

HEWLETT- PAC KARD J O T]RIVAL
Tecfinical Intormation trom lhe Laboratories ot Hewlett-Packard Company

JULY 1979 Volume 30 r Number 7

Contents:

Cost-Effective Hardware for a Compact Integrated Business Computer, by Arndt B.
Bergh and Kenyon C. Y. Mei Aovanced architecture ancJ si l icon-on-sapphtre tech-
nology provide more compuler for less money

A Computer Input/Output System Based on the HP Interface Bus,by W" Gordon Mathesan
/l's desrgned ta make it easy to add. delete, and communicale with pertpheral de'tices.

A Small, Low-Cost 12-Megabyte Fixed Disc Drive,by Richard L. Smith A new Winchester-
lype disc was designed Io meet lhe mass mernary needs ol the HP 300.

An fnnovative Programming and Operafing Console, by Atfred F. Knotl and Norman D.
Marschke Wlndows and softkeys add new facets to the c/assrca/ concept of tnteractive
programmng.

AMIGO/300: A Friendly Operating System, by Ralph L. Carpenter An tmproved manl
maChine interfaCe, SOmellmeS Called fJjgl '1(t inac< ronuirac an arly2J15;gr1 operating Syslem.

Configuring and Launching the AMIGO/300 System, by Donald M.Wise and James C.
McCullough System generation and starlup are easier than they used to he

A Muftiple-Output Switching Power Supply for Computer Applications, by Dilip A. Amin
and Thane Kriegel The HP 300 uses a stanclard HP power supply

This is the second of two successive issues devoted to the HP 300 Computer. This all-
new state-of-the-art machine is the forerunner of a computer family that s expected to meet
the needs of small business users into the 1980s.

Last month's articles introduced the HP 300 and described it f rom the user's point of view-
its novel keyboard and display system, what it's like to prograrn, its packaging and software.
This month we go inside and iook at its architecture and processor design (p. 3), its inpuU

ftr' , -:i output system (p. 9), the hardware design of its display system (p. t3), its software operating
*; 'W system (p. 17) . and i ts power supply (p. 25) .

Central to the processor design story are lhree custom sil icon-on-sapphire large-scale integrated circuit chips,
each containing many thousands o{ transistors. Circuits can be packed so densely on these chips that it was
possible to build the HP 300's central processing unit on only lwo printed circuit boards, compared to the eight
boards that would have been required for equivalenl capabil ity using older technology. The power supply is of
inlerest because it 's an off-the-shelf HP product designed for general computer mainframe applications, and not,
as is more often the case, a special unit that can't be used in any other computer.

This month s cover shows the HP 300 with some of the peripheral equipment it can support. One HP 300
system unit wil i support up to 16 applications terminals, two printers, and external disc memories with a capacity
of 260 mi l l ion characters.

In this Issue:

-R. P. Dolan

Cost-Effective Hardware for a
Compact Integrated Business Computer
CMOS/SOS technology helps reduce an eight-board
processor to only two boards. Advanced architecture
supports the features fhe user sees.

by Arndt B. Bergh and Kenyon C. Y. Mei

HE HP 300 SOFTWARE ENVIRONMENT, described
Iast month, is built on the architectural capabil it ies
of the HP 300 computer hardware. The HP 300 is a

stack machine with addit ional data spaces and a separate

code space. This means that the environment of an execut-

ing program consists of a non-modif iable code space of one

or more code segments, and a number of data spaces that

include the stack, the global data segment, and addit ional

array data segments that may be needed by the program

(see Fig. 1). The stack is used for program control, param-

eter passing, Iocal storage, and expression evaluation. The

data segments provide space for global data and addit ional

array data.
There is a stack for every program or task, but only one is

active at any t ime. The stack operates in the normal push

down, pop up mode using zero-address instruct ions. One-
address, indexed, direct or indirect instruct ions are pro-

vided for access to data within the stack, global, and code

segment spaces. Indirect reference addressing is provided

Code Segments

Addressing Modes

Top-of -stack operations
Direct with optional indexing, relative to:

Program Counter
Procedure Base
Stack Pointer
Global Data Base

lndi.ect via above, with optional indexing to:
Current Code Segment
Any Data Segment

for access to data in data segments.
The HP 300 has a r ich instruct ion set of almost 200 in-

struct ions, including data manipulat ion instruct ions, pro-

gram control instruct ions, and privi leged instruct ions to

aid the task of the operating system.
Capabil i t ies provided by this structure include relocat-

abi l i ty, reentrancy, recursion, code sharing, program pro-

tect ion, convenient dynamic storage al location, and a logi-

cal virtual memory structure for code and data that provides

a very large machine address space.
All program and data spaces are relocatable, that is, they

can be located anywhere in real memory without alteration.
A natural reentrancy capabil i ty is provided since program
code is separated from data and is not alterable. This means
that a program may be interrupted from a code segment, and
that segment may be used by other programs and later
reentered by the first without concern that the code may
have been altered by the other programs.

By a simple l inking mechanism, code is accessed logi-

Stack (Local Oata)

Global Dala Segment

Fig . 1 . HP 300 address ing
scheme. The environment of an
executing program includes
non-modifiable code segmenfs
and a number of data spaces thal
include the stack, the global data
segment, and array data seg-
menls as needed.

JULy 1979 HEwLETT-pAoKARo ..louRrar 3

Array Data Segments
(Local or Global Data)

cally through system tables. Together with the previous two
properties, this provides a convenient means forthe sharing
of code. These code segment properties and the procedure
call mechanism that is used with the stack also provide a
natural recursion capability, that is, the ability of a segment
of code to call itself.

Both user and system code and data are subject to mem-
ory protection checks, a feature that is very important to the
integrity of the system when used in multiprogramming
and multitasking applications. Dynamic storage allocation
is a feature of the stack architecture that provides a more
efficient use of main memory.

Virtual Memory
An architectural feature that greatly expands the capabil-

ity of the HP 300 is the new virtual memory structure that
includes both code and data segmentation. Tables main-
tained by the system contain entries for all the code and data
segments used by a program. Only the code and data seg-
ments currently being used need be present in memory,
with new segments being brought into memory as they are
needed. The operating system uses this feature to develop a
working set of code and data segments for each program so
the use of memory resources can be optimized.

Data Segmentation
A variable may be passed to a program or procedure

either by value or by reference, that is, by passing its actual
value or by passing a pointer to the storage location of its
value. In the HP 300, the indirect pointer used for accessing
reference variables has been made a 3z-bit data descriptor,
or label. This label specifies the data area in which the data
resides, and the relative location within that data area. If the
label points to a data segment, the segment number in the
label is used to index into the data segment table to find the
location of the segment in real memory (see Fig. 2). The
offset in the data label plus the index register then are used
to compute the relative address of the data within the seg-
ment. For protection, additional information in the table is
used to verify the validity of the label. This label structure
provides the HP 300 with addressabil ity to a data space of
up to 250 mill ion bytes for the system plus up to 250 mill ion
additional bytes of data for each task that is active on the
system.

Data S€gment Table Control Bits
A: Absence Blt
M: Mode Bit
R: Relerence Bil
D: Oirty Bit (lndicates

Recent Change)

Fig.2. When variables are passed by reference to a memory
location, the pointer to the location is a 32-bit data label that
contains a segment number and an offset. The segment
number is used to index into the data segment table for the
status and location of the segment. Segment presence and
mode are checked and the offset is added to the address from
the table to give the address of the data.

4 sewrErr,pncrARD JoURNAL JULy 1979

Gode Segmentation
The HP 300 system programming language is a block-

structured, procedure-oriented language. Procedures used
by a program may be located in separate code segments.
Calls to these segments are made through 32-bit program
labels that consist of a segment number and a logical entry
number in the target segment. The segment number is used
to index into a system-maintained code segment table to
f ind the location of the target code segment. The logical
entry number in the label is used to index into the proce-
dure entry point table (STT) appended to the code segment
to find the starting address of the procedure. This segment
structure provides up to a gigabyte of system code space
plus up to a gigabyte of addit ional user code space for each
task that is act ive on the svstem.

Instruction Set
Instructions are provided for manipulating the following

data types: bit, byte, decimal and byte strings, 16-bit integer
and logical, 32-bit integer and floating point, and 64-bit
floating point. These are predominantly zero-address in-
structions, such as.add, subtract, compare, shift, and so on.
They operate on the top of the stack and their opcode-only
nature saves space and thus improves code compactness.
Indexable one-address memory instructions, such as quad
Ioad, are provided for accessing these data types in mem-
ory. Program control instructions, such as procedure call,
are included to support the block-structured system pro-
gramming language. A set of privileged instructions for I/O
and operating system use, such as task launch, also have
been provided.

All these features provide advantages that are important
in a multiprogramming environment. The user program
lives in a protected logical addressing structure, with pro-
gram space managed and protected by the system. Al-
though it is a 16-bit machine, the HP 300 provides process-
ing power approaching that of a 32-bit machine.

Central Processing Unit
The HP 300 CPU, Fig. 3, is an answer to the challenges of

high computing speed,low power consumption, and phys-
ical compactness. Three custom-designed large-scale inte-
grated (LSI) circuits, processed by HP's complementary
metal-oxide-semiconductor/sil icon-on-sapphire (CMOS/
SOS) facil i ty, enabled our logic designers to pack what
might have been an eight-board CPU into two. The inte-
grated-circuit chip set, 6K 32-bit words of read-only mem-
ory control store, and some peripheral Iogic reside on one of
the boards, the processor board. The other board, the bus
interface controller board, contains registers, drivers, and
the asynchronous hand-shake logic required to communi-
cate through the intermodule bus, which connects the
processor elements (Fig.).

The fact that the HP 300 CPU is a microprogrammed
processor greatly simplif ies hardware design and allows a
great deal of f lexibil i ty in the development schedule. It also
allows other groups to take advantage of this powerful
processor. For example, the input/output processor is emu-
lated by the CPU, that is, a portion of the CPU's micro-
programming implements a separate I/O processor with an
instruction set that is different from the CPU's. Another new
HP computer system, the HP 3000/33, uses the same proces-

sor hardware (with one pin hardwired to a dif ferent voltage)

with i ts own microprogram. A powerful self test is easi ly

implemented by the inclusion of self-test microcode.

CMOS/SOS technology was chosen mainly because of i ts

good speed-power product, high density, and ease of de-

sign. This technology al lowed relat ively inexperienced
logic designers to start designing while the process was
being developed. This is because designing a CMOS chip is

I ike designing stat ic logic, so the designers did not have to

be concerned about charge storage and t iming, which are
cri t ical in dynamic NMOS integrated circuits. The en-

lntermodule Bus Intedace

<+ To Intermodule Bus

CPU Dala Bus

1 5

RASS Stack Bit/ROP (Multiplexed)

Carry

: Overtlow

Bounds
Violation

gineering decision to design a three-chip set was based on

optimal logic part i t ioning, pin l imitat ion, projected yield

due to chip size, speed, and avai lable development re-

sources such as manpower and t ime.
The HP 300 CPU is a general-purpose microprogrammed

processor with special features useful for emulation of the

H P 3 0 0 s y s t e m l a n g u a g e i n s t r u c t i o n s . D e c o d i n g o f

Huffman-coded instruct ions and automatic bounds check-

ing are al l done by hardware. Two top-of-stack (ToS) regis-

ters are provided for fast access to the stack. To reduce the

complexity of the stack control logic, the stack area in main

tlli.,..ti

CPU Clock

ROM
Control
Store

BASS
Condition l

lnternal
Clock--------)
Fteeze ,ir.-------fr.

Enable ROM l
Address
Register

Load----'',

!+

GND

Interrupt. # r

Micro rt
lnterrupt
--f ,

Mode .-}
Voo l
----|

"*" >,,lt.]r..
Contro!

Fig. 3. fhe HP 300 CPU hardware is functionally partitioned into three CMOS/SOS chips. The
processor control unit (PCU) chip generates mtcroinstruction addresses that control the other

two chips: the register, address, skip, and special (RASS) chip and the register, arithmetic, and
logrc untt (RALU) chiP.

JULv 1979 HEWLETT-pAcKARD ,rouRNnr 5

Custom Processor-to-HP-lB Intertace Chip

memory is always kept current, that is, the contents of the
hardware stack registers are dupl icated in main memory.
AII data registers are 16 bits wide. Double- and four-word
instruct ions are faci l i tated by taking advantage of two- and
four-word shif t hardware. Environmental registers (address
pointers) are 20 bits wide for easy manipulat ion of Z0-bit
addresses .

The LSI Chip Set
The processor cont ro l ch ip (PCU) , F ig . b , i s the smal les t

ch ip (5260 x 3570 mic romet res) . I t con ta ins 5000 dev ices
(t r a n s i s t o r s a n d d i o d e s) . M i c r o p r o g r a m s e q u e n c i n g ,
CPU c lock genera t ion , and a rea l - t ime c lock are the
major functions of the PCU. The sequencing hardware in-
cludes microaddress incrementers, a two-level subroutine
save-register stack, and a mapper that maps the current
instruct ion to the beginning of the microprogram that exe-
cu tes i t . The PCU genera tes a var iab le , s ing le -phase mi -
crocycle clock that governs CPU operation. The length of
the clock period depends on the microinstruct ion being
executed. I t can also be extended to wait for memory data or
the next microinstruct ion during a jump. A system real-
t ime clock and immediate microprogram data are also gen-
erated by the PCU.

The reg is te r -address-sk ip -spec ia l (RASS) ch ip , F ig . 6 ,

6 lEwrrn,pncrARD JouRNAL JULy 1979

Fig. 4. The 150-line intermooute
bus connecls the processor ele-
ments, the memory elements, and
the tnputloutput channels. The bus
is asynchronous and provides
separate address and data hand-
shake / ines fo r be t te r per fo r -
mance. Perrpheral devices are
connected to the general inputl
output channel vra the HP lnter-
face Bus (IEEE 4BB).

and the reg is te r -a r i thmet ic - log ic -un i t (RALU) ch ip , F ig . 7 ,
together perform the data path functions. The RALU chip
contains about 8000 devices and measures 4930 x 4930
micrometres. I t provides 16 registers, eight for address
storage and the other for general-purpose use. The ari th-
met ic and log ic computa t ion hardware a lso res ide on
this chip. In addit ion to standard ALU functions, the RALU
performs integer mult iply/divide, decimal addit ion, and
64-bit shif t operations.

The RASS chip (B0 x 5200 micrometres, 7000 de-
vices) serves several purposes. I ts register f i le provides
the second operand to the ALU. If the current instruct ion is
a memory reference type, special hardware wil l extract the
Huf fman-coded d isp lacement w i th the conten ts o f the
index register added to i t i f necessary. The RASS also au-
tomatical ly checks the effect ive address against i ts proper
base and l imit registers within one microcycle. This power-
ful feature saves both t ime and microprogram steps. Condi-
t ion code, interrupt priori ty control, and skip decision logic
a lso res ide on the RASS.

The Main Memory
A standard HP 300 Computer System includes 256K

bytes of main storage, which is expandable to 1024K bytes
in 128K-byte increments. The main memory consists of a

Fig.5. PCU chip

control ler board and two or more memory array boards. The
control ler handles the IMB handshake and the error detec-
t ion and correction of memory data words. Together with
each tG-bit data word stored in memory array boards, there
are six extra check bits; they enable the control ler to correct
al l single-bit errors and detect al l double and/or odd errors.
The history of error act ivi t ies is logged in the control ler
automatical ly to provide useful service information.

CPU Operation
The t iming of CPU operations is control led by the CPU

clock generated by the PCU chip. The r ising edge of this
clock loads the new microinstruct ion into the ROM instruc-
t ion registers, and the decoding begins immediately. A and
B operands are selected and sent to A and B registers on the
RALU chip. When the CPU clock changes state, the direc-
t ion of the t ime-mult iplexed CPU data bus is turned around,
and the result from the ALU is sent to i ts designated destina-
t ion. The fetching of the next microinstruct ion is done in a
pipel ined fashion: the PCU sends out the next ROM address
while the current microinstruct ion is being processed. This
overlap el iminates wait ing for the next microinstruct ion.

A 32-bit microinstruct ion is interpreted as one of f ive
different formats, depending on i ts function specif icat ion
(F ig . B) . For example , one o f the fo rmats d iv ides the 32 b i ts
into seven control f ields: three f ields specify the operand
pair and storage registers, two f ields specify ari thmetic/shif t
options, another f ield indicates condit ional skips, and the
last f ield sets the status of control f l ip-f lops.

The HP 300 orocessor can be viewed as a three-address

F ig .6 . RASS ch ip

mach ine . However , no t a l l fo rmats p rov ide th is th ree-

address capabil i ty.]ump address and ROM constants are

included at the expense of other f ields.
The microprocessor design is closely tai lored to the HP

300 architecture. As an example, we can look at part of the

STORE instruct ion, which pops the top element of a data
stack into a memory location. This instruct ion specif ies one

of three possible base registers, a f ive-to-eight-bit displace-

Fig.7. RALU chip

JULy 1979 HEWLETT-pAoKARo .touRur 7

ABUS BBUS FUNCTION LABEL STOFE SPECIAL
BASE PADD]SB STRI MSPE
TOSA XFER BUSD BWRO
S CAD S CLAT

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

ABUS STORE

R E P N COUNI

BAUS

SPECIAL sHtFT
FUNCTION

SKIP

JSA/JMP AODRESS

JMPL MODE ADORESS

IMMEO n
I

RoM coNsrANr

Fig.8. HP 300 microinstructions are 32 bits wide and come in
five formats.

ment, and an indexing option. The microprogram to emu-
late a STORE is shown below:

IDS
Al Knoll, Bernie Stewart, Norm Marschke, Dave Delano,

Tom G i l be r t , Ha l Sampson , Jane l l e Bedke , Pe te r
Rosenbladt, f im Basij i.
Power Supply

|im Mathios, Dick Oll ins.
I/O Subsystems

Andre Schwager, Gordon Matheson, Bob Berliner, Ed
Giaimo, Coll in Park, Dean Lindsay, Lang Lok, Steve Sun,
fack Elward.
Diagnostic and Support Tools

Jim Lewis, Russ Scadina, Jim Holl, Dave Delano, Carson
Kan, Joanie Banks-Hunt, Roger Ruhnow, Robert Paull.
Industrial and Product Design

Roger Lee, Scott Sti l l inger, Dale Dell 'Ario, Beth Blomen-
kamp.
Technical Support and Engineering Services

Aida Silva, Darlene Harrel, Linda Pipkin, Corri Mooney,
Ron Vil lata, Nell ie Monsees, Bob Jones, Chuck Habib, Vince
Napoli and staff.

Arndt B. Bergh
The HP 300 system archrtecture is the
most recent in a long line of respon-
sibi l i t ies at HP for Arne Bergh, who
came to HP in 1956, His proiects have
included instruments, magnetic de-
vrces, memories, computers and the
hardware design of the HP 3000. He's
named as inventor on six patents and is
a member of IEEE. A native of Canada,
he received his AB degree in chemistry
from St. Olaf College in 1947 and his MS
degree in physics f rom the University of
Minnesota in 1950. In his otf-hours,
Arne, a resident of Los Altos Hil ls,
Cali fornia, can be found honing his ski l l
at sai lboat racing.

Kenyon C. Y. Mei
Kenyon Mei joined HP in 1973 to work
on HP 3000 hardware. He soon trans-
ferred to a new group investigating LSI
computers, which eventually evolved
into the HP 300. His responsibi l i t ies in-
cluded CPU hardware and LSI chip set
designs, and he is named as inventor
on a patent on multiple-function logic
gates that came out of his chip design
efforts. He recbived his BS and MS de-
grees from the University of California at
Davis in 1967 and 1968, and his PhD
from Stanford University in 1974-all in
electr ical engineering. He enjoys part-
t ime teaching and beginning tennis.

SKIP
INDR
LJBNT)
NEXT

The f irst l ine computes the operand address by adding a
base register, a displacement, and the condit ional index.
The RALU hardware handles the BASE option and chooses
the S, DB, or Q register as the ABUS operand. The RASS
extracts the correct displacement and adds the index regis-
ter to i t i f needed, providing the result (PADD) as the BBUS
operand. The sum of these two operands (JSB implies
addit ion) is stored into three registers (MSPE): the memory
address register on the BIC board, the effect ive address
E register for bounds comparison on the RASS, and an
internal RALU register for future access. I f the instruct ion is
an indirect store, the PCU does a subroutine jump [SB) to
mic rorou t ine STRI and saves the re tu rn address in a
hardware subroutine stack.

The second line transfers the top element in the data stack
(TOSA) to the memory data register TBUSD) and writes it out
to memory (BWRQ. The address in E is checked (UBND)
against proper base and l imit registers in the RASS. A
violat ion would result in an immediate microprocessor trap
before the data is written into memory.

To f inish the STORE routine, the last l ine decrements the
stack pointer(s) and pops the top element in the internal
register stack (CLAT)-the PCU hardware simply declares
current top-of-stack register TOSA invalid and the next-to-
top register TOSB becomes the new TOSA. The end of the
instruct ion is marked by NEXT, which causes the hardware
to enter the instruction fetch phase.

Acknowledgments
Many people contributed to the design of the HP 300. We

would l ike to acknowledge the design engineers who con-
tributed their skil ls and foresight to the development of the
HP 300 hardware:
CPU

Buck Gee, Chuck Glenn, Ron Guffin, Fred Ware, Jim
Tseng, Woody Woodward, David Rabinowitz, Kent Andres,
Lee Britton, Dom Chirieleison, Marcelo Siero, f ohn Carlson,
John Watkins, Tony Hunt, Jean Lundeen.
Memory

Ed Holland, Bil l Stenzel, Bruce Eisenhard, Rich Ham-
mons. Carson Kan. David Lu.

8 newrerr-pecrAnD JoURNAL JULv 1979

$

A Gomputer Input/Output System Based
on the HP Interface Bus
by W.Gordon Matheson

HE BASIC INPUT/OUTPUT BUS of the HP 300 is
the HP Interface Bus, or HP-IB, HP's implementation
of IEEE Standard 488 and identical ANSI standard

MC1.1. The integrated display system (IDS), the flexible
disc drive, the system disc drives, the printers, and other
devices interface to the system via the HP-IB. However, the
HP-IB is not the only I/O bus allowed on the HP 300' The
computer hardware supports up to fifteen I/O channels of
several different classes. An HP 300 I/O channel is inter-
faced to the system by a channel controller board installed
on the intermodule bus (IMB) to provide interrupt ca-
pability, DMA (direct memory access), channel program
management facilities, and special protocol translation
between the computer system and devices on the I/O bus.
For brevity, channel controllers will be called "channels"
in this article.

l/O Channel Characteristics
An I/O channel contains up to 16 read/write registers. It

also responds to various I/O commands issued over the IMB
for such purposes as processing interrupts and channel
program service requests, channel identification, and in-
itialization. The I/O system structure supports eight devices
per channel. Each channel may incorporate a DMA facility
for performing data transfers between main memory and
peripheral devices without central processing unit (CPU)
intervention. Priority for memory access is based on physi
cal proximity to the CPU. Many I/O channels may conduct
DMA transfers concurrently on the IMB, interleaving their
memory cycles with the CPU on a priority demand basis.

At initial release the HP 300 has only two channel types,
the 31262,{ General I/O Channel (GIC) for HP-IB interfacing,
and the 31264A Asynchronous Data Communication

Devlce
Refsrence

Table

Halted
Runnlng
DilA Data Transfer
Waltlng lor tlevlce

Channel (ADCC) for management of up to eight RS-z32 data
communication links.

Device Reference Table
Each of the eight devices on an I/O channel has a four-

word entry in reserved memory. The first word contains the
address ofthe next channel instruction to be executed' The
second word contains the memory address of a special
interrupt parameter area, called the channel program vari-
able area (CPVA). The third word is the label of the code
segment to be executed when the device interrupts the CPU.
The fourth word is used to coordinate and maintain the
activity status of programmed I/O operations. The area of
memory containing this information for all I/O devices is
called the device reference table, or DRT (see Fig. 1).

l/O Operations
There are three types of I/O operations: direct I/O, pro-

grammed I/O, and interrupt processing.
Direct I/O operations are done with a set of I/O-oriented

CPU instructions. They allow a privileged-mode program-
mer to read and write channel registers, perform special
diagnostic operations, affect the ability of channels to re-
quest interrupts, reset and initialize the channels, and iden-
tify which channels are present on the IMB.

Interrupt processing is done within a multilevel priority
structure. Channels are individually enabled and disabled
for accessing a common interrupt request line by bits within
a mask word broadcast to all channels simultaneously. This
is done by the CPU to disable interrupts from lower-priority
channels when it decides to service an interrupt from a
particular channel. Interrupt request priority is determined
strictly by channel number. The standard order is for lower

l/O Driver
Oata Segmont

Interrupt
Data Sogment

Fig. 1. HP 300 hardware inputl
output system memory organiza'
tion. Every llO device has an entry
in the device reference table
(DRT). The channel program vari-
able area (CPVA) contains inter-
rupt parameters.

JULy i979 HEwLEn-pncxnRo lounruer 9

channel and device numbers to have higher priori ty. How-
ever, each channel determines the priori ty of i ts devices and
may provide means for the programmer to disable devices
ind iv idua l l y .

When the CPU is interrupted, i t queries the highest-
priori ty requesting channel to obtain the device number to
be serviced. Then the CPU saves the old software environ-
ment on the stack and establ ishes a new software environ-
ment on the interrupt control stack in the interrupt code
segment indicated by the device's DRT entry.

Programmed I/O is a means of accomplishing I/O opera-
t ions through execution of special I /O programs that are
init iated by software but executed by a special I /O processor
or by the CPU in a special I /O processor mode. programmed
I/O is provided to al low complex I/O operations to proceed
in paral lel with software execution, and to remove the bur-
den o f de ta i led management o f low- leve l I /O bus pro toco ls
from software.

Channel Programs
A channel instruct ion set is defined for the GIC as part of

the bas ic sys tem capab i l i t ies . Th is i s used to c rea te I /O-
oriented channel programs, which are not executable by
software (they are general ly contained within a data seg-
ment) . The channe l ins t ruc t ion se t i s des igned around a
management framework for the HP-lB that provides inter-
leaved service on several devices concurrently and inde-
pendently. Many channel instruct ions are in high-level
forms (buffer transfers, pauses, halts, computed jumps,
etc.), with the detai ls of HP-IB command structure and
protocol being handled by a channel program processor.

F ig . 2 i l l us t ra tes the log ica l opera t ion o f the I /O sys tem.
Channe l p rogram execut ion is in i t ia ted when a SIOp
mach ine ins t ruc t ion is executed , spec i fy ing a se lec ted
channel, device, and start ing address for the channel pro-
gram. When the channe l p rogram te rmina tes , a CPU in te r -
rupt wi l l be requested for that device, with parameters
indicating the reason for the interrupt stored in the CPVA.
Executing the SIOP instruct ion on a channel that does not
execute i ts own channel programs causes the channel to
request channel program service on one of two CSRe
swi tch-se lec ted l ines on the IMB. CSReI goes to the CPU.
CSRQ2 is provided so that i t may be possible in the future to
design a separate channel program processor [CPP) to re-
l ieve the CPU of i ts channel program processing load.
Channels that execute their own channel programs may do
so s imu l taneous ly w i th CPU opera t ions , and do no t use a
CSRQ l ine.

When the CPU sees a request on CSRe1, i t enters a special
CPP mode of operation to execute the channel program for
the device without disturbing the software environment.
When the device's channel program is terminated or tem-
porari ly suspended pending a device request, the CPU re-
sumes execution of software instruct ions unti l the next
request for channel program service. The CPU wil l usual ly
be in CPP mode a small fract ion of the t ime.

The CPU checks for a number of errors during channel
program execution, and may abort the program without
affect ing operations with other devices. Some detectable
er ro rs a re : inva l id ins t ruc t ions , i l l ega l use o f some ins t ruc-
t ion features, HP-IB lockup, and DMA memorv errors. Each

10 lewren pAoKARD JouRNAL JULv 1979

sroP=Start l/O Program Command
csRo =Channel Program Service Request
tRo=lnterrupt Request

Fig.2. HP 300 hardware inputloutput system logical opera
tion. Channel programs for rnput and output operatrons are
wntten tn a spectal tnstructton set and executed either by the
llO channels themselves or by the CPU in a channel program
processor (CPP) node.

error is reported by interrupt with a special code in a re-
served CPVA word . DMA er ror messages inc lude the sus-
pected offending memory address.

l /O Channel Types
There are three classes of I /O channels al lowed by the

H P 3 0 0 h a r d w a r e I / O s y s t e m , a l t h o u g h n o t a l l h a v e
been developed.
GIC-Type Chonnels: This class of channel works with the
channel program service procedures of the CPU. It trans-
lates al l device requests into channel program service re-
quests. This type of channel must look very similar to the
31.2624 GIC in register format, and i t must appear to attach
to an HP- IB .
Software-Control led Chonne.ls: I t is possible to have a
channel that rel ies on software instead of programmed I/O
to perform al l operations. Such a channel translates device
service requests into CPU interrupt requests.
Progrom-Interpreting Chonneis [PIC]: I t is possible for a
channe l to be des igned to execute i t s own un ique channe l
instruct ion set. Such a channel may use a programmed I/O
approach similar to that of GIC-type channels, or i t may use
request and response queues fo r communica t ion , execut ing
on tab le s t ruc tu res ins tead o f s ing le -channe l ins t ruc t ions .

System ldenti f icat ion Provisions
To faci l i tate system autoverif icat ion and autoconfigura-

t ion, identi f icat ion features were added to al l levels of the
I/O system. First, there is an I/O instruct ion that identi f ies al l
used channel numbers on the IMB. Second, each channel

A Small, Low-Cost 12-Megabyte
Fixed Disc Drive*

by Richard L. Smith

Early in the conceptual phase of the HP 300 project, the need for a
resident low-cost mass memory was recognized. While many exist-
ing disc drives would have adequately lulfilled the needs of a system
memory, none met the requirements of available space, power, relia-
bility, and capacity necessary for the small integrated system con-
cept of the HP 300. Thus, the design goals for this memory were:
smallest possible size, 12-megabyte capacity, low cost, high data
rel iabi l i ty, high performance, and compatabi l i ty with the mounting,
cool ing, power, RFl, and HP-IB requirements of the HP 300 System.
Fig. 1 is a photograph of the disc drive used in the HP 300.

Fig, 1. Ihls 12-megabyte ftxed disc provides built-in mass
memory for the HP 300 Computer.

The size goal dictated the use of a rotary (rather than linear)
actuator, brushless dc (rather than ac) motor, and a single platter.
The capacity goal required that both sides ol the platter be used for
data and that l inear and radial densit ies be maximized. The cost goal
indicated that a high degree of tool ing would be needed and that a
maximum use of microprocessor f irmware rather than discrete cir-
currry was necessary.

The high data rel iabi l i ty could be met in one oi two conventional
ways: using MFM encoding and error correcting circuitry, or using a
self-clocking code such as double-frequency FM. We opted for the
lower capacity but highly rel iable FM encoding technique and there-
fore saved the substantial cost of error correcting circuitry.

To use a lower-cost rotary actuator, i t is necessary to use
Winchester-type heads and media. The Winchester technology was
pioneered by IBM Corporation. The heads are designed to take oft
and land from a lubricated disc surface and fly about 0.5 pm from the
disc, which is rotating at 3000 r/min. Because of this extreme proxim-
ity of the head to the disc surface, cleanness is essential. The drive is
manufactured in a class-100 clean environment and sealed from
outside contamination. Internal air is continuously purged by recir-
culat ing i t through a 0.3-p.m f i l ter.

To meet the capacity and performance goals, a technique of posi-
tioning the read/write heads was developed that uses the data sur-
face directly as a reference, rather than a separate reference surface.
Data is organized on a disc surface into concentric circles called
tracks and blocks of data called sectors. Between sectors there
normally are gaps with nothing recorded rn them. In our intersector
gaps we place information for locating the track center on a sampled
basis, and track identification addresses in Gray code format so that
we can update our posit ion when seeking a new address (see Fig. 2).

Intersector Gap ----------------

rE
E ;--- I r i- r - r r ̂=l'."-:l- Gi

El---= EIHE

Et----- tHtr
I o* | II:"k.. I
k-servo+l.--ldentification +l

I ri"ros | ,o,ii"fToo I
Fig.2. lnformatron recorded tn gaps between data records on
the dlsc makes it posslb/e to use the data surface as a refer-
ence for positioning the readlwrite heads.

When a head is on track it reads eoual amounts of A and B fine
servo fields. This information can be decoded on a sampled basis,
once per sector, and used for Jine servo positioning.

When a head is traversing the disc surface in a seek mode, it
samples the Gray code track addresses to update its positton and

;UEt:',t:l:J:,:
^ ."re complete artrcle on this new state-ol-the-art disc drive is planned lor a

Richard L. Smith
Rich Smith, section manager in charge
of mass memory development, re-
ceived his BS degree in electronics and
physics from the University of San
Francisco in 1962. He joined HP in 1 970
with experience as a magnetic record-
ing specialist and read/write and servo
designer. He was project manager for
the 26444 terminal and the 7910 disc
system, and designed parts of the
7970,3960, and 3955 tape recorders. A
native oJ San Mateo, California, Rich
served as oresident of the Board of
Education in San Jose, Cali fornia while

* l iv ing there. The Smith family, which in-
cludes f ive chi ldren, now l ives in Boise, ldaho where Rich's leisure
time is spent camping, f ishing, stamp col lect ing and working with hi-f i
equrpment.

JULv 1979 HEWLETT-pACKARD JoURNAL 1 1

servo on a real{ime basis. To reduce the circuitry required for the
seek algorithm, a resident microprocessor is used. When a new
address is commanded, the microprocessor computes the distance
to be covered and generates an acceleratron signal based on the
formula s : lzal2. As the actuator moves the head toward the
desired location, the microprocessor monitors the track addresses
and corrects the acceleration term as reouired.

Since a reference surface is not used, there is no clock track
available and therefore spindle speed control is essential. The spin-
dle hub includes teeth that are sensed optically. The edge of each
tooth is used to determine a radial line across the disc that represents
the beginning of each sector. The speed of each tooth is measured
and used in a phase-lock servo comparator to keep the spindle
speed constant. Additional circuitry monitors allinternal voltages and

the speed control so that data is written only when the drive is ready.
To maximize data transfer rate and signal-to-noise ratio, read and

wrrte amplifiers are mounted with the heads on the actuator arms. lt
was decided that a single read/write head per disc surface, rather
than the conventional two heads per surface, was a better choice for
a low-cost objective.

The built-in microprocessor allows the controller to be resident with
the drive and is powerful enough to permit the inclusion of 56 sepa-
rate self-test features including reading and writing to an unused
track. Self-test is automatically initiated on power-up or may be com-
manded locally or remotely. Results of the self-test are displayed by
lights on the controller board. A 256-byte sector buffer is included as
part of the controller to allow buffered reads and writes to accommo-
date differing data transfer rates.

has a configuration register that identi f ies the channel
class, specif ic type, and capabil i t ies. On the HP-IB, the HP
printers and discs, the integrated display system, and some
other peripherals respond to a unique identi f icat ion pro-
tocol whereby the system may determine attached device
types and addresses without user intervention.

31262A General l/O Channel
The GIC contains registers and a DMA facility for inter-

facing the HP-IB to the IMB. I t is designed to be operated
using channel programs, so device requests on the HP-IB
cause only channel program service requests and not inter-
rupt requests. Interrupts are requested only by command of
the CPP or CPU when required in the course of programmed
I/O. Eight registers on the GIC are associated with manage-
ment of the HP-IB , and are contained in the PHI chip, an HP
propietary SOS/MOS LSI component. l The PHI chip pro-
vides al l the interface functions of the HP-IB and performs
the detai led handshaking and control sequences, keeping
these detai ls of HP-IB operation transparent to the CPU or
CPP. DMA logic can be invoked to transfer data bytes be-
tween main memory and the HP-IB at up to one mil l ion
bytes per second. The GIC has t imeout logic to detect lock-
ups or inordinate delays in HP-IB or DMA operation.

Channel Instruct ion Set
The HP 300 channel instruct ion set executed by the CPU

is as fol lows:
READ, WRITE: Transfer bytes between an HP-IB device and

main memory. After the transfer, the byte count and mem-
ory address residues are left in the instruct ion f ields.
Options:
1. Ful l record or subrecord (burst) transfers
2 . Up to 15 da ta cha in b locks
3. Data buckeUsource using single memory word
4. Disable updating of residue byte count and address
5. Start/end on left or r ight byte of memory word.

DEVICE-SPECIFIED fUMP: Uses a byte of status from the
device to do a table lookup for the address of the next
channel instruct ion to execute.

IDENTIFY: Performs a unique HP-IB protocol sequence that
returns an identi f icat ion code from the HP-IB device.

CLEAR: Sends an HP-IB Selected Device Clear command to
the HP-IB device to reset i t .

COMMAND HP-IB: Sends up to eight HP-IB commands of the
programmer's selection.

1 2 rewLerr,pncKARD JoURNAL JULv 1 979

EXECUTE DMA: Performs init iat ion and termination book-
keeping for a DMA transfer without any HP-IB pro-
tocol.

RELATIVE IUMP: .Branches uncond i t iona l l y to cont inue
channel program execution at a new address.

WAIT: Suspends the channel program unti l the device
requests service on the HP-IB.

WRITE RELATIVE IMMEDIATE: Writes a l i teral into a speci-
f ied word of the channel program.
There are also instruct ions for reading, writ ing, and mod-

ifying channel registers. The instruct ion set provides access
to almost every capabil i ty of the HP-IB.

Acknowledgments
Development of a hardware I/O system requires diverse

efforts in investigation, design, veri f icat ion, characteriza-
t ion, and support. Almost two dozen engineering people
have part icipated in such efforts from conception ofthe Hp
300 I/O system unti l i ts f i rst release to manufacturing. pre-
l im inary inves t iga t ion and proposa ls fo r the Hp 300
hardware I/O system were made by Jim Basi j i , Daryl Knob-
lock, and Al Knoll . Later definit ion and planning was done
by Andre Schwager, George Clark, and Bob Berl iner. I /O-
related control programs for the CPU were developed by
Arndt Bergh and Coll in Park. Dean Lindsay helped develop
the 31262A General I /O Channel. The 31264,\ Asynchro-
nous Data Communication Channel was developed by
George Clark and Collin Park. fim Lewis and Tonv Hunt

W. Gordon Matheson
Gordon Matheson helped design the
HP 300 I/O systems, designed the gen-
eral l /O channel (GlC), and wrote CPU
firmwave for channel program execu-
t ion. With HP since 1973, he's also con-
tr ibuted to the design of the HP 1000
Computer's CPU, memory protect, and
DMA, and has writ ten microprograms
for the HP 1 000 extended instruct ion set
and front panel. Gordon attended the
University of Cali fornia at Berkeley,
graduating in 1973 with a BSEE degree.
A native of Glendora, Cali fornia, he now
ilves in Santa Clara, Cali fornia. He has
two sons and a daughter.ffik,

were responsible for development of many diagnostic pro-
grams. Extensive system simulation work was done by Dan

Jackson, Lang Lok, Dave Rabinowitz, Steve Sun, and fim
Tseng. I/O system integration and characterization were the
responsibility of Jack Elward, Lang Lok, Collin Park, Steve
Sun, Bil l Stenzel, Majid Majidian, Roger Ruhnow, Barbara
Gee, Rooshabh Varaiya, Joanie Banks-Hunt, Mike Lee, and

Denise Pitsch. I/O system and peripheral diagnostics run on
a special diagnostic uti l i ty system developed by Jim Holl,
Russ Scadina, Bob Berliner, and Carson Kan.

Reference
1 . I .W. F igue roa , "PHI , t he HP- IB In te r face Ch ip , "
Hewlett-Packard Journal, July 1978.

An lnnovative Programming and
Operating Console
by Alfred F. Knoll and Norman D. Marschke

HE HP 300's integrated display system (lDS) is a
microcontroller-based alphanumeric keyboard and
display system optimized for use as the system

console and program development stat ion in the HP 300.

Full use of the powerful programming, display manage-

ment, and edit ing features of the HP 300 dictates this

somewhat unconventional, special ized programming and

operating console. As an integral part ofthe HP 300 instead

of a remote general-purpose terminal, the IDS shares the HP

Interface Bus with the built-in fixed and flexible discs.
Although i t may seem unusual to have a programming

console on the same interface bus as the computer mass
storage devices, it is precisely this arrangement that gives

the IDS its unusual features. By al lowing the IDS the same

communication capabil i t ies as the discs, a very close in-

teractive relationship with the CPU is made possible. Tak-
ing advantage of this association is the key to the IDS fea-

tures.

The Window Concept
Perhaps the most revolutionary feature of the IDS is the

idea of being able to view and manipulate portions of a

number of independent display files that coexist simul-

taneously on a single CRT. Conventional terminals operate
in an essentially serial fashion: the items displayed are

sorted by entry sequence, so that the last item displayed is

the most recent entry. By contrast, the IDS display is sorted
by ultimate item organization.

This element of visual fidelity adds a new facet to the
classical concept of interactive programming. Since multi-
ple interactions can be sorted on the display by their env!
ronment rather than by entry sequence, the HP 300 need not
follow the conventions imposed by ordinary terminals.

A window can be considered a viewport into a f i le, in-
stead of a copy of a f i le. Using this concept, changes or
addit ions to the display via the keyboard are made simul-

taneously to the actual file with the results immediately

visible to the user.
Windows are implemented on the display by dividing the

screen into rectangular subsets of the 24-row-by-80-column

display. These areas are del ineated by dotted l ines cal led

borders. The dotted l ines occupy the space between adja-

cent characters, so the number of displayable characters is

not reduced by the presence of these window borders.

Each window can be considered a separate display al-

most as i f i t were an independent terminal. The information

ir i a window can be edited or scrol led both horizontal ly and

vert ical ly without altering either the contents or the posi-

t ion of the other windows on the screen. The capabil i ty to

store more than one environment for window set) Iocal ly

and modify any el igible window, whether i t is currently

active or not, provides previously unattainable f i le manipu-

Iat ion power.

The Softkey Concept
The versati l i ty of window-oriented display management

is further enhanced by the softkeys. The eight softkey

switches add a new dimension to task selection and user

interaction. Program-definable label ing of these keys per-

mits the creation of powerful, easy-to-use application pro-

grams not possible with conventional terminals. The labels
defining the functions of the softkeys are displayed in a
window next to the softkeys along the r ight side of the CRT.

Several important capabil i t ies are provided by the seem-
ingly simple dynamic label ing of these special-function
keys. The f irst and perhaps most obvious is that of al lowing
the user to quickly select from a menu of options iust what

to do next. Suitable relabel ing al lows the selection of one of

512 i tems using only three keystrokes.
The next friendly feature realized by the softkeys is syn-

tact ical independence. For normal mortals, ertors in system

command creation and entry can be annoying, frustrat ing,

and potential ly disastrous. Use of the softkeys el iminates

spell ing and punctuation errors from the task selection

process.
Yet another important feature is the simple fact that the

possible next act ion options are displayed for the user's

selection. One doesn't have to remember al l the commands

JULy 1979 HEWLETT-pAcKARo lounltel 13

Fig. 1, Dual bus structure enables close interaction between
the HP 300 CPU, the integrated display system (lDS) control-
ler, and the HP 300 display processor.

or refer to a command summary or manual because the next
set of menu i tems is displayed on the CRT. The problem of
communicating one's desires to the AMIGO operating sys-
tem is thereby vastly simpli f ied.

Window lmplementation
Implementation of the window-oriented display man-

agement features of the IDS requires very close interaction
between the HP 300 CPU, the IDS controller (an MC2 mi-
crocontrollerl), and the HP 300 display processor. To ena-
ble this close association the IDS uses a dual bus structure
(see Fig. 1). A 16-bit program and control bus is provided for
the execution of the MC2 firmware that handles CPU com-
munications and controls the display processor. A separate
eight-bit display data bus is used by the display processor
for creating the composite character stream necessary to
refresh the CRT. Functional separation of the display re-
fresh and display editing processes gives the controller the
bandwith necessary to support window management.

The display processor hardware incorporates two B0-
character row buffers that ensure uninterrupted CRT re-
freshing. While one buffer is being filled with the compos-
ite character information for the next row of the display
(characters, video enhancements, character set selection,
and window border information), the other buffer is supply-
ing character stream information to the scan generator for
the row currently being displayed. When the row is com-
pletely displayed the buffers are functionally exchanged
and assembling ofthe next row can begin. The operation of
the scan generator fs similar to that of the HP 2640A
Terminal.2

The Display Program
The technique of.creating the composite character stream

was developed especially for the IDS. The characters are
displayed on the screen as a set of 2+ contiguous rows.
Unfortunately this organization is not the most advanta-
geous storage arrangement. To facilitate the editing neces-
sary to provide both horizontal and vertical partial screen
scrolling and the environment switching that is fundamen-
tal to the HP 300, a program and data access algori thm was
devised for managing the display memory.

The display program is created by the IDS controller in

14 Hewrerr-pncKARD JouRNAL JULy 1979

response to window requirements from the user. This pro-
gram resides in the display memory along with the text that
it puts on the CRT. The display processor accesses this
program and creates the composite character stream in re-
sponse to the program parameters.

The display program is made up of two parts, the instruc-
tion table and the text (see Fig. 2). The active instruction
table is a sequence of four-byte instructions sufficient to
define all the rows in the currently viewed windows on the
screen. The text is a series of linked buffers in the same
memory, containing ASCII character codes and various
embedded display control information bytes. Each row in
each window is defined by one four-byte instruction and its
associated text buffer list.

The table is accessed as a series of four-byte instructions.
Each instruction refers to an individual row of text in a
single window. For a vertically partitioned screen the first
instruction refers to the first row of text in the first or upper
left window area. The next instruction refers to the first row
of text in the window immediately adjacent to the right
border of the first window. For the simplest single-window

Fig. 2. /DS conttoller creales a display program in response
fo lhe user's window requirements. The program, organized
as shown here, conslsts of a serles of four-byte instructions
and text. fext ls stored as a serles of linked 1B-bvte buffers.

0 Window Width

Right
Border

Bottom
Border

Charactel
Set

Half
Bright

Under-
line

Inverse
Video

Bl ink

Last x Data Address MSBS

Oata Address LSBs

Fig. 3. /DS display instruction format.

screen, 24 display instruct ions are required, one for each
row in the window. The total number of instruct ions re-
quired for a part icular display depends upon the number of
rows that are part i t ioned vert ical ly. I f six of the 24 rows are
part i t ioned between two vert ical windows, these six rows
require 2x6:1,2 instruct ions in addit ion to the instruct ions
required for the remaining 1B rows.

The format of the display instruct ion is shown in Fig. 3.
The f irst byte in the four-byte instruct ion contains a zero in
bit location B (bits 0-7 are not used by display instruct ions).
This indicates to the display processor that the four bytes
are instructions rather than an instruction link. The next
seven bits contain the window width measured in character
posit ions. The second byte in the display instruct ion is the
init ial video enhancement byte for this row in this window.
The third byte in the display instruct ion is used in conjunc-
t ion with the fourth byte to point to the text data that is to be
displayed in the window. Bit B of the third byte set to 1
indicates that this is the last window in the row.

Text Data Format
The text data is usually stored (by memory management

conventionl as a series of linked buffers with each contain-
ing 1B bytes. As far as the display processor is concerned,
the buffers can be any length. However, the memory man-
agement f irmware uses 1B bytes as the standard length. The
buffer format is 16 data bytes followed by a two-byte data
l ink.

Fig.4. Linkage and enhancement information is embedded
in the text to be displayed. To distinguish between characters
and linkages, a Huffman-coded set of data byte formats is
used.

Since linkage and enhancement information is embed-
ded in the text, a Huffman-coded set of data byte formats is
used to dist inguish between characters and l inkages (see

Fig. a). ASCII characters that represent text to be displayed
have a 0 in the most signif icant bit fol lowed by the seven
ASCII bits. A data l ink used for l inking the l ists together is
identified by a 1 in the MSB followed by a 0 in the next bit.
The succeeding bits become the MSBs of the pointer. The
next byte in the buffer is used as the LSBs of the pointer,
much the same as an instruction link.

It is important to note that the various types of data bytes
may be arranged in any order within the data list. The
leading-ones coding makes them posit ional ly independent,
unl ike the instruct ion bytes, which must be sequential
within each four-byte instruct ion. This feature al lows
character set select ion and video enhancement changes to
be mixed easi ly within the same row of text.

Sample Display Program
Fig. 5 shows the display screen produced by the sample

display program diagrammed in Fig. 2.
The sample program is designed to part i t ion the upper

six rows of the display area into two windows. The f irst
window is 30 characters wide and the second is 50 charac-
ters wide. The f irst row of the f irst window contains the
alphabet, while the f irst row of the second window contains
the words THIS IS THE SECOND WINDOW. All other rows in
the first two windows are blank. The first row of the last
window (tB l ines of B0 character posit ions each) contains
the text THIS IS THE THIRD WINDOW, while the remaining
rows are blank.

Recall ing the previous discussion, i t is apparent that
2 x 6 + 1B:30 display instruct ions are required for this sam-
ple program.

The display processor begins each frame at the top of the
instruction table by accessing the four-byte instruction for
row 1 in window 1. Then, as directed by the data address in
the instruct ion, i t accesses the l inked data buffers unti l the
window width is satisf ied. For row 1 of window 1, the data
l ist is 16 characters of the alphabet fol lowed by a l ink to the
remainder of the alphabet. When the end-of-str ing (EOS)
flag is encountered in the data l ist, the row is blank-f i l led to
the end of window 1. The processor then proceeds back to
the instruct ion table for row 1 of window 2 fol lowed by the
data l ist for window 2.

The second and subsequent rows of windows 1 and 2 are
blank, so the addresses in the instruct ions for these rows/
windows point direct ly to the EOS f lag.

In a similar manner, each row of the display is processed
with one or more sequences of an instruct ion fetch fol lowed
by a data l ist. After the last row on the screen, the processor
resets the instruct ion address to the top of the table and
starts al l over again (every 1/60th or 1/50th second) for
refresh of the next frane.

Using this program technique, vert ical or horizontal
scrol l ing requires only the alterat ion of the data pointers in
the instruct ion table. Environment switching can be ac-
complished by creating a set of window information that is
not referenced in the current instruct ion table, then merely
insert ing an instruct ion l ink in the table to point to the new
window instruct ions.

1 3t 0

Bit Number

1 1 1 2

1 51 3'121 11 0

0 I asctt character code
I

1 0 I Oata Link-Address Most Significant Byte

1 1 0 | No tused

I 1 0
Hal f

Bright
Under-

l ine
lnverse
Video

Bl ink

1 I 1 0
(lgnored by

Display Processor)

1 1 1 1 1 o I Characterset

Eos (End of String)

1 1 1 1 t 0

JULy 1979 HEWLETT-pACKARo lounltnr 15

ABCOEFGHIJKLMNOPORSTUVWXYZ i THIS IS THE SECOND WINDOW

THIS IS THE THIRD WINDOW

Fig.5. Display resulting from the program of Fig. 2.

Mult i l ingual Capabil i t ies
The problem of satisfying international keyboard and

character graphic standards is easi ly solved in the IDS by a

combination of hardware and firmware.

The display processor block contains space for up to three

alternate character graphic ROM sets. Each of the sets con-

tains an identi ty code that is read and stored by the control-

Ier during the power-on sequence. This code al lows the

controller to configure the alternate character set keys on

the keyboard, and provides a l inkage mechanism for the

mult i l ingual features.
The IDS keyboard is self-scanning, and interrupts the

control ler whenever the state of any key changes. This frees

the cont ro l le r f rom the ted ious task o f scann ing the

Fig.6. Multilingual transf ormation algorithm selects either a
control code or a character to be displayed depending on the
key that was pressed and the language being used.

l6 rewLerr-pecKARD JoURNAL JULY i979

keyboard and provides rollover and autorepeat capability.

A seven-bit keystation number is returned whenever the

keyboard interrupt is serviced. The fact that this number

has no direct relation to any ASCII character or code is the

key to multilingual configurations.

Fig. 6 depicts the transformation algorithm used to im-

plement the multilingual feature. The ROM ID obtained at
power-on from the extension graphic ROM contains two

information f ields: the map select f ield selects a base set

map corresponding to the base set graphics ROM, and the

table select f ield is used to point to one of eight extension

tables.
To process a keystroke, the selected base set map is ad-

dressed with the keystat ion number and the upper- or

lower-case shif t bit . The byte thus addressed is one of three

types: local control, base set ASCII, or indirect vector.
I f the key is a local control key, such as SHIFT or DEL

ENTRY, a local control code is returned to the control ler
program and no character graphic is produced. I f the key

meaning is invariant regardless of the language option, a

base set ASCII character is generated and used as an input to

the base set character graphic ROM to produce the character

on the CRT.
If the key meaning is dependent upon the language op-

t ion and hence the extension graphic ROM, an indirect

vector is returned. Six bits of this vector are used as an offset

to access a par t i cu la r loca t ion in the ex tens ion tab le

Alfred F. Knoll
Al Knoll was project leader and system
designer for the HP 300 integrated dis-
play system, After receiving his MSEE
degree from Santa Clara Universtty in
1970, he worked for two years in radar
system simulator design before joining
HP. Al designed the 12889A Hardwired
Serial Interface presently used as the
high-speed communications l ink in HP
1000 to HP 3000 distr ibuted systems.
With the HP 300 trom its beginnings,
he fol lowed the IDS design to manu-
facturing as the production en-
gineer. An avid ski ing enthusiast, Al
l ives in Los Altos, Cali lornia. Ethnic

cookery, small boat sailing, racquetball, and btcycle touring are
some of his spare time interests.

Norman D. Marschke
Norm Marschke is presently involved
with HP 300 mainlrame Power suPPlY,
safety, and EMC design. His past con-
tr lbutions to HP include serving as proj-

ect leader for the 5470A Fast Fourier
Processor and contributing to the de-
velooment o1 counters, the 54004 Mul-
t ichannel Pulse Height Analyzer, a digi-
tal shaker control system, and the IDS
and power supply of the HP 300. He
joined HP in 1964, after receiving his
BSEE degree (1 963) and MSEE degree
(1964) from the University of Michigan.

specified by the value of the table select field of the ROM ID.
The contents of this location is a byte containing an ASCII
code and an extension ROM select bit. Ifthe desired charac-
ter is not part of the base set, the select bit enables the
extension graphic ROM and the ASCII code specifies the
character. If, on the other hand, the particular character is
not changed under the language option in question, the
base set is selected, and as before, the ASCII code specifies
the character.

The maps and extension tables for all the standard Euro-
pean keyboard configurations are contained in a single
ROM that is standard with the IDS. Configuring the IDS to
support a different keyboard arrangement is merely a matter
of placing the proper extension ROM in its socket and
replacing or rearranging a few keycaps.

Testability
One of the primary objectives of the IDS design was

testabil ity. The successful meeting of this objective re-
volved around the development of a comprehensive but
simple self-test capabil ity. This is achieved by dedicating
part of the firmware to a set of self-test routines and provid-
ing a simple means of displaying test status.

The IDS self-test is invoked at power-on and takes ap-
proximately three seconds. An HP LED array mounted on
the controller printed circuit assembly and visible from the
rear of the HP 300 displays the test results in hexadecimal
form. The test is designed to require no external signals
other than power from the mainframe and thus establishes a

measure of goodness for the IDS independent of the state of
the remainder of the HP 300. The test is comprehensive
enough to create about a 90% confidence level in the func-
tional integrity of the IDS.

Acknowledgments
The uniqueness of the IDS is the result of the combined

contributions of many outstanding people. Hal Sampson
designed the IDS controller and several of the firmware
development tools, and greatly influenced the overall sys-
tem design. Bernie Stewart designed the keyboard and was
ultimately responsible for the automated testing of all the
circuit assemblies. Nell ie Monsees fabricated the pro-
totypes and dil igently programmed the DTS-70 test system.
The microcode for the many innovative IDS features is the
result of design efforts by Tom Gilbert and Wing Chan. The
self-test firmware and diagnostic software were created by
Dave Delano. The entire project owes much of its success to
the guidance of Peter Rosenbladt, presently marketing the
HP 300 in Europe, and numerous other members of the HP
300 team who contributed user comments and suggestions.

Reference
1. B.E. Forbes, "Sil icon-on-SapphireTechnologyProduces
High-Speed Single-Chip Processor , " Hewlet t -Packard
lournal, ApriI 1927.
2. J.C. Roy, "A High-Resolution Raster Scan Display,"
Hewlett-Packard Iournal, fune 1975.

AMIGO/300: A Friendly Operating System
by Ralph L. Carpenter

THE FIRST FEATURE most people notice when see-

I ing an HP 300 in operation for the f irst t ime is the
I ease w i th wh ich the man/mach ine gap may be

bridged. For example, the operating system's user inter-
face subsystem, the console handler, responds to natural-
language commands, such as COPY FILE A to B. Most com-
mands may be interrupted by the ATTN key on the inte-
grated display system (lDS). When the ATTN key is pressed,
execution of the command (in this case duplication of a
f i le) continues, but two of the softkeys become labeled
CANCEL COPY and ACTIVATE COPY. Cancellat ion of the
copy results in the shutt ing down of the in-process dupli-
cation; act ivat ion simply results in the original display,
that is, just the COPY command in the input window and
the softkey labeled HnLp.

This design of an improved man/machine interface,
somet imes known as f r iend l iness , has been car r ied
throughout the design of the HP 300 operating system,
AMIGO/300, result ing in modulari ty, maintainabi l i ty, sup-
portabi l i ty, and ease of distr ibution. AMIGO/300 suppofts

mult iprogramming, mult i tasking, virtual memory, a large
dictionary of commands, tools for synchronization of task
execution, and transportability of programs. The purpose of
this article is to present an overview of AMIGO/300's struc-
ture and functional modularity, and to give the reader more
of an understanding of what makes the HP 300 t ick. Fi le
management and terminal management, which are operat-
ing system services, were discussed last month and are not
inc luded here .

Command Interface
The IDS serves as the console forthe HP 300. I t has several

novel features that are managed by the console handler
port ion of the operating system.
1. Softkeys. There are are eight keys along the r ighthand

side of the screen. Labels showing the functions of the
keys may be displayed on the screen.

2. Windows and borders. The IDS can accommodate sev-
eral display structures on the screen at one t ime, sepa-
rated bv borders fseries of t inv dotsl. One such window

JULv 1979 HEWLETT-pACKARD JouRNAI 17

is dedicated to softkey labels.
3. ATTN (attention) key. This key causes an immediate

asynchronous interrupt.
4. System message l ight. This LED bl inks whenever the

system needs the operator's attention.
5. Scrolling capability. One window at a time may be

shifted up or down and left or right to provide full
visibility of the data attached to that window.

In addition to the softkey window, the console handler
maintains the environment window, containing the genera-

tion name of the AMIGO/300 operating system along with
the current domain and the current date and time, the input
window, in which al l typed commands and al l command
interaction are displayed, the error window, in which all
interactive command errors are displayed, and one large
display window that may optional ly be divided in half . The
display window contains scrol lable output from previous
console activity.

Al l console activi ty is logged, beginning with the wel-
come banner (system identification, command language
version, and date of release), a l ist of device dif ferences
between the active configuration and that which the system
was told to expect, the AMIGO/300 physical f i le name for
the console being logged, the f i le name of the previous
console log (only one previous log is retained), an indicator
showing how many t imes the log has overf lowed, and for
each command that executes successfully, the date and
time execution f inished, along with the date and t ime of
each job termination.

A job represents one execution of the user's appl icat ion
program or of an HP-supplied subsystem (l ike BASIC). The
operator is allowed to run several concurrent copies of the
same program by using the form RUN P AS Jr. This causes
program P to be run as a background job. I f the operator uses
the shorter form RUN P, program P is run as an interactive
job. Ownership of the system console is automatical ly
granted to the interactive job and must be taken from it via
the ATTN key and specifically given to another job via the
ACTIVATE softkey or command. A job may consist of several
programs, because one program may load and start another
program using the standard systems services known as
program management. The only level at which a job is
defined is the console handler level.

Command Language
The AMIGO/300 system command language was de-

signed to be as fr iendly as possible while providing a pow-

erful and useful tool for users. It has an easy-to-learn syntax
and an English-like grammar, enabling the operator to form
command sentences that have obvious meanings.

Imperative sentences consisting of a verb followed by an
object form the basis of the language. Declarative sentences
are used in some cases where appropriate. Some commands
allow modifying clauses that supply optional parameters to
the command interpreter. These modifying clauses may

take various forms depending on the operator 's wishes.
Abbreviations of language keywords are allowed, and mis-
spel l ings of language keywords are corrected for the
operator (up to a point). The command interpreter is sensi-
tive to common errors such as character transpositions and
replications, and it can handle missing, incorrect, or extta

characters depending on the length of the keyword and its

18 nEwrrrr,pecKARD JoURNAL JULy 1979

context.
A command sentence is, in effect, a pattern of keywords

and data items. Whenever a keyword is required in the
pattern and the string entered as input does not match the
pattern, an error condition exists. Fortunately, many errors
of this type can be corrected dynamically. The abbreviation
rules already discussed are an example, as are common
typing errors such as replicated characters and simple letter
transpositions. More severe errors such as missing or incor-
rect characters are correctable only in limited cases. Correc-
t ion ofthis type of error depends heavi ly on the length ofthe
input string and the context in which the keyword is re-
quired.

The AMIGO/300 operating system is the first HP comput-
ing sys tem to employ soph is t i ca ted input cor rec t ion
techniques. Therefore, i t is anticipated that users wil l re-
quire a certain amount of experience to feel comfortable
with the system.

Several factors that are not obvious contribute to the
rel iabi l i ty of the methods chosen to do dynamic error cor-
rection. First, the system is very context sensitive. It oper-
ates under the assumption that the user knows in general
what he or she wants to do, even though the exact syntax of
the command statement may not be known by the person
entering the command. Thus only keywords legal in a given
context are "candidates". This l ist is always much shorter
than the list of all keywords known to the command in-
terpreter. Second, before a correction is done, al l candidates
are examined and a"candidate is chosen only i f i t is a unique
choice that differs from the typed input by no more than an
internal ly set threshold. Final ly, the dif ferent sentence
structures of the various commands, the distr ibution of
keywords, and checks on the data entered add the same
redundancy to the command language that are present in
spoken communication. This further diminishes the possi-

bi l i ty that an erroneous command input wi l l be accepted
even i f an erroneous keyword substi tut ion is made.

Example: The'command verb nUpLICATE may be entered
in any of the fol lowing ways.

DUP substring abbreviation
DPLCT abbreviation by vowel removal
DPULICATE transposition
DUPLIKATE wrongcharac ter

There are three general classes or types of errors reported
by the AMIGO/300 command interpreter. These include

errors in the command pattern input (called syntax errors),
errors in the meaning of data in the command (cal led
semantic errors), and system errors detected during the
execution of the command.

Syntax errors are errors detected during the interpreta-

tion of the command input by the user and represent an

uncorrectable failure to match the input with a valid com-

mand pattern. When this occurs, the cursor is posit ioned in

the IDS input window at the symbol that caused the error,

and a descript ive message is writ ten to the IDS error win-

dow. These messages general ly indicate what specif ic

keyword or data item is required, so in many instances a

person can learn the syntax of a command by interaction

with the error handler. More general messages are reported

when no command verb is found and when the list of legal

options is too long to fit in the input window.
Semantic errors are errors detected during the execution

of a command. These generally concern data that has been
input as part of the command, and they deal with the mean-
ing of the data. For example a PURGE FILE command may be
entered with the syntactically correct file name Fr(ME). The
command may still fail because no file by that name exists
or the user attempting the PURGE does not have access to the
file. Semantic errors are reported in much the same manner
as syntax errors, except that in some cases, the cursor is
simply reset to the beginning of the command.

Finally, a command may fail during execution because of
a system failure. For example a DUPLICATE could be termi-
nated by an error in the I/O system, or because i t is expl ici t ly
aborted by the user. Execution errors are also reported in the
IDS error window.

Program Management
A program, as the word is commonly used, is a series of

instruct ions tel l ing a machine how to behave. On the HP
300 this form of program exists as a workspace, that being
the set off i les containing the source code, relocatable object
code (both in unl inked, symbolic form and in a form that
has had al l i ts externals resolved), compiler l ist ing, seg-
menter l ist ing, l inker l ist ing, a f i le used by the symbolic
debug facility for mapping code and data into their corres-
ponding source l ine number and data symbols, and a f i le
containing file equations for execution of the program in
the part icular machine environment. In AMIGO/300, the
word "program" is most commonly used to describe the
instal led (loaded) machine-level representation of a work-
space.

A program is, f i rst of al l , a member of a iob. Remember,
however, that the job concept exists only at the console
handler level in AMIGO/300. A program may contain code
that cal ls an AMIGO/900 service for loading and start ing
programs. These services are part of AMIGO/300's program
management faci l i ty. Such programmatic Ioading/start ing
of a program (more specif ical ly, a workspace is loaded and
the corresponding program is started) creates a hierarchy of
programs. Bottom-level programs may terminate, and that
is that, but i f a program terminates at a higher. level in the
program hierarchy, al l of i ts descendant programs must be
terminated also.

In addit ion to the program termination and abort capabil-
i ty, program management also provides for blocking and
unblocking of subordinate programs, inquir ing as to the
status of a subordinate program, and retrieval of a parameter
array supplied at program startup.

Task Management and Synchronization
The primary structure of an execution environment

under AMIGO/300 is known as a task. These are the basic
bui lding blocks that make up programs, which in turn
make up jobs. Init ial ly, there exist only two tasks in each
program environment, one known as the outer block task
and the other known as the when task. The when task is
used solely by the AMIGO/300 operating system and is not
visible to the user; i t is employed to support asynchronous
(or without wait) completion of f i le and terminal input/
output. The outer block task may create and start sibl ing

tasks, but there exists no hierarchical relat ionship among
tasks within a program environment. Each task has its own
arithmetic and control stack, used for procedure linkage,
parameter passing, and procedure-local storage. Al l tasks
share the same set of code segments in the program envi-
ronment. Any sibling task that is created or started is lim-
ited to those code segments that are in the workspace. Thus,
an outer block task may only create or start a sibling task at a
procedure that is within the workspace. In addit ion to this
set of code segments, all tasks within a program share a
global data storage area and a set of program-local data
segments. Task management services include creation,
init iat ion of execution, abort ing, blocking and unblocking,
alteration of a task's priority as well as other environmental
parameters, and other services.

Tasks may communicate information to one another by a
number of methods. The easiest to understand is the mem-
ory f i le communication technique. This technique is rec-
ommended for interprogram communication, when the
sending task and the receiving task are in two separate
program environments. A memory file is simply a system-
owned (protected) data segment whose access is strictly
control led by the f i le management faci l i ty under str ingent
rules:
1. Only one program may read (receive) information from

the f i le, although mult iple programs may write (send)
into i t . Although mult iple tasks in the receiving program
have access to this f i le, i t is left to the application pro-
grammer to synchronize the sequence of reads or to
specify that all reads are to be performed by one task.

2. Queuing is f i rst- in-f irst-out. A read request issued
against an empty memory file causes the receiver to wait
unti l a data element is sent by an active sender. Sending
is done without delay, unless the memory f i le is ful l .

Another method of intertask communication, which is
not permitted between programs, is via ID numbers and
events. For each program, the system maintains a list of ID
numbers, each of which is a posit ive integer. ID synchroni-
zation services are appl ied to this set of ID numbers. They
allow the user to refer to system objects (tasks, etc.) without
granting the user direct access to the corresponding control
blocks. Since ID numbers are local to each program, syn-
chronization cannot occur across program boundaries, ex-
cept via f i les.

There are f ive primit ive functions for intertask syn-
chronization: signal, wait, wait-any, request, and release.
These primit ives can be applied to system-supplied events
(e.g., wait for a write to the printer to complete), or they can
be applied to programmatically reserved ID numbers. ID
numbers reserved by programs are called user-created IDs,
and their meanings are left to the program (for example, an
ID might represent completion of a series of computations,
with the result finally being stored into an area of storage
that is commonly addressable by two different tasks). The
wait-any primitive may be used where a number of asyn-
chronous signals or mult iple IDs are expected (e.g., mul-
t i terminal read operations). The request and release primi-
tives are reserved for use on a very special type of ID, the
resource semaphore.

In a program that includes multiple tasks, common data
must be protected from conflicting access by several tasks.

)

JULy 1979 HEWLETT,pAcKARD JoURNAL 1 9

Configuring and Launching the
AMIGO/300 System

by Donald M. Wise and James C. McOullough

sysrEM BUILD is a privileged system program that provides the
capabilities of creating, modifying, or deleting an HP 300 software
configuration, a process sometimes referred to as system genera-
tion. lt is invoked in the MANAGER domain by the command aurLo
svsrev, and can be run concurrently with other programs. After com-
pletion of sysrEM BU|LD it is not necessary to stop the system im-
mediately. The currently-running software configuration remains in
effect until the next sysrEM srARTUp (see below), at which time the
newly built software configuration takes effect.

sysrEM BUILD takes full advantage of the power of the integrated
display system (lDS) by extensive use of windows and softkeys.
Configuration options are displayed in menu-l ike fashion in the
softkey window and can be randomly selected via the softkeys (see
Figs. 1 and 2). Configuration parameters are specified by answering
questions in the interactive window. There is no command syntax to
be learned. A sequence of questions can be terminated by simply
selecting another softkey instead of answering the question. The
current configuration is displayed in the display window during
specification of each option, and is then updated to reflect the
specified change. Each user input is checked for errors, which are
reported in inverse half-bright video in the error window. And of
course the rele facility is available via a softkey, with text entries
keyed to the configuration parameter questions to reduce index
searching.

svsrev surLo is easy to use not only because of the power of the I DS,
but also because of underlying design goals of minimizing user
interaction and of using terminology that is familiar to the user. sysrEM

Fig. 1. Sysfem generation on the HP 300 is accomplished with
the help of svsrru autto, a privileged system program.

Fig, 2. Configuration options are seiected by means of
softkeys. Configuration parametets are specified by answer-
ing questions in the interactive window.

surLo does not require the user to respecify the entire configuration
each time. lnstead, the user starts with an existing configuration and
specifies only the changes that are to be made. User interaction is
also simplified by allowing changes to be specified in terms already
known. For example, to add the IMAGE/300 data base software, the
user specifies the name IMAGE/300 and the appropriate volume
label, but does not need to know the names of the data f iles, libraries,
and workspaces that make it up. Or, to add a printer to the hardware
configuration the user specifies its name (e.9., enrrurenr), device type
(e.g., 2631) and its hardware location (e.9., channel 1, device 7), but
does not need to know the name of the printer driver. An added
benefit of such simple terminology rs a reduced possibility of error.

The process of building a system involves three phases: initializa-
tion, specification, and build. In initialization the user selects the
configuration that is to be modified, which can be the currently
running configuration or an inactive configuration (a description of a
configuration that was saved during a previous sysrEM BUrLD session).
During the specilication phase the user changes the starting config-
uration by adding or deleting software and hardware. At this time the
modilied configuration may be listed on the printer and can be saved
as an inactive configuration for initialization during a subsequent
sysrEM BU|LD session. This feature allows the user to stop sysrErv BU|LD
and resume later without having to respecify changes already
specified. Also during the specification phase, the configuration is
checked for errors. The user is not allowed to proceed to the build
phase until all such errors have been corrected.

The nature of the build phase depends on whether or not the entire
configuration must be built. l f the software configuration has
changed, or if the starting configuration is an inactive configuration,
then the entire conliguration must be built. The user is prompted to
mount the flexible discs containing system software. Then system
code segments are linked together, system tables are built, and
system prograrns (e.9., the BASIC compiler and svsreu euuo) are
prepared and linked to the new system. The entire process takes 45
to 60 minutes or more, depending upon the optional software, list
device, system disc, system memory size, and other activity on the
system. However, if the starting configuration is the currently running
configuration and if the software configuration has not Ghanged, then
only the system tables must be rebuilt, a process requiring less than
five minutes.

Another major design goal of svsreu BUILD is the ability to recover
from unexpected hardware and software errors. For example, it an
error is detected by svsrera euuo (such as an l/O error while writing to
the printer) the user is informed of the nature of the error and the f ile or
device involved. The user can then retry the request. lf svsrei,,t suil-o is
unexpectedly terminated (e.g., by a user command or a power fail-
ure), the currently running system configuration remains in effect.
The user can then rerun sysrEM eurLo and attemDt the build without
having to restore a backup of the currently running configuration.
Once the new configuration is built, the currently running configura-
tion is saved as a backup. lf the new configuration cannot be started
for some reason (e.9., insufficient memory because of large system
parameter values) then the backup system is automatically started.
The user can then run sysrEM BUTLD, correct the error, and rebuild the
new configuration. Once the new configuration has been started, the
backup can be purged via sysrEi/ BU|LD to conserve disc space.

Among the more advanced features of svsrEu eutlo is its cross-
configuration capability. A contiguration can be specified that is
completely different from the currently running configuration. This

20 riEwlErr-pncKAnD JoURNAL JULv I 979

w

James C. McCullough
Now section manager for AMIGO/300,
Jim McCullough was project manager
for the HP 300's sysrEM BUTLD and svsrev
srARrup utility programs. With HP since
1972, he's also writ ten diagnostics, an
l/O driver, and communications
software. Born in England, Arkansas,
Jim attended Arkansas A, M, and N Col-
lege, graduating in 1962 with a BS de-
gree in mathematics. During the next
ten years he gained experience as a
mathematician, a high school math in-
structor, and a computer programmer.
He's married, has three chi ldren, and
l ives in San Jose, Cali fornia, and his
major interests are choral music and
sports.

Fig.3, HP 300 control panel is used when starting the system.

configuration can then be bui l t on a foreign system volume, and this
volume can be transported to another machine with a compatible
hardware configuration and used as its system volume. Other ad-
vanced features of sysrEM BUTLD include tools that are useful in operat-
ing system development but are not normally used by HP customers.

Starting the System
sysrEM srARrup consists of two privileged programs responsible for

launching the AMIGO/300 operatlng system. svsrev srnRrue gains
control via the LoAD or powEn oN sequence as a privileged stand-alone
program and completes the launch task as a privileged program with
access to AMIGO/300 system services.

The initiation of sysrEv srnqrup is accomplished by user mantputa-
tion of switches on the HP 300 control panel (see Fig. 3). First, the user
dials the channel and device numbers of the system disc, then turns
on the integrated system followed by the peripherals, and then
presses HALT, RESET, and LoAD.

In keeping with the HP 300's friendliness and ease of use, several
features simplify the task of starting up the AMIGO/300 operating
system. sysrEN/ srARTUp launches the operating system without user
interaction. The only exception occurs when completion of a system
dump is required after an abnormal system shutdown. Changes
involving real memory size, the number of l /O channels, l /O channel
mix, and number and status of l/O devices are detected by svsrev
srARTUp and reported to the user. lf svsrev srenrup determines that it
cannot successful ly complete launching the currently configured
system, it will attempt to launch the previously configured system.
This is possible because sysrev eurLo always saves a backup system
when a new system is generated.

Acknowledgments
To those who poured lots of time and energy into making the Hp30O

a successful product, thank you. Your efforts are very much ap-
preciated. We would l ike to pay special tr ibute to the fol lowing per-

Donald M. Wise
Don Wise was project leader for the HP
300's svsrev BUrLD utility program. With
HP since 1974, he's designed several
l/O drivers and a system generator for
the DOS/MX operating system, and is
now a project manager in the AMIGO/
300 lab. Don attended Stanford Univer-
sity, where he was a member of the
band and was in charge of the
computer-designed card stunts for
Stanford football games. He graduated
in 1974 with a BS degree in mathemati-
cal sciences. and received his MSEE

ft;t degree in 1975. A resident of Sun-
nyvale, Cali fornia, a few miles from

Redwood City, his birthplace, Don serves as a volunteer in a recrea
tion program forthe handicapped that is directed by his wife. He also
enjoys racquetbal l , camping and hiking, bicycl ing, and his beer can
col lect ion.

sons for their outstanding performances in producing sysrEii BU|LD,
SYSTEM SIABTUP, ANd thE SOFTWARE MANAGEMENT SYSTEV. LEE LEbOWitZ
contributed to the development of sysrev eu[o. Jim Lewis developed
sysrEM srARrup with Mike Hartstein contributing the sMARr DUMp utility.
Pat Trytten, Bob Ashford, and Rick Meyers were the developers of
SoFTWARE MANAGEI,4ENT, a means of integrating system software and
preparing i t for manufacturing.

For example, a program may have a l ist structure that is
asynchronously accessed by several tasks. I fone task begins
to insert a new entry and has updated only some of the
l inkage pointers when a second task suddenly accesses the
Iist, the second task wil l encounter incorrect and perhaps
inval id pointers. I f several tasks simultaneously try to insert
new entr ies in the same place, then the result is l ikely to be a
very hard-to-f ind bug. These problems can be avoided by
use of resource semaphores. Each table, l ist, or similar en-
t i ty is thought of as a resource that is owned by at most one
task at a t ime and is control led by a resource semaphore.
Before accessing any such shared enti ty, a task must request
temporary ownership of the resource. When ownership is
granted, then the task can freely manipulate the associated

data structure, since any other tasks that subsequently re-
quest this resource wil l be delayed. When the owning task
has f inished the operation, i t must release ownership. This
al lows another task to be granted ownership and continue
its execution. Thus, al l tasks that cooperate by issuing the
appropriate request and release requests wil l have mutual ly
exclusive access to the resource.

Virtual Memory Management
The AMIGO/300 memory management services provide

virtual storage capabil i ty to programs operating on the HP
300. This feature is invisible to the programs, that is, no
planned segmentation or overlay structure need be invoked
by a program. There is a l imit on the code segment size

JULy 1979 HEWLETT-pACKARo JouRur 21

(currently 16K words), but one routine may cal l another

without having knowledge about the segmentation. Arrays

may be very large (the current limit of total directly ad-

dressable array storage is about two megawords for an ap-
pl icat ion program), thus reducing the need to resort to

temporary file storage of intermediate results. Also availa-

ble through the memory manager is the abi l i ty to alter the

size of the ari thmetic/control stack, dynamic al location and

deallocation of arrays, the ability to alter the size of an array,

and the ability to inquire into the parameters controlling the

bounds on segment sizes.
Other invisible faci l i t ies provided by the memory man-

ager to support the virtual environment include disc f i le

block transfers (used by file management), buffer allocation
and freeze-down/unfreeze (used by file management and
terminal management), migration of segments from mem-

ory to disc (used by the scheduler), and miscel laneous other
internal services.

Virtual memory configurations include both random ac-

cess memory and bulk disc memory. Variable-length code
and data segments are subject to migration between mem-

ory and disc according to the fol lowing rules:

1.. Individual segments migrate in (i .e., from disc to mem-
ory) when demanded either by a microcode-induced

trap or by an expl ici t migration request from some
software module.

2. Groups of segments migrate in before execution of a task
provided that the segments were previously migrated
out (i .e., from memory to disc storage).

3. Groups of segments migrate out whenever a task en-
counters a relat ively long suspension.

4. Individual segments migrate out whenever they impede
an inbound migration request. Candidates for outward
migration are carefully selected on the basis of the own-
ing task's priori ty, the state and age of the segment, and
the content of the segment.

Storage space for an array may reside in one of three
Iocations: in the global region, on the ari thmetic/control
stack, or in one or more data segments. Which region is used
depends upon the language in which the program is writ-

ten. In the HP 300 system language, array space is al located
in the global region when the declarat ion

type ARRAY name (rangeJ
appears in the program's main procedure, or the declarat ion

OWN type ARRAY name (range)

appears in a procedure, and range is a relat ively small
number. Array space is allocated on the stack when the
declaration

type ARRAY name frange)
appears in a procedure, and range is a relat ively small
number. Data segment space is al located for the array when
the declaration

(OWN) type ARRAY name (*) or (range)

where range is a relatively large number, appears anywhere
in the program. The preceding discussion applies to array
al location through the declarat ive capabil i ty ofthe HP 300
system language. In addit ion to declarat ive al location, the
programmer may employ the ALLOCATE statement for

dynamic size adjustments.

The ar i thmet ic /cont ro l s tack is used fo r s to rage o f

procedure-local variables, intermediate computational re-

sults, parameters for cal led procedures, and stack markers

22 HewrEfi-pncKARD JoURNAL JULy 1979

(i.e., return code segment number, program register, and
old value of local-storage stack pointer). The stack may be

expanded (but not shrunk) automatical ly by the AMIGO/

300 operating system upon a trap condit ion known as stack

over f low. Once the s tack reaches i t s max imum s ize ,
AMIGO/300 is not able to grow the stack any further. A stack
overf low trap occurring when the stack is at i ts maximum

size causes the program to be aborted.
A memory management service is provided to disable

automatic stack expansion. Another service may be in-

voked to shrink the stack. Control led expansion/shrinkage
of the stack may be done at any opportune t ime in the
progress of the application or subsystem (whereas automa-

t ic expansion may introduce a thrashing condit ion).
Two important points should be considered in regard to

programs intended to execute in a mult iprogramming vir-

tual memory environment. First, one can never predict the
execution-t ime program mixture. Therefore, few assump-

t ions should be made about guaranteed performance. Sec-
ond, the amount of random-access memory avai lable to the

task is always dependent upon instantaneous machine-load

considerations, such as priori ty preemption, buffer freeze-
downs, and so on.

Timer Services
An application programmer can use the t imer services in

many ways . For example :
1. Toretr ievetoday's date and/orthe current t ime, for print-

ing dated (volat i le) reports, for logging of transactions,
for computing elapsed t ime, for noting the t ime to an
interactive appl ication program user, and so on.

2. To retr ieve the job date (i .e., the date parameter specif ied
in the RUN command) for preprint ing checks, invoices,

and so on.
3. To perform a conversion from one date form to another,

for example from Jul ian to month/day or vice vetsa.

4. To add a date (Jul ian form only is supplied) and a con-
stant for sales forecasting reports and the l ike.

5. To begin a watchdog t imer at the same t ime that another
request of possibly indefinite duration is ini t iated. This
guarantees that, by use of the wait-any synchronization
service, there wil l be some reasonable l imit to the delay.
For example , the sys tem might be programmed to
prompt an interactive terminal user that input is re-
quested, and f ind, by t imer expirat ion, that there is no
one at the terminal.

Trap Handling
A series of ari thmetic computations is usually done with-

out regard to the data being operated on. Thus an under-

f low, overf low, divide by zero, or similar condit ion may

occur. Even an experienced programmer may accidental ly

incur bounds violat ion traps-for example, by execution of

an instruct ion that references an uninit ial ized address

parameter, or by indexing beyond the end of an array.

When a trap of this type occurs, the AMIGO/300 trap

handler does not abort the program, as is usual, but instead

transfers control to a user-supplied or l ibrary routine. In a

user-supplied routine, f i les and data bases might be brought

to a known state before the program is aborted' A l ibrary

routine might be more intr icately t ied into an error report-

ing package (e.g., the AMIGO/300 formatter).
In the case of a bounds violat ion, the trap handler looks to

see if the symbolic debug package is configured into the
program, and i f so, invokes the symbolic debug package's
trap handling routine to interact with the operator and to
report where in the program the violation occurred.

Internal Interrupt Handler
The internal interrupt handler takes care of every

microcode-induced trap. Many of these imply that the HP

300 hardware is responding erroneously, or that there is

some inconsistency within AMIGO/300 itself, in which case

the system is brought to a graceful shutdown (as graceful as
possible under the circumstances). However, most of the
traps fielded by the internal interrupt handler are normal
and are expected to occur. For example, code and data
segments under AMIGO/300 are normally not locked into
memory, so they may be absent when needed. In such a
circumstance, the microcode understands that the desired
segment is not resident in memory, and that AMIGO/300
will take care of making the segment resident before con-
tinuing execution ofthe task that incurred the absence trap.
The internal interrupt handler does not resolve the issue of
making the segment resident and rescheduling the task for
later execution. Instead, it calls upon the memory manager
and the scheduler to do so.

Other expected events that are processed by the internal
interrupt handler include:
1. Bounds violat ion. Thetraphandleris invokedifthe code

that incurred the violation was other than system code.
2. Ari thmetic overf low, underf low, inval id operand (e.g.,

divide by zero), inval id character. These also result in
invocation of the trap handler if encountered in program
code.

3. IPL, or cold-load. This trap invokes the AMIGO/300
startup program.

4. Power-fai l and power-on (to the central processing unit,
or CPU). Currently, AMIGO/300 does minimal recovery.

5. Timer (CPU clock) trap. Transfer of control is passed to
the kernel (see next section) for handling of the timer
trap.

6. Debug instruct ion executed. Control is passed to the
system debug faci l i ty.

The internal interrupt handler also fields many unex-
pected traps, most of which result in a soft crash of the
AMIGO/300 system.

The Kernel of AMIGO/300
The kernel of AMIGO/300 consists of the fol lowing ser-

vices, which are a basis for the mult i tasking environment:
1. The dispatcher, which is responsible for select ion of

one of the tasks in the system to become active
2. Al location of control blocks that define tasks. events.

semaphores, I /O request elements, and general ized
control structures

3. Handling of t imer traps, maintenance of the watchdog
timer queue, and init iat ion of t imer requests

4. Sett ing and retr ieving the date and the t ime of day
5. Start ing, stopping, retr ieving, and init ial izing a task's

CPU execution t imer
6. Recovery from power fai lure
7. Blocking and unblocking tasks

B. Synchronization primitives (wait and post)
L I/O initiation and completion

10. Generalized queue-handling routines.
This kernel consists of two major facilities. One is known

as the control program, but since it bears no resemblance to
a program as formally defined in AMIGO/300, it is simply
referred to as CP. The other kernel facility is the I/O system,
consisting of a driver interface in two forms: the initiator
interface, known as the I/O request service, and the
completor/continuator interface, known as the dispatcher.
Device drivers are not included in the kernel I/O system,
but they must, of course, conform to certain behavior
patterns to be qualifiable.

Each task is bound to a l ist of completed (i .e., posted)
events for that task. Of course, each posted event must be
configured as owned by an existing task before invocation
of the post primit ive. The wait primit ive examines this l ist
of events, waiting for the appearance on the list of the
particular event specified. The wait-any primitive takes the
first-found completed event (if there is one) and processes
that one. When the wait (or wait-anyJ primitive is unable to
locate the event in question, an instruction is executed that
causes the dispatcher to begin execution, and suspends the
prev ious ly execut ing task . A spec ia l t ype o f event ,
nicknamed the when event, is capable of vectoring execu-
tion of the task to a preconfigured procedure entry point.
The when event is processed whenever a wait-any primi-
tive is requested by a task to which the event has been
configured and the event is already complete (i .e., posted),
or upon completion of such an event for which a task is in
the wait-any staie.

Resource semaphore locking/unlocking primitive ser-
vices provide a means of traffic flow control, such that data
structures, etc. that are going to be revised or investigated
by one task can be protected from investigation or revision
by another task, where both tasks may be executing the
same code. The current AMIGO/300 implementation per-
mits only one task to lock any semaphore. An attempt to
lock by another task results in the second task being blocked
(that is, taken off the dispatcher's active task list) until the
owner relinquishes control via an unlock, at which time the
dormant task becomes the owner and is unblocked. Mea-
surements will reveal whether this simplistic approach to
semaphore queueing is adequate or not. If not, the queuing
algorithm can be changed without revision of higher-level
AMIGO/goo code.

Scheduling and Dispatching
As mentioned above, the dispatcher is part of the kernel

of AMIGO/300. Its primary duty is to put tasks into execu-
t ion, but i t also responds to I /O drivers' interrupt handlers
requesting that completion processing be performed. In the
latter case, the dispatcher simply calls the driver's com-
pletor section, having found the entry label in a fixed table.
I/O completion processing can be preempted by further
interrupts, but only one completor may run at a time.

Dispatching of tasks is a process of searching the dis-
patcher's active task queue for the first unblocked task.
Since tasks are installed by the scheduler in priority order,
the first-found task will be of highest precedence. Another
function related to the dispatching of tasks is the termina-

JULy 1979 HEWLETT-pAcKARD JoURNAL 23

t ion of a task's execution. This occurs whenever the task

requests a wait service or when the task's remaining-CPU-

time counter goes to zero. Once the dispatcher or the wait
primit ive determines that the task currently executing
should cease execution, the scheduler is invoked to arbi-
trate. I f there is nothing for the task to do, that is, i f the wait
primit ive invoked the scheduler, the task is automatical ly

blocked, and may be removed from the dispatcher's queue

should the event being awaited be a long-term event. Gen-

erally, all events are long-term except the completion of a

disc transfer. If entry into the scheduler was caused by a

task's CPU t ime running out, the scheduler must assess the

state of the task relat ive to other tasks in the scheduler 's
queue, a superset of the dispatcher's queue. I f need be, the
current task is blocked by the scheduler. I t may also be

dequeued from the dispatcher's l ist. When an awaited event

occurs, the event is l inked into the wait ing task's complete

l ist by the post primit ive. I f the l ist was previously empty,

en t ry to the schedu ler i s aga in made. Th is t ime, the
scheduler may find the task in a state that permits it to run if

unblocked, so the scheduler unblocks the task. On the other
hand, the task may be off the dispatcher's runable task
queue, in which case the scheduler must see whether or not

the task's memory resources have been consumed, and i f so,

must ultimately stage the task's working set back into mem-

ory. We now arr ive at the port ion of the scheduler that is

t ightly coupled to the memory manager.

Whenever an absence trap (previously discussed) occurs,
the memory manager looks for free memory of adequate size
to hold the demanded segment. I f i t cannot f ind suff icient
free memory, it begins to try different means of making it

avai lable. I f al l fai ls, i t invokes the scheduler for a pol icy

decision: Is the task in question of sufficient precedence to
warrant the displacement of another task, or is i t not? This
decision involves potential queue manipulat ion, and very
possibly a task switch (i .e., dispatch) to_a dif ferent task.

System Debug Facility
The system debug facility has been more instrumental in

wringing out mistakes in the rest of AMIGO/300 than any
other feature. With it, one can insert, clear, or list break-
points (permanent, temporary, or counting), display code
and data segment contents, print a trace of the control stack,
display global or stack storage locations, display absolute
memory locations, display register contents, and modify
code and data segment contents. By knowing where the
kernel keeps its data structures, the systems programmer

can look at a task's current state, find out whether an event
is complete or not, Iocate driver storage and external device
states, and obtain many other pieces of vital information.

Acknowledgments
There were many contributors to both the architecture of

the HP 300 and to the AMIGO/300 operating system. The
author wishes to take this opportunity to acknowledge the
primary software architecture designers, Arne Bergh, John
Couch, and Bi l l Wi l l iams, who together der ived the
software environment on which AMIGO/300 was eventu-
ally to execute. One could not ask for a better team of
architects than Arne, with his extensive microcode and
hardware design experience, John, with his extensive

24 newlerr-pncKAnD JoUBNAL JULy 1979

background in compiler design, and Bil l , with his extensive
operating systems knowledge. The AMIGO/300 operating
system modules represent the concerted and di l igent efforts

of Jim Avera, Chris Crump, Bi l l Dalton, Steve Gadol, Bi l l
Haccou, lohn Hawkes, Ken Macy, Frank Mendoza, Bi l l

O'Shaughnessy, Bi l l Parr ish, Gary Wermuth, and Bil l Wil-

l iams. The console handler was developed by Ken Macy,
Steve Gadol and Chris Crump, the program manager and

trap handler by Gary Wermuth, the task manager, syn-

chronization services, and scheduler by Jim Avera, the
memory manager by Bi l l Haccou, Jim Avera, and John
Hawkes, the internal interrupt handler, system debug,
microcode-assisted trace faci l i ty, and simulat ion environ-
ment by Bi l l Wil l iams, the t imer services by Frank Men-
doza, Bi l l Dalton, and f im Avera, the kernel (dispatcher,

control program and I/O system) by Bi l l Dalton, Frank Men-
doza, Bi l l O'shaughnessy, and Bil l Parr ish.

! \

Ralph L. Carpenter
Raloh Caroenter came to HP in 1972
from Louisiana State University (BSME,
1967), and the University of Cali fornia at
Berkeley (MSME, 1968). Project man-
ager for the AMIGO/300 operating sys-
tem for four and a half years, he has also
been project manager for another
operating system, technical support
manager for 21 00 software, and techni-
cal support engineer for 2000C/F
BASIC Timeshare Systems. Before join-
ing HP, Ralph was a systems program-
mer, and he is named as an inventor on
a software patent for a text editing sys-

tem. Now a resident of San Jose, Cali fornia, Ralph has two chi ldren
His interests include disco dancing, reading, l istening to music,
playing the guitar, playing snooker, and swimming,

A Multiple-Output Switching Power
Supply for Computer Applications
Designed for computer mainf rames, this OEM power supply
is an economical solution for the HP 300's power
requirements.

by Di l ip A. Amin and Thane Kriegel

OST COMPUTER SYSTEMS are powered by cus-
tom power supplies, designed for a specific appli-
cation. There are reasons for this: tradition, size or

shape constraints, and the fact that each new computer has
its own sequencing or status report ing requirements. Re-
cent advances in technology have made power supply
development a major expense, so that i t no longer makes
sense to develop a new power supply for each new product.

The power supply used in the HP 300 is a standard,
off-the-shelf power supply designed for computer main-
f rame app l ica t ions . The HP Mode l 63312F four -ou tpu t
550W modular switching power supply provides SV at up
to 50A, +12V or +15V a t up to 10A and +0V a t 1 . { .

Use of this commercial ly avai lable unit was made possi-

ble by features incorporated in the 63312F and by part i t ion-
ing the power system in such a way that the under and
overvoltage shutdown and on-off sequencing circuits are
not in the power supply, but in the system. The 633 12F has
two shutdown terminals that can be used to control the
outputs for sequencing, undervoltage, and so on. In addi-
t ion , a 15V b ias source is p rov ided by the 63312F to power
the external system's supervisory circuits, even when the
power supply outputs are shut down. The -r i .2V outputs of
the 63312F can be changed to -r 1BV by simply short ing two
terminals.

By incorporating these features in the power supply and
by keep ing the sys tem superv isory c i rcu i ts ou t o f the
63312F, HP has been able to use this same standard off-the-

Fig. 1. Three interlocking, func-
tionally independent printed cir-
cuit boards contain all the ctrcuits
in the 63312F Mult iple Output
Switching Power Supply. The
supply provides up to 550 watts at
5V, +1 2V or +1 5V, and up to 40V.

JULy 1979 HEWLETT-pAcKARo JouRtar 25

shelf power supply in two other computers, the HP 3000
Model 33 and the HP 3000 Series III.*

As computers move out of the controlled environment of
the computer room and into the office or factory, additional
safety and electromagnetic interference (EMI) requirements
are imposed. Since most of the impact of these requirements
is on the power supply, using a standard power supply that
meets worldwide safety and EMI requirements simplifies
getting approval of the system.

The 63312F Power Supply is designed to meet many of
the worldwide safety requirements. It is one of the few
assemblies connected directly to the power line, and there-
fore is designed not to fail in such a way as to present a
shock or fire hazard to the operator. In addition, the power
supply was designed to minimize the amount of elec-
tromagnetic interference conducted back onto the power
line.

The 63312F is packaged in a 203x292x1.27-mm enclo-
sure (Fig. 1). The circuits are contained on three interlock-
ing printed circuit boards. The circuit boards are function-
ally independent. The input ac line circuits are all on the
motherboard, mounted horizontally in the bottom of the
'Editoas note: Articles on these systems are planned lor a future issue.

chassis. The EMI filter and safety isolation circuits are also
on this assembly.

The two vertical plug-in boards are the output circuits.
One board contains the 5V, 50A output circuits and the 40V,
1,{ output circuit. The other board contains the l-L2V lo
-r15V output regulators. Forced air cooling keeps the inter-
nal temperature rise to only 4'C and improves the reliability
of the power supply. Putting all the components including
the 50A output circuits on printed circuit boards eliminates
most hand wiring. This provides consistent performance
and reliable low-cost wave-soldered connections.

Theory of Operation
Fig. 2 is a circuit diagram of the 63312F Power Supply.

The ac power line voltage is rectified and filtered to provide
an unregulated 30O-volt dc source. A doubler/bridge con-
figuration allows either 120 or 220 Vac input voltage opera-
tion. Line voltage selection is achieved by external straps on
the input barrier strip. Thermistors R1 and RZ are provided
to limit the inrush current necessary to charge the energy
storage capacitors C1 and C2 when power is applied.

The 20-kHz inverter circuit converts the 300-volt dc
source to a pulse-width-modulated (PWM), 1S0-volt-peak

v4(+)

Optional
Outpul

v4(-)

+s1cNDO---l

/v v1(+)

v1(-)
-sl

5V Overuolbge

V2, V3 Oveivollage

Fig. 2. 6331 2F Power Supply circuit diagram. Large-scale-integrated-circuit pulse-width mod-

ulators (PWM lCs) control the conduction periods of the inverter circuits.

26 newrerr-pncKARD JoURNAL JULv 1 979

square wave. Th is c i rcu i t cons is ts o f f lux -ba lanc ing
capacitor C3, inverter transformer T1 , switching transistors

Q1 and Q2, fuse F2, and current transformer T2. Alternately
switching transistors Q1 and Q2 on and off creates the
2O-kHz PWM square wave. Diodes CR1 and CR2 keep trans-
istors Q1 and Qz in the active mode during the on part of the
cycle and a negative base voltage is appl ied during the
turn-off transit ion to hasten turn-off and minimize switch-
ing losses in Q1 and Q2.

Besides voltage transformation, inverter transformer T1
provides safety isolat ion between the primary and regu-
lated outputs. The stepped-down secondary voltages of T1
are recti f ied and average-f i l tered to provide the f ive-volt
output. The f lux balancing capacitor, C3, prevents dc f lux
bui ld-up on T1 caused by asymmetrical characterist ics of

Q1 and Q2. However, unbalanced f lux can occur during
transients, result ing in high magnetizing currents in TL.
These currents are sensed by the current transformer, T2,
and the appropriate correction signal is communicated to
the control circuitry.

The f ive-volt output (V1) is control led and regulated by
voltage and current error ampli f iers U1 and U2. The signals
f rom the er ro r ampl i f ie rs a re fed to U3, a la rge-sca le
integrated-circuit pulse-width modulator (PWM IC), to
control the conduction period of the main inverter. The
PWM IC has min/max pulse width l imiters and i ts output
drives the inverter transistors Qf and Q2 through the iso-
lated drive transformers, T3 and T+.

A 60-Hz bias transformer, T5, provides regulated bias
voltage to the control circuit and drive power to inverter
transistors Q1 and Q2. In addit ion, bias is provided to
power external circuitry for system monitoring and control.
The fan is connected with the autotransformer primary of
bias transformer T5 to accept either 120 or 22O Vac inout
power.

Auxiliary Regulators
Two addit ional regulated outputs, V2 and V3, are pro-

vided. These outputs derive their inputs from auxi l iary
windings on inverter transformer T1. These voltages are
recti f ied, averaged-f i l tered, and regulated by a 40-kHz
switching regulator in the continuous current mode. The
turn-on/off circuit for these regulators is shown in Fig. 3.

The control circuits are similar to the main f ive-volt out-
put control circuit . Voltage and current error ampli f iers
provide the control signals to PWM ICs to turn off the
switching transistors. (A clock turns on the switches.)

Fig.3. Turn onloff circuit for the V2 and V3 regulators. Energy
stored in the tnductor turns Q3 off rapidly to reduce storage
time and improve efficienc,.

Time

Fig.4. Turn-on sequenctng ls deslgned for proper operation
of semiconductor memorv devlces.

Flyback diodes maintain continuous current in the output
f i l ter chokes.

The voltage error ampli f ier for V2 is connected so the V2
output voltage tracks the V3 output. In addit ion, V2 is
inhibited unti l the V3 output has reached a predetermined
level (see Fig. a). This form of voltage sequencing is re-
qu i red in computer sys tems fo r p roper opera t ion o f
s e m i c o n d u c t o r m e m o r y d e v i c e s . C u r r e n t l i m i t a n d
overvoltage protection are also provided on V2 and V3.

Other Circuits
In addit ion to the main output regulator and control cir-

cuits, addit ional circuits are provided for protection and
power management. These include:

r Slow turn-on
r Overcurrent/short circuit
r Overvoltage
r Line undervoltage
r Line overvoltage
r Overtemperature
r Inrush current protection
r Inverter peak current limiter
r Internal overload protection
r Remote turn-on/off
r Remote sensing.

Electromagnetic lnterference
The power supply is designed to meet the Federal Repub-

l ic of Germany EMI specif icat ion VDE 0871/3.68. A seven-
segment EMI f i l ter was designed that incorporates both

Fig. 5. Bias transformer uses noyel concentric bobbins to
achieve required safety spacings.

JULy 1979 HEWLETT pACKAFDlouRtnr 27

S P E C I F I C A T I O N S'
HP ilod.t 8&tl2F Fow€r Suppty

OUTPUT nAnNGS: For a totdl ol 5s wans ndimum.
OUTPUT V1:4 .7sV lo 525V.1 !P to SA
oUTPUT V2: +11.4V ro +15.75V ar oD ro 1oA
OUTPUT V3: -11.tV ro -15.75v ar up ro 1OA
scrsdnvor vonag. contols and cutrenl limd @ntrds ar€ acessDle though holos n

OubutVl is isolatedtomV2, V3, andgroundand has an indepo.denlvohag€.ontol
Oubuts V2 a.d V3 are compleh6.hry rackiry oulpuis adjusl€d by one voltage

mtrd. Th4 hav6 a @mmon @run ldninal and ar6 isolatod tom v1 a.d groo.d
IOTAL OUTPUT POWEF: 550 wats when ac input is 1 @'l 27Vac ot M-2sOVac. Oetare

tiom 550 W to 475 W s ac inoul der@s€s tom 1@ lo 87vac or 2@ lo 174vac.
IEflPEFATUFE FATIilG: 0'C to 40"C ar lull ourput. Contacl yow HP fiald €nqn*r lor

d6ratng inlormailo. bN6€n 4'C and 70'c. storags lomperatue 6nge is -55'c

IPUT nAIXGS:87i27vac or 174-2SVac,47-63 82, gngle-phas€ 14@ VA maxi
m!m. Voll6g6 ranF is changoabls o in&t lsrminal block.

INPUI PFOTECTION:4A ac line luse inside lhe unil.

. ouTPut vofTAGE EFFEqS FOF V1, V2, ANO V3:
'

SOUFCE eFFECT:0 1% to. inout 87-127vec or 174_250vac
IOAO EFFECiT 0.1% br nGlod lotulLload cured cha@6.
TEMP EF|ECT.002vC, O C to @"C.

PAFO (Rrppl6 and Nose)
OUTPUT vl. 50 rv p-p (& Hr-2oMHz)
OUTPUTS V2 and V3: 75 mV p-9 (& Hz-4 MHz)

RE{OIE SHUTDOWN: T6.mhab ar. provi&d tor €mole m-ofr contol ol all oulpuls
log€lhs, and abo ior oulpub V2 4d V3.abn€. (An oFn collector bw bgc laor or a
concd dc4e oulpur of)

POWEF SUPPLY PFO'EC'IVE FEATUFES:
Oubul ovofclaenl o.oldion
Ollpul ovarvollago protodon
ou$ut rswrse volia@ proleclion
OvdemF.alo.e protsctfr

PU(INFUSH CUFiEtt: l6s than 8OA p6ak al lurn_on.
COOUre: l.tqral mling la..
FEfOfE $NSNG: Femote sensing lerminab ars Yovid6dtor €ach outpui lhal kil man_

tain nominal voboo at lh€ load by cotrding lor load l€ad vonago drop ol up to 5ol

DIEL€CNC WNSTANO TESI VOLTAGE:
PAIMAFY TO ANY OUTPUT: 19OVm3 Io. I minui!
PFIMAFY TO aASE: lsvrms lor 1 ninute.
ANY OUPUTTO CASE: 1@vdc tor 1 dndo

SAFfl StAioARos: Th6 pil€. sopply m€orsrh6 rqunmdB d UL4783d 6 inlhe
Fe@ni2ed 6mp6dl Ind6x undd Gul& OOFU2, Filo E5154.

€tl CHASACTEnISIICS: Conductsd htodsr.nca m6els lh6 roqutome.ls ol
vbE s7s,71 level a.

CAFFYOVEF nxE: At lull load and 8ilac inpur, tho @tpul vollages d@.6aso b$han
4 during lh€ h.st 20 m afr6r input powd ioleruBon.

WEIOHT: Ner 6.8 kg (15 lb). shipoing 8.6 kg (19 lb).
DttEtgoNS: 126 mm H ! 207 mm W x 3r5 mm O (4.S x I 14 x 12.4 in).
PFTCE tt U.S.A.:

&dffi12F Muhpb tulput dc Powsr Supply
Lisl Pnce, S2s.@.
OEM 1@ unil quanliv, S@.00 oeh.

{ANUF CTF|NG DlVlSlOt: {S JERSEY OlVlSld
Grsn Pond Foad
Sockaway, Nw Je6oy 078S U.S.A,

Dil ip A. Amin Thane Kriegel
Tim Kriegel came to HP in 1972 with four
years experience in power supply de-
velopment and three years in video sys-
tems design. He contr ibuted to the
62605M 500W switching supply as
project engineer and served as proi-
ect leader lor the 63312F 550W mult i-
output switching supply. Tim rec-eived
his BSEE degree in 1965 from North-
eastern University in Boston. A native of
the state he st i l l l ives in, Tim and his wife
and f ive chi ldren, ages 9 to 19, l ive in
Denville, New Jersey. The family enjoys
camping together and Tim tinds most ol
his leisure trme well f i l led with the work
of renovaling an 8o-year-old home.

1 Dil ip Amin joined HP's New Jersey Divi-
j sion in 1973, six years after completing

f his Bachelor of Engineering degree at
Maharaja Sayajirao University in
Baroda, India, and four years after re-
ceiving his MEE degree from Stevens
lnsti tute of Technology in Hoboken,
New Jersey. Responsible for the circuit
design and production introduction of
the 63312F Power Supply, Di l ip was a
project manager for switching power
supplies for three years before joining
HP. He's named as the inventor on a
high-frequency SCR switching reg-
ulator patent. Di l ip, his wife and two

daughters l ive in Dover, New Jersey. He enjoys hiking, gardening,
r iding bicycles, sightseeing and discovering new places of interest,

\

common mode and normal mode f i l ters. The input storage
capacitors have low series resistance and inductance to

minimize conducted noise to and from the inverter. The

inverter transformer has dual primary windings and mult i-

shielded secondaries to reduce noise conducted through

interwinding capacitances. Al l outputs have Schottky rec-

t i f iers and high-frequency f i l ters to minimize output r ipple

and noise.

Safety
Requirements for high dielectric breakdown strength

proved to be an interesting chal lenge in the design of this

computer power supply. Specif icat ions for printed circuit

board trace spacings and component spacings made high-

density packaging more dif f icult . In addit ion, there were

internal construction requirements on the safety isolat ion
transformers. New techniques were created in the trans-
former designs to provide the addit ional dielectr ic strength

without sacri f icing performance and costs. The bias trans-

former. T5. uses novel concentr ic bobbins to achieve the
required safety spacings (see Fig 5). Inverter transformer T1
and driver transformers T3 and Tq are wound with wire that

has addit ional insulat ion, and extra taping between wind-
ings is provided.

Acknowledgments
The innovative mechanical design features of the 63312F

were developed by Don Pauser. Win Seipel designed the
novel magnetic components and George McGreen contr ib-
uted signif icantly in the area of technical support.

Hewlett-Packard Company, 1 501 Page Mill
Road, Palo Alto, Cal i fornia'94304

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

r.
I OAClG0.* ? 5 0i '6,6GHA k* t JA00

FTR JULIAN A I - IARRIS
L } ! A Y C } b L E C T R C N I L S L T E
C i i { M U N I C A T I C N S T } & P T
t t7 , NO AUTH AVE
PEI{SALOLA FL SZrt)3

To change your address or delete your name irom our mai rng l ist please send us your o d address abe Send

changes lo Hewle t t -Packard Journa l , 1501 Page N,4 i1 l Road, Pa lo A l to , Ca l fo rna 94304 USA A low 60 daysCHANGE OFADDRESS:

