VACUUM VALVES IN

PULSE TECHNIQUE

VACUUM VALVES IN

PULSE TECHNIQUE

BY

P. A. NEETESON
Philipe Contral Application
Laboratorien. Eindhoven

Second revised and enlarged edition

1959

Publisher's note:
This book is published in English, German and French The book contains 202 pages, 155 figures
U.D.C. 621.374

Copyright N.V. Philips' Gloeilampenfabrieken, Eindhoven, Holland Printed in the Netherlands

2nd enlarged edition 1959

PREFACE

The use of the electron tube in electric circuits has spread within the last few decades over a vast new field, the field of pulse technique.
Some of these applications of the tube have already become a normal part of modern life, for instance in television and automatic telephony. Further, there are important applications in special spheres, like radar, telemetering and electronic counting apparatus, not to mention the rapidly expandings sphere of electronic computers. The introduction of the electron tube into electric circuitry was chiefly the work of practical men. Gradually, the special properties and possibilities of the tube were studied and the number of uses to which it could be put increased considerably, as it became known how the tube could be treated within the network.
In pulse technique, however, the tube is generally used for quite another type of operation, there being two distinct operating states, in one of which no current or very little current is drawn and the tube is cut off. The other state is that in which a heavy anode current flows and the tube is fully conducting. The change-overs between these two states occur suddenly and are accompanied by certain related transient phenomena in the network. The tube operates as a "switch".
Although there are many known applications of the tube for this type of use, the mathematical treatment of the switching phenomena is still a closed book to many users. It is the main aim of this book to indicate the methods of determining the behaviour of a network in which electronic tubes are used as switches. The better mastery of this material may then lead to still more efficient use, and even to new applications of the tube in this type of circuit. After a few introductory chapters, dealing with such subjects as the opening and closing of switches in networks and some principles of operational calculus, there follows a chapter in which a thorough treatment of the vacuumtube as a switch is given. This chapter is sub-divided into a treatment of the grid circuit and of the anode circuit, both for the triode and the pentode. The last chapters deal with three very important and widely used circuits known collectively as multivibrators - these are the bistable, monostable and astable multivibrators.
The subject matter of this book does not spring from a mere desire to theorize in the contrary, it was actually prompted by a problem that arose in practice
and that necessitated a deeper investigation by the author into the dynamic phenomenc of one of these pulse circuits. By deriving a theoretical treatment of these phenomena and confirming it in practice, the operation became easier to understand and practical conclusions could be drawn, giving rise, for instance, to the development of special tubes having particularly favourable properties for use in pulse techniques.
The book will thus be useful for those who may already be engaged in pulse techniques but who are not yet conversant with the mathematical treatment of the electrical phenomena which occur in these special circuits. It will further be of help to those who are specializing in this branch of electronics and may also find application in training institutes.
Thanks are due to Mr H arley-Carter, A.M.I.E.E., London, and Mr H. P. White, London, for reading the English text.

PREFACE TO THE SECOND EDITION

The fact that within a few years a second edition of this book, treating a rather specialized material, has been necessary, is of course a great satisfaction to the author. It makes him believe that the new edition will also find its way to those interested in the subjects of pulse technique in electronics, the more so as it has been possible to extend the contents of the book with an extra chapter and an extensive literature reference. The new chapter treats a special class of pulse circuitry formed by several kinds of blocking oscillators, thereby illustrating the applicability of the switching theory to this field of magnetically coupled electronic devices.

The multivibrator circuits together with the blocking oscillators cover the most important part of fundamental pulse circuits containing vacuum tubes as the active elements. Therefore it is believed that the incorporation of the nerr' chapter makes the book a more complete whole.

June 19:j9
The Author

CONTENTS

Page

1. Introduction. 1
2. Basic theory of switching 4
2.1. Sudden short-circuiting of two points of a network 4
2.2. Sudden breaking of a connection in a network. 5
3. Application of the theory to simple switching circuits. 7
3.1. Ideal switch without internal resistance and parallel capa- citance. 7
3.2. Switch with internal resistance. 8
3.3. Switch with internal resistance and parallel capacitance 10
4. Simple treatment of electron tubes as switches 16
5. Some elements of the operational calculus 19
6. Fundamental treatment of electron tubes as switching elements 28
6.1. The grid circuit. 28
6.1.1. A positive going steep change of grid potential 28
6.1.2. A negative going steep change of grid potential 49
6.1.3. Diode circuits. 59
6.2. The anode circuit. 60
6.2.1. Triodes. 60
6.2.2. Pentodes 69
7. The multivibrator family 75
7.1. Introduction 75
7.2. The bi-stable multivibrator. 76
7.2.1. Fundamental circuit 77
7.2.2. Static condition 79
7.2.3. Dynamic condition 81
7.2.3.1. First phase of the dynamic condition 83
7.2.3.2. Second and third phase of the dynamic condition 87
Page
7.2.4. Variations of the fundamental circuit 95
7.2.4.1. Bi-Stable multivibrator with automatic grid bias. 95
7.2.4.2. Trigger pulses applied to the anodes. 96
7.2.4.3. Trigger pulses applied to a tap of the grid leak resistors. 96
7.2.4.4. Trigger pulses applied to a tap of the anode resistors. 97
7.2.5. Influence of the tube characteristics on the sensitivity of a bi-stable multivibrator. 97
7.2.5.1. Introduction. 97
7.2.5.2. Influence of several tube characteristics on the sensitivity of the multivibrator 99
7.2.5.2.1. Numerical Example 101
7.2.5.3. The complete trigger cycle 106
7.2.5.3.1. Discussion of the wafeforms 106
7.2.5.4. Conclusion 116
7.3. The monostable multivibrator 117
7.3.1. Introduction 117
7.3.2. The static condition 118
7.3.3. The first phase of the dynamic condition 120
7.3.4. The second phase of the dynamic condition 126
7.3.5. The third phase of the dynamic condition. 129
7.3.6. Experimental verification of the theory 125
7.4. The astable multivibrator 138
7.4.1. Introduction 138
7.4.2. The symmetrical AMV. 139
7.4.2.1. Determination of the frequency of the AMV signal 139
7.4.2.2. Waveform of the symmetrical AMV signal 143
7.4.2.3. Influence of internal tube resistances. 145
7.4.2.4. Influence of a positive grid-bias voltage 153
7.4.3. The asymmetrical AMV 156
7.4.4. Conclusion 161
7.4.5. Experimental check of the theory 162
8. Blocking-oscillator circuits 166
8.1. Introduction 166
8.2. Analysis of triggered blocking oscillator 167
8.2.1. Calculation of the transients 169
8.2.2. Determination of the output-pulse width 170
8.2.3. Discussion of the transient waveforms 173
8.2.4. Comparison of theory and practice 174
8.2.5. Some design considerations 176
8.2.6. The blocking condition 178
8.2.7. Anode current and voltage. 179
8.2.8. Energy dissipation in grid and anode circuits 179
8.3. Other modes of feed-back 184
8.3.1. Some experimental checks 185
8.4. Free-running blocking oscillator 187
8.4.1. $R C$-timing circuit in the grid lead 187
8.4.2. $R C$-timing circuit in the cathode lead 189
8.4.3. Frequency not defined by an $R C$-network 190
Bibliography 191
List of symbols and index 193

1. INTRODUCTION

The theoretical analysis of linear electrical networks which has been developed thoroughly during the past century by many workers in this field has reached a certain degree of perfection.

The first stage in this development was the study of the behaviour of passive networks when subjected tc the influence of electromotive forces or electrical currents of periodic nature and having such small amplitudes that the components included in the networks never lose their typical linear properties. In other words, the values which determine the behaviour of the components are independent of the amplitudes.

Typical components of passive linear networks are resistances, capacitances, self- and mutual inductances. These are best known in their classical form as linear components. Modern development of electrical circuitry, however, takes increasing advantage of the possibilities offered among others by new magnetic and dielectric materials having hysteresis and saturation properties to construct typical non-linear components. Examples of these are self-inductances of coils with more or less saturated magnetic cores (iron alloys, iron-dust cores, ferrites such as ferroxcube), capacitors with barium titanate dielectric, voltagedependent resistances (VDR), resistances with negative or positive temperature-coefficient (NTC and PTC resistances resp.).

Returning to our starting point, it can be stated that the mathematical treatment of passive, linear network behaviour has been mastered very well, some examples of noteworthy tools being Fourier analysis of periodical waveforms, that enables the response of networks to these waveforms to be calculated as the response to the superposition of single sine wave functions, and also the introduction of complex functions instead of sine functions.

A further and very important step in the development of networkanalysis was the study of the response of passive linear networks to nonperiodic, discontinuous wave forms. This was commenced with a marvellous mathematical intuition by Heaviside, then greatly widened and mathematically established by other outstanding mathematicians and physicists, resulting in the new technique of calculating the response of networks to input-currents or -voltages known as operational
calculus. Even non-linear, passive networks of not too complex nonlinear nature have been mathematically analysed.

Since the invention of the electronic vacuum tube, a new "component" has entered network-design so rapidly and completely that it hardly has a parallel in any other technical development of modern time. Thus an essentially non-linear, non-passive component, the electron tube, is introduced into electrical networks.

The electron tube is a non-passive component because direct-current power is constantly fed to it, thus making it possible to give the tube amplifying properties for signals with varying amplitude, the most widespread application being the modulation of a direct anode current by means of a varying grid voltage, resulting in a more or less proportional variation of the potential drop across an anode load-resistor.

This "more or less" must be added, because it is difficult to get a linear relationship between grid voltage variation and resulting anode current variation (linear anode current - grid voltage characteristic). Linearity is more closely approached as the excursions of the grid voltage variation to either side of a fixed operating point on the characteristic become smaller. Then the well-known equivalent circuits of the electron tube amplifier can be used to simplify the analysis of the network containing the tube. These equivalent circuits are either a voltage source μe_{g} in series with the internal anode resistance R_{i}, or a current source $S e_{g}$ in parallel with R_{i}, μ and S being the amplification factor and the transconductance respectively, e_{g} the applied grid voltage variation.

Under these circumstances, the electron tube can be incorporated in the network of more conventional components as another linear (amplifying) element and mathematically treated as such.

In the use of electron tubes in pulse techniques, however, these conditions are generally far from being satisfied. The tube must, on the other hand, be considered as an essentially non-linear element. It is generally switched from one discrete state into another, viz. from the fully conducting state into cut-off condition or vice versa. In the conducting state it represents a given (internal) resistance between anode and cathode. When, in addition, grid current occurs, another (internal) resistance is present between the grid and the cathode. In the non-conducting state, these resistances have assumed very high values, practically infinite. It may thus be stated that, at sudden transitions from one state to the other, resistances are switched on or off in the circuit in which the whe is moluded
It will be clear that his kind of operation of tubes in pulse techniques
is quite different from the familiar operation in conventional amplifiers, and must be considered as a switching action. Some external cause, usually a rather steep voltage step in either the positive or the negative direction applied to the control grid, should bring the tube as rapidly as possible from one discrete position to the other.

Because of the already widespread and still ever increasing use of electron tubes in pulse techniques, such as electronic counter-apparatus and computing devices, scalers and radiation counters for atomic research and X-ray application, pulse modulation systems, radar, television and the like, it seems worth while to examine the behaviour of these tubes in pulse applications. This will be the principal aim of this book. After a general treatment of the behaviour of an electronic vacuum tube when subjected to sudden voltage changes at its control grid, some special circuits, well known in practice and often used as fundamental units in pulse devices, will be dealt with. Theoretical analysis will prove to be useful in investigating the influence of several tube characteristics on the behaviour of the circuits as a whole. The circuits to be considered are the three members of the multivibrator family, viz. the bistable, the monostable and the astable multivibrator.

As already mentioned, operational calculus has offered elegant solutions of transient phenomena in electrical networks. It will prove to be useful too in solving the problems related with transients in switched electron tubes.

Relatively few basic principles of this operational calculus will be sufficient to deal with the transient problems related with electron tubes as circuit components, and to solve these problems. These basic elements will be considered in the next section.

2. BASIC THEORY OF SWITCHING

As previously mentioned, in pulse techniques the electronic tube mist be regarded as a non-linear element. In the conducting state, internal anode resistance and, generally, also internal grid resistance must be taken into account, whereas in the non-conducting or cut-off state, these resistances have disappeared. If the tube is suddenly switched from one state to the other by a negative or positive-going voltage step at the control grid, these internal resistances are switched off or on respectively in the circuit containing the tube.

Operational network analysis indicates how to incorporate these discontinuities and their consequences in calculations of the circuit behaviour.

Before proceeding to a more detailed discussion of circuits with switching tubes, a short general survey of switch actions will be given.

2.1. SUDDEN SHORT-CIRCUITING OF TWO POINTS OF A NETWORK

In fig. 1.2, $A B$ represents a passive linear network in which currents flow and voltages occur as a result of an externally applied voltage $E(t)$, which is a function of time. The voltage between points P and Q of the network will be denoted by $V(t)$. At the instant $t=t_{0}$, points P and Q are short-circuited, so that the voltage between these points

Fig. 1-2.
Passive network in which the externally applied voltage $E(t)$ produces a voltage $V(t)$ between points P and Q. is zero for $t \geqslant t_{0}$. The effect of this sudden short-circuiting on the current and voltage situation of the network can now be determined by imagining a voltage source with zero internal resistance being present between P and Q from the instant $t=t_{0}$ onwards, the time function of this voltage being such that the voltage $V(t)$ originally present between P and Q is just compensated from the instant t_{0} onwards. This voltage source, occurring when the switch is closed, can be represented by the expression:

$$
\begin{equation*}
V_{c}(t)=-V(t) \cdot U\left(t-t_{0}\right), \tag{1.2}
\end{equation*}
$$

in which $U\left(t-t_{0}\right)$ represents a unit step function occurring at the instant $t=t_{0}$. In other words, from this instant onwards the voltage $V(t)$ must be multiplied by -1 to obtain the time function $V_{c}(t)$.

The voltages and currents in the network now consist of two superimposed components, namely one component originating from $E(t)$ as it would be without the sudden disturbance caused by points P and Q being short-circuited, and the other component caused by $V_{c}(t)$, i.e. by the short-circuiting effect. Since it has been assumed that the input voltage source $E(t)$ has zero internal resistance or that its internal resistance is incorporated in the network, this voltage source

Fig. 2-2.
Example of the time function $V_{c}(t)$. may be considered as a short-circuit for calculating the effect of $V_{c}(t)$.

Fig. 2.2 illustrates an example of the time function $V_{c}(t)$.

2.2. SUDDEN BREAKING OF A CONNECTION IN A NETWORK

In the passive network $A B$ shown in fig. 3.2, a current $I(t)$, which is caused by the input voltage $E(t)$, flows between points P and Q through the resistance R. This resistance will be assumed to be suddenly disconnected from point Q at the instant $t=t_{0}$. From the instant t_{0} onwards, current can obviously no longer pass from P to Q. This is

Fig. 3-2.
Passive network in which the externally applied voltage $E(t)$ produces a current $I(t)$ through the branch $P Q$. equivalent to the resistance R suddenly becoming infinitely large. The effect of this discontinuity on the network can be described as follows.

From the instant $t=t_{0}$ onwards, voltages and currents in the network consist of two components, namely one component due to $E(t)$ and calculated as if no discontinuity had occurred, and a second component, superimposed on the other, which is caused by the sudden disconnection of R and calculated by assuming an imaginary current source with infinitely large internal resistance to be present between points P and Q, the voltage source $E(t)$ being short-circuited and the value of the current source being such that the current $I(t)$, which would be present without the disturbance, is just compensated.

This imaginary current source, occurring when the switch is opened, will be denoted by $I_{0}(t)$, and, in analogy with eq. (1.2), it can be described by:

$$
\begin{equation*}
I_{0}(t)=-I(t) . U\left(t-t_{0}\right) \tag{2.2}
\end{equation*}
$$

This expression can be represented by the curve shown in fig. 2.2, provided $V(t)$ and $V_{c}(t)$ are replaced by $I(t)$ and $I_{0}(t)$ respectively.

3. APPLICATION OF THE THEORY TO SIMPLE SWITCHING CIRCUITS

Before proceeding to the discussion of practical switching devices containing electron tubes, some simple switching circuits will be investigated, containing a switch whose nature will be left out of consideration.

3.1. IDEAL SWITCH WITHOUT INTERNAL RESISTANCE AND PARALLEL CAPACITANCE

The circuit will be assumed to consist of a resistance R in series with a switch S connected to a constant voltage V_{o} (see fig. 1.3).

If the voltage source has an internal resistance, this may be imagined to be incorporated in the value of R. It is now of interest to know the form of the voltage V across the switch. It will be clear that so long as switch S is open, V will have the same value as V_{b}, whereas V will be zero when the switch is closed.

Opening the switch at the instants t_{1}, t_{3}, \ldots

Fig. 1-3.
Ideal switch without internal resistance and parallel capacitance connected to a constant voltage V_{b} via the resistance R. and closing it at the instants $t_{2}, t_{4} \ldots$ will therefore result in a voltage as depicted in fig. 2.3.

By way of illustration, the theory outlined in sections 2.1 and 2.2 will now be applied. First the case of the switch being closed will be

Fig. 2-3.
Voltage V produced across the switch S shown in fig. 1-3 when S is opened at the instants t_{1}, t_{3}, \ldots and closed at the instants t_{2}, t_{4}, \ldots considered. From this instant onwards, a voltage source V_{c} is to be incorporated in this circuit instead of the switch, so that V_{c} has the same value as, but is opposite in sign to, the voltage V that would be present if the switch had not been closed.

Hence, $\quad V_{c}=-V_{b}$, the situation being as represented by fig. 3.3. The actual voltage V across the switch is now equal to the superposition of
the original voltage $+V_{b}$ and the effect of V_{c}, viz. $-V_{b}$, resulting in zero voltage. The voltage across R was originally zero, whereas, after the switch has been closed, a current $I=V_{\mathrm{c}} / R$ flows through R, producing a voltage drop $-V_{c}$ across R. The combined effect of these two components is $0-V_{c}$ or $+V_{b}$.
There is obviously no point in applying this method to such simple switching circuits, but it does give an insight in the mechanism and proves the validity of the theory.

Fig. 3-3.
Circuit equivalent to that shown in fig. 1-3 when switch S is closed.

Fig. 4-3.
Circuit equivalent to that shown in fig. 1-3 when switch S is opened.

Considering the opening of the switch, it will be clear that, from the instant of opening onwards, a current source $I_{0}=-V_{0} / R$ must be imagined to be present at the terminals of the switch (see fig. 4.3). This current gives rise to a voltage drop across R, as a result of which the potential of point A with respect to B is $-I_{0} R$ or $+V_{h}$.

The voltage between A and B was originally zero, resulting in a voltage $V=V_{b}$. Before the switch was opened, a current $I=-I_{0}$ was flowing in the downward direction through R, whereas, after the switch has been opened, this current is compensated by the current I_{0}, resulting in zero voltage drop across R.

3.2. SWITCH WITH INTERNAL RESISTANCE

Since ideal switches are non-existent, a better approximation of an actual switch is obtained by assuming it to have a certain internal resistance r, r being taken to be much smaller than R.

Fig. 5.3 shows the circuit with the switch open. The voltage across the switch will obviously be $V=V_{0}$ and will drop to a value

$$
V=V_{0} \cdot r /(R+r)
$$

when the switch is closed. Opening the switch at the instants $t_{1}, t_{3} \ldots$ and closing it at the instants $t_{2}, t_{4} \ldots$ will result in a voltage V as shown
in fig. 6.3. Compared with the previous case, the amplitude of the pulseshaped voltage V has decreased by an amount $V_{b} \cdot r /(R+r)$. The flanks of the pulses will, however, still have an infinitely steep slope.

Fig. 5-3.
Switch with internal resistance r connected to a constant voltage V_{b} via the resistance R.

Fig. 6-3.
Voltage V produced across the switch shown in fig. 5-3 when this is opened at the instants t_{1}, t_{3}, \ldots and closed at the instants t_{2}, t_{4}, \ldots

The validity of the theory given in Sections 2.1 and 2.2 will once again be shown. Closing the switch at the instant $t=t_{0}$ gives for $t \geqq t_{0}$ a superposition of the original state and the effect of a voltage source $V_{c}=-V_{b}$ as represented in fig. 7.3. This voltage gives rise to a current

Fig. 7-3.
Circuit equivalent to that shown in fig. 5-3 when switch S is closed.

Fig. 8-3.
Circuit equivalent to that shown in fig. 5-3 when switch S is opened.
$I=V_{c} /(R+r)=-V_{b} /(R+r)$. This current produces a voltage drop of $-r I=V_{\mathrm{b}} . r /(R+r)$ across r. The total effect of V_{c} on the potential between A and B is therefore given by:

$$
V_{c}+\frac{r}{R+r} \cdot V_{\mathrm{b}}=-V_{\mathrm{b}}+\frac{r}{R+r} \cdot V_{\mathrm{b}}=-\frac{R}{R+r} \cdot V_{b} .
$$

This voltage must be superimposed on the original voltage $+V_{b}$, which gives for the total voltage between A and B :

$$
V=V_{b}-\frac{R}{R+r} \cdot V_{b}=\frac{r}{R+r} \cdot V_{b} .
$$

The opposite case, when the switch is opened at the instant $t=t_{0}$. can be investigated by assuming a current source $I_{0}=-V_{b} /(R+r)$ to be present between A and B for $t \geqq t_{0}$ (see fig. 8.3). This current produces a voltage drop across R, which results in a potential of

$$
V_{b} \cdot R /(R+r)
$$

being produced between A and B. This must be added to the voltage already present between these points for $t<t_{0}$, namely $V_{b} . r /(R+r)$, which gives $V=V_{b}$ for $t \geqslant t_{0}$.

3.3. SWITCH WITH INTERNAL RESISTANCE AND PARALLEL CAPACITANCE

In practice, all switches will have not only an internal resistance, but also a stray capacitance connected in parallel. Fig. 9.3 shows the circuit with the switch open. The voltage V is equal to V_{b} when the

Fig. 9-3.
Switch with internal resistance r and parallel capacitance C connected to a constant voltage V_{b} via the resistance R. switch has been open for a sufficient length of time, so that no transient effects due to a preceding switching action remain.

When the switch is now closed at an instant which, for the sake of convience will be denoted by $t=0$, the situation depicted in fig. 10.3 will arise.

With the aid of Thévenin's theorem this circuit can be replaced by the equivalent circuit shown in fig. 11.3, in which the voltage source V_{b} with its series resistance R is replaced by a current source $I=V_{b} / R$ with parallel resistance R.

Fig. 10-3.
Circuit equivalent to that shown in fig. $9-3$ when switch S is closed at $t=0$.

Fig. 11-3.
Equivalent circuit of fig. 10-3 according to Thévenin's theorem.

The circuit of fig. 11.3 may be replaced by the simplified circuit shown in fig. 12.3, in which $R_{e q}=R . r /(R+r)$. According to Kirchhoff's laws:

$$
\begin{equation*}
R_{e q} \cdot \frac{d i_{1}}{d t}+\frac{1}{C} \cdot i_{1}=\frac{1}{C} \cdot I \tag{1.3}
\end{equation*}
$$

a possible solution of which is:

$$
\begin{equation*}
i_{1}=I+A e^{a t} \tag{2.3}
\end{equation*}
$$

Substitution of eq. (2.3) in eq. (1.3) and introducing the initial condition $V=V_{b}$ for $t=0$, gives:

$$
A=\frac{V_{b}}{R_{e q}}-I \text { and } a=-\frac{1}{R_{e \theta} C}
$$

Since

$$
\begin{equation*}
V=R_{e q}\left(I+A e^{-t / R_{e q} C}\right) \tag{3.3}
\end{equation*}
$$

it may therefore be written:

$$
\begin{equation*}
V=\frac{V_{b}}{R+r} .\left(r+R e^{-t / R_{e e} C}\right) \tag{4.3}
\end{equation*}
$$

Fig. 12-3.
Circuit according to that shown in fig. 11-3 in which the resistances R and r connected in parallel are replaced by the equivalent resistance $R_{\text {e } 0}$.

After a sufficiently long time, V approximates to:

$$
\begin{equation*}
V_{\infty}=\frac{r}{R+r} \cdot V_{b}, \tag{5.3}
\end{equation*}
$$

whilst for $t=0$ the initial value is:

$$
\begin{equation*}
V=V_{0}=V_{b} . \tag{6.3}
\end{equation*}
$$

Fig. 13-3.
Circuit for calculating transient effects.

Fig. 14-3.
Equivalent circuit of fig. 13-3 according to Thévenin's theorem.

For calculating the transients with the aid of the above theory, it is necessary to introduce a voltage $V_{c}=-V_{b}$ (see fig. 13.3) in series with the resistance r, and to add to the voltage V_{b} present before the switch was closed the voltage \bar{V} across A and B due to V_{c}. With the aid of Thévenin's theorem, the circuit of fig. 13.3 can be replaced by the equivalent circuit shown in fig. 14.3, in which:

$$
\begin{equation*}
R_{e q}=\frac{r R}{r+R} \tag{7.3}
\end{equation*}
$$

The current i_{1} is given by eq. (1.3), whilst for the general solution eq. (2.3) is applicable. Now, for $t=0$, i.e. the instant at which the switch is closed, the voltage across the capacitance C cannot suddenly rise to a certain value; hence, $V=0$ or $i_{1}=0$, for $t=0$. Substitution in eq. (2.3) gives:

$$
\begin{equation*}
A=-I \tag{8.3}
\end{equation*}
$$

and from eqs (2.3) and (1.3):

$$
\begin{equation*}
a=-\frac{1}{R_{e \sigma} C}, \tag{9.3}
\end{equation*}
$$

whence:

$$
i_{1}=I\left(1-e^{-t / R_{e c} C}\right),
$$

or:

$$
\begin{equation*}
V=-i_{1} R_{e q}=-I R_{e q}\left(1-e^{-t / R_{e q} C}\right) . \tag{10.3}
\end{equation*}
$$

From eq. (7.3) and considering that $I=V_{b} / r$:

$$
\begin{equation*}
\bar{V}=-\frac{R}{R+r} \cdot V_{b}\left(1-e^{-t / R_{a c} C}\right) \tag{11.3}
\end{equation*}
$$

The total voltage across A and B after the switch has been closed is therefore:

$$
\begin{equation*}
V=V_{b}+\bar{V}=\frac{r}{R+r} \cdot V_{b}+\frac{R}{R+r} \cdot V_{b} e^{-t / R_{c o}} c . \tag{12.3}
\end{equation*}
$$

This expression corresponds to eq. (4.3) derived in the conventional way.
Closing the switch thus results in the potential between points A and B changing from the initial value $V_{0}=V_{b}$ to a final value

$$
V_{\infty}=V_{b} . r /(R+r) .
$$

according to an exponential law with a time constant $T_{c}=R_{s 0} C$.
Assuming, now, that the switch has been closed for a sufficiently long time, so that the final state in which $V=V_{\infty}=V_{b} \cdot r /(R+r)$ is practically reached, the situation represented in fig. 15.3 will arise when the switch is opened. It is convenient to set the instant t at which the switch is opened equal to 0 in a new time scale. For $t<0$, the voltage between points A and B was $V=V_{b} \cdot r /(R+r)$ (see eq. (5.3)), a constant current $I_{\infty}=V_{\mathrm{b}} /(R+r)$ flowing through the internal resistance r of the switch. At $t=0$, this current suddenly drops to zero and remains zero for all times $t \geq 0$. This can be accounted for by feeding a current I_{0} in the opposite direction, as represented in fig. 15.3,
this current being equal to the value of I_{∞} quoted above, which gives:

$$
\begin{equation*}
I_{0}=\frac{V_{b}}{R+r} \tag{13.3}
\end{equation*}
$$

The voltage V is now the superposition of the original voltage, which is already present between points A and B for $t<0$, and a voltage which results from the effect of the current source I_{0}. This latter component can be calculated by means of the circuit given in fig. 16.3, which is identical to that shown in fig. 15.3, except for the omission of the direct voltage source $+V_{b}$, which plays no part in the transient effects to be determined.

Fig. 15-3.
Circuit according to that shown in fig. 9-3 when switch S is opened after having been closed for a certain time.

Fig. 16-3.
Circuit identical to that shown in fig. 15-3, but for the omission of the direct voltage source $+V_{\text {o }}$, which plays no part in the transient effects under investigation.

A comparison of figs 16.3 and 12.3 reveals that these circuits are identical, so that the solutions of V in the case of the circuit shown in fig. 16.3 will be the same as those given by eq. (3.3), provided $R_{\text {ea }}$ and I are replaced by R and I_{0} respectively. Hence:

$$
\begin{equation*}
\bar{V}=R\left(I_{0}+A e^{-t / R C}\right), \tag{14.3}
\end{equation*}
$$

\bar{V} denoting that this is only part of the total voltage V between A and B.
The integration constant A is now defined by the initial condition $V=V_{b} \cdot r /(R+r)$ for $t=0$, i.e. $\bar{V}=0$ for $t=0$. Hence:

$$
0=R\left(I_{0}+A\right) \text { or } A=-I_{0},
$$

so that, from eqs (13.3) and (14.3):

$$
\bar{V}=\frac{R V_{\mathrm{o}}}{R+r} \cdot\left(1-e^{-r / R C}\right) .
$$

The total voltage between A and B for $t \geqq 0$ is the sum of \vec{V} and V_{∞}, which gives:

$$
\begin{equation*}
V=V_{b}-\frac{R}{R+r} \cdot V_{b} e^{-t / R C} \tag{15.3}
\end{equation*}
$$

Summarizing, it can thus be stated that after opening the switch the voltage V increases from its initial value $V_{b} \cdot r /(R+r)$ at $t=0$ to the final value V_{b} according to an exponential law with a time constant $T_{0}=R C$.

This time constant is thus always larger than the time constant T_{c}, in other words: the time constant of the transient phenomena at opening a switch exceeds that at closing a switch. The smaller the internal resistance r of the switch with respect to the external resistance R of the circuit, the more pronounced will be the difference in time constants, namely:

$$
\begin{equation*}
\frac{T_{c}}{T_{0}}=\frac{R_{e q} C}{R C}=\frac{r}{R+r} \tag{16.3}
\end{equation*}
$$

Fig. 17.3 gives a graphical representation of the voltage V when the switch is opened at the instants $t_{1}, t_{3} \ldots$ and closed at the instants t_{2}, t_{4}, \ldots

Fig. 17-3.
Voltage V as a function of time, produced in the circuit shown in fig. 15-3 when switch S is opened at the instants t_{1}, t_{3}, \ldots and closed at the instants $t_{2}, t_{4} \ldots$

It will be clear that periodical opening and closing of the switch with time intervals T that are small compared with the largest time constant $T_{0}=R C$, will result in the voltage V assuming a waveform as depicted in fig. 18.3, saw-tooth voltages thus being produced, whereas, if T is much larger than the largest time constant of the circuit, voltages with a pulsatory waveform will be generated. Both waveforms are well known and frequently applied in modern electronics, such as television, radar and computer devices.

The preceding simple treatise on switching circuits makes it possible to draw some general conclusions.

Fig. 18-3.
Saw-tooth voltage produced when switch S is opened and closed with time intervals T which are small compared with the largest time constant $T_{0}=R C$.

For generating pulses it is advantageous to aim at a switch the internal resistance of which is as low as possible, in order to increase the pulse amplitude. At the same time the switch should have a very small parallel capacitance in order to obtain pulses with steep flanks. Negative-going flanks will always be steeper than positive-going flanks. For generating saw-tooth shaped signals it will as a rule be necessary to add extra parallel capacitance.

4. SIMPLE TREATMENT OF ELECTRON TUBES AS SWITCHES

By applying positive- or negative-going voltage steps to the control grid, an electronic vacuum tube can be converted from the non-conducting (cut-off) state to the conducting state and vice versa. The anode-tocathode resistance of a cut-off tube is infinitely large and corresponds to an open switch, whereas a con-

Fig. 1-4.
Idealized $I_{a}=f\left(V_{s}\right)$ characteristic of a tube to which a square wave voltage is applied. ducting tube represents a certain (internal) resistance between the anode and cathode and may be considered as a closed switch having internal resistance and necessarily a certain parallel capacitance. A negative-going pulse is required for opening the "switch" and a positive-going pulse for closing it.

It will be assumed that ideal, perfectly square-wave shaped voltage steps are applied to the control grid of the electron tube, the anode current being completely cut off at the lowest potential level of these steps and their amplitude being such that the point at which grid current starts to flow is not reached (see fig. 1.4).

When a suitable resistance is incorporated between the anode and the H.T. line, the resulting anode voltage variations will be as shown in figs $2.4 a$ and b. Provided the largest time constant (product of anode load resistance and anode-to-cathode capacitance) is small compared with the switching time intervals $t_{1}, t_{2}-t_{1}, t_{3}-t_{2}$, etc., the anode voltage variations will be pulse-shaped as depicted in fig. 2.4a, whereas saw-tooth shaped voltage variations as depicted in fig. $2.4 b$ will be produced when this time constant is large compared with the switching time intervals.

This section is confined to the generation of pulse-shaped signals, and reference to saw-tooth generation circuits will be omitted. Readers
who are interested in the latter subject are referred to the literature quoted in footnote ${ }^{1}$).

Fig. $2 c .4$ shows the oscillogram of the driving pulses applied to the control grid of the electron tube. Comparison of fig. $2 a .4$ and fig. $2 c .4$ reveals that the circuit provides a kind of pulse amplification with, however, a certain amount of distortion. It will be clear that this distortion, manifest in a decrease of the slope of the pulse flanks and in the

When the square-wave voltage represented in (c) is applied to the control grid of a tube with a load resistor incorporated in the anode lead, the anode voltage variations will assume the forms shown in (a) or (b).
originally sharp-edged transitions being rounded off, can be minimized by keeping the time constants of the switch as small as possible. This can be achieved by making the anode load resistance fairly small, thus improving the slope of both pulse flanks, but at the same time decreasing their amplitude. By decreasing the internal resistance of the tube, the slope of the negative-going flanks will be improved, whilst the amplitude will be increased. Finally, a reduction of the stray capacitance of the anode circuit will steepen both pulse flanks. The specific requirements

[^0]for switching tubes are, therefore, low internal resistance and low output capacitance.

For generating pulse-shaped voltages in the anode circuit, the driving voltages applied to the control grid should be of the same nature. The obvious method of generating such voltages is to apply a regenerative process by feeding a fraction of the anode signal back to the control grid in antiphase. This is indeed the principle on which many types of relaxation oscillators, such as the multivibrator, are based (see the literature quoted in footnote ${ }^{1}$) page 17).

The multivibrator, which spontaneously generates pulse-shaped signals, is a free-running or astable multivibrator. This type of multivibrator has no stable state, but continuously changes from one quasistable position to the other. In one position, one of the two tubes which constitute the multivibrator is conducting (closed switch) and the other tube is cut off (open switch), whereas in the other position these conditions are reversed. Reversal takes place periodically with time intervals that depend on a time constant determined by the circuit elements of the coupling network between the tubes.
The bi-stable multivibrator or fip-fiop circuit has two discrete, stable positions which can be changed only by applying a driving signal (trigger pulse) to the circuit.

An intermediate form is the monostable or one-shot multivibrator. This circuit has only one stable condition in which it always remains when no external signal is applied. By suitably applying a triggering signal, this type of multivibrator suddenly changes from its stable state to a quasi-stable state in which the functions of the conducting and non-conducting tubes are reversed. The circuit remains in this condition during a period of time which depends on a time constant of the coupling network between the tubes.

In several subsequent sections detailed investigation of the action of pulsed electron tubes will be given, and the three types of multivibrators just mentioned, being important and fundamental circuits in a lot of pulse devices, will also be discussed. Before proceeding, however, to the main purpose of the book, some elements will be given of the operational calculus, which is required for attainment of the results aimed for.

No strict mathematical derivations must be expected, the only purpose of the following sections being to give the reader an idea of the lines along which the final results have been attained. For those readers, acquainted with operational calculus methods, these sections will contain little new information and could be safely omitted.

5. SOME ELEMENTS OF THE OPERATIONAL CALCULUS

Basically, the operational calculus offers an elegant method of solving differential equations. When the response of a network to a unit-step function is known, it is possible to calculate its response to an input function of arbitrary form by considering this function as the sum of a sequence of small step functions. It was Heaviside who introduced the unit-step function as the basic discontinuity.

According to the procedure of the operational calculus, the operation $d / d t$, i.e. differentiation with respect to time, may be considered as an algebraic quantity, which is denoted, for example, by the operator p. A rigorous proof of the permissibility of this method can be given by means of the Laplace transform, which is beyond the scope of this section. However, in order to make the reader familiar with the operational calculus, the response of a few fundamental circuits to a unit-step function will first be derived in the classical way of solving differential equations, after which it will be shown with which operational expressions the results thus obtained correspond.

Fig. 1-5.
Simple RC network to which a step function V_{i} is applied.

Fig. 2-5.
Step function applied to the circuit shown in fig. 1-5.

First the circuit shown in fig. 1.5 will be considered. The input voltage V_{i} will be taken to be a step function as depicted in fig. 2.5, i.e., the value of V_{i} suddenly jumps from zero to V_{0} at the instant $t=0$, and remains at V_{0} for $t \geqq 0$.

By means of Kirchhoff's laws, the following relation between the current I flowing in the circuit and the input voltage V_{i} can easily be derived, giving:

$$
\begin{equation*}
\frac{1}{C} \cdot I+R \cdot \frac{d I}{d t}=\frac{d V_{i}}{d t} \tag{1.5}
\end{equation*}
$$

The solution of this differential equation is:

$$
\begin{equation*}
I=\frac{V_{\mathbf{0}}}{R} \cdot e^{-t / R C} \tag{2.5}
\end{equation*}
$$

Expression (2.5) reveals that the current I flowing through the network, as a result of applying a unit-step voltage V_{i} (i.e. $V_{0}=1$ at the instant $t=0$, is equal to:

$$
\begin{equation*}
I=\frac{1}{R} \cdot e^{-t / R C} U(t) \tag{3.5}
\end{equation*}
$$

in which $U(t)$ represents the unit-step function which is zero for $t<0$ and unity for $t \geqq 0$.

According to the operational calculus, expression (1.5) may be rewritten as:

$$
\begin{equation*}
\left(\frac{1}{C}+R p\right) I=p V_{i} \tag{1a.5}
\end{equation*}
$$

In other words: the relation between the two quantities I and V_{i} is defined by the operational expression:

$$
\begin{equation*}
\frac{I}{V_{i}}=\frac{p}{\frac{1}{C}+R p} \tag{1b.5}
\end{equation*}
$$

It is also possible to express I in a symbolic, operational form, which gives:

$$
\begin{equation*}
I=\frac{1}{R}\left[\frac{p}{\frac{1}{R C}+p}\right] U(t) \tag{4.5}
\end{equation*}
$$

It can be seen from expressions (3.5) and (4.5) that the operator between square brackets, which operates on a unit-step function, can be translated into a time function, namely:

$$
\begin{equation*}
\left[\frac{p}{\frac{1}{R C}+p}\right] \equiv e^{-t / R C} \tag{5.5}
\end{equation*}
$$

The voltage V_{C} across the capacitance C is obviously given by:

$$
V_{C}=\frac{\int^{t} I d t}{C}
$$

or, from expressions (2.5) and (3.5):

$$
\begin{equation*}
V_{C}=\left(1-e^{-t / R C}\right) V_{0} U(t) . \tag{6.5}
\end{equation*}
$$

On the other hand, $I=C \cdot d V_{C} / d t$ and $I=\left(V_{i}-V_{C}\right) / R$, which gives:

$$
\frac{1}{R} \cdot V_{c}+C \cdot \frac{d V_{c}}{d t}=\frac{1}{R} \cdot V_{i}
$$

whence:

$$
\begin{equation*}
\left(\frac{1}{R C}+p\right) V_{C}=\frac{1}{R C} \cdot V_{i} \tag{7.5}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{c}=\left[\frac{\frac{1}{R C}}{\frac{1}{R C}+p}\right] V_{0} U(t) \tag{7a.5}
\end{equation*}
$$

It follows from expressions (6.5) and (7a.5) that the operator between square brackets can now be translated into the following time function:

$$
\begin{equation*}
\left[\frac{\frac{1}{R C}}{\frac{1}{R C}+p}\right] \equiv 1-e^{-t / R C} \tag{8.5}
\end{equation*}
$$

In a generalized form, the relations (5.5) and (8.5) indicate that, when in any network the relation between a quantity to be investigated and an input function is given by the operational expressions $p /(a+p)$ or $a /(a+p)$, this quantity will be $e^{-a t}$ or $1-e^{-a t}$, respectively, if the input is a unit-step function occurring at the instant $t=0$. (If this instant were $t=t_{0}$, the response of the network would be the same time function shifted in time over a period t_{0}. This may be taken into account by substituting $t-t_{0}$ for t in all time functions.)
In order to find the operational expression that links two electrical quantities in a network and which may have the dimension of an impedance or an admittance or may be a dimensionless transfer factor, it will be useful first to determine the a.c. impedance, admittance or transfer factor expressed in the conventional complex form with $j \omega$, which, in fact, originates from a time differentiation. Subsequently, $j \omega$ must be replaced by the operator p.

This is illustrated in the example given above. Referring again to fig. 1.5, the a.c. impedance of the network is:

$$
\begin{equation*}
Z(j \omega)=R+\frac{1}{j \omega C} \tag{9.5}
\end{equation*}
$$

so that:

$$
\begin{equation*}
I=\frac{V_{i}}{R+\frac{1}{j \omega C}} . \tag{10.5}
\end{equation*}
$$

or:

$$
\frac{I}{V_{i}}=\frac{1}{R+\frac{1}{j \omega C}}
$$

Substitution of $j a$ by p gives:

$$
\frac{I}{V_{i}}=\frac{1}{R+\frac{1}{p C}}
$$

or:

$$
\begin{equation*}
\frac{I}{V_{i}}=\frac{p}{\frac{1}{C}+R p} \tag{11.5}
\end{equation*}
$$

Expression (11.5) is identical to expression (1b.5).
If V_{i} is a sine function, the relation between V_{C} and V_{i} can be expressed as follows:

$$
\begin{equation*}
V_{c}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} \cdot V_{i} . \ldots . . \tag{12.5}
\end{equation*}
$$

Substitution of $j \omega$ by p gives:

$$
V_{C}=\frac{\frac{1}{p C}}{R+\frac{1}{p C}} \cdot V_{i}
$$

or:

$$
\begin{equation*}
V_{c}=\frac{\frac{1}{R C}}{p+\frac{1}{R C}} \cdot V_{i} \tag{13.5}
\end{equation*}
$$

which is identical to expression (7.5).
The two transformations:

$$
\begin{equation*}
\left[\frac{p}{a+p}\right] \equiv e^{-a t} \tag{14.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{a}{a+p}\right] \equiv 1-e^{-a t} \tag{15.5}
\end{equation*}
$$

are of particular importance, for it will often be possible to write a more complex operational expression as the sum of several expressions similar to expression (14.5) and (15.5), namely by splitting it up in partial fractions (Heaviside's Expansion Theorem) ${ }^{2}$).

This will be clarified by means of an example that will be met later, when the bi-stable multivibrator is dealt with. The value of the operational impedance between points a and b of the network shown in fig. 3.5 will now be investigated. For the sake of simplicity, the following notations will be introduced for the time constants:

$$
\left.\begin{array}{l}
R_{g} C_{a}=T_{a} \tag{16.5}\\
R_{a} C_{a}=T_{a} \\
R C=T
\end{array}\right\}
$$

and for the resistance ratios:

$$
\left.\begin{array}{l}
\frac{R_{g}}{R_{g}+R+R_{a}}=\varepsilon_{a} \tag{17.5}\\
\frac{R}{R_{g}+R+R_{a}}=\varepsilon \\
\frac{R_{a}}{R_{g}+R+R_{a}}=\varepsilon_{a}
\end{array}\right\}
$$

Fig. 3-i.
Network of a more complex nature to which a step function is applied.

[^1]The final result of deriving the operational impedance ${ }^{3}$) is:

$$
\begin{equation*}
Z(p)=R_{e q} \cdot \frac{1+A p}{1+B p+E p^{2}} \tag{18.5}
\end{equation*}
$$

where $R_{e a}$, i.e. the d.c. impedance between points a and b, is given by:

$$
R_{e q}=\frac{R_{o}\left(R+R_{a}\right)}{R_{g}+R+R_{a}}
$$

whilst

$$
\begin{gather*}
A=\frac{R T_{a}+R_{a} T}{R+R_{a}}, \ldots . \tag{18a.5}\\
B=\varepsilon_{, \rho}\left(T+T_{a}\right)+\varepsilon\left(T_{g}+T_{a}\right)+\varepsilon_{a}\left(T_{g}+T\right) \tag{18b.5}
\end{gather*}
$$

and

$$
\begin{equation*}
E=\varepsilon_{g} T T_{a}+\varepsilon T_{g} T_{a}+\varepsilon_{a} T_{g} T \tag{18c.5}
\end{equation*}
$$

Expression (18.5) can now be split into two partial fractions by first writing the denominator as:

$$
\begin{equation*}
E\left(p^{2}+\frac{B}{E} \cdot p+\frac{1}{E}\right)=E\left(p-p_{1}\right)\left(p-p_{2}\right) \tag{19.5}
\end{equation*}
$$

where p_{1} and p_{2} are the roots of the second order equation

$$
p^{2}+\frac{B}{E} \cdot p+\frac{1}{E}=0
$$

Hence:

$$
\begin{equation*}
p_{1}=-\frac{B}{2 E}+\sqrt{\frac{B^{2}}{4 E^{2}}-\frac{1}{E}} \tag{19a.5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=-\frac{B}{2 E}-\sqrt{\frac{B^{2}}{4 E^{2}}-\frac{1}{E}} \tag{19b.5}
\end{equation*}
$$

Expression (18.5) thus becomes:

$$
Z(p)=\frac{R_{e q}}{E} \cdot \frac{1+A p}{\left(p-p_{1}\right)\left(p-p_{2}\right)}
$$

${ }^{3}$) It is stressed here that the operational impedance should not be confused with the conventional concept of impedance. (In fact, this also applies to a complex impedance in a.c. network theory.) An operational impedance is only an auxiliary quantity which proves to be most useful for investigating and solving transient phenomena. It links a voltage and a current in such a way that its dimension is that of an impedance.

This expression can be split into two partial fractions, namely:

$$
\begin{align*}
& Z(p)=\frac{R_{e q}}{E} \cdot\left(\frac{1+A p_{1}}{p_{1}-p_{2}} \cdot \frac{1}{p-p_{1}}-\frac{1+A p_{2}}{p_{1}-p_{2}} \cdot \frac{1}{p-p_{2}}\right)= \\
& =R_{e q}\left\{-\frac{1+A p_{1}}{E p_{1} \cdot\left(p_{1}-p_{2}\right)} \cdot \frac{-p_{1}}{-p_{1}+p}+\frac{1+A p_{2}}{E p_{1}\left(p_{1}-p_{2}\right)} \cdot \frac{-p_{2}}{-p_{2}+p}\right\}= \\
& =R_{e a}\left(F_{1} \cdot \frac{-p_{1}}{-p_{1}+p}+F_{2} \cdot \frac{-p_{2}}{-p_{2}+p}\right) . \tag{20.5}
\end{align*}
$$

Applying the transformation according to expression (15.5) now gives for the response of the network shown in fig. 3.5 to a unit-step input current at the terminals a and b, a voltage across these terminals which is equal to:

$$
\begin{equation*}
V_{a b}[1]=R_{e a}\left\{F_{1}\left(1-e^{p_{1} t}\right)+F_{2}\left(1-e^{\phi_{r} t}\right)\right\} \ldots . \tag{21.5}
\end{equation*}
$$

The constants F_{1} and F_{2} can be combined and rearranged so that expression (21.5) becomes:

$$
\begin{equation*}
V_{a b}[1]=R_{e a}\left\{1+K e^{p_{1} t}-(1+K) e^{p_{r t}}\right\}, \ldots \tag{21a.5}
\end{equation*}
$$

where:

$$
\begin{equation*}
K=\frac{p_{2}\left(1+A p_{1}\right)}{p_{1}-p_{2}} . \tag{22.5}
\end{equation*}
$$

It will be clear that in the case of a current step of amplitude I, applied to terminals a and b, the resulting voltage across these terminals will be:

$$
\begin{equation*}
V_{a b}[I]=I R_{e q}\left\{1+K e^{p_{1} t}-(1+K) e^{p_{2} t}\right\} . \tag{21b.5}
\end{equation*}
$$

At the instant when the step occurs (for $t=0$) this voltage is zero. This is obvious because a steep front can be considered as the commencement of a signal of very high frequency and between points a and b a chain of capacitances which smoothes this H.F. signal is present. After a very long time (theoretically an infinite time), the voltage $V_{a b}$ becomes equal to $I R_{e \theta}$, i.e. the static condition is reached.

In the preceding comments the response of a network to a step function was considered. The determination of the response to an arbitrary time function is possible by applying the superposition theorem. This theorem can easily be made plausible with the aid of fig. 4.5.

In the most general case the input function $e(t)$ starts at the instant $t=0$ with a step having an amplitude $e(0)$. It is assumed that for $t>0$ the dependence of the input function on time can be represented
by the smooth curve $e(t)$. This curve is approximated by a sequence of small step functions separated in time by equal intervals $\Delta \lambda$ and

Fig. 4-5.
Approximation of an arbitrary time function by a sequence of small steps.
having an amplitude $\Delta e(\lambda)$. The response of the network to one of these elemental step functions is given by:

$$
\begin{equation*}
\Delta i(t)=\Delta e(\lambda) A(t-\lambda), . \tag{23.5}
\end{equation*}
$$

where $A(t)$ represents the response of the network to a unit step occurring at the instant $t=0$.

The slope of the curve $e(t)$, i.e. $e^{\prime}(t)=d e(t) \mid d t$ at the point $t=\lambda$, is:

$$
\begin{equation*}
e^{\prime}(\lambda) \approx \frac{\Delta e(\lambda)}{\Delta \lambda} . \tag{24.5}
\end{equation*}
$$

The smaller the time interval $\Delta \lambda$, the better will be the approximation. From expression (24.5):

$$
\begin{equation*}
\Delta e(\lambda)=e^{\prime}(\lambda) \Delta \lambda \tag{24a.5}
\end{equation*}
$$

Substituting expression (24a.5) in expression (23.5) gives:

$$
\begin{equation*}
\Delta i(t)=A(t-\lambda) e^{\prime}(\lambda) \Delta \lambda . \tag{25.5}
\end{equation*}
$$

At the instant $t=\lambda$, the total response of the network to all preceding step functions will obviously be the superposition of the responses to the elemental step functions as represented by expression (25.5) and the initial step e(0). Hence:

$$
\begin{equation*}
i(t)=e(0) A(t)+\sum_{\lambda=0}^{\lambda=t} A(t-\lambda) e^{\prime}(\lambda) \Delta \lambda \ldots \tag{26.5}
\end{equation*}
$$

The nearer $\Delta \lambda$ approximates to zero, the more exact will be the approximation of the time function $e(t)$ by the sequence of small step functions. The exact response of the network to the function $e(t)$ at the instant t is therefore given by:

$$
\begin{equation*}
i(t)=e(0) A(t)+\lim _{\Delta \lambda \rightarrow 0} \sum_{\lambda=0}^{\lambda=t} A(t-\lambda) e^{\prime}(\lambda) \Delta \lambda, \ldots \tag{27.5}
\end{equation*}
$$

which, by definition, is the integral function:

$$
\begin{equation*}
i(t)=e(0) A(t)+\int_{0}^{t} A(t-\lambda) e^{\prime}(\lambda) d \lambda, \ldots \tag{28.5}
\end{equation*}
$$

where $e(0)$ corresponds to $e(t)$ for $t=0, A(t-\lambda)$ corresponds to $A(t)$, the variable t being replaced by $t-\lambda$, and $e^{\prime}(\lambda)$ represents $d e(t) / d t$ for $t=\lambda$.

When it is possible to express the input time function $e(t)$ in its related operational function $e(p)$, this rather cumbersome integrating process can be avoided. According to expression (8.5), a voltage

$$
e(t)=e_{0}\left(1-e^{-t / T}\right)
$$

can, for example, be "transformed" into a p-function:

$$
e(p) \equiv e_{0} \cdot \frac{1}{1+T p} .
$$

In an operational impedance $Z(p)$, this voltage will produce a current $I(p)=e(p) / Z(p)$. This expression must finally be transformed back into a time function $I(t) \equiv I(p)$.

In this section an attempt has been made to give a rough idea of the methods which are offered by the operational calculus to determine transient phenomena in a network. The principles outlined above have proved sufficient for calculating the problems related to pulsed electronic tubes. For a rigorous mathematical treatment and the derivation of the formulae used, reference is made to the literature quoted in the footnotes.

