\\ \section*{\title{
The Pemburt.\\ \section*{\title{
The Pemburt. , , DEMODULATOR DEMODULATOR \\ \\ \\ MAY 1969 \\ \\ \\ MAY 1969 \\ \\ \\ MAY 1969 11}

Complicated voice and data loading requires special equations to calculate actual capacity.

Microwave communication systems, like most systems built for use in a constantly expanding consumer market, seem to reach their maximum capacity before they should. Even when extra capacity has been painstakingly engincered into a system, it is not at all uncommon to find that even this additional capacity has been consumed earlier than anticipated.

As an FM-FDM (microwavemultiplex) system expands to its maximum capacity, problems arise as more circuits or services are required. In general, these systems consist of several microwave hops in tandem between the end points of the system, with spur or sideleg hops often branching from the intermediate points.

When is a System Overloaded?

In complex systems it is possible to have portions of the system operating at or near the overload point while the other portions are carrying much lighter loads. In determining an overload, it is only necessary to consider the single most heavily loaded microwave hop.

In an FM system there are several interrelated factors which limit maximum capacity. An overload exists when one or more of the following limits has been exceeded:
I) Nll of the available or usable baseband spectrum is in use.
2) The point at which total baseband signal power (system loading) if increased would cause unacceptable performance.
3) System usage is such that any increase in either the top baseband frequency or the system loading would cause emission bandwidth to exceed that legally allowed for the particular frequency band.

In FM systems, the first two of these limits often have some degree of elasticity. The third, however, is a legal limitation which cannot be exceeded without legal violation. Perhaps the best approach is to evaluate the nature of the emission, its limitations, a method by which it can be calculated, and how it is affected by various parameters of the microwave system.

Legal Limitations of Capacity

The allowable maximum bandwidth (necessary or occupied, whichever is greater) for microwave systems under the Industrial Radio Services is established in Paragraph 91.111 of the Federal Communications Commission rules. It is:

8 MHz in the $1850-1990 \mathrm{MHz}$ band 800 kHz in the 2130-2150 and 2180-2200 MHz bands
10 MHz in the 6575.6875 MHz band 20 MHz in the $12,200-12,700 \mathrm{MHz}$ band

Paragraph 2.202 of the FCC rules defines the various emission characteristics and provides formulas for calculating the "necessary bandwidth."

The type of service and the allowable bandwidth for a particular service is formalized in an "emission designator," which includes first the band-
width in kHz , then a letter indicating the type of modulation (F for frequency modulated systems), then a code number indicating the type of transmission (usually " 9 " for composite transmission in case of FM systems with FDM multiplex). Thus the emission designators for the bands listed above would be $8000 \mathrm{~F} 9,800 \mathrm{Fg}$, 10000 F 9 and 20000 F 9 respectively.

The formula given by FCC for calculating the necessary bandwidth of an F9 transmission is:

$$
\text { (A) } B_{n}=2 M+2 D K
$$

where:
$B_{n}=$ necessary bandwidth in kHz
$M=$ maximum modulation frequency in kHz
$D=$ peak deviation in kHz , defined as half the difference between the maximum and minimum values of instantaneous frequency.
$K=$ a numerical factor depending upon the allowable distortion. A commonly used value for K in such systems is 0.9 , though a value of 1.0 is sometimes used.

The value of M for a particular system is casily established. ${ }^{1}$ It is simply the frequency of the top modulating channel applied to the base-

[^0]band. The value of D, however, is somewhat more elusive since the composite load applied to the baseband is a varying and complex quantity whose peak value can only be described statistically. The value of K is, as stated, very close to 1.0 .

The multiplex used, except for systems of very low density, is almost exclusively of the single-sideband sup-pressed-carrier type (SSBSC).

Studies on operating systems have led to the following equations for calculating the rms (root mean square) value of white noise power, simulating the equivalent busy hour load of a given number of voice channels multiplexed into a baseband by SSBSC techniques (Fig. 1).

(B)

$$
P=(-15+10 \log N) d B m 0
$$

$$
\text { (} N \text { is } 240 \text { or more) }
$$

or:
(C)

$$
\begin{aligned}
P= & (-1+4 \log N) d B m 0 \\
& (N \text { is } 60 \text { to } 240)
\end{aligned}
$$

where:
$P=$ equivalent rms white noise power applied over the same baseband spectrum as occupied by the multiplex channels. $N=$ number of voice channels $d B m 0=d B$ with respect to the power of a single channel test tone at zero relative level.

These equations, originated by CCITT and CCIR, are almost universally accepted as a basis for the design and testing of multi-channel microwave systems and provide a basis for calculating peak deviation (Factor D in equation (A)).

Calculating D for Voice Systems

The starting point for the calculation of D (peak deviation) is the

Figure 1. This graph, based on equations (A) and (B), shows the busy hour load (in dBm 0) for the various number of voice channels used in a particular system.

known per-channel rms deviation and the known power of its signal. The per-channel deviation is a basic FM system parameter frequently chosen as 200 kHz rms . The baseband power of the test tone producing this deviation is 0 dBm 0 rms .

The parenthetical expressions in (B) and (C), called the "noise loading ratio", express the dB ratio between the rms power of a white noise load whose peaks are equal to the peak values of the complex baseband signal during the busy hour, and the rms power of a test tone.

The peak value of white noise power is a statistical parameter with no specific value, but is commonly taken as 13 dB above the rms power. The use of two different equations for calculating the white noise load equivalent reflects the fact that the peak to rms factor of the complex signal from a number of voice channels is relatively constant at 13 dB for systems with more than 200 channels, but is variable and somewhat higher for systems with fewer channels (Fig. 2).

Deviation in an FM system has the dimension of voltage. Corscquently, the effect of changes in deviation can be calculated as a 20 log function of changes in load power.

The following equations can be used to calculate the peak deviation for a multichannel SSBSC voice system:

$$
\begin{aligned}
D= & 4.47 d\left(\log ^{-1} \frac{-15+10 \log \mathrm{~V})}{20}\right) \\
& (\mathrm{N} \text { is } 240 \text { or more })
\end{aligned}
$$

(E)

$$
D=4.47 d\left(\log ^{-1} \frac{-1+4 \log N}{20}\right)
$$

(N is 60 to 240)
where:
$D=$ peak deviation in kHz
$d=$ per-channel test tone
deviation in kHz , rms
N = number of SSBSC voice channels in system
Peak factor $=\log ^{-1} \frac{13}{20}=4.47$
Example A:
A 300 channel radio system could typically have a 200 kHz per channel rms deviation.

$$
\begin{aligned}
\mathrm{D} & =(4.47)(200)\left(\log ^{-1} \frac{9.77}{20}\right) \\
& =(4.47)(200)\left(\log ^{-1} .4885\right) \\
& =(4.47)(200)(3.08) \\
& =2753 \mathrm{kHz}
\end{aligned}
$$

Equation (Λ) can be used to calcuIate B_{n}, noting that $\mathrm{N}=1300 \mathrm{kHz}$ (top channel of a 300 kHz system) and taking 0.9 for $K . B_{n}=2 \times 1300+2 \times$ $2753 \times 0.9=7555 \mathrm{kHz}$

F'or standard SSBSC multiplex configurations of 120 chamels to about

960 channels, the frequency of the top channel in an N -channel system can be very closely approximated as $(4.13 \mathrm{~N}$ $+60) \mathrm{kllz}$. By using this approximation for M , taking K as 0.9 , and substituting the appropriate values of 1) from (D) and (E) respectively, the following equations for B_{11} in terms of N and d can be derived. (It should be emphasized that they apply only to systems used primarily for voice):

$$
\begin{aligned}
&(F) \\
& B_{n}= 120+8.26 \mathrm{~N}+1.43 d \mathrm{~N}^{0.5} \\
&(\mathrm{~N} \text { is } 240 \text { or more }) \\
&(G) \\
& B_{n}= 120+8.26 \mathrm{~N}+7.17 d \mathrm{~N}^{0.2} \\
&(\mathrm{~N} \text { is } 120 \text { to } 240)
\end{aligned}
$$

These equations provide insight into the complicated way the necessary bandwidth varies as a function of the number of chamels and per channel deviation in voice operation.

The equations permil calculation of any one of the three variables ($\mathrm{B}_{11}, \mathrm{~N}$, and d) provided the other two are known, and can be used to determine what combinations of number of channels and per channel deviation can be used withoul exceeding a specific value of B_{n}.

Example B:

A typical microwave system in the 6 GHz industrial band has the limitation of 10000 F) emission. (From Example Λ, it is clear that there will be no problem with a 300 channel system using 200 kHz per channel deviation.)

But suppose 600 channels are desired in the same bandwidth.

What per chanmel deviation will allow staying within 10000 FO ?

By substituting 1000 for B_{11} and 600 for N in (F) it can be easily calculated that the deviation must be reduced to 140 kIIz .

If d is left at 200 kHz per chamel,
it can be shown that N camot exced about 450 chamels if B_{11} is not to exceed 10000 kHz .

Thus seven complete supergroups, or 420 chamels, can be accomnodated on a system using 200 kHz per channel deviation, within the 10000 kllz bandwidth limitation, but eight supergroups create an overload.

Calculating Voice and Data

Present day systems have a significant percentage of the derived SSBSC channels devoted to the transmission of systems of submultiplexed tones carrying data or telegraph. The number of tones of this type in an SSBSC: chamel can vary from one to 25 or more. Their power represents a relatively constaint rms load to the baseband, since the tones are on continuously. When the total number of individual data signals on the system exceeds about 15 , the peak to rms factor for their complex summation approaches that of white noise.

If the levels chosen for each data or telegraph circuit are such that the total rms power of their tones submultiplexed in any SSBSC chanmel is 15 dBm0, the data loading per SSBSC channel will be the same as if it had been used for voice. In this case these cquations can be used to calculate deviation and bandwidth.

The common practice of putting data at a somewhat higher level means the loading due to the number of channels devoted to datil will be much greater than if they had been devoted to voice. This also means greater overall loading and deviation.

The necessary calculations for a mixture of voice and data channcls are simple in theory. They can become complicated in practice, however, because there are so many possible combinations of voice and non-voice circuits. The following equation is a generalized form of (D) and (E):

Figure 2. The patterns for the two peak factors - peak to rms ratios - of data and voice are essentially the same when the number of channels is large. However, restriction of data to low levels will affect the signal-to-noise ratios.

(H)

$D=4.47 d\left(\log ^{-1} \frac{N L R_{\text {tot }}}{20}\right) k H z$ which leads to a generalized form of (F) and (G) :
$B_{n}=120+8.26 N+8.05 d$

$$
\cdot\left(\log ^{-1} \frac{N L R_{t o t}}{20}\right)
$$

where:
D, d, B_{n}, and N are all as before and NLR tot is the Noise Loading Ratio corresponding to the total equivalent voice channel power plus the equivalent power of all non-voice groups.
(Note: N is the total number of SSBSC channels in the system, regardless of use. The function of N is only to establish the top modulating frequency M).

Before (H) and (1) can be used, a prelininary calculation nust be made to determine the value of NLR tot. The simplest way is to calculate separately the dl3m0 equivalent noise power of the chammels used for voice (using (B) or (C)), the equivalent dBm0 noise power of each non-voice group and then on a power summation basis, combine all the powers to obtain the equivalent total baseband load of
white noise power. The NLR $\mathrm{tat}_{\text {t }}$ in dB is then numerically equal to the dBm0 value of the equivalent white noise load. Once NLR ${ }_{\text {tot }}$ has been calculated, it can be used in (1) to obtain B_{n}, or with (11) and then (A) to determine both D and B_{n}.

The following example will illustrate the method.

Example C:
A 6 (Hz system with 300 SSBSC chamels, of which 200 channels are used for voice transmission, 40 channels are used for data at a power of -10 d 3 m 0 per SSBSC channel, and 60 channels are used to carry submultiplex telegraph tones, each tone at a power level of $-21 \mathrm{dBm0}$ and with each of the 60 SSBSC channels earrying 20 such tones. The per channel rms test tone deviation is 200 kllz . To calculate necessary bandwidth:

1. Calculate noise load power corresponding to 200 voice channels, using (C), as $(-1+4 \log 200)=$ $+8.2 \mathrm{dBm0}$.
2. Calculate noise power corresponding to 40 data channets at -10 dBm0 per chamel as $(-10)+10$ $\log 40)=+6.02 \mathrm{dl3m}(0)$.
3. Calculate noise power corresponding to 20 tomes in one SSBSC
channel as $(-21+10 \log 20)=-8$ dBm 0 and the noise power corresponding to 60 such SSBSC channels as $(-8+10 \log 60)=m+$ 9.78 dBm 0 .
4. Sum the three noise powers, +8.2 $\mathrm{dBm} 0,+6.02 \mathrm{dBm} 0$, and +9.78 dBm 0 on a power basis, by using appropriate curves or by converting each value to its equivalent in milliwatts, adding, and reconverting to dBm 0 . The power sum will be found to be very close to +13 dBm 0 or about 3.2 dB higher than the equivalent noise loading of 300 voice channels.
5. As indicated above, the NLR corresponding to +13 dBm 0 of noise power is 13 dl 3 . Substitute this value for $\mathrm{NLR}_{\text {tot }}$ in (H), which gives the following:

$$
\begin{aligned}
D & =4.47 \times 200 \times\left(\log ^{-1} \frac{13}{20}\right) \\
& =4.47 \times 200 \times 4.47 \\
& =4000 \mathrm{kHz}
\end{aligned}
$$

(It is coincidental that the noise loading factor equals the peak factor. Generally, they will be different.)
6. With D known, use (Λ) to calculate the "necessary bandwidth". The value of M is still 1300 kHz , corrcsponding to the frequency of the top channel of a 300 channel SSBSC system, and the 0.9 value is still appropriate for K. This gives:

$$
\begin{aligned}
\mathrm{B}_{\mathrm{n}} & =2 \times 1300+2 \times 4000 \times 0.9 \\
& =9800 \mathrm{kHz}
\end{aligned}
$$

or:
Equation (l) could have been used to calculate B_{n} directly.

The methods used in Example C can be extended to eover other situa-
tions provided the basic principles are followed.

To avoid possible confusion, these calculations of peak deviation are based on systems which do not have emphasis and whose per-chanmel test tone deviations have the same value regardless of the position of the channel in the baseband. When emphasis and deemphasis net works are used, per channel test tone deviation is not a constant but is a function of channel baseband frequency. Higher channels deviate more than lower channels, but systems are generally so arranged that the total deviation remains the same and the equations are still valid.

Capacity Limitations

Microwave equipments are generally designed with some specific maximum capacity in mind, usually in some multiple of the standard 60 channel supergroup. In older systems, and in light route or spur legs, 120 channel and 240 channel systems were often used. Present usage tends toward systems with 300 channel capacity, even higher for backbone routes.

Selecting the proper equipment and employing the most effective field application necessarily requires some specific criterion of channel noise performance. Noisc performance is an intricate function of the number of channels, the per channel deviation, the presence or absence of emphasis networks, the per channel loading, the receiver noise figure, the RF signal level, the fade margin needed to give the desired reliability, and the i-f bandwidth - to mention a few. There are many trade-offs and balances involved. The choices made when engineering a system for 300 channels would not be the same as those for 600 channels.

RADIO MULTIPLEX SYSTEM

Lenkurt's 46A is more than a high-quality multiplex system. It is a completely compatible line of assemblies which can be arranged in literally hundreds of ways to suit virtually any application. One major benefit of the 46A is the ease with which it can handle the extra heavy loads presented by data traffic. The 46A's load capacity actually exceeds CCITT recommendations.

For information on any Lenkurt equipment, write Lenkurt, Dept. C720.

LENKURT ELECTRIC GENERAL TEIEPHONE \& EIECTRONICS
 SAN CARLOS, CALIFORNIA, U.S.A.

Lenkurt Offices

The Lenkurt Demodulator is circulated monthly to technicians, engineers and managers employed by companies or government agencies who use and operate communications systems, and to educational institutions. Permission to reprint granted on request.

[^0]: ${ }^{1}$ Electronics Industries Association (EIA) has submitted to FCC a proposal that a peak factor of 11.5 dB be used instead of the 13 dB which has been customary, and that a value of 1.0 be used for the factor K for the present. The result of these changes would reduce the calculated values of 2 DK by approximately 8%. This would allow a slight increase in channel capacity for the same necessary bandwidth.
 Industry's interpretation is that M should properly be taken as the frequency of the top information-bearing channel in the system, and that a sinusoidal continuity pilot located above the baseband should not be considered to be the "top modulation frequency" and should be excluded from the determination of M .

