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Digital Fourier Analysis
Some of the theoretical and practicalaspecfs of measure-
ments involving Fourier analysis by digital instrumentation.

By Peter R. Roth

WTTBN THE CHARACTERISTICS oF A SIGNAL oR SYSTEM

ARE MEASURIo, the measurements most often made are

the spectrum of the signal and the transfer function of

the system. For example, if the transfer function of the

landing gear and wing structure of an airqaft is known,

and if the spectrum of the vibrations from typical run-

ways can be determined, then the roughness of a land-
ing can be evaluated. Or if the spectrum of the vibrations

caused by typical roads can be determined, an automobile

suspension system may be designed and tested to maxi-
mize ride comfort.

It is the questions of how to measure spectra and

transfer functions, especially when signals more complex

than simple sine waves are involved, that we will examine
in this article.

The techniques to be described are based upon com-
putation of the Fourier integral

sdil: f 
+* x(t)exp{-r2,lt}dt.
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While in principle the methods that will be examined are
not new and have been partially implemented using an-
alog instruments, their full development has waited on
the availability of digital processors with sufficient speed
and flexibility.*

How does computation of the Fourier integral help
us make meaningful measurements? Consider the Fourier
transform written in its sine-cosine form:

f  -L^
S,(f) : l '  

* 
x(t) {cos2.lt - i sin2nft}dt. (2)
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" The new HP Model 5450A F0urier Analyzer is one of these digital instruments.
See art ic le,  page 10.

(1)

This equation states that the transform averages a time

function input x(t) with a set of sines and cosines to de-

termine the content of x(t) at some frequency f. Thus the

transform resolves the time function into a set of com-
ponents at various frequencies much as a set of analog
filters would. However, it not only yields the amplitude
at each frequency, but also resolves the in-phase (real,

cosine) component and the quadrature (imaginary, sine)
component, thereby giving magnitude and phase infor-
mation which is dfficult to obtain in anv other wav.

Cover : Model 5450A Fou rier
Analyzer makes a variety ot
measu rements f undamental
to the analysis of wavetorms
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many uses is analysis of
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The Fourier transform is also valuable when it is ap-
plied to measurements on systems. The result of the op-
eration of a linear system on any input signal in the time
domain may be determined from the convolution of the
system impulse response h(t) with the input signal x(t)
to give the output y(t):

,ft) +:: hG) x (t -,)d,.

Visualizing the result of this operation is all but impos-
sible for anything other than a simple case. But if the
Fourier transform is applied to this convolution integral,
a simple, easily understood relationship results. The out-
put spectrum S, is the product of the input spectrum S*
and the transfer function H:

s,(f): s,ff) . HftI (4)

The simplest implementation of a measurement tech-
nique based on this relation is the use of a sine-wave
input for x(t). Since the sine wave contains but one fre-
quency component it provides a simple way of measuring
the transfer function using voltmeters and phasemeters.
However, not all systems may be measured using sine
waves, either because there is no way of inserting such
a signal into the system, or because the sine wave is not
a realistic signal form.

A more general measurement method is to measure
the input and output time series, in whatever form they
may be, and to calculate H using S*, S", and the Fourier
transform. This method has several advantages, as I will
show. But first, because the most powerful computa-
tional techniques available today are digital, it's necessary
to say something about the nature of the Fourier trans-
form when it is implemented on a digital processor.

Digilal Fourier Translorms

Digital techniques make us rcalize very clearly that
all measurements are discrete (i.e., have finite resolution)
and of finite duration. All digital memories are obviously
discrete and finite in size. Therefore, the equation for the
Fourier transform must be changed to a finite sum for
digital processing. This means, first of all, that the time
function to be transformed must be sampled at discrete
intervals, say At. It also means that only a finite number,
say N, of such samples may be taken and stored. The
record length T is then

The effect of finite at is well known; it limits the maxi-
mum frequency that may be sampled without 'aliasing'

error to

1 -
lmar - (6)

Any components above this Nyquist frequency or its
multiples are folded back onto frequencies below f-,*.
fn practical measurement situations this aliasing presents
little or no difficulty, since f^u* can be chosen to include
all significant components of the input signal, or a filter
may be used before the sampler to eliminate any strong
components above f.",.

The effect of finite record length T is also important.
When a Fourier integral is taken over a finite record
length T the result is a Fourier series, and t}te spectrum
has discrete lines and finite resolution. A Discrete Finite
Transform (DFT), which must be used whenever a Four-
ier transform is computed digitally, is more like a Fourier
series than a transform, since it assumes that the input is
periodic in the interval T and has a spectral resolution of

The DFT is written as

l I J  t *
S,(m^f ):6Ex(ntt) exp{-iftmni. (8)

It yields in the frequency domain X real (cosine) com-

NI
ponents and iI imaginary (sine) components from a

sampled time r-ecord of N points. I will refer to this re-
sult as the linear spectrum to keep it sorted out from
certain other spectrum forms.

While this raw form of spectrum has certain uses, it
it of limited value because of its dependence on the time
position of the input record. A waveform of constant
shape will always have the same energy at any one fre-
quency, but how this energy is distributed between the
sine and cosine terms depends on the phase shift or time
position of the waveform. Fig. 1 gives an example of
this. Fig. 1a is the real part of the linear spectrum of a
square pulse. It has the expected sin x/x form. However,
the real part of the linear spectrum of the same pulse de-
layed a small amount, Fig. lb, does not have this form.
The linear phase shift given the spectrum by delaying the
waveform has changed the distribution of the spectrum
between its real and imaginary parts. On the other hand,

I
2 N ,

(3)

(7)n + -  |
- , -  T .
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Fig. 1. The real parts of the Fourier transtorms ol two
rcctangular pulses which are identical except tor a
time shitt are shown in (a) and (b). (c) is the magnitude
of the Fourier transforms ol both pulses. Eecause it rs
independent ot time position, the magnitude-and-phase
form of the trcnsfotm is more useful than the real-and-
imaginary form. However, the square of the magnitude,
or the power specttum,ls even more widely used.

if we examinethe magnitude of either the undelayed pulse

spectrum or the delayed pulse specftum, we see that it

is constant (Fig. lc) and that the energy in any line is

the same no matter what the time position of the input

waveform is.
It is clear, then, that to obtain a constant linear spec-

trum independent of time position it is at least necessary

to convert the real and imaginary components of the
spectrum into magnitude and phase. While the linear

magnitude spectrum is a valid and perfectly acceptable
way to achieve a useful spectrum it is cumbersome from

a computational standpoint. A closely related function,

the 'auto' spectrum or 'power' spectrum, gives the same

basic information, is faster to compute, and can be ap-
plied to measurements which the linear magnitude spec-
trum cannot.

Power or Auto Spectrum

The auto spectrum, G"*(f), is formed by multiplying
the value of the linear spectrum, S"(f), by its own com-
plex conjugate.

G,,(f): s,ft). s.*6): [AU) + iBff)]lA6) - iB(fl1

Each spectral line of G",(f) is proportional to the voltage

squared at frequency f, or more exactly to the variance
of the input waveform at frequency f. The auto spectrum
is useful because it is the magnitude squared of the linear
spectrum. For this reason, and because it has no imagi-
nary part, it is independent of the time position of the
input waveform. It is the square-law auto spectrum that
is usually implied when the term 'spectral analysis' is
used.