6. FUNDAMENTAL TREATMENT OF ELECTRON TUBES AS SWITCHING ELEMENTS

In section 4, for the sake of simplicity, no grid current was taken into consideration. In relatively few applications of the electron tube in pulse techniques this simplification will permit to obtain a good approximation of its real behaviour. In the majority of cases, where tubes are switched into the conducting state and remain for a longer or shorter period in this condition, grid current is certain to occur and play an important part in the transient phenomena caused by the switching action. This part may be a disturbing one, and therefore unwanted, or it may be useful, for instance by stabilizing the operating point of the tube (automatic grid current bias). Therefore, the effect of grid current cannot be neglected and it seems justified to start a general investigation of the behaviour of an electron tube in pulsed circuits by considering its input or control grid circuit.

6.1. THE GRID CIRCUIT

The ideal step-function, showing a discontinuity with infinitesimal slope, cannot be realized in practice, because of stray capacitances always present in switching and pulse generating circuits. In the foregoing sections, the influence of parallel stray capacitances of switches on the slope of pulse fronts has been discussed.

Generally, these pulse flanks will have a shape that can be described as an exponential function of time, or a sum of exponential time functions with different time constants. These pulse flanks traverse the grid-base of the electronic tube either starting at a high negative grid potential below the cut-off value and rising quickly up to values near to or even greater than zero, or starting at positive or zero grid potential and falling steeply to a value below cut-off potential.

In the first case the electronic tube suddenly starts conducting anode current as well as grid current (the switch is closed), in the latter case both anode- and grid current are abruptly cut off (the switch is opened). Both cases will be treated in the following sub-sections.

6.1.1. A POSITIVE-GOING STEEP CHANGE OF GRID POTENTIAL

The grid-to-cathode potential is assumed to have been at a constant value V_{0} below cut-off for a sufficiently long period preceding the instant
$t=0$ to ensure that any transients originating from possible former switching actions have completely died out. From the instant $t=0$ onwards (so for $t \geqq 0$), the grid potential V_{g} changes with time according to an exponential function with a time constant $1 / a$, starting at the initial value V_{0} and tending to a final value V_{1}, that is assumed to be zero or positive ($V_{1} \geqq 0$). The grid voltage change $V_{g}(t)$ can be represented analytically by the expression

$$
\begin{equation*}
V_{g}(t)=V_{1}-\left(V_{1}-V_{0}\right) e^{-a t} \tag{1.6}
\end{equation*}
$$

and graphically as depicted in fig. 1.6. Here, the dash-dot line represents the cut-off voltage level, indicated by E_{c}. As soon as the grid voltage $V_{g}(t)$ passes this level (at the instant $t=t_{1}$), anode current starts to flow in the tube and the switching action starts. The anode current increases at a rate determined by the rate of change of $V_{g}(t)$. With a triode, the anode voltage change also influences the anode current change, whereas it is well known that this influence is negligible with pentodes.

The reactions of the anode circuit of the tube, however, will be considered separately in later sections.

The rise in $V_{g}(t)$, however, will not continue until the value V_{1}, because of the influence of grid current, starting at a value of the grid potential near zero. Because of this grid current, the grid potential, ultimately attained, will be limited to a value not much different from zero. In this way, the anode current is restricted so that the tube can operate without being seriously damaged, as would otherwise occur. So the grid current action is a useful one here, as it stabilizes the anode current within certain limits. This will now be further investigated.

As a rule, grid current starts to flow as soon as the grid potential reaches a value of a few tenths of a volt negative with respect to cathode, and sharply rises when the grid potential passes zero and becomes positive. The general shape of the grid current - grid voltage characteristic is represented in fig. 2.6. The slope of this characteristic is a measure

Fig. 1-6.

Fig. 2-6.
for the internal grid resistance. By approximating to the characteristic with simpler shaped curves, the influence of grid current on grid voltage and therefore on anode current and -voltage changes can be determined.

A first, rather rough, approximation is the assumption of an internal grid resistance zero as soon as the grid-to-cathode potential becomes zero or positive (see fig. 3.6), in other words: grid and cathode are shortcircuited for values of $V_{g} \geqq 0$. This means that, from the instant $t=t_{2}$ onwards (see fig. 1.6), the function $V_{g}(t)$ remains at zero, as represented in fig. 4.6.

Fig. 3-6.

Fig. 5-6.

Fig. 4-6.

A better approximation is the assumption of a finite value of the internal grid resistance r_{θ} for values of $V_{\theta} \geqq 0$, the grid current-grid voltage characteristic then being as represented in fig. 5.6, where

$$
\begin{equation*}
\cot \alpha=r_{g} \text {, thus } V_{\theta}=r_{g} I_{q} \tag{2.6}
\end{equation*}
$$

From the instant $t=t_{2}$ onwards (see fig. 1.6), the external grid circuit is shunted by a resistance r_{0}. The effect of this sudden switching of a resistance r_{g} in parallel with the external circuit Z_{g} originally present, can be calculated by assuming a voltage source $V_{c}(t)$ operating from the instant $t=t_{2}$ onwards, and superimposing its action on the grid to the initial grid voltage represented by expression (1.6). The value of $V_{c}(t)$ is to be taken equal to $V_{g}(t)$ from (1.6), but with opposite sign. This can be expressed by

$$
\begin{equation*}
V_{c}(t)=-V_{g}(t) U\left(t-t_{2}\right), \tag{3.6}
\end{equation*}
$$

where $U\left(t-t_{2}\right)$ represents a unit step function that is zero for $t<t_{2}$ and unity for $t \geqq t_{2}$.

Now $V_{g}(t)$ is defined by expression (1.6). For values of $t<t_{1}$, the grid voltage $V_{g}(t)$ is below the cut-off value (see fig. 1.6) and consequently no anode current flows. At the instant $t=t_{1}$, the tube starts conducting and the switching action commences. The grid voltage change from this instant onwards will be of particular interest, and therefore it is practical to introduce a new time scale τ, such that $\tau=t-t_{1}$, or, in other words, the instant t_{1} is the zero point of the new time scale.

Then expression (1.6) is identical to the following:

$$
\begin{equation*}
V_{0}(\tau)=V_{1}-\left(V_{1}-E_{c}\right) e^{-a \tau}, \cdots \cdots \cdot \tag{4.6}
\end{equation*}
$$

where E_{c} is given by (see fig. 1.6):

$$
\begin{equation*}
E_{c}=V_{1}-\left(V_{1}-V_{0}\right) e^{-a t_{1}} \tag{5.6}
\end{equation*}
$$

At the instant $t=t_{2}$, the grid voltage $V_{0}(t)$ is zero, that is in the τ scale at the instant $\tau=t_{2}-t_{1}=\tau_{0}$, which is defined by the condition:

$$
\begin{equation*}
V_{g}\left(\tau_{0}\right)=0=V_{1}-\left(V_{1}-E_{c}\right) \cdot e^{-a \tau_{0}} \tag{6.6}
\end{equation*}
$$

Substituting this relation into (4.6) gives

$$
\begin{equation*}
V_{g}(\tau)=V_{1}-V_{1} e^{-a\left(\tau-\tau_{0}\right)} \tag{7.6}
\end{equation*}
$$

which is valid only for $\tau \geqq \boldsymbol{\tau}_{0}$.
Because the internal grid resistance r_{g} is present from the instant $\tau=\tau_{0}$ onwards, a second component must be added to $V_{g}(\tau)$, as given by (7.6). This second component can be calculated from the circuit diagram of fig. (6.6), where Z_{g} represents the total externally connected grid circuit impedance, whilst r_{g} is the internal grid-to-cathode resistance as determined by the characteristic of fig. (5.6).

Fig. 6-6.

From (3.6) and (7.6) it follows that:

$$
\begin{equation*}
V_{c}\left(\tau-\tau_{0}\right)=-V_{1}\left(1-e^{-a\left(\tau-\tau_{0}\right)}\right) \tag{8.6}
\end{equation*}
$$

In order to be able to calculate the extra grid voltage component caused by $V_{c}\left(\tau-\tau_{0}\right)$, the impedance Z_{g} must be further specified. The external grid circuit will be assumed to be as depicted in fig. 7.6 , where V_{i} re-
presents a voltage source $V_{i} U(t)$, and V_{1} a constant voltage source, both sources having zero internal impedance. V_{i} brings the grid at the

Fig. 7-6.

Fig. 8-6.
instant $t=0$ to the initial value V_{0}, after which the change of the grid voltage is as given by expr. (1.6).

The grid-voltage component $V_{g}\left(\tau-\tau_{0}\right)$ due to $V_{c}\left(\tau-\tau_{0}\right)$ can now be calculated from the circuit diagram of fig. 8.6

As an example, the operational method, to be applied here, will be given completely.

The operational impedance Z_{g} of C_{c} and R_{g} in parallel is:

$$
Z_{g}=\frac{R_{g}}{1+R_{g} C_{c} P} .
$$

The ratio of \bar{V}_{g} to V_{c} is:

$$
\begin{align*}
& \frac{\bar{V}_{g}\left(\tau-\tau_{0}\right)}{V_{c}\left(\tau-\tau_{0}\right)}=\frac{Z_{o}}{Z_{g}+r_{g}}= \\
& =\frac{R_{g}}{R_{g}+r_{g}} \frac{1}{1+R_{v} C_{c} p}, \text { where } R_{v}=\frac{r_{g} R_{g}}{R_{g}+r_{g}} \ldots . \tag{9.6}\\
& \bar{V}_{g}\left(\tau-\tau_{0}\right)=\frac{R_{g}}{R_{g}+r_{g}} \frac{1}{1+T_{v} p}\left[V_{c}\left(\tau-\tau_{0}\right)\right], \ldots \tag{10.6}
\end{align*}
$$

where

$$
\begin{equation*}
T_{v}=R_{v} C_{c}, \tag{11.6}
\end{equation*}
$$

or, written symbolically:

$$
\bar{V}_{g}\left(\tau-\tau_{0}\right)=A(p)\left[V_{c}\left(\tau-\tau_{0}\right)\right] .
$$

Now two ways of solving this problem can be followed. The first is to "translate" the p-function $A(p)$ into a time-function $A(t)$, and then to apply the superposition theorem, as expressed by (28.5).

The second way of solving the problem is to "translate" the time function $V_{c}\left(\tau-\tau_{0}\right)$ into a corresponding p-function.

Following the second method, we obtain for the corresponding p -
function of $\quad V_{c}\left(\tau-\tau_{0}\right)=V_{1}\left(1-e^{-a\left(\tau-\tau_{0}\right)}\right)$, on introducing a new time variable $\lambda=\tau-\tau_{0}$, according to (15.5):

$$
\begin{equation*}
V_{c}(\lambda)=-V_{1}\left(1-e^{-a \lambda}\right) \equiv-V_{1} \frac{a}{a+p} \tag{12.6}
\end{equation*}
$$

Then expr. (10.6) becomes:

$$
\bar{V}_{\theta}(\lambda) \equiv-V_{1} \cdot \frac{R_{o}}{R_{g}+r_{o}} \cdot \frac{1}{1+T_{v} p} \cdot \frac{a}{a+p} .
$$

Splitting into partial fractions gives:
$\bar{V}_{g}(\lambda) \equiv-V_{1} \frac{R_{\theta}}{R_{g}+r_{o}} \cdot \frac{a}{1-a T_{v}}\left[-T_{v} \frac{1}{1+T_{v} p}+\frac{1}{a} \frac{1}{1+\frac{1}{a} p}\right]$.
Converting back into a time function according to expr. (15.5) gives:
$\bar{V}_{g}(\lambda)=-V_{1} \frac{R_{g}}{R_{g}+r_{g}} \cdot \frac{a}{1-a T_{v}}\left[-T_{r}\left(1-e^{-\frac{\lambda}{T_{v}}}\right)+\frac{1}{a}\left(1-e^{-a \lambda}\right)\right]$
or:
$\bar{V}_{g}\left(\tau-\tau_{0}\right)=-V_{1} \frac{R_{g}}{R_{g}+r_{g}}\left[1+\frac{a T_{v}}{1-a T_{v}} e^{-\frac{\tau-\tau_{0}}{T_{v}}}-\frac{1}{1-a T_{v}} e^{-a\left(\tau-\tau_{0}\right)}\right]$.
Now, it will be clear from fig. 7.6 that the time constant $1 / a$ with which the grid voltage changes exponentially from the value V_{0} to the value V_{1}, must be equal to $R_{g} C_{c}$.

So:

$$
\begin{equation*}
a=\frac{1}{R_{g} C_{c}} \tag{14.6}
\end{equation*}
$$

Combined with (11.6), we see that:

$$
\begin{equation*}
a T_{v}=\frac{R_{v}}{R_{g}}=\frac{r_{g}}{R_{g}+r_{!}}(\text {see } 9.6) \tag{15.6}
\end{equation*}
$$

Substituting (15.6) into (13.6) gives:
$\bar{V}_{g}\left(\tau-\tau_{0}\right)=-V_{1}\left[\frac{R_{g}}{R_{g}+r_{g}}+\frac{r_{g}}{R_{g}+r_{g}} e^{-\frac{\tau-\tau_{0}}{T_{n}}}-e^{-a\left(\tau-\tau_{0}\right)}\right]$.
This, finally, is the component that must be added to the grid voltage $V_{g}\left(\tau-\tau_{0}\right)$ that would have been present if no sudden change in the grid circuit occurred at the instant $\tau=\tau_{0}$. So the resulting grid voltage change $\overline{\bar{V}}_{g}\left(\tau-\tau_{0}\right)$ from $\tau=\tau_{0}$, or $t=t_{2}$ onwards is the sum of expressions (7.6) and (16.6):

$$
\begin{equation*}
\bar{V}_{\theta}\left(\tau-\tau_{0}\right)=\frac{r_{g}}{R_{g}+r_{\theta}} V_{1}\left(1-e^{-\frac{r-\tau_{0}}{T_{0}}}\right) \tag{17.6}
\end{equation*}
$$

Introducing (14.6) into (7.6) gives a value for the grid voltage change as follows:

$$
\begin{equation*}
V_{\sigma}\left(\tau-\tau_{\mathrm{a}}\right)=V_{1}\left(1-e^{-\frac{\tau-\tau_{0}}{R_{\rho} C_{0}}}\right) . \tag{18.6}
\end{equation*}
$$

This is the time function the grid voltage would assume when no change in the grid circuit would have appeared at the instant $\tau=\tau_{0}$. The effect of the sudden starting of grid current at the instant $\tau=\tau_{0}$ on the grid voltage is that from $\tau=\tau_{0}$ onwards expression (17.6) represents this voltage instead of (18.6). The grid voltage change is now an exponential function with a much smaller time constant $R_{v} C_{c}$ than it was for $\tau<\tau_{0}$. For this period, the time constant was $R_{g} C_{c}$. The ratio of the time constants is:

$$
\frac{R_{v}}{R_{g}} \text { or } \frac{r_{g}}{R_{g}+r_{g}} \text { (see expr. 15.6). }
$$

The final value that the grid voltage will attain is no longer V_{1}, but a much smaller amount, viz.

$$
\frac{r_{g}}{R_{g}+r_{g}} V_{1} .
$$

There is no discontinuity in the grid voltage value at $\tau=\tau_{0}$, as both the expressions (18.6) and (17.6) are zero at the instant $\tau=\tau_{0}$.

But there is also no discontinuity in the slope of the time function at this instant, which can be seen by differentiating both (18.6) and (17.6) with respect to time. These first derivatives are respectively:

$$
\begin{aligned}
& {\left[\frac{d V_{g}\left(\tau-\tau_{0}\right)}{d \tau}\right]_{\tau=\tau_{0}}=} \\
& \frac{V_{1}}{R_{g} C_{c}}\left[e^{-\frac{\tau-\tau_{0}}{R_{g} C_{0}}}\right]_{\tau=\tau_{0}}=\frac{V_{1}}{R_{g} C_{c}} \\
& {\left[\frac{d \bar{V}_{g}\left(\tau-\tau_{0}\right)}{d \tau}\right]_{\tau=\tau_{0}}=\frac{r_{\theta}}{R_{g}+r_{g}} \cdot V_{1} \cdot \frac{1}{T_{v}}\left[e^{-\frac{\tau-\tau_{0}}{T_{v}}}\right]_{\tau=\tau_{0}}=} \\
&= \frac{r_{g}}{R_{g}+r_{\theta}} \frac{R_{g}+r_{g}}{r_{g} R_{g} C_{c}} V_{1}=\frac{V_{1}}{R_{g} C_{c}} .
\end{aligned}
$$

The influence of grid current, approximated by the foregoing method of calculation is graphically represented in fig. 9.6.

If the approximation as used above is considered unsatisfactory, a

Fig. 9-6.
better one is the assumption of a grid current-grid voltage characteristic of the form given in fig. 10.6. This characteristic consists of two straight lines $A B$ and $B C$ with different slopes; it is a far better approximation of the $I_{g}-V_{g}$ characteristic in practice, as represented in fig. 2.6.

At the instant when $V_{g}(t)$ reaches a value $V_{g 1}$, a discontinuity occurs similar to that previously discussed, which occurred at $V_{g}(t)=0$ (see fig. 5.6).

The difference between the two cases will be fully discussed. For the moment it will be stated only that a resistance $r_{o 1}$, a form of internal grid resistance, is shunted across the grid circuit as soon as $V_{g}(t)$ attains a value $\geqq V_{o 1}$. This resistance is to be determined from the slope of the characteristic, viz. $r_{o 1}=\cot \alpha_{1}$ (fig. 10.6). The effect of this discontinuity is that $V_{g}(t)$ tends exponentially with a smaller time constant $R_{v 1} C_{c}$ instead of $R_{g} C_{c}$ to a smaller final value V_{11} instead of V_{1}. The resistance $R_{v 1}$ is the resultant value of the parallel connection of R_{g} and $r_{\boldsymbol{\theta} 1}$.
Again, at the instant when $V_{\boldsymbol{g}}(t)$ reaches the value V_{02}, another discontinuity appears, to be interpreted as shunting the grid circuit by another "internal grid resistance" $r_{g 2}=\cot a_{2}$, where a_{2} is a measure of the slope of the characteristic line $E F$ in fig. 10.6. The
 part $B C$ of the $I_{g}-V_{g}$ characteristic is the superposition of the "resistance lines" $A D$ and $E F$.

From the value $V_{a_{2}}$ onwards, the grid voltage tends exponentially with a still smaller time constant $R_{v 2} C_{c}\left(<R_{v 1} C_{c}\right)$ to a final voltage
value V_{12}, that is again smaller than $V_{11}\left(R_{v 2}\right.$ is the resistance resulting

Fig. 11-6. from the shunting of $R_{v 1}$ by $r_{o 2}$).
The change in grid voltage will then be roughly as indicated in fig. 11.6 by the strongly drawn curve.

The influence of the approximated $I_{g}-V_{g}$ characteristic of fig. 5.6 could be defined by the introduction of an auxiliary voltage source $V_{c}\left(t-t_{2}\right)$ as represented in the circuit of fig. 6.6. This will be discussed once more in a simple way with the sole purpose of being able to apply the same argument at a better date to derive methods of solving the problem of the discontinuities in a grid circuit as represented by the $I_{g}-V_{g}$ characteristic of fig. 10.6.

So, with the $I_{g}-V_{g}$ characteristic of fig. 5.6, grid current starts at the instant when V_{g} equals zero and tends to positive values. For $V_{g}<0$, the circuit of fig. 7.6 is valid, and can be replaced by that of

Fig. 12-6.

Fig. 13-6.

Fig. 14-6.
fig. 12.6 , where $I_{i}=C_{c} p V_{i}(p=d / d t=$ differentiation with respect to time). More general is the circuit of fig. 13.6, where Z_{g} may represent any impedance in the grid circuit. The grid voltage V_{g} is given by the relation:

$$
\begin{equation*}
V_{g}=Z_{\imath} I_{i} \tag{19.6}
\end{equation*}
$$

As soon as $V_{g} \geqq 0$, a grid current I_{g} starts flowing in parallel with Z_{g}, and having a relation to the grid voltage, now indicated by \bar{V}_{g}, as follows:

$$
\begin{equation*}
I_{g}=\frac{\bar{V}_{g}}{r_{g}} \tag{20.6}
\end{equation*}
$$

This situation (for $\bar{V}_{0} \geqq 0$) can be represented by the circuit of fig. 14.6. Consequently, a current of $I_{i}-I_{g}$ now flows in Z_{g}, instead of
the whole of I_{i}, as was the case for $V_{g}<0$. The voltage across Z_{σ} will then be:

$$
\begin{equation*}
V_{z q}=Z_{g}\left(I_{i}-I_{q}\right) . \tag{21.6}
\end{equation*}
$$

Introducing the value of I_{0} from (20.6) and considering that:

$$
V_{z o}=\bar{V}_{g} ; \text { gives } \bar{V}_{\sigma}=Z_{g} I_{i}-\frac{Z_{g}}{r_{g}} \bar{V}_{\sigma}
$$

or:

$$
\begin{equation*}
\bar{V}_{\theta}=\frac{r_{g}}{r_{g}+Z_{g}} Z_{g} I_{i} . \tag{22.6}
\end{equation*}
$$

Substituting (19.6) gives:

$$
\begin{equation*}
\bar{V}_{\theta}=\frac{r_{\theta}}{r_{\theta}+Z_{\theta}} V_{\theta} \tag{23.6}
\end{equation*}
$$

This expression can also be written:

$$
\begin{equation*}
\bar{V}_{\theta}=V_{\theta}-\frac{Z_{\theta}}{r_{g}+Z_{\theta}} V_{\theta} \tag{24.6}
\end{equation*}
$$

For better understanding, the meaning of V_{θ} and \bar{V}_{θ} is once again given here: V_{g} is the grid voltage as it would be without grid current starting at a value $V_{o} \geqq 0$, whilst \bar{V}_{g} is the actual value of the grid voltage from the instant when grid current started.

Expression (24.6) is the superposition of V_{ρ} and a component that originates from a voltage source $V_{c}=-V_{0}$ introduced into the circuit in the way depicted in fig. 15.6. Comparing with fig. 6.6 shows that these figures are identical.

The same reasoning will now be applied to the case where the $I_{g}-V_{g}$ characteristic has a shape as depicted in fig. 10.6. As soon as V_{0} reaches a value V_{01} (and not zero!),

Fig. 15-6. grid current starts according to the characteristic $A D$ from fig. 10.6.

A current I_{g} depending on V_{g} in the following way

$$
\begin{equation*}
I_{g}=\frac{V_{g}-V_{g 1}}{r_{g 1}} \tag{25.6}
\end{equation*}
$$

flows parallel to Z_{σ}.
The current through Z_{0} is no longer I_{i}, but less, viz. $I_{i}-I_{0}$, giving a voltage across Z_{g} :

$$
\begin{equation*}
V_{z o}=\bar{V}_{\theta}=Z_{\theta}\left(I_{i}-I_{\theta}\right) . \tag{26.6}
\end{equation*}
$$

Substituting I_{g} from expr. (25.6) gives:

$$
\begin{equation*}
\bar{V}_{o}=Z_{o} I_{i}-\frac{Z_{g}}{r_{g 1}}\left(\bar{V}_{g}-V_{o 1}\right), \tag{27.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
\bar{V}_{g}=\frac{r_{g 1}}{r_{\theta 1}+Z_{g}}\left[Z_{o} I_{i}+\frac{Z_{g}}{r_{\theta 1}} V_{o 1}\right] \tag{28.6}
\end{equation*}
$$

Remembering now that for $V_{g}<V_{g 1}$ the whole input current I_{i} passed through Z_{g}, giving a grid voltage: $V_{g}=Z_{\theta} I_{i}$, and that this would be maintained if no grid current I_{g} started, expression (28.6) can be written:
or:

$$
\begin{align*}
& \bar{V}_{\theta}=\frac{r_{\theta 1}}{r_{\theta 1}+Z_{g}} V_{\theta}+\frac{Z_{\theta}}{r_{\theta 1}+Z_{g}} V_{\theta 1}, \ldots . \tag{29.6}\\
& \bar{V}_{\theta}=V_{\theta}-\frac{Z_{\theta}}{r_{\theta 1}+Z_{\theta}}\left(V_{\theta}-V_{\theta 1}\right) \tag{30.6}
\end{align*}
$$

Fig. 16-6.

On comparing this result with expression (24.6), it will be seen that an important difference exists. The auxiliary voltage source to be introduced to account for the sudden starting of grid current is not equal to - V_{g}, but to - $\left(V_{g}-V_{o 1}\right)$. This is represented in fig. 16.6, where $V_{c}=-V_{g}$. If the constant voltage source $V_{o 1}$ were omitted, then fig. 16.6 could be considered as the auxiliary circuit necessary for calculating the response of the grid circuit to the sudden switching of a real resistance $r_{g 1}$ in parallel to Z_{g} at the instant when V_{g} reaches the value $V_{g 1}$. The time function $V_{c}(t)$, in connection with a given function of $V_{g}(t)$, is represented in fig. 17.6. $V_{c}(t)$ shows an initial voltage step $-V_{\theta 1}$. The combination - $\left(V_{g}-V_{01}\right)$, however, has an initial value zero. In fig. (18.6) this combination is represented by the function $V_{c 1}$.

Fig. 1T-ij.

Fig. 18-6.

It is now possible to determine the response of the grid circuit to a grid-current characteristic according to fig. 10.6 . It will be assumed that V_{g} reaches the value $V_{g 1}$ at the instant $t=t_{1}$ and the value $V_{o 2}$ at the instant $t=t_{2}$. For $0 \leqq t \leqq t_{1}$, equation (1.6) determines the grid voltage change. Introducing the instant $t=t_{0}$ when $V_{g}(t)=E_{c}$, the cut-off voltage, as the zero-point of a new time scale $\tau=t-t_{0}$, changes equation 1.6 into:

$$
V_{\imath}(\tau)=V_{1}-\left(V_{1}-E_{c}\right) \cdot e^{-a \tau}
$$

Fig. 19-6.

Fig. 20-6.

From $t=t_{1}$ onwards, the grid voltage can be supposed to contain two components, viz. $V_{g}(\tau)$, as given by (31.6), and the grid voltage $V_{g}\left(\tau-\tau_{1}\right)$ due to a voltage source $V_{c 1}\left(\tau-\tau_{1}\right)=V_{o 1}-V_{g}(\tau)$ as represented in fig. (20.6).
$V_{c 1}\left(\tau-\tau_{1}\right)=V_{1}-\left(V_{1}-E_{c}\right) e^{-a \tau_{1}}-V_{1}+\left(V_{1}-E_{c}\right) e^{-a \tau}=$

$$
=-\left(V_{1}-E_{c}\right) e^{-a \tau_{1}}\left\{1-e^{-a\left(\tau-\tau_{1}\right)}\right\} .
$$

Substituting:

$$
\begin{equation*}
V_{01}-V_{1}=-\left(V_{1}-E_{c}\right) e^{-a \tau_{1}} \tag{32.6}
\end{equation*}
$$

from (32.6) gives

$$
\begin{equation*}
V_{c 1}\left(\tau-\tau_{1}\right)=-\left(V_{1}-V_{o 1}\right)\left\{1-e^{-a\left(\tau-\tau_{1}\right)}\right\} \tag{33.6}
\end{equation*}
$$

Indicating the total grid voltage between the instants t_{1} and t_{2} by $V_{g}{ }^{*}\left(\tau-\tau_{1}\right)$, this voltage is given by:

$$
V_{g}^{*}\left(\tau-\tau_{1}\right)=V_{g}(\tau)+\bar{V}_{g}\left(\tau-\tau_{1}\right) .
$$

$V_{g}\left(\tau-\tau_{1}\right)$ can be calculated by the same operational methods as given in the previous case. Only the final result will be given here:

$$
\begin{equation*}
V_{\theta}^{*}\left(\tau-\tau_{1}\right)=V_{1}-\left(V_{1}-V_{\sigma 1}\right)\left[\frac{R_{\sigma}}{R_{g}+r_{\sigma 1}}+\frac{r_{\sigma 1}}{R_{g}+r_{g 1}} e^{-\frac{\tau-\tau_{1}}{R_{\sigma_{1}} C_{e}}}\right], \tag{34.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
R_{v 1}=\frac{r_{\imath 1} R_{v}}{R_{\imath}+r_{\imath 1}} \tag{35.6}
\end{equation*}
$$

If $V_{g 1}=0$, expression (34.6) is identical to expression (17.6), as should be expected.

For large values of τ, expr. (34.6) tends to the final value:

$$
\begin{equation*}
V_{11}=\frac{r_{g 1}}{R_{g}+r_{g 4}} V_{1}+\frac{R_{g}}{R_{g}+r_{o 4}} V_{g 1} . \tag{36.6}
\end{equation*}
$$

(compare fig. 11.6).
At the instant $t=t_{2}$ or $\tau=\tau_{2}=\tau_{2}-t_{0}$, the grid voltage $V_{0}^{*}\left(\tau-\tau_{1}\right)$ reaches the value $V_{\rho 2}$ and another discontinuity appears, because of the suddenly increasing slope of the $I_{g}-V_{\imath}$ characteristic (see fig. 10.6).

Fig. 21-6.

An extra voltage source $V_{c 2}\left(\tau-\tau_{2}\right)=-V_{o}{ }^{*}\left(\tau-\tau_{1}\right)+V_{o 2}$ (see fig. 21.6) causes a component $\overline{\bar{V}}_{g}\left(\tau-\tau_{2}\right)$ across the grid circuit, that must be added to the voltage originally present, $V_{\sigma}{ }^{*}\left(\tau-\tau_{1}\right)$, continued for $\tau>\tau_{2}$, as if no change had taken place. The final result of operational calculations is that the total grid voltage $V_{g}{ }^{* *}$ for $t>t_{2}$ or $\tau>\tau_{2}$ is

$$
\begin{align*}
& V_{g}{ }^{* *}\left(\tau-\tau_{2}\right)=\left(\frac{r_{\theta 1}}{R_{g}+r_{g 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{\theta 1}} V_{o 1}\right) \frac{r_{o 2}}{R_{v 1}+r_{o 2}}+ \\
& +V_{\rho 2} \frac{R_{v 1}}{R_{v 1}+r g_{2}}-\left(\frac{r_{o 1}}{R_{g}+r_{g 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{g 1}} V_{o 1}-\right. \\
& \left.-V_{o 2}\right) \frac{r_{g 2}}{R_{v 1}+r_{g 2}} e^{-\frac{\tau-\tau_{3}}{R_{v 2} C_{c}}}, \tag{37.6}
\end{align*}
$$

where:

$$
\begin{equation*}
R_{v 2}=\frac{R_{v 1} r_{02}}{R_{v 1}+r_{02}} \tag{38.6}
\end{equation*}
$$

$r_{g 1}$ and $r_{g 2}$ are given by
$r_{o 1}=\cot \alpha_{1} ; r_{o 2}=\cot \alpha_{2}$ (see fig. 10.6)
$R_{v 1}$ is given by expr. (35.6).
For $\tau \rightarrow \infty$, expr. 37.6 tends to a final value
$V_{12}=\left(\frac{r_{\theta 1}}{R_{g}+r_{g 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{g 1}} V_{o 1}\right) \frac{r_{o 2}}{R_{v 1}+r_{o 2}}+V_{o 2} \frac{R_{v 1}}{R_{v 1}+r_{\rho 2}}$
(compare fig. 11.6).
If $\alpha_{2}=0$, or $r_{g 2}=\infty$, in other words: if no second discontinuity would appear at $V_{g}=V_{g 2}$ (see fig. 10.6), then expression (37.6) changes into expr. (34.6) as should be expected. This will be shown.

Expression (34.6) can be written:

$$
\begin{align*}
& V_{\theta}^{*}\left(\tau-\tau_{1}\right)=\frac{r_{01}}{R_{g}+r_{o 1}} V_{1}+ \\
+ & \frac{R_{\sigma}}{R_{\theta}+r_{01}} V_{o 1}-\left(V_{1}-V_{o 1}\right) \frac{r_{g 1}}{R_{g}+r_{g 1}} e^{-\frac{\tau-\tau_{0}}{R_{01} C_{c}}} \tag{40.6}
\end{align*}
$$

For $\tau=\tau_{2}$, this will be:
$V_{g 2}=\frac{r_{g 1}}{R_{g}+r_{o 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{g 1}} V_{o 1}-\left(V_{1}-V_{g 1}\right) \frac{r_{g 1}}{R_{g}+r_{g 1}} e^{-\frac{r_{g}-r_{1}}{R_{v 1} C_{c}}}$.
Now, for $r_{g 2}=\infty, R_{v 2}=R_{v 1}$, and (37.6) becomes:

$$
\begin{equation*}
V_{g}^{* *}=\left(\frac{r_{01}}{R_{0}+r_{01}} V_{1}+\frac{R_{g}}{R_{g}+r_{01}} V_{01}\right)\left(1-e^{-\frac{\tau-\tau_{2}}{R_{v 1} C_{c}}}\right)+V_{o 2} e^{-\frac{\tau-r_{2}}{R_{v 1} C_{c}}} \tag{42.6}
\end{equation*}
$$

Substituting (41.6) gives:

$$
\begin{equation*}
V_{g}^{* *}=\frac{r_{g 1}}{R_{g}+r_{o 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{g 1}} V_{o 1}-\left(V_{1}-V_{g 1}\right) \frac{r_{g 1}}{R_{g}+r_{g 1}} e^{\frac{r-r_{1}}{R_{c 1} C_{c}}} . \tag{43.6}
\end{equation*}
$$

This is identical to (34.6).
For a clear survey, a review of the formulae will be given.
During the time interval $0 \leqq t \leqq t_{1}$, the grid voltage is:

$$
\begin{equation*}
V_{g}(t)=V_{1}-\left(V_{1}-V_{0}\right) e^{-\frac{t}{R_{0} C_{c}}} \tag{1.6}
\end{equation*}
$$

This function is represented by curve $a-a$ in fig. 19.6.
During the time interval $t_{1} \leqq t \leqq t_{2}$, the grid voltage is:

$$
\begin{equation*}
V_{o}^{*}(t)=V_{1}-\left(V_{1}-V_{g 1}\right)\left(\frac{R_{g}}{R_{g}+r_{g 1}}+\frac{r_{g 1}}{R_{g}+r_{g 1}} e^{-\frac{t-t_{1}}{R_{01} C_{c}}}\right) . \tag{34.6}
\end{equation*}
$$

This function is represented by curve $b-b$ in fig. 19.6.
Its validity may be checked by calculating the value at the instant $t=t_{1}$. Substituting $t=t_{1}$ in (34.6) gives $V_{g^{*}}\left(t_{1}\right)=V_{o 1}$, as should be expected.

For times $t \geqq t_{2}$, the grid voltage is:

$$
\begin{align*}
& V_{g}^{* *}(t)=\left(\frac{r_{\imath 1}}{R_{g}+r_{v 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{v 1}} V_{\imath 1}\right) \frac{r_{02}}{R_{v 1}+r_{g 2}}+V_{\rho 2} \frac{R_{v 1}}{R_{v 1}+r_{o 2}}- \\
& -\left(\frac{r_{o 1}}{R_{g}+r_{o 1}} V_{1}+\frac{R_{g}}{R_{g}+r_{o 1}} V_{o 1}-V_{o 2}\right) \frac{r_{o 2}}{R_{v 1}+r_{o 2}} e^{-\frac{t-t_{2}}{R_{v 2} c_{c}}} . . \tag{37.6}
\end{align*}
$$

This function is represented by curve $c-c$ in fig. 19.6.
A phenomenon often observed in positive-going steep voltage waveforms applied to the grid of an electron tube is the overshoot, which appears as a short "pip" at the top of the positive-going wavefront (see fig. 22.6). The occurrence of overshoot depends upon the shape of the grid current - grid voltage characteristic and on the initially applied voltage waveform at the grid.
The first relationship will be clear if the case of a characteristic according to fig. (3.6) is considered. Then the grid-to-cathode internal resistance becomes zero as soon as the grid voltage reaches zero, and

Fig. 22-6.

Fig. 23-6.
no further increase in grid-to-cathode voltage is possible (compare fig. 4.6). Thus no overshoot will be possible. If the $I_{g}-V_{g}$ characteristic has the shape of fig. 5.6 , however, then overshoot may occur, particularly as the angle a becomes smaller, i.e. the internal grid resistance r_{g} higher.

Furthermore, the occurrence of overshoot will depend on the waveform of the grid voltage as it would be when no discontinuity in the form of grid current appears. In the earlier case of input grid voltage, as represented by fig. (19.6) curve $a-a$ and by expression (1.6), no overshoot is originally present, and neither waveforms influenced
by grid current show overshoot. (Compare fully drawn curve of fig. 9.6 and expr. (17.6), curves $b-b$ and $c-c$ of fig. 19.6 and expressions (34.6) and (37.6)).

It will be of interest to deal with a case of input voltage waveform that shows overshoot, and to investigate again the influence of grid current. Consider the circuit of fig. (23.6), where R_{g} represents a grid leak resistance, C_{g} a grid stray capacitance, and an input voltage V_{i} is applied to the grid via a resistance R and a capacitance C in parallel.

If V_{i} has the shape of a voltage step of amplitude $+V$, occurring at the instant $t=0$, what will be the grid voltage change from the instant $t=0$ onwards?

Mathematically, V_{i} is defined as follows:

$$
\left.\begin{array}{l}
V_{i}=0 \text { for } t<0 \tag{44.6}\\
V_{i}=V \text { for } t \leqslant 0
\end{array}\right\} \text { or } V_{i}=V U(t)
$$

where $U(t)$ represents the unit voltage step. To start with, no discontinuities are assumed to occur. It can be seen immediately that the voltage step is attenuated by the capacitive voltage divider, formed by C and C_{g}, so that a fraction $\frac{C}{C+C_{g}}$ of the total step V appears across the output leads. In other words: at the instant $t=0$ the voltage $V_{g}(t)$ is

$$
\begin{equation*}
V_{0}(0)=\frac{C}{C+C_{0}} V \tag{45.6}
\end{equation*}
$$

But immediately after the application of the voltage step, a distribution of the electric charge on the capacitances starts in such a way that finally a steady voltage of value $\frac{R_{o}}{R+R_{\sigma}} V$ will be present at the output leads. In other words: for infinite time, $V_{g}(t)$ will be:

$$
\begin{equation*}
V_{g}(\infty)=\frac{R_{g}}{R+R_{g}} V \tag{46.6}
\end{equation*}
$$

Now, if:

$$
\begin{equation*}
\frac{C}{C+C_{g}}>\frac{R_{\theta}}{R+R_{g}} \tag{47.6}
\end{equation*}
$$

or, virtually, the same condition, if:

$$
\begin{equation*}
C R<C_{g} R_{g} \tag{48.6}
\end{equation*}
$$

then the voltage $V_{g}(t)$ will show overshoot, as depicted in fig. (24.6). If:

$$
\begin{equation*}
\frac{C}{C+C_{g}}=\frac{R_{g}}{R+R_{g}} . \tag{49.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
C R=C_{\theta} R_{g}, \tag{50.6}
\end{equation*}
$$

Fig. 24-6.

Fig. 25-6
then the grid voltage $V_{g}(t)$ is an attenuated copy of the input voltage waveform, that is to say:

$$
\begin{equation*}
V_{g}(t)=\frac{C}{C+C_{g}} V U(t) . \tag{51.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{g}(t)=\frac{R_{g}}{R+R_{g}} V U(t) . \tag{52.6}
\end{equation*}
$$

(see fig. 25.6).
If:

$$
\begin{equation*}
\frac{C}{C+C_{g}}<\frac{R_{o}}{R+R_{g}}, \tag{53.6}
\end{equation*}
$$

Fig. 26-6.

Fig. 27-6.
or

$$
\begin{equation*}
C R<C_{g} R_{g} \tag{54.6}
\end{equation*}
$$

then the initial value of $V_{g}(t)$ is smaller than the final value, and the term "undershoot" could be applied. This case is depicted in fig. (26.6). These results will be derived by operational calculus. The circuit of fig. (23.6) is represented by that of fig. (27.6), where:

$$
\begin{align*}
& \frac{1}{Z}=\frac{1}{R}+p C . \tag{55.6}\\
& \frac{1}{Z_{g}}=\frac{1}{R_{v}}+p C_{v} . \tag{56.6}
\end{align*}
$$

It can be seen that:

$$
V_{g}(t)=\frac{Z_{g}}{Z+Z_{g}} V_{i}
$$

or:

$$
\begin{equation*}
V_{g}(t)=\frac{1 / Z}{1 / Z_{g}+1 / Z} V_{i} \tag{56.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{g}(t)=\frac{1 / R+p C}{1 / R+1 / R_{g}+p\left(C+C_{g}\right)} V_{i} \tag{58.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{g}(t)=\frac{R_{g}}{R+R_{g}} 1+\frac{1+R C p}{R_{v}\left(C+C_{g}\right) p} V_{i} \tag{59.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
R_{v}=\frac{R R_{g}}{R+R_{\imath}} \tag{60.6}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
T=R C . \tag{61.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{v}=R_{v}\left(C+C_{g}\right) . \tag{62.6}
\end{equation*}
$$

gives

$$
\begin{equation*}
V_{g}(t)=\frac{R_{g}}{R+R_{g}} \frac{1+T_{p}}{1+T_{v} p} V_{i} \tag{63.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{g}(t)=\frac{R_{g}}{R+R_{g}}\left[1+\frac{\left(T-T_{v}\right) p}{1+T_{v} p}\right] V_{i} . \tag{64.6}
\end{equation*}
$$

With expression (44.6) this gives:

$$
\begin{equation*}
V_{v}(t)=\frac{R_{g}}{R+R_{g}} V\left[U(t)+\frac{T-T_{v}}{T_{v}} e^{-\frac{t}{T_{v}}}\right] . \tag{65.6}
\end{equation*}
$$

(see expr. (14.5))
From (61.6) and (62.6) it can be derived that:

$$
\begin{equation*}
\frac{T-T_{v}}{T_{v}}=\frac{R C-R_{g} C_{0}}{R_{g}}\left(C+C_{g}\right) \tag{66.6}
\end{equation*}
$$

so:

$$
V_{\imath}(t)=\frac{R_{\theta}}{R+R_{g}} V\left[U(t)+\frac{R C-R_{\imath} C_{g}}{R_{g}\left(C+C_{\imath}\right)} e^{-\frac{t}{T_{v}}}\right] \ldots \text { (67.6) }
$$

From this expression it follows immediately that the final value of $V_{\theta}(t)$ will be:

$$
V_{v}(\infty)=\frac{R_{g}}{R+R_{g}} V \text { (compare with (46.6)). }
$$

Furthermore, for $R C=R_{g} C_{g}$ there will be no overshoot, as $V_{g}(t)$ in that case is:

$$
V_{\imath}(t)=\frac{R_{g}}{R+R_{\imath}} V \cdot U(t) .
$$

This is the attenuated input voltage step, as already mentioned before. If $R C>R_{\rho} C_{g}$, the initial value of $V_{\theta}(t)$ will be larger than the final value, and then overshoot occurs.

If $R C<R_{g} C_{g}, V_{g}(0)$ will be smaller than $V_{g}(\infty)$:

$$
V_{\theta}(0)=\frac{R_{\theta}}{R+R_{g}} V\left[1+\frac{R C-R_{g} C_{\theta}}{R_{\theta}\left(C+C_{\theta}\right)}\right],
$$

or:

$$
V_{z}(0)=\frac{C}{C+C_{g}} V .
$$

Compare these results with figs (24, 25 and 26.6).
From expression (64.6) it follows that for $T=T_{v}$, or, what is the same condition, $R C=R_{g} C_{g}$, the output voltage $V_{g}(t)$ of the network
of fig. (23.6) is a true, though attenuated copy of the input voltage, no matter what is the shape of the latter:

$$
\begin{equation*}
V_{g}(t)=\frac{R_{g}}{R+R_{g}} V_{i}, \tag{68.6}
\end{equation*}
$$

if:

$$
C R=C_{\imath} R_{v}
$$

The time constant determining the exponential function with which the voltage $V_{g}(t)$ changes from the initial step to its final value (see figs. 24.6 and 26.6), is given by:

$$
\begin{equation*}
T_{v}=R_{v}\left(C+C_{\imath}\right), \tag{62.6}
\end{equation*}
$$

and with (60.6):

$$
\begin{equation*}
T_{v}=\frac{R R_{g}}{R+R_{\imath}}\left(C+C_{\imath}\right) \tag{69.6}
\end{equation*}
$$

This is the product of the resultant resistance of R and R_{g} in parallel and the resultant capacitance of C and C_{g} in parallel.

Now, the influence of grid current will be investigated, working with a characteristic as represented by fig. 5.6. So, as soon as the grid voltage V_{g} is $\geqq 0$, a resistance r_{g} must be incorporated in parallel to the grid circuit. In the circuit of fig. 23.6 a negative constant bias voltage V_{0} in series with R_{g} is assumed to be present, of a value sufficiently large to keep the grid voltage below the cut-off value E_{c} for all times <0 (see fig. 28.6). At the instant $t=0$, the input voltage V_{i} suddenly jumps from the value V_{1} to the value V_{2}, which can be interpreted by assuming a voltage step

$$
\begin{equation*}
V . U(t)=\left(V_{2}-V_{1}\right) U(t) \tag{70.6}
\end{equation*}
$$

to occur.
This voltage step is as-

Fig. 28-6. sumed to have such a value as to apply a reduced voltage step

$$
\frac{C}{C+C_{0}} V
$$

to the grid of the tube, of sufficient amplitude to make the grid voltage immediately >0.

Thus, at the same instant $t=0$ when the voltage step occurs, the
internal grid resistance r_{g} is switched in parallel with R_{g} and the resultant grid voltage $V_{g}{ }^{*}(t)$ can be calculated as the sum of two components, viz. the grid voltage $V_{g}(t)$ as it would be when no grid current appeared, and the response $V_{\theta}(t)$ of the grid circuit to a voltage source $-V_{\mathfrak{g}}(t)$ in series with r_{g} (see fig. 28.6).

The initial condition of the grid circuit is then:

$$
\begin{equation*}
V_{i}=V_{1} \text { for } t<0 \tag{71.6}
\end{equation*}
$$

and thus:

$$
\begin{equation*}
V_{g}=V_{g 0}=\frac{R_{g}}{R+R_{g}} V_{1}-\frac{R}{R+R_{g}} V_{0} . \tag{72.6}
\end{equation*}
$$

$V_{o 0}$ is negative to a value below cut-off.
At $t=0$, a step

$$
V_{i}=V \cdot U(t)=\left(V_{2}-V_{1}\right) \cdot U(t)
$$

occurs and for

$$
t \geqq 0, \quad V_{i}=V_{2} .
$$

$V_{g}(t)$ is the sum of the steady state component, given by (72.6) and the transient component, given by (67.6)

$$
\begin{equation*}
V_{g}(t)=V_{o 0}+\frac{R_{g}}{R+R_{g}} V\left[1+\frac{R C-R_{g} C_{g}}{R_{g}\left(C+C_{g}\right)} e^{-\frac{t}{T_{v}}}\right] \tag{73.6}
\end{equation*}
$$

The effect of the voltage source $-V_{g}(t)$ in the circuit of fig. (28.6) at the grid is:

$$
\begin{equation*}
V_{v}(t)=\frac{R_{v}}{R_{v}+r_{g}} \frac{1}{1+T_{v 1} P_{0}}\left[-V_{v}(t)\right] \tag{74.6}
\end{equation*}
$$

The result of calculating this by operational methods and adding it to $V_{g}(t)$ is:

$$
\begin{align*}
& V_{g}^{*}(t)=V_{g}(t)+V_{g}(t)= \\
& \quad=\frac{r_{g}}{R_{v}+V_{g}}\left[V_{g 0}+\frac{R_{g}}{R+R_{g}}\right] V\left(1+\frac{R C-R_{g} C_{g}}{R_{g}\left(C+C_{g}\right)} e^{-\frac{t}{T_{v 1}}}\right), \tag{75.6}
\end{align*}
$$

where:

$$
\begin{equation*}
T_{n 1}=\frac{r_{g}}{R_{v}+r_{n}} T_{r} \tag{76.6}
\end{equation*}
$$

Comparing $V_{g}{ }^{*}(t)$ with $V_{g}(t)$, the same remarks can be made as when expressions (17.6) and (18.6) were compared to one another, viz. the effect of the sudden starting of grid current is that the grid voltage tends to a smaller final value with a smaller time constant when grid current appears, than would be the case without this discontinuity occurring.

As can be seen from expr. (75.6), the conditions whether or not overshoot will occur are the same as for expr. (73.6).

6.1.2. A NEGATIVE-GOING STEEP CHANGE OF GRID POTENTIAL

In the foregoing section the initial state of the grid was with a gridpotential below cut-off value. Then a steep positive-going voltage transferred the grid into the conducting state. Now, the other case will be considered, the grid being conducting and then a negative-going voltage being applied. The change of grid voltage will be investigated.

Fig. 29-6.

Fig. 30-6.

Referring to fig. 29.6, it can be seen that the D.C. grid potential can be controlled by suitable choice of the positive and negative D.C. voltage sources V^{\prime} and $V^{\prime \prime}$ resp. and by the ratio of the resistances R and R_{g}. The resistance r_{g} represents the internal grid resistance, defined by a grid current - grid voltage characteristic according to fig. 5.6.

The D.C. potential at the grid will be:

$$
\begin{equation*}
V_{s 0}=\frac{r_{g} R_{g} V^{\prime}-r_{g} R V^{\prime \prime}}{r_{g} R_{g}+r_{g} R+R R_{g}} . \tag{77.6}
\end{equation*}
$$

This D.C. voltage $V_{o 0}$ must be zero or positive.
It is assumed that at the instant $t=0$ an input voltage V_{i} of the shape indicated in fig. 30.6 is applied. At this instant transient phenomena will commence and be superimposed upon the steady state that was present for $t<0$.

For the calculation of these transients, the circuit of fig. 31.6 must be considered. This can be transformed into that of fig. 32.6, where

$$
\begin{equation*}
R_{v}=\frac{R R_{\boldsymbol{\imath}}}{R+R_{\imath}} \tag{78.6}
\end{equation*}
$$

The current source I_{i} is given by the expression:

$$
\begin{equation*}
I_{i}=C_{e} \frac{d V_{i}}{d t} \tag{79.6}
\end{equation*}
$$

Fig. 31-6.

Fig. 32-6.
V_{i} changes linearly from the instant $t=0$ until $t=t_{0}$, with a slope

$$
\begin{align*}
& \frac{d V_{i}}{d t}=-\frac{V_{0}}{t_{0}}, \text { so: } \\
& I_{i}=-C_{c} \frac{V_{0}}{t_{0}} \tag{80.6}
\end{align*}
$$

This value is valid for $0 \leqq t \leqq t_{0}$. For $t>t_{0}$, however, $V_{i}=V_{0}$. This is a constant value, so:

$$
I_{i}=0 \text { for } t>t_{0} .
$$

In other words: I_{i} is the superposition of two step-functions:

$$
\begin{equation*}
I_{i}=C_{c} \frac{V_{0}}{t_{0}}\left[-U(t)+U\left(t-t_{0}\right)\right] \tag{81.6}
\end{equation*}
$$

Fig. 33-6.
or I_{i} is a negative pulse function with an amplitude

$$
-C_{c} \frac{V_{0}}{t_{0}}
$$

and a pulse width t_{0} seconds.
This is represented in fig. 33.6. When the operational impedance of the network of fig. 32.6 is known, the response of this circuit to this input function I_{i} is easy to calculate.

The operational impedance is:

$$
\begin{equation*}
Z(p)=\frac{R_{v 1}}{1+T_{v 1} p}, \tag{82.6}
\end{equation*}
$$

where:

$$
\begin{align*}
& R_{v 1}=\frac{R_{v} r_{0}}{R_{v}+r_{0}} \tag{83.6}\\
& T_{v 1}=R_{v 1} C_{i} . \tag{84.6}\\
& C_{i}=C_{c}+C_{0} . \tag{85.6}
\end{align*}
$$

C_{0} is the input capacitance of the grid circuit, including grid-tocathode and wiring capacitances.

The response of this impedance to a current step function $I_{i} U(t)$ is

$$
\begin{equation*}
V_{0}(t)=I_{i} R_{v 1}\left(1-e^{-t / T v_{1}}\right) \tag{86.6}
\end{equation*}
$$

The total grid voltage, including the steady state, will be for $0 \leqq t \leqq t_{0}$:

$$
\begin{equation*}
V_{0}(t)=V_{00}-C_{c} \frac{V_{0}}{t_{0}} R_{01}\left(1-e^{-t / T v_{1}}\right) . \tag{87.6}
\end{equation*}
$$

For further calculation of the transient phenomena it is necessary to discriminate between two possibilities.

First, it is possible that the grid voltage, represented by expression (87.6), will not pass below zero within the time t_{0}, the rise time of the input-voltage change (see fig. 30.6).

Then there will be no new discontinuity due to the grid current suddenly ceasing. The circuit remains unchanged and the expression (87.6) is valid until the instant t_{0}, when the positive step in I_{i} causes another transient response, given by

$$
\begin{equation*}
V_{\theta}\left(t-t_{0}\right)=+C_{e} \frac{V_{0}}{t_{0}} R_{v 1}\left(1-e^{\left.-\left(L_{0}\right) / \tau v_{1}\right)} .\right. \tag{88.6}
\end{equation*}
$$

For $t \geqq t_{0}$, the total grid voltage is the sum of expressions (87.6) and (88.6):

$$
\begin{equation*}
V_{v}(t)=V_{00}-C_{c} \frac{V_{0}}{t_{0}} R_{v 1}\left[e^{t_{0} / T v_{1}}-1\right] e^{-l / T v_{1}} \tag{89.6}
\end{equation*}
$$

The shape of this function is as represented in fig. 34.6.
This first case will, however, not occur frequently in practice, as the D.C. grid voltage V_{00} will generally be only slightly positive, and
the value of V_{0} will be large enough to drive the grid voltage negative
 within a time that is shorter than t_{0} seconds.

