BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.031 Issue 1, July 1941 A T & T Co Standard

Western Electric

101D Vacuum Tube

Classification—Low-Power, Filamentary Triode

This tube replaces the D-86326 tube and has been assigned the old code number 101D. It includes an improved filament, a new mechanical design using transverse mica supports and is mounted in a dome type bulb. The electrical characteristics are essentially the same as for the D-86326 tube.

Applications—Voice frequency and carrier-frequency amplifier for telephone repeater equipment and other applications where small power outputs are required.

Modulator and demodulator in carrier-systems.

Oscillator in voice and carrier frequency applications.

Dimensions and Connections—Figures 1 and 2 show the outline diagrams of the tube and base, giving the dimensions and the arrangement of the electrode connections to the base terminals.

Base and Mounting—This vacuum tube employs a medium, four-pin bayonet type base having special contact metal at the ends of the pins. It is suitable for use in a Western Electric 100L, 100R, or similar type socket, preferably provided with contact-metal contacts.

The tube may be mounted in either a vertical or horizontal position. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical. To assure adequate ventilation the tubes should be mounted with not less than 2^5 s inches between centers when two or more tubes are used.

Copyright, 1941, Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to Plate	6.4 μμf
Grid to Filament	4.4 μµf
Plate to Filament	2.9 µµf

These values are for a based tube without socket.

Filament Bating

Filament Current	1.0 ampere, d.c.
Nominal filament voltage	4.5 volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as practicable.

The filament resistance of this tube increases slightly during the first 2000 hours of operation. The voltage given above is the nominal value after this resistance change has stabilized.

Characteristics—Figure 3 shows typical curves of plate current as a function of grid voltage for several values of plate voltage. The grid and plate voltages are measured from the negative end of the filament. Figures 4, 5 and 6 show corresponding amplification factor, plate resistance and transconductance characteristics respectively. Figure 7 shows plate current as a function of plate voltage for several values of grid voltage.

Operating Conditions and Output—Figure 3 shows the range of permissible operating plate and grid voltages included within the area ABCD. A number of recommended and maximum operating conditions and the corresponding values of amplification factor, plate resistance, transconductance and performance data are given in the table.

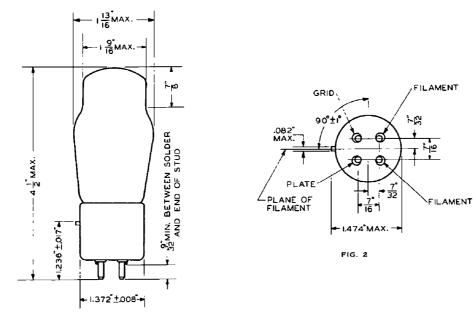
Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions will be shorter than at less severe conditions.

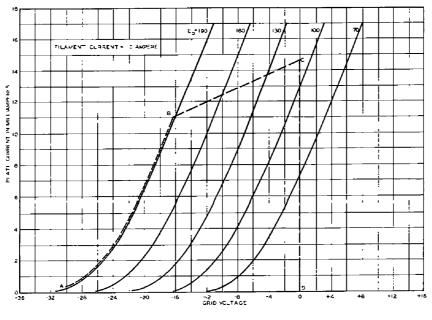
The performance data shown include the fundamental power output in milliwatts and the second and third harmonic levels in db below the fundamental for values of load resistance equal to the plate resistance and for a load resistance of 12000 ohms. The peak value of the sinusoidal input voltage E_{gm} , which gives the indicated output P_m , and harmonic levels F_{2m} , and F_{3m} , in each case is numerically equal to the grid bias. For a smaller input voltage E_{a} , the approximate levels may be computed from the following relations:

$$P = P_{m} \left(\frac{E_{g}}{E_{gm}}\right)^{2}$$

$$F_{2} = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_{g}}$$

$$F_{3} = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_{g}}$$

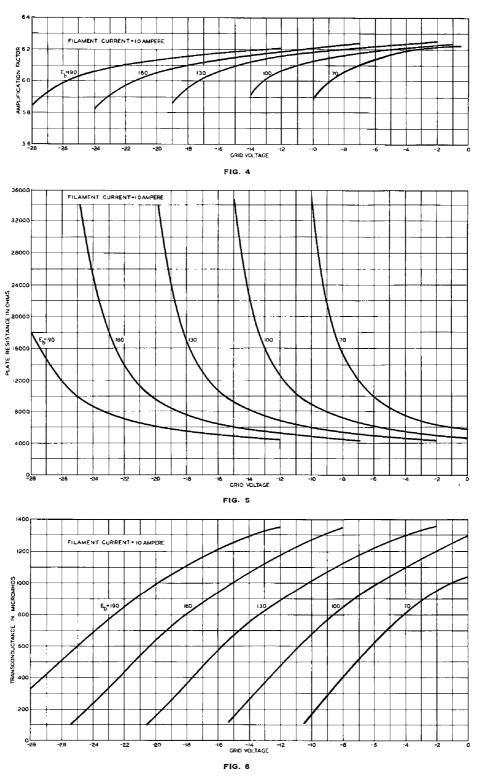

Microphonic Noise

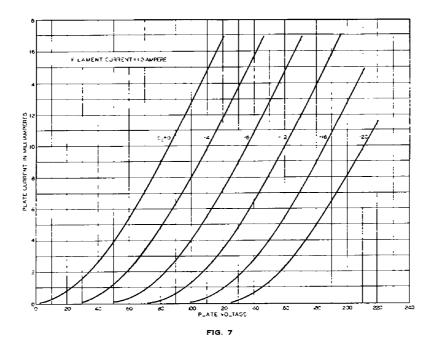

For a plate voltage of 130 volts, a grid bias of -9 volts, and a load resistance of 100,000 ohms, the mean microphonic output level of this tube, measured in a laboratory reference test set is 32 db below 1 volt. The range of levels of individual tubes extends from 20 to 40 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.

101D

					TABLE					
	Plate Volt- age	Grid Bias	Plate Cur- rent	Ampli- fication Factor	Plate Resist- ance	Trans- conduct- ance	Load Resist- ance	Power Out- put	Second Har- monic	Third Har- monic
	Volts	Volts	Milli- amperes		Ohms	Micro- mhos	Ohms	Milli- watts	db	db
Recom-	100	-4	8.1	6.2	5700	1090	5700	14	38	61
mended Operat-							12000	12	45	73
ing	130	-12	4.7	6.2	6800	900	6800	91	22	35
Condi- tions							12000	89	28	44
	130	-9	7.7	6.2	5800	1070	5800	65	31	48
							12000	58	37	57
	130	-6	11.2	6.2	510 0	1220	5100	34	38	60
							12000	29	45	68
	160	-16	5.6	6.1	6500	940	6500	172	20	32
							12000	161	27	40
	160	-12	9.9	6.2	530 0	1170	5300	121	29	46
							12000	108	37	56
Maximum	160	-10	12.5	6.2	4900	1270	4900	93	33	53
Operat- ing					1000		12000	79	41	64
Condi-	1 9 0	-20	6.4	6.1	620 0	990	62 00	263	19	30
tions							12000	250	26	37
	190	- 18	8.7	6.2	5600	1100	5600	248	23	35
							12000	224	31	46
	190	-16	11.0	6.2	5100	1210	5100	223	26	42
							12000	187	35	54

TABLE




D

.

101D

.

1-C-41-39C PRINTED IN U S A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

V. T. DATA SHEET 101D ISSUE 1

•

•

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.024 Issue 2, November 1939 A T & T Co Standard

Western Electric

101F Vacuum Tube

(Dome)

Classification—Low-power, filamentary triode

This tube replaces the old design 101F tube. It includes an improved filament, a new mechanical design using transverse mica supports and is mounted in a dome type bulb. The electrical characteristics are practically identical with the previous 101F tube. Due to the improved insulation between elements, it is suitable for use in place of the 101J tube.

Applications—Voice frequency and carrier-frequency amplifier for telephone repeater equipment and other applications where small power outputs are required.

Modulator and demodulator in carrier-systems.

Oscillator in voice and carrier frequency applications.

Dimensions and Connections—The outline diagrams of the tube and base, giving the dimensions and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base and Mounting—This vacuum tube employs a four-pin bayonet type base having special contact at the ends of the pins. It is suitable for use in a Western Electric 100L, 100R, or similar type socket, preferably provided with contact-metal contacts.

The tube may be mounted in either a vertical or horizontal position. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical. To assure adequate ventilation the tubes should be mounted with not less than 25% inches between centers when two or more tubes are used.

Copyright 1939 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to plate	5.9 µµf
Grid to filament.	4.2 μμf
Plate to filament	2.7 μμf

These values are for a based tube without socket.

Filament Bating

Filament current	0.50 ampere, d.c.
Nominal filament voltage	4.15 volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as practicable.

The filament resistance of this tube increases slightly during the first 2000 hours of operation. The voltage given above is the nominal value after this resistance change has stabilized.

Characteristics—Typical curves showing plate current as a function of grid voltage for several values of plate voltage are shown in Figure 3. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance and transconductance characteristics are given in Figures 4, 5 and 6 respectively. Plate current as a function of plate voltage for several values of grid voltage is shown in Figure 7.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD in Figure 3. A number of recommended and maximum operating conditions and the corresponding values of amplification factor, plate resistance and performance data are given in the table below. Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions may be shorter than at less severe conditions.

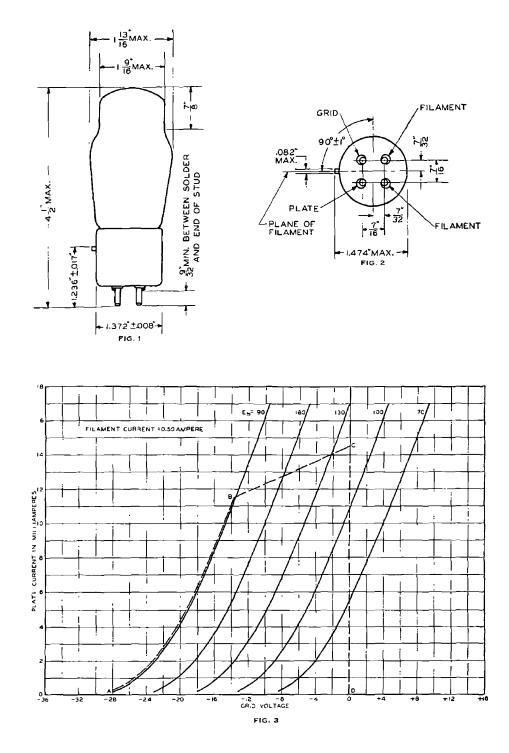
The performance data shown includes the fundamental power output in milliwatts and the second and third harmonic levels in db below the fundamental for values of load resistance equal to the plate resistance and for a load resistance of 12000 ohms. The peak value of the sinusoidal input voltage E_{gm} , which gives the indicated output P_m , and harmonic levels F_{2m} and F_{3m} , in each case is numerically equal to the grid bias. For a smaller input voltage E_g , the approximate levels may be computed from the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

Microphonic Noise

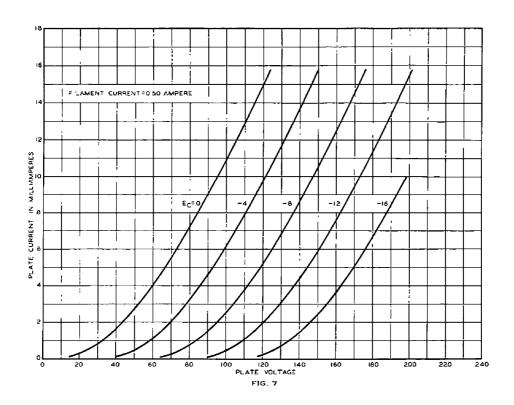

For a plate voltage of 130 volts, a grid bias of -8 volts, and a load resistance of 100,000 ohms, the mean microphonic output level of this tube, measured in a laboratory reference test set is 30 db below 1 volt. The range of levels of individual tubes extends from 20 to 40 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.

-

101F

TABLE

	Plate Volt- age Volts	Grid Bias Volts	Plate Cur- rent Milli- amperes	Ampli- fication Factor	Plate Resist- ance Ohms	Load Resist- ance Ohms	Power Out- put Milli- watts	Second Har- monic db	Third Har- <u>monic</u> db
Recom- mended	100	-4	6.2	6.5	5900	5900 12000	15 13	35 42	60 65
Operat-									
ing Condi-	130	-10	4.8	6.5	6600	6600	79	24	38
tions						12000	75	30	46
	130	-8	6.8	6.5	5800	5800	60	30	48
						12000	53	37	60
	130	-4	11.7	6.6	4700	4700	18	41	70
						12000	15	50	75
	160	-14	5.4	6.5	6300	6300	155	21	32
						12000	145	27	41
	160	-10	10.0	6.5	5000	5000	100	30	48
						12000	90	40	60
Maximum	160	- 8	12.5	6.5	4 60 0	4600	70	34	55
Operat- ing						12000	65	44	70
Condi-	190	-18	6.1	6.5	6100	6100	250	19	30
tions						12000	245	26	39
	190	-16	8.4	6.5	5300	5300	240	23	40
						12000	220	32	48
	190	-14	10.9	6.5	4900	4900	205	27	43
						12000	180	37	55



101F

2-K-39-5340 PRINTED IN U.S.A. A development of Bell Telephone Laboratories. Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

V T. DATA SHEET 101F ISSUE 2

[6]

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.025 Issue 1, November 1939 A T & T Co Standard

Western Electric

101FA Vacuum Tube

Classification—Low-power, filamentary triode

This tube is similar to the 101F (dome) tube except for modifications in the characteristics to obtain higher gain.

Applications—Voice-frequency repeaters and other telephone equipment requiring higher gain than can be obtained from the 101F tube.

Dimensions and Connections—The outline diagrams of the tube and base, giving the dimensions and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base and Mounting—This vacuum tube employs a four-pin bayonet type base having special contact metal at the ends of the pins. It is suitable for use in a Western Electric 100L, 100R, or similar type socket, preferably provided with contact-metal contacts.

The tube may be mounted in either a vertical or horizontal position. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical. To assure adequate ventilation the tubes should be mounted with not less than 25% inches between centers when two or more tubes are used.

Average Direct Interelectrode Capacitances

Grid to plate	5.1 µµf
Grid to filament	4.9 μµf
Plate to filament	2.7 μµf

These values are for a based tube without socket.

Copyright 1939 Western Electric Company, Incorporated

Filament Rating

Filament current	0.50 ampere, d.c.
Nominal filament voltage	4.15 volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as practicable.

The filament resistance of this tube increases slightly during the first 2000 hours of operation. The voltage given above is the nominal value after this resistance change has stabilized.

Characteristics—Typical curves showing plate current as a function of grid voltage for several values of plate voltage are shown in Figure 3. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance and transconductance characteristics are given in Figures 4, 5 and 6 respectively. Plate current as a function of plate voltage for several values of grid voltage is shown in Figure 7.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD in Figure 3. A number of recommended and maximum operating conditions and the corresponding values of amplification factor, plate resistance and performance data are given in the table below. Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions may be shorter than at less severe conditions.

The performance data shown includes the fundamental power output in milliwatts and the second and third harmonic levels in db below the fundamental for values of load resistance equal to the plate resistance and for a load resistance of 12000 ohms. The peak value of the sinusoidal input voltage E_{gm} , which gives the indicated output P_m , and harmonic levels F_{2m} and F_{3m} , in each case is numerically equal to the grid bias. For a smaller input voltage E_g , the approximate levels may be computed from the following relations:

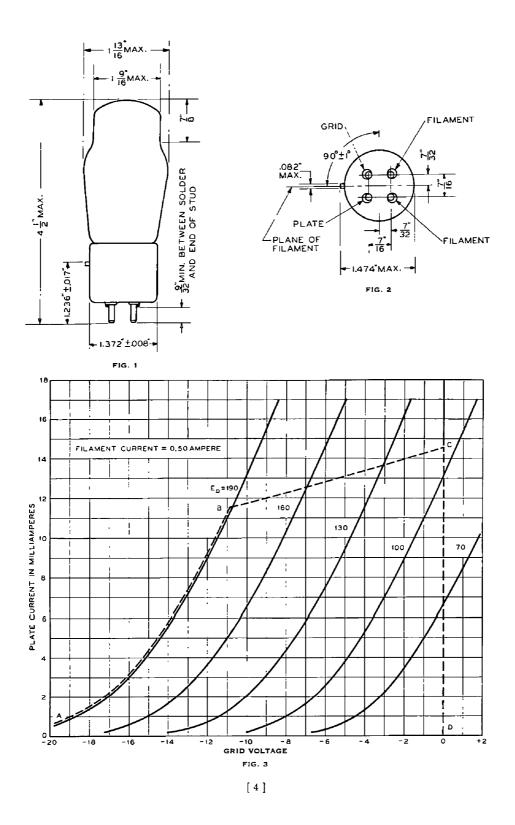
$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

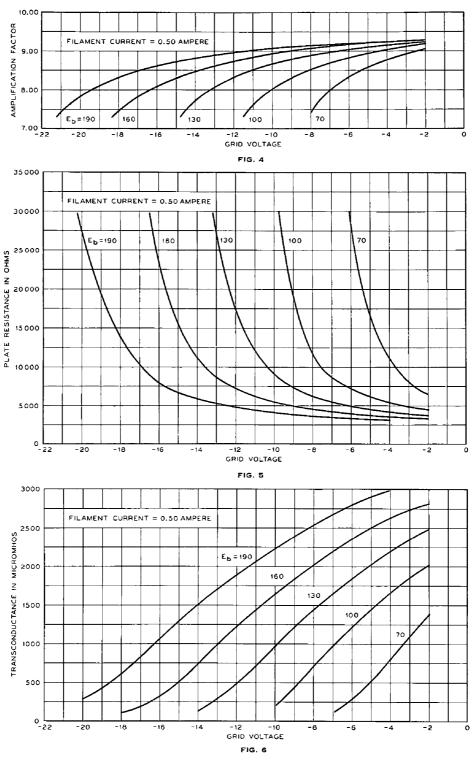
$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

Microphonic Noise

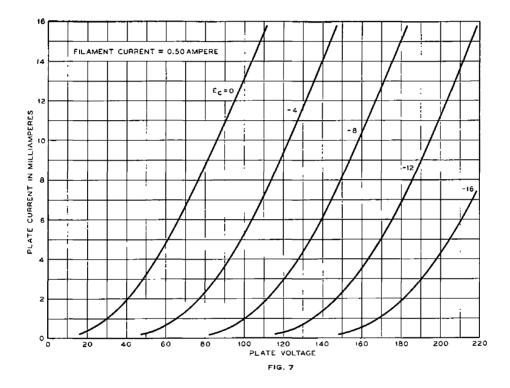
For a plate voltage of 130 volts, a grid bias of -8 volts, and a load resistance of 100,000 ohms, the mean microphonic output level of this tube, measured in a laboratory reference test set is 30 db below 1 volt. The range of levels of individual tubes extends from 20 to 40 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.


101FA

TABLE


	Plate Volt- age Volts	Grid Bias Volts	Plate Cur- rent Milli- amperes	Ampli- fication Factor	Plate Resist- ance Ohms	Load Resist- ance Ohms	Power Out- put Milli- watts	Second Har- <u>monic</u> db	Third Har- <u>monic</u> db
Recom- mended Operat-	100	-4	5.3	9.0	5400	5400 12000	30 25	28 33	47 55
ing Condi- tions	130	-8	4.4	8.9	6100	6100 12000	94 91	20 26	34 43
	130	-6	7.5	9.0	49 00	4900 12000	72 63	26 34	44 55
	130	-4	11.6	9.2	4200	4200 12000	39 30	34 43	55 70
	160	-10	6.6	8.9	5400	5400 12000	170 150	21 28	35 45
Maximum Operat- ing	160	-8	10.4	9.1	450 0	4500 12000	140 115	26 35	43 55
Condi- tions	190	-14	5.6	8.8	5800	5800 12000	285 260	16 22	29 34
	190	-12	9.0	9.0	4800	4800 12000	275 255	20 29	34 46

.



101FA

101FA

1-K-39-5340 PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

V. T. DATA SHEET 101FA ISSUE 1

.

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.030 Issue 1, September 1936 A T & T Co Standard

Western Electric

101J Vacuum Tube

Classification—Low-power filamentary triode

The 101J tube is similar in characteristics to the 101F, but is contained in a pear-shaped bulb and has higher insulation between elements.

Applications

Modulator and demodulator in carrier systems.

Voice-frequency and carrier-frequency amplifier for telephone repeater equipment and other applications where small power outputs are required.

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base-Four-pin, bayonet type, having special contact metal at the ends of the contact pins.

Socket—Four-contact, bayonet-slot type, preferably provided with contact-metal contacts, such as the Western Electric 100L for front of panel mounting or 100R for rear of panel mounting.

Mounting Positions—Either vertical or horizontal. If mounted in a horizontal position, the plane of the filament, which is indicated in Figure 2, should be vertical.

Copyright 1936 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

	<u>A</u>	<u> </u>	<u> </u>
Grid to plate, µµf	6.5	6.1	6.2
Grid to filament, $\mu\mu f$.	4.2	4.9	5.3
Plate to filament, µµf		3.7	4.1

Column A-Based tube without socket.

Column B-Tube alone when measured in 100L socket mounted on metal plate; socket and mounting plate connected to filament.

Column C-Tube alone when measured in 100R socket mounted in metal plate; socket and mounting plate connected to filament.

Filament Rating

Filament current		0.50 ampere, d.c.
Nominal filament voltage	···· ······ ·····	4.15 volts

The filament of this tube is designed to operate on a current basis and should be operated at a current not appreciably exceeding the rated value.

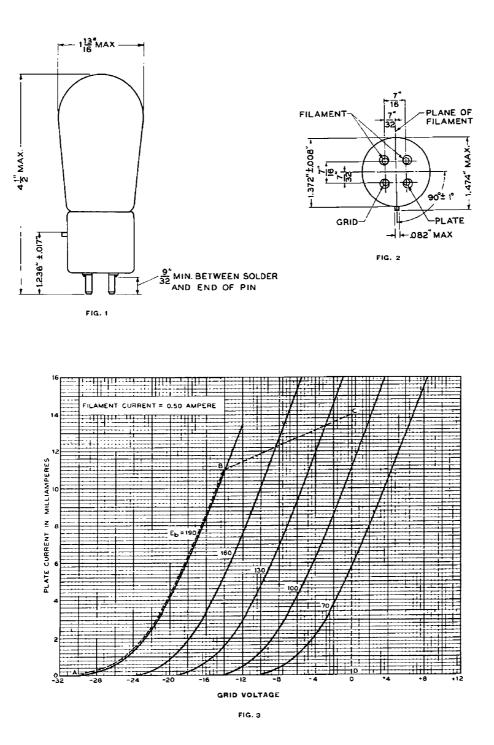
Characteristics and Operating Conditions—Plate-current characteristics of a typical 101J tube are shown in Figure 3 as functions of grid bias. Permissible operating grid and plate voltages are included within the area ABCD. The grid and plate voltages are measured to the negative end of the filament. Corresponding amplification-factor, plate-resistance, and transconductance characteristics are given in Figures 4, 5, and 6, respectively. Plate-current characteristics are given as functions of plate voltage in Figure 7.

A number of recommended and maximum operating conditions and the corresponding values of amplification factor and plate resistance are given in the table on page 3. Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions may be shorter than at the recommended conditions.

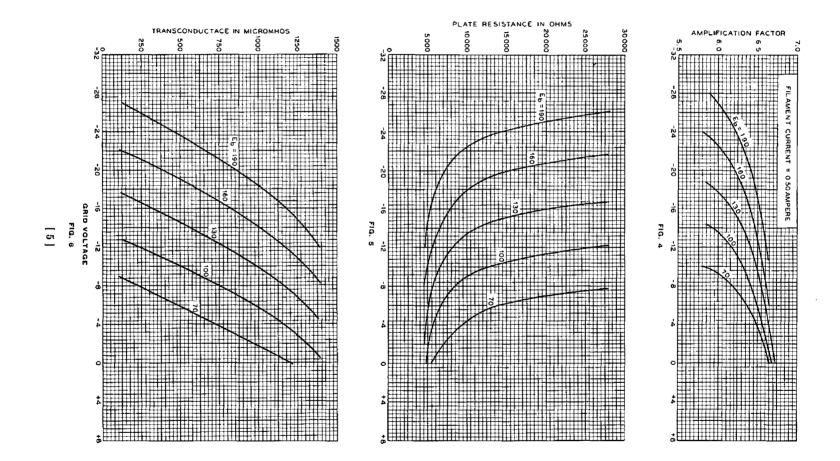
Power Output and Distortion—The fundamental power output in milliwatts, and the second and third harmonic levels in db below the fundamental, corresponding to the recommended and maximum operating conditions, are given in the latter part of the table for values of load resistance, R, both equal to and double the value of the plate resistance, r_p . The peak value of the sinusoidal input voltage, E_{gm} , which gives the indicated power output, P_m , and harmonic levels, F_{2m} and F_{3m} , in each case, is numerically equal to the grid bias. For a smaller input voltage, E_g , the approximate levels may be computed from the following relations:

$$P = P_{m} \left(\frac{E_{g}}{E_{gm}}\right)^{2}$$

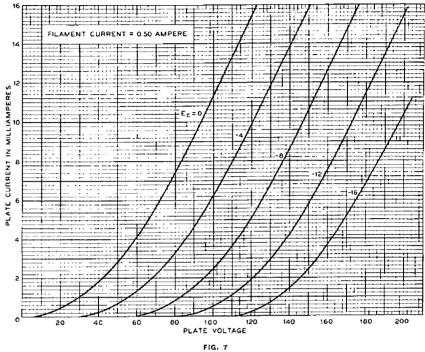
$$F_{2} = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_{g}}$$


$$F_{3} = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_{g}}$$

Microphonic Noise—With a plate voltage of 130 volts, a grid bias of -8 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 101J tube, measured in a laboratory reference test set, is 26 db below 1 volt. The range of levels of individual tubes extends from 14 to 34 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.


Table
I WOIL

								OU	TPUT		
							$\mathbf{R} = \mathbf{r}_{j}$	P	I	$l = 2r_p$	
	Plate Volt- age	Grid Bias	Plate Cur- rent	Amplifi- cation Factor	Plate Resis- tance	Power Output	Second Har- monic	Har-	Power Output		Har-
	Volts	Volts	Milli- amperes		Ohms	Milli- watts	db	db	Milli- watts	db	db
Recommended	100	-4	6.3	6.6	5,750	16	32	55	14	38	65
Operating	130	-10	4.8	6.5	6,500	80	22	36	7 5	28	46
Conditions	130	- 8	7.0	6.5	5,600	62	26	46	55	33	55
	130	- 4	11.9	6.6	4,800	20	37	60	18	43	65
	160	- 14	5.4	6.5	6,500	170	20	32	160	26	42
	160	- 10	10.0	6.6	5,000	120	28	47	110	34	55
Maximum	190	-18	6.2	6.5	6,100	275	17	29	255	24	37
Operating	190	-16	8.4	6.5	5,450	270	22	35	250	28	45
Conditions	190	- 14	10.9	6.6	5,000	250	25	43	215	31	50


.

[4]

101J

1-B-36-53C PRINTED IN U.S.A

A development of Bell Telephone Laboratories. Incorporated the research laboratories of the American Telephone and Tele-graph Company, and the Western Electric Company

[6]

V. T. DATA SHEET 101J ISSUE 1

• . .

BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.101L Issue 1, January 1950 A.T.&T. Co. Standard

101L

TRIODE AUDIO-FREQUENCY AMPLIFIER

Western Electric

DESCRIPTION

The 101L is a filamentary type triode. It is designed for use as an audio-frequency amplifier or modulator.

CHARACTERISTICS

Filament Current					•				250 milliamperes
Maximum Plate Voltage			•	•					180 volts
Amplification Factor .			•		•		•	•	6.5

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

1011 - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

Filament Current			 . 250 milliamperes
Filament Voltage, Nominal*			 . 4.15 volts
Direct Interelectrode Capacit	ances		without external shield
Grid to Plate			 . 6.0 uuf
Input			 . 3.9 uuf
Output		· · ·	 . 2.8 uuf

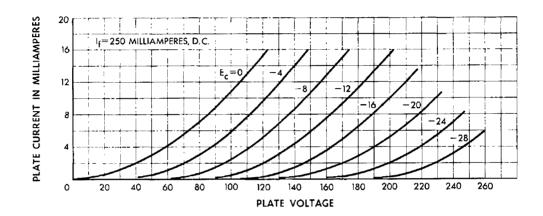
MECHANICAL DATA

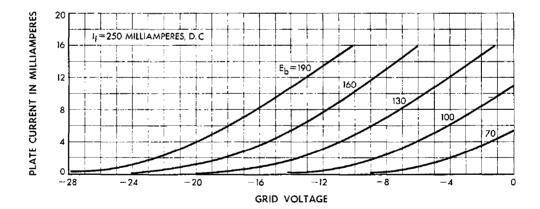
Cathode	Coa	ted Filament
Base	Medium 4-pin type with bay	onet pin
Mounting Position.	Preferably vertical; if horizon	ntal, pins #1
	and #2 must lie in same vertic	al plane
D' ' I '		

Dimensions and pin connections shown in outline drawing on Page 5

MAXIMUM RATINGS, Design-Center Values

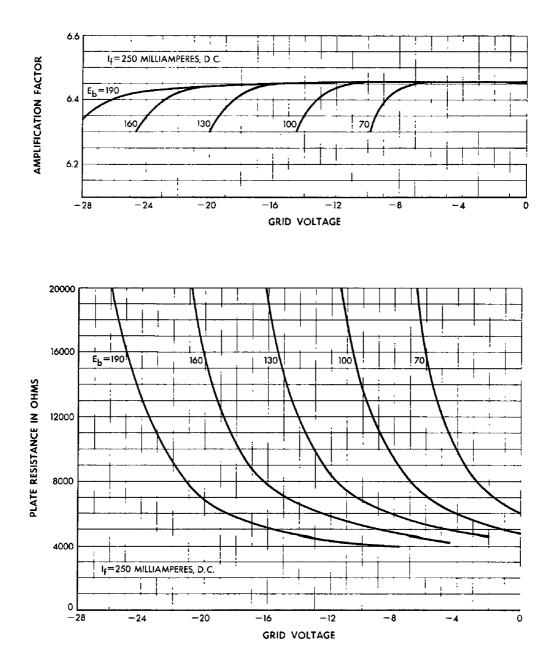
Plate Voltage							•		180 volts
Plate Dissipation									2.0 watts
Plate Current .									15 milliamperes

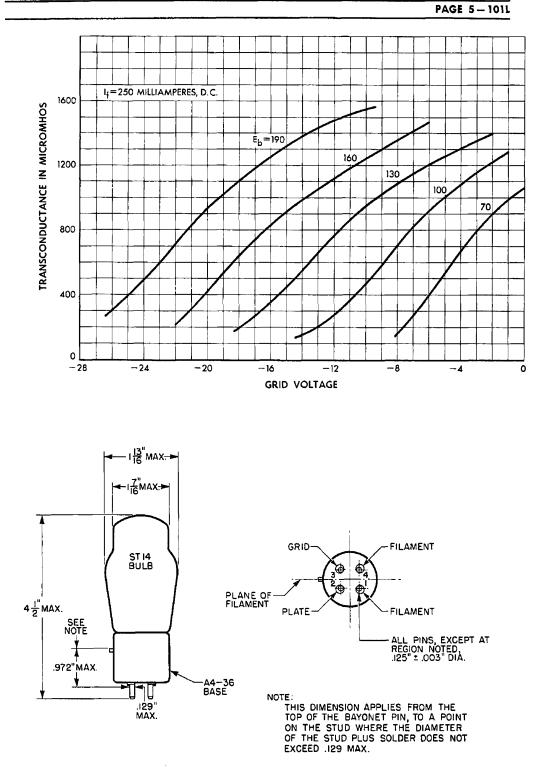

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS-CLASS AT AMPLIFIER


Filament Current, D-C	2.									250	250	milliamperes
Plate Voltage										130	160	volts
Grid Voltage										-8	-10	volts
Peak A-F Grid Voltage	е.	,								8	10	volts
Plate Current										6.8	10.2	milliamperes
Transconductance .										1080	1240	micromhos
Amplification Factor										6.5	6.5	
Plate Resistance.										6000	5200	ohms
Load Resistance										6000	5200	ohms
Maximum Signal Powe	er ()utp	out							60	100	milliwatts
Total Harmonic Distor	tior	ı Le	ess í	Tha	n.	•	·		•	3.4	3.2	per cent

• The filament resistance of this tube increases slightly during the first year of operating life. The voltage given above is the nominal value after the filament resistance has stabilized.

PAGE 3 - 101L


.



,

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

.

BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.101M Issue 1, January 1950 A.T.&T. Co. Standard

101M

TRIODE AUDIO-FREQUENCY AMPLIFIER

Western Electric

DESCRIPTION

The 101M is a filamentary type triode. It is designed for use as an audio-frequency amplifier or modulator. This tube is intended for use in equipment where quick filament heating is required. Better thermionic life will be obtained by using other types of the 101 series of tubes when filament heating time is not a factor.

CHARACTERISTICS

Filament Current				•	•			•	250 milliamperes
Maximum Plate Voltage.						•			180 volts
Amplification Factor .									6.5

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

101M - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

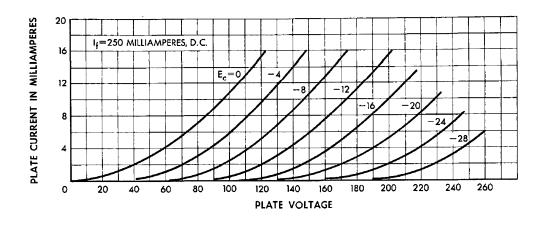
Filament Current	t.											•	250 milliamperes
Filament Voltage,	, No	omi	nal'	۰.									3.75 volts
Direct Interelect	ode	e C	apa	cita	nces	1							without external shield
Grid to Plate				-									6.0 uuf
Input													3.9 uuf
Output .									•		•		2.8 uuf

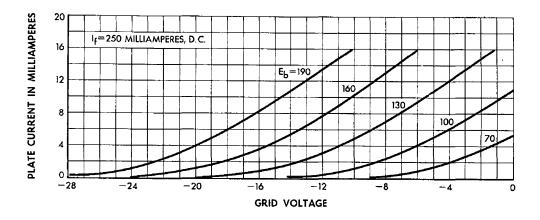
MECHANICAL DATA

.

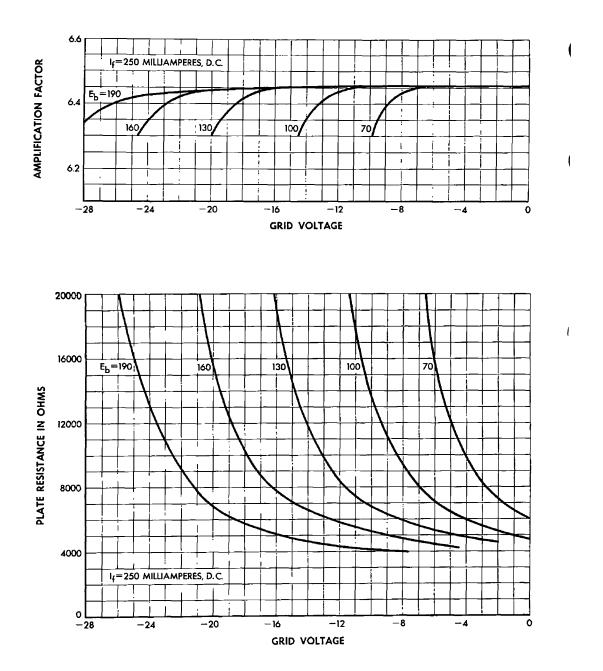
Cathode				 Coated Filament
Base				Medium 4-pin type with bayonet pin
Mounting Position.				Preferably vertical; if horizontal, pins #1
				and #2 must lie in same vertical plane

Dimensions and pin connections shown in outline drawing on Page 5

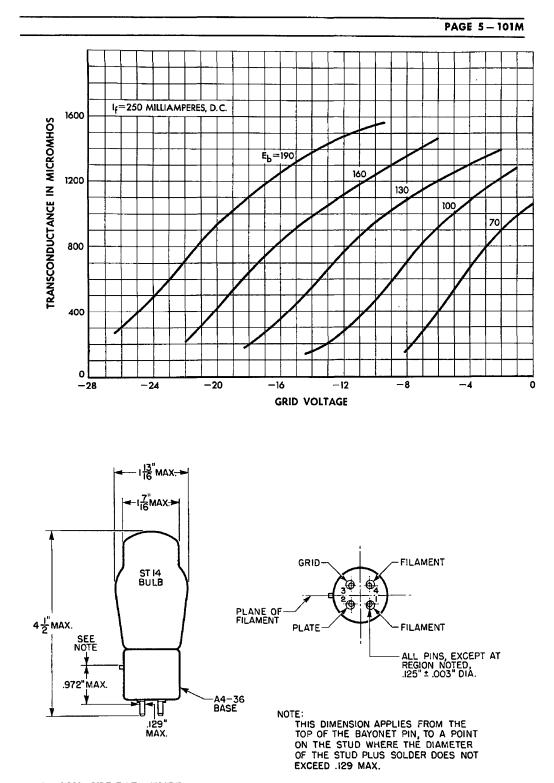

MAXIMUM RATINGS, Design-Center Values


Plate Voltage							•		180 volts
Plate Dissipation									2.0 watts
Plate Current .			•			•			15 milliamperes

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS-CLASS AI AMPLIFIER


Filament Current, D-C							250	25 0	milliamperes
Plate Voltage							130	160	volts
Grid Voltage						•	-8	-10	volts
Peak A-F Grid Voltage				-			8	10	volts
Plate Current	-					•	6.8	10 .2	milliamperes
Transconductance					•		1080	1 2 40	micromhos
Amplification Factor	-					-	6.5	6.5	
Plate Resistance					•	•	6000	5200	ohms
Load Resistance					•	•	6000	5200	ohms
Maximum Signal Power Output							60	100	milliwatts
Total Harmonic Distortion							3.4	3.2	per cent

• The filament resistance of this tube increases slightly during the first year of operating life. The voltage given above is the nominal value after the filament resistance has stabilized.



ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

,

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49 BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.102D Issue 1, January 1950 A.T.&T. Co. Standard

102D

TRIODE AUDIO-FREQUENCY AMPLIFIER

Western Electric

DESCRIPTION

The 102D is a filamentary type triode. It is designed for use as an audio-frequency voltage amplifier or modulator.

CHARACTERISTICS

Filament Current					•		1.0 ampere
Maximum Plate Voltage							180 volts
Amplification Factor							30

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

102D - PAGE 2

GENERAL CHARACTERISTICS

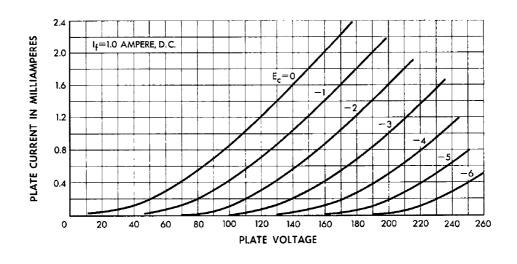
ELECTRICAL DATA

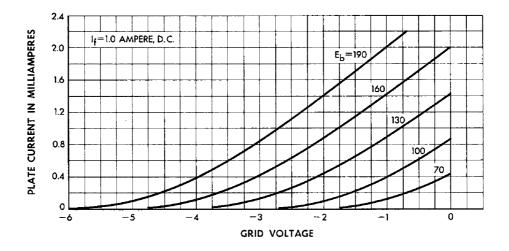
Filament Cu	ırren	t											•	1.0 ampere
Filament Vo					•			2.1 volts						
Direct Inter	elect	rod	le (Сар	acit	anc	es							without external shield
Grid to	Plat	e												5.4 uuf
Input.														4.1 uuf
Output														2.6 uuf

MECHANICAL DATA

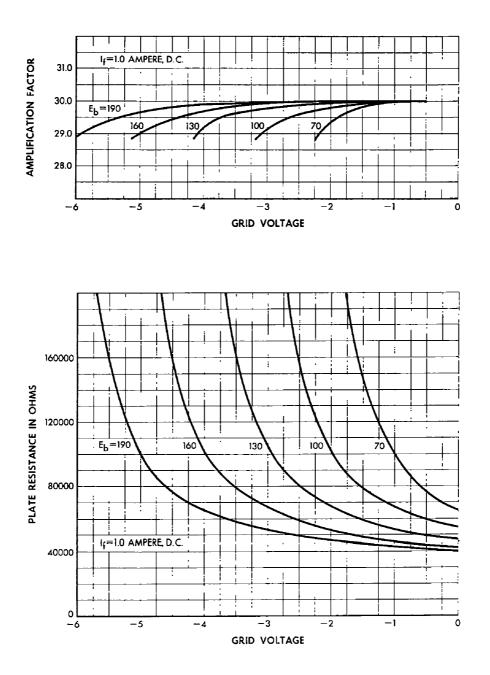
Cathode	Coated Filament
Base	Medium 4-pin type with bayonet pin
Mounting Position	Preferably vertical; if horizontal, pins #1
	and #2 must lie in same vertical plane
nteresteres i transmissione i transmissione	Junited in Deck F

Dimensions and pin connections shown in outline drawing on Page 5

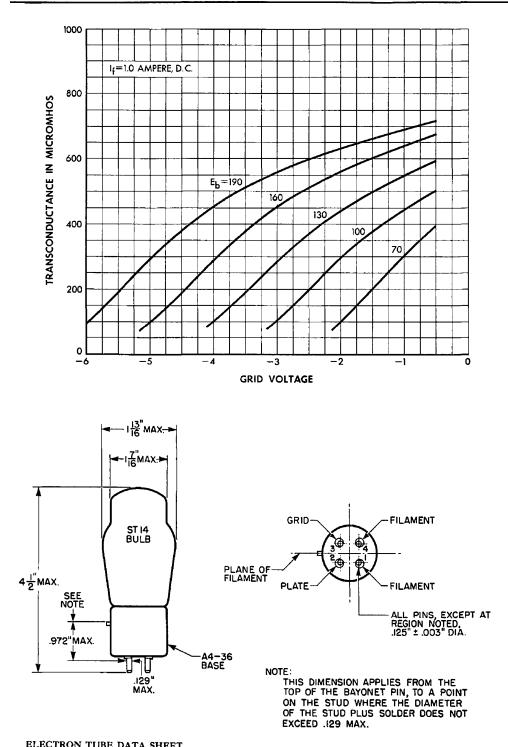

MAXIMUM RATINGS, Design-Center Values


Plate Voltage .				•					180 volts
Plate Dissipation									0.5 watt
Plate Current .						•			7.5 milliamperes

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS-CLASS AI AMPLIFIER


Filament Current, 1	D-C	2.									1.0	1.0	ampere
Plate Voltage .											130	160	volts
Grid Voltage											-1.5	-2.0	volts
Peak A-F Grid Vol	tage	e .									1.5	2.0	volts
Plate Current .											0.65	0,87	milliampere
Transconductance											500	560	micromhos
Amplification Facto	r										29.9	29.9	
Plate Resistance											60000	53500	ohms
Load Resistance											300000	300000	ohms
Maximum-Signal V	'oltz	age	Ou	tpul	t.				•		29	37	peak volts
Total Harmonic Di	stor	rtio	n L	ess	Tha	an		•			1.0	1.0	per cent

• The filament resistance of this tube increases slightly during the first year of operating life. The voltage given above is the nominal value after the filament resistance has stabilized.



ELECTRON TUBE DATA SHBET FILE: GENERAL PURPOSE SECTION 6-49

•

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

ł

)

1

1

۰.

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data

SECTION AB46.052 Issue 2 A T & T Co Standard

Western Electric

102F Vacuum Tube (Dome)

Classifications-Filamentary, voltage amplifier triode

This tube is a redesign of the 102F tube. It includes an improved filament, a new mechanical design using transverse mica supports and is mounted in a dome type bulb. The electrical characteristics are practically identical with the previous 102F tube which it supersedes.

Applications—Voltage amplifier for voice-frequency telephone repeaters and carrier-frequency telegraph equipment.

Detector or modulator.

Dimensions and Connections—The outline diagrams of the tube and base, giving the dimensions and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base and Mounting—This vacuum tube employs a medium, four-pin bayonet type base having special contact metal at the ends of the pins. It is suitable for use in a Western Electric 100L, 100R, or similar type socket, preferably provided with contact-metal contacts.

The tube may be mounted in either a vertical or horizontal position. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical. To assure adequate ventilation the tubes should be mounted with not less than $2\frac{5}{8}$ inches between centers when two or more tubes are used.

Copyright 1939 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to plate	 ····· ·· ·· ·· ··	 5.1 μμf
Grid to filament		 4.0 µµf
Plate to filament.		

These values are for a based tube without socket.

Filament Rating

Filament current	 	0.50 ampere, d.c.
Nominal filament voltage	 	2.1 volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as practicable.

The filament resistance of this tube increases slightly during the first 2000 hours of operation. The voltage given above is the nominal value after the resistance has stabilized.

Characteristics—Typical curves showing plate current as a function of grid voltage for several values of plate voltage are shown in Figure 3. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance and transconductance characteristics are given in Figures 4, 5 and 6 respectively. Plate current as a function of plate voltage for several values of grid voltage is shown in Figure 7.

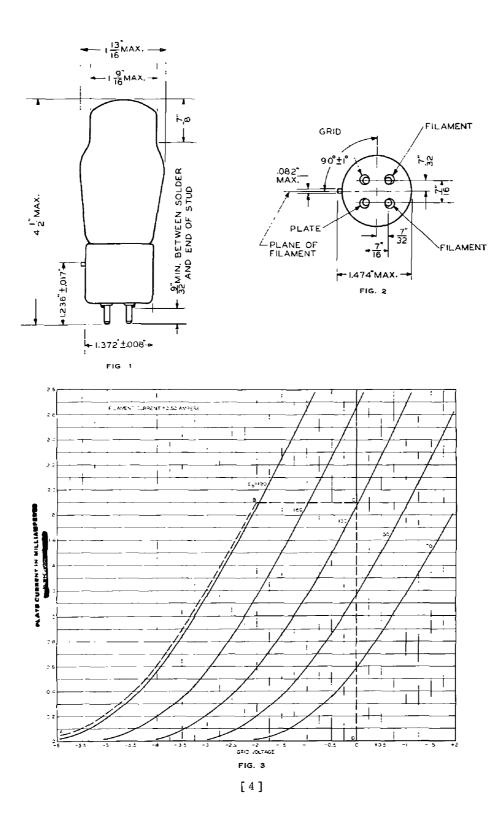
Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD in Figure 3. A number of recommended and maximum operating conditions and the corresponding values of amplification factor, plate resistance, transconductance and performance data are given in the table below. Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions may be shorter than at less severe conditions.

The performance data shown include the fundamental output voltage in peak volts and the second and third harmonic levels in db below the fundamental for values of load resistance equal to the plate resistance and for load resistances of 100,000 and 300,000 ohms. The peak value of the sinusoidal input voltage E_{gm} , which gives the indicated output E_{pm} , and harmonic levels F_{2m} and F_{3m} , in each case is numerically equal to the grid bias. For a smaller input voltage E_g , the approximate levels may be computed from the following relations:

$$E_{p} = E_{pm} \frac{E_{z}}{E_{gm}}$$

$$F_{2} = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_{g}}$$

$$F_{3} = F_{dm} + 40 \log_{10} \frac{E_{gm}}{E_{g}}$$


Microphonic Noise

For a plate voltage of 130 volts, a grid bias of -1.5 volts and a load resistance of 100,000 ohms, the mean microphonic output level of this tube, measured in a laboratory reference test set is 33 db below 1 volt. The range of levels of individual tubes extends from 25 to 41 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.

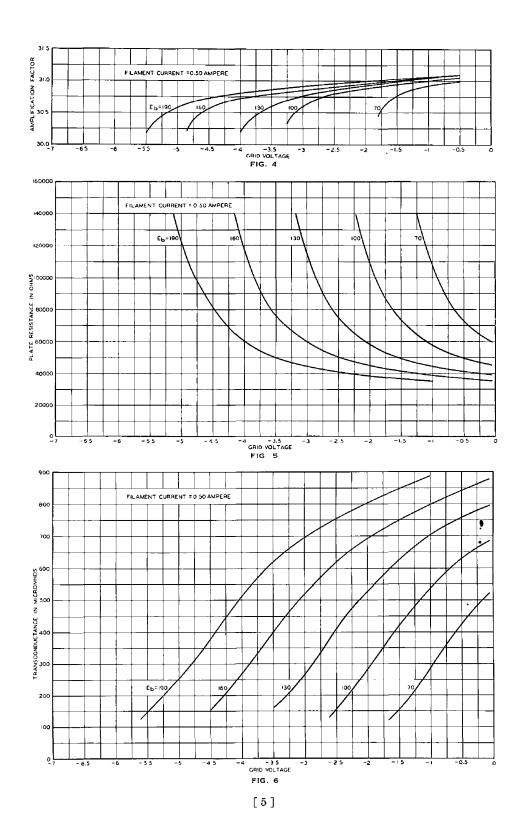

102F

TABLE												
Plate Volt- age Volts	Grid Bias Volts	Plate Cur- rent Milli-	Amplifi- cation Factor	Plate Resist- ance Ohms	Trans- conduc- tance Micro-	Load Resist- ance Ohms	Output Volt- age Peak	Second Har- monic db	Third Har- monic db			
VUILS	VOICS	amperes		Oums	mhos	Unins	Volts	uv	ub			
130	-2.0	0.60	30.9	58,000	530	58,000	28	23	39			
						100,000	37	28	45			
						300,000	49	39	55			
130	-1.5	0.85	31.0	50,000	620	50,000	22	30	48			
						100,000	30	37	55			
						300,000	38	49	65			
130	-1.0	1.15	31.0	44,000	700	44,000	14	36	55			
						100,000	20	44	60			
						300,000	25	56	65			
160	-3.0	0.55	30 .9	60,000	520	60,000	42	19	33			
100	0.0	0.00	00.0	00,000	020	100,000	53	23	38			
						300,000	71	35	50 50			
						,			00			
160	-2.0	1.15	31.0	45,000	690	45,000	29	30	48			
						100,000	39	37	55			
						300,000	49	50	65			
*160	-1.0	1.85	31.0	39,000	800	39,000	15	41	60			
						100,000	21	51	65			
						300,000	25	60	65			
								• •				
*190	-3.0	1.15	30.9	45,000	690	45,000	45	26	40			
						100,000	62	35	50			
						300,000	75	46	60			
*190	-2.0	1.85	31.0	39,000	800	39,000	30	35	55			
190	-2.0	1.00	.1.U	59,000	000	.39,000 100,000	-30 -41					
						300,000	41 50	44 55	60 65			
						000,000	90	00	00			

*Maximum operating conditions.

102F

102F

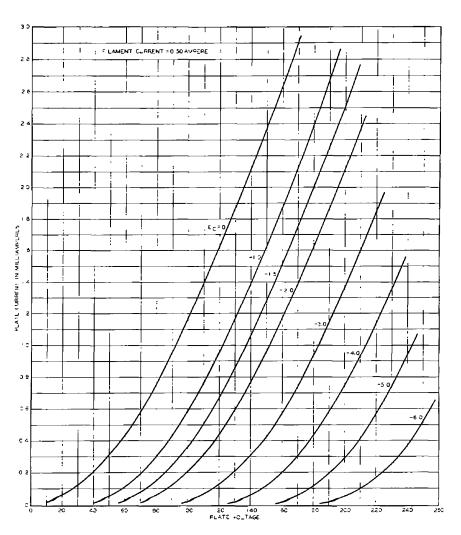


FIG. 7

•

1-B-40-44½ PRINTED IN USA. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

V. T. DATA SHEET 102F ISSUE 2 BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data

SECTION AB46.102L Issue 1, January 1950 A.T.&T. Co. Standard

102L

TRIODE AUDIO-FREQUENCY AMPLIFIER

Western Electric

,

DESCRIPTION

The 102L is a filamentary type triode. It is designed for use as an audio-frequency voltage amplifier or modulator.

CHARACTERISTICS

Filament Current			•		•		250 milliamperes
Maximum Plate Voltage							180 volts
Amplification Factor .							30

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

102L - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

Filament Current	t											250 milliamperes
Filament Voltage.	No	omi	nal₹									2.1 volts
Direct Interelectr	ode	e C	apac	eitar	nces							without external shield
Grid to Plate									•			5.0 uuf
Input												3.8 uuf
Output							•					2.4 uuf

MECHANICAL DATA

Cathode					Coated Filament
Base					Medium 4-pin type with bayonet pin
Mounting Position					Preferably vertical; if horizontal, pins #1
					and #2 must lie in same vertical plane
	 	1	 •	 A1:	duraniad on Pada 5

Dimensions and pin connections shown in outline drawing on Page 5

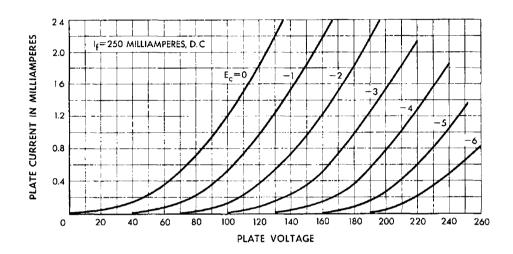
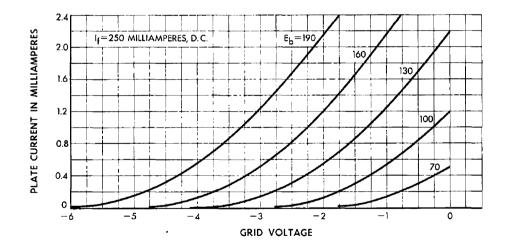
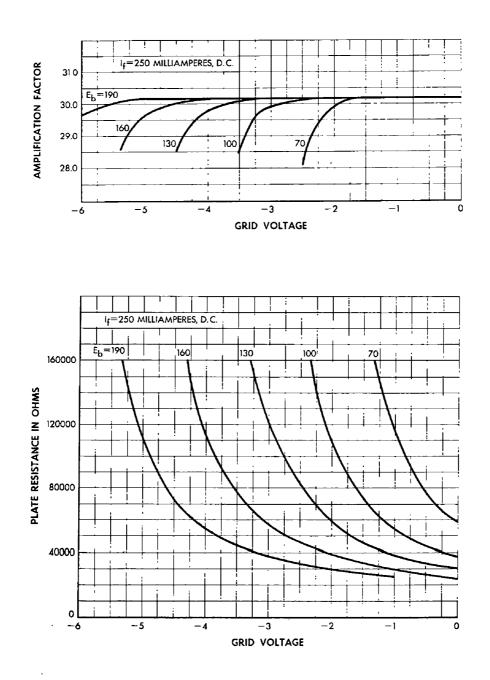

MAXIMUM RATINGS, Design-Center Values

Plate Voltage						•	•	•	•	•	180 volts
Plate Dissipation			-								0.5 watt
Plate Current .				•					•		7.5 milliamperes

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS-CLASS AI AMPLIFIER

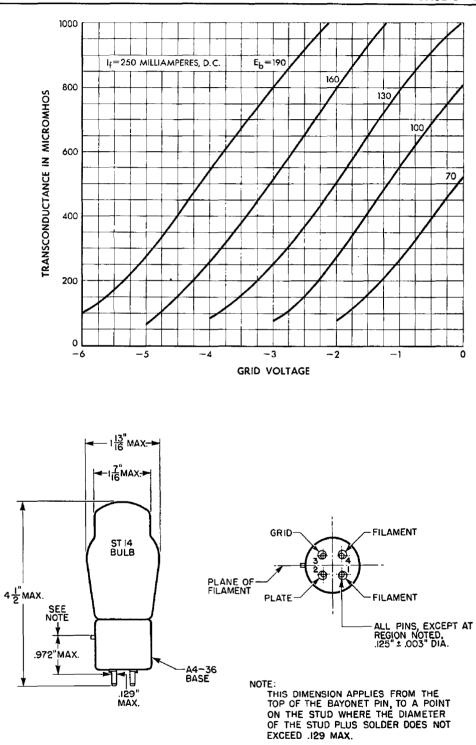

Filament Current, D-C										250	250	milliamperes
Plate Voltage										130	160	volts
Grid Voltage								•		-1.5	-2.0	volts
Peak A-F Grid Voltage								•		1.5	2.0	volts
Plate Current									•	0.85	1.2	milliamperes
Transconductance										650	800	micromhos
Amplification Factor .										30.2	30.2	
Plate Resistance									•	46000	39000	ohms
Load Resistance							•			300000	300000	ohms
Maximum-Signal Voltag	e (Jutp	ut						-	34	44	peak volts
Total Harmonic Distorti	on	Les	sТ	han	-	-				1.0	1.0	per cent

• The filament resistance of this tube increases slightly during the first year of operating life. The voltage given above is the nominal value after the filament resistance has stabilized.



,

.



ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49

.

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 6-49 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.035 April 1941 Issue 1 A T & T Co Standard

Western Electric

104D Vacuum Tube (Dome)

Classification—Filamentary, power amplifier triode

This tube replaces the D-86327 tube and has been assigned the old code number 104D. It includes an improved filament, a new mechanical design using transverse mica supports and is mounted in a dome type bulb. The electrical characteristics are essentially the same as for the D-86327 tube.

Applications—Voice frequency and carrier frequency amplifier for telephone repeater equipment requiring greater power outputs than can be obtained from the 101D or 101F type tubes.

Volume limiter in carrier telephone equipment.

Amplifier in various testing apparatus.

Dimensions and Connections—The outline diagrams of the tube and base, giving the dimensions and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base and Mounting—This vacuum tube employs a medium, four-pin bayonet type base having special contact metal at the ends of the pins. It is suitable for use in a Western Electric 100L, 100R or similar type socket, preferably provided with contact-metal contacts.

The tube may be mounted in either a vertical or horizontal position. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical. To assure adequate ventilation the tubes should be mounted with not less than $2\frac{5}{26}$ inches between centers when two or more tubes are used.

Copyright, 1941, Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to plate.	4.9 µµf.
Grid to filament	4.1 μμf.
Plate to filament	3.4 µµf.

These values are for a based tube without socket.

Filament Rating

Filament current.	1.00 ampere, d.c
Nominal filament voltage	4.5 volts

The filament of this tube is designed to operate on a current basis and should be operated as near to the rated current as practicable.

The filament resistance of this tube increases slightly during the first 2000 hours of operation. The voltage given above is the nominal value after the resistance has stabilized.

Characteristics—Typical curves showing plate current as a function of grid voltage for several values of plate voltage are shown in Figure 3. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance and transconductance characteristics are given in Figures 4, 5 and 6 respectively. Plate current as a function of plate voltage for several values of grid voltage is shown in Figure 7.

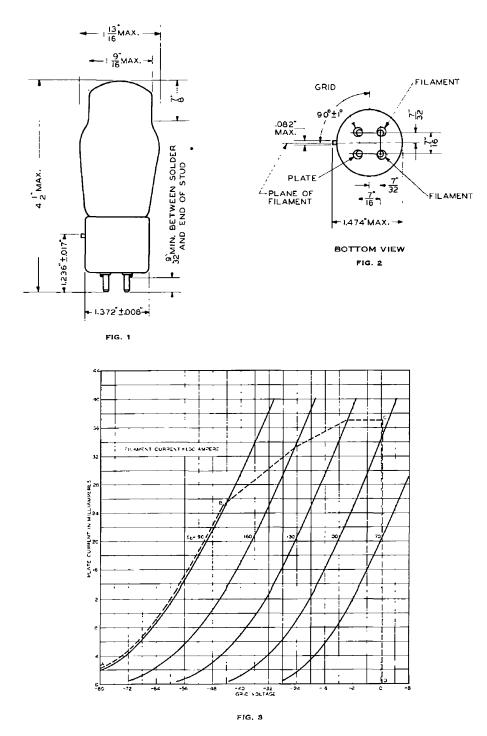
Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD in Figure 3. A number of recommended and maximum operating conditions and the corresponding values of amplification factor, plate resistance, transconductance, and performance data are given in the table.

Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum operating conditions will be shorter than at less severe conditions.

The performance data shown includes the fundamental power output in milliwatts and the second and third harmonic levels in db below the fundamental for values of load resistance equal to the plate resistance and for a load resistance of 5000 ohms. The peak value of sinusoidal input voltage E_{gm} , which gives the indicated output P_m , and harmonic levels F_{2m} and F_{3m} , in each case is numerically equal to the grid bias. For a smaller input voltage E_g , the approximate levels may be computed from the following relations:

$$P = P_{m} \left(\frac{E_{g}}{E_{gm}}\right)^{2}$$

$$F_{2} = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_{g}}$$


$$F_{3} = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_{g}}$$

Microphonic Noise

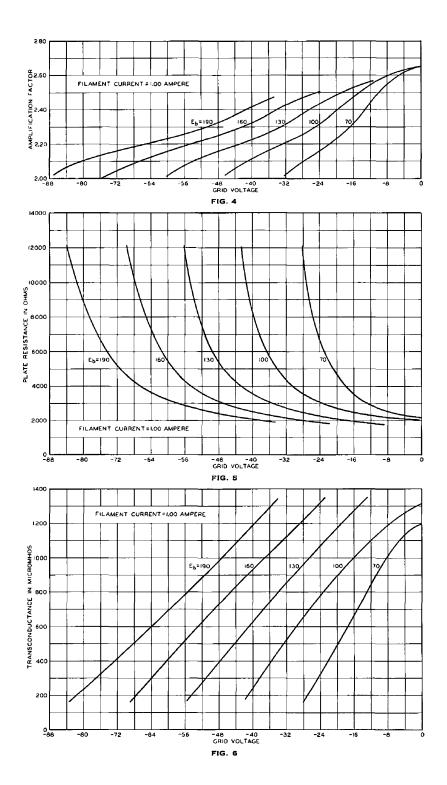
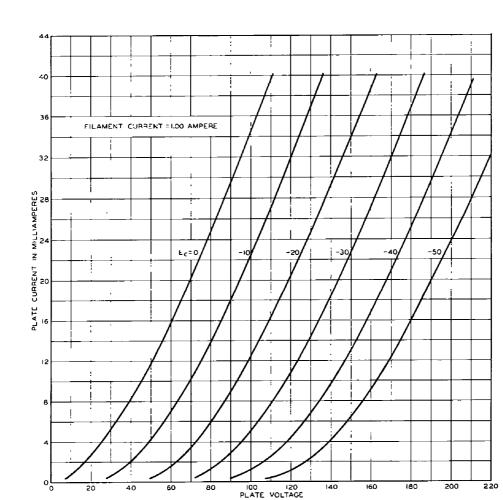

For a plate voltage of 130 volts, a grid bias of -20 volts, and a load resistance of 100,000 ohms, the mean microphonic output level of this tube, measured in a laboratory reference test set is 31 db below 1 volt. The range of levels of individual tubes extends from 20 to 40 db below 1 volt. Since microphonic noise output depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other types of tubes which have been tested in the same way.

					TABLE					
	Plate Volt- age Volts	Grid Blas Volts	Plate Cur- rent Milli-	Ampli- fication Factor	Plate Resist- ance Ohms	Trans- conduct- ance Micro-	Load Resist- ance Ohms	Power Out- put Milli-	Second Har- <u>monic</u> đb	Third Har- <u>monic</u> db
	10103	10103	amperes		011115	mhos	•	watts	4.0	40
Recom-	100	-20	12.5	2.4	2700	890	2700	110	23	50
mended Operat-							5000	100	28	65
ing	100	-10	22.5	2.6	2200	1160	2200	38	34	60
Condi-						a	5000	32	38	65
tions	130	-30	14.5	2.3	2600	900	2600	250	22	47
							5000	225	25	75
	130	-20	25.0	2.5	2100	1180	2100	150	28	48
							5000	125	32	58
	130	-10	37.0	2.6	1800	1430	1800	45	38	65
							5000	36	44	70
	160	-45	13.0	2.3	2900	810	290 0	475	18	37
							5000	445	21	49
	160	-35	21.5	2.4	2300	1040	2300	39 0	22	47
							5000	340	27	70
Maximum	160	-25	33.0	2.5	1900	1300	1900	250	28	49 52
Operat- ing							5000	210	33	53
Condi-	190	-55	15.5	2.3	2800	810	2800	735	18	36
tions							5000	70 0	22	48
	190	-45	24.5	2.4	2200	1070	2200	650	22	45
							5000	565	26	65


TABLE

[5]

1-C-41-4450 PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

•

V. T. DATA SHEET 104D ISSUE 1 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.090 Issue 1, September 1936 A T & T Co Standard

Western Electric

205D Vacuum Tube

Classification—Moderate power, filamentary triode

Applications

Audio-frequency amplifier or modulator where power outputs of approximately 1 watt or less are required.

Radio-frequency power amplifier.

Oscillator.

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base-Medium, four-pin, bayonet type with the bayonet pin offset.

Socket—Four-contact, bayonet-slot type, such as the Western Electric 100M for front of panel mounting or 115B for rear of panel mounting.

Mounting Positions—Either vertical or horizontal. If mounted in a horizontal position, the plane of the filament, which is indicated in Figure 2, should be vertical.

Copyright 1936 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

	<u>.</u>	<u> </u>	<u> </u>
Grid to plate, $\mu\mu f$.	4.8	4.3	4.3
Grid to filament, $\mu\mu f$.	5.2	6.4	6.9
Plate to filament, $\mu\mu$ f		5.2	5.5

Column A—Based tube without socket.

Column B-Tube alone when measured in 100M socket mounted on metal plate; socket and mounting plate connected to filament.

Column C--Tube alone when measured in 115B socket mounted in metal plate; socket and mounting plate connected to filament.

Filament-Oxide-coated

Filament voltage.4.5 volts, a.c. or d.c.Nominal filament current1.6 amperes

The filament of this tube is designed to operate on a voltage basis and should be operated at as near the rated voltage as is practicable. When alternating-current filament supply is used, the grid and plate returns should be connected to a center tap on the secondary of the filament transformer.

Characteristics—Plate current charcteristics of a typical 205D tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5 and 6, respectively. Plate current characteristics as functions of plate voltage for several values of grid voltage are shown in Figure 7. These characteristics are for direct-current filament supply with the grid and plate voltages measured from the negative end of the filament. When alternating-current filament supply is used, the same characteristics are applicable if 2.6 is added to the numerical value of each grid bias.

Microphonic Noise—With a plate voltage of 350 volts, a grid bias of -22.5 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 205D tube measured in a laboratory reference test set is 25 decibels below 1 volt. The range of levels of individual tubes extends from 16 to 33 decibels below 1 volt. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

Limiting Conditions for Safe Operation

	Class A Amp.	*Class B B-F Amp.	Class C B-F Amp. or Osc.	*Class C R-F Amp. Plate Modulated
Maximum direct plate voltage	400	400	400	350 volts
Maximum direct plate current	50	35	50	40 milliamperes
Maximum plate dissipation	14	14	14	10 watts
Maximum direct grid current		10	10	10 milliamperes

*Carrier conditions for use with modulation factors up to 1.0.

Operating Conditions and Output

Class A-Amplifier or Modulator

Permissible operating grid and plate voltages for Class A operation are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in Table I for a number of typical operating conditions represented by selected points within this area. A less severe operating condition should be selected in preference to a maximum operating condition wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

[2]

The performance data include the fundamental power output in milliwatts and the levels of the second and third harmonics in decibels below the fundamental for values of load resistance, R, equal to one, two, and in some cases three times the plate resistance, r_p . The peak value of the sinusoidal input voltage, E_{gm} , which gives the indicated power output, P_m , and harmonic levels, F_{2m} and F_{3m} , in each case, is numerically equal to the grid bias. For a smaller input voltage, E_g , the output and harmonic levels are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

	Ĺg	
$F_3=F_{3m}$	+ 40 $\log_{10} \frac{E_{gm}}{E_g}$	

TABLE I

					TABLE I					
Plate Volt- age	Grid Bias	Plate Cur- rent	Amplifi- cation Factor	Plate Resis- tance	Trans- conduc- tance	Input Volt- age	Load Resis- tance	Power Out- put	Second Har- monic	Third Har- monic
Volts	Volts	Milli- amperes		Ohms rp	Micro- mhos	Peak Volts	R	Milli- watts	db	db
200	- 6	22.5	7.4	4000	1840	6	$R = r_p$	60	35	65
							$R = 2r_p$	55	40	70
250	-22	9	6.9	6000	1160	22	$R = r_p$	500	18	33
							$R = 2r_p$	450	22	40
							$R = 3r_p$	380	26	47
250	-15	19	7.2	4350	1670	15	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	310	26	45
							$R = 2r_p$	280	30	55
250	-10	27.5	7.4	3800	1950	10	$R = r_p$	180	33	60
							$R = 2r_p$	160	38	65
250	- 5	37.5	7.5	3500	2150	5	$R = r_p$	5 0	40	70
	-					-	$R = 2r_p$	45	43	70
300	-30	8	6.7	6700	1000	30	$R = r_p$	800	15	28
000		U		0.00	1000	00	$R = 2r_p$	720	20	35
							$R = 3r_p$	600	24	42
30 0	- 24	15.5	7.1	4800	1460	24	$R = r_p$	750	20	36
000		10.0		1000	1100	5.	$R = 2r_p$	670	25	45
300	-18	25	7.3	4000	1830	18	$R = r_p$	540	2 7	46
000	10	20	1.0	4000	1000	10	$R = 2r_p$	480	31	40 55
350	-22.5	29	7.3	3800	1940	22.5	$R = r_p$		26	44
330	- 22.0	29	1.0	3800	1940	22.0	$R = r_p$ $R = 2r_p$	800	26 30	44 50
375	- 30	22	7.1	4300	1660	30	-			
375	- 30	22	1.1	4300	1000	30	$\begin{array}{l} R=r_{p}\\ R=2r_{p} \end{array}$	1300 1200	20 26	36 45
*000	10	4.3		0050	0000	10	-			
*300	-10	41	7.4	3350	2220	10	$R = r_{p}$ $R = 2r_{p}$	200 180	37 41	65 70
*****		• •					-			
*350	-20	34	7.3	3600	2060	20	$R = r_p$	750	28	50
							$R = 2r_p$	675	32	55
*375	-24	32	7.3	3650	1990	24	$R = r_p$	1000	26	44
							$R = 2r_p$	900	30	55
*400	-29	30	7.2	3800	189 0	29	$R = r_p$	1400	23	39
*Movie		ating cond	litiana				$R = 2r_p$	1300	28	48

*Maximum operating conditions.

Class B-Amplifier

Radio-telephone applications, particularly the amplification of a modulated carrier wave with a minimum of distortion. Typical carrier conditions for use with modulation factors up to 1.0 are shown in Table II.

TABLE II

Direct		Direct	_Driving Voltage		Power (Power Output		Peak	
Plate Voltage	Grid Bias	Plate Current	Carrier	A-F Peak	Carrier	A-F Peak	- Effective Load Resistance	Driving Power	
Volts	Volts	Milli- amperes	Peak Volts	Volts	Watts	Watts	Ohms	Watts	
350	- 48	28	69	138	2.5	10	3100	1	
400	-56	28	73	146	3.0	12	3700	1	

Class C-Amplifier or Oscillator

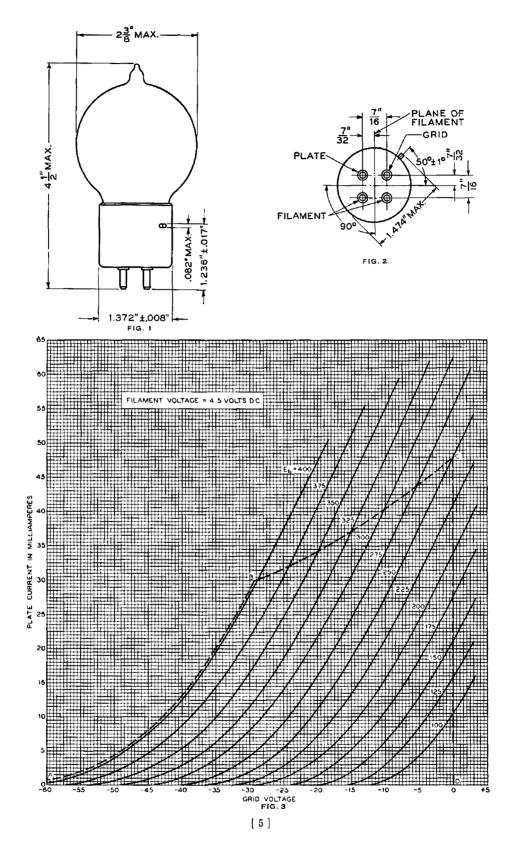
Radio-telegraph or other continuous wave applications. Typical operating conditions are shown in Table III.

