

Electron tubes

Part 4 June 1972

Receiving tubes
Tiodelving tubes

ELECTRON TUBES

Part 4	June 1972
General section	
Receiving tubes	

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.

The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts)

BLUE

SEMICONDUCTORS AND INTEGRATED CIRCUITS (6 parts)

RED

COMPONENTS AND MATERIALS (7 parts)

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.

We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. Where ratings or specifications quoted differ from those published in the preceding edition they will be pointed out by arrows. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the published data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

December 1971

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1	Transmitting tubes (Tetrodes, Pentodes Amplifier circuit assemblies	s); January 1972
Part 2	Tubes for microwave equipment	February 1972
art 3	Special Quality tubes;	March 1972
	Miscellaneous devices	
Part 4	Receiving tubes	June 1972
Part 5	Cathode-ray tubes; Photo tubes; Cam	era tubes May 1971
Part 6	Devices for nuclear equipment	June 1971
	Photomultiplier tubes Channel electron multipliers Scintillators Photoscintillators	Radiation counter tubes Semicinductor radiation detectors Neutron generator tubes Photo diodes
Part 7	Gas-filled tubes	July 1971
	Voltage stabilizing and reference tubes Counter, selector, and indicator tubes Trigger tubes Switching diodes	Thyratrons Ignitrons Industrial rectifying tubes High-voltage rectifying tubes
Part 8	T.V.Picture tubes	August 1971
Part 9	Transmitting tubes (Triodes); Tubes for r.f. heating (Triodes)	December 1971

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors

September 1971

General
Signal diodes
Variable capacitance diodes
Voltage regulator diodes
Rectifier diodes

Thyristors, diacs, triacs Rectifier stacks Accessories Heatsinks

Part 2 Low frequency; Deflection

October 1971

General
Low frequency transistors (low power)
Low frequency power transistors

Deflection transistors Accessories

Part 3 High frequency; Switching

November 1971

General
High frequency transistors

Switching transistors Accessories

Part 4 Special types

December 1971

General Transmitting transistors Microwave devices Field effect transistors Dual transistors Microminiature devices for thick- and thin-film circuits Photoconductive devices Photodiodes Phototransistors Light emitting diodes Infra-red sensitive devices Accessories

Part 5 Linear Integrated Circuits

February 1972

General

Linear integrated circuits

Part 6 Digital integrated circuits

March 1972

General
DTL (FC family)
DTL/HNIL (FZ family)
TTL (FJ family)

TTL (GJ family)
CML (GH family)
MOS (FD family)

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices, October 1971 Electro-mechanical Components *), Peripheral Devices

Circuit blocks 40-Series Counter modules 50-Series Norbits 60-Series, 61-Series Circuit blocks 90-Series Input/output devices
Electro-mechanical components *)
Peripheral devices

December 1971

February 1972

Part 2 Resistors, Capacitors

Fixed resistors

Variable resistors

Vaniable resistors

Vaniable resistors

Variable capacitors

Variable capacitors

Ceramic capacitors

Part 3 Radio, Audio, Television

FM tuners
Coil assemblies
Piezoelectric ceramic resonators
and filters
Loudspeakers

Audio and mains transformers
Television tuners, aerial input assemblies
Components for black and white television
Components for colour television
Deflection assemblies for camera tubes

Part 4 Magnetic Materials, Piezoelectric Ceramics, Ni Cd cells May 1972

Ferrites for radio, audio
and television
Small coils and assembling parts
Ferroxcube potcores and square cores

Cylindrical nickel cadmium cells

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1971 Microwave Devices, Variable Transformers

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters Isolators, circulators Variable mains transformers

Tachogenerators and servomotors

Part 6 Electric Motors and Accessories, Timing and Control Devices

Small d.c. motors

Stepper motors
Small synchronous motors
Asynchronous motors

Part 7 Circuit Blocks

Indicators for built-in test equipment

September 1971

Circuit blocks 100kHz Series Circuit blocks 1-Series Circuit blocks 10-Series Circuit blocks for ferrite core memory drive

August 1971

^{*)} From October 1971 published in Part 1 instead of Part 5.

Argentina FAPESA 1.y.C. Melincué 2594 Tel. 50-9941/8155 BUENOS AIRES

Australia Philips Industries Ltd. Elcoma Division 95-99 York Street Tel. 20223 SYDNEY, N.S.W. 2000

Austria WIVEG Zieglergasse 6 Tel. 93 26 22 A1072 VIENNA

Belgium M.B.L.E. 80, rue des Deux Gares Tel. 23 00 00 1070 BRUSSELS

Brazil IBRAPE S.A. Av. Paulista 2073-S/Loja Tel. 278-1111 SAO PAULO, SP

Canada Philips Electron Devices 116, Vanderhoof Ave. Tel. 425-5161 TORONTO 17, Ontario

Chile Philips Chilena S.A. Av. Santa Maria 0760 Tel. 39-40 01 SANTIAGO

Colombia SADAPE S.A. Calle 19, No. 5-51 Tel. 422-175 BOGOTA D.E. 1

Denmark Miniwatt A/S Emdrupvej 115A Tel. (01) 69 16 22 DK-2400 KΦBENHAVN NV

Finland
Oy Philips Ab
Elcoma Division
Kaivokatu 8
Tel. 65 80 33
SF-00100 HELSINKI 10

France R.T.C. La Radiotechnique-Compelec Avenue Ledru Rollin 130 Tel. 357-69-30 PARIS 11

Germany Valvo G.m.b.H. Valvo Haus Burchardstrasse 19, Tel. (0411) 3296-1 2 HAMBURG 1

Greece Philips S.A. Hellénique Elcoma Division 52, Av. Syngrou Tel. 915 311 ATHENS Hong Kong Philips Hong Kong Ltd. Components Dept. St. George's Building, 21st Fl. Tel. K-42 82 05 HONG KONG

India IMBELEC Div. of Philips India Ltd. Band Box House 254-D, Dr. Annie Besant Road Tel. 475 311 to 15 Worli, BOMBAY 18 (WB)

Indonesia P.T. Philips-Ralin Electronics Elcoma Division Djalan Gadjah Mada 18 Tel. 44 163 DJAKARTA

Ireland Philips Electrical (Ireland) Ltd. Newstead, Clonskeagh Tel. 69 33 55 DUBLIN 14

Italy Philips S.p.A. Sezione Elcoma Piazza IV Novembre 3 Tel. 69 94 MILANO

Japan NIHON PHILIPS 32nd Fl. World Trade Center Bldg. 5, 3-chome, Shiba Hamamatsu-cho Minato-ku Tokyo TOKYO

Mexico Electrónica S.A. de C.V. Varsovia No. 36 Tel. 5-33-11-80 MEXICO 6, D.F.

Netherlands Philips Nederland N.V. Afd. Elonco Boschdijk, VB Tel. (040) 43 33 33 EINDHOVEN

New Zealand EDAC Ltd. 70-72 Kingsford Smith Street Tel. 873 159 WELLINGTON

Norway Electronica A/S Middelthunsgate 27 Tel. 46 39 70 OSLO 3

Peru CADESA Jr. Ilo, No. 216 Appartado 10132 Tel. 27 7317 LIMA

Portugal Philips Portuguesa S.A.R.L. Rua Joaquim Antonio de Aguiar 66 Tel. 68 31 21/9 LISBOA South Africa EDAC (Pty.) Ltd. South Park Lane New Doornfontein Tel. 24/6701-2 JOHANNESBURG

Spain COPRESA S.A. Balmes 22 Tel. 232 66 80 BARCELONA 7

Sweden ELCOMA A.B. Lidingövägen 50 Tel. 08/67 97 80 10250 STOCKHOLM 27

Switzerland Philips A.G. Edenstrasse 20 Tel. 051/44 22 11 CH-8027 ZUERICH

Taiwan Philips Taiwan Ltd. San Min Building, 3rd Fl. 57-1, Chung Shan N. Road Section 2 Tel. 553101-5 TAIPEI

Turkey Turk Philips Ticaret A.S. EMET Department Gümüssuyu Cad. 78-80 Tel. 45.32.50 Beyoglü, ISTANBUL

United Kingdom Mullard Ltd. Mullard House Torrington Place Tel. 01-580 6633 LONDON WC1E 7HD

United States North American Philips Electronic Component Corp. 230, Duffy Avenue Tel. (516) 931-6200 HICKSVILLE, N.Y. 11802

Uruguay Luzilectron S.A. Rondeau 1567, piso 5 Tel. 9 43 21 MONTEVIDEO

Venezuela C.A. Philips Venezolana Elcoma Department Colinas de Bello Monte Tel. 72.01.51 CARACAS

LIST OF SYMBOLS

Symbols denoting electrodes and electrode/element con	nection
Heater or filament	f
Heater or filament tap	f_c
Cathode	k
Input cathode lead	k_{i}
Output cathode lead	k_{O}
Grid	g
Electrostatic deflection plate or rod	D
Fluorescent screen	l
Anode	a
Anode of a detection diode	d
Tube pin which must not be connected externally	i.c.
Tube pin which may be connected externally	n.c.
External conductive coating	m
Internal shield	s

Remarks

Equivalent electrodes of a multiple unit tube are distinguished by means of accents; e.g. the anodes of a double-anode rectifying tube are indicated by a and a'.

Similar electrodes of the same electrode system are distinguished by means of an additional numeral; the electrode nearest to the cathode has the lowest number.

The electrodes of multiple-unit tubes, in which the units are different, are distinguished by means of the following indices:

diode	D
triode	T
tetrode	Q
pentode	P
hexode or heptode	Н

Symbols denoting voltages (average values unless otherwise stated)

by moore denoting voltages (average values amess one	i wise stated
Symbol for voltage, followed by an index denoting the relevant electrode/element	V
Heater or filament voltage	$v_{\mathbf{f}}$
Peak value of a voltage	v_p
Peak to peak value of a voltage	V_{pp}
Supply voltage of tube electrodes	v_{b}
Anode voltage of a detection diode	v_d
RMS value of a voltage	v_{RMS}
Heater starting voltage	v_{fo}
Grid voltage	$V_{\mathbf{g}}$
A.C. input voltage	v_i
Voltage between cathode and heater	$v_{\mathbf{k}f}$
D.C. voltage supplied by a rectifying tube	$V_{\mathbf{o}}$
A.C. output voltage	V_{o}
Voltage for gain control	v_R
Transformer voltage (secondary)	v_{tr}
Anode voltage under cold condition or cut-off condition (I_k approx.0)	v_{a_0}
Screen grid voltage under cold condition or cut-off condition (I_k approx.0)	$v_{g_{2o}}$

Remarks

In the case of indirectly heated tubes the electrode voltages are specified with respect to the cathode.

In the case of directly heated tubes the electrode voltages are specified with respect to the negative terminal of the filament, unless otherwise stated.

Symbols denoting currents

Remarks

The positive electrical current is directed opposite to the direction of the electron current.

The symbols quoted represent average values unless otherwise stated.

Symbol for current followed by an index denoting the relevant electrode	I
denoting the relevant electrode	•
Heater or filament current	$I_{\mathbf{f}}$
Anode current	I_a
Current of a detection diode	I_d
RMS value of a current	I_{RMS}
Grid current	^{I}g
Cathode current	^I k
Current to fluorescent screen	I Q
D.C. current supplied by a rectifying tube	I_{O}
Peak value of a current	$I_{\mathbf{p}}$

Symbols denoting powers

Symbol for power followed by an index denoting the relevant electrode	w
Anode dissipation	w_a
Grid dissipation	W_g
Input power	$\mathbf{w}_{\mathbf{i}}$
Anode supply D.C. power	w_{i_a}
Dissipation of a fluorescent screen	$\mathbf{w}_{\mathbf{\ell}}$
Output power	W_{o}

Symbols denoting capacitances

See IEC Publication 100

Symbols denoting resistance and impedance

When for one of the following symbols Z is used instead of an R the word "resistance" should read "impedance" $\,$

External resistance in an anode lead	$R_{\mathbf{a}}$
External A.C. resistance or load resistance in an anode lead	R _a ∼
Load resistance of a push-pull amplifier (anode to anode)	R _{aa} ∼
Equivalent noise resistance	$R_{f eq}$
External resistor in a grid lead or grid circuit resistance	Rg
Input resistance	r_g
Internal resistance	R_i
Resistor in a cathode lead	$R_{\mathbf{k}}$
External resistance between cathode and heater	$R_{\mathbf{k}\mathbf{f}}$
Protecting resistance in the anode lead of a rectifying tube	R _t

Symbols denoting various quantities	
Brightness	В
Bandwidth	В
Distortion factor	d
n-th harmonic distortion	d_n
Noise factor	F
Frequency	f
Pulse repetition rate	f _{imp}
Power gain	G
Voltage gain	$V_{o}/V_{i,g}$
Height above sea level	h
Magnetic field strength	Н
Cross modulation factor	К
Hum modulation factor	m _b
Transformer ratio	n
Transconductance	S
Conversion conductance	S _C
Effective transconductance of an oscillator	S _{eff}
Temperature	t
Ambient temperature	tamb
Time	Т
Averaging time of current or voltages	$T_{\mathbf{a}\mathbf{v}}$
Cathode heating time	$T_{\mathbf{h}}$
Pulse duration	$\tau_{ m imp}$
Shadow section on a fluorescent screen	α
Light sector on a fluorescent screen	β
Duty factor	δ
Phase angle	φ
Efficiency	η
Wavelength	λ
Amplification factor	μ
Amplification factor of grid No.2 with respect to grid No.1	$^{\mu}$ g $_2$ g $_1$

GENERAL OPERATIONAL RECOMMENDATIONS RECEIVING TUBES

CONTENTS

- l. General
- 2. Spread in tube characteristics
- 3. Spread and variation in operating conditions
- 4. Limiting values
- 5. Electrode voltages
- 6. Electrode current
- 7. Electrode dissipation
- 8. Heater circuit
- 9. Heater-to-cathode circuit
- 10. Suppressor grid circuit
- 11. Control grid circuit
- 12. Capacitances
- 13. Protective resistors for mains rectifying tubes
- 14. Life
- 15. Hum
- 16. Microphony
- 17. Environmental conditions
- 18. Mounting and wiring.

GENERAL OPERATIONAL RECOMMENDATIONS RECEIVING TUBES

1. GENERAL

Where deviations from these directives are permissible or necessary, statements to that effect will be made on the relevant data sheets. If applications are considered not referred to in the data sheet of the relevant tube type extra care should be taken with circuit design to avoid that the tube is overloaded due to unfavourable operating conditions.

Users are warned for applying a tube in circuits where use is made of tube characteristics not controlled by the manufacturer. When at a later date batches of tubes are delivered which show different values for these characteristics this may result in unsatisfactory performance of the equipment.

2. SPREAD IN TUBE CHARACTERISTICS

Equipment design should be based on the characteristics as stated in the data sheets.

Tube data not stated as maximum or minimum values apply to a nominal tube. When measurements are carried out on a small number of tubes, and in particular on new tube types it should be taken into account that average values and the spread figures may differ from those obtained for larger quantities.

No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

3. SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of the tube in the equipment are expressed as a number of parameter values each of which is subject to spread and/or variation.

- 3.1 Spread. Spread in a parameter value will result in individual values deviating permanently from the average value; spread is due to e.g. component value deviations. The average value is the average of such a number of individual values taken at random that an increase of the number will have a negligible influence on the average value.
- 3.2 <u>Variation</u>. Variation of a parameter value is the change of value occurring as a function of time, e.g. due to supply voltage fluctuations.

The average value is calculated over a period such that a prolongation of that period will have a negligible influence on the average value.

4. LIMITING VALUES

- 4.1 Limiting values are in accordance with the applicable rating system as defined by I.E.C. publication 134.
 - Reference may be made to one of the following 3 rating systems.
- 4.1.1 Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

4.1.2 Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

- 4.1.3 <u>Design-centre rating system.</u> Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device• of a specified type as defined by its published data, and should not be exceeded under average conditions.
- Note A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

3

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device * in equipment operating at the stated normal supply-voltage.

- 4.2 If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
- 4.3 In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

5. ELECTRODE VOLTAGES

- 5.1 All electrode voltages are given with respect to cathode.
- 5.2 Two limiting values of electrode voltage are given
 - a) V_{a_0} , $V_{g_{20}}$ etc.

These values are continuously permitted with cold cathode. They are also permitted as peak voltage during operation when a D.C. voltage in combination with a superimposed A.C. voltage is present at the electrode provided that the peak value coincides with approx. zero electrode current.

b) V_a , V_{g_2} etc.

These values are D.C. components of the electrode voltages and are continuously permitted.

In circuits with automatic gain control the D.C. component may exceed the published limiting value with 20% provided that the increase of voltage results solely from the a.g.c. action and that maximum voltage coincides with approximately zero electrode current.

Proper functioning of the tubes at supply voltages lower than 50 volts cannot be guaranteed if these values are not quoted under the operating characteristics. Unless otherwise stated all values refer to positive voltages.

<u>Floating electrodes</u>. All tube electrodes should have a D.C. connection to the cathode (no floating electrodes).

6. ELECTRODE CURRENT

The limiting values I_a , I_{g_2} , I_k etc. are the D.C. components of the electrode currents averaged over any 50 ms period.

If no specific pulse ratings apply, a peak value of three times I_a , I_{g_2} , I_k etc. is permitted for maximum 25 ms.

See note on previous page.

Spread and variation in electrode currents should be restricted so that with nominal tubes the specified design centre limiting values are not exceeded by more than 10% under the worst probable conditions.

7. ELECTRODE DISSIPATION

The limiting values $\mathbf{W}_a,\ \mathbf{W}_{g_2}$ etc. are the average values, obtained by averaging over any 1 s period.

7.1 If not otherwise indicated the quoted operating conditions for audio output tubes are permitted only with speech and music signals.

When for power output tubes a limiting value $W_{g_{2p}}$ is stated this value applies only in the case of speech and music drive and it should not be exceeded when measured with a sinusoidal signal and at maximum output.

With class B operation and speech and music excitation the quoted limiting value of anode dissipation is allowed to be exceeded by max. 10% if measured with a sinusoidal signal at 2/3 of maximum drive.

When the operating conditions differ from those stated a non-decoupled series resistor of 0.5 to 1 $k\Omega$ may be required to avoid exceeding the limiting values of screen grid dissipation.

When load values vary during operation care should be taken that the limiting values of $W_{\rm a}$ or $W_{\rm g_2}$ are not exceeded.

Spread and variation in the electrode dissipation of audio output tubes should be restricted so that with bogey tubes the specified design centre limiting values are not exceeded by more than 20% under the worst probable conditions.

7.2 For all other types the quoted design centre limits for the electrode dissipations should not be exceeded by more than 15% with bogey tubes under the worst probable conditions unless otherwise stated in the relevant data sheets.

8. HEATER CIRCUIT

Any deviation from the nominal heater voltage (in case of parallel connection) or from the nominal heater current (in case of series connection) has a detrimental effect on tube performance and life, and should therefore be kept at a minimum. Such deviations may be caused by:

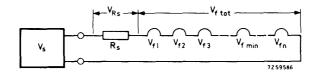
- a) Mains voltage fluctuations.
- b) Spread in the characteristics of components such as transformers, resistors, capacitors etc.

Designers of heater circuits are strongly recommended to bear this in mind when dealing with equipment to be used in areas where the actual mains voltage is likely to differ from the nominal value.

8.1 Parallel connection

The maximum deviation of the heater voltage should not exceed \pm 15% (design max. value).

This condition will be fulfilled when the mains voltage fluctuates by \pm 10% and a ordinary transformer (see below) is used.


8.2 Series connection

The maximum deviation of the heater current should not exceed \pm 8% (design max. value).

When a small number of tubes with large differences in the heater voltage is used in series connection combined with a series resistor or a series capacitor, the maximum permitted deviation of the heater current may be exceeded.

To avoid this, certain restrictions must be imposed on the composition of the heater chain; the maximum part of the supply voltage that can be eliminated, and the tolerances of the voltage dropper in series with the heaters.

A number of circuits for If = 300 mA will be described in detail below.

Vs = source voltage (mains voltage or mains voltage stepped down via a transformer)

VRS = voltage drop over series resistor

 $V_{\text{ftot.}} = V_{f1} + V_{f2} + V_{f3} + \cdots + V_{fmin.} + \cdots + V_{fmin.} + \cdots$

Vfmin. = lowest individual heater voltage of all tubes in the chain

Rs = series resistor

Voltage source

The following spreads have been taken into account for the source voltage:

- Mains voltage spread $\pm 10\%$ either or not combined with the voltage spread caused by a transformer with a permanent deviation from the nominal value of $\pm 1\%$ and with a spread of $\pm 2\%$ (ordinary, well made transformer).

The following circuits are allowed:

- 8.2.1 Supply directly from a voltage source (V_S = V_{ftot}.)
 - No restrictions.
- 8.2.2 Supply from a voltage source via a 5% series resistor ($V_S = V_{Rs} + V_{ftot}$.)

 a. One single tube: permitted if $\frac{V_{Rs}}{V_{ftot}} \le 2$

 - b. Heater chain consisting of 2 or more tubes:

the maximum permitted ratio $\frac{VRs}{Vfrot}$ can be read from diagram number 1 as follows:

Determine $\frac{V_{f min.}}{V_{f tot}}$ of the heater chain. Draw a vertical line through the corresponding point in the diagram. Draw a horizontal line through the point of intersection of this vertical line with the line which indicates the total number of tubes in the chain. The point of intersection of this horizontal line with the vertical axis gives the maximum permitted ratio between the series resistor and the sum of the heater voltages of all tubes in the chain.

- 8.2.3 Supply from a voltage source via a series diode $(\frac{V_S}{\sqrt{2}} = V_{ftot.})$
 - No restrictions.
- 8.2.4 Supply from a voltage source via a series diode and a series resistor

$$(\frac{V_S}{\sqrt{2}} = V_{ftot.} + V_{Rs})$$

In the above formula Vftot, and VRs are RMS values and the maximum permitted ratio $\frac{V_{Rs}}{V_{f+ot}}$ can be read from diagram number 1 (see 8.2.2).

For calculation of R_S divide the required V_{RS} (RMS) by the nominal heater current: $R_S = \frac{V_{RS}}{0.3}$

Remark to 8.2.3 and 8.2.4:

When series diodes are applied, the D.C. component of the resulting heater voltage should preferably be negative with respect to the cathodes of the tubes.

8.2.5 Supply from a voltage source via a series capacitor

a. One single 300 mA tube; permitted if

 $\frac{V_{ftot.}}{V_{s}}$ \geq 0.50 when 5% paper capacitors are applied.

- b. $\frac{V_{ftot.}}{V_{s}} \ge 0.70$ when 10% metalized polycarbonate capacitors are applied.
- c. Heater chain consisting of 2 tubes or more; permitted if $\frac{V_{ftot.}}{V_{s}}$

 $\frac{V_{ftot.}}{V_{S}}$ \geq 0.6 when 5% paper capacitors are applied.

 $\frac{V_{ftot.}}{V_{s}} \ge 0.8$ when 10% metallized polycarbonate capacitors are applied.

8.3 Stand-by (instant-on circuits)

In order to maintain reliability during life, it is recommended to reduce the heater voltage of the tubes during stand-by operation to 75% of the nominal value.

Note

If other designs for the heater supply circuit are wanted than the configurations described above it is strongly recommended to contact the tube manufacturer.

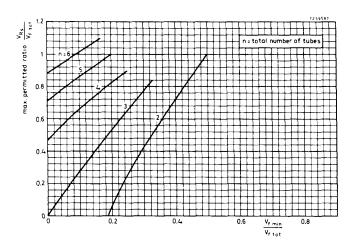


Diagram No. 1

9. HEATER-TO-CATHODE CIRCUIT

The published limiting values of V_{kf} apply to the positive and negative D.C. component of the voltage between the cathode and any of the heater terminals.

The limiting peak value is twice the rated D.C. value with a maximum of 315 V.

In stating these values figures only the risk of breakdown has been considered. No conclusions with respect to hum should be drawn from them.

To minimize the influence of variation and spread in the leakage current between heater and cathode the resistance of the external heater to cathode circuit should not exceed $20~k\Omega$.

However, when the D.C. value of V_{kf} never drops below three times the RMS value of the heater voltage a resistor of maximum 220 $k\Omega$ may be connected between heater and cathode provided that the hum voltage which may develop across the cathode resistor is acceptable for the application considered.

An interruption of the D.C. connection between cathode and earth or heater and earth may introduce heater-cathode breakdown and should be avoided.

10. SUPPRESSOR GRID CIRCUIT

The suppressor grid should normally be connected to the cathode; any series resistance in the suppressor grid lead should not exceed a value of $50~\mathrm{k}\Omega$. The suppressor grid should not be used as a control grid unless specific recommendations are made in the data sheets. Where the suppressor grid is so used, care should be taken not to exceed the maximum screen-grid dissipation. When a tube is connected as a triode, the suppressor grid should be connected directly to the cathode, except where other recommendations are given in the data sheets. If the circuit is such that the suppressor grid is liable to be driven positive, it is recommended to consult the tube manufacturer.

11. CONTROL GRID CIRCUIT

In the interest of low hum and noise the resistance in the control grid circuit should be as low as possible.

The limiting value of the grid resistance given in the data sheets is so chosen that during the tube life the negative grid current which may occur will not result in unacceptable tube operation.

If only the limiting value of the resistance for fixed bias operation is given and stabilizing elements are used in the circuit, this limiting value may be multiplied by the D.C. feedback factor obtained by these stabilizing elements; the maximum limiting value should not exceed 20 $M\Omega_{\star}$

12. CAPACITANCES

All data have been measured according to I.E.C. Publication 100

December 1970

13. PROTECTIVE RESISTORS FOR MAINS RECTIFYING TUBES

To restrict the peak value of cathode current in a mains rectifying tube the ohmic resistance (R_t) in series with the anode should not be less than that specified in the data sheet.

When the anode supply voltage is obtained from a transformer the value of the resistance to be added in each anode lead should be calculated from the following formula:

$$R_t = R_s + n^2 R_p + R_1$$
.

In case of half-wave rectification

 R_t = the required protective resistance

R_s = the ohmic resistance of the secondary coil

n = the transformer ratio

R_p = the ohmic resistance of the primary coil

R₁ = resistance that must be added

In case of full-wave rectification

R_t = the required protective resistance per anode

R_s = ohmic resistance of half the secondary coil

n = transformer ratio between primary and half the secondary coil

R_n = ohmic resistance of the primary coil

 R_1^r = resistance to be added in each anode lead.

When an auto transformer is applied it should be taken into account that the transformer winding is partly short-circuited by the mains.

When a filter input capacitor is applied the power dissipation in R_t is supplemented by the contribution of the ripple current up to three times the value produced by the D.C. component of current.

14. LIFE

Optimum life performance is ensured if the tube is operated according to the published "Operating conditions". Spread and variation of operating conditions should be limited as much as possible.

15. HUM

15.1 When the heater supply is obtained from the mains voltage the cathode current may be modulated by the A.C. mains frequency.

This modulation, resulting in hum, may be caused by capacitive or leakage currents between the heater and the tube electrodes, by the magnetic field of the heater or by external fields.

15.2 The following measures can be taken to reduce hum.

Cathode hum

Keep the A.C. voltage between cathode and heater as small as possible; with series operation insert the most critical tube at the earthed side of the heater chain and with parallel operation connect the electrical centre of the heater to earth.

Do not include the impedance between cathode and heater in an R.F. circuit. If this cannot be avoided and the cathode must be connected to a tapping of a tuned circuit, choose the highest practicable tuning capacitance in order to reduce the influence of possible variations in circuit capacitance. This applies especially to oscillator circuits where variations in the capacitance between cathode and heater may lead to modulation hum.

Decouple the cathode resistance as far as possible.

Where negative feedback is applied, take the non-decoupled part as small as possible.

Control grid hum

Keep the A.C. voltage between cathode and heater as small as possible. Do not use idle socket contacts in the proximity of the control grid contact as anchoring points for joints connected to 50 Hz as this may cause hum due to leakage or capacitance in the tube socket.

Keep the impedance at the mains frequency in the control grid lead as small as possible.

15.3 For tubes mainly intended for use in broadcast receivers the value of $\rm Z_{g_1}$ at mains frequency is so chosen that the hum voltage will be -60 dB (design centre value) with respect to the input voltage for 50 mW output power.

The hum voltage in this case is measured behind a filter, the characteristic, of which agrees with the C.C.I.R. aural sensitivity curve (see graph on next page).

For tubes mainly intended for use in audio equipment the value of Z_{g_1} is so chosen that the level of hum voltage, measured with a filter linear up to 500 Hz, is - 60 dB with respect to the input voltage for maximum output power. To obtain these values the centre of parallel-connected heaters should be earthed whereas with series-connected heaters the value of V_{kf} , permitted in connection with hum, should not be exceeded; when a cathode resistor is used, it should be decoupled by a capacitor of at least $100~\mu F$.

It should be realized that, although the tubes may meet the requirement of a -60 dB hum level, the total hum level of the circuitry stage under consideration may be higher owing to imperfect circuitry (magnetic hum induced by transformers and smoothing chokes; unsatisfactory smoothing of the rectified voltage, etc.).

For several R.F. and I.F. types a curve has been published which shows, as a function of the transconductance, the hum voltage (V_i) on the control-grid which causes a modulation hum of 1%.

The published limiting value of V_{kf} is the maximum permissible value up to which there will be no danger of breakdown between cathode and heater, and it does not give information about the resulting hum level.

December 1970

16. MICROPHONY

Whenever a tube is subjected to vibration, caused by e.g. a loudspeaker, motor, switch etc., some disturbance in the output of the tube occurs. The effect of this disturbance will depend on the individual application. The published data of various tube types make reference to the microphonic sensitivity and this should be noted when a tube is chosen for a specific application.

Where the effects of microphony are found to be objectionable, special steps may have to be taken to reduce the vibration reaching the tube. The chassis itself may show wide variations in amplitude of vibration over its area, due to resonances; therefore favourable location of the tube, or local strengthening of the chassis, may appreciably reduce microphony.

The maximum peak acceleration to which the tube may be subjected under the most unfavourable conditions is 1.5 g at frequencies $< 600 \, \text{Hz}$ and 0.2 g at frequencies $> 600 \, \text{Hz}$. However, tubes should not be subjected to the maximum acceleration at a given frequency for a long period of time. In case the actual acceleration is higher than these values, difficulties with regard to microphony may be expected.

Warning: It should be noted that excessive mechanical vibration may result in the destruction of the internal tube structure.

17. ENVIRONMENTAL CONDITIONS

- 1. <u>Atmospheric pressure</u>. Ratings apply to operation at normal atmospheric pressure at altitudes below 3000 m.
 - It is advised to consult the tube manufacturer if tubes have to be operated at lower pressures.
- Thermal considerations. The bulb and the base temperature are defined as the highest temperature at any place on the bulb or the base. The base temperature should not exceed 165 °C.

Used in practical circuits and under design centre conditions the bulb temperature of a tube should not exceed by more than $30\ ^{\circ}\text{C}$ that temperature which would be attained if the tube were operated at its maximum ratings in free air at a room temperature of $20\ ^{\circ}\text{C}$.

If, for instance, the bulb temperature of a certain type of tube operating in free air at maximum ratings is shown to be 200 °C, it is permissible to use this tube in equipment where the bulb attains a temperature of 230 °C (thus at an excess of 30 °C). In practice this means that the "ambient" temperature in the equipment may rise above room temperature by about twice 30 °C and thus may attain a value of 80 °C.

When a tube runs particularly hot this increase of $30~^{\rm oC}$ is not permissible; the design maximum should then be $250~^{\rm oC}$ unless otherwise stated in the relevant data sheets.

When the maximum permitted base or bulb temperature is exceeded, the tube reliability during life may deteriorate. Cooling should therefore always be adequate; it may be obtained by convection, radiation or conduction. To make it most efficient a free circulation of air should be assured around the tube and the temperature of neighbouring bodies should below. These neighbouring bodies should preferably approach a perfect black body.

The design of screening or retaining devices should also be such that the reflection of heat back to the bulb must be minimized. In some cases it may be necessary to reduce the electrode dissipation.

Heat dissipating shields have the property to reduce the hot-spot temperature at the tube envelope. However, this is generally accompanied by a rise in base temperature whereas also the normal sublimation pattern inside the tube may be drastically disturbed. For this reason extreme care should be exercised when applying these devices.

3. High Voltage insulation. To avoid insulation breakdown due to ionization or tracking at high electrode voltages adequate ventilation is required. High voltage terminals should not have sharp or pointed edges.

December 1970 | 13

18. MOUNTING AND WIRING

- 1. Mounting position. Unless otherwise specified, a tube may be mounted in any position.
- 2. Pins and sockets. Many tube types employ semi-rigid pins.

To ensure that these pins are straight before insertion into the tube socket use may be made of a pin straightening tool. It is recommended both in wired and in printed circuits to use sockets in which the contact springs are reasonably flexible. Too stiff wiring may hold the contacts out of position in such a way that the tube base is damaged upon insertion. To avoid this the use of a wiring jig is recommended. The dimensions of the wiring jig shall b in conformity with the nominal base dimensions specified in this Handbook.

No connections should be made to a pin marked i.c.

The sockets used shall comply with the following:

The insertion and withdrawal forces of sockets shall be checked before any previous gauging or sizing. The sockets shall be capable of accepting and having withdrawn from them the insertion and withdrawal force gauge* within the force limits specified below. These tests shall be made with a test jig.

Socket compatible with small button miniature 7 pin base (IEC 67-I-10a)

max. insertion force 72 N (7.2 kgf)

min. withdrawal force 12 N (1.2 kgf)

Socket compatible with small button noval 9 pin base (IEC 67-I-12a)

max. insertion force 91 N (9.1 kgf)

min. withdrawal force 13.5 N (1.35 kgf)

Socket compatible with small button decal 10 pin base (IEC 67-I-41a)
max. insertion force 91 N (9.1 kgf)

min. withdrawal force 13.5 N (1.35 kgf)

Socket compatible with magnoval base (IEC 67-I-36a)

max. insertion force 91 N (9.1 kgf) min. withdrawal force 13.5 N (1.35 kgf)

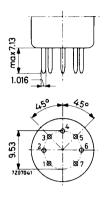
3. Retaining devices. When measures are required to prevent a tube from being shaken out of the socket a retaining device may be used.

Care should then be taken to avoid the maximum permitted bulb temperature being exceeded.

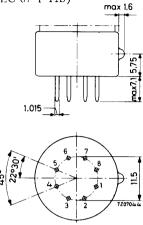
Described in L.E.C. Publication 149.

DIMENSIONS OF BASES

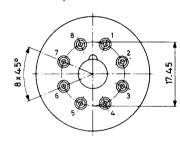
In the outline drawings of bases given below, some main dimensions (in mm) only have been given.

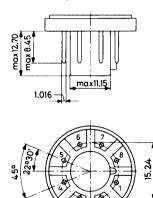

For further details is referred to IEC publication 67.

The page number on which the outline drawing can be found in this publication is therefore given for each base type.

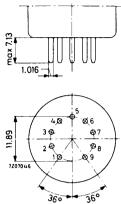

January 1969

l

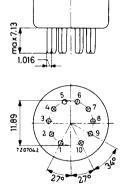

MINIATURE 7-PIN BASE (IEC 67-I-10a)

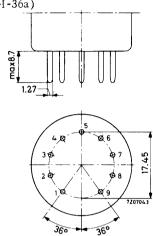

RIMLOCK BASE (IEC 67-I-11b)

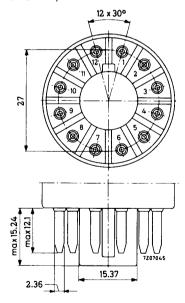
OCTAL BASE (IEC 67-I-5a)



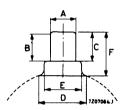
NEO EIGHTAR BASE (IEC 67-I-31a)



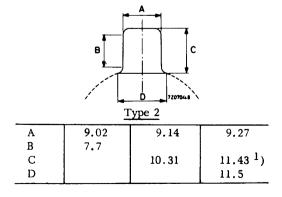

NOVAL BASE (IEC 67-I-12a)


DECAL BASE (IEC 67-I-41a)

MAGNOVAL BASE (IEC 67-I-36a)



DUODECAL BASE (IEC 67-I-17a)


DIMENSIONS OF CAPS

The dimensions for the drawings of top caps have been given in mm. The dimensions A, B and C, which are those necessary to ensure compatibility between cap and corresponding connector are in accordance with IEC publication 67, page 67-III-1 a.

Type 1

ref.	min.	nom.	max.		
A	6.23	6 .3 5	6.47		
В	5.1				
С		7.14	8.89 ¹)		
D			11.5		
E		9.15			
F		10.31	11.43 ¹)		

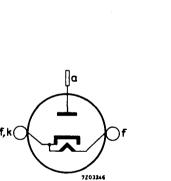
¹⁾ Without solder. On finished article an increase of 0,5 mm is allowed on this dimension for solder.

Receiving Tubes

SINGLE ANODE E.H.T. RECTIFYING TUBE

Single anode high vacuum rectifying tube intended for use in portable T.V. receivers.

HEATING: Indirect; parallel supply


Heater voltage


Heater current

$$\frac{V_f}{I_f} = \frac{1.4 \text{ V}}{550 \text{ mA}}$$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

The tube has flexible leads, which must not be bent nearer than 10 mm to the tube bottom.

The leads should not be soldered nearer than 1.5 mm to the seal.

CAPACITANCE

Anode to all C_a 0.8 pF

TYPICAL CHARACTERISTICS

Anode voltage V_a 100 V Anode current I_a 13 mA

LIMITING VALUES (Design centre rating system, unless otherwise specified)

Anode voltage, negative peak	$-v_{a_p}$	max. 15	kV
Anode voltage, negative peak (abs. max.)	$-v_{a_p}$	max. 18	kV
Anode current, average	Ia	max. 350	μΑ
Anode current, peak	$I_{\mathbf{a}_{\mathbf{D}}}$	max. 40	mA ¹)
Filter input capacitance	$c_{ m filt}$	max. 2000	pF
Heater voltage ($I_a < 200 \mu A$) (abs. max.)	$v_{\mathbf{f}}$	max. 1.6	v
Heater voltage ($I_a > 200 \mu A$) (abs. max.)	v_f	min. 1.3	v

 $^{^{1})}$ Max. duration is 10 % of a line-scanning cycle, but max. 10 $\mu sec.$

SINGLE ANODE E.H.T. RECTIFYING TUBES

High-vacuum single-anode rectifying tubes for high tension in television receivers (E.H.T. supply from the line time base).

The DY86 and DY87 are equivalent except for the DY87 having a chemically treated envelope which avoids flash-over under conditions of high humidity and low atmospheric pressure (45 cm Hg).

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage $\frac{V_f}{I_f}$ 1.4 V

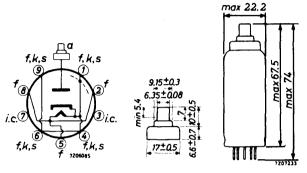
When the heater is to be operated on R.F. or flyback pulses, the heater voltage can be adjusted to 1.4 V e.g. by measurement with a thermocouple.

Tolerances of Vf

a. As E.H.T. rectifier in television receivers

The heater voltage should be adjusted to its nominal value at a D.C. output current of $200\,\mu\text{A}$. At an increase of the D.C. output current to 400 to $600\,\mu\text{A}$ which can incidentically occur during operation the decrease of the heater voltage may amount to max. 15 %. These requirements hold for nominal mains voltage and full horizontal scanning of the picture tube. If the picture width control is such that also the heater voltage of the E.H.T. diode is influenced, the influence of this control must be kept within the 15 % limit indicated above.

b. For all other applications the limits for the heater voltage are as given in the application directions in front of this section.


DIMENSIONS AND CONNECTIONS

Dimensions in mm

 C_a

1.55 pF

Base: NOVAL

REMARKS

Anode to all

- a. Pins 1, 4, 6 and 9 can be used for fixing an anti-corona ring.
- b. Circuit elements having the same potential as the heater (e.g. a series resistor) may be connected to pins 3 and 7. These pins must never be earthed.
- c. If the tube operates at high values of $V_{a\ invp}$ and/or under conditions of high relative humidity or low pressure the metal top-cap should get an insulating cover to avoid corona phenomena.

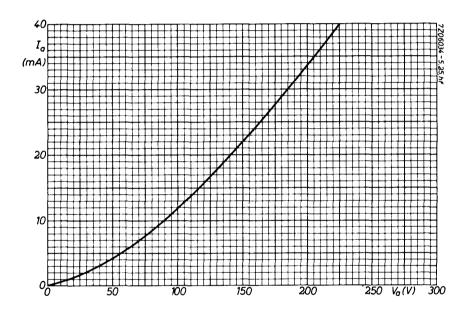
CAPACITANCES (without external shield)

OPERATING CHARACTERISTICS			
Output current	$I_{\mathbf{o}}$	0.15	mA
Output voltage	V_	18	kV

3

LIMITING VALUES (Design centre rating system unless otherwise stated)

Output voltage	v_{o}	max.	18	kV
Peak inverse voltage	V _{a invp}	max.	22	kV 1)
Peak inverse voltage	•			
(Absolute max.)	$v_{a inv_p}$	max.	27	kV ¹)
Peak inverse voltage without current	$V_{a inv_p}(I_o = 0)$	max.	24	kV ¹)
Output current	Io	max.	0.5	mA ²)
Peak output current	I_{a_p}	max.	40	mA ³)
Filter input capacitance	C _{filt}	max.	2000	pF


December 1969

 $^{^{\}rm l)}$ Maximum pulse duration 22 % of a line scanning cycle with a maximum of 18 $\mu{\rm sec.}$

The negative peak anode voltage due to ringing in the line-output transformer must be taken into account. The ratio between this negative peak value and the positive D.C. voltage can be about 1:4.5.

²) During short periods as in television service I_0 = max. 0.8 mA.

³⁾ Maximum pulse duration 10 % of a line scanning cycle with a maximum of 10 $\mu \rm sec$.

E.H.T. RECTIFYING TUBE

High-vacuum single-anode rectifying tube for high tension in television receivers (E.H.T. supply from the line time base)

The DY802 has a chemically treated envelope which avoids flash-over under conditions of high humidity and low atmospheric pressure (45 cm Hg).

HEATING: Indirect by A.C. or D.C.; parallel supply

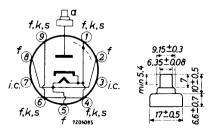
Heater voltage

Heater current

v_f	1.4	V
I_f	600	mΑ

Tolerances of V_f

a. As E.H.T. rectifier in television receivers


The heater voltage should be adjusted to its nominal value at a D.C. output current of 200 μ A. At an increase of the D.C. output current to 400-800 μ A which can incidentically occur during operation the decrease of the heater voltage may amount to max. 15%. These requirements hold for nominal mains voltage and full horizontal scanning of the picture tube. If the picture width control is such that also the heater voltage of the E.H.T. diode is influenced, the influence of this control must be kept within the 15% limit indicated above.

b. For all other applications the limits for the heater voltage are as given in the application directions.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

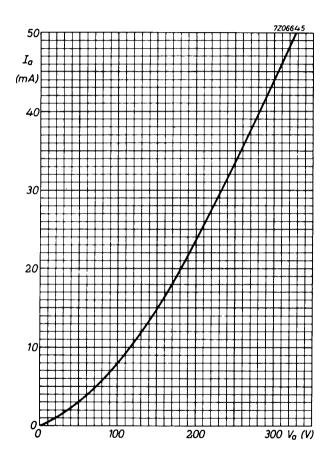
Base: Noval

REMARKS

- a. Pins 1, 4, 6 and 9 can be used for fixing an anti-corona ring.
- b. Circuit elements having the same potential as the heater (e.g. a series resistor) may be connected to pins 3 and 7. These pins must never be earthed.
- c. If the tube operates a high values of V_{ainvp} and/or under conditions of high relative humidity or low pressure the metal top-cap should get an insulating cover to avoid corona phenomena.

CAPACITANCE

Anode to all	$C_{\mathbf{a}}$	1.0	pF
OPERATING CHARACTERISTICS			
Output current	$I_{\mathbf{o}}$	200	μΑ
Output voltage	v_o	20	kV


LIMITING VALUES (Design centre rating system unless otherwise stated)

v_{o}	max.	20	kV
$v_{a_{inv_p}}$	max.	25	kV ¹)
$v_{a_{inv_D}}$	max.	30	kV ¹)
Io	max.	500	μA ²)
I_{op}	max.	50	mA
C _{filt}	max.	3000	pF
	V _{ainvp} I _o I _{op}	$V_{a_{inv_p}}$ max. $V_{a_{inv_p}}$ max. I_{o} max. I_{op} max.	V _{ainv_p} max. 25 V _{ainv_p} max. 30 I _o max. 500 I _{op} max. 50

 $^{^{\}rm l})$ Max. duration 22% of a line scanning cycle and maximum 18 $\mu s.$ The negative peak anode voltage due to ringing in the line-output transformer must be taken into account.

²) During short periods as in TV operation I_0 = max. 800 μA .

3

January 1970

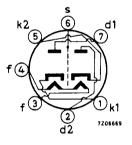
DOUBLE DIODE

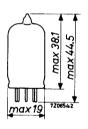
Double diode with separate cathodes.

QUICK REFERENCE DATA			
A.C. supply voltage	V _{tr}	150	V _{RMS}
D.C. current per system	I_{o}	9	mA

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage

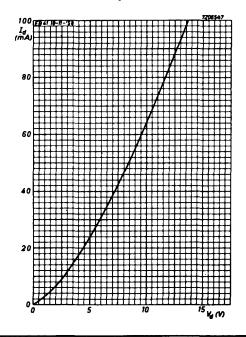

Heater current


v_f	6.3	V
If	300	mA

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Miniature


CAPACITANCES		With external shield	Withou externa shield	
Diode No.1 to all	$C_{\mathbf{d_1}}$	3.0	2.5	pF
Diode No.2 to all	C_{d_2}	3. 0	2.5	pF
Diode No.1 to diode No.2	$C_{d_1d_2}$	max.0.026	max.0.068	pF
Cathode No.1 to all	$C_{\mathbf{k}_1}$	3.4	3.4	pF
Cathode No.2 to all	C_{k_2}	3.4	3.4	pF

LIMITING VALUES Design centre rating system. (Each system)

Diode voltage, negative peak	$-v_{d_p}$	max.	420	v
Diode current	Id	max.	9	mA
Diode current, peak	$I_{\mathbf{d_p}}$	max.	54	mA
Cathode to heater voltage peak (k neg)	V _{kfp} (k neg)	max.	150	V
Cathode to heater voltage, peak (k pos)	V _{kfp} (k pos)	max.	33 0	V
D.C. component	:	max.	200	V
A.C. component		max.	165	VRMS

As half wave rectifier

A.C. supply voltage	v_{tr}	max.	150	v_{RMS}
D.C. current	I_{O}	max.	9	mA
Input capacitor of smoothing filter	C_{filt}	max.	8	μF
Protecting resistance	R _t	min.	3 00	Ω
Cathode to heater voltage, peak (k pos)	V _{kfp} (k pos)	max.	33 0	v
D.C. component		max.	200	V
A.C. component		max.	165	v_{RMS}

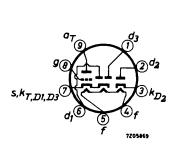
TRIPLE DIODE-TRIODE

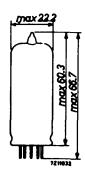
Triple diode-triode intended for F.M. and A.M. signal detection and A.F. signal amplification.

QUICK REFER	RENCE DATA		
Triode section			
Anode current	$I_{\mathbf{a}}$	0.8	mA
Transconductance	S	1.45	mA/V
Amplification factor	μ	70	-

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current


 $\begin{array}{ccc} \underline{V_f} & 6.3 & \underline{V} \\ I_f & 480 & mA \end{array}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

EABC80

CAPACITANCES				
Triode section				
Grid to all except anode	$C_{g(a)}$		1.9	pF
Anode to all except grid	$C_{a(g)}$		1.4	pF
Anode to grid	C_{ag}		2.0	pF
Grid to heater	$C_{f gf}$	max. (0.04	pF
Diode sections				
Diode No.1 to all	c_{d_1}		0.8	pF
Diode No.2 to all	C_{d_2}		4.8	pF
Diode No.3 to all	C_{d_3}		4.8	pF
Cathode (D ₂) to all	C_{kD_2}		4.9	pF
Diode No.1 to heater	C_{d_1f}	max.	0.25	pF
Diode No.3 to heater	c_{d_3f}	max.	0.2	р F
Cathode (D ₂) to heater	$C_{kD_{2}f}$		2.5	pF
Between triode and diode sections				
Anode to diode No.1	c_{ad_1}	max.	0.12	pF
Anode to diode No.3	C_{ad_3}	max.	0.1	pF
Anode to cathode (D ₂)	C_{akD_2}	max.	0.01	pF
Grid to diode No.1	c_{gd_1}	max. (0.07	pF
Grid to diode No.3	$C_{\mathrm{gd_3}}$	max. (0.02	pF
Grid to cathode (D ₂)	c_{gkD_2}	max. 0	.005	pF
TYPICAL CHARACTERISTICS Triode section	n			
Anode voltage	v_a	100	250	V
Grid voltage	v_g	-1	-3	V
Anode current	I _a	0.8	1.0	mA
Transconductance	S	1.45	1.4	mA/V
Amplification factor	μ	70	70	-
Internal resistance		48	50	kΩ

2 January 1970

OPERATING CHARACTERISTICS

Triode section as RC coupled A.F. amplifier

Grid resistor R_g = 10 $M\Omega$

v_b	250	250	2 50	200	200	200	v
R_a	220	100	47	220	100	47	$k\Omega$
Rg'	0.68	0.33	0.15	0.68	0.33	0.15	$M\Omega$
I_a	0.76	1.40	2.20	0.56	1.00	1.60	mA
V_{o}/V	_i 54	47	36	53	44	34	-
d_{tot}	0.2	0.25	0.3	0.3	0.4	0.5	%
d_{tot}	0.25	0.5	0.6	0.4	0.6	0.9	%
□tot							
d _{tot}	0.6	0.8	1.0	0.9	1.0	1.5	%
	0.6	0.8	1.0	0.9	1.0	1.5	
d _{tot}						100	
d _{tot}	I 70	170	170	100	100	100	V kΩ
d _{tot}	1 70 220	170 100	170 47	100 220	100	100	V kΩ MΩ
V _b	170 220 0.68 0.46	170 100 0.33	170 47 0.15	100 220 0.68	100 100 0.33	100 47 0.15	V kΩ MΩ mA
V _b R _a R _g ' I _a	170 220 0.68 0.46	170 100 0.33 0.82	170 47 0.15 1.25	100 220 0.68 0.21	100 100 0.33 0.35	100 47 0.15 0.52	V kΩ MΩ mA
V _b R _a R _g ' I _a	170 220 0.68 0.46	170 100 0.33 0.82	170 47 0.15 1.25	100 220 0.68 0.21	100 100 0.33 0.35	100 47 0.15 0.52 26	V kΩ MΩ mA
V _b R _a R _g I _a V _o /V	170 220 0.68 0.46 i 51	170 100 0.33 0.82 42	170 47 0.15 1.25 32	100 220 0.68 0.21 44	100 100 0.33 0.35 35	100 47 0.15 0.52 26	V kΩ MΩ mA
	R _a R _{g'} I _a V _O /V	R _a 220 R _g ' 0.68 I _a 0.76 V _O /V _i 54 d _{tot} 0.2	R _a 220 100 R _g ' 0.68 0.33 I _a 0.76 1.40 V _o /V _i 54 47 d _{tot} 0.2 0.25	R _a 220 100 47 R _g ' 0.68 0.33 0.15 I _a 0.76 1.40 2.20 V _O /V _i 54 47 36 d _{tot} 0.2 0.25 0.3	R_a 220 100 47 220 R_g ' 0.68 0.33 0.15 0.68 I_a 0.76 1.40 2.20 0.56 V_o/V_i 54 47 36 53 0.3	R _a 220 100 47 220 100 R _g ' 0.68 0.33 0.15 0.68 0.33 I _a 0.76 1.40 2.20 0.56 1.00 V _O /V _i 54 47 36 53 44 d _{tot} 0.2 0.25 0.3 0.3 0.4	R_a 220 100 47 220 100 47 R_g , 0.68 0.33 0.15 0.68 0.33 0.15 I_a 0.76 1.40 2.20 0.56 1.00 1.60 V_o/V_i 54 47 36 53 44 34 I_{tot} 0.2 0.25 0.3 0.3 0.3 0.4 0.5

TYPICAL CHARACTERISTICS Diode sections

Internal resistance diode No.1 Diode voltage V _{d1} = +10 V	$R_{iD_{I}}$	5	kΩ
Internal resistance diode No.2 Diode voltage V _{d2} = +5 V	R_{iD_2}	200	Ω
Internal resistance diode No.3 Diode voltage V _{d3} = +5 V	R_{iD_3}	200	Ω
Ratio between R_{iD_2} and R_{iD_3}	R_{iD_2}/R_{iD_3}	min. 0.67 max. 1.5	

MICROPHONY Triode section

No special precautions against microphony are required in circuits where the input voltage is min. 10~mV for 50~mW output of the output tube at frequencies higher than 800~Hz. At lower frequencies the sensitivity may be increased according to figure 1.

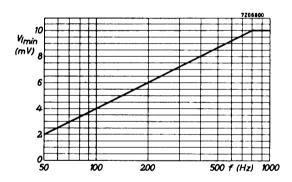


fig. l

5

LIMITING VALUES (Design centre rating system)

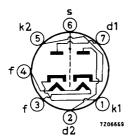
Triode section			
Anode voltage	$V_{\mathbf{a}_{\mathbf{O}}}$	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 1	W
Cathode current	$I_{\mathbf{k}}$	max. 5	m A
Grid resistor	$R_{\mathbf{g}}$	max. 3	$M\Omega$
Grid resistor (grid current bias)	R_{g}	max. 22	МΩ
Cathode to heater voltage	$v_{\mathbf{kf}}$	max. 150	V
Diode sections			
Diode No.1 voltage, peak negative	$-v_{d_{1p}}$	max. 350	v
Diode No.2 voltage, peak negative	$-v_{ m d_{2p}}$	max. 350	v
Diode No.3 voltage, peak negative	-v _{d3p}	max. 350	v
Diode No.1 current:	- P		
D.C. component	$^{\mathrm{I}}$ d $_{\mathrm{l}}$	max. l	m A
peak	$^{\mathrm{I}_{\mathbf{d}}}{}_{\mathrm{lp}}$	max. 6	m A
Diode No.2 current:	r		
D.C. component	$^{\mathrm{I}_{\mathrm{d}}}{}_{2}$	max. 10	m A
peak	${ m I_{d}}_{ m 2p}$	max. 75	m A
Diode No.3 current:	•		
D.C. component	I_{d_3}	max. 10	mA
peak	$I_{ ext{d}_{3p}}$	max. 75	mA
Cathode (D ₂) to heater voltage	$v_{\rm kD_2/f}$	max. 150	v

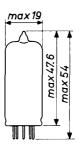
DOUBLE DIODE

Double diode with separate cathodes.

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage


Heater current


v_{f}	6.3	V
$\overline{I_f}$	300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Miniature

For further data please refer to type EAA91

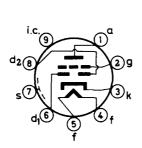
DOUBLE DIODE-TRIODE

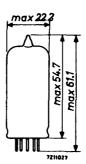
Double diode-triode. Triode intended for use as A.F. amplifier.

QUICK REFERENCE	DATA		
Triode section			
Anode current	$I_{\mathbf{a}}$	1.0	mA
Transconductance	S	1.2	mA/V
Amplification factor	μ	70	_

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current


 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{230 \text{ mA}}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

EBC81

CAPACITANCES			
Triode section			
Grid to all except anode	$C_{g(a)}$	2.3	pF
Anode to all except grid	Ca(g)	2.3	pF
Anode to grid	$C_{\mathbf{ag}}$	1.2	pF
Grid to heater	C_{gf}	max. 0.05	pF
Diode sections			
Diode No.1 to all	C_{d_1}	0.9	pF
Diode No.2 to all	C_{d_2}	0.9	pF
Diode No.1 to diode No.2	$C_{d_1d_2}$	max. 0.2	pF
Diode No.1 to heater	$C_{\mathbf{d_1}\mathbf{f}}$	max. 0.25	pF
Diode No.2 to heater	C_{d_2f}	max. 0.05	pF
Between diode and triode sections	_		
Diode No.1 to grid	C_{d_1g}	max.0.007	pF
Diode No.2 to grid	C_{d_2g}	max.0.007	pF
Diode No.1 to anode	C_{d_1a}	max.0.005	pF
Diode No.2 to anode	C_{d_2a}	max.0.010	pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	V_a	250 V	
Grid voltage	v _g	-3 V	
Anode current	Ia	1.0 mA	
Transconductance	S	1.2 mA	/V
Amplification factor	μ	70 -	
Internal resistance	R _i	58 kΩ	
Equivalent noise resistance (A.F.)	R_{eq}	max.150 kΩ	

January 1970

OPERATING CHARACTERISTICS

Triode section as A.F. a	mplifier, c	ircuit Fig. 1
--------------------------	-------------	---------------

Supply voltage	v_b	250	250	250	250	V
Anode resistor	R_a	0.22	0.1	0.22	0.1	$M\Omega$
Cathode resistor	$R_{\mathbf{k}}$	1.8	1.2	0	0	$\mathbf{k}\Omega$
Grid resistor	$R_{\mathbf{g}}$	1	1	22	22	$M\Omega$
Grid resistor next stage	Rg'	0.68	0.33	0.68	0.33	$M\Omega$
Anode current	$I_{\mathbf{a}}$	0.70	1.15	0.76	1.40	mA
Voltage gain	V_{o}/V_{i}	51	43	52	44	~
Distortion:						
at output voltage $V_0 = 5 V_{RMS}$	d_{tot}	0.55	0.6	0.5	0.7	%
at output voltage V _O = 10 V _{RMS}	d_{tot}	0.9	1.1	0.8	0.9	%

Microphony

No special precautions against microphony are required in circuits where the input voltage is min. 10~mV for 50~mW output of the output tube.

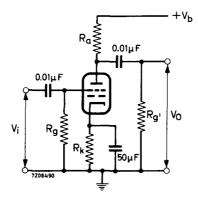


fig.l

EBC81

LIMITING VALUES (Design centre rating system)

Triod	e se	ction

Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 0.5	W
Cathode current	$I_{\mathbf{k}}$	max. 5	mA
Grid resistor	$R_{\mathbf{g}}$	max. 3	МΩ
Cathode to heater voltage	$v_{\mathbf{kf}}$	max. 100	v
Diode sections (each diode)			
Diode voltage, negative peak	$-v_{d_p}$	max. 350	v
Diode current, average	I _d	max. 0.8	mA
peak	I_{d_p}	max. 5	mA
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 100	v

Note

The use of a socket with skirt is advisable to reduce the capacitances between tube elements and external conductors.

January 1972

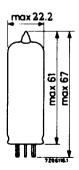
DOUBLE DIODE-PENTODE

Double diode-pentode. Pentode intended for use as R.F., I.F., or A.F. amplifier.

QUICK REFERENCE DA	NTA		
Pentode section			
Variable transconductance			
Anode current	$I_{\mathbf{a}}$	5	mA
Transconductance	S	2.2	mA/V
Amplification	$^{\mu}$ g $_{2}$ g $_{1}$	18	-

HEATING: Indirect by A.C. or D.C.; parallel or series supply.

Heater voltage


Heater current

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

EBF80

CAPACITANCES

Pentode section			
Anode to all except grid No.1	$C_{a(g_1)}$	4.9	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	4.2	pF
Anode to grid No.1	c_{ag_1}	max. 0.0025	pF
Grid No.1 to heater	c_{g_1f}	max. 0.07	pF
Diode section			
Diode No.1 to all	c_{d_1}	2.2	pF
Diode No.2 to all	c_{d_2}	2.35	pF
Diode No.1 to diode No.2	$c_{d_1d_2}$	max. 0.35	pF
Diode No.1 to heater	c_{d_1f}	max. 0.02	pF
Diode No.2 to heater	$c_{d_{2f}}$	max. 0.005	pF
Between diode and pentode sections			
Diode No.1 to grid No.1	$c_{d_1g_1}$	max. 0.0008	pF
Diode No.2 to grid No.1	$c_{d_2d_1}$	max. 0.001	pF
Diode No.1 to anode	C_{d_1a}	max. 0.2	pF
Diode No.2 to anode	C_{d_2a}	max. 0.05	pF

OPERATING CHARACTERISTICS

01-111111111111111111111111111111111111						
Pentode section as R.F. or I.F. amplifier						
Supply voltage		v_b		25	0	v
Anode resistor		R_{a}			0	Ω
Grid No.3 voltage		v_{g}			0	V
Grid No.2 resistor		Rg		9	5	$k\Omega$
Cathode resistor		R_k	4	30	0	Ω
Grid No.1 voltage		v_g		-2	-41.5	V
Grid No.2 voltage		v_{g_2}		85	250	V
Anode current		Ia	-	5	-	mA
Grid No.2 current		I_{g_2}		1.75	_	mA
Transconductance		S		2200	22	μA/V
Internal resistance		R_{i}		1.4	min.10	$M\Omega$
Amplification factor		μ_{g_2}	gı	18	-	-
Equivalent noise resistance		Rec		6.8	-	$k\Omega$
Pentode section as resistance cou	pled A.F	. amplif	ier, c	ircuit f	ig.l.	
Supply voltage	v_b	250	250	250	250	V
Anode resistor	R_a	0.22	0.1	0.22	0.1	$M\Omega$
Grid No.2 resistor	R_{g_2}	0.82	0.39	1.0	0.47	$M\Omega$
Grid No.1 resistor	R_{g_1}	1	1	10	10	$\mathbf{M}\Omega$
Cathode resistor	$R_{\mathbf{k}}$	1800	1000	0	0	Ω
Grid No.1 resistor next stage	Rg.	0.68	0.33	0.68	0.33	$M\Omega$
Anode current	I_a	0.75	1.5	0.75	1.5	mA
Grid No.2 current	I_{g_2}	0.30	0.53	0.25	0.50	mA
Voltage gain	v_{o}/v_{i}	110	80	160	110	-
Distortion:						
at output voltage V_0 = 3 V_{RMS}	d_{tot}	0.8	0.9	0.8	0.8	%
at output voltage V_0 = 5 V_{RMS}	d_{tot}	1.3	1.5	1.4	1.4	%
at output voltage V_0 = 8 V_{RMS}	d_{tot}	2.0	2.2	2.1	2.1	%

OPERATING CHARACTERISTICS (continued)

Pentode section, triode connected (g2	connected to anode)	as resistance coupled
A.F. amplifier.		

;	Supply voltage	v_b	250	250	250	250	v
	Anode resistor	R_a	0.1	0.047	0.1	0.047	МΩ
(Grid No.1 resistor	R_{g_1}	1	1	10	10	$M\Omega$
(Cathode resistor	$R_{\mathbf{k}}$	820	560	0	0	Ω
(Grid No.1 resistor next stage	Rg'	0.33	0.15	0.33	0.15	$M\Omega$
	Anode current	I _a	2.08	4.10	2.16	4.50	mA
	Voltage gain	v_o/v_i	14	13	15	15	-
1	Distortion:						
	at output voltage $V_0 = 3 V_{RMS}$	d_{tot}	1.6	1.3	2.0	1.7	%
	at output voltage $V_0 = 5 V_{RMS}$	d_{tot}	2.5	2.0	3.1	2.7	%
	at output voltage $V_0 = 8 V_{RMS}$	d_{tot}	4.3	2.9	4.8	4.1	%

LIMITING VALUES (Design centre rating system)

Pentode section

Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	300	v
Anode dissipation	W_a	max.	1.5	W
Grid No.2 voltage	$v_{g_{2_o}}$	max.	550	v
at anode current $I_a = max. 2.5 \text{ mA}$	v_{g_2}	max.	300	V
at anode current I _a = 5 mA	v_{g_2}	max.	125	V
Grid No.2 dissipation	w_{g_2}	max.	0.3	W
Cathode current	$I_{\mathbf{k}}$	max.	10	mA
Grid resistor, automatic bias	R_{g_1}	max.	3	$\mathbf{M}\Omega$
Grid resistor, grid current bias	R_{g_1}	max.	22	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	100	v

Microphony

No special precautions against microphony are required in circuits where the input voltage is min. 25 mV for an output of 50 mW of the output tube.

