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PREFACE

The use of the electron tube in electric circuits has spread within the last
few decades over a vast new field, the field of pulse technique.

Some of these applications of the tube have already become a mormal part
of modern life, for instance in television and automatic telephony. Furiher,
there are important applications in special spheres, like radar, telemetering
and electronic counting apparatus, not to mention the rapidly expandings
sphere of electronic computers. The introduction of the electron tube into
electric circuitry was chiefly the work of practical men. Gradually, the
special properties and possibilities of the tube were studied and the number
of uses to which it could be put increased considerably, as it became known
how the tube could be treated within the network.

In pulse technique, however, the tube is generally used for quite another
type of operation, there being two distinct operating states, in ome of which
no current or very little current is drawn and the tube is cut off. The other
state is that in which a heavy anode current flows and the tube is fully
conducting. The change-overs between these two states occur. suddenly and
are accompanied by certain related transient phenomena in the network. The
tube operates as a ‘‘switch”. ‘

Although there are many known applications of the tube for this type of
use, the mathematical treatment of the switching phenomena is still a closed
book to many users. It is the main aim of this book to indicate the methods
of determining the behaviour of q network in which electronic tubes are used
as switches. The better mastery of this material may then lead to still more
efficient use, and even to new applications of the tube in this type of circuit.
After a few introductory chapters, dealing with such subjects as the opening
and closing of switches in networks and some principles of operational
calculus, there follows a chapter in which a thorough treatment of the vacuum-
tube as a switch is given. This chapter is sub-divided into a treatment of
the grid civcuit and of the anode circuit, both for the triode and the pentode.
The last chapters deal with three very important and widely used circuits
known collectively as multivibrators — these are the bistable, monostable
and astable multivibrators.

T he subject matter of this book does not spring from a mere desire to theorize —
in the contrary, it was actually prompted by a problem that arose in practice
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Preface

and that necessitated a deeper investigation by the author inio the dynamic
phenomena of one of these pulse circuits. By deriving a theoretical treatment
of these phenomena and confirming it in practice, the operation became
easter to understand and practical conclusions cowld be drawn, giving rise,
for instance, to the development of special tubes having partscularly favourable
properties for use in pulse techniques.

The book will thus be useful for those who may already be engaged in pulse
techniques but who are not yet conversant with the mathematical treatment
of the electrical phemomena which occur in these special circuits. It will
further be of help to those who are specializing in this branch of electromics
and may also find application in training institutes.

Thanks are due to Mr Harley-Carter, AM.I.EE. London, and
My H. P. White, London, for reading the English text.

August 1955 The Author

PREFACE TO THE SECOND EDITION

The fact that within a few years a second edition of this book, treating a
rather specialized material, has been mecessary, is of course a great satss-
faction to the author. It makes him believe that the new edition will also find
its way to those interested in the subjects of pulse technique in electronics,
the more so as it has been possible to extend the contents of the book with
an extra chapter and an extemsive literature reference. The new chapter
treats a special class of pulse circuitry formed by several kinds of blocking
oscillators, thereby illustrating the applicability of the switching theory to
this field of magnetically coupled electronic devices.

The multivibrator circuits together with the blocking oscillators cover the
most important part of fundamental pulse circuits containing vacuum tubes
as the active elements. Therefore it is believed that the incorporation of the

new chapter makes the book a more complete whole.

June 1959 The Author
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1. INTRODUCTION

The theoretical analysis of linear electrical networks which has been
developed thoroughly during the past century by many workers in this
field has reached a certain degree of perfection.

The first stage in this development was the study of the behaviour
of passive networks when subjected tc the influence of electromotive
forces or electrical currents of periodic nature and having such small
amplitudes that the components included in the networks never lose
their typical linear properties. In other words, the values which deter-
mine the behaviour of the components are independent of the am-
plitudes.

Typical components of passive linear networks are resistances, ca-
pacitances, self- and mutual inductances. These are best known in their
classical form as linear components. Modern development of electrical
circuitry, however, takes increasing advantage of the ‘possibilities
offered among others by new magnetic and dielectric materials having
hysteresis and saturation properties to construct typical non-linear
components. Examples of these are self-inductances of coils with more
or less saturated magnetic cores (iron alloys, iron-dust cores, ferrites
such as ferroxcube), capacitors with barium titanate dielectric, voltage-
dependent resistances (VDR), resistances with negative or positive
temperature-coefficient (NTC and PTC resistances resp.).

Returning to our starting point, it can be stated that the mathematical
treatment of passive, linear network behaviour has been mastered very
well, some examples of noteworthy tools being Fourier analysis of
periodical waveforms, that enables the response of networks to these
waveforms to be calculated . as the response to the superposition of
single sine wave functions, and also the introduction of complex functions
instead of sine functions.

A further and very important step in the development of network-
analysis was the study of the response of passive linear networks to non-
periodic, discontinuous wave forms. This was commenced with a mar-
vellous mathematical intuition by Heaviside, then greatly widened
and mathematically established by other outstanding mathematicians
and physicists, resulting in the new technique of calculating the response
of networks to input-currents or -voltages known as operational
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Introduction 1

calculus. Even non-linear, passive networks of not too complex non-
linear nature have been mathematically analysed.

Since the invention of the electronic vacuum tube, a new “component”’
has entered network-design so rapidly and completely that it hardly
has a parallel in any other technical development of modern time.
Thus an essentially non-linear, non-passive component, the electron
tube, is introduced into electrical networks.

The electron tube is a non-passive component because direct-current
power is constantly fed to it, thus making it possible to give the tube
amplifying properties for signals with varying amplitude, the most
widespread application being the modulation of a direct anode current
by means of a varying grid voltage, resulting in a more or less proportional
variation of the potential drop across an anode load-resistor.

This “more or less” must be added, because it is difficult to get a
linear relationship between grid voltage variation and resulting anode
current variation (linear anode current — grid voltage characteristic).
Linearity is more closely approached as the excursions of the grid
voltage variation to either side of a fixed operating point on the charac-
teristic become smaller. Then the well-known equivalent circuits of the
electron tube amplifier can be used to simplify the analysis of the net-
work containing the tube. These equivalent circuits are either a voltage
source ue, in series with the internal anode resistance R;, or a current
source Se, in parallel with R, u and S being the amplification factor
and sthe transconductance respectively, e, the applied grid voltage
variation.

Under these circumstances, the electron tube can be incorporated
in the network of more conventional components as another linear
(amplifying) element and mathematically treated as such.

In the use of electron tubes in pulse techniques, however, these
conditions are generally far from being satisfied. The tube must, on
the other hand, be considered as an essentially non-linear element.
It is generally switched from one discrete state into another, viz. from
the fully conducting state into cut-off condition or vice versa. In the con-
ducting state it represents a given (internal) resistance between anode
and cathode. When, in addition, grid current occurs, another (internal)
resistance is present between the grid and the cathode. In the non-con-
ducting state, these resistances have assumed very high values, practically
infinite. Tt may thus be stated that, at sudden transitions from one
stats to the other, resistances are switched on or off in the circuit in
which tie tobe s mciuded.

It will be clear that :his kind of operation of tubes in pulse techniques
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is quite different from the familiar operation in conventional amplifiers,
and must be considered as a switching action. Some external cause,
usually a rather steep voltage step in either the positive or the negative
direction applied to the control grid, should bring the tube as rapidly as
possible from one discrete position to the other.

Because of the already widespread and still ever increasing use of
electron tubes in pulse techniques, such as electronic counter-apparatus
and computing devices, scalers and radiation counters for atomic research
and X-ray application, pulse modulation systems, radar, television and
the like, it seems worth while to examine the behaviour of these tubes
in pulse applications. This will be the principal aim of this book. After
a general treatment of the behaviour of an electronic vacuum tube when
subjected to sudden voltage changes at its control grid, some special
circuits, well known in practice and often used as fundamental units
in pulse devices, will be dealt with. Theoretical analysis will prove to
be useful in investigating the influence of several tube characteristics
on the behaviour of the circuits as a whole. The circuits to be considered
are the three members of the multivibrator family, viz. the bistable,
the monostable and the astable multivibrator. ‘

As already mentioned, operational calculus has offered elegant so-
lutions of transient phenomena in electrical networks. It will prove
to be useful too in solving the problems related with transients in switched
electron tubes. ’

Relatively few basic principles of this operational calculus will be
sufficient to deal with the transient problems related with electron
tubes as circuit components, and to solve these problems. These basic
elements will be considered in the next section.



2. BASIC THEORY OF SWITCHING

As previously mentioned, in pulse techniques  the electronic tube
must be regarded as a non-linear element. In the conducting state,
internal anode resistance and, generally, also internal grid resistance
must be taken into account, whereas in the non-conducting or cut-off
state, these resistances have disappeared. If the tube is suddenly switched
from one state to the other by a negative or positive-going voltage step
at the control grid, these internal resistances are switched off or on
respectively in the circuit containing the tube.

Operational network analysis indicates how to incorporate these
discontinuities and their consequences in calculations of the circuit
behaviour.

Before procéeding to a more detailed discussion of circuits with
switching tubes, a short general survey of switch actions will be given.

2.1. SUDDEN SHORT-CIRCUITING OF TWO POINTS OF A NETWORK

In fig. 1.2, AB represents -a passive linear network in which currents
flow and voltages occur as a result of an externally applied voltage E (¢),
which is a function of -time. The voltage between points P and Q of
the network will be denoted by V (f). At the instant ¢ = ¢, points P
and Q are short-circuited, so that the voltage between these points

p is zero for ¢ >t, The effect

£ (fc A of this sudden short-circuiting

o_) i Ve 5 on the current and voltage
L_' _— . .

Q 76720 Situation of the network can

Fig. 1-2. now be determined by ima-

Passive network in which the externally i :
applied voltage E (t) produces a voltage gl nmg. a VOItage. source w_lth
V (t) between points P and Q. zero internal resistance being

present between P and ¢
from the instant ¢ = #, onwards, the time function of this voltage being
such that the voltage V (¢) originally present between P and Q is just
compensated from the instant f, onwards. This voltage source,
occurring when the switch is closed, can be represented by the ex-
pression:

V.t)=—V . U{t—t), .. .... (12



2.2 _ Sudden breaking of a connection in a network

in which U (t —1{,) represents a unit step function occurring at the
instant ¢ = ¢,. In other words, from this instant onwards the voltage V' (f)
must be multiplied by —1 to obtain the time function V_ (z).

The voltages and currents in the network now consist of two super-
imposed components, namely one component originating from E (f)
as it would be without the sudden disturbance caused by points P
and Q being short-circuited, and

the other component caused by 'T/ //W

V. (t),1i.e. by the short-circuiting

effect. Since it has been as- t=to

sumed that the input voltage -t

source E (t) has zero internal 0 o730
. e A

resistance or that its internal -

. o e ted in th Fig. 2-2.
resistance 1s incorporated 1n the Example of the time function V., (¢).
network, this voltage source

may be considered as a short-circuit for calculating the effect of V (f).
Fig. 2.2 illustrates an example of the time function V_ (z).

2.2, SUDDEN BREAKING OF A CONNECTION IN A NETWORK

In the passive network AB shown in fig. 3.2, a current I (¢), which
is caused by the input voltage E (), flows between points P and Q
through the resistance R. This resistance will be assumed to be suddenly
disconnected from point Q at the instant # = {,. From the instant ¢,
onwards current can obviously no longer pass from P to Q. This is

equivalent to the resistance R

o— suddenly becoming infinitely
Elt) A éllﬂ’ B large. The effect of this dis-
e73y continuity on the network can

Fig. 3-2. be described as follows.

Passive network m which the externally From the instant ¢ = ¢, on-
applied voltage E (¢) produces a current wards, voltages and currents

I'(t) through the branch PQ.

in the network consist of two
components, namely one component due to E (¢) and calculated as
if no discontinuity had occurred, and a second component, super-
imposed on the other, which is caused by the sudden disconnection of
R and calculated by assuming an imaginary current source with in-
finitely large internal resistance to be present between points P and Q,
the voltage source E (¢) being short-circuited and the value of the current
source being such that the current I (), which would be present without
the disturbance, is just compensated.
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This imaginary current source, occurring when the switch is opened,
will be denoted by I, (¢), and, in analogy with eq. (1.2), it can be
described by: ‘

Iy =—I(t).U(t—ty). . . . . ... (22

This expression can be represented by the curve shown in fig. 2.2,
provided V (¢) and V, (f) are replaced by I (¢) and I, () respectively.



3. APPLICATION OF THE THEORY TO SIMPLE SWITCHING
CIRCUITS

Before proceeding to the discussion of practical switching devices
containing electron tubes, some simple switching circuits will be in-
vestigated, containing a switch whose nature will be left out of con-
sideration.

3.1. IDEAL SWITCH WITHOUT INTERNAL RESISTANCE AND
PARALLEL CAPACITANCE

The circuit will be assumed to consist of a resistance R in series
with a switch S connected to a constant
voltage V, (see fig. 1.3).

If the wvoltage source has an internal
resistance, this may be imagined to be
incorporated in the value of R. It is now
of interest to know the form of the voltage
V across the switch. It will be clear that
so long as switch S is open, V' will have the
same value as V,, whereas V will be zero
when the switch is closed.

Opening the switch at the instants ¢,, ¢,, . . .
and closing it at the instants f£,, ¢, . .. will therefore result in a voltage
as depicted in fig. 2.3.

By way of illustration, the theory outlined in sections 2.1 and 2.2
will now be applied. First the case of the switch being closed will be
considered. From this instant on-
wards, a voltage source V_ is to be
incorporated in this circuit instead of
the switch, so that V', has the same
value as, but is opposite in sign to,

76732

Fig. 1-3.
Ideal switch without in-
ternal resistance and parallel
capacitance connected to a
constant voltage V, via the
resistance R.

V=p---

—<

v=0— t t +— the voltage V that would be present
2 3 4 >
‘—’76755 if the switch had not been closed.

the situation

Fig. 2-3.
Voltage V produced across the
switch S shown in fig. 1-3 when S
is opened at the instants ¢, ¢;, ...
and closed at the instants #,, ¢, . . .

Hence, V,= —V,,
being as represented by fig. 3.3. The
actual voltage V across the switch
is now equal to the superposition of

7



Application of the theory to simple switching circuits 3

the original voltage +V, and the effect of V, viz. —V,, resulting in
zero voltage. The voltage across R was originally zero, whereas, after
the switch has been closed, a current 7 = V_ /R flows through R, pro-
ducing a voltage drop —V, across R. The combined effect of these two
compopents is 0 — V, or +V,. ‘

There is obviously no point in applying this method to such simple
switching circuits, but it does give an insight in the mechanism and
proves the validity of the theory.

+
ISR
% ——T
Ve=-Vp 4
S ‘
- —3
76734 B 76735
Fig. 3-3. Fig. 4-3.
Circuit equivalent to that Circuit equivalent to that
shown in fig. 1-3 when shown in fig. 1-3- when
switch S is closed. switch S is opened.

Considering the opening of the switch, it will be clear that, from the
instant of opening onwards, a current source I, = —V,/R must be
imagined to be present at the terminals of the switch (see fig. 4.3).
This current gives rise to a voltage drop across R, as a result of which
the potential of point 4 with respect to B is —I,R or +V,.

The voltage between 4 and B was originally zero, resulting in a
voltage V = V,. Before the switch was opened, a current I = —I,
was flowing in the downward direction through R, whereas, after the
switch has been opened, this current is compensated by the current
I,, resulting in zero voltage drop across R.

3.2. SWITCH WITH INTERNAL RESISTANCE

Since ideal switches are non-existent, a better approximation of an
actual switch is obtained by assuming it to have a certain internal
resistance 7, r being taken to be much smaller than R.

Fig. 5.3 shows the circuit with the switch open. The voltage across
the switch will obviously be V = V, and will drop to a value

V="V,.7/(R +7)

when the switch is closed. Opening the switch at the instants ¢, ; . .
and closing it at the instants #,, ¢, . . . will result in a voltage V as shown

8



3.2 _ Switch with internal resistance

in fig. 6.3. Compared with the previous case, the amplitude of the pulse-
shaped voltage V' has decreased by an amount V,-7/(R + 7). The
flanks of the pulses will, however, still have an infinitely steep slope.

V=lp---
M v
i i T
l P
(73 r .
H VzL
v R4r t ty ty ¢,
{* |
- v=0
76736 76737 —t
Fig. 5-3. Fig. 6-3.
Switch with internal resist- : Voltage V produced across the switch
ance » connected to a con- shown in fig. 5-3 when this is opened
stant voltage V, via the at the instants ¢, ¢,, ... and closed
resistance R. at the instants ¢, ¢, ...

The validity of the theory given in Sections 2.1 and 2.2 will once
again be shown. Closing the switch at the instant ¢ = ¢, gives for ¢ = ¢,
a superposition of the original state and the effect of a voltage source

V.= —V, as represented in fig. 7.3. This voltage gives rise to a current
- +
R
) 4.
7 L
Ww b r
v
Ve=-Wb i/s Iy
-_— + 8 -_— — >
76738 76739
Fig. 7-3. . Fig. 8-3.
Circuit equivalent to that Circuit equivalent to that
shown in fig. 5-3 when shown in fig. 5-3 when
switch S is closed. switch S is opened.

