COLOR TELEVISION--NTSC STANDARDS--III

In the last issue the luminosity response of the human eye was discussed. In this issue the development of green-index signals and \(E_E \) is described.

As indicated in Figure 2 in the Volume 20, No. 1 issue, the high definition brightness signal that has been constructed is only step one of a two-step process. Step two is the addition of low definition color information. This will result in the "splashing" of low detail color to the high detail monochrome picture. The necessary voltages for a color reproduction are as shown at the picture tubes in Figure 7, \(E_E \) for the red tube, \(E_E \) for the green tube and \(E_E \) for the blue tube. In other words, for any fluctuation of the voltage out of the red camera that same fluctuation should be applied to the red picture tube. For reasons cited previously, \(E_E \) is being applied to all three receiving picture tubes. Therefore, what color signals must be added to \(E_E \) to give \(E_E \) and \(E_E \)? Apparently, three different signals are needed. One color signal when added to \(E_E \) must give \(E_E \). A second signal added to \(E_E \) must result in \(E_E \). Finally, a third signal must be used to give \(E_E \).

The next problem is the exact nature of these three signals. Looking at the signal to be applied to the red tube: Color Signal + \(E_E \) = \(E_E \)
so Color Signal = \(E_E \).

When this is done for the green and blue tubes also, the resulting color signals take the form:

\(E_E \)- \(E_E \)- \(E_E \)

When these color difference signals as they are called, are applied to their respective picture tubes, the results will be:

\((E_E - E_E) + E_E = E_E \) for the red tube
\((E_E - E_E) + E_E = E_E \) for the green tube
\((E_E - E_E) + E_E = E_E \) for the blue tube

A look at Figure 7 shows what the addition does to the color receiver. First, the signals \(E_E \), \(E_E \), \(E_E \), and \(E_E \) are derived from \(E_E \), \(E_E \), and \(E_E \). This is done by applying the outputs of the cameras into a matrix system, which is nothing more than a series of adding and subtracting circuits. The outputs are then fed through cables to the color receiver. The receiver is set up to feed \(E_E \) to all three adder circuits equally. In addition the \(E_E \) signal is applied to the red adder, \(E_E \) is applied to the green adder and \(E_E \) is applied to the blue adder. The outputs which are then fed to the picture tubes are \(E_E \), \(E_E \), and \(E_E \).

In order to clarify the exact nature of the brightness signal and the three color difference signals, a look at the make up of the signals for a color-bar pattern (Figure 8) would be advisable. This pattern consists of five vertical bars—white, red, green, blue, and yellow. The last four bars are 100% saturated colors. Figure 8 indicates the waveforms that would be observed with an oscilloscope synchronized on the horizontal scanning frequency. The starting point is the white bar since the initial camera adjustments are made for equal outputs for Illuminant C. Thus, the wave forms for \(E_E \), \(E_E \), and \(E_E \) are just 1 unit output for white. As saturated bars are used, notice that there is 1 unit for \(E_E \), when scanning the red and yellow bars, the output is zero for the blue and green bars.

In a similar manner, \(E_E \) is 1 unit for the green and yellow bars and zero for the blue and red bars. Also, \(E_E \) is one unit for the blue bar only. It is zero for the red, green, and yellow bars.

The next step is the development of the \(E_E \) signal.

\(E_E = .30E_E + .59E_E + .11E_E \)

Using the above formula for the white bar, \(E \) is:

\(E \) (White) = (.30 X 1.0) + (.59 X 1.0) + (.11 X 1.0) = 1.0 units

For the red bar \(E \) is:

\(E \) (Red) = (.30 X 1.0) + (.59 X 0) + (.11 X 0) = .30 units

For the green bar \(E \) is:

\(E \) (Green) = (.30 X 0) + (.59 X 1.0) + (.11 X 0) = .59 units

For the blue bar \(E \) is:

\(E \) (Blue) = (.30 X 0) + (.59 X 0) + (.11 X 1.0) = .11 units

and finally the yellow bar is:

\(E \) (Yellow) = (.30 X 1.0) + (.59 X 1.0) + (.11 X 0) = .88 units

Recalling the purpose of the brightness signal, how would this color-bar pattern show up on a monochrome receiver? The more signal applied to the picture tube grid, the brighter the bar. Therefore, the bars would have different values of brightness. The brightest would be white, then yellow, green, red, and the dimmest blue. A glance at Figure 4 in the last issue, will show that these various brightness levels are logical since they correspond approximately to the response curve of the eye.

The remaining signals to be developed in Fig. 8 are the color difference signals. These are achieved in simple adding circuits just as the \(E_E \) signal was developed. \(E_E \) is put through a phase inverter to give \(E_E \), and added to \(E_E \) and \(E_E \). The resulting voltages are \(E_E \), \(E_E \), and \(E_E \).

For example, \(E_E \) is formed by taking the waveform \(E_E \), inverting it to give \(E_E \), and adding it to the waveform \(E_E \).

For the white bar \(E_E = 1 \) unit and \(E_E = 1 \) unit. \(E_E \) is therefore 0 for white. This is a point worth remembering. There is no color-difference signal for white.

For the red bar \(E_E = 1 \) unit and \(E_E = .59 \) units. So, \(E_E = .70 \) units.

For the green bar \(E_E = .59 \) units and \(E_E = .59 \) units. So, \(E_E = .59 \) units for this bar. Notice that, although it is not possible to have negative values of \(E_E \), \(E_E \), or \(E_E \), negative values of color-difference signals do exist and occur quite frequently.

For the blue bar \(E_E = 0 \) units and \(E_E = .11 \) units. Therefore, \(E_E = .11 \) units for this bar.

The color difference signals, \(E_E \), \(E_E \), and \(E_E \), are formed in the same manner. The results of which can be seen also in Figure 8.
DEALER'S CHOICE
Yours When You Buy GE Tubes

GOLDEN FIORD
DAISY GOLD
MADRID

Melmac® Quality Melamine Dinnerware by Oneida

Wm. A. Rogers® Silver Overlaid by Oneida Ltd. Silversmiths

Deluxe Chest—fruitwood finish, cloth lined

Wm. A. Rogers® Stainless by Oneida Ltd. Silversmiths

Beautiful tablecloths by Bates

Help yourself to these valuable gifts from General Electric. Find out how easily you can earn the points needed for the gifts you want. See your participating GE tube distributor.

*trademark of Oneida Ltd.

GENERAL ELECTRIC
COMPLETE INDEX

Vol. 1, No. 1 through Vol. 20, No. 4

Winter, 1969

<table>
<thead>
<tr>
<th>Part</th>
<th>Vol. No.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC Circuits</td>
<td>2</td>
<td>"Horizontal" AFC Circuits</td>
</tr>
<tr>
<td>AGC Circuits</td>
<td>2, 4, 10, 6</td>
<td>Addition of A.G.C. to GE 865 series T and S Correction for Overload “U2” Receivers Video Detector, A.G.C. and Video Amplifier</td>
</tr>
<tr>
<td>Anti-Static Cleaner and Polish</td>
<td>1, 5</td>
<td>TV Anti-Static Cleaner and Polish ETR-3390</td>
</tr>
<tr>
<td>Audio Test and Repair Bench</td>
<td>14, 4</td>
<td>Construction Details</td>
</tr>
<tr>
<td>Bias Supply for TV</td>
<td>15</td>
<td>Construction Details</td>
</tr>
<tr>
<td>Business Builders</td>
<td>16, 4, 16, 1, 16, 2, 16, 3, 19, 3</td>
<td>A complete selection of various dealer business aids Business Identification — Items Advertising Post Cards Doorknob Hangers, Book Matches and Customer Booklets Outdoor Signs</td>
</tr>
<tr>
<td>Capacitor Substitution Boxes</td>
<td>2</td>
<td>Construction Details</td>
</tr>
<tr>
<td>Color Box</td>
<td>2</td>
<td>Construction Details</td>
</tr>
<tr>
<td>Color Receivers</td>
<td>9</td>
<td>Part I — Tuner and Video I-F Amplifiers Part II — Video Detectors and Video Amplifiers Block Diagram and Schematic for General Electric "CL" Color Receiver Part III — Burst Gate, Subcarrier Generation, Synchronous Detectors and Chroma Amplifiers Part IV — Matrixing Circuits and Aperture Mask Tube Part V — Mechanical Adjustments on Aperture Mask Tube Part VI — Vertical Sweep and Convergence System Porta-Color (three parts)</td>
</tr>
<tr>
<td>Console Phono Service Notes</td>
<td>17</td>
<td>Buzzer in RC4330 and RC4350 Series Hum in RC4100, RC4200/20, RC4600 and RC4850 Series Noise on AM Function Rattle in Console Series with Porta-Fi Trip Failure on VM Changers Velocity Trip Lever Bent on GE Record Changer</td>
</tr>
<tr>
<td>Conversion to Larger Picture Tubes</td>
<td>2, 5, 2, 6, 3</td>
<td>GE Model 811, Admiral Model 4116S GE Model 809, RCA Model 7360TV2 GE Model 820, Philco Model 48-1061 GE Model 12C101, Stromberg-Carlson Model TV-12 GE Model 802, Capshow-Farnsworth Model 661P GE Model 10C101, RCA Model KRS-20 GE Model 910, RCA Model 630TS to 14 inch GE Model 815, Motorola Model WV-102 Motorola Model 135F16 RCA Model 630TS to 20 inch</td>
</tr>
<tr>
<td>D-C Restoration</td>
<td>1, 6</td>
<td>D-C Restoration and Sweep Circuits</td>
</tr>
<tr>
<td>FM Stereo Multiplex</td>
<td>14, 2</td>
<td>Tuner Modifications</td>
</tr>
<tr>
<td>Germanium Diodes</td>
<td>2, 3</td>
<td>Germanium Diodes in Video Detectors</td>
</tr>
<tr>
<td>Hobby Manual Project Components</td>
<td>20, 4</td>
<td>TI Autotransformer Form used in Battery Operated Fluorescent Light, project H6, ETRS-1891</td>
</tr>
<tr>
<td>Horizontal Circuits</td>
<td>1</td>
<td>D-C Restoration and Sweep Circuits</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Deflection Waveform and RF Supplies</td>
</tr>
<tr>
<td></td>
<td>11, 3</td>
<td>Excessive Width — “M4”</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Excessive Width — “U2”</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Horizontal AFC Systems</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Horizontal Deflection Circuits and Kickback Power Supplies</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Horizontal Hold — AA and AB</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Horizontal Jitter — "M4"</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Horizontal Retrace Elimination Circuit</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Horizontal Sync Unstable — DB</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Intermittent Horizontal Oscillator — SB Chassis</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Kill that Retrace — Horizontal</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Replacement Sweep Transformers</td>
</tr>
<tr>
<td></td>
<td>15, 5</td>
<td>GE Horizontal Phase Detector (4 Parts)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>How Electronic Components Are Made and Tested</td>
</tr>
<tr>
<td></td>
<td>18, 3</td>
<td>How Electronic Components Are Made and Tested</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Reduce Call-Racks with New GE 6AX4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Build a TV Bulb</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>How GE 110" Picture Tubes are Made</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>How GE Picture Tube Phosphors are Made</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>How GE Receiving Tubes are Tested</td>
</tr>
<tr>
<td></td>
<td>11, 8</td>
<td>How GE Semiconductors are Made</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>How GE Service Designed Tubes are Made</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>How GE Transistors are Made</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>GE Tubes are 3 to 4 Times Better</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>New GE Copper Core Anode Material</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>New GE 23" Picture Tube</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>New GE Sandwich Cathode</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>New GE Electron Gun</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>No More Loose Top Caps</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>GE Develops New Heater Wire</td>
</tr>
</tbody>
</table>

3
Receiving Tube
Popularity Listing

Record Changer Service Hints
GE RD 100 Series — Cycles to off position 16 3
GE RD 100 Series — No automatic shut off 16 3
GE Record Changer — Bent Velocity Trip Lever 18 3
All VM — Changer shuts off 16 3
All VM — Trip Failure 17 2
CH10 Speed Control 14 1
Repair Support 14 2

Remote Control Systems
Adjusting Reel Relay Contact Points 14 2
GE Wireless Remote Control System (6 Parts) 12 1-6
GE Sonic Remote Control System (5 Parts) 13 5,6

Replacement of 21AP4 with 21ZP4-B
Replacement of 21AP4 Metal with 21ZP4-B
Aluminized Glass Picture Tube 7 6

Resistor Substitution Boxes
Construction Details 2 6

Retrace Elimination
Horizontal Retrace Elimination Circuit 4 2
Kill that Retrace — Horizontal 2 6
Kill that Retrace — Vertical 1 4

Semiconductors
New Service-Designed Entertainment Types 19 4

Service Aids
Bench Mirror ETR-1275 20 2
Replacement Mirror, ETRS 4615 20 2
Capacitor Tab Adjuster ETR-2968 20 2
Color Dot Magnifier, ETRS 4530 19 3
Compactron Sockets ETR-2976 20 2
Door Clock Sign, ETR-3826 20 2
Experimente/ HOBBYIST Kit ETR-4288 20 2
Five-In-One Combination Tool, ETR-3910 20 2
Fuse and Heater Checker ETR-981A 20 2
Magnetc Swing-Beam Service Light ETR-1593 20 2
Multi-Tube Pin Straightener ETR-3200 20 2
Paper Bags—2, 4, 10 and 14 Lb. Sizes 15 4
Picture Tube Pillow ETR-1469 20 2
Part Holder, ETR-3851 20 2
Pocket Tool, ETR-3594 20 2
Printed Circuit Board Cutting Tool, ETR-3896 20 2
Rear Control Extension ETR-2089 20 2
Safety Glass Puller ETR-1592 20 2
Service Call Board ETR-2144 20 2
Service Drop Cloth ETR-1021A 20 2
Soldering Gun Holder ETR-2582 20 2
Soldering Iron Holder ETR-2790 20 2
Tube and Parts Cabinet, ETR-3803 20 2
Tube Puller ETR-1094 20 2
Twin-X Wrench Set ETR-762 20 2
Vacuum Spark Tester ETRS-5198 20 2
Wire Stripper ETR-2376 20 2

Service Cases
Armored Vinyl Covered — Small Size 19 1
Armored Vinyl Covered — Medium Size 19 1
Armored Vinyl Covered — Large Size 19 1
Matched Service Cases 19 1
Plastic Tool Cases 19 1

Service Shop Plans
A Plan for Success (Complete Service Shop) 8 4
Make Your Own Service Bench 3 1

Signal Generators
AM Signal Generator in Place of Cross-Hatch Generator 4 2
GE ST-16A Color Alignment Generator 8 6
I-F Alignment I 1 6
I-F Alignment II 2 2

Stereo / Audio Test and Repair Bench
Construction Details 15 2

Snippets
Description and Photos 7 3

Snow
TV Receiver Noise 4 1

Sparker
Sparker to Check for “Gas” or “Air Leaker” 5 1

Speakers
TV — Speaker Phasing 11 4

Stereo Hum Problem
Description and Correction (6 Parts) 11 1-6

Subscription Plans
Radio Plans A and B 18 4
TV Plans E and F 18 4

Sweep Transformer Replacement
TV—“EE” Sweep Transformer Replacement 11 1

Sync Signals and Circuits
Synchronizing Pulses and Circuits 2 1

Tepe Recorder
Threading 17 1

Techni-Talk Index
Complete Index of Techni-talk Vol. 1, No. 1 thru Vol. 20, No. 4 — by subjects 20 4

Test Equipment
AM Generator in Place of Cross-Hatch 4 2
Capactance-resistance Bridge 1 4
Cathode Ray Oscillograph (2 Parts) 2 3,4
GE ST-16A Color Alignment Generator 8 6
Oscilloscope — Use in Servicing (7 parts) 15 4
thru 17 2
Signal Generator — 1 1 6
Signal Generator — 2 2 2
Tube Tester 1 2
Vacuum Tube Voltmeter 1 5

Transistors
How to Make a Transistor Tester 10 6
Listing of Entertainment Types 15 3
Power Supply 12 2
Transistor Theory 8 1
Transistor Tester
GE Transistor Tester
How to Make a Transistor Tester

Tube Testers
How to Get the Most Out of Your Test Equipment — Tube Tester

Tuners
GE Model FA-10 and FA-12 Hi-Fi Tuner
The GE UHF 103 Tuner (2 Parts)
The Head-End (2 Parts)
UHF Converter or Tuners
Servicing TV Tuners (5 Parts)
Tuner Repair Service Hints from Standard Kollsman

TV Antennas
Television Reception (2 Parts)
UHF Antennas
UHF Antenna Installations

TV Circuit Description
D-C Restoration
Deflection Circuit Waveforms and RF Power Supplies
Horizontal AFC Systems
Horizontal Deflection Circuits and Kickback Power Supplies
Synchronizing Pulses and Circuits
The Head-End (2 Parts)
Video Detector, A.G.C. and Video Amplifier
Vertical Sweep Circuits

TV Picture Tubes
Part I — Phosphor Specifications and Implosions
Part II — Electron Gun and Gun Defects
Part III — Gun Defects continued and Cathode Images
Part IV — Construction of a Picture Tube
Open Heaters Due to Arc-Over
Replacement of 21A4 Metal with 21ZI4-B Aluminized Glass Picture Tube

TV Receiver Noise or Interference
TV Receiver Noise
TV — "U-3" Apparent Ignition Interference

TV Reception
The Antenna (2 Parts)
UHF Antenna Installations

TV Service Notes
Alignment of quadrature grid
Apparent Ignition Interference on "U3"
CB-23" Chassis — Insufficient width
Chassis Ventilation — "QX"
Clock Replacement — DB
Color Receiver — Models: 21T500, 21C700 & 1 Color Generator — Modification for ST-16
Color TV Demagnetizing Coil
Color TV Service Hints
Correction for Overload on "U2"
Damage to Semiconductor Power Rectifiers
DC-DD Chassis Arc-Over and 8L78 Failure
Electrical Safety Test
Excessive Width — "M4" Sets
Excessive Width — "U2" Receivers
G-1 Chassis — CRT Socket Spark Gap
G-1 Chassis — H.V. Regulation
H-1 Chassis — Intermittent Hum Bar
Horizontal Hold — AA and AB
Horizontal Jitter in "M4" Receivers

Vol. No.
- Horizontal Pull or Weave — "QX"
- Horizontal Shrinkage — AY Chassis
- Horizontal Sync, Unstable — DB
- HV Rectifier Failures SB
- Identifying Dual Diodes
- Intermittent Brightness — "CW" Color
- Intermittent Horizontal Oscillator — SB Chassis
- Inoperative Fine Tuning — "M6" and "U5"
- Intermittent Channel Selection "M6"
- KC-KL Chassis — Raster Defects
- KC Chassis Servicing HV Power Supply
- KD Chassis — Service Hints
- KD Chassis — Thermostat Added
- Neon Bulb Failure — CB
- Phasing on 2 and 3-Speaker Models
- Fucuscening Correction
- Power Tuning Repairs — "U2" Receivers
- Protecting Picture Tube
- Production Changes — "MW"
- Quadrature Coil Tuning Capacitor
- Removal of the Metal Back on "M4"
- Removing Scratches and Static Electricity
- Replacement Sweep Transformers
- Replacing Compactor Sockets on Etched Circuit Testers
- Rolling Bright Line — "CC" Color
- SB-SC Chassis — Lightning Protection
- Servicing the "M6" Contrast Control Circuit
- Slippage in Fine Tuning Control
- Special Components in TV Receivers
- TC Service Hints
- Testing Horizontal Phase Detection Diodes
- Transistorized UHF Tuner — Intermittent Operation
- Troubleshooting the "DB"
- Vertical Retrace Lines — AY
- Vertical Sync Buzz Trouble — "U2" Chassis
- VHF Tuner — Lead Dress
- X-Rays in Color TV Receivers
- 6CD6 Horizontal Output Tube Failures
- 6GPH8 Replaces 6E8A in Remote Receivers

TV Signal Description
Synchronizing Pulses and Circuits

TV Sound Systems
Delta Sound System
Repair of Ratio Detector Transformers

UHF Reception
UHF Antenna Installations

Vertical Circuits
Kill that retrace — Vertical
Vertical Sweep Circuits

Video Amplifiers
Video Detector, A.G.C. and Video Amplifier

Video Detectors
Germanium Diodes in Video Detector
Video Detector, A.G.C. and Video Amplifier

What’s Wrong with This Picture?
What’s Wrong With This Picture?

Copies of all issues are still available. If you are missing any copies and cannot obtain them from your distributor, send ten cents for any one issue and five cents for each additional issue to Techni-Talk Cashier, General Electric Company, Oak Brook Executive Plaza, 1390 W. 22nd Street, Oak Brook, Illinois 60521. A complete set of all back issues in Techni-Talk binder including Vol. 1, No. 1 through latest issue can be ordered as ETH-2579 for $36.25.
TELEVISION RENEWAL PLAN E $10.50, ETRS-3790

Factory Service Manual Coverage for
Latest Solid-State Television Circuits
Color and Monochrome TV • Console Phonographs
AM-FM Tuners • Record Changers • Porta-Fi System
Tape Recorders • Binders for TV and Audio
Service Manuals

YOU WILL RECEIVE . . .
• Up-to-date Parts Price Listings
• “Service Talk”
• “Techni-Talk”
• “Audio Notes”
• Servicing Hints
• Portafax
• Alignment Charts and Waveforms
• Replacement Parts List
• Schematic Diagrams
• Circuit Board Layouts
• Exploded Views

PLAN F $14.50 ETRS-3791 FOR NEW SUBSCRIBERS

1. Includes Plan E for 1969
2. PLUS TV Service Manuals and Binder for Current Line
 Models (1968 Mailings)
3. PLUS All Console Phonograph, Tuner, Tape Recorder &
 Record Changer Coverage and Binder for 1968

USE ORDER COUPON BELOW

ORDER COUPON

Order from your local GE electronic
components distributor or mail this form to:

General Electric Company
Department "B"
3800 N. Milwaukee Ave.
Chicago, Ill. 60641

Enclosed is money order or check payable to General Electric Company for:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan A for 1969, ETRS-3845</td>
<td>$6.50</td>
</tr>
<tr>
<td>Plan B for 1969, ETRS-3846</td>
<td>14.95</td>
</tr>
<tr>
<td>Plan E for 1969, ETRS-3790</td>
<td>10.50</td>
</tr>
<tr>
<td>Plan F for 1969, ETRS-3791</td>
<td>14.50</td>
</tr>
<tr>
<td>ETRS-2975 Radio Service Guide 1946-1961</td>
<td>1.95</td>
</tr>
<tr>
<td>ETRS-3733 Radio Service Guide 1961-1963</td>
<td>1.45</td>
</tr>
<tr>
<td>ETRS-4406 Radio Service Guide 1963-1965</td>
<td>2.95</td>
</tr>
<tr>
<td>ETRS-4529 Radio Service Guide 1965-1967</td>
<td>3.95</td>
</tr>
<tr>
<td>ETRS-4892 Radio Service Guide 1967-1969</td>
<td>5.95</td>
</tr>
<tr>
<td>ETRM-1SN Essential Characteristics</td>
<td>1.00</td>
</tr>
</tbody>
</table>
| ETRS-2975 Techni-Talk Back Issues (Vol. 1 No. 1 thru
 Latest Issue) and binder | 6.25 |
| ETR-3960 Electronic Components Hobby Manual | 1.50 |
| ETR-4288 Experimenter Hobbyist Kit | 0.98 |
| ETRS-4891 Autotransformer Form | 0.80 |

Include applicable state and local tax $............TOTAL $............

NAME

STREET ADDRESS

CITY, STATE and ZIP CODE

(Please Print)
LEADERSHIP IN ELECTRONICS!
LEADERSHIP IN SERVICE AIDS

1969 EDITION OF "ESSENTIAL CHARACTERISTICS" NOW AVAILABLE

The 369 page thirteenth edition of “Essential Characteristics” (ETRM-15N), the General Electric handbook on receiving, five-star, special-purpose tubes, compactrons, thyatrons, planar and ceramic tubes, television picture tubes, reed switches, photoconductive cells, photoconductive cell-lamp combinations and entertainment semiconductor components is now available from your General Electric electronic components distributor.

New tube characteristics added to this edition bring to over 3500 the total number of tubes, including 901 monochrome and color picture tubes.

The new edition contains a number of improvements which will make this booklet easier to use and even more practical in electronic servicing.

One such improvement is the arrangement of base diagrams in a separate 64-page booklet which is included with each “Essential Characteristics.” All tube types using the same base drawing are listed with each diagram.

The listing of all tube types using the same busing diagram should be of considerable value, particularly when servicing older model receivers. If a tube type is not available, a check of the electrical characteristics for other tubes with the same busing will enable the technician to determine whether or not a substitute can readily be made with another type.

As before, the book includes typical characteristics curves, tube outline drawings, circuit diagrams showing typical applications of receiving tubes and construction data for speaker enclosures.

Tube classification charts have been expanded to facilitate reference to similar types. Cross-reference listings of prototypes for five-star and special-purpose types and a new comprehensive listing of Foreign Types and American near-equivalents are included.

New additions include outline drawings and characteristics for Entertainment Semiconductors.

Get the new ETRM-15N from your distributor—or if he is unable to supply you, use order coupon on page seven. The price has been reduced from $2.00 to $1.00.

We now have available the T1 Autotransformer Form used in the Battery Operated Fluorescent Light, project H6, in the General Electric Hobby Manual, ETR-2960. Use the order form on page 7. Order ETRS-4891. The price is $.80 each.

Vol. 20, No. 4 Winter, 1968-69
In this issue:

Color Television-NTSC Standards—III...... 1
General Electric's "Dealer Choice"........... 2
Complete Index of Techni-Talk,
Vol. 1, No. 1—Vol. 20, No. 4............. 3
1969 Subscription Plans................. 7
Radio plans A & B............................ 7
Television plans E & F........................ 7
1969 Edition of "Essential
Characteristics" Now Available.......... 8

Techni-talk on AM, FM, TV Servicing, published quarterly by ELECTRONIC COMPONENTS DIVISION, GENERAL ELECTRIC COMPANY, OAK BROOK EXECUTIVE PLAZA, OAK BROOK, ILLINOIS 60521.

This copy of Techni-talk comes to you through the courtesy of your General Electric tube distributor.

NOTE: The disclosure of any information herein conveys no license under any General Electric patent and, in the absence of an express written agreement to the contrary, the General Electric Company assumes no liability for patent infringement or any other liability arising out of use of such information by others.