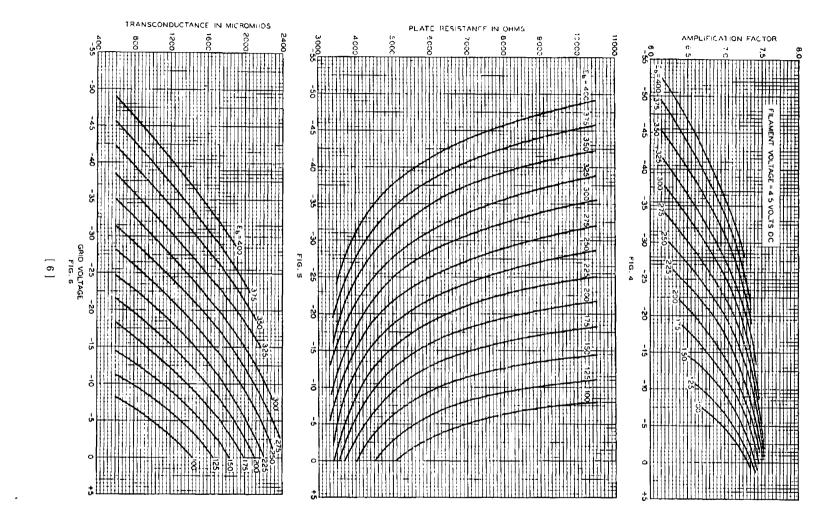
.

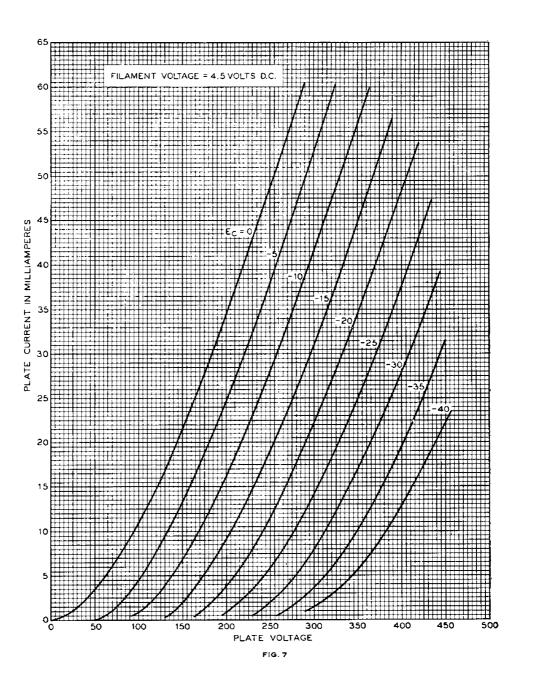
T 4	RI	F	III
	JDL		

Direct Plate Voltage	Grid Bias	Direct Plate Current	Driving Voltage	Power Output	Effective Load Resistance	Driving Power
Volts	Volts	Milli- amperes	Peak Volts	Watts	Ohms	Watts
350	- 96	45	186	8.3	3750	1.3
400	-112	45	202	10.0	4500	1.5

Class C-Amplifier -- Plate modulated

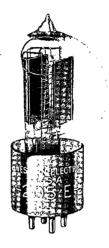

Radio-telephone applications. Typical carrier conditions for use with modulation factors up to 1.0 are shown in Table IV.


			TABLE IV			
Direct Plate Voltage	Grid Bias	Direct Plate Current	Driving Voltage	Power Output	Effective Load Resistance	Driving Power
Volts	Volts	Milli- amperes	Peak Volts	Watts	Ohms	Watts
300	-120	35	205	6.0	4000	1.3
350	-144	35	229	7.1	5000	1.7


High Frequency Ratings

If the 205D tube is to be used at frequencies higher than 15 megacycles, the plate voltage and plate dissipation ratings given above should be reduced to avoid excessive high-frequency currents, excessive heating due to dielectric losses, and consequent injury to the tube. At the limiting frequency of 30 megacycles, the maximum ratings should be as follows:

Maximum plate voltage	300 volts
Maximum plate dissipation	10 watts
Maximum r-f grid current	3 amperes



1-C-36-55C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 205D ISSUE 1 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.091 Issue 1, September 1936 A T & T Co Standard

Western Electric

205E Vacuum Tube

Classification-Moderate power, filamentary triode

The 205E tube is similar to the 205D tube except that special precautions have been taken in the 205E tube to minimize sputter noise in the tube and contact noise between the contact pins and the socket.

Applications

Audio-frequency amplifier or modulator where power outputs of approximately 1 watt or less are required.

Radio-frequency power amplifier.

Oscillator.

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base—Medium, four-pin, bayonet type having special contact metal at the ends of the contact pins. The bayonet pin is offset.

Socket—Four-contact, bayonet-slot type, preferably provided with contact-metal contacts, such as the Western Electric 100M for front of panel mounting or 116A for rear of panel mounting.

Copyright 1936 Western Electric Company, Incorporated

1

Mounting Positions—Fither vertical or horizontal. If mounted in a horizontal position, the plane of the filament, which is indicated in Figure 2, should be vertical

Average Direct Interelectrode Capacitances

	<u>A</u>	B	<u> </u>
Grid to plate, µµf	4.8	4.3	4.3
Grid to filament, µµf	5.2	6.4	6.9
Plate to filament, $\mu\mu f$	3.3	5.2	5.5

Column A-Based tube without socket.

Column B-Tube alone when measured in 100M socket mounted on metal plate; socket and mounting plate connected to filament.

Column C-Tube alone when measured in 116A socket mounted in metal plate; socket and mounting plate connected to filament.

Filament—Oxide-coated

Filament voltage.	4.5 volts, a.c. or d.c.
Nominal filament current	1.6 amperes

The filament of this tube is designed to operate on a voltage basis and should be operated at as near the rated voltage as is practicable. When alternating-current filament supply is used, the grid and plate returns should be connected to a center tap on the secondary of the filament transformer.

Characteristics—Plate current charcteristics of a typical 205E tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5, and 6, respectively. Plate current characteristics as functions of plate voltage for several values of grid voltage are shown in Figure 7. These characteristics are for direct-current filament supply with the grid and plate voltages measured from the negative end of the filament. When alternating-current filament supply is used, the same characteristics are applicable if 2.6 is added to the numerical value of each grid bias.

Microphonic Noise—With a plate voltage of 350 volts, a grid bias of -22.5 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of 205E tube measured in a laboratory reference test set is 25 decibels below 1 volt. The range of levels of individual tubes extends from 16 to 33 decibels below 1 volt. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

Sputter Noise—A particularly disagreeable type of noise, characterized by an unmusical crackling or sputtering sound, occurs in many vacuum tubes, sometimes as a result of slight mechanical agitation. The sputter noise spectrum covers a wide band and may be of appreciable intensity even at radio frequencies. Such noise is usually due either to discontinuously variable insulation leaks

between electrodes or to intermittent contacts involving conducting members such as filament supports which, at times of no contact, are insulated from other parts of the tube. Special precautions have been taken in the design of the 205E tube to eliminate this type of noise.

Limiting Conditions for Safe Operation

	Class A Amp.	*Class B R-F Amp.	Class C R-F Amp. or Osc.	*Class C R-F Amp. Plate Modulated
Maximum direct plate voltage	400	400	400	350 volts
Maximum direct plate current	50	35	50	40 milliamperes
Maximum plate dissipation	14	14	14	10 watts
Maximum direct grid current	_	10	10	10 milliamperes

*Carrier conditions for use with modulation factors up to 1.0.

Operating Conditions and Output

Class A-Amplifier or Modulator

Permissible operating grid and plate voltage for Class A operation are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in Table I for a number of typical operating conditions represented by selected points within this area. A less severe operating condition should be selected in preference to a maximum operating condition wherever possible. The life of the tube at maximum operating conditions may be shorter than at less severe conditions.

The performance data include the fundamental power output in milliwatts and the levels of the second and third harmonics in decibels below the fundamental for values of load resistance, R, equal to one, two, and in some cases three times the plate resistance, r_p . The peak value of the sinusoidal input voltage, E_{gm} , which gives the indicated power output, P_m , and harmonic levels, F_{2m} and F_{3m} , in each case, is numerically equal to the grid bias. For a smaller input voltage, E_g , the output and harmonic levels are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

TABLE	T
LADLE	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Plate Volt- age	Grid Blas	Plate Cur- rent	Amplifi- cation Factor	Plate Besis- tance	Trans- conduc- tance	Input Volt- age	Load Resis- tance	Power Out- put	Second Har- monic	Har-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Volts	Volts						R		db	db
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	- 6	22.5	7.4	4000	1840	6	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	60	35	65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								$R = 2r_p$	55	40	70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	250	- 22	9	6.9	6000	1160	22	$R = r_p$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$R = 2r_{p} 280 30 55$ $250 -10 27.5 7.4 3800 1950 10 R = r_{p} 180 33 60$ $R = 2r_{p} 160 38 65$ $250 - 5 37.5 7.5 3500 2150 5 R = r_{p} 50 40 70$ $R = 2r_{p} 45 43 70$ $300 -30 8 6.7 6700 1000 30 R = r_{p} 800 15 28$ $R = 2r_{p} 720 20 35$ $R = 3r_{p} 600 24 42$ $300 -24 15.5 7.1 4800 1460 24 R = r_{p} 750 20 36$ $R = 2r_{p} 670 25 45$ $300 -18 25 7.3 4000 1830 18 R = r_{p} 540 27 46$ $R = 2r_{p} 480 31 55$ $350 -22.5 29 7.3 3800 1940 22.5 R = r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 30$ $R = 2r_{p} 1300 26 44$ $R = 2r_{p} 1300 26 45$ $R = 2r_{p} 1300 26 45$ $R = 2r_{p} 180 30 50$ $R = 2r_{p} 180 30 50$ $R = 2r_{p} 180 20 37 65$ $R = 2r_{p} 180 41 70$ $R = r_{p} 180 20 37 65$ $R = 2r_{p} 180 41 70$ $R = 1r_{p} 180 26 44$ $R = 2r_{p} 180 41 70$ $R = 1r_{p} 180 20 37 65$ $R = 2r_{p} 180 41 70$ $R = 1r_{p} 1000 26 44$ $R = 1r_{p} 1000 20 8$ $R = 1 r_{p} 100 30 8$ $R = 1 r_{p} 100 30 8$ $R = 1 r_{p} 100 30$								$R = 3r_p$	380	26	47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	250	- 15	19	7.2	4350	1670	15				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								$R = 2r_p$	280	30	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250	-10	27.5	7.4	3800	1950	10	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	180	33	60
$R = 2r_{p} 45 43 70$ $300 -30 8 6.7 6700 1000 30 R = r_{p} 800 15 28$ $R = 2r_{p} 720 20 35$ $R = 3r_{p} 600 24 42$ $300 -24 15.5 7.1 4800 1460 24 R = r_{p} 750 20 36$ $R = 2r_{p} 670 25 45$ $300 -18 25 7.3 4000 1830 18 R = r_{p} 540 27 46$ $R = 2r_{p} 480 31 55$ $350 -22.5 29 7.3 3800 1940 22.5 R = r_{p} 875 26 44$ $R = 2r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 86$ $R = 2r_{p} 1300 26 45$ $*300 -10 41 7.4 3350 2220 10 R = r_{p} 1300 20 86$ $R = 2r_{p} 180 41 70$ $*350 -20 34 7.3 3600 2060 20 R = r_{p} 750 28 50$ $R = 2r_{p} 675 32 55$ $*375 -24 32 7.3 3650 1990 24 R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ $*400 -29 30 7.2 3800 1890 29 R = r_{p} 1400 23 39$								$R = 2r_p$	160	38	65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250	- 5	37.5	7.5	3500	2150	อี	$R = r_p$	50	40	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								$R = 2r_p$	45	43	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	- 30	8	6.7	6700	1000	30	$\mathbf{R} = r_{\mathbf{p}}$	800	15	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								$R = 2r_p$	720	20	35
$R = 2r_{p} 670 25 45$ $300 -18 25 7.3 4000 1830 18 R = r_{p} 540 27 46 \\ R = 2r_{p} 480 31 55$ $350 -22.5 29 7.3 3800 1940 22.5 R = r_{p} 875 26 44 \\ R = 2r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 36 \\ R = 2r_{p} 1200 26 45$ $*300 -10 41 7.4 3350 2220 10 R = r_{p} 180 41 70$ $*350 -20 34 7.3 3600 2060 20 R = r_{p} 750 28 50 \\ R = 2r_{p} 675 32 55$ $*375 -24 32 7.3 3650 1990 24 R = r_{p} 1000 26 44 \\ R = 2r_{p} 900 30 55$ $*400 -29 30 7.2 3800 1890 29 R = r_{p} 1400 23 39$								$R = 3r_p$	600	24	42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	-24	15.5	7.1	4800	1460	24	$R = r_p$	750	20	36
$R = 2r_{p} 480 31 55$ $350 -22.5 29 7.3 3800 1940 22.5 R = r_{p} 875 26 44 \\ R = 2r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 36 \\ R = 2r_{p} 1200 26 45$ $*300 -10 41 7.4 3350 2220 10 R = r_{p} 200 37 65 \\ R = 2r_{p} 180 41 70$ $*350 -20 34 7.3 3600 2060 20 R = r_{p} 750 28 50 \\ R = 2r_{p} 675 32 55$ $*375 -24 32 7.3 3650 1990 24 R = r_{p} 1000 26 44 \\ R = 2r_{p} 900 30 55$ $*400 -29 30 7.2 3800 1890 29 R = r_{p} 1400 23 39$								$R = 2r_p$	670	25	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	-18	25	7.3	4000	1830	18	$R = r_p$	540	27	46
$R = 2r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 36 R = 2r_{p} 1200 26 45$ $*300 -10 41 7.4 3350 2220 10 R = r_{p} 200 37 65 R = 2r_{p} 180 41 70$ $*350 -20 34 7.3 3600 2060 20 R = r_{p} 750 28 50 R = 2r_{p} 675 32 55$ $*375 -24 32 7.3 3650 1990 24 R = r_{p} 1000 26 44 R = 2r_{p} 900 30 55$ $*400 -29 30 7.2 3800 1890 29 R = r_{p} 1400 23 39$								$R = 2r_p$	480	31	55
$R = 2r_{p} 800 30 50$ $375 -30 22 7.1 4300 1660 30 R = r_{p} 1300 20 36 R = 2r_{p} 1200 26 45$ $*300 -10 41 7.4 3350 2220 10 R = r_{p} 200 37 65 R = 2r_{p} 180 41 70$ $*350 -20 34 7.3 3600 2060 20 R = r_{p} 750 28 50 R = 2r_{p} 675 32 55$ $*375 -24 32 7.3 3650 1990 24 R = r_{p} 1000 26 44 R = 2r_{p} 900 30 55$ $*400 -29 30 7.2 3800 1890 29 R = r_{p} 1400 23 39$	350	-22.5	29	7.3	3800	1940	22.5	$R = r_p$	875	26	44
$R = 2r_{p} 1200 26 45$ *300 -10 41 7.4 3350 2220 10 $R = r_{p} 200 37 65$ $R = 2r_{p} 180 41 70$ *350 -20 34 7.3 3600 2060 20 $R = r_{p} 750 28 50$ $R = 2r_{p} 675 32 55$ *375 -24 32 7.3 3650 1990 24 $R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ *400 -29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$									800	30	50
$R = 2r_{p} 1200 26 45$ *300 -10 41 7.4 3350 2220 10 $R = r_{p} 200 37 65$ $R = 2r_{p} 180 41 70$ *350 -20 34 7.3 3600 2060 20 $R = r_{p} 750 28 50$ $R = 2r_{p} 675 32 55$ *375 -24 32 7.3 3650 1990 24 $R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ *400 -29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$	375	- 30	22	7.1	4300	1660	30	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	1300	20	36
$R = 2r_{p} 180 41 70$ *350 -20 34 7.3 3600 2060 20 $R = r_{p} 750 28 50$ $R = 2r_{p} 675 32 55$ *375 -24 32 7.3 3650 1990 24 $R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ *400 -29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$								$R = 2r_p$	1200	26	45
*350 -20 34 7.3 3600 2060 20 $R = r_p$ 750 28 50 $R = 2r_p$ 675 32 55 *375 -24 32 7.3 3650 1990 24 $R = r_p$ 1000 26 44 $R = 2r_p$ 900 30 55 *400 -29 30 7.2 3800 1890 29 $R = r_p$ 1400 23 39	*300	-10 [.]	41	7.4	3350	2220	10	$R = r_p$	200	37	65
$R = 2r_{p} 675 32 55$ *375 -24 32 7.3 3650 1990 24 $R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ *400 -29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$								$R = 2r_p$	180	41	70
$R = 2r_{p} 675 32 55$ *375 -24 32 7.3 3650 1990 24 $R = r_{p} 1000 26 44$ $R = 2r_{p} 900 30 55$ *400 -29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$	*350	- 20	34	7.3	3600	2060	20	$\mathbf{R} = \mathbf{r}_{p}$	750	28	50
$R = 2r_{p} 900 30 55$ *400 - 29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$								-	675	32	55
$R = 2r_{p} 900 30 55$ *400 - 29 30 7.2 3800 1890 29 $R = r_{p} 1400 23 39$	*375	-24	3 2	7.3	3650	1990	24	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	1000	26	44
	-									30	55
	*400	-29	30	7.2	3800	1890	29	$R = r_{p}$	1400	23	39
		-		-	-					28	48

*Maximum operating conditions.

Class B-Amplifier

_

Radio telephone applications, particularly the amplification of a modulated carrier wave with a minimum of distortion. Typical carrier conditions for use with a modulation factor up to 1.0 are shown in Table II.

				TABLE II					
Direct		Direct	Driving Voltage		Power (Output	Effective	Peak	
Plate Voltage	Grid Bias	Plate Current	Carrier	A-F Peak	Carrier	A-F Peak	Load Resistance	Driving Power	
Volts	Volts	Milli- amperes	Peak Volts	Volts	Watts	Watts	Ohms	Watts	
350	-48	28	69	138	2.5	10	3100	1	
400	-56	28	73	146	3.0	12	3700	1	

Class C-Amplifier or Oscillator

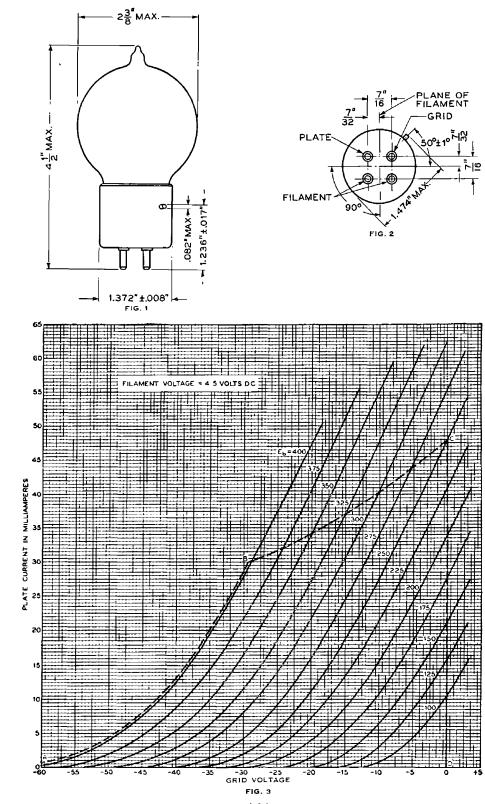
Radio telegraph or other continuous-wave applications. Typical operating conditions are shown in Table III.

			TABLE III			
Direct Plate Voltage	Grid Bias	Direct Plate Current	Driving Voltage	Power Output	Effective Load Resistance	Driving Power
Volts	Volts	Milli- amperes	Peak Volts	Watts	Ohms	Watts
350	- 96	45	186	8.3	3750	1.3
400	-112	45	202	10.0	450 0	1.5

Class C-Amplifier-Plate modulated

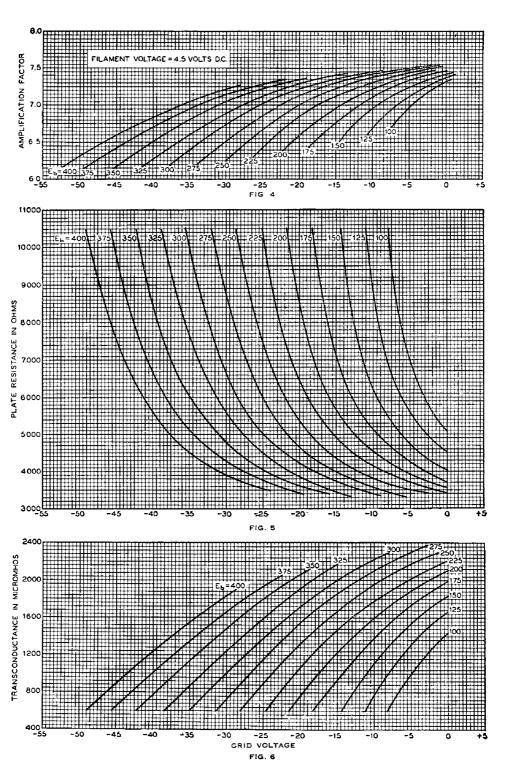
Radio telephone applications. Typical carrier conditions for use with modulation factors up to 1.0 are shown in Table IV.

TADLE IN

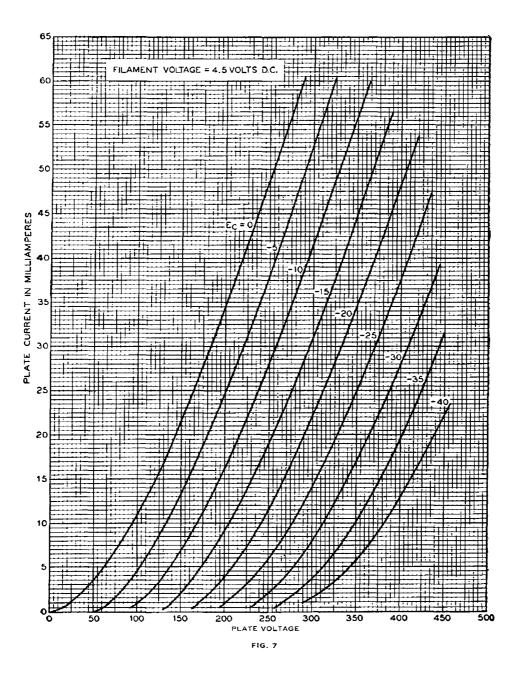

			TABLE IV				
Direct Plate Voltage	Grid Bias	Direct Plate Current	Driving Voltage	Power Output	Effective Load Resistance	Driving Power	
Volts	Volts	Milli- amperes	Peak Volts	Watts	Ohms	Watts	
300	- 120	35	205	6.0	· 4000	1.3	
350	- 144	35	229	7.1	5000	1.7	

High Frequency Ratings

If the 205E tube is to be used at frequencies higher than 15 megacycles, the plate voltage and plate dissipation ratings given above should be reduced to avoid excessive high-frequency currents, excessive heating due to dielectric losses, and consequent injury to the tube. At the limiting frequency of 30 megacycles, the maximum ratings should be as follows:


Maximum plate voltage	300 volts
Maximum plate dissipation	10 watts
Maximum r-f grid current	3 amperes

•


205E

[6]

[7]

205E

1-C-36-3M PRINTED IN U.S.A, A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 205E ISSUE 1 BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.205F Issue 1, January 1950 A.T.&T. Co. Standard

205F

.

1

TRIODE POWER AMPLIFIER

Western Electric

DESCRIPTION

The 205F is a filamentary triode designed for use as an audio-frequency power amplifier or modulator.

CHARACTERISTICS

Filament Voltage	•	•		•	• • • • • • • •	•	•	4.5 volts
Plate Current . Power Output	•	•	•	•}	$ \begin{array}{lll} E_b = & 350 \ \text{volts} ; \\ E_c = & -22.5 \ \text{volts} \end{array} \right\} . . \label{eq:eq:electron}$	•	•	35 milliamperes 880 milliwatts
romer output :	•	•	•	••	$D_c = 12.0$ volts (.	·	•	

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 12-48

205F - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

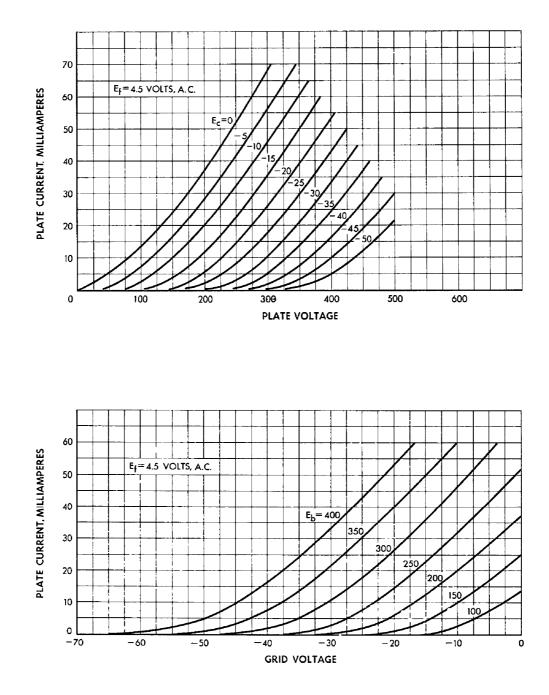
Filament Voltage, A	-C	or I	D-C	2.							4.5 volts
Filament Current						•		•			1.6 amperes
Direct Interelectrode	c Ca	apad	citar	nces							
Grid to Plate .						•					5.9 uuf
Input							•				4.1 uuf
Output											2.2 uuf

MECHANICAL DATA

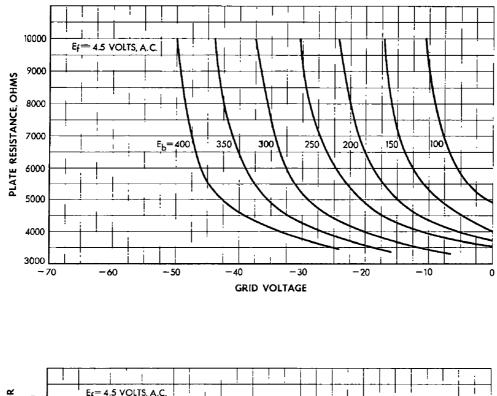
Cathode	Coated Filament				
Base	Medium 4-pin, bayonet type with bayonet pin offset				
Mounting Position	Preferably vertical; if horizontal, pins #1 and #2 must lie in same vertical plane				
Dimensions and pin connections shown in outline drawing on Page 5					

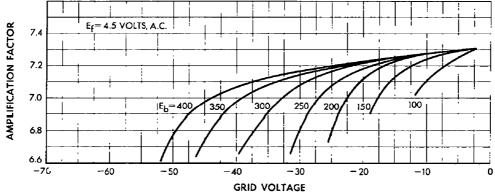
MAXIMUM RATINGS, Design-Center Values

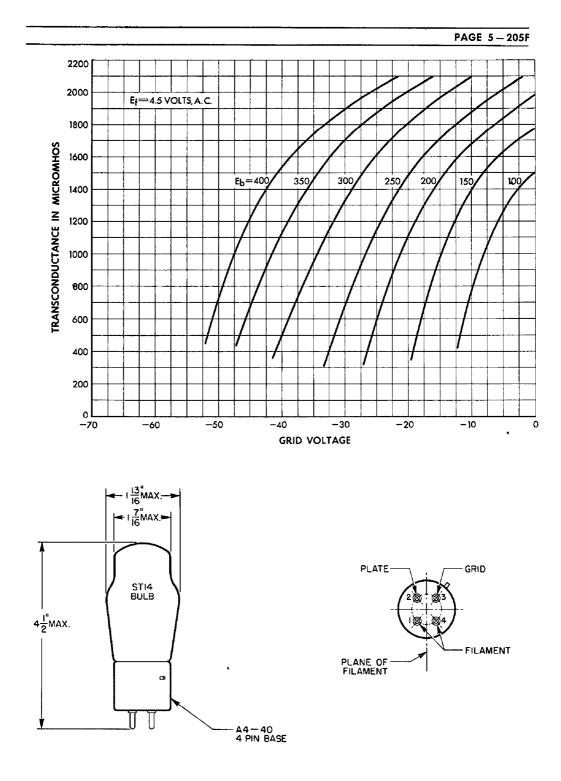
Plate Voltage .								360 volts
Plate Current .								50 milliamperes
Plate Dissipation								12.5 watts


.

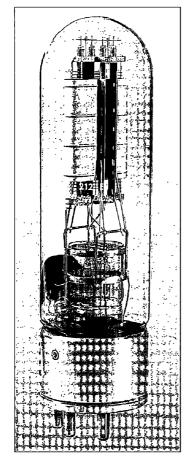
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS


Filament Voltage, A-C	4.5	4.5	4.5	4.5 volts
Plate Voltage	250	300	350	350 volts
Grid Voltage*	-22	-18	-22.5	-22.5 volts
Peak A-F Signal Voltage	22	18	22.5	22.5 volts
Zero Signal Plate Current	11.5	30	35	35 milliamperes
Maximum Signal Plate Current	12	30.5	36	36 milliamperes
Transconductance	1350	1880	1950	1950 micromhos
Plate Resistance	5300	3800	3700	3700 ohms
Load Resistance	1 20 00	8000	4000	8000 ohms
Amplification Factor	7.2	7.2	7.2	7.2
Maximum Signal Power Output	550	450	880	760 milliwatts
Total Harmonic Distortion	4.6	1.6	2.8	1.4 per cent


*If the filament is operated on D.C., the characteristics will be approximately the same if the grid voltage, measured from the negative filament, is decreased by 2.3 volts.


PAGE 3-205F

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 12-48



ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 12-48

Western Electric® High Fidelity

212E Vacuum Tube

Classification-Filamentary Air-cooled Triode

May be used as an audio-frequency amplifier or modulator, or as a radio frequency oscillator or amplifier

Mounting

Large four-pin bayonet base for use in a W E 113A or similar socket, for either vertical or horizontal mounting If mounted horizontally the plane of the filament, which is indicated in Figure 2, should be vertical

Filament

Thoriated tungsten	
Filament voltage	14 volts
Nominal filament current	. 6 amperes
Average thermionic	
emission	4 amperes

Average Direct Interelectrode

Capacitances	
Plate to grid	 18.8 <i>µµ</i> f
Grid to filament	14 9 µµf
Plate to filament	86 µµf

Characteristics

Performance data given below are based upon a typical set of conditions Variations can be expected with different circuits and tubes Figures 3 and 4 give the static characteristics of a typical tube plotted against grid and plate voltages

Average Characteristics at 2000 volts direct plate potential and minus 90 volts grid bias

Amplification factor 1900 ohms Plate resistance

Grid to plate transconductance 8500 micromhos

Each 212E vacuum tube falls within one of four impedance classes and is stamped accordingly These classifi-cations are #1, #2, #3 and #4, and ar e in no way a gradation of quality, but are to facilitate parallel operation in the ordinary system using a common rectified supply Where more than one tube is used, those of the same or adjacent classes should be employed so that the load may be evenly distributed When only a single tube is used no one of the classes has any advantage over the other Tubes may be ordered according to impedance classification at an extra charge

With a plate voltage of 1500 volts, a grid bias of -60 volts and a filament voltage of 14, the plate current will be as follows for each impedance class

110-129 milliamperes, inclusive 130-148 milliamperes inclusive

#2 #3 149-167 milliamperes, inclusive

#4 168-185 milliamperes, inclusive

Operating Precautions

Mechanical—Figures 1 and 2 show the overall dimensions and basing arrangements for the tube

The tubes should not be subjected to mechanical shock or excessive vibration Mechanical vibration may cause breakage of the thoriated tungsten filaments

A free circulation of air must be provided to insure adequate cooling of the glass during operation

Electrical

16

Overload protection should always be provided for the plate circuit A suitable fuse or circuit breaker should remove the plate voltage if the plate current exceeds 350 milliamperes. Although the tube is sufficiently rugged to withstand momentary overloads, a prolonged overload caused by inefficient adjustment of the circuit, may damage the tube. When adjusting a new circuit, reduced plate voltage or a series resistance of 1000 to 5000 ohms in the plate circuit should be used until it is operating properly.

The filament should always be operated at the rated voltage, measured at the tube terminals A 5% decrease in filament voltage reduces the thermionic emission approximately 25%. Either direct or alternating current may be used for heating the filament. If direct current is used, the plate and grid circuit returns should be connected to the negative filament terminal If alternating current is used, the circuit returns should be connected to the center tap of the filament heating transformer winding or to the center tap of a resistor placed between the filament terminals A resistance of 30 to 40 ohms of ten watt rating is suitable.

In cases where severe and prolonged overload has temporarily impaired the electronic emission of the filament, the activity may be restored by operating the filament, with the plate grid voltages off, 30% above normal voltage for 10 minutes followed by a longer period at normal voltage.

212E Vacuum Tube

Operation Maximum Ratings Max direct clate voltage 3000 volts Max direct plate current Max plate dissipation 350 mil amperes 275 watts 75 m amperes Max. direct grid current Max r-f gr d current 5 amperes Max frequency for the above ratings Max ip ate votage for upper frequency, limit of 4.5 mHz 15 megaHertz :000 ::0**:s** Max plate up tage for frequencies between 1.5 and 4.5 mHz in proportion The above are maximum ratings Ah on do not apply simultaneously but depend on the type of service as specified be by **Class A Audio Amplifier or Modulator** Direct plate voltage 1500 1250 Jolts -57 -70 -40 volts Gric blas Direct plate current 200 mil amperes Plate dissipation 250 250 .Atts Load impedance 5000 3000 chms undistorted output 50 40 watts Grid Bias Modulator Direct clate voltage 3000 volts -260 .0:s Grid bias Plate dissipation 8000 ohms Load moedance 200 watts Peak power cutput Class B Audio Amplifier or Modulator for balanced 2 tube circuit 1500 Notes Direct plate voltage 2000 -105 -75 volts Grdbas 40 50 m Iliamperes Direct plate current per tube No prive 300 250 tfax or ve 300 milliamperes Plate cliss pation 250 watts 5900 Load resilblate-to-plate 8000 ohms Load resiliper tube 2000 1475 ohms Approxil maxil output Recommended power for driving stage 650 500 ∧atts 50 ⊹atts 50 **Class B Radio-Frequency Amplifier** Direct plate voltage 2000 1500 vots 300 m liamperes 300 Direct clate curren Plate dissipation 275 275 Aatts Grid bias 120 -9C voits Approxil carrier watts for use with 100% modulation. 200 150 satts Class C Radio-Frequency Oscillator or Power Amplifier-Unmodulated Direct plate Joltage 1500 2000 VOITS Direct plate current 300 300 milliamperes Gric clas Nominal cower output 185 to -250 -150 to -200 vorts 400 300 *atts Class C Radio-Frequency Amplifier-Plate Modulated 1000 volts Direct plate voltage 1500 s

Direct plate current	300	300	mili amperes
Grdbas	 -200	-125	volts
Max loirect grid current	 75	75	milliamperes
Nominal carrier power output for			
use with 100% modulation	 300	200	watts

Dimensions

Dimensions and outline diag in Figures 1 and 2. The over	
are Maximum overal length Maximum diameter	13 5 8' 3 5 8'

ī

Audio Amplifier or Modulator

Class A—Peak grid drive equal to criless than the grid bias Grid bias may be obtained from the croc across a resistance in the plate current return or from a rectif co supply

Plate biss batton allowable for this type of service is generally lower than is safe for other uses since the energy, is displated in the plate in smaller areas due to relatively high voltage drop in the tube

The plate dissipation is equal to the plate voltage multiplied by the normal plate current. Performance data are based upon the use of a resistance load. Undistorted putput is calculated on the basis of 5°_{α} second harmonic distortion

Class B---Grid bias practically at cut-off and grid driving voltage higher than the bias Two tubes may be used in a balanced circuit. An adequate priving stage and an input transformer with good regulation ามระ be used so that the grid current prawn ouring positive grid swings does not produce appreciable distortion The output transformer must transform the load impedance to the proper value for the tubes used. The power output obtainable will be determined by the quality of the transformer used and the amount of o stort on which can be tolerated. The grid b as must be held constant and therefore cannot be obtained by grid leak or series resistor methods. A rectified dio isupply or other source having good regulation is necessary

The power required of a modulator for complete modulation of a Class C amplifier is one-half the direct power input to the plates of the Class C amplifier

212E Vacuum Tube

Radio-Frequency Oscillator or Power Amplifier

Class B—Radio Frequency Amplifier The Class B radio-frequency amplifier is used to amplify a modulated radiofrequency carrier wave without appreciable distortion. It operates similarly to the Class B audio amplifier except that a single tube may be used, the tuned output circuit serving to preserve the wave shape. The push-pull circuit, however, eliminates the even order harmonics and thus increases the efficiency slightly.

Class C—Radio-Frequency Oscillator or Power Amplifier—Grid bias below cut-off Unmodulated

This type of operation is suitable for telegraphy, or the production of a continuous flow of radio-frequency power for purposes other than communication

Plate Modulated

This type of operation is for use when the modulating voltage is superimposed on the plate supply voltage and to obtain good quality the output power should vary as the square of the plate voltage. For complete or 100% modulation, the plate voltage varies from zero to twice the applied direct value during a cycle of the audio frequency With no modulation applied, the plate voltage is, of course, the direct value and the carrier power output under 100% modulation. In this case, since the plate voltage varies with modulation, the direct value must be rated lower than for other types of operation.

