

INCLUDING "RADIO ENGINEERING" AND "TELEVISION ENGINEERING"

OCTOBER

* TRANSMITTING TUBE-CHECKER DESIGN

* TV-FM SITE TESTING WITH BALLOON-SUPPORTED ANTENNAS

* 3-KW MF TRANSMITTER USING IRON-CORE INTERSTAGE AND OUTPUT CIRCUIT

SPRAGUE High-K Ceramic Capacitors

- Sprague-Herlec high-K ceramic capacitors for bypass and coupling applications offer the designer of television and F-M receivers savings in both chassis space and in component and wiring costs.
- Disc Types 29C and 36C capacitors are extremely small round wafer-shaped units. Mounted across miniature tube sockets with extremely short leads, they result in improved v-h-f bypassing. Both single and dual capacitors are available on one disc.
- Bulplate Type 34C multiple capacitors are rectangular wafers with as many as five capacitor sections. One rugged, ceramic Bulplate may combine into a single, compact integral
- assembly all the capacitors and related wiring in one or more stages of electronic circuits. In combination with miniature resistors, Bulplaces make more stable and reliable network assemblies than do completely printed R-C circuits. Closer electrical tolerances are more economically obtained and circuits may operate at a higher power level.
- All Sprague-Herlec ceramic capacitors are protected by a tough, moisture-resistant insulating coaring.
- A constant and reliable supply of capacitors is assured by operation of two manufacturing plants in two widely separated locations.
- Write for Engineering Bulletin 601A today!

SPRAGUE NORTH ADAMS MASSACHUSETTS

PIONEERS

ELECTRIC AND ELECTRONIC DEVELOPMENT

HERLEC CORPORATION . MILWAUKEE 3, WISCONSIN (Wholly owned Sprague Subsidiary)

COSMALITE

ENSURES SATISFACTION

Spirally Laminated Paper Base Phenolic Tubing

#46 COSMALITE is designed for application where punching and stapling qualities are important. It is especially adaptable for threading or other requirements.

#SLF COSMALITE is designed for thin wall applications such as permeability tuners. It has unusual strength and excellent electrical properties.

#96 COSMALITE is the standard for all radio and television applications. It possesses excellent electrical and mechanical qualities and meets coil form requirements with high electrical strength and minimum surface leakage.

#102 REGULAR COSMALITE, designed for low moisture absorption, low power factor, low surface leakage and high dielectric strength. Especially suitable for use with frequencies as high as the ultra high frequency band.

#102 MODIFIED COSMALITE retains the excellent electrical properties of #102 along with the mechanical and versatile advantages of #96 COSMALITE. Designed especially for high voltage applications where staples or rivets are fastened on coil forms.

*Reg. U. S. Par. Off.

COSMALITE, backed by over 25 years of experience, equals or exceeds the performance of any phenolic tubing available.

Consult us on your needs.

COMMUNICATIONS

Including Television Engineering, Radio Engineering, Communica tion & Broadcast Engineering, The Broadcast Engineer, Registered U. S. Patent Office.

LEWIS WINNER Editor

F. WALEN Assistent Editor

Bryan S. Davis, President Paul S. Well, Vice Pres.-Gen. Mgr. F. Walen, Secretary A. Goobel, Circulation Manager

East-Central Representative: Janus C. Murie 2253 Delaware Dr., Cleveland &, obit Telephone: Erieview 1726

Postfic Coust Representative:

Brand & Brase 1952 W. Sixth St., Lee Argeles 14, Calif. Telephone: Minhigar 1782

Beite 1204, Russ Building, San Francisce 4, Cattf. Telephone | Stitler 1-2251

Wellington, New Zealand: Te Aro Book Depot, Melbourne, Australia: McGill's Agency.

Entered as second-class matter Oct. 1, 1937 at the Post Office at New York, N. Y., under the act of March 3, 1879. Subscription price: \$2.00 per year in the United States of America and Canada: 25 cents per cony. \$3,00 per year in foreign countries; 35 cents per copy.

Communications is indexed in the Industrial Arts Index and Engineering Index.

COVER ILLUSTRATION

Testing WDTV mobile van during a recent field tour, with T. T. Goldsmith, Jr., director of research of Allen B. DoMont Lebe, at the samera controls. Looking on, left to right: itsyel V. Howard, former NAB director of regionering and at present a Washington consulting engineer; we office and Lifecoln A. Theismeyer, executive assistant to the director at the Brookhaven National Laboratory.

TELEVISION ENGINEERING

BROADCAST SOUND ENGINEERING

TV-FM Site Testing With Balloon-Supported Antennas. Roger W. Hodgkins 6 Meteorological Balloon, Dipole, 25-Watt Transmitter and Field Intensity & informat Pound to Provide Conclusive Site Selection Data. CIRCUIT ANALYSES

Determination of Internal Impedance Using Semi-Graphical Requires Measurement of Only Output Voltage

Remote Broadcast-PA Portable Console...

Console Features Dual Mike Inputs, Phone Imput Wish Boosser
Circuit for Variable Reluctores Pickup and Casing Facilities.

Apparatus Eliminases Pops Caused by Studio Signal-Light Circuit.

COMMUNICATIONS TRANSMITTER DESIGN Iron-Core Interstage and Output 3 Kw MF Transmitter.

TRANSMITTING TUBES Application of VHF Beam-Power Amplifur as Frequency Multiplier, Up to 175 Mc.

ANTENNA ENGINEERING

COIL ENGINEERING Universal Coil Winding Graph. Donald Arany and Merton Macomber 28

Problem of Determining Proper Good Ratio for Winding Reduced to Two Steps Simple Arithmetic Division and Extraction of Required Ratio from Graph.

MONTHLY FEATURES News and Views. Lewis Winner Veteran Wireless Operators' Association News. Lewis Winner The Industry Offers. News Briefs of the Month. Last Minute Reports.....

Entire Contents Copyright 1949, Bryan Davis Publishing Co., Inc.

Published monthly by Bryan Davis Publishing Co., Inc.

52 Vanderbilt Avenue, New York 17, N. Y.

Telephone MUrray Hill 4-0170

A recent intensive survey discloses that among the major television set manufacturers, more than 75% use Sylvania cathode ray tubes!

This impressive showing is a tribute to the research and quality production techniques employed by Sylvania in the making of picture tubes that are unsurpassed. If you wish full information about the entire Sylvania line of television picture tubes made by the manufacturers of highest quality radio tubes and electronic equipment, write Sylvania Electric Products Inc., Dept. R 1310, 500 5th Ave., N. Y.

These leading television set manufacturers use Sylvania Television Picture Tubes

Admiral • Air King • Andreo • Ansley • Automatic
Bendix • Crosley • DeWold • Emerson • Fada
Farnsworth • Garod • Hallicrofters • Hoffman
Magnavox • Midwest • Motorola • National • Olympic
Packard-Bell • Philco • Pilot • Raytheon-Belmont
Regal • Scott • Sentinel • Silvertone • Sporton
Stromberg-Carlson • Tela-King • Tele-tone • Temple
Trav-ler • Westinghouse • Zealth

CATHODE RAY TUBES; RADIO TUBES; ELECTRONIC DEVICES; PLUORESCENT LAMPS, FIXTURES, WIRING DEVICES, SIGN TUBING; LIGHT BULBS; PHOTOLAMPS

...First Choice for Transatlantic Airline Communication

The whirling propellers of the international air lines make daily mockery of the vost space of the Atlantic Ocean. Intercontinental passengers and cargo come and go hourly at New York, Miami, Gander; Shannon, Ireland, and Lisbon, Portugal. These European and American airports are equipped with modern long-range, multichannel WILCOX Transmitters.

Oslo, Norway, and Stockholm, Sweden, use WILCOX Transmitters as basic communications equipment, and radio beacon service is provided at Reykjavik, Iceland, by WILCOX Type 96-200 Transmitters.

Thus, the giant airliners of the warld's major airways are protected in flight and guided safely to the runways of Europe's and America's principal ports of entry.

WRITE TODAY...for complete information on air-borne, ground station, point-to-point, or shoreto-ship communications equipment.

WILCOX ELECTRIC COMPANY KANSAS CITY MISSOURI

COMMUNICATIONS

FEMIR MINNER EquoL

OCTOBER, 1949

said that these are substantial compatible with present standards if suitable numerical values are chosen. To maintain the illusion of continuity either the geometric picture detail or pattern rate must be sufficient and a compromise affected to maintain compatibility. The dot-sequential system patibility.

llar to line-sequential systems.

One canont deny that the color stress has provoked agreement on a should simplify allocation charting. There is hope, therefore, that this unanimity may prompt the Commission to reconsider earlier action on untresting and a prompt probe of the untresting and a prompt probe of the

asslim betaund-and to nottenages frequency is considered, with station mixed if a 41 25-me receiver sound sf that such interference can be mini-The suggestion has been made provide for in their allocations schedlem, a factor which the FCC did not escillator interference protection probboa sgami sdt ei eidT. ynam ot mas new point which has become of concluded. Stressed in these plans is a -mi 3d bluode enoitste agidentlu ows olitabigh systems are required, at least wherever a mixture of veryhigh and the first 140 metropolitan areas, And mi anothats mot reast to shutom bus ,lasoqorq adt ni baniantoo as ytinum each metropolitan district and comprovide at least as many stations to the TBA, the ultrahigh plan should Rinecting divisions of such groups as ficult to solve. According to the enthe color question will not be too difthe ultrahigh program has been set, The industry concensus is that once

Amouncements have indicated that the color hearings will run until probable color hearings will run until problewed that perhaps this arrangement to have gene too far for each as change. However, once these sessions are over and channel allocations become a topic of the day, the move to open up the television bands should be on, with a relevision bands should be on, with a concerted effort to reaccent the critical import of the freeze life.—L. W.

dots per line. onds, providing a total of 507 picture -pasorping b, 63 stast buil gainnape a picture dot lasts 3/s microsecond, while is om 2 do band osbiv lenimon a ditw videe band and in present practice of the top frequency of the nominal quencies; a picture dot is a half cycle changed at both line and dotting freau 8-mc dot carrier and the colors are tem, the video signal is pulsed with and line interlace dot-sequential syswith an 8-me dot carrier. In the dot contally by pulsing the video signal rically in the usual fashion and horsinterlacing in both directions, verusing dot and line interlace, we have the 6-mc feld-sequential approach of .4.1)o athiwhead a suld bea 8.1 bandwidth of 4 mc, red a bandwidth of color system, green was allowed a In the original simultaneous

The report went on to point out that analyses have indicated that the frame fixeder of the 6-mc sequential color system, using dot and line interface, available thus far, although the simple interface and dot and line interface for monochrome and color. We also fearn from this report that color breaking is apparent in the field sequential up is apparent in the field sequential color systems, but not in the others.

ing line-sequential systems the report Descuipmodate the several colors. -moose of 19thgirl be higher to accomdetail will be transmitted because the means of color control less geometric these systems employ a mechanical of continuity. Since, the report stated, repetition rate to preserve the element ning rates to maintain a sufficient color -near out in sagneda boriupor ylines that the field-sequential systems necesalyzing these points, the report stated Inc sequential and dot sequential. Ansystems that were compatible were the cording to the JTAC report, the only the receivers now being made. Acany modifications or adjustments in tures from color transmissions without nit reception of black and white picsince a compatible system would pereuite strongly during the hearings, The term, compatibility, was stressed

The TV Freeze and Color

was the RMA and JTAC report. sulted, the most revealing of which several bookcases of testimony reconsideration Industry complied, and blues and greens warranted immediate mission still insisted that the reds, ness of the treeze situation, the Com-JAAC and RMA, stressing the scuterepresentative bodies such as TBA, to frown. With all industry, including ponder over color first prompted many sal some months ago, the decision to with the announcement of their propotheir attempt to affect a settlement on the stymied channel puzzle and displayed in the urgent need for action Recalling the serious interest the FCC cial Washington allocation hearings. cinding the treexe question at the cruity over a host of vital problems, infound itself with an emblazoned priortixed our legislators in Washington, Coros, which appears to have hypno-

60 fields, with a dot and line interapproach with 15 color pictures and cently announced is the dor-sequential commutation. The eighth system rewith a simple interlace plus color-line uses 10 color pictures and 60 fields, terlace. The third system in this group enterlace and the other with non-intures and 60 fields, one with simple able, two of which use 30 color picline-sequential systems are also availtem using dot and line interlace. Three 240 fields, respectively, the latter sys-144 fields and 20 color pictures and quential systems with 24 pictures and the 6-me bands, include two held-se-The newer types, featuring the use of againsed 54'-04' ed! gainub betanteno arrangement, both of which were demsequential 24-color picture, 144-field ture, 60-field approach and the field clude the simultaneous 30-color picme. The twelve-me developinents inxis tol tabmamen and bns om avlawt tems have been designed, two for bave produced thus far. Eight syssive review of what the laboratories JTAC report provided a comprehensuffersted for possible application, the number of color systems that have been Disclosing for the best time the

TV-FM SITE TESTING

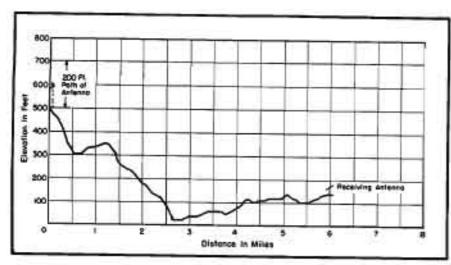


Figure I
Profile of terrain probed by Hodgkins during his site text.

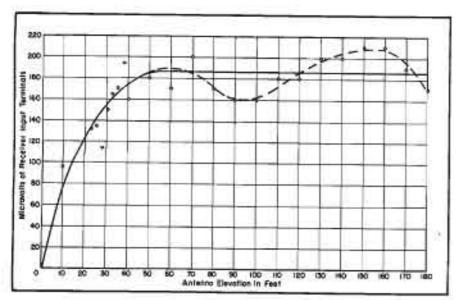
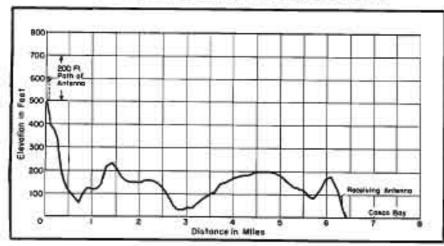



Figure 2
Plot of received signal versus unturna height shove ground.

Pigure 3

Profile indicating receiving conditions in an extremely adverse location.

THE SELECTION of a suitable high-frequency transmitting location is a problem of increasing importance to all broadcasters. Not only is it necessary to select the site which will give the best service to the area under consideration, but it is increasingly important to prove that this proposed site will measure up to predicted operation and possess no hidden faults. With the major financial investments which are going into TV transmitting plants the road back from a poor site is extremely expensive and would in all probability be avoided and a compromise made by getting along with what was already constructed regardless of its shortcomings.

To avoid such a dilemma, and to predict as accurately as possible the operation of a proposed station, it was decided to investigate the possibilities of a test with a balloun-supported antenna operating from a low power test transmitter.

Two factors had to be considered in planning such tests. The first was that the height of the antenna above the average terrain determines to a far greater extent the coverage than does the power which is to be radiated. In other words, if the service range is to be extended it is usually better to raise the antenna an appropriate amount to accomplish this, than to increase the power. The second consideration had little to do with the maximum reliable range of the station but it was an item which we felt was important concerning the site. This was the question of what would happen in terms of signal strength in the nearby business and residential areas when the completed installation was placed in operation. Such areas must have an adequate signal or the whole purpose of the station would be lost.

The causes of low signal intensities, or wide variations in signal from place to place, are numerous. Many factors are not yet fully understood. Among these items which may affect the signal are reflections from surrounding terrain or objects, amount of drop off from the antenna site in the direction of the receiver, and the character of the ground over which the signal travels. To fully evaluate the effects which will be encountered at the chosen point of reception the field intensity should be investigated for various antenna heights starting near the ground and progressing at definite in-

6 * COMMUNICATIONS FOR OCTOBER 1949

With Balloon-Supported Antennas

Use of Meteorological Balloon, 250' of 72-ohm Line Connected to Dipole, 25-Watt Tuned-Plate Tuned-Grid Oscillator and Field Intensity Meter, Found to Provide Conclusive Site-Selection Information.

tervals up to and exceeding the proposed height.

To carry on such tests a number of approaches to the problem are possible. In our case we used a low power oscillator operating on the frequency in question, a meteorological balloon, a tank of hydrogen, a simple dipole antenna, lines for staying off the antenna, and a field intensity meter.

The oscillator consisted of a tunedplate tuned-grid type in which the grid was stabilized by using long lines of the shorted stub variety. This unit had a power output of about 25 watts maximum using an 815 tube. It was found to be very stable and suitable for this purpose.

The meteorological balloon was exactly the same as those used by the U. S. Weather Bureau to carry aloft its radio equipment during daily weather observations. These balloons have a lifting power of around 35 pounds when fully inflated.

The hydrogen tank was obtained from a local source of industrial gas. Certain cities have ordinances prohibiting the sale of hydrogen because of the hazard of filling toy balloons. This must be taken into account when arranging for this substance. In addition, a regulator was used to reduce the gas pressure and give more control in filling the balloon. The type used for nitrogen supplies to coaxial lines will fit the hydrogen tank and operate just as well as it does for nitrogen.

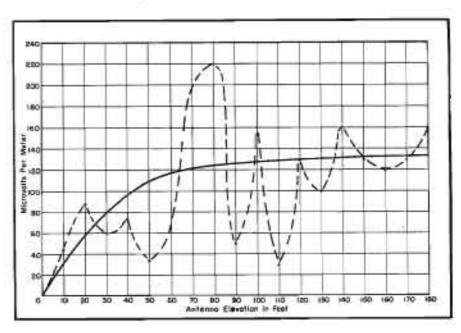
The antenna may be any light sort of a dipole arrangement which may be easily supported by the balloon. Light cord of some variety should be at hand to fashion stays for the antenna ends and also for a third stay against the wind direction.

The manner of field intensity measurement depends on the requirements

by ROGER W. HODGKINS

Guy Gannett Broadcasting Services

of the tests. If actual values of signal intensity are desired to convert to actual signals which will be obtained from the finished installation, then a calibrated field intensity set of some standard manufacturer should be employed. If a comparative set of readings in terms of microvolts delivered to a receiver is desired a calibrated signal generator may be used to advantage. In our tests the latter method was used.


Mothods Employed in Tests at WGAN-FM

In our tests at Portland, Maine, the uscillator was first set up and checked for proper operation. Then the dipole antenna was rigged on a suitable support and 250' of 72-ohm transmission line used to connect the antenna to the oscillator. This length of transmission line was kept constant in order to radiate the same amount of power regardless of antenna height. Care must be taken to properly arrange the surplus line with respect to metal objects and wires. To check the possibility of error from this source the line was draped in various positions while the antenna was near the ground but no appreciable difference could be observed at the receiving site.

Once the oscillator and antenna were in readiness the balloon was prepared for inflation. Care was exercised with respect to smoking as hydrogen when

(Continued on page 26)

Figure 4.
Plot illustrating the result of test conducted in the Figure 3 location.

Determination of

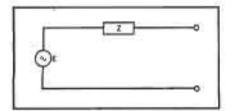


Figure 1
Representation of the source of voltage based on
Therenin's theorem.

System Requires Only Measurement of Output Voltage Magnitudes.

by R. W. BUCHHEIM

Instructor in Electrical Engineering Yale University

When considering problems such as impedance matching, etc., it is convenient to represent a source of voltage by the form shown in Figure 1, as based on Thevenin's theorem.

This theorem states that: When a load impedance is connected to the output terminals of a two-terminal network composed of linear elements and voltage sources, the network can be replaced by a single generator of voltage, E, and internal impedance Z, where E is the terminal voltage when the terminals are open circuited and Z is given by the ratio of E to the cur-

Figure 2 A semple circle diagram. rent, I_{see} which flows in a short circuit at the output terminals.

In the practical case, the principles of this theorem, as stated; are of little use in actually determining Z. To remove E by shorting it out, if possible at all, will certainly be most likely to after Z in an electronic generator; therefore, direct measurement of Z is not often feasible. To find Z from E/I_{**} is not at all practical, because a knowledge of the phase relation between E and I_{**} is required, and hecause the short circuit current will almost invariably be very badly distorted.

It is desirable to have available a method for finding Z which requires only simple measurements and simple treatment of the data of these measurements. A method has been evolved which requires only the measurement of output voltage magnitudes. The treatment of experimental data employs a simple semi-graphical procedure.

In applying this method, let E_2 be the terminal voltage magnitude when the load is a known resistance R_* ; and E_n the terminal voltage when the load is a known reactance X_* .

E is the open-circuit terminal voltage, and Z is of the form R+jx.

Therefore:

$$E_n = E \frac{R_n}{\sqrt{(R + R_n)^p + X^n}}$$
(1)

$$E_* = E \frac{X_*}{\sqrt{R^* + (X + X_*)^*}}$$
(2)

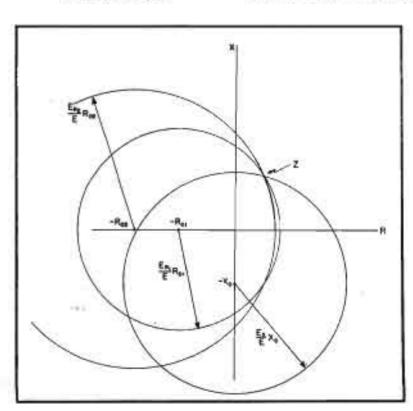
These equations can be rewritten as

$$(R + R_s)^s + X^s = \left(\frac{E}{E_b}R_s\right)^s$$
(3)

$$R^{o} + (X + X_{+})^{s} = \left(\frac{E}{E_{+}}X_{+}\right)^{s}$$
 (4)

Inspection shows that these are the equations of circles in an R-X plane. The circle represented by (3) has its center at $R=-R_*$ and $X_*=O$, while

its radius is
$$\left(\frac{E}{E_{\bullet}}R_{\bullet}\right)$$
. It is called an


R. - circle.

Equation (4) represents a circle with its center at R = O and X =

$$-X_s$$
, whose radius is $\left(\frac{E}{E_s}X_s\right)$. This

is called an X .- circle.

These circles can be very easily drawn on an R - X plane. A point of intersection of the two circles is one with R and X coordinates which satisfy

Internal Impedance

Using Semi-Graphical Procedure

both (3) and (4), and is therefore a solution for Z.

In general, two circles intersect at two points. One of these points is the true Z, the other an extraneous solution. To resolve this difficulty it is necessary only to take one more reading of output voltage with a second value of R, or of X, giving a third circle that will pass through the point at which the two other circles intersect at the true Z. It will also generally intersect the other two circles individually to register two more extraneous solutions. The actual Z is given by the coordinates of the point at which all three circles intersect.

If the two original circles intersect at two points such that one point indicates the R component of Z to be positive, and the other indicates the R component to be negative, then the second intersection can be discarded immediately since it represents a solution which is physically unreal. The first intersection yields the true solution for Z, and a third circle is unnecessary. The situation first described is the most usual, so two circles, one Ro circle and one X. - circle, ordinarily are sufficient. In a physical system no case can arise in which both intersections of two circles indicate negative values for R.

Since all R_* - circles have their centers on one axis, the R axis, all intersections of R_* - circles will represent conjugate impedances. That is, if two R_* - circles intersect at $R=R_*$ and $X=X_*$, they must necessarily also intersect at $R=-R_*$ and $X=-X_*$. There is, therefore, always an ambiguity of sign if only resistances are used as loads in the tests, and this procedure can be rejected as not useful. The remaining combinations of R_* and X_* loads for the three tests, all of which are satisfactory, at least in principle, are as follows:

(a) Two tests, each with different known resistance loads and a

(Continued on page 32)

Pigure S (Right)

Plot of calculated and experimental results:

Ratio
| load valtage | with a 400-ohm | npun-circuit voltage | resistance lead.

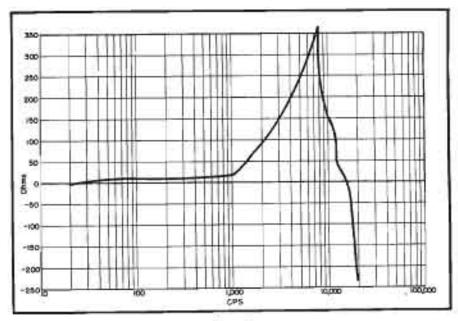


Figure 3.

Plac of the reactive promponent of Z in a test generator.

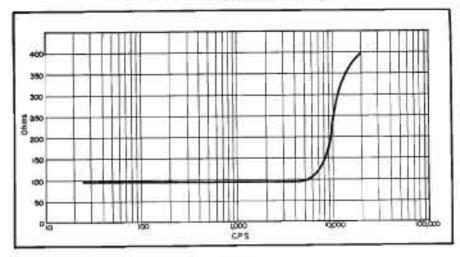
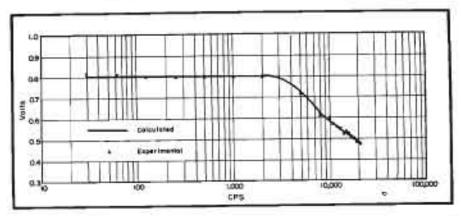
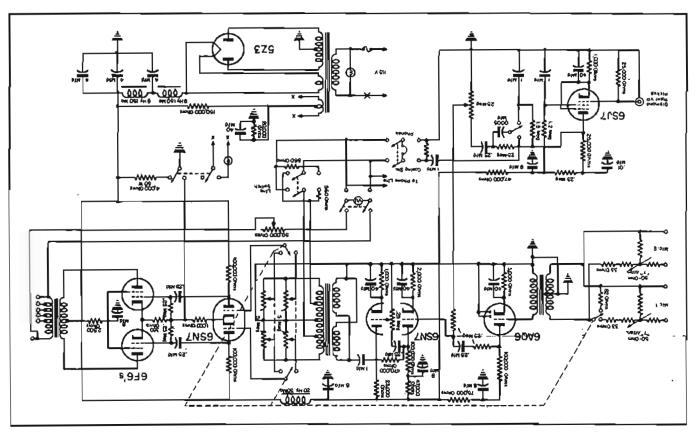




Figure 6
Plot of the resistive component of Z in a test generator.

ha — ispobbord stomsh

Circuit of the KXIC console designed for remote broadcast and public address operation. Figure 1

chrown.

Themes and old records can be played

increase of high-frequency attenuation.

of zero audio potential, to provide an

plate circuit can be switched to a point

Noos the Capacitor in the CSL?

be necessary. One side of a high-

most records no scratch filters would

with sufficient attenuation so that on

response, and retention of the highs

that the unit could provide good bass

the phone line's effect on the dynamic

found to minimize distortion caused by

included across this section; it was

of the 6SN7. Inverse feedback was match the plate of the second section

The phono amplifier was designed so

heard on the air when the switch is point of equal de potential, no click is By switching this capacitor to a

Line-Out Circuit

in this position.

load line.

switch off the broadcast feed and subwith the split secondaries paralleled to transformer, was installed backwards, circuit which enables the operator to spire iling-neud of buighted bno mido The system also features a line-out The coupling transformer, a 600-

crowd noise rose during broadcasts. both gains could be advanced as the The operators at the station found that propriate pa control can be changed. If any unusual conditions arise, the apany expected conditions, is obtained

pot is used.

citcuit

proadcast so that no feedback, under

These pots can be preset before the

ume. When that mike is off, the other

used to control the public address vol-

main mike is on, one double pot can be

of two double pots. Thus, when the

it could be switched in and out of the

is used more often, was set up so that

cuit at all times. Another fader, which

wired in so that it would be in the cir-

trolling the pa volume when a mike is

operate method was developed for con-

novel, yet highly effective and easy-to-

the broadcast. For that reason a rather

One of the microphone faders was

Ganged on this switch are the arms

bridges the 500-ohm broadcast line, Since the public-address amplifier application pre-calibration is necessary. tor of public address coverage. In that meter can be used for a visual indica-500-ohm public-address output, the chassis, and when connected to the pot is located inside the cabinet on the ohm pot in series with the meter. The In the latter position there is a 50,000. line to the output of a pa 500-ohm line. change the vi meter from the broadcast

any pa feedback would seriously affect

The console features a switch to

and in addition provide the feeding of

permit the community-type broadcasts

cial type of console was designed to

As a result of this consideration a spe-

a facility for this type of transmission.

Accordingly it was decided to develop

club appeared to be a program must.

from nearby hamlets and the local 'teen

involving broadcasting of disc programs

In our area provision for such a setup,

larly those covering the small towns.

factor by many broadcasters, particu-

services have been found to be quite a

PATTERNS for integrated community

public-address circuits.

www.americanradiohistory.com

PORTABLE CONSOLE

stitute 580-ohm resistors as both amplifier loads and line loads.

Headphones can be left monitoring the broadcast line for cue. Thus, if the main studio should want to take it back, the remote operator can continue to feed public address to his local audience and still hear the program being broadcast.

Because of this feature, it has not been necessary to install a separate order wire.

The filaments were wired with a small positive potential on them to minimize hum. All of the input circuits were well shielded and grounded to a common point.

Some operators who are used to high-impedance circuits might hesitate to use the same switch for a microphone and for a driver-grid circuit. However, feedback due to intercontactpoint capacities will not be encountered, if all other low level components are shielded, since the microphones and the faders are 50-ohm units.

It was found advisable to take the phono-cueing audio voltage from the plate side of the high-boost network, because when using earphones in a noisy location the audio voltage across the volume control would not be sufficient to be heard.

To one in a record, phones can be switched over to the phone amplifier, and the phone volume turned down. This feature has not been used very often. However, on several occasions, the operator has been very happy to use this one circuit for transcribed commercials on remotes.

A public-address standby, also provided in the console, has never been used during operation of the console. However, our ops have found that turning on the console with the publicaddress switch in standby position, protects the equipment from a high-voltage surge.

Both the power switch and the public-address standby switch operate pilot lights so that the operator knows the status of his equipment at all times. Admittedly, showmanship enters as an element here, too. For instance, some of KXIC's remotes are handled from a 6" x 6" x 6" remote amplifier, and spectators almost always express surprise at the lack of pretentiousness of the equipment. (Be you a pa operator or

(Continued on page 33)

Console, Which Enables Operator to Feed Both Public Address and Broadcast Lines, Features Two Microphone Inputs, Phono Input with Booster Circuit for Variable Reluctance Pickup and Cueing Facilities.

by ELLIOTT D. FULL

Technical Director KXIC, Iowa City, Ia.

Figure 2

The sounds, with remote turnfable, bass-reflex cabinet, and accessory case. At the extreme left is the excing-microphone control and to the right of this control are the microphone, pheno and master controls. The switch above the phono dial is a tone and high-fidelity selector. The awitch beneath the of meter, in the center at top, is for line and public-address operation. The two diels at the right are public-address operation and the three switches next to these controls are for ps, oc, and line.

Iron-Core 3-KW MF

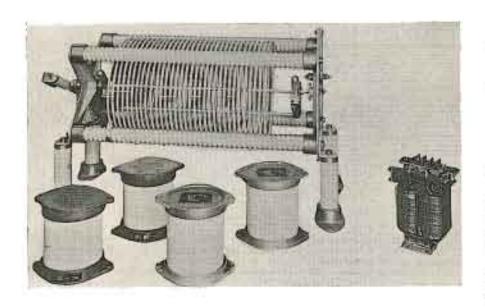


Figure 1

Comparative size of the conventional LC tank circuit and high-frequency iron core output transformer. The use of the transformer has been found to climinate all maving parts, high correct circuits and tuning in the ga stage.

Figure 2

Comparative size of the w coupling network and M iron-nece matching transformer.

MEDICINE PREQUENCIES, which use ground waves and are thus capable of providing substantially reliable communications regardless of atmospheric conditions, have been found to be ideal by the aeronautical services for communication, beacon and control purposes along the serways and at the airports. The frequency band has also been found excellent for beacon and communication purposes in the maritime field and by the armed services.

As a result, there has been accelerated interest in the development of mf transmitters for these services. In our study of the problem it was found that there were five general and three wast requirements for such transmitters. The general characteristics included a power output of 2.5 kw up, frequency of 250-540 kc; frequency stability of ±.01%; emission of Al, A2, and A3; and keying speed to 100 wpm. The three absolutely necessary factors were: Two frequency operation (capable of operation by instantaneous selection on one of any two frequencies between 250 and 540 kc); inverted L and T antennas whose characteristics vary from 0 to 650 chms capacitive reactance, and 3 to 20 ohms reflected resistance; and beverage antenna operation (capable of operating into beverage antennas fed by transmission lines whose characteristics impedance varies from 150 to 350 ohms).

In probing the design problems presented by two-frequency operation and a limitation on physical size, the power amplifier stage and the antenna coupling system were found to demand the bulk of attention. At these frequencies conventional amplifier tank circuits usually consist of fixed mica capacitors and a variable air inductor. Since this circuit must be tuned to resonance at the operating frequency, it is necessary to change the tuning with changes in operating frequency. Antenna coupling systems for conventional inverted L and T antennas usually consist of a loading inductor for tuning out the capacitive reactance of the antenna and a w or T network for matching the reflected antenna resistance to the amplifier tank circuit. Since the reac-

12 . COMMUNICATIONS FOR OCTOBER 1949

Interstage and Output TRANSMITTER DESIGN

tance and reflected resistance of these types of antennas change with frequency, it is necessary to change the tuning of the loading inductor and matching network with changes in operating frequency. This change in tuning for different operating frequencies would still be necessary even if the antenna reactance and resistance were not frequency sensitive, because frequency sensitive elements are used to compensate for the antenna characteristics.

Tuning of these circuits is usually accomplished with a continuously variable inductor or an inductor with a variable section and taps. For two frequency operation, the circuits must be tuned alternately from one operating frequency to the other. This is often accomplished by using two inductors, each tuned to the proper operating frequency and switched by relay or manual switch. Another method is to have a motor-driven continuously variable inductor.

All of these types of conventional circuits are extremely large in physical size at these frequencies and powers. It is difficult to obtain high Q air inductors in this frequency range, and often Q must be sacrificed in order that the reactors may be variable. Besides the extremely large space requirements, the relaying or switching of these circuits presents a decidedly large mechanical and electrical problem.

To solve these problems, it was decided to use a high-frequency iron-core transformer' as the output circuit of a class B power amplifier. Iron-core transformers at these frequencies were found to be small in size and eliminate the necessity of tank-circuit tuning.

In Figure 1 the comparative size of a conventional LC tank circuit and the high-frequency iron-core output transformer selected for the transmitter are shown. Two inductors and a switching relay are used for two-frequency operation. The tank inductor shown illustrates the equivalent size required for this power and frequency (not designed for this particular application).

For excitation, an untuned crystal-

Transmitter Developed for Two-Frequency Operation in the Aeronautical, Maritime and Point-to-Point 250 to 540 Kc Band, Uses High-Frequency Iron-Core Transformers to Reduce Size of Equipment and Eliminate the Need for Tank-Circuit Tuning.

by I. F. DEISE and L. W. GREGORY

Westinghouse Electric Corp.

controlled oscillator circuit was used in which the only frequency sensitive element was the crystal. Crystals at these frequencies can be readily switched by conventional relays and as the frequency determining element, would provide the desired frequency

Untimed, reactance coupled, class A amplifiers were chosen for the intermediate stages of the rf unit.

It was also decided to place the antenna coupling system in a cabinet separated from the transmitter proper so that the antennas could be located remotely from the transmitter. A high frequency iron-core autotransformer was used in place of π or T network for matching the reflected antenna resistance to power amplifier. A 51.5 ohm circuit was used to connect an antenna matching autotransformer to the power-amplifier output transformer. The autotransformer was provided with 5% taps to operate with antennas having reflected resistance of 3 to 20 ohms. For two-frequency operation, with antenna resistances that change with frequency, a relay was included to switch taps on the autotransformers.2

The comparative size of a conventional π coupling network and the

*Osing Hipsemi iron
*The autotransformers can be supplied with
different values of input and output impedance
for matching beverage automas and other transmission lines.

high - frequency iron - core matching transformer are illustrated in Figure 2. Two inductors with a switching relay are used for the two equivalent sizes required for this application. (The inductor shown is used to illustrate the equivalent size required for this application.) The relay contacts which switch the impedance taps on the matching transformer are a part of the relay that switches the antenna loading coils and are not shown.

A conventional loading inductor is used for tuning out the antenna reactance. For this application inductances up to 400 microhenries were required. Since the kna developed in the loading inductor is the same as developed in the antenna, it is important that the inductor have a high Q. An air inductor was chosen to give high Q inductive reactance at these inductances and frequencies. Since the inductors must be capable of runing out widely different antenna reactances, it was found to be more efficient to use two loading inductors and relay switch for two-frequency operation.

The transmitter designed for the mf application was arranged in three separate units; crystal uscillator for excitation, an rf unit for amplification and an antenna coupling unit for antenna matching. The crystal oscillator and associated circuits were chassis mount-

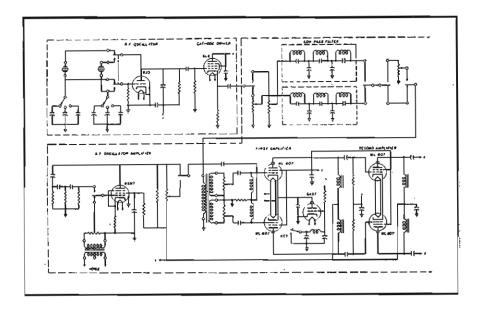
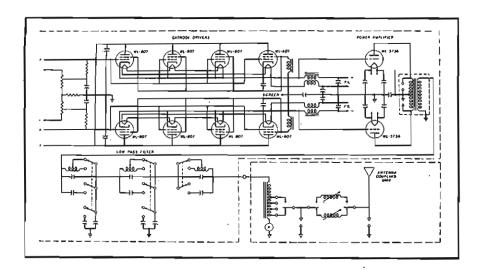



Figure 3

Above and below: Schematics of the medium-frequency transmitter using iron core interstage and output transformers.

ed, to permit the oscillator to be mounted in the rf unit or externally on a rack panel. External mounting was found necessary for rf patching purposes where a number of crystal oscillators or tunable electronie oscillators are used interchangeably with a number of rf units. In the oscillator using a 6J5 in an untuned Pierce type circuit, we included a plated-wire mounted CT cut crystal as the frequency determining element. The crystal, mounted in a temperaturecontrolled oven, has a frequency stability of ±.005% (50 parts per million) from -30 to $+70^{\circ}$ C. In this type of oscillator, the value of the oseillator grid capacitive reactance influences the amplitude and wave shape of the oscillations. Crystal current is a function of the amplitude of oscillations. To secure optimum performance, the oscillator frequency range was divided into three bands (250 to 350 kc, 350 to 450 kc and 450 to 540 kc), and a different value of grid capacity provided for each band. A switch was provided to select the proper grid capacity for the operating frequency. Two-frequency operation was accomplished by the use of two crystals and two sets of oscillator grid capacitors with their associated switches, a relay being used to select the desired crystal and associated oscillator grid capacitor. The oscillator output, coupled to a 6L6 cathode driver, provides a low impedance output from the crystal oscillator unit.

The output of the oscillator unit, eoupled to the rf unit input with a 75-ohm eoaxial transmission line, is dependent upon crystal activity which varies with frequency as well as with individual crystals. Because of this variation, a separate rf input controlwas provided for each of the two operating frequencies. A third rf input

control compensates for A2 and A3 emission. The compensation is necessary because low-level modulation is used and the modulated carrier peaks should not exceed the carrier peaks represented by full power output with A1 emission. This means of adjustment is such that smaller percentages of modulation are accompanied by larger average carrier output. Two low-pass filters were provided in the rf unit input to reject any harmonic output of the crystal oscillator. If odd harmonics were present in the excitation, the positive and negative components of the rf cycle would not be identical. Since these two components are amplified separately before being applied to the grids of the class B amplifier, it is necessary that the excitation be symmetrical. Filters were designed to cover the range of 250 to 375 kc and the other 375 to 540 kc. Two relays in the rf unit input were included to select the proper input control and harmonic rejection filter consistent with the desired output frequency and emission. These relays and the oscillator-frequency relay are controlled remotely or from a switch on the front panel of the rf unit. The output from the harmonic rejection filters and input controls was fed to an iron-core transformer which produces two sources of rf potential 180° out of phase for the first amplifier stage; two WL-807s operating class A, eathode keyed by a 6AS7 vacuum-tube keyer. Keying was accomplished by grounding the keyer tube grid. A filter was inserted in the keying circuit to prevent steep leading and trailing edges in the keyed wave. Cathode bias for the first stage was provided in the voltage drop across the keyer tube.

The first amplifier stage was grid modulated. A 6SH7 was included as an audio amplifier to modulate the stage of A3 emission. The circuits of the audio amplifier are relay switched so that the 6SH7 operates as an rc oscillator to modulate the stage for A2 emission. The output of this stage was connected to the second amplifier through a high pass filter to prevent the passing of the audio components of modulation to the second amplifier. The filter was found to be necessary due to the small separation between the audio and rf frequencies and the fact that succeeding stages pass audio as well as rf frequencies. Fixed bias was used in the second amplifier stage using two WL-807s operated class A. a gain of approximately forty being achieved by this design. High-frequency iron was used in the plate-circuit reactors, in which was included a low distributed capacity winding to provide maximum output voltage and

(Continued on page 35)

FIELD TESTED

Installation Information on

TV and FM

RECEIVING ANTENNAS

TV . . . FM Antenna Installation

by IRA KAMEN,

Manager, Antenaples and TV Dept., Commercial Radio Sound Corp.

and LEWIS WINNER.

Editorial Director, Bryan Davis Pub. Co., Inc.; Editor, SERVICE and COMMUNICATIONS

The only practical book on the all-important item in TV and FM reception . . . based entirely on actual experiences in the most active TV and FM areas in the country. . . . Over 35,000 words of vital data with over 130 photos and drawings.

TEN CHAPTERS COVERING:

Installation Tools Antenna Installation Procedures Securing 12-Channel Coverage HF Antenna Installations TV Interference Fringe Reception Mosfer Antonna Systems FM Antonnas Installation Business Practices Tricks of the Trade

The first book in which you'll find complete design and installation information on every type of TV and FM receiving antenne. . . . Contains detailed illustration and subject index for rapid reference.

VV "The best pook on the market at this time dealing with the problem of selevision enternas and antennas installation. . . . If more Service Men would read this book, it would help them considerably in making better installations and providing better television reception for their customers."—M. J. Shapp, President, Jereald Electronics Corp.

vv "Will recommend it to all the Service Men and technical people I meet."—Charles Gaha, Field Service Engineer, Bendix Radio. v/ "Well organized and illustrated, very complete and up-to-date, carefully detailed. It will definitely improve the ability of the men who studies it and therefore is mighty useful to a firm like ours." Hamilton Hage, President, United States Television Mig. Corp.

 V "A thurwugh-going compandium of the installing art . . . Going to recommend it highly to our Service Control Department and our service organizations."—Brucat A. Mars. General Manager, Teleptrian Receiver Soles Div. Alley B. DuMont Laboratories, Inc.

V "Informative and extremely wall written."— R. Morris Pierse, Vice President in sharts of Engineering, WJR, WGAR, EMPC.

BRYAN DAVIS PUBLISHING CO., INC., Book Dept. 52 Vanderbilt Avenue, New York 17, N. Y.

Send me a copy of TV . . . FM Antenna Installation, postpaid, for which I am enclosing \$2.00.

[Please print]

ADDRESS

CITY AND STATE

AT YOUR JOBBER OR ORDER DIRECT

Price \$2 Post Paid

16 . COMMUNICATIONS FOR OCTOBER 1949

Personals

TEO D. HAUBNER, a very active VWOA member a decade ago, reentered the limelight a few months ago during the fortieth anniversary of the first transmission of the S O S. TDH, the first op to use the distress call, recalled how he made his first voyage as a wireless operator at 19 in June, 1909, on the Mallory liner San Marcos. In August he transferred to the Arapahoe and on this first voyage south the ship's propeller shaft parted off Cape Hatteras and she was in imminent danger of being dashed on shoals in a gale.

Just before TDH had sailed from New York he had been notified that S O S had been adopted as a distress signal because its three dots, three dashes and three dots was most easily read, while the old distress call of C Q D could become confused with C Q, a general call. When the emergency arose he clicked out the S O S calls and the old distress calls, too, fearing that all ops might not be familiar with the new call for help. An immediate reply was received from Cape Hattress and aid was dispatched promptly.

TDH revealed, too, that it was he who received the second S O S from a ship. In November of the same year, he picked up an S O S from a sister ship, the Iroquois, which had lost her rudder in a gale off Cape Hatteras. The Arapahoe steamed under forced draft to the rescue.

Haubner is now an executive with a company who buy for wholesalers in hardware and industrial supplies and radios.

He also operates, with Benjamin Tillson, Jr., NA3CC, a Coast Guard radio auxiliary station at Montelair, N. J., and still sends and receives messages in a weekly radio drill. . . . Arthur E. Ridley, Winthrop, Mass., reports that he enjoys reading the reports and memories of his old timer triends in COMMUNICATIONS. . . . We trust that Roscoe Kent has fully recovered from his illness earlier this year. . . A. F. Steve Wallis, who is pounding brass aboard the SS Alcoa Partner,

Major General Harold M. McClelland, USAP, who has appeared at muny VWOA cruises and presented illuminating talks on government and industry communications, at his new post, as Director of the newly-established Office of Communications-Electronics of the Department of Defense. He was formerly Deputy Communder for Services of the Military Air Transport Service.

reports that going to sea today is really a fine job . . . Fred J. Gommo, now in San Jose, Costa Rica, was married recently to Cora Jane Lovett. Best wishes to the happy couple. . . . Alfred T. Witts of England has asked if we could locate George A. Danby, who back in 1920 was a wireless pal. Perhaps some VWOA member can furnish the information. . . . F. K. Bridgeman, who is with Illinois Bell Telephone, has become a TV bug. . . . Stan W. Fenton, ITT's resident rep in Athens, Greece, has sent us a note revealing that since leaving the U.S. in '46 he has been on several other assignments for the company in India, Pakistan and Afghanistan. . . . Joe W. Graham is quite busy these days helping the FCC police the airlanes from the monitoring station at Millis, Mass. ... It was good to hear from E. K. Seyd, who by now is an old, old-timer, because he started his career back in '09 as an amateur using the call 2DX, when licenses were first assigned. He studied under Bucher to get his commercial license. He recalls that about that time David Sarnoff was an office boy in the Marconi Wireless School on Cliff Street. After sailing on sev-

ing department of Marconi at Aldene, N. J. For the last sixteen years he has been in business as a radio components manufacturer's rep in New England. . . . We were glad to see M. G. Carter at the spring gathering, . . . It was a pleasant surprise to hear from I. T. Barnes who has not been very active for the last lew years. ITB is connected with Boston Edison as chief draftsman. . . . F. J. Grim has forwarded his 73's from Everitt, Mass. . . . VWOA member L. C. Herndon has been transferred from Chicago to Washington and promoted to assistant chief of the FCC field engineering and monitoring division in the Bureau of Engineering. Congratulations LCH. ... George I. Martin, who is regional sales manager for RMCA in St. Louis, has sent in some interesting facts about his background. A graduate of the Marconi Wireless school in N. Y. about '14, he recalls sailing on, among many other ships, the SS Commewijne (PJO), Bill McGonigle's old ship. After leaving the SS Resolute (RXK) in '26 he joined RMCA in Cleveland as manager of WCY. GIM has been very active in VWOA work for many years. In fact he attended the first meeting in N. Y. when the association was formed. He has served as our Chicago chairman for three years. GIM is a member of RMCA's Quarter Century Club. . . . I. E. Showerman reports he is very busy in Chicago as a vice president of NBC. . . . Ye prexy visited Columbus, Ohio, recently during a business tour. . . R. W. Hale now lives in Ft. Wayne, Ind. . . . American Airlines radio officer Dave Little works at La Guardia as supervisor of the airway aids. He occasionally pilots a plane to probe the variety of aids to navigation. . . . G. J. Maki, with the California State Division of Communications as Senior Communications Engineer, is located in Sacramento. . . . Congratulations to P. L. Stocum who has become station manager of the CAA radio station at Moses Point, Alaska. He does a bit of ham work also under the call KL7BD, so if you want news from the Bering Sea area contact Stocum on cw on 20, 75 or 10 phone.

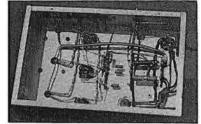
eral vessels EKS entered the engineer-

Signal-Light

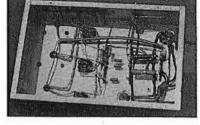
Top view of the signal light relay unit.

SINCE THE conception of commercialized radio the audio engineer has been plagued with the clicks and pops caused by the opening and closing of switches. The lower the audio level at which the circuit is broken, the more skill, experience, and aspirin required to locate this elusive type of interference. No new circuit can be pronounced noise-free without trial, regardless of whether the given line is being opened or any circuit remotely related to it. It is a common experience to hear dial-telephone interference in audio equipment, even when

the dial is at some remote point. And 110-volt ac light switches have been known to cause a very troublesome type of noise which is sometimes difficult to suppress.

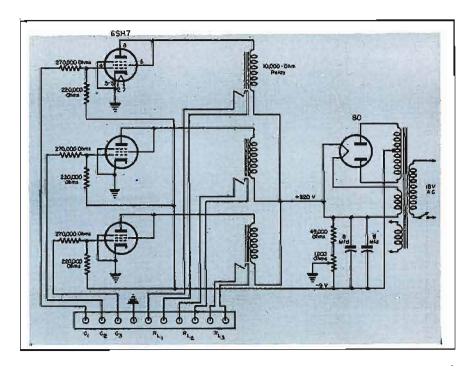

Key Sequence

To this writer's knowledge there are no commercially-built studio consoles that do not use the standard setup of a multiple set of contacts on a given microphone key or switch, so that several electrical operations take place almost simultaneously at the simple throw of the switch. When the key is placed to on position three operations


- (1) The contacts, which are associated with the given studio speaker relay, operate to silence the speaker in the studio. This is to prevent acoustical feedback.
- (2) A second pair of contacts operate to close the associated relay to illuminate the on air studio signs.
- (3) Lastly, another pair of contacts open the circuit from the microphone so that its output will excite the console amplifiers, and thus will be heard on the air.

Interference Silencing

To reduce the pickup of electrical interference, which is caused by the surges of current used to operate the speaker and light relays, to a minimum it is imperative that the input of the amplifier be a closed circuit during the first two steps of the key sequence. In low-level audio types of switching, the microphone is shorted out by a set of contacts. Such an arrangement serves two purposes: Silencing of the



Bostom view of the WIS light relay.

Pigure 1

Circuit of the light relay system used at WIS. The power transformer amployed in this circuit provides 5 v at 2 amps, 6.3 v 1 amp, and 650 v (center mp) at approximately 40 ms. The filter capacitors have a rate of 450 v working.

COMMUNICATIONS FOR OCTOBER 1949

RELAY UNIT

Circuit Developed to Eliminate *Pops* Caused by Studio Signal-Light Circuit Going Into Operation When Microphone Key Is Placed in *On* Position in Studio Control Console.

by HERBERT G. EIDSON, Jr.

Chief Engineer, WIS and WIS-FM Technical Director, WIST

microphone and effectively shorting of the preamplifier input. In high-level audio types of switching the preamplifier output is opened and closed, while the microphone output remains alive at all times into the preamplifier. The problem of pops in this case is greatly reduced.

Suppression Method

The normal method used to suppress interference is a simple series rc circuit, placed effectively across the console key contacts, one filter for the speaker relays and one for the signal light relay for each studio. The rc values depend upon the current drain of the relay and the voltage used. These values are best determined by trial and error.

The WIS Problem

This station had the misfortune to inherit a very tough unwanted-noise problem. When the speaker relays operated no clicks were noticed, but they were very loud on the signal-light relay operation, on open and close. Everything that this station's engineers' combined experience of 65 years in the art could uncover was tried to no avail. Questions puzzling us included: Were the mike contacts opening last in the sequence? Were any set of contacts touching another set? Was the current too great through the key contacts? Did we have the wrong

rc value for a filter? Would another type of filter work better?

Solutions Employed

After long sessions of mental debate, it was decided to begin a series of measurements to determine how much current the key contacts would pass before the click would be heard. To our dismay we found that if over 40 as were allowed to flow in the key circuit then the interference would be heard on the air. It was then realized that our solution was a signal-light relay operating through the use of a vacuum tube, designed in such a manner that the current flowing through the key contacts would be less than 40 ua. It was later determined that the current could be held to as low a value as 8 µa through the grid circuit and the key contacts. However, because of tube aging and other varying conditions, the operation was not completely reliable over long periods. Accordingly the circuit was readjusted to draw approximately 25 µa, which was still well below the allowable limit of 40 μa.

Relay Characteristics

Only three relays were used for our three studios. The relays were 10,000-ohm, sensitive plate type, which will close on 2 ma and open on 1 ma. For consistency of operation, however, 4

ma was allowed for each relay. Positive closing was then assured.

Circuit Operation

With none of the grid returns grounded through the key contacts (grid returns are grounded when key is in on position), and the signal light relays not energized, series 270,000-ohm resistors in each grid lead of 6SH7s are floating. A bias of -9 volts is applied to all three control grids through 220,000-ohm isolation resistors. This reduces the tube currents to almost cutoff. The slight amount of current allowed to flow is not enough to operate any plate relay.

Operation of Mike Key

When the microphone key on the console is thrown to on position, the associated grid return lead is grounded through the proper key contacts and the bias on this tube is effectively reduced. This allows greater plate current to flow; the relay immediately operates, turning on the studio signal light.

Results Obtained

Two of these units have been in use now for over a year at different stations. Their operation has been completely reliable and very little maintenance has been required.

TUBE Engineering News

Application of VHF Beam Power Amplifier as Frequency Multiplier Up to 175 Mc.

IN THE LOW-POWER multiplier stages of high-frequency transmitters the operating requirements are often too severe to be met adequately with receiving type tubes, and it becomes necessary to use beam-power amplifiers, such as the 5763.

HF and Class C

The hf characteristics of a tube in class C amplifier service depend in part upon the If properties of the tube such as: high current at low plate voltage (because the rf output peak voltage is subtracted from the supplied dc voltage to determine the actual instantaneous plate voltage), a large change in plate current between cutoff and a moderately positive grid, and sharp cutoff. In the curves of the average plate characteristics for the 5763, a grid-No. 1 voltage Ee = -15 volts may well be taken as the value for plate-current cutoff at a plate voltage of 60. A grid-voltage swing from -15 to +15 causes a 280-milliampere change in plate current. These increments in grid voltage and plate current show the effective amperes per volt to correspond approximately to 10,000 micromhos, a high value for the conduction part of the cycle.

Heater-Cathode Design

The peak value of cathode current required of a tube in class C amplifier service is high; in multiplier service,

this value is increased because smaller plate-current conduction angles are required for efficient operation. In addition, tubes for mobile service are quite likely to be operated at heater voltages above or below rated values because of supply voltage variations. To take care of such operating conditions the 5763 is provided with a cathode having a large emitting area. In normal operation, the heater must be operated at 6 volts rather than the usual 6.3 volts. When this tube is used with stationary equipment having a 6.3-volt ac heater supply, a series resistor must be used to drop the heater voltage to 6. Failure to observe this precaution can result in slightly reduced tube life and a tendency toward grid emission at high line voltage. As a result of the heater and cathode design, the oscillator power output drops less than 10 per cent for a change in heater voltage from 6 to 5.25 volts.

HF Tube Features

The 5763 has several interesting features which contribute to its performance at high frequencies. One of these is the 9-pin miniature envelope with its integral base and stem which provides a structure with low values of lead inductance, reduced interelectrode capacitances, and low rf losses. The low rf losses permit application of full plate power input at frequencies up to 175 mc. Above 125 mc, greater power gain is obtained when the tube is used as a doubler rather than as a straight-

through neutralized power stage because loading of the driving stage due to the input resistance of the 5763 is less severe at the lower frequency.

The tube has been designed so that a relatively high value of grid resistance (up to 100,000 ohms) may be safely used. This high resistance value makes it possible to obtain the moderately high value of grid bias required for good multiplier plate-circuit efficiency with low value of dc grid current.

Control-Grid Connections

Two control-grid connections, pins 8 and 9, are provided to aid in cooling the grid. These connections should be tied together at the socket. As a further aid to heat conduction, it is recommended that heavy copper leads be used for all grid and plate connections at the socket. The normal operating temperature of the tube is 200° to 250° C. Sufficient ventilation must be provided to keep the tube temperature within this range.

Application as Frequency Multiplier

In the circuit of Figure 1, the tube appears as a frequency multiplier in a conventional manner. The same circuit employing tapped coils is used for either doubler or tripler operation. Al-

20 • COMMUNICATIONS FOR OCTOBER 1949

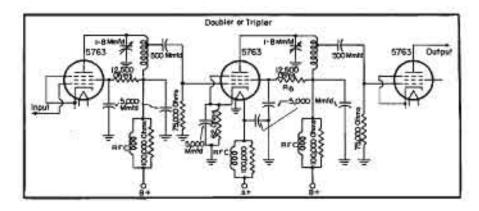


Figure 1 A frequency multiplier circuit with the 5763s. The rf choke (RFC) contains No. 24 coameled covered wire close wound on the 100,000 chm-resistors in the plats and filament circuits.

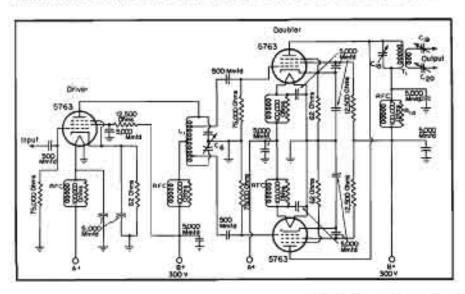
though the use of tapped coils can lead to parasities, no difficulty was experienced with these circuits. Because of the high amplification factor of the tube, a small cathode resistance of 62 ohms can furnish sufficient bias voltage to protect the tube for a limited time in the event of temporary failure of excitation and resultant loss in bias developed by the grid resistor.

Push-Push Doubler Circuit

A push-push doubler circuit using a pair of 5763s appears in Figure 2. In this application, in which the plates of the tubes are connected in parallel, the low value of output capacitance (4.5 mmfd per tube) is advantageous. A single tube used as a tripler provides more than adequate driving power for the push-push doubler. This circuit arrangement is particularly suitable for low-power transmitters.

Frequency Doublers

An important application of the 5763 is as a frequency doubler to drive the vhf transmitting tube 2E26.


Because of the possibility of spurious radiation resulting from the use of a final stage which is improperly neutralized, it may be preferable for mobile transmitters operated by non-technical personnel to substitute a doubler stage which does not require neutralization. In such cases, the use of a 5763 push-push doubler stage may be advantageous.

Credit

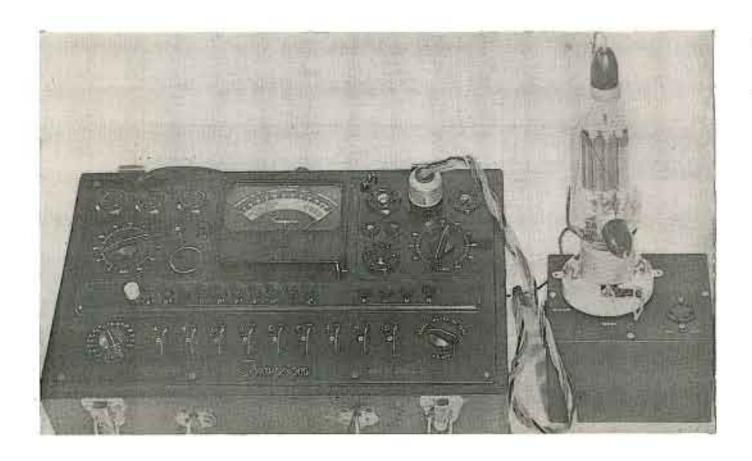

(Based on copyrighted data prepared by the tube department of RCA.

Figure 2

A pure-pure doubler circuit. Co is a eplit-stater tuning capaciter, the value of which depends upon the operating frequency, I. The values of Cis, Cis, and Cis depend upon the doubler frequency, II. The tank inductance, I.i., value also depends on the operating frequency, and the value of Ti depends on the doubler frequency, 2f. As in the siccuit of Figure 1 ber of choice (RFC) has No. 24 compelled-covered wire close wound on the 100,000-ohm resistors in the plate and filament circuits.

TRANSMITTING

Novel Test Unit Checks 807, 810, 828 and 8008 Tubes.

by WILLIAM MARSH

Chief Engineer WHHM, MEMPHIS, TENN.

A receiving Tube checker is standard equipment at most broadcast stations, because it is necessary to be assured of the condition of the hundreds of receiving type tubes used.

Transmitting Tube Checker

The piece of test equipment which is conspicuously absent at most broadcast stations is a transmitting tube checker. We found that such a device would certainly come in very handy in eliminating not only much of the guesswork of tube replacement, but avoiding the trial-and-error method of tube testing in the transmitter itself, a practice universally followed.

Unit Developed

It was thus decided to develop such a unit, and after a bit of experimenting, the checker shown in Figure 1 was evolved. Actually the unit is an adapter which is used in conjunction with a standard tube checker.

Construction Features

In constructing the tester, all sim-

ilar tube element leads were paralieled from socket to socket, and brought out through a six-wire cable to an octal plug for insertion into the regular tube checker

Control Sattings

The settings of the various controls on the standard checker were experimentally determined, using known bad and good tubes as standards. Listed receiving type tubes having characteristics similar to the transmitting tubes were used as guides. Arriving at a definite setting by this method was not

22 . COMMUNICATIONS FOR OCTOBER 1949

Tube Checker

Small Plate
Cop

Small Plate
Cop

Grid Cop

Grid Cop

Octal Plug

A Numbers

Figure 2
Closeup view of the (sansmitter tube checker).

Figure 3
Schematic of the transmitting tube checker.

particularly difficult, and the results have been found to be subsequently consistent.

Experimental Work Results

Experimental work on the original model of this checker disclosed a number of interesting and pertinent facts. The first model used a filament transformer which was powered externally to the manufactured checker. This, of course, seemed necessary because the checker's filament supply was not designed to handle a three to sevenampere load. Filament voltage was established at ten volts under full filament load. When the device was connected to the standard checker, all tubes, good and bad, checked good.

Filament Emission Problem

Apparently the average bad transmitting tube has such abundant emission at its full filament voltage that true variations from normal are not apparent. Accordingly the filament voltage was reduced to five volts, which was approximately half voltage for the larger tubes. When this change was

made, true operational characteristics of the tubes began to show up. The mercury vapor 8008s seemed to test as consistently as could be expected with the limitations imposed by the standard tube checker.

Importance of Phasing

The tube checker was subsequently used with an externally-powered fivevolt filament transformer until it was discovered that the phase of the filament power circuit was important to the operation of the checker. Accordingly, to insure correct phasing, the filament transformer was powered from the standard checker by connecting the filament transformer's primary to pins 2 and 7 on the octal cable plug. Then the standard checker's filament selector switch was set at 117 volts. This not only insured correct phasing between the small and large checker, but also limited interconnection of the units to one cable and plug. Also, use of the 117-volt supply from the standard checker avoided the possibility of overloading the transformer due to the

Chassis box is Bud type CU72A.

abnormal filament current requirement of transmitting tubes.

Tube Checker Choice

The standard tube checker used as the basic metering equipment is the percentage of transconductance type. However it is felt that an emission type tube checker would have served just as well.

Checker's Uses

This transmitting tube checker has been valuable not only in removing doubt as to the condition of tubes, but also has repaid its original cost by reclaiming used tubes. For example, it is the general procedure to replace modulator or final amplifier tubes by pairs. After removal, the tubes are checked. One each of the pairs will generally be found to be at fault and the other is placed in the spare compartment. It was discovered that a number of tubes formerly removed by guess were perfectly good, and these have since been placed in service for many more useful hours. When a tube is checked now and found to be bad, it can be thrown away with a clear conscience because it is bad.

Transmission Line Conversion NOMOGRAPHS

Nomographs Permit Inter-Conversion of Units Variously Expressed on Different Types of Transmission-Line Charts.

by ROBERT C. PAINE

VARIOUS CHARTS HAVE BEEN prepared to facilitate computations of impedance at required points on a transmission line, as well as computation of voltage and current distribution.

Expression Variations

The quantities, wavelength, attenuation, and reflection coefficient, used in these charts have been expressed in several different units. To permit conversion from one unit to another the nomographs shown in Figure 1 were developed.

Use of Nomograph A

The distance along the line for transmission-line problems is measured in wavelength, the distance of a complete phase shift of voltage or current through 360°. Wavelength has been variously expressed as 360°, 2 π radians, or in hundredths of a wavelength. With nomograph θ it is possible to convert each of these units; a hundredth of a wavelength, θ and θ are θ and θ and θ are θ and θ and θ are θ are θ and θ are θ and θ are θ and θ are θ and θ are θ are θ and θ are θ and θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ and θ are θ are θ and θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ are θ are θ and θ are θ and θ are θ and θ are θ are θ and θ are θ are θ and θ are θ and θ are θ and θ

Nomograph 8

Attenuation or drop in voltage or current along the line due to losses is expressed in the classical formulas as nepers and symbolically expressed usually by α . Referring to the voltage or current ratio, V/V, or I/I₀, at two points along the line, the neper equals the natural logarithm (to the base ϵ) of these ratios, log V/V (or I/I). These ratios can also be expressed directly, or in decibels equal to 20 log₁₀ V₁/V₂ (or I₁/I₂). Nomograph B permits conversion between each of these units.

Nemograph C

When a line is terminated by a load not equal to its own characteristic impedance reflection occurs. The ratio of the reflected voltage (or current) to the incident voltage (or current) is known as the reflection coefficient and is usually designated K. The absolute value of this coefficient |K|, determines the standing wave ratio, pure, also known as Q, of the maximum and minimum voltages, or currents, along a line of negligible losses; Q = (1 + |K|)/(1 - |K|).

Conversion Characteristics of C

Various types of transmission-line charts show circles of constant Q or |K|. Other charts show similar noloss circles of constant attenuation, usually designated α , where $1/\tan \alpha = Q$. Nonograph C permits conversion between each of these units, Q, |K|, and α .

References

Carter, P. S., RCA Review: Jan. 1939. Smith, Philip H., Electronics: Jan. 1944.

Paine, Robert C., Proc. of the IRE; Nov. 1944.

Paine, Robert C., Electronics; March 1945.

Selgin, P. J., COMMUNICATIONS; Feb. 1944

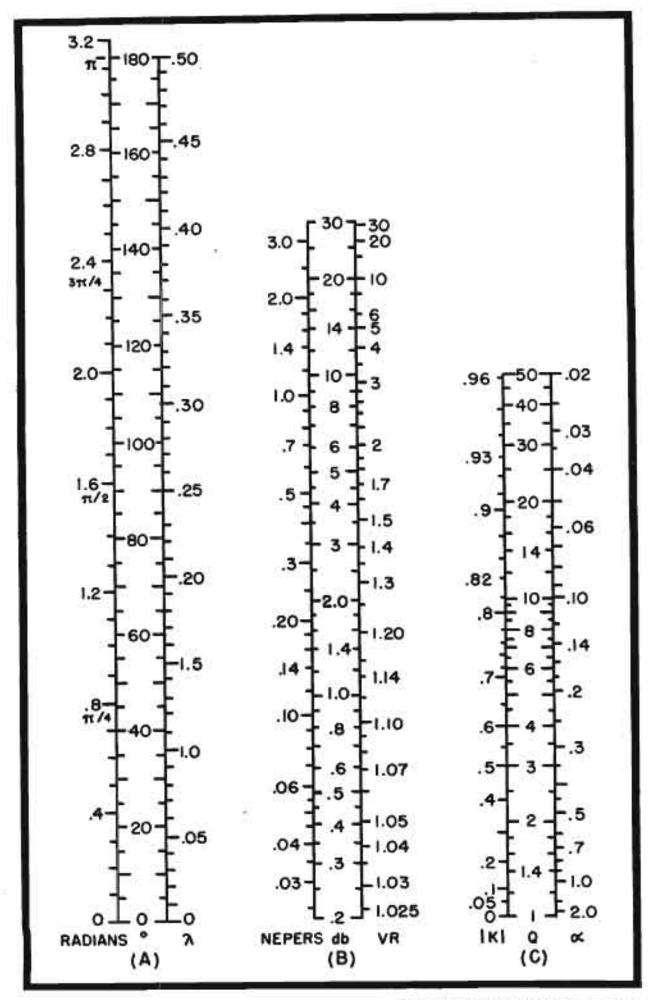

Slater J. C., Microwave Transmission, McGraw-Hill.

Chart published by Addison-Wesley Press, Inc., Cambridge, Mass.

Right: Transmission Line Nemographs

Transmission line conversion nonographs: Nomegraph A, units of phose, for line distances in wavelength(λ), degrees or radions. Nonograph B, units of extension, in nepers (a), decibels (db) or voltage (or correct) ratio (FR). Nomegraph C, units of mismatch, for no-loss circles of constant extenduation (a), standing wave ratio (Q) or reflection coefficient(|K|). In such termograph, values on either of the outer scales can be directly converted to values adjacent to use of the center scales or vice versa; values on the two outer scales can be converted to each other by reading along a straight edge placed corresponding points on the two parts of the center scales.

24 . COMMUNICATIONS FOR OCTOBER 1949

PACSIMILE

The book that brings you up-to-date on this tast-growing development

by

CHARLES R. JONES

Coordinating Engineer, Finch Communications, Inc.,

380 pages, 225 illustrations, \$6

WHAT IT IS-HOW IT WORKS

Modern facsimile systems and how to install, maintain and operate them

This is an ideal book for the engineer or serviceman who recognizes the value of going beyond the well-worn pathways in his electronic learning Besides outlining the 100-year history of faceimile, the author explains modern equipment fully—bow it is made, used and maintained. Of particular interest is a detailed description of present and potential uses of faceimile in a broad range of applications including telegraphy, aviation, publishing, banking, mining, advertising, law enforcement, railroading and many more.

SERVICE DATA AND TIPS

From an intensely practical standpoint a obspter on servicing lessimile plus dozens of detailed service notes will prove invaluable. Other subjects include complete date on transmitters and transmission lacilities; reception; synchronization and phasing; tape fassimile and facsimile standards. 10-day money-back guarantee. Use coupon.

MAGNETIC RECORDING

All about the theory, types and makes of recorders, their applications and performance measurements

y

S. J. BEGUN

Chief Bugineer, The Brush Development Co.,

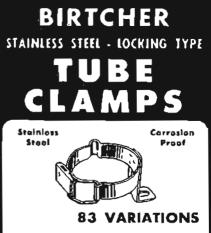
300 pages, 6 x 9, 180 illustrations, \$5

Here is the "low down" on this repidly expanding development in all of its design, engineering and experimental phases. MAGNETIC RECORDING acquaints you with every detail of modern equipment, brings you latest deta on applications ranging from home entertainment to movies, broadcasting, professional and amateur radio and many special uses including military speech scrawbling. COMPLETE TECHNICAL DETAILS

Acoustio and magnetic factors are exrofully explained. A-C and D-C bissing methods, distortion factors, reproducing beads, drive mechanisms, recording media and methods, reproducing suderasing are described in detail. The book likewise includes a complete outline of recording devices and their uses; a study of instruments for checking recording performance and a helpful discussion of magnetic versus other recording methods.

10 DAY MONEY-BACK GUARANTEE

Dept. G-169, MURRAY HILL BOOKS, Ioc., 232 Madison Ave., New York 16, N. Y.
Denclosed find \$ for books checked; or
send C.O.D. for this amount plus postage and
I will pay poetman. (No C.O.D.'s outside U.S.A.) If books are not satisfactors, it is understood I may return them in 10 days and you guarantee to refund the purchase price.
☐ Jones' FACSIMILE, \$6
☐ Hegun's MAQNETIC RECORDING, \$5
Name
Address
City. Zone. State


Site Testing

(Continued from page 7)

mixed with the proper amount of air is explosive. A rubber tube was run from the pressure regulator to a round wooden dowel, with a hole through the center. The neck of the balloon was fitted over this dowel and the gas allowed to slowly inflate the balloon. Nearly all the gas in a standard size cylinder was required to inflate properly the balloon. It must be remembered that the balloon will be much larger than one realizes and will exert a stiff lifting pull as it nears its fully inflated size.

With the balloon inflated, the antenna was tied on to the neck and the stay lines placed in readiness. Then the balloon was allowed to rise to a ten-foot level above the ground and was held there by restraining it with the transmission line which was secured to the center of the dipole. The balloon and antenna were then held in this ten-foot position by fastening the transmission line with a suitable clamping arrangement. The antenna was oriented in the desired direction and held there by means of the stays. This same arrangement was used at each additional ten-foot interval. As the antenna and supporting balloon rose higher above the ground prevailing winds tended to cant the antenna and transmission line away from a vertical position with respect to the starting point. To overcome this a back stay line was used to pull the antenna and balloon back into the direction of the wind far enough to bring the antenna in a vertical location directly over the starting point. This insured exact heights above the ground. No difficulty was experienced with this arrangement up to heights of 250'. Everything was now in readiness for the tests.

It was desired to find out the effect of the height of the antenna in the direction of the least drop off of the terrain and in the residential area of the city. The profile of the terrain is shown in Figure 1 and it can be observed that the transmitting and receiving antennas are in line of sight except for the trees and houses which might intervene during the first few points of measurement. The signal being picked up by the receiver was measured by first noting the deflection of the meter in the rf circuit of the receiver. Then a signal from a standard signal generator was fed into the receiver across a 72-ohm resistor and

Where vibration is a problem, Birtcher Locking TUBE CLAMPS offer a footproof, practical solution. Recommended for <u>all</u> types of tubes and similar plug-in components.

More than three million of these clamps in use.

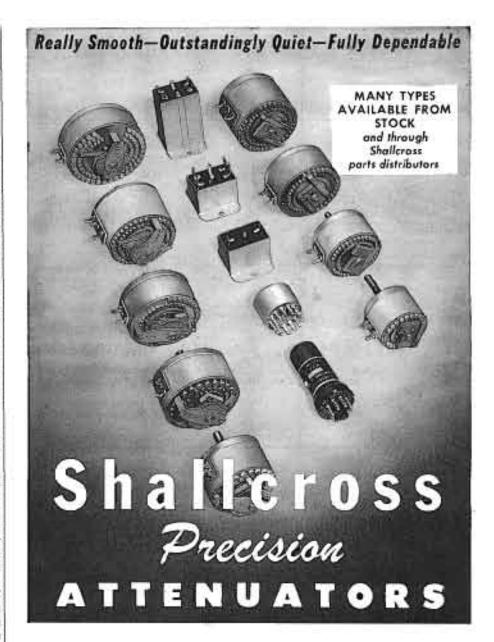
FREE CATALOG

Send for samples of Birtcher stainless steel tube clamps and our standard catalog listing tube base types, recommended clamp designs, and price list.

THE BIRTCHER CORPORATION SOUTH HUNTINGTON DR. LOS ANGELES 32

Service Technicians and Engineers: ALLIED's 1950 Buying Guide brings you all the new releases and money-saving values—from the world's largest atocks of test instruments, amplifiers, P.A. systems and equipment, tubes, parts, tools, books and accessories—ready for instant expert shipment. Send today for your FREE new 196-page ALLIED Catalog.

ALLIED RADIO CORP., DEPT. 24-K-9 633 W. Jackson Bivd., Chicago 7, III. Send PREE New ALLIED Catalog.
Name
Addreu
ALLIED RADIO


adjusted for the same deflection obtained previously. The output of the calibrated generator was then noted to obtain the equivalent microvolts at the terminals of the receiver. This procedure was carried out for each tenfoot interval of elevation of the antenna up to 180.

The result of this test, which appears in the plot of Figure 2, shows that after about 70' in elevation is reached the signal does not increase but rather starts to go through a series of maximum and minimum points caused by alternate addition and subtraction due to the change of path distance between the direct and reflected rays. Thus it may be seen, that as far as any local requirement is concerned in the principal city which is to be served, any height above 70' would be unnecessary for this particular receiver location.

Since this first test was about ideal as far as receiver location was concerned it was believed prudent to try an extremely adverse location; Figure 3. Here the receiver antenna was no longer in line of sight under any condition of transmitter antenna height and the sharpest drop off prevailed at the transmitter location. Here again the antenna was raised by ten-foot intervals starting at ten feet above the earth and the signal measured as before at the receiver input terminals. These data appear in the plot of Figure 4 and though exhibiting something in common with the results shown in Figure 2 were subject to much wider variations. But here again it is evident that after about the height of 130' not much could be gained by still greater elevation as the signal would be settling into the familiar maximum and minimum condition.

Application of Test Data

These two cases have been used to show typical conditions and the results which might be obtained. No particular difficulty was experienced in keeping the balloon aloft. We used the balloon for three days and then allowed it to deflate. The data accomulated were of extreme value in enabling a decision to be made concerning the feasibility of installing a simple short mast in place of a much taller and expensive fabricated tower. Furthermore it was demonstrated in advance that the installation would perform according to certain predictions. Since the erection and use of the antenna, which was elected from the results of these tests, no difficulties have been encountered. The transmitter site is at an elevation of 505' and the service radius of the station appears to be all that was anticipated.

ALL STANDARD FIXED AND VARIABLE TYPES

LADDER AND BALANCED LADDER CONTROLS

"T CONTROLS

BALANCED "H" CONTROLS

POTENTIOMETERS

VARIABLE IMPEDANCE MATCHING NETWORKS

V.U. METER RANGE EXTENDING ATTENUATORS

STANDARD AND SPECIAL FIXED PADS

SPECIAL NETWORKS

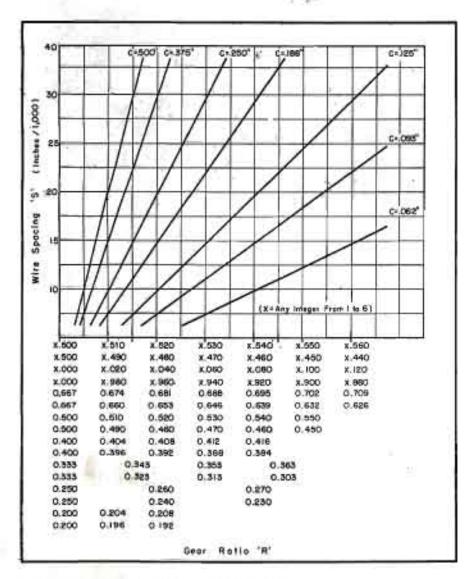
Perhaps you've noticed how frequently Shallcross attenuators now appear in the finest audio or communications equipment? Or how often they are chosen for replacement purposes?

There's a reason! Improved design, materials and production techniques have resulted in a line that sets new, higher standards of attenuation performance for practically every audio and communications use.

Shallcross Attenuation Engineering Bulletin 4 gladly sent on request.

Shallcross Manufacturing Co. Dept. C-109 Collingdale, Pa.

RESISTORS - INSTRUMENTS - SWITCHES - ATTENUATORS


COMMUNICATIONS FOR OCTOBER 1949 . 27

Universal Coil-Winding Graph

Problem of Determining Proper Gear Ratios for Winding Universal Coils Reduced to Two Steps: Simple Arithmetic Division and Extraction of Required Ratio from a Graph. Method Can Be Generalized for Machines Utilizing Various Combinations of Gears.

by DONALD ARANY and MERTON MACOMBER

Design Engineer Coif Engineer
Mackay Radio and Telegraph Co., Inc.

THE DEGREE TO WHICH NEWLY-WOUND coils represent the desired electrical and geometric design parameters depends to a large extent upon the coil-winding technique. The most important single factor in winding universal coils is the gear ratio. For a properly adjusted coil-winding machine in good mechanical condition, the choice of the gear ratio determines the electrical and mechanical merit of the coil.

In current practice, the method of determining gear ratios depends largely on the personal preference of the coil designer. Experienced engineers and coil technicians often employ empirical curves relating gear ratios to various desired parameters. Winding machinery manufacturers provide tables listing gear ratio combinations. However, such tables are not amenable to interpolation and their utility is thereby decreased in practical development and design. The literature1. 2. 8 on universal wound coils presents a number of methods for computing gear ratios. These methods vary in complexity and generally require some trial and error manipulation.

The method presented in this paper provides desired gear ratios for a wide range of electrical and geometric constants. It entails the computation of a simple quotient which allows the desired gear ratio to be obtained from a graph. Once the gear ratio is obtained, the number of teeth on the cam and the dowel gears can be selected from a single setting of a slide rule.

Nomenclature

c = cam throw (inches)
d = dowel diameter (coil form o.d. inches)

w = wire diameter (o.d. inches)

 $T_4 = No.$ of teeth on cam gear

 $T_4 = \text{No. of teeth on dowel gear}$

S = 1.25 w wire spacing

 $R = T_A/T_*$ gear ratio

Procedure

Step 1: Compute the first approximation for R, using the formula

$$R \stackrel{\Delta}{\cong} \frac{d}{3c}$$
 (1)

Step 2: Select on the graph the line corresponding to c desired. Pick off the point whose ordinate corresponds to the value of S. The abscissa of that

Left: Chart of genr ratio, R.

point corresponds to a series of ratios for R listed below the point. Use that ratio which is closest in value to the approximation computed in equation (1). This ratio referred to the C and D scales on a slide rule will give, finally, the actual gears to be used.

Example 1

Given:
$$c = 25^{\circ}$$

 $d = .375^{\circ}$
 $S = .0071^{\circ}$
 $Step I: R \approx \frac{d}{3c} = \frac{.375}{(3) (.25)} = .5$

Step 2: Pick off point on straight line $\varepsilon = .25$ ", corresponding to S = .0071". Nearest R to value calculated in Step 1 among the various abscissal scales tabulated below is R = .507. Setting .507 on the C scale opposite the index number I on the D scale on a slide rule the following sets of gears

might be used: $\frac{36}{71}$ or $\frac{37}{73}$.

Example 2

Given:
$$c = .188''$$

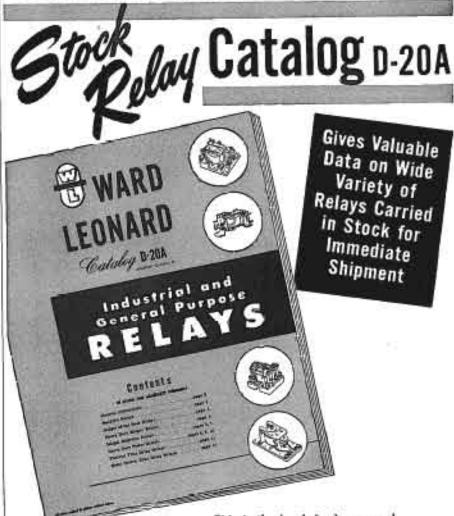
 $d = .75''$
 $S = .030''$
 $Step I: R \cong \frac{d}{3c} = \frac{.75}{(3) (.188)} = 1.33$

Step 2: Pick off point on straight line c = 188", corresponding to S = .030". Nearest R to value calculated in Step 1 among the various abscissal scales tabulated below is: R = X .4595 = 1.4595, where X = 1. The slide rule will give the following sets of 57 73

gears 57 73 39 50

W. Simon, Radio; February-March, 1947
 W. Simon, IRE, January, 1945.
 M. Kantor, IRE; December, 1947.

TAPE RECORDER DUPLICATOR



Contact printing setup for duplication of magnetic taps recordings, described by Robert Herr, third physicist of the central research department of Minnesots Mining and Manufacturing Co., St. Paul, Minn., at the recent National Electronies Conference is Chicago. In the presence of a inagnetic field. Used are an oscillator (left, above) designed to descrate 2000 ope and the recording unit (right, above) which contains the magnet, motor, and winding equipment.

Industrial & General Purpose

This is the book for busy men!

This is the book with hundreds of economical answers to quick relay needs! This is the book you'll turn to when time means money! It's your handy guide to WL light-duty and heavy-duty stock relays for control of radio and electronic devices, electrical equipment and appliances. Puts factual data and useful information at your finger-tips.

WRITE TODAY FOR YOUR CATALOG D-20A

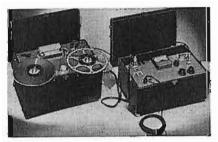
Electronic Distributor Division

Ward Leonard Electric Co., 53-M West Jackson Blvd., Chicago 4, U. S. A.

WARD LEONARD

RELAYS - RESISTORS - RHEOSTATS - CONTROL DEVICES

WHERE BASIC DESIGNS ARE RESULT-ENGINEERED FOR YOU


The Industry Offers

WEBSTER MAGNETIC TAPE RECORDERS

Two professional models of Ekotape magnetic tape recorders have been announced by Webster Electric Company, Racine, Wisconsin.

One model, 105, consists of a single unit which contains both record and playback amplifiers in addition to the magnetic tape recorder mechanism. The other, model 107, consists of two compact units, one of which contains the recording mechanism, the other containing the amplifier chassis. Both units, without carrying cases, may be secured for permanent rack installation.

Both models are provided with a single knob control for record, stop, listen and rewind. Synchronous two-speed motor of model 107 provides a tape speed of 15" per second for a half-hour program or a tape speed of 7½" per second for an hour program. Tape speed of 7½" per second for an hour program. Tape speed of 114" per second with model 105 provides for a full half hour program.

Model 107; one unit contains magnetic re-corder mechanism, the other contains amplifier

AIRBORNE INSTRUMENTS POWER OSCILLATOR

A wide-range power oscillator, type 124A, for measurement and testing procedures in the 300 to 2500 me range, has been developed by Airborne Instruments Laboratory, Ioc., 160 Old Country Road, Mineola, N. Y.

Oscillator consists of a grid separation coaxial oscillator employing a 2C38 disc seal triode, audio oscillator and modulator section and a self-contained rectifier power supply. Cathode grid and grid-plate lines are coupled to a single tuning control with provision for individual adjustment of the grid cathode line, if desired. Counter type indicators show the position of the tuning elements. An output coupling control with counter indicator is also provided.

DUMONT TV POWER AMPLIFIER

An amplifier unit which steps up the output rating of the basic Du Mont acorn TV transmitter from 500 watts of 1 kw, to 2½ kw or 5 kw, respectively, has been aunounced by Allen B. Du Mont Laboratories, Inc., 2 Main Ave., Passaic, N. J. Transmitter acts as a driver for the single-stage power amplifier, which unit consists of a pair of air-cooled tubes.

Grounded-grid amplifier circuit used which is said to permit tube replacement without requiring neutralizing adjustment. No vestigial side band filter required as lower side band is attenuated by over-coupled circuit and one notching filter that is built into the equipment.

G. E. ALNICO IMPROVEMENTS


Two new Alnico developments have been anounced by G. E.

One is Alnico 5 DG, a modification of Alnico 5, in which the crystal structure of the magnets sa ligned in the direction of magnetization; the letters DG refer to directional grain. A change in the manufacturing process has made this new structure possible, and the corresponding processing of smaller magnets.

The other material is Alnico 7, developed specifically for applications where a high demagnetization force is present such as in motors, generators, and variable air gap devices. This magnet is said to show a higher coercive force than any other grade of Alnico.

PICKERING RECORD COMPENSATOR

A record compensator, model 132E, which is said to provide the flexibility required to equalize for different recording characteristics used by various record manufacturers, has been announced by Pickering Company, Oceanside, L. I. Six positions are said to equalize for all established recording characteristics including microgroove and standard records, domestic or foreign. Uses linear circuit elements.

SYLVANIA HE NOISE GENERATING DIODE

A miniature noise generating diode, T5½ type 5722 suitable for measurements at frequencies up to 500 me has been announced by the Radio Division of Sylvania Electric Products Inc., 500 Fifth Avenue, N. Y. 18.

Operated with 150 volts on plate and at filament voltages ranging between 2 and 5.5 depending on desired plate current or noise output. In intermittent service maximum plate dissipation is five watts.

LEAR VHF RECEIVER AND TRANSMITTER


Instrument type whf receivers and whf transmitters in narrow panel designs for installation and location in aircraft instrument panels, have been announced by Lear, Inc. Aircraft Radio Division, 110 Ionia Avenue, N.W., Grand Rapids

Division, 110 10ms Avenue, 2, Mich. Receiver, model LR-5BN, has continuous tuning for why tower, radio range and vor reception facilities.

Transmitter, model RT-10CH, is a 2-watt 6-frequency unit.

AUDAK REPRODUCER

A polyphase reproducer, which permits ten different combinations of styli, such as microgroove and 78, transcriptions and 78, etc., has been announced by the Audak Co., 500 Fifth Avenue, New York 18. Point pressure about 7 grams. Output about 30 my, High or low impedance. ùnpedance.

CLARKSTAN STANDARD RECORD

A steady-state frequency record, No. 2000S, cut on 12" vinylite, 78.26 rpm, recorded at constant velocity above 800 cps, constant amplitude below that point, has been announced by the Clarkstan Corporation, 11927 West Pico Blvd, Los Angeles 34, Calif. Frequencies are from 50 to 10,000 cps in seventeen steps.

A steady-state recording, No. 2001/2002S, for 1/p microgroove use is also available. One side of this record is recorded flat, the other side with NAB curve.

STACKPOLE FLYBACK TRANSPORMER CORES

Ceremag flyback transformer cores for television, which are said to offer permeability on the order of 10 to 1, have been announced by the Electronic Components Division, Stackpole Carbon Company, St. Marys, Penna.

JENSEN OPTICAL-LENS PRINCIPLE SPEAKER

An optical-lens principle speaker, type H-510, has been developed by the Jensen Manufacturing Company, 6601 South Laramic Ave., Chicago. Employs a direct radiator low end with a separate high-frequency horn and compression driver for the high channel. Presence is said to have been enhanced by attaining a wider angle polar pattern in the extreme high-frequency region.

THORDARSON REPLACEMENT TRANSPORMERS

A line (24 line) of power and output replacement transformers has been announced by the Thordarson Electric Manufacturing Division, Maguire Industries, Inc., 500 West Huron St.,

Thordarson Electric Manufacturing division, Maguire Industries, Inc., 500 West Fluron St., Chicago.

Specific duty transformers available in four models; 2,000 to 25,000 primary impedance with 5 watts output.

Two models, universal output replacements, available in four or eight watts output, with primary impedance of 4,000 to 14,000, and secondary impedance of 1 to 29 ohms.

Also available is a universal line to voice coil transformer with 70 v output taps; 10 watts with secondary taps from ½ to 10 watts.

E-V CRYSTAL AND DYNAMIC MICROPHONES

General purpose crystal and dynamic microphones (mercury) have been announced by Electro-Voice, Inc., Buchanan, Michigan. Tiltable head for non-directional or semi-directional use. Frequency response of mikes is said to be substantially flat, 50-8000 cps. Ontopur level is —48 db for crystal (model 911) and —53 db for dynamic (model 611). The dynamic uses an acoustalloy diaphragm. The dynamic is available in high and low impedances.

BROWNING LAB SWEEP CALIBRATOR

A sweep calibrator, model GL-22a, has been announced by Browning Laboratories, inc., of Winchester, Mass. Calibrator is designed to provide markers for accurate time calibration of synchroscopic sweeps. Markers at intervals of 8.1, 1.8, 18.0, and 18.00 microscoods are provided and are sustable for deflection indicating or beam blanking presentation.

A self-contained trigger generator with position in negative output can be used to drive the calibrator and associated equipment or it may be triggered externally up to approximately 100 kg. Positive or negative gates at wariable amplitude are available for observing retrace or binning purposes. Offered in either sack mounting or cabinet style with panels finished in black leatherette.

HEWLETT-PACKARD SECONDARY FREQUENCY STANDARDS

Secondary frequency standards 100C and 100D, have been developed by the Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif.

Model 100D offers rectangular wave betput, ilming pips at intervals of 100, 1,000 and 10,100 microseconds, and an interval 'scope for convenient frequency comparison. This instrument may be standardized against WWV with the sad of a standard oscillates and a common section.

Both models employ reystal controlled uself-lator and divider circuits. Internal impedance has been held to around 200 ohms, so the standard frequencies out be delivered at some distance from the instrument.

100D offers sine waves as 5 frequencies and pectangular maves at 4 frequencies. Accuracy is said to be in the order of 2 parts in 1 million. The 100C offers sine waves andy, at 4 crysta; controlled frequencies.

Both instruments provide 5 volts output at all frequencies, and operate from a salf-contained 115 o regulated as power supply.

....

ELECTRODYNE IMPEDOMETER

An Impedometer, for comparing the voltage drop-across the unknown impedance and the voltage drup across a resistive standard, when the some current is flowing in both circuits, has been de-veloped by Electrodyne Co., 859 Boylston St., Boston 15, Mass. Unit is used in conjunction with a mitable ostillator and a vacuum-take voluntary.

The instrument uses standard resistors ac-

The instrument uses autous cursts to 1%.

Determinations said to be possible by Ise pedaneter measurement are impedance changes due to mechanical changes; riflert of de in circuit components; transformer characteristics; separation of resistive and reactive components; as characteristics of hytteries, vacuum-tube circuit studies. cutt studies;

Instrument was developed by Edward S. Shepard, Sr., of the seismological department of Boston Callege.

. . .

EBY MOLDED-IN-THE-LINE **FUSE HOLDER**

A tree moster for in the line service has been amounted by Hugh H. Eby, Inc., 4728 Sention Ave., Philadelphia, Perm. Positive motage is said to be assured by attaching the wire lead to the socket-type council by a sulderless crimp commention, thus making these two parts as integral unit.

After these investigations A fuse holder for in-the-line service has been

regral unit.

After three insertions of a .252" (±.000") diameter pin there is said to be a maximum voltage drop of five millivelts at .30 amperes when measured with a .247" (±.0005") aliverplated copper pin

RCA TV PORTABLE POWER SUPPLY

A lightweight power supply, type TY-35A, capable of providing a regulated source of the at loads from 200 to 500 milliamperes, has been attenuenced by the TV section of the RCA Engineering Products Department. Equipment is adapted for use as either a portable or a rack-mounted unit.

Adjustable between 260 and 290 volts, with variations said to be less than 0.5 per cent from minimum to maximum load; at ripple of less than 0.01 per cent from peak-to-peak.

minimum to maximum load; at rig then 0.01 per cent from peak-to-peak.

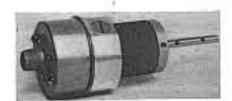
ELECTRONIC TUBE CORP. 'SCOPE

A dual-channel 'scope, H-21, providing observation of two independent and rapid phenomena
pocuring simultaneously, has been amounced by
the Electronic Tube Corp. 1200 East Mermid
Lane, Philadelphia 18, Penna.

"Scope contains two separate and complete
electron guns in a single, 5", flat fare tube.
Each channel has individual controls for inrensity, focus, and X, Y, and Z axes. Vertical
deflection sensitivity is said to be less that
O.1 v dc/in. Vertical amplifiers have conductive differential input in the LX attenuator
setting, allowing the use of push-pull preemptifiers for medical purposes. Vertical and horizontal amplifier nulputs are interchangeable.
Triggering is in conditious sweeps of 2 cps
to 58 ker ½ second in 20 microsecodds. Range,
up to 100 volta, is governed by attenuator
setting.

INTERNATIONAL RECTIFIER HIGH CURRENT DUAL RECTIFIER SELENIUM ELEMENTS

Dual selentum restifier elements measuring 716" x 1246" have been developed by the International Restifier Cursoration, 6309 South Victoria Avenue, Los Angeles 43, Calif. Each dual element consists of two 656" x 736" plates atrapped in parallel and rated in a three-phase bridge circuit at 34 amperes for continuous duty self-ecoling, 85 amperes for continuous duty fan-cooling, and 340 amperes for highly intermittent duty.


BENDIX DC MOTOR

A de motor, specially designed to meet the consirements of the Army Navy specification ANM-40, has been amounted by the Red Bank Division. Bendix Avistim Corp., Red Bank,

N. J.

Motor is completely shelded to eliminate reduced of noise and equipped with an integral filter to suppress conducted noise. It is guaranteed to be noise free within specification limits from 15 to 156 mc; limits maintained through the required ambient temperature range of -55° C to +73° C.

Meter can be supplied for voltages from 12 to 64 volts & and is normally furnished with a standard AN connector.

MEASUREMENTS SIGNAL GENERATOR

MEASUREMENTS SIGNAL GENERATOR
A standard signal generator covering 30 cycles
to 90 cot, model &2 has been announced by
Measurements Corporation, Beanton, N. J.

Two oscillators are employed to cover the frequency range. Los frequency oscillator, tootinuously variable from 20 cycles to 300 kg, has
a mesered output from 0 to 50 youts across a
resistance of 7500 ohrs. Am of oscillator covering the tange from 30 kc to 50 mc provides
output from 0.1 microroult to 1 volt and may
be modulated with the los-frequency oscillator.
Instrument teatures a mutual industance type
offermation which is taid to insure a higher degree of accuracy than may be obtained with the
resister attenuator or mutual industance type
attenuator of serier design.

CB AUTOMATIC AUDIO SWEEP GENERATOR

An automatic audio aweep generator which is asid to have a frequency of from 25 to JZ,000 cycles in one continuous range, has been answered by Clough Brengle Company, 6014 Broadway. Chicago 40, III. Sweep may be adjusted to any aprend from 500 to 30,000 rycles, or the instrument may be operated manually. Wave form distortion is stated in be less than ½ of 1%, and the aweep calibration is linear, sweep frequency being adjustable from 3 to 10 sweeps per second.

Construction and operational data appears in bulletin MA.

bulletin 16A-

TRANSVISION SWEEP SIGNAL GENERATOR

A aweep signal generator, model No. SG, for TV and PM featuring frequency coverage from 0-227 mc with no band switching, variable sweep width from 0-12 mc and a calibrated build in marker generator has been amounted by Transvision, Inc., New Rochelle, N. Y.

Unit has directly calibrated markers, 20-20 mc for trap, sound and video if alignment; rf for alignment of traps for rf channels when a devolumeter is used as the indicating medium mimodulated rf signal to provide marker plus simultaneously with the main variable oscillator and phasing control.

TRIPLETT YOLT-OHM-MIL-AMMETER

A pocket-size volt-chm-mil-ammeter, model 666-R, providing readings of 0-1,000 ohms (.5 ohm low reading) to 3 megohina, ten ac/de volt ranges to 5,000 and three de ranges, has been developed by The Triplett Electrical Instrument Co., Bluffing, Ohio.

Features unit construction with all resistors, shunts, rectifier, and batteries boused in a molded base integral with the switch.

G.E. PORTABLE AUDIO AMPLIFIER

A portable audio amplifier for AM, FM, and TV broadcasting has been announced by the transmitter division of G.E.

The amplifier, type BA-5-A, features four microphone channels, each with an individual pearmplifier, and a program amplifier which raises the mignal to the lavel required for take phone transmission. Also has a low-level output connection for feeling gu systems or other amplifiers.

put connection for feeding pu systems or other amplifiers.

The unit contains a built in as power supply. If so power is not available or fails, the amplifier can be operated on its own battery system. Noise level is said to be 20 db at normal fader positions, while distortion is less than 1 per cant at 30 to 15,000 cycles. Prequency response under similar conditions is within 1 db.

Built into the amplifier is a test-tone settling for remote line resting and a large size illuminated on meter for reading the program level ted into a telephone line and chepteng the cm.

dition of the butteries.

Determination of Internal Impedance

(Continued from page 9)

third test with a known reac-

- (b) Two tests, each with different known reactance loads, and a third test with a known resistance load.
- (c) Three tests, each with different known reactance loads.

The only factor which makes any of the above arrangements more desirable than others is the consideration of the angle at which the circles may intersect. Two successive resistance tests yield R. circles which will be most likely to intersect at a rather small angle, so that on a plot using a pen or pencil drawing a curve of finite width, the circles will intersect on a short segment of curve rather than at a sharp point. The same is true of successive X. - circles, if the reactances are of the same sign. As a further consequence of the ordinarily small angle between two R, circles at their intersection, very slight inaccuracies in the circles will cause large error in the X coordinates of their intersections. Similarly, two X. - circles drawn for reactive loads of like sign will yield an R component of poor accuracy.

Summing up we find that the intersection of circles based on loads of the same nature generally cannot be relied upon to yield an accurate solution for Z. Since the reactive elements used in an application of this sort will usually be capacitances, because of their convenience and low dissipation, case (c)would usually involve reactances whose signs are all alike, and this case can therefore be rejected as ordinarily unsuitable. The remaining cases, (a)and (b), will yield accurate results, since they are based on both resistance loads and reactance loads. Generally, an R_s - circle and an X_s - circle will intersect when reasonably near to being normal to each other, and therefore the intersection is sharp and accurate.

The foregoing considerations indicate a best method for taking the results from the circle plots. Suppose we consider case (b), using two R. circles and one X, - circle. These three circles should intersect at a common point to register the true Z. The intersection of the two R_* - circles will probably be inaccurate, so that actually no three-way intersection will occur. However, the X_* - circle will intersect both R. - circles at very nearly the same point, this point representing the true accurate components of Z. The nearby intersection of the R. - circles will serve to indicate that the solution thus obtained is not an extraneous one.

The method discussed is not restricted to measurement of the internal impedance of a generative source. It is quite applicable to general impedance measurement. Any unknown impedance can be measured by arranging it to be Z in Figure 1. The test setup then requires only a voltage source, voltmeter, and some known resistances and reactances.

As an example and check, the internal impedance of a laboratory signal generator was found by the method described. The results are shown in the curves of Figure 3. By way of verification of these results, calculations were made of the ratio of load volts to open-circuit volts for a load resistance of 400 ohms, and the calculated values of this ratio compared to values obtained by direct measurement. The comparison is illustrated in Figure 4.

Portable Console

(Continued from page 11)

broadcaster, a little showmanship always helps.)

A dual-speed turntable with a pickup carefully oriented to minimize induced hum is in use at our station. Since the rumble is very low, and the speeds are accurate and easily changed, this turntable has been found ideal for the job.

Setting Up On Remote

In a typical installation, one or more speakers are first connected to the multi-match output transformer, the line out terminals are connected to the phone line, and the microphone and turntable are plugged into the console

Speakers are oriented for the maximum coverage possible without endangering the broadcast operation by causing feedback. Then, the public-address controls are preset, one (top) to give ample coverage, and another (bottom) to give as much coverage as possible without feedback or too much of the echo effect. A time-check with the studio and a level-check complete the preliminary operations.

A unit such as this could be used to feed highpower boosters located at a distance in a large pa installation.

Since KXIC is equipped with only one studio console, as are most 1-kw stations, this remote console furnishes a feeling of security.

Studio Ald

Several times we have had calls for recordings that would require most of our large console's facilities.

To provide this service, we have fed the transmitter from the small console, located in an office or studio, and proceeded with the recording through the main console without the additional worry of program feed.

(In such a case, the microphone on, public-address control would be turned off, and the operator and the announcer could be located in the same room.)


The small console has also been used to feed prepared programs into salesmen's wire recorders. This has been found to add broadcast quality and production to audition recordings made for potential sponsors, save time and effort for everyone involved in the

Salesmen have found that it is easier to sell on-the-spot programs from small nearby towns, when they can say the

FOR CONNECTORS KINGS IT'S

Pictured here are some of the more widely used R. F. co-axial, U. H. F. and Pulse connectors. They are all Precision-made and Pressurized when required. Over 300 types available, most of them in stock.

Backed by the name KIHGS - the leader in the manufacture of co-axial correctors. Write for illustrated catalogs. Department "T"

Manufacturers of kadar, Whip, and Aircraft antennas Microphone Flugs and Jacks.

Rodor Assemblies, Cable Assemblies, Microwave and Special Electronic Equipment

station will be using a good, adequate public-address system, and therefore the local, immediate audience will hear the commercials just as the radio audience does.

The console has been used, too, for chamber of commerce dollar day novelty shows. Here, versatility and the ability to handle an audience-microphone without feedback are very great assets. The emcee's comments still can be heard by the immediate audience, because his voice can be brought in through the unswitched channel.

KXIC is beginning to feel that the small console is vital to its wellrounded operation. The solder had hardly cooled, before the station's program director was building shows around this versatile unit.

Even the sales manager was using it. Far the console could be set up to feed programs between offices to allow prospective sponsors, who had come up to the studios, to hear how their proposed shows would sound.

It has been our experience that remotes draw listeners. The small console releases the lid on stored-up plans to schedule more numerous and more varied remote shows which will exploit the audience potential.

IG-L

CANNON PLUGS FOR THE RADIO TECHNICIAN

TYPE AN

has greatest number of inserts, variety of am-perages and voltages. More than 200 layouts.

TYPE K

and RK similar to "AN" but an exclusive Can-non product, more rug-ged than type "AN". 210 inserts layouts.

TYPE XL

Fast growing in pop-ularity as the leading quality low cost micro-phone connector 10 & 15 ampe. contacts.

TYPE X

Sincert arrangements. friction type engage ment. 10 and 15 amps.

TYPE P

Standard sound and microphone series in ? insert arrangements. 15 & 30 smps. contacts.

TYPE DP

Rack & Penel type standard contacts and consists.

AND 7 OTHER MAJOR TYPE SERIES.

Write for the new C-48 Condensed Caralag. Address Department J-121

Develormint Company

Division of Connon Manufacturing Corp. 3209 HUMBOLDT ST., LOS ANGELES 31, CALIF.

IN CANADA & BRITISH EMPIRE: CANNON ELECTRIC CO., LTD., TORONTO 13, ONT.

WORLD EXPORT (Excepting British Empire): FRAZAR & HANSEN, 301 CLAY ST., SAN FRANCISCO

News Briefs

INDUSTRY NOTES

The De Mont TV transmitter division has an-nounced plans to repurchase Du Mont white transmitters from TV broadcasters and CP holders who, for the less interests of the public and television broadcasting industry, may be required to charge operations from the the to the sket band.

the skif band.

The plan, nutfined in individual letters to purchasers of complete Du Mont video and audio transmitters, provides for the resourchase of Du Mont why transmitters at an autount equal to the total depreciated value of the transmitter at the time it is repurchased by Du Mont.

PERSONALS

James M. Blackbdge, Scandard Transformer Corp., Chicago, has been elected charman of the Association of Electronic Parts and Egalgment Manufacturers. A. L. Tuttle, Centralab, Milwankes, has become vice chairman; Helen Staniland Quam, Quam Nichols Co., Chicago, treasurer for the four-renal consecutive term and Kenneth C. Prince, Chicago, executive secretary for the lifteenth year.

Joseph F. Bozzelli has been appointed assistant sales manager of the L. S. Brach Corp., Newark, N. J.

Charles P. Soper has retired as bend of the patent department of the Relloge Switchboard and Supply Company, Chicago. John J. Bel-lamy, associated with the company since 1941, aucceeds Soper.

Robert A. Seidel, formerly vice president and competibler of the W. T. Grand Co., is now with the RCA Victor Division as vice president in charge of distribution.

F. P. Barner has been appointed sales manager of communications equipment for the G. E. transmitter drawson.

Maurice G. States has been appointed asles manager of microwave relay and phanneling equipment in the RCA Engineering Products

R. M. Karet is now on the board of directors of the Pentron Corp., 611 W. Division St., Chicago 10, III. Raret will also act as national sales possilization the the company which manufactures magnetic wire and laps recorders. Paul A. Sahilas is president of Pentron, Irving Resuman is vice president and sales recorders. manager.

LITERATURE

The Radio Division of Sylvania Electric Products, the Emperium. Ps., has released a 418-page freed addition of a tube manual commission basic application data for 637 receiving and rathodo-ray tubes.

Data supplied includes characteristic curves for tube types in nonmon use; resistance coupled amplifier data; interchanguable tube rhorts; dictionary of tube, circuit, FM and TV ferms, and instruction on the use of characteristic curves.

Priced at nightly-five nexts per copy

Ward Lecentral Electric Ca., Electronic Dis-tributor Division, 53 W. Jackson Bied, Chi-cago 4, III. have released a relay catalog, D-20A, which illustrates and describes various types of relays, gives contact racings, coil specifications, sizes, current list pinces, and other helptoi data on ar and de units.

Westinghouse Electric Corp., P. O. Box 888, Pittsburgh 30, Pentus, have published a booklet, DB-19-025, which describes standard and high-voltage scienium rectifiers for power supplies

voltage setenium rectifiers for power supplies and electronic curvats.

Efficiency curvas for both the standard (type M) and high-voltage (type H cells) are included, ingether with discussions entitled Efficiency—Aging—Life, Bock Lishings—Reprint Resistance, Furnacial Resistance. Life characteristics of types H and M cells, for various overload conditions or high ambient temperatures, are plotted graphically.

Federal Telephone and Radio Corp. publication division, G Broad St., N. Y. 4, N. Y., has 398-31 Broadway, New York 13, N. Y.

published a 640-page third edition of Reference Data for Radio Engineers, The new edition contains an expanded chapter

Data for Regio Engineers.

The new edition estimates an expanded chapter on selective circuits and now includes design formulas for double, triple, and stagger-toned circuits. A configerity new chapter on filter networks has been compiled, and includes impedance and phase-shift curves and design equations for low- and high-pass, and hand pass and hand-aton networks.

A section including twenty-four of the more widely used variations of the impedance bridge and its use in measurements has been included. Descriptions of grid-controlled gassess rectifiers as used in high-power, high-voltage supplies are given, together with design information for all types of filter circuits for power supplies.

The chapter on electron tubes now includes information in high-frequency types, including traveling wave, magneticon, and klystron tubes, with a table on cathode-ray tube screen phosphore.

phore.

Also given is the latest information on all types of modulation, including pulse-time-division multiplex, of which the characteristics of several variations are described.

A new charter on radie soize and scheriferens has been added. Talues and a chart dealing with the location of sparious frequency responses are included here.

Book is priced at \$3.75.

Polytechnic Recearch and Development Co., Inc., 203 Tillary Street, Brooklyn I, N. Y., has published a catalog describing microwave test equipment tovering the frequency spectrum up to 40,000 pm.

Alfied Radio Corp., 835 W. Jackson, Blvd. has published a 196-page catalog covering equipment for begodests stations and for industrial maintenance, research and broadcast use. Aroong the listings of broadcast station supplies are: power tubes, datertion analysing equipment, pictupe, equilibers and arms, CAA approved tower light controls, patch cords and namels.

The E. F. Johnson Company, Wassen, Minn., have prepared the sixth edition of the Johnson Antenna Handbook and Rosary Beam Instruc-tion Book, a 47-page hoos. Copies are priced at 40 cents.

WITHOUT REWINDING!

The Perfect Magnetic Tope fraces Erans a recorded real of tops - faster and mare complerely! No matter what topo re-

corder you are wilng, regardless of what brand of tope you are using, or how sensitely the topo is overloaded, the Magneroser will eliminate the recorded signal completely, and bring the background naive level 3 to 6 db. below that of brand new unused tope! No contact with cross hoods - meons less tope went.

To aperate, rimply glace the Hagneroser as top of the teel of tage, and nove it around as per instructions supplied. In a motter of seconds, the tape is wiped attolutely

537.00

clean of all signal.

Size 6" Signator, 21/3" High; Maight 21/3 lbc., Operating Current 100/710 volts, 25/40 cycles: Pawer consumption 60 warrs. Familyhed with 6 ft. cord, maland rubber plug, and operating instructions.

Order lades direct from factory. Shipment by return renit. Percel postage charges propoid.

524.00 Professional Not Price ACCESSORIES DIVISION Trace Mark

AMPLIFIER CORP. OF AMERICA

The International Rectifier Corp., 689 S. Victoria Avenue, Los Angeles 43, Calif., has published a bulletin, PC-649 describing a line of selemium self-generating photoelectrin cells. Bulletin contains diagrams, turves, etc., describing the construction, performance characteristics and applications of the photocells.

The Hewlett-Parkurd Co., 395 Page Mill Road, Pala Alto, Calif., have published the first edition of the H-P Inversit with an article on a milli-microsecond wide-band amplifier.

3-Kw MF Transmitter

(Continued from page 14)

stage gain from the low voltage plate supply in the rectifier unit.

The second amplifier stage was capacity coupled to the cathode-driver stage; eight WL-807s operated class ABI. Four tubes were arranged to operate in parallel to drive each final amplifier tube. The driver cathodes were directly connected to the grid of the power amplifier tube and operate at the same potential as the power amplifier grid. Independently adjustable fixed bias was used for each set of cathode drivers. Since the input impedance of a class B amplifier varies widely over the cycle, it was necessary to have a driving source that had extremely good regulation with wide variations of loading. Good regulation was required to assure constant grid bias and good wave shape of the driving potential to the class B amplifier.

In this transmitter, the cathode-toground capacity of the cathode driver is composed of the cathode-to-heater capacity, the class B amplifier grid input capacity and capacity of the associsted wiring. This causes the cathode driver to operate on an elliptical load line instead of the theoretical straight line. Operation on an elliptical load results in increased drive requirements, higher cathode emissions and decreased efficiency. The cathode driver must be capable of supplying the class B peak grid current and the capacitive currents produced by the cathode-to-ground capacitive reactance of the cathode driver. In selecting a cathode driver, a tube was required whose characteristics were such as to provide high values of plate current at low anode potentials without having to be driven in to grid current. The anode potential must be kept low since this potential multiplied by the cathode capacitive current composes a large part of the plate dissipation. By Juniting the operation of the cathode driver to class ABI, which does not require any grid current, the design of the preceding stages was simplified.

[To Be Continued]

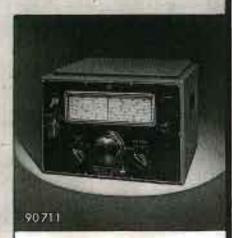
NEW... Improved Wiring Eliminates Leakage TYPE 12AT & TYPE 12ATK (KIT) TRANSMISSION MEASURING SET

Range: 111 db. in 0.2 Frequency resp.: 0.1 db from 0 to 20 kc. Accuracy: 0.1 db. Impedance, load section: 4, 8, 16, 50, 150, 200, 500, & 600 ohms. Impedance, transm. set.: 50, 150, 200, 500 & 600 ohms.

Reference level: 1mw. Into 600 ohms. Circuit: "T", unbalanced. Attenuators: 10x10,

10x1 & 5x0.2 db. Load carr. cap.: Transm. sect. 1 w. Load section 10 w.

A precision Gain Set with specially developed wiring that permits no troublesome leakage and provides improved frequency characteristics. Available completely assembled, or In kit form-which permits the sale of a high accuracy instrument at a low price.


WRITE FOR DESCRIPTIVE BULLETIN

Manufacturers of Precision Electrical Resistance Instruments PALISADES PARK NEW JERSEY

The No. 90711

Variable Frequency Oscillator

Variable Frequency Oscillator
The No. 99711 is a complete transmitter control unit with SSK7 temporature-complemental, electron coupled reciliator of enceptional stability and less drift, a SSK7 temporature described transmitter of enceptional stability and less drift, a SSK7 transd amplifier which tracks with the oscillator tuning, and a regulated power temply. Output sufficient to altitude 377 is available on 150, 50 and 60 motions and reduced output is available on 20 motions and reduced output is available on 20 motions and of the seemier control area at the right of the daily accounts acting is obtained by counts of the seemier control area at the right of the daily to the seemier control area at the right of the daily to the seemier control area at the right of the daily to the seemier of the couple. I confidently the output is less daily to the the transmitted and the form of the first form all consyting obligs usually drift, jump, and similar difficulties often recommissed in lessing variable freezes of the control of the form all consyting obligs usually destitations.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN

MASSACHUSETTS

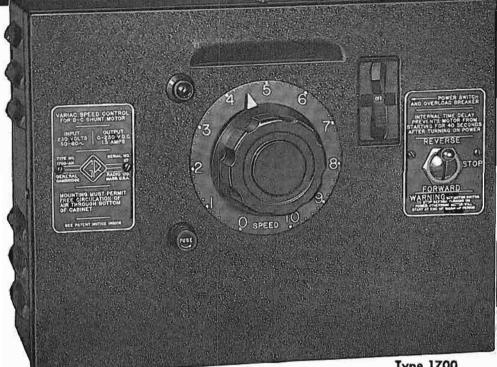
Last Minute Reports . . .

MICROWAVE RELAYS, which have become increasingly important factors in broadcasting, served recently as a medium of bringing complete TV programs to Canada, during the annual Canadian National Exhibit. Telecasts, relayed through the facilities of Philco pickup points, came from WBEN-TV, Buffalo, about 65 miles from Toronto where the exhibit was held, and VE9KE in the Philco factory in Toronto. . . . KNBC-FM has installed a REL 946-mc studio-to-transmitter unit, linking the transmitter located on top of San Bruno Mountain and the studies in San Francisco. . . . M. H. A. Lindsay has succeeded M. P. Farmer as chief engineer of the A. D. T. Company, Inc., N. Y. C. . . . Automatic Electric Company, Chicago, have been named distributors in this country for G. E. radiotelephone equipment suitable for telephone use. . . . The French Government will soon install an RCA ground-controlled approach system at Orly, municipal airport for Paris. . . . Radio Inventions, Inc., will hereafter be known as the Hogan Laboratories, Inc., 155 Perry Street, New York 14, New York. . . . Hendley Blackmon has returned to Westinghouse as assistant manager of engineering association activities. . . . Robert H. Robinson is now sales manager of William Brand and Co., 276 Fourth Avenue, N. Y. 10. .. Frank E. Mullen, former executive vice president of NBC and later president of the George A. Richards radio stations in Detroit, Cleveland and Hollywood, has been retained as a consultant by WPIX . . . C. G. Roberts has been appointed product manager for broadcast and television equipment of the G. E. transmitter division. ... Dr. Oliver D. Sledge, former professor of electrical engineering of the Georgia School of Technology, bas joined the staff of the National Bureau of Standards in the microwave standards section. . . . Ed J. Mechan, Jr., has been appointed as a broadcast equipment field sales rep in the Dallas, Texas, region by RCA. . . . Howard V. Carlson is now with the Communications Equipment and Engineering Co., Chicago 44, Illinois. . . . Percy L. Spencer, manager of the Raytheon power tube division, received recently the Navy's Distinguished Public Service Award from Rear Admiral Hewett Thebaud, . . . Allen B. Du Mont Laboratories, Inc., held dedication ceremonies recently of its new TV receiver and electronic parts manufacturing plant, at 35 Market Street, Paterson, N. J.

HOWARD B. JONES DIVISION

1026 SOUTH HOMAN AVE. CHICAGO 24. ILL

ADVERTISERS IN THIS ISSUE


COMMUNICATIONS INDEX

OCTOBER, 1949

ALLIED RADIO GORP	32
AMPERITE CO. Assery: IL J. Gels Co.	36
AMPLIFIER CORP. OF AMERICA	24
Agency: N. W. Ayer & Son, Jos.	8
BENDIX AVIATION CORP. HED BANK DIV.,	
Agency: MacMarus, John & Adams, Inc.	7
BIRTCHER CORPORATION	26
#LILEY ELECTRIC CO	28
CANNON ELECTRIC DEVELOPMENT CO	34
THE CLEVELAND CONTAINER CO	,
BENERAL RADIO COMPANY Inside Back C. Agency: The North Press	OWNE
HOWARD S. JONES DIV. CINCH MFG. COMP Agreey: Rytroom, MucEditale & Co.	38
KINGS ELECTRONICS CO	88
MEASUREMENTS CORPORATION	82
JAMES MILLEN MFG. CO., INC	36
MURRAY HILL BOOKS, INC	26
Agency: The Harry P. Bridge Co.	27
SPRAGUE ELECTRIC CO Inside Front C. Agendy: The Harry P. Bridge Co.	ONNE
Agency: Newsli-Eccept Co.	- 3
TECH LABORATORIES Agency: Levis Adv. Agency	36
W. B. TREASURY DEPT	4
WARD LEONARD ELECTRIC CO	25
WILCOX ELECTRIC CO. Agency: Arthur G. Rippey A Co.	1

COMMUNICATIONS FOR OCTOBER 1949

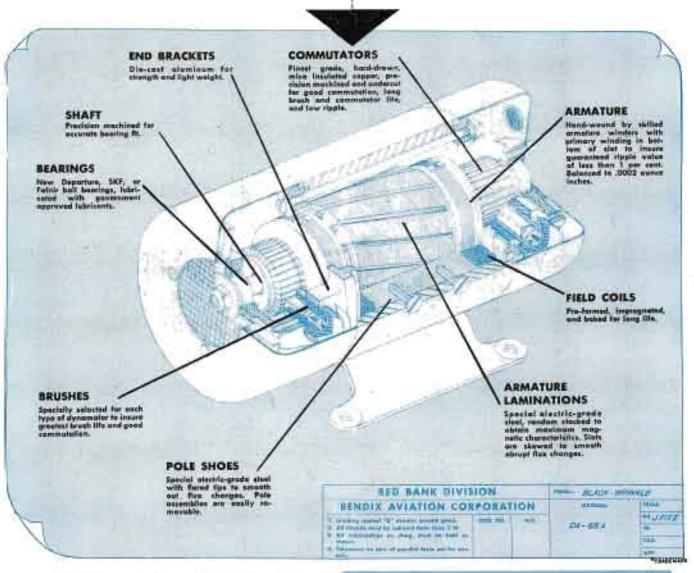
NEW Motor Speed Controls for D-C Motors from A-C Lines

Type 1701

These New General Radio VARIAC* Speed Controls Feature

- Operation of 1/3 and 1/4 h.p. d-c shunt or compound, 1/20 h.p. d-c shunt and 1/20 h.p. universal motors, from A-C LINES
- Continuously-variable Speed Ranges of Over
- Extremely fast Starting Large Overload Capacity
- Fast Stopping Dynamic Braking (on ¹√₃ and 1/4 h.p. units)
- Extremely Fast Reversing
- Good Speed Regulation
- Smooth Operation Less Torque Pulsation
- Straightforward Circuit
- All Controls and Circuits in One Small, Easily Mounted Box
- For Use with STANDARD D-C Motors, No Derating Necessary

*Trade Name VARIAC is Registered at the U.S. Patent Office


Variac Speed Controls

TYPE	FOR USE WITH	A-C LINE	PRICE
1700-AL	D-C MOTOR OF 1/3 or 1/4 h.p. shunt or compound wound	105-125 volts (50-60 cycles)	\$175.00
1700-AH	ditto	210-250 volts (50-60 cycles)	175.00
1701-AK	1/20 h.p. shunt wound	105-125 valts (60 cycles)	65.00
1701-AU	½0 h.p. Universal	105-125 volts (60 cycles)	65.00

For complete data write for: VARIAC MOTOR CONTROL BULLETIN

What makes BENDIX* dynamotors SO MUCH BETTER? For the answers look inside!

It Pays to buy Quality...

and no finer Quality Dynamotor

is available than a

BENDIX DYNAMOTOR

Dynamics: - Innertox - Convertor - U.C. Meter: - Carten Pile salings Regulation

RED BANK DIVISION of '

KED BANK, N. J.

Bender

Export Soles: Bendix International Division 72 Fifth Avenue, Near Terk 11, Pister York TEMPERATURE BISE-40° C.

VINEATION RESISTANCE—Will withsland .03 inches (.06 total excursion) between 10 and 60 c.p.s., without special mounts.

TEMPERATURE BANGE—Will operate through emblant range of -25°C to +85°C.

ALTITUDE—Will aperate normally to 20,000 feet and higher if special affiliate brushes are specified.

CAA APPROVAL—All Bendix dynamolers are copeble of meeting Civil Aerenaetics Authority type Certification tests and are in sed by major, scheduled airlines and government certices.

iNSPECTION AND TEST—All founds Dynameters are carefully inspected in overy step of production. Every unit receives a six to twelve hour remain, depending on type, to insure proper break secting.