

pocket DATABOOK RAYTHEON RADIO RECEIVING TUBES

RAYTHEON PRODUCTION CORPORATION

55 Chapel Street Newton, Mass.
420 Lexington Ave. New York, N. Y.
445 Lake Shore Drive Chicago, Ill.
555 Howard St. San Francisco, Cal.
415 Peachtree St., NE Atlanta, Ga.

Copyright 1987

Ъ**у**

RAYTHEON PRODUCTION CORPORATION

Newton, Mass.

It is the responsibility of the user to determine whether any commercial use of the data or circuits presented in this booklet constitutes infringement of any patent, and no liability or obligation of any kind is assumed by Raytheon with respect to such use.

Each tube sold by Raytheon is licensed only to the extent of the notice which appears on the carton containing the tube.

> FIRST EDITION Third Printing June, 1938 Form R-632A

FOREWORD

This DATA BOOK has been prepared by the Raytheon Production Corporation to furnish in compact form the chief technical data on the complete line of radio broadcast receiving tubes. In addition to the maximum ratings and values of essential characteristics there are given in this booklet the more important characteristic and operating curves for each active tube. The information given by these ourves may well be even more valuable end useful than the ratings and nominal characteristics. This information has not heretofore been generally available form. Much of it has previously been obtainable only by a limited number of receiver design engineers. Data are given on all tubes that have been at all widely used in the past in receivers and amplifiers that are still handled in the trade as replacements; also on all types that are being used in new receivers including all new types announced up to the end of 1937.

To make this booklet of maximum usefulness an introductory section has been included which gives brief descriptions of the various classes of tubes and how they operate; definitions of the various tube characteristics and terms and explanations of how these quantities may be determined from the characteristic ourves; simple circuit diagrams showing the essentials of the various sections of a modern radio receiver, including the newer features, and conventent charts for determining the proper values of certain tube circuit constants and operating voltages.

For completeness there have been included the essential data on Raytheon resistor tubes and panel lamps for radio receivers.

This booklet has been designed for the use of design engineers, radio dealers, servicemen and members and customers of the radio industry generally. Much thought and labor has been devoted to its preparation. It is our hope that it will prove really useful and at the same time acquaint you with Raytheon tubes and Raytheon Engineering Service.

TABLE OF CONTENTS

	PAGE
TUBE ELEMENTS	5
TUBE CLASSIFICATION BY STRUCTURE	5
TUBE CLASSIFICATION BY FUNCTION	6
FUNDAMENTAL CHARACTERISTICS OF RADIO TUBES	7
TUBE APPLICATION AND CIRCUITS	9
RECOMMENDED OPERATING PRACTICES	19
CONVERSION CURVES	2 2
RESISTANCE COUPLED AMPLIFIER DESIGN CURVES	23
TUBE TESTING	26
RAYTHEON RECEIVING TUBE LIST	2 8
RAYTHEON SPECIAL RECEIVING TUBES	31
INTERCHANGEABLE TUBE TYPES	32
RAYTHEON RESISTANCE TUBES	33
RAYTHEON PANEL LAMPS	34
RATINGS AND CHARACTERISTICS OF RAYTHEON RECEIVING TUBE: (FOLLOWING PAGE 34)	S

A radio tube, or vacuum tube, is a vacuum device in which electric current flows, as a stream of electrons, through the evacuated space from one electrode to another. A HIGH VACUUM TUBE is one in which the degree of vacuum is so high that the characteristics of the tube are not affected by gas ionization. Most radio receiving tubes are of this class. A GAS TUBE is one which has a gas filling, usually at relatively low pressure, and in which gas ionization is essential to the normal operation of the tube. Types 82 and 0246 are examples of this class.

CATHODE The cathode is the electrode which supplies the electrons necessary for the operation of the tube. In general the cathode must be heated to obtain sufficient emission of electrons. A FILAMENTARY CATHODE is in the form of a wire or ribbon through which heating current flows and is sometimes called a "directly heated" cathode. In some of the earlier receiving tubes, such as the 199 and the 201A, the cathode is a filament of thoristed tungsten and is normally operated at a temperature of approximately 1700°C. In more recent types, such as the 26, 45, and 1A4, the cathode is a wire or ribbon of nickel or nickel alloy coated with the oxides of barium and strontium and is normally operated at 600° to 800°C. A UNI-PO-TENTIAL, or "indirectly heated", cathode consists of a metal sleeve, usually inckel, which encloses an insulated filament, or heater, through which heating current flows. The cathode sleeve is generally coated with the oxides of barium and strontium and is operated normally at 600° to 800°C.

PLATE The plate, or anode, is the electron collector element of a tube and is normally the one to which the main portion of the electron stream flows. It is usually in the form of a cylinder of thin metal and may be circular, oval or rectangular in cross-section. In some tubes the plate is carbonized to increase its heat radiating ability.

Children, over the recently like in closs-section. In some tubes the plate is carbonized to increase its heat radiating ability.
GRID A grid is an auxiliary electrode placed between the cathode and the plate. It usually consists of a spiral of wire fastened at each turn to one or more, usually two, longitudinal support wires. In cross-section, the outline of a grid may be circular, oval or rectangular. The grid spiral is usually of uniform pitch, but some tubes employ VARIABLE MU GRIDS in which the turns are not uniformly spaced. In a few cases the grid consists merely of two vertical wires or strips of metal. The grids in a multi-grid tube are commonly referred to by numbers indicating their position radially with respect to the cathode, number 1 grid being adjacent to the cathode. Grids are also referred to by numbers indicating their function. A COUTROL GRID, or input grid, is one to which an input signal voltage is applied and which modulates the main electron stream in accordance with the input signal voltage is applied and which modulates the main electron stream in accordance with the input signal placed between the control grid and the plate and operated at a positive de voltage with respect to the cathode. A SCREE GRID is an auxiliary grid placed between the control grid and the plate and connected to a point of low dee potential to prevent the passage of low velocity secondary electrons orginating other at the plate or at the sceng rid. In some tubes it is connected internally to the cathode, as the type GA7, the number two grid, which serves as the and for the oscillator sector, the analyse of lows for the assign of the scene grid and the screen grid lies in the same number of turns per incl. and placed se tage the size of the same number of turns per incl. and placed se tage the plate are also recensiting the same number of turns per incl. and placed se tage at the sector of the same tubes and the sector of any plate sector sector of the same number of turns per incl. and in others it is c

TUBE CLASSIFICATION BY STRUCTURE

Radio tubes may be classified according to the number of cleaents or electrodes they contain.

A DIODE is the simplest form of tube and contains two elements, a cathede and a plate. Types 01 and 1223 are examples of this class.

A TRIODE or three element tube, contains a cathode, a grid and a plate, as for example, typos 27 and 2A3.

A TETRODE is a four element tube having a cathode, two grids and a plate. The name SCREEN GRID TUBE is sometimes used for a tetrode, such as the type of tetrode is a BEAL FOWER TUBE in which the electrodes are so spaced that the electron stream is confined to relatively narrow paths, or beams, and sufficient space charge is built up between the screen grid and the plate electron beaks are produced by the use of aligned grids and deflector plates particulty surrounding the corcen grid support rods and connected electrically to the cathode. The 6L6 and SVGG are been power tubes.

A PENTODE is a five element tube which contains a cathode, three grids and a plate, types 70 and 42, for example.

RAYTHEON ENGINEERING SERVICE

A HEXODE is a six element tube containing a cathode, a plate and four other electrodes.

A HEPTODE is a seven element tube having a cathode, a plate and five other electrodes, usually grids, PENTAGRID is another term applied to this type of tube. Types 6A7 and 6L7 are in this classification.

A MULTIPLE UNIT TUBE is one containing two or more sets of electrodes, or units, in the same envelope. In some types a single cathode, common to both units, is used; in others separate cathodes are used. Each unit can usually be operated as if it were a separate tube in its own envelope. A two unit tube is often referred to as a DUO-or DUPLEX- TUBE.

A DUO-DIODE is a duplex tube containing two diode units, as a type 80 or a 6H6.

A DUO-DIODE TRIODE is a duplex tube containing a duo-diode unit and a triode unit, as a type 75.

A DUO-DIODE PENTODE is a duplex tube containing a duo-diode unit and a pentode unit, as a type 6B7.

- A DIODE-PENTODE is a duplex tube containing a diode unit and a pentode unit, as a type 12A7 or a 25A7G.
- A TRIODE-PENTODE is a duplex tube containing a triode unit, and a pentode unit, as a type 6F7.
- A TRIODE-HEPTODE is a duplex tube containing a triode unit and a heptode unit.

A TWIN TUBE is a duplex tube containing duplicate units, types 6A6 and LETG, for example.

TUBE CLASSIFICATION BY FUNCTION

Tubes may be further classified according to their uses or functions in a circuit.

A RECTIFIER TUBE usually a diode or a twin diode, is one used in obtaining a direct current or voltage from an alternating current supply.

A HALF-WAVE RECTIFIER TUBE is one used in a half-wave rectifier circuit and in which current flows only during alternate half-cycles of the ac supply voltage. A half-wave rectifier tube is usually a diode such as a type 81 or a 1223. However, a triode like the type 37 or other multi-electrode tube may be used by connecting the grid or grids to the plate to form a diode

A FULL-WAVE RECTIFIER TUBE is a twin diode used in a full-wave reatifier circuit in which the two diodes are so connected that current flows through one diode during one half-cycle and through the other diode on the alternate half-cycle of the a-c supply voltage. Two separate diodes may be used instead of a twin diode in a full-wave circuit.

A VOLTAGE DOURLER TUBE is a twin diode tube having separate cathodes in sulated from each other so that the two sections may be connected in series in a voltage doubler circuit. Although a twin diode tube is usually used in this circuit, two separate diodes may be used to accomplish the same result.

AN AMPLIFIER TUBE is one used to amplify a voltage applied by the input circuit between two electrodes, a control grid and the cathode. An amplified voltage appears in the output circuit, usually the plate circuit and a portion of this voltage is developed across the load impedance.

A VOLTAGE AMPLIFIER TUBE is an amplifier tube used to supply an amplified voltage to another tube which may be another voltage amplifier tube, a power amplifier tube or a deteotor tube.

A POWER AMPLIFIER TUBE is an amplifier tube used to develop a relatively large amount of power, as contrasted to voltage, in the output circuit and may be a triode, a tetrode, or a pentode.

A REMOTE CUTOFF AMPLIFIER TUBE is one that requires a relatively high negative bias on the control grid to reduce the plate current and transconductance to zero or to very low values. Relatively large signal voltages may be applied to tubes of this class without producing serious cross modulation or modulation distortion. Most remote cutoff tubes are made with a variable-mu control grid.

A DETECTOR TUBE is one used to separate the low frequency component of a modulated signal from the high frequency carrier of radio or intermediate frequency. Various types of tubes, diodes, triodes, tetrodes and pentodes may be employed as detectors.

AN OSCILLATOR TUBE is an amplifier tube operated in a suitable circuit to produce a-c power when supplied with d-c power. Triodes such as types 76 and 6J5G, are commonly used as oscillators in superheterodyne receivers. A MIXER TUBE is one in which two applied voltages of different frequency are combined, or mixed, to produce beat frequency voltages which are equal to the sum and difference of the applied frequencies, in the output circuit.

A CONVERTER TUBE is a special form of mixer tube in which one of the two combining voltages is produced by self-oscillations in the tube itself. The 6A7 is one of the tubes designed specially for converter service but other multi-grid types, such as the type 77, have been used.

AN ELECTRON RAY TUNING INDICATOR TUBE is a tube in which an electron beam causes a luminous area to appear on a fluorescent screen, or target. The shape and size of this luminous area yary in accordance with the voltage applied to the control grid of the tube, giving a visual indication of the changes in the control grid voltage. Usually this tube is a duo-triede, one section functioning as a d-c amplifier and supplying an amplified d-o voltage to the control electrode of the target section. The 6E5 is an example of a tuning indicator tube.

FUNDAMENTAL CHARACTERISTICS OF RADIO TUBES

A radio tube, as a circuit element, exhibits some electrical characteristics, such as resistance and capacitance, which are similar to those of other circuit elements and, in addition, it has other characteristics which are unique. Since the current-voltage relations of a tube usually are not linear, the d-c current flowing between two electrodes is not directly proportional to the d-c voltage between them. For this reason, the a-c or variational characteristics depend on the d-c voltages applied between the elements and are not the same for large amplitudes as for small. Trerefore, the characteristics of a tube, as a circuit element, are commonly expressed in terms of their values for a-c current and voltage of very small amplitudes, and with specified values of d-c voltage applied to the various electrodes. It is necessary to distinguish between the d-c voltages applied the various electrodes, which determine only the operating conditions, and the a-c voltage botween the voltage between the cathode and any other electrode is designated as the voltage of that electrode, as for example, PLATE VOLTAGE, SCRED-GRID VOLTAGE, and GRID VOLTAGE. The d-c voltage on the control grid is commonly called the GRID BIAS.

RECTIFIERS In a radio tube, the electrons originating at the cathode are attracted to any electrode which is at a positive potential with respect to the cathode and repelled from any electrode which is at a negative potential. Dide rectifier tubes depend on this fact for their operation, as plate current can flow only during the half-cycle when the plate is positive. The important characteristic of a rectifier tube is the STATIC FLATE CHARACTERISTIC, a curve showing the relation between the d-o plate voltage and current. Typical diode plate characteristic curves may be found in the rating and characteristic data section under any rectifier rube type, for instance, the type 81. At low plate voltages the plate current increases approximately as the 3/2 power of the plate voltage. At higher plate voltages the plate current approaches the total electron emission of the cathode, which is the maximum value of plate current obtainable at a certain cathode temperature. A derived characteristic is the relation between the d-c output current and voltage in a typical rectifier circuit. Typical curves may be found in the rating and characteristio data section under any rectifier types, such as the type 80. Since the values shown by the curves are dependent on the circuit constants, transformer resistance and reactance and smoothing filter characteristics, they should be used only to indicate the tube performance under certain arbitrary, but usually typical, operating conditions.

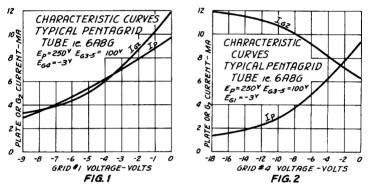
cal, operating conditions. AMPLIFIERS In amplifier tubes, the amplification depends on the fact that a small voltage applied to the control gridhas the same effect on the plate current as a much larger voltage applied to the plate. A measure of this amplifying effect is the AMPLIFICATION FACTOR, μ or mu, which indicates the relative effectiveness of the grid voltage versus the plate voltage in controlling the plate current. It is equal to the quotient of a small change in plate voltage divided by the compensating change in grid voltage necessary to maintain the plate current constant. THE TRANSCONDEGY-ANCE or MUTUAL CONDUCTANCE, $G_{\rm m}$, of a tube is a factor indicating the magnitude of the controlling effect of the control grid voltage on the plate current, and is expressed in micromhos which are equivalent to micromapers per volt. It is equal to the quotient of a small change in plate current divoltages are constant and there is no external impedance in the plate circuit. The PLATE RESISTANCE, $R_{\rm p}$, of a tube is the effective internala-c resistance between the plate current, with constant voltages on the other elements and no external impedance in the plate trout. Amplification factor, transconductance and plate resistance are connected by the relation $G_{\rm ret}/R_{\rm p}$, in multi-grid tubes there may be several values of amplification factor and transconductance, depending on which element is used as the control grid and which element as the plate, as for example, grid # to plate transconductance, or grid # to plate transconductance, or grid #3 to plate transconductance.

RAYTHEON ENGINEERING SERVICE

An amplifier tube may be considered as an a-o generator whose generated e.m.f., or open-circuit voltage is the product of the amplification factor, μ_{\star} , and the a-o grid voltage, $E_{\rm g}$. The voltage, $E_{\rm g}$. The voltage, $E_{\rm g}$, which corresponds to the internal resistance of the generator. The transconductance is the short-orror cuit a-c current per unit of a-o grid voltage.

The VOLTAGE AMPLIFICATION or VOLTAGE GAIN is the amplification obtained from a tube in connection with its associated circuit, and is equal to the quotient of the a-c voltage, E_L , developed across the load resistance, R_L , divided by the a-c grid voltage, E_S . Since the a-c voltage generated in the output circuit of a tube is in series with the plate resistance, the a-c voltage developed across the load resistance depends on the relative values of R_D and R_L . The voltage amplification is given by the following formulas:

$$VOLTAGE \ GAIN = \frac{\mathcal{M}R_L}{R_P + R_L} = \frac{G_m R_P R_L}{R_P + R_L}$$
(1)

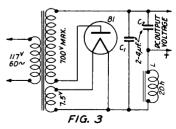

TRIODES The static plate characteristic curves of a triode are similar to those of a diode, except that a family of curves is usually given, Typical triode plate characteristic curves may be found in the rating and characteristic data section, for instance, under the types 6F5, 76, or 667. The other family of curves under the types 6F5 and 607 shows the same information in another form, the relation between the d-o grid voltage, or bias and the d-o plate current for several values of d-o plate voltage. The amplification factor may be determined from the plate family of curves by finding to the values of grid bias. The amplification factor way be determined from the plate oursel, corresponding to two values of grid bias. The amplification factor is then equal to the quotient to f the change in plate voltage is desired. The transconductance is equal to the slope of the plate current values in grid voltage. The transconductance is under the voltage, corresponding to a change in grid voltage. The plate current in microamperes divided by the change in grid voltage. The plate current is the slope of the plate voltage curve at any point where its value is desired. The transconductance may also be determined from the plate voltage is for the change in grid voltage. The plate current is microamperes divided by the change in grid voltage. The state current is near the slope of the plate voltage curve at any point where its value is desired. Thus, the three fundamental characteristic curves. In determining amplification factor, transconductance and plate resistance from the static characteristic curves are as small as can be read conveniently.

TETRODES The plate current vs. control grid voltage curves of a tetrode are similar to those of a triode, but the plate current vs.plate voltage curves are quite different, as may be seen by referring to the plate of plate voltage higher than the screen grid voltage, where a tetrode is usually operated, the plate current europes are relatively flat, indicating high values of plate resistance and amplification factor. In this region the value of plate current depends more on the value of d-c screen grid voltage than on the value of d-c plate voltage. At plate voltages lower than the screen grid voltage the values of plate current are unstable due to the effects of SECONDARY EMISSION. When the plate, or any other electrode, is more than about 12 volts positive the electrons which strike it cause it to emit secondary electrons. These electrons may be pulled back to the plate, or, if there is another electrode nearby at a higherd-c potential, they may be drawn away from the plate to the higher potential electrode. In the region of the plate current is increased and screen current decreased by secondary electrons from the screen grid. The amount of secondary emission is largely dependent on the surface condition of the electrodes and usually varies widely in different tubes. Tetrodes are ordinarily not operated under conditions which permit the plate voltage to fall below the screen grid voltage unless the design of the electrodes is such that secondary emission is largely element to be altered is a such that secondary emission is largely element the plate tortodes is such that secondary emission is largely element to be altered is a such that secondary emission is largely eliminated. In beam power output tubes, which are tetrodes, the effects of secondary emission are largely eliminated and the characteristics resemble those of pentodes.

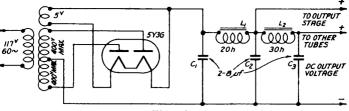
Because of the electrostatic shielding effect of the screen grid, the control grid to plate capacitance of tetrodes is very much lower than that of triodes. Tetrodes designed for use in high frequency stages usually contain additional shields placed outside of the electron stream in such a way that the grid to plate capacitance is still further reduced. This feature makes tetrodes more suitable than triodes for use in amplifying r-f or i-f frequencies where large grid to plate capacitances would tend to cause oscillation or instability. The high amplification factor and plate resistance of tetrodes permit high gain and selectivity with the tuned circuits ordinarily used at high frequencies. The high amplification factor also permits high gain in resistance coupled audio frequency amplifiers.

PENTODES The plate current vs.plate voltage curves of a pentode resemble those of a tetrode with the important exception that there is no abrupt dip in the curves at the point where the plate voltage equals the screen grid voltage. Refer to the plate characteristic curves of types 606, 42, etc., in the rating and characteristic data section for typical pentode curves. This improvement in characteristics results from the effect of the suppressor grid, #3 grid, which prevents the package of secondary electrons between the plate and the screen grid. The plate current curves are flatter than in corresponding types of tetrodes, hence the plate resistance and amplification factor are correspondingly higher. Pentodes may be used for plate capacitance and high amplification factor and plate resistance. In addition, since the plate current curves are smooth over a wide range of plate voltage, pentodes can be operated as power amplifiers at large amplitudes of a-c voltage and current. MIXER OR CONVERTER TUEES An important characteristic of a mixer or con-verter stage is the CONVERSION TRANSCONDUCTANCE which is equal to the quotient of the beat frequency, or i-f, component of the plate current divided by the r-f signal voltage on the control grid, with no impedance in the plate of orbit and constant d-c voltages on all the electrodes. In converter circuit calculations, conversion transconductance corresponds to transconductance in single frequency amplifier circuits. The TRANSLATION GAIN of a mixer stage is analogous to the voltage gain of an am-plifier stage, and is the ratio of the i-f output voltage appearing across the plate load impedance, to the r-f signal voltage applied to the control grid. Its value depends on the circuit constants as well as on the mixer tube characteristics and operating conditions. The CONVERSION PLATE RESIS-TANCE of a mixer tube is the effective plate resistance to the beat fre-quency, or i-f, component of the plate current and corresponds to the plate resistance of an amplifier tube. A pentagrid converter tube is ordinarily operated as if it consisted of two sections, each having its own control grid, both grids simultaneously controlling the plate current in accordance with the separate grid voltages. The curves in Fig. 1 and Fig. 2 show the effect of the inner number 1 and the outer number 4 control grid voltages erspectively on the plate current and conternet of the inner section, shown in Fig. 2, is typical of pentagrid tubes. Each section has the char-acteristics of amplification factor, plate resistance and transconductance, the values depending on the d-c voltages applied to the chart the care sections.

TUNING INDICATORS For typical tuning indicator characteristic curves re-fer to the type 6E5 in the rating and characteristic data section. The curve of shadow angle vs.grid bias is the most important as it shows the range of grid voltage necessary to completely control the pattern on the fluorescent target.



TUBE APPLICATION AND CIRCUITS


RECTIFIERS In the application of rectifier tubes care should be taken that the published maximum ratings are not exceeded. Rectifier tubes are rated for MAXIMUM A-C PLATE VOLTAGE, the maximum RMS value of a-o volt-age that should be applied to the plate of the tube and for MAXIMUM D-C OUT-PUT CURRENT, the highest value of d-o plate ourrent, averaged over one a-cycle, at which the tube should be operated. They are also rated for MAXI-MUM PEAK PLATE CURRENT, the maximum instantaneous peak value of plate our-rent that should be permitted to flow through the tube and for MAXIMUM EN-VERSE PEAK VOLTAGE which is the maximum instantaneous peak value of plate ou-veltage that should be applied to the tube during the half-cycle when the plate is negative and no current is flowing to the plate. THE VOLTAGE DROP voltage that should be applied to the tube during the half-cycle when the plate is negative and no current is flowing to the plate. THE VOLTAGE DROP is the d-c plate voltage corresponding to some specified value of d-o plate ourrent, usually equal to the maximum d-c output current per glate.

half-wave rectifier circuit A typical is shown in Fig. 3 and a typical full-wave rectifier circuit in Fig. 4. A condensor input filter is shown in each wave rectifier circuit in Fig. 4. A condensor input filter is shown in each circuit. If 01 were omitted the filter would be a choice input filter. With condenser input tile d-c output voltage will be higher and the regulation over poorer the working range than with choke input. Increasing the capacity of C1 will increase the d-c output volt-age, but will also increase the peak plate current and the inverse peak volt-Some filter age applied to the tube. age applied to the tube. Some filter circuits employ two chokes in series, as shown in Fig. 4, to further reduce the hum voltage. In some cases the plate supply for the output stage is taken from the first choke and the rest of the tubes supplied through both ohokes. This allows a smaller choke with a lower current rating to be used for L_2 , and improves the regulation of the output voltage.

TYPICAL HALF WAVE RECTIFIER CIRCUIT

TYPICAL FULL WAVE RECTIFIER CIRCUIT

FIG. 4

||7¥ 60∼

Fig. 5 shows a voltage doubler circuit such as is sometimes used in receivers operating directly from the a-c line operating power transformer. T ltage will be somewhat without a The d-0 output voltage less than twice the value which would be obthan twice the value which would be ob-tained with a half-wave rectifier. Its value deponds on the capacity of con-densers, C1, and on the d-o output cur-rent, as shown by the curves for the rent, as 2525 tube.

AMPLIFIERS Two general types of am-pliflers are used in radio receivers, high frequency ampliflers for radio and intermediate frequencies and low frequency ampliflers for audio fre-quencies. High frequency ampliflers quencies. Iligh frequency amplifiers are usually transformer coupled and may be used over a range of frequencies as in a tuned r-f receiver, or at a single frequency as in the 1-f amplifier of a superheterodyne receiver. Pentode or tetrode tubes are commonly used in high frequency at plifiers because of their low grid to plate capacitance and high values of transconductance and plate resistance. Fig.6 and Fig.7 show typical high frequency amplifier circuits such as are used in a tuned r-f re-ceiver and in a superheterodyne receiver.

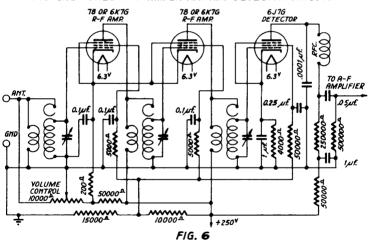
¥. ar 324 Æ 1

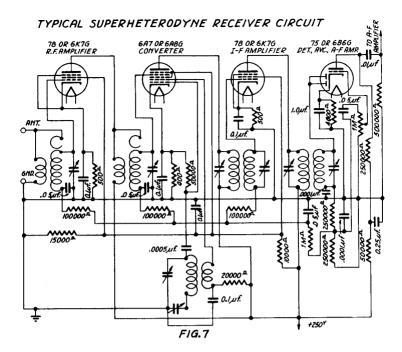
TYPICAL VOLTAGE DOUBLER CIRCUIT

000

2-810

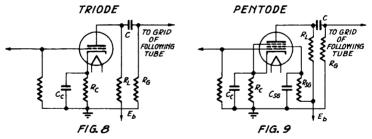
-32 j.st.

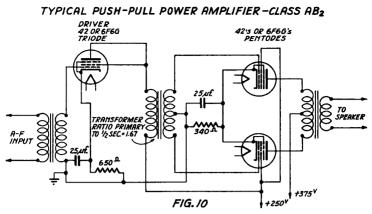

201 C, DUTPUT


TAGE

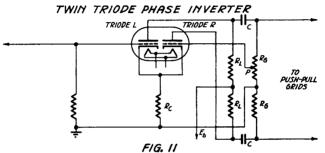
DC 6

25766

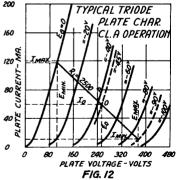

TYPICAL TUNED R-F AMPLIFIER AND DETECTOR CIRCUIT

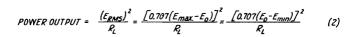


Low frequency amplifiers may be transformer coupled or resistance coupled. Transformer coupling is usually used with low-mu triodes and resistance coupling with high-mu triodes, tetrodes or pentodes. Fig. 8 shows a typical resistance coupled a-f amplifier stage using a triode and Fig. 9 shows a pentode resistance coupled a-f stage. The values of resistors and condensers used in these circuits may be found by referring to the Resistance Coupled Amplifier Design Curves on page23.


TYPICAL RESISTANCE COUPLED A-F AMPLIFIER CIRCUITS

An amplifier stage may use one tube, or two tubes connected in parallel or in push-pull. In a push-pull amplifier stage the two tubes are connected in such a way that the two grid circuits are effectively in series and the two plate circuits likewise. Equal signal voltages 100° out of phase, are amplied to the two grids by a center-tapped transformer or by a phase inverter circuit. The a-c plate currents and voltages are combined in the output circuit to give approximately twice the power output obtainable from a single tube operating under the same conditions, and the second and other even order harmonics cancel out. Fig. 10 shows a typical push-pull power amplifier stage transformer coupled to a driver stage. Transformer coupling is used where power is supplied to the push-pull grids as in Class AB or Class B operation. Either transformer or phase inverter input may be used where the output stage requires no driving power.




A PHASE INVERTER circuit is shown in Fig. 11. The signal voltage for triode R is obtained from the tap, P, on the resistor, Rg, in the output circuit of the other triode. This tap should be adjusted so that the signal volt-age applied to triode R is equal to the input signal on the grid of triode L. For example, if the voltage gain of triode L is 25, the tap, P, should be adjusted to supply 1/25 of the voltage across Rg to the grid of triode R.

Amplifier stages are classified with respect to the tube operating condi-tions and the relation between the grid bias and the maximum normal value of a-c signal voltage, which determine the fraction of the a-c cycle during which plate current flows. In a CLASS A amplifier stage, the plate current flows during the complete a-c cycle, the grid bias usually being fixed at approximately one-half of the cutoff bias (the grid bias necessary to re-duce the plate current to practically zero). Ordinarily, the maximum normal peak value of the a-c voltage is approximately equal to the grid bias and no (rid current flows during any portion). The subscript l, as in Class A₁, is sometimes used to indicate that no grid current flows during any part of the input cycle. the input cycle.

Fig. 12 shows the section of the plate current vs. plate voltage family of a triode operated as a CLASSA amplifi-er. The LOAD LINE represents the relation between the instantaneous values tion between the instantaneous values of grid voltage, plate voltage and plate current during a cycle at full rated signal level. Its slope is numer-ically equal to the reciprocal of the effective a-c impedance in the external plate circuit. Since this impedance is chiefly resistive, it is commonly re-ferred to as the LOAD RESISTANCE, R_J. The operating point, O, indicates the static values of plate voltage E. and fe red to as the LOAD RESISTANCE, RL. The operating point, 0, indicates the static values of plate voltage, E.O., and current, I.O. with no signal. The load line terminates at plate current curves corresponding to the maximum and mini-mum instantaneous values of grid volt-age at full rated signal, the swing in grid voltage being the same in either direction from the operating point, 0. The difference between the plate voltage at the operating point and at eithor end of the load line equals approximately the peak value of the a-o out-put voltage will be 0.707 times the peak voltage obtained from the curves. The power output may then be calculated approximately from the relation:

A more accurate formula which includes both halves of the cycle is:

$$POWER OUTPUT = \frac{(E_{max} - E_{min})(I_{max} - I_{min})}{8}$$
(3)

The values of E_{max} , E_{min} , I_{max} , and I_{min} , are read from the curves as shown in Fig. 12. If the values of E_{max} , and E_{min} are expressed in volts, the values of I_{max} , and I_{min} should be expressed in amperes to give the power output in watts.

The second harmonic distortion, expressed in percent, may be calculated from the formula:

$$\frac{I_{max}+I_{min}}{2} - I_{o}$$
2ND. HARMONIC =
$$\frac{I_{max}-I_{min}}{I_{max}-I_{min}} \times 100$$
(4)

Io is the value of d-c plate current at the operating point and is read from the curves. All the values of current in equation (4) should be expressed in the same units, milliamperes or amperes. Fig.1S shows typical variations of power output, plate current and harmonic distortion with signal input voltage for a triode operated as a Class A amplifier. The power output varies approximately as the square of the input voltage and the distortion is low and is chiefly second harmonic.

The PLATE EFFICIENCY is the percentage ratio of the power output to the produot of the swerage d-c plate voltage and d-c plate current at full signal.

PLATE EFFICIENCY(%) =
$$\frac{PO}{E_{\rho}I_{\rho}} \times 100$$

In a Class A triode amplifier the plate efficiency is relatively low, 15% to 25%.

The POWER SEISITIVITY is the ratio of the power output to the equare of the input signal voltage, $E_{\rm ff}$.

$$POWER SENSITIVITY = \frac{PO}{E_G^2}$$
(6)

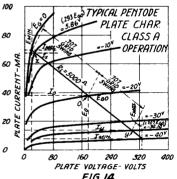
The nower sensitivity of a Class A triode amplifier is also relatively low.

The method of calculating the approxirate power extput and distortion for a pentode or a tetrade, operated as a Class A amplifier, is similar to that for triedes. Fig. 14 shows a family of plate characteristic curves for a typical pentode Class A amplifier. The power extput may be calculated approxiness for the formula:

$$PO = \frac{\left[I_{max} - I_{min} + I.4I(I_x - I_y)\right]^2 \frac{E_{max} - E_{min}}{I_{max} - I_{min}}}{32}$$
(7)

The values are read from the curves at the points indicated in Fig. 14. The values of $I_{\rm X}$ and $I_{\rm Y}$ are determined by the intersections of the load line with the plate current curves corresponding to grid biases of 0.203 Egg and 1.707

the plate current curves corresponding FIG.IAto grid biases of 0.203 Ego and 1.707 FIG.IAEgo respectively, where Ego is the value of the grid bias at the operating point, 0.


The second harmonic distortion, expressed in percent, may be calculated from the formula:

$$2np. HARMONIC = \frac{I_{max} + I_{min} - 2I_o}{I_{max} - I_{min} + 1.4I(I_x - I_y)} \times 100$$
(8)

The third harmonic distortion, in percent, is given by the formula:

$$3_{RD}. HARMONIC = \frac{I_{max} - I_{min} - I. 4I (I_X - I_y)}{I_{max} - I_{min} + I.4I (I_X - I_y)} \times 100$$
(9)

RAYTHEON ENGINEERING SERVICE

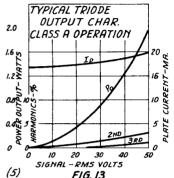


Fig. 15 shows the variation of power output, plate current, screen current and distrition with signal input voltage and Fig. 16 shows the variation of the sawe quantities with load resistance for a typical pentode Class A Am-plifier. A pentode is normally operated with a load resistance of approximatchy they value at which the second harmonic is a minimum. In some cases, the load resistance is adjusted for a lower value of third harmonic and the second harmonic is balanced out by using two tubes in push-pull or by introducing a balancing amount of second harmonic in a preceding stage. Beam troducing a salarcing amount o. second narmonic in a preceding stage, bea power tubes are frequently operated with lower values of load resistano than are pentodes to reduce the odd harmonic distortion. A Class A pentod amplifier generally has higher plate efficiency, 35% to 45% and higher pow er sensitivity than a Class A triode. The distortion is also generally higher and consists mostly of third and higher odd order harmonics. load resistance A Class A pentode generally

2.4

2.0

1.6

l.Z

0.8

10 in

2

S

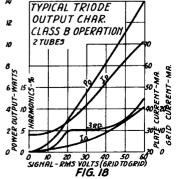
20

05 10 15 20 LOAD RESISTANCE - KILOHMS

In a CLASS B amplifier stage two tubes or the two sections of a twin tube In a GLASS B amplifier stage two tubes or the two sections of a twin tube are used in a push-pull circuit. The grid bias is fixed at approximately the cutoff value and plate current flows in each plate circuit on alternate half-cycles of signal voltage when the grid is positive. Since the grid of a class B tube is swinging positive during a considerable portion of the cycle, grid current usually flows for 60 part of the cycle. This grid voltage

and current represent power which must be supplied by the preceding tube called the DRIVER TUBE. The power output of the driver tube is often the limiting factor in determining the power output of a Class B stage. Since the average value of the plate current of a Class Value of the plate current of a Class B stage varies considerably with signal voltage, the plate voltage supply should have good regulation to prevent excess sive decrease in d-o plate voltage and limitation of output as the signal volt-ere is reject age is raised.

17 shows the section of the plate Fig. current vs.plate voltage family of a tri-ode used as a Class B amplifier. In


ode used as a Class B amplifier. In o to be poration the plate current of o 50 100 150 100^{1} how 250 one tube is practically cutoff during pLATE VOLTAGE-VOLTS butes very little to the power output. FIG. 17 The power output from the two tubes may be calculated approximately from the plate family of one tube and is equal to the sum of the power outputs represented by the extensions of the load line on either side of the operating point 0. point,0.


$$PO = \frac{(E_o - E_{min})(I_{max} - I_o)}{2} + \frac{(E_{max} - E_o)(I_o - I_{min})}{2}$$
(10)

Since the plate current of one tube is practically cutoff during each alter-nate half-cycle,formula (10) may be re-duced to a further approximation:

$$PO = \frac{(E_0 - E_{min.})I_{max.}}{2}$$
(11)

The actual power output is somewhat higher than that shown by these relations because of the effects of the third and other odd harmonics. Fig. 18 shows typivariations of power output, plate rent and distortion with signal incal current put voltage for a Class B Amplifier. The distortion is chiefly third and and other odd harmonics. The plate effi-ciency, 50% to 65%, and the power sen-sitivity at full power output are both relatively high.

Po

TYPICAI PENTODE

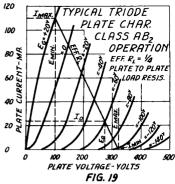
OUTPUT CHARACTERISTIC

ų,

25 30 3.5

FIG. 16

SCREEN CURRENT-MA


-URRENT- 1

are Bu

ي تع 0

CLASS A OPERATION

A CLASS AB amplifier stage is one which operates under conditions intermediate between Class A and Class B. The grid bias is fixed at a value between that for Class A operation and outoff and plate current flows in each plate cir-cuit for less than one complete cycle but for more than one half-cycle of the but for more than one half-cycle of the signal voltage. If the normal maximum peak value of the signal voltage does not exceed the grid bias and no grid current flows during any part of the in-put cycle, the amplifier may be desig-nated as Class AB. If grid current flows during any portion of the input cycle the amplifier may be designated as Class AB, Fig. 19 shows the secas Class AB2. Fig. 19 shows the sec-tion of the plate voltage plate current family of a triode used as a Class AB2

 family of a tricke used as a class Aby
 0
 NO
 200
 300
 400
 900

 Amplifier.
 The power output from two
 PLATE VOLTAGE-VOLTS

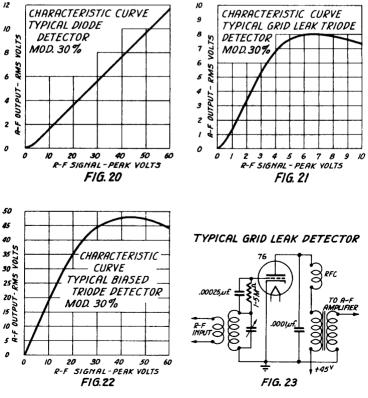
 tubes may be computed approximately
 FIG. 19

 from the plate family of one tube in the
 FIG. 19

 same manner as for Class B operation.
 The characteristics of power output, plate current, plate efficiency and plate current fluctuations with signal and driving power are intermediate between those of Class A and Class B operation.

 ation.

Power output pentodes or tetrodes may be used as Class B or Class AB Ampli-flers, and the approximate power output may be computed from the plate cur-rent vs. plate voltage ourves in the same way as in the case of triodes.


In a CLASS C amplifier the grid bias is fixed at a value greater than the cutoff value and the plate current flows during less than one half-cycle. Class C amplifiers are not used in radio receivers, although an OSCILAROR may be considered as a special type of Class C amplifier in which the input may be considered as a special type of Glass G amplifier in which one is voltage is derived from the output voltage by means of circuit coupling.

A CLASS BC amplifier stage is one which operates under conditions intermedi-ate between Class B and Class C and is not used in radio receivers.

DETECTOR AND AUTOMATIC

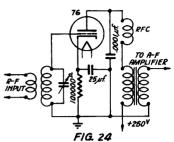
Detectors are used in radio receivers separate to

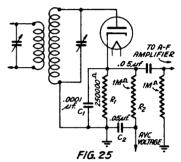
DETECTOR AND AUTOMATIC Detectors are used in radio receivers to separate VOLUME CONTROL CIRCUITS the audio frequency component of the modulated sig-nal from the high frequency carrier or to change the carrier frequency. In superheterodyne receivers, the first detector is important characteristic of a detector tube is the relation between the r-f signal input voltage and the resultant a-f or i-f output voltage. This rela-tion is shown for a typical diode in Fig.20, for a triode operated as a grid leak detector in Fig. 21 and for a biased triode detector in Fig. 22.

In a grid leak detector circuit, Fig. 23, the r-f signal is rectified in the grid-cathode circuit which acts as a diode detector. The a-f voltage across the grid leak and condenser is amplified by the tube and the amplified volt-age appears in the plate circuit. The r-f signal is also amplified by the tube and an r-f filter should be inserted in the output circuit to prevent the high frequency from reaching the a-f amplifier. Increasing the resis-tance of the grid leak increases the sensitivity to weak signals, but tends to introduce instability and distortion with large signals.

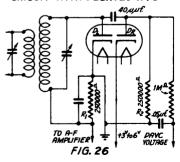
In a biased detector circuit, Fig. 24, a high negative bias is applied to the grid and the no-signal plate current is practically zero. The rectification practically zero. The rectification takes place in the plate circuit due the fact that more plate current flows on the positive half-cycles of the sig-nal voltage than on the negative half-cycles. Both a-f and r-f voltages apoyoles. Both a-f and r-f voltages ap-pear in the plate circuit and an r-f filter should be used to by-pass the r-f component. A biased detector normally draws no grid current and there-fore does not decrease the sensitivity and selectivity of the input circuit.

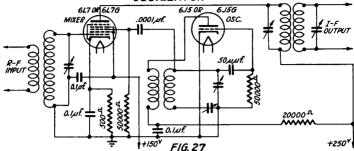
Dicde detectors are commonly used be-oeuse of their ready adaptation to de-tection and control circuits. A dicde detector circuit, shown in Fig. 25, functions as a half-wave rectifier and TYPICAL DIODE DETECTOR CIRCUIT the a-f voltage appears across the load resistor, R1, which is by-passed for r-f by condenser C1. The by-pass condenser O1 charges up to a voltage approxi-mately equal to the peak voltage pro-portional to the carrier amplifude a-cross the load resistor, R1, Since dicde detectors are operated at very small currents, the operating characteristics of all types are practically the same.


Automatic volume control, AVC, may be obtained by applying the d-o voltage developed across the diode load resis-tor, as a negative bias, to the control grids of the r-f and i-f amplifier tubes in the receiver so that their gain in-oreases or decreases as the r-f signal In the reserver so that their gain in-oreases or decreases as the r-f signal decreases or increases. A typical cir-out is shown in Fig. 25. The filter $R_2 - C_2$ is introduced to prevent the AVC voltage from varying at audio frequencies and to prevent high frequency voltage from being fed back to the r-f or i-f amplifier tubes.

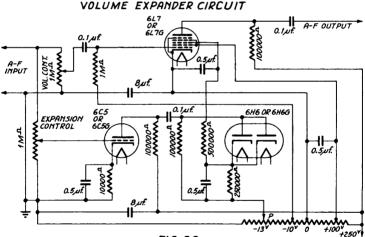

In diode detector circuits certain precautions should be taken to insure linearity and low distortion with high percentage modulation. The r-f signal voltage applied to the diode should be approximately 10 volts, and the ratio of the a-c impedance to the d-c resistance in the diode circuit should be as high as possible. The a-c impedance is usually less than the d-c resistance in the diode circuit due to the shunting effect of the AVC network and the grid leak of the following audio amplifier tube. Therefore, the grid leak and AVC filter resistors should be as high as allowable in the grid circuits of the a-f and r-f amplifier tubes, and the diode load resistor should not be too high. The a-o/d-c impedance ratio may be improved by feeding the a-f amplifier ind the AVC network from tap on the diode load resistor, as shown in Fig. 7. While this connection reduces the sensitivity, it increases the a-o/d-c impedance ratio by. 7. While this co impedance ratio

in Fig. 7. While this connected rates a-o/d-o impedance ratio appreciably. The r-f by-pass condenser across the diode load resistor should not be too large as this will cause loss of gain and distortion at the higher audio frequencies.