This is the second possibility we will have to investigate. However, before doing so, the dividing limit between these two cases will be considered.

This limit is reached when at the instant $t=t_{0}$ the grid voltage (expression 87.6, fig. 34.6) becomes zero. This is expressed by the following relation:

$$
\begin{equation*}
0=V_{o 0}-C_{c} \frac{V_{0}}{t_{0}} R_{v 1}\left(1-e^{-t_{0} / T v_{1}}\right) \tag{90.6}
\end{equation*}
$$

According to (84.6) and (85.6):

$$
T_{v 1}=R_{v 1}\left(C_{c}+C_{\imath}\right) .
$$

In practice C_{c} will generally be much larger than C_{g}. Therefore:

$$
T_{v 1} \approx R_{v 1} C_{c},
$$

and expression (90.6) can be written:

$$
\begin{equation*}
V_{\theta 0}=V_{0} \frac{T_{v 1}}{t_{0}}\left(1-e^{-t_{0} / T_{v_{1}}}\right) . \tag{91.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
\frac{V_{00}}{V_{0}}=\frac{T_{v 1}}{t_{0}}\left(1-e^{-t_{0} / T v_{1}}\right) \tag{92.6}
\end{equation*}
$$

Substituting:

$$
\begin{equation*}
V_{0}=\beta V_{90} \tag{93.6}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{0}=\alpha T_{v 1} \tag{94.6}
\end{equation*}
$$

changes expr. (92.6) into:

$$
\begin{align*}
& \beta=\frac{\alpha}{1-e^{-\alpha}} \tag{95.6}\\
& \operatorname{Lim}_{\alpha \rightarrow 0} \beta=1 .
\end{align*}
$$

In the graph of fig: 35.6, the relation (95.6) is shown, and it is clear that, with fixed values of V_{00} and $T_{v 1}$, the less steep its negative-going flank, the higher will be the input voltage amplitude V_{0} to drive the grid completely out of its conducting state.

Fig. 35-6.
The second case, where the grid voltage reaches zero at an instant $t_{1}<t_{0}$ will now be considered. At this instant, t_{1}, the grid current disappears and r_{g} in fig. (31.6) suddenly becomes infinite. This causes new transients in the circuit that can be calculated by methods indicated in section 2. The process to be applied is as follows: The current i_{g} flowing in r_{g} before the instant t_{1} must be determined, the expression for i_{g} applying also for $t>t_{1}$ if no discontinuity appears.

The effect of suddenly increasing r_{g} to an infinite value, or to interrupt i_{g}, can be accounted for by assuming from the instant $t=t_{1}$ onwards that a current source I_{0} is present at the terminals of the former r_{g}, I_{0} being of opposite polarity but equal in value to i_{o}. Then the grid voltage for $t \geqq t_{1}$ will be the sum of the grid voltage $V_{g}(t)$ that was calculated for the original situation with r_{θ} present, and of a component $\bar{V}_{\sigma}(t)$ that is caused by the response of the circuit to the current I_{0}.

The first component is represented by expression (87.6), and is valid in the circuit of fig. 36.6.

Fig. 36-6.

Fig. 37-6.

The second component can be calculated from the circuit of fig. 37.6, where $: I_{0}\left|=\left|i_{g}\right|\right.$, and i_{g} is given by:

$$
\begin{equation*}
i_{g}(t)=\frac{\dot{V_{g 0}}-C_{c} \frac{V_{0}}{t_{0}} R_{v 1}\left(1-e^{-t / / v_{1}}\right)}{r_{0}} \tag{96.6}
\end{equation*}
$$

(see expr. 87.6 and fig. 36.6).
At the instant $t=t_{1}$, the grid voltage is zero; consequently $i_{g}\left(t_{1}\right)$ is also zero. For calculating the new transients starting at the instant t_{1}, it is convenient to introduce a new time scale τ, with its zero point at
$t=t_{1}$ so

$$
\begin{equation*}
\tau=t-t_{1} \tag{97.6}
\end{equation*}
$$

In this new time scale the expression 87.6 reads as follows:

$$
\begin{equation*}
V_{\imath}(\tau)=-C_{c} \frac{V_{0}}{t_{0}} R_{v 1} e^{-t_{1} / T v_{1}}\left(1-e^{-\tau / T v_{1}}\right) \tag{98.6}
\end{equation*}
$$

The value t_{1} is defined by the condition that $v_{g}(t)$ (see expr. 87.6) is zero for $t=t_{1}$; so:

$$
\begin{equation*}
V_{00}=C_{c} \frac{V_{0}}{t_{0}} R_{v 1}\left(1-e^{-t_{1} / T v_{1}}\right) \tag{99.6}
\end{equation*}
$$

Substituting this expr. in (98.6) yields for $\tau \geqq 0$:

$$
\begin{equation*}
V_{01}(\tau)=-\left(R_{v 1}\left|I_{i}\right|-V_{g 0}\right)\left(1-e^{-\tau / \tau v_{1}}\right), \tag{100.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\left|I_{i}\right|=C_{c} \frac{V_{0}}{t_{0}} . \tag{101.6}
\end{equation*}
$$

Expression (100.6) gives the first component of the total grid voltage for $t \geqq t_{1}$. The second component $\bar{V}_{0}(t)$ or $\bar{V}_{\theta}(\tau)$ can be calculated from fig. (37.6). The result is:
$V_{g}(\tau)=\frac{R_{v}}{r_{g}}\left(V_{o 0}-R_{v 1}\left|I_{i}\right|\right)\left[1+\frac{r_{o}}{R_{v}} e^{-\tau / \tau \nu_{1}}-\frac{R_{v}+r_{g}}{R_{v}} e^{-\tau / T v}\right]$,
where:

$$
\begin{equation*}
R_{v}=\frac{R R_{\varepsilon}}{R+R_{g}} \tag{78.6}
\end{equation*}
$$

and:

$$
T_{v}=R_{v} C_{i} .
$$

The resulting grid voltage $V_{g_{\text {II }}}(\tau)$ for $t \geqq t_{1}$ is the sum of $V_{g}(\tau)$ and $V_{o}(\tau)$ (expressions 100.6 and 102.6):

$$
\begin{align*}
& V_{\theta_{11}}(\tau)=V_{g}(\tau)+\bar{V}_{g}(\tau) \\
& V_{\theta_{\text {II }}}(\tau)=-\left(R_{v 1}\left|I_{i}\right|-V_{o 0}\right) \frac{R_{v}+r_{g}}{r_{g}}\left(1-e^{-\tau / \tau v}\right) . \tag{103.6}
\end{align*}
$$

Now, at the instant $t=t_{0}$, another discontinuity occurs, viz. the input current I_{i} jumps back from a value $-C_{c} \frac{V_{0}}{t_{0}}$ to zero.

This causes a transient response:

$$
\begin{equation*}
\overline{\bar{V}}_{g}(\tau)=R_{v}\left|I_{i}\right|\left(1-e^{-\left(\tau-t_{0}+t_{1}\right) / \tau v}\right) \tag{104.6}
\end{equation*}
$$

This new component must be superimposed on the grid voltage, originating from former transients, viz. $V_{g_{\mathrm{II}}}(\tau)$ (expr. 103.6).

The resulting grid voltage is:

$$
\begin{align*}
& V_{\sigma_{111}}(\tau)=-\frac{R_{v}+r_{g}}{r_{g}}\left(R_{v 1}\left|I_{i}\right|-V_{o 1}\right)\left(1-e^{-\tau / T v}\right)+ \\
& +R_{v}\left|I_{i}\right|\left(1-e^{-\left(\tau-t_{0}+t_{1}\right) / T v}\right) . \ldots \tag{105.6}
\end{align*}
$$

At a certain instant $t=t_{2}$ (or $\tau=\tau_{0}$) this voltage reaches a value zero, and at that instant grid current starts again, in other words: resistance r_{g} is once again shunted across the grid circuit. Thus, from this instant $t=t_{2}$ onwards, a new component must be taken into account. This can be calculated by imagining a voltage source $V_{0}(\tau)$ being present in series with r_{θ}, as represented in fig. 38.6.

Fig. 38-6.

This voltage $V_{c}(\tau)$ is equal to the grid voltage $V_{\mathrm{mI}}(\tau)$ from expression (105.6), but with opposite sign.

The response of the network to $V_{c}(\tau)$ results in a grid voltage component:

$$
-V_{g 0}\left[\frac{R_{v}}{r_{g}}-\frac{r_{g}+R}{r_{g}} e^{-\left(\tau-\tau_{0}\right) / \tau v}+e^{-\left(\tau-\tau_{0}\right) / \tau_{v}}\right] .
$$

This must be added to the voltage $V_{\theta_{\mathrm{III}}}(\tau)$ (expr. 105.6), giving for the grid voltage at $t \geqq t_{2}$ the following expression:

$$
\begin{equation*}
V_{g_{\mathrm{IV}}}(\tau)=V_{g 0}\left(1-e^{-\left(\tau-\tau_{0}\right) / T v_{1}}\right) . \tag{106.6}
\end{equation*}
$$

As is expected, the final value of the grid voltage is V_{00} again.
In fig. 39.6 a survey is given of the various phases through which

Fig. 39-6. the grid voltage passes.

The first phase I commences at the instant $t=0$, where the input voltage starts falling with a linear slope to the final, constant value - V_{0}. The second phase II commences at the instant $t=t_{1}$, when grid current disappears. The third phase III commences at $t=t_{0}$, when the input voltage V_{i} no longer changes.

The last phase IV is for times $t>t_{2}$. At $t=t_{2}$, the grid current starts again.

The changes from phase I into II and from phase III into IV occur continuously. This can be shown by calculating the first derivative with respect to time of the grid voltage changes at the instants $t=t_{1}$ and $t=t_{2}$. It will be found that:

$$
\frac{d}{d t}\left[V_{v_{1}}(\tau)\right]_{t=t_{1}}=\frac{d}{d t}\left[V_{v_{11}}(\tau)\right]_{t=t_{1}}
$$

and

$$
\frac{d}{d t}\left[V_{o_{\mathrm{II}}}(\tau)\right]_{t=t_{\mathrm{t}}}=\frac{d}{d t}\left[V_{a_{\mathrm{IV}}}(\tau)\right]_{t=t_{\mathrm{t}}}
$$

To give a quick survey, the expressions of the grid voltage changes in the various phases will be summarized again:

During phase $\mathrm{I}: 0 \leqq t \leqq t_{1}$:

$$
\begin{equation*}
V_{g_{\mathrm{t}}}(t)=V_{o 0}-\left|I_{i}\right| R_{v 1}\left(1-e^{-t / T v_{1}}\right) . . . \tag{87.6}
\end{equation*}
$$

Final value: $V_{o_{\mathrm{I}}}(\infty)=V_{00}-\left|I_{i}\right| R_{v 1}$.
During phase II: $t_{1} \leqq t \leqq t_{0}$ or $0 \leqq \tau \leqq t_{0}-t_{1}$:

$$
\begin{gather*}
V_{o_{11}}(\tau)=-\left(R_{v 1}\left|I_{i}\right|-V_{o 0}\right) \frac{R_{v}+r_{g}}{r_{g}}\left(1-e^{-\tau / \tau v}\right) . \tag{103.6}\\
V_{o_{11}}(\infty)=-\left(R_{v 1}\left|I_{i}\right|-V_{o 0}\right) \frac{R_{v}+r_{v}}{r_{g}}=\frac{R_{v}+r_{g}}{r_{g}} V_{0}-R_{v}\left|I_{i}\right| .
\end{gather*}
$$

During phase III: $t_{0} \leqq t \leqq t_{2}$ or $t_{0}-t_{1} \leqq \tau \leqq \tau_{0}$:

$$
\begin{gather*}
V_{\theta_{\mathrm{III}}}(\tau)=-\left(R_{v 1}\left|I_{i}\right|-V_{\theta 0}\right) \frac{R_{v}+r_{g}}{r_{g}}\left(1-e^{-\tau / \tau v}\right)+ \\
+R_{v}\left|I_{i}\right|\left(1-e^{-\left(\tau-\sigma_{0}+t_{1}\right) / \tau v}\right) \cdots \cdots \tag{105.6}\\
V_{g_{\mathrm{III}}}(\infty)=\frac{R_{g} V^{\prime}-R V^{\prime \prime}}{R+R_{g}} .
\end{gather*}
$$

During phase IV: $t \geqq t_{2}$ or $\tau \geqq \tau_{0}$:

$$
\begin{align*}
& V_{\theta_{\mathrm{IV}}}(\tau)=V_{g 0}\left(1-e^{\left.-\left(\tau-\tau_{0}\right) / / v_{1}\right)}\right. \tag{106.6}\\
& V_{\theta_{\mathrm{IV}}}(\infty)=V_{g 0} .
\end{align*}
$$

It is interesting to consider the value of t_{1} with respect to t_{0}, for it will be clear from the foregoing and especially from fig. 39.6 that the ultimate negative amplitude of the grid voltage will be larger as the grid current is cut off earlier, in other words: as t_{1} becomes smaller with respect to t_{0}. In order to suppress the anode current of the tube with a given input voltage of amplitude V_{0} and time of rise t_{0}, the peak negative grid voltage will have to be sufficiently high to pass the value of grid voltage for anode current cut-off.

The influence of the values of V_{0} and t_{0} on t_{1} for given values of the circuit and tube constants and voltage sources R, R_{g}, C_{c}, C_{g}, r_{g}, V^{\prime} and $V^{\prime \prime}$ can be investigated by closer examination of expression (99.6):

$$
\begin{align*}
& V_{o 0}=V_{0} \frac{T_{v 1}}{t_{0}}\left(1-e^{-t_{1} / T v_{1}}\right) \\
& 1-e^{-t_{1} / T v_{1}}=\frac{\alpha}{\beta} \quad \cdot . . \tag{107.6}
\end{align*}
$$

or:
(see expressions (93.6) and (94.6).

Fig. 40-6.

The value $\frac{t_{1}}{T_{v 1}}$ as a function of β (or V_{0}) with α (or t_{0}) as a parameter is represented graphically in fig. 40.6, whilst in fig. 41.6 the value
 $: \frac{t_{1}}{t_{0}}$ is represented as a function of α (or t_{0}) with β (or V_{0}) as parameter. If $\beta=\alpha$, then t_{1} would be infinitely large, but in practice t_{1} cannot be larger than t_{0}, so the ordinate in the graph of fig. 41.6 cannot become greater than 1 .

Fig. 41-6.

6.1.3. DIODE CIRCUITS

The results of the study of the behaviour of grid circuits when subjected to the influence of sudden steep positive- or negative-going voltage changes, as derived in the preceding sections, will also be useful for the investigation of the response of diode circuits. For vacuum-tube diodes the same current-voltage characteristic approximations as given in figs 5.6 and 10.6 can be applied. The resistance of a vacuum diode in the reversed current direction, often called the "back resistance", can be taken to be infinite. However, another large category of diodes, viz. crystal diodes, selenium rectifiers and the like, have a back resistance of finite value. In that

Fig. 42-6. case, the diode current-voltage characteristic can, to a close approximation, be represented by the graph of fig. 42.6. Indeed, in practice the current is zero for zero voltage, which is different from the case of vacuum tubes. The back resistance R_{b} of diodes, having a characteristic like that of fig. 42.6, will be:

$$
\begin{equation*}
R_{b}=\cot \beta, \tag{108.6}
\end{equation*}
$$

whilst the forward resistance will be:

$$
\begin{equation*}
R_{f}=\cot \alpha . \tag{109.6}
\end{equation*}
$$

The behaviour of such diodes in a network when subjected to a change in input voltage which passes the value zero can be described in the following way. For negative values of diode voltage the diode is represented by its back resistance as depicted in fig. 43.6, where the block A

Fig. 43-6.

Fig. 44-6.
represents an arbitrary network in which the diode is incorporated.
For positive diode voltages the diode is represented by its forward resistance R_{f}. When the voltage across the diode changes from negative to positive, then it can be assumed that, at the instant its value is zero, a resistance R_{b} is suddenly shunted across R_{b} of such a value that:

$$
\begin{equation*}
R_{g}=\frac{R_{b} \cdot R_{s}}{R_{b}+R_{g}}, . \tag{110.6}
\end{equation*}
$$

or:

$$
\begin{equation*}
R_{s}=\frac{R_{b} \cdot R_{f}}{R_{b}-R_{f}} \tag{111.6}
\end{equation*}
$$

(see fig. 44.6).
The sudden shunting of R_{b} by R_{s} causes transients which can be calculated in the way outlined in previous sections.

In the same way, the change of the diode voltage from positive to negative values will be accompanied by transient phenomena which can be described by the sudden omission of R_{s} from the circuit at the instant the diode voltage passes zero, and calculated by the same methods. It should be borne in mind, however, that disturbing effects may occur, when switching certain kinds of semi-conductor diodes, caused by inherent inertia phenomena such as hole-storage in Germanium diodes.

6.2. THE ANODE CIRCUIT

If the grid voltage change of a tube has been determined by any method given in the foregoing sections, then the next problem will be to investigate the anode circuit of the tube and, if possible, to derive expressions which represent the anode current and voltage as functions of time.

When using idealized characteristics, this can be performed for triodes as well as for pentodes.

6.2.1. TRIODES

The idealized characteristics of a triode, giving the relation between the anode current I_{a} and the anode voltage V_{a} with the grid voltage V_{g} as

Fig. 45-6. parameter, are represented in fig. 45.6. The main difference between practical characteristics and these idealized ones is given by the lower dotted curved parts of the otherwise straight lines.

When an anode supply voltage V_{B} is available and fed to the anode via a load resistance R_{a}, then the operating point of the tube
defined by the value of V_{g} will be situated on the loadline L that intersects the horizontal axis at $V_{a}=V_{B}$ and has a slope $\cot \beta=R_{a}$.

The situation of a point P is characterized by the following relations:

$$
I_{a}=\frac{V_{a}-V_{a 1}}{r_{a}},
$$

where:

$$
\begin{equation*}
V_{a 1}=-\mu V_{o} . \tag{112.6}
\end{equation*}
$$

and $r_{a}=\cot \alpha=$ internal anode resistance, thus:

$$
\begin{equation*}
I_{a}=\frac{V_{a}+\mu V_{g}}{r_{a}}=\frac{V_{a}}{r_{a}}+S V_{g}, \tag{113.6}
\end{equation*}
$$

where $S=$ transconductance of the tube.
It can be seen from the characteristics that the cut-off grid voltage \dot{E}_{c} is dependent on the value of V_{B}, viz.

$$
\begin{equation*}
V_{B}=-\mu E_{c} \tag{114.6}
\end{equation*}
$$

(compare expr. 112.6).
If the anode load is a pure resistance, then dynamic operating conditions will all be situated on the load line L. In practice, however, some stray capacitance will always be present, and at steep changes of grid voltage the operating point can change to such values that, temporarily, it will no longer be situated on the load line. It can be assumed that a static condition exists with P as the operating point of the tube (see fig. 46.6), and also that the grid voltage falls below the cut-off value in a time that is small compared with the time constant in the anode circuit (anode

Fig. 46-6. load resistance times anode stray capacitance). The anode current will suddenly become zero, but the anode voltage cannot change to its final value V_{B} at the same rate, and the operating point will trace the dotted line I in the direction of the arrows. In the reverse case, when V_{g} suddenly changes to zero, the operating point P will trace the dotted line II in the direction of the arrows.

If, in general, an anode load impedance Z_{a} is present, then the values of I_{a} and V_{a} in the dynamic conditions arising from changes in grid voltage V_{0} will be determined by expression (113.6) and the following relation:

$$
\begin{equation*}
V_{B}-V_{a}=Z_{a} I_{a} \tag{115.6}
\end{equation*}
$$

Eliminating V_{a} gives an expression for I_{a} :

$$
\begin{equation*}
I_{a}=\frac{\mu}{r_{a}+Z_{a}}\left(V_{0}-E_{c}\right), \tag{116.6}
\end{equation*}
$$

in which relation (114.6) has also been substituted.
Once I_{a} is known, V_{a} can be determined from expr. (115.6).
If a pure resistance represents the anode load, then $Z_{a}=R_{a}$, and the anode current will be:

$$
\begin{equation*}
I_{a}=\frac{\mu}{r_{a}+R_{a}}\left(V_{\theta}-E_{c}\right), \tag{117.6}
\end{equation*}
$$

and the anode voltage:

$$
\begin{equation*}
V_{a}=-\frac{\mu}{r_{a}+R_{a}}\left(r_{a} E_{c}+R_{a} V_{o}\right) \tag{118.6}
\end{equation*}
$$

If a parallel capacitance is to be considered across R_{a}, then:

$$
\begin{equation*}
Z_{a}=R_{a} \frac{1}{1+T_{a} p} \tag{119.6}
\end{equation*}
$$

where $T_{a}=R_{a} C_{a}$, when C_{a} is the total output capacitance of the tube (including wiring capacitance). Now Z_{a} is an operational impedance, where p denotes the usual symbol for derivation with respect to time. Substituting Z_{a} from expr. (119.6) into expr. (116.6) gives:

$$
I_{a}=\frac{\mu\left(1+T_{a} p\right)}{r_{a}+R_{a}+r_{a} T_{a} p}\left(V_{o}-E_{c}\right),
$$

or:

$$
\begin{equation*}
I_{a}=\frac{\mu}{r_{a}+R_{a}} \frac{1+T_{a} p}{1+\lambda_{a} T_{a} p}\left(V_{o}-E_{c}\right), \tag{120.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\lambda_{a}=\frac{r_{a}}{r_{a}+R_{a}} . \tag{121.6}
\end{equation*}
$$

When V_{g} is a known function of time, equation (120.6) can be solved with operational calculus methods, as previously discussed. It must be remembered, however, that for values of V_{o} smaller than E_{c}, the tube is in the cut-off state and no anode current at all flows. So changes of V_{0} at values $V_{g}<E_{c}$ have no influence in E_{c} the anode circuit. Consequently, only values of $V_{g}>E_{c}$ or values of $V_{g}-E_{c}>0$ will cause va- $-V_{0}$ riations in anode current according to expr. 120.6.

For example, if V_{g} is given by

Fig. 47-6. the time function:

$$
\begin{equation*}
V_{0}=-V_{0} e^{-t / T} \tag{122.6}
\end{equation*}
$$

(see fig. 47.6).
Then a period of time from $t=0$ until $t=t_{1}$ elapses before V_{0} reaches a value E_{c}, and this instant t_{1} is given by:

$$
E_{f}=-V_{0} e^{-t_{1} / T}
$$

So:

$$
V_{0}-E_{c}=-V_{0}\left(e^{-t / T}-e^{-t_{t} / T}\right),
$$

or:

$$
V_{g}-E_{c}=-V_{0} e^{-t_{1} / T}\left(e^{-\left(t-T_{1}\right) / T}-1\right),
$$

or:

$$
\begin{equation*}
V_{\imath}-E_{c}=E_{c}\left(e^{-\tau / T}-1\right), \tag{122a.6}
\end{equation*}
$$

where $\tau=t-t_{1}$, a new time-scale having its zero point at the instant when $V_{g}-E_{c}$ becomes positive.

The change of the anode current with time will be determined by the expressions (120.6) and (122a.6):

$$
\begin{equation*}
I_{a}=\frac{-\mu E_{c}}{r_{a}+R_{a}} \frac{1+T_{a} p}{1+\lambda_{a} T_{a} p}\left(1-e^{-\tau / \tau}\right) \ldots \tag{123.6}
\end{equation*}
$$

This can be solved by the methods treated in section 5, viz. either by applying the superposition theorem (expr. 28.5) or by "translating"
the time function $1-e^{-\tau / T}$ into the corresponding p-function $\frac{1}{1+T p}$
according to expr. (15.5).
The latter method is the quickest and will be followed here.
Then expr. (123.6) can be written:

$$
\begin{equation*}
I_{a}=\frac{V_{B}}{r_{a}+R_{a}} \frac{1+T_{a} p}{\left(1+\lambda_{a} T_{a} p\right)(1+T p)}, \tag{124.6}
\end{equation*}
$$

where $-\mu E_{c}$ is substituted by V_{B}, according to (114.6).
The p-function can be split up in two partial fractions, giving:

$$
\begin{equation*}
I_{a}=\frac{V_{B}}{r_{a}+R_{a}} \frac{1}{T-\lambda_{a} T_{a}}\left(\left(1-\lambda_{a}\right) T_{a} \frac{1}{1+\lambda_{a} T_{a} p}+\left(T-T_{a}\right) \frac{1}{1+T p}\right] . \tag{125.6}
\end{equation*}
$$

Transforming these p-functions back again into time functions yields:

$$
\begin{equation*}
I_{a}=\frac{V_{B}}{r_{a}+R_{a}}\left[1-\frac{\left(1-\lambda_{a}\right) T_{a}}{T-\lambda_{a} T_{a}} e^{-\tau / \lambda_{a} T_{a}}-\frac{T-T_{a}}{T-\lambda_{a} T_{a}} e^{-\tau / T}\right] . \tag{126.6}
\end{equation*}
$$

The final value of I_{a} (for $t=$ infinite), will be:

$$
I_{a}(\infty)=\frac{V_{B}}{r_{a}+R_{a}},
$$

corresponding to the operating point Q in fig. 46.6. If the time constant T of the grid voltage change is the same as the anode circuit time constant T_{a}, then expr. (126.6) simplifies to:

$$
\begin{equation*}
I_{a}=\frac{V_{B}}{r_{a}+R_{a}}\left[1-e^{-\tau / \lambda_{a} T_{a}}\right] \tag{127.6}
\end{equation*}
$$

The corresponding anode voltage change would be, according to (115.6) and (119.6):

$$
\begin{equation*}
V_{a}=V_{B}-\frac{R_{a}}{1+T_{a} p}\left(I_{a}\right) \tag{128.6}
\end{equation*}
$$

I_{a} expressed as a p-function, can be found from (125.6), remembering that T was equated to T_{a} :

$$
\begin{equation*}
I_{a}=\frac{V_{B}}{r_{a}+R_{a}} \cdot \frac{1}{1+\lambda_{a} T_{a} p} \tag{129.6}
\end{equation*}
$$

From (128.6) and (129.6):

$$
\begin{equation*}
V_{a}=V_{B}\left[1-\left(1-\lambda_{a}\right) \frac{1}{1+T_{a} P} \cdot \frac{1}{1+\lambda_{a} T_{a} p}\right] . \tag{130.6}
\end{equation*}
$$

This can again be solved by splitting the p-function into partial fractions:

$$
\begin{equation*}
V_{a}=V_{B}\left[1+\lambda_{a} \frac{1}{1+\lambda_{a} T_{a} p}-\frac{1}{1+T_{a} p}\right] . \tag{131.6}
\end{equation*}
$$

Translating back into a time function:

$$
\begin{equation*}
V_{a}=V_{B}\left[\lambda_{a}-\lambda_{a} e^{-\tau / \lambda_{a} T_{a}}+e^{-\tau / T_{a}}\right] . \tag{132.6}
\end{equation*}
$$

The foregoing treatment showed the derivation of the anode current and voltage changes caused by a positive-going grid voltage change, starting below cut-off (see fig. 47.6) and expression 122.6). The electron tube can be represented as a switch that is closed. The reverse case will now be considered, viz. the influence of a negative-going grid voltage (the switch is opened). It will be assumed that the grid voltage is zero for $t \leqq 0$, and that no transients of a former change remain. The change of the grid

Fig. 48-6. voltage V_{\imath} can be represented by fig. 48.6 and by the following expression:

$$
\begin{equation*}
V_{0}=-V_{0}\left(1-e^{-t / T}\right) \tag{133.6}
\end{equation*}
$$

This case of switching-off a tube is more complicated than the reverse. Depending on the values of V_{0} and the time constant T from expression (133.6), several particular cases must be distinguished. In order to make this clear, it is best to start with two extreme cases.

Let it first be assumed that the time constant T_{a} in the anode circuit is very much larger than that of the grid voltage change T.

If then V_{0} has a value that exceeds ! $E_{c}!$, the tube is already cut off ($I_{a}=0$) before the anode voltage has had any opportunity to change its value appreciably. To a good approximation, the response of the anode circuit will be the same as to a step-shaped input current which is of equal magnitude but opposite in sign to the constant current $I_{\text {un }}$ that was flowing in the anode circuit before the change in grid voltage
commenced (for times $t \leqq 0$). So, for times $t \leqq 0$, the voltage drop across the anode circuit is $R_{a} \cdot I_{a 0}, I_{a 0}$ being the constant anode current at $V_{\theta}=0$ and $t \leqq 0$.

When the tube is suddenly cut off, this voltage drop tends to approach zero according to an exponential function with a time constant $T_{a}=R_{a} C_{a}$. ($R_{a}=$ anode load resistor, $C_{a}=$ total anode capacitance across R_{a}). In other words: the anode voltage will be for $t \geqq 0$:

$$
\begin{equation*}
V_{a}(t)=V_{B}-R_{a} I_{a 0} e^{-t / T_{a}} \tag{134.6}
\end{equation*}
$$

The path of the operating point in the $I_{a}-V_{a}$ characteristics will be as indicated by the dotted line in fig. 49.6, where L represents the

Fig. 49-6. static load line corresponding to the anode load resistor R_{a}.

Another extreme case is that where $T \gg T_{a}$. If there were no parallel capacitance at all across R_{a}, the working point would be shifted from the intersection of L and the $I_{a}-V_{a}$ characteristic at $V_{g}=0$ in fig. 49.6 along the loadline down to V_{B}. Between these cases are many other intermediate possibilities. The static condition for times $t<0$ is characterized by:

$$
\begin{equation*}
I_{a 0}=\frac{V_{a 0}}{r_{a}} . \tag{135.6}
\end{equation*}
$$

If ΔV_{g} denotes in general the change in V_{σ} taking place for $t \geqq 0$, then an anode current change ΔI_{a} will be caused, given by the relation

$$
\begin{equation*}
\Delta I_{a}=\frac{\Delta V_{a}+\mu \Delta V_{0}}{r_{a}} . \tag{136.6}
\end{equation*}
$$

The change in voltage across the anode circuit impedance Z_{a} is given by $Z_{a} \Delta I_{a}$, and this must be equal to the change in anode voltage but opposite in sign:

$$
\begin{equation*}
\Delta V_{a}=-Z_{a} \Delta I_{a} . \tag{137.6}
\end{equation*}
$$

Substituting (136.6) gives:

$$
\begin{equation*}
\Delta V_{a}=-\frac{Z_{a}}{Z_{a}+r_{a}} \mu \Delta V_{a} \tag{138.6}
\end{equation*}
$$

Z_{a} is the parallel combination of the resistance R_{a} and the capacitance C_{a}, so:

$$
\begin{equation*}
Z_{a}=\frac{R_{a}}{1+R_{a} C_{a} p} \tag{139.6}
\end{equation*}
$$

Substituting in (138.6) gives:

$$
\begin{equation*}
\Delta V_{a}=-\mu \frac{R_{a}}{R_{a}+r_{a}} \frac{1}{1+T_{v} p} \Delta V_{a}, \tag{140.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
T_{v}=\frac{r_{a}}{R_{a}+r_{a}} R_{a} C_{a} \tag{141.6}
\end{equation*}
$$

If ΔV_{g} is supposed to be as represented by expression (133.6), then the operational form in which ΔV_{a} can be expressed is as follows:

$$
\begin{equation*}
\Delta V_{a}=\frac{\mu V_{0} R_{a}}{R_{a}+r_{a}} \frac{1}{1+T_{v} p} \frac{1}{1+T p} \tag{142.6}
\end{equation*}
$$

Transformed into a time function, this expression will be:

$$
\begin{equation*}
\Delta V_{a}=\mu V_{a} \frac{R_{a}}{R_{a}+r_{a}}\left[1-e^{-t / T}-A\left(e^{-t / T_{a}}-e^{-t / T}\right)\right], . \tag{143.6}
\end{equation*}
$$

where:

$$
\begin{equation*}
A=\frac{T_{v}}{T_{v}-T} . \tag{144.6}
\end{equation*}
$$

Now, the total anode voltage will be the sum of the initial steady state value $V_{a 0}$ and the transient value ΔV_{a} :

$$
\begin{equation*}
V_{a}(t)=V_{a 0}+\Delta V_{a} . \tag{145.6}
\end{equation*}
$$

The anode current decreases from the initial steady state value $I_{a 0}$ to zero. The instant $t=t_{1}$ at which it reaches zero is fixed by the condition:

$$
\begin{equation*}
V_{a}\left(t_{1}\right)+\mu V_{g}\left(t_{1}\right)=0 . \tag{146.6}
\end{equation*}
$$

Substituting expressions (145.6), (143.6) and (133.6) gives an equation for determining t_{1} :

$$
\begin{align*}
& V_{a 0}+\mu V_{0} \frac{R_{a}}{R_{a}+r_{a}}\left[1-e^{-t_{1} / T}-A\left(e^{-t_{1} / T_{v}}-e^{-t_{1} / T}\right)\right]- \\
& -\mu V_{0}\left(1-e^{-t_{1} / T}\right)=0 . \ldots \tag{is?.6}
\end{align*}
$$

or:

$$
V_{a 0}-\mu V_{0}\left[\frac{r_{a}}{R_{a}+r_{a}}\left(1-e^{-t_{1} / T}\right)-\frac{R_{a}}{R_{a}+r_{a}} A\left(e^{-t_{1} / T_{r}}-e^{-t_{1} / T}\right)\right]=0 .
$$

A general solution for t_{1} will be difficult to derive, each practical case being considered individually and then solved for example by graphical methods.

A few special cases can be found directly, for example that already mentioned, where $T \ll T_{v}$. Then it can be derived that:

$$
-A\left(e^{-t / T T_{r}}-e^{-t / T}\right) \approx e^{-t / T}-1
$$

and consequently $\Delta V_{a}=0$ at $t=t_{1}$. The grid voltage changes so rapidly that the anode voltage cannot follow because of its much larger time constant. Then condition (147.6) simplifies to:

$$
V_{a 0}-\mu V_{0}\left(1-e^{-t_{1} / T}\right)=0,
$$

or:

$$
\begin{equation*}
t_{1}=-T \ln \left(1-\frac{V_{a 0}}{\mu V_{0}}\right) \tag{148.6}
\end{equation*}
$$

There is only a real solution for t_{1} if:

$$
\frac{V_{a 0}}{\mu V_{0}} \leqq 1
$$

Now the value $\frac{V_{a 0}}{\mu}$ represents the cut-off grid voltage of the tube at an anode voltage $V_{a 0}$. The characteristic corresponding with this cut-off grid voltage is represented by the dash-dot line in fig. 49.6. It is clear that V_{0} must be larger than this cut-off value. However, when V_{0} does not exceed the absolute value of E_{c}, the cut-off voltage at an anode voltage equal to the supply voltage V_{B}, then the tube will, after an initial cut-off, sooner or later again become conducting as the anode voltage rises and tends to a final value V_{B} when no anode current flows. As soon as V_{a} reaches a value $-\mu V_{g}(t)$, then anode current starts to flow again. This lowers the rate of increase of V_{a} and it may be expected that gradually the anode voltage will tend to its final value μV_{0}, with the operating point of the tube at the intersection of the static loadline and the grid voltage characteristic of value $-V_{0}$.

This method of switching a tube will, however, not be frequently used in practice. Generally, the tube will have to be cut off rapidly and definitely, so that V_{0} will have to be larger than E_{c}

Another extreme case occurs when $T_{v} \ll T$, so that the quantity A (see expr. (144.6) is very small and expr. (147.6) simplifies to:

$$
V_{a 0}-\mu V_{0}-\frac{r_{a}}{R_{a}+r_{a}}\left(1-e^{-t_{1} / T}\right)=0
$$

or:

$$
\begin{equation*}
t_{1}=-T \ln \left(1-\frac{R_{a}+r_{a}}{r_{a}} \frac{V_{a 0}}{\mu V_{0}}\right) \tag{149.6}
\end{equation*}
$$

To have a real value of t_{1}, in other words to reach a real cut-off condition, the relation

$$
\frac{R_{a}+r_{a}}{r_{a}} \frac{V_{a 0}}{\mu V_{0}} \leqq 1
$$

must be fulfilled, or:

$$
V_{0} \geqq \frac{R_{a}+r_{a}}{r_{a}} \frac{V_{a 0}}{\mu}
$$

or:

$$
V_{0} \geqq \frac{V_{B}}{\mu}\left(=\left|E_{c}\right|\right)
$$

6.2.2. PENTODES

The idealized anode current - anode voltage characteristics at a given screen grid voltage for a pentode are represented in fig. 50.6. The main deviations from this idealized form are rounded edges at the left.

At low values of the anode voltage V_{a}, all characteristics converge approximately into one steep line through the origin of the system of coordinates. The

Fig. 50-6. reverse of the slope of this "bottoming" line is denoted by r_{a} :

$$
\begin{equation*}
\dot{r}_{a}=\cot \alpha \text { (see fig. 50.6) } \tag{150.6}
\end{equation*}
$$

The discontinuity of the characteristics at the "knee" complicates the response of the pentode to sudden changes in voltage at the control grid. If, for instance, the tube has been cut-off for a long period, then its anode voltage will be equal to the supply voltage V_{B}. If then the control-grid voltage V_{01} is suddenly raised to a value above the cut-off voltage E_{c}, say -1 volt, the anode current suddenly assumes a value corresponding to the characteristic for $V_{g}=-1$ volt.

If the time constant of the anode circuit is large, the change in anode voltage will be very slow, compared with this sudden increase in current. The operating point of the tube will travel along the curve indicated by arrows in fig. 50.6, and finally reach a steady state at point P_{1} if the anode load resistance R_{a} is small enough to correspond with the static loadline L_{1}.
If the change of $V_{\theta 1}$ was stepshaped, then the change of I_{a} will be of similar shape. The anode voltage V_{a} will be an exponential curve starting at a value V_{B} and tending to a final value corresponding with the operating point P_{1} with a time constant $R_{a} C_{a}$. These waveforms are represented in fig. 51.6.

However, when the anode load resistance R_{a} happens to be large enough to correspond with loadline L_{2} of fig. 50.6 , then the final operating point will be P_{2}. Before this point is reached, the "kneepoint" K is passed, and at that instant a discontinuity occurs.

Until this instant, the anode current is constant and independent of the anode voltage. From this instant onwards, however, the anode current decreases proportionately to the anode voltage, the relation being $I_{a}=V_{a} \operatorname{tn} \alpha$, or, according to (150.6):

$$
\begin{equation*}
I_{a}=\frac{V_{a}}{r_{a}} \tag{151.6}
\end{equation*}
$$

This can be taken into account by the sudden switching of a resistance r_{a} between the anode and cathode of the pentode.

Referring to fig. 52.6, the first of two possible cases is loadline L_{1}, giving a final operating point P_{1} when the pentode receives a positive voltage step at its control grid that jumps from a value below cut-off to the value $V_{g 0}$ corresponding to an anode current $I_{a 0}$.

Figure 51.6 gives the shape of the anode voltage, which is in mathematical form as follows:

$$
\begin{equation*}
V_{a}(t)=V_{B}-I_{a 0} R_{a}\left(1-e^{-t / T_{a}}\right), \tag{152.6}
\end{equation*}
$$

if the voltage step at the grid occurs at the instant $t=0$.
$T_{a}=R_{a} C_{a}=$ time constant of anode impedance.
The second possibility is loadline L_{3}, whilst loadline L_{2} represents the border case. For this case, expr. (157.6) would still be valid. With the case of L_{3} a discontinuity occurs at the instant $t=t_{1}$ when V_{a} reaches the value

$$
\begin{equation*}
V_{a}\left(t_{1}\right)=V_{a k}=I_{a 0} r_{a} \tag{153.6}
\end{equation*}
$$

The final value of equation (152.6) which is valid only for $t \leqq t_{1}$, would be $V_{a}(\infty)=V_{a p 3}$, corresponding to a virtual operating point P_{3}. However, the limiting operating point will be P, corresponding to $V_{a}(\infty)=V_{a p}$. The current will then be:

$$
\begin{equation*}
I_{a p}=V_{a \boldsymbol{p}} / r_{a} . \tag{154.6}
\end{equation*}
$$

Moreover:

$$
\begin{equation*}
\frac{V_{B}-V_{a p}}{R_{a}}=I_{a p} . \tag{155.6}
\end{equation*}
$$

Combining (154.6) and (155.6) gives:

$$
\begin{equation*}
V_{a \nu}=V_{B} \frac{r_{a}}{R_{a}+r_{a}} \tag{156.5}
\end{equation*}
$$

From expressions (152.6) and (153.6) it follows:

$$
I_{a 0} r_{a}=V_{B}-I_{a 0} R_{a}\left(1-e^{-t_{1} / T_{a}}\right)
$$

or:

$$
\begin{equation*}
t_{1}=T_{a} \ln \frac{I_{a 0} R_{a}}{I_{a 0}\left(R_{a}+r_{a}\right)-V_{B}} . \tag{157.6}
\end{equation*}
$$

From fig. 52.6 it can be seen that $V_{B}=I_{a 0}\left(R_{a 2}+r_{a}\right)$, where $R_{a 2}$ corresponds to loadline L_{2}. Then, $t_{1}=\infty$.

For loadline L_{1} it can be seen that $I_{a 0} R_{a 1}=V_{B}-V_{a p 1}$ and $I_{a 0} r_{a}=V_{a k}$; thus:

$$
t_{1}=T_{a} \ln \frac{V_{B}-V_{a p 1}}{V_{a k}-V_{a p 1}}
$$

As $V_{a k}<V_{a p 1}$, there is no real value of t_{1} in that case.
For loadline L_{3}, however, it can be written:

$$
t_{1}=T_{n} \ln \frac{V_{B}-V_{a p 3}}{V_{a k}-V_{a p 3}}
$$

and now:

$$
V_{a k}>V_{a p_{s}}
$$

so t_{1} has a real finite value.

Fig. 53-6.

Fig. 54-6.

For times $t \leqq t_{1}$, the value of the anode voltage is given by expression (152.6), and the anode circuit can be represented by the diagram of fig. 53.6. The current source I_{a} is a step-function.

$$
\begin{equation*}
I_{a}=I_{a 0}=s\left(V_{o 0}-E_{c}\right) . \tag{158.6}
\end{equation*}
$$

From the instant $t=t_{1}$ onwards, a resistance r_{a} is to be shunted across the current source I_{n}, and the circuit can be represented by the diagram of fig. 54.6. The instant $t=t_{1}$ will be considered as the origin of a new time scale $\tau=0\left(\tau=t-t_{1}\right)$.

The anode voltage $V_{a}(\tau)$ in this new time-scale has an intial value

$$
\begin{equation*}
V_{a}(0)=V_{a k}=I_{a 0} r_{a}(\text { see } 153.6) \tag{159.6}
\end{equation*}
$$

The final value will be:

$$
\begin{equation*}
V_{a}(\infty)=\frac{r_{a}}{Z_{a}+r_{a}} V_{B} \tag{160.6}
\end{equation*}
$$

The anode voltage changes from its initial value to its final value with a time constant:

$$
\begin{equation*}
T=\frac{r_{a} R_{a}}{R_{a}+r_{a}} C_{a} \tag{161.6}
\end{equation*}
$$

and will be represented by the time-function:

$$
\begin{equation*}
V_{a}(\tau)=V_{a}(\infty)+\left(V_{a k}-V_{a}(\infty)\right) e^{-\tau / T} \tag{162.6}
\end{equation*}
$$

Fig. 55-6.

Fig. 56-6.

The values of $V_{a}(\infty)$ and $V_{\cdot a k}$ substituted in (162.6) gives:

$$
\begin{equation*}
V_{a}(\tau) \bullet=\frac{r_{a}}{R_{a}+r_{a}}\left\lfloor V_{B}-\left\{V_{B}-I_{a 0}\left(R_{a}+r_{a}\right)\right\} e^{-\tau / \tau}\right] \tag{163.6}
\end{equation*}
$$

This is valid for $t \geqq t_{1}(\tau \geqq 0)$, whilst for $0<t \leqq t_{1}$ expr. (152.6) holds:

$$
\begin{equation*}
V_{a}(t)=V_{B}-I_{a 0} R_{a}\left(1-e^{-t / T_{a}}\right) \tag{152.6}
\end{equation*}
$$

The anode voltage is continuous at $t=t_{1}$, not only in its value, but also, as can easily be checked, in its first derivative with respect to time.

The shape of $V_{a}(t)$ is sketched in fig. 55.6, whilst the anode current I_{a} as a function of time is represented in fig. 56.6.

So far, the influence of a positive-going voltage step at the control grid of a pentode on the anode circuit has been treated.

The response to a negative-going control grid vcltage step will next be considered. It is again assumed that the a node load impedance is the parallel combination of a resistance R_{a} and a capacitance C_{a}, giving a time constant $T_{a}=C_{a} R_{a}$. Furthermore no effects of any foregoing transients are supposed to be present at the moment $t=0$ when the voltage step at the control grid occurs. This grid voltage is V_{00} for times $t \leqq 0$.

At $t=0$ it jumps to a value below cut-off causing the anode current to become suddenly zero.

The capacitance C_{a} now starts discharging from the initial voltage value $I_{a} R_{a}$ to its final value of zero according to an exponential time function with a time constant $T_{a}=R_{a} C_{a}$.

Thus the change in anode voltage will be:

$$
\begin{equation*}
V_{a}(t)=V_{B}-I_{a} R_{a} e^{-t / T_{a}} \tag{164.6}
\end{equation*}
$$

This equation is valid no matter, whether the initial current I_{a} corresponds to the operation point P (loadline L_{3}) or P_{1} (loadline L_{1}) in fig. 52.6.

7. THE MULTIVIBRATOR FAMILY

7.1. INTRODUCTION

The multivibrator principle is commonly used for generating or shaping pulses, pulse frequency-dividing and similar functions. As mentioned at the end of section 4, three types of multivibrators can be distinguished. First the bistable multivibrator, frequently called the Eccles Jordan flip-flop circuit. This offers a suitable and much used means of dividing the number of pulses per unit țime by the factor two. By combining several binary dividers in cascade, division of the input pulse repetition frequency by any power of two may be accomplished. Feedback may be suitably applied between cascaded flip-flops for division. Thus the counting of pulses may be accomplished in numerical systems other than the binary one. This will often be the decimal system, which is familiar to every one who has studied arithmatic.

It will not be surprising, therefore, that the bi-stable multivibrator is a very important basic element in modern computing devices. The number of tubes used in such applications is innumerable, and special types mostly in the form of a double triode have been developed by several manufacturers.

In fact, it has been the development of a double triode for computer purposes that caused the need for more exact knowledge of the behaviour of tubes in flip-flop circuits, and this initiated the author's investigations of the transient phenomena in a bi-stable multivibrator. The theoretical results enabled us to trace the influence of tube characteristics on the behaviour of the flip-flop circuit, thus giving the tube manufacturer valuable information as to how to design tubes which will accomplish their specific tasks.

The bi-stable multivibrator will be treated extensively. Once this circuit had been analysed, it was a simpler matter to analyse the monostable multivibrator, a second member of the multivibrator family, in the same way. Among other applications, this type of switching device is used for pulse shaping and delaying.

The third type, the astable or free-running multivibrator, is a selfoscillating pulse (or sawtooth) generator needing no external triggering signal for operation, in contrast to the two types already mentioned. It is often fed, however, with external pulses, in order to synchronize its frequency with a given frequency. The application of the astable
multivibrator in television receivers is described by the author in his book "Flywheel Synchronisation of Sawtooth Generators", monograph 2 of the series Television Receiver Design, Book VIIIB of Philips' Technical Library.

In this book, only the frequency of the multivibrator signal and its synchronization is dealt with. In the present book the waveform of the astable multivibrator signals will also be considered, and the influence of the internal anode resistance of the tube on both frequenccy and waveform will be included.

7.2. THE BI-STABLE MULTIVIBRATOR

The bi-stable multivibrator - or Eccles-Jordan fip-flop circuit incorporates two vacuum tubes which basically perform a switching operation. This involves several sudden changes in the voltages and currents in the network. An analysis of these transients is essential to obtain an insight into the operation of bi-stable multivibrators in general and of the influence of the tube characteristics in particular.

In the operation of the bi-stable multivibrator, two conditions can be distinguished, namely the static condition at which one tube is conducting, the other tube being cut off and all effects of previous trigger pulses having died out, and the dynamic condition which commences as soon as a trigger pulse is applied and ultimately leads to another static condition at which the tube that was originally conducting is cut off, whilst the tube that was originally cut off becomes conducting.

It will be clear that an investigation of the dynamic condition is of particular interest, the switching speed and the triggering sensitivity of the multivibrator being determined thereby. By applying a step-by-step method and subdividing the dynamic condition into the following three phases, its analysis is simplified.
(a) The first phase commences at the instant $t=0$ at which the trigger pulse is applied. Tube I is assumed to be conducting prior to this instant, tube $I I$ then being cut off. Conditions are assumed to be such that tube I is immediately cut off, tube $I I$ remaining in the cut-off condition during this phase. The first phase is therefore characterized by the fact that the circuit may be considered as a passive network.
(b) The second phase commences at the instant $t=t_{11}$, at which tube $I I$, which was originally cut off, becomes conducting. This phase continues until the instant t_{s}, at which grid current starts to flow in the conducting tube $I I$.
(c) The third phase, commencing at the instant t_{s}, continues until the transients have died out.

7.2.1. FUNDAMENTAL CIRCUIT

Fig. 1.7 shows the fundamental circuit of the bi-stable multivibrator. It is assumed that both the positive H.T. supply $+V^{\prime}$ and the negative

Fig. 1-7.
Fundamental circuit of the bi-stable multivibrator.

Fig. 2-7.
Input voltage V_{i} consisting of a negative-going trapezoidal pulse applied to the multivibrator circuit shown in fig. 1-7.
H.T. supply $-V^{\prime \prime}$ have a negligibly low internal resistance. This also applies to the input voltage source V_{i}. This input voltage is assumed to be a negative-going trapezoidal pulse as represented in fig. 2.7.

The multivibrator should be triggered, i.e. it should be switched over from condition 1 in which tube I is conducting and tube $I I$ is cut off, to condition 2 in which I is cut off and $I I$ is conducting, by the negative-going flank of this pulse occurring between $t=0$ and $t=t_{0}$. With the exception of the anode-to-grid capacitance $C_{a g}$ of the tubes, the stray capacitances, including interelectrode capacitances, can easily be taken into account.

Fig. 3.7 represents the circuit for condition 1, including the stray capacitances, which are indicated by broken lines. Since the left-hand tube I is taken to be conducting in condition 1 , the internal anode resistance r_{a} between the anode a_{1} and cathode (earth potential) and the internal grid resistance r_{g} between the grid g_{1} and cathode have been incorporated, this grid being assumed to draw current.

If the anode-to-grid capacitances $C_{a g 1}$ and $C_{a 91}$ were absent, it would be possible to split up the circuit into two parts which could be con-
sidered separately with regard to their response to an input pulse V_{i}. The interaction between both halves of the circuit due to these anode-to-grid capacitances, however, renders the problem more complicated,

Fig. 3-7.
Equivalent circuit of the bi-stable multivibrator shown in fig. 1-7 in condition 1 (tube I conducting, tube $I I$ cut off). It should be recognized that the left-hand and right-hand halves of this equivalent circuit do not correspond to those of the circuit shown in fig. 1-7.
the more so as the influence of these capacitances is not always the same at all phases of the trigger process. When one or both tubes are conducting, a kind of Miller effect will be experienced. This may be considered as introducing additional input capacitance at the grid of the tubes by an amount $(1+G) C_{a g}$, where G is an "amplification factor" determined by the ratio of the slope of the anode voltage signal to that of the grid voltage signal ${ }^{4}$).

For a non-conducting tube, the effect of $C_{a \sigma}$ will nearly be equivalent to the presence of a capacitive voltage divider between anode and grid, and will influence signals with a steep slope. For tube I this can be taken into account by the factor:

$$
\begin{equation*}
b_{1}=\frac{C_{a 01}}{C_{a 01}+C_{c}+C_{g i}+\frac{C C_{a \mathrm{ar}}}{C+C_{a 11}}}, \tag{1.7}
\end{equation*}
$$

and for tube $I I$ by the factor:

$$
\begin{equation*}
b_{\mathrm{nt}}=\frac{C_{a \mathrm{a}^{\mathrm{II}}}}{C_{a \mathrm{ant}}+C_{0}+C_{a \mathrm{ar}}+\frac{C C_{a \mathrm{t}}}{C+C_{a t}}} \tag{2.7}
\end{equation*}
$$

These factors represent the fraction of the anode voltage variation that is transmitted to the grid of the same tube due to the anode-togrid capacitance of this tube.
For the time being, the influence of the anode-to-grid capacitances

[^2]will be disregarded. In some cases of special interest, which are dealt with in a subsequent section, a correction will be introduced to take this influence into account.

