"Youth is a wonderful thing, what a crime to waste it on children."

— George Bernard Shaw.

In matters technical, perhaps the dilemma of youth is deciding in which field of technology to concentrate and in turn with some detailed speciality be it trade or profession—or alternatively some job without training or future and the hopeful "get into advertising".

Lectures, training films, publications, this steady stream from the Mullard Educational Service has been directed to industry, technical training establishments, hobbyists and schools. More recently to the secondary school in view of the rapidly expanding Youth Radio Club Scheme.

It is our obligation to encourage young people to have healthy and absorbing pastimes with the possible groundwork for a future career. In this regard our full training facilities are available to the Youth Radio Club in your district: most secondary schools have either established clubs or are contemplating their establishment and we will be glad to add your school to our training scheme mailing list and send our special brochure.

M.A.B.

MULLARD DISTRIBUTORS

New South Wales
Martin de Launay Pty. Ltd.
Phone: 29 5834

Cnr. King & Darby Streets,
Newcastle.
Phone: 2 4741

144 Keira St., Wollongong,
Phone: 2 6020

21 Bayliss Street, Wagga.
Phone: 4644

Victoria
Howard Electrical & Radio
Company.
Vere St., Richmond.
Phone: 42 4716

South Australia
Agents:
Woollard & Crabbe Limited
180 Wright Street West,
Adelaide.
Phone: 51 4713

Western Australia
Tedco Pty. Ltd.
7 Fitzgerald Street, Perth.
Phone: 28 4921

Queensland
C. A. Pearce & Co. Pty. Ltd.
33 Bowen Street, Brisbane.
Phone: 2 3201

Tasmania
Medhursts Wholesale Ltd.
163 Collins Street, Hobart.
Phone: 2 911

136 Wellington Street,
Launceston.
Phone: 2 2091

106 Wilson Street, Burnie.
Phone: 1919

and all leading wholesalers throughout the Commonwealth
VIEWPOINT WITH MULLARD

MULLARD X-RAY DIVISION CHIEF IN AUSTRALIA

Many advanced contributions by Mullard to progress in X-Ray techniques were recently revealed during the Australian lecture tour of Mullard Limited, London, X-Ray Division Manager Mr. Andrew Beetlestone. An international figure in X-Ray tube development, he has recently been engaged in a series of lectures to radiologists and radiographers, commencing by presenting a paper “Some Contributions of Technology to X-Ray Diagnosis and the Reduction of Patient Dosage” to the Annual Meeting in Hobart of the College of Radiologists of Australia.

Mr. Beetlestone is a member of the Institution of Electrical Engineers; a Fellow of the Society of X-Ray Technology; Member of the College of Radiologists; and is a Council Member of the British Institute of Radiology. The Mullard X-Ray Division is situated at the Mitcham, Surrey factory where Mr. Beetlestone is also responsible for the design and production of Mullard Geiger-Müller counter tubes.

Watson Victor Ltd. — Local Distributor

In pursuing a policy of special distribution, Mullard X-Ray tubes are handled exclusively in Australia by Messrs. Watson Victor, the well-known medical and scientific equipment firm and should readers by good circumstances or otherwise have an opportunity to consult with Mr. Beetlestone and his staff who will be pleased to assist.

Low Stray Radiation Tubes

Whilst in Australia, Mr. Beetlestone outlined the development of the new “Guardian” range of Mullard tubes designed for extremely low level of stray off-target radiation which substantially reduces the chances of excessive radiation to patients and radiographers, in fact the design of these tubes being so successful that the maximum stray leakage is 10 milli-roentgens per hour, being only one-tenth of the official permissible level set by the International Commission on Radiation Protection.

Major Advances in Early Detection of Breast Cancer

Mr. Beetlestone had discussions with radiologists relating to the recent advances in the early diagnosis of breast cancer and in particular regard to the special tubes that he had developed for this technique, allowing soft radiation at short exposure times and of extremely fine focus. It is envisaged that mass mammographic examinations of women in the future will be on a similar basis to mass chest X-Ray examinations, the particular technique passing the X-Ray through the breast tissue from directly above the breast with a negative beneath.

Advice to Radiographers

At his lectures Mr. Beetlestone presented a series of colour slides showing the damage to X-Ray tube target anodes resulting from mishandling and misadjustment of the equipment. A short film was also shown on the history of X-Rays, commencing from the early achievements of Professor Wilhelm Roentgen in 1895 in discovering the rays which emanated from the bombardment of a metallic plate by high velocity electrons in an evacuated tube.

Geiger Counter Tubes

Mr. Beetlestone stressed the particular techniques associated with X-Ray tube manufacture, hard pumping and extreme cleanliness with all components completely free from contamination. In referring to Geiger-Müller tubes, Mr. Beetlestone claimed that the need with this type of device was for uniformity of each unit to another and the advantages to be gained by developing specific types of Geiger counter tubes for a particular end use and to integrate these in a range best suited for most phases of science and industry.

Commercial Considerations

As highly skilled in the commercial activity as in vacuum techniques, Mr. Beetlestone’s twenty-five years with the Company have resulted in a customer relationship understanding and the sound merchandising approach that a successful business transaction must be satisfactory to both the buyer and the seller, something well worth pondering over.

MULLARD-AUSTRALIA PERSONALITIES

With this issue we have pleasure in introducing Mr. John Lake, a member of our Head Office Technical Service Department who, apart from answering technical enquiries from a host of random and ever-increasing regular confidantes, handles the distribution of specialised technical literature. Subscribers to the Mullard Technical Handbook Service will know of him as he operates this service exclusively.

Mr. Lake joined the Company several years ago, bringing with him a background of more than 20 years’ association with Army Signals. He was commissioned in 1940 and served in the Middle East, South-West Pacific Area and with the Occupation Forces in Japan.

For recreation, Mr. Lake enjoys boating on the Georges River and also plays a little golf. He may be occasionally found on clear nights “star-gazing”, using his 6” Newtonian telescope—the mirror he ground and polished as a layman project at the University of N.S.W.
The functions of the choke coil and Zener forward and reverse conducting modes, and the action of the Zener diode in both its positive and negative-to-frame systems. With positive-to-frame systems, the positive input is connected to the "SW" terminal and the negative input to the "CB" terminal. The input is reversed in the case of negative-to-frame systems. The functions of the choke coil and Zener diode and their roles in producing symmetrical pulses to the metering section of the unit, are described in the original article. It is sufficient to say that the limiting action of the Zener diode in both its forward and reverse conducting modes, together with the complete isolation by the choke of all oscillatory currents which occur at the instant of contact breaker opening, produce clean metering pulses of uniform size.

Contact Bounce

In addition, the choke coil has two other important effects. It eliminates loading of the ignition system by the tachometer, and, due to its time constant, prevents the effects of possible contact bounce at high engine speeds from reaching the metering section of the instrument. The pulses developed are fed to the metering section of the tachometer which consists of a bridge meter rectifier in series with a capacitor. The rectified meter current is directly proportional to the size of the capacitor and the pulse frequency. Thus, by changing the capacitor, the tachometer may be used with engines of any number of cylinders and with meters of various maximum r.p.m. dial scales (see Table A).