In some cases it is desirable for the AVC action to be delayed until the sig-nal reaches a certain predetermined nal reaches a certain predetermined strength, in order that the receiver may receive weak signals with maximum A circuit which accom-is called a delayed AVC, sensitivity. plishes this Show, LT, is used as a detector to supply a-T voltage to the a-f ampli-fier and diode, DR, is used to supply delayed AVC voltage. The amount of delay depends on the voltage on the cathode of DR. For example, if the cathode of DR. For example, if the soluts above ground, no current can flow through DR until the signal strength increases sufficiently to cause more than 3 volts to be developed across Rs, and the AVC action is delayed until the signal reaches approximately 3 volts peak. or DAVC circuit and is shown in Fig.26 Diode, D_L, is used as a detector t supply a-f voltage to the a-f ampli



TYPICAL DIODE DETECTOR CIRCUIT WITH DELAYED AVC



CONVERTER AND MIXER CIRCUITS In a superheterodyne receiver, a frequency converter stage is used to convert the incom-ing r-f signal to the i-f frequency. Two tubes may be used, one as the os-cillator and the other as the mixer, or first detector, or both functions may be combined in a single converter tube such as a type 6A7 or a 6A8G. Fig.27 shows a typical frequency converter circuit using a pentagrid mixer tube and a soparate oscillator. A typical pentagrid converter circuit using a single tube is shown in the circuit of Fig. 7. TYPICAL FOFOMENCE

TYPICAL FREQUENCY CONVERTER CIRCUIT USING SEPARATE OSCILLATOR

volume EXPANDER CIRCUIT In the recording of phonograph records or in broad-casting, particularly of music having a large volume range such as symphony orchestra selections, the volume range is com-pressed so that the soft passages are louder and the loud passages are soft-er than in the original music. This compression is necessary to keep the soft passages above the background noise level of the equipment and to pre-vent the loud passages from overcutting the grooves on the record or over modulating the carrier. More natural reproduction of such music may be ob-tained by the use of a volume expander amplifier which amplifies the loud passages more than the soft passages and thus increases the volume range. Fig. 28 shows a circuit for a volume expander amplifier using a type 6L7 or 6L76 pentagrid tube.

FIG. 28

The operation of the circuit is as follows: The gain of the 6L7 audio amplifier depends on the bias on number 3 grid. The input signal is applied to the number 1 grid of the 6L7 and also to the grid of the 6C5. The amplified signal from the 6C5 is rectified by the 6H6 or 6H6G and the d-c output voltage applied, as a positive bias, to the number 3 grid of the 6L7 so that the gain increases and decreases with the amplitude of the signal. The form of tap, P, determines the initial bias on grid number 3 of the 6L7 is 0.15 milliamperes. The input signal on the grid of the 6L7 is 0.25 milliamperes action until the input signal for 6H6G rectifier tubes.

AUTOMATIC FREQUENCY An automatic frequency control circuit, as amplied to CONTROL CIRCUITS a superheterodyne receiver, is one which automatically controls the oscillator frequency in such a manner that the intermediate frequency is maintained at the frequency to which the i-f amplifier is tuned. Thus, a receiver equipped with AFC automatically or-rects inaccuracies in manual tuning and compensates for oscillator drift. An AFC circuit consists of a frequency discriminator circuit and a control cir-cuit. The discriminator detects changes in intermediate frequency and sup-plies a/d-c voltage, the polarity of which depends on the direction of the frequency change, to the control circuit which changes the oscillator fre-quency and returns the intermediate frequency to be proper value. cuit. The discriminator detects changes in intermediate frequency plies a d-c voltage, the polarity of which depends on the direct frequency change, to the control circuit which changes the oscill quency and returns the intermediate frequency to the proper value.

RAYTHEON ENGINEERING SERVICE

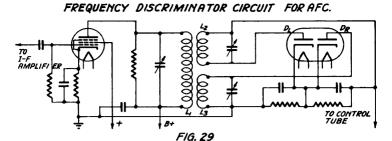
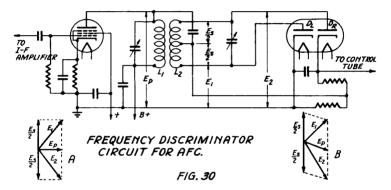



Fig. 20 shows a frequency discriminator circuit. The primary,L, is tuned to the intermediate frequency of the receiver and loosely coupled to the secondaries, L₂ and L₃, which are tuned to frequencies spaced equally above and below the intermediate frequency. The voltages across L₂ and L₃ are applied to a duo-diode rectifier as shown. The d-c output voltage of this rectifier is the AFC voltage and is equal to the difference between the voltages developed by each diode. When the i-f signal is on the center frequency the voltage applied to the dides are equal, the d-c output voltages are equal and no resultant AFC voltage is developed. If the i-f frequency changes toward the resonant frequency of L₂, more voltage will be applied to diode, D₂ will develop more d-c voltage than D_R, and the resultant AFC voltage will be negative with respect to ground. In like resultant AFC voltage will be positive with respect to ground.

Another discriminator circuit which does not depend on side circuits, tuned above and below the intermediate frequency, for its operation is shown in fig. 30. In this circuit the primary L, and the secondary, Lg are both tuned to the intermediate frequency of the receiver and are loosely coupled. The operation of the circuit depends on the fact that at the resonant frequency the primary voltage, Eg, and the secondary voltage, Eg, are 90° out or phase and on the fact that the voltage, Eg, and the secondary voltage, Eg, are 90° out of the roltare, Eg, applied to the other so that the voltare, Eg, applied to the difference between the dec voltage, and the voltare, Eg, applied to the other secondary voltage and the voltare, Eg, applied to the other secondary voltage. As in Fig. 20, the resultant AFC voltage is the difference between the dec voltages developed by ved difference is the applied to the diades are equal, no resultant AFC voltage is and Eg, will develop more d-c voltage the gal, and Fig. 29, the voltage, Eg, applied to diade any the voltages. The voltages when the applied to the diades are equal, no resultant AFC voltage is also be as herm in vector diagram, B. The voltage, Eg, applied to diade Eg, will develop more d-c voltage the voltage. The voltage are voltage will develop more d-c voltage than Eg, and the rescultant AFC voltage will develop more d-c voltage than Eg, and the rescultant AFC voltage will develop more d-c voltage than Eg and the rescultant AFC voltage will develop more d-c voltage than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and the rescultant AFC voltage will develop more d-c voltage than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and the rescultant AFC voltage will develop more d-c voltage to than Eg and t

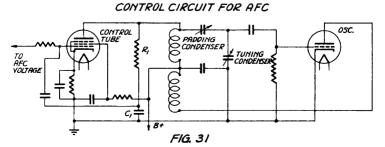


Fig. 31 shows a control circuit which controls the oscillator frequency in accordance with the d-c voltage developed by the discriminator. The plate of the control tube is coupled to the oscillator tank coll and a voltage approximately 90° out of phase with the voltage across the tank coil is applied to the grid. In Fig. 31 this out of phase voltage is obtained from condenser, Cl, which is in series with resistor, Rl, across the tank coil. In practice the resistance of R is made much greater than the reactance of Cl and the current through Cl is practically in phase with the voltage across the tank coil. The voltage across Cl is therefore practically 90° out of phase with the tank coil voltage. The plate circuit of the control tube then acts like an incuctance across the tank coil. The value of this effective inductance depends on the bias on the grid of the control tube. As the bias of the control tube is determined by the AFC voltage generated by the discriminator, the control tube tends to maintain the oscillator at the proper frequency.

RECOMMENDED OPERATING PRACTICES

FILAMENT AND HEATER VOLTAGE Rad:

Radio receiving tubes are designed to operate satisfactorily with moderate variations in heat-

satisfactorily with moderate variations in heater or filament voltage from the rated values. However, for best performance and life the rated values should be maintained as closely as possible. At excessively high values of heater or filament voltage there is danger of heating the first grid to the point where it emits a sufficient number of electrons to interfere with the proper functioning of the tube and in aoperated receivers the hum introduced from the a-o heater supply is likely to be greatly increased. Furthermore, the rate of evaporation of active material from the cathode is greatly accelerated with corresponding reduction in tube life. At excessively low heater or filament voltages the characteristics and the receivor performance are seriously affected. In the case of tubes in which a relatively large current is drawn from the such conditions is apt to result in serious damage to the tube and early failure.

It is now standard practice to design a-c operated receivers for a line voltage of 117 volts and the filament and heater transformers should be designed to supply exactly the rated voltages to the heaters and filaments with this line voltage. If this is the case, the performance and life of the tubes will not be seriously affected by the normal fluctuations in line voltage, if these are not more than ten percent. The best practice is to have the receiver power transformer supplied with taps so that the voltages may be held within 5% of the normal value. When the filaments or heaters are operated in series the total voltage does not divide exactly equally a er resistance. In this case the bad effects of large variations in line voltage are exaggerated. It is important that receivers having the heaters to the heaters or filaments at the standard line voltage of 117 volts.

The tubes used in automobile receivers are designed to give satisfactory life and performance with the heater voltage fluctuating between 5,5 and 8.0 volts as in normal automobile operation and the connections should be arranged to maintain the heater voltage at all times within this range.

In home receivers where the heater or filament current is supplied directly from two-volt or six-volt storage batteries the variation in filament voltage will normally not be excessive. Nowever, precautions should be taken against excessive voltage drop in the filament supply connections and against abnormal battery voltages such as might occur during battery charging or when the battery is discharged.

For best results, the filament voltage applied to two-volt tubes should be within the range of 1.8 ± 0.2 , 2 volts, Operation at a voltage of 2.3 volts for a short period is permissible. The tubes are generally operative at voltages as 1.7 volts but with reduced sensitivity and output.

The two-volt-tube receivers designed for use with aircells are equipped with the proper series resistor for maintaining the filament voltage within a suitable range during the life of the battery. With many two-volt-tube receivors for use with three-volt dry batteries or dry packs there are provided ballast tubes which tend to hold the filament current at the proper value. It is essential that these ballast tubes be rated for the same value of current as the total filament current of the receivers with which they are used. As the characteristics of the ballast tube are apt to undergo a permanent change during life, it is advisable to replace it whenever the filament battery is replaced.

Some two-volt-tube receivers now employ a typo of resistor tube which may be used with a storage battery, aircell or drycell supply. (See "NB" resistor tubes at end of rating and characteristic data section).

Some two-volt-tube receivers are decigned to operate with the filament voltage supplied directly from a 4.5 volt dry battery or dry pack, the two-volt tubes being used in pairs with the filaments in series. The range of filament voltage is somewhat greater in this case than in the preceding cases but better battery economy is obtained. TUBE LOUNTING The common and safest practice is to mount tubes in a vertical position. However, it is elso generally permissible to mount them in a horizontal position. When filament type tubes are mounted horizontally they should be turned so that the plane of the filament is vertical, to avoid the chance of the filament cagging sufficiently to touch the grid or the plate.

Provision should be made for free circulation of air around the tubes. This applies particularly to the rectifier and power output tubes which must dissipte considerable power. Too close confinement increases the chance of grid emission or loss of vacuum due to electrolysis of the glass between the sealed in leads at high glass temperatures.

Modern tubes, particularly those of the heater type, are capable of withstanding relatively severe vibration for short periods without damage. If they are subjected to severe vibration continuously a gradual wearing away of the insulated heater coacing or of the mica spacer is liable to occur and premature failure of the tube may recult. Where the receiver is likely to be subjected to severe vibration a cushioned mounting should be provided for the receiver chassis and means should be employed to prevent or damp out resonant vibrations of the chassis and tubes.

MICROPHONICS Microphonic howing, when due to a tube, is caused by mechanical feedback from the speaker to the tube either through the air or through the chassis. Tubes which are followed by high audio frequency gain are most susceptible. Heater type tubes are much less microphonic than filament types, and ordinarily give no treuble except under extreme conditions. In filament types, particularly the two-wolt types, the filament may be sof into vibration at its resonant frequency by extremely small impulses of the same frequency. In present and to camp out oscillations of the filament, but if the audio frequency gain in the receiver is high, special precautions must be taken in the receiver to reduce mechanical feedback. The most sensitive tube should not be munted close to the speaker; the speaker should not be rigidly connected to cabinet or chassis; the chassis should have a cushioned mounting in the cabinet and resonant vibrations in the chassis should be avoided or damped out.

Ordinary precautions against tube microphonics are usually sufficient for audio frequency gains up to about 100 db. with heater type tubes and up to about 50 db. with two-volt tubes. Gains exceeding these values usually require special precautions arainst tube microphonics and hum. Hicrophonic troubles may originate in the converter or even in the i-f amplifier tubes through audio frequency modulation of the carrier or of the i-f frequency, swen whon the gain in the audio frequency stages is not especially high. Similar precautions should be used to avoid this type of microphonic effect.

HUM In modern a-c operated receivers filament type tubes are used only as plate-supply reatifiers or as output tubes. Filters are provided to eliminate the hum voltage developed in the rectifier section by the a-o supply. The voltage gain in the output stage is usually low and the hum is not noticeable if the simple precautions are taken of connecting the grid and plate return leads to the mid-point of the filament transformer secondary and of having this point well by-passed to the chassis. The heater type tubes used in all the other positions are so designed that, under favorable circuit conditions, only very small hum voltages are introduced into the audio and radio frequency circuits by the a-c heater voltage and current. For minimum hum the ground connection to the heaters should be made to the center point of the heater winding. If hum is present, it is usually caused by improper filtering or is introduced by some circuit element other than the tubes.

However, under some conditions, a troublesome amount of hum may originate in the tubes. The second detector tube or the first audio amplifier tube is most likely to give trouble because it is followed by the maximum audio gain. Hum may also originate in the mixer or in the i-f amplifier tubes, due to 60 cycle modulation of the r-f or i-f carrier.

The most common cause of hum in a tube is a minute leakage current between the heater and the cathode, which by flowing through some high resistance circuit element, such as the cathode resistor, develops a small voltage which is amplified by the succeeding audio frequency stages. To reduce hum from this source the cathode resistor should be by-passed and the cathode should be made negative with respect to the heater.

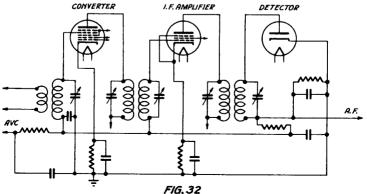
Other circuit precautions include the proper shielding of the tubes and component parts to prevent both electrostatic and electromagnetic coupling between them, and the arrangement of the wiring in such a way that leads followed by high audio frequency gains are not looped around the filament supply wires and are kept as far as possible from any leads carrying alternating currents.

Hum is sometimes introduced by the direct action of a strong 60 cycle magnetic field on the tubes. This occurs when the tubes are placed too close to the power transformer or the filter choke and the chassis should be laid out to avoid this possibility.

GRID CIRCUIT RESISTORS In present day receivers grid circuit resistors of relatively high values are commonly used, for instance, in resistance coupled amplifier stages, in the diode detector stage and in automatic volume control and other automatic control networks. As a result, a grid current of as little as a few microamperes may cause serious reduction in the grid bias due to the voltage drop in these resistors. This condition may lead to reduced sensitivity, instability or even to serious overheating and damage to the tubes or other circuit elements. Circuits in which a common resistor is inserted in the grid return lead of two or more tubes are particularly susceptible to loss of bias due to grid current. The tubes are always checked for grid current during final testing in the factory and are held to a limit of not more than one or two microamperes. The overale value is a small fraction of a microampere. However, when a tube is operated in a receiver, a higher value of grid current may appear due to a minute evolution of gat from, the parts or to a minute arount of thermal electrical leakage across on insultor or to a small amount of thermal tends to decrease rapidly as the receiver is operated. The overant due to grid emission appears only after the tube has become heated to its maximum operating temperature and is aggravated by any conditions tending to overvoltage, excessive plate voltage or insufficient grid bias.

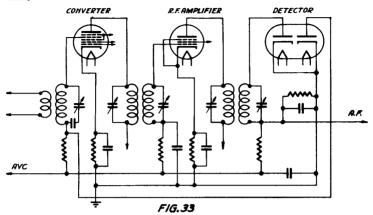
The best precaution against trouble from this source is the avoidance of circuits which depend for their operation on extremely high values of grid resistors. A second precaution is to obtain the grid bine by means of the voltage drop in a cathode, or solf-bias, resistor rather than to use a fixed bias. With solf-bias any tendency toward the loss of bias due to grid current is partially compensated for by an increase in the solf-bias because of the resultant increase in plate current. A further precaution is the avoidance of encessive plate and screen grid voltages and ourrents by making sure that the tubes are operated well within their maximum ratings even at the highest line voltages. A fair amount of regulation in the screen and plate voltage supplies is also helpful in this respect.

As a general rule, the grid resistor for a single tube, exclusive of the output tube, should not exceed three megorums and a maximum of one megorum woul be preferable. Where a resistor is comman to the grid directle of two or mero tubes the value of the resistor should not exceed these values divided by the number of tubes whose grid current flows through it. The above rule applied in the case of solf-bias.


In the case of fixed-bias, the maximum value of the grid resistor should never creed one regolm and this value should be reduced in inverse proportion to the number of tubes for whose grid current it forms a path. In applying these rules it should be noted that they refer to the total resistance in the rid circuit including the sum of all series resistors such as are used in some control circuits.

In the case of output tubes, a maximum value for the grid resistor is commonly given with the tube rating. In general, a value of one megohm is the maximum safe value for tubes of low output ratings up to 3 or 4 watts and 1/10 to 1/4 megohm for tubes of higher output ratings.

PRECAUTIONS AGAINST ELOCXING DUE TO SECONDARY ENISSION When a sufficiently high positive voltage is applied momentarily to a control grid there is an emission of secondary electrons from this grid to the screen grid or to the plate. Under some conditions this current may exceed the flow of electrons from the cathode to the centrol grid so that there is a net flow of electrons into the grid through the external grid circuit. If this circuit includes a very high resistance the recultant voltage drop may be sufficient to maintain the grid at a positive notential in spite of an externally applied negative is blocked and incorative and may be permanently damaged by overheating due to the recultant encective plate current.


In most tubes the secondary exission characteristic of the control grid is low enough so that this trouble will occur only under abnormal conditions. A frequent cause of trouble is a defective wave change switch that applies a high positive develotage to the grid momentarily during switching. Surges sufficiently high may reach the r-f amplifier tubes or the converter tube to cause blocking under certain circuit conditions. Sufficient surge is also sometimes developed in the output tube, when the set is turned on, to cause blocking under bad circuit conditions.

To avoid trouble of this kindit is advisable to use as low values of resistance as is possible in the grid circuits of the tubes that may be subjected to surge, particularly the tubes mentioned above. The switches should be designed and adjusted to reduce grid current surges to a minimum. The circuits should be arranged to provide high damping for surges. This can frequently be accomplished by taking advantage of the damping effect of the grid current flow when a grid is thrown slightly positive. This alone will protect a tube against small surges.

Added damping for an r-f amplifier or a converter tube may be obtained by coupling its grid circuit to the grid circuit of an i-f amplifier tube, as shown in Fig. 32, so that a surge reaching the grid of the r-f amplifier or the converter tube is partially dissipated by causing grid current to flow in the i-f amplifier tube.

It is also possible to connect a diode to the r-f amplifier or converter tube grid circuit in such a way that a surge will be dissipated by causing ourrent to flow through the diode. Fig. 33 shows a diode connected to the grid circuit of a converter tube to prevent blocking due to secondary emission.

CONVERSION CURVES

The following curves, Figs. 34, 35 and 36, may be used to find the approximate operating conditions for power amplifier triodes, tetrodes and pentodes at other than the published operating conditions.

Fig. 34 should be used for triodes operated at other than the published plate voltage and for tetrodes and pentodes operated at other than the published plate and soreen voltages. For example, suppose it is desired to operate a pentode power amplifier at a plate and soreen voltage 20% lower than the published values. The percent change from the published operating conditions may be read at the intersections of the curves with the -20%ordinate. Thus, for a 20% decrease in plate and soreen voltages, the grid bias should be decreased 20% or the bias resistor increased 12%, the load resistance should be increased 12%, the plate and soreen current will be decreased 27% and the power output will decrease 46%. Values for triodes may be determined from the curves in the same manner.

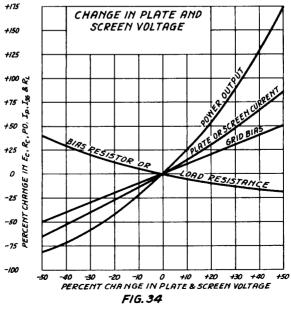


Fig. 35 should be used for tetrodes and pentodes where only the plate voltage is changed and the values are read from the curves in the same way as in Fig. 34.

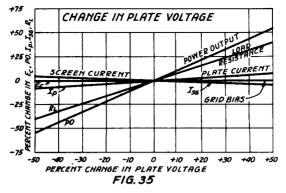
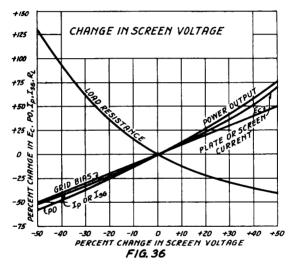
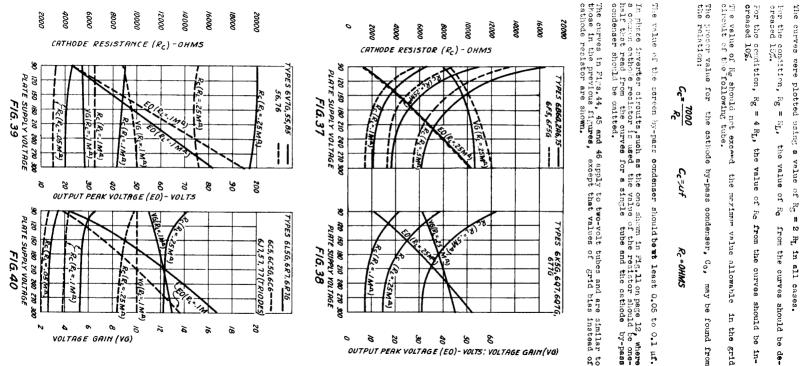



Fig. 36 should be used for tetrodes and pentodes where only the screen voltage is changed and the values are read from the curves as in the previous figures. Tetrodes and pentodes should not be operated with the screen voltage appreciably higher than the plate voltage.

When choosing new operating conditions for any tube the published maximum ratings should not be exceeded.

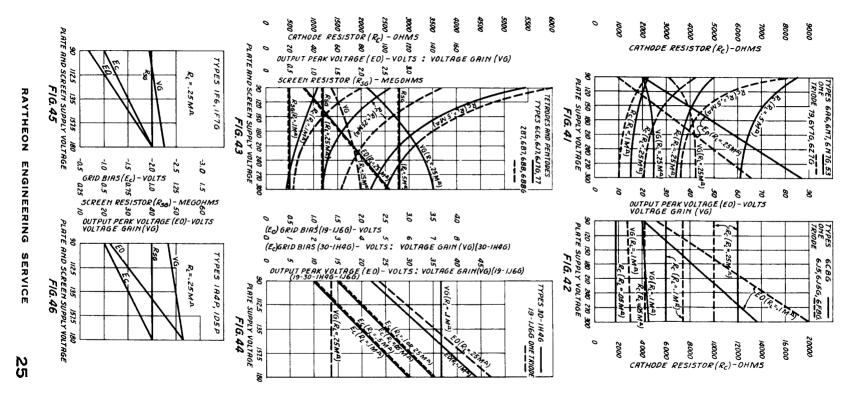

RESISTANCE-COUPLED AMPLIFIER DESIGN CURVES

The curves in Figs.38 to 43 give circuit design data for use with the heater type tubes commonly used in resistance-coupled amplifiers. The curves show the proper value of cathode resistor, R_0 , for use with several values of plate resistor, R_1 , at plate supply voltages from 90 to 300 volts. The values of output voltage, E_0 , (peak volts) at maximum signal and the voltage gain, VG, are also shown by the curves.

Typical circuit diagrams for triode and pentode resistance coupled amplifiers may be found on page 11.

The value of the coupling condenser, C, depends on the value of R_g , the grid resistor for the following tube and for approximately 75 percent of the high frequency response at 60 cycles the value will be:

$$C = \frac{0.003}{R_{\rm G}} \qquad C = \mu f \qquad R_{\rm G} = MEGOHMS$$


24

D

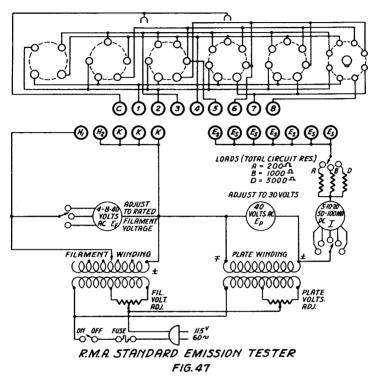
۶

THEON ENGIN m ERING SERVICE

a11 0 သ ω ā 10

All tubes are put through a mechanical and electrical test in the factory as one of the last operations. They are individually checked for such items as short circuits, open circuits, grid current, electron emission from the cathode, tube noise and certain operating characteristics such as plate current, transconductance or power output. The original design has previously been completely tested for all important operating characteristics. The individual factory tests insure that each tube is of good quality so far as factory processing is concerned and that it conforms to the original design within standard tolerances, as indicated by one or more key characteristics. At frequent, regular intervals sample tubes are selected at random from the production and are tested in the laboratory for all important characteristics. Random samples of regular production tubes are also life tested at approximately maximum rated voltages and the characteristics are measured after various periods of operation to determine the quality and the degree of constancy of the characteristics during life.

The test equipment required for this factory and laboratory testing is elaborate and expensive and one test set can readily accomodate only a few tube types out of the two hundred that are now on the market. Obviouely, it is neither practical nor necessary, for the tube dealer or even for the set manufacturer to make as complete a test of tubes as is done by the tube manufacturer. However, a small percentage of defects develop during shipment and handling and most dealers find it advantageous to check each tube, when sold, as an insurance that it is operative and to check the condition of tubes that have been in service. Various types of relatively simple tube testing equipment have been developed for the dealer's use. In most cases this simple equipment will not give an accurate measurement of a tube's operating characteristics or of its ability to perform satisfactorily in any particular receiver. The simplest will give an approximate indication of the value of some major characteristic.


Since a radio tube cannot perform properly without a copious supply of electrons from the cathode, a test that will measure or at least give a comparative indication of the electron emission can be used as a rough check on the operating condition of a tube and of its ability to perform up to the normal standard for its type. In the common form of emission type tube checker a fixed value of a-c voltage is applied between the cathode and the nearest grid (usually with the other elements connected to this grid)through a fixed resistor and a d-c ourrent indicating meter. Provisions are, of course, made for applying rated heater or filament voltage to the tube and for making the proper electrode connections for each tube type. In addition, facilities are often included for testing for short circuits, open filaments and often for electrical leakage between the clements.

The Radio Manufacturer's Association has recommended, in the interests of standardization, certain values of circuit constants that should be used in this type of tube checking equipment. The RMA recommends that tubes be tested under the following conditions:

- 1. Rated Filament or Heater Voltage
- 2. Fixed Emission Voltage of 30 volts RMS
- Total effective series impedance of testing circuits should be varied as follows:
 - (a) High value for diodes, exclusive of power rectifiers 5000 ohms
 - (b) Medium value for battery tubes of limited emission-1000 ohms
 - (c) Low value for remaining types 200 ohms
- A pointer type of indicating meter is recommended as the most reliable device for indicating tube characteristics.
- 5. The regulation of the system should not exceed ± 5% with the range of loads for which the tester is designed.
- The short circuit or leakage test oircuit should not respond to a resistance greater than 250,000 ohms.
- 7. The RMA recommended circuit is shown in Fig. 47.

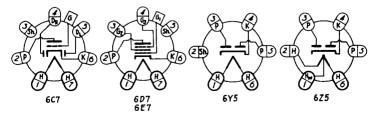
To establish limits for an emission type tube tester it is necessary to read a number of tubes of each type to be tested, and determine the average readings for good tubes of each type. Due to minor differences in design, tubes of the same type but of different manufacture may give different readings in tube testers, and still perform equally well in a receiver. In general, the end of the useful life of power amplifier tubes is indicated by a reading 50% below the average for good tubes of the same type, and of voltage amplifier tubes and rectifier tubes by readings 35% and 20% below average respectively.

Other types of tube checkers are designed to give a rough check on some other tube operating characteristic, such as plate current, transconductance or power output. Accurate measurement of these characteristics requires sensitive measuring equipment and accurately measured element voltages for a large range and variety of test conditions and tube connections. All of these items are increasingly expensive to obtain as the degree of accuracy is increased.

RAYTHEON RECEIVING TUBES

TYPE NO.	STRUCTURE	CATHODE	USE
00A 01A 0Z4 0Z4G	Triode Triode Twin Diode Twin Diode	5.0 volt Filament 5.0 volt Filament Cold Cold	Detector Detector or Amplifier Full Wave Rectifier Full Wave Rectifier
1A4 1A6 1B4/951 1B5/25S 1C6 1C7G 1D7G 1E5G 1D7G 1E7G 1F4 1F5G 1F4 1F5G 1F6 1F7G 1G5G 1J5G 1J5G 1J5G 1J5G 1-V	Tetrode Heptode Pentode Duo-Diode Triode Heptode Pentode Pentode Pentode Pentode Pentode Pentode Puo-Diode Pentode Duo-Diode Pentode Pentode Triode Triode Triode Triode Twin Triode Diode	2.0 volt Filament 2.0 volt Filament 3.0 volt Filament	Frequency Converter Detector or Amplifier Frequency Converter Frequency Converter Frequency Converter Frequency Converter Detector or Amplifier Power Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Power Amplifier
2A3 2A311 2A5 2A6 2A7 2B7	Triode Triode Pentode Duo-Diode Triode Heptode Duo-Diode Pentode	2.5 volt Filament 2.5 volt Heater 2.5 volt Heater 2.5 volt Heater 2.5 volt Heater 2.5 volt Heater	Power Amplifier Power Amplifier Power Amplifier Detector Amplifier Frequency Converter Detector Amplifier
5T 4 5U 4G 5V 4G 5W4 5W4G 5X 4G 5Y 3G 5Y 4G 5Z 3 5Z 4	Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode Twin Diode	5.0 volt Filament 5.0 volt Filament	Full Wave Rectifier Full Wave Rectifier Full Wave Rectifier Full Wave Rectifier Full Wave Rectifier
6A3 6A4/LA 6A5G 6A5G 6A7 6A8 6A7 6A8 6A85 6A25G 6B40 6B5G 6B40 6B5G 6B7 6B8 6C5G 6C5G 6C5G 6C5G 6C5G 6C5G 6C5G 6C5G	Triode Triode Twin Triode Heptode Heptode Cathode Ray Triode Triode Duo-Diode Triode Duo-Diode Pentode Duo-Diode Pentode Duo-Diode Pentode Duo-Diode Pentode Triode Triode Triode Pentode Heptode Cathode Ray Twin Triode Triode Triode Triode Triode Triode Pentode Triode Triode Triode Pentode Triode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Triode Pentode Triode Pentode Triode Triode Pentode Triode Triode Pentode Triode Triode Triode Triode Triode Pentode P	6.3 volt Filament 6.3 volt Filament 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Filament 6.3 volt Filament 6.3 volt Heater 6.3 volt Heater	Power Amplifier Power Amplifier Power Amplifier Frequency Converter Frequency Converter Frequency Converter Frequency Converter Power Amplifier Power Amplifier Detector Amplifier Detector Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Tuning Indicator Frequency Converter Remote Cutoff Amplifier Power Amplifier Power Amplifier Power Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Frequency Converter Amplifier or Phase Amplifier Power Amplifier Detector Converter Amplifier or Converter Amplifier or Converter Detector or Amplifier Detector Converter Amplifier Detector Detector or Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier
6L6 6L6G 6L7 6L7G	Tetrode Tetrode Heptode Heptode	6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater	Power Amplifier Power Amplifier Mixer or Amplifier Mixer or Amplifier

28


TYPE NO.	STRUCTURE	CATHODE	USE
6N5 6N6G 6N6LG 6N7 6177 6277 6277 6277 6277 6277 6277 627	Cathode Ray Duo-Triode Duo-Triode Twin Triode Twin Triode Triode Pentode Duo-Diode Triode Duo-Diode Triode Duo-Diode Triode Duo-Diode Triode Cathode Ray Duo-Diode Triode Cathode Ray Pentode Tetrode Tetrode Twin Diode Twin Diode Twin Diode Twin Triode Twin Triode Twin Diode	6.3 volt Heater 6.3 volt Heater	Tuning Indicator Power Amplifier Power Amplifier Power Amplifier Power Amplifier Power Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Detector Amplifier Tuning Indicator Detector Amplifier Remote Cutoff Amplifier Tuning Indicator Remote Cutoff Amplifier Power Amplifier Power Amplifier Full Wave Rectifier Full Wave Rectifier Power Amplifier Power Amplifier Full Wave Rectifier
10 12A 12A5 12A7 12Z3 15 19 20 22 22 24A	Triode Triode Pentode Diode Pentode Diode Tentode Triode Tetrode Tetrode	7.5 volt Filament 5.0 volt Filament 12.6/6.3 v. Heater 12.6 volt Heater 12.6 volt Heater 2.0 volt Filament 3.3 volt Filament 3.3 volt Filament 2.5 volt Heater	Rectifier Power Amplifier
25A6 25A3G 25A3G 25B6G 25L6 25L6G 25Z5 25Z6 25Z6 25Z6G	Pentode Pentode Diode Pentode Pentode Tetrode Tetrode Twin Diode Twin Diode Twin Diode	25 volt Heater 25 volt Heater	Power Amplifier Power Amplifier Rectifier Power Amplifier Power Amplifier Power Amplifier Rectifier Voltage Doubler Rectifier Voltage Doubler Rectifier Voltage Doubler
27 30 31 32 33 34 35 51 36 37 39 44 40 41 42 45 45 55 55 55 57 55 57 55 57 57 5	Triode Triode Triode Triode Tetrode Pentode Tetrode Tetrode Tetrode Tetrode Triode Pentode Pentode Pentode Pentode Pentode Pentode Pentode Pentode Dual Grid Triode Triode Dual Grid Triode Triode Dual Grid Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Triode Pentode Triode Pentode Triode Pentode Triode Pentode Triode Duo-Diode Triode Triode Pentode Triode	2.5 volt Filament 30 volt Heater 2.0 volt Filament 4.5 volt Filament 5.5 volt Filament 2.5 volt Heater 2.5 volt Heater 2.5 volt Heater 2.5 volt Heater 5.0 volt Filament 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 5.0 volt Heater 5.0 volt Heater 5.0 volt Heater 5.0 volt Filament 5.0 volt Filament 5.0 volt Filament 5.0 volt Filament 5.0 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 5.0 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater 6.3 volt Heater	Amplifier Detector or Amplifier Detector or Amplifier Power Amplifier Detector or Amplifier Power Amplifier Remote Cutoff Amplifier Remote Cutoff Amplifier Detector or Amplifier Detector or Amplifier Power Amplifier Detector or Amplifier Power Amplifier Detector or Amplifier Detector or Amplifier Detector or Amplifier Power Amplifier Power Amplifier Power Amplifier Full Wave Rectifier Half Wave Rectifier Full Wave Rectifier

TYPE NO.	STRUCTURE	CATHODE	USE
950 BA BH BR WD-11 WX-12 V-99 X-99	Pentode Twin Diode Twin Diode Diode Triode Triode Triode Triode	2.0 volt Filament Cold Cold Cold 1.1 volt Filament 3.3 volt Filament 3.3 volt Filament	Power Amplifier Full Wave Rectifier Full Wave Rectifier Half Wave Rectifier Detector or Amplifier Detector or Amplifier Detector or Amplifier

Individual tube data sheets are arranged in the same numerical order as in the above listing.

RAYTHEON SPECIAL RECEIVING TUBES (Supplied for Replacement Use Only)

TYPE NO	. FILAM VOLTS	IENT AMP	BASING	SHIELD CONNECTED TO	CHARACTERISTICS USE & DIMENSIONS
2A75	2.5	1.0	Same as 2A7	Cathode Pin	Same as 2A7
2E5	2.5	0.8	Same as 6E5	No Shield	Same as 6E5 Except Filament Rating
28/48	2.5	1.35	Same as 84/624	Cathode Pin	Approx.40 ma per plate at 50 volts d-c. Duo-Diode Detector,4 3/16"xl 9/16"
2Z2/084	2.5	1.5	Same as 81	No Shield	Similar to 1-V
CA7S	6.3	0.3	Same as 6A7	Cathode Pin	Same as 6A7
6875	6.3	0,3	Same as 6B7	Cathode Pin	Same as 6B7
607	6.3	0.3	See Below	Separate Pin	Same as 85AS
6D7	6.3	0.3	See Below	Separate Pin	Same as 6C6
6 B 7	6.3	0.3	See Below	Separate Pin	Same as 6D6
6F7S	6.3	0.3	Same as 6F7	Cathode Pin	Same as 6F7
6Y5	6.3	0.8	See Below	Separate Pin	Similar to 84/6Z4
625	12.6	0.4	See Below	No Shield	Similar to 84/624
245	2.5	1.75	Same as 24A	Cathode Pin	Same as 24A
275	2.5	1.75	Same as 27	Cathode Pin	Same as 27
35 5/518	2.5	1.75	Same as 35/51	Cathode Pin	Same as 35/51
555	2.5	1.0	Same as 55	Cathode Pin	Same as 55
56S	2.5	1.0	Same as 56	Cathode Pin	Same as 56
56-AS	6.3	0.3	Same as 76	Cathode Pin	Same as 76
575	2. 5	1.0	Same as 57	Cathode Pin	Same as 57
57-AS	6.3	0 .4	Same as 6C6	Cathode Pin	Same as 6C6 Except Heater Amps.
58S	2,5	1.0	Same as 58	Cathode Pin	Same as 58
58-AS	6.3	0.4	Same as 6D6	Cathode Pin	Same as 6D6 Except Heater Amps.
75S	6.3	0.3	Same as 75	Cathode Pin	Same as 75
85 -AS	6.3	0.3	Same as 85	Heater Pin Adjacent to Cathode Pin	Similar to 85 Except M μ =20;Gm=1250;Ip=5.5 ma; Ep=250 v. Eg = -9 v.
<u>1828</u> 4828	5.0	1,25	Same as 45	No Shield	Similar to 45 Except Filament Rating;Mu=5; Gm=1500;Ip=18ma;Ep=250v; Eg= -35 v.
<u>183</u> 483	5.0	1,25	Same as 45	No Shield	Similar to 45 Except Filament Rating;M μ =3; G _m =1500;I _p =20 ma;E _p =250v; E _g = -58 v.
4 85	3.0	1.25	Same as 27	No Shield	Similar to 27 Except Heater Rating; Mu=12.8; Gm=1300; Ip= 5.2 ma; Ep= 180 v; Eg= -10 v.

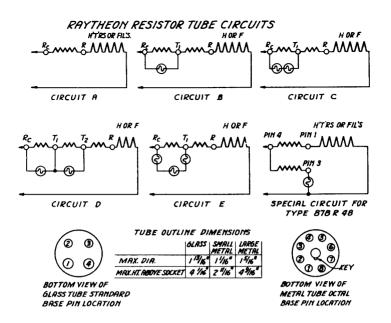
BOT TOM VIEWS OF SOCKETS

Raytheon tubes can be used as replacements for tubes of other manufacturers as follows:

- A Tube types having the same RMA type numbers (with a letter, or two letters, between two numbers, as 6A7 or 62Y5G) are interchangeable.
- On standard tube types with two or three figure type numbers, the last two figures form the significant type numbers regardless of letter prefixes. For example, the Raytheon 45 will replace the UX-245, CX-345, or SX-245 tubes.
- Types differing in number by the suffix letters "A", "G", "H", "MG" or "V" are interchangeable in general regardless of this letter. For example, the 12A may replace a 112 or 112A, the 2A3 may replace a 2A3H, and a 6A8G may replace a 6A8 or 6A8MG. С
- Tubes with octal bases and standard size glass bulbs are designated by the suffix, "G" on the type number, as 6A86. Tubes with octal bases, glass bulbs and attached metal shields are designated by the suffix "MG" on the type number, as 6A8MG. Tubes with octal bases and metal bulbs have no suffix on the type number, as 6A8. "G" type tubes having type numbers corresponding to metal tube or "MG" type numbers have, in general the same electrical characteristics excepting capacitances, and are usual-ly interchangeable with the corresponding metal or "MG" types except for space requirements and the possible requirement of external tube shields. D
- Shielded types distinguished by the added letter "S" interchangeable with types without this letter suffix. added letter "S" may or may not be Е
- Exceptions to the above tubes are types, D-1, DE-1, RE-1, SO-1, RE-2, SO-2, KR-20, KR-22, KR-28, 45MG, HZ-50, 55B, G-84, 102B, 103, Kellogg 401, 482A, 402B, 484, 484A, and 25Z5MG, which do not correspond with types 1- $\sqrt{20}$, 22, etc. The OlA (201A) is not interchangeable with the 1- $\sqrt{20}$, SO-3, 485 and 950 may be replaced only by Raytheon tubes bearing the same full type number. F
- The following table lists the obsolete and non-standard tube the Raytheon types which normally may be used for replacement. G and non-standard tube types with

TYPE NO.	NORMALLY REPLACEABLE BY RAYTHEON TYPE	TYPE NO.	NORMALLY REPLACEABLE BY RAYTHEON TYPE	TYPE NO.	NORMALLY REPLACEABLE BY RAYTHEON TYPE
00 01AA D-1/2 1 D-1 DE-1 KR-1 RE-1 2A3II G-2 G-2S RE-2 SO-2 G-4 G-4 G-4	00A 01A 01A 81 1-V 80 27 1-V 80 2A3 2S/4S 2S/4S 81 50 2S/4S 2S/4S	2525ia 2526ia 27-11M KR-28 355 36A 36A 39 39A 43ia 44 HIZ-50 51 51S	2526G 2526G 56 84/624 355/51 355/515 36 37 38 39/44 39/44 2546G 39/44 1223 35/51 355/513	210 213 216 216B 220 222 224 224A 226 227 230 231 232 233 234 235	10 80 81 20 22 24A 26 27 30 31 32 33 34 35/51
573 524MG KR-5 6A8MG 6B6 6B6MG 6C5MG 6F5MG 6C5MG 6C5MG 6C5 6H5 6H5MG 6J7MG 6J7MG 6L7MG 6L7MG 6L7MG 6L7MG	25/43 5Y3G 524, 5V4G 6A4/LA 6A3G 6B6G 6B6G 6C5G 6F5C 6F5C 6F5C 6F6G 6G5/6H5 6H6G 6J7C 6K7C 6L7G 6L7G 6L7G 6L7G	56-A 57-A 58-A 64 64 65 65A 67 67 67 67 88 68A 80 11 81 84 84 88	35/315 76 * 57-AS 58-AS 36 * 39/44 * 39/44 * 37 * 37 * 38 * 38 * 38 * 38 * 38 * 38 * 38 * 38	235 236 237 238 240 245 245 245 245 245 280 280 280 280 280 288 288 288 288 288	35/51 36 37 38 39/44 40 45 47 50 80 83V 81 83V 81 83V 81 83V 99 X-99 71A
6N6LG 6P7 6Q7LG 6X5LG 6X5LG 6X5LG 6Z5/6 C-11 C-12 WD-12 14Z3 22AC 25A6LG 25A7 25A8 25S 25/25S	25 625 WD-11 WX-12 WX-12 1223 24A 25A6G 25A7G 25A7G 1B5/25S	95 96 98 1122 120 1711 171A 171A 171B 182-A 182-B V-199 X-199 201 201 201 202	2A5 1-V 84/624 12A 12A 20 71A 71A 71A 71A 183 V-99 COA 01A 10	482B 482B 483 585 586 P-861 986 AD AF AG AC AC AC AC AC AZ B E C H LL LA PZ PZH	102B/482B 183/483 ‡ 183/483 ‡ 183/483 ‡ 50 50 624/84 184/951 83 † 1-V 82 83 † 01A V-99 20 40 00A 6A4/LA 47 2A5

† When the filament supply will stand one ampere additional drain. * In automobile receivers only.


‡ When both power tubes are changed together.

RAYTHEON RESISTOR TUBES

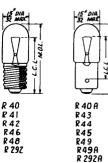
FOR

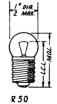
A-C - D-C RECEIVERS

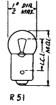
Т уре No.	No.of 6.3 V Tubes	No.of 25 V Tubes	Volts Drop at 300ma	No.of Dial Lamps	Dial Lamp Type	Cir- cuit	R	Ro	umber: T ^l page	ch T ²	inter- ange- able with
			SM	ALL MET	AL SHE	LL TYP			pu ₅ e	,	
36A K36E K36C L36C L36C L36C L36C K42B K42C L42C L42C L42C L42C L42C L42C L42C L	5555554444444333 333322222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.0 356.0 356.0 356.0 356.0 422.3 54.9 54.9 54.9 554.9	None 1 2 2 1 2 2 None 1 2 2 None 1 2 2 None 1 2 2 2 None 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} & & \\$	ABCDBCDABCDEBCDABCDACCDECDABCDBCDCDCDBCDABCDDCDCDCDCDCDCDCDCDCDC	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C C C B B B B B B B B B B B B B B B B	2 2 2 2 2 2 2 2 2 2 2 2 2	
				GLASS B	ULB TY	PES					
140L4 140L8 140C4 140R4 140R4 140R4 165L4 165L4 165R4 165R4 165R4 185L4 185L4 185L4 185L4 185R4 185R4 185R4 185R4 2878R4 878R48 340	7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 422.3\\ 422.3\\ 422.2\\ 42$	1 2 2 2 None 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2	######################################	BCDABCDBCDABCDBCDABCDB e e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	333 333333 3333333 33333 11	2 2 2 2 2 2 2 2 2	4082 40A2 5082 50A2 50X3 50X3T
		L.	ARGE PE	RFORATE	D META	l Sheli	L TYPES				
42A1 42A2 42B2 49A1 49A2 55A1 55A2 55B2 2LR212 Voltage	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 8 1 8 are com	42.3 42.3 42.3 43.6 48.6 48.6 54.9 54.9 54.9 54.9 39 puted t	None 1 2 None 1 2 None 1 2 2 2 0 suppl	#40 #40 #40 #40 #40 #40 #40 y fila	A B C A B C A B C D ment c	4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1	2 with	n line
voltage	of 117	.5 volt	5.	••-	-						; page

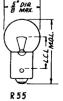
For data on RAYTHEON RESISTOR TUBES FOR BATTERY OPERATED RECEIVERS refer to the TYPES NB-1 to NB-8 at the end of the rating and characteristic data section.

