made up of an inner and an outer ring coupled by non-magnetic pinion gears to form an epicyclic train. The support rings carry the pinion gears. The magnetic rings comprise:

- two pairs of 2-pole magnets
- one pair of 4-pole magnets
- one pair of 6-pole magnets
(each pair consisting of an inner and outer ring of identical magnetic configuration). The support rings of both the 2 -pole rings are fixed to the collet, those of the 4- and 6-pole rings are rotatable. Rotating the lug on an outer magnetic ring varies the resultant field strength.
Rotating the lug on a support ring varies the direction of the resultant field.


## MECHANICAL DATA

Dimensions (mm)
See Fig. 1 on next page.


Fig. 1.

## Mounting

Before mounting the multipole unit, the lug on the rear end of the collet must be rotated anti-clockwise. The unit is slid over the neck of the picture tube and pressed to the deflection unit. Two protrusions on the front of the unit and the corresponding recesses on the back of the deflection unit, will bring the unit into correct position. By rotating the lug on the collet clockwise the unit will be clamped.

## ADJUSTMENTS

Horizontal colour purity is obtained by varying the field strength of the 2-pole magnet situated between the 4 -pole and 6-pole magnets (see Figs 1 and 2 ).
Vertical colour purity adjustment is not required (see data on colour picture tubes).
The static convergence is adjusted by varying the field strength and direction of the 4 -pole and 6-pole.
The 4-pole field moves the outer electron beams (red and blue) equally in opposite directions (see
Fig. 3). The 6 -pole field moves the outer electron beams equally in the same direction (see Fig. 4). The centre beam (green) is unaffected. Horizontal axis or raster symmetry is adjusted by varying the field strength of the 2-pole magnet situated at the rear of the unit (see Fig. 1). All three beams are equally moved in a vertical direction (see Fig. 5).

a

Fig. 2.


Fig. 3.

__red

-     -         - blue

b


a

b

Fig. 5.

## DEFLECTION UNIT

- with built-in 4-pole coils for symmetrizing of the line and field astigmatism


## QUICK REFERENCE DATA

Picture tube, gun arrangement	in line
diagonal   neck diameter	$55 \mathrm{~cm}(22 \mathrm{in})$
Deflection angle	$36,5 \mathrm{~mm}$
Line deflection current, edge to edge at 25 kV	$110^{\circ}$
Inductance of line coils, parallel connected	$6,2 \mathrm{~A} \mathrm{p-p}$
Field deflection current, edge to edge at 25 kV	$1,14 \mathrm{mH}$
Resistance of field coils, series connected	$3,4 \mathrm{~A} \mathrm{p-p}$
4-pole coils,	$3,36 \Omega$
sensitivity for line direction	
sensitivity for field direction	
resistance (series connected)	$\pm \max .25 \mathrm{~mm} / \mathrm{A}$

## APPLICATION

This deflection unit has been designed for use with the $110^{\circ}$ colour picture tube types A56-500X and A56-510X in CTV receivers in conjunction with:

diode-split line output transformer	AT2076/30 and
line output transistor	BU208A
linearity control unit	AT4042/38
multipole unit	AT1081

## DESCRIPTION

The saddle-shaped line and field deflection coils, and the Ferroxcube yoke ring with 4 -pole unit, are supported by a plastic cap. This set is built into a plastic coaxial housing, which is provided with a plastic axial alignment ring. This ring enables the set to be axially adjusted over a distance of 5 mm , after the complete unit has been fastened on the neck of the picture tube with a clamping ring. The. screw of the clamping ring is accessible with a screwdriver via a recess in the axial alignment ring. To correct the raster orientation with the complete unit in position on the picture tube neck, the coil assembly can be rotated by means of the protruding parts on the supporting ring, which can be reached by the top and bottom recesses in the coaxial housing. The whole coil assembly is locked in the required position by pushing the levers down until they block.
The unit meets the self-extinguishing requirements of IEC 65 para. 14.4 and UL94, SE1.

## MECHANICAL DATA

## Outlines



Fig. 1.
The unit is provided with soldering pins for connection.

## Mounting

To obtain easily reproducible and accurate alignment of the picture tube and the deflection unit, the cone of the picture tube has a moulded indexing ridge to centre the deflection unit housing. The deflection unit is brought irito correct position by alignment of the protrusion on the housing with the location mark on the cone of the tube. The unit must be pressed against the cone, so that the housing is indexed by the moulded ridge on the cone. The unit is then fixed by tightening the screw in the clamping ring at the rear. The screw should be tightened with a torque of 1,2 to $1,4 \mathbf{N m}$.

## ELECTRICAL DATA

Line coils, parallel connected inductance
$1,14 \mathrm{mH} \pm 4 \%$
resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge at 25 kV
Field coils, series connected inductance
resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge at 25 kV
4 pole coils,
sensitivity for line direction sensitivity for field direction
resistance (series connected)
Maximum operating temperature
$0,9 \Omega \pm 10 \%$
6,2 A p-p
$3,9 \mathrm{mH} \pm 10 \%$
3,36 $\Omega \pm 7 \%$
3,4 A p-p
$\pm \max .25 \mathrm{~mm} / \mathrm{A}$
$\pm$ max. $18 \mathrm{~mm} / \mathrm{A}$
$1,4 \Omega$
$95^{\circ} \mathrm{C}$


Fig. 2 Connection diagram. $L=$ Line, $F=$ Field.


Fig. 3 Terminal location. The pin numbering corresponds to that in Fig. 2.

## BEAM CORRECTIONS

With the deflection unit AT1083/01 and the multipole unit AT 1081 mounted on the tube A56-500X or A56-510X, the following corrections may be required:
Maximum required horizontal displacement of the electron beams with respect to the phosphor stripes by the purifying magnet of the AT1081 (note 1)
Static convergence deviations must be corrected by the adjustable four-pole and six-pole fields of the AT 1081 centred around the tube axis.
Maximum required compensation for static convergence 4-pole device: red opposite to blue (in any direction) $5,5 \mathrm{~mm}$ 6 -pole device: red and blue to green (in any direction) $2,8 \mathrm{~mm}$

North-South raster shape correction circuitry is not required
To obtain a symmetrical shape for the horizontal lines at the upper and lower parts of the screen, the unit AT1081 comprises an additional two-pole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum

Maximum centring error in any direction after colour-purity, static convergence, and horizontal centre line correction
$4,5 \mathrm{~mm}$
With respect to dynamic convergence, the display system, consisting of picture tube A56-500X or A56-510X and deflection unit AT1083/01 is inherently self converging. However, small corrections should be made to compensate for tolerances and symmetries in the tube and deflection unit combination. For this purpose two types of dynamic magnetic four-pole fields can be used. One generated by additional windings on the yoke ring of the deflection unit ènergized by adjustable sawtooth currents synchronized with scanning. The other type is generated by sawtooth and parabolic currents which are synchronized with scanning and flow through the deflection coils.
Compensation to be provided by these corrections:

- horizontal red-to-blue distance at the end of the horizontal axis (line symmetry)
- horizontal red-to-blue distance at the ends of the vertical axis (field symmetry)
- vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)
(note 2)
$0 \pm 1,5 \mathrm{~mm}$
(note 3)
$0 \pm 1,5 \mathrm{~mm}$
- vertical red-to-blue distance at the ends of the vertical axis (field balance)
(note 4)
$0 \pm 1,0 \mathrm{~mm}$
(note 5)
$0 \pm 1,0 \mathrm{~mm}$


## Application information available on request.

## Notes

1. Purity adjustment in vertical direction is not required.
2. This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
3. This correction is made by feeding a rectified sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
4. This correction is made by unbalancing the line deflection coils.
5. This correction is made by unbalancing the field deflection coils.

## DEFLECTION UNIT

- with built-in 4-pole coils for symmetrizing of the line and field astigmatism

QUICK REFERENCE DATA

Picture tube, gun arrangement diagonal neck diameter	in line   $51 \mathrm{~cm}(20 \mathrm{in})$   $36,5 \mathrm{~mm}$
Deflection angle	1100
Line deflection current, edge to edge at 25 kV	6,2 A p-p
Inductance of line coils, parallel connected	$1,14 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	3,4 A p-p
Resistance of field coils, series connected	3,36 $\Omega$
4-pole coils, sensitivity for line direction sensitivity for field direction resistance (series connected)	$\begin{aligned} & \pm \max .23 \mathrm{~mm} / \mathrm{A} \\ & \pm \max .16 \mathrm{~mm} / \mathrm{A} \\ & 1.4 \Omega \end{aligned}$

## APPLICATION

This deflection unit has been designed for use with the $110^{\circ}$ colour picture tube types A51-500X and A51-510X in CTV receivers in conjunction with:

diode-split line output transformer	AT2076/30 and
line output transistor	BU208A
linearity control unit	AT4042/38
multipole unit	AT1081

## DESCRIPTION

The saddle-shaped line and field deflection coils, and the Ferroxcube yoke ring with 4-pole unit, are supported by a plastic cap. This set is built into a plastic coaxial housing, which is provided with a plastic axial alignment ring. This ring enables the set to be axially adjusted over a distance of 5 mm , after the complete unit has been fastened on the neck of the picture tube with a clamping ring. The screw of the clamping ring is accessible with a screwdriver via a recess in the axial alignment ring. To correct the raster orientation with the complete unit in position on the picture tube neck, the coil assembly can be rotated by means of the protruding parts on the supporting ring, which can be reached by the top and bottom recesses in the coaxial housing. The whole coil assembly is locked in the required position by pushing the levers down until they block.
The unit meets the self-extinguishing requirements of IEC 65 para. 14.4 and UL94, SE1.

## MECHANICAL DATA

Outlines


Fig. 1.
The unit is provided with soldering pins for connection.

## Mounting

To obtain easily reproducible and accurate alignment of the picture tube and the deflection unit, the cone of the picture tube has a moulded indexing ridge to centre the deflection unit housing. The deflection unit is brought into correct position by alignment of the protrusion on the housing with the location mark on the cone of the tube. The unit must be pressed against the cone, so that the housing is indexed by the moulded ridge on the cone. The unit is then fixed by tightening the screw in the clamping ring at the rear. The screw sinould be tightened hith a torque of 1,2 to $1,4 \mathrm{Nm}$.

## ELECTRICAL DATA

Line coils, parallel connected
inductance
$1,14 \mathrm{mH} \pm 4 \%$
resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge at 25 kV
Field coils, series connected
inductance
resistance at $\mathbf{2 5}^{\circ} \mathrm{C}$
Field deflection current, edge to edge at 25 kV
4-pole coils,
sensitivity for line direction
sensitivity for field direction
resistance (series connected)
Maximum operating temperature
$3,9 \mathrm{mH} \pm 10 \%$
$0,9 \Omega \pm 10 \%$
6,2 A p-p
$3,36 \Omega \pm 7 \%$
3,4 A p-p
$\pm$ max. $23 \mathrm{~mm} / \mathrm{A}$
$\pm \max .16 \mathrm{~mm} / \mathrm{A}$
$1,4 \Omega$
$95{ }^{\circ} \mathrm{C}$


Fig. 2 Connection diagram. $L=$ Line, $F=$ Field.


Fig. 3 Terminal location. The pin numbering corresponds to that in Fig. 2.

## BEAM CORRECTIONS

With the deflection unit AT1085 and the multipole unit AT1081 mounted on the tube A51-500X or A51-510X the following corrections may be required:

Maximum required horizontal displacement of the electron beams with respect to the phosphor stripes by the purifying magnet of the AT1081 (note 1)
$45 \mu \mathrm{~m}$
Static convergence deviations must be corrected by the adjustable four-pole and six-pole fields of the AT1081 centred around the tube axis.
Maximum required compensation for static convergence 4 pole device: red opposite to blue (in any direction) 5 mm 6 -pole device: red and blue to green (in any direction) $2,5 \mathrm{~mm}$

Notes, see page 4.

North-South raster shape correction circuitry is not required.
To obtain a symmetrical shape for the horizontal lines at the upper and lower parts
of the screen, the unit AT1081 comprises an additional two-pole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum

4 mm
Maximum centring error in any direction after colour-purity, static convergence, and horizontal centre line correction

4 mm
With respect to dynamic convergence, the display system, consisting of picture tube A51-500X or A51-510X and deflection unit AT1085 is inherently self converging. However, a small fixed line parabola correction of $1,3 \mathrm{~mm}$, is required on the horizontal axis and also small corrections should be made to compensate for tolerances and asymmetries in the tube and deflection unit combination. For this purpose two types of dynamic magnetic four-pole fields can be used. One is generated by additional windings on the yoke ring of the deflection unit energized by adjustable sawtooth currents synchronized with scanning. The other type is generated by sawtooth and parabolic currents which are synchronized with scanning and flow through the deflection coils.
Compensation to be provided by these corrections:

- horizontal red-to-blue distance at the end of the horizontal axis (line symmetry)
- horizontal red-to-blue distance at the ends of the vertical axis (field symmetry)
- vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)
- vertical red-to-blue distance at the ends of the vertical axis (field balance)

(note 2)	$0 \pm 1,5 \mathrm{~mm}$
(note 3)	$0 \pm 1,5 \mathrm{~mm}$
(note 4)	$0 \pm 1,0 \mathrm{~mm}$
(note 5)	$0 \pm 1,0 \mathrm{~mm}$

## Application information available on request.

## Notes

1. Purity adjustment in vertical direction is not required.
2. This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
3. This correction is made by feeding a rectified sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
4. This correction is made by unbalancing the line deflection coils.
5. This correction is made by unbalancing the field deflection coils.

## DIODE SPLIT LINE OUTPUT TRANSFORMER

## QUICK REFERENCE DATA

For transistor line output stages
leht
E.H.T.
$\mathrm{R}_{\mathrm{i}}$ (eht)
Ip-p deflection (incl. 6\% overscan)
Load inductance (of line deflection coils)
Supply voltage ( $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$ )
Supply current ( $I_{\text {average }}$ ) at $I_{\text {eht }}=1.5 \mathrm{~mA}$
Voltages of primary windings*
Voltages of auxiliary windings

```
max. 1.5 mA
25 kV
2 M\Omega
6.5 A
1.12 mH
148 V
6 6 0 ~ m A
+64 V (, +105 V V, +335 V V, +520 Vp
-335 V v, -160 V V, +160 V V, +335 Vp
picture tube heater voltage
```


## APPLICATION

This transformer has been designed to provide the required scanning amplitude for $20 \mathrm{AX} 110^{\circ}$ colour picture tubes with a neck diameter of 36.5 mm in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA).
It is intended for use in conjunction with:

- deflection unit AT1080, AT 1083/01 or AT 1085;
- linearity control unit AT4042/38;
- line output transistor BU208A;
- a screened e.h.t. cable with a length of 1 m (available under catalogue number 312213758254 ), as shown in the circuit diagram of Fig.3.


## DESCRIPTION

The magnetic circuit of the transformer comprises 2 Ferroxcube U -cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The e.h.t. winding is moulded in flame retarding polyester, meeting the self extinguishing requirements of IEC65, para. 14.4 and UL492, para. 280-SE1. The transformer is provided with 2 M3 screw-studs for mounting. * External circuit connection is made to connecting pins, positioned as indicated in Fig. 1 enabling the unit to be soldered directly into a printed-wiring board (Fig.2)

[^10]MECHANICAL DATA
Dimensions in mm


Fig. 1

Mass $\quad 500 \mathrm{~g}$ approximately
Solderability in accordance with IEC 68, Test T

## MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided. The fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of 2.54 mm is illustrated in Fig. $\mathbf{2}$.

## RECOMMENDED PIERCING DIAGRAM (solder side)



Fig. 2
Hole pattern for mounting on a printed-wiring board.
Hole diameter $1.3 \pm 0.1 \mathrm{~mm}$.

Whether the transformer is board or chassis mounted, the core must be earthed.

## Temperature

The operating temperature of the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions, i.e. taking into account:

- over-voltage on the coils;
- Iow atmospheric pressure (at high altitudes) implying bad cooling by convection;
- high ambient temperature (up to $45{ }^{\circ} \mathrm{C}$ ).

To satisfy this requirement it may be necessary to provide an ample cool air flow around the transformer.

Mullard

## AT2076/35

## Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (it should be noticed that edges of conductive parts must have a greater distance):

From the e.h.t. coil radially, 10 mm axially 10 mm

The transformer, and the leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (measured in circuit of Fig.3, mains voltage 220 V )

E.H.T. supply	leht	50	1500	$\mu \mathrm{A}$
	e.h.t.	25.0	21.8	kV
	$\mathrm{R}_{\text {i }}$ (eht)	2		M $\Omega$
Power supply	$V_{B}$	163	163	V
	$V_{B}{ }^{\prime}$	148	141.5	$\checkmark$
	${ }^{\prime}$ (AV)	540	760	mA
Output transistor	$V_{\text {CEM }}$	1200	1180	V
	${ }^{\text {ICM }}$	4.1	4.25	A
Deflection	'p-p	6.5	6.2	A
	overscan	6	7	\%
	flyback time	11		
Focus voltage	$V_{\text {focus }}$	630	5.65	kV

Auxiliary windings:


- Class-B video stage.
**D.C. component on these pulses is $V_{B}$ '.


## APPLICATION CIRCUIT



Fig. 3

## DIODE SPLIT LINE OUTPUT TRANSFORMER

QUICK REFERENCE DATA

leht	1.5 mA
E.H.T.	25 kV
$\mathrm{R}_{\text {i }}^{\text {(eht) }}$	$2.0 \mathrm{M} \Omega$
$l_{\text {p-p }}$ deflection (incl. 6\% overscan)	6.5 A
Load inductance (of line deflection)	1.12 mH
- Input voltage ( $\mathrm{V}_{\mathrm{B}}$ )	148 V
current ( $\mathrm{l}_{\mathrm{B}}$ ) at $\mathrm{l}_{\text {eht }}=1.5 \mathrm{~mA}$	605 mA
Voltages of auxiliary windings	$-170,+170+330 V_{p}$
Picture tube heater voltage	6.8 V
Primary taps	+510, +330, + 105, + $64 \mathrm{~V}^{*}$

## APPLICATION

This transformer has been designed to provide the required scanning amplitude for $20 \mathrm{AX} 110^{\circ}$ colour
 50 fields per second (CCIR) or 525 lines at $\mathbf{6 0}$ fields per second (USA).
It is intended for use in conjunction with:
deflection unit AT1080 or AT1083/01 or AT1085
linearity control unit AT4042/38
line driver transformer AT4043/50
line output transistor BU208A
a screened e.h.t. cable with a length of 1 metre (available under catalogue number 312213758250 )
as shown in the circuit diagram of Fig.3.

## DESCRIPTION

The magnetic circuit of the transformer comprises two Ferroxcube U-cores, screwed together. The primary winding of aluminium foil and the secondary windings are situated on one leg of the core. The windings are impregnated in flame retardant polyester, meeting the selfextinguishing requirements of IEC65, para. 14.4 and UL492, para. 280-SEI. The transformer is provided with two M3 screws for mounting" ". External circuit connection is made to connecting pins, positioned as indicated in Fig. 1. enabling the unit to be soldered directly into a printed wiring board (Fig.2):

[^11]
## AT2076/55



Fig. 1
Weight: $\mathbf{5 0 0} \mathrm{g}$ approximately
Solderability: in accordance with IEC, Test T.

## MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. Two securing studs (M3) are provided.
The fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of 2.54 mm is illustrated in Fig.2.

RECOMMENDED PIERCING DIAGRAM (solder side)


Fig. 2
Grid spacing: 2.54 mm ( 0.1 in .)
Hole diameter $1.3 \pm 0.1 \mathrm{~mm}$
Whether the transformer is board or chassis mounted, the core must be earthed.

## Temperature

The operating temperature on the e.h.t. coil should not exceed $+85^{\circ} \mathrm{C}$ under worst conditions.
To satisfy this requirement it may be necessary to provide an ample cool air flow around the transformer.

## Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces must be maintained (edges of conductive parts must have a greater distance):

From the e.h.t. coil, radially 10 mm
axially 10 mm
The transformer, and the leads and components carrying high voltage pulses, should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA (measured in circuit of Fig.3)

E.H.T. supply	1 eht	50	1500	$\mu \mathrm{A}$
	e.h.t.	25.0	21.8	kV
	$\mathrm{R}_{\text {i }}$ (eht)	2		M $\Omega$
Power supply	$V_{B}$	159	159	V
	$V_{B}{ }^{\prime}$	148	144	$\checkmark$
	${ }^{\prime}(\mathrm{AV})$	400	605	mA
Output transistor	$V_{\text {CEM }}$	1200	1130	$V$
	${ }^{\text {I CM }}$	4.0	4.1	A
Deflection	$\mathrm{I}_{\mathrm{p}-\mathrm{p}}$	6.5	6.2	A
	overscan	6	8	\%
	flyback time	11.5	11.55	$\mu \mathrm{s}$
Focus voltage	$V_{\text {focus }}$	6.15	5.45	kV
Peak voltage between pins $3-10$	$V_{3}$	-170		$v$
5-4	$V_{5}$	+170		$v$
6-4	$V_{6}$	+330		$v$
7-13*	$V_{7}$	+330		V
9-13*	$V_{9}$	+100		V
11-13*	$\mathrm{V}_{11}$	+50		$v$
14-13*	$V_{14}$	+510		$V$
Picture tube heater voltage	V 1-2 (rms)	6.8	6.4	$\begin{aligned} & \text { V (typical load } \\ & 4.67 \mathrm{~W} \text { ) } \end{aligned}$

Scan voltage after rectification

	from pins $3-10$	$V_{3^{\prime}}$	+14	+13.2	$V_{\text {dc }}$ (load 3.4 W)
pins $4-10$	$V_{4^{\prime}}$	+38	+36	$V_{\text {dc }}(\operatorname{load} 24 \mathrm{~W})$	
Video supply		+228	+218	$V_{\text {dc }}(\operatorname{load} 3.0 \mathrm{~W})$	
	from pins $9-10$		+188	+178	$V_{\text {dc }}(\operatorname{load} 3.0 \mathrm{~W})$

[^12]
## APPLICATION CIRCUIT



Fig. 3

## QUICK REFERENCE DATA

Leht	$\max .1 .5 \mathrm{~mA}$
E. $\mathrm{H} . \mathrm{T}$.	8.4 kV
$\mathrm{R}_{1}$ (eht)	$2.0 \mathrm{M} \Omega$
$\mathrm{I}_{\mathrm{p}-\mathrm{p}}$ deflection	6.5 A
Load inductance (of line deflection)	1.12 mH
Supply voltage $\left.\left(\mathrm{V}_{\mathrm{B}}\right)^{\prime}\right)$	148 V
$\quad$ current $\left(\mathrm{I}_{\mathrm{B}}\right)$ at $\mathrm{I}_{\text {eht }}=1.5 \mathrm{~mA}$	605 mA
Voltages of aurdlary windings	$-320 \mathrm{~V}_{\mathrm{p}},-155 \mathrm{~V},+155 \mathrm{~V}_{\mathrm{p}},+320 \mathrm{~V}_{\mathrm{p}}$
	picture tube heater voltage

## APPLICATION

This transformer has been designed to provide the required scanning amplitude for 20AX $110^{\circ}$ colour picture tubes with a neck diameter of 36.5 mm in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 flelds per second (USA).

It is intended for use in conjunction with:

- deflection units AT1080, AT1083/01 or AT1085
- linearity control unit AT4042/38
- Line output transistor BU208A
- e.h.t. multiplier LP1194/40 or LP1196/40
according to circuit diagram of Fig. 3.


## DESCRIPTION

The magnetic circuit of the transformer comprises a Ferroxcube U- and a Ferroxcube I-core, clamped together with brackets. The primary windings, the secondary windings and the e.h.t. winding are situated on one leg of the core. The windings are impregnated in flame retardant polyester, meeting the self-extinguishing requirements of IEC65, para. 14.4 and UL492, para. 280-SE1. The transformer is provided with four mounting pins and two threaded holes for mounting. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1 enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

## MECHANICAL DATA

Dimensions (in mm) and terminals


Fig. 1

Weight $\quad 240 \mathrm{~g}$ approximately

## MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. It may be secured with M3 screws.
For mounting on a printed-wiring board the fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of 2.54 mm is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side)
Grid hole diameter
$1.3 \pm 0.1 \mathrm{~mm}$


Whether the transformer is board- or chassis mounted, the core must be earthed.

## Temperature

The operating temperature of the core and the coils should not exceed $105^{\circ} \mathrm{C}$, under worst conditions.

To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

## Distances

The following minimum distances between the transformer and neighbouring conductive flat surfaces (it should be noticed that edges of conductive parts must have a greater distance) must be maintained:
a. From the e.h.t. winding, radially 15 mm axially 10 mm
b. From the e.h.t. lead 15 mm

The transformer, and the leads and components carrying high voltage pulses should be kept free from metal particles, solder drops etc.

ELECTRICAL DATA

E.H.T. supply $I_{\text {eht }}$    e.h.t.    $R_{i(\text { eht })}$	mA   kV   M $\Omega$	$\begin{aligned} & 0.05 \\ & 24.9 \end{aligned}$ $1.8$	$\begin{array}{r} 1.5 \\ 22.0 \end{array}$
Power supply $\mathrm{V}_{\mathrm{B}}$    $\mathrm{V}_{\mathrm{B}}$    $\mathrm{I}_{\text {average }}$	V   V   mA	$\begin{aligned} & 159 \\ & 148 \\ & 400 \end{aligned}$	159 143 605
$\begin{array}{ll} \text { Output transistor } & { }^{\mathrm{V}_{\mathrm{CEM}}} \\ & +\mathrm{I}_{\mathrm{CM}} \end{array}$	v	1200 4.0	1150 4.0
Deflection $\mathrm{I}_{\mathrm{p}-\mathrm{p}}$    flyback    ratio   (average)     Overscan    Variation	A   \%'   \%   \%	$\begin{aligned} & 6.5 \\ & \\ & 11.6 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$	6.2
Focus voltage	kV	8.4	7.7
Auxiliary windings:   picture tube heater voltage $\mathrm{V}_{1}-2$   Voltages between pin 3-5   pin 4-5   pin 6-5   pin 7-5   pin $8^{*}$	$\begin{aligned} & \mathrm{v}_{\mathrm{rms}} \\ & \mathrm{v}_{\mathrm{p}} \\ & \mathrm{v}_{\mathrm{p}} \\ & \mathrm{v}_{\mathrm{p}} \\ & \mathrm{v}_{\mathrm{p}} \\ & \mathrm{v}_{\mathrm{d} . \mathrm{c} .} \end{aligned}$	$\begin{aligned} & 8.2 \\ & -320\left(+38 \mathrm{~V}_{\mathrm{d} . \mathrm{c} .}\right) \\ & 155\left(+14 \mathrm{~V}_{\mathrm{d} . \mathrm{c} .}\right) \\ & +155 \\ & +320 \\ & +224(159+65) \end{aligned}$	7.6

[^13]
## APPLICATION CIRCUIT


,

QUICK REFERENCE DATA	
Leht	max. 1.5 mA
E.H.T.	8.4 kV
$\mathrm{R}_{1}$ (eht)	$2.0 \mathrm{M} \Omega$
$\mathrm{L}_{\mathrm{p}-\mathrm{p}}$ deflection	6.4 A
Load inductance (of line deflection)	1.11 mH
$\begin{aligned} & \text { Supply voltage }\left(\mathrm{V}_{\mathrm{B}^{\prime}}\right) \\ & \text { current }\left(\mathrm{I}_{\mathrm{B}}\right) \text { at } \mathrm{L}_{\text {eht }}=1.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 148 \mathrm{~V} \\ & 690 \mathrm{~mA} \end{aligned}$
Voltages of auxiliary windings	$-380 \mathrm{v}_{\mathrm{p}},+155 \mathrm{~V},-155 \mathrm{v}_{\mathrm{p}},+320 \mathrm{v}_{\mathrm{p}}$   picture tube heater voltage

## APPLICATION

This transformer has been designed to provide the required scanning amplitude for 20AX $110^{\circ}$ colour picture tubes with a neck diameter of 36.5 mm in transistor equipped television receivers presenting 625 lines at 50 fields per second (CCIR) or 525 lines at 60 fields per second (USA).

It is intended for use in conjunction with :

- deflection units AT1080, AT1083/01 or AT1085
- linearity control unit AT4042/38
- line output transistor BU208A
- e.h.t. rectifier/multipliers LP1194/40 or LP1196/40
according to circuit diagram of Fig. 3.


## DESCRIPTION

The magnetic circuit of the transformer comprises a Ferroxcube $U$ - and a Ferroxcube I-core, clamped together with brackets. The primary windings, the secondary windings and the e.h.t. winding are situated on one leg of the core. The windings are impregnated in flame retardant polyester, meeting the self-extinquishing requirements of IEC65. para. 14.4 and UL492, para. 280-SE1. The transformer is provided with four mounting pins and two threaded holes for mounting. External circuit connection is made to connecting pins, positioned as indicated in Fig. 1 enabling the unit to be soldered directly into a printed-wiring board (Fig. 2).

## MECHANICAL DATA

Dimensions (in mm) and terminals


Fig. 1
Weight $\quad 240 \mathrm{~g}$ approximately

## AT2080/15

## MOUNTING

The transformer may be mounted on either a printed-wiring board or, under certain conditions, on a metal chassis. It may be secured with M3 screws.
For mounting on a printed-wiring board the fit of the connecting and the mounting pins in a printed-wiring grid with a pitch of 2.54 mm is illustrated in Fig. 2.

Fig. 2 Hole pattern for mounting on a printed-wiring board (solder side)
Grid hole diameter
$1.3 \pm 0.1 \mathrm{~mm}$


Whether the transformer is board- or chassis mounted, the core must be earthed.

## Temperature

The operating temperature of the core and the coils should not exceed $105{ }^{\circ} \mathrm{C}$, under worst conditions.

To satisfy this requirement it may be desired to provide ample cool air circulation around the transformer.

## Distances

The following minimum distances between the transformer and nelghbouring conductive flat surfaces (it should be noticed that edges of conductive parts must have a greater distance) must be maintained:
a. From the e.h.t. winding, radially 15 mm axially 10 mm
b. From the e.h.t. lead 15 mm

The transformer, and the leads and components carrying high voltage pulses should be kept free from metal particles, solder drops etc.
ELECTRICAL DATA


[^14]
## AT2080/15

## APPLICATION CIRCUIT



Fig. 3

## APPLICATION

The AT2095 output transformer has been designed for use in non-isolated parallel switched-mode power supplies operating over a range of 16 to 20 kHz .
It is used in conjunction with AT4043/03 driver transformer and switched-mode transistor BU126 and control i.c. TDA2640.
The magnetic circuit of the transformer comprises two Ferroxcube E-cores with an air gap in the centre pole. The unit is provided with pins for mounting on a printed circuit board. (See page 2 for dimensions)

## ELECTRICAL DATA

Inductance	Primary 8-9	$5 \pm 10 \%$	mH
D. C. Resistance	Primary 8-9	$0.63 \pm 10 \%$	$\Omega$
Leakage inductance	$1-2(8-9$ Shorted)	$\leq 7$	$\mu \mathrm{H}$
Turns ratio	Primary 8-9 to Secondary 1-2	$5: 1 \pm 4 \%$	
	Primary 8-9 to Secondary 6-7	$6.4: 1 \pm 4 \%$	
		115	${ }^{\circ} \mathrm{C}$

```
DIMENSIONS (millimetres)
```




Connections


APPLICATION CIRCUIT


## ADJUSTABLE LINE LINEARITY CONTROL UNIT

## APPLICATION

This unit has been designed for use in colour TV sets equipped with a $110^{\circ}$ deflection angle colour picture tube, to adjust the linearity of line deflection. It can be used in combination with the unit AT 1080 if parallel connected line coils are used.

## DESCRIPTION

The unit consists of a coil, mounted on a Ferroxcube rod, two Magnadur magnets and one plastoferrite magnet. One magnet has the shape of a ring and is placed around the Ferroxcube rod above the colls. One has the shape of a half ring and is placed around the Ferroxcube rod under the coils. The third magnet is cylindrical; it is positioned to, and clamped against the Ferroxcube rod opposite the half ring magnet. It is provided with a square hole to facilltate turning to adjust the biasing field and, therefore, the linearity of the line deflection.

## MECHANICAL DATA

Dimensions in mm


Fig. 2 Hole pattern for mounting on a printed-wiring board. Hole diameter 1. $3+0.1$

1) Hole (dia. 5.1 mm min. ) only necessary for bottom adjustment.


## ELECTRICAL DATA

The correction voltage is pre-adjusted to $23.5 \mathrm{~V} \pm 2.5 \%$ at a saw tooth current of 6.4 A peak-to-peak, frequency 15625 Hz , fly-back ratio $18 \%$ (without $S$-correction), flowing through winding 1-2. The voltage between pins 2 and 3 (pins 1 and 4 interconnected) is then $28.5 \mathrm{~V} \pm 10 \%$.


Fig. 3 Circuit diagram

## MOUNTING

The unit can be mounted on printed-wiring boards by means of its four connection pins (see Fig. 2). To prevent distortion of the magnetic field, no iron part should approach the magnetic parts nearer than 3 mm . The coils should be shunted with a carbon resistor to damp ringing phenomena; the value of resistor depends on applied deflection transformer (typical value $560 \Omega$ with transformer AT2076/10).

[^15]
## DRIVER TRANSFORMER <br> for use in switched mode power supplies in television receivers

AT4043/03

## APPLICATION

The transformer is used in conjunction with non-isolated transformer AT2095
It uses two Ferroxcube U-cores and it is provided with pins for mounting on a printed wiring board.

## DIMENSIONS (millimetres)



## CIRCUIT DIAGRAM



## ELECTRICAL DATA

Inductance	Primary (3-4)	$\geq 350$	mH
	Secondary (1-2) (with (3-4) Shorted)	$<5$	$\mu \mathrm{H}$
Absolute maximum operating temperature	115	${ }^{\circ} \mathrm{C}$	
Turns ratio	$21.74 \pm 4 \%$		



APPLICATION CIRCUIT


## APPLICATION

The transformer AT4043/29 has been designed for all-transistor colour television sets. It can be used in the single-transistor (BU208) line-output circuit in conjunction with the line -output transformer AT2063/03 and AT2080/. . .

## MECHANICAL DATA

The magnetic circuit of the transformer comprises two ferroxcube $U$-cores. The unit is provided with pins for mounting on a printed-wiring board.

## Dimensions (mm)



MOUNTING
$\emptyset 2$ min

Hole pattern for mounting on a printed-wiring board, hole diameter $1.3+0.1 \mathrm{~mm}$


E LECTRICA L DATA	
Inductance (prima ry)	$370 \mathrm{mH} \pm 12 \%$
Maximum working temperature	$100^{\circ} \mathrm{C}$

06636


## APPLICATION

This transformer has been designed for all-transistor or transistor/thyristor colour television sets. It is intended to be used in conjunction with the deflection unit AT 1080, which is provided with a 4-pole unit for equalisation of the line and field astigmatism (see also data sheet of AT 1080).

## MECHANICAL DATA

The magnetic circuit of the transformer comprises two Ferroxcubecores, an E-and an I-core. The unit is provided with pins for mounting on a printed-wiring board.

## Dimensions (mm)



Fig. 1

## Mounting



Fig. 2 Hole pattern for mounting on a printed-wiring board, hole diameter $1.3+0,1 \mathrm{~mm}$.

## ELECTRICAL DATA

Inductance between 1 and 6 , 3 and 4 interconnected

Maximum working temperature

$$
\begin{aligned}
& 7.3 \mathrm{mH} \pm 10 \% \\
& 105{ }^{\circ} \mathrm{C}
\end{aligned}
$$



Fig. 3 Connection diagram

Application circuit


Fig. 4

## APPLICATION

For use as a bridge transformer in the line output transformer circuit of the AT2080/10, in conjunction with the deflection unit AT1080 (see also data sheet AT2080/10).
The magnetic circuit of the coil comprises two Ferroxcube $U$-cores. The unit is provided with pins for mounting on a printed-wiring board.

## Dimensions (millimetres)




Hole pattern for mounting on a printed-wiring board. Hole diameter $1.3 \mathrm{~min} . e=2.54 \mathrm{~mm}(0.1 \mathrm{in})$.

## ELECTRICAL DATA

Inductance (primary 1-2)
Resistance (primary 1-2)
Maximum voltage, peak-to -peak
Maximum current, peak-to-peak
Maximum current, r.m.s.
Maximum working temperature
$425 \mu \mathrm{H} \pm 10 \%$
$<0.4 \Omega$
400 V
6.7 A
1.8 A
$100^{\circ} \mathrm{C}$


## GENERAL

Designed for use with line output transformer AT2080 and deflection unit AT1080. The coil is provided with pins for mounting on a printed wiring board, and it can be adjusted by means of a trimming key.

DIMENSIONS (millimetres)



Recommended piercing diagram


Circuit diagram

## E LECTRICAL DATA

Inductance between 3 and 4 (measured with 5000 pF in parallel 1 to 5.3 mH
Resistance between 3 and 4
$2 \Omega$

MAXIMUM WORKING TEMPERATURE
95
${ }^{0} \mathrm{C}$

## LINE BALANCE COIL

## APPLICATION

This coil has been designed for the circuitry of the four-pole unit incorporated in the deflection unit AT1080, for equalization of line and field astigmatism (see also data on AT1080).

## MECHANICAL DATA

## Dimensions (mm)



Fig. 1
The coil is provided with pins for mounting on a printed-wiring board. It can be adjusted at the top by means of a trimming key.


Fig. 2 Hole pattern for mounting on a printed-wiring board, hole dia $1,3+0,1 \mathrm{~mm}$

## ELECTRICAL DATA



Fig. 3 Connection diagram

Pins 2 and 4 should be interconnected.

[^16]
## APPLICATION

This correction coil has been designed for the circuitry of the four-pole unit incorporated in the deflection unit AT 1080, for equalization of line astigmatism (see also data on AT 1080).

## MECHANICAL DATA

## Dimensions (mm)



Fig. 1

The coil is provided with pins for mounting on a printed-wiring board. It can be adjusted at the top by means of a trimming key.


Fig. 2 Hole pattern for mounting on a printed-wiring board, hole dia $1,3+0,1 \mathrm{~mm}$

## ELECTRICAL DATA

Inductance, measured with 5000    between 3 and 5 $*$ )   between 4 and 5 $*)$	$\begin{aligned} & 33 \text { to } 150 \mu \mathrm{H} \\ & 150 \text { to } 33 \mu \mathrm{H} \end{aligned}$
Resistance at $25{ }^{\circ} \mathrm{C}$	
between 1 and 2	0,23 $\Omega$
between 3 and 4	$0,18 \Omega$
Maximum working temperature	$95^{\circ} \mathrm{C}$.



Fig. 3. Connection diagram

[^17]QUICK REFERRNCE DATA
For receivers up to L̇uropean PAI, standard.

Nominal frequency	4.433619	MHz
Phase delay time	63.943	$\mu \mathrm{~s}$
Dimensions	$71 \times 7.5 \times 38$	mm
Self-extinguishing properties		



## APPLICATION

The DL50 is intended for use in decoder circuits of colour television receivers.

## DESCRIPTION

A very thin slab of zero TC glass, provided with two transducers, is shock proof mounted in a sultable housing that complics with the self extinguishing and nondripping properties of the American Underwriters Laboratories rating mentioned in UL94 SE-1. Six pins enable the unit to be soldered directly into a printed wiring board. Input and output coil are not to be included.

First angle projection



Piercing diagram

## ELECTRICAL DATA

Measured at $25^{\circ} \mathrm{C}$ according to the measuring circuit of Fig. 3.

Nominal frequency ( $\mathrm{f}_{\text {nom }}$ )	4.433619	MHz
Phase delay time ( $\tau$ ) between $\mathrm{V}_{1}$ and $V_{2}$ at $f_{\text {nom }}$ (unmodulated) sinewave voltage	$63.943 \pm 0.005$	$\mu \mathrm{s}$
Bandwidth at -3 dB	from < 3.43 to $>5.23$	MHz
Insertion loss at $f_{\text {nom }}$	$8 \pm 3$	dB
Drift of phase delay with temperature (relative to $25^{\circ} \mathrm{C}$ )	max. 5, typ. 3	ns
Maximum input voltage at $\mathrm{f}_{\text {nom }}$	15	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Unwanted reflections at $3 \tau$	$\leq-22$ with respect to $1 \tau$ signal	dB
Other reflections	$\leq-30$ with respect to $1 \tau$ signal	dB
Operating temperature range	-20 to +70	${ }^{\circ} \mathrm{C}$
Nominal terminations at $f$ nom		
R1, R2 termination resistance	390	$\Omega$
Cl total capacitance	120	pF
L1 inductive reactance	128	$\Omega$
L2 inductive reactance	231	$\Omega$



Fig. 3
Recommended adjustment range of the coils -19 to +36 \%
Maximum capacitance of the coils $20 \quad \mathrm{pF}$

QUICK REFERENCE DATA	
For receivers to European PAL/SECAM standard	
Nominal frequency	4.433619 MHz
Phase delay time	$63.943 \mu \mathrm{~s}$
Dimensions	$71 \times 7,5 \times 37,5 \mathrm{~mm}$
Self-extinguishing properties	

## APPLICATION

The DL51 is intended for use in decoder circuits of colour television receivers.

## DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is mounted shock proof in a housing, that complies with the self-extinguishing and non-dripping properties of the American Underwriters' Laboratories rating mentioned in UL94 SE-1 Six pins enable the unit to be soldered directly into a printed-wiring board. Input and output coil are not included.

## MECHANICAL DATA

Dimensions (mm)


Fig. 1


Weight 16 g

## Mounting

The unit can be soldered directly into a printed-wiring board.


Fig. 2.
Recommended hole pattern for mounting on a printed-wiring board. $\mathrm{e}=2,54 \mathrm{~mm}$. The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. Hole diameter is $1,3 \pm 0,1 \mathrm{~mm}$.

## DELAY LINE

## ELECTRICAL DATA

Measured according to the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\text {nom }}$ (unless otherwise specified)

Nominal frequency ( $f_{\text {nom }}$ )
Phase delay time ( $\tau$ ) between $\mathrm{V}_{1}$ and $V_{2}$ (unmodulated sinewave voltage)

Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $25^{\circ} \mathrm{C}$ )

Maximum input voltage ( $p-p$ )
Unwanted reflections,
$3 \boldsymbol{T} \quad \leq-22 \mathrm{~dB}$ with respect to $1 \tau$ signal
other reflections
Operating temperature range
4.433619 MHz
$63.943 \pm 0.005 \mu \mathrm{~s}$
from $\leq 3.43$ to $\geq 5.23 \mathrm{MHz}$
$8 \pm 3 \mathrm{~dB}$
max. 5 ns, typ. 3 ns ${ }^{1}$ )
15 V
$\leq-22 \mathrm{~dB}$ with respect to $1 \tau$ signal
$\leq-35 \mathrm{~dB}$ with respect to $1 \tau$ signal
-20 to $+70^{\circ} \mathrm{C}$

## Measuring circuit

Fig. 3


Nominal terminations

R1. R2	termination resistance	$390 \Omega$
C1	total capacitance	120 pF
L1	inductive reactance	$128 \Omega$
L2	inductive reactance	$231 \Omega$


Recommended adjustment range of the coils	-19 to $+36 \%$
Maximum capacitance of the coils	20 pF

## QUICK REFERENCE DATA

For receivers up to European PAL standard
Nominal frequency $\quad 4,433619 \mathrm{MHz}$
Phase delay time
63,943 $\mu \mathrm{s}$
Dimensions
$37 \times 7,5 \times 28,5 \mathrm{~mm}$
Self-extinguishing properties

## APPLICATION

The DL60 is intended for use in decoder circuits of colour television receivers.

## DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof motented in a housing that satisfies the flame test described in IEC 50 C (secretariat) 11. Four pins enable the unit to be soldered directly onto a printed-wiring board.

## Outlines



Fig. 1
Mass
$7 g$

## Mounting

The unit can be soldered directly onto a printed-wiring board.


Fig. 2.
Recommended hole pattern for mounting on a printed-wiring board: $\mathbf{e}=\mathbf{2 , 5 4} \mathbf{m m}$ The tolerance on the distances of the different holes to the 0 -line is $\pm 0,1 \mathrm{~mm}$. . Hole diameter is $1,0+0,1 \mathrm{~mm}$.

## ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{o}}$ (unless otherwise specified)

Nominal frequency ( $f_{0}$ )
Phase delay time ( $\tau$ )
Bandwidth at -3 dB
Insertion loss
Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$ (relative to $+25^{\circ} \mathrm{C}$ )

Maximum input voltage ( $p-p$ )
Spurious signals
$3 \tau$ signals
other signals
Phase relation $\varphi_{4-3}-\varphi_{2-1}$
Storage temperature range
$4,433619 \mathrm{MHz}$
$63,943 \pm 0,005 \mu \mathrm{~s}$
from $\leq 3,43$ to $\geq 5.23 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$
max. 5 ns, typ. 3 ns
10 V
$\leq-22 \mathrm{~dB}$ with respect to $1 \tau$ signal
$\leq-30 \mathrm{~dB}$ with respect to $1 \tau$ signal
$180^{\circ}$
-40 to $+70^{\circ} \mathrm{C}$


Fig. 3.
Terminations
$\mathbf{R} 1=\mathbf{R} 2=560 \Omega$
$\mathrm{Cl}=20 \mathrm{pF} \quad$ total capacitance of test jig without delay-line i.e. wiring $\mathrm{C} 2=30 \mathrm{pF}\}$ capacitance, capacitance of coil and extra trimming capacitor.
$L 1=10.5 \mu \mathrm{H}$
$L 2=9,7 \mu \mathrm{H}$

## Application circuit



Fig. 4
$\left(R_{L} / / Z_{i}\right)=560 \Omega$
$\mathrm{C} 1, \mathrm{C} 2<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C1 and C2 to produce the reactances:

$$
\begin{aligned}
& \mathrm{X} 1=\frac{\omega_{0} \mathrm{~L} 1}{1-\omega_{0}^{2} \mathrm{~L} 1 \mathrm{C} 1}=350 \Omega \\
& \mathrm{X} 2=\frac{\omega_{0} \mathrm{~L} 2}{1-\omega_{0}^{2} \mathrm{~L} 2 \mathrm{C} 2}=350 \Omega \\
& \mathrm{f}_{0}=4,4.33619 \mathrm{MHz}
\end{aligned}
$$

Maximum bandwidth is obtained at minimum Cl and C2.
Recommended adjustment range of the coils -19 to $+36 \%$.

## DEVELOPMENT SAMPLE DATA

## QUICK REFERENCE DATA

```
For receivers up to European PAL standard
Nominal frequency 4.433619 MHz
Phase delay time 63.943 \mus
Dimensions }\quad37\times7.5\times28.5\textrm{mm
Self-extinguishing properties
```


## APPLICATION

The DL700 is intended for use in decoder circuits of colour television receivers. It is physically interchangeable with the DL50 and DL60

## DESCRIPTION

A very thin slab of zero TC glass provided with two transducers is shock-proof mounted in a housing that satisfies the flame test described in IEC 50 C .
Four pins enable the unit to be soldered directly onto a printed-wiring board.

## Outlines



Fig. 1
Mass
$7 g$

## Mounting

The unit can be soldered directly onto a printed-wiring board.


Fig. 2

Recommended hole pattern for mounting on a printed-wiring board: $e=2.54 \mathrm{~mm}$ The tolerance on the distances of the different holes to the 0 -line is $\pm 0.1 \mathrm{~mm}$. Hole diameter is $1.0 \pm 0.1 \mathrm{~mm}$

## ELECTRICAL DATA

Measured with the circuit of Fig. 3 at $25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{o}}$ (unless otherwise specified)
Nominal frequency ( $f_{0}$ )
Phase delay time ( $\tau$ )
Bandwidth at -3 dB
4.433619 MHz

Insertion loss
$63.943 \pm 0.005 \mu \mathrm{~s}$

Drift of phase delay from +10 to $+60^{\circ} \mathrm{C}$
(relative to $+25^{\circ} \mathrm{C}$ )
Maximum input voltage ( $p-p$ )
from $\leq 3.43$ to $\geq 5.23 \mathrm{MHz}$
$9 \pm 3 \mathrm{~dB}$

Spurious signals
$3 \tau$ signals $\quad \leq-22 \mathrm{~dB}$ with respect to $1 \tau$ signal
other signals
Phase relation $\phi_{4-3}$ - $\phi_{2-1}$
$\leq-30 \mathrm{~dB}$ with respect to $1 \tau$ signal

Storage temperature range
max. 5 ns, typ. 3 ns
10 V
$180^{\circ}$
-40 to $+70^{\circ} \mathrm{C}$


Fig. 3

Terminations
$\mathbf{R I}=\mathbf{R 2}=390 \Omega$
$\mathrm{Cl}=20 \mathrm{pF} \quad\}$
$\mathrm{C} 2=30 \mathrm{pF}$
total capacitance of test jig without delay-line i.e. wiring
$L_{1}=8.64 \mu \mathrm{H}$
$L 2=8.10 \mu \mathrm{H}$
capacitance, capacitance of coil and extra trimming capacitor.


Fig. 4
$\left(\mathrm{R}_{\mathrm{L}} / / \mathrm{Z}_{\mathrm{i}}\right)=390 \Omega$
$\mathrm{C} 1, \mathrm{C} 2<30 \mathrm{pF}$ (wiring capacitance and capacitance of the coil)
L1, L2 nominal values depend on values of C 1 and C 2 to produce the reactances:

$$
\begin{aligned}
& \mathrm{X} 1=\frac{\omega_{\mathrm{O}} \mathrm{~L} 1}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 1 \mathrm{C} 1}=278 \Omega \\
& \mathrm{X} 2=\frac{\omega_{\mathrm{O}} \mathrm{~L} 2}{1-\omega_{\mathrm{o}}^{2} \mathrm{~L} 2 \mathrm{C} 2}=278 \Omega
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{o}}=4.433619 \mathrm{MHz}
$$

Maximum bandwidth is obtained at minimum Cl and C 2 .
Recommended adjustment range of the coils -19 to $+36 \%$.

The VS series of luminance delay lines are designed for delaying the luminance signals at video frequencies in colour television receivers. Delay times in the range of $t_{d}=340$ to 600 ns can be supplied to relate to the various set circuit and transmitter encodings. To cover this range the number of turns on the winding is varied and two different ceramic materials are employed. Therefore the characteristics of the delay lines do not vary uniformly with the delay time. The compact outline complies with modern requirements for miniaturisation and modular construction. The cylindrical ceramic body has fired-on silver lacquer tracks and the encapsulation ensures adequate protection against humidity and temperature as well as mechanical damage.

QUICK REFERENCE DATA			
VS340 /1		340	ns
VS400/1		400	ns
VS470/1 $\quad$ delay times	typ.	470	ns
VS550 /1		550	ns
VS600 /1			ns
Insertion loss	typ.	1	dB
Reflection coefficient	$<$	2	\%

OUTLINE AND DIMENSIONS (millimetres)


RATINGS Limiting values of operation according to the Absolute Maximum System.

Input voltage	$\mathrm{V}_{1-3}$	100	V
Input current	$\mathrm{I}_{1-2}$	30	mA
Operating temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-20 to +100	${ }^{\circ}{ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

The characteristics for the delay time ( $t_{d}$ ), rise time ( $t_{r}$ ), overshoot (ï) and reflection ( $r$ ) are measured in the test circuit shown below.

## Test circuit



Delay time
The delay time $t_{d}$ will be within $\pm 10 \%$ of the nominal value (max. $\pm 50 \mathrm{~ns}$ )

## Reflection

With terminations of the required standard resistance ( $Z=f\left(t_{d}\right)$ the reflection is typically less than $2 \%$. This value applies to all types in the range.

## Insertion loss

The insertion loss at low frequencies ( $f \lll B$ ) measured assuming that $R_{1}=R_{0}=Z$, increases approximately with the delay time and has a maximum value of 2 dB .

## ELECTRICAL DATA

Type No.	Delay time   ns	Impedance $Z$   $\Omega$	Bandwidth		Reflection r	
		min.   MHz	typ.   $\%$	max   $\%$		
VS340/1	340	1000	8.0	7.0	1.8	4.0
VS400/1	400	1200	7.0	6.0	1.8	4.0
VS470/1	470	1300	7.0	6.0	1.8	4.0
VS550/1	550	820	4.2	3.8	1.8	4.0
VS600/1	600	910	4.2	3.8	1.8	4.0

## QUARTZ CRYSTAL UNIT

## QUICK REFERENCE DATA

## Nominal frequency

Mode of vibration
Type of holder

8867, 238 Hz
fundamental
RW-10

## APPLICATION

Intended to be used in the sub-carrier oscillator of colour television sets according to the PAL system.

## DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a resistance welded metal holder, provided with two connecting leads.

## MECHANICAL DATA

Dimensions in mm
Outline


## MARKING

The holder is marked as follows
Frequency in kHz


5 digit code number (0312)
Date code (year/week)
Note: The last digit of the code number signifies the factory production specification and should not be used for ordering purposes.

## MASS

approx. 2 g

## ELECTRICAL DATA*

Unless otherwise specified the values apply at a temperature of $25 \pm 2^{\circ} \mathrm{C}$
Load resonance frequency, load capacitance 20 pF drive level 0.5 mW
Adjustment tolerance
Tolerance over the temperature range of +10 to $+60^{\circ} \mathrm{C}$, with respect to $+25^{\circ} \mathrm{C}$
Trimability at a load capacitance of 20 pF with a load capacitance variation of 10 pF
Motional capacitance ( $\mathrm{C}_{1}$ )
Parallel capacitance ( $C_{0}$ )
Resonance resistance
in temperature range of +10 to $+60^{\circ} \mathrm{C}$ between terminations
Operating temperature range
8867, 238
kHz
$\pm$ max. $\quad 40 \times 10^{-6}$
$\pm$ max. $\quad 30 \times 10^{-6}$

min.	950	Hz
typ.	21	fF
max.	6	pF
typ.	5	pF
typ.	15	$\Omega$
max.	60	$\Omega$

Maximum permissible d.c. voltage

100 V
+10 to $+60 \quad{ }^{\circ} \mathrm{C}$

[^18]
## TESTS AND REQUIREMENTS

Essentially the following tests mentioned in the schedule of IEC publication 122 are carried out along the lines of IEC publication 68.

IEC 122 clause	$\begin{gathered} \text { IEC } 68-2 \\ \text { test } \\ \text { method } \end{gathered}$	test	procedure	requirements
2.5.17	-	Aging	30 days, $+85{ }^{\circ} \mathrm{C}$	$\Delta \mathrm{f} / \mathrm{f} \pm$ max. 15 ppm
2.5.12	Db	Damp heat accelerated	$\begin{aligned} & 1 \text { day, }+55{ }^{\circ} \mathrm{C} \\ & 100 \% \text { R.H. } \end{aligned}$	$\Delta \mathrm{f} / \mathrm{f} \pm$ max. 10 ppm $\mathrm{R}_{\text {ins }}$ at 50 V d.c. $\min .20 \mathrm{M} \Omega$
	Na	Rapid change of temperature	$\begin{aligned} & -20 /+50^{\circ} \mathrm{C} \\ & 15 \text { cycles } \\ & 1 \mathrm{~h} \text { per cycle } \end{aligned}$	$\Delta f / f \pm$ max. 5 ppm
2.5.2	Ea	Shock	40 g , sawtooth 6 directions, 1 blow per direction	$\Delta f / f \pm$ max. 5 ppm   $\Delta R / R \pm \max .15 \%$
2.5.3	Fc	Vibration	$10-55-10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ displacement $2 \mathrm{~h}, 3$ directions*	$\Delta f / f \pm$ max. 5 ppm $\Delta R / R \pm \max .15 \%$
2.5.6	Ub	Flexibility of terminations	$1 \times 90^{\circ}, 5 \mathrm{~N}$	no visible damage
2.5.10	$T$	Soldering	$300{ }^{\circ} \mathrm{C}, 2 \mathrm{~s}$	$\Delta f / f \pm$ max. 2 ppm good tinning no visible damage

*The batch is divided into three equal parts, each part is tested in one of the three perpendicular directions.

## ORDERING

Crystals should be ordered using the full catalogue number e.g. 432214303120.

## QUARTZ CRYSTAL UNIT

## QUICK REFERENCE DATA

Nominal frequency	$4433,619 \mathrm{kHz}$
Mode of vibration	fundamental
Type of holder	$\mathrm{RW}-10$

## APPLICATION

Intended to be used in the sub-carrier oscillator of colour television sets according to the PAL system.

## DESCRIPTION

The unit consists of a metal-plated AT-cut quartz plate, mounted in a resistance welded meta! holder, provided with two connecting leads.

MECHANICAL DATA
Outline


Dimensions in mm

## MARKING

The holder is marked as follows


Frequency in kHz
5 digit code number (0110).
Date code (year/week)
Note: The last digit of the code number signifies the factory production specification and should not be used for ordering purposes.

## ELECTRICAL DATA*

Unless otherwise specified the values apply at a temperature of $25 \pm \mathbf{2 ~}^{\circ} \mathrm{C}$
Load resonance frequency,
load capacitance 20 pF
drive level $0.5 \mathrm{~mW} \quad 4433,619 \mathrm{kHz}$
Adjustment tolerance
Tolerance over the temperature range of +10 to $+60^{\circ} \mathrm{C}$, with respect to $+25^{\circ} \mathrm{C}$
Trimability at a load capacitance of 20 pF
with a load capacitance variation of 10 pF
Motional capacitance ( $\mathrm{C}_{1}$ )
Parallel capacitance ( $\mathrm{C}_{0}$ )

Resonance resistance
in temperature range of +10 to $+60^{\circ} \mathrm{C}$
Maximum permissible d.c. voltage between terminations

Operating temperature range
$\pm$ max. $\quad 40 \times 10^{-6}$
$\pm \max . \quad 30 \times 10^{-6}$

min.	600	Hz
typ.	29	$f F$
max.	7	pF
typ.	6.5	pF
typ.	15	$\Omega$
max.	50	$\Omega$


100	$V$
+10 to +60	${ }^{\circ} \mathrm{C}$

[^19]
## TESTS AND REQUIREMENTS

Essentially the following tests mentioned in the schedule of IEC publication 122 are carried out along the lines of IEC publication 68.

IEC 122 clause	IEC 68-2   test method	test	procedure	requirements
2.5.17	-	Aging	30 days, $+85{ }^{\circ} \mathrm{C}$	$\Delta f / \mathrm{fmax} .15 \mathrm{ppm}$
2.5.12	Db	Damp heat accelerated	$\begin{aligned} & 1 \text { day, }+55{ }^{\circ} \mathrm{C} \\ & 100 \% \text { R.H. } \end{aligned}$	$\Delta \mathrm{f} / \mathrm{f} \pm$ max. 10 ppm $R_{\text {ins }}$ at 50 V d.c. $\min .20 \mathrm{M} \Omega$
	Na	Rapid change of temperature	$-20 /+50^{\circ} \mathrm{C}$   15 cycles   1 h per cycle	$\Delta f / f \pm$ max. 5 ppm
2.5.2	Ea	Shock	40 g , sawtooth 6 directions, 1 blow per direction	$\Delta f / f \pm$ max. 5 ppm $\Delta R / R \pm \max .15 \%$
2.5.3	Fc	Vibration	$10-55-10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ displacement $2 \mathrm{~h}, 3$ directions*	$\Delta f / f$ max. 5 ppm $\Delta R / R \pm \max .15 \%$
2.5.6	Ub	Flexibility of terminations	$1 \times 90^{\circ}, 5 \mathrm{~N}$	no visible damage
2.5.10	T	Soldering	$300{ }^{\circ} \mathrm{C}, 2 \mathrm{~s}$	$\Delta f / f \pm$ max. 2 ppm good tinning no visible damage

*The batch is divided into three equal parts, each part is tested in one of the three perpendicular directions.

## ORDERING

Crystals should be ordered using the full catalogue number e.g. 432215201100.

## MODULES



E

-


,
$\cdots \mathrm{O}$
,
+
,
,
$\cdots$
-
-
"
,
$\cdots$
,
,
$\cdots$
,
者
"

DEVELOPMENT SAMPLE DATA

Voltage tripler designed for domestic high performance colour television receivers. The electrical operation is entirely conventional and it can be used in a standard system. However, every aspect of component design and assembly has been re-assessed and only the optimum solutions have been adopted in order that the tripler can be characterised by its intrinsic reliability.

	QUICK REFERENCE DATA	
$\mathrm{V}_{\text {in }}$ (peak-to-peak)	8.3	kV
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d.c.)	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	8.3	kV

DIMENSIONS (milimetres)


## CIRCUIT DIAGRAM



This information is derived from development samples made available for evaluation. It does not form part of our data handbock system and does not necessarily imply that the device will go into production

RATINGS (Limiting values according to the Absolute Maximum System)
$\mathrm{V}_{\text {in }}$ (peak-to-peak) $\quad 10.6 \mathrm{kV}$
$V_{\text {out }}\left(\mathrm{I}_{\text {out }}=0\right) \quad 30 \mathrm{kV}$
Focus to e.h.t. voltage 20 kV
Lout (e.h.t.) 1.7 mA
$\mathrm{I}_{\text {out }}$ (clipping diode)* $\quad 4.0 \mathrm{~mA}$
Focus current 0.4 mA
$\mathrm{T}_{\mathrm{amb}}$ (tripler) $\quad 70 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathbf{s t g}} \quad-25$ to $+70 \quad{ }^{\circ} \mathrm{C}$
*Clipping diode current is the sum of the clipping diode load plus focus and e.h.t. currents.

TYPICAL OPERATING CONDITIONS
$V_{\text {in }}$ (peak-to-peak)
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d.c.)
8.3 kV
$\mathrm{V}_{\text {out }}$ (focus supply (d.c.)
kV
$\mathrm{I}_{\text {out }}$ (e.h.t. supply) (d.c.)
kV
$\mathrm{I}_{\text {out }}$ (focus supply) (d.c.)
0.25
mA

Internal impedance
( $\mathrm{H}_{\text {out }}=0.1$ to 1.5 mA ) $<0.5 \quad \mathrm{M} \Omega$
Surge limiting resistor
Input capacitance
$9 \pm 1.0 \quad \mathrm{pF}$

## VOLTAGE MULTIPLYING MODULE

## MOUNTING PRECAUTIONS

Sufficient clearance must be maintained around the tripler body to prevent corona and detuning as shown below.
Components or other conducting parts shall not be introduced within the volume specified.


Section through
$A A^{\prime}$ Dotted line indicates prohibited volume


All dimensions in mm

[^20]
## MOUNTING

Is intended to be versatile in either of the two mounting faces.


## PRODUCT SAFETY

For the safety of operators it is recommended that precautions should be taken to prevent personnel from coming within 2 inches of the tripler body or its leads and connections unless the device is not energised and is fully discharged. The module is sold in compliance with a valid BS415 certificate.

## AVAILABLE FOR CURRENT PRODUCTION; NOT INTENDED FOR NEW DESIGNS

The modules generate e.h.t. and focus voltage from line output pulses to supply colour picture tubes. To be used in conjunction with AT2055 or AT2056 line output transformers.

QUICK REFERENCE DATA		
$\mathrm{v}_{\text {in }}$ (peak-to-peak)	8.7	kV
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d.c.)	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	7.7	kV
$\mathrm{I}_{\text {out }}$ (e.h.t. supply) (average)	1	mA
$\mathrm{I}_{\text {out }}$ (focus supply) (average)	100	$\mu \mathrm{~A}$

## MOUNTING PRECAUTIONS

A separation of at least 15 mm between any part of the main module body or its leads and any metal parts of the receiver is essential to avoid any capacitive discharge current and detuning effects of the line output transformer. Mounting brackets must be confined to the module mounting flanges.

TYPE NUMBER DESIGNATION

Type No.	Number of		
	capacitors	diodes	surge limiting resistors
LP1174/1x	4	5	None
LP1174/3x	5	5	1
LP1174/4x	5	6	1

$x=$ variations in lead lengths and terminations.

## CASE AND TERMINATIONS

The modules are encapsulated in a flame retardant plastic case. Connections are by means of flying leads (termination No. 1 can also be supplied with a pin) which are flame retardant to IEC197.

Termination No.	Function	Type of termination
1	Input	Flying lead or pin
2	Earth	Flying lead
3	Focus voltage	Flying lead
4	E.H.T. output	Flying lead

DIMENSIONS (millimetres)


## E LECTRICAL DATA

Typical operation conditions

Vin (peak-to-peak) ${ }^{1}$ )	8.7	kV
Vout (e.h.t. supply) (d.c.)	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	7.7	kV
$I_{\text {out }}$ (e.h.t. supply)	1	mA
$\mathrm{I}_{\text {out }}$ (focus supply)	100	$\mu \mathrm{A}$
E.H.T. regulation (0 to 1.5 mA )	1.3	$\mathrm{M} \Omega$

Limiting vahes - these are the absolute operating limits which must not be exceeded under any conditions.

Vin (peak-to-peak)	10.5	kV	
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d.c.)	2)	31	kV
$\mathrm{I}_{\text {out }}$ (e.h.t. + focus)	2	mA	
$\mathrm{~T}_{\text {amb }}$	60	${ }^{\circ} \mathrm{C}$	

## CIRCUIT DIAGR AMS

See next page

[^21]
## CIRCUIT DIAGR AMS



LP1174/4x


## QUICK REFERENCE DATA

The modules generate e.h.t. and focus voltages from line time base pulses, to supply colour picture tubes.

	Circuit A	Circuit B	
$\mathrm{V}_{\text {in }}$ (peak-to-peak)	8.3	8.6	kV
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d. c.)	25	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	8.3	7.7	kV

TYPE NUMBERS
LP1 194/30 - A five capacitor, five diode module with surge limiting resistor. LP1194/40-As LP1194/30 with a clipping diode across the input.

DIMENSIONS (millimetres)


Terminations:
$1=$ Input
$2=$ Earth
$3=$ Focus
$4=$ Output

Fig. 1

## MOUNTING PRECAUTIONS

A separation of at least 15 mm between any part of the main module body or its lead and any metal parts of the receiver is essential to avoid any capacitive discharge current and detuning effects of the line output transformer. Mounting brackets must be confined to the module mounting flanges.

## E LECTRICAL DATA

Typical operating conditions (where used in typical application circuits A or B)
Circuit A Circuit B

$\mathrm{V}_{\text {in }}$ (peak-to-peak)	8.3	8.6	kV
$\mathrm{V}_{\text {out }}$ (e.h.t. supply) (d.c.)	25	25	kV
$\mathrm{I}_{\text {out }}$ (e.h.t.) (d.c.)	1	1	mA
$\mathrm{I}_{\text {out }}$ (focus) (d.c.)	0.4	0.1	mA
E. H. T. regulation (0 to 1.5 mA$)$	2	2.4	$\mathrm{M} \Omega$

Limiting values
These are absolute operating conditions which must not be exceeded under any condition.

$\mathrm{V}_{\text {in }}$ (peak-to-peak)	10.4	10.8	kV
$\mathrm{V}_{\text {out }}$ (e.h.t.)	31.2	31.5	kV
$\mathrm{I}_{\text {out }}$ (clipping diode)	2.5	2.5	mA
$\mathrm{~T}_{\mathrm{amb}}$	60	60	${ }^{\circ} \mathrm{C}$

For other limiting values see figures 2 and 3.


Fig. 2


Fig. 3

## VOLTAGE MULTIPLYING MODULES

LP1194
Series

TYPICAL APPLICATION CIRCUITS

## Circuit A

With this a rrangement the $A_{1}$ diode may be omitted. This configuration is shown for $110^{\circ}$ operation.

The beam circuit limiting components may be removed, if not required, and point $B$ connected to earth.


Fig. 4


Fig. 5

## Circuit B

For a 7 kV overwind, connected to the primary. This configuration is used mainly in $90^{\circ}$ time bases and the circuit shown is for $90^{\circ}$ operation.


Fig. 6

Both configurations shown in Figs. 4 and 6 may of course be used in either $90^{\circ}$ or $110^{\circ}$ operation. The connections between the overwind and tripler will rema in the same for both deflection angles.

New range of Mullardvoltage multiplying modules conforming to the 'European Standard' outline. This range is intended for new colour television chassis designs where space saving is an important consideration.

	QUICK REFERENCE DATA	
	LP1196/60	kV
$V_{\text {in }}$ (peak to peak)	8.3	kV
$\mathrm{V}_{\text {out }}$ (e. h.t. supply) (d.c.)	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	8.3	

TYPE NUMBERS
LP1196/40 - A five capacitor, six diode module with surge limiting resistor and with the clipping diode across the input.
LP1196/60 - As LP1 196/40 with separate lead out for the clipping diode.
DIMENSIONS (millimetres)


Terminations

$$
\begin{aligned}
& 1=\text { input } \\
& 2=\text { earth } \\
& 3=\text { focus } \\
& 4=\text { output } \\
& 5 \text { = clipping diode }
\end{aligned}
$$

## TYPICAL OPERATING CONDITIONS

$\mathrm{V}_{\text {in }}$ (peak-to-peak) (d.c.)	8.3	kV
$\mathrm{V}_{\text {out }}$ (e. h.t. supply) (d.c.)	25	kV
$\mathrm{V}_{\text {out }}$ (focus supply) (d.c.)	8.3	kV
$\mathrm{I}_{\text {out }}$ (e. h.t. supply) (d.c.)	1.0	mA
$\mathrm{~L}_{\text {out }}$ (focus supply) (d.c.)	0.25	mA
Internal impedance	$<1$	$\mathrm{M} \Omega$
Surge limiting resistor	60	$\mathrm{k} \Omega$
Input capacitance	10	pF

## MOUNTING PRECAUTIONS

A minimum clearance of 25 mm is essential around all surfaces except the base, to prevent breakdown and detuning effects. This is only necessary above an angle of 450 from the base of the module.


## HEALTH AND SAFETY

The module is sold in compliance with a valid BS 415 certificate. It is designed to meet the normal conditions of use in a television set with regard to corona, insulation etc. However, the volume of minimum clearance as defined above, under mounting precautions, and within $2^{\prime \prime}$ of exposed terminations, must be considered as always being hazardous to personnel unless fully discharged.

RATINGS (Limiting values of operation according to the Absolute Maximum System).

Input voltage (peak-to-peak)	10.6	kV
Ambient temperature (tripler)	60	${ }^{\circ} \mathrm{C}$
Output voltage ( $\mathrm{L}_{\text {out }}=0$ )	30	kV
Output current (e.h.t. )	1.7	mA
Focus current	0.4	mA
Clipping diode current	4.0	$\mathrm{~mA}^{*}$
Storage temperature	-25 to +70	$0^{\circ} \mathrm{C}$
Focus to e.h.t. voltage	20	kV

*The clipping diode current is the sum of the clipping diode load current plus the focus and e.h.t. currents.

LP1196/40


LP1196/60


## INDEX TO BOOK 3 PART 5

LOUDSPEAKERS, TELEVISION ASSEMBLIES AND MODULES

Type No.	Section						
AD0140/T	A	AD4890/X	A	AT1074	C	DL51	D
AD0162/T	A	AD5060/Sq	A	AT1080	D	DL60	D
AD0163/T	A	AD5061/M	A	AT 1081	D	DL700	D
AD2010/Sq	A	AD5061/Sq	A	AT1083/01	D	ELC1042	B
AD2011/Sq	A	AD5780/M	A	AT1085	D	ELC1042/05	B
AD1065/M	A	AD5780/X	A	AT2048/11	C	ELC1043/05	B
AD 1065/W	A	AD5790/M	A	AT2076/35	D	ELC1043/06	B
AD1265/M	A	AD5790/X	A	AT2076/55	D	LP1174*	E
AD2071/Z	A	AD7060/w	A	AT2080/10	D	LP1194	E
AD3071/2	A	AD7062/M	A	AT2080/15	D	LP1196	E
AD3371/2	A	AD7063/M	A	AT2095	D	U321	B
AD3591/X	A	AD7066/w	A	AT2102/01	C	U321LO	B
AD3595/X	A	AD7080/M	A	AT2140/10	c	U322	B
AD3880/X	A	AD7080/X	A	AT4034/01	C	U322LO	B
AD3890/X	A	AD7091/M	A	AT4036	C	V311	B
AD4050/ W	A	AD7091/X	A	AT4042/02	C	V314	B
AD4072/X	A	AD8000	A	AT4042/08	c	V315	B
AD4080/X	A	AD8061/w	A	AT4042/14	C	V315LO	B
AD4085/X	A	AD8066/w	A	AT4042/38	D	vS340/01	D
AD4090/X	A	AD8067N	A	AT4043/29	D	VS400/01	D
AD4472/X	A	AD10100/W	A	AT4043/34	D	VA470/01	D
AD4480/X	A	AD12100/HP	A	AT4043/38	D	VS550/01	D
AD4481/X	A	AD12100/M	A	AT4043/59	C	VS600/01	D
AD4485/X	A	ADF 1500	A	AT4044/20	D	9710/M8	A
AD4681/M	A	ADF2400	A	AT4044/26	D	432214203120	D
AD4681/X	A	ADF700/2600	A	AT4044/27	D	432215301100	D
AD4691/M	A	AT1040/15	c	BG 100	E		
AD4691/X	A	AT1071/01	C	DL50	D		

*Available for current production; not intended for new designs.

The following data sheets have been withdrawn:

AT1025 Series	AT2055	AT4041/40	LP1184/2
AT1027	AT2055/02	AT4042/17	LP1185
AT1029	AT2063/00	AT4043/86	LP1186
AT1062/01	AT2063/03	AT4046 Series	LP1400
AT1063/01	AT4040 Series	LP1173	LP1402
AT1068/03	AT4041/08	LP1181	
AT1068/04	AT4041/37	LP1183/2	

# LOUDSPEAKERS, TELEVISION ASSEMBLIES AND MODULES 

CONTENTS

## SELECTION GUIDE

A LOUDSPEAKERS

B TELEVISION TUNERS
MONOCHROME TELEVISION ASSEMBLIES

D COLOUR TELEVISION ASSEMBLIES

E MODULES
INDEX

Mullard Limited<br>Mullard House, Torrington Place, London, WC1E 7HD


[^0]:    "Operating power": is the sine-wave power input to the loudspeaker which corresponds with a sound level of 96 dB with respect to $2 \times 10^{-4} \mu \mathrm{bar}$ at a microphone distance of 1 m , or 86 dB on a distance of 3 m respectively. This sound level is the average level over the rated frequency range of the loudspeaker.

[^1]:    Fig. 2

[^2]:    Fig. 2

[^3]:    *A supply voltage of $+12 \mathrm{~V}-15 \%$ is admissible, if a possible deterioration of gain, noise figure, signal handling, oscillator shift and drift is accepted.

[^4]:    ${ }^{1}$ ) I. F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .

[^5]:    1) I. F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .
[^6]:    - For U322LO: when the oscillator sample socket is either open or terminated with a shielded resistor of $75 \Omega$.

[^7]:    ${ }^{1}$ ) I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage is 15 V .

[^8]:    - For V315LO: when the oscillator sample socket is either open or terminated with a shielded resistor of $75 \Omega$.

[^9]:    - Plastic-bonded Ferroxdure magnet strips (with bracket) are available on request (catalogue number 3122137 10160).
    * Plastic-bonded Ferroxdure magnets are available on request (catalogue number 312210494120 ).

[^10]:    * D.C. component on the pulses is $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$ (see Fig .3).
    **For mounting on the printed-wiring board a washer of 20 mm in diameter has to be used.
    Tightening torque on printed-wiring board: $500+100 \mathrm{mNm}$.

[^11]:    - The voltages have a d.c. component, the average value of which is $V_{B}{ }^{\prime}$.
    **For mounting on a printed wiring board a washer of $\mathbf{2 0 ~ m m}$ in diameter has to be used.
    Tightening torque on printed wiring board: $500+100 \mathrm{mNm}$.

[^12]:    - These voltages have a d.c. component the average value of which is $\mathrm{V}_{\mathrm{B}}{ }^{\prime}$.

[^13]:    Video supply

[^14]:    *Video supply

[^15]:    ${ }^{*}$ ) Pins 2 and 3 should be interconnected on the printed-wiring board.

[^16]:    *) measured with 5000 pF in parallel.

[^17]:    ${ }^{*}$ ) Supplied with core position for $\mathrm{L}_{3-5}=\mathrm{L}_{5-4}=11,3 \mu \mathrm{H} \pm 5 \%$.

[^18]:    *The terminology of IEC document 49 (secretariat) 76 is used.

[^19]:    *The terminology of IEC document 49 (secretariat) 76 is used.

[^20]:    (078891
    1005/8/A

[^21]:    1) Maximum pulse duration $18 \%$ of one cycle.
    2) This does not imply that the voltage rating for the final anode of the picture tube may be exceeded.
