

FIBER OPTICS IN TELECOMMUNICATIONS

As recently as late 1975, many experts were predicting that operational fiber optic communications systems would not be in service before the mid-1980's. However, increasing demands for telecommunications services and growing costs of copperwire have combined to accelerate development of fiber optic systems. Systems have been installed and field tested in the United States, Japan, Canada, Great Britain and other European countries. Some of these systems are now fully operational. Today, it is apparent that fiber optical systems will be an important part of the telephone network by the mid-1980's.

For some applications, fiber optical systems have distinct economic and technical advantages compared to copper-cable systems. Fiber optical cable also has some unique problems which are not encountered in conventional cable. Both the advantages and the problems are pointed out in the following discussion.

Figure 1 is a block diagram of a system using fiber optics as an interoffice trunk. As shown in the figure, analog telephone signals enter the terminal and are converted to digital signals by a conventional PCM channel bank. The advantages of digital transmission are easily realized by optical systems because of their wide bandwidths and negligible crosstalk. However, amplitude modulation is also used for low capacity systems. Several low capacity, AM systems are available or being developed for the industrial market.

Returning to Figure 1, the encoded digital signals are amplified and used to intensity modulate a light source, such as an injection laser diode (ILD) or light emitting diode (LED). Both of these devices are relatively inexpensive and compatible with the optical fiber cable presently being manufactured.

The light pulses output of the light source are carried over optical fiber cable to the repeater. At the repeater, the pulses are detected by an opticaldetector, photo diode. These detectors convert light input to an electrical output. The two most commonly used are the pin (PIN) diode and the avalanche photo diode (APD).

Figure 1. A simple, hypothetical optical communications system using currently available PCM equipment.

 $\mathbf{2}$

Figure 2. Typical ray traveling a length of optical fiber.

The electrical output pulses are detected, amplified, retimed, and regenerated by the PCM repeater, then used to drive a light source which converts them back to light pulses for transmission to the distant terminal. At the terminal the light pulses are again converted to electrical pulses and processed as conventional PCM received signals. Signals to be transmitted in the opposite direction are processed the same as described above.

From the foregoing discussion and examination of Figure 1, it is apparent that the optical portion of the system is composed of three parts, the light source, the optical fiber cable and the photo-detector. The following paragraphs describe each part. The cable is discussed first, since it represents the newest technology and its characteristics affect the operation of the other two.

Fiber Optical Cable

A simplified optical fiber is diagrammed in Figure 2. It has a cylindrical glass fiber core with a diameter d and a uniform index of refraction N_1 . The core is surrounded by a concentric layer called the cladding, which has a lower index of refraction N_2 . A light ray entering the core of this cable at one end will traverse its length and

exit at the other end, conforming to the reflection principle of physical optics which states: When a light ray passes from one optical transmission medium to a boundary of another medium with a lower index of refraction, it will be reflected back into the original medium. This process is repeated over and over as the light passes down the core. Each time reflection occurs a slight amount of light intensity is lost. Largely due to impurities in the fiber. some additional losses are incurred as the light travels down the fiber. These two factors are the principal components of attenuation per unit length of cable. Attenuation is discussed in detail later in this article.

Another eable characteristic affecting light transmission is the input light acceptance. Figure 3 shows three light rays, A, B and C. Ray A enters the fiber coaxially with the longitudinal axis of the fiber and propagates through the cable as shown. Ray B enters the cable at an angle θ , and propagates along the fiber by a reflective process. Ray C enters the fiber at an angle greater than θ , and escapes through the side as shown. Light rays entering the fiber within the cone shown by dotted lines in Figure 3, will propagate along the cable. Rays at greater angles will not.

The maximum propagation angle, θ , is mathematically related to the difference in the refractive indices of the fiber N₁ and cladding N₂ so the light gathering ability of a cable can be expressed numerically. This ability is known as the numerical aperture, NA, and can be derived from the following equation:

$$NA = \sqrt{N_1^2 - N_2^2} = \sin \theta$$

where N_1 and N_2 are the peak values of the reflective indices.

Just as in electro-magnetic waveguide propagation, only certain modes can propagate along an optical fiber cable. The number of modes (M) is determined by the core diameter (d) the numerical aperture NA and the light wavelength (λ). The relationship is shown in the equation:

M = 0.5
$$\left(\frac{\pi d NA}{\lambda}\right)^2$$

From this equation, it can be seen that; For a given wavelength, the number of modes can be decreased by reducing the diameter of the core. When the diameter approaches the wavelength only a single mode will propagate. Such a single-mode cable eliminates modal dispersion, which is a limiting factor on the bit rate capacity (bandwidth) of fiber optical systems.

The cause of modal dispersion is shown in figure 4 which depicts the

paths of two rays traveling through an optical fiber. As shown by the figure, ray A is not reflected as often as ray B, so A travels a shorter path and will exit the cable sooner than B. As a result, pulses composed of rays which are coincident in time when they enter the fiber will be dispersed in time (broadened) as they travel down the eable.

As previously stated, single-mode cable eliminates modal dispersion. However, the core diameter of such a cable is so small that efficient coupling between it and the light source is extremely difficult to achieve and maintain in the field. Single mode cable is primarily used for laboratory applications.

Much more efficient coupling is obtained by multimode fibers. There are two types of multimode fibers; step index and graded index. The term step-index derives from the fact that this cable has an abrupt change of refractive index between the cladding and the core. The difference between the refractive indices gives a larger value to θ , and the diameter of the core is much greater than in the singlemode cable, therefore the light gathering ability and hence the coupling efficiency of step-index cable is much greater than single-mode cable. The penalty paid is the greater dispersion effects resulting from the larger differences in path lengths between the extreme modes.

Figure 4. Modal dispersion.

Graded-index, multimode fiber represents a compromise which provides good coupling efficiency and reduces the effects of modal dispersion.

This is accomplished by providing a graded index of refraction profile across the fiber cross section, instead of the uniform profile of the stepindex fiber core.

The graded-index fiber profile provides an index of refraction which is maximum at the center of the fiber cross-section and decreases with increasing radial distance from the fiber core. Because of the relationship between propagation velocity and refractive index, rays traveling along the centerline will have a lower velocity than rays traveling off the centerline. The center line rays travel a shorter distance at a lower speed. The offcenter rays travel a longer distance at a higher speed so, both rays exit the fiber more nearly coincident in time than is the case for step-index cable. The ability of the fiber to "capture" rays for longitudinal travel is also enhanced by the graded index profile because it effectively increases the fiber's numerical aperture. Figure 5 compares the modal dispersions of the 3 fiber types.

In addition to modal dispersion, there is another dispersion effect called material dispersion. Material dispersion results from the fact that different wavelengths of light propagate at different velocities through a given medium. Since practical light sources are not monochromatic, they radiate light rays with different wavelengths. The light radiated by a LED may have a wavelength spread as great as 50 nanometers. Lasers are substantially better in this respect, with spreads in the 4 nanometer range.

Figure 5. Propagation through optical fibers.

Dispersion effects, both mode and material, are the principal factors limiting the bit rate capacity of fiber optical systems. Modal effects can be greatly reduced by graded index cable but material dispersion effects are present in all types of cable. They can only be reduced by a truly monochromatic light source.

Transmission Losses

Transmission loss (attenuation) is another important characteristic of fiber optical cable. Attenuation in an optical fiber is measured in dB just as are wire cable losses. The optical equivalent to wire-cable resistance is called absorption. Absorption means the conversion of light into heat.

One of the important causes of absorption is impurities in the fiber material, primarily metal ions and Ollions in the glass core. Impurity absorption can be reduced by carefully controlling the core material to avoid impurities.

Another important cause of absorption loss is the scattering effect. Seattering losses result from fundamental fluctuations in glass density and composition and from imperfections in the core/cladding boundary. The latter can be reduced by careful fabrication of the core.

Also, scattering loss is inversely proportional to the fourth power of the light wavelength. Present fiber optical systems are operating on wavelengths in the vicinity of 0.8 to $1.0 \,\mu m$ which is not the optimum range for reducing scattering loss. Intensive research and developments efforts are underway to perfect light sources and detectors which operate at longer wavelengths.

Radiation losses are also present in any real fiber optical system. Microbends in the fiber can cause radiation losses. These bends are sometimes incurred during cable fabrication. They can be largely avoided by minimizing all contact between the fibers and other bodies. Radiation losses can also result from abrasions or dirt on the outer surface of the fiber.

The total cable losses vary widely with cable type and light wavelength but generally fall within the range of 4 to 20 dB per kilometer.

Any real optical fiber system will use connectors and splices to join the fibers. Optical losses incurred in connectors and splices result from discontinuities and misalignment at the junction. The amount of loss is dependent upon the fiber alignment and optical characteristics. Splice losses are lower than connector losses because splices are carefully aligned with precision fixtures and the joint is permanently bonded with a refractive index matching agent that reduces reflection discontinuities. Connectors are detachable by definition - so their alignment is less precise. Typical splice losses range from 0.3 to 0.7 dB. Typical connectors losses range from 1.0 to 2.0 dB.

Mechanical Properties

The dielectric glass used to make typical optical fibers has great intrinsic strength. However, the small diameter of the fibers make them too fragile for field use. Microscopic fractures and flaws greatly reduce the fiber strength and further serve as a focal point for additional weakening resulting from minute bending or flexing. Also glass is brittle and cannot be stretched like copper cable.

To overcome these problems, the fibers are made into cables. Cables are built in different configurations for various reasons but practically all of them have, in addition to the fibers, one or more strength members, some kind of buffering material and an overall sheath. BRAIDED STRENGTH MEMBER

FIBER BUFFER COATING

Figure 6. Single fiber cable.

Single Fiber Cable

Figure 6 depicts a single fiber cable. The optical fiber is located in the center and surrounded by the buffering material. This material has good chemical resistance in itself and is also impermeable to most chemicals. It is usually in the form of a coating on the fiber. It also provides mechanical buffering against abrasion. A strength member forms the next laver surrounding the buffered fiber. It provides protection against impact, crushing and longitudinal stretch forces. The outer jacket of the cable is a tubular sheath. It minimizes microbending losses and establishes a limit of cablebending radius. The jacket also shields the fiber from the environment.

Figure 7. Axially strengthened optical fiber cable.

Multiple Fiber Cable

OPTICAL FIBER

One form of multiple fiber cable is bundled cable. As the name implies, this cable encloses many optical fibers bundled together. Originally, bundled cables enclosed several hundred fibers. They were fabricated to provide reliability through redundancy and to provide good light collection without focusing the source. This type cable has high losses so it is only suitable for applications using short cable runs.

A simple design configuration for bundled cable is shown in figure 7. This design has the disadvantage that the strengthening element occupies the center of the face – so the light gathering efficiency is reduced. Also, the individual fibers are not buffered from each other. Therefore, they are vulnerable to abrasion and microbending. The principal advantage of this construction is its simplicity.

Another cable configuration contains individual fibers which are isolated from each other by a filler. Each fiber has a buffer coating and a jacket. The fibers are bound together by a tubular wrapping. All of these elements are encased in a woven strengthening sheath which also controls cable bending. An outer jacket protects against mechanical stress and prevents environmental damage.

The foregoing discussion describes fabrication techniques which are used by one or more cable manufacturers. Figure 8 is a picture of an actual commercially available cable, General Cable Corporation's type AT, designed for pressurization and burial.

The cable contains six graded index fibers in a laminated plastic tape carrier, seven insulated copper wire pairs and an axial strength member. The wire pairs are used to power repeaters, aid in fault location and provide orderwire facilities. The optical 3 dB bandwidth is 400 MHz per kilometer. The average loss in the fibers is less than 6.5 dB per kilometer. Figures 9 and 10 show cables manufactured by Siecor, for installation in ducts.

Light Sources

Light emitting diodes and injection laser diodes are the two most common light sources used in fiber optic communications systems. LED's have a light power out to driving current input characteristic which is approximately linear over a large driving current range. Therefore, they can be amplitude modulated by varying the drive current.

LED light emission are lambertian. The light rays emanate over an entire hemisphere. Therefore, efficient coupling into multimode cable is difficult. Typical power coupled into the cable is around 50 microwatts. Their emission spectral width (range of wavelengths of radiated light) ranges from about 40 to 50 nanometers, which translates to an upper limit on bit rate capacity of about 200 Mbps. Rates of about 50 Mbps are about the highest used in actual practice.

The laser is a threshold device. It "turns on" when the drive current reaches threshold and provides a large increase in output power. The light power output versus drive current input characteristic is linear over a limited region, so lasers are best used in digital applications.

Figure 8. Fiber optic cable, type AT.

Laser spectral widths are about 4 nanometers which is much better than LED's. Therefore, material dispersion is not a problem and lasers can be modulated at Gbps rates. Laser radiation is relatively directional (15° by 40°), so coupling to the cable is more efficient. Typical coupling losses are about 5 dB in contrast to 15 dB typical loss for an LED. Laser power into the cable is a few milliwatts.

The most serious drawbacks to lasers are their relatively short lifetimes and variations in threshold with temperature and age. Typical lifetimes are about 10,000 hours. To gain wide acceptance by the telephone industry, mean time before failure (MTBF) must approach 100,000 hours. LED's have a somewhat better MTBF than lasers but

COURTESY SIECOR CO.

are typically below the 100,000 MTBF point.

The commonly used LED's and lasers both use Gallium Arsenide doped with aluminum as the active semiconductor element. Gallium Arsenide radiation has a wavelength of 905 nanometers. The aluminum doping shifts the wavelength to a range between about 800 and 850 nanometers, which reduces the attenuation presented by the more generally used optical fibers.

COURTESY SIECOR CO.

Figure 10. All dielectric 10 fiber cable for duct installation.

Optical Detectors

Two optical detectors are quite satisfactory for fiber optical communications systems. They are the pin (PIN) diode and avalanche photo diode (APD). Both of these devices have excellent conversion efficiency (ability to convert light power input into electric current output). They also have fast response times and are low noise devices.

The PIN diodes are simple, easily used devices. However, they have relatively poor sensitivity. The sensitivity of an optical detector is defined as the minimum light input required to provide a given performance level (signal to noise ratio for analog systems; bit error rate for digital systems).

APD's have better sensitivity than PIN diodes because of the gain provided by the avalanche process. Typical APD gain is about 100. Signal to noise ratios can be improved by a factor of 10 by using an APD in place of a PIN. However, APD's have the disadvantage of high bias voltage requirements and performance degradation with temperature increases.

Summary and Future Probabilities

Economics is the principal motivating force behind the increasing use of fiber optic systems by telephone companies. For example, General Telephone Company of Indiana is currently installing a fiber optic system at an initial cost of \$300,000 and will have invested a total of approximately \$2.8 million when the system reaches full capacity in about five years. This is in contrast to an estimated \$4.3 million cost for a conventional system, of the same capacity, over the same route.

Fiber optics also provide certain technical advantages over copper cable in terms of bandwidth, immunity to noise and repeater spacing requirements. Probably the greatest single deterrent to widespread acceptance of fiber optics for telephone applications is the absence of a reliable, long-lived light-source, capable of operating in the telephone environment.

Intensive efforts are underway to develop such devices. In fact some of the newer devices have exhibited MTBF rates approaching a million hours, based on the results of accelerated life tests. The laboratory experts are expressing a reasonable confidence level in their tests. However, telephone company engineers prefer empirical information gathered in their own operating environments. Never-the-less, it is reasonable to assume that these devices will exceed the 100.000 hours requirement in the field. Therefore, the light source reliability and life problems will be solved in the near future.

BIBLIOGRAPHY

- YEH, Leang P., Fibre-Optic Communications Systems, Telecommunications, September 1978, Horizon House Inc., Dedham, Ma.
- 2. Kleckamp, Charles and Metcalf, Bruce, *Designers Guide to Fiber Optics*, A four part series, Electronics Design News, January 5, 20, February 20, March 5, 1978, Cahners Publishing Inc., Boston, Mass.
- 3. Uradnisheck, Jay, Estimating When Fiber Optics Will Offer Greater Value in Use, Electronics, November 1978, McGraw Hill, N.Y., N.Y.
- 4. GTE Lenkurt Demodulator, Optical Communications, November 1975.

DE/MODULATOR TITLE LISTING

The date and title of every Demodulator, from the first issue, March 1952 to December 1978 is listed below. The list is in reverse chronological order. We hope it will provide a handy reference for our readers.

1978

JANUARY	Determining Site Coordinates
FEBRUARY	The Volume Unit
MARCH	Antenna Decoupling
APRIL	Loop Pulsing
MAY	Operational Amplifiers
JUNE	Operational Amplifiers
JULY	Microwave Receiver Interference
AUGUST	Microwave Receiver Interference
SEPTEMBER	Microprocessors in Telecommunications
OCTOBER	Microprocessors in Telecommunications
NOVEMBER	Fiber Optic Systems
DECEMBER	Fiber Optic Systems

1977

JANUARY FEBRUARY	Digital Data System Introduction to Microprocessors
MARCH	Thick Film Hybrids/GTE Lenkurt Demodulator Enters 26th Year
APRIL	Solar Power for Telecommunications
MAY	Testing of Microwave Radio Systems, Part 1
JUNE	Testing of Microwave Radio Systems, Part 2
JULY	Worldwide E&M Signaling, Part 1
AUGUST	Worldwide E&M Signaling, Part 2
SEPTEMBER	Advances in 2-GHz Radio Technology
OCTOBER	Differential Absolute Delay Equalization
NOVEMBER	Digital Radio
DECEMBER	Data Set Interfaces

1976

JANUARY	Data Modem Developments
FEBRUARY	Energy Conservation in the Telecommunications Industry
MARCH	Bucket Curves, Part 1
APRIL	Bucket Curves, Part 2
MAY	Increasing PCM Span-Line Capacity
JUNE	RF Repeaters
JULY	Switching and PCM System Interfaces, Part 1
APRIL MAY JUNE JULY	Bucket Curves, Part 2 Increasing PCM Span-Line Capacity RF Repeaters Switching and PCM System Interfaces, Part 1

 Π

AUGUST	Switching and PCM System Interfaces, Part 2
SEPTEMBER	Update on Waveguide Technology
OCTOBER	Logarithmic Units of Measure
NOVEMBER	Microwave Mixers
DECEMBER	International System Metrics

JANUARY	PCM Update, Part 1
FEBRUARY	PCM Update, Part 2
MARCH	Light-Route Radio Systems
APRIL	Filter Design Techniques, Part 1
MAY	Filter Design Techniques, Part 2
JUNE	Resonant Transfer
JULY	Anomalous Propagation, Part 1
AUGUST	Anomalous Propagation, Part 2
SEPTEMBER	Basic Semiconductor Memories, Part 1
OCTOBER	Basic Semiconductor Memories, Part 2
NOVEMBER	Optical Communications
DECEMBER	Lasers

JANUARY	Computer-Aided Drafting and Documentation Systems
FEBRUARY	Extended Length PCM Systems
MARCH	PCM Field Study
APRIL	A Glossary of Signaling Terms
MAY	Telephone Transmitters and Receivers
JUNE	Basics of Telephone Relays
JULY	Some Fundamentals of Telephone Signaling
AUGUST	Data Transmission: Principles and Problems
SEPTEMBER	PCM Over Microwave, Part 1
OCTOBER	PCM Over Microwave, Part 2
NOVEMBER	PCM Over Microwave, Part 3
DECEMBER	Special Services An Introduction

JANUARY	Innovations in Microwave Transmission
FEBRUARY	PCM Repeatered Line
MARCH	Packaging Techniques
APRIL	Common Channel Signaling Systems
MAY	Space Diversity
JUNE	PCM Cable Considerations
JULY	Connectorization
AUGUST	Concentrators & Multiplexers
SEPTEMBER	FDM Modulation Plans and Polylithic Crystal Filters
OCTOBER	Digital or Analog Transmission
NOVEMBER	Third Generation Supervisory Control Systems
DECEMBER	Computers and Supervisory Control

JANUARY	Toll-Quality PCM
FEBRUARY	Optical Transmission
MARCH	Twentieth Anniversary: Yesterday and Today
APRIL	New Maintenance and Testing Trends
MAY	Microwave Applications
JUNE	Multiline Protection Switching
JULY	Microwave Transmission Engineering (Part One)
AUGUST	Microwave Transmission Engineering (Part Two)
SEPTEMBER	Strip Transmission Lines
OCTOBER	Carrier in Customer Distribution Networks
NOVEMBER	Microstrip Technology
DECEMBER	Phase Jitter

JANUARY	Communications and the Environment
FEBRUARY	The CATV Video Microwave Link
MARCH	PCM Signaling and Timing
APRIL	The Computer in Industry
MAY	Coaxial Communications
JUNE	12-GHz: A New Look by Industrials
JULY	PCM-FDM Compatibility (Part One)
AUGUST	PCM-FDM Compatibility (Part Two)
SEPTEMBER	PCM-FDM Compatibility (Part Three)
OCTOBER	Data Modems
NOVEMBER	Line Equalization for Data Transmission
DECEMBER	Cable Tests and Measurements for PCM

JANUARY	Lasers for Communication
FEBRUARY	Holography
MARCH	Subscriber Carrier
APRIL	Progress in Solid-State Radio
MAY	Cables
JUNE	Cable Developments
JULY	Domestic Satellites
AUGUST	Some Aspects of Microwave System Reliability
SEPTEMBER	High Speed Data Transmission
OCTOBER	Communications Yardsticks
NOVEMBER	Crystal Filters (Part One)
DECEMBER	Crystal Filters (Part Two)

JANUARY	Circuit Conditioning (Part One)
FEBRUARY	Circuit Conditioning (Part Two)
MARCH	Protective Relaying
APRIL	Reflectors & Repeaters

Overloaded Microwave Systems (Part One)
Overloaded Microwave Systems (Part Two)
Microwave Sources
Developments in Satellite Communications
Facsimile
The Reach for Higher Frequencies (Part One)
The Reach for Higher Frequencies (Part Two)
Binary Logic and PCM

JANUARY	Undersea Cable
FEBRUARY	Supervisory Control
MARCH	PCM (Part One)
APRIL	PCM (Part Two)
MAY	Computer Time-Sharing
JUNE	Ringing
JULY	Data Loading for Military Communications
AUGUST	ACI: Automatic Car Identification
SEPTEMBER	Negative Resistance Devices
OCTOBER	Hybrid Microcircuitry (Part One)
NOVEMBER	Hybrid Microcircuitry (Part Two)
DECEMBER	Solid State Review

JANUARY	Ground Stations for Satellite Communications
FEBRUARY	Protection Systems for Microwave Radio
MARCH	Fifteenth Anniversary
APRIL	Trends in Microwave
MAY	Missile Range Communications
JUNE	Coaxial Cable Communications
JULY	Remote Power from Fuel Cells
AUGUST	Uses of Low Speed Data
SEPTEMBER	Station Carrier
OCTOBER	Millimeter Transmission
NOVEMBER	Multipath Fading
DECEMBER	Integrated Circuits

JANUARY	Worldwide Defense Communications AUTOVON/AUTODIN					
FEBRUARY	Telegraph Transmission Over VF Multiplex Systems					
MARCH	Community Antenna TV					
APRIL	dB and Other Logarithmic Units					
MAY	Operating Standards for Frequency Division Multiplex Systems					
JUNE	The Computer and the Engineer					
JULY	Signaling Over Telephone Trunks					
AUGUST	Echo Suppression					
SEPTEMBER	Data Communications (Part One)					
OCTOBER	Data Communications (Part Two)					

NOVEMBER	Pulse Code Modulation
DECEMBER	Satellite Communications

JANUARY	Microwave for TV Transmission
FEBRUARY	DC Power Plants for Communications Systems
MARCH	Load Capacity of High-Density Multiplex Systems
APRIL	Information Theory and Coding – Part 1
MAY	Information Theory and Coding – Part 2
JUNE	Delay Distortion
JULY	Transmission System Planning
AUGUST	Introduction to the Traveling Wave Tube
SEPTEMBER	Requirements of a Human Communications Channel
OCTOBER	Characteristics of Waveguides
NOVEMBER	A Review of the Laser – A Prospect for Communications
DECEMBER	Development of Multiplex Telephony

JANUARY	Hybrids
FEBRUARY	Data Timing for HF Radio Transmission
MARCH	The Universal Voice Channel
APRIL	Microelectronics
MAY	Noise Performance in Industrial Microwave Systems – Part I
JUNE	Noise Performance in Industrial Microwave Systems – Part II
JULY	The Properties and Uses of Piezoelectric, Quartz Crystals
AUGUST	Heterodyne Repeaters for Microwave
SEPTEMBER	Basic Concepts of Engineering Reliability
OCTOBER	The Theory and Use of Compandors in Voice Transmission
	Systems
NOVEMBER	Characteristics of Transmission Lines
DECEMBER	Noise

JANUARY	The Transmission of PCM Over Cable
FEBRUARY	Major Breakthrough in Data Transmission - "Duobinary
	Coding"
MARCH	Signaling in Carrier Channels
APRIL	The Varactor Diode
MAY	Antenna Systems for Microwave – Part 1
JUNE	Protective Relaying, Vital Communications for Power Trans-
	mission
JULY	Antenna Systems for Microwave – Part II
AUGUST	HF Radio Transmission
SEPTEMBER	A Discussion of "Levels" and "Powers" in a Carrier System
OCTOBER	Performance Testing of Television Channels – Part I
NOVEMBER	Performance Testing of Television Channels – Part II
DECEMBER	Filter Flanking, What and Why?

JANUARY	Precise Frequency Control			
FEBRUARY	The Transmission of Color Television Over Microwave			
MARCH	Surge Protection of Transistorized Circuits			
APRIL	Rapid Microwave Switching			
MAY	Earth Satellite Communications			
JUNE	Maintenance of Transistorized Communications Equipment			
JULY	Take the Mystery Out of Microwave Literature			
AUGUST	More About Logic			
SEPTEMBER	Co-ordination Between Carrier Systems			
OCTOBER	Shielding and Grounding			
NOVEMBER	Time-Division Multiplex - New Promise for Old Technique?			
DECEMBER	The Versatile Oscilloscope			

JANUARY	New Techniques in Power Conversion
FEBRUARY	The Hall Effect
MARCH	Microwave Diversity – How it Improves Reliability
APRIL	Military Versus Commercial Carrier System Design
MAY	How to Evaluate Radio and Carrier Noise Performance
JUNE	Special Code Techniques for Improved Data Transmission
JULY	Masers, Lasers, and Atomic Resonance
AUGUST	Novel Uses of Datatel
SEPTEMBER	The New Microwave – Part I
OCTOBER	The New Microwave – Part II
NOVEMBER	dBa and Other Logarithmic Units
DECEMBER	New Knowledge About Transistor Reliability

JANUARY	The Importance of Controlling Levels
FEBRUARY	The Push for Faster Data Transmission
MARCH	Methods for Transmitting Data Faster
APRIL	Noise
MAY	The Tunnel Diode
JUNE	The Changing "Look" of Communications Equipment
JULY	Delay Distortion – Cause and Cure
AUGUST	Time Sharing, Growing Trend in Communications
SEPTEMBER	Logic Circuits in Modern Communications
OCTOBER	The Difficult Problem of Exchange Trunk Carrier
NOVEMBER	Crosstalk
DECEMBER	Microwave Intermodulation Distortion – and How It Is
	Measured

JANUARY	Multiplexing	and	Modulating	in	Carrier	Telephone	Systems	-
	Part II							
FEDDUADY	C				~		~	

FEBRUARY Some Requirements of a Human Communications Channel

MARCH	Mobile Telephony				
APRIL	The Use of Filters in Carrier Telephone Systems				
MAY	Amplifiers for Carrier Applications				
JUNE	Information Theory and Modern Communications				
	A Review of Telephone Signaling				
ALIGUET	Speech Loadiag of Carrier Systems				
SEPTEMBER	How to Increase Microwaya Polichility				
	Posio Mossuremente in Communication				
NOVEMBED	Dasic invessionments in Communications				
DECEMPER	The Manufacture of Klastics				
DECEMBER	The very important Klystron				
	1958				
	Measuring Voltom and Power at Carrier Eraguaneira				
EEDDIIADV	AM Vorgue EM for Digital Data Transmission				
MADOU	Measuring Power and Engrunning of COOO Ma				
	Reasoning Fower and Frequency at 6000 Mic				
AFRIL	Power Supplies for Carrier and Radio Equipment				
	Carrier – Past, Present, Future				
JUNE	The Transmission of Information by Means of Carrier				
JULY	The Behavior of Open-Wire Lines and Cables at Frequencies				
	Above 150 Kc				
AUGUST	The Use of Vestigial Sideband in High Speed Data Transmission				
SEPTEMBER	The Use of Vestigial Sideband in High-Speed Data Transmission				
OCTOBER	Carrier Channels for Telegraph and Data – A Review of Funda-				
	mentals – Part I				
NOVEMBER	Carrier Channels for Telegraph and Data – A Review of Funda-				
	mentals – Part II				
DECEMBER	Multiplexing and Modulation in Carrier Telephone Systems -				
	Part I				
	1957				
JANUARY	Carrier System Co-ordination				
FEBRUARY	Transformers for Carrier Systems				
MARCH	Detection of FM Signals				
APRIL	Waveguides for Microwave Systems				
MAY	The Effect of Transistors on Carrier Maintenance				
JUNE	The Klystron				
JULY	Microtel A New 6000 Megagyale Microwaya System				
	Some Aspects of Interconnecting Different Corrier System				
CEDTEMDED	Some Aspects of Interconnecting Different Carrier Systems				
SEFTEMBEN	Some Fractical Aspects of Digital Data Transmission Over Tele-				
OCTORER					
NOVEMBED	Perrite Devices for Microwave				
NOVEMBER	Protecting Communication Circuits from High Voltages				
DECEMBER	6,000 Mc Radio Systems – Some Equipment and Operating				
	Considerations				
	1956				
	The Line of Rodio Exercision Original Contraction Contraction				
	Obsiliation for Convict Control of Common Carriers				
FEBRUARY	Uscillators for Carrier Systems				
MAKCH	Unoice of Open Wire Facilities for Carrier Operation				

APRIL	Telephone Channels for Data Transmission
MAY	Frequency Measurements in Communications Systems
JUNE	Capacitors for Carrier Systems
JULY	Repeaters for Open-Wire Carrier Systems
AUGUST	Importance of Carrier in Nationwide Toll-Dialing
SEPTEMBER	Transpositions for Open-Wire Lines
OCTOBER	Estimating the Noise Performance of FM Microwave Systems
NOVEMBER	A Program for Carrier Equipment Maintenance
DECEMBER	Selection of Towers and Antennas for Microwave System Use

JANUARY FEBRUARY	Alarm Circuits for 45-Class Carrier Cable Transmission Characteristics in the Carrier Frequency Range
MARCH	Carbonyl Iron Cores for Miniaturized Carrier Components
APRIL	Distortion in Carrier Circuits
MAY	45-Class Carrier Networks
JUNE	Some Engineering Features of the New Type 45BN Cable Carrier Systems
JULY	Some Types and Applications of Relays Used in Carrier Equipment
AUGUST	A Brief Description of the Transistor and Some of Its Potentiali- ties
SEPTEMBER OCTOBER	Remote Control and Supervision of Industrial Operations Introducing Type 45CB, A New 4-Channel Carrier System for Open-Wire Lines
NOVEMBER DECEMBER	Amplitude Modulation in Carrier Communication The Theory and Applications of Piezoelectric Crystals

JANUARY FEBRUARY	An Explanation of DBA and Other Logarithmic Units Transmission of FDM Channels by FM Point-to-Point Radio
MARCH	Techniques for Measuring Open-Wire Lines for Carrier Applica- tions – Part I
APRIL	Techniques for Measuring Open-Wire Lines for Carrier Applica- tions – Part II
MAY	A Progress Report on 45-Class Carrier Equipment
JUNE	Some Factors Affecting the Propagation of Microwave Over Point-to-Point Radio Systems
JULY	Vacuum Tube Reliability in Carrier Telephone Systems
AUGUST	Transmission of Dial and Teletypewriter Signals Over Carrier Telephone Channels
SEPTEMBER	Problems in Hybrid Balance
OCTOBER	Some Types and Sources of Noise in Communication Circuits
NOVEMBER	Line Filters for Carrier Telephone Installations
DECEMBER	Some Factors Affecting Open Wire and Cable Extensions for Radio Carrier Systems

JANUARY FEBRUARY	How to Prepare and Use Profile Charts of Radio Link Routes An Elementary Explanation of the Effects of Parallel Connec- tion of Filters
MARCH	Basic Principles of Compandors and Their Application to Carrier Systems
APRIL	Automatic Transfer Circuit for Point-to-Point Radio Systems
MAY	Some Factors Affecting Levels in a Carrier Terminal
JUNE	Some Factors Involved in Design of Carrier System Filters
JULY	Germanium Diodes in Carrier Systems – Why They Are Used – How They Work
AUGUST	Basic Principles of Carrier System Regulation and Equalization
SEPTEMBER	Operation and Application of Hybrid Junctions
OCTOBER	Transmission Line Characteristics and How They Affect Car-
	rier Operation
NOVEMBER	D-C Terminal Circuits for Carrier Telegraph Systems
DECEMBER	The Effect of Impedance Mismatch on Carrier Circuits
	1952
MARCH	Introducing A New Publication for Carrier Communications
APRIL	Copper: No. 1 Problem
MAY	How to Determine Transmission Losses in Radio Links
JUNE	Transmission of Signals Over Carrier System Channels
JULY	Some Engineering Features of the New Type 33C Carrier Tele-
	phone System for Changelistics Dealth 111
AUGUST	phone System for Channelizing Radio Links
	A Brief Discussion of Frequency Division Multiplexing
SEPTEMBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point
SEPTEMBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point Radio Systems
SEPTEMBER OCTOBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point Radio Systems Limiters in Carrier Systems, What They Are – And How They Work
SEPTEMBER OCTOBER NOVEMBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point Radio Systems Limiters in Carrier Systems, What They Are – And How They Work Some Engineering Features of the New Type 24C Corrige Tale
SEPTEMBER OCTOBER NOVEMBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point Radio Systems Limiters in Carrier Systems, What They Are – And How They Work Some Engineering Features of the New Type 24C Carrier Tele- graph System
SEPTEMBER OCTOBER NOVEMBER DECEMBER	A Brief Discussion of Frequency Division Multiplexing Supervisory, Control, and Alarm Facilities for Point-to-Point Radio Systems Limiters in Carrier Systems, What They Are – And How They Work Some Engineering Features of the New Type 24C Carrier Tele- graph System A Discussion of "Levels" and "Powers" in a Carrier System

GIE LENKURT

1105 COUNTY ROAD SAN CARLOS, CALIFORNIA 94070

ADDRESS CORRECTION REQUESTED

Bulk Rate U. S. Postage

PAID San Carlos, CA Permit No. 37

1

PICO0319C015 B J PICOU

319 CRAWFORD ST LAFAYETTE LA 70501

Announcement

Effective April 1, 1979 the price of the GTE Lenkurt Demodulator loose leaf binder will be \$2.50. The new price defrays our cost for the binder, including shipping charges.

The binders may be obtained by writing to:

GTE Lenkurt Demodulator M/S C134 1105 County Road San Carlos, CA 94070.

We request prepayment.

The GTE Lenkurt Demodulator is circulated bimonthly to selected technicians, engineers and managers employed by companies or government agencies who use and operate communications systems, and to educational institutions. Permission to reprint granted on request.