RAYTHEON MINATURE LAMPS


RADIO PANEL TYPES


Type No.	Volts	Amp s .	С.Р.	Bulb	Base	Bead Color	L.C.L. Inches	M.O.L. Inch es	
R40 R40-A R41 R42 R43 R44 R45 R46 R46 R48 R48 R49 R49-A R50 R292 R292A	6-8 6-5 2.5 2.5 8 2.5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.15 0.15 0.5 0.5 0.25 0.25 0.25 0.06 0.06 0.06 0.06 0.22 0.2 0.17 0.17	0.5 0.5 0.75 0.75 0.8 0.75 0.8 0.75 0.8 0.03 0.03 0.07 1.0 0.3 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Min. Screw Min. Eayonet Min. Screw Min. Screw Min. Bayonet Min. Bayonet Min. Screw Min. Screw Min. Screw Min. Screw Min. Screw Min. Screw Min. Bayonet	Blue Green Blue Pink Pink White White White	29/32 23/32 29/32 23/32 23/32 23/32 23/32 29/32 23/32 23/32 23/32 23/32 23/32 23/32 23/32	1 1/8 1 1/8	
AUTOMOTIVE TYPES									


R51 6-8 0.2 1.0 G-3 1/2 Min. Bayonet White R55 6-8 0.4 1.5 G-4 1/2 Min. Bayonet White	R51 R55	-3	1.0	G-3 1/2 G-4 1/2	Min.	Bayonet Bayonet	White White	1/
--	------------	----	-----	--------------------	------	--------------------	----------------	----


700

15/16 1 1/16

R 41

RAYTHEON

TRIODE ____

	VAPOR TYPE DETECTOR Filament Type Glass Bulb	2p	\Im
SI4-BULB	The OO-A is a vapor type triode tube designed for service as a detector in		F
16 MAX. 199	storage battery operated receivers.	BOTTOM VIEW OF.	∢ SOCKET
BAYONET 4 PRONG MED. BASE	Filament Voltage Filament Current Max. Plate Voltage	5 d-c 0.25 45	volts amp volts
	CHARACTERISTICS		
	Plate Voltage	45	volts

Plate Voltage	45	volts
Grid Bias	0	volts
Amplification Factor	20	
Plate Resistance	30000	olum s
Transconductance	666	unho s
Plate Current (approximate)	1.5	ma

DETECTOR - GRID LEAK TYPE

Plate Voltage Grid Grid Leak Resistance Grid Condenser	Return	to	45 negative 2 to 3 0.00025	

DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate Input Output

01A

01A

μuf

uuf μµf

8.5

3.2

RAYTHEON				
TRIODE				
DETECTOR OR	AMPLIFIER			
Filament Type	Glass Bulb			

STIG BULB
All Max all all all all all all all all all a
A PRONG MED. BRSE

Filament Type

The Ol-A is a triode typ tube designed for service tor or amplifier in stor operated receivors.	as a detec-	BOTTOM VIEW	OF SOCKET
RATINGS			
Filament Voltage Filament Current Max, Plate Voltage		5 d-c 0.25 135	volts amp volts
DIRECT INTERELECTRODE CAPA	CITANCES		
Grid to Plate Input Output		8.1 3.1 2.2	ин ք µµ ք µп ք
AMPLIFIER - CLASS A			
tor	90 -4.5 8	135 -9 8	volts volts

11000 725

2.5

Plate Voltage Grid Bias Amplification Factor Plate Resistance Transconductance Plate Current

DETECTOR - BIASED TYPE

DETECTOR - GRID LEAK TYPE

Plate Voltage Grid Grid Leak Resistance Grid Condenser

45 volts Returned to positive filament 0.25 to 5 megohms 250 µµf

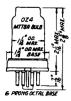
10000

800

3

ohms

ma


µml10s

RAYTHEON ENGINEERING SERVICE

00A

OZ4 OZ4G

TT BULB

STOR B MAX OZ4G TTYPE 5 PRONG OCTAL BASE 00 13 00 13 00

ğ

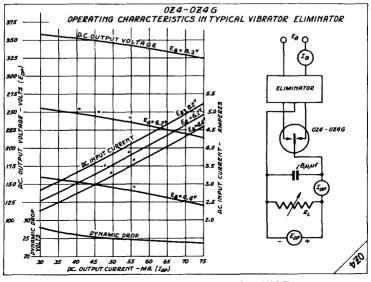
OZ4

074G

TWIN DIODE FULL WAVE GAS FILLED RECTIFIER Ionic Heated Cathode Type Hetal Bulb-024 Glass Bulb-024G

The 0Z4 is a full wave gas filled type rectifier tube with an ionic heated cathode requiring no heater supply voltage. It is designed particularly for service where high overall efficiency is desired.

BOTTOM VIEW OF SOCKET OZ4G -#1 PIN - NO CONN. -#2 PIN-OMITTED


FULL WAVE RECTIFIER

No Heater Supply Required		
Maximum D-C Output Voltage	300	volts
Minimum D-C Output Current	30	ma
Maximum D-C Output Current	75	ma
Maximum Peak Plate Current	200	ma
Minimum Starting Peak Voltage	300	volts
Average Dynamic Voltage Drop	24	volts

The 024 was developed primarily for use in vibrator type B supply units for automobile receivers. It has the typical characteristics of all gas-filled rectifiers as regards a constant drop and ability to handle high peak currents. Any tendency of the tube to generate r-f noise may be eliminated by proper filtering and by connecting the metal shell to the point giving the best shielding. The shielding and filtering commonly used to eliminate vibrator noise will usual ly be sufficient.

The 0Z4 is filled with a permanent gas rather than a vapor filling. The tube characteristics are independent of the surrounding temperature.

The 0Z4 has the same external form and dimensions as other tubes of the metal line. However, in this tube the metal shell serves chiefly as container and electrostatic shield for the glass bulb, which is required to insulate the contained gas from the grounded shell.

ST 12-D RIN P

19 00

4 PRONG

A MAX.

хым

ស្តីដ

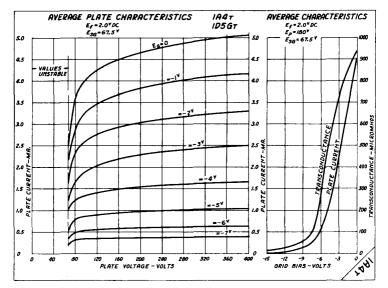
RATINGS

RAYTHEON

1A4-T

TETRODE REMOTE CUTOFF AMPLIFIER Filament Type Glass Bulb

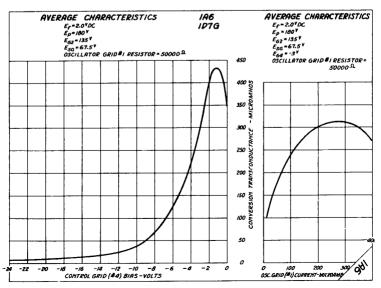
The LA4T is a tetrode type amplifier tube with remote cutoff characteristics designed for service as a high frequency amplifier in battery operated receivers. The ratings and electrical characteristics are identical with those of the type 1D507. For characteristics of the pentode type, 1A4P, refer to the type 1D50P.


IRAS BOTTOM VIEW OF SOCKET

IA4-P, G, CONNECTED TO ●4 PIN (~F)

Filament Voltage Filament Current Maximum Plate Voltage Maximum Screen Voltage	2.0 0.060 180 67.5	d-c volts amp volts volts
DIRECT INTERELECTRODE CAPACITANCES		
Grid to Plate Input Output	0.012 4.6 11	max.* μμf μμf μμf
AMPLIFIER - CLASS A		
Plate Voltage Screen Voltage Grid Bias Umplification Factor Plate Resistance	180 67.5 -3 720 0.96 750	volts volts volts megohm µmhos
Transconductance Plate Current Screen Current Transconductance at -15 volts bias	2.3 0.7 15	μπηοs ma ma μmhos

*With tube shield.


PSGAPTPST

HEPTODE PENTAGRID CONVERTER			0
	ss Bulb	(internet internet in	$\left(\begin{array}{c} \mathbf{A} \\ \mathbf{C} \end{array} \right)$
		<u> </u>	Y al
The 1A6 is a pentagrid type			Nº 1
ST 12-0 BULB		(P) 🛄	1 (M)
mixer and oscillator in ball			ී දාළු
k tings and electrical character		$\wedge \cdot \wedge$	- /
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		λή '	R A
	spe ind.	(1)	(6)
			<u> </u>
		BOTTOM VIEW OF	FSOCKET
ATTINGS			
Filament Voltage			-o volts
6 PRONG Filament Current		0.060	amp
SMALL BASE Maximum Plate Voltage		180	volts
Maximum Screen Voltage		67.5	volts
Maximum Grid #2 Voltage		135	volts
Maximum Grid #2 Supply		180†	volts
Minimum Crid #4 Bias Maximum Cathode Current		-3	volts
Maximum Cathode Current		9	ma
DIRECT INTERELECTRODE CAPACIT	ANCES (ADDI	oximate)	
Grid #4 to Plate	(uppi	0.25*	սու
Grid #4 to Grid #2		0.2 *	uuf
Grid #4 to Grid #1		0.1 *	μμ f
Grid #1 to Grid #2		0.8	μμ f
Grid #4 to all other Elements (r-f input)		10.5	μμf
Grid #1 to all other Elements (osc. input)		5	μμΓ
Orid #2 to all other Elements (osc. output)		6	μμ f
Plate to all other Elements (mixer output)		9	μμ f
FREQUENCY CONVERTER - SUPERHE			
Plate Voltage	135	180	volts
Screen (Grids #3 and #5) Voltage	67.5	67.5	volts
Anode Grid (#2) Voltage Anode Grid Supply Voltage	135	135	volts
Control Grid (#4) Bias	-3	180 † -3	volts
Oscillator Grid (#1) Resistor	50000	-3 50000	volts ohms
Plate Resistance	0.4	0.5	megohm
Conversion Transconductance	275	300	µmhos
Plate Current	1,2	1.3	ma
Screen Current	2.5	2.4	ma
Anode Grid Current	2.3	2.3	ma
Oscillator Grid Current	0.2	0.2	ma
Total Cathode Current	6.2	6.2	ma
Control Grid Bias	-22.5	-22.5	volts
(For Conversion Transconductance = 4 μ mhos)			
With plate waltage w 135 to 100 walte games		677 E 34	

With plate voltage = 135 to 180 volts, soreen voltage = 67.5 volts, anode grid voltage = 135 volts (no series resistor), control grid bias = -3 volts and oscillator grid voltage = 0 volts, the transconductance of the oscillator section (not oscillating) is $425 \ \mu$ mhos and the anode grid ourrent is 2.3 ma.

†Applied through a 20000 ohm series resistor, by-passed by a 0.1 $\mu f.$ condenser. *With tube shield.

1B4-951

RAYTHEON

1B4-951

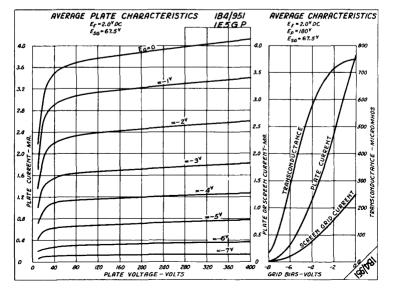
PENTODE AMPLIFIER Filament Type Glass Bulb

The 184/951 is a pentode type amplifier tube designed for service as a high frequency amplifier in battery operated receivers. The ratings and electrical characteristics are identical with those of the type 1856P.

uut μμf μμf

DARTNOS 540

Filament Voltage	2.0 d-0	volts
Filament Current	0.060	amp
Maximum Plate Voltage	180	volts
Maximum Screen Voltage	67.5	volts


DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate	0.007 max.*
Input	5
Output	11
Output	11

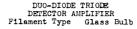

AMPLIFIER - CLASS A

Plate Voltage Screen Voltage Grid Bias	90 67.5 -3	180 67.5 -3	volts volts volts
Amplification Factor Plate Resistance Transconductance Plate Current Screen Current	600 1 600 1.6 0.7	975 1.5 650 1.7 0.6	megohm µmhos ma ma
Grid Bias for Plate Current Cutoff	-8	-8	volts

*With tube shield.

1B5-25S

BOTTOM VIEW OF SOCKET

ST 12-0 BULB

1B5-25S

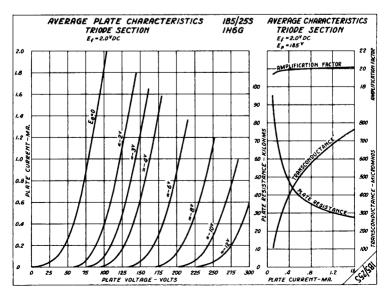
The 1B5/25S is a duo-diode triode type amplifier tube designed for service as a combined diode detector,AVC rectifier and audio frequency amplifier in battery operated receivers. The ratings and electrical characteristics are identical with those of the type 1M6G.

INTINOD		
Filament Voltage Filament Current Naximum Plate Voltage	2.0 d-o 0.060 135	volts amp volts

DIRECT INTERELECTRODE CAPACITANCES - TRIODE SECTION

3.6 2.0 3	րհե ոհե հեղե
0	Palaw

AMPLIFIER - CLASS A - TRIODE SECTION


Plate Voltage	135	volts
Grid Bias	-3	volts
Amplification Factor	20	
Plate Resistance	35000	ohms
Transconductance	575	µmho s
Plate Current	0,8	me.

DIODE SECTION

PATTNOS

The two diode units are independent of each other and of the triode section except for the common filament. The diodes may be used as a half-wave or as a full-wave rectifier; or one diode may be used as a half-wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVO voltage.

If only one diode plate is used as an audio restifier, D_L on pin 4 should be used because D_L is near the negative end of the filament and surrent will flow to this plate with zero signal when returned to the negative end of the filament.

1C6

	RATIFIEO	1 4	100
	HEPTODE PENTAGRID CONVER Filament Type	TER Glass Bulb	Contraction of the second seco
ST 12-0 BULS	The 1C6 is a pentagrid t tube designed for service mixer and oscillator in ba ated superheterodyme recei- tings and electrical ch are identical with those of RATINGS	as a combined attery oper- lvers. The ra- naracteristics the type 1076.	ED ES BOTTOM VIEW OF SOCKET
	Filament Voltage Filament Current Maximum Plate Voltage Maximum Screen Voltage Maximum Grid #2 Voltage Maximum Grid #2 Supply Minimum Grid #4 Bias Maximum Cathode Current		2.0 d-o volts 0.12 amp 180 volts 67.5 volts 180 volts 180 volts -3 volts 9 ma
	DIRECT INTERELECTRODE CAP	ACITANCES (appr	oximate)
Grid #1 to all Grid #2 to all	l #2 l #1) 5) 1 t)	0.3 * μμf 0.3 * μμf 0.15* μμf 1.5 μμf 6 μμf 6 μμf 10 μμf 10 μμf 10 μμf 10 μμf 10 μμf
	FREQUENCY CONVERTER - SUPP	ERHETERODYNE CI	RCUIT
Plate Voltage Soreen(Grids #3 Anode Grid (#2) Control Grid (#2) Plate Resistanc Conversion Cond Plate Current Soreen Current Anode Grid Curr	l (#1) Resistor se luctance (approximate)	135 67.5 135 † -3 50000 0.55 300 1.3 2 2.6	180 volts 67.5 volts 180 † volts -3 volts 50000 ohms 0.75 megohm 325 µmhos 1.5 ma 2.3 ma
Oscillator Grid Total Cathode C Control Grid Bi (For conversio	l Current Current (approximate) .as on conductance = 4 μmhos)	0.2 6.5 -14	0.2 ma 7 ma -14 volts
and oscillator tor section (no 4.9 ma.	sage = 135 to 160 volts, sci 135 volts (no series resisi grid voltage = 0 volts, th to oscillating) is 1000 µmh ch a 20000 ohm series resisi	e transconducta os, and the ano	de grid current is
ser. #With tube shie			
En=/80	10C 10	C7G Er Ep Kat 480 Est Ea	RAGE CHARACTERISTICS 2.0°DC -180° -180°THROUGH 20000 ^{IL} =67.5° =-3°
		440 50 050 400 020	.GRID#I RESISTOR = 50000-D
		360 \$	
		320 320	
		240	
		200 HAL	
		320 2600 2600 2600 2600 2600 2600 20000 2	
		80	

RAYTHEON ENGINEERING SERVICE

-4 -3 -2 -1 0

Т

- 10

-9 -8 -7 -6 -5 GRID #4 BIAS - VOLTS

- /2 -11

-/3

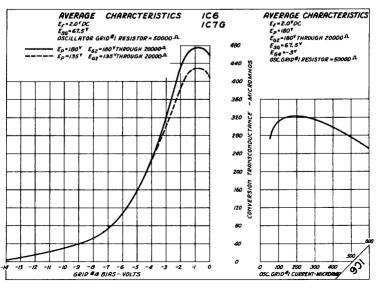
0 100 200 300 400 OSC. GRID I CURRENT-MICRORAD

**

80 40

0

1C6



1C7G

HEPTODE			I)
Filament Type G	lass Bulb		
57 /2-0 BULA tube designed for service a mixer and oscillator in ba	s a combined ttery oper-	Ŷ₩	<u>i</u>
k ated superheterodyne receiv tings and electrical charact in identical with those of the	eristics are	ert+/	
BARTNER	0,00 200.	(j)~	T
		BOTTOM VIEW 2.0 d-c	
Etloment Cunnent		2.0 a-c 0.12	amp
SMALL Liaximum Plate Voltage		180	volts
OCTAL BASE HEALTH Screen Voltage		67.5 135	volts volts
Maximum Grid #2 Voltage		180 +	volts
Minimum Grid #4 Bias		-3	volts
Maximum Cathode Current		9	ma
DIRECT INTERELECTRODE CAPAC	ITANCES*		
Grid #4 to Plate		0.3	μμΩ
Grid #4 to Grid #2 Grid #4 to Grid #1		0.3 0.1	μμ1
Grid #1 to Grid #2		1.5	µµ 1 uu 1
Grid #4 to all other Elements (r-f input)		1i	μμ f
Grid #1 to all other Elements (osc. input)		777	μμ1
Grid #2 to all other Elements (osc. output) Plate to all other Elements (mixer output)	14	µµ1 µµ1
FREQUENCY CONVERTER - SUPERI		BOILTT	
Plate Voltage Screen(Grids #3 and #5) Voltage	135 67.5	180	volts volts
Anode Grid (#2) Supply Voltage	135 t	67.5 180 †	volta
Control Grid (#4) Bias	-3	-3	volts
Oscillator Grid (#1) Resistor	50000	50000	ohma
Plate Resistance Conversion Transconductance	0.55 300	0.75 325	megohm µmhos
Plate Current	1.3	1.5	ma
Screen Current(approximate)	2	2	ma
Anode Grid Current Oscillator Grid Current	2.6	3.3	ma
Total Cathode Current (approximate)	0.2 6.5	0.2	ma. ma
Control Grid Bias	-14	-14	volts
(For Conversion Transconductance = 4 µmhos)		

With plate voltage = 135 to 180 volts, screen voltage = 67.5 volts, anode grid voltage = 135 volts (no scries resistor), control grid bias = -3 volts and oscillator grid voltage = 0 volts, the transconductance of the oscillator screetion (not oscillating) is 1000 μ mhos, and the anode grid current is 4.9 ma.

#With tube shield connected to cathode. fappled through a 20000 ohm series resistor, bypassed by a 0.1 µf condenser.

1D5G-P

RAYTHEON

1D5G-P

BOTTOM VIEW OF SOCKET

ক্ত

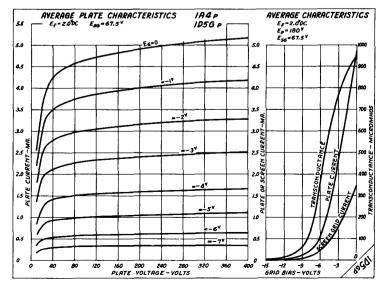
(2(F

PENTODE REMOTE CUTOFF AMPLIFIER Filament Type Glass Bulb

The 1D5GP is a pentode type amplifier tube with remote cutoff characteristics designed for service as a high frequency amplifier in battery operated recetvers. The ratings and electrical characteristics are identical with those of the type 1A4P. For characteristics of the tetrode type, 1D5GT, refer to the type 1A4T.

RATINGS

Filament Voltage	2.0 d-c	volts
Filament Current	0.060	amp
Maximum Plate Voltage	180	volts
Maximum Screen Voltage	67.5	volts


DIRECT INTERELECTRODE CAPACITANCES

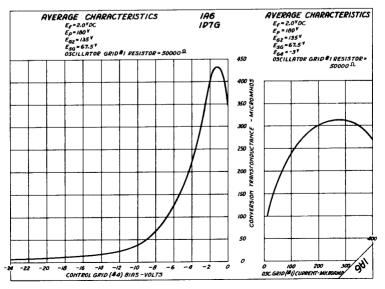
Grid to Plate	0.007 max.*	иµ 1
Input	6.2	µµ 1
Output	12	µµ 1

AMPLIFIER - CLASS A

Plate Voltage Screen Voltage Grid Eias Amplification Factor Plate Resistance Transconductance Plate Current Screen Current	90 67.5 -3 425 0.6 720 2.2 0.9	180 67.5 -3 750 1 750 2.3 0.8	volts volts megohm megohm ma ma ma
Transconductance at -15 volts bias	15	15	μmh os

*With tube shield.

1D7G


RAYTHEON

1D7G

HEPTODE PEITAGRID CONV Filament Type The DFG is a pentagri tube designed for servi mixer and oscillator in d superheterodyne rece tings and electrical are identical with thos RATINOS Filament Voltage Filament Current Maximum Screen Voltag maximum Grid #2 Volta Maximum Grid #2 Suppl Minimum Grid #2 Suppl Minimum Grid #2 Suppl Minimum Grid #2 Suppl Minimum Grid #2 Suppl	Glass H d type cor ce as a cc ibattery c divers. T character e of the ty e ge y	nverter ombined operat- The ra- ristics	BOTTOM VIEW 0 2.0 d-o 0.0600 180 67.5 135 180+ -3 9	
DIRECT INTERELECTRODE C Grid #4 to Plate Grid #4 to Grid #2 Grid #4 to Grid #1 Grid #1 to Grid #1 Grid #1 to all other elements (osc.inpu Grid #2 to all other elements (osc.outp Plate to all other elements (osc.outp FREQUENCY CONVERTER - S	t) t) ut) tput)		0.3 0.3 0.1 1.5 11 7 7 14	144 144 144 144 144 144 144 144 144 144
Plate Voltage Screen (Grids #3 and #5) Voltage Ancde Grid (#2) Voltage Control Grid (#2) Voltage Control Grid (#4) Bias Oscillator Grid (#4) Bias Oscillator Grid (#1) Resistor Plate Resistance Conversion Transconductance Plate Current Screen Current Ancde Grid Current Oscillator Grid Current Total Cathode current Control Grid Bias (For Conversion Transconductance = 4 µ	135 67.5 135 -3 50000 0.4 275 1.2 2.3 0.2 6.2 -22.5 mnhos)	180 67.5 135 180† -3 50000 0.5 300 1.3 2.4 2.3 0.2 6.2 -22.5		volts volts volts volts volts ohms megohm µmhos ma ma ma volts
With plate voltage = 135 to 180 volts, grid voltage = 135 volts (no series re and oscillator grid voltage = 0 volts,	sistor), c	ontrol g	rid bias =-3	5 volts

and oscillator grid voltage - 0 volts, the transconductance of the oscillator section (not oscillating) is 425 µmhos and the anode grid current is 2.3 ma.

*With tube shield connected to cathode. †Applied through a 20000 ohm series resistor, bypassed by a 0.1 uf condenser.

1E5GP

RAYTHEON

1E5G P

PENTODE ALPLIFTER Filament Type Glass Bulb

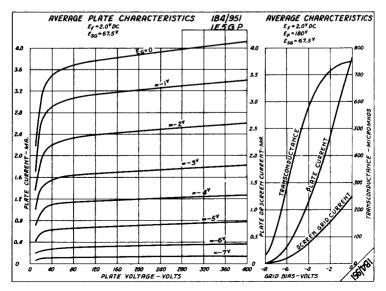
BOTTOM VIEW OF SOCKET

ST 12-P BULB

The lE5GP is a pentode type amplifier tube designed for service as a high frequency amplifier in battery operated receivers. The ratings and electrical characteristics are identical with those of the type 1B4/951.

RATINGS

Filament Voltage	2.0 d-o	volts
Filament Current	0.060	amp
Haximum Plate Voltage	180	volts
Maximum Screen Voltage	67.5	volts


DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate	0.007 max.*	uu f
Input	6.2	μμ f
Output	12	μμf

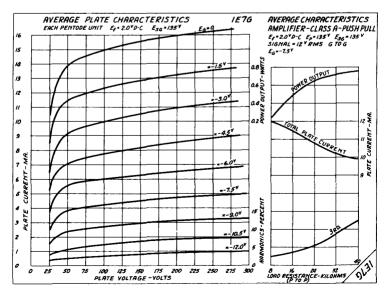
AMPLIFIER - CLASS A

Plate Voltage	90	180	volts
Soreen Voltage	67.5	67.5	volts
Grid Bias	-3	-3	volts
Amplification Factor	600	975	megohms
Plate Resistance	1	1.5	
Transconductance	600	650	µmhos
Plate Current	1.6	1.7	ma
Screen Current	0.7	0.6	ma
Grid Bias for Plate Current Cutoff	-8	-8	volts

*With tube shield.

TWIN PENTODE

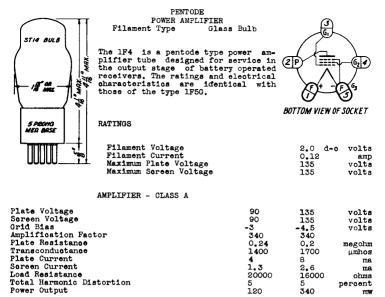
1E7G

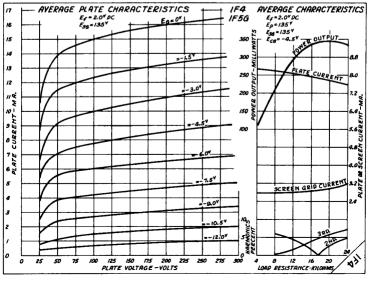

ohms percent watt

5 0.65

	ININ FENIODE		
	POWER AMPLIFIER		Ð
ST 12-0 BULB	Filament Type Glass Bulb	Joy -	-GLZ
		③ → →	RO
		$\forall \equiv$	
2	The 1E7G is a twin pentode type ampli- fier tube designed for service as a		A de
Ă Š	push-pull amplifier in the output stage	(2)FJ+C-L	
d + 00 Nor - 0	of battery operated receivers.	XIX_	Let -
		\bigcirc	0
8 PRONG	RATINGS	BOTTOM VIEL	N OF SOCKET
SMALL OCTAL BASE			
HERE	D12		
10 m	Filament Voltage Filament Current	2.0 d-c 0.24	volts amp
	Maximum Plate Voltage	135	volts
	Maximum Soreen Voltage	135	volts
	AMPLIFIER - CLASS A - EACH PENTODE		
Plate Voltage		135	volts
Screen Voltage Grid Bias*		135 -4.5	volts volts
Amplification F	antor	350	VOLUB
Plate Resistanc	e	0.22	megohm
Transconductane	e	1600	µmh os
Plate Current Screen Current		7.5 2.1	ma ma
Sareen current		2.L	щн
	AMPLIFIER - CLASS A - PUSH-PULL		
Plate Voltage		135	volta
Screen Voltage		135	volts
Grid Bias*		-7.5	volts
	Current (total)	6.5 2	ma
Load Resistance	n Current (total)	24000	ma ohma
Doad Residence		5 1000	noncent

No-Signal Field Current (total) No-Signal Screen Current (total) Load Resistance Total Harmonic Distortion Power Output (With signal = 12 volts RMS grid to grid)


*Grid return to negative filament.



RAYTHEON ENGINEERING SERVICE

1E7G

1F4

1F5G

1F5G

PENTODE POWER AMPLIFIER Filament Type Glass Bulb

The 1F5G is a pentode type power amplifier tube designed for service in the output stage of battery operated receivers. The ratings and electrical oharacteristics are identical with those of the type 1F4.

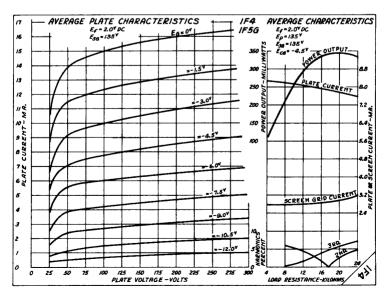
BOTTOM VIEW OF SOCKET

volts

amp volts

volts

2.0 d-0 0.12 135


135

Filament Voltage Filament Current Maximum Plate Voltage Maximum Screen Voltage

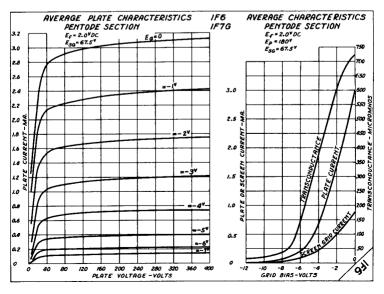
AMPLIFIER - CLASS A

RATINGS

Plate Voltage Soreen Voltage Grid Blas Amplification Factor	90 90 -3 340	135 135 -4.5 340	volts volts volts
Plate Resistance	0.24	0.2	megohm
Transconductance	1400	1700	µmhos
Plate Current	4	8	ma
Soreen Current	1.3	2.6	ma
Load Resistance	20000	16000	ohma
Total Harmonic Distortion	5	5	percent
Power Output	120	34 0	mw

1F6	RAYTHEON					1F6
57 12-0 BULS	D Filament ' The lF6 is a plifier tube combined dio and high or in battery o tings and e are identical lF7G.	duo-diode designed de detector audio frequ perated rec lectrical	PLIFIER Glass pentode ty for servic , AVC rect ency amp eivers. T oharacter	o as a ifier, lifier The ra-	ар ар Боттом VIE	R D R D F S W OF SOCKET
6 PRONG SMALL BASE	RATINGS Filament C Filament C Max. Plate Max. Screen DIRECT INTERI Grid to Pla Input Output	urrent Voltage n Voltage ELECTRODE C	2.0 d-0 0.060 180 67.5 APACITANCE	amp volts volts		NON max.* μμη μμη μμη
Plate Voltage Screen Voltage Grid Bias Amplification F Plate Resistanc Transconductanc Screen Current Screen Current	e (approximate e	lmate) 5)	ENTODE SEC	TION	180 67.5 -1.5 650 1 650 2 0.6 15	volts volts wegohm µmhos ma µmhos
Plate Supply Vo Soreen Supply V Grid Blast Plate Resistor Soreen Resistor Signal Peak Vol No-Signal Plate Max. Signal Plate Grid Resistori Output Peak Vol Total Harmonic Voltage Amplifi	oltage Current te Current tage‡ Distortion	$\begin{array}{c} \text{LASS A} & (\text{Re} \\ 135 \\ 135 \\ -1.0 \\ 0.25 \\ 1 \\ 0.64 \\ 0.42 \\ 0.34 \\ 1 \\ 0.5 \\ 30.8 \\ 28 \\ 5 \\ 5 \\ 48 \\ 43 \end{array}$		5 5 25	-PENTODE : 135 135 -2.0 0.25 0.8 0.62 0.42 0.34 1 0.1 28 25, 5 5 46 41	volts volts megohm megohm volts ma ma ma

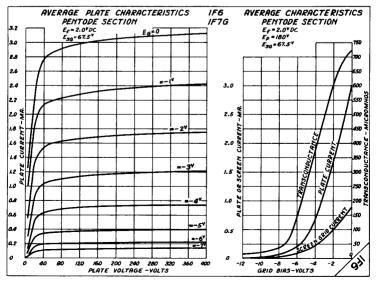
- - -


4 -

DIODE SECTION

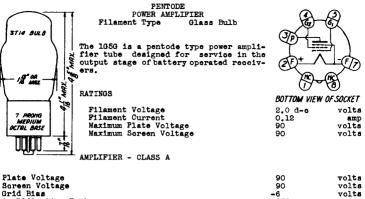
_ 4 7

The two diodes are located at the negative end of the filament. They are independent of each other and of the pentode section except for the common filament. The diodes may be used as a half wave or as a full wave rectifier or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain AVC voltage.

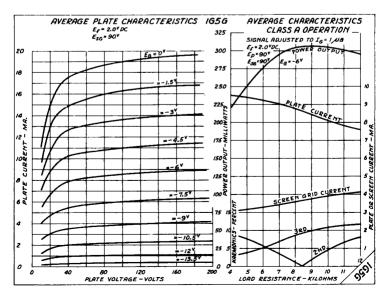

*With tube shield. #If a grid resistor is used, its value should not exceed 1 megohm. ‡For following tube.

1F7G		RAYTH	EON			1F7G
57 12-0 BALS	amplifier a combined fier, an plifier in	is a duo-dic tube design diode detec d high or au battery or s and electr	PLIFIER Glass de pento ed for se tor, AV dio frequ perated re fical char	de type rvice as C recti- ency am- ceivers. acteris-		
A PRONG SMALL OCTAL BASE	Filament Maximum Maximum DIRECT INT	Voltage Current Plate Voltag Screen Volts ERELECTRODE Plate (with	ge CAPACITAN		2.0 d- 0.060 180 67.5	amp volts volts
Plate Voltage Screen Voltage Grid Bias Amplification F Plate Resistano Transconductanc Plate Current Screen Current Transconductanc	AMPLIFIER actor (appr e (approxi e	mate)	PENTODE S	ECTION	180 67.5 -1.5 650 1 650 2 0.6 15	volts volts volts megohm µmhos ma ma µmhos
Plate Supply Vo Screen Supply V. Grid Biast Flate Resistor Soreen Resistor Signal Plate Max-Signal Plat Grid Resistor Total Harmonic J. Voltage Amplifi	ltage oltage Current e Current tage‡ Distortion	- CLASS A - 135 135 -1.0 0.25 1.0 0.64 0.42 0.34 1.0 0.5 30.8 28 5 48 43	RESISTANC 13 13 -1. 0. 0. 0. 0. 0. 1.0 29.4 5 47	5 5 25 9 63 42 34 0.5 26.6 5	- PENTO: 135 135 -2.0 0.25 0.8 0.62 0.42 0.34 1.0 0.5 28 25.5 46 41	volts volts megohm megohm volts ma ma megohm

DIODE SECTION The two diode units are independent of each other and of the triode section except for the common filament. The diodes may be used as a half-wave or as a full wave rectifier; or one diode may be used as a half-wave rectifier for detection and the other diode used as a rectifier to obtain delayed AVC voltage.


If only one diode plate is used as an audio rectifier, D₁ on pin 5 should be used because D₁ is near the negative end of the filament and current will flow to this plate with zero signal when returned to the negative filament. flf a grid resistor is used, its value should not exceed 1 megohm. ‡For following tube.

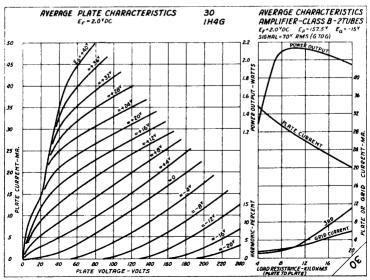
1G5G


RAYTHEON

1G5G

Screen Voltage Grid Blas Amplification Factor Plate Resistance Transconductance Plate Current Screen Current Load Resistance Total Harmonios Power Output

90	volts
90	volts
-6	volts
200	
0,133	megohm
1500	umbos
8,5	ma
2.7	ma
8000	ohma
9	percent
0.3	watts


1H4G

1H4G

	TRIODE DETECTOR OR ALIPI	IFIER		(3)
ST 12-D BULB	Filament Type	Glass Bull	· IN-	Q
John Could Harris	The life is a triode type designed for service as amplifier in battery oper The ratings and electric tics are identical wit type 30. RATINGS	a detector ated receive	r or ers.	
7 PRONG SMRLL OCTAL BASE	Heater Voltage Heater Current Maximum Plate Voltage	2.0 d-c v 0.060 180 v	olts BOTTOM VIEN amp olts	OF SOCKET
1.10	DIRECT INTERELECTRODE CA	PACITANCES		
	Grid to Plate Input Output		5 3 3	րել հել
	AMPLIFIER - CLASS A			
Plate Voltage Grid Bias Amplification F	actor	90 -4.5 9.3	135 180 -9 -13.5 9.3 9.3	volts volts
Plate Resistanc Transconductanc Plate Current		11000 850 2.5	10300 10300 900 900 3.0 3.1	ohma µmhos ma
	esistor is used, its valu	e should no		ms.
	AMPLIFIER - CLASS B - TW	O TUBES		
	ate Current (per tube) al Plate Current (per tub	e)	180 50 1.5	volts ma ma
Plate Voltage Grid Bias			157.5 -15	volts volts
No-Signal Man	to Current (per tube)		0.5	ma
Load Resistant Power Outsut†	e (plate to pla te)		8000 2.1	ohms watts
(With averag	e power input = 260 mw. g	rid to grid)	
	DETECTOR - BIASED TYPE	00	1.66	
Plate Voltage Grid Dias (appr Flate Current;	oxima te)	90 -9 Adjusted t	135 180 -13.5 -18 0 0.2 me, with n	volts volts o signal
	DETECTOR - GRID LEAK TYP	Е		
Plate Voltage Grid Grid Leak Resis Grid Condenser	tance	Return	45 max. ned to positive 1 to 5 0.00025	filament megohms
twith one type bias of -11.3 v former ratio.p	lh4G as driver operated at olts,plate load of approx	imately 180	00 ohm s.and i npu	ts, grid t tran s-

 ψ ith normal maximum signal the average d-c plate current should not exceed 2 ma.

For additional curves refer to the type 30.

1H6G

DUO-DIODE TRIODE DETECTOR AMPLIFIER Filament Type Glass Glass Bulb

(A) (I)

BOTTOM VIEW OF SOCKET

ST 12-D BULB	мях. - 9 ₈ "мях.
B PRONG SMALL OCTAL BASE	- <u>7</u> *+

 $\overline{}$ TT

1H6G

The 1860 is a duo-diode triede type am-plifier tube designed for service as a combined diode detector, AVC rectifier and audio frequency amplifier in battery The ratings and tics are idenstics are ide e type 1B5/25S.

DR Oil
365 60
to VAV ED
XNC) ~ (NCX
BOTTOM VIEW DESOCKET

3 ¹ 8 mB	and audio frequency am operated receivers. electrical characteris tical with those of the
1.19	RATINGS
	Filament Voltage
	Filament Current
	Cortmum Ploto Voltoge

Filament Voltage	2.0 d-c	volts
Filament Current	0.060	amp
Maximum Plate Voltage	135	volts

DIRECT INTERELECTRODE CAPACITANCES - TRIDDE SECTION

3.6 2.0 3	144 1 1441 1441
3	ին (ենցենացեն) Հեն հետևություն հետևություն հետևություն հետևություն հետևություն հետևություն հետևություն հետևություն հետևություն

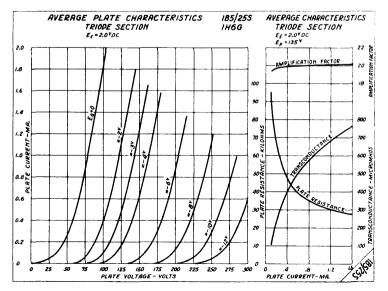

AMPLIFIER - CLASS A - TRIODE SECTION

Plate Voltage	135	volts
Grid bias	-3	volts
Amplification Factor	20	
Plate Resistance	35000	ohma
Transconductance	575	umho s
Plate Current	0.8	TIA.

DIGDE SECTION

The two diode units are independent of each other and of the triode section except for the common filament. The diodes may be used as a half-wave or as a full-wave rectifier; or one diode may be used as a half-wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

If only one diode plate is used as an audio rectifier, D_L on pin 5 should be used because D_L is near the negative end of the filament and current will flow to this plate with zero signal when returned to the negative end the filament. of

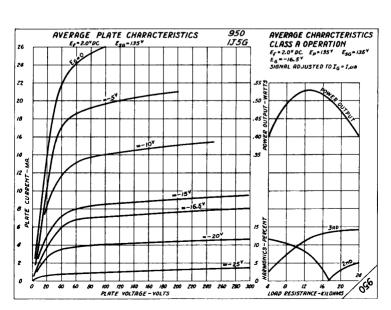
1**J**5G

Power Output

Maximum Signal Voltage (RMS)

PENTODE

1**J**5G

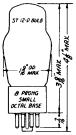

450

11.7

mw

volts

POWER AMPLIFTER Filament Type Glass Bulb -XHM STI4 BULB (V) The 1J5G is a pentode type power ampli-fier tube designed for service in the output stage of battery operated re-ceivers. The ratings and electrical oharacteristics are identical with those of the type 950. MRX FIT (2)F * 7 IN MAX 'nĊ N ĩ BOTTOM VIEW OF SOCKET 7 PRONG MEDIUM OCTAL BASE RATINGS Filament Voltage Filament Current Maximum Plate Voltage Maximum Screen Voltage 1.2.1 2.0 d-c 0.12 135 volts amp volts volts 135 AMPLIFIER - CLASS A Plate Voltage 135 volts Screen Voltage Grid Bias Amplification Factor 135 volts -16.5 100 volta Plate Resistance 0,1 megohm Transconductance Plate Current 1000 µmhos 7 ma Screen Current 2 mA Load Resistance **ĩ3**500 olums



1**J**6G

RAYTHEON TWIN TRIODE

POWER AMPLIFIER

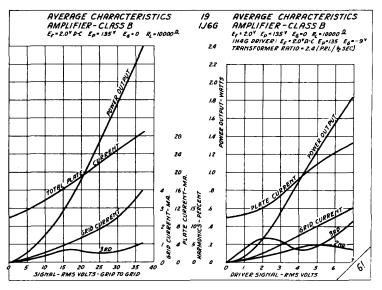
1**J**6G

The 1J66 is a twin triode type amplifier tube designed for service as a Class B power amplifier in the output stage of battery operated receivers. The ratings and electrical characteristics, except filament current, are identical with these of the two 10 filament current, those of the type 19.

BOTTOM VIEW OF SOCKET

Filament Voltage Filament Current	2.0 d-c 0.24	volts amp
laximum Plate Voltage	135	volts
Maximum Peak Plate Current (per plate)	50	m a

Glass Bulb


ALPLIFIER - CLASS B

RATINGS

Filament Type

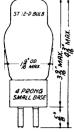
Plate Voltage	135	135	135	volts
Grid Bias	-6	-3	0	volts
Mo-Signal Plate Current (per plate)	0.5	2	5	ma
Load Resistance (plate to plate)	10000	10000	10000	ohms
Power Output (approximate)	1.6	1.9	2.1	watts
Average Power Input (grid)	0.095	0.13	0.17	watts
Avorage Power Input (grid to grid)	0.095	0.13	0.17	watts

For additional curves refer to the type 19.

DIODE HALF WAVE HIGH VACUUM RECTIFIER Heater Type Glass Eulb

The 1-V is a half wave high vacuum type rectifier tube having a low voltage drop designed for service in power supplies for storage battery or a-c operated receivers. It is interchangeable with the mercury vapor type 1.