January 1969

LIMITING VALUES (continued)

Diode section

Diode No.1 voltage, negative peak	$-V_{d_p}$	max. 3	50 V	
Diode No.2 voltage, negative peak	$-v_{d_p}$	max. 3	50 V	
Diode No.1 current	I _d 1	max. 0	.8 m	Α
Diode No.2 current	I_{d_2}	max. 0	.8 m	ιA
Diode No.1 current, peak	$I_{d_{p}}$	max.	5 m	Α
Diode No.2 current, peak	I _{d2p}	max.	5 m	Α
Cathode to heater voltage	v_{kf}	max. l	00 V	

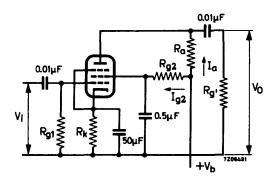


fig.l

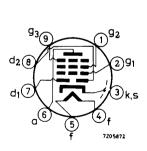
DOUBLE DIODE - PENTODE

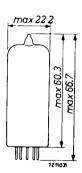
Double diode-pentode. Pentode intended for use as R.F. or I.F. amplifier.

QUICK REFERENCE DATA					
Pentode section	-				
Variable transconductance					
Anode current	$I_{\mathbf{a}}$	9	mA		
Transconductance	S	4.5	mA/V		
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	20			

HEATING: Indirect by A.C. or D.C.; parallel or series supply

Heater voltage


Heater current


 $\frac{V_{f}}{I_{f}} \quad \frac{6.3 \quad V}{300 \quad mA}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

EBF89

CAPACITANCES

Pentode section					
Anode to all except grid No.1	$C_{a(g_1)}$		5.2	pF	
Grid No.1 to all except anode	$C_{g_1(a)}$		5.0	pF	
Anode to grid No.1	c_{ag_1}	max. 0	.0025	pF	
Grid No.1 to heater	c_{g_1f}	max.	0.05	pF	
Diode sections					
Diode No.1 to all	C_{d_1}		2.5	pF	
Diode No.2 to all	$c_{\mathbf{d_2}}$		2.5	pF	
Diode No.1 to diode No.2	$C_{\mathbf{d_1d_2}}$	max.	0.25	pF	
Diode No.1 to heater	$C_{\mathbf{d_1}\mathbf{f}}$	max.	0.015	pF	
Diode No. 2 to heater	C_{d_2f}	max.	0.003	pF	
Between diode and pentode sections					
Diode No.1 to grid No.1	$C_{\mathbf{d_1g_1}}$	max. 0	.0008	pF	
Diode No.2 to grid No.1	$^{\mathrm{C}_{\mathbf{d}_{2}\mathbf{g}_{1}}}$	max.	0.001	pF	
Diode No.1 to anode	$C_{\mathbf{d_{1}a}}$	max.	0.15	pF	
Diode No.2 to anode	C_{d_2a}	max.	0.025	pF	

TYPICAL CHARACTERISTICS

Pentode section						
Anode voltage	v_a	250	250	200	170	V
Grid No. 2 voltage	v_{g_2}	100	80	100	100	v
Grid No.3 voltage	${ m v_{g_3}}$	0	0	0	0	V
Grid No.1 voltage	v_{g_1}	-2	-1 ¹)	-1.5	-1 ¹)	V
Anode current	I_a	9	9	11	12	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	2.7	2.7	3.3	4	mA
Transconductance	S	3.8	4.5	4.5	5	mA/V
Amplification factor	$\mu_{g_2g_1}$	20	20	20	20	-

 $1.0 \quad 0.9 \quad 0.6 \quad 0.4 \quad M\Omega$

OPERATING CHARACTERISTICS

Internal resistance

 R_i

Pentode section as R.F. or I.F. amplifier								
Supply voltage	v_b	2	50	2	00	25	0	V
Anode resistor	R_a		0		0		0	Ω
Grid No.3 voltage	v_{g_3}		0		0		0	V
Grid No.2 resistor	R_{g_2}		56		3 0	6	2	$\mathbf{k}\Omega$
Grid No.1 voltage	v_{g_1}	-2.0	-20	-1.5	-2 0	-1 ¹)	-20	v
Anode current	I_a	9	-	11	-	9	-	mA
Grid No.2 current	I_{g_2}	2.7	-	3.3	-	2.7	-	mA
Transconductance	s	3.8	0.2	4.5	0.12	4.5	0.2	mA/V
Internal resistance	R_i	1.0	-	0.6	-	0.9	-	МΩ

 $^{^{1})\,\}text{To}$ avoid grid No.1 current the negative grid No.1 voltage should be min. 1.5 V.

LIMITING VALUES (Design centre rating system)

Pentode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	V 1)
Anode dissipation	w_a	max. 2.25	W
Grid No.2 voltage	$v_{g_{2o}}$	max. 550	V
Grid No.2 voltage			
at anode current I_a max. 4 mA	$v_{\mathbf{g}_2}$	max. 300	V ¹)
at anode current Ia min. 8 mA	v_{g_2}	max. 125	V
Grid No.2 dissipation	w_{g}_2	max. 0.45	W
Cathode current	$^{ m I}{f k}$	max. 16.5	mA
Grid No.1 resistor	$^{\mathrm{R}}$ g $_{\mathrm{1}}$	max. 3	$M\Omega$
Grid No.3 resistor	$^{\mathrm{R}}\mathbf{g_{3}}$	max. 10	kΩ
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 100	v
Diode sections (each diode)			
Diode voltage, negative peak	$-v_{d_p}$	max. 200	v
Diode current, average	I _d	max. 0.8	mA
peak	$^{ m l_{d_p}}$	max. 5	mA
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 100	v

 $^{^{\}mathrm{l}}$) With supply from a storage battery and vibrator the max. voltage is 250 V.

U.H.F. TRIODE

Triode intended for use as grounded grid U.H.F. amplifier, oscillator or mixer for bands IV and V.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

 $\frac{V_f}{I_f}$ $\frac{6.3}{200}$ $\frac{V}{mA}$

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage, (k pos)

V_{kf} (k pos)

max. 100 V

(k neg)

Vkf (k neg)

max. 50 V

For further data and curves of this type please refer to PC86

6.3 V

 $v_{\mathbf{f}}$

U.H.F. TRIODE

Triode intended for use as grounded grid U.H.F. amplifier for bands IV and V.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current I_f 165 mA

For further data and curves of this type please refer to PC88

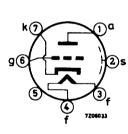
R.F. TRIODE

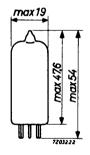
Triode intended for use as oscillator, mixer or amplifier in F.M.- and television receivers.

QUICK REFEREN	NCE DATA		
Anode current	Ia	10	mA
Transconductance	S	5.5	mA/V
Amplification factor	μ	60	

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage


Heater current


$\frac{\mathbf{v_f}}{\mathbf{v_f}}$	6.3	
I _f	150	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Miniature

CAPACITANCES

Grid to all except anode	$C_{g(a)}$	2.6	pF
Anode to all except grid	Ca(g)	0.55	pF
Anode to grid	C_{ag}	1.6	pF
Anode to cathode	C_{ak}	0.24	pF
Cathode to heater	$C_{\mathbf{kf}}$	2.2	pF
Grid to heater	$C_{\mathbf{gf}}$	max. 0.15	pF
Anode to grid + heater	C _{a/gf}	1.8	pF
Cathode to grid + heater	C _{k/gf}	4.5	pF

TYDICAL	CHARACTERISTICS	AND OPED ATING	COMPTTIONS
ITPICAL	CHARACIERISTICS	AND OPERATING	CONDITIONS

Anode voltage	v_a	100	170	200	250	v
Grid voltage	v_g	-1.0	-1.0	-1.0	-2.0	V
Anode current	Ia	3.0	8.5	11.5	10	mA
Transconductance	S	3.75	5.9	6.7	5.5	mA/V
Amplification factor	μ	62	66	70	60	
Internal resistance	Ri	16.5	11	10.5	11	kΩ

LIMITING VALUES (Design centre rating system)

Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	300	V
Anode dissipation	w_a	max.	2.5	W
Cathode current	$I_{\mathbf{k}}$	max.	15	mA
Grid voltage	-Vg	max.	50	V
Grid resistor (automatic bias)	R_{g}	max.	1	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	100	V

For curves please refer to type ECC81

V.H.F. TRIODE

Triode intended for use as R.F. amplifier in V.H.F. television tuners.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{180 \text{ mA}}$

For further data and curves of this type please refer to type PC900

R.F. DOUBLE TRIODE

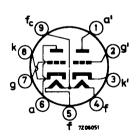
Double triode intended for use as oscillator, mixer or amplifier in television receivers.

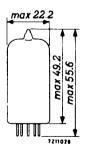
QUICK REFERENCE (each unit)	DATA		
Anode current	Ia	10	m A
Transconductance	S	5.5	mA/V
Amplification factor	μ	60	-

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage Heater current $\frac{V_f}{I_f}$ 6.3

12.6 V 150¹) mA

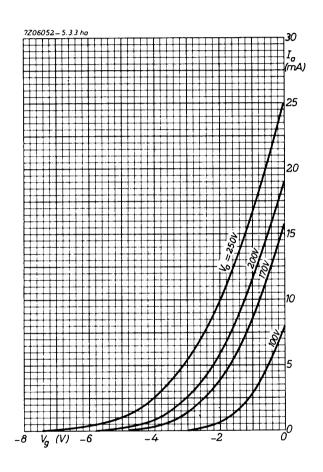

pins 9-(4+5)

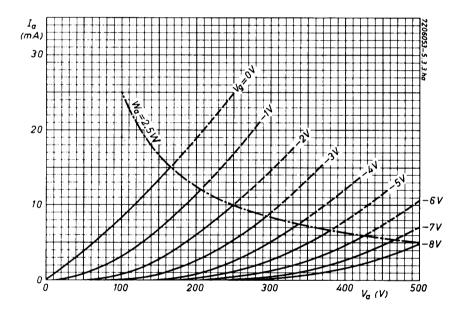

pins 4-5

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval




¹⁾ In case of series supply a current limiting device must be inserted in the heater circuit for limiting the current when switching on.

CAPACITANCES						
Grid to all except anode		C_{g}	(a)		2.3	pF
		$C_{\mathbf{g}}$	'(a')		2.3	pF
Anode to all except grid		Ca			0.45	pF
			'(g')		0.35	pF
Anode to grid		$C_{a_{\xi}}$			1.6 1.6	pF pF
Anode to cathode		C _a · C _{al}	U		0.20	рF
Anode to cathode		Ca'	-		0.20	pF
Cathode to heater		Cki	 F		2.5	pF
		C _k '	-		2.5	pF
Cathode to grid + heater		$C_{\mathbf{k}}$	/g+f		4.7	pF
		$C_{\mathbf{k}}$	'/g ' +f		4.7	pF
Anode to grid + heater			/g+f		1.9	pF
			'/g'+f		1.8	pF
Grid to heater		C_{gi}		max.	0.17	pF
		$C_{g'}$		max.	0.17	pF
Anode to anode		C_{aa}	a '	max.	0.4	pF
Grid to grid		c_{gg}	g '	max.	0.005	pF
Anode to grid other unit		$C_{a_{\ell}}$	g '	max.	0.07	pF
Grid to anode other unit		C_{ga}	a '	max.	0.04	pF
TYPICAL CHARACTERISTICS A	ND OPE	RATING	COND	TIONS	(each t	ınit)
Anode voltage	v_a	100	170	200	250	v
Grid voltage	v_g	-1.0	-1.0	-1.0	-2.0	V
Anode current	I_a	3.0	8.5	11.5	10	mA
Transconductance	S	3.75	5.9	6.7	5.5	mA/V
Amplification factor	μ	62	66	70	60	
Internal resistance	R_i	16.5	11	10.5	11	$k\Omega$
LIMITING VALUES (Design cen	tre ratin	g systen	n) (each	unit)		
Anode voltage			v_{a_0}	max.	550	V
			v_a	max.	300	V
Anode dissipation			w_a	max.	2.5	W
Cathode current			I_k	max.	15	mA
Grid voltage			v_g	max.	50	V
Grid resistor (automatic bias)			R_g	max.	1	$M\Omega$
Cathode to heater voltage			v_{kf}	max.	90	V

3

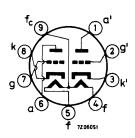
January 1969

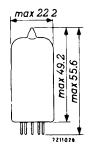
A.F. DOUBLE TRIODE

Double triode intended for use as A.F. amplifier.

QUICK REFER (each			
Anode current	I _a I	0.5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	17	-

HEATING: Indirect by A.C. or D.C.; series or parallel supply


Heater voltage
Heater current


v_f	6.3	12.6	V	
If	300	150	mA	
	nins 9-(4+5)	pins 4-5		

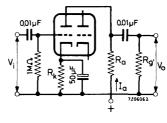
DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

REMARK

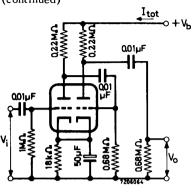
With V_f applied to pins 4+5 and 9 and the centre tap of the heater transformer connected to earth, the more favourable triode section of the tube with regard to hum is the section connected to pins 6, 7 and 8.


CAPACITANCES				
Grid to all except anode	Cg(a)		1.8	pF
	Cg'(a')		1.8	pF
Anode to all except grid	$C_{a(g)}$		0.37	pF
	$C_{a'(g')}$		0.25	pF
Anode to grid	$C_{\mathbf{ag}}$		1.5	pF
	Ca'g'		1.5	pF
Grid to heater	C_{gf}	max.	0.135	pF
	Cg'f	max.	0.135	pF
Anode to anode	Caa'	max.	1.1	pF
Anode to grid other unit	Cag'	max.	0.11	pF
Grid to anode other unit	Cga'	max.	0.06	pF
Grid to grid	Cgg'	max.	0.010	pF
TYPICAL CHARACTERISTICS				
Anode voltage	V_a	100	250	v
Grid voltage	v_g	0	-8.5	V
Anode current	Ia	11.8	10.5	mA
Transconductance	S	3.1	2.2	mA/V
Amplification factor	μ	19.5	17	-

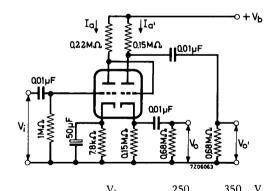
Internal resistance

 R_i 6.25 7.7 $k\Omega$

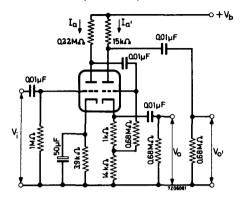
OPERATING CHARACTERISTICS


As A.F. amplifier, one unit

			8		7		1a		
			0			4	7206062		
Supply voltage	v_b	100	150	200	250	300	350	400	v
Anode resistor	R_a	47	47	47	47	47	47	47	$\mathbf{k}\Omega$
Grid resistor									
next stage	R_{g} '	150	150	150	150	150	150	150	$k\Omega$
Cathode resistor	R_k	1.2	1.2	1.2	1.2	1.2	1.2	1.2	$\mathbf{k}\Omega$
Anode current	I_a	1.20	1.82	2.41	3.02	3.65	4.30	5.00	mA
Voltage gain	V_{o}/V_{i}	13.5	13.5	13.5	13.5	13.5	13.5	13.5	-
Output voltage $(I_{\alpha} = 0.3 \mu A)$	v _o	11	18	26	34	43	51	59	v_{RMS}
Total distortion	d_{tot}	5.6	6.1	6.3	6.4	6.5	6.6	6.7	%
Supply voltage	V _b	100	150	200	250	300	350	400	V
Anode resistor	R_a	100	100	100	100	100	100	100	$\mathbf{k}\Omega$
Grid resistor next stage	R _g ,	330	330	330	330	330	330	330	kΩ
Cathode resistor	R _k	2.2	2.2	2.2	2.2	2.2	2.2	2.2	kΩ
Anode current	Ia	0.66	0.98	1.30	1.63	1.97	2.30	2.62	mA
Voltage gain	V _o /V _i	14	14	14	14	14	14	14	-
Output voltage $(I_g = 0.3 \mu A)$	v_{o}	10	17	25	32	41	49	57	v _{RMS}
Total distortion	d_{tot}	4.8	5.6	5.8	5.9	6.0	6.1	6.2	
Supply voltage	v _b	100	150	200	250	300	350	400	V
Anode resistor	R_a	220	220	220	220	220	220	220	$\mathbf{k}\Omega$
Grid resistor next stage	Rg'	680	680	680	680	680	680	680	kΩ
Cathode resistor	$R_{\mathbf{k}}$	3.9	3.9	3.9	3.9	3.9	3.9	3.9	$\mathbf{k}\Omega$
Anode current	I_a	0.33	0.50	0.66	0.82	0.98	1.16	1.31	mA
Voltage gain	v_o/v_i	14.5	14.5	14.5	14.5	14.5	14.5	14.5	-
Output voltage $(I_g = 0.3 \mu A)$	v _o	8	15	22	28	36	43	50	V _{RMS}
Total distortion	d_{tot}	4.0	4.4	4.7	4.8	4.9	5.0	5.1	%


OPERATING CHARACTERISTICS (continued)

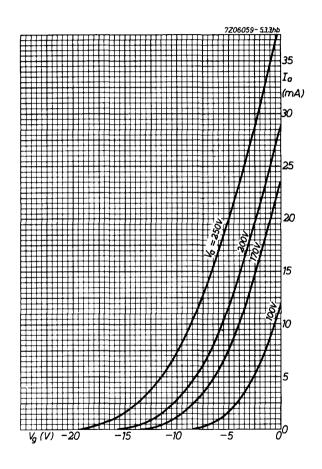
Two sections in cascade


Supply voltage	v_b	250	350	V
Total current	I_{tot}	1.66	2.33	mA
Voltage gain	V_{o}/V_{i}	178	178	-
Output voltage ($I_g = 0.3 \mu A$)	v_{o}	15	25	v_{RMS}
Total distortion	dtot	2	2	%

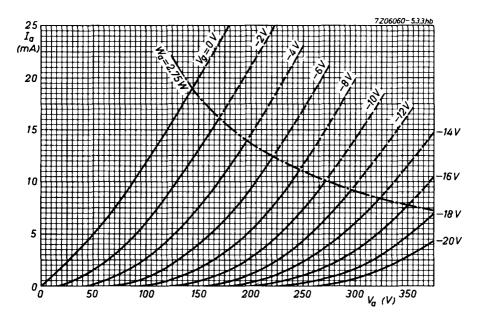
As phase inverter

Supply voltage	v_b	250	350	V
Anode current	I_a	0.70	1.00	mA
Anode current	I _a '	0.68	0.93	mA
Voltage gain	v_o/v_i	11	11	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	15	24	v_{RMS}
Total distortion	d_{tot}	1	1	%

OPERATING CHARACTERISTICS (continued)


Supply voltage	v_b	250	350	V
Anode current	$I_{\mathbf{a}}$	0.82	1.16	mA
Anode current	I _a •	4.5	6.3	mA
Voltage gain	v_o/v_i	11	11	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	13	20	v_{RMS}
Total distortion	d_{tot}	1.5	1.5	%

LIMITING VALUES (Design centre rating system) (each unit)


Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	300	v
Anode dissipation	w_a	max.	2.75	W
Cathode current	I_k	max.	20	mA
Grid voltage	-V _g	max.	100	V
, peak	$-v_{gp}$	max.	250	v
Grid resistor (automatic bias)	R_{g}	max.	1	$\mathbf{M}\Omega$
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	180	V
Cathode to heater circuit resistance in phase splitting circuits	Rkf	max.	150	kΩ

REMARK

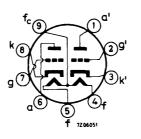
This tube can be used without precautions against microphony in equipment in which $V_i \geq 10~\text{mV}$ for an output of 50 mW of the output tube (or $V_i \geq 100~\text{mV}$ for 5 W output) provided that the average acceleration of the tube is not greater than indicated in the section "Microphonic effect" of the "Application Directions". When the centre tap of the heater transformer has been earthed, $R_g \leq 0.3~\text{M}\Omega$ and R_k is sufficiently decoupled, the disturbance level for hum and noise will then be better than 60 dB below 100 mV.

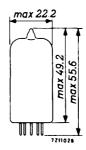
7

A.F. DOUBLE TRIODE

Double triode intended for use as A.F. amplifier.

QUICK REFERE (each t			
Anode current	I _a	1.2	m A
Transconductance	S	1.6	mA/V
Amplification factor	μ	100	-


HEATING: Indirect by A.C. or D.C.; series or parallel supply


Heater voltage	$\underline{\mathbf{v_f}}$	6.3		12.6	<u>v</u>
Heater current	$\underline{\mathrm{I}}_{\mathbf{f}}$	300		150	mA
	pins	9-(4+5)	pins	4-5	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

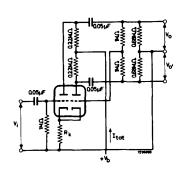
Base: Noval

REMARK

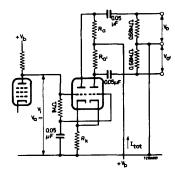
With V_f applied to pins 9 and 4+5 and the centre tap of the heater transformer connected to earth, the triode section connected to pins 6, 7 and 8 is the more favourable section of the tube with respect to hum.

1

CAPACITANCES				
Grid to all except anode	Cg	(a)	1.	.6 pF
	C_{g}	'(a')	1.	.6 pF
Anode to all except grid	C_a	(g)	0.3	33 p F
	Ca	'(g')	0.2	23 pF
Anode to grid	C_a	g	1.	.6 pF
	Ca	'g'	1.	.6 pF
Grid to heater	C_g	f	max. 0.1	15 p F
	C_g	'f	max. 0.1	15 p F
Anode to anode	Ca	a'	max. 1.	.2 pF
Anode to grid other unit	C_a	g'	max. 0.1	ll pF
Grid to anode other unit	C_{g}	a'	max. 0.	l pF
Grid to grid	C_g	g'	max. 0.0	01 pF
TYPICAL CHARACTERISTICS				
Anode voltage	v_a	100	250	v
Grid voltage	v_g	-1.0	-2.0	v
Anode current	I_a	0.5	1.2	mA
Transconductance	S	1.25	1.6	mA/V
Amplification factor	μ	100	100	-


Internal resistance

 R_i 80 62.5 $k\Omega$

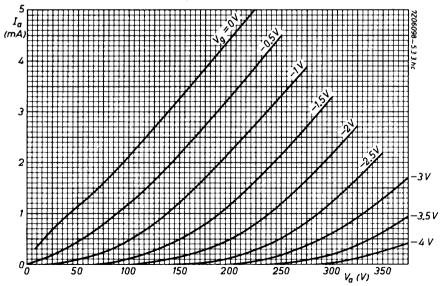

OPERATING CHARACTERISTICS

OPERATING CHARACTERIST As A.F. amplifier, one unit	rics -	v _i	R _k			r	} V₀
Supply voltage	v_b	200	250	300	350	400	v
Anode resistor	R_a	47	47	47	47	47	$k\Omega$
Grid resistor next stage	R _{g'}	150	150	150	150	150	kΩ
Cathode resistor	R_k	1500	1200	1000	820	680	Ω
Anode current	Ia	0.86	1.18	1.55	1.98	2.45	mA
Voltage gain	v_o/v_i	34	37.5	40	42.5	44	-
Output voltage ($I_g = 0.3 \mu A$)	v_{o}	18	23	26	33	37	v_{RMS}
Total distortion	d_{tot}	8.5	7.0	5.0	4.4	3.6	%
Supply voltage	V _b	200	250	300	350	400	V
Anode resistor	R_a	100	100	100	100	100	$k\Omega$
Grid resistor next stage	Rg'	330	330	330	330	330	kΩ
Cathode resistor	R_k	1800	1500	1200	1000	820	Ω
Anode current	I_a	0.65	0.86	1.11	1.40	1.72	m A
Voltage gain	v_o/v_i	50	54.5	5 7	61	63	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	20	26	30	36	38	v_{RMS}
Total distortion	d_{tot}	4.8	3.9	2.7	2.2	1.7	%
Supply voltage	v_b	200	250	300	350	400	V
Anode resistor	R_a	220	220	220	220	220	kΩ
Grid resistor next stage	Rg'	680	680	680	680	680	$k\Omega$
Cathode resistor	R_k	3.3	2.7	2.2	1.5	1.2	kΩ
Anode current	$I_{\mathbf{a}}$	0.36	0.48	0.63	0.85	1.02	mA
Voltage gain	v_o/v_i	56	66.5	72	75. 5	76.5	-
Output voltage ($I_g = 0.3 \mu A$)	v_{o}	24	28	36	37	38	v_{RMS}
Total distortion	d_{tot}	4.6	3.4	2.6	1.6	1.1	%

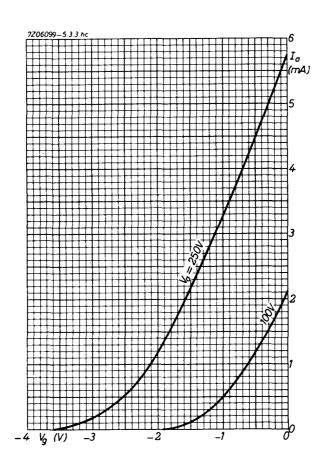
As phase inverter

Supply voltage	$v_{\mathbf{b}}$	250	350	V
Cathode resistor	$R_{\mathbf{k}}$	1200	820	Ω
Total current	I _{tot}	1.08	1.70	m A
Voltage gain	v_o/v_i	58	62	-
Output voltage ($I_g = 0.3 \mu A$)	v_o	35	45	v_{RMS}
Total distortion	$^{ m d}_{ m tot}$	5.5	3.5	%

Supply voltage	${ m v_b}$	250	350	V
Anode voltage	v_a	6 5	90	v
Total current	I_{tot}	1	1.2	mA
Cathode resistor	R_k	68	82	kΩ
Anode resistor	R_a	100	150	kΩ
Anode resistor	R _{a'}	100	150	$k\Omega$
Voltage gain	v_o/v_i	25	27	-
Output voltage ($I_g = 0.3 \mu A$)	v_{o}	20	35	v_{RMS}
Total distortion	d_{tot}	1.8	1.8	%


LIMITING VALUES (Desi	gn centre rating system)
-----------------------	--------------------------

Anode voltage	v_{a_0}	max. 550	V
	v_a	max. 300	v
Anode dissipation	w_a	max. 1	W
Cathode current	$I_{\mathbf{k}}$	max. 8	mA
Grid voltage	-v _g	max. 50	V
Grid resistor (automatic bias)	$R_{\mathbf{g}}$	max. 2	МΩ
Cathode to heater voltage	$v_{\mathbf{kf}}$	max. 180	v
Cathode to heater circuit resistance in phase splitting circuits	$R_{\mathbf{kf}}$	max. 150	kΩ


REMARK

Microphony and hum

This tube can be used without special precautions against microphony in equipment in which the input voltage $V_i \geq 5$ mV for an output of 50 mW (or 50 mV for an output of 5 W) provided the average acceleration of the tube is not greater than indicated in the section "Microphonic effect" of the "Application directions". In this case the disturbance level for hum and noise will be better than -60 dB when the centre tap of the heater has been earthed, $R_g \leq 0.5 \ \text{M}\Omega$ and the cathode resistor is sufficiently decoupled.

January 1970 | 5

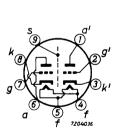
R.F. DOUBLE TRIODE

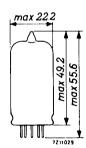
Double triode intended for use as R.F. and A.F. amplifier and self oscillating mixer.

QUICK REFERE (each u			
Anode current	Ia	10	m A
Transconductance	S	6.1	mA/V
Amplification factor	μ	55	-

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current


v_{f}	6.3	V	
If	435	mA	

Dimensions in mm

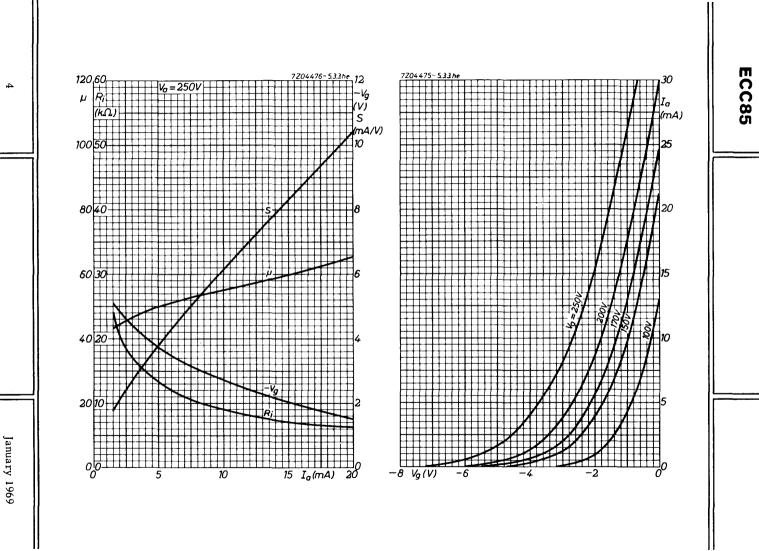
DIMENSIONS AND CONNECTIONS

Base: Noval

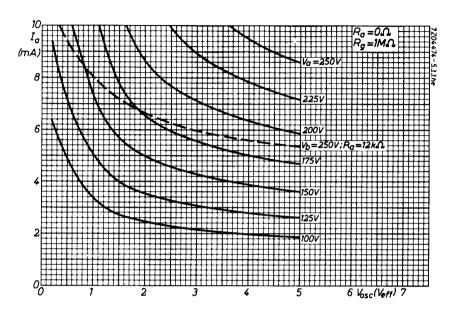
CAPACITANCES			
Anode to grid	C_{ag}	1.5	pF
	Ca'g'	1.5	pF
Anode to cathode	C_{ak}	0.17	pF
	Ca'k'	0.18	pF
Anode to cathode + heater + screen	$C_{a/kfs}$	1.2	pF
	Ca'/k'fs	1.2	pF
Grid to cathode + heater + screen	C _{g/kfs}	3.1	pF
	Cg'/k'fs	3.1	pF
Anode to cathode + heater + screen	C _{a/kfs}	1.8	pF
with external screen of 22.5 mm diam.	Ca'/k'fs	1.8	pF
Anode to anode	C _{aa'}	max. 0.04	pF
Grid to grid	Cgg'	max. 0.003	pF
Anode to grid other unit	Cag'	max. 0.008	p F
Grid to anode other unit	Cga'	max. 0.008	р F
Anode to anode with external			
screen of 22.5 mm diam.	C _{aa'}	max. 0.008	pF
Anode to cathode other unit	C _{ak} •	max. 0.008	рF
Grid to cathode other unit	C _{gk'}	max. 0.003	pF
Cathode to anode other unit	C _{ka'}	max. 0.008	pF
Cathode to grid other unit	C _{kg} '	max. 0.003	pF
TYPICAL CHARACTERISTICS			
Anode voltage	V_a	250	v
Grid voltage	v_g	-2.7	v
Anode current	I _a	10	m A
Transconductance	S	6.1	mA/V

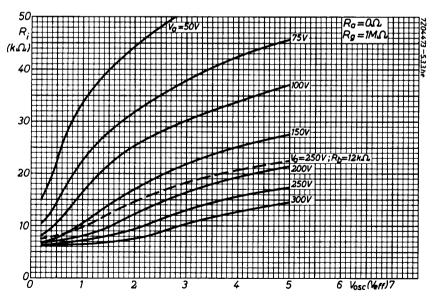
REMARK

Microphony

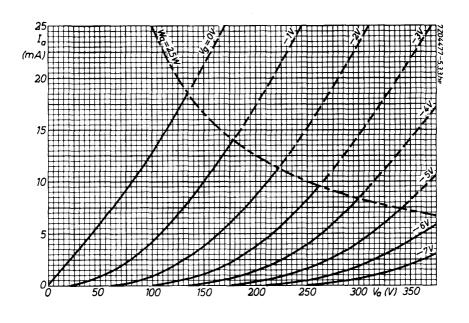

Amplification factor

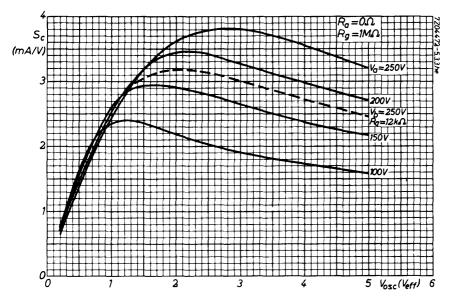
This tube can be used without special precautions against microphony in A.F. applications in which the input voltage $V_i \geq 5~\text{mV}$ for an output of 50 mW (or 50 mV for an output of 5 W) provided the peak acceleration of the tube is not greater than indicated in the section "Microphony" of the "General Operational Recommendations".


55


OPERATING CHARACTERISTICS

OPERATING CHARACTERISTICS			
As R.F. amplifier			
Supply voltage	v_b	250	v
Anode resistor	R_a	1.8	kΩ
Anode voltage	V_a	230	v
Cathode resistor	$R_{\mathbf{k}}$	200	Ω
Grid voltage	v_g	-2.2	v
Anode current	Ia	10.8	m A
Transconductance	S	6.8	mA/V
Internal resistance	R_{i}	8.3	kΩ
Grid input resistance (f = 100 MHz)	$r_{\mathbf{g}}$	4.7	kΩ
Equivalent noise resistance	R _{eq}	580	Ω
As self-oscillating mixer	-		
Supply voltage	v_b	250	v
Anode resistor	$R_{\mathbf{a}}$	12	$k\Omega$
Grid resistor	R_{g}	1	$M\Omega$
Oscillator voltage	v_{osc}	3.0	v_{RMS}
Anode current	I _a	6	mA
Conversion conductance	s_c	3	mA/V
Internal resistance	R_{i}	18	kΩ
Grid input resistance (f = 100 MHz)	rg	15	kΩ
LIMITING VALUES (Design centre rating s	ystem) (Each un	nit unless oth	erwise stated)
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 2.5	w
Anode dissipation, total for both units	$w_a + w_a$	max. 4.5	w
Cathode current	I _k	max. 15	mA
Grid voltage	-V _g	max. 100	v
Grid resistor	$R_{\mathbf{g}}$	max. 1	МΩ
Cathode to heater voltage	$v_{\mathbf{kf}}$	max. 90	v




5

January 1969

R.F. DOUBLE TRIODE

Double triode intended for use as cascode amplifier in tuners for television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f}$ 6.3 V $\frac{365}{MA}$

For further data and curves please refer to $\ensuremath{\mathsf{PCC88}}$

R.F. DOUBLE TRIODE

Double triode with variable transconductance intended for use as V.H.F. cascode amplifier in television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

365 mA

Heater current

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage

 V_{kf}

max. 50 V

 $V_{k'f}(k pos)$ max. 150 V^{l})

For further data and curves of this type please refer to type PCC189

¹⁾ D.C. component max. 130 V.

TRIODE-PENTODE

Triode-pentode with separate cathodes intended for use as frequency changer in television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage $\frac{V_f}{I_f}$ 6.3 V Heater current I_f 430 mA

LIMITING VALUES (Design centre rating system)

Triode section

Cathode to heater voltage V_{kf} max. 100 V

Pentode section

Cathode to heater voltage V_{kf} max. 100 V

For further data and curves please refer to PCF80

1

TRIODE-PENTODE

Triode-pentode intended for use as frequency changer in V.H.F. television tuners.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

LIMITING VALUES (Design centre rating system)

Triode section

Cathode to heater voltage Vkf max. 100 V

Pentode section

Cathode to heater voltage V_{kf} max. 100 V

For further data and curves please refer to PCF86

January 1969

Triode-pentode intended for use in television receivers; triode section as limiter, noise detector, A.G.C. amplifier, sync. separator and pulse-amplifier; pentode section as sound I.F. amplifier and video I.F. amplifier.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{410 \text{ mA}}$

For further data and curves please refer to type PCF200

January 1969 | 1

Triode-pentode intended for use in T.V. receivers; triode section as line-blocking oscillator, part of a multivibrator, sync separator, pulse amplifier or A.G.C. delay diode; pentode section with remote cut-off as video I.F. amplifier.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage $rac{V_f}{I_f} = rac{6.3 \ V}{410 \ mA}$

For further data and curves of this type please refer to type PCF201

January 1969

High transconductance triode and R.F. pentode intended for use as frequency changer in V.H.F. T.V. tuners.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{0.41 \text{ A}}$

For further data and curves of this type please refer to type PCF801 $\,$

Triode-pentode; triode section intended for use as reactance tube, pentode section intended for use as sine wave oscillator or pulse shaper in television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

 $\begin{array}{cccc} \text{Heater voltage} & & \underline{V_f} & & 6.3 & \underline{V} \\ \text{Heater current} & & I_f & & 430 & \text{mA} \end{array}$

LIMITING VALUES

Pentode section

Cathode to heater voltage Vkf max. 100 V

Triode section

Cathode to heater voltage Vkf max. 100 V

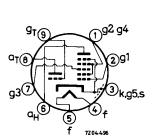
For further data and curves please refer to type PCF802

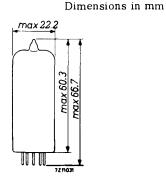
TRIODE-HEPTODE

Triode-heptode. Heptode section intended for use as mixer, R.F.-or I.F.amplifier. Triode section intented for use as oscillator in A.M./F.M. receivers.

QUICK RE	EFERENCE DATA		
Triode section			
Anode current	I _a 13.	5 mA	
Transconductance	S 3.	7 mA/V	r
Amplification factor	μ	22 -	
Heptode section			
Anode current	I _a	1 mA	
Transconductance	S 4.	5 mA/V	,
Amplification factor	^μ g ₂ g ₁	25 -	

HEATING: Indirect by A.C. or D.C.; series or parallel supply


Heater voltage


Heater current

$v_{\mathbf{f}}$	6.3	V
$I_{\mathbf{f}}$	300	mA

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES Triode section Grid to all except anode $C_{g(a)}$ 2.6 рF $C_{a(g)}$ Anode to all except grid 2.1 υF C_{ag} Anode to grid 1.0 pF Grid to heater $C_{\mathfrak{C}f}$ max. 0.02 pΕ Heptode section Grid No.1 to all except anode $C_{g_1(a)}$ 4.8 pF Anode to all except grid No.1 7.9 ρF $C_{a(g_1)}$ C_{ag_1} Anode to grid No.1 max.0.006 pF Grid No.1 to heater max. 0.17 C_{g_1f} ρF Grid No.3 to all C_{g_3} pF Grid No.1 to grid No.3 $C_{g_1g_3}$ max. 0.3 pΕ Grid No.3 to heater max. 0.06 C_{g_3f} pF Between heptode and triode sections 0.20 Anode heptode to anode triode $C_{a_Ha_T}$ pF $c_{a_Hg_T}$ max. 0.09 Anode heptode to grid triode pF Grid No.1 heptode to anode triode $C_{g_1H^aT}$ max. 0.06 ρF Grid No.1 heptode to grid triode C_{g_1HgT} max. 0.17 pF Grid No.1 heptode to grid triode + grid No.3 max. 0.45 Cg1H/gTg3 pF Anode heptode to grid triode max. 0.35 + grid No.3 CaH/gTg3 pF

TYPICAL CHARACTERISTICS

Triode section			
Anode voltage	v_a	100	v
Grid voltage	v_g	0	v
Anode current	Ia	13.5	mA
Transconductance	S	3.7	mA/V
Amplification factor	μ	22	-
Heptode section			
Anode voltage	v_a	160	v
Grid No.3 voltage	v_{g_3}	0	v
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	100	v
Grid No.1 current	I_{g_1}	0.5	μΑ
Grid No.1 voltage	v_{g_1}	-0.5	v
Anode current	Ia	11	mA
Grids No.2 and 4 current	$I_{g_{2+4}}$	7	m A
Transconductance	S	4.5	mA/V
Amplification factor	$\mu_{\mathbf{g_2g_1}}$	25	-

OPERATING CHARACTERISTICS

Heptode section as mixer 1)				
Supply voltage	v_b	25	0	v
Anode resistor	R_a	8.	2	k Ω
Grids No.2 and 4 resistor	R_{g_2+4}	2	2	k Ω
Grid triode + grid No.3 resistor	R _{gT} +g ₃	4	7	kΩ
Grid triode + grid No.3 current	$I_{g_T+g_3}$	20	0	μΑ
Grid No.1 current	I_{g_1}	0.5	-	μ A ²)
Grid No.1 voltage	v_{g_1}	-	-28	V
Anode voltage	v_a	225	240	V
Grids No.2 and 4 voltage	v_{g_2+4}	78	235	ν
Anode current	I_a	3.3	-	m A
Grids No.2 and 4 current	I_{g_2+4}	7.8	-	m A
Conversion conductance	S_c	1100	11	μA/V
Internal resistance	R_i	0.8	min. 3	$M\Omega$
Equivalent noise resistance	R_{eq}	30	_	kΩ

 $^{^{}l})$ Triode operating with V_{b} = 250 V, R_{a} = 33 kΩ, V_{osc} = 8 $V_{RMS}.$

²⁾ Grid current bias obtained with Rg, = 1 M Ω and with zero volts a.g.c. voltage; resulting grid one voltage: -0.5 V.

OPERATING CHARACTERISTICS (continued)

Heptode section as	R.F. or	I.F.	amplifier

Heptode section as R.F. or I.F. ampli	<u>ner</u>				
Supply voltage	v_b	2	50	V	
Anode resistor	R_a	8	. 2	kΩ	
Grid No.3 voltage	v_{g_3}		0	v	
Grids No.2 and 4 resistor	$R_{g_{2+4}}$:	22	kΩ	
Grid No.1 current	$^{\mathrm{I}}g_{1}$	0.5		μΑ	
Grid No.1 voltage	v_{g_1}	-	-35	v	1)
Anode voltage	v_a	160	24 8	v	
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	96	245	v	
Anode current	Ia	11	-	mA	
Grids No.2 and 4 current	$^{\mathrm{I}}\mathrm{g}_{2+4}$	7	-	mA	
Transconductance	S	4500	45	μΑ,	/V
Internal resistance	R_i	0.24	min. 10	МΩ	!
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	25	-	-	
Equivalent noise resistance	R_{eq}	4.5	-	kΩ	
Triode section as oscillator					
Supply voltage	v_b	2	50	v	
Anode resistor	R_a	;	33	kΩ	
Grid triode + grid No.3	_		4.5		
resistor	R_{gT+g_3}	•	17	kΩ	
Grid triode + grid No.3 current	I_{gT+g_3}	20	00	μΑ	
Anode current	I_a	4	.5	mΑ	
Effective transconductance	S_{eff}	0.	65	mA	V\

 $^{^1)}$ Grid current bias obtained with Rg $_1$ = 1 $M\Omega$ and with zero volts a.g.c. voltage; resulting grid No.1 voltage; -0.5 V.

LIMITING VALUES (Design centre rating system)

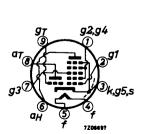
LIMITING VALUES (Design Centre rating syst	em)		
Heptode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 2.0	w
Grids No.2 and 4 voltage	$v_{g_{2+4_0}}$	max. 550	v
	V _{g2+4}	max. 125	v
Grids No.2 and 4 voltage (Ia max. 1 mA)	$v_{g_{2+4}}$	max. 300	v
Grids No.2 and 4 dissipation	$w_{g_{2+4}}$	max. 0.8	w
Cathode current	I_k	max. 18	mA
Grid No.1 resistor	R_{g_1}	max. 3	$M\Omega$
Grid No.3 resistor	R_{g_3}	max. 20	kΩ
Grid No.3 resistor grid No.3 directly connected to grid triode		max. 3	МΩ
C	R_{g_3}		
Cathode to heater voltage	v_{kf}	max. 100	V
Triode section			
Anode voltage	$v_{\mathbf{a}_0}$	max. 550	V
	v_a	max. 250	v
Anode dissipation	W_a	max. 0.8	W
Cathode current	I_k	max. 6.5	m A
Grid resistor	R_{g}	max. 3	МΩ
Cathode to heater voltage	$v_{\mathbf{k}f}$	max. 100	v

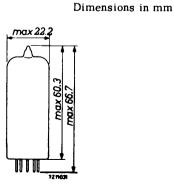
TRIODE-HEPTODE

Triode-heptode intended for use as mixer in car radio sets and as sync separator in TV receivers.

QUICK REFERENCE DATA					
Triode					
Anode voltage	v_a	25	12.6	6.3	v
Anode current	I_a	2	0.75	0.3	mA
Transconductance	S	2.2	1.4	0.8	mA/V
Amplification factor	μ	20	18.3	14.6	-
Heptode as mixer					
Anode voltage	v_a	25	12.6	6.3	v
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	25	12.6	6.3	v
Conversion conductance	S_c	450	220	90	μA/V
Heptode as R.F. or I.F. amplifier					
Anode voltage	v_a	25	12.6	6.3	v
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	25	12.6	6.3	v
Transconductance	S	1.5	0.75	0.35	mA/V

HEATING: Indirect by A.C. or D.C.; parallel or series supply


Heater voltage


Heater current

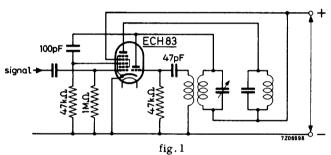
v_f	6.3	V
l _f	300	mA

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES			
Triode section			
Anode to all except grid	C _{a(g)}	2.1	pF
Grid to all except anode	$C_{g(a)}$	2.6	pF
Anode to grid	C_{ag}	1.0	pF
Heptode section			
Anode to all	C_a	7.9	pF
Grid No.1 to all	C_{g_1}	4.8	pF
Anode to grid No.1	C_{ag_1}	max. 0.012	pF
Grid No.3 to all	c_{g_3}	6.0	pF
Grid No.1 to grid No.3	$C_{g_1g_3}$	max. 0.3	pF
Between heptode and triode sections			
Anode heptode to anode triode	C_{aHaT}	0.20	pF
Anode heptode to grid triode	C_{aHgT}	max. 0.09	pF
Grid No.1 heptode to anode triode	$c_{g_1 HaT}$	max. 0.06	pF
Grid No.1 heptode to grid triode	C_{g_1HgT}	max. 0.17	pF
Grid No.1 heptode to grid triode and grid No.3	C _{g1} H/gTg ₃	max. 0.45	pF
Anode heptode to grid triode and grid No.3	C _{aH/gTg3}	max. 0.35	pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	V _a 25	12.6 6.3	v
Grid voltage	v_g 1)	1) I)	-
Anode current	I _a 2	0.75 0.3	mA
Transconductance	S 2.2	1.4 0.8	mA/V

 μ 20 18.3 14.6 -


Amplification factor

 $[\]overline{\mbox{1) Obtained}}$ by grid current biasing: Rg = 47 k $\Omega.$

OPERATING CHARACTERISTICS

Heptode as mixer, c	ircuit f	ig.l.
---------------------	----------	-------

Anode voltage	v_a	25	12.6	6.3	V
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	25	12.6	6.3	V
Grid No.1 voltage	v_{g_1}	1)	l)	¹)	
Oscillator voltage	V_{osc}	3.5	1.7	1.1	v_{RMS}
Grid No.3 resistor	R_{g_3}	47	47	47	$k\Omega$
Grid No.3 current	I_{g_3}	40	18	7	μ A
Anode current	I _a	550	170	50	μΑ
Grids No.2 and 4 current	$I_{g_{2+4}}$	1000	300	80	μ A
Conversion conductance	S_c	450	220	90	μA/V
Internal resistance	R_{i}	0.5	1.5	1.3	$M\Omega$

Heptode as	R.F.	or I.F.	. amplifier

Anode voltage	v_a	25	12.6	6.3	v
Grids No.2, No.3 and No.4 voltage	$v_{g_{2+3+4}}$	25	12.6	6.3	v
Grid No.1 voltage	v_{g_1}	1)	¹)	1)	
Anode current	I_a	1.25	0.4	0.11	mA
Grids No.2, No.3 and 4 current	$I_{g_{2+3+4}}$	0.85	0.25	0.08	mA
Transconductance	S	1.5	0.75	0.35	mA/V
Internal resistance	R_{i}	0.2	0.85	0.6	$M\Omega$
Equivalent noise resistance	R_{eq}	5	6.5	8.5	kΩ

 $[\]overline{\mbox{1}}$) Obtained by grid current biasing: \mbox{R}_{g_1} = 1 M Ω .

LIMITING VALUES (Design centre rating system)

	•			
Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	0.8	w
Cathode current	$I_{\mathbf{k}}$	max.	6.5	mA
Grid resistor	$^{\mathrm{R}}\mathbf{g}$	max.	3	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	150	v
D.C. component		max.	100	V
Heptode section				
Anode voltage	v_{a_0}	max.	550	v
	$V_{\mathbf{a}}$	max.	50	v
Grids No.2 and 4 voltage	$v_{\mathbf{g_{2+4}}}$	max.	50	V
Cathode current	$I_{\mathbf{k}}$	max.	5	mA
Grid No.1 resistor	$R_{\mathbf{g_1}}$	max.	3	$M\Omega$
Grid No.3 resistor	$R_{\mathbf{g}_3}$	max.	50	$k\Omega$
Cathode to heater voltage	$V_{\mathbf{kf}}$	max.	150	v

D.C. component

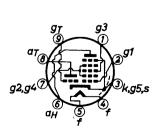
max. 100 V

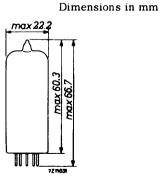
TRIODE-HEPTODE

Triode-heptode intended for use as pulse separator, noise inverter and sync. amplifier.

QUICK REFERENCE DATA				
Triode section				
Anode voltage	v_a	50	V	
Anode current	I_a	3	mA	
Transconductance	S	3.7	mA/V	
Amplification factor	μ	50	-	
Heptode section				
Anode voltage	v_a	135	v	
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	14	v	
Anode current	Ia	1.7	mA	
Grids No.2 and 4 current	$I_{g_{2+4}}$	0.9	mA	
Transconductance	S	2.2	mA/V	

HEATING: Indirect by A.C. or D.C.; series or parallel supply


Heater voltage


Heater current

v_f	6.3	V
If	30 0	mΑ

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES		
Triode section		
Grid to all except anode	$C_{g(a)}$	3.0 pF
Anode to grid	$C_{\mathbf{ag}}$	1.1 pF
Heptode section		
Anode to grid No.1	c_{ag_1}	max. 0.009 pF
Between triode and heptode sections		
Grid triode to grid No.1 heptode	$^{\mathrm{C}}_{g_{\mathrm{T}}g_{\mathrm{1}}H}$	max. 0.10 pF
Anode triode to grid No.1 heptode	$C_{a_{\mathrm{T}}g_{1\mathrm{H}}}$	max. 0.08 pF
Anode triode to grid No.3 heptode	С _{ат} взн	max. 0.13 pF
Grid triode to anode heptode	С _{gтан}	max. 0.09 pF
Anode triode to anode heptode	С _{аТ} аН	max. 0.25 pF
TYPICAL CHARACTERISTICS		
Triode section		
Anode voltage	v_a	50 V
Grid voltage	v_{g}	0. V
Anode current	I _a	3 mA
Transconductance	S	3.7 mA/V
Amplification factor	μ	50 -

 v_a

 $v_{\mathbf{g}}$

 I_a

200 V

-11 V max. 0.1 mA

Anode voltage

Grid voltage

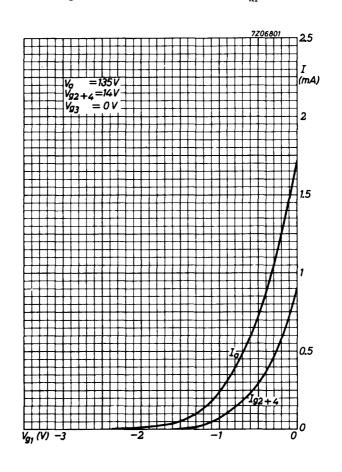
Anode current

TYPICAL CHARACTERISTICS (con	ntinued)
------------------------------	----------

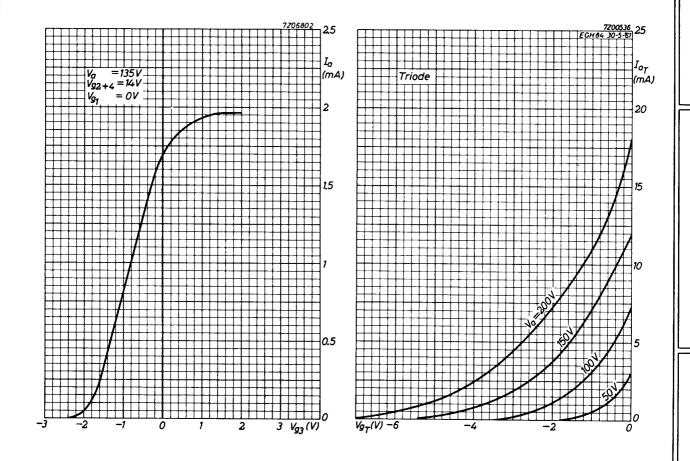
Heptode section			
Anode voltage	v_a	135	V
Grid No.3 voltage	v_{g_3}	0	V
Grids No. 2 and 4 voltage	$v_{g_{2+4}}$	14	V
Grid No.1 voltage	v_{g_1}	0	V
Anode current	Ia	1.7	mA
Grids No.2 and 4 current	$I_{g_{2+4}}$	0.9	mA
Transconductance	S	2.2	mA/V
Grid No. 3 voltage	v_{g_3}	-2	V
Grid No.1 voltage	v_{g_1}	0	V
Anode current	I_a	20	μ A
Grid No.1 voltage	$v_{\mathbf{g_1}}$	-1.9	v
Grid No.3 voltage	v_{g_3}	0	v
Anode current	I_a	20	μ A

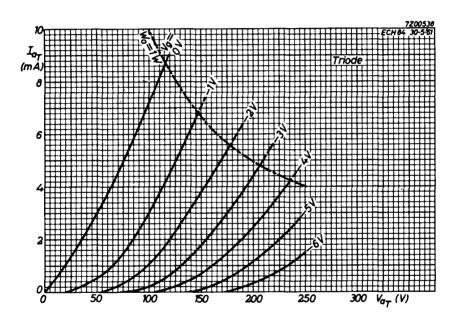
LIMITING VALUES (Design centre rating system)

rieptode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.7	W
Grids No.2 + 4 voltage	$v_{g_{2+4_0}}$	max.	550	v
	$v_{g_{2+4}}$	max. min.		v v ¹)
Grids No.2 + 4 dissipation	$w_{g_{2+4}}$	max.	0.8	W
Grid No.3 voltage, negative peak	-v _{g3p}	max.	150	V
Grid No.3 resistor	$^{R}g_3$	max.	3	$M\Omega$
Grid No.1 voltage, negative peak	-Vg _{1p}	max.	150	V
Grid No.1 resistor	R_{g_1}	max.	3	$M\Omega$
Cathode current	$I_{\mathbf{k}}$	max.	12.5	mA
Cathode to heater voltage	$V_{\mathbf{kf}}$	max.	100	V


 $^{^{\}rm l}$) This value applies to an average tube operated under the worst probable conditions.

Heptode section


LIMITING VALUES (continued)


Triode	section

Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.3	w
Grid voltage, negative peak	$-v_{\mathbf{g}_{\mathbf{p}}}$	max.	200	V
Grid resistor	Rg	max.	3	$M\Omega$
Cathode current	$I_{\mathbf{k}}$	max.	10	mA
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	100	V

S

TRIODE-HEPTODE

Triode-heptode; triode section intended for use as pulse amplifier and heptode section for use as noise gated sync. separator.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage $\frac{V_f}{M} = \frac{6.3 \ V}{M}$ Heater current $\frac{V_f}{M} = \frac{6.3 \ V}{M}$

LIMITING VALUES (Design centre rating system)

Triode section

Cathode to heater voltage V_{kf} max. 100 V

Heptode section

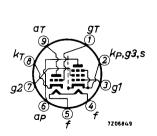
Cathode to heater voltage V_{kf} max. 100 V

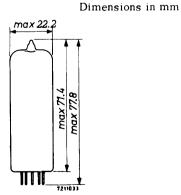
For further data and curves of this type please refer to type PCH200

TRIODE-OUTPUT PENTODE

The triode section is intended for use as frame oscillator and A.F. amplifier. The pentode section is intended for use as frame output tube and A.F. power amplifier.

QUICK REFERENCE DATA				
Triode section				
Anode current	I _a	3.5	mA	
Transconductance	S	2.2	mA/V	
Amplification factor	μ	70	-	
Pentode section				
Anode peak voltage	V _{ap} max	. 2.5	kV	
Anode current	I _a	41	mA	
Transconductance	S	7.5	mA/V	
Amplification factor	$\mu_{g_2g_1}$	9.5	-	
Output power	W_{o}	3.5	w	


HEATING: Indirect by A.C. or D.C.; parallel supply


Heater voltage Heater current

$v_{\rm f}$	6.3	V
$\overline{\mathbf{I}_{\mathbf{f}}}$	780	mΑ

DIMENSIONS AND CONNECTIONS

Base: Noval

ECL82

CAPACITANCES			
Triode section			
Anode to all except grid	$C_{a(g)}$	4.3	pF
Grid to all except anode	$C_{g(a)}$	2.7	pF
Anode to grid	$C_{\mathbf{ag}}$	4.4	pF
Grid to heater	$C_{f gf}$	max. 0.1	pF
Pentode section			
Anode to all except grid No.1	$C_{a(g_1)}$	8.0	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	9.3	pF
Anode to grid No.1	C_{ag_1}	max. 0.3	pF
Grid No.1 to heater	c_{g_1f}	max. 0.3	pF
Between triode and pentode sections			
Anode triode to grid No.1 pentode	$C_{a}Tg_{1}P$	max. 0.02	pF
Grid triode to anode pentode	C_{gTaP}	max. 0.02	pF
Grid triode to grid No.1 pentode	$C_g T_{g_1} P$	max.0.025	pF
Anode triode to anode pentode	$C_{a}T_{a}P$	max. 0.25	pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	v_a	100	V
Grid voltage	v_g	0	V
Anode current	I_a	3.5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	70	-
Pentode section			
Anode voltage	v_a	170	V
Grid No.2 voltage	v_{g_2}	170	v
Grid No.1 voltage	v_{g_1}	-11.5	V
Anode current	Ia	41	mA
Grid No.2 current	I_{g_2}	9	mA
Transconductance	S	7.5	mA/V
Amplification factor	$\mu_{g_2g_1}$	9.5	-
Internal resistance	Ri	16	$\mathbf{k}\Omega$

OPERATING CHARACTERISTICS

Triode section as A.F. amplifier

Α.	Signal source resistance			R _s	0.	22	$M\Omega$
	Grid resistor		R_{g}	Rg 3		$M\Omega$	
	Grid resistor of next stage			$R_{\mathbf{g}}$	0.	68	$M\Omega$
	Supply voltage			v_b	200	170	v
	Cathode resistor			$R_{\mathbf{k}}$	2.2	2.7	kΩ
	Anode resistor			R_a	22 0	220	$k\Omega$
	Anode current			I _a	0.52	0.43	mA
	Voltage gain			V_o/V_i^{-1})	52	51	-
	Max. output voltage			$v_{o\ max}$	26	25	v_{RMS}
	Distortion			d _{tot} 2)	1.6	2.3	%
В.	Signal source resistance	Rs		0.2	2		$M\Omega$
	Grid resistor	R _g 22			МΩ		
		Rg' 0.68					
	Grid resistor of next stage	Rg'		0.6	8		МΩ
	Grid resistor of next stage Supply voltage	Rg' V _b	200	200	170	170	
		_	200 0			170 0	МΩ
	Supply voltage	v_b		200	170		MΩ V
	Supply voltage Cathode resistor	V _b R _k R _a	0	200	170	0	MΩ V Ω
	Supply voltage Cathode resistor Anode resistor	V _b R _k R _a	0 100 1.05	200 0 220	170 0 100	0 22 0	MΩ V Ω kΩ
	Supply voltage Cathode resistor Anode resistor Anode current	V _b R _k R _a	0 100 1.05	200 0 220 0.61	170 0 100 0.86	0 220 0.50	MΩ V Ω kΩ MΩ
	Supply voltage Cathode resistor Anode resistor Anode current Voltage gain	V_b R_k R_a I_a V_o/V_i^{-1})	0 100 1.05 50	200 0 220 0.61 55	170 0 100 0.86 49	0 220 0.50 53	MΩ V Ω kΩ MΩ

MICROPHONY AND HUM

The triode section can be used without special precautions against microphony and hum in circuits in which an input voltage of minimum 10 mVRMS is required for an output of 50 mW of the output stage. Z_g (50 Hz) = 0.25 M Ω .

¹⁾ Measured at small input voltage.

²⁾ At lower output voltages the distortion is proportionnally lower.

³⁾ At lower output voltages down to 5 V_{RMS} the distortion is approximately constant. At values below 5 V_{RMS} the distortion is approximately proportional to V_0 .

OPERATING CHARACTERISTICS

Pentode section

A.F.	power amplifier,	class A	(measured with	V _k constant)
	power umpiliter,	CIGO II	(III.casarca III.	

Supply voltage	$v_{ba} = v_{bg2}$		200			272		V
Grid No.2 series res (non-decoupled)	istor R _{g2}		470			2200		Ω
Cathode resistor	R_k		330			650		Ω
Load resistance	R $_{a}_{\sim}$		4.5			8		$\mathbf{k}\Omega$
Grid No.1 driving vol	tage V _i	0	0.66	6.7	0	0.9	9.5	v_{RMS}
Anode current	I_a	35		37	28		27	mA
Grid No.2 current	I_{g_2}	7.8		13.3	6.5		10.8	mA
Output power	w _o	0	0.05	3.3	0	0.05	3.5	W
Distortion	d_{tot}	-	-	10	-	-	10	%
A.F. power amplifier	c, class AB,	two t	ubes in	push-	pull			
Anode supply voltage	$\mathbf{v}_{!}$	ba	20	00		25	0	V
Grid No.2 supply volt	age V	bg ₂	20	00		20	0	V
Common cathode resi		_	1	70		22	0	Ω
Load resistance	R	aa'∼	4	.5		1	0	$\mathbf{k}\Omega$
Grid No.1 driving vol	tage V	i	0	14.	2	0	12.5	v_{RMS}
Anode current	I _a		2x35	2x42	.5	2x28	2x31	mA

Frame output application

Grid No.2 current

Output power

Distortion

The circuit should operate satisfactorily with a peak anode current I_{ap} = 85 mA at V_a = 50 V, V_{g_2} = 170 V, V_f = 6.3 V. The minimum available I_{ap} at end of life is;

2x8

0

2x16.5

9.3

6.3

 I_{g_2}

 W_{o}

 d_{tot}

70 mA at
$$V_a$$
 = 50 V, V_{g_2} = 170 V, V_f = 5.5 V 80 mA at V_a = 50 V, V_{g_2} = 190 V. V_f = 5.5 V.

2x5.8 2x13 mA

10.5 W

4.8 %

0

LIMITING VALUES (Design centre rating system)

Triode section			
Anode voltage	v_{a_0}	max. 550	V
	v_a	max. 300	V
Anode peak voltage	$v_{a_{D}}$	max. 600	v ¹)
Anode dissipation	w_a^r	max. l	W
Cathode current, average	$I_{\mathbf{k}}$	max. 15	mA
peak	I_{k_p}	max. 100	mA 1)
Grid resistor for fixed bias	R _g	max. 1	МΩ
for automatic bias	$^{R}_{g}$	max. 3	$M\Omega$
Grid impedance at 50 Hz	z_g^{σ}	max. 0.5	$M\Omega$
Cathode to heater voltage	v_{kf}	max. 100	V
Pentode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	V
Anode peak voltage, positive	v_{a_p}	max. 2.5	kV 1)
negative	-v _{ap}	max. 500	V
Anode dissipation for frame ouput application	$W_{\mathbf{a}}$	max. 5	w
for A.F. output application	w_a	max. 7	W
Grid No.2 voltage	$v_{g_{2o}}$	max. 550	V
	v_{g_2}	max. 300	V
Grid No.2 dissipation, average	w_{g_2}	max. 2	W
peak	$w_{\mathrm{g}_{\mathrm{2p}}}$	max. 3.2	W
Cathode current	$I_{\mathbf{k}}$	max. 50	mA
Grid No.1 resistor for fixed bias	R_{g_1}	max. l	ΜΩ
for automatic bias	R_{g_1}	max. 2	$M\Omega$
Cathode to heater voltage	v_{kf}	max. 150	V

For curves of the ECL82 please refer to PCL82

¹⁾ Max. pulse duration 4% of a cycle with a maximum of 0.8 msec.