G,,(f): A'(l) + B"(f)

(e)
(10)



Analyzing Random Signals
The auto spectrum, because of its independence of

time and phase, is a useful tool for analyzing signals that
are deterministic, that is, for signals that do not change
in spectral form from sample record to sample record,
or only change in a predictable way. However, the auto
spectrum is an even more useful tool for the analysis of
signals that are stationary and random, that is, signals
whose spectra will vary from sample record to sample
record but will have a measurable mean or average value.
Many processes generate signals whose spectra cannot
be predicted for any single sample record, but whose
spectra are stable on the average. Examples of such
processes are l/f noise in an amplifier, or the sea state
noise in a sonar system. On the other hand, the process
being measured may be a combination of deterministic
and random spectra. For example, consider the fine-line
components of the noise due to the rotating members of
a turbojet hidden by the random noise of the combus-
tion, or the tonal components of an acoustic signal hidden
in the random noise of the ocean.

What is more important about a random spectrum is
that for a single sample record of length T (i.e., of spec-
tral resolution Af - l/T) the spectral lines are just as
random as the time series that generated the spectrum
no matter how long T is. In basic engineering and mathe-
matical texts on the Fourier transform" the transition
from periodic functions whose spectra are described by
Fourier series to totally aperiodic functions whose spec-
tra are described by the Fourier transform is made by
making the record length T go to infinity in the limit.
That this procedure does not work for the ultimate in
aperiodic functions, random signals, can be intuitively
der4onstrated in two ways.

First consider a wave analyzer with a bandwidth af
and a meter with very small damping. The response time
of this analyzer is about l/ Lf or T seconds. If a random
signal is applied to this wave analyzer an independent
reading can be made about every T seconds. Now, if the
bandwidth of the wave analyzer is cut to Af/2, the rc-
sponse time of the filter and hence the time between in-
dependent readings becomes 2T. While the meter will
move half as fast in this case, the randomness of the
reading as expressed by the variance of the independent
readings will be unchanged, since independent readings
are twice as far apart. Thus no matter how long a record
(i.e., how narrow a bandwidth) is used, no improvement
in statistical certainty can be made. The only way to im-
prove the reading is to put an integrating circuit on the
meter that is much slower than the response time due to

the reciprocal of the bandwidth l/af. Then the final
reading will be the result of averaging many independent
readings.

To show this effect for a DFT consider a spectrum com-
puted from N equally spaced time samples over a sam-

ple record of length T, yielding 
) 

,"ut una 
) 

imaginary

frequency components. From N time points, exactly N
values are obtained in the spectrum, and since no new
information about the signal is added by the DFT, each
spectral line will have no more statistical certainty than
a sample point in the time function from which the spec-
trum was computed. In fact, for a spectrum of Gaussian
noise of any spectrum shape, the variance of a spectral
line for one sample record is equal to the expected value
for the measurement. Such a measurement is so uncer-
tain that it is no measurement at all.

However, if a number of independent samples of the
spectrum are averaged, the variance of the resulting es-
timate of the spectrum will be reduced in a fashion anal-
ogous to integrating readings from the wave analyzer
meter. Such a case is demonstrated in Fig. 2. Fig. 2a is
a spectrum computed from a single sample record of a
signal consisting of a sine wave plus random noise. Be-
cause the variance of one sample is equal to the expected
value for each line it is impossible to tell which of the
spikes is the spectrum of the sine wave and which is due
to the variability of the estimate. Fig. 2b shows a spec-
trum computed from an average of 100 samples. Here
the variability of the estimate is reduced to the point
where it is perfecfly clear where the single tone lies. It
is also clear what the spectral shape of the Gaussian
noise is. In fact, a statistical certainty for the estimate of
the random spectrum is easily computed from the rela-
tionship that one standard deviation o is

(1 1)

where K is the number of sample spectra averaged.
For the case of 100 spectral averages 3o is 1.1 dB.

Thus one would expect that only one estimate in a thou-
sand would fall farther away than 1.1 dB from the mea-
sured value in Fig. 2b. To achieve this degree of statis-
tical stability using an analog wave analyzer with a I Hz
bandwidth would require a lOO-second integration.

Two Input Waveforms

So far we have considered measurements on one time
series only. However, we often have to take measure-
ments from two signals simultaneously so the relationship

I
o: _\ /K,



-I
I
I

:  l l

irl
l l: :

l t

i l

i i l
l l l

I
)

Fig. 3. /s the output z(t) caused entirely by x(t) or is
there also unrelated noise n(t)? What is the torm ol the
relationship between x(t) and y(t)? The trcnsfer lunction
H(f) provides an answet to the second question. A quan-
tity called the coherence function answers the first.

or the frequency domain, is capable of separating these

two quantities.

Cross Spectrum or Gross Power Spectrum

The cross spectrum, also known as the cross power

spectrum, illustrates these points. The cross spectrum

Gr"(f) between two signals y(t) and x(t) in a process or

system is formed by multiplying the linear spectrum of

y(t) by the complex conjugate of the linear spectrum of
x(t) measured at the same time.

Gr,: SyS,* - (Au * iB) (A, - iB,) (12)

Gy,: (ArA, * BrB) + i(BaA, - B,Ar) (13)

These relationships show that the cross spectrum is not

a positive real quantity like the auto spectrum, but in

general is both complex and bipolar. A physical interpre-

tation of this function is quite straightforward. If there

are components at a given frequency in both x(t) and y(t),

the cross spectrum will have a magnitude equal to the
product of the magnitudes of the components and a phase

equal to the phase difference between the components.

While this interpretation is exactly true when x(t) and

y(t) are uncontaminated by noise, an additional dimen-

sion must be added when unrelated signals are added to

the process. Any single sample of the cross spectrum G,*

between the output z(t) of the linear system of Fig. 3

and the input x(t) will show the combined eftects of
x(t) and n(t) merged into z(t). However, if n(t) is unre-

lated to x(t) (i.e., random and uncorrelated), its contribu-

tion to the magnitude of G,, will not have a constant
phase from sample record to sample record as will that of
x(t). If many sample records are averaged, the random

Fig. 2. The power spectrum (a) computed trom a single
sample record of a random signal is as random as the
signal itsell. But when 100 such spectrc are averaged,
the result (b) shows not only the specttal shape ol the
random signal, but also that thete was a sinusoid hidden
in the signal.

between two points in some process may be determined.

For example, in the situation shown in Fig. 3 the rela-

tionship between input x(t) and output z(t) might be of

interest. There are two distinct quantities that can be
measured in such a situation. The first is the degree to
which the output depends on the input. That is, is z(t)

caused by x(t) or is z(t) due in part to some unrelated
signal such as n(t)? Second, if z(t) is caused at least partly

by x(t), what is the form of this relationship?
It is important to be aware that, although neither cau-

sality nor relationship can exist without the other, each
contains different information about the process. It is also
important to note that no single measurement of the cor-
relation between two sisnals. either in the time domain



phase of the contribution of n(t) will ultimately cause it
to have a negligible contribution to the cross spectrum.

How many independent samples of the cross spectrum
it takes to achieve a result of a given accuracy cannot be
determined without some further information beyond the
cross spectrum itself. Also required is information about
the relative contributions of the various signals to the
measurement. This makes an important point: a simple
cross spectrum measurement does not difierentiate be-
tween causality and relationship. Without more informa-
tion than is contained in the simple cross spectrum it
cannot be determined if a high value in a cross spectrum
is due to a strong gain of the measured system at that
frequency, or to a large input x(t), or to a strong contami-
nating signal n(t). In the time domain, the crosscorrela-
tion function also suffers from this same inability to
discriminate between causality and relationship in a
measurement.

