the chokes in the filter is made very so that the voltages at the igh. In addition, the time la which takes place before the 245 tubes heat up and draw curren ondensers which practically mounts to operation of the unit under no-load conditions.
This accounts for the seemingly high ratings of the condensers used these units are used trouble may be xpected from condenser breakdown.
The A-800 and B-800 filter conenser blocks are designed for us with power supply units which are o be used in connection with re ceivers and power amplifiers which tubes in single or push-pull arrangement in the last stage. The output voltage required for the operation of such amplifiers allowing for a maximum of 425 volts for the plat supply and 35 volts for grid bias, this output voltage at the required current of from 50 to 100 milliamperes is obtained by using a half or current requirements, with an input voltage of from 550 to 600 volts A.C per anode to the rectifier.
A filter condenser, conservatively A fited at 800 volts D.C. is sufficien at the first section while 600 -volt econd and third filter ate the econd and third filter section siderably reduced.
The A-1000 and B-1000 filter con in high power supply units such as re used in connection with powe mplifiers employing CX-350 or JX-250 power tubes.

The output voltage required from he filter for the operation of these power tubes may run as high as 534 supply and 84 volts for the grid bias.

To obtain this output voltage rom the rectifier, and to allow umicient exce the filter choke sys em, a rectifier system consisting of two CX-381 or UX-281 rectifiers, connected to give full wave rectification is employed. The A.C. vol-
tage input to the rectifier system

Fig. 2

Complete Catalog of Aerovox Products May Be Had Free on Request to
Aerovox Wireless Corporation, 70 Washington Street, Brooklyn, N. Y.
nay re as high as 70 volts per node and a condenser conservaing voltage is necessary at the first section of the filter. Condensers conservatively rated at 800 volts D.C. working the filter

To complete the condenser requirements of the average power supply unit, bypass condensers are
required at the various taps of the equired at the various taps of the

For this purpose three types of bypass blocks have been included in the Aerovox condenser block line. These bypass condenser blocks were designed to take care of the bypass
requirements of the various types of power supply units.

The Type B-1 bypass condenser block consists of two, 1 -mfd. condenser sections, one rated at 300 volts D.C. and the other rated at 200
volts D.C. working voltage. In view of the increasing use of the heater type tubes for both radio and audio frequency amplification, and the considerable time lag experienced
before these tubes heat up and draw before these tubes heat up and draw
plate current, a 200 -volt condenser is no longer a safe condenser to use for bypassing the 90 and 135 volt terminals of the power supply units,
because of the higher voltages, exceeding 200 volts D.C. which obtain at these terminals under what amounts to a no-load condition. It is for this reason that higher rating
condensers, 300 volts D.C. for bypassing 90 and 135 volt leads and 400 volts D.C. for bypassing 180 volt leads, now used to a considerable extent for the screen grid A.C. tubes. have been included
line of bypass blocks.

The Type B-1 block is suitable where only two terminals, a 90 or
135 -volt terminal and a 45 -volt 135-volt terminal
terminal are used.

The Type B-2 block consists of is rated at 400 volts D.C. and the other two at 300 volts D.C. This unit is suitable for use where one 180 -volt and two lower voltage taps must be bypassed.

Continued on page 2, col. 3

Universal Resistor Kit
Solves Adjustable Resistor Problem
By the Engineering Department, Aerovox Wireless Corp.