TRIODE-OUTPUT PENTODE

Triode-pentode with separate cathodes

The triode section is intended for use in circuits for keyed AGC, sync separation, sync amplification and noise suppression.

The pentode section is intended for use as video output tube.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage Heater current V_f 6.3 V I_f 720 mA

LIMITING VALUES (Design centre rating system)

Triode section

Cathode to heater voltage

Vkf max. 200 V

For further data and curves please refer to PCL84

January 1969

TRIODE-OUTPUT PENTODE

Triode pentode with separate cathodes.

Triode intended for use as frame oscillator or pulse amplifier.

Pentode intended for use as frame output tube.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f}$ 6.3 V

OPERATING CHARACTERISTICS OF THE PENTODE SECTION

Hum

The equivalent pentode grid hum voltage without negative feedback and without A.C. voltage between heater and cathode is max. 10 mV_{RMS} when Z_{g_1} (at f = 50 Hz) \leq 0.5 M Ω and C_{g_1-f} = 0.2 pF.

LIMITING VALUES (Design centre rating system)

Triode section

Cathode to heater voltage	v_{kf}	max.	100	V
D.C. component during warming up	V _{kf} (k pos)	max.	315	V

Pentode section

Cathode to heater voltage Vkf max. 100 V

For further data and curves please refer to PCL85/PCL805

TRIODE-OUTPUT PENTODE

Triode pentode with separate cathodes.

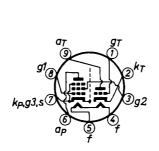
The triode section is intended for use as A.F. amplifier.

The pentode section is intended for use as A.F. power amplifier.

(QUICK REFERENCE DATA	
Triode section		
Anode current	I _a 1.2	m A
Transconductance	S 1.6	mA/V
Amplification factor	μ 100	-
Pentode section		
Anode current	I _a 36	mΑ
Transconductance	S 10	mA/V
Amplification factor	$\mu_{g_2g_1}$ 21	-
Output power	W _o 4.0	w

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current

 $\frac{V_{\mathbf{f}}}{I_{\mathbf{f}}} \qquad \frac{6.3}{660} \quad \text{mA}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES			
Triode section			
Anode to all except grid	$C_{a(g)}$	2.5	рF
Grid to all except anode	$C_{g(a)}$	2.3	pF
Anode to grid	$C_{f ag}$	1.4	pF
Grid to heater	c_{gf}	max. 0.006	pF
Pentode section			
Grid No.1 to all except anode	$c_{g_1(a)}$	10	pF
Anode to grid No.1	C_{ag_1}	max. 0.4	pF
Grid No.1 to heater	C_{g_1f}	max. 0.24	pF
Between triode and pentode sections	-		
Anode triode to grid No.1 pentode	$C_{aTg_{l}}$ P	max. 0.2	р F
Grid triode to grid No.1 pentode	C_{gTg_1P}	max. 0.02	pF
Anode triode to anode pentode	$C_{\mathbf{a}T\mathbf{a}P}$	max. 0.15	рF
Grid triode to anode pentode	c_{gTaP}	max. 0.006	p F 1)
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	v_a	250	V
Grid voltage	v_g	-1.9	V
Anode current	I_a	1.2	mA
Transconductance	S	1.6	mA/V
Amplification factor	μ	100	-
Pentode section			
Anode voltage	v_a	250	V
Grid No.2 voltage	v_{g_2}	250	V
Grid No.1 voltage	$v_{g_1}^{-2}$	-7	v
Anode current	I_a	36	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	6	mA
Transconductance	S	10	mA/V
Amplification factor	$\mu_{g_2g_1}$	21	-

 $[\]overline{\ \ \ }$) The capacitance between triode grid and pentode anode (CgT-aP) can be reduced to a value of less than 0.002 pF by using a shielding ring with a diameter of 22.5 mm and a height of 15 mm with respect to the tube base.

 $\mu_{g_2g_1}$ R_i

Internal resistance

 $48 \text{ k}\Omega$

3

OPERATING CHARACTERISTICS

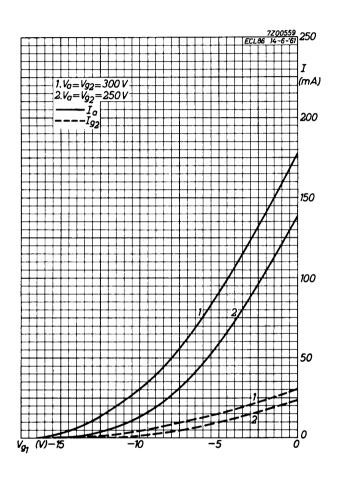
Triode section						
as A.F. amplifier						
Supply voltage	v_b	200	250	2 50	300	V
Cathode resistor	R_k	2.6	1.75	1.75	1.2	$k\Omega$
Anode resistor	R_a	220	220	220	220	$k\Omega$
Grid resistor of following stage	R_{g}	0.68	0.68	10	10	$M\Omega$
Anode current	Ia	0.42	0.6	0.6	0.8	mA
Output voltage	v_o	3.2	3.2	5	9	v_{RMS}
Voltage gain	v_o/v_i	66	70	75	80	-
Distortion	$d_{ extsf{tot}}$	0.6	0.4	0.4	0.4	%
A.F. amplifier with grid current bi	asing					
Supply voltage	v_b	200	250	2 50	300	V
Cathode resistor	R_k	0	0	0	0	Ω
Anode resistor	R_a	220	220	220	22 0	$k\Omega$
Grid resistor	$R_{\mathbf{g}}$	10	10	10	10	$M\Omega$
Grid resistor of following stage	Rg'	0.68	0.68	10	10	$M\Omega$
Signal source resistance	R_s	47	47	47	47	k Ω
Anode current	Ia	0.42	0.6	0.6	0.8	m A
Output voltage	v_{o}	3.2	3.2	5	9	v_{RMS}
Voltage gain	v_o/v_i	66	70	75	80	-
Distortion	d_{tot}	0.6	0.4	0.4	0.4	%

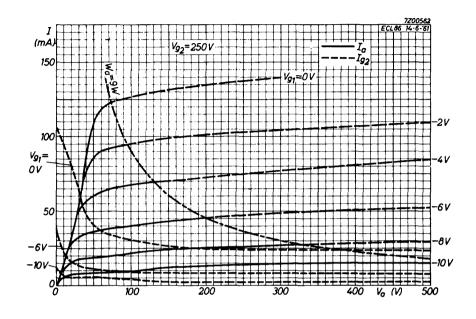
MICROPHONY

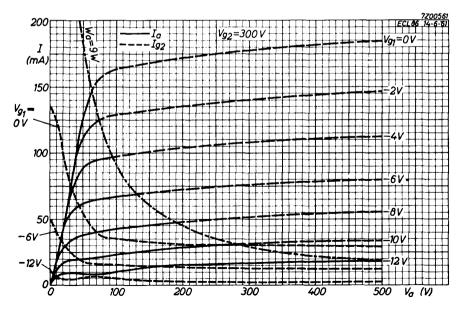
The triode section can be used without special precautions against microphonic effect in circuits in which an output of 50 mW is obtained at an input voltage of not less than 4 mVRMS.

HUM

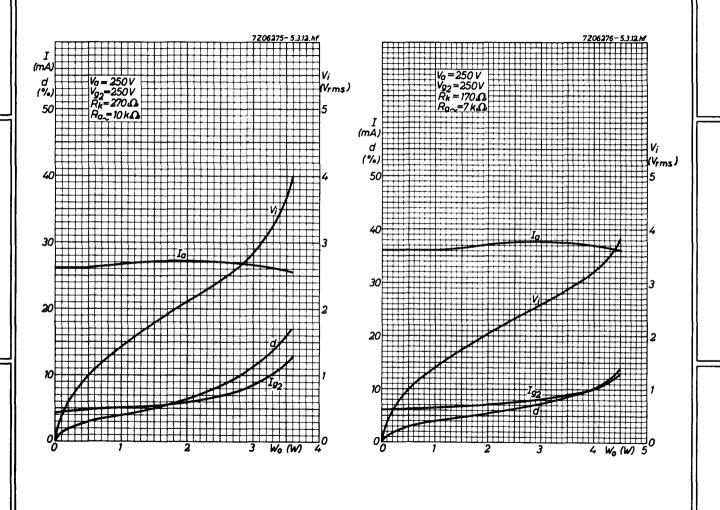
The hum level will be better than 60 dB under the following conditions: Input voltage minimum 10 mVRMS for 50 mW output. Grid circuit impedance max. 0.5 M Ω at 50 Hz. Cathode decoupling capacitor minimum 100 μ F. Pin 4 connected to earth.

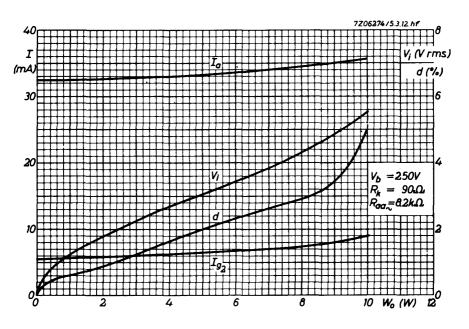

OPERATING CHARACTERISTICS (continued)

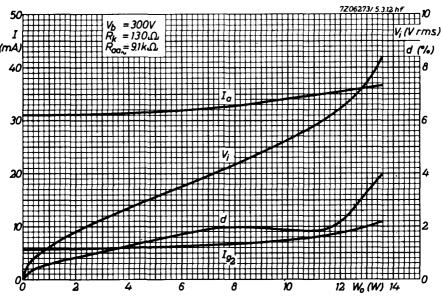

Class A (Measured	with V _k	constant)					
Anode voltage	v_a		2 50			250		v
Grid No.2 voltage	v_{g_2}		250			250		v
Cathode resistor	R_k		170			270		Ω
Load resistance	${\rm R}_{\rm a_{\sim}}$		7			10		$k\Omega$
Grid No.1 driving voltage	v_i	0	0.3	3.2	0	0.28	2.7	v_{RMS}
Anode current	I_a	36	-	37	26	_	27	mA
Grid No.2 current	l_{g_2}	6	-	10.2	4.4	-	8.0	m A
Output power	\mathbf{w}_{o}^{-}	0	0.05	4.0	0	0.05	2.8	W
Distortion	d_{tot}	-	0.95	10	-	1.1	10	%
Class AB, two tubes	in push	-pull						
Supply voltage	v_b		2 50			300		v
Common cathode resistor	$R_{\mathbf{k}}$		90			130		Ω
Load resistance	$R_{aa_{\sim}}$		8.2			9.1		kΩ
Grid No.1 driving voltage	v_{i}	0	0.24	5.5	0	0.26	8.4	v _{RMS}
Anode current	Ia	2x32.5	-	2x35.5	2x31	-	2x36.5	m A
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	2x5.6	-	2x8.9	2x5.5	-	2x11	mA
Output power	W_{o}	0	0.05	10	0	0.05	13.6	w
Distortion	$d_{\mbox{tot}}$	-	<0.4	5.0	-	<0.4	4.0	%

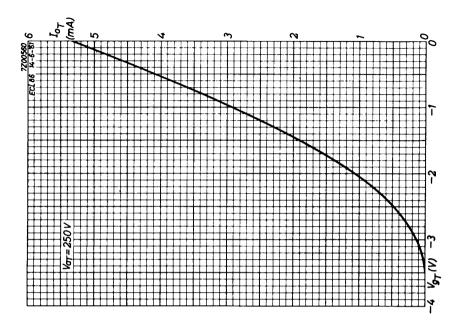

LIMITING VALUES (Design centre rating system)

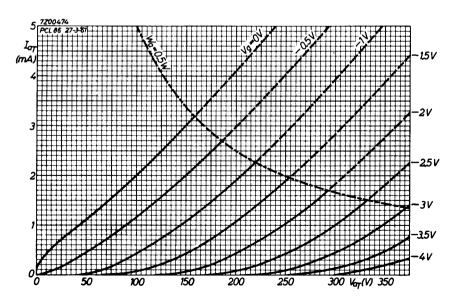
Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	300	V
Anode dissipation	w_a	max.	0.5	W
Cathode current	I_k	max.	4	mA
Grid resistor	$R_{\mathbf{g}}$	max.	1	$M\Omega^{-1}$)
Cathode to heater voltage	v_{kf}	max.	100	V
Pentode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	300	V
Grid No.2 voltage	$v_{g_{2_O}}$	max.	550	V
	v_{g_2}	max.	300	V
Anode dissipation	W_a	max.	9	W
Grid No.2 dissipation				
average	w_{g_2}	max.	1.8	W
peak	$w_{g_{2p}}$	max.	3.25	W
Cathode current	I_k	max.	55	m A
Grid No.1 resistor	R_{g_1}	max.	0.5	$M\Omega^{-1}$)
Cathode to heater voltage	v_{kf}	max.	100	V


 $^{^{\}rm I})$ This value applies to operation with fixed bias. It may be multiplied by the D.C. inverse feedback factor resulting from e.g. cathode, screen grid or anode resistors, to a maximum of 10 $M\Omega$.




7




œ

January 1970

10

SHUNT STABILIZER TRIODE

Shunt stabilizer triode intended for use as in colour TV receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\begin{array}{ccc} V_f & 6.3 & V \\ \hline I_f & 350 & mA \end{array}$

For further data and curve of this type please refer to type PD500

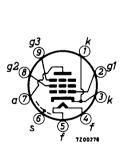
R.F. PENTODE

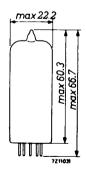
Pentode intended for use as R.F., I.F. or video amplifying tube or as mixing tube in television receivers.

QUI	CK REFERENCE DATA	
Anode current	I _a 10	mA
Transconductance	S 7.4	mA/V
Amplification factor	$\mu_{g_2g_1}$ 50	-
Internal resistance	R _i 500	kΩ

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage


Heater current


 $\frac{V_f}{I_f}$ 6.3 V $\frac{V_f}{I_f}$ 300 mA

DIMENSIONS AND CONNECTIONS

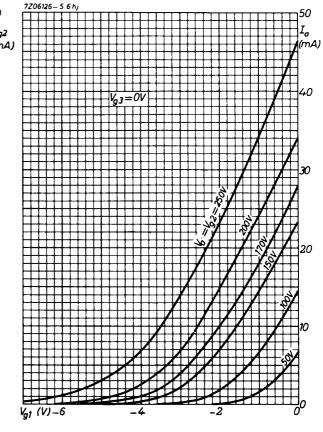
Dimensions in mm

Base: Noval

CAPACITANCES

Grid No.1 to all except anode	$c_{\mathrm{g}_1(a)}$	6.9	pF
Anode to all except grid No.1	$\mathrm{C}_{\mathfrak{a}(\mathrm{g}_1)}$	3.1	pF
Anode to grid No.1	C_{ag_1}	max. 0.007	pF
Anode to cathode	c_{ak}	max. 0.012	pF
Grid No.2 to all	$c_{ m g_2}$	5.4	pF
Grid No.1 to grid No.2	$c_{g_1g_2}^-$	2.6	рF
Grid No.1 to heater	c_{g_1f}	max. 0.15	pF
Cathode to heater	$c_{ m kf}$	5.0	р F

REMARK


When using the EF80 as video amplifier the amplification between the input grid of the EF80 and the input of the cathode ray tube should not exceed a value of 25, in order to prevent microphonic effect.

TYPICAL CHARACTERISTICS AND OPERATING CHARACTERISTICS

Anode voltage	V_a	170	200	250	v
Grid No.3 voltage	v_{g_3}	0	0	0	v
Grid No.2 voltage	v_{g_2}	170	200	250	V
Grid No.1 voltage	v_{g_1}	-2.0	-2.55	-3.5	V
Anode current	I _a	10	10	10	mA
Grid No.2 current	I_{g_2}	2.5	2.6	2.8	mA
Transconductance	S	7.4	7.1	6.8	mA/V
Internal resistance	R_i	0.5	0.55	0.65	$M\Omega$
Amplification factor	$\mu_{g_2g_1}$	50	50	50	-
Equivalent noise resistance	R_{eq}	1000	1100	1200	Ω
Grid No.1 input resistance f = 50 MHz, pin 1 connected to pin 3	r_{g_1}	10	12	15	kΩ

LIMITING	VALUES	(Design centre rating system)	
THAIR I HAG	VALUES	Obesign centre rating systems	

Anode voltage	v_{a_0}	max. 550 V
	v_a	max. 300 V
Anode dissipation	w_a	max. 2.5 W
Grid No.2 voltage	${ m v_{g_{2o}}}$	max. 550 V
	v_{g_2}	max. 300 V
Grid No.2 dissipation	w_{g_2}	max. 0.7 W
Grid No.2 dissipation ($W_a < 1.8 W$)	w_{g_2}	max. 0.9 W
Grid No.1 resistor	$R_{\mathbf{g_1}}$	max. 1 $M\Omega$
Cathode current	I_k	max. 15 mA
Heater to cathode voltage	v_{kf}	max. 150 V

January 1970

7Z06125 - 5.6 hj

R.F. PENTODE

 $R.\,F.$ pentode with variable transconductance intended for use as wide-band amplifier.

QUICK REFER	RENCE DATA		,
Anode current	Ia	10	mA
Transconductance	S	6.0	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	26	-
Internal resistance	R _i	600	kΩ

HEATING: Indirect by A.C. or D.C.; series or parallel supply

Heater voltage

Heater current

$v_{\rm f}$	6 .3	V
If	3 00	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

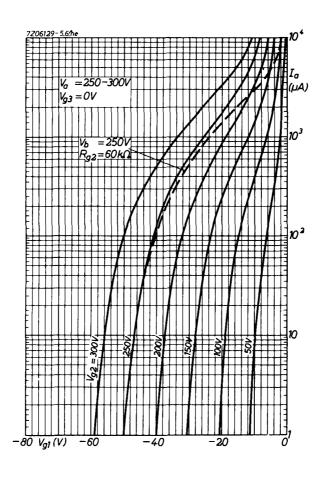
Base: Noval

CAPACITANCES

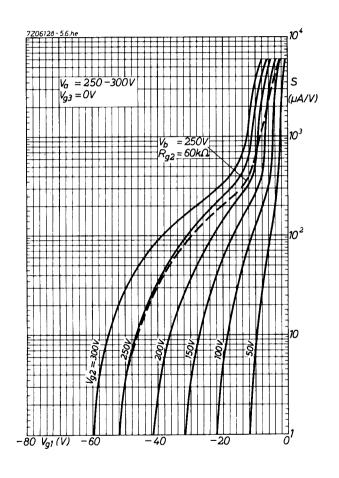
Anode to all except grid No.1
Grid No.1 to all except anode
Anode to grid No.1
Grid No.1 to heater

$C_{\mathbf{a}(\mathbf{g}_1)}$	3.2	pF
$C_{g_1(a)}$	6.9	pF
C_{ag_1}	max. 0.007	pF
$C_{\mathbf{g_1f}}$	max. 0.15	pF

EF85


TYPICAL CHARACTERISTICS AND OPERATION	ING CHAR.	ACTE	RISTICS	
Anode and supply voltage	$v_a = v_b$		25 0	V
Grid No.3 voltage	v_{g_3}		0	V
Grid No.2 resistor	R_{g_2}		60	$\mathbf{k}\Omega$
Grid No.1 voltage	v_{g_1}	- 2	-35	V
Grid No.2 voltage	v_{g_2}	100	-	V
Anode current	I_a	10	-	mA
Grid No.2 current	I_{g_2}	2.5	-	mA
Transconductance	S	6.0	0.06	mA/V
Internal resistance	R_i	0.6	>5	$M\Omega$
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	26	-	
Equivalent noise resistance	R_{eq}	1.4	-	$\mathbf{k}\Omega$
Grid No.1 input resistance, f = 50 MHz	$^{r}g_{1}$	9	-	kΩ
LIMITING VALUES (Design centre rating syst	tem)			
Anode voltage	v_{a_0}		max. 5	50 V
	v_a		max. 2	50 V
Anode dissipation	w_a		max. 2	. 5 W
Grid No.2 voltage	$v_{g_{2o}}$		max. 5	50 V
	v_{g_2}		max. 2	50 V
Grid No.2 dissipation	w_{g_2}		max. 0.	65 W
Grid No.1 resistor	R_{g_1}		max.	3 ΜΩ
Cathode current	Ik		max.	15 mA

max. 150 V


 v_{kf}

Heater to cathode voltage

3

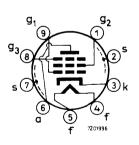
January 1969

A.F. PENTODE

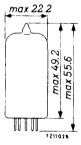
Pentode intended for use as A.F. amplifier

QUICK REFER	RENCE DATA		
Anode current	Ia	3.0	mΛ
Transconductance	S	2.2	mA/V
Amplification factor	$^{\mu}$ g2g1	38	-
Internal resistance	R_{i}	2.5	$M\Omega$

HEATING: Indirect by A.C. or D.C.; series or parallel supply

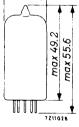

Heater voltage

Heater current


$v_{\rm f}$	6.3	V
If	200	mΑ

DIMENSIONS AND CONNECTIONS

Base: Noval


Dimensions in mm

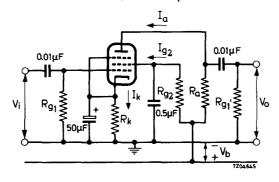
CAPACITANCES

Grid No.1 to all except anode Anode to all except grid No.1 Anode to grid No.1

Grid No.1 to heater

 $Cg_1(a)$ 3.8 pF

 $C_{a(g_1)}$ 5.1 pF


 C_{ag_1} max. 0.05 pF

 c_{g_1f} max. 0.0025 pF

TYPICAL CHARACTERISTICS

Anode voltage	v_a	250	V
Grid No.3 voltage	v_{g_3}	0	V
Grid No.2 voltage	v_{g_2}	140	V
Grid No.1 voltage	v_{g_1}	-2.2	V
Anode current	Ia	3.0	mA
Grid No.2 current	I_{g_2}	0.6	m A
Transconductance	S	2.2	mA/V
Amplification factor	$\mu_{\mathbf{g_2g_1}}$	38	-
Internal resistance	R_i	2.5	$M\Omega$

OPERATING CHARACTERISTICS as A.F. amplifier

Supply voltage	v_b	400	350	300	2 50	200	150	V
Anode resistor	R_a	100	100	100	100	100	100	$k\Omega$
Grid No.2 resistor	R_{g_2}	390	390	390	390	390	390	$k\Omega$
Cathode resistor	$R_{\mathbf{k}}$	1000	1000	1000	1000	1000	1000	Ω
Grid resistor next stage	Rg ₁ '	330	330	330	330	330	330	$k\Omega$
Cathode current	I_k	3.2	2.75	2.4	2.0	1.55	1.05	mA
Voltage gain 1)	V_{o}/V_{i}	140	134	129	123	117	110	-
Output voltage	v_o	85	74	62	50	38	27	v_{RMS}
Total distortion	d_{tot}	5	5	5	5	5	5	%

¹⁾ Measured at small input voltages

OPERATING CHARACTE	RISTICS	6 (conti	nued)					
Supply voltage	v_b	400	350	300	250	200	150	v
Anode resistor	R_a	220	220	220	220	220	220	$\mathbf{k}\Omega$
Grid No.2 resistor	R_{g_2}	1	1	1	1	1	1	$M\Omega$
Cathode resistor	$R_{\mathbf{k}}^{\mathbf{o}_{\mathbf{z}}}$	2200	2200	2200	2200	2200	2200	Ω
Grid resistor next stage	$R_{\mathbf{g'}_1}$	680	680	680	680	680	680	$\mathbf{k}\Omega$
Cathode current	I_k	1.45	1.3	1.1	0.9	0.75	0.5	mA
Voltage gain 1)	V_{o}/V_{i}	210	205	194	185	173	147	-
Output voltage	v_o	72	62	53	44	35	22	v_{RMS}
Total distortion	d_{tot}	5	5	5	5	5	5	%
As triode connected A.F.	amplif	ier (g2	conne	cted to	anode	, g3 tc	catho	de)
Supply voltage		v_b	400	350	300	250	200	v
Anode resistor		R_a	47	47	47	47	47	kΩ
Cathode resistor		$R_{\mathbf{k}}$	1200	1200	1200	1200	1200	Ω
Grid resistor next stage		$R_{g'_1}$	150	150	150	150	150	kΩ
Anode current		Ia	3.6	3.15	2.7	2.25	1.8	mA
Voltage gain		v_o/v_i	26	25	25	25	24	_
Output voltage ($I_g = 0.3 \mu A$	(۱	v_o	68	58	46	36	24	v_{RMS}
Total distortion		d _{tot}	5	5	5	5	5	%
Supply voltage		v_b	400	350	300	250	200	v
Anode resistor		R_a	100	100	100	100	100	kΩ
Cathode resistor		$R_{\mathbf{k}}$	2200	2200	2200	2200	2200	Ω
Grid resistor next stage		$R_{g'_1}$	330	330	330	330	330	kΩ
Anode current		I_a	2.0	1.8	1.5	1.25	1.0	mA
Voltage gain		v_o/v_i	28	28	27.5	27.5	27	-
Output voltage $(I_g = 0.3 \mu A)$.)	v_o	75	63	51	42	30	v_{RMS}
Total distortion		d _{tot}	5	5	5	5	5	<u>%</u>
Supply voltage		v_b	400	350	300	250	200	v
Anode resistor		R_a	220	220	220	220	220	kΩ
Cathode resistor		R_k	3900	3900	3900	3900	3900	Ω
Grid resistor next stage		R_{g_1} '	680	680	680	680	680	kΩ
Anode current		Ia	1.1	0.95	0.8	0.7	0.55	mA
Voltage gain		v_o/v_i	29	29	29	28	28	-
Output voltage ($I_g = 0.3 \mu A$		v_o	71	60	52	42	30	v_{RMS}
Total distortion		d_{tot}	5	5	5	5	5	%

OPERATING CHARACTERISTICS (continued)

Microphonic effect

A sensitivity of 0.5 mV for an output of 50 mW (or 5 mV for an output of 5 W) is permissible in those equipments where an output of 50 mW in the loudspeaker does not produce an average acceleration on the tube higher than 0.015 g at any frequency higher than 500 Hz or higher than 0.06 g at any frequency lower than 500 Hz.

Hum level

The hum disturbance level will be $3\,\mu V$ (max. $5\,\mu V$) when Z_{g_1} is smaller than 0.5 M Ω at f = 50 Hz, the cathode resistor is decoupled by a capacitor of at least $100\,\mu F$ and pin 4 is earthed. With the centre tap of the heater supply earthed this value will be $1\,\mu V$ (max. $2\,\mu V$).

Noise voltage

The equivalent noise voltage on g₁ is approximately 2 μV for the frequency range from 25 to 10000 Hz at V_b = 250 V and R_a = 100 k Ω .

LIMITING VALUES (Design centre rating system)

Anode voltage	v_{a_o}	max.	550	V
	v_a	max.	300	V
Anode dissipation	w_a	max.	1.0	W
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	200	V
Grid No.2 dissipation	w_{g_2}	max.	0.2	W
Grid No.1 circuit resistor				
if $W_a < 0.2 W$	R_{g_1}	max.	10	$M\Omega$
if $W_a > 0.2 W$	R_{g_1}	max.	3	$M\Omega$
with grid current biasing	R_{g_1}	max.	22	$M\Omega$
Cathode current	$I_{\mathbf{k}}$	max.	6	mA
Cathode to heater voltage				
cathode positive	v_{kf}	max.	100	v
cathode negative	v_{kf}	max.	50	V

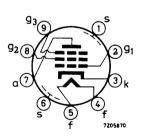
R.F. PENTODE

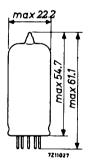
Pentode with variable transconductance intended for use as R.F. or I.F. amplifier.

QUICK REFER	ENCE DATA		
Anode current	Ia	9	mA
Transconductance	S 4	1.0	mA/V
Amplification factor	$^{\mu}$ g $_2$ g $_1$	21	-
Internal resistance	R_i	750	kΩ

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current


v_f	6.3	V
$\overline{I_f}$	200	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1	$^{\mathrm{C}_{\mathrm{a}}}(\mathbf{g}_{1})$	5.1	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	5.5	pF
Anode to grid No.1	$^{\mathrm{C}_{\mathrm{ag}}}{}_{\mathrm{1}}$	max. 0.002	pF
Grid No.1 to heater	$^{\mathrm{C}}_{\mathbf{g_1}^{\mathrm{f}}}$	0.05	pF

2

Equivalent noise resistance

Input conductance (f = 50 MHz) g

TYPICAL CHARACTERISTICS						
Anode voltage	v_a	2	50	250	170	V
Grid No.2 voltage	v_{g_2}	10	00	85	100	V
Grid No.3 voltage	$v_{\mathbf{g_3}}$		0	0	0	V
Anode current	I_a		9	9	12	mA
Grid No.1 voltage	v_{g_1}	-	-2	-1.2^{1})	-1.2 ¹) V
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$		3	3.2	4.4	mA
Transconductance	S	3	. 6	4.0	4.4	mA/V
Internal resistance	$R_{\mathbf{i}}$	0	. 9	0.75	0.4	$M\Omega$
Amplification factor	μg ₂ g	1 .	-	21	-	-
OPERATING CHARACTERISTI	CS					
Anode voltage, supply voltage	$v_a = v_b$	2	50	:	200	v
Grid No.3 voltage	v_{g_3}		0		0	v
Grid No.2 resistor	$R_{\mathbf{g_2}}$		51		24	kΩ
Cathode resistor	$R_{\mathbf{k}}$	1	60	•	1 3 0	Ω
Grid No.1 voltage	v_{g_1}	-1.95	-20	-1.95	-20	v
Anode current	I_a	9	-	11.1	-	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	3	-	3 .8	-	mA
Transconductance	S	3.5	0.24	3 . 85	0.16	mA/V
Internal resistance	R_i	0.9	-	0.55	-	$M\Omega$

 R_{eq}

4.2

95

4.2

102

kΩ

μA/V

January 1969

 $^{^{}m l}$) In this case control grid current may occur. If this is not permissible, the negative grid bias should be increased to a value of 1.5 V at least.

OPERATING CH	ARACTERISTICS ((continued)
--------------	-----------------	-------------

Anode voltage, supply voltage	$v_a = v_b$	25	50 ¹)	20)0 ¹)	V
Grid No.3 voltage	$v_{\mathbf{g_3}}$		0		0	v
Grid No.2 resistor	$^{\mathrm{R}}\mathrm{g}_{2}$	(62	3	33	$\mathbf{k}\Omega$
Cathode resistor	$R_{\mathbf{k}}$		0		0	Ω
Grid No.1 resistor	$^{\mathrm{Rg}}_{1}$:	10	1	10	$M\Omega$
Control voltage	VR(g ₁)	0	-20	0	-20	v
Anode current	I_a	9	-	11.25	-	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	2.9	-	3.9	-	mA
Transconductance	S	4.7	0.22	5.15	0.15	mA/V
Internal resistance	R_i	825	-	550	-	$\mathbf{k}\Omega$
Equivalent noise resistance	Rea	2.4	_	2.5	_	$\mathbf{k}\Omega$

LIMITING VALUES (Design centre rating system)

Anode voltage	$v_{\mathbf{a_0}}$	max.	550	V
	v_a	max.	3 00	V
Anode dissipation	w_a	max.	2.25	W
Grid No. 2 voltage	v_{g2_0}	max.	550	V
	v_{g_2}	max.	3 00	V
Grid No.2 dissipation	w_{g_2}	max.	0.45	W
Cathode current	$I_{\mathbf{k}}$	max.	16.5	mA
Grid No.1 resistor	$^{\mathrm{R}}\mathbf{g}_{1}$	max.	3	$M\Omega$
Grid No.3 resistor	$^{\mathrm{R}}$ g ₃	max.	10	kΩ
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	100	V

 $^{^{\}rm l}$) In this case control grid current may occur. If this is not permissible, the negative grid bias should be increased to a value of 1.5 V at least.

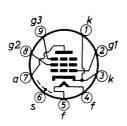
I.F. PENTODE

Pentode with variable transconductance intended for use as I.F. amplifier in television receivers.

QUICK REFEREN	ICE DATA		
Anode current	I _a	12	mA
Transconductance	S	12.5	mA/V
Internal resistance	R_i	500	$k\Omega$

HEATING: Indirect by A.C. or D.C.; parallel or series supply

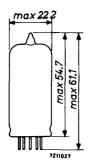
Heater voltage


Heater current

$v_{\rm f}$	6.3	V
If	3 00	mΑ

Dimensions in mm

DIMENSIONS AND CONNECTIONS


Base: Noval

CAPACITANCES

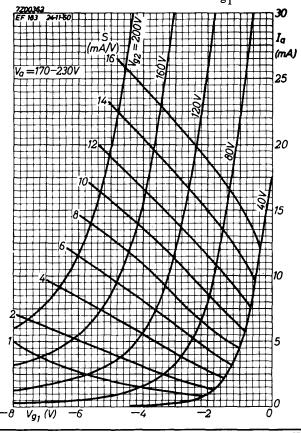
Anode to all except grid No.1 Grid No.1 to all except anode Anode to grid No.1

Grid No.1 to grid No.2

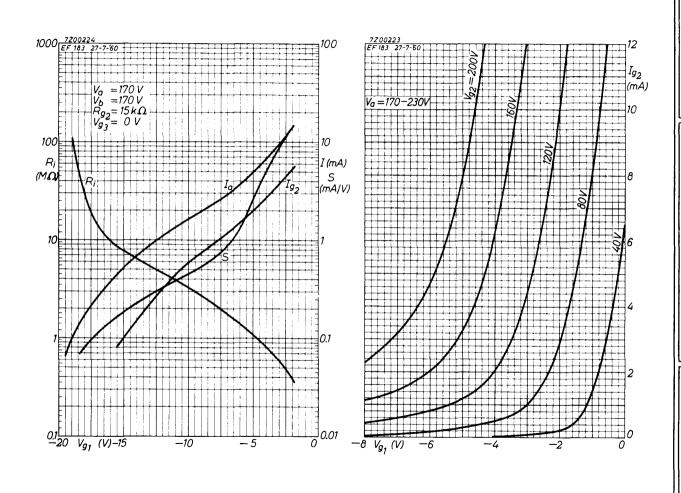
 $C_{a}(g_{1})$ 3 pF $C_{g_{1}}(a)$ 9.5 pF $C_{ag_{1}}$ max. 0.005 pF $C_{g_{1}g_{2}}$ 2.8 pF

TYPICAL CHARACTERISTICS								
Anode voltage				Va	ı		200	V
Grid Nö.3 voltage				Vg	33		0	V
Grid No.2 voltage				Vg			90	v
Grid No.1 voltage				Vg			-2	V
Anode current				Ia	•		12	mA
Grid No.2 current				$^{\mathrm{I}}\mathrm{g}$	2		4.5	mA
Transconductance				S	_		12.5	mA/V
Internal resistance				R_{i}	L		500	$\mathbf{k}\Omega$
Input resistance grid No.1 (f = 40 MHz)				rg	·1		13	kΩ
Equivalent noise resistant (f = 40 MHz)	e			R	e q		490	Ω
OPERATING CHARACTER	RISTIC	S						
Anode voltage	v_a	1	70	20	0	23	3 0	V
Grid No.3 voltage	v_{g_3}		0		0		0	V
Grid No.2 supply voltage	v_{bg_2}	1	70	20	0	23	3 0	V
Grid No.2 resistor	R_{g_2}		15	2	4	3	39	kΩ
Grid No.1 voltage	v_{g_1}	-1.8	-7.5	-2.0	-9.5	-2.1	-12	v
Anode current	Ia	14	2.7	12	2.7	10.5	2.4	mA

REMARK

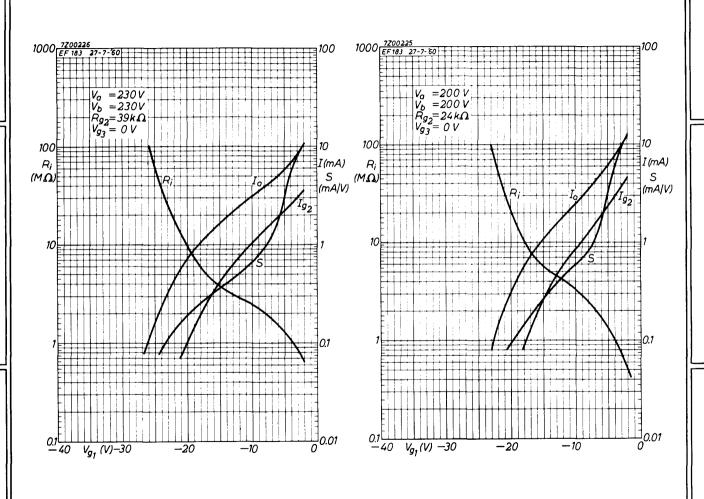

Transconductance

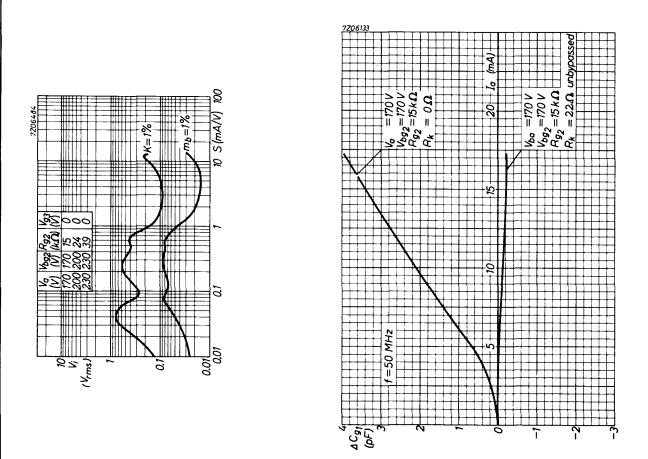
Operation with cathode bias resistor and/or screen grid resistor is recommended.

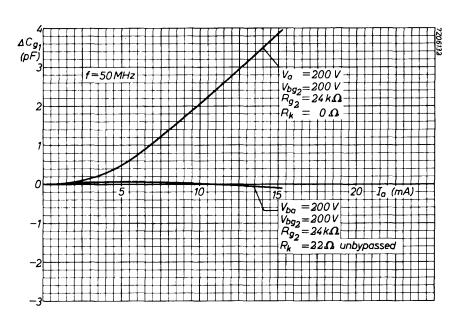

S 14 0.7 12.5 0.62 10.6 0.5 mA/V

LIMITING VALUES (Design centre rating system)

Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	v
Anode dissipation	w_a	max.	2.5	W
Grid No.2 voltage	$v_{g_{2_0}}$	max.	550	v
	v_{g_2}	max.	250	v
Grid No.2 dissipation	w_{g_2}	max.	0.65	W
Grid No.1 voltage, negative peak	$-v_{g_{1p}}$	max.	50	v
Cathode current	I _k	max.	20	mA
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	150	v
Grid No.3 resistor	$^{\mathrm{R}}$ g3	max.	50	$\mathbf{k}\Omega$
Grid No.1 resistor	$R_{\mathbf{g}_1}$	max.	1	$M\Omega$







S

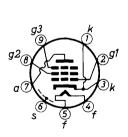
I.F. PENTODE

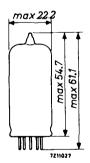
Pentode intended for use as I.F. amplifier in television receivers.

QUICK REFERENCE DATA							
Anode current	Ia	10	mA				
Transconductance	S	15	mA/V				
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	60	-				
Internal resistance	Ri	380	kΩ				

HEATING: Indirect by A.C. or D.C.; parallel or series supply

Heater voltage


Heater current


$v_{\rm f}$	6.3	V
I_f	300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1

Grid No.1 to all except anode

Anode to grid No.1

Grid No.1 to grid No.2

 $C_{a(g_1)}$

3 pF 10 pF

 $C_{g_1(a)}$

pF

 C_{ag_1}

max. 0.0055

 $C_{g_1g_2}$

2.8 pF

TYPICAL	CHARA(CTERISTICS
---------	--------	------------

I II I CHI CIMMICI EMBIICO					
Anode voltage		v_a		200	V
Grid No.3 voltage		v_{g_3}		0	V
Grid No.2 voltage		v_{g_2}		200	V
Grid No.1 voltage		$v_{g_1}^-$		-2.5	V
Anode current		I_a		10	mA
Grid No.2 current		I_{g_2}		4.1	mA
Transconductance		S		15	mA/V
Internal resistance		R_i		380	$\mathbf{k}\Omega$
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$		60	-	
Input resistance grid No.1 (f =	r_{g_1}		11	$k\Omega$	
Equivalent noise resistance (f = 40 MHz)		Req		330	Ω
OPERATING CHARACTERIST	ICS				
Anode supply coltage	v_{ba}	170	200	230	v
Grid No.3 voltage	v_{g_3}	(0	0	v
Grid No.2 supply voltage	$v_{ m bg_2}$	170	200	230	v
Grid No.2 resistor	R_{g_2}	(7.5	15	$\mathbf{k}\Omega$
Cathode resistor	Rk	140	140	140	Ω
Anode current	Ιa	10) 10	10	m A
Grid No.2 current	I_{g_2}	4.	4.1	4.1	mA
Transconductance	S	15.0	15.6	15.6	mA/V
Internal resistance	R_{i}	330	510	680	$k\Omega$

REMARKS

Input resistance grid No.1

Equivalent noise resistance

f = 40 MHz

f = 40 MHz

- 1. Operation with cathode bias resistor is recommended.
- In order to ensure a good performance with respect to cross-modulation and microphony this tube should not be used in circuits with automatic gain control. For such applications a tube with variable transconductance is recommended.

 r_{g_1}

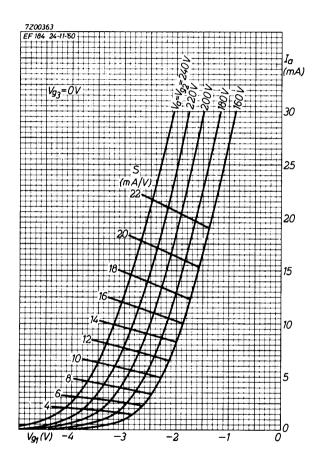
 R_{eq}

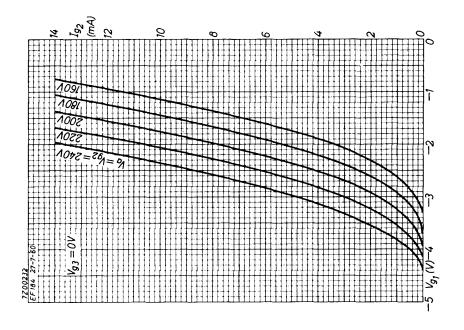
10

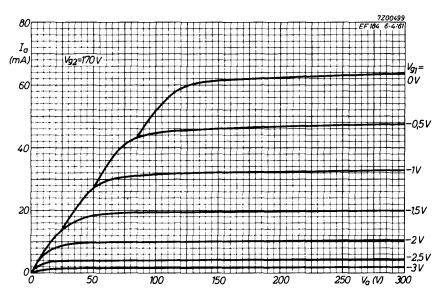
300

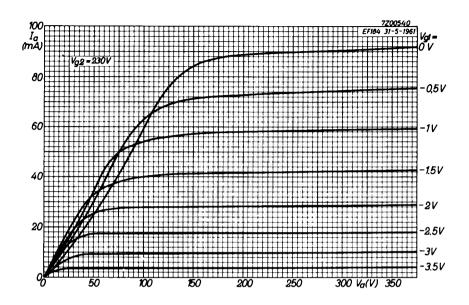
10

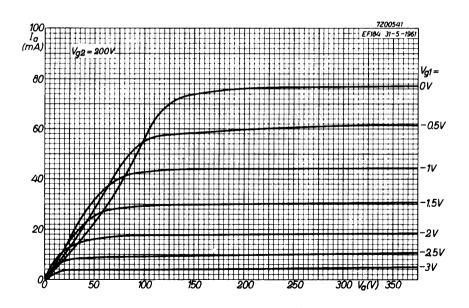
300


10 $k\Omega$


 300Ω


LIMITING	VALUES	(Design centre	rating system)	
THAILLING	VALLUES	(Design centre	Talling System)	


Anode voltage	v_{ao}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	2.5	W
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	250	V
Grid No.2 dissipation	w_{g_2}	max.	0.9	W ¹)
Grid No.1 voltage, negative peak	$-v_{g_{1p}}$	max.	50	V
Cathode current	I _k	max.	25	mA
Cathode to heater voltage	v_{kf}	max.	150	V
Grid No.1 resistor	R_{g_1}	max.	1	$M\Omega$


¹⁾ During a heating-up period not exceeding 15 seconds this value may be max. 1.5 W. At the values of R_{g_2} specified under "Operating characteristics" there will be no risk of exceeding the maximum permissible value of W_{g_2} .

DOUBLE PENTODE

Double pentode intended for use as video output tube and as sync separator, A.G.C. amplifier or I.F. sound amplifier.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

 V_f 6.3 V

Heater current

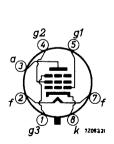
I_f 810 mA

For further data and curves of this type please refer to type PFL200

A.F. OUTPUT PENTODE

Pentode intended for use as A.F. power amplifier.

QUICK REFERENCE DATA						
Anode current	Ia	100	mA			
Transconductance	S	12.5	mA/V			
Amplification factor	$\mu_{g_2g_1}$	11				
Output power, class B		100	W			

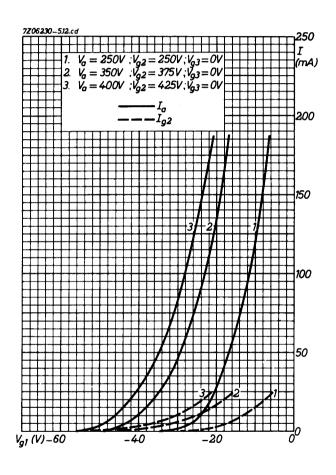

HEATING: Indirect by A.C. or D.C.; parallel supply

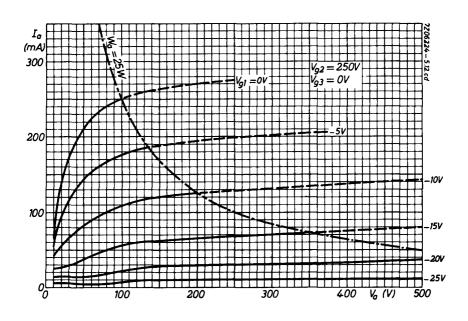
Heater voltage Heater current $\begin{array}{ccc} V_{\mathbf{f}} & 6.3 & V \\ I_{\mathbf{f}} & 1.5 & A \end{array}$

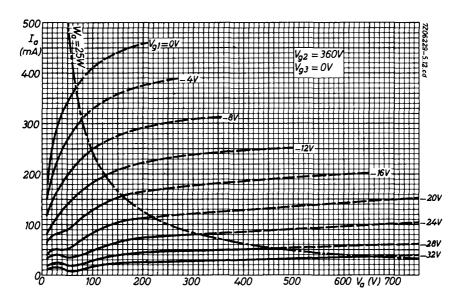
DIMENSIONS AND CONNECTIONS

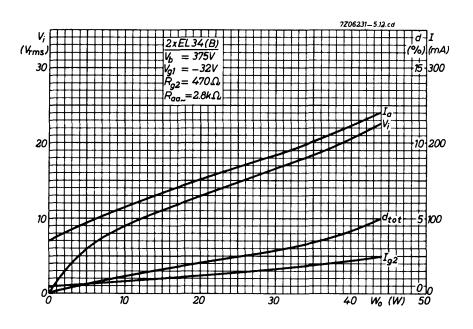
Dimensions in mm

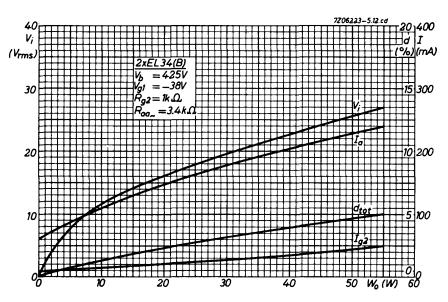
Base: Octal Socket: 5903/13

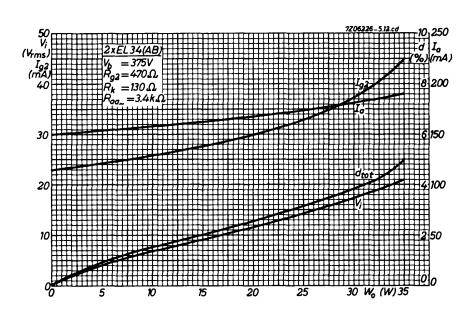

CAPACITANCES				
Anode to all except grid No.1	$C_{a(g_1)}$			pF
Grid No.1 to all except anode	$C_{g_1(a)}$			p F
Anode to grid No.1	C _{ag1}	max	. 1.1	p F
Grid No.1 to heater	$C_{\mathbf{g_1}\mathbf{f}}$	max	. 1.0	pF
Cathode to heater	Ckf		10	pF
OPERATING CHARACTERISTICS				
Class A				
Supply voltage	v_b	265	265	v
Anode voltage	v_a	250	250	v
Grid No.2 series resistor	R_{g_2}	2	0	kΩ
Grid No.3 voltage	v_{g_3}	0	0	v
Grid No.1 voltage	v_{g_1}	-14.5	-13.5	v
Anode current	I _a	70	100	m A
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	10	14.9	mA
Transconductance	S	11	12.5	mA/V
Amplification factor	$\mu_{g_2g_1}$	11	11	
Internal resistance	$R_{\mathbf{i}}$	20	17	kΩ
Load resistance	$R_{a_{\infty}}$	3.0	2.0	kΩ
Grid No.1 driving voltage	v_i	9.3	8.7	v_{RMS}
Output power	w_{o}	8	11	w
Distortion	d_{tot}	10	10	%
Grid No.1 driving voltage for W _O = 50 mW	v_{i}	0.65	0.5	V _{RMS}


OPERATING CHARACTERISTICS


Class B	two	tubes	in	push-pull
---------	-----	-------	----	-----------


Common grid No.2								
series resistor (non decoupled)	R_{g_2}		1000			470		Ω
Grid No.1 voltage	v_{g_1}		-38			-32		v
Grid No.3 voltage	v_{g_3}		0			0		v
Grid No.1 driving voltage	v_i	0	27	27	0	22.7	22.7	V _{RMS}
Load resistance	R_{aa}	-	3.4	4.0	-	2.8	3.8	kΩ
Supply voltage	v_b	425	425	400	375	375	350	v
Anode voltage	v_a	420	400	375	370	350	3 2 5	v
Anode current	I _a	2x 30	2x120	2x100	2x 35	2x120	2x93	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	2x4.4	2x25	2x25	2x4.7	2x25	2 x2 5	m A
Output power	\mathbf{w}_{o}^{2}	0	55	45	0	44	36	w
Distortion	d_{tot}	-	5	6	-	5	6	%
Common grid No.2 series resistor								
(non decoupled)	R_{g_2}		750			750		Ω
Grid No.1 voltage	v_{g_1}		-36			-39		V
Grid No.3 voltage	v_{g_3}		0			0		V
Grid No.1 driving voltage	v _i	0	25.8	25.8	0	23.4	23.4	v_{RMS}
Load resistance	$R_{aa_{\sim}}$	-	4	5	-	11	11	kΩ
Anode supply voltage	v_{b_a}	500	500	475	800	800	750	V
Anode voltage	v_a	495	475	450	795	775	725	v
Grid No.2 supply voltage	v_{bg_2}	400	400	375	400	400	375	v
Anode current	I _a	2x30	2x125	2x102	2x25	2x91	2x84	mA
Grid No.2 current	I_{g_2}	2x4	2x25	2x25	2x3	2 x19	2x19	mA
Output power	$\mathbf{w}_{\mathbf{o}}$	0	70	58	0	100	90	W
Distortion	d_{tot}	-	5	6	-	5	6	%


OPERATING CHARACTERISTICS								
Class AB, two tubes in push-pull								
Load resistance	R_{aa}		3.4		kΩ			
Common grid No.2 series resistor (non decoupled)	R_{g_2}		470		Ω			
Common cathode resistor	R_k		130		Ω			
Grid No.3 voltage	v_{g_3}		0		V			
Grid No.1 driving voltage	v_i	0		21	v_{RMS}			
Supply voltage	v_b	375		375	V			
Anode to earth voltage	$v_a + v_{Rk}$	355		350	V			
Anode current	I_a	2x75		2x95	m A			
Grid No.2 current	I_{g_2}	2x11.5	2:	x22.5	mA			
Output power	\mathbf{w}_{0}	0		35	W			
Distortion	d_{tot}	-		5	%			
LIMITING VALUES (Design centre	rating sys	tem)						
Anode voltage		v_{a_0}	max.	2000	v			
		v_a	max.	800	V			
Grid No.2 voltage		$v_{g_{2_O}}$	max.	800	V			
		v_{g_2}	max.	500	v			
Anode dissipation		- 4						
at $V_i = 0$		w_a	max.	25	W			
at $V_i > 0$		Wa	max.	27.5	W			
Grid No.2 dissipation		w_{g_2}	max.	8	W			
Cathode current		Ik	max.	150	m A			
Grid No.1 resistor								
for class A and AB		R_{g_1}	max.	0.7	МΩ			
for class B		R_{g_1}	max.	0.5	. MΩ			
Cathode to heater voltage		v_{kf}	max.	100	V			



LINE AND A.F. OUTPUT PENTODE

Pentode intended for use as line output tube in television receivers and as A.F. power amplifier.

HEATING:	indirectly by	A.C. or	D.C.;	parallel	supply

Heater voltage $\frac{V_f}{I_f} = 6.3 \text{ V}$ Heater current $\frac{V_f}{I_f} = 1.25 \text{ A}$

OPERATING CHARACTERISTICS

A.F. amplifier. Class B, two tubes in push pull

Anode voltage	v_a	300		V
Grid No.2 voltage	v_{g_2}	15	0	V
Grid No.1 voltage	v_{g_1}	-2	9	V
Load resistance	R _{aa} ∼	3.	5	$\mathbf{k}\Omega$
Grid No.1 driving voltage	Vi	0	20	V _{RMS}
Anode current	I_a	2x18	2x100	mA
Grid No.2 current	I_{g_2}	2x0.5	2x19	mA
Output power	W_{o}	0	44.5	W
Distortion	d_{tot}	-	7.2	%

LIMITING VALUES (Design centre rating system)

Anode voltage	v_a	max.	250	V
Anode voltage for class B operation	v_a	max.	3 00	v
Cathode to heater voltage	$V_{\mathbf{k}\mathbf{f}}$	max.	100	V

For further data and curves of this type please refer to PL36 $\,$

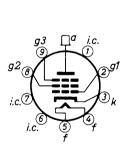
OUTPUT PENTODE FOR LINE DEFLECTION AND A.F. OUTPUT PENTODE

Output pentode intended for use as horizontal deflection amplifier in small screen television receivers and as A. F. power amplifier.

QUICK REFEREN	CE DATA			
Anode peak voltage	v_{ap}	max.	7	kV
Cathode current	Ik	max.	180	mA
Output power, class B two tubes	w_{o}		20	W

HEATING: Indirect by A.C. ot D.C.; parallel supply

Heater voltage


Heater current

 $\frac{V_{f}}{I_{f}} \quad \begin{array}{ccc} 6.3 & V \\ 1.05 & A \end{array}$

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES				
Anode to all except grid No. 1	$C_{\mathbf{a}(\mathbf{g}_1)}$		6	pF
Grid No. 1 to all except anode	$C_{g_1(a)}$		14	pF
Anode to grid No. 1	C_{ag_1}	max.	0.8	pF
Anode to cathode	$C_{\mathbf{a}\mathbf{k}}$	max.	0.1	pF
Grid No. 1 to heater	$C_{f glf}$	max.	0.2	pF
TYPICAL CHARACTERISTICS				
A)				
Anode voltage	v_a		170	v
Grid No. 3 voltage	$v_{\mathbf{g}_3}$		0	v
Grid No. 2 voltage	v_{g_2}		170	V
Grid No. 1 voltage	v_{g_1}		-24	V
Anode current	Ia		45	mA
Grid No. 2 current	l_{g2}		2.4	mA
Transconductance	S		6.3	mA/V
Internal resistance	R_i		11	$\mathbf{k}\Omega$
Amplification factor	$^{\mu}g_{2}g_{1}$		5.0	
B) (Measured under pulse conditions)				
Anode voltage	v_a		40	V
Grid No. 3 voltage	v_{g_3}		0	V
Grid No. 2 supply voltage	v_{bg_2}		190	v
Grid No. 2 series resistor	R_{g2}		4.7	$\mathbf{k}\Omega$
Grid No. 1 voltage	v_{g1}		0	V
Anode current	1 _a		180	mA
Grid No. 2 current	I_{g2}		18	mA

OPERATING CONDITIONS

Stabilized circuits (D.C. feedback)

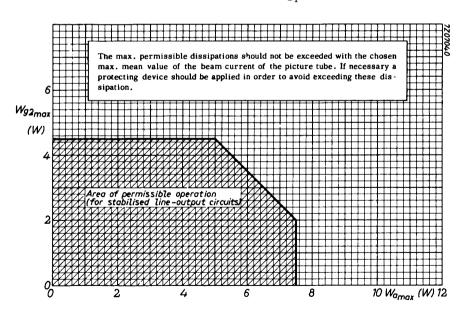
Cut-off voltage

The minimum required cut-off voltage (-V_{g1}) during flyback is 120 V at V_a = 6000 V, V_g2 = 190 V, and Z_{g1} = 1 k Ω at line-frequency.

Supply-voltage: See page 5

Minimum required value of the screengrid voltage and of the anode voltage, when the tube is used in a line output stage.

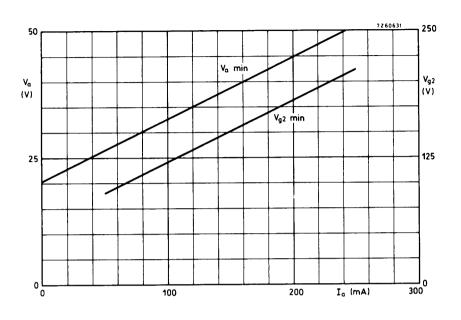
The graphs refer to nominal mains voltage provided the specified values of I_a at V_a min, will be available throughout life of the tube at supply voltage values 10% below nominal.

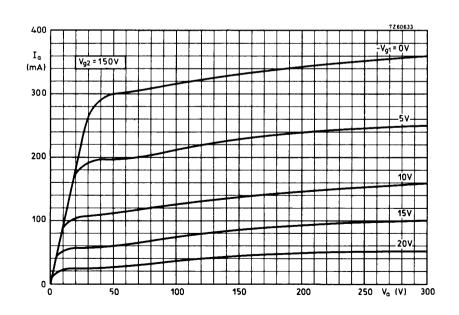

In order to prevent Barkhausen interferences and less of stabilisation, care should be taken that the anode voltage never drops below the specified V_a min. during the scanning period.

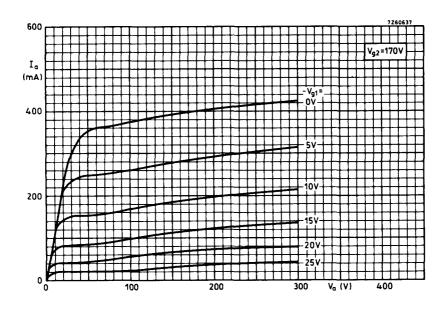
OPERATING CHARACTERISTICS as class B push-pull A.F. power amplifier, two tubes.

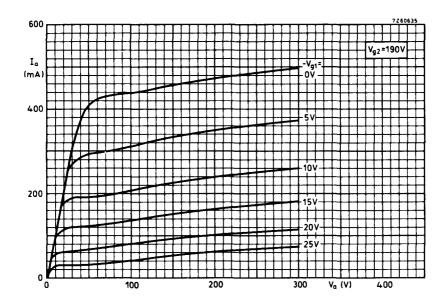
Anode voltage	v_a	1	70		200		
Grid No. 3 voltage	v_{g3}		0		0	v	
Grid No. 2 supply voltage	v_{bg2}	1	70		200	V	
Common Grid No. 2 series resistor	R _{g2}		1		1	kΩ	
Grid No. 1 voltage	v_{g1}	-:	27	-	31.5	v	
Load resistance	$R_{aa}{\scriptstyle \sim}$	2.5		2.5		$\mathbf{k}\Omega$	
Grid No.1 driving voltage	v_i	0	16.5	0	21.5	V _{RMS}	
Anode current	I_a	2x 25	2x72	2x27	2x84	mA	
Grid No. 2 current	I_{g2}	2x1.5	2x10	2x2.0	2x11.0	mA	
Output power	$\mathbf{w_o}$	0	13.0	0	20	w	
Distortion	d_{tot}	-	5.2	-	6.5	%	

LIMITING VALUES	(Design centre	rating	system)
-----------------	----------------	--------	---------


v_{a_0}	max. 550	V
v_a	max. 250	V
v_{a_p}	max. 7	kV ¹)
$-v_{a_p}$	max. 7	kV ¹)
w_a	1	
W_{g2}^{2})	See figure below	
$W_a + W_{g2}$	1	
$v_{g_{2_0}}$	max. 550	V
$v_{\mathbf{g}_2}$	max. 250	V
$I_{\mathbf{k}}$	max. 180	mA
$v_{\mathbf{kf}}$	max. 100	v
R_{g_1}	max. 0.5	$\mathbf{M}\Omega$
	V _a V _{ap} -V _{ap} W _a W _{g2} ²) W _a +W _{g2} V _{g2o} V _{g2} I _k V _{kf}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$




 $^{^{1}\}text{)}$ Maximum pulse duration 22 % of a cycle but maximum 18 $\mu s.$


 $^{^{2}}$) During the heating-up of the cathode W_{g2} = max. 6 W.

5

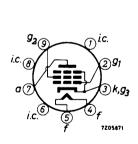
A.F. OUTPUT PENTODE

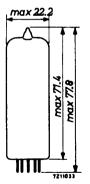
Pentode intended for use as A.F. power amplifier.