High Frequency Ratings

The frequency limits specified under maximum ratings are based on the tube being used as an oscillator The tube may be used at full rating up to 15 megaHertz. When operating at higher frequencies, the dielectric losses, charging currents and lead in heating are increased greatly. The plate voltage and hence plate dissipation must be reduced to values specified for the upper frequency limit and for frequencies between these two limits the plate voltage should be proportionately reduced. CURRENT IN MILLIAMPE

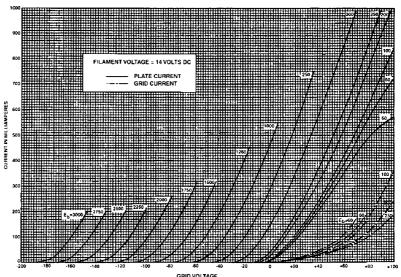
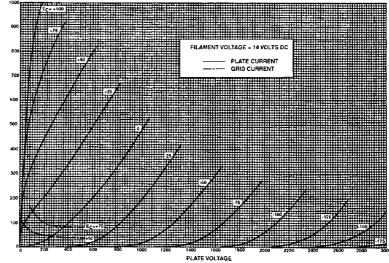
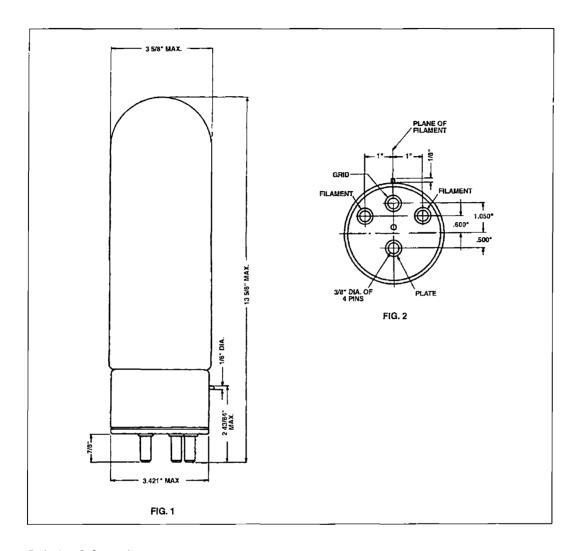




FIG. 3

Ordering Information (Order by Code and Comcode)

Flactma Tubes

·	
Description	Corrcode
Air Cooled Trioce	N/A
	Description

Western Electric High Ficelity products are marketed worldwide exclusively by Westrex Corporation

Western Electric electron tubes are manufactured in the UIS A Developments of AT&T Bell Telephone Laboratories incorporated research laboratories of AT&T

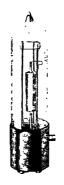
For more information please contact your Western Electric Sales Representative

Westrex Corporation AT&T Promenade II 1230 Peachtree Street Suite 3750 At anta, Georgia 30309-3575

404-874-4400 • 404-874-4415 Facsimile

Western Electric is a trademark of AT&T (censed to Westex Corp. a company independent of AT&T Westex & a trademark of Westex Company Limited formerly Western Electric Company Limited

Westrex Corp reserves the right to make changes to the ordouotist described in this document in the interest of morp, righternal design, oberational function and or reliability. Westrex Corp does not assume any labitity, who may occur oue to use or application of the productils, or orduit layoutist described herein.


Copyright © 1005 Westrox Corp. All Rights Reserved Printed in USA

.

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.125 Issue 1, September 1936 A T & T Co Standard

Western Electric

215A Vacuum Tube

Classification—Small, filamentary triode

Important features of the 215A tube are its small size and low filament power consumption.

Applications

Audio-frequency and intermediate-frequency amplifier

Detector

Oscillator

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base-Small, four-terminal, bayonet base having silver contacts.

Socket—Four-contact, bayonet-slot type preferably provided with contact-metal contacts, such as the Western Electric 125B socket.

Mounting Positions-The 215A tube may be mounted in any position.

Copyright 1936 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to plate		 2.6 uut.
Grid to filament.	• •	 1.6 µµ
Plate to filament		 1.2 µµṫ.

Filament Rating

Filament current		 0.25 ampere. d.c.
Nominal filament voltage	••••••	 1.0 volt

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as is practicable.

Characteristics—Plate current characteristics of a typical 215A tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figure 4, 5 and 6, respectively. Plate current characteristics as functions of plate voltage are shown in Figure 7 for several values of grid voltage. The grid and plate voltages for all of these characteristics are measured from the negative end of the filament.

Operating Conditions and Output—Permissible operating conditions are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in the table on page 3 for a number of typical amplifier operating conditions represented by selected points within this area. Typical detector operating conditions for both plate current and grid current detection are also listed in the table. The less severe operating conditions should be selected in preference to maximum operating conditions wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

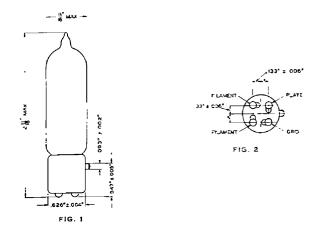
The performance data include the fundamental power or voltage output and the second and third harmonic levels for the indicated values of load resistance and input voltage. The fundamental output is given in terms of the power, P_m , in milliwatts for values of load resistance, R, equal to and double the value of the plate resistance. r_p , and in terms of the voltage, E_{pm} , in peak volts for values of load resistance five times the plate resistance. The second and third harmonic levels, F_{2m} and F_{3m} , are given in decibels below the fundamental in each case. The peak value of the sinusoidal input voltage, E_{gm} , is numerically equal to the grid bias for each operating condition. For a smaller input voltage, E_g , the output and harmonic levels, except for the lowest values of third harmonic, are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$E_p = E_{pm} \frac{E_g}{E_{gm}}$$

$$F_2 = F_{2m} - 20 \log_{10} \frac{E_{gm}}{E_g}$$

$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$


The level of the third harmonic in the 215A tube is usually low and may differ widely in individual tubes. The values given in the table are for a typical tube.

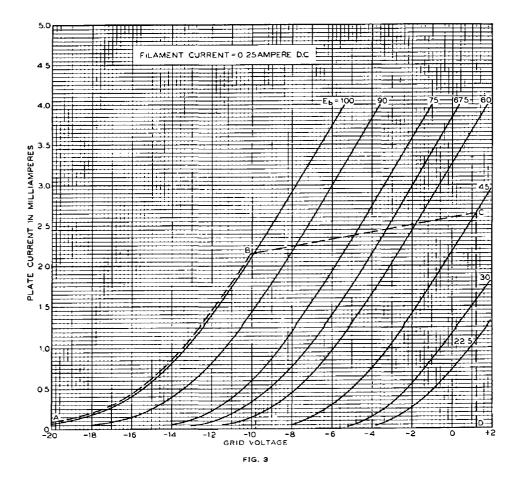
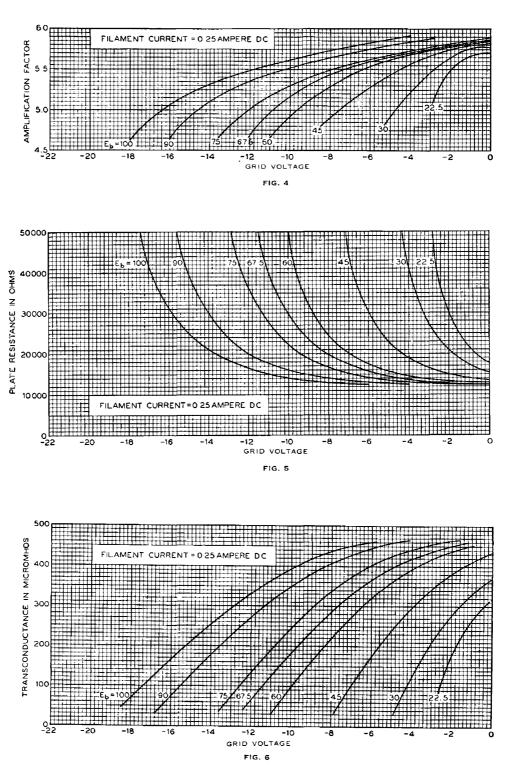
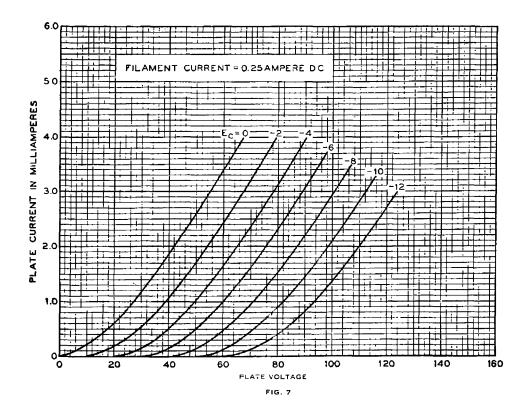

215A

Plate Volt- age	Grid Bias	Plate Cur- rent	Ampli- fica- tion Factor	Plate Resis- tance	Trans- conduc- tance	Input Volt- age	Load Resis- tance	Power Out- put	Volt- age Out- put	Sec- ond Har- monic	Third Har- monic
Volts	Volts	Milli- amperes		Ohms rp	Micro- mhos	Peak Volts	R	Milli- watts	Peak Volts	db	db
45.0	-3.0	1.0	5.7	16500	340	3.0	$R = r_p$	2.2		29	50
							$R = 2r_p$	1.9		34	60
							$R = 5r_p$		14.0	39	65
45.0	-1.5	1.6	5.8	14500	400	1.5	$R = r_p$	0.60		40	65
							$R = 2r_p$	0.55		45	70
							$R = 5r_p$		7.2	49	70
60 .0	- 3.0	2.0	5.7	13500	420	3.0	$R = r_p$	2.9		35	60
							$R = 2r_p$	2.6		40	65
							$R = 5r_p$		14.5	45	70
67.5	-6.0	1.4	5.6	15500	360	6.0	$R = r_p$	9.4		25	45
							$R = 2r_p$	8.3		30	50
							$R = 5r_p$		28.5	35	60
67.5	-4.5	2.0	5.7	14000	410	4.5	$R = r_p$	6.0		31	50
							$R = 2r_p$	5.5		36	60
							$R = 5r_p$		22.0	40	70
*67.5	-4.0	2.2	5.7	13500	420	4.0	$R = r_p$	5.0		34	55
							$R = 2r_p$	4.5		38	60
							$R = 5r_p$		19.5	43	70
*9 0. 0	- 8.0	2.2	5.6	14000	400	8.0	$\mathbf{R} = \mathbf{r}_{\mathrm{p}}$	18		26	45
							$R = 2r_p$	16		31	55
							$R = 5r_p$		40.0	37	65
*100.0	-10.0	2.1	5.6	14500	390	10.0	$R = r_p$	26		24	35
							$R = 2r_p$	23		29	40
							$R = 5r_p$		47.0	36	40
22.5	-	- 4.0	0.01)								
45.0	_	- 9.0	0.01	Plate cu	rrent dete	ction.					
67.5	- 3	14.0	0.01								
22.5	+	-1.0	1.0 }	Grid cur	rent dete	ction. (Grid bias	usually o	obtained	d by con	necting
*45.0	+	-1.0	2.6 1	grid re	eturn to p	ositive e	end of fila	ment.			

*Maximum operating conditions


Microphonic Noise—With a plate voltage of 60 volts, a grid bias of -3 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 215A tube, measured in a laboratory reference test set, is 27 decibels below 1 volt. The range of levels of individual tubes extends from 12 to 42 decibels. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

215A



ł

)

I

[5]

1-C-36-3M PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 215A ISSUE 1 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data

SECTION AB46.170 Issue 1, September 1936 A T & T Co Standard

Western Electric

231D Vacuum Tube

Classification—Small, filamentary triode

An important feature of the 231D tube is its low filament power consumption

Applications

Audio-frequency and intermediate-frequency amplifier.

Detector.

Oscillator.

1

Dimensions—Outline diagrams showing dimensions of the tube and base, and the arrangement of the electrode connections to the base terminals are given in Figures 1 and 2.

Base-Small, four-pin, thrust type.

Socket-Standard four-contact type such as the Western Electric 143B socket.

Mounting Positions—Either vertical or horizontal. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical.

Copyright 1936, Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Grid to plate	3.6 μμf.
Grid to filament	2.5 μµf.
Plate to filament	2.5 μμf.

Filament Rating

Filament current	0.060	ampere, d.c.
Nominal filament voltage	3.1	volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as is practicable.

Characteristics—Plate current characteristics of a typical 231D tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5 and 6, respectively. Plate current characteristics as functions of plate voltage are shown in Figure 7 for several values of grid voltage.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in the table on page 3 for a number of typical operating conditions represented by selected points within this area. The less severe operating conditions should be selected in preference to maximum operating conditions wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

The performance data include the fundamental power or voltage output and the second and third harmonic levels for the indicated values of load resistance. The fundamental output is given in terms of the power, P_m , in milliwatts for values of load resistance, R, equal to and double the value of the plate resistance, r_p , and in terms of the voltage, E_{pm} , in peak volts for values of load resistance five times the plate resistance. The second and third harmonic levels, F_{2m} and F_{3m} , are given in decibels below the fundamental in each case The peak value of the sinusoidal input voltage, E_{gm} , is numerically equal to the grid bias for each operating condition. For a smaller input voltage, E_g , the fundamental power and voltage output and the harmonic levels are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$
$$E_p = E_{pm} \frac{E_g}{E_{gm}}$$
$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$
$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

Power Out- put	Volt- age Out- put	Sec- ond Har- monic	Third Har- monic
Milli- watts	Peak Volts	db	db
		00	F 0

TABLE

Trans-

conduc-

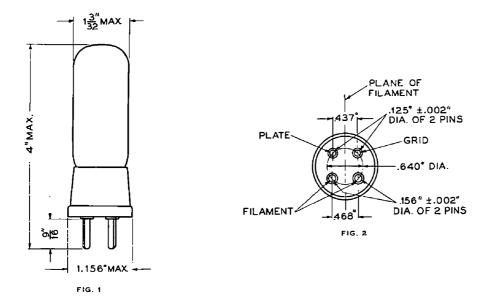
Input VoltLoad Besis-

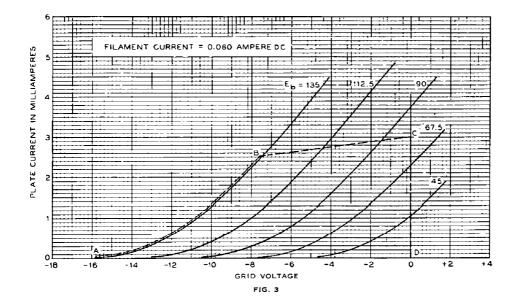
Amplification

Plate

Resis-

Plate Cur-

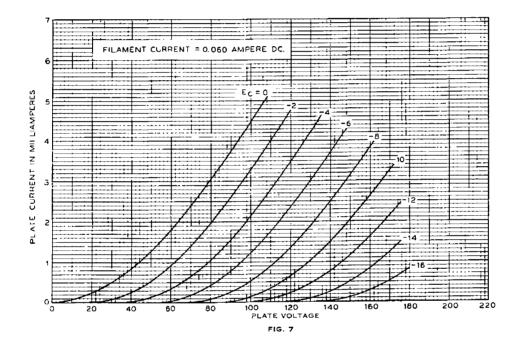

Plate Volt-


Grid

age Bias rent Factor tance tance age tance Volts Volts Milli-Ohms Micro-Peak Volts R amperes rp mhos $R=r_{\mathbf{p}}$ 67.5 -3.0.93 8.5 22500380 3.0 3.0 29 50 $R = 2r_p$ 2.536 60 20 47 $R = 5r_p$ 70 $R = r_p$ 18300 460 39 70 67.5 -1.51.558.5 1.51.0 $R = 2r_p$ 0.9 46 80 $R = r_p$ 90.0 -5.01.15 8.5 20700 410 5.0 10 26 43 $R = 2r_p$ 33 9 50 $R = 5r_p$ 35 42 65 $\mathbf{R} = \mathbf{r_p}$ 90.0 -3.02.10 8.4 16300 510 3.0 4.5 36 60 $R = 2r_p$ 42 70 4.0 $R = 5r_{\mathbf{p}}$ 22 50 75112.5 -8.01.00 8.5 22200 390 8.0 $R = r_p$ 23 2134 $R=2\text{r}_{\textbf{p}}$ 20 2742 $R = 5r_p$ 55 38 60 $\mathbf{R} = \mathbf{r}_{\mathbf{p}}$ 112.5 -6.0 1.90 8.4 17200 490 6.0 17 29 45 $R = 2r_p$ 1535 55 $R=5 \text{r}_{\text{p}}$ 42 44 70 $\mathbf{R} = \mathbf{r}_{\mathbf{p}}$ 135.0 -11.50.70 8.5 27000 320 11.5 45 17 28 $R = 2r_p$ 40 $\mathbf{23}$ 34 $R = 5r_p$ 7633 47 135.0 -10.01.25 8.5 20300 420 10.0 $R = r_{p}$ **4**0 21 32 $R=2r_{\mathbf{p}}$ 28 35 41 $R=5r_{\text{p}}$ 67 37 55 135.0 - 8.5 1.958.5 17200 490 8.5 $R = r_p$ 35 26 40 $R = 2r_p$ 30 33 50 $R = 5r_p$ 57 42 65 $R=r_{\tt p}$ *90.0 -1.52.90 8.4 14500 580 1.51.246 75 $R\,{=}\,2r_p$ 50 1.0 85 $R = r_p$ *112.5 2.65 15000 560 10 34 55 -4.58.4 4.5 $R = 2r_p$ 9 40 65 $R=5r_{\rm P}$ 30 50 70 $R = r_p$ *135.0 -7.52.5015600 540 7.527 29 47 8.4 $\mathbf{R} = 2\mathbf{r_p}$ 24 36 55 $R=5r_{\rm p}$ 48 45 70

*Maximum operating conditions.

Microphonic Noise—With a plate voltage of 90 volts, a grid bias of -3 volts, and a load resistance of 100,000 ohms, the mean mic ophonic noise output level of the 231D tube, measured in a laboratory reference test set, is 16 decibels below 1 volt. The range of levels of individual tubes extends from 2 to 28 decibels. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.



[4]

231D



1-D-36-55C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

V. T. DATA SHEET 231D ISSUE 1 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.175 Issue 1, August 1941 A T & T Co Manufact Special

Western Electric

233B Vacuum Tube

Classification-Half wave, high voltage, water-cooled rectifier

Designed to supply direct current from an alternating current supply. This tube entirely replaces the 233A tube.

Mounting—This vacuum tube should be mounted only in a vertical position with the anode end down in a Western Electric socket made in accordance with ESR-611038, Details 1 and 2 or the equivalent.

Filament-Tungsten

Filament voltage	21.5 volts, a.c.
Nominal filament current	41 amperes
Average thermionic emission	7 amperes

Characteristics and Operating Condition

 Maximum peak inverse voltage
 50,000 volts

 Maximum peak plate current
 5 amperes

The maximum permissible peak plate current (5 amperes) is a limitation on the instantaneous value that the tube can carry safely in the direction in which it is designed to conduct and should not be exceeded. The maximum rectified load current is not fixed but will depend upon the wave form required by the load and filter circuit.

The maximum permissible peak inverse voltage (50,000 volts) is a limitation on the instantaneous value that the tube can stand safely in the opposite direction to that in which it is designed to conduct. If it is exceeded, an arc-back may result which will injure the tube. The maximum direct potential available is not fixed but will depend upon the type of circuit used.

233B vacuum tubes may be operated in parallel if some provision is made to insure a proper division of the load current. Resistors in the heating circuit of each filament may be used for this purpose.

Operating Precautions

Mechanical-Figure 1 shows the overall dimensions and basing arrangement for the tube.

The tubes should not be subjected to mechanical shock or excessive vibration. Mechanical vibration may cause breakage of the tungsten filament. Care should always be used in handling the tube to avoid scratches on the glass envelope as these may develop into cracks which result in leaks.

A free circulation of air must be provided to insure adequate cooling of the glass during operation.

The cooling water should be of sufficient purity to retard the tendency to form scale on the anode. Formation of scale would have the effect of insulating the anode from the water and the ineffective cooling of the anode would result in failure of the tube. It is therefore recommended that distilled water be used in the cooling system.

The temperature of the water and rate of flow should be such that there is no tendency for the water to boil, as indicated by a hissing sound, under maximum dissipation. In general, the outlet water temperature should not exceed 75° C. and the rate of flow should be not less than 1 gallon per minute. The minimum length of water column which can be used to insulate the plate from the water supply, which is usually grounded, will depend upon the resistivity of the water used and the leakage current that can be tolerated. This length should not be less than 15 feet. The cooling connections must always be made so that the water flows in at the center port of the tube socket.

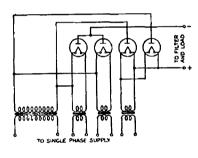
The number of water coils required will depend upon the type of circuit in which the tubes are used. For example in Circuit B, although there are four tubes used, only two cooling coils are required since two of the anodes are permanently at ground potential. On the other hand the corresponding filament circuits reach peak alternating potential above ground and must be insulated accordingly.

Provision should be made in the circuit to safeguard against filament and plate voltages being applied until cooling water is circulating at the proper rate and temperatures, and for immediate cut-off of filament and plate voltages if the circulating rate falls below the allowed minimum or the temperature exceeds the allowable maximum. A momentary interruption of the water circulation during operation of the tube may cause immediate failure.

Electrical—Overload protection should always be provided for the plate circuit. Although the tube is sufficiently rugged to withstand momentary overloads, a prolonged overload caused by inefficient adjustment of the circuit, may damage the tube.


233B

Some provision should be made to limit the initial filament current when the filament is cold, to a value of approximately 90 amperes. This may be done by inserting additional resistance or reactance in the filament circuit when voltage is first applied or by using a transformer having sufficiently high reactance.


Figure 2 shows the impedance characteristic and the effect of lowering the filament voltage of a typical tube, and Figure 3 shows the resistance characteristic of the filament.

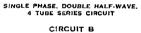
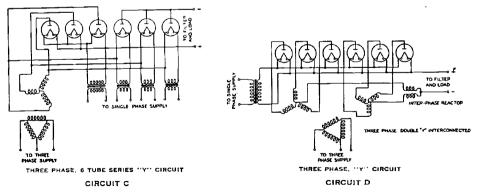
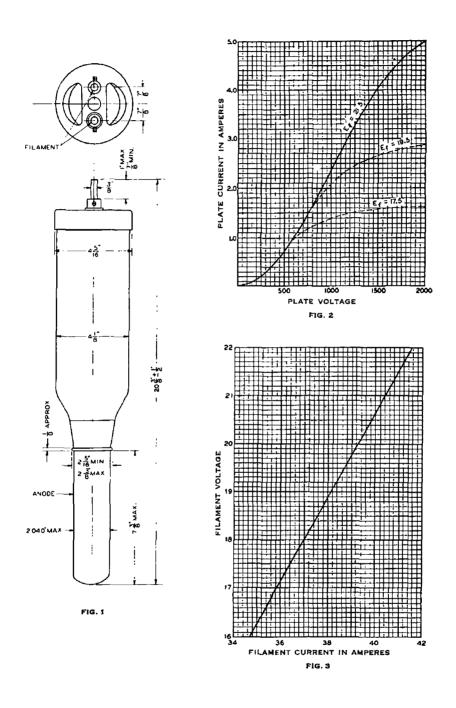

Typical Rectifier Circuits-This vacuum tube may be used in any conventional rectifier circuit subject to its current and voltage limitations. Typical circuits are shown below. The approximate direct output current and voltage for each type of rectifier circuit where tubes are operated at maximum permissible plate current and inverse voltage are given in the table. The values listed below are average values of the pulsating current and voltage for an unfiltered circuit.

TABLE									
Number of Tubes	Load Potential in Volts	Load Current in Amperes	•						
2	15,000	3							
4	30,000	3							
6	45,000	5							
6	20,000	8.5							
	Number of Tubes 2 4 6	Tubes In Volts 2 15,000 4 30,000 6 45,000	Number of TubesLoad Potential in VoltsLoad Current in Amperes215,0003430,0003645,0005						

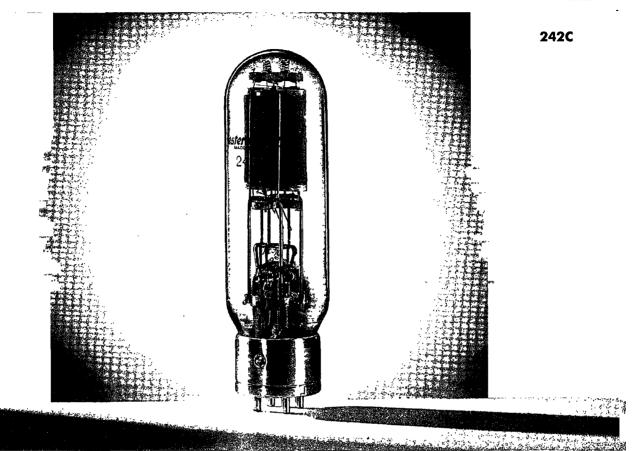


SINGLE PHASE, DOUBLE HALF-WAVE CIRCUIT A



[3]

1-F-41-33-C PRINTED IN U.S.A.


A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 233B ISSUE 1

·· · ··

.

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.242C ISSUE 1, NOVEMBER 1948 A.T.&T. CO. STANDARD

TRIODE

AMPLIFIER, OSCILLATOR OR MODULATOR

Western Electric

DESCRIPTION

The 242C is a three-electrode tube designed for use as a radio-frequency amplifier or oscillator, audio-frequency amplifier or modulator. The anode is capable of dissipating 100 watts and

MAXIMUM RATINGS

D-C Plate Voltage D-C Plate Current Continuous Plate Dissipation D-C Grid Current

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 4-48 the cooling is accomplished by radiation. The tube is capable of operating up to 6 megacycles at maximum ratings and up to 30 megacycles at reduced ratings. The cathode is a thoriated tungsten filament.

1250 volts
150 milliamperes
100 watts
50 milliamperes
<u>.</u> 14-9

. . .

1250

242C - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

	Min.	Bogey	Max.
Dilaman Male .		10.0	10.5 volts
Filament Voltage	9.5	10.0	10.5 Volts
Filament Current at Bogey Voltage	3.1	3.25	3.4 amperes
Amplification Factor			
Conditions: $E_b = 1250$ volts, $I_b = 68$ mi	lliamperes 11	12.5	14
Interelectrode Capacitances			
Grid-Plate	11.4	13.0	14.6 uuf
Grid-Filament	4.8	6.1	7.1 uuf
Plate-Filament	3.2	4.7	5.9 uuf
Maximum Usable Cathode Current ¹			1.3 amperes

MECHANICAL DATA

•

Mounting Position			Ve	erti	ca	l, c	7	ho	riz	on	tal	N I	rith	1 plane of filan	nent vertical
Type of Cooling															Radiation
Net Weight, Approximate															8 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR - CLASS A1

MAXIMUM RATINGS, Absolute Values

		CCS
D-C Plate Voltage		1250 volts
D-C Grid Voltage	- ·	-80 volts
Plate Input		85 watts
Plate Dissipation		85 watts

TYPICAL OPERATION

	CCS	CCS
D-C Plate Voltage	1000	1250 volts
D-C Grid Voltage	-47	-70 volts
Peak A-F Grid Voltage	47	70 volts
D-C Plate Current	85	68 milliamperes
Load Resistance	7000	9000 ohms
Total Harmonic Distortion	5	5 per cent
Power Output	12.5	22 watts

1. Represents maximum usable cathode current for tube as plate current plus grid current for any condition of operation.

cre

.

AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR -- CLASS B

MAXIMUM RATINGS, Absolute Values

MAXIMUM RATINGS, Absolute fulles				CCS
D-C Plate Voltage				1250 volts
Maximum Signal D-C Plate Current ²				150 milliamperes
Maximum Signal Plate Input ²				188 watts
Plate Dissipation ²		• •		100 watts

TYPICAL OPERATION

Unless otherwise specified values are for 2 tubes		
••••••••••••••••••••••••••••••••••••••	CCS	CCS
D-C Plate Voltage	1000	1250 volts
D-C Grid Voltage	-70	-90 volts
Peak A-F Grid-to-Grid Voltage	312	336 volts
Zero Signal D-C Plate Current	16	20 milliamperes
Maximum Signal D-C Plate Current	300	300 milliamperes
Effective Load Resistance (plate-to-plate)	6000	7600 ohms
Maximum Signal Driving Power, Approximate	5.5	5.0 watts
Maximum Signal Power Output, Approximate	165	200 watts

RADIO-FREQUENCY POWER AMPLIFIER - CLASS B

Carrier conditions per tube for use with a maximum modulation factor of 1.0

MAXIMUM RATINGS, Absolute Values

	CCS
D-C Plate Voltage	1250 volts
D-C Plate Current	150 milliamperes
Plate Input	150 watts
Plate Dissipation	100 watts

TYPICAL OPERATION

	CCS	CCS
D-C Plate Voltage	1000	1250 volts
D-C Grid Voltage	-72	-95 volts
Peak R-F Grid Voltage	141	133 volts
D-C Plate Current	150	120 milliamperes
Plate Tank Impedance	1680	2680 ohms
D-C Grid Current, Approximate	4	1 milliamperes
Driving Power, Approximate ³	20	10 watts
Power Output, Approximate	. 50	50 watts

2. Averaged over any audio-frequency cycle of sine wave form. 3. At crest of audio-frequency cycle with modulation factor at 1.0.

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 4-48

242C - PAGE 4

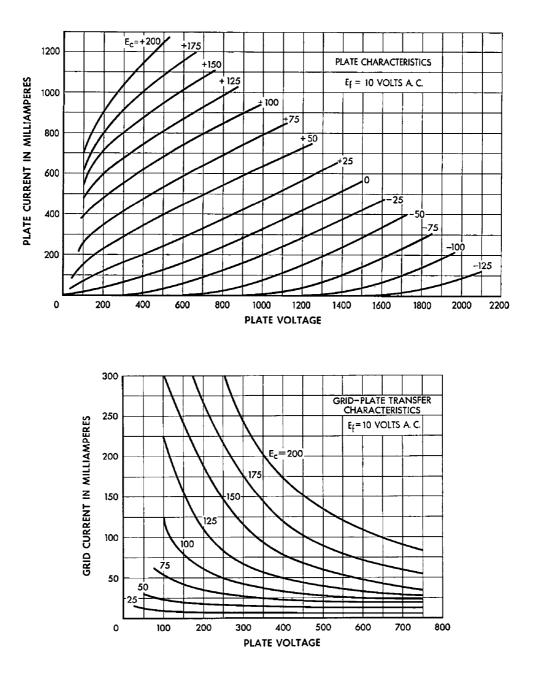
PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER -- CLASS C TELEPHONY

Carrier conditions per tube for use with a maximum modulation factor of 1.0

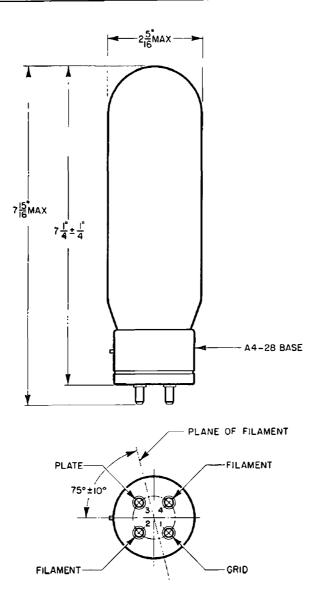
MAXIMUM RATINGS, Absolute Values		CCS
D-C Plate Voltage		1000 volts
D-C Grid Voltage		-400 volts
D-C Plate Current		150 milliamperes
D-C Grid Current		50 milliamperes
Plate Input		150 watts
Plate Dissipation		67 watts
TYPICAL OPERATION	CCS	CCS
D-C Plate Voltage	750	1000 volts
D-C Grid Voltage	-200	-260 volts
Peak R-F Grid Voltage	357	410 volts
D-C Plate Current	150	150 milliamperes
Plate Tank Impedance	2180	3270 ohms
D-C Grid Current, Approximate	38	30 milliamperes
Driving Power, Approximate	13	12 watts
Power Output, Approximate	72	100 watts

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR - CLASS C TELEGRAPHY

Key-down conditions per tube without amplitude modulation 4


MAXIMUM RATINGS, Absolute Values		CCS
D-C Plate Voltage		1250 volts
D-C Grid Voltage		-400 volts
D-C Plate Current		150 milliamperes
D-C Grid Current		50 milliamperes
Plate Input		188 watts
Plate Dissipation		100 watts
TYPICAL OPERATION	CCS	CCS
D-C Plate Voltage	1000	1250 volts
D-C Grid Voltage	-175	-225 volts
Peak R-F Grid Voltage	305	355 volts
D-C Plate Current	150	150 milliamperes
Plate Tank Impedance	3080	3820 ohms
D-C Grid Current, Approximate	16	12 milliamperes
Driving Power, Approximate	5	5 watts
Power Output, Approximate	100	130 watts

Maximum ratings apply up to 6 megacycles. The tube may be operated at higher frequencies provided the maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.


1

Frequency	6	15	30 megacycles
Percentage of Maximum Rated Plate Voltage and Plate Input			
Class B	100	85	70 per cent
Class C Plate Modulated	100	75	50 per cent
Class C Unmodulated	100	75	50 per cent

4. Modulation essentially negative may be used if the positive peak of the envelope does not exceed 115 per cent of the carrier conditions.

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 4-48

Western Electric

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

PRINTED IN U.S.A.

WECO-T2+51

L

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.235 Issue 1, September 1936 A T & T Co Standard

Western Electric

244A Vacuum Tube

Classification—Low-power triode with indirectly heated cathode

For most applications, the heater element of the 244A tube may be operated on alternating current.

Applications

Audio-frequency voltage amplifier. Audio-frequency power amplifier where small amounts of power are required. Oscillator.

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of the electrode connections to the base terminals are shown in Figures 1 and 2.

Base-Medium, five-pin type with bayonet pin.

Socket-Standard, five-contact type, such as the Western Electric 141A socket.

Mounting Positions-The 244A tube may be mounted in any position.

Average Direct Interelectrode Capacitances

	A	В
Grid to plate, $\mu\mu$ f	3.3	3.2
Grid to heater and cathode, µµf.	3.1	3.3
Plate to heater and cathode, $\mu\mu f$	2.8	3.2
Column A—Based tube without socket.		

Column B—Tube alone when measured in 141A socket mounted in metal plate; mounting plate connected to heater and cathode.

Copyright 1936 Western Electric Company, Incorporated

Heater Rating

```
Heater voltage2.0 volts, a.c. or d.c.Nominal heater current1.6 amperes
```

The heater element of this tube is designed to operate on a voltage basis and should be operated at as near the rated voltage as is practicable.

Cathode Connection—When the heater is operated on alternating current, a reduction of hum in the tube may usually be obtained by connecting the cathode to a center tap on the secondary of the heater transformer or to the center point of a suitable resistance connected across the heater terminals. If voltage must be applied between the heater and cathode, it should be kept as low as possible and should not exceed 90 volts.

Characteristics—Plate current characteristics of a typical 244A tube are shown in Figure 3 as functions of grid bias for several values of plate voltage. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5, and 6, respectively. Plate current characteristics are shown as functions of plate voltage for several values of grid bias in Figure 7.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in the table on page 3 for a number of typical operating conditions represented by selected points within this area. The less severe operating conditions should be selected in preference to maximum operating conditions wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

The performance data include the fundamental power output in milliwatts and the second and third harmonic levels in decibels below the fundamental for values of the load resistance, R, equal to one, two, three, or five times the plate resistance, r_p . The peak value of the sinusoidal input, E_{gm} , which gives the indicated power output, P_m , and harmonic levels, F_{2m} and F_{3m} , in each case, is numerically equal to the grid bias. For a smaller input, E_g , the output and harmonic levels, except for very low third harmonic levels, are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$

The level of the third harmonic in the 244A tube is usually low and may differ widely in individual tubes. The values given in the table are for a typical tube.