7.2.2. STATIC CONDITION

To determine the static condition, in which all transients due to previous triggering of the multivibrator may be considered to have died out, the capacitances may be omitted from the circuit. Its two halves can then be represented by the diagrams shown in fig. 4.7, fig. 4.7a

Fig. 4-7.
The two halves of the equivalent circuit shown in fig. $3-7$ in the static condition; fig. 4-7a corresponds to the left-hand part and fig. 4-7b to the right-hand part of this equivalent circuit.
corresponding to the left-hand part and fig. $4.7 b$ to the right-hand part of fig. 3.7.

In both circuits a constant current

$$
\begin{equation*}
I=\frac{V^{\prime}+V^{\prime \prime}}{R_{g}+R+R_{a}} \tag{3.7}
\end{equation*}
$$

will always be present as a result of the two H.T. supply sources $+V^{\prime}$ and - $V^{\prime \prime}$.

If no grid current I_{00} flows in the circuit of fig. 4.7b, the voltage drop produced across the resistance R_{g} by the current I is:

$$
V_{R o I}=R_{g} \cdot I=\frac{R_{o}}{R_{g}+R+R_{a}} \cdot\left(V^{\prime}+V^{\prime \prime}\right),
$$

or, from eq. (17.5):

$$
\begin{equation*}
V_{R o t}=\varepsilon_{g}\left(V^{\prime}+V^{\prime \prime}\right) . \tag{4.7}
\end{equation*}
$$

Together with the voltage source $-V^{\prime \prime}$, this gives a total grid voltage:

$$
\begin{equation*}
V_{g \mathrm{t}}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} \tag{5.7}
\end{equation*}
$$

If this value is sufficiently negative, the grid current will be zero.

In practice, the conducting tube is, however, usually driven beyond the point at which grid current starts to flow. Expression (5.7) will therefore be assumed to be positive. It depends on the type of tube, and more particularly on its grid current versus grid voltage characteristic, i.e. on the value of r_{g}, what value the potential between grid and cathode will assume (compare section 6.1). It will usually be of the order of a few volts or even less. No great error will therefore be introduced by assuming the grid-to-cathode voltage to be zero. In so doing, it becomes possible to determine the grid current I_{00} which flows through the resistance R_{g} shunted across the resistances R and R_{g} connected in series. The voltage drop produced by this current is:

$$
-I_{o 0} \cdot \frac{R_{g}\left(R+R_{a}\right)}{R_{g}+R+R_{a}}=-I_{o 0}\left(1-\varepsilon_{g}\right) R_{q} .
$$

The positive voltage V_{01} given by eq. (5.7) must be compensated by this voltage drop; hence:

$$
I_{o 0}\left(1-\varepsilon_{g}\right) R_{g}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{\dot{g}}\right) V^{\prime \prime},
$$

or:

$$
\begin{equation*}
I_{o 0}=\frac{\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{o}\right) V^{\prime \prime}}{\left(1-\varepsilon_{g}\right) R_{g}} . \tag{6.7}
\end{equation*}
$$

In this case, the static grid voltage of tube I is:

$$
\begin{equation*}
V_{g 10}=0, \tag{7.7}
\end{equation*}
$$

whilst the anode voltage of tube $I I$ is:

$$
\begin{equation*}
V_{a n 0}=\frac{R}{R+R_{a}} \cdot V^{\prime} . \tag{8.7}
\end{equation*}
$$

In the circuit shown in fig. 4.7a, the same current I (eq. (3.7)) is always present, whilst the internal resistance r_{a} is, moreover, traversed by the anode current $I_{a 0}$. In addition to the voltage drop caused by the current I given by eq. (3.7), a voltage drop $-\varepsilon_{g} R_{a} I_{a 0}$ will be produced by $I_{a 0}$ across R_{q}, so that the total grid voltage will be:

$$
\begin{equation*}
V_{g 110}=\varepsilon_{a} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}-\varepsilon_{g} R_{g} I_{o 0} \tag{9.7}
\end{equation*}
$$

Because of the currents I and $I_{n 0}$, the total anode voltage of tube I is:

$$
\begin{equation*}
V_{a i 0}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}-\varepsilon_{a}\left(R_{g}+R\right) I_{a 0}, \tag{10.7}
\end{equation*}
$$

ε_{a} being given by eq. (17.5).
I_{40} can be evaluated from the tube characteristics by determining
the point of intersection of the $I_{a}=f\left(V_{a}\right)$ characteristic at $V_{a}=0$ and the load line for the specified values of R_{a} and $V^{\prime} . I_{a 0}$ can also be expressed in terms of r_{a}, since, according to fig. 4.7a, $V_{a 10}=r_{a} . I_{a 0}$. From eq. (10.7):

$$
\begin{equation*}
I_{a 0}=\frac{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}}{\varepsilon_{a}\left(R_{o}+R\right)+r_{a}} \tag{11.7}
\end{equation*}
$$

The anode and grid voltages of both tubes in the static condition have now been derived and are given by eqs (7.7), (8.7), (9.7) and (10.7). They are the initial conditions for the transient phenomena which occur after an input trigger pulse has been applied to both grids. These transients must be superimposed on the static voltages. There is no need to consider the H.T. voltages when calculating the transients, the influence of these voltages being included in the static conditions. The H.T. voltages are therefore omitted in the circuits which are used for determining the dynamic conditions of the bi-stable multivibrator.

7.2.3. DYNAMIC CONDITION

From the instant $t=0$ onwards, V_{i} is no longer zero, but varies according to the function represented in fig. 2.7, which may be formulated as follows:

$$
\left.\begin{array}{l}
V_{i}=0 \text { for } t<0 \tag{12.7}\\
V_{i}=-\alpha t \text { for } 0 \leqq t \leqq t_{0} \\
V_{i}=-V_{0} \text { for } t>t_{0}
\end{array}\right\}
$$

where $\alpha=V_{0} / t_{0}$.
For the time being, the influence of the positive-going rear flank of V_{i} will not be considered. The amplitude V_{0} of the pulse is assumed to be large enough to ensure that the voltage V_{i} traverses the entire grid base of the conducting tube I within a fraction of the time of rise t_{0}. This will usually be the case in practice, because the cut-off voltage of the conducting tube will be fairly small as a result of its low anode voltage. The anode current $I_{a 0}$ will therefore be assumed to drop to zero at the instant $t=0$; in other words: the internal resistance r_{a} is assumed to become suddenly infinitely large at this instant.

According to the principles treated in Section 2, this discontinuity in the circuit can be accounted for by introducing a current source $I_{a 0}$ between the anode a_{1} and cathode (earth), its polarity being such that the current $I_{a 0}$ previously flowing beween a_{t} and cathode through
the internal resistance r_{a} is compensated. Hence, the left-hand part of the circuit shown in fig. 3.7 will be as depicted in fig. 5.7.

It will be clear that the same reasoning is applicable to the grid current I_{00} which flows in the right-hand part of the circuit shown in fig. 3.7,

Fig. 5-7.
Left-hand part of the equivalent circuit shown in fig. 3-7 in the first phase of the dynamic condition. The current source $I_{a 0}$ introduced between the anode a_{1} and earth compensates the current $I_{a 0}$ previously flowing through the internal resistance r_{a}.

Fig. 6-7.
Right-hand part of the equivalent circuit shown in fig. 3-7 in the first phase of the dynamic condition. The current source $I_{g 0}$ introduced between the grid g_{1} and earth compensates the current I_{00} previously flowing through the internal grid resistance $\boldsymbol{r}_{\boldsymbol{g}}$.
the approximation being even better because a much smaller decrease of the grid potential is sufficient to completely suppress the grid current (see Section 6.1.2). In the right-hand part of this circuit, a current step function $I_{g 0}$ should therefore be introduced as depicted in fig. 6.7.

The circuits of figs 5.7 and 6.7 can be further simplified by transforming the voltage source V_{i} with the capacitance C_{c} connected in series into a current source I_{i} with the capacitance C_{c} connected in parallel according to Thévenin's theorem, so that:

$$
\begin{equation*}
I_{i}=C_{c} \cdot \frac{d V_{i}}{d t} . \tag{13.7}
\end{equation*}
$$

In that case:

$$
\left.\begin{array}{l}
I_{i}=0 \text { for } t<0 \tag{14.7}\\
I_{i}=-\alpha C_{c} \text { for } 0 \leqq t \leqq t_{0} \\
I_{i}=0 \text { for } t>t_{0}
\end{array}\right\}
$$

I_{i} is a rectangular, negative-going pulse with a duration of t_{0} seconds and an amplitude αC_{c}, or the superposition of a negative-going current step $-\alpha C_{c}$ at the instant $t=0$, which will be denoted by $-\alpha C_{c} U(t)$, and a positive-going current step $+\alpha C_{c}$ at the instant $t=t_{0}$, which will be denoted by $+\alpha C_{c} U\left(t-t_{0}\right)$.

The coupling capacitance C_{c} is now connected in parallel with the input capacitances C_{01} and $C_{o 11}$. The sums $C_{c}+C_{01}$ and $C_{c}+C_{011}$ will be denoted by $C_{i 1}$ and $C_{i n}$ respectively. Both circuits of figs 5.7 and 6.7 have now been reduced to the simplified circuit shown in fig. 7.7, which is identical to that shown in fig. 3.5.

In the right-hand part of the multivibrator shown in fig. 3.7 (represented by the equivalent circuit shown in fig. 5.7), current steps $+I_{00} U(t),-\alpha C_{c} U(t)$ and $-\alpha C_{\mathrm{e}} U\left(t-t_{0}\right)$ must be introduced

Fig. 7-7.
Simplification of the circuits shown in figs. $5-7$ and 6-7 according to Thévenin's theorem. at terminals P and Q. The response of a network to these current steps has been calculated in Section 5 and is given by eq. (21b.5), i.e. the voltage across $P-Q$ or the grid voltage V_{01} of tube I.

In order to calculate the anode voltage $V_{\text {air }}$ of tube $I I$, the operational transimpedance from $P-Q$ to $R-S$ must be determined by an operational function similar to that given by eq. (18.5).
In the left-hand part of the multivibrator (see fig. 5.7), current steps $-\alpha C_{c} U(t)$ and $+\alpha C_{c} U\left(t-t_{0}\right)$ must be introduced at terminals P and Q, and a current step $I_{a 0} U(t)$ at terminals R and S.

In order to calculate the grid voltage $V_{\text {OII }}$ of tube $I I$ and the anode voltage $V_{a 1}$ of tube I, the operational impedances between $P-Q$ and $R-S$ and the operational transimpedance from $R-S$ to $P-Q$ must be determined. These various kinds of impedances all have a form similar to that of eq. (18.5), their denominators being the same, the only difference being the constants $R_{e q}$ and A in the numerator.

7.2.3.1. First phase of the dynamic condition

The slope and the amplitude of the trigger pulse V_{i} are assumed to be so high that immediately after this pulse has been applied to the grids of the multivibrator tubes, both tubes are non-conducting, which will as a rule be the case in practice. Both grid voltages then tend to a final value, which is determined only by the H.T. supply voltages, i.e. by the current I supplied by these voltage sources; see eq. (3.7) ${ }^{5}$).

[^3]According to eq. (5.7), this final value, which was assumed to be positive, is $\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}$.

Sooner or later the grid voltage of one of the tubes will rise beyond the cut-off value, so that anode current will start to flow in this tube. The successful operation of the M.V. depends on which of the two tubes starts conducting. If it is the grid voltage of tube I that first reaches the cut-off value, the switching action of the multivibrator will be wrong, for in that case the initial static condition with tube I conducting and tube II non-conducting will ultimately be re-established, which is not the purpose in view. Conditions must therefore be chosen so that the cut-off value of tube $I I$ is always reached before that of tube I.

The first phase of the dynamic condition of the multivibrator will in any case be defined as that which covers the time interval between the instant $t=0$, when the trigger pulse starts, and the instant at which the grid voltage of one of the tubes reaches the cut-off value.

The derivation of the time functions which represent the anode and grid voltages during this phase will not be given in full detail, since it is intended to give only a general idea of the lines along which the problem can be solved. The final results are dealt with at the end of this Section. For the time being, the anode and grid voltages will be represented by the following general formulae:

$$
\begin{align*}
& V_{o \mathrm{I}}=V_{g 1}(t) \tag{15.7}\\
& V_{a \mathrm{I}}=V_{a 1}(t) \\
& V_{g 11}=V_{g 11}(t) \\
& V_{a 11}=V_{a \mathrm{II}}(t)
\end{align*} \quad ;
$$

It will now be indicated how to ascertain which tube starts to draw current first. In a conducting triode, the relation between the anode current I_{a} and the anode voltage V_{a} and the grid voltage V_{g} is given by:

$$
\begin{equation*}
I_{a}=\frac{V_{a}+\mu V_{a}}{r_{a}}, . \tag{16.7}
\end{equation*}
$$

where r_{a} is the internal resistance and μ is the amplification factor of the tube. The cut-off value $E_{c \prime}$ of the grid voltage is now defined by the condition $I_{a}=0$ for $V_{g}=E_{c o}$; hence:

$$
0=V_{g}+\mu E_{c o}
$$

or:

$$
\begin{equation*}
E_{c o}=-\frac{V_{a}}{\mu} . \tag{17.7}
\end{equation*}
$$

By means of this relation, the instants t_{1} and t_{t} at which tubes I and $I I$
respectively reach their cut-off point can be deteı sined. For this purpose, eqs (17.7) and (15.7) are combined in the following relations:

$$
\begin{align*}
\text { for tube } I: V_{g 1}\left(t_{1}\right) & =-\frac{1}{\mu} \cdot V_{a 1}\left(t_{1}\right), \tag{18.7}\\
\text { and for tube } I I: \quad V_{g 11}\left(t_{11}\right) & =-\frac{1}{\mu} \cdot V_{a 11}\left(t_{11}\right) \tag{19.7}
\end{align*}
$$

These conditions depend on various quantities, namely network elements (resistances and capacitances), supply voltages (V^{\prime} and $V^{\prime \prime}$), the time of rise of the trigger pulse $\left(t_{0}\right)$, the amplitude of this pulse (V_{0}) and the tube characteristics $I_{a 0}$ (which depends on the internal resistance γ_{a}) and μ. It is rather cumbersome to investigate the influence of these parameters on the values of t_{1} and t_{11}. The correct situation is that at which $t_{\mathrm{n}}<t_{\mathrm{t}}$, as the cut-off point of tube $I I$ will then be reached first. A change in one of the above-mentioned quantities may result in t_{t} and t_{tI} assuming different values. If the changes are such that t_{n} decreases and t_{1} increases, it will be all the better, but in the reverse case there is a risk of t_{n} becoming larger than t_{t}. This will result in the multivibrator no longer operating correctly.

The expressions for the anode and grid voltages of both tubes are therefore given below. They will be of particular importance in enabling the practical conclusions to be drawn in a later section regarding the way in which tube characteristics influence the trigger sensitivity of the bi-stable multivibrator.

The time functions which represent the voltages at the anodes and grids of the tubes are defined as follows. For $0 \leqq t \leqq t_{0}$, the complete expressions can be calculated, but the time interval t_{0} is so small that the exponential functions which constitute these expressions can be represented with great accuracy by linear functions. The expressions for $t>t_{0}$ are also valid for $t=t_{0}$, so that the voltages for $t=t_{0}$ can be determined from these functions. For $0 \leqq t \leqq t_{0}$, the voltages vary linearly with time between the initial static conditions and the calculated values for $t=t_{0}$. The complete expressions will therefore be given only for $t \geqq t_{0}$.

For tube I (initially conducting):

$$
\begin{align*}
& V_{o 1}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}+ \\
& +\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{0}}-1\right)+\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}\right\} K e^{p_{i} t}- \\
& -\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{t_{0}}}-1\right)+\varepsilon_{a} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}\right\}(1+K) e^{p p^{t}}, \tag{20.7}
\end{align*}
$$

and

$$
\begin{align*}
& V_{a t}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}+ \\
& +\left\{\varepsilon_{a} R_{0} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{o}}-1\right) P+\left(1-\varepsilon_{a}\right) R_{a} I_{a 0} L\right\} e^{p_{1} t}- \\
& -\left\{\varepsilon_{a} R_{0} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{s} t_{o}}-1\right)(1+P)+\left(1-\varepsilon_{a}\right) R_{a} I_{a 0}(1+L)\right\} e^{p_{p} t} \tag{21.7}
\end{align*}
$$

For tube $I I$ (initially non-conducting):
$V_{\mathrm{gI}}=\varepsilon_{q} V^{\prime}-\left(1-\varepsilon_{q}\right) V^{\prime \prime}+$
$+\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{0}}-1\right) K+\varepsilon_{g} R_{a} I_{a 0} P\right\} e^{p_{1} t}-$
$-\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{z_{0}}}-1\right)(1+K)+\varepsilon_{g} R_{a} I_{a 0}(1+P)\right\} e^{p_{g}}$
and
$V_{a I I}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}+$
$+\varepsilon_{a}\left\{R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{o}}-1\right)+\frac{\varepsilon_{g}}{1--\varepsilon_{g}} \cdot V^{\prime}-V^{n}\right\} P e^{p_{1} t}-$
$-\varepsilon_{a}\left\{R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{p} \xi_{0}}-1\right)+\frac{\varepsilon_{g}}{1-\varepsilon_{g}} . V^{\prime}-V^{\prime \prime}\right\}(1+P) e^{p_{p}} .$.
For the values of ε_{g} and ε_{a} reference is made to eq. (17.5); for $V^{\prime}, V^{\prime \prime}$, R_{g}, C_{c} and R_{a}, see fig. 1.7, and for V_{0} and t_{0}, see fig. 2.7. The transients are determined by two time constants, namely $1 / p_{1}$ and $1 / p_{2}$ (see eqs (18b.5), (18c.5), (19a.5) and (19b.5)), whilst:

$$
\begin{align*}
& K=\frac{p_{2}\left(1+A p_{1}\right)}{p_{1}-p_{2}} \text { (see eqs. (22.5) and (18a.5)), } \tag{24.7}\\
& P=\frac{p_{2}\left(1+T p_{1}\right)}{p_{1}-p_{2}} \text { (for } T \text { see eq. (16.5)) . . } \tag{25.7}
\end{align*}
$$

and

$$
\begin{equation*}
L=\frac{p_{2}\left(1+D p_{1}\right)}{p_{1}-p_{2}} \tag{26.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
D=\frac{R}{R+R_{g}} \cdot T_{g}+\frac{R_{g}}{R+R_{h}} \cdot T \text { (for } T \text { and } T_{g} \text {, see eq. (16.5)) } \tag{27.7}
\end{equation*}
$$

7.2.3.2. Second and third phase of the dynamic condition

Disregarding the case in which the grid voltage of tube I reaches the cut-off value first, if will be assumed that conditions are chosen so that the required flip-flop operation is obtained. At a certain instant $t=t_{\mathrm{iI}}$, determined by eq. (19.7), tube $I I$ reaches a condition at which anode current starts to flow. This instant is the commencement of the second phase of the dynamic condition. For the new transients which now start, this instant $t=t_{\mathrm{n}}$ will be taken as the zero point of a new time scale.
$V_{\text {oir }}$ now traverses the grid base of tube $I I$ according to an exponential time function (see fig. 8.7). It is assumed that the part of this exponential function that is situated within the grid base is such a small fraction of the total curve that it may be considered as a linear function of time, i.e.:

Fig. 8-7.
Grid-voltage variation $V_{\boldsymbol{g} \text { II }}$ and corresponding anode current variation $I_{a 0}$ as functions of time during the second phase of the dynamic conditions at which tube $I I$ becomes conducting. $E_{c o}$ represents the cut-off voltage of tube II.

$$
\begin{equation*}
V_{g \mathrm{II}}=a t+E_{c o} . \tag{28.7}
\end{equation*}
$$

For $t=t_{1}$, the grid voltage becomes zero; hence:

$$
\begin{equation*}
a t_{1}=-E_{c o,} \tag{29.7}
\end{equation*}
$$

or, from eq. (17.7):

$$
\begin{equation*}
a t_{1}=\frac{V_{a 0}}{\mu} \tag{30.7}
\end{equation*}
$$

where $E_{c o}$ denotes the cut-off voltage corresponding to the anode voltage $V_{a 0}$ of tube $I I$ which is present at the instant $t=0$ (i.e. t_{n} in the time scale of the first dynamic phase).

For values of $V_{g \text { II }}$, situated within the grid base, the anode current of tube $I I$ is defined by:

$$
\begin{equation*}
I_{a}=\frac{V_{a \mathrm{II}}+\mu V_{\mathrm{gII}}}{r_{a}} \tag{31.7}
\end{equation*}
$$

$V_{\text {aII }}$ should now be defined as a function of time. It is therefore necessary to derive another relation between I_{a} and $V_{a I I}$. Now the voltage drop across the anode impedance $Z_{a i}$, i.e. the impedance between terminals R and S in fig. 7.7, is given bv:

$$
\begin{equation*}
V^{\prime}-V_{a 11}=Z_{a i} I_{a} \tag{32.7}
\end{equation*}
$$

when the constant current I (eq. (3.7)) through the voltage divider R_{a}, R, R_{g} is neglected. This current, however, results in the anode voltage at $I_{a}=0$ differing from the H.T. supply voltage V^{\prime}, its value being an amount $\left(V^{\prime}+V^{\prime \prime}\right) R_{a} /\left(R_{g}+R+R_{a}\right)$ lower than V^{\prime}. Eq. (32.7) should therefore be replaced by:

$$
V^{\prime}-\frac{R_{a}}{R_{g}+R+R_{a}} \cdot\left(V^{\prime}+V^{\prime \prime}\right)-V_{a I I}=Z_{a i} I_{a},
$$

or:

$$
\begin{equation*}
\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}-V_{a 1 \mathrm{I}}=Z_{a i} I_{a} . \tag{33.7}
\end{equation*}
$$

This includes the assumption that the transierits occurring in the anode voltage of tube $I I$ due to the first phase of the dynamic condition, i.e. the exponential terms of eq. (23.7), have practically disappeared for $t=t_{\mathrm{II}}$. Eq. (33.7) can be written:

$$
\begin{equation*}
V_{a 0}-V_{a I I}=Z_{a i} I_{a}, \tag{34.7}
\end{equation*}
$$

where:

$$
V_{a 0}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}
$$

From eqs. (34.7) and (31.7):

$$
\begin{equation*}
V_{a 0}-V_{a \mathrm{II}}=\frac{V_{a 0}+\mu V_{o \mathrm{II}}}{1+\frac{r_{a}}{Z_{a i}}} \tag{35.7}
\end{equation*}
$$

Substitution of $V_{\text {gII }}$ by the value given by eq. (28.7) gives:

$$
V_{a 0}-V_{a \mathrm{II}}=\frac{V_{a 0}+\mu E_{c o}+\mu a t}{1+\frac{r_{a}}{Z_{a i}}},
$$

or, since, according to eqs (29.7) and (30.7), $V_{a 0}+\mu E_{c o}=0$:

$$
\begin{equation*}
V_{a 0}-V_{a \mathrm{II}}=\frac{\mu a t}{1+\frac{r_{a}}{Z_{a i}}} . \tag{36.7}
\end{equation*}
$$

$Z_{a i}$ is an operational impedance of the form:

$$
\begin{equation*}
Z_{a i}=R_{a i} \cdot \frac{1+D p}{1+B p+E p^{2}}, \tag{37.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
R_{a i}=\frac{R_{a}\left(R+R_{g}\right)}{R_{g}+R+R_{a}}, \tag{38.7}
\end{equation*}
$$

and D, B and E are given by eqs (27.7), (18b.5) and (18c.5) respectively.
Combination of eqs (36.7) and (37.7) gives:

$$
\begin{equation*}
V_{a 0}-V_{a \mathrm{II}}=\frac{R_{a i}}{R_{a i}+r_{a}} \cdot \frac{1+D p}{1+F p+G p^{2}}[\mu a t], \tag{39.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
F=\frac{R_{a i}}{R_{a i}+r_{a}} \cdot D+\frac{r_{a}}{R_{a i}+r_{a}} \cdot B, . \tag{39a.7}
\end{equation*}
$$

and:

$$
\begin{equation*}
G=\frac{r_{a}}{R_{a i}+r_{a}} \cdot E . \tag{39b.7}
\end{equation*}
$$

Eq. (39.7) can be calculated by the operational methods indicated in Section 5, the final result being:

$$
\begin{align*}
& V_{a I I}=V_{a 0}-\frac{R_{a i}}{R_{a i}+r_{a}} \cdot V_{a 0} . \\
& \cdot\left\{-\frac{Q}{p_{s} t_{1}} \cdot\left(1-e^{p, t_{2}}\right)+\frac{1+Q}{p_{4} t_{1}} \cdot\left(1-e^{p, t}\right)+\frac{t}{t_{1}}\right\} \tag{40.7}
\end{align*}
$$

Here eq. (30.7) has been introduced; r_{a} is the internal anode resistance of the tube determined by the slope of the $I_{a}=f\left(V_{a}\right)$ characteristics, whilst:

$$
\begin{gather*}
Q=\frac{p_{4}\left(1+D p_{3}\right)}{p_{3}-p_{4}}, \tag{40a.7}\\
p_{3}=-\frac{F}{2 G} \cdot\left(1-\sqrt{1-\frac{4 G}{F^{2}}}\right) \tag{40b.7}
\end{gather*}
$$

and:

$$
\begin{equation*}
p_{4}=-\frac{F}{2 G} \cdot\left(1+\sqrt{1-\frac{4 G}{F^{2}}}\right) . \tag{40c.7}
\end{equation*}
$$

The value of t_{1} can be determined from eq. (22.7) by the condition that $V_{o 11}=0$ for $t=t_{\mathrm{II}}+t_{1}=t_{s}$.

Eq. (40.7) is valid for $0<t<t_{1}$. At the instant $t=t_{1}$ in the time scale of eq. (40.7), $V_{\text {gII }}$ becomes zero, and it is assumed that at this instant (commencement of the third phase) grid current starts to flow in tube $I I$ to such an extent that $V_{g \text { II }}$ is kept rigorously constant at the value zero. This implies another transient phenomenon, namely sudden short-circuiting of the grid and cathode of the tube. It can be accounted for by adding a new component:

$$
\begin{equation*}
V_{o 11}=-\mu a\left(t-t_{1}\right) \tag{41.7}
\end{equation*}
$$

to the grid voltage. This gives rise to another term in the anode voltage of a form similar to eq. (40.7), but shifted in time by t_{1} seconds. The superposition of these two components gives the following final expression for $V_{\text {al1 }}$ at $t \geqq t_{1}$:
$V_{a 11}=\frac{r_{a}}{R_{a i}+r_{a}} \cdot V_{a 0}-\frac{R_{a i}}{R_{a i}+r_{a}}$.
. $V_{a 0}\left\{\frac{Q}{p_{3} t_{1}} \cdot\left(1-e^{-p_{r_{1}}}\right) e^{p_{p_{2}}}-\frac{1+Q}{p_{4} t_{1}} \cdot\left(1-e^{-p_{t_{1}}}\right) e^{p_{4} t}\right\}$
The transient voltages at the grid and anode of tube $1 I$ have now been derived for the complete triggering action. The grid voltage V_{911} is given by eq. (22.7), valid for $t_{0} \leqq t \leqq t_{s}$, whilst $V_{g \text { II }}=0$ for $t>t_{s}$. The anode voltage $V_{a \mathrm{II}}$ is given by eq. (23.7) for $t_{0} \leqq t \leqq t_{\mathrm{II}}$, by eq. (32.7) for $t_{\mathrm{II}} \leqq t \leqq t_{s}$, and by eq. (42.7) for $t>t_{s}$.

Tube I was assumed to be non-conducting during the first and second phases of the triggering action and will therefore produce no new transients as a result of anode or grid current surges.
During the second phase, the grid voltage of tube I can be calculated directly from the anode voltage of tube $I I$, whilst the anode voltage of tube I depends entirely on the grid voltage of tube $I I$.

Fig. 7.7 reveals that V_{91} is determined by a voltage divider circuit between a_{11} and ${ }_{g \mathrm{I}}$. The operational impedance of C_{i} and R_{g} connected in parallel is:

$$
\begin{equation*}
Z_{g}=\frac{R_{o}}{1+R_{g} C_{i} p}=\frac{R_{o}}{1+T_{\imath} p} \tag{43.7}
\end{equation*}
$$

Similarly, the operational impedance of C and R connected in parallel is:

$$
\begin{equation*}
Z=\frac{R}{1+R C p}=\frac{R}{1+T p} . \tag{44.7}
\end{equation*}
$$

It will be clear that:

$$
\begin{equation*}
V_{g 1}=\frac{Z_{g}}{Z_{g}+Z}\left[V_{a \mathrm{ar}}\right] . \tag{45.7}
\end{equation*}
$$

Hence, from eqs (43.7) and (44.7):

$$
\begin{equation*}
V_{91}=\beta_{\imath} V_{a 11}+\beta_{\theta} \beta \cdot \frac{T-T_{\theta}}{D} \cdot \frac{p}{\frac{1}{D}+p}\left[V_{a 11}\right], \tag{46.7}
\end{equation*}
$$

where:

$$
\begin{align*}
\beta & =\frac{R}{R_{o}+R^{\prime}} \tag{46a.7}\\
\beta_{\imath} & =\frac{R_{o}}{R_{g}+R^{\prime}} \tag{46b.7}
\end{align*}
$$

and:

$$
\begin{equation*}
D=\beta T_{\imath}+\beta_{g} T \text { (see eq. (27.7)) } \tag{46c.7}
\end{equation*}
$$

Eq. (46.7) demonstrates the well-known fact that voltage division by means of two $R C$ parallel circuits connected in series gives an undistorted copy of the input voltage, decreased according to the resistance ratios, provided the time constants of the two $R C$-combinations are equal. In that case $T-T_{g}=0$ (compare Section 6.1).

When $T>T_{g}$, the voltage at g_{r} will initially exceed its final value (overshoot), whereas, when $T<T_{q}$, this voltage will gradually increase until the final value is reached without ever being exceeded.

It should be noted that in eq. (46.7) the value of $V_{\text {al1 }}$ which should be substituted must not contain the constant term $V_{a 0}$, the latter being incorporated in the static conditions of V_{01}. From eq. (46.7) it can be calculated that, for $0 \leqq t \leqq t_{1}$ (second phase of the dynamic condition):

$$
\begin{align*}
& V_{o 1}=\beta_{g} \cdot \frac{R_{a i}}{R_{a i}+r_{a}} \cdot V_{a 0} \cdot\left[Q\left\{\frac{1}{p_{3} t_{1}}+\frac{\beta\left(T-T_{o}\right)}{t_{1}\left(1+D p_{3}\right)}\right\}\left(1-e^{p_{3} t}\right)-\right. \\
& -(1+Q)\left\{\frac{1}{p_{4} t_{1}}+\frac{\beta\left(T-T_{g}\right)}{t_{1}\left(1+D p_{4}\right)}\right\}\left(1-e^{p_{a} t}\right)- \\
& \left.-\beta \cdot \frac{T-T_{g}}{t_{1}} \cdot\left\{\frac{Q}{1+D p_{3}}-\frac{1+Q}{1+D p_{4}}+1\right\}\left(1-e^{-t / D}\right)-\frac{t}{t_{1}}\right], . \tag{47.7}
\end{align*}
$$

whilst for $t \geqq t_{1}$ (third phase of the dynamic condition):

$$
\begin{align*}
& V_{o 1}=-\beta_{g} \cdot \frac{R_{a i}}{R_{a i}+r_{a}} \cdot V_{a 0} \cdot\left[Q \{ \frac { 1 } { p _ { 3 } t _ { 1 } } + \frac { \beta (T - T _ { o }) } { t _ { 1 } (1 + D p _ { 3 }) } \} \left(1-e^{\left.-p_{p^{\prime}}\right)} e^{p_{3} t}-\right.\right. \\
& -(1+Q)\left\{\frac{1}{p_{4} t_{1}}+\frac{\beta\left(T-T_{o}\right)}{t_{1}\left(1+\bar{D} p_{4}\right.}\right)\left(1-e^{-p_{0} t_{1}}\right) e^{p_{a, t}-} \\
& \left.-\beta \cdot \frac{T-T_{g}}{t_{1}} \cdot\left\{\frac{Q}{1+D p_{3}}-\frac{1+Q}{1+D p_{4}}+1\right\}\left(1-e^{t_{1} / D}\right) e^{-t / D}+1\right] . \tag{48.7}
\end{align*}
$$

To obtain the complete value of $V_{g 1}$ in the second and the third phase, these expressions must be added to eq. (20.7). In doing so, it should be remembered that the zero point of the time scale of eqs (47.7) and (48.7) corresponds to $t=t_{11}$ in the time scale of eq. (20.7).

The last voltage occurring in the second and third phases that should be determined is $V_{a 1}$. It has already been shown that $V_{a 1}$ depends only on $V_{\text {gi1 }}$, which is entirely determined by eq. (22.7) until the instant $t=t_{s}$, when it drops to zero. For $t>t_{s}, V_{g I I}$ remains zero. This discontinuity can be accounted for by assuming a voltage of opposite sign but equal to $V_{\text {oII }}$ being present between g_{11} and cathode from the instant $t=t_{s}$ onwards. Part of this voltage will be passed on to a_{1} via the voltage divider formed by $R-C, R_{a}-C_{a}$ (see fig. 7.7), which gives:

$$
\begin{equation*}
V_{a \mathrm{I}}=\frac{Z_{a}}{Z_{a}+Z} \cdot\left[V_{g 11}\right], \tag{49.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
Z_{a}=\frac{R_{a}}{1+T_{a} p} \tag{49a.7}
\end{equation*}
$$

and (see eq. (44.7)):

$$
\begin{equation*}
Z=\frac{R}{1+T p} . \tag{496.7}
\end{equation*}
$$

From eqs. (49.7), (49a.7) and (49b.7):

$$
\begin{equation*}
V_{a \mathrm{I}}=\gamma_{a} V_{a \mathrm{II}}+\gamma_{a} \gamma \cdot \frac{T-T_{a}}{a} \cdot \frac{p}{\frac{1}{A}+p}\left[V_{o \mathrm{II}}\right] \tag{50.7}
\end{equation*}
$$

where:
and:

$$
\left.\begin{array}{rl}
\gamma_{a} & =\frac{R_{a}}{R+R_{a}} \tag{50a.7}\\
\gamma & =\frac{R}{R+R_{a}}
\end{array}\right\}
$$

whilst $T=R C, T_{a}=R_{a} C_{a}$, and, according to eq. (18a.5):

$$
A=\gamma T_{a}+\gamma_{a} T
$$

By writing eq. (22.7):

$$
\begin{equation*}
V_{o \mathrm{II}}=V+V_{1} e^{p_{1} t}+V_{2} e^{p_{2} t} \tag{51.7}
\end{equation*}
$$

where V, V_{1} and V_{2} are constants, it follows from eq. (50.7) that:

$$
\begin{align*}
& V_{a 1}=-\gamma_{a} V-\gamma_{a} V_{1} e^{p_{1} t_{a}}\left\{1+\gamma\left(T-T_{a}\right) \cdot \frac{p_{1}}{1+p_{1} A}\right\} e^{p_{1} t}- \\
& -\gamma_{a} V_{2} e^{p_{p_{1}}}\left\{1+\gamma\left(T-T_{a}\right) \cdot \frac{p_{2}}{1+p_{2} A}\right\} e^{p_{2} t}+ \\
& +\gamma_{a} \gamma\left(T-T_{a}\right)\left\{\frac{p_{1}}{1+p_{3} A} \cdot V_{1} e^{p_{p_{t}}}+\frac{p_{2}}{1+p_{2} A} \cdot V_{2} e^{p_{p_{0}}}\right\} \cdot e^{-t / A} \cdot \tag{52.7}
\end{align*}
$$

The zero point of the time scale of eq. (52.7) corresponds to $t=t_{k}$ in the time scale of eq. (21.7). The total voltage $V_{a_{1}}$ is the sum of eqs (21.7) and (52.7).

Since the circuit has been assumed to be symmetrical, it will be clear that after a sufficiently long time, when the trigger transients have died out, the final values of the grid and anode voltages of tube I must be equal to the initial values of the corresponding voltages of tube II and vice versa. Denoting the final values by the index ∞, it should follow from the expressions derived above that:

$$
\begin{array}{ll}
V_{o 1 x}=V_{g 110}, & V_{a 1 x}=V_{a 110} \\
V_{g 11 x}=V_{o 10} & \text { and }
\end{array} \quad V_{a 11 x}=V_{a 10} .
$$

It will be shown below that this is indeed the case.
According to eqs (20.7) and (48.7), for $t=\infty$:

$$
\begin{equation*}
V_{a t_{\infty}}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{o}\right) V^{\prime \prime}-\beta_{g} \cdot \frac{R_{a i}}{R_{a i}+r_{a}} \cdot V_{a 0} \tag{53.7}
\end{equation*}
$$

Now $V_{a 0}$ is the constant term from eq. (23.7), viz.

$$
V_{a 0}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}
$$

whilst, according to eq. (38.7), $R_{a i}=\varepsilon_{a}\left(R+R_{o}\right)$, which gives:

$$
\begin{align*}
& V_{a I_{\infty}}=\varepsilon_{\theta} V^{\prime}-\left(1-\varepsilon_{\theta}\right) V^{\prime \prime}-\frac{\beta_{\theta} \varepsilon_{a}\left(R+R_{a}\right)}{\varepsilon_{a}\left(R+R_{g}\right)+r_{a}} \cdot V_{a 0}= \\
& =\varepsilon_{a} V^{\prime}-\left(1-\varepsilon_{\theta}\right) V^{\prime \prime}- \\
& -\frac{\varepsilon_{\theta} R_{a}}{\varepsilon_{a}\left(R+R_{o}\right)+r_{a}} \cdot\left\{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}\right\} \ldots . \tag{54.7}
\end{align*}
$$

From eqs (54.7) and (11.7):

$$
\begin{equation*}
V_{a I_{\infty}}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{a}\right) V^{\prime \prime}-\varepsilon_{a} R_{a} I_{a 0} \tag{55.7}
\end{equation*}
$$

which is identical to the value of $V_{\text {o110 }}$ given by eq. (9.7).
From eqs (21.7) and (52.7) it can be seen that:

$$
\begin{align*}
& V_{a 1_{\infty}}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}-\gamma_{a} V= \\
& =\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}-\frac{R_{a}}{R+R_{a}}\left\{\varepsilon_{a} V^{\prime}-\left(1-\varepsilon_{a}\right) V^{\prime \prime}\right\}= \\
& =\frac{R_{a}+R}{R_{g}+R+R_{a}} \cdot V^{\prime}-\frac{R_{a}}{R_{a}+R+R_{a}} \cdot V^{\prime \prime}-\frac{R_{a} R_{a}}{\left(R+R_{a}\right)\left(R_{a}+R+R_{a}\right)} \cdot V^{\prime}+ \\
& +\frac{R_{a}}{R+R_{a}} \cdot \frac{R+R_{a}}{R_{g}+R+R_{a}} \cdot V^{\prime \prime}= \\
& =\frac{\left(R_{g}+R\right)\left(R+R_{a}\right)-R_{a} R_{a}}{\left(R+R_{a}\right)\left(R_{g}+R+R_{a}\right)} \cdot V^{\prime}=\frac{R}{R+R_{a}} \cdot V^{\prime}, \ldots . .(56.7) \tag{56.7}
\end{align*}
$$

which is identical to the value of $V_{\text {ani }}$ given by eq. (8.7).
$V_{\text {oit }}^{\infty}$ is obviously equal to $V_{\text {or0 }}$, both quantities being zero.
According to eq. (40.7):

$$
\begin{equation*}
V_{a 1_{\infty}}=\frac{r_{a}}{R_{a i}+r_{a}} \cdot V_{a 0}=\frac{r_{a}}{R_{a i}+r_{a}} \cdot\left\{\left(1-\varepsilon_{a}\right) \cdot V^{\prime}-\varepsilon_{a} V^{\prime \prime}\right\} \tag{57.7}
\end{equation*}
$$

According to eqs (10.7) and (11.7):

$$
\begin{align*}
V_{a 10} & =\left\{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}\right\}\left\{1-\frac{\varepsilon_{a}\left(R_{a}+R\right)}{\varepsilon_{a}\left(R_{g}+R\right)+r_{a}}\right\}= \\
& =\frac{r_{a}}{\varepsilon_{a}\left(R_{g}+R\right)+r_{a}} \cdot\left\{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}\right\}, \ldots \tag{58.7}
\end{align*}
$$

which is identical to the value of $V_{\text {aitm }}$ given by eq. (57.7).
It should be recognized that the derivation of the expressions which give the flip-flop operation in a mathematical form is not restricted to symmetrical circuits. In practice, one of the anode circuits is often loaded by a subsequent bi-stable multivibrator circuit, so that in any case the capacitive loads of both anode circuits are no longer equal. An example of this asymmetrical loading will be dealt with in a subsequent section.

7.2.4. VARIATIONS OF THE FUNDAMENTAL CIRCUIT

7.2.4.1. Bi-stable multivibrator with automatic grid bias

Instead of incorporating the separate negative grid bias supply $-V^{\prime \prime}$ in the multivibrator circuit as shown in fig. 1.7, automatic negative grid bias may be applied by inserting a by-passed cathode resistor in the circuit (see fig. 9.7).

If the time constant of the cathode circuit is sufficiently large, the voltage drop thus produced may be considered as a constant voltage source, at least during the triggering action. This voltage drop depends, however, on the value of the anode current in the static condition. This condition can be described by the following values of the grid and

Fig. 9-7.
Bi-stable multivibrator circuit in which automatic grid bias is obtained by means of the by-passed cathode resistor $\boldsymbol{R}_{\boldsymbol{k}}$. anode voltages with respect to earth:

$$
\left.\begin{array}{l}
V_{a 110}=\varepsilon_{o} V_{b}-\varepsilon_{o} R_{a} I_{a 0} \tag{59.7}\\
V_{a 10}=\left(1-\varepsilon_{a}\right)\left(V_{b}-I_{a 0} R_{a}\right) \\
V_{a 10}=\varepsilon_{a} V_{b}-I_{a 0}\left(1-\varepsilon_{a}\right) R_{a} \\
V_{a 110}=V_{b}-\frac{\varepsilon_{a}}{1-\varepsilon_{a}} \cdot\left(V_{b}-R_{k} I_{a 0}\right)
\end{array}\right\} .
$$

The grid current I_{00} can be determined by assuming $V_{g 10}$ to be equal to the static cathode voltage $V_{k}=R_{k}\left(I_{a 0}+I_{00}\right)$, which gives:

$$
\begin{equation*}
I_{a 0}=\frac{\varepsilon_{g} V_{b}-R_{k} I_{a 0}}{R_{k}+\left(1-\varepsilon_{o}\right) R_{g}} \tag{60.7}
\end{equation*}
$$

The triggering process can be calculated in a way analogous to that previously described by taking these static initial conditions as a starting point.

7.2.4.2. Trigger pulses applied to the anodes

It will be clear that the formulae applicable to the case of the trigger pulses being applied to the anodes can be derived by behaving the procedure outlined above. The input current pulse I_{i} is then fed to terminals R and S of the circuit shown in fig. 7.7, whilst the coupling capacitance C_{c} should be added to the anode capacitances $C_{a 1}$ and $C_{a I I}$ instead of to the grid capacitances $C_{g I}$ and $C_{\text {oII }}$.

7.2.4.3. Trigger pulses applied to a tap of the grid leak resistors

In the circuit shown in fig. 10.7, the trigger pulses are applied to a tap of the grid leak resistors.

Fig. 10-7.
Bi -stable multivibrator circuit in which the trigger pulses are applied to a tap of the grid leak resistors $R_{g}-R_{0}$.

The transients occurring in this circuit can be calculated by means of the equivalent circuit shown in fig. 11.7, which for the sake of convenience should be compared with the circuit shown in fig. 7.7.

Taking into account the input and output capacitances of the tubes, C_{g} and C_{a} respectively (indicated by the broken lines in fig. 11.7), the denominator of the operational impedances which have to be dealt with will contain a polynomial of the third order in p. A third-order equation must therefore be solved to determine the time constants of the e-powers which form the final solution of the voltage time functions. Since there is no straightforward method for solving third-order equations, as is the case with second-order equations, each case will have to be solved after numerical values have been substituted.

An approximate solution is possible when C_{a} and C_{a} are so small that they may be neglected. The third-order denominator of the operational impedance is then reduced to the second order.

In practice, the input trigger pulses are often applied to a common tap of the grid leak resistors, so that the resistances R_{0} of the circuit shown in fig. 10.7 coincide. In that case, the two halves of the multivibrator circuit are, however, no longer independent of each other and some interaction will necessarily occur. When R_{0} is small compared with R_{q}, the previous methods of calculation may, however,

Fig. 11-7.
Equivalent circuit of the bistable multivibrator shown in fig. 10-7 (cf. fig. 7-7). be applied to a first approximation.

7.2.4.4. Trigger pulses applied to a tap of the anode resistors

The case of the trigger pulses being applied to a tap of the anode resistors is obviously analogous to that discussed in Section 7.2.4.3.

Determination of the voltage time functions can be dealt with in a similar manner using the same approximations.

7.2.5. INFLUENCE OF THE TUBE CHARACTERISTICS ON THE SENSITIVITY OF A BI-STABLE MULTIVIBRATOR

In previous sections an analysis was given of the bi-stable multivibrator or Eccles-Jordan fip-flop circuit. In the present section the method of investigating the influence of the tube characteristics on the sensitivity of the multivibrator by means of the formulae derived in the earlier sections is discussed.

7.2.5.1. Introduction

In Section 7.2.3, the trigger action of a bi-stable multivibrator or

Eccles-Jordan flip-flop circuit is investigated and explicit expressions are given for the anode and grid voltages as functions of time during the first and the second phase of the trigger action ${ }^{6}$). These explicit time functions offer the possibility of determining the length of time required by each tube to reach its cut-off point. The calculated time functions for the initially conducting tube I are denoted by $V_{g 1}(t)$ and $V_{a 1}(t)$, and those for the initially cut-off tube $I I$ by $V_{\text {gII }}(t)$ and $V_{\text {aII }}(t)$. The lengths of time t_{1} and t_{n} after which tubes I and $I I$ reach their respective cut-off points are then defined by the following relations:

$$
\begin{equation*}
V_{g \mathrm{t}}\left(t_{\mathrm{t}}\right)=-\frac{1}{\mu} \cdot V_{a \mathrm{t}}\left(t_{\mathrm{t}}\right), \tag{61.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{o \mathrm{II}}\left(t_{\mathrm{nI}}\right)=-\frac{1}{\mu} \cdot V_{a \mathrm{II}}\left(t_{\mathrm{ut}}\right), \tag{62.7}
\end{equation*}
$$

according to expressions (18.7) and (19.7) given in section 7.2.3.1.
In these relations, the influence of the anode-to-grid capacitances of the tubes has not been incorporated. This influence can be taken roughly into account by adding to the grid voltages a component supplied by a capacitive voltage divider between the anodes and the grids. Oniy the transient components and not the steady-state parts of the anode voltages will be passed to the grids. Denoting these transient components by $V_{\text {att }}$ and $V_{\text {artt }}$ respectively, eqs (61.7) and (62.7) are then changed into:

$$
\begin{equation*}
V_{g^{1}}\left(t_{\mathrm{t}}\right)+b_{1} V_{a \mathrm{Atr}}\left(t_{\mathrm{t}}\right)=-\frac{1}{\mu} \cdot V_{a \mathrm{a}}\left(t_{\mathrm{t}}\right), \tag{63.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{g \mathrm{II}}\left(t_{\mathrm{II}}\right)+b_{\mathrm{II}} V_{a \mathrm{IItr}}\left(t_{\mathrm{II}}\right)=-\frac{1}{\mu} \cdot V_{a \mathrm{II}}\left(t_{\mathrm{II}}\right) \tag{64.7}
\end{equation*}
$$

The voltage divider factors b_{1} and b_{11} are given by eqs (1.7) and (2.7) of section 7.2.1.
${ }^{6}$) The first phase is understood to commence at the instant $t=0$ at which the trixger pulse is applied. Tube I is assumed to be conducting prior to this instant, tube $I I$ then being cut off. Conditions are assumed to be such that tube I is immediately cut off, tube $I I$ remaining in the cut-off condition during this phase. The first phase is therefore characterized by the fact that the circuit may be considered as a passive network.

The second phase commences at the instant $t=t_{11}$, at which tube $I I$, which was originally cut off, becomes conducting. This phase continues until the instant t_{s}, at which grid current starts to flow in the conducting tube $I I$ and the third phase starts. The latter continues until the transients have died out.

Once the circuit is given, it is now possible to investigate the influence of the amplitude V_{0} of the negative-going flank of the input trigger pulse, provided the time of rise t_{0} is kept constant. Fig. 12.7 shows the complete circuit and fig. 13.7 the shape of the trigger voltage.

Fig. 12-7.
Fundamental circuit of the bi-stable multivibrator.

Fig. 13-7.
Negative-going trigger voltage of amplitude V_{0} applied at the instant $t=0$.

When all circuit components, the supply voltages and tube characteristics, as well as the time of rise t_{0} of the trigger pulse V_{i}, are known, it is possible to substitute a certain value of the amplitude of V_{i}, namely V_{0}, in the relations (61.7) and (62.7) or (63.7) and (64.7). By solving these relations for t_{1} and t_{11}, numerical values are obtained for these time periods.

When $t_{\mathrm{I}}>t_{\mathrm{II}}$, the circuit will operate in the correct way. Successive calculations for decreasing values of V_{0} will eventually give a value at which t_{t} is equal to or even smaller than t_{n}. In the latter case, the multivibrator will no longer operate satisfactorily; the value of V_{0} at which $t_{\mathrm{I}}=t_{\mathrm{II}}$ must therefore be considered as the minimum pulse amplitude at which the multivibrator will be triggered in the correct manner. This special value of V_{0} will be called the critical trigger pulse amplitude $V_{\text {cr }}$ and may be considered as a measure of the sensitivity of the multivibrator.

7.2.5.2. Influence of several tube characteristics on the sensitivity of the multivibrator

The time functions which represent the grid and anode voltages of the multivibrator from the instant $t=0$ onwards, at which the trigger pulse is applied (see fig. 13.7), until the instant at which one
of the tubes reaches its cut-off point, are given by eqs (20.7), (21.7), (22.7) and (23.7) of Section 7.2.3.1. Strictly speaking, these equations are valid only from the instant $t=t_{0}$ onwards, but since these voltages depend almost linearly on the time between $t=0$ and $t=t_{0}$, and the value for $t=t_{0}$ is given by the above-mentioned expressions, the voltages for $0 \leqq t \leqq t_{0}$ can be approximately represented by a linear function which starts at a value equal to the initial static condition and has a final value equal to that calculated for $t=t_{0}$.

It should be realized that the expressions mentioned are applicable to a symmetrical bi-stable multivibrator circuit. Since, however, it is desired to investigate, among other things, the influence of an asymmetrical capacitive load applied to one of the anode circuits, these expressions are given below for the more general case in which the two halves of the circuit are not identical.

In that case, the grid voltage of the originally conducting tube I will be:

$$
\begin{align*}
& V_{g t}(t)=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}+ \\
& +\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{0}}-1\right)+\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{\theta}\right) V^{\prime \prime}\right\} K e^{p_{1} t}- \\
& -\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{p_{0}}}-1\right)+\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}\right\}(1+K) e^{p^{p},}, \tag{65.7}
\end{align*}
$$

and the anode voltage of tube I :

$$
\begin{align*}
& V_{a 1}(t)=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}+ \\
& +\left\{\varepsilon_{a} R_{o} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{t_{0}}}-1\right) P_{1}+\left(1-\varepsilon_{a}\right) R_{a} I_{a 0} L\right\} e^{p_{0} t}- \\
& -\left\{\varepsilon_{a} R_{0} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{p_{0}}}-1\right)\left(1+P_{1}\right)+\left(1-\varepsilon_{a}\right) R_{a} I_{a 0}(1+L)\right\} e^{p_{d}} \tag{66.7}
\end{align*}
$$

The grid voltage of the initially cut-off tube $I I$ will be:

$$
\begin{align*}
& V_{\text {III }}(t)=\varepsilon_{\theta} V^{\prime}-\left(1-\varepsilon_{o}\right) V^{\prime \prime}+ \\
& +\left\{\left(1-\varepsilon_{g}\right) R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{\varepsilon_{0}}}-1\right) K_{1}+\varepsilon_{\theta} R_{a} I_{a 0} P_{1}\right\} e^{p_{0} t}- \\
& -\left\{\left(1-\varepsilon_{0}\right) R_{o} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{d_{0}}}-1\right)\left(1+K_{1}\right)+\varepsilon_{\theta} R_{a} I_{a 0_{0}}\left(1+P_{1}\right)\right\} e^{p_{0},} \text {, } \tag{67.7}
\end{align*}
$$

and the anode voltage of tube $I I$:

$$
\begin{align*}
& V_{a I I}(t)=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}+ \\
& +\varepsilon_{a}\left\{R_{o} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{1} t_{0}}-1\right)+\frac{e_{g}}{1-\varepsilon_{g}} \cdot V^{\prime}-V^{\prime \prime}\right\} P e^{p_{2} t}- \\
& -\varepsilon_{a}\left\{R_{g} C_{c} \cdot \frac{V_{0}}{t_{0}} \cdot\left(e^{-p_{s^{\prime}}}-1\right)+\frac{\varepsilon_{g}}{1-\varepsilon_{g}} \cdot V^{\prime}-V^{\prime \prime}\right\}(1+P) e^{p_{\varepsilon^{\prime}}} . \tag{68.7}
\end{align*}
$$

In these formulae:
and

$$
\left.\begin{array}{l}
\varepsilon_{a}=\frac{R}{R_{g}+R+R_{a}} \tag{69.7}\\
\varepsilon_{a}=\frac{R_{a}}{R_{g}+R+R_{a}}
\end{array}\right\},
$$

whilst p_{1}, p_{2}, p_{5} and p_{6} are reciprocal time constants.
If both halves of the circuit were identical, p_{1} and p_{2} would be equal to p_{5} and p_{6} respectively, and, similarly, K_{1} and P_{1} would be equal to K and P respectively.

