The Oscilloscope—Use in Troubleshooting—5

In the previous issues emphasis was placed on the importance of utilizing basic measuring instruments for troubleshooting those defective receivers containing other than tube-caused faults. Of equal importance is the manner in which these instruments are put to use.

For instance, when symptoms definitely identifying the fault are obscure, a procedure should be followed enabling the technician to locate the trouble in the least possible time. This procedure should be based on a methodical step-by-step plan of action. By following such a procedure and using the appropriate test equipment at the right time, the defect can usually be found without making repetitious tests or other time-consuming errors.

Troubleshooting Procedure

Listed below is a suggested troubleshooting procedure. Follow this course of action, carefully eliminating possible sources of trouble during each step, progressing through the tests indicated for each step, until the fault is located:

1. Study schematic — Familiarity with circuitry will help to identify section containing fault.
2. Check tubes — Substitute with known good tubes.
3. Make a visual inspection of components in a suspected circuit — Charred, burned or visually damaged parts can be located in many instances without the aid of test equipment.
4. Make voltage checks of supply and socket voltage preferably with tubes in sockets — Use a 20,000-ohm-per-volt meter in non-critical circuits or use a vacuum tube voltmeter for all voltage checks including grid, age and other critical circuits. Keep in mind that some voltages in a normal circuit may vary up to 20% in respect to those indicated on the schematic. This deviation from the nominal is generally due to line voltage variations, component tolerances and tube loading variations. It is recommended that these tests be performed with the receiver operating on a line voltage of 117 volts (or the manufacturer’s stated nominal line voltage if different).
5. Make a point-to-point check of supply circuits where abnormal conditions are found in step No. 4 using a voltmeter — Read the source voltage and then take readings on the load side of each component progressing toward the socket.
6. Check grid and cathode voltages — A. An excessive cathode voltage may indicate an open or off value cathode resistor. B. Check grid voltage with the tube out of the socket. Abnormal positive voltages on the grid may be indicative of a leaky or shorted coupling capacitor. This condition generally causes the plate voltage to drop below normal and would be evident during the socket voltage check with the tube inserted.
7. Check resistance of the grid and cathode socket connections to ground.
8. Check supply circuits for hum in excess of the values shown on the schematic using an oscilloscope.
9. Make certain ground connections to chassis are electrically secure.
10. Check signal, synchronizing and sweep circuits with the oscilloscope — Several examples of the procedure to follow are given. This type of step-by-step checking can be used for troubleshooting most circuits. Select a central point and then, dependent upon conditions found at that point, further checking will be done in circuits ahead of or after that point.

a. If no picture is displayed on the picture tube, use the oscilloscope and check at the video detector. No video at this point indicates the fault is located between the tuner and point of test. If however, normal signal is present, the fault is located between the point of test and the picture tube.

b. If the problem deals with loss of sync, use the oscilloscope and check at the clipper grid. Depending upon presence or absence of sync at this point it can then be determined whether the fault is located before or after the clipper grid. Detailed instructions for troubleshooting specific circuits will be given in future issues.

No More Loose Caps on G-E Tubes

The top cap on the right is welded and does not require solder which could loosen due to heat build-up.
BENCH NOTES

TRANSISTOR SUBSTITUTION BOX

Below is the schematic of a substitution box for transistors. I constructed the unit using General Electric transistors GE2, GE3, G64, and G58. The switching of the two pole six position type. An empty transistor socket was used to connect any other transistor into the circuit. I used a 4½" x 6½" aluminum utility box to house the unit. Be sure to insulate GE8 from the chassis as it is at collector potential. When soldering do not use any more heat than necessary. In operation DO NOT switch a different transistor into the circuit.