HALF WAVE RECTIFIER - CONDENSER OR CHOKE INPUT FILTER


Heater Voltage (s-c cr d-c) Heater Current Maximum A-C Plate Voltage (RMS) Maximum Inverse Peak Voltage Haximum D-C Output Current Maximum D-C Voltage between Heater and Cathode	6.3 0.3 350 1000 50 500	volts amp volts volts ma volts
AVERAGE TUBE VOLTAGE DROP	23	volts

AVERAGE TUBE VOLTAGE DROP (At 100 ma. Output Current)

CHARACTERISTIC 1-V Er = 6.3' Ec . 6.3 200 δ (en 180 Q C=/6 160 NOLTS INPUT V (EAC) 140 -120 350¥ XOLTS VOLTS 100 X 2001 -12 VOLTAGE-1 CURREI 250 250 DUTPUT PLATE (200 *4*9 บู่ ช å 150 20 ••••• -. C AC INPUT 100 VOITAGE - 110 110 χį 1,1 50 0 IO IS 20 25 DC. PLATE VOLTAGE-VOLTS ю 15 20 25 so 0 30 30 .35 40 16 5 A.C. OUTPUT CURRENT-MA. (1)

AVERAGE OUTPUT CHARACTERISTICS

RAYTHEON ENGINEERING SERVICE

1---V

BOTTOM VIEW OF SOCKET

AVERAGE PLATE

243 2A3H

ST 16 BULB WRX. 5.00 2 B MAX MRX 23" 4 PRONG MED. BASE 5

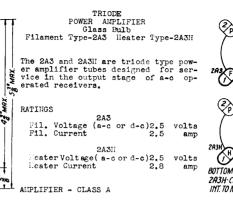


Plate Voltage Grid Bias* 250 max volts Amplification Factor Flate Resistance Transconductanoe Plate Current Load Resistance Power Output (5% second harmonic)

AMPLIFIER - CLASS AB - PUSH-PULL - TWO TUBES

Plate Voltage	Fixed-Bias 300 max.	Self-Bias 300 max.	
Grid Bias#	-62		volts
Sclf-Blas Resistor		780	ohms
No-Signal Plate Current (per tube)	40	4 0	ma
Load Resistance (plate to plate)	3000	5000	ohm s
Total Harmonic Distortion	2.5		ercent
Power Output	15	10 -	watts

The self-bias resistor for a single tube should be approximately 750 ohms. In either single tube or proh-pull operation, the self-bias resistor should be shunted by a suitable filter network to minimize grid bias changes due to current surges through the resistor.

Transformer or impedance input systems are recommended. If resistance Coupling is used, the d-c resistance in the grid circuit should not exceed 0.5 mergohm with self-bias or 0.05 mergohm with fixed-bias.

#2A3 Grid bias measured from mid-point of a-c operated filament.

For claracteristic curves refer to the types 6A3 and 6B4G. The characteristics of the SA3 are the same as these of the 6A3 and the 6B4G except for the filement rating.

2A3 2A3H

G

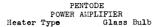
F

G

4

BOTTOM VIEWS OF SOCKETS 2A3H-CATHODE CONNECTED INT. TO MID-POINT OF HEATER

	.0100
-45	volts
4.2	
800	ohms
5250	µmhos
60	ma
2500	ohma
3.5	watts


2A5

STIA BULB

1 2 00

6 PRONG MED BASE

RAYTHEON

The 2A5 is a pentode type power amplifier tube designed for service in the output stage of a-o operated receivers.

RATINGS

192

NAX

Heater Voltage (a-c or d-c) 2.5 volts Heater Current 1.75 amp Maximum Plate Voltage 315 volts Maximum Screen Voltage 315 volts

AMPLIFIER - CLASS A

1	Pentode Conne	ction Tr	iode Co	nneotion†
Plate Voltage	250	315	250 ma	x. volts
Screen Voltage	250	315		volts
Grid Bias	-16.5	-22	-20	volts
Amplification Fact	or 2001	200‡	7	
Plate Resistance	80000±	75000	2600	ohm s
Transconductance	2500	2650	2700	μm hos
Plate Current	34	42	31	ma
Screen Current	6.5	8		ma
Load Resistance	7000	7000	4000	ohm s
Total Harmonic Dis	t. 7	7	5	percent
Power Output	3	5	0.85	watts
-				

AMPLIFIER - CLASS AB - TWO TUBES

	Pentode Connection		Triode Connection†		
	Fixed-Bias	Self-Bias	Fixed-Bia	s Self-Bi	83
Plate Voltage	375 max.	375 max.	350 max.	350 max.	volts
Soreen Voltage	250 max.	250 max.			volts
Grid Bias	-26 min.		-38		volts
Self-Bias Resistor		340		730 min.	ohms
Signal Pk.Volt.(G to G)	8 2	94	123	132	volts
No-Signal Plate Current	34	54	45	50	ma
No-Signal Screen Current	5	8			me
Load Resistance(P to P)	10000	10000	6000	10000	ohm s
Total Harmonic Dist.	5	5	7	7	percent
Power Output (approx.)#	19#	194	18**	14¶	watts

#With one 2A5 triode connected as driver operated at plate voltage of 250 volts,grid bias of -20 volts and plate load of approximately 10000 ohms.

*Input transformer ratio, primary to 1/2 secondary = 3.32 AInput transformer ratio, primary to 1/2 secondary = 2.5 *AInput transformer ratio, primary to 1/2 secondary = 1.67 ¶Input transformer ratio, primary to 1/2 secondary = 1.29 †Screen connected to plate IApproximate

For characteristic curves refer to the types 6F6G and 42. The characteristics of the 2A5 are the same as those of the 6F6G and the 42 except for the heater rating.

2A5

) (x] J)

G,

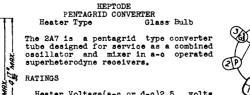
(2 P

DUO-DIODE TRIODE DETECTOR AMPLIFIER Heater Type Glass Bulb

-1.360 00	
	II
ST 12-D BULE	The 2A6
/ (<mark>.</mark> ž	plifier
	combine
	and res
Z I	amplifi
19 00 - Star	-
	RATINGS
6 PRONG SMALL BASE	Heate
SIMILLONCE	Heate
	Naxim
	DIDEOD :

The 2A6 is a duo-diode plifier tube designed The 2A6 is a duo-diode triode type am-plifier tube designed for service as a combined diode dctector, AVC rectifier and resistance coupled audio frequency amplifier in a-c operated receivers.

BOTTOM VIEW OF SOCKET


Heater Voltage (a-c or d-c) Heater Current Naximum Plate Voltage DIRECT INTERELECTRODE CAPACITANCES	2.5 0.8 250	volts amp volts
Grid to Plate Input Output ALIPLIFIER - CLASS A - TRIODE SECTION	1.7 2.0 3.5	μրք μπ ք քրք
Plate Voltage Grid Elas Amplification Factor Plate Resistance Transconductance Plate Current	250 -2 100 91000 1100 1	volts volts umhos ma

DIODE SECTION

The two diodes are independent of each other and of the triode section ex-cept for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

For characteristic curves refer to the type 75. The characterist 75 are the same as those of the 2A6 except for the heater rating. The characteristics of the

2A7

BOTTOM VIEW OF SOCKET

volts amp volts volts volts

volts volts

ma

100

200

-3

14

250+

DIRECT INTERELECTRODE CAPACITANCES

Heater Voltage(a-c or d-c)2.5 Heater Current 0.8 Max. Plate Voltage 250

Max. Soreen Voltage Max. Grid #2 Voltage Max. Grid #2 Supply Min. Grid #4 Bias

Max. Cathode Current

Grid #4 to Plate Grid #4 to Grid #2 Grid #4 to Grid #1 Grid #1 to Grid #1 Grid #1 to Grid #2 Grid #1 to all other Elements (Nos.Input) Grid #1 to all other Elements (Osc.Output) Plate to all other Elements (Mixer Output)	0.3 * 0.15* 0.15* 1.0 8.5 7 5.5 9	
---	--	--

FREQUENCY CONVERTER - SUPERHETERODYNE CIRCUIT

Plate Voltage	100	250	volts
Screen (Grids #3 and #5) Voltage	50	100	volts
Anode Grid (#2) Voltage	100		volts
Anode Grid Supply Voltage		250 †	volts
Control Grid (#4) Bias	-1,5	-3	volts
Oscillator Grid Resistor	50000	50000	ohms
Plate Resistance	0.6	0.3	megohm
Conversion Transconductance	360	550	µmhos.
Plate Current	1.1	3.5	ma
Screen Current	1.3	2.7	ma
Anode Grid Current	2.0	4.0	ma
Oscillator Grid Current	0.25	0.4	ma.
Control Grid Bias (approximate)	-20	- 45	volts
(For Conversion Transconductance = 2 µmhos)			

between heater and cathode should be kept as low as possible The voltage where they are not directly connected.

+Applied through a 20000 ohm series resistor, by-passed by a 0.1 µf condenser.

#With tube shield.

For characteristic curves refer to the type 6A7. The characteristics of the 2A7 are the same as those of the 6A7 except for the heater rating.

2A7

æ

ST 12-D RUN A

12:00

7 PROHG SMRLL BR

ŝ

à

2

DETECTOR AMPLIFIER

Heater Type

2B7

volts

amp volts volts

287

The 287 is a duo-diode pentode type amplifier tube designed for service as a combined diode detector, AVC rectifier, and high or audio frequency amplifier in a-c operated receivers.

BOTTOM VIEW OF SOCKET

2.5

0.8

125

RATINGS
Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage Maximum Soreen Voltage

DIRECT INTERELECTRODE CAPACITANCES - PENTODE SECTION

Glass Bulb

Grid to Plate	0.007 max.*	μμ f
Input	3.5	μμ f
Output	9.5	μμ f

AMPLIFIER - CLASS A - PENTODE SECTION

Plate Voltage Soreen Voltage Grid Bias Amplification Factor Plate Resistance	100 100 -3 285	180 75 -3 840 1	250 100 -3 800	250 125 -3 730	volts volts
Transconductance	0.3 930	840	0.8 1000	0.65 1125	megohm µmhos
Plate Current	5.8	3.4	6	9	ma
Screen Current	1.7	0.9	1.5	2.3	ma
Grid Bias (For cathode current cuto:	-17 ff)	-13	-17	-21	volts
AMPLIFIER		- RESISTA	NCE COUPLI	ED - PENTODI	E SECTION
Plate Supply Voltage Screen Voltage Grid Bias Plate Registor Plate Current		250 45 -5 0.5 0.25	250 50 -4.5 0.25 0.65	250 100 -3 0.027 5.4	volts volts volts megohm ma

DIODE SECTION

The two diode units are independent of each other and of the pentode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With tube shield.

For characteristic curves refer to the type 6B7. The characteristics of the 2B7 are the same as those of the 6A7 except for the heater rating.

5T4

MTION PULL

15 00

N DASE

GOCTAL BAS

MRL

ŝ

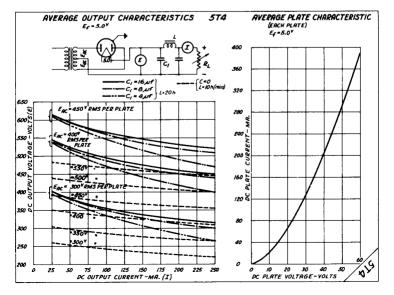
RAYTHEON

5T4

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Filament Type Metal Bulb

The 5T4 is a full wave high vacuum type rectifier tube designed for service in power supplies delivering high output currents.

FULL WAVE RECTIFIER - CONDENSER INPUT FILTER Filament Voltage Filament Current Maximum A-C Plate Voltage (RMS) Maximum Inverse Peak Voltage Maximum D-C Output Current



BOTTOM VIEW OF SOCKET

5	a-0	volts
2		amp
450)	volts
125	50	volts
250)	ma

FULL WAVE RECTIFIER - CHOKE INPUT FILTER(10 henrys minimum)

Filament Voltage	5 a- c	volts
Filament Current	2	amp
Maximum A-C Plate Voltage (RMS)	550	volts
Maximum Inverse Peak Voltage	1550	volts
Maximum D-C Output Current	250	ma

5U4G

ST IG BULB

2 NOR

MEDIUM OCTAL BASE

XUW

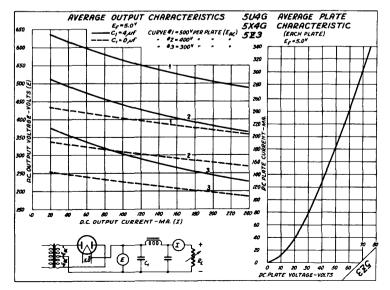
10

ä

RAYTHEON

5U4G

TWIN DIODE FULL WAVE HIGH VACUULI RECTIFIER Filament Type Glass Bulb


The 5U4G is a high vacuum type full wave rectifier tube designed for service in power supplies deliver-ing high output currents. The ra-tings and electrical characteris-tics are identical with those of the types 5X4G and 523.

BOTTOM VIEW OF SOCKET

Tam Ba	FULL WAVE RECTIFIER Condenser or Choke Input Filter		
	Filament Voltage Filament Current Maximum A-C Voltage per Plate (RMS) Maximum Inverse Peak Voltage Maximum D-C Output Current	5 8-C 3 500 1400 250	volts amp volts volts ma
	AVERAGE TUBE VOLTAGE DROP	61	volts

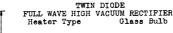
VERAGE TUBE VOLTAGE DROP (At 250 ma. output current)

5V4G

STIA BULL

100 00 in.

PRONG

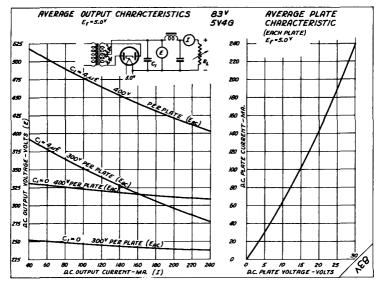

MEDIUM OCTAL BASE

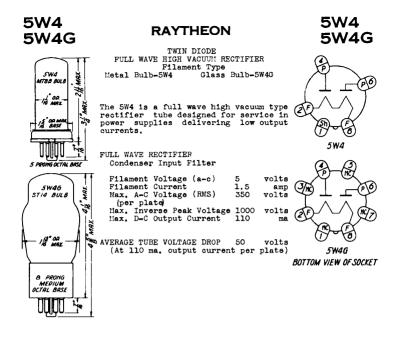
XBX

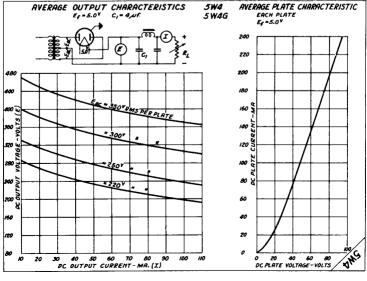
ž

RAYTHEON

5V4G


The 5V4G is a full wave high vacuum type rectifier tube having a low voltage drop designed for service in power supplies delivering high output currents. The ra-tings and characteristics are identical with those of type 83-V.




FULL WAVE RECTIFIER - CONDENSER OR CHOKE INPUT FILTER

Heater Voltage	5 a=0	volts
Heater Current	2	amp
Maximum A-C Voltage per Plate (RMS)	400	volts
Maximum Inverse Peak Voltage	1100	volts
Maximum Peak Plate Current	700	ma
Maximum D-C Output Current	200	ma
AVERAGE TUBE VOLTAGE DROP (At 200 ma. output current per plate)	25	volts

The cathode is connected within the tube to the center of the heater.

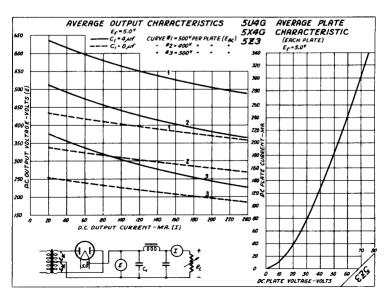
ST IS BULD

RAYTHEON

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Filament Type Glass Bulb

The 5X4C is a high vacuum type full wave rectifier tube designed for service in power supplies delivering high output currents. The ratings and electrical characteristics are identical with those of the types 5U4G and 5Z3.

BOTTOM VIEW OF SOCKET


61

volts amp volts

volts ma volts

FULL WAVE RECTIFIER Condenser or Choke Input Filter	
Filament Voltage	5 a-0
Filament Current	3
Maximum A-C Voltage per Plate (RMS)	500
Maximum Inverse Peak Voltage	1400
Maximum D-C Output Current	250

AVERAGE TUBE VOLTAGE DROP (At 250 ma. output current)

RAYTHEON ENGINEERING SERVICE

5X4G

5Y3G

STIA BULB

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Filament Type Glass Bulb

RAYTHEON

The 5Y3G is a full wave high vacuum type rectifier tube designed for service in power supplies for a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 80.

5Y3G

BOTTOM VIEW OF SOCKET

FULL WAVE RECTIFIER - CONDENSER INPUT FILTER

Filament Voltage Filament Current		5 a-o 2	volts
Maximum A-C Voltage per Plate (RMS)	300	400	amp volts
Maximum Inverse Peak Voltage	1000	1100	volts
Maximum Peak Plate Current	400	350	me.
Maximum D-C Output Current	125	110	ma

FULL WAVE RECTIFIER - CHOKE INPUT FILTER*

Filament Voltage	5 a-o	volts
Filament Current	2	amp
Maximum A-C Voltage per Plate (RMS)	550	volts
Maximum Inverse Peak Voltage	1500	volts
Maximum Peak Plate Current	300	ma
Maximum D-C Output Current	135	ma
VERAGE TUBE VOLTAGE DROP	60	volts

AVERAGE TUBE VOLTAGE DROP (At 135 ma. output current per plate)

*Input choke must be at least 20 henries. An input condenser of not more than 0.1 $\mu f.$ may be used.

For characteristic curves refer to the type 80.

5Y4G

RAYTHEON

5Y4G

0

BOTTOM VIEW OF SOCKET

(nclo)

7

Te

(2\M

N

7

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Filament Type Glass Bulb

The 5Y4G is a full wave high vacuum type rectifier tube designed for service in power supplies for a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 80.

FULL WAVE RECTIFIER - CONDENSER INPUT FILTER

Filament Voltage Filament Current Maximum A-C Voltage per Plate (RMS)	300	5 a-c 2 400	volts amp volts
			volts
Maximum Inverse Peak Voltage	1000	1100	VOLUS
Maximum Peak Plate Current	400	350	ma
Maximum D-C Output Current	125	110	ma
Maximum D=0 Output Ourrent	100	1 10	

FULL WAVE RECTIFIER - CHOKE INPUT FILTER*

Filament Voltage	5 a-c	volts
Filament Current	2	amp
Maximum A-C Voltage per Plate (RMS)	550	volts
Maximum Inverse Peak Voltage	1500	volts
Maximum Peak Plate Current	300	ma
Maximum D-C Output Current	135	ma

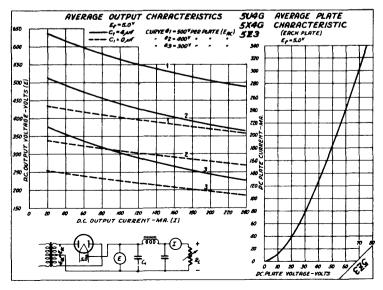
AVERAGE TUBE VOLTAGE DROP 60 volts (At 135 ma. output current per plate)

*Input choke must be at least 20 henries. An input condenser of not more than 0.1 $\mu f.$ may be used.

For characteristic curves refer to the type 80.

ST 16 BULB

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Filament Type Glass Bulb


The 523 is a high vacuum type full wave rectifier tube designed for service in power supplies delivering high output currents. The ratings and electrical with those of the types 504G and 5X4G.

FULL WAVE RECTIFIER

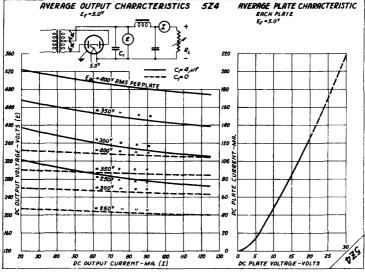
BOTTOM VIEW OF SOCKET

	Condenser or Choke Input Filter		
r 	Filament Voltage Filament Current Maximum A-C Voltage per Plate (RMS) Maximum Inverse Peak Voltage Maximum D-C Output Current	5 a-c 3 500 1400 250	volts amp volts volts ma
	AVERAGE TUBE VOLTAGE DROP (At 250 ma. output current)	61	volts

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Heater Type Metal Bulb

ATTO BUE TO B

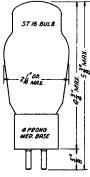
S DRONG OCTAL B


The 524 is a full wave high vacuum type rectifier tube having a low voltage drop designed for service in power supplies for a-c operated receivers.

ł		~		-
l	FULL WAVE RECTIFIER - CONDENSER OR CHOKE	BOTTOM	VIEW O	FSOCKET
ł	INPUT FILTER			
1	- Heater Voltage	5	a-0	volts
	Heater Current	2		amp
	Maximum A-C Voltage per Plate (RMS)	400		volts
	Maximum Inverse Peak Voltage	110	0	volts
	Maximum D-C Output Current	125		ma
	•			

AVERAGE TUBE VOLTAGE DROP 20 (At 125 ma. output current per plate)

The cathode is connected to the heater within the tube.



5Z4

volts

5Z4

TRIODE POWER AMPLIFIER Filament Type Glass Bulb

The 6A3 is a triode type power amplifier tube designed for service in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 6B46.

of the type 6B4G.		
RATINGS		
Heater Voltage (a-c or d-c) Heater Current ∷aximum Plate Voltage	6.3 1.0 325	volts amp volts
DIRECT INTERELECTRODE CAPACITANCES		
Grid to Plate Input Output	18 7 5	րր ղ հրդ լ հրդ լ
AMPLIFIER - CLASS A		
	250 max.	volts

 Plate Voltage
 250 max. volts

 Grid Elas*
 -45 volts

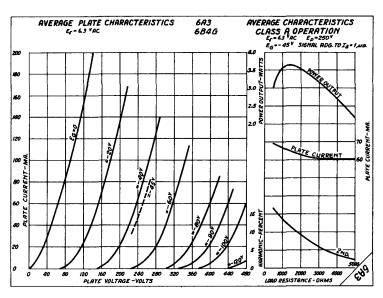
 Amplification Factor
 4.2

 Plate Resistance
 800 ohms

 Transconductance
 5250 µmhos

 Plate Resistance
 60 ma

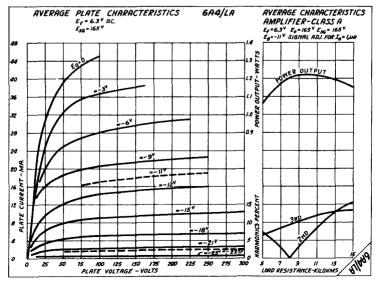
 Load Resistance
 2500 ohms


 Power Output (5% second harmonic)
 3.2 watts

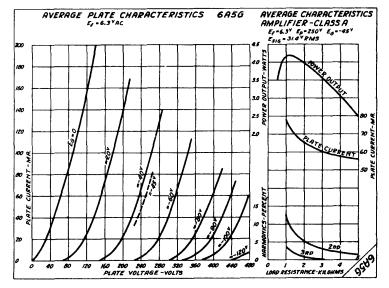
AMPLIFIER - CLASS AB - PUSH-PULL - TWO TUBES

Plate Voltage Grid Bias*	Fixed-Bias 325 -68	Self-Bias 325	volts
Grid Blass Self-Blas Resistor No-Signal Plate Current (per tube)	-68 40	750 40	volts ohms ma
Load Resistance (plate to plate) Power Output Total Harmonic Distortion	3000 15 2,5	5000 10 5	ohms watts percent

*Grid bias measured from midpoint of a-c operated filament.


For additional curves refer to the type 6B4G.

6A4-LA	RAYTH	EON		6A	4-LA
STIA BULB	PENTO POWER AMP Filament Type	LIFIER	ulb	36	5
	The 6A4/LA is a pen plifier tube design the output stage of a erated receivers.	d for se	rvice in `		
	RATINGS			BOTTOM VIEW	OF SOCKET
S DEONO MED BASE	Heater Voltage (a Heater Current Maximum Plate Vol Maximum Soreen Vo	tage		6.3 0.3 200 200	volts amp volts volts
	AMPLIFIER - CLASS A				
Plate Voltage Soreen Voltage Grid Bias* Amplification Fac Plate Resistance Transconductance Plate Current Soreen Current Load Resistance Power Output Total Harmonic Di	stor (approximate) stortion	100 100 -6.5 100 83250 1200 9 1.6 11000 0.31 9	135 135 -9 100 52600 1900 14 2.5 9500 0.7 9	180 180 -12 100 45500 2200 22 3.9 8000 1.4 9	volta volts volts µmhos ma ohms watts percent
	AMPLIFIER - CLASS A	B - PUSH-P	ULL - TWO	TUBES - SE	IF-BIAS
Self-Bias Resisto	Supply Voltage (E _p + pr Current (per plate)	E _C)		230 700 16	volts ohms ma


Load Resistance (plate to plate)	16000	ohms
Total Harmonic Distortion	10	percent
Fower Output	4.2	watts

*Grid bias measured from negative end of d-c operated filament. If the filament is a-c operated, the tabulated values of grid bias should be increased by 4 volts and be referred to the mid-point of the filament.

6A5G	RAYT	6	A5G	
ST 16 BULB	TRI(POWER AN Heater Type			R R
21° OR 216 MAX	The 6A5G is a tri plifier tube desig the output stage o or a-c operated re	medfor service in of storage battery		H H H H H H H H H H H H H H H H H H H
	RATINGS		BOTTOM VIEW	OF SOCKET
a provid MEDIUM	Heater Voltage Heater Current Maximum Plate Vo		6.3 1.25 325	volts amp volts
OCTAL BASE	DIRECT INTERELECT	RODE CAPACITANCES		
	Grid to Plats Input Output		16 7 5	µµſ µµſ µµſ
	AMPLIFIER - CLASS	A		
Plate Voltage Grid Bias Amplification Facto Plate Resistance Transconductance Plate Current Load Resistance Power Output (5% se	r		250 max -45 4.2 800 5250 60 2500 3.75	 volts volts ohms ma ohms watts
	AMPLIFIER - CLASS	AB - TWO TUBES		
Plate Voltage Grid Bias Self-Bias Resistor No-Signal Plate Cur Load Resistance (pl Total Harmonics Fower Output	rent (per tube) ate to plate)	Fixed-Bias 325 -68 40 3000 2.5 15	Self-Bias 325 850 40 5000 5 10	volts volts ohms ma ohms percent watts

The cathode is connected internally to the mid-point of the heater and to pin $\#\theta_{\bullet}$

TWIN TRIODE POWER AMPLIFIER Heater Type Glass Bulb

The 6A6 is a twin triode type amplifier tube designed for service as a Class B power amplifier in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the types 6N7 and 6N76.

6A6

BOTTOM VIEW OF SOCKET

Heater Voltage (a-c or d-c)	6.3	volta
Heater Current	0.8	amp
Maximum Plate Voltage	300	volts
Maximum Peak Plate Current (per plate)	125	ma.
Maximum Average Plate Dissipation	10	watts

AMPLIFIER - CLASS B

RATINGS

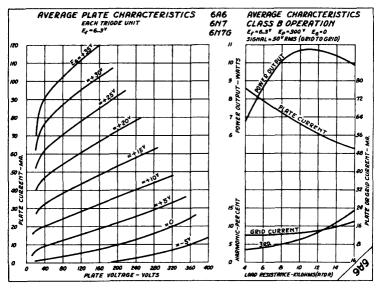
 Plate Voltage
 250
 300
 volts

 Grid Bias
 0
 volts

 No-Signal Plate Current (per plate)
 14
 17.5
 ma

 Load Resistance (plate to plate)
 8000
 10000
 chms

 Power Output (approximate)
 8
 10
 watts


 (With average power input = 350 mw. grid to grid)

AMPLIFIER - CLASS A - DRIVER TRIODES CONNECTED IN PARALLEL

Plate Voltage Grid Bias† Amplification Factor	250 -5 35	294 -6 35	volts volts
Plate Resistance Transconductance Plate Current		11000 3200 7	ohma µmhoa ma
Load Resistance - Depends on the design of the followi Usually between 20000 and 40000 ohms		s Bamp	
Power Output (approximate)	•	4 0 0	щw

The d-c resistance in the grid circuit should not exceed 0.5 megohm with self-bias or 0.1 megohm with fixed-bias.

For additional curves refer to the type 6N7G.

6A7

ST 12-D AUN A

1 00

1 PRONG ~

a

WRX.

XHW.

212

ì

RATTNES

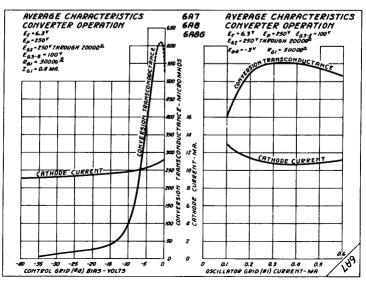
RAYTHEON

HEPTODE PENTAGRID CONVERTER Heater Type Glass Bulb

The 6A7 is a pentagrid type converter tube designed for service as a combined oscillator and mixer in storage battery or a-o operated superheterodyme receiv-ers. The ratings and electrical charac-teristics are identical with those of the types 6A8 and 6A86. 36

Heater Voltage (a-c or	d-o)6.3 volts
Heater Current	0.3 amp
Max, Flate Voltage	250 volts
Max, Screen Voltage	100 volts
Max, Grid #2 Voltage	200 volts
Max, Grid #2 Supply	250† volts
Min, Grid #4 Blas	-3 volts
Max, Cathode Current	14 ma

DIRECT INTERELECTRODE CAPACITANCES


Grid #4 to Plate	0.3*	μμ f
Grid #4 to Grid #2	0.15*	μμ f
Grid #4 to Grid #1	0.15*	μμ f
Grid #1 to Grid #2	1.0	µµ1
Grid #4 to all other Elements (R-F Input)	8.5	µµ1
Grid #1 to all other Elements (Osc. Input)	7	μμ 1
Grid #2 to all other Elements (Osc. Output)	5.5	μμ 1
Plate to all other Elements (Mixer Output)	9	μμf

FREQUENCY CONVERTER - SUPERHETERODYNE CIRCUIT

Plate Voltage Screen (Grids #3 and #5) Voltage Anode Grid (#2) Voltage	100 50 100	250 100	volts volts volts
Anode Grid Supply Voltage		250 †	volts
Control Grid (#4) Bias	-1.5	-3	volts
Oscillator Grid Resistor	50000	50000	ohms
Plate Resistance	0.5	0.3	megohm
Conversion Transconductance	360	550	umhos
Plate Current	1.1	3.5	ma
Soreen Current	1.3	2.7	ma
Anode Grid Current	2.0	4.0	ma
Oscillator Grid Current	0.25	0.4	ma
Control Grid Bias (approximate)	-20	-45	volts
(For Conversion Transconductance =	2 µahos)		

The voltage between heater and catho where they are not directly connected. cathode should be kept as low as possible

fApplied through a 20000 ohm series resistor bypassed by a 0.1 μf condenser. *With tube shield.

610

'n

8

G5 (4

T

TO PIN #1 BOTTOM VIEW OF SOCKET

6ABG BASING SAME AS

GAB EXCEPT NO CONN.

Te

(Z

6**A**8

6**A**8G

HEPTODE PENTAGRID CONVERTER Heater Type Metal Bulb-6A8 Glass Bulb-6A8G

The 6A8 is a pentagrid type converter tube designed for service as a combined oscillator and mixer in storage battery or a-c operated superheterodyne receivers. The ratings and electrical characteristics are identical with those of the type 6A7.

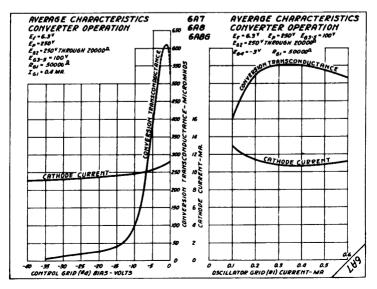
RATINGS

Heater Voltage (a-c or	d-c)6.3	volts
Heater Current	0.3	amp
Max. Plate Voltage		volts
Max, Screen Voltage		volts
Max. Grid #2 Voltage		volts
Max. Grid #2 Supply		volts
Min. Grid #4 Bias	-3	volts
Max. Cathode Current	14	ma

DIRECT INTERELECTRODE CAPACITANCES

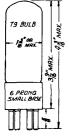
				6A8#	6A8G***	
Grid #4	to	Plate		0.03	0.3	μμ f
Grid #4				0.1	0.2	μμ f
						μμ
Grid #4	to	Grid #1		0.09	0.2	uuf
Grid #1	to	Grid #2		0.08	1.3	μμ1
Ur1a #4	το	all other I	El.(r-f input)	12.5	10	μμſ
Grid #1	to	all other 1	El. (osc. input)	6.5	6	μμ 1
Grid #2	to	all other I	El. (osc. output)	5	5	սու
Plate	+ ~	all other 1	El (min automati	10 5		
TTACO	60	arr orner i	El.(mix.output)	12.5	10	μμ f
0					_	հերթանակեր

FREQUENCY CONVERTER - SUPERHETERODYNE CIRCUIT


Plate Voltage	100	250	volta
Screen (Grids #3 and #5) Voltage	50	100	volts
Anode Grid (#2) Voltage	100		volts
Anode Grid Supply Voltage		250†	volts
Control Grid (#4) Bias	-1.5	-3	volts
Oscillator Grid Resistor	50000	50000	ohma
Plate Resistance	0.6	0.3	megohm
Conversion Transconductance	360	5 50	µm hos
Plate Current	1.1	3.5	ma
Screen Current	1.3	2.7	ma
Anode Grid Current	2.0	4.0	ma
Oscillator Grid Current	0.25	0.4	ma
Control Grid Bias (approximate)	-20	-45	volts
(For Conversion Transconductance = 2 µmhos)			

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With shell connected to cathode.


##With tube shield connected to cathode.

Applied through a 20000 ohm series resistor, bypassed by a 0.1 µf condenser.

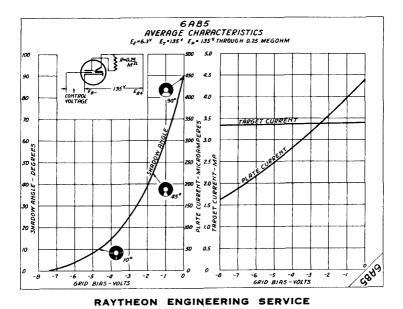
6AB5

CATHODE RAY TUNING INDICATOR Seater Type Glass Bulb

6AB5

The 6AB5 is a high vacuum type indicator tube designed for service as a tuning indicator in radio receivers requiring a low heater current tube.

RATINGS


BOTTOM VIEW OF SOCKET

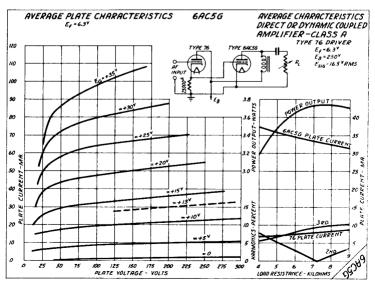
Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.150	amp
Hax. Plate Supply Voltage	135	volts
Eax. Target Voltage	135	volts

TUNING INDICATOR

Plate Supply Voltage	135	volts
Target Voltage	135	volts
Plate Resistor	0.25	megohm
Target Current (approximate)	4.5	ma
Plate Current (zero bias)	0.5	ma
Grid Bias for Shadow Angle = $0^{\circ}(approx.)$	-7.5	volts
Grid Elas for Shadow Angle =90°(approx.)	0	volts

The 6AB5 is a high-vacuum tube designed to visually indicate the effect of changing the control grid bias. The shaded pattern produced on the fluorescert target varies through an angle from 90° to approximately 0° as the extension of the triode plate between the cathode and target, controls the extension of the triode plate between the cathode and target, controls the eternined by the voltage of the control grid of the shaded control electrode is shaded. The voltage of the shaded control electrode is shadew. An increase of control grid voltage determines the extent of the shadew control grid bias thus increases the shadew control the shadew control shaded and target. Thus the control grid voltage determines the extent of the shadew. In practical use the control grid voltage is obtained from a suitable point in the AVC network.

6AC5G


RAYTHEON

6AC5G 6

ST 12-0 BALS ST	high-mu tr ssigned for tion partic nic coupled or tube. Th	ss Bulb iode power am positive bia cularly in circuit usin wo 6AC5G tube		
A MAX Stage. RATINGS			BOTTOM VIEW	V OF SOCKET
6 PROME SMALL CCTR. 6552 The teter Curron Maximum Platt Maximum Platt Maximum Platt	nt Voltage Plate Curre Dissipatio	ent	6.3 0.4 250 110 10	volts amp volts ma watts
Plate Voltage			250	volts
Grid Bias Amplification Factor			+13 125	volts
Plate Resistance Transconductance			36700 3400	ohms
Plate Current			3400 32	umhos ma
Grid Current			5	m a .
AMPLIFIER - CLA	ASS A - DIRE	OR DYNAMI	C COUPLED	
נ	ngle Tube - Type	Push-Pull-T	2-Type	
Plate Supply Voltage	5 Driver 250	76 Drivers 6 250	J5G Drivers 250	volts
Grid Bias	*	*	*	volts
No-Sig. Plate Current Max. Sig. Plate Current	32	64 76	48 72	ma ma
No-Sig. Driver Plate Current	5.5	10	8	ma
Max. Sig. Driver Plate Current Load Resistance	7000	19 10000(P-P)	20 10 0 00 (P-P)	ma
Max.Signal Voltage RMS (Driver)		47 (G-G)		ohm s volts
Total Harmonics Power Output	10 3.7 †	10 9.5	10	percent
Power Output	3.7 Y	9.5	9.5	watts
AMPLIFIER - CLA Plate Voltage	ISS B - TWO	TUBES	0.50	
Grid Bias			250 0	volts volts
Signal Peak Voltage (grid to gr	id)		70	volts
No-Signal Plate Current Load Resistance (plate to plate	:)		5 10 0 00	ma ohms
Power Output (approximate)			8	watts
(With peak input of 950 mw. gr	id to grid)			

* No external grid bias is required as the direct or dynamic coupled cir-cuit automatically supplies the proper bias to both tubes. The total d-c registance in the grid circuit of the type 76 driver tube should not exceed 1.0 megohim. is 4.3 watts with

+ Maximum power output at start of driver grid current total harmonic distortion of approximately 16%.

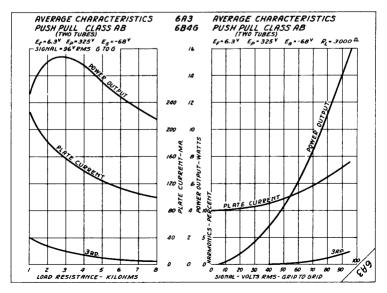
TRIODE POWER AMPLIFIER Filament Type Glass Bulb

The 6B4G is a triode type power amplifier tube designed for service in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 6A3.

6**B**4**G**

BOTTOM VIEW OF SOCKET

8 preoring MEDIUM OCTAL BASE	RATINGS Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage	6.3 1.0 325	volts amp volts
	DIRECT INTERELECTRODE CAPACITANCES		
	Grid to Plate Input Output	16 7 5	μμ Γ μμΓ μμΓ
	AMPLIFIER - CLASS A		
Plate Voltage Grid Bias*		250 max. -45	volts volts


Amplification Factor	4.2	
Plate Resistance	800	ohms
Transconductance	5250	µmho s
Plate Current	60	ma
Load Resistance	2500	ohms
Power Output (5% second harmonic)	3.2	watts

AMPLIFIER - CLASS AB - PUSH-PULL - TWO TUBES

Plate Voltage Grid Bias*	Fixed-Bias 325 -68	Self-Bias 325	vol ts volts
Self-Bias Resistor	40	750	ohma
No-Signal Plate Current (per tube)		40	ma
Load Resistance (plate to plate)	3000	5000	ohma
Power Output	15	10	watta
Total Harmonic Distortion	2.5	5	percent

*Grid bias measured from midpoint of a-c operated filament.

For additional curves refer to the type 6A3.

DUO-TRIODE

DIRECT COUPLED POWER AMPLIFIER Heater Type Glass Bui Glass Bulb

The 6B5 is a direct coupled power am-plifier tube designed for service in the output stage of storage battery or a-o operated receivers. The ratings and electrical characteristics are

f	- 18" 00	a-" 401	- KHW 31 0
	6 PROHIG MER BASE		8

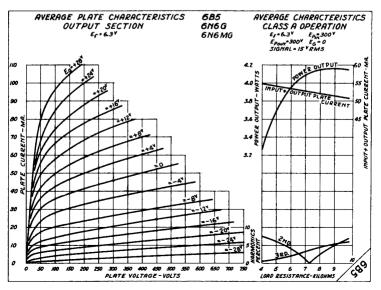
STIA BULA

6**B**5

identical with those of the type 6N6G. BOTTOM VIEW OF SOCKET RATINGS Heater Voltage (a-c or d-c) Heater Current 6.3 volts amp 0.8 Maximum Plate Voltage volta

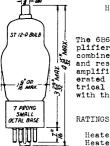
AMPLIFIER - CLASS A

Output-Plate Voltage Input-Plate Voltage Grid Bias Amplification Factor	250 250 0	300 300 0 58	325 325 0	volts volts volts
Plate Resistance Transconductance Output-Plate Current Input-Plate Current Load Resistance Total Harmonio Dist. Power Output Signal Voltage RMS	33 6.5 7000 5 2.5 13.5	24100 2400 45 8 7000 5 4 15	51 9 7000 5 5.2 17	ohms µmhos ma ohms percent watts volts


AMPLIFIER - CLASS A - PUSH-PULL - TWO TUBES

Output-Plate Voltage Input-Plate Voltage Grid Bias Output-Plate Current (per tube) Input-Plate Current (per tube) Load Resistance (plate to plate) Total Harmonic Distortion	250 250 0 33 6.5 10000 5	300 300 45 8 10000 5	325 325 0 51 9 10000 5	volts volts volts ma ohms percent
Power Output	8.5	10	13.5	watts
Signal Voltage RMS (grid to grid)	38	38	42	volts

The voltage between heater and cathode should not exceed 50 volts and in no case should the heater be left floating.


If a grid resistor is used its value should not exceed 0.5 megohm.

For additional curves refer to the type 6N6G.

DUO-DIODE TRIODE DETECTOR AMPLIFIER Heater Type Glass Bulb

6**B**6G

The 6B60 is a duo-diode triode type amplifier tube designed for service as a combined diode detector, AVC rectifier and resistance coupled audio frequency amplifier in storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 75.

BOTTOM VIEW OF SOCKET

	Heater Voltage (a-c or d-o) Heater Current Maximum Plate Voltage	6.3 0.3 250	volts amp volts
	DIRECT INTERELECTRODE CAPACITANCES Grid to Plate Input Output	1.3 2.7 4.5	μμ ք μμ ք μμ ք
	AMPLIFIER - CLASS A - TRIODE SECTION		
Plate Voltage		250	volts

 Grid Bias
 -2
 volts

 Amplification Factor
 100

 Plate Resistance
 91000 ohms

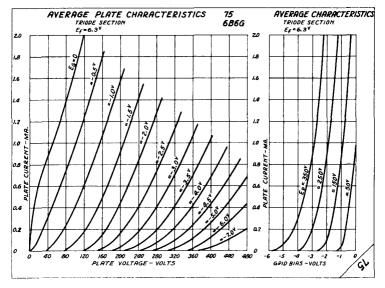

 Transconductance
 1100 µmhos

 Plate Current
 1 ma

DIODE SECTION

The two diodes are independent of each other and of the triode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

6**B**7

6B7

DUO-DIODE PENTODE DETECTOR AMPLIFIER Heater Type Glass Bulb

The 657 is a duo-diode pentode type am-plifier tube designed for service as a combined diode detector, AVC rectifier, and high or audo frequency amplifier in storage battery or a-c operated receivers.

BOT TOM VIEW OF SOCKET

- 18 MAX-		RATINGS
7 PRONG SMALL BASE		lleate Neate
	-+	Maxim Maxim
	11	DIRECT

Heater Voltage (a-c or d-c) Meater Current Maximum Plate Voltage Maximum Screen Voltage

6.3	volts
0.3	amp
250	volts
125	volt s

DIRECT INTERELECTRODE CAPACITANCES - PENTODE SECTION

Grid to Plate	0.007 mex.*	ևµ1
Input	3.5	µµ 1
Output	9.5	µµ 1

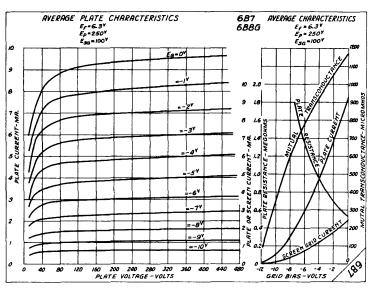

AMPLIFIER - CLASS A - PENTODE SECTION

Plate Voltage Screen Voltage Grid Hias Amplification Factor Plate Resistance	100 100 -3 285 0.3	180 75 -3 840 1	250 100 -3 800 0.8	250 125 -3 730 0.65	volts volts volts megohm
Transconductance Plate Current Screen Current Grić Bias (For cathode current cutoff AUPLIFIER -		840 3.4 0.9 -13 - RESISTA	1000 6 1.5 -17 NCE COUPLI	1125 9 2.3 -21 ED - PENTODI	µmhos ma wolts E SECTION
Plate Supply Voltage Screen Voltage Grid Sias Plate Resistor Plate Current		250 45 -5 0.5 0.25	250 50 -4.5 0.25 0.65	250 100 -3 0.027 5.4	valts volts wolts megohm ma

DIODE SECTION

The two diode units are independent of each other and of the pentodesection except for the common cathode. The diodes may be used as a half wave or as a full wowe rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. *With tube shield.