The way in which the various reciprocal time constants p and the quantities K, P and L depend on the circuit constants is indicated in Sections 5 and 7 (see eqs (19a.5), (19b.5), (18a.5), (18b.5), (18c.5), (22.5), (24.7), (25.7), (26.7) and (27.7)).
$I_{a 0}$, which denotes the anode current of the conducting tube in the static condition, is given by eq. (11.7) of Section 7.2.2, namely:

$$
\begin{equation*}
I_{a 0}=\frac{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}}{\varepsilon_{a}\left(R_{g}+R\right)+r_{a}}, \tag{70.7}
\end{equation*}
$$

which also gives the relation between $I_{a 0}$ and the internal resistance r_{a} of the tube.

Eqs (63.7) and (64.7) now make it possible to investigate the influence of the tube characteristics $\mu, I_{a 0}$ (or r_{a}, according to eq. (70.7)) and $C_{a 0}$ (contained in the term b) on the trigger sensitivity of a given circuit. For this purpose two of the three characteristics mentioned are assumed to have a certain value, after which the variation of the critical trigger amplitude of the input voltage, $V_{c r}$, is calculated as a function of the third characteristic.

7.2.5.2.1. Numerical example

An example of the calculation of the influence of tube characteristics and a capacitive load in the anode circuit will be given. The circuit
to be investigated is assumed to have the following characteristic data (compare fig. 12.7):

$$
\begin{aligned}
& V^{\prime}=150 \mathrm{~V} ; V^{\prime \prime}=100 \mathrm{~V} ; R_{a}=20 \mathrm{k} \Omega ; R=200 \mathrm{k} \Omega ; R_{g}=200 \mathrm{k} \Omega \\
& C=100 \mathrm{pF} ; C_{c}=40 \mathrm{pF} ; t_{0}=0,2 \mu \mathrm{sec} .
\end{aligned}
$$

The input capacitance at the control grid is assumed to be $\mathcal{C}_{g}=10 \mathrm{pF}$.
This gives:

$$
C_{i}=C_{c}+C_{g}=50 \mathrm{pF} \text { (see fig. 7.7) }
$$

The anode load capacitances will be denoted $C_{a 1}$ and $C_{a 11}$ resp. (see fig. 3.7). The loading of the multivibrator is assumed to be symmetrical, i.e. $C_{a 1}=C_{a I I}$. In that case, the reciprocal time constants p_{1} and p_{2} are identical to p_{5} and p_{6} respectively, whilst $K_{1}=K$ and $P_{1}=P$ (see expressions $65,66,67$ and 68.7).

Equations (63.7) and (64.7) can then be brought into the following form:

$$
\begin{align*}
& \left(A V_{0}+B\right) x_{1}^{\alpha}+\left(D V_{0}+E\right) x_{1}+F=0 \tag{71.7}\\
& \left(A V_{0}+G\right) x_{11}^{\alpha}+\left(D V_{0}+H\right) x_{\mathrm{n}}+K=0 \tag{72.7}
\end{align*}
$$

where:

$$
\begin{align*}
& x_{1}=e^{p_{1} t}{ }_{1} \tag{73.7}\\
& x_{\mathrm{II}}=e^{p_{1} t}{ }_{\mathrm{II}} \tag{74.7}\\
& \alpha=\frac{p_{2}}{p_{1}} \tag{75.7}
\end{align*}
$$

A, B, D, E, F, G, H and K are constants containing the tube characteristics μ, r_{a} and $C_{a g}$, the anode-to-grid capacitance. The anode loadcapacitances $C_{a 1}$ and $C_{a 11}$ influence p_{1} and p_{2} as well as the constants. Now the aim is to investigate the influence of the parameters μ, r_{a}, $C_{a g}$ and $C_{a I}=C_{a I I}=C_{a}$ on the minimum trigger-voltage amplitude V_{0}, already denoted by $V_{c r}$.

The procedure to be applied is as follows:
Substitute given values of the parameters and calculate the constants $A, B \ldots, K$. If, now, $x_{1}=x_{\text {II }}$, |then $V_{0}=V_{c r}$. Then equations (71.7) and (72.7) can be written:

$$
\begin{align*}
& \left(A V_{a r}+B\right) x^{\alpha}+\left(D V_{a r}+E\right) x+F=0 . \tag{76.7}\\
& \left(A V_{a r}+G\right) x^{\alpha}+\left(D V_{a r}+H\right) x+K=0 . \tag{77.7}
\end{align*}
$$

Subtract these equations, and the result will be:

$$
\begin{equation*}
(B-G) x^{\alpha}+(E-H) x+F-K=0 . \tag{78.7}
\end{equation*}
$$

If x could be determined from this equation, then $V_{c r}$ may be calculated from either (76.7) or (77.7) by substituting x.

However, in general, equation (78.7) will not be easily solved by conventional methods, as α is generally a rather high power and some-

Fig. 14- $\boldsymbol{\pi}$.

Fig. 15-7.
times not a whole number. Therefore, a graphical method is to be followed.
Put:

$$
\begin{equation*}
x^{x}=y_{1} . \tag{79.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(H-E) x+K-F}{B-G}=y_{2} . \tag{80.7}
\end{equation*}
$$

Plot both y functions on a graph. The point of intersection is the solution of x satisfying (78.7). Then, from (76.7) or (77.7) the critical triggervoltage amplitude can be determined and turns out to be:

$$
\begin{equation*}
V_{c r}=\frac{(G E-H B) x+G F-K B}{\{A(H-E)+D(B-G)\} x+A(K-F)} \tag{81.7}
\end{equation*}
$$

The results of calculations are represented in the following tables and depicted in figs 14.7, 15.7, 16.7 and 17.7.

Fig. 16- .

Fig. 17-7.

$C_{a 1}=C_{a I I}$	5	50	150	(pF)
$C_{a g}$				
2.5	9.2	13.0	$20.8 \rightarrow V_{c r}(\mathrm{~V})$	
4.5	13.4	17.2	$26.0 \rightarrow V_{c r}(\mathrm{~V})$	
6.8	18.0	21.6	$29.5 \rightarrow V_{c r}(\mathrm{~V})$	
(pF)				

This table combines the influence of the capacitive anode load C_{a} and the anode-to-grid capacitance $C_{a g}$.

The amplification factor is assumed to be 50 , whilst the internal anode resistance r_{a} is $7 \mathrm{k} \Omega$.

The influence of the amplification factor μ is given in the following table, where it is assumed that:

$$
C_{a 1}=C_{a 11}=C_{a}=50 \mathrm{pF}, C_{a g}=4.5 \mathrm{pF} \text { and } r_{a}=7 \mathrm{k} \Omega
$$

μ	$V_{c r}(\mathrm{~V})$
25	$20 \cdot 6$
35	18.8
50	$17 \cdot 2$

The influence of the internal anode resistance r_{a} is to be seen from the next table, where $C_{a}=50 \mathrm{pF}, C_{a g}=4.5 \mathrm{pF}$, and $\mu=50$.

$r_{a}(k \Omega)$	$V_{c r}(\mathrm{~V})$
$5 \cdot 4$	$16 \cdot 3$
$7 \cdot 0$	$17 \cdot 2$
$9 \cdot 0$	$18 \cdot 6$

The tables are represented graphically in figs $14.7,15.7,16.7$ and 17.7, in which the values of all parameters are denoted.

It can be concluded from these figures, that the trigger sensitivity increases linearly with the capacitive load in the anode circuit with a mean slope

$$
\begin{equation*}
\frac{d V_{c r}}{d C_{a}}=0.082 \frac{V}{\mathrm{pF}} \tag{82.7}
\end{equation*}
$$

The critical trigger voltage increases approximately linearly with the anode-to-grid capacitance with a mean slope

$$
\begin{equation*}
\frac{d V_{c r}}{d C_{a g}}=2 \mathrm{~V} / \mathrm{pF} \tag{83.7}
\end{equation*}
$$

The trigger sensitivity decreases with increasing anode internal resistance and increases with increasing amplification factor. It must be borne in mind that these conclusions are not of a general character, but apply for the specific case treated.

These results of calculations can be compared with experimental investigations.

The trigger sensitivity of a double triode type E 92 CC has been measured under similar conditions as were assumed to exist in the foregoing calculations. The amplification factor of this tube is $\mu=50$, whilst its internal anode resistance is $7 \mathrm{k} \Omega$. The capacitances of the tube itself are $C_{a g}=2.5 \mathrm{pF}$ and $C_{a}=0.3 \mathrm{pF}$. The wiring capacitances in the anode circuit have been assumed to amount to 5 pF , based on experimental experience. Then the trigger sensitivity is measured to be 16.5 V when no extra capacitive load is applied to the anodes, whereas it is 18.7 V with 50 pF applied between the anode and cathode of both tubes, and 29.6 V with 150 pF anode load applied. These measurements are represented by the small circles in figs 14.7 and 15.7. A mean curve drawn through these measuring points is represented by the dotted curve in fig. 14.7.

The conclusion to be drawn from these measurements is that an effective anode-to-grid capacitance of a value of about 6 pF must be present. A wiring capacitance between anode and grid of 3.5 pF would be sufficient to give this value, which is not at all abnormal.
In general, it can be said that the experimental figures are in quite good agreement with those derived from theoretical considerations.

One further check on the theory is possible.
Assuming $C_{a g}$ to be 6 pF , the trigger sensitivity with asymmetrical capacitive anode load has been calculated. If one anode is loaded with 50 pF and the other tube has no externally applied capacitive load, then $C_{a 1}=50 \mathrm{pF}$ and $C_{a 11}=5 \mathrm{pF}$. With these values of capacitance, the trigger sensitivity of this asymmetrically loaded bi-stable multivibrator is calculated to be 23 V , whereas it is measured to be 21 V . This also gives reasonable agreement.

7.2.5.3. The complete trigger cycle

As previously shown, the first phase of the trigger action determines the sensitivity of the circuit and also the switching time, since this depends on the instant $t=t_{11}$ at which the cut-off point of the second tube is reached and at which the definite change of state occurs in the tubes.

The time functions for the anode and grid voltages, as derived in section 7.2.3 for the complete trigger cycle, have been calculated for a numerical example nearly the same as treated in the preceding sections, and are graphically represented in figs 18.7, 19.7, 20.7 and 21.7.

The curves marked a are applicable to a symmetrical multivibrator, of which $C_{a \mathrm{I}}=C_{a \mathrm{II}}=5 \mathrm{pF}$, whilst the curves marked b and c apply to an asymmetrical multivibrator with $C_{a 1}=110 \mathrm{pF}$ and $C_{a \mathrm{II}}=5 \mathrm{pF}$. The calculated curves are represented by the fully drawn lines. In order to comform with practice, the curves displayed by an oscilloscope and redrawn to the same scale, have also been plotted in these figures (broken lines). It should be realized that the time scale on the screen of the oscilloscope was only about one tenth of that used for the graphs, so that some inaccuracy was introduced in redrawing the steep fronts.

The multivibrator was triggered by applying negative-going pulses having an amplitude of 35 V , a width of $4 \mu \mathrm{sec}$ and a period of $40 \mu \mathrm{sec}$. The time of rise of the negative-going front ${ }^{\bullet}$ was $0.2 \mu \mathrm{sec}$.

7.2.5.3.1. Discussion of the waveforms

From fig. 18.7, which represents the waveform of $V_{\text {oII }}$, it can be clearly seen that $V_{\text {gII }}$ reaches the cut-off value (approximately - 4 V)

Fig. 18-7.
Calculated values (fully drawn lines) and measured values (broken lines) of $V_{\text {oII }}$ as function of time, trigger pulses with an amplitude of 35 V , a width of $4 \mu \mathrm{sec}$, a period of $40 \mu \mathrm{sec}$ and a negative-going front with a rise time of $0.2 \mu \mathrm{sec}$ being applied. Curve a applies to a symmetrical multivibrator ($C_{a}=C_{a 1}=C_{a I I}=5 \mathrm{pF}$), tube II becoming conducting (and tube I being cut off). Curves b and c apply to an asymmetrically loaded multivibrator ($C_{\text {aI }}=110 \mathrm{pF}, C_{\text {aII }}=5 \mathrm{pF}$), tube II becoming conducting in curve b and being cut off by the next pulse in curve c.

$\bar{\square}$

Fig. 21-7
Oscillograms similar to those shown in fig. $18-7$, representing V_{a} as a function of time.
in a much smaller time $\left(t=t_{\mathrm{II}}\right)$ in case a than in case b (capacitive load, $C_{a \mathrm{I}}=110 \mathrm{pF}$); in other words: the capacitive load considerably increases the switching time.

At the instant $t=t_{\mathrm{iI}}$, the second phase of the trigger cycle commences. Curves a and b of fig. 20.7 reveal that the anode voltage $V_{a \text { II }}$ greatly decreases at this instant; in other words: the multivibrator is definitely triggered.

Fig. 18.7 shows that $V_{g_{\text {II }}}$ crosses the grid base of tube $I I$ and becomes

Fig. 2Zー~.
Oscillogram of the grid voltage of one of the triodes of a symmetrical multivibrator $\left(C_{a}=C_{a \mathrm{I}}=C_{a \mathrm{II}}=\right.$ 5 pF); square-wave trigger pulses with a period of $15 \mu \mathrm{sec}$ being applied.
zero shortly after the instant $t=t_{\mathrm{i}}$; due to the occurrence of grid current, $V_{g 11}$ is then kept constant at this value. In practice, there is some overshoot, which should be attributed to the fact that the grid resistance is not zero, as was assumed in the calculations, but has a definite value. The influence of the discontinuity will therefore be smaller than calculated.

The fully drawn curves plotted in fig. 21.7 show the calculated effects of this discontinuity (at approximately $0.7 \mu \mathrm{sec}$ for curve a, and at approximately $2 \mu \mathrm{sec}$ for curve b) on the anode voltage $V_{a 1}$. This effect could not be clearly discerned on the oscillograms ${ }^{7}$).

[^4]The oscillograms shown in figs. 22.7 and 23.7 refer to a symmetrical, unloaded multivibrator having the same characteristics as the circuit previously mentioned. Triggering was, however, achieved by means of square-wave pulses with a period of $15 \mu \mathrm{sec}$. Fig. 22.7 shows the grid voltage variation of one of the tubes; that of the other tube is obviously identical. Fig. 23.7 displays the anode voltage variation of both tubes. The discontinuity which can be clearly seen in the ascending part of the oscillogram is due to the start of grid current flow.

Fig. 23-7.
Oscillograms of the anode voltage of one of the triodes of a symmetrical multivibrator $\left(C_{a}=C_{a \mathrm{I}}=C_{a \mathrm{II}}=\right.$ 5 pF); square-wave trigger pulses with a period of $15 \mu \mathrm{sec}$ being applied.

Figs.24.7, 25.7, 26.7 and 27.7 show the oscillograms of the grid and anode voltages of an asymmetrical multivibrator, triggered by negative-going pulses having a width of $40 \mu \mathrm{sec}$, a period of $60 \mu \mathrm{sec}$ and an amplitude of 35 V . The component values are once again identical to those of the previous circuits; $C_{a \mathrm{I}}$ and $C_{a I I}$ were 110 pF and 5 pF respectively.

The variation of $V_{\text {o11 }}$ is displayed by the oscillogram shown in fig. 24.7; the negative-going front should be compared with curve c of fig. 18.7, and the positive-going front with curve b of this figure.
Fig. 25.7 shows the variation of $V_{g 1}$; this should be compared with curves b and c of fig. 19.7.

Fig. 26.7 gives the oscillogram of $V_{\text {aII }}$ and should be compared with curves b and c of fig. 20.7.

Finally, the oscillogram of fig. 27.7 shows the variation of $V_{a 1}$, and should be compared with curves b and c of fig. 21.7.

In the curves representing the calculated time functions, the influence of the positive rear flanks of the trigger pulses have been disregarded. In practice, care should be taken that these positive, differentiated pulses do not disturb the normal triggering of the multivibrator. These pulses should not, for example, drive the non-conducting tube (i.e. the initially conducting tube I) back into its grid base. Curves a and b of fig. 19.7

Fig. 24-7.
Oscillogram showing the grid voltage variation $V_{g I I}$ of tube $I I$ of an asymmetrically loaded multivibrator $\left(C_{a I}=110 \mathrm{pF}, C_{a \mathrm{II}}=6 \mathrm{pF}\right)$, negative-going trigger pulses with a width of $40 \mu \mathrm{sec}$, a period of $60 \mu \mathrm{sec}$ and an amplitude of 35 V being applied.
reveal the considerable overshoot of $V_{o 1}$ in the negative direction, its final value being - 30 V . It would therefore be advantageous to choose the width of the trigger pulse in such a way that the positive-going rear flank coincides with this overshoot region. This will not be possible, however, when a flip-flop unit is triggered by a preceding flip-flop unit, because the pulses produced thereby are always roughly square in shape and the positive-going flank will always occur just between two negativegoing flanks.

There is a compensating effect of the negative anode pulse of the conducting tube on the positive pulse at the grid of the non-conducting tube. This is clearly shown by the oscillogram of fig. 22.7, where the
grid voltage gradually increases. About half way in this region the effect of the positive differentiated pulse can be seen. Initially, the voltage tends to rise, but the slightly delayed negative pulse at the anode of the conducting tube is passed to the grid of the non-conducting tube via the speed-up capacitor C, and even overcompensates the positive input pulse, so that a negative pulse results.

The final static conditions for the curves a and b of figs 18.7, 19.7, 20.7 and 21.7 are: $V_{91}=-30 \mathrm{~V}, V_{a \mathrm{I}}=136 \mathrm{~V}, V_{911}=0 \mathrm{~V}$ and

Fig. 25-7.
Oscillogram similar to that shown in fig. 24-7, displaying the grid voltage variation V_{oI} of tube I.
$V_{a 11}=40 \mathrm{~V}$. The functions are now reversed, tube I being cut off and tube $I I$ being conducting. The next negative-going flank of V will trigger the multivibrator once again. In the case of a symmetrical circuit ($C_{a 1}=C_{a 11}=5 \mathrm{pF}$), the waveforms during this new trigger action can easily be calculated from the theoretical results by changing the indices I and II in all formulae, the waveform of $V_{\text {oII }}$ thus being identical to that of V_{01} during the preceding trigger action. The new waveforms have therefore not been given in figs 18.7, 19.7, 20.7 and 21.7.

In the case of an asymmetrically loaded multivibrator, the situation is less simple, but the waveforms can nevertheless also be calculated; the results are shown by curves c.
Notwithstanding the presence of the load capacitance $C_{a \mathrm{a}}=110 \mathrm{pF}$,
the switching time or the duration of the first trigger phase is now much shorter than in the first-case b. This is due to the fact that the switching time is now defined by the waveform of $V_{g_{1}}$, which is independent of $C_{a 1}$. The switching time is about $0.6 \mu \mathrm{sec}$, whereas it was about $2 \mu \mathrm{sec}$ in the first case.

It can, moreover, be seen that the trigger sensitivity will be better in the second case. In the first case the grid voltage of the initially conducting tube, $V_{g_{1}}$, has almost reached its cut-off value at the instant

Fig. 26-7.
Oscillogram similar to that shown in fig. 24-7, displaying the anodevoltage variation $V_{\text {aII }}$ of tube $I I$,
at which tube $I I$ starts to draw anode current (at $t \approx 2 \mu \mathrm{sec}$; see curve b, fig. 19.7). In the second case, however, the grid voltage of the initially conducting tube, V_{011} (curve c, fig. 18.7), rises at a much slower rate, due to the influence of $C_{a \mathrm{I}}=110 \mathrm{pF}$. At the instant at which tube I starts to draw current, the (negative) value of $V_{g_{11}}$ will still be almost three times that of $V_{\sigma_{1}}$ in the first case. In other words: $V_{\sigma_{1}}$ rises much faster than $V_{\text {gII }}$ during the same periods of time.

The sensitivity of an asymmetrical multivibrator is thus not the same for the two stable conditions, and is smallest for the initial condition at which the capacitively loaded tube is conducting. In practice, this smallest sensitivity defines the usefulness of the circuit.

It can also be seen that sensitivity is improved by loading the multivibrator symmetrically (for example $C_{a \mathrm{I}}=C_{a_{I I}}=110 \mathrm{pF}$). In that case
the grid voltage $V_{g r}$ (curve b, fig. 19.7) will rise slower and reach the cut-off point later, so that it will be easier for the grid voltage of the other tube to reach the cut-off points.

This fact has been confirmed experimentally. As an example, the average values of $V_{c r}$, measured on a series of some 40 experimental types of double triodes, will be given. For symmetrical, unloaded multivibrator circuits, the critical trigger amplitude had an average value of 17 V . For an asymmetrical circuit (150 pF load in one of the anode

Fig. 2\%-7.
Oscillogram similar to that shown in fig. 24-7, displaying the anodevoltage variation $V_{a I}$ of tube I.
circuits), this average value was 38 V . By connecting a load of 150 pF to both anode circuits, the sensitivity of the multivibrator was increased, the average value of $V_{c r}$ then being 31.5 V .

7.2.5.4. Conclusion

The theoretical investigation of the operation of a bi-stable multivibrator has made it possible to gain an insight into the influence of the various tube characteristics on the behaviour of the circuit. For a given circuit, the dependence of the trigger sensitivity on the amplification factor, the internal resistance and the anode-to-grid capacitance can be calculated and graphically represented by curves similar to those shown in figs 14.7, 15.7, 16.7 and 17.7. For a complete survey, a family
of curves should be drawn giving the dependence of the sensitivity on one of the characteristics with the other two characteristics as parameters.

In the preceding sections, the influence of the tube characteristics on a given circuit has been investigated. It is of course also possible to take the tube as a given starting point and to investigate the circuit in order to determine the optimum results. The speed of the triggering, for example, is an important quantity, as this determines the maximum frequency of the input pulses at which the multivibrator will still operate in the correct

Fig. 28-7. way. It has for example been shown in the preceding pages that the switching time or duration of the first trigger phase depends on the capacitive load in one of the anode circuits.

It can, moreover, be seen from eqs (65.7), (66.7), (67.7) and (68.7) that the amplitude V_{0} of the input trigger pulses always occurs in combination with the time of rise t_{0}; in fact, the slope V_{0} / t_{0} of the leading edge of the pulse is the principal quantity which determines the trigger action. The quantity t_{0}, moreover, occurs in a few exponential terms. In all preceding calculations, t_{0} was assumed to be constant, namely $0.2 \mu \mathrm{sec}$. The dependence of the trigger action on the duration t_{0} at a constant value of V_{0} can obviously also be derived by proceeding in a similar way.

The most important result of representing the mechanism of the operation of a triggered bi-stable multivibrator in explicit formulae has been to enable the influence of several tube characteristics on the trigger action of the circuit in which the tube should operate satisfactorily, to be evaluated. This has led to the design of the double triode E 92 CC. Furthermore, it makes it possible to design a bi-stable multivibrator in such a way that optimum results are ensured.

7.3. THE MONOSTABLE MULTIVIBRATOR

7.3.1. INTRODUCTION

The monostable multivibrator can be analysed in the same way as the bi-stable multivibrator. Here the trigger pulses, assumed to be of the same shape as depicted in fig. 2.7, are applied to the control grid of the tube that is conducting.

The basic diagram of the circuit is given in fig. 28.7. As its name suggests, there is only one stable state of this type of multivibrator. Tube I will be conducting while tube $I I$ is cut off; this being caused by the supply voltage sources $+V^{\prime \prime \prime}$ and $-V^{\prime \prime}$. The anodes are fed from the supply voltage source $+V^{\prime}$. All three sources are assumed to have negligibly small internal resistance, and the same is assumed for the trigger voltage source V_{i}.

Stray capacitances, except anode-to-grid capacitance, will be taken into account.

The negative-going front flank of the trigger pulse is assumed to be so steep that the time it takes to bring the control grid below the cut-off voltage is small compared with the time constants, which are typical for the circuit and which determine the transients. This means that the conducting tube is cut off about immediately at the instant $t=0$ when the trigger pulse starts (see fig. 29.7).

Fig. 29-\%.

Fig. 30-7.

The complete trigger cycle can once again be distinguished by three phases. The first phase is the period immediately after the starting of the trigger pulse at the instant $t=0$, when both tubes are cut off. If it is assumed that, at the instant $t=t_{11}$, the second tube, initially cut off, starts conducting, then this instant t_{II} is the commencement of the second phase.

Again, somewhat later, at the instant $t=t_{3}$, say, the grid voltage of tube I passes the cut-off value in the positive direction, and this tube starts conducting as well. At this instant, t_{3}, the third phase commences.

It is assumed that at times $t<0$, the static condition, which is described in the following section, is present.

7.3.2. THE STATIC CONDITION

In this state of the monostable multivibrator, only direct currents
will flow in the circuit, and consideration of capacities in the diagram can be omitted.

It will be clear that the anode voltage of tube $I I$ will be

$$
\begin{equation*}
V_{a \mathrm{II}_{0}}=V^{\prime} . \tag{84.7}
\end{equation*}
$$

The grid voltage of tube I will be dependent on the amount of grid current flowing. This, in turn, will be determined by the shape of the grid current-grid voltage characteristic and by the values of $R_{g 1}$ and $V^{\prime \prime \prime}$ (see fig. (30.7)).

In fig. 30.7:

$$
\begin{equation*}
\cot \alpha=R_{g_{1}} \tag{85.7}
\end{equation*}
$$

The intersection of $A B$ and the characteristic curve determines the value of $I_{g_{\mathrm{c}}}$. The slope of the characteristic is assumed to be so high that

$$
\begin{equation*}
V_{g \mathrm{I}_{0}}=0 . \tag{86.7}
\end{equation*}
$$

Then $I_{g_{0}}$ is defined by

$$
\begin{equation*}
I_{g_{0}}=\frac{V^{\prime \prime \prime}}{R_{a_{1}}} \tag{87.7}
\end{equation*}
$$

The voltages at A_{1} and G_{2} are to be determined from the diagram of fig.

Fig. 31-7. 31.7 , which is only valid for the static condition (no capacitances as mentioned before).

In this diagram, r_{a} represents the internal anode resistance of tube I, through which an anode current $I_{a_{0}}$ flows, thus:

$$
\begin{equation*}
V_{a 1_{0}}=I_{a_{0}} r_{a} \tag{88.7}
\end{equation*}
$$

The current $I_{a 0}$ is distributed over the resistances $R_{a_{1}}$ and $R+R_{\sigma_{0}}$ in parallel, in such a way that the current through $R_{a_{1}}$ is:

$$
I_{R a_{1}}=\frac{R+R_{g_{2}}}{R_{a_{1}}+R+R_{g_{2}}} I_{a_{0}}=\left(1-\varepsilon_{a}\right) I_{a_{0}} .
$$

The current through $R+R_{g_{2}}$ is:

$$
I_{R+R g_{0}}=\frac{R_{a_{2}}}{R_{a_{1}}+R+R_{g_{2}}} I_{a_{0}}=\varepsilon_{a} I_{a_{0}},
$$

where:

$$
\begin{equation*}
\varepsilon_{a}=R_{a_{1}} /\left(R_{a_{1}}+R+R_{o 2}\right) \tag{89.7}
\end{equation*}
$$

Moreover, apart from the fact that tube I is conducting or non conducting, a current I will flow in the circuit, defined by:

$$
\begin{equation*}
I=\frac{V^{\prime}+V^{\prime \prime}}{R_{a_{1}}+R+R_{g_{\mathrm{e}}}} \tag{90.7}
\end{equation*}
$$

The values of $V_{a \mathrm{I}_{\mathrm{e}}}$ and $V_{g \mathrm{II}_{0}}$ are evidently:

$$
V_{a I_{0}}=V^{\prime}-\left\{\left(1-\varepsilon_{a}\right) I_{a_{0} 0}+I\right\} R_{a_{1}},
$$

or:

$$
\begin{align*}
& V_{a 1_{0}}=\left(1-\varepsilon_{a}\right)\left(V^{\prime}-R_{a_{1}} I_{a_{0}}\right)-\varepsilon_{a} V^{\prime \prime} . \tag{91.7}\\
& V_{g \mathrm{I}_{0}}=-V^{\prime \prime}+\left(I-\varepsilon_{a} I_{a_{0}}\right) R_{g_{2}}, . \tag{92.7}
\end{align*}
$$

or:

$$
V_{g \mathrm{H}_{0}}=-V^{\prime \prime}+\varepsilon_{g}\left(V^{\prime}+V^{\prime \prime}\right)-\varepsilon_{a} R_{g_{2}} I_{a_{0}},
$$

where:

$$
\begin{equation*}
\varepsilon_{g}=R_{g_{2}} /\left(R_{a_{1}}+R+R_{g_{2}}\right) . \tag{93.7}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
V_{g \mathrm{I}_{0}}=\varepsilon_{g}\left(V^{\prime}-R_{a_{1}} I_{a_{0}}\right)-\left(1-\varepsilon_{g}\right) V^{\prime \prime} . \tag{94.7}
\end{equation*}
$$

This is assumed to be sufficiently negative to keep tube $I I$ cut off. From (88.7) and (91.7) the value of $I_{a 0}$ can be determined:

$$
\begin{equation*}
I_{a_{0}}=\frac{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}}{r_{a}+\left(1-\varepsilon_{a}\right) R_{a_{1}}} . \tag{95.7}
\end{equation*}
$$

The value of r_{a} can be found from the $I_{a}-V_{a}$ characteristic of the tube, as it is the reciprocal of the slope of the characteristic at $V_{g_{1}}=0$ (see fig. 54.6).

From the instant $t=0$ onwards, transient phenomena are superimposed upon the static condition of the circuit, because of the occurrence of the trigger pulse. This dynamic condition will now be considered.

7.3.3. THE FIRST PHASE OF THE DYNAMIC CONDITION

The voltage changes at G_{1}, and A_{2} will be derived with the aid of fig. (32.7), those at G_{2} and A_{1} with the aid of fig. 33.7.

The D.C. supply sources have been omitted in these figures, as they are accounted for in the static condition.

In fig. 32.7, the input-voltage source has been converted into an input current source I_{i} in the usual manner, where:

$$
\begin{equation*}
I_{i}=C_{e} \frac{d V_{i}}{d t} \tag{96.7}
\end{equation*}
$$

I_{i} is the superposition of two step functions, occurring at $t=0$ and $t=t_{0}$ resp.:

$$
\begin{equation*}
I_{i}=C_{c} \frac{V_{0}}{t_{0}}\left\{-U(t)+U\left(t-t_{0}\right)\right\} . \tag{97.7}
\end{equation*}
$$

At $t=0$, the grid current $I_{a_{0}}$ suddenly disappears. This is accounted for by the introduction of an input current step function $+I_{g_{0}}$, as indicated in fig. 32.7.

Fig. 32-7.

Fig. 33-7.

Stray capacitances at the input (and output) of the tubes are indicated by dotted lines ($C_{g_{1}}$ and $C_{a_{2}}$ resp.).

The sudden interruption of the anode current $I_{a_{0}}$ in the first tube is accounted for by the input-current step function $I_{a_{0}}$, as indicated in fig. 33.7. Here stray capacitances are also indicated by dotted lines ($C_{a_{1}}$ and $C_{g_{2}}$).

The voltage changes at the anodes A_{1} and A_{2} and at the grids G_{1} and G_{2} can now be calculated as the response of the circuits of figs 32.7 and 33.7 to the input current step functions $I_{i}, I_{g_{0}}$ and $I_{a_{0}}$. First the voltage at G_{1} will be derived.

This voltage, $V_{g_{1}}$, is defined by the operational impedance $Z_{g_{1}}$ between G_{1} and earth. This impedance is:

$$
\begin{equation*}
Z_{\theta_{1}}=R_{\sigma_{1}} \frac{1+A p}{1+B p+E p^{2}} \tag{98.7}
\end{equation*}
$$

where: $p=\frac{d}{d t}=$ differentiation with respect to time

$$
\left.\begin{array}{l}
A=T_{a_{2}}+T_{21} \tag{99.7}\\
B=T_{11}+T_{a_{2}}+T_{o_{1}}+T_{21} \\
E=T_{11} T_{a_{2}}+T_{g_{1}} T_{a_{2}}+T_{21} T_{g_{1}} \\
T_{a_{2}}=R_{a_{1}} C_{a_{2}} \\
T_{n}=R_{a_{2}} C_{1} \\
T_{11}=R_{a_{1}} C_{1} \\
T_{a_{1}}=R_{a_{1}}\left(C_{c}+C_{a_{1}}\right)
\end{array}\right\}
$$

The voltage across this impedance as a result of the current step function $I_{i}+I_{a_{0}}$ occurring at the instant $t=0$ will be:

$$
\begin{equation*}
V_{g_{1}}(t)=\left(I_{i}+I_{o_{0}}\right) R_{o_{1}}\left\{1+K e^{p_{1} t}-(1+K) e^{p_{1} t}\right\} \tag{100.7}
\end{equation*}
$$

where:

$$
\begin{align*}
& K=\frac{p_{2}\left(1+A_{p_{1}}\right)}{p_{1}-p_{2}} \tag{101.7}\\
& p_{1}=-\frac{B}{2 E}\left\{1-\sqrt{1-\frac{4 E}{B^{2}}}\right\} . \tag{102.7}\\
& p_{2}=-\frac{B}{4 E}\left\{1+\sqrt{1-\frac{4 E}{B^{2}}}\right\} \tag{103.7}
\end{align*}
$$

(compare with section 5).
At the instant $t=t_{0}$, a current step function of amplitude I_{i} in the reverse direction is applied, giving rise to a transient voltage:

$$
\begin{equation*}
V_{g 1}\left(t-t_{0}\right)=-I_{i} R_{g_{1}}\left\{1+K e^{p_{1}\left(t-t_{0}\right)}-(1+K) e^{p_{\mathbf{2}}\left(t-t_{0}\right)}\right\} . \tag{104.7}
\end{equation*}
$$

In the static condition, $V_{o \mathrm{I}}=0$, so that the complete expressions for $V_{0 \text { I }}$ are:
$t \leqq 0: V_{g \mathrm{I}}=0$
$0 \leqq t \leqq t_{0}: V_{g_{1}}(t)=\left(I_{i}+I_{g_{0}}\right) R_{g 1}\left\{1+K e^{p_{1} t}-(1+K) e^{p_{p_{2}}}\right\}$.
$t \geqq t_{0}: V_{g 1}\left(t-t_{0}\right)=I_{g_{0}} R_{g_{1}}\left\{1+K e^{p_{1} t}-(1+K) e^{p_{1}}\right\}+$
$+I_{i} R_{g_{1}}\left\{K e^{p_{1} t}\left(1-e^{-p_{1} t_{0}}\right)-(1+K) e^{p_{2} t}\left(1-e^{-p_{2} t_{0}}\right)\right\}$
At $t=\infty$, the voltage at G_{1} would be: $V_{g I}(\infty)=I_{o_{0}} R_{g_{1}}$.
According to (87.7), this would be:

$$
V_{o \mathrm{I}}(\infty)=V^{\prime \prime \prime}, \text { which is evident }
$$

Secondly, the voltage at the anode A_{2} will be derived from fig. 32.7. It depends on the transfer impedance

$$
\begin{equation*}
Z_{v_{1} a_{2}}=R_{\sigma_{1}} \frac{T_{21} p}{1+B p+E p^{2}} \tag{107.7}
\end{equation*}
$$

The voltage at A_{2} can be calculated to be:

$$
\begin{aligned}
t & \leqq 0: V_{a \mathrm{II}}=V_{a \mathrm{II}}=V^{\prime} \\
0 \leqq t & \leqq t_{0}: V_{a \mathrm{aI}}(t)=V_{a \mathrm{II}_{0}}+\left(I_{i}+I_{a_{0}}\right) R_{o 1} \frac{T_{21}}{E\left(p_{2}-p_{1}\right)}\left(e^{p_{\mathrm{p} t}}-e^{p_{2}, t}\right)
\end{aligned}
$$

$$
\begin{align*}
t & \geqq t_{0}: V_{a I 1}\left(t-t_{0}\right)=V_{a \mathrm{I}_{0}}+I_{a_{0}} R_{{g_{1}}_{1}} \frac{T_{21}}{E\left(p_{2}-p_{1}\right)}\left(e^{p_{1} t}-e^{p_{1} t}\right)+ \\
& +I_{i} R_{g_{1}} \frac{T_{21}}{E\left(p_{2}-p_{1}\right)}\left\{e^{p_{p_{1} t}}\left(1-e^{-p_{p_{0}}}\right)-e^{p_{1} t}\left(1-e^{-p_{1} t_{0}}\right) .\{\ldots\right. \tag{109.7}
\end{align*}
$$

At $t=\infty$, this anode voltage would be:

$$
\begin{equation*}
V_{a \mathrm{II}}(\infty)=V_{a \mathrm{II}_{0}}=V^{\prime} . \tag{see84.7}
\end{equation*}
$$

The third voltage, to be derived with the aid of fig. 33.7, is the anode voltage of the first tube, $V_{a r}$.

The operational impedance between A_{1} and earth is given by:

$$
\begin{equation*}
Z_{a_{1}}=R_{a_{v}} \frac{1+F p}{1+G p+H p^{2}}, \tag{110.7}
\end{equation*}
$$

where:

$$
\begin{align*}
& R_{a_{0}}=\frac{R_{a_{1}}\left(R+R_{o_{2}}\right)}{R_{a_{1}}+R+R_{o_{\mathbf{2}}}}=\left(1-\varepsilon_{a}\right) R_{a_{1}} \tag{111.7}\\
& F=\beta T_{q_{1}}+\beta_{\imath} T . \ldots . . . \tag{112.7}
\end{align*}
$$

$$
\begin{equation*}
\beta=\frac{R}{R+R_{\boldsymbol{o}_{2}}} ; \quad \beta_{g}=\frac{R_{v_{2}}}{R+R_{g_{2}}} \tag{113.7}
\end{equation*}
$$

$$
\begin{equation*}
T_{o_{2}}=R_{v_{2}} C_{o_{2}} ; \quad T=R C \tag{114.7}
\end{equation*}
$$

$$
\begin{equation*}
G=\left(\varepsilon_{a}+\varepsilon\right) T_{a_{1}}+\left(\varepsilon_{a}+\varepsilon_{a}\right) T+\left(\varepsilon+\varepsilon_{a}\right) T_{o_{2}} . \tag{1157}
\end{equation*}
$$

$$
\begin{equation*}
T_{a_{1}}=R_{a 1} C_{a 1} \tag{116.7}
\end{equation*}
$$

$$
\varepsilon_{\theta}=\frac{R_{\sigma_{2}}}{R_{a_{1}}+R+R_{o_{2}}}
$$

$$
\begin{equation*}
\varepsilon=\frac{R}{R_{a_{1}}+R+R_{g_{2}}} \tag{117.7}
\end{equation*}
$$

$$
\varepsilon_{a}=\frac{R_{a_{1}}}{R_{a_{1}}+R+R_{g_{2}}}
$$

$$
\begin{equation*}
H=\varepsilon_{a} T T_{o_{2}}+\varepsilon T_{g_{2}} T_{a_{1}}+\varepsilon_{g} T_{a_{1}} T \ldots \tag{118.7}
\end{equation*}
$$

A current step function with amplitude $I_{a_{0}}$ at $t=0$ causes a transient voltage across the impedance between A_{1} and earth as given by the second right-hand term of expression (119.7). The total voltage is:

$$
\begin{equation*}
V_{a x}=V_{a i_{0}}+I_{a_{0}} R_{a v}\left\{1+L e^{p_{i}}-(1+L) e^{p_{0}}\right\} \ldots \tag{119.7}
\end{equation*}
$$

$V_{a I_{0}}$ is given by (91.7)
and

$$
\begin{align*}
L & =\frac{p_{4}\left(1+F p_{3}\right)}{p_{3}-p_{4}} \tag{120.7}\\
p_{3} & =-\frac{G}{2 H}\left\{1-\sqrt{1-\frac{4 H}{G^{2}}}\right\} \tag{121.7}\\
p_{4} & =-\frac{G}{2 H}\left\{1+\sqrt{1-\frac{4 H}{G^{2}}}\right\} \tag{122.7}
\end{align*}
$$

At $t=\infty$, this anode voltage would be:

$$
\begin{equation*}
V_{a \mathrm{I}}(\infty)=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime} \tag{123.7}
\end{equation*}
$$

Finally, the voltage at the grid of tube $I I$ will be given. This depends on the transfer impedance between A_{1} and G_{2} :

$$
\begin{equation*}
Z_{a_{1} \theta_{2}}=R_{a \rho} \frac{1+T p}{1+G p+H p^{2}} \tag{124.7}
\end{equation*}
$$

where: $\quad R_{a g}=\frac{R_{a_{1}} R_{\sigma_{2}}}{R_{a_{1}}+R+R_{g_{2}}}=\varepsilon_{a} R_{o_{2}}=\varepsilon_{a} R_{a_{1}}$.
The total voltage at G_{2} for $t>0$ is:

$$
\begin{array}{r}
\left.V_{o \mathrm{II}}=V_{o \mathrm{IH}}+I_{a_{0}} R_{a \sigma}\{1\}+M e^{p_{0} t}-(1+M) e_{=}^{p_{0} t}\right\}, \\
M=\frac{p_{4}\left(1+T p_{3}\right)}{p_{3}-p_{4}} \ldots . \tag{127.7}
\end{array}
$$

$V_{\text {gin }}$ is given by (94.7).
At $t=\infty$:

$$
\begin{equation*}
V_{\theta \mathrm{II}}(\infty)=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} . \tag{128.7}
\end{equation*}
$$

Tube $I I$ was already in the cut-off condition; tube I is cut off suddenly by the trigger pulse at $t=0$. Consequently, the first phase of the dynamic condition is characterized by the fact that both tubes are cut off. However, the grid voltages of both tubes tend to final positive values, namely:

$$
V_{g \mathrm{I}}(\infty)=V^{\prime \prime \prime} \text { and } V_{g \mathrm{II}}(\infty)=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}
$$

which is supposed to be positive.
At a given moment, one of the tubes reaches its cut-off point and will start conducting.

For correct operation of the monostable multivibrator it is necessary that tube $I I$ should reach its cut-off point sooner than tube I. The times t_{I} and t_{II} for which tubes I and $I I$ respectively reach their cutoff points can be calculated from the relations:

$$
\begin{align*}
& V_{g \mathrm{I}}\left(t_{\mathrm{t}}\right)=-\frac{1}{\mu} V_{a \mathrm{I}}\left(t_{\mathrm{I}}\right) \tag{129.7}\\
& V_{g \mathrm{II}}\left(t_{\mathrm{II}}\right)=-\frac{1}{\mu} V_{a \mathrm{II}}\left(t_{\mathrm{II}}\right), . \tag{130.7}
\end{align*}
$$

where $\mu=$ amplification factor of the tubes. (compare Sections 7.2.3.1 and 7.2.5.1)

Introducing a correction for the influence of the anode-grid capacitances, as in the sections mentioned, gives an extra component at grid 1:

$$
\begin{equation*}
\bar{V}_{g \mathrm{I}}(t)=b_{\mathrm{I}} I_{a_{0}} R_{a_{v}}\left\{1+L e^{p_{\mathrm{y}} t}-(1+L) e^{p_{\mathrm{t}} t}\right\}, \tag{131.7}
\end{equation*}
$$

and at grid 2:

$$
\begin{align*}
& \bar{V}_{g \mathrm{II}}(t)=b_{11}\left[I_{g_{0}} R_{y_{1}} \frac{T_{21}}{E\left(p_{2}-p_{1}\right)}\left(e^{p_{2} t}-e^{p_{1} t}\right)+\right. \\
& \left.\quad+I_{i} R_{g_{1}} \frac{T_{21}}{E\left(p_{2}-p_{1}\right)}\left\{e^{p_{1} t}\left(1-e^{-p_{1} t_{0}}\right)-e^{p_{1} t}\left(1-e^{-p_{1} t_{0}}\right)\right\}\right] \tag{132.7}
\end{align*}
$$

where b_{1} and b_{11} are capacitive voltage divider factors

$$
\begin{align*}
& b_{\mathrm{I}}=\frac{C_{a \mathrm{IOI}}}{C_{a \mathrm{IOI}}+C_{0}+C_{a_{1}}+\frac{C_{1} C_{a \mathrm{II}}}{C_{1}+C_{a_{2}}}} \tag{133.7}\\
& b_{\mathrm{II}}=\frac{C_{a \mathrm{IIOII}}}{C_{a \mathrm{IIOII}}+C_{c}+C_{a \mathrm{a}}+\frac{C C_{a \mathrm{I}}}{C+C_{a \mathrm{a}}}} . \tag{134.7}
\end{align*}
$$

The corrected equations (129.7) and (130.7) are then:

$$
\begin{align*}
V_{O I}\left(t_{\mathrm{t}}\right)+\bar{V}_{o \mathrm{I}}\left(t_{\mathrm{t}}\right) & =-\frac{1}{\mu} V_{a \mathrm{II}}\left(t_{\mathrm{t}}\right) . \tag{135.7}\\
V_{\text {oII }}\left(t_{\mathrm{II}}\right)+\bar{V}_{\text {OII }}\left(t_{\mathrm{II}}\right) & =-\frac{1}{\mu} V_{a \mathrm{II}}\left(t_{\mathrm{tI}}\right) . \tag{136.7}
\end{align*}
$$

As. stated already, the monostable multivibrator operates in the correct manner if $t_{\mathrm{I}}>t_{\mathrm{II}}$.

7.3.4. THE SECOND PHASE OF THE DYNAMIC CONDITION

With the aid of (130.7) or (136.7), $t_{\text {II }}$ can be determined. Then, at the instant $t=t_{\mathrm{n}}$, the second phase of the dynamic condition starts. The grid voltage $V_{\text {oII }}(t)$, which is an

Fig. 34-7. exponential function, traverses the grid base of tube $I I$. This part of the exponential function in the grid base is assumed to be practically linear, as depicted in fig. (34.7) (compare section 7.2.3.2, fig. 8.7). The time function of $V_{\mathrm{II}_{\mathrm{I}}}$ between the instant t_{nI} and t_{4} will be:

$$
\begin{equation*}
V_{o \mathrm{II}}(t)=a \tau+E_{c}, \tag{137.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
\tau=t-t_{2} \tag{138.7}
\end{equation*}
$$

and a is a constant, given by:

$$
0=a t_{5}+E_{c} \quad \text { or } \quad a=-\frac{E_{c}}{t_{5}}=\frac{E_{c}}{t_{4}-t_{2}} .
$$

t_{4} is to be calculated from $V_{\text {oII }}\left(t_{4}\right)=0$ by substituting $t=t_{4}$ in expression (126.7).

It is further assumed that, at $t=t_{\mathrm{II}}$, the anode voltage $V_{\text {aII }}$ has practically reached the constant final value $V_{a I_{0}}=V^{\prime}$.

The anode current for times $\tau=0$ until $\tau=t_{5}$ is defined by:

$$
\begin{equation*}
I_{a}=\frac{V_{a I I}+\mu V_{a I I}}{r_{a}}, \tag{139.7}
\end{equation*}
$$

whilst:

$$
\begin{equation*}
V_{a \mathrm{II}}=V_{a \mathrm{II}}-I_{a} Z_{a 2} . \tag{140.7}
\end{equation*}
$$

$Z_{a 2}$ is the impedance in the anode circuit, to be defined from fig. 32.7:

$$
\begin{equation*}
Z_{a 2}=R_{a 2} \frac{1+J p}{1+B p+\overline{E p^{2}}} \tag{141.7}
\end{equation*}
$$

where:

$$
J=T_{\imath 1}+T_{11}(\text { see } 99.7)
$$

Combination of (139.7) and (140.7) gives:

$$
\begin{equation*}
I_{a}=\frac{1}{r_{a}+Z_{a_{2}}}\left(V_{a \mathrm{In}_{0}}+\mu V_{a \mathrm{II}}\right) . \tag{142.7}
\end{equation*}
$$

Now:

$$
V_{a \mathrm{II}}+\mu V_{g \mathrm{II}}=V^{\prime}+\mu a \tau+\mu E_{e}=\mu a \tau \text { (see 138.7). }
$$

Thus:

$$
\begin{equation*}
I_{a}=\frac{1}{r_{a}+Z_{a_{2}}}(\mu a \tau) \tag{143.7}
\end{equation*}
$$

From (143.7) and (140.7):

$$
\begin{equation*}
V_{a \mathrm{II}}=V_{a \mathrm{II}}-\frac{Z_{a 2}}{r_{a}+Z_{a_{2}}}(\mu a \tau) \tag{144.7}
\end{equation*}
$$

At $\tau=t_{5}$, or $t=t_{4}$, the grid voltage reaches zero and remains zero, as it is assumed that the internal grid resistance is negligibly small. This can be accounted for by assuming a new component of grid voltage to be present, given by:

$$
\begin{equation*}
V_{g \mathrm{II}}\left(\tau-t_{5}\right)=-\mu a\left(\tau-t_{5}\right) \cdots \cdots \tag{145.7}
\end{equation*}
$$

Then, for times $\tau<t_{5}$ or $t<t_{4}$, the following expression holds:

$$
\begin{equation*}
V_{a \mathrm{II}}\left(t-t_{4}\right)=V_{a \mathrm{II}_{0}}-\frac{Z_{a_{2}}}{r_{a}+Z_{a}}\left[\mu a \tau-\mu a\left(\tau-t_{5}\right)\right] \tag{146.7}
\end{equation*}
$$

By operational methods, mentioned before, $V_{\text {aII }}$ can be calculated. The final results are:

$$
\begin{align*}
& \text { at } 0 \leqq \tau \leqq t_{5} \text { or } t_{2} \leqq t \leqq t_{4} \\
& V_{a \mathrm{II}}\left(t-t_{2}\right)=V_{a \mathrm{II}_{0}}-\lambda_{a} V_{a \mathrm{II}_{0}}\left[\frac{t-t_{2}}{t_{4}-t_{2}}+\frac{N}{p_{5} t_{5}}\left\{e^{p_{0}\left(t_{4}\right)}-1\right\}-\right. \\
& \left.\quad-\frac{1+N}{p_{8} t_{5}}\left\{e^{p_{0}\left(t_{4}\right)}-1\right\}\right] \ldots . . \tag{147.7}
\end{align*}
$$

At $\tau \geqq t_{5}$ or $t \geqq t_{4}:$

$$
\begin{gather*}
V_{a 11}\left(t-t_{4}\right)=V_{a \mathrm{II}_{0}}-\lambda_{a} V_{a \mathrm{II}_{0}}\left[1+\frac{N}{p_{5} t_{5}} e^{p_{0}^{\left(1-t_{5}\right)}\left(1-e^{\left.-p_{4}\right)}-\right.}\right. \\
\left.-\frac{1+N}{p_{6} t_{5}} e^{\left.p_{0}^{\left(\left(t_{4}\right)\right.}\right)}\left(1-e^{-p_{0} d_{4}}\right)\right] \cdots \cdots \cdot \cdots \cdot \cdot \cdot \tag{148.7}
\end{gather*}
$$

Where:

$$
\begin{equation*}
\lambda_{a}=\frac{R_{a_{2}}}{r_{a}+R_{a_{1}}} . \tag{149.7}
\end{equation*}
$$

$$
\begin{gather*}
N=\frac{p_{6}\left(1+J p_{5}\right)}{p_{5}-p_{8}} \ldots \ldots \tag{150.7}\\
p_{5}=-\frac{\lambda_{i} B+\lambda_{a} J}{2 \lambda_{i} E}\left\{1-\sqrt{1-\frac{4 \lambda_{i} E}{\left(\lambda_{i} B+\lambda_{a} J\right)^{2}}}\right\} . \tag{151.7}\\
p_{6}=-\frac{\lambda_{i} B+\lambda_{a} J}{2 \lambda_{i} E}\left\{1+\sqrt{1-\frac{4 \lambda_{i} E}{\left(\lambda_{i} B+\lambda_{a} J\right)^{2}}}\right\} . \tag{152.7}\\
\lambda_{i}=1-\lambda_{a}=\frac{r_{a}}{r_{a}+R_{a_{2}}} \ldots \ldots . \tag{153.7}
\end{gather*}
$$

The final value of $V_{a n 1}$ would be:

$$
\begin{equation*}
V_{a \mathrm{II}}(\infty)=\lambda_{i} V_{a \mathrm{II}}=\frac{r_{a}}{r_{a}+R_{a_{2}}} V_{a \mathrm{II}_{0}} \tag{154.7}
\end{equation*}
$$

This is evident, for in this final state a constant anode current $I_{a_{0} \mathrm{II}}$ would flow through the external and internal anode resistances, and have a value:

$$
\begin{equation*}
I_{a_{0} \mathrm{II}}=\frac{V_{a \mathrm{II}}}{r_{a}+R_{a_{1}}} \tag{155.7}
\end{equation*}
$$

This causes a voltage across r_{a} :

$$
V_{a \mathrm{II}}(\infty)=r_{a} I_{a_{0} \mathrm{II}}=\frac{r_{a}}{r_{a}+R_{a_{\mathbf{1}}}} V_{a \mathrm{HI}} .
$$

The anode voltage $V_{a I I}$ determines the grid voltage $V_{g 1}$ by way of the voltage divider consisting of C_{1} and $Z_{g_{1}}$.

$$
\begin{equation*}
V_{a \mathrm{t}}=\frac{Z_{a_{1}}}{Z_{a_{1}}+\frac{1}{p C_{1}}} V_{a \mathrm{II}} \tag{156.7}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{g \mathrm{I}}=T_{11} \frac{p}{1+\left(T_{\mathrm{in}}+T_{g_{1}}\right) p} V_{a \mathrm{rI}} . \tag{157.7}
\end{equation*}
$$

Keeping in mind that only variable components of $V_{\text {aII }}$ will be passed through the capacitance C_{1}, the steady state component $V_{\text {an! }}$ must not be substituted in expression (157.7) The final result of evaluating expression (157.7) is as follows:

$$
\begin{align*}
& \text { at } t_{2} \leqq t \leqq t_{4}: V_{o 1}\left(t-t_{2}\right)=-\lambda_{a} V_{a \mathrm{II}_{0}} \frac{T_{11}}{t_{5}}\left[1-e^{-\left(t t_{2}\right) /\left(T_{11}+T_{g_{1}}\right)}+\right. \\
& +\frac{N}{1+p_{5}\left(T_{11}+T_{g_{1}}\right)}\left\{e^{p_{0}\left(t_{1}\right)}-e^{-\left(t-t_{1}\right) /\left(T_{11}+T_{g 1}\right)}\right\}- \\
& \left.-\frac{1+N}{1+D_{6}\left(T_{11}+T_{g_{1}}\right)}\left\{e^{p_{0}\left(h_{1}\right)}-e^{-\left(\hbar_{5}\right) /\left(T_{11}+T_{g_{1}}\right)}\right\}\right] \text {. } \\
& \text { at } t \geqq t_{4}: V_{o_{1}}\left(t-t_{4}\right)=-\lambda_{a} V_{a \mathrm{II}_{0}} \frac{T_{11}}{t_{5}}\left[e^{-\left(t-t_{2}\right) /\left(T_{11}+T_{g_{1}}\right)}\left(1-e^{t_{\Delta} /\left(T_{11}+T_{a^{1}}\right)}\right)+\right. \\
& +\frac{N}{1+p_{5}\left(T_{11}+T_{g_{1}}\right)}\left\{e^{p_{g}\left(t_{2}\right)}\left(1-e^{-p_{0} t_{0}}\right)-e^{-\left(\omega_{1}\right) /\left(T_{11}+T_{g 1}\right)}\left(1-e^{t_{s} /\left(T_{11}+T_{g_{1}}\right)}\right\}-\right. \\
& -\frac{N}{1+p_{6}\left(T_{11}+T_{g_{1}}\right.}\left\{e^{p_{0}\left(t-t_{0}\right)}\left(1 — e^{\left.-p_{\sigma_{0}}\right)}-e^{-\left(h-t_{2}\right) /\left(T_{11}+T_{g_{1}}\right)}\left(1-e^{t_{s} /\left(T_{11}+T_{g_{1}}\right)}\right\}\right]\right. \tag{159.7}
\end{align*}
$$

These two expressions must be added to the value of $V_{g 1}$ originating from the first phase, i.e. to expression (106.7). The final value remains therefore: $V_{g I}(\infty)=V^{\prime \prime \prime}$. This is evident for tube I non-conducting.