Microphonic and Sputter Noise—With a plate voltage of 135 volts, a grid bias of -6 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 244A tube, measured in a laboratory reference test set, is 32 decibels below 1 volt. The range of levels of individual tubes extends from 24 to 43 decibels below 1 volt. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

244 A

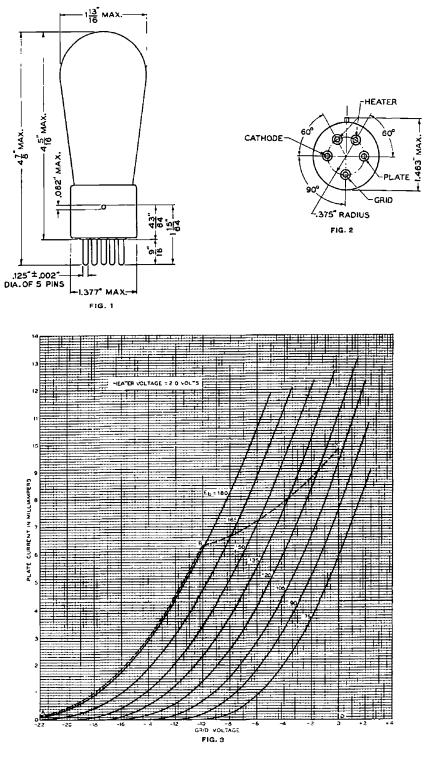
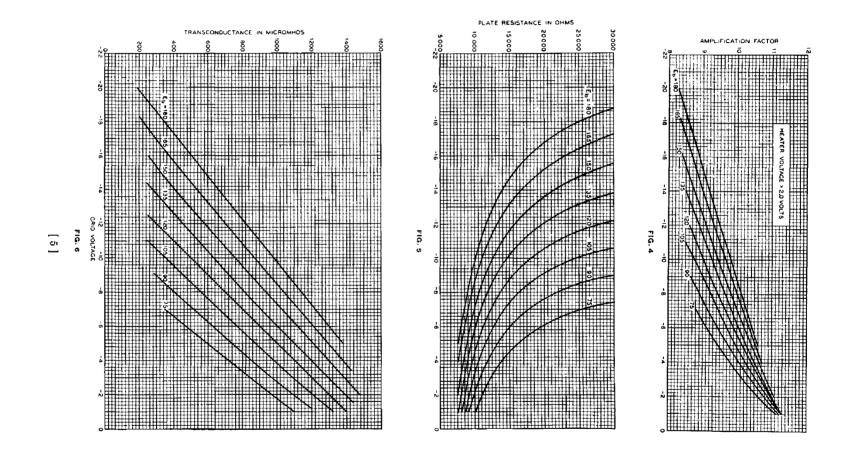
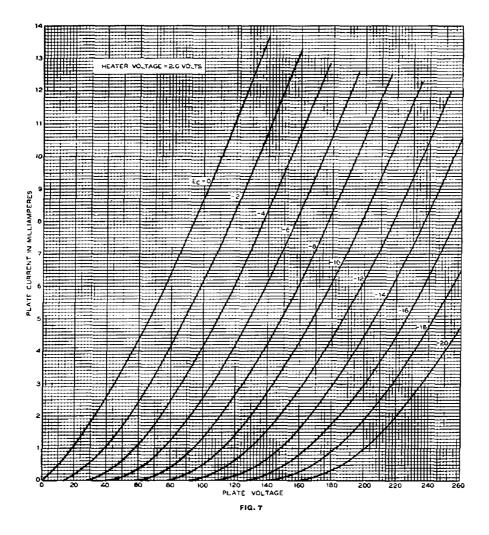

Improvements in the design of the 244A tube have practically eliminated both the disagreeable
sputtering sounds and the isolated microphonic noise impulses which sometimes occur spontaneously
at random intervals in tubes of this general type. When the tube is shielded from external micro-
phonic noise impulses, it is quiet in operation and can be used for the audio-frequency amplifi-
cation of exceptionally low level signals.

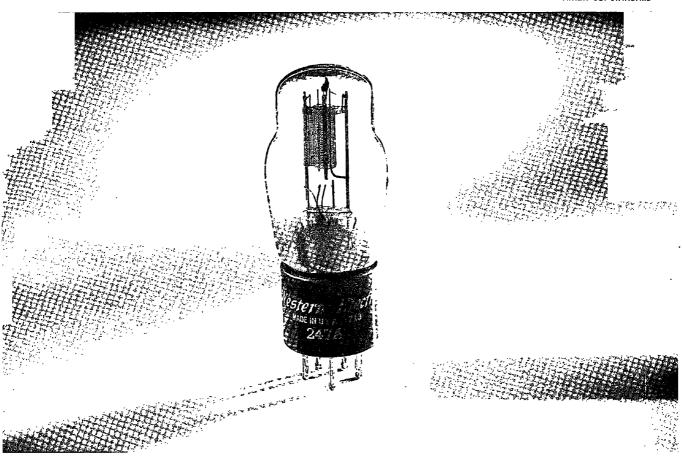
Plate Volt- age Volts	Grid Bias Volts	Plate Cur- rent Milli- amperes	Amplifi- cation Factor	Plate Resis- tance Ohms r _p	Trans- conduc- tance Micro- mhos	Input Volt- age Peak Volts	Load Resis- tance R	Power Output Milli- watts	Second Har- monic db	Third Har- monic db	
•	c		9.5	15100	630	6	$R = r_{p}$	32	21	50	
90	- 6	1.9	9.5	15100	030	0	$R = 2r_p$ $R = 2r_p$	32 29	21	45	
90	- 4	3.3	10.1	11800	850	4	$R = r_p$	20	25	55	
							$R=2r_{\rm p}$	17	28	50	
120	8	2.6	9.5	13600	700	8	$R = r_p$	58	21	50	
							$R = 2r_p$	51	25	50	
							$R = 3r_p$	46	27	50	
120	- 6	4.1	9.9	11200	890	6	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	43	24	50	
							$R = 2r_p$	39	27	50	
120	- 4	6.1	10.4	9500	1090	4	$R = r_p$	24	27	65	
120	1	0.1	10.1	0000	1.00	-	$R = 2r_p$	22	30	60	
195	-10	2.4	9.3	14600	640	10	$R = r_p$	84	19	35	
135	-10	2.4	9.0	14000	040	10	$R = 2r_p$	75	23	45	
							$R = 3r_p$	63	26	50	
105	0		0.7	11000	99 0	8	$R = r_p$	69	22	45	
135	- 8	3.8	9.7	11800	820	0	$R = 2r_p$ $R = 2r_p$		26	4 0 50	
	_						•				
135	- 6	5.5	10.1	10000	1010	6	$R = r_p$	49 43	25 28	50 50	
							$\mathbf{R} = 2\mathbf{r}_{\mathbf{p}}$				
150	-12	2.1	9.1	15800	580	12	$R = 2r_p$	98	22	40	
							$R= 3r_{\text{p}}$	86	25	45	
150	-10	3.4	9.5	12500	760	10	$R = r_p$	100	21	50	
							$R = 2r_p$	89	25	45	
							$R = 3r_p$	76	27	45	
150	- 8	5.1	9.8	10600	9 30	8	$R = r_p$	80	23	50	
							$R = 2r_p$	70	27	50	
*135	- 4	7.7	10.5	8800	1200	4	$R = r_p$	26	28	65	
							$R = 2r_p$	24	31	70	
*150	- 6	7.1	10.2	9200	1110	6	$R = r_p$	54	26	50	
-							$R = 2r_p$	47	29	5 0	
*180	-16	1.8	8.9	17800	500	16	$R = 3r_p$	128	23	45	
100	10	1.0	0.0	11000	000		$R = 5r_p$	104	27	50	
*180	-14	2.9	9.2	14000	660	14	$R = 2r_p$	150	22	45	
100	- 14	4.3	5.4	14000	000	- 7	$R = 2r_p$ $R = 3r_p$	130	25	50	
*100	10		0 5	11600	000	12	$R = r_p$	153	20	45	
*180	-12	4.4	9.5	11600	820	12	$R = r_p$ $R = 2r_p$		20 24	45 50	
***			•	10000	000	10					
*180	-10	6.2	9.8	10000	980	10	$R = r_{p}$ $R = 2r_{p}$	128 112	$\frac{23}{26}$	50 45	
*Mavin		rating cond	ditions				$\mathbf{R} = 2\mathbf{r}_{\mathbf{p}}$	114	<u>-</u> 0	40	


*Maximum operating conditions.

)


ł

[4]



244 A

1-B-36-53C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

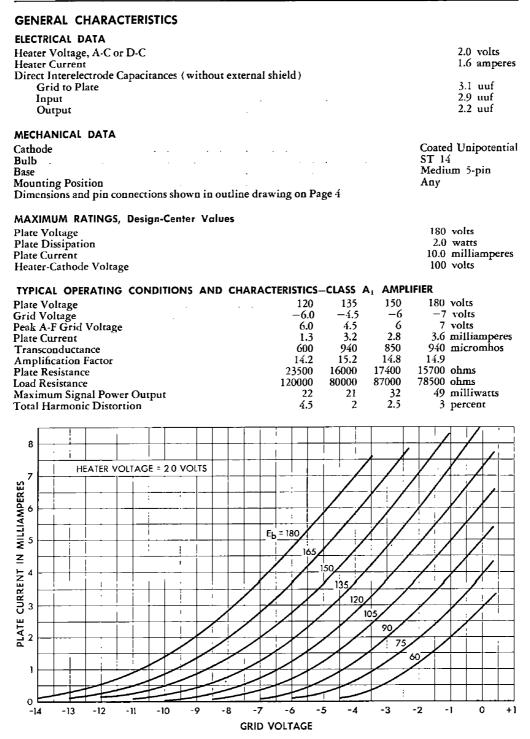
V. T. DATA SHEET 244A ISSUE 1 BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.247A ISSUE 1, APRIL 1948 A.T.&T. CO. STANDARD

TRIODE AUDIO-FREQUENCY AMPLIFIER

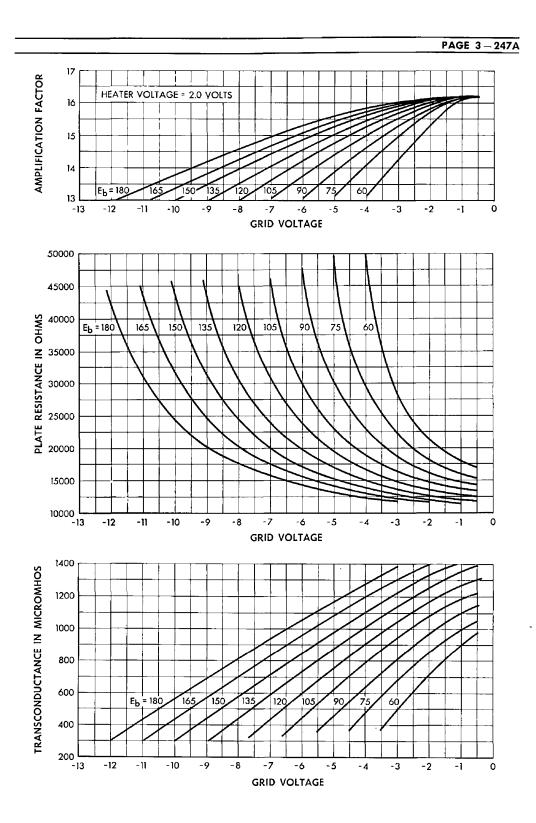
Western Electric

DESCRIPTION

The 247A is a low power triode having an indirectly heated cathode. It is designed for use in audio-frequency amplifier, oscillator, and detector circuits.

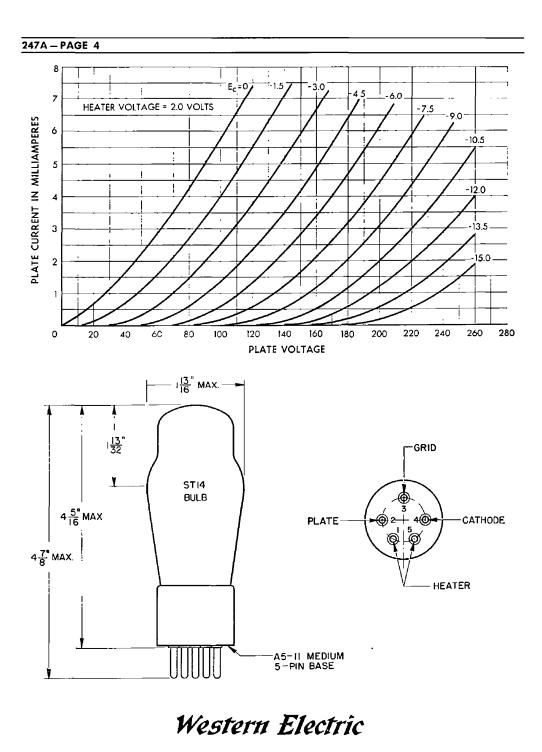

CHARACTERISTICS

Heater Voltage									2.0 volts
Maximum Plate Voltage									180 volts
Amplification Factor									15


ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 11-47

247A

247A - PAGE 2



.

.

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 11-47

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

PRINTED IN U S.A.

WECO-T2451

BELL SYSTEM PRACTICES Transmission Engineering and Data Electron Tube Data SECTION AB46.249B Issue 1, May 1952 A.T.& T Co.Stendard

ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 249B ELECTRON TUBE

.

DESCRIPTION

The 249B is a mercury-wapor diode for use in high voltage rectifier circuits. The latest gettering techniques and materials are employed in this tube to insure greater service life.

MAXIMUM RATINGS

Peak An	ode Vol	tage .	•••	•	•	•	•		•	•	•	•	•	•	•		750	0	volts
Average	Cathod	e Curr	ent	•	•	•	•	•		•	•			•	•	•	0.6	4	ampere

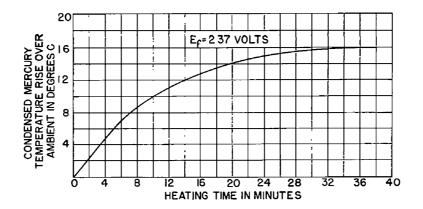
FILE: RECTIFIER SECTION ISSUE 3, 4-52

249B

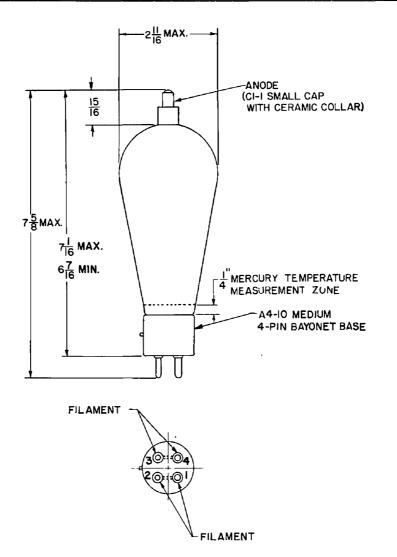
249B - Page 2

MAXIMUE RATINGS, ABSOLUTE VALUES

Feak Inverse Anode Voltage			7500 volts
Cathode Current			
Peak			2.5 amperes
Average			0.54 ampere
Surge (maximum duration 0.1			25 amperes
Averaging Time			5 seconds
Condensed Kercury Temperature	• • • •	•••••• +2	0 to +70 centigrade


BLECTRICAL DATA

a Beerare Berrar			
	<u>Min</u> .	Bogey	Max.
Filament Voltage	2.37	2.5	<u>Max.</u> 2.62 volts
Filament Current at 2.5 volts		7.5	8.25 apperes
Filement Heating Time Required 1	15		seconds
Anode Voltage Drop		15	volts
			50 velts


MECHANICAL DATA

Type of Cooling	Convection
Equilibrium Condensed Mercury Temperature	
Rise Above Ambient, Approximate	
At Full Load	20 centigrade
At No Load	16 centigrade
Mounting Position ² Vertical,	Base end down
Net Weight, Approximate	

- Mercury may become deposited on the tube elements in shipment, storage or handling. When using the tube for the first time, or after handling, a filament heating period of 15 to 30 minutes should be allowed to properly distribute the mercury.
- 2. Sufficient clearance should be allowed around the tube to insure free air circulation.

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

1-E-52-4

PRINTED IN U.S.A.

T2713

BELL SYSTEM PRACTICES Transmission Engineering and Data Electron Tube Data SECTION AB46.249C Issue 1, May 1952 A.T.& T.Co.Standard

ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 249C ELECTRON TUBE

DESCRIPTION

The 249C is a mercury-vapor diode for use in high voltage rectifier circuits. The latest gettering techniques and materials are employed in this tube to insure greater service life.

MAXIMUM RATINGS

Peak Anode Voltage	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	7500 volts
Average Cathode Current	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	0.64 ampere

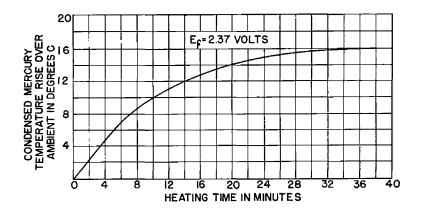
FILE: RECTIFIER SECTION ISSUE 1, 4-52

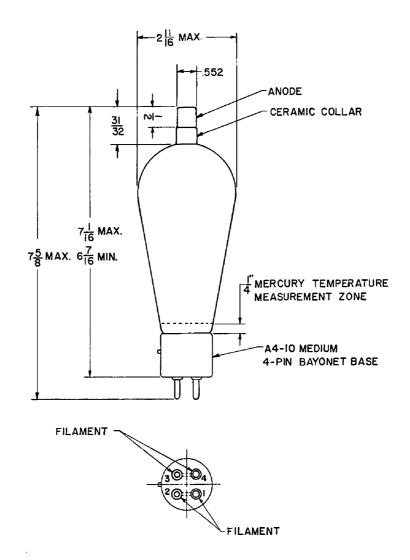
249C

2490 - Page 2

KAXINUM RATINGS, ABSOLUTE VALUES

Peak Inverse Anode Voltage	500	volts
Cathode Current		
		amperes
		ampere
Surge (maximum duration 0.1 second)	25	amperes
Averaging Time	5	seconds
Condensed Mercury Temperature Limits +20 to	+70	centigrade

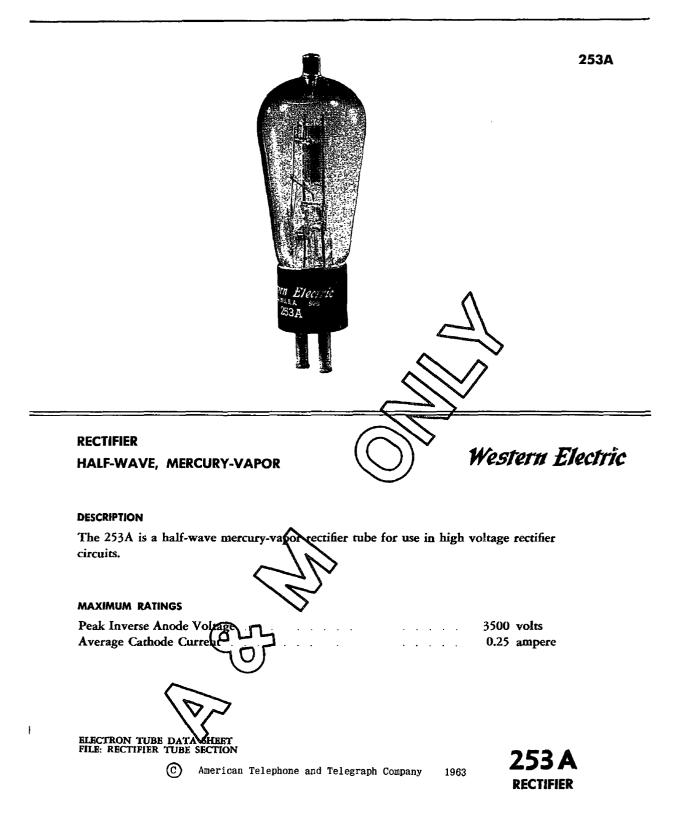

ELECTRICAL DATA


	Min.	Bogey	Max.
Filament Vcltage	2.37	2.5	$\overline{2.62}$ volts
Filament Current at 2.5 volts		7.5	8.25 amperes
Filament Heating Time Required 1	15		seconds
Anode Voltage Drop		15	volts
Critical Anode Voltage			50 volts

MECHANICAL DATA

Type of Cooling	Convection
Equilibrium Condensed Kercury Temperature	
Rise Above Ambient, Approximate	
At Full Load	20 centigrade
	16 centigrade
Kounting Position ² Vertical,	
Net Weight, Approximate	3 ounces

- Mercury may become deposited on the tube elements in shipment, storage or handling. When using the tube for the first time, or after handling, a filament heating period of 15 to 30 minutes should be allowed to properly distribute the mercury.
- 2. Sufficient clearance should be allowed around the tube to insure free air circulation.


A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

1-E-52-4

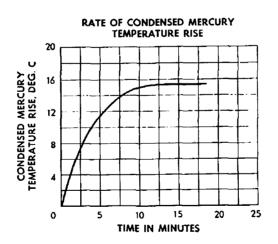
PRINTED IN U.S.A.

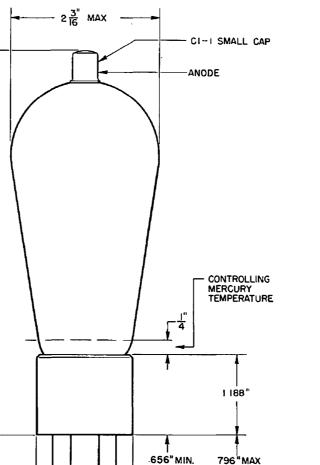
T2714

BELL SYSTEM PRACTICES Transmission Engineering and Data Electron Tube Data SECTION AB46.253A Issue 2, April 1963 A.T.& T.Co. Standard

253A	-	PA	GE	2

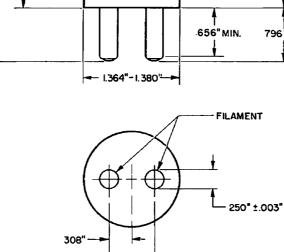
MAXIMUM RATINGS, Absolute Values	
Peak Inverse Anode Voltage	3500 volts
Cathode Current	
Peak	1 ampere
Average	0.25 ampere
Surge (Maximum duration 0.1 second)	10 amperes
Averaging Time	5 seconds
Frequency	150 cycles/sec.
Condensed Mercury Temperature Limits	20 to 70 centigrade


ELECTRICAL DATA	Min.	Bogey	Max.
Filament Voltage	2.38	2.5	2.62 volts
Filament Current at 2.5 Volts		3.0	3.3 amperes
Cathode Heating Time, Required	10		seconds
Anode Voltage Drop		15	volts
Critical Anode Voltage			50 volts


MECHANICAL DATA

Net Weight, Approximate	3 ounces
Equilibrium Condensed Mercury	
Temperature Rise Over Ambient	
At Full Load (Approximate)	19 centigrade
At No Load (Approximate)	15 centigrade
Cooling	convection

Mounting

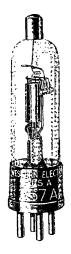

This tube should be mounted in a vertical position only with the base end down. Sufficient clearance should be maintained around the tube to insure free air circulation.

- 616" ± 030"

PAGE 3 - 253A

-

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION


6 1 MAX.

6 13" MAX.

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.305 Issue 1, September 1936 A T & T Co Standard

Western Electric

257A Vacuum Tube

Classification—Small, filamentary triode

The 257A tube is similar to the 231D tube except that the grid terminal of the 257A tube is at the top of the bulb. An important feature of the 257A tube is its low filament power consumption.

Applications

Audio-frequency and intermediate-frequency amplifier.

Detector.

Oscillator.

Dimensions—Outline diagrams showing dimensions of the tube and base, and the arrangement of the electrode connections to the base terminals are given in Figures 1 and 2.

Base—Small, four-pin, thrust base. Small metal cap grid terminal at the top of the bulb. One base contact pin is unconnected.

Socket-Standard four-contact type such as the Western Electric 143B socket.

Copyright 1936, Western Electric Company, Incorporated

Mountings Positions—Either vertical or horizontal. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical.

Average Direct Interelectrode Capacitances

Grid to plate	3.0 µµf.
Grid to filament	1.8 µµf.
Plate to filament	2.3 µµf.

Filament Rating

Filament current	0.060 ampere, d.c.
Nominal filament voltage	3.1 volts

The filament of this tube is designed to operate on a current basis and should be operated at as near the rated current as is practicable.

Characteristics—Plate current characteristics of a typical 257A tube are shown in Figure 3 as functions of grid voltage for several values of plate voltage. The grid and plate voltages are measured from the negative end of the filament. Corresponding amplification factor, plate resistance, and transconductance characteristics are given in Figures 4, 5 and 6, respectively. Plate current characteristics as functions of plate voltage are shown in Figure 7 for several values of grid voltage.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD, in Figure 3. Amplification factor, plate resistance, transconductance, and performance data are given in the table on page 3 for a number of typical operating conditions represented by selected points within this area. The less severe operating conditions should be selected in preference to maximum operating conditions wherever possible. The life of the tube at maximum conditions may be shorter than at less severe conditions.

The performance data include the fundamental power or voltage output and the second and third harmonic levels for the indicated values of load resistance. The fundamental output is given in terms of the power, P_m , in milliwatts for values of load resistance, R, equal to and double the value of the plate resistance, r_p , and in terms of the voltage, E_{pm} , in peak volts for values of load resistance five times the plate resistance. The second and third harmonic levels, F_{2m} and F_{3m} , are given in decibels below the fundamental in each case. The peak value of the sinusoidal input voltage, E_{gm} , is numerically equal to the grid bias for each operating condition. For a smaller input voltage, F_{z} , the fundamental power and voltage output and the harmonic levels are given approximately by the following relations:

$$P = P_m \left(\frac{E_g}{E_{gm}}\right)^2$$

$$E_p = E_{pm} \frac{E_g}{E_{gm}}$$

$$F_2 = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_g}$$

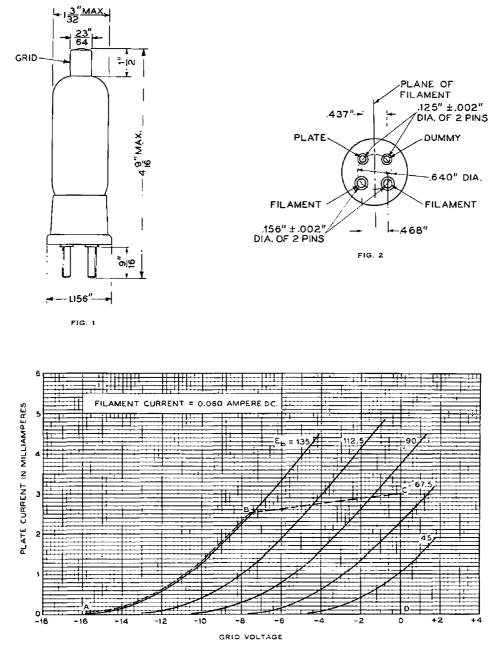
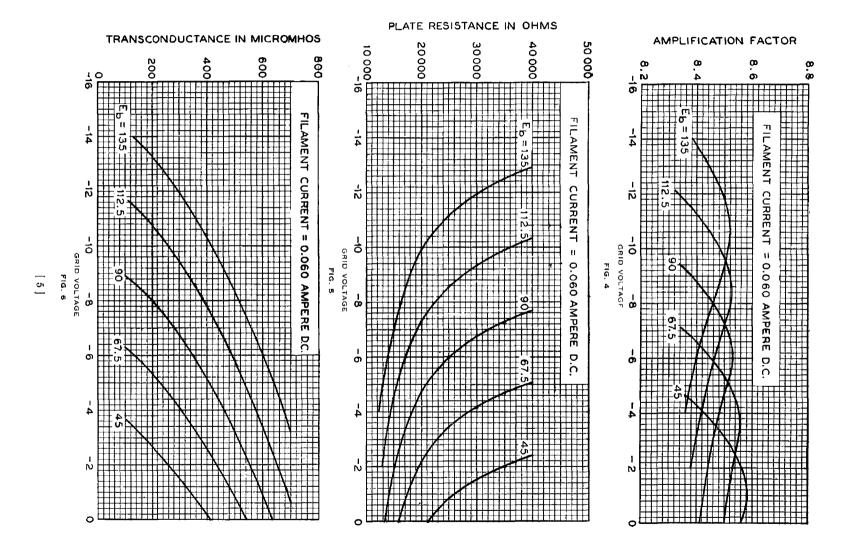
$$F_3 = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_g}$$
[2]

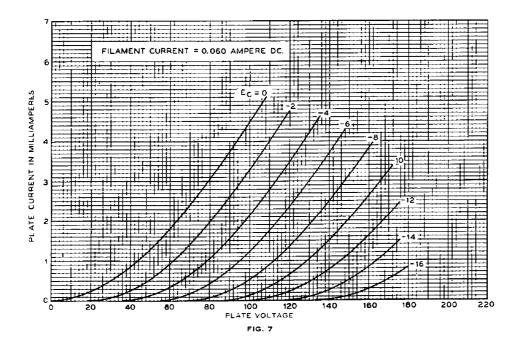
TABLE

Plate Volt- age	Grid Bias	Plate Cur- rent	Ampli- fica- tion Factor	Plate Resis- tance	Trans- conduc- tance	Input Volt- age	Load Resis- tance	Power Out- put	Volt- age Out- put		Third Har- monic
Volts	Volts	Milli- amperes		Ohms rp	Micro- mhos	Peak Volts	R	Milli- watts	Peak Volts	db	db
67.5	-3.0	.93	8.5	22500	380	3.0	$\begin{split} R &= r_{p} \\ R &= 2 r_{p} \\ R &= 5 r_{p} \end{split}$	3.0 2.5	20	29 36 47	50 60 70
67.5	-1.5	1.55	8.5	18300	460	1.5	$\begin{array}{l} R=r_{p}\\ R=2r_{p} \end{array}$	1.0 0.9		39 46	70 80
90.0	- 5.0	1.15	8.5	20700	410	5.0	$\begin{aligned} \mathbf{R} &= \mathbf{r}_{\mathbf{p}} \\ \mathbf{R} &= 2\mathbf{r}_{\mathbf{p}} \\ \mathbf{R} &= 5\mathbf{r}_{\mathbf{p}} \end{aligned}$	10 9	35	26 33 42	43 50 65
90 .0	-30	2.10	8.4	16300	510	3.0	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	4.5 4.0	22	36 42 50	60 70 75
112.5	- 8.0	1.00	8.5	22200	390	8.0	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	23 20	55	21 27 38	34 42 60
112.5	- 6.0	1.90	8.4	17200	490	6.0	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	17 15	42	29 35 44	45 55 70
135.0	-11.5	0.70	8.5	27000	320	11.5	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	45 50	76	17 23 33	28 34 47
135.0	-10.0	1.25	8.5	20300	420	10.0	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	40 35	67	21 28 37	32 41 55
135.0	- 8.5	1.95	8.5	17200	490	8.5	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	35 30	57	26 33 42	40 50 65
*90.0	-1.5	2.90	8.4	14500	580	1.5		$\begin{array}{c} 1.2 \\ 1.0 \end{array}$		46 50	75 85
*112.5	-4.5	2.65	8.4	15000	560	4.5	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$	10	30	34 40 50	55 65 70
*135.0	-7.5	2.50	8.4	15600	540	7.5	$R = r_{p}$ $R = 2r_{p}$ $R = 5r_{p}$		48	29 36 45	47 55 70

*Maximum operating conditions.

Microphonic Noise—With a plate voltage of 90 volts, a grid bias of -3 volts, and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 257A tube measured in a laboratory reference test set, is 22 decibels below 1 volt. The range of levels of individual tubes extends from 12 to 36 decibels. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

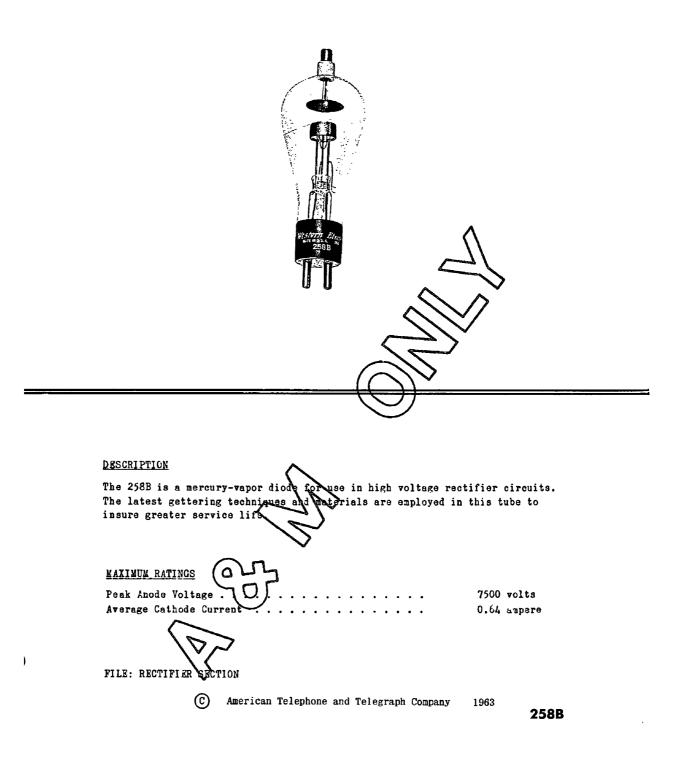




FIG. 3

[4]

257A

257A


1-C-36-28C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 257A ISSUE 1 I.

[6]

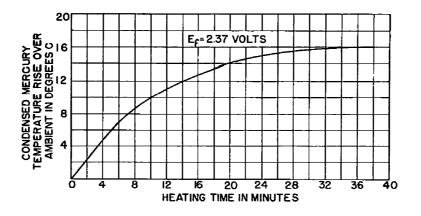
BELL SYSTEM PRACTICES Transmission Engineering and Date Electron Tube Data SECTION AB46.258B Issue 2, April 1963 A.T.& T.Co. Standard

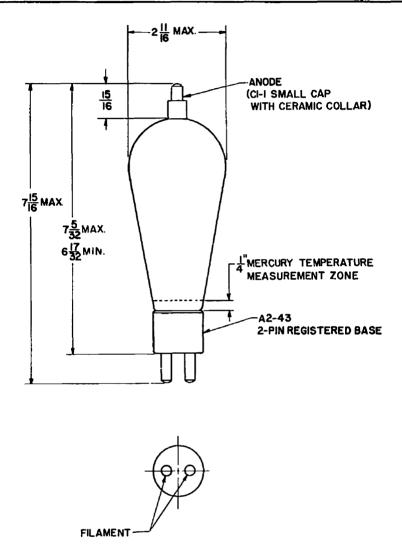
ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 258B ELECTRON TUBE

258B - Page 2

MAXIMUM RATINGS, ABSOLUTE VALUES

Peak Inverse Anode Voltage	7500 volts
Cathode Current	
Peak	2.5 amperes
	0.64 amperes
Surge (maximum duration 0.1 second)	25 amperes
	5 seconds
Condensed Mercury Temperature Limits	+20 to +70 centigrade

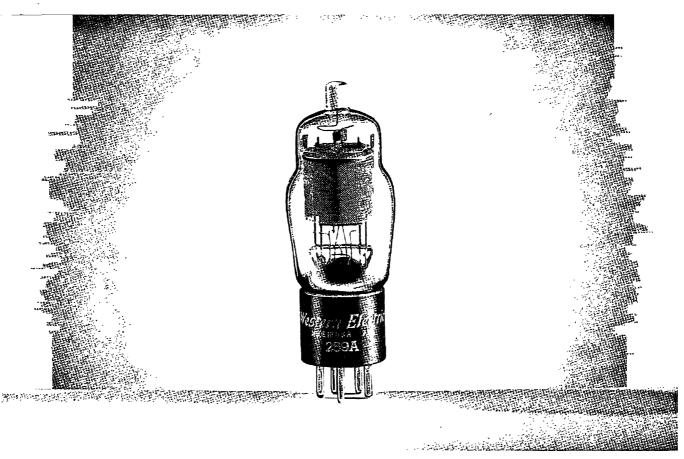

ELECTRICAL DATA


Filament Voltage	<u>¥in.</u> 2.37	Bogey 2.5	<u>Mar.</u> 2.62 volts
Filement Current at 2.5 volts		7.5	8.25 amperes
Filament Heating Time Required ¹	15		seconds
Anode Voltage Drop		15	volts
			50 volts

MECHANICAL DATA

Type of Cooling	Convection
At Full Load	20 centigrade
At No Load	
Mounting Position ² Vertic	cal, base end down
Net Weight, Approximate	3 ounces

- Mercury may become deposited on the tube elements in shipment, storage or handling. When using the tube for the first time, or after handling, a filament heating period of 15 to 30 minutes should be allowed to properly distribute the mercury.
- 2. Sufficient clearance should be allowed around the tube to insure free air circulation.



A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

PRINTED IN U.S.A.

L S SILLI ACI ... TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA . LIION AB46.2. A ISSUE 1, AUGUST 1948 A.T.&T. CO. STANDARD

TETRODE

Western Electric

DESCRIPTION

The 259A is a tetrode having an indirectly heated cathode. It is designed for use as a radio-frequency voltage amplifier. It may also be used as a detector or audio-frequency voltage amplifier.