QUICK REFERENCE DATA					
Anode current	I _a	48	mA		
Transconductance	S	11.3	mA/V		
Amplification factor	$\mu_{g_2g_1}$	19			
Output power	Wo	6.0	W		

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current


 $\frac{V_f}{I_f} \qquad \begin{array}{ccc} 6.3 & V \\ 760 & mA \end{array}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1 Grid No.1 to all except anode Anode to grid No.1 Grid No.1 to heater $C_{a(g_1)}$ 6.5 pF $C_{g_1(a)}$ 10.8 pF C_{ag_1} max. 0.5 pF C_{g_1f} max. 0.25 pF

OPERATING	CHARAC	FERISTICS
-----------	--------	------------------

OFERATING C	IIAKAC I EKISTIC	23							
Class A									
Anode voltage		v_a				250			V
Grid No.2 volt	age	V_{g_2}	?			250			V
Grid No.1 volt	age	v_{g_1}				-7.3			V
Cathode resist	or	$R_{\mathbf{k}}$				135			Ω
Load resistanc	e	R _a ,	~			5.2			$\mathbf{k}\Omega$
Grid No.1 driv	ing voltage	v_{i}		0	0.3	3.4	4.3	4.72	VRMS
Anode current		I _a		48	-	-	49.5	49.2	mA
Grid No.2 curi	rent	I_{g_2}		5.5	-	-	10.8	11.6	mA
Transconducta	nce	S		11.3	-	-	-	-	mA/V
Amplification f	factor	μ_{g_2}	gı	19	-	-	-	-	
Internal resist	ance	R_{i}^{2}	•	38	-	-	-	-	$k\Omega$
Output power		W_{o}	¹)	0	0.05	4.5	5.7	6.0	W
Distortion, tot	al	dto	· 1)	-	-	6.8	10	-	%
sec	cond harmonic	d_2	1)	-	-	3.0	2.0	-	%
thi	rd harmonic	d_3	l)	-	-	5.8	9.5	-	%
Anode voltage		v _a		-	·	250			V
Grid No.2 volt	age	v_{g_2})			250			V
Grid No.1 volt	age	v_{g_1}				-7.3			V
Cathode resist	or	R_k	•			135			Ω
Load resistanc	e	R _a ,	~			4.5			$k\Omega$
Grid No.1 driv	ing voltage	$V_{\mathbf{i}}$		0	0.3	3.5	4.4	4.8^{2}	V _{RMS}
Anode current		I_a		48	-	-	50.6	50.5	m A
Grid No.2 curi	rent	I_{g_2}		5.5	-	-	10	11	m A
Transconducta	nce	S		11.3	-	-	-	-	mA/V
Amplification f	factor	μ_{g_2}	gı	19	-	-	-	-	
Internal resist	ance	R_i	•	38	+	-	-	-	$k\Omega$
Output power		W_{o}	¹)	0	0.05	4.5	5.7	6.0	W
Distortion, tot	al	dto	1)	-	-	7.5	10	-	%
sec	cond harmonic	d_2	¹)	_	-	5.7	5.0	-	%
thi	rd harmonic	d3	1)	-	-	4.5	8	-	%

¹⁾ Measured with fixed bias 2) At $I_{g_1} = +0.3 \mu A$

OPERATING CHARACTERISTICS	(continued)				
Class A (continued)						
Anode voltage	v_a		25	50		v
Grid No.2 voltage	v_{g_2}	250			V	
Grid No.1 voltage	v_{g_1}	-8.4				V
Cathode resistor	$R_{\mathbf{k}}$	210				Ω
Load resistance	R_{a}_{\sim}	7				$\mathbf{k}\Omega$
Grid No.1 driving voltage	V_{i}	0	0.3	3.5	5.52) V _{RMS}
Anode current	I_a	36	-	36.8	36	mA
Grid No.2 current	I_{g_2}	4.1	-	8.5	14.6	mA
Transconductance	S	10	-	-	-	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	19	-	_	-	
Internal resistance	R _i	40	-	-	-	$\mathbf{k}\Omega$
Output power	W_0^{-1})	0	0.05	4.2	5.6	W
Distortion, total	d_{tot}^{l})	-	-	10	-	%
second harmonic	d_2 1)	-	-	1.7	-	%
third harmonic	d ₃ ¹)	-	-	8.7	-	%
Anode voltage	v _a	250				v
Grid No.2 voltage	v_{g_2}	210			v	
Grid No.1 voltage	v_{g_1}	-6.4			v	
Cathode resistor	R _k	160			Ω	
Load resistance	R_{a}	7			$\mathbf{k}\Omega$	

 $\mu_{g_2g_1}$ Internal resistance Ri 40 kΩ W_0^{-1}) 0 0.05 4.3 4.7 W Output power d_{tot} 1) % Distortion, total 10 % d_2 1) 1.8 second harmonic

 d_3 l)

 V_i

Ιa

 I_{g_2}

S

third harmonic

Grid No.1 driving voltage

Anode current

Grid No.2 current

Transconductance

Amplification factor

3.8²) V_{RMS}

mΑ

mΑ mA/V

%

0.3

0

36

3.9

19

10.4

3.4

7.3

9.3

36.6 36.5

8.0

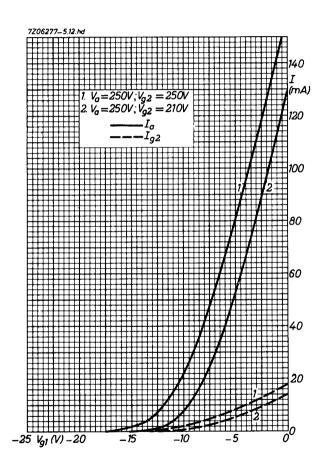
¹⁾ Measured with fixed bias

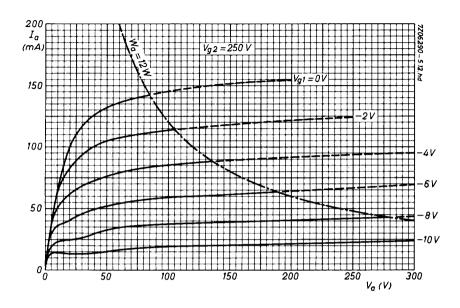
²⁾ At $I_{g_1} = +0.3 \,\mu\text{A}$

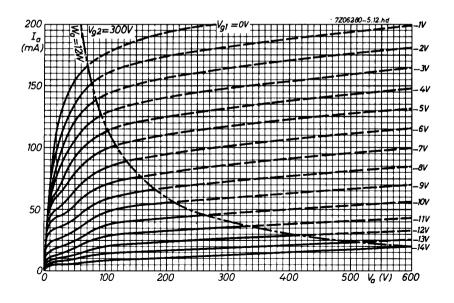
OPERATING CHARACTERISTICS (continued)

		•							
Class B, two tubes in push-pull									
Anode voltage	v_a	25	0	300		v			
Grid No.2 voltage	v_{g_2}	25	0	300		v			
Grid No.1 voltage	v_{g_1}	-11.	6	-14.	v				
Load resistance	R_{aa}		8	8		kΩ			
Grid No.1 driving voltage	v_{i}	0	8	0	10	v_{RMS}			
Anode current	Ia	2x10	2x37.5	2x7.5	2x46	mA			
Grid No.2 current	I_{g_2}	2x1.1	2x7.5	2x0.8	2x11	mA			
Output power	W_{o}	0	11	0	17	w			
Distortion	d_{tot}	-	3	-	4	%			
Class AB, two tubes in push-pull									
Anode voltage	V_a	25	0	30	v				
Grid No.2 voltage	v_{g_2}	25	0	30	v				
Common cathode resistor	R_k	130		130		Ω			
Load resistance	$R_{aa_{\scriptstyle \sim}}$	8		8		$\mathbf{k}\Omega$			
Grid No.1 driving voltage	v_{i}	0	8	0	10	v _{RMS}			
Anode current	Ia	2x31	2x37.5	2x36	2x46	mA			
Grid No.2 current	I_{g_2}	2 x 3.5	2x7.5	2x4	2x11	mA			
Output power	w _o	0	11	0	17	W			
Distortion	d_{tot}	-	3	-	4	%			

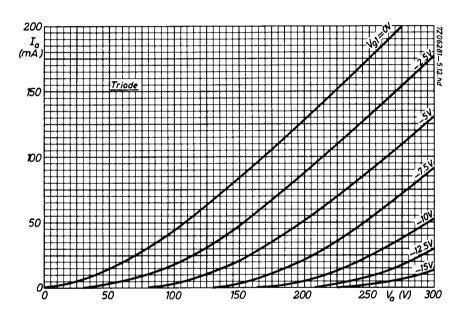
OPERATING CHARACTERISTICS IN TRIODE CONNECTION (g2 connected to a)

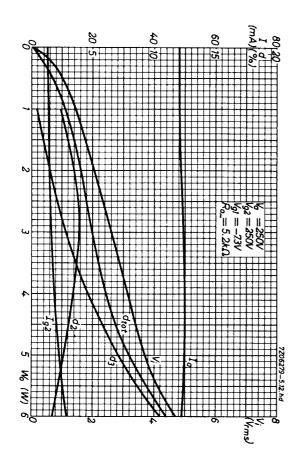

Class A								
Anode voltage				v_a		250		V
Cathode resistor				$R_{\mathbf{k}}$		270		Ω
Load resistance				$R_{a_{\sim}}$		3.5		$\mathbf{k}\Omega$
Grid No.1 driving	voltage			v_i	0	1.0	6.7	V _{R MS}
Anode current				I _a	34	-	36	mA
Output power				w_o	-	0.05	1.95	W
Distortion				d_{tot}	-	-	9	%
Class AB, two tube	es in push-	pull						
Anode voltage	v_a		250			300		v
Common cathode resistor	R _k		270			270		Ω
Load resistance	R_{aa}		10			10		kΩ
Grid No.1 driving voltage	v_i	0		8.3		0	10	V _{RMS}
Anode current	Ia	2x20		2x21.7	2x2	4	2x26	mA
Output power	W_{o}	0		3.4	(0	5.2	W
Distortion	d_{tot}	-		2.5	-		2.5	%
Grid No.1 driving voltage for W _O = 50 mW	v_i		0.95			0.9		V _{RMS}

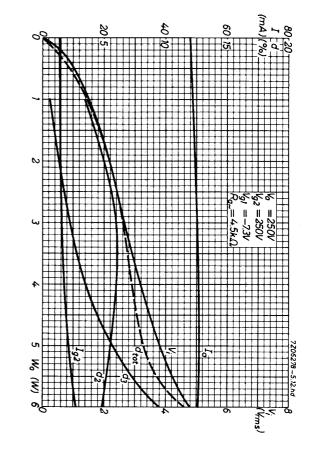

LIMITING	VALUES	(Design centre rating system)

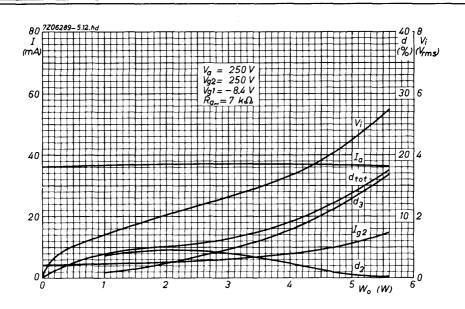

Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	300	V 1)
Anode dissipation	w_a	max.	12	W 1)
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	300	V 1)
Grid No.2 dissipation	$w_{g_2}^-$	max.	2	W
	$w_{g_{2p}}$	max.	4	W
Grid No.1 voltage	$-v_{g_1}$	max.	100	v
Cathode current	$I_{\mathbf{k}}$	max.	65	mA
Grid No.1 resistor				
for automatic bias	$^{\mathrm{R}}g_{1}$	max.	1	$M\Omega$
for fixed bias	R_{g_1}	max.	0.3	$M\Omega$
Cathode to heater voltage	$v_{ m kf}$	max.	100	V

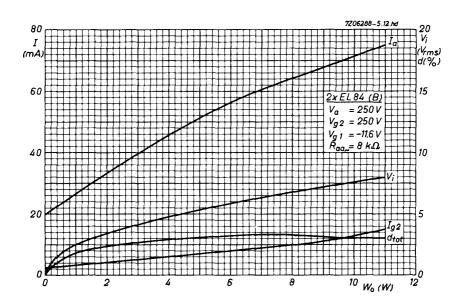
¹⁾ When the heater and positive voltages are obtained from a storage battery by means of a vibrator, the max. values of V_a and V_{g_2} are 250 V and that of W_a is 9 W.

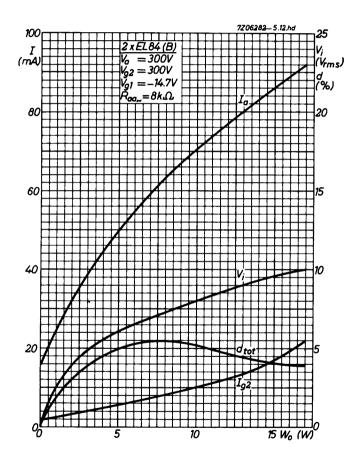

7



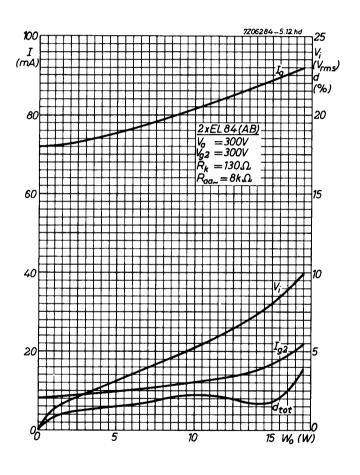





9





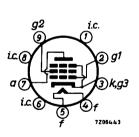


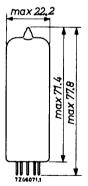
FRAME AND A.F. OUTPUT PENTODE

Pentode intended for use as frame output tube in television receivers and as A.F. power amplifier.

QUICK REF	ERENCE DATA			
Anode peak voltage	V _{ap}	max.	2	kV
Cathode current	$I_{\mathbf{k}}$	max.	100	mA
Output power	W_{o}		5.3	W

HEATING: Indirect by A.C. or D.C.; parallel supply


Heater voltage


Heater current

 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{760 \text{ mA}}$

DIMENSIONS AND CONNECTIONS

Base: Noval

Dimensions in mm

CAPACITANCES

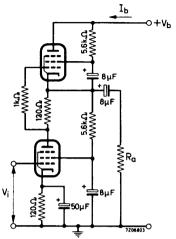
Anode to all except grid No.1	$C_{a(g_1)}$		6.8	pF
Grid No.1 to all except anode	$C_{g_1(a)}$		13	pF
Anode to grid No.1	c_{ag_1}	max.	0.6	pF
Grid No.1 to heater	c_{g_1f}	max.	0.25	pF

OPTIMUM PEAK ANODE CURRENT IN FRAME OUTPUT OPERATION

The circuit should be designed so that the peak anode current does not exceed:

145 mA at
$$V_a$$
 = 60 V, V_{g_2} = 170 V, V_f = 6.3 V 190 mA at V_a = 70 V, V_{g_2} = 200 V, V_f = 6.3 V 220 mA at V_a = 80 V, V_{g_2} = 220 V, V_f = 6.3 V

The minimum available value of the peak anode current at end of life and $V_f = 5.7 \ V$ is:


125 mA at
$$V_a$$
 = 60 V, V_{g_2} = 170 V
160 mA at V_a = 70 V, V_{g_2} = 200 V
185 mA at V_a = 80 V, V_{g_2} = 220 V

OPERATING CHARACTERISTICS

A.F. power amplifier, class A (Measured with V _k constant)						
Supply voltage	v_b		200		v	
Grid No.2 series resistor (non decoupled)	$^{\mathrm{R}}\mathrm{g}_{2}$		470		Ω	
Cathode resistor	$R_{\mathbf{k}}$		215		Ω	
Load resistance	R _a $_{\sim}$		2.5		$\mathbf{k}\Omega$	
Grid No.1 driving voltage	v_{i}	0	0.52	7.0	v_{RMS}	
Anode current	I_a	65	-	64	mA	
Grid No.2 current	I_{g_2}	3.2	-	11.4	mA	
Output power	W_{o}	0	0.05	5.3	w	
Distortion	d_{tot}	-	-	10	%	
A.F. power amplifier, class AB,	two tubes in push	n-pull				
Anode supply voltage	v_{ba}		250		v	
Grid No.2 supply voltage	$v_{ m bg_2}$		200		v	
Common cathode resistor	$R_{\mathbf{k}}$		150		Ω	
Load resistance	R _{aa} ~		5.5		$\mathbf{k}\Omega$	
Grid No.1 driving voltage	v_{i}	0	0.37	13.0	v_{RMS}	
Anode current	I_a	2x50	-	2x55	mA	
Grid No.2 current	I_{g_2}	2x2.0	-	2x13	m A	
Output power	w_{o}	0	0.05	18.5	W	
Distortion	d_{tot}	-	-	4.5	%	

OPERATING CHARACTERISTICS (continued)

A.F. power amplifier, single ended push-pull

a) Single tone input signal

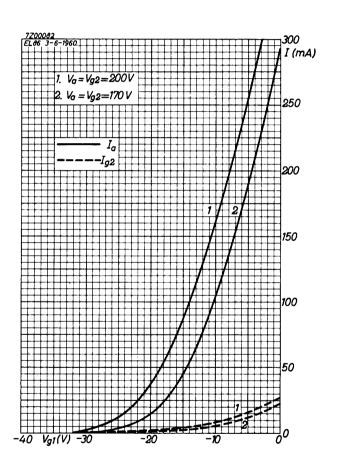
Supply voltage	v_b		300		V
Load resistance	$R_{a\sim}$		1		$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_i	0	0.41	5.4	v_{RMS}
Supply current	$I_{\mathbf{b}}$	66	-	64	mA
Output power	w_o	0	0.05	4.5	W
Distortion	d_{tot}	-	-	9.3	%
b) Double tone input signal					
Supply voltage	v_b		300		v
Load resistance	$R_{a_{\sim}}$		1		kΩ
Grid No.1 driving voltage	v_i	0		2.7	v_{RMS}^{l})
Supply current	$I_{\mathbf{b}}$	66		64	mA
Output power	w_{o}	0		5.5	W
Distortion	d_{tot}	-		8.5	%

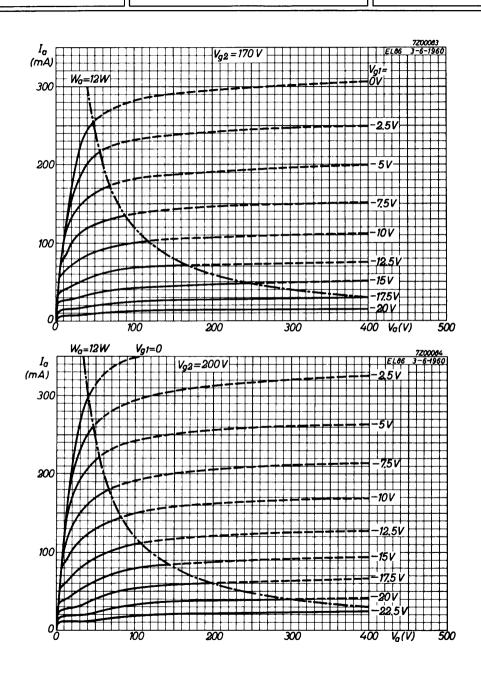
 $^{^{\}mathrm{l}}$) Value of each tone separately.

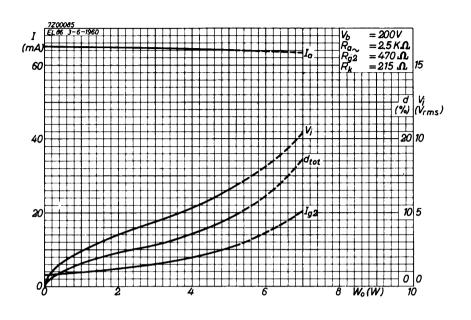
REMARK

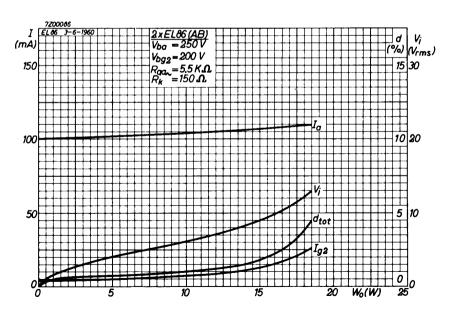
Single tone data are obtained with a pure sinusoidal input voltage. However such an input voltage is in general not representative for the reproduction of music and speech, since a purely sinusoidal tone seldom occurs.

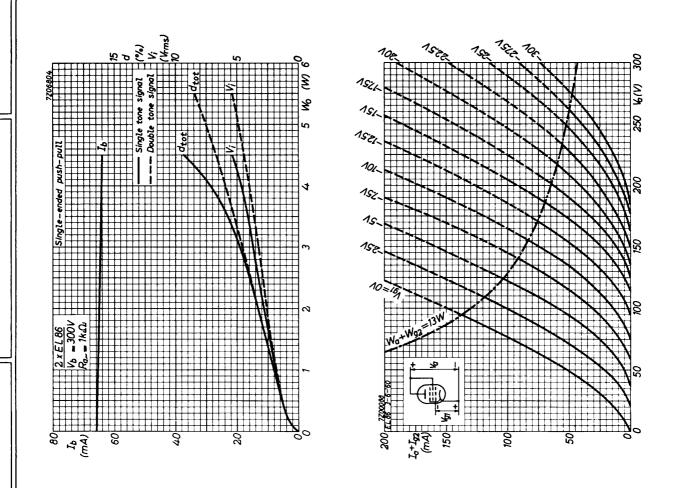
The double tone data are obtained with two sinusoidal signals of different frequencies but of the same amplitude. This appears to be far better in agreement with practice. In the case of full drive with two sinusoidal signals different in frequency but having the same amplitude, the output power is half the value obtained at full drive with a single sinusoidal input voltage of twice this amplitude. To make comparison possible the obtained output power with double tone has therefore been multiplied by 2.


LIMITING VALUES (Design centre rating system)


Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	v
Anode peak voltage	v_{a_p}	max.	2	kV ¹)
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	250	v
Anode dissipation	w_a	max.	12	W^2)
Grid No.2 dissipation:				
average	w_{g_2}	max.	1.75	W
peak	$w_{g_{2p}}$	max.	6	W
Cathode current	I _k	max.	100	mA
Grid No.1 resistor:				
automatic bias	R_{g_1}	max.	1	$M\Omega$
frame output application				
with automatic bias	R_{g_1}	max.	2	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	200	V


 $^{^1)}$ Valid for application in frame output circuits where the max. pulse duration is 4% of a cycle with a max. of 0.8 ms.


²) For frame output application $W_a = max. 10 W$.


5

1

A.F. OUTPUT PENTODE

Pentode intended for use as	A.F. power amplifier	•		
HEATING: Indirect by A.C.	or D.C.; parallel sup	ply		
Heater voltage			v_f	6.3 V
Heater current			If	200 mA
LIMITING VALUES (Design	centre rating system)			
Cathode to heate	r voltage	$v_{\mathbf{kf}}$	max.	100 V
For f	urther data and curves please refer to type l			

LINE OUTPUT PENTODE

Beam pentode intended for use as line output tube in television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

٧f 6.3 V 1.38

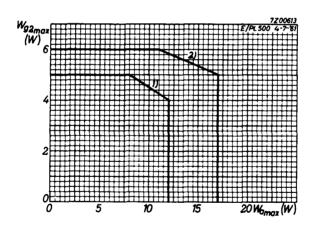
LIMITING VALUES (Design centre rating system)

Cathode to heater voltage

 V_{kf}

max. 200

k negative


 $-V_{kf}$

max. 200 v^3

Anode dissipation

See graph below

Grid No. 2 dissipation

3) D.C. component max. 100 V.

For further data and curves of this type please refer to type PL 504

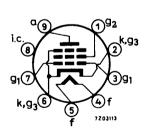
¹⁾ Design centre limits for W_a and W_{g_2} .
2) These limits for W_a and W_{g_2} should not be exceeded with a nominal tube operating in a normal line deflection circuit under the worst probable conditions.

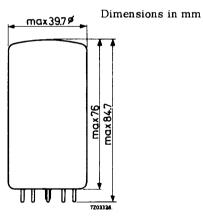
A.F. OUTPUT PENTODE

Beam pentode intended for use as A.F. power amplifier.

QUICK REFERENCE DATA				
Anode current	l _a	110	mA	
Transconductance	S	23	mA/V	
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	13		
Output power (class AB)	w_{o}	40	W	

HEATING: Indirect by A.C. or D.C.; parallel supply


Heater voltage


Heater current

v_f	6.3	V
If	1.05	A

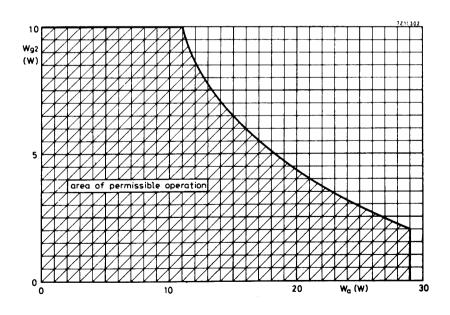
DIMENSIONS AND CONNECTIONS

Base: Magnoval

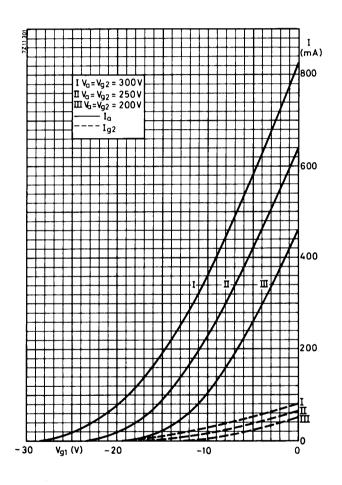
CAPACITANCES

Anode to all except grid No.1	$^{\mathrm{C}_{\mathrm{a}}}(\mathrm{g}_{1})$	13.5	pF
Grid No.1 to all except anode	$^{\mathrm{C}}\mathbf{g}_{1}(\mathbf{a})$	22.5	pF
Anode to grid No.1	$^{\mathrm{C}}_{\mathtt{ag}_{1}}$	1.7	pF
Grid No.1 to heater	$^{\mathrm{C}}\mathbf{g_{1}f}$	0.325	pF

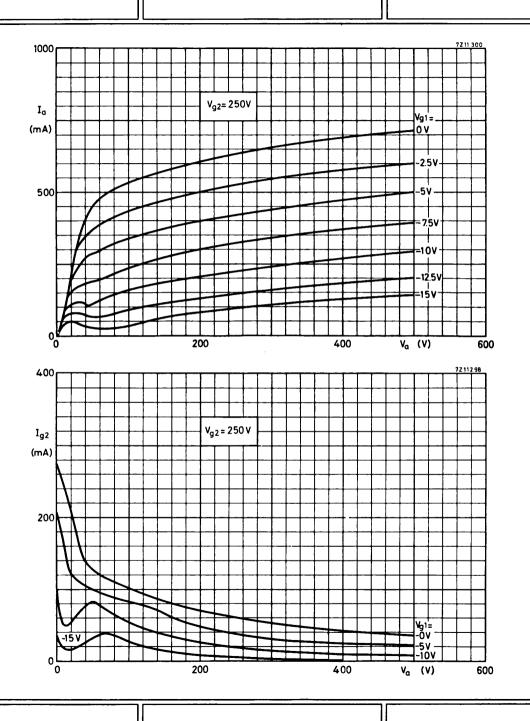
EL503

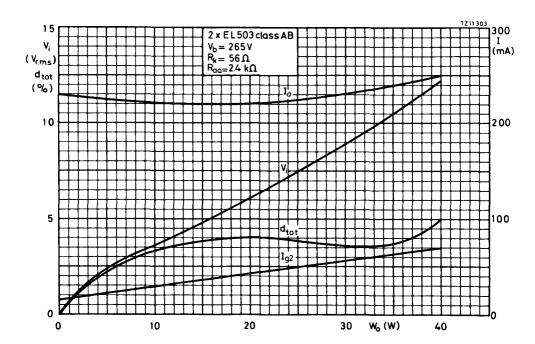

TYPICAL CHARACTERISTICS				
Anode voltage	v_a		250	V
Grid No.2 voltage	v_{g_2}		250	V
Grid No.1 voltage	v_{g_1}		14.0	V
Anode current	I_a		110	mA
Grid No.2 current	I_{g_2}		7.0	mA
Transconductance	S		23	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$		13	
Internal resistance	R_i		5.4	$\mathbf{k}\Omega$
OPERATING CHARACTERISTICS Class AB, two tubes in push-pull				
Anode supply voltage	v_{ba}	26	55	V
Grid No.2 supply voltage	v_{bg_2}	26	55	V
Common cathode resistor	$R_{\mathbf{k}}$		56	Ω
Load resistance	R_{aa}	2.4		$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_i	0	12.2	v_{RMS}
Anode current	Ia	2x115	2x125	mA
Grid No.2 current	$^{\mathrm{I}}g_{2}$	2x7.5	2x35.0	mA
Output power	W_{o}	0	40	W

 d_{tot}


Distortion

5 %


Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	3 00	V
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	3 00	V
Anode dissipation	W_a	see below		
Grid No.2 dissipation				
average	w_{g_2}	see be	elow	
peak	$w_{g_{2p}}$	see be	elow	
Cathode current	I _k	max.	200	mA
Grid No.1 resistor, automatic bias	R_{g_1}	max.	0.5	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	100	v



August 1970 3

4 August 1970

LINE OUTPUT PENTODE

Beam pentode intended for use as line output tube in television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current If 1.38 A

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage,

DC + peak, k positive V_{kf} max. 200 V

k negative $-V_{kf}$ 200 V^{1})

For further data and curves of this type please refer to type PL 504

¹⁾ DC component max. 100 V.

FRAME OUTPUT PENTODE

Pentode intended for use as frame output amplifier in colour television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

 $\frac{V_f}{I_f} = \frac{6.3 \text{ V}}{825 \text{ mA}}$

Heater current

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage

V_{kf} max. 100 V

For further data of this type please refer to type PL508

LINE OUTPUT PENTODE

Output pentode intended for colour TV line deflection circuits.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater voltage

 $\frac{V_f}{I_f} \qquad \frac{6.3 \quad V}{2 \quad A}$

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage,

DC + peak, k positive

k negative

V_{kf} max

max. 200 V

 $-V_{\mathrm{kf}}$ max. 200 V $^{\mathrm{1}}$)

For further data and curves of this type please refer to type PL 509

 $^{^{\}mathrm{l}}$) DC component max. 100 V.

LINE OUTPUT PENTODE

Output pentode intended for colour TV line deflection circuits.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater voltage

6.3 V

LIMITING VALUES (Design centre rating system)

k negative

Cathode to heater voltage,

DC + peak, k positive

 v_{kf}

max. 200 V

 $-v_{\mathbf{kf}}$

max. 200 V 1)

For further data and curves of this type please refer to type PL519

¹⁾ DC component max. 100 V.

VIDEO OUTPUT PENTODE

Luminance output tube in colour TV receivers

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage Heater current

LIMITING VALUES (Design centre rating system)

Cathode to heater voltage

Vkf max, 100 V

1

For further data of this type please refer

to type PL802

August 1970

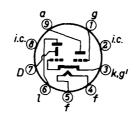
TUNING INDICATOR

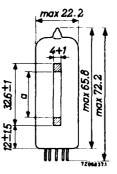
Indicator tube with triode amplifier intended for use as tuning indicator or for modulation control.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage


Heater current

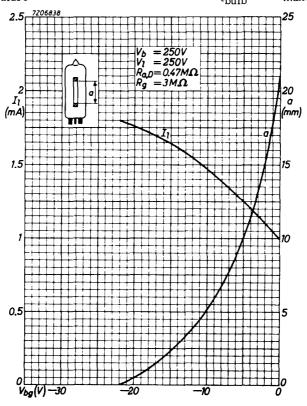

V_f 6.3 V I_f 210 mA


DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

The arrow near pin 7 indicates the viewing direction.


OPERATING CHARACTERISTICS (D connected to a)

Supply voltage	v_b	25	0	v
Luminescent screen voltage	V_{ℓ}	25	0	v
Anode and deflection electrode resistor	$R_{a,D}$	47	0	kΩ
Grid resistor	$R_{\mathbf{g}}$		3	МΩ
Grid supply voltage	v_{bg}	0	-22	v
Anode and deflection electrode current	I_{a+D}	0.45	0.06	mA
Luminescent screen current	Iq	1.0	1.8	mA
Shadow length	a	21±5	0	mm

EM84

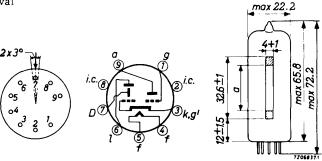
LIMITING VALUES (Design centre rating system)

Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 0.5	W
Deflection electrode voltage	v_{D_O}	max. 550	v
	v_{D}	max. 300	V
Luminescent screen voltage	v_{ℓ_o}	max. 550	v
	$V_{\!\ell}$	max. 300	v
	V_{ℓ}	min. 170	V
Cathode current	$I_{\mathbf{k}}$	max. 3	mA
Grid resistor	R_{g}	max. 3	$M\Omega$
Cathode to heater voltage	v_{kf}	max. 100	V
Bulb temperature	t _{bulb}	max. 120	$^{\mathrm{o}}\mathrm{C}$

TUNING INDICATOR

Tuning indicator tube.

HEATING: Indirect by A.C. or D.C.; series or parallel supply


Heater voltage
Heater current

DIMENSIONS AND CONNECTIONS

 $\frac{V_f}{I_f}$ 6.3 V $\frac{300}{MA}$

Dimensions in mm

The arrow near pin 7 indicates the viewing direction.

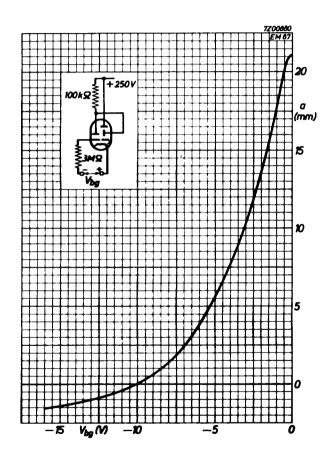
OPERATING CHARACTERISTICS (D connected to a)

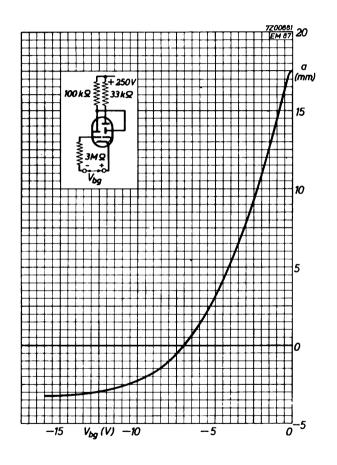
Supply voltage	v_b		250		V
Luminescent screen voltage	v_{ℓ}		250		v
Anode and deflection electrode resistor	$R_{a,D}$		100		$k\Omega$
Grid resistor	$R_{\mathbf{g}}$		3		$M\Omega$
Grid supply voltage	v_{bg}	0	-10	-15	v
Anode and deflection electrode current	I_{a+D}	2.0	0.5	0.2	mA
Luminescent screen current	I Q	1.0	8.1	2.0	m A
Shadow length	a	21	0	-1.5	mm ¹)

¹⁾ A negative value of "a" means overlapping:

The grid bias for a = 0 is reduced by decreasing V_{ℓ} .

The measure of overlapping at $V_g = -15$ V will then increase (see page 4).


EM87


Bulb temperature

LIMITING VALUES (Design centre rating system)			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 300	v
Anode dissipation	w_a	max. 0.6	W
Deflection electrode voltage	v_{D_0}	max. 550	v
	v_D	max. 300	v
Luminescent screen voltage	$v_{\ell_{O}}$	max. 550	v
	$\mathbf{v}_{\boldsymbol{\ell}}$	max. 300	v
	V_{ℓ}	m in. 170	v
Grid resistor	R_{g}	max. 3	МΩ
Cathode current	I_k	max. 5	mA
Cathode to heater voltage	v_{kf}	max. 250	v

t_{bulb} max. 120 °C

3

4

Booster diode intended for use in line time-base circuits of television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater current

Heater voltage

V _f	6.3	V
l _f	810	mA

For further data and curves please refer to type PY81

Booster diode intended for use in line time base circuits of television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f}$ 6.3 V 1.55 A

1

For further data and curves of this type please refer to type PY88

Booster diode intended for use in time base circuits of colour television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

 $\frac{V_f}{I_f}$ 6.3 V $\frac{V_f}{I_f}$ 2.1 A

For further data and curves of this type please refer to type PY500

Booster diode intended for use in time base circuits of colour television receivers.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage

Heater current

 $\frac{V_f}{I_f}$ 6.3 V 2.1 A

For further data and curves of this type please refer to type PY500A

August 1970

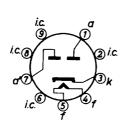
DOUBLE ANODE RECTIFYING TUBE

Double anode high vacuum rectifying tube

QUICK REFER	ENCE DATA		
Transformer voltage	v _{tr}	2x350	V _{RMS}
D.C. current	I _o	90	mA

HEATING: Indirect by A.C.; parallel supply

Heater voltage


Heater current


 $\frac{V_f}{I_f} \qquad \begin{array}{ccc} 6.3 & V \\ \hline 600 & mA \end{array}$

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Noval

OPERATING CHARACTERISTICS as two-phase half-wave rectifier

Transformer voltage	v_{tr}	2x250	2x275	2x300	2x350	v_{RMS}
D.C. output voltage	v_o	260	285	310	360	V
D.C. current	I_{o}	90	90	90	90	mA
Protecting resistance	R_t	2x125	2x175	2x215	2x300	Ω
Input capacitor of smoothing filter	C_{filt}	50	50	50	50	μF

Transformer voltage	v_{tr}	max.	2x350	v_{RMS}	
D.C. current	I_{O}	max.	90	mA	
Cathode to heater voltage, peak, k pos	v_{kf_p}	max.	500	v	
Input capacitor of smoothing filter	C_{filt}	max.	50	μF	
Protecting resistance at transformer voltage	R _t min. V _{tr}	2x125 2x1 2x250 2x2		215 2x300 300 2x350	Ω VRMS

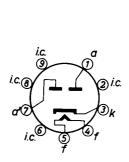
DOUBLE ANODE RECTIFYING TUBE

Double anode high vacuum rectifying tube.

QUICK REFERENCE DATA					
Transformer voltage	V _{tr}	2x450	VRMS		
D.C. current	I_{o}	100	mA		

HEATING: Indirect by A.C.; parallel supply

Heater voltage


Heater current

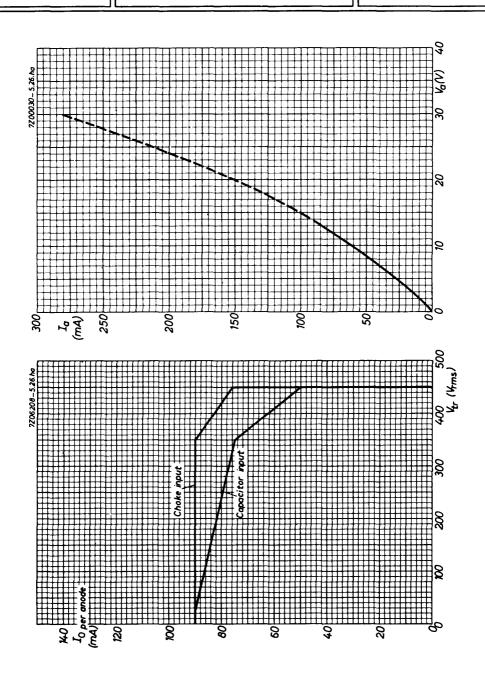
 $\frac{V_f}{I_f} \qquad \frac{6.3 \quad V}{I \quad A}$

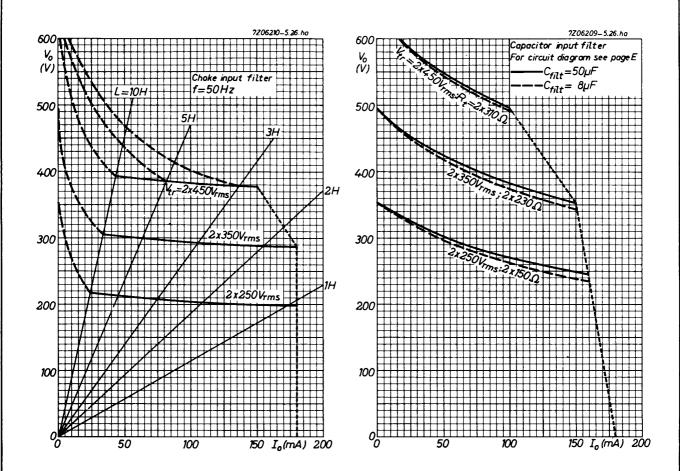
DIMENSIONS AND CONNECTIONS

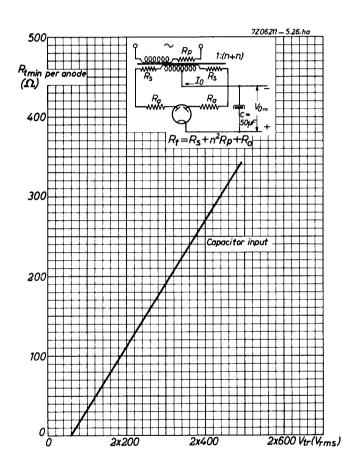
Dimensions in mm

Base: Noval

OPERATING CHARACTERISTICS


As two-phase half-wave	rectifier with capac	itor input filter	See page 4 upper fig.


Transformer voltage	Vtr	2x250	2x350	2 x 450	VRMS
D.C. output voltage	v_{o}	245	352	497	V
D.C. current	Io	160	150	100	mA
Protecting resistance	R_t	2x150	2x230	2x310	Ω
Input capacitor of smoothing filter	Cfilt	50	50	50	μ F



D.C. current $I_{\rm o}$ 180 180 150 mA Choke L 10 10 H

Anode voltage, peak inverse	$v_{a_{inv_p}}$	max.	1300	v
D.C. current	I _o	See page 3		
Transformer voltage	v_{tr}	lower figure		
Anode current, peak	I_{a_p}	max.	500	mA
surge	I _{asurge}	max.	1.8	Α
Cathode to heater voltage, k pos	v_{kf}	max.	500	v
Input capacitor of smoothing filter	C_{filt}	max.	50	μ F
Protecting resistance	R _{t min.}	See page 5		
Choke	L min.	See page 4 lower fig.		

m A

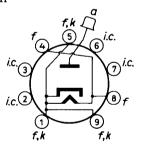
1

SINGLE ANODE E.H.T. RECTIFYING TURF

Single anode E.H.T. rectifying tube intended for use in colour television receivers.

The GY501 has a chemically treated envelope to avoid flash-over under conditions of high humidity and low atmospheric pressure (45 cm Hg).

QUICK REFERENCE	DATA		
D.C. output voltage	v_{o}	25	kV
Anode current	I_a	1.5	mA


HEATING: Indirect by A.C. or D.C.; parallel supply


Heater voltage

3.15 Heater current Ιf 400

DIMENSIONS AND CONNECTIONS

Base: Magnoval

Pins 1, 5 and 9 may be used to connect an anti-corona ring.

Circuit elements having the same potential as the heater (e.g. a series resistor) may be connected to pins 3 and 7. These pins must never be earthed.

Precaution: X-ray shielding may be required to give protection against excessive radiation.

¹⁾ Under nominal operating conditions and with the longterm average value of I_a to be expected in practice, V_{fRMS} should be 3.15 V.

The heater voltage deviation resulting from spread or variation of operating conditions should be limited to the values indicated by the diagram in fig. A.

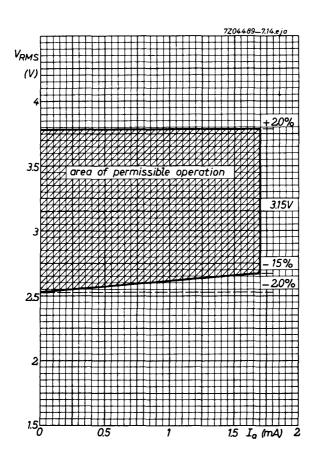
GY501

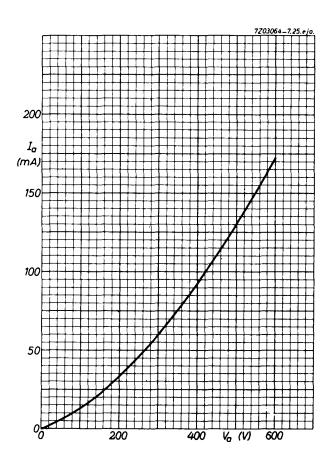
CAPACITANCES Anode to cathode

OPERATING CHARACTE	RISTICS		
Output voltage	v_{o}	25	kV
Anode current	I_a	1.5	mA

 C_{ak}

1.2 pF


Peak inverse vol	tage (absolute max.)	v_{ainv_p}	max.	35	kV 1)
Output voltage	(absolute max.)	V_{o}	max.	27.5	kV
Output current,	average	I_{o}	max.	1.7	mA
	peak	I_{op}	max.	100	mA^2)


 $^{^{\}rm l}$) The negative peak due to ringing in the line output transformer should be taken into account.

Max. pulse duration 22% of a cycle and 18 μ s.

²⁾ Design max. rating system

Max. pulse duration 10% of a line scanning cycle with a max. of $10~\mu s$.

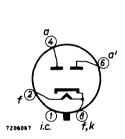
DOUBLE ANODE RECTIFYING TUBE

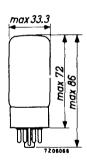
Double anode high vacuum rectifying tube.

QUICK REF	ERENCE DATA		
Transformer voltage	v _{tr}	2x450	V _{RMS}
D.C. current	Io	2 50	mA

HEATING: Indirect by A.C.; parallel supply

Heater voltage


Heater current


 $\frac{V_f}{I_f} \qquad \frac{5}{1.9} \quad A$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Octal

OPERATING CHARACTERISTICS

As two-phase half-wave rectifier with capacitor input					
Transformer voltage	v_{tr}	2x300	2x350	2x400	v_{RMS}
D.C. output voltage	v_{o}	330	380	430	v
D.C. current	Io	250	250	250	m A
Protecting resistance	Rt	2x75	2x100	2x125	Ω
Input capacitor of smoothing filter	$c_{ ext{filt}}$	60	60	60	μF
Transformer voltage	v_{tr}	2x450	2x500	2x550	v_{RMS}
D.C. output voltage	v_o	480	560	640	v
D.C. current	Io	250	200	160	m A
Protecting resistance	R _t	2x150	2x175	2x200	Ω
Input capacitor of smoothing filter	c_{filt}	60	60	60	μF
As two-phase half-wave rectifier wit	h choke i	nput			
Transformer voltage	v_{tr}	2x300	2x350	2x400	v_{RMS}
D.C. output voltage	v_{o}	250	290	330	ν
D.C. current	Io	250	250	250	mA
Protecting resistor	R _t	0	0	0	Ω
Choke	L	10	10	10	Н
Transformer voltage	v_{tr}	2x450	2x500	2x550	v_{RMS}
D.C. output voltage	v_{o}	375	420	465	v
D.C. current	I_{o}	250	250	225	mA
Protecting resistor	R_{t}	0	0	0	Ω
Choke	L	10	10	10	Н

LIMITING VALUES (Design centre rating system)

See also page 4

Capacitor input

Anode voltage,

peak inverse

V_{a inv}p I_o max. 1500 V

D.C. current

Anode peak current

 I_{ap}

max. See page 4 max. 750 mA

Input capacitor of

 C_{filt}

max. $60 \mu F$

smoothing filter
Protecting resistance

e R_{t min}.

2x50 2x75 2x100 2x125 2x150 2x175 Ω

at transformer voltage

 V_{tr}

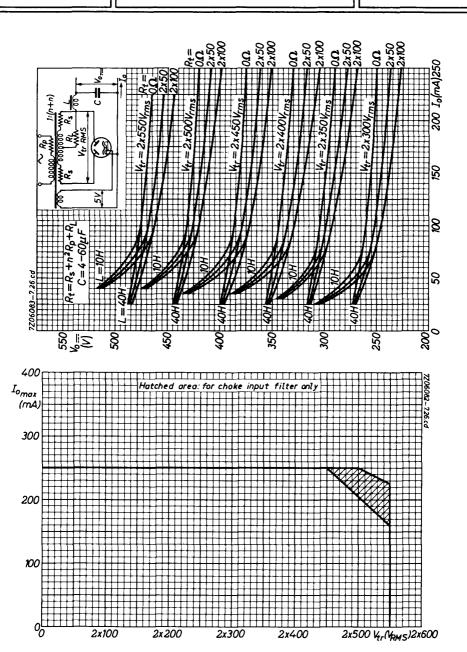
2x300 2x350 2x400 2x450 2x500 2x550 V_{RMS}

Choke input

Anode voltage, peak inverse

 $V_{a inv_D}$ max. 1500 V

D.C. current


 I_{o}

max. See page 4

Anode peak current

 I_{a_p}

max. 750 mA

TRIPLE DIODE-TRIODE

Triple diode-triode, intended for video and FM and AM audio signal detection and A.F. signal amplification.

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

300 m.

Heater voltage

For further data and curves please refer to UABC80

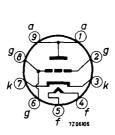
U.H.F. TRIODE

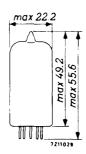
Triode intended for use as grounded grid U.H.F. amplifier, oscillator or mixer for bands IV and V.

QUICK REFE	RENCE DATA		
Anode current	Ia	12	mA
Transconductance	S	14	mA/V
Amplification factor	μ	68	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


l _f	300	mA
V_f	3.8	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

Grid current

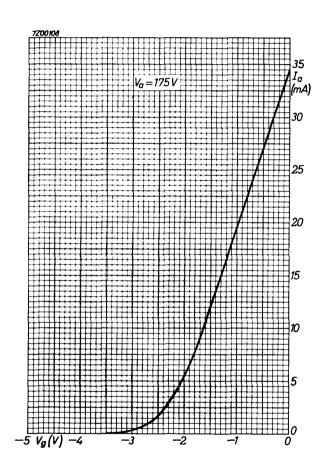
OPERATING CHARACTERISTICS

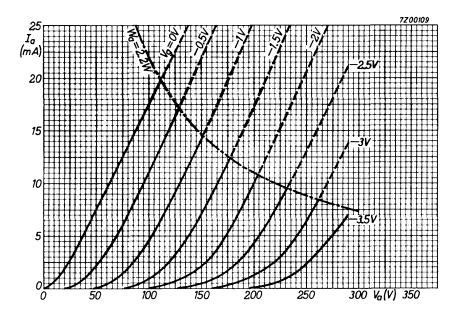
As	ground	ed grid	amplifier

Anode voltage	v_a	175	V
Cathode resistor	R_k	125	Ω
Anode current	^I a	12	m A
Transconductance	S	14	mA/V
As self-oscillating mixer			
Supply voltage	v_{b_a}	220	V
Anode resistor	R_a	5.6	$k\Omega$
Grid resistor	R_g	47	$k\Omega$
Anode current	I _a	12	m A

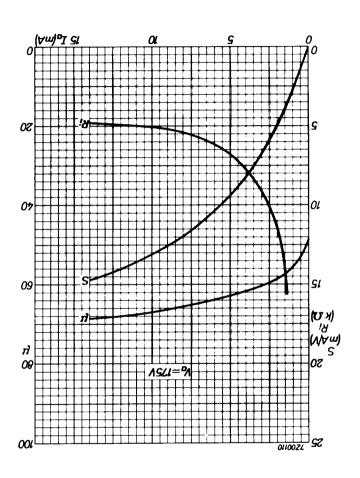
 I_g

LIMITING VALUES (Design centre rating s	ystem)		
Anode voltage	$v_{a_{o}}$	max. 550	V
	V_a	max. 220	V
Anode dissipation	$\mathbf{w}_{\mathbf{a}}$	max. 2.2	W
Cathode current	$I_{\mathbf{k}}$	max. 20	mA
Grid voltage	-v _g	max. 50	V
Grid resistor	R_{g}	max. 1	$M\Omega$
Cathode to heater voltage	V _{kf(k pos)}	max. 1001	v 1)


50 μA


¹⁾ A.C. component max. 50 V_{RMS}.

CAPACITANCES


Without external shield			
Anode to grid	c_{ag}	2.2	pF
Anode to cathode	Cak	0.24	pF
Grid to cathode	c_{gk}	3.5	pF
Grid to heater	$^{ m C}_{ m gf}$	0.27	pF
Cathode to grid + heater	C _{k/gf}	6.3	pF
Grid to cathode + heater	C _{g/kf}	3.8	р F
Anode to cathode + heater	C _{a/kf}	0.35	pF
Anode to grid + heater	$C_{\mathbf{a}/\mathbf{gf}}$	2.3	pF
With external shield			
Anode to grid + screen	$c_{a/gs}$	3.3	pF
Cathode + heater to grid + screen	C _{kf/gs}	4.1	pF
Anode to cathode + heater	C _{a/kf}	0.3	р F
TYPICAL CHARACTERISTICS			
Anode voltage	$v_{\mathbf{a}}$	175	V
Grid voltage	v_g	~1.5	v
Anode current	Ia	12	mA
Transconductance	S	14	mA/V
Amplification factor	μ	68	-
Equivalent noise resistance	R _{eq}	230	Ω
Increase C _g	$\Delta C_{f g}$	2	pF ¹)

 $[\]overline{}^{1}$) Difference between C_{g} of cold and hot tube.

January 1969

U.H.F. TRIODE

Triode intended for use as grounded grid U.H.F. amplifier for bands IV and V.

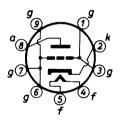
QUICK REFERENCE DATA			
Anode current	I _a	12.5	mA
Transconductance	S	13.5	mA/V
Amplification factor	μ	65	

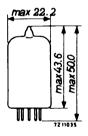
HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage

If	300	mΑ
V_f	3.8	v


DIMENSIONS AND CONNECTIONS


Dimensions in mm

0.055 pF

1

Base: Noval

C_{a/kf}

CAPACITANCES

Without	external	screen

Anode to heater + cathode

$C_{f ag}$	1.2 pF
C_{ag}	1.7 pF
C _{g/kf}	3.8 pF
	Cag

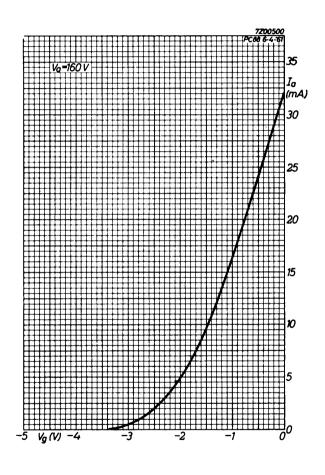
December 1969

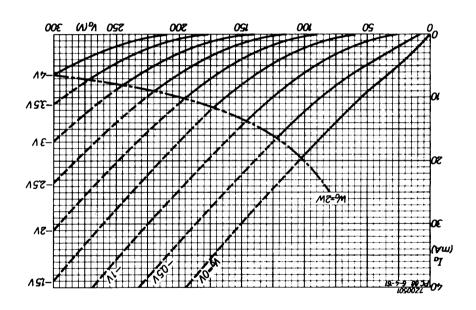
TYPICAL CHARACTERISTICS

Anode voltage	v_a	160	v ¹)
Cathode resistor	R_k	100	Ω 1)
Anode current	I_a	12.5	m A
Transconductance	S	13.5	mA/V
Amplification factor	μ	65	
Equivalent noise resistance	R_{eq}	240	Ω
Noise figure at f = 850 MHz	F	10	dB
Anode voltage	V_a	0	v
Grid current, positive	$I_{\mathbf{g}}$	0.3	μΑ
Grid voltage	-v _g	max. 1.3	V

Series resonance frequencies

Measured between a point on the relevant tube pin close to the tube bottom and a point close to the relevant pin on a metal reference plane, placed against the tube bottom.


All the pins, except the relevant one, are connected to the reference plane with a negligible impedance.


The tube is screened by a metal screen with an inside diameter of 22.2 mm placed upon the metal reference plane.

Heater voltage	$v_{\mathbf{f}}$	0	V
Anode voltage	v_a	0	v
Anode resonance frequency	$f_{O_{\mathbf{a}}}$	1700	MHz
Cathode resonance frequency	f_{Ok}	1000	MHz

Anode voltage	${ m v_{a_O}}$	max.	550	V
	v_a	max.	175	V
Anode dissipation	w_a	max.	2	w
Cathode current	I_k	max.	13	mA
Grid voltage	-v _g	max.	50	v
Grid resistor ($R_k = 100 \Omega$)	R_{g}	max.	1	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	100	V 1)

 $^{^{1}}$) To fulfil the modulation hum requirements, the A.C. component should not exceed 50 V_{RMS} .

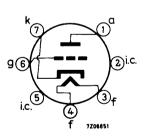
H.F. TRIODE

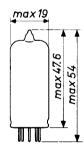
Triode intended for use as H.F. amplifier, oscillator, mixer and in frame deflection circuits and line deflection circuits of TV receivers.

QUICK REFER	RENCE DATA		
Anode current	Ia	12	mA
Transconductance	S	7.2	mA/V
Amplification factor	μ	67	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I_f	300	mA
v_f	3.1	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: 7 pin miniature

LIMITING VALUES (Design centre rating system)

Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	v
Anode dissipation	$W_{\mathbf{a}}$	max.	2.5	W
Grid voltage	$-v_g$	max.	50	V
Cathode current, average	I_k	max.	15	mA
peak	I_{k_p}	max.	150	mA^3)
Cathode to heater voltage (k pos.)	v_{kf}	max.	250	V 1)
(k neg.)	v_{kf}	max.	250	V
	(D.C.	component	max.	100 V)
Grid resistor (automatic bias)	R_{φ}	max.	1	$M\Omega$

OPERATING CONDITIONS AS BLOCKING OSCILLATOR

To take into account the tube tolerances, the decrease of the characteristics during life and the decrease of the emission at underheating, the circuit should be designed so that acceptable performance is obtained with a cathode peak current of 100 mA ²) (150 mA ³). It is recommended to limit the peak current of new tubes by an automatic amplitude limiting circuit e.g. by the use of non by-passed grid and anode resistors.

¹⁾ During the warm-up period of the tubes V_{kf} (k pos.) (D.C. component) max. 315 V.

 $^{^{2}}$) Pulse duration 4% of a cycle and max. 0.8 ms.

 $^{^3}$) Pulse duration 1% of a cycle and max. 0.2 ms.

CAPACITANCES						
Grounded cathode circuit						
without external shield						
Input			C_{i}		2.8	pF
Output			C_{o}		0.55	pF
Anode to grid			C_{ag}		1.8	pF
With external shield 19.5 mm di	ameter					
Anode to cathode, heater and shi	eld		C _{a/kfs}	;	1.4	pF
Cathode to grid, heater and shiel	d		C _{k/gfs}	;	4.7	pF
Anode to grid, heater and shield			C _{a/gfs}	:	2.9	pF
Grounded grid circuit						
without external shield						
Input			$C_{\mathbf{i}}$		4.6	pF
Output			C_{o}		2.0	pF
Anode to cathode			C_{ak}		0.24	pF
Cathode to heater			$C_{\mathbf{kf}}$		2.0	pF
Grid to heater			C_{gf}	max	.0.15	pF
TYPICAL CHARACTERISTICS						
Anode voltage	v_a	100	170	200	230	v
Grid voltage	v_g	-0.9	-1.0	-0.9	-1.6	v

3.0

3.8

58

 I_a

S

μ

 R_{eq}

12.0

7.2

67

0.4

8.5

6.0

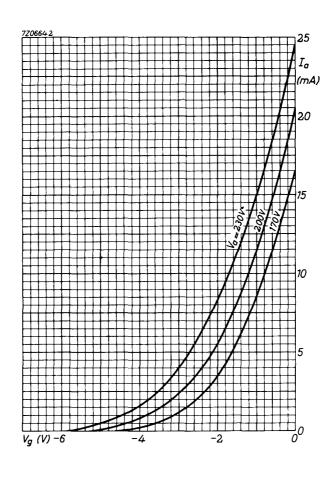
65

0.5

10.5 mA

 $0.5 k\Omega$

62


6.0 mA/V

Anode current

Transconductance

Amplification factor

Equivalent noise resistance

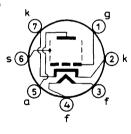
V.H.F. TRIODE

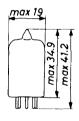
Triode intended for use as R.F. amplifier in V.H.F. television receivers.

QUICK REFERE	NCE DATA		
Cathode current	I _k max.	20	m A
Transconductance	S	20	mA/V
Amplification factor	μ	84	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I_f	300	mA
V_f	3.9	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Miniature 7p

CAPACITANCES (with external shield, internal diameter 19.1 mm, connected to cathode)

Anode to all except grid	$C_{a(g)}$	3.0	pF
Grid to all except anode	$C_{g(a)}$	4.5	pF
Anode to grid	C_{ag}	0.365	pF
Anode to cathode	$C_{\mathbf{ak}}$	0.08	pF
Grid to cathode	$C_{f gk}$	3.3	рF
Grid to heater	$C_{ m gf}$	m ax. 0.07	pF
Cathode to heater	\mathtt{c}_{kf}	2.3	pF

TYPICAL CHARACTERISTICS		
Anode voltage	V_a	135
Shield voltage	v_s	0

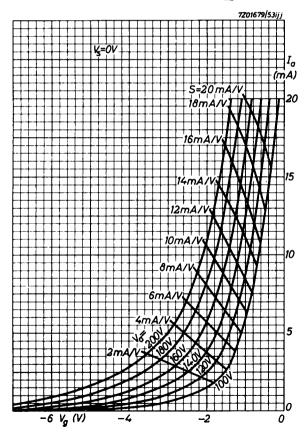
Grid voltage

$$V_g$$
 -1
 -2.8
 -5.9
 V

 Anode current
 I_a
 11.5
 -
 -
 mA

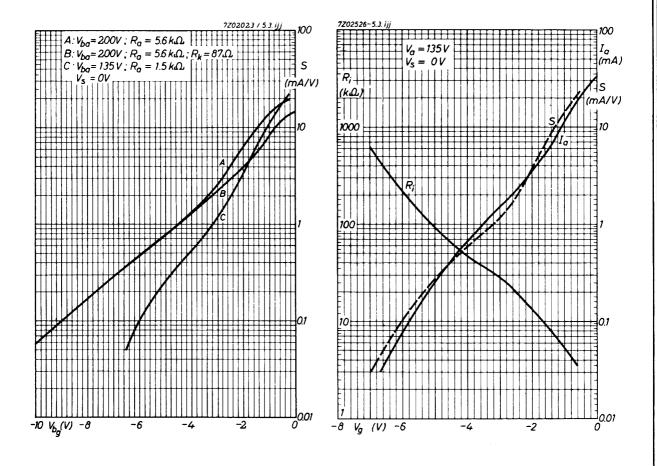
 Transconductance
 S
 14.5
 1.45
 0.145
 mA/V

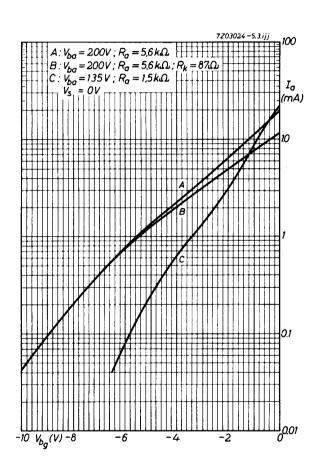
Amplification factor μ 76 - -

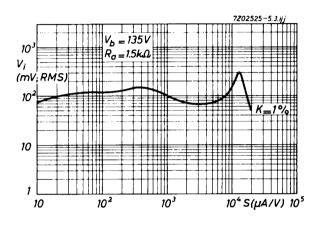

OPERATING CHARACTERISTICS

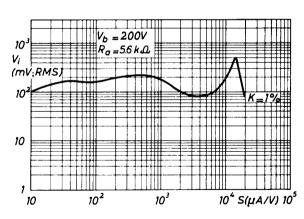
Anode supply voltage	v_{b_a}	135	200	200	V
Anode resistor	R_a	1.5	5.6	5.6	kΩ
Shield voltage	v_s	0	0	0	V
Cathode resistor	R_k	0	0	87	Ω
Anode current	I_a	16.5	16.5	11.5	mA
Grid current	I_g	20	20	-	μ A
Transconductance	S	20	20	14.5	mA/V
Amplification factor	μ	84	84	76	
Transconductance	S	2	2	1.45	m A/ V
Grid voltage	v_g	-2.3	-3.2	-3.8	V
Transconductance	S	0.2	0.2	0.145	mA/V
Grid voltage	v_g	-5.3	-7.7	-8.3	v

v v


LIMITING VALUES	(Design centre rating system)
-----------------	-------------------------------


Anode voltage	v_{a_0}	max. 550	v
	$V_{\mathbf{a}}$	max. 200	v
Anode dissipation	w_a	max. 2.2	W
Cathode current	I_k	max. 20	mA
Negative grid voltage	-v _g	max. 50	v
Grid resistor	R_{g}^{-}	max. 1	$M\Omega$
Grid resistor in A.G.C. circuits	R_{g}^{-}	max. 3	МΩ
Cathode to heater voltage	v_{kf}	max. 100	V ¹)


 $^{^{\}rm l})$ To fulfil the modulation hum requirements, V_{kf} should not exceed 55 $\text{V}_{RMS}.$

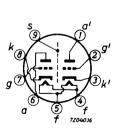

January 1970 3

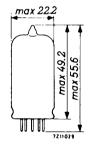
January 1970 | 5

R.F. DOUBLE TRIODE

Double triode intended for various applications in television receivers.