MANY USES FOR FOIL

A roll of aluminum foil solves heat problems — even for transistors!
1. Soldering with a long iron, wrap aluminum foil on barrel all the way to tip. As you put the iron down through wires that are close, you won't even scorch one and plastic won't melt.
2. When working on a printed board and looking for a crack pull enough foil from roll to have about 4 or 6 inches to spare over length of board. Cut a small hole just about size of clamp lamp shade in middle of foil sheet and put up on board. Two strips of tape will hold top end. Clamp lamp on bench to shine through hole in foil. Observe from other side of board. The light is concentrated and you see better. The only heat on board is at porthole in foil. Move as necessary to work the whole board.
3. If components are removed from printed board cut them off and take a new strip of foil from roll the size of board plus 4 or 5 extra inches, tape top of foil to board. Turn up the edges of foil to cover stripings. Press foil over. Cut off terminals and replace new component or components. After solder connections cool, gently pull foil away. No heat only on the connections. Also no warped or blistered boards.
4. While working on chassis or soldering in confined areas, put a strip of foil large enough to cover chassis, and press down on place you are going to cut wires. Work foil under parts, cut, replace and solder as usual. After connections are cool, gently pull out foil. All solder beads will be in foil, so lift carefully.
5. When replacing a tuner wrap foil around tuner before disconnecting wires. Press foil gently over connections so when you cut wires or solder, there won't be any bits of wire or solder beads falling inside tuner — also no parts can change value from heat.
6. While replacing a tube socket use a new piece of foil and press each socket prong through foil. Make solder connections and pull foil away. Socket will not be charred and no solder will get into socket holes.
7. Foil is especially helpful when replacing wires and resistors on those plastic hi voltage sockets and you won't make the plastic soft.
8. Voltage and resistance measurements may require soldering and unsoldering. Take a small piece of foil and wrap completely around capacitor or resistor you are going to check, before unsoldering. Take foil off for measurement and put foil back on to resolder. This will prevent any change in value from heat.

There are many uses for aluminum foil that you will think of as you use it.

M. E. Bellows
Boz 215
Big Flats, N. Y.

SPRAY SAVER

I have on occasions lost ½ to ¾ can of tuner spray in my caddy, which is a nuisance and costly. Take the top of the spray can, cut a ¼ inch hole in top for finger to press the nozzle, then drill a ⅛ inch hole in side for the extension to go through. Also spot solder top to can. Now you have instant use of spray without bother to put on extension or top falling off.

John J. Macaluso
34F. 15th Ave.
Freehold, N. J.

CUT OUT FOR FINGER

SOLDER 1/16" HOLE

GE MODEL M2044YY (LY CHASSIS)

Symptom: Pix rolls requiring resetting of vertical hold control. Fix can be stabilized but as set continues to play the bottom of pix folds up. Removing the vertical osc and output tube (6JZ8) for a short period and then replacing it corrects condition for a short time before it reappears. This would make you suspect grid emission of the tube.

Remedy: Actual trouble is a leaky .015/400v condenser *(C1)* located just to left of 6JZ8 on printed board and is easily replaced. (Apparently removing 6JZ8 motor removes heat of tube affecting condenser.)

Replace with General Electric MFC 6S15

Bill Fisher
Fisher TV
760 S. 5th Ave.
Mt. Vernon, N. Y.

ANTENNA LEAD EXTENSION

Many TV sets have plug type terminals which connect the tuner antenna from the back to the tuner. It is very annoying when servicing to take the back off and not have enough room to get at the tubes, without disconnecting the antenna from the tuner. I have made a 2½ foot extension with a speaker socket on one end and a standard 500 ohm receptacle on the other end. This unit is also very useful in the shop when the set has to be removed for servicing. Below is the diagram.

VERTICAL CHANGE

We had a RCA model 17S6922U TV receiver come in from a local motel. The vertical hold would change after the set was on. Get up and adjust the vertical and in a few minutes one had to get up and set the vertical hold again. The receiver would roll after the control was set.

The vertical tubes were OK and voltage readings were taken. These readings were quite normal. It was definite that heat was changing the vertical sync. The tip of the soldering iron was placed on all panning condensers and C145 was the culprit. Clipped out this .0047 Mfd condenser and replaced with a new General Electric MFC6D47.

An ohmmeter was placed across the condenser terminals, and when cold, read in the high negative scale. With an iron placed alongside, the resistance started to change, and when real warm, read about 200,000 ohms.

Homer L. Davidson
Davidson Radio and TV
2232 5th Avenue South
Fort Dodge, Iowa

NOTE:
Those desiring to have letters published in this column should write the Editor Techni-Talk, Electronic Components Division, General Electric Company, Owensboro, Kentucky. For each such letter selected for publication you will receive $10.00 worth of General Electric tubes. In the event of duplicate or similar items, selection will be made by the Editor and his decision will be final. The Company shall have the unlimited right without obligation to publish or otherwise use any ideas or suggestion sent to this column.

