The previous issue included a discussion and illustrations of signal voltages developed as a result of scanning 50% saturated colors. Recent mail indicates that before continuing with new material on Color TV it might be appropriate to include some further information regarding other than fully saturated colors.

A 100% saturated color does not contain any white. As an example, a saturated red of the specific wavelength chosen for the red camera filter would produce an output of one unit from the red camera. The green and blue camera outputs would be zero because there is no green or blue in saturated red. If this saturated red is diluted with white light it will become less saturated depending on the percentage of white light added. Keep in mind that the color under discussion is a red hue with a specified wavelength and that the hue does not change, only the saturation. It may be somewhat puzzling that a deep red and a pink may have the same wavelength and therefore the same hue, but this is the case.

Figure 1, on page one of the last issue, shows that white produces one unit each of E_R, E_G and E_B. A saturated red produces one unit of E_R only. A 50% saturated red would be diluted by 50% white. If each 50% were treated separately the red would produce an E_R signal of 0.5 units whereas the white would produce 0.5 units each of E_R, E_G and E_B signals. Added together the E_R signal would be one unit and the E_G and E_B would be 0.5 units each as shown in Fig. 1 in this issue. The 1.0 unit of E_R is made up of 50% derived from the red hue and 50% representing the red component of white. The E_Y signal in Fig. 1 represents 30% of E_R plus 59% of E_G plus 11% of E_B and rounded off to the closest hundredth. The only color signals discussed so far have been the R-Y and B-Y signals. Actually the chrominance signals transmitted in accordance with NTSC specifications are the I and Q signals. In this issue the I and Q signals as well as the 3.58 mc burst signal will be described.

It was previously stated that the fine detail in a color TV picture is supplied by the Y or brightness signal, and the low detail color information is supplied by the chrominance signals. The NTSC system provides the receiver manufacturer with a choice of color signal detectors. The color receiver may be designed to detect either R-Y and B-Y signals, I and Q signals, or a combination such as R-Y and Q signals.

I AND Q SIGNALS

The I and Q signals are chrominance signals similar to R-Y and B-Y in that they are composed of specific proportions of
It was shown in the last issue how R-Y and B-Y signal voltages were developed and plotted on R-Y and B-Y axes. Various colors produced specific R-Y and B-Y voltages which when added vectorially produced vectors with specific amplitude and phase characteristics. If the same color camera voltages are combined using different proportions of these voltages, I and Q signals will be produced instead of R-Y and B-Y signals. The I and Q signals are composed of the following proportions of color camera voltages:

\[I = 0.60 E_R - 0.28 E_G - 0.32 E_B \]
\[Q = 0.21 E_R - 0.52 E_G + 0.31 E_B \]

Fig. 3 shows the various I \((E_I)\) and Q \((E_Q)\) signal voltages produced by a color bar pattern.

It will be recalled that in the last issue R-Y and B-Y voltages were plotted on two axes, one horizontal (B-Y) and one vertical (R-Y). Since the I and Q axes have been established as thirty-three degrees away counterclockwise from the B-Y and R-Y axes, they would be located as shown in Fig. 4. If the I and Q voltages shown in Fig. 3 are plotted on the I and Q axes in Fig. 4 instead of the R-Y and B-Y axes, the voltage vectors would have the same amplitude and phase characteristics as those produced by the corrected \(E_I-E_Q\) and \(E_B-E_Y\) voltages shown in Fig. 5. This is shown in Fig. 6 which has the various I \((E_I)\) and Q \((E_Q)\) voltages in Fig. 3 plotted and added vectorially. It will be noticed that the amplitude and phase of each color vector in Fig. 5 derived from R-Y and B-Y voltages, are the same as those

Fig. 3. I and Q signal voltages developed as a color bar pattern is scanned.

Fig. 4. Phase relationship of I and Q and R-Y and B-Y axes.

Fig. 5. Phase and voltage spectrum of color bar pattern based on corrected R-Y and B-Y voltages.
shown in Fig. 6 which were derived from E_I and E_Q voltages. As an example, a saturated green produces an E_I voltage of -0.28 and an E_Q voltage of -0.52 as shown in Fig. 3. If these two voltages are used to draw a parallelogram as shown in solid lines on Fig. 7 the amplitude of the voltage vector is 0.59 at 241 degrees. This is the same as produced by the $R-Y$ voltage of -0.517 and the $B-Y$ voltage of -0.290 as shown by the parallelogram in dotted lines on Fig. 7. All of the other colors will produce the same vectors regardless of whether I and Q or $R-Y$ and $B-Y$ voltages are used. It is important to understand this because it represents the fundamental reason why receivers can be designed to detect I and Q, $R-Y$ and $B-Y$ or some other combination of color signal voltages. Since Fig. 7 illustrates that the amplitude and phase of the green vector can be produced either by a combination of specific I and Q voltages or $R-Y$ and $B-Y$ voltages, it is possible

to extract I and Q voltages or $R-Y$ and $B-Y$ voltages from the green signal. This is exactly what is done in a color receiver. The design of the detector circuit determines whether the color signals out of the detector circuit represent I and Q voltages or $R-Y$ and $B-Y$ voltages.