TABLE A

<table>
<thead>
<tr>
<th>Cylinders</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5000</td>
<td>0.68µF</td>
<td>0.47µF</td>
<td>0.33µF</td>
</tr>
<tr>
<td>0 - 7000</td>
<td>0.47µF</td>
<td>0.33µF</td>
<td>0.22µF</td>
</tr>
<tr>
<td>0 - 9000</td>
<td>0.33µF</td>
<td>0.22µF</td>
<td></td>
</tr>
</tbody>
</table>

The values shown in the Table are for use with a moving coil meter of 100Ω internal resistance and 1mA F.S.D.

COMPONENTS

Choke Coil — This coil has an inductance of approximately 1 Henry and, in order to keep its size to a minimum, a Mullard transformer core consisting of two half cups, type FX2240, was used in the experimental model. The winding consists of 480 turns of 36 SWG enamelled copper wire wound on a 25 mm former type DT2179. The wound former is housed in the FX2240 core and the assembly completed by the use of a DT2222 mounting clip and DT2277 printed circuit mounting board. The simplicity, provided wiring is considered to be unnecessary, however the clip and board make for cheap and easy assembly of the coil. The terminal pins on the printed circuit mounting board enable the winding wire to be brought out for termination, making heavy "lead out" wires unnecessary.

In order to accommodate the number of turns required, care must be taken to wind the coil as evenly as possible. To prevent distortion of the thin cheeks of the former it should be firmly supported during winding operations.

After the winding is completed, it should be secured with a number of turns of thread wound around the coil followed by a layer of good quality electrical tape. Because of the low voltages involved, insulatisation of the coil is not considered to be necessary.

Assembly of Choke

The leads of the coil should be carefully scraped clean of enamel to within about 1/4" of the former. After enclosing the coil in the two Ferroxcube half cups, it should be placed onto the DT2227 board, locating the leads adjacent to the terminal pins. The pot core should be seated on the terminal board, the two raised portions of the board being located in the appropriate slots in the Ferroxcube cup. The DT2228 clip is then placed over the pot core and, whilst applying pressure against the spring tension in the housing, the holes of the clip are turned over the underside of the mounting board and the ends hooked over into the oval holes by using a pair of long nosed pliers. The "lead out" wires should then be soldered to convenient pins completing the assembly of the choke.

Zener Diodes — The recommended types to be used are as follows:—

- 12V Systems — OAZ224
- 6V Systems — OAZ222

The rated dissipation of these diodes allows for their use without heat sinks, and, whilst a lower rating diode such as the OAZ204 could be used with 12V ignition systems, its maximum dissipation rating may be approached when used in conjunction with a battery at maximum voltage under charge. The higher rating diode (OAZ222) should always be used with 6V systems.

Meter Rectifier — Four germanium diodes, type OAZ91, are used in a bridge configuration for rectification.

Fixed Capacitor — Polyester 125 VW.

Resistor R1 — This resistor, used only with 12V systems, should be 1200, 1W. For 6V systems the resistance of the choke (approximately 14Ω) is sufficient to limit the Zener current.

Meter — The meter and case used in the experimental model was supplied by Messrs. Ferrier Electrical Instruments, 45 Albany Street, Crows Nest, N.S.W., and is available with a choice of 5,000, 0-7000, or 0-9000 r.p.m. scales. The overall size of the meter assembled in the case is 2½" x 2½" x 1¼".

CONSTRUCTION

Referring to Fig. 3, insert a tagged eyelet in each of the three holes, to be used for mounting the diodes and one end of the capacitor, the eyelet for the capacitor should be mounted with its tag on the upper surface; those for the diodes should have their tags on the underside. The holes in which the eyelets are fixed are marked "F" in Fig. 2. The lower diode eyelet and the capacitor eyelet adjacent to it should be connected together. Mount the choke assembly as indicated in Fig. 3 and fasten it by means of two, ¼" x 6 BA screws and nuts; the four ¾" holes in the panel accommodate the mounting clip ends, allowing the choke assembly to mount flush with the surface of the panel. Push the tags of the calibrating potentiometer through the slotted holes and bend the ends of the tags out to hold the potentiometer firmly to the panel. A lead from the slider tag is brought up through the ½" hole adjacent to the left-hand meter assembly hole and a wire from the tag in the bottom slotted hole through the ½" hole adjacent to the right-hand meter.

Fig. 1—Circuit diagram of Tachometer

A piece of ¾" bakelite, cut to the size and drilled in accordance with the template (Fig. 2), will mount upon the terminals of the meter, the whole assembly being easily contained in the meter case supplied. Two leads from the tachometer are connected across the ignition coil, as previously indicated.
assembly hole. The negative terminal is to the right of the calibrating potentiometer and has solder lugs below and above the panel. The positive terminal is located on the centre left-hand edge of the panel, requiring only a solder lug above the panel. These are fastened with $\frac{3}{4}''$ x 6 BA screws and nuts. A lead from the negative terminal is connected to the tag of the diode eyelet closest to the choke coil, continued on and brought up through the $\frac{3}{4}''$ hole immediately to the right of the choke. The Zener diode is mounted through the hole in the top right-hand corner of the panel, a large solder tag being mounted under the diode body on top of the panel. The washer supplied is placed under the panel and the nut screwed up to hold the diode securely. The lead previously brought up in the hole to the right of the choke is soldered to the top terminal of the Zener diode.

Assembly

The panel should now be mounted on the meter terminals and two solder lugs clamped under the mounting nuts as indicated in Fig. 3. The remainder of the wiring is carried out above the panel in accordance with the circuit diagram. When wiring the tachometer for a 12V ignition system, a 120Ω, 1W resistor is connected between the positive input terminal and one side of the choke coil. For 6V ignition systems, the resistor is not required and the terminal is connected directly to the choke coil. The other side of the choke coil is connected to the large tag mounted under the Zener diode body and from this point the appropriate capacitor is connected to the eyelet with its tag above the panel, as previously mentioned. This completes the wiring of the unit.

CALIBRATION

For 12V ignition systems, quite accurate calibration may be obtained by using 6-3V AC from the heater winding of a power transformer, which, if connected to 50 c/s mains, should enable the meter pointer to be adjusted by means of the calibrating potentiometer to 1,500 r.p.m. for a four-cylinder engine, 1,000 r.p.m. for a six-cylinder engine and 750 r.p.m. for an eight-cylinder engine. It was found in the experimental model that this method of calibration gave almost identical results to adjustments by stroboscopic methods. In the case of the 6V systems, where the OAZ222 Zener diode was used, this method was not quite as successful, due to the knee characteristic of the lower voltage Zener diode. It does, however, give a fair approximation, but the meter should be finally brought to the correct point by calibrating against the known revolutions of the car engine.

Precise Calibration

A suggested method for precise calibration requires the use of a neon pilot light connected to the 50 c/s mains. By placing two chalk marks 180° apart on the outer edge of the fan-belt pulley attached to the crank shaft of the engine, a stationary pattern will be observed at 3,000 r.p.m., when the pulley is illuminated by the neon light held a few inches away in darkness or in conditions of low ambient light. This procedure calls for the assistance of another person and can usually be achieved by the observer operating under the front of the vehicle. The second person notes the meter reading as he gradually increases the engine speed until the pattern on the pulley appears stationary. By means of the calibrating potentiometer, the dial reading is adjusted to indicate 3,000 r.p.m. Several checks should be made to ensure that the calibration is correct. At this point, two additional chalk marks may be drawn on the pulley exactly between the marks originally made, making four chalk marks 90° apart. A stationary pattern should now be observed at 1,500 r.p.m.

COMPONENT PARTS LIST

- D1/D4: OA91 Germanium Diodes
- D2: OAZ222 — for 6V systems
- OAZ224 — for 12V systems
- C: 125 WV 10% (see Table A)
- R1: 120Ω 1W 10% — 12V systems only
- R2: 1kΩ 1W carbon trimming potentiometer
- Panel: $\frac{3}{16}''$ bakelite (see template Fig. 2)
- Choke: See text
- Hardware: 4 6 BA x $\frac{1}{4}''$ brass screws and nuts
- Case: Ferrier type B.T.
- 3 small solder lugs
- 3 large solder lugs
- 3 Matrix board tagged eyelets

*To assist the home constructor, copies of the actual size template of the mounting board have been printed and are available from the Editor on receipt of a stamped, addressed envelope (marked "Template").
AUSTRALIAN TELEVISION CHANNELS – 1963

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Band Mø/s</th>
<th>Vision Mø/s</th>
<th>Sound Mø/s</th>
<th>Aerial Polarisation</th>
<th>Transmitting Area</th>
<th>Transmitting Site</th>
<th>National Stations</th>
<th>Commercial Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45-52</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>S.W. Slopes and E. Riverina</td>
<td>Mt. Ulandra</td>
<td>-</td>
<td>ATVO</td>
</tr>
<tr>
<td>1</td>
<td>56-63</td>
<td>57.25</td>
<td>62.75</td>
<td>V</td>
<td>Bendigo</td>
<td>Mt. Alexander</td>
<td>ABEV1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.258</td>
<td>62.758</td>
<td>V</td>
<td>Central Tablelands (Orange)</td>
<td>Mt. Canobolas</td>
<td>ABCN1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Upper Murray (Vic.)</td>
<td>Goschen</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Spencer’s Gulf North</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>63-70</td>
<td>64.24</td>
<td>69.74</td>
<td>H</td>
<td>Brisbane</td>
<td>Mt. Coot-tha</td>
<td>ABQ2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.25</td>
<td>69.75</td>
<td>H</td>
<td>Sydney</td>
<td>Gore Hill</td>
<td>ABN2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.25</td>
<td>69.75</td>
<td>H</td>
<td>Melbourne</td>
<td>Dandenong</td>
<td>ABV2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.26</td>
<td>69.76</td>
<td>H</td>
<td>Adelaide</td>
<td>Mt. Lofty</td>
<td>ABS2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.25</td>
<td>69.75</td>
<td>H</td>
<td>Perth</td>
<td>Bickley</td>
<td>ABW2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.24</td>
<td>69.74</td>
<td>H</td>
<td>Hobart</td>
<td>Mt. Wellington</td>
<td>ABT2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.24</td>
<td>69.74</td>
<td>H</td>
<td>Grafton-Kempsey</td>
<td>Mt. Moombil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.24</td>
<td>91.74</td>
<td>V</td>
<td>Canberra</td>
<td>Black Mountain</td>
<td>ABC3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.238</td>
<td>91.738</td>
<td>H</td>
<td>Ballarat</td>
<td>Lookout Hill</td>
<td>ABRV3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.23</td>
<td>91.73</td>
<td>V</td>
<td>Goulburn Valley (Shepparton)</td>
<td>Mt. Major</td>
<td>ABGQ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.252</td>
<td>91.752</td>
<td>H</td>
<td>Darling Downs (Toowoomba)</td>
<td>Mt. Mowbullan</td>
<td>ABDQ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.26</td>
<td>91.76</td>
<td>H</td>
<td>Rockhampton</td>
<td>Mt. Hopeful</td>
<td>ABRQ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.268</td>
<td>91.768</td>
<td>H</td>
<td>Townsville</td>
<td>Mt. Stuart</td>
<td>ABTQ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.20</td>
<td>91.70</td>
<td>H</td>
<td>N.E. Tasmania</td>
<td>Mt. Barrow</td>
<td>ABNT3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.25</td>
<td>91.75</td>
<td>H</td>
<td>Newcastle</td>
<td>Great Sugarloaf</td>
<td>NBN3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85-92</td>
<td>95.24</td>
<td>100.74</td>
<td>H</td>
<td>Latrobe Valley (Traralgon)</td>
<td>Mt. Tassie</td>
<td>ABLV4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.28</td>
<td>100.75</td>
<td>H</td>
<td>Illawarra (Wollongong)</td>
<td>Knight’s Hill</td>
<td>WIN4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102.258</td>
<td>107.758</td>
<td>H</td>
<td>Upper Murray (Vic.)</td>
<td>Goschen</td>
<td>AMV4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101-108</td>
<td>-</td>
<td>H</td>
<td>Newcastle-Hunter River</td>
<td>Great Sugarloaf</td>
<td>ABHN5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>137-144</td>
<td>138.25</td>
<td>143.75</td>
<td>H</td>
<td>Illawarra (Wollongong)</td>
<td>Knight’s Hill</td>
<td>ABWN5A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.26</td>
<td>180.76</td>
<td>H</td>
<td>Richmond-Tweed (Lismore)</td>
<td>Mt. Nardi</td>
<td>ABRN6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.25</td>
<td>180.75</td>
<td>H</td>
<td>Hobart</td>
<td>Mt. Wellington</td>
<td>TVT6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.248</td>
<td>180.748</td>
<td>H</td>
<td>Ballarat</td>
<td>Lookout Hill</td>
<td>BTV6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.256</td>
<td>180.756</td>
<td>V</td>
<td>Goulburn Valley (Shepparton)</td>
<td>Mt. Major</td>
<td>GMV6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>Wide Bay (Q’land)</td>
<td>Maryborough</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>181-188</td>
<td>185.25</td>
<td>187.75</td>
<td>H</td>
<td>Brisbane</td>
<td>Mt. Coot-tha</td>
<td>BTO7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.25</td>
<td>187.75</td>
<td>H</td>
<td>Sydney</td>
<td>Gore Hill</td>
<td>ATN7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.25</td>
<td>187.75</td>
<td>H</td>
<td>Melbourne</td>
<td>Dandenong</td>
<td>HSV7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.26</td>
<td>187.76</td>
<td>H</td>
<td>Adelaide</td>
<td>Mt. Lofty</td>
<td>ADS7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.25</td>
<td>187.75</td>
<td>H</td>
<td>Perth</td>
<td>Bickley</td>
<td>TVW7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.28</td>
<td>187.78</td>
<td>V</td>
<td>Canberra</td>
<td>Black Mountain</td>
<td>CTC7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.26</td>
<td>187.76</td>
<td>H</td>
<td>Rockhampton</td>
<td>Mt. Hopeful</td>
<td>RTQ7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>182.25</td>
<td>187.75</td>
<td>H</td>
<td>Townsville</td>
<td>Mt. Stuart</td>
<td>TNQ7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Upper Namoi, N.S.W. (Tamworth)</td>
<td>Mt. Dowe nr. Mt. Kaputar</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>188-195</td>
<td>189.258</td>
<td>194.758</td>
<td>V</td>
<td>Central Tablelands (Orange)</td>
<td>Mt. Canobolas</td>
<td>CBN8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>189.25</td>
<td>194.75</td>
<td>H</td>
<td>Richmond-Tweed (Lismore)</td>
<td>Mt. Nardi</td>
<td>RTN8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>189.25</td>
<td>194.75</td>
<td>V</td>
<td>Bendigo</td>
<td>Mt. Alexander</td>
<td>BCV8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>Wide Bay (Q’land)</td>
<td>Maryborough</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>195-202</td>
<td>196.25</td>
<td>201.75</td>
<td>H</td>
<td>Brisbane</td>
<td>Mt. Coot-tha</td>
<td>QTO9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.25</td>
<td>201.75</td>
<td>H</td>
<td>Sydney</td>
<td>Willoughby</td>
<td>TCN9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.248</td>
<td>201.748</td>
<td>H</td>
<td>Melbourne</td>
<td>Dandenong</td>
<td>GTV9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.26</td>
<td>201.76</td>
<td>H</td>
<td>Adelaide</td>
<td>Mt. Lofty</td>
<td>NWS9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.238</td>
<td>201.738</td>
<td>H</td>
<td>N.E. Tasmania</td>
<td>Mt. Barrow</td>
<td>TNT9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Upper Namoi, N.S.W. (Tamworth)</td>
<td>Mt. Dowe nr. Mt. Kaputar</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>208-215</td>
<td>209.246</td>
<td>214.746</td>
<td>H</td>
<td>Latrobe Valley (Traralgon)</td>
<td>Mt. Tassie</td>
<td>GLV10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>209.26</td>
<td>214.76</td>
<td>H</td>
<td>Darling Downs (Toowoomba)</td>
<td>Mt. Mowbullan</td>
<td>DDQ10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>209.24</td>
<td>214.74</td>
<td>H</td>
<td>Grafton-Kempsey</td>
<td>Mt. Moombil</td>
<td>NNR10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>Sydney</td>
<td>-</td>
<td>TEN10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>215-222</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* Due to commence shortly.
φ Call signs not yet allocated.
TELEVISION TURRET TUNERS

BISCUIT PART NUMBERS

Model NT3011 Biscuits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type Number (Printed Circuit)</th>
<th>Identification On Strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CZ.320.160</td>
<td>CZ.0</td>
</tr>
<tr>
<td>1</td>
<td>CZ.320.161</td>
<td>CZ.1</td>
</tr>
<tr>
<td>2</td>
<td>CZ.320.162</td>
<td>CZ.2</td>
</tr>
<tr>
<td>3</td>
<td>CZ.320.163</td>
<td>CZ.3</td>
</tr>
<tr>
<td>4</td>
<td>CZ.320.164</td>
<td>CZ.4</td>
</tr>
<tr>
<td>5</td>
<td>CZ.320.165</td>
<td>CZ.5</td>
</tr>
<tr>
<td>5A</td>
<td>CZ.320.166</td>
<td>CZ.5A</td>
</tr>
<tr>
<td>6</td>
<td>CZ.320.167</td>
<td>CZ.6</td>
</tr>
<tr>
<td>7</td>
<td>CZ.320.168</td>
<td>CZ.7</td>
</tr>
<tr>
<td>8</td>
<td>CZ.320.169</td>
<td>CZ.8</td>
</tr>
<tr>
<td>9</td>
<td>CZ.320.170</td>
<td>CZ.9</td>
</tr>
<tr>
<td>10</td>
<td>CZ.320.171</td>
<td>CZ.10</td>
</tr>
<tr>
<td>11</td>
<td>CZ.320.172</td>
<td>CZ.11</td>
</tr>
</tbody>
</table>

Model NT3009 Biscuits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type Number (Printed Circuit)</th>
<th>Identification On Strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A3.178.70</td>
<td>AU.0</td>
</tr>
<tr>
<td>1</td>
<td>A3.156.82</td>
<td>AU.1</td>
</tr>
<tr>
<td>2</td>
<td>A3.156.83</td>
<td>AU.2</td>
</tr>
<tr>
<td>3</td>
<td>A3.156.84</td>
<td>AU.3</td>
</tr>
<tr>
<td>4</td>
<td>A3.156.85</td>
<td>AU.4</td>
</tr>
<tr>
<td>5</td>
<td>A3.156.86</td>
<td>AU.5</td>
</tr>
<tr>
<td>5A</td>
<td>A3.178.71</td>
<td>AU.5A</td>
</tr>
<tr>
<td>6</td>
<td>A3.156.87</td>
<td>AU.6</td>
</tr>
<tr>
<td>7</td>
<td>A3.156.88</td>
<td>AU.7</td>
</tr>
<tr>
<td>8</td>
<td>A3.156.89</td>
<td>AU.8</td>
</tr>
<tr>
<td>9</td>
<td>A3.156.90</td>
<td>AU.9</td>
</tr>
<tr>
<td>10</td>
<td>A3.156.91</td>
<td>AU.10</td>
</tr>
<tr>
<td>11</td>
<td>A3.178.72</td>
<td>AU.11</td>
</tr>
</tbody>
</table>

Model NT3006 Biscuits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type Number (Printed Circuit)</th>
<th>Aerial RF and Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CZ.320.084</td>
<td>CZ.321.057</td>
</tr>
<tr>
<td>1</td>
<td>CZ.320.085</td>
<td>CZ.321.058</td>
</tr>
<tr>
<td>2</td>
<td>CZ.320.086</td>
<td>CZ.321.059</td>
</tr>
<tr>
<td>3</td>
<td>CZ.320.087</td>
<td>CZ.321.060</td>
</tr>
<tr>
<td>4</td>
<td>CZ.320.088</td>
<td>CZ.321.061</td>
</tr>
<tr>
<td>5</td>
<td>CZ.320.089</td>
<td>CZ.321.062</td>
</tr>
<tr>
<td>5A</td>
<td>CZ.320.090</td>
<td>CZ.321.063</td>
</tr>
<tr>
<td>6</td>
<td>CZ.320.091</td>
<td>CZ.321.064</td>
</tr>
<tr>
<td>7</td>
<td>CZ.320.092</td>
<td>CZ.321.065</td>
</tr>
<tr>
<td>8</td>
<td>CZ.320.093</td>
<td>CZ.321.066</td>
</tr>
<tr>
<td>9</td>
<td>CZ.320.094</td>
<td>CZ.321.067</td>
</tr>
<tr>
<td>10</td>
<td>CZ.320.095</td>
<td>CZ.321.068</td>
</tr>
<tr>
<td>11</td>
<td>CZ.320.096</td>
<td>CZ.321.069</td>
</tr>
</tbody>
</table>

Model NT3001 Biscuits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type Number (Printed Circuit)</th>
<th>Aerial RF and Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CZ.320.097</td>
<td>CZ.321.078</td>
</tr>
<tr>
<td>1</td>
<td>CZ.320.098</td>
<td>CZ.321.079</td>
</tr>
<tr>
<td>2</td>
<td>CZ.320.099</td>
<td>CZ.321.080</td>
</tr>
<tr>
<td>3</td>
<td>CZ.320.100</td>
<td>CZ.321.081</td>
</tr>
<tr>
<td>4</td>
<td>CZ.320.101</td>
<td>CZ.321.082</td>
</tr>
<tr>
<td>5</td>
<td>CZ.320.102</td>
<td>CZ.321.083</td>
</tr>
<tr>
<td>5A</td>
<td>CZ.320.103</td>
<td>CZ.321.084</td>
</tr>
</tbody>
</table>

Model AT7580 Biscuits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type Number (Printed Circuit)</th>
<th>Aerial RF and Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CZ.320.104</td>
<td>CZ.321.078</td>
</tr>
<tr>
<td>1</td>
<td>CZ.320.105</td>
<td>CZ.321.079</td>
</tr>
<tr>
<td>2</td>
<td>A3.747.08</td>
<td>A3.747.03</td>
</tr>
<tr>
<td>4</td>
<td>CZ.320.106</td>
<td>CZ.321.080</td>
</tr>
<tr>
<td>5</td>
<td>CZ.320.107</td>
<td>CZ.321.081</td>
</tr>
<tr>
<td>5A</td>
<td>CZ.320.108</td>
<td>CZ.321.082</td>
</tr>
<tr>
<td>6</td>
<td>A3.746.75</td>
<td>A3.746.70</td>
</tr>
<tr>
<td>7</td>
<td>A3.746.76</td>
<td>A3.746.71</td>
</tr>
<tr>
<td>8</td>
<td>A3.746.77</td>
<td>A3.746.72</td>
</tr>
<tr>
<td>9</td>
<td>A3.746.78</td>
<td>A3.746.73</td>
</tr>
<tr>
<td>10</td>
<td>A3.746.79</td>
<td>A3.746.74</td>
</tr>
<tr>
<td>11</td>
<td>CZ.320.109</td>
<td>CZ.321.083</td>
</tr>
</tbody>
</table>

ADDITIONAL NOTES

1. Type numbers in **bold** are the necessary biscuits to convert superseded turret tuners to the new frequency allocations.