6B8

RAYTHEON

DUO-DIODE PENTODE DETECTOR AMPLIFIER

The 6B8 is a duo-diode pentode type amplifier tube designed for service as combined diode detector, AVC rectifier and r-f, i-f, or a-f amplifier.

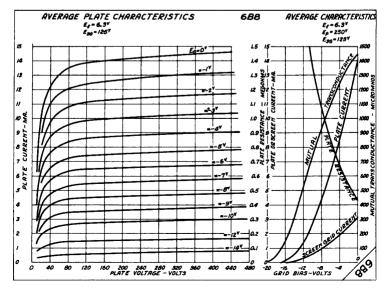
RATINGS

Metal Bulb

Heater Voltage	6.3	volts
Heater Current	0.3	amp
Max, Plate Voltage	250	volts
Max. Screen Voltage	125	volts

DIRECT INTERELECTRODE CAPACITANCES - PENTODE SECTION (Shell connected to cathode)

Grid to Plate	0.005 m	ax. µµf
Input	6	μμ f
Output	9	μμ f

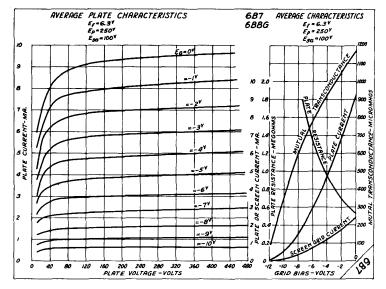

Heater Type

AMPLIFIER - CLASS A - PENTODE SECTION

Plate Voltage Soreen Voltage Grid Bias Amplification Factor Plate Resistance	250 125 -3 800 0.6	approx. approx.	volts volts volts megohm
Transconductance	1325	approx.	µmhos
Plate Current	10		ma
Screen Current	2.3		wa
Grid Bias for Cathode Current Cutoff	-21		volts

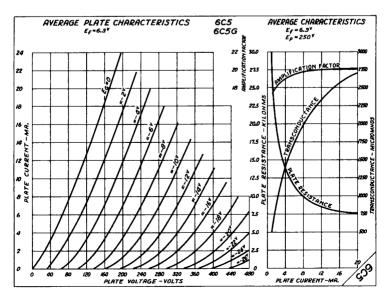
DIODE SECTION

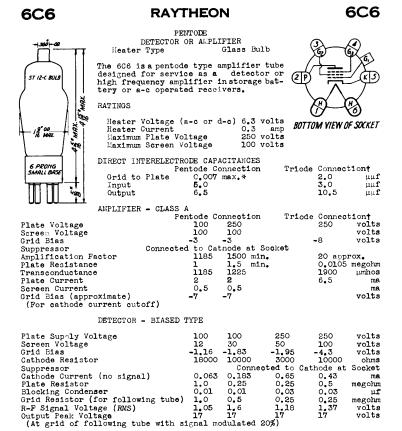
The two diode units are independent of each other and of the pentode section except for the common cathode. The diode units may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.


6**B**8G

6**B**8G

ST I2-0 BULG		lgned fo tector, a-f ampli	IFIER Glass ntode typ or serv AVC rec	pe am- ice as		De socket
B POING SMALL CCTAL BASE	DIRECT INTERELECTI (With close fitt: Grid to Plate Input Output AMPLIFIER - R-F or	RODE CAPA	ACITANCE Ld conne	cted to	cathode)	N max, μμ f μμ f μμ f
Plate Voltage Screen Voltage Grid Bias Amplification Plate Resistar Transconductar Plate Current Screen Current Grid Bias (For Cathode	Factor nce nce current Cutoff)	100 100 -3 285 0.3 950 5.8 1.7 -17	180 75 -3 840 1 840 3.4 0.9 -13	250 100 -3 800 0.8 1000 6 1.5 -17	9 2.3 -21	volts volts volts megohm µmhos ma volts
Plate Supply V Screen Voltage Grid Bias Plate Resiston Plate Current		TANCE CO	250 45 -5 0.5 0.25	250 50 -4.5 0.25 0.65	250 100 -3 0.027	volts volts volts megohm ma


DIODE SECTION

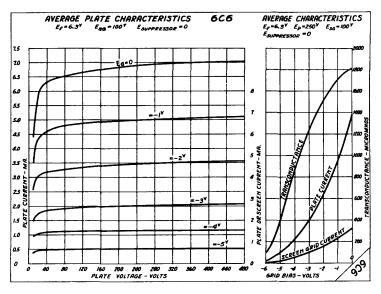

The two diode units are independent of each other and of the pentode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

6C5 6C5G	RAYTHE	N	6C5 6C5G
6C5 AITTRO BUE 18 MAR 18 MAR 18 GRAMAR 18 GRAMAR 19 GRAMAR 19 GRAMAR 10 HOL 19 GRAMAR 10 HOL 10 HOL	TRIODE DETECTOR OR AMP Heater Typ Netal Bulb-605 Gla The 605 is a triode type designed for service as amplifier in storage bat erated receivers. RATINGS Heater Voltage (a-c or Heater Current Maximum Plate Voltage	e ss Bulb-6056 amplifier tube a detector or tery or a-c op-	CONNECTED TO PIN
6C56 57 /2-P 8UL8 /g* 00 /j8 maar.	DIRECT INTERELECTRODE CA Grid to Pla 6C5* 1.8 6C6G** 2.5 AMPLIFIER - CLASS A Plate Voltage Grid Blas Amplification Factor Plate Resistance	te Input 4.0 4.5	Output μμf 13 μμf 9.5 μμf 250 volts -8 volts 20 ohns
SMALL OCTAL BASE	Transconductance Plate Current AMPLIFIER - CLASS A - RE	SISTANCE COUPLED	2000 µmho s 8 ma
Plate Supply Vo Grid Bias (appr Plate Resistor Plate Current Voltage Amplific	oximate) ation		250 volts -5 volts to 10000 ohms to 2 ma 14 42 volts volts
Voltage Output	(5% second harmonic)RMS DETECTOR - BIASED TYPE		42 VOIUS
Plate Voltage Grid Bias (appr Plate Current	oximate) DETECTOR - GRID LEAK TYP	Adjusted to 0.2	250 volts -17 volts 2 ma. with no signal
Plate Voltage Grid Grid Leak Resis Grid Condenser		45 0.1 0.00005	to 100 volts Return to Cathode to 1.0 megohm to 0.0005 μf

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. *With shell connected to cathode. *Internal shield connected to cathode.

1,18 17

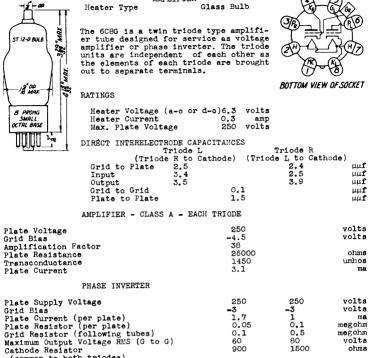
The shield in the dome of the tube is connected The voltage between heater and cathode should where they are not directly connected. be is connected internally to the cathode. cathode should be kept as low as possible


1,37

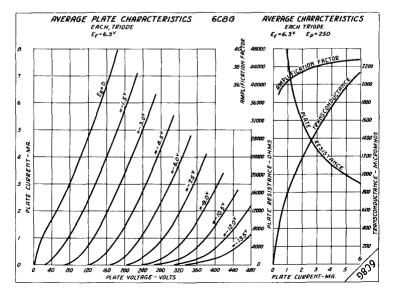
17

volta

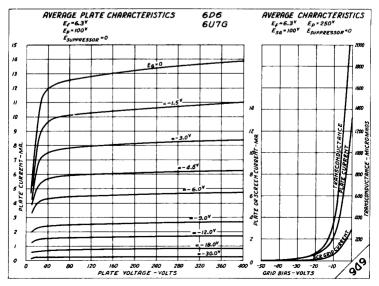
volts


*With tube shield. +Grids #2 and #3 connected to plate.

6C8G


TWIN TRIODE

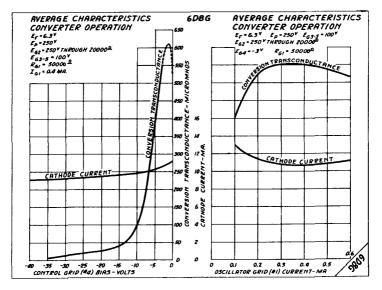
6C8G


(common to both triodes)

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

6D6	RAYTHEON	I		6D6
57 12-C BULB	PENTODE REMOTE CUTOFF AMPLIE Neater Type Gla The 6D6 is a pentode type an with remote outoff charact signed for service as a hi amplifier or mixer in store a-c operated receivers, and electrical characterist tical with those of the type RATINGS	ass Bulb teristics de-(igh frequency age battery or The ratings tics are iden- be 607G.	2P H BOTTOM VIEW	RO OF SOCKET
6 PRONG SMALL BASE	Heater Voltage (a-c or d- Heater Current Maximum Plate Voltage Maximum Screen Voltage	·c)	6.3 0.3 250 100	volts amp volts volts
	DIRECT INTERELECTRODE CAPAC Grid to Plate Input Output ALPLIFIER - CLASS A	ITANCES	0.007r 5.0 6.5	nax.*μμf μμf μμf
Plate Voltage Soreen Voltage Grid Eias Supressor Amplification F Plate Resistano Transconductane Plate Current Screen Current Grid Bias for T	actor e	100 100 -3 Connected to 375 0.25 1500 8 2.2 -50	250 100 -3 0 Cathode a 1280 0.8 1600 8.2 2 -50	volts volts volts t Socket megohm µmhos ma volts
	MIXER - SUPERHETERODYNE CIR	CUIT		
Plate Voltage Screen Voltage Grid Bias Suppressor		100 100 -10 Connected to	250 100 -10 Cathode s	volts volts volts t Socket
The grid bias i the grid bias.	s not critical with an oscil	lator peak swi	ing 1 volt:	less than
The voltage bet where they are	ween heater and cathode sh not directly connected.	iould be kept	as low as	possible
	the dome of the tube is conn	ected internal	lly to the	cathode.
*With tube shie	ld.			

For additional curves refer to the type 6U7G.



6D8G

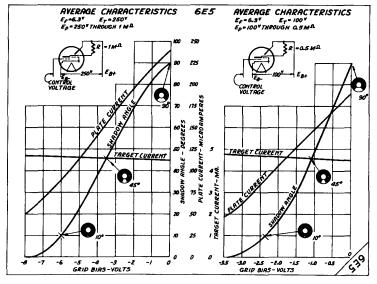
RAYTHEON

6D8G

HEPTODE PENTAGRID CONV. Heater Type The 6D8G is a pentagrid tube designed for servi oscillator and mixer in socillator and mixer in socillator and mixer in socillator and mixer in to a - operated receiver heater current tube. RATINGS Heater Voltage (a-o or Heater Current Max. Plate Voltage Max. Grid #2 Supply Min. Grid #2 Supply Min. Grid #4 Blas Max. Cathode Current	Glass Bulb type converter ce as a combined storage battery srequiring alow - d-o)6.3 volts 0.150 amp 250 volts 100 volts 200 volts 250 volts 13 ma		G G G G G S OCKET
DIRECT INTERELECTRODE CA Grid #4 to Plate Grid #4 to Grid #2 Grid #4 to Grid #1 Grid #1 to Grid #1 Grid #1 to all other Elements (R-F input Grid #1 to all other Elements (Osc. inpu Grid #2 to all other Elements (Osc. outp Plate to all other Elements (Mixer out FREQUENCY CONVERTER - SU	;) it) uut) :put)	0.3 0.2 0.2 1.3 8.8 6 5 11 RCUIT	T T T T T T T T T T T T T T T T T T T
Plate Voltage Soreen (Grids #3 and #5) Voltage Anode Grid (#2) Voltage Control Grid (#2) Voltage Control Grid (#4) Blas Oscillator Grid (#4) Blas Oscillator Grid (#1) Resistor Plate Resistance Conversion Transconductance Plate Current Screen Current Anode Grid Current Control Grid Blas (For Conversion Transconductance = 10 g Grid #1 to Grid #2 Transconductance (At O volts bias on Grid #1) †Applied through a 20000 ohm series resi *With tube shield connected to cathode.	135 67.5 135 -3 50000 0.4 325 1.2 2 3.4 0.45 -25 -25 -25 1150	250 100 250† -3 50000 0.32 500 3.3 3.2 4 0.5 -38.5 1000	volts volts volts volts megohm ma ma ma volts µmhos ndenser.

CATHODE RAY TUNING INDICATOR Heater Type Glass Bulb

The 6E5 is a high vacuum type indicator tube designed for service as a tuning indicator in radio receivers.

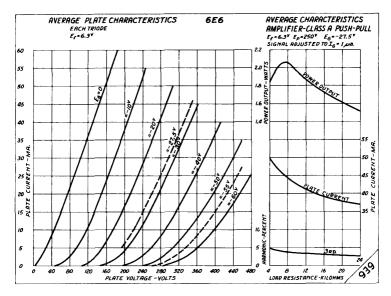

RATINGS

	DOTTONTAL	U JOCKLI
Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.3	amp
Haximum Plate Supply Voltage	250	volts
Maximum Target Voltage	250	volts
Minimum Target Voltage	90	volts

TUNING INDICATOR

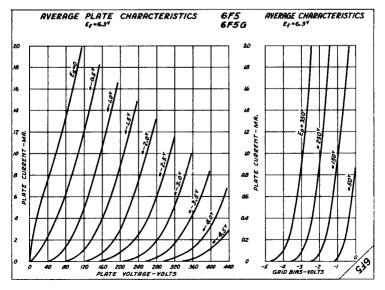
Plate Supply Voltage Target Voltage Plate Resistor Target Current (approx.) Plate Current (zero blas) Grid Blas (approx.) (For shadow angle = 0°)	100 100 0.5 4.5 0.19 -3.3	200 200 1 4.5 0.19 -6.5	250 250 1 4.5 0.24 -8	volts volts megohm ma volts
Grid Bias (approx.) (For shadow angle =90°)	0	0	0	volts

The 6E5 is a high vacuum tube designed to visually indicate the effect of changing the control grid bias. The shaded pattern produced on the fluorescent target varies through an angle from 90° to approximately 0° as the control voltage is varied. The voltage on the shadow control electrode, the extension of the triode plate between the cathode and target, controls the extent of the shaded area. The voltage of the shadow control electrode is determined by the voltage of the control grid of the triode connected as a d-o amplifier. Thus the control grid voltage determines the extent of the shadow control grid that hus increases the shadow control shadow control shadow. An increase of control grid voltage is obtained from a suitable point in the AVC network.



6E6

ST14 BULB	TWIN TRIODE POWER AMPLIFIER Heater Type Glass Bulk The 6E6 is a twin triode type power plifier tube designed for service a Class A push-pull amplifier in output stage of storage battery or operated receivers.	am- as 2h	
} i		BOTTOM VI	EW OF SOCKET
7 PRONG MER BASE ASS DIA PIN	RATINGS		
CIRCLE	Heater Voltage (a-c or d-c)	6.3	volts
	Heater Current Maximum Plate Voltage	0.6 250	amp volts
	AMPLIFIER - CLASS A - EACH TRIODE		
Plate Voltage	180	250	volts
Grid Bias Amplification Fac	-20 6	-27.5	volts
Plate Resistance	4300		ohms
Transconductance Plate Current	1400 11.5	1700 18	µmhoa ma
	AMPLIFIER - CLASS A - PUSH-PULL		


Plate Voltage	180	250	volts
Grid Blas	-20	-27.5	volts
Plate Current (per plate)	11.5	18	ma
Load Resistance (plate to plate)	15000	14000	ohm s
Power Output	0.75	1.6	watts

6F5 6F5G	RAYTHEON					F5 F5G
CAMPED ATTOR BULS		TRIODE AMPLIFIER Ator Type 75 Gla	ss Bulb-	6 F 50		Ŕ
	The 6F5 is a to designed for coupled audio is storage battery ers.	service as frequency	a resi amplifie	stance r in	EFS Sh	
S PROME OCTAL BASE	RATINGS Heater Voltag Heater Curren Maximum Plate DIRECT INTERELJ	Voltage	-	5	10 € 1 PIN 6.3 0.3 250	volts amp volts
6556 57 12-0 0018	6F5* 6F5G AMPLIFIER - CL	Grid to PI 2.0 2.0		Input 6 2.5	0utput 12 3.5	µµ ք µµ ք
18 00 18 MARC ORNA SMOLL OCTAL BASE	Plate Voltage Grid Bias† Amplification Plate Resiste Transconducts Plate Current	n Factor ance ance			250 -2 100 66000 1500 0.9	volts volts ohms µmhos ma
Plate Supply Vo Grid Bias Plate Resistor	AMPLIFIER - CLA ltage	2	50 3 to 1.0		250 -1.3 0.25 to 1.0	volts volts megohm
Grid Resistor Plate Current Voltage Output (5% second har Voltage Amplifi	monic)	0.2	to 20 to 0.4 to 20	:	0.23 to 1.0 0.5 0.2 to 0.4 14.5 to 25.5 51 to 60	megohm ma

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With shell connected to cathode †The d-c resistance in the grid circuit should not exceed 1 megohm. ‡For following tube

6**F**6

6F6G

6F6

6F6G

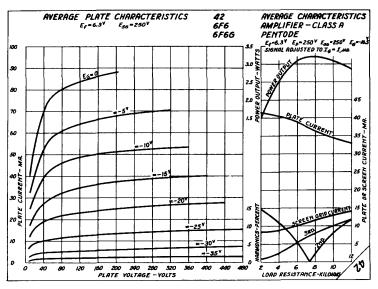
PENTODE POWER AMPLIFIER Heater Type 6F6 Glass Bulb-6F6G É (G, 6F6 Metal Bulb-6F6 MOX 788 BULL T The 6F6 is a pentode type power ampli-fier tube designed for service in the MAX 100 output stage of storage battery or a-o operated receivers. The ratings and electrical characteristics are identi-cal with those of the type 42. EH) (H/; <u>19</u> 2 G, 6F6 (0) BOTTOM VIEW OF SOCKET RATINGS DDIQU 120 Heater Voltage (a-c or d-c)6.3 volts Heater Current 0.7 amp Maximum Plate Voltage 315 volts 6F6G-NO CONNECTION 7 APA TO #I PIN SATE BOST Maximum Screen Voltage 315 volts 6F6G AMPLIFIER - CLASS A Pentode Connection Triode Connection† Plate Voltage 250 315 250 max, volta Corner Voltage 250 315 volta ST 14 BULB volts MAX volts 16.5 volts Grid Bias 22 20 200‡ 200‡ 80000‡ Amplification Factor 7 - 00 1 MRX. Plate Resistance 750001 2600 i. ohma 2500 2650 2700 Transconductance umhos -190 34 Plate Current 42 31 me 6.5 Screen Current ma Load Resistance 7000 7000 4000 ohms 'T PRONG MEDIUM Total Harmonic Dist. Power Output 7 7 percent 5 OCTAL BASE 0.85 3 5 watts 2 ПП CLASS AB - TWO TUBES 19 AMPLIFIER -Pentode Connection Triode Connection Fixed-Bias 375 max. 250 max. Self-Bias Fixed-Bias Self-Bias 350 max. 350 max. Plate Voltage 375 max. 250 max. volts Screen Voltage volts Grid Bias Self-Bias Resistor min. -38 -26 volts 340 min. 730 min. ohms Signal Pk. Volt. (G to G) 82 94 123 132 volts No-Signal Plate Current 34 54 45 50 ma No-Signal Screen Current Load Resistance(P to P) 5 я ma 10000 10000 6000 10000 ohma Total Harmonic Dist. 5 percent

#With one 6F6 or 6F6G triode connected as driver operated at plate voltage of 250 volts, grid bias of -20 volts and plate load of approximately 10000 ohms.

19Δ

18**

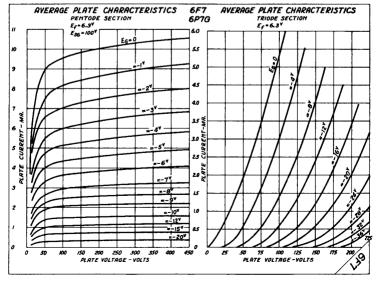
14¶


watts

*Input transformer ratio, primary to 1/2 secondary = 3.32 AInput transformer ratio, primary to 1/2 secondary = 2.5 *Input transformer ratio, primary to 1/2 secondary = 1.67 ¶Input transformer ratio, primary to 1/2 secondary = 1.29 ↑Screen connected to plate. †Approximate

19#

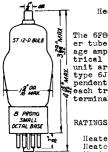
Power Output (approx.)#


For additional curves refer to the type 42.

6F7

	TRIODE-	-PENTODE			
	AMPLIFIER (OR CONVERTER			~
	Heater Type	Glass Bul	h		(9) -
	nouver type	02000 503	· (\mathcal{N}	べい
	The 6F7 is a duple	ax tube, combinir	nortnn `		(Cher
()	one bulb a triode				1
ST 12-0 BULB	pentode, designed :		08	<u>цч===</u>	
, wax	cillator and mixer				⁻(⊮/₀)
	cy amplifier and			ヽノヽ	16.0
	storage battery or			X A	ส`*
1 4		and electrical of		6M	(2)
ا§ ا	actoristics are ide	entical with thos	se of	O	0
	the type 6P7G.		B01	TOM VIEW OF	SOCKET
Super 1 Super	••				
→ <u></u>	RATINGS				
7 PRONG	Heater Voltage (a-c or d-c)		6.3	volts
SMALL BASE	Heater Current			0.3	amp
L	DIRECT INTERELECTRO	ODE CAPACTTANCES			-
		ld to Plate	Input	Output	
· · · · · · · · · · · · · · · · · · ·	Triode Section *		2.5	3.0	uuf
	Pentode Section *		3.2	12	μuf
	AMPLIFIER - CLASS				
	AMPLIFIER = CLASS	Triode Section	Pentodo	Section	
Plate Voltage		100 max.	100		. volts
Screen Voltage		100 max.	100	100 may	. volts
Grid Bias		-3	•3		. volta
Amplification Fa	entor	B	300	900	· ····
Plate Resistance		0.016	0.29	0.85	megohm
Transconductance		500	1050	1100	umhos
Plate Current		3.5	6.3	6.5	ma
Screen Current			1.6	1.5	ma
Transconductance	e (at -35 volts bia:	s)	9	10	umhos
	TRECTIENCY CONTREPORT	B			
	FREQUENCY CONVERTE		D	.	
No	-14	Triode Section 100	rentode	Section 250	volts
Maximum Plate V	DITAGO	100		100	volta
Minimum Grid Bi		•		-3 #	volta
	as tor Plate Current(a			-0 #	UDA
Maximum OSCIIIa	Typical Operation:	VOI AGO/ 4			ща
Plate Voltage	Typical operation.	1001		250	volta
SereenVoltage		100+		100	volta
Grid Bias		+		-10 4	volta
Plate Resistan		1		2	megohm
Conversion Tra				300	umhos
Plate Current		2.4		2.8	ma
Grid Current		0.15		õ	ma
Screen Current				0.6	ma
	k Voltage Input			7	volts

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. *With tube shield. **Other section connected to ground. †Usually obtained by means of a grid leak. #Orid bias should be at least 3 volts greater than the peak oscillator volt-age applied to the pentode grid. #May be obtained from 250 volt supply through 60000 ohm series resistor. AObtained by means of 1700 ohm cathode resistor.


For additional curves refer to the type 6P7G.

TWIN TRIODE

AMPLIFIER

Heater Type

6**F**8G

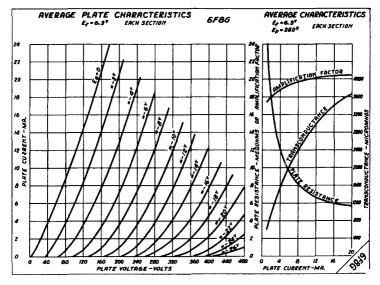
The 6F8G is a twin triode type amplifier tube designed for service as a voltage amplifier. The ratings and electrical characteristics of each triode unit are identical with those of the type 655G. The triode units are independent of each other as the elements of cach triode are brought out to separate terminals.

BOTTOM VIEW OF SOCKET

Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.6	amp
Haximum Plate Voltage	250	volts
	200	

Glass Bulb

DIRECT INTERELECTRODE CAPACITANCES


TRIODE L TRIODE R (Triode R to Ground)(Triode L to Ground)

Grid to Plate Input	4.5 3.3	4.16 3.0	րիլ Երել Երել
Output Grid to Grid		2.0 .13	μμ f
Plate to Plate Grid R to Plate L		•2 •2	րող հող

AMPLIFIER -CLASS A - EACH TRIODE

Plate Voltage	250	volts
Grid Bias	-8	volta
Amplification Factor	20	
Plate Resistance (approximate)	7700	ohms
Transconductance (approximate)	2600	µmhos
Plate Current	9	ma

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

6G5-6H5

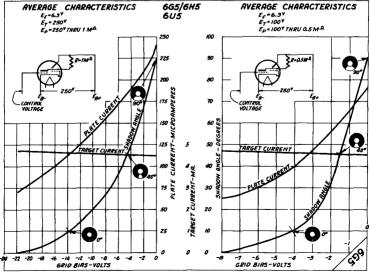
RAYTHEON

6G5-6H5

S PROVIG SMALL BASE CATHODE RAY TUNING INDICATOR Heater Type Glass Bulb

The 665/6115 is a high vacuum type indicator tube with remote cutoff characteristics designed for service as a tuning indicator in radio receivers. The ratings and electrical characteristics are identical with those of the type 6U5.

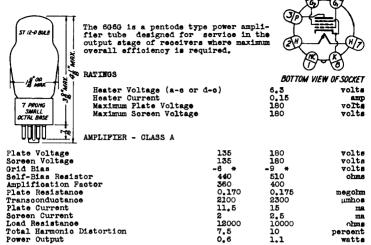
BOTTOM VIEW OF SOCKET


Heater Voltage (a-c or d-c) Heater Current Laximum Plate Supply Voltage Hiaximum Target Voltage	6 .3 0 . 3 250 250 90	volts amp volts volts volts
--	---	---

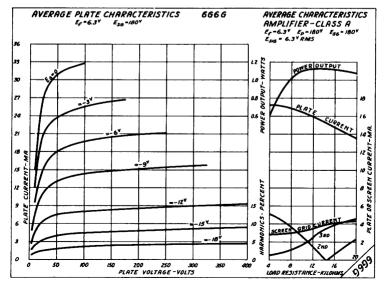
TUMING INDICATOR

RATTNGS

Plate Supply Voltage Target Voltage Plate Resistor Target Current (approximate) Plate Current (zero bias) Grue dias (approximate) Diate (approximate)	100 100 0.5 4.5 0.19 -8	200 200 1 4.5 0.19 -18.5	250 250 1 4.5 0.24 -22	volts volts megohm ma volts
(For shadow angle = 0°) Grid Bias (approximate) (For shadow angle =90°)	0	0	0	volts


The 665/6H5 is a high vacuum tube designed to visually indicate the effect of changing the control grid bias. The shaded pattern produced on the fluorescent target varies through an angle from 90° to approximately 0° as the control voltage is varied. The voltage on the shadow control electrode, the extension of the triode plate between the cathode and target, controls the extension of the voltage of the voltage of the shadow control electrode is determined by the voltage of the control grid of the triode connected as a d-c amplifier. Thus the control grid voltage determines the extent of the shadow. An increase of control grid voltage determines the shadow control voltage and decreases the shadow while a decrease of bias increases the shadow. In practical use the control grid voltage is obtained from a suitable point in the AVC network.

6**G**6**G**


6G6G

PENTODE POWER AMPLIFIER Heater Type Glass Bulb

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

* Transformer or impedance input systems are recommended. If resistance coupling is used the d-o resistance in the grid circuit should not exceed 0.5 megohm with self-bias. With fixed-bias the d-o grid circuit resistance should not exceed 0.5 megohm under the 135 volt operating conditions or 0.05 megohm under the 180 volt conditions.

6H6 6H6G

TWIN DIODE DETECTOR

Heater Type H6 Glass Bulb-6H6G

6H6 6H6G


The 6H6 is a twin diode tube designed for service as a diode detector and AVC rectifier or as a low current rectifier in storage battery or a-c operated receivers.

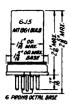
Metal Bulb-6H6

RATINGS

BOTTOM VIEW OF SOCKET 6H6G-INT. SHIELD CONNECTED TO #1 PIN

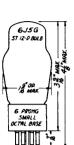
Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.3	amp
Maximum A-C Voltage per Plate (RMS)	100	volts
Maximum D-C Output Current	4	ma

DIRECT INTERELECTRODE CAPACITANCES


	Plate to Plate	Plate to Cathode	
6H 6 *	0.02 max.	1.2	μμ f
6H6G**	0.4	1.5	μμ f

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With shell connected to cathode. **With internal shield connected to cathode.



RATINGS

6J5

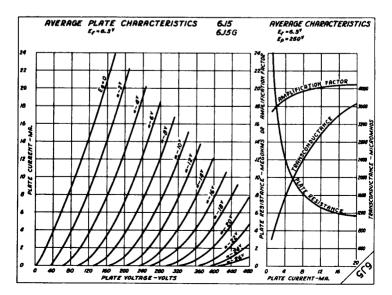
6J5G

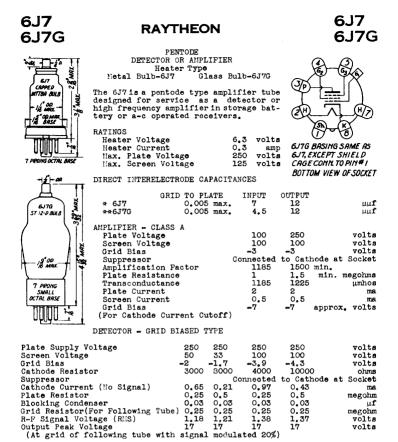
TRIODE AMPLIFIER Heater Type Metal Bulb-6J5 Glass Bulb-6J5G
The 6J5 is a triode type amplifier tube designed for service in storage battery or a-c operated receivers.

BOTTOM VIEW OF SOCKET 6J5G-NO CONNECTION TO #1 PIN

Output 3.6

μµf

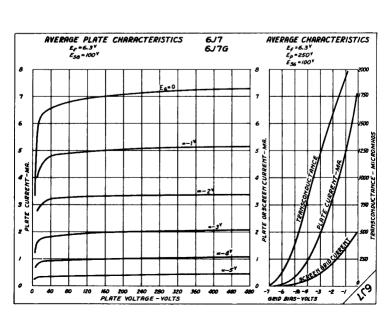

μµf


Heater Voltag Heater Curren Maximum Plate	t	c)6.3 0.3 250	volts amp volts	TO
DIRECT INTERELE	CTRODE CAPA	CITANCI	ES	
	Grid to Pla	te	Input	
6J5 6J5G	3.4 3.4		3.4 3.8	

AMPLIFIER - CLASS A

Plate Voltage Grid Bias	250 - 8	volts volts
Amplification Factor	20	
Plate Resistance	7700	ohms
Transconductance	2600	umhos
Plate Current	9	ma

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.



volts

should not exceed

its value

cathode should be kept as low as possible

When a resistor is used in the grid circuit.

between heater and

* With shell connected to cathede **With tube shield and internal shield connected to cathede.

where they are not directly connected.

1 megohm. The

voltage

6J8G

RAYTHEON

TRIODE HEPTODE FREQUENCY CONVERTER

6**J**8G

R O

H)

8

BOTTOM VIEW OF SOCKET

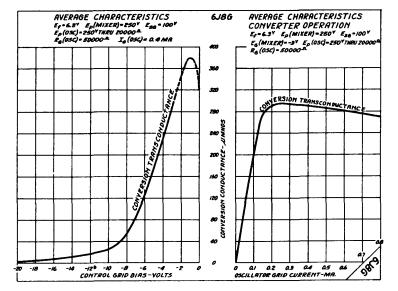
62-4 (4) (7R) (4)

ī

24

The 6J8G is a duplex tube containing a tride unit and a heptode unit, having a common cathode, in the same envelope. The grid of the tride unit is connected internally to the injector grid of the heptode unit. It is designed for converter service in circuits similar to those employing a separate tride oscillator and pentagrid mixer.

RATINGS

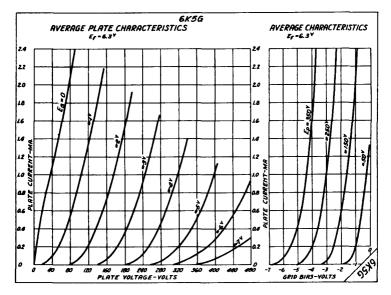

Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.3	amp
Maximum Plate Voltage (Heptode)	250	volts
Maximum Soreen Voltage (Heptode)	100	volts
Maximum Plate Supply Voltage (Triode)	250*	volts

Glass Bulb

FREQUENCY CONVERTER

Heater Type

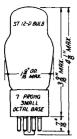
* Applied through a 20000 ohm series resistor by-passed by a 0.1 µf condenser.


6K5G

TRIODE

6K5G

-	AMPLIF		_	_
	Heater Type	Glass Bulb	, And	-Rô
57 12-9 BULS	The 6K5G is a triode designed for service coupled audio freque storage battery or a ers.	e as a resistance noy amplifier in	воттом чием	H H W OF SOCKET
7 PRONG SMALL	RATINGS			
OCTAL BASE	Heater Voltage (a-c Heater Current	o or d-o)	6.3	volts
	Maximum Plate Volta	age	0.3 250	amp volts
	DIRECT INTERELECTRODE	CAPACITANCES		
	Grid to Plate		2.0	սաք
	Input		2.4	μμ1
	Output		3,6	μμ f
	AMPLIFIER - CLASS A			
	actor (approximate)	100 -1.5 70	250 -3 70	volts volts
	e (approximate)	78000	50000	ohma
Transconductanc Plate Current	0	900 0.35	1400 1.1	µmho s ma
		0.00		11454


The voltage between heater and catho where they are not directly connected. cathode should be kept as low as possible

PENTODE

POWER AMPLIFIER

6K6G

6K6G

The 6K6G is a pentode type power amplifior tube designed for service in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 41.

BOTTOM VIEW OF SOCKET

Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.4	amp
Eaximum Plate Voltage	250	volts
Haximum Screen Voltage	250	volts

Glass Bulb

AMPLIFIER - CLASS A

RATINGS

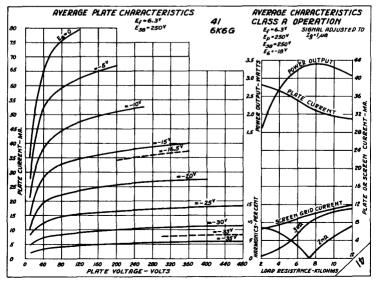

Heater Type

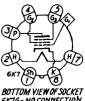
Plate Voltage	100	135	180	250	volts
Screen Voltage	100	135	180	250	volts
Grid Bias	-7	-10	-13.5	-18 †	volts
Amplification Factor (approx.)	150	150	150	150	
Plate Resistance (approx.)	103500	94000	81000	68000	ohms
Transconductance	1450	1600	1850	2200	μmh os
Plate Current	9	12.5	18.5	32	ma
Screen Current	1.6	2.2	3	5,5	ma
Load Resistance	12000	10400	9000	7600	ohms
Total Harmonic Distortion	10	10	10	10	percent
Power Output	0.33	0.75	1.5	3.4	watts

Transformer or impedance input coupling devices are recommended. If resistance coupling is used, the d-c resistance in the grid circuit should not exceed 1 megohm with self-bias, or 0.1 megohm with fixed-bias.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

†A bias of -16.5 volts and a load resistance of 7000 ohms will give power output of 3.2 watts with 7% total harmonic distortion.

6K7 6K7G


RATINGS

6K7

6K7G

PENTODE REMOTE CUTOFF AMPLIFIER E CUTOFF An ---Heater Type Glass Bulb-6K7G Metal Bulb-6K7

The 6K7 is a pentode type amplifier tube The 687 is a pentode type amplifier tube with remote cutoff characteristics de-signed for service as a high frequency amplifier or mixer in storage battery or a-c operated receivers. The ratings and electrical characteristics are identi-cal with those of the type 78.

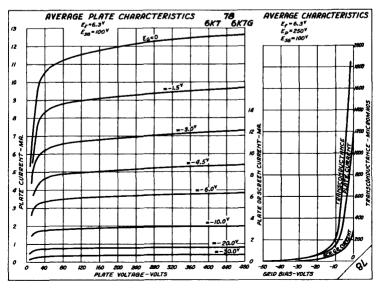
6K7G-NO CONNECTION TO #1 PIN

-10

Connected to Cathode at Socket

volta

	Heater Voltage (a-c Heater Current Maximum Plate Voltag Maximum Screen Volta	e			6.3 0.3 250 125	volts amp volts volts
-15-00	DIRECT INTERELECTRODE	CAPACITA	NCES			
6K7G ST IZ-D BULB	Grid to 6K7* 0.005 6K7G** 0.005 AMPLIFIER - CLASS A	max.		put 7 4.5	Output 12 12	μμ ք μμ ք
T PROMO OCTINL BASE	Plate Voltage Screen Voltage Grid Blas Suppressor Amplification Factor Plate Resistance Transconductance Plate Current Screen Current Grid Blas (For Transconductar	400 0.315 1275 5.4 1.3 -38.5	1100 1.0 1100 4 1 -32.5	1160	250 125 -3 mi thode a 990 0.6 1650 10.5 2.6 -52.5	volts volts n.volts Socket megohm µmhos ma ma volts
	MIXER - SUPERHETERODYN	E CIRCUI	T			
Plate Voltage Screen Voltage					250 100	volts volts


Plate Voltage Screen Voltage Grid Biast Suppressor

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

The internal shield in the 6K7G is connected to the cathode within the tube.

* With shell connected to cathode. **With tube shield connected to cathode. † The grid bias is not critical with an oscillator peak voltage 1 volt less than the grid bias.

For additional curves refer to the type 78.

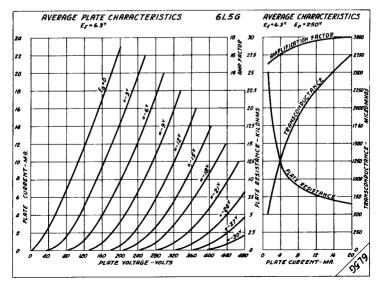
6L5G

TRIODE DETECTOR OR AMPLIFIER Heater Type Glass Bulb

The 6L5G is a triode type amplifier tube designed for service as a detector or amplifier in storage battery or a-c operated receivers requiring a low heater

BOTTOM VIEW OF SOCKET

UUUU N. Heats	er Voltage (a-c or d-c) er Current num Plate Voltage	6.3 0.15 250	
DIRECT	INTERELECTRODE CAPACITANCES*	÷	
Grid Input Outpu		2.7 3 5	μμք μμք μμք
AMPLIFI	IER - CLASS A		
te Voltage	1.	35 250	volta


Plate Voltage Grid Bias	135 -5	250 -9	volt s volts
Amplification Factor	17	17	
Plate Resistance	11300	8900	ohma
Transconductance	1500	1900	µmhos
Plate Current	3.5	8	ma
Grid Bias for Plate Current Cutoff	-11	-20	volta

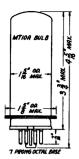
The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With tube shield connected to cathode.

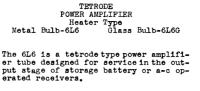
current tube.

RATTNOS

RAYTHEON ENGINEERING SERVICE


6L5G

ST 12-0 BULD 10 000 10 MARX 10 MARX

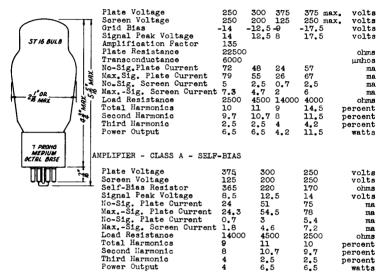

G

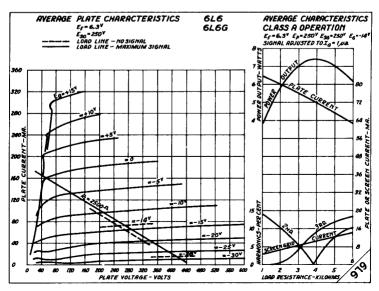
RATINGS

6L6

6L6G

	6.3	volts
	0.9	amp
	400	volts
	300	volts
(total)†	24	watts
	3.5	watts

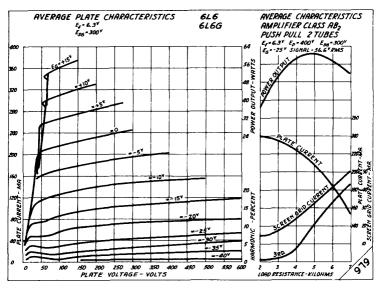

Continued on next page

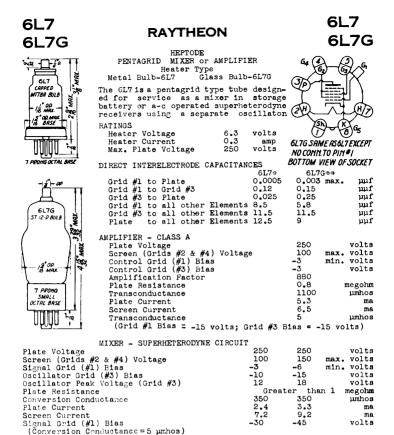

T

AMPLIFTER - CLASS A - FIXED BLAS

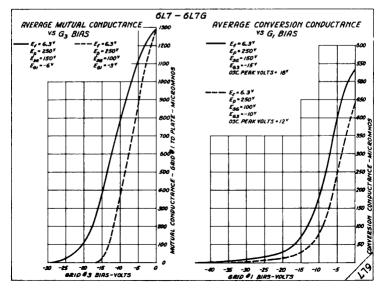
Max. Screen Dissipation

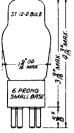
Heater Voltage (a-c or d-o)# Heater Current Max, Plate Voltage Max, Soreen Voltage Max, Plate & Soreen Dissipation


6L6 6L6G


RAYTHEON

•=•						
AMPLIFIER - CLASS	A - PUS	H-PULL	- TWO T	UBES		
		Fixe	d-Bias	Self-Bi	A A	
Plate Voltage 375 max.			250	250		volts
Soreen Voltage 250 max.			250	250		volts
Grid Bias			16			volts
Self-Bias Resistor				125		ohms
Signal Peak Voltage (grid to grid)	1		32	35.6		volts
No-Signal Plate Current			120	120		ma
MaxSignal Plate Current			140	130		ma
No-Signal Screen Current			10	10		ma
Max,-Signal Screen Current			16	15		ma
Load Resistance (plate to plate)			5000	5000		ohma
Total Harmonics			2	2		percent
Third Harmonic			2	2		percent
Power Output			14.5	13.8		watts
AMPLIFIER - CLASS	4B- D			-		
ABIT DIFTER - OURDO			L = TWO		_	
	Fixed				-Bia	
Plate Voltage 400	400	400	4 00	400	400	volts
Screen Voltage 250	250	300	300	250	300	volts
Grid Bias -20	-20	-25	-25			volts
Self-Bias Resistor				190	200	ohma
Signal Peak Voltage (g to g) 40	40	50	50	43.8	57	volts
No-Signal Plate Current 88	88	102	102	96	112	ma
MaxSignal Plate Current 124	126	152	156	110	128	ma
No-Signal Screen Current 4	4	6	6	4.6	7	ma
MaxSignal Screen Current 12	9	17	12	10.8	16	ma
Load Resistance (p to p) 8500	6000	6600	3800	8500	660	
Total Harmonics 2	ı	2	0.6	2	2	percent
Third Harmonic 2	1	2	0.6	2	2	percent
Power Output 26.5	20	34	23	24	32	watts
AMPLIFIER - CLASS	AB2 - P	USH-PUL	L - TWO	TUBES		
	Fixed	-Bias		Fixed	-Bia	8
Plate Voltage	40				00	volta
Screen Voltage	25	ō		3	00	volts
Grid Bias	-20			-2	5	volts
Signal Peak Voltage (grid to grid) 57			8	0	volts
No-Signal Plate Current	88			i	02	ma
Max,-Signal Screen Current	16	8		2	30	ma
No-Signal Screen Current	4			6		ma
Max,-Signal Screen Current	13			2	0	ma
Load Resistance (plate to plate)	60	00		3	800	ohms
Peak Driving Power	18	0		3	50	mw
Total Harmonics‡	2			2		percent
Third Harmonic 1	2			2		percent
Power Output	40			6	0	watts
#Under maximum dissipation condition	tions t	he heet	er volt	age sho	ыlд	never
fluctuate so that it exceeds 7.0) volte	The The	volteg	a batwee	n he	
fluctuate so that it exceeds 7.0 volts. The voltage between heater and						


the rated dissipation should not be exceeded with expected line voltage fluctuations, especially in fixed-bias operation. Fixed-bias values up to 10% of each typical screen voltage can be used without increasing distortion. iwith ideal driver and perfect power supply regulation.


* With Shell connected to cathode.

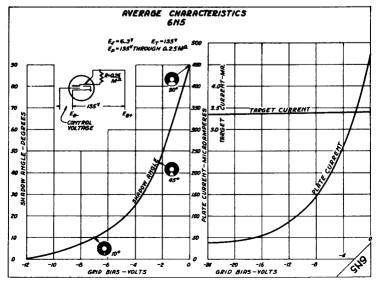
The D-C resistance in the oscillator grid (#3) circuit should not exceed $50000 \text{ ohms}_{\bullet}$. The voltage between heater and cathode should be as low as possible where they are not directly connected.

6N5

CATHODE RAY TUNING INDICATOR Heater Type Glass Bulb

The 6115 is a high vacuum type indicator tube designed for service as a tuning indicator in radio receivers requiring a low heater current tube.

BOTTOM VIEW OF SOCKET


15 amp 35 volts 35 volts	
	35 volts

TUNING INDICATOR

RATINGS

Plate Supply Voltage	135	volts
Target Voltage	135	volt s
Plate Resistor	0,25	megohm
Target Current (approximate)	4.5	ma
Plate Current (zero bias)	0.5	ma
Grid Bias for Shadow Angle= 0° (approx.)	-12	volts
Grid Bias for Shadow Angle=90° (approx.)	0	volts

The 6N5 is a high-vacuum tube designed to visually indicate the effect of changing the control grid bias. The shaded pattern produced on the fluorescent target varies through an angle from 90° to approximately 0° as the control voltage is varied. The voltage on the shadow control electrode the extension of the triode plate between ths cathode and target, controls the extent of the shaded area. The voltage of the shadow control electrode is determined by the voltage of the control grid of the triode connected as a d-c amplifier. Thus the control grid voltage determines the shadow control voltage and decreases the shadow while a decrease of bias increases the shadow. In practical use the control grid voltage is obtained from asuitable point in the AVC network.

The 6N6G is a direct coupled power am-plifier tube designed for service in the output stage of storage battery or

a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 6B5.

Heater Voltage (a-c or d-c) Heater Current

Maximum Plate Voltage

Heater Type •6N6G Meta-Glass-6N6MG

6N6G 6N6MG

6

8 BOTTOM VIEW OF SOCKET 6N6MG-SHELL CONNECTED

H

volts

amp volts

F.

()pg)

G

.

angg

TO#1PIN

6.3 0.8

325

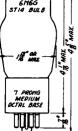
(2\

6/16 MG

• 00

w.r

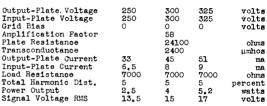
I,


15 00 M

ŅŅ

ŧ ETAL SHELL

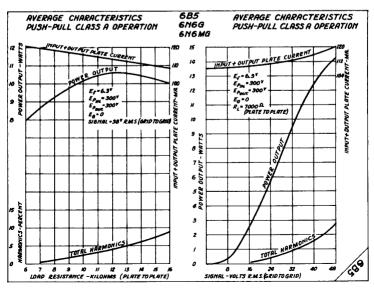
6N6G


6N6MG

AMPLIFIER - CLASS A

RATTNGS

Glass Bulb-6N6G

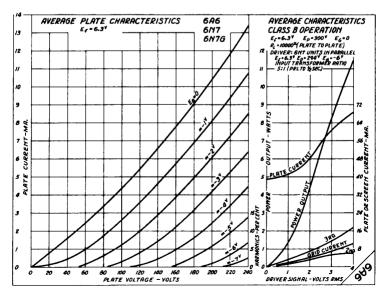

AMPLIFIER - CLASS A - PUSH-PULL - TWO TUBES

Output-Plate Voltage	250	300	325	volts
Input-Plate Voltage	250	300	325	volts
Grid Bias	0	0	0	volts
Output-Plate Current (per tube)	33	4 5	51	ma
Input-Plate Current (per tube)	6,5	8	9	ma
Load Resistance (plate to plate)	10000	10000	10000	ohm s
Total Marmonic Distortion	5	5	5	percent
Power Output	8.5	10	13.5	watts
Signal Voltage RMS (grid to grid)	38	38	42	volts

The voltage between heater and cathode should not exceed 50 volts and in no case should the heater be left floating.

If a grid resistor is used its value should not exceed 0.5 megohm.

For additional curves refer to the type 6B5.

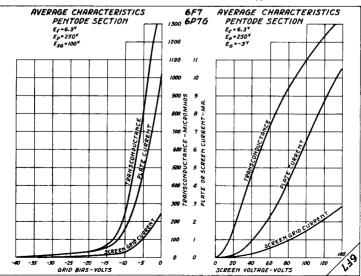


6N7G	RAYTHEON		6N	17G
6117 MT2B BULS 16 MT2L 16 MT2L 16 MT2L 16 MT2L 16 MT2L 16 MT2L 16 MT2L 17 17 17 17 17 17 17 17 17 17 17 17 17	TWIN THIODE POWER AMPLIFIER Heater Type Metal Bulb-6N7 Glass Bulb-6N7 The 6N7 is a twin triode type amplifi er tube designed for service as Class B power amplifier in the outpu stage of storage battery or a-c oper ated receivers. The ratings and elec trical characteristics are identice with those of the type 6A6.			
6HTG STIA BULB	RATINGS Heater Voltage (a-c or d-c) Heater Current Maximum Peak Plate Current (per pl Maximum Average Plate Dissipation AMPLIFIER - CLASS B	late)	6.3 0.8 300 125 10	volts amp volt s ma watts
e Aponig MEDIUM OCTAL BRSE	Plate Voltage Grid Blas No-Signal Plate Current(per plate) Load Resistance (plate to plate) Power Output (approximate) (With average power input = 350 m AMPLIFIER - CLASS A-DRIVER TRIODES	8000 8 nw. grid	0	-
Plate Voltage Grid Bias† Amplification Fac Plate Resistance Plate Current Load Resistance - Power Output (app	Depends on the design of the followi Usually between 20000 and 40000 ohms		294 -6 35 11000 3200 7 s B ampl 400	volts volts ohms µmhos ma ifier. mw

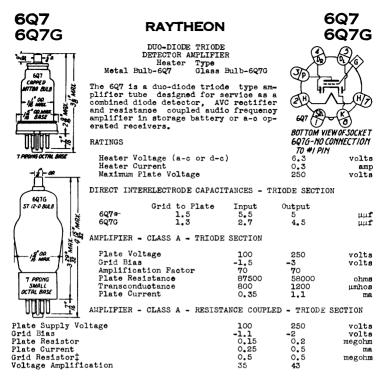
6N7

6N7

The d-c resistance in the grid circuit should not exceed 0.5 megohm with self-bias or 0.1 megohm with fixed-bias.



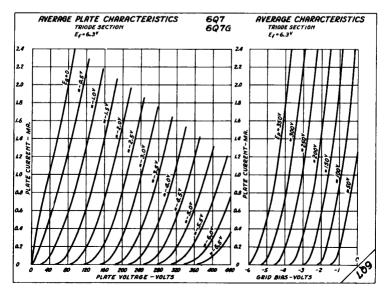
For additional curves refer to the type GAG.


6P7G	RAY	FHEON		61	P7G
	AMPLIFIER Heater Type	E-PENTODE OR CONVERTER Glass Bu			2
ST 12-0 BULB	The 6P7G is a duple one bulb a triode pentode, designed is cillator and mixer cy amplifier and storage battery or ers. The ratings	and a remote c for service as a or as a high fre second detector	utoff n os- quen- , in ceiv-		
19°00 XUM	acteristics are ide the type 6F7. RATINGS			BOTTOM VIEW O	FSOCKET
B PRONG SMALL OCTAL BASE	Heater Voltage (a Heater Current	a-c or d-c)		6 .3 0 .3	volts amp
		d to Plate	Input	Output	
	Triode Section * Pentode Section*	2.0 0.008 max.	3.5 3.5	3.0 12	րիք հրել
	AMPLIFIER - CLASS A	Triode Section	Pento	de Section	
Plate Voltage		100 max.	100	250 max.	volts
Screen Voltage		200	100	100 max.	volta
Grid Bias		-3	-3	-3 min.	volts
Amplification Fa	actor	8	300	900	
Plate Resistance		0.016	0.29	0.85	megohm
Transconductance	8	500	1050	1100	µmh os
Plate Current		3.5	6.3	6.5	ma
Screen Current	e (at -35 volts bias		1.6 9	1.5	ma
Transconductance		•	9	10	µmho s
	FREQUENCY CONVERTER		_		
N		Triode Section	Pe	ntode Sectio	
Maximum Plate Vo Maximum Screen V		100		250 100	volts volts
Minimum Grid Big		t		-3 #	volts
Maximum Oscilla	tor Plate Current(av Typical Operation	verage) 4			ma.
Plate Voltage		100‡		250	volts
Screen Voltage				100	volts
Grid Bias Plate Resistand		t		-10 4	volts
Conversion Cond				2 300	megohm µmhos
Plate Current	luovanee	2.4		2.8	µm.noa maa
Grid Current		0.15		õ.	ma
Screen Current		0.10		0.6	ma
	k Voltage Input			7	volts
				-	

......

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. *With tube shield connected to cathode and other section connected to ground fusually obtained by means of a grid leak. #Grid bias should be at least 3 volts greater than the peak oscillator voltage applied to the pentode grid. #May be obtained from 250 volt supply through 60000 ohm series resistor. AObtained by means of 1700 ohm cathode resistor.

For additional curves refer to the type 6F7.



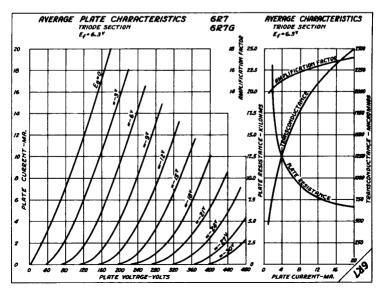
DIODE SECTION

The two diode units are independent of each other and of the triode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With shell connected to cathode. ‡For following tube.

6**R**7


6**R**7

6R7G		RATINES		6	R7G
	I Metal Bull	DUO-DIODE TRI DETECTOR AMPLI Heater Typ D-6R7 Gla	FIER		
CAPPED MITTAN QULB 1/8 MARL - XUW 1/8 MARL - XUW 1/8 MARL - XUW	plifier tube combined diod and audio fre	le detector,	AVC rectifier	6RT Sh BOTTOM VIEW	
	RATINGS			6R7G-NO COI TO # 1 PIN	NECTION
7 PROVIS OCTAL BASE	Heater Volt Heater Curr Maximum Pla		-0)	6.3 0.3 250	volts amp volts
-151-00	DIRECT INTERN	ELECTRODE CAPA	CITANCES - TRI	ODE SECTION	I
6R7G ST 12-0 BULB	G1 6R7* 6R7G	rid to Plate 2.5 3.5	Input 5.5 2.5	0utput 4.0 4.5	μμ ք μμ ք
Xam' git	Plate Volta	CLASS A - TRIO	DE SECTION	250	volts
B. OB MAX.	Grid Bias Amplificati Plate Resis			-9 16 8500	vol ts ohm s
7 PROHG SMALL OCTAL BASE	Transconduc Plate Curre Load Resist	etance ent	harmonic)	1900 9.5 10000 280	µmhos ma ohms mw
	AMPLIFIER - C	CLASS A - RESI	STANCE COUPLED	- TRIODE S	ECTION
Plate Supply Vo Grid Bias (appr Plate Resistor Plate Current Grid Resistor [‡] Voltage Amplifi Voltage Output	oximate) cation			250 -6 05 to 0.1 4 to 1.3 0.5 12 51	volts volts megohm ma megohm volts

DIODE SECTION

The two diode units are independent of each other and of the triode section except for the common cathode. The diode may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. *With shell connected to cathode. [For following tube.

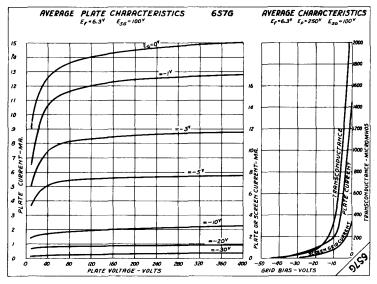
PENTODE REMOTE CUTOFF AMPLIFIER Heater Type Glass Bulb

The 6S7G is a pentode type amplifier tube with remote cutoff characteristics designed for service as a high frequency amplifier in storage battery or a-c operated receivers requiring a low heater current tube.

BOTTOM VIEW OF SOCKET

RAT	TN	GS	

Heater Voltage (a-o or d-c)	6.3 0.15	volts
Heater Current Maximum Plate Voltage	250	amp volts
Maximum Screen Voltage	100	volts

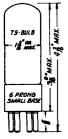

DIRECT INTERELECTRODE CAPACITANCES*

Grid to Plate	0.007 max.	μμ f
Input	4.6	μμ f
Output	7.8	μμ f

ALPLIFIER - CLASS A

Plate Voltage Screen Voltage Grid Elas Suppressor Amplification Factor Plate Resistance Transconductance Plate Current Screen Current Grid Elas	135 67.5 -3 Connected to 850 min. 0,68 min. 1250 3.7 0.9 -25	11 00 r	
(Transconductance = 10 µmhos)	20		

*With tube shield.


RAYTHEON ENGINEERING SERVICE

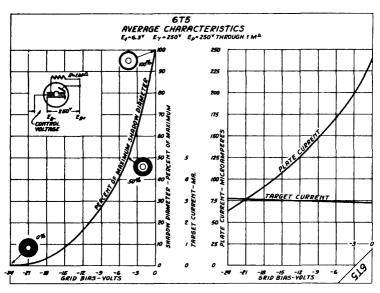
6**S**7**G**

6**S**7G

6T5

The 6T5 is a high-vacuum type indicator tube with remote cutoff characteristics designed for service as a tuning indicator in radio receivers. The shaded pattern on the fluorescent target is annular in shape.

BOTTOM VIEW OF SOCKET


Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.3	amp
Max, Plate Supply Voltage	250	volts
Max, Target Voltage	250	volts

TUNING INDICATOR

RATINGS

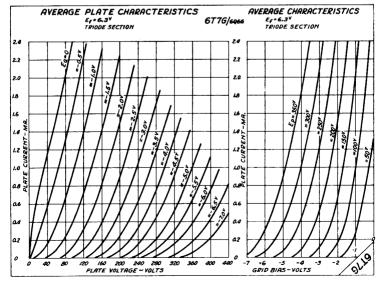
Plate Supply Voltage	250	volts
Target Voltage	250	volts
Plate Resistor	1	megohm
Target Current (approximate)	3	ma
Plate Current (zero bias)	0.24	wa
Crid Bies for Min, Shadow Diameter	-22	volts
Grid Bias for Min. Shadow Diameter Grid Bias for Max. Shadow Diameter		volts volts

The 6T5 is a high vacuum tube designed to visually indicate changes of control grid bias. With the tricde section connected as a d-c amplifier, the voltage of the shadow control electrode which is connected to the tricde plate increases with an increase of control grid bias and causes a reduction in shadow diameter. Similarly, a decrease of control grid bias increases the shadow diameter. In tuning indicator service the control grid bias is obtained from a suitable tap in the AVC network.

6T7G-6Q6G

RAYTHEON DUO-DIODE TRIODE DETECTOR AMPLIFIER 6T7G-6Q6G

ST 12-D BULB ST 12-D BULB T PRONC SMALL OCTAL BASE


Heater Type Glass Bulb The 6T7G/6Q6G is a duo-diode triode type amplifier tube designed for service as a combined diode detector, AVC rectifier, and audio frequency amplifier in storage battery or a-c operated receivers requiring a low heater current tube. The 6T7G/6Q6G replaces the type 6Q6G, single-BOTTOM WEW OF SOCKET diode triode. RATINGS Heater Voltage (a-c or d-c) Heater Current Laximum Plate Voltage DIRECT INTERELECTRODE CAPACITANCES - TRIODE SECTION Grid to Plate 1.3 µµf

Grid to Plate Input Output	1.3 2.7 4.5	րրը հրել
AMPLIFIER - CLASS A - TRIODE SECTION		

Plate Voltage	135	250	volts
Grid Bias	-1.5	-3	volts
Amplification Factor	65	65	
Plate Resistance	65000	62000	ohms
Transconductance	1000	1050	μmho s
Plate Current	0.9	1.2	ma

DIODE SECTION

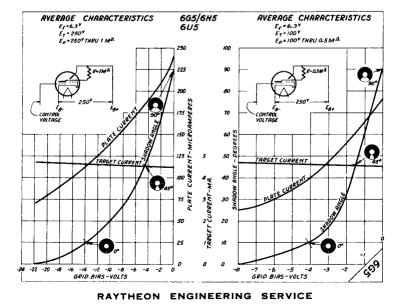
The two diode units are independent of each other and of the triode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

CATHODE RAY TUNING INDICATOR Heater Type Glass Bulb

6U5

The 6U5 is a high vacuum type indicator tube with remote cutoff characteristics designed for service as a tuning indicator in radio receivers. The ratings and electrical characteristics are identical with those of the type 6G5/6H5.

BOTTOM VIEW OF SOCKET


Heater Voltage (a-c or d-c)	6.3	volts
Meater Current	0.3	amp
Maximum Plate Supply Voltage	250	volts
Maximum Target Voltage	250	volts
Minimum Target Voltage	90	volts

TUNING INDICATOR

RATINGS

Plate Supply Voltage Target Voltage Plate Resistor Target Current (approximate) Plate Current (zero Bias) Grid Bias (approximate) (For Shadow angle = OO)	100 100 0.5 4.5 0.19 -8	200 200 1 4.5 0.19 -18.5	250 250 1 4.5 0.24 -22	volts volts megohm ma volts
Grid Eias (approximate) (For Shadow angle = 90°)	0	0	0	volts

The 6U5 is a high vacuum tube designed to visually indicate the effect of changing the control grid bias. The shaded pattern produced on the fluorescent target varies through an angle from 90° to approximately 0° as the control voltage is varied. The voltage on the shadow control electrode, the extension of the triode plate between the cathode and target, controls the ottern d the voltage of the control grid of the triode as a d-c amplifier. Thus the control grid voltage determines the extent of the shadow control voltage and decreases the shadow while a decrease of bias increases the shadow while a decrease of bias increases the shadow. In practical use the control grid voltage is obtained from a suitable point in the AVC network.

6U7G

ST 12-5 BUL

1 00 00

T PROMG SMALL OCTAL BASE 11

RAYTHEON

PENTODE REMOTE CUTOFF AMPLIFIER Heater Type Glass Bulb

The 6U7G is a pentode type amplifier tube with remote cutoff characteristics designed for service as a high frequency amplifier or mixer in storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 6D6.

6U7G

BOTTOM VIEW OF SOCKET

RATINGS

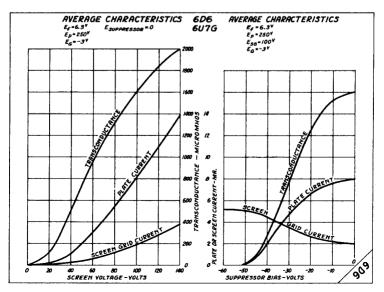
Heater Voltage (a-c or d-	s)6.3 volt	8
Heater Current	0.3 am	p
Max. Plate Voltage	250 volt	8
Max. Screen Voltage	100 volt	s

DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate	0.007max.*	µµſ
Input	4.5	µµſ
Output	9.0	µµſ

AMPLIFIER - CLASS A

Plate Voltage	100	250	volts
Screen Voltage	100	100	volts
Grid Bias	-3	-3	volts
Suppressor	Connected t	o Cathode a	t Socket
Amplification Factor	375	1280	
Plate Resistance	0,25	0.8	megohm
Transconductance	1500	1600	µm hos
Plate Current	8	8.2	ma
Screen Current	2.2	2	ma
Grid Bias for Transconductance = 2 µmhos	-50	-50	volts
MIXER - SUPERHETERODYNE CIRC	UIT		
Plate Voltage	100	250	volts

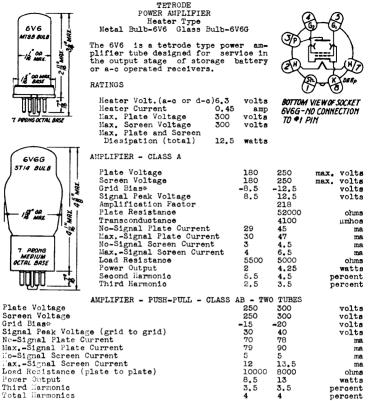

Screen Voltage 100 100 volts Grid Bias -10 -10 volts Suppressor Connected to Cathode at Socket

The grid bias is not critical with an oscillator peak swing 1 voltless than the grid bias.

The shield in the dome of the tube is connected internally to the cathode. The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

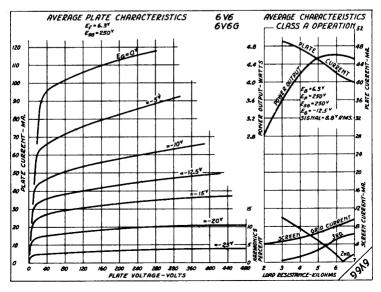
#With tube shield

For additional curves refer to the type 6D6.

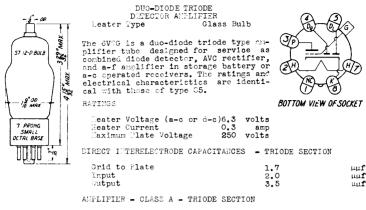


6V6

6V6G


6V6 6V6G

percent


coupling is used, the d-c resistance in the grid circuit should not exceed 0.5 megohm with self-bias, or 0.05 megohm with fixed-bias. The voltare between back The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

4

6V7G

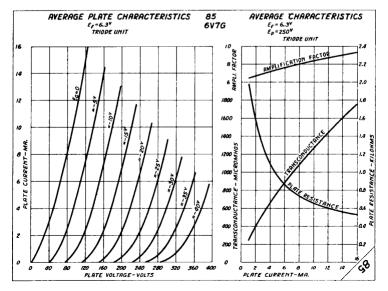


Plate Voltage Grid Bias Amplification Factor	135 -10,5 8,3	180 -13.5 8.3	250 -20 8,3	volts volts
Plate Resistance	11000	8500	7500	ohm s
Transconductance	750	975	1100	µmho s
Flate Current	3.7	6	8	ma
Load Resistance	25000	20000	20000	ohm s
Power Output	75	160	350	mw

DIODE SECTION

The two diode units are independent of each other and of the triode sec-tion except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rec-tifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

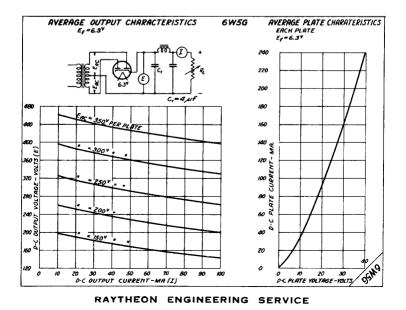
The voltage between heater and catho where they are not directly connected. cathode should be kept as low as possible

6W5G

RAYTHEON

6W5G

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Heater Type Class Bulb



The 6W5G is a full wave high vacuum type rectifier tube designed for service in either vibrator type or a-c operated power supplies.

FULL WAVE RECTIFIER - CONDENSER OR CHOKE INPUT FILTER

Heater Voltage (a-c or d-c)		volts
Heater Current	0.9	amp
Maximum A-C Voltage per Plate (RMS)	350	volts
Maximum D-C Output Current	100	ma
Maximum D-C Voltage between Heater and Cathode	500	volts

ò

'n

6) BOTTOM VIEW OF SOCKET

(H75

TP


(2\H

6X5 ř

5I

TO #1 PIN.

6X5G-NO CONNECTION

6X5G ST 12-0 BULB

19 00

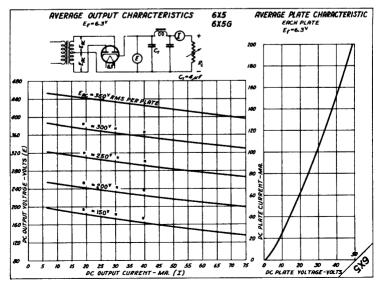
6 PRONG SMALL OCTAL BASE

XON MRX.

1 ř

6X5

6X5G

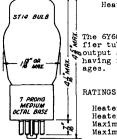


The 6X5 is a full wave high vacuum type rectifier tube designed for service in power supplies for storage battery or a-o operated receivers.

FULL WAVE RECTIFIER Condenser or Choke Input Filter

Heater Voltage (a-c or d-c) Heater Current Maximum A-C Voltage per Plate (RMS) Maximum Inverse Feak Voltage	6.3 0.6 350 1250	volts amp volts volts
Maximum D-C Output Current . Maximum D-C Voltage between	75	ma
Heater and Cathode	4 00	volts
AVERAGE TUBE VOLTAGE DROP (At 75 ma. output current per plate)	22	volts

There are certain 32 volt receivers designed with 6X5G tubes operated in series. The filament current value used in this design was 0.5 ampere. Type 6X5G tubes marked 500 under the type designation may be obtained for this service.

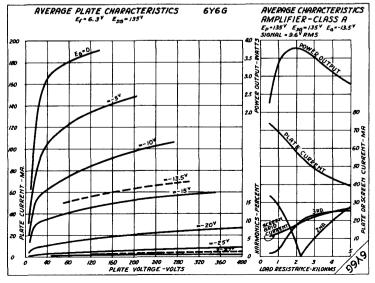


6Y6G

RAYTHEON

TETRODE POWER AMPLIFIER Glass Bulb Heater Type

The 6Y6G is a tetrode type power ampli-tier tube designed for service in the soutput stage of a-c operated receivers having relatively low plate supply voltages.


Te HTT Q á

BOTTOM VIEW OF SOCKET

A FORMA ACTAL BASE Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage Maximum Screen Voltage	6.3 1.25 135 135	volts amp volts volts
AMPLIFIER - CLASS A		
Plate Voltage Screen Voltage Grid Bias Signal Peak Voltage Amplification Factor	135 135 -13.5 13.5 70	volts volts volts volts

Amplif 10000 ohma Plate Resistance (approximate) Transconductance No-Signal Plate Current Max.-Signal Plate Current No-Signal Screen Current 7000 umhos 58 **ma** 60 me 3 me 17 Max.-Signal Screen Current Load Resistance ma 2000 ohms Second Harmonic Distortion Third Harmonic Distortion Power Output 2.5 percent percent ã 3.6 watts

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

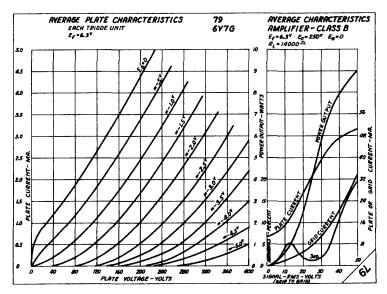

6Y7G

6Y7G

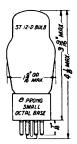
TWIN TRIODE POWER AMPLIFIER Heater Type Glass Bulb

The 6176 is a twin triode type power amplifier tube designed for service as a Class B amplifier in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 79.

Heater Voltage (a-c or d-c) 6.3 volts Heater Current 0.6 amp Maximum Plate Voltage 250 volts Max, Peak Plate Current 90 ma (per plate) Max, Av. Plate Dissipation 11.5watts


AMPLIFIER - CLASS B

RATINGS


Plate Voltage	180	250	volta
Grid Bias	0	0	volta
No-Signal Plate Current (per plate)	3.8	5.3	ma
Load Resistance (plate to plate)	7000	14000	ohms
Power Output	5.5	8	watts
(With average power input = 380 mw.	grid	to grid)	

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

For additional curves refer to the type 79.

6**Z**7G

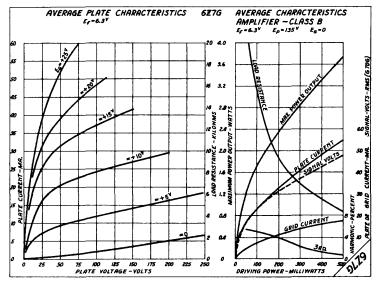
6**Z**7G

TWIN TRIODE FOWER AMPLIFIER Heater Type Grid Glass Bulb

Eual Grid Glass Bulb

The 6276 is a twin triode type amplifier tube designed for service as a Class B power amplifier in the output stage of storage battery or a-c operated receivers requiring a low heater current tube.

BOTTOM VIEW OF SOCKET

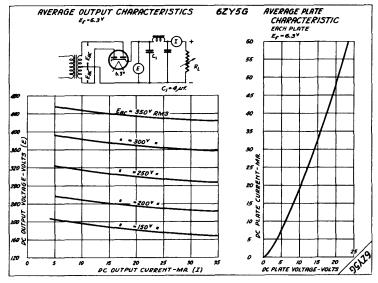

RATINGS

Heater Voltage (a-c or d-c		volts
Meater Current	0.3	amp
Maximum Plate Voltage	180	volts
Max. Peak Plate Current	60	ma
(per plate)		
Max.Av. Plate Dissipation	8	watts

AMPLIFIER - CLASS B

Plate Voltage (rid Bias No-Signal Plate Current (per plate) Load Resistance (plate to plate) Tower Output (With average power input = 80 mw. grid Load Resistance	9000	180 0 4.2 20000 2.2 12000	volts volts ma ohms watts ohms
(With average power input = 320 mw.grid	2.8	4.2	watts

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.


TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Heater Type Glass Bulb

The 62Y5G is a full wave high vacuum type rectifier tube designed for service in power supplies for storage battery or a-c operated receivers requiring a low heater current tube.

FULL WAVE RECTIFIER

-	Heater Voltage (a-c or d-c)	6.3	volts
	Heater Current	0.3	amp
	Maximum A-C Voltage per Plate (RMS)	350	volts
	Maximum D-C Output Current	35	ma
	Maximum Inverse Peak Voltage	1000	volts
	Maximum Peak Plate Current per Plate Maximum D-C Voltage between	150	ma
	Heater and Cathode	40 0	volts
	AVERAGE TUBE VOLTAGE DROP (approximate)	16.5	volts

(At 35 ma. output current per plate)

RAYTHEON ENGINEERING SERVICE

RAYTHEON

6ZY5G

(Jp (2)H ī 8

BOTTOM VIEW OF SOCKET

6ZY5G

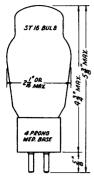
ST 12-D BULB

19.00

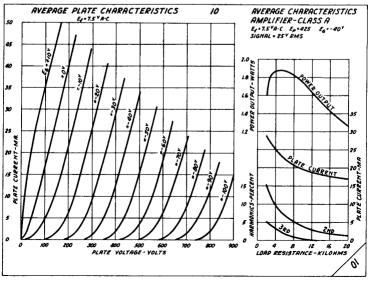
6 PRONG SMALL OCTAL BASE

W

- XHW

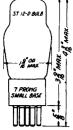

MRX.

36


197

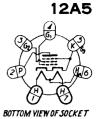
RAYTHEON TRIODE

ST 16 BULB	POWER ALPLIF: Filament Type G	IER Lass Bull	Ъ		
	The 10 is a triode to tube designed for serv: put stage of power amp	Lee in th	e out-	\sim	S
2 10 OR	RATINGS		1	BOTTOM VIEW	OFSOCKET
A PRONG	Filament Voltage (a- Filament Current Maximum Plate Voltag Maximum Plate Dissij DIRECT INTERELECTRODE	ge pation		7.5 1.25 425 12	volts amp volts watts
MED. BRSE		OAFAOII	ANOLO		
	Grid to Plate Input Output			7 4 3	µµք µնք µրք
	AMPLIFIER - CLASS A				
	Plate Voltage Grid Elast Signal Peak Voltage Amplification Factor Plate Resistance Transconductance Plate Current Load Resistance Power Output		350 -32 27 8 5150 1550 16 11000 0.9	425 -40 35 8 5000 1600 18 10200 1.6	volts volts volts umhos ma ohms watts
	AMPLIFIER - CLASS B -	TWO TUB	ES		
Maximum Plate Input Maximum Plate Dissi	nt with Signal (per tu) with Signal (per tu)	be)‡ be)‡		425 60 25 12	volts ma watts watts
Load Resistance (Power Output (app	ge (approximate) urrent (per tube) Current (per tube) plate to plate)	250 -28 110 4 55 4000 13 2.1	350 -40 120 4 55 6000 20 2.3	425 -50 130 4 55 8000 25 2.5	volts volts volts ma ohms watts watts
filament. If d	re given with respect .c. is used the tabulat ts and referred to the	ted valu	es of gri	ld bias she	ould be
‡Averaged over any	audio frequency cycle.				



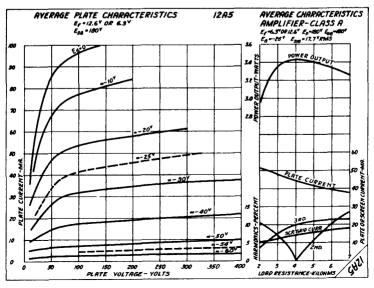
TRIODE DETECTOR OR AMPLIFIER

	TRIODE				
STIA BULB	DETECTOR OR A Filament type	MPLIFIER Glass B	ulb	20	Ŕ
	The 12-A is a triode typ disigned for service a amplifier in storage b receivers.	s a detec	tor or perated	BOTTOM VIEW OF	SOCKET
A PRONG MEP. BASE	RATINGS Filament Voltage Filament Current Haximum Plate Voltag	e		5.0 d-0 0.25 180	volts amp volts
	DIRECT INTERELECTRODE	CAPACITAN	CES		
	Gri d to Pla te Inpu t Output			7.5 4 3	μμ f μμ f μμ f
	AMPLIFIER - CLASS A				
Plate Voltage Grid Bias Amplification Fac Plate Resistance Transconductance Plate Current Load Resistance Power Output (5%		90 -4.5 8.5 5400 1575 5 5000 0.035	135 -9 8.5 5100 1650 6.2 9000 0.13	180 -13.5 8.5 4700 1800 7.7 10650 0.285	volts volts ohms µmhos ma ohms watts
		-	-	-	
If a grid resisto:	r is used, its value sh	ould not	exceed 1	megohm.	
	DETECTOR - BIASED TYPE				
Plate Voltage Grid Bias (approx Plate Current	imate)	Adjusted	135 -15 to 0.2 1	180 -21 ma. with no	volts volts signal
	DETECTOR - GRID LEAK T	YPE			
Plate Voltage Grid		R	45 eturn to	positive fi	volts lament


Return to positive filament 0.25 to 5 megohm 0.00025 µf Grid Grid Leak Resistance Grid Condenser

PENTODE POWER AMPLIFIER Heater Type Glass Bulb

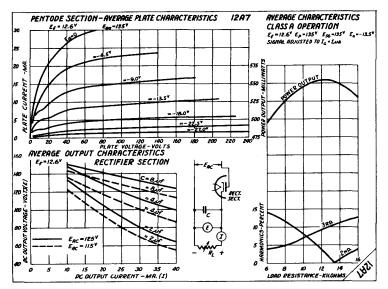
12A5


The 12A5 is a pentode type power ampli-fier tube having two heaters which may be connected in series for a heater voltage of 12.6 volts, or connected in parallel for a heater voltage of 6.3 volts.

	RATINGS	Series Connection	Parallel Connection	
_	Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage Maximum Screen Voltage		6.3 0.6 80 80	volta amp volta volts

AMPLIFIER - CLASS A

Plate Voltage 100 180 v	
	olts
Grid Bias -15 -25 V	olts
Amplification Factor 70 85	
Plate Resistance 41000 36000	ohms
Transconductance 1700 2400 µ	mho s
No-Signal Plate Current 17 45	m a
No-Signal Screen Current 3 B	ma
Load Resistance 4500 3300	ohms
Second Harmonic 2.5 6.5 per	cent
Third Harmonic 9 8 per	cent
Power Output 0.7 3.4 w	atts



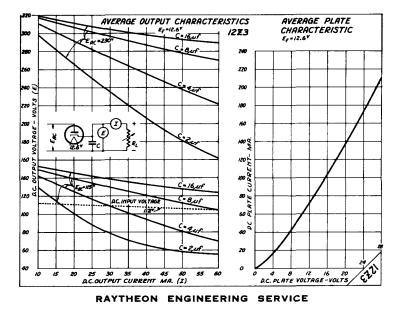
12A7

12A7

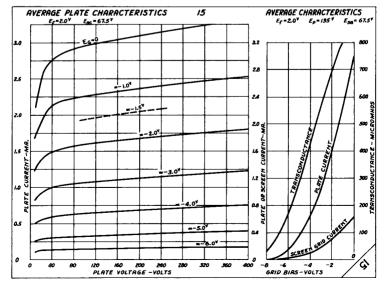
	DIODE-PENTODE RECTIFIER-POWER AMPLIFIER Heater Type Glass Bulb		5
57 12-0 BULB	The 12A7 is a diode-pentode type tube		
	put stage of a-o - d-o receivers.) B	H Gjp
19 00 ARX RIN		BOTTOM VIEW O	F SOCKET
	Heater Voltage (a-c or d-o)	12.6	volts
	Heater Current	0.3	amp
7 PROHG	Pentode Section		
SMALL BASE	Maximum Plate Voltage	135	volts
	Maximum Screen Voltage	135	volts
	AMPLIFIER - CLASS A - PENTODE SECTION		

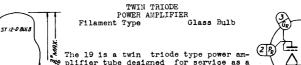
Plate Voltage	135	volts
Screen Voltage	135	volts
Grid Bias	-13.5	volts
Amplification Factor	100	
Plate Resistance	0,102	megohm
Transconductance	975	µmhos
Plate Current	9	ma
Screen Current	2.5	ma
Load Resistance	13500	ohms
Power Output	0.55	watts
HALF WAVE RECTIFIER - RECTIFIER SECTION		
Maximum A-C Plate Voltage (RMS)	125	volts
Maximum D-C Output Current	30	ma
Average Tube Voltage Drop	15	volts
(At 60 ma. output current)		

12Z3


DIODE HALF WAVE HIGH VACUUM RECTIFIER Heater Type Glass Bulb

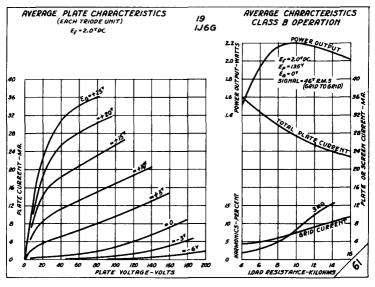
The 1223 is a half wave high vacuum type rectifier tube designed for service in a-o - d-o receivers.




HALF WAVE RECTIFIER Condenser or Choke Input Filter		
Heater Voltage (a-c or d-c)	12.6	volts
Heater Current	0.3	ашр
Maximum A-C Plate Voltage (RES)	250	volts
Maximum Inverse Peak Voltage	700	volts
Maximum D-C Output Current Maximum D-C Voltage between	60	ma
Heater and Cathode	350	volts
AVERAGE TUBE VOLTAGE DROP (At 120 ma. output current)	18	volts

57 12-0 OLE 8	PENTODB AMPLIFIER Heater Type G1 The 15 is a pentode type a designed for service in ba ed receivers requiring a heater type tube.	ttery operat-	· (21)		6) (x 4) (63)
7 PRONG SMALL BASE	Heater Voltage Heater Current Max. Plate Voltage Max. Screen Voltage DIRECT INTERELECTRODE CAPA	CITANCES	<i>BOTTO</i> 2.0 0.22 135 67.5	M VIEW OF d-o	SOCKET volts amp volts volts
	Grid to Plate (with shie Input Output	1d)	0.01 2.35 7.8	max.	μμ1 μμ1 μμ1
	AMPLIFIER - CLASS A				
Plate Voltage Screen Voltage Grid Bias Amplification Plate Resistan Transconductan Plate Current Screen Current	ce	67.5 67.5 -1.5 450 0.63 710 1.85 0.3	135 67.5 -1.5 600 0.8 750 1.85 0.3	,	volts volts volts megohm µmhos ma ma

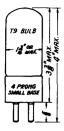
The voltage between heater and cathode should be as low as possible. It should never exceed 22.5 volts.


The 19 is a twin triode type power am-plifier tube designed for service as a Class B amplifier in the output stage of battery operated receivers. The ratings and electrical characteristics, except filament current, are identical with those of the type 1J6G.

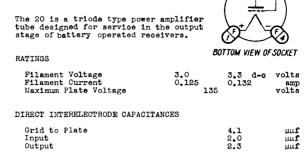
BOTTOM YIEW OF SOCKET

RATINGS Filament Voltage Filament Current Maximum Plate Volt Maximum Plate Volt Maximum Plate Bate		(per plate)	2.0 d-c 0.26 135 50	volts amp volts ma
Plate Voltage	135	135	135	volts
Grid Bias	-6	-3	0	volts
Ho-Signal Plate Current (per plate)	0.5	2	5	ma
Load Resistance (plate to plate)	10000	10000	10000	ohms
Power Output (approximate)	1.6	1.9	2.1	watts
Average Power Input (grid to grid)	0.095	0.13	0.17	watts

For additional curves refer to the type 1J6G.



RAYTHEON ENGINEERING SERVICE


MAX

100 MA

6 PRONG

20

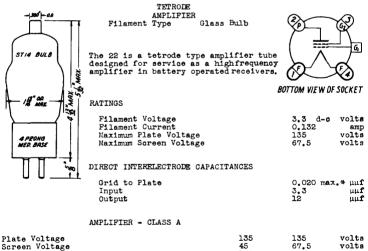

AMPLIFIER - CLASS A

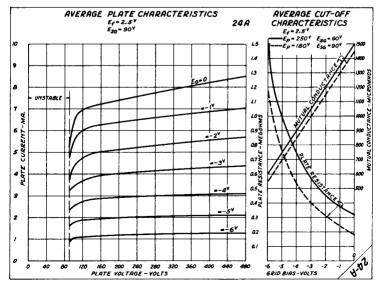
Plate Voltage Grid Eias Amplification Factor Plate Resistance Transconductance Plate Current Load Resistance Power Output (5% second harmonic)	90 -16.5 3.3 8000 415 3 9600 45	135 -22.5 3.3 6300 525 6.5 6500 110	volts volts ohms µmhos ma ohms mw
---	--	--	---

22

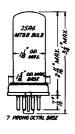
RAYTHEON

22

FIALS VOLUAGE	100	100	VOLUB
Screen Voltage	45	67.5	volts
Grid Bias	-1.5	-1.5	volts
Amplification Factor	270	160	
Plate Resistance	0,725	0.325	megohm
Transconductance	375	500	µmho s
Plate Current	1.7	3.7	ma
Screen Current	0.6	1.3	ma

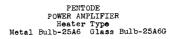

If a grid resistor is used, its value should not exceed 5 megohms with a screen voltage of 45 volts, or 1 megohm with a screen voltage of 67.5 volts.

RAYTHEON ENGINEERING SERVICE


6

24A	RAYTHEON				24A
-1.550'+ a.e	TETROD DETECTOR OR AN Heater Type		Bulb	J.	Ś
ST14 BULB	The 24-A is a tetro tube designed for se or amplifier in a-c ers.	rvice as a	detect-		KP R3
A AN A A	RATINGS		B07	TOM VIEW OF	SOCKET
5 PROHIG MER BASE	Heater Voltage (a- Heater Current Maximum Plate Volt Maximum Screen Vol	age		2.5 1.75 250 90	volts amp volts volts
└──────────────────┤	DIRECT INTERELECTROD	E CAPACITA	NCES		
	Grid to Plate Input Output			0.007 me 5 10.5	x.* μμ f μμ f μμf
	AMPLIFIER - CLASS A				
Plate Voltage Screen Voltage Grid Bias Amplification Fac Plate Resistance Transconductance Plate Current Screen Current	tor		180 90 -3 400 0.4 1000 4 1.7	25C 90 -3 630 0.6 1050 4 1.7	volts volts volts megohm µmhos ma ma
	DETECTOR - BIASED TY	PE			
Plate Voltage Screen Voltage Grid Bias (approx Plate Load Plate Current	imate)	Adjuste	d to 0.1 ma	250 20 to 45 -5 0.25 . with no	volts megohm
	DETECTOR - GRID LEAK	TYPE			
Plate Voltage Screen Voltage Grid Plate Load		Conventio	nal Grid Le	20 to 45	
	en heater and cathode t directly connected.		e kept as	low as p	ossib le

*With tube shield.


25A6 25A6G

RATINGS

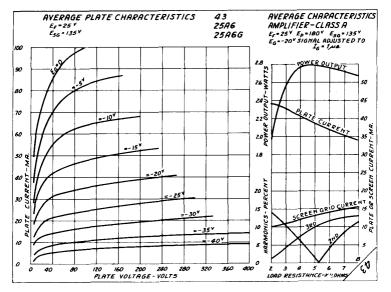
25A6

25A6G

The 25A6 is a pentode type power amplifier tube designed for service in the output stage of a-o-d-creceivers. The ratings and electrical characteristics are identical with those of the type 43.