I=V /(R +7)=-—V,/(R + 7). This current produces a voltage drop
of —rI = V,.7/(R + 7) across r. The total effect of V', on the potential
between A and B is therefore given by:

r 4 R
Vc+—+ Vb=‘_Vb+k'__+'_—r'Vb= Vb'

R+4+7' R + 7’
This voltage must be superimposed on the original voltage +V,, which
gives for the total voltage between A and B:
R 7

V=Vy—eoou  Vy=——,V,.
> R+7 " R4+" "
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The opposite case, when the switch is opened at the instant ¢ = ¢,,
can be investigated by assuming a current source Iy = —V,/(R + 7)
to be present between A and B for ¢t = ¢, (see fig. 8.3). This current
produces a voltage drop across R, which results in a potential of

V,.R/(R + 7)

being produced between A and B. This must be added to the voltage
already present between these points for ¢ < ¢, namely V,.7/(R + 7),
which gives V =V, for ¢ > ¢,

3.3. SWITCH WITH INTERNAL RESISTANCE AND PARALLEL
CAPACITANCE

In practice, all switches will have not only an internal resistance,
but also a stray capacitance connected in parallel. Fig. 9.3 shows the
circuit with the switch open. The voltage V is equal to V, when the
+ switch has been open for a sufficient length

%R of time, so that no transient effects due to
a preceding switching action remain.

When the switch is now closed at an
instant which, for the sake of convience
will be denoted by ¢ =0, the situation

6700 deplc‘ted in ﬁg.‘ 10.3 will arise.

_ Fig. 9-3. With the aid of Thévenin’s theorem
Switch with internal re-  this circuit can be replaced by the equi-
sistance » and parallel ca- R . N R 2
pacitance C connected to valent circuit shown 1in fig. 11.3, in which
a constant voltage V, via the voltage source V, with its series
the resistance R. R .

resistance R is replaced by a current source
I = V,/R with parallel resistance R.

R =%
ahhly oA R _ A
" 1 L]

% r TC v R %r c v
- :‘)B £—o' T SE

- 7674 26740

Fig. 10-3. Fig. 11-3.

Circuit equivalent to that shown Equivalent circuit of fig. 10-3
in fig. 9-3 when switch S is according to Thévenin’s theorem.

closed at ¢t = 0.

The circuit of fig. 11.3 may be replaced by the simplified circuit
shown in fig. 12.3, in which R,, = R .7[(R 4+ 7). According to Kirch-
hoff’s laws:

10



3.3 Switch with internal resistance and parallel capacitance

&, 1 1

eq."ﬁ—f—g.il‘:a.[,........ (].3)

R

a possible solution of which is:

=1+ Aet. . . . . ... ... (23
Substitution of eq. (2.3) in eq. (1.3) and. introducing the initial con-
dition V =V, for t =0, gives: P A
|4 1 '
A==—Tand a=— : ReeSly C=lip v
eq RBOC
Since i o 8
76743
V=R, I+ AetlRaC), . . . . (33) Fig. 12-3.

Circuit according to that
it may therefore be written: shown in fig. 11-3 in

which the resistances R

> and » connected in parallel

V= (7 + Re7tIR.C) . . . (43) are replaced by the equi-
R+ valent resistance R,,.

After a sufficiently lohg time, V approximates to:

4

Voo = Vo o . ... ... (53
®T R4y (
whilst for ¢ = 0 the initial value is:
VeVo=V,. o o v . . ... (63
?A A
] 1 g
R _ c [:\—,2 Rooty c=ti,
D T I
+ ! 35 o 4 8
76744 7675
Fig. 13-3. Fig. 14-3.
Circuit for calculating Equivalent circuit of fig.
transient effects. ’ 13-3 according to Théve-

nin’s theorem.

For calculating the transients with the aid of the above theory, it
is necessary to introduce a voltage V,= —V, (see fig. 13.3) in series
with the resistance 7, and to add to the voltage V, present before the
switch was closed the voltage V across 4 and B due to V. With the
aid of Thévenin’s theorem, the circuit of fig. 13.3 can be replaced by
the equivalent circuit shown in fig. 14.3, in which:

R

Ro= "% R )

11



Application of the theory to simple switching circuits 3

The current ¢, is given by eq. (1.3), whilst for the general solution
eq. (2.3) is applicable. Now, for ¢ = 0, i.e. the instant at which the
switch is closed, the voltage across the capacitance C cannot suddenly
rise to a certain value; hence, V =0 or i, = 0, for £ = 0. Substitution
in eq. (2.3) gives:

= — S e e e e e 3
a RC (9.3)
whence:
3, = I (1 — et/RuC),
or:
V=—iR, = —IR,, (1 — et[RC). (10.3)
From eq. (7.3) and considering that I = V,/r:
7 (1 —eYRaC) . . . . .. (11.3)
R+7r»" °

The total voltage across 4 and B after the switch has been closed
is therefore:
VeVt T eV, + -2 petirac.  (123)
® R+4+7r R+r "
This expression corresponds to eq. (4.3) derived in the conventional way.
Closing the switch thus results in the potential between points A4
and B changing from the initial value V, = V, to a final value

Vo =V . 7I(R+1),

according to an exponential law with a time constant T, = R,C.
Assuming, now, that the switch has been closed for a sufficiently long
time, so that the final state in which V=V, = V,.7/(R+7) is
practically reached, the situation represented in fig. 15.3 will arise
when the switch is opened. It is convenient to set the instant ¢ at which
the switch is opened equal to 0 in a new time scale. For ¢ < 0, the voltage
between points A and B was V = V,.7/(R + r) (see eq. (5.3)), a
constant current Iy = V,[(R + 7) flowing through the internal re-
sistance 7 of the switch. At ¢ =0, this current suddenly drops to zero
and remains zero for all times ¢ > 0. This can be accounted for by
feeding a current I, in-the opposite direction, as represented in fig. 15.3,

12



3.3 Switch with internal resistance and parallel capacitance

this current being equal to the value of I, quoted above, which gives:

.......... (13.3)

The voltage V is now the superposition of the original voltage, which
is already present between points 4 and B for ¢ <0, and a voltage
which results from the effect of the current source I, This latter com-
ponent can be calculated by means of the circuit given in fig. 16.3,
which is identical to that shown in fig. 15.3, except for the omission of
the direct voltage source + V,, which plays no part in the transient
effects to be determined.

+

A
4 , ] — —oa
% / r 1
st ) RSl C=:lip
- —15 L, B8
76746 76747
Fig. 15-3. Fig. 16-3.
Circuit according to that Circuit identical to that
shown in fig. 9-3 when shown in fig. 15-3, but for
switch S is opened "after the omission of the direct
having been closed for a ’ voltage source + V,,
certain time. which plays no part in the
transient effects under in-
vestigation.

A comparison of figs 16.3 and 12.3 reveals that these circuits are
identical, so that the solutions of ¥V in the case of the circuit shown
in fig. 16.3 will be the same as those given by eq. (3.3), provided R,,
and I are replaced by R and.I, respectively. Hence: :

V=R(I,+ AeIRS), . . . .. .. (143)

V denoting that this is only part of the total voltage V between 4 and B.
The integration constant A is now defined by the initial condition
V=V,.r/(R+7) for t=0, i.e. V =0 for ¢ = 0. Hence:

0=R(I,+ 4) or 4 =—I,
so that, from eqs (13.3) and (14.3):

V.= (1 — e~IRC),

R+7r’
13



Application of the theory to simple switching circuits 3

The total voltage between A and B for ¢ = 0 is the sum of V¥ and
Vs, which gives:

R
V=V, —=

- VetRe (189

Summarizing, it can thus be stated that after opening the switch
the voltage V increases from its initial value V,.7»/(R 4-7) at £t =0
to the final value V, according to an exponential law with a time constant
T, = RC.

This time constant is thus always larger than the time constant T,
in other words: the time constant of the transient phenomena at opening
a switch exceeds that at closing a switch. The smaller the internal
resistance r of the switch with respect to the external resistance R of
the circuit, the more pronounced will be the difference in time constants,
namely:

T, R,C r

T, RC R+r

(16.3)

Fig. 17.3 gives a graphical representation of the voltage V when
the switch is opened at the instants ¢, f; . .. and closed at the instants
ty by ...

—at
76748

Fig. 17-3.
Voltage V as a function of time, produced in the
circuit shown in fig. 15-3 when switch S is opened
at the instants ¢, Z,, . . . and closed at the instants
by g ...

It will be clear that periodical opening and closing of the switch
with time intervals T that are small compared with the largest time
constant T, = RC, will result in the voltage V assuming a wave-
form as depicted in fig. 18.3, saw-tooth voltages thus being produced,
whereas, if T is much larger than the largest time constant of the cir-
cuit, voltages with a pulsatory waveform will be generated. Both wave-
forms are well known and frequently applied in modern electronics,
such as television, radar and computer devices.

14



3.3 Switch with internal resistance and parallel capacitance

The preceding simple treatise on switching circuits makes it possible
to draw some general conclusions.

r”

V=p5rb

|
T —=t

76749

=

Fig. 18-3.
Saw-tooth voltage produced when switch S is opened
and closed with time intervals T which are small
compared with the largest time constant T, = RC.

For generating pulses it is advantageous to aim at a switch the internal
resistance of which is as low as possible, in order to increase the pulse
amplitude. At the same time the switch should have a very small parallel
capacitance in order to obtain pulses with steep flanks. Negative-going
flanks will always be steeper than positive-going flanks. For generating
saw-tooth shaped signals it will as a rule be necessary to add extra
parallel capacitance.

15



4. SIMPLE TREATMENT OF ELECTRON TUBES AS SWITCHES

By applying positive- or negative-going voltage steps to the control
grid, an electronic vacuum tube can be converted from the non-conducting
(cut-off) state to the conducting state and vice versa. The anode-to-
cathode resistance of a cut-off tube is infinitely large and corresponds

to an open switch, whereas a con-

L1y ducting tube represents a certain (in-
I ternal) resistance between the anode
and cathode and may be considered

I as a closed switch having internal
resistance and necessarily ‘a certain
; paralle] capacitance. A negative-going

/ Ig; . . .

’ pulse is required for opening the
/ 1 ~ “switch” and a positive-going pulse
o —slp for closing it.

It will be assumed that ideal,

perfectly square-wave shaped voltage

t; steps are applied to the control grid
. of the electron tube, the anode current
’I ‘ being completely cut off at the lowest
tl rerse potential level of these steps and
1-4. their amplitude being such that the

f)tfle:htfxel;ieItoTv lfn(cg )acsh;;:rcée“‘gtv‘: point at which grid current starts to
voltage is applied. flow is not reached (see fig. 1.4).
When a suitable resistance is in-
corporated between the anode and the H.T. line, the resulting anode
voltage variations will be as shown in figs 2.4a and b. Provided the
largest time constant (product of anode load resistance and anode-
to-cathode capacitance) is small compared with the switching time
intervals ¢,, ¢, —1,, t;—1,, etc., the anode voltage variations will be
pulse-shaped as depicted in fig. 2.4a, whereas saw-tooth shaped voltage
variations as depicted in fig. 2.4 will be produced when this time constant
is large compared with the switching time intervals.
.This section is confined to the generation of pulse-shaped signals,
and reference to saw-tooth generation circuits will be omitted. Readers

16



Simple treatment of electron tubes as switches 4

who are interested in the latter subject are referred to the literature
quoted in footnote ?).

Fig. 2c.4 shows the oscillogram of the driving pulses applied to the
control grid of the electron tube. Comparison of fig. 22.4 and fig. 2c.4
reveals that the circuit provides a kind of pulse amplification with,
however, a certain amount of distortion. It will be clear that this distor-
tion, manifest in a decrease of the slope of the pulse flanks and in the

v--«-—j
Vo
! a
Va /
e
Y
— I‘ £
A
! ! H !
0 f, f) f3 —t
76751
Fig. 2-4.

When the square-wave voltage represented in (¢) is
applied to the control grid of a tube with a load
resistor incorporated in the anode lead, the anode
voltage variations will assume the forms shown
in (a) or (b).
originally sharp-edged transitions being rounded off, can be minimized
by keeping the time constants of the switch as small as possible. This
can be achieved by making the anode load resistance fairly small, thus
improving the slope of both pulse flanks, but at the same time decreasing
their amplitude. By decreasing the internal resistance of the tube, the
slope of the negative-going flanks will be improved, whilst the amplitude
will be increased. Finally, a reduction of the stray capacitance of the
anode circuit will steepen both pulse flanks. The specific requirements
1) P. A. Neeteson, Flywheel Synchronization of Time-Base Generators, Electr.
Appl. Bull. 12, pp 154 and 179, 1951, and P. A. Neeteson, Flywheel Synchro-

nization of Saw-Tooth Generators, Monograph 2 of the series of books on
Television Receiver Design, Philips’ Techn. Library 1953.

17



Simple treatment of electron tubes as switches 4

for switching tubes are, therefore, low internal resistance and low
output capacitance.

For generating pulse-shaped voltages in the anode circuit, the driving
voltages applied to the control grid should be of the same nature. The
obvious method of generating such voltages is to apply a regenerative
process by feeding a fraction of the anode signal back to the control
grid in antiphase. This is indeed the principle on which many types
of relaxation oscillators, such as the multivibrator, are based (see the
literature quoted in footnote 1) page 17).

The multivibrator, which spontaneously generates pulse-shaped
signals, is a free-running or astable multivibrator. This type of multi-
vibrator has no stable state, but continuously changes from one quasi-
stable position to the other. In one position, one of the two tubes which
constitute the multivibrator is conducting (closed switch) and the other
tube is cut off (open switch), whereas in the other position these con-
ditions are reversed. Reversal takes place periodically with time intervals
that depend on a time constant determined by the circuit elements
of the coupling network between the tubes.

The bi-stable multivibrator or flip-flop circust has two discrete, stable
positions which can be changed only by applying a driving signal (trigger
pulse) to the circuit.

An intermediate form is the monostable or one-shot multivibrator.
This circuit has only one stable condition in which it always remains
when no external signal is applied. By suitably applying a triggering
signal, this type of multivibrator suddenly changes from its stable state
to a quasi-stable state in which the functions of the conducting and
non-conducting tubes are reversed. The circuit remains in this condition
during a period of time which depends on a time constant of the coupling
network between the tubes. :

In several subsequent sections detailed investigation of the action
of pulsed electron tubes will be given, and the three types of multivibra-
tors just mentioned, being important and fundamental circuits in a
lot of pulse devices, will also be discussed. Before proceeding, however,
to the main purpose of the book, some elements will be given of the
operational calculus, which is required for attainment of the results
aimed for. A

No strict mathematical derivations must be expected, the only purpose
of the following sections being to give the reader an idea of the lines
along which the final results have been attained. For those readers,
acquainted with operational calculus methods, these sections will contain
little new information and could be safely omitted.

18



5. SOME ELEMENTS OF THE OPERATIONAL CALCULUS

Basically, the operational calculus offers an elegant method of solving
differential equations. When the response of a network to a unit-step
function is known, it is possible to calculate its response to an input
function of arbitrary form by considering this function as the sum of
a sequence of small step functions. It was Héaviside who introduced
the unit-step function as the basic discontinuity.

According to the procedure of the operational,calculus, the operation
d/dt, i.e. differentiation with respect to time, may be considered as an
algebraic quantity, which is denoted, for example, by the operator p.
A rigorous proof of the permissibility of this method can be given by
means of the Laplace transform, which is beyond the scope of this
section. However, in order to make the reader familiar with the opera-
tional calculus, the response of a few fundamental circuits to a unit-step
function will first be derived in the classical way of solving differential
equations, after which it will be shown with which operational ex-
pressions the results thus obtained correspond.

_!:_.-_.1

¥ y T

y D%” e !
e o =0 —’tmm
7313

Fig. 1-6. Fig. 2-5.
Simple RC network to Step function applied to
which a step function V, the circuit shown in fig.
is applied. 1-5.

First the circuit shown in fig. 1.5 will be considered. The input voltage
V,; will be taken to be a step function as depicted in fig. 2.5, i.e., the
value of V, suddenly jumps from zero to V, at the instant ¢ =0, and
remains at ¥V, for ¢t = 0.

By means of Kirchhoff’s laws, the following relation between the
current / flowing in the circuit and the input voltage V; can easily be
derived, giving:

1 al  av,
C'I+R'Zt__ e




Some elements of the operational calculus 5

The solution of this differential equation is:

T==2 g% . (25)

Expression (2.5) reveals that the current I flowing through the net-
work, as a result of applying a unit-step voltage V, (i.e. ¥V, =1 at the
instant ¢t = 0) is equal to:

in which U () represents the unit-step function which is zero for ¢ < 0
and unity for ¢ = 0.

According to the operational calculus, expression (1.5) may be re-
written as:

1
(E+Rﬁ1=pm........(mm

In other words: the relation between the two quantities 7 and V,

is defined by the operational expression:

r__¢ (16.5)
ool 5
C+ P

It is also possible to express 7 in a symbolic, operational form, which
gives:

1
"R

p
! .
rc T2

It can be seen from expressions (3.5) and (4.5) that the operator
between square brackets, which operates on a unit-step function, can
be translated into a time function, namely:

4

1
7cT?