2. Modified biscuits for Tuner AT7580 and NT3001 carry the suffix "M". The addition of a red paint marking on the end of the coil former identifies the biscuit for Tuner AT7580.

3. Modified biscuits are readily available and, when ordering biscuit assemblies, servicemen and retailers should take care to quote the correct part numbers.

4. Turret Tuner type NT3003 is designed to permit electrical remote fine tuning of the oscillator frequency and, apart from an additional terminal and modified fine tuning control shaft, it is identical to the NT3006 which uses mechanical fine tuning.
Read-out and On-Off Circuits using a BPY10 Silicon Photovoltaic Cell

Operation of the Mullard BPY10 silicon photovoltaic cell in series and parallel configurations is examined, with particular reference to tape and card reading, edge detection, and other on-off applications. The preferable parallel configuration is analysed, and design and setting-up procedures are given, with recommendations concerning amplifier circuits to follow the detector stage.

Introduction

The Mullard BPY10 photovoltaic cell is a silicon p-n junction, moulded in resin for chemical protection and physical strength, with an accurately masked window that allows access to light over a defined area 1.68 x 1.68mm (0.066 x 0.066in). The rectangular shape, with lead-outs at one end (as shown in the photograph), is designed to facilitate stacking for in-line read-out. The dimensions, 0.086 x 0.088 x 0.25in, allow a row of six devices to be arranged under standard 1/2in tape with five digit holes and a location hole. The width of the cell is controlled within ±0.001in.

The device is intended for on-off light-detection applications, such as tape and card reading and edge detection, where detection of light over a small area is required. It may also be used for revolution counting, modulated light beam detection, and optical sound-track pickup. The spectral response peaks at 0.8μm, so that the device is sensitive to a tungsten lamp.

Characteristics

Under dark conditions the p-n junction acts as a normal silicon diode junction with high ohmic leakage when a voltage is applied to it (Fig. 1). When energy quanta in the spectral response band impinge on it, hole-electron pairs are created, and those carriers of the appropriate polarity in the depletion layer are swept over the junction potential barrier as free carriers.

If a low-resistance circuit is connected to the device, these carriers appear as a current in the external circuit, in the reverse direction of the diode. If a high-resistance circuit is connected to the device, the excess free carriers lower the internal barrier field at the junction, causing a potential at the terminals in the forward direction. Reversal of the sign of the current axis gives the more usual presentation of these curves, as shown in Fig. 3.

As with all semiconductor diodes, the characteristic is temperature-dependent. The theoretical diode characteristic is given by

\[I = I_{SAT}(\exp(qV/KT) - 1) \]

where \(I_{SAT} \) is the saturation reverse current and is exponential with temperature. A leakage current, which is approximately ohmic, occurs across the junction, and this also varies exponentially with temperature. Adding the light current \(c\Phi \) (where \(\Phi \) is the illumination and \(c \) the sensitivity) shifts the curve negatively, giving the curves of Fig. 3, where

\[I = I_{SAT}[\exp(qV/KT) - 1] + V/f(T) - c\Phi \]

Measurements on the device show that the reverse leakage current measured at −IV bias and dark conditions increases with temperature to 70μA at 100°C, the published maximum rated temperature. The short-circuit sensitivity, when the leakage current may be ignored, is also subject to a small variation with temperature of the order of 0.2% per degC.

Circuit Considerations

The BPY10, being photovoltaic, requires no bias for normal operation, and as the leakage is small the cell may be used with direct coupling into an amplifier. It is, however, desirable to use silicon transistors in the amplifier, so that the transistor leakage current shall not detract from the sensitivity of the cell. In this case, it is necessary to add a bias to the voltage generated by the cell, the total voltage being sufficient to overcome the high base-emitter voltage of the transistor. There are two ways of providing this voltage bias.

The curves of Fig. 3 show that if the diode is back biased, the characteristics tend towards a constant current state, and the voltage across the device may be increased beyond the

\[V_{BE} \]

of the transistor (0.4 to 0.7V) without appreciably affecting the current. If the cell is connected in the

reverse direction across the base-emitter diode of the transistor, and the two are fed from a constant current source (Fig. 4) then the transistor will receive a constant \(I_0 \) which is the difference between the current source \(I_g \) and the cell current \(I \).

The second method of biasing is to connect the device in series with the transistor base, and to add a bias (Fig. 5) so that the bias provides the base-emitter voltage, and the diode current can force the transistor into conduction. By making the source resistance of the bias supply low, and adjusting the bias level, it is possible to keep the diode voltage small, which keeps the temperature-dependent components of the current small.

Parallel Configuration

A circuit employing the device in the parallel configuration is shown in Fig. 6. As already mentioned, this configuration has the advantage that the cell resistance is high and the cell can be used as a current switch. It has the disadvantage of working at the base-emitter voltage, which may be as much as 0.7V reverse bias with attendant high leakage currents. A sample calculation is shown on the opposite page.

To ensure that the circuit is stable the circuit must allow for the following variations:

1. Drift of V_e power supply; for example, 12V±6%.
2. Variation of leakage current up to 30μA at 1V bias and 75°C, which is equivalent to 20μA at 700mV bias, the approximate working point.
3. Variation of transistor characteristics. Thus, the current amplification factor h_{fe} may be between 25 and 85 when an OC202 transistor is used.
4. Variation in the relative amounts of light falling on the cell in the on and off conditions.
5. Variation of the short-circuit sensitivity of the device—approximately ±10%.

The light falling on the cell in the off condition is determined by the light transmission of the tape or card that is being read (paper tape may transmit as much as 50% of the light falling on it; card transmits between 5% and 20%) and also by the intensity of the light source. As the light output of a lamp varies approximately cubically with applied voltage, it is advisable to power the lamp from a stabilised supply. A typical variation of ±1% in the supply will then give ±3% variation in the light intensity.

Calculation

If I_s is the leakage current of the cell, I_b the light current in the off state when the cell is illuminated, and I_c the base current, then

\[I_b = \frac{V_{cc} - V_{be}}{R_b} - I_s - I_i + I_{cbo} \] (1)

The collector leakage current I_{cbo} of the OC202 is small (1μA max) compared with I_s (20μA at 75°C) and may be ignored. Variation in V_{be} is small compared with V_{cc} and may also be ignored.

In the off state we may set R_b just to cut off the first transistor of the amplifier at the most adverse limits of the parameters. Then V_{cc} becomes V_{cc}+6%, R_b becomes R_b−1%, and from I_s must be subtracted the variation in illumination and variation of sensitivity. Thus

\[\left(\frac{V_{cc} - V_{be}}{R_b} + 7\% \right) - 0 = (I_s - 3\% - 10\%) = 0 \]

and

\[\frac{V_{cc} - V_{be}}{R_b} = \frac{I_s}{R_s} = 1.23 \] (2)

In the on state we wish to bottom the transistor, which requires a base current of \(V_{cc}/R_i\) \((1/h_{fe})\). Again substituting into Eq(1), using the most adverse tolerance limits, and defining k as the ratio of the illumination in the on and off states, we obtain

\[\frac{V_{cc}}{R_i} = \frac{V_{cc} - V_{be}}{R_b} - 7\% \]

\[-(kI_s + 3\% + 10\%) - 20\mu A \text{ (at } 75°C \text{) } (3)\]

From Eqs(2) and (3), taking V_{cc} as −12V, and h_{re} as 25, we obtain

\[20 + 0.48R_i \]

\[I_s > \frac{20 + 0.48R_i}{0.76 - 1.13k} \mu A \] (4)

where R_i is in MΩ and I_s in μA. If R_i is at least 470kΩ, the fraction 0-48/R_i may be ignored.

Examples

1. For card reading, where k is approximately 0.15,

\[I_s = 36\mu A \]

As the minimum sensitivity is 15μA at an illumination of 2000 lux, the minimum light intensity would in this case be 36/15×2000 = 4800 lux, which is easily attainable.

2. For tape reading, using paper tape, k may be as high as 0.5. Then from Eq(4)

\[I_s > \frac{20}{0.2} = 100\mu A \text{ at } 75°C \]

The minimum illumination is 100/15×2000 = 13 400 lux.

More Critical Applications

If it is desired to work at higher temperatures and lower illumination levels than those analysed above, the leakage current will necessitate individual setting up of circuits. This may be avoided by a modification to the circuit.

The leakage current \(I_{col}\), \(\exp(qV/KT) - 1\), \(+V/(f(T))\) is voltage-dependent. Therefore if a bias is added to the device to overcome the transistor base-emitter voltage, the device works at low voltage and the leakage current is considerably reduced. Fig. 7 shows the application of a bias voltage, stabilised by a silicon diode, in series with the cell. The cell is now loaded by the base-emitter diode of the transistor, in series with the external diode, which together present a load of the order of 200Ω. With a maximum signal current of 200μA, only 40mV is developed across the cell, together with any difference between the forward voltages of the diode and the transistor base-emitter diode. The total does not exceed 200mV, which limits the leakage current to approximately one-fifth of its value at 1V (that is, 14μA at 100°C).

As the diode characteristic and the transistor input characteristic vary with temperature in the same way, the diode will also provide temperature stabilisation of the working point.

Series Configuration

Under Circuit Considerations a series configuration is suggested, in which the diode current is used directly to switch on the transistor, the base-emitter voltage being overcome by a series bias (Fig. 5). As there is no parallel path in this configuration, the leakage current flows into the transistor, and it is no longer possible to use the cut-off state to indicate the off condition. The circuit may be adjusted so that the transistor just bottoms in the on condition by adjustment of the collector load. This, however, makes the operation of the circuit dependent on h_{re}, which is temperature-dependent, and on the input resistance of the following amplifier, which may also vary. The series configuration is therefore inferior to the parallel configuration, and a detailed analysis will not be given.
Following Circuits

The waveform from either of the above circuits is a function of the variation of the illumination falling on the cell. If, for example, the illumination is governed by a rectangular card hole passing over the square window of the device, the waveform will consist of a nearly linear rise and fall, bridged by a constant voltage. If, however, it is governed by a series of round holes in paper tape passing over a round masking hole, the waveform will be as in Fig. 8, possibly clipped if a high-sensitivity diode or low-transparency tape is used.

If square pulses are required, a switching circuit must be used after the first transistor to define the on and off states. The most suitable circuit for this purpose is a Schmitt trigger circuit (Ref. 1), an example of which is given in Fig. 9. As the circuit is drawn, it gives positive pulses. The circuit is capable of reading pulses from a paper tape with \(k = 0.3 \) and an illumination of 5000 lux with any cell, provided that the ambient temperature does not exceed 75°C.

Conclusions

The BPY10 cell is suitable for tape and card reading and similar on-off light detection applications, in an ambient temperature of up to 75°C, with illumination levels in the on state in the range 2000 to 10,000 lux, provided that the illumination in the off state does not exceed 30% of that in the on state. The majority of tape and card readers should fall well into this group.

If it is desired to work at temperatures above 75°C, with an illumination less than 10,000 lux, it may be necessary to use low-transparency tape, or to adjust each circuit individually.

REFERENCES

APPENDIX

Setting Up the Circuit

The sensitivity of the device may have any value in the range 15 μA to 50 μA at 2000 lux. If the circuit is designed to accept the lowest sensitivity cells, and a high-sensitivity cell is used, the output in the off state, using a card or tape with an on/off light transmission ratio of less than 10, will be of the same order as that in the on state. In the majority of cases it is therefore necessary to match the circuit to each individual cell by means of a set-in-test or variable resistor.

The parallel circuit may be set up by adjustment of \(R_b \) (Fig. 6). The required value may be calculated from Eq(2):

\[
R_b = \frac{(V_{ce} - V_{be})}{\phi}\]

or by practical adjustment of the resistor.

When setting up the circuit by practical adjustment, the resistor is set at the point where the transistor just cuts off under full illumination. Device and circuit must be under the conditions already stipulated under Calculation; namely, maximum \(V_{ce} \), minimum illumination, and low temperature. Variation in sensitivity may be simulated by a further 10% decrease in illumination.

Silicon Photovoltaic Cell BPY10

Abridged Preliminary Data

Silicon photovoltaic cell suitable for use in tape and card readers.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area</td>
<td>43.5 × 10⁻⁴ in²</td>
<td>32A at 2000 lux</td>
<td>100°C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum ambient temperature</td>
<td></td>
<td></td>
<td>10°C</td>
</tr>
<tr>
<td>Peak spectral response</td>
<td>0.8 μm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

The equipment designer must ensure that no cell exceeds these ratings. In arriving at the actual operating conditions, variations in supply voltages, component tolerances and ambient temperature must also be taken into account.

- Reverse voltage \(V_R \): 1.0 V
- Forward current \(I_F \): 10 mA
- Storage temperature: 100°C
- Minimum: -20°C
- Maximum: 100°C
- Maximum ambient temperature: 100°C

CHARACTERISTICS (measured at \(T_{amb} = 25°C \) and using a lamp of colour temperature 2700 K)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-circuit current at 2000 lux</td>
<td>15</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>Dark reverse current (I_R) ((V_R = 1V))</td>
<td>0.35</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

INFORMATION FOR CIRCUIT DESIGN

<table>
<thead>
<tr>
<th>Characteristic</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area</td>
<td>1.68 × 1.68 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak spectral response</td>
<td>0.8 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-circuit current at 10,000 lux</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark reverse current (I_R) ((V_R = 1V, T_{amb} = 75°C))</td>
<td><30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance (V_R = 0)</td>
<td><1000 pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING NOTES

1. The cell may be soldered directly into a circuit but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.

2. Care should be taken not to bend the leads nearer than 1.5mm to the seal.
MULLARD SILICON RECTIFIER DIODES

(Maximum Ratings)

The two new silicon rectifier diodes OA605 and OA610, recently announced in Outlook Vol. 6 No. 4 complete the range of Mullard low current, medium power silicon rectifiers. This range of diodes was previously supplied with a mounting stud following the SO-17 outlines but is now supplied with flying lead terminations only, as shown in Fig. 1.

The preferred types for entertainment applications are the OA210 in voltage doubler service and the BY100 for conventional full-wave circuits and input voltages up to 250V r.m.s.

<table>
<thead>
<tr>
<th>Type Number</th>
<th>Peak Inverse Voltage (V)</th>
<th>Peak Forward Current (\phi) (A)</th>
<th>Forward Current * (A)</th>
<th>Ambient Temperature (°C)</th>
<th>Storage Temperature (°C)</th>
<th>Filter Input Capacitor ((\mu F))</th>
<th>Minimum Surge Limiting Resistance (\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA605</td>
<td>50</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>OA610</td>
<td>100</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>OA620</td>
<td>200</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>OA630</td>
<td>300</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>OA6210</td>
<td>400</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>OA650</td>
<td>500</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>OA6606</td>
<td>600</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>OA670</td>
<td>700</td>
<td>5</td>
<td>0.5</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>BY100</td>
<td>800</td>
<td>5</td>
<td>0.45</td>
<td>70</td>
<td>150</td>
<td>200</td>
<td>6</td>
</tr>
</tbody>
</table>

\(\phi \) Capacitive and/or inductive load.

* DC component or 50 msec average.

** When minimum value of surge limiting resistance is used, the appropriate data sheets (Mullard Technical Handbook, Vol. 4) should be consulted to ensure operation within ratings.

Minimum Surge Limiting Resistance = \(R_{sec} + n^2 R_{pri} + R_{add} \).

where

- \(R_{sec} \) = transformer secondary winding resistance.
- \(R_{pri} \) = transformer primary winding resistance.
- \(n \) = transformer turns ratio.
- \(R_{add} \) = additional resistance in circuit (if any).

Fig. 1.

LIGHTWEIGHT X-BAND KLYSTRON TYPE YK1040

Rugged construction and a weight of only four ounces (113g) make this new X-band klystron particularly suitable for use in airborne equipments operating at frequencies between 9-0 and 9-6 Gc/s. Coupled cavity tuning is incorporated.

Under typical operating conditions with a resonator voltage of 300V, the minimum output power is 35mW, whilst at the minimum resonator voltage of 273V, power output is 25mW. Temperature coefficient is -100kc/s per °C.

The heater is rated at 6-3V, 0-6A; warm-up time is 30 sec.

Features of the YK1040 are its very small frequency drift during initial warm-up (3 Mc/s after five minutes operation) and a negligible variation in frequency of only 1 Mc/s with changing atmospheric pressures equivalent to altitudes ranging from 0 to 30,000 ft.

INFRA-RED PHOTOCELL TYPE RPY24

This uncooled lead sulphide photoconductive cell is primarily intended for use in combustion safeguard equipment for gas-fired boilers. This cell is sensitive over a range extending from the visible to 2-7µm, peak spectral response occurring at 2-3µm.

ABRIDGED PRELIMINARY DATA

- Resistance range 60 to 260 k\(\Omega \)
- Signal-to-noise >20 : 1
- Signal 40 \(\mu V \)
- Operating temperature -20 to +50 °C
- Overall dimension (excluding pins) height 10 mm diameter 11 mm Base 2-pin plug in

MULLARD TV TUBE INTERCHANGEABILITY LIST

A new and revised edition of the Mullard Television Tube Interchangeability List, containing the latest released types, is now available. To obtain your copy, please send a stamped, self-addressed, foolscap envelope endorsed "TV TUBES".
MULLARD RELEASE NEW AUDIO POWER TRANSISTOR – AD140

The latest addition to the Mullard preferred range of transistors is the AD140. This audio power transistor is of the germanium junction p-n-p alloy type and is intended for use in the output stages of receivers and amplifiers operating from either battery or AC mains.

The AD140 power transistor supersedes the OC26 and should be considered for new equipment design. It is mounted in a TO-3 metal envelope identical to the OC26. Matched pairs (2-AD140) are available for Class 'B' push-pull output stages.

The data tabulated below is abridged, preliminary data only and more detailed information may be obtained from the Mullard Technical Handbook, Volume 4.

QUICK REFERENCE DATA
Germanium junction, power transistor of the p-n-p alloy type. Intended for use as an amplifier in the output stages of receivers and amplifiers operating from either battery or AC mains.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CB \max}$ (Ic = 0mA)</td>
<td>-55 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CB \max}$ (Ic = 0.5A)</td>
<td>-55 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CB \max}$ (Ic = 3.0A, + $V_{BE} = 2V$)</td>
<td>-40 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector current</td>
<td>3.0 A</td>
<td>3.0 A</td>
<td></td>
</tr>
<tr>
<td>Emitter current</td>
<td>3.5 A</td>
<td>3.5 A</td>
<td></td>
</tr>
<tr>
<td>Reverse emitter-base voltage</td>
<td>-10 V</td>
<td>-10 V</td>
<td></td>
</tr>
<tr>
<td>Base current</td>
<td>500 mA</td>
<td>500 mA</td>
<td></td>
</tr>
<tr>
<td>Total dissipation</td>
<td>35 W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGs
The equipment designer must ensure that no transistor exceeds these ratings. In arriving at the actual operating conditions, variations in supply voltages, component tolerances and ambient temperature must be taken into account.

Collector voltage
- $V_{CB \max}$ (Ic = 0) -55 V
- $V_{CB \max}$ (Ic = 0.5A, + $V_{BE} = 2V$) -55 V
- $V_{CB \max}$ (Ic = 3.0A, + $V_{BE} = 2V$) -40 V

Collector current
- $I_{CM \max}$ | 3.0 A |
- $I_{CM \max}$ (averaged over any 20ms period) |

Emitter current
- $I_{EM \max}$ | 3.5 A |
- $I_{EM \max}$ (averaged over any 20ms period) |

Reverse emitter-base voltage
- $V_{BE \max}$ | -10 V |
- $V_{BE \max}$ (Ic = 1A) |
- $V_{BE \max}$ (Ic = 3A) |

Base current
- $I_{B \max}$ | 500 mA |
- $I_{B \max}$ (averaged over any 20ms period) |

Collector knee voltage
- $V_{E(knee)}$ | -1.2 V |
- $V_{E(knee)}$ (See Fig. 1) |

LARGE SIGNAL CHARACTERISTICS

Current amplification factor
- h_{FE} | Min. | Typ. | Max. |
- h_{FE} at $I_{C} = 1A, V_{CE} = 1V$ | 30 | 100 | |
- h_{FE} at $I_{C} = 1A, V_{CE} = 0V$ | 0.5 | | |
- h_{FE} at $I_{C} = 100mA, V_{CE} = -14V$ | 3.0 | 4.5 | | kc/s |

CHARACTERISTICS OF MATCHED PAIR
(measured at $T_{CASE} = 25°C$)

Ratio of the current amplification factor of 2-AD140 at Ic = 3A

1.25:1

OUTLINES AND DIMENSIONS
DESIGN FOR AN ELECTRONIC TACHOMETER

COMPLETE KIT-SETS FOR THE ELECTRONIC TACHOMETER DESCRIBED ON PAGES 64 and 65 ARE AVAILABLE FROM:

Ferrier Electrical Instruments,
45 Albany Street,
Crows Nest, N.S.W.
Tel.: 43 5596.
CURRENT MULLARD PUBLICATIONS

<table>
<thead>
<tr>
<th>Publication</th>
<th>Price</th>
<th>Postage</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Reference Manual of Transistor Circuits"</td>
<td>15s. 0d.</td>
<td>1s. 5d.</td>
</tr>
<tr>
<td>"Transistor Radios, Circuitry and Servicing"</td>
<td>5s. 3d.</td>
<td>8d.</td>
</tr>
<tr>
<td>"Simple Explanation of Semiconductor Devices"</td>
<td>5s. 3d.</td>
<td>5d.</td>
</tr>
<tr>
<td>"Circuits for Audio Amplifiers"</td>
<td>12s. 6d.</td>
<td>1s. 5d.</td>
</tr>
<tr>
<td>"Valve, Tube and Semiconductor Guide"</td>
<td>15s. 0d.</td>
<td>1s. 5d.</td>
</tr>
<tr>
<td>"Vinkor Manual"</td>
<td>5s. 3d.</td>
<td>8d.</td>
</tr>
<tr>
<td>"Stereo Sound Systems"</td>
<td>6s. 3d.</td>
<td>8d.</td>
</tr>
</tbody>
</table>

These publications, as well as a comprehensive range of free literature, are available from Mullard Offices and Distributors throughout the Commonwealth. Cheques, postal notes and money orders should be made payable to "Mullard-Australia Pty. Ltd."

35-43, CLARENCE STREET, SYDNEY, N.S.W. and 123-129, VICTORIA PARADE, COLLINGWOOD, N.S., VIC.
TABLE OF CONTENTS - VOL. 6, 1963

A
AD139, Power Output Transistor ... 58
AD140, Mullard Release Audio Power Transistor ... 72
ADZ11-ADZ12 High Power Switching and General Purpose Audio Transistors 11
ADY26, P-N-P Audio Power Transistor ... 48
AF114N Series, Preferred Semiconductors ... 59
AFY19, “Stripe Construction” Used in VHF Transistor ... 76
Amplifier 3.5 c/s to 80kc/s, High Performance ... 30
Audio Equipment Servicing ... 5
Audio Power Transistor — AD140, Mullard Release ... 72

B
BCY38, BCY39, BCY40 Silicon P-N-P Transistors ... 57
BPY10 Silicon Photovoltaic Cell, Read-out and On-Off Circuits Using ... 68
BSY38, BSY39, Planar Transistors ... 48
BYY20 and BYY21, Silicon Diodes, New Release ... 26

C
Cathode Ray Tubes, New ... 12
Colour Temperature ... 10
Complementary Circuits Using P-N-P and N-P-N Transistors ... 28
Control Using Decade Counters, Sequence ... 19

D
Diodes, New Release BYY20/21, Silicon ... 26
Diodes, Mullard Silicon Rectifiers (OA605 Series) ... 71

E
Electronic Tachometer, Design For A ... 64

H
“Harp” Cathode Warm-Up Time and Reliability ... 20
Heater Ratings, New (6AN7, 6BH5) ... 84
Heat Sinks For Rectifiers, Transistors and SCRs ... 77

I
I.R.E. Convention, Mullard Display At ... 48
I.R.E. Convention Paper ... 48

K
Klystron Type YK1040, Light-Weight X-Band ... 71

M
Magnetron Type YJ1030, Miniature 160W ... 84
Magnetron YJ1040, 14kW Pulsed ... 84
Microcircuits, Mullard ... 17
Modulator For Mobile Installations, Transistorised ... 52
Mullard-Australia Team ... 16

O
OA605, OA610, Silicon Rectifiers ... 58
Oxygen, Facts About ... 9

P
Penning Pump, New 100 Litre Per Second ... 57
Personalities, Mullard-Australia; Mr. B. Brice ... 3
Mr. L. Norris ... 39
Mr. T. Duncan ... 51
Mr. J. T. Lake ... 63
Mr. R. L. Webb ... 75
Photocell, Type RPY24, Infra-Red ... 71
Photodector For Sub-millimetre Radiation, A Fast ... 7
Photoemissive Cells, Mullard ... 60
Picture Tube, AW59-91, New 23” ... 58
Power Control, Thyatron and Ignitron ... 8
Power Inverters with SCRs, High ... 18
Power Supply Filter Elements, Transistors As ... 29
Pre-Amplifier, Wideband Tuner Stereophonic ... 40
Preferred Valves, Tubes and Semiconductor Diodes ... 76
Publication, New (Mullard Bulletin) ... 48

Q
Quick-Heating Transmitting Valves ... 27

R
Read-Out and On-Off Circuits Using BPY10 Silicon Photovoltaic Cell ... 68
Reference Tube ZZ1000, Voltage ... 59
Regulation of Low Voltage Generators ... 21
Resistance Capacitance Bridge ... 6
RPY15, Small Cds Cell for Direct Relay Operation ... 11
RPY24, Infra-Red Photocell, Type ... 71

S
Semiconductors The AF114N Series, Preferred ... 59
Sequence Control Using Decade Counters ... 19
Servicing Audio Equipment ... 5
Signal Tracer ... 6
Silicon Controlled Rectifiers ... 22
Silicon Rectifier Diodes, Mullard (OA605 Series) ... 71
Silicon Rectifiers OA605 and OA610 ... 58
Solid State Power Conversion and Control ... 17
“Stripe Construction” Used in AFY19 ... 76

T
Tachometer, Design For An Electronic ... 64
Television Turret Tuners ... 67
Television Channels, 1963 Australian ... 66
Thyratron and Ignitron Power Control ... 8
Thyratron Type XR1-12A, Xenon ... 76
Thyratron ZT1000, Mercury Vapour ... 59
Transistor AF Oscillator ... 5
Transistor AD139, Power Output ... 58
Transistors, ADZ11-ADZ12 ... 11
Transistors As Power Supply Filter Elements ... 29
Transistors; BCY38, BCY39, BCY40, Silicon P-N-P ... 57
Transistors, Complementary Circuits Using P-N-P and N-P-N ... 28
Transistors For High Speed Computer Logic, Planar ... 48
Transistorised Modulator For Mobile Installations ... 52
Transistors, P-N-P Audio Power ... 48
Transistor Resistor Logic Using ASZ21 ... 4
Transmitting Valves, Quick Heating ... 27
Tuner Stereophonic Pre-amplifier, Wideband ... 40
Tuners, Television Turret ... 67

V
Valve and Tube Nomenclature, New ... 9
Valves For Linear Amplifiers and SSB Transmission ... 31
Vinkor Manual ... 48
Vinkor Manual ... 57

W
Viewpoint with Mullard; “Everything Under Control” ... 3
“Applications Engineering Laboratory” ... 15
“A Sense of Balance” ... 39
“Know Your Transistors” ... 51
“Mullard X-Ray Division Chief In Australia” ... 63
“Our Founder S. R. Mullard M.B.E. Celebrates 80th Birthday” ... 75

X
XR1-12A, Xenon Thyatron ... 76

Y
YJ1030, Miniature 160W Magnetron Type ... 84
YJ1040, 14kW Pulsed Magnetron For Use At High Altitudes ... 84
YK1040, Light Weight X-Band Klystron ... 71

Z
ZT1000, Mercury Vapour Thyatron ... 59
ZZ1000, Voltage Reference Tube ... 59