

68000 VERSUS iAPX 286

ensure that data segment registers are matched with the
correct offset, and this must be achieved with the four
registers (BX, BP, SI and DI) that are permitted to hold
the 16-bit offset values. However, the architecture places
additional special demands upon these registers.

Register BX is used repeatedly in arithmetic and logic
operations, and its content is destroyed each time the
translate instruction is used. Except for a few specific
operations the BP register functions permanently as a frame
pointer and therefore is usually unavailable to most pro-
grams. The SI and DI registers are available to the pro-
grammer, but unfortunately they are overwritten every
time a string operation is performed. Hence frequent
loading and unloading of offset values is required coupled
with set-up and overriding of the proper segment registers,
limiting the performance of the iAPX 286/8086 severely.

Contrast all the restrictions of the dedicated registers of
the iAPX 286/8086 architecture with the freedom provided
by the general-purpose register set of the 68000. With the
iAPX 286/8086 architecture there isn’t even a single
register available for the programmer to use at will, whereas
the 68000 allows unrestricted use of the complete 32-bit
register set.

Examination of almost any iAPX 286/8086 code will
reveal the limitations that result from an architecture that
dates back to the first 8-bit microprocessors. For example,
consider the independent EDN Benchmark E* of a primi-
tive string search. For this the 68000 benchmark requires a
mere quarter of its register set whereas the iAPX 286 archi-
tecture has to use its entire register set and even has to save
and restore two of the working variables of this short
benchmark. If mundane programs like this cause such
problems, what performance problems and lengthy code
would result from a program of even modest complexity?

VIRTUAL MEMORY

For today’s ever expanding microprocessor applications, it
is vital that a processor can support virtual memory. Virtual
memory allows the execution of processes that may not be
completely located in memory. The main advantage of this
technique is that user programs can be larger than the
physical memory of the microprocessor. Selecting a pro-
cessor that cannot operate in a virtual environment will
restrict possibilities for future system expansion.

A processor that can operate in a virtual environment
provides the following advantages:

e a program is not tied to the physical processor memory
but can act as though it has as much contiguous memory
as required

* EDN April and September 1983.

132

¢ the programmer need not be aware of the virtual memory
capability and is thus not concerned with the micro-
processor’'s memory protection mechanism

e the operating system can recover completely from
memory access faults and continue with the program
(fault tolerance) and

o demand paging is possible.

For a program to operate on the iAPX 286 as if it had as
much contiguous memory as it required, some method of
circumventing the crippling 64 Kbyte segmented architec-
ture is necessary. However, the 16-bit offset limit prevents
any practical solution and programmers who attempt to
overcome the problem with software are punished by the
massive increase in the amount of code necessary. Further-
more, execution time is increased by an order of magnitude
due to the large overhead from the required descriptor
loading.

What's more, the iAPX 286 doesn’t have the second ad-
vantages because it requires that the programmer describe
each segment to memory management unit (MMU) before
any reference to that segment can be made. And, since
there are only two registers that can be used to store the
segment descriptors (and these are required for other
specific operations), considerable time is spent just loading
and unloading descriptors.

In programming the 68010/68020, no prior knowledge
of the target system is required. The program will execute
correctly if the target is a virtual machine, has virtual
dynamic paging or real segments, or even if the system hus
no memory management whatsoever.

EDN'’s Sort Benchmark emphasises the contrast betwecen
the restrictive iAPX 286 and 68000 with no segmentation
and MMU descriptor problems. The iAPX 286 takes longer
to load its segment descriptors than the 68000 takes to
perform the complete benchmark.

Unfortunately it is almost impossible to make the
iAPX 286 fault tolerant since its architecture provides only
virtual segments and not a virtual memory. Descriptor
faults can be detected but memory access faults cannot. If
a bus error occurs, there is no alternative but to terminate
the affected program even if it is the operating system, thus
bringing the system down.

Virtual memory facilities of the 68000 family

The 68010 and 68020 microprocessors allow an interrupted
bus cycle to be rerun or simulated. The simulation provides
many features that permit virtual accesses to be granted to
tasks or programs. With National’s NS32032 providing in-
struction retry only, and the iAPX 268 offering no support
for virtual memory. the 68000 family is unique in pro-
viding virtual machine. virtual I/O and virtual window
capabilities.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

and predecrement. Using these two modes the programmer
can easily:

e scan through a data string

e push data on to a user-defined stack
¢ pull data from a user-defined stack

e push data on to a user-defined queue
e pull data from a user-defined queue.

These instructions are available to almost any instruction
using any of the address registers and so eliminate specialized
stack instructions that work on a dedicated stack. The in-
structions allow the 68000 user to define as many stacks as
required, with 8 stacks directly available.

The only stack instructions available on the iAPX 286 are
POP and PUSH and these are limited to one specific stack.
They place data on or remove it from the top of the stack
but are restricted to 16-bit values. Moreover, there is no
way around the single stack limitation and no other in-
struction can operate on the stack without manipulation.

A further stack problem with the iAPX 286 is that to
access data from within the stack. a frame pointer must be
defined. This takes up the base register that is most casily
accessed, adding to an already congested register set.

Indexed and direct addressing

Both architectures provide indexed addressing that accesses
a location defined by the sum of one or two registers and
an offsct. In addition to the 8 and 16-bit offsets that are
also provided by the iAPX 286. the 68000 can index 32-bit
values. The iAPX 286 can only do this as two 16-bit addresses:;
thus the 68000 is an order of magnitude faster. A further
advantage of the 68000's indexed addressing is its flexible
instructions that allow any appropriate register to be used.
Compared with the iAPX 286, which allows only 4 register
options with each instruction, there is significantly less
chance of register congestion using the 68000.

Because of its segmented architecture, the iAPX 286
does not allow direct addressing but requires that each
address has a selector (stored in one of two segment re-
gisters) and an offset. In many operations, the code saving
that this is supposed to give is outweighed by the extra
instruction code required to handle the segments. The
iAPX 286 architecture also uses segment registers for other
dedicated purposes, adding to the overhead by repeatedly
having to swap register contents in and out of memory.
Segment overhead is increased even further each time a
segment register is loaded because a complete segment
check is necessary.

Program counter relative addressing

Writing position-independent object code for the 68000 is
eased greatly by the two program counter relative addressing
modes. These modes allow data to be placed relative to the
location of the instruction that accesses the data. So, if the

68000 VERSUS iAPX 286

instruction is in ROM #17/18 and the dataisin ROM #21/22
in one system then those ROMs can be moved to another
system and will execute identically as long as they remain
four chips apart in the instruction ROMs.

The iAPX 286, in contrast, has no program counter
relative instructions and prevents shifting ROMs from one
system to another since the MMU requires all programs to
have segment IDs. Segment IDs only have meaning to a spe-
cific operating system running on a particular hardware
system. This shows up another drawback of the segmented
iAPX 286 architecture, and like many others, results from
the programmer having to deal with the MMU system
directly.

The 32-bit linear address space of the 68000 can be
accessed directly. avoiding the difficulties that result from
segmentation. Overall. 68000 family microprocessors have
more flexible and useful addressing modes than the
iAPX 286, making accessing data simple, convenient and
functional.

INSTRUCTION SET

One of the most important attributes of a microprocessor
is its instruction set. This provides a good idea of the
functional flexibility of a processor. The more functional
the instructions. the more flexible the microprocessor. An
important part of the instruction set is formed by the data
types and operations discussed in the previous section.

68000 processors were designed to use an entirely new
instruction set. No previous microprocessor instruction set
was used as a mold. However, years of experience in 8-bit
microprocessor design, together with the experience of
minicomputer designers and users, has contributed signifi-
cantly to the concepts involved in the 68000’s instruction
set. Speed was one of the main requirements of the 68000
and the instruction set was designed with this in mind.
Execution speed is linked to the frequency of instruction
use. frequently used instructions. such as register data
movement, being designed to execute the quickest.

Powerful and yet flexible general-purpose instructions
are included for data movement, BCD arithmetic, logic
functions, integer arithmetic. shift and rotate operations.
program control, and high-level language and operating-
system support. Special-purpose instructions, appealing
only to a small group of users. were avoided because these
limit the functional flexibility of the processor.

The instruction set of the iAPX 286 is basically that of
its predecessor the 8086 with two major additions. Instruc-
tions were included in an attempt to duplicate some of the
68000’s features. and control instructions for the MMU
were also added. The iAPX 286 retains all 8086 instructions,
"together with their shortcomings. Stack operations dis-
cussed in the previous section exemplify where the iAPX
286 instruction set falls short.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984 135

68000 VERSUS iAPX 286

String manipulation

Complex string operations are handled with ease by the
68000 using its auto increment and auto decrement instruc-
tions. The DBcc (decrement and branch on condition) in-
struction is a key looping instruction. When placed after one
or a series of instructions, DBcc will repeat the series until a
specified condition (cc)is met or until the counter overflows.

If DBcc is placed after a MOVE instruction. many simple
string operations can be formed. DBcc. in combination with
a few other instructions. can be used to build many flexible
and extremely powerful string and other repeated functions.
Without the 68000s auto increment and decrement in-
structions these functions would not be possible.

With the 68010, a special routine allows some repeated
functions to execute even faster. When the processor
fetches most single-word op codes followed by the DBcc
instruction that immediately branches back to the op code,
the processor stores both instructions internally and then
executes the loop without further re-fetch of op codes.
The routine speeds up these loops by as much as 70%.

The iAPX 286. again like its predecessor. provides a
few dedicated simple string instructions for block moves
and fills, string comparisons and scans, and string input and
output operations. However. as these instructions usc
dedicated registers, their flexibility is limited. If a pro-
grammer requires more complex, yet common, string opera-
tions than normal, relatively slow instructions must be used
with a looping control (LOOPxx) instruction.

Branches and program jumps

Conditional branching enables programs to make decisions
based on a set of conditions. From these decisions, one of a
number of actions can ensue. Branches and program jumps
are fundamental concepts in programming. The ability of a
processor to make decisions, and the ease by which it takes
alternative action determines the processor’s functional
flexibility.

The 68000 processors provide both conditional branching
and program jumps using any addressing mode to define
the destination. Branches direct the program to the next
routine relative to the current instruction and can be
specified up to +32 Kbytes. The large displacement range
allows highly flexible programming. The 68020’s branch
destinations can be specified over the whole 32-bit memory
addressing range.

Program control operations in the iAPX 286 allow con-
ditional branches only over a *128byte range. This short
range will cause great difficulty in even modest tasks that
are greater than the branching range. Multiple branches are
necessary to compensate for such a short range.

Memory-to-memory arithmetic

Memory-to-memory operations allow arithmetic-intensive
programs, such as array functions, to run efficiently. Unlike

136

the 68000, the iAPX 286 has no such operations. Another
application of memory-to-memory architecture is in multiple
precision calculations. Here, the 68000 places no limit on
the data size. Becausc the iAPX 286 docs not support
multiple precision calculations directly, very time-con-
suming manipulations are required.

The iAPX 286 single accumulator

The origins of the iAPX 286 are evident in the large number
of operations that require dedicated use of the AX (accu-
mulator) register. In the past. it was quite justifiable to
implement only onc accumulator because it took up
considerable chip area and the gating required to provide
multiple accumulators was prohibitive. Today. however,
with all the advances that have been made in micro-techno-
logy there is no reason for such a restriction.

Every multiply and divide must use this one AX accu-
mulator, most don’t even permit an immediate operand. In
addition, there are many other functions that also require
dedicated use of the accumulator. The result is an awesome
bottleneck that builds up at the AX register. A further
reason why the accumulator is so overloaded is thatemany
special instructions work more efficiently with the AX re-
gister than with any other register.

In almost every instance. program code for the iIAPX 286
has significantly more lines than for the 68000. This is due
mainly to the dedicated register set of the iAPX 286 archi-
tecture compared with the 68000’s general-purpose register
set. Benchmarks such as EDN’'s Quicksort are a stark
revelation of how much more program code the iAPX 286
requires.

FAMILY COMPATIBILITY

Extending a microprocessor architecture beyond its original
design can only be justified if there is full software com-
patibility between the updated and original processors.
Where software compatibility is not maintained, cach pro-
gram must be checked to determine the required modifica-
tions — a time-consuming task that may take longer than
completely rewriting the software. Program modification
for an updated architecture can be difficult unless the
original architecture was designed with future extension
in mind.

68000 family compatibility

The 68000 architecture is an original design, trading back-
ward compatibility with previous 8-bit microprocessors for
a powerful architecture designed for today’s and tomorrow’s
programming needs. In designing the 68000, space was left
to cater for future requirements. Not all operations that
may be desired could be produced in a microprocessor.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

However, the fundamental functions were designed to allow
desirable extensions to be implemented as improving
technology permitted. The instruction set was also designed
to allow possible enhancement to fulfill the requirements of
future programmers. Fruits of this earlier planning are now
visible in the 68010 and 68020 processors and in the
industry-wide acceptance of the 68000.

100% code compatibility is maintained between the
68000 and the 8-bit derivative 68008. These microprocessors
have the same instruction set which is used as the basis for
later processors. All programs written for the 68000 will
execute identically on the 68008, and vice-versa. To provide
more capabilities than the 68000, some new instructions
were added in the 68010. Two compromises that could
affect supervisor-level programs had to be made to imple-
ment the additional capabilities. Apart from these two
minor differences. requiring a few instructions to be changed
in affected supervisor-level programs, all 68000 code will
execute identically on the 68010. Further additions have
been made to the 68010 instruction set for its enhanced
version, the 68020 — a true 32-bit microprocessor. The
68020 also has a co-processor interface and an on-chip
instruction cache.

All 68000 user (application) programs will run identi-
cally on the 68008, 68010, 68020 and all future 68000
family microprocessors. Therefore. any media containing
68000 family application code will execute exactly the
same whether it is run on a 68020 or a 68000.

iAPX 286 compatibility

The iAPX 286, as a descendant of the 8086/8088, is
promoted as being upward compatible with its predecessors.
However. although it retains most of the registers, addressing
modes and instructions of the 8086, the exact execution of
some instructions is not the same and even some concepts
introduced make them completely incompatible. To use
these new concepts with 8086 code will require the code to
be rewritten comprehensively, destroying the intent of code
compatibility.

Operating modes

There are two operating modes for the iAPX 286: compat-
ibility and native. The compatibility mode is designed to
run 8086 code exactly, with a few new instructions. Soft-
ware written for the 8086 could run correctly on the iAPX
286 (probably faster) with possible differences arising close
to the 64 K segment boundaries.

In the native mode. the user gets all the iAPX 286s
facilities. Unfortunately. most of the new features are
contrary to the basis on which 8086 software is written. It
is not that the program, will not run but that in so doing
they will violate the protection and privilege principles of
the iAPX 286.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

68000 VERSUS iAPX 286

Segment wrap

The 8086 can access a data or program word using an offset
or SFFFF, getting high and low bytes from $FFFF and
$0000, respectively (the segment wraps around instead of
flagging an overrun fault). With the iAPX 286 this is an
illegal access, causing a special trap to occur. Segment
wrapping happens infrequently and the trap provides a
correction mechanism.

Bus locking

Another difference between iAPX 286 and 8086 systems
results from the automatic assertion of the bus lock signal
upon executing the XCHG (exchange) instruction in the
iAPX 286 architecture. This could cause a system fault if it
were not decoded in hardware. The LOCK prefix may
precede any instruction in the 8086 but it is privileged in
the iAPX 286, causing a trap if executed at a lower level.

8086 application program compatibility

Programs will run unaltered when the iAPX 286 is in the
compatibility mode but then the system has no advantage
over the 8086. In contrast. when the iAPX 286 is in the
native mode, almost every 8086 application program would
require significant rewriting before it could be used.

Segment base address

For many routines. the fundamental change in segmenta-
tion between the iAPX 286 and 8086 will result is severe
problems. The 8086 segment registers directly form a 20-bit
base address used to access code and data, and the pro-
grammer can accurately predict the base address. With the
iAPX 286, however, the segment registers indirectly specify
a 24-bit base address and its value, determined by the
operating system, and this base address cannot be pre-
dicted by the programmer.

Operating system compatibility

Unless the iAPX 286 is run in the compatibility mode,
operating system compatibility between iAPX 286 and 8086
is completely lacking. Every 8086 operating system will
have to be rewritten entirely to be used on the iAPX 286.

The new privilege levels will have to be assigned and
handled by the operating system and application programs.
To prevent invalid pointers being passed by lower level
programs, the operating system must verify that each pointer
is valid. Any instruction that accesses an interrupt vector
must be changed because the vectors may only be accessed
by the operating system.

These are just a few of the necessary changes to run an
8086 operating system on the iAPX 286. In general. an
entirely new operating system will be necessary. Addition-
ally. most application programs will have to be rewritten
to prevent illegal accesses to the now privileged operating
system and I/O operations.

137

68000 VERSUS iAPX 286

With the iAPX 286 there is no obvious method of
handling dynamic areas. The ENTER instruction tries to
extend the stack but will fail whenever the total dynamic
area used by all modules exceeds 64 K. Moreover, with the
limited stack size, even local dynamic data will overflow
the 64 K boundary. As a result, very cumbersome routines
must be used to support dynamic areas on the iAPX 286.
Figure 6 gives an indication of the extra descriptors and
overhead resulting from dynamic area management with
the iAPX 286.

In addition, when using high-level languages, the iAPX 286
must often interface with the operating system since
descriptors pointing to blocks of memory scgments can
only be assigned and modified by higher priority protected
routines. The result of all these restrictions is that processor
time is increased by several orders of magnitude even when
handling only simple dynamic stack/variable allocation.

Excessive descriptor overhead in native mode
The programmer who is forced to use the iAPX 286 MMU

140

descriptor control method will run into other problems.
besides having to rewrite most of any current operating
systems. One such problem is that before building a de-
scriptor, it must first be addressed. Thercfore, another
temporary descriptor must be assigned for addressing to
allow the other descriptor to be built. Temporary descriptors
are required even to allow other descriptors to be read. The
resulting increased overhead from these restrictions is a
constant reminder of the inadequacies of the iAPX 286
architecture.

REFERENCE

KLEWER.M. and VERNOOIJ,B., ‘The 68000 micropro-
cessor design philosophy’, Electronic Components and
Applications. Vol. 6 No. 2, 1984, pp. 79 to 82.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

INTERFACING LOCAL AREA NETWORKS

to the gateway for later transmission to the destination
network. It must also be able to receive or transmit on one
network while simultaneously receiving or transmitting on
the other. To accomplish this, processing power is usually
distributed among three controller subsections; two net-
work interface controllers (Ethernet and token-bus). and
one centralized gateway management controller. The
functions of the Ethernct and token-bus interface con-
trollers are shown in the Table.

The gateway controller should receive and transmit
messages in the same manner as any other master/slave
station. Each of the two network interface controllers has
to handle all message traffic situations defined under its
corresponding protocol. The controllers operate at net-
work data rates up to 10 Mbit/s, as prescribed by IEEE 802
standards for both carrier sense multiple access/collision
detection (CSMA/CD) and token-bus networks.

FUNCTIONAL DISTRIBUTION OF THE GATEWAY
NETWORK CONTROLLER SECTIONS

Ethcrnet and token-bus controller section
Receiving and transmitting message packets on the network media.

Mcedia access control functions (c.g., Ethernct collision recovery,
token passing, etc.).

Scrialization, coding, and synchronization of the data strcam.
Packet destination address matching.

CRC gencration and error detection.

DMA to central message buffer.

Interrupt handling and interprocessor communication with the gate-
way management controller.

Gateway management controller
Allocation of buffer arcas to incoming and outgoing messages.

Arbitration of the central message buffer between the gateway
manager’s processor and the two nctwork controllers.

Interrupt handling and interprocessor communication with the net-
work interface controllers.

Translation of the packet format into the data-link protocol of the
destination nctwork.

Any additional higher level protocol translation and management
functions.

DESIGN CONSIDERATIONS

These requirements can be met by storing the messages
received by the gateway in a central buffer memory.
These messages can then be processed to some extent by
the gateway manager before they are ready to be retrans-
mitted. This processing includes translation between each
network’s data-link protocols, so. the demands on the
buffer memory are significant.

The message packets on Ethernet and token-bus net-
works (and most other network protocols) are variable in

142

length. In the case of the token bus, the packet length can
vary from about 20 bytes up to over 8000 bytes. Moreover,
messages addressed to the gateway are received from each
network at random times. After protocol translation is
completed. the message is held in queue until its destina-
tion’s network controller gains access to the media for
transmission.

For Ethernet communications, the buffer must be ready
either to supply a stored message for transmission, or to
receive a new incoming message at short notice. The latter
usually occurs when another station’s transmission precedes
or collides with the outgoing message.

At a 10-Mbit/s data rate, a new data byte has to be
accessed by a controller every 800ns. Within that time
interval, the message buffer is able to access a data byte for
each of the three controller subsections. If necessary, it will
do so in different memory regions. In addition to handling
all these varied requirements. one important objective is
that the system should make the most efficient use of
available buffer memory space to prevent a buffer overflow
condition. This requires a robust memory management
scheme implemented in the gateway management controller.

The 8X30S bipolar microcontroller meets all these
requirements. Designed for bit-manipulative I/O operations,
it can execute 5 million instructions per second, including
data 1/O instructions. Its Harvard architecture separates the
program address and instruction buses from its local data
(IV) bus. This keeps system control and message data
flowing at peak rates. The 8X30S5 architecture also allows
the system to be configured into separate independent
buses for optimal data throughput. This allows network
message data transfer operations to gain exclusive access to
the central message buffer.

In contrast, conventional MOS microprocessor archi-
tectures allow the message buffer to be located within the
processor’s main memory and attached to its common
address and data buses. In addition to message traffic, these
buses are used by the microprocessor for instruction
fetching and local working storage. Since the network
controllers may not be able to gain immediate access to
the processor’s memory bus, first in, first out (FIFO)
buffers are usually required to keep the message data
flowing. Use of the bus by the network interfaces may also
result in an overall reduction in the processor’s data through-
put rate.

However, with the 8X305, the local program buses,
local data bus, and system message buses can be separated,
allowing multiple independent operations to be performed
in parallel. Yet, the I/O performance capabilities of the
8X305 let it access the message buffer as quickly as most
MOS processors access their own memory.

The controller, coupled with the 8X310 interrupt
control coprocessor, adds priority-set, multi-level interrupt
handling capability. This gives the 8X305 the power to
deliver real-time interrupt responses within about 400 ns.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

The actual header and trailer formats generated at each layer
depend upon the higher level protocols used to implement
the corresponding layer. The packet format generated by the
network layer will be passed to the data-link layer which will
generate the standard Ethernet packet at the link level, in-
cluding the CRC field. The packet’s destination address will
be A49, the station address of gateway 1 on the Ethernet.
This packet will then be passed on to the physical layer for
transmission on the communication channel to the Ethernet
side of gateway 1.

Upon receiving the packet, the Ethernet controller in the
gateway will unwrap it by peeling off all the necessary headers
and trailers inserted by various layers (the number of layers
to be unwrapped will depend upon the type of gateway
being used). In the case of a media translator gateway, it will
only unwrap up to the data-link layer of Ethernet, which will
also include error checking.

By eliminating the fields added to the packet by the
data-link layer, the message will be restored to the way it
was in the network layer of station A17. The gateway con-
troller will now convert the packet to a standard token-
packet format by generating another set of headers and
trailers. The source address will be B14 (the address of gate-
way 1 on token network B) and the destination address will
be B21 (as indicated in the network layer header). As the
message passes through the token controller in the gateway,
it will be appended with a new frame check sequence, starting
and ending delimiter, and a preamble. This reformatted
packet will be transmitted by the token controller on net-
work B. Upon reception, station 21 will have to unwrap all
the layers up to the application layer to get the actual message.

Several different networks can be interconnected through
multiple gateways. In such situations, a message that has to
be transmitted from one network to another may need to be
routed via a third network. The possibility of errors is of
course increased, but one can assume that every gateway in-
volved in transmission, reception, and translation of packets
can detect and correct the errors. Suppose the packet trans-
mitted by station A17 is destined for station C34 on network
C, but the packet has to go through network B. The packet
will first be reformatted for network B by gateway 1 and
then again for network C by gateway 2.

Station A17 defines the immediate destination address
(A49) in its destination field and the final address (station
C34) in its network layer header, then forwards the packet
to gateway 1. Upon reception, gateway 1 reformats the
packet by replacing the source address with its own address
(B14) and the destination address with the intermediate
address for gateway 2 (B68). Gateway 1 also generates a
new CRC, then forwards the packet to gateway 2. Upon re-
ception, gateway 2 reformats the packet again, replacing the
destination address field with the address of station C34 and
the source address field with its own address (C55). Gateway
2 also calculates a new CRC, then forwards the packet to the
final destination.

INTERIFACING LOCAL AREA NETWORKS

Each network interface controller checks for errors and
generates CRC values (referred to as the frame check se-
quence in the token-bus protocol). It is necessary to regener-
ate a new CRC for each outgoing message because the
packet header information is altered during protocol
translation. Depending on its software capabilities, the gate-
way manager may correct detected errors in received
messages. Otherwise. the message is tagged to inform the
destination host of the error condition.

The serializer/descrializer logic converts between the
raw serial data and parallel data bytes that can be trans-
ferred on the gateway's data bus. The encoder/decoder
circuit synchronizes the scrial interface. Every cight clock
cycles, a parallel data bytc is transferred between the shift
register (which performs the conversion) and a holding
register. Before the next byte has finished shifting (i.e.,
within the next eight clock cycles), the holding register
must be serviced (contents read or replaced). This is the
point at which the network data stream synchronizes with
the message buffer access cycles.

The scrial interface control logic performs functions that
are fairly common to various data communication and mass
storage controller applications. Serial interface control
logic implemented with discrete logic functions, or more
advanced ficld-programmable arrays, or even gate arrays.
typifics the current solution to management of the data
stream. Incvitably, single-chip solutions will appear to
replace discrete ones.

The 8X305 microcontroller coordinates all the activities
within the nctwork interface control section. It controls
data movement through the serial interface control logic
and to and from thc message buffer without actually
standing in the data path. Instead, it sets up conditions
that allow the buffer to be accessed directly by hardware.
Arbitration logic in the gateway management section con-
trols the actual real-time access to the buffer.

Message transfers on the data bus are very similar to
conventional DMA in computer systems. except that the
data bus is used exclusively for the message data traffic.
and there is no host processor on the bus to contend with.
These message transfers require that the controller generates
a sequence of buffer addresses to accompany the data. The
MAD performs that function.

After the microcontroller initializes the various registers
and counters. the MAD chip can count through a scquence
of addresses independently with respect to the 8X305’s
processing. In the gateway design. the MAD output con-
nects with the system address bus. which runs parallel to
the data bus. The MAD units in each of the three controller
scctions supply address information to the message buffer
via the address bus.

A collection of 1/O ports provides a multipurpose inter-
face between the microcontroller and other parts of the
system for passing data and control/status signals. All I/O
ports and data-oriented peripherals, such as the 8X360, are

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984 145

INTERFACING LOCAL AREA NETWORKS

0-LATCH
REQ O GRANT 0
(FROM ETHERNET > Q lo fo >
NETWORK CONTROLLER) +V D R T0
FPLS MESSAGE BUFFER
L_ (eg. 825159) MEMORY
REQ I GRANT |
(FROM TOKEN-BUS = Q] F >
NETWORK CONTROLLER) +V amv—aD R
REQ 2 GRANT 2
(FROM GATEWAY > 0 12 f2 —>-
MANAGEMENT CONTROLLER) +¥ —n—p R I
[[
o
MASTER CLOCK FROM 8X305 o<}——— Fig.4 The buffer arbitration logic
IN GATEWAY MANAGER CIRCUIT Do acts as a special-purpose stand-alone
GRAN-I’Z DMA controller. Using a few latches
10 GATEWAY and a fleld-programm.able I’oguf: .
FPLS TRUTH TABLE MANAGER sequencer (FPLS), this logic circuit

GRANT 0 = REQ 0 » GRANT 0 » GRANT 1 +
REQ O o GRANT | +
REQ O o [«REQ 2

GRANT I = REQ 1 ® GRANT 0 +
REQ | » REQ 0 = GRANT 1 +
REQ | » REQ 0 » REQ 2
GRANT 2 = REQ 2 ® GRANT | +
REQ 2 » REQ 1 * GRANT 0 +
REQ2 ¢ REQ O » REQ I

The buffer arbitration logic acts as a special-purpose
stand-alone DMA controller (Fig.4). At the end of every
200-ns memory access cycle. the DMA controller samples
the buffer access request lines from each of the three con-
trollers and arbitrates a memory cycle on a round-robin
priority basis. In the worst-case situation, when all three
requests are active during consecutive cycles. the arbiter
rotates among the three controllers and grants each an
access window every 600 ns. The logic required to perform
this function is easily implemented using a few latches and
a field-programmable logic sequencer (FPLS) circuit.

The buffer access-request signal for a network controller
is taken from the parallel data strobes of the serial interface
control logic. This signal also triggers the local MAD to se-
quence to the next address in its assigned buffer space.
When the arbiter grants the memory cycle, the correspond-
ing MAD is enabled and a data byte is transferred to or
from the buffer over the data bus. Since all of the gateway
manager's buffer accesses are software-controlled, the
memory cycle requests for this controller are generated by
extended microcode bits programmed in the local micro-
controller’s program memory. Extended microcode is a
block of extra bits added to the program memory’s width
to provide. with each instruction executed. signals for
general control functions and for fast 1/O port selection.

The software running on all three microcontrollers
exists as a collection of real-time tasks. Except for initiali-
zation, all tasks in the network interface controller are

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

samples the request lines from the
three interface controllers every

200 ns and arbitrates a memory
cycle to the message buffer memory
according to the round-robin
sequence specified by the FPLS truth
table

invoked in response to interrupts received either from the
gateway management controller or from local operational
units. Most tasks in the gateway management controller
are invoked by interrupts from the network controllers.
with the exception of the packet translation routines.
These run in the main program under the control of a
primitive executive.

As mentioned earlier. the message buffer is divided into
128 pages with 256 bytes/page. The gateway management
software maintains a table of 128 pointers in its local
working storage that correspond to the 128 pages. When
a message received from a network controller runs over into
more than one buffer page. the pointer for the first page
will contain the address of the pointer for the second page
which, in turn, contains the next pointer address, etc. Thus,
a linked list is formed. The software includes several lists
for packets currently being received, those waiting for
protocol translation, those waiting to be transmitted, and
free pages ready to be allocated to new messages. For each
of the above processes (except free pages), separate lists are
maintained for each of the two networks from which
messages originate.

The first and last pointer of each list are tracked. As a
process is completed on a buffer page or packet (packets
may consist of one or more pages). the corresponding
pointers are removed from that process’ list and appended
to the list for the subsequent process. For example, when a
packet has finished being translated from token-bus proto-

147

INTERFACING LOCAL AREA NETWORKS

col to Ethernet, the pointers for thosc message pages arc
removed from the “translate token-bus™ list and added to
the packet list awaiting transmission on the Ethernet.

Initializing the gateway manager

When the gateway manager is initialized, it links all the
pointers to the frce page list. Then, it allocates one page to
cach network receiver and sends each nctwork interface
controller an ALLOCATE-RECEIVE-PAGE (ARP) com-
mand. The command is sent by placing the ARP command
code and the allocated page address on the interprocessor
bus to the desired controller and generating an interrupt
request.

When interrupted. the network controller prepares its
MAD (8X360) with the reccived page address and awaits an
incoming message. As a message addressed to the gateway
is detected, the controller begins filling the designated
buffer page and immediately requests another page to use
in case the first one fills up. The network controller sends a
REQUEST-RECEIVE-PAGE (RRP) interrupt to the gate-
way manager, which responds by sending another ARP
command with a new page address. Each page allocated to
that receiver is added to the receive Ethernet list or to the
receive token-bus list.

Should a page become filled during an incoming message.
the network controller is interrupted by its MAD. The MAD
is then reloaded so that the incoming message begins to fill
the new buffcr page. At this time, another RRP interrupt is
issued to sct up for the next page.

When an incoming message terminates. the network
controller sends a RECEIVE-MESSAGE-COMPLETE inter-
rupt with the length of the last buffer page on the inter-
processor bus. The gateway manager responds by trans-
ferring all page pointers associated with the completed

ACKNOWLEDGEMENT

This article originally appeared in the February issue of
Computer Design, copyright 1984, PennWell Publishing Co.;
permission to reprint is gratefully acknowledged.

message from the rcceive list and links them onto the
appropriate translate list. A flag is then set to notify the
operating system kernel to execute the protocol translation
routines.

For basic media-translation operation, where only the
data-link ficlds of the packet arc altered, the network con-
trollers are set up to leave sufficient padding at the be-
ginning of cach packet so that translation can be performed
in place (i.e.. without copying the message data to another
buffer location). However, if additional higher level proto-
col translation routines require message copying. another
pointer list (for each network) could be added to kecp
track of the intermediate pages.

After the message is translated, the associated pointers
are transferred to the transmit list for the opposite network.
A TRANSMIT-PAGE command with the first page address
is sent to the network controller. The MAC logic is armed
and awaits the appropriate conditions on the network
medium to begin (or attempt to begin) transmission of the
outgoing message.

Similar to the receiving process, whenever the network
controller begins to transmit a new page of the outgoing
message, it sends a REQUEST-TRANSMIT-PAGE (RTP)
interrupt to the gateway manager so that it can continuc to
transmit when the current page becomes cxhausted. The
gatcway manager responds to RTP interrupts with TRANS-
MIT-PAGE commands.

Upon completion of a packet transmission. the network
controller sends a TRANSMIT-MESSAGE-COMPLETL: in-
terrupt that lets the gatcway manager return all page
pointers associated with the completed message back to the
frce page list. thereby making them available for new in-
coming messages. Thus, communications between different
local area networks is assured through a gateway configura-
tion that has LSI circuits and sophisticated software.

148 ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

HCMOS - fast but cool logic ICs

J. EXALTO

Our PC54/74HC/HCT high-specd CMOS (HCMOS) family
of logic ICs have the short propagation delays (high speed).
formerly only attainable with TTL logic elements, com-
bined with the much lower quiescent power dissipation
which is an inherent feature of CMOS circuits. Furthermore,
PCS54/74 circuits with an HCT suffix also have TTL input
switching levels. operate from a 5V £10% supply. and are
pin-compatible with the most popular LSTTL circuits
which they are intended to replace.

For LSTTL circuits operating below about |0 MHz. the
most significant part of the total power dissipation is the
quicscent power dissipation due to the many bipolar
transistors that continuously conduct. With HCMOS circuits
however. the converse is true because quiescent power
dissipation is only due to leakage currents through reverse-
biased junctions and is so low that it’s practically negligible
compared with the frequency-dependent dynamic power
dissipation.

Since the logic functions in most systems only change
state during brief periods, the average system frequency is
between one or two orders of magnitude lower than the
system clock frequency and the ICs therefore only draw
quiescent current for most of the time. This means that
replacing LSTTL circuits with equivalent HCT circuits.
with their much lower quiescent power dissipation, results
in a very significant reduction of overall system power
dissipation without loss of opcrating speed.

However, total system power dissipation, is the sum of
both the quiescent and the dynamic power dissipation of all
the ICs and must be determined and minimised during
system design. For LSTTL. wherc the quiescent power

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

dissipation is the most significant contributor to the total
power dissipation, the total power dissipation can be simply
derived from the product of Ve and Icc given in the data
sheets. For HCMOS circuits however. the dynamic power
dissipation which is the most significant part of the total
power dissipation is influenced by circuit design. It can't be
simply read from the data sheets but must be calculated
from the supply voltage, average switching frequency, load
capacitance, internal capacitances of the IC. and transient
switching currents.

This article explains how our method of specifying
HCMOS devices in the data sheets makes it very simple to
calculate the quiescent. dynamic and total power dissipa-
tion of HCMOS logic circuits.

QUIESCENT POWER DISSIPATION

Quiescent power is dissipated by a device when it is not
switching and V| = Vc or ground. Figure 1(a) will be used
to illustrate this power dissipation in HCMOS devices. In
the quiescent state, either the PMOS or the NMOS transistor
is fully off, and, in theory, no direct MOS transistor channel
path exists between Vcc and ground. In practice however,
thermally generated minority charge-carriers, which are
present in all reverse-biased diode junctions, allow a very
small leakage current to flow between Ve and ground.
This quiescent supply current (Icc) is specified in the
published data.

159

EUROM - a single-chip colour c.r.t. controller

R. E. F. BUGG

To meet the requirements of CEPT, including the level of

the A4 reference model terminal*, we now have available a
new single-chip integrated c.r.t. controller type SAAS350
(known as EUROM) to supplement our already cxtensive
and successful range of Prestel and Télétel compatihle
microcircuits. The SAAS350 is a 40-pin NMOS IC which
not only mecets all the requirements for the CEPT A4
terminal but also offers a host of additional features that
will be appreciated by designers of other types of terminals
such as those used for personal computers. Typical of these
additional features are 80 characters per row option (colour),
multi-page memory, full-field DRCS to allow full-screen
colour graphics, broadcast sync, on-screen status row. scrial
(stack) and parallel attribute storage. cursor and smooth
scroll. Nevertheless, as shown in Fig.1, only minimal hard-
ware is required to construct an inexpensive terminal: in the
simplest configuration, just a microcontroller and 4 Khytes
of memory (2 Kbytes for page memory and 2 Kbytes for
DRCS).
The main fcatures of EUROM are:

o 40/80 character by 1-10-25 row display.
e 512 alphanumeric or graphical characters on-chip.
e Dynamically Redefinable Character Set (DRCS).

o Intertaces with 8/16-bit microprocessors with optional
direct memory access.

e On-hip scroll map eliminates the nced for massive data
transfer when scrolling.

e On-chip colour map RAM, and three gamma-corrected
D/A converters which generate RGB outputs. compen-
sated for c.r.t. non-linearity.

* see facing pancl.

166

e Mcmory interface capable of supporting multi-page
terminals. EUROM can access up to 128 Kbytes of
display memory.

e Row 25 may be used for local status messages.

e Zoom to allow the height of any group of rows to be
increased for improved legibility.

e Programmable cursor.
e On-chip timing with composite sync output.

e Three synchronisation modes:

Stand-alone — using an external 6 MHz crystal with on-
chip oscillator. This would be used, for example, in
stand-alone terminals.

Simple slave externally synchronised from a source of
text such as a teletext IC or another EUROM.
Phase-locked slave allows synchronisation of the text
with video displays. i.e. VCR/VLP video with text
overlay (picture in text) as might be used. for example,
in the travel industry.

Thesc features, together with the range of attributes defined
by the CEPT, give the information provider extensive
cditorial flexibility. In particular. the dynamically re-
definable character set (DRCS)** is a powerful tool which
allows each pixel of a character cell to be individually set to
permit almost unlimited expansion of the character reper-
toirc and the display of more complex alphabets (Cyrillic,
Arabic, Katakana, etc.). simple pictures. company logos.
and other symbols (Fig.2).

** sce pancl on page 171,

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

EUROM CRT CONTROLLER

and Background or Screen colours) on the tv picture. It is
compatible with the Box function used in the basic alpha-
mosaic teletext service. If the basic frame begins in text
mode, the attribute provides a window by setting the
screen colour to transparent at the character positions where
it applies, so that the underlying tv picture is visible at
pixels that are not obscured by foreground or background
colours.

White button

Various attributes and combinations of attributes can cause
on-screen data to bc obscured — double height/double
width, conceal. foreground and background colours the
same. etc. It is a requirement of Ref.2 that this effect can
be negated by a user function, colloquially known as the
‘white button’, which sets all the attributes to their default
values without affecting the display memory contents. This
function is implemented in EUROM by a microcontroller-
defined register bit which is active in Stack, Explicit Fill,
and 80 Characters/Row modes.

EUROM ALSO HAS FEATURES NOT SPECIFIED
BY THE CEPT STANDARD

Explicit Fill

In Explicit Fill mode. the page memory is not stack coded,
and no processing is carried out during the Row Buffer Fill
operation. Data from the memory is transferred dircctly to
the row buffer. Since there is then an explicit representation
of all the attributes at every character location, there is no
limit to the number of attribute-changes on a given row.
However, this mode requires a larger amount of external
RAM (6Kbytes/page including DRCS memory). Also,
enlarged characters are not checked. so the rules concerning
the size attributes must be implemented in software.

80-characters/row

The 80-character mode is also an explicit fill mode without
stack coding. No additional circuitry is required: the row
buffer is effectively rearranged as eighty 16-bit words, each
containing 8 character bits. 3 foreground colour bits,
3 background colour bits. 1 underline bit and 1 flash bit.
Dot data is fetched from external memory in the same way
that DRCS data is retrieved. All characters are displayed as
a 6 x 10 dot matrix, with both 1 and 2 bits/dot modes
available. In the 1 bit/dot mode, the external dot memory
need only be eight bits wide. When using 10 lines/row, 204
different character matrices may be stored in a 2K8 memory.

The flash mode incorporates colour table flash. For
maximum flexibility of display, the foreground and back-
ground colours are applied to different areas of the colour
map.

172

Full-field DRCS

For alphagcometric and similar applications,abit-mapdisplay
is desirable, where each pixel on the screcen corresponds to
a location in the memory. EUROM implements this in-
directly by expanding the DRCS character repertoire so
that the entire defined display area can be covered with
fully random data.

One chapter (1K16) of DRCS memory can contain data
for 51 6 x 10 x 4 (6 pixels wide. 10 pixels high. 4 bits per
pixel) characters, sufficient for two complete character
columns. If after these two columns have been scanned, the
DRCS chapter is incremented to a new arca of memory. a
further two columns can be covered with different random
data.

This method of using 20 contiguous chapters of display
memory and incrementing the DRCS chapter latch in syn-
chronism with the horizontal scan forms the basis of the
full-field DRCS mode. All DRCS modes, on-chip ROM-
based characters, and attributcs are still available.

If, for example. a less memory-intensive DRCS mode,
such as 12x10x 1, is desired, then the necessary 10
chapters can be addressed by omitting the lcast signiticant
chapter bit (A11) from the memory address.

MICROPROCESSOR AND RAM INTERFACE
Three types of data transfer take place at the bus interface:
e EUROM fetches data from the display memory

e The microprocessor reads from, or writes to. EUROM’s
internal register map

e The microprocessor accesses the display memory.

EUROM access to display memory

EUROM accesses the external display memory via a 16-bit
multiplexed address and data bus with a 500 ns cycle time.
Figure 6 shows a rudimentary RAM interface circuit and
bus timing diagram. When EUROM accesscs the display
memory, its Address Strobe signal AS flags the bus cycle
and writes the address into the ‘373 latches. The display
RAMs, shown in Fig.9 as two 8-bit blocks, are enabled with
Upper Data Strobe, UDS, and Lower Data Strobe, LDS,
respectively. (EUROM never actually fetches a single byte
from memory; UDS and LDS are always asserted together
to fetch a 16-bit word.) The Read/Write control signal,
R/W is included for completeness although EUROM only
reads the display memory.

Although the EUROM data bus is 16 bits wide, the data
fetched is often considered to exist in terms of bytes and so
the byte addressing convention is important. The standard
adopted is that of the 68000 microprocessor where the
even-numbered bytes exist on the left or upper (most
significant) part of the bus, as shown in Fig.7. The word
addresses are numerically the same as the upper byte they
contain -- there are no odd-numbered word addresses.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

Backup support gives VMEbus powerful
multiprocessing architecture

CRAIG MACKENNA. RICK MAIN and JOHN BLACK*

Advances in microprocessor design have had a dramatic
effect on system performance. As densities have climbed
and clocking frequencies incrcased, designers have been
drawn toward implementing multiprocessor systems to take
full advantage of computing resources. But the delays
associated with shared memory in a multiprocessing environ-
ment have limited system performance. To overcome the
accessing bottleneck. designers have opted for the 32-bit-bus
architecture with multiple paths between boards. The VME-
bus with its recently added supplementary buses is an
excellent candidate for use by these designers.

The VME specification (a joint effort of Mostck, Moto-
rola, and Signetics/Philips) now defines three separate buses:
the VMEbus. the VMXbus, and the VMSbus. Each may be
used independently of the others or all three may be used
to produce a highly capable multiprocessor system archi-
tecture. The VMEbus provides parallel non-multiplexed 8-
and 16-bit data and 16- and 24-bit addressing paths on a
single connector. It can be increased to full 32-bit data and
addressing by using part of a second card connector. The
seven interrupt lines and four arbitration lines can be con-
figured according to design requirements.

The VMXbus uses the balance of the second connector
to provide another parallel path for data transfer and
addressing. Unlike the other two buses, the VMSbus uses
message frames on a self-arbitrating serial bus to pass
messages among functional modules within a backplane or
in separate card racks. Together, these three buses can be
combined to maximize multiprocessor throughput.

Figure 1 shows the VMEbus, VMXbus, and VMSbus in a
typical multiprocessor configuration. Global resources such
as hard disks or local-network interfaces can be accessed
over the VMEbus. Dedicated resources such as memory,

* Motorola Inc. Tempe, Arizona.

178

terminals, and data-acquisition devices can interface with
the VMXbus. The VMSbus provides the critical message
passing and shared resource arbitration between processors.

The VMEbus provides the global data path and has a
backplane that allows up to 20 master and slave boards to
cxchange data at speeds up to 40 megabytes per sccond.
But even with these high data rates. it is not desirable for
all the central processing units on the VMEbus to fetch all
their instructions over the global bus. Today’s pipelined
CPU architectures can drive any bus at near 100% capacity,
so getting the best performance with current memory sizes
often requires that each CPU be provided with its own
private memory bus, the role filled by the VMXbus.

The VMXbus extends the local bus from the processor
board to several adjacent card slots where the processor can
access additional memory without the arbitration overhead
typically encountered over the global VMEbus. It permits a
processor board to access random-access memory at spceds
in excess of 48 megabytes/s. RAM can also be accessed by
one direct-memory-access controller on each VMXbus. Thus
a functional module such as a high-speed graphics controller
can share RAM with the processor board. Dual-ported
memory boards can interface with both the VMXbus and
VMEbus.

In addition to the type of data and program transfer
usually associated with microcomputer activity, multiple-
processor systems require another type of information
transfer, often called message routing. The VMSbus handles
the special message routing. traffic of a multiprocessor
system. In tightly coupled multiprocessor systems, such as
the backplane of the VMEbus, the processors typically share
an address space and therefore can pass large amounts of
information to one another through their shared memory.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

MASTERS AND SLAVES

At most, six boards, occupying six adjacent P2 slots. can be
simultaneously attached to one VMXbus. Cards may be
designated primary master, secondary master, and slave. A
VMXbus must include at least one primary master and one
slave. The primary master is usually a CPU that requires
more high-speed local memory than can be accommodated
on its own board. The primary master controls the VMXbus
and manages the secondary master’s access to slaves, as well.

To use the VMXbus most effectively, the primary master
initiates a bus cycle and places lower address and control
signals on the bus before deciding whether the data transfer
will take place on the VMXbus or on the VMEbus or will
use on-board memory. Before the upper address has been
multiplexed onto the bus, the master may decide to abort
the VMXbus cycle (called a withdrawn cycle) and instead
access on-board or VMEbus resources. If the master does
complete the VMXbus cycle, it benefits from the advanced
use of the address and control signals.

Secondary master

An optional secondary master can access the slave memory
with slightly greater latency times. Slave memory is con-
trolled by the primary master, so the secondary master
must first request the use of the VMXbus and receive the
grant from the primary master before it is allowed to access
a slave. Designating another master as secondary reduces
bus-arbitration requirements.

The slaves contain the expansion memory for use by the
primary or secondary master. Given the addressing and
data-path widths of the VMXbus, it is possible to address
16 million bytes of memory on the slave cards as bytes.
words, and longwords.

The transfer timing of the VMXbus fosters close coop-
cration between masters and slave memory by using both
advanced acknowledgement and late data-error timing
schemes. Anticipating that the data on the bus will be
valid. an acknowledge may be asserted before all checking
is completed to counteract the acknowledge overhead in
typical CPUs. A data-error signal (DERR*) may follow the
acknowledge signal (ACK*) if an error is discovered by the
error-detection circuitry. To ensure compatibility between
all VMXbus modules, every slave must support ACK*to-
data-valid and SCK*-to-DERR* times of less than a nano-
second.

To improve internal efficiency, a slave uses a technique
similar to that employed by the master to improve its
VMXbus efficiency. If the time taken to transfer from
slave to the master is significant (125 ns) a slave will pass
the lower address information through to on-board cir-
cuitry (the row address strobe of a dynamic RAM) as soon
as VMXbus lower address strobe is asserted. If the upper
address is asserted. the RAM can respond quickly because
it only needs to strobe the column address; if the cycle is
withdrawn. no harm is done.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

BACKUP SUPPORT FOR VMEbus

ATTRIBUTES OF THE VMSbus

The VMSbus provides the event message routing required in
both tightly and loosely coupled multiprocessing environ-
ments. It also provides a path for transferring the packets of
longer messages in a loosely coupled system and can be an
efficient alternative to the VMEbus. Under certain condi-
tions, it is useful in configuring a fault-tolerant system, and
furnishes such functions as intelligent semaphores, broad-
casting, and simultaneous polling.

In a typical VMEbus backplane environment, the VMS-
bus has a data rate of 3,2 Mbits/s, but the clock rate can
be adjusted if the bus length exceeds S0cm or if the
signal path is particularly prone to reflective ringing. To
allow for just this type of implementation. the VMSbus’s
serial protocol includes more error checking and resynchro-
nization provisions than the VMEbus backplane environ-
ment requires.

Another accommodation to designers who want to im-
plement the VMSbus outside the VMEbus environment is
found in the content and length of message frames. In
tightly coupled systems, processors share memory, and the
VMSbus frame need contain only the address of the data or
parameter block in the shared memory. Restricting the
length of VMSbus messages in this way minimizes the
access and latency times for very urgent messages. In a
loosely coupled system without shared memory. processors
can switch 32 bytes of packaged data per frame.

The VMSbus also lends itself to building fault tolerance
into the VME system architecture by providing redundancy
in the fault-isolation path. When scveral processors ob-
serving each other’s actions register a fault on a given
board, the faulty board should be either reset or discon-
nected from the backplane. If the fault disables the system
bus, however, then an alternative route must be used to
disconnect it. The VMSbus represents an alternative to the
system bus; it can be used to reset or disable a board that
threatens the system bus or, conversely, the system bus can
be used to reset or disable a board that threatens the
VMSbus.

VMSbus signals include a clock line, SERCLK, and a
data line, SERDAT*. SERCLK is driven by a high-current
totem-pole driver at one end of the bus. SERDAT* is an
open-collector. low-true signal. which is both driven and
sampled by serial-bus modules under SERCLK’s control.
This permits several functional modules to place data on
SERDAT* in the same bit time. with the result being the
logical OR of their data.

The SERCLK and SERDAT* waveforms are shown in
Fig.3. SERCLK has an asymmetric waveform with four
transitions per data bit on SERDAT*. This is done so that
the start bit that begins each message frame can be disting-
uished from Is that occur within frames and Os that occur
within and between frames.

A VMSbus message frame always begins with a start bit,
followed by a 25-bit header subframe. These first 26 bits

181

Le contraste de deux architectures: 68000 contre iAPX 286

En comparant I'architecture du 68000 a celle d'un autre micro-
processeur 16 bits trés évolué (I'iAPX 286), cet article démontre
que le 68000 est I'un des microprocesseurs les plus puissants et les
plus polyvalents qui soient. Le 68000 se distingue notamment par
ses registres 32 bits reellement umversels, ses possﬂmhtes de traite-
ment de données et de mémoire virtuelle, son jeu d’instructions
révolutionnaire, et sa souplesse qui autorise de nombreux systémes
de gestion de la mémoire.

Connexion de différents réseaux urbains

Deux réseaux urbains différents, I’'un un Ethernet CSMA/CD, ’autre
fondé sur une méthode d’ abord de type ‘a jeton”, peuvent commu-
niquer par une voie d’accés constituce par des contrdleurs d’inter-
face pour les deux réseaux, une mémoire tampon pour les messages
et un contrdleur de gestion. Les deux contrdleurs d’interface et le
controleur de gestion peuvent étre réalisés a partir des mémes
circuits LSI: le microcontroleur bipolaire 8X305, lc sélecteur
d’adresses en mémoire 8X360, le contrdleur d'interruption 8X310
et la mémoire RAM bipolaire ultra-rapide 8X350.

Le capteur de pression monolithique KP100A

Le capteur de pression monolithique KP100A cst une jauge anéroide
en snhcmm dans laquelle le mouvement du dmphragme est detecté
par une série de jauges d’extensometrie plezorcsmtlves implantées
dans le diaphragme, dans la configuration d’un pont de Wheatstone.
Le dxsposmf possede une caractéristique linéaire de grande stabilite.
Il peut étre utilisé, par exemple, dans des manocontacts, des alti-
métres, des bzuometres et des systémes de commande pour véhicules
automobiles.

Nouvelle technologie d’encapsulation par implosion pour faire face
a’explosion de la demande de diodes

Les diodes a encapsulation par implosion — diodes en boitier de verre
massif — obtenues d’un nouveau procédé par implosion de verre —
présentent de nombreux avantages par rapport aux diodes classiques
sous perle de verre. Elles ont, en outrc une tension directe plus
faible, un boitier plus petit et de forme bicn plus réguliére. Elles
autorisent donc des densités d’assemblage bien plus élevées sur les
circuits imprimés et elles sont bien adaptées a I'emploi avec des
equlpements dassemblage automatique. De plus, les diodes ‘“‘im-
plosion™ sont tout aussi robustes et fiables que les diodes “perle de
verre”,

Remarques sur la dissipation de puissance des circuits intégrés logi-
ques HCMOS

Les circuits intégrés logiques ultra-rapides dc notre famille CMOS
(HCMOS) associent la grande rapidité des circuits TTL-LS a la faible
dissipation de puissance des familles CMOS standard. Toutefois, la
dissipation statique ou au repos des circuits TTL est bicn plus élevée
que la dissipation dynamique, et exactement l'inverse pour les
circuits HCMOS, cc qui peut étre une source d’erreurs lors des
calculs de dissipation de puissance. Pour y rcmédier, cet article
explique les divers facteurs qui contribuent a la dissipation dynami-
que de puissance des circuits HCMOS.

Un nouveau contrdleur de visualisation EUROM répond largement
aux recommandations pour le vidéotex

Il est possible, a I'aide du contrdleur de visualisation monopuce,
appelé EUROM, de réaliser un terminal vidéotex qui surpasse les
recommandations CEPT les plus recentes, tout en occupant une
superficie minimale et en utilisant un minimum de composants
périphériques.

Des moyens de support donnent au bus VME une puissante archi-
tecture de multitraitement

Le bus VME posséde la capacité nécessaire pour le transfert de don-
nées et I'adressage en 32 bits. Un puissant systéme de multitraite-
ment peut étre realisé en utilisant le bus VME pour I'acheminement
global des données, des bus VMX pour la connexion de sources
spécialisces tel les que mémoire, terminaux et dispositifs d’acquisi-
tion, et un bus VMS pour le passage des messages critiques, et
I a:bltrage des sources partagées entre processeurs.

Des redresseurs a diodes épitaxiales compatibles avec les commuta-
teurs rapides actuels

Les diodes épitaxiales ultra-rapides les plus récentes ont des tempsde
commutation comparables i ceux des commutateurs actifs modernes.
La valeur de VR%M a pu étre portee a 800 V par des améliorations
de conception. Un contrdle rigoureux en fabrication assure des
pertes minimales a I'etat conducteur. Les temps de récupération
inverses s’échelonnent de 25 ns pour une valeur VRRM de 200V 3
100 ns pour 800 V.

ELECTRONIC COMPONENTS AND APPLICATIONS, VOL.6 NO.3, 1984

Un contraste arquitectonico — 68.000 respecto al iAPX 286

Comparando la arquitectura del 68.000 con otras arquitecturas
avanzadas de microprocesador de 16 bits (el iAPX 286), este articulo
muestra por qué el 68.000 es uno de los microprocesadores dispo-
nibles mas versitil y de mayor potencia. Las areas donde sobresale
el 68.000 son en sus auténticos registros de aphcacnon general de
32 bits, su capacidad de memoria virtual y manejo de datos, su
revolucionario juego de instrucciones y su flexibilidad que permite
una amplia eleccion de memoria gobierno.

Interconexion de diferentes redes de area local

Dos redes de drea local, una Ethernet CSMA/CD y otra basada en un
metodo de acceso de paso con prenda, se pueden comunicar mediante
una via con pucrta que consta de controladores de interconexion
para ambas redes, una memoria intermedia de mensaje y un contro-
lador de gobierno. Ambos controladores de interconexion y el con-
trolador de gobierno pucden producirse a partir de chips LSI iden-
ticos: el microcontrolador bipolar 8X305, director de direccién de
memoria, el procesador de control interrupcién 8X310 y la memoria
bipolar RAM de alta velocidad.

Sensor monolitico de presion KP100A

El sensor monolitico de presion KP100A es un indicador de presién
aneroide en el cual se detecta el movimiento de un diafragma
mediante una seric de indicadores de esfuerzos piezoresistivos im-
plantados en el dlafragma en una configuracion de puente de Wheat-
stonc. Tienc caracteristicas lineales, altamente estables. El disposi-
tivo se puede usar, por ejemplo, en conmutadores de presion,
altimetros, barémetros y sistemas de control de automévil.

Nueva tecnologia de implosion hace explosion en la demanda de
diodos

Los diodos de implosion — diodos encapsulados en vidrio sélido,
producidos mediante un nuevo proceso de implosion — tienen muchas
ventajas sobre los diodos perla de cristal convencionales. Porejemplo,
tienen una tensiéon directa mds baja, y son mds pequenos y bastante
mis regulares cn forma. A51 pues, son ideales para scr usados con
equipos de montaje automatico. Ademis, los diodos de implosion
son tan robustos como sus equivalentes de perla de cristal y su
fiabilidad cs por lo menos igual de alta.

Considcraciones de disipacion de potencia para circuitos integrados
16gicos HCMOS

Nuestra familia CMOS (HCMOS) de circuitos integrados logicos
combina la alta velocidad de los circuitos LSTTL con la baja disiga-
cién de potencia de las otras familias CMOS bicn conocidas. Si
embargo, en los circuitos TTL la disipacién de potencia en reposo o
estatica es mucho mayor que la disipacion de potencia dindmica.
En los circuitos HCMOS ocurre exactamente lo contrario y esto
puede ser motivo de confusidn al hacer los calculos de disipacion de
potencia. Este articulo disipa la confusion explicando los diversos
factores que contribuyen a la disipacion de potencia dindmica de los
circuitos HCMOS.

Un nuevo controlador CTR supera los requisitos cept para Videotex

Usando un nuecvo controlador CRT de un chip, conocido como
LEUROM, cs posible construir un terminal de videotex que supere
los requisitos de la mas reciente especificacion cept a la vez que
utiliza un minimo de componentes periféricos y area de la placa.

El soporte de base da al bus VME una potente arquitectura de
multiprocesador

Direccionamicnto de 32 bits. Puede obtenerse un potente sistema de
multiproceso usando el bus VME para el manejo global de datos, el
bus VMX para el acoplamineto a recursos cspecx’ﬁcos tales como
memoria, terminales, . 'y el bus VMS para el envio de mensajes
criticos y arbitraje de recursos compartidos entre procesadores.

Diodo epitaxial — rectificador compatible con los conmutadores
rapidos actuales

Los dltimos diodos epitaxiales ultra rapidos son comparables en
velocidad de conmutacién con los modernos conmutadores activos
rapidos. El disefio mejorado ha incrementado la VRrM 2 800 V y el
cuidadoso control de produccién asegura unas pérdidas minimas en
estado de conduccidén. El margen de tiempos de recuperacion in-
versa se extiende desde 25 ns con una VRryM de 200 V a 100 ns a
800 V.

191

	Electronic components & applications

	Contents

	B. VERNOOIJ

	THE REGISTER SET

	VIRTUAL MEMORY

	Virtual memory facilities of the 68000 family

	Demand paging

	DATA TYPES AND OPERATIONS

	Bit manipulation

	Indexed and direct addressing

	Program counter relative addressing

	INSTRUCTION SET

	String manipulation

	Branches and program jumps

	Memory-to-memory arithmetic

	The iAPX 286 single accumulator

	FAMILY COMPATIBILITY

	68000 family compatibility

	iAPX 286 compatibility

	MEMORY MANAGEMENT

	Smalltalk or graphics strings

	Dynamic storage areas and sophisticated software systems

	Excessive descriptor overhead in native mode

	REFERENCE

	JEFF SELTZER and NASEER SIDDIQUE

	DESIGN CONSIDERATIONS

	CONTROLLING THE NETWORK INTERFACE

	THE GATEWAY MANAGER

	Initializing the gateway manager

	ACKNOWLEDGEMENT

	GERD KEITEL

	PIEZORESISTIVE STRAIN GAUGES IN THE KPI00A

	KP100A MANUFACTURE

	CHARACTERISTICS AND PERFORMANCE

	Temperature compensation

	CONTROL CIRCUITRY

	External control circuitry for the KP100A

	GRAHAM HINE

	IMPLOSION PROCESS SIMPLIFIES PRODUCTION AND CUTS COSTS

	600C

	25‘C

	ALL THE ADVANTAGES OF GLASS-BEAD DIODES AND MORE . . .

	Surface-mounted assembly

	A wide range of technologies for a wide range of applications

	A NEW DEVICE WITH A PROVEN TRACK RECORD

	J. EXALTO

	QUIESCENT POWER DISSIPATION

	Calculating HC quiescent power dissipation

	Calculating HCT quiescent power dissipation

	Load capacitance

	DYNAMIC POWER DISSIPATION

	Internal capacitance

	Switching transient currents

	Total dynamic power dissipation

	CALCULATING TOTAL POWER DISSIPATION FOR HC AND HCT CIRCUITS

	POWER DISSIPATION IN OSCILLATORS AND ONE-SHOTS

	POWER DISSIPATION COMPARISON BETWEEN HCMOS. LSTTL AND ALSTTL

	INFLUENCE OF HCMOS ICs ON APPLICATIONS

	R. E. F. BUGG

	EUROM ARCHITECTURE SIMPLIFIES HARDWARE CONFIGURATION (Fig.3)

	o ft ■

	Colour map and D/A converters

	Cursor

	DISPLAY ATTRIBUTES FOR EACH DISPLAYED CHARACTER

	Foreground and background colour

	Screen colour

	Flash

	Character size

	Lining

	Conceal

	Invert

	Box/Window

	White button

	EUROM ALSO HAS FEATURES NOT SPECIFIED BY THE CEPT STANDARD

	Explicit Fill

	80-characters/row

	Full-field DRCS

	MICROPROCESSOR AND RAM INTERFACE

	EUROM access to display memory

	Warning time

	Microprocessor access to EUROM’s register map

	8-bit microprocessors

	Disconnected systems

	Synchronisation

	REFERENCES

	CRAIG MACKENNA, RICK MAIN and JOHN BLACK*

	THE VMEbus

	VMEbus INTERRUPT STRUCTURE

	MASTERS AND SLAVES

	Secondary master

	ATTRIBUTES OF THE VMSbus

	CONTROLLING THE BUS

	VMSbus CONFIGURATIONS

	POLLING OPTIONS

	ACKNOWLEDGEMENT

	ARTHUR WOODWORTH

	CIRCUIT CONSIDERATIONS

	Current commutation from rectifier to switch

	Current commutation from switch to rectifier

	ULTRA-FAST EPLRECTIFIERS

	Abstracts

	Authors

	MBLE	«se»