Heater Voltage(a-c or d-c)25 Heater Current 0.3 Max. Plate Voltage 180 Max. Screen Voltage 135

AMPLIFIER - CLASS A


BOTTOM VIEW OF SOCKET 25A6G - NOCONNECTION TO #1 PIN

P7	95	135	180	volts
Plate Voltage				
Soreen Voltage	95	135	135	volts
		-20	-20	volts
Amplification Factor (approx.) 90	85	10 0	
Plate Resistance (approx.)	45000	35000	4 0000	ohms
Transconductance	2000	2450	2500	µmhos
Plate Current	20	37	38	ma.
Screen Current	4	8	7.5	ma
Load Resistance	4500	400 0	5000	ohms
Total Harmonic Distortion	11	9	10	percent
Power Output	0.9	2	2.75	watts

25 volts 0.3 amp 180 volts 135 volts

Heater to cathode bias should not exceed 90 volts d-c, as measured between the negative heater terminal and the cathode.

For additional curves refer to the type 43.

25A7G

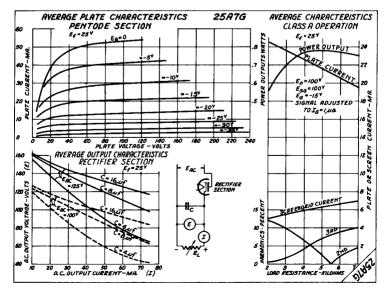
RAYTHEON

25A7G

RATINGS

DIODE PENTODE RECTIFIER POWER AMPLIFIER Heater Type Glass Bulb

The 25A7G is a diode-pentode type tube designed for service as a half wave rectifier and power amplifier in the output stage of a-c - d-c receivers.


BOTTOM VIEW OF SOCKET

leater Voltage (a-c or d-c)	25	volts
leater Current	0.3	am
Pentode Section	-	•
aximum Plate Voltage	100	volta
aximum Screen Voltage	100	volta

AMPLIFIER - CLASS A - PENTODE SECTION

Plate Voltage Screen Voltage Grid Bias Amplification Factor Plate Resistance Transconductance Plate Current Screen Current Load Resistance Total Harmonic Distortion Fower Output	100 100 -15 90 30000 1800 20.5 4 4500 9 0.77	volts volts volts umhos ma ohms percent watts
HALF WAVE RECTIFIER - RECTIFIER SECTION		

Maximum A-C Plate Voltage RMS	125	volts
Maximum D-C Output Current	75	mel

25B6G

RAYTHEON

25**B6**G

umhos

me

ma

ohms

4000

2000

45

4

10

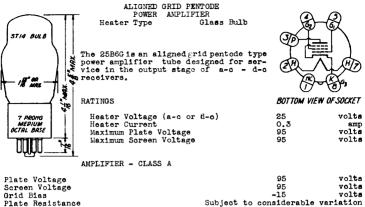
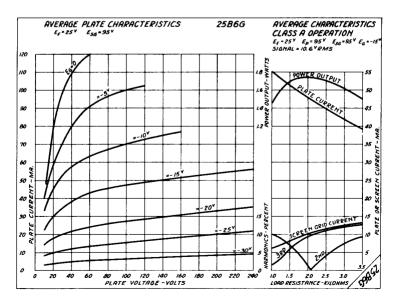
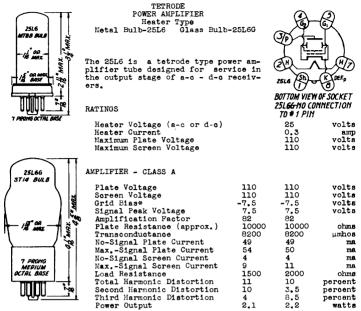
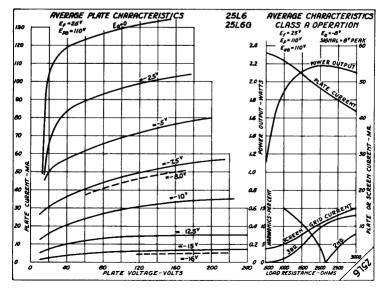



Plate Resistance Transconductance Plate Current Screen Current Load Resistance Total Harmonics Power Output

percent watts **1**,75 The voltage between heater and cathode should be kept as low as possible


where they are not directly connected.

25L6


25L6G

25L6 25L6G

The voltage between heater and cathode should not exceed 90 volts, as measured between the negative end of the heater and the cathode.

*Transformer or impedance input systems are recommended. If resistance coupling is used, the d-o resistance in the grid circuit should not exceed 0.5 megohm with self-bias, or 0.1 megohm with fixed-bias.

RAYTHEON TWIN DIODE HIGH VACUUM RECTIFIER

VOLTAGE DOUBLER

25**Z**5

25**Z**5

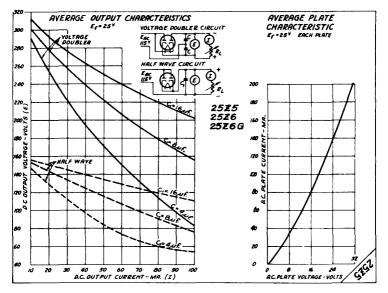
The 2525 is a high vacuum type rectifier tube designed for service as a half wave rectifier or voltage doubler in a-c - d-c receivers.

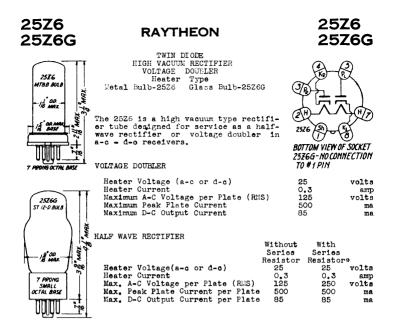
BOTTOM VIEW OF SOCKET

VOLTAGE DOUBLER

Heater Type

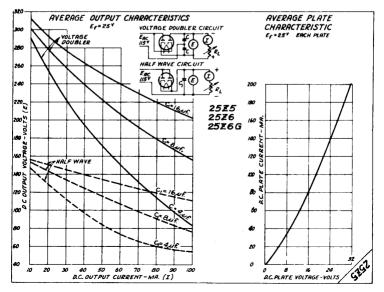
Heater Voltage (a-o or d-o)	25	volts
Heater Current	0.3	amp
Maximum A-C Voltage per Plate (RMS)	125	volts
Maximum Peak Plate Current	500	ma
Maximum D-C Output Current	100	ma


Glass Bulb


HALF-WAVE RECTIFIER

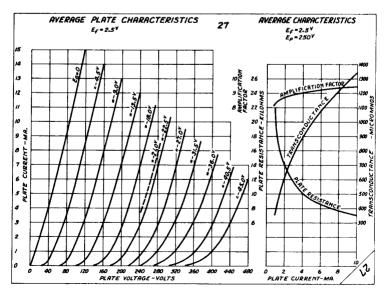
	Without	With	
	Series Resistor	Series Resi	stor*
Heater Voltage (a-c or d-c)	25	25	volts
Heater Current	0.3	0.3	amp
Maximum A-C Voltage per Plate (RMS)	125	250	volts
Maximum Peak Current per Plate	500	500	m a .
Maximum D-C Output Current per Plate	85	85	ma

As a half-wave rectifier, the two sections may be used either separately or connected in parallel.


*A-C plate voltages greater than 125 volts require the use of a 100 ohm series resistor in each plate lead or a 100 ohm series resistor common to both plates. The latter connection gives somewhat poorer regulation.

As a half-wave rectifier, the two sections may be used either separately or connected in parallel.

*A-C plate voltages greater than 125 volts require the use of a 100 ohm series resistor in each plate lead or a 100 ohm series resistor common to both plates. The latter connection gives somewist poorer regulation.

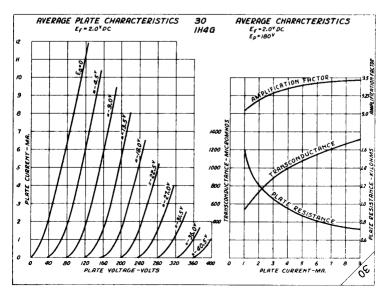

26

STIA BULB	TRIODE AMPLIFIEF Filament Type	Glass Bul	lb	<u>م</u>	R
	The 26 is a triode typ designed for service receivers.	e amplifier in a-o ope	erated		
	RATINGS				
A PRONG MED. BRSE	Filament Voltage (a- Filament Current Maximum Plate Voltag			1.5 1.05 180	volts amp volts
	DIRECT INTERELECTRODE	CAPACITANCE	s		
	Grid to Plate Input Output			8.1 3.5 2.2	μμſ μμſ
	AMPLIFIER - CLASS A				
Plate Voltage Grid Blas† Amplification Fac Plate Resistance Transconductance Plate Current	tor	90 -7 8.3 8900 935 2.9	135 -10 8.3 7600 1100 5.5	180 -14.5 8.3 7300 1150 6.2	volts volts ohms µmhos ma

†Grid Bias measured from mid-point of a-c operated filament.

	RIODE OR AMPLIFI G	IER lass Bult)	D	
The 27 is a triod designed for serv amplifier in a-o swell serv Swell serv The 27 is a triod designed for serv amplifier in a-o RATINGS Heater Voltage Heater Current Maximum Plate V.	ice as a d operated r (a-c or d- oltage	etector eccivers.	or	TOM VIEW OI 2.5 1.75 250	F SOCKET volts wolts
Grid to Plate Input Output				3.3 3.5 3.0	μμ ք μμ ք μμ ք
AMPLIFIER - CLASS	A				
Plate Voltage Grid Bias Amplification Factor Plate Resistance Transconductance Plate Current	90 -6 9 11000 820 2.7	135 -9 9000 1000 4.5	180 -13.5 9 9000 1000 5.0	250 -21 9 9250 975 5.2	volts volts ohms µmhos ma
If a grid resistor is used,	its value	should r	iot exce	ed 1 mean	dam
DETECTOR - BIASED		unoutu i		ou 1 11.08,0	
Plate Voltage Grid Bias (approximate) Plate Current‡	Ad	justed to		275 max. -33 . with no	volts
DETECTOR - GRID LI	EAK TYPE				
Plate Voltage Grid Grid Leak Resistance Grid Condenser			45 R l to 5 0.0002		volts Cathode megohms µf
The voltage between heater and where they are not directly conner		ould be k	ept as	low as p	ossible

\$ with normal maximum signal the average d-c plate current should not exceed 5 ma.



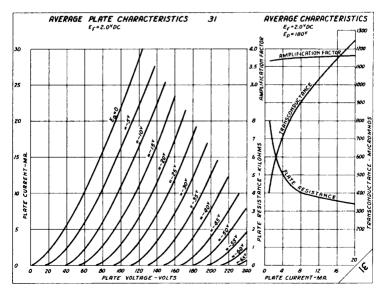
30

30

DIRECT INTERELECTRODE CAPACITANCES Grid to Plate Input Output AUPLIFIER - CLASS A Plate Voltage Grid to Pate AUPLIFIER - CLASS A Plate Voltage Grid to Pate 90 135 100 volts Grid bias AUPLIFIER - CLASS A Plate Resistance 11000 10300 10300 ohus Plate Resistance 11000 10300 10300 ohus Plate Resistance 11000 10300 10300 ohus Plate Current 2.5 3.0 3.1 ma If a grid resistor is used, its value should not exceed 2 megohums. AUPLIFIER - CLASS B - TWO TUBES Maximum Plate Voltage Maximum Plate Voltage 130 volts Maximum Flate Voltage 130 volts Maximum Flate Voltage 130 volts Maximum Flate Voltage 130 volts 157.5 volts Grid Elas 157.5 volts 157.5 volts 158 volts 159 volts 159 volts 159 volts 150 volts 1	ST 12-0 BULB Jg ' 00 Jb MAX A PEONG SMALL BRE	TRIODE DETECTOR OR AMPLI Filament Type The 30 is a triode type designed for service as amplifier in battery opera The ratings and electrics tics are identical with type liHG. RATINGS Heater Voltage Heater Current Haximum Flate Voltage	Glass Bulb amplifier tube a detector or ited receivers. al characteris-	BOTTOM VIEW OF SOCKET
Plate Voltage90135100voltsGrid Hias-4.5-9-13.5voltsAmplification Factor9.39.39.3Plate Resistance110001030010300Dransconductance850900900Plate Current2.53.03.1If a grid resistor is used, its value should not exceed 2 megohms.AMPLIFIER - CLASS B - TWO TUBESMaximum Plate Voltage130Natimum Fool Operation:1.5Typical Operation:1.5Plate Voltage0.5Grid Has-15Voltage0.5Maximum Plate Voltage0.5Mod Resistance (plate to plate)2.1WattsWith average power input = 260 mw. grid to grid)DETECTOR - BIASED TYFEPlate Voltage90Scrid Bias (approximate)-9-13.5-13Voltage0.135Maximum Plate Voltage0.5Grid Lias-9DETECTOR - GRID LEAK TYPEPlate Voltage0DETECTOR - GRID LEAK TYPEPlate Voltage0.00025Mit th one type 30 as driver operated at plate voltage0.00025Mit thome type 30 as driver operated at plate voltage0.00025Mit thome type 30 as driver operated at plate voltage0.00025Mit thome type 30 as driver operated at plate voltage0.00025Mit done type 30 as driver operated at plate voltage0.00025Mit thome type 30 as driver operated at plate voltage0.57.5 <tr< td=""><td>مينا []</td><td>Grid to Flate Input</td><td>ACITANCES</td><td>3.7 μμf</td></tr<>	مينا []	Grid to Flate Input	ACITANCES	3.7 μμ f
AMPLIFIER - CLASS B - TWO TUBES Maximum Plate Voltage 130 Maximum Peak Plate Ourrent (per tube) 100 Maximum Forsignal Plate Current (per tube) 1.5 Maximum Forsignal Plate Current (per tube) 1.5 Typical Operation: 157.5 Voltage 157.5 Grid Blas -15 Word Resistance (plate to plate) 0.5 Power Outputf 2.1 (With average power input = 260 mw. grid to grid) DEFECTOR - BIASED TYFE Plate Voltage 90 135 180 volts Grid Blas (approximate) -9 -13.5 -18 volts Plate Voltage 90 135 180 volts Plate Voltage 0.0025 µT 105 magohys Crid Leak Resistance 1 to 5 megohys 0.0025 µT Yith one type 30 as driver operated at plate voltage 0.0025 µT Yith one type 30 as driver operated at plate voltage of 157.5 volts, grid former ratio,primary to 1/2 secondary, of 1.165. Total distortion is 6% to 7%.	Grid Eias Amplification Fa Flate Resistance Transconductance Flate Current	actor	-4.5 -9 9.3 9.3 11000 1030 850 900 2.5 3.0	-13.5 volts 9.3 00 10300 ohms 900 µmhos 3.1 ma
DETECTOR - BIASED TYFE Plate Voltage 90 135 180 volts Grid Bias (approximate) -9 -13,5 -13 volts Plate Current Adjusted to 0.2 ma, with no signal DETECTOR - GRID LEAK TYPE 45 max. volts Grid 6 Returned to positive filament Grid Leak Resistance 1 to 5 megoing Grid Condenser 0,00025 µf With one type 30 as driver operated at plate voltage of 157.5 volts, grid bias of -11,3 volts, plate load of approximately 1800 ohms, and input trans- former ratio, primary to 1/2 secondary, of 1.165. Total distortion is 6% to 7%.	Maximum Plate Vo Maximum Peak Pla Haximum No-Signa Typical Operatic Plate Voltage Grid Elas Ho-Signal Plat Load Resistanc Power Output	AMPLIFIER - CLASS B - TWO bltage ite Current (per tube) il Plate Current (per tube) n: ce Current (per tube) se (plate to plate)) TUBES	130 volts 50 mA 1.5 mA 157.5 volts -15 volts 0.5 mA 3000 ohma
Grid Returned to positivo filament Grid Leak Resistance 1 to 5 megohms Grid Condenser 0.00025 µf With one type 30 as driver operated at plate voltage 0.157.5 volts, mid bias of -11.3 volts, plate load of approximately 18007 ohms, and input transformer ratio, primary to 1/2 secondary, of 1.165. Total distortion is 6% to 7%.	Plate Voltage Grid Bias (appro Plate Current;	DETECTOR - BIASED TYPE	90 135 -9 -13.5 Adjusted to 0.2	5 -18 volts
	Grid Grid Leak Resist Grid Condenser †With one type 3 bias of -11.3 vc former ratio,pr †With normal max	50 as driver operated at p olts,plate load of approxi fimary to 1/2 secondary,of	blate voltage of mately 18007 ohn 1.165. Total dist	b positive filament l to 5 megolugs 0.00025 µf 5 157.5 volts, grid ms,and input trans- cortion is 6% to 7%.

For additional curves refer to the type 1H4G.

TRIODE POWER AMPLIFIER Filament Type Glass Bulb

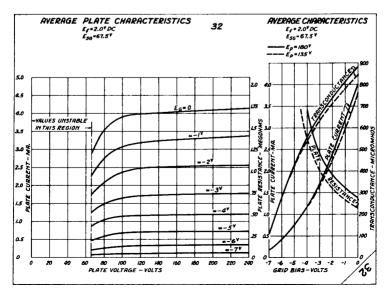


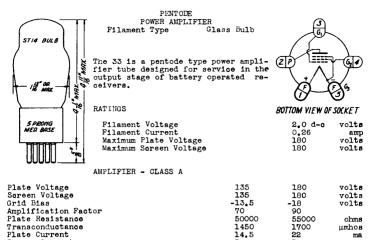
The 31 is a triode type power amplifier tube designed for service in the output stage of battery operated receivers. RATINGS Filament Voltage Filament Current Maximu Flate Voltage 180 volts

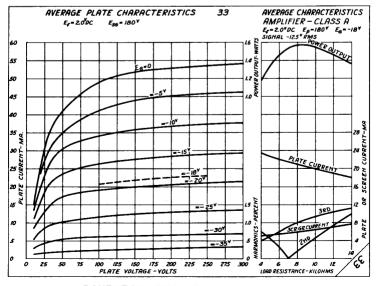
DIRECT INTERELECTRODE CAPACITANCES

DIRECT INTERELECTRODE CREACITANCES		
Grid to Plate Input Output	5.7 3.5 2.7	μμ 1 μμ 1 μμ 1
AMPLIFIER - CLASS A		

Plate Voltage Grid Bias Amplification Factor	135 -22.5 3.8	180 -30 3.8	volts volts
Plate Resistance	4100	3600	ohms
Transconductance	925	1050	umho s
Plate Current	8	12.3	ma
Load Resistance	7000	5700	ohma
Power Output (5% second harmonic)	185	375	mw


RAYTHEON ENGINEERING SERVICE


G


P

	TETRODE DETECTOR OR ANN Filament Type	PLIFIER Glass Bulb	
STIA BULB	The 32 is a tetrode typ designed for service a amplifier in battery o ers.	is a detector or operated receiv-	BOTTOM VIEW OF SOCKET
A PEONG MER. BASE	RATINGS Filament Voltage Filament Current Maximum Plate Voltag Maximum Soreen Volta		2.0 d-o volts 0.060 amp 180 volts 67.5 volts
	DIRECT INTERELECTRODE Grid to Plate Input Output	CAPACITANCES	0.015 max.* μμf 5.3 μμf 10.5 μμf
Plate Voltage Soreen Voltage Grid Bias Amplification Fao Plate Resistance Transconductance Plate Current Screen Current	AMPLIFIER - CLASS A	135 67.5 -3 610 0.95 640 1.7 0.4	180 volts 67.5 volts -3 volts 780 1.2 megohm 650 µmhos 1.7 ma 0.4 max. ma
If a grid res	istor is used, its valu DETECTOR - BIASED TYPE		ed 2 megohms.
Plate Supply Volt Screen Voltage Grid Bias (approx Plate Load Plate Current	-	135 45 -4.5 0.1 megohm or equ Adjusted to 0.2 m	180 volts 67.5 volts -6 volts iivalcut impedance na. with no signal
	DETECTOR - GRID LEAK T	YPE	
Plate Voltage Soreen Voltage Grid Plate Load Grid Leak Resista: Grid Condenser	noe		volts volts positive filament ivalent impedance megohm µf

*With tube shield.

RAYTHEON ENGINEERING SERVICE

Screen Current

Load Resistance

Power Output (7% total distortion)

ma

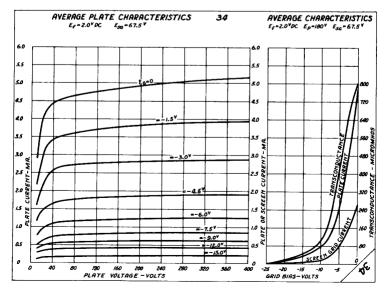
ohms

watts

õ

6000

1.4


3

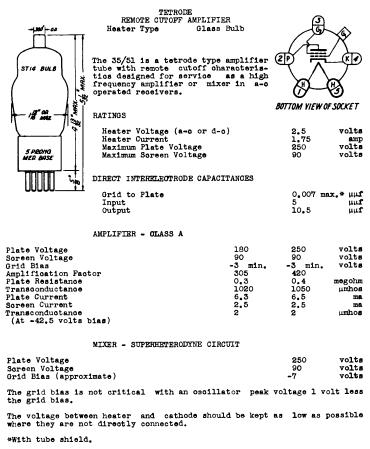
7000

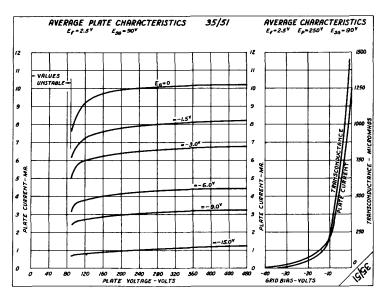
0,7

34	RAY	THEON		34		
-1,36/ + as		NTODE OFF AMPLIF: Gla:	IER 35 Bulb		Re la	
STIA BULB	The 34 is a pen tube with remote tics designed fo frequency amplif tery operated re	cutoff cha r service a ler or mix	aracteris- as a high	BOTTOM VIEW O	SOCKET	
A PROMO MED BASE	RATINGS Filament Volta Filament Curre Maximum Plate Maximum Soreen	nt Voltage		2.0 d-c 0.060 180 67.5	volts amp volts volts	
	DIRECT INTERELEC Grid to Plate Input Output	TRODE CAPA	CITANCES	0.015 mag 6 11.5	c.* μμ 1 μμ 1 μμ 1	
	AMPLIFIER - CLAS	SA				
Plate Voltage Screen Voltage Grid Bias Amplification Fao Plate Resistance Plate Current Screen Current Transconductance (At -22.5 volts)		67.5 67.5 -3 224 0.4 560 2.7 1.1 15	135 67.5 -3 360 0.6 600 2.8 1.0 15	180 67.5 -3 620 1 620 2.8 1.0 15	volts volts megohm µmhos ma µmhos	
	MIXER - SUPERHET	ERODYNE CI	RCUIT			
Plate Voltage Screen Voltage Grid Eias (approx	1mate)†	67.5 67.5 -5	135 135 -5	180 180 -5	volts volts volts	
tThe grid bies sh	own is minimum f	or an osc	lletor neek	voltage of 4	i volta	

The grid bias shown is minimum for an oscillator peak voltage of 4 volts with tube shield.

RAYTHEON ENGINEERING SERVICE

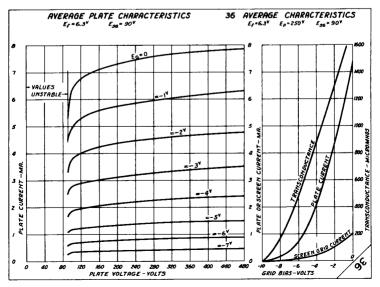

34


RAYTHEON

35-51

RAYTHEON

35-51



- <i>300</i> - <i>00</i>	DETEC Heater Type	TETRODE FOR OR AMPI 9	LIFIER G las s	Bulb	3	G,
57 12-D BULB	The 36 is a to designed for a frequency amp age battery of	service as lifier or d	a high or letector in	audio stor-		K C
A P	RATINGS				BOTTOM VIEW OF	3) SOLVET
SPRONG SMALL BASE	Heater Volt Heater Curr Maximum Pla Maximum Scr	ent te Voltage een Voltage	•		6.3 0.3 250 90	volts amp volts volts
	DIRECT INTERE		APACITANCE	S		
	Grid to Pla Input Output	te			0.0C7* 3.7 9.2	ըրք բրք բրք
	AMPLIFIER - C	LASS A				
Plate Voltage Screen Voltage Grid Bias Amplification F Plate Resistanc Transconductanc Flate Current Soreen Current	e	100 55 -1.5 470 0.55 850 1.8	135 67.5 -1.5 475 0.475 1000 2.8	180 90 -3 525 0.50 1050 3.1	250 90 -3 595 0.55 1000 3.2 1.7 max.	volts volts volts megohm punhos ma ma
	DETECTOR - BI.	ASED TYPE				
Plate Supply Vo Screen Voltage Grid Bias (appr Plate Load Plate Current	-		100 55 -5 0.25 Adjusted	180 67.5 -6 0.25 to 0.1	250 90 -8 0.25 ma. with no	volts volts volts megohm signal
	DETECTOR - GR	ID LEAK TYP	PE			
Plate Supply Vo Screen Voltage Grid Plate Load Grid Leak Resis Grid Condenser	-				135 Up to 45 Return to 0.25 2 to 5 0.00025	volts volts Cathodo megolun megolun µf
The voltage bet	ween heaten o	nd anthoda	a should b	a lrent		onsible

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*With tube shield

TRIODE				
DI	TECTOR	OR	AMPLIFIER	
Heater	Туре		Glass	Bulb

57 12-0 8468	
-18 mm	8" MARK
5 PRONG SMALL BASE	

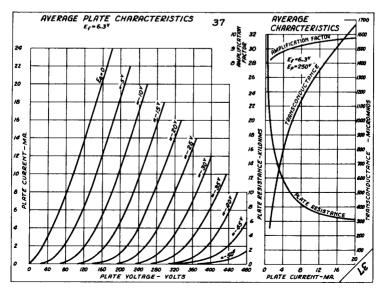
~ ---- T T

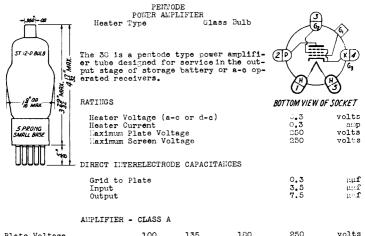
3 The 37 is a triode type amplifier tube designed for service as a detector or amplifier in storage battery or a-c operated receivers. (2P) (KI) RATINGS BOTTOM VIEW OF SOCKET Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage 6.3 volts 0.3 amp volts

DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate	2.0	
Input	3.5	i
Output	2.2	i

AMPLIFIER - CLASS A


Plate Voltage Grid Bias Amplification Factor	90 -6 9,2	135 -9 9.2	180 -13.5 9.2	250 -18 9,2	volts volts
Plate Resistance	11500	10000	10200	8400	ohms
Transconductance	800	925	900	1100	µmhos
Plate Current	2.5	4.1	4.3	7.5	ma


If a grid resistor is used, its value should not exceed 1 megohm.

DETECTOR - BLASED TYPE

Plate Voltage Grid Bias (approximate) Plate Current	90 -10	•	180 -20 to 0.2	250 -28 ma, with no	volts volts signal
DETECTOR -	GRID LEAK T	YPE			
Plate Voltage Grid Grid Leak Resistance Grid Condenser				45 Return to 1 to 5 0.00025	volts Cathode megohms µf

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

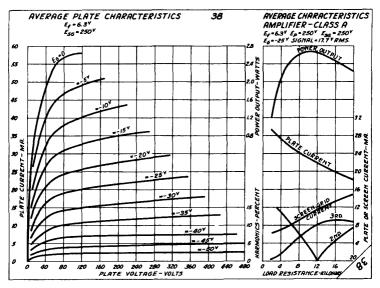
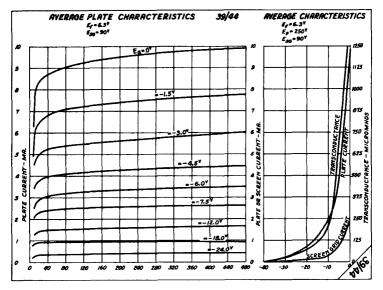


Plate voltage	100	100	100	200	10100
Screen Voltage	100	135	180	250	volts
Grid Bias*	-9	-13.5	-18	-25	volts
Amplification Factor	120	120	120	120	
Plate Resistance	0.14	0.13	0.115	0.1	megoisa
Transconductance	875	925	1050	1200	Luminos
Plate Current	7	9	14	22	1.1 A
Screen Current	1.2	1.5	2.4	3.8	17 .8 .
Load Resistance	15000	13500	11600	10000	ohu: s
Total Harmonics	8	10	0	U	percent
Power Output	0.27	0,55	1	2,5	watts
-					

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

*The d-c resistance in the grid circuit should not exceed 1 megolum.


33-44	R/			5	3-44
	Heater Typ The 39/44 is tube with rem designed for	a pentode type ote cutoff charac service as a high mixer in storage 1	amplifier steristics		
5 PRONG	Heater Volt Heater Curr Maximum Pla			6.3 0.3 250	volts volts
	Maximum Scr		ANCES	90	volts
	Grid to Pla Input Output	te		0.007 3.5 10	nax* μμf μμf μμf
	AMPLIFIER - C	LASS A			
Plate Voltage Screen Voltage Grid Bias Amplification F	actor	90 90 -3 360	180 90 -3 750	250 90 -3 1050	volts volts
Plate Resistant		0,375 960	0.75	1.0 1050	megohm umhos
Plate Current Screen Current		5.6 1.6	5.8 1.4	5.8 1.4	ma. ma
Transconductant (At -42.5 volt	e s bias)	2	2	2	µmho s
	MIXER - SUPER	HETERODYNE CIRCU	I T		
Plate Voltage Soreen Voltage Grid Bias (appr	oximate)†	90 90 -7	180 90 -7	250 90 -7	volts volts volts
The voltage between heater and cathode should be kept as low as possible where they are not directly connected.					

39-44

The grid bias is not critical with the oscillator peak voltage 1 volt less than the grid bias.

#With tube shield.

39-44

	TRIODE			
STIA BULB	AMPLIFIER Filament Type	Glass Bulb		
HAR AR AR	The 40 is a high mu trion fier tube designed for resistance coupled ampl: tor in storage battery ceivers.	service as a lfier or detec-	BOTTOM VIEW	OF SOCKET
A PRONG	RATINGS			
MER BASE	Filament Voltage Filament Current Maximum Plate Voltage		5.0 d- 0.25 180	e volts amp volts
	DIRECT INTERELECTRODE CA	APACITANCES		
	Grid to Plate Input Output		8.8 3.4 1.5	μμ f μμ f μμ f
	AMPLIFIER - CLASS A			
Plate Supply Volta Grid Bias Plate Resistor Amplification Fao' Plate Resistance Transconductance Plate Current	-	135 -1.5 0.25 30 0.15 200 0.2	180 -3 0.25 30 0.15 200 0.2	volts volts megohm megohm µmhos ma
	DETECTOR - BIASED TYPE			
Plate Supply Volta Grid Bias Plate Resistor	age	135 -3 0.25	180 -4.5 0.25	volts volts megohm
	DETECTOR - GRID LEAK TY	PE		
Plate Supply Volta Grid Plate Resistor Grid Leak Resistar Grid Condenser	-	135 to 1 Return t 0.25 2 to 5 0.00025	180 o Po sitive (volts Filament megohms megohms µf

PENTODE POWER AMPLIFIER

41

The 4l is a pentode type power amplifier tube designed for service in the output stage of storage battery or a-c operated receivers. The ratings and electrical characteristics are identical with those of the type 6K6G.

BOTTOM VIEW OF SOCKET

Heater Voltage (a-c or d-c)	6.3	volts
Heater Current	0.4	amp
Maximum Plate Voltage	250	volts
Maximum Screen Voltage	250	volts

AMPLIFIER - CLASS A

RATINGS

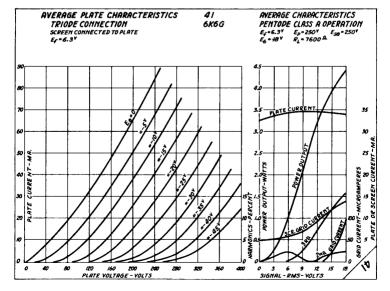

Heater Type

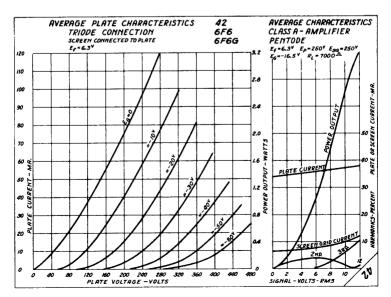
Plate Voltage	100	135	180	250	volts
Screen Voltage	100	135	180	250	volts
Grid Bias	-7	-10	-13.5	-18 🕇	volts
Amplification Factor (approx.)	150	150	150	150	
Plate Resistance (approx.)	103500	94000	81000	68000	ohms
Transconductance	1450	1600	1850	2200	µmho s
Plate Current	9	12.5	18.5	32	ma
Screen Current	1.6	2.2	3	5.5	ma
Load Resistance	12000	10400	9000	7600	ohma
Total Harmonic Distortion	10	10	10	10	percent
Power Output	0.33	0.75	1.5	3.4	watts

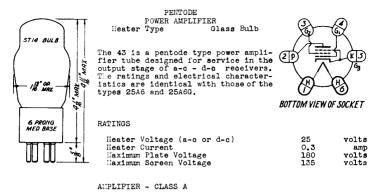
Transformer or impedance input coupling devices are recommended. If resistance coupling is used, the d-c resistance in the grid circuit should not exceed 1 megohm with self-bias, or 0.1 megohm with fixed-bias.

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

†A bias of -16.5 volts and a load resistance of 7000 chms will give power output of 3.2 watts with 7% total harmonic distortion.

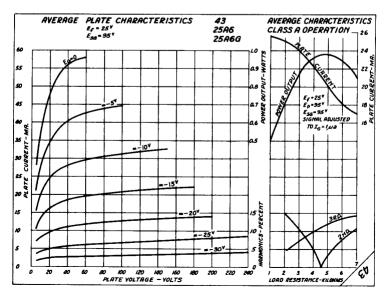
For additional curves refer to the type 6K6G.


RAYTHEON ENGINEERING SERVICE


Glass Bulb

ST/4 BULB		d for servic storage bat ivers. The haracterist	er ampli- ce in the ttery or e ratings ics are		E S
1 38				OTTOM VIEW O	SOCKET
	INGS		0		JULKEI
MED BASE HI	eater Voltage eater Current aximum Plate V aximum Screen	oltage Voltage)	6.3 0.7 315 315	volts amp volts volts
	LIFIER - CLASS		0	m -4 - 4 - 0 -	
S G:	late Voltage creen Voltage rid Bias mplification F	250 250 -16.5		Triode Con 250 max, -20 7	
	late Resistanc	e 8000	001 750001	2600	ohma
	ransconductanc			2700	µmh os
	late Current creen Current	34 6.5	42 8	31	ma ma
	oad Resistance	7000		4000	ohma
	otal Harmonic		7	5	percent
	ower Output	3	5	0,85	watts
			-		
AMP.	LIFIER - CLASS	AB - TWO TU onnection		onnection	
	Fixed-Bias		Fixed-Bias		
Plate Voltage	375 max.	375 max.	350 max.		
Screen Voltage	250 max.	250 max.			volts
Grid Bias	-26 min.		-38		volts
Self-Bias Resistor		340 min.		730 min.	
Signal Pk.Volt. (G to		94	123	132	volts
No-Signal Plate Curren No-Signal Screen Curr		54 8	45	50	ma. ma
Load Resistance (P to		10000	6000	10000	ohma
Total Harmonic Dist.	5	5	7	7	percent
Power Output (approx.		19 0	18##	i44π	watts
#With one 42 triode or grid bias of -20 volt					250 volta

*Input transformer ratio, primary to 1/2 secondary = 3.32 Almput transformer ratio, primary to 1/2 secondary = 2.5 **Input transformer ratio, primary to 1/2 secondary = 1.67 ¶input transformer ratio, primary to 1/2 secondary = 1.29 fSoreen connected to plate. #Approximate


For additional curves refer to the type 6F6G.

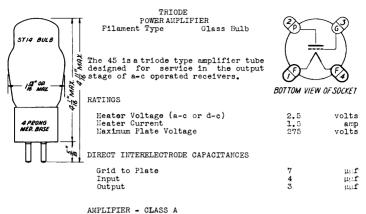
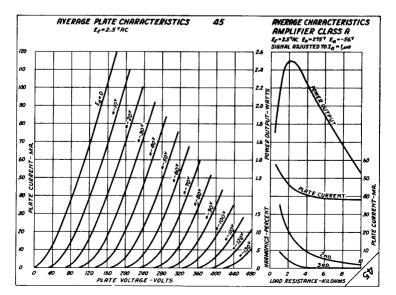


Plate Voltage Screen Voltage Grid Bias	95 95 -15	135 135 -20	180 135 -20	volts volts volts
Amplification Factor (approximate)	90	85	100	
Plate Resistance (approximate)	45000	35000	40000	ohms
Transconductance	2000	2450	2500	µmho s
Plate Current	20	37	38	ma
Screen Current	4	8	7.5	ma
Load Resistance	4500	4000	5000	ohms
Total Harmonic Distortion	11	9	10	percent
Power Output	0.9	2	2.75	watts

Heater to cathode bias should not exceed 90 volts d-c, as measured between the negative heater terminal and the cathode.


For additional curves refer to the type 25A6G.

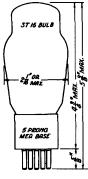


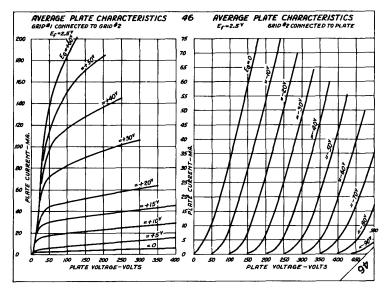
Plate Voltage	180	250	275	volts
Grid Biast	-31.5	-50	-56	volts
Amplification Factor	3.5	3.5	3.5	
Plate Resistance	1650	1610	1700	ohin s
Transconductance	2125	2175	2050	pedros
Plate Current	31	34	36	108
Load Resistance	2700	3900	4600	ohm s
Power Output (5% second harmonic)	0,825	1.6	2	watts

AMPLIFIER - PUSH-PULL - CLASS AB - TWO TUBES Fixed-Bias Self-Bias Plate Voltage 275 275 volts Plate Voltage Grid Blast Self-Blas Resistor Ho-Signal Plate Current (per tube) Max.-Signal Plate Current (per tube) Load Resistance (plate to plate) Total Harmonic Distortion Power Output -68 volts 775 ດໃກເປສ 14 36 ma 69 45 na 3200 5060 ohns percent 5 5 ĭ8 12 watts 461 Average Power Input (grid to grid) 656 mW

+Grid Bias measured from mid-point of a-c operated filament.

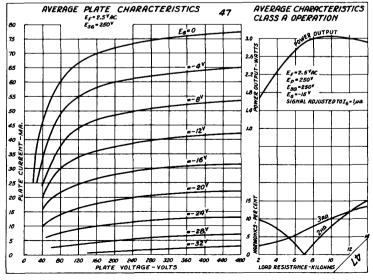
	DUAL GRID TRIODE POWER AMPLIFIER Filament Type Glass Bulb		J.
\$	The 46 is a dual grid type power a plifier tube designed for service the output stage of a-o operated r ceivers.	in (/	
	RATINGS	BOTTOM Y/E	W OF SOCKET
	Filament Voltage (a-c or d-c) Filament Current	2.5 1.75	volts amp
	AMPLIFIER - CLASS B - TWO TUBES Grid #1 Connected to G	rid #2	
-	Maximum Plate Voltage Maximum Peek Plate Current (per 1 Maximum Average Plate Diss.(per 1	400 tube) 200 tube) 10	volts ma watts

Typical Operation:


Plate Voltage Frid Bias† No-Signal Plate Current (per tube) Load Resistance (plate to plate) Power Output (approximate) Average Power Input (grid to grid)	300 0 4 5200 16 950	400 0 5800 20 650	volts volts ma ohms watts mw
---	------------------------------------	-------------------------------	---

AMPLIFIER - OLASS A Grid #2 Connected to Plate

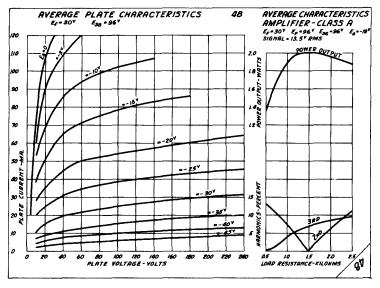
Plate Voltage	250 max.	volts
Grid Blast	-33	volts
Amplification Factor Plate Resistance Transcondustance Plate Current	5,6 2380 2350 22	ohm s µmhos ma
Load Resistance	6400‡	ohma
Power Output (5% second harmonic)	1.25	watts


+Grid bias measured from mid-point of a-c operated filament.

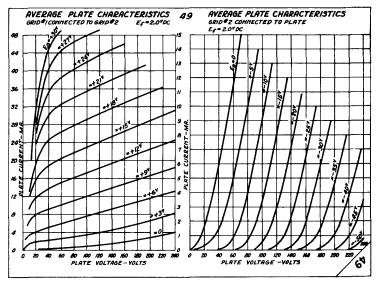

f Approximately twice this value is recommended when the tube is used as a driver for a Class B stage.

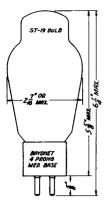
The 47 is a pentode type power am- plifier tube designed for service in the output stage of a-c operated receivers. RATINGS Filament Voltage (a-c or d-c) 2.5 volts
RATINGS BOTTOM VIEW OF SOCKET
Filament Voltage (a-c or d-c) 2.5 volts Filament Voltage (a-c or d-c) 1.75 amp Maximum Plate Voltage 250 volts Maximum Soreen Voltage 250 volts AMPLIFIER - OLASS A AMPLIFIER - OLASS A
Plate Voltage 250 volts Screen Voltage 250 volts Grid Bist -16.5 volts Amplification Factor 150 Flate Resistance 60000 ohms Transconductance 250 µmhos Screen Current 31 ma Screen Current 6 ma Load Resistance 7000 ohms
Power Output 2.7 watts

*Grid bias measured from mid-point of a-o operated filament.



AMPLIFIER - CLASS A - PUSH-PULL - TWO TUBES


	Pentode Connection	Triode Connection†
Plate Voltage	125	125 volts
Screen Voltage	100	volts
Grid Bias	-20	-32.5 volts
No-Signal Plate Current (per tube)	56	52 ma
Load Resistance (plate to plate)	3000	1250 ohms
Total Harmonic Distortion	9	2 percent
Fower Output	5	2.1 watts


The voltage between heater and cathode should not exceed 90 volts where they are not directly connected.

The d-c resistance in the grid circuit should not exceed 10000 ohms. Screen Grid connected to plate

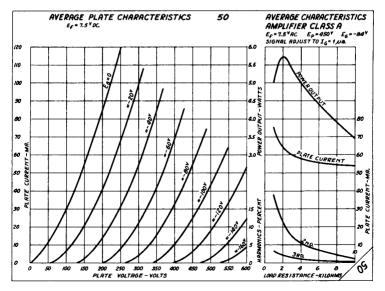
DUAL GRID TRIODE POWER AMPLIFIER Filament Type Glass Bulb	3
The 49 is a dual grid type power am plifier tube designed for service is the output stage of battery operate receivers.	$n \hookrightarrow \wedge \hookrightarrow$
RATINGS	BOTTOM VIEW OF SOCKET
Speans MED BASE HITHIT	2.0 d-c volts 0.12 amp 180 volts
UUUUAMPLIFIER - CLASS E - TWO TUBES Grid #1 connected to Grid	a #2
Maximum Plate Voltage Maximum Peak Plate Current (per tube)	180 volts 50 ma
Typical Operation:Plate Voltage135Grid (#1 and #2) Bias0No-Signal Plate Current (per tube)1,3Load Resistance (plate to plate)8000Power Output (approximate)2,3	180 volts 0 volts 2 ma 12000 ohms 3.5 watts
AMPLIFIER - CLASS A Grid #2 connected to play	te
Plate Voltage Grid (#1) Blas Amplification Factor	135 max. volts -20 volts 4.7
Plate Resistance Transconductance Plate Current	4175 ohms 1125 ohms 6 ma
Load Resistance Power Output (approximate)	11000* ohms 0.17 watts
*Approximately twice this value is recommended when the driver for a Class B stage.	e tube is used as a

TRIODE POWER AMPLIFIER Filament Type Glass Bulb

RAYTHEON

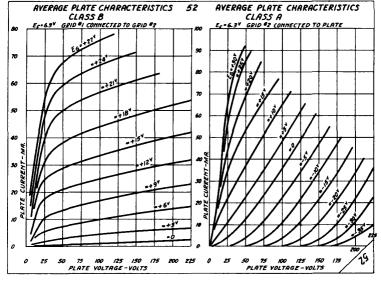
The 50 is a triode type power amplifier tube designed for service in the output stage of radio receivers.

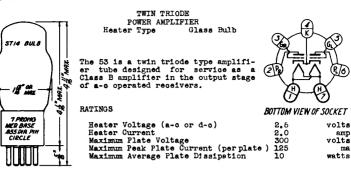
BOTTOM VIEW OF SOCKET


RATINGS

Filament Voltage (a-c or d-c)	7.5	volts
Filament Current	1.25	атр
Maximum Plate Voltage	450	volts

AMPLIFIER - CLASS A


Plate Voltage Grid Biast	300 -54	350 -63	400 -70	450 -84	volts volts
Amp. Factor	3.8	3,8	3.8	3.8	
Plate Resistance	2000	1900	1800	1800	ohms
Transconductance	1900	2000	2100	2100	µm ho s
Plate Current	35	4 5	55	55	ma
Load Resistance	4600	4100	3670	4350	ohma
Power Output	1.6	2.4	3.4	4.6	watts
(5% second harm	onic)				


Self-Bias is recommended for all operating conditions. The d-c resistance in the grid circuit should not exceed 10000 ohms. +Grid Bias measured from mid-point of a-c operated filament.

DUAL GRID TRIODE POWER AMPLIFIER Filement Type Glass E	bul b	3	
The 52 is a dual grid type pow plifter tube designed for serv the output stage of storage batto the output stage of storage batto RATINGS	ice in (2)		- (2 4)
		TOM VIEW OF	
SPECING Filament Voltage (a-c or d-c) Filament Current Maximum Plate Voltage		6.3 0.3 180	volts amp volts
AMPLIFIER - CLASS B - TWO TUBES Grid #1 connected t			
Maximum Plate Voltage Maximum Peak Plate Current (per tube)		180 75	volts ma
Typical Operation: Plate Voltage Grid (#1 and #2) Bias No-Signal Plate Current (per tube) Load Resistance (plate to plate) Power Output		180 0 1.5 10000 5	volts volts ma ohms watts
AMPLIFIER - CLASS A Grid #2 connected	to plate		
Plate Voltage Grid (#1) Bias Amplification Factor Plate Resistance Transconductance Plate Current Load Resistance Power Output*	100 0 5.2 1900 2700 37 2000 1.2	110 max. 0 5.2 1750 3000 43 2000 1.5	volts volts µmhos ma ohms watts

*Driving power will be required in either single tube or push-pull operation. One type 6A4/LA is recommended as a driver tube. An input transformer ratio, primary to 1/2 secondary, of 3.0, with a 3000 ohm resistor connected across each half of the secondary is recommended.

AMPLIFIER - CLASS b

Plate Voltage	250	300	volts
Grid Bias	0	0	volta
No-Signal Plate Current (per plate)	14	17.5	ma.
Load Resistance (plate to plate)	8000	10000	ohma
Power Output (approximate)	8	10	watts
(With average power input = 350 mw. grid to g	grid)		

AMPLIFIER - CLASS A DRIVER -	TRIODES C	ONNECTED	IN PARALLEL
Plate Voltage	250	294	volts
Grid Biast	-5	-6	volts
Amplification Factor	35	35	
Plate Resistance	11300	11000	ohms
Transconductance	3100	3200	umhos
Plate Current	6	7	ma
Load Resistance - Depends on the design of the		Class B	amplifier.
Usually between 20000 and 400	000 ohms.		
Power Output		4 00	шw

The d-c resistance in the grid circuit should not exceed 0.5 megohm with self-bias or 0.1 megohm with fixed-bias.

For characteristic curves refer to the types 6A6 and 6N7G. The characteristics of the 53 are the same as those of the 6A6 and the 6N7G except for the heater rating.

DUO-DIODE TRIODE DETECTOR AMPLIFIER Heater Type Glass Bulb (2 P ĸ The 55 is a duo-diode triode type ampli-fier tube designed for service as a combined diode detector, AVC rectifier and audio frequency amplifier in a-o 4.9% έų operated receivers. MRX. BOTTOM VIEW OF SOCKET 2 RATINGS Heater Voltage (a-c or d-c) Heater Current Maximum Plate Voltage volts 2.5 1.0 amp 250 DIRECT INTERELECTRODE CAPACITANCES - TRIODE SECTION

Grid to Plate Input Output	1.7 2.0 3.5	μμ ſ μμ ſ
•		

AMPLIFIER - CLASS A - TRIODE SECTION

Plate Voltage Grid Bias Amplification Factor	135 -10.5 8.3	180 -13.5 8.3	250 -20 8.3	volts volts
Plate Resistance	11000	8500	7500	ohms
Transconductance	750	975	1100	µmhos
Plate Current	3.7	6	8	ma
Load Resistance	25000	20000	20000	ohm s
Power Output	75	160	300	mw

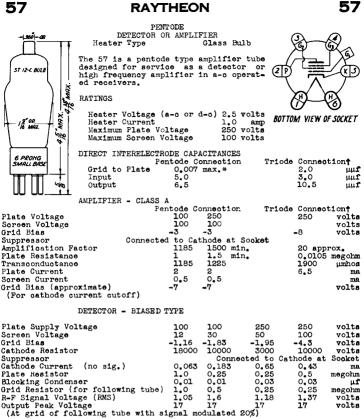
DIODE SECTION

The two diede units are independent of each other and of the triede section except for the common cathode. The diedes may be used as a half wave or as a full wave restifier; or one diede may be used as a half wave restifier for detection and the other diede used as a restifier to obtain delayed AVC voltage.

For characteristic curves refer to the type 85. The characteristics of the 55 are the same as those of the 85 except for the heater rating.

55

15


TRIODE DETECTOR OR AME Heater Type The 56 is a triode type designed for service as multiplier in a-c operato Service S	Glass Bulb amplifier tube s a detector or ed receivers. r d-c)	2.5 250	AF SOCKET volts wolts
Grid to Plate Input Output		3.2 3.2 2.2	µµ ք µµ ք µµ ք
AMPLIFIER - CLASS A			
Plate Voltage Grid Blas† Amplification Factor Plate Resistance Transconductance Plate Current	100 -5 13.8 12000 1150 2.5	250 -13.5 13.8 9500 1450 5	volts volts ohms µmhos ma
DETECTOR - BLASED TYPE			
Plate Voltage Grid Bias (approximate) Flate Current	100 -8 Adjusted to 0.2	250 -20 2 ma. with 1	volts volts no signal
DETECTOR - GRID LEAK TYP	Æ		
Plate Voltage Grid Grid Leak Resistance Grid Condenser		45 Return to 1 to 5 0.00025	
The voltage between heater and cathode where they are not directly connected.	should be kept	as low as	possible

The d-c resistance in the grid circuit should not exceed 1 megohm.

For characteristic curves refer to the type 76. The characteristics of the 56 are the same as those of the 76 except for the heater rating.

56

56

The voltage between heater and cathode should be kept as low as possible where they are not directly connected. The shield in the dome of the tube is connected internally to the cathode.

*With tube shield †Grids #2 and #3 connected to plate

For characteristic curves refer to the type 6J7G. The characteristics of the 57 are the same as those of the 6J7G except for the heater rating.

volta

58

- 300-00 ST 12-C BULB	The 58 is a pentode type am with remote cutoff charact signed for service as a h cy amplifier or mixer in a-c ceivers.	lass Bulb plifier tube eristics de- igh frequen- operated re-	
6 PRONG SMALL BASE	RATINGS Heater Voltage (a-c or d- Heater Current Maximum Plate Voltage Haximum Screen Voltage DIRECT INTERELECTRODE CAPAC	c)	2.5 volta 1.0 amp 250 volts 100 volts
	Grid to Plate Input Output AMPLIFIER - CLASS A		0.007 max* μμf 5.0 μμf 6.5 μμf
Plate Voltage Screen Voltage Grid Bias Suppressor Amplification Fr Plate Resistance Transconductance Plate Current Screen Current Grid Bias for Tr	e e ransconductance = 2 μmhos	375 0.25 1500 8 2.2 -50	250 volts 100 volts -3 volts Cathode at Socket 1280 0.8 megohm 1600 µmhos 8.2 ma -50 volts
Plate Voltage Screen Voltage Grid Bias † Suppressor	MIXER - SUPERHETERODYNE CIR	100 100 -10 Connected to	250 volts 100 volts -10 volts Cathode at Socket
where they are n The shield in th	not directly connected. ne dome of the tube is conne	oted internal	ly to the cathode.

fThe grid bias is not critical with an oscillator peak voltage lvolt less than the grid bias. #With tube shield.

For characteristic curves refer to the types 6D6 and 6U7G. The characteristics of the 58 are the same as those of the 6D6 and the 6U7G.

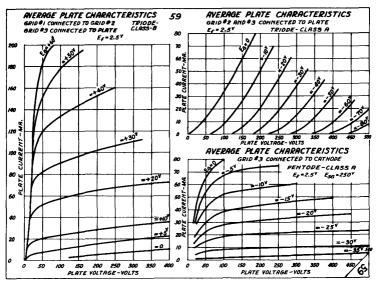
PENTODE TRIPLE GRID POWER AMPLIFIER Glass Bulb Heater Type

The 59 is a triple grid type power amplifier tube designed for service as a Class A triode Class A pentode or Class B triode power amplifier in the output stage of a-c operated receivers.

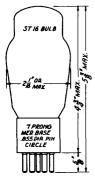
BOTTOM VIEW OF SOCKET

Heater Voltage (a-c or d-c)	2.5
Heater Current	2.0
Maximum Plate Voltage - Class A	250
Maximum Plate Voltage - Class B	400
Naximum Screen Voltage	250

AMPLIFIER - CLASS A Triode Connection + Pentode Connection +


Plate Voltage	250	250	volta
Screen (Grid #2) Voltage		250	volts
Grid (#1) Bias	-28	-18	volts
Amplification Factor	6	100	
Plate Resistance	2300	40000	ohms
Transconductance	2600	2500	µmho s
Plate Current	26	35	ma
Screen Current		9	ma
Load Resistance	5000 *	6000	ohma
Total Harmonics	5	7	percent
Power Output	1.25	3	watts

AMPLIFIER - CLASS B - TWO TUBES Grid #1 connected to grid #2 Grid #3 connected to plate


Maximum Plate Voltage Maximum Peak Plate Current (per tube) Maximum Average Plate Dissipation (per tube) Maximum Average Grid (#1 and #2) Dissipation (per	tube)	400 200 10 1.5	volts ma watts watts
Typical Operation:			
Plate Voltage	300	400	volts
Grid (#1 and #2) Bias	0	0	volts
No-Signal Plate Current (per tube)	10	13	ma
Load Resistance (plate to plate)	4600	6000	ohma
Power Output (approximate)	15	20	watts

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

+Grids #2 and #3 connected to plate. ‡Grid #3 connected to cathode. *Approximately twice this value is recommended when the tube is used as driver for a Class B stage.

RAYTHEON ENGINEERING SERVICE

RATINGS

volts

volts

volts

volts

amp

71A

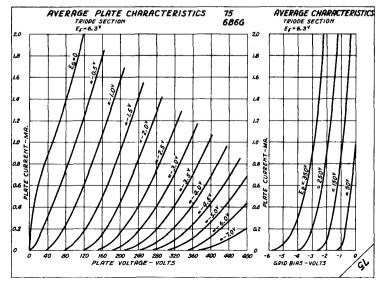
RAYTHEON

714

TRIOD POWER AMPI Filement Type The 71-A is a triode f fier tube designed f ther tube designed f the output stage of stor a ted receivers.	IFIER Glass type power or service	ampl1- in the		
AFTINGS AFTINGS AFTINGS Filament Voltage (Filament Current Maximum Plate Volt. AMPLIFIER - OLASS A)	ВОТТОМ VIEW 5 0.25 180	volts amr. volta
Plate Voltage Grid Bias† Amplification Factor Plate Resistance Transconductance Plate Current Load Resistance Total Harmonic Distortion Power Output(5% second harmonic)	90 -16.5 3 2170 1400 10 3000 5 125	135 -27 3 1820 1650 17.3 3000 5 400	180 -40.5 3 1750 1700 20 4800 5 790	volts volts µmhos na ohms percent mw

†Grid bias measured from negative end of d-c operated filament. If a grid resistor is used, its value should not exceed 0.5 megohm.

DUO-DIODE TRIODE DETECTOR AMPLIFIER Heater Type Glass Bulb


The 75 is a duo-diede triede type am-plifier tube designed for service as a combined diede detector, AVC rectifier and resistance ocupied audio frequency and residuance coupled audio frequency amplifier in storage battery or a-c op-erated receivers. The ratings and eleo-trical characteristics are identical with those of the type 6B00.

SMALL BASE	RATINGS		
	Neater Voltage (a-c or d-o) Hoater Current Hax. Plate Voltage	6.3 0.3 250	volts amp volts
	DIRECT INTERELECTRODE CAPACITANCES		
	Grid to Plate Input Output	1.7 2.0 3.5	цц ք µµ ք µµ ք
	ALAPLIFIER - CLASS A - TRIODE SECTION		
Plate Voltage Grid Bias Amplification F Plate Resistanc Transconductanc Plate Current	e	250 -2 100 01000 1100 1	volts volts ohms µmhcs ma

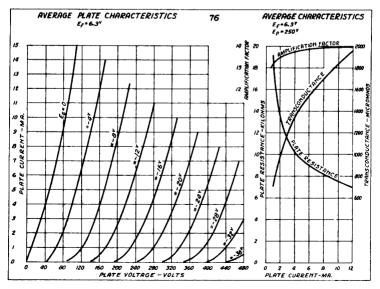
DIODE SECTION

The two fields are independent of each other and of the triode section ex-cept for the common onthode. The diddes may be used as a half wave or as a full wave rectifier; or one didde may be used as a half wave rectifier for detection and the other didde used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and catho where they are not directly connected. cathode should be kept as low as possible

RAYTHEON ENGINEERING SERVICE

75

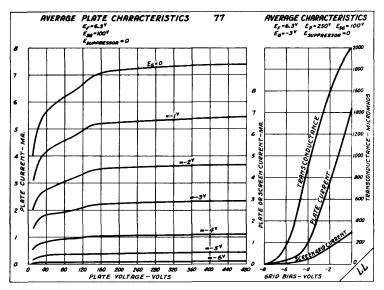


BOTTOM VIEW OF SOCKET

ST 12-D BULB	TRIODE DETECTOR OR AMPI Heater Type The 76 is a triode type designed for service as amplifier in storage batt erated receivers.	Glass Bulb amplifier tube a detector or		E
and all	RATINGS		<i>U</i>	
S PROING SMALL BASE	Heater Voltage (a-c or Heater Current Haximum Plate Voltage	d- c)	BOT TOM VIEW OF 6.3 0.3 250	SOCKET volts amp volts
	DIRECT INTERELECTRODE CAR	ACITANCES		
	Grid to Plate Input Output		2.8 3.5 2.5	μμ ք μμ ք μμ ք
	AMPLIFIER - CLASS A			
Plate Voltage Grid Blas† Amplification F. Plate Resistanc Transconductano Plate Current	9	100 -5 13.8 12000 1150 2.5	250 -13.5 13.8 9500 1450 5	volts volts ohms µmhos ma
	DETECTOR - BIASED TYPE			
Plate Voltage Grid Bias (appr Plate Current		100 -3 Adjusted to 0.2	250 -20 2 ma. with no	volts volts signal
	DETECTOR - GRID LEAK TYPE	:		
Plate Voltage Grid Grid Leak Resis Grid Condenser	tance		45 Return to 1 to 5 0.00025	volta Cathode megohma µf

The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

The d-c resistance in the grid circuit should not exceed 1 megohm.



77	RAYT	HEON			77
	DETECTOR O Heater Type The 77 is a pentod designed for ser high frequency amp tery or a-c opera	e type ampl vide as a d lifierin st	ass Bulb ifier tube letector or corage bat-		
18°00 18°00 18°00 50000 50000 50000 50000 50000	RATINGS Heater Voltage (Heater Current Max. Plate Volta Max. Sereen Volt DIRECT INTERELECTR	ge Age	0.3 amp 250 volts 100 volts	BOTTOM VIE	W OF SOCKET
	Grid to Plate Input Output			0.007 4.0 11	max.* μμf μμf μμ f
Plate Voltage Soreen Voltage Grid Bias Suppressor Amplification F Plate Resistanc Transconductano Plate Current Soreen Current Grid Bias (appr (For cathode c	e (approx.) e	A	100 60 -1.5 Connected t 715 0.65 1100 1.7 0.4 -5.5	250 100 -3 • Cathode 1500 1.5 1250 2.3 0.6 -7.5	volts volts volts vat Sooket megohms µmhos ma volts
	DETECTOR - BIASED	TYPE			
Plate Supply Vo Screen Voltage Grid Bias Cathode Resisto Suppressor Cathode Current Plate Resistor	r (no signal)	100 36 -1.95 12500 0.155 0.25	250 50 -1.95 3000 Connected t 0.65 0.25	0.43 0.5	ma megohm
Blocking Conden Grid Resistor (R-F Signal Volt Output Peak Vol	for following tube) age (RMS)	0.01 0.25 1.88 14	0.03 0.25 1.18 17	0.03 0.25 1.37 17	μf megohm volts volts

(At grid of following tube with signal modulated 20%) its value should not exceed

When a resistor is used in the grid circuit, its value should not exceed 1 megohm. The voltage between heater and cathode should be kept as low as possible where they are not directly connected. The internal shield is connected to the screen grid within the tube.

*With tube shield

PENTODE REMOTE CUTOFF AMPLIFIER Heater Type Glass Bulb

The 78 is a pentode type amplifier tube with remote cutoff characteristics designed for service as a high frequency amplifier or mixer in storage battery or a-c operated receivers. The ratings and electrical characteristics are idemtical with those of the types 6K7 & 6K7G.

BOTTOM VIEW OF SOCKET

250

100

-10

Connected to Cathode at Socket

volta

volts

volts

ł	,g*од, ж мях	329 MAX 217 4	£.
	6 PRONG SMALL BASE		
		9	

ST /2-0 BULB

Heater Voltage (a-c or d-c)	6.3	volt
Heater Current	0.3	am
Maximum Plate Voltage	250	volt
Maximum Screen Voltage	125	volte

DIRECT INTERELECTRODE CAPACITANCES

Grid to Plate Input Output		ւրք րրք րրք
----------------------------------	--	-------------------

AMPLIFIER - CLASS A

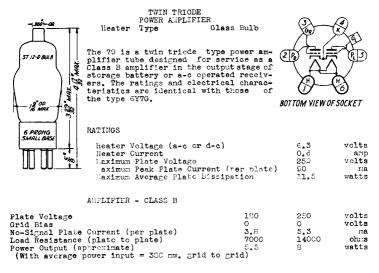
RATINGS

Plate Voltage Soreen Voltage Grid Bias Suppressor Amplification Factor Plate Resistance Transconductance Plate Current	90 90 -3 400 0.315 1275 5 4	1100 1.0 1100	250 100 -5 ected to 1160 0.8 1450 7	990 0.6 1650	volts volts min.volts at Socket megohm µmhos
Plate Current Soreen Current Grid Bias (For transconductance = 2 µmhos)	5.4 1.3 -38.5	4 1 -32.5	7 1.7 -42.5	10.5 2.6 -52.5	ma ma volts

MIXER - SUPERHETERODYNE CIRCUIT

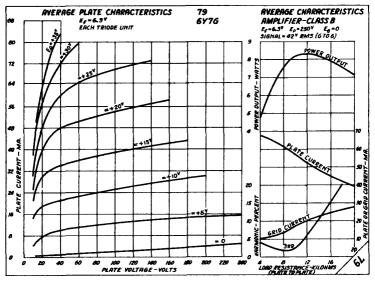
Plate Voltage Screen Voltage Grid Bias† Suppressor

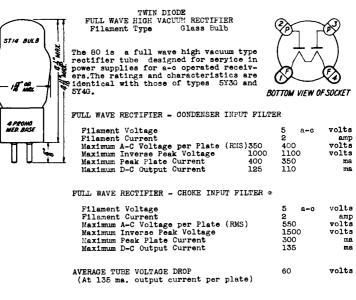
The voltage between heater and cathode should be kept as low as possible where they are not directly connected.

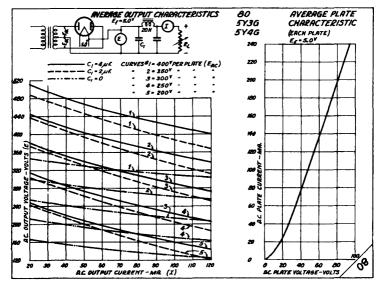

The internal shield is connected to the cathode within the tube.

The grid bias is not oritical with an oscillator peak voltage 1 volt less than the grid bias.

*With tube shield.


For additional curves refer to the type 6K7G.




The voltage between heater and cathede should be kept as low as possible where they are not directly connected.

For additional curves refer to the type 6Y7G.

*Input Choke must be at least 20 henrys. An Input Condenser of not more than 0.1 μf may be used.

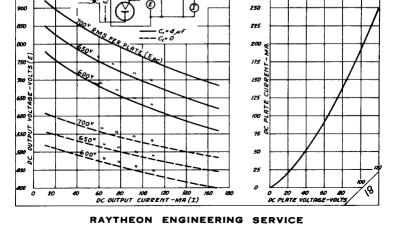
DIODE

HALF WAVE HIGH VACUUM RECTIFIER Filament Type Glass Bulb

The 81 is a high vacuum type half wave rectifier tube designed for service in high voltage power supplies.

HALF WAVE RECTIFIER Condenser or Choke Input Filter

Filament Voltage Filament Current Maximum A-C Plate Voltage (RMS) Maximum D-C Output Current 7.5 a-c 1.25 700 85

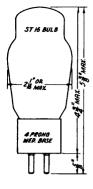

FULL WAVE RECTIFIER - TWO TUBES Condenser or Choke Input Filter

Filament Voltage Filament Current per Tube Maximum A-C Voltage per Plate (RMS) Maximum D-C Output Current 7.5 1.25 700 170 volts 8-C amp volts ma

AVERAGE TUBE VOLTAGE DROP (At 170 ma. output current) 91 volts

81

275



AVERAGE OUTPUT CHARACTERISTICS

FULL WAVE RECTIFIER - TWO TUBES

950

81

81

volts amp

volts

ma

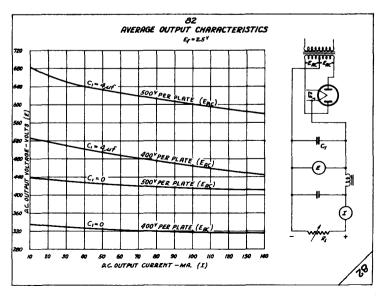
BOTTOM VIEW OF SOCKET

AVERAGE PLATE CHARACTERISTICS

Er = 7.5

TWIN DIODE FULL WAVE MERCURY VAPOR RECTIFIER Filament Type Glass Bulb

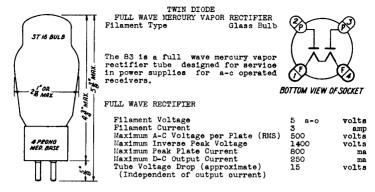
STIA BUN A The 82 is a full wave mercury vapor rectifier tube designed for service in power supplies for a-c operated ХИМ 212 1 00 receivers. -XBW FULL WAVE RECTIFIER Filament Voltage Filament Current Maximum A-C Voltage


BOTTOM VIEW OF SOCKET

Filament Voltage	2.5 a-c	volts
Filament Current	3	amp
Maximum A-C Voltage per Plate (RMS)	5 00	volts
Maximum Inverse Peak Voltage	1400	volts
Maximum Peak Plate Current	4 00	ma
Maximum D-C Output Current	125	ma
Tube Voltage Drop (approximate)	15	volts
(Independent of output current)		

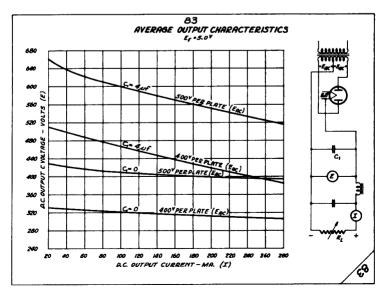
Shielding of this tube, particularly in sensitive receivers, may be necess-ary to eliminate objectionable noise.

Radio frequency chokes (1 mh. or more) connected in series with each plate lead and placed within the shielding, if used, are usually necessary in re-ceivers having high sensitivity.


Full plate load should not be applied to this tube until the filaments have reached their normal operating temperature. Under normal operating condi-tions the filaments heat quickly when the set is turned on and are ready to supply full load current before the tubes in the receiver require it.

14

4 PRONO MEP. BRSE


i je

Shielding of this tube, particularly in sensitive receivers, may be necessary to eliminate objectionable noise.

Radio frequency chokes (1 mh. or more) connected in series with each plate lead and placed within the shielding, if used, are usually necessary in receivers having high sensitivity.

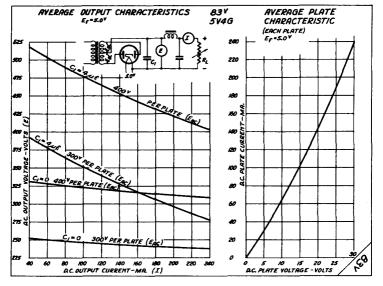
Full plate load should not be applied to this tube until the filaments have reached their normal operating temperature. Under normal operating conditions, the filaments heat quickly when the set is turned on and are ready to supply full load current before the tubes in the receiver require it.

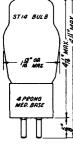
83V

RAYTHEON

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER Heater Type Class Bulb

The 83-V is a full wave high vacuum type rectifier tube having a low voltage drop designed for service in power supplies delivering high output currents. The ratings and characteristics are identical with those of type 5V4G.

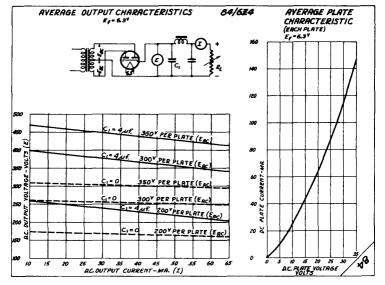



BOTTOM VIEW OF SOCKET

FULL WAVE RECTIFIER - CONDENSER OR CHOKE IMPUT FILTER

Heater Voltage	5 a-c	volts
Heater Current	2	amp
Maximum A-C Voltage per Plate (RHS)	4C0	volts
Haximum Inverse Peak Voltage	1100	volts
Maximum Peak Plate Current	700	ma
Maximum D-C Output Current	200	ma
AVERAGE TUBE VOLTAGE DROP (At 200 ma. output current per plate)	25	volts

The cathode is connected within the tube to the center of the heater.

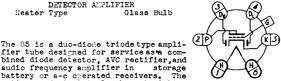


84-6Z4

Heater Type Glass Bulb The 84/624 is a full wave high vacuum type rectifier tube designed for service in power supplies for storage battery or a-c operated receivers. MAX 10 00 35 BOTTOM VIEW OF SOCKET FULL WAVE RECTIFIER Condenser or Choke Input Filter ñ Heater Voltage (a-c or d c) Heater Current Haximum A-C Voltage per Plate (RES) Haximum Inverse Peak Voltage Haximum D-C Output Current Haximum D-C Voltage between Heater and Cathode 6.3 volts **N**en i 0.5 350 amp volts 1000 volts 60 ma 500 volts HALF WAVE RECTIFIER (Plates in Parallel) Condenser or Choke Input Filter 6.3 0.5 350 volts Heater Voltage Heater Current Maximum A-C Plate Voltage (RUS) anip volts MaxImum A-C Fiste voltage (rec) Laximum Inverse Peak Voltage Maximum D-C Output Current Maximum D-C Voltage between Heater and Cathode 1000 volts 75 ma 500 volts

> AVERAGE TUBE VOLTAGE DROP (At 75 ma. output current per plate) 22 volts

RAYTHEON ENGINEERING SERVICE



84-6Z4

TWIN DIODE FULL WAVE HIGH VACUUM RECTIFIER

3
Ø-G

DUO-DIODE TRIODE DETECTOR ALPLIFIER Heater Type Glass Bulb

ST 12-D BULL NRX. 19 00. 320 6 PRONG SMALL BAS -مارم

The 85 is a duo-diode triode type ampli-fier tube designed for service as a com-bined diode detector, AVC rectifier, and a udio frequency amplifier in storage Whattery or a - operated receivers. The ratings and electrical characteristics are identical with those of the type 6V76. BOTTOM VIEW OF SOCKET RATINGS Heater Voltage (a-c or d-c) Heater Current volts 6.3 0.3 250

DIRECT INTERELECTRODE CAPACITANCES - TRIODE SECTION

Grid to Plate	1.7	μμ f
Input	2.0	μμ1
Output	3.5	$\mu\mu f$

AMPLIFIER - CLASS A - TRIODE SECTION

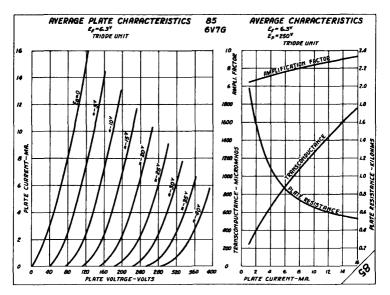
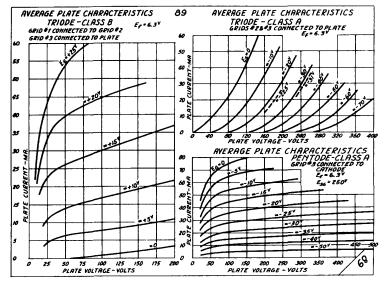

Laximum Plate Voltage

Plate Voltage Grid Eias	135 -10.5	180 -13.5	250 -20	volts volts
Amplification Factor	8.3	8.3	8.3	
Plate Resistance	11000	8500	7500	ohms
Transconductance	750	975	1100	μmh os
Plate Current	3.7	6	8	ma
Load Resistance	25000	20000	20000	ohms
Power Output	75	160	350	mw

DIODE SECTION

The two diode units are independent of each other and of the triode section except for the common cathode. The diodes may be used as a half wave or as a full wave rectifier; or one diode may be used as a half wave rectifier for detection, and the other diode used as a rectifier to obtain delayed AVC voltage.

The voltage between heater and catho where they are not directly connected. cathode should be kept as low as possible



RAYTHEON ENGINEERING SERVICE

amp volts

89	F	RAYTH	IEON					89
	TRIPLE Neater T	PENT GRID POW ype	VER AMPL	IFIEF lass			(J)	
ST 12-D BULB	The 09 is a plifier tub Class A tri B triode po stage of st	c designe ode,Class wer ampl	d for A pent Lifier i	servi ode c n the	ce as a or Class output	Ð		KD
10 MARX - STA	ed receiver		July of	u U	opor do-	(З	T
6 PRONG SMALL BASE	Heater Vo Heater Cu Maximum P Maximum S	rrent late Volt	age)6.3 0.4 250 250	volts amp volts volts	BOTTL	W VIEW	OFSOCKET
and a	AMPLIFIER -							
		Grids #2	2 and #3 160	conn	ected to 180		2e 250	volts
Plate Voltage Grid (#1) Bias			-20		-22.5	-3		volts
Amplification F	actor		4.7		4.7		1.7	10100
Plate Resistance			3300		3000		2600	ohms
Transconductance	e		1425		1550		.800	ມ ຫ ນ່າວ ອ
Plate Current			17		20		52	ma
Load Resistance			7000		6500		500	oluns
Power Output (5)			0.3		0.4		0.9	watta
	AMPLIFIER -	CLASS A	- PEHTO	DE CC	MECTION			
				ed to	cathode			
Plate Voltage		100	135		130		250	volts
Screen (Grid #2) Voltage	100	135		180		250	volts
Grid (#1) Bias		-10	-13.5		-18	-2		volts
Amplification Fa		125	125		125 80000		.25 10000	a have a
Plate Recistance		104000 1200	92500 1350		1550		1800	ohms umhos
Transconductance Plate Current	3	9.5	1330		20		2 2	ma
Screen Current		1.6	2.2		3.0		5.5	ma
Load Resistance		10700	9200		8000		5750	ohma
Total Harmonics		9	9		0000	ç		percent
Power Output		0,33	0.75		1.5		5.4	watts
remer eacpace	AUPLIFIER -			IDEC				
	ASPLIFIER -		connect	ed to	Grid #2			
liazimum Plato Ve							250	volts
Haximum Peak Pla				,			90	ma
Maximum Average	Grid (#1 and Typical Ope:		sipation	ı (pe	r tube)		.35	watts
Plate Voltage							.80	volts
Grid (#1 and #2	(unnent (no	n tubal				3		volts ma
No-Signal Plate Load Resistance	(nlate to n	late)			13600		4 00	ohma
Power Output (a)					2.5		5.5	watts
The voltage bety		and cot	hode ch	aul d			-	possible
where they are 1				Juru	De veht	as 1	43	10221010
*Approximately	twice this v	alue is n	ecommen	d ed w	hen the	tube	: is u	ised as a

950

950

PENTODE POWER AMPLIFIER Filament Type Glass Bulb

The 050 is a pentode type power amplifier tube designed for service in the output stage of battery operated receivers. The ratings and electrical characteristics are identical with those of the type 1356.

BOTTOM VIEW OF SOCKET

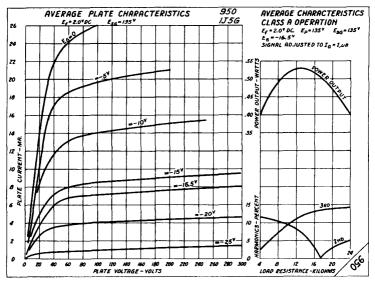
volts

amp volts

volts

2.0 d-c

0.12 135


135

Filament Voltage Filament Current Maximum Plate Voltage Maximum Soreen Voltage

AMPLIFIER - CLASS A

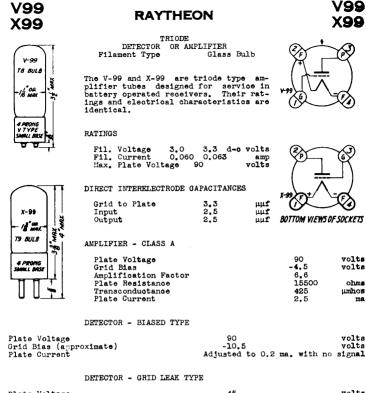

RATINGS

Plate Voltage	135	volts
Screen Voltage	135	volts
Grid Bias	-16.5	volts
Amplification Factor	100	
Plate Resistance	0.1	negohm
Transconductance	1000	µmho s
Plate Current	7	ma
Screen Current	2	ma.
Load Resistance	13500	ohms
Power Output	450	mW
Maximum Signal Voltage (RMS)	11.7	volts

WD-11 WX-12	RAYTHE	ON			D-11 X-12
	TRIODE				
WD-II T8 BULB	DETECTOR OR AN Filament Type	Glass H			
- 10 00	The WD-11 and WD-12 are plifier tubes designed battery operated receiv ings and electrical cha identical.	for serv vers. Thei	ice in r rat-	WD-H F	
A PROHIG TAMERED WO SMALL BASS	RATINGS				
l line	Filament Voltage Filament Current Maximum Plate Voltage	1.1 d-0 0.25 9 135	volts amp volts		
	DIRECT INTERELECTRODE C	APACITANCE	s	with the t	-
	Grid to Plate	3.3	uuf	(iX_	X(4)
(wx-12)	Input	2.5	μμſ	U	\mathbf{U}
TIO-BULB	Output	2.5	uuf	BOTTOM VIEWS (F SOCKETS
- IR MAX - 19	AMPLIFIER - CLASS A				
× 1	Plate Voltage		90	135	volts
all 1	Grid Bias		-4.5	-10,5	volts
-17 00 - 199	Amplification Factor		6.6	6.6	
BAYONET	Plate Resistance		15500	15000	ohms
A PROMO MER BASE	Transconductance		425	440	µmhos
	Plate Current DETECTOR - BLASED TYPE		2.5	3	ma
	DELECTOR - DIASED TIPE				
Plate Voltage			90	135	volts
Grid Bias (app)	roximate)		-10.5	-18	volta
Plate Current	· · · · · · · · · · · · · · · · · · ·	Adjusted		ma. with no	
	DETECTOR - GRID LEAK TY	TPE			
Plate Voltage			45		volta
Grid		F		positive f	

Grid Grid Leak Resistance Grid Condenser 45 volta Return to positive filament 0.25 to 5 megohms 0.00025 μf

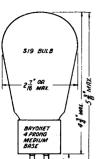
V99

Plate Voltage Grid 45 volts Return to positive filament 0.25 to 5 megohma 0.00025 µf Grid Leak Resistance Grid Condenser

TWIN DIODE GAS FILLED FULL WAVE RECTIFIER Cold Cathode Type Glass Bulb

The BA is a gas filled full wave rectifier tube of the cold cathode type requiring no heater supply voltage. It is designed particularly for service in B battery eliminators for radio receivers.

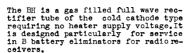
62


BOTTOM VIEW OF SOCKET

FULL WAVE RECTIFIER

Liax1muri	A-C Voltage per Plate (RUS) 350	volts
	D-C Output Current	350	a
Maximum	Peak Plate Current	1000	11 A
Haximum	Inverse Peak Voltage	1000	volts
Minimum	Starting Peak Voltage	400	volts
Average	Dynamic Voltage Drop	80	vclts

The type BA tube was developed primarily for use in 3 battery eliminators for radio receivers. It has the typical characteristics of all gas filled rectifiers as regards a constant voltage drop and ability to handle high peak currents. Any tendency of the tube to generate r-f noise may be eliminated by proper shielding and filtering.


The BA is filled with a permanent gas rather than a vapor filling. The tube characteristics are independent of the surrounding temperature.

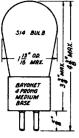
S ID

(nc)

TWIN DIODE GAS FILLED FULL WAVE RECTIFIER Cold Cathode Type Glass Eulb

BH

BOTTOM VIEW OF SOCKET


FULL WAVE RECTIFIER

Maximum A-C Voltage per Plate (RMS)	350	volts
Maximum D-C Output Current	125	ma
Maximum Peak Plate Current	400	ma
Maximum Inverse Peak Voltage	1000	volts
Minimum Starting Peak Voltage	350	volts
Average Dynamic Voltage Drop	90	volts

The type EH tube was developed primarily for use in B battery eliminators for radio receivers. It has the typical characteristics of all gas filled rectifiers as regards a constant voltage drop and ability to handle high peak ourrents. Any tendency of the tube to generate r-f noise may be eliminated by proper shielding and filtering.

The BH is filled with a permanent gas rather than a vapor filling. The tube characteristics are independent of the surrounding temperature.

DIODE

GAS FILLED HALF WAVE RECTIFIER Cold Cathode Type Glass Bulb

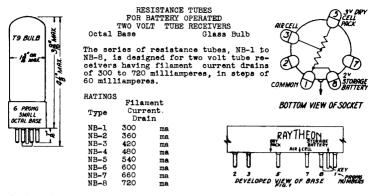
BR

The BR is a gas filled half wave rectifier tube of the cold cathode type requiring no heater supply voltage. It is designed for service where it is desirable to use a half-wave rectifier.

HALF WAVE RECTIFIER

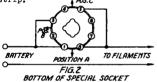
Maximum A-C Plate Voltage (RMS)	300	volts
Maximum D-C Output Current	50	m a
Maximum Peak Plate Current	200	ma
Maximum Inverse Peak Voltage	850	volts
Minimum Starting Peak Voltage	300	volts
Average Dynamic Voltage Drop	60	volts

The type BR tube was developed primarily for use in vibrator type B supply units for automobile receivers. It has the typical characteristics of all gas filled rectifiers as regards a constant voltage drop and ability to handle high peak currents. Any tendency of the tube to generate r-f noise may be eliminated by proper filtering and shielding. The shielding and filtering commonly used to eliminate vibrator noise will usually be sufficient.

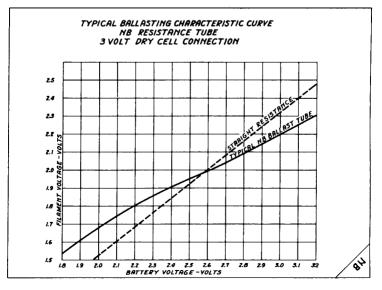

The BR is filled with a permanent gas rather than a vapor filling. The tube characteristics are independent of the surrounding temperature.

NB1-NB8

RAYTHEON


NB1-NB8

The NB tubes have one common tap; one short circuiting tap, for use with a 2 volt storage battery; one resistor tap, for use with an air cell; and one ballast resistor tap, for use with a 3 volt dry cell pack. The curve on the accompanying sheet shows the typical relation between filament voltage and applied voltage, using the tap for dry cell pack.


The resistors in the NE tubes are operated in air, in a scaled container and the moderate ballasting action obtained when the tap for dry cell pack is used is due only to the change of resistance with temperature of the wire used. These resistors operate at a relatively low temperature and their resistance characteristics are permanent if the rated nominal current is not exceeded, so that the NE tube should not need replacement because of change in characteristics during life.

In characteristics during life. The NB tubes are stamped with locating arrows marked "Storage Battery", "Air Cell" and "Dry Pack" on the base of the tube, as shown in Fig. 1. If a reference mark is placed on the chassis mid-way between pine #1 and #8 and the socket wired, as shown in Fig. 2, a special socket with three keyways or a special socket with the keyway drilled out may be used to connect the battery to the proper tap. In either of the above cases the arrow corresponding to the type of battery used should be lined up with the reference mark. A terminal strip may also be provided for connecting the filament battery. to the proper tap of the NB tube. In the latter case, the tube is left fixed and the filament battery is wired to the proper point on the sterminal strip. 4000 TYPE OF BATTERY PLACE LOCATING

TYPE OF BATTERY PLACE LOCATING KEY IN

2 volt storage Position A Air Cell Position B 3 volt Dry Cell Pack Position C

RESISTANCE TUBE FOR A-C - D-C RECEIVERS Metal Bulb Octal Base

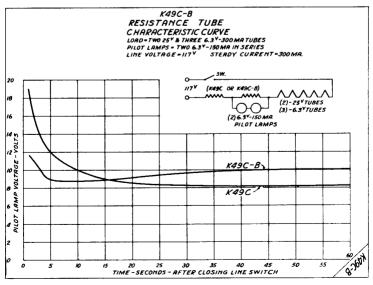
RATINGS

The K49C-B is a resistance tube designed for use as a voltage dropping resistor in the filament circuit of a-o d-c receivers. A ballast resistor tap provides voltage for one or two 6.3 volt pilot lamps.

-Q
Om)
a mo
DeQ

KAOC-P

BOTTOM VIEW OF SOCKET CONNECT PILOT LAMPS BETWEEN PINS #78#8


Voltage Drop at 300 ma.	49	volts
Supplies correct filament voltage to:		
3- 6.3 volt 300 ma. tubes and		
2-25 volt 300 ma. tubes in series		
Pilot Lamp Voltage at 300 ma:		
2- 6.3 volt 150 ma. lamps in sories	10	volts
1- 6.3 volt 200 ma. lamp	6.6	volts
1- 6.3 volt 250 ma. lamp	4.8	volts

When the pilot lamp voltage in an a-c - d-c receiver is taken from a tap on the filament voltage dropping resistor, which usually has no ballasting action, the peak voltage applied to the pilot lamps at the instant the line switch is closed may be several times the rated voltage of the lamps, due to the high initial current drawn by the tubes in the set. In order to limit this peak voltage to a reasonable value, the resistance of the pilot lamp section of a straight resistance tube must be considerably lower than that required to operate the lamps at their rated voltage with the tubes hot. Thus, with a straight resistance tube, the life of the pilot lamps is shortened by the high peak voltage and the final brilliancy is reduced by the low operating voltage.

In the K49C-B the pilot lamp section is a ballast resistor which changes from a low value of resistance with the tube cold to several times its initial value as the tube heats. This limits the peak voltage applied to the pilot lamps to a value within their voltage rating, and operates the lamps at a higher voltage than with a streight resistance tube, increasing the life and final brilliancy of the lamps. The ballasting action also makes it possible to use several different types of pilot lamps with satisfactory results. The characteristic curves show the relation between pilot lamp voltage and time for a typical K49C-B tube and a typical straight resistance tube with similar ratings.

The resistors in the K49C-B are operated in air and the ballasting action obtained in the part shunted across the pilot lamps is due to the heat of the total winding. The resistors operate at relatively low temperature and their resistance characteristics are permanent if the normal rated current is not exceeded.

Resistance tubes with other ratings may also be made. There is considerable power available for ballasting action so that the total voltage drop may be changed to fit other tube combinations requiring either more or less voltage drop.

----- NOTES------