Until the instant $t=t_{4}$, the anode voltage of tube I is represented by its first phase value, i.e. (119.7). At this instant, t_{4}, however, $V_{g I I}$ shows a discontinuity, as it is suddenly kept at a constant value of zero. This causes transients at anode A_{1} which can be calculated. However, since R_{a} will generally be small compared with R and $R_{g_{2}}$, the final contribution of these transients to the anode voltage of tube I will be small, and the complicated expression resulting from the calculations will be omitted.

Recapitulating the second phase voltage changes, it can be said that $V_{\text {gII }}$ is given by (126.7) for $0 \leqq t \leqq t_{4}$, and is zero for $t \geqq t_{4} . V_{\text {aII }}$ is given by (147.7) for $t_{2} \leqq t \leqq t_{4}$, and by (148.7) for $t>t_{4}$, when it is assumed that the transients from the first phase have practically died out. $V_{g 1}$ is given by expr. (106.7) from the first phase, to which must be added expression (158.7) for $t_{2} \leqq t \leqq t_{4}$ and (159.7) for $t \geqq t_{4}$. $V_{a I}$ is given by expr. (119.7) from the first phase, if the effect of grid current in tube II is neglected.

7.3.5. THE THIRD PHASE OF THE DYNAMIC CONDITION

This phase commences as soon as the voltage at G_{1} has increased to such a level that the cut-off value E_{c} is reached. Let this occur at the instant $t=t_{6}$. The tube I starts conducting, and the anode voltage
at A_{1} decreases. This need only be a few volts for tube $I I$ to be cut off. Its anode voltage rises and adds in this way to the increase of $V_{g 1}$; the whole process continuing more and more rapidly.

It will be assumed here that

Fig. 35-7. $V_{g 1}$ increases so rapidly that we can consider the change of $V_{g \mathrm{I}}$ to be a voltage step from the value E_{c} to zero, as represented in fig. 35.7:

$$
\begin{equation*}
V_{a I}\left(t-t_{6}\right)=E_{c}-E_{c} U\left(t-t_{b}\right), \tag{160.7}
\end{equation*}
$$

where $U\left(t-t_{6}\right)$ is a unit-step function occurring at the instant $t=t_{\mathbf{6}}$.
It is assumed that the final value of expr. (119.7) is practically reached for $t=t_{6}$.
This value is:

$$
\begin{equation*}
V_{a t}(\infty)=V_{a \mathrm{I}_{0}}+I_{a_{0}} R_{a v} \tag{161.7}
\end{equation*}
$$

The anode current change is given by:

$$
\begin{equation*}
I_{a \mathrm{I}}=\frac{V_{a \mathrm{I}}+\mu V_{a \mathrm{I}}\left(t-t_{b}\right)}{r_{a}}, \tag{162.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
V_{a t}=V_{a t}(\infty)-I_{a 1} Z_{a_{1}} . \tag{163.7}
\end{equation*}
$$

$Z_{a_{1}}$ is given by expr. (110.7).
From (162.7) and (163.7) it follows:

$$
\begin{equation*}
I_{a \mathrm{I}}=\frac{V_{a \mathrm{t}}(\infty)+\mu V_{a \mathrm{I}}\left(t-t_{b}\right)}{r_{a}+Z_{a_{1}}} . \tag{164.7}
\end{equation*}
$$

Substituting (92.7) yields:

$$
\begin{equation*}
I_{a \mathrm{I}}=\frac{1}{r_{a}+Z_{a_{1}}}\left[V_{a \mathrm{I}}(\infty)+\mu\left\{E_{c}-E_{c} U\left(t-t_{\mathrm{b}}\right)\right\}\right] \tag{165.7}
\end{equation*}
$$

However, $V_{a I}(\infty)+\mu E_{c}=0$, as E_{c} is the cut-off voltage at an anode voltage $V_{a I}(\infty)$; then (165.7) becomes:

$$
\begin{equation*}
I_{a \mathrm{I}}=\frac{1}{r_{a}+Z_{a_{1}}} V_{a \mathrm{I}}(\infty) U\left(t-t_{6}\right) \tag{166.7}
\end{equation*}
$$

According to (163.7) and (166.7):

$$
\begin{equation*}
V_{a \mathrm{I}}=V_{a \mathrm{I}}(\infty)-\frac{Z_{a_{1}}}{r_{a}+Z_{a_{1}}} V_{a \mathrm{I}}(\infty) U\left(t-t_{6}\right) \ldots \tag{167.7}
\end{equation*}
$$

The final result of the calculation will be:
$V_{a I}\left(t-t_{6}\right)=V_{a I}(\infty)-\varrho_{a} V_{a I}(\infty)\left[1+P e^{p_{2}\left(t-t_{6}\right)}-(1+P) e^{p_{0}\left(t-t_{0}\right.}\right],(168.7)$ where:

$$
\begin{equation*}
\varrho_{a}=\frac{R_{a v}}{r_{a}+R_{a v}} . \tag{169.7}
\end{equation*}
$$

For $R_{a v}$, see (111.7) $\quad P=\frac{p_{8}\left(1+F p_{7}\right)}{p_{7}-p_{8}}$
$p_{7}=-\frac{\varrho_{i} G+\varrho_{a} F}{2 \varrho_{i} H}\left[1-\sqrt{1-\frac{4 \varrho_{i} H}{\left(\varrho_{i} G+\varrho_{a} F\right)^{2}}}\right]$
$p_{8}=-\frac{\varrho_{i} G+\varrho_{a} F}{2 \varrho_{i} H}\left[1+\sqrt{1-\frac{4 \varrho_{i} H}{\left(\varrho_{i} G+\varrho_{a} F\right)^{2}}}\right] ; \varrho_{i}=1-\varrho_{a}=\frac{r_{a}}{r_{a}+R_{a v}}$.
Another transient component will be caused by the sudden cessation of the flow of grid current in tube $I I$. This will, for the same reason as we did not account for its sudden starting, be left out of consideration.

The final value of $V_{a I}$ will be that of expression (168.7) at $t=\infty$:

$$
V_{a \mathrm{I}} \text { final }=\varrho_{i} V_{a \mathrm{I}}(\infty),
$$

or, with expr. (161.7):

$$
V_{a \mathrm{I}} \text { final }=\varrho_{i}\left(V_{a \mathrm{I}_{0}}+I_{a_{0}} R_{a v}\right) .
$$

According to (88.7):

$$
I_{a_{0}}=\frac{V_{a I_{0}}}{r_{a}} \text {; }
$$

thus:

$$
V_{a \mathrm{I}} \text { final }=\varrho_{i} V_{a 1_{0}} \frac{r_{a}+R_{a v}}{r_{a}}=\left(1-\varrho_{a}\right) V_{a 1_{0}} \frac{r_{a}+R_{a v}}{r_{a}} .
$$

Substituting (169.7) gives:

$$
V_{a \mathrm{I}} \text { final }=V_{a 1_{0}} .
$$

In other words: the final value of $V_{a r}$ is the same as the steady state value before triggering. A complete trigger cycle has elapsed.

We now consider the anode voltage of tube $I I$. This can easily be determined by the following reasoning:
At the instant $t=t_{6}$, the grid G_{1} is practically short-circuited to earth, and the anode impedance of tube $I I$ will be:

$$
\begin{equation*}
Z_{a_{4}}=\frac{R_{a_{2}}}{1+R_{a_{3}}\left(C_{1}+C_{a_{2}}\right) p}, \cdots \cdots \tag{170.7}
\end{equation*}
$$

or:

$$
\begin{equation*}
Z_{a_{2}}=\frac{R_{a_{2}}}{1+\left(T_{21}+T_{22}\right) p} \tag{171.7}
\end{equation*}
$$

(compare expression (99.7)).
The anode current of tube $I I$ jumps at $t=t_{6}$ from zero to a value $I_{a_{0} 11}$, given by (155.7). This gives rise to a transient voltage at A_{2}, as represented by:

$$
\begin{equation*}
I_{a_{0} \mathrm{II}} \cdot R_{a_{2}}\left(1-e^{-\left(1-t_{0}\right) /\left(T_{n}+T_{22}\right)}\right) . \tag{172.7}
\end{equation*}
$$

If it is assumed that the second phase transient (148.7) has reached its final state (154.7), viz.

$$
\begin{equation*}
V_{a \mathrm{II}_{\mathrm{e}}}=\frac{r_{a}}{r_{a}+R_{a_{2}}} V_{a \mathrm{iI}_{0}} \tag{173.7}
\end{equation*}
$$

at $t=t_{6}$, then the total voltage at A_{2} is the sum of (172.7) and (173.7):

$$
\begin{equation*}
V_{a \mathrm{II}}\left(t-t_{\mathrm{b}}\right)=V_{a \mathrm{II}}-\frac{R_{a_{2}}}{r_{a}+R_{a_{2}}} V_{a \mathrm{II}_{0}} e^{-\left(t-t_{0}\right) /\left(T_{\mathrm{n}}+T_{\mathbf{a}_{2}}\right)} \tag{174.7}
\end{equation*}
$$

Again, the final state is equivalent to the static initial condition.
The grid voltage of tube $I I, V_{\text {gII }}$, can be determined with the aid of the following considerations.

Fig. 36-7.

Immediately before the start of the third phase, a practically stationary situation was reached with tube I cut off and tube $I I$ conducting. Instead of fig. 31.7, the circuit of fig. 36.7 is representative for that part of the circuit at that instant. Without the grid current $I_{g 2}$, the D.C. voltage sources V^{\prime} and $V^{\prime \prime}$ would cause a potential between G and earth:

$$
V_{\theta \text { II }}=-V^{\prime \prime}+I R_{\theta_{1}} \text {, where I is given by (90.7) }
$$

Or:

$$
V_{o \mathrm{II}}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime},
$$

where ε_{g} is given by (93.7).
It is again assumed that $I_{g_{2}}$ is such that it causes a voltage drop across the resistances $R_{o_{2}}$ and $R+R_{a_{1}}$ in parallel, to compensate the value of $V_{v_{2}}$ given above. This means a zero grid-to-cathode voltage. With this assumption we obtain the condition:

$$
I_{a_{2}} \frac{R_{a_{2}}\left(R+R_{a_{1}}\right)}{R_{o_{2}}+R+R_{a_{1}}}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime},
$$

from which $I_{\sigma_{2}}$ may be derived:

$$
\begin{equation*}
I_{\sigma_{2}}=\frac{\varepsilon_{q} V^{\prime}-\left(1-\varepsilon_{q}\right) V^{\prime \prime}}{\left(1-\varepsilon_{q}\right) R_{\sigma_{2}}} \tag{175.7}
\end{equation*}
$$

At the instant $t=t_{6}$, tube I becomes conducting, tube $I I$ is cut off. Then the diagram of fig. 37.7 is valid for calculating the transients.
The anode voltage $V_{a \mathrm{I}}\left(t-t_{6}\right)$ is known already and given by expr. (168.7). Part of this

Fig. 37-7. voltage is conducted to the grid G_{2} by means of the voltage divider consisting of the $R-C$ parallel circuit and the $R_{0_{2}}-C_{o_{2}}$ parallel circuit.

In operational form, the voltage at G_{2} as a result of $V_{a 1}$ is:

$$
\begin{equation*}
V_{o \mathrm{II}}\left(a_{\mathrm{I}}\right)=\frac{R_{o_{2}}}{R_{g_{\mathrm{g}}}+R} \frac{1+T p}{1+\left(\beta_{g} T+\beta T_{\left.q_{\mathrm{z}}\right) p}\right.} V_{a \mathrm{aIt}}\left(t-t_{\mathrm{g}}\right) \tag{176.7}
\end{equation*}
$$

For β and β_{g}, see (113.7); for T and $T_{g_{2}}$, see (114.7).
$V_{a t t}$ represents the transient part of $V_{a I}$ from the instant $t=t_{6}$ onwards. This is the second term of the right-hand part of expr. (168.7)

$$
V_{a \mathrm{It}}=-\varrho_{a} V_{a \mathrm{I}}(\infty)\left[1+P e^{\phi_{\eta} \tau}-(1+P) e^{\phi_{\mathrm{b} \sigma} \tau}\right],
$$

where:

$$
\tau=t-t_{6}
$$

This may be written in operational form as:

$$
\begin{equation*}
V_{a 1 t}=-\varrho_{a} V_{a \mathrm{I}}(\infty)\left[1+P \frac{p}{p-p_{7}}-(1+P) \frac{p}{p-p_{8}}\right] \tag{177.7}
\end{equation*}
$$

(compare expr. (14.5)).
From (176.7) and (177.7) it follows that:

$$
\begin{align*}
& V_{g \text { II }}\left(a_{1}\right)=-\frac{R_{g_{2}}}{R_{g_{2}}+R} \frac{1+T p}{1+\left(\beta_{g} T+\beta T_{g_{2}}\right) p} . \\
& . \varrho_{a} V_{a \mathrm{I}}(\infty)\left[1+P \frac{p}{p-p_{7}}-(1+P) \frac{p}{p-p_{8}}\right] . \tag{178.7}
\end{align*}
$$

The influence of the sudden cessation of grid current $I_{g_{2}}$ is again neglected, assuming that the positive voltage $\varepsilon_{\theta} V^{\prime}-\left(1-\varepsilon_{\rho}\right) V^{\prime \prime}$ is small (see 175.7).

Expression (178.7) then represents the total grid voltage change. It must be superimposed on the D.C. voltage $-V^{\prime \prime}+I R_{g_{\mathrm{a}}}$ (for I, see expr. 90.7) and can be calculated in the same manner as already dealt with, namely by splitting into partial fractions. The rather cumbersome result will be given after examination of the final value for $t=\infty$. This can be found by putting $p=0$ (equivalent to $t=\infty$)

$$
V_{\rho \mathrm{II}}(\infty)=-\frac{R_{o 2}}{R+R_{\rho_{2}}} \varrho_{a} V_{a 1}(\infty) .
$$

Substituting (161.7) and (169.7):

$$
V_{o \mathrm{II}}(\infty)=-\frac{R_{o 2}}{R+R_{a_{2}}} \frac{R_{a v}}{r_{a}+R_{a v}}\left(V_{a \mathrm{I}_{0}}+R_{a v} I_{a_{0}}\right)
$$

According to (88.7):

$$
V_{a t_{0}}=r_{a} I_{a_{0}}
$$

Thus:

$$
V_{o \mathrm{oII}}(\infty)=-\frac{R_{g_{2}}}{R+R_{\sigma_{2}}} R_{a v} l_{u_{0}} .
$$

Introducing expr. (111.7) gives:

$$
\begin{equation*}
V_{g \mathrm{II}}(\infty)=-\frac{R_{o_{2}} R_{a_{1}}}{R_{a_{1}}+R+R_{\sigma_{2}}} I_{a_{0}}=-\varepsilon_{a} R_{o_{2}} I_{a_{0}} . \tag{see117.7}
\end{equation*}
$$

This is the final state of the transients, caused by the anode voltage change of tube I. This must be added to the ever present steady state components $V^{\prime \prime}+I R_{g_{i}}$. Thus the final expression for $V_{\text {oII }}$ will be
$V_{\text {gII }}(\infty)$ total $=-V^{\prime \prime}+\left(I-\varepsilon_{a} I_{a_{0}}\right) R_{g 2}$, and this is equal to the initial steady state value given by (92.7).

The total expression for the grid voltage of tube $I I$ in the third phase of the dynamic condition is the sum of the steady state components $-V^{\prime \prime}+I R_{\rho_{2}}$ and the time function corresponding to the p-function (178.7):

$$
\begin{align*}
& V_{\mathrm{oII}}\left(t-t_{\mathrm{b}}\right)=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}- \\
& \quad \cdot \varepsilon_{a} R_{{g_{8}}} I_{a_{0}}\left[1+\frac{T-S}{S}\left\{1+\frac{P}{1+S p_{7}}-\frac{1+P}{1+S p_{8}}\right\} e^{-\left(t-t_{6}\right) / S}+\right. \\
& \left.\quad+P \frac{1+T p_{7}}{1+S p_{7}} e^{p_{7}\left(t t_{0}\right)}-(1+P) \frac{1+T p_{8}}{1+S p_{8}} e^{p_{8}\left(t-t_{6}\right)}\right], \tag{179.7}
\end{align*}
$$

where $S=\beta_{g} T+\beta T_{g_{2}}$.
Summarizing, the voltage changes derived for the third phase commencing at the instant $t=t_{6}$ are as follows:

$$
\begin{aligned}
& V_{g \mathrm{I}}=0 \text { for } t \geqq t_{6} \\
& V_{a 1} \text { is given by expr. (168.7) } \\
& V_{\text {aII }}, \quad, \quad, \quad, \quad \text { (174.7) } \\
& V_{\text {gII }}, \text {, , , , (179.7) }
\end{aligned}
$$

7.3.6. EXPERIMENTAL VERIFICATION OF THE THEORY

A monostable multivibrator constructed to the circuit of fig. 28.7 with the following data was experimentally investigated.

Fig. 38-7.

$$
\begin{array}{ll}
V^{\prime}=150 \mathrm{~V} & C_{a_{1}}=500 \mathrm{pF} \\
V^{\prime \prime}=100 \mathrm{~V} & C_{a_{2}}=1 \mathrm{pF} \\
V^{\prime \prime \prime}=0 & C_{o_{1}}=C_{g_{2}}=4 \mathrm{pF} \\
C & =C_{1}=100 \mathrm{pF} \\
R_{g_{1}}=R_{g_{2}}=R=200 \mathrm{k} \Omega & \\
R_{a_{1}}=R_{a_{2}}=20 \mathrm{k} \Omega &
\end{array}
$$

The tube was a development-type double triode with an amplification factor $\mu=35$ and an internal anode resistance $r_{a}=11.6 \mathrm{k} \Omega$.

The anode circuit of tube I was heavily loaded capacitively by $C_{a_{1}}=500 \mathrm{pF}$, with the intention of lengthening the duration of the very first period of the trigger cycle, in order to obtain a clear picture of these initial transients on an oscilloscope screen. If this is not done, then t_{0} and t_{II} practically coincide, and the saw-tooth figure occurring at these instants in $V_{g I}$ and $V_{a I I}$ would not be resolved by the oscilloscope (see fig. 38.7).

The following quantities can be calculated and are given below:

$$
\begin{aligned}
& I_{a_{0}}=0 ; V_{a \mathrm{H}_{0}}=150 \mathrm{~V} ; \varepsilon_{a}=0.048 ; \varepsilon_{g}=\varepsilon=0.476 \\
& \Lambda_{a_{0}}=4.5 \mathrm{~mA} \quad \text { (calculated with } r_{a}=11.6 \mathrm{k} \Omega \text {); } \\
& V_{a \mathrm{I}_{0}}=52.3 \mathrm{~V} ; V_{g \mathrm{I}_{0}}=-23.8 \mathrm{~V} ; V_{g \mathrm{I}_{0}}=0 \text {; } \\
& I_{i}=6 \mathrm{~mA} \quad \text { (calculated from } V_{0}=30 \mathrm{~V}, t_{0}=0.2 \mu \mathrm{sec} \text {) } \\
& T=20 \mu \mathrm{sec} ; T_{a_{2}}=0.02 \mu \mathrm{sec} ; T_{21}=2 \mu \mathrm{sec} ; \\
& T_{11}=20 \mu \mathrm{sec} ; T_{g_{1}}=8.8 \mu \mathrm{sec} ; T_{a 1}=10 \mu \mathrm{sec} ; T_{22}=T_{g_{z}}=0.8 \mu \mathrm{sec} ; \\
& A=2.02 \mu \mathrm{sec} ; B=30.8 \mu \mathrm{sec} ; E=18.18(\mu \mathrm{sec})^{2} \text {; } \\
& p_{1}=-0.034 .10^{6} \mathrm{sec}^{-1} ; p_{2}=-1 \cdot 66.10^{6} \mathrm{sec}^{-1} ; \\
& K=-0.952 ; R_{a v}=19 \mathrm{k} \Omega \\
& R_{a g}=9.52 \mathrm{k} \Omega \\
& \beta=\beta_{g}=0.5 \text {; } \\
& F=10.4 \mu \mathrm{sec} ; G=24.2 \mu \mathrm{sec} ; H=100.18(\mu \mathrm{sec})^{2} \text {; } \\
& p_{3}=-0.0537 .10^{6} \mathrm{sec}^{-1} ; p_{4}=-0.19 .10^{6} \mathrm{sec}^{-1} ; \\
& L=-0.613 ; M=+0.103 \text {; } \\
& \lambda_{a}=0.633 ; \lambda_{i}=0.367 \text {. } \\
& J=28.8 \mu \mathrm{sec} ; p_{5}=-0.0322 .10^{6} \mathrm{sec}^{-1} \text {; } \\
& p_{6}=-4.38 .10^{6} \mathrm{sec}^{-1} . \\
& N=-0.1 ; \varrho_{a}=0.62 ; \varrho_{i}=0.38 ; \\
& p_{7}=-0.079 .10^{6} \mathrm{sec}^{-1} ; p_{8}=-0.322 .10^{6} \mathrm{sec}^{-1} ; \\
& P=-0.236 \text {. }
\end{aligned}
$$

Photographs of the traces on the oscilloscope screen have been reproduced in figs 39.7 up till 43.7.

These pictures have been redrawn in fig. 38.7, in order to indicate several points of interest, and at the same time to give the phase re-

Fig. 39-7.

Fig. 41-7.

Fig. 40-7.

Fig. 42-7.

Fig. 43-7.
lationship between diverse signals at anodes and grids and the input trigger pulse.

The latter has a rectangular shape, a period of $126 \mu \mathrm{sec}$ corresponding to about 8000 pulses per second.
The waveform of the voltages calculated with the aid of the values given above follows the experimental waveform so closely that the differences cannot be indicated in the drawing. Therefore it will be sufficient to compare some specific calculated and measured values.

Calculated values are as follows:

$$
\begin{aligned}
& t_{0}=0.2 \mu \mathrm{sec} \\
& t_{2}=2.5 \quad " \\
& t_{4}=3.9 \quad \Rightarrow \\
& t_{5}=t_{4}-t_{2}=1.4 \mu \mathrm{sec} \\
& t_{\mathrm{B}}=90 \mu \mathrm{sec} \text { (measured } 89.6 \mu \mathrm{sec} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& V_{o 1}: \text { at } t=t_{0}:-23.3 \mathrm{~V} \text { (measured }-17 \mathrm{~V} \text {) } \\
& \text {,, } t=t_{2}:-7 \cdot 1 \text {,, }(, \quad-6 \cdot 5, \text {) } \\
& \text {,, } t=t_{4}:-69 \quad,(\quad, \quad-70, \ldots) \\
& \text {,, } t=t_{6}:-3 \cdot 86,(\quad, \quad-4 \quad,) \\
& V_{a r}: \text { at } t=t_{2}: 71.32 \mathrm{~V}
\end{aligned}
$$

At this value of the anode voltage the cut-off grid voltage of the tube is -3.1 V . However, at the instant $t=t_{2} V_{g t}$, is below - 6 V , so that there is no danger that the wrong tube, in this case tube I, will be conducting first.

$$
\begin{aligned}
& \text { At } t=t_{6} \quad V_{a t}=V_{a 1}(\infty)=138 \mathrm{~V} \\
& \text { (measured } 143 \mathrm{~V} \text {) } \\
& V_{\text {gII }} \text { : at } t=t_{2}:-6 \mathrm{~V} \text { (cut-off voltage at } V_{\text {aII }}=150 \mathrm{~V} \text {) } \\
& \text { at } t=t_{7} \text { (end of the period) } V_{g \mathrm{II}}=-26 \mathrm{~V} \\
& \text { (measured - } 25 \mathrm{~V} \text {) } \\
& V_{\text {aII }}: \text { at } t=t_{0}: 129.5 \mathrm{~V} \text { (measured } 135 \mathrm{~V} \text {) } \\
& \text {,, } t=t_{2}: 150 \quad \mathrm{~V}(\quad, \quad 150 \mathrm{~V}) \\
& \text {,, } t=t_{4}: 78.7 \quad \mathrm{~V}
\end{aligned}
$$

7.4. THE ASTABLE MULTIVIBRATOR

7.4.1. INTRODUCTION

The astable multivibrator (to be abbreviated in the following to AMV) differs fundamentally in its operation from both other types, mono- and bi-stable MV, in that the latter need external trigger signals to obtain any switching- or flip-flop action, whereas the AMV is provided with such a strong regeneration that it automatically and continuously goes on triggering itself internally. Thus it is essentially an astable device; hence its name. It never reaches a steady state. The monostable and bi-stable MV on the contrary, as their names suggest, possess one and two stable states respectively. This fact enabled us to describe their trigger or switching action by starting from their stable, steady state condition, and then calculating the transients caused by a single triggering signal. When these signals are of a periodic nature, the results of the analysis apply only when the periodic time of the triggering signals is large enough for the transients to have died out before further triggering takes place.

It is therefore evident that the problem with the AMV will have to be attacked in another way. However, one thing can be stated in advance:

If the AMV, which is in fact a (relaxation) oscillator, has reached a stationary state (to be distinguished from steady state), it must be true that any potential difference or current anywhere in the network must attain the same value periodically. This will be the starting point in solving the problem. In particular, the potential difference across the coupling capacitors between the anodes and grids of the tubes will be observed by giving it an as yet unknown value at the beginning of a period, then considering its evolution throughout the complete period, calculating its value at the end of the period, and finally putting this value equal to its initial value. This condition of equal values at the start and at the end of each cycle gives an equation which enables us to determine the frequency and the waveform of any potential difference or current in the circuit in general by a graphical method, and by an explicit expression under certain circumstances.

The method indicated will now be applied to several AMV circuits, namely to the symmetrical and the asymmetrical MV, both with and without a D.C. control voltage in the grid circuits of the tubes.

7.4.2. THE SYMMETRICAL AMV

7.4.2.1. Determination of the frequency of the AMV signal

The most general AMV circuit is represented in fig. 44.7.
A D.C. supply voltage source V feeds two tubes A and B, which need not be triodes as drawn in fig. 44.7, but may also be pentodes, through anode resistances $R_{1 A}$ and $R_{1 B}$ respectively.

Grid-leaks $R_{2 A}$ and $R_{2 B}$ are connected between the grids and the negative H.T. lead, to which both cathodes are also connected. This is the case of zero grid control voltage.

The anodes and grids are connected cross-wise by coupling capacitors C_{A} and C_{B}. With the following assumptions, a fairly quick method of obtaining the

Fig. 44-7. required results is possible:

The internal anode resistances of the tubes in the fully conducting state and the internal grid resistances at zero or positive grid-to-cathode potential are very small compared with the external resistances in the anode and grid circuits.

Furthermore it is assumed that the influence of the stray capacitances of the valve electrodes and the wiring, which shunt the resistances
and can have considerable effects on the wave shape of the relaxation signal at high frequencies, is negligible.

More precisely, this means that the time constants containing these stray capacitances are very small compared with the period and time of rise of the relaxation signal.

With these assumptions, the MV action may be described as a switching device that changes the two valves alternately from the conducting into the non-conducting state in a switching time that is negligibly small compared with the total period of the relaxation signal which results from this switching action.

The MV is symmetrical if tubes A and B are of the same type and

$$
R_{1 A}=R_{1 B}=R_{1}, \quad R_{2 A}=R_{2 B}=R_{2}, C_{A}=C_{B}=C
$$

Then, during one half of the total period of the MV signal, one of the tubes, say B, is conducting; the other tube, A, is cut off. During the second half of the period, the reverse process holds, namely tube B is cut off and tube A conducting. The equivalent circuit of the MV will be for the first half of the period as depicted in fig. 45.7, whilst for the second half period it is as represented in fig. 46.7.

Fig. 45-7.

Fig. 46-7.

From fig. 45.7 it can be stated that the voltage across C_{A}, indicated by $V_{C A}$, will ultimately attain a value

$$
\begin{equation*}
V_{C A}(t=\infty)=V . \tag{180.7}
\end{equation*}
$$

If its initial value, at the instant $t=0$, when the MV was switched over to the state depicted in fig. 45.7, was also known, the time function according to which $V_{C A}$ changes would be known, since it will be an exponential function with a time constant

$$
\begin{equation*}
T_{C}=R_{1} C_{A}, \tag{181.7}
\end{equation*}
$$

extending from the initial value, as yet unknown, to the final value V. The unknown initial value, however, can be determined from consideration of fig. 46.7, since the final value of $V_{C A}$ in this circuit will
be the same as the initial value of V_{C} from fig. 45.7. If the position in fig. 46.7 lasted indefinitely, it is clear that $V_{C A}$ would attain a value of zero. This would, at the same time, be the case with the grid voltage $V_{G B}$, since $V_{G B}=-V_{C A}$. However, before this voltage $V_{G B}$ can become zero, it passes the value $-E_{c}$, the cut-off grid voltage of the tubes. At this instant the MV switches over from one state into the other. So, the final value of $V_{G B}$ in fig. 46.7 is $-E_{C}$, the final value of $V_{C A}$ then being:

$$
\begin{equation*}
V_{C A}(\text { final })=+E_{C} \tag{182.7}
\end{equation*}
$$

This is, as already mentioned, the initial value in the circuit of fig. 45.7, It can therefore be written:

$$
\begin{equation*}
V_{C A}(t=0)=E_{C} \tag{183.7}
\end{equation*}
$$

From (180.7), (181.7) and (183.7) it is now possible to write down the time function representing $V_{C A}$ in the first half period, namely:

$$
\begin{equation*}
V_{C A}=V-\left(V-E_{C}\right) e^{-t / T c} \tag{184.7}
\end{equation*}
$$

This voltage, $V_{C A}$, however, never reaches its ultimate value V, as, at a certain instant $t=t_{1}$, the voltage $V_{C B}$ of circuit fig. 45.7 passes the value E_{C}, and at the same time the grid voltage $V_{G A}$ is $-E_{C}$. This means that tube A starts conducting and the state of fig. 45.7 is switched over to the state of fig. 46.7.

If, at this instant, $t=t_{1}$, the voltage $V_{C A}$ is V_{0}; then, from (184.7):

$$
\begin{equation*}
V_{C A}\left(t=t_{1}\right)=V_{0}=V-\left(V-E_{C}\right) e^{-t_{l} / T_{c}} \tag{185.7}
\end{equation*}
$$

For a further t_{1} seconds from the instant when $t=t_{1}$, the circuit of fig. 46.7 is valid.

We now know the initial value of $V_{C A}$ (see (185.7)) and its ultimate value, namely:

$$
\begin{equation*}
V_{C A}(t=\infty)=0 \tag{186.7}
\end{equation*}
$$

Between these values, $V_{C A}$ changes exponentially with a time constant:

$$
\begin{equation*}
T_{d}=R_{2} C_{A} \tag{187.7}
\end{equation*}
$$

and can be represented by the time function:

$$
\begin{equation*}
V_{C A}=V_{0} e^{-t / T_{d}} \tag{188.7}
\end{equation*}
$$

Here the time-scale is different from that in the first half period. The instant $t=0$ from expression (188.7) corresponds with $t=t_{1}$ from expression (184.7).

For $t=t_{1}$, expression (188.7) must be (in its own time-scale):

$$
\begin{equation*}
V_{C A}\left(t=t_{1}\right)=E_{C}=V_{0} e^{-t_{1} \mid T_{d}} \tag{189.7}
\end{equation*}
$$

Summarizing: expression (184.7) represents $V_{C A}$ for the first half period of t_{1} seconds, and expression (188.7) for the second half period of t_{1} seconds. The initial value of (187.7) is equal to the final value of (188.7), namely E_{c} (see (184.7) and (189.7)). The final value of (184.7) is equal to the initial value of (188.7), namely V_{0} (see (185.7) and (188.7)).

Now, from equations (185.7) and (189.7) it is possible to eliminate the unknown voltage V_{0} to give one equation with one unknown, t_{1}.

It is convenient to introduce a new variable x, as follows:

$$
\begin{equation*}
x=e^{-t_{1} / T_{d}} . \tag{190.7}
\end{equation*}
$$

Introducing x in (185.7) and (189.7) gives:

$$
\begin{align*}
& V_{0}=V-\left(V-E_{C}\right) x^{T_{d} / T_{c}} \tag{185a.7}\\
& E_{C}=V_{0} x . \ldots \tag{189a.7}
\end{align*}
$$

Eliminating V_{0} gives:

$$
\begin{equation*}
E_{C}=\left[V-\left(V-E_{C}\right) x^{T_{d} / T_{c}}\right] x \tag{191.7}
\end{equation*}
$$

In general, it will not be easy to solve this equation for x, and so a graphical method of obtaining x is proposed. In order to obtain a universal method, it is advantageous to introduce relative values of the voltages by dividing both (185a.7) and (189a.7) by the supply voltage V, giving:

$$
\begin{align*}
& \frac{V_{0}}{V}=1-(1-D) x^{T_{d} / T_{c}} . \tag{185b.7}\\
& \frac{V_{0}}{V}=\frac{D}{x}, \ldots \ldots . \tag{189b.7}
\end{align*}
$$

where:

$$
\begin{equation*}
D=\frac{E_{c}}{V} \tag{192.7}
\end{equation*}
$$

D is practically constant for a given type of tube, when varying V. According to (181.7) and (187.7):

$$
\begin{equation*}
\frac{T_{d}}{T_{c}}=\frac{R_{2}}{R_{1}} \tag{193.7}
\end{equation*}
$$

This is the ratio of the discharging to the charging time constant of the coupling capacitors C_{A} and C_{B}.

Now, the graphical method for solving x from (185b.7) and (189b.7) is as follows:

Draw $\frac{V_{0}}{V}$ according to these equations on the same graph. Then the point of intersection of the two curves gives the required value of x, and half the period of the MV signal is given by:

$$
\begin{equation*}
t_{1}=T_{d} \ln \frac{1}{x} \tag{194.7}
\end{equation*}
$$

as can be derived from (190.7).
The whole period will be:

$$
\begin{equation*}
T=2 t_{1}=2 T_{d} \ln \frac{1}{x} \tag{195.7}
\end{equation*}
$$

and the frequency is:

$$
\begin{equation*}
f=\frac{1}{T}=\frac{1}{2 T_{d} \ln \frac{1}{x}} \tag{196.7}
\end{equation*}
$$

For examples of this graphical solution the reader is referred to the book mentioned in section 7.1.
It appears that, as D is decreased and T_{d} / T_{c} increased, V_{0} more and more closely approaches V.

In practice, for $D<0,1$ and $\frac{T_{d}}{T_{c}}>1$, the approximation $V_{0}=V$ is valid. In that case, (189b.7) simplifies to:
$x=D$, and the following approximate formulae for the MV period and frequency hold:

$$
\begin{align*}
& T=2 T_{d} \ln \frac{1}{D} \tag{197.7}\\
& f=\frac{1}{2 T_{d} \ln \frac{1}{D}} \tag{198.7}
\end{align*}
$$

7.4.2.2. Waveform of the symmetrical AMV signal

The most important quantities, next to the frequency, which we like to know, are the changes in anode and grid voltages of both tubes.

These can be derived from the voltage changes across the coupling capacitors C_{A} and C_{B}. From fig. 45.7 it can be seen that for the first half-period the voltage of tube A is equal to $V_{C A}$; so, according to (184.7):

$$
\begin{equation*}
V_{A,}\left(0-t_{1}\right)=V_{C A}=V-\left(V-E_{c}\right) e^{-t / T_{c}} \tag{199.7}
\end{equation*}
$$

During the second half-period this anode voltage is, according to fig. 46.7 , given by:

$$
\begin{equation*}
V_{A_{A}}\left(t_{1}-2 t_{1}\right)=0 . \tag{200.7}
\end{equation*}
$$

The grid voltage changes of tube B are:
for the first half period (see fig. 45.7):

$$
\begin{equation*}
V_{G B}\left(0-t_{1}\right)=0 \tag{201.7}
\end{equation*}
$$

for the second half period, according to fig. 46.7 and equation (188.7):

$$
\begin{equation*}
V_{G B}\left(t_{1}-2 t_{1}\right)=-V_{C A}=-V_{0} e^{-t / T_{d}} \tag{202.7}
\end{equation*}
$$

Because of the symmetrical properties of the circuit, the voltage changes across capacitor C_{B} will be equal to those across C_{A}, but shifted in time over half a period ($t_{1} \mathrm{sec}$).

So, during the first half period:

$$
\begin{equation*}
V_{C_{B}}\left(0-t_{1}\right)=V_{0} e^{-t / T_{d}} \tag{203.7}
\end{equation*}
$$

and during the second half period:

$$
\begin{equation*}
V_{C_{B}}\left(t_{1}-2 t_{1}\right)=V-\left(V-E_{c}\right) e^{-t / T_{c}} \tag{204.7}
\end{equation*}
$$

Then it is easy to see that:

$$
\begin{align*}
& V_{A_{B}}\left(0-t_{1}\right)=0 \tag{205.7}\\
& V_{A_{B}}\left(t_{1}-2 t_{1}\right)=V-\left(V-E_{c}\right) e^{-t / T_{c}} \tag{206.7}\\
& V_{G_{A}}\left(0-t_{1}\right)=-V_{0} e^{-t / T_{d}} \tag{207.7}\\
& V_{G_{A}}\left(t_{1}-2 t_{1}\right)=0 \tag{208.7}
\end{align*}
$$

In fig. 47.7 the various waveforms have been represented, namely:

			tio	(184.7)	and	(188.7)
$V_{C_{B}}$	"	"	"	(203.7)	and	(204.7)
$V_{A_{\Delta}}$	"	"	"	(199.7)	and	(200.7)
$V_{G_{A}}$	"	"	"	(207.7)	and	(208.7)
$V_{A_{B}}$	"	"	"	(205.7)	and	(206.7)
$V_{G_{B}}$	"	"	"	(201.7)	and	(202.7)

If the value of x has been determined by graphical methods, as described in the previous section, then from (189a.7) it is found that:

$$
V_{0}=\frac{E_{c}}{x}
$$

The various waveforms are then known. In most practical cases, V_{0} will be approximately equal to V, as already stated.

In the graphs of fig. 47.7, the difference between T_{d} and T_{c} has been chosen to be not very large. Therefore V_{0} differs markedly from V. Should T_{c} be chosen much smaller, then all curves with the subscript T_{c}. would rise much more steeply and attain the V_{0} levelin a much shorter time than t_{1}.

The stationary condition of the AMV will automatically correct this inequality of the two half-periods by taking a higher V_{0} level such that the T_{c}-curves will reach this level at the correct instant $t=t_{1}$.

7.4.2.3. Influence of internal tube resistances

All previous derivations hold only for the case that the internal anodeand grid-resistances of the tubes are negligibly small compared with the circuit resistances. It can easily be

Fig. 47-\%. shown that this is almost always satisfied as far as the internal grid resistance is concerned, but internal anode resistances may assume values up to tens of kilohms. With pentodes we have almost always to take into account the internal resistance below the "knee" of the $I_{a} V_{a}$-characteristic. This is because in the conducting state the tubes always have a grid-to-cathode potential very near to zero, and the anode load resistance will generally be large enough to have a voltage drop across this resistance sufficient to bring the anode-to-cathode voltage below the "knee" value. If this is not so, then the tube is not very suitable as a switching device. With triodes, on the other hand, rather high internal anode resistances may occur. It is therefore worth while to investigate the influence of this internal resistance. First the grid circuit will be considered. In fig. 48.7 the grid current - grid voltage characteristic is represented in a general form. Grid current starts at a negative grid voltage value of about 1 V and increases rapidly for positive values of V_{θ}.

The straight lines l_{1} and l_{2} represent load lines for a certain value of grid leak resistance for D.C. grid-to-cathode bias voltages of 0 and $+V_{c}$ V respectively.

As can be seen from fig. 48.7, the grid-to-cathode ${ }^{\circ}$ voltage ($V_{g_{1}}$ and $V_{g_{2}}$) will not be greatly

Fig. 48-7. influenced by large variations in grid bias voltage V_{c}, and we can assume values always very near to zero (in practice between -1 and $+1 \mathrm{~V})$. The assumption of a zero grid internalresistance implies that the $I_{g} V_{g}$-curve coincides with the vertical I_{g}-axis, thus always giving a zero grid-to-cathode voltage for every load line and bias voltage V_{c}. This approximation can be considered as sufficient to describe practical circumstances.

The influence of the anode internal resistance, however, needs closer examination. For both tubes, the introduction of an internal anode resistance r_{a} changes the equivalent circuits of the AMV (figs 45.7 and

Fig. 49-7.

Fig. 50-7.
46.7) into those depicted in figs 49.7 and 50.7. The situation of fig. 49.7 starts at the instant $t=0$ and ends at $t=t_{1}$. The voltage across capacitor G_{A} at the instant t_{1} is again assumed to be

$$
\begin{equation*}
V_{C_{\Lambda}}\left(t=t_{1}\right)=V_{0} . \tag{209.7}
\end{equation*}
$$

This is, at the same time, the initial value in the situation of fig. 50.7, which lasts a further t_{1} seconds. The valie of $V_{c_{d}}$ in this situation tends to $\frac{r_{a}}{R_{1}+r_{a}} V$, as $t \rightarrow \infty$; so:

$$
\begin{equation*}
V_{C_{\Lambda}}(t=\infty)=\frac{r_{a}}{R_{\mathbf{1}}+r_{a}} V \tag{210.7}
\end{equation*}
$$

Thus, capacitor C_{A} discharges from the initial value V_{0} (at $t=0$ in a new time scale), to an ultimate value $\frac{r_{a}}{R_{1}+r_{a}} V$, according to an exponential time function with a time constant

$$
\begin{equation*}
T_{d .}^{\prime}=C_{A}\left(R_{2}+\frac{R_{1} r_{a}}{R_{1}+r_{a}}\right)=C_{a} R_{2}\left(1+\frac{R_{1} r_{a}}{R_{2}\left(R_{1}+r_{a}\right)}\right)=T_{d}\left(1+\lambda_{a}\right), \tag{211.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
\lambda_{g}=\frac{R_{1} r_{a}}{R_{2}\left(R_{1}+r_{a}\right)} . \tag{212.7}
\end{equation*}
$$

(For the transients, R_{1} and r_{a} may be considered to be in parallel between point A_{A}^{\prime} and the negative H.T. supply lead.)

Hence:

$$
\begin{equation*}
V_{C_{\Lambda}}\left(t_{1}-2 t_{1}\right)=\frac{r_{a}}{R_{1}+r_{a}} V+\left(V_{0}-\frac{r_{a}}{R_{1}+r_{a}} V\right) e^{-t /\left[T_{d}^{\prime}\right.} . \tag{213.7}
\end{equation*}
$$

Representing the parallel combination of R_{1} and r_{a} by a value R_{s},

$$
\begin{equation*}
R_{s}=\frac{R_{1} r_{a}}{R_{1}+r_{a}}, \ldots \tag{214.7}
\end{equation*}
$$

the discharging circuit of C_{A} is given by fig. 51.7. From this circuit it can be easily seen that the change in grid voltage of tube B during the second half of the period is:

Fig. 51-7.

$$
V_{G_{B}}\left(t_{1}-2 t_{1}\right)=-\frac{R_{2}}{R_{2}+R_{s}} \overline{V_{c_{A}}} .
$$

Here $\overline{V_{c, i}}$ represents only the transient component of $V_{C_{A}}$, that is the second term in (213.7), since the D.C. component $\frac{r_{a}}{R_{1}+r_{a}}$ does not affect the voltage across R_{2}. Thus:

$$
\begin{equation*}
V_{G_{B}}\left(t_{1}-2 t_{1}\right)=-\frac{R_{2}}{R_{2}+R_{a}}\left(V_{0}-\frac{r_{a}}{R_{1}+r_{a}} V\right) e^{-t / T_{d}^{\prime}} \tag{215.7}
\end{equation*}
$$

This second half-period lasts t_{1} seconds and ends when $V_{G B}$ attains the value $-E_{c}$, so that t_{1} is defined by the relation:

$$
\begin{equation*}
E_{c}=\frac{R_{2}}{R_{2}+R_{s}}\left(V_{0}-\frac{r_{a}}{R_{1}+r_{a}} V\right) e^{-t_{t} / T_{d}^{\prime}} . \tag{21677}
\end{equation*}
$$

From (213.7) and (216.7) it can be seen that the value of $V_{C_{A}}$ at the end of the second half-period is:

$$
\begin{equation*}
V_{C_{A}}\left(2 t_{1}\right)=\frac{r_{a}}{R_{1}+r_{a}} V+\frac{R_{2}+R_{s}}{R_{2}} E_{c} . \tag{217.7}
\end{equation*}
$$

But this is also its initial value for the first half-period:

$$
\begin{equation*}
V_{C_{\Lambda}}(0)=\frac{r_{a}}{R_{1}+r_{a}} V+\frac{R_{2}+R_{s}}{R_{2}} E_{c}, \tag{218.7}
\end{equation*}
$$

whilst the ultimate value (for $t=\infty$) would be V. So, the time function representing $V_{C_{A}}$ in the first half period is:

$$
\begin{equation*}
V_{C_{A}}\left(0-t_{1}\right)=V-\left\{V-V_{C_{A}}(0)\right\} e^{-t / T_{C}}, \tag{219.7}
\end{equation*}
$$

where $T_{c}=C_{A} R_{1}$, the same value as in previous sections. Substituting (218.7) and (219.7) gives:

$$
\begin{equation*}
V_{C_{\Lambda}}\left(0-t_{1}\right)=V-\left(\frac{R_{1}}{R_{1}+r_{a}} V-\frac{R_{2}+R_{s}}{R_{2}} E_{c}\right) e^{-t / T_{c}} . \tag{220.7}
\end{equation*}
$$

At the instant $t=t_{1}$, this capacitor voltage has attained the value V_{0} :

$$
\begin{equation*}
V_{0}=V-\left(\frac{R_{1}}{R_{1}+r_{a}} V-\frac{R_{2}+R_{s}}{R_{2}} E_{c}\right) e^{-t_{1} / T_{c}} \ldots \tag{221.7}
\end{equation*}
$$

Expression (216.7) can be rearranged as:

$$
\begin{equation*}
\frac{V_{0}}{V}=\lambda_{a}+\left(1+\lambda_{a}\right) \frac{D}{x} \tag{216a.7}
\end{equation*}
$$

and (221.7) as:

$$
\begin{equation*}
\frac{V_{0}}{V}=1-\left\{1-\lambda_{a}-\left(1+\lambda_{g}\right) D\right\} x^{T_{d}^{\prime} / T_{c}}, \ldots \tag{221a.7}
\end{equation*}
$$

where:

$$
\begin{gather*}
\lambda_{a}=\frac{r_{a}}{R_{1}+r_{a}} \ldots . . \tag{222:7}\\
\lambda_{a}=\frac{R_{s}}{R_{2}}=\frac{R_{1} r_{a}}{R_{2}\left(R_{1}+r_{a}\right)} . \tag{223.7}\\
D=\frac{E_{c}}{V} \ldots . . \tag{192.7}\\
x=e^{-t_{1} / T_{d}^{\prime}} \ldots . . \tag{224.7}
\end{gather*}
$$

Expressions (216a.7) and (221a.7) must be compared with expressions (189b.7) and (185b.7) respectively from section 7.4. 2.1, to obtain an idea of the influence of the internal anode resistance r_{a}. Thus it will be seen that, where $(189 \dot{b} .7)$ represents $\frac{V_{0}}{V}$ as a function of x by a hyperbola that is symmetrical with respect to the horizontal and vertical axis, (216a.7) represents a hyperbola shifted upwards by an amount λ_{a} with respect to the horizontal axis.

In addition, instead of D, a slightly larger value $\left(1+\lambda_{g}\right) D$ must be, substituted. In most practical cases, R_{s} will be much smaller than R_{2}, or $\lambda_{g} \ll 1$. Thus the apparent increase of D will be negligibly small. In fig. 52.7, equations (185b.7), (189b.7) (216a.7) and (221a.7) are represented graphically for a simple case, namely for

Fig. 52-7.

$$
T_{d} / T_{c}=1, T_{d}^{\prime} / T_{c}=1, \lambda_{a}=\frac{1}{2} \text { and } D=\frac{1}{10}
$$

Then these equations are as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{V_{0}}{V}=1-0,9 x \\
\frac{V_{0}}{V}=\frac{1}{10 x} \cdot \\
\left\{\begin{array}{l}
\frac{V_{0}}{V}=\lambda_{a}+\left(1+\lambda_{g}\right) \frac{1}{10 x} \\
\frac{V_{0}}{V}=1-\left\{1-\lambda_{a}-\left(1+\lambda_{g}\right) \frac{1}{10}\right\}
\end{array}\right\} . .(221 b .7)
\end{array}\right.
\end{align*}
$$

The influence of λ_{g} has been neglected in the graphs of fig. 52.7. From equations (189b.7) and (185b.7), as well as from (216a.7) and (221a.7), it can be seen that a solution for $x=1$ always occurs (intersection of both curves in fig. 52.7).

This solution, however, has no practical importance, as can easily be shown for the case of zero internal anode resistance; for according to (189.7) and (192.7), $V_{0}=E_{c}$ if $x=1$.

This means that the grid voltages would never exceed the cut-off
value, but only just reach this value, so that the tubes could not be switched from the conducting to the non-conducting state.

Also fig. 52.7 shows that there is always a second point of intersection of both curves. It can be seen that this occurs at practically the same value of $\frac{V_{0}}{V}$, viz. $\frac{V_{0}}{V}=0,9$, but at different values of x. For the curves (185c.7) and (189c.7), the value of x is 0,11 , which is quite near to the chosen value of D.

For the curves (216b.7) and (221b.7) the solution for x is $x=0,25$.
Comparing the two cases, it follows from equation (196.7):
For $r_{a}=0$, the frequency of the AMV signal will be:

$$
f_{0}=\frac{1}{2 T_{d} \ln \frac{1}{0,11}}
$$

For $r_{a}=R_{1}\left(\lambda_{a}=\frac{1}{2}\right)$, the frequency will be:

$$
t_{1}=\frac{1}{2 T_{d}^{\prime} \ln \frac{1}{0,25}}
$$

Now, $T_{d}=T_{d}{ }^{\prime}$, as both $\frac{T_{d}}{T_{c}}$ and $\frac{T_{d}{ }^{\prime}}{T_{c}}$ have been chosen equal to unity;
hence, the ratio:

$$
\frac{t_{1}}{f_{0}}=\frac{\ln \frac{1}{0,11}}{\ln \frac{1}{0,25}}=1,6
$$

It is apparent that the influence of the internal anode resistance is to increase the frequency of the AMV signal, although the charging and discharging time constants have been kept constant.

The value $\frac{T_{d}^{\prime}}{T_{c}}=1$ is rather exceptional in practice, as, in general, $\frac{T_{d}^{\prime}}{T_{c}} \gg 1$, because $\frac{R_{2}}{R_{1}} \gg 1$. If this condition holds, it can easily be shown that in practice $\frac{V_{0}}{V}$ is unity for the point of intersection of the two curves that is of practical importance.

Taking $\frac{V_{0}}{V}=1$ reduces equation (216a.7) to:

$$
1=\lambda_{a}+\left(1+\lambda_{g}\right) \frac{D}{x}
$$

or:

$$
\begin{equation*}
x=\frac{1+\lambda_{g}}{1-\lambda_{a}} D \tag{225.7}
\end{equation*}
$$

and the AMV-frequency is:

$$
\begin{equation*}
f=\frac{1}{2 T_{d}{ }^{\prime} \ln \frac{1-\lambda_{a}}{\left(1+\lambda_{g}\right) D}} \tag{226.7}
\end{equation*}
$$

As must be expected, this expression changes into (198.7) if r_{a} is taken as zero.

Substituting λ_{a} and λ_{g} (see (222.7) and (223.7)), respectively, in (226.7) gives:

$$
\begin{equation*}
t=\frac{1}{2 T_{d}^{\prime} \ln \frac{1}{D\left\{1+r_{a}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\right\}}} \tag{226a.7}
\end{equation*}
$$

In fig. 53.7, curve I represents equation (216a.7) for $\lambda_{a}=0,5, \lambda_{g}=0, D=0,1$ and $T_{d}{ }^{\prime} / T_{c}=2$, whilst curve $I I$ represents equation (221a.7) for the same values of parameters. Curve $I I^{\prime}$ also represents (221a.7), except that the value of $T_{d}{ }^{\prime} \mid T_{c}$ is taken as unity. Thus, curves I and $I I^{\prime}$ correspond with the upper two curves in fig. 52.7. It can be seen from fig. 53.7 that the point of intersection of curves I and $I I^{\prime}\left(\frac{V_{0}}{V}=0,9 ; x=0,25\right)$ shifts to the point $\frac{V_{0}}{V}=0,99, x=0,2$, where curves

Fig. 53-7.
I and $I I$ intersect. The value of x would not have been changed much if it was taken from the intersection of curve I with the horizontal line $\frac{V_{0}}{V}=1$. So, for values of $\frac{T_{d}{ }^{\prime}}{T_{c}} \doteq 2$ and higher, it is a sufficiently good approximation to say that:

$$
V_{0} / V=1
$$

Consequently, equations (225.7), (226.7), (226a.7) are valid for these cases, which cover the majority of practical applications of the A.M.V.

The waveform of the different voltage changes can be derived from the expressions (220.7), (213.7), (215.7).

From fig. 49.7 it can be seen that:

$$
\begin{array}{r}
V_{A_{A}}\left(0-t_{1}\right)=V_{C_{A}}\left(0-t_{1}\right)=V-\left\{\left(1-\lambda_{a}\right) V-\left(1+\lambda_{g}\right) E_{c}\right\} e^{-t / T_{c}}(220 a .7) \\
V_{G_{B}}\left(0-t_{1}\right)=0 \ldots . .
\end{array}
$$

From fig. 50.7:

$$
\begin{aligned}
& V_{A_{A}}\left(t_{1}-2 t_{1}\right)=V_{C_{A}}\left(t_{1}-2 t_{1}\right)+V_{G_{B}}\left(t_{1}-2 t_{1}\right)= \\
& \quad=\lambda_{a} V+\left(V_{0}-\lambda_{a} V\right) e^{-t / T_{d^{\prime}}}-\frac{1}{1+\lambda_{g}}\left(V_{0}-\lambda_{a} V\right) e^{-t / T_{d^{\prime}}},
\end{aligned}
$$

or:

$$
\begin{align*}
& V_{A_{A}}\left(t_{1}-2 t_{1}\right)=\lambda_{a} V+\frac{\lambda_{g}}{1+\lambda_{g}}\left(V_{0}-\lambda_{a} V\right) e^{-t / T_{d}^{\prime}} . \tag{228.7}\\
& V_{G_{B}}\left(t_{1}-2 t_{1}\right)=-\frac{1}{1+\lambda_{g}}\left(V_{0}-\lambda_{a} V\right) e^{-t / T_{d}^{\prime}} \ldots \tag{215.7}
\end{align*}
$$

Because of the symmetrical properties of the AMV, it is clear that:

Fig. 54-7.
$V_{A_{B}}\left(t_{1}-2 t_{1}\right)=V_{A_{A}}\left(0-t_{1}\right)$
$V_{G_{A}}\left(t_{1}-2 t_{1}\right)=0$
$V_{A_{B}}\left(0-t_{1}\right)=V_{A_{A}}\left(t_{1}-2 t_{1}\right)$
$V_{G_{A}}\left(0-t_{1}\right)=V_{G_{B}}\left(t_{1}-2 t_{1}\right)$.
For $\lambda_{a}=\lambda_{g}=0$, expression (220a.7) changes into (199.7), (228.7) into (200.7), and (225.7) into (202.7), as might be expected.

The initial value of $V_{A_{A}}$ for the first half-period is:

$$
\begin{equation*}
V_{A_{A}}(0)=\lambda_{a} V+\left(1+\lambda_{g}\right) E_{c} \tag{229.7}
\end{equation*}
$$

The final value of $V_{A_{\Delta}}$ for the first half-period is: $V_{A_{\Delta}}\left(t_{1_{-}}\right)=V_{0}$, as can be seen from (220a.7) and (221.7). The initial value of $V_{A_{4}}$ for the second half-period is:

$$
V_{A_{d}}\left(t_{1^{+}}\right)=\frac{\lambda_{a}}{1+\lambda_{g}} V+\frac{\lambda_{g}}{1+\lambda_{g}} V_{0} .
$$

The final value of $V_{A_{A}}$ for the second half-period is:

$$
V_{A_{\Delta}}\left(2 t_{1}\right)=\lambda_{a} V+\lambda_{g} E_{c},
$$

as can be seen from (228.7) and (216.7).
From (215.7) it follows:

$$
\begin{gather*}
V_{G_{B}}\left(t_{1}\right)=-\frac{V_{0}-\lambda_{a} V}{1+\lambda_{g}} \\
V_{G_{B}}\left(2 t_{1}\right)=-\frac{V_{0}-\lambda_{a} V}{1+\lambda_{g}} e^{-t_{1} / T_{d^{\prime}}}=-E_{c} \quad \text { (according to } \tag{216.7}
\end{gather*}
$$

In fig. 54.7, $V_{A_{\Lambda}}$ and $V_{G_{A}}$ have been represented graphically.
$V_{G_{A}}$ has the same waveform as $V_{G_{B}}$ shifted in time over a period t_{1} seconds.

A comparison of fig. 54.7 with fig. $47: 7$ shows the influence of the internal anode resistance r_{a}. The amplitudes of the different waveforms have been reduced, whilst the steep negative-going front of the anode voltage waveform is rounded off at its lower part.

7.4.2.4. Influence of a positive grid-bias voltage

Introducing a D.C. positive voltage source V^{\prime} in both grid circuits changes the equivalent circuit diagrams of fig. 49.7 and 50.7 into those of fig. 55.7 and 56.7.

Fig. 55-7.

The complete derivation of the fundamental equations will not be repeated, but following the same reasoning as before, it is easy to arrive at the following expressions:

$$
\begin{equation*}
\frac{V_{0}}{V}=\lambda_{a}-\gamma+\left(1+\lambda_{a}\right) \frac{\gamma+D}{x} . \tag{230.7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{V_{0}}{V}=1-\left\{1-\lambda_{a}-\lambda_{g} \gamma-\left(1+\lambda_{g}\right) D\right\} x^{T_{d}^{\prime} / T_{c}} \ldots . \tag{231.7}
\end{equation*}
$$

These equations may be compared with (216a.7) and (221a.7) respectivily, or with (189b.7) and (85b.7) respectively.

The quantity γ represents the ratio of the grid control voltage V^{\prime} to the H.T. supply voltage V :

$$
\begin{equation*}
\gamma=\frac{V^{\prime}}{V} \tag{232.7}
\end{equation*}
$$

For $\gamma=0$, equations (230.7) and (231.7) change into (216a.7) and (221a.7). If, moreover, λ_{a} and λ_{g} are taken to be zero, equations (230.7), (231.7) change into (1896.7) and (185b) respectivily.

The frequency of the AMV can be found from (230.7) and (231.7) by applying the same graphical procedure as before. Here again there will always be a solution of $x=1$, as can be seen from (230.7) and (231.7), but this has no further practical importance. The other solution will, as a rule, be a value of x rather small with respect to unity, and therefore the term $x^{T_{d}{ }^{\prime} / T_{c}}$ in (231.7) becomes negligible when the ratio $T_{d}{ }^{\prime} / T_{c}$ assumes a value of, say, two or more. This will hold in most practical cases, so that (231.7) simplifies to $\frac{V_{0}}{V}=1$, and consequently (230.7) becomes:

$$
1=\lambda_{a}-\gamma+\left(1+\lambda_{a}\right) \frac{\gamma+D}{x}
$$

or:

$$
\begin{equation*}
\frac{1}{x}=\frac{1+\gamma-\lambda_{a}}{\left(1+\lambda_{a}\right)(\gamma+D)} . \tag{233.7}
\end{equation*}
$$

x was defined by:

$$
x=e^{-t_{1} / T_{d^{\prime}}}(\text { compare with }(224.7)) .
$$

This implies:

$$
t_{1}=T_{d}^{\prime} \ln \frac{1}{x} .
$$

The AMV signal frequency is:

$$
f=\frac{1}{T}=\frac{1}{2 t_{1}}
$$

or:

$$
t=\frac{1}{2 T_{d}{ }^{\prime} \ln \frac{1}{x}} .
$$

Substituting (233.7) yields:

$$
\begin{equation*}
t=\frac{1}{2 T_{d}^{\prime} \ln \frac{1+\gamma-\lambda_{a}}{\left(1+\lambda_{b}\right)(D+\gamma)}}, \tag{234.7}
\end{equation*}
$$

where:

$$
\begin{gathered}
T_{d}^{\prime}=C\left(R_{2}+\frac{R_{1} r_{a}}{R_{1}+r_{a}}\right) \\
\gamma=\frac{V^{\prime}}{V} ; \lambda_{a}=\frac{r_{a}}{R_{1}+r_{a}} ; \lambda_{a}=\frac{R_{1} r_{a}}{R_{2}\left(R_{1}+r_{a}\right)} ; D=\frac{E_{c}}{V} .
\end{gathered}
$$

The waveform of the capacitor and anode and grid voltages can be shown to be as follows:

In the first half-period lasting t_{1} seconds:

$$
\begin{align*}
& V_{C_{A}}=V-\left\{\left(1-\lambda_{a}\right) V-\lambda_{g} V^{\prime}-\left(1+\lambda_{g}\right) E_{c}\right\} e^{-t / / T_{c}} . \tag{235.7}\\
& V_{G_{B}}=0 \\
& V_{A_{\Delta}}=V_{C_{A}}=V-\left\{\left(1-\lambda_{a}\right) V-\lambda_{g} V^{\prime}-\left(1+\lambda_{g}\right) E_{c}\right\} e^{-t / T_{c}} \tag{236.7}
\end{align*}
$$

The initial values are:

$$
\begin{align*}
& V_{G_{B}}(0)=0 \\
& V_{C_{A}}(0)=V_{A_{A}}(0)=\lambda_{a} V+\lambda_{g} V^{\prime}+\left(1+\lambda_{g}\right) E_{c} \tag{237.7}
\end{align*}
$$

The final values are:

$$
\begin{align*}
& V_{G_{B}}\left(t_{1-}\right)=0 \tag{238.7}\\
& V_{C_{A}}\left(t_{1-}\right)=V_{A_{\Delta}}\left(t_{1-}\right)=V_{0} \tag{239.7}
\end{align*}
$$

In the second half-period lasting another t_{1} seconds:

$$
\begin{align*}
& V_{C_{A}}=\lambda_{a} V-V^{\prime}+\left(V_{0}-\lambda_{a} V+V^{\prime}\right) e^{-t / T_{d^{\prime}}} . \tag{240.7}\\
& V_{G_{B}}=V^{\prime}-\frac{1}{1+\lambda_{g}}\left(V_{0}-\lambda_{a} V+V^{\prime}\right) e^{-t / T_{d^{\prime}}} . \tag{241.7}\\
& V_{A_{A}}=\lambda_{a} V+\frac{\lambda_{g}}{1+\lambda_{g}}\left(V_{0}-\lambda_{a} V+V^{\prime}\right) e^{-t / T_{d^{\prime}}} . \tag{242.7}
\end{align*}
$$

The initial values are:

$$
\begin{align*}
& V_{C_{A}}\left(t_{1}+\right)=V_{0} \ldots \tag{243.7}\\
& V_{G_{B}}\left(t_{1}+\right)=\frac{\lambda_{g} V^{\prime}+\lambda_{a} V-V_{0}}{1+\lambda_{g}} \tag{244.7}\\
& V_{A_{A}}\left(t_{1}+\right)=\frac{\lambda_{g}\left(V_{0}+V^{\prime}\right)+\lambda_{a} V}{1+\lambda_{g}} \tag{245.7}
\end{align*}
$$

The final values are:

$$
\begin{align*}
& V_{C_{\Delta}}\left(2 t_{1}\right)=\lambda_{a} V+\lambda_{g} V^{\prime}+\left(1+\lambda_{g}\right) E_{c}=V_{C_{A}}(0) \tag{246.7}\\
& V_{G_{B}}\left(2 t_{1}\right)=-E_{c} \cdots \cdots \cdots \cdots \cdot \tag{247.7}\\
& V_{A_{\Delta}}\left(2 t_{1}\right)=\lambda_{a} V+\lambda_{g}\left(V^{\prime}+E_{c}\right) . \cdots \cdots \cdots \cdot \tag{248.7}
\end{align*}
$$

Comparing the amplitudes of the anode and grid voltages with those of fig. 54.7, it can be seen that the amplitude of the grid voltage is diminished by an amount $\frac{\lambda_{g}}{1+\lambda_{g}} V^{\prime}$, whilst that of the anode voltage is diminished by an amount $\lambda_{g} V^{\prime}$. The general aspect of the waveforms will be the same as depicted in fig. 54.7. Furthermore, it should be noted that the ultimate value of the grid voltage in the first half of the period will not be zero (see dotted curve in $V_{G_{\Delta}}$ graph, fig. 54.7, following the instant t_{1}), but V^{\prime}. So the angle of intersection between the exponential curve (T_{d}) and the cut-off level (dash-dot line) will be larger with a certain control voltage V^{\prime} than without. The larger this angle, the better will be the frequency stability of the AMV signal, since the shift of the intersection point because of interference will be smaller for larger angles. Therefore, from the point of view of frequency stability, it is better to use a high positive grid-bias voltage with a larger time constant, $T_{d}{ }^{\prime}$, than no bias at all with a smaller $T_{d}{ }^{\prime}$, for generating the same frequency.

7.4.3. THE ASYMMETRICAL AMV

The fundamental circuit diagram is that of fig. 57.7. The period of the AMV signal now consists of two quasi-stable states with a different

Fig. 57-7. duration. The first state is assumed to last t_{1} seconds, the second t_{2} seconds, the total period T thus being $T=t_{1}+t_{2}$.

In fig. 58.7, the first state (from 0 to t_{1} seconds) is represented in an equivalent diagram. The second state (from t_{1} to $t_{1}+t_{2}$ seconds) (or in a new time scale from 0 to t_{2}
seconds) is represented in fig. 59.7.
The final value at the instant t_{1} of the voltage across C_{A} in fig. 58.7 is assumed to be:

$$
\begin{equation*}
V_{C_{\Lambda}}\left(t_{1}\right)=V_{O_{\Lambda}}, . \tag{249.7}
\end{equation*}
$$

This is, at the same time, the initial value for the circuit of fig. 59.7. The ultimate value for infinite time would be:

Fig. 58-7.

Fig. 59-7.

$$
\begin{equation*}
V_{C_{A}}(\infty)=\frac{r_{a_{\Lambda}}}{r_{a_{\Lambda}}+R_{1_{A}}} V-V_{B}^{\prime} \tag{250.7}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{C_{A}}(\infty)=\lambda_{a A} V-V_{B}^{\prime}, \ldots . . . \tag{251.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
\lambda_{a_{\Lambda}}=\frac{r_{a_{A}}}{r_{a_{A}}+R_{1_{A}}} \tag{252.7}
\end{equation*}
$$

During this second part of the period, the capacitor C_{A} will discharge with a time constant

$$
\begin{equation*}
T_{d_{A}}^{\prime}=C_{A}\left(R_{2 B}+\frac{r_{a_{A}} R_{1_{\Lambda}}}{r_{a_{A}}+R_{1_{A}}}\right), \tag{253.7}
\end{equation*}
$$

according to the exponential function:

$$
\begin{equation*}
V_{C_{A}}=\lambda_{a_{A}} V-V_{B}^{\prime}+\left(V_{o_{A}}-\lambda_{a_{A}} V+V_{B}^{\prime}\right) e^{-t / T_{d_{A}}} \tag{254.7}
\end{equation*}
$$

The last right-hand component (the transient component) of (254.7) causes a current to flow through the grid leak $R_{2 \beta}$:

$$
I_{2 B}=\frac{1}{R_{2 B}+\frac{r_{a_{\Lambda}} R_{1_{\Lambda}}}{r_{a_{\Lambda}}+R_{1_{\Lambda}}}}\left(V_{o_{\Lambda}}-\lambda_{a_{A}} V+V_{B}^{\prime}\right) e^{-t / T_{d_{d}}^{\prime}}
$$

or a voltage drop appears across $R_{2 B}$:

$$
V_{R_{2 B}}=-\frac{R_{2 B}}{R_{2 B}+\frac{r_{a_{\Lambda}} R_{1 \Lambda}}{r_{a \Lambda}+R_{1_{\Lambda}}}}\left(V_{o_{\Lambda}}-\lambda_{a_{\Lambda}} V+V_{B}^{\prime}\right) e^{-t / T_{d_{A S}}^{\prime}}
$$

Introducing

$$
\begin{equation*}
\lambda_{o \Lambda}=\frac{r_{a_{\Lambda}} R_{1_{\Lambda}}}{R_{2 B}\left(r_{a_{\Lambda}}+R_{1_{\Lambda}}\right)} \tag{255.7}
\end{equation*}
$$

gives:

$$
V_{R_{2_{B}}}=-\frac{1}{1+\lambda_{0_{A}}}\left(V_{O_{A}}-\lambda_{a_{\Lambda}} V+V_{B}^{\prime}\right) e^{-t \mid T_{d \Lambda}^{\prime}},
$$

and the total voltage on the grid of tube B will be:

$$
\begin{equation*}
V_{G_{B}}=V_{B}^{\prime}-\frac{1}{1+\lambda_{i_{A}}}\left(V_{O_{A}}-\lambda_{a_{\Lambda}} V+V_{B}^{\prime}\right) e^{-t / T_{d_{A}}^{\prime}} . \tag{256.7}
\end{equation*}
$$

As soon as this voltage reaches the cut-off value $-E_{C_{B}}$ of tube B, the AMV switches from the state shown in fig. 59.7 to that in fig. 58.7. This occurs at the instant when $t=t_{2}$; so:

$$
\begin{equation*}
-E_{C_{B}}=V_{B}^{\prime}-\frac{1}{1+\lambda_{g_{A}}}\left(V_{o_{A}}-\lambda_{a_{A}} V+V_{B}^{\prime}\right) e^{-t_{2} / T_{d_{A}}^{\prime}}, . \tag{257.7}
\end{equation*}
$$

or:

$$
\begin{equation*}
\left(V_{o_{A}}-\lambda_{a_{A}} V+V_{B}^{\prime}\right) e^{-t_{t} / T_{d A}^{\prime}}=\left(1+\lambda_{a_{A}}\right)\left(E_{C_{B}}+V_{B}^{\prime}\right) . \tag{258.7}
\end{equation*}
$$

From (258.7) and (254.7) it can be seen that the final value of $V_{C_{A}}$ in the second part of the period will be:

$$
\begin{equation*}
V_{C_{A}}\left(t_{2}\right)=\lambda_{a_{A}} V-V_{B}^{\prime}+\left(1+\lambda_{\theta_{A}}\right)\left(E_{C_{B}}+V_{B}^{\prime}\right) \tag{259.7}
\end{equation*}
$$

This is also the initial value for the first part of the period (fig. 58.7).

$$
V_{C_{\Lambda}}(0)=V_{C_{\Lambda}}\left(t_{2}\right)
$$

The ultimate value for infinite time would be:

$$
\begin{equation*}
V_{c_{\boldsymbol{A}}}(\infty)=V \tag{260.7}
\end{equation*}
$$

The capacitor C_{A} is thus charged with a time constant

$$
\begin{equation*}
T_{C_{A}}=C_{A} R_{1 A}, \tag{261.7}
\end{equation*}
$$

according to an exponential function:

$$
V_{c_{A}}=V-\left\{V-V_{c_{\Lambda}}(0)\right\} e^{-t / T_{\sigma_{A}}},
$$

or:

$$
V_{C_{A}}=V-\left\{V\left(1-\lambda_{a_{A}}\right)+V_{B}^{\prime}-\left(1+\lambda_{g_{A}}\right)\left(E_{C_{B}}+V_{B}^{\prime}\right\} e^{-t / T_{o_{A}}},\right.
$$

or:

$$
\begin{equation*}
V_{C_{A}}=V-\left\{\left(1-\lambda_{a_{A}}\right) V-\lambda_{\theta_{A}} V_{B}^{\prime}-\left(1+\lambda_{\theta_{A}}\right) E_{C_{B}}\right\} e^{-t / / T_{C_{A}}} . \tag{262.7}
\end{equation*}
$$

At the instant $t=t_{1}, V_{C_{A}}$ reaches the value $V_{O_{A}}$; thus:

$$
\begin{equation*}
V_{O_{A}}=V-\left\{\left(1-\lambda_{a_{A}}\right) V-\lambda_{a_{A}} V_{B}^{\prime}-\left(1+\lambda_{a_{A}}\right) E_{C_{B}}\right\} e^{-t_{1} / T_{o_{A}}} . \tag{263.7}
\end{equation*}
$$

From equations (258.7) and (263.7) the unknown voltage $V_{O_{A}}$ can be eliminated, giving one relation between t_{1} and t_{2}.

Considering the voltage changes across capacitor C_{B} during. the whole AMV signal period will give similar expressions as (258.7) and (263.7); only the indices A and B and t_{1} and t_{2} have been interchanged. From these expressions the unknown voltage $V_{O_{B}}$ can be eliminated, giving another relation between t_{1} and t_{2}. The complete derivation will be omitted here, giving only the final result:

$$
\begin{align*}
& y=\frac{\left(1+\lambda_{g A}\right)\left(D_{B}+\gamma_{B}\right)}{1-\lambda_{a_{A}}+\gamma_{B}-\left\{\left(1-\lambda_{a_{A}}-\lambda_{g_{A}} \gamma_{B}-\left(1+\lambda_{g_{A}}\right) D_{B}\right\} x^{T_{d}{ }^{\prime} / T_{C_{A}}}\right.} \tag{264.7}\\
& x=\frac{\left(1+\hat{\lambda}_{g B}\right)\left(D_{A}+\gamma_{A}\right)}{1-\lambda_{a B}+\gamma_{A}-\left\{1-\lambda_{a B}-\lambda_{g B} \gamma_{A}-\left(1-\lambda_{g B}\right) D_{A}\right\} y^{T_{d A} / T_{c_{B}}}} \tag{265.7}
\end{align*}
$$

where:

$$
\begin{aligned}
& x=e^{-t_{1} / T_{d_{B}}} \\
& y=e^{-t_{I} / T_{d_{A}}} \\
& T_{d B}^{\prime}=C_{B}\left(R_{2 A}+\frac{r_{a_{B}} R_{1_{B}}}{r_{a_{A}}+R_{1 B}}\right) ; T_{d_{A}}^{\prime} \text { see (253.7) } \\
& T_{C_{B}}=C_{B} R_{1_{B}} ; T_{C_{A}} \text { see (261.7) } \\
& \lambda_{g_{A}} \text { see }(255.7) ; \lambda_{g_{B}}=\frac{r_{a_{B}} R_{1_{B}}}{R_{2_{A}}\left(r_{a_{B}}+R_{1_{B}}\right)} \\
& \lambda_{a_{A}} \text { see }(252.7) ; \lambda_{a_{B}}=\frac{r_{a_{B}}}{r_{a_{B}}+R_{1 B}} \\
& D_{A}=\frac{E_{C_{A}}}{V} ; D_{B}=\frac{E_{C_{B}}}{V} \\
& \gamma_{A}=\frac{V_{A}^{\prime}}{V} ; \gamma_{B}=\frac{V_{B}^{\prime}}{V}
\end{aligned}
$$

Now, t_{1} and t_{2}, or x and y, can be solved graphically by plotting, in the same graph, y as a function of x according to (264.7), and x as a function of y according to (265.7). The point of intersection of both curves gives the solution for x and y. There will always be a solution $x=1, y=1$, which has no practical significance. The other solution will always be of such values that x and y are small compared with unity, so that it is
worthwhile to examine the power of x in (264.7) and that of y in (265.7). If these powers are sufficiently larger than unity, the last term in both denominators can be neglected. These powers are:

$$
\begin{aligned}
& \frac{T_{d B}^{\prime}}{T_{C_{A}}} \approx \frac{C_{B}}{C_{A}} \cdot \frac{R_{2_{A}}}{R_{1_{A}}} \text { and } \\
& \frac{T_{d_{A}}^{\prime}}{T_{C_{B}}} \approx \frac{C_{A}}{C_{B}} \cdot \frac{R_{2_{B}}}{R_{1_{B}}} \text { respectively. }
\end{aligned}
$$

Generally, the grid leak resistors $R_{2_{A}}$ and $R_{2_{B}}$ will be much larger than the anode resistors $R_{1_{A}}$ and $R_{1_{B}}$. Consequently, the powers will be sufficiently large if C_{B} and C_{A} do not differ by a large amount. The asymmetry of the MV will mostly be determined by these capacitance values. A ratio $\frac{C_{A}}{C_{B}}$ of $\frac{1}{10}$ or 10 will not be exceeded very often. A ratio of $\frac{R_{2}}{R_{1}}$ larger than 10 will generally be used, so that, in the majority of practical applications, the powers of x and y may be neglected. Then expressions (164.8) and (265.7) are simplified to the following expressions:

$$
\begin{align*}
& y=\frac{\left(1+\lambda_{g_{A}}\right)\left(D_{B}+\gamma_{B}\right)}{1-\lambda_{a_{A}}+\gamma_{B}}, \ldots . . .(264 a .7) \\
& x=\frac{\left(1+\lambda_{g_{B}}\right)\left(D_{A}+\gamma_{A}\right)}{1-\lambda_{a_{B}}+\gamma_{A}}, \ldots . . .(265 a .7) \tag{265a.7}
\end{align*}
$$

and the frequency is explicitly defined by:

$$
\begin{align*}
& f=\frac{1}{T}=\frac{1}{t_{1}+t_{2}} \\
& t_{1}=T_{d_{B}}^{\prime} \ln \frac{1}{x}, t_{2}=T_{d_{A}}^{\prime} \ln \frac{1}{y} . \ldots \tag{266.7}\\
& f=\frac{1}{T_{d_{B}}^{\prime} \ln \frac{1-\lambda_{a_{B}}+\gamma_{A}}{\left(1+\lambda_{g B}\right)\left(D_{A}+\gamma_{A}\right)}+T_{d_{A}}^{\prime} \ln \frac{1-\lambda_{a_{A}}+\gamma_{B}}{\left(1+\lambda_{g_{A}}\right)\left(D_{A}+\gamma_{B}\right)}} \tag{267.7}
\end{align*}
$$

In practice, the tubes will often be identical, for instance two halves of a double triode or pentode, whilst the grid bias voltages V_{A}^{\prime} and V_{B}^{\prime} are taken from the same source. Then, $D_{A}=D_{B}=D$ and $\gamma_{A}=\gamma_{B}=\gamma$.

Moreover, the resistances in both halves of the AMV will often be the same, i.e. $R_{1_{A}}=R_{1_{B}}=R_{1}$ and $R_{2_{A}}=R_{2_{B}}=R_{2}$. Then:

$$
\lambda_{a_{A}}=\lambda_{a_{B}}=\lambda_{a} \text { and } \lambda_{g_{A}}=\lambda_{g_{B}}=\lambda_{g}
$$

and expression (267.7) is simplified to:

$$
\begin{equation*}
t=-\frac{1}{\left(T_{d_{A}}^{\prime}+T_{d_{B}}^{\prime}\right) \ln \frac{1-\lambda_{a}+\gamma}{\left(1+\lambda_{g}\right)(D+\gamma)}} \tag{268.7}
\end{equation*}
$$

Once x and y have been defined, either graphically or explicitly, the voltages $V_{O_{A}}$ and $V_{O_{B}}$ can be determined, and the waveform of the different anode and grid voltages can be calculated.

If, in expression (268.7), the time constants $T_{d_{A}}^{\prime}$ and $T_{{ }_{d}}^{\prime}$ are equal, this expression is identical to (234.7), so that the AMV is symmetrical again.

7.4.4. CONCLUSION

In section 7.4 a graphical method of determining the frequency and waveform of an astable multivibrator signal is presented. In most practical cases simplifications are possible, to give explicit expressions for those quantities. The influence of internal anode resistance of the tubes is taken into account, whilst it is shown that the influence of internal grid resistance will, to a good approximation, always be negligible.

Summarizing the explicit expressions for the frequency gives the following:
a. Asymmetrical AMV with positive D.C. grid bias voltage:

$$
\begin{align*}
& f=\frac{1}{T_{d_{B}} \ln \frac{1-\lambda_{\theta_{B}}+\gamma_{A}}{\left(1+\lambda_{\theta B}\right)\left(D_{A}+\gamma_{A}\right)}+T_{{ }_{d A}} \ln \frac{1-\lambda_{a_{A}}+\gamma_{B}}{\left(1+\lambda_{g_{A}}\right)\left(D_{B}+\gamma_{B}\right)}} . \tag{267.7}\\
& \lambda_{a_{11}}=\frac{r_{a_{A}}}{r_{a_{4}}+R_{1_{4}}} \\
& \lambda_{a_{B}}=\frac{r_{a_{B}}}{r_{a_{B}}+R_{1_{B}}} \\
& \lambda_{g_{\Lambda}}=\frac{R_{1 \Lambda}}{R_{2 B}} \lambda_{a_{A}} \\
& \lambda_{O_{B}}=\frac{R_{1 B}}{R_{2 A}} \lambda_{a_{B}}
\end{align*}
$$

$$
\begin{aligned}
T_{d_{A}}^{\prime} & =T_{d_{A}}\left(1+\lambda_{g_{A}}\right) \\
T_{d_{B}}^{\prime} & =T_{d_{B}}\left(1+\lambda_{o_{B}}\right) \\
T_{d_{A}} & =C_{A} R_{2 B} \\
T_{d_{B}} & =C_{B} R_{2_{A}} \\
\gamma_{A} & =\frac{V_{A}^{\prime}}{V} \\
\gamma_{B} & =\frac{V_{B}^{\prime}}{V} \\
D_{A} & =\frac{E_{c A}}{V} \\
D_{B} & =\frac{E_{c B}}{V}
\end{aligned}
$$

b. The quantity γ is a measure of the grid control voltage. If grid leaks are returned to the cathode (negative H.T. line), γ is zero and (267.7) is simplified to:

$$
\begin{equation*}
t=\frac{1}{T_{d_{B}}^{\prime} \ln \frac{1-\lambda_{a_{B}}}{\left(1+\lambda_{g_{B}}\right) D_{A}}+T_{d_{A}}^{\prime} \ln \frac{1-\lambda_{a_{A}}}{\left(1+\lambda_{\theta_{A}}\right) D_{B}}} \tag{269.7}
\end{equation*}
$$

c. If corresponding quantities with indices A and B are equal, the AMV becomes symmetrical, and the frequency in the case of positive grid bias is:

$$
\begin{equation*}
t=\frac{1}{2 T_{d}\left(1+\lambda_{g}\right) \ln \frac{1-\lambda_{a}+\gamma .}{\left(1+\lambda_{g}\right)(D+\gamma)}} . \tag{270.7}
\end{equation*}
$$

(see (234.7)).
Without positive grid bias:

$$
\begin{equation*}
t=\frac{1}{2 T_{d}\left(1+\lambda_{a}\right) \ln \frac{1-\lambda_{a}}{\left(1+\lambda_{a}\right) D}} \tag{271.7}
\end{equation*}
$$

(see (226.7))

7.4.5. EXPERIMENTAL CHECK OF THE THEORY

A symmetrical astable multivibrator circuit according to the circuit of fig. 44.7 has been investigated. The only difference was in the con-
nection of the bottom of the grid leak resistances R_{2}. These were not connected to the negative terminal, but to the positive terminal of the H.T. supply. In this case we have to take into account a control voltage V^{\prime} equal to the H.T. supply voltage V, so that $\gamma=\frac{V^{\prime}}{V}=1$. The ratio of the grid-leak resistance to the anode-load resistance was always sufficiently large to permit expression 234.7 to be used with reasonable accuracy to determine the frequency.

The tube used was a double triode type E 90 CC . The negative value of the grid voltage at which the anode current falls to $100 \mu \mathrm{~A}$ was rather arbitrarily chosen as the cut-off voltage, E_{c}. The mean value of E_{c} for 10 tubes was found to be 10.5 V , with a maximum value of 11.5 V and a minimum of 9.2 V . The mean value of the frequency of these ten tubes used in the circuit, was 1006 cycles per second, with a maximum value of $1060 \mathrm{c} / \mathrm{s}$ and a minimum value of $970 \mathrm{c} / \mathrm{s}$. The circuit components were:

Anode load	$R_{1}=10 \cdot 1 \mathrm{k} \Omega$
Grid leak	$R_{2}=101 \mathrm{k} \Omega$
Coupling capacitor	$C=10,000 \mathrm{pF}$

Substituting these values and $E_{c}=10.5 \mathrm{~V}, V=200 \mathrm{~V}, r_{a}=4 \mathrm{k} \Omega$, $\gamma=1$ in expression (234.7) gives a value of 1033 cycles per second for the frequency. This has a deviation of 2.7% from the measured value.

The influence of several circuit components has been calculated and measured. The results are given in the following table. The H.T. supply voltage throughout is $V=200 \mathrm{~V}$, with r_{a} taken as $4 \mathrm{k} \Omega$ and E_{c} chosen to be 10.5 V .

R_{1} $\left(R_{2}\right.$ $(\mathrm{k} \Omega)$	C $(\mathrm{k} \Omega)$	(mpF)	measured) $(\mathrm{c} / \mathrm{s})$	f (calculated) $(\mathrm{c} / \mathrm{s})$	Deviation $(\%)$
$10 \cdot 1$	101	10	1006	1033	2.7
$10 \cdot 1$	101	15	690	689	0
$10 \cdot 1$	101	$5 \cdot 6$	1705	1840	7.8
$10 \cdot 1$	560	10	191	182	-4.6
$10 \cdot 1$	1000	10	109	102	-6.3
$5 \cdot 7$	101	10	1134	1237	9.0
$15 \cdot 1$	101	10	933	955	$2 \cdot 3$

The waveforms of a few of these multivibrator circuits have been given in the oscillograms of figs 60.7 to 63.7. In figs 60.7 and 61.7
respectively, the changes of grid and anode voltage are shown. These waveforms should be compared with the calculated ones given in fig. 54.7. The circuit conditions were as follows: - Tube E 90 CC with $r_{a}=4 \mathrm{k} \Omega$, $\mathrm{E}_{\mathrm{c}}=10.5 \mathrm{~V}(V=200 \mathrm{~V})$. Coupling capacitors 10 kpF ; anode load resistors $R_{1}=10.1 \mathrm{k} \Omega$; grid leak resistors $R_{2}=1 \mathrm{M} \Omega$. The frequency measured which can be taken from the table above, amounts to $109 \mathrm{c} / \mathrm{s}$. Thus, the duration of one complete cycle is practically 10 msec . The ratio $\frac{T_{d}^{\prime}}{T_{c}}$, which is $\frac{R_{2}}{R_{1}}$ approximately, is large here (about 100), so that the anode voltage V_{0} of the non-conducting tube will reach the value of the H.T. supply voltage V within a fairly short time. It can be seen from fig. 61.7 that the anode voltage in the non-conducting half-period does in fact reach "saturation", that is, the value V, in a time small compared with the total period of the signal.

Fig. 60-7.

Fig. 62-7.

Fig. 61-7.

Fig. 63-7.

Fig. 64-7.

This time is defined by T_{c}, the period mainly by T_{d}. The case of figs 62.7 and 63.7 is more similar to the pictures of fig. 54.7, and the ratio $\frac{T_{d}}{T_{c}}$ is about 7. Details of circuit components and the valve are: E 90 CC with $r_{a}=4 \mathrm{k} \Omega, E_{c}=10.5 \mathrm{~V}(V=200 \mathrm{~V})$. Coupling capacitors $C=10,000 \mathrm{pF}$, anode load resistors $R_{1}=15 \cdot 1 \mathrm{k} \Omega$, grid-leak resistors $R_{2}=101 \mathrm{k} \Omega$. The frequency measured is $933 \mathrm{c} / \mathrm{s}$, so that the duration of one complete cycle is 1.07 msec .

The general shape of the oscillograms is easily recognized to be that of the calculated waveforms of fig. 54.7. One deviation can be clearly distinguished. This is caused by the fact that the internal grid resistance of the tubes is not zero, as was assumed in the calculations, but has a finite, though small, value in practice. This causes a kind of overshoot in the grid-voltage change of the tube becoming conductive. This overshoot is also to be seen amplified in the anode voltage at the bottom of the steeply falling edge. This "negative overshoot" again appears, conducted through the coupling capacitor, at the grid of the other tube which is suddenly cut off. In fig. 64.7, these phenomena have been identified by dotted curves.

It is possible that the effect of finite anode internal resistance (rounding uff the otherwise sharp edge at the bottom of the negative-going part of the anode voltage) nearly compensates for the overshoot effect of the finite grid internal resistance. This is shown in the oscillograms of figs 62.7 and 63.7. In the oscillograms of figs 60.7 and 61.7 , on the other hand, the overshoot effect is clearly predominating.

The values of V_{1} and V_{2} from fig. 64.7 must be, according to fig. 54.7:

$$
\begin{aligned}
& V_{1}=E_{c} \text { and } \\
& V_{2}=\frac{V_{0}-\lambda_{a} V}{1+\lambda_{g}} \text { respectively. }
\end{aligned}
$$

Evaluating these voltages for the multivibrator circuits of figs 60.7 and 62.7 gives a good agreement between the calculated and the measured values shown in the oscillograms. The ratio of V_{3} to V_{4} could be calculated and measured from the anode voltage waveform (see fig. 64.7). The agreement is less here, because it is more difficult to eliminate the disturbing effect of the overshoot of grid voltage.

8. BLOCKING-OSCILLATOR CIRCUITS

8.1. INTRODUCTION

Another well-known and frequently used circuit in pulse technique is the blocking oscillator. There are two main types to be distinguished, comparable with the monostable and astable multivibrators, viz. the triggered and the free-running blocking oscillators.

The point of comparison is that both circuit types can be described as consisting principally of a vacuum amplifier tube with strong positive feed-back; the point of difference is that with multivibrators an extra vacuum tube is used to feed back the signal in the proper polatity for regeneration, whereas with blocking oscillators a transformer serves this purpose.

The analysis of blocking-oscillator operation can be carried out according to the principles treated in foregoing sections, but in general the results are less accurate than with the multivibrator circuits. This is due to the fact that in general it is easier to avoid excessive stray inductance than stray capacitance in electronic circuits. The multivibrator circuits consist of resistances and capacitances only, and extra stray capacitances generally do not complicate the calculations of network response. Blocking-oscillator circuits, however, combine resistances and inductances; taking into account stray capacitances will generally increase the order of the differential equations to be solved in analysing the circuit behaviour. The above points should be remembered in the following analysis of the blocking-oscillator operation, where stray capacitances are not taken into account except when this is unavoidable.

Experience has shown, however, that the results of the relatively simple analysis can be useful in designing blocking oscillators for special purposes and in predicting their output-pulse shapes. Moreover, a good idea of the order of magnitude of anode- and grid dissipation can be gained.

Because of the flexibility of transformer coupling, several kinds of blocking-oscillator circuit can be designed. Positive feed-back can be attained by magnetically coupling either the anode circuit with the grid circuit, or the anode circuit with the cathode circuit, or the cathode circuit with the grid circuit.

The analysis is essentially the same for all three modes of feed-back, so that only one will be treated in detail; for the others the final results will be given.

The pulse duration of a monostable multivibrator is dependent on a time constant defined by the product of a resistance value and a capacitance value. With a blocking oscillator it is dependent on a time constant which is the quotient of a self-inductance value and a resistance value.

The frequency of an astable multivibrator is determined by $R C$-time constants. The treatment of the free-running blocking oscillator will be restricted to an analysis of the case where the current pulse through the vacuum tube has a very short duration with respect to the repetition period of the pulses; some reference will also be made to other possible cases.

8.2. ANALYSIS OF TRIGGERED BLOCKING OSCILLATOR

As mentioned in the preceding section, one type of triggered blocking oscillator will be analysed in detail. This type is the one using positive feed-back from the anode to the grid circuit. Its basic circuit is represented in fig. 1-8. It consists of tube I, whose anode is supplied from

Fig. 1.8.

Fig. 2.8.
a source $+V_{b}$ volts via the primary winding (n_{1} turns) of a transformer. The grid of tube I is connected via the secondary winding (n_{2} turns) to a source of - $V_{g 0}$ volts, which is sufficiently negative to keep the tube cut off if not triggered. A cathode resistor R_{k} is also incorporated. One way of triggering is by means of tube II, which is also normally cut off and only starts to conduct during a positive trigger pulse applied to the
grid. This induces in the transformer windings voltage pulses of such polarity as to make tube I conduct. Of course, other ways of triggering are also possible. For analysing the triggering process, the quiescent state equivalent circuit of fig. 2-8 is taken as a starting point.

Switches S_{G} and S_{A} are open and the voltages across them are $-V_{G_{0}}$ and $+V_{o}$ respectively. The effect of a trigger pulse is to close these switches at, say, the instant $t=0$. In foregoing sections we calculated the effect of suddenly closing a switch. One has to introduce a voltage equal to the voltage that would be present across the switch if it were not clossed but of opposite polarity.

This means, in the present case, voltage sources $+V_{g 0}$ and $-V_{0}$ across S_{G} and S_{A} respectively. We then have to calculate the response of the circuit to these voltage sources and to superimpose it on the undisturbed state. The DC voltage sources $-V_{g 0}$ and $+V_{\iota}$ can be replaced by short-circuits, as their internal resistance is neglected and their influence is already taken into account in the static condition. The equivalent circuit, therefore, is as represented in figure 3.8. To allow for the rectifying properties of the tube, two diodes D_{G} and D_{A} have been included, which ensures that the voltage source $V_{g 0} U(t)$ cannot

Fig. 3.s.
contribute to the current i_{2}. The latter can only be caused by induction from the right-hand mesh of the circuit. The function $U(t)$ is a unit step function as previously defined. The impedances r_{g} and r_{g} denote the internal resistances between grid and cathode and between anode and cathode respectively. As the positive feed-back is assumed to be so strong that the grid-to-cathode potential is positive, this means that
r_{g} is a kind of diode forward resistance, which can be of the order of a few hundred ohms. The impedance of the anode load is assumed to be so high that the anode current operating point moves along the "saturation" or "bottoming" line of slope α as indicated in fig. 4.8 for a triode and in fig. 50.6 for a pentode. The value of r_{a} is given by $\cot \alpha$, and can also be of the order of a few hundred ohms.

8.2.1. CALCULATION OF THE TRANSIENTS

By applying Kirchhoff's law, two equations can be derived, equation (1.8) being valid for the right-hand mesh and equation (2.8) for the lefthand mesh of the network of figure 3.8

$$
\begin{align*}
V_{b} U(t) & =i_{1}\left(r_{a}+R_{k}\right)+i_{2} R_{k}+L_{1} \frac{d i_{1}}{d t}-M \frac{d i_{2}}{d t} \tag{1.8}\\
0 & =i_{2}\left(r_{o}+R_{k}\right)+i_{1} R_{k}+L_{2} \frac{d i_{2}}{d t}-M \frac{d i_{1}}{d t} \tag{2.8}
\end{align*}
$$

L_{1} is the self-inductance of the primary winding (n_{1} turns), L_{2} the selfinductance of the secondary winding (n_{2} turns). M is the mutual inductance between primary and secondary windings.

In the following it will be assumed that the coupling is so close that

$$
\begin{equation*}
M^{2}=L_{1} L_{2} \tag{3.8}
\end{equation*}
$$

The following notation is also introduced:

$$
\begin{align*}
& r_{a}+R_{k}=R_{1} \tag{4.8}\\
& r_{g}+R_{k}=R_{2} \tag{5.8}\\
& \frac{d}{d t}=p . \tag{6.8}
\end{align*}
$$

Equations (1.8) and (2.8) then become:

$$
\begin{align*}
V_{b} U(t) & =\left(R_{1}+L_{1} p\right) i_{1}-\left(M p-R_{k}\right) i_{2} \tag{1a.8}\\
0 & =\left(R_{2}+L_{2} p\right) i_{2}-\left(M p-R_{k}\right) i_{1} \tag{2a.8}
\end{align*}
$$

From (2a.8):

$$
\begin{equation*}
i_{2}=\frac{M p-R_{k}}{L_{2} p+R_{2}} i_{1} \tag{7.8}
\end{equation*}
$$

Substituting i_{2} in (la.8) gives:

$$
\begin{gather*}
V_{b} U(t)=\left[R_{1}+L_{1} p-\frac{\left(M p-R_{k}\right)^{2}}{L_{2} p+R_{2}}\right] i_{1}, \ldots . \tag{8.8}\\
\text { or: } \quad i_{1}=\frac{L_{2} p+R_{2}}{\left(L_{1} p+R_{1}\right)\left(L_{2} p+R_{2}\right)-\left(M p-R_{k}\right)^{2}} V_{o} U(t) . \tag{9.8}
\end{gather*}
$$

Introducing (3.8) gives:

$$
\begin{equation*}
i_{1}=\frac{L_{2} p+R_{2}}{\left(L_{1} R_{2}+L_{2} R_{1}+2 M R_{k}\right) p+R_{1} R_{2}-R_{k}^{2}} V_{b} U(t) \tag{10.8}
\end{equation*}
$$

We can write:

$$
\begin{align*}
L_{1} & =\frac{n_{1}^{2}}{n_{2}^{2}} L_{2} . \tag{11.8}\\
M & =\frac{n_{1}}{n_{2}} L_{2} . \tag{12.8}
\end{align*}
$$

If, moreover, the following notation is introduced:

$$
\begin{align*}
& R_{1}+\frac{n_{1}^{2}}{n_{2}^{2}} R_{2}+2 \frac{n_{1}}{n_{2}} R_{k}=R \tag{13.8}\\
& R_{1} R_{2}-R_{k}^{2}=R_{v}^{2}, \ldots . \tag{14.8}
\end{align*}
$$

then (10.8) can be written:

$$
\begin{equation*}
i_{1}=\frac{L_{2} p+R_{2}}{L_{2} R p+R_{v}{ }^{2}} V_{b} U(t) \tag{15.8}
\end{equation*}
$$

and (7.8) becomes:

$$
\begin{equation*}
i_{2}=\frac{M p-R_{k}}{L_{2} R p+R_{v}{ }^{2}} V_{0} U(t) \tag{16.8}
\end{equation*}
$$

From expressions (15.8) and (16.8) the time functions for i_{1} and i_{2} can be calculated. These are given here since we will want them in the following considerations:

$$
\begin{align*}
& i_{1}(t)=\frac{V_{v}}{R}\left[\frac{R_{2} R}{R_{v}{ }^{2}}+\frac{R_{v}{ }^{2}-R_{2} R}{R_{v}{ }^{2}} e^{-\frac{R v^{2}}{L_{1}{ }^{t}}}\right] \ldots . \tag{17.8}\\
& i_{2}(t)=\frac{n_{1}}{n_{2}} \frac{V_{v}}{R}\left[-\frac{n_{2}}{n_{1}} \frac{R_{k} R}{R_{v}{ }^{2}}+\frac{R_{v}{ }^{2}+\frac{n_{2}}{n_{1}} R_{k} R}{R_{v}{ }^{2}}-e^{-\frac{R v^{2}}{L_{1} R^{2}}}\right] . \tag{18.8}
\end{align*}
$$

8.2.2. DETERMINATION OF THE OUTPUT-PULSE WIDTH

Tube I cannot remain conducting for an infinitely long time. This can be seen from the expressions for the anode current $i_{1}(t)$ and the grid current $i_{2}(t)$ (see (17.8) and (18.8)).

The initial value (at $t=0$) of $i_{1}(t)$ is:

$$
\begin{equation*}
i_{1}(0)=\frac{V_{\mathrm{o}}}{R} . \tag{19.8}
\end{equation*}
$$

The final value (at $t=\infty$) would be:

$$
\begin{equation*}
i_{1}(\infty)=V_{b} \frac{R_{2}}{R_{v}{ }^{2}} \tag{20.8}
\end{equation*}
$$

Now, it can be seen from (13.8) and (14.8) that $R>R_{1}$ and $\frac{R_{v}{ }^{2}}{R_{2}}<R_{1}$; so: $\quad R>\frac{R_{v}{ }^{2}}{R_{2}}$, and consequently:

$$
i_{1}(0)<i_{1}(\infty) .
$$

Thus, the anode current increases with time.
The initial value of $i_{2}(t)$ is:

$$
\begin{equation*}
i_{2}(0)=\frac{n_{1}}{n_{2}} \frac{V_{b}}{R} \ldots \ldots \ldots . \tag{21.8}
\end{equation*}
$$

Its final value would be:

$$
\begin{equation*}
i_{2}(\infty)=-\frac{R_{k}}{R_{v}{ }^{2}} V_{b} . \tag{22.8}
\end{equation*}
$$

Hence, it is clear that the grid current decreases with time, and consequently also the grid-to-cathode voltage.

There must be a certain instant at which the decreasing grid voltage prevents the anode current from further increase. This will be explained with the aid of the (idealized) anode current/anode voltage characteristics of the tube, as represented in fig. 4.8. It is assumed that the anode current increases along the "bottoming" line $O A$, whereas the initial grid voltage is of such a value that it corresponds to the characteristic $O A B$.

If the grid voltage remained constant at this value, then the anode current could increase up to the point A, but as soon as it reaches this point, a discontinuity occurs in the slope of the increasing anode current. This causes a lower voltage to be induced in the secondary winding of the transformer; in other words, the grid voltage decreases.

This in turn reduces the anode current still more, again lowering the grid voltage, and so on. It will thus be clear that at the instant the anode current value reaches point A, the tube will be cut off with an avalanche effect. In practice, however, point A will not be reached, because during the increase of the anode current, the grid voltage decreases, and a point of discontinuity will be reached sooner at a lower point on the bottoming line.

The situation of the "knee"-points on the bottoming line is defined
by the following relation:

$$
\begin{equation*}
i_{1}=S_{0} V_{g} \tag{23.8}
\end{equation*}
$$

where S_{b} is the mutual conductance of the tube along the bottoming line, i.e. the increase of the anode current i_{1} per volt increase of the grid voltage V_{g}.

Now, the increase of $i_{1}(t)$ and the decrease of $V_{g}(t)$, indicated by dotted arrows in figure 4 , meet at a certain instant t_{s}, defined by expression (23.8):

$$
\begin{equation*}
i_{1}\left(t_{s}\right)=S_{b} V_{g}\left(t_{s}\right) . . . \tag{24.8}
\end{equation*}
$$

This instant t_{s}, marks the end of the conducting period of the tube, and is a measure of the width of the cathode-current pulse.

In order to determine the pulse width from expression (24.8), the grid voltage must be known. This voltage is equal to the potential drop across r_{g} (see fig. 3.8) caused by i_{2}; therefore:

$$
\begin{equation*}
V_{g}(t)=r_{o} i_{2}(t) . \tag{25.8}
\end{equation*}
$$

Combining expressions (24.8), (25.8), (17.8) and (18.8) gives the following equation, from which t_{s} may be found:

$$
\begin{gather*}
\frac{V_{b}}{R}\left[\frac{R_{2} R}{R_{v}{ }^{2}}+\frac{R_{v}{ }^{2}-R_{2} R}{R_{v}{ }^{2}} e^{-\frac{t_{s}}{T}}\right]= \\
=S_{b} r_{v} \frac{n_{1}}{n_{2}} \frac{V_{b}}{R}\left[-\frac{n_{2}}{n_{1}} \frac{R_{k} R}{R_{v}^{2}}+\frac{R_{v}{ }^{2}+\frac{n_{2}}{n_{1}} R_{k} R}{R_{v}{ }^{2}} e^{-\frac{t_{s}}{T}}\right], \tag{26.8}
\end{gather*}
$$

where T represents the time constant of the circuit:

$$
\begin{equation*}
T=\frac{L_{2} R}{R_{v}{ }^{2}} \tag{27.8}
\end{equation*}
$$

Expression (26.8) can be reduced to the following form:

$$
\begin{equation*}
e^{-\frac{t_{s}}{T}}=\frac{R_{2} R+r_{g} S_{b} R_{k} R}{R_{2} R-R_{v}{ }^{2}+r_{g} S_{b}\left(\frac{n_{1}}{n_{2}} R_{v}{ }^{2}+R_{k} R\right)} \tag{28.8}
\end{equation*}
$$

or:

$$
\begin{equation*}
t_{s}=T \ln \frac{R_{2} R-R_{v}{ }^{2}+r_{0} S_{0}\left(\frac{n_{1}}{n_{2}} R_{v}{ }^{2}+R_{k} R\right)}{R_{2} R+r_{0} S_{b} R_{k} R} \tag{29.8}
\end{equation*}
$$

8.2.3. DISCUSSION OF THE TRANSIENT WAVEFORMS

The sum of the transient anode current and grid current, i.e. the cathode current, can easily be found by adding expressions (17.8) and (18.8). The voltage across R_{k} is proportional to this current and can be examined on an oscilloscope screen without being much influenced by the introduction of extra stray capacitances, R_{k} generally being a low impedance. Moreover, as no self-inductances of any importance are involved in the cathode circuit, the possibility of parasitic oscillations is much smaller here than in the anode or grid circuits.

The shape of the voltage $V(t)$ across R_{k} is given by the following expression, derived from R_{k} times the sum of $i_{1}(t)$ and $i_{2}(t)$:

$$
\begin{equation*}
V(t)=\frac{R_{k}}{R} V_{0}\left[\frac{r_{g} R}{R_{v}{ }^{2}}+\frac{R_{v}{ }^{2}\left(1+\frac{n_{1}}{n_{2}}\right)-r_{g} R}{R_{v}{ }^{2}} e^{-\frac{t}{T}}\right] \tag{30.8}
\end{equation*}
$$

From expression (30.8) some interesting properties of the shape of the voltage pulse $V(t)$ can be derived.

Firstly, it is easy to see that the front-flank is a step-function, since for $t=0$:

$$
\begin{equation*}
V(0)=\left(1+\frac{n_{1}}{n_{2}}\right) \frac{R_{k}}{R} V_{b} . \tag{31.8}
\end{equation*}
$$

When substituting (4.8), (5.8) and (13.8), this becomes:

$$
V(0)=\frac{\left(1+\frac{n_{1}}{n_{2}}\right) R_{k}}{r_{a}+\frac{n_{1}^{2}}{n_{2}{ }^{2}} r_{g}+\left(\frac{n_{1}{ }^{2}}{n_{2}{ }^{2}}+2 \frac{n_{1}}{n_{2}}+1\right) R_{k}} V_{b}
$$

or:

$$
\begin{equation*}
V(0)=\frac{R_{k}}{\left(1+\frac{n_{1}}{n_{2}}\right) R_{k}+\frac{r_{a}+\frac{n_{1}{ }^{2}}{n_{2}^{2}} r_{g}}{1+\frac{n_{1}}{n_{2}}}} V_{b} . \tag{32.8}
\end{equation*}
$$

Secondly, if it is assumed that the tube is suddenly cut off at the instant defined by expression (29.8), then the rear flank of the output pulse is a negativegoing step-function.

It must be noted that in practice there will always exist a certain stray capacitance from cathode to earth, so that no sudden voltage steps across R_{k} are possible. Nevertheless, if the time constant in the cathode circuit can be kept small, very steep pulse-flanks can be obtained.

A third interesting aspect is that expression (30.8) shows that there must be a condition for which the flatness of the pulse-top is maximal, in which case the pulse amplitude remains constant at the initial value $V(0)$ during its whole duration. This situation exists when the exponential time function of (30.8) has no influence. This leads to the condition:

$$
\begin{equation*}
R_{v}{ }^{2}\left(1+\frac{n_{1}}{n_{2}}\right)=r_{g} R \tag{33.8}
\end{equation*}
$$

If the tube characteristics and the circuit resistances are known, then condition (33.8) affords the possibility of calculating the turns ratio $\left(n_{1} / n_{2}\right)_{m}$ at which maximal flatness occurs.

Substitution of (13.8) and (14.8) in (33.8) gives:

$$
\left(R_{1} R_{2}-R_{k}^{2}\right)\left(1+\frac{n_{1}}{n_{2}}\right)=r_{\theta} R_{1}+r_{g} R_{2}\left(\frac{n_{1}}{n_{2}}\right)^{2}+2 r_{g} R_{k} \frac{n_{1}}{n_{2}} .
$$

The solution of this second-order equation is:
$\frac{n_{1}}{n_{2}}=\frac{R_{k}\left(r_{a}-r_{g}\right)+r_{a} r_{g} \pm \sqrt{\left\{R_{k}\left(r_{a}-r_{g}\right)+r_{a} r_{0}\right\}^{2}+4 r_{a} r_{0} R_{k}\left(r_{0}+R_{k}\right)}}{2 r_{g}\left(r_{g}+R_{k}\right)}$
For a positive, real value of n_{1} / n_{2} we need only the plus sign.

8.2.4. COMPARISON OF THEORY AND PRACTICE

The circuit of figure 1.8 has been investigated, using an experimental double-triode type of tube and the following values of circuit components and supply voltages:
$V_{0}=150$ volts, $V_{00}=6$ volts, $R_{k}=47$ ohms, transformer windings $n_{1}=70$ turns, $n_{2}=50$ turns, ferroxcube core of permeability μ appr. 2000.

The waveform of the output voltage across R_{k} was observed on an oscilloscope screen and appeared to have the shape shown by the dotted curve of figure 5.8.

This voltage pulse has a sharp front-flank and a more gradually falling rear flank. The latter may be caused by the cathode circuit timeconstant (stray capacitances) and the fact that the tube characteristics do not possess the sharp bends as assumed in figure 4.8.

Moreover, the primary of the transformer is shunted by a resistor of 1000 ohms, which proved to be necessary to avoid excessive ringing effects and consequent free-running of the blocking oscillator.

Figure 5.8 shows that the total duration of the pulse is $7 \mu \mathrm{sec}$,
whereas at about $6 \mu \mathrm{sec}$ the switch-back operation starts. Finally, some droop is present in the flat part of the pulse.

Fig. 5.8.

The self-inductance of the secondary winding of the transformer, with primary winding open-circuited, is measured to be $L_{2}=2.8 \mathrm{mH}$.

The tube anode current/anode voltage characteristics with control-grid voltage values ranging from -2 to +10 volts show that the internal anode resistance along the bottoming line is about 400 ohms and the slope in this region is about $7 \mathrm{~mA} / \mathrm{V}$. For complete calculation of the circuit, only the value of the internal grid-to-cathode resistance is wanted. As it is rather difficult to determine this value experimentally at very high grid-to-cathode voltages without damaging the tube, the following procedure has been adopted to determine r_{g}. From the waveform, observed on the oscilloscope, it appears that at $t=0$ the output voltage $V(0)=17$ volts. Substituting this value in equation (30.8) makes it possible to find the value of r_{g}, which proved to be $r_{g}=164$ ohms.

Other quantities can be calculated, and it is found that the time constant $T=28 \mu \mathrm{sec}$, the pulse duration $t_{s}=6 \mu \mathrm{sec}$. The anode current and grid current as functions of time are given in the following table.

Time t $(\mu \mathrm{sec})$	Anode current $i_{1}(t)$ (mA)	Grid current $i_{2}(t)$ (mA)	Total cathode current $i(t)$ (mA)
0	150	211	361
1	156	201.5	357.5
2	162	192	354
3	167	183	350
4	172	174	346
5	177	165	342
6	182	157	339

These currents as functions of time have also been represented in figure 5.8. Comparison of the calculated waveform of $i(t)$ with the experimental one shows that the latter has some overshoot and more droop. This can possibly be attributed to some oscillating effect due to stray capacitances, damped by the heavily conducting tube. In conclusion, however, it can be said that the calculation method gives a good approximation to the behaviour of the circuit in practice, and it certainly offers the possibility to have in advance, before designing such a circuit, an idea of the waveform to be expected and the demands made of the tube.

8.2.5. SOME DESIGN CONSIDERATIONS

The presence of a cathode resistor R_{k} greatly complicates the formulae derived in the preceding sections. In many applications one may be more interested in the current pulse than in the voltage pulse, as for instance in the case of driving magnetic cores in a memory matrix or switching circuits.

Therefore it is worth-while to rearrange the formulae by putting $R_{k}=0$.

A striking example of simplification gives the expression for the ratio of the transformer-winding turns that is required for optimum flatress of the current pulse (see expression (34.8)). This reduces with $R_{k}=0$ to

$$
\begin{equation*}
\left(\frac{n_{1}}{n_{2}}\right)_{o p t}=\frac{r_{a}}{r_{g}} \tag{35.8}
\end{equation*}
$$

With practical values as used in the preceding section, this gives $\left(n_{1} \mid n_{2}\right)_{o p l}=2.44$, whereas expr. (34.8) would give a value 2.4. A negligible error is made when using the simplified formula. A survey of the expressions valid for $R_{k}=0$ will be given.

$$
\begin{align*}
& R_{1}=r_{a} \text {. see expr. } \tag{4.8}\\
& R_{2}=r_{0} ~ s e e ~ e x p r . ~ \tag{5.8}\\
& R=r_{a}+\left(\frac{n_{1}}{n_{2}}\right)^{2} r_{g} \ldots . . . \text { see expr. } \tag{13.8}\\
& R_{v}{ }^{2}=r_{a} r^{\prime} \tag{14.8}\\
& i_{1}(t)=\frac{V_{b}}{r_{a}+\left(\frac{n_{1}}{n_{2}}\right)^{2} r_{g}}\left[1+\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{r_{g}}{r_{a}}\left(1-e^{-\frac{t}{T}}\right)\right] \tag{36.8}
\end{align*}
$$

$$
\begin{equation*}
i_{2}(t)=\frac{V_{b}}{r_{a}+\left(\frac{n_{1}}{n_{2}}\right)^{2} r_{0}} \frac{n_{1}}{n_{2}} e^{-\frac{t}{T}} \tag{37.8}
\end{equation*}
$$

$i_{1}(t)+i_{2}(t)=i(t)=$
$=\frac{V_{b}}{r_{a}+\left(\frac{n_{1}}{n_{2}}\right)^{2} r_{g}}\left[1+\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{r_{g}}{r_{a}}+\frac{n_{1}}{n_{2}}\left\{1-\frac{n_{1}}{n_{2}} \frac{r_{g}}{r_{a}}\right\} e^{-\frac{t}{T}}\right]$
The time constant

$$
\begin{equation*}
T=L_{2}\left\{\frac{1}{r_{g}}+\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{1}{r_{a}}\right\} . \tag{39.8}
\end{equation*}
$$

The pulse width

$$
\begin{equation*}
t_{s}=T \ln \frac{1+\frac{n_{2}}{n_{1}} r_{a} S_{b}}{1+\left(\frac{n_{2}}{n_{1}}\right)^{2} \frac{r_{a}}{r_{g}}} \tag{40.8}
\end{equation*}
$$

In most applications the need will be for a current pulse of a given amplitude and duration with a flat top; so condition (35.8) will nearly be satisfied. Introducing this in the expressions for currents and pulse duration gives the following equations:

$$
\begin{align*}
& i_{1}(t)=\frac{V_{b}}{r_{a}\left(1+\frac{r_{a}}{r_{a}}\right)}\left\{1+\frac{r_{a}}{r_{g}}\left(1-e^{-\frac{t}{T}}\right)\right\} . . \tag{41.8}\\
& i_{2}(t)=\frac{V_{b}}{r_{\theta}\left(1+\frac{r_{a}}{r_{g}}\right)} e^{-\frac{t}{T}} \ldots \ldots . . \tag{42.8}\\
& i(t)=\frac{V_{b}}{r_{a}} \ldots \ldots . \tag{43.8}\\
& T=\frac{L_{2}}{r_{g}}\left(1+\frac{r_{a}}{r_{g}}\right) \ldots \ldots . \tag{44.8}\\
& t_{s}=T \ln \frac{1+r_{o} S_{b}}{1+\frac{r_{g}}{r_{a}}} \ldots \ldots . . . \tag{45.8}
\end{align*}
$$

For the design of this kind of blocking-oscillator circuit it will be useful to have available values of r_{a}, r_{g} and S_{b} of the tube types suitable for this purpose.

The design procedure is then very simple. Suppose a pulse is wanted of amplitude I_{0} and duration τ. Substituting I_{0} in expression (43.8) gives the value wanted for V_{b}. Substituting τ in expression (45.8) gives the value of the time constant T, and consequently from expression (44.8) the value of L_{2} is known. Depending on the permeability and dimensions of the transformer-core material, the number of secondary turns n_{2} is defined by this value of L_{2}, and as $\frac{n_{1}}{n_{2}}=\frac{r_{a}}{r_{g}}$, the number of primary turns n_{1} is also known.

8.2.6. THE BLOCKING CONDITION

The width t_{s} of the transient current pulses in grid and anode is given by expression (29.8), which can be written

$$
\begin{equation*}
t,=T \ln \left[1+\frac{\left(r_{o} S_{b} n-1\right) R_{v}{ }^{2}}{R_{2} R+r_{o} S_{b} R_{k} R}\right], \tag{46.8}
\end{equation*}
$$

where $n=n_{1} / n_{2}$.
This formula shows that for

$$
\begin{equation*}
n<\frac{1}{r_{g} S_{b}} \tag{47.8}
\end{equation*}
$$

no positive real value of t_{s} can be found.
What this means, physically, can easily be seen. From (17.8) and (18.8) the initial values of anode and grid currents (at the instant $t=0$) prove to be:
and

$$
\begin{align*}
& i_{1}(0)=\frac{V_{b}}{R} . \tag{48.8}\\
& i_{2}(0)=n \frac{V_{b}}{R} \tag{49.8}
\end{align*}
$$

Referring to fig. 4.8 it can be seen that blocking-oscillator action can only occur if the initial value of i_{1} is smaller than S_{b} (slope) times the grid-to-cathode voltage V_{g}, or: $i_{1}(0)<S_{b} V_{g}(0)$.

Now $V_{g}=r_{g} i_{2}$, so $i_{1}(0)<S_{b} r_{g} i_{2}(0)$.
Substituting (48.8) and (49.8) gives

$$
\frac{V_{\mathrm{b}}}{R}<S_{b^{\prime}}{ }_{\mathrm{o}} n \frac{V_{\mathrm{b}}}{R}
$$

or

$$
\begin{equation*}
n>\frac{1}{S_{0} r_{0}} \tag{50.8}
\end{equation*}
$$

This is the condition for correct blocking operation. Comparison with (47.8) shows that the latter indeed represents the condition for wrong operation.

Condition (50.8) thus represents, for given tube characteristics $\left(r_{g}\right.$ and S_{b}), the minimum amount of positive feedback required from anode to grid.

8.2.7. ANODE CURRENT AND VOLTAGE

It could happen that use is to be made of the anode-current pulse instead of the cathode-current pulse. It can then be of interest to investigate whether the anode-current pulse can also have a flat top. For the general case of expression (17.8) it leads to the following condition:

$$
R_{2} R=R_{v}{ }^{2}
$$

Introducing (14.8), (13.8) and (5.8) leads to the condition:

$$
n=-\frac{R_{k}}{r_{0}+R_{k}}
$$

which can never be satisfied, as n cannot be negative.
At $R_{k}=0$, the flat-top condition is $n=0$, which is meaningless.
Conclusion: a flat-topped pulse can only be found in the cathode lead.
If the anode-voltage pulse is of interest, it is easy to derive the following the time function:

$$
\begin{equation*}
V_{a}(t)=-V_{b} n^{2} \frac{r_{g}}{r_{a}+n^{2} r_{g}} e^{-\frac{t}{T}} \text { (assuming } R_{k}=0 \text {) . . . } \tag{51.8}
\end{equation*}
$$

8.2.8. ENERGY DISSIPATION IN GRID AND ANODE CIRCUITS

Generally, the transient anode and grid currents can be expressed in the following form:

$$
\begin{align*}
& i_{1}(t)=A+B e^{-\frac{t}{T}} \tag{52.8}\\
& i_{2}(t)=D+E e^{-\frac{t}{T}} \tag{53.8}
\end{align*}
$$

(Compare (17:8) and (18.8))
It is clear that, if these currents flow through resistances r_{a} and r_{b}, resp. during a time interval t_{s}, then the dissipated energies in anode and grid circuits are:

$$
\begin{equation*}
W_{a}=\int_{0}^{t_{s}} i_{1}^{2}(t) r_{a} d t \tag{54.8}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{0}=\int_{0}^{t_{s}} i_{2}{ }^{2}(t) r_{0} d t \tag{55.8}
\end{equation*}
$$

respectively.
The solution of the integrals is:
$W_{a}=A^{2} t_{s} r_{a}-2 A B T\left(e^{-\frac{t_{s}}{T}}-1\right) r_{a}-\frac{1}{2} T B^{2}\left(e^{-\frac{2 t_{s}}{T}}-1\right) r_{a}$
and
$W_{g}=D^{2} t_{g} r_{g}-2 D E T\left(e^{-\frac{t_{s}}{T}}-1\right) r_{g}-\frac{1}{2} T E^{2}\left(e^{-\frac{2 t_{s}}{T}}-1\right) r_{g}$.
The mean power during the pulse is:
$\hat{P}_{a}=\frac{W_{a}}{t_{b}}=A^{2} r_{a}-2 A B \frac{T}{t_{e}}\left(e^{-\frac{t_{s}}{T}}-1\right) r_{a}-\frac{1}{2} \frac{T}{t_{b}} B^{2}\left(e^{-\frac{2 t_{s}}{T}}-1\right) r_{a}$
and
$\hat{P}_{\theta}=\frac{W_{g}}{t_{s}}=D^{2} r_{g}-2 D E \frac{T}{t_{s}}\left(e^{-\frac{t_{s}}{T}}-1\right) r_{\theta}-\frac{1}{2} \frac{T}{t_{s}} E^{2}\left(e^{-\frac{2 t_{s}}{T}}-1\right) r_{\theta}$
If trigger pulses are regularly applied, having a repetition period t_{r}, then the long term average power is:

$$
\begin{array}{r}
\bar{P}_{a}=\frac{W_{a}}{t_{r}}=\frac{W_{a}}{t_{s}} \frac{t_{s}}{t_{r}}=\frac{W_{a}}{t_{s}} \delta=\hat{P}_{a} \delta \ldots \\
\bar{P}_{g}=\hat{P}_{\imath} \delta, \ldots \\
\delta=\frac{t_{s}}{t_{r}} \text { duty cycle of the pulses } \tag{62.8}
\end{array}
$$

a. General case

From (17.8) and (18.8) the constants A, B, D and E can be taken:
$A=V_{\mathrm{b}} \frac{R_{2}}{R_{v}{ }^{2}}, B=\frac{V_{\mathrm{b}}}{R}-A, D=-n^{2} V_{\mathrm{b}} \frac{R_{k}}{R_{v}{ }^{2}}, E=n \frac{V_{\mathrm{b}}}{R}-D$.
$e^{-\frac{t_{s}}{T_{T}}}$ is given by expression (28.8).
Thus, all terms for determining the power dissipations, as given by (58.8), (59.8), (60.8) and (61.8) are, known.
b. Special case

The experimental case treated in section 8.2 .4 and represented in
fig. 5.8 has been calculated as regards the grid and anode dissipation, and the following data resulted:

$$
\begin{align*}
& \hat{P}_{a}=11 \text { watts } \tag{64.8}\\
& \hat{P}_{\theta}=5.6 \text { watts } \tag{65.8}
\end{align*}
$$

If the maximum permitted anode dissipation were 1,5 watt, then, disregarding grid ratings, this would limit the duty cycle to:
or

$$
\begin{gathered}
\delta=\frac{\bar{P}_{a}}{\hat{P}_{a}}=\frac{1,5}{11}=0.136, \\
t_{r}=\frac{t_{s}}{0.136} .
\end{gathered}
$$

Now $t_{s}=6 \mu \mathrm{sec}$; so $t_{r}=44 \mu \mathrm{sec}$.
Or the maximum repetition frequency of the pulses, as limited by anode dissipation, would be

$$
f_{\max }=\frac{1}{t_{r}}=23 \mathrm{kc} / \mathrm{s}
$$

A maximum permitted grid dissipation of 30 mW would, by similar reasoning, lead to a max. repetition frequency $f_{\text {max }}=0.9 \mathrm{kc} / \mathrm{s}$. Life tests at $1 \mathrm{kc} / \mathrm{s}$ and $5 \mathrm{kc} / \mathrm{s}$ show that probably more grid dissipation could be permitted.
$5 \mathrm{kc} / \mathrm{s}$ operation gives a main grid dissipation

$$
\bar{P}_{g}=\delta \hat{P}_{g}=\frac{6}{200} 5.6 \text { watts }=0.17 \text { watts. }
$$

c. Requirements for magnetic core drivers

Suppose a vacuum tube of the type mentioned in section 8.2.4 $\left(r_{a}=\right.$ 400 ohms, $r_{o}=164$ ohms, $S_{b}=7 \mathrm{~mA} / \mathrm{V}$) is to supply current pulses of $2 \mu \mathrm{sec}$ width, 370 mA amplitude, optimum flatness, to switch small ferroxcube matrix cores (switching time $1.5 \mu \mathrm{sec}$, outer diameter 2 mm .).

Following the design procedure of section 8.2 .5 (final paragraph), this gives the requirements:

$$
\begin{aligned}
& V_{b}=148 \mathrm{volts} \\
& T=4.75 \mu \mathrm{sec}, \\
& L_{2}=0.23 \mathrm{mH} .
\end{aligned}
$$

With the aid of the small Fxc closed pot-core D-14/8, it is possible to make the required transformer. With an air-gap of $0.2 \mathrm{~mm}, 106$ turns are required for 1 mH self-inductance. For 0.23 mH , therefore, the required number is $n_{1}=106 \sqrt{ } 0.23=50$ turns.

Since we want a flat-topped pulse, the condition is

$$
\frac{n_{1}}{n_{2}}=\frac{r_{a}}{r_{g}} \text { or } n_{1}=\frac{400}{104} \cdot 50=122 \text { turns. }
$$

The design of the blocking oscillator is now completely defined. The power dissipation can be calculated. For the flat-topped case, the quantities A, B, D and E become (see (52.8), (53.8), (41.8) and (42.8)):

$$
\begin{equation*}
A=\frac{V_{b}}{r_{a}}, B=-\frac{V_{b}}{r_{a}+r_{g}}, D=0, E=\frac{V_{b}}{r_{a}+r_{g}} . \tag{66.8}
\end{equation*}
$$

Calculation of expressions (58.8) and (59.8) gives:

$$
\hat{P}_{a}=10.3 \text { watts }, \hat{P}_{g}=7.56 \text { watts }
$$

Max. anode dissipation of 1.5 watt would limit the maximum repetition frequency to $f_{\text {max }}=73 \mathrm{kc} / \mathrm{s}$.

Max. grid dissipation of 30 mW would permit $f_{\text {max }}=2 \mathrm{kc} / \mathrm{s}$.
Max. grid dissipation, as in the former case, of 0.17 watt (life-tests) would permit $f_{\text {max }}=11.3 \mathrm{kc} / \mathrm{s}$.

If $f_{\max }=100 \mathrm{kc} / \mathrm{s}$ is required, the average anode and grid dissipations must be at least:

$$
\bar{P}_{a}=2 \text { watts, } \bar{P}_{g}=1.5 \text { watts. }
$$

d. Experimental check

The blocking oscillator just described has been built, and the output pulse checked. The measured value of L_{2} was 0.243 mH . The pulse width, instead of $2, / \mathrm{sec}$, should then be $\frac{0.243}{0.23} .2 \mu \mathrm{sec}=2.15 \mu \mathrm{sec}$.

The cathode-current pulse $\left(=i_{1}(t)+i_{2}(t)\right)$ is observed on an oscilloscope screen as the voltage developed across a resistor of 3.1 ohm in the cathode lead. The oscillograms are shown in fig. 6.8 for four different tubes of the same type. The scales of the axes are: vertically 1 division $=$ 0.5 volt, horizontally 1 division $=0.25 \mu \mathrm{sec}$. The pulse-width and the amplitudes at the central vertical axis are listed below.

Case	Pulse-width $(\mu \mathrm{sec})$	Amplitude (volts across 3.1 ohm $)$	Current (mA)
a	2.8	1.2	387
b	3.1	1.3	420
c	3.4	1.8	580
d	3.1	1.4	450

We estimated a pulse-width of $2.15 \mu \mathrm{sec}$, a current of 370 mA . Practice shows a considerable spread in different tubes and a mean result that is only a rough approximation of the calculated values. However, this is sufficient for practical purposes, since the current value, for instance, can easily be corrected by means of the anode supply voltage, while the pulse-width can be corrected by means of the self-inductance.

a

C

b

d

Fig. 6.8.

e. Variation of pulse-width

With the closed pot-core D $14 / 8$, the effective air-gap can be varied; for this purpose a $\mathrm{F}_{x c}$ control slug can be screwed into the centre-core. At an air-gap of 0.2 mm this allows for a total variation of the selfinductance of 15%. The pulse-width of the current pulses of all four cases, a, b, c and d mentioned before, could also be varied by about the same amount.

8.3. OTHER MODES OF FEED-BACK

The method of analysis treated in section 8.2 for the anode-to-grid coupled blocking oscillator can also be adopted with the other types of blocking oscillator, characterized by feed-back from anode to cathode or from cathode to grid.

There appears to be great conformity between the three feedback cases of a blocking oscillator. Whether feed-back is applied from anode to grid, from anode to cathode, or from cathode to grid, the following general expressions are valid:

The anode transient current

$$
\begin{equation*}
i_{1}(t)=\frac{V_{b}}{r_{v}}\left[\frac{r_{v}}{r_{a}}+\left(1-\frac{r_{v}}{r_{a}}\right) e^{-\frac{t}{T}}\right] . \tag{67.8}
\end{equation*}
$$

The grid transient current

$$
\begin{equation*}
i_{2}(t)=N \frac{V_{b}}{r_{v}} e^{-\frac{t}{T}} . \tag{68.8}
\end{equation*}
$$

The pulse-width:

$$
\begin{equation*}
t_{s}=T \ln \left[1+\frac{r_{a}}{r_{v}}\left(N r_{g} S_{b}-1\right)\right] . \tag{69.8}
\end{equation*}
$$

Where:

$$
\begin{gather*}
r_{v}=r_{a}+N^{2} r_{\theta} \tag{70.8}\\
T=\frac{r_{v}}{r_{a}} \tau . \tag{71.8}
\end{gather*}
$$

N is a coupling factor, depending on the mode of feed-back used. τ is a time constant, also depending on the system of feed-back. A survey of expressions to be substituted for N and τ with the three types of feedback is given below.
a. Feed-back from anode (n_{1} turns, self-inductance L_{1}) to grid (n_{2}, L_{2})

$$
\begin{align*}
& N=\frac{n_{1}}{n_{2}} \tag{72.8}\\
& \tau=\frac{L_{2}}{r_{g}} . \tag{73.8}
\end{align*}
$$

b. Feed-back from anode (n_{1}, L_{1}) to cathode (n_{2}, L_{2})

$$
\begin{align*}
N & =\frac{n_{1}}{n_{2}}-1 \tag{74.8}\\
\tau & =\frac{L_{2}}{r_{g}} . \tag{75.8}
\end{align*}
$$

c. Feed-back from cathode $\left(n_{1}, L_{1}\right)$ to grid (n_{2}, L_{2})

$$
\begin{align*}
& N=\frac{1}{\frac{n_{2}}{n_{1}}-1} \tag{76.8}\\
& \tau=\frac{1}{N^{2}} \frac{L_{1}}{r_{\theta}} \tag{77.8}
\end{align*}
$$

General condition for a flat-topped ($i_{1}+i_{2}$) pulse

$$
\begin{equation*}
N=\frac{r_{a}}{r_{g}} \tag{78.8}
\end{equation*}
$$

Then:

$$
\begin{array}{r}
r_{v}=r_{a}+\frac{r_{a}^{2}}{r_{g}} . . \\
T=\left(1+\frac{r_{a}}{r_{g}}\right) \tau . \\
i_{1}(t)=\frac{V_{b}}{r_{a}}\left(1-\frac{e^{-\frac{t}{T}}}{1+\frac{r_{g}}{r_{a}}}\right) . \\
i_{2}(t)=\frac{V_{b}}{r_{a}} \frac{e^{-\frac{t}{T}}}{1+\frac{r_{g}}{r_{a}} . .} \\
t_{s}=T \ln \left(1+\frac{r_{a} S_{b}-1}{1+\frac{r_{a}}{r_{g}}}\right) . \tag{83.8}
\end{array}
$$

8.3.1. SOME EXPERIMENTAL CHECKS

A relative quantity was calculated and checked by measurements, viz. the ratio t_{s} / L.
a) Anode-to-grid feed-back

According to expressions (39.8) and (40.8):

$$
\begin{equation*}
\frac{t_{0}}{L_{2}}=\left(\frac{1}{r_{0}}+n^{2} \frac{1}{r_{a}}\right) \ln \left(1+\frac{n r_{g} S_{b}-1}{1+n^{2} \frac{r_{g}}{r_{a}}}\right) \tag{84.8}
\end{equation*}
$$

if no cathode resistor R_{k} is present.

Experiments have been carried out with an E88CC double triode, using a transformer with constant turns ratio $n=3$. The value of n_{1}, however, (and consequently n_{2}) was varied through values of $n_{1}=90$. 120 and 165 turns, and the air-gap in the core (pot-core type D-18/12 Fxc 3 B) was varied through $0.3,0.5$ and 1.0 mm resp.

Characteristics of the E 88 CC for positive grid voltages up to 10 volts were available. From the characteristics $I_{a}=f\left(V_{a}\right)$ with V_{g} as parameter, the values of r_{a} and S_{b} can be found and prove to be

$$
r_{a}=\frac{1}{3} \text { kilo-ohm } S_{o}=14 \mathrm{~mA} / \mathrm{V}
$$

From the characteristics $I_{g}=f\left(V_{a}\right)$ with V_{g} as parameter, the value of r_{g} can be found; $r_{g}=\frac{1}{5}$ kilo-ohm.
With these values, expression (84.8) proves to be:

$$
\begin{equation*}
\frac{t_{s}}{L_{2}}=0,0246 \frac{\mathrm{sec}}{\mathrm{H}} \tag{85.8}
\end{equation*}
$$

A mean value of $0.0224 \mathrm{sec} / \mathrm{H}$ can be obtained from the measurements, which is in fairly good agreement with (85.8).
b) Anode-to-cathode feed-back.

From expressions (69.8), (70.8), (71.8) and (74.8) it follows that

$$
\begin{equation*}
\frac{t_{a}}{L_{2}}=\left\{\frac{1}{r_{g}}+(n-1)^{2} \frac{1}{r_{a}}\right\} \ln \left\{1+\frac{(n-1) r_{g} S_{b}-1}{1+(n-1)^{2} \frac{r_{a}}{r_{a}}}\right\} \tag{86.8}
\end{equation*}
$$

Substituting the same values as in the former case gives

$$
\begin{equation*}
\frac{t_{s}}{L_{2}}=0.0145 \frac{\mathrm{sec}}{\mathrm{H}} \tag{87.8}
\end{equation*}
$$

The mean measured value is $0.0158 \mathrm{sec} / \mathrm{H}$, which again shows a good agreement.
c) Cathode-to-grid feed-back.

From expressions (69.8), (70.8), (71.8) and (76.8) it can be calculated
that

$$
\begin{equation*}
\frac{t_{\mathrm{s}}}{L_{1}}=0.0069 \frac{\mathrm{sec}}{\mathrm{H}} \tag{88.8}
\end{equation*}
$$

The mean experimental value is found to be $0.0097 \mathrm{sec} / \mathrm{H}$. The agreement is less satisfactory in this case.
In conclusion, it can be stated that an approximate calculation of the transient behaviour of a triggered vacuum tube blocking oscillator is possible. Three modes of operation can be used, and they are described
by quite similar expressions. In all cases anode dissipations and grid dissipations can be determined, and for given maximum permissible values of these dissipations, the maximum permissible trigger pulse repetition frequency can be derived. The formulae can be used to design a blocking oscillator. For this purpose it will be helpful if tube characteristics of the following functions are available:
a) $I_{a}=f\left(V_{a}\right)$ with $+V_{o}$ as parameter.
b) $I_{g}=f\left(V_{a}\right)$ with $+V_{g}$ as parameter.

8.4. FREE-RUNNING BLOCKING OSCILLATOR

There are several possible ways of converting a triggered blocking oscillator into a free-running one. An $R C$-timing circuit may be incorporated either in the grid circuit or in the cathode circuit. In both cases the pulse width is determined by the magnetic circuit (the transformer) and associated resistances, whilst the period of the pulses is determined by the $R C$-time constant. Another possibility is to have both pulse-width and pulse-period determined by the magnetic circuit.

8.4.1. RC-TIMING CIRCUIT IN THE GRID LEAD

The magnetic feed-back circuit may be any of the three types treated in sections 8.2 and 8.3 . In fig. 7.8 it is only schematically indicated by dotted windings. Also drawn in dotted lines is a circuit across the capacitor, with which it is possible, by closing switch S, to keep the capacitor

Fig. 7.8. charged to a voltage V_{0}, such that the grid-to-cathode voltage $V_{\theta}=V_{00}-V_{0}$ is below the cut-off value $-V_{c 0}$, so that no currents flow in the anode and grid circuits. Supposing, now, that switch S is opened at the instant $t=0$, the capacitor starts to discharge to a final voltage of zero according to the time function

$$
\begin{equation*}
V_{c}=-V_{0} e^{-\frac{1}{K C}} \tag{89.8}
\end{equation*}
$$

The voltage between grid and cathode varies according to the time function

$$
\begin{equation*}
V_{\theta}=V_{00}+V_{c}=V_{00}-V_{0} e^{-\frac{t}{K^{\prime} C}} \ldots \tag{90.8}
\end{equation*}
$$

Now, it is supposed that $V_{00}>V_{c 0}$, so that, after a certain time t_{r}, the
value of V_{g} must be equal to $-V_{c 0}$, equation (90.8) then reading

$$
\begin{equation*}
-V_{c 0}=V_{00}-V_{0} e^{-\frac{t r}{R C}} \tag{91.8}
\end{equation*}
$$

from which t_{r} can be found:

$$
\begin{equation*}
e^{-\frac{t r}{R C}}=\frac{V_{00}+V_{00}}{V_{0}} \tag{92.8}
\end{equation*}
$$

V_{0}, however, has to be defined further. This can be done by assuming that the free-running oscillator has reached a stationary state. Each time the grid voltage reaches the cut-off value $V_{c 0}$, a de-blocking action occurs, a current pulse flows in the anode and grid circuit, the duration t_{s} of which is assumed to be very small with respect to the pulse repetition time t_{r}. The grid-current pulse $i_{2}(t)$ charges the capacitor C in such a short time t_{s} that the capacitor does not loose an appreciable amount of charge during the charging time t_{s} (this implies $t_{s} \ll R C$). The value of the charge surge from the grid current, stored in the capacitor C, will be

$$
\begin{equation*}
Q=\int_{0}^{t_{5}} i_{2}(t) d t \tag{93.8}
\end{equation*}
$$

and the corresponding voltage increase across the capacitor

$$
\begin{equation*}
\Delta V=\frac{1}{C} Q . \tag{94.8}
\end{equation*}
$$

If a stationary state is reached, this increase first brings back the capacitor voltage to its initial value V_{0}. The decrease of the capacitor voltage during the cut-off period t_{r} is to be derived from equation (89.8):

$$
-\Delta V_{c}=V_{c}(0)-V_{c}\left(t_{r}\right)=-V_{0}+V_{0} e^{-\frac{t r}{R C}}
$$

or:

$$
\begin{equation*}
\Delta V_{c}=V_{0}\left(1-e^{-\frac{\iota r}{R C}}\right) \tag{95.8}
\end{equation*}
$$

Thus, in the stationary state we have $\Delta V_{c}=\Delta V$.
Substituting expressions (94.8) and (95.8) gives:

$$
\begin{equation*}
\frac{Q}{C}=V_{0}\left(1-e^{-\frac{t r}{R C}}\right) \tag{96.8}
\end{equation*}
$$

Eliminating V_{0} from expressions (92.8) and (96.8) results in:

$$
\begin{equation*}
e^{\frac{t r}{R C}}=1+\frac{Q}{C\left(V_{00}+V_{c 0}\right)} \tag{97.8}
\end{equation*}
$$

Introducing expression (93.8) gives:

$$
\begin{equation*}
t_{r}=R C \ln \left[1+\frac{\int_{0}^{t_{s}} i_{2}(t) d t}{C\left(V_{00}+V_{c 0}\right)}\right] . \tag{98.8}
\end{equation*}
$$

With expressions (68.8), (69.8) and (71.8) it is easy to calculate the integral of (98.8), the final result being:

$$
\begin{equation*}
Q=\int_{0}^{\iota s} i_{2}(t) d t=\frac{V_{b}}{r_{a}} \tau \frac{N r_{g} S_{b}-1}{N \frac{r_{g}}{r_{a}}+r_{a} S_{b}} \tag{99.8}
\end{equation*}
$$

Expressions (98.8) and (99.8) combined, give:
where

$$
\begin{equation*}
t_{r}=R C \ln \left[1+\frac{\tau\left(N r_{g} S_{b}-1\right)}{r_{a} C(\gamma+D)\left(N \frac{r_{g}}{r_{a}}+r_{g} S_{b}\right)}\right] \tag{100.8}
\end{equation*}
$$

a relative expression for the grid-bias voltage, and

$$
\begin{equation*}
D=\frac{V_{c 0}}{V_{b}} \tag{102.8}
\end{equation*}
$$

which is nearly the reciprocal value of the amplification factor of the tube.
The time constant τ is given by expressions (73.8), (75.8) and (77.8), depending on the mode of feed-back used.

Expressions (101.8) and (102.8) are introduced to obtain a better comparison between expression (100.8) and the expressions for the repetition frequency of the astable multivibrator given in section (7.4.4.).

8.4.2. $R C$-TIMING CIRCUIT IN THE CATHODE LEAD

Similar reasoning to that in the previous section leads to the same expression as (97.8), with the understanding that Q now represents the charge given to the capacitor by the sum of the current pulses in anode and grid circuits; in other words:

$$
\begin{gather*}
Q=\int_{0}^{u}\left\{i_{1}(t)+i_{2}(t)\right\} d t \ldots \tag{103.8}\\
Q=\frac{V_{b}}{r_{v}}\left[\frac{r_{v}}{r_{a}} t_{s}+T\left(1-\frac{r_{v}}{r_{a}}+N\right)\left(1-e^{-\frac{t_{s}}{T}}\right)\right] \ldots \tag{104.8}
\end{gather*}
$$

The repetition period of the pulses is thus given by expressions (97.8) and (104.8) (for further reference, see the beginning of section 8.3).

It is true that the expressions become rather cumbersome, but they
do give an idea of the influence of various tube and transformer properties, circuit component values and bias voltages on the repetition period of this type of free-running blocking oscillator.

8.4.3. FREQUENCY NOT DEFINED BY AN $R C$-NETWORK

Up till now we have not taken into account the effects of stray capacitances. At the instant the tube starts to conduct, its internal resistances (r_{a} and r_{g}) have such a strong damping effect that no serious complications due to ringing of parasitic resonance circuits have to be considered. However, at the end of the pulse current, when the tube is suddenly cut off again, the transformer windings are no longer damped, and heavy oscillatory effects would occur in the anode and grid circuits as a result of ringing. To get rid of them, one of the transformer windings is often shunted by a suitable damping resistance. Preferably, this should be a non-linear resistance, causing little or no damping during the "forward stroke" (current pulse) and heavy damping during the back stroke (non-conducting period); for this purpose a diode is often employed (see fig. 8.8).

This principle can be used to give another kind of free-running blocking oscillator, viz. the push-pull type, sometimes used in chopper circuits. The basic circuit is given in fig. 9.8. Each tube, with the associated transformer windings, represents a blocking-oscillator circuit, but at the same time it is the damping "diode" for the other tube. The output signal across points $A B$ will be symmetrical and more or less square-wave shaped. Its repetition period is twice the width of the current pulses flowing in each tube. The grid-bias voltage $V_{y 0}$ must be above the cutoff value for free-running operation. The amplitude of the output pulses is within certain bounds proportional to the anode-supply voltage V_{b}. This property can be used for converting a DC-voltage into a proportional AC -voltage, which is generally easier to amplify than DC-signals.

BIBLIOGRAPHY

I. BISTABLE MULTIVIBRATOR

1. W. H. Eccles, F. W. Jordan: "A Trigger Relay utilising Three-Electrode Thermionic Vacuum Tubes', The Radio Review 1, (Dec. 1919), 143.
2. M.I.T. Radiation Lab. Series, Vol. 19, "Waveforms".
3. B. E. Phelps: "Dual-Triode Trigger Circuits", Electronics 18, (July 1945), 110.
4. W. L. Buys: "Analysis of Scale Units", Nucleonics 3, (Nov. 1948), 49.
5. J. R. Tillman: "Transition of an Eccles-Jordan Circuit", Wireless Engineer 28, (April 1951), 101.
6. M. Rubinoff: "Notes on the Design of Eccles-Jordan Flip-Flops", Communication and Electronics 1, (July 1952), 215.
7. R. F. Johnson, A. G. Ratz: "A Graphical Method for Flip-Flop Design", Communication and Electronics 5, (March 1953), 52.
8. R. Pressman: "How to Design Bistable Multivibrators", Electronics 26, (April 1953), 164.
9. D. K. Ritchie: "The Optimum D.C.Design of Flip-Flops", Proc. I.R.E. 41, (November 1953), 1614.
10. R. Piloty: "Die Dimensionierung der Eccles-Jordañ Schaltung", Archiv d. Elektr. Übertragung 7, (Nov. 1953), 537.
11. S. Higashi, I. Higashino, S. Kaneko, T. Oshio: "Flip-Flop Circuits" Part I, "Analysis", Jl. Inst. Polytechnics, Osaka City University, 4, Series B, (1953), 7. Part II, "Methods of Design", Idem, 5, Series B, (1954), 37.
12. H. Harmuth: "Multivibratoren" E. und M. 71, Heft 6, (March 1954), 136.
13. R. Favre: "Circuits Electroniques Multistables et Décades", Helvetica Physica Acta, 27, Nr. 3, (June 1954), 235.
14. K. Gosslau, H. J. Harloff: "Untersuchungen über das Gleichstrom- und Wechselstrom-Verhalten von Bistabilen Kippschaltungen' Nachr. Techn. Zeitschrift, 8, Heft 10, (Oct. 1955), 521.
15. P. A. Neeteson: "Analysis of Bistable Multivibrator Operation", Book of the Philips' Technical Library (1956).
16. M. Bataille: "Étude des États d'Équilibre d'un Basculeur Bistable en Vue d'un Fonctionnement sûr et durable',' L'Onde Électrique 36, no. 347 (Feb. 1956), 94.
17. G. G. E. Low : "Two Trigger Circuits useful as Sources of Rectangular Pulses" Electronic Engineering 28, (April 1956), 158.
18. G. Thiele: "Berechnungsanleitung für Flip-Flop-Schaltungen", Elektr. Rundschau (1957) Nr. 7, 212, Nr. 8, 250, Nr. 9, 274.

II. MONOSTABLE MULTIVIBRATOR

1. M.I.T. Radiation Lab. Series, Vol. 19, "Waveforms".
2. H. Harmuth: "Multivibratoren", E. und M. 71, Heft 6 (March 1954), 136.
3. A. C. Luther, Jr: "Stabilization of Pulse Duration in Monostable Multivibrators", RCA Review, (Sept. 1955), 403.
4. G. HaAs: "Untersuchungen über die Zeitverzögerung der Impulsauslösung beim Monostabilen Multivibrator', A.E.U. 9, (1955), 272.
5. B. R. Johnson: "A Method of Multivibrator Timing Stabilisation" A.W.A. Technical Review, 10, Nr. 1, (1956), 33.
6. W. Gruhle: "Multivibratorschaltung für Millimikrosekunden-Impulse", Elektronik, Nr. 9, (1957), 261.

III. ASTABLE MULTIVIBRATOR

1. H. Abraham, E. Bloch: "Mesure en Valeur Absolue des Périodes des Oscillations Électriques de Haute Fréquence'", Annales de Physique 12, (1919), 237.
2. F. C. Williams, A. Fairweather: " A 'Chot'ped- Signal' Vacuum Tube Generator with good Voltage Regulation', Post Office Electrical Engineers' Journal, 32, (1939), 104.
3. F. Vecchiacchi: "Meccanismo di Funzionamento e Frequenza del Multivibratore" Altafrequenza 9, (1940), 745.
4. E. H. B. Bartelink: "A Wide-Band Square-Wave Generator", A.I.E.E. Transactions 60, (June 1941), 371.
5. M. V. Kiebert Jr, A. F. Inglis: "Multivibrator Circuits", Proc. I.R.E. 33, (1945), 534.
6. N. W. Mather: "Multivibrator Circuits", Electronics 19 (Oct. 1946), 136.
7. S. Bertram: "The Degenerative Positive Bias Multivibrator" Proc. I.R.E., 36, (Feb. 1948), 277.
8. A. E. Аввот: "Multivibrator Design by Graphical Methods", Electronics 21, (June 1948), 118.
9. R. Feinberg: "On the Performance of the Push-Pull Relaxation Oscillator (Multivibrator)", Phil. Mag., 39, (April 1948), 268.
10. R. Feinberg: "Symmetrical Multivibrators", Wireless Engineer, 26, (May 1949), 153.
11. R. Feinberg: "Asymmetrical Multivibrators", Wireless Engineer, 26, (Oct. 1949), 325.
12. M.I.T. Radiation Lab. Series, Vol. 19, "Waveforms".
13. B. Banerjee: "A Study of the Switching Action in a Multivibrator Circuit", Indian Jl. of Physics 24, nr. 8, (Aug. 1950), 361.
14. D. C. Sarkar, R. Ahmed: "Analysis of the Relaxation Period of a Multivibrator', Indian Jl. of Physics 28, nr. 11, (Nov. 1954). 533.

IV. BLOCKING-OSCILLATOR CIRCUITS

1. R. Benjamin: "Blocking Oscillators", Jl. Inst. El. Engs., 93, Part IIIa, nr. 7. (1946), 1159.
2. M.I.T. Radiation Lab. Series, Vol. 19, "Waveforms".
3. L. Fleming: "The Blocking Oscillator as a Variable-Frequency'Source" (Correspondence) Proc. I.R.E., 37, (Nov. 1949), 1293.
4. J. Racker, P. Selvaggi: "Television Synchronizing Circuits", Part 1, Radio and Television News, 45, (Jan. 1951), 70.
5. A. F. Giordano: "Blocking-Tube Oscillator Design for Television Receivers", Electrical Engineering, 70, nr. 12 (Dec. 1951). 1050.
6. K. G. Beauchamp: "Blocking Oscillators", Electronic Engineering, 25, (June 1953), 239.
7. P. R. Gilette, K. W. Henderson, K. Oshima: "Blocking Oscillator Transformer Design"', I.R.E. Convention Record, vol. 3, Part 3, (1955), 75.
8. J. Mac Donald Smith: "Millimicrosecond Blocking Oscillators", Electronic Engineering, 29, (April 1957), 184.
9. C. H. R. Campling: "Magnetic Inverter uses Tubes or Transistors", Electronics, 31, nr. 11 (March 14, 1958), 158.

LIST OF SYMBOLS AND INDEX

A constant with the dimension of a current (exprs. 2.3); of a time constant (expr. 18a.5); dimensionless (p. 102).
damping constant (expr. 2.3);
reciprocal time constant (p. 11);
constant of dimension $\mathrm{V} / \mathrm{sec}$ (expr. 28.7).
$A(t) \quad$ response of a network to a unit-step function (p. 26).
Astable multivibrator, (p. 18, 75, section 7.4.).
B constant with dimension of a time-constant (expr. 18b.5); of a voltage (p. 102).
$b \quad$ ratio of capacitances (p. 78).
Bi-stable multivibrator, (p. 18, 75; section 7.2.).
C capacitance.
Calculus, operational section 5 (p. 19).
$D \quad$ constant with the dimension of a time-constant (expr. 27.7) dimensionless (p. 102);
ratio of cut-off voltage of a tube to the H.T. supply voltage (expr. 192.7).
E voltage;
constant with the dimension of a time-constant squared (expr. 18c.5).
base of natural logarithm (2,71828 ...); input function of a network (p. 25).
$E_{c}, E_{c o}$ cut-off voltage of an electron tube (expr. 17.7; p. 84).
Eccles Jordan flip-flop (p. 75).
$F \quad$ constant (expr. 21.5; 37a.9; p. 102).
f frequency (expr. 196.7); function (p. 29).
Flip-flop circuit (p. 75).

Superposition theorem (p. 25).
T time constant; period of astable multivibrator (expr. 195.7, p. 143).
t time.
$U(t) \quad$ unit-step function: $U(t)=0$ at $t<0$ $U(t)=1$ at $t>0$.

List of symbols and index
$U\left(t-t_{0}\right)$ unit-step function occurring at the instant $t=t_{0}$

$$
\begin{aligned}
& U\left(t-t_{0}\right)=0 \text { at } t<t_{0} \\
& U\left(t-t_{0}\right)=1 \text { at } t>t_{0} .
\end{aligned}
$$

V voltage.
$V_{a} \quad$ anode voltage of a tube.
V_{0}, V_{0} battery- or H.T. supply voltage.
$V_{c} \quad$ auxiliary voltage source used to account for the effect of closing a switch in a network (p. 4); voltage across a capacitor (p. 20).
$V_{c r} \quad$ minimum trigger voltage of a bistable multivibrator (p. 103).
$V_{g} \quad$ grid voltage of a tube.
$V_{i} \quad$ input voltage (p. 19).
x
y
Z
α
$\infty \quad$ infinite (time) (p. 11).

[^0]: ${ }^{1}$) P. A. Neeteson, Flywheel Synchronization of Time-Base Generators, Electr. Appl. Bull. 12, pp 154 and 179, 1951, and P. A. Neeteson, Flywheel Synchronization of Saw-Tooth Generators, Monograph 2 of the series of books on Television Receiver Design, Philips' Techn. Library 1953.

[^1]: ${ }^{2}$) Readers who are interested in this subject are referred to V. Bush, Operational Circuit Analysis, John Wiley and Sons Inc. New York, 1929, and T. H. Turney, Heaviside's Operational Calculus Made Easy, Chapman and Hall Ltd., London, 1946.

[^2]: ${ }^{4}$) M.I.T. Radiation Lab. Series, Vol. 19, Waveforms, p. 174.

[^3]: ${ }^{5}$) It should be recognized that from this instant onwards the circuit can be considered as a passive network, both tubes being non-conducting, contrary to the switch-over condition of a free-running or astable multivibrator (Abraham and Bloch type), where a regenerative action with both tubes conducting starts as soon as the non-conducting tube reaches its cut-off point..

[^4]: ${ }^{7}$) The oscillograms shown in figs 22-7 to 27-7, which apply to other trigger circuits, do show thise discontinuities.