Caution: The ideas and suggestions expressed in this column are those of the individual writers. These ideas and suggestions have not been tried by the General Electric Company and therefore are not endorsed, sponsored or recommended.
AFC Circuits
"Horizontal" AFC Circuits

AGC Circuits
Addition of A.G.C. to G-E 805 series T and S
Correction for Overload "U2" Receivers
Video Detector, A.G.C. and Video Amplifier

Anti-Static Cleaner and Polish
TV Anti-Static Cleaner and Polish ETR-3390

Audio Test and Repair Bench
Construction Details

Bias Supply for TV
Construction Details

Business Builders
A complete selection of various dealer
business aids
Business Identification — Items
Adkvertising Post Cards
Door Knob Hangers, Book Matches and
Customer Booklets

Capacitor Substitution Boxes
Construction Details
Capacitors — Specifications and Basing

Color Box
Construction Details

Color TV
Part I — Color Reproduction
Part II — Construction of a Color Box
Part III — Visible Spectrum and
Colorimetric Charts
Part IV — Development of Color Signals
Part V — Color Signal Frequencies and
Balanced Modulation
Part VI — Calibration
Part VII — Development of Chrominance
Signal
Part VIII — Chrominance Signal and
Amplitude and Burst Signal
Part IX — Gamma Correction, Delay Lines
and Block Diagram of Transmitter
Part X — Aperture Mask and Post
Acceleration Type Picture Tubes

Color Receivers
Part I — Tuner and Video 1-F Amplifiers
Part II — Video Detectors and Video
Amplifiers Block Diagram and Schematic for
General Electric "CL" Color Receiver
Part III — Burst Gate, Subcarrier Generator,
Synchronous Detectors and
Chroma Amplifiers
Part IV — Matrices and Aperture
Mask Tube
Part V — Mechanical Adjustments on
Aperture Mask Tube

COMPLETE INDEX
Vol. 1, No. 1 through Vol. 16, No. 4

Vol. No.

Part VI — Vertical Sweep and Convergence System

Vol. No.

Conversion to Larger Picture Tubes
G-E Model 811, Admiral Model 4H16S
G-E Model 8035, RCA Model 790TV2
G-E Model 820, Philco Model 48-1001
G-E Model 12C101, Stromberg-Carlson
Model TV-12
G-E Model 802, Capehart-Farnsworth
Model 651P
G-E Model 10C101, RCA Model KRS-20
G-E Model 910, RCA Model 630TS to
14 inch
G-E Model 815, Motorola Model VF-102
Motorola Model 12VT16
RCA Model 630TS to 20 inch

D-C Restoration
D-C Restoration and Sweep Circuits
Essential Characteristics, ETR-15L
Experimenter/Hobbyist Electronic Components. List of products and projects

Field Strength Meters
UHF Antenna Installations

FM Stereo Multiplex
Tuner Modifications

Germanium Diodes
Germanium Diodes in Video Detectors

Horizontal Circuits
D-C Restoration and Sweep Circuits
Deflection Waveforms and RF Supplies
Excessive Width "M4"
Excessive Width "U2"
Horizontal AFC Systems
Horizontal Deflection Circuits and Kickback
Power Supplies
Horizontal Jitter "M4"
Horizontal Retrace Elimination Circuit
Kill that Retrace — Horizontal
Replacement Sweep Transformers
G-E Horizontal Phase Detector (4 Parts)

How Electronic Components Are Made
and Tested
Reduce Call-Backs with New G-E 6AX4
Birth of a TV Bulb
How G-E 110" Picture Tubes are Made
How G-E Picture Tube Phosphors are Made
How G-E Receiving Tubes are Tested
How G-E Semiconductors are Made
How G-E Service Designed Tubes are Made
How G-E Transistors are Made
G-E Expands Syracuse Picture Tube Plant
G-E Tubes are 3 to 5 Times Better
New G-E Copper Core Anode Material
New G-E 23" Picture Tube
New G-E Sandwich Cathode
New G-E Electron Gun
No More Loose Top Caps
G-E Develops New Heater Wire
How to Build
Rbias Supply for TV Servicing
Capacitor Substitution Boxes
Color Box
Complete Service Shop
Picture Tube Tester
Resistor Substitution Boxes
Service Bench
Transistor Radio Power Supply
Transistor Tester
HV Rectifier/Filament Voltage Tester
Stereo/Audio Test and Repair Bench

Hum or Buzz
Hum or Buzz in TV Receivers I
Hum or Buzz in TV Receivers II
Stereo Hum Problem (5 Parts)
Sync Buzz — “U-2”