QUICK REFER	RENCE DATA		
Anode current	Ia	10	mA
Transconductance	S	6.7	mA/V
Amplification factor	μ	48	-


HEATING: Indirect by A.C. or D.C.; series supply


Heater current Heater voltage $\begin{array}{ccc} \underline{I_f} & 300 & mA \\ \hline V_f & 9.0 & V \end{array}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES	(each	unit	unless	otherwise	specified)	
--------------	-------	------	--------	-----------	------------	--

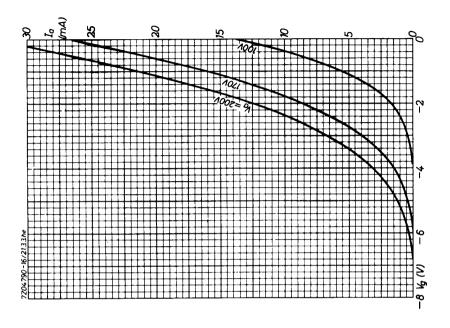
	. ,		
Anode to grid	C_{ag}	1.5	pF
Anode to cathode	C_{ak}	0.18	pF
Anode to cathode + heater + screen	$C_{a/kfs}$	1.2	pF
Grid to cathode + heater + screen	$C_{g/kfs}$	3.1	pF
Anode to cathode + heater + screen (measured with external screen of 22.5 mm diam.)	^C a/kfs	1.8	pF
Anode to anode other unit	C _{aa} •	max. 0.04	pF
Anode to anode other unit (measured with external screen of 22.5 mm diam.)	C _{aa} '	max. 0.008	pF
Grid to grid other unit	C_{gg}	max. 0.003	pF
Anode to grid other unit	C _{ag} •	max. 0.008	pF
Anode to grid other unit	Ca'g	max. 0.008	pF
Anode to cathode other unit	C _{ak'}	max. 0.008	pF
Anode to cathode other unit	$c_{a'k}$	max. 0.008	pF
Grid to cathode other unit	C _{gk} •	max. 0.003	pF
Grid to cathode other unit	$c_{g'k}$	max. 0.003	pF

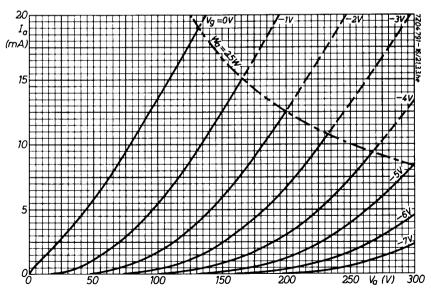
TYPICAL CHARACTERISTICS (each unit)

Anode voltage	V_a	100	170	200	V
Grid voltage	v_g	-1.2^{1})	-1.75	-2.4	V
Anode current	Ia	4.5	10	10	mA
Transconductance	S	4.8	6.7	6	mA/V
Amplification factor	μ	46	48	46	

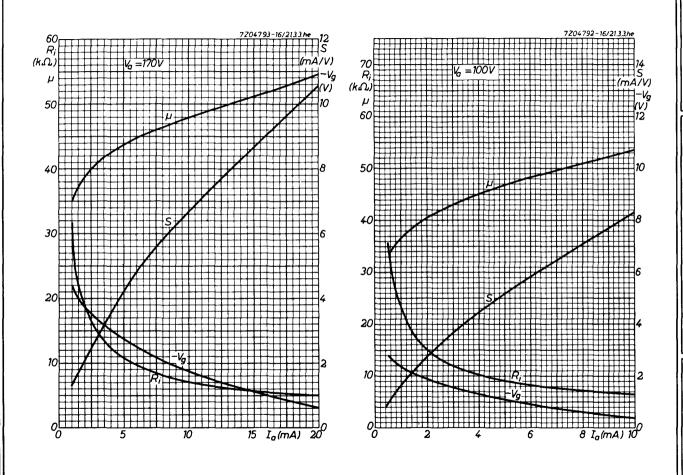
REMARK

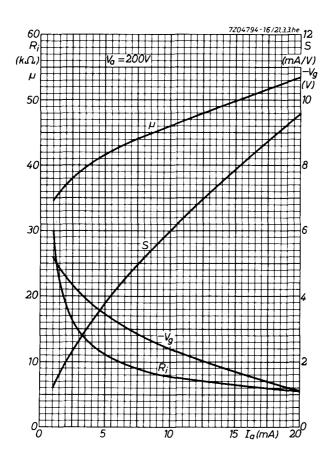
Microphony


This tube can be used without special precautions against microphony in A.F. applications in which the input voltage $V_i \geq 5~\text{mV}$ for an output of 50~mW (or 50~mV for an output 5~W) provided the peak acceleration of the tube is not greater than indicated in the section "Microphony" of the "General Operational Recommendations".


¹⁾ In this case grid current may occur. If this is not permissible, a condition with a bias of -1.5 V should be chosen.

OPERATING	CHARACTERISTICS	(each unit)


As self-oscillating additive mixer					
Anode supply voltage	v_b	100	170	200	V
Anode resistor	R_a	4.7	4.7	8.2	k Ω
Grid resistor	R_{g}	1	1	1	$M\Omega$
Oscillator voltage	$v_{\rm osc.}$	1.8	2.8	2.8	v_{RMS}
Anode current	I_a	2.7	5.5	6	m A
Conversion conductance	S_{C}	2.2	2.8	2.9	mA/V
Internal resistance	R_{i}	19	15	14	k Ω
Grid input resistance (f = 100 MHz)	r_g		15		$k\Omega$
As oscillator in television receivers					
Anode supply voltage	v_b			180	V
Anode resistor	Ra			4.4	$k\Omega$
Grid resistor	R_{g}			22	$k\Omega$
Oscillator voltage	V _{osc} .			9	v_{RMS}
Anode current	I_a			7.4	mA
Anode dissipation	w_a			1.2	W
LIMITING VALUES (each unit) (Design	centre rating	gsyste	m)		
Anode voltage	v_{a_0}		max.	550	V
	v_a		max.	250	V
Anode dissipation	w_a		max.	2.5	W
Anode dissipation, total	$w_{a}+w_{a}$		max.	4.5	W
Cathode current	I_k		max.	15	mA
Cathode to heater voltage	v_{kf}		max.	90	V
Grid voltage, negative	-v _g		max.	100	V
Grid resistor	Rg		max.	1	МΩ


4

S

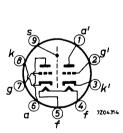
R.F. DOUBLE TRIODE

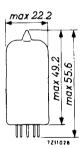
Double triode intended for use as cascode amplifier in television tuners.

QUICK REFERENCE DATA (Each unit)			
Anode current	Ia	15	mA
Transconductance	S	12.5	mA/V
Amplification factor	μ	33	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


If	300	mΑ
Ve	7.6	v

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

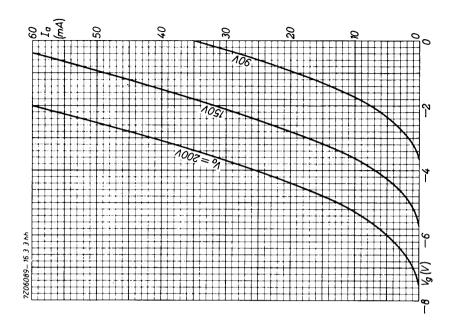
CAPACITANCES	w	ithout external	with external screen	
Anode to grid	C_{ag}	1.4	1.4	pF
Grid to cathode + heater + screen	C _g /kfs	3.3	3.3	pF
Anode to cathode + heater + screen	Ca/kfs	1.8	2.5	pF
Grid to heater	C_{gf}	0.13	0.13	pF
Anode to grid	Ca'g'	1.4	1.4	pF
Cathode to grid + heater + screen	Ck'/g'f	s 6	6	pF
Anode to grid + heater + screen	Ca'/g'fs	s 2.8	3.7	pF
Cathode to heater	$C_{\mathbf{k}^{\bullet}f}$	2.7	2.7	pF
Anode to cathode	$c_{a'k'}$	0.18	0.16	pF
Anode to anode	Caa'	max.0.045	max.0.015	pF
Grid to anode other unit	Coa'	max.0.005	max.0.005	рF

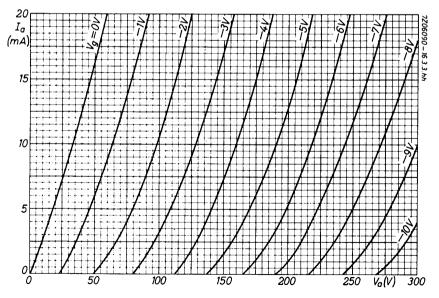
REMARK

The unit a, g, k should be used as the grounded cathode input section and unit a', g', k' as the grounded grid output unit.

TYPICAL CHARACTERISTICS

Anode voltage	v_a	90	V
Grid voltage	v_g	-1.3	V
Anode current	I _a	15	m A
Transconductance	S	12.5	mA/V
Amplification factor	μ	33	-
Equivalent noise resistance	Req	300	Ω


LIMITING VALUES	(Design centre rating system) (each unit, unless otherwise
stated)	


Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	130	V
Anode dissipation	w_a	max.	1.8	W
Cathode current	Ik	max.	25	mA
Grid voltage	-V _g	max.	50	V
Grid resistor	$R_{\mathbf{g}}$	max.	1	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	50	V
	V_{k} ' $f(k$ ' $pos)$	max.	150	V ¹)

REMARK

In order not to exceed the maximum permissible anode voltage when the cascode amplifier is controlled, it is necessary to use a voltage divider for the grid of the grounded grid section. With grid current biasing for the grounded cathode section the anode voltage across this section should not be more than 75 V in the not controlled condition.

¹⁾ D.C. component max. 130 V.

4

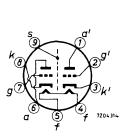
R.F. DOUBLE TRIODE

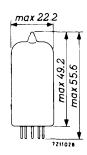
Double triode with variable transconductance intended for use as $V.H.F.\ cas-$ code amplifier in television receivers.

QUICK REFERENCE	CE DATA		
Anode current	I _a	15	mA
Transconductance	S	12.5	mA/V
Amplification factor	μ	31	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


 $\frac{I_f}{V_f} \qquad \frac{300 \text{ mA}}{7.6 \text{ V}}$

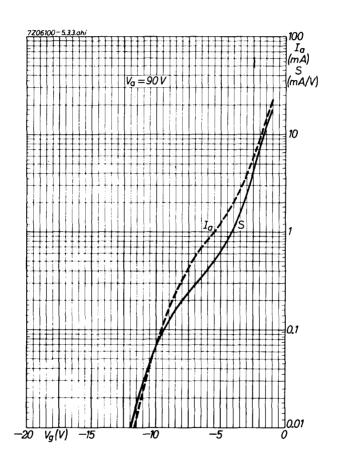
DIMENSIONS AND CONNECTIONS

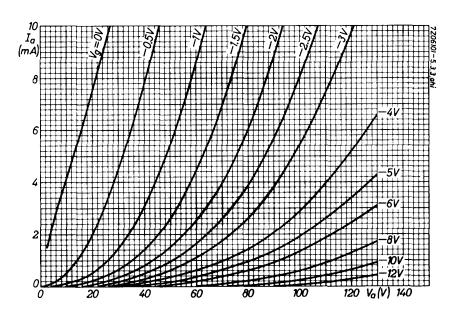
Dimensions in mm

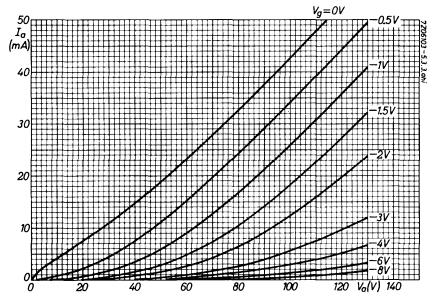
Base: Noval

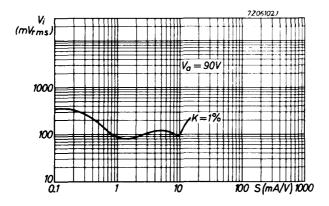
CAPACITANCES		n external screen 2.2 mm diam.	with external	
Grid to cathode + heater + screen	Cg/kfs	3.5	3	.5 pF
Anode to cathode + heater + screen	C _{a/kfs}	2.3	1	.7 pF
Anode to grid	$C_{\mathbf{ag}}$	1.9	1	.9 pF
Grid to heater	C_{gf}	max.0.28	max.0.	28 pF
Cathode to grid + heater + screen	Ck'/g'fs	6.0	6	.0 pF
Anode to grid, heater + screen	Ca'/g'fs	4.0	3	.4 pF
Anode to cathode	Ca'k'	0.17	0.	18 pF
Cathode to heater	$C_{\mathbf{k'f}}$	2.7	2	.7 pF
Anode to grid	Ca'g'	1.9	1	.9 pF
Anode to anode	c _{aa} .	max. 0.015	max.0.0	45 pF
Grid to anode other unit	C _{ga} '	max. 0.004	max.0.0	04 pF
TYPICAL CHARACTERISTICS (each	unit)			
Anode voltage		v_a	90	V
Grid voltage		V_{g}	-1.4	V
Anode current		I_a	15	mA
Transconductance		S	12.5	mA/V
Internal resistance		R_i	2.5	$\mathbf{k}\Omega$
Grid voltage		$V_{\mathbf{g}}$	- 5	V
Transconductance		S	0.625	mA/V
Grid voltage		$V_{\mathbf{g}}$	- 9	v
Transconductance		S	0.125	mA/V

LIMITING VALUES (Design centre rating system) (Each un	LIMITING	VALUES	(Design	centre	rating	system) (Each u	init)
--	----------	--------	---------	--------	--------	--------	-----------	--------


Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	130	V
Anode dissipation	w_a	max.	1.8	W
Grid voltage	-Vg	max.	50	V
Grid resistor				
unit a, g, k	$R_{\mathbf{g}}$	max.	1	$\mathbf{M}\Omega$
unit a', g', k'	$R_{\mathbf{g}}$	max.	0.5	$M\Omega$
Cathode current	$I_{\mathbf{k}}$	max.	22	mA
Cathode to heater voltage				
unit a, g, k	$v_{\mathbf{k}\mathbf{f}}$	max.	80	V
unit a', g', k' (cathode positive)	V _{k'f}	max.	180	v 1)


REMARKS


In order not to exceed the maximum permissible anode voltage when the tube is controlled, it is necessary to use a voltage divider for the grid of the grounded grid section.


The system a, g, k should be used as the grounded cathode input section and the system a^{\prime} , g^{\prime} , k^{\prime} as the grounded grid output section.

¹⁾ D.C. component max. 130 V.

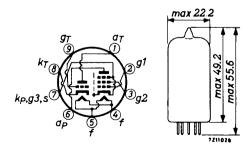
TRIODE PENTODE

Triode pentode with separate cathodes intended for use as frequency changer in television receivers.

QUICK REFERENCE DATA					
Triode section					
Anode current	$I_{\mathbf{a}}$	14	mA		
Transconductance	S	5	mA/V		
Amplification factor	μ	20	-		
Pentode section					
Anode current	I_a	10	mA		
Transconductance	S	6.2	mA/V		
Amplification factor	μ _{g2g1}	47	-		

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

If	300	mΑ	
V_f	9	v	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

PCF80

CAPACITANCES			
Triode section (numbers denote pin number)			
Anode to all except grid (1-4+5+7+8)	$C_{a(g)}$	1	.8 pF
Grid to all except anode (9-4+5+7+8)	Cg(a)	2	.5 pF
Anode to grid	C_{ag}	1	.5 pF
Pentode section	_		
Anode to all except grid No.1	$C_{a(g_1)}$	3	.4 pF
Grid No.1 to all except anode	$C_{g_1(a)}$	5	.2 pF
Anode to grid No.1	C_{ag_1}	max. 0.03	25 pF
Between triode and pentode sections			
Anode triode to grid No.1 pentode	$c_{a_Tg_1P}$	max. 0.	16 p F
Grid triode to anode pentode	$C_{g_{\mathrm{T}}a_{\mathrm{P}}}$	max. 0.0	02 pF
Anode triode to anode pentode	$C_{a_{T}a_{P}}$	max. 0.0	07 pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	v_a	100	V
Grid voltage	v_g	-2	V
Anode current	I_a	14	mA
Transconductance	S	5	mA/V
Amplification factor	μ	20	-
Pentode section			
Anode voltage	v_a	170	V
Grid No.2 voltage	v_{g_2}	170	V
Grid No.1 voltage	v_{g_1}	-2	V
Anode current	I_a	10	m A
Grid No.2 current	I_{g_2}	2.8	mA
Transconductance	S	6.2	mA/V
Amplification factor	$\mu_{g_2g_1}$	47	-
Internal resistance	$R_{\mathbf{i}}$	0.4	$M\Omega$
Grid No.1 impedance			
(Frequency 50 MHz)	r_{g_1}	10	kΩ
Equivalent noise resistance	R_{eq}	1.5	kΩ

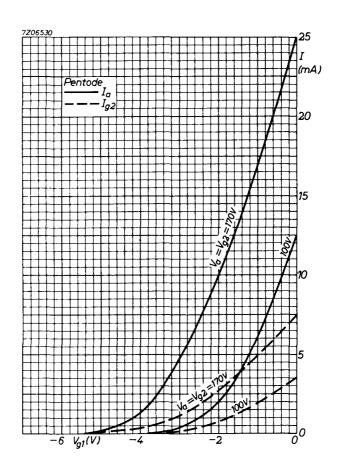
OPERATING CONDITIONS

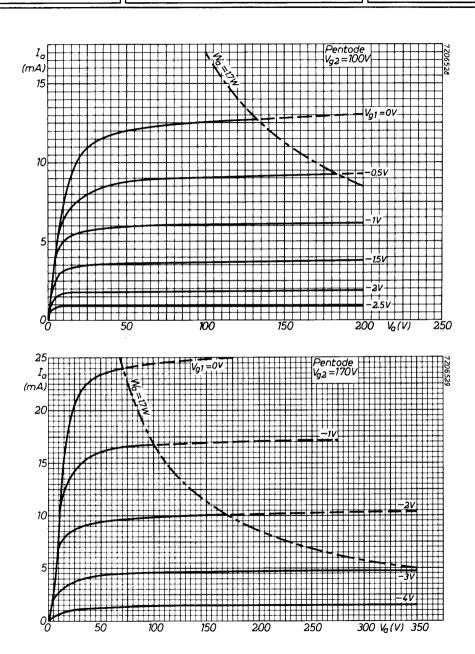
<u>As frequency changer</u> (It is recommended to employ the triode in a Colpitts type of circuit and not in a Hartley type)

7.				
Anode voltage	v_a	170	170	V
Grid No.2 voltage	v_{g_2}	170	170	V
Grid No.1 resistor	R_{g_1}	0.1	1.0	$M\Omega$
Cathode resistor	$R_{\mathbf{k}}$	330	820	Ω
Oscillator voltage	v_{osc}	3.5	3.5	v_{RMS}
Anode current	la	6.5	5.2	mA
Grid No.2 current	I_{g_2}	2.0	1.5	m A
Grid No.1 current	I_{g_1}	2 0	0	μ A
Conversion conductance	S_c	2.2	2.1	mA/V
Internal resistance	R_i	800	870	kΩ

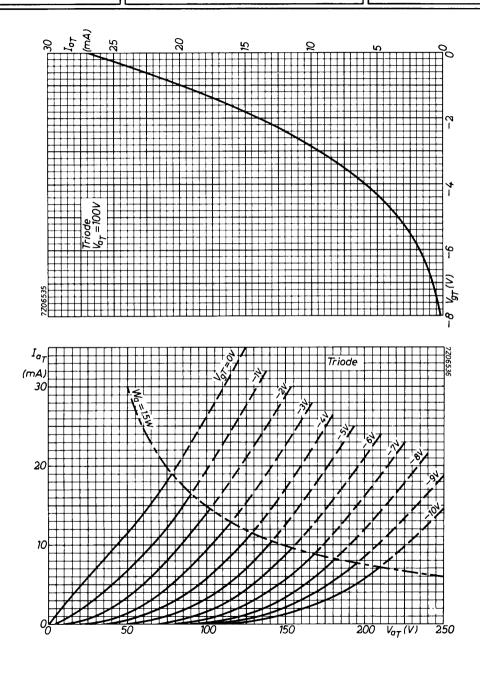
Frame output application (Optimum peak cathode current of the triode section)

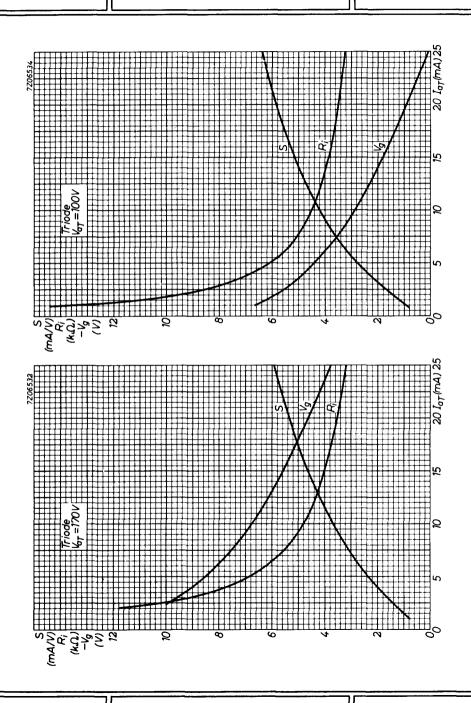
To allow for tube spread, for deterioration during life and for emission drop at underheating the equipment should be so designed that it still operates satisfactorily with a peak cathode current of 100 mA (max. pulse duration 4 % of a cycle, but maximum 0.8 ms). The amplitude of the peak current occurring with new tubes should be limited automatically to this max. value of 100 mA. (E.g. by non-bypassed resistances in the grid lead.)

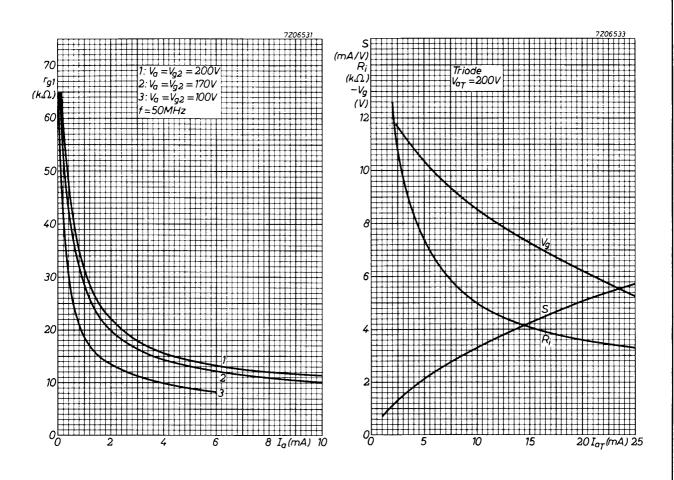

January 1970 | 3


PCF80

LIMITING VALUES	(Design centre rating system)
-----------------	-------------------------------


LIMITING VALUES (Design Co	inti C 1	ating system)			
Triode section					
Anode voltage		v_{a_0}	max.	550	V
		v_a	max.	2 50	V
Anode dissipation		w_a	max.	1.5	W
Cathode current					
average		I_k	max.	14	m A
peak	I_{k_p}	see under "frame out	put ap	plicati	ons''
Grid resistor		$R_{\mathbf{g}}$	max.	0.5	МΩ
Cathode to heater voltage					
cathode neg		$v_{\mathbf{kf}}$	max.	100	V
cathode pos		v_{kf}	max.	200	V
		D.C. component	max.	120	V
Pentode section					
Anode voltage		$v_{\mathbf{a_0}}$	max.	550	V
		v_a	max.	250	v
Grid No.2 voltage		$v_{\mathbf{g_{2}}_{\mathrm{o}}}$	max.	550	v
$I_k = 14 \text{ mA}$		v_{g_2}	max.	175	V
$I_k = max. 10 mA$		${ m v_{g}}_{2}$	max.	200	V
Anode dissipation		$\mathbf{w_a}^-$	max.	1.7	w
Grid No.2 dissipation					
at W_a = min. 1.2 W		w_{g_2}	max.	0.5	w
at $W_a = max. 1.2 W$		$\mathbf{w_{g_2}}^-$	max.	0.75	W
Cathode current		$I_{\mathbf{k}}$	max.	14	mA
Grid resistor					
fixed bias		$\mathtt{r_{g_1}}$	max.	0.5	$M\Omega$
automatic bias		R_{g_1}	max.	. 1	МΩ
Cathode to heater voltage		•			
cathode neg		v_{kf}	max.	100	v
cathode pos		v_{kf}	max.	200	v
		D.C. component	max.	120	V


5



7

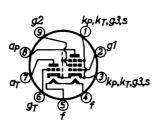
TRIODE-PENTODE

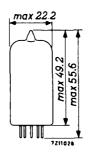
Triode pentode intended for use as frequency changer in $V.H.\,F.$ television tuners.

QUICK REFERENCE DATA				
Triode section				
Anode current	$I_{\mathbf{a}}$	14	mA	
Transconductance	S	5.7	mA/V	
Amplification factor	μ	17	-	
Pentode section				
Anode current	I_a	10	mA	
Transconductance	S	12	mA/V	
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	70	-	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


$I_{\mathbf{f}}$	300	mΑ
$\overline{V_f}$	8	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

PCF86

CAPACITANCES Triode section Anode to all except grid 1.1 рF $C_{a(g)}$ Grid to all except anode 2.4 pF $C_{g(a)}$ pF 2.0 Anode to grid C_{ag} Pentode section 3.5 pF Anode to all except grid No. 1 $C_{a(g_1)}$ Grid No.1 to all except anode $C_{g_1(a)}$ 5.8 pF Anode to grid No.1 0.012 pF C_{ag_1} 1.7 pF Grid No.1 to grid No.2 $C_{g_1g_2}$ Between triode and pentode sections Anode triode to anode pentode $C_{a_{T}a_{P}}$ 0.125 pF 0.014 Grid triode to anode pentode $C_{g_{\mathrm{T}^{a_{\mathrm{p}}}}}$ рF max.0.010 Anode triode to grid No.1 pentode pF Cargip Grid triode to grid No.1 pentode max.0.010 pF CgTgIP TYPICAL CHARACTERISTICS Triode section V_a 100 V Anode voltage Vφ Grid voltage -3 V Anode current I_a 14 mA Transconductance S 5.7 mA/V Amplification factor 17 μ Pentode section Anode voltage V_a 170 V 150 V Grid No.2 voltage V_{g_2} -1.2 V Grid No.1 voltage Vgı Anode current 10 mΑ I_a Grid No.2 current 3.8 mA

 I_{g_2}

 $\mu_{g_2g_1}$

 R_i

 R_{eq}

S

Transconductance

Amplification factor

Internal resistance

Equivalent noise resistance

12

70

min.

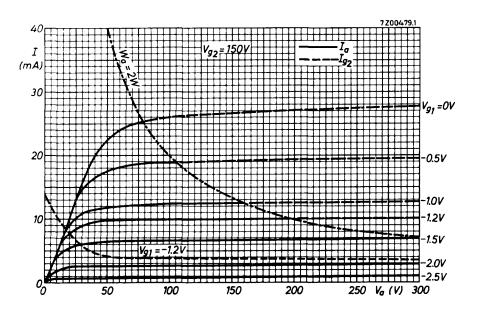
350 $k\Omega$

1 $k\Omega$

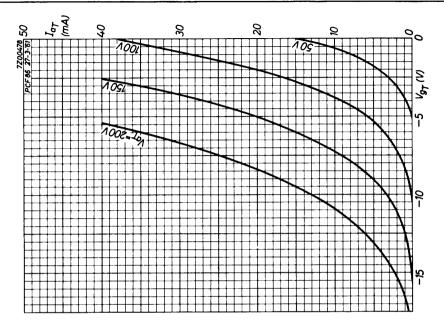
mA/V

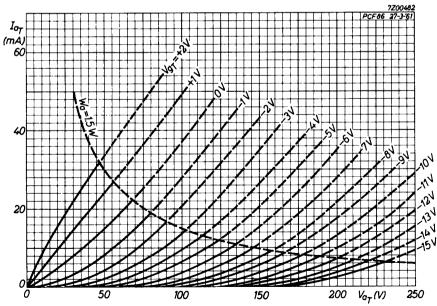
OPERATING CHARACTERISTICS

Triode section as oscillator			
Anode supply voltage	v_{ba}	190	v
Anode resistor	R_a	8.2	$\mathbf{k}\Omega$
Grid resistor	$R_{\mathbf{g}}$	10	$\mathbf{k}\Omega$
Oscillator voltage	v_{osc}	4.5	VRMS
Anode current	I_a	12	mA
Effective transconductance	$S_{ ext{eff}}$	3.5	mA/V
Pentode section as mixer			
Anode supply voltage	v_{ba}	190	v
Grid No.2 supply voltage	v_{bg_2}	190	v
Grid No.2 resistor	R_{g_2}	18	$\mathbf{k}\Omega$
Grid No.1 resistor	R_{g_1}	100	$\mathbf{k}\Omega$
Oscillator voltage	v_{osc}	2.3	v_{RMS}
Anode current	I_a	8.5	mA
Grid No.2 current	I_{g_2}	3.0	mA
Grid No.1 current	I_{g_1}	30	μ A
Conversion conductance	s_c	4.5	mA/V
Internal resistance	R_i	0.6	$M\Omega$


PCF86

LIMITING VALUES


Triode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 250	V
Anode dissipation	w_a	max. 1.5	w
Cathode current	$I_{\mathbf{k}}$	max. 15	mA
Grid resistor	$R_{\mathbf{g}}$	max. 0.5	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{kf}}$	max. 100	V ¹)
Pentode section			
Anode voltage	V_{a_0}	max. 550	v
	V_a	max. 250	v
Grid No. 2 voltage	$v_{g_{2_0}}$	max. 550	v
	v_{g_2}	max. 150	v
Anode dissipation	w_a	max. 2.0	W
Grid No. 2 dissipation	w_{g_2}	max. 0.5	w
Cathode current	I _k	max. 18	mA
Grid No.1 resistor	$^{\mathrm{R}}\mathbf{g}_{1}$	max. 0.5	$\mathbf{M}\Omega$
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 100	V 1)


ceed 50 V_{RMS}.

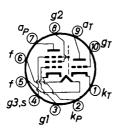
 $^{^{1})}$ To fulfil the modulation hum requirements in intercarrier receivers, V_{kf} should not exceed 75 V_{RMS} . With respect to modulation hum in A.M. sound receivers, V_{kf} should not exceed 75 V_{RMS} .

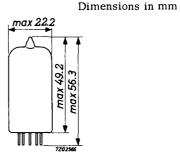
December 1969

TRIODE-PENTODE

Triode-pentode intended for use in television receivers; triode section as limiter, noise detector, A.G.C. amplifier, sync. separator and pulse-amplifier; pentode section as sound I.F. amplifier and video I.F. amplifier.

QUICK REFERENCE DATA				
Pentode section				
Anode current	I _a	13	m A	
Transconductance	S	14	mA/V	
Amplification factor	$\mu_{g_2g_1}$	53	-	
Triode section				
Anode current	$I_{\mathbf{a}}$	8.5	mA	
Transconductance	S	5.2	mA/V	
Amplification factor	μ	57	-	


HEATING: Indirect by A.C. or D.C.; series supply


Heater current

Heater voltage

DIMENSIONS AND CONNECTIONS

Base: Decal

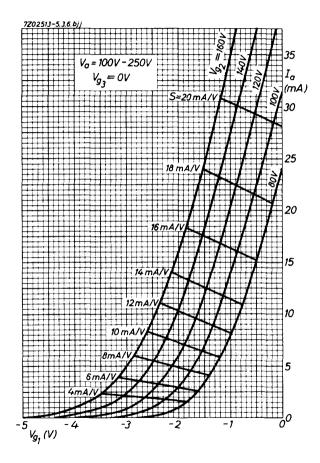
300 mA

8.5 V

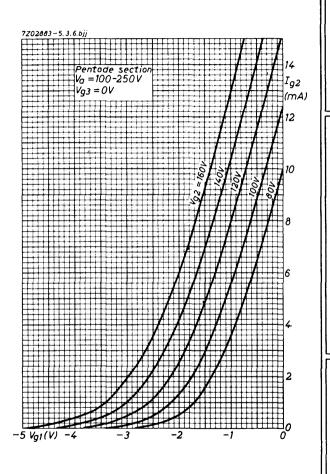
PCF200

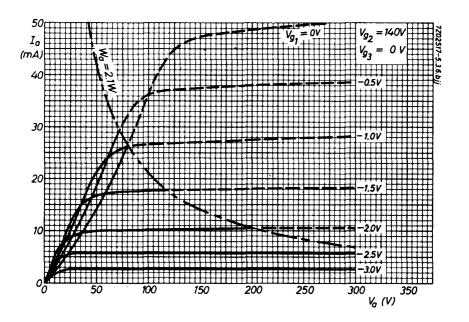
CAPACITANCES			
Triode section			
Grid to all except anode	$C_{g(a)}$	2.1	pF
Anode to all except grid	$C_{a(g)}$	3.0	pF
Anode to grid	Cag	2.2	р F
Pentode section	J		
Grid No.1 to all except anode	$^{\mathrm{C}}_{g_{\mathrm{I}}(a)}$	6.0	pF
Anode to all except grid No.1	$C_{a(g_1)}$	3.3	р F
Anode to grid No.1	C_{ag_1}	0.0056	pF
	Cag _l max.	0.008	pF
Grid No.1 to grid No.2	$C_{g_1g_2}$	1.7	pF
Grid No.1 to cathode	C_{g_1k}	3.7	pF
Between triode and pentode sections	O1		
Pentode anode to triode anode	C_{aP-aT}	max. 0.015	pF
Pentode grid No.1 to triode anode	C_{g_1P-aT}	max. 0.0012	pF
Pentode grid No.! to triode grid	C_{g_1P-gT}	max. 0.0015	pF
TYPICAL CHARACTERISTICS			
Pentode section			
Anode voltage	v_a	160	v
Grid_No.3 voltage	v_{g_3}	0	v
Grid No.2 voltage	v_{g_2}	135	V
Grid No.1 voltage	v_{g_1}	-1.7	v
Anode current	Ι _α	13	mA
Grid No.2 current	I_{g_2}	5.3	mA
Transconductance	s	14	mA/V
Amplification factor	$\mu_{g_2g_1}$	53	-
Triode section	0201		
Anode voltage	v_a	170	v
Grid voltage	v_g	-1.0	v
Anode current	Ia	8.5	mA
Transconductance	S	5.2	mA/V
Amplification factor	μ	57	-

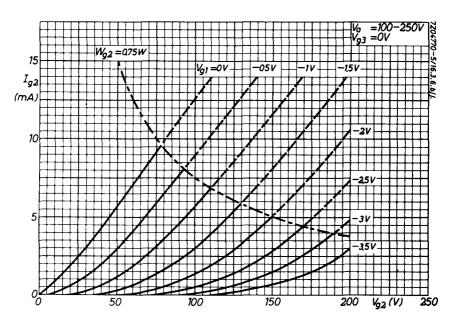
OPERATING CHARACTERISTICS

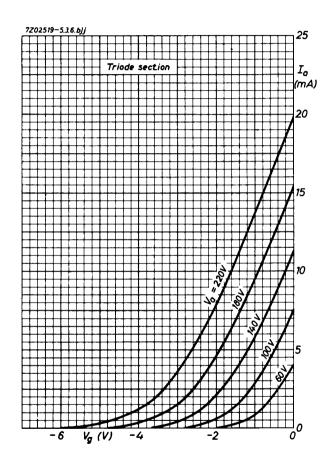

Pentode section as sound or video I.F. amplifier (g3 connected to earth)						
Supply voltage	v_b	210	230	v		
Anode resistor	R_a	3.9	5.6	$k\Omega$		
Grid No.2 resistor	R_{g_2}	15	22	kΩ		
Cathode resistor	R_k	91	83	Ω		
Anode current	$I_{\mathbf{a}}$	13.0	12.5	m A		
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	5.3	5.1	mA		
Transconductance	S	14	14	mA/V		
Input resistance at 40 MHz	r_{g_1}	6.6	6.6	kΩ		
Triode section as sync separator						
Anode supply voltage	v_b	130 t	o 150	v		
Anode resistor	R_a	3	13	$k\Omega$		
Grid current	$I_{\mathbf{g}}$		1	μ A		
Anode current	$^{ m I}{}_{ m a}$	min.	2	mA		

PCF200

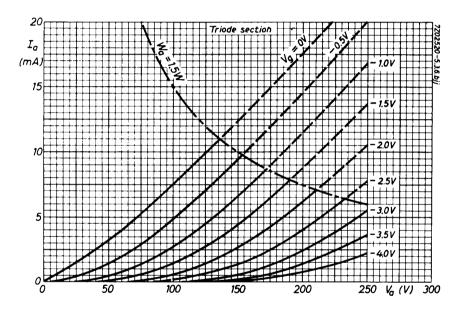

LIMITING VALUES (Design centre rating system)


Pentode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	V
Anode dissipation	w_a	max.	2.1	W
Cathode current	I_k	max.	2 0	m A
Grid No.2 voltage	$v_{g_{2_{O}}}$	max.	550	V
	v_{g_2}	max.	2 50	v
Grid No.2 dissipation	$w_{g_2}^-$	max.	0.75	W
Cathode to heater voltage	v_{kf}	max.	150	v
Grid No.1 resistor	R_{g_1}	max.	1	МΩ
Triode section				
Peak anode voltage ($I_a < 0.1 \text{ mA}$)	$v_{a_{D}}$	max.	600	V^{l})
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.5	W
Cathode current	I _k	max.	18	m A
Grid resistor	R_{g}	max.	1	$M\Omega$
Cathode to heater voltage:	S			
cathode negative with respect to heater	v_{kf}	max.	150	v
cathode positive with respect to heater	v_{kf}	max. + max.	200 150	v v _{RMS}


 $^{^{\}rm l})$ Max. pulse duration is 18 % of a cycle but max. 18 $\mu{\rm sec.}$



S



December 1969 | 7

8 December 1969

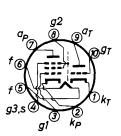
TRIODE-PENTODE

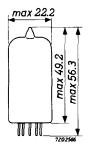
Triode pentode intended for use in T.V. receivers; triode section as line-blocking oscillator, part of a multivibrator, sync separator, pulse amplifier or A.G.C. delay diode; pentode section with remote cut-off as video I.F. amplifier.

QUICK REFERENCE DATA					
Pentode section					
Anode current	I_a	13	mA		
Transconductance	S	12.6	mA/V		
Amplification factor	$\mu_{g_2g_1}$	45	~		
Triode section					
Anode current	Ia	14	mA		
Transconductance	S	4.8	mA/V		
Amplification factor	μ	17.5	~		
Cathode peak current	I _{kp}	max. 50	mA		

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I_f	300 ı	
$\overline{V_f}$	8.5	V

DIMENSIONS AND CONNECTIONS

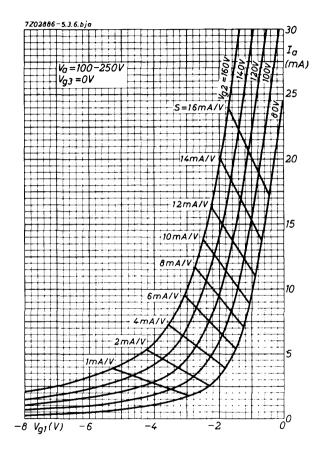
Dimensions in mm

Base: Decal

PCF201

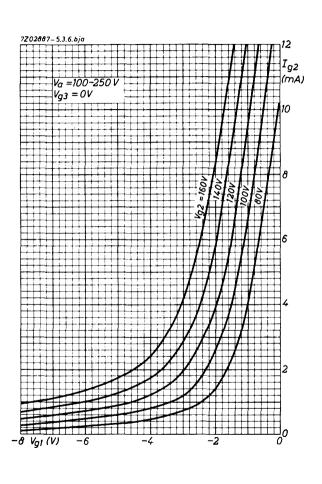
Pentode section			
Anode to all except grid No.1	$C_{a(g_1)}$	3.3	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	6.0	pF
Grid No.1 to cathode	$c_{\mathbf{kg_1}}$	3.7	pF
Anode to grid No.1	$C_{\mathbf{a}\mathbf{g}_{1}}^{\mathbf{C}_{\mathbf{a}\mathbf{g}_{1}}}$	0.0056 max. 0.008	pF pF
Grid No.1 to grid No.2	$C_{g_1g_2}$	1.7	pF
Triode section	0102		
Anode to all except grid	$C_{a(g)}$	3.0	pF
Grid to all except anode	$C_{g(a)}$	2.1	pF
Anode to grid	C_{ag}	2.0	pF
Between pentode and triode sections			
Pentode anode to triode anode	$C_{\mathbf{aPaT}}$	max. 0.015	pF
Pentode grid No.1 to triode anode	c_{g_1PaT}	max.0.0012	pF
Pentode grid No.1 to triode grid	C_{g_1PgT}	max.0.0015	pF
TYPICAL CHARACTERISTICS			
Pentode section			
Anode voltage	v_a	160	V
Grid No.3 voltage	v_{g_3}	0	V
Grid No.2 voltage	v_{g_2}	110	v
Grid No.1 voltage	v_{g_1}	-1.4	v
Anode current	I _a	13	mA
Grid No.2 current	I_{g_2}	5.3	mA
Transconductance	S	12.6	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	45	-
Triode section	- •		
Anode voltage	v_a	100	v
Grid voltage	v_g	-2	v
Anode current	Ia	14	mA
Transconductance	S	4.8	mA/V
Amplification factor	μ	17.5	_

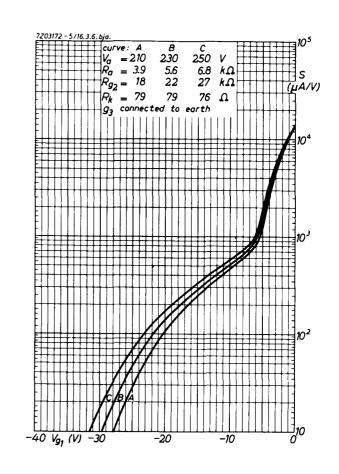
OPERATING CHARACTERISTICS

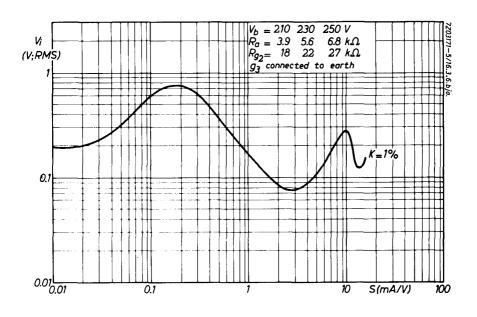

Pentode section as video I.F. amplifier (g3 connected to earth)						
v_b	210	230	250	v		
R_a	3.9	5.6	6.8	$k\Omega$		
R_{g_2}	18	22	27	$k\Omega$		
$R_{\mathbf{k}}$	79	79	76	Ω		
Ia	13.2	13.2	12.8	mA		
I_{g_2}	5.4	5.4	5.2	mA		
S	12.6	12.6	12.6	mA/V		
v_{g_1}	-5.1	-5.4	-5.7	v		
v_{g_1}	-19	-20.5	-22	V		
r_{g_1}	7.4	7.4	7.4	$\mathbf{k}\Omega$		
or						
		v_a	30	V		
		I _{kp}	40	mA		
		•	25	mA		
		•	15	mA		
		v _{ba} 130	to 150	V		
		Ra	33	$k\Omega$		
		I_g	1	μ A		
		I _a m	in. 2	mA		
	V _b R _a R _{g2} R _k I _a I _{g2} S V _{g1} V _{g1} r _{g1}	V _b 210 R _a 3.9 R _{g2} 18 R _k 79 I _a 13.2 I _{g2} 5.4 S 12.6 V _{g1} -5.1 V _{g1} -19 r _{g1} 7.4 or	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

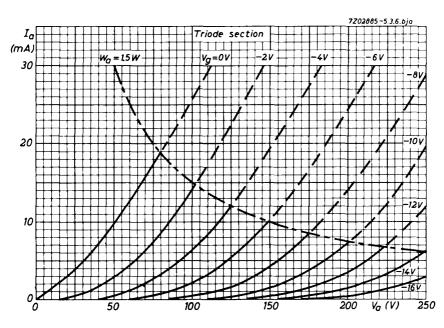
PCF201

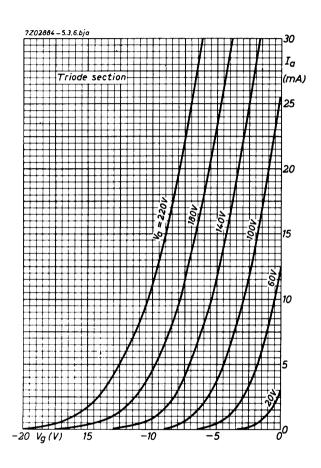
LIMITING VALUES (Design centre rating system)


Pentode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	2.1	W
Grid No.2 voltage	$v_{g_{\mathbf{2o}}}$	max.	550	V
	v_{g_2}	max.	250	V
Grid No.2 dissipation	w_{g_2}	max.	0.7	W
Grid No.1 resistor	R_{g_1}	max.	1	$M\Omega$
Cathode current	I_k	max.	20	mA
Cathode to heater voltage	v_{kf}	max.	150	V
Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.5	W
Grid resistor	$R_{\mathbf{g}}$	max.	1	$M\Omega$
Cathode current	I_k	max.	18	mA
Peak cathode current	I_{k_p}	max.	50	mA ^l)
Cathode to heater voltage	v_{kf}	max.	150	V


 $[\]overline{1)}$ Maximum pulse duration 10% of a cycle but max. $10~\mu s.$




S



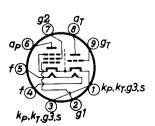
December 1969

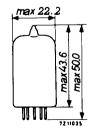
TRIODE-PENTODE

High transconductance triode and R.F. pentode intended for use as frequency changer in V.H.F. T.V. tuners.

QUICK REFERENCE DATA					
Pentode section					
Anode current	$I_{\mathbf{a}}$	10	mΑ		
Transconductance	S	11	mA/V		
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	55	-		
Internal resistance	R_i	min. 350	kΩ		
Triode section					
Anode current	$I_{\mathbf{a}}$	15	mΑ		
Transconductance	S	9	mA/V		
Amplification factor	μ	20	-		

HEATING: Indirect by A.C. or D.C.; series supply


Heater current
Heater voltage


 $\frac{I_f}{V_f} = \frac{0.3 \text{ A}}{8.5 \text{ V}}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES (with external shield)			
Pentode section			
Grid No.1 to all except anode	$C_{g_1(a)}$	5.	9 pF
Anode to all except grid No. 1	$C_{\mathbf{a}(\mathbf{g}_1)}$	3.	7 pF
Anode to grid No.1	${^{\mathrm{C}}_{\mathrm{ag}}}_{\mathrm{l}}$	0.00 max. 0.01	
Grid No.1 to grid No.2	$^{\mathrm{C}}\mathbf{g_{1}g_{2}}$	1.	6 pF
Triode section			
Grid to all except anode	Cg(a)	3.	3 pF
Anode to all except grid	Ca(g)	1.	7 pF
Anode to grid	C_{ag}	1.	8 pF
Between pentode and triode sections			
Pentode anode to triode anode	$C_{\mathbf{a}P\mathbf{a}T}$	max. 0.02	5 pF
Pentode anode to triode grid	C_{aPgT}	max. 0.01	0 pF
Pentode grid No.1 to triode anode	$C_{\tt glPaT}$	max. 0.01	0 pF
Pentode grid No.1 to triode grid	$C_{g_{1}p_{g}T}$	max. 0.01	0 pF
TYPICAL CHARACTERISTICS			
Pentode section			
Anode voltage	v_a	17	0 V
Grid No.2 voltage	v_{g_2}	12	0 V
Grid No.1 voltage	v_{g_1}	-1.	4 V
Anode current	Ia	1	0 mA
Grid No.2 current	I_{g_2}		3 mA
Transconductance	S	1	1 mA/V
Internal resistance	R_i	min. 35	0 k Ω
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	5	5
Equivalent noise resistance	R _{eq}	1.	5 k Ω

TYPICAL CHARACTERISTICS (continued)

Transconductance

TYPICAL CHARACTERISTICS (continued)				
Triode section				
Anode voltage	v_a		100	V
Grid voltage	$v_{\mathbf{g}}$		-3	V
Anode current	Ia		15	mA
Transconductance	S		9	mA/V
Amplification factor	μ		20	-
OPERATING CHARACTERISTICS				
Pentode section as I.F. amplifier				
Anode supply voltage	v_{ba}	20	00	v
Grid No.2 supply voltage	v_{bg_2}	20	00	v
Grid No.2 resistor	R_{g_2}	:	27	kΩ
Anode resistor	$R_{\mathbf{a}}$	2.7	4.7	$\mathbf{k}\Omega$
Grid No.1 supply voltage	v_{bg_1}	-1.4	0	V
Grid No.1 resistor	R_{g_1}	0.1	1	$M\Omega$
Anode current	I _a	10	13	mA
Grid No.2 current	I_{g_2}	3.0	3.9	mA
Transconductance	s	11	14.5	mA/V
Input resistance at 50 MHz	$^{\mathrm{r}}g_{1}$	10	10	$\mathbf{k}\Omega$
Grid No.1 voltage	v_{g_1}	-12		_v
The second second	- 1	0 11		

S

0.11 - mA/V

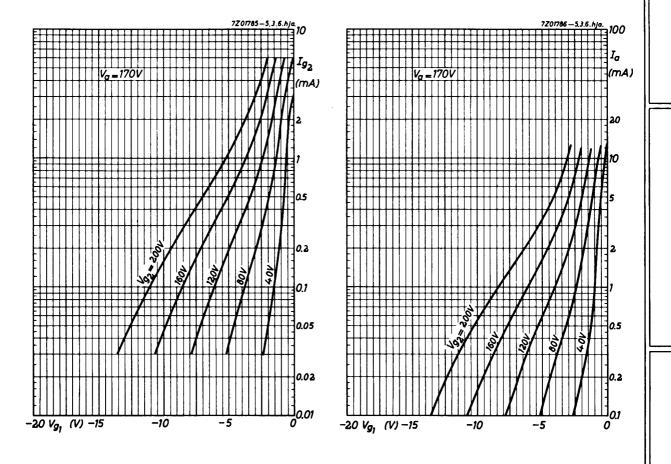
3

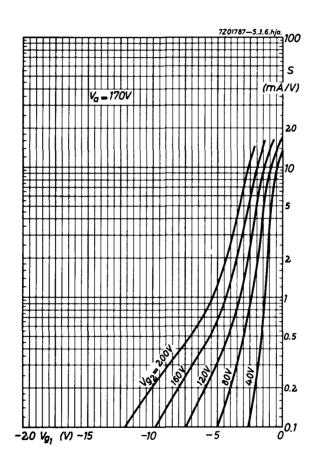
OPERATING CHARACTERISTICS (continued)

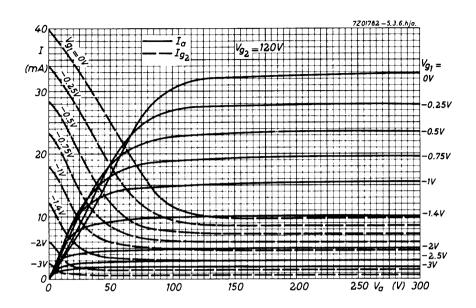
Pentode section as mixer

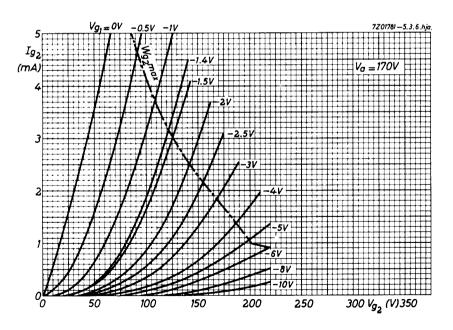
Anode supply voltage	$V_{b_{\mathbf{a}}}$:	200	V
Grid No.2 supply voltage	v_{bg_2}	:	200	V
Grid No. 2 resistor	R_{g_2}		27	$\mathbf{k}\Omega$
Anode resistor	Ra	2.7	4.7	$\mathbf{k}\Omega$
Grid No.1 supply voltage	v_{bg_1}	-1.4	0	V
Grid No.1 resistor	Rg1	0.1	1	$M\Omega$
Oscillator voltage	v_{osc}	1.6	1.6	V(RMS)
Anode current	I_a	10	9.3	mA
Grid No.2 current	I_{g_2}	3.0	2.9	mA
Grid No.1 current	I_{g_1}	8	2.3	μ A
Conversion conductance	S_{c}	5	4.7	mA/V

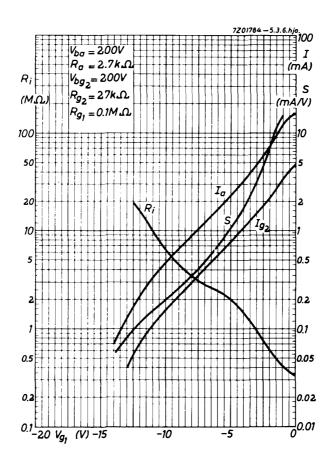
OPERATING CHARACTERISTICS

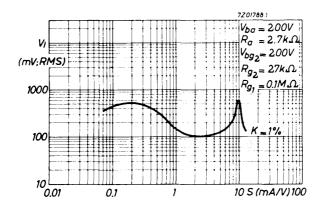

Triode section as oscillator

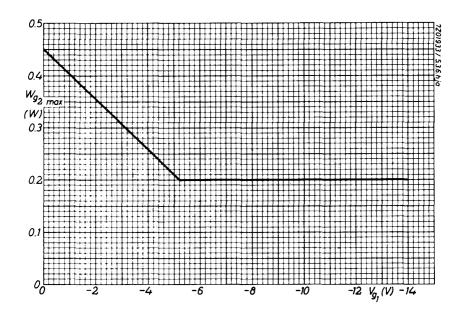

Anode supply voltage	V_{b_a}	20	00	V
Grid resistor	$R_{\mathbf{g}}$	1	10	$\mathbf{k}\Omega$
Anode resistor	R_a	8.2	12	$\mathbf{k}\Omega$
Oscillator voltage	v_{osc}	4.5	3.3	V(RMS)
Anode current	I_a	16	12	mA
Effective transconductance (without higher harmonics)	$S_{f eff}$	3. 7	3.7	mA/V

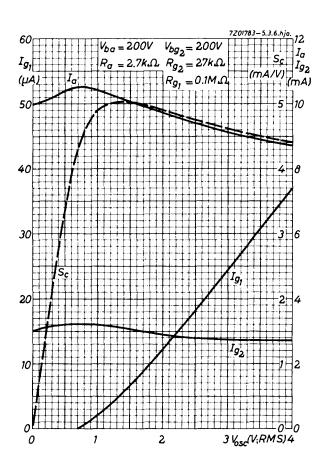

LIMITING VALUES (Design centre rating system)

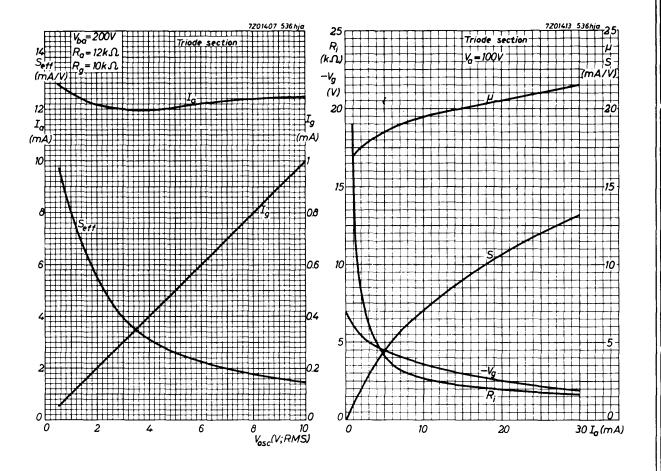

Pentode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	2.0	W
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
Grid No.2 supply voltage	$v_{ m bg}_2$	max.	250	V
Grid No.2 voltage	v_{g_2}	max.	250	V
Grid No.2 dissipation	See pag	e 10		
Grid No.1 voltage	-Vg ₁	max.	50	V
Grid No.1 resistor, fixed bias	R_{g_1}	max.	1	$M\Omega$
automatic bias	$^{\mathrm{Rg}}$	max.	2.2	$\mathbf{M}\Omega$
Cathode current	I_k	max.	18	mΛ
Cathode to heater voltage	$V_{\mathbf{k}f}$	max.	100	V ¹)
Triode section				
Anode voltage	$V_{\mathbf{a_0}}$	max.	550	V
Anode supply voltage	$v_{b_{\mathbf{a}}}$	max.	250	V
Anode voltage	v_a	max.	125	V
Anode dissipation	w_a	max.	1.5	W
Grid voltage	-Vg	max.	50	V
Grid resistor	Rg	max.	0.5	$\mathbf{M}\Omega$
Cathode current	I_k	max.	20	mA
Cathode to heater voltage	$v_{\mathbf{k}f}$	max.	100	V^{1})


 $^{^{\}rm l}$) To fulfil the modulation hum requirements in intercarrier receivers, the voltage between heater and cathode should not exceed 100 V(RMS). With respect to modulation hum in A.M. sound receivers the voltage between heater and cathode should not exceed 50 V(RMS).







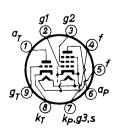


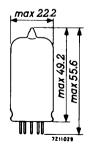
TRIODE-PENTODE

Triode pentode; triode section intended for use as reactance tube, pentode section intended for use as sine wave oscillator or pulse shaper in television receivers.

QUICK REFERENCE DATA				
Pentode section				
Anode current	$I_{\mathbf{a}}$	6	mA	
Transconductance	S	5.5	mA/V	
Amplification factor	$^{\mu_{\mathbf{g}_{2}\mathbf{g}_{1}}}$	47	-	
Internal resistance	Ri	400	kΩ	
Triode section				
Anode current	$I_{\mathbf{a}}$	3.5	m A	
Transconductance	S	3.5	mA/V	
Amplification factor	μ	70	-	

HEATING: Indirect by A.C. or D.C.; series supply


Heater current


Heater voltage

If	300	mΑ
v_f	9	V

DIMENSIONS AND CONNECTIONS

Base: Noval

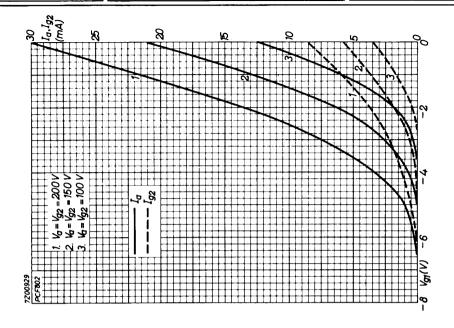
December 1969

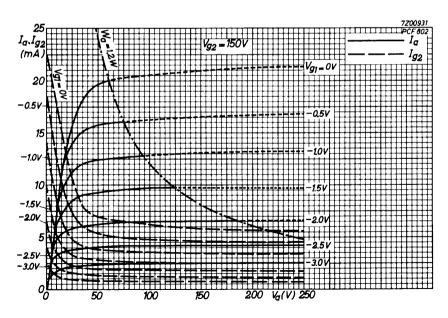
Dimensions in mm

CA	PA	CI	ГΑ	N	CES

Pentode section							
Grid No.1 to all except ar	ode			$C_{g_1(a)}$	5	5.4	ρF
Anode to grid No.1				Cagi	0.	.06	р F
Grid No.1 to heater				C_{g_1f}	max. (0.1	р F
Triode section				61-			
Grid to all except anode				$C_{g(a)}$	2	2.4	pF
Anode to grid				C_{ag}	1	1.5	рF
Grid to heater				$c_{ m gf}$	max. (0.1	pF
TYPICAL CHARACTERIS	TICS						
Pentode section							
Anode voltage	v _a	100	100	200	1	100	V
Grid No.2 voltage	v_{g_2}	100	100	200	1	00	V
Grid No.1 voltage	v_{g_1}	-1	0	max16	max	1.3	V
Anode current	Ia	6	12.5	0.01		-	m A
Grid No.2 current	I_{g_2}	1.7	3.5	-		-	m A
Transconductance	S	5.5	-	-		-	mA/V
Internal resistance	R_i	400	-	-		-	$k\Omega$
Amplification factor	$\mu_{g_2g_1}$	47	-	-		-	-
Grid No.1 current	I_{g_1}	-	-	-	(0.3	μ A
Triode section	•						
Anode voltage	v_a	200		200	2	200	V
Grid voltage	v_{g}	-2		-	max	1.3	V
Anode current	I_a	3.5		10		_	mA
Transconductance	S	3.5		_		-	mA/V
Internal resistance	R_i	20		-		-	$k\Omega$
Amplification factor	μ	70		_		-	-
Grid current	I_g	-		10	(0.3	μ A

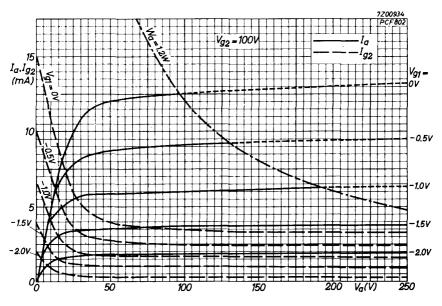
LIMITING VALUES (Design centre rating system)

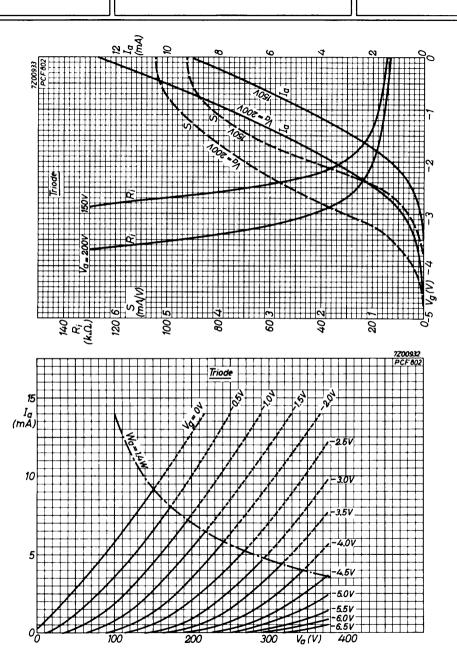

Pentode section				
Anode voltage	v_{a_0}	max.	550	V
	Va	max.	250	V
Anode dissipation	w_a	max.	1.2	W
Grid No.2 voltage	v_{g2o}	max.	550	V ¹)
	v_{g_2}	max.	250	V
Grid No.2 dissipation	w_{g_2}	max.	0.8	W
Grid No.1 voltage	-v _{g1}	max.	220	V ¹)
Grid resistor, fixed bias	R_{g_J}	max.	0.56	$M\Omega$
automatic bias	R_{g1}	max.	1	$M\Omega$
Cathode current, average	I_k	max.	15	mA
peak T_{imp} = max. 30 μ s, δ = max. 0.3	I_{kp}	max.	50	m A
Cathode to heater voltage	v_{kf}	max.	100	V ²)
Grid circuit impedance	Z_{g_1} (f = 50 Hz)	max.	300	$k\Omega^{-2}$)
Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v _a	max.	250	V
Anode dissipation	w_a	max.	1.4	W
Grid resistor, fixed bias	$R_{\mathbf{g}}$	max.	3	$M\Omega$
Cathode current	I_k	max.	10	mA
Cathode to heater voltage	v_{kf}	max.	100	V ³)
Grid circuit impedance	Z_g (f = 50 Hz)	max.	50	$k\Omega^{-3}$)


 $^{^{\}rm I})$ The instantaneous voltage between grid No.1 and grid No.2 should never exceed 550 V.

November 1969

 $^{^2)}$ To avoid hum interference the A.C. component of $\rm V_{kf}$ should not exceed 65 V at the specified value of $\rm Z_{g1}$.


³⁾ To minimise hum interference decoupling of R_k is recommended. Incircuits with undecoupled R_k the hum interference between grid and cathode will remain below $1000~\mu\text{V}$ when the A.C. component of V_{kf} does not exceed 25 V and the R_k is not higher than 1.2 $k\Omega$ at the specified value of Z_g .


November 1969

November 1969 5

6

November 1969

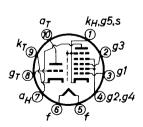
TRIODE-HEPTODE

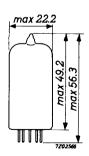
Triode-heptode; triode section intended for use as pulse amplifier and heptode section for use as noise gated sync. separator.

QUICK REFERENCE DATA					
Triode section					
Anode current	I_a		9		m A
Transconductance	S		8.8		m A/V
Amplification factor	μ		50		-
Heptode section					
Grid No.1 voltage	v_{g_1}	0	-1.8	0	v
Grid No.3 voltage	v_{g_3}	0	0	-1.8	v
Anode current	Ia	1500	20	20	μΑ

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


If	300	mΑ
v_f	8.5	v

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: decal

PCH200

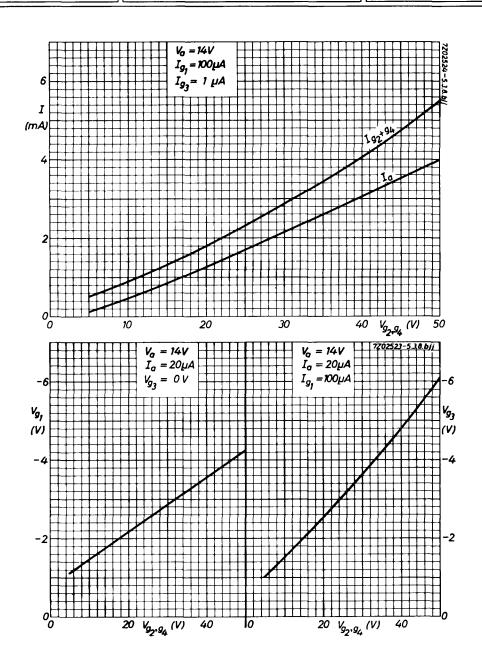
CAPACITANCES			
Heptode section			
Grid No.1 to all except anode	$C_{g_1(a)}$	4.4	pF
Anode to all except grid No.1	$C_{a(g_1)}$	5.4	pF
Anode to grid No.1	C_{ag_1}	max. 0.1	pF
Anode to grid No.3	C_{ag_3}	max. 0.25	pF
Grid No.1 to grid No.3	$c_{g_1g_3}$	0.3	p F
Triode section			
Grid to all except anode	Cg (a)	3.3	pF
Anode to all except grid	C _a (g)	1.7	pF
Anode to grid	C_{ag}	1.8	pF
Between heptode and triode sections			
Heptode grid No.1 to triode grid	$C_{g_1}H_gT$	max. 0.005	pF
Heptode grid No.1 to triode anode	С _{д і} НаТ	max. 0.010	pF
Heptode grid No.3 to triode grid	c_{g_3HgT}	max. 0.020	pF
Heptode anode to triode anode	C_{aHaT}	max. 0.150	pF

TYPICAL	CHARA	CTED	ICTICS
LIFICAL	CHARA		121172

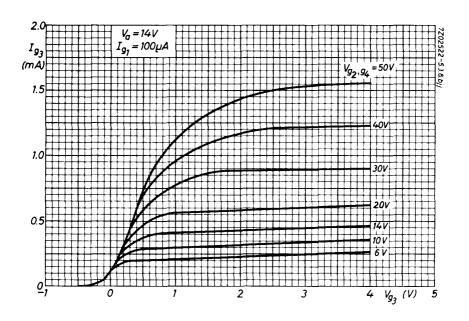
THE CHARACTERISTIC	30					
Triode section						
Anode voltage	v_a		100		200	v
Anode current	I_a		9.0		0.1	mA
Grid voltage	v_g		-1		-7(< 11)	v
Transconductance	S		8.8		-	mA/V
Amplification factor	μ		50			-
Heptode section						
Anode voltage	v_a	l	4	14	14	v
Grids No.2 and 4 voltage	v_{g_2,g_4}	1	4	14	14	v
Grid No.3 voltage	v_{g_3}		0	0	-1.8(<2.2)	v
Grid No.1 voltage	v_{g_1}		0 -	1.8	0	v
Anode current	Ia	150	0	20	20	μΑ
Grids No.2 and 4 current	$I_{g_2+g_4}$	130	0	-	-	μΑ
OPERATING CHARACTERIS	TICS					
Heptode section as sync. sep	parator					
Anode voltage	v_a	14	l	14	14	v
Grids No.2 and 4 voltage	v_{g_2,g_4}	14	14	14	14	v
Grid No.3 voltage	v_{g_3}	-	-	+2 5	-1.9(<2.3)	v
Grid No.1 voltage	v_{g_1}	-	-	-2	-	V
Anode current	Ia	750	>300	20	20	μ A
Grid No.3 current	I_{g_3}	l	1	-	-	μΑ
Grid No.1 current	I_{g_1}	100	100	-	100	μΑ

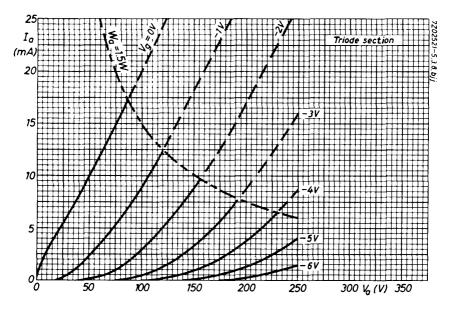
LIMITING VALUES (Design centre rating system)

Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.5	W
Cathode current	I_k	max.	20	m A
Grid resistor (fixed bias)	R_{g}	max.	2	$M\Omega$
(automatic bias)	R_{g}	max.	3	$M\Omega$
Grid voltage, negative peak	$-v_{g_p}$	max.	200	V
Cathode to heater voltage	V_{kf}	max.	70 +100	v ^l) v _{RMS}
Heptode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	100	V
Grids No.2 and 4 voltage	$V_{(g_2,g_4)_O}$	max.	550	V
	v _{g2} , g ₄	max.	50	V^2)
Anode dissipation	W_a	max.	0.5	W
Grids No.2 and 4 dissipation	$w_{g_2+g_4}$	max.	0.5	W
Cathode current	I _k	max.	8	m A
Grid No.1 resistor	R_{g_1}	max.	3	$M\Omega$
Grid No.3 resistor	R_{g_3}	max.	3	$M\Omega$
Grid No.1 voltage, negative peak	-v _{g1p}	max.	100	V
Grid No.3 voltage, negative peak	-V _{g3p}	max.	150	V


Cathode to heater voltage

 v_{kf}


max. 100 V


 $^{^{\}mathrm{l}}$) Cathode positive with respect to heater.

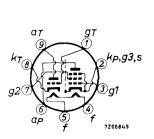
²⁾ The grids No.2 and 4 voltage should not be less than 6 V with an average tube under the worst probable operating conditions.

January 1969

TRIODE-OUTPUT PENTODE

The triode section is intended for use as frame oscillator and A.F. amplifier. The pentode section is intended for use as frame output tube and A.F. power amplifier.

QUICK REFERENCE DATA					
Triode section					
Anode current	I_a	3.5	mA		
Transconductance	S	2.2	mA/V		
Amplification factor	μ	7 0	-		
Pentode section					
Anode peak voltage	V _{ap} max	. 2.5	kV		
Anode current	I_a	41	mA		
Transconductance	S	7.5	mA/V		
Amplification factor	$^{\mu}g_{2}g_{1}$	9.5	-		
Output power	Wo	3.3	W		


HEATING: Indirect by A.C. or D.C.; series supply

Heater current Heater voltage $\frac{I_f}{V_f}$ 300 mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm

PCL 82

Triode section			
Anode to all except grid	$C_{a(g)}$	4.3	pF
Grid to all except anode	$C_{g(a)}$	2.7	pF
Anode to grid	Cag	4.4	pF
Grid to heater	$C_{\mathbf{gf}}$	max. 0.02	pF
Pentode section			
Anode to all except grid No.1	$C_{a(g_1)}$	8.0	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	9.3	pF
Anode to grid No.1	C_{ag_1}	max. 0.3	pF
Grid No.1 to heater	c_{g_1f}	max. 0.3	pF
Between triode and pentode sections			
Anode triode to grid No.1 pentode	$C_{a}T_{g_{1}}P$	max. 0.02	pF
Grid triode to anode pentode	C_{gTaP}	max. 0.02	pF
Grid triode to grid No.1 pentode	C_gTg_1P	max.0.025	pF
Anode triode to anode pentode	$C_{a}T_{a}P$	max. 0.25	pF
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	v_a	100	V
Grid voltage	v_g	0	V
Anode current	I_a	3.5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	70	-
Pentode section			
Anode voltage	v_a	170	V
Grid No.2 voltage	v_{g_2}	170	V
Grid No.1 voltage	v_{g_1}	-11.5	V
Anode current	I_a	41	mA
Grid No.2 current	I_{g_2}	9	m A
Transconductance	S	7.5	mA/V
Amplification factor	$^{\mu}$ g2g1	9.5	-
Internal resistance	R _i	16	kΩ

OPERATING CHARACTERISTICS

Triode section as A.F. amplifier

	$R_{\mathbf{s}}$		0.	22	$M\Omega$
	R_{σ}			3	$M\Omega$
			0.	$M\Omega$	
	v_b		200	170	v
	R_k		2.2	2.7	$k\Omega$
	R_a		220	220	$k\Omega$
	I_a		0.52	0.43	mA
	V_{o}	$/V_i^{-1}$)	52	51	_
	Vo	max	26	25	v_{RMS}
	dto	ot ²)	1.6	2.3	%
Rs		0.	22		MΩ
R_{g}			22		$M\Omega$
Rg•	0.68				140
0					$M\Omega$
$V_{\mathbf{b}}$	200	200	170	170	V
-	200	200	~	170	
V _b			170		v
V _b R _k R _a	0	0	170 0	0	V Ω
V _b R _k R _a	0 100	0 220	170 0 100	0 220	V Ω kΩ
V _b R _k R _a I _a	0 100 1.05	0 220 0.61	170 0 100 0.86	0 220 0.50	$egin{array}{c} V & & & & & & & & & & & & & & & & & & $
	R_{g}	Rg Rg Vb Rk Ra Ia Vo Vo dto	$\begin{array}{c} V_{o}/V_{i}^{-1})\\ V_{o\ max}\\ d_{tot}^{-2}) \\ \\ R_{g} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MICROPHONY AND HUM

The triode section can be used without special precautions against microphony and hum in circuits in which an input voltage $V_i \geq 10~\text{mV}_{RMS}$ gives an output of 50 mW of the output stage. Z_g (50 Hz) = 0.25 MΩ. The A.C. voltage between pin 4 and cathode should not exceed 6.3 V. If the tube is used in television circuits where the frequency of the heater supply is not synchronized with the frame frequency, this may cause interference due to hum. At page 8 the relation is shown between the permissible value of Z_{g_1} of the pentode section and the A.C. voltage between pin 4 and the cathode. This curve applies to $C_{g1}f$ is 0.8 pF (inclusive of wiring and tube socket).

T) Measured at small input voltage

²⁾ At lower output voltages the distortion is proportionally lower.

 $^{^3)}$ At lower output voltages down to 5 $V_{R\,MS}$ the distortion remains approximately constant. At values below 5 $V_{R\,MS}$ the distortion is approximately proportional to V_0 .

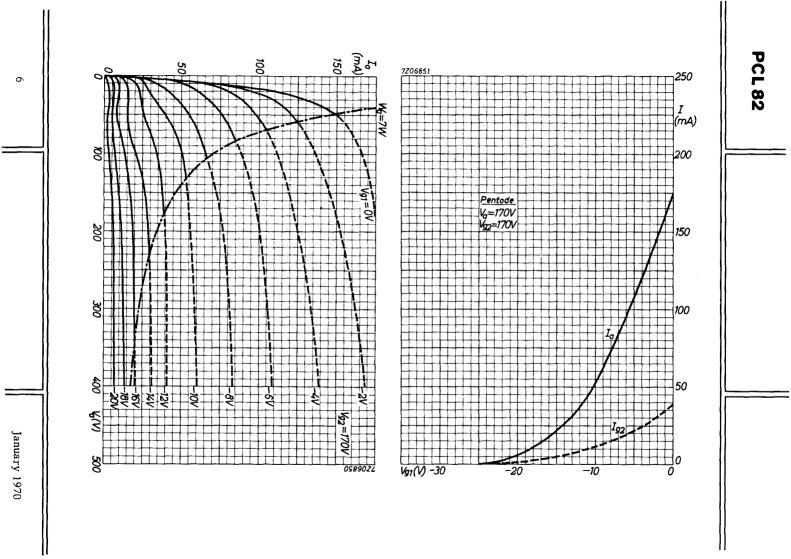
OPERATING CHARACTERISTICS

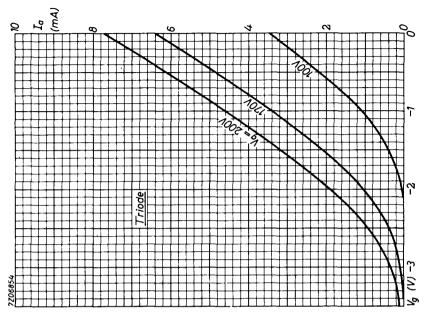
Pentode section

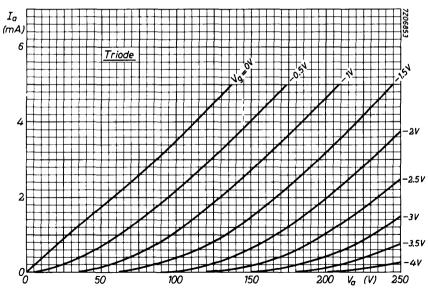
A.F. power amplifier, class A (measured with V_k constant)											
Supply voltage Vb	a=V _{bg2}		170			200			230		V
Grid No.2 series resistor (non-											
decoupled)	R_{g_2}		0			470			1200		Ω
Cathode resistor	$R_{\mathbf{k}}$		200			330			490		Ω
Load resistance	$R_{\mathbf{a}_{\boldsymbol{\sim}}}$		3.25			4.5			6		$\mathbf{k}\Omega$
Grid No.1 driving					_			_			
voltage	v_i	0	0.61	5.9	0	0.66	6.7	0	0.75	7.8	v_{RMS}
Anode current	I_a	42	-	44	35	-	37	3 0	-	31	mA
Grid No.2 current	I_{g_2}	9.2	-	15.5	7.8	-	13.3	6.6	-	11.0	mA
Output power	W_{o}	0	0.05	3.2	0	0.05	3.3	0	0.05	3.25	W
Distortion	d_{tot}	-	-	10	-	-	10	-	-	10	%
A.F. power amplifier, class AB, two tubes in push-pull											
Anode supply volta	ge		Vba	a	2	00			230		V
Grid No.2 supply	oltag e		v_{b_8}	3 2	2	00			200		V
Common cathode r	esistor		Rk	-	l	70			200		Ω
Load resistance			Raa	a ~	4	.5			7		$\mathbf{k}\Omega$

Grid No.2 supply voltage	v_{bg_2}	2	200		200	
Common cathode resistor	R _k	l	70	200		Ω
Load resistance	R_{aa}	4	4.5		7	$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_{i}	0	14.2	0	13.0	v _{RMS}
Anode current	I_a	2x35	2x42.5	2x30	2x34.5	mA
Grid No.2 current	I_{g_2}	2x8	2x16.5	2x6.2	2x13.5	mA
Output power	w _o	0	9.3	0	10	W
Distortion	d_{tot}	-	6.3	-	5.5	%

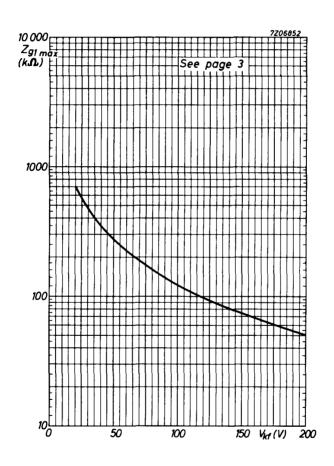
Frame output application


The circuit should operate satisfactorily with peak anode current I_{ap} = 85 mA at V_a = 50 V, V_{g2} = 170 V, I_f = 300 mA. The minimum available I_{ap} value at end of life is


70 mA at
$$V_a$$
 = 50 V, V_{g_2} = 170 V, I_f = 280 mA 80 mA at V_a = 50 V, V_{g_2} = 190 V, I_f = 280 mA


LIMITING VALUES (Design centre rating system)

Triode section				
Anode voltage	$v_{a_{o}}$	max.	550	V
	v_a	max.	250	v
Anode peak voltage	v_{a_p}	max.	600	V 1)
Anode dissipation	w_a^r	max.	l	W
Cathode current, average	$I_{\mathbf{k}}$	max.	15	mA
peak	$I_{\mathbf{k_p}}$	max.	100	mA 1)
Grid resistor, for fixed bias	Rg	max.	1	$M\Omega$
for automatic bias	R_{g}	max.	3	$M\Omega$
Grid impedance at 50 Hz	z_g	max.	0.5	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	200	v
Pentode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	v
Anode peak voltage, positive	v_{a_p}	max.	2.5	kV
negative	-V _{ap}	max.	500	v
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	v_{g_2}	max.	250	v
Anode dissipation for frame output application	w_a	max.	5	w
for A.F. output application	w _a	max.	7	W
Grid No.2 dissipation,	a			
average	w_{g_2}	max.	1.8	W
average for frame output application (Wa max 4 W)	w_{g_2}	max.	2	w
peak	$W_{g_{2p}}$	max.	3.2	W
Cathode current	I _k	max.	50	mA
Grid No.1 resistor, for fixed bias	R_{g_1}	max.	1	$M\Omega$
for automatic bias	R_{g_1}	max.	2	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	2 00	V


¹⁾ Max. pulse duration 4% of a cycle with a maximum of 0.8 msec.

January 1970

TRIODE-OUTPUT PENTODE

Triode-pentode with separate cathodes.

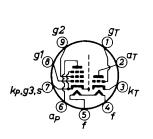
Triode section intended for use in circuits for keyed A.G.C., sync. separation, sync. amplification and noise suppression.

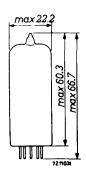
Pentode section is intended for use as video output tube.

QUICK REFERENCE DATA						
Triode section						
Anode current	$I_{\mathbf{a}}$	3	mA			
Transconductance	S	4	mA/V			
Amplification factor	μ	65	-			
Pentode section						
Anode current	I_a	18	mA			
Transconductance	S	11	mA/V			
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	3 6	-			

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


$I_{\mathbf{f}}$	3 00	mA
$\overline{V_{f}}$	15	v

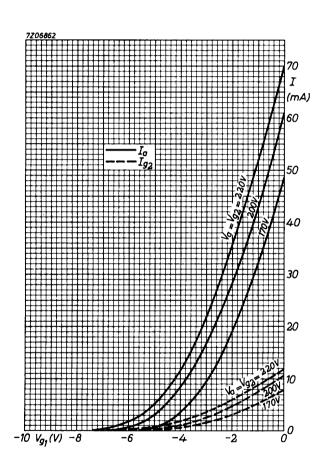
DIMENSIONS AND CONNECTIONS

Dimensions in mm

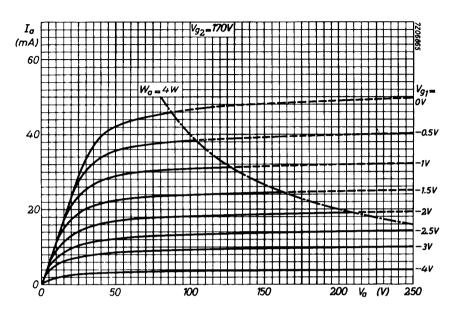
Base: Noval

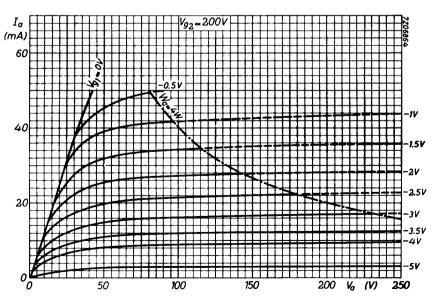
CAPACITANCES					
Triode section					
Anode to all except grid		^С а (g)		2.3	pF
Grid to all except anode		$C_{g(a)}$		3.8	pF
Anode to grid		Cag		2.7	pF
Grid to heater		$C_{\mathbf{gf}}$	max.	0.1	pF
Pentode section		C			
Anode to all except grid No.1		$C_{a}(g_1)$		4.2	pF
Grid No.1 to all except anode		$C_{g_1(a)}$		8.7	pF
Anode to grid No.1		C_{ag_1}	max.	0.1	pF
Grid No.1 to heater		C_{g_1f}	max.	0.1	pF
Between triode and pentode sections		•			
Anode triode to grid No.1 pentode		$c_{a_{\mathrm{T}}g_{\mathrm{1P}}}$	max.	0.01	pF
Grid triode to grid No.1 pentode		C _{gTg1P}	max.	0.01	pF
T YDYO 1 CT CT CT CT CT CT CT CT					
TYPICAL CHARACTERISTICS					
Triode section					
Anode voltage	v_a			200	V
Grid voltage	v_g			-1.7	V
Anode current	I_a			3	mA
Transconductance	S			4	mA/V
Amplification factor	μ			65	-
Pentode section					
Anode voltage	v_a	170	200	220	V
Grid No. 2 voltage	v_{g_2}	170	200	220	V
Grid No.1 voltage	v_{g_1}	-2.1	-2.9	-3.4	V
Anode current	I_a	18	18	18	mA
Grid No.2 current	I_{g_2}	3.0	3.0	3.0	mA
Transconductance	S	11	10.4	10	mA/V
Amplification factor	^μ g2g1	3 6	3 6	3 6	-
Internal resistance	R _{i min}	100	130	150	$\mathbf{k}\Omega$

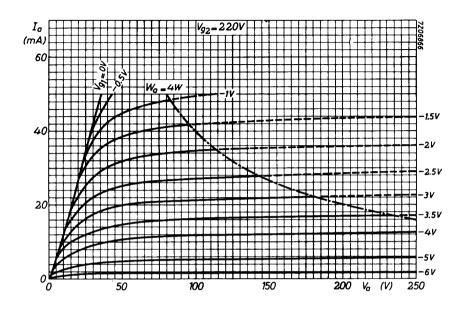
200 V

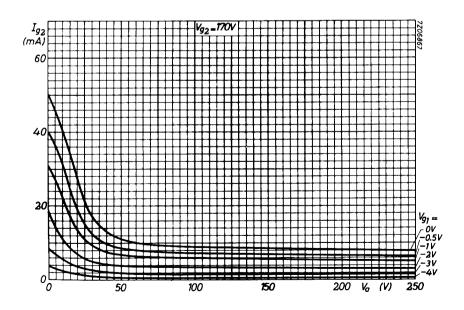

OPERATING CHARACTERISTICS					
Pentode section					
Video output tube					
Supply voltage	$V_{\mathbf{b}}$	170	200	220	V
Grid No. 2 voltage	v_{g_2}	170	200	220	V
Anode series resistor	R_a	3	3	3	$k\Omega$
Grid No.1 voltage	v_{g_1}	-2	-2.8	-3.3	V
Anode current	I_a	18	18	18	mA
Grid No.2 current	I_{g_2}	3.2	3.1	3.1	mA
Transconductance	S	10.4	10.0	9.7	mA/V
LIMITING VALUES (Design centre rating	system)				
Triode section					
Anode voltage	v_{a_o}	max.		± 550	V
	v_a	max.		± 300	V
Anode peak voltage (I _{a max} . 0.1 mA)	v_{a_p}	max.		600	V ¹)
Anode dissipation	W_a	max.		1	W
Cathode current	I_k	max.		12	mΑ
Grid resistor, for fixed bias	R_{g}	max.		1	$M\Omega$
for automatic bias	R_{g}^{-}	max.		3	$M\Omega$
Cathode to heater voltage, cathode neg.	$v_{\mathbf{k}f}$	max.		150	V
cathode pos.	$v_{\mathbf{k}\mathbf{f}}$	max.	200 V =	+150	v_{RMS}
Pentode section					
Anode voltage	v_{a_0}	max.		550	V
	V_a	max.		300	V
Grid No.2 voltage	$v_{g_{2o}}$	max.		550	V
	$v_{g_2}^{-3}$	max.		250	V
Anode dissipation	w_a	max.		4	W
Grid No.2 dissipation	w_{g_2}	max.		1.7	W
Cathode current	Ik	max.		40	mA
Grid No.1 resistor, for fixed bias	$^{\mathrm{R}}_{\mathrm{g}_{1}}$	max.		1	ΩM
for automatic bias	R_{g_1}	max.		2	$M\Omega$
	-				

Cathode to heater voltage

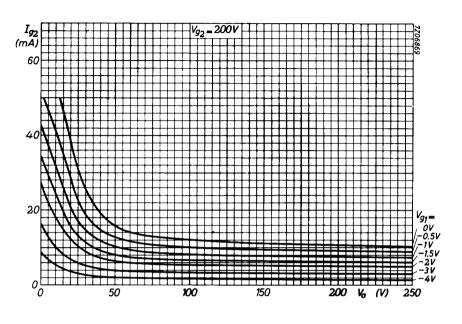

 v_{kf}

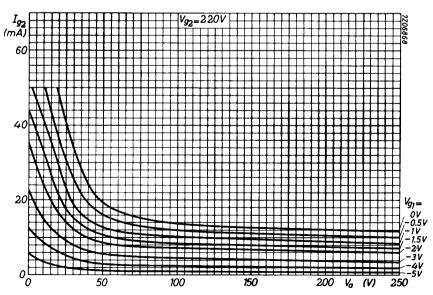

max.

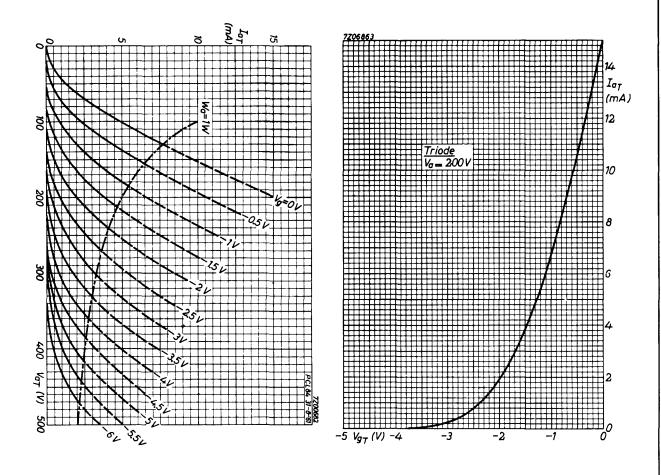

 $[\]overline{1}$) Max. pulse duration 18% of a cycle with a maximum of $18~\mu sec.$



5







7

 ∞

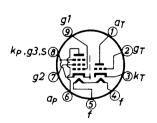
TRIODE-FRAME OUTPUT PENTODE

Triode-pentode with separate cathodes. Triode intended for use as frame oscillator or pulse amplifier.

Pentode intended for use as frame output tube.

QUICK REFERENCE DATA						
Triode section						
Anode current	I_a	10.5	mA			
Transconductance	S	7	mA/V			
Amplification factor	μ	63	-			
Cathode peak current	$I_{\mathbf{k_p}}$	max. 150	mA			
Pentode section	r					
Anode peak voltage	v_{a_n}	max. 2	kV			
Cathode current	I_k	max. 75	mA			
Anode dissipation	W_a	max. 8	W			

HEATING: Indirect by A.C. or D.C.; series supply


Heater current

Heater voltage

If	300	mA
V_{f}	17.5	v

DIMENSIONS AND CONNECTIONS

Base: Noval

Dimensions in mm

PCL85 PCL805

CAPACITANCES

Grid triode to anode pentode	$c_{\mathbf{g_{T}^{a_{P}}}}$	max.	0.05	pF
Grid triode to heater	$c_{g_T^{\mathrm{f}}}$	max.	0.15	pF
Grid No.1 pentode to anode pentode	$C_{g_{1p^{a}p}}$	max.	1.0	pF
Grid No.1 pentode to anode triode	$^{\mathrm{C}_{\mathbf{g}_{\mathbf{lp}^{\mathbf{a}}_{\mathbf{T}}}}}$	max.	0.08	pF
Grid No.1 pentode to heater	$^{\mathrm{C}_{\mathbf{g}_{\mathbf{lp}^{\mathrm{f}}}}}$	max.	0.20	pF

TYPICAL CHARACTERISTICS

Triode	section

Anode voltage	v_a	100	100	v
Grid voltage	$v_{\mathbf{g}}$	-0.85	0	v
Anode current	$I_{\mathbf{a}}$	5	10.	5 mA
Transconductance	S	5.5	7.0	mA/V
Amplification factor	μ	60	63	-
Internal resistance	R_i	11	9	$\mathbf{k}\Omega$

OPERATING CHARACTERISTICS

Pentode section

Frame output application

Anode voltage	v_a	50	65	v
Grid No.2 voltage	v_{g_2}	170	210	v
Grid No.1 voltage	v_{g_1}	-1	-1	v
Anode peak current	$I_{\mathbf{a}_{\mathbf{p}}}$	200	285	mA
Grid No. 2 peak current	Ig _{2p}	35	45	mA

Remarks

The minimum $\rm I_{a_p}$ value to be expected as a result of spread of the tube characteristics, tube deterioration during life and decrease of the mains voltage to 10% below the nominal value, can be derived from the curves on page 9 by decreasing by 40% the $\rm I_a$ values of curve A-B at the $\rm V_{g_2}$ value occuring at the decreased mains voltage.

In order not to exceed the maximum permissible value of W_{g2} , the circuit should be designed such that at a mains voltage of 10% below nominal, V_a at the end of scan will not be lower than the value determined by curve A-B at the relevant V_{g2} value.

HUM

The equivalent pentode grid hum voltage without negative feedback is max. 10 mV when Z_{g_1} (at f = 50 Hz) \leq 0.5 M Ω , C_{g_1-f} = 0.2 pF and V_{kf} = 150 V_{RMS} .

LIMITING VALUES (Design centre rating system)

Triode section

Anode voltage	$v_{\mathbf{a_0}}$	max.	550	v
	$v_{\mathbf{a}}$	max.	300	v
Anode dissipation	w_a	max.	0.5	w
Cathode current				
average	$I_{\mathbf{k}}$	max.	15	mA
peak	$I_{\mathbf{k_p}}$	max.	150	mA ¹)
peak	$I_{\mathbf{k}_{\mathbf{p}}}$	max.	100	mA^{2})
Grid resistor	F			
for fixed bias	$^{ m R}{_{f g}}$	max.	1	$M\Omega$
for automatic bias	$R_{\mathbf{g}}$	max.	3.3	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	200	v ³)

Remark

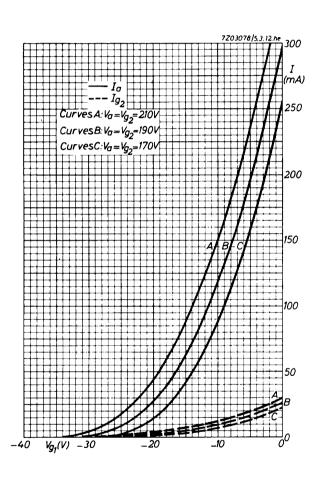
A cathode peak current of $100\ \mathrm{mA}$ will be available throughout life and at underheating.

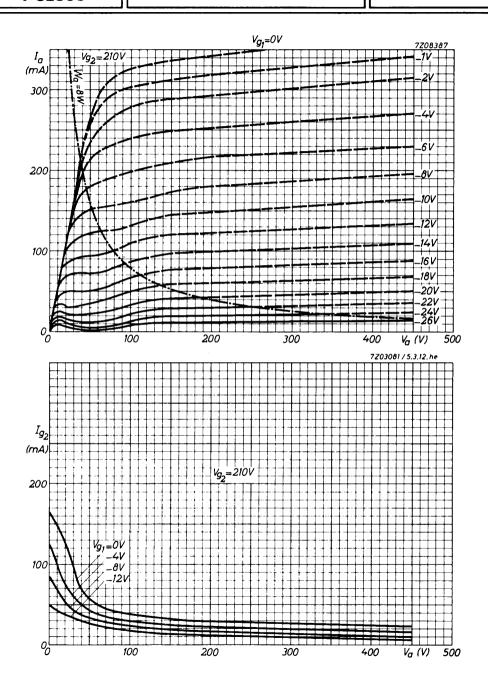
 $^{^{1})\,\}text{Max.}$ pulse duration 2% of a cycle with a maximum of $400~\mu\text{sec.}$

²) Max. pulse duration 4% of a cycle with a maximum of $800~\mu sec.$

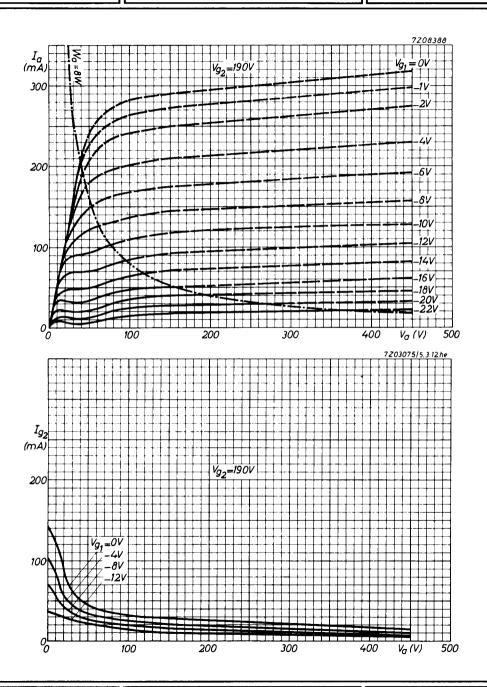
 $^{^3}$) During warming up the D.C. component of V_{kf} = max. 315 V, k pos.

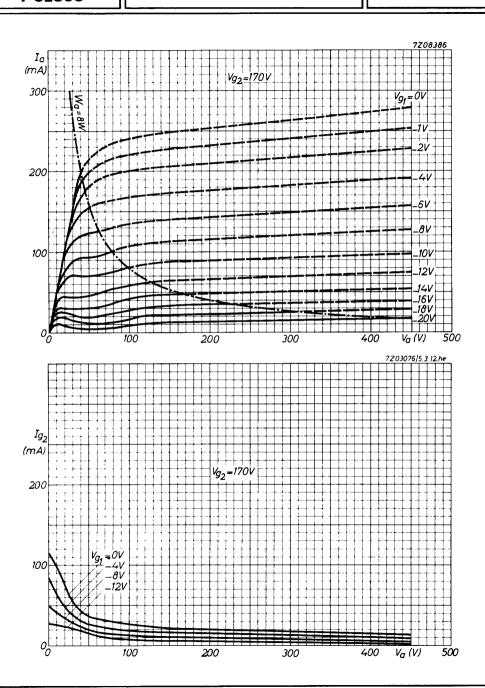
PCL85 PCL805

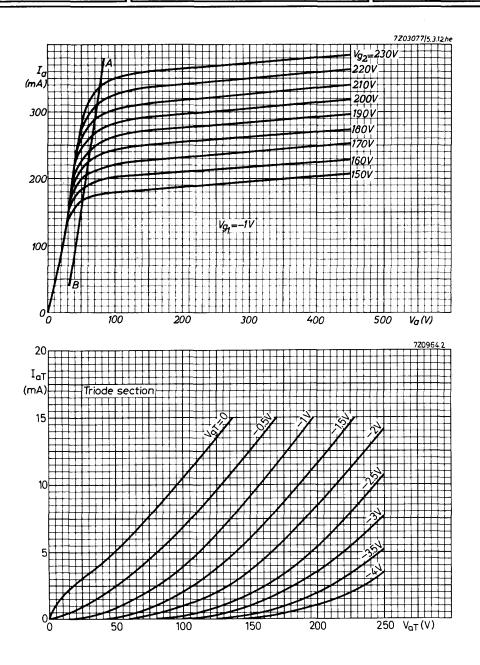

LIMITING VALUES (continued)

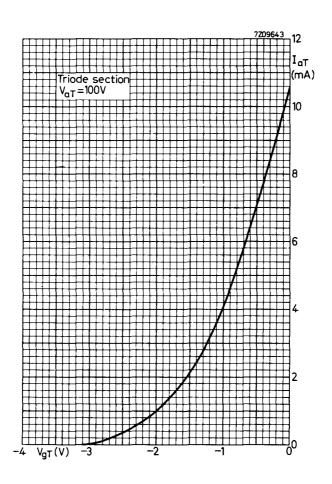

Pentode section				
Anode voltage	$v_{\mathbf{a_0}}$	max.	550	V
	V_a	max.	300	V
Anode peak voltage	v_{a_p}	max.	2	kV ¹)
Grid No. 2 voltage	$v_{g_{20}}$	max.	550	V
	v_{g_2}	max.	250	V
Anode dissipation	W_a	max.	8	W^2)
Grid No.2 dissipation	w_{g_2}	max.	1.5	W ³)
Cathode current	$I_{\mathbf{k}}$	max.	75	mA
Grid No.1 resistor				
for fixed bias	R_{g_1}	max.	1.0	$M\Omega$
for automatic bias	R_{g_1}	max.	2.2	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	200	V

 $^{^{\}mathrm{l}}$) Max. pulse duration 5% of a cycle with a maximum of 1 ms.


 $^{^2}$) For a nominal tube at the worst probable operating conditions and at normal picture height W_a should not exceed 10.5 W.


 $^{^3}$) For a nominal tube at the worst probable operating conditions and at normal picture height W_{g_2} should not exceed 2 W.




7

September 1968

TRIODE-OUTPUT PENTODE

Triode-pentode with separate cathodes.

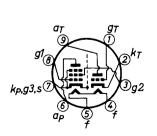
The triode section is intended for use as A.F. amplifier.

The pentode section is intended for use as A.F. power amplifier.

QUICK REFERENCE DATA					
Triode section					
Anode current	I_a	1.2	mA		
Transconductance	S	1.6	mA/V		
Amplification factor	μ	100	-		
Pentode section					
Anode current	$I_{\mathbf{a}}$	3 9	mA		
Transconductance	S	10.5	mA/V		
Amplification factor	$\mu_{g_2g_1}$	21	-		
Output power	Wo	4.1	W		

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

$I_{\mathbf{f}}$	3 00	mΑ
٧٠	13.3	ν

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES			
Triode section			
Anode to all except grid	$C_{a(g)}$	2.5	pF
Grid to all except anode	$C_{g(a)}$	2.3	pF
Anode to grid	C_{ag}	1.4	pF
Grid to heater	$C_{\mathbf{gf}}$	max. 0.006	pF
Pentode section			
Grid No.1 to all except anode	$C_{g_1(a)}$	10	pF
Anode to grid No.1	C_{ag_1}	max. 0.4	pF
Grid No.1 to heater	c_{g_1f}	max. 0.24	pF
Between triode and pentode sections			
Anode triode to grid No.1 pentode	$c_{a_{\mathrm{T}}g_{\mathrm{1P}}}$	max. 0.2	pF
Grid triode to grid No.1 pentode	C_{gTg_1P}	max. 0.02	pF
Anode triode to anode pentode	$C_{\mathbf{a_{T}a_{P}}}$	max. 0.15	pF
Grid triode to anode pentode	$c_{g_{\mathrm{T}^{a_{\mathrm{P}}}}}$	max. 0.006	pF ¹)
TYPICAL CHARACTERISTICS			
Triode section			
Anode voltage	$V_{\mathbf{a}}$	230	V
Grid voltage	v_{g}	-1.7	V
Anode current	I _a	1.2	mA
Transconductance	S	1.6	mA/V
Amplification factor	μ	100	
Pentode section			
Anode voltage	v_a	230	V
Grid No.2 voltage	v_{g_2}	230	V
Grid No.1 voltage	v_{g_1}	-5. 7	V
Anode current	I_a	3 9	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	6.5	nA
Transconductance	S	10.5	mA/V
Amplification factor	$^{\mu}$ g2g1	21	
Internal resistance	R_i	45	kΩ

 $^{^{\}rm l}$) The capacitance between triode grid and pentode anode (CgT-ap) can be reduced to a value of less than 0.002 pF by using a shielding ring with a diameter of 22.5 mm and a height of 15 mm with respect to the tube base.

OPERATING CHARACTERISTICS

Triode section

A.I	₹.	amp.	lifier
-----	----	------	--------

Supply voltage	$V_{\mathbf{b}}$	200	23 0	200	2 3 0	V
Cathode resistor	$R_{\mathbf{k}}$	0	0	2.6	2.1	$\mathbf{k}\Omega$
Anode resistor	R_a	220	220	220	220	$\mathbf{k}\Omega$
Grid resistor	$R_{\mathbf{g}}$	10	10	-	-	$M\Omega$
Grid resistor of following stage	Rg'	680	680	680	680	$\mathbf{k}\Omega$
Signal source resistance	R_s	4 7	47	-	-	$\mathbf{k}\Omega$
Anode current	I_a	0.42	0.52	0.42	0.52	mA
Output voltage	V_{o}	3.2	3.2	3.2	3.2	v_{RMS}
Voltage gain	V_{o}/V_{i}	66	68	66	68	
Distortion	d_{tot}	0.6	0.5	0.6	0.5	\mathcal{R}

Microphony

The triode section can be used without special precautions against microphonic effect in circuits in which an output of 50 mW is obtained at an input voltage of not less than $10~\text{mV}_{RMS}$.

Hum

The hum level will be better than 60 dB under the following conditions;

Input voltage minimum 10 mV_{RMS} for 50 mW output.

Grid circuit impedance max. $0.5~M\Omega$ at 50~Hz.

Cathode decoupling capacitor minimum 100 µF.

Pin 4 connected to earth.

A.C. voltage between pin 4 and cathode max. 30 V_{RMS}.

OPERATING CHARACTERISTICS

Pentode	section

Clace A	(Measured	with W.	constant)
Class A	umeasureu	will vr	Constant

Anode voltage	v_a	200	23 0	V
Grid No. 2 voltage	v_{g_2}	200	23 0	V
Cathode resistor	$R_{\mathbf{k}}^{-}$	115	125	Ω
(Grid No.1 voltage)	v_{g_1}	-4. 7	-5.7	V)
Load resistance	R_{a}	5.6	5.1	kΩ
				_
Grid No.1 driving voltage	v_i	0 0.32 3.2	0 0.34	3.6 V _{RMS}
Anode current	I_a	35 - 34	39 –	40.7 mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	6.0 - 9.0	6.5 -	10.5 mA
Output power	w _o	0 0.05 3.1	0 0.05	4.1 W
Distortion	d_{tot}	- 0.9 10	- 0.9	10 %

LIMITING VALUES (Design centre rating system)

Grid No.1 resistor, for automatic bias

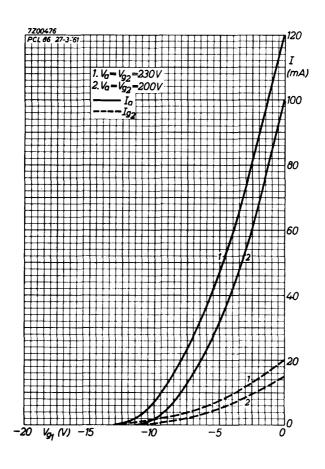
Cathode to heater voltage

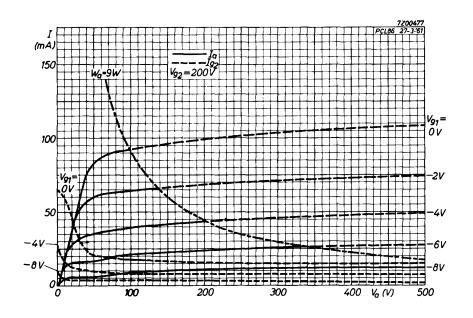
Triode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	300	V
Anode dissipation	w_a	max.	0.5	W
Cathode current	$\mathtt{I}_{\mathbf{k}}$	max.	4	mA
Grid resistor	$R_{\mathbf{g}}$	max.	1	$M\Omega^{1}$)
Cathode to heater voltage	$v_{\mathbf{k}f}$	max.	100	V
Pentode section				
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	300	v
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	v_{g_2}	max.	300	V
Anode dissipation	w_a	max.	9	W
Grid No.2 dissipation, average	w_{g_2}	max.	1.8	W
peak	$w_{g_{2p}}$	max.	3.25	W
Cathode current	I _k	max.	55	mA

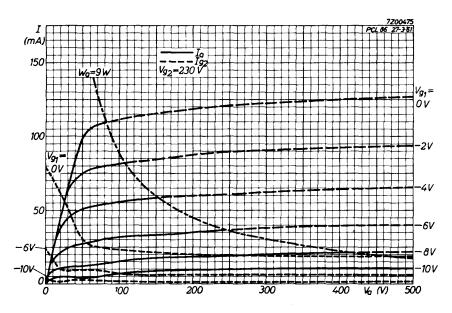
 R_{g_1}

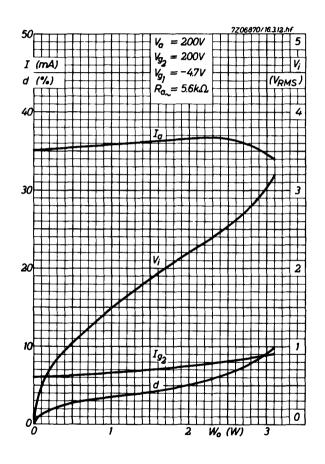
 $v_{\mathbf{k}f}$

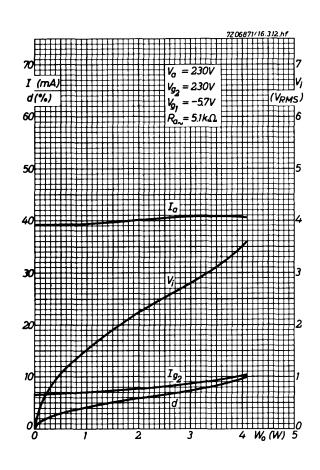
max.

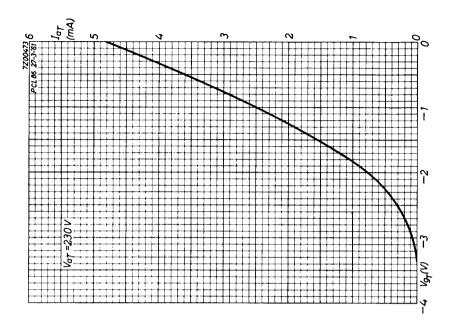

max.

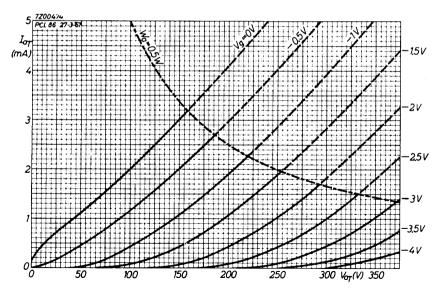

1 $M\Omega$


100 V


 $^{^1)\,} This\,$ value applies to operation with fixed bias. It may be multiplied by the D.C. inverse feedback factor resulting from e.g. cathode or anode resistors to a maximum of $10\,M\Omega$.

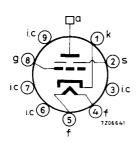

6





SHUNT STABILIZER TRIODE

Shunt stabilizer triode intended for use as in colour TV receivers.


QUIC	K REFERENCE DATA		
Anode voltage	Va	25	kV
Anode current	I _a max.	1.6	mA

HEATING: Indirect by A.C. or D.C.; series supply

 $\begin{array}{cccc} \text{Heater current} & & \text{If} & 300 & \text{mA} \\ \text{Heater voltage} & & \text{V}_{\text{f}} & 7.3 & \text{V} \end{array}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm Base: Magnoval Top cap: Type 2

Mounting: Additional supporting of the tube at the top is required.

To prevent corona-effects any metal screening applied around the tube should be at least 5 cm from the nearest point of the bulb.

Adequate ventilation should be provided for.

TYPICAL CHARACTERISTICS

Anode voltage	Va	25	kΝ
Screen voltage	v_s	0	V
Grid voltage change for an anode current change from 0.1 to 1.5 mA	ΔVg	max. 10	V
Grid voltage at $I_a = 1.5 \text{ mA}$	v_{g}	- 7 to -3 0	V
at $I_a = 0.1 \text{ mA}$	V_{g}	max40	V

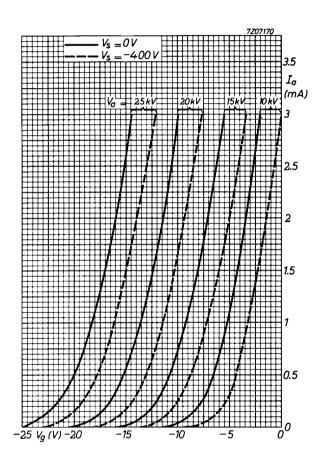
LIMITING VALUES (Design centre rating system unless otherwise specified)

Anode voltage	v_a	max.	25	kV
Anode voltage (absolute max.)	v_a	max.	27.5	kV ¹)
Anode current	Ιa	max.	1.6	mA
Anode dissipation	w_a	max.	30	W
Anode dissipation (absolute max.)	w_a	max.	40	W^2)
Negative grid voltage	-V _g	max.	150	V^{3})
Grid resistor	$R_{\mathbf{g}}$	max.	5	$M\Omega$
Cathode to heater voltage				
cathode positive	v_{kf}	max.	400 V _{DC} +25	0 V _{AC}
cathode negative	$-v_{kf}$	max.	250	V
Screen voltage	v_s	max.	0	V
	$-V_s$	max.	400	V 4)
Anode seal temperature				
(absolute max.)	ts	max.	200	$^{\rm o}$ C

Precaution: x-ray shielding may be required to give protection against excessive radiation.

¹⁾ If due to a circuit failure the anode current becomes 0 mA the anode voltage should never exceed 45 kV (abs. max.)

²⁾ Permissible only during short periods; in total up to a maximum of 10% of the operation time of the tube.


³⁾ During equipment warm-up and for brief interval during receiver adjustment this voltage may rise to 440 V max.

⁴) The screen connected to pin 2 is provided to shield grid and cathode from the high anode voltage.

It is recommended to connect the screen directly to earth, with a minimum lead inductance.

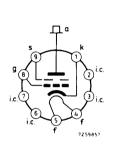
The modulating influence of possible hum ripple of the screen to cathode voltage should be taken into account; the sensitivity for these variations in Vs/k is $2.5 \,\mu\text{A/V}$ max.

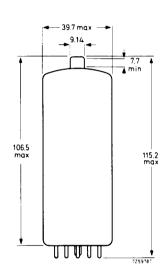
3

December 1969

SHUNT STABILIZER TRIODE

Shunt stabilizer triode intended for use in colour TV receivers.


HEATING: Indirect by A.C. or D.C.; series supply


Heater current Heater voltage If 300 mA Vf 7.3 V

DIMENSIONS AND CONNECTIONS

Dimensions in mm.

Base: Magnoval Top cap: Type 2

Mounting: Additional supporting of the tube at the top is required. To prevent corona effects any metal screening applied around the tube should be at least 5 cm from the nearest point of the bulb. Adequate ventilation should be provided for.

TYPICAL CHARACTERISTICS

Anode voltage	v_a		25	kV
Screen voltage	v_s		0	V
Grid voltage change for an anode current change from 0.1 mA to 1.5 mA	$\Delta V_{f g}$	max.	10	v
Grid voltage at $I_a = 1.5 \text{ mA}$	$V_{\mathbf{g}}$	-9 to max.	- 28	V
at $I_a = 0.1 \text{ mA}$	v_g^s	max.	- 38	V

Data based on pre-production tubes

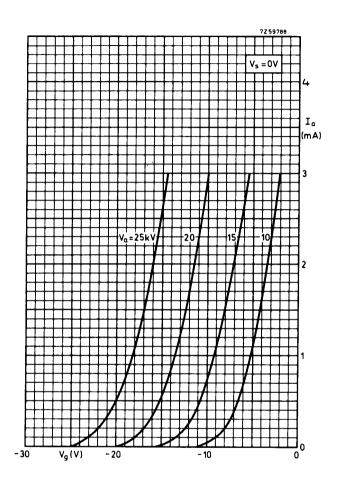
LIMITING VALUES (Design centre rating system unless otherwise specified)

Anode voltage	v_a	max.	25	kV
Anode voltage (absolute max.)	v_a	max.	27.5	kV ¹)
Anode current	$I_{\mathbf{a}}$	max.	1.6	mA
Anode dissipation	w_a	max.	30	w
Anode dissipation (absolute max.)	w_a	max.	40	W^{2})
Negative grid voltage	-v _g	max.	150	v ³)
Grid resistor	$R_{\mathbf{g}}$	max.	5	$\mathbf{M}\Omega$
Cathode to heater voltage				
cathode positive	v_{kf}	max.	400 V _{DC} + 25	50 V _{AC}
cathode negative	$-v_{kf}$	max.	250	v
Screen voltage	v_s	max.	0	v
	$-V_s$	max.	50	V 4)
Anode seal temperature (absolute max.)	ts	max.	200	°C

X-RAYS

When operating this tube will produce X-radiation, and a suitable screen may be required.

Because of the difference in X-ray characteristics the PD510 should never be replaced by a PD500 in equipment designed for the PD510.


¹⁾ If due to a circuit failure the anode current becomes 0 mA the anode voltage should never exceed 45 kV (abs. max.)

²⁾ Permissible only during short periods; in total up to a maximum of 10% of the operation time of the tube.

³⁾ During equipment warm -up and for brief interval during receiver adjustment this voltage may rise to 440 V max.

⁴⁾ The screen connected to pin 9 is provided to shield grid and cathode from the high anode voltage. It is recommended to connect the screen directly to earth, with a minimum lead inductance.

3

September 1970

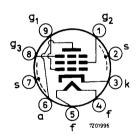
PENTODE

Pentode intended for use in transitron circuits in television receivers.

QUICK REFER	RENCE DATA		
Anode current	I_a	3.0	mA
Transconductance	S	2.2	mA/V
Amplification factor	$^{\mu}$ g $_2$ g $_1$	3 8	-
Internal resistance	R_i	2.5	МΩ

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

I_f	300	mA
V.	4.5	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1

Grid No.1 except anode

Anode to grid No.1

Grid No.1 to heater

7211020	
^C a (g ₁)	5.1
$C_{g_1(a)}$	3.5

$$C_{ag_1}$$
 max. 0.07 pF C_{g_1f} max. 0.03 pF

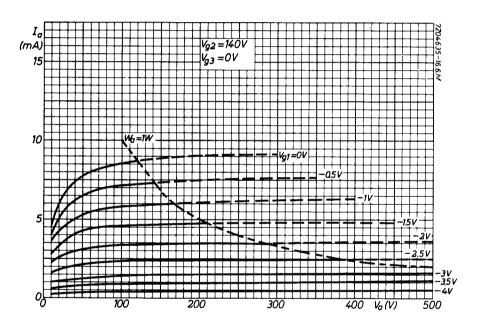
pF

pF

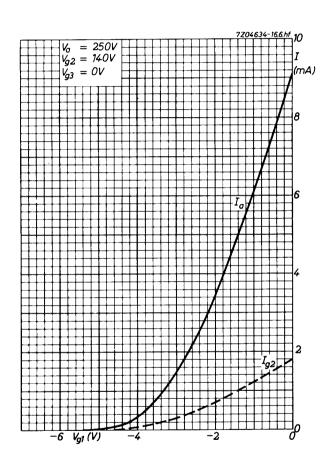
TYPICAL CHARACTERISTICS				
Anode voltage	v_a	100	250	v
Grid No.3 voltage	v_{g_3}	-30	0	v
Grid No.2 voltage	v_{g_2}	3 5	140	V
Grid No.1 voltage	v_{g_1}	0	-2.2	v
Anode current	I_a	max.0.01	3.0	mA
Grid No.2 current	I_{g_2}		0.6	mA
Transconductance	s		2.2	mA/V
Amplification factor	$\mu_{g_2g_1}$		3 8	-
Internal resistance	Ri		2.5	$M\Omega$
LIMITING VALUES (Design centre rating sy	stem)			
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	3 00	v
Anode dissipation	w_a	max.	1	W
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	V_{g_2}	max.	200	v
Grid No. 2 dissipation	W_{g_2}	max.	0.2	W
Cathode current, average	Ik	max.	4	mA
peak	I_{k_p}	max.	25	mA^{1})
Grid No.1 resistor ($W_a < 0.2 W$)	R_{g_1}	max.	10	$M\Omega$
$(W_a > 0.2 W)$	R_{g_1}	max.	3	$M\Omega$

 R_{g_3}

 v_{kf}


Grid No.3 resistor

Cathode to heater voltage


max. $0.1~M\Omega$

max. 100 V

 $^{^{1})\,\}text{Max.}$ pulse duration 4% of a cycle but max. 0.8 ms.

January 1969

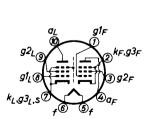
DOUBLE PENTODE

Double pentode intended for use as video output tube, sync. separator, A.G.C. amplifier or I.F. sound amplifier.

	QUICK REFERENCE DATA			
F section				
Anode current		Ia	10	mA
Transconductance		S	8.5	mA/V
Amplification factor		$\mu_{g_2g_1}$	3 8	-
Internal resistance		R _i	150	kΩ
L section				
Anode current		Ia	30	mA
Transconductance		S	22	mA/V
Amplification factor		$\mu_{g_2g_1}$	3 8	-
Internal resistance		R _i	33	kΩ

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

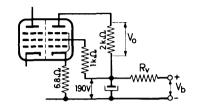

Heater voltage

If	3 00	mA
$V_{\mathbf{f}}$	17	V

Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Decal



PFL 200

CAPACITANCES	L sectio	n F section
Anode to all except grid No. 1	$C_{a}(g_1)$ 6.5	10.5 pF
Grid No.1 to all except anode	$C_{g_1(a)}$ 12.5	10.5 pF
Anode to grid No. 1	$C_{ag_1} = 0.100$	0.15 pF
Grid No.1 to heater	C_{g_1f}	max. 0.15 pF
Between the two pentode sections		
Anode L section to anode F section	$^{\mathrm{C_a}}\mathrm{_{L^a}F}$	max. 0.15 pF
Grid No.1 L section to grid No.1 F section	$C_{g_1L}^{g_1}$	max. 0.01 pF
Anode L section to grid No.1 F section	$c_{a}_{L}g_{1F}$	max. 0.10 pF
Grid No.1 L section to anode F section	Cg _{1L} a _F	max. 0.005 pF
TYPICAL CHARACTERISTICS		
Output pentode (L section)		
Anode voltage	v_a	170 V
Grid No.2 voltage	v_{g_2}	170 V
Grid No.1 voltage	v_{g_1}	-2.7 V
Anode current	I_a	3 0 mA
Grid No.2 current	I_{g_2}	7 mA
Transconductance	s	22 mA/V
Internal resistance	$R_{\mathbf{i}}$	33 kΩ
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	38 -
Amplifier pentode (F section)		
Anode voltage	v_a	150 V
Grid No. 2 voltage	v_{g_2}	150 V
Grid No.1 voltage	v_{g_1}	-2.1 V
Anode current	$I_{\mathbf{a}}$	10 mA
Grid No.2 current	I_{g_2}	3. 0 mA
Transconductance	S	8.5 mA/V
Internal resistance	R_i	150 kΩ
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	38 -

OPERATING CHARACTERISTICS

Output pentode (L section) as video output tube

Supply voltage
$$\ V_b = 210 \ 230 \ V$$
 Scries resistor $R_v = 390 \ 820 \ \Omega$ R_v should be added to avoid excessive dissipation

Input voltage (peak to peak)

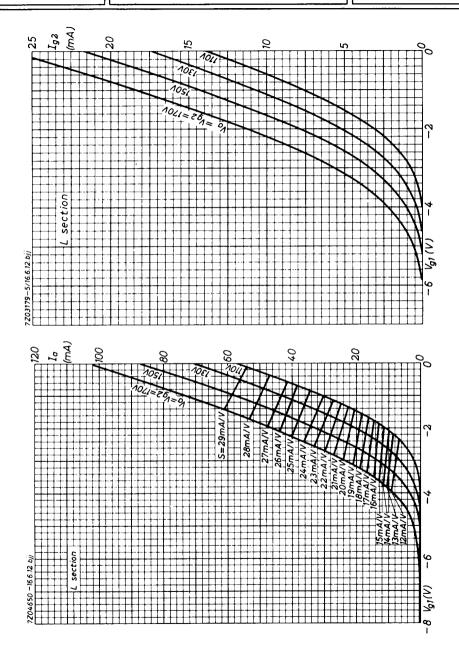
Output voltage (peak to peak)

$$V_{i_{p-p}} = 3.6 \text{ V}$$
 $V_{o_{p-p}} = 100 \text{ V}$

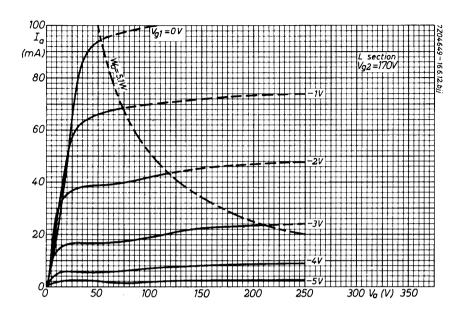
Amplifier pentode (F section)

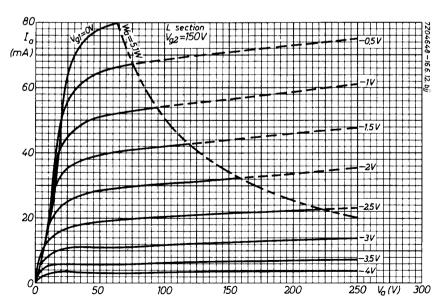
		Sync Separa		A.G.0 amplif		I.F.	
Supply voltage	v_b	200 to 250	V				
Anode resistor	R_a	50	$\mathbf{k}\Omega$				
Anode voltage	v_a			100 to 150	V	150	V
Grid No. 2 voltage	Vg	, 75	V	60	V	150	V
Grid No.1 resistor	Rgı	1	$M\Omega$				
Grid No.1 voltage	v_{g_1}	-2.7	V	-1.5	V	-2.1	V
Anode current	I _a	0.1	mA	1	mA	10	mA
Transconductance	S	0.2	mA/V	2.0	mA/V	8.5	mA/V

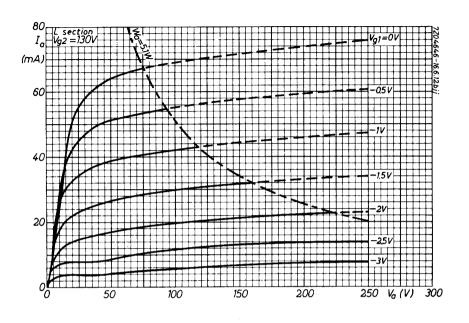
PFL 200

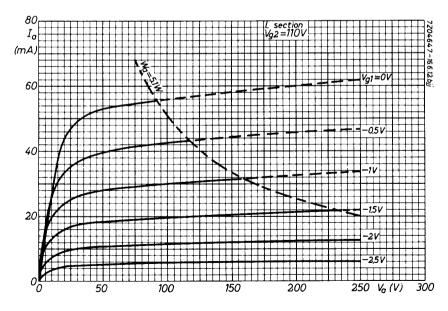

LIMITING VALUES (Design centre rating system)

Output pentode (L section)				
Anode voltage	v_{a_0}	max.	550	V
	$V_{\mathbf{a}}$	max.	250	ν
Anode dissipation	w_a	max.	5.l	W
Grid No. 2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	250	V
Grid No. 2 dissipation	w_{g_2}	max.	2.5	W^{1})
Grid No.1 resistor	R_{g_1}	max.	1	$M\Omega$
Cathode current	Ik	max.	60	mA^2)
Cathode to heater voltage	v_{kf}	max.	200	V
Amplifier pentode (F section)				
Anode voltage, peak ($I_a < 0.1 \text{ mA}$)	v_{a_p}	max.	600	V ³)
	v_{a_0}	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	1.5	W
Grid No. 2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	250	V
Grid No.2 dissipation	w_{g_2}	max.	0.5	W
Grid No.1 resistor	$^{\mathrm{R}}\mathbf{g}_{1}$	max.	1	$M\Omega$
Cathode current	I_k	max.	15	mA
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	200	V

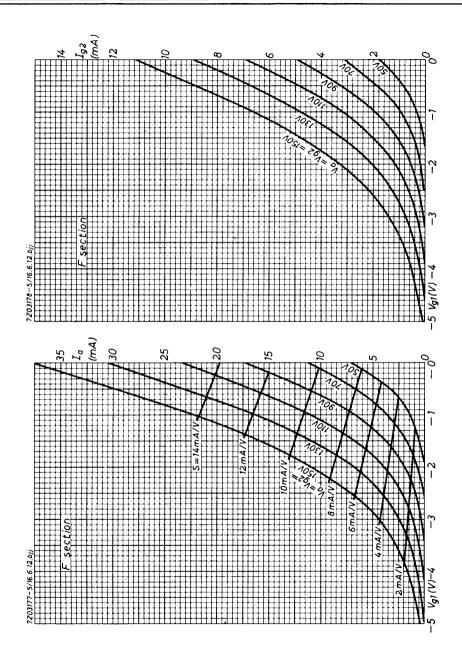

 $^{^{1}}$) During short periods $W_{g_{2}}$ = max. 3.2 W

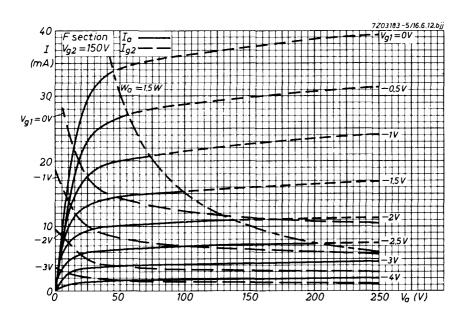

²) During short periods $I_k = max$. 85 mA

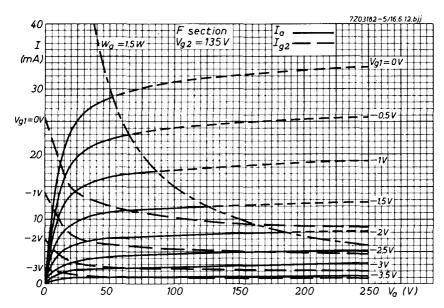

 $^{^3)\,\}mathrm{Max}.$ pulse duration 18% of a cycle, with a max. of $18\,\mu\mathrm{sec}$.



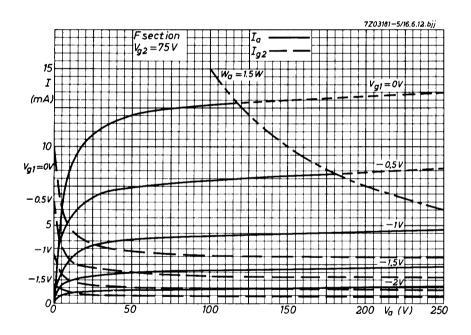
January 1970 5







January 1970



8 | January 1970

January 1970

10

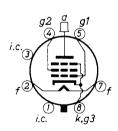
LINE OUTPUT PENTODE

Pentode intended for use as line output tube in television receivers.

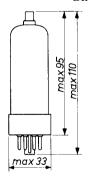
QUICK REFERENCE DATA				
Anode peak voltage	V _{ap} max.	7	kV	
Cathode current	I _k max.	200	mA	
Drive at $V_{a_p} = 7 \text{ kV}$	min.	120	V	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

I_f	300	mA
$v_{\rm f}$	25	V


DIMENSIONS AND CONNECTIONS

Base: Octal

Top cap: Type 1

Dimensions in mm

CAPACITANCES

Anode to all except grid No.1

Grid No.1 to all except anode

Anode to grid No.1

$$C_{a(g_1)}$$
 8 pF $C_{g_1(a)}$ 17.5 pF C_{ag_1} max. 1.1 pF

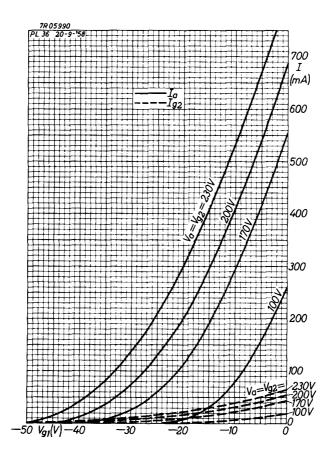
TYPICAL CHARACTERISTICS

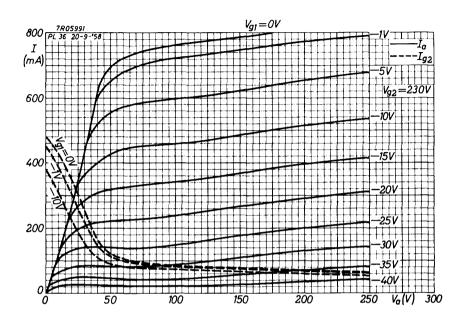
Anode voltage	v_a	100	V
Grid No.2 voltage	v_{g_2}	100	V
Grid No.1 voltage	v_{g_1}	-8.2	V
Anode current	I_a	100	mA
Grid No.2 current	I_{g_2}	7	mA
Transconductance	S	14	mA/V
Amplification factor	$\mu_{g_2g_1}$	5.6	
Internal resistance	R_i	5	$\mathbf{k}\Omega$

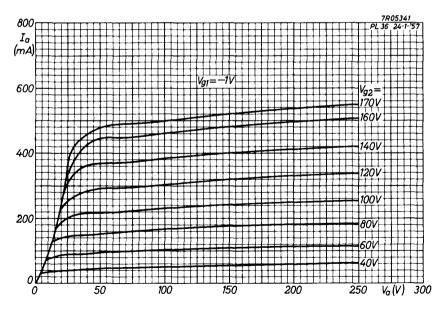
REMARKS

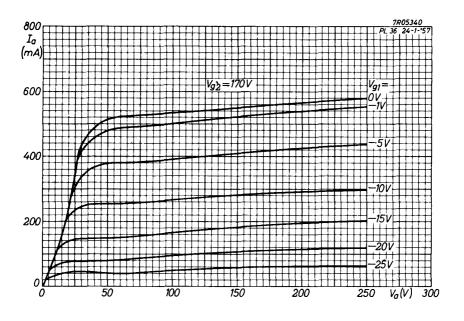
On pages D to M curves are given for nominal new tubes. On designing a line output circuit it has to be taken into account that due to tube spread and deterioration during life the current may be reduced by 25%.

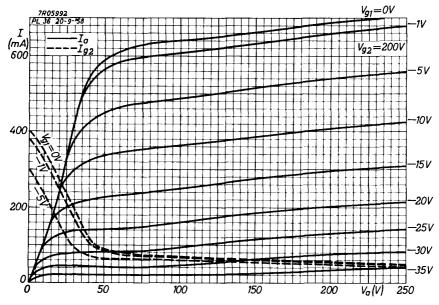
When the tube is operated below the knee of its $I_a\text{-}V_a$ characteristic the screen grid series resistor must have a minimum value of 2.2 k Ω to avoid the occurrence of Barkhausen oscillations.

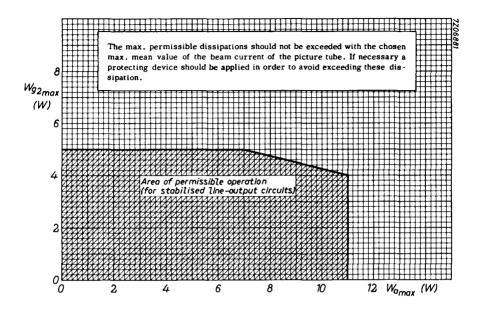

The min. drive at
$$V_{a_p}$$
 = 5 kV is 100 V and at V_{a_p} = 7 kV $\,$ 120 V

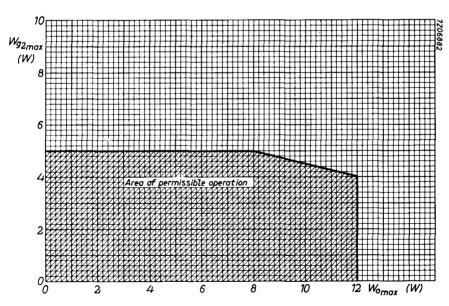

LIMITING VALUES (Design centre rating system)


Anode voltage	v_{ao}	max.	550	V
	v_a	max.	250	V
Anode peak voltage				
positive	$v_{\mathbf{a}_{\mathbf{p}}}$	max.	7	kV ¹)
negative	$-V_{a_p}$	max.	1.5	kV ¹)
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	v_{g_2}	max.	250	v
Grid No.1 peak voltage	$v_{g_{1p}}$	max.	1	kV ¹)
Anode dissipation	w_a			
Grid No.2 dissipation	w_{g_2}	See pa	age 7	
Anode + grid No. 2 dissipation	$W_a + W_{g_2}$			
Cathode current	$I_{\mathbf{k}}$	max.	200	mA
Grid No.1 resistor	$^{\mathrm{R}}g_{1}$	max.	0.5	$M\Omega^2$)
Cathode to heater voltage	-1			
A.C. value	$v_{\mathbf{k}\mathbf{f}}$	max.	250	v_{RMS}
D.C. value, k pos.	$v_{\mathbf{k}\mathbf{f}}$	max.	250	V
D.C. value, k neg.	$v_{\mathbf{k}\mathbf{f}}$	max.	200	v


 $^{^1)}$ Valid for application in line output circuits where the max. pulse duration is 22% of a cycle with a max. of $18~\mu s.$


²) R_{g_1} = max. 2.2 M Ω for line output application only.





January 1969

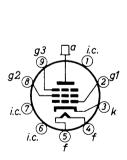
OUTPUT PENTODE FOR LINE DEFLECTION

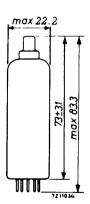
Output pentode intended for use as horizontal deflection amplifier in small screen television receivers.

QUICK R	EFERENCE DATA			
Anode peak voltage	v_{a_n}	max.	7	kV
Cathode current	I_k	max.	180	mA

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


If	300	mA
$\overline{v_f}$	21.5	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No. 1	$C_{\mathbf{a}(g_1)}$	6	pF
Grid No. 1 to all except anode	$C_{g_1(a)}$	14	pF
Anode to grid No. 1	$\mathtt{C}_{\mathtt{ag}_1}$	max. 0.8	pF
Anode to cathode	c_{ak}	max. 0.1	pF
Grid No. 1 to heater	C_{g1f}	max. 0.2	pF

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS			
A)			
Anode voltage	V_a	170	V
Grid No. 3 voltage	v_{g_3}	0	V
Grid No. 2 voltage	v_{g_2}	170	V
Grid No. 1 voltage	v_{g_1}	-24	V
Anode current	I_a	45	mA
Grid No. 2 current	I_{g_2}	2.4	mA
Transconductance	S	6.3	mA/V
Internal resistance	R_{i}	11	kΩ
Amplification factor	$\mu_{g_2g_1}$	5.0	

TYPICAL CHARACTERISTICS (continued)

B) (Measured under pulse conditions)

Anode voltage	v_a	40	V
Grid No. 3 voltage	v_{g_3}	0	v
Grid No. 2 supply voltage	v_{bg2}	190	v
Grid No. 2 series resistor	R_{g_2}	4.7	$\mathbf{k}\Omega$
Grid No. 1 voltage	v_{g_1}	0	V
Anode current	Ia	180	mA
Grid No. 2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	18	mA

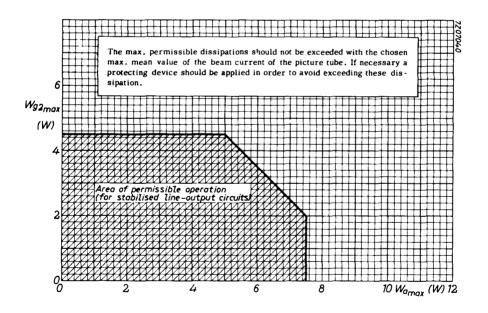
OPERATING CONDITIONS

Stabilized circuits (D.C. feedback)

Cut-off voltage

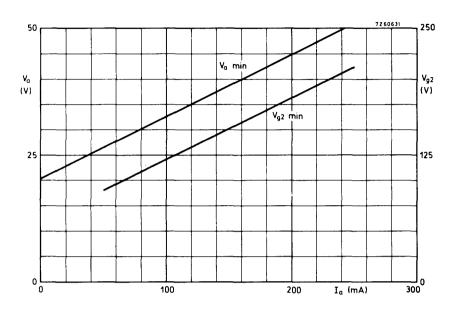
The minimum required cut-off voltage $(-V_{g_1})$ during flyback is $120 \, \text{V}$ at $V_a = 6000 \, \text{V}$, $V_{g2} = 190 \, \text{V}$ and $Z_{g1} = 1 \, \text{k}\Omega$ at line frequency.

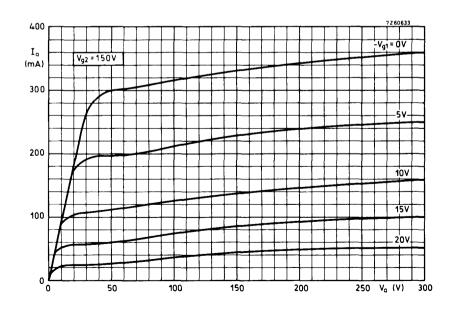
Supply voltage: See page 5

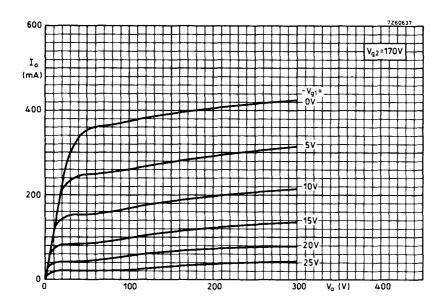

Minimum required values of the screengrid voltage and of the anode voltage, when the tube is used in a line output stage.

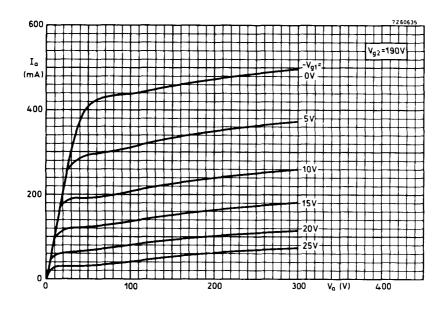
The graphs refer to nominal mains voltage provided the specified values of $\rm I_a$ at $\rm V_{a~min}$, will be available throughout life of the tube at supply voltage values 10% below nominal.

In order to prevent Barkhausen interferences and less of stabilisation, care should be taken that the anode voltage never drops below the specified $V_{a\ min}$ during the scanning period.


LIMITING VALUES (Design centre rating system)


Anode voltage	v_{a_0}	max.	550	V
	V_a	max.	250	V
Anode voltage, peak	v_{a_p}	max.	7	kV ¹)
negative peak	-V _{ap}	max.	7	kV^{-1})
Anode dissipation	w_a	1		
Grid No. 2 dissipation	W_{g2}^{2}) $W_a + W_{g2}$	see fi below	gure	
Anode + grid No. 2 dissipation	$w_a + w_{g2}$			
Grid No. 2 voltage	$v_{g_{2_0}}$	max.	550	V
	v_{g_2}	max.	250	V
Cathode current	$I_{\mathbf{k}}$	max.	180	mA
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	200	V
Grid No. 1 resistor	R_{g_1}	max.	0.5	$M\Omega$



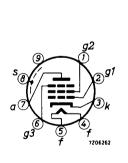

 $^{^{\}rm l})$ Maximum pulse duration 22 % of a cycle but maximum 18 $\mu s.$

²⁾ During the heating-up of the cathode W_{g2} = max. 6 W.

VIDEO OUTPUT PENTODE

Pentode intended for use as video output tube.

QUICK REF	ERENCE DATA		
Anode current	Ia	36	mA
Transconductance	S	10.5	mA/V
Amplification factor	$^{\mu_{\mathrm{g}_{2}\mathrm{g}_{1}}}$	24	-

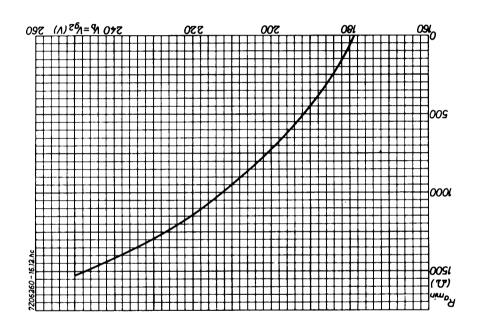

HEATING: Indirect by A.C. or D.C.; series supply

Heater current Heater voltage $\frac{I_f}{V_f} \qquad \frac{300 \text{ mA}}{15 \text{ V}}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval


CAPACITANCES

Anode to all except grid No.1	$C_{a(g_1)}$	6.6	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	10.8	pF
Anode to grid No.1	C_{ag}_1	max. 0.1	pF
Grid No.1 to grid No.2	$^{\mathrm{C}}\mathrm{g}_{1}\mathrm{g}_{2}$	3.2	pF
Grid No.1 to heater	$C_{\mathbf{g_{1}f}}$	max. 0.15	pF

TYPICAL CHARACTERISTICS				
Anode voltage	v_a	170	200	v
Grid No.3 voltage	v_{g_3}	0	0	V
Grid No.2 voltage	v_{g_2}	170	200	V
Grid No.1 voltage	v_{g_1}	-2.3	-3.5	V
Anode current	I_a	36	36	mA
Grid No.2 current	I_{g_2}	5.0	5.0	mA
Transconductance	S	10.5	10.5	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	24	24	-
Internal resistance	R_i	0.1	0.1	$M\Omega$
LIMITING VALUES (Design centre rating syst	em)			
Anode voltage	v_{a_0}	max.	550	V
	v_a	max.	2 50	V
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	V
	v_{g_2}	max.	250	V
Anode dissipation	w_a	max.	9	W
Grid No.2 dissipation	w_{g_2}	max.	2	W
Cathode current	$I_{\mathbf{k}}$	max.	70	mA
Grid No.1 resistor				
for fixed bias	R_{g_1}	max.	0.5	$M\Omega$
for automatic bias	$^{R}g_{1}$	max.	1	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	200	V 1)

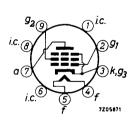
¹⁾ D.C. component max. 150 V

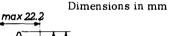
FRAME AND A.F. OUTPUT PENTODE

Pentode intended for use as frame output tube in television receivers and as $A.F.\ power\ amplifier.$

QUICK RE	FERENCE DATA			
Anode peak voltage	$v_{\mathbf{a_p}}$	max.	2	kV
Cathode current	I _k	max.	100	mA
Output power	w_{o}		53	W

HEATING: Indirect by A.C. or D.C.; series supply


Heater current


Heater voltage

If	30 0	mA
$\overline{v_f}$	15	v

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES

Anode to all except grid No.1 Grid No.1 to all except anode

Anode to grid No.1

Grid No.1 to heater

$$egin{array}{lll} C_{a(g_1)} & 6.8 & pF \\ C_{g_1(a)} & 13 & pF \\ C_{ag_1} & max. & 0.6 & pF \\ \end{array}$$

 C_{g_1f} max. 0.25 pF

OPTIMUM PEAK ANODE CURRENT IN FRAME OUTPUT APPLICATION

The circuit should be designed so that the peak anode current does not exceed:

145 mA at
$$V_a$$
 = 60 V, V_{g_2} = 170 V, I_f = 300 mA 190 mA at V_a = 70 V, V_{g_2} = 200 V, I_f = 300 mA 220 mA at V_a = 80 V, V_{g_2} = 220 V, I_f = 300 mA

The minimum available value of the peak anode current at end of life and $\rm I_f$ = 285 mA is:

125 mA at
$$V_a$$
 = 60 V, V_{g_2} = 170 V
160 mA at V_a = 70 V, V_{g_2} = 200 V
185 mA at V_a = 80 V, V_{g_2} = 220 V

OPERATING CHARACTERISTICS

A.F. power amplifier, class A (measured with V _k constant)								
Supply voltage	$V_{\mathbf{b}}$		170			200		V
Grid No. 2 series resistor (non decoupled)	$^{\mathrm{R}}\mathrm{g}_{2}$		0			470		Ω
Cathode resistor	$R_{\mathbf{k}}$		130			215		Ω
Load resistance	R_{a}		2			2.5		$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_{i}	0	0.47	6.1	0	0.52	7.0	v_{RMS}
Anode current	I_a	75	-	76	65	-	64	mA
Grid No.2 current	I_{g_2}	4.0	-	16.5	3.2	-	11.4	mA
Output power	$\mathbf{w}_{\mathbf{o}}^{-}$	0	0.05	5.1	0	0.05	5.3	W
Distortion	d_{tot}	-	-	10	-	-	10	%
Anode supply voltage	V _{ba}					23 0		v
Grid No.2 supply voltage	v_{bg_2}					200		V
Grid No.2 series resistor (non decoupled)	R_{g_2}					220		Ω
Cathode resistor	$R_{\mathbf{k}}$					270		Ω
Load resistance	$\mathbf{R_{a}}_{\sim}$					3.25		$\mathbf{k}\Omega$
Grid No.1 driving voltage	V_{i}				0	0.42	5.7	v_{RMS}
Anode current	I_a				56	-	54	mA
Grid No.2 current	I_{g_2}				2.2	-	9.7	mA
Output power	$\mathbf{w}_{\mathbf{o}}^{-}$				0	0.05	5.4	W
Distortion	d_{tot}				-		10	%

OPERATING CHARACTERISTICS

A.F. power amplifier, class AB, two tubes in push-pull

1.1. power ampirier, class hb, two tubes in push-puri								
Anode supply voltage	v_{ba}		200	l		23 0		V
Grid No.2 voltage	v_{bg_2}		200	١		200		v
Common cathode resistor	$R_{\mathbf{k}}$		120	١		130		Ω
Load resistance	$^{R}aa_{ \sim}$		3	1		4		$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_{i}	7	0.47	14.3	0	0.4	14.6	V _{RMS}
Anode current	I_a	2x60) –	2x64.5	2 x 56	-	2x61	mA
Grid No.2 current	I_{g_2}	2x3.0	-	2x18.5	2x2.3	- 2	x17.5	mA
Output power	W_{o}^{-}	C	0.05	14.3	0	0.05	17.5	W
Distortion	\textbf{d}_{tot}	-	-	3.8	-		5.4	%
LIMITING VALUES (Desig	n centr	e ratin	g sys	tem)				
Anode voltage				7	$I_{\mathbf{a_0}}$	max.	550	v
				1	'a	max.	250	V
Anode peak voltage				7	$a_{\mathbf{p}}$	max.	. 2	kV ¹)
Grid No. 2 voltage					g _{2o}	max.	550	v
					g ₂	max.	250	V
Anode dissipation					V_a	max.	12	W^2)
Grid No.2 dissipation								
average				V	v_{g_2}	max.	1.75	W
					_			

 $w_{g_{2p}}$

 I_k

 R_{g_1}

Rgı

 $v_{\mathbf{k}\mathbf{f}}$

for frame output with automatic bias

peak

Cathode current

Grid No.1 resistor

for automatic bias

Cathode to heater voltage

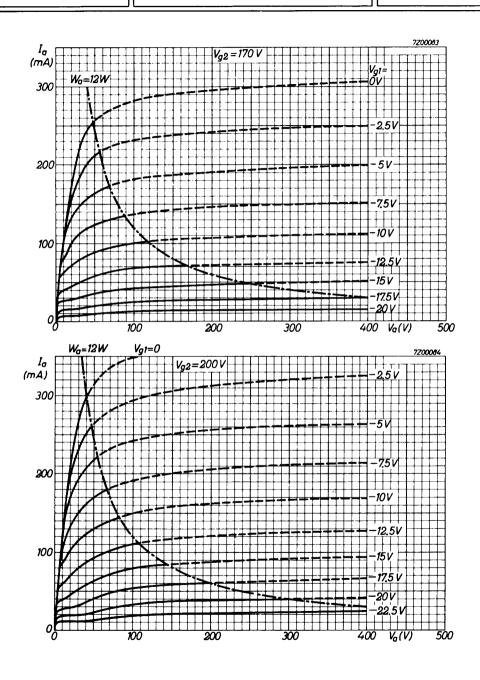
6 W

1 $M\Omega$

 $2 M\Omega$

max. 100 mA

max. 200 V


max.

max.

max.

 $^{^{1}}$) In frame output circuits where the max. pulse duration is 4% of a cycle with a max. of 0.8 ms.

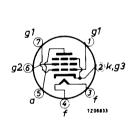
²) For frame output application $W_a = \max$. 10 W.

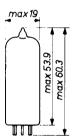
A.F. OUTPUT PENTODE

Pentode intended for use as A.F. power amplifier.

QUICK REFER	RENCE DATA		
Anode current	I _a 2	4	mA
Transconductance	s 5.	4	mA/V
Amplification factor	μ_{g2g1} 1	7	
Output power	$\mathbf{w}_{\mathbf{o}}^{-2}$	3	W

HEATING: Indirect by A.C. or D.C.; series supply


Heater current Heater voltage If 300 mA V_f 4.5 V

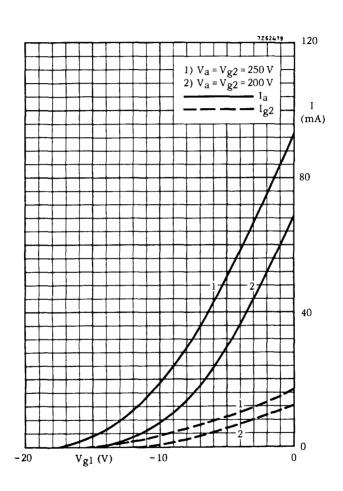

1

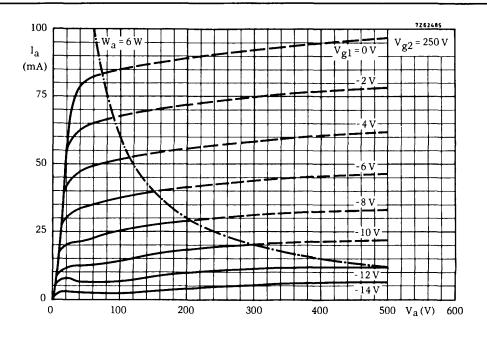
DIMENSIONS AND CONNECTIONS

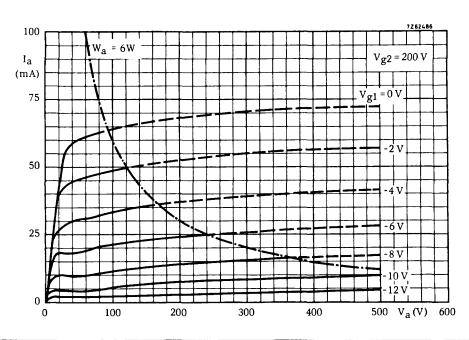
Dimensions in mm

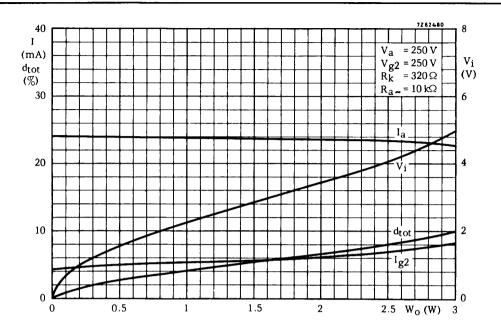
Base: miniature 7-pin

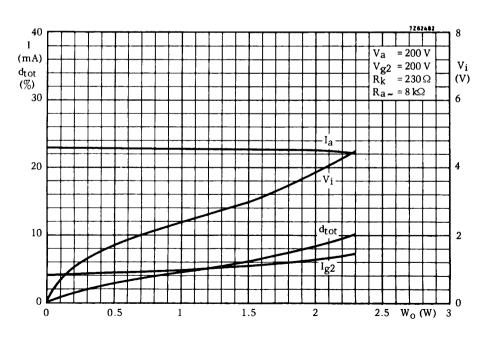
CAPACITANCES

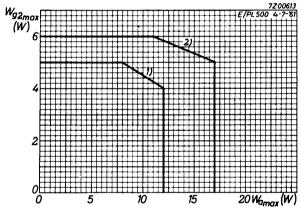

Anode to all except grid No.1	$C_{a(g_1)}$		3.5	pF
Grid No.1 to all except anode	$C_{g1}(a)$		5.3	pF
Anode to grid No.1	C_{agl}	max.	0.4	pF
Grid No.1 to heater	C_{glf}	max.	0.2	pF


January 1972


TYPICAL CHARACTERISTICS				
Anode voltage	V_a		250	v
Grid No.2 voltage	v_{g_2}		250	v
Grid No.1 voltage	v_{g_1}		-9.0	v
Anode current	I_a		24	mA
Grid No.2 current	I_{g_2}		4.5	mA
Transconductance	S		5.4	mA/V
Amplification factor	$\mu_{ m g2g1}$		17	
Internal resistance	R_i		70	$\mathbf{k}\Omega$
OPERATING CHARACTERISTICS				
Class A				
Anode voltage	v_a	200	250	v
Grid No.2 voltage	v_{g_2}	200	250	v
Cathode resistor	$R_{\mathbf{k}}$	230	320	Ω
Anode current (V _i = 0)	I_a	23	24	mA
Grid No.2 current (V _i = 0)	$I_{\mathbf{g_2}}$	4.2	4.5	mA
Load resistance	Ra ~	8	10	$\mathbf{k}\Omega$
Grid No.1 driving voltage	v_i	4.5	5	v_{RMS}
Output power	$W_{\mathbf{o}}$	2.3	3.0	w
Distortion	d_{tot}	10	10	%
Grid No.1 driving voltage for W _o = 50 mW	v_i	0.50	0.50	v _{RMS}


v_{a_0}	max.	550	V
v_a	max.	300	V
$v_{\mathbf{g_{2_o}}}$	max.	550	V
v_{g_2}	max.	300	V
w_a	max.	6	W
w_{g_2}	max.	1.25	W
$W_{g_{2_D}}$	max.	2.5	W
$I_{\mathbf{k}}$	max.	35	mA
R_{g_1}	max.	2.2	$M\Omega$
v_{kf}	max.	200	v
	Va Vg2 ₀ Vg2 Wa Wg2 Wg2 _p Ik Rg1	$\begin{array}{ccc} V_a & \text{max.} \\ V_{g2_0} & \text{max.} \\ V_{g2} & \text{max.} \\ W_a & \text{max.} \\ \end{array}$ $\begin{array}{ccc} W_{g2} & \text{max.} \\ W_{g2_p} & \text{max.} \\ I_k & \text{max.} \\ R_{g1} & \text{max.} \end{array}$	Va max. 300 Vg2o max. 550 Vg2 max. 300 Wa max. 6 Wg2 max. 1.25 Wg2p max. 2.5 Ik max. 35 Rg1 max. 2.2


January 1972 3



LINE OUTPUT PENTODE

Beam pentode intended for use as line output tube in television receivers.

QUICK REI	FERENCE DATA			
Anode peak voltage	V _{ap} r	nax.	7	kV
Cathode current	I _k r	nax.	250	mA
Anode dissipation	w _a n	nax.	12	W

- 1) Design centre limits for W_{a} and W_{g2} .
- $^2)$ These limits for W_a and W_{g_2} should not be exceeded with a nominal tube operating in a normal line deflection circuit under the worst probable conditions.

For further data and curves of this type please refer to PL504

January 1969

LINE OUTPUT PENTODE

Beam pentode intended for use as line output tube in television receivers.

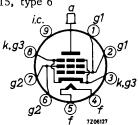
QUICK REFER	RENCE DATA		
Anode peak voltage	V _{aD} max.	7	kV
Cathode current	I _k max.	250	mA
Anode dissipation	W _a max	16	w

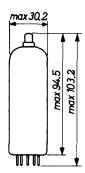
HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage

If	300	mA
$\overline{v_f}$	27	v


DIMENSIONS AND CONNECTIONS


Dimensions in mm

Base: Magnoval; IEC 67-I-36a

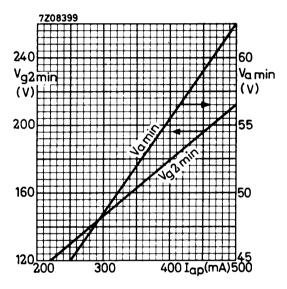
Cap: Type 1

Outline: IEC67-II-15, type 6

CAPACITANCES

Anode to grid No. 1

Grid No. 1 to heater


$$C_{ag_1}$$
 1.75 pF C_{g_1f} max. 0.2 pF

TYPICAL DYNAMIC CHARACTERISTICS (measured under pulse conditions)

Anode voltage	v_a	50	7000	V
Grid No.2 voltage	v_{g2}	200	200	V
Grid No.1 voltage	v_{g1}	-10	-120	V
Anode current	$I_{\mathbf{a}}$	420	0.05	mA
Grid No.2 current	$I_{\alpha 2}$	3 7		mΑ

OPERATING CHARACTERISTICS

Stabilized circuits (D.C. feedback)

Minimum required values of the screen grid voltage and of the anode voltage when the tube is used in line output stages. The graphs refer to nominal mains voltage provided the specified values of V_a are increased by 10% of the anode supply voltage. The specified values of I_{ap} will be available throughout life of the tube at supply voltage values 10% below nominal.

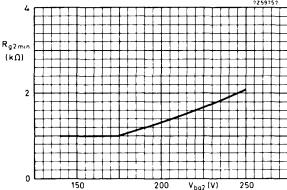
In order to prevent Barkhausen interferences, care should be taken that the anode voltage never drops below the specified V_a min. during the scanning period.

Non stabilized circuits

Supply voltage	v_b	190	2 3 0	V
Grid No.2 series resistor	R_{g_2}	2.2	2.2	$\mathbf{k}\Omega$
Grid No.1 voltage	v_{g_1}	+l	+1	V
Anode peak current	$I_{a_{D}}$	230	320	mA^1)

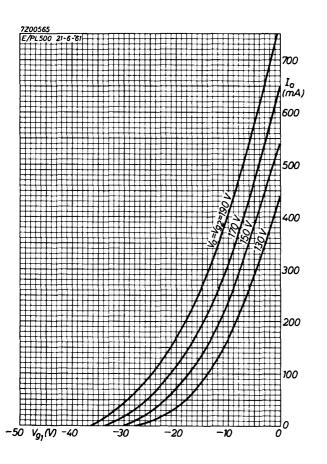
¹⁾ See page 3

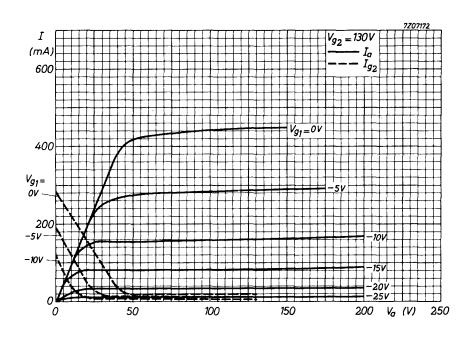
HUM

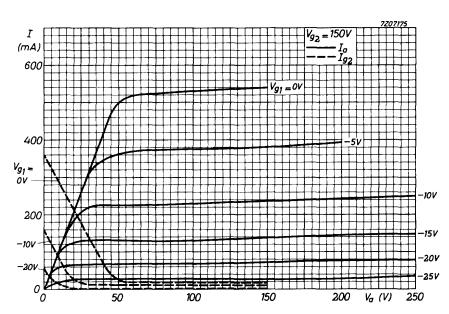

At Z_{gl} = 200 k Ω (f = 50 Hz), V_{kf} = 220 V_{RMS} and without wiring and socket capacitances, the equivalent grid hum voltage is < 5 mV.

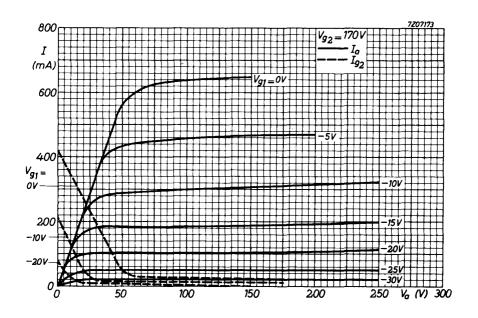
LIMITING VALUES (Design centre rating system unless otherwise stated)

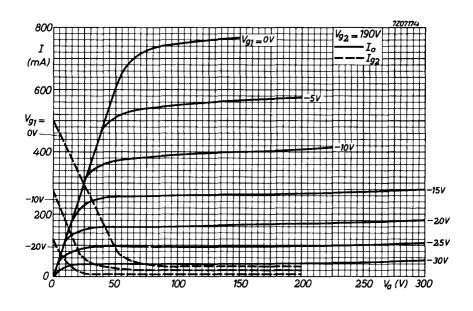
Anode voltage	v_{a_0}	max.	550	V
Anode voltage	v_a	max.	250	V
Anode voltage, peak	v_{a_p}	max.	7000	V 3)4)
Grid No.2 voltage	V_{g2o}	max.	550	V
Grid No.2 voltage	V_{g2}	max.	250	V
Anode dissipation	w_a	see page 4		
Grid No.2 dissipation	W_{g2}	see page 4		2)
Cathode current	I_k	max.	250	mA
Grid No.1 resistor	R_{gl}	max.	0.5	MΩ 5)
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	250	V
Bulb temperature	t _{bulb}	max.	280	^o C 6)

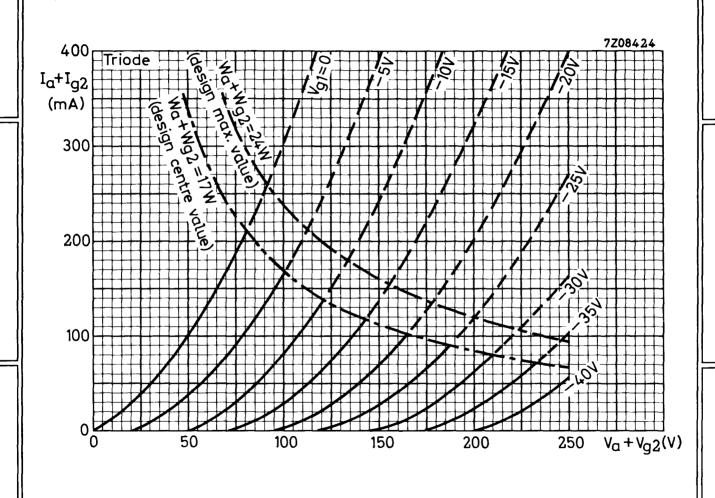

NOTES


- 1. To allow for tube spread, deterioration during life and a mains voltage 10 %below nominal, the specified values for I_{ap} should not be exceeded at nominal mains voltage and at the specified conditions.
- 2. To prevent an excessive value of W_{g2} during the heating-up period, the minimum R_{g2} values are given in the graph below.




- 3. Maximum pulse duration is 22 % of a cycle and max. 18 μ s.
- 4. V_{ap} design max. 8 kV
- 5. $R_{\alpha 1}^{P} = \max$. 2.2 M Ω for line output application.
- 6. Absolute max. value.


- 1) Disign centre limits for w_a and $w_{g_{\underline{\boldsymbol{2}}}}.$
- $^2)$ These limits for $\rm W_a$ and $\rm W_{\rm g_2}$ should not be exceeded with a nominal tube operating in a normal line deflection circuit under the worst probable conditions.



7000 V

LINE OUTPUT PENTODE

QUICK REFERENCE DATA

Va.

Output pentode intended for colour TV line deflection circuits.

Anode peak voltage

Miloue peak voitage	'ap		,000	•	-
Cathode current	I_k	max.	500	m A	.
Anode dissipation	Wa	max.	25	W	
LIMITING VALUES (Design centre rating system)					
Anode dissipation	w_a		max.	25	W
Anode + grid No.2 dissipation (triode connected)	$w_a+w_{g_2}$		max.	26	W
(Design max. rating system) 1)					
Anode dissipation	w_a		max.	34	W
Anode + grid No. 2 dissipation (triode connected)	w_a+v	v_{g_2}	max.	35	W

For further data and curves of this type please refer to type PL 509

¹⁾ The design maximum limits should not be exceeded with a nominal tube under the worst probable operating conditions at a normal picture width.

FRAME OUTPUT PENTODE

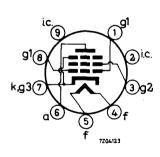
Pentode intended for use as frame output amplifier in colour television receivers.

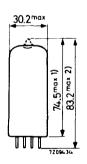
QUICK REFERENCE DATA				
Cathode current, average	I _k	max.	100	m A
Anode dissipation	w_a	max.	12	W

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage


I_f 300 mA


V_f 17 V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Magnoval

CAPACITANCES

Anode to grid No. 1

Grid No. 1 to heater

 C_{agl} max. 1.6 pF C_{glf} max. 0.2 pF

2) Max. 80.1

for execution with pumping stem on base side.

¹⁾ Max. 71.4

TYPICAL CHARACTERISTICS

(Measured under pulse conditions)

Anode voltage	v_a		50	v _a	190	v
Grid No.2 voltage	v_{g_2}		190	v_{g2}	190	V
Grid No.1 voltage	v_{gl}		-1	v_{g_1}	-17	V
Anode current	I_{a_p}		3 2 0	l_a	60	m A
Grid No.2 current	I_{g_2}	approx.	60	I_{g_2}	5	m A
Transconductance				S	9	mA/V
Amplification factor				$\mu_{ t g2gl}$	8	-

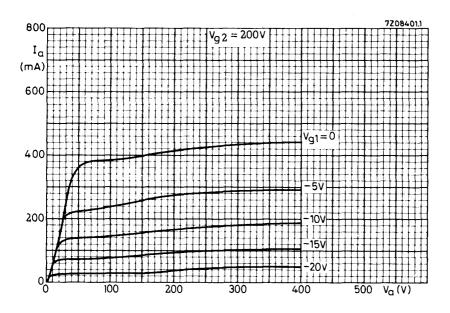
Remarks.

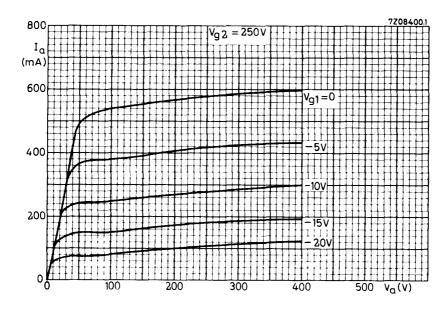
The minimum $\rm I_a$ to be expected as a result of spread of the tube characteristics tube deterioration during life and decrease of the mains voltage to 10 % below the nominal value can be derived from the curves on page B by decreasing by 40 % the $\rm I_a$ values situated on the curve A-B at V $_{g_2}$ occurring at the decreased mains voltage.

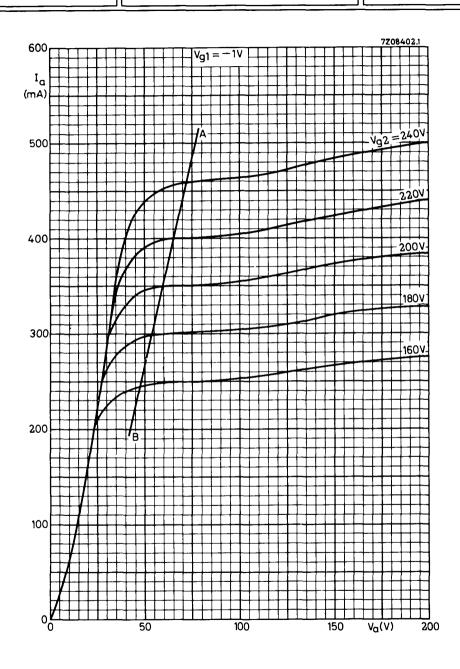
In order not to exceed the maximum permissible value of W_{g_2} , the circuit should be designed in such a way that the anode voltage should never be lower than the value determined by curve A-B at the relevant V_{g_2} value.

OPERATING CHARACTERISTICS (end of scan values)

Anode voltage	v_a	70	V
Grid No.2 voltage	v_{g_2}	200	V
Grid No.1 voltage	v_{g_l}	-5	V
Anode peak current	I_{a_p}	2 30	m A


LIMITING	VALUES	(design	centre	rating	system)	unless	otherwise s	tated


Anode voltage	v_{a_0}	max.	700	V	
	v_a	max.	400	V	
Anode peak voltage	v_{a_p}	max.	2.5	kV	1)
Grid No.2 voltage	$v_{g_{20}}$	max.	700	V	
	v_{g_2}	max.	275	V	
Anode dissipation	w_a	max.	12	W	
Grid No.2 dissipation	w_{g_2}	max.	3	W	
design max.	w_{g_2}	max.	4	W	
Cathode current	I_k	max.	100	m A	
Grid No.1 resistor, fixed bias	R_{g_l}	max.	1	$M\Omega$	
automatic bias	R_{g_l}	max.	2.2	$M\Omega$	
Cathode to heater voltage	V_{kf}	max.	22 0	V	


MICROPHONY

The maximum peak accelaration to which the tube may be subjected under the most unfavourable conditions is 1.5 g at frequencies < 600 Hz. and 0.2 g at frequencies ≥ 600 Hz. The equivalent interferance voltage at grid No.1 will than be < 25 mV.

¹⁾ Max. pulse duration 5% of a cycle and max. 1 ms.

LINE OUTPUT PENTODE

Output pentode intended for colour TV line deflection circuits.

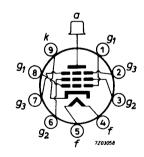
QUICK REFERENCE DATA						
Anode peak voltage	v_{a_p}		7000	V		
Cathode current	I _k	max.	500	mA		
Anode dissipation	$\mathbf{w}_{\mathbf{a}}$	max.	30	W		

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage

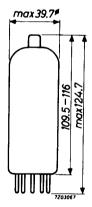
If	300	mΑ
$\overline{v_{\rm f}}$	40	V


Dimensions in mm

DIMENSIONS AND CONNECTIONS

Base: Magnoval Top cap: Type 1

Mounting: Additional supporting of the


tube at the top is required.

CAPACITANCES

Grid No.1 to filament

Anode to grid No.1

 C_{g_1f}

max. 0.2 pF

 C_{ag_1} max. 3.0 pF

 C_{ag_1}

2.5 pF

TYPICAL CHARACTERISTICS (measured under pulse conditions)

Anode voltage	v_a	160	50	V
Grid No.3 voltage	v_{g_3}	0	0	V
Grid No.2 voltage	v_{g_2}	160	175	V
Grid No.1 voltage	$v_{g_1}^-$	0	-10	V
Anode current	Ia	1400	800	mA
Grid No.2 current	I_{g_2}	45	70	mA

OPERATING CONDITIONS (D.C. feedback)

Cut-off voltage

The minimum required cut-off voltage (- V_{g_1}) during flyback at V_a = 7000 V and at line frequency is at:

$$V_{g_2} = 150 \text{ V} : V_{g_1} = -175 \text{ V}$$

 $V_{g_2} = 200 \text{ V} : V_{g_1} = -195 \text{ V}$
 $V_{g_2} = 250 \text{ V} : V_{g_1} = -215 \text{ V}$

Supply voltages: See pages 4-5-6

Minimum required anode voltage: Va min

In order to prevent Barkhausen interference and loss of stabilization, care should be taken that the anode voltage never drops below the specified $V_{a\ min}$ during the scanning period.

If low values of $V_{a\ min}$ are required, the $V_{a\ min}$ 1-line can be shifted over 10 V to $V_{a\ min}$ 2, provided a D.C. voltage of at least +20 V is applied to the beamplate (g3). To compensate for the influence of mains voltage variations, the specified values of $V_{a\ min}$ have to be increased with 10% of the anode supply voltage.

Minimum required values of the screen grid voltage: Vg2 min

The graph refers to nominal mains voltage. The specified values of $\rm I_{ap}$ will be available throughout life of the tube at supply voltages 10% below nominal.

Maximum permissible screen grid series resistance: $R_{\rm g2}$ max. See pages 4-5-6

Decoupling-capacitors in the grid no 2 and/or grid no 3 circuit

In circuits where decoupling capacitors in the grid no 2 or the grid no 3 circuits are applied, incidental flashover in the tube may give rise to excessive discharge currents-and component or tube failure.

Therefore it is recommended to limit the discharge currents to these capacitors by means of an 100 Ohm resistance between g2 and the g2-bypass capacitance.

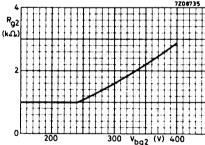
The 1000 Ohms resistance should be protected by a spark-gap connected between g^3 and earth.

Hum

At Z_{g1} = 200 k (f = 50 Hz), V_k/f = 220 V_{RMS} and without wiring and socket capacitance, the equivalent grid hum voltage is less than 5 mV.

LIMITING VALUES

Anode voltage in cold condition
Anode peak voltage
Anode dissipation
Anode + grid No. 2 dissipation (triode-connected)
Grid No. 3 voltage
Grid No. 2 voltage in cold condition
Grid No. 2 voltage
Grid No. 2 dissipation
Cathode current
Cathode peak current
Cathode-to-heater voltage
Grid No. 1 resistor: fixed bias
stabilized circuits
Grid No. 3 circuit resistance
Bulb temperature


Design centre rating system

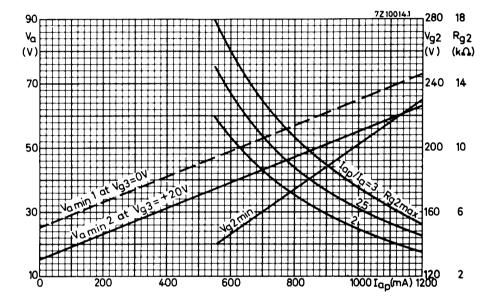
$V_{\mathbf{ao}}$	max.	700	V	
V_{ap}	max.	7000	V	1)
$\mathbf{w_a}^{T}$	max.	30	W	
$W_a + W_{g_2}$	max.	31	W	
v_{g_3}	max.	50	V	
$V_{\mathbf{g}_{2a}}^{\mathbf{g}_{3a}}$	max.	700	V	
V ₃₂	max.	275	V	
Vg ₂₀ Vg ₂ Wg ₂	max.	7	W	2)
I _k	max.	500	mΑ	
Ik.	max.	1200	mA	
I _{kp} Vkf	max.	250	V	
R_{σ_1}	max.	0.5	$M\Omega$	
Rg1 Rg1	max.	2.2	$M\Omega$	3)
$R_{g_3}^{g_1}$	max.	10	$\mathbf{k}\Omega$	4)
t _{bulb}	max.	3 00	$^{\rm o}C$	5)
_				۵.

Design max. rating system 6)

Anode dissipation	w_a	max.	40	W	
Anode + grid No.2 dissipation (triode connected)	$W_a + W_{g_2}$	max.	42	W	
Grid No.2 dissipation	w_{g_2}	max.	9	W	
Anode peak voltage	V_{ap}^{82}	max.	8000	V	1)
Neg. grid No.1 peak voltage	$-v_{g_1p}$	max.	550	V	1)
Anode peak voltage	Vap -Vg ₁ p				1) 1)

- 1. Max. pulse duration is 22% of a cycle and max. 18 μs .
- 2. To prevent an excessive value of W_{g_2} the minimum R_{g_2} values are given in the graph below.

- The circuit design has to be such that negative control grid currents up to 5
 micro-amperes do not have any detrimental effect upon tube adjustment or circuit performance.
 - Care should be taken that with 5 micro-amperes grid current the limiting values for I_k , W_a and W_{g_2} are not exceeded.
- 4. With $R_{g_3} \le 10 \text{ k}\Omega$ capacitive decoupling of g_3 is not required.
- 5. Absolute max. value.
- 6. The design maximum limits should not be exceeded with a nominal tube under the worst probable operating conditions at a normal picture width.

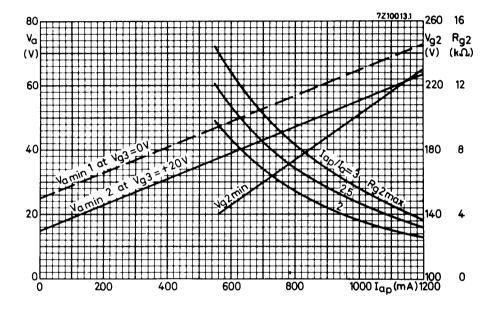

PL509

Min. required anode voltage.

 ${\rm Rg}_{2~max}$: max, permissible screen grid series resistance for $400~{\rm V}$ screen grid supply.

The specified values of ${\rm I}_{ap}$ are available at supply voltages 10% below nominal and throughout the tube life.

Remark: $R_{g_2 \ min}$ for 400 V screen grid supply is 2.9 k Ω . (See page 3)



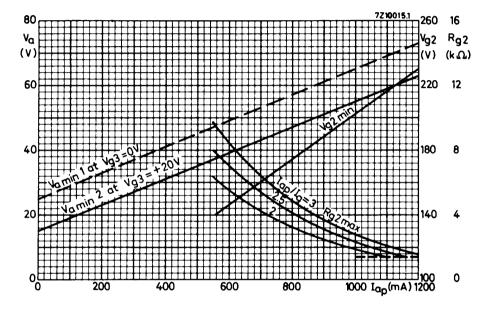
Min. required anode voltage.

 $R_{\mbox{\scriptsize g}_{2}\,\mbox{\scriptsize max}}$: max, permissible screen grid series resistance for $350\mbox{\ V}$ screen grid supply.

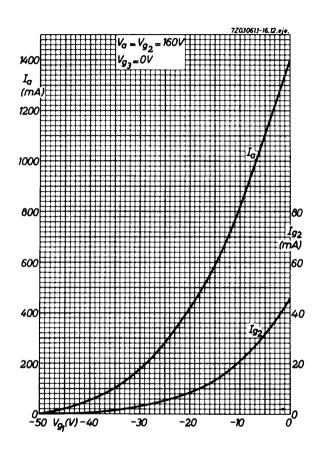
The specified values of ${\rm I}_{ap}$ are available at supply voltages 10% below nominal and throughout the tube life.

Remark: $R_{g_2 \ min}$ for 350 V screen grid supply is 2.2 k Ω . (See page 3)

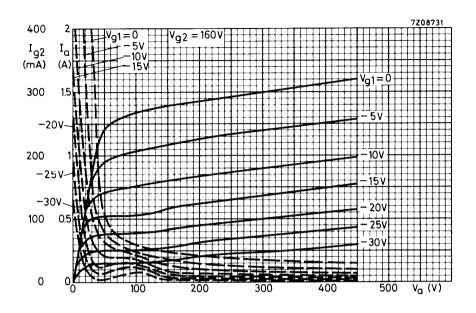
November 1969 5

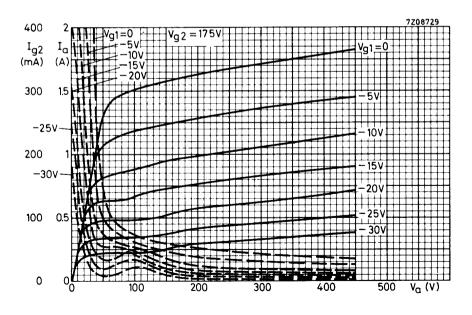

PL509

Min. required anode voltage.


 $R_{\mbox{\scriptsize g2\ max}}$: max. permissible screen grid series resistance for $280\ V$ screen grid supply.

The specified values of ${\rm I}_{ap}$ are available at supply voltages 10% below nominal and throughout the tube life.


Remark: $R_{g_2 \ min}$ for $280 \ V$ screen grid supply is 1.4 k Ω . (See page 3)



7



8

9

LINE OUTPUT PENTODE

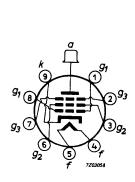
Output pentode intended for colour TV line deflection circuits.

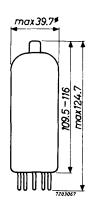
HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage

I _f	300	mΑ
v_f	40	V


DIMENSIONS AND CONNECTIONS


Base: Magnoval Top cap: Type 1

Mounting: Additional supporting of the

tube at the top is required.

Dimensions in mm

CAPACITANCES

Grid No. 1 to filament

Anode to grid No. 1

 C_{g_1f} max. 0.2 pF C_{ag_1} max. 3.0 pF C_{ag_1} 2.5 pF

TYPICAL CHARACTERISTICS (measured under pulse conditions)

Anode voltage	v_a	160	50	70	v
Grid No. 3 voltage	v_{g_3}	0	0	0	V
Grid No. 2 voltage	v_{g_2}	160	175	205	V
Grid No. 1 voltage	v_{g_1}	0	-10	-11	V
Anode current	I_a	1400	800	1100	mA
Grid No. 2 current	$I_{\mathbf{g_2}}$	45	70	85	mA

OPERATING CONDITIONS (D.C. feedback)

Cut-off voltage

The minimum required cut-off voltage ($-V_{g1}$) during flyback at V_a = 7000 V and at line frequency is at:

$$V_{g_2} = 150 \text{ V} : V_{g_1} = -175 \text{ V}$$

 $V_{g_2} = 200 \text{ V} : V_{g_1} = -195 \text{ V}$
 $V_{g_2} = 250 \text{ V} : V_{g_1} = -215 \text{ V}$

Minimum required anode voltage during the scanning period: Va min. See page 6

Minimum required screen grid voltage: Vg2 min.

See page 4, 5

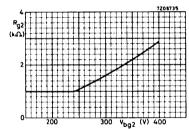
Recommended screen grid series resistor: Rg2 rec

See page 4, 5

Decoupling capacitors in the grid no.2 and/or grid no.3 circuit

In circuits where decoupling capacitors in the grid no.2 or the grid no.3 circuits are applied, incidental flashover in the tube may give rise to excessive discharge currents and component or tube failure.

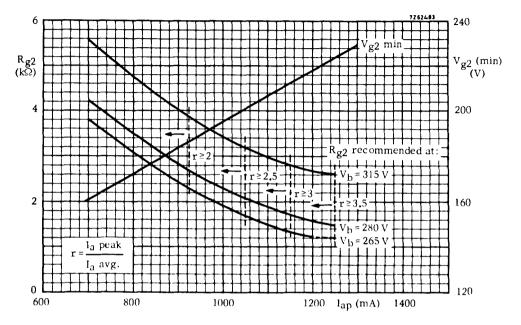
Therefore it is recommended to limit the discharge currents from these capacitors by means of a $100\,\Omega$ resistor between g_2 and the g_2 -bypass capacitor and a $1000\,\Omega$ resistor between g_3 and the g_3 -bypass capacitor. The $1000\,\Omega$ resistor should be protected by a spark-gap connected between g_3 and earth.

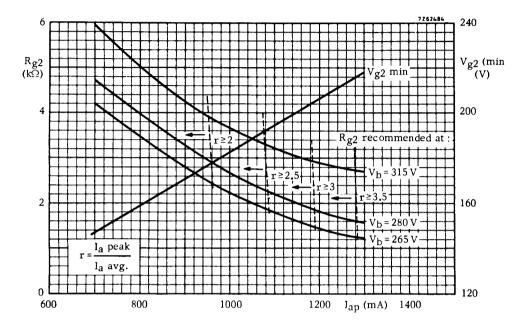

Hum

At Z_{g1} = 200 k Ω (f = 50 Hz), V_{kfRMS} = 220 V and without wiring and socket capacitance, the equivalent grid hum voltage is less than 5 mV.

January 1972

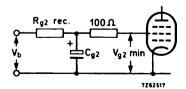
LIMITING VALUES	Design c	entre ra	ting sy	stem	
Anode voltage in cold condition	V_{ao}	max.	700	v	
Anode peak voltage	v_{ap}	max.	7000	V	
Anode dissipation	$\mathbf{w_a}^{r}$	max.	35	W	
Grid No. 3 voltage	v_{g_3}	max.	30	V	
Grid No. 2 voltage in cold condition	$V_{\mathbf{g_{2o}}}$	max.	700	V	
Grid No. 2 voltage	V_{g_2}	max.	275	V	_
Grid No. 2 dissipation	$\mathbf{w}_{\mathbf{g}_2}^{\mathbf{g}_2}$	max.	7	W	2)
Cathode current	$I_{\mathbf{k}}^{S_2}$	max.	500	mΑ	
Cathode peak current	I _{kp}	max.	1500	mA	
Cathode-to-heater voltage	$V_{\mathbf{kf}}^{P}$	max.	250	V	_
Grid No. 1 resistor: fixed bias	R_{g_1}	max.	0.5	$M\Omega$	
stabilized circuits	$R_{g_1}^{g_1}$	max.	2.2	$M\Omega$	3)
Grid No. 3 circuit resistance	$R_{g_3}^{g_3}$	max.	10	$\mathbf{k}\Omega$	4)
Bulb temperature	t _{bulb}	max.	300	^{0}C	5)
	Design n	nax. rat	ing sys	tem	6)
Anode dissipation	$\mathbf{w_a}$	max.	45	W	
Grid No. 2 dissipation	W_{g_2}	max.	9	W	
Anode peak voltage	v_{ap}^{sz}	max.	8000	V	1)
Neg. grid No. 1 peak voltage	$-v_{g_{1}p}^{a_{p}}$	max.	550	V	1)


- 1. Max. pulse duration is 22% of a cycle and max. 18 $\mu s.$
- 2. To prevent an excessive value of W_{g2} the minimum R_{g2} values are given in the graph below.

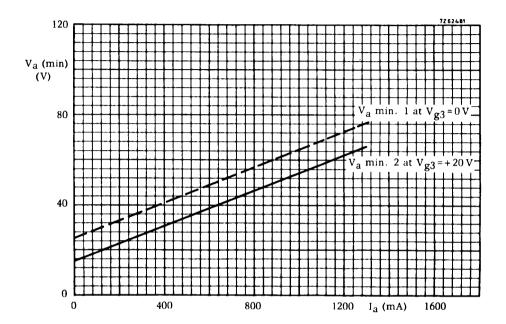

- The circuit design has to be such that negative control grid currents up to 5 micro-amperes do not have any detrimental effect upon tube adjustment or circuit performance.
 - Care should be taken that with 5 micro-amperes grid current the limiting values for $\rm I_k,\ W_a$ and $\rm W_{g_2}$ are not exceeded.
- 4. With $R_{g_3} \le 10 \text{ K}\Omega$ capacitive decoupling of g_3 is not required.
- 5. Absolute max. value.
- The design maximum limits should not be exceeded with a nominal tube under the worst probable operating conditions at a normal picture width.

January 1972 3

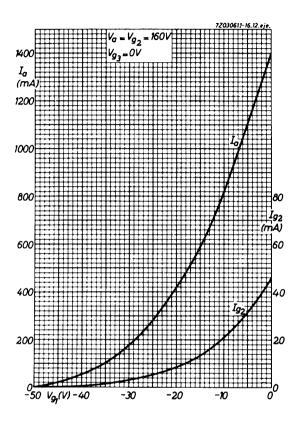
Min. required \mathbf{V}_{g_2} and recommended \mathbf{R}_{g_2} Non-stabilized supply voltages.



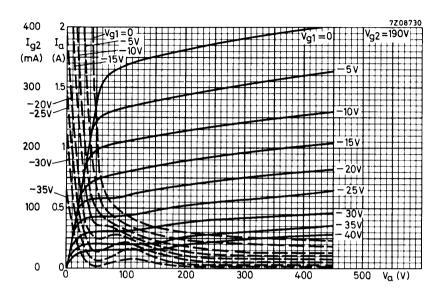
Min. required $\mathbf{V_{g}}_{2}$ and recommended $\mathbf{R_{g}}_{2}$ Stabilized supply voltage.


The above graphs concern the design of a line-output circuit adjusted at a beam current of 1000 μA and a nominal mains voltage.

If the recommended R_{g_2} is used, V_{g_2} will be equal to higher or than the specified V_{g_2} min. and there will be adequate reserve in anode peak current throughout the life of the tube. (Tolerances of deflection-components and $10\ \%$ mains voltage fluctuations taken into account).



January 1972 5


Min. required anode voltage, during the scanning period.

To suppress Barkhausen interference and to ensure stability, the anode load line should not be allowed to drop below the $\rm V_a$ line shown in the diagram. If $\rm V_a$ min. must be low, the $\rm V_a$ min. 1-line can be shifted over 10 V to $\rm V_a$ min. 2, provided a D.C. voltage of at least +20 V is applied to the beam plate (g₃). To compensate for the influence of mains voltage fluctuations, the specified values of $\rm V_a$ min. must be increased with 10 % of the anode supply voltage when not stabilized.

January 1972

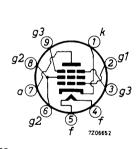
VIDEO OUTPUT PENTODE

Luminance output tube in colour TV receivers.

QUICK RI	EFERENCE DATA		
Anode current	I _a	30	mA
Transconductance	S	40	mA/V
Anode dissipation	W _a n	nax. 6	W

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

I_f	300	mA
$\overline{V_f}$	16	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1

Grid No.1 to all except anode

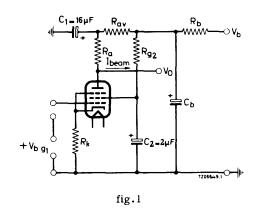
Anode to grid No.1

Anode to grid No.1

$$C_{a(g_1)}$$
 4 pF
 $C_{g_1}(a)$ 20 pF
 C_{ag_1} 0.075 pF
 C_{ag_1} max. 0.1 pF

TYPICAL CHARACTERISTICS

Anode voltage	$V_{\mathbf{a}}$	170	V
Grid No.2 voltage	v_{g_2}	170	v
Grid No.3 voltage	v_{g_3}	0	V
Grid No.1 supply voltage	v_{bg_1}	0	v
Cathode resistor (decoupled)	$R_{\mathbf{k}}$	36	Ω
Anode current	I_a	30	mA
Grid No.2 current	I_{g_2}	6.5	m A
Transconductance	S	40	mA/V
Amplification factor	$\mu_{g_2g_1}$	70	-


LIMITING VALUES (Design centre rating system unless otherwise stated)

Anode supply voltage	v_{b_a}	max.	400	v
Anode voltage,	v_{a_o}	max.	550	v
long term average	v_a	max.	3 00	v
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	v_{g_2}	max.	300	V
Anode dissipation	w_a	max.	6	W
Grid No.2 dissipation	w_{g_2}	max.	2.5	W
	w_{g_2}	max.	3.0	W 1)
Cathode current	I_k	max.	100	mA
Grid No.1 resistor	R_{g_1}	max.	0.1	$M\Omega$
at $R_k \ge 39 \Omega$	R_{g_1}	max.	0.5	$M\Omega$
Cathode to heater voltage	V_{kf}	max.	200	V

¹⁾ Design maximum rating system including no signal condition.