I

Uu@. ...... (45

The voltage V. across the capacitance C is obviously given by:

Ve="

‘"
Idt
C ’
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5 Some elements of the operational calculus

or, from expressions (2.5) and (3.5):
Ve=(1—e"™®)yVvou@. ... . ... (65)

On the other hand, I = C.dV_/dt and I = (V;— V )/R, which
gives:

1 av, 1
R Vet =g
whenee:
' 1 : 1
— Ve=—.V, .. . . . ... (15
(et ?)Ve=ge- V. (1.5)
or:
RC |

It follows from expressions (6.5) and (74.5) that the operator between
square brackets can now be translated into the following time function:

RC

=1 MR .. (85)

B t?

In a generalized form, the relations (5.5) and (8.5) indicate that, when
in any network the relation between a quantity to be investigated and
an input function is given by the operational expressions p/(a + p) or
a/(a + p), this quantity will be e~* or 1 — =¥, respectively, if the input
is a unit-step function occurring at the instant ¢ = 0. (If this instant
were ¢ = £,, the response of the network would be the same time function
shifted in time over a period #,. This may be taken into account by
substituting £ — ¢, for ¢ in all time functions.)

In order to find the operational expression that links two electrical
quantities in a network and which may have the dimension of an im-
pedance or an admittance or may be a dimensionless transfer factor,
it will be useful first to determine the a.c. impedance, admittance or
transfer factor expressed in the conventional complex form with jw,
which, in fact, originates from a time differentiation. Subsequently, jo
must be replaced by the operator 3.
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Some elements of the operational calculus

This is illustrated in the example given above. Referring again to

fig. 1.5, the a.c. impedance of the network is:

i 1
Z (jw) =R + 7.07‘,
so that:
P A
R+
1wC
or:
1 1
V. L
T fut
Substitution of ja by p gives:
1 1
V.~ L
*3c
or:
I ?
T/—,- = -
c + Rp

Expression (11.5) is identical to expression (15.5).

(11.5)

If V; is a sine function, the relation between V. and ¥, can be ex-

pressed as follows:

Ve = "mjg]' Vv,
jorC
Substitution of jw by p gives:
€
Ve= pC T V.
R + —13_(,:

22

(12.5)



5 Some elements of the operational calculus

or:
1

RC
Ve=—ie V. . ..... (i35

1
¢+—1—?E

which is identical to expression (7.5).
The two transformations:

T
a+p
and
2 —al
L+p]51_e e .. ... (155

are of particular importance, for it will often be possible to write a
more complex operational expression as the sum of several expressions
similar to expression (14.5) and (15.5), namely by splitting it up in
partial fractions (Heaviside’s Expansion Theorem) ?%).

This will be clarified by means of an example that will be met later,
when the bi-stable multivibrator is dealt with. The value of the opera-
tional impedance between points 2 and & of the network shown in fig.
3.5 will now be investigated. For the sake of simplicity, the following
notations will be introduced for the time constants:

RC, =T,
RC,=T., ... ... ... (165
RC=T
and for the resistance ratios: c
R, a
——_ = 8” 1 R
R, + R+ R, RyS ==C, c,,.[. Ro
~
]
R Y s T o
R, + R+ R,
Fig. 3-5.
R Network of a more complex
L a =g nature to which a step
R,+ R+ R, a function is applied.

?) Readers who are interested in this subject are referred to V. Bush, Operational
Circuit Analysis, John Wiley and Sons Inc. New York, 1929, and T. H. Turney,
Heaviside’s Operational Calculus Made Easy, Chapman and Hall Ltd., London,
1946.
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Some elements of the operational calculus - 5

The final result of deriving the operational impedance 3) is:
1+ 4p

“"1+ Bp + Ep*

where R, i.e. the d.c. impedance between points a and b, is given by:

_ R(R+R)
““R+RTR

Z@p)=R,. —2 8 .. (185)

whilst
RT, + R, T
A= ——m—, . . . . . . .. .
R+ R, (18a.5)
B = b‘,",(T+ T)+e(T,+T)+e,(T,+T),. ... (18b5)
and
E=¢TT,+eT,T,+ T, T. . . . . ... . (18c.5)

Expression (18.5) can now be split into two partial fractions by first
writing the denominator as:

B 1
E(f+5-p+5)=EG—p) —p) - . . . (199

where #, and p, are the roots of the second order equation

Bt
p'*‘E- g =0

Hence:
B B2 1
= —— — e e e e 19a.5
P 2E T Vi E (192.5)
and
B B 1
e 196.5
P2 2F 4F2 E ( )

Expression (18.5) thus becomes:

R, 1+ Ap

E (p—p)p—2)

%) It is stressed here that the operational impedance should not be confused
with the conventional concept of impedance. (In fact, this also applies to a
complex impedance in a.c. network theory.) An operational impedance is only
an auxiliary quantity which proves to be most useful for investigating and
solving transient phenomena. It links a voltage and a current in such a way
that its dimension is that of an impedance.

24

Z(p) =



5 Some elements of the operational calculus

This expression can be split into two partial fractions, namely:

R,, (1+4p 1 1+ Ap, 1 .
Z - . . — . ==
O =5 G =R A =)
“ Eﬁl(f’ ‘_Pz) _’/’1+f’ EPI (f’z—f’z) —"Pe"‘i’
: —h ‘152
=R, |F,. ———— Fyp, ——— .. .. ... ... 20.
' aq( 1 _p1+1)+ 2 _¢2+ ) ( 5)

Applying the transformation according to expression (15.5) now
gives for the response of the network shown in fig. 3.5 to a unit-step
iniput current at the terminals @ and b, a voltage across these terminals
which is equal to:

Ve [ll =R, {F, (1 —e)+ F,(1—e)}. . . . (2L5)
The constants F, and F, can be combined and rearranged so that
expression (21.5) becomes:
Vo [1] = R, {1 + Ke?*— (1 + K)e?}, . . . . . (2la)
where:
K _ P+ Ap)
b—2

It will be clear that in the case of a current step of amplitude I, applied
to terminals 4 and b, the resulting voltage across these terminals will be:

Vo [I] = IR, {1 + Ket* — (1 + K) e} . . . . . (21b.5)

L . (225)

At the instant when the step occurs (for ¢ = 0) this voltage is zero.
This is obvious because a steep front can be considered as the com-
mencement of a signal of very high frequency and between points
a and b a chain of capacitances which smoothes this H.F. signal is
present. After a very long time (theoretically an infinite time), the
voltage V,, becomes equal to IR,,, i.e. the static condition is reached.

In the preceding comments the response of a network to a step function
was considered. The determination of the response to an arbitrary
time function is possible by applying the superposition theorem. This
theorem can easily be made plausible with the aid of fig. 4.5.

In the most general case the input function e (f) starts at the instant
t = 0 with a step having an amplitude e (0). It is assumed that for
t > 0 the dependence of the input function on time can be represented
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Some elements of the operational calculus 5

by the smooth curve e (). This curve is approximated by a sequence
of small stép functions separated in time by equal intervals 41 and

e{t}

«(0)

+a)\ —»t
732

1]
o
-~
"
]
~

t

Fig. 4-5.
Approximation of an arbitrary time function by a
sequence of small steps. )

having an amplitude 4e (4). The response of the network to one of these
elemental step functions is given by:

Ai(t)=Ade(AA(E—2A),. . .. ... (23.5)

where A (f) represents the response of the network to a unit step oc-
curring at the instant ¢ = 0.
The slope of the curve e (¢), i.e. ¢’ (!} = de (t)/dt at the point ¢ = 2, is:
de (2)
42

e~ — . . ... (24.5)

The smaller the time interval 44, the better will be the approximation.
From expression (24.5):

de(A)=eN)AX . . . ... .. (24a.5)
Substituting expression (244.5) in expression (23.5) gives:
Adi(t)=A@—2)e (A)Ar . . . . (259

At the instant ¢ = 4, the total response of the network to all preceding
step functions will obviously be the superposition of the responses to the
elemental step functions as represented by expression (25.5) and the
initial step e (0). Hence:

A=t )
it)=e(0A@W)+2A¢—2eE@NDAL . ... . (26.5)
A=0
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5 Some elements of the operational calculus

The nearer A1 approximates to zero, the more exact will be the ap-
proximation of the time function e (f) by the sequence of small step
functions. The exact response of the network to the function e (¢) at
the instant ¢ is therefore given by:

A=t

i) =e© AW +lim SA(E—Ne@)Ah, . . . (215
A)—0 A=0

which, by definition, is the integral function:
t
i(t) =e(0) 4 () + f A@E—2ae (A)dr . . . .. (28.5)
0

where e (0) corresponds to e (f) for ¢ =0, A (t— A) corresponds to
A (¢), the variable ¢ being replaced by ¢ — 4, and ¢’ (1) represents de (¢)/dt
for ¢t = A.

‘When it is possible to express the input time function e (f) in its
related operational function e (p), this rather cumbersome integrating
process can be avoided. According to expression (8.5), a voltage

e (t) = e (1 — e
can, for example, be “transformed” into a p-function:
1
1 + Tp

In an operational impedance Z (p), this voltage will produce a current
I (p) =e(p)/Z (p). This expression must finally be transformed back
into a time function I (f) =1 ().

e(p)=e,.

In this section an attempt has been made to give a rough idea of
the methods which are offered by the operational calculus to determine
transient phenomena in a network. The principles outlined above have
proved sufficient for calculating the problems related to pulsed elec-
tronic tubes. For a rigorous mathematical treatment and the derivation
of the formulae used, reference is made to the literature quoted in the
footnotes.
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6. FUNDAMENTAL TREATMENT OF ELECTRON TUBES AS
SWITCHING ELEMENTS

In section 4, for the sake of simplicity, no grid current was taken
into consideration. In relatively few applications of the electron tube
in pulse techniques this simplification will permit to obtain a good
approximation of its real behaviour. In the majority of cases, where
tubes are switched into the conducting state and remain for a longer or
shorter period in this condition, grid current is certain to occur and play
an important part in the transient phenomena caused by the switching
action. This part may be a disturbing one, and therefore unwanted,
or it may be useful, for instance by stabilizing the operating point of
the tube (automatic grid current bias). Therefore, the effect of grid current
cannot be neglected and it seems justified to start a general investigation
of the behaviour of an electron tube in pulsed circuits by considering
its input or control grid circuit.

6.1. THE GRID CIRCUIT

The ideal step-function, showing a discontinuity with infinitesimal
slope, cannot be realized in practice, because of stray capacitances
always present in switching and pulse generating circuits. In the fore-
going sections, the influence of parallel stray capacitances of switches
on the slope of pulse fronts has been discussed.

Generally, these pulse flanks will have a shape that can be described
as an exponential function of time, or a sum of exponential time functions
with different time constants. These pulse flanks traverse the grid-base
of the electronic tube either starting at a high negative grid potential
below the cut-off value and rising quickly up to values near to or even
greater than zero, or starting at positive or zero grid potential and
falling steeply to a value below cut-off potential. '

In the first case the electronic tube suddenly starts conducting anode
current as well as grid current (the switch is closed), in the latter case
both anode- and grid current are abruptly cut off (the switch is opened).
Both cases will be treated in the following sub-sections.

6.1.1. A POSITIVE-GOING STEEP CHANGE OF GRID POTENTIAL

The grid-to-cathode potential is assumed to have been at a constant
value V, below cut-off for a sufficiently long period preceding the instant
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6.1 The grid circuit

t = 0 to ensure that any transients originating from possible former
switching actions have completely died out. From the instant ¢ =0
onwards (so for ¢ = 0), the grid potential V, changes with time ac-
cording to an exponential function with a time constant 1/a, starting
at the initial value ¥V, and tending to a final value V,, that is assumed
to be zero or positive (¥, = 0). The grid voltage change V, (¢) can be
represented analytically by the expression

V,t) =Vy— (Vi—Vge= . . .. ... (16

and graphically as depicted in fig. 1.6. Here, the dash-dot line represents
the cut-off voltage level, indicated by E.. As soon as the grid voltage
V, (¢t} passes this level (at the instant ¢ = ¢,;), anode current starts to
flow in the tube and the switching action starts. The anode current
increases at a rate determined by the rate of change of V, (f). With a
triode, the anode voltage change also influences the anode current change,
whereas it is well known that this influence is negligible with pentodes.

The reactions of the anode circuit of the tube, however, will be consid-
ered separately in later sections.

The rise in V, (¢), however, will not continue until the value V,,
because of the influence of grid current, starting at a value of the grid
potential near zero. Because of this grid current, the grid potential,
ultimately attained, will be limited to a value not much different from
zero. In this way, the anode current is restricted so that the tube can
operate without being seriously damaged, as would otherwise occur.
So the grid current action is a useful one here, as it stabilizes the anode
current within certain limits. This will now be further investigated.

As a rule, grid current starts to flow as soon as the grid potential
reaches a value of a few tenths of a volt negative with respect to cathode,
and sharply rises when the grid potential passes zero and becomes
positive. The general shape of the grid current — grid voltage character-
istic is represented in fig. 2.6. The slope of this characteristic is a measure

i R S S —

7 fTs
v
Tg Y (t) Ig=1(vg)

o
<>
-
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Fundamental treatment of electron tubes as switching elements 6

for the internal grid resistance. By approximating to the characteristic
with simpler shaped curves, the influence of grid current on grid voltage
and therefore on anode current and -voltage changes can be deter-
mined.

A first, rather rough, approximation is the assumption of an internal
grid resistance zero as soon as the grid-to-cathode potential becomes
zero or positive (see fig. 3.6), in other words: grid and cathode are short-
circuited for values of ¥, = 0. This means that, from the instant £ = ¢,
onwards (see fig. 1.6), the function V, () remains at zero, as represented
in fig. 4.6.

¥l

) Igrf(Vg)
0 —vy
Fig. 3-6. Wp————————————————
v, ///”——
Ig f ///
1 -~
7
s
Ig=1(vg) 0 ,’/
vy lt) t
a
0 —=Y% Yo
Fig. 5-6. Fig. 4-6.

A better approximation is the assumption of a finite value of the
internal grid resistance 7, for values of ¥, =0, the grid current-grid
voltage characteristic then being as represented in fig. 5.6, where

cota=vr, thus V,=7»1I, ... .... (26

From the instant ¢ = ¢, onwards (see fig. 1.6), the external grid circuit
is shunted by a resistance 7,. The effect of this sudden switching of a
resistance 7, in parallel with the external circuit Z, originally present,
can be calculated by assuming a voltage source V, (f) operating from
the instant ¢ = ¢, onwards, and superimposing its action on the grid
to the initial grid voltage represented by expression (1.6). The value
of V() is to be taken equal to V, (¢) from (1.6), but with opposite sign.
This can be expressed by :

V.t)=—V,Ult—t), . . .... (38)
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6.1 The grid circuit

where U (t —¢,) represents a unit step function that is zero for ¢ < ¢,
and unity for ¢ =1{,.

Now V, (t) is defined by expression (1.6). For values of ¢ < ¢,, the
grid voltage V, (¢) is below the cut-off value (see fig. 1.6) and conse-
quently no anode current flows. At the instant ¢ = ¢, the tube starts
conducting and the switching action commences. The grid voltage
change from this instant onwards will be of particular interest, and
therefore it is practical to introduce a new time scale 7, such thatz =¢—¢,,
of, in other words, the instant ¢, is the zero point of the new time scale.
" Then expression (1.6) is identical to the following:

V,e)=V,— (Vi—E)e*, .. ... (46)
where E_ is given by (see fig. 1.6):
E=V,—(Vi—Vge* . . . .. .. (5.6)

At the instant ¢ = ¢,, the grid voltage V, (¢) is zero, that is in the 7 scale
at the instant t = ¢, — ¢, = 7, which is defined by the condition:

Vot =0=V,—(V;—E).e?®. . .. .... (66
Substituting this relation into (4.6) gives

V,(x) = Vy—Vyedslrmd o 0. .. c e e e . (1.6)
which is valid only for v = 1,.

Because the internal grid resistance 7, is present from the instant
T = 1, onwards, a second component must
be added to V, (r), as given by (7.6). This

second component can be calculated from
the circuit diagram of fig. (6.6), where Z,
represents the total externally connected , o
9
Ve (7-75)

grid circuit impedance, whilst 7, is the

internal  grid-to-cathode resistance as

determined by the characteristic of fig. (5.6). Fig. 6-6.
From (3.6) and (7.6) it follows that:

Vig—1)=—Vi(1—emlrm) , . o ... (86)

In order to be able to calculate the extra grid voltage component caused
by V, (r — 17,), the impedance Z, must be further specified. The external
grid circuit will be assumed to be as depicted in fig. 7.6, where V, re-
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Fundamental treatment of electron tubes as switching elements 6

presents a voltage source V,U (¢), and V, a constant voltage source,
both sources having zero internal impedance. V, brings the grid at the

Cec
Ry Ce g
7 . J..= Ry Vo (T-T5)
1) Ve (T-70)
Fig. 7-6. Fig. 8-6.

instant ¢ = 0 to the initial value V, after which the change of the grld
voltage is as given by expr. (1.6).

The grid-voltage component V, (r —7,) due to V,(r — 1,) can now
be calculated from the circuit diagram of fig. 8.6

As an example, the operational method, to be applied here, will be
given completely.

The operational impedance Z, of C, and R, in parallel is:

R

Zy= .
1+ RCp
The ratio of V, to V, is
70 (I - To) _ Zo .
Vc (T_To) N Za + £ -
R 1 7,R
= g =217 9.6
R,+7,14+RCp where R, R, +7, (©.6)
— R, 1
Vot —10) = (Ve(r—m)l, (10.6)

R, 47, 1+ T,
where
T,=R/.C,,

or, written symbolically:
Vﬂ (7_70) =4 (1’) (Ve (7_10)]'

Now two ways of solving this problem can be followed. The first
is to ‘“translate” the p-function A4 (p) into a time-function A4 (¢), and
then to apply the superposition theorem, as expressed by (28.5).

The second way of solving the problem is to ‘“‘translate’ the time
function V', (zr — 7,) into a corresponding p-function.

Following the second method, we obtain for the corresponding -
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6.1 The grid circuit

function of V,(v—1,) = V, (1 —e2(r7)),; on introducing a new
time variable 4 = r — 7, according to (15.5):

a

—_ _ pmad) — _ )
Ve = —Vi(l—e) = —V, o

. (12.6)
Then expr. (10.6) becomes:

- R | a
V,) =—1V1;. — . . .
-+ @ Ryt 1+ Tpatp
Splitting into partial fractions gives:
R 1 1 1
L. N A SR U
R,+7r, 1 —aT, 14+T,p  a 1
1+ ;f’

I—/a (1) =—V

Converting back into a time function according to expr. (15.5) gives:

— "R a _A 1
— v, e m) S — e
Vg(j') le—i—r, l—aT,U[ 1( € )+a( € )}
or:

- R

Va (T'—‘To) = Vl

T, 7 1
o . e‘“(T"’o)}. (13.6)

g 1 . Tp _ B
[ + |—aT, ¢ 1—aT,

R,+7,

Now, it will be clear from fig. 7.6 that the time constant l/a with
which the grid voltage changes exponentially from the value V, to
the value V,, must be equal to R,C..

So:
: 14.6
a= . : .
RE (14.6)
Combined with (11.6), we see that:
T,= o T 9.6 15.6
SR TR e 9 (15.6)
Substituting (15.6) into (13.6) gives:
_ R T
V,t—tg) = —V, | =+ -0 oF, et (16.6)

! Rﬂ+rﬂ RU+”H

This, finally, is the component that must be added to the grid voltage
V, (t — 1,) that would have been present if no sudden change in the
grid circuit occurred at the instant v = t,. So the resulting grid voltage
change V, (t — 1,) from 7 = 7,, or ¢ = ¢, onwards is the sum of ex-
pressions (7.6) and (16.6):
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Fundamental treatment of electron tubes as switching elements [}

V,(t—1) =

4 _TT
f v (1—e) LT
R, +7, 1 € (17.6)
Introducing (14.6) into (7.6) gives a value for the grid voltage change
as follows:

V,(t—t,):Vl(l—e_;_:%) ... (186)

This is the time function the grid voltage would assume when no change
in the grid circuit would have appeared at the instant z = 7,. The
effect of the sudden starting of grid current at the instant v = 7, on
the grid voltage is that from t = t, onwards expression (17.6) re-
presents this voltage instead of (18.6). The grid voltage change is now
an exponential function with a much smaller time constant R,C, than
it was for v < 1,. For this period, the time constant was R,C.. The ratio
of the time constants is:

R, 7,

Eor R, + 7,

9 N

(see expr. 15.6).

The final value that the grid voltage will attain is no longer V;, but-a
much smaller amount, viz.

rﬂ
Rﬂ + rﬂ
There is no discontinuity in the grid voltage value at v = 7, as both
the expressions (18.6) and (17.6) are zero at the instant z = 7,.
But there is also no discontinuity in the slope of the time function

at this instant, which can be seen by differentiating both (18.6) and
(17.6) with respect to time. These first derivatives are respectively:

{dV, ("—To)] — £ [e—;_z'.’] _ Vi

1-

dr R,C, - R,C
v, (x — ro)] 7, 1 [ _'__“"]
B — = V= T, =
[ & . Ryrn, T, L

— I£] Ru + 7 V. = Vl .
"R, +7, 7,RC, ' RC,

The influence of grid current, approximated by the foregoing method
of calculation is graphically represented in fig. 9.6.
If the approximation as used above is considered unsatisfactory, a
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6.1 The grid circuit

,.
Rg*"yv’

2(%)

Fig. 9-6.

better one is the assumption of a grid current-grid voltage characteristic
of the form given in fig. 10.6. This characteristic consists of two straight
lines AB and BC with different slopes; it is a far better approximation
of the I, - V, characteristic in practice, as represented in fig. 2.6.

At the instant when V, (f) reaches a value V,, a discontinuity occurs
similar to that previously discussed, which occurred at V,(f) =0
(see fig. 5.6).

The difference between the two cases will be fully discussed. For
the moment it will be stated only that a resistance 7,,, a form of internal
grid resistance, is shunted across the grid circuit as soon as V, (f) attains
a value = V ;. This resistance is to be determined from the slope of the
characteristic, viz. 7,; = cot a, (fig. 10.6). The effect of this discontinuity
is that V, (f) tends exponentially with a smaller time constant R,,C,
instead of R,C, to a smaller final value
V,, instead of V,. The resistance R, is

‘the resultant value of the parallel con-
nection of R, and 7.

Again,at theinstant when V (¢) reaches
the value V,, another discontinuity
appears, to be interpreted as shunting .
the grid circuit by another “internal A BlL~"
grid resistance” 7, = cot a,, where a, V/‘f'o e
. 91 . 93 —vg
is a measure of the slope of the char- )
acteristic line EF in fig. 10.6. The Fg. 10-6.
part BC of the I, -V, characteristic is the superposition of the
“resistance lines” AD and EF.

From the value V, onwards, the grid voltage tends exponentially
with a still smaller time constant R,C, (< R,C,) to a final voltage
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Fundamental treatment of electron tubes as switching elements ()

value V,, that is again smaller than V;, (R, is the resistance resulting
from the shunting of R, by 7).

t,/’ ———————————————— The change in grid voltage will then
¥ be roughly as indicated in fig. 11.6 by
T the strongly drawn curve.

The influence of the approximated
iy I, -V, characteristic of fig. 5.6 could

v,
gzb““ Yiz —, be defined by the introduction of an
Vor |~ f auxiliary voltage source V, (! —1,) as
represented in the circuit of fig. 6.6.
v This will be-discussed once more in a
0 simple way with the sole purpose of
Fig. 11-6.

being able to apply the same argument
at a better date to derive methods of solving the problem of the discon-
tinuities in a grid circuit as represented by the I,— V, characteristic
of fig. 10.6.

So, with the I, - V, characteristic of fig. 5.6, grid current starts at
the instant when V, equals zero and tends to positive values. For
V, < 0, the circuit of fig. 7.6 is valid, and can be replaced by that of

. Ig
' 2
R
e s |
I; - + I; Zg vy I; re
\\ v \ i \
z 1 _
Iﬂ
Fig. 12-6. Fig. 13-6. Fig. 14-6.

fig. 12.6, where I, = CpV, (p = d/dt = differentiation with respect to
time). More general is the circuit of fig. 13.6, where Z, may represent
any impedance in the grid circuit. The grid voltage V, is given by the
relation:

Vo=2ZJd, . . . .. ... ....(96

Assoon as ¥V, =0, a grid current [, starts flowing in parallel with Z,,
and having a relation to the grid voltage, now indicated by V,, as
follows:

I =

g

. (20.6)

v,
rﬂ

_This situation (for ¥, = 0) can be represented by the circuit of fig.
14.6. Consequently, a current of I, — I, now flows in Z,, instead of
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6.1 The grid circuit

the whole of I,, as was the case for V, < 0. The voltage across Z, will
then be: ’ :
Va=2Z,I,—1). . . . . . .. ... (21.6)

Introducing the value of I, from (20.6) and considering that:
VA

V,= 7V, gives V, = Z,I, ———r’-’I_/,
g
or:
= 4
V,= ' 7,1 22.6
g rq + Zg g7t ( )
Substituting (19.6) gives:
- 7
V,= ‘v, 23.6
4 rg + Zg 9 ( )
This expression can also be written:
- zZ, .
V.=V oV, ... (24.6)

'] ”___ 9" . . .
7, + Z, to

For better understanding, the meaning of V, and V, is once again
given here: V, is the grid voltage as it would be without grid current
starting at a value V, =0, whilst 7, is the actual value of the grid
voltage from the instant when grid current started.

Expression (24.6) is the superposition of V, and a component that
originates from a voltage source V,= —V, _—
introduced into the circuit in the way de- T

picted in fig. 15.6. Comparing with fig. 6.6 [

shows that these figures are identical. 2, Vg
The same reasoning will now be applied to

the case where the I,- V, characteristic ==t

has a shape as depicted in fig. 10.6. As soon -

as V, reaches a value V,, (and not zero!),

grid current starts according to the characteristic AD from fig. 10.6.
A current I, depending on V, in the following way

Fig. 15-6.

flows parallel to Z,.
The current through Z, is no longer I,, but less, viz. I, — I, giving
a voltage across Z,:

Va=V,=2Z,(I;—1)....... .(28)
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Fundamental treatment of electron tubes as switching elements 6

Substituting I, from expr. (25.6) gives:

—_ Z
V,=ZJ],—=2(V,—V,), .. ....(216)
g1
or:
_ r Z
Vz—“[ZI‘ —"VJ .. . . . . (286
9 ral —{—Z” 9t + ral g1 ( )

Remembering now that for ¥V, < V,, the whole input current I, passed
through Z,, giving a grid voltage: V, = Z,I,, and that this would be

g7
maintained if no grid current.-I, started, expression (28.6) can be written:

VA

— V- . . ... (296
7’,1+Z,, [2% ( )

VA

; V,=Vy— —2(Vo—Vy) .. . . ... (30
or Vu Va n + Za( [ al) (30 6)

—-——-—T On comparing this result with expression

—_ 7 .
Vo,=—2oV, +
ral+Za ’

(24.6), it will be seen that an important dif-

ference exists. The auxiliary voltage source

Zq % @ "% to be introduced to account for the sudden

starting of grid current is not equal to —V,

Vay but to — (V,— V,,). This is represented in

Fig 16-—6——_ fig. 16.6, where V,= —V,. If the constant

’ ) voltage source V, were omitted, then

fig. 16.6 could be considered as the auxiliary circuit necessary for cal-

culating the response of the grid circuit to the sudden switching of a

real resistance 7, in parallel to Z, at the instant when V reaches the

value V,,. The time function V, (#), in connection with a given function

of V, (1), is represented in fig. 17.6. V, () shows an initial voltage step

—V,. The combination — (V, — V), however, has an initial value
zero. In fig. (18.6) this combination is represented by the function V.

fy

b ——————
V- - _ Vg
v 1
T *
v
0
Vg A
)

78982




6.1 The grid circuit

It is now possible to determine the response of the grid circuit to a
grid-current characteristic according to fig. 10.6. It will be assumed
that V, reaches the value V, at

the instant ¢ = ¢, and the value Yo I v
V, at the instant ¢=1{, For T !
0 <t <t, equation (1.6) deter- S

mines the grid voltage change. b v,
Introducing the instant ¢=¢, %26__'1",’1) B — Y
when V, (t) = E, the cut-off % T/ e ot
voltage, as the zero-point of a = g f-p———

new time scale t=t—#, changes }40{0)

equation 1.6 into:

V,(t)=V,—(V,—E,) . e*. (31.6)

) Fig. 19-6.
For a survey of the time scale ¢
and 7, fig. 19.6 has been given. '
Fort =t or 1 = 1, =t —4,: _I_ s, _
Ry Vo (T-T,)
%, (T-1)

. Cc
V(0 = Vo= Vi—(Vi—EJ) en. T
(32.6)

From ¢=1¢, onwards, the grid Fig. 20-6.

voltage can be supposed to con- '

tain two components, viz. V, (r), as given by (31.6), and the grid voltage
V,(tr—rt,) due to a voltage source V,(t—1)=V,—V,(r) as
represented in fig. (20.6).

Vat—n)=Vi—(Vi—E)e* —V,+ (Vi —E)e* =
= —(V;—E) e {1l —ealrml}
Substituting:
Va—Vi=—(Vi—E)e. . . . . . . (32.6)
from (32.6) gives
Valt—1)=—(Vy— Vp) {I —e* b} (33.6)

Indicating the total grid voltage between the instants ¢, and ¢, by
V,* (r —,), this voltage is given by:

Vr*(r—n)=V,(r) + Vv (t—1).

V,(t—t) can be calculated by the same operational methods as
given in the previous case. Only the final result will be given here:

Rﬂ + ) rvl
Ru + i Ra + L)

T-T

e RaC|, (34.6)

Vrr—n)=V,—(V;— Val)
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Fundamental treatment of electron tubes as switching elements 6

where:
ralR 9

vl:ml PN coe (356)

If V,, = 0, expression (34.6) is identical to expression (17.6), as should
be expected.
For large values of 7, expr. (34.6) tends to the final value:

i~ R

Vyy= —2 V., + —2
" R; + 7, ! R, + 7,

Va. - . . . . (36.6)
(compare fig. 11.6).

At the instant t = ¢, or T = 1, = 1, — ¢,, the grid voltage V * (r — 1)
reaches the value V, and another discontinuity appears, because of
the suddenly increasing slope of the I, - V, characteristic (see fig. 10.6).

J_ T2 _
C SR S Votr-p)
\‘:2 l‘T-T;)
Fig. 21-6.
An extra voltage source V,(t— 1) = —V *(t—71) + V, (see

fig. 21.6) causes a component V, (v — t,) across the grid circuit, that
must be added to the voltage originally present, V * (t — 7;), continued
for 7> 1,, as if no change had taken place. The final result of operational
calculations is that the total grid voltage V ** for t > ¢, or T > 1, is

r R r
Vi o) = (- Vet e V)
’ ( 2) Rv + ral ! Ra + 701 o va + "az
va 701 R
+V-r-‘———< 2y, + PV, —
o R, + 7g, R, + 7, ! R, +7, ”
7 T3
v )—-»-"—2- I A ... @316)
o2 R+ 7,
where:
R, = Xafe (38.6)
Rol + "az



6.1 The grid circuit

r,, and 7, are given by

7,1 = COt a;; 7,5 = cot a, (see fig. 10.6)

R, is given by expr. (35.6).

For v — o0, expr. 37.6 tends to a final value

4 R ~ R
% =( o1 V+——”—V>—— + Vv % (306
1 Ra + 701 ! Ra + rvl o vl + 7,2 va + 7v2 ( )

(compére fig. 11.6).

If @y = 0, or 7,, = 20, in other words: if no second discontinuity would
appear at V, = V, (see fig. 10.6), then expression (37.6) changes into
expr. (34.6) as should be expected. This will be shown.

Expression (34.6) can be written:

Vet —m) = '+ Vi
+ R, Va— (Vi—V,) EECSE S (40.6)
Rn+'vl ’ ’ Rv+rﬂl
For v = 7,, this will be:
’n 701 »—ﬂ
V,e= T Vi+ Ry “V,,1 (Vi— V1) R_,:_r:e RuC.. . (41.6)

Now, for 7, =0, R, = R,, and (37.6) becomes:

4 R _ I .
e (T yp vy ) (1 _ R.ﬂc,) V., e RaC.. . (42.6
’ ' (Rv + 'vl ! + Rv + 701 o ‘ + o ’ ( )

Substituting (41.6) gives:

V*t_

7, g1 - g1 >~
—(V,—V — eR,C.. . (43.6)
» R + "01 R + r,l l ( 1 ﬂl) Rv+ 7’,1 (
This is identical to (34.6).
For a clear survey, a review of the formulae will be given.
During the time interval 0 < ¢ <¢,, the grid voltage is:

Vi +

V,) = Vi— (V;—Vge RCe. . . . . .. (1.6)

This function is represented by curve a — a in fig. 19.6.
During the time interval ¢, < ¢ < ¢,, the grid voltage is:

. (34.6)

* Rv ,ﬂ - th
V() = Vl——(V,——V,l)(R Rl A R.,,c,).
g g1 '] g1
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Fundamental treatment of electron tubes as switching elements 6

This function is represented by curve b —b in fig. 19.6.

Its validity may be checked by calculating the value at the instant
t = t,. Substituting ¢ =¢, in (34.6) gives V * (¢,) = V,,, as should be
expected.

For times ¢ = t,, the grid voltage is:

7 R, 7 R
V**t=( g1 V+ V) 72 ) Vg ol o
! ( ) Ro + L) ! R + L) - vl + "az + * Rol + Yo
o1 R, [ _
— v, + V,—V,)——«eR,.Cc. .. (316
(Rv + Tn ! Rn + L ! : va + ’az ( )

This function is represented by curve ¢ — ¢ in fig. 19.6.

A phenomenon often observed in positive-going steep voltage wave-
forms applied to the grid of an electron tube is the overshoot, which
appears as a short “pip” at the top of the positive-going wavefront
(see fig. 22.6). The occurrence of overshoot depends upon the shape
of the grid current — grid voltage characteristic and on the initially applied
voltage waveform at the grid.

The first relationship will be clear if the case of a characteristic ac-
cording to fig. (3.6) is considered. Then the grid-to-cathode internal
resistance becomes zero as soon as the grid voltage reaches zero, and

f

—et

Fig. 22-6. Fig. 23-6.

no further increase in grid-to-cathode voltage is possible (compare.
fig. 4.6). Thus no overshoot will be possible. If the I, - V, characteristic
has the shape of fig. 5.6, however, then overshoot may occur, particularly
as the angle a becomes smaller, i.e. the internal grid resistance 7, higher.
Furthermore, the occurrence of overshoot will depend on the wave-
form of the grid voltage as it would be when no discontinuity in the
form of grid current appears. In the earlier case of input grid voltage,
as represented by fig. (19.6) curve 4 —a and by expression (1.6), no
overshoot is originally present, and neither waveforms influenced
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6.1 The grid circuit

by grid current show overshoot. (Compare fully drawn curve of fig. 9.6
and expr. (17.6), curves b —b and ¢ —c of fig. 19.6 and expressions
(34.6) and (37.6)).

It will be of interest to deal with a case of input voltage waveform
that shows overshoot, and to investigate again the influence of grid
current. Consider the circuit of fig. (23.6), where R, represents a grid leak
resistance, C, a grid stray capacitance, and an input voltage V, is applied
to the grid via a resistance R and a capacitance C in parallel.

If V, has the shape of a voltage step of amplitude + V, occurring
at the instant ¢ = 0, what will be the grid voltage change from the
instant £ = 0 onwards?

Mathematically, V,; is defined as follows:

V,=0 fort <0

g or V,=VU({@, .. ... (44.6)
V.=V fort <0

where U () represents the unit voltage step. To start with, no dis-
continuities are assumed to occur. It can be seen immediately that
the voltage step is attenuated by the capacitive voltage divider, formed

- C
by C and C,, so that a fraction c of the total step V appears

g
across the output leads. In other words: at the instant ¢ = 0 the

voltage V, (¢) is

But immediately after the application of the voltage step, a distribution
of the electric charge on the capacitances starts in such a way that

finally a steady voltage of value 2

V will be present at the
g
output leads. In other words: for infinite time, V, (¢) will be:

Now, if:

c R
. . (476
C+C, R+R, (#7.9

or, virtually, the same condition, if:

CR<C,R, . ........ (48.6)

g- g



Fundamental treatment of electron tubes as switching elements ()

then the voltage V, (¢) will show overshoot, as depicted in fig. (24.6).
If:

c __%& .. (49.6)
C+C, R+R,

or.
CR=C,R,, . ... ..... (506)

C+Co~ RytR
— 0 —
t=0 t t=0 ¢
Fig. 24-6. Fig. 25-6.

then the grid voltage V, (¢) is an attenuated copy of the input voltage
waveform, that is to say:

() =2 o) vo@. . ... .. (51.6)
or:
V, () = R vy & .. ... .. (52.6)
‘ R+ R,
(see fig. 25.6).
If:
C R

© ... ... .(536)

S

Fig. 26-6. Fig. 27-6.

or



6.1

The grid circuit

then the initial value of V, (f) is smaller than the final value, and the
term “‘undershoot’’ could be applied. This case is depicted in fig. (26.6).
These results will be derived by operational calculus. The circuit of
fig. (23.6) is represented by that of fig. (27.6), where:

1
—=—=+4+C . . . ... ... . . . (55.6
7R + pC (55.6)
! = : C, (56.6)
Z = —”— +C, . . . .o
It can be seen that:
VA
V — g
=577V
Oor:
1/Z
V,.¢) = ——-—— V. . . . . . ... 56.6
= iV (56.6)
or:
v, () = URwC (58.6)
IR+ 1/R, +p(C+C,)
or: ' ,
R 1 RC
R+R,1+R. (CH+C)p
where:
RR
R, = L . (60.6
=R (60.6)
Substituting
T =RC . . e . (61.6)
and
T,=R, Cc+cC). ... ... .. (62.6)
gives
R 1 +Tp :
V.(t) = ud V., .. . . .. . (63.6
g () R ‘f— R” l + Tvp 1) ( )
or: _
R (T—T)p}
V. () = g 1 YNV, ... .. . (64.6
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Fundamental treatment of electron tubes as switching elements 8

With expression (44.6) this gives:

R,
R+&VU@+ :

T—T, _%

v, = T, . .. . (656

(see expr. (14.5))
From (61.6) and (62.6) it can be derived that:
T—T, RC—RC,

T'I _— R,~ m e e e e s e s (66.6)
SO:
R RC—RC, _t
|4 = d S . . . (67.6
=g R VU0 s ™ 69

From this expression it follows immediately that the final value
of V, (¢) will be:

R
V, () = 7 +” 7 V (compare with (46.6)).
g

Furthermore, for RC = R,C, there will be no overshoot, as V, (¢)
in that case is:

RU
V=g RV U0

This is the attenuated input voltage step, as already mentioned
before. If RC > R,C,, the initial value of V, () will be larger than the
final value, and then overshoot occurs.

If RC < R,C,, V,(0) will be smaller than V, (c0):

R, RC — R,C,

V,(0) = e
O=r3rV['*RcTCO)
or.
C
|4 = V.
0= s

Compare these results with figs (24, 25 and 26.6).
From expression (64.6) it follows that for T = T, or, what is the
same condition, RC = R,C,, the output voltage V, (¢) of the network

46



6.1 The grid circuit

of fig. (23.6) is a true, though attenuated copy of the input voltage,
no matter what is the shape of the latter:

if:
CR=C,R,
The time constant determining the exponential function with which

the voltage V, (f) changes from the initial step to its final value (see figs.
24.6 and 26.6), is given by:

T,=R,(C+C), . . . . . ... (62.6)
and with (60.6): '
RR,
T,= R+ R, C+Cy ... ... .. (69.6)

This is the product of the resultant resistance of R and R, in parallel
and the resultant capacitance of C and C, in parallel.

Now, the influence of grid current will be investigated, working with a
characteristic as represented by fig. 5.6. So, as soon as the grid voltage
V, is =0, a resistance », must be incorporated in parallel to the grid
circuit. In the circuit of fig. 23.6 a negative constant bias voltage ¥, in
series with R, is assumed to be present, of a value sufficiently large to
keep the grid voltage below the cut-off value E for all times < 0 (see fig.
28.6). At the instant ¢ = 0, the input voltage V,suddenly jumps from the
value V, to the value V,,
which can be interpreted by

assuming a voltage step H
:T- 9 Rg I
V.U@g)=(V.—N) U i - Vo' (t)
(70.6) ' :? A
to occur. +
This voltage step is as- Fig. 28-6.

sumed to have such a value
as to apply a reduced voltage step

c
14
C+c,

to the grid of the tube, of sufficient amplitude to make the grid voltage
immediately > 0.

Thus, at the same ‘instant ¢ = 0 when the voltage step occurs, the
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Fundamental treatment of electron tubes as switching elements 6

internal grid resistance 7, is switched in parallel with R, and the re-
sultant grid voltage V * (¢) can be calculated as the sum of two com-
ponents, viz. the grid voltage V, (¢) as it would be when no grid current
appeared, and the response V, (¢) of the grid circuit to a voltage source
—V, (t) in series with 7, (see fig. 28.6).

The initial condition of the grid circuit is then:

V,=V, for t <O. B (A )]
and thus:

R R
V,=Vy=+"—=V,—=——=V,. .. ... (72
4 90 R + Ra 1 R + Rﬂ 0 ( 6)
V,o 1s negative to a value below cut-off.
At t =0, a step

V,=V.U@t)=(V,—V,).U®

1

occurs and for

V, (t) is the sum of the steady state component, given by (72.6) and
the transient component, given by (67.6)

[ RC —R,C, _TL]

Rcici’ ™ (73.6)

R, -
Vo(t) = Voo + R+ R
g

The effect of the voltage source —V, (¢) in the circuit of fig. (28.6)
at the grid is:

R, 1
V,(t) = s 1+_Tv1p5[_V" (t)] ... (146)

The result of calculating this by operational methods and adding
it to V, () is:

V)=V, 0+ V, () =

7 RC—RC, __t
. |y o T V( Lo v,), 75.6
R':-f-V”[ 00+R+R”} +R,,(C+Cg)e ( )
where
Tp= -2 T (76.6)
"1 _— Rv + r” r .
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6.1 The grid circuit

Comparing V * (¢) with V, (¢), the same remarks can be made as
when expressions (17.6) and (18.6) were compared to one another,
viz. the effect of the sudden starting of grid current is that the grid
voltage tends to a smaller final value with a smaller time constant
when grid current appears, than would be the case without this dis-
continuity occurring.

As can be seen from expr. (75.6), the conditions whether or not over-
shoot will occur are the same as for expr. (73.6).

6.1.2. A NEGATIVE-GOING STEEP CHANGE OF GRID
POTENTIAL

In the foregoing section the initial state of the grid was with a grid-
potential below cut-off value. Then a steep positive-going voltage
transferred the grid into the conducting state. Now, the other case
will be considered, the grid being conducting and then a negative-going
voltage being applied. The change of grid voltage will be investigated.

+v'
R
Ce 0
¥ M L"
. | v
1C
v R =1 !
v |
d
Fig. 29-6.

Referring to fig. 29.6, it can be seen that the D.C. grid potential can
be controlled by suitable choice of the positive and negative D.C. voltage
sources V' and V” resp. and by the ratio of the resistances R and R,.
The resistance 7, represents the internal grid resistance, defined by a
grid current — grid voltage characteristic according to fig. 5.6.

The D.C. potential at the grid will be:

= RV =R RV ... (116)
7,R, +7,R + RR,
This D.C. voltage V, must be zero or positive.

It is assumed that at the instant ¢ = 0 an input voltage V; of the
shape indicated in fig. 30.6 is applied. At this instant transient phe-
nomena will commence and be superimposed upon the steady state
that was present for ¢ < 0.
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Fundamental treatment of electron tubes as switching elements 6

For the calculation of these transients, the circuit of fig. 31.6 must
be considered. This can be transformed into that of fig. 32.6, where

RR
o = 2 (78.6)
R+ R,
The current source I, is given by the expression:
av,
I;=C,—. . . .. ... ... (196
(=C.= (79.6)
—— ° o— 1
Cc ! / I
I ]
VG 2R é” é"y I; c. hey 2R, Sn
! |
H [ [ o \c !
Fig. 31-6. Fig. 32-6.

V. changes linearly from the instant ¢ = 0 until ¢ = ¢, with a slope

v, Vo
da
14
1“—6”—" .......... (80.6)
0

This value is valid for 0 < ¢ <¢, For ¢> ¢, however, V,=V,.
This is a constant value, so;

I, =0 for ¢t > #,

In other words: I, is the superposition of two step-functions:

I,=C, ? —UW+UE—t)|, . . ... (81.6)
0

. or I, is a negative pulse function with

f——t=0 te —*! an amplitude
’f
to
"CCT? - and a pulse width ¢, seconds.
Fig. 33-6. This is represented in fig. 33.6. When

the operational impedance of the net-
work of fig. 32.6 is known, the response of this -circuit to this input
function I; is easy to calculate.
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6.1 The grid circuit

The operational impedance is:

#) Ba . (82.6)
1 4+ T,
where:
Rﬁrﬂ
Rl = R (83.6)
Ty=RuyCp . o o oo (84.6)
C,=C,+C,. . . ... ... (856)

C, is the input capacitance of the grid circuit, including grid-to-
cathode and wiring capacitances.
The response of this impedance to a current step function I,U (¢) is

V,l) =Ry (1 —et™) . . ... . ... (86.6)
The total grid voltage, including the steady state, will be for 0 < ¢ < ¢,

V,(@t) = Veo—C. -I;—o Ry (l—etmm)y . . | | (87.6)
0

For further calculation of the transient phenomena it is necessary
to discriminate between two possibilities.

First, it is possible that the grid voltage, represented by expression
(87.6), will not pass below zero within the time ¢,, the rise time of the
input-voltage change (see fig. 30.6).

Then there will be no new discontinuity due to the grid current
suddenly ceasing. The circuit remains unchanged and the expression
(87.6) is valid until the instant {,, when the positive step in I, causes
another transient response, given by

14
V,{t—1t) = +C, TOR“ (1 —e @iy (88.6)
0

For ¢t =1, the total grid voltage is the sum of expressions {87.6)
and (88.6):

V
|4 (t) = Vao - Cc TOR,I [e“’/ﬁl’ — 1] etITo .o (896)
0

The shape of this function is as represented in fig. 34.6.
This first case will, however, not occur frequently in practice, as
the D.C. grid voltage V,, will generally be only slightly positive, and
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Fundamental treatment of electron tubes as switching elements 6

the value of V, will be large enough to drive the grid voltage negative
within a time that is shorter
than #, seconds.

This is the second possibility
we will have to investigate.
However, before doing so, the
dividing limit between these

Fig. 34-6. two cases will be considered.
This limit is reached when
at the instant ¢ = #, the grid voltage (expression 87.6, fig. 34.6) becomes
zero. This is expressed by the following relation:

v
0=V, —C, TO Ry (1 —e /Ty . | *(90.6)

0

t=0 —>t

~

=to

Y%

S

f

According to (84.6) and- (85.6): .
T,=R,(C.+C)

In practice C, will generally be much larger than C,. Therefore:
T, ~ R,C,,

and expression (90.6) can be written:

T
V="V, Tl (1 —etTay . . ... (91.6)
0
or:
qu vl
= = (1 —etTny . 0 0 0oL L. (92.6)
£ 0 )
Substituting:
Vo=BVe . . . . . .« . . .. (93.6)
and
bh=aT, .. ... ........ (94.6)
changes expr. (92.6) into:
-4
= — e e e e 95.6
B=1y - (95.6)
Limg=1.
«—0
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6.1 The grid circuit

In the graph of fig: 35.6, the relation (95.6) is shown, and it is clear that,
with fixed values of V,, and T, the less steep its negative-going flank,
the higher will be the input voltage amplitude V, to drive the grid
completely out of its conducting state.

24 ’ E
|

v 22 /

14 /
L/
1.0
08

0 04 08 12 15 20
—wa-L
TVI

Fig. 35-6.

The second case, where the grid voltage reaches zero at an instant
t, <ty will now be considered. At this instant, ¢;, the grid current dis-
appears and 7, in fig. (31.6) suddenly becomes infinite. This causes new
transients in the circuit that can be calculated by methods indicated
in section 2. The process to be applied is as follows: The current ¢, flowing
in 7, before the instant ¢, must be determined, the expression for z,
applying also for ¢ > ¢ if no discontinuity appears.

The effect of suddenly increasing 7, to an infinite value, or to inter-
rupt ¢,, can be accounted for by assuming from the instant ¢ = ¢, on-
wards that a current source I, is present at the terminals of the former
7., I, being of opposite polarity but equal in value to #,. Then the grid
voltage for £ = ¢, will be the sum of the grid voltage V, () that was
calculated for the original situation with 7, present, and of a component
V, () that is caused by ‘the response of the circuit to the current I,
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Fundamental treatment of electron tubes as switching elements 6

The first component is represented by expression (87.6), and is valid
in the circuit of fig. 36.6.

Lk [

v Tcg R, " Git) Ci=Cct+Cg .l. R, I Vp(t)

Fig. 36-6. Fig. 37-6.

The second component can be calculated from the circuit of fig. 37.6,
where ! I, | =|7,|, and 7, is given by:

: 14
Vao - Cc Tq va (l - e_‘/Tul)
i, ()= ? ... ... (96.6)

L]

(see expr. 87.6 and fig. 36.6).

At the instant ¢ = ¢, the grid voltage is zero; consequently i, (¢,) is
also zero. For calculating the new transients starting at the instant ¢,
it is convenient to introduce a new time scale r, with its zero point at

t=1 so T=t¢—14 . ... (97.6)
In this new time scale the expression 87.6 reads as follows:

14
nm=—gfmme—ﬂm..u (98.6)

0

The value ¢, is defined by the condition that v, (¢) (see expr. 87.6) is
zero for ¢ =1{;; so:

V
V= C, _t_o Ry(l—e®To) oo (99.6)
0

Substituting this expr. in (98.6) yields for r = 0:

Va () = — (R | I; | — Vo) (1 —e™), . . . (100.6)
where:
|4
II,[=C,,——‘-’ .......... (101.6)
to

Expression (100.6) gives the first component of the total grid voltage
for ¢ = ¢,. The second component ¥V, (¢) or ¥, (r) can be calculated from
fig. (37.6). The result is:
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6.1 The grid circuit

R R,+7,
Vo(®) == (Veo— R I 1)) 1+%e—*/”:——+e—f/” . (102.6)

0 v v
where:
R, = RI:_R;{,, ..... (78.6)
and:
T,=R,.C,

The resulting grid voltage V, (z) for £ =¢, is the sum of V, (r) and
V, (zr) (expressions 100.6 and 102.6):

Vq,, (1) = Vy (T) + Vﬂ (T)
| R, +7,

g

(1 —e"T) . . . (103.6)

Vv" (T) = (va I Ii' I —Vno)

Now, at the instant ¢ = ¢, another discontinuity occurs, viz. the

V.
input current I, jumps back from a value — C, t_o to zero.
0
This causes a transient response:

v,

(1) = R, | I,| (1 —e—t=%t0iTy)  (104.6)

This new component must be superimposed on the grid voltage,
originating from former transients, viz. V, (r) (expr. 103.6).
The resulting grid voltage is:

R, +7,
[

4+ R I, | (1 —etr=tott)Tey (105.6)

(Ru | Li| —Va) (1 — e ™) +

V"lu (T) =

At a certain instant ¢ = ¢, (or v = 7,) this voltage reaches a value
zero, and at that instant grid current starts again, in other words:
resistance 7, is once again shunted across
the grid circuit. Thus, from this instant o
t ==, onwards, a new component must J-
be taken into account. This can be cal- Cc-I-

culated by imagining a voltage source

V, (r) being present in series with 7, as -
represented in fig. 38.6. Fig. 38-6.
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This voltage V, () is equal to the grid voltage V, (r) from expression
(105.6), but with opposite sign.

The response of the network to V, (z) results in a grid voltage com-
ponent:

R, r,+ R
'—Vgo T—a

e—(T—7o)[Tv + e—(f—-‘ro)/Tv,} .
] 70

This must be added to the voltage V, (z) (expr. 105.6), giving for
the grid voltage at ¢ = ¢, the following expression:

Voo @ = Vg (l — e tr—Tvy - (106.6)
As is ex pected, the final value of the grid voltage is V,, again.

In fig. 39.6 a survey is given of the various phases through which
the grid voltage passes.

- = t
'lo teto—2 The first phase I commences at
| ' the instant ¢ = 0, where the input

Vi | V. ] . .

' | ° voltage starts falling with a linear
: ' - slope to the final, constant value
' ! —V,. The second phase II com-
—/ : mences at the instant ¢ = ¢, when
o .tVL grid current disappears. The third
I ¢ hase III commences at ¢ = ¢,
p 0

when the input voltage V, no
longer changes.

The last phase IV is for times
t>t,, At t =1, the grid current
starts again.

The changes from phase I into
II and from phase III into IV
occur continuously. This can be
shown by calculating the first
derivative with respect to time
of the grid voltage changes at
the instants ¢ =¢, and ¢ =1, It will be found that:

g[ v, (’)L,, -2 [V ")L,,

and
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6.1 The grid circuit

To give a quick survey, the expressions of the grid voltage changes
in the various phases will be summarized again:
During phase I: 0 =S¢ < ¢4;:

Vo) =Veo— || R,y (1—e*™) . . . . (87.6)
Final value: V, () = Vo —|I;| R,.
During phase II:' ¢, ¢ <, or- 0 =7 < ¢ —1;:

R, + 7,

g9

Rv+’0_R;)+rﬂV__R II'
- 0 v il

Vv“ ()= —(Ru | L; | — Vy)

(1 —e"/T) . (103.6)

Vau (©) =— (R ;| — Vao)

g 14

During phase III: {y St st or g —4H S T = 70

Rv + 7
Vo () = — (Ruy | I | — Vyo) =" (1 — e77/™) +
+ R, | I, (1 — e—(‘r—to-Hx)/Tv) ............. (105.6)
R,V'—RV"
14 ey TRV
o () RTR

During phase IV: t = ¢, or v = 1
V., (1) = Vg (1 —er—m/Tey . (106.6)
Vi (©) = Vo0-

v

It is interesting to consider the value of ¢, with respect to {,, for it
will be clear from the foregoing and especially from fig. 39.6 that the
ultimate negative amplitude of the grid voltage will be larger as the
grid current is cut off earlier, in other words: as ¢, becomes smaller
with respect to #,. In order to suppress the anode current of the tube
with a given input voltage of amplitude V, and time of rise ¢, the peak
negative grid voltage will have to be sufficiently high to pass the value
of grid voltage for anode current cut-off.

The influence of the values of V and {, on ¢, for given values of
the circuit and tube constants and voltage sources R, R, C,, C,,

r,, V' and V" can be investigated by closer examination of expres-
sion (99.6):
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Oor:

(see expressions (93.6) and (94.6).

The value

18

08

0.6

04
02

4L

21

Vao = Vo

T,

0

1

4
] — e—’x/TVx —_

(l —_ e—‘l/rvx) R

(107.6)

T T 7
I 1 I?Vl t=0 ',"0 _"l
%GR T\ |
d:t — e !
| 1
\
\
\
|
|
\
\
\ \\a-S
\ AN
2 A
RANL ~
N P~
4 8 12 16 20 26 28 32 36 40
V,
—r B —2
A Voo
Fig. 40-6.

as a function of § (or V) with « (or ¢,) as a parameter

is represented graphically in fig. 40.6, whilst in fig. 41.6 the value

4L o7
o

06
T 05
0.4
0.3
02

01
0
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"y f=4
A=y
=6
g
- B
/3= 10
/3=20
1 2 4 5 . 6
—»anr—:
Fig. 41-6.

oy .
+1 is represented as a func-

0
tion of a (or f) with

B (or V,) as parameter. If
B = «, then ¢, would be in-
finitely large, but in practice
t, cannot be larger than ¢,
so the ordinate in the graph
of fig. 41.6 cannot become
greater than 1.



6.1 The grid circuit

6.1.3. DIODE CIRCUITS

The results of the study of the behaviour of grid circuits when sub-
jected to the influence of sudden steep positive- or negative-going voltage
changes, as derived in the preceding sections, will also be useful for
the investigation of the response of diode

. . . I
circuits. For vacuum-tube diodes the same
current-voltage  characteristic  approxi- T
mations as given in - figs 5.6 and .10.6
can be applied. The resistance of a vacuum
diode in the reversed current direction, /3
often called the “‘back resistance’”’, can be ——
taken to be infinite. However, another
large category of diodes, viz. crystal diodes,
selenium rectifiers and the like, have a Fig. 42-6.
back resistance of finite value. In that
case, the diode current-voltage characteristic can, to a close approxi-
mation, be represented by the graph of fig. 42.6. Indeed, in practice the
current is zero for zero voltage, which is different from the case of vacuum
tubes. The back resistance R, of diodes, having a characteristic like
that of fig. 42.6, will be:

—>V

. Ry=cotp, . . . . ... ... (108.6)
whilst the forward resistance will be;:
R,=cota. . . . . . . . .. . (109.6)

The behaviour of such diodes in a network when subjected to a change
in input voltage which passes the value zero can be described in the
following way. For negative values of diode voltage the diode is re-
presented by its back resistance as depicted in fig. 43.6, where the block A

Fig. 43-6. Fig. 44-6.

represents an arbitrary network in which the diode is incorporated.

For positive diode voltages the diode is represented by its forward
resistance R,. When the voltage across the diode changes from negative
to positive, then it can be assumed that, at the instant its value is zero,
a resistance R, is suddenly shunted across R, of such a value that:
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Fundamental treatment of electron tubes as switching elements 6

R, . R,

R,=—"—_" . .
"= R, TR, (110.6)
or:
R R
R =_°%""7 11.
=R R (111.6)
(see fig. 44.6).

The sudden shunting of R, by R, causes transients which can be
calculated in the way outlined in previous sections.

In the same way, the change of the diode voltage from positive to
negative values will be accompanied by transient phenomena which
can be described by the sudden omission of R, from the circuit at the
instant the diode voltage passes zero, and calculated by the same methods.
It should be borne in mind, however, that disturbing effects may occur,
when switching certain kinds of semi-conductor diodes, caused by in-
herent inertia phenomena such as hole-storage in Germanium diodes.

6.2. THE ANODE CIRCUIT

. If the grid voltage change of a tube has been determined by any
method given in the foregoing sections, then the next problem will
be to investigate the anode circuit of the tube and, if possible, to derive
expressions which represent the anode current and voltage as functions
of time.

When using idealized characteristics, this can be performed for triodes
as well as for pentodes.

6.2.1. TRIODES

The idealized characteristics of a triode, giving the relation between
the anode current 7, and the ancde voltage V, with the grid voltage V,as
parameter, are represented in

o fig. 45.6. The main difference

T between practical character-

G0 -1 -2 -3 -4 istics and these idealized ones

is given by the lower dotted

L S curved parts of the other-
f=cotg @ Wise straight lines.

I, e =§ When an anode supply

Z A voltage Vj is available and

Sa A LT~ fed to the anode via a load

% % ] —»y, Tresistance R,, then the

Fig. 45-6. operating point of the tube
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6.2 The anode circuit

defined by the value of V, will be situated on the loadline L
that intersects the horizontal axis at V,= V, and has a slope
cot = R,.

The situation of a point P is characterized by the following relations:
Va e Val

’

I, =

s

where:
Va=—uV, « oo .. (1126)

and 7, = cot « = internal anode resistance, thus:

v
=YeteVe Ve oy . (1136)
14

a a

where S = transconductance of the tube.
‘It can be seen from the characteristics that the cut-off gnd voltage
E, is dependent on the value of Vj, viz.

Ve=—uE. . . . . . .. ... (1146)
(compare expr. 112.6).

If the anode load is a pure resistance, then dynamic operating con-
ditions will all be situated on the load line L. In practice, however,
some stray capacitance will always be present, and at steep changes
of grid voltage the operating point can change to such values that,
temporarily, it will nolonger
be situated on the load line. r =0 -1 -2 -3 -4
It can be assumed that a T
static condition exists with
P as the operating point of a
the tube (see fig. 46.6), and
also that the grid wvoltage ,
falls below the cut-off value L
in a time that is small com- Ty
pared with the time constant
in the anode circuit (anode
load resistance times anode stray capacitance). The anode current will
suddenly become zero, but the anode voltage cannot change to its final
value V' at the same rate, and the operating point will trace the dotted
line I in the direction of the arrows. In the reverse case, when V, sud-
denly changes to zero, the operating point P will trace the dotted line II
in the direction of the arrows.

Fig. 46-6.
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Fundamental treatment of electron tubes as switching elements 6

If, in general, an anode load impedance Z, is present, then the values
of I, and V, in the dynamic conditions arising from changes in grid
voltage V, will be determined by expression (113.6) and the following
relation:

in which relation (114.6) has also been substituted.

Once I, is known, V, can be determined from expr. (115.6).

If a pure resistance represents the anode load, then Z, = R,, and
the anode current will be:

I,=—* _w,—E), ...... (117.6)

and the anode voltage:

where T, = R,C,, when C, is the total output capacitance of the tube
(including wiring capacitance). Now Z, is an operational impedance,
where p denotes the usual symbol for derivation with respect to time.
Substituting Z, from expr. (119.6) into expr. (116.6) gives:

(1 +T.p)
Ia - rd + Rﬂ + rGTﬂp (Vg Ec) '
or:
b 1+Tgp
I = —E), . (120.6
a ra + Ra 1 + AaTap (Vﬂ C) ( )
where:
14
= . 121.6
=GR (1216
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6.2 _ The anode circuit

When V, is a known function of time, equation (120.6) can be solved
with operational calculus methods, as previously discussed. It must be
remembered, however, that for v
values of V, smaller than E,,
the tube is in the cut-off state f
and no anode current at all flows. 9
So changes of V, at wvalues
V, < E, have no influence in g,
the anode circuit. Consequently,
only values of V, > E_ or values
of V,—E,> 0 will cause va- -%
riations in anode current ac-
cording to expr. 120.6.

For example, if V, is given by Fig. 47-6.
the time function:

(see fig. 47.6).
Then a period of time from ¢ = 0 until ¢ = ¢, elapses before V, reaches
a value E,, and this instant ¢, is given by:

E,=—Vye*T
So:
V,—E,=—V, (T —ehi"),
or: '
V,— E, = —V,et/T (et—IT 1),
or:

V,—E,=E, (e"T—1), . . ..... (1224.6)

where 7 = ¢ — 1, a new time-scale having its zero point at the instant
when V, — E_ becomes positive.

The change of the anode current with time will be determined by
the expressions (120.6) and (1224.6):

I = —/‘Ec 1 + Tap

= ] —e! .. 123.
=y xR iaTs ) (123.9)

This can be solved by the methods treated in section 5, viz. either
by applying the superposition theorem (expr. 28.5) or by “translating”
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the time function 1 —¢~"7 into the corresponding p-function

according to expr. (15.5). I+ Tp
The latter method is the quickest and will be followed here.
Then expr. (123.6) can be written:

[ Vs 1+ Tp
C ret+ R, (14 2.Tp) (1+Tp)’

(124.6)

where —uE is substituted by Vjp, according to (114.6).
The p-function can be split up in two partial fractions, giving:

Vs 1

I,= :
°~ y.+R, T—aT, (125.6)

1 1
[“—” Teiiazs ™ ‘T—”m}-

Transforming these p-functions back again into time functions yields:

I = Ve [1 _d—a) T"e—f/&T..*_]_‘jL
¢ 7, + Ra T— }'aTa - T— ZaTa

e—’/T]. (126.6)

The final value of I, (for ¢ = infinite), will be:

vV
I, () = —"—,
7.+ R,
corresponding to the operating point Q in fig. 46.6. If the time constant
T of the grid voltage change is the same as the anode circuit time con-
stant T, then expr. (126.6) simplifies to:
I =

a

Vg
— e /AaTa
— Ra[l e ] ...... (127.6)

The corresponding anode voltage change would be, according to
(115.6) and (119.6):

Va= VB_—'

I, expressed as a p-function, can be found from (125.6), remem-
bering that T was equated to T, :

,_ Vs 1
.+ R H AT
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6.2 The anode circuit

From (128.6) and (129.6):

1 1
Vo=Vg|l —(1—12, . .. . . (130.
3 ( )i +Tp 1+ laTaP] (130
This can again be solved by splitting the p-function into partial
fractions:

1 1
V.=V S , ,
o= Vo |l + & T ITA”'” (131.6)

Translating back into a time function:

m=n%—hwm+wq.”.u..wmm

The foregoing treatment showed the derivation of the anode current
and voltage changes caused by a positive-going grid voltage change,
starting below cut-off (see fig. 47.6)
and expression 122.6). The electron y
tube can be represented as a switch f
that is closed. The reverse case will
now be considered, viz. the in-
fluence of a negative-going grid
voltage (the switch is opened). It E‘(_ _________
will be assumed that the grid
voltage is zero for ¢ <0, and that -yl-—-—-—c-""—==— _ _
no transients of a former change
remain. The change of the grid
voltage V, can be represented by fig. 48.6 and by the following ex-
pression:

Fig. 48-6.

V,=—Vo(1—e¥)y . . . . . .. . (133.6)

This case of switching-off a tube is more complicated than the reverse.
Depending on the values of V, and the time constant T from expression
(133.6), several particular cases must be distinguished. In order to make
this clear, it is best to start with two extreme cases.

Let it first be assumed that the time constant T, in the anode circuit
is very much larger than that of the grid voltage change T.

If then V has a value that exceeds | E, |, the tube is already cut
off (I, = 0) before the anode voltage has had any opportunity to change
its value appreciably. To a good approximation, the response of the
anode circuit will be the same as to a step-shaped input current which
is of equal magnitude but opposite in sign to the constant current [,
that was flowing in the anode circuit before the change in grid voltage
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commenced (for times ¢ =< 0). So, for times ¢ <0, the voltage drop
across the anode circuit is R, . I, I, being the constant anode current
at V,=0 and ¢t <0.

When the tube is suddenly cut off, this voltage drop tends to ap-
proach zero according to an exponential function with a time constant
T,= R,C,. (R, = anode load resistor, C, = total anode capacitance
across R,). In other words: the anode voltage will be for ¢ = 0:

V()= Vs—RIeTe . . . . . . (1346)

The path of the operating point in the I,- V, characteristics will
be as indicated by the dotted line in fig. 49.6, where L represents the
N static load line corresponding to the

¥ anode load resistor R,.

Another extreme case is that
where T > T, If there were no
parallel  capacitance at all across
R,, the working point would be
shifted from the intersection of L
and the I,-V, characteristic at

,=0 in fig. 49.6 along the
loadline down to V, Between
these cases are many other inter-
mediate possibilities. The static con-
dition for times ¢ < 0 is characterized by:

Vao

Ta=—= .. ... .. ... (135.)
4

Ia

Fig. 49-6.

If AV, denotes in general the change in V, taking place for £ = 0,
then an anode current change A, will be caused, given by the relation

4V, + udv,

aI, =
. 7

(136.6)

a

The change in voltage across the anode circuit impedance Z, is givén
by Z,41,, and this must be equal to the change in anode voltage but
opposite in sign:

AV, =—Z,AI,. . . . . . . . . . . (137.6)
Substituting (136.6) gives:

Zo _Lav, . .. ... (1386

AV, = —
¢ Z¢+’d
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6.2 The anode circuit

Z, is the parallel combination of the resistance R, and the capacitance
C,, so:

Substituting in (138.6) gives:
R 1

A [ - — ﬂ A L e e 140.6
¢ Rll + ’a 1 + T,P g’ ( )

Tv - RaCa . 141.6

= e e e e e ( )

If AV, is supposed to be as represented by expression (133.6), then
the operational form in which 4V, can be expressed is as follows:

_wVeR, 1 1
R, 41, +Tp1+Tp’
Transformed into a time function, this expression will be:
'R,
R, + 7,

av,

AV, = uV, 1 — T — A (e —e~m)|,. . (143.6)

where:

T,
A=g=t (144.6)

Now, the total anode voltage will be the sum of the initial steady
state value V,, and the transient value 4V

Vol) =V +A4V,. . . . . . . .. (145.6)

The anode current decreases from the initial steady state value I, to
zero. The instant ¢ = ¢, at which it reaches zero is fixed by the condition:

Vit +uV,t)=0. .. ... ... (146.6)

Substituting expressions (145.6), (143.6) and (133.6) gives an equation
for determining ¢;:

R "
VGO + ll.lVo R -; , l —"e_“/r —_ A (e—l,/T,, J— e-tI/T) o

—uVoe(l—etTy=0. . . . . . . ... .. ... (i47.6)
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or:

R
Vo — Vo | (1 — /1) — T2 4 (¢=/Te _g-uiTy| — ¢

R, +7, R, + 7,
A general solution for ¢ will be difficult to derive, each practical
case being considered individually and then solved for example by

graphical methods.
A few special cases can be found directly, for example that already
mentioned, where T << T,. Then it can be derived that:

— A (etTe — e Ty n e!IT — 1,

and consequently 4V, =0 at ¢=1t,. The grid voltage changes so
rapidly that the anode voltage cannot follow because of its much
larger time constant. Then condition (147.6) simplifies to:

Vi —uVo (1 —e=T) =0,

or.