Transfer Functions

While the cross spectrum does not give a definite mea-
surement it leads to two measurements which not only
separate relationship and causality but also give quanti-
tative results. The first of these functions measures the
relationship between x(t) and z(t). It is a familiar func-
tion, the transfer function H(f) of the system (Fig. 3).

The transfer function is the ratio of the output linear
spectrum for zeto noise to the input linear spectrum.

Coherence Functlons

The major error in transfer function measurements de-
velops when the output z(t) is not totally caused by the
input x(Q but is contaminated by internal system noise
n(t). Consider the input-output cross spectrum when
there is uncorrelated noise with spectrum S" added to the
output.

G,r: (S, * S"iS,* - G* l Gn, (16)

If the noise n(t) is truly uncorrelated with x(t), and if
enough averages of G,* are taken, the contribution of G,,*
to G,* will approach zero, utq G^ will approach G",.
How rapidly the average of G,* will approach Gr* de-
pends upon how much noise there is in the output spec-
trum, that is, to what degree z(t) is caused by x(t).

To measure this coherence between x(t) and z(t) it is
necessary to compute a new quantity, the coherence func-
tion. defined. asr

%%-: lG,rl" (r7)
G"" G* G"" G*

The horizontal bars denote ensemble averages.
After a number of records are averaged the numerator

of the coherence function will reduce to G"" G**. The de-
nominator of the coherence function will be the auto
spectrum of the normal output plus the noise, times the
input auto spectrum. The output-plus-noise auto spec-
trum is

G," : (Sa + S")(Sa* S",)* - Gua * Grn * Gn, * Gnn.
(18)

After averaging, the cross terms in equation 18 disappear
because they are uncorrelated with S", leaving

Grr: G* I G^^ (1e)

for the output auto spectrum. The coherence function
then has an averaged value of

j - G* Gav - Gro //rn\
I  

-  . _  
\ - v , ,' (Gr, * Gn,)G,, Gw i Gn^

Equation 20 shows that the coherence function I has
a value between 0 and 1, depending on the degree to
which the output of the system is causally related to the
input. This number not only defines the degree of causal-
ity, a useful quantity in itself, but it also defines the
number of averages of the cross spectrum and input auto

^,2 -

Multiplying the numerator and denominator of this ratio
by S"* shows that the transfer function can also be ex-
pressed as the ratio of the cross spectrum to the input auto
spectrum.

nUl:W

I'_ s/,s,*_ Gv,
" - s t s , * -G , ,

(r4)

(1s)

There are two important points with regard to transfer
functions measured in this way. The first is that this tech-
nique measures phase as well as magnitude since the cross
spectrum contains phase information. Second, this mea-
surement procedure is not limited to any particular input,
such as sinusoids. In fact, the input signal may be random
noise, or whatever signals are normally processed by the
system being measured. For example, a telephone trans-
mission system might be tested while in use with the nor-
mal traffic providing the test sigrral.



spectrum that are required to define the transfer function
to a given degree of accuracy.

An Example
Fig. 4 is an example of the separation of causality and

relationship in a measurement. The system under test had
a second-order highly damped transfer function. The in-
put signal was Gaussian noise band-limited to the Nyquist
folding frequency (10 kHz in this case).

1r' for this measurement was about 0.8 out to the point

where the transmission attenuation was about 20 dB. Be-
yond this frequency the data had too small a value to
compute 7' with any accuracy and it fell off to zero. The
midband value of 0.8 for y'zindicates that there was un-
correlated noise added to the system at some point other
than the input. This could have been due either to real
noise or to nonlinearities.

The transfer function, on the other hand, is a smooth
well-defined function whose 3 dB and 90o phase points

are at the same frequency. This indicates a good measure-
ment of the relationship between input and output in
spite of a fairly high uncorrelated noise environment.

Fig. 5 points up even more clearly the difference be-
tween a simple cross spectrum measurement and a trans-
fer function measurement. Here the magnitude of the
cross spectrum G^ and the transfer function E are pic-
tured on the same dB scale. Twenty-five sample records
were averaged to determine system response, using a
white noise input. One standard deviation on the input
spectrum for this measurement is 2OVo, and since the
cross spectrum does not employ information about the
input its statistical certainty is poor. However, calculating
the transfer function using the input power spectrum
measured simultaneously with the cross spectrum reduces
the statistical variation and gives a result with a few
tenths of a dB of variation rather than 3 or 4 dB. In spite
of the fact that a flat noise source is used. measurement
of the transfer characteristics using a cross relationship
alone is both inefficient and inaccurate.

Figs. 4 and 5 also illuminate a number of advantages
of calculating the transfer function from the input spec-
trum and the cross spectrum. Clearly a good measure-
ment can be made in spite of system noise. Also a
measurement can be made using realistic test signals such
as band-limited random noise. The phase measurement
is unaffected by harmonic distortion and can be accu-
rately made over wide dynamic ranges between input and
output. The measurement can be made even more rapidly
when there is no contaminating noise present. Thus, digi-
tal techniques of Fourier analysis offer powerful methods

Fig.4. Transler lunction ol a second-order highly damped
sysfem measured by digital analyzer. Cohercnce tunc-
tion 'y2 : 0.8 indicates the presence ol uncorrelated
noise in the system (1 .0 would indicate no noise), but
transter tunction ls smooth and well defined, indicating a
good measurement in spite ol the noise.

Fig. 5. franstet function ol second-order highly damped
sysfem and cross powet specttum ol input and output
measurcd by digttal analyzer. Spectra of twenty-tive
sample records were averaged. Not only do the magni-
tudes ol E and d* ditfer, but atso the statistical uncer-
tainty in €^ is much grcater. fhis rs because the compu-
tation tor H takes into account the input power spectrum
G,,, whereas the computation tor G,, does not.

for transfer-function determination that are unavailable

with analog instruments.

Correlation Funclions

So far I have described measurements that produce
functions of frequency as their results. There are also
functions of time which can be used in some of the same
ways as spectra to clarify the nature of linear processes.
These are correlation functions. The crosscorrelation
function for two functions x(t) and y(t) is

Ryd,): l[{ o,,r(t - r)dt. (2r)



The autocorrelation function R** is the same function

with y(t) - x(t). Naturally, when implemented on a digi-

tal processor the integral is replaced by a sum.

The computation proceeds as follows. First the average

value of the sample-by-sample product of the two func-

tions is computed over some interval T. Then the func-

tions are displaced relative to each other and the process

is repeated for the new value of the displacement z. This

is repeated for all values of z and the results plotted as a

function of z.

The result of all this is a function R* which peaks

when the functions y and x displaced by ' match each

other well. The best use of the crosscorrelation function

is to determine the delay between y(t) and x(t). The auto-

correlation function, on the other hand, is used to deter-

mine periodicities in a single function, since it will peak

every time the displacement is equal to the period.

It is interesting to consider several alternatives to a

direct calculation of correlation functions. First of all, it

can be shown that the auto spectrum and the autocorre-

lation function are Fourier transforms of each other. The

same holds true for crosscorrelation and cross spectrum.l

G,,: F[Rr*] and R,, - F-'lG,rl (22)

Go,: F[Rr,] and Ry, - F-' lca,f Q3)
Thus it is possible to calculate a correlation function by

transforming a waveform to find the appropriate spec-

trum, complex conjugate multiplying the spectrum by

itself or another spectrum, and then taking the inverse

transform. While this may appear to be the long way

around, it actually requires fewer multiplications to find

a correlation function than calculating the average dis-
placed products directly. Certain precautions must be

observed because the discrete Fourier transform always

assumes the sampled function is periodic with period T.

However, it is possible to calculate an exact correlation

function 61 -+N/2 displacements (points) if 2N time
points are available.

The lower trace in Fig. 6 shows the results of a cross-

correlation and impulse-response measurement on a

damped second-order system with a white random noise

input.'z The measurement is the average of 25 sample
records, but it still shows considerable statistical varia-

tion. It is difficult to determine if the ripple in the wave-
form is due to external noise, normal statistical variation,

or the characteristics of the system being measured.

The upper waveform in Fig. 6 is the inverse Fourier

transform of the transfer function computed from G,*
and G*,. This result shows much less statistical variation
and is a more efficient way to compute the system impulse
response, although it still does not give i4formation about

Fig. 6. Crosscorrelation between white noise input and
the output ol a fourth-order linear systern has the shape
of the system impulse response. Lower trace is the cross-
coffelation tunction computed directly. Upper trace was
computed by inverse translorming the system translel
function, which was calculated by dividing the input-to-
output cross powet specttum by the input power spec-
trum. Both traces ate the average ol 25 measurements.
Upper trace is smoother as a result of taking into account
the actual input power spectrum.

the effect of uncorrelated noise. For this we still need the

coherence function. 6
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A Calibrated Gomputer-Based
Fourier Analyzer

This pushbutton-controlled digital measuring instrument per-
forms complex analytical operations on input srgna/s or time ser-
ies. As a bonus, the user gefs a general-purpose digital computer.

By Agoston Z. Kiss

ONs HrenrsEAT IN EVERY r/a 5Bggpp - 80 heartbeats

per minute: these are the time-domain and frequency-

domain descriptions of the same phenomenon. Neither

contains more information than the other but to difierent

people or to the same people in different circumstances

one description may have more meaning or clarity than

the other.
This duality between the time domain and the fre-

quency domain is the basis of many important theorems

and useful methods in signal and time-series analysis.

Autocorrelation and crosscorrelation, power spectral den-

sity, cross power spectra, impulse response and transfer

function, coherence, probability distribution and charac-

teristic functions, convolution and filtering-1hsss 21s

examples of such methods. Since the principal theoretical

bridge between the time domain and the frequency do-

main is the Fourier transform theorem. the methods of

signal analysis that are based on the time-frequency

duality are often called Fourier analysis.

Digital Fourier Analysis

Since 1965, the year of the Cooley-Tukey algorithml,

Fourier analysis has been done more and more by digital

techniques. The Cooley-Tukey algorithm, also called the

fast Fourier transform, reduces the lengthy and cumber-

some calculation of the Fourier coefficients by digital

computer to a manageable, relatively rapid procedure.

Computations that used to take hours can now be done

in seconds. As a result, Fourier analysis is now becoming

fashionable in many fields where it has not been used be-
fore because it took too long.

A version of the Cooley-Tukey algorithm is imple-

mented in the new HP Model 54504 Fourier Analyzer,

a calibrated, pushbutton-controlled instrument that can

perform almost any Fourier-transform-based or related

signal analysis (see Fig. 1). At the push of a button, the

analyzer becomes a power spectrum analyzer, or a cor-
relator, or an averager, or a digital filter, or any of a
number of other instruments. No knowledge ol computer
programming is required to operate if. However, it can

be converted into a general-purpose digital computer

simply by moving a front-panel switch.

Model 54504 Fourier Analyzer combines a small
general-purpose computer and some peripheral hardware

into a flexible, user-oriented general-purpose instrument.

An HP 2115A or 21168 computer with 8K memory is

interfaced with a keyboard (Fig. 2), a dual-channel

analog-to-digital converter (Fig. 3), a special display unit
(Fig. 4), a teleprinter, and a punched-tape photoreader.

An additional 8K memory can be installed to increase

both the internal range and the number of peripherals.

The analyzer has two basic modes of operation, i.e., as a

Fourier analyzer or as a general-purpose computer. fn

the analyzer mode, it is either under keyboard control or

under the remote control of another general-purpose

computer.
The basic operations the Model 54504 can perform

in the analyzer mode can be categorized as:
I data input/output
f transform related operations
I arithmeticoperations
I data manipulations
I writing and editing of analysis routines.
Specific mathematical functions under keyboard control

are:
I forward and inverse Fourier transform
I power spectrum
I cross power spectrum

1 0



I auto and crosscorrelation
I convolution
I histogram
I Hanning and other weighting functions
I real and complex multiplication and standard arith-

metic operations
I integration and differentiation
I ensemble averaging

These can be executed separately or combined into com-
plex routines.

Fig. 1. Model 5450A Fourier Analyzer is a tlexible, push-
button-contrclled, modular, digital instrument, useful for
analyzing wavelorms and time series rn a wide variety
ot sysfems and proces$es. /t uses a standard HP com-
putet tor memoty and computation, but requires no
knowledge of computet programming. When it isn't doing
Fourier analysis, the computet can be used separately.

I

EGryryffifl I ET
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Fig.2. All Fourier analyzer operations are keyboard con-
trolled. The principal operctions-Fourier transforms,
convolution, correlation, complex multiplication, coordi-
nate transtormations, and so on-can be called tor by
single keystrokes, or strung together using the program-
ming and editing teatures to lorm rcutines to be run
automatically later on. Typical routines can change the
analyzer into a spectrum analyzer, a correlator, an aver-
ager, and many other instruments.

Data Input/Output

There are 3K words available for data storage (8K

words in the 16K version of the analyzer). This storage
space can be filled up with data records; the shortest rec-
ord is 64 words long and the longest is lO24 words long
(4096 in the 16K version). Record lengths are push-

button selectable in powers of two between these limits.
The number of records which can be stored is the size of
the data storage divided by the record length. Conse-
quently, the 8K version can store 3 records of1024 points
each, or 6 records of 512 points each, and so on up to
48 records of 64 points each. These records are ad-
dressable as data block O. I.2. . .. in everv kevboard
command.

Data Input

Analog data records can be read in via the analog-to-
digital converter, which has two input channels with sep-
arate input attenuators. It can be switched to single-
channel mode when only channel A is operational, or to
dual-channel mode when channels A and B are both op-
erational. Channels A and B are sampled simultaneously,
then sequentially converted into digital yalues-shannel

1 1
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Fig. 3, Analog-to-digital convetter is the principal input
device lor analog signals. It can be opetated as a slng/e-
channel unit  or a dual-channel unit .  The maximum
sample rate lor single-channel operation is 20ps per data
point; the minimum tate is one sample in every live sec-
onds. Data can also be read into the analyzer via pe-
ripheral devices, such as a tape rcader ot a teleprinter.

A first - and stored in separate data blocks. The sample
rate can be varied from 20 ps per data point (50 ps for
dual-channel input) down to one sample in every five
seconds.

There are some obvious but important relations be-
tween sampling time At, record length T, number of
samples in a record (or data block size) N, frequency
resolution af and upper frequency limit f.,,:

T : N L t

Equation 1 says simply that a data record of length T
seconds has been sampled N times with At seconds be-
tween samples.

Equation 2 is sometimes called the Shannon or Nyquist
criterion of sampling, which states that to avoid loss of
information, the highest frequency in a signal must be
sampled at least twice per cycle.

Equation 3 really says that better frequency resolu-
tion requires a longer record. The analog equivalent of
this statement is the observation that narrower-band fil-
ters take a longer time to reach steady state conditions.

A-D Converter

The analog-to-digital converter is a 1O-bit ramp-type
device with a 100 MHz clock. Because of its high differ-
ential linearity (3% as opposed to 25-50% for a typical
successive-approximation-type A-D converter), the 60 dB
dynamic range of the 10-bit converter will be appreciably
improved, in some cases to as much as 90 dB, when any

Fig.4. Built-in display unit is the
principal analyzer output de-
vice when the recipient ol the
data is human. The digital dis-
play and annunciation indicate
the vertical scale tactor and the
type ot display. Data in the ana-
lyzer  a re  a lways  abso lu te ly
ca l ib ra ted .
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averaging is done. The Fourier transform is a weighted

average, of course. We have consistently observed dy-

namic ranges of 80 dB or more in computed transforms.

How differential linearity and averaging affect dynamic

range is quite a complex subject, and we hope to publish

a paper on it soon.

Once the keyboard command is given for analog input,

the actual record will be started by an internal or external

sync signal with positive or negative slope, as selected by

the user. After the last sample of the record has been

stored, the analyzer calibrates the data, taking the input-

attenuator setting into account, and establishes a scale

factor for the record, which will follow it through all

calculations. This absolutely calibrated input/output is

one of the most important basic features of the analyzer.

Data can also be introduced into the analyzer through

the numeric keys of the keyboard, through the teletype,

through the photoreader (if they are on a punched paper

tape), through the double binary I/O channels from an-

other computer, and from digital magnetic tape (16K

version only). The common feature of all the data input

modes is that they can be initiated by keyboard control

and that they establish calibrated data records in the

analyzer.

Data Output

The most often used data output device is the display

unit. Any stored data record can be displayed on the

CRT by keyboard command. Also, when the analyzer is

idle, it automatically reverts to a display mode, generally

displaying the data record which was the subject of some
I/O or analytical operation just before the idle period.

The display unit has many convenient features. It can

display a time record or a frequency spectrum. When a

spectrum is being displayed, its real part or imaginary
part - or its amplitude or phase - can be displayed as

a function of frequency, or the imaginary part can be

displayed as function of the real part (Nyquist plot). Fig.

5 illustrates the possibilities. In every mode of data dis-
play, the calibration factor is also displayed as a power

of 10, facilitating the readout of absolute values. Besides

showing calibration, display lights also show whether the
record displayed is in the time or frequency domain,

whether the amplitudes are linear or logarithmic, and
whether they are calculated in rectangular (real and imag-
inary) or polar (amplitude and phase) coordinates.

Other features of the display unit are: digital up or
down scaling in ten steps, linear or logarithmic horizontal

scale, markers on every 8 or 32 points, point display,
continuous curve display or bars drawn from display

points to the zero level horizontal axis. It also has a cali-

bration mode, and a plotter mode in which it can drive

an X-Y recorder to plot exactly what is being displayed

on the CRT,
Data records can also be printed out on the teletype,

punched out on paper tape either on the punch unit of

the teletype or on an optional fast punch, transferred on
the double binary I/O channels to another computer,
plotted on a digital plotter, or stored on digital magnetic

tape (the last two features on the 16K version only).

Common features of all data output modes are that they
can be initiated by keyboard command and that the data

are always calibrated.

A final remark about the calibrated input-output fea-

ture. The analyzer, being a binary device, carries the

calibration in radix two. In every output operation where

the recipient is non-human (binary l/O,paper tape, digi-

tal magnetic tape), the calibration remains in radix two

to retain maximum accuracy. However, in every human-

related output operation (display, data printout, plotting)

the calibration is changed to radix 10 for maximum user

convenience.

Transf orm-Related Operations

The most important transform-related operations are,

of course, the forward and inverse Fourier transforms.

The definitions of these operations are:

1 l!'-1 ', -

S,(m^l): +t x(nat) exp {-ifr nm} (4)
l \  

"_n 
lY

and

(5)

where N is the number of samples (points) in the time

record x(t) or frequency record S*(f).

Although the time function x(t) is always real, the

spectrum, S"(f), is generally complex. In a complex spec-

trum, every spectral value (except dc) has to be described

by two quantities, either amplitude and phase, or real
(cosine or in-phase) and imaginary (sine or quadrature)

components. The former is the polar-coordinate repre-

sentation and the latter is the rectangular-coordinate rep-

resentation. In the analyzer, all calculations are carried

out in rectangular coordinates, but the results can be con-

verted into polar coordinates by keyboard command.

Since the Fourier transform does not create new infor-

mation, the Fourier spectrum of a time record with N

independent data points will also contain exactly N inde-

1 3
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MODEL 54504 FOURIER ANALYZER
DISPLAYS THE FOURIER TRAI{SFORM

OF A PULSE
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Fig. 5. Ihe analyzer has a display mode to suit every need, and it changes lrom one to
anothet at the touch of a button or the tlick ol a switch. ln every case the readouts on
the display unit and the A-D convertet indicate scale tactors and type ol display.

pendent data points. But since every frequency point has
to be described by two independent data y4luss - except
dc, which has no phase, and the highest frequency, which
by definition has zero phase - the Fourier spectrum of
a time record with N points will contain N/2 frequency-
value pairs (for counting purposes dc and the highest fre-

quenby are counted as one frequency-value pair).
Equation 4 actually defines a spectrum for negative as

well as positive frequencies. However, the analyzer is
restricted to the analysis of physically realizable, and
therefore real, time functions only. The spectra of real
Fme functions are Hermitian (i.e., even real part and odd
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A Fourier Analvzer Makes Fundamental Measurements
The measurements a Fourier analyzer makes are useful
to  behav io ra l  sc ien t is ts ,  psychophys ic is ts ,  b iomed ica l
researchers, process control system designers, analyt ical
chemists, and oceanographers, and to people working in
vibrat ion analysis, structural mechanics, acoustics, geophys-
ics, control system design and analysis, component test ing,
system identi f icat ion, sonar, and many other f ields. The
reason a Fourier analyzer is so widely useful is that, l ike
a voltmeter, i t  makes fundamental measurements. For the
same reason, no f ini te l ist of appl icat ions can convey a true
picture of i ts capabil i t ies. Here are just a few examples of
appl icat ions.

Analyt ical chemists can use i t  to measure nuclear magnetic
resonance (NMR) spectra, and as an averager to improve
the sensit ivi ty of their spectrum measurements.

Structural designers, e.g. of airframes, can use i t  to deter-
mine the transfer function and vibrat ion modes of a struc-
ture, the spectra of vibrat ions induced at various points by
various inputs, and the degree of coherence between vibra-
t ions at dif ferent points.

Behavioral scientists can use i t  to determine the transfer
function of a driver, and the degree of coherence between
his responses and various input st imuli .

Brain researchers can use i t  to measure the spectra of brain

waves, and the degree of coherence between waves at dif-
ferent points in the brain.
Designers of process control systems and other systems-
power plants, servomechanisms, etc.-can use i t  to deter-
mine  t rans fer  func t ions ,  impu lse  responses ,  coherence
between signals, power spectra, and cross power spectra.

In appl icat ion after appl icat ion, the measurements are the
same-transfer function, coherence function, power spec-
lrum, cross power spectrum, and combinations of these
fundamental measurements. End uses of the data dif fer, of
course. To the designer of a structure or a control system,
it 's accurate information that he couldn't  have obtained
without the analyzer, and he uses i t  to optimize his design,
avoid overdesign, and optimize performance adjustments.
The physician analyzing an electromyogram (EMG) is look-
ing for evidence of muscle disease. What these and other
users and potential users of Fourier analyzers have in com-
mon is that they are working with time series-voltages,
vibrat ions, sound waveforms, or perhaps just a series of
data points obtained at regular intervals and punched on
paper tape. On such inputs the Fourier analyzer makes
measurements and computes functions that would be dif f i -
cult  to do by any other means. l t  does these things with the
convenience of keyboard control,  rapidly, and with great
f lexibi l i ty.

imaginary part), so the negative-frequency parts of the
spectra of real time functions contain no additional in-
formation. Partly to increase the effective transform speed
of the analyzer and partly to avoid the confusion that the
mentioning of the existence of negative frequencies gen-

erally creates, we used a version of the fast Fourier al-
gorithm that applies only to time signals that are real.

Like other versions of the fast Fourier algorithm, ours
is an 'in-place' algorithm. Intermediate and final results
of computations are stored in the same data block as the
original data.

Correlation and Convolution

Auto and crosscorrelation are well known and widely
used methods in signal analysis. They are used to improve
signal-to-noise ratio, to find hidden periodicities, and so
on. Convolution, on the other hand, is in most cases a
mean trick nature plays on us. When we use any measur-
ing equipment to measure an event, the result is never
the phenomenon we want to observe but its convolution
with the impulse response of the equipment used. Some-
times. however. even convolution can be useful. For

example, smoothing a record by taking a K-point running

average can be performed in the analyzer by convolving
the record in question with another record containing K
unit impulses.

Correlation and convolution are generally defined on
the time domain, although they do depend on the fre-
quency content of the functions in question. Since both
correlation and convolution involve an enormous num-
ber of multiplications and additions - N' of them to
fs sxssf - fo perform either of them within a reasonable
time requires special hardware. But according to the con-
volution theorem, convolution (correlation) in one do-
main is multiplication (conjugate complex multiplication)
in the other domain. Therefore convolution (correlation)

can be reduced to two Fourier transforms and one point-
by-point multiplication (conjugate complex multiplica-
tion) of the two records involved. If x(t) and y(t) are two
time functions and their respective spectra are S"(f) and
S,(f), the analyzer performs the following calculations:
for crosscorrelation,

x(t)*y(t)- F-'ls"(f). 5,,*(il1 (6)

and for convolution,

x(t)xy(t) - F" [5*(l) . 5,(l)] (7)

Here the superscript * stands for complex conjugate, the
r. between two time functions for convolution, the * for
crosscorrelation, and F-t for inverse Fourier transform.
These operations can be performed step by step on the
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analyzet, but for convenience the keyboard has a corre-
lation key and a convolution key.

Hanning

Physically realizable devices can act only on signals
which are limited in duration and in bandwidth. If infi-
nitely long signals or signals with infinite bandwidth are
passed through any physical device, they will be time and
frequency-band limited by the device itself.

The simplest kind of time-limiting is the application of
a square time window. If we have a function x(t) and we
take a T-second long record of it, say from t - 0 to
t - T, then we have really multiplied x(t) by a square
pulse T seconds long with unity amplitude (see Fig. 6).

What happens to the spectrum of this function? The
convolution theorem says that multiplication in one do-
main is convolution in the other domain. Since we multi-
plied x(t) by the window function V (/T), the spectrum
of the timelimited function x(t) . n (t/T) will be the con-
volution of the spectrum of the original function and the
spectrum of the time window. Let us say that the spec-
trum of x(t) is S,(f). The spectrum of l-l (t/T) is (Fig. 7)

sin'"Tf
sinc".Tf - ff, and the spectrum of x(t) . n (t/T)

is S*(f)xsinc".Tf. The maximum value of the sinc func-
tion is unity at f - 0, it has zero crossings atf - l/T,
2/T, .. . , and the amplitude of the sidelobes decreases
at 6 dB per octave. If S,(0 has spectral lines exactly at
f : 0, I/T,2/T,. . . , that is, if x(t) was periodic in the
time window a (t/T), then convolving S-(f) with sincnTf
will simply result in S.(f). But if x(t) was not periodic in
the time window, then the spectral lines of S"(f) and the
zero crossings of the window spectrum will not coincide
and the convolution process will smear each spectral line
of S,(f) all over the spectrum. Even if S.(f) contains one
spectral line only, the result will be a series of spectral
lines spaced l/T apaft and having an amplitude decay of
6 dB per octave. This phenomenon is often referred to
as the leakage effect.

Leakage can be avoided only by making sure that the
function x(t) is periodic in the time window. Obviously,
this condition can seldom be met. Therefore, in order
to reduce the effect of leakage, different window shap-
ing ideas have been proposed. The idea of the window
shaping is to make x(t) somehow 'quasi-periodic' in the
time window with the least possible loss of information.
Among these window-shaping methods the Hanning win-

dow has proved most popular. It is 
" *(t**r +)

window, where both the window and its derivative ap-

proach zero at the two ends of the record. Its effect on
the spectrum is that the main lobe of each line is widened
by an additional l/T, but the sidelobes decay by an
additionat 12 dB per octave.

Fig. 6. When a T-second record is taken of an analog
input, the elfect is to multiply the input by a square win-
dow tunction. fi the input isn't periodic with period T,
the spectral lines ot the input will not be lines but will
have the sin xlx shape shown in Fig.7. To reduce this
ettect, Model 54504 Fourier Analyzer has built-in Han-
n i ng w i ndow-shapi ng tu nctions.

Two other window-shaping methods are the Cheby-
shev window and the Parzen window. The Chebyshev
window achieves a faster sidelobe decay than the Han-
ning window but is much more cumbersome to imple-
ment. The triangular Paruen window is fairly easy to
implement but not as effective as the Hanning window.

In Model 5450A two different Hanning windows can
be applied by pushbutton command. The interval-cen-
tered Hanning window, HI, is used to reduce leakage as
described above. The origin-centered Hanning window,
HO, can be used to form a 3-point running average of
records with r/+, Vz, r/+ weighting.

Integration and Diflerentiation

There is a keyboard command to integrate any data
record between any two chosen data points or to differ-
entiate any chosen data record. The defining equations
for intesral and difierential are:

D 1 o : D p - 1  l D 6  , k : 0 r 1 , . . . , N - 1  ( 8 )

i

i ;  
Oo:  Dt  -  D t - ,  ,  k :0 , ,1 ,  .  .  .  N- l  (9 )

By definition, De-1 : 0.
The integral routine is especially useful for calculating

integral power spectra, cumulative probability distribu-
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Fig. 7. Spectral lines ot a sampled tunction will have this
sin xlx shape it the tunction isn't periodic in the recotd
length T. Hanning weighting doubles the width ot the
main peak, but causes latet peaks to tall ott at 18dB
per octave instead ol 6dB per octave.

tion functions or third-octave, half-octave, or full-octave

filters. The difterential routine can be used to calculate

higher moments of probability density functions by dif-

ferentiating their Fourier transforms (i.e. their character-

istic functions).

Arithmetic Operations

There are keyboard commands for the addition, sub-

traction, multiplication, and division of data records.

These operations are performed on a point by point basis.

Addition is especially useful for ensemble averaging of

data records either in the time domain or in the frequency

domain, thereby improving the statistics of the measure-

ment. There are separate commands for complex multi-
plication and conjugate complex multiplication of two

selected data records. Both multiplications result in real

multiplication if the records are in the time domain.

The division of a data record by another selected data

record is performed as real or complex division in the

time or frequency domain, respectively. In addition to

these data block operations, any selected data block can

be multiplied or divided by any positive or negative con-

stant whose magnitude is less than 32767.

Data Manipulations

Since there can always be more than one data record

stored in the analyzer,'Store] 'Load' and Interchange'
keyboard commands were established to effect data trans-
fers among them.

As I have mentioned, all transform-related and arith-
metic operations are performed in rectangular coordi-
nates. However, spectral results are often desired in polar
coordinates (amplitude and phase). There are keyboard
commands to change the coordinate system of any chosen
data record from rectangular to polar or from polar to

Fig. 8. An otten-used toutine is the power spectrum aveF
aging program. Atter t l ,e steps are entered into the
analyzer's memoty, the prcgtam can be listed on the
teleprintet. Etrcrs can be coilected by adding, deleting,
or moditying steps. Another keystroke makes the pro-
gram execute. Model 5450A will compute one 1024-point
spectral estimate (the three steps marked* ) in 2.4 sec-
onds or /ess.

rectangular. Further keyboard commands can change

linear amplitudes to logarithmic or logarithmic ampli-

tudes to linear. The execution of these commands ('Rec-

tangularl'Polarl'Logarithmic Amplitudel'Exponential
Amplitude') are based on a power-series technique in
which the coefficients are calculated by Chebyshev ex-
pansion of the function desired.

Writing and Editing Routines

The power of Model 54504 Fourier Analyzer is not
only in the easy access it offers to the most important
basic signal analytical operations, but also, and perhaps
even more so, in its capability of building automatic rou-
tines using these operations. Programming the analyzet
to carry out a sequence of computations actually trans-
forms it into a different measuring instrument - a spec-
trum analyzer, for example, or a signal averager, or a
correlator.

Keyboard commands can be assembled into routines
up to 100 steps long (200 steps in the 16K version). The
routines can incorporate labels, jump instructions, sub-
routines, and loops, thereby providing an extremely flex-
ible and easily learned high-level instruction set for
almost any type of signal analysis. The assembled rou-
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tines reside in the analyzer. They can be listed on the

teletype, punched out on paper tape, re-edited using 'De-

letel 'Replace] and 'fnsert' edit commands, and can be
run under keyboard control.

Here are some of the most often used routines.

Power Spectral Analysis. Ensemble averaging to improve
the signal-to-noise ratios of power spectral estimates can
be simply performed by:
1. reading in a time record

2. taking its Fourier transform

3. conjugate complex multiplying the spectrum by itself,
thereby creating a power spectral estimate

4. summing the power spectral estimate into a second
record

5. repeating operations I-4 any desired number of times
6. after summing a given number of power spectral esti-

mates, dividing the result by the number of estimates.
Fig. 8 illustrates the program, which computes

G,,(l): S.(l)'S,*(l) (10)

Cross Power Spectra. The cross power spectrum con-
tains the frequencies common to the individual spectra of
two signals. It is the Fourier-transform of the crosscor-
relation function. To create the ensemble average of cross
power spectral estimates, one can follow the instructions
for power spectral averaging, except in step 1 take two

simultaneous records, and in step 3 conjugate complex
multiply one spectrum by the other. The function com-
puted is

G*(f ) -_ s,u). s,*(f) (1  1 )

In Equations 10 and 11 G",(f) stands for power spectrum,
G""(f) for cross power spectrum, S"(f) and Sr(f) are the
Fourier spectra of functions x(t) and y(t) respectively,
the superscript * stands for complex conjugate, and the
upper bar for ensemble averaging.

Digital Filtering. Let us consider a filter as a black box
with one input and one output:

The black box can be characterized by its impulse re-
sponse, h(t) or its transfer function, H(f). They are Fourier-
transform pairs. The input function is x(t), and the output
is y(t). S.(f) and S"(f) are their respective Fourier spectra.

The filter equation simply states that the output spec-
trum is the product of the input spectrum and the trans-
fer function of the filter:

S,ff):S,ft) . Hft) (r2)

Filtering can be easily performed in the Model 5450A by
storing the filter transfer function in one of the data rec-

ords and block-multiplying the spectrum of the input

signal by it. Taking the inverse transform of the product

results in the output function, y(t).

Inverse Filtering or Deconvolution. Equation 12 can be
rewritten in the time domain using the convolution the-

orem (multiplication in one domain equals convolution

in the other domain):

y(t): x(t)x h(t) (1 3)

that is, the output of the black box is the convolution of
its impulse response and the input function. Now if this
black box happens to be some measuring equipment, it
is x(t) that we are interested in, not y(t). The inverse op-
eration of convolution is pretty difficult to produce, but
Equation 12 can be rewritten as:

(r4)

Since Sr(f) and H(f) are known, the division can be per-
formed point by point. Taking the inverse Fourier trans-
form of the quotient results in x(t).

Transfer Function and Coherence. A method based on
Equation 12 can be worked out to measure the transfer
functions of unknown black boxes and to find causal re-
lationships between inputs and outputs. This extremely
important and interesting subject is discussed by Peter
Roth elsewhere in this issue.

Measurement of Statistical Behavior. Random data can
be characterized by their statistics: probability density
functions, distribution functions, and the moments of thg
probability distribution. The analyzer can collect ampli-
tude histograms or, with an optional input box, time-
interval histograms. The histograms are really frequency
curves; the independent variable is amplitude or (time
interval) and the dependent variable is the frequency gf
occurence. Histograms can be easily normalized to givg
probability density functions and integrated to calculatg
distribution functions.

The Fourier transforms of distributions are called charn
acteristic functions; they are used mainly in theoreticaf
work in statistics. The differentials of the characteristig
functions can be used to calculate the moments and cenn
tral moments of the distributions.3

5,0:y#
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S P E C I F I C A T I O N S
HP Model 5450A
Fourier Analyzer

ANALOG INPUT
The Ana log- to -D ig i ta l  Conver te r  accepts  one or  two inputs .  ln  two-

channe l  opera t ion  bo th  inputs  a re  sampled  s imu l taneous ly .  Reso lu t ion

o l  the  ADC is  10  b i ts .
INPUT IMPEDANCE:  1  MO t17"  shunted  by  45  pF max.
SENSITIVITY:  30  pV rms (s ine  wave) .

CONVERSION GAIN (CHANNEL A) :
ACCURACY (as  a  func t ion  o f  f requency) :

-.2o/o 1-.1 x ' lo-ao/olHz.

TEMPERATURE STABI LITY: 0.005o/o / ' C.
L INEARITY:  ln tegra l ,  t0 .057o;  D i f te ren t ia l ,  t37o.
GAIN AND PHASE CHANNEL A TO B:

CONVERSION GAIN A/B:  - r0 .2o /o  - r4  x  10-1o /o /Hz.
TEMPERATURE STABIL ITY:  O.01% |  "C.
PHASE AND DELAY A TO B:  10 .2 ' ,  t5  ps .

SAMPLE RATE CONTROL:
MAXIMUM FREQUENCY/TIME BETWEEN SAMPLES MODE:
Max imum f requency  is  se lec tab le  f rom 0 .1  Hz to  25  kHz (0 .1  Hz to
10 kHz in  two-channe l  opera t ion) .

FREQUENCY RESoLUTIoN/TOTAL TIME MoDE:  Frequency  reso lu t ion

is  se lec tab le  f rom 0 .2  mHz to  100 Hz.

DISPLAY UNIT
Data  may ba  d isp layed on  the  I  x  10  cm osc i l loscope or  ou tpu t  to  a

p lo t te r  o r  remote  osc i l loscope in  the  fo l low ing  fo rms:

COMPUTATIONAL SPEED
The speeds shown are  based on  us ing  the  21168 D ig i ta l  Processor .

FOURIER TRANSFORM:
Block  S ize  64 :  52  ms
Bf ock Size ' l.024i 1.4 s

POWER SPECTRUM ENSEMBLE AVERAGE:
B lock  S ize  64 :  110 ms/Spect ra l  Es t imate
B lock  S ize  1024:2 .1  s /Spect ra l  Es t imate

CROSS POWER SPECTRUM ENSEMBLE AVERAGE:
Block Size 64: 2'10 ms/Spectral Estimate.
Block Size 1024: 4.4 s/SDactral Estimate.

DIGITAL ACCURACY AND RESOLUTION
Al l  ca lcu la t ions  us ing  f loa t ing  po in t  a r i thmet ic  on  a  b lock  bas is .  Data

over f low does  no t  occur .  Ampl i tude reso lu t ion  is  1  par t  in  16 ,000 wors t
case.

DATA MEMORY SIZEi 3072 words (8192 for a 16,384 word memory).
DATA BLOCK SIZE: Any power of 2 ltom 64 to 1024 (to 4096 with a

16,384 word memory).
DATA WORD SIZE:  t6  b i t  rea l  and 16  b i t  imag inary  o r .16  b i t  magn i tude

and 16  b i t  Dhase.
COMPUTATIONAL RANGE:  t150 decades.
TRANSFORM ACCURACY:0 .170 wors t  case er ro r  dur ing  the  fo rward  or

inverse  ca lcu la t ion .

SPECTRAL RESOLUTION
The e lement  o fspec t ra l  reso lu t ion  is  the  f requency  channg l  w id th ,  the

max imum f requency  d iv ided by  7e  the  da ta  b lock  s iza .
MAXIMUM FREQUENCY:  25  kHz s ing le  channe l ;  10  kHz dua l  channe l .
FREQUENCY CHANNEL WIDTH:  <3 .2% down to  (0 .27o o f  the  max i -

mum trequency (down to <0.057o fo. 16,384 word processor).
SPECTRAL RESOLUTION OF TWO EQUAL AMPLITUDE SINE WAVES:

l l  separa ted  by  3  f requency  channe l  w id ths ,  there  w i l l  be  a  nu l l  o f  a t
leas t  3  dB between them;  i f  separa ted  by  7  f requency  channe l  w id ths
the  re la t i ve  magn i tudes  w i l l  be  cor rec t  to  w i th in  0 . '170 .  The power
spectrum for two equal amplitude sine waves separated by 5 fre-
quency  channe ls  w i l l  have the  cor rec t  re la t i ve  magn i tude to  w i th in
0.1 0/o -

DYNAMIC RANGE:  4  decades over  :L150 decades.
ENVIRONMENTAL CONDITIONS:  0 'C to  55 'C us ing  21  168 D ig i ta l  Pro-

cessor  (10"C to  40"C us ing  21154 D ig i ta l  Processor ) .

PRICE:  Sys tems s ta r t  a t  approx imate ly  $50,000,  depend ing  upon cho ice
of  computer  and o ther  requ i red  op t ions .

MANUFACTURI i IG DIVISION:  HP Santa  C lara  D iv is ion
5301 Stevens Creek Boulevard
Santa Clara, California 95050

Y AXIS
Rea l  Par t  Ampl i tude
Rea l  Par t  Ampl i tude
lmag inary  Par t  Ampl i tude
Magn i tude (L inear  o r  Log)
Phase
lmag inary  Par t  Ampl i tude

x Axts
Time
Frequency  (L inear  o r  Log)
Frequency  (L inear  o r  Log)
Frequency  (L inear  o r  Log)
Frequency  (L inear  o r  Log)
Rea l  Par t  Ampl i tude

ANALOG DISPLAY ACCURACY:  - f  . l%.

TYPES OF DISPLAY:  Po in ts ,  bars ,  o r  con t inuous  ( in te rpo la t ion) .

AMPLITUDE SCALE:  Data  in  memory  is  au tomat ica l l y  sca led  to  g ive

a max imum on-screen ca l ib ra ted  d isp lay .  The sca le  tac to r  i s  g iven

in  vo l ts /d iv is ion ,  vo l ts2 /d iv is ion ,  o r  in  dB o f tse t .
L INEAR DISPLAY RANGE:  f4  d iv is ions  w i th  sca le  fac to r  rang ing
l r o m . l  x . l 0 _ r 5 0  t o  5  x . l 0 + r s 0  i n  s t e p s  o f  1 , 2 , 5  a n d  1 0 .
LOG DISPLAY RANGE:4  decades w i th  a  sca le  fac to r  rang ing  f rom
0 to  -998 dB.

T IME AND FREQUENCY SCALE:
L INEAR SWEEP LENGTH:  10 .  10 .24 .  o |12 .8  d iv is ions .
LOG HORIZONTAL:  0 .5  decade/d iv is ion .

ANALOG PLOTTER OUTPUT:
AMPLITUDE:  0 .5  V  per  osc i l loscope d isp lay  d iv is ion .
L INEARITY:  0 . lo l "  o l  fu l l  sca le .

BLOCK SIZES FOR TYPICAL MEASUREMENTS
The following ta'ble indicates some of the measurements made by the

54504 as well as the maximum block size available for these measure-
ments .

MEASUREMENT

BLOCK SIZE N
(Po in ts /  Ense mble)

8K MEMORY 16K MEMORY

Power  Spect ra l  Dens i ty -Ensemble  Average 1024 4096

Vol tage Spect rum -  Ensemble  Average 1024 4096

Cross  Power  Spect ra l  Dens i ty  -  Ensemble  Average 1024 2048

Trans ter  Func i ion 512 2048

Coherence Funct ion 512 1024

Autocor re la t ion  o f  N/2  Lags 1024 4096

Crosscorrelation of N/2 Lags 1024 4096

Crosscor re la t ion  o f  N, /2  Lags-  Ensemble  Averaqe 1024 2048

Autocor re la t ion  o I  N/2  Lags  -  Ensemble  Average 1024 2048

Power  Spect ra l  Dens i ty  o f  One Shot  Trans ien t 1024 4096

Voltage Spectrum of One Shot Transient 1024 4096
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Possibilities Unlimited
The analytical operations available in Model 54504

Fourier Analyzer can be combined in many, many ways,
and only the best known were mentioned here. But the
analyzet will cater to the most esoteric tastes, including,
for example, cepstrum, saphe cracking, and liftering.a
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