OPERATING CONDITIONS (negative modulation)

$$V_b$$
 = 250 V
 R_b = 330 Ω
 R_{av} = 560 Ω
 R_a = 2.7 $k\Omega$
 R_{g_2} = 5.6 $k\Omega$
 R_{k}^{1}) = 39 Ω
 $+V_{bg_1}$ = 4 V

$$V_{ol}$$
 = 100 V
 V_{opp} \geq 140 V
 $V_{ideo-linearity}$ \geq 0.8 -
 V_{ipp} ca. 5 V
 I_{beam} max. 7 mA

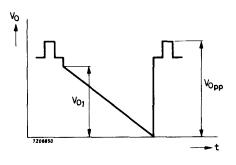
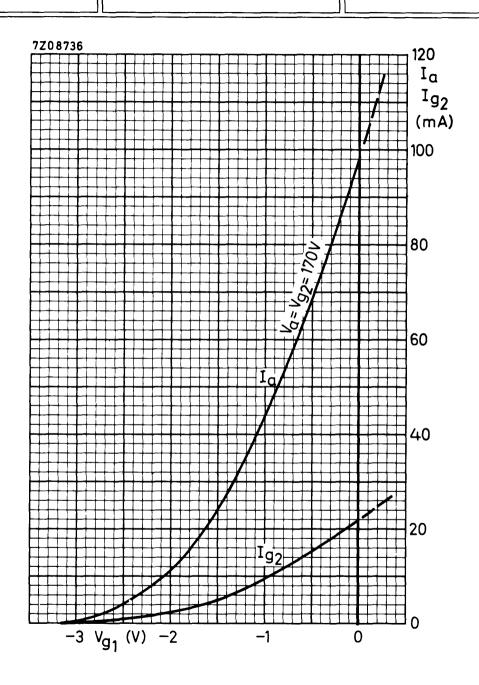
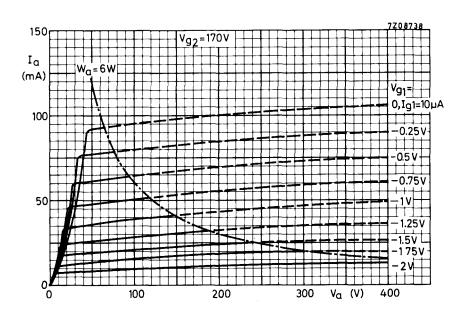
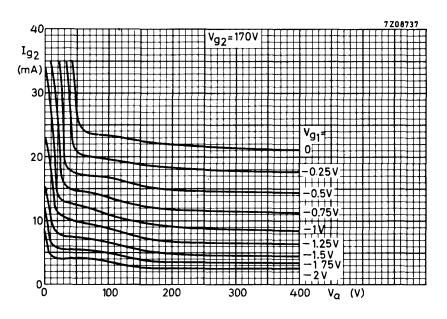





fig.2

¹⁾ Without by-pass capacitor.

December 1969

BOOSTER DIODE

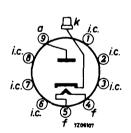
Booster diode intended for use in line time-base circuits of transformerless television receivers.

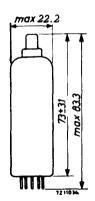
QUICK REFERE	NCE DATA			
Anode current, peak	Iap	max.	450	mA
Anode voltage, peak	$v_{a_{\mathbf{p}}}$	max.	5000	v
Cathode to heater voltage, peak	v_{kf_p}	max.	5000	V

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage


If	300	mA
$\overline{v_f}$	17	V


DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

Top cap: Type 1

CAPACITANCES

Anode to all

Cathode to heater

 C_a

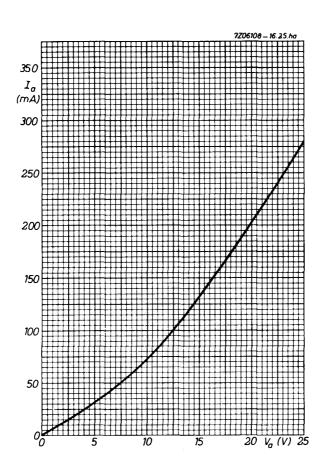
6.4 pF

 $C_{\mathbf{kf}}$

2.8 pF

LIMITING VALUES (Design centre rating system, unless otherwise specified)

Supply voltage	v_{b_0}	max.	550	V
	v_b	max.	250	V
Anode dissipation	w_a	max.	3.5	W
Anode current, average	Ia	max	150	mA
peak	I_{a_p}	max.	450	mA
Anode voltage, peak	$V_{\mathbf{a_p}}$	max	5000	$V^{1})^{2}$)
Absolute max.	$v_{a_{\mathfrak{p}}}$	max.	5600	$V^{1})^{2}$)
Cathode to heater voltage, peak	$v_{kf_{D}}$	max.	5000	V ¹)
Series resistance heater chain	R_s	min.	80	Ω^3)
Heater to earth voltage	V _f /earth	max.	220	v_{RMS}


REMARK

In general it will be necessary to take measures in order to prevent the maximum permissible screen grid dissipation of the tube that derive their anode voltage from this booster diode, from being exceeded during the heating-uptime of the booster diode.

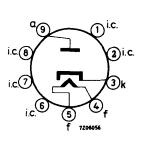
 $^{^{1})}$ Max. pulse duration 22% of a cycle with a maximum of 18 $\mu sec.$

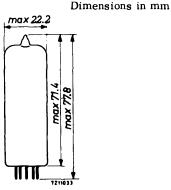
²) Cathode positive with respect to the anode.

³⁾ R_S = minimum resistance of the heater chain between any heater pin and any mains terminal under working conditions (the heater of another tube can be used for this resistance).

SINGLE ANODE RECTIFYING TUBE

Single anode high vacuum rectifying tube.

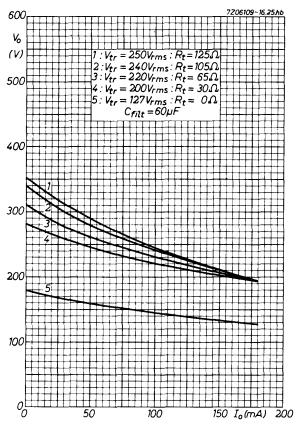

QUICK REFERENCE DATA			
Transformer voltage	v_{tr}	250	V _R MS
D.C. current	$I_{\mathbf{o}}$	180	m A


HEATING: Indirect by A.C. or D.C.; series supply

Heater current Heater voltage 4_f 300 mA V_f 19 V

DIMENSIONS AND CONNECTIONS

Base: Noval



$\begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$

Transformer voltage	v_{tr}	250	240	220	200	127	VRMS
D.C. output voltage	v_o	195	195	195	195	127	v
D.C. current	Io	180	180	180	180	180	mA
Protecting resistance	R_{t}	125	105	65	30	0	Ω
Input capacitance of smoothing filter	C _{filt}	60	60	60	60	60	μF

LIMITING VALUES (Design centre rating system)

Transformer voltage	v_{tr}	max.	250	v_{RMS}	
Anode voltage, peak inverse	$v_{a_{inv_p}}$	max.	700	V	
D.C. current	Io	max.	180	mA	
Cathode to heater voltage, peak	v_{kf_p}	max.	550	V 1)	
Input capacitance of smoothing filter	C_{filt}	max.	60	μ F ²)	
Protecting resistance at transformer voltage	R _t min. 10 V _{tr} 25		40 220	30 0 200 127	Ω V

Max. 220 V_{RMS} A.C. voltage + max. 250 V_{D.C.} voltage. Cathode positive with respect to the heater.

²⁾ When two tubes are placed in parallel, C_{filt} = max. 100 μF . The resistor R_t must be inserted in the anode lead of each tube.

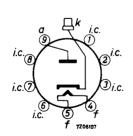
BOOSTER DIODE

Booster diode intended for use in line time-base circuits of transformerless television receivers.

QUICK REFERE	NCE DATA		
Anode current, peak	I _{ap}	max. 550	mA
Anode voltage, negative peak	$-V_{\mathbf{a_p}}$	max. 6000	V
Cathode to heater voltage, peak	v_{kf_p}	max. 6600	v

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

If	300	mΑ
V_f	30	V

Dimensions in.mm

DIMENSIONS AND CONNECTIONS

Base: Noval
Top cap: Type 1

CAPACITANCES

Anode to all

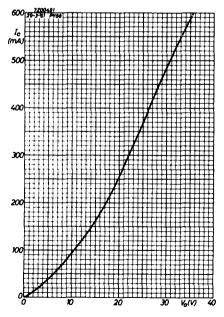
Cathode to heater

 C_a

8.6 pF

 C_{kf}

2.7 pF


LIMITING VALUES (Design centre rating system unless otherwise specified)

Supply voltage	v_{b_0}	max.	550	v
	${ m v_b}$	max.	250	\mathbf{v}
Anode dissipation	$W_{\mathbf{a}}$	max.	5	W
Anode current, average	I_a	max.	22 0	mA
peak	$I_{a_{\mathbf{p}}}$	max.	550	mA
Anode voltage, negative peak	$-v_{\mathbf{a_p}}$	max.	6000	V ¹)
negative peak (a	ubsolute max.) -V _{ap}	max.	7500	V ¹)
Cathode to heater voltage, peak	$v_{kf_{\mathcal{D}}}$	max.	6600	v ¹)
Heater to earth voltage	V _{f/earth}	max.	220	v_{RMS}

Series resistance heater chain

During operation, the external resistance between either heater pin of the PY88 and either mains terminal should be at least 80 Ω when Vf/earth = 220 V_{RMS} 40 Ω when Vf/earth = 110 V_{RMS}

The hot heater resistances of other tubes in the heater chain can serve for this purpose.

¹⁾ Max. pulse duration 22% of a cycle but maximum 18 μs .

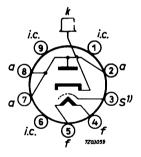
BOOSTER DIODE

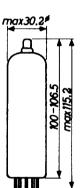
Booster diode for timebase circuits of colour TV receivers.

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage


If	300	mA
$\overline{V_{\rm f}}$	42	v


Dimensions in mm

MECHANICAL DATA

Base: Magnoval

Cap: Type 1

CAPACITANCES

Anode to cathode

Cathode to heater

C_{ak} 13 pF C_{kf} 3.7 pF

¹⁾ Insertion of a resistor of 300 Ω between pins 3 and 5 is recommended to improve the high-tension properties of the tube. If no resistor is used, pins 3 and 4 should be interconnected.

TYPICAL CHARACTERISTICS

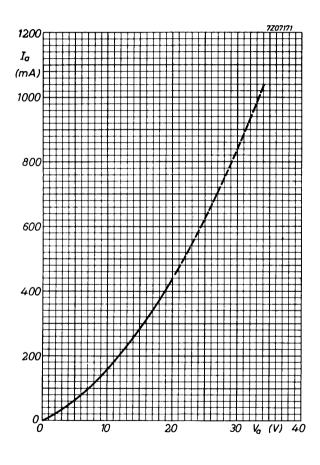
Internal resistance ($I_a = 440 \text{ mA}$)

 R_i

 45.5Ω

LIMITING VALUES (Design centre rating system)

Anode dissipati	on	w_a	max.	11	W
Anode current,	average	I_a	max.	440	mA
	peak	I_{a_p}	max.	800	mA
Anode voltage,	negative peak	$-V_{\mathbf{a}_{\mathbf{p}}}$	max.	5600	v 1)
	negative peak, (absolute max.)	-V _{ap}	max.	7000	V 1)
Cathode to heat	er voltage, peak	$v_{\rm kfp}$	max.	6300	V 1)


Series resistance heater chain

During operation, the external resistance between either heater pin of the PY500 and either mains terminal should be at least 100 Ω when Vf/earth = 220 V_{RMS} 50 Ω when Vf/earth = 110 V_{RMS}

The hot heater resistances of other tubes in the heater chain can serve for this purpose.

 $^{^{1})}$ Max. pulse duration 22% of a cycle, but max. 18 μs .

3

August 1970

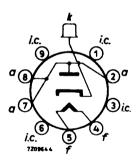
BOOSTER DIODE

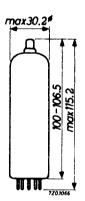
Booster diode for timebase circuits of colour television receivers. The PY500A is unilaterally interchangeable with the PY500 in existing circuits. In new equipment designs the 300 Ω protection resistance between pins 3 and 5 can be deleted for the PY500A.

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage


If	3 00	mA
v_f	42	V


Dimensions in mm

MECHANICAL DATA

Base: Magnoval

Cap: Type 1

CAPACITANCES

Anode to cathode

Cathode to heater

C_{ak}	12.5	pF	
$C_{\mathbf{kf}}$	3.1	pF	-

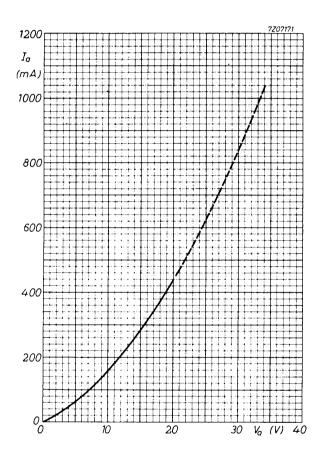
PY500A

TYPICAL CHARACTERISTICS

R_i	45.5 Ω
w_a	max. 11 W
I_a	max. 440 mA
I_{a_p}	max. 1000 mA
	W _a

Anode voltage, negative peak $-Va_{p}$ max. 5600 V 1)

negative peak (absolute max.) $-V_{2}$ max. 7000 V 1)


Cathode to heater voltage, peak V_{kfp} max. 6300 V 1)

Series resistance heater chain

During operation, the external resistance between either heater pin of the PY500A and either mains terminal should be at least 100 Ω when Vf/earth = 220 V_{RMS} 50 Ω when Vf/earth = 110 V_{RMS}

The hot heater resistances of other tubes in the heater chain can serve for this purpose.

 $^{^{\}rm l})$ Max. pulse duration 22% of a cycle, but max. 18 $\mu \rm s.$

August 1970 3

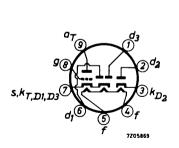
TRIPLE DIODE-TRIODE

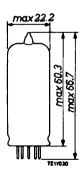
Triple diode-triode intended for F.M. and A.M. signal detection and A.F. signal amplification.

QUICK REFERENCE	E DATA		
Triode section			
Anode current	$I_{\mathbf{a}}$	1.0	mA
Transconductance	S	1.45	mA/V
Amplification factor	μ	70	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


 $\frac{I_f}{V_f} = \frac{100 \text{ mA}}{28 \text{ V}}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

It is recommended to connect pin 5 to earth.

UABC80

CAPACITANCES				
Triode section				
Grid to all except anode	$C_{g(a)}$		1.9	pF
Anode to all except grid	$C_{a(g)}$		1.4	pF
Anode to grid	$C_{f ag}$		2.0	pF
Grid to heater	$C_{\mathbf{gf}}$	max.	0.04	pF
Diode sections				
Diode No.1 to all	$^{\mathrm{C}_{\mathrm{d}}}{}_{\mathrm{1}}$		0.8	pF
Diode No. 2 to all	$^{\mathrm{C}_{\mathrm{d}_2}}$		4.8	pF
Diode No.3 to all	C_{d_3}		4.8	pF
Cathode (D ₂) to all	$C_{\mathbf{k} D_2}$		5.0	pF
Diode No.1 to heater	c_{d_1f}	max.	0.25	pF
Diode No.3 to heater	$^{\mathrm{C}}\mathrm{d}_{3}\mathrm{f}$	max.	0.2	pF
Cathode (D ₂) to heater	$^{\mathrm{C}_{k\mathrm{D}_{2}\mathrm{f}}}$		2.5	pF
Between triode and diode sections				
Anode to diode No.1	$^{\mathrm{C}_{\mathrm{ad}}}{}_{\mathrm{l}}$	max.	0.12	pF
Anode to diode No.3	C_{ad_3}	max.	0.1	pF
Anode to cathode (D ₂)	$C_{a k D_2}$	max.	0.01	pF
Grid to diode No.1	$^{\mathrm{C}}\mathbf{gd}_{1}$	max.	0.07	pF
Grid to diode No.3	$^{\mathrm{C}}\mathrm{gd}_{3}$	max.	0.02	pF
Grid to cathode (D ₂)	C_{gkD_2}	max.	0.005	pF

TYPICAL CHARACTERISTICS

ion

Anode voltage	v_a	100	170	200	v	
Grid voltage	$v_{\mathbf{g}}$	-1	-1.85	-2.3	v	
Anode current	I_a	0.8	1.0	1.0	mA	
Transconductance	S	1.45	1.45	1.40	mA/V	
Amplification factor	μ	70	70	70	-	
Internal resistance	R_i	48	48	50	$\mathbf{k}\Omega$	

OPERATING CHARACTERISTICS

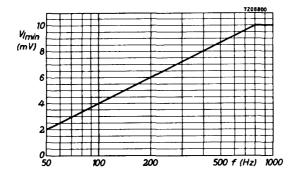
Triode section as R.C. coupled A.F. amplifier

Grid resistor R_g = 10 $M\Omega$

Supply voltage	v_b	200	200	200	170	170	170	V
Anode resistor	R_a	220	100	47	220	100	47	$\mathbf{k}\Omega$
Grid resistor next stage	Rg'	0.68	0.33	0.15	0.68	0.33	0.15	МΩ
Anode current	I_a	0.56	1.00	1.60	0.46	0.82	1.25	mA
Voltage gain	V_0/V_1	5 3	44	34	51	42	32	-
Distortion:								
at output voltage V _o = 3 V _{RMS}	d_{tot}	0.3	0.4	0.5	0.4	0.5	0.6	%
at output voltage $V_0 = 5 V_{RMS}$	d_{tot}	0.4	0.6	0.9	0.5	0.8	1.1	%
at output voltage $V_0 = 8 V_{RMS}$	d_{tot}	0.9	1.0	1.5	1.1	1.3	2.0	%
Supply voltage	v_b			100	100) 10	00	V
Supply voltage Anode resistor	V _b R _a			100 220	100 100		00 4 7	V kΩ
_) 4	47	
Anode resistor	R_a			220	100	3 0.	47 15	kΩ
Anode resistor Grid resistor next stage	R _a R _g '			220 0.68	100 0.3	3 0 5 0	47 15	kΩ MΩ
Anode resistor Grid resistor next stage Anode current	R _a R _g '			220 0.68 0.21	0.33 0.33	3 0 5 0	47 15 52	kΩ MΩ
Anode resistor Grid resistor next stage Anode current Voltage gain	R _a R _g '			220 0.68 0.21	0.33 0.33	3 0. 5 5 0. 5	47 15 52	kΩ MΩ

TYPICAL CHARACTERISTICS

Diode section


Internal resistance diode No.1 at diode voltage V _{d1} = +10 V	$R_i D_1$	5	kΩ
Internal resistance diode No.2 at diode voltage V _{d2} = +5 V	$R_i D_2$	200	Ω
Internal resistance diode No.3 at diode voltage V _{d3} = +5 V	R _i D ₃	200	Ω
Ratio between R_i (D ₂) and R_i (D ₃)	min. max.	0.67	

Microphony

Triode section

No special precautions against microphony are required in circuits where the input voltage is min. 10~mV for 50~mW output of the output tube at frequencies higher than 800~Hz.

At lower frequencies the sensitivity may be increased according to the figure below.

LIMITING VALUES (Design centre rating system)

Triode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 250	v
Anode dissipation	w_a	max. 1	W
Cathode current	$I_{\mathbf{k}}$	max. 5	mA
Grid resistor	$R_{\mathbf{g}}$	max. 3	$M\Omega$
Grid resistor at grid current bias	$R_{\mathbf{g}}$	max. 22	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max. 150	V ¹)
Diode sections			
Diode No.1 voltage, negative peak	$-v_{d_{1p}}$	max. 350	v
Diode No.2 voltage, negative peak	$-v_{d_{2p}}$	max. 350	v
Diode No.3 voltage, negative peak	$-v_{d_{3p}}$	max. 350	v
Diode No.1 current:			
D.C. component	I_{d_1}	max. 1	mA
peak	$I_{ extbf{d}_{ extbf{1p}}}$	max. 6	mA
Diode No.2 current:	•		
D.C. component	I_{d_2}	max. 10	mA
peak	$I_{d_{2p}}$	max. 75	mA
Diode No.3 current:	- r		
D.C. component	$I_{\mathbf{d_3}}$	max. 10	mA
peak	$I_{d_{3p}}$	max. 75	mA

With regard to hum a max. AC heater to cathode voltage of 30 V_{RMS} is recommended.

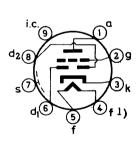
DOUBLE DIODE-TRIODE

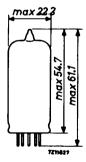
Double diode-triode. Triode intended for use as A.F. amplifier.

QUICK REFERENCE	CE DATA		
Triode section			
Anode current	$I_{\mathbf{a}}$	1.5	mA
Transconductance	S	1.65	mA/V
Amplification factor	μ	70	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I_f	100	mA
$\overline{V_f}$	14	$\overline{\mathbf{v}}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

¹⁾ Earthed side of the heater circuit.

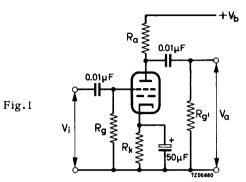
CAPACITANCES				
Triode section				
Grid to all except anode		$C_{g(a)}$	2	.3 pF
Anode to all except grid		$C_{a(g)}$	2	.3 pF
Anode to grid		C_{ag}	1	.2 pF
Grid to heater		$C_{\mathbf{gf}}$	max. 0.	05 pF
Diode sections				
Diode No.1 to all		C_{d_1}	0	.9 pF
Diode No. 2 to all		$C_{\mathbf{d_2}}$	0	.9 pF
Diode No.1 to diode No.2		$C_{\mathbf{d_1d_2}}$	max. 0	.2 pF
Diode No.1 to heater		C_{d_1f}	max. 0.	25 pF
Diode No.2 to heater		C_{d_2f}	max. 0.	05 pF
Between triode and diode sections				
Diode No.1 to grid		c_{d_1g}	max. 0.0	07 pF
Diode No.2 to grid		$C_{\mathbf{d_2g}}$	max. 0.0	07 pF
Diode No.1 to anode		C_{d_1a}	max. 0.0	05 pF
Diode No.2 to anode		C_{d_2a}	max. 0.	01 pF
TYPICAL CHARACTERISTICS OF THE TRIOI	DE SF	CTION		
Anode voltage	v_a	170	100	v
Grid voltage	v _g	-1.55	-1.0	v
Anode current	I _a	1.5	0.8	mA
Transconductance	S	1.65	1.4	mA/V
Amplification factor	μ	70	70	-

 R_{i}

42 50 $k\Omega$

January 1970

Internal resistance


OPERATING CHARACTERISTICS

Triode section as A.F. amplifier,	Triode section as A.F. amplifier, circuit Fig.1							
Supply voltage	v_b	170	100	170	100	v		
Anode resistor	R_a	0.22	0.22	0.1	0.1	$M\Omega$		
Cathode resistor	$R_{\mathbf{k}}$	5.6	5.6	3. 9	3.9	$\mathbf{k}\Omega$		
Grid resistor	$R_{\mathbf{g}}$	1.0	1.0	1.0	1.0	$\mathbf{M}\Omega$		
Grid resistor next stage	R_{g}	0.68	0.68	0.33	0.33	$M\Omega$		
Anode current	Ia	0.28	0.18	0.45	0.28	mA		
Voltage gain	v_o/v_i	44	41	3 7	34			
Distortion at:								
output voltage V_o = 3 V_{RMS}	$\mathbf{d_t}$	1.1	1.4	1.1	2.0	%		
output voltage $V_0 = 5 V_{RMS}$	d _t	1.3	1.9	1.7	3.5	%		
output voltage V_0 = 8 V_{RMS}	d _t	1.85	-	2.6	_	%		
output voltage V ₀ = 8 V _{RMS} Supply voltage	d _t	1.85	100	2.6 170	100	% v		
Supply voltage	V _b	170	100	170	100	v		
Supply voltage Anode resistor	V _b	170 0.22	100 0.22	170 0.1	100	V MΩ		
Supply voltage Anode resistor Cathode resistor	V _b R _a R _k	170 0.22 0	100 0.22 0	170 0.1 0	100 0.1 0	V ΜΩ Ω		
Supply voltage Anode resistor Cathode resistor Grid resistor	V _b R _a R _k	170 0.22 0 22	100 0.22 0 22	170 0.1 0 22	100 0.1 0 22	V ΜΩ Ω ΜΩ		
Supply voltage Anode resistor Cathode resistor Grid resistor Grid resistor next stage	V _b R _a R _k R _g R _g	170 0.22 0 22 0.68	100 0.22 0 22 0.68	170 0.1 0 22 0.33	100 0.1 0 22 0.33	V ΜΩ Ω ΜΩ		
Supply voltage Anode resistor Cathode resistor Grid resistor Grid resistor next stage Anode current	V _b R _a R _k R _g R _g I _a	170 0.22 0 22 0.68 0.46	100 0.22 0 22 0.68 0.21	170 0.1 0 22 0.33 0.82	100 0.1 0 22 0.33 0.35	V ΜΩ Ω ΜΩ		
Supply voltage Anode resistor Cathode resistor Grid resistor Grid resistor next stage Anode current Voltage gain	V _b R _a R _k R _g R _g I _a	170 0.22 0 22 0.68 0.46	100 0.22 0 22 0.68 0.21	170 0.1 0 22 0.33 0.82	100 0.1 0 22 0.33 0.35	V ΜΩ Ω ΜΩ		
Supply voltage Anode resistor Cathode resistor Grid resistor Grid resistor next stage Anode current Voltage gain Distortion at	V _b R _a R _k R _g R _{g'} I _a V _o /V _i	170 0.22 0 22 0.68 0.46 48	100 0.22 0 22 0.68 0.21 41	170 0.1 0 22 0.33 0.82 42	100 0.1 0 22 0.33 0.35 35	V MΩ Ω MΩ MΩ mA		

OPERATING CHARACTERISTICS (continued)

Microphony

No special precautions against microphony are required in circuits where the input voltage is min. $10\ mV$ for $50\ mW$ output of the output tube.

LIMITING VALUES (Design centre rating system)

Triode section				
Anode voltage	$v_{\mathbf{a_0}}$	max.	550	V
	v_a	max.	250	V
Anode dissipation	w_a	max.	0.5	W
Cathode current	$I_{\mathbf{k}}$	max.	5	mA
Grid resistor	$R_{\mathbf{g}}$	max.	3	$M\Omega$
Cathode to heater voltage	v_{kf}	max.	100	V
Diode sections (each diode)				
Diode voltage, negative peak	$-v_{d_p}$	max.	3 50	v
Diode current:	•			
average	I_d	max.	0.8	mA
peak	I_{d_p}	max.	5	mA
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	100	v

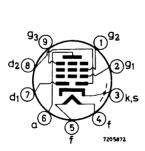
DOUBLE DIODE-PENTODE

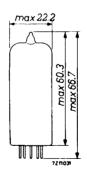
Double diode-pentode. Pentode intended for use as R.F. or I.F. amplifier.

QUICK REFERENCE DA	ATA		
Pentode section			
Variable transconductance			
Anode current	I_a	11	mA
Transconductance	S	4.5	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	20	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I _f	100	mA
V_f	19	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

UBF89

CAPACITANCES

<u>le section</u>		
to all except grid No.1 $C_{a(g_1)}$	5.2	pF
No.1 to all except anode $C_{g_1}(a)$	5.0	pF
to grid No.1 C_{ag_1}	max. 0.0025	pF
No.1 to heater ${\sf Cg}_{1f}$	max. 0.05	pF
sections		
No.1 to all Cd1	2.5	pF
No.2 to all	2.5	pF
No.1 to diode No.2 $C_{d_1d_2}$	max. 0.25	pF
No.1 to heater C_{d_1f}	max. 0.015	pF
No.2 to heater $C_{\mathbf{d}_{2^{\mathrm{f}}}}$	max. 0.003	pF
en pentode and diode sections		
No.1 to grid No.1 $C_{f d_1g_1}$	max. 0.0008	pF
	max. 0.001	pF
No.1 to anode $C_{f d_1 a}$	max. 0.15	pF
No.2 to anode $C_{\mathbf{d_2^a}}$	max. 0.025	pF
No.1 to heater C_{g_1f} Sections No.1 to all C_{d_1} No.2 to all C_{d_2} No.1 to diode No.2 $C_{d_1d_2}$ No.1 to heater C_{d_1f} No.2 to heater C_{d_2f} En pentode and diode sections No.1 to grid No.1 $C_{d_2g_1}$ No.2 to grid No.1 $C_{d_2g_1}$ No.1 to anode C_{d_1a}	max. 0.05 2.5 2.5 max. 0.25 max. 0.015 max. 0.003 max. 0.0008 max. 0.001 max. 0.15	pF pF pF pF pF

TYPICAL CHARACTERISTICS

Pentode section					
Anode voltage	v_a	200	170	100	V
Grid No.2 voltage	v_{g_2}	100	100	100	v
Grid No.3 voltage	$v_{\mathbf{g}_3}$	0	0	0	V
Grid No.1 voltage	v_{g_1}	-1.5	-1 ¹)	-2	v
Anode current	$I_{\mathbf{a}}$	11	12	8.5	mA
Grid No.2 current	I_{g_2}	3.3	4	2.8	mA
Transconductance	S	4.5	5	3.5	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	20	20	20	-
Internal resistance	Ri	0.6	0.4	0.3	$M\Omega$

OPERATING CHARACTERISTICS

Pentode section as R.F. or I.F. amplifier

Supply voltage	v_b	20	00	10	0	V
Anode resistor	R_a		0		0	Ω
Grid No.3 voltage	v_{g_3}		0		0	v
Grid No.2 resistor	R_{g_2}	3	30		0	$k\Omega$
Grid No.1 voltage	v_{g_1}	-1.5	-20	-2	-10	v
Anode current	I_a	11	-	8.5	-	m A
Grid No.2 current	I_{g_2}	3.3	-	2.8	-	mA
Transconductance	S	4.5	0.12	3.5	0.11	mA/V
Internal resistance	Ri	0.6	-	0.3	_	$M\Omega$

 $[\]overset{1}{\text{\sc 1}})$ To avoid grid No.1 current the negative grid No.1 voltage should be min. 1.5 V

UBF89

LIMITING VALUES (Design centre rating system)

Pentode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	v
Anode dissipation	w_a	max.	2.25	W
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	$\mathbf{v}_{_{\perp}}$
Grid No.2 voltage				
at anode current I _a max. 4 mA	v_{g_2}	max.	250	v
at anode current I_a min. 8 mA	v_{g_2}	max.	125	v
Grid No.2 dissipation	w_{g_2}	max.	0.45	W
Cathode current	$I_{\mathbf{k}}$	max.	16.5	mA
Grid No.1 resistor	R_{g_1}	max.	3	$M\Omega$
Grid No.3 resistor	R_{g_3}	max.	10	$\mathbf{k}\Omega$
Cathode to heater voltage	v_{kf}	max.	100	V
Diode sections (each diode)				
Diode voltage, negative peak	$-V_{dp}$	max.	200	v
Diode current; average	I_d	max.	0.8	mA
peak	I_{d_D}	max.	5	mA
Cathode to heater voltage	v_{kf}^{r}	max.	100	v

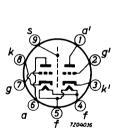
R.F. DOUBLE TRIODE

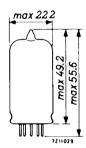
Double triode intended for use as R.F. amplifier and self oscillating mixer.

QUICK REFERENC	E DATA		
Anode current	Ia	10	mA
Transconductance	S	6.7	mA/V
Amplification factor	μ	48	-

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


I_f	100	mA
$\overline{v_{f}}$	26	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES (each unit unless otherwise specified)	CAPACITANCES	(each unit	unless	otherwise	specified)
--	--------------	------------	--------	-----------	------------

Anode to grid	C_{ag}	1.5	pF
Anode to cathode	C_{ak}	0.18	pF
Anode to cathode + heater + screen	C _{a/kfs}	1.2	pF
Grid to cathode + heater + screen	C _{g/kfs}	3.1	pF
Anode to cathode + heater + screen (measured with external screen of 22.5 mm diam.)	C _{a/kfs}	1.8	pF
Anode to anode other unit	Caa'	max. 0.04	pF
Anode to anode other unit (measured with external screen of 22.5 mm diam.)	C _{aa} '	max. 0.008	pF
Grid to grid other unit	Cgg'	max. 0.003	pF
Anode to grid other unit	Cag'	max. 0.008	pF
Anode to grid other unit	Ca'g	max. 0.008	pF
Anode to cathode other unit	C_{ak} '	max. 0.008	pF
Grid to cathode other unit	C_{gk} '	max. 0.003	pF
Anode to cathode other unit	C_{a} ' k	max. 0.008	pF
Grid to cathode other unit	$C_{g'k}$	max. 0.003	pF

TYPICAL CHARACTERISTICS (each unit)

Anode voltage	v_a	100	170	200	v
Grid voltage	v_g	-1.2 ¹)	-1.75	-2.4	v
Anode current	Ia	4.5	10	10	mA
Transconductance	S	4.8	6.7	6	mA/V
Amplification factor	и	46	48	46	_

 $^{^{\}rm l})$ In this case grid current may occur. If this is not permissible, a condition with a bias of -1.5 V should be chosen.

OPERATING CHARACTERISTICS					
As R.F. amplifier (unit a, g, k)	••	150	. 50	100	••
Supply voltage	v_b	170		100	V
Anode resistor	R_a	1.3			
Anode voltage	v_a	161			V
Cathode resistor	$R_{\mathbf{k}}$	330	150	138	Ω
Grid voltage	v_g	-2.2	-1.5	-0.8	V
Anode current	I_a	6.6	9.8	5.7	mA
Transconductance	S	5.1	6.7	5.9	mA/V
Internal resistance	R_i	8.5	7	8	$\mathbf{k}\Omega$
Grid input resistance (f = 100 MHz)	$r_{\mathbf{g}}$	5.2	3.8	2.8	$\mathbf{k}\Omega$
Equivalent noise resistance	Req	0.82	055	0.61	$k\Omega$
As self oscillating additive mixer (each	unit)				
Anode supply voltage	v_b	100	170	200	V
Anode resistor	R_a	4.7	4.7	8.2	$\mathbf{k}\Omega$
Grid resistor	R_{g}	1	1	1	$M\Omega$
Oscillator voltage	v_{osc} .	1.8	2.8	2.8	v_{RMS}
Anode current	I_a	2.7	5.5	6	mA
Conversion conductance	s_c	2.2	2.8	2.9	mA/V
Internal resistance	R_i	19	15	14	$k\Omega$
Grid input resistance (f = 100 MHz)	$^{\mathrm{r}}g$		15		$\mathbf{k}\Omega$
LIMITING VALUES (each unit) (Design	centre rat	ing syst	em)		
Anode voltage	V	a _o	max	. 550	v
	V	'a	max	250	V
Anode dissipation	ν	$I_{\mathbf{a}}$	max	2.5	W
Anode dissipation, total		Va+Wa'	max	4.5	W
Cathode current	I	k	max	. 15	mA
Cathode to heater voltage		kf	max	. 90	v
Grid voltage (negative)	-v		max	. 100	v
Grid resistor		g	max	. 1	$M\Omega$

For curves please refer to type PCC85

3 January 1969

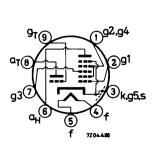
TRIODE-HEPTODE

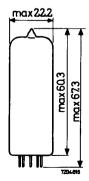
Triode-heptode. Heptode section intended for use as mixer R.F.- or I.F. amplifier. Triode section intended for use as oscillator in A.M./F.M. receivers.

QUICK REFERENCE DATA								
Triode section								
Anode current	I _a 13.	5 mA						
Transconductance	S 3.	mA/V						
Amplification factor	μ 22	2 -						
Heptode section								
Anode current	I _a 9.8	3 mA						
Transconductance	S 4.3	mA/V						
Amplification factor	$\mu_{g_2g_1}$ 25	5 –						

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage


If	100	mA
V_f	19	v

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

UCH81

CAPACITANCES

Triode section			
Grid to all except anode	$C_{g(a)}$	2.6	pF
Anode to all except grid	$C_{\mathbf{a}(\mathbf{g})}$	2.1	pF
Anode to grid	C_{ag}	1.0	p F
Grid to heater	$C_{f gf}$	max. 0.02	pF
Heptode section			
Grid No.1 to all except anode	$C_{g_1(a)}$	4.8	pF
Anode to all except grid No.1	$c_{a(g_1)}$	7.9	pF
Anode to grid No.1	c_{ag_1}	max.0.006	pF
Grid No.1 to heater	$c_{\mathbf{g_1f}}$	max. 0.17	pF
Grid No.3 to all	c_{g_3}	6	pF
Grid No.1 to grid No.3	$c_{g_1g_3}$	max. 0.3	pF
Grid No.3 to heater	c_{g_3f}	max. 0.06	p F
Between heptode and triode sections			
Anode heptode to anode triode	C _{aHaT}	0.20	pF
Anode heptode to grid triode	C_{a}_{HgT}	max. 0.09	pF
Grid No.1 heptode to anode triode	$c_{g_1H^aT}$	max. 0.06	pF
Grid No.1 heptode to grid triode	$c_{g_1Hg_T}$	max. 0.17	pF
Grid No.1 heptode to grid triode + grid No.3	Cg _{1H} /gTg ₃	max. 0.45	pF
Anode heptode to grid triode + grid No.3	C _{aH} /gTg3	max. 0.35	pF

January 1969

TYPICAL CHARACTERISTICS

Triode section			
Anode voltage	v_a	100	V
Grid voltage	v_g	0	v
Anode current	Ia	13.5	mA
Transconductance	S	3.7	mA/V
Amplification factor	μ	22	-
Heptode section			
Anode voltage	v_a	160	v
Grid No.3 voltage	v_{g_3}	0	v
Grids No.2 and 4 voltage	$v_{g_{2+4}}$	90	V
Grid No.1 current	I_{g_1}	0.5	μ A
Grid No.1 voltage	v_{g_1}	-0.5	v
Anode current	Ia	9.8	mA
Grids No.2 and 4 current	$I_{g_{2+4}}$	6.1	mA
Transconductance	S	4.3	mA/V
Amplification factor	$\mu_{g_2g_1}$	2 5	-

UCH81

OPERATING CHARACTERISTICS

Heptode section as m	ixer							
Supply voltage	v_b	100		17	170		200	
Anode resistor	R_a		0		0		0	
Grids No.2 and 4 resistor	Rg ₂₊₄	10		1	10		10	kΩ
Grid triode + grid No.3 resistor	$R_{g_T+g_3}$	47		47		47		kΩ
Grid triode + grid No.3 current	IgT+g3	115		200		230		μΑ
Grid No.1 current	I_{g_1}	0.5	_	0.5	_	0.5	_	μA 1)
Grid No.1 voltage	v_{g_1}	-0.5	-12	-0.5	-19	-0.5	-22	v
Anode voltage	v_a	100	-	170	-	200	-	v
Grids No.2 and 4 voltage	v _{g2+4}	56	_	88	-	100	-	v
Anode current	Ia	2.0	_	3.3	-	4.1	-	mA
Grids No.2 and 4 current	$I_{g_{2+4}}$	4.4	-	8.2	-	10	-	m A
Conversion conductance	s _c	850	8.5	1100	11	1200	12	μΑ/V
Internal resistance	R_i	0.75	min.3	0.8	min.3	0.85	min.3	МΩ
Equivalent noise resistance	R _{eq}	33	_	30	-	32	_	kΩ

 $^{^1)}$ Grid current bias obtained with Rg1 = 1 $M\Omega$ and with zero volts a.g.c. voltage; resulting grid No.1 voltage: -0.5 V.

OPERATING CHARACTERISTICS (continued)

Heptode section as I	R.F. or	I.F. a	mplifier	· -				
Supply voltage	v_b	10	00	1	70	200)	v
Anode resistor	R_a		0		0	3.9	•	kΩ
Grids No.2 and 4 resistor	R _{g2+4}	1	18		18	18	ł	kΩ
Grid No.3 voltage	v_{g_3}		0		0	0		V
Grid No.1 current	I_{g_1}	0.5	-	0.5	-	0.5	-	μ A 1)
Grid No.1 voltage	v_{g_1}	-0.5	-15.7	-0.5	-26	-0.5	-30	v
Anode voltage	v_a	100	-	170	_	162	-	v
Grids No.2 and 4 voltage	v _{g2+4}	52	-	80	_	90	-	v
Anode current	I _a	4.1	-	8.0	-	9.8	-	mA
Grids No.2 and 4 current	I _{g2+4}	2.7	-	5.0	-	6.1	-	mA
Transconductance	S	2900	29	3900	39	4300	43	$\mu A/V$
Internal resistance	R_i	0.45	min.10	0.4	min.10	0.35 n	n in. 10	МΩ
Amplification factor	$\mu_{g_2g_1}$	24	-	25	_ ·	2 5	-	-
Equivalent noise resistance	R_{eq}	4.0	-	4.0	-	4.3	-	kΩ
Triode section as of	scillator							
Supply voltage			1	b	100	170	200	v
Anode resistor			F	a	15	15	15	kΩ
Grid triode + grid N resistor	lo.3		F	g _T +g ₃	47	47	47	kΩ
Grid triode + grid N current	lo.3			8T+83	115	200	230	μΑ
Anode current				a -0	2.5	4.5	5.4	mA
Effective transcondu	ıctance		S	eff	0.58	0.65	0.65	mA/V

 $^{^1)}$ Grid current bias obtained with Rg $_1$ = 1 $M\Omega$ and with zero volts a.g.c. voltage; resulting grid No.1 vol age: -0.5 V.

UCH81

LIMITING VALUES (Design centre rating system)

. 3			
Heptode section			
Anode voltage	v_{a_0}	max. 550	v
	v_a	max. 250	v
Anode dissipation	w_a	max. 1.8	W
Grids No.2 and 4 voltage	$v_{g_{2+4_0}}$	max. 550	v
	$v_{g_{2+4}}$	max. 125	v
Grids No.2 and 4 voltage (Ia max. 1 mA)	$v_{g_{2+4}}$	max. 250	v
Grids No.2 and 4 dissipation	$w_{g_{2+4}}$	max. l	w
Cathode current	I _k	max. 18	m A
Grid No.1 resistor	R_{g_1}	max. 3	$M\Omega$
Grid No.3 resistor	R_{g_3}	max. 20	$\mathbf{k}\Omega$
Grid No.3 resistor	· ·		
grid No.3 directly connected to grid triode	R_{g_3}	max. 3	МΩ
Cathode to heater voltage	دع V _{kf}	max. 100	v

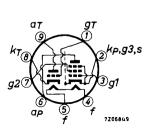
Triode section			
Anode voltage	v_{a_0}	max. 550	V
	v_a	max. 250	V
Anode dissipation	w_a	max. 0.8	W
Cathode current	I_k	max. 6.5	mA
Grid resistor	R_{g}	max. 3	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{k}f}$	max. 100	v

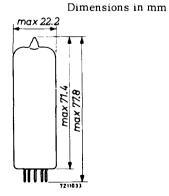
TRIODE-OUTPUT PENTODE

The triode section is intended for use as A.F. amplifier. The pentode section is intended for use as A.F. power amplifier.

QUICK REFERENCE DATA				
Triode section				
Anode current	I_a	3.5	mA	
Transconductance	S	2.2	mA/V	
Amplification factor	μ	70	-	
Pentode section				
Anode current	I_a	41	mA	
Transconductance	S	7.5	mA/V	
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	9.5	-	
Output power	Wo	3.3	W	

HEATING: Indirect by A.C. or D.C.; series supply


Heater current


Heater voltage

I_f	100	mA
$\overline{v_f}$	50	v

DIMENSIONS AND CONNECTIONS

Base: Noval

UCL82

CAPACITANCES

CAPACITANCES			
Triode section			
Anode to all except grid	$C_{a}(g)$	4.3	pF
Grid to all except anode	Cg(a)	2.7	pF
Anode to grid	C_{ag}	4.4	pF
Grid to heater	$^{\mathrm{C}}_{\mathbf{gf}}$	max. 0.02	pF
Pentode section	S		
Anode to all except grid No. 1	$C_{\mathbf{a}(\mathbf{g}_1)}$	8.0	pF
Grid No.1 to all except anode	$C_{g_1(a)}$	9.3	pF
Anode to grid No.1	C_{ag_1}	max. 0.3	pF
Grid No.1 to heater	$C_{\mathbf{g_1}\mathbf{f}}$	max. 0.3	pF
Between triode and pentode sections	01		
Anode triode to grid No.1 pentode	$C_{a_{\mathrm{T}}g_{\mathrm{1P}}}$	max. 0.02	pF
Grid triode to anode pentode	$C_{g_{T^{\mathbf{a}_{p}}}}$	max. 0.02	pF
Grid triode to grid No.1 pentode	C _{gTg1P}	max. 0.025	pF
Anode triode to anode pentode	C _{aTap}	max. 0.25	pF
TYPICAL CHARACTERISTICS	1 F		
Triode section			
Anode voltage	v_a	100	v
Grid voltage	$v_{oldsymbol{g}}$	0	v
Anode current	$I_{\mathbf{a}}$	3. 5	mA
Transconductance	S	2.2	mA/V
Amplification factor	μ	70	-
Pentode section			
Anode voltage	v_a	170	v
Grid No.2 voltage	$v_{\mathbf{g}_2}$	170	V
Grid No.1 voltage	v_{g_1}	-11.5	v
Anode current	$I_{\mathbf{a}}$	41	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	9	mA
Transconductance	S	7.5	mA/V
Amplification factor	$^{\mu}$ g $_{2}$ g $_{1}$	9.5	-
Internal resistance	D 2701	16	Ю

Internal resistance

 $16 k\Omega$

 R_i

OPERATING CHARACTERISTICS

Triode section as A.F. amplifier

		_					
A)	Signal source resistance	R_S			0.	22	$M\Omega$
	Grid resistor	$R_{\mathbf{g}}$				3	$M\Omega$
	Grid resistor of next stage	Rg'			0.	68	$M\Omega$
	Supply voltage	v_b			170	100	v
	Cathode resistor	$R_{\mathbf{k}}$			2.7	2.7	$k\Omega$
	Anode resistor	R_a			220	220	kΩ
	Anode current	l _a			0.43	0.23	mA
	Voltage gain	V_0/V_i^{-1}	^l)		51	47	-
	Max. output voltage	V _{o max}			25	15	v_{RMS}
	Distortion	d _{tot} 2)			2.3	4.0	%
B)	Signal source resistance	R_{S}		0.2	22		МΩ
	Grid resistor	$R_{\mathbf{g}}$:	22		$M\Omega$
	Grid resistor of next stage	$R_{\mathbf{g}}$		0.0	58		$M\Omega$
	Supply voltage	v_b	170	170	100	100	v
	Cathode resistor	$R_{\mathbf{k}}$	0	0	0	0	Ω
	Anode resistor	R_a	100	220	100	220	$\mathbf{k}\Omega$
	Anode current	I _a	0.86	0.50	0.37	0.22	mA
	Voltage gain	v_o/v_i^l) 49	53	42	46	-
	Max. output voltage	V _{o max}	19	20	8	9	v_{RMS}
	Distortion	d_{tot}	1.43)	1.43)	1.32)	1.5 ²)	%

Microphony and hum

The triode section can be used without special precautions against microphony and hum in circuits in which an input voltage of minimum $10\,\mathrm{mV_{RMS}}$ is required for an output of $50\,\mathrm{mW}$ of the output stage, Z_g (f = $50\,\mathrm{Hz}$)= $0.25\,\mathrm{M}\Omega$ and without A.C. voltage between pin 4 and cathode.

¹⁾ Measured at small input voltage.

²⁾ At lower output voltages the distortion is proportionally lower.

³⁾ At lower output voltages down to 5 V_{RMS} the distortion is approximately constant. At values below 5 V_{RMS} the distortion is approximately proportional to V_{O} .

OPERATING CHARACTERISTICS

Pentode section

Class A (Measured with Vk constan

 '	•							
Supply voltage	V _{ba} =	V _{bg}	100			170		V
Cathode resistor	$R_{\mathbf{k}}$		170			200		Ω
Load resistance	R _{a \sim}		3.0			3.25		kΩ
Grid No.1 driving voltage	v_i	0	0.7	3. 75	0	0.61	5.9	v_{RMS}
Anode current	I_a	26	-	27	42	-	44	mA
Grid No.2 current	I_{g_2}	5.8	-	8.6	9.2	-	15.5	mA
Output power	W_{o}	0	0.05	1.0	0	0.05	3.2	W
Distortion	d_{tot}	-	-	10	-	-	10	%
Supply voltage			V _{ba}	= V _{bg2}		200		v
Grid No.2 series resistor (non	-decoup	led)	R_{g_2}	_		470		Ω
Cathode resistor			$R_{\mathbf{k}}$			33 0		Ω
Load resistance			R _a ∼			4.5		kΩ
Grid No.1 driving voltage			v_i		0	0.66	6.7	V _{RMS}
Anode current			I_a		35	-	37	mA
Grid No.2 current			I_{g_2}		7.8	-	13.3	mA
Output power			Wo		0	0.05	3.3	W
Distortion			d _{tot}		-	-	10	%

LIMITING VALUES (Design centre rating system)

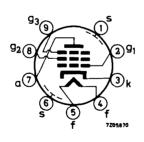
Triode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	v
Anode dissipation	w_a	max.	1	W
Cathode current	$I_{\mathbf{k}}$	max.	15	mA
Grid resistor				
for fixed bias	$R_{\mathbf{g}}$	max.	1	$\mathbf{M}\Omega$
for automatic bias	$R_{\mathbf{g}}$	max.	3	$M\Omega$
Grid impedance at 50 Hz	z_g	max.	0.5	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{kf}}$	max.	200	v
Pentode section				
Anode voltage	v_{a_0}	max.	550	v
	v_a	max.	250	V
Grid No.2 voltage	$v_{g_{2o}}$	max.	550	v
	v_{g_2}	max.	250	v
Anode dissipation	W_a	max.	7	W
Grid No.2 dissipation				
average	w_{g_2}	max.	2	W
peak	$w_{g_{2p}}$	max.	3.2	W
Cathode current	I _k	max.	50	mA
Grid No.1 resistor				
for fixed bias	$^{\mathrm{R}}\mathbf{g}_{1}$	max.	1	$M\Omega$
for automatic bias	R_{g_1}	max.	2	$M\Omega$
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	200	V

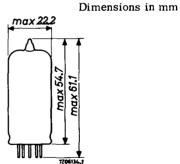
R.F. PENTODE

Pentode with variable transconductance intended for use as $R.F.\ or\ I.F.\ amplifier.$

QUICK REFER	ENCE DATA		
Anode current	Ia	12	m A
Transconductance	S	4.4	mA/V
Amplification factor	$^{\mu_{\mathbf{g}_{2}\mathbf{g}_{1}}}$	21	
Internal resistance	R _i	400	kΩ

HEATING: Indirect by A.C. or D.C.; series supply


Heater current


Heater voltage

I _f	100	mΑ
V _f	12.6	v

DIMENSIONS AND CONNECTIONS

Base: Noval

CAPACITANCES

Anode to all except grid No.1	$C_{a(g_1)}$	5.1	рF
Grid No.1 to all except anode	$C_{g_1(a)}$	5.5	pF
Anode to grid No.1	C_{ag_1}	max. 0.002	рF
Grid No.1 to heater	C_{g_1f}	0.05	pF

TYPICAL CHARACTERISTICS

Anode voltage	v_a	170	v
Grid No.2 voltage	v_{g_2}	100	v
Grid No.3 voltage	$v_{g_3}^-$	0	v
Anode current	Ia	12	mA
Grid No.1 voltage	v_{g_1}	-1.2	V 1)
Grid No.2 current	I_{g_2}	4.4	mA
Transconductance	S	4.4	mA/V
Internal resistance	R_{i}	0.4	$M\Omega$
Amplification factor	$\mu_{g_2g_1}$	21	

OPERATING CHARACTERISTICS

Anode voltage, supply voltage	$v_a = v_b$	20	00	1.	70	v
Grid No.3 voltage	v_{g_3}		0		0	v
Grid No.2 resistor	R_{g_2}	,	24		15	$k\Omega$
Cathode resistor	$R_{\mathbf{k}}$	13	30	13	30	Ω
Grid No.1 voltage	v_{g_1}	-1.95	-20	-1.95	-20	$\overline{\mathbf{v}}$
Anode current	I_a	11.1	-	11.0	-	mA
Grid No.2 current	I_{g_2}	3.8	-	3.9	-	mA
Transconductance	S	3.85	0.16	3.8	0.11	mA/V
Internal resistance	R_i	550	-	450	-	kΩ
Equivalent noise resistance	R_{eq}	4.2	-	4.5	-	kΩ
Input conductance f = 50 MHz	g	102	-	102	-	μA/V

¹⁾ In this case control grid current may occur. If this is not permissible, the negative grid bias should be increased to a value of 1.5 V at least.

4.7

102

μA/V

3.5

120

TVDICAL	CHADACTER	TOTICS AND	OPERATING	CHARACTERISTICS

TITOME CHARACTERISTICS :	THOSE CHARGE THE CLEANING CONTRACTOR							
					(cor	itinued)		
Anode voltage, supply voltage	$v_a = v_b$	10	00	10	00	V		
Grid No.3 voltage	v_{g_3}		0		0	V		
Grid No.2 resistor	R_{g_2}	1	15		0	$k\Omega$		
Cathode resistor	$R_{\mathbf{k}}$	13	30	10	60	Ω		
Grid No.1 voltage	v_{g_1}	-1.05	-10	-1.9	-10	V		
Anode current	I _a	6.0	-	8.6	-	mA		
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$	2.1	-	3.1	-	mA		
Transconductance	S	3.2	0.15	3.3	0.16	mA/V		
Internal resistance	R_i	475	-	300	-	kΩ		

 R_{eq}

g

LIMITING VALUES (Design centre rating system)

Equivalent noise resistance

Input conductance f = 50 MHz

, 5	· ·	-		
Anode voltage		v_{a_0}	max. 550	v
		v_a	max. 250	V
Anode dissipation		w_a	max. 2.25	W
Grid No.2 voltage		$v_{g_{2o}}$	max. 550	V
		v_{g_2}	max. 250	V
Grid No.2 dissipation		w_{g_2}	max. 0.45	W
Cathode current		I_k	max. 16.5	mA
Grid No.1 resistor		R_{g_1}	max. 3	МΩ
Grid No.3 resistor		R_{g_3}	max. 10	kΩ
Cathode to heater voltage		v_{kf}	max. 150	V

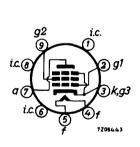
A.F. OUTPUT PENTODE

Pentode intended for use as A.F. power amplifier.

QUICK REFER	RENCE DATA		
Anode current	Ia	70	mA
Transconductance	S	11	mA/V
Amplification factor	$^{\mu}$ g2g1	8	
Output power	w_{o}	5.3	w

HEATING: Indirect by A.C. or D.C.; series supply

Heater current


Heater voltage

If	100	mA
$\overline{v_{\mathbf{f}}}$	45	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: Noval

CAPACITANCES

Anode to all except grid No.1	$C_{\mathbf{a}(\mathbf{g}_1)}$	6.8	pF
Grid No.1 to all except anode	$C_{\mathbf{g}_1(a)}$	13	pF
Anode to grid No.1	$\mathtt{c}_{\mathtt{ag}_1}$	max. 0.6	pF
Grid No.1 to heater	$^{\mathrm{C}}\mathbf{g_{1}f}$	max. 0.25	pF

TYPICAL CHARACTERISTICS

Anode voltage	v_a	170	V
Grid No. 2 voltage	v_{g_2}	170	v
Grid No.1 voltage	v_{g_1}	-12.5	v
Anode current	Ia	70	mA
Grid No.2 current	I_{g_2}	3.5	mA
Transconductance	S	11	mA/V
Amplification factor	^μ g2g1	8	
Internal resistance	Ri	26	$\mathbf{k}\Omega$

OPERATING CHARACTERISTICS

Class A 1)								
Supply voltage	v_b		100			170		v
Cathode resistor	$R_{\mathbf{k}}$		130			130		Ω
Load resistance	R _{a \sim}		2.1			2.0		$\mathbf{k}\Omega$
Grid No.1 driving voltage	$v_{\mathbf{i}}$	0	0.55	3.8	0	0.47	6.1	v_{RMS}
Anode current	Ia	41	-	42	75	-	76	mA
Grid No.2 current	I_{g_2}	2.6	-	8.6	4.0	-	16.5	mA
Output power	w_o^-	0	0.05	1.55	0	0.05	5.1	w
Distortion	d_{tot}	-	-	10	-	-	10	%
Supply voltage	v_b				20	00		v
Grid No.2 series resistor (non decoupled)	$^{R}g_{2}$				4	70		Ω
Cathode resistor	R _k				2	15		Ω
Load resistance	R _{a \sim}				2	. 5		kΩ
Grid No.1 driving voltage	v_i			$\overline{0}$	0	. 52	7.0	v_{RMS}
Anode current	Ia			65		-	64	mA
Grid No.2 current	$^{\mathrm{I}}\mathrm{g}_{2}$			3.2		-	11.4	mA
Output power	Wo			0	0	.05	5.3	w
Distortion	d_{tot}			-		_	10	%

²

OPERATING	CHARACTERISTICS	(continued)
------------------	------------------------	-------------

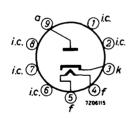
Class AB, two tubes in push-pull						
Supply voltage	v_b		200		•	V
Common cathode resistor	$R_{\mathbf{k}}$		120		S	Ω
Load resistance	Raa~		3		1	kΩ
Grid No.1 driving voltage	v_i	0	0.47	14.	3 1	V _{RMS}
Anode current	$\mathbf{I}_{\mathbf{a}}$	2x60	-	2x64.	5 ı	mA
Grid No. 2 current	l_{g_2}	2 x3 .0	-	2x18.	5 ı	mA
Output power	\mathbf{w}_{o}^{-}	0	0.05	14.	3 '	W
Distortion	d_{tot}	-	-	3.	8	%
LIMITING VALUES (Design centre rat	ing syste					
Anode voltage		v_{a}	o	max.	550	V
		v_a		max.	250	V
Grid No.2 voltage		v_{g}	2 o	max.	550	V
		$v_{\mathbf{g}}$	2	max.	200	V
Anode dissipation		W_a		max.	12	W
Grid No. 2 dissipation, average		w_g	2	max.	.75	W
peak		Wg	2p	max.	6	W
Cathode resistor		I _k	-	max.	100	mA
Grid No.1 resistor, automatic bias		$R_{\mathbf{g}}$	1	max.	1	$M\Omega$
Cathode to heater voltage		$v_{\mathbf{k}}$	f	max.	200	V

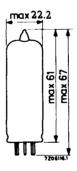
SINGLE ANODE RECTIFYING TUBE

Single anode high vacuum rectifying tube.

QUICK REFER	ENCE DATA		
Transformer voltage	v _{tr}	250	V _{RMS}
D.C. current	I_{o}	110	mA

HEATING: Indirect by A.C. or D.C.; series supply


Heater current

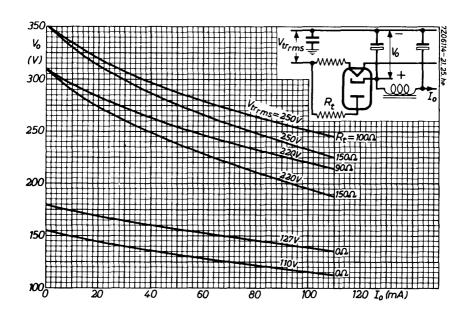

Heater voltage

 $\begin{array}{cccc} \underline{I_{\mathbf{f}}} & 100 & mA \\ \hline V_{\mathbf{f}} & 38 & V \end{array}$

DIMENSIONS AND CONNECTIONS

Base: Noval

Dimensions in mm


OPERATING CHARACTERISTICS as single-phase half-wave rectifier

Transformer voltage	v_{tr}	250	220	127	110	v_{RMS}
D.C. output voltage	v_o	245	215	135	112	\mathbf{v}
D.C. current	I_{o}	110	110	110	110	mA
Protecting resistance	R _t	100	90	0	0	Ω
Input capacitor of smoothing filter	C _{filt}	100	100	100	100	μF

January 1970

LIMITING VALUES (Design centre rating system)

Anode voltage, peak inverse	$v_{a inv_p}$			max.	700	V
D.C. current	Io		;	max.	110	mA
Anode peak current	$I_{\mathbf{a_p}}$			m ax.	660	m A
Cathode to heater voltage, peak, k pos.	$v_{\mathbf{kfp}}$			max.	550	v
Input capacitor of smoothing filter	C _{filt}			max.	100	μF
Protecting resistance	R_t	min.100	90	0	0	Ω
at transformer voltage	v_{tr}	250	220	127	110	v_{RMS}

SINGLE ANODE RECTIFYING TUBE

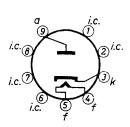
Single anode high vacuum rectifying tube.

QUICK REFERENCE DATA				
Transformer voltage	V _{tr}	250	v	
D.C. current	$I_{\mathbf{O}}$	100	mA	

HEATING: Indirect by A.C. or D.C.; series supply

Heater current

Heater voltage


I _f	100	mΑ	
V_f	31	V	

Dimensions in mm

1

DIMENSIONS AND CONNECTIONS

Base: Noval

OPERATING CHARACTERISTICS as single-phase half-wave rectifier.

Transformer voltage	v_{tr}	250	220	127	110	v_{RMS}
D.C. output voltage	v_{o}	205	188	135	113	V
D.C. current	I_{o}	100	100	100	100	mA
Protecting resistance	R_{t}	210	160	0	0	Ω
Input capacitor of smoothing filter	Cfilt	50	50	50	50	μF

December 1969

Anode voltage, peak inverse	$v_{a_{inv_p}}$	max.	700	v
D.C. current	I _o	max.	100	mA
Anode current, peak	I_{a_p}	max.	600	mA
Heater to cathode voltage, peak, k pos.	v_{kf_p}	max.	550	v
Protecting resistance at transformer voltage	$egin{array}{l} R_t \ V_{tr} \end{array}$	min. 210 250	160 0 220 127	0 Ω 110 V _{RMS}

INDEX OF TYPE NUMBERS

Type No.	Type No.	Type No.	Type No.
DY51	ECL82	EY500	PL36
DY86	ECL84	EY500A	PL81
DY87	ECL85	EZ80	PL83
DY802	ECL86	EZ81	PL84
EAA91	ECL805	GY501	PL95
EABC80	ED500	GZ34	PL500
EB91	EF80	PABC80	PL504
EBC81	EF85	PC86	PL505
EBF80	EF86	PC88	PL508
EBF89	EF89	PC92	PL509
EC86	EF183	PC900	PL519
EC88	EF184	PCC85	PL802
EC92	EFL200	PCC88	PY81
EC900	EL34	PCC189	PY82
ECC81	EL36	PCF80	PY88
ECC82	EL81	PCF86	PY500
ECC83	EL84	PCF200	PY500A
ECC85	EL86	PCF201	UABC80
ECC88	EL95	PCF801	UBC81
ECC189	EL500	PCF802	UBF89
ECF80	EL503	PCH200	UCC85
ECF86	EL504	PCL82	UCH81
ECF200	EL508	PCL84	UCL82
ECF201	EL509	PCL85	UF89
ECF801	EL519	PCL86	UL84
ECF802 ECH81 ECH83 ECH84 ECH200	EL802 EM84 EM87 EY81 EY88	PCL805 PD500 PD510 PF86 PFL200	UY85 UY89

March 1972 PHILIPS

1

General section
Receiving tubes