, I/'
gz_rm@_ﬁ;).......umm
- 0

There is only a real solution for ¢ if:
VaO
#Vo

=1

|4
Now the value —2 represents the cut-off grid voltage of the tube

at an anode voltage V. The characteristic corresponding with this
cut-off grid voltage is represented by the dash-dot line in fig. 49.6.
It is clear that ¥V, must be larger than this cut-off value. However,
when V, does not exceed the absolute value of E., the cut-off voltage
at an anode voltage equal to the supply voltage Vg, then the tube will,
after an initial cut-off, sooner or later again become conducting as the
anode voltage rises and tends to a final value V', when no anode
current flows. As soon as V, reaches a value —uV, (), then anode
current starts to flow again. This lowers the rate of increase of V', and
it may be_expected that gradually the anode voltage will tend to its
final value uV,, with the operating point of the tube at the intersection
of the static loadline and the grid voltage characteristic of value —V,,.

This method of switching a tube will, however, not be frequently
used in practice. Generally, the tube will have to be cut off rapidly
and definitely, so that V, will have to be larger than E.°

68



6.2 The anode circuit

Another extreme case occurs when T, < T, so that the quantity 4
(see expr. (144.6) is very small and expr. (147.6) simplifies to:

ra
Vo= Vo gy (1 =) =0,
or.
) R, +7r, Vo
= — 1— : 149,
t Tln( - .“Vo) (149.6)

To have a real value of £, in other words to reach a real cut-off con-
dition, the relation

R,+7r, V

ML S
7a /‘VO o
must be fulfilled, or:
R |4
Vo g a + ra a0 ,
7o u
or:
| 4
Vo2 —(=|E,|)
7’

6.2.2. PENTODES

The idealized anode current — anode voltage characteristics at a
given screen grid voltage
for a pentode are repre-

: Ly
sented in fig. 50.6. The T \

. . . . K .\~
main deviations from this \

idealized form are rounded L2 !

edges at the left. \ﬁ} \ fa=w ! -3
At low wvalues of the & y‘“"

anode voltage V,, all char- ,,‘9

g NE

a

acteristics converge approx-
N Vo =Ec

Io

- T Vg,: -1
-2

imately into one steep line
through the origin of the 0 B,y
system of coordinates. The Fig. 50-6.

reverse of the slope of

this “bottoming’’ line is denoted by 7,:

7, = cot o (see fig. 50.6) . . . . . . . (150.6)
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The discontinuity of the characteristics at the ‘‘knee” complicates
the response of the pentode to sudden changes in voltage at the control
grid. If, for instance, the tube has been cut-off for a long period, then
its anode voltage will be equal to the supply voltage V. If then the
control-grid voltage V,, is suddenly raised to a value above the. cut-off
voltage E,, say —1 volt, the anode current suddenly assumes a value
corresponding to the characteristic
—>t
rp— for V, = —1 volt.
Y, (t) If the time constant of the anode
L - circuit is large, the change in anode
voltage will be very slow, compared
with this sudden increase in current.
LY P— The operating point of the tube will
travel along the curve indicated
by arrows in fig. 50.6, and finally
reach a steady state at point P, if

0 the anode load resistance R, is

small enough to correspond with

v the static loadline L,.
_& If the change of V,, was step-
‘GT Y% shaped, then the change of I, will be
of similar shape. The anode voltage

0 ; V, will be an exponential curve

Fig. 51-6. starting at a value V5 and tending

' to a final value corresponding with

the operating point P, with a time constant R,C,. These waveforms
are represented in fig. 51.6.

However, when the anode load resistance R, happens to be large
enough to correspond with loadline L, of fig. 50.6, then the final operating
point will be P, Before this point is reached, the ‘“kneepoint’ K is
passed, and at that instant a discontinuity occurs.

Until this instant, the anode current is constant and independent
of the anode voltage. From this instant onwards, however, the anode

~current decreases proportionately to the anode voltage, the relation
being I, = V, tna, or, according to (150.6):

$<

I,=—% ... ... ..... (1516

This can be taken into account by the sudden switching of a resistance
7, between the anode and cathode of the pentode.
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6.2 The anode circuit

Referring to fig. 52.6, the first of two possible cases is loadline L,,
giving a final operating point P, when the pentode receives a positive
voltage step at its control grid that jumps from a value below cut-off
to the value V, corresponding to an anode current /.

I
) L3 L2 L1
Py \K R,
Iog [~ " ; L Vo=Yy,
Iup ___T_._ IPI :
| p ! |
' | : |
|
d ol )
\ | I
| [ |
| (| |
1 1| |
0 Vap, Vap Vax Vap, W__ sy,
Fig.. 52-6.

Figure 51.6 gives the shape of the anode voltage, which is in mathe-
matical form as follows:"

V() = Vg— IR, (1 —etTay, . . . . . (152.6)

if the voltage step at the grid occurs at the instant { = 0.

T,= R,C, = time constant of anode impedance.

The second possibility is loadline L,;, whilst loadline L, represents
the border case. For this case, expr. (157.6) would still be valid. With
the case of Ly a discontinuity occurs at the instant ¢ =1¢ when V,
reaches the value :

Vit =Va=1Iute . - - . . ... (153.6)

The final value of equation (152.6) which is valid only for ¢ <¢,,
would be V, (c0) = V,,,, corresponding to a virtual operating point P;.
However, the limiting operating point will be P, corresponding to
V,(©) = V,, The current will then be:

Toy=Vaslta -« - o o ... (1546)

Moreover:

Vy—V
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Combining (154.6) and (155.6) gives:

7q

Vi =V . .
ap "R 17, (156.5)
From expressions (152.6) and (153.6) it follows:
Iyw,=Vg—1I,R, (1 —e4lTa),
or:
I, R
t,=7T,In 2 e ... . (1517.6)

Iao (Ra + fa) - VB

From fig. 52.6 it can be seen that Vy = I, (R,, + r,), where R
corresponds to loadline L,. Then, ¢ = oo.

For loadline L, it can be seen that I 4R, = Vy— V and I g7, = V4
thus:

VB - Vfwl
Va—V

apl

t,="T,In

As V. < Vg, there is no real value of ¢, in that case.
For loadline L,, however, it can be written:

Veg—V
tl — '1“'1 In l__ﬂf ,
Va,k - Vap3
and now:
Vak > Vapo >
so ¢, has a real finite value.
Za 2,
+ +
; S — %
Ia, ‘% mL fa
o r
Fig. 53-6. Fig. 54-6.

For times ¢ < ¢,, the value of the anode voltage is given by expression
(152.6), and the anode circuit can be represented by the diagram of
fig. 53.6. The current source I, is a step-function.
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6.2 The anode circuit

I,=Ig=s(Vo—E) . . .. ... (158.6)

From the instant ¢ ==, onwards, a resistance 7, is to be shunted
across the current source /,, and the circuit can be represented by
the diagram of fig. 54.6. The instant ¢ = ¢, will be considered as the
origin of a new time scale t =0 (v = ¢ —¢,).

The anode voltage V, (r) in this new time-scale has an intial value

V,(0) = V=TI, (see 1536) . . . . . . . . (159.6)

The final value will be:

LI ... (160.6)

The anode voltage changes from its initial value to its final value
with a time constant: '

7'ali,a

T = Cov o oo v oo 161.6
R Co o (161.6)
and will be represented by the time-function:
Vo) =V, (0) + (Vae— Vy(o0)e ™™ . . . . . (162.6)
Vot
! Lt
L f
Iaok
'
%k“ h Iap :
v
' i
Vop—t
. <IN \ :
'GPJ 1 |
i I
- — 1 -
0t —t 0t —at
Fig. 55-6. Fig. 56-6.
The values of V, (0) and V., substituted in (162.6) gives:
ra
Vol gy |Va— Ve —La (Ra 70} ™| (1636)

This is valid for ¢ = ¢ (v = 0), whilst for 0 < ¢ < ¢, expr. (152.6) holds:
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V() =Va—TI R,(1—eT) . . . . . (152.6)

The anode voltage is continuous at ¢ = ¢;, not only in its value, but
also, as can easily be checked, in its first derivative with respect to time.

The shape of V, (#) is sketched in fig. 55.6, whilst the anode current
I, as a function of time is represented in fig. 56.6. '

So far, the influence of a positive-going voltage step at the control
grid of a pentode on the anode circuit has been-treated.

The response to a negative-going control grid voltage step will next
be considered. It is again assumed that the anode load impedance is the
parallel combination of a resistance R, and a capacitance C,, giving
a time constant T, = C,R,. Furthermore no effects of any foregoing
transients are supposed to be present at the moment ¢ = 0 when the
voltage step at the control grid occurs. This grid voltage is V,, for times
t<0.

At ¢ = 0 it jumps to a value below cut-off causing the anode current
to become suddenly zero.

The capacitance C, now starts discharging from the initial voltage
value I,R, to its final value of zero according to an exponential time
function with a time constant T, = R,C,.

Thus the change in anode voltage will be:

nm;n—g&wm”...g.(mm

This equation is valid no matter, whether the initial current I, cor-
responds to the operation point P (loadline L) or P, (loadline L,) in
fig. 52.6.
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7. THE MULTIVIBRATOR FAMILY

7.1. INTRODUCTION

The multivibrator principle is commonly used for generating or
shaping pulses, pulse frequency-dividing and similar functions. As
mentioned at the end of section 4, three types of multivibrators can
be distinguished. First the bistable multivibrator, frequently called the
Eccles Jordan flip-flop circuit. This offers a suitable and much used
means of dividing the number of pulses per unit time by the factor two.
By combining several binary dividers in cascade, division of the input
pulse repetition frequency by any power of two may be acccmplished.
Feedback may be suitably applied between cascaded flip-flops for
division. Thus the counting of pulses may be accomplished in numerical
systems other than the binary one. This will often be the decimal system,
which is familiar to every one who has studied arithmatic.

It will not be surprising, therefore, that the bi-stable multivibrator
is a very important basic element in modern computing devices. The
number of tubes used in such applications is innumerable, and special
types mostly in the form of a double triode have been developed by
several manufacturers.

In fact, it has been the development of a double triode for computer
purposes that caused the need for more exact knowledge of the be-
haviour of tubes in flip-flop circuits, and this initiated the author’s
investigations of the transient phenomena in a bi-stable multivibrator.
The theoretical results enabled us to trace the influence of tube character-
istics on the behaviour of the flip-flop circuit, thus giving the tube
manufacturer valuable information as to how to design tubes which
will accomplish their specific tasks.

The bi-stable multivibrator will be treated extensively. Once this
circuit had been analysed, it was a simpler matter to analyse the mo-
nostable multivibrator, a second member of the multivibrator family,
in the same way. Among other applications, this type of switching
device is used for pulse shaping and delaying.

The third type, the astable or free-running multivibrator, is a self-
oscillating pulse (or sawtooth) generator needing no external triggering
signal for operation, in contrast to the two types already mentioned.
It is often fed, however, with external pulses, in order to synchronize
its frequency with a given frequency. The application of the astable
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multivibrator in television receivers is described by the author in his
book ‘“Flywheel Synchronisation of Sawtooth Generators’’, monograph
2 of the series Television Receiver Design, Book VIIIB of Philips’
Technical Library.

In this book, only the frequency of the multivibrator signal and its
synchronization is dealt with. In the present book the waveform of
the astable multivibrator signals will also be considered, and the in-
fluence of the internal anode resistance of the tube on both frequenccy
and waveform will be included.

7.2. THE BI-STABLE MULTIVIBRATOR

The bi-stable multivibrator — or Eccles-Jordan flip-flop circuit —
incorporates two vacuum tubes which basically perform a switching operation.
This involves several sudden changes in the voltages and currents in the
network. An analysis of these transients is essential to obtain an insight
into the operation of bi-stable multivibrators in general and of the influence
of the tube characteristics in particular.

In the operation of the bi-stable multivibrator, two conditions can be
distinguished, namely the static condition at which one tube is conducting,
the other tube being cut off and all effects of previous trigger pulses
having died out, and the dynamic condition which commences as soon
as a trigger pulse is applied and ultimately leads to another static
condition at which the tube that was originally conducting is cut off,
whilst the tube that was originally cut off becomes conducting.

It will be clear that an investigation of the dynamic condition is of
particular interest, the switching speed and the triggering sensitivity of
the multivibrator being determined thereby. By applying a step-by-step
method and subdividing the dynamic condition into the following three
phases, its analysis is simplified.

(a) The first phase commences at the instant £ = 0 at which the trigger
pulse is applied. Tube I is assumed to be conducting prior to this
instant, tube II then being cut off. Conditions are assumed to be
such that tube I is immediately cut off, tube I/ remaining in the
cut-off condition during this phase. The first phase is therefore
characterized by the fact that the circuit may be considered as a
passive network.

(6) The second phase commences at the instant ¢ = ¢,, at which tube I1I,
which was originally cut off, becomes conducting. This phase con-
tinues until the instant ¢,, at which grid current starts to flow in
the conducting tube II.
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7.2 The bi-stable multivibrator

(c) The third phase, commencing at the instant ¢, continues until
the transients have died out.

7.2.1. FUNDAMENTAL CIRCUIT
Fig. 1.7 shows the fundamental circuit of the bi-stable multivibrator.
It is assumed that both the positive H.T. supply 4V’ and the negative

77324

-y Fig. 2-7.
Input voltage V, consisting of a
Fig. 1-7. negative-going trapezoidal pulse
Fundamental circuit of the bi-stable applied to the multivibrator cir-
multivibrator. cuit shown in fig. 1-7.

H.T. supply —V"” have a negligibly low internal resistance. This also
applies to the input voltage source V. This input voltage is assumed
to be a negative-going trapezoidal pulse as represented in fig. 2.7.

The multivibrator should be triggered, i.e. it should be switched
over from condition 1 in which tube I is conducting and tube I[ is cut
off, to condition 2 in which I is cut off and I/ is conducting, by the
negative-going flank of this pulse occurring between ¢ = 0 and ¢ = ¢,
With the exception of the anode-to-grid capacitance C,, of the tubes,
the stray capacitances, including interelectrode capacitances, can easily
be taken into account.

"Fig. 3.7 represents the circuit for condition 1, including the stray
capacitances, which are indicated by broken lines. Since the left-hand
tube I is taken to be conducting in condition 1, the internal anode
resistance », between the anode a, and cathode (earth potential) and
the internal grid resistance 7, between the grid g, and cathode have
been incorporated, this grid being assumed to draw current.

If the anode-to-grid capacitances C,,, and C,,, were absent, it would
be possible to split up the circuit into two parts which could be con-
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sidered separately with regard to their response to an input pulse V,.
The interaction between both halves of the circuit due to these anode-
to-grid capacitances, however, renders the problem more complicated,

77325

Fig. 3-7.
Equivalent circuit of the bi-stable multivibrator shown
in fig. 1-7 in condition 1 (tube I conducting, tube I7
cut off). It should be recognized that the left-hand
and right-hand halves of this equivalent circuit do
not correspond to those of the circuit shown in fig. 1-7.

the more so as the influence of these capacitances is not always the
same at all phases of the trigger process. When one or both tubes are
conducting, a kind of Miller effect will be experienced. This may be
considered as introducing additional input capacitance at the grid of
the tubes by an amount (1 4 G) C,,, where G is an “amplification factor”
determined by the ratio of the slope of the anode voltage signal to
that of the grid voltage signal 4).

For a non-conducting tube, the effect of C,, will nearly be equivalent
to the presence of a capacitive voltage divider between anode and grid,
and will influence signals with a steep slope. For tube I this can be
taken into account by the factor:

b, = C R ¢ )
Can+C,+C CCon
agt [ ot + "C—_*_—C‘m
and for tube II by the factor:
b, = Cagt e - en
anu + Cc + Cau + m‘;

These factors represent the fraction of the anode voltage variation
that is transmitted to the grid of the same tube due to the anode-to-
grid capacitance of this tube.

For the time being, the influence of the anode-to-grid capacitances

4 M.IT. Radiation Lab. Series, Vol. 19, Waveforms, p. 174.
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7.2 The bi-stable multivibrator

will be disregarded. In some cases of special interest, which are dealt
with in a subsequent section, a correction will be introduced to take
this influence into account.

7.2.2. STATIC CONDITION

To determine the static condition, in which all transients due to
previous triggering of the multivibrator may be considered to have
died out, the capacitances may be omitted from the. circuit. Its two
halves can then be represented by the diagrams shown in fig. 4.7, fig. 4.7a

gn R ar o B o
L

Rg gRa ) Rg RO

- +Iaal c fa - Ihl 27y +
Vy VI P VII V'

¥ A I ~
a ) b 77326

Fig. 4-7.

The two halves of the equivalent circuit shown in fig.
3-7 in the static condition; fig. 4-7a corresponds to the
left-hand part and fig. 4-7b to the right-hand part of
this equivalent circuit.

corresponding to the left-hand part and fig. 4.7b to the right-hand
part of fig. 3.7.

In both circuits a constant current

V' 4+ V"

will always be present as a result of the two H.T. supply sources + ¥V’
and —V". ’

If no grid current I,, flows in the circuit of fig. 4.7b, the voltage drop
produced across the resistance R, by the current I is:

Rﬂ . (V/ + V'),

Ve =R, [ = — "%
Rat o R,+ R+ R,

or, from eq. (17.5):
Vege=6 V' + V™. . .. . .. ... 4.7
Together with the voltage source —V”, this gives a total grid voltage:
Va=¢V —(1—¢)V". . . . . . .. (5.7)
If this value is sufficiently negative, the grid current will be zero.
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The multivibrator family 7

In practice, the conducting tube is, however, usually driven beyond
the point at which grid current starts to flow. Expression (5.7) will there-
fore be assumed to be positive. It depends on the type of tube, and more
particularly on its grid current versus grid voltage characteristic, i.e.
on the value of 7,, what value the potential between grid and cathode
will assume (compare section 6.1). It will usually be of the order of a
few volts or even less. No great error will therefore be introduced by
assuming the grid-to-cathode voltage to be zero. In so doing, it becomes
possible to determine the grid current I,, which flows through the
resistance R, shunted across the resistances R and R, connected in
series. The voltage drop produced by this current is:

R,(R+ R,
- 00'm_ Iao(l—é‘,)Ro-

The positive voltage V,, given by eq. (5.7) must be compensated by
this voltage drop; hence:

Too (1 —&) Ry =&, V' — (1 —¢) V7,

or:
eV — (1 —¢g) V"
Io=-" i —ie,) R:) . (6.7)
In this case, the static grid voltage of tube I is:
Vie=0, . . . . . ... . ... (17
whilst the anode voltage of tube II is:
V,,,,(,:—R——.V’. B (- X
R+ R,

In the circuit shown in fig. 4.7a, the same current I (eq. (3.7)) is always
present, whilst the internal resistance 7, is, moreover, traversed by
the anode current 7, In addition to the voltage drop caused by the
current I given by eq. (3.7), a voltage drop —¢,R_I,, will be produced
by I, across R, so that the total grid voltage will be:

Voo =86V —(1 —¢&) V" —¢eRI,, . . . . . (97)
Because of the currents I and I, the total anode voltage of tube I is:
Vao=(1—¢&) V' —¢&, V" —¢, (R, + R) I, . . (10.7)

¢, being given by eq. (17.5).
I, can be evaluated from the tube characteristics by determining
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7.2 The bi-stable multivibrator

the point of intersection of the I, = f(V,) characteristic at V, =0
and the load line for the specified values of R, and V' . I, can also be
expressed in terms of 7,, since, according to fig. 4.7a, V o =17,.1,.
From eq. (10.7):

(1 —e) V' —e, V"

lo= R ¥R +r.

. (11.7)

The anode and grid voltages of both tubes in the static condition have
now been derived and are given by egs (7.7), (8.7), (9.7) and (10.7).
They are the initial conditions for the transient phenomena which
occur after an input trigger pulse has been applied to both grids. These
transients must be superimposed on the static voltages. There is no
need to consider the H.T. voltages when calculating the transients, the
influence of these voltages being included in the static conditions. The
H.T. voltages are therefore omitted in the circuits which are used for
determining the dynamic conditions of the bi-stable multivibrator.

7.2.3. DYNAMIC CONDITION

From the instant ¢ =0 onwards, V; is no longer zero, but varies
according to the function represented in fig. 2.7, which may be for-
mulated as follows:

V,=0fort <0 2
V,=—at for 0=t <4, , (12.7)
V.= —V, for t > ¢, S

where « = V/t,.

For the time being, the influence of the positive-going rear flank of V;
will not be considered. The amplitude V of the pulse is assumed to be
large enough to ensure that the voltage V; traverses the entire grid
base of the conducting tube I within a fraction of the time of rise £,
This will usually be the case in practice, because the cut-off voltage of
the conducting tube will be fairly small as a result. of its low anode
voltage. The anode current /., will therefore be assumed to drop to
zero at the instant ¢ = 0; in other words: the internal resistance 7, is
assumed to become suddenly infinitely large at this instant.

According to the principles treated in Section 2, this discontinuity
in the circuit can be accounted for by introducing a current source [,
between the anode 4, and cathode (earth), its polarity being such that
the current I, previously flowing beween a, and cathode through
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The multivibrator family 7

the internal resistance 7, is compensated. Hence, the left-hand part of
the circuit shown in fig. 3.7 will be as depicted in fig. 5.7.

It will be clear that the same reasoning is applicable to the grid current
I,, which flows in the right-hand part of the circuit shown in fig. 3.7,

Cc  gg b a
I J. Laan e
R
’ -|§' Ro R Caf o0
. — Iao
: 7327
Fig. 5-7. Fig. 6-7.
Left-hand part of the equivalent Right-hand part of the equivalent
circuit shown in fig. 3-7 in the first circuit shown in fig. 3-7 in the
phase of the dynamic condition. The first phase of the dynamic con-
current source [,, introduced between dition. The current source I,
the anode a: and earth compensates introduced between the grid g
the current I,, previously flowing and earth compensates the current
through the internal resistance 7,. I,, previously flowing through the

internal grid resistance 7,.

the approximation being even better because a much smaller decrease
of the grid potential is sufficient to completely suppress the grid current
(see Section 6.1.2). In the right-hand part of this circuit, a current step
function I,, should therefore be introduced as depicted in fig. 6.7.

The circuits of figs 5.7 and 6.7 can be further simplified by trans-
forming the voltage source V; with the capacitance C, connected in
series into a current source I; with the capacitance C, connected in
parallel according to Thévenin's theorem, so that:

av,

I,=C,.——
{ Cc dt

(13.7)

In that case:

I,=0for t <0 .
I, = —aC, for 0 <t <t (4
I,=0fort> ¢,
I, is a rectangular, negative-going pulse with a duration of ¢, seconds
and an amplitude «C,, or the superposition of a negatlve-gomg current
step —aC, at the instant ¢ = 0, which will be denoted by —aC_ U (¢),

and a positive-going current step +aC, at the instant ¢ = ¢, Wh]Ch
will be denoted by +aC, U (t — ¢,).

82



7.2 The bi-stable multivibrator

The coupling capacitance C, is now connected in parallel with the
input capacitances C, and C,,. The sums C, + C, and C, + C,,
will be denoted by C, and C,, re-
spectively. Both circuits of figs 5.7 and
6.7 have now been reduced to the
simplified circuit shown in fig. 7.7,
which is identical to that shown in
fig. 3.5.

. In the right-hand part of the multi-
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. . Fig. 7-7.
wbrator shown in ﬁg. 3.7 (rep.resented by Simplification’ of the circuits
the equivalent circuit shown in fig. 5.7), shown in figs. 5-7 and 6-7
current steps -+ I,OU (t), —aC,U (t) according to Thévenin’s the-

and —aC,U (t — t,) must be introduced erem:

at terminals P and Q. The response of a network to these current
steps has been calculated in Section 5 and is given by eq. (215.5),
i.e. the voltage across P-Q or the grid voltage V,, of tube I.

In order to calculate the anode voltage V,, of tube II, the operational
transimpedance from P-Q to R-S must be determined by an operational
function similar to that given by eq. (18.5).

In the left-hand part of the multivibrator (see fig. 5.7), current steps
—aC,U (¢) and 4+aC,U (t —¢,) must be introduced at terminals P and Q,
and a current step I, U (¢) at terminals R and S.

In order to calculate the grid voltage V,,, of tube II and the anode
voltage V,, of tube I, the operational impedances between P-Q and
R-S and the operational transimpedance from R-S to P-Q must be
determined. These various kinds of impedances all have a form similar
to that of eq. (18.5), their denominators being the same, the only differ-
ence being the constants R,, and A4 in the numerator.

7.2.3.1. First phase of the dynamic condition

The slope and the amplitude of the trigger pulse V, are assumed
to be so high that immediately after this pulse has been applied to the
grids of the multivibrator tubes, both tubes are non-conducting, which
will as a rule be the case in practice. Both grid voltages then tend to a
final value, which is determined only by the H.T. supply voltages, i.e.
by the current I supplied by these voltage sources; see eq. (3.7) ).

%) It should be recognized that from this instant onwards the circuit can be con-
sidered as a passive network, both tubes being non-conducting, contrary to
the switch-over condition of a free-running or astable multivibrator (Abraham
and Bloch type), where a regenerative action with both tubes conducting starts
as soon as the non-conducting tuhe reaches its cut-off point.
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The multivibrator family S

According toeq. (5.7), this final value, which was assumed to be positive,
ise, V' —(1—¢g,) V"

Sooner or later the grid voltage of one of the tubes will rise beyond
the cut-off value, so that anode current will start to flow in this tube,
The successful operation of the M.V. depends on which of the two
tubes starts conducting. If it is the grid voltage of tube I that first
reaches the cut-off value, the switching action of the multivibrator will
be wrong, for in that case the initial static condition with tube I con-
ducting and tube II non-conducting will ultimately be re-established,
which is not the purpose in view. Conditions must therefore be chosen so
that the cut-off value of tube I7 is always reached before that of tube I.

The first phase of the dynamic condition of the multivibrator will
in any case be défined as that which covers the time interval between
the instant ¢ = 0, when the trigger pulse starts, and the instant at
which the grid voltage of one of the tubes reaches the cut-off value.

The derivation of the time functions which represent the anode and
grid voltages during this phase will not be given in full detail, since
it is intended to give only a general idea of the lines along which the
problem can be solved. The final results are dealt with at the end of
this Section. For the time being, the anode and grid voltages will be
represented by the following general formulae:

Va=V, ()

Vat = Vax (t) /

N v
Vow= Vo ()| (157)
Va:: = Vau (t)

It will now be indicated how to ascertain which tube starts to draw
current first. In a conducfing friode, the relation between fhe anode
current I, and the anode voltage V, and the grid voltage V, is given by:
_Yatul,

14

I . (16.7)

a
a

where 7, is the internal resistance and u is the amplification factor of
the tube. The cut-off value E,, of the grid voltage is now defined by
the condition I, =0 for V, = E_,; hence:

0= V{I + ,choﬁ
or:

1%
E,=——" .. .. ... ... (11

co
I3
By means of this relation, the instants ¢, and ¢, at which tubes I and I/
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7.2 The bi-stable multivibrator

respectively reach their cut-off point can be deter ained. For this purpose,
egs (17.7) and (15.7) are combined in the following relations:

for tube It V,, (t) = —— .V, (), .. . . (187)

and for tube II: V,  (¢,)= —— . V() . . . . (19.7)

These conditions depend on various quantities, namely network
elements (resistances and capacitances), supply voltages (V' and V"),
the time of rise of the trigger pulse (4,), the amplitude of this pulse (V)
and the tube characteristics I,, (which depends on the internal re-
sistance 7,) and u. It is rather cumbersome to investigate the influence
of these parameters on the values of ¢ and ¢,. The correct situation
is that at which ¢, <, as the cut-off point of tube I7 will then be
reached first. A change in one of the above-mentioned quantities may
result in ¢, and ¢, assuming different values. If the changes are such
that ¢, decreases and ¢, increases, it will be all the better, but in the
reverse case there is a risk of ¢, becoming larger than ¢,. This will result
in the multivibrator no longer operating correctly.

The expressions for the anode and grid voltages of both tubes are
therefore given below. They will be of particular importance in enabling
the practical conclusions to be- drawn in a later section regarding the
way in which tube characteristics influence the trigger sensitivity of
the bi-stable multivibrator.

The time functions which represent the voltages at the anodes and
grids of the tubes are defined as follows. For 0 < ¢ < ¢,, the complete
expressions can be calculated, but the time interval ¢, is so small that
the exponential functions which constitute these expressions can be
represented with great accuracy by linear functions. The expressions
for ¢ > ¢, are also valid for ¢ = ¢, so that the voltages for { = ¢, can
be determined from these functions. For 0 < ¢ < ¢,, the voltages vary
linearly with time between the initial static conditions and the calculated
values for £ = #,. The complete expressions will therefore be given only
for ¢t = ¢,.

For tube I (initially conducting):

Va=¢V — (1 —¢) V" +

+ g(] —¢&,) RaCC . ? (et — 1) + EHV' —(1—¢,) Vng Ket —
0
|4
— %(]—e,,) RC,. t—o. (e7Po—1) + ¢, V' —(1—¢,) V"%(l + K)er*, (20.7)
0
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The multivibrator family 7

and

Va=(1—g) V' — e V" +

+ 36,,1?‘,Cc . ?. (e#fo—1) P 4 (1 —¢,) RalaoLg er’ —
0
Vo
—JeuR,Ceo 2 o — 1) (L+ P+ (1—e) Rl (1 + L){ e (21.7)
0

For tube II (initially non-conducting):
Van = SGV,__ (l '——8,) v’ +

v,

+ 3(1 —e) RC,. " (e — 1) K + s,RaIaoPg Pt —
0

)

— 3(1 — &) RC.. f— (1) (1 4+ K) + e,Rol o (1 + P){ e (227)
0
and

Vau = (1 - Ea) 4 '—EaV” +

14
+ e, %R,Cc.t—°. (e —1) + - LA V”% Peri —

0 =&

(e Po—1) + & V’——V”% (1 +P)e* . . (23.7)

70— l—ea

For the values of ¢, and ¢, reference is made to eq. (17.5); for V', V",
R, C.and R, seefig. 1.7, and for V,and ¢,, see fig. 2.7. The transients
are determined by two time constants, namely 1/p;, and 1/p, (see egs
(180.5), (18c.5), (194.5) and (195.5)), whilst:

K =M (see egs. (22.5) and (18a.5)), . (24.7)

h—2.
P = M (for T see eq. (16.5)) . . . . . (25.7)
pl_P2

and
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where:

R R

- T, 4 — .
R+R, 'TR+R

? T (for T and T,, see eq. (16.5))

(21.7)

7.2.3.2. Second and third phase of the dynamic condition

Disregarding the case in which the grid voltage of tube I reaches

the cut-off value first, if will be
assumed that conditions are cho-
sen so that the required flip-flop
operation is obtained. At a cer-
tain instant ¢ =¢,, determined
by eq. (19.7), tube II reaches a
condition at which anode current
starts to flow. This instant is
the commencement of the second
phase of the dynamic condition.
For the new transients which
now start, this instant ¢ =1¢,
will be taken as the zero point
of a new time scale.

V,. now traverses the grid
base of tube II according to an
exponential time function (see
fig. 8.7). It is assumed that the
part of this exponential function
that is situated within the grid
base is such a small fraction of
the total curve that it may
be considered as a linear function
of time, 1i.e.

V,.=at+ E,. .. (287)

I TIa
4

—>Yor

\‘Qx(ﬂ

Fig. 8-7.
Grid-voltage variation V,u and cor-
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responding anode current variation

I,, as functions of time during the
second phase of the dynamic conditions
at which tube II becomes conducting.
E., represents the cut-off voltage
of tube II.

For ¢t =t,, the grid voltage becomes zero; hence:

atl = '—Eco’

or, from eq. (17.7):

al, =

. (29.7)

Vﬂ..........wmﬂ
u
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The multivibrator family 7

where E_, denotes the cut-off voltage corresponding to the anode
voltage V,, of tube II which is present at the instant ¢ =0 (i.e. ¢, in
the time scale of the first dynamic phase).

For values of V,,, situated within the grid base, the anode current
of tube II is defined by:

.Van + u Vul? .
—r .o

I =

a

(31.7)

a

V. should now be defined as a function of time. It is therefore
necessary to derive another relation between I, and V,,. Now the
voltage drop across the anode impedance Z,;, i.e. the impedance be-
tween terminals R and S in fig. 7.7, is given bv:

Vi — V=20, . . .. ... 327

ai” ar

when the constant current I (eq. (3.7)) through the voltage divider
R,, R, R, is neglected. This current, however, results in the anode voltage
at I, = 0 differing from the H.T. supply voltage V’, its value being
an amount (V' + V") R,/(R, + R + R,) lower than V’'. Eq. (32.7)
should therefore be replaced by:

R
V' — - s _ (Vi VYN—V,  =Z I,
R0+R+‘Ra ( T ) all ait a
Oor:
(1 —e) V' —e V" — V=2l . . . . . . (337)

This includes the assumption that the transients occurring in the
anode voltage of tube IT due to the first phase of the dynamic condition,
i.e. the exponential terms of eq. (23.7), have practically disappeared
for t = ¢,. Eq. (33.7) can be written: :

Vio—Vau=Zada . - . . . . .. (347

where:
Va=0—¢) V' —¢V".
From eqs. (34.7) and (31.7):

Vao + I Vvu
r

I+Z;

Vao - Van = (357)
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Substitution of V,, by the value given by eq. (28.7) gives:

