GUIDE and Book of Circuits EVERY RADIO-MANS POCKET REFERENCE

LEADERS IN EVERY REAL ADVANCE OF TECHNICAL IMPORTANCE

First Dull Emitter—OSRAM—1921 First Screen Grid Valve—OSRAM—1926 First Indirectly Heated Valve—OSRAM—1926 The "Wembley'' Filament—OSRAM—1931 The "CATKIN''—OSRAM—1933

BE UP-TO-DATE-USE OSRAM VALVES IN YOUR SET.

OSRAM VALVE GUIDE Foreword

Since its introduction in 1926, the OSRAM VALVE GUIDE has proved its popularity and utility by an increasing circulation year by year amongst wireless enthusiasts.

The rapidly multiplying number of valve types on the market to meet modern circuit developments has set its own problem, which is to compile a reference booklet providing complete technical information and working data for each type, and yet retaining a handy pocket size.

The 1934 OSRAM VALVE GUIDE solves the problem for the technical reader by giving full tabulated data of all the OSRAM Ranges of Valves, and on pages 4 to 23 and 60 and 61 a clear guide to the non-technical user as to which valve to select.

By this means it becomes a matter of a few moments to refer to any type of OSRAM Valve.

In addition to the data charts, the 1934 OSRAM VALVE GUIDE contains much helpful information, circuit diagrams, and useful description of the application of modern valves.

Full characteristic curves of any type are available on request to the General Electric Company Ltd., Magnet House, Kingsway, London, W.C. 2, or to any Branch of the Company.

INDEX			Page
CHARACTERISTICS AND WORKING DATA-2-volt Battery Valves			4-9
A C. Indirectly Heated Mains Valves			i0-13
Power Output Triode and Pentode Valves (Directly He	ated		14 - 15
DC Indirectly Heated Mains Values	recu,		16 - 17
Universal Dange Values	•••	•••	18 10
Universal Range valves	•••	•••	10-13
Rectiner Valves & Barretters, Etc	•••	•••	20 - 23
STANDARD 7-PIN AND 5-PIN BASE CONNECTIONS	•••	•••	2425
DEFINITIONS OF COMMON TECHNICAL TERMS	•••	•••	26
TYPICAL CIRCUITS-OSRAM (CATKIN) Valves	•••	•••	28 - 29
OSRAM "K " Series 2-volt Battery Valves			30 - 31
H.F. Pentodes	·		34-37
Heptode Frequency Changers			38-41
Double Diode Triodes			4245
Class "B" Amplification (and OPP)	•••		46-49
Davier Values	•••	•••	50 53
Power valves	•••	• • •	30-33
Universal Range for A.CD.C.			5457
Universal Range for A.C. and Car Radio)			
Ohms Law Calculator	•••	•••	58
WATTS DISSIPATED CALCULATOR			59
TABLE OF COMPARATIVE VALVE TYPES			60-61
PRICE LIST			62 - 63
GEC RADIO			64

3

OSRAM VALVES FOR

Туре.	Purpose.	Filament Volts.	Filament Current.	Ampli- fication Factor,	Impedance at Grid Volts 0 (Ohms).	MutualCon- ductance m.a./v.	Max. Anode Volts.	Max. Screen Volts.
S23	Screen-	2.0	0.1		300,000	1.1	150	70
S24	grid	2.0	0.15		300,000	1.4	150	70
VS24 VS24/K	Vari-mu. Screen-grid	2.0	0.15		250,000	1.5 to 0.016	150	75
VP21	H.F. Pen.	2.0	0.1	-	1,000,000	1.1 to 0.008	150	60
HL2 HL2/K	Triode Det and L.F.	2.0	0.1	27	18,000	1.5	150	
HD22	D-D-Triode	2.0	0.2	27	18,000	1.5	150	
L21	L.F.	2.0	0.1	16	8,900	1.8	150	
LP2	Power	2.0	0.2	15	3,900	3.85	150	
· P2	Super Power	1 2.0	0.2	7.5	2,150	3.5	150	
PT2 PT2/K	Output Pentode	2.0	0.2		50,000	2.5	150	150

2 volt

2-VOLT BATTERY SETS

Average Anode Current (m.a.) at Max, Screen Volts Anode Volts. 100 + 120 + 150	As Amplifier Average Screen Current (m.a.) at Max, Screen Volts	Approximate Grid Bias Volts at Max, Screen Volts. Anode Volts. 100 120 150	Optimum Load (Ohms.)	Type of Base.	Price.
1.3 to 2.8	0.8	0 to - 1.5		4 pin	12/6
1.4 to 3.2	1.0	0 to -1.5		4 pin	12/6
4.5 to 2.3 Negligible	0.5 to 0.2 Negligible	0 to -1.5 -9.0		4 pin	12/6 12/6
2.8 to 1.4 Negligible	0.7 to 0.4 Negligible	0 to -1.5 -9.0		7 pinț	13/6
1.2 2.3 1.8		-1.5 -1.5 -3.0		4 pin	5/6 5/6
1.4 2.5 2.0	· · · ·	-1.5 -1.5 -3.0		5 pin†	9/-
1.8 1.7 2.2		-3.0 - 4.5 - 6.0	—	4 pin	5/6
5.2 6.0 11.5		-3.0 -4.5 -4.5	7,000	4 pin	7/-
12.0 14.0 19.0		-6.0 -9.0 -10.5	4,500	4 pin	12/-
4.3* 4.5* 9.5	2.0	-3 -3 -4.5	20,000	5 pin	13/6 13/6

*100-v. Screen,

† See pp. 24, 25.

-5-

OSRAM VALVES FOR

Turne	Purnosa :	Filament	Filament	Max.	Max	Max.	As frequ of max. Os	ency chang Anode Voli cillator An	zer under co ts, Screen V ode Volts 4	onditions Volts 40. 0.
Type.	Turpose.	Volts.	(Amps).	Volts.	Volts.	Anode Volts.	Average Anode Current (m.a.)	Average Screen Current (m.a.)	Oscillator Anode Current (m.a.)	Grid Bias Volts.
X.21	Heptode Frequency Changer	2.0	0.1	150	70	70	0.45 0.01	0.6 0.68	0.6 0.78 ·	0 9

"CLASS B" AND

Type.	Description.	Filament Volts.	Filament Current (Amps)	Max. Anode Volts.	Max. Screen Volts.	, Tota Anod Curr	al Quiescent le and Screen rent. (m.a.)	Average Anode and Screen Cur- rent (m.a.)	Grid Bias.
B.21	Double Triode	2.0	0.2	150	-	н 150 120	.T. Volts 2.2 1.65	7.5 6.0	$-6 \\ -4.5$
QP.21	Double Pentode	2.0	0.4	150	150	$\begin{array}{c} 150 \\ 120 \end{array}$	4.3—7.5 5.0	7.0 <u>-9</u> .0 7.0	-10.5 to -9 -7.5

2-VOLT BATTERY SETS

* Primary to total Secondary.

REPLACEMENT TABLE-2-VOLT BATTERY VALVES.

In addition to the 2-volt valves described fully on pages 4 to 7, which are suitable for receivers of recent design, the following types of 2-volt OSRAM Valves are still available for replacement purposes when revalving an older type set.

Type.	Purpose,	Type of set.	Fila- ment Volts.	Fila- ment Cur- rent.	Amplifi- cation Factor	Impe- dance Ohms.	Mutual Conduc- tance ma/volt.	Price.
H.L.210	Moderate Amplifi- cation Triode	Portable with aper- iodic H.F. For H.F. and Det. stages	2.0	0.1	24	20,000	1.2	5/6
P.215	Small Power	Output stage in Portables	2.0	0.15	7	5,000	1.4	7/-
H.210	High Amplification Triode	Detector in OSRAM "Music MAGNET" Four and OSRAM "Four" Kit Sets	2.0	0.1	35	50,000	0.7	5/6
D.G.2	Double Grid Valve	Frequency Changer in certain Superhet sets.	2.0	0.2	4.5	3,750	1.2	20/-
V.S.2	Vari-mu Screen Grid	H.F. in certain re- ceivers designed for V.S.2	2.0	0.1	_	At Gri Volts (At Gri Volts -	d)1,25 d - 120.03	12/6

-8-

REPLACEMENT TABLE-2-VOLT BATTERY VALVES

The following types of 2-volt OSRAM Valves are available only on special demand, but equivalent types of generally similar characteristic may in the majority of cases be used to replace them.

In a few receiving sets it is essential that the types of valves originally fitted should be employed, but in many sets the replacement types specified may be substituted with improved results.

Type	Purpose	Replace with OSRAM	Special Remarks
S.215	Low conductance screen grid	S.23	Metallised S23 in OSRAM "MUSIC MAGNET 4" and "OSRAM FOUR" Sets.
S.21	Moderate conductance screen grid	S.23	Not in OSRAM "THIRTY-THREE" Set, where metallised S21 must be used.
S.22	High conductance screen grid	S.24	Reduction in H.T. and L.T. current consumption.
н.2	High amplification factor triode	H.L.2 or H.L.2/K.	
L.210	Low frequency amplifier	L.21	Requires about 1½ volt less negative grid bias

OSRAM VALVES FOR A.C. MAINS SETS

Type.	Purpose.	Heater Volts.	Heater Current (Amps.)	Ampli- fication Factor.	Impedance At Grid volts – 1 (Ohms).	Mutual Conductance m.a./v.	Max. Anode Volts.	Max. Screen Volts.
MS.4	Screen grid	4.0	1.0		500,000	1.1	200	70
MS.4B Catkin MS.4B	,,	4.0	1.0	_	350,000	3.2	200	80
VMS.4 Catkin VMS.4	Vari-Mu Screen grid	4.0	1.0	-	250,000	2.6 to 0.03	200	80
VMS.4B	<u>.</u>	4.0	1.0		250,000	2.9 to 0.04	200	80
VMP.4	Vari-Mu HF. Pen.	4.0	1.0		1,000,000	3.5 to 0.004	200	100
Catkin VMP.4K	,,	4.0	1.0		1,000,000	2.9 to 0.004	250	100
MSP.4	HF. Pen.	4.0	1.0		1,000,000	4.0	200	100
MH.41	Triode	4.0	1.0	80	13,300	6.0	200	
MH.4 Catkin MH.4	,,	4.0	1.0	40	11,000	3.6	200	

A.C.

(INDIRECTLY HEATED CATHODE)

As Amplif	ier under Con	ditions of Max.	Bias Resist	ance (Ohms)	. Optimum L	oad (Uhins).		
A verage A node Current (n.a.)	Average Screen Current (m.a.)	Approximate Grid Bias Volts.	In Amplifier.	As Anode Bend Detector	As Grid Leak Detector & InAmplifier.	As Anode Bend Detector.	Type of Base.	Price.
2.4	0.3	-1.5	550		20,000		5 pin	17/6
3.4	1.2	-1.0	250	15,000	30,000	400,000	5 pin	17/6 17/6
10.0 0.14	2.1 negligible	-0.5 -30.0	50 🖡	_	30,000		5 pin	17/6 17/6
$\begin{array}{c} 6.7 \\ 0.2 \end{array}$	1.3 negligible	-0.5 -15.0	50 *		30,000		5 pin	17/6
5.5 0.1	1.6 negligible	-1.0 -30.0	150 🔹		25,000		5 or 7 pin†	17/6
$\frac{8.0}{0.2}$	4.0 negligible	-0.5 -30.0	150 🔹		25,000		7 pin†	17/6
3.0	1.0	-1.75	400	1,500	25,000	100,000	5 or 7 pin†	17/6
5.2		-1.5	400	20,000	30,000	100,000	5 pin	13/6
4.5	_	-3	600	30,000	50,000	100,000	5 pin {	13/6 13/6
	*See dia	grams, pages	29, 35		1-	-	See pp. 24, 25	

OSRAM VALVES FOR A.C. MAINS SETS _____

	Туре.		Purpo	ose.		Heater Volts.	Heat Curre (Amp	er Ampl nt catic s.) Facto	lifi- on Imp or. (C) oedance ohms.)	Mutual Conduct- ance. m.a./v.
MHI ML.4 MPT Catk MHI	2.4 1 7.4 in MPT4 0.4	Tri Ou D-	iode , tput Per D-Triode	ntode		4.0 4.0 4.0 4.0 4.0		$ \begin{array}{ccccccccccccccccccccccccccccccccc$	8 2 33 40 18	3,000 2,860 000 0,000 3,200	2.5 4.2 3.0 3.0 2.2
Type.	Purpose.	Filament Volts.	Filament Current (Amps.)	Max. Anode Volts.	Max. Screen Volts.	Ma Oscill Anc Vol	x. ator de ts.	A verage Anode Anode Current (m a.)	y changer un Volts, Sereen Oscillator A) Average Screen Current (m.a.)	oder coudi Volts 80 a nod+ Volts Oscillato A node C rent (m.	tions of Max and Max. or Grid ar- Bias a.) Volts
MX.40	Heptode Frequency Changer	4.0	1.0	250	100	15	i0 (2.75 0.003	1.0 2.2	$2.1 \\ 3.2$	$-3 \\ -30$

1

(INDIRECTLY HEATED CATHODE)

Max.	Max.	As Amplifi Anode Va	er under co olts and Ma	nditions of Max' x. Screen Volts.	Bias	Optimum	Tana	
Anode Volts.	Screen Volts.	Average Anode Current (m.a.)	A verage Screen Current (m.s.)	Approximate Grid Bias Volts.	Resistance (Ohms.)	Load (Ohms.)	Base.	Price.
$\frac{200}{200}$		7.0 19—25	_	$-6.0 \\ -10 - 8.5$	$850 \\ 350 - 500$	20,000 7,000	5 pin 5 pin	13/6 14/-
$\begin{array}{c} 250 \\ 250 \end{array}$	$\begin{array}{c} 200 \\ 250 \end{array}$	$\begin{array}{c} 32.0 \\ 32.0 \end{array}$	5.0 6.0	-11 - 13	300 340	8,000 8,500	5 or 7 pin† 5 or 7 pin†	18/6 18/6
200		3.0		- 3.0	1,000	30,000	7 pin †	15/6
Fixed Bias Resistance. Ohms.		Conv	ersion Con Micromh (Approx	nductance os. :.)	Ty	rpe of Base.	F	riœ.
500	A	t grid v t grid v	olts - 3 olts - 30	500 2.5		7 pin †		20/-
					-13	t See	pp. 24, 25.	

OSRAM VALVES FOR POWER

Type.	Description.	Filament Volts,	Filament Current (Amps).	Amplifi- cation Factor.	Impedance under working conditions (Ohms.)	Mutual Con- ductance (m.a./v) (measured under working conditions).	Max. Anode Volts.
PX.4	Triode 12 watt	4.0	1.0	5	830	6.0	250
PX.25	25 watt	4.0	2.0	9.5	1,265	7.5	400
PX.25A	25 watt	4.0	2.0	4	580	6.9	400
DA.60	,, 60 watt	6.0	4.0	2.5	835	3.0	500
DA.100	,, 100 watt	6.0	2.7	5.5	1,410	3.9	1,000
РТ.4	Pentode 8 watt	4.0	1.0	120	42,000	2.85	250
РТ.25	,, 25 watt	4.0	2.0	100	25,000	4.0	400
РТ.25Н	,, 25 watt	4.0	2.0	180	28,000	6.5	400

AMPLIFICATION. (DIRECTLY HEATED)

Powe

OSRAM VALVES FOR D.C. MAINS SETS

Type.	Purpose.	Heater Volts.	Heater Current (Amps.)	Amplifi- cation Factor.	Impedance (Ohms.)	Mutual Conductance m.a./v.	Max. Anode Volts.
D.S D.SB	Screen grid	16.0 16.0	0.25 0.25	550 1120	500,000 350,000	1.1 3.2	200 200
VD.S	Vari-mu Screen Grid	16.0	0.25		250,000	2.4 to 0.013	200
VD.SB	Vari-mu Screen Grid	16.0	0.25		250,000	3.0 to 0.001	200
DH DHD DL DPT	Triode D-D-Triode LF Triode Output Pentode	16.0 16.0 16.0 16.0	0.25 0.25 0.25 0.25	40 40 12 90	$10,800 \\18,200 \\2,660 \\30,000$	3.7 2.2 4.5 3.0	200 200 200 200

(INDIRECTLY HEATED CATHODE) 0.25 Ampere Types

Max.	As Amplifier under Conditions of Max, Anode Volts and Max, Screen Volts.			Bias Resistance (Ohms.)		Optimum Load (Ohms.)		Туре	- .
Screen Volts.	Average Anode Current (m.a.)	Average Screen Current (m.a.)	Approxi- mate Grid Bias Volts.	In Amplifier.	As Anode Bend Detector.	In Amplifier.	As Anode Bend Detector.	of Base.	Price.
70	2.4	0.3	-1.5	600-800		20,000		5 pin	17/6
80	3.4	1.2	-1.0	220	10,000	20,000	400,000	5 pin	17/6
80	11.0 0.1	1.2 negligible	$-0.5 \\ -30$	50		25,000	_	5 pin	17/6
80	5.5 0.1	0.6 negligible	-1.0 -25.0	150	_	25,000	_	5 pin	. 17/6
	6.0	_	-3.0	500	10,000	30,000	100,000	5 pin	13/6
	3.2		-3.2	1,000		30,000	—	7 pin†	15/6
	25.0		-8.0	350	—	7,000		5 pin	14/-
200	40.0	6.5	-10.0	230	_	8,000		5 pin	18/6

† See pp. 42, 25.

D.C

OSRAM UNIVERSAL RANGE

Type.	Р	urpose.	Heater Volts.	Heater Current (Amps).	Ampli- fication Factor.	Impedance (Ohms.)	Mutual con- ductance m.a./v.	Max. Anode Volts.	Max. Screen Volts.
H.30	Triode		13.0	0.3	80	13,300	6.0	250	—
W.30	Vari-m	u HF. Pen	13.0	0.3		1,000,00	0 4.0 to 0.01	250	250
DH.	30 D-D-Ti	riode	13.0	0.3	80	18,000	4.5	200	
N.30	Output	: Pentode	13.0	0.3	-	30,000	3.9	250	250
U.30	Rectifie	er		·······	See Table—	- OSRAM Re	cti fier Valve	s.	
							• at Gr	id Volts -	- 30
_	F	ilament Filam	ent Max	Max.	Recom- mended	As Frequ Max. A	tency Changer u unode Volts, Scr Oscillator Anode	nder Condit een Volts 50 Volts 150,	ons of Aud
Туре,	Purpose.	Volts. (Amp	os.) Volts	. Volts.	Anode Volts.	Average Anode Current(m.a.)	Average Screen Current(m.s.) C	Oscillator Anode arrent(m.s.)	Grid Bias,
X.30	Heptode Frequency Changer	13.0 0.3	3 250	100	150	4.0 negligible	$\begin{array}{c} 2.1 \\ 3.5 \end{array}$	3.0 4.8	$-3 \\ -30$

UNI-VERSAL

(INDIRECTLY HEATED CATHODE)

	ln Ai	nplifier.		D '	0-1-	T (D	
H.T. Volts.	Average Anode Current (m.a.)	Average Screen Current (m.a.)	Approximate Grid Bias Volts.	Resistance (Ohms.)	Load (Ohms).	(see pages 24, 25).	Price.
250 180	5.5 4.0		-1.7 -1.1	350	30,000	7 pin	13/6
250 180	$\begin{array}{c} 12.3\\ 8.0 \end{array}$	6.0 3.0	-1.0 -1.0	100	High as possible	7 pin	17/6
200	3.8	— —	-1.7	800	30,000	7 pin	15/6
$\frac{250}{180}$	$\frac{32.0}{30.0}$	8.0 6.0	-15 - 8.0	$\begin{array}{c} 375\\220 \end{array}$	7,500 4,500	7 pin	18/6
						7 pin	15/-
Bias Resis (Ohm:	stance Con s.)	version Conducta (appros	unce Micromhos K.)	s Type of (see pages	f Base s 24, 25)	Price.	
250	A	t grid volts— t grid volts—	$ \begin{array}{ccc} 3 & 750 \\ 30 & 2 \end{array} $	7 p	in	20/-	

-19-

OSRAM RECTIFY-

Туре.	Descr	ription.		 Type of Rectification.	Filament or Heater Volts.	Filament or Heater Current (amps.)
U.10 U.12 U.14	Directly Heated	 	···· ···	 Full wave Full wave Full wave	4.0 4.0 4.0	1.0 2.5 2.5
MU.12 MU.14	Indirectly Heated			 Full wave Full wave	4.0 4.0	2.5 2.5
GU.1	Mercury vapour			 Half wave	4.0	3.0
U.30	Indirectly Heated f Range	or Uni	versal	Half wave Voltage doubler	26.0 26.0	0.3 0.3

ING VALVES

Max. Anode Volts R.M.S.	Max. D.C. Output Volts at Max. Current.	Max. D.C. Output Current (milliamps).	D.C. Output at Half Current (Volts.)	D.C. Output at Half Current (milliamps).	Type of Base.	Price.
250 350	260 325	60 120	300 380	30 60	4 pin 4 pin	12/6 15/-
500	540	120	620	60	4 pin	20/-
350 500	340 540	120 120	410 600	60 60	4 pin 4 pin	15/- 20/-
1,000	1,100	250	1,150	125	4 pin	25/-
180	136	120	175	75)		
110 220	152 425	75 75	198 480	45 45	7 pin†	15/-

-21-

t See pp. 24, 25.

OSRAM BARRETTERS (CURRENT REGULATORS)

A "Barretter" is a device which maintains the current passing through it substantially constant within certain limits, although fluctuating values of voltage be applied across the Barretter in series with the "load."

OSRAM Barretters are therefore designed for use with sets in which the valve heaters are wired in series and operate at a constant current. The Barretter may take the place of a wire resistance coil or mat, or electric lamp, and under correct conditions will cover a given range of supply voltages and cater for normal fluctuations in them, thus protecting the valves in circuit. For typical circuit see page 56.

OSRAM Barretter Type	Mean Current Rating (amps)	Voltage Range	Number of Valve beaters controlled in series	Type of Base	Price
251	0.25	100-180	4-5	4-pin	12/6
301 302 303	0.3 0.3 0.3	138–221 112–195 86–129	3—4 5—6 7—8	E.S. cap E.S. cap E.S. cap	12/6 12/6 12/6

TUNEON INDICATORS.

The Tuneon Indicator is a three-electrode neon-filled tube intended for use as a visual indication of the correct tuning point in an A.V.C. receiver.

On the passage of a small current (about 3 milliamperes) through the tube, a luminous glow spreads up the cathode (long electrode) and, if connected in a suitable circuit in conjunction with A.V.C. controlled variable mu valves, correct tuning is indicated by the maximum height of the glow. List Price, each 4/-

	OSRAM	PILOT	OR DIA	LAM	PS.		List Price
For 2 volt Battery Receivers	3.5v (aj	.3 amp (oproximat	Coil Filam ely .2 amp	ent 12 m 5. on 2 vol	/m Round (t)	bulb	each. 6d.
For A.C. Receivers 4 volt transformer	off 6.2v rs (a)	.3 amp. pproximat	Coil Filar tely .2 amj	nent 15 m 5. on 4v.)	n/m Round	bulb	9d.
For "Universal" I In series with .2 an In series with .3 an round bulb	Receivers. np. valves (np. valves 	3.2v .3 an: 6.5v (S t 	ip. Coil Fil ype) .3 ar	ament 15 np. Coil fi 	m/m round lament 12 	bulb m/m 	9d. 9d.
Used under the above	conditions	an averag	ze life of 10	00 hours v	will be obta	ined.	

OSRAM FUSE BULBS.

3.5v .15 amp. Coil Filament 12 m/m Round bulb 6d.

-23-

TABLE OF PIN CONNECTIONS

Type of				Pi	n Numt	ber.			Top
Base.	Valve Type.	1	2	3	4	5	6	7	Cap.
7 pin	V.P.21 B.21 Q.P.21 X.21 Heptode V.M.P.4 M.S.P.4 M.H.D.4 M.P.T.4 M.X.40 Heptode D.H.D W.30 D.H.30 X.30 Heptode U.30	M G G 2 2 2 M D G D M M D G 2 2 2 C M M D G D M M D G 2 2 C M M D G 2 2 M M D G 2 2 M M D G 2 M M M D G 2 M M M D G 2 M M M D G 2 M M M M M M M M M M M M M M M M M M	GGGGGGGMGGMG MGGA	$\begin{array}{c} GE\\ A_1\\ A_3\\ G_2\\ GE\\ GE\\ D\\ GS\\ G_2\\ GS\\ G_3\\ GC\\ GS\\ GS\\ G_3\\ GS\\ GS\\ GS\\ GS\\ GS\\ C_1\end{array}$	FFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	FFFFHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		GS A ² A GS GS A A A GS A A A A A A A A A A	A GAAG GGAGG G

- (Valve Type.	1	2	3	4	5	Top Cap.
pir	H.D.22	A	D nearest end of fila-	F	F	D nearest end of fila-	G
S.			ment connected to	M	Diode	ment connected to	
1			No. 4		Shield	NO. 3	<u> </u>

STANDARD 5-PIN AND 7-PIN BASES

Α G

 \mathbf{F}

н

С

D

М

DEFINITIONS OF COMMON TECHNICAL TERMS

IMPEDANCE (sometimes called **A.C. RESISTANCE**)

This is a term to indicate the resistance offered to the flow of alternating current between cathode and anode. Its value is important in determining the correct external load resistance which couples the valve to the succeeding circuit. Unit — ohms.

AMPLIFICATION FACTOR, properly termed "Voltage Amplification Factor."

This figure indicates the ratio of the change in value of anode to grid voltage which requires to be applied to the value in order to produce the same change in anode current. It shows the voltage step-up which occurs in the value itself but does not necessarily represent the overall amplification per stage. Commonly termed 'm.'

MUTUAL CONDUCTANCE, sometimes called "SLOPE "

This is the ratio of a small change in anode current to a small change in grid volts producing it, all other voltages unchanged. Its value represents the efficiency which it is possible to obtain per stage with suitable external components. Unit — milliamps/volt.

CONVERSION CONDUCTANCE.

The term applied to superheterodyne frequency-changers which is the counterpart of mutual conductance in amplifying valves. Conversion conductance is the ratio of the Intermediate Frequency component of the anode current to the input grid voltage applied to the frequency changer. Unit — micromhos or microamps/volt.

THE OSRAM "CATKIN" VALVE

The CATKIN Valve has established a world-wide reputation for strength, consistency, and freedom from service troubles-in a word : EXTRA RELIABILITY.

In all cases where small physical dimensions, coupled with robust performance and absence of valve "noise," are required. OSRAM "CATKIN" Valves are recommended.

> In the OSRAM "CATKIN" Valve the glass "pinch" has been replaced by a clamped joint made of steel and mica. Wire bending and welding have been almost entirely eliminated.

Catkin MH.4 CATKIN V.M.P.4K. (Unshielded).

The range of CATKIN Valves is now extended by the introduction of a new and improved H.F. Screen Pentode,

Catkin MS.4B

(Shielded). **OSRAM** "CATKIN" VALVES are available in types suitable for a large range of A.C. mains receivers.

"CATKIN" is the Trade Mark of the MO. Value Co. Ltd., Manufacturers and Patentees.

Typical Circuit illustrating OSRAM (Catkin) Valves in an A.C. Mains Receiver.

OSRAM "K" SERIES 2-VOLT BATTERY VALVES

In this range of 2-volt Battery Valves the essential features of the unique "CATKIN" patented construction are retained:

- 1. The electrodes are firmly held in a clamped joint made of stamped steel and mica pieces. This takes the place of a glass "pinch" and makes for smaller valve size and great strength.
- 2. A circular seal is employed for the lead-out wires. This ensures improved insulation and absence of "glass strain."
- 3. Bends and welds are avoided in the electrode system.
- 4. Each electrode is rigidly anchored to the whole system and to the valve envelope. This contributes to high uniformity and great rigidity, with entire absence of microphonics.

OSRAM "K series" valves are available in types suitable for a large range of Battery (including portable) receivers.

Typical Circuit Illustrating OSRAM "K " Series Valves in a Battery Receiver.

STATION CHART

STATION CHART

THE H.F. PENTODE

For A.C. MAINS SETS.

Valves to use--OSRAM V.M.P.4, CATKIN V.M.P.4K, M.S.P.4

The H.F. Pentode is a modification of the Screen Grid Tetrode Valve which gives the advantage of a greater voltage output without distortion providing suitable coupling coils are employed.

The OSRAM V.M.P.4 and CATKIN V.M.P.4K are H.F. Screen Pentodes with variable mu characteristics, being suitable for use in the High Frequency or Intermediate Frequency stages of a receiver where the amplification is controlled by grid bias (as in A.V.C. sets). The V.M.P.4K employs the CATKIN construction and has the advantage of a very small value of anode to grid interelectrode capacity.

The OSRAM M.S.P.4 is an H.F. Screen Pentode with "straight" characteristics. It is particularly applicable as the Detector Valve in any set where the moderately low capacity as compared with a triode--combined with the pentode characteristic makes both for great selectivity and sensitivity.

Typical Circuit illustrating OSRAM V.M.P.4, H.F. Pentode (Vari-Mu) as H.F. Amplifier, M.S.P.4, H.F. Pentode (Straight) as Detector.

THE H.F. PENTODE FOR 2-VOLT BATTERY SETS. Valve to use—OSRAM VP.21.

The principle of the H.F. Screen Pentode is particularly applicable to 2-volt battery valves where in general the H.T. voltage is limited.

One advantage of the H.F. Pentode compared with the tetrode screen grid is that, with suitable coupling coils, considerable voltage outputs can be obtained without distortion even though the applied H.T. voltage is moderately low.

The OSRAM V.P.21 gives this advantage and in addition incorporates a variable mu characteristic enabling distortionless volume control to be effected by means of variation of grid bias.

The interelectrode capacity of an H.F. Pentode is usually greater than that of a screen grid Tetrode, and to preserve stability a suitably tapped anode coil should be employed.

A circuit is shown indicating a typical application of the V.P 21 type in an H.F. amplifier with grid bias volume control.

Typical Circuit illustrating OSRAM V.P.21, H.F. Pentode as H.F. Amplifier and Detector.

THE HEPTODE FREQUENCY CHANGER FOR A.C. MAINS SETS. Valve to use-OSRAM MX.40.

The Variable Mu Heptode, of which the OSRAM MX.40 is an A.C. mains example, is primarily intended for use as an electron coupled frequency changer in superheterodyne circuits.

The valve contains five electrodes in addition to the normal cathode and anode, of which the innermost two provide the oscillator element and the outer three the detector element, incorporating a variable mu control grid and the necessary screens.

With suitable coils the valve is simple to employ and has the advantages—among others—over other forms of frequency changer of less "frequency pulling," simpler components, and absence of oscillator feed-back to the aerial.

A typical circuit diagram is given on page 39 showing type MX.40 operating as a bias controlled Frequency Changer.

Typical Circuit illustrating connections for use with OSRAM M.X.40, A.C. Mains Heptode, as Frequency Changer.

THE HEPTODE FREQUENCY CHANGER FOR 2-VOLT BATTERY SETS.

Valve to use-OSRAM X.21.

- 1. No coupling coils required in filament lead, "electron coupling" being the principle employed.
- 2. Reduced interaction between signal and oscillator circuits.
- 3. Increase in stability of oscillator frequency.
- 4. Negligible feed-back of oscillator volts to the aerial circuits.

The OSRAM X.21 is specially designed to be extremely economical in H.T. and L.T. current consumption, and under working conditions consumes only 1.7 milliamps from the H.T. battery while at the same time providing adequate conversion conductance.

Typical Circuit illustrating connections for use with OSRAM X.21 Battery Heptode as Frequency Changer.

THE DOUBLE DIODE TRIODE FOR A.C. MAINS SETS. Valve to use—OSRAM M.H.D.4

Diode detection can often be employed as a means of improving quality of reception. The double diode triode provides diode detection, triode amplification, and, if desired, Automatic Volume Control.

The valve includes a double diode rectifying system allowing for the use of either half wave or full wave diode detection, or delayed action Automatic Volume Control. The triode section is carefully shielded from the diode and is suitable either for use as an L F. amplifier or in conjunction with the diodes for Amplified A.V.C.

Great care has been applied to the design of type M H.D.4 in order that full benefits of A.V.C. may be obtained with complete absence of distortion in the triode element.

A typical circuit is given on page 43 showing type M.H.D.4 as a Detector for Delayed Automatic Volume Control.

Typical Circuit illustrating OSRAM M.H.D.4, A.C. Double Diode-Triode for Detection, Delayed A.V.C. and L.F. Amplification.

THE DOUBLE DIODE TRIODE FOR 2-VOLT BATTERY SETS. Valve to use—OSRAM H.D.22

The OSRAM 2-volt Battery double diode triode type H.D.22 consists of two entirely separate electrode systems within the one bulb, thus permitting the diode section to be perfectly screened from the triode. An additional advantage is that the electron emission from the complete filament system of one half of the multiple valve is available for the triode, thus maintaining high characteristic efficiency.

Type H.D.22 can be coupled to an output value of the P.T.2 or Q.P.21 type through a suitable step-up transformer, or to a driver value of the L.21 or L.P.2 type which, in its turn, precedes a Class "B" output stage.

A typical circuit shows type H.D.22 operating in a superheterodyne circuit, the diodes of the H.D.22 being arranged to provide detection and Delayed A.V.C.

HD.22

Typical Circuit illustrating OSRAM H.D.22 Battery Double Diode-Triode showing method of obtaining A.V.C. on Controlled Valves.

CLASS "B" AMPLIFICATION (Positive Grid Drive) FOR 2-VOLT BATTERY SETS.

Valves to use-OSRAM B.21 (Driver Valves L.21 or L.P.2)

In Class "B" circuits the H.T. current is proportional to the signal so that when

The OSRAM B.21 is a Positive Grid drive Class "B" double triode valve of the low impedance type, that is it requires a small negative grid bias. This form is very desirable for good quality reproduction, and simplifies transformer design.

The B.21 type is constructed with dual wound grid which increases the power output-to-input efficiency.

All positive grid drive Class "B" Valves require a driver stage and for the B.21 suitable driver valves are types L.21 or L.P.2. For all general purposes type L.21 is recommended—for maximum power output, type L.P.2 is required as driver.

Typical Circuit illustrating OSRAM B.21 Class "B" (Positive Grid Drive) Output, with L.21 Driver Stage and HL2 as Detector.

CLASS "B" AMPLIFICATION

Q.P.P. METHOD.

Valve to use-OSRAM Q.P.21

An alternative method of obtaining considerable power output with low H.T. current consumption—it avoids driving the valve into positive grid current—is often termed "Quiescent Push-Pull." (Q.P.P.)

The OSRAM Q.P.21 is a Double Pentode designed to operate with sufficient grid bias to restrict the standing H.T. current to a very low figure. The actual H.T. current drawn from the battery is proportional to the strength of signal applied.

An advantage of the system using type Q.P.21 is that the necessity for a driver stage is avoided as the valve can operate from the detector through a suitable step-up transformer.

In order to obtain comparable power output to positive grid drive Class "B" a somewhat higher H.T. voltage is essential, and an H.T. Battery of 150 volts is recommended.

QP.21

Typical Circuit illustrating OSRAM Q.P.21 Double Pentode Class "B" (Q.P.P.) Output, in conjunction with Double Diode-Triode Detector Stage.

OSRAM VALVES FOR HIGH QUALITY POWER OUTPUT

High quality electrical sound reproduction demands a good Loudspeaker, together with careful choice of working conditions and valves.

-50-

Distortion-free power input to the loudspeaker depends on

I. Choice of output valve.

2. Correct values for associated circuit and components.

3. Adequate H.T. voltage and current.

The choice and operation of the output Power valve involves consideration of the following points :---

Triode or Pentode.

Both triode and pentode output valves are available in the OSRAM range, the Pentode being useful for higher sensitivity, but the Triode requiring fewer precautions to avoid distortion.

Correct Load Impedance.

Correct "matching" of Loudspeaker to Output valve is essential to realise the full undistorted power of the valve. An output Transformer of suitable ratio may be employed to do this.

Ratio of transformer =

Optimum load impedance of valve.

Working impedance of speaker.

PX.4

"Anode dissipation" of valve.

This term denotes the power used up in heat at the anode, and for good value life should not exceed the rated value.

-51-

 $Ia (m.a.) = \frac{Max \text{ permissible dissipation (watts)} \times 1000.}{Anode \text{ volts.}}$

Harmonic distortion and Power Output.

A certain percentage of distortion is in practice unavoidable and the amount permissible varies with the type of valve and loudspeaker used. With all Pentode valves a filter circuit is recommended to avoid an excessively high pitched reproduction and with both Triodes and Pentodes, the same care in choice of *correct load impedance is important*.

Again, the actual A.C. **power output** available to the loudspeaker is dependent on the percentage of distortion permissible.

This may be allowed to vary to a considerable extent for different conditions, and no hard and fast figure can in general usefully be quoted.

Typical Circuits Illustrating the use of Directly Heated Triode Valves in Output Stage, Single and Push-Pull arrangements with Automatic Blas.

Typical Circuits illustrating the use of Indirectly Heated and Directly Heated Pentode Valves in Output Stage, with Automatic Bias.

OSRAM VALVES UNIVERSAL RANGE FOR A.C. MAINS SETS, D.C. MAINS SETS, COMBINED A.C.—D.C. SETS, and CAR RADIO.

The OSRAM Universal Range comprises a series of Indirectly Heated Valves with heater voltage and current selected for use in any of the following types of set :

- 1. With heaters wired in parallel (13 volt) for A.C. mains receivers.
- 2. With heaters wired in series (0.3 amp.) for D.C. mains receivers.
- 3. With heaters wired in series (0.3 amps.) for combined A.C.-D.C. receivers.
- 4. With heaters wired in parallel (13 volt) for motor car radio.

Application to Series running for A.C.—D.C. sets and D.C. sets.

A typical circuit is shown on page 56 indicating the recommended method of heater wiring in conjunction with a "Barretter" or series resistance. Suitable types of Barretter described on page 22. In this case the Rectifier type U.30 is used for half wave rectification on A.C. mains supply, and on D.C. mains is inoperative. In a Universal A.C.—D.C. receiver, the use of a step-up mains transformer is precluded, but OSRAM Universal valves are so designed that excellent results are obtained down to 180 volts H.T., which caters for the 200 volt mains condition.

Application to Parallel running for Car Radio and A.C. mains sets.

A typical circuit is shown on page 57 indicating a method of heater wiring for a Car Radio receiver, or with the inclusion of a Rectifier unit, for A.C. mains supply.

In these cases the heaters are wired in parallel.

In such receivers adequate power output is obtainable from the pentode type N.30, but for more ambitious A.C. sets, a Directly heated Power valve such as the OSRAM PX.25, etc., could be employed, with a separate filament transformer winding in conjunction with a Rectifier of the OSRAM U.14 or MU14 type.

W.30

Typical Circuit illustrating the use of OSRAM Universal Range with Heaters wired in Series (0.3 amp.) for use in Combined AC-DC Receiver.

Typical Circuit illustrating the use of OSRAM Universal Range with Heaters wired in parallel (13 Volt) for a Car Radio Receiver or A.C. Mains Set. -57-

OHMS LAW

Given two of the factors of volts, ohms, or milliamperes, the third may be found by placing a straight rule across the scales cutting the two given values.

Reproduced by kind permission of The Wireless World.

WATTS DISSIPATED

Given two of the factors of volts, ohms, milliamperes, or watts, the remaining two may be found by placing a straight rule across the scales cutting the two given values.

Reproduced by kind permission of The Wireless World

-59-

OSRAM VALVES COMPARATIVE TABLE OF VALVE TYPES

		1			Micro-	
	Osram	Cossor	Ferranti	Mazda	mesh	Mullard
	VP.21	210.VPT		VP.215		VP.2
	S.24	220.SG		S.215B	5.B1	PM.12A
	S.23	215.SG	-	S.215A	-	PM.12
	VS.24	220.VS	VS.2	S.215VM	-	PM.12M
	X.21		VHT.2	-	-	_
	H.2	210.H	-	H.2	_	PM.1A
	H.210	210.RC	_	H.210	_	PM.IA
	HL.2	210.HF		HL.2	HLB.I	PM.1HL
,	HL.210	210.HL	-	HL.210	HLB.1	PM.THL
-60-	HD.22	-	H.2D	HL.21DD	_	T.DD2
Ţ	L.210	210.LF	_	L.210	-	PM.1LF
	L.21	215.P		L.2	_	PM.2D X
	LP.2	220. PA	_	P.220	P.B.1	PM.2A
	P.215	215.P	L.2	P.215	-	PM.2
	P.2	220.P	-	P.220A	_	PM.202
	РТ. 2	220.PT	_	PEN.220	PEN.B1	PM.22A
	DG.2	210.DG	-	-	_	PM.IDG
	B.21		-	PD.220A	-	РМ.2ВА
	QP.21	_	_	QP.240	_	
	VMP.4	MVS/PEN	VPT.4	AC/VP.1	9.A1	VP.4
	MSP.4	MS/PEN	SPT.4	-	8.A1	SP.4
	MS.4B	41.MSG		AC/SG	SGA.1	S.4VB
	MS.4	MSG/LA		AC/SG	_	S.4V
					1 M 1 M 1 M 1	

(In many cases characteristics are not exactly equivalent. Types shewn have approximately similar characteristics.)

					NC	
	Osram	Cossor	Ferranti	Mazda	inesh	Mullard
	VMS.4	MV.SG		AC/SG.VM		VM.4V
	VMS.4B	-	_	AC/2SVM	VSG A1	-
	MX.40	41.MPG	VHT.4	-	15.A2	
	MHD.4	DDT.	H.4D	AC/HL.DD	11.A1	TDD.4
	MH.41	41.MH	-	AC.2HL	HL.A1	904.V
	MH.4	41.MHF	-	AC/HL		354.V
	MHL.4	41.MLF			~	164 V
	ML.4	41.MP	_	AC/P	PA.I	104 V
	MPT.4	MP/PEN		AC/PEN	7.A2	PEN4VA
	РТ.4	PT.41	-			PM,24M
	PX.4	4.X P	LP.4	PP.3/250	~	AC.044
ŀ	PT.16	~	-	_	_	-
ī	PX.25	~	_	PP.5/400	-	DO.24
	PX.25A	~	_	-	-	DO.26
	PT.25	~	_	_	<u> </u>	PM.24D
	РТ.25Н	-	_	_	-	PM.24D
	DA.60	-	-	—	-	DO.60
	DA.100	~	_	-	-	-
	U.10	506.BU	-	UU.60/250	R.1	DW.2
	U.12	442.BU	R4.A	UU120/350	R.2	DW.3
	U.14	460.BU		UU120/500	R.3	DW.4
	MU.12	-		-	_	1W.3
	MU.14	-	- 1	-	_	IW.4
			1			

(In many cases characteristics are not exactly equivalent. Types shewn have approximately similar characteristics.)

OSRAM Group.	VALVES- Type.	-PRICE Price.	LIST See Page
2-volt	S.23	12/6*	4
Battery	S.24	12/6*	4
,	V.S.24	12/6*	4
	V.S.24/K	12/6*	4
	V.P.21	13/6M	[, 4
	H.L.2	5/6*	4
	H.L.2/K	5/6*	4
	H.D.22	9/-*	4
	L.21	5/6	4
	L.P.2	7/-	4
	P.2	12/-	4
	P.T.2	13/6	4
	P.T.2/K	13/6	4
	B.21	14/-	6
	Q.P.21	22/6	6
	X.21	18/6	6.
2-volt	H.2	5/6*	9
Battery	H.210	5/6*	8
(replace-	H.L.210	5/6*	8
ment	L.210	5/6	9
types)	P.215	7/-	8
<i>.</i> ,	DG.2	20/-	8
	S.21	12/6*	9
	S.22	15/6*	9
	V.S.2	12/6*	8
A.C. Mains	M.S.4.B	17/6*	10
Receiving	M.S.4.B.CATE	KIN 17/6*	10
Power	V.M.S.4	17/6*	10
Triodes and	V.M.S.4 CATE	KIN 17/6*	10
Power	V.M.S.4.B	17/6*	10
Pentodes	V.M.P.4	17/6M	10
	V.M.P.4 K CAT	TKIN 17/6M	10
	M.S.P.4	17/6M	10
	M.H.4	13/6*	10
	M.H.4 Catki	N 13/6*	10
	M.H.41	13/6*	10
	MHD4	15/6*	12

A.C. Mains	M.L.4	14/- 1	12
Types	M.P.T.4	18/6	12
(continued)	M.P.T.4 CATKIN	18/6	12
	M.X.40	20/-	12
	P.X.4	16/6	14
	P.X.25	25/-	14
	P.X.25A	25/-	14
	P.T.25	45/-	14
	Р.Т.25.Н	45/-	14
(D.A.60	110/-	14
	D.A.100	210/-	14
(Replace-	M.S.4	17/6*	10
ment	M.H.L.4	13/6*	12
types)	P.T.4	18/6	14
D.C. Mains	D.S	17/6*	16
0.25 amp.	D.S.B	17/6*	16
rr	V.D.S	17/6*	16
	V.D.S.B	17/6*	16
	D.H	13/6*	16
	D.H.D	15/6*	16
	D.L	14/-	16
	D.P.T	18/6	16
Universal	W.30 CATKIN	17/6M	18
Range	H.30	13/6*	18
0.3 amp.	D.H.30	15/6*	18
1	N.30 CATKIN	18/6	18
	X.30	20/-	18
Rectifiers	U.10	12/6	20
	U.12	15/-	20
	U.14	20/-	20
	M.U.12	15/-	20
	M.U.14	20/-	20
	U.30	15/-	20
i	G.U.1	25/-	20
Current	Barretter 251	12/6	22
Regulators		12/6	22
		12/6	22
		12/6	22
Gasfilled Relay	G.T.1	40/-	
a abilitica rielay			

63

M Metallised bulbs only. •Metallised or plain. Prices apply in Great Britain and Northern Ireland.

G.E.C. RADIO

The General Electric Co. Ltd. offers in the 1934/5 season's programme an extensive range of beautifully constructed and fully guaranteed quality receivers, providing a practical demonstration of the amazing efficiency obtainable by close liaison between the valve designer and the radio manufacturer. Each model incorporates a circuit specially chosen to take the fullest advantage of the most modern valve developments, and OSRAM Valves, of course, are used throughout.

Here are brief descriptions of a few of these interesting models :

G.E.C. "A.C./D.C.	A "Universal" Mains Set in	1-H.30, 1-N.30	£7 15 0
Mains 3''	bakelite cabinet, with built-in	1-U.30 OSRAM Valves	Complete
	moving coil speaker.		-
G.E.C. Radiogram	A side-by-side floor model with	1-X,30, 1-W. 30	22 Gns.
Superhet A.V.C.5	induction gramophone motor,	1-D.H.30, 1-N.30	Complete
	5-valve A.V.C. Superhet chassis	1-MU.14 OSRAM Valves	-
	and moving coil speaker, for A.C.		
G.E.C. "Battery	A self-contained battery receiver,	1-VS.24, 1-VP.21	£9 17 6
C.B.4''	with built-in moving coil speaker.	1-L.21, 1-B.21	Complete
	"Gecalloy " iron-core coils and	OSRAM Valves with	1 Batteries
	Class " B " output.		

A folder describing the complete range of G.E.C. Radio for 1934/5 will be gladly forwarded on request.

are

The choice of Radio Experts the world over for QUALITY and PROVED RELIABILITY.

> Used by The Services The General Post Office The B.B.C.

> > The leading manufacturers

USE OSRAM VALVES IN YOUR SET FOR CONSISTENT GOOD RECEPTION.

A TONIC TO ANY SET

Manufacturers, Wholesale Only.

510

THE GENERAL ELECTRIC CO., LTD., Head Office : Magnet House, Kingsway, LONDON, W.C.2.

> Telephone : TEMple Bar 8000 (70 lines). Telegrams : "Electricity, Westcent, London." Cablegrams : "Polyphase, London."

Branches throughout Great Britain and in all principal markets of the world.

Printed in England.

OV. 6955 (Reprinted Sept., 1934)