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DC CIRCUIT CALCULATIONS 

One of the very first things that 
is explained to anyone learning elec-
tronics is Ohm's Law. You will re-
member that this is the basic law 
covering the relations of voltage, 
current, and resistance in electrical 
circuits. In addition to being one of 
the most basic of the fundamentals 
of electronics, it is also one of the 
most important rules or laws. You 
will find that no matter how far you 
go in the study of industrial elec-
tronics, radio communications, or 
electronics engineering, this law 
which states that "the current flow-
ing in a circuit is equal to the ap-
plied voltage divided by the resist-
ance" will be used and applied over 
and over again. 

At the same time that you learned 
about Ohm's Law, you also learned 
that it could be expressed much more 
simply by using the symbols for cur-
rent, voltage, and resistance in the 
formula: I --- E ÷ R. This is the math-
ematical expression of the law using 

symbols instead of words and is 
called a formula. Most of the rules 
or laws of electronics, or of any 
other science for that matter, are 
expressed with formulas for two 
reasons. One reason is that these 
simple mathematical expressions 
of the laws are much easier to 
memorize. The other reason is that 
they automatically provide a work-
able relationship of the laws for use 
in calculations. Thus, once you have 
learned the formulas, you not only 
have learned the rules, but you also 
have them expressed properly for 
use in circuit calculations. 

One of the best things about for-
mulas is that they can be arranged 
to find a particular quantity that we 
want to know. For example, the for-
mula for Ohm's Law, I = E ÷- R, is 
used when we know the voltage and 
resistance and want to find the cur-
rent in a circuit. We also learned 
that another way of saying the same 
thing is to state that E = I x R. We 

1 



usually simplify this expression 
still further by dropping the x sign 
and writing the formula simply 
E = IR. This way of expressing the 
basic formula is used when we know 
the current and resistance and want 
to find the voltage. 
By still another arrangement, we 

can state the formula so we can 
easily find the resistance by saying 
R = E ÷ I. We use the formula in this 
form when we know the voltage and 
current in the circuit and want to 
find the resistance. All three of these 
statements of Ohm's Law say ex-
actly the same thing. They are 
simply arranged in different ways 
for convenience in making circuit 
calculations. 

If you do not already know the 
three forms of Ohm's Law, stop 
right now and memorize them. You 
will save yourself a great deal of 
time in the long run, and in addition, 
knowing these formulas and under-
standing the way in which voltage, 
current, and resistance in a circuit 
are related will help you to under-
stand electronic circuits. The three 
forms of Ohm's Law are: 

I = E ÷ R 
E = IR 
R = E ÷ I 

Actually the three forms of Ohm's 
Law are really only one formula with 
the letters manipulated around the 
equals sign. We are able to change 
these formulas around to suit our 
purposes by applying some very 
basic rules of mathematics. In elec-
tronics, we must learn quite a few 
formulas to perform certain calcu-
lations so that we can understand how 
the circuits work and what may be 
wrong with them. Of course, the for-
mulas can be arranged depending on 
what we want to find out arid what we 

already know. Obviously, if we have 
to learn not only all the formulas 
but all the different forms of the 
formulas as well, we would have to 
do a lot of memorizing. 

This would be impractical be-
cause we can easily learn a few of 
the basic laws of mathematics and 
then change the formulas to suit our 
own purposes. By doing this, we need 
to learn only one form of each for-
mula, plus the rules for changes. In 
this way, mathematics becomes a 
useful tool, both in studying, and 
working in the electronics field. You 
will learn how to rearrange formulas 
later, so that then all you will have 
to do is remember one form of 
Ohm's Law and you will be able to 
get the other two. Right now, how-
ever, to save time, be sure that you 
know all three forms. 

These lessons in mathematics 
may be just review for you. How-
ever, don't skip over them lightly. 
They are just as important as any 
other lessons in your course. You 
must study them carefully and send 
in answers to the questions in the 
back of the book. The only difference 
between these mathematic lessons 
and your regular study lessons is 
the order in which you will do them. 
The math lessons should be studied 
immediately after the regular les-
son text with the same number. For 
example, the first lesson should be 
studied after you finish lesson five. 
We will break up our study of 

mathematics in this way for two rea-
sons. The first and most important 
reason is that these math lessons are 
different from any you have ever 
seen. Most math textbooks teach 
general mathematics so that the 
learning can be applied to any sub-
ject. Here, we are primarily in-
terested in mathematics from the 
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standpoint of usefulness in elec-
tronics. In other words, we are in-
terested in its application to a spe-
cific purpose. Therefore, we will 
take up the subjects in the order that 
you will need them and will use 
practical examples from the text that 
you have already studied. In this way 
you will be sure to learn the mathe-
matics that you need, and you will 
also learn how to use it in practical 
examples. 
The other reason that we break it 

up into several books spaced among 
the technical lessons is that we don 't 
want to take you away from your 
technical progress long enough to 
study the math lessons all at once. 
By spacing the math lessons, you 
will be able to keep up with your 
technical lessons too. In this first 
lesson, we will do a number of prob-

lems in electronics which involve 
only addition, subtraction, multipli-
cation and division. We will then 
start a detailed review of arithmetic 
starting with fractions and decimals. 
Examples and problems include cir-
cuit applications to help you learn 
how to make calculations in dc cir-
cuits. It may seem rather simple, 
however, you should read it all to be 
sure you remember it. Also, we have 
put in a few short cuts which you 
probably did learn in school and pre-
sented some of the material in a 
special way to help you later in your 
more advanced studies. 

If mathematics has always both-
ered you before, don't be discour-
aged by the fact that you have to 
study it now. We present it very 
simply, and having a practical use 
for it makes it easier to understand. 

Simple Arithmetic Review 

Before going ahead with fractions 
and decimals, we want to point out 
here that the basic arithmetic oper-
ations of addition, subtraction, mul-
tiplication and division are impor-
tant in electronics as they are in 
every other science. We assume that 
you are able to perform these basic 
operations; if you cannot, stop and 
get a book on basic arithmetic from 
your library. If you know how to add, 
subtract, multiply and divide, but 
have become rusty because you have 
not had occasion to perform these 
basic arithmetic operations, take 
some time now to do a little prac-
ticing. You will be surprised how 
quickly you will be able to pick up 
speed again after a little practice. 

ADDITION 

You might think that you will not 
have much occasion to use such a 
basic arithmetic operation as addi-
tion. However, this is not the case. 
As an example, in a series circuit, 
where two resistances are connected 
in series, the total resistance is 
equal to the sum of the two resistors. 
This means that if you have two 100-
ohm resistors in series, to get the 
total resistance you add the resist-
ance of the two resistors, 100 + 100 
= 200. If you have a 100-ohm resis-
tor in series with a 25-ohm resis-
tor, to find the total resistance you 
add 100 + 25 = 125. If you have a 
number of resistors connected in 
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Fig. 1. A simple series circuit. 

the total resistance between termi-
nals A and B you write the resistors 
down as shown below and add. 

R3 

series, such as shown in the series 
circuit in Fig. 1, to get the total re-
sistance between terminals A and B 
you add the resistance of the indi-
vidual resistors. Suppose in this cir-
cuit that R1 = 100 ohms, R2 = 250 
ohms, R3 = 150 ohms, R4 = 175 ohms, 
and R5 = 250 ohms. To find the total 
resistance between terminals A and 
B you write down the value of the 
individual resistors as shown and 
add. 

100 
250 
150 
175 
250 
925 

The preceding example is a simple 
example of addition in electronics to 
find the total resistance in a series 
circuit. Sometimes you have to be 
somewhat careful because the value 
of the resistors may vary quite 
widely and then it is important to get 
the digits arranged in the proper col-
umns. In other words, you simply 
have to make sure that you arrange 
your work neatly so that the addition 
can be performed easily. As a sec-
ond example, suppose the resistors 
have the following values: R = 5 
ohms, R2 = 75 ohms, R3 = 6 ohms, 
R4 = 125, R5 = 32 ohms. To add the 
resistance of these resistors to get 

5 
75 
6 

125 
32 

243 

SUBTRACTION 

There are occasions when you will 
have to subtract. In Fig. 2 we have 
shown a series circuit where the 
total resistance of the circuit is 197 
ohms. The value of four of the resis-
tors is known, but the value of the 
fifth resistance is unknown. 

I 6.(1, 

9,11, 3 4.11, 

Fig. 2. A series circuit where one resist-

ance is unknown. 

You will remember that in a series 
circuit the total resistance is equal 
to the sum of the individual resist-
ances. Therefore, the sum of the re-
sistances must be 197 ohms. Since 
we know the value of four of the re-
sistances we can find what their re-
sistance is and then subtract this 
one value from 197 ohms to get the 
value of the unknown resistance. 
To solve this problem we first 

write down the value of the known 
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I= 2 AMPS 

Fig. 3. An example where the formula E=IR 
is used to find the voltage. 

resistors and add as shown: 

16 
100 
34 
9 

159 

Thus the total resistance of the 
four known resistors is 159 ohms. 
Since the total resistance is 197 
ohms we can find the resistance of 
the unknown resistor by subtracting 
159 from 197. We set the problem 
down as shown below and subtract: 

197 
-159 

38 

MULTIPLICATION AND 

DIVISION 

Simple multiplication and division 
are also important in electronics. 
The various forms of Ohm's Law 
that you memorized demonstrate the 
importance of being able to multiply 
and divide. 
An example of the use of the for-

mula E = IR is shown in Fig. 3. In 
this circuit we know that the resist-
ance is 68 ohms and the current flow-
ing in the circuit is 2 amps and we 
want to find the value of the applied 
voltage. Using the formula E = IR in 
substituting 2 amps for I and 68 ohms 
for R we get: 

E = IR 
E = 2 x 68 
E = 136 volts 

In case you wonder why we used 
this particular form of Ohm's Law, 
the answer is that this is the form 
which is used to find the voltage, 
which is the unknown, when we know 
the value of the current and resist-
ance, which are the known values. 
We have the unknown on one side of 
the equals sign and the two known 
values on the other side of the equals 
sign. 

In the circuit shown in Fig. 4 we 
know the value of the voltage and re-
sistance and want to find the current. 
Therefore, we will use a form of 
Ohm 's Law which places the unknown 
on one side of the equals sign and the 
known values on the other side. This 
means that I must be on one side of 
the equals sign, and E and R on the 
other side. Thus, we use the formula 
I = E ÷ R. Substituting 32 volts for 
E and 16 ohms for R, we can get the 
value of the current: 

I = E R 
I = 32 ÷ 16 
I = 2 amps 

Fig. 5 is an example in which we 
use the remaining form of Ohm's 
Law, R = E ÷ I. Again, in this case 
we have R, which is the unknown 

I = ? 

Fig. 4. An example of the formula I=E,R 
used to find the current. 
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value, on one side of the equals sign, A 
and the two known values E and I on 
the other side. Substituting 26 volts 
for E, and 2 amps for I we get: 

R=E I 
R = 26 ÷ 2 
R = 13 ohms 

Notice that in each of the three 
preceding examples, not only did we 
carry out the mathematical opera-
tions to get a numerical answer, but 
we also gave the answer in its cor-
rect units. For example, in the first 
case, in the circuit shown in Fig. 3, 
where we wanted to find the value of 
the applied voltage, we gave the an-
swer in volts. In the second case, 
where we had to find the current we 
gave the answer in amps. In the third 
case, where we had to find the re-
sistance, we gave the answer in 
ohms. Remember this, it is impor-
tant. You should always indicate the 
units of your answer. If you simply 
give a numerical answer, it has no 
meaning. If you are looking for the 
voltage in the circuit, the answer 
should be given in volts or some 
fraction or multiple of a volt. If you 
are looking for the current in a cir-
cuit then the answer should be given 
in amps or again in some fraction 
or a multiple of an ampere. Simi-
larly, if you are looking for the re-
sistance in a circuit, then the answer 
should be given in ohms or some 

1= 2 AMPS 

Fig. 5. An example of where the formula R = 

E I is used to find the resistance. 

31.11. 9.11 

17 A.. 

19.11 7£1., 2 I,fL 

Fig. 6. Circuit for problem no. 1. 

fraction or multiple of an ohm. 
So far we have shown simple ap-

plications of addition, subtraction, 
multiplication and division in elec-
tronics. The examples were very 
simple, and in all probability you 
can handle problems of this type 
without any trouble. However, just 
to be sure, we have included ten 
practice problems which we have 
called, "Self-Test Questions." Even 
though you may think the problems 
are extremely simple, we urge you 
to do all ten to get practice finding 
the resistance in a circuit and in 
using Ohm's Law. A little practice 
now will help you become so familiar 
with these basic operations that when 
you have more complicated calcula-
tions to perform later, you will see 
that in many cases you're simply 
performing these simple operations 
several times. 
You will find the answers to these 

questions at the back of the lesson 
along with a brief solution of each 
problem. Try to do each problem 
before you look at the answer so you 
will be working on your own. Be sure 
to check your answer and if you have 
made a mistake be sure to find out 
where the mistake is before going 
on. 

SELF-TEST QUESTIONS 

1. Find the total resistances be-
tween terminals A and B in the cir-
cuit shown in Fig. 6. 

6 



2. In the circuit shown in Fig. 7 
the total resistance is 81 ohms. Find 
the resistance of the unknown re- E= 57V — 
sistor R. 

I 4,f1. 8.fl, 

R 2 3-fl, 

Fig. 7. Circuit for problem no. 2. 

3. Find the total resistance be-
tween terminals A and B in the cir-
cuit shown in Fig. 8. 

I2 7J1, 97,f1. 
A 

B 110--W, MA.  
5 9.(1. 

9 Ad 

219.11, 

Fig. 8. Circuit for problem no. 3. 

I=? 

R =19 ,n, 

Fig. 10. Circuit for problem no. 5. 

5. In the circuit shown in Fig. 10, 
the voltage is 57 volts, and the re-
sistance in the circuit is 19 ohms. 
Find the current flowing in the cir-
cuit. 

E= 

I= 3AMPS 

R=21.11, 

Fig. 11. Circuit for problem no. 6. 

6. In the circuit shown in Fig. 11, 
the current flowing is 3 amps and the 
resistance in the circuit is 21 ohms. 
Find the value of the applied voltage. 

4. In the circuit shown in Fig. 9, E =84V —_—_ 
the total resistance between termi-
nals A and B is 823 ohms. Find the 
value of the unknown resistor R. 

8 2 3.11 

B 

216J1, 318 A 

5 6,f1.• R 

Fig. 9. Circuit for problem no. 4. 

I=? 

R=28,f1 

Fig. 12. Circuit fo • problem no. 7. 

7. In the circuit shown in Fig. 12, 
find the current, if the applied volt-
age is 84 volts, and the resistance 
if the circuit is 28 ohms. 

8. In the circuit shown in Fig. 13, 
the applied voltage is 96 volts, and 
the current in the circuit is 4 amps. 
Find the resistance in the circuit. 
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2 AMPS 

I=4AMPS 

Fig. 13. Circuit for problem no. 8. 

9. Find the voltage in the circuit 
shown in Fig. 14, if the current flow-
ing in the circuit is 5 amps, and the 
resistance in the circuit is 17 ohms. 

I = 5 AMPS 

Fig. 14. Circuit for problem no. 9. 

10. In the circuit shown in Fig. 15, 
the applied voltage is 32 volts, and 
the current flowing in the circuit is 
2 amps. If R1 is equal to R2, find 
the value of these two resistors. (We 
have not covered an example exactly 
like this, but here is a chance for 
you to try a problem that is a little 
new on your own. Be sure to give it 
a good try, before looking at the 
solution at the back of the book.) 

2 

Fig. 15. Circuit for problem no. 10. 

RULES OF ORDER 

So far we have done problems in-
volving addition, subtraction, mul-
tiplication and division. These are 
all very basic mathematical opera-
tions which we will use over and 
over again in our study of elec-
tronics. In the preceding problems, 
we have been concerned with just 
one operation at a time. In actual 
practice we will find a need to do 
several, or perhaps all these opera-
tions in order to find an answer to 
these problems. 

While it may not seem at first 
glance that there is anything special 
about this, most of the time there 
will be a definite order in which we 
should do them. For example, take a 
simple problem like "find the value 
of 10 x 5 + 2." Let us look at this 
problem closely. 

If we do the multiplication first 
and then the addition, we get 10 x 
= 50, then we add the 2 and find the 
answer 52. However, if we look at 
the problem and say 5 + 2 = 7 and 
then 7 x 10 we come up with an an-
swer of 70. As you can see, there 
is quite a difference between our 
first answer of 52 and our second 
answer of 70. Thus, the order in 
which we do a problem is important. 

E=100V 

R1=10.11 

R2=40.11 

Fig. 16. Practical circuit where rules of 
order are important. 
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Let us take another more practi-
cal operation that we might find in 
our work in electronics. In the cir-
cuit shown in Fig. 16, we have a volt-
age supply of 100 volts and two re-
sistors. One resistor is 10 ohms and 
the other is 40 ohms. Now the cur-

4 rent in the circuit will be equal to 
this voltage divided by the resistance 
(I = E + R). Let us take the problem 
mathematically and then substitute 
the values in the formula: 

I = E + R 
I = 100 + 10 + 40 

Which operation do we do first? 
We know from our lessons on Ohm's 
Law that we are dealing with a total 
voltage of 100 volts. Therefore, we 
will be finding the total current, and 
to do this we will want to divide the 
total voltage by the total resistance. 
For this reason, we must add the 
two resistances first to get 10 + 40 
= 50 ohms and then divide 100 by 50 
to get a current of 2 amperes. 

We did the problem this way be-
cause we know something about elec-
tronics; Ohm's Law states that total 
current equals total voltage divided 
by total resistance. We also know 
that the total resistance is equal to 
the sum of the resistances in the cir-
cuit. Therefore, in our problem, 
though we might not be aware of it, 
we actually thought this way: 

IT = ET + RT 
RT = R1 + R2 

so we kept the two resistances to-
gether. 

If a person who did not know any-
thing about electronics tried to work 
this problem he might not know the 
importance of keeping the two re-
sistances together. Yet, one of the 

big advantages of using formulas in 
electronics is to express things 
simply so that problems can be 
easily worked out. Therefore, so that 
there will be no misunderstanding 
about the fact that R1 and R2 should 
be kept together, we enclose them 
in parentheses and write them as 
(R 1 + R2). Now the formula becomes: 

IT = E T ÷ (R1 + R2) 

Then we substituted to get: 

IT = 100 ÷ (10 + 40) 
thus, IT = 100 ÷ 50 

= 2 amps 

If someone saw this problem with-
out the parentheses, and he knew 
nothing about electronics, or math, 
other than addition and subtraction, 
multiplication and division, he might 
come up with a different answer. 
For example: 

I = E + R 
I = 100 + 10 + 40 

Then, they might first divide 10 
into 100 and get 10 so that for the 
current they would get 

I = 100 + 10 + 40 = 10 + 40 
= 50 amperes 

From the preceding you can see 
the value of using parentheses, and 
also the need for establishing some 
rules in which the various arithme-
tic operations should be performed. 
These rules are called the rules of 
order and they insure that everyone 
everywhere will always know in what 
order to tackle a problem. The rules 
of order are very easy to learn and 
must always be followed. Always 
start at the left of a problem and 
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work towards the right and do all 
the operations inside the parenthe-
ses first. Next, start at the left again 
and work towards the right and do 
all the multiplication and division in 
the order in which they occur. Then 
go back to the left of the problem 
again and once again work to the 
right doing the addition and subtrac-
tion. 
By following these rules there is 

no possibility of coming up with the 
wrong answer or doing the wrong 
operations at the wrong time. A 
problem such as: 

(6 + 3) x 3 - 81 ÷ 9 + 4 

can have only one answer. We start 
at the left and do the operations en-
closed in the parentheses first. Since 
there is only one parenthesis, the 
first time, working from left to right, 
there is only one operation to per-
form: we add 6 + 3. Thus our prob-
lem becomes: 

(6 + 3) x 3 - 81 ÷ 9 + 4 = 
9 x 3 - 81 ÷ 9 + 4 

Now we start at the left and go 
through from the left to the right 
again doing the multiplication and 
division in the order in which they 
occur. The first multiplication we 
hit is 9 x 3 and this is 27. The next 
operation we must perform is the 
division of 81 by 9; 9 goes into 81, 
9 times. Since there are no other 
multiplications or divisions indi-
cated these are the only operations 
we perform through this time. Thus 
we have: 

9 x 3 - 81 ÷ 9 + 4 = 27 - 9 + 4 

Now we go through the problem 
again, working from the left to the 

right, doing the addition and subtrac-
tion. 

27 - 9 = 18 and adding 4 

to this would give us 22. Thus we 
have 

27 - 9 + 4 = 22 

Sometimes all of the operations 
covered in the preceding example 
are not found in a problem. For ex-
ample in the problem 

8 x 7 + 2 x 4 - 16 x 3 

there are no parentheses and there-
fore we start right in going from 
left to right to do any multiplication 
or division that might be indicated. 
You will notice that in this problem 
there is no division so you simply 
go through doing the indicated mul-
tiplication. 8 x 7 = 56, 2 x 4 = 8 and 
16 x 3 = 48; therefore, our problem 
becomes: 

8 x 7 + 2 x 4 - 16 x 3 = 
56 + 8 - 48 = 16 

The problem might have parenthe-
ses in it, but no multiplication or 
division. As long as the parentheses 
are there, you must perform the op-
erations inside the parentheses. As 
an example, in the problem, 

29 - (17 + 4) + 11 

we must perform the operation 17 
+ 4 which is inside the parentheses 
first. Since 17 + 4 = 21 our prob-
lem becomes: 

29 - (17 + 4)+11=29 - 21 + 11 = 19 

Sometimes we need to do two or 
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more things in a special order. For 
this reason we also use brackets 
E which are really a different kind 
of parentheses to indicate which 
comes first. Thus, we might have a 
problem: 

5 x 300 + 2 x (15 +35)] + 20 - 5 

Here we do the operations within the 
parenthesis, (15 + 35) =50 first, and 
rewrite the bracket operation, re-
placing the (15 + 35) with 50 to get 

5 x 300 + E 2 x 50] +20-5 

then we do the operation inside the 
bracket to get: 

2 x 50 = 100 

Now we rewrite the whole problem, 
placing everything inside the brack-
ets with 100 and leaving the brackets 
out, thus, our problem becomes: 

5 x 300 + 100 + 20 - 5 

By following our rules of order, we 
start at the left and multiply 5 x 300 
to get 1500, and then we divide this 
by 100 to get 15. Now we do our 
addition and subtraction: 15 + 20 - 5 
= 35 - 5 = 30 to find our final an-
swer. 

Since these rules of order are so 
important, let us state them again. 

First we do all the operations within 
the parentheses. Second, if we have 
one parenthesis within another, we 
do the operations inside the inner 
parenthesis first, and then do the 
operations within the outer paren-
thesis. When all the parenthetical 
operations are out of the way, we re-
move the parentheses, replacing the 
data within them with the answer we 
got. Then we rewrite our problem, 
starting at the left and working to-
wards the right, doing all the mul-
tiplication and division in the order 
in which they occur. Then we return 
to the left and work to the right, 
doing the addition and subtraction in 
the order in which they occurred to 
get our answer. 
You are going to run into problems 

in which you will have to perform 
the various operations in the correct 
order to get the correct answer.You 
will run into problems of this type 
in this lesson. Therefore, to get 
some practice doing the various op-
erations in the right order, do the 
following five Self-Test Questions. 
You will find the answers inthe back 
of the book. 

SELF-TE« QUESTIONS 

11. 25 + 16 x 3 - 28 + 7 
12. 5 x (11 - 8) + 3 x (7 - 5) + 2 
13. 4 + (5 +2) x20 - (10 - 6) + (7 - 5) 
14. 3 x 500 +E2 x (28+22)] +25-6 
15. 95 + (22 - 17) - 6 x 2 - 3 + 8 
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Fractions 

In the simple circuit shown in Fig. 
17, we have 100 volts applied to a 
circuit containing a total resistance 
of 100 ohms. This means that we will 
have a current flowing through the 
circuit of 1 ampere and a voltage 
drop across the resistances equal 
to the applied voltage of 100 volts. 
However, in this circuit we do not 
have a single 100-ohm resistor. In-
stead, we have two 50-ohm resistors 
in series, which makes up the total 
resistance of 100 ohms. Therefore, 
our voltage drop of 100 volts does 
not occur as one voltage, it occurs 
as two voltage drops of 50 volts 
across each resistor. In a case like 
this, where we have two equal volt-
age drops of 50 volts that add up to 
a total voltage of 100 volts, we often 
say that each drop of 50 volts is 
equal to one half of the total voltage. 
Just what do we mean when we say 
that we have one half of something? 
First, we mean that the "something," 
in this case 100 volts, is split up 
into parts. Further, since we have 
only two parts and they are equal we 
mean that the whole 100 volts is split 
into two equal parts. Thus, when we 
say one half of one hundred, it is 
like saying one of two equal parts 
of one hundred, or, more simply we 
mean 100 ÷ 2 

Likewise, in a circuit such as the 
one shown in Fig. 18, the total volt-
age drop of 90 volts is split up into 
three equal parts of 30 volts each. 
This is just the same as saying that 
the voltage is split into thirds and 
one drop of 30 volts is equal to one-
third of the total or 90 ÷ 3. 

EI=50V 

R1=5011, 
100V 

DC SUPPLY 
R2= 50SL 

I= 
AMP 

E2=50V 

Fig. 17. One hundred volts divided into two 
equal 7arts or halves. 

This can be written as 
3 

100 ÷ 2 can be written as 100 
2 

Whenever we split anything into 
parts we call the parts fractions. 

Thus,100. a fraction and 0is 
3 

also a fraction. Now these particular 
fractions can easily be worked out 
by performing the actual division so 

100 that is 100 ÷ 2, or 50; and —90 is 
2 3 

90 ÷ 3, or 30. When they are worked 
out like this, 50 and 30 actually be-
come whole numbers in themselves 
because they each represent an indi-
vidual voltage drop. However, when 
we consider them as part of the total 

Ei= 30V 

90v 
DC SUPPLY 

R3 =30,f1, 
•  

E3 = 30V 

E2= 30V 
R2 =30S1, 

Fig. 18. Ninety volts divided equally into 
three parts or thirds. 
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voltage drop, they are both fractional 

parts of something and therefore 
they are also fractions. 

When we want to represent 50 volts 
as some fraction of 100 volts, or 30 
volts as a fraction of 90 volts, we 

would write them as 0 or —30 ' re-
100 90 

spectively. The fraction 0 can be 
100 

written more simply by dividing both 
the top of the fraction 50 and the 
bottom of the fraction 100 by the 
same number. For example, if we 
divide 100 by 50 we get 2 for an an-
swer, and if we divide 50 by 50 we 
get an answer of 1. But placing the 
1 in place of the 50 and the 2 in the 
place of the 100, our fraction be-

1 50 
comes —2' or one-half. Thus — can 

100 

be changed to -i-, or as we say, one-

half, by dividing both the top and the 

bottom of the original fraction by 50. 

In the same way we can write 0 or 
9 

can simply divide both 30 and 90 by 

30. This gives us 30 ÷ 30 = 1 and 
90 + 30 = 3. Then by replacing 30 

with 1 and 90 with 3 we have the 
1 

fraction —3' which we pronounce "one-

third." This fraction-3-and the frac-

tion —1 which we found previously, 
2 

are the simplest forms of the origi-
nal fraction. We call this process of 
changing a fraction to its simplest 
form reducing the fraction. 
Thus, in the circuit in Fig. 17 

either one of the voltage drops can 
be considered several ways. They 
can be considered as one-half of a 
hundred which we write mathemati-

cally as of 100. They can be con-

sidered as 1000 which we can reduce 

to one-half or 1-2 or they can be con-

100 
sidered which is equal to 50. 

2 
Now, these are all just different ways 
of saying the same thing. Likewise, 
any one of the voltage drops in the 
circuit in Fig. 18 can be expressed 
1 „ 30 „ , , 1 90 

' 3— of eu — wnicn equals or 90 —,3 3 

which equals 30. 
We also have many other frac-

tions. In fact, just as there is no 
limit to the largest number we can 
write by using combinations of digits 
from 0 to 9, there is no limit to the 
smallest part of something we can 
write by using the same digits. Just 

as —1 means a whole something di-

vided into two parts and —1 means 
3 

something divided into three parts, 

we can write —1 which means the 
6' 

whole something is divided into six 
equal parts. We can continue in this 

1 
way indefinitely. For example, 6-7 

means one of sixty four parts; —1 
128 

means one of one hundred and 
1  

twenty-eight equal parts and 
2465 

means one of two thousand four hun-
dred and sixty-five equal parts of 
something. 

Notice, however, that a fraction 
by itself does not mean anything 
specific. For example, one half, one 

third,-1 ' or — 1 are fractions, but 
128 2465 

until we say what they are fractions 
of, we do not have any idea to what 
they are equal. One half of 50 volts 
is 25 volts, but as we have already 
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seen one half of 100 volts is 50 volts. 
So a fraction to indicate anything de-
finite must be accompanied by the 
whole something that we are talking 
about. Thus, we always say one-half 
of a gallon, or one-third of a quart, 
1 

(pronounced one, one hundred 128 

twenty-eighth) of an ounce, one-fifth 
of the voltage, etc. 

There are two parts to every frac-
tion: there is the top part written 
above the line which is called the 
numerator, and there is the bottom 
part below the line called the de-
nominator. The number in the nu-
merator always tells us how many 
parts we have, and the number in 

the denominator tells us the size of 
the parts. Just as we can have one 
third of a gallon, it is also possible 

to have two -1's of a gallon which we 
3 
2 

would write —3 of a gallon. The two 

indicates that we have two parts of 

a gallon and the three indicates that 

each part equals —13 of a gallon. 

There are also two kinds of frac-
tions. One kind is called a proper 
fraction and always has a numerator 
that is smaller than the denominator, 

1 1 4 
and —5 are all proper 

128 
fractions because their numerator 
is smaller than the denominator. The 
other kind of fraction is called an 
improper fraction. An improper 
fraction is one in which the numera-
tor is larger than the denominator, 

100 100 755 
such as —50 , —2 , —4 , etc. 

Improper fractions can always be 
converted into whole numbers or 
whole numbers and proper fractions. 
For example, the improper fraction 

100 
—50 becomes 2 if we perform the di-

vision and divide 50 into 100. The 

improper fraction 49- becomes 50 

if we divide 2 into 100. In the im-

proper fraction , when we divide 

4 into 755, it will not go an even 
number of times. It will go une hun-

dred and eighty-eight times with a 
remainder of 3. This means that in 

755 
the improper fraction —4 there are 

one hundred and eighty-eight whole 

parts and three -i-parts. Thus we can 

755 
write the improper fraction —4— 

as 188 1  
4 

Both proper and improper frac-
tions can be added, subtracted, mul-
tiplied and divided just like any whole 
numbers. After all, it is possible to 
have several halves of something, or 

several fifths of something which 
we might want to add or subtract 
from each other. The basic opera-
tions with fractions are much the 
same as with whole numbers, but 
there are certain rules that we must 
follow. In this section of the lesson 
we will learn the rules and see how 
to apply them. 

ADDITION OF FRACTIONS 

In adding fractions, we must re-
member one of the basic rules of any 
addition problem. Only like things 
can be added together. For example, 
we can add six oranges and four 
oranges and say we hadten oranges. 
Similarly, we can add twenty apples 
and nine apples and say we had 
twenty-nine apples. However, we 
could not add six apples and eight 

14 



oranges and say we had fourteen 
oranges or fourteen apples. If we 
want to call the oranges and apples 
pieces of fruit then we could add the 
six and eight and say we had fourteen 
pieces of fruit because here we 
equated them to a common name. 
Similarly, we can add any number 
of volts to any other number of volts 
and get a total number of volts. We 
can add ohms to ohms and amperes 
to amperes, but we cannot add ohms 
to amperes or volts. The same rule 
applies to fractions except that we 
have an additional item of similarity 
to consider. 

The denominators of fractions 
must be alike if we are going to add 
them. For example, one half a gallon 

can be added to another one half of 
a gallon to get a whole gallon. One 
third of a gallon can be added to an-
other one third of a gallon to get two 
thirds of a gallon. Thus, fractions of 
like things with like denominators 
can be added together very simply by 
adding their numerators. Thus: 

1 1 1 + 1 2 
- -   2 2 1 

2 1 2 + 1 3 
+ - - -  3 3 3 3 1 

1 1 1 + 1 2 
- 

3 3 

1 3 4 
7+ '--

12 13 12 + 13 25 
64 + 64 - 64 - 64 

55 67 55 + 67 122 
137 + 137 ' 137 - 137 

Now we have just seen that all 
fractions with like denominators can 

be added together simply by adding 
their numerators. However, frac-
tions with unlike denominators can-
not be added so simply. Before we 
can add fractions with unlike de-
nominators, we must arrange them 
in a way that their denominators are 
all alike. This is called finding the 
lowest common denominator. 
The Common Denominator. 

When we first started our dis-
cussion of fractions, we discovered 
that we could "reduce" a fraction 

50 
such as to a fraction .-by di-

100 2 
viding both the numerator and the 
denominator by the same number. 
In this case, the number was 50 
because with both the numerator and 

denominator of -5-0 divided by 50, we 
100 

1 
get —2. When we did this, we realized 

that either 1-0 or I meant exactly 
100 2 

the same thing. Since either of these 
two ways of writing the fraction is 
correct, the two fractions must be 
equal. Thus, by dividing the numera-
tor and the denominator by the same 
number, we have not changed the 
value of the number. 

If this is true, we must also be 
able to multiply the numerator and 
denominator of a fraction by the 
same number without changing its 

value. 50 times both the numerator 

and denominator of lis 50 x 1 = 50 
2 
50 

and 50 x 2 = 100, or 1.(ci. From this 

we can see that we can either mul-
tiply or divide the numerator and the 
denominator of a fraction by the 
same number without changing the 
value of the fraction. Accordingly, 

1. 
a fraction such as —2 might be written 
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in any one of several ways as follows: 

1 2 2 2 2 = 4 — 
2 

1 3 3 4 4 16 
2 

16 100 _ 1600 
32 x 100 3200 

All these fractions are exactly equal 

to —1 2 because they can all be reduced 

1 
to 7. 

Likewise, we can change a frac-
1 

tion such as —3 to any of the following 

fractions: 

1 3 3 1 2 2 
3 3 9' 3 2 6' 

2 5 10 
w  x = F3, etc. 

Let's see how this will help us in 
adding fractions. Suppose we want to 

add —1 + —1 Since their denominators 
2 3' 

are not alike, we know that we can't 
add them as they are. However, sup-

pose we change-1 tol.which we can 
2 6 

do by multiplying both the numerator 
and denominator by 3. Then, if we 

1 2 
also change r to T which we can do 

by multiplying both numerator and 
denominator by 2, we now have two 
fractions which have the same de-

nominator. They are —3 and —2 and 
6 6 

they can be added together in the 
3 + 2 5 

usual way to get 6 —or—. We have 
6 

1 
changed-2 and-1 to fractions with the 

3 

same denominator so that they can 
be added without changing the values 

3 
of the fractions themselves. --is ex-

actly the same as-1 and-2 is exactly 
2 6 

1 
the same as —3' Added together they 

make —5 or five-sixths. 
6 

When two fractions have the same 
denominator, we say they have a 
common denominator. When we 
change two or more fractions to 
equal fractions having the same 
common denominator so that we can 
add them, we call it finding the com-
mon denominator. Let's try a few 
more examples. For example: 

1 1 4 

This is a very simple problem and 
we can readily see that both 5 and 3 
will go into 15. As a matter of fact, 
15 is the lowest common denomina-
tor of 5 and 3. 5 goes into 15 three 

1 
times and therefore we change —5 to 

a fraction and with 15 as the denomi-
nator we must multiply both the top 

1 3 
and bottom by 3. Thusbecomes ' 

Similarly, 3 goes into 15 five times 
1 

and therefore to change -into a frac-

tion with 15 as the denominator, we 
must multiply both the top of the 
fraction by 5 and the problem be-

5 4 
comes —15' To change-5 into a frac-

tion with 15 as the denominator, we 
again multiply the numerator and the 

denominator by 3 and therefore 4 — 
5 

will become —12 15' Thus our problem 
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becomes: 

3 + 5 + 12 
15 

20 
15 

20 
While —15 is the correct sum of the 

three fractions, it is not the usual 
custom to leave a fraction in the 
form of an improper fraction. We 
normally simplify the fraction. 15 
goes into 20 once with a remainder 
of 5. Therefore, 

20 5 
15 = 115 

Thus, we can say our answer is 1 -5 
15 

However, can be simplified by di-

viding both the numerator and de-
nominator by 5 and this would give 
1 1 

us Therefore our sum is 1-3 3 
If we look back at the original 

problem we can see that this is the 
answer we should expect. Notice that 

the first fraction we have is-1 
5 

4 
and the third one is 7 

4 1 5 . . 
7 + = which is equal 

to 1. Now we add 
1 1 
-to 1 and the answer is 1-3 3 

In this problem it is quite obvious 
that the lowest common denominator 
of 5 and 3 is 15. However, suppose 
that instead of using 15 as the com-
mon denominator we had used 30. 
Both 5 and 3 will go. into 30. This 

will not cause any difficulty; we will 
get exactly the same answer, but we 
will be working with bigger numbers 
because we did not use the lowest 
possible common denominator. 
Using 30 as the common denominator 
the problem becomes: 

1 1 4 
+ + = 

6 + 10 + 24  
30 

40 
30 = 

, 10 
= 

30 

15-1 

Similarly, if we had used 45 as a 
common denominator, once again we 
would get the same answer, but we 
would have to work with larger num-
bers. In this case the problem is, 

1 1 4 
+ + = 

9 + 15 + 36  
45 

60 15 1 
45 = '45 = 13 

In the preceding example it was 
easy to find the lowest common de-
nominator. We were dealing with 
fifths and thirds and we got the low-
est common denominator simply by 
multiplying 5 and 3 together. How-
ever, we cannot always do this and 
get the lowest common denominator. 
Suppose, for example, that you had 
the problem: 
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1 2 

If we simply multiply the two de-
nominators together we will get 
6 x 9 = 54. Therefore, 54 is a com-
mon denominator. Now our problem 
Is: 

9 + 12 _ 
54 

21 _ 7 
54 - 18 

21 
When we get the answer we im-

mediately could see that 3 could be 
divided into both the numerator and 
the denominator and therefore we 

could reduce the fraction to 18 Often 

when you get a fraction that can be 
reduced it is a sign that you did not 
use the lowest common denominator. 
However, as long as you reduce the 
fraction and perform your addition 
correctly, you will come out with the 
same answer as you would have if 
you had used the lowest common de-
nominator. When you can find the 
lowest common denominator, it is 
best to use it, because you will be 
working with smaller numbers and 
there will be less chance of making 
a mistake. 

There is an easy way to find the 
lowest common denominator. To do 
this take the denominators of the 
various fractions and factor them. 
Now you might wonder what a factor 
is. A factor is a number that when 
multiplied by another number gives 
you the original number. For ex-
ample, I x 6 = 6. Therefore, 1 and 6 

are factors of 6. Also 3 x 2 = 6 and 
therefore 3 and 2 are factors of 6. 
We call 3 and 2 prime factors be-
cause they themselves cannot be 
broken down into factors other than 
the number and one. In other words, 
you could say that 2 was equal to 
2 x 1, but there is no other way you 
could factor it. The factor 2 still 
appears in 2 x 1; therefore, 3 and 2 
are prime factors. When we factored 
6 into 6 x 1 we did not factor it into 
prime factors because the 6 could 
be broken down into 3 and 2.There-
fore, we break our denominators 
down into prime factors. The prime 
factors of 6 are 3 x 2 and the prime 
factors of 9 are 3 x 3. Now to find 
the lowest common denominator we 
look for common factors in the two 
denominators. We see immediately 
that we have a 3 in each denominator 
and therefore we write down 3 as 
one of the factors in our lowest com-
mon denominator and then place a 
stroke through the 3 in 3 x2 and one 
3 in 3 x 3. This leavesus two unused 
prime factors: the 2 from the factor-
ing of 6 and one of the 3's from fac-
toring 9. Since these are not com-
mon, but are different numbers, we 
must write both of these down be-
side the first three we set up in de-
termining our lowest common de-
nominator. Therefore, our lowest 
common denominator will be 3 x 2 x 

3 = 18. Now if we add —1 + using 18 
6 9 

as the common denominator we have: 

3 + 4 
18 

7 
18 
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Now let's try another example. Let 
us do the problem, 

3 5 8 
7 + 17,1+ 21 

We can find a common denomina-
tor in this problem by multiplying 
7 x 14 x 21. However, you can see 
immediately if we do this we are 
going to have a rather large number 
as our common denominator. There 
is no point in getting involved in such 
big numbers because we see at a 
glance that 7, 14 and 21 are all di-
visible by 7. Therefore, it is worth-
while to factor the three denomina-
tors into prime factors to see if we 
can find the lowest common denomi-
nator. When we factor them we get: 

7 = 7 x 1 
14 = 7 x 2 
21 = 7 x 3 

Now to get our lowest common de-
nominator we first look for prime 
factors that are common to all three 
denominators. We notice first that 7 
is a prime factor of all three so the 
first digit in our common denomina-
tor will be 7. Now we mark out the 
three 7's to be sure that we see they 
have been used. This leaves us with 
1 in the first number, 2 in the next 
and 3 in the third. Therefore our 
complete lowest common denomina-
tor will be 7 x 1x2 x 3. This is equal 
to 42 and therefore 42 is the lowest 
common denominator. Now the prob-
lem becomes: 

3 5 8 
7 + 14 + 21 = 

18 + 15 + 16  
42 

49 7 1 
42 = 1 

Let us do one more example. Add 
the following: 

5 7 8 
18 + 27 + 45 

Again, we see immediately that if 
we find a common denominator by 
multiplying the three denominators 
together we will have a very large 
denominator. Therefore it is worth-
while to factor the denominator to 
see if we can find a smaller common 
denominator. 18 is equal to 9 x 2, 
but 9 is not a prime factor because 
it in turn can be factored into 3 x 3. 
Therefore, the prime factors of 18 
are 3 x 3 x 2. Similarly, 27 and 45 
can be factored into prime factors 
so that we will get: 

18 = 3 x 3 x 2 
27 = 3 x 3 x 3 
45 = 3 x 3 x 5 

Now to get our lowest common de-
nominator we first look for factors 
that are common to the three num-
bers. We see that the first digit in 
each factor, which is 3, is common 
to all three so we put down the 3 as 
the first factor in our common de-
nominator and then mark out the first 
3 in each of the factors to indicate 
that this 3 has been used. The sec-
ond digit is also a 3 so we use a sec-
ond 3 in our lowest common denomi-
nator to give us 3 x 3 and we mark 
out the second 3 in each of the three 
numbers. Now this leaves us 2, 3, 5 
and since these are not common in 
any of the three numbers we must 
include them in our lowest common 
denominator. Thus the lowest com-
mon denominator becomes 3 x 3 x 2 
X 3 x 5. Multiplying these together 
we get 270 as the lowest common de-
nominator. 18 goes into 270, 15 
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times. 27 goes into 270, 10 times 
and 45 goes into it 6 times. There-
fore, our problem becomes: 

5 7 8  1 _ 
8 + D + 45 - 

75 + 70 + 48  
270 

193 
270 

So far, in finding common factors 
in the denominators in order to find 
the lowest common denominator, we 
have had a common factor in each of 
the denominators. However, this will 
not always be the case. Sometimes 
the common factor may appear in 
only two of the denominators. For 
example, in the problem, 

1 1 1 
3 + 14 + 21 

we will have two different common 
factors whicii appear in only two of 
the denominators. Factoring the de-
nominators we get: 

3 = 3 x 1 
14 = 2 x 7 
21 = 3 x 7 

Now we start looking for common 
factors. Looking at the first number 
factored, we see that 3 is one of the 
factors so we place a stroke through 
it to indicate that we have used it. 
Looking at the second number we see 
that there is no 3 in its factors, but 
we see a 3 in the factors of the third 
number so we place a stroke through 
it indicating that it has been used and 
then put down 3 as the first number 
in the product which will eventually 
give us our lowest common denomi-

nator. Now looking at the first num-
ber again we see that the only fac-
tor left is 1, so we skip it and go on 
to the second number. Here we see 
that the factors are 2 and 7 and we 
take the first number which is a 2 
and place a stroke through it. Now 
we write a x sign next to the 3 we 
have in the common denominator and 
place the 2 to the right of the x sign. 
This gives us 3 x 2 as the first two 
numbers in the common denomina-
tor. Since there is no 2 in the third 
group of factors we start over again. 
Looking at the second number we see 
that we still have a 71eft so we place 
a x7 as the next factor in our common 
denominator and place a stroke 
through the 7 to indicate it has been 
used. Moving on to the third group 
of factors we see that we also have 
a 7 so we place a stroke through it 
to indicate that it has been used. Now 
the factors we have for our lowest 
common denominator are 3 x 2 x 7 
and if we multiply these out we get 
42 which is the lowest common de-
nominator. 

From the preceding we can see 
that some of the factors that go to 
make up our lowest common denomi-
nator might not appear in all of the 
numbers factored. However, when a 
common factor appears in two or 
three of the denominators that have 
been factored there is no point in 
placing it in the product that is going 
to make up our lowest common de-
nominator more than once unless it 
appears in one of the factors more 
than once. 

Another situation that you should 
be on the lookout for is a problem in 
which one of the denominators is a 
factor of the denominator in one of 
the other factors. When you run in-
to this situation you can completely 
forget about the smaller denomina-
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tor. For example, in the problem, 

we see that 7 is a factor of 14. There-
fore any number that 14 will divide 
into, 7 will divide into also. There-
fore, we can simply forget about the 
7 and find the lowest common de-
nominator for 3 and 14. 
You should also be on the lookout 

for a fraction which may not be re-
duced to its simplest form. For ex-
ample, in the addition, 

1 1 6 

find that you have made a mistake in 
one of the additions, be sure to check 
your work over carefully comparing 
it with our solution to see where you 
made your mistake. 

16. 

SELF-TEST 

QUESTIONS 

3 5 6 
7 + 7 + 7 

1 1 1 
17' + + 

we could go ahead and find a common 1 1 1 
18' denominator. The lowest common T 

denominator in this case is 40. How-

ever' — — 8 can be reduced to 3 by di-4 3 1 3 
6 

19. -- + + à  
lding the top and bottom of the frac-

tion by 2. If we do this our problem 
becomes: 

Now we see that our lowest common 
denominator is 20. In this problem 
it would not make a great deal of 
difference if we used 20 or 40 as a 
common denominator in performing 
the addition so long as we reduced 
the fraction to the simplest form 
after the addition; in some problems 
the lower figure could make the addi-
tion a great deal simpler. 
Now to get practice adding frac-

tions do the following problems. Be 
sure to work each problem carefully 
before looking at the answers at the 
back of the book. If by any chance you 

3 1 1 
20.- -+ —+ — 

4 16 8 

21 -I + + 2 
• 3 7 14 

22. 
6 8 19 
23 + + 69 

1 2 3 
23. -g- + + iT 

1 3 1 
24•T + + 

7 9 2 
25 — + 25 35 5 
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SUBTRACTION 

OF FRACTIONS 

Subtracting fractions is just the 
reverse of adding fractions. All the 
rules that apply to the addition of 
fractions apply to subtraction. First, 
the fractions must be parts of like 
things and they must have the same 
denominator in order to subtract 
them. If they do not have a common 
denominator, we must find the low-
est common denominator for them. 
We do this in exactly the same way 
as we did for addition. 
When we are subtracting one frac-

tion from another, we subtract only 
the numerators and when we have 
finished our subtraction, we always 
reduce the answer as much as pos-
sible. For example: 

5 1 5 - 1 4 2 _ = 
6 6 6 6 3 

To subtract from —1 we must find 
3 9 

the lowest common denominator 
which is 6. Thus the subtraction be-
comes: 

1 1 3 - 2 1 
9 3 6 6 

As you can see, the procedure is 
essentially the same as adding frac-
tions, however, in this case we sub-
tract the numerators instead of add-
ing them. 

Just as in problems involving 
addition of fractions where we had 
more than two fractions to add, 
sometimes we have several subtrac-
tions to perform. You proceed in 
essentially the same way. For ex-
ample, in the problem, 

11 1 
12 T -3-

we first find the lowest common de-
nominator, which in this case is 12. 
Then we perform first one subtrac-
tion and then the other. If we wanted 
to do so we could add the numera-
tors of the two fractions to be sub-
tracted and then perform a single 
subtraction. The problem will be 
worked out as follows: 

11 1 1 _ 
12 T 

11 - 3 - 4 
12 

Now we can subtract 3 from 11 which 
would give us 8 and 4 from 8 which 
gives a remainder of 4 and an an-

4 
swer of 1-9 which we reduce to —1. The 

3 

other method would be to first add 
the 3 and 4 together to get 7and then 
subtract the 7 from 11 which again 

gives us —4 . We get the same answer 
12 

in either case so you can do the prob-
lem whichever way you want. The 
usual procedure is to start at the 
left and go from left to right and 
perform one subtraction after the 
other. 
There is no way to really learn 

how to subtract fractions other than 
by doing problems involving sub-
traction of fractions. Therefore, you 
should do the following problems. Do 
each problem carefully before look-
ing at the answers in the back of the 
book. Once again, if you should fail 
to get the same answers we got, be 
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sure to check your work to find out 
where the mistake is. 

SELF-TEST 

QUESTIONS 

5 3 
26.-7 - 7 

2 1 
27. - 7 

7 3 

8 2 
29..-- 

3 3 
30. 1- - i  

25 1 

3 1 1 
32. 

7 1 1 
33' - 7- -5- 

4 3 
,zA. 3 
--- -6«. - 25 - 50 

In 35 3 1 
—* 36 - 7 - 7 

MIXED 

NUMBERS 

Often you will have to add and sub-
tract mixed numbers. You will re-
member that a mixed number is a 
number made up of a whole number 
and a fraction. For example, add, 

1-23 1 + 2— 6 

There are two ways you can do 
this problem. One method is to add 
the whole numbers first and then add 
the fractions and then add the sum 
of the fractions and the sum of the 
whole numbers together. The other 
method is to convert each mixed 
number to an improper fraction and 
then go ahead and perform the addi-
tion and then convert the answer 
back to a mixed number. Usually the 
easiest way to do this type of prob-
lem is to add the whole numbers and 
the fractions separately. However, 
we will go through both methods 
here. Using the first method first, 
that is of adding the whole numbers 
and fractions separately we get: 

1 
1- + 2 — = 
3 6 

5 5 
3 + — = 3 - 

6 6 

As you can see, in using this 
method we simply add the whole 
numbers and then add the fractions, 
following the same procedure as we 
used before, that of finding the lowest 
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common denominator and then 
adding. 

When we convert the numbers to 
improper fractions we sometimes 

have to deal with slightly larger 
numbers, but this method works out 

equally as well. For example, 
5 

1-2 can be converted to —3 
3 
3 3 2 5 

1 is -3-- and -5 + -3- = 5 

1 13 
2-6-can be converted to —6 

Now our problem becomes 

5 13 

And using the lowest common de-
nominator of 6 we get: 

10 + 13 _ 23 
6 6 

23 
6 = 

31 
6 

5 
As you see, we got 3T  as the an-

swer both ways. One method is as 
good as the other; use whichever 
method you prefer. 

Subtraction of mixed numbers can 
be performed in essentially the same 
way as addition. However, some-
times we come up with a small 
complication in subtraction. Let us 
look at the problem: 

3-3 4 - 2-1 
8 

We can perform this subtraction by 
subtracting the whole numbers first 
and then by subtracting the fractions, 
using the same method as we used 

previously. Following this pro-
cedure the problem becomes: 

3 1 
34  - 2 i = 

3 1 
3 - 2 + 7 - -8- = 

5 
18 

We can also perform this subtrac-
tion by converting both numbers to 
improper fractions and then sub-

3 
tracting. To convert 3-4 to a mixed 

number we multiply 3 x 4 which gives 
us 12; there are twelve quarters in 

15 
3 plus 3 which gives us —4 

1 17 
2--becomes 2 x 8 + 1 = 8 

Now our problem is 

15 17 
7 ' -à-

As in previous subtraction problems 
we must convert to the lowest com-
mon denominator which in this case 
is 8 so we get: 

30 17 _ 
8 - 8 - 

13 
8 = 

5 
18 

Once again, you see that we get the 
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same answer so it does not matter 
which method you use. The first 
method is simple enough in most 
cases, but sometimes when using 
this method you have to borrow in 
order to perform one of the subtrac-
tions. We can best see what this in-

. volves by looking at the example: 

1 3 
4-8 - 2 

If we proceed with the subtraction by 
subtracting the whole numbers first, 
we get 4 - 2 which is 2. Now when 
we try to subtract the fractions we 

have 

1 3 
7 

and when we convert this to the low-
est common denominator which is 8 
we have 

1 - 6  
8 

If we subtract 6 from 1 we end up 
with a minus answer. Therefore, to 
perform this subtraction we must 
borrow from the whole number. In 
the original problem the whole num-
ber was 4 - 2 which gave us 2. We 

can change 2 to 1 +-8 and then add 
8 

9 
the 8 —8 to and get - 

8 8 
Now we can subtract 

--9 3 8 —6 from and get 8— 

and our answer is 11  
8 

If you do this problem by convert-
ing to improper fractions, you do not 
run into this problem. 

1 33 
4-8 becomes 4 x 8 + 1= —8 

3 
2—becomes 2 x 4 + 3 
4 

Now our problem is 

33 11 
8 4 

_ 11 
- 

33 - 22 11 3 
- - 1 

8 8 8 

Some problems will involve addi-
tion and subtraction of mixed num-
bers. When you encounter this type 
of problem you can do the addition 
and subtraction of the whole num-
bers first and then the addition and 
subtraction of the fractions or you 
can convert all the numbers to im-
proper fractions and work the prob-
lem this way. As an example, con-
sider the problem: 

1 3 7 9 
74- - 2T + 4 - 31-6 

Adding and subtracting the whole 
numbers we get 7 - 2 + 4 - 3 = 6. 
Now we must handle the fractions 
and to do this we must convert to 
the lowest common denominator 
which in this problem is 16. Thus, 
we have: 

4 - 6 + 14 - 9 
16 

Now adding together the numbers to 
be added and at the same time add-
ing the numbers that are to be sub-
tracted we get: 

4 + 14 - 6 - 9  _ 
16 

18 - 15 3 
16 16 
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Therefore, our complete answer is 

a 3 
16 

Now if we decide to do the problem 

by converting the fractions to im-
proper fractions 

1 29 
7-4 becomes 7 x4 + 1 — 

4 

19 2 8-3 becomes 2 x 8 + 3 = 

8 7 39 
becomes 4 x 8 + 7 = — 

8 

9 57 
and 317 becomes 3 x 16 + 9 = 

Thus our problem becomes: 

29 19 39 57 

you check each problem carefully 
before comparing your answers with 
ours which are at the back of the 
book. 

SELF-TEST 

QUESTIONS 

1 1 
36. 1i + 2 -5- 

1 1 1 
37. 2— + 3 — + 1-

2 3 6 

7 1 
38. 4i - 

1 3 
39. 5 a — - 2 — 

7 

and changing these fractions to a 40. 81 - 31  - 21 
9 7 3 common denominator of 16 we get: 

116 - 38 + 78 - 57  
16 

99 3 
7 = 6 16 

Once again we have the same an-
swer so the choice of which way you 
do the problem is yours. Decide on 
which way you think is the easier 
and then do all of them the same way. 
Usually it is best to stick to one 
method rather than jump back and 
forth between the two because this 
often results in confusion. Now to get 
practice handling mixed numbers do 
the following problems. Again, be 
careful of your work to be sure that 
you get the right answer. Be sure 

1 8 1 
41 — + — 

7 9 - 

3 1 3 1 
42. 71- - + f T- 

3 1 1 
43. 4i: + - 

7 1 1 2 
44. 1-8 - 3,T - 1-6- + 

1 1 45. 6-3 3 1 - 4 
4 
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MULTIPLYING FRACTIONS 

There is a very simple rule that 
we follow in multiplying fractions. 
We simply multiply the numerators 
of the fractions together to get the 
numerator of the product and mul-
tiply the denominators together to 

• get the denominator of the product. 

For example, —1 x 1  = -1. We have 
2 2 4 

multiplied the two numerators, 1 x 1 
and got 1 as the product and then 
multiplied the two denominators, 
2 x 2 and got 4 as the new denomina-
tor. Actually, we can take the prob-

1 1 1 x 1 
lem x — and write it as 

2 2 2 x 2 
and then it becomes quite obvious 

1 
that our product will become —4' It 

might at first disturb you that when 
you multiply two fractions together 
the product is smaller than either 
fraction. However, if you consider 

the multiplication as 1  of -1 ' you will 
2 2 

1 
see that the resultant should be -4 

In other words, you have lof some-

thing and you are taking —1 of that so 
2 
1 

that the resultant will be 
4 

Often after you have multiplied two 
fractions together you can reduce the 
fraction to its simplest form. For 
example: 

2 1 x = 

We can also multiply several frac-
tions together at once. For example, 
2 3 5 
- x - x -would be set up for the mul-
9 4 7 
tiplication like this: 

2 x 3 x 5 6 x 5 
9 x 4 x 7 - 36 x 7 

30 = 15 5 — 
252 126 42 

In this example the resultant frac-
tion is reducible: this usually means 
that it is possible to reduce some of 
the fractions before we perform the 
multiplication by what we call divi-
sion or cancellation, before we mul-
tiply. Thus, in the problem, 

2 x 3 x 5 
9 x 4 x 7 

the first number in the numerator 
is 2 which can be divided into the 
second number in the denominator 
which is 4. This would leave us: 

1 
x 3 x 5 

9 x x 7 

We can also divide the 3 in the 
numerator into 9 in the denominator 
which leaves us: 

1 1 

%xx5  
x e x 7 

3 2 

Now when we multiply we have 
1 x 1 x 5 or 5 in the numerator, and 
3 x 2 x 7 or 42 in the denominator 

2 x 1  
- and we get our answer —5 directly. 

3 x 2 42 
Thus, by cancellation before we mal-

2 1 tiply we simplify the problem. 
.= 3 You can perform your multipli-
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cation of fractions either way: you 
can multiply them out and then can-
cel later or you can do the cancella-
tion first. Usually the best method 
is to do the cancellation first be-
cause you will then be multiplying 
smaller numbers together and there 
will be less chance of your making 
an error. 

For practice do the following mul-
tiplication problems. As before, be 
sure to do each problem carefully 
before checking your answer with 
those given in the back of the book 
and if you do make a mistake be 
sure to find out where your mistake 
lies before leaving the problem. 

SELF-TEST QUESTIONS 

46 1. X 
3 4 

2 47. 1 x.7 

3 3 
48. 74 

7 4 
49. T3- x7 

nn 5 26 
"'• 13 x 30 

51. —3 x —7 x —2 
7 8 3 

3 16 19 
52 
• 8 19 21 

53.+ 4 X —9 23 

54. ± x -Ii -x x —7 7 2 9 

18 x 30 2 
DD —  — x — 
• 20 36 3 

DIVIDING TRACTIONS 

Division of whole numbers is just 
the opposite of multiplication of 
whole numbers. For example, if we 
are multiplying 3 x 4 we get 12. If 
we divide 4 into 12 we get 3. Like-
wise, division of fractions is just 
the reverse of multiplication of frac-
tions. In division we have a fraction 
for our dividend and a fraction for 
our divisor and we are asked what 
number or fraction, when multiplied 
by the divisor, will give us the prod-
uct that equals the dividend. 

If 1 x = 1 1 — —— 
2 2 4 

— — 1 + 1 4 must equal 
2 2 

Likewise, 

2 1 2 1 
if --- X - = -- or — 
3 2 6 3 
1 1 

then-3 + 2—must equal —2 
3 

To divide one fraction into an-
other, all we do is invert the divisor, 
in other words, we turn it upside 
down, and then multiply the two 
fractions together. Thus, in the 
problem, 

1 . 2 
6 - 3 

2. 
u is the divisor so to perform the 

division we invert it and multiply 
so that our problem becomes: 

1 3 1 
6 2 4 
—x—=— 

Likewise,  

3 . 5 

35 
7- -6- becomes 73 )<«1= 
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When performing the multiplica-
tion it is usually worthwhile to see 
if it is possible to do any cancelling. 
This will simplify the problem and 
usually you will be working with 
smaller numbers so there is less 
chance of your making a mistake. 
For example, in the problem, 

3 9 — ÷ — 
4 16 

9 
we invert the —16 and multiply so we 

have 

3 16 
4 x 9 

We immediately see that the 4 in 

3 
the denominator of-4 will go into 16 

16 
in the numerator of —9 four times. 

At the same time we see that the 3 
3 

in the numerator of the fraction —4 

will go into the 9 in the denominator 
16 

of-9 three times. Thus, dividing by 

4 and 3 we get: 

1 4 

I X j 4 
0 -7-= 
1 3 

In some problems we will have 
more than one division to perform. 
In this case you can set the problem 
up as one problem by inverting all 
the divisors. For example, in the 
problem, 

3 7 3 _.-i- -4- — 
8 16 7 

we have two divisors. The first di-

visor is —7 which when inverted be-

comes —16 and the second divisor 
7 
3 7 

which is * becomes f  when it is in-

verted. Thus, if we invert both di-
visors our problem becomes: 

IX 16 x 7 
8 7 3 

Again, we can multiply all the 
numbers in the numerator to get the 
numerator product and then multiply 
all the numbers in the denominator 
to get the denominator product, but 
it is easier if we cancel first. No-
tice that in the first fraction, which 

is —3 the 3 in the numerator will 
8' 

cancel the 3 in the denominator of 
7 

the last fraction,--. Similarly, the 8 
3 

in the denominator of the first frac-
tion will go into the 16 of the nu-
merator of the second fraction twice. 
The 7 in the denominator of the sec-
ond fraction will go into the 7 in the 
numerator of the third fraction. Thus 
when we perform the divisions our 
problem becomes: 

2 

0 14 7 _e__, 7 .., 7 _ 
1 

2 
T = 2 

Now you need to get practice di-
viding fractions so do the following 
problems carefully and compare 
your answers with those at the back 
of the book to be sure that you have 
the correct answer for each prob-
lem. 
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SELF-TEST QUESTIONS 

7 

2 3 
57' 77--÷ —7 

3 9 
58" T 16 

no 47 1 
"'• 49 7 

19 38 
60. 7-3 ÷ 41 

61 1.1 -2-÷ 
7 14 2 

1 2.3 
62.-3- 

nr4 2 4 3 
11 ÷ 7 + 14 

2 4 5 
64' —9 4- 7 , i 

13 2 4 
65. 1 -5- - 

MIXED NUMBERS AND 

IMPROPER FRACTIONS 

To multiply and divide mixed num-
bers, you should convert the mixed 
number to an improper fraction and 
then proceed as you do with simple 
fractions. For example, in the prob-
lem, 

11- X 21 
4 7 
3 

we convert the 1-to fourths; to do 

this we multiply 1 x 4 which gives 
7 

us 4 plus 3 or the total of-. We con-

2 
vert the 2-7 to sevenths by multi-

plying 2 x 7 to get 14 plus 2 equals 
16 
—7. Our problem then becomes: 

7 16 
—x — 
4 7 

and rather than perform the indi-
cated multiplications we cancel the 

7 
7 in the numerator of T and the 7 

16  in the denominator of —7. Similarly, 

we divide 4 into the denominator of 

—7 and 4 into the numerator in the 
4 

16 
fraction —4 . Thus, our problem be-

comes: 

4 
j:= 4 

We do our division the same way: 
we convert both mixed numbers to 
improper fractions. For example: 

5 3 
17 -

19 10 
7 • 7 = 

19I 10 
/ x = 9 1 - 

10 

Sometimes you will run into prob-
lems with both multiplication and 
division involving mixed numbers. 
To do these problems you convert 
the mixed numbers to improper 
fractions and then go ahead and 
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proceed as you would in a multipli-
cation and division of simple frac-
tions. Remember that to divide you 
simply invert the divisor and mul-
tiply. For example: 

10 
— = 10 

If you worked all these preceding 
multiplication and division problems 
you should have no difficulty doing 
the following problems involving 
mixed numbers. Be sure to check 
your work carefully as you go along 
and if you should get the wrong an-
swer be sure to find out where you 
made your mistake before leaving 
the question. 

SELF-TEST QUESTIONS 

1 1 
66. 1i x 2i 

3 1 
67. 2- x 4-

8 7 

3 
68. 4-7 x 5 4 

69. 6-7 - 2 1 
8 4 

1 1 
70. 5-8 - 

2 
71. 8-9 - 

1 

1 1 1 
72. 8 7. x 3 - 97- 

2 2 3 
4 

73. 6- - 2-9 x 4 - 3  

1 1 1 
74. 3 4- - 8 -2-x 2 

7 6 1 
75. 1-8 6-9 x 2-2 

MYLES OF ORDER 

In some problems you will have 
addition, subtraction, multiplication 
and division all in the same prob-
lem. In problems of this type you 
follow the rules of order that we 
established for addition, subtrac-
tion, multiplication and division of 
whole numbers. You will remember 
that you do any operations enclosed 
inside of brackets or parentheses 
first. Then going through the prob-
lem, working from the left to the 
right, you do the multiplication and 
division in the order in which they 
occur and then you go back to the 
left and work through to the right 
doing the addition and subtraction 
this time all the way through. 

Where there is a multiplication 
and division side by side, rather 
than perform either operation sepa-
rately, you can set the problem up 
so you can cancel as you did in 
earlier examples and, in this way, 
sometimes save yourself some 
work. 
We are not going to give you any 

detailed examples on how to do prob-
lems of this type because you have 
done all the operations involved 
many times and you should be able 
to work out this type of problem. 
However, we have included five 
problems at the end of this section 
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for you to do. Try working these 
problems and then after you have 
worked them out check with the an-
swers at the back of the book to see 
how you made out. If you have made 
any errors be sure to check the 
sample solution carefully to be sure 
where your error lies. 

SELF-TEST QUESTIONS 

1 1 3 1 + 1 4. 3 
76' + x - 10 10 

1÷ 1 5 1 8 1 
ix 78 93 

1 1 1 1 3 1 
0. -2- - X y + 7 . 

79. 14+ 1. 1 x1 + 21 - 3 x-1-+ —3 
4 8 8 4 9 4 

80. (3 —4 + 1\ 7 ( 3 1) 8 
8\4 -8- x i 

SUMMARY 

We have now gone through all the 
rules for operating with fractions 
and we can summarize our results 
for easy reference as follows: 

(1) The product of two or more frac-

tions is a new fraction whose 
numerator is a product of the 

numerators of all these frac-
tions, and whose denominator is 
the product of the denominators 
of all the factors. Any whole 
number may be considered as a 
fraction with a denominator of 1. 

127 
For instance, 127 means —1 

(2) The quotient of two fractions is 
the product of the dividend times 
the divisor inverted (turned up-
side down). 
Notice that neither multiplica-
tion nor division of fractions re-
quire the use of a common de-
nominator. 

(3) To add fractions, they must be 
reduced to equivalent fractions 
with a common denominator; 
then their sum is the sum of the 
numerators divided by the com-
mon denominator. 

(4) Similarly, to subtract one frac-
tion from another, we must use 
a common denominator and the 
difference is the difference of the 
numerators, divided by the com-
mon denominator. 
All results should be reduced to 
their simplest form by dividing 
both numerator and denominator 
by the largest common divisor. 

(5) 
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Decimals 

A decimal is simply a fraction 
whose denominator is 10 or some 
multiple of 10, for example, 100, 
1000 etc. For example, the fraction 

i  can be written as .6 and .6 is 
10 
called a decimal or a decimal frac-
tion. We omit the denominator be-
cause it is understood. The decimal 

65 
fraction — can be written as .65 

100 

and the fraction 
655 

can be written 
1000 

as .655 
At first you might think decimals 

are something new or something dif-
ficult to deal with, but this is not the 
case. You deal with decimals every-
day when you handle money. You are 
acquainted with these coins: a cent, 

a nickel, a dime, a quarter dollar, 
and a half dollar. 
1 1 1 1 1 

100' 20' 10' 71, l of a dollar 
1 5 10 25 50 

or -17), 70-0-, Top —100 and ---- of a 

dollar. 
It is Just second nature to write 

these as $.01, $.05, $.10, $.25 and 
$.50. That is, $1.25 means one dollar 

and twenty-five cents or 1-25 dol-

lars. On this basis you can easily 
add up such amounts as: 

$ 3.25 
7.12 
2.84 
6.33 

$19.54 

Just as we separate the dollars 
and cents (the cents are hundreths 

of a dollar), we can separate our 
whole numbers and fractions with a 
point. This is called a decimal point, 
and we can write all our fractions 
with denominators of 10, 100, 1000, 
etc. as whole numbers by learning 
to use this decimal point. To do this, 
we use the first place to the right of 
the point for tenths, the next for hun-
dredths, the third for thousandths 
etc. 

1 
In this fashion 1 — becomes 1.1 

10 
1 1 -becomes 1.2 
10 

1 —1 becomes 1.01 
100 

1 
and 1 — can be written as 1.001 

1000 

CONVERTING FRACTIONS 

TO DECIMALS 

With a little practice many frac-
tions can be converted to decimals 
simply by inspection. This is true 
of fractions whose denominators are 
multiples of 10. However, there is 
a standard rule that we can follow 
for converting other fractions to 
decimals so that the procedure be-
comes almost automatic. Let us take 

1 
as an example the fraction — 

8' 

To convert —1 into a decimal we 
8 

simply divide 8 into 1. We do this 
by setting up the problem for divi-
sion and then placing a decimal point 
to the right of the 1 and then adding 
as many zeros as we may need to the 
right of the 1. Now we start by di-
viding 8 into 1 and since it cannot 
go, we place a decimal point above 

33 



.125 

8/1.00000 
8 
20 
16 
40 
40 

Fig. 19. Converting 1/8 to a decimal. 

the line immediately above the deci-
mal point to the right of the 1 and 
now divide 8 into 10 as shown in 
Fig. 19. 8 will go into 10 once so we 
place a 1 to the right of the decimal 
point and place an 8 beneath the 10. 
Subtracting 8 from 10 we get 2, so 
we bring down the next 0 and now 
divide 8 into 20. It will go twice so 
we place the 2 in our answer to the 
right of the 1 and multiplying 8 by 
2 we get 16 which we place beneath 
the 20. Now subtracting 16 from 20 
gives us 4 and we bring down the next 
0. 8 will go into 40 five times so we 
place a 5 to the right of the 2 in our 
answer and since 5 times 8 is 40 
we place this 40 beneath the other 40 
and subtracting,our remainder is 0 

so the decimal equivalent of 1  is 
8 

.125. 
5 

To convert ito a decimal we pro-

ceed in exactly the same manner. 
We set down the division as shown 
in Fig. 20 and divide 8 into 5 and 
get as our answer .625. 

.625 
8/5.000 
48 
20 
16 
40 
40 

Fig. 20. Converting 5/8 to a decimal. 

Any fraction can be converted to 
a decimal by following this simple 
procedure. However, not all frac-
tions will work out to an even value. 
Sometimes you will get a number in 
the answer or a combination of num-
bers that will repeat indefinitely. In 
this case you simply carry out the 
division as far as necessary. How 
far you will actually have to carry 
it out depends upon what accuracy 
you want in your answer. If you are 
dealing with money, there would not 
be much point in carrying the divi-
sion past two decimal places be-
cause the third decimal is less than 
a cent and a cent is the smallest 
denomination of money we have. 

.3333 
3/1.00000 

9 
10 
9 
10 
9 
10 
9 
1 

Fig. 
duces a repeating 3. No matter how far we 
carry the division we will always have the 

remainder of 1 in this problem. 

21. Converting 1 /3 to a decimal pro-

An example of a common fraction 
that cannot be converted to an exact 

decimal value is 1; Fig. 21 shows 

the conversion of Ito a decimal. We 
3 

have shown four decimal places and 
you will notice that no matter how 
far we carry the division we will 
always have a remainder of 1 and 
the next figure to the right will al-
ways be a 3. If we wanted to express 

1 
the fraction —3 as a decimal to 3 
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.6666 
35:15b7ii 
18 
20 
18 
20 
18 
20 
18 
2 

Fig. 22. Converting 2/3 to a decimal; to 
three decimal places, 2/3z.667. 

places we would write it as .333 

When we try to convert Ito a 
3 

decimal we run up against a repeat-
ing 6 as shown in Fig. 22. Here again 
we have to decide how many figures 
we want and then round off our an-

swer. If we wanted to express fas 

a decimal to three decimal places 
