NEW SCOTT STUDIO WITH COMPLETE INSTALLATION AND SERVICING FACILITIES OPENS IN LOS ANGELES, CALIFORNIA

IT IS impossible to show in printed literature the high quality of the parts and precision workmanship of a Scott Custom Built Receiver, and equally difficult, without actually listening to one, to obtain any adequate idea of their outstanding performance, both in the reception of programs from distant foreign stations in all parts of the world, and their fine tone.

In December, I opened a Salon in Rockefeller Center, New York City, to give prospective purchasers in the East an opportunity to actually hear the superior kind of performance a Scott Receiver can give, and also to obtain some idea of the beauty, the fine woods and finish, and the craftsmanship of the distinctive consoles designed for Scott Receivers.

Shortly after the announcement of the opening of the New York Studio, came many requests from prospective purchasers on the Pacific Coast, urging me to open a similar Salon out there, so that they, too, could have an opportunity of seeing and hearing the receiver before placing their order. So in February, I journeyed out to Los Angeles, and was fortunate in securing a building so ideally suitable, that it might have been built especially for a Scott Studio and Service Laboratory.

The building was originally designed some six years ago for a manufacturer of custom built lighting fixtures, as a combination home, display rooms for his hand wrought creations, and a workshop in the rear where he fabricated his fixtures.

The five rooms on the ground floor are being transformed into what I believe will be the most interesting and beautiful radio display rooms ever designed, while the top floor will be occupied by some of my Los Angeles staff, (for this is a direct branch of my laboratory, not an agency). In the rear the long room, 50 x 30 feet, previously used as a work-shop, has been converted into our service laboratory, and is completely equipped with the latest testing and checking instruments.

The studio is very centrally located at 115 North Robertson Boulevard, just three blocks from Wilshire Boulevard, one block from Beverly Boulevard, two blocks from Hollywood Boulevard and practically any home in Hollywood, Beverly Hills, Bel Air, Westwood and Santa Monica can be reached within 30 minutes.

Next month I hope to have space to show some interior views of the Los Angeles Studio.
ONE OF THE WORLD’S MOST COMPLETE AND POWERFUL RADIO RECEIVERS SPECIALLY DESIGNED AND BUILT FOR MR. JOHN J. MITCHELL—SANTA BARBARA, CALIFORNIA

In such a location, far removed from all types of man-made static and interference, where unlimited space is available to erect the proper type of antenna, this marvelously sensitive and powerful receiver will bring in programs from the far-off distant stations of the world, with a power and volume that will be a never-ending source of thrill.

But great as the thrill will be in the reception of foreign stations, still greater will be the thrill when listening to the unbelievable clarity and pureness of its reproduction. Three separate audio channels are incorporated in this receiver. The first channel reproduces the low frequencies from 30 to 125 cycles, which are heard through a large specially designed 18" speaker. The second channel is used for the medium frequencies from 100 to 6,000 cycles, which are heard through two special 12" speakers. The third channel is used for the high frequencies from 3,000 to 16,000 cycles which are heard through two special high frequency speakers which will be noted directly below the large speakers. The combined amplifiers have an undistorted power output of over 100 watts.

These special audio amplifiers and speakers, together with the recently developed SCOTT PROGRAM VOLUME RANGE EXPANDER, not only provide the ultimate in musical and vocal reproduction from programs heard over the air from powerful broadcast stations, but will also reproduce phonograph records with a fidelity that has rarely been heard outside the studio where the records were recorded.

Many times programs are heard over the air which we regret we only have the opportunity of hearing the one time. Should such a program be heard in the Mitchell home, a flick of a switch will instantly make a record of it, for a professional type recorder is a part of the installation. The fidelity of the records made by this equipment are so fine that when played back they are as good, and in many cases, better than the regular commercial type records.

Again, should they desire it, they can make a record of the voices of their friends, or send a spoken message of their own voices to friends in other parts of the world, for the recording is so good that when the records are played back the voice of the speaker is instantly recognized.

Another section of the installation which will undoubtedly give many hours of fun and entertainment to the many friends of Mr. and Mrs. Mitchell, is the high grade ribbon microphone, for a performance can be given in one room and heard in another room where the speaker, console and receiver are installed, just exactly as if it were coming over the air from the broadcasting station.

Mr. Mitchell has kindly given me permission to display his receiver and equipment for a few days in the Los Angeles Studio before it is permanently installed in his home in the Santa Ynez Valley.
The 48 Tube Scott High Fidelity Receiver Designed for Mr. John J. Mitchell, Santa Barbara, Calif.

The Five Special Speakers—Automatic Record Changer—Recording Equipment and Ribbon Microphone
WHEN SHOULD A RADIO MANUFACTURER BRING OUT A NEW MODEL?

There is nothing more irritating or annoying than to buy either a radio receiver or an automobile, then a few months later have the manufacturer come out with a "new model," which he tells the world is so much finer and better, and that it makes the model you bought just a short time before obsolete.

There are two reasons why you feel annoyed:

First—Because you think you now have something that is obsolete and out of date. Second—Because immediately the "new model" comes out, the value of your investment has depreciated to probably one-half or even one-quarter its value before the "new model" was announced.

When Should a Radio Manufacturer Bring Out a New Model?

The question is—"WHEN should either a radio manufacturer or an automobile manufacturer bring out a new model?" The logical answer to that question is—When some new discovery is made, or a new design developed that makes the performance and efficiency very much superior to that incorporated in the model the manufacturer is currently selling. Then, and then only, should a new model be introduced.

Why New Models Are Brought Out Each Year by Production Manufacturers

Unfortunately, today with high speed production and the constant necessity for large scale manufacturers in both the radio and automobile fields to keep sales volume at the highest possible point to absorb fixed overhead and pay dividends, the policy of only bringing out a new model when something radically different and better has been developed, is not possible.

For many years it has been the policy of the larger radio and automobile manufacturers to bring out called "new models" at least once a year, usually in the Fall, whether there are any new developments to justify it or not. In most cases, the principal difference between the old and new models is the design of the console or automobile body.

Scott Receivers Constantly Improved—But No Yearly Models

Scott Receivers have always been of very advanced design, and the principal reason for this, is that when new discoveries are made in the Laboratory, or ways are found of improving the performance and efficiency of my current receiver, these refinements are immediately incorporated into the design of the receiver. This is possible because Scott Receivers are custom built to order only, in limited numbers, so that I can supervise and check the construction of every one. There is no stock of sets carried on hand at any time, in contrast to the large production manufacturer who builds thousands of receivers in advance and carries a large stock in warehouses in various parts of the country. If for any reason his sales drop, then the surplus stock must be disposed of, with the result you often find that the set for which you paid perhaps $150.00, is advertised a few weeks later as a bargain for only $79.50—while they last.

In all the eleven years I have been building Scott Receivers, it has never been necessary to hold a sale to dispose of a surplus stock of receivers that had been built but could not be sold, because there never has been such a surplus—in fact it requires from two to three weeks after you place your order for a Scott Receiver before you receive delivery.

However, when some worth while new discovery is made, or a new efficient circuit is developed that requires more tubes, coils or condensers to make use of them, and the current receiver has to be entirely redesigned to incorporate these new developments, then, and then only, do I bring out a new model.

First Scott A.C. Allwave Receiver Used Plug-in Coils and Two Dials

To prove this point, I shall briefly, and as simply as possible, trace the reason for the bringing out of each new model I have produced since 1930. In that year, we designed our first complete A. C. operated Allwave Receiver, which efficiently covered all visible bands from 15 to 550 meters. This model used plug-in coils to cover the various wave bands, and two dials for tuning. This receiver proved so remarkably efficient, that between June 1931 and June 1932, it established one of the greatest verified World's Records ever made, by receiving EVERY PROGRAM (EXCEPT THREE) FROM TWO FOREIGN STATIONS, BOTH OVER 9,000 MILES DISTANT, DURING THE TWELVE CONSECUTIVE MONTHS, a record which even today—four years later—has never been equalled by any other radio receiver. During the plug-in coils each time it was desired to tune in on a different wave band was inconvenient, and at the same time one had to be a fairly expert tuner to bring in stations with the two tuning dials to manipulate.

Scott Allwave DeLuxe Model Eliminated Plug-in Coils and Tuned with a Single Dial

But constant research in our Experimental Laboratory ultimately developed a circuit by which it was possible to eliminate the plug-in coils and substitute a switching arrangement and at the same time we developed a circuit by which it was possible to track the R.F. with the oscillator so perfectly that R.F. and oscillator tuning condensers could be ganged together and tuned with a single dial, so eliminating the extra dial. To incorporate the new switching arrangement and single dial control, it was necessary to completely redesign the receiver with the result that about May, 1932, I announced the SCOTT ALLWAVE DELUXE, a 12 tube model which efficiently covered all wave lengths from 15 to 550 meters without the use of plug-in coils and tuned all stations with a single dial.

During the following eighteen months, we discovered various ways to improve the performance of this receiver, notably the transmission of a new Noise Suppressor circuit which later was copied in various forms by other radio manufacturers. I also discovered that the performance and efficiency of the DELUXE model could be increased by tuning the antenna, so an auxiliary antenna tuner was supplied.

But in 1933, Automatic Volume Control began to emerge from the Laboratory stage, the new 2A3 tubes were introduced enabling greater power output and finer tone to be secured, and we had developed a circuit that eliminated the external antenna tuner and tuned the antenna automatically. At the same time, a Visual Tuning System had been developed which enabled stations to be tuned in with greater ease and accuracy. All of these developments could not possibly be incorporated in the DELUXE model, for an extra tube was required for the A.V.C. System, an extra tube to operate the Visual Tuner, more space was required on the chassis for the extra coils used in connection with the Automatic Tuning of the antenna, and heavier power transformers were needed to supply the increased current required to drive the new 2A3 power tubes.

To give Scott Owners all of these new developments, it was necessary to design a completely new receiver, and so the SCOTT ALLWAVE FIFTEEN model was introduced with all of these new developments efficiently engineered into it.

How Problem of Securing Perfect Tone Quality Was Solved

The performance of this model created a sensation in the radio world, and even today I know of no production type receiver that can equal its performance. But in my Laboratory, research work goes on constantly, for Scott Owners demand the ultimate in radio performance. To secure this instant tune quality, it must be possible to broaden out, the receiver sufficiently to pass all frequencies up to 16,000 cycles. Unfortunately, it is impossible to have a receiver in an extremely selective condition, and at the same time, have perfect tone quality, or vice-versa. The answer to this problem, of course, was a receiver in which the Selectivity could be varied, so that when it was desired to tune for weak distant stations on channels adjacent to powerful locals, it could be made sufficiently sharp to cut through, while when it was desired to listen to a fine program coming from a local or nearby station with the best possible tone quality, the receiver could be broadened out to secure the highest fidelity.

Continuously Variable Selectivity and New Noise Suppressor System Perfection in Scott Research Laboratories

After over a year's constant work on this problem in the Research Laboratory, we at last developed a system which enabled the Selectivity to be continuously varied from as sharp as 2 Kc. to as broad as 16 Kc. At the same time a new Noise Suppressor circuit had been developed which allowed the Sensitivity of the receiver to be adjusted to whatever noise level was prevalent at the time the receiver was being used, yet did not affect the A.V.C. action, enabling the set to be operated at the maximum usable Sensitivity possible in a particular location, and insuring the quietest possible reception under all receiving conditions.
New Audio Amplifier Designed to Reproduce All Audible Frequencies

With the old system of fixed Selectivity, High Fidelity reproduction or the reproduction of frequencies up to 16,000 cycles was impossible, as audio amplifiers used in radio receivers up to this time reproduced nothing above 6,000 cycles. To reach full advantage to be taken of the newly developed Variable Selectivity System, an entirely new audio system was designed, with a response to all audible frequencies, without appreciable attenuation, from 30 to 16,000 cycles, which scientific laboratory tests proved was the audible frequency range of the human ear, and absolutely necessary if natural reproduction of all sounds and tones.

However, when the new Variable Selectivity-Fidelity System and the new High Fidelity Amplifier was finally developed, it was found that no speaker, except special laboratory models, was available which would efficiently reproduce above 8,000 cycles, so special loudspeakers were drawn, and a new High Frequency speaker was especially designed and built for this work.

Undistorted Power Output Increased From 15 to 35 Watts

With all the higher and lower tones being reproduced more perfectly than ever before, it was found necessary to increase the undistorted power output from 15 to 35 watts, so that every "peak" or loud passage could be reproduced without distortion. While the audio level of the 23 tube model was not exceeded six watts most of the time, there are often dozens of passages in the course of a single program where the "peaks" or loud passages may rise for short periods to as high as 30 or 40 watts, and it is necessary to have a reserve power of about five times the normal level of six watts if distortion is to be eliminated during these loud passages or sudden "peaks" in musical or speech reproduction. Accordingly, a power amplifier was designed which increased the power output from 15 watts Class A, to 35 watts Class A, or 50 watts Class A.B.

23 Tube Model Incorporates All Latest Developments

It will be immediately realized, when the design of the 23 tube model is carefully studied, that it was quite impossible to incorporate in the Scott Allwave Fifteen the new Continuously Variable Selectivity System—The New Noise Suppressor Circuit—Complete coverage of the Audible Frequency Range from 30 to 16,000 cycles—The larger Power Amplifier to increase the Power Output from 15 to 35 watts Class A or 50 watts Class B, and the specially designed High Frequency speaker, so it was necessary, in order to give Scott Owners the benefits if these developments, to announce a new model—the 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER.

Scott Program Volume Range Expander Makes the 23 Tube Scott Full Range High Fidelity Model Radio's Most Modern Receiver

Constant research has been carried on since the 23 tube model was introduced. Many minor improvements have been made which are now incorporated in the receiver. The only proved major radio development since the 23 tube model was introduced has been the Scott Program Volume Range Expander, which was first announced in December, and has now been developed into a compact unit which can be connected in a few minutes to any Scott 23 tube model receiver.

It would have been easy to have made the development of the Scott Program Volume Range Expander an excuse for bringing out a new model. This was not done, however, for a number of good reasons. First, many hundreds of sets would have been sold to radio enthusiasts who are anxious to have the "last word." However, my business has been built up over a period of years by the recommendation of enthusiastic Scott Owners who know just how superior the performance of the Scott receiver is to the ordinary radio. As I have said, I do not believe in bringing out a new model receiver unless some worth while development is perfected which cannot be incorporated in my current model. The Scott Program Volume Range Expander is a development that is easily adapted to my present receiver, so—no new model is necessary to give Scott Owners the benefit of it.

I believe I have one of the most modern radio Research Laboratories in the world, and am thoroughly familiar with what radio developments are in the air, both through my licensing agreements with the Radio Corporation of America, the Hazeltine Corporation, and my contact with radio engineers in all parts of this country and abroad. As the present time, I know of no new development which will improve the performance of the 23 tube receiver; it is not already incorporated in it, and believe its design to be at least a year ahead of any other receiver being sold today. My policy is the same today as it has been for many years, which will be for the next eleven—Constant Improvement, But No Yearly Models, and a guarantee to every purchaser of a Scott Receiver, that he has the very last word in modern radio receiver design, at the time his set is delivered to him.

Why the New 23 Tube Scott Full Range High Fidelity Model Is World's Finest Radio Receiver

Below you will find a list of the principal features and performance characteristics incorporated in the 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER, and I invite you to compare my points with any other radio receiver or with any of the so-called "new models" that may be announced during the coming months. I believe you will find in the 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER, not only every advanced radio receiver development of proved value, but you will find all of these features developed to a higher degree of efficiency and perfection than they are in any other receiver with which the 23 tube model can be compared, and in addition a number of features for which Scott Research Laboratories which will not be found in any other radio receiver except a Custom Built Scott.

Harline Selectivity from as Sharp as 2 Kc. to as Wide as 16 Kc.

The degree of Selectivity possessed by a receiver determines its ability to tune through powerful stations. The ability to separate signals of distant signals. The highly developed Continuously Variable Selectivity-Fidelity Control System developed in the Scott Research Laboratory, controls the tuning of each I.F. stage and provides any desired degree of Selectivity from 2 Kc. up to 16 Kc. This new feature enables you to make the receiver so selective that it will separate the special high frequency stations which you have never been able to receive up to this time with any degree of satisfaction on account of interference from stations adjacent close by. By simply considering the purchase of a "New model," ask for a definite written or printed guarantee of the Selectivity claimed, then compare it with the guaranteed Selectivity of the 23 tube model—2 Kc. to 16 Kc.

High Usable Sensitivity

The very advanced design, and the high degree of efficiency developed in the Antenna Control, the Antenna Tuner, the R.F. Amplifier, the Quiet High Gain Converter and Four Stage I.F. Amplifier, combined with an especially efficient Dual A.V.C. system, makes possible the reception, at good volume of programs from distant foreign stations thousands of miles away. The average Sensitivity from 1530 Kc. to 540 Kc. at a 2 to 1 signal to noise ratio is 40 of a microvolt. When the purchase of a "new model" demand a written or printed guarantee of the Selectivity claimed, then compare it with the Sensitivity above that is guaranteed you when you purchase a Scott.

Complete Frequency Range from 30 to 16,000 Cycles Reproduced

If a receiver is to give natural reproduction and all sounds and tones, it must necessarily have a frequency range to cover the entire audible tonal range of the human ear, not simply half of it. (Ordinary High Fidelity receivers only go up to 7,500 cycles.) The 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER is, we believe, the only receiver available today with an overall response which is capable of reproducing from the loud speakers (not merely the audio amplifier) all frequencies from 30 to 16,000 cycles. This extremely WIDE range is provided to enable the full fidelity of the special High Fidelity broadcasting stations now on the air to be fully enjoyed. When considering the purchase of a "new model" demand a written or printed guarantee of the OVERALL FIDELITY of the receiver (be sure that you are not given the audio amplifier frequency, for there is quite a difference), then compare it with the guaranteed 30 to 16,000 cycles OVERALL FIDELITY of a Scott.

The Bass Control

To secure the most perfect tonal reproduction under all conditions, a Bass Control is provided which enables the bass tones to be weakened or strengthened, so making possible the adjustment of the tone quality to a richness or roundness to music that is often lacking. The Scott Bass Control is unique in that its adjustment does not in any way affect the reproduction of the higher frequencies. If the "new model" you are considering is equipped with a Bass Control, turn on the Bass Control full on, as they do when the Bass Control is turned on. If the Bass Control affects the reproduction of the higher frequencies, then you do not have a true Bass Control at all, but simply a control that cut out the frequencies, so giving an impression of more bass.
The Auditorium type speaker used in the 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER has been designed especially for High Fidelity reproduction, and represents a new degree of perfection in dynamic speaker design. If the "new model" you are considering is equipped with only one speaker, and no provision is made for the use of a high frequency speaker, then you can be certain that no matter what the advertised range from 30 to 16,000 cycles.

The Undistorted Power Output
One of the important features of the Power Amplifier of the 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER is its 35 watts Class A, or 50 watts Class AB output, or 30 watts Class B. Although the undistorted output is large, it is under perfect control at all times, and any degree of volume can be secured from the minimum whisper to full Auditorium volume. If the "new model" you are considering has a lower undistorted output than 30 watts Class A, a fair question to ask is—How does the receiver reproduce the "peaks" without distortion, when a program is being listened to as good volume?

Noise Suppressor Control System
A new Noise Suppressor Control system which has been developed by the Scott Research Laboratories for use in the 23 tube model, and enables the maximum Sensitivity of the receiver to be adjusted or when the switch is on a channel adjacent to a local. The major part of the work of keeping the volume at a proper level is done by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.

The Wave Changing Switch
All bands are covered by means of an exclusive Remote Control Switch perfected in the Scott Radio Laboratories, and its design is protected by Scott patents. Double wiping contacts of solid German Silver are automatically cleaned with a felt pad at each rotation of the switch, insuring perfect contact at all times. The wave changer mechanism is one of the most important units in the whole receiver. If contacts become corroded the receiver stops working. The wave change switch used in the Scott Receiver has been developed and perfected to the point where we believe it will operate perfectly for years without attention.

Phonograph Reproduction
Special connections are provided on every channel for a B.O. Cylinder Phonograph, or a Record Player, and enables the maximum Sensitivity of the receiver to be adjusted for a perfect range from the faintest whisper to full volume without distortion, when a program is being listened to as good volume.

Special Speakers Cover Complete Frequency Range
The 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER does not bring to your own home, that a Scott Receiver will give but a very inadequate idea of the fine quality, precision workmanship, and quality assurance which you are arriving at your home, that a Scott Receiver will give you. The Scott Research Laboratories is used in the 23 tube model. A separate R.F. Automatic Volume Control allows the R.F. and converter circuits to operate at maximum efficiency at all times, preventing overload of the R.F. and converter tubes, reducing noise and distortion to the minimum. The undistorted output of the receiver is controlled by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.

The Intermediate Frequency Amplifier
Four stages are used in the I.F. Amplifier System. These are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local. The INTERMEDIATE FREQUENCY AMPLIFIER is a special dual A.V.C. system developed by the Scott Research Laboratories is used in the 23 tube model. A separate R.F. Automatic Volume Control allows the R.F. and converter circuits to operate at maximum efficiency at all times, preventing overload of the R.F. and converter tubes, reducing noise and distortion to the minimum. The undistorted output of the receiver is controlled by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.

The Automatic Volume Control System
A special dual A.V.C. System developed by the Scott Research Laboratories is used in the 23 tube model. A separate R.F. Automatic Volume Control allows the R.F. and converter circuits to operate at maximum efficiency at all times, preventing overload of the R.F. and converter tubes, reducing noise and distortion to the minimum. The undistorted output of the receiver is controlled by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.

The Wave Changing Switch
All bands are covered by means of an exclusive Remote Control Switch perfected in the Scott Radio Laboratories, and its design is protected by Scott patents. Double wiping contacts of solid German Silver are automatically cleaned with a felt pad at each rotation of the switch, insuring perfect contact at all times. The wave changer mechanism is one of the most important units in the whole receiver. If contacts become corroded the receiver stops working. The wave change switch used in the Scott Receiver has been developed and perfected to the point where we believe it will operate perfectly for years without attention.

Phonograph Reproduction
Special connections are provided on every channel for a B.O. Cylinder Phonograph, or a Record Player, and enables the maximum Sensitivity of the receiver to be adjusted for a perfect range from the faintest whisper to full volume without distortion, when a program is being listened to as good volume.

Special Speakers Cover Complete Frequency Range
The 23 Tube SCOTT FULL RANGE HIGH FIDELITY RECEIVER does not bring to your own home, that a Scott Receiver will give but a very inadequate idea of the fine quality, precision workmanship, and quality assurance which you are arriving at your home, that a Scott Receiver will give you. The Scott Research Laboratories is used in the 23 tube model. A separate R.F. Automatic Volume Control allows the R.F. and converter circuits to operate at maximum efficiency at all times, preventing overload of the R.F. and converter tubes, reducing noise and distortion to the minimum. The undistorted output of the receiver is controlled by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.

The Intermediate Frequency Amplifier
Four stages are used in the I.F. Amplifier System. These are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local. The INTERMEDIATE FREQUENCY AMPLIFIER is a special dual A.V.C. system developed by the Scott Research Laboratories is used in the 23 tube model. A separate R.F. Automatic Volume Control allows the R.F. and converter circuits to operate at maximum efficiency at all times, preventing overload of the R.F. and converter tubes, reducing noise and distortion to the minimum. The undistorted output of the receiver is controlled by the Automatic Volume Control which controls the entire I.F. amplifier. If the "new model" you are considering is equipped with A.V.C. in the I.F. amplifier only, Ask to be shown what means are used to prevent overloading and distortion when receiver is tuned to a powerful local or a distant station in a channel adjacent to a powerful local.
The 23 Tube Scott Full Range High Fidelity Receiver

The 35 Watt Class A Scott Power Amplifier

The Triple Speaker System

The Scott Program Volume Range Expander
Scott Radio Installed in News-Week’s Editorial Rooms in Rockefeller Center — In the Heart of New York City — Brings Editors of News-Week — Direct — Last Minute News From England and Germany

IN JANUARY—1935

“The Saar plebiscite put News-Week to a real test of speed, which it met successfully, as usual. The problem: Election returns from the Saar wouldn’t be available by short-wave from the League of Nations station at Geneva until 3 A. M. Tuesday, two hours after editorial deadline. Dayton offered to hold a page open until 4 A. M., and still catch the early mails.

“An afternoon test of the Big SCOTT RECEIVER, installed in the editorial room, brought London in clear as a bell; Geneva was silent. Then returns began to crackle out of Saarbruecken to Geneva in Swedish, baffling nosey listeners-in, but News-Week listeners checked the returns by districts. By three o’clock teletypes were delivering the final figures received over the air to the press room 700 miles away. Early deliveries caught the regular 11 o’clock morning mail out of Dayton: just part of the day’s work.”

IN FEBRUARY—1936

February 4, 1936.

How Scott Receiver Brought News of King’s Death Just Three Minutes Before Press Deadline

“So close to the news I can hear it tick.” Thus a visitor once described his sensations on a visit to News-Week’s Editorial Rooms. On Monday evening, January 20, just three staccato ‘ticks’ stood between News-Week’s press-deadline and the announcement of a new ruler of the British Empire. And News-Week won—by three minutes—a race against time to preserve its record as the fastest example of publishing in the news-magazine field.

“King George V lay dying. That, all the world knew. But no one, not even his physicians, could foretell the fateful hour. And by Monday evening News-Week must make its editorial choice: an issue in which the monarch’s illness stood first among the news-stories of the world; or, in the event of his death, a comprehensive account of the accession of his son, the Prince of Wales. Even the probable designation of the latter was in doubt: would he rule as Edward VIII, as he had signed his name while Prince, or as David I, as his intimates knew him?

“Two issues of News-Week were prepared. In one, George V still lived and ruled, but through Council of State; in the other Edward VIII was proclaimed King-Emperor. Two sets of cover plates awaited the flash. On one, a recent photograph of the aging ruler; on the other, the new King mounted, in his colorful uniform as a colonel in the Household Guards. One set of these plates must start on their grind on the tick of 7:15, or miss the early mails.

“Seven o’clock came without word from the anxious bedside group at Sandringham. Editorial eyes were glued to the mass of news unreeling from the tele-type printers — news that mattered so little now, when a world awaited just one brief word. Ears bent over the POWERFUL SCOTT RADIO, tuned in on Daventry’s short wave.

“At last, it came. The King died at 11:55 midnight; the word reached London at 12:10, or 7:10 New York time. Two minutes later, at 7:12, the bulletin raced over the wires from the teletype room. Just three minutes to spare! In exactly five minutes after an open wire to Dayton relayed the news, the presses 700 miles away began to roar: EDWARD VIII was proclaimed on News-Week’s cover. Within the hour the body of the magazine began its race against the clock. Thirty hours later copies arrived in New York with full details of the King’s death, his life, his career; two full pages of pictures illustrating his reign.

“And so, once again THE SCOTT RECEIVER installed in News-Week’s Editorial Rooms played its part in enabling News-Week’s Editors to place on the news stand, a few hours after it happened, the most complete and comprehensive story of this world important event published by any weekly magazine in America.”

In every part of U. S. A. and in 146 foreign countries, Scott Allwave Receivers are now in daily use, bringing to their owners regular reception from broadcast stations thousands of miles distant. For many years Scott custom built radio receivers have been making long distance reception records that have never been equalled by any other radio receiver.