CHARACTERISTICS

Heater Voltage		2.0 volts
Plate Current) $E_{b} = 180$ volts; $E_{c2} = 75$ volts;	6.0 milliamperes
Transconductance	$E_{1} = -1.5$ volts	1490 micromhos

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 2-48

259A

259A - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

Heater Voltage, A-C or D-C		2.0 volts
Heater Current		1.60 amperes
Direct Interelectrode Capacitances	without external shield	with external shield (RMA = 312)
Grid to Plate (maximum)	0.017	*0.007 uuf
Input	6.0	*7.3 uuf
Output	12.5	*13.0 uuf

MECHANICAL DATA

Cathode	Coated unipotential			
Bulb	ST14			
Base	Medium 5-pin, with bayonet pin			
Mounting Position	Апу			
Dimensions and pin connections shown in outline drawing on Page 7				

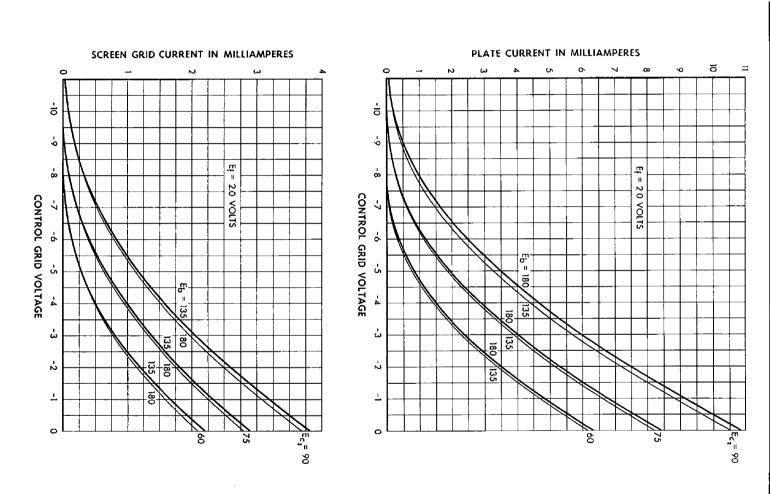
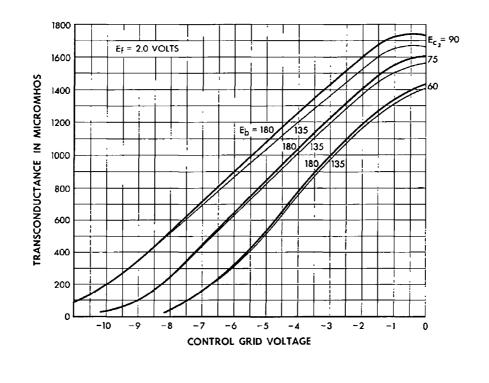
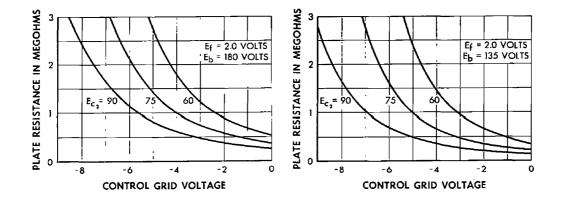
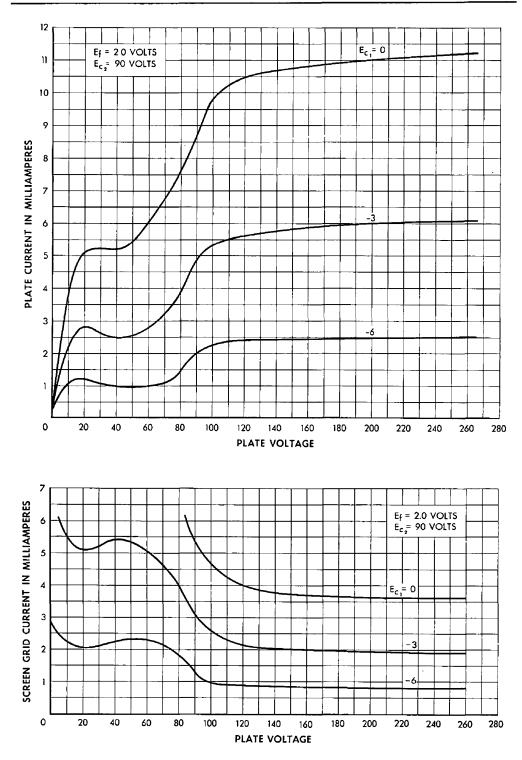

MAXIMUM RATINGS, Design-Center Values

Plate Voltage	. 	250 volts
Screen Grid Voltage		90 volts
Plate Dissipation		2.0 watts
Screen Grid Dissipation		0.4 watt
Cathode Current		10 milliamperes
Heater-Cathode Voltage		100 volts

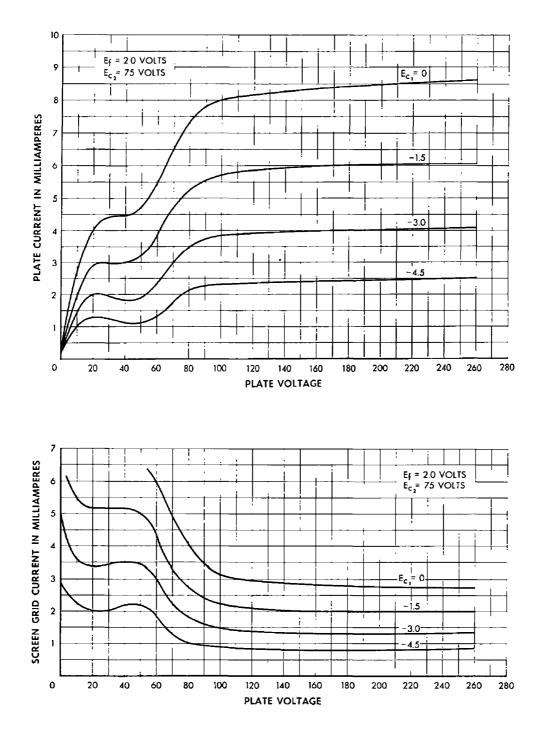
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

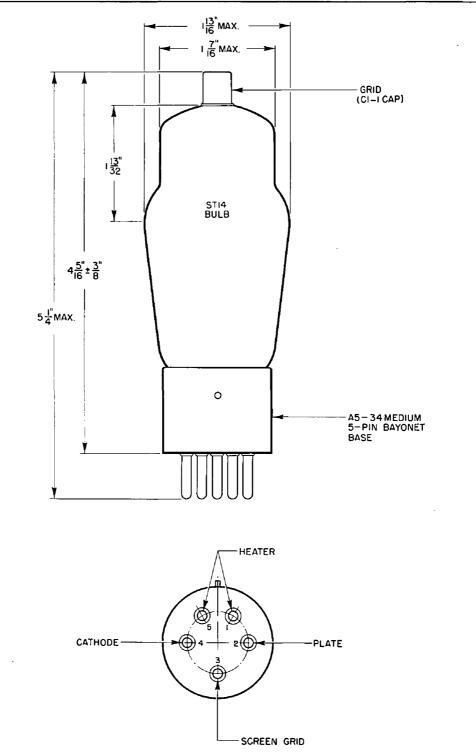

Plate Voltage	135	180	180 volts
Screen Grid Voltage	75	75	90 volts
Control Grid Voltage	-1.5	-1.5	-1.5 volts
Plate Current	5.8	6.0	8.3 milliamperes
Screen Grid Current	2.1	2.0	2.8 milliamperes
Plate Resistance	0.32	0.52	0.35 megohm
Transconductançe	1440	1490	1670 micromhos
Control Grid Voltage, Approximate, for			
10 Microamperes Plate Current	-9.5	-9.5	-12 volts


 \approx With external shield (RMA \Rightarrow 312) connected to cathode pin.


.

PAGE 3-259A





PAGE 5-259A

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 2-48

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 2-48 BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.335 Issue 1, September 1936 A T & T Co Standard

Western Electric

262A Vacuum Tube

Classification—Low-power triode with indirectly-heated cathode

The 262A tube is designed to minimize hum produced by alternating current operation of the heater, and to minimize microphonic noise.

Application—Audio-frequency amplifier where alternating current is used for heating the cathode and exceptionally low tube noise is required

Dimensions—Dimensions, outline diagrams of the tube and base, and the arrangement of electrode connections to the base terminals are shown in Figures 1 and 2.

Base—Medium, four-pin thrust type having silver-plated pins. Small metal cap grid terminal at the top of the bulb.

Socket—Standard, four-contact type, preferably provided with silver-plated contacts such, as the Western Electric 143B socket.

Copyright 1936, Western Electric Company, Incorporated

Mounting Positions-The 262A tube may be mounted in any position.

Average Direct Interelectrode Capacitances

Grid to plate		1.9 µµf.
Grid to cathode and heater	· · · · · · · · · · · · · · · · · · ·	1.8 μμf.
Plate to cathode and heater		4.0 μμf.

Heater Rating

Heater voltage	 10.0 volts, a.c. or d.c.
Nominal heater current	 0.32 ampere

The heater element of this tube is designed to operate on a voltage basis and should be operated at as near the rated voltage as is practicable.

Cathode Connection—Preferably direct to the mid-point of the heater transformer winding or to the mid-point of a low resistance connected across the heater terminals, where alternating heater voltage is used. This connection usually reduces the hum produced in the tube. Where voltage must be applied between the heater and cathode, it should be kept as low as possible and should not exceed 90 volts.

Characteristics—Plate current characteristics of a typical 262A tube are shown in Figure 8 as functions of grid voltage for several values of plate voltage. Corresponding amplification factor, plate resistance and transconductance characteristics are given in Figures 4, 5, and 6, respectively. Plate current characteristics are given as functions of plate voltage for several values of grid voltage in Figure 7.

Operating Conditions and Output—Permissible operating plate and grid voltages are included within the area, ABCD, in Figure 3. A number of recommended and maximum operating conditions represented by selected points within this area and the corresponding values of amplification factor, plate resistance and transconductance are given in the table on page 4. Recommended conditions or others of no greater severity should be selected in preference to maximum conditions wherever possible. The life of the tube at maximum conditions may be shorter than at the recommended conditions.

In the latter part of the table are given the fundamental power output, P_m , in milliwatts, the fundamental voltage output, E_{pm} , in peak volts, and the second and third harmonic levels, F_{2m} and F_{3m} , in db below the fundamental, corresponding to each of the recommended and maximum operating conditions for the indicated values of load resistance, R. The fundamental output is given in terms of power for values of load resistance equal to and double the value of the plate resistance, r_p , and in terms of voltage for values of load resistance five times the plate resistance.

The peak value of the sinusoidal input voltage, E_{gm} , in each case is numerically equal to the grid biasing voltage. For a smaller input voltage, E_g , the fundamental power and voltage output and the harmonic levels are given approximately by the following relations:

262A

$$P = P_{m} \left(\frac{E_{g}}{E_{gm}}\right)^{2}$$

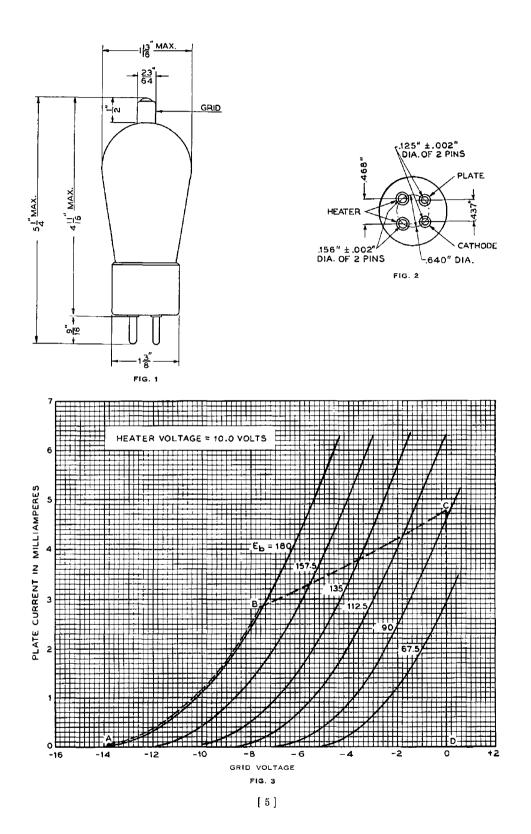
$$E_{p} = E_{pm} \frac{E_{g}}{E_{gm}}$$

$$F_{2} = F_{2m} + 20 \log_{10} \frac{E_{gm}}{E_{g}}$$

$$F_{3} = F_{3m} + 40 \log_{10} \frac{E_{gm}}{E_{g}}$$

Hum—The disturbance produced in the plate circuit of an indirectly heated cathode type tube by alternating current operation of the heater has two main frequency components. One is of the same frequency as the alternating heater voltage. The other, often larger in magnitude, is of double this frequency. With a plate voltage of 135 volts, a grid bias of -4.5 volts, a load resistance equal to the plate resistance of the tube, and with the cathode connected to the mid-point of the heater circuit, the mean hum output level of the 262A tube at the supply frequency is 110 db below 1 milliampere. The range of levels of individual tubes extends from 95 to 125 db below 1 milliampere. At double the supply frequency, the mean level is 111 db below 1 milliampere, and the range of levels of individual tubes extends from 104 to 118 db below 1 milliampere.

The 262A tube has high insulation resistance and low capacitance between the grid and the heater. When reasonable care is exercised to keep the insulation leakage and capacitance small between the grid and heater leads in the external wiring, a resistance of 2 megohms may be used in the grid circuit without materially affecting the hum level.


Microphonic Noise—With a plate voltage of 135 volts, a grid bias of -4.5 volts and a load resistance of 100,000 ohms, the mean microphonic noise output level of the 262A tube measured in a laboratory reference test set is 50 db below 1 volt. The range of levels of individual tubes extends from 38 to 62 db below 1 volt. Since microphonic noise depends on the type and intensity of the mechanical disturbance which produces it, the values given here are useful chiefly for comparison with the levels of other tubes which have been tested in the same way.

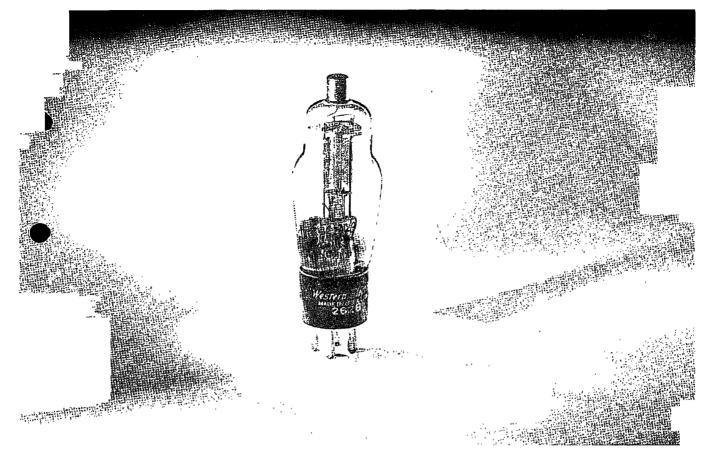
Fluctuation Noise—An irreducible minimum of noise in a vacuum tube is produced by uncontrollable, minute fluctuations in the rate of flow of electrons to the anode. With a plate voltage of 135 volts, a grid bias of -4.5 volts, and a load resistance of 100,000 ohms, the mean equivalent fluctuation noise input of the 262A tube for the audio-frequency range from 40 to 10,600 cycles is 112.4 db below 1 volt. Individual 262A tubes may differ from this value by as much as 5 db. By reducing the plate voltage to 36 volts and the grid bias to -1 volt, the mean fluctuation noise level may be reduced by about 7.5 db, without seriously affecting the voltage amplification. The equivalent noise input voltage is equal to the measured output voltage divided by the voltage amplification of the tube in the measuring circuit.

TABLE


	Plate Volt- age Volts	Grid <u>Bias</u> Volts		Ampli- fication <u>Factor</u>	Plate Resis- tance Ohms rp	Trans- con- duc- tance Micro- mhos	Load Resis- tance B	Power Out- <u>put</u> Milli- watts	Volt- age Out- put Peak Volts	Sec- ond Har- <u>monic</u> db	Third Har- monic db
Recom- mended	90	-4.0	0.9	14.3	23800	600	$\begin{aligned} R &= r_p \\ R &= 2r_p \end{aligned}$	17 15		21 23	42 55
Operat-							$R = 5r_p$	—	50	30	55
ing Cardi	90	-3.0	1.6	15.0	18500	810	$\mathbf{R} = \mathbf{r}_{\mathbf{p}}$	13	_	23	55
Condi- tions							$\frac{R = 2r_p}{R = 5r_p}$	12 		27 32	60 55
	90	-2.0	2.5	15.6	15700	990	$R = r_p$	8		28	55
			2.0				$R = 2r_p$	7		31	60
							$R = 5r_p$		30	36	70
	112.5	-4.5	1.6	14.7 15.5	1 91 00 15000	770 1030	$R = r_{p}$	30		20	47
							$R = 2r_p$	25		25	65 55
	4						$R = 5r_p$		67 	30 26	55 60
	112.5	-3.0	2.9				$R = r_{p}$ $R = 2r_{p}$	17 15		26 30	70
							$R = 5r_p$		40	33	6 0
	*135	-7.5	0.7	13.7	29000	470	$R{=}5r_{\rm p}$		95	25	ō 0
	135	-6.0	1.6	14.4	19600	730	$R = r_p$	45		19	42
							$R = 2r_p$	40		23	55
					1	000	$R = 5r_p$		75	29 29	50 C0
	135	-4.5	2.8	15.1	15400	980	$\begin{array}{l} \mathbf{R} = \mathbf{r}_{\mathbf{p}} \\ \mathbf{R} = 2\mathbf{r}_{\mathbf{p}} \end{array}$	35 30		23 27	60 60
							$R = 5r_p$		60	31	55
	*157.5	- 8.0	1.4	14.0	22000	640	$R=5r_{\text{p}}$		100	26	50
	157.5	- 7.0	2.0	14.5	18200	800	$R = r_p$	65	-	18	42
							$R = 2r_p$	60	9 0	23 29	55 50
							$R = 5r_p$		90	29	50
Maxi- mum	112.5	-2.0	4.0	16.0	13400	1190	$R = r_p$	9	_	31	55
							$R = 2r_p$	8		34	60
Operat-							$R = 5r_p$		30	38	65
ing Condi-	135	- 3.5	3.8	15.6	13700	1140	$R = r_{p}$ $R = 2r_{p}$	25 20	_	26 30	55 70
tions							$R = 5r_p$		47	33	70
	157.5	- 5.5	3.3	15.1	14800	1020	$R = r_{p}$	ö 5	_	22	55
							$R = 2r_p$	50	_	27	60
							$R = 5r_p$	—	70	31	50
	*180	-10.5	0.9	13.6	28800	470	$R = 5r_p$		130	23	42
	*180	- 9.0	1.7	14.1	20200	700	$R = 5r_p$		110	27	50
	180	- 7.5	2.8	14.7	16200	910	$R = r_{p}$ $R = 2r_{p}$	90 80		20 24	46 60
							$R = 2r_p$ $R = 5r_p$	<u></u>	95	24 30	50 50
•Operating conditions applicable primarily for voltage amplification.											

*Operating conditions applicable primarily for voltage amplification.

262A



1-D-36-55C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 262A ISSUE 1

[7]

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.262B ISSUE 1, APRIL 1948 A.T.&T. CO. STANDARD

TRIODE AUDIO-FREQUENCY AMPLIFIER

Western Electric

DESCRIPTION

The 262B is a triode designed for use as an audio-frequency amplifier where exceptionally low tube noise is required. Special design features minimize both the microphonic noise and the hum produced by a.c. operation of the heater.

CHARACTERISTICS

Heater Voltage		10 volts
Maximum Plate Voltage		180 volts
Amplification Factor	 	15

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 11-47

262B

262B - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

Heater Voltage, A-C or D-C	10 volts
Heater Current	320 milliamperes
Direct Interelectrode Capacitances (without external shield)	_
Grid to Plate	1.9 uuf
Input	2.4 uuf
Output	3.8 uuf

MECHANICAL DATA

Cathode	Coated Unipotential
Bulb	ST 12
Base	Small 4-pin
Mounting Position	Any
Dimensions and pin connections shown in outline drawing on	
Page 5	

MAXIMUM RATINGS, Design-Center Values

Plate Voltage	180 volts
Plate Dissipation	2.0 watts
Plate Current	10.0 milliamperes
Heater-Cathode Voltage	30 volts

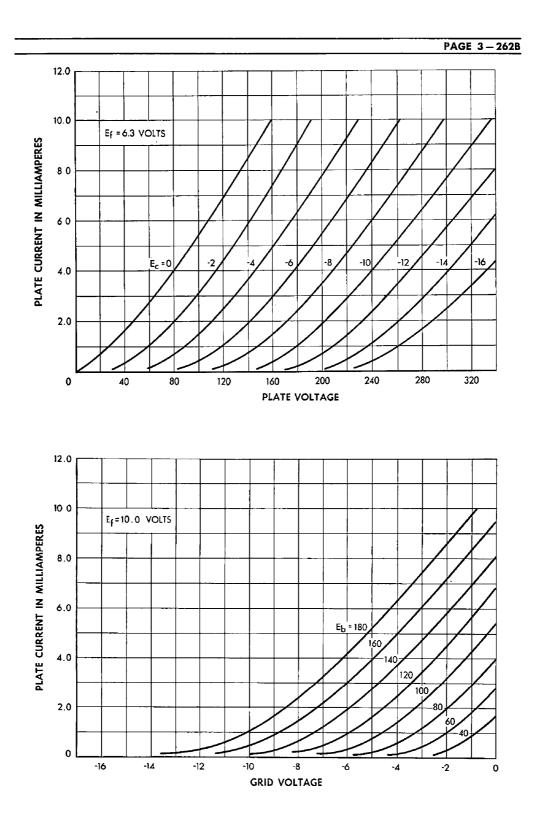
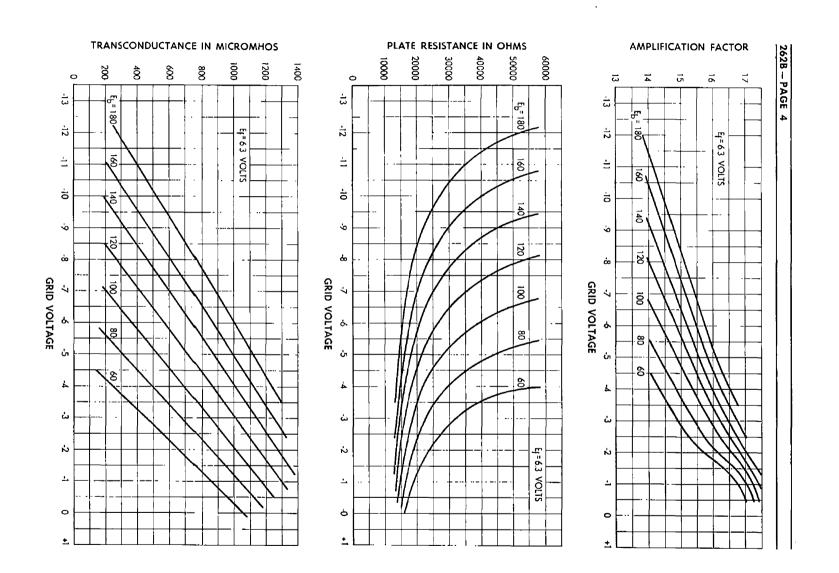

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS-CLASS A_1 AMPLIFIER

Plate Voltage	120	135	160	180	volts
Grid Voltage	-6.0	-4.5	-6.0	-7.5	volts
Peak A-F Grid Voltage	6.0	4.5	6.0	7.5	volts
Plate Current	1.0	3.0	3.0	. 2.8	milliamperes
Transconductance	560	890	880	840	micromhos
Amplification Factor	14.8	15.4	15.5	15.3	
Plate Resistance	26600	17300	17700	18300	ohms
Load Resistance	100000	100000	100000	100000	ohms
Maximum Signal Power Output	24	18	31	48	milliwatts
Total Harmonic Distortion	4	2.5	3	3	percent

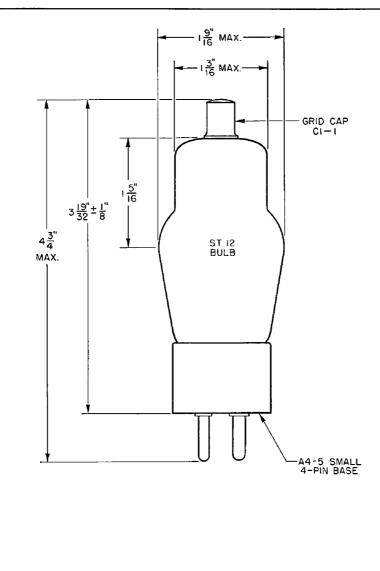
HUM

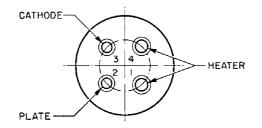
Under typical operating conditions, and with the cathode of the tube connected to the midpoint of the heater circuit, the equivalent hum voltage in the grid circuit will be less than 12 microvolts at the supply frequency and less than 5.0 microvolts at double the supply frequency.

If the insulation leakage and capacitance between the external grid and heater connections are kept reasonably low. a resistance of 2 megohms may be used in the grid circuit without materially affecting the hum level.


.

.


.


•

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 11-47

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 11-47

.

BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.264C Issue 1, September 1950 A.T.&T. Co. Standard

÷,

264C

Western Electric

DESCRIPTION

The 264C is a filamentary type triode designed for use as an audio-frequency amplifier in applications requiring low tube noise or high input resistance.

A.C

CHARACTERISTICS

Filament Voltage							•	1.5 volts
Maximum Plate Voltage .								135 volts
Amplification Factor								7.2

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 10-48

264C -- PAGE 2

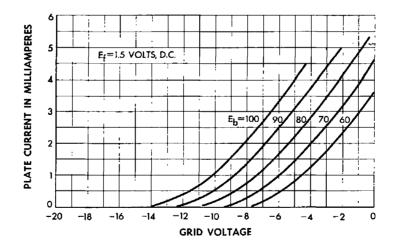
GENERAL CHARACTERISTICS

ELECTRICAL DATA

Filament Voltage Filament Current Direct Interelectrode		•						1.5 volts 300 milliamperes
Grid to Plate Input Output		•	•	•	•	•	•	4.9 uuf 3.0 uuf 2.6 uuf

MECHANICAL DATA

Cathode														Coated Filament
Bulb	-													Small 4-pin
Mounting Position .	·	·	•	•	·	•	•	•	•	·	•	•	•	Any


Dimensions and pin connections shown in outline drawing on Page 4

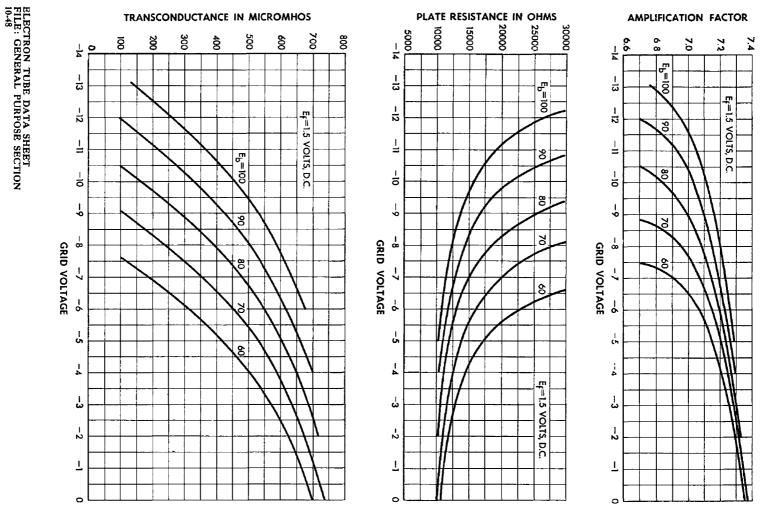
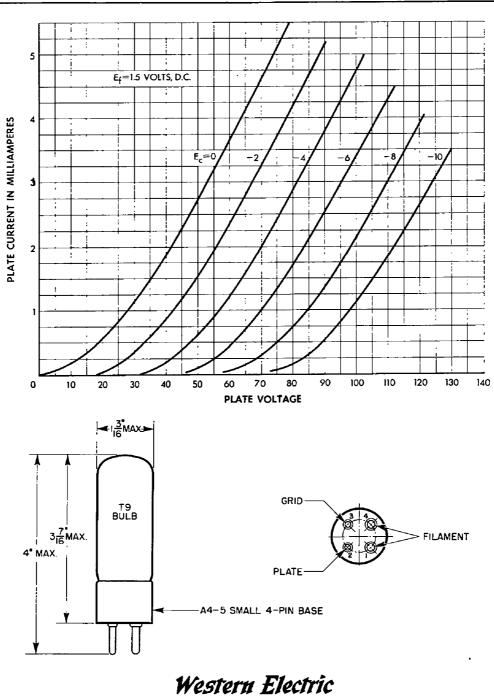
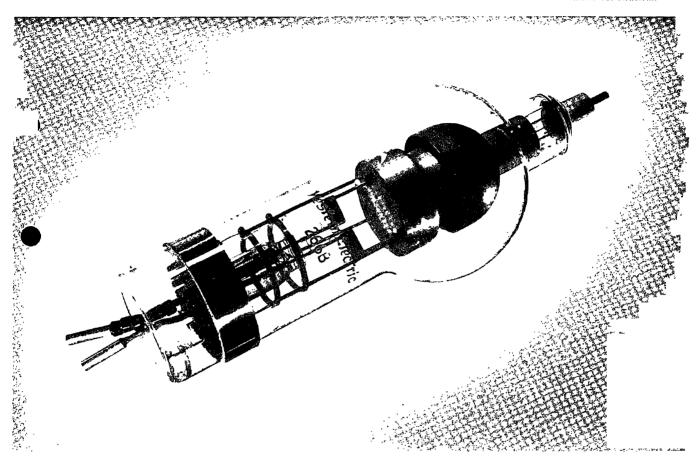

MAXIMUM RATINGS, Design-Center Values

Plate Voltage .									135 volts
Plate Current .									3.5 milliamperes

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS - CLASS A1 AMPLIFIER


Plate Voltage .								60	100	volts
Grid Voltage								-2		volts
Peak A-F Grid Volt	age							2	8	
Plate Current									2.10	milliamperes
Transconductance									580	micromhos
Amplification Factor								7.3	7.2	
Plate Resistance									12400	ohms
Load Resistance								23400	24800	
Maximum Signal Pov	ver (Jutpu	t .				. '	2.1	30	milliwatts
Total Harmonic Dist										

PAGE 3 - 264C



A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

PRINTED IN U.S.A.

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.266B ISSUE 1, AUGUST 1948 A.T.&T. CO. STANDARD

RECTIFIER HALF-WAVE, MERCURY-VAPOR

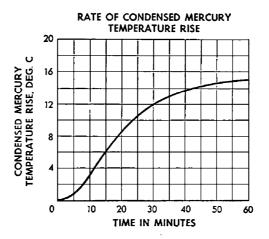
Western Electric

DESCRIPTION

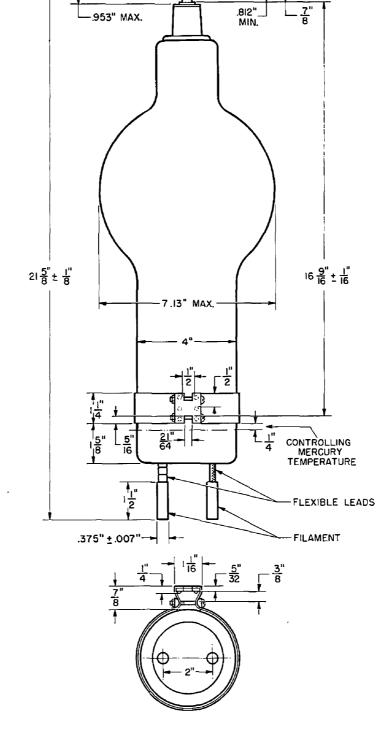
The 266B is a half-wave, mercury-vapor rectifier tube for use in high-voltage rectifier circuits.

MAXIMUM RATINGS

Peak Inverse Anode Voltage Average Cathode Current (Quadrature Operation) 22000 volts 10 amperes

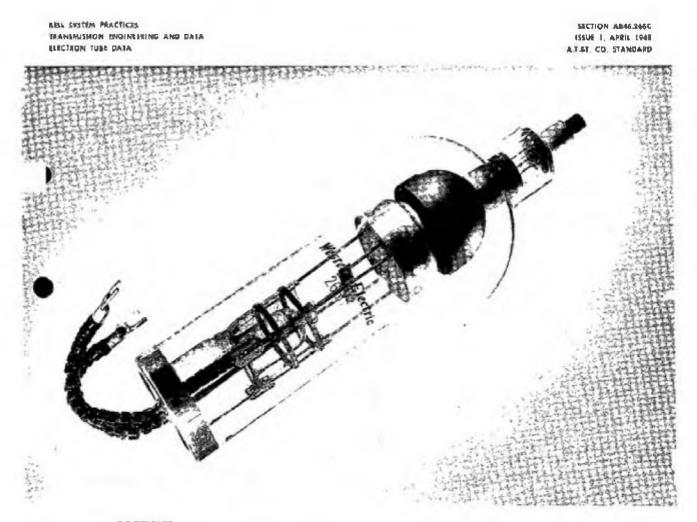

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 6-4"

266B


266B - PAGE 2

MAXIMUM RATINGS, ABSOLUTE VALUES			
Peak Inverse Anode Voltage for			
Condensed Mercury Temperature 20 to 40 C		2	2000 volts
Condensed Mercury Temperature 20 to 50 C			2500 volts
Cathode Current			
Peak			
In-phase Operation			20 amperes
Quadrature Operation			40 amperes
Average			- ··· k · ···
In-phase Operation			5 amperes
Quadrature Operation			10 amperes
Surge (maximum duration 0.2 second)			200 amperes
Averaging Time			60 seconds
Frequency			150 cycles sec.
ELECTRICAL DATA	Min.	Bogey	Max.
Filament Voltage	4.75	5.0	5.25 volts
Filament Current at 5.0 Volts		42	46 amperes
Cathode Heating Time, Required	300	•••••	seconds
Anode Voltage Drop	•••••	15	volts
Critical Anode Voltage	•••••	••••••	100 volts
MECHANICAL DATA			
Net Weight, Approximate			4¼ pounds
Equilibrium Condensed Mercury Temperature Rise			
At Full Load, Approximate	-	•	18 centigrade
At No Load, Approximate	-		15 centigrade
Cooling The condensed mercury temperat			
specified for the maximum peak in			
application. If forced-air cooling i			
minute from a 1-inch nozzle direct			
control just below the support colla			
Mounting This tube has a collar at the filame			
ported when mounted. It should b			

with the filament end down. Connections to the anode and filament terminals should be flexible. Sufficient clearance should be maintained around the tube to insure free air circulation.


ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 6-47

.375"±.007"-

ANODE

PAGE 3 - 266B

RECTIFIER HALF-WAVE, MERCURY-VAPOR

Western Electric

DESCRIPTION

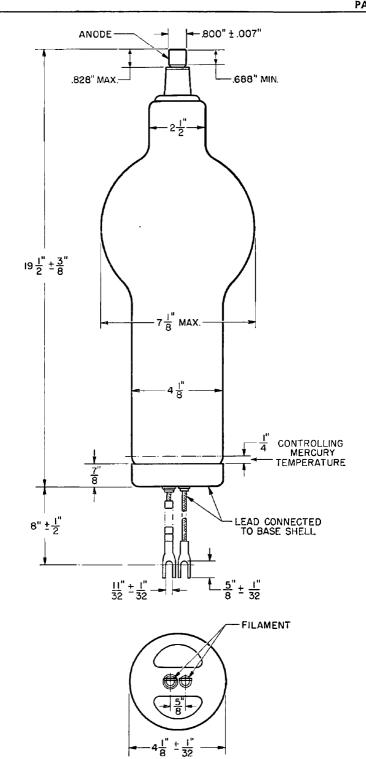
The 266C is a half-wave, mercury-vapor rectifier tube for use in high-voltage sectifier circuits.

MAXIMUM RATINGS Peak Inverse Anode Voltage Average Cathode Current (Quadrature Operation)

22000 volts 10 amperes

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 6-47 266C - PAGE 2

MAXIMUM RATING	GS, ABSOLUTE VALUES			
Peak Inverse And	ode Voltage for			
	fercury Temperature 20 to 40 C		2	2000 volts
	Aercury Temperature 20 to 50 C		1	2500 volts
Cathode Current				
Peak				
In-phase	e Operation			20 amperes
	ture Operation			40 amperes
Average				1
0	e Operation			5 amperes
	ture Operation			10 amperes
	mum duration 0.2 second)			200 amperes
Averaging T				60 seconds
Frequency				150 cycles sec.
				·····
ELECTRICAL DATA		Min.	Bogey	Max.
Filament Voltage		4.75	5.0	5.25 volts
Filament Current			42	46 amperes
Cathode Heating		300		seconds
Anode Voltage D		••••••	15	volts
Critical Anode Ve		••••••		100 volts
	0			
MECHANICAL DAT	A			
Net Weight, App				4¼ pounds
Equilibrium Cond	densed Mercury Temperature Rise			
At Full Load	l, Approximate			18 centigrade
At No Load,	Approximate			15 centigrade
Cooling	The condensed mercury temperatu	re should	be held	within the range
	specified for the maximum peak inv			
	application. If forced-air cooling is			
	minute from a 1-inch nozzle directed			
	control just above the top of the base			
Mounting	This tube should be mounted in a ve	rtical posit	ion only,	with the filament


Mounting

•

end down. The connection to the anode terminal should be flexible. Sufficient clearance should be maintained around the tube to insure free air circulation.

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 6-47

•

PAGE 3-266C

•

Western Electric

268A Vacuum Tube

Classification—Filamentary air-cooled triode

May be used as an audio-frequency amplifier or as a radio-frequency amplifier, modulator or oscillator.

Dimensions—Dimensions and outline diagrams are shown in Figures 1 and 2. The overall dimensions are:

 Maximum overall length
 6¹⁵/₁₆"

 Maximum diameter
 2⁷/₁₆"

Mounting—Four-pin bayonet base for use in a W.E. 143B or similar socket. The anode terminal is located at the top of the bulb.

Filament-Thoriated tungsten

)

11

)

Filament voltage	5.0 volts, a.c. or d.c.
Nominal filament current	3.25 amperes
Average thermionic emission	0.60 ampere

Copyright 1936 Western Electric Company, Incorporated

Average Direct Interelectrode Capacitances

Plate to grid	 • •	 	 	• • • •	 2.3 µµf
Grid to filament					 5.4 µµf
Plate to filament	 	 	 		 1. 1 μμf

Characteristics—Performance data given below are based upon a typical set of conditions. Variations can be expected with different circuits and tubes.

Figures 3 and 4 give the static characteristics of a typical tube plotted against grid and plate voltages.

Average Characteristics at maximum direct plate voltage and dissipation Class A $(E_b = 750 \text{ volts}, I_b = 25 \text{ milliamperes})$

Amplification factor		5
Grid to plate transconductance	····· ··· ··· ··· ··· ·	800 micromhos

٠

.

Operation

Maximum Ratings

Max. direct plate voltage	750 volts
Max. direct plate current	60 milliamperes
Max. plate dissipation	25 watts
Max. direct grid current	10 milliamperes
Max. r-f grid current	3 amperes
Max. frequency for the above ratings	30 megacycles
Max. plate voltage for upper frequency limit of 60 Mc	400 volts
Max. plate voltage for frequencies between 30 and 60 Mc in proport	io n

Class A Audio Amplifier or Modulator

750	500 volts
-100	-37 volts
25	40 milliamperes
18000	5000 ohms
4.0	1.0 watts
	-100 25 18000

Class B .	Audio	Amplifier or	Modulator f	or Ba	lanced 2	Tube Circuit
-----------	-------	--------------	-------------	-------	----------	--------------

Cluss D Addit Ampliner of Modulator for Dataleed		oncure
Direct plate voltage.	750	500 volts
Grid bias	-120	-70 volts
Direct plate current per tube		
No drive	12	12 milliamperes
Max. drive	60	60 milliamperes
Plate dissipation.	20	15 watts
Load resistance plate-to-plate		7400 ohms
Load resistance per tube	2800	1850 ohms
Approximate maximum output-2 tubes	50	33 watts
Recommended power for driving stage	5	5 watts
Class B Radio-Frequency Amplifier		
Direct plate voltage	750	500 volts
Direct plate current for carrier conditions.	50	60 milliamperes
Grid bias Approximate carrier watts for use with 100%	-165	-105 volts

ass C Radio-Frequency Oscillator of Fower ship	mici-oui	nouunavcu
Direct plate voltage	750	500 volts
Direct plate current.		60 milliamperes
Grid bias2	55 to -340	-165 to -220 volts
Nominal power output	30	20 watts
Plate dissipation	15	10 watts
ass C Radio-Frequency Amplifier—Plate Modula	ted	
Direct plate voltage	500	350 volts

Class C Radio-Frequency Oscillator or Power Amplifier-Unmodulated

Operating Precautions

Mechanical—Figures 1 and 2 show the overall dimensions and basing arrangement for the tube.

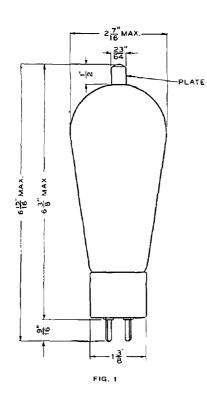
The tubes should not be subjected to mechanical shock or excessive vibration. Mechanical vibration may cause breakage of the thoriated tungsten filaments.

A free circulation of air must be provided to insure adequate cooling of the glass during operation.

Electrical—Overload protection should always be provided for the plate circuit. A suitable fuse or circuit breaker should remove the plate voltage if the plate current exceeds 75 milliamperes. Although the tube is sufficiently rugged to withstand momentary overloads, a prolonged overload caused by inefficient adjustment of the circuit, may damage the tube. When adjusting a new circuit, reduced plate voltage or a series resistance of 1000 to 5000 ohms in the plate circuit should be used until it is operating properly.

The filament should always be operated at the rated voltage measured at the tube terminals. A 5% decrease in filament voltage reduces the thermionic emission approximately 25%. Either direct or alternating current may be used for heating the filament. If direct current is used, the plate and grid circuit returns should be connected to the negative filament terminal. If alternating current is used, the circuit returns should be connected to the center tap of the filament heating transformer winding or to the center tap of a resistor placed between the filament terminals. A resistance of 20 to 30 ohms of three watt rating is suitable.

In cases where severe and prolonged overload has temporarily impaired the electronic emission of the filament, the activity may be restored by operating the filament, with the plate and grid voltages off, 30% above normal voltage for 10 minutes followed by a longer period at normal voltage.

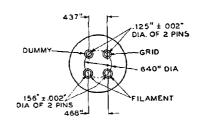

Audio Amplifier or Modulator

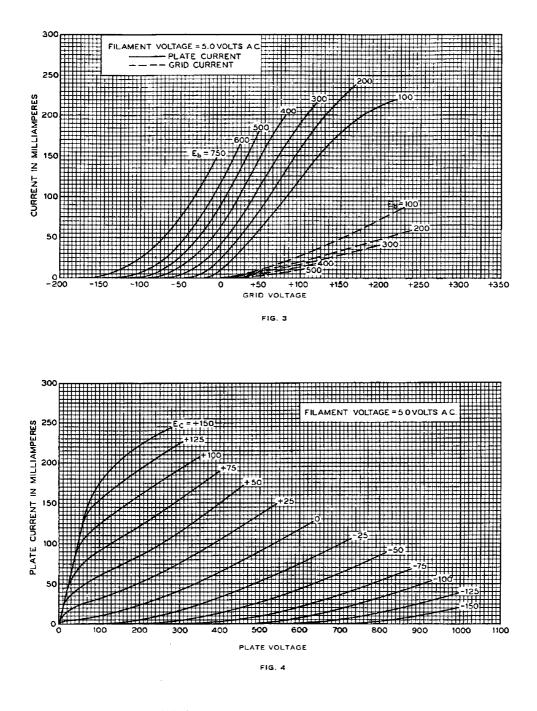
Class A-Peak grid drive equal to or less than the grid bias.

Grid bias may be obtained from the drop across a resistance in the plate current return or from a battery or rectifier supply.

Plate dissipation allowable for this type of service is generally lower than is safe for other uses since the energy is dissipated in the plate in smaller areas due to relatively high voltage drop in the tube.

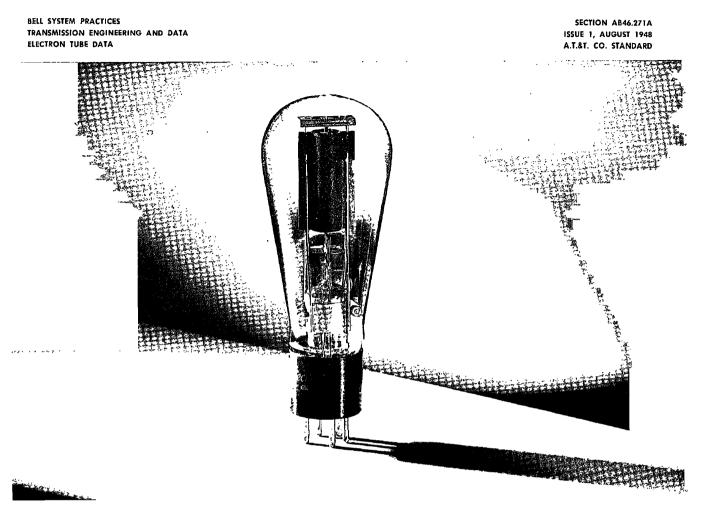
The plate dissipation is equal to the plate voltage multiplied by the normal plate current. Performance data are based upon the use of a resistance load. Undistorted output is calculated on the basis of 5% second harmonic distortion.




FIG. 2

•

[5]



268A

1-D-36-28C PRINTED IN U.S.A. A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company, and the Western Electric Company

V. T. DATA SHEET 268A ISSUE 1

TRIODE POWER AMPLIFIER

Western Electric

:

DESCRIPTION

The 271A is a power amplifier triode having an indirectly heated cathode. It is designed for use in amplifier, modulator, or oscillator circuits for both audio and radio frequencies.

CHARACTERISTICS

Heater Voltage						-	5.0	volts
Maximum Plate Voltage							450	volts
Power Output			•	•			3.0	watts

FLECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 12-47

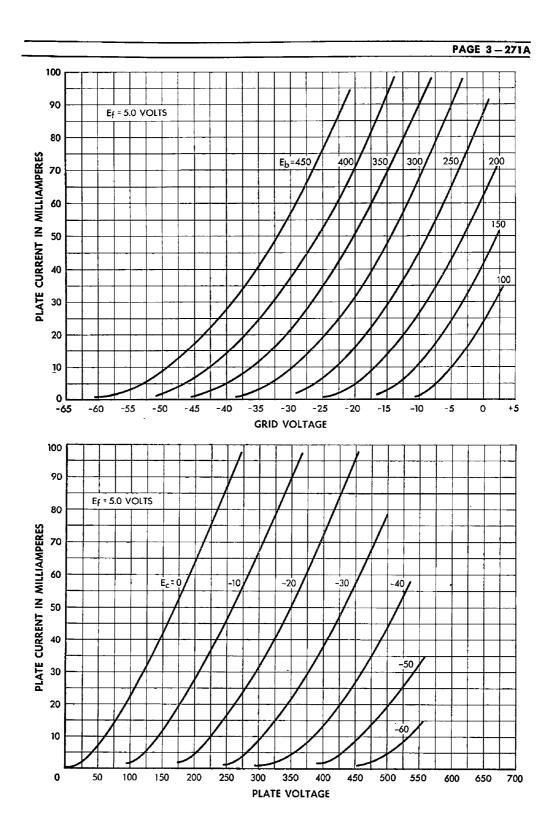
271A -- PAGE 2

GENERAL CHARACTERISTICS

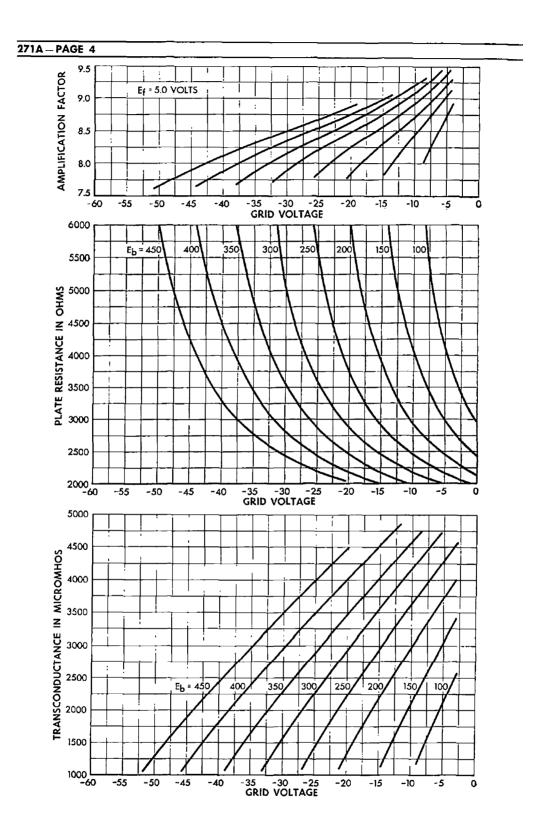
ELECTRICAL DATA

Heater Voltage, A-C or D-C	5.0 volts
Heater Current	2.0 amperes
Direct Interelectrode Capacitances (without external shield)	
Grid to Plate	4.2 uuf
Input	6.7 uuf
Output	3.1 uuf

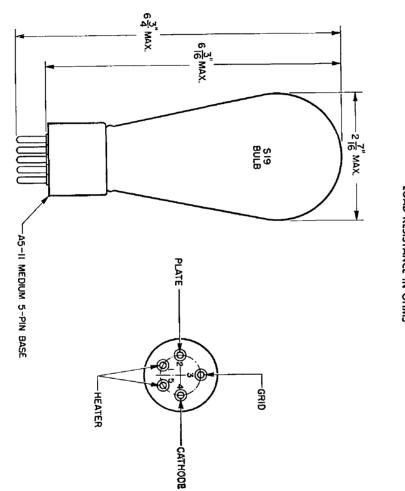
MECHANICAL DATA

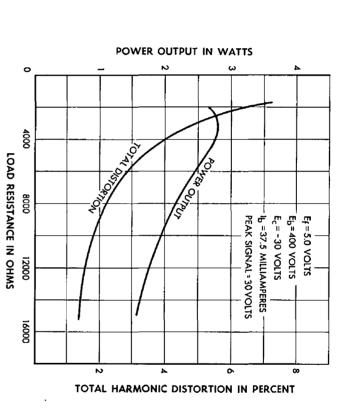

Cathode	Coated Unipotential
Bulb	S19
Base	Medium 5-pin
Mounting Position	Any
Dimensions and pin connections shown in outline drawing on Page 5	

MAXIMUM RATINGS, Design-Center Values


Plate Voltage	450 volts
Plate Dissipation	27 watts
Plate Current	60 milliamperes
Heater-Cathode Voltage	100 volts

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS – CLASS A_i AMPLIFIER


Plate Voltage	. 300	350	400	450	volts
Grid Voltage	-25	-25	-30	-30 ·	volts
Peak A-F Grid Voltage	25	25	30	30 -	volts
Plate Current	19.5	34.5	37.5	57.5	milliamperes
Transconductance	2250	2930	2920	3480	micromhos
Amplification Factor	8.2	8.4	8.3	8.5	
Plate Resistance	3650	2850	2830	2450	oh ms
Load Resistance	. 14600	5700	6000	4900	ohms
Maximum Signal Power Output	0.9	1.7	2.4	3.1	watts
Total Harmonic Distortion	4.5	6	6	3.1 j	per cent


ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 12-47

•

PAGE 5-271A

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.272A ISSUE I, OCTOBER 1950 A.T.&T. CO. STANDARD

272A

TRIODE LOW POWER AMPLIFIER

Western Electric

DESCRIPTION

The 272A is a triode having an indirectly heated cathode. It is designed for use as a radio-frequency antenna-coupling amplifier, low-power audio-frequency amplifier, detector or modulator.

CHARACTERISTICS

Heater Voltage Maximum Plate Voltage Amplification Factor 10.0 volts 180 volts .6.0

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 3-48

272A - PAGE 2

GENERAL CHARACTERISTICS

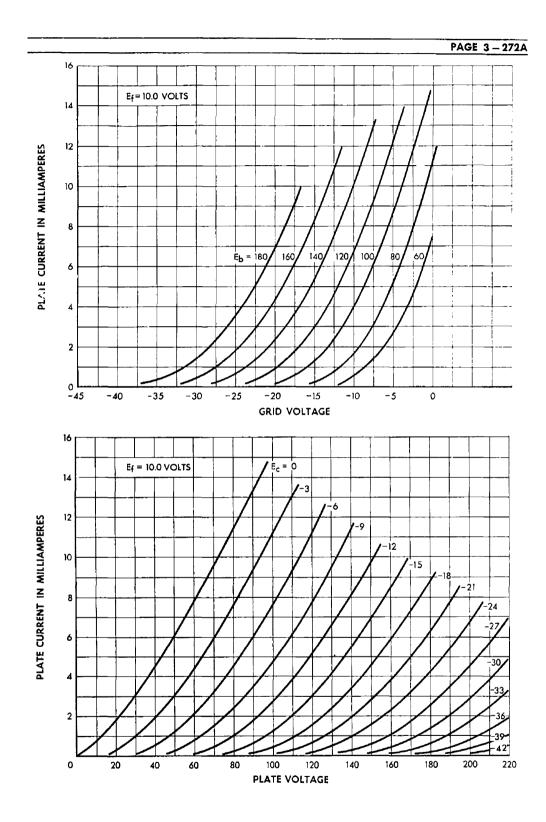
ELECTRICAL DATA

Heater Voltage, A-C or D-C	10.0 volts
Heater Current	320 milliamperes
Direct Interelectrode Capacitances (without external shield)	_
Grid to Plate	2.8 uuf
Input .	3.1 uuf
Output	2.5 uuf

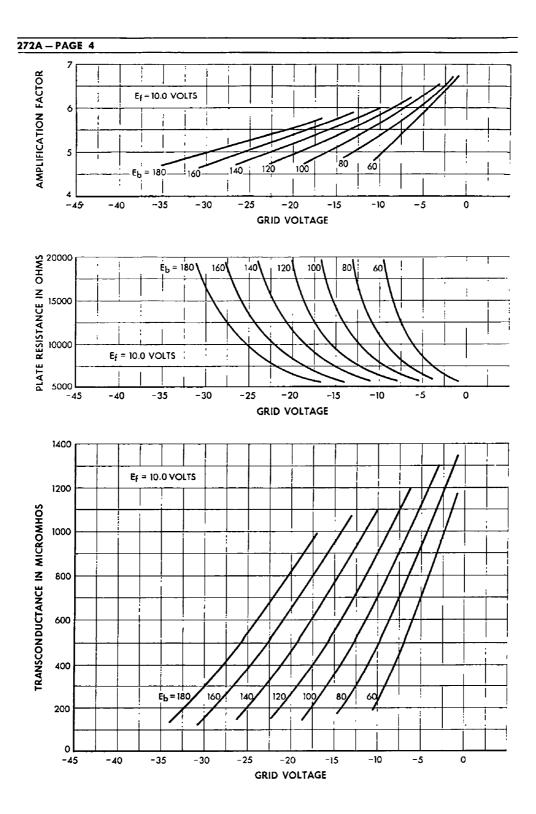
ı.

.

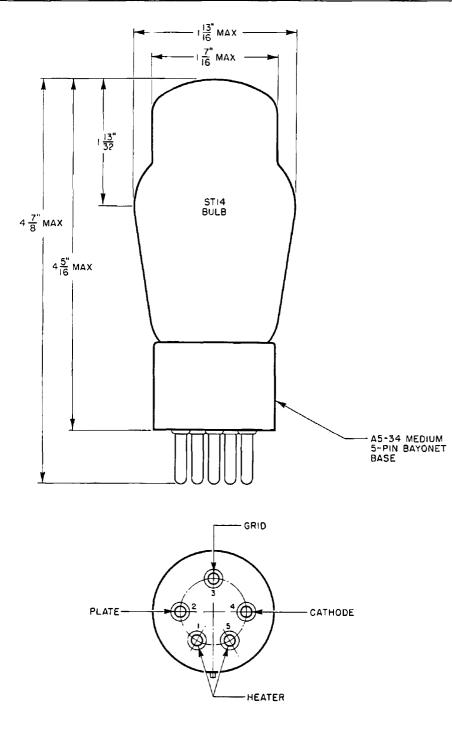
MECHANICAL DATA

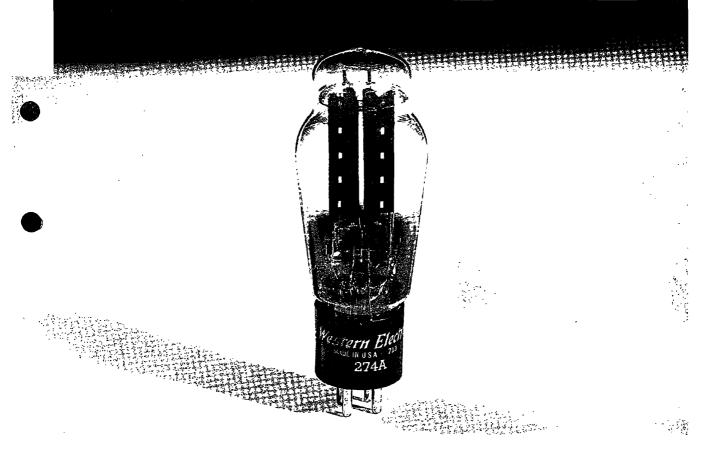

Cathode			Coated unipotential
Bulb			ST14
Base			Medium 5-pin, with bayonet pin
Mounting Position			Апу
Dimensions and pin conn	ections sho	wn in outline drawi	ng on Page 5

MAXIMUM RATINGS, Design-Center Values


Plate Voltage	 180 volts
Plate Dissipation	2.0 watts
Plate Current	12.0 milliamperes
Heater-Cathode Voltage	100 volts

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS - CLASS A, AMPLIFIER


Plate Voltage	100	120	160	180 volts
Grid Voltage	-7	-10	-17	-21 volts
Peak A-F Grid Voltage	7	10	17	21 volts
Plate Current	6.6	6.7	6.6	6.2 milliamperes
Transconductance	950	910	820	760 micromhos
Amplification Factor	6.0	5.8	5.6	5.5
Plate Resistance	6300	6400	6800	7200 ohms
Load Resistance	12600	12800	13600	14400 ohms
Maximum Signal Power Output	30	60	150	210 milliwatts
Total Harmonic Distortion	4.0	5.0	6.3	8.0 per cent


ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 3-48

I.

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 3-48 BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.274A ISSUE 1, AUGUST 1948 A.T.&T. CO. STANDARD

RECTIFIER FULL-WAVE, HIGH VACUUM

Western Electric

DESCRIPTION

The 274A is a filamentary full-wave rectifier designed to supply direct current from an alternating current source.

CHARACTERISTICS

Filament Voltage		5.0 volts
Maximum Plate Voltage (RMS) per Plate		660 volts
Maximum D-C Output Current	 	225 milliamperes

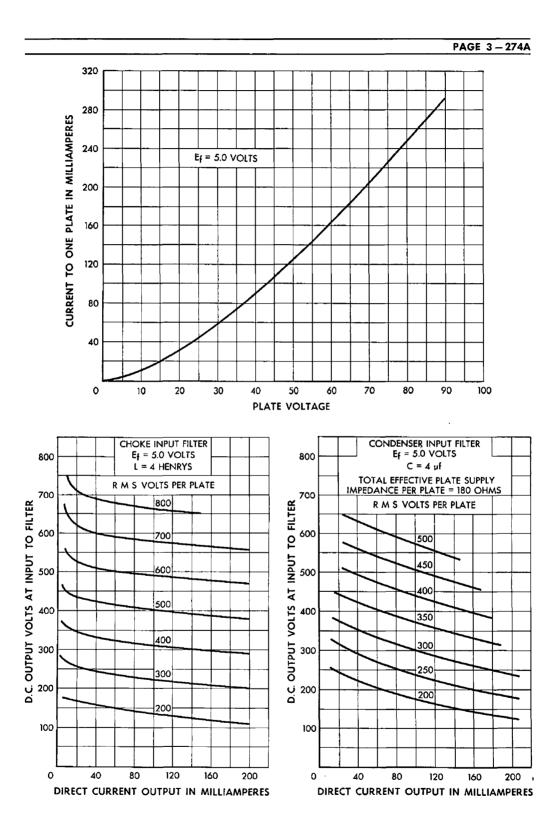
ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 1-48			274A
	1		

274A - PAGE 2

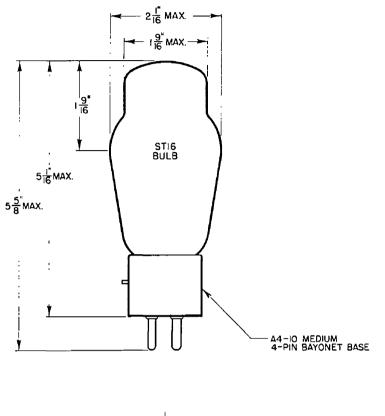
GENERAL CHARACTERISTICS

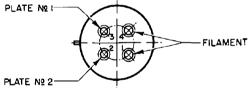
ELECTRICAL DATA

Filament Voltage		5.0 volts
Filament Current		2.0 amperes
MECHANICAL DATA	•	
Cathode		Coated filament
Bulb .		ST16
Base		Medium 4-pin
Mounting Position	Preferably vertical;	-
	#1 and =4 should be i	in horizontal plane


Dimensions and pin connections shown in outline drawing on Page 4

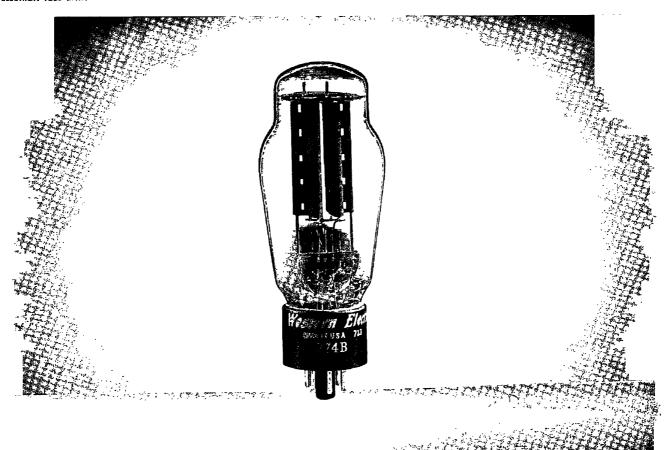
MAXIMUM RATINGS, Design-Center Values


Peak Inverse Voltage	1500 volts
Peak Plate Current per Plate	675 milliamperes
Peak Transient Plate Current per Plate	2.5 amperes
With Choke-Input Filter:	
A-C Plate Voltage per Plate (RMS)	660 volts
D-C Output Current	225 milliamperes
Minimum Input-Choke Inductance	3 hearys
With Condenser-Input Filter:	
A-C Plate Voltage per Plate (RMS)	450 volts
D-C Output Current	160 milliamperes
Minimum Total Effective Plate-Supply Impedance per Plate	100 ohms


TYPICAL OPERATING CONDITIONS

With Choke-Input Filter:		
A-C Plate Voltage per Plate (RMS)	550	volts
D-C Output Current	160	milliamperes
D-C Output Voltage, Approximate, at Input to Filter	430	volts
Filter Input Choke	5	henrys
With Condenser-Input Filter:		
A-C Plate Voltage per Plate (RMS)	450	volts
D-C Output Current	140	milliamperes
D-C Output Voltage, Approximate, at Input to Filter	475	volts
Total Effective Plate-Supply Impedance per Plate	180	ohms
Filter Input Condenser	4	microfarads

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 1-48



A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

PRINTED IN U.S.A.

WECO-T2451

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.2748 ISSUE 1, AUGUST 1948 A.T.&T. CO. STANDARD

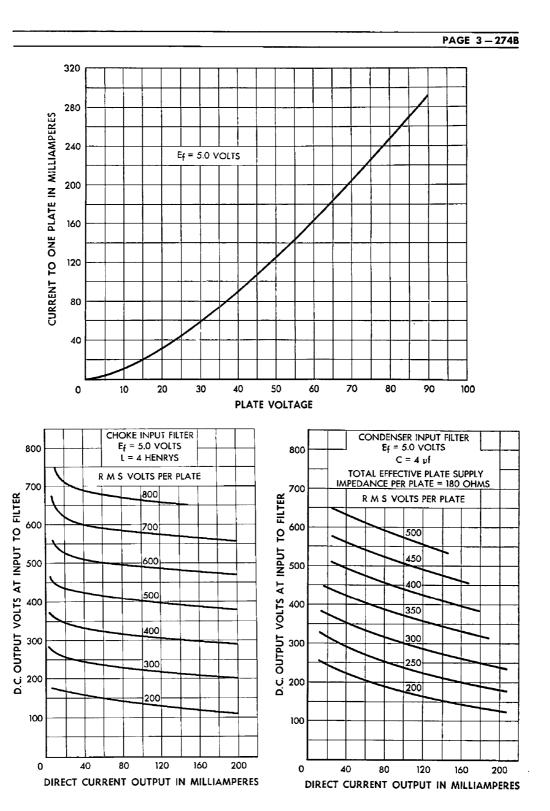
RECTIFIER FULL-WAVE, HIGH VACUUM

Western Electric

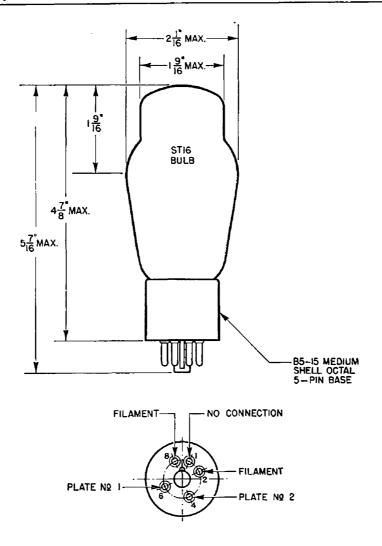
DESCRIPTION

The 274B is a filamentary, octal based, full-wave rectifier designed to supply direct current from an alternating current source.

CHARACTERISTICS


Filament Voltage		5.0 volts
Maximum Plate Voltage (RMS) per Plate		660 volts
Maximum D-C Output Current	<i>.</i>	225 milliamperes

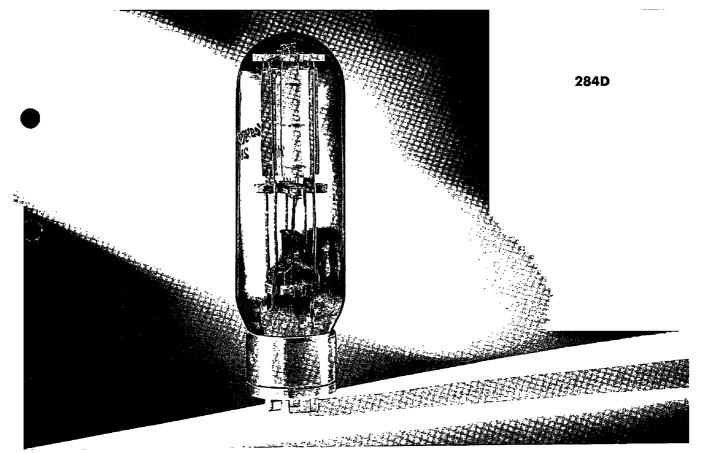
ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 1-48


274B

274B - PAGE 2

GENERAL CHARACTERISTICS	
ELECTRICAL DATA	
Filament Voltage	5.0 volts
Filament Current	2.0 ampere
MECHANICAL DATA	
Cathode	Coated filament
Bulb Base	ST16 Medium 5 pin orga
Mounting Position	Medium 5-pin, octa Preferably vertical; if horizontal, pin
Mounting Position	\$1 and \$4 should be in vertical plane
Dimensions and pin connections shown in outline	-
MAXIMUM RATINGS, Design-Center Values	
Peak Inverse Voltage	1500 volts
Peak Plate Current per Plate	675 milliamperes
Peak Transient Plate Current per Plate	2.5 amperes
With Choke-Input Filter:	
A-C Plate Voltage per Plate (RMS)	660 volts
D-C Output Current	225 milliamperes
Minimum Input-Choke Inductance	3 henrys
With Condenser-Input Filter:	
A-C Plate Voltage per Plate (RMS)	450 volts
D-C Output Current	160 milliamperes
Minimum Total Effective Plate-Supply Impedance	per Plate 100 ohms
TYPICAL OPERATING CONDITIONS	
With Choke-Input Filter:	
A-C Plate Voltage per Plate (RMS)	550 volts
D-C Output Current	160 milliamperes
D-C Output Voltage, Approximate, at Input to Fil	ter 430 volts
Filter Input Choke	. 5 henrys
With Condenser-Input Filter:	
A-C Plate Voltage per Plate (RMS)	450 volts
D-C Output Current	140 milliamperes
D-C Output Voltage, Approximate, at Input to Fil	
Total Effective Plate-Supply Impedance per Plate	180 ohms
Filter Input Condenser	4 microfarads

ELECTRON TUBE DATA SHEET FILE: RECTIFIER SECTION 1-48


Western Electric

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

PRINTED IN U.S.A.

WECO-T2451

BELL SYSTEM PRACTICES TRANSMISSION ENGINEERING AND DATA ELECTRON TUBE DATA SECTION AB46.284D ISSUE 1, FEBRUARY 1949 A.T.&T. CO. STANDARD

TRIODE

AMPLIFIER, OSCILLATOR OR MODULATOR

Western Electric

DESCRIPTION

The 284D is a three-electrode tube designed for use as an audio-frequency amplifier and modulator. It may also be used as a radio-frequency amplifier or oscillator. The anode is capable of dissipating 100 watts and cooling is accomplished by radiation. The cathode is a thoriated tungsten filament. Maximum ratings apply up to 6 megacycles.

MAXIMUM RATINGS

D-C Plate Voltage								1
D-C Plate Current								
Continuous Plate Dissipation								
D-C Grid Current								

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 5-48 1250 volts150 milliamperes100 watts100 milliamperes

284D - PAGE 2

GENERAL CHARACTERISTICS

ELECTRICAL DATA

ELECTRICAL DATA	Min.	Bogey	Max.
Filament Voltage	9.5	10.0	10.5 volts
Filament Current at Bogey Voltage	3.1	3.25	3.4 amperes
Amplification Factor			
Conditions: $E_{a} = 1250$ volts, $I_{b} = 64$ milliamperes	4.3	4.8	5.3
Interelectrode Capacitances			
Grid-Plate	7.6	8.6	9.6 uuf
Grid-Filament	4.5	5.4	6.3 uuf
Plate-Filament	4.1	5.5	6.9 uuf

MECHANICAL DATA

Mounting Position		Vertical or horizontal with
		plane of filament vertical
Net Weight, Approximate	• •	6.5 ounces

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS

AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS \mathbf{A}_1

MAXIMUM RATINGS, Absolute Values

MAXIMUM RATINGS, Absolute	Values	CCS
D-C Plate Voltage		1250 volts
D-C Grid Voltage		-240 volts
Plate Input		85 watts
Plate Dissipation	· · ·	85 watts

TYPICAL OPERATION			
	CCS	CCS	CCS
D-C Plate Voltage	750	1000	1250 volts
D-C Grid Voltage	-100	-160	-215 volts
Peak A-F Grid Voltage	100	160	215 volts
D-C Plate Current	110	83	68 milliamperes
Load Resistance	8000	8500	12000 ohms
Total Harmonic Distortion	2.4	3.6	4.4 per cent
Power Output	11.0	24.4	31.0 watts

AUDIO-FREQUENCY POWER AMPLIFIER AND MODULATOR-CLASS B						
MAXIMUM RATINGS, Absolute Values		CCS				
D-C Plate Voltage		1250 volts				
Signal D-C Plate Current ¹		150 milliamperes				
Signal Plate Input ¹		188 watts				
Plate Dissipation ¹		100 watts				
TYPICAL OPERATION						
Unless otherwise specified, values are for 2 tubes	CCS	CCS				
D-C Plate Voltage	1000	1250 volts				
D-C Grid Voltage	-200	-250 volts				
Peak A-F Grid-to-Grid Voltage	530	720 volts				
Zero Signal D-C Plate Current	20	25 milliamperes				
Maximum Signal D-C Plate Current	250	300 milliamperes				
Effective Load Resistance, Plate-to-Plate	7700	7200 ohms				
Maximum Signal Driving Power, Approximate	3.5	2 watts				
Maximum Signal Power Output, Approximate	150	200 watts				

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR-CLASS C TELEGRAPHY

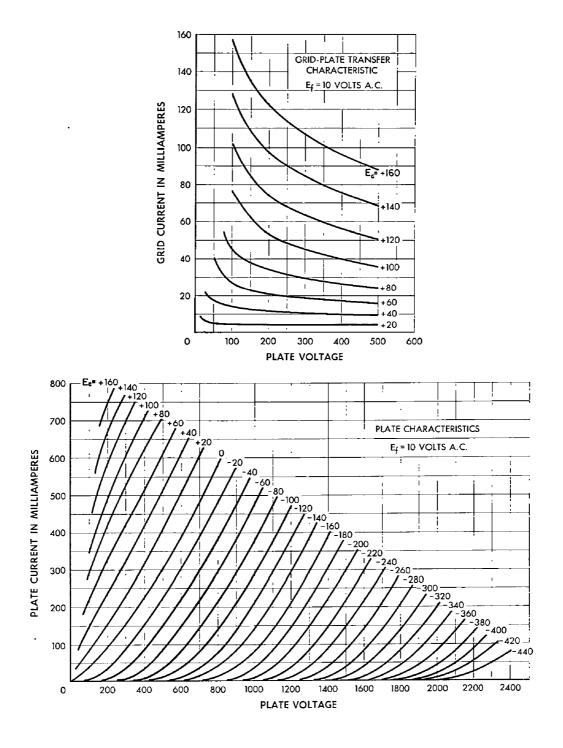
Key-down conditions per tube without amplitude modulation²

MAXIMUM RATINGS, Absolute Values

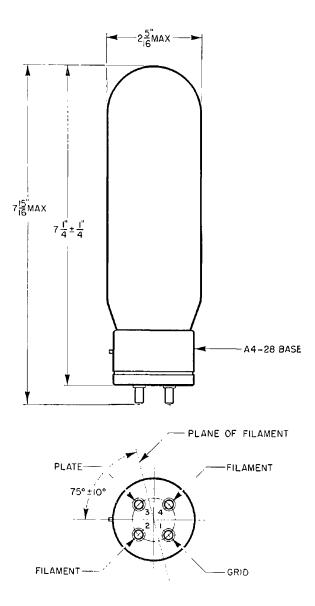
······································		CCS
D-C Plate Voltage		1250 volts
D-C Grid Voltage		-550 volts
D-C Plate Current		150 milliamperes
D-C Grid Current		100 milliamperes
Plate Input		188 watts
Plate Dissipation		100 watts
TYPICAL OPERATION	CCS	CCS
D-C Plate Voltage	1000	1250 volts
D-C Grid Voltage	-245	-300 volts
Peak R-F Grid Voltage	385	445 volts
D-C Plate Current	150	150 milliamperes
D-C Grid Current, Approximate	18	16 milliamperes
Driving Power, Approximate	6.5	7.5 watts
Power Output, Approximate	115	140 watts

Maximum ratings apply up to 6 megacycles. The tube may be operated at higher frequencies provided maximum values of plate voltage and power input are reduced according to the tabulation below (other maximum ratings are the same as shown above). Special attention should be given to adequate ventilation of the bulb at these frequencies.

CCC


Frequency Percentage of Maximum Rated Plate Voltage and Plate Input	6	15	30 megacycles
Class B Class C Unmodulated			70 per cent 50 per cent

1. Averaged over any audio-frequency cycle of sine wave form.


2. Modulation essentially negative may be used if the positive peak of

the envelope does not exceed 115 per cent of the carrier conditions.

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 5-48

.

ELECTRON TUBE DATA SHEET FILE: TRANSMITTING SECTION 5-48 BELL SYSTEM PRACTICES Transmission Engineering and Data Electron Tube Data SECTION AB46.287A Issue 3, October 1962 A.T.& T.Co. Standard

ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 287A ELECTRON TUBE

DESCRIPTION The 287A is a three-electrone mercury-vapor thyratron with a negative control characteristic. This tube is designed for regulated or controlled rectifiers. MAXIMUM RATINGS Unode Vootage 1250 2500 volts Peak Gathode Current. 1.5 0.64 amperes Average

FILE: THYRATRON SECTION

(C) American Telephone and Telegraph Company 1962

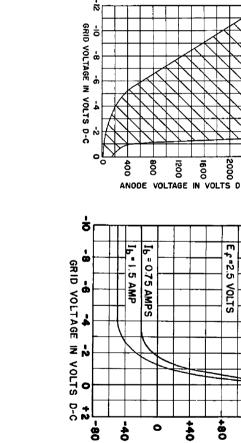
287A

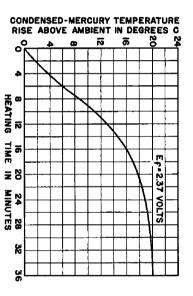
2874 - Page 2

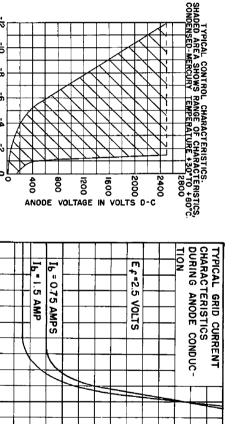
MAXIMUM RATINGS, Absolute Values

Peak Anode Voltage			
Inverse	1250	2500	volts
Forward	1250	2500	volts
Cathole Current			
Peak	6.0	2,5	amperes
Average	1.5	0.64	amperes
Surge (maximum duration 0.1 second)	60	25	amperes
Averaging Time	5	5	seconds
Negative Grid Voltage			
Before Conduction	500	500	volts
During Conduction	10	10	volts
Positive Grid Current, Average			
(averaging time = one cycle)	.010	.010	ampere
Condensed Mercury Tenperature Limits	+ 30	to +80	centigrade

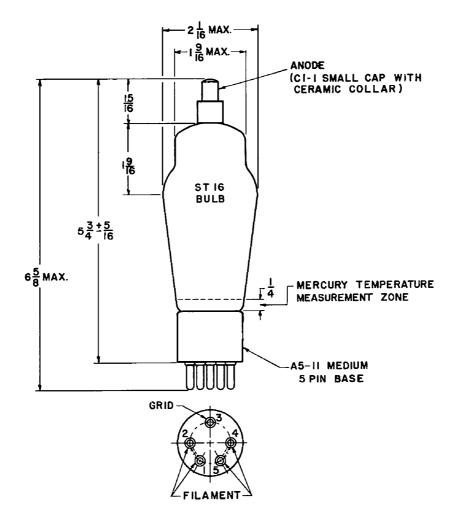
ELECTRICAL DATA


HEHOTICE ONLY BILLIN				
	Min.	Bogey	Max.	
Filament Voltage	2.37	2.5	2.62	volts
Filament Current at 2.5 volts		7.0		amperes
Filament Heating Time Required	15			seconds
Anode to Grid Capacitance		1.8		uuf.
Grid to Filament Capacitance		5.0		uuf.
Deionization Time, Approximate ¹				
E _{bb} =2500 volts;I _b =2.5 amperes:				
$E_{cc} = -18$ volts; THg=80C; Rg=20000 ohms		1000		microseconds
Ionization Time, Approximate ²				
Ebb=100 volts;THg=40C;Grid Cvervoltage=5 volts		150		microseconds
Ebb=100 volts;TEg=80C;Grid Cvervoltage=25 volts		1		microsecond
Anode Voltage Drop		15		volts
Critical Grid Current at 220 Anode Volts			5	microamperes


MECHANICAL DATA


Type of Cooling	Convection
Bquilibrium Condensed Mercury Temperature	
Rise Above Ambient, Approximate	
At Full Load	30 centigrade
At No Load	20 centigrade
Mounting Position	Vertical-base down
Net Weight, Approximate	3 ounces
Dimensions and pin connections shown in outline drawing	3 on Page 4.

- 1. Deionization time decreases with an increase in negative grid voltage or with a decrease in (a) condensed mercury temperature (THg), (b) grid resistance or (c) anode current immediately preceding the end of conduction.
- 2. Ionization time decreases with an increase in (a) anode voltage, (b) condensed mercury temperature (THg) or (c) grid overvoltage. Grid overvoltage is defined as the magnitude by which the applied voltage exceeds, in a positive direction, the critical grid voltage value. Critical grid voltage is the instantaneous value of grid voltage at the time when anode current starts to flow.



+160

+200

+120

GRID CURRENT IN MILLIAMPERES D-C

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

PRINTED IN U.S., A.

BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.293A Issue 1, September 1950 A.T.&T. Co. Standard

293A

PENTODE POWER AMPLIFIER

Western Electric

DESCRIPTION

The 293A is a suppressor grid, power pentode having an indirectly heated cathode. It is designed for use as an audio-frequency power amplifier in Class A_1 service.

CHARACTERISTICS

Heater Voltage					10.0 volts
Plate Current .		E E - 190 14	(.		15.8 milliamperes
Transconductance	. }	$E_{b} = E_{c2} = 180 \text{ volts};$ $E_{c1} = -18 \text{ volts}; E_{c3} = 0$.		1175 micromhos
Power Output .)	$E_{c1} = -16$ volts; $E_{c3} = 0$	ι.		1.2 watts

ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 10-48

293A PENTODE .

GENERAL CHARACTERISTICS

ELECTRICAL DATA

Heater Voltage, A-C or D-C											10.0 volts
Heater Current											320 milliamperes
Direct Interelectrode Capacitan	ices	(w	ithc	out	exte	rna	l sh	ield)		
Grid to Plate											0.66 uuf

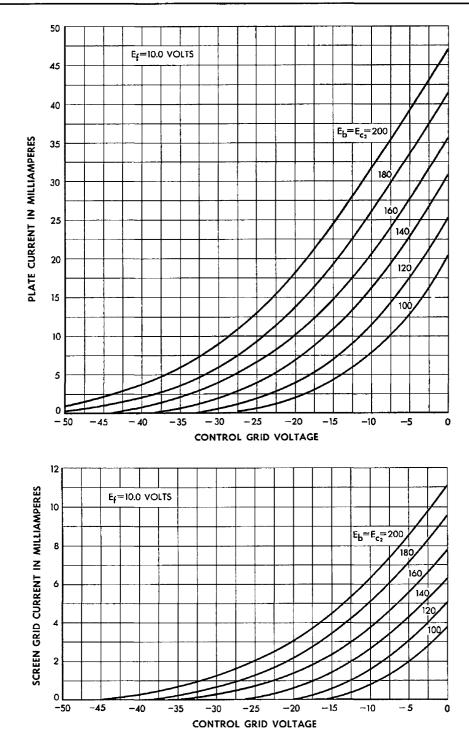
	 • •	•	•	•	•	•	•	•		•	•	 -		
Input .														6.2 uuf
Output														6.5 uuf

MECHANICAL DATA

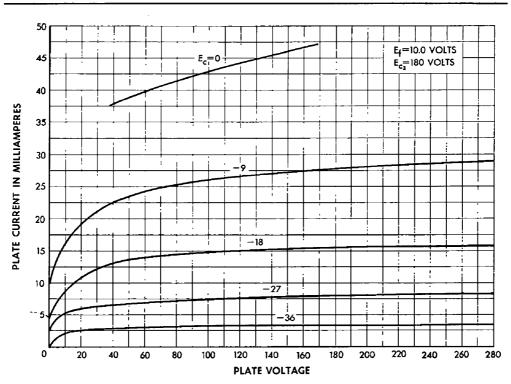
Cathode .											•			•		Coated Unipotential
Bulb																ST14
Base .																Medium 6-pin
Mounting Positi	on															Any
Dimensions and	pin	con	necti	ions	sho	wn	in	outl	ine	dra	wir	ng o	n H	Page	6	

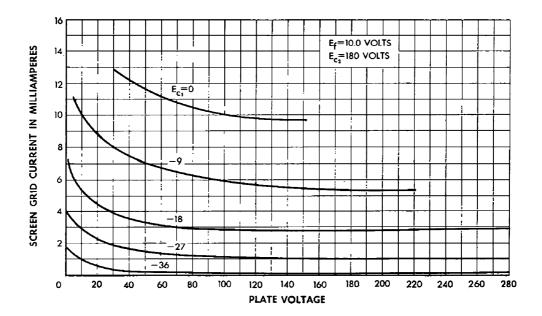
MAXIMUM RATINGS, Design-Center Values

Plate Voltage								250 volts
Screen Grid Voltage								200 volts
Plate Dissipation								5 watts
Screen Grid Dissipation								1 watt
Cathode Current								30 milliamperes
Heater-Cathode Voltage								150 volts

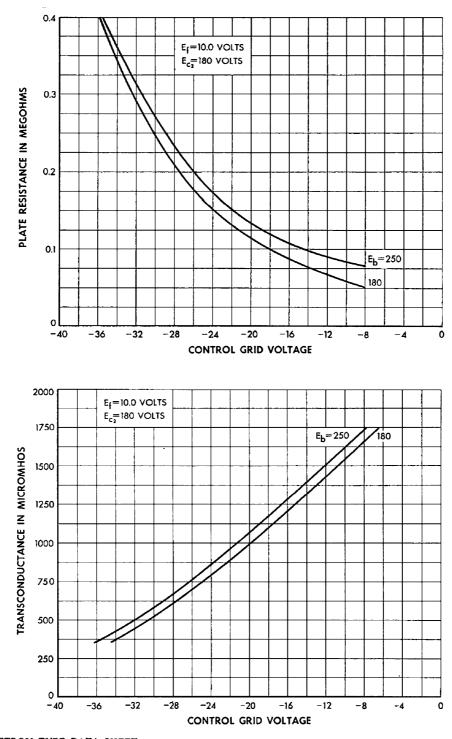

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

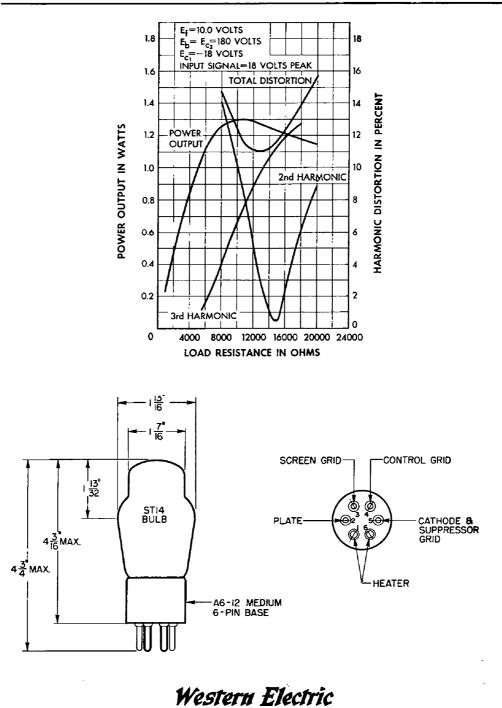
SINGLE TUBE AMPLIFIER -- CLASS A


Plate Voltage				135	180	250	volts
Screen Grid Voltage				135	180	200	volts
Control Grid Voltage				-12	-18	-18	volts
Peak A-F Grid Voltage				12	18	18	volts
Zero Signal Plate Current				12.5	15.8	21.5	milliamperes
Maximum Signal Plate Current .				13.5	17.0	23.5	milliamperes
Zero Signal Screen Grid Current				1.9	2.7	3.5	milliamperes
Maximum Signal Screen Grid Current				3.2	5.2	5.6	milliamperes
Transconductance				1140	1175	1340	micromhos
Plate Resistance				95000	100000	100000	ohms
Load Resistance				11000	11500	12000	ohms
Maximum Signal Power Output				0.6	1.3	2.1	watts
Total Harmonic Distortion	•	•	•	9.7	11	10	per cent


.

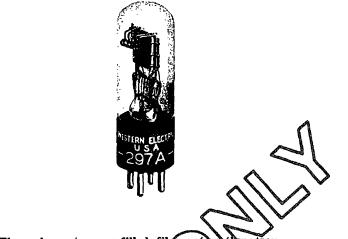
PAGE 3 - 293A





PAGE 5 - 293A

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.


T-2682

BELL SYSTEM PRACTICES Transmission Engineering and Data Electron Tube Data SECTION AB46.297A Issue 1, October 1962 A.T.& T.Co. Standard

297A

Western Electric

297A Vacuum Tube

Classification-Three element, argon filled, filamentary thyratron

This tube is a rectifier of low internal impedance in which the starting of the conduction cycle may be controlled by the grid. It is intended for use in special grouits as a relay or trigger-action device. A few of its other possible uses are: as a controlled requency oscillator giving a square wave-form, as a voltmeter or volume level-indicator, or as a source of sweep-voltage for a linear time axis.

Dimensions—The dimensions and builtin diagrams are given in Figures 1 and 2. The overall dimensions are:

Mounting—This yayuun tube employs a standard four-pin thrust type base suitable for use in a Western Electric N3B of similar socket. The arrangement of electrode connections to the base terminals is shown in Figure 2.

The area may be mounted in either a vertical or horizontal position, although the vertical position of preferable. If mounted in a horizontal position the plane of the filament, which is indicated in Figure 2, should be vertical.

Filament Bating

Filament voltage	1.75 volts
Nominal filament current	0.350 ampere
Required filament heating time	2 seconds

FILE: Thyratron Section

(C) American Telephone and Telegraph Company 1962

The filament of this tube is designed to operate on a voltage basis. The voltage should be maintained to within 5% of its rated value (1.75 volts). Operation of the filament above the upper limit will definitely reduce the life of the tube, while a decrease below the lower limit may cause immediate failure.

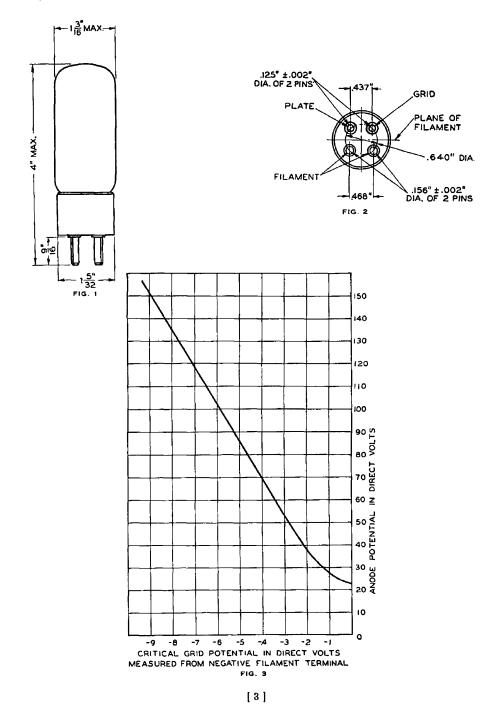
Sufficient time should always be allowed for the cathode temperature to reach its normal operating value before anode current is drawn. If filament transformers with good regulation are used this time is 2 seconds. Failure to allow sufficient time may result in immediate failure. If instantaneous anode currents less than 10 milliamperes are desired with anode voltages less than 50 volts, anode current may be drawn simultaneously with the application of filament voltage; but approximately 2 seconds will be required for the anode current to reach its final value.

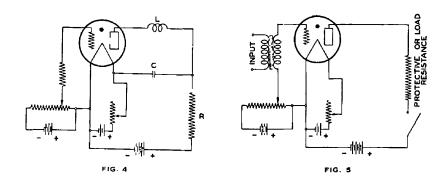
Operating Conditions

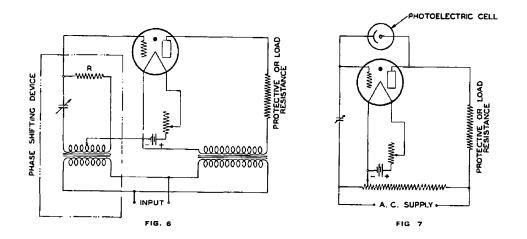
Approximate tube voltage drop	20 volts
Maximum instantaneous anode current	60 milliamperes
Maximum average anode current	10 milliamperes
Maximum time of averaging anode current	0.5 second
Maximum peak voltage between anode and grid	250 volts
Maximum instantaneous grid current.	10 milliamperes
Operating ambient temperature range	-20° to $+50^{\circ}$ C.
Nominal deionization time	

The characteristics of the 297A tube are such that, for any given positive anode potential, there is a critical grid potential. If the grid is held more negative than this value and the tube is non-conducting, the anode current will remain zero. If it is made less negative, the tube becomes conducting, and the anode current assumes a value determined by the applied anode potential and the impedance in the anode circuit. When the tube is conducting, the tube voltage drop is practically independent of the value of both the anode current and the grid potential. To extinguish the discharge and reestablish control by the grid, the anode potential must be reduced to zero or made negative for a period at least as long as the deionization time (100 microseconds).

A typical curve relating the critical grid potential to the anode potential is shown in Figure 3. This characteristic may vary from tube to tube and during the life of a given tube.

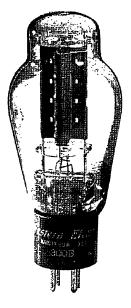

The maximum anode current is specified in terms of an instantaneous value (60 milliamperes) and an average value (10 milliamperes), with a maximum period of averaging of 0.5 second. These are maximum limitations and should not be exceeded.


Sufficient resistance must always be included in the grid circuit to limit the negative grid potential to 10 volts when anode current is flowing. Failure to observe this precaution will result in short tube life.


Typical Circuits

The tube may be used in a variety of circuits. Two general types are common. One use of the tube is to produce a saw-toothed, current wave. The circuit for this application is shown in Figure 4. The resistance R should, ordinarily, be at least 100,000 ohms, and the product RC (C in farads) approximately equal to the desired fundamental period.

The second general use for the tube is as a relay. In this application the anode may be supplied from either alternating or direct current. When supplied from direct current, the circuit, Figure 5, possesses a "lock-in" feature, since the anode potential must be removed momentarily in order to restore the tube to the non-conducting condition. When supplied from alternating current, the circuit possesses no "lock-in" feature, but the average anode current may be controlled by the relative phase of grid and anode potentials. The schematic circuit for this application is shown in Figure 6. Figure 7 is a simplified circuit employing a photoelectric cell in place of the resistance, R, used in the phase shifting device in Figure 6. The photoelectric cell, however, is equivalent to a variable resistance in the sense that the current passed will depend upon the amount of light falling on it. In circuits Figures 6 and 7 alternating current may be used for the filament supply.



A development of Bell Telephone Laboratories, Incorporated, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company

BELL SYSTEM PRACTICES Transmission Engineering Data Vacuum Tube Data SECTION AB46.300B Issue 1, January 1950 A.T.&T. Co. Standard

300B

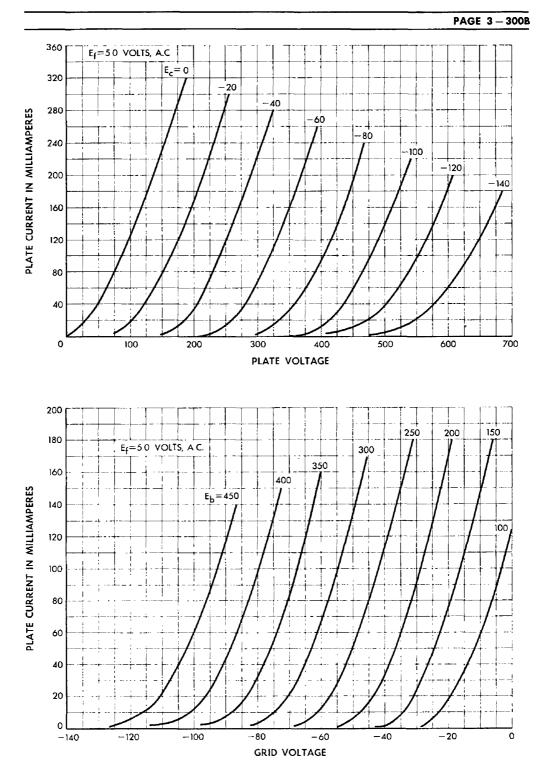
TRIODE POWER AMPLIFIER

Western Electric

DESCRIPTION

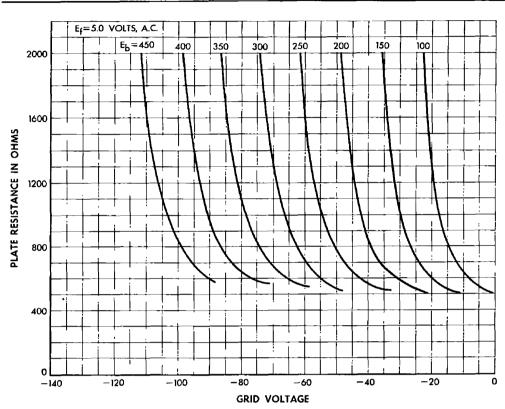
The 300B is a filamentary type triode designed for use as an audio-frequency power amplifier.

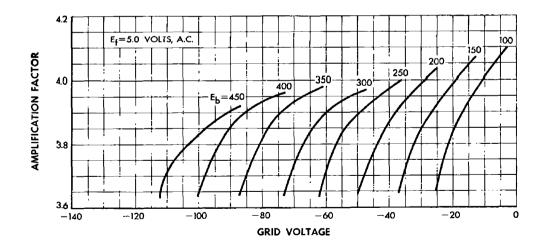
CHARACTERISTICS

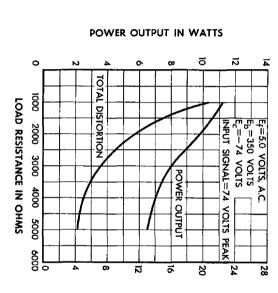

Filament Voltage		•	•	•	• •	•					5.0 volts
Plate Current				1	$\mathbf{E}_{\mathbf{b}} =$	350	volts;	٢.		•	60 milliamperes
Power Output	•	•	•	ł	$\mathbf{E}_{\mathbf{c}} =$	-74	volts	1.		•	8 watts

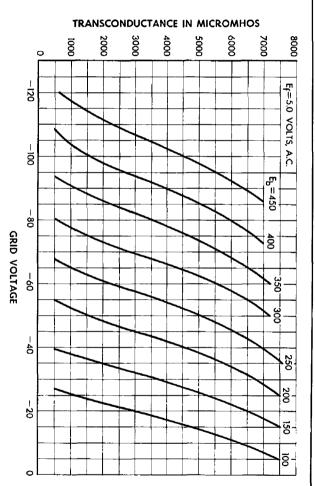
ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 5-49

300B TRIODE 300B - PAGE 2

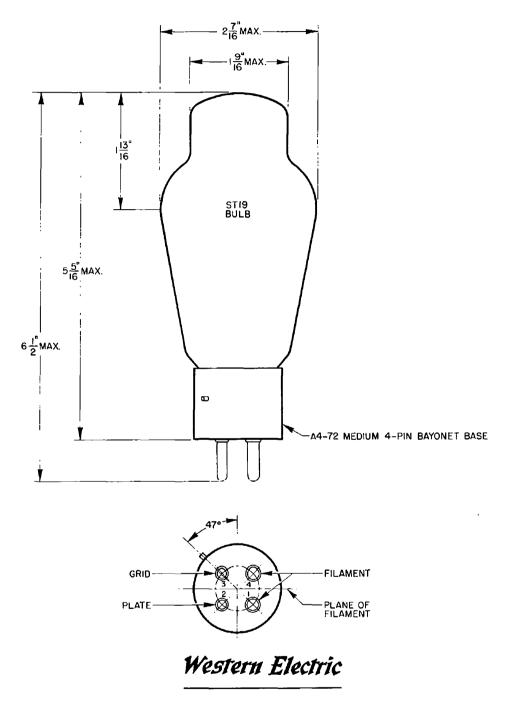

GENERAL CHARACT	ERISTI	cs													
ELECTRICAL DATA															
Filament Voltage, A-0	C or D	-C													5.0 volts
Filament Current														•	12 amperes
Direct Interelectrode	Capac	itan	ces												
Grid to Plate														•	15 uuf
Input															8.5 uuf
Output															4.1 uuf
MECHANICAL DATA															
														~	
Cathode					· ·							•			ated Filament
	•••	•					M	edu	ım ʻ	4-pi	n w	nth s	skev	v bayo	net pin
Mounting Position	· ·	•	·	•	• •										ontal, pins #1
.								- "						vertic	cal plane
Dimensions and pin	connec	tion	s sb	low	n in	outl	ine	drav	win	g on	1 Pa	age ()		
MAXIMUM RATINGS, E	Desian-	Cente	er V	alu)	ês										
Plate Voltage	-													400	volts
Plate Current														100	milliamperes
Plate Dissipation							÷								watts
	•••	•	•			•	•	•	•		•				
Maximum Grid Circ	uit Re	eista	nce	for											
														0.05	megohm
Self Bias	• •	•	•		•••	•									megohm
	•••	•	•	•		•								0.20	Hegonin
TYPICAL OPERATING	g coi	NDII	101	NS	ANI) Cł	IAR	AC	reri	ISTI	CS				
SINGLE TUBE AMPLIFIE	R — CLA	ss /	Α,												
Filament Voltage, A-												5.0)	5.0	volts
Plate Voltage												30)	350	volts
										÷		-6	l	-74	volts
Peak A-F Signal Volt												6	ĺ	74	volts
Zero Signal Plate Cu	-						-	-				62	2	60	milliamperes
Maximum Signal Plat								•	•		·	74	-		milliamperes
Transconductance				•	•••	•	•	•	·	•		5300	-		micromhos
Plate Resistance						÷	•	•	•	•		74			ohms
Load Resistance				•	• •	•	•	•	•	•		3000	-		ohms
Amplification Factor					•••	•	·	·	•	-		3.9	-	3.9	obilis
-							·	•	•	·					watts
Maximum Signal Pow		-				•	·	·	·	•		9		-	
Total Harmonic Disto	ortion	·	•	·	•••	•	·	·	·	·		5)	5	per cent
PUSH-PULL AMPLIFIER -	- CLASS	i A ₁													
Unless otherwise	specifi	ed, v	/alu	es a	re fo	or 2	tube	s							
Filament Voltage, A-	С.											5.0)	5.0	volts
Plate Voltage												300)	350	volts
Grid Voltage*												-61		-67.5	volts
Peak A-F Grid-to-Gri												122			volts
Zero Signal Plate Cur												100			milliamperes
Maximum Signal Plat												150			milliamperes
Effective Load Resista							÷	÷				4000		_	ohms
Maximum Signal Pow												10			watts
Total Harmonic Disto										•		4.5		-	per cent
			<u> </u>	-		•	•	•	·	•		•.~		-	per cont


*If the filament is operated on D.C., the characteristics will be approximately the same if the grid voltage, measured from the negative filament, is decreased by 2.5 volts.


ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 5-49



ELECTRON TUBE DATA SHEET FILE: GENERAL PURPOSE SECTION 5-49



TOTAL HARMONIC DISTORTION IN PERCENT

.

PAGE 5-300B

A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.

1-D-50-4

PRINTED IN U. S. A.

T-2652

BELL SYSTEM PRACTICES Transmission Engineering and Data Vacuum Tube Data SECTION AB46.540 Issue 1, January 1937 A T & T Co Special

Western Electric

301A Vacuum Tube

Classification—Full wave, thermionic, mercury vapor rectifier

The 301A vacuum tube is designed to supply direct current from an alternating-current supply.

Dimensions—The dimensions and outline diagrams are given in Figures 1 and 2. The overall dimensions are: Maximum length 61/"

Waximum length	· · · · · · · · · · · · · · · · · · ·
Maximum diameter	

Mounting—The 301A employs a standard 4 pin thrust type base suitable for use in a Western Electric 143B or similar socket. Base dimensions and the arrangement of electrode connections to the base terminals are shown in Figs. 1 and 2.

The tube should be mounted in a vertical position with the base end down. There should be a free circulation of air around the tube. No object should touch the glass bulb.

Filament Rating

		 5.0 volts
Nominal filament current	 • •	 .3.0 amperes

The filament of this tube is designed to operate on a voltage basis from an alternating-current supply. The voltage should be maintained to within 5% of its rated value (5.0 volts). Operation

Copyright 1937 Western Electric Company, Incorporated

of the filament at a voltage above the upper limit will definitely reduce the life of the tube while a decrease in voltage below the lower limit may cause immediate failure.

Sufficient time must always be allowed for the filament temperature to reach its normal operating value before the anode potential is applied. If filament circuits with good regulation are used, this time is 30 seconds. If the tube is operated at ambient temperatures below 20° C., a longer period of time is required for the purpose of bringing the mercury vapor pressure to a satisfactory operating value. The minimum filament warming time as a function of ambient temperature is shown in figure 3.

For proper distribution of the mercury a period of 10 to 15 minutes filament warming time should be allowed when the tube is used for the first time or if it has been reinserted in the apparatus after having been removed.

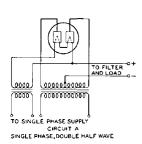
Characteristics and Operating Conditions

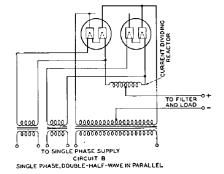
Approximate anode-cathode potential drop	10 volts
Maximum peak plate current	1.0 ampere
Maximum peak potential between electrodes	1800 volts
Maximum operating ambient temperature range	0 to 50° C
Recommended operating ambient temperature range	10 to 40° C

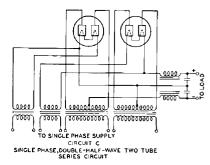
The anode-cathode potential drop is substantially independent of the plate current. The exact value varies from tube to tube and during the life of a given tube. Within the specified ambient temperature range and plate current range, it may vary from 5 to 25 volts.

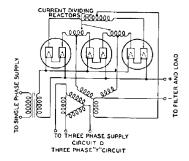
The anode-cathode drop as a function of temperature is shown on fig. 4 for a typical 301A tube after reaching temperature equilibrium and when passing the rated plate current.

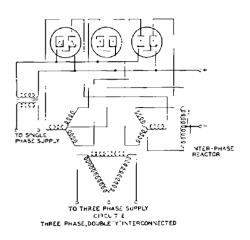
The maximum permissible peak plate current (1.0 ampere) is a limitation on the instantaneous value that the tube can carry safely in the direction in which it is designed to conduct and should not be exceeded. The maximum direct load current is not fixed but will depend upon the wave form required by the load and filter circuit.

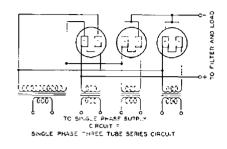

The maximum permissible peak potential between electrodes (1800 volts) is a limitation on the instantaneous value that the tube can stand safely. If it is exceeded, an arc-back may result which will injure the tube. The maximum direct potential available is not fixed but will depend upon the type of circuit used.

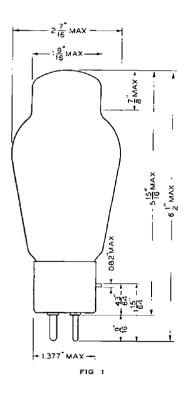

301A vacuum tubes may be operated in parallel if some provision is made to insure a proper division of the load current. Current dividing reactors or ballasting resistors in series with each anode, may be used for this purpose. The size of the reactors or resistors depends upon the circuit design.

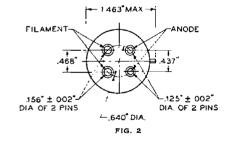

In most cases the termination of the useful life of the 301A tube is due to the loss of filament activity. This causes the tube to fail by arcing between the electrodes. Failures of this kind should be safeguarded by proper fuse protection to prevent injury to other tubes in the circuit and to the auxiliary equipment.

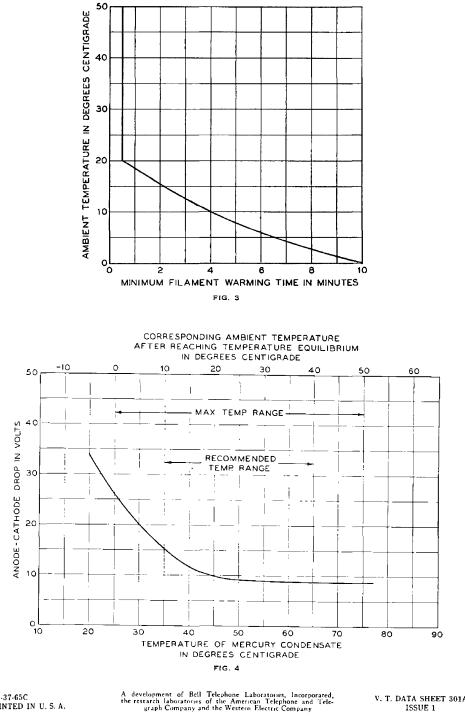

Typical Rectificr Circuits—The 301A vacuum tube may be used in any standard high vacuum rectifier circuit subject to its current, voltage and temperature limitations. Typical circuits are shown below. The approximate direct output current and voltage for each type of rectifier circuit where tubes are operated at maximum permissible plate current and inverse voltage are given in Table 1. The values listed are average values of the pulsating current and voltage for an unfiltered circuit.


Table 1				
Circult Designation	Phase Supply	Number Tubes	Load Potential in Volts	Load Current in Amperes
А	1	1	550	0.6
В	1	2	550	1.2
С	1	2	1100	0.6
D	3	3	800	1.6
E	3	3	700	1.8
F	1	3	1100	0.6









1-B-37-65C PRINTED IN U.S.A.

V. T. DATA SHEET 301A ISSUE 1

[5]