
' i i i '
. -? , . , *

,,**

HEWLETT- PAC IGRD JOIIRI\IAL
T€hnical Inlormalion from lhe Laboratories ot Hewlett-Packard Company

JUNE 1979 Volume 30 o Number 6

Contents:

A Business Computer for the 1980s, by George R. Clark The HP 300 looks like a free-
standing terminal, but it 's a complete, high-performance computer system.

The fntegrated Display System and Terminal Access Method, by Eric P.L. Ha and James
R. Groff The HP 300 handles up to 16 application terminals simultaneously. /ts own drs-
play can act like several mini-displays al once.

Reducing the Cost of Program Development, by Frederick W. Clegg lt's a comprler-
based systern, so run-time efficiency is high, but it has many of the conveniences of an inter-
preter-based syslem.

Managing Data: HP 300 Files and Data Bases, by Phittip N.Taytor, Alan T. Par6, and James
R. Groff Choose one of seven different file structures or the IMAGE data base manaqe-
ment system.

An Easy-to-Use Report Generation Language, by Tu-Ting Cheng and Wendy Peikes
Templates on the screen take the place of RPG coding sheets.

HP 300 Business BASIC, by May Y. Kovalick lt 's specially designed as a versatile buslness
ap p li cati ons I anguage.

f nnovative Package Design Enhances HP 300 Effectiveness, by David A. Horine Mono-
coque constructron is the starting point Even the shrpping contarner is novel.

This month's issue is devoted entirely to the HP 300 Computer. This compact, moderately
priced computer has generated more excitement within Hewlett-Packard than we've
seen for a long time. Designed for business data processing, it represents the state of
the art in both hardware and software and sets formidable new oerformance and conve-
nience standards lor computers in its class.

A single HP 300 wil l support up to sixteen terminals handling inventory control, accounts
receivable processing, and other business applications. Of course, l ike all computers, the
HP 300 has to be programmed to do these things, and since HP doesn't supply the necessary

business applications programs at this time, the first customers for the HP 300 are expected to be software
companies, original equipment manufacturers (OEMs), and sophisticated end users, who wil l use the advanced
software HP does supply to develop business programs for themselves and their customers.

There are so many technicalcontributions in the HP 300 that there isn't room to cover them all in one issue. For
that reason, we're devoting two consecutive issues to a single product for the first t ime ever. This month we
describe the HP 300 as the user sees i l, starting with an introductory overview (p. 3). This is followed by articles
on the keyboard and display (p. 6), what it 's l ike to develop programs on the HP 300 (p. 9), facil i t ies for storing and
retrieving data (p. 16), the two high-level programming languages now available, RPG (p.20) and EASIC
(p. 23), and the package design (p. 26). Next month we'l lgo inside and look at the design of the hardware and the
operating system.

This month's cover photo shows the HP 300 syslem unit with the three specially designed sil icon-on-sapphire
integrated circuits that are used in its processor section. Sil icon-on-sapphire technology is a major contributor to
the HP 300's remarkable combination of compactness and computing power.

-R. P. Dolan

Editor ia l Director , Howard L. Roberts . Managing Edi tor , Richard P. Dolan o Art Director , Photographer, Arvrd A. Danielson . l l lustrator , Susan
E.Wright . Administrat ive Services, Typography, Anne S. LoPrestr o European Product ion Manager, Dick Leeksma

In this Issue:

A Business Computer for the 1980s
A totally new bustness-oriented design based on HP's
silicon-on-sapphire integrated crrcuit technology, thrs new
system packs a vast amount of processing power into a
surprisingly small package.

by George R. Clark

EWLETT-PACKARD'S new HP 300 Computer, Fig.
1, is an advanced, office-oriented multi-user system
designed to simplify the tasks of developing and

running business application programs. The product of one

of the largest development programs ever undertaken by

Hewle t t -Packard , the HP 300 marks the beg inn ing o f a

major new computer fami ly in tended fo r bus iness da ta p ro-

cess ing app l ica t ions . Th is i ssue and nex t month 's i ssue o f

the Hewle t t -Packard Journa l w i l l rev iew the HP 300, beg in -

n ing in th is a r t i c le w i th a d iscuss ion o f the des ign cons ider -

a t ions and an overv iew o f cer ta in fea tures tha t d is t ingu ish
the t {P 300 f rom o ther computers .

Design Requirements
Today 's computer must above a l l be easy to use . Th is i s

obv ious ly a des i rab le charac ter is t i c fo r computers in a l l
app l i ca t ions , bu t i t i s espec ia l l y impor tan t in the bus iness
env i ronment . I f the computer i s to be e f fec t i ve in manag ing
the day-to-day problems of order entry. inventory control,
and accounts rece ivab le , peop le hav ing l im i ted techn ica l
ski l ls, such as clerks and secretaries, must feel comfortable
us ing i t . These persons must be ab le to run the app l ica t ion
programs and routinely access data bases in a natural man-
ner without having to remember complex procedures or
long command sequences . S imp ly , the computer must be

viewed as a fr iend, not an adversary.
The sys tem shou ld p rov ide qu ick response to inqu i r ies

from its users. I t should be possible for a salesperson to
respond to a cus tomer 's inqu i ry and ascer ta in the sched-
u led sh ipment da te o f an order wh i le the cus tomer wa i ts on
the phone. H igh sys tem per fo rmance and a power fu l
software architecture are required to support such transac-
t ions e f fec t i ve ly wh i le severa l o ther users a re updat ing da ta
bases , access ing f i les , wr i t ing repor ts , o r deve lop ing pro-
grams at the same t ime. To be weli-suited for the off ice
env i ronment , the sys tem shou ld consume min ima l f loor
space and require no major changes to off ice faci l i t ies for
ins ta l la t ion . Th is means tha t no spec ia l tempera ture and
humid i ty cont ro ls and no spec ia l power shou ld be requ i red .
The sys tem must be qu ie t , sa fe , and es the t ica l l y p leas ing .
There must be no radiated electromagnetic energy that
wou ld in te r fe re w i th o ther equ ipment in the v ic in i ty , and
s ta t i c d ischarges to the mach ine produced by wa lk ing on
carpets dur ing per iods o f low humid i ty must no t cause
mal func t ions .

As the needs of the customer grow and the use of the

computer increases, the system must be expandable to pro-

vide enhanced performance and new application capa-

b i l i t ies . I f a sa les manager buys a sys tem to hand le incoming

orders and later real izes the need to publ ish reports and

Fig.1. An HP 300 Computer Sys
tem inc lud ing the sys tem un i t
(center), a prtnter, two applicatron
terminals, and an additional disc
drive Up to 16 terminals, lwo
printers, and 260 megabytes of
disc slorage can be supported by
one system untt.

JUNE i 979 HEWLETT pACKABD LouRner 3

coordinate the orders with inventory control and the
shipping/receiving department, it shouldn't be necessary to
throw away the existing investment in hardware and data
base development. Rather, it must be possible to add the
necessary peripherals, applications programs, and memory
with minimal cost and system down-time.

With increasing dependence upon the system to manage
more and more work, reliability becomes critical. The re-
sponsibi l i t ies assigned to a business computer can increase
to such as extent that there really is no effective backup
procedure when a system failure occurs. For example, the
volume of bi l l ing notices issued by a lending inst i tut ion is
often so large that the job cannot be completed without
the computer's assistance. Yet, a delay in mail ing the bi l ls
can have devastating financial effects for the company.
Thus, the potential benefits of using a computer in the
business can easily be nullified by untimely failures and
costly repairs.

The total cost of owning the system must be low. This
requirement is really a result of proper achievement of the
other goals, but deserves mention separately. Ease of use at
the cost of undue complexity, rel iabi l i ty through the use of
special, costly hardware, quick repair via a force of on-site
maintenance personnel, expandability at the expense of
difficult reconfiguration procedures, low electromagnetic
radiat ion through exotic packaging techniques, perfor-
mance at the expense of power consumption-these design
philosophies, i f fol lowed, would drive up the total cost to
the customer and prevent the computer from achieving
widespread acceptance in the business market.

Such considerations formed the basis of the HP 300 de-
sign objectives, with the result that many departmental data
processing problems now may be solved in a manner never
before practical.

The HP 300 Approach
From the moment power is appl ied to the HP 300, i ts ease

of use is str iking. The computer comes up running and
ready to use with no complicated cold-load procedures.
The operator may imediately begin developirrg programs,
activating exist ing applications, accessing f i les, and so on.
Various questions the operator may have about commands,
procedures, or syntax may be answered through the on-line
reference "manual" cal led HnLp. A simple English question
l ike, "HOW DO I BUILD A FILE?" causes the system to respond
with the appropriate information-in this case, instruction
on use of the CREATE FILE command. The operator soon
notices that spelling errors are corrected and commands
may even be abbreviated. This al lows the operator to con-
centrate on being productive, rather than mentally battling
the computer.

The novel features of the integrated display system (lDS)
exempli fy the fr iendl iness and sophist icat ion of the HP 300
System. The display consists of several windows (indepen-
dent display areas) that may be used by the operating sys-
tem or an application program to display information from
several dif ferent sources at the same t ime. For example, an
inventory control program might use one window to dis-
play the parts l ist while another window gives access to
vendor information. Along the r ight side of the IDS are eight
pushbutton switches whose functions may be dynamical ly

4 Hewrefi-pacrARD JouRNAL JUNE 1 979

altered to suit the needs of the system and user. These
softkeys allow high-level responses from the operator by
providing a menu of options available at any time. This
eliminates the need for the user to understand and re-
member a multitude of commands to select various re-
sponses from the system. For example, an application pro-
gram for general inquiry concerning a group of customers
might allow the operator to examine credit, past orders, or
payment status by simply pressing one of the softkeys. The
functions of the eight keys are dynamically labeled in a
window along the right side of the screen.

During program development, the windows and softkeys
are used to display various aspects of the programming
environment and to accept directions from the programmer
concerning the editing of statements, correction of errors,
and so on. This approach can virtually eliminate the need
for program Iistings during the development process. In
addition, the concept of the language subsystem (see arti-
cle, page 9) makes it possible to manage the entire set of
files and software modules through a single, consistent user
interface. The HP 300 is actually easier to program than
many interactive interpreter-based machines, yet it pro-
vides the flexibil i ty and efficiency of a multi l ingual
compiler-based system.

Reliabil ity
The HP 300 has been designed with reliability as a major

requirement. This is evident from the fact that there is no
periodic maintence on the basic system except for an occa-
sional change of the fan filters. In the event that a failure
does occur, an extensive set of hardware dhd software tools
have been built in to assure quick and easyrepair. Each time
the system powers up, the processor runs a microcoded
self-test that includes an in-depth check of the processor
itself, main memory, and the inpuUoutput channel. During
the same time, the fixed system disc, the flexible disc, and
the IDS are performing their own self-tests, so that when the
system begins operation there is high probability that the
hardware and microcode for the system and its primary
peripherals are functioning properly. These self-tests may
also be invoked through switches located on the various
circuit boards just inside the rear door or through off-line
program control. The results of the tests may be viewed on a
bank of LEDs for quick interpretation of any failures that
occur,

Svstem verification bevond the self-test capabilitv mav be
accomplished with an exiensive set of diagnostics proviied
for the system and all its peripherals. These programs have
been structured so that unskilled users can run them by
following the instructions that appear on the IDS when the
stand-alone diagnostic/uti l i ty package is launched. The
tests are thorough yet fast, taking advantage of features such
as data loopback and remote invocation of extended self-
tests to yield a group of diagnostic tools that can be
routinely run by the owner to verify that the system is in
good working order. Each diagnostic provides a simple
go/no-go message to the operator, but can also output highly
structured failure information to assist the service engineer
in isolating system faults.

The HP 300 features error-correcting main memory,
which corrects all single-bit errors and detects all double-

bit errors without intervention by the user. Various other
errors are logged in a dedicated file on the system disc for
analysis by service personnel. In addit ion, a system trace
table maintained in main memory contains a list of the most
recent system events. This provides a history of activity just

before any failures that may occur, permitting the failure to
be characterized and reproduced. Even a list of the most
recent console commands is kept on a disc f i le. AII these
tools assure that any repair wi l l be fast and orderly with a
minimum of down-time.

Expansion
Essential ly al l the standard and optional peripherals for

the HP 300 use a common hardware interface. This al lows
discs and printers to be added to the minimum system
without the need to add special interface boards. In most
cases the owner can purchase these peripherals and add
them to the exist ing system without lengthy instal lat ion
procedures or a service cal l from an HP representive. New
devices are configured into the operating software using the
SYSTEM BUILD uti l i ty, which leads the user step-by-step
through the configuration process, taking ful l advantage of
the IDS and its softkeys. Any errors that the operator makes
in defining device type or address are automatical ly de-
tected through a self-identification feature that all HP 300
peripherals contain.

The basic HP 300 System includes 256 ki lobytes of error-
correcting semiconductor main memory, the integrated
display system, a 12-megabyte f ixed disc, a one-megabyte
flexible disc, and a general I /O channel, al l in a self-
contained package only sl ightly larger than a teletypewrit-
er. Standard software includes the AMIGO/300 virtual-
memory operating system, the on-l ine reference manual
HELP, a text editor called typlsT, a SORT/MERGE utility for
f i le manipulat ions, the interactive system configurator
SYSTEM BUILD, and the s tand-a lone d iagnos t ic /u t i l i t y
package.

Available languages include HP Business BASIC and
RPG-II for report generation. In addit ion to the AMIGO/300
fi le system, which provides access to f i les and devices,
IMAGE/300 may be used for efficient management of data
bases without the need for special appl icat ion programs.
The system can grow to include up to 16 applications ter-
minals, two external printers, 260 megabytes of disc stor-
age, and one megabyte of main memory.

SOS Technology
Key to achieving the capabil i t ies of the HP 300 in such a

small package is the use of si l icon-on-sapphire (SOS) inte-
grated circuit technology, with i ts high-speed, low-power
characterist ics and exceptional ly high logic densit ies. This
permits more functions to be placed on each chip, thereby
optimizing performance. For example, the CPU (central
processing unit) is based on a stack architecture, with the
stack residing in main memory. Several of the registers that
are used to manage the stack are kept in hardware (on the
chips), reducing the number of memory accesses required
for execution of the various stack-oriented operations.
Without SOS, this would not have been possible, and the
performance would have been lower. Future generations of
the HP 300 wil l take advantage of the natural evolut ion of

this new technology to yield even more computing power
and fr iendl iness for the business data processing needs of
the 1980s.

Acknowledgments
By most means of reckoning, the HP 300 represents the

most massive product development effort in Hewlett-
Packard history. A number of dif ferent managers have
played major roles in leading the sizable teams that made
the product a reality.

Division general managers whose vision, understanding,
and support were instrumental in the HP 300's develop-
ment have included Dick Anderson, Paul Ely, and Ed
McCracken.

Jim Cockrum, Dave Crockett, Bi l l Gimple, Dick Hackborn,
Larry Lopp, and Tom Whitney have al l provided vital lead-
ership in capacit ies as lab managers through the progres-
sive phases of the program. Dave Crockett has provided
imag ina t ive leadersh ip as program manager and Bob
Kadarauch and Jim Peachey have headed the marketing and
manufacturing wings, respectively, of the HP 300 program
since i t assumed its present organizational structure in June
of rgzo.

Section managers have borne a major share of the leader-
ship, planning, and organizational work that has helped
bring the HP 300 from conception to the marketplace. In the
HP 300 lab. this cast has included at various t imes Fred
Clegg, Jim Cockrum, Bi l l Gimple, lake Jacobs, Bob lones,
Jim McCullough, Peter Rosenbladt, Howard Smith, John
Stedman, Phi l Taylor, and the author. Bob fones has pro-
vided for consistently good support as head of engineering
services.

The l ists of project managers, project leaders, and indi-
vidual engineers who contributed to the HP 300 are far too
Iengthy for inclusion here but are largely covered in the
acknowledgments elsewhere in this and next month's is-
sue. Every past and present team member can rightfully be
proud of his or her contr ibution to the overal l achievement.

George R. Clark
Born in Florida, George Clark grew up
on a farm rn Indiana and received his
BSEE and MSEE degrees from Purdue
University in 1968 and 1973. Between
degrees he picked up three years ex-
perience as an Instrumentatron en-
gineer. He joined HP's Microwave Divi-
sion in 1973 as an electronic tool ing
engineer, developing in-house test
equipment for microwave semiconduc-
tors. Since 1975, he's been with the HP
Computer Systems Group, involved in
the design of hardware for l/O and data
communications applications on the HP
300. George and his wife live in

Sunnyvale and enjoy outdoor activities such as backpacking and
ski ino.

JUNE 1979 HEWLETT-pAcKARD JoURNAL 5

The Integrated Display System and
Terminal Access Method
by Eric P. L. Ha and James R. Groff

HE HP 300 COMPUTER SYSTEM is designed for
on- l ine, muhi terrn inal appl icat ions processing. Any
combinat ion of up to 16 HP 264X and HP 262"1 Ter-

mina ls can be inc luded in an HP 300 sys tem. These te r -
mina ls a re ded ica ted to app l i ca t ions process ing . They
cannot control system operations, and they operate total ly
under the cont ro l o f HP 300 app l ica t ion programs.

The application programs control the application termi-
nals via the terminal access method soft lrare, a set of cal l-
able HP 300 system services that enable the application
programs to perform inpuUoutput to terminals as if they were

done to sequential f i les. These system services also provide
simpli f ied program control of addit ional terminal features
such as block-mode input, display enhancements, cursot
manipulat ions, and peripheral devices such as tape cas-
settes and printers.

Integrated Display System
The HP 300 system is control led from the integrated

display system (lDS) that forms the upper part of the system
uni t . The IDS is espec ia l l y des igned to p rov ide a h igh ly
interactive, easy-to-use environment for the HP 300 user. I ts
advanced display and edit ing functions and pushbutton-
oriented operation give the user direct, personal control
over al l aspects ofFIP 300 operation. The IDS also serves as a
programming stat ion for developing HP 300 application
software. Application programs can also use i t as an appli-
cation terminal.

The IDS keyboard , F ig . 1 , inc ludes a main typewr i te r key
group, a numeric keypad, and separate control key clusters
fo r ed i t ing and d isp lay cont ro l . The screen d isp lays 1920
characters in a 24-row-by-80-column format. A ful l 128-
character upper/ lower-case character set is standard, and
there are optional character sets to display international
and mathemat ica l symbo ls , la rge charac ters , and l ine-

drawn forms. For formatted screen displays, the IDS in-
c ludes d isp lay enhancements fo r b l ink i r rg , ha l f -b r igh t , un-
derl ined, and inverse video fblack-on-white) f ields. These
can be combined with special IDS format modes for forms-
or ien ted screen process ing .

In addit ion to these basic features (which i t shares with
the HP 300 app l ica t ion te rmina ls) , the IDS incorpora tes a
set of advanced display features that offer signif icant new
disp lay capab i l i t y . Through the IDS windowing fea ture , the
display screen can be divided into mult iple sections (cal led
windows) for greater display f lexibi l i ty. Using several win-
dows, the IDS can simultaneously display several dif ferent
kinds of information on a single screen. Or, windows can be
used to perform several functions at once on the IDS, with
each function handled in i ts own separate window.

Eight softkeys bordering the r ight side of the IDS screen
provide a pushbutton choice capabil i ty for the IDS user.
The softkeys are used in a variety of ways to represent
alternative actions or special functions that can be invoked
a l l h e p r e s s o f a b u t t o n .

The special features of the IDS are complemented by a set
of terminal access method system services that further en-
hance the raw capabil i t ies of the hardware. These system
services are avai lable to both HP 300 svstem software and
app l ica t ion programs.

Softkeys
The IDS softkeys can be used to provide a pushbutton

choice capabil i ty for the user. Each softkey can be individu-

al ly label led on the adiacent screen area with up to three

l ines o f labe l in fo rmat ion . The labe ls can be changed
dynamical ly under program control to constantly indicate
the function each key performs. The softkey label window

can be made as wide as necessary to accommodate lengthy

labe ls .

#;]

_?-..,

6 rrwLrrr pACKARD JouRNAL f,.1Ay 19zg

Fig. 1. Ihe HP 300 keyboard

Fig.2. Eight keys at the right side of the HP 300's integrated
disptay system (lDS) can be assigned functions dynamically
by applrcation programs. The functtons are displayed in a
window next to these softkeys.

Softkeys can be used for select ing one of several choices,

as in Fig. 2, or they may al low mult iple responses. In the

latter case, the keys are set into a nonterminating mode that

al lows many of them to be pressed in response to a single

input request. The application program can then determine

which keys were pressed, and in what order' Softkeys oper-

ate total ly under control of the application program, which

cal ls system services to label them and accept softkey input.

Windows
HP 300 applications programs can use the IDS window-

ing capabil i ty to present information from many dif ferent

sources in a straightforward way on the IDS screen. This is a

frequent requirement in complex inquiry appl icat ions,
s u c h a s t h e o n e i l l u s t r a t e d i n F i g . 3 . I n t h i s e x a m p l e , a

single-l ine window at the top of the screen identi f ies the

displayed data as an aged accounts receivable report. The

body of the report occupies the large display area in the

center of the screen, and summary totals are held in a third

window at the bottom. Other examples of windowing can

be found in other i l lustrat ions in this art icle.

Windows are visual ly indicated by dotted-l ine borders on

the IDS screen. These are automatical ly generated by the

IDS between character posit ions and do not reduce the

number of avai lable display posit ions. Each window is in-

dependently control led, and functions l ike a mini-display

screen, with i ts own input capabil i t ies. This al lows even

complex, dynamical ly changing displays to be constructed,

Fig. 3. fhe /DS screen can be divided into independent win-

dows, each of which acts like a separate display Wrndows are

indicated bv dotted-line borders on the screen

as i l lus t ra ted in F ig .4 .
In Fig. a, the IDS is used as a dispatcher's screen in a

shipping/receiving department. As trucks come and go at

the various docks, clerks enter and retr ieve data at HP 300

terminals located there. The display on the IDS constantly

shows the status of each dock in the window on the left ,

whi le an inquiry and scheduling function is performed on

the r ight side of the screen.
Up to 32 windows can be created in the IDS at any one

time. Each window is either open (displayed) or closed (not

displayed), with the restr ict ion that concurrently open

windows may not overlap. Output is permitted to both open

and closed windows. For example, a new display can be

readied in a closed window while wait ing for a user re-

sponse to the current display. Al l windowing functions-

including sett ing window boundaries, creating, destroy-
ing, opening and closing windows, and input and output to

windows-are under the control of the application pro-

gram, which cal ls system services to manipulate the IDS.

The total amount of data contained in windows in the IDS

may exceed the actual display memory size. When data is

being output to windows, i t is backed up in the HP 300

system by the terminal access method software. The IDS

gives priori ty for the use of display memory to windows

that are currently open. When a window is changed from a

closed to an open state, i ts data wil l be replenished from the

system if i t has been discarded to make room for other open

windows.

Viewing Data Fi les
Another maior IDS feature is the abi l i ty to view HP 300

data f i les through IDS windows. Relat ive and keyed se-

quential f i les with type DOUBLE keys can be direct ly at-

tached to a window, with the records of the f i le displayed in

consecutive rows of the window. The window thus be-

comes an actual window into the f i le, displaying data

exactly as i t appears there (see Fig. 5).

Scrol l ing
Files that are too long to f i t in an IDS window can be

viewed by vert ical ly scrol l ing them past the window. Using

keys on the IDS keyboard, the user can move the window up

and down over the attached data f i le a l ine at a t ime, bring-

ing into view records above or below the displayed section

of the f i le. Other keys move the window forward and back-

ward a page at a t ime, or direct ly to the beginning or end of

the f i le.
Fi le viewing and vert ical scrol l ing al low even lengthy

Fig.4. Windows in a real-ttme application

JUNE 1979 HEwLETT-PAcKARD ..touRul 7

Data File

I v"rti""r

J
scroll ins

Relative Record

V

Invis ib le
Parts ot
Becords

Horizontal
Scrol l ing

+ Window

Record Length +

Fig, 5. Flles can be attached to windows so that data can be
displayed exactly as it appears in a file. Each window may be
scrolled independently through its attached file, up or down,
Ieft or right.

files or reports to be viewed directly at the IDS. They can
also be combined with more extensive application pro-
gramming for sophist icated inquiry appl icat ions l ike the
one shown in Fig. 6. In this example, a customer file is
attached to the upper window for viewing. To see more
detailed information on a customer, the user can scroll
that customer into the inverse-video row and select the
appropriate softkey, result ing in the display in the lower
half of the screen.

Horizontal scrol l ing is used to view f i les that are wider
than an IDS window. Using keys on the IDS keyboard, the
user can move a window left and r ight through an attached
fi le to direct ly view records up to 160 characters long. As
Fig. 7 shows, horizontal scrol l ing is useful for presenting
more information than a single screen can hold, or for
previewing printed reports.

Horizontal and vert ical scrol l ing are both avai lable
whenever a f i le is attached to an IDS window by an applica-
t ion program. The program has complete control over at-
taching f i les, enhancing window rows, select ing windows
for scrol l ing, and so on.

Automatic File Update
Files can also be attached to windows in an automatic

update mode that permits not only direct viewing, but di-
rect modif icat ion of the data in the f i le. In this mode. the

Fig. 6. in this customet record application, the user can
scroll the customer of interest into the inverse-video row and
press lhe appropriate softkey to see detailed information
on that customer displaved in the lower window.

8 rEwrerr,pecxARD JouRNAL JUNE 1 979

Fig.7, Horizontal scrolling rs usefu/ for presenting more in-
formation than a single screen can hold, or for previewing
reports to be printed.

user can respond to input requests from the application
program by scrol l ing the f i le past the screen, moving the
cursor about, and direct ly modifying the displayed data
with the IDS edit ing keys. Terminal access method au-
tomatical ly updates the attached data f i le, record by record,
as the screen image is changed. The application program is
also informed of the identi ty and contents of each record as
it is modif ied.

Automatic f i le update provides a natural edit ing capabil-
i ty that is especial ly useful in text processing applications,
because i t assures that the screen image always exactly
matches the data in the attached f i le. To prevent unau-
thorized f i le modif icat ions, automatic f i le update must be
explici ty invoked by the application program.

Sharing The IDS
The attention feature of the IDS is implemented by a

special set of terminal access method system services that
are avai lable only to the HP 300 system software. This
feature is useful for responding to special requests that
come in the form of interruptions to normal processing. An
application running on the IDS or a long-running command
can be interrupted at any time simply by pressing the AT-
TENTION key on the IDS keyboard. This key returns IDS
control to the operating system, making i t possible to enter
commands, start new programs, or use the IDS for another
application as required. The attention faci l i ty can be in-
voked repeatedly, al lowing interruptions to interruptions,
as shown in Fig. B.

When an application or command is interrupted with the
ATTENTION key, i t continues to execute so long as i t does
not attempt to use the IDS for input or output (that is, the
ATTENTION key only takes away IDS "ownership"; i t does
not automatical ly suspend execution). This al lows several
dif ferent commands or jobs to execute in paral lel. Later, the
IDS can be reconnected to the interrupted command or job
with no loss of data.

The attention feature can also be used to share the IDS
among several dif ferent jobs that use i t infrequently. This is
especial ly useful in appl icat ions that require supervisor
intervention at the IDS only in exceptional circumstances
or for a short startup dialogue. When the IDS is being used
and another job requests i t , the system software l ights the
message l ight on the IDS keyboard to inform the user. The
user can interrupt current processing (using the ATTEN-
TION key) to determine which job is requesting the IDS, and
then decide to communicate with that iob or resume the

z '

.il
IOS Screen

Ordinary
Processing
al the lDS...

ls Interrupted to
Make an Inquiry
on Request from

Management...

Which ls Again
Interrupted to
Run a Special

Repori...

The Inquiry ls
lmmedialely
Resumed,

and when ll ls
Completed...

Ordinary
Processing

Resumes where
It Left oft.

Fig.8. Ihe arru (attention) key on the IDS returns IDS control
to the operating systern, making ll possib/e to enter com-
mands, start new programs, or use the IDS f or another applica-
tion.

prior work. The HP 300 automatically manages contention
among jobs for the IDS and assures that no data is lost in
shifting from one job to another.

Acknowledgments
We wish to express our appreciation to Al Knoll's project

team that developed the IDS: Al, Norm Marschke, Hal
Sampson and Bernard Stewart designed the hardware;
David Delano, Tom Gilbert and Wing Chan wrote the
firmware; and Nellie Monsees did the prototype assembly.
Development of the terminal access method software bene-
fited tremendously from the participation of Bill Parrish
and Mike Ard; Mike also contributed significantly to the
development of the IDS firmware.

Nowait Input/Output
Input/output-intensive applications can use the "l/O without wait"

feature to overlap l/O and processing for increased performance.
Using nowait l/O, a program can request an l/O operation (e.9., input
from an application terminal) and then proceed with other processing
while the l/O operation completes (e.9., while the user types the
reply). Later, if the program comes to an explicit wArr statement
before the l/O completes, it will wait for the l/O to complete before
proceedrng further.

Nowait l/O techniques are especially useful for multiterminal appli-
cations. Nowait l/O can also be selectively used in combination with
other techniques to optimize time-critical portions of an application.

James R. Groff
Formerly a commercial applications
programmer/analyst, Jim Groff joined
HP ar,d the HP 300 marketing group in
1976, and is now applications man-
ager. A 1974 graduate of Mas-
sachusetts lnstitute of Technology with
a BS degree in mathematics, he holds
an MBA degree from Harvard Univer-
sity, received in 1976. Born in Palmyra,
Pennsylvania, Jim is married and lives
in San Jose, California. He's active in his
church and enjoys reading, classical
music, and travel l ing.

Eric P.L. Ha
Eric Ha develooed the terminal access
method software {or the HP 300. Now a
proiect manager at HP's General Sys-
tems Division, he's also done micro-
programming for HP 21 MX Computers,
and before coming to HP in 1972, die-
veloped software lor computer
graphics and data communications.
Born ln Hong Kong, he received his
BSEE degree in 1962 from the Univer-
sity of California at Berkeley and his
MSEE degree in 1965 from the Univer-
sity of Michigan at Ann Arbor. He's mar-

. ried, has two children, and enjoys clas-
sical music, reading, and swimming. Eric and family l ive in Cupert ino,
Cali fornia.

ment is done in an environment characterized by a greater
or lesser degree of dialog between the programmer and the
computer through an on-l ine terminal. To the user of some
of today's more pleasant program development faci l i t ies,
the computer appears to understand the language being

Reducing the Cost of Program
Development
by Frederick W. Clegg

I N TYPICAL SCENARIOS of twenty years ago, virtually

I all production program development was done using
I unit record equipment to prepare a source tape or card
deck that was then submitted for processing with a batch
of other jobs. Today, by contrast, most program develop-

JUNE 1 979 HEWLETT-pAcKARo .touRlrel 9

used; a number of currently avai lable implementations of
BASIC and APL, for instance, convey this impression quite
thoroughly. Of course, virtual ly no machines direct ly
understand BASIC, APL, or any other high-level pro-
gramming language. Almost invariably, the description of
some sequence of computing operations writ ten by a
programmer to tell a computer how to perform some de-
sired task is translated into one or more intermediate
representations before the computer can carry out the pro-
grammer's instruct ions. The translat ion is done primari ly
to make the most eff icient use of both the computer's
storage capacity and i ts processing capabil i t ies. However,
the gains in eff iciency do not come free. The translat ion
inevitably consumes some of the computer's resources.
More important, a significant toll is often extracted in
terms of the t ime spent and the distract ions endured by
the programmer.

To gain a ful ler understanding of the price associated
with using translat ions and intermediate representations to
achieve greater program eff iciency, Iet us consider brief ly a
typical program development scenario, as summarized in
Fig. 1. Once a programmer has completed the writ ing of a
program or a program module (i .e., having writ ten the
source code, be i t on a coding form or the back of an en-
velope), the next task is to get this source code into the
computer. With most modern systems, this is done through
the use of an edit ing program-EDlT/3000 being a good
example. The programmer converses with this editor typi-
cal ly through an on-l ine terminal such as an HP 2645. The
editor al lows source text typed by the programmer to be
stored in magnetic disc and/or tape f i les and permits conve-
nient correction of typing and logic errors. To get even this
far, the programmer needs to know not only the language in
which the source program has been writ ten, but also how to
access the editor and at least a subset of the command
language used to invoke the various functions of the editor.

fust gett ing this far often takes even an experienced pro-

Fig. 1. A typical program development scenario

Fig. 2. HP 300 program development is simplified by the
I an gu ag e subsystem corrce pt.

grammer several ful l days when confronted with an un-
familiar computer for the first time.

Once the source code for a program has been entered into

one or more f i les (cal led, appropriately, source f i les) on the

computer, the f irst translat ion to an intermediate represen-

tat ion is undertaken. This translat ion is accomplished by a
program usually cal led a compiler, which reads the source

code f i le(s) and produces an output in a form similar to the
machine code the computer can direct ly execute. Compiler

output is usually modular as defined by the boundaries of
various program units such as procedures, subroutines,
code segments, or whatever. These output modules typi-
cal ly contain references among themselves and to various

capabil i t ies in the computer's operating system software.

Such references, more often than not, are not resolved by

the compiler, but rather after compilat ion is complete are
reso lved by some separa te p rogram ca l led a l inkage

editor or (as is the case on the HP 3000) a segmenter. The

output of this last program might best be characterized as an

almost-ready-to-run version of the user's program. Even at

this point, however, some addit ional services such as f inal
l inking, loading into memory, and the l ike are commonly
required to bring the user's program into control of the
computer.

These various translat ion steps and associated inter-

mediate forms permit more eff icient and f lexible use of

computer resources by the f inal running version of the
program than would otherwise be possible. The price paid

for this eff iciency is imposed upon the programmer and/or

the company paying the programmer's salary. The pro-
grammer needs to know not just the programming language

in which the original program is writ ten, but also typical ly

1 0 rEwrErr-pecKABD JoURNAL JUNE 1 979

three to six total ly dif ferent other languages-the command

languages required to operate the editor, compiler, seg-

menter, loader, and so on. Indeed, i t is the learning of these

minor detai ls that usually consti tutes the largest hurdle to

be overcome by a person learning to use a new computer.

The software designers of the HP 300 bel ieve that the

need for familiarity with the numerous translation steps

a n d i n t e r m e d i a t e r e p r e s e n t a t i o n s r e q u i r e d t o g e t a

production-level program running on a typical computer is

a maior contributing factor in the oft-bemoaned high cost of

software development in today's computing industry. This

concern led us to depart from tradit ion in signif icant ways

and to conceive for the HP 300 a highly integrated program

development environment that dif fers in a number of

dramatic ways from the typical scenario painted above.

HP 300 Language Subsystem Concept
From a very early point in the design cycle ofthe HP 300,

i t was decided that the application programmer should
perceive a single, integrated environment throughout the
program development cycle. That is, the programmer

should not be required to invoke an editor, work on the

source program, exit the editor, invoke a compiler, do the

compilat ion, exit the compiler, invoke the segmenter, and

so on. Instead, we wanted the HP 300 programmer to be able

to complete al l phases of software development, from init ial
source entry to completion of f inal test ing, from the same
place in the system. Now, this goal is rather easi ly achieved

through the use of a ful ly interpretive language processing

system, such as the versions of BASIC found on numerous
computer systems (and even the HP 3000's BASIC interpre-
ter). I t is characterist ic of such interpretive systems, how-

ever, that they consume considerably more storage space
and execute much more slowly than comparable programs

that have been subiected to the several translat ion phases

sketched above. Primari ly in the interest of run-t ime per-
formance, i t was decided that al l of the HP 300's program

languages would be supported by compilers. This decision
notwithstanding, the goal of a highly integrated, convenient
program development environment was not to be compro-
mised. In short, then, our obiective was to obtain the execu-

t ion-t ime performance characterist ics of compiler-based
systems and at the same t ime to provide the convenience

and productivi ty- im.proving features found heretofore only
in interpreter-based program development systems.

To obtain the performance, power, and f lexibi l i ty inher-

ent in compiler-based program development systems, most

or al l of the system programs discussed in our earl ier
scenario (i .e., editor, compiler, segmenter, etc.) play essen-
t ial roles. Indeed, each programming language subsystem
on the HP 300 incorporates exactly such components. Our
goal, however, was to make knowledge of how to get to and
operate each of these components-indeed, knowledge of
their very presence-unnecessary for the development of
programs on the HP 300. Our implementation to achieve
this goal is shown symbolical ly in Fig. 2. A central role is
played by a component cal led a language monitor. This is

the central, supervisory program in a language subsystem.
It is analogous to an automatic switchboard that determines
when the programmer is ready for the services of an editor,
compiler, segmenter, or the l ike, and then automatical ly

invokes the services of that component, without expl ici t

direct ion from the user to do so.

Closely related to the language monitor is a second key

concept in each HP 300 programming language subsystem:

the program workspace. Simply defined, a workspace is a

col lect ion of al l f i les related to the development of a given

program. Instead of keeping separate, expl ici t track of al l

the source, relocatable, and other f i les associated with a

program, the HP 300 programmer needs to remember only a

single program name.
The detai led organization of an HP 300 program work-

space is shown in Fig. 3. The root f i le serves as a directory to

the rest of the workspace. The prolog f i le contains paramet-

r ic information such as IDS (integrated display system) tab

stops, parameters (e.g., l ine number increments) used for

edit ing, f i le equations to be used at execution, and the l ike.

The source text entered by the user resides in one or more

source module f i les. Init ial ly, a workspace always has a

source module named MAIN, and other modules may be

created and given arbitrary names by the user'

The compiler output f i les (header f i le and relocatable f i le)

and the debug f i le are al l wri t ten to by the compiler. Of

part icular interest is the debug f i le, which permits ful ly

symbolic debugging when a program malfunctions. To in-

spect the value of a variable cal led Rate immediately before

execution of statement 230 in a BASIC program, for in-

stance, a programmer needs no information whatsoever

about the numerical memory addresses occupied by the

object code corresponding to source statement 230 or the

address associated with the data i tem Rate. The programmer

need only tel l the symbolic debug faci l i ty (in the BASIC

language subsystem in this case), BREAK AT 2s0, and then,

when the result ing breakpoint is encountered, PRINT Rate.

The segment f i le is produced by the HP 300 segmenter as

a result of processing the header and relocatable f i les dur-

ing program preparation. At the same t ime, the segmenter

updates certain information in the debug f i le to account for

intersegment references.
After successful program preparation, the segment f i le is

read by the l inker, which resolves references by the user's
program to services in the AMIGO/300 operating system

and l ibraries, and produces the contents of the execution
fi le, essential ly the execution-t ime, memory-image, object

code representation of the user's program, ready to be

loaded and executed without further processing.

Each t ime a user program is created or altered on an HP

300, the language monitor automatical ly invokes the ser-

vices appropriate to what the user is doing at any given

point. Each component providing these services acquires

access to the appropriate representation of the user's pro-

grams (i .e., to the appropriate f i les associated with that
program) through the workspace management modules of

the AMIGO/300 operating system.

Writing a Program on the HP 300
Now let us turn to a scenario of a typical program de-

velopment session on the HP 300 in an attempt to capture,

as much as is possible on these pages, the personali ty of the

HP 300 as perceived by the programmer. Most of the exam-
ples wil l be taken from the BASIC subsystem, since this is

the most widely known of al l the languages currently sup-

JUNE r979 HEWLETT-pACKARD JOURNAL 1 1

HP 3OO
Program Workspace

Oirectory Structure
Data Transfer

.

Language Monitor

Fig.3. Organizatton of an HP 300 program workspace

ported on the HP 300. Later we will explore certain features
of the RPG-II subsystem that represent signif icant innova-
t ions to the RPG programmer.

Access to a programming language subsystem on the HP
300 is achieved simply by typing the name of the desired
Ianguage into the command window of the integrated dis-
play system (lDS) while in the AMIGO/300 operating sys-
tem environment. Upon invocation, a language subsystem
begins by prompting for the name of the user's program
(this is in fact the name of the user's program workspace). I f
no workspace with the specif ied name is found, a new one
with this name is automatical ly created.

Use of the IDS during program development is typif ied by
Fig. 4. As seen here, the top of the screen is used by the
one-l ine environment window. which identi f ies that the
user in this case is in the BASIC subsystem, working on the
module MAIN of a program cal led payRoLL. Down the
right-hand side of the screen is the softkey label window.

The top softkey is label led HELP, as is nearly always the
case in HP 300 system software. Any t ime the user is uncer-
tain about what to do, the HELP subsystem may immediately
be accessed by pressing this key. HELP is the HP 300's
on-l ine quick-reference guide. Access to i tems in HELP is
greatly faci l i tated through the use of an internal rwtc (key
word in context) index and a clever inquiry analysis al-
gori thm.

HP 300 language subsystems operate in two modes dur-
ing ed i t ing opera t ions : command mode and compose
mode. In the former, the next-to-last row of the IDS screen is
used as the command window, as shown in Fig. 5, in much
the same fashion as in the AMIGO/300 operating system
environment. Here the user specif ies the operation to be
performed using a single command language to access al l
components' services (i .e., those of the editor, compiler,

12 uewrerr-pncKAnD JouRNAt JUNE 1979

segmenter, etc.) with a syntax very close to that of col loquial
English. The val id command verbs accepted by HP 300
language subsystems are shown in Table 1.

Table 1
Language Subsystem Command Verbs

ADD FIND
APPEND LINK
BIND MOVE
CHANGE OPEN
CLEAR PREPARE
CLOSE PRINT
COMPILE PURGE
COPY RECALL
CREATE RENUMBER
DELETE RESEQUENCE
DEVELOP RESET
DUPLICATE SAVE
EDIT SET
EQUATE SHOW
EXIT TEST

VIEW

The bottom l ine of the IDS screen is always reserved as
the error window and is used to report al l di f f icult ies en-
countered. HP 300 error messages are in English and de-
signed to be self-explanatory rather than to require a man-
ual to interpret. The user may switch back and forth be-
tween command and compose mode by s t r i k ing the
COMMAND/COMPOSE softkey at the bottom of the softkey
array. One of the words COMMAND or COMPOSE is always
highl ighted when this key is act ive. The highl ighted word
identi f ies the mode the language subsystem is in.

In compose mode, language subsystems use the powerful
edit ing features of the IDS to permit the user to enter and

Fig.4. BASIC language subsystem prompting for a new line
of text illustrates typical use of the integrated display system
(lDS) for program editing.

alter source text in the workspace's source module f i les. In
this mode, the IDS cursor may be posit ioned anywhere in
what is cal led the display window to make changes and
addit ions to source text, as is i l lustrated in Fig. 6. In com-
pose mode, the command window does not appear on the
IDS screen. Ins tead, the d isp lay w indow is expanded
downward one row to take advantage of this extra space.

The compose mode o f a language subsys tem is im-
plemented through three dif ferent internal states of the
language mon i to r : ed i t s ta te , inser t s ta te , and append s ta te .
Edit state is entered to modify exist ing source text l ines in
the user's workspace. When the user specif ies the name of
an exist ing, non-empty workspace when init ial ly prompted
for the name of the program, the language monitor automat-
ical ly changes to the edit state (and also, therefore, compose
mode). The insert state of the language monitor is used to
insert new source text between exist ing l ines of text. A
transit ion to this state is occasioned by str iking the INS
ENTRY key on the IDS keyboard, or by typing some com-
mand requir ing the addit ion of new text between two al-
ready exist ing l ines. That the language monitor is in insert
state may be readi ly identi f ied by the presence of the cursor
in a space between two exist ing l ines in the IDS display
window. In the case of the BASIC language subsystem, an
automatical ly generated statement number is placed just
before the cursor whenever the user is prompted for a new
source statement. This is true in both the append state
(discussed below and i l lustrated in Fig. 4) and the insert
state. Insert state is exited when the user str ikes the INS
ENTRY key a second t ime, performs any edit ing operation
directed at exist ing text, or begins to add new text to the end

Fig. 5. fhe /DS screen while the BASIC language subsystem
is in command mode.

Fig.6. Making tmmedtate editing changes tn compose mode
as indicated by the syntax checker.

of the present text module. In the latter case, the language
moni to r changes to i t s append s ta te . The append s ta te i s
also entered i f the user str ikes the APPEND softkey while in
edit or insert state. While in the append state, the APPEND
softkey label is highl ighted in inverse video and the user is
prompted by the IDS cursor (and in BASIC by automatical ly
generated statement numbers) for addit ional text at the end
of the present workspace source module. Append state is
ex i ted when the user s t r i kes the h igh l igh ted APPEND
softkey or requests any other operation other than the add-
ing of text at the end of the source module.

Whenever source text is being entered or modif ied in an
HP 300 language subsys tem, whether in command mode or
compose mode, i t is automatical ly checked for correct syn-
tax . Shou ld an er ro r be de tec ted , the er ro r i s immedia te ly

exp la ined in Eng l ish in the er ro r w indow and the cursor i s
p laced in the d isp lay w indow a t the po in t where the er ro r
was de tec ted , as i l l us t ra ted in F ig . 6 . Th is power fu l fea ture

ensures that most programming errors wil l be detected and
corrected immediately, well before any compilat ions are
a t tempted.

One of the softkeys, labeled sPllr scREEN, causes the
Iarge area occupying the central rows ofthe IDS screen to be
sp l i t in to two smal le r w indows, in the manner shown in
F ig . 7 . The lower o f these is s imp ly a shrunken vers ion o f
the d isp lay w indow, in wh ich the cursor appears and ed i t -
ing opera t ions are per fo rmed wh i le in compose mode. The
upper ha l f o f the screen (minus the env i ronment w indow a t

the top) i s now devoted to what i s ca l led the v iew w indow.
Th is i s a read-on ly w indow (i .e . , the cursor never appears in
i t) tha t may be used to v iew such d iverse th ings as paramet -

r ic data in the active workspace's prolog f i le, source text in
any modu le o f any workspace to wh ich the user has leg i t i -
mate access , l i s t ings and maps produced by the compi le r ,
segmenter , and l inker , and the l i ke . I f the screen is sp l i t
through the use of the SPLIT SCREEN softkey (rather than
through the use o f a V IEW command issued in command
mode that expl ici t ly indicates what the user wants to view),
the default information shown in the view window is the
source text in the module the user is currently working on.
To use the terminology of the HP 300's terminal access
method, we describe this situation by saying that the text in
th is source modu le f i le (i .e . , the ac t ive modu le) i s a t tached
to the v iew w indow. Once a g iven f i le i s a t tached to the
view window, i t remains attached to that window across
subsequent unspl i t t ing/spl i t t ing operations unti l some Iater
command dictates that the user wishes to view somethine

JUNE 1 979 HEWLETT-pAcKARo tounnal 1 3

Fig. 7, Post-compilation error correction using the split-
screen feature and the NEXT ERRIR softkev.

e lse . Whi le th is sp l i t sc reen fea ture is be ing used, the
SCROLL UP/LO softkey is act ive, as may be seen in Fig. 7.
There is on ly one se t o f sc ro l l ing cont ro l keys on the IDS
keyboard . These keys opera te on e i ther the d isp lay w indow
or the v iew w indow, as spec i f ied by the cor respond ing
h igh l igh ted word in the SCROLL UP/LO so f tkey labe l . Whi le
us ing sp l i t sc reen opera t ion , the so f tkey fo rmer ly labe led
SPLIT SCREEN is relabeled SINGLE SCREEN. Depression of
th is key causes the v iew w indow to be c losed and the
d isp lay w indow to be aga in expanded to occupy the space
on the screen thus f reed. When the user thus rever ts to
single-screen operation, th.e SINGLE SCREEN softkey is re-
labeled SPLIT SCREEN and the effects of the scrol l ing keys
automat ica l l y rever t to the d isp lay w indow.

Once the source text for a program has been entered and
edited to the point where i t is bel ieved to be correct, the
programmer ordinari ly str ikes the TEST* softkey. This ac-
t ion causes the language subsystem to perform the correct
sequence of steps to bring the user's program into test
execution. In the most common case. this seouence consists
o f compi la t ion , segmenta t ion , l ink ing , and iaunch ing in to
execution under the auspices of the symbolic debug faci l-
i t y . Unnecessary s teps in th is sequence (e .g . , compi la t ion in
the event that the source code has not been altered since the
last compilat ion) are automatical ly bypassed when the
TEST softkey (or the synonymous TEST command) is ser-
v iced .

Some errors a programmer can make are undetectable at
*An alternative abe lor th s key might be RUN. However, a program rs launched Into
execution through a substanl ally dif ierent mechan sm from within a language subsystem
lhan that used n response to the RUN command honored drecty by lhe AN4lGO/300
opera t lngsys tem WhenaprogramisRUN, lo r ns tance, theserv icesof thesymboicdebug
facil ity are not availab e. To avold possible confus on arising lrom these nternai dif lerences,
the word RUN was deemed inappropr ate for this soflkey abe

Fig. 8. Using the symbolic debug facility

14 rEwlerr-pncKARD JoURNAL JUNE i979

the t ime source statements are being entered. An example of
this situation is inclusion of the statement GOTO 1s0 in a
program containing no statement 150. When errors l ikethis
are detected during compilat ion, another novel feature of
the HP 300 language subsystems becomes apparent. I f er-
rors are detected, the automatic sequence entered in servic-
ing the TEST softkey or command (assuming this is why the
compiler was invoked) is halted, the IDS screen is automat-
ical ly spl i t , the compiler 's error summary is shown in the
view window, and the NEXT ERROR softkey becomes active.
Each activation of the NEXT ERROR softkey causes the de-
tai led message explaining the next error to be shown in the
view window, beginning with the f irst error the compiler
found and proceeding in the order in which the compiler
found subsequent errors. Simultaneously, the actual source
text in which the error was detected is made visible in the
display window and the IDS's cursor is posit ioned within
the offending statement to expedite correction of the mis-
take , as shown in F ig . 7 . The language subsys tem is in the
edit state at this point, and al l the edit ing features discussed
earl ier are avai lable to aid the user in correcting the source
text while viewing the errors in the other half of the spl i t
screen.

Once compilat ion, segmentation, and l inking have been
s u c c e s s f u l l y a c h i e v e d , * t h e u s e r ' s p r o g r a m m a y b e
launched into test execution. Within the language subsys-
tem environment, this is always done under the watchful
eye of the HP 300's symbolic debug faci l i ty. When this is the
case, run-t ime exception condit ions (e.g., division by zero,
array bounds violat ion, etc.) cause the user's program to be
suspended with control transferred to the debug faci l i ty.
The debug faci l i ty conducts a dialog with the user, explains
what has gone wrong, and al lows the user to inspect and
alter the values of variables in the program, insert break-
points (temporary, permanent, or counting), perform mis-
cel laneous calculat ions in any mixture of decimal, octal,
and hexadecimal bases, and, in general, f igure out what has
gone awry and why. A typical IDS display in the debug
environment is shown in Fig. B. I t is noteworthy that al l
references to variable data and code locations within a
user's program are ordinari ly entirely symbolic. Thus the
programmer need not be bothered by having to learn to
decipher and to sif t through compiler variable maps and
segmenter / l inker load maps to de termine the ac tua l
numeric memory addresses of data and program code under
scrutiny.

Once the programmer using the symbolic debug faci l i ty
understands any anomalies and is ready to try appropriate
alterat ions to the program, he or she may exercise the CAN-
CEL option (either by command or softkey). This terminates
the program being debugged and immediately returns the
userto the compose mode of the subsystem to accommodate
further edit ing. Thus we have completed the cycle that
typif ies software development efforts, from original source
entry through debugging. The single most important thing
to be noted in the above descript ion ofthis cycle is that the
programmer works the entire t ime from one place, the ap-
propriate language subsystem, and does not need to switch

* Errors dur ng lhe segmentat on and I nking phases of program development on the HP 300
are very rare except when the user is employ ng h s or her own run-time libraries For this
reason, post-segmentation and post-l nking error resolution wil l not be covered in thrs article.
However, they are straightforward.

explici t ly between editor, compiler, segmenter, and so on.

Novel RPG Programmer Aids
All of the examples used thus far to depict the HP 300

program development environment have been taken from

the BASIC language subsystem. Much of the flavor per-

ceived in these examples may be found in other HP 300
subsystems, as well. Many of the features of TyPISt, the

text-edit ing package of the HP 300, direct ly paral lel the

source code entry and edit ing capabil i t ies already discus-

sed. Of course, some other features are not appropriate-the

TEST function described earlier, for instance, has no mean-
ing in the context of general document edit ing. While al l HP

300 subsystems have many features in common, one in

part icular, the RPG-II language subsystem, has so many

innovative features that i t warrants special mention. RPG is

a comparatively special ized business data processing lan-
guage. One of i ts disadvantages in the eyes of many pro-

grammers is that i t enforces a complex, posit ion-sensit ive

input format-that is, specific codes for specific functions
must be in specif ic columns of specif ic classes of source

records. For this reason, i t is impractical to attempt the

writing of an RPG program for most computers without

using a standard coding form. The HP 300 RPG-l l language

subsystem obviates this need by providing a template faci l-
ity for each ofthe seven different source record types mak-
ing up this language. RPG-II/300 is described in the art icle
on page 20.

Conclusion
All of the features described above are highly integrated

in the HP 300's language subsystem. An objective of great

importance in their select ion and organization was that a

programmer new to the HP 300 but knowing one of the
Ianguages i t supports should be able to write and debug

even production-level programs after only a very brief

orientat ion period with the machine. Features were de-

signed to be as self-explanatory as possible. Although i t is

true that the programmer must learn the subsystem's com-

mand language to exploit the full power and flexibility
inherent in these subsystems, every effort was made to

make this command language as natural and close to col-

Ioquial English as possible, subject to constraints imposed

by the automatic parser generation techniques employed.
The inclusion of synonyms in the command language and

the addit ion of a spel l ing-corrector/abbreviat ion-acceptor
algori thm to the front end of the command language in-

terpreter further enhance the fr iendl iness and conve-
nience experienced by the user. And of course, when the

user does get stuck despite these features, there is always
HELP!

One of the most troublesome and chal lenging of al l the
problems facing the discipl ines of computer science and

data processing today is that of the rapidly r ising costs of
software development. The fundamental goal of the con-
ceivers, designers, and implementers of the HP 300's lan-
guage subsystems has been to make a major contribution
toward alleviating this problem by enhancing programmer
productivi ty. Judging from init ial reactions obtained from

field personnel, early customers, and other new users of
f irst-release HP 300 systems, a large measure of success has

been achieved in accomplishing this objective.

Acknowledgments
Many people have been instrumental in the conception

and evolut ion of the HP 300 language subsystems. Propos-

als by Denise Pitsch and Fred White had signif icant inf lu-

ence on the original design efforts.)ordan Brodsky and
Mary Berner wrote the original versions of much important

support code for the subsystems. Credit for the novel fea-

tures of the RPG-ll subsystem goes to Larry Chapin, Tu-Ting
Cheng, Jon Kelley, Wendy Peikes, and Ken Van Aalsburg.

The au thors o f the HP 300 's compi le rs , no tab ly May
Kovalick and Denise Pitsch of the BASIC team, made impor-
tan t con t r ibu t ions to the de f in i t ion o f the language-

mon i to r icompi le r in te r faces . Peter Schorer and Caro l
Fuquay conceived and did much of the early work on the

HELP facility. fames Miller deserves credit for the symbolic
debug faci l i ty from its conception al l the way through i ts
release in HP 300 subsystems. Last, but certainly not least,

the f inal phases of the implementation of the subsystems
were accompl ished by the ass iduous e f fo r ts o f Don

Coleman, Harry Muttart, Oll ie Polk, Dick Somrak, and
D.D. Roberts.

Some important HP 300 user subsystems software is not

expl ici t ly mentioned in this art icle. Paramount here is the
systems programming language designed specifically for

implementation of al l HP 300 systems software. Bi l l Barrett,

fohn Couch, Danny Low, Rick Meyers, and D.D. Roberts
were instrumental in the definit ion, implementation and
support of this language. Danny Low and Leon Leong de-
signed and implemented the SORT/MERGE package. Ed

Dufour, Mike Lipsie, Dave Stal lmo and John Trimble en-
gineered the I/O formatter. Karen Chez, Tom Peters and

Peter Lau developed the multiterminal data entry package

discussed in the article on RPG-II Iater in this issue. Carol

Chan, Judy Guist, Sue Meloy, and Fred White implemented

the mathematical functions library.
The author would l ike to express his profound grati tude

to these persons as well as the numerous others who as-
sisted in the development of the HP 300 user subsystems.

l : .

Frederick W. Clegg
Fred Clegg is section manager for HP
300 user subsystems. Joining HP in
1975 as a development engineer, ne
designed the HP 300 language
monitors, then became project man-
ager for the language monitors, BASIC,
SPL-l l , and rvprsr. After receiving his BS
degree in engineering science from
Oakland University in 1965, he spent a
year at Technische Hochschule
Darmstadt, then attended Stanford
University, receiving his MS and PhD
degrees in electr ical engineering in
1 967 and 1 970, He served as instructor

fi.\l t , of electrical engineering at Stanford
f rom 1 969 to 1970 and was assistant professor of electrical engineer-
ing and computer science at the University of Santa Clara f rom 1970
to 1975. He's a member of IEEE and the IEEE Computer Society, and
is listed in American Men and Women of Sclence. Born in Atlanta,
Georgia, Fred is single, has a daughter, and l ives in San Jose,
Cali fornia. His interests include aerobatic f lying, trap shooting,
amateur radio, and electronic t inkering.

JUNE 1979 HEWLETT-PAoKARD lounnnr 15

Managing Data: HP 300 Files and
Data Bases
by Phillip N. Taylor, Alan T. Pard, and James R. Groff

ATA IN THE HP 300 SYSTEM can be organized in
two ways: f i les and data bases. The software to
manage these capabil i t ies consists of the AMIGO/

30o f i le system and IMAGE/300, respectively.

File System
The AMIGO/300 f i le system manages HP 300 data storage

and controls access to al l HP 300 f i les and devices. The f i le
sys tem automat ica l l y hand les a l l low- leve l f i l e manage-
ment tasks such as d isc management , bu f fe r ing , b lock ing ,
device handling and device al location. I t offers the pro-
grammer a broad set of high level, device-independent
capabil i t ies for data storage and access.

A subset o f the AMIGO/300 command language is used to
manage f i les and devices from the integrated display sys-
tem. Program access is provided by the input/output struc-
tu res o f the HP 300 programming languages, o r th rough
ca l lab le HP 300 sys tem serv ices . In add i t ion to these on- l ine
capab i l i t ies , the HP 300 d iagnos t ic and u t i l i t y sys tem pro-
vides a stand-alone environment for disc formatt ing, sys-
tem volume restoration, and other off- l ine functions.

Fi le System Organization
In the HP 300 f i le system, a f i le is a named col lect ion of

records, such as a f i le of t imecards or accounting transac-
t ions. A f i le domain is a col lect ion of f i les grouped together
for reference, such as al l the f i les for a given application.
Fi le domains can be protected with passwords to prevent
unauthorized access. A device is a physical unit for data
s torage, inpu t , o r ou tpu t , such as a d isc d r ive , te rmina l o r
printer. A volume is a piece of physical storage media (such
as a f lexible disc) that resides on a storage device.

Every f i le , domain , dev ice , and vo lume on an HP 300
system is identi f ied by i ts user-assigned name. These names
can be combined in to a fu l l y qua l i f ied f i lename tha t
uniquely identi f ies a f i le or device. Fig. 1 shows an example
of a ful ly qual i f ied f i lename and i ts interpretat ion.

For non-f i le-structured devices (such as printers or ter-
mina ls) , on ly the dev ice por t ion o f the fu l l y qua l i f ied
fi lename is needed (e.g., .PRINTER or .TERMNL4). In prac-
t ice, ful ly qual i f ied f i lenames are almost never used. In-
stead, the system assumes default values for omitted parts
of the name, so f i les can general ly be referenced with simple
names such as CHECKS or ORDERS.

As F ig . 1 shows, the HP 300 has a un i f ied naming scheme
for f i les and devices. There is also a uniform set of proce-
dures for accessing both f i les and devices, and a uniform set
of commands for f i le and device management. The result is
a high level of f i le and device independence that simpli f ies
both app l i ca t ion des ign and sys tem opera t ion .

Fi le and Device Access
The f i le system provides both serial and keyed f i le access.

16 HewLgrr-pncKARD JouRNAL JUNE i979

In serial access, records are processed in order, in a forward
or backward direct ion. Serial access is used to process a f i le
in sequence and to access sequential devices such as print-
ers and terminals. In keyed access, records are accessed
randomly, based on a key associated with each record.
Keyed access is for select ive retr ieval of records from a f i le.
Both access methods can be used to input , ou tpu t , add,
delete, and replace records as needed, l imited only by the
characterist ics of the f i le or device being used.

The f i le system offers a choice of seven dif ferent f i le
structures for storing data. Each structure meets a part icular
application need, such as rapid random access or simple
sequent ia l re t r ieva l .

Sequentiol f i . les provide rapid serial access to the records
in the f i le. Records are stored in chronological order as they
are entered, and are also accessed serial ly. Sequential f i les
are eff icient for data that is always processed in a f ixed
sequence, such as transaction f i les.

Relot ive/ i . les provide access to records based upon their
relat ive record number within the f i le. Records are stored in
order by relat ive record number and access is either serial or
random by relat ive record number. Relat ive f i les are often
used to store data that is accessed through pointers in other
f i les.

Keyed sequentioi / i les provide access based upon a rec-
ord key associated with each record. Records are stored in
order by key, together with a key index that is used to access
them. Access is serial in record key order or random by
record key. Keyed sequential f i les are used to store data that
must be processed both randomly and serial ly in key order,
such as a customer master f i le.

Direct f i les provide rapid access based on a record key
associated with each record. Records are stored by applying
a hashing algori thm to the record keys, which tends to
d is t r ibu te the records even ly th rough the f i le . Access is
random by record key, or serial in physical storage (not
record key) order. Direct f i les are used for data that requires
rapid keyed access and l i t t le or no serial processing.

Library f i les al low col lect ions of logical ly related f i les to

Fig. 1. A fully qualified HP 300 ftlename. ln general, most
parts of the name can be omitted and the syslem wtll assume
default values.

The File Named CHECKS
\
\ ...on the Flexible Disc Volume Named DSVOL4
\ /\ /
\ t

cHECKS(PAYROLL).FLEXOTSC(D5VOL4)

, / t
, / \

./ ...Mounled on the Oevice Named FLEXDISC

,/
...in the Domain Named PAYROLL

Sequential

Primitivo

Keyed Sequential

Key

Relative Direct

._

lIrrI
flft- l - r
r J l

Y T

EEE

Y

flft- l - r
r J l
V Y

ilrr

Record No,

\
1 2 2 2 2 3

llEll

I
--
t f ,

rEl

Library

Modulel

Memory

lrl...lll

Sector No.

\
1 2 1 7

llEl
+
._ Input Outpul

-

be stored together in one common f i le (a l ibrary). A l ibrary
f i le is composed of one or more named modules that are
accessed randomly by name. Each individual module has
the storage and access characterist ics of a sequential f i le.
Library f i les are general ly used to store col lect ions of
things, such as a set of terminal screen formats.

Primit ive f i les provide low-level f i le access for sophist i-
cated application programmers. In a primit ive f i le, records
conespond to logical disc sectors within the f i le. Access is
random by relat ive record number (i .e., sector number) and
data is transferred in sector mult iples. Primit ive f i les are
especial ly useful for programmers wtro want to augment
the HP 300 f i le structures with a customized structure.

Memory f i les provide eff icient program-to-program
communications between one or more sending programs
and a receiving program. Records are stored in a circular
first-in-first-out buffer in virtual memory. Access is serial
for both writ ing data into the f i le and reading data from the
fi le. Memory f i les are used for communication and syn-
chronization among mult iple programs or tasks in an appli-
cation system.

In addit ion to these seven f i le structures, the f i le man-
agement system offers the following capabilities for storing
and accessing data:
r Variable length records. Records may vary from one to

over 2,000 characters in length for efficient disc space
use. The file system automatically manages and recovers
space when records are replaced or deleted.

r Domain security. Passwords on private file domains pre-
vent unauthorized entry into the domains.

r Dynamic file allocation. Storage space is automatically
allocated for data files as they need it.

r Private volumes. Removable private disc volumes can be
used to transport files to other HP 300 systems or to share a
single storage device among several sets of data.

r File sharing. Programs can obtain exclusive access to a
file, or multiple programs can concurrently access the file
in a read-only sharing mode or an update sharing mode
(with f i le locking and unlocking).

l - tt*fflfil i:2? :::#"?"ZY:i{;:{,::
tures ror stonno oata.

r Fi le equation. HP 300 programs can specify the f i les and
devices they use as logical f i le names. These Iogical
names are associated with actual physical files or devices
through file equations that can be changed independently
of the program. File equations can be stored with the
program as default file assignments, and they can be en-
tered as commands at execution time,

r Input/output without wait. Using nowait input/output, a
program can initiate an I/O operation (such as input from
a terminal) and then continue with other processing be-
fore the I/O is complete (e.g., before the user types in the
response) . Soph is t i ca ted programmers can use th is
technique to increase performance in I/O-intensive appli-
cations by overlapping I/O and processing.

IMAGE/300 Data Base Management System
IMAGE/300 is the data base management system for the

HP 300 computer system. IMAGE offers an alternative to
conventional file systems, and can help to reduce data re-
dundancy and promote consistency, timeliness, and integ-
rity of data, allowing it to be more responsive to user needs.
Using IMAGE, the data for an entire application can be
stored in an integrated, highly structured data base. Appli-
cation programs use this structure to access the data and
derive information about relationships among the data
items. In addition, the IMAGE data base inquiry facility
allows the user to access and inquire into the data base
without application programming.

IMAGE/300 consists of several components:
r A schemo processor that translates a data base schema (a

formal data base description written in the IMAGE data
base definition language) into an internal data base rep-
resentation

r Commonds for creating, purging, erasing, storing and
restoring the data base

r System serrzices that are used by applications programs to
access the data base

r A doto bose inquiry facility for making impromptu data
base inquiries and for data base testing and debugging.

JUNE r979 HEWLETT-pAcKARD louRtal 17

IMAGE/300 Data Base Structure
An IMAGE data base consists of data i tems, data entr ies,

and data sets. A data i tem is a single piece of data, such as an
employee number or employee name. A data entry is an
ordered set of related data items. such as all the information
about a part icular employee. A data set is a named col lec-
t ion of data entr ies, such as the set of al l information on al l
employees. A data base is a named col lect ion of related
data sets, such as al l the data sets that relate to a pay-
rol l appl icat ion.

Fig. 3 shows how data i tems, data entr ies, and data sets
relate to one another, using a payrol l appl icat ion as an
example. As shown in Fig. 3, data entr ies are related by two
different types of IMAGE data sets:
r Moster doto sets are used to store data entries that repre-

sent uniquely identi f iable enti t ies. The storage location
assigned to each master entry is determined by the value
of a specif ic data i tem within the entry. This data i tem,
cal led a search i tem or key, serves as the primary identi f i -
cation for that entry. All entries in a master data set have
the same search item, and each entry has a different value
for that i tem. In the example of Fig. 3, EMPLOYEE and
PAY-PERIOD are master data sets. EMPLOYEE NUMBER and
PAY DATE are their respective search i tems.

r Detoi l doto sets are used to store entr ies that represent
relaied enti t ies. In a detai l data set, the storage location
assigned to a part icular entry has no relat ion to i ts data
content. When a new entry is added, i t is placed in the
first avai lable location. Unlike master data sets, a detai l
data set may have up to 16 search i tems, and the values of
a particular search item need not be different for different
entr ies. In general, many entr ies wil l have the same value
for a given search i tem.
An important purpose of master data sets is to serve as

indexes to detail data sets. Data entries in a master data set
contain pointers to groups of entr ies in detai l data sets that
have the same search i tem as the master se t . In F ig .3 ,
TIMECARDS is a detail data set that is indexed by both the
EMPLOYEE and pAv-pnnloD data sets. A master data set may
be related in this way to more than one detai l data set, and a
detail data set may be related to more than one master data
set.

To represent data relat ionships, master and detai l data
sets are combined in a network of data sets that forms an
entire data base. This network not onlv stores data, but

Fig. 3, An lMAGEl3)) data base conslsls of a network of
related master data sets (ructover, eev-eratoo) and detail data
sets (rrurc,anos).

18 HewlErr-pncKAFD JoURNAL JUNE 1979

Fig,4. Entering the schema that describes the structure of the
data base of Fig. 3.

represents relat ionships among pieces of data as well . The
data can then be retr ieved based on these relat ionships.

Creating an IMAGE/300 Data Base
To create an IMAGE data base, the user must first decribe

the data base structure to the HP 300 system. The descrip-
t ion is cal led a schema, and i t defines the data i tems, data
entr ies, and data sets that make up the data base, as well as
other capacity and security information. The IMAGE
schema processor, DBSCHEMA, is used to enter the schema,
as i l lustrated in Fig. 4. The part ial schema shown corre-
sponds to the payrol l data base example in Fig. 3.

The schema processor creates an interactive environment
for entering and edit ing schemas that closely resembles the

TYPIST text edit ing environment. When the schema has

been entered, the TEST softkey compiles i t into an internal
form and reports any errors for immediate correction. After
the schema has been defined. AMIGO/300 commands can
be used to create, purge, erase, store and restore the data
base.

IMAGE/300 Data Base Access
Application programs access IMAGE data bases through

a set of IMAGE system services. These services give the
programmer high-level, appl icat ions-oriented data base ac-
cess, without concern for where the data is stored or how it
is accessed. Services are avai lable to open and close a data

base for access, obtain information about the data base, read

all or some of the data i tems in a specif ic data entry, add a

new data entry to the data set, update data i tem values in an

exist ing data entry, delete a data entry from the data set, and

lock and unlock the data base or a subset of i t for temporary
exclusive access.

Using these services, programs can access the data base in

one of four modes. Serial access retr ieves successive data

entr ies from the data set. I t is often used to process an entire
data set in one pass. Direct access retr ieves data entr ies
based upon their record locations within the data base. I t is
general ly used when the application already knows the
identi ty of the data entry i t wants. Calculated access re-

tr ieves the data entr ies in a master data set based on their

search i tem (key) values. For example, calculated access
might be used to obtain the data entry for an individual

employee, given the employee number. Chained access is

used to successively retr ieve al l the data entr ies in a detai l

data set that share a common search i tem value. For exam-

o le . cha ined access wou ld be used to re t r ieve a l l the

t imecard data entr ies for a given employee. Data entr ies can
be retr ieved in either a forward or backward direct ion.

IMAGE/300 da ta bases are pro tec ted aga ins t unau-
thorized access by several layers of security features. In

addit ion to the f i le system's domain passwords, the data
base can be protected with a maintenance word that must be
supplied to gain access to the data base from outside i ts
domain. Data bases are stored as privi leged HP 300 f i les,
and cannot be accessed through the normal HP 300 f i le
managemenl sys tem serv ices .

Within a data base, individual data entr ies and data i tems
are protected through an access level security scheme. Each
data entry and data i tem can be optional ly assigned a read

access level and a write access level. When users or appl ica-
t ions programs open the data base for access, they supply a
level word, which determines the read and write levels they
are permitted. For example, in the payrol l data base of Fig.
3, certain users could be restr icted to accessing only the
PAY-PERIOD and tttrlncRnn data sets, while others might be
permitted to access al l data i tems except employee names
and hourly rates, and st i l l others might be permitted to
access the entire data base.

Data Base lnquiry Faci l i ty
The data base inquiry (DBI) faci l i ty is used to access an

IMAGE data base without an application program. It is
part icularly useful during application debugging to gener-
ate test data in the data base or examine data base contents.
Data base inquiry is also useful for handling impromptu
inquires into the data base, to display and summarize the
data stored there. Using i t , the user can display information
about the data base structure, add data entr ies to a data set,
delete data entr ies from a data set, modify data i tem values
in a data entry, display the values of data i tems in selected
data entr ies, and print data base inquiry responses on the
pr in te r .

Inquires to DBI take the form of natural, sentence-l ike
commands. For example, to display the employee number
and name of everyone in department 537 who is age 60 or
older, the user would enter:
DISPLAY EMPLOYEE#, NAME FOR DEPARTMENT : 537 AND

AGE >:60
Data base inquiry would then display the employee

names and numbers for the employees who met the selec-
t ion c r i te r ia .

Data entr ies are selected for display by specifying values
or value ranges for one or more data i tems, DBI accepts al l
the s tandard compar ison re la t ionsh ips , and mul t ip le se lec-
t ion cri teria can be combined with AND and OR connectives
to generate more complex inquir ies. In response, DBI dis-
plays the contents of the quali fying data entr ies, or i t can
display only selected data i tems on request. Al l access
through DBI is governed by IMAGE's standard security
features, to prevent unauthorized access to sensit ive infor-
mat ion .

DBI is also a useful tool for data base maintenance. For
example, i f al l the employees in job classif icat ion)4 have
jus t rece ived a pay inc rease to $3 .60 per hour , the user can
make the change w i th a s ing le DBI command:

REPLACE RATE WITH 3.60 FOR JOB-CLASS :J4

To delete from the data base al l employees who termi-
na ted employment over one year ago. aga in a s ing le DBI

command does the iob:
DELETE EMPLOYEE FOR TERMINATION-DATE < 771.23'],
DBI can also be used to add new data entr ies to the data

base. For example, to add a new employee, the user would
enter:

ADD EMPLOYEE
DBI requests a value for each data i tem in the data entry,

by name, on the screen. The data supplied in response is
checked for val idity before being stored in the data base.

Acknowledgments
Numerous people have been involved in the design, im-

plementation, and ref inement of the HP 300 f i le and data
base management subsystems. Aracel i Keiser, Grant Shaw,
and Doug Zumbiel deserve credit for evolving the file sys-
tem from a concept to a product. Credit for many of the file
management commands as well as the diagnostic and uti l -
i ty subsystem f i le capabil i t ies goes to Al Dalrymple. Myron
Zeissler deserves credit for all of the printer and disc I/O

drivers. Tom Spross contr ibuted the init ial design and im-
plementation of what grew to be a very comprehensive file
management test tool. Credit for a file management perfor-
mance tool goes to Bob Spivack. Bob Brown deserves credit
for his efforts in developing IMAGE/300. Bob had responsi-
bi l i ty for the schema processor and inquiry faci l i ty. We
would l ike to express our appreciat ion to these individuals
for their di l igence and dedication.

Phil l ip N. Taylor
Phil Taylor has been developing
software with HP since 1972. He was
project manager for HP 300 file and
data base management, and is now
section manager ior HP 300 data man-
agement and communications
software. Born in San Francisco, he re-
ceived his BS degree in mathematics in
1968 from the University of Cali fornia at
Davis, and was rnvolved in computer
systems development for four years be-
fore joining HP. Phil is married, has
three chi ldren, and l ives in San Jose,
Cali fornia. His interests rnclude garden-
ing, woodworking, backpacking, ten-
nis, and basketbal l .

Alan T. Par6
Alan Par6 was project leader for
IMAGE/300. He received hls BA degree
in mathematics in 1967 from Cali fornia
State University at San Jose and his MS
degree in appl ied mathematics in 1971
from the University of Santa Clara. Be-
fore joining HP in 1972 he special ized in
information storage and retrieval sys-
tems and mathematical programming.
With HP, he's contr ibuted to the de-
velopment ot the RPG compiler for HP
21MX Computers. Alan is a native
Cali fornian, born in Santa Monica. He's
single, has twochildren, and l ives in Los
Gatos. Among his interests are music,
bicycl ing, and col lect ing art and an-
trques for his home.

JUNE 1 979 HEWLETT,pAoKARD lounrnl 1 9

An Easy-to-Use Report Generation

by Tu-Ting Cheng and Wendy Peikes

PG-II (Report Program Generator I IJ is a widely used
high-level problem-solving language for business
data processing. The language is designed to faci l i -

tate production of well- formatted printed reports. I t also
greatly simpli f ies the tasks of data retr ieval, f i le main-
tenance, and f i le creation.

In other commonly used compiled languages, such as
BASIC, FORTRAN and COBOL, the programmer supplies
the step-by-step instruct ions corresponding to the desired
program logic. RPG-l l di f fers in that the programmer need
only describe the format of the input data, output reports
and calculat ion operations. The RPG-l l compiler does the
rest, including supplying the program logic.

Another maior difference between RPG-ll and most other
languages l ies in the format of i ts source l ines. Instead of the
relat ively free format of BASIC or FORTRAN, RPG-II is a
completely f ixed-format language. That is, each f ield on an
RPG-l l source l ine must appear in precisely the correct
columns, and each set of columns may contain only one
part icular f ield. The descript ions of the f ields correspond-
ing to each set of columns are part of the language specif ica-
t ion of RPG-II, and the names of these f ields are printed
across the appropriate columns on the RPG-l l coding forms.
Therefore, writ ing an RPG-II program consists simply of
taking these coding forms and f i l l ing in the blanks.

RPG-II has extensive f i le processing capabil i t ies. The f i le
organizationS supported include sequential, random, and
keyed. A f i le in an RPG-l l program may be processed either
sequential ly or randomly, and i ts records may be of either
f ixed or variable length. A port ion of any keyed f i le can be
processed sequential ly or between two key l imits, and rec-
ords can be added or deleted from a keyed f i le at any t ime
within an RPG-l l program. There is also a technique cal led
matching records, which al lows the processing of mult iple
f i les as a single f i le. These are only a few of the advanced f i le
processing techniques bui l t into the language.

Options in RPG output statements rel ieve the program-
mer of the task of writ ing routines to format the output data.
The RPG-l l compiler generates al l of the routines necessary
to print and format heading, detai l , and total output l ines.
The programmer only has to supply the variable parts of the
information to be printed.

Similarly, the vast choice of operators avai lable in the
calculat ion statements al lows for much f lexibi l i ty in the
type of tasks one can program without much effort. Again,
the compiler supplies al l of the routines necessary to per-
form al l of the language's calculat ion actions, such as man-
ipulat ing quanti t ies and varying the course of events ac-
cording to the results obtained.

Fig. 1 is an example of an RPG-II program. This program
is very simple; al l i t does is read some input and echo this
input data to a l ine printer.

20 rEwlErr-pecKAFD JoURNAL JUNE 1979

Fig. 1. A simple RPG-ll program that reads some input and
echoes it to a line printer.

RPG-ry300
RPG-Il /300 is the implementation of the RPG-lI program-

ming language on the HP/300 Computer System. Much of
i ts design effort was spent ensuring compatibi l i ty with the
RPG languages on the HP 3000 and the IBM System/32 and
System/34. Th is a l lows ex is t ing programs f rom these
machines to be transported to the HP/300 without extensive
modif icat ion. I t also enables programmers already famil iar
with RPG-l l to use RPG-II/300 with very l i t t le addit ional
training.

As a matter of fact, there is no need to make any changes
to an RPG-II program from another machine. The HP 300
RPG language monitor and compiler together detect every
possibi ly incompatibi l i ty in a source program. Each such
error is either corrected by the language monitor or reported
to the user so that i t can be f ixed.

This error detection occurs as a two-step process. First,
the language monitor screens out incompatible source rec-
ords. The program is then compiled, with the compiler on
the alert for more language incompatibi l i t ies. For each such
error, the user receives a message explaining what is wrong
and how it can be corrected.

The language monitor f inds al l incompatibi l i t ies in a
source program in the following manner:

Fig,2. RPG-Ill300 uses screen templates instead of coding
sheets. Each field of the RPG specification is identified in the
template area at the bottom of the screen. As each line is
entered it takes its place in the display window above the
template.

Language

P d , 6 l . . I l l l l D : t : 1 . . 1 0 f i V $, A . 0 1 , 0 1 I l F , l ^ J L . . F - l t * P A 0 (A R I)
1 l ; 1 , N , f 4 A Y $. 1 9 7 9 , 1 1 r ; 1 3 . \ M

1 0 t ' l
; I 0 F I N P L I I t . P f , I t
. J t) F 0 u t f L J r r .) F { 1 0
4 r J r . l N P t i I t t A 0 1 .
l t 0 t :
{ r 0 ! . l r J U I l ' l J T D 0 1 .
7 0 { l

0 h - l i l ? O R S , 0 t , A R N I N D f i

1 g l] I i A I A

I , A I A B l }

D [. I t . : C l L D D U F I N T ; r . 0 m p I a T l r i t {

Initially, an existing source program must be transferred
to the HP 300 in the form of a sequential file. The user then
brings the program into the language monitor via the COPY
FILE command. This command performs line-by-line syn-
tax checking on each source record in the program. If an
error occurs, a self-explanatory error message immediately
appears in the error message window, and the line in error
is displayed. The user has two choices at this point: to
ignore the error by hitting the BYPASS softkey, or to correct
the error by typing in the changes. No matter what choice is
made for each error, the user can be sure of one thing when
the entire program has been brought in: that the program
does not contain any unknown syntax errors.

Another feature of the RPG-II/SOO compiler is that all error
messages are self-explanatory, easi ly understood sen-
tences. This type of human engineering, coupled with the
features of the RPG-II/300 language monitor (such as the
NEXT ERROR softkey), allow debugging convenience rarely
found in other RPG systems.

The entire RPG-II/300 package, consisting of the compiler
and the Ianguage monitor, adds up to a new approach for
on-line development of RPG programs. The features of the
language monitor are discussed in greater detail later in this
article and in the article on page 9.

RPG Program Development
The RPG-II/300 language subsystem is similar to the Bus-

iness BASIC/300 language subsystem in that program de-
velopment can be performed in a highly interactive man-
ner. The additional features of the source entry facility of
RPG-IV300 greatly simplify the task of entering and editing
a program. The most outstanding of these conveniences is
the source entry window, which is in the form of a template.
Each field in the RPG specification being entered is sepa-
rately identified and labeled on the template. This elimi-
nates the need for the programmer to count columns and
spaces as the various fields are entered. Forward and back-
ward tabbing and the IDS editing keys are additional fea-
tures that make it easy to edit data in the templates.

As each source line is entered, it takes its place in its
proper sequence in the display window (see Fig. 2). There is
a different template for each of the distinct types of RPG-II
specif icat ions. To switch to another template, al l the user
need do is press the CHANGE FORM softkey and type in the
new specif icat ion type, as shown in Fig. 3.

Each line in the program is checked for correct syntax as it
is entered. Errors are reported immediately and can be cor-

Fig.3, fo switch templates the user presses lhe IHANGE FIRM
softkey, and is offered a menu of form types.

Fig. 4. Editing a previously entered line using the nppwor
MoDtFy, SELECT LtNt, and ottut softkeys.

rected by typing the new f ield direct ly into the template.
The user can also delete, edit , or dupl icate a previously

entered l ine via the fol lowing sequence of act ions. First, hit
the APPEND/MODIFY softkey to put the language monitor
into modify mode. Then, enter the sequence number of the
l ine to be edited, and hit the SELECT LINE softkey. The l ine
selected wil l be displayed in the template window ready to
be edited. Hitting the DELETE softkey causes the line to be
deleted. If the line has been modified, hitting the ENTER key
causes the replacement of the original l ine. I f the sequence
number has been changed, the l ine is dupl icated in place on
the screen (see Fig. 4).

To test the program, press the TEST softkey. The RPG
Ianguage monitor automatical ly compiles, prepares, l inks,
and executes the program, providing that no error has oc-
curred. I f the compiler has detected an error, the program
list ing is displayed in the upper window of the spl i t screen.
By pressing the NEXT ERROR softkey, the user can bring the
line in error to the template window for editing as desired.
The user can correct the error, or BYPASS it temporarily, or

QUIT the NEXT ERROR processing. All this is done simply by
hitt ing the appropriately labeled softkey (Fig. 5).

The RPG Language Monitor
The language monitor serves as the RPG-II/300 user inter-

face both for source entry and for program compilation anci
test ing. The integration of these functions, together with
innovative features such as the source templates and spl i t
screen, make RPG-II program development on the HP/300
far more convenient than on anv other machine.

Fig. 5. When the TEsr softkey is pressed, compilation begins.
lf an error is discovered, it is displayed on a split screen. The
user can correct the error, BypASS it temporarily, or eutr the
error processing mode.

JUNE r979 HEWLETT-pAcKARD JoURNAL 21

The feature that does the most to facilitate program de-
velopment is the source window, which is in the form of an

RPG-II template. Since RPG is a language composed en-

tirely of fixed-format statements, the user must enter each

field on a source line in precisely the correct columns. This

makes conventional RPG source entry a long, tedious, and

error-prone process, with much time spent writing on cod-
ing sheets and counting columns. A program listing cannot

even be read without a listing analyzer, which tells the
programmer which columns correspond to which fields.

The language monitor's template facility takes care of all
of this for the programmer. There is no need to count col-

umns, or even use coding sheets. On the source entry

template, each field on the source line has its own small

window, marked clearly with the field's name. There.is not
even the need for the programmer to be concerned with

right or left justification of fields, a frequent source of errors

in a conventional RPG source entry system. The language
monitor knows how each field should be justified, and does

so accordingly. And, as soon as one f ield has been typed in,
the language monitor positions the cursor to the next field

to be entered on the source l ine.
The language monitor's immediate detection of the pro-

grammer's syntax errors saves much time and effort. In a

conventional RPG source entry system, the whole program

must be typed in and compiled before the programmer can
be informed of any error. Not only does this waste much

computer and programmer time by causing extra iourneys
through the source-entry/compilation/error-correction cy-

cle, but it does nothing to prevent the programmer from

making the same syntax error many times in a program.

The HP 300's language monitor, on the other hand, de-

tects a syntax error as soon as the source line has been typed
in. It informs the user of the error by placing a sentence in

the message window that clearly explains precisely why
the Iine is incorrect and what the programmer must do to fix
the mistake. It also positions the source entry cursor to the
field in error, so the programmer can easily type in the
correction. However, the programmer is not forced to cor-
rect the error; hitting the BYPASS softkey will enter the

Fig.7. RPG-Il1300 detects syntax errors immediately so they
can be corrected interactivelv.

source l ine, as is, into the program.

This immediate reporting of syntax errors saves the pro-

gram unnecessary trips through the compilation cycle, as
well as preventing the programmer from making repeated
mistakes. When the program has been compiled, the source

entry screen spl i ts to simultaneously display both the

source program being edited and the list file created by the

compiler.
Figs. 6 through 8 i l lustrate the operation ofthe language

monitor and compare it with a conventional RPG system.

Multiple Terminals
RPG-II/300 features an interactive multiterminal data

entry extension that significantly expands the terminal ac-
cessing capabil ity of RPG. Using this extension, an execut-
ing RPG program can accept data entered from one or more
HP/300 application terminals or from the IDS. The system
automatically enacts this facility by starting a dialogue with
the user at the IDS before the program executes. At this time,
the user tells the system which terminal or group of termi-
nals is going to be accessed by the program. This capability
can also be used dynamically to add a terminal to or remove

Fig. 6. RPG-lll3)1 and conven-
tional RPG program development
cycle.

22 rewlerr-pncKAnD JoURNAL JUNE i979

Ill;t. ""r
the RPG-Il1300 source entry method benefrts the

a terminal from an executing RPG program.

Such a powerful extension adds only minor changes to
the RPG-l l language constructs. AII terminal operation is

transparent to an RPG program, which views the terminal(s)

as a conventional input f i le with the special device name

CONSOLE. Terminal formatting and prompting for data are

handled automatical ly on a f ield-by-f ield basis, according
to the input specif icat ions of the RPG program. No special
coding effort is necessary; only the use of the device name

CONSOLE is required to take advantage of this facility.

Wendy Peikes
Wendy Peikes received a BS degree in
computer science and electrical en-
gineering in 1976 from Massachusetts
Institute of Technology, and an MS de-
gree in computer science and comput-
er engineering in 1978 from Stanford
University. With HP since 1976, she's
developed a syntax-directed editor lor
block-structured languages and con-
tributed to the development of the
RPG-1U300 compiler. Wendy was born
in New York City and grew up there.
Now l iving in Sunnyvale, Cali fornia,
she's srngle and enjoys racquetbal l ,
trap shooting, ice skating, and raising
houseolants.

Tu-Ting Cheng
Born in Bangkok, Tu-Ting Cheng
earned his BS degree in electr ical en-
gineering from National Taiwan Univer-
sity in 1969. Seven years later he re-
ceived his PhD degree in computer sci-
ence from Ohio State University. ln be-
tween, he col lected two MS degrees in
dif ferent areas of computer science,
one from the University of Wisconsin
and the other from Ohio State. Wth HP
since 1976, he's been involved with
RPG-l l/300 development, most recently
as project leader. Tu-Ting is married
and l ives in Sunnyvale, Cali lornia. His
leisure activi t ies include f ishing and
caroentrv,

provided by the integrated display system (lDS) and the

language monitor of the HP 300 to give the user an interac-

t ive program development environment. I t also provides
on-l ine syntax checking as each statement is entered, in-

teractive error report ing, and symbolic debugging. Al l of
these features provide many of the program development
advantages of an interpreter.

On the other hand, because BASIC/300 is implemented as
a compiler, i t generates and stores developed programs in
machine-executable form. This insures maximum runtime
eff iciency.

BASIC/300 is compatible with and is a superset of the
ANSI X3.60 standard for minimal BASIC. Advanced fea-

tures of the Ianguage, together with many enhancements in

BASICi 300, al low programmers to accomplish more sophis-

t icated tasks and make BASIC/300 a versati le business ap-

Comparisons Of RPG
Source Enlry Approaches

RPG-|U300 Language
Monitor

No coding sheet is needed. The RPG
templates provide descriptions of all
fields, eliminating the need for
column count ing. The language
monitor performs all necessary right
and left justification and automatically
sets a tab at the beginning of each
lield. This tool lacilates source entry
and minimizes syntax errors.
The language monitor detects and
reports syntax errors as soon as the
source line is entered and positions
the cursor to the column where the
error occurred. The early error
detection saves compilation time and
the cursor positioning greatly
simplifies the job of error correction.
This data entry lacility minimizes the
number of t imes that the user 's
program musi go through the source
entrv looo.

Conventional

'L A coding sheet is required. The user
must count the columns and keep
track of the starting position of each
field while entering the source.

2. The user must wait until the program
is compiled to be intormed of any
errors.

3. Each time a single error as detected,
the user's program must go through
the entire source entry loop. Each
t ime the code rs corrected, there is a
chance of introducing more errors.

RPG-ll/300 Fealures with No
Conventional CounterParts

1. Help faci l i ty
2. Editor commands
3. "Nexl Eror" language moni tor

softkey
4. Split-window screen to view source

and complete l is t ing s imul taneously

HP 300 Business BASIC
by May Y. Kovalick

ASIC IS THE ACRONYM for Beginner's All-Pur-
pose Symbolic Instruction Code. As the name sug-
gests, i t is d is t inguished f rom other program-

ming languages in i ts concern for the novice user. While
BASIC is a general-purpose programming language, i t
is designed primari ly to be easy to learn, easy to use, and
easy to remember . Because o f th is , BASIC has found
wide acceptance for educational, scienti f ic, and commer-
cial data processing. BASIC's simple statement format per-
mits rapid development of simple, straightforward pro-
grams. In addit ion, i ts f lexible input/output capabil i ty
makes i t wel l suited to interactive, terminal-oriented appli-
cations. BASIC was thus a natural choice for the HP 300.

Since an interactive environment faci l i tates learning,
BASIC is oriented, but not restr icted, to interactive use.
BASIC/300 takes ful l advantage of the edit ing capabil i t ies

JUNE 1979 HEWLETT-PAcKARo lounNer 23

plication language.

BASIC/300 Data Types
The purpose of a program is to produce meaningful re-

sults by manipulating data, either numeric or character
strings. BASIC/300 allows the user to represent data by
meaningful alphanumeric names. A BASIC/300 numeric
variable name is composed of an upper-case letter followed
by any number of digits, lower-case letters, or the underline
symbol - (up to 15 characters are recognized). A string
variable name is formed by attaching $ to the end of the
valid numeric variable name. This feature makes programs
more descriptive and understandable. BASIC/300 also sup-
ports five numeric data types: integer (16 bits), double in-
teger (32 bits), short (32 bits f loating point), real (6+ bits
floating point), and decimal. The inclusion of the decimal
arithmetic data type enhances the usefulness of BASIC/300
for the manufacturing, inventory control, and commercial
market. Instead of converting numbers to binary representa-
tion to perform calculations, arithmetic is done in base 10
by special routines. This allows the user to have more con-
trol over round-off effects and the number of significant
digits.

The user is also given the abil ity to set the precision of
individual BASIC decimal variables. Through a declara-
tion, the user may specify both the total number of digits
and the number of digits to the right of the decimal point.
For example,

10 DECIMAL a[ro, z] , n [s , s]
declares that A has ten digits with two to the right of the
decimal point, and B has nine digits, f ive to the right of the
decimal point. A maximum of ZZ digits is allowed.

Because of all the different data types available, mixed-
mode arithmetic is provided by BASIC/300. Automatic data
type conversion is done if necessary on arithmetic opera-
tions.

BASIC/300 also handles character string data composed
of a sequence of valid ASCII characters. The string may be
from 0 to 255 characters long. One may speci fy the
maximum length of a string by using the DIM statement. For
example,

1o DrM a$[zs] , B$(10) [7]
specifies that the string Ag may have up to 25 characters,
and that each of the 11 elements of string array B$ may have
up to seven characters. The default maximum length is 18
characters.

Strings may be concatenated with the concatenation
operator &.

Normally a reference to a string refers to the entire string
value. However, sometimes it is necessary to reference only
a portion of the string. This kind of substring operation is
a l lowed by us ing any of three d i f ferent substr ing
designators:

A$[m,n] specifies the mth through nth characters
A$[m;n] specifies n characters starting at the mth

position
A$[m] specifies the mth through the last character.

These constructs make substring replacement and extrac-
tion possible.

There is also a set of over 30 built-in (or predefined)
numeric and string functions available for reference by the

24 Hrwrerr-plcKARD JoURNAL JUNE 1979

BASIC/300 user. For example, POS(XS,Y$) provides the
capability to do substring searching. It returns the starting
position of the string Yg within the string Xg. Numeric/
string conversion is possible with the VAL$ and VAL func-
tions. These functions perform conversion of numeric data
to string data and vice versa.

Branching to Alphanumeric Labels
Most BASICs allow users to branch to a statement or

subroutine within the program with GOTO or GOSUB state-
ments, respectively. The destination of the branch is usu-
ally identified by a line number. This means that the pro-
grammer either needs to know the line number for all the
forward branches, or must go back and patch them up later.
BASIC/300 allows users to label any statement with an
alphanumeric label that has the same format as a variable
name. This label may then be used to refer to the statement
instead of the line number. This not only makes the pro-
gram more readable and easier to follow, but also lets the
programmer develop the program logically without worry-
ing about line numbers.

Array Manipulations
An array is a collection of related data grouped under one

name. The various values of the array are arranged in an
ordered re la t ionsh ip . BASIC/300 users may use bo th
numeric (all data types except decimal) and string arrays.
Arrays may have up to 32 dimensions, and may be declared
explici t ly in a DIM or type declarat ion statement. For
example, the statements

10 DIM A(-10 :10)
20 INTEGER B (1:20)

declare that real array A has 21 elements, A(-10), A(-9),. . . ,
A(o), A(1), . . . , A(10), and integer array B has 20 elements, B(1)
to B(20). These two statements expl ici t ly specify the lower
and upper bounds of the arrays.

Another way of specifying the lower bound of a dimen-
sion of an array is by using the OPTION BASE statement. It
declares that all lower bounds of dimensions that are not
expl ici t ly specif ied are either 0 or 1. For example, the
statements

30 OPTION BASE 1
40 DIM C(10), D$(5,5)

specify that array C has 10 elements, and that Dg has five
elements in the first dimension and five elements in the
second dimension, for a total of 25 elements. I f a program
unit does not contain an OPTION BASE statement and the
array declaration does not explicitly specify a lower bound,
the assumed lower bound is zero.

Another powerful tool to manipulate an array is the
executable statement REDIM, which dynamically changes
the shape of the array. Although the number of dimensions
may not be changed, the number of elements in each di-
mension may be changed and new lower and upper bounds
may be specified. Assuming that we are in the same pro-
gram unit as above, the statements

1OO REDIM D$(3,4)
110 REDIM C(-s:3)

redimension the arrays C and ng so that D$ now has 12
elements, three in the first dimension and four in the sec-
ond, and C now has nine elements.

Each element of the array may be accessed by using sub-

Both numeric and str ing arrays are al located space in the or
user's data space. The only limitation on the size of any ICALL procedure-name (parameter-listJ, numeric-variable
numeric array is that the maximum number of elements The procedure-name is the name of the system service
specif ied in the DIM or type declarat ion statement may not procedure being cal led. The numeric-variable is used for
exceed 32,767 divided by the data size of the array element. cal l ing procedures that return values. This statement al-
For str ing arrays, the maximum number of characters as lows the user to programmatical ly access al l the faci l i t ies
specif ied in the DIM statement cannot exceed 65,536. provided by AMIGO/300 without having to learn a com-

pletely new set of system-dependent language constructs
Functions and Subprograms for each of the system services needed.

scripts, such as A(s):B(2,2). The whole anay may also be
manipulated by MAT statements. These statements allow
the user to init ialize all the elements of the array, to input or
print a whole array, and to do mathematical operations on
numeric arravs.

Increased interest in structured design and programming
has made i t desirable to be able to write modular programs.
To accomplish this, BASIC/300 provides subprograms and
mult i l ine functions. Each function or subprogram is a block
of statements that is complete in i tself . In this way, pro-
grams may be developed in small modular units, and a more
structured approach to BASIC programming is achieved.
Mult i l ine functions, subprograms, and the main program
are known as program units. Each may be compiled inde-
pendently, so that minor changes in a program unit do not
requ i re a comple te recompi la t ion . Parameters , e i ther
numeric or str ing, simple or array, or f i le numbers, may be
passed to the subprograms or mult i l ine functions.

Each subprogram is del imited by a SUB statement and a
SUBEND statement. The number and types of parameters are
defined in the SUB statement. Mult i l ine functions are sub-
programs that return values. They are del imited by DEF and
FNEND statements. The DEF statement is similar to a SUB
statement in that it defines the number of parameters and
their types. I t also defines the type of the function, that is,
the type of the value to be returned. Mult i l ine functions are
invoked by using the function's name and parameter l ist in
an expression. Subprograms are invoked with a CALL
statement.

Both subprograms and mult i l ine functions may be recur-
sive, that is, they may invoke themselves and they may
invoke other subprograms or functions.

So far, we have mentioned one way to communicate
between program units, namely, by passing parameters.
Sometimes i t is desirable to set up an area of data that is
common to several program units. This is accomplished in
BASIC/300 with the CoM statement. Variables specif ied in a
COM statement are placed in a common global area so that
values assigned to these variables in one program unit are
retained when control is transferred to another program
unit. Thus data may be shared among program units with-
out using a long l ist of variables passed as parameters.

Calling System Services
The AMIGO/300 operating system provides a wide range

of system services for program management, task manage-
ment, f i le management, data base management, synchroni-
zation, resource management, IDS control, and other func-
t ions. Al l of these services are useful and necessary for
commercial business application programs.

Instead of inventing and designing a new language con-
struct for every one of these services, BASIC/300 has pro-

vided a clean and easy statement that enables the user to
take advantage of all the callable system services. This is the
ICALL (intr insic cal l) statement. The BASIC syntax for
ICALL is

ICALL procedure-name (parameter-list)

The ICALL statement is versati le and easy to use, and
helps to keep the BASIC language from being a conglomera-
t ion of complicated system-dependent commands.

Fi le Manipulat ion
For appl icat ions that require permanent data storage ex-

ternal to a part icular program, BASIC/300 provides a data
f i le capabil i ty that al lows f lexible, direct manipulat ion of
large volumes of data stored on files. There are many ways
of arranging data in a f i le, depending upon the application.
BASIC/300 supports four different file structures (sequen-
t ial, direct, keyed-sequential, and memory), three types of
f i le storage mechanisms in the f i les (ASCII, binarv, and
BASlC-formatted), and two methods of accessing t-he f i le
(serial and direct). These provisions, plus programmatic
f i le creation and purging, are direct ly avai lable through the
language constructs of BASIC/300.

Formatting Output
The PRINT USING and tMacE statements of BASIC/300

give the user explicit and exact control over the format of
program output. All types of numbers can be printed, and
the exact positions of signs can be specified. String values
can be printed in specif ied f ields, and l i teral str ings and
blanks can be inserted whenever needed. Carriage return
and l ine feed can also be under expl ici t control. Also pro-
vided are print functions such as TAB, SpA, LIN, and so on.

The PRINT USING statement allows easy construction of
printed reports and formatted terminal displays. I t may also
be used to print to files or for formatting the printing of
whole arrays. The format specification may be fixed at
compile time with an IMAGE statement or a string literal, or
may be fixed at runtime by PRINT USING Ag; print-list. This
allows the user to specify the format dynamically.

Take for example, the simple PRINT statement:
PRINT print-list

As mentioned above, we may specify the format with
PRINT USING format; prinflist

I f we want to print whole arrays, we may use
MAT PRINT IUSINC format:] print- l ist

The part in brackets is optional. To print to a f i le, we simply
add the f i le number to the pRINT statement:

[var] lnlNr #n IUS]NG format]; prinr- l ist
This wil l do serial print ing to the specif ied f i le start ing at i ts
current file pointer. We may also access the file directly by
specifying the key of the record we wish to print to:

[Vaf] entNr #n, record-key [uStNC format];print- l ist
These examples i l lustrate how a varietv of output and f i le

JUNE 1 979 HEwLETT-pAcKARD JoURNAL 25

manipulation tasks can be accomplished by making simple,
easy extensions to the PRINT statement.

Compatibil i ty
The core of BASIC/300 is compatible with the implemen-

tations of BASIC on the HP 9845A Desktop Computerl and
the HP 250 Small-Business Computer.2 There has been an
earnest effort on the part of all of the developers of newer
BASIC on HP machines to follow this trend, so that pro-
grams written on one HP machine are easily transportable
to another.

Acknowledgments
Many people contributed to the success of BASIC/300. I

' ,vould l ike to extend special thanks and appreciation to
Denise Pitsch and fon Kelley for their contributions to the
design and implementation of the BASIC/300 compiler.

References
1. W.E. Eads and f .M. Walden, "A H igh ly In tegra ted

May Y. Kovalick
May Kovalick, project leader Jor the
BASIC/300 compiler, holds BS degrees
in mathematics and computer science
from the University of Cali fornia at
Berkeley. She graduated in 1974 and
has been involved in compiler de-
velopment with HP since 1975. A native
of Hong Kong, May is marrred and l ives
in Santa Clara, Cali fornia. She devotes
much of her t ime to Bible study and
church activi t ies. She also plays piano
and enjoys reading and l istening to
musrc .

Desk top Computer Sys tem," Hewle t t -Packard fourna l ,
Apr i l 1978.
2 . D.L . Peery , "HP 250 BASIC: A Fr iend ly , In te rac t ive ,

Power fu l Sys tem Language, " Hewle t t -Packard Journa l ,
Apr i l 1979.

mechanical durabi l i ty, tolerances to avoid misal ignment,

manufacturabi l i ty, and serviceabil i ty. The innermost level

of the machine is the circuit devices. Here, packaging de-

sign is concerned with orientat ion for optimum cooling,
mounting, interconnection, and testabi l i ty,

Altogether, the design parameters form a diverse and

of ten conf l i c t ing se t (F ig . r) . The HP 300 package des ign

treated many of these parameters in new and innovative
ways.

Human Factors
User-oriented design was an important consideration

from the beginning. Fortunately, we were able to work

c lose ly w i th po ten t ia l users in the fo rm o f the many

software designers on the project team. This close interac-

t ion involved surveys, observation, and the construction of
functional models that the software designers could use for
program development. This work, together with l i terature
and f ield surveys, led to the fol lowing features.

The overal l configuration of the machine is basical ly a

compact vert ical arrangement of components. With this

arrangement, the HP 300 occupies a minimal amount of
f loor space, which is often in short supply in the off ice
environment (Fig. 2). The HP 300 can f i t next to an exist ing
desk or other work surface or an optional side table can be
added to provide a wrap-around work area.

Innovative Package Design Enhances
HP 300 Effectiveness
by David A. Horine

HE COMPACT HP 300 PACKAGE is a deceptively
s imp le s t ruc tu re bu t i t had to sa t i s f y an ex -
tremely complex set of design requirements. One

way to understand this is to examine the anatomy of the
package on a layer-by-layer basis. The outermost layer, the

skin of the machine, is the human interface. I t has to be

comfortable, relat ively quiet, and relat ively easy to use. I t

has to f i t in an off ice environment and be durable for the

condit ions of use there, and i t has to protect the user from

any internal hazards. The next layer is the overal l frame-

work of the machine. This framework is governed by many

requirements, such as manufacturabi l i ty, interference pro-

tect ion, cost, and structural integri ty. Next, there are the

in te rna l modu les , such as the d isc and power supp ly . Here ,

serv iceab i l i t y , component s ize , a i r coo l ing c i rcu i ts , and

g r o u n d i n g f o r e l e c t r o s t a t i c d i s c h a r g e a r e i m p o r t a n t

parameters.
Another aspect of the machine is the electr ical intercon-

nection system, which includes the power cord, I /O cables,
printed circuit boards, and the wire bonds to the integrated

circuits. Cost, safety from shock hazard, international safety

standards, durabi l i ty, and immunity from electromagnetic
interference (EMIJ and electrostat ic discharge (ESD) are
important concerns. The printed circuit boards are also a

level of packaging, with parameters of size governed by
interconnect cost, packaging density, system part i t ioning,

26 sewlerr-pncKARD JoURNAL JUNE 1979

Fig. 1. Design parameters for the HP 300 package design.

The selection and arrangement of controls and displays
were subjects for considerable research and deliberation.
The most prominent of these features is the column of eight

softkeys along the r ight side of the display. These keys are
Iabeled under program control on the screen, and can be an
extremely versati le tool in appl icat ions programs. While
the concept of softkeys was axiomatic from the beginning of

the pro jec t , the loca t ion was no t . The ver t i ca l r igh t -hand
arrangement was selected because it offers maximum flexi-

bi l i ty in creating labels. As many as three ful l l ines of copy
on the screen can be assigned to each key. The disadvan-
tages to this arrangement were thought to be that i t would
require an excessive reach by the operator and that the
right-hand labels could interfere with the length of other
text on the screen. The first objection was overcome by

Display+

Keyboard

Card Cage
(CPU, M€mory,
l/O Channels,

Options)

Powel
Supply

Fig. 2. Compact vertical arrangement of components
serves space in the office envtronment.

providing an alternate method of accessing the softkeys by

typing CONTROL r through CONTROL I on the main
keyboard. Thus, knowledgeable user/typists can keep their
hands on the keyboard while less familiar users can take

advantage of the accuracy resulting from the close proxim-

ity of labels and screen-mounted keys. The second objec-

tion was met by providing the feature of horizontal scroll-

ing. Thus, in the few cases where text and softkey labels

overlap, it is possible to move the entire text to the left to

uncover the hidden data.

On the main alphanumeric keyboard, the arrangement of

characters resembles that found on a typewriter. The
philosophy here was that more people are familiar with a

typewriter than with other alphanumeric keyboards, such
as the teletypewriter. Keys have been added to this general

arrangement to implement the full ASCII character set.

Close cooperation among many HP divisions has resulted

in this basic arrangement becoming a standard for a number

of diverse data entry products.
Simplicity was a major consideration, and it resulted in

the paring away of many extraneous controls and displays.
Other than the CRT itself, the only display normally visible

from the front of the machine is the ATTENTION light and
thus the l igh t ' s impor tance is emphas ized. Severa l
seldom-used controls and displays have been located be-

hind a door to deemphasize their importance to the average

user. The main power switch is located below the keyboard

to deemphasize i ts relat ive importance in the on-going op-

eration of the machine while providing easy accessibility in

an emergency. Its location has the additional benefit that

the switch is mounted directly to the power supply module

so it can be removed and serviced with the supply.

We considered it important for the customer to be able to

reconfigure and add boards to the card cage. This resulted

in the development of a number of information labels on
individual boards and on the card cage. These labels iden-

tify by names and colors the functions and locations of

individual boards. In addit ion, the labels identi fy ad-

dress select switches, cable locations, and diagnostic
l ights (Fig. 3).

The method by which the machine would be moved
about raised some mechanical and human factors ques-

t ions. A high degree of mobil i ty was not thought to be
necessary. On the other hand, the machine will be moved

for servicing, floor cleaning, or other purposes. The ob-
vious solution of four locking wheels was considered un-
desirable, since it would cause the anti-tip feet to be too
high above the floor, creating a barrier for the operator's
legs. Our solution was to mount two wheels in the rear of
the machine and to use Ievel ing pads in front. With this
arrangement, it is easy to Iift the machine by tilting the
keyboard and then to move it as one would move a wheel-
barrow. When the machine is set down, there is no possi-

bi l i ty of accidental movement (Fig.) .

Structural Design
Two of the most important parameters in the structural

design of the cabinet were low cost and ease of modifica-

tion. The second parameter arose from the need to accom-
modate the disc mountings and RFI/ESD requirements,

which were not defined unti l late in the development pro-

lexible
Disc

Fixed
Disc

JUNE i 979 HEWLETT-pAcKARo .touRruel 27

Fig. 3. HP 300 card cage is labeled to identify the functtons
and locations of prrnted-circuit boards.

cess. Our studies in cost reduction led us to examine the
structures of home appliances, such as washing machines
and refr igerators. Many of these products make use of the
eff icient monocoque design, which uses the skin of the
machine as a part of the load-bearing structure. In other
words, the skin serves a dual function of cover and struc-
ture, unl ike other designs, in which i t is common to use a
skeletal structure covered by non-load-bearing shrouds. We

Fig,4. HP 300 can be moved like a wheelbarrow

28 nEwlErr-pncKABD JoUBNAL JUNE 1979

A Novel Shipping Container
We are proud ot the fact that the HP 300 shipping container system

received the Best of Show award at the 1978 International Packaging
Week Exposition. lt is a multifunctional design that satisfies needs in
production, shipping, and instal lat ion.

The packaging process starts with the insertion of caster wheels
into the bottom of the shipping pallet. This pallet then serves as a
mobile assembly platform and eliminates the need Jor conventional
product handling systems. The empty minirack with feet attached is
set on the pallet and the remaining parts are installed as it is moved
from station to station in the production area. The wheel height was
selected to provide comfortable access during assembly and test-
Ing .

The pallet also f unctions as an efficient shock and vibration isolator
during shipping. l ts f loater base design incorporates two types of
foam pads that serve as springs and dampers. Together, they reduce
vibrat ion loads and el iminate the problem of "bottoming out." These
pads are also designed to withstand the extremes of hot and cold
temperature cycl ing that each HP 300 undergoes in our production
environmental test chamber.

After assembly and testing, the package is prepared for shipping
by bolt ing the HP 300 to the pal let, adding accessory parts, instal l ing
a corrugated cover with snap-on/snap-off clips, and removing the
wneels.

At the customer's site, the package is designed for quick disas-
sembly and unloading. One inexperienced person can unpack and
unload the 260-pound HP 300 in about f ive minutes. The unpacking
instructions show a step-by-step procedure with pictures alone, so
instructions in different languages are not required, After removal of
the cl ipped-on cover and unbolt ing of the feet, a self-contained ramp
is set alongside the pal let and the HP 300 is rol led ofJ.

implemented this concept with a welded sheet steel frame
that we cal l the "minirack" (Fig. 5). The minirack serves as
the original part to which everything else is attached. The
feet are bolted to the underside, the CRT/f loppy disc assem-
bly is r iveted to the top, the keyboard shelf r ivets to the
front, internal modules including the card cage, disc, and
power supply are bolted in, and a front and rear door are
instal led. Most of these modules mount in such a way that
they enhance the r igidity of the overal l structure. The pro-
cess of adding parts to the minirack occurs while the
minirack is in place on i ts shipping pal let with wheels
mounted to the pal let 's underside for production mobil i ty
(see "A Novel Shipping Container," page 2B).

Most of the cabinet parts were designed so that they could
be made on our numerical ly control led punching ma-
chines. This "soft tool ing" approach has the advantages of
extremely low tool ing cost and fast implementation of de-
sign changes. Consequently, while the basic cabinet design
has remained from an early prototype stage, we were able to
modify parts to include such things as cool ing holes and
grounding lugs without incurr ing the substantial t ime de-
lays that often accompany the alternative of "hard" tool ing.

Structural test ing included a series of shake, shock, and
drop tests that were defined as appropriate for the office
environment. We also performed abnormal use tests, such
as standing on the machine to change a l ight bulb. An
unplanned measure of structural integri ty occurred during
a 1,rh-f.oot vertical drop test when the cabinet, after hitting

Fig.5. Ihe HP 300's skin seryes as both cover and structure.
This "minirack" is the original part and everything else is
attached to it.

the ground, continued to move and fel l on i ts back side. The
only signif icant damage was a twisted bracket and one
loose connector. After reinstallation of the connector. the
machine was operable.

Serviceability
Rapid serviceabil i ty is an important consideration in

terms of minimizing both user down t ime and service costs.
The package design contr ibutes to system serviceabil i ty by
providing rapid access to internal components and by dis-
playing a large amount of diagnostic and configuration
information in the card cage. Access to al l of the major
modules can be gained by removing the front and rear
doors, CRT shroud, and keyboard shroud. Most of these
covets employ captive fasteners to minimize the common
problem of lost screws. Once the rear door is unlocked and
removed, the card cage is exposed. The cage contains al l of
the circuitry for the CPU, memory, and I/O devices, and
most of the circuitry for the two discs and the integrated
display system. Thus, most service functions can be per-
formed in this one area.

As previously mentioned, the front side of the card cage
boards contains many diagnostic l ights and configuration
switches. Thus i t is often possible for the service person to
make a quick assessment of system configuration and fai l-
ure modes by looking at this area. Some subtle features that
enhance serviceabil i ty include an auxi l iary power connec-
tor on the backplane for connecting test probes, and a del ib-
erate effort to minimize the number of fastener sizes.

Safety and Environmental Codes
Safety considerations played a large role in the HP 300

design, mainly because of an increasing awareness and
definit ion of international safety codes. While many safety
considerations can be identi f ied by common sense, others
can involve subtle misuse of the machine or the relat ive
value judgments of safety agencies in dif ferent countr ies.
Consequently, package design included ongoing reviews
by our product safety group, and they spent much of their
t ime keeping abreast of international developments. Our
general phi losophy was to design for the worst cases from
all of the codes instead of tai lor ing machines for individual
countr ies. Safety-related packaging features include:

r Definit ion of customer and service access areas. Service
access areas require a tool for entry.

r Selection of materials to comply with various f lammabil-
i ty standards.

r Caution and warning labels addressed to operators and
service people.

r Shields for hazardous voltages and moving parts. Many
of these shields are located inside the machine to protect
the service person. Some ofthem also function to protect
the system from short ing caused by such things as wan-
dering screws and paper cl ips.

r Anti-t ipover feet that also extend out from the rear ofthe
machine to minimize the possibi l i ty that fan openings
wil l be blocked by an adjacent wall .

r Numerous detai ls to provide secure safety grounding
throughou l the chass is .
Two environmental concerns played a maior role in

package development: electromagnetic interference (EMI)

JUNE 1979 HEWLETT pACKARD louRur 29

and electrostat ic discharge (ESD). Limitat ions on EMI emis-

sions are presently prescribed by the German communica-

tions authority. The HP 300 was tested to the German

specifications early in its development and found to have

excessive emissions. Application of some theory and much

trial-and-error design led to the following changes:
r AII conductive parts of the cabinet are grounded together

at many points via screws and welds.
r Plated parts were substituted in places for painted ones to

achieve better grounding.

r The doors are grounded to the main cabinet by leaf

springs.
r I /O cable shields are grounded to the frame of the

machine by die-cast mounting clips.

r Shields were added to several parts of the cabinet.

ESD problems occur when a person creates a spark by

touching the machine or a nearby conductive object. In
general, we found that ESD problems could be eliminated

by solving EMI problems.

Acknowledgments
The contributions mentioned in this article represent the

work of many people. Scott Sti l l inger did much of the
product design in the form of configuration definition and
parts design. Roger Lee was our industr ial designer and the
styl ing theme that he establ ished with the HP 300 has been
applied to a number of other compatible HP devices. Impor-
tant production-oriented inputs were made by Virgi l

Springer and Tony Napolitan who joined the team first to
assemble prototypes and later to function as supervisors in

our manufacturing area. Curt Gowan contributed important
ideas relating to serviceability. Bob Schaffer and Tony
Napoli tan establ ished the basic concept of using the ship-
ping pallet as a mobile assembly platform. Bill Kropf and
Pat Wright were our shipping container designers. Beth
Blomenkamp is to be commended for the prodigious task of
producing over 500 square feet of mechanical drawings,
which represented the package design documentation. Ron
Morgan provided product safety consultation and review.
This was an incredibly difficult task, since over fourteen
different international safetv standards were found to be

applicable and many of these were being changed as the
pro jec t p rogressed. Peter Rosenb lad t con t r ibu ted the
foreign keyboard designs and much of the overall proiect

coordination.

David A. Horine
Dave Horine was project manager for
the HP 300 package desrgn. Before
coming to HP in 1971 he worked as a
designer of surgical devices and later
as a product design consultant. A
graduate of Stanford University in
mechanical engineering product de-
sign, he earned his BS in 1963, his MS in
'1965 and the degree of engineer in
1 969. For the past six years he has been
an instructor in Stanford's Department
of Design in addit ion to his work at HP.
Original ly from Glendale, Cali fornia,
Dave now lives in Los Altos with his wife
and five daughters. Dave has an in-

terest in long distance endurance sports, and his activities have
included several 200-mile-per-day bike r ides over Mt. Lassen, a ski
tr ip across the Sierra Nevada range, running a marathon, and numer-
ous backpacking tr ips. He also enjoys creative design activi t ies such
as jewelry and furniture bui lding.

World-Wide Regulatory Compliance
The HP 300 Computer is marketed world-wide and must comply

with a variety of domestic and international safety and other regula-
tory requirements. For North American markets, the product is listed
and certified to the following safety requirements.

UL1 14: Standards for Safety oi Oftice Appliances and Business
Equipment (Underwriters Laboratories).

UL 478 Standard for Safety of Electronic Data Processing Units
and Systems (Underwriters Laboratories).

CSA 22.2 No. 154: Data Process ing Equ ipment (par t o f
Canadian Electrical Code, Part ll, Safety Standards for
Electr ical Equipment).

For the international market, the HP 300 is certified by the German
agency Verband Deutsches Electrotechniker (Association of Ger-
man Electrical Engineers) as conforming to the following standards.

VDE 0730: part I and part ll-P: Regulation for Electric Motor-
Operated Appliances for Domestic and Similar Pur-
poses (Off ice Machines).

VDE 0871/6.78: Badio Interference Suppression of High Fre-
quency Apparatus for lndustr ial, Scienti f ic, and Medical
(lSM) and Similar Purposes.

The HP 300 is licensed by the German FTZ (Bureau of Telecom-
mun ication Technology).

The HP 300 is designed for compltance with the fol lowing require-
ments of the International Electrotechnical Commission.

IEC 380: Safety of Electricaliy Energized Office Machines.
IEC 435: Safety of Data Processing Equipment.
The product is also designed for compliance with the safety stan-

dards of Finland, Switzerland, the United Kingdom, and Austral ia.
-Ronald E. Morgan

30 rewlerr-pncKAFrD JoURNAL JUNE 1979

l l

l

S P E C I F I C A T I O N S
HP 300 Computer System

,,i

HP 300 System Unit
The HP 300 Syslem Unit is the central element in every HP 300 system conliguration. lt
combines into a single. compact, integrated package all the hardware components necessary
for system operation.

Processor
[,lain Memory
Input/Output Channels
12M-byte Fixed Disc (oplional)
1M-byte Flexible Disc Drive
lntegrated Display System
Power Supply.

PROCESSOB:
INSTRUCTION SET: 195 instructions
DATA TYPES:

Bil
Byte
Integer (2- and 4-byte)
Floating poinl (4- and 8-byte)

USEF PROGBAMI ADDRESSING SPACE:
Code: 2,064,384 bytes maximum (up to 63 code segments ol up to 32,768 bytes each)
Data;268,369,920 bytes maximum (up to 4096 data segments of up to 65,536 bytes

each)
l\4lNOB CYCLE flME:270 nanoseconds; variable microcycle timing.
LEVELS OF INTERRUPT PRIORITY: 15 .

MEMORY
WORD LENGTH:22 bits (16 data/6 error correction)
CYCLE TIME: 500 nanoseconds
MEMORY MODULE: 128K bytes
MINIMUM MEMORY: 256K bytes (2 modules)
l\, lAXlMUM I/EMORY: 1024K bytes (8 modules)
MEMORY TECHNOLOGY: 16K-bit MOS RAMS

GENERAL INPUT/OUTPUT CHANNEL (GIC)
CAPACITY: 8 devices per GlC, maximum; 2 GlCs per system, maximum
DATA TRANSFER BATE: 1M-byte/second maximum
CABLE LENGTH: 15m (50 f t) max imum per GIC
INTERFACE: General-purpose byte-parallel interface bus
DEVICES SUPPORTED:

Integrated Display Syslem
Fixed Disc
Flexible Disc Drive
2631A Serial Printer
7906Nr/S Disc Drive
7920M/S Disc Drive
7925M/S Disc Drive

ASYNCHFONOUS OATA COMMUNTCATTON CHANNEL (ADCC)
CAPACITY:8 devices per ADCC, maximum (4-Main, 4-Exlender); 2 ADCCs per system

maximum (total ol 16 devices per system)
DATA RATES: 50, 75, 1 1 0, 1 34.5, 1 50, 200, 300. 600, 12OO, 2400, 4800, 9600 baud
CABLE LENGTH; 1 5m (50 ft) maximum per device
INTEBFACE: FS-232C/CCITT V.24 asynchronous, bit-serial interface
DEVICES SUPPORTED:

26408 Interactive Display Terminal
2645A Display Station
2647A lntell igenl Graphics Terminal
2648A Graphics Terminal

FtxED DtSC (HP 7910K-020)
CAPACITYT 12 mill ion 8-bit bytes (formatted)
BYTES/SECTOF: 256
SECTORS/TRACK: 32
TRACKS:738 r 2
TRACKS/INCH: 300
BITSi INCH: 3225
TFACK-TRACK SEEK T |N.4E: 10 ms
AVERAGE SEEK: 70 ms
WORST CASE SEEK: 1 10 ms
AVERAGE LATENCY: 10 ms
TRANSFEB RATE: 526.5 kilobytes/second

FLEXTBLE D|SC OR|VE (HP 7902)
CAPACITY:

1 .03N.4 by tes (1 ,029,120 by tes)
256 bytesisector
30 seclorsitrack
67 tracks/surface
2 surfaces

MEDIUI\,,|: 2-sided, double-density tlexibte disc (tBM #2736700 diskette)
TRACK-TO-TRACK SEEK Tll\4E: 18 ms
A V E R A G E S E E K T I M E : 9 1 m s

AVEHAGE LATENCY: 83 ms
DATA TRANSFEH RATE: 100K bytes/s (burst)

INTEGRATED DISPLAY SYSTEM (IDS)
DISPLAY SCREEN DIMENSIONS: '13 .7 x 26 .4-cm (5 .4 x 1O.4 in) ; 24 t ines o f 80

characters.
CHABACTERS: 2.46 x 3.18 mm (.097 x .125 in): 7x9 enhanced dot matrix with hafi

dot shift ing.
INTENSITY CONTFOL: Operator accessible
STANDAFID CHARACTER SET: 128-character USASCII
OPTIONAL CHARACTER SETS: Math characters, Line drawing set, Large characters,

International characlers.
DISPLAY ENHANCEMENTS: Ha l f -b r igh t , B l ink ing , tnverse v ideo (b tack-on-wh i te) ,

Underline.
KEY-CONTROLLED FUNCTIONS; Display enhancements, Character set setection, Set/

clear tab, Display of control lunctions, Screen hardcopy.
WINDOWING

Concurrently Active Windows: 32 maximum
Borders: 1 arbitrary vertical border maximum; Arbitrary horizontal borders.
l io: Input from one displayed window at a timei Output to any aclive window on an

asynchronous basis.
Format l\4odes: Unlormatted (window contents modifiable from keyboard); lmpticif ly

Formatted (output protected trom modification); Explici i ly Formatted (input restricted
to defined fields).

FILE ATTACHMENT/SCROLLING/EDITING
Files Attachable: Keyed Sequential with DOUBLE keys, Direct.
N,laximum File Length: Arbitrary
Max imum Record Length : 160 d isp layab le charac ters (256 inc lud ing cont ro l

characters).
Scroll ing Functions: Scroll up/down, Scrolt tefvright, Disptay first/ last page, Dis-

play previous/next page.
Editing Functions: Scroll ing, Cursor up/down/left/right, Character replace (type

ove0, Character insert/delete, Line inservdelete.
SOFTKEYS

Number of Soitkeys:8.
Softkey Labels: Dynamic labell ing; 1 to 3 l inesilabet; 1 to 80 characters/labet t ine.
Softkey Mode: Terminating (input terminates when key js struck); Nonierminating

(input continues aiter key is struck).

ENVIRONMENTAL
TEI\4PERATURE

Operating: 10" to 40' C (50" to 104' F)
Non-Opera t ing : 40 ' to 65 'C (-40 ' to 149" F)
Maximum Rate of Change: 10'C/hour (l inear)

HUI\,l |IDITY
Operaling:20% to 80"/" FIH (maximum wet bulb temperature 26'C, no condensation)
Non-Operatjngr 8olo to 80% FIH (maximum wet bulb temperature 30'C, no conden-

sation)
ALTITUDE

Operating: To 4600m (15,000 ft)
Non-Operating: To 15,200m (50,000 ft)

GENERAL
POWEF REOUIREI\,IENTS

Voltage: 100, 12O,22O, ot 24OVi ts.k, 10"k
Frequency: 50 or 60 Hz; +2 Hz, 2 Hz

POWEB DISTURBANCES (SYSTEN,I WITHSTANDS):
Shor t -Term Undervo l tage: <85o lo o i nomina l fo r 11 ms dura t ion , measured

from peak of the ac waveform.
Shor t -Term Overvo l tage: 150V fo r 30 s dura t ion (110, 120V) ;300V fo r 30 s

duration (220, 240V)
Line lnterference Pulses: 1000V for 50 l ls (l ine-to-neutral or neutral-to-ground)
Fast Pulse Disturbances: 1500V lor 30 ns (l ine and neutral to ground)

SHOCK (NON-OPERATING): 30 g
FLEXIBLE DISC STORAGE TEMPERATURE:5 ' to 50" C (41" F Io 122" F \
IVAXIIVUM RATE OF TEMPEHATURE CHANGE: 2o'Clhr (36'F/hr)
HUMIDITY: 8'l" to 80'/" BH
SAFETY/RFI CERTIFICATION

USA: UL 478. 114
Canada: C22.2 #154

HP 300 Software
AMIGO/3OO OPEBATING SYSTEII/
AMIGO/3OO FILE SYSTEM

FILE STRUCTURES: Sequential, Relative, Keyed Sequential, Direct (Hashed), Library,
Primitive, Memory, Null.

ACCESS IVIETHODS: Serial (forward/backward), Keyed.
KEY TYPES SUPPORTED:

Integer (2- and 4-byte)
Real (4- and 8-byte)

JUNE 1979 HEWLETT.PACKARD JOURNAL 31

Character string (to 255 bytes)
KEYED RETRIEVAL MODES: Exact key match, Nexl key < search key, Next key >

search key, Next key <= search key, Next key >= search key.
FILE SHABING MODES: Exclusrve access, Read-only sharing, Update sharing with fi le

l@king/unlocking.
MAXIMUM RECORD LENGTH: 2028 lo 2036 byles, including keys, depending on fi le

structure.
IMAGE/3OO DATA BASE MANAGEMENT SYSTEM (OPTIONAL)

DATA SET STRUGTUFIE: Nelworked, with masler and detail data sets.
DATA SET ACCESS METHODS: Serial, Direct, Calculated (Masler set), Chained

(Detail set).
DATA ITEI\,I NAMES PEB DATA BASE: 255 maximum
DATA ITEMS PER OATA ENTRY: 127 maximum
DATA SETS PEB DATA BASE: 50 maximum
DETAIL DATA SETS PER |\,IIASTER DATA SET: 8 maximum
SEARCH ITEMS (KEYS) PEB DETAIL SET:8 max imum
DATA ENTFY SIZE:2034 bytes (Master), 2020 bytes (Detail) maximum
DATA ENTRIES PER DATA SET: 65.535 maximum
DATA ENTRIES PER CHAIN: 65,535 maximum

BUSTNESS BASTC/300
RPG-il/300
UTILITIES

SORT/MERGE
Input F i les : 16 max imum
Input File Organizations:

Sequential
Flelative
Keyed Sequential
Direcl

Sorvl\4erge Keys: 16 maximum
Sort/Merge Key Types:

ASCII stflng (lo 255 bytes)
Logical (2 bytes)
Integer (2 or 4 bytes)
Real (4 or 8 bytes)
Packed Decimal (to 27 digils)
Zoned Decimal (to 27 digits)

Key Positions: arbitrary
Sorted/Merged Output Oplionsi

Complete records
Sorled/merged keys only

Record addresses (tag sort)-Sort only
TYPIST
HELP
SYSI'EM BUILD
SYSTEM STARTUP
OIAGNOSTIC AND UTILITY SYSTEM
PRICE lN U.S.A.: $36,500 (includes one lanquage).
MANUFACTURING DIVISION: GENERAL SYSTEMS OIVISION

1 9447 Pruneridge Avenue
Cupertino, California 95014 U.S.A.

Hewlett-Packard Company,.150.1 Page Mil l
Road, Palo Alto, Cal i fornia 94304

Bulk Rate

, U.S. Postage
-

Paid
Hewlett-Packard

Company

*

$

-

ild0 0 03 ;. 3O3 t L $rrA.f{ ital e &{r
ili(Jul-l*N n ntit*{S
C n A i O r i t C I h - r \ l C 5 1 I t i
C€iir${t rr'l'-AI lU*5 f,i-, PI
L57z t i i 6u l r t AYE
PEfi lSeLi lLA l-L 5d'?ur

C H A N G E O F A D D R E S S : lffi:il':"ffi;fl",::i."::nfl;T{"J#'#:i:?5 lff'ffi:if #$,": 3'^''"^nf '."J ffi"l