NE of the most troublesome resistor problems of the aver-		problem is interesting to say the least.
age radio experimenter and radio engineer, namely that of keeping on		
		If we start with a resistor of 10 ohms for instance, we can build up a geometrical progression starting with 10 ohms, as follows: $10,20,40$, 80,100 , etc. With these five values of resistors, it is possible to obtain any value of resistor from 10 ohms, the smallest value, to 350 ohms the
俍 inversal Range resistors.		
	$\underbrace{\substack{\text { hms }}}_{\text {Resistan }}$	
By providing himself with a resistor kit consisting of two fixed units and three tapped units, containing in all 12 different resistance values, it is possible for the experimenter to obtain any resistance value from 25 ohms to 102,375 ohms to within	$1 \quad 25$	sum of all the individual resistors in the series $(10+20+40+80+100=$
	100270	250) in steps of 10 ohms. This means that with only five resistors it is
	STOR	
		at with only five resistors it is ossible to obtain the following alues by simple series connections
	200	
.5 ohms of the required value, mple series connections of then rious units.	$400 \quad 120$, 60, 70, 80, 90, 100, 110, 120, 130, $0,150,160,170,180,190,200,210$, $0,230,240$ and 250 , a total of 25
	1,600	
design of these	RESISTOR NO. UR-3	also means that any given value of
on the discovery that if a number of numerical values are taken in a geometrical progression such as 2,-		esistance can be obtained within ve ohms of the required value for y value such as 25 would be only
	cection No.	
geometrical progression such as 2,$4,8,16,32$, etc., in which each suc-	3,200	any value such as 25 would be only five ohms above 20 or below 30
	6,4	
tiplying the preceding number by	12,800	ven ten points would be five or less
two, it is possible to obtain any number from the smallest number	STOR NO. U	ohms above or below an obtainable
	ound on a Type 996	
which starts the progression, to the sum of all the numbers in the pro-	ection No. No	
number by adding together a selected number of the individual	5,60	the units is lowered and the numr of separate units required is duced.
	STOR NO. U	
	Wound on a Type 996	
is.		
	51,2	d to begin the geo

"AEROVOX" PRODUCTS ARE "BUILT BETTER"
progression for a universal resisto having the maximum safe current carrying capacity indicated in the table for each section.
The first resistor consists of three and 100 ohms respectively or a total of 175 ohms.
The second resistor consists of four' sections having resistances of
$200,400,800$ and 1600 ohms respectively or a total of 3,000 ohms.
The third resistor consists of three ections having resistances of 3,200 , 400 , and 12,800 ohms respectively or a total of 25,600 ohms.
The fourth resistor consists of a ingle section of 25,600 ohms and he fifth resistor consists of a singl ection of 51,200 ohms.
With this series it is possible to hms of any multiple of 25 , from 25 to 102,375 ohms.
In selecting the proper sections o connect in series to obtain any required value of resistance, the first tep is to select the nearest multiple of 25 within th
If we require a resistance of 8,637 ohms for instance, the nearest mul
iple of 25 would be 8,650 ohms.
The next step is to select the The next step is to select the
cosest next lower value of any section available. In this case, this would be section 9, the 6,400 ohm section of resistor No. 3. This would
still leave a balance of 2,250 ohms equired to make up the total of 8,650 ohms. The value available just below 2,250 ohms is 1,600 ohms
(section 7 of Resistor (section 7 of Resistor No. 2) which,
added to 6,400 would still leave 650 hms to be added. This value of 50 ohms can be made up by connecting in series, section 5 (Resist section 4 (Resistor No. 2) which provides 200 ohms and section Resistor No. 1) which provides 50 hms.
The total resistance can therefore e obtained by connecting in serie 200, 400, 1,600 and 6,400 ohms respectively.
The current carrying capacity of
such a resistor would be limited by the current carrying capacity of the owest current carrying capacity resistor of the series, in this case
section 9 whose maximum safe current carrying capacity is 50 milliamperes.

Where very close adjustment of heostat can be used in series with the universal resistor and adjusted to the desired value. Where a rheo stat is used, the value of resistance on the universal resistor should be value below the required resistor, eaving the rheostat to make up the balance.

UNIVERSAL RESISTORS		
RESISTOR NO. UR-10 Wound on a Type 994 Tube		
Section	Resistance Ohms	${ }_{\text {M }}^{\substack{\text { Max. Current } \\ \text { Miliamperes }}}$
1	50	166
2	100	166
3	200	85
4	400	85
RESISTOR NO. UR-11 Wound on a Type 994 Tube		
Seetion	$\begin{gathered} \text { Resistance } \\ \text { Ohms } \end{gathered}$	${ }_{\text {Max }}^{\substack{\text { Maxiliamperest } \\ \text { Curent }}}$
1.	250	85
2	500	85
3	1,000	85
4	2,000	60
RESISTOR NO. UR-12 Wound on a Type 996-4 Tube		
Section	Resistance	
12	1,000	70
	2,000	35
4	4,000	35
4	8,000	35

In addition to this universal resistor which serves for all general purposes, other unts based on the same give values of resistance most commonly required in power supply circuits for voltage divider sections nd grid bias resistors.
The UR-10 resistor for instance gives any value of resistance from
50 to 750 ohms, in multiples of 50 ohms such as : $50,100,150,200,250$, $300,350,400,450,500,550,600,650$, 700 and 750 ohms.
The UR-11 resistor gives values of from 250 to 3,750 ohms in multiples of 250 ohms, such as 250,500,
$750,1000,1250,1500,1750,2000$, $750,1000,1250,1500,1750,2000$,
$2250,2500,2750,3000,3250,3500$ and 3750 ohms.
The UR-12 resistor gives values of from 1000 to 15000 ohms in mul-
tiples of 1000 ohms, such as: 1000 ,
$2000,3000,4000,5000,6000,7000$, $8000,9000,10000,11000$,
13000,14000 and 15000 ohms. It is of course possible to connect two or more of these universal range of the resistance values or to connect them in series-parallel to increase the current carrying capa-
city. Four resistors of any given city. Four resistors of any given
value for instance can be connected value for instance can be connected
in series-parallel arrangement to provide a resistor of twice the current carrying capacity, nine resistors of any given resistance
value can be connected in seriesvalue can be connected in series-
parallel arrangement to provide a parallel arrangement to provide a
resistor of three times the current carrying capacity in a single resistor.
The number of resistors, all of a given size and current carrying
capacity required to increase the curcapacity required to increase the cur rent carrying capacity to any given
value times that of one of them is always the square of the multiplier by which the current carrying capa
city of one of them must be mult city of one of them must be multi-
plied to obtain the required current carrying capacity.
It is possible by a proper selection of the initial value of resistance to
obtain a series of resistors to fill any condition of accuracy or tolerance required in a series of resistors, to
cover any desired range.
The value of the first member of the progression determines the dif
ference in resistance between obtain able values in the series.

Continued from Page 4

The Type B- 3 bypass condense rock consists of one 400 volts D.C. for bypassing a 180 -volt terminal ; one 4 mfd . sec tion rated at 300 volts D.C. to give very good filtering action at the 90 volt terminal and one 1 mfd . section
rated at 300 volts D.C for bypass rated at 300 volts D.C. for bypass-
ing any other terminal of 135 volts or less.
It will be noted that in the B-2 and $\mathrm{B}-3$ bypass blocks 300 -volt condensers are used for the section
which is ordinarily used to bypass which is ordinarily used to bypass
the detector tap, instead of the 200 volt condensers.
This has been done so as to pro vide a condenser section which can
be used either with the usual type of grid condenser and leak detector in which the plate voltage is usually
45 volts, or with the grid bias detector which is now so popular and with which a higher plate voltage s employed. tically all of the half wave and full
wave power supply circuits used wave power supply circuits used
with all types of power amplifiers and receivers.
The characteristics of condensers
" C 1 ". " C 2 " and " C 3 ", as regards capacity and voltage rating, vary with different types of units. It is general practice, however, to use
either a $2-2-2$ or a $2-4-4$ arrangement of capacities. In the 2-2-2 all three filter condensers have a capacity of two microfarads each. In the
filter, the first filter condenser "C1" has a capacity of two microfarads but the other two have a capacity of four microfarads each.
It is generally conceded that while slightly better filtering action and somewhat higher output voltage can
be obtained by increasing the capabe obtained by increasing the capa-
city of the first filter condenser "C1" to more than two microfarads, the results obtained when measured against the additional cost of higher capacity in this section, is hardly
worth while, so that two microfarads has become general practice in the first filter section.
"In the case of the second section higher capacities are desirable in various types of power amplifiers and power supply units, the Aerovox line of filter condenser blocks has
been enlarged to meet the demands been enlarged to meet the demands
of all popular units. In addition to the complete line of special units to be used with the Thordarson,
AC-29 Magnaformer and other special power units and kits, a numbeen added which cover completely the needs of power supply units for
filter and bypass condenser blocks.

To make the units as universal as possible in their application, without at the same time increasing the cost by the nocs of slightly different
enormous stock combinations of blocks, the condensers used in power supply units
were divided into two distinct classes, namely bypass condensers.
A diagram representing the gen-

New Series of Filter Condenser Blocks Cover All Operating Requirements

A FTER very careful considera- that very good filtering action resultall hum is obtained by increased capacities in those sections.
It has been found that when a
circuit is properly designed and the circuit is properly designed and the values of voltages required from the
power supply unit are not very critpower supply unit are not very crit-
ical, the use of two microfarads in ical, the use of two microfarads in to give plenty of filtering action for all practical purposes. This is
especially true of power supply units especially true of power supply unit

Fig. 1
in which a regulator tube is used to maintain a constant voltage at th
90 -volt and lower voltage taps
To take care of such requirements the Aerovox line of filter condensers includes a complete series of filter
blocks of the $2-2-2$ type with voltage ratings to take care of all the standard power supply units for different types of receivers and
amplifiers. amplifiers.
These units offer to experimenters of economical filter blocks which will fill all requirements for safe operation in connection with power supply units where absolutely hum free operation is not of importance
When very quiet operation is desired and somewhat higher cost blocks should be used.
A table showing the characteristics of the stand rird filter blocks which fill all the requirements of the present for all types of power
amplifiers and receivers is shown in Fig. 2.
The voltage ratings of the Type A-400 and B-400 are the same. A
$2-2-2$
filter, however, is used in the A-400 while a 2-4-4 filter is used in the B-400.

Either of these two units may be used with the average power trans-
former and filter circuit designed for former and filter circuit designed for
use with a receiver and amplifier use with a receiver and amplifier
which employs CX-371A, UX-171A which employs CX-371A, UX-171A.
CX-112A or UX-112A power tubes. The maximum output voltage requirements for such amplifiers including the 180 volts or less equired for the plate circuits and
the maximum of 43 volts for the ne maximum of 43 volts for the
rid bias, rarely exceeds 223 volts output at a current drain of 85 illiamperes or less.
To obtain this output, with the usual full wave rectifier employing a CX- 380 tube and a conventional
filter choke circuit in which the chokes have a resistance of from 300 to 500 ohms each, rarely requires the use of a transformer of more than and to 325 A.C. each side of center tap and a conservative voltage
rating of 400 volts D.C. working rating of 400 volts D.C. working
voltage is sufficient for the firs condenser of the filter.
When the power supply unit is
operated under load, the peak voltages across the second and third filter condensers are only slightly
higher than the D.C. voltages acros higher than the D.C. voltages across
the condensers and 300 -volt D.C. working voltage condensers are sufficient at those points. These two condenser blocks, Types A-400 and -400 take care of all the require choke circuits of the leading transformer and choke manufacturer such as Amertran, Dongan, Genera Radio, Jefferson, National, Thordar-
son, Todd, TCA, Samson and SilverNiarshall for use with single and push-pull - 71 A power amplifiers.
The A-600 and B-600 filter condenser blocks are designed for operare to be used to operate re which and power amplifiers employing the new CX-345 and UX-245 tubes. The rather heavy current requirements these power tubes, makes it nec oltage of 350 volts A C to the A.C. ifier system so as to obtain the com paratively high output necessary to provide the 250 volts plate voltag and 51.5 grid bias voltage for these drain requirements.
To obtain the high volage output of the filter the resistance of