Indian Head Test Pattern
Tele-Clues No. 181 thru 188

Noise Canceller Circuits
“EE”, “H”, “J” and “O” Receivers
“G” and “K” Receivers
“S”, “ST”, “U” and “U2” Receivers

Oscilloscopes
A Valuable Service Tool—1
Determining Usability — 2
Checking Square Wave Response — 3
Calibrating — 4
Use in Troubleshooting — 5
Cathode Ray Oscillograph (2 Parts)
Selecting an oscilloscope for TV servicing

Picture Tubes
G-E Reliability Improved
Aluminized Picture Tube Replacement Guide
Open Heaters Due to Arc-over
Picture Tube Tester — Construction Details
TV Picture Tube Warranty and Adjustment Policy
New General Electric 21FLP4 Replaces 13 Popular Type Picture Tubes
Protecting Picture Tube Testing Newer Type Picture Tubes

Portable Phonograph Service Hints
RP-2150 — Distorted Audio
RP-2150 — Buzz and Hum
RP-2160 — Dead Set

Power Tuning
TV — “U-2” Power Tuning Repairs

Printed Circuits
Servicing Procedures and Tools
Cracked Boards and Arc-over
Servicing and Servicing Aids

Publications
Essential Characteristics Booklet ETR-15
SCR Manual ETR-3875
Transistor Manual ETR-3296
Tele Clues with Binder ETR-1905
Techni-Talk — All Back Issues with Binder ETR-2579
Techni-Talk Binder ETR-2000

Radio Service Notes
Radio — Fading and Intermittents
Radio — G-E “Silent Partners” Save Service Time
Radio-Motorboating in Transistor Radios
Radio — Removing Large Components
Radio — Repeated Silicon Rectifier Failure
Radio — C435 and T125 No Audio
Radio — P115, P165 Loose Tuning Knots
Radio — P675 and P720 Current Readings
Radio — P710, P711-A Circuit Revisions
Radio — P715, P765 Antenna Support
Radio — P765 Intermittents and Motor Boating
Radio — P115, P165 Loose Leatherette
Radio — P745 — Low Sensitivity
Radio — P745 and P750 Circuit Changes
Radio — P755 Oscillation and Distortion
Radio — P755 and P805 Voltage Readings
Radio — P780 Troubleshooting
Radio — P820A, P821A, P822A Troubleshooting
Radio — P835A, P840A, B and P870A Isolation
Radio — P870 Dial Slippage
Radio — P125 Spurious Signal Reception
Radio — RP120 and A52 Tone Improvement
Radio — T105, C405, 875, 930 Excessive Volume
Radio — T120 Dial Cord Breakage
Radio — T120 No AM
Radio — T120 No AM on 11.0 End of Band

Remote Control Systems
Adjusting Reed Relay Contact Points
G-E Wireless Remote Control System
(G6 Parts)
G-E Sonic Remote Control System (5 Parts)

Replacement of 21AP4 with 21ZP4-B
Replacement of 21AP4 Metal with 21ZP4-B
Aluminized Glass Picture Tube

Resistor Substitution Boxes
Construction Details

Retrace Elimination
Horizontal Retrace Elimination Circuit
Kill that Retrace — Horizontal
Kill that Retrace — Vertical

SemiConductors
New Service-Designed Entertainment Types

Service Aids
Bench Mirror ETR-1275
Capacitor Tab Adjuster ETR-2968
Capacitor Sockets ETR-2975
Door Clock Sign, ETR-3826
Five-In-One Combination Tool, ETR-3910
Fuse and Heater Checker ETR-981A
Magnetic Swing-Beam Service Light ETR-1593
Multi-Tube Pin Straightener ETR-3200
Paper Bags—2, 4, 10 and 14 Lb. Sizes
Picture Tube Pillow ETR-1409
Part Holder, ETR-3851
Pocket Tool, ETR-3504
Printed Circuit Board Cutting Tool, ETR-3896
Remote Control Extension ETR-2089
Safety Glass Puller ETR-1592
Service Call Board ETR-2144
Service Drop Cloth ETR-1021A
Soldering Gun Holder ETR-2582
Soldering Iron Holder ETR-2790
Soldering Tool ETR-2377
Tool Toter ETR-2338
Tube and Parts Cabinet, ETR-3803
Tube Puller ETR-1094
Twin-X Wrench Set ETR-752
Wire Stripper ETR-2376

Service Cases
Armored Vinyl Covered — Medium Size
Armored Vinyl Covered — Large Size
Matched Service Cases
Plastic Tool Cases

Service Shop Plans
A Plan for Success (Complete Service Shop)
Make Your Own Service Bench

Signal Generators
AM Signal Generator in Place of Cross-Hatch Generator
G-F ST-16A Color Alignment Generator
I-F Alignment I
I-F Alignment II

Stereo/Audio Test and Repair Bench
Construction Details

Snivets
Description and Photos

Snow
TV Receiver Noise

Sparker
Sparker to Check for “Gas” or “Air Leaker”

Speakers
TV — Speaker Phasing

Stereo Hum Problem
Description and Correction (6 Parts)

Successful Service Management
Dealer Modernization — H. R. Nelson
Planning for Success in the Soaring Sixties — Andrew E. Kimball
Profile of the “Boss” — L. M. Robb
“Swim — or Sink!” — G. E. Burns
The Interrelation of Large and Small Business — Senator J. Sparkman
You and Your Customers — W. F. Greenwood
Promote Your Business — F. J. Nataly
The Four C’s of Credit — K. E. Kenny
Small Marketers Aids — A U. S. Government Service
Friendly Tips at Income Tax Time — V. R. Dahlgren

Sweep Transformer Replacement
TV — “EE” Sweep Transformer Replacement

Sync Signals and Circuits
Synchronizing Pulses and Circuits

Techni-Talk Index
Complete Index of Techni-talk Vol. 1, No. 1 thru Vol. 16, No. 4 — by subjects

Vol. No.

14 6
14 6
14 6
14 6
16 1
14 6
14 6
14 6
15 4
15 4
15 3
8 4
3 1

Tele-Clue Index
Tele-Clues from Vol. 1, No. 1 — Vol. 12, No. 6 Indexed by Circuit

Tele-Clues
No. 1 thru 8
No. 9 thru 16
No. 17 thru 24
No. 25 thru 32
No. 33 thru 40
No. 41 thru 48
No. 49 thru 56
No. 57 thru 64
No. 65 thru 72
No. 73 thru 80
No. 81 thru 88
No. 89 thru 96
No. 97 thru 104
No. 105 thru 112
No. 113 thru 120
No. 121 thru 128
No. 129 thru 136
No. 137 thru 144
No. 145 thru 152
No. 153 thru 160
No. 161 thru 168
No. 169 thru 176
No. 177 thru 184
No. 185 thru 192
No. 193 thru 200
No. 201 thru 208
No. 209 thru 216
No. 217 thru 224
No. 225 thru 232
No. 233 thru 240
No. 241 thru 248
No. 249 thru 256
No. 257 thru 264
No. 265 thru 272
No. 273 thru 280
No. 281 thru 288
No. 289 thru 296

Tele-Clue Schematics
“LW” Chassis
“LX” Chassis
“MM” Chassis
“M-4” Chassis
“M-5” Chassis
“M-6” Chassis
“MW” Chassis
“MX” Chassis
“N” Chassis
“QX” Chassis
“S” Chassis
“U” Chassis
“U-3” Chassis
“U-4” Chassis
“U-5” Chassis

Tele-Tips
No. 1 thru 5
No. 6 thru 10
No. 11 thru 15
No. 16 thru 20
No. 21 thru 25
No. 26 thru 30
No. 31 thru 35
No. 36 thru 40
No. 41 thru 45
No. 46 thru 50
No. 51 thru 55
No. 56 thru 60
No. 61 thru 65
No. 66 thru 70
No. 71 thru 75
No. 76 thru 80
No. 81 thru 85
No. 86 thru 90
No. 91 thru 95

Vol. No.

12 6
1 5
1 6
2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
3 5
3 6
4 1
4 2

2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
3 5
3 6
4 1
4 2

2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
3 5
3 6
4 1
4 2

2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
3 5
3 6
4 1
4 2

2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
3 5
3 6
4 1
4 2
Test Equipment
AM Generator in Place of Cross-Hatch Capacitance-resistance Bridge
cathode Ray Oscillograph (2 Parts)
G-E ST-16A Color Alignment Generator
Oscilloscope — A Valuable Service Tool-1
Signal Generator — 1
Tube Tester
Vacuum Tube Voltmeter

Transistors
How to Make a Transistor Tester
Listing of Entertainment Types
Power Supply
Transistor Theory

Transistor Tester
G-E Transistor Tester
How to Make a Transistor Tester
Tube Testers
How to Get the Most Out of Your Test Equipment — Tube Tester

Tuners
G-E Model FA-10 and FA-12 Hi-Fi Tuner
The G-E UHF 103 Tuner (2 Parts)
The Head-End (2 Parts)
UHF Converter or Tuners
Servicing TV Tuners (5 Parts)

TV Antennas
Television Reception (2 Parts)
UHF Antennas
UHF Antenna Installations

TV Circuit Description
D-C Restoration
Deflection Circuit Waveforms and RF Power Supplies
Horizontal AFC Systems
Horizontal Deflection Circuits and Kickback Power Supplies
Synchronizing Pulses and Circuits
The Head-End (2 Parts)
Video Detector, A.G.C. and Video Amplifier
Vertical Sweep Circuits

TV Picture Tubes
Aluminized Picture Tube Replacement Guide
Part I — Phosphor Specifications and Implosions
Part II — Electron Gun and Gun Defects
Part III — Gun Defects continued and Cathode Images
Part IV — Construction of a Picture Tube Test
Open Heaters Due to Arc-Over Replacement of 2A1P4 Metal with 21ZP4-B Aluminized Glass Picture Tube

TV Receiver Noise or Interference
TV Receiver Noise
TV — “U-3” Apparent Ignition Interference

TV Reception
Report on UHF Reception
The Antenna (2 Parts)
UHF Antenna Installations

TV Service Guides
Volumes 1, 2, 3 and 4

TV Service Manuals
1965 TV Manuals Plan “E” and Plan “F”

TV Service Notes
Alignment of quadrature grid
Apparent Ignition Interference On “U3”
Chassis Ventilation — “QX”
Color Receiver — Model: 21T500, 21C700 & 1
Color Generator — Modification for ST-16
Color TV Demagnetizing Coil
Color TV Service Hints
Correction for Overload on “U2”
Damage to Semiconductor Power Rectifiers
Electrical Safety Test
Excessive Width — “M4” Sets
Excessive Width — “U2” Receivers
Horizontal Jitter in “M4” Receivers
Horizontal Pull or Weave — “QX”
Horizontal Shrinkage — AY Chassis
Identifying Diode Pairs
Intermittent Brightness — “CW” Color
Intermittent Fine Sweep — “M6” and “U5”
Intermittent Channel Selection “M6”
Phasing on 2 and 3-Speaker Models
Power Tuning Repairs — “U2” Receivers
Protecting Picture Tube
Production Changes — “MW”
Removal of the Metal Back on “M4”
Removing Scratches and Static
Replacement Sweep Transformers
Rolling Bright Line — “CX” Color
Servicing the “M6” Contrast Control Circuit
Slippage in Fine Tuning Control
Special Components in TV Receivers
Testing Horizontal Phase Detection Diodes
Transistorized UHF Tuner — Intermittent Operation
Vertical Sync Buzz Trouble — “U2” Chassis
1964 TV Manual Subscription
6CD6 Horizontal Output Tube Failures
6GH8 Replaces 6EA8 in Remote Receivers

TV Signal Description
Synchronizing Pulses and Circuits

TV Sound Systems
Delta Sound System
Repair of Ratio Detector Transformers

UHF Reception
Report on UHF Reception
UHF Antenna Installations

VOM & VTVM
How to Get the Most Out of Your Test Equipment — VOM — How to Make HV-Multiplier
How to Get the Most Out of Your Test Equipment — Vacuum Tube Voltmeter

Vertical Circuits
Kill that retracce — Vertical Sweep Circuits

Video Amplifiers
Video Detector, A.G.C. and Video Amplifier

Video Detectors
Germanium Diodes in Video Detector
Video Detector, A.G.C. and Video Amplifier

What’s Wrong With This Picture?
What’s Wrong With This Picture?

Copies of all issues are still available. If you are missing any copies and cannot obtain them from your distributor, send ten cents for any one issue and five cents for each additional issue to: Techni-Talk Cashier, General Electric Company, 316 E. Ninth Street, Owensboro, Kentucky. A complete set of all back issues including Vol. 1, No. 1 through Vol. 16, No. 4 can be ordered as ETR-2579 for $6.25.

SERVICE NOTES

AY CHASSIS — HORIZONTAL SHRINKAGE

Some "AY" receivers may exhibit a horizontal shrinkage during warm-up. These receivers will bear one of the following Pack Codes:

- 54C27
- 54C30
- 54C31
- 54D01
- 54D02

This shrinkage is due to a low resistance value of thermistor R-269 which should be checked if this complaint is reported. Any thermistor reading 600K ohms or lower may cause shrinkage.

CURE: Refer to AY Service Manual Page A Y304, "Sweep Circuit Board Components View":
1. In location 10C, adjacent to R-269, clip the B+ Boost wire (Red-White tracer) 1/2" above the circuit board.
2. Strip insulation from both ends of the cut wire and solder a 100K, = 20%, 1/2 watt resistor in series with this lead.
3. Cover the joints with tape or spaghetti. Dress the lead away from other components or connections.

The above change was incorporated in production starting with Pack Code 54D03. Receivers having the change are stamped EN127 or higher.

ORDER COUPON

General Electric Company
Department "B"
3800 N. Milwaukee Ave.
Chicago 41, Illinois

Enclosed is money order or check payable to General Electric Company for:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETR-15L Essential Characteristics Booklet</td>
<td>$1.50 each</td>
</tr>
<tr>
<td>Plan E for 1965 ETR-3790</td>
<td>$9.50 each</td>
</tr>
<tr>
<td>Plan F for 1965 ETR-3791</td>
<td>$13.50 each</td>
</tr>
<tr>
<td>ETR-1095A Three-ring binder with tabbed dividers and all Tele-Clues and Tele-Clue Schematics published to date</td>
<td>4.35 each</td>
</tr>
<tr>
<td>ETR-2000 Three-ring binder with tabbed dividers for Tele-Clues and Tele-Clue Schematics</td>
<td>2.25 each</td>
</tr>
<tr>
<td>ETR-2579 Complete set of TECHNI-TALK back issues Vol. 1 No. 1-Vol. 16 No. 4 with 8-ring vinyl covered binder (includes all Tele-Clues and Tele-Clue Schematics)</td>
<td>6.25 each</td>
</tr>
</tbody>
</table>

(Name)

(Include applicable state and local tax)

TOTAL $

STREET ADDRESS

CITY, STATE and ZIP CODE

(Please Print)
1965 EDITION OF
"ESSENTIAL CHARACTERISTICS"
NOW AVAILABLE

The eleventh edition of "Essential Characteristics" (ETR-15L), the General Electric handbook on receiving, five-star and special-purpose tubes, compactrons, thyratrons, gas filled diodes, television picture tubes, reed switches, photoconductive cells and replacement capacitors, now is available from your General Electric tube distributor.

New tube characteristics added to this edition bring to about 2900 the total number of tubes, including 689 monochrome and 5 color picture tubes.

The new edition contains a number of improvements which will make this booklet easier to use and even more practical in electronic servicing.

One such improvement which first appeared in ETR-15K is the rearrangement of base diagrams which have been enlarged to make them easier to read. All tube types using the same base drawing are listed with each diagram.

Also, the basing diagrams are arranged in numerical-alphabetical order with four on each individual page. The base diagram portion of each page has been cut so the basing can be viewed at the same time as the tube characteristics. First the base diagram number is located in the "Base Connections" column for any tube type. Then, without turning the top section, the appropriate base diagram can be located in the lower section and opened so both the electrical characteristics and base drawings are visible at the same time.

The listing of all tube types using the same base diagram should be of considerable value particularly when servicing older model receivers. If a tube type is not available, a check of the electrical characteristics for other tubes with the same basing will enable the technician to determine whether or not a substitute can readily be made with another type.

As before, the book includes typical characteristics curves, tube outline drawings, circuit diagrams showing typical applications of receiving tubes and capacitors, and construction data for speaker enclosures.

Tube classification charts have been expanded to facilitate reference to similar types. Cross-reference listings of prototypes for five-star and special-purpose types and a listing of Foreign Types and American near-equivalents are included.

New additions include outline drawings, characteristics for reed switches and photoconductive cells.

Get the new ETR-15L from your distributor — or if he is unable to supply you, use order coupon on page seven. The price is still $1.50.

Vol. 16 No. 4 Winter, 1964
In this issue:
The Oscilloscope — Use in Troubleshooting — 5 1
Bench Notes ... 2
Complete Index of Techni-talk
Vol. 1, No. 1 through Vol. 16, No. 4 3
1965 TV Manual Subscription Plans 7
Service Notes ... 7

This copy of Techni-talk comes to you through the courtesy of your General Electric tube distributor.