It will be recalled that the $R-Y$ and $B-Y$ voltages were multiplied by a factor of 0.877 and 0.493 respectively to reduce the possibility of overmodulation by some saturated colors. The I and Q values have been established to produce the same modulation amplitudes as the corrected $R-Y$ and $B-Y$ voltages.

THE BURST SIGNAL

It will be recalled that balanced modulators are used in the transmitter. This combines the two color signals and also suppresses the 3.58-mc chrominance subcarrier. Since the subcarrier is suppressed at the transmitter some method must be used to produce a subcarrier of adequate amplitude at the receiver. A crystal-controlled 3.58-mc oscillator will supply the necessary frequency and amplitude. This is not enough, however, because color reproduction requires three components, brightness, hue, and saturation. Brightness is supplied by the Y signal and hue is supplied by the amplitude of the color signal. The phase of the color signal provides the hue or color and the phase must be accurately controlled. If the colors indicated on Fig. 6 are shifted counterclockwise in phase, magenta would shift toward red, red would shift toward yellow, yellow toward green, etc. A clockwise shift in phase would cause yellow to shift toward red, red toward magenta, etc.

It was necessary therefore to transmit a signal which could be used by the receiver to accurately control the phase as well as the frequency of the oscillator in the color receiver. This signal is an eight-cycle 3.58-mc burst placed on the back porch of each horizontal sync pulse as shown in Fig. 8. This burst signal is picked off the horizontal sync pulse in the receiver and is used to keep the 3.58-mc oscillator in the receiver in phase with the oscillator at the transmitter.
NO RASTER

The set—RCA 17T220. The whole series through 17T220 are similar. The complaint—no raster, and sound present only for a short time after the set was turned on. Absence of raster would indicate loss of high voltage, but when this was measured with a VTVM high voltage probe, 15,000 volts was the reading.

The "boost" voltage was in the neighborhood of 500 volts as was the voltage on G2 of the picture tube. It was found that removing the plate voltage from the horizontal output tube resulted in normal sound, but no raster.

After considerable testing, the trouble was found to be in the 6AG7 video amplifier tube. Some sets in this series use a 6AG7 or 6CB5.

The replacement of this tube resulted in a normal raster with picture and sound. Since the loss of raster is not normally associated with a defect in the video amplifier, it is possible that this tip may be of considerable help to others who may run into a similar problem.

Lloyd B. Hult
162 South Fourth East
Brigham City, Utah

SHORT DUE TO PIN LENGTH

Several STRATOPOLAR sets, particularly Models 21H3 and 21H206, exhibited the following symptoms. After approximately 20 to 90 minutes of playing time the set would overload and exhibit signs of SYNC instability.

Replacing V-11T1(6T8) AGC, changer tube had no noticeable effect upon the trouble. After substituting all the tubes in the I.F. section without results, attention was then focused upon the tuner.

TURRET CONTACT CLEANER

In my TV laboratory, I come across numerous television receivers with intermittent sound, picture, sync, etc. Usually when this situation arises, the trouble can be traced to dirty channel selector switch contacts. On switch-type tuners, contact cleaner applied with a "pipe cleaner" is a good remedy. In addition, the contact spring tension may, when necessary, be increased by bending with needle-nose pliers.

On turret-type tuners, I remove one of the r-f and oscillator strips on a channel not being used (preferably between channels used), and cut a strip of silk or cotton cloth to cover the silver-plated contacts. The cloth is wrapped over the contact area and the ends fastened with a staple. It will be found that the channel strips will snap snugly in place and that the cloth cleaner can be left on permanently. Whenever the receiver is again in the shop the strip may be removed and the cloth cleaner moved to a new position.

M. E. Blaisdell
No. 3 Perkins Ave.
Brooklyn 21, Mass.

PROMOTIONAL and SERVICE AIDS for TV and Radio Service Dealers

Most complete selection of outstanding service aids available

(CONTAINS OVER 100 ITEMS)

BULK RATE
U.S. POSTAGE PAID
Scheneectady, N. Y.
 Permit No. 148

Ask your G-E Tube Distributor for your copy of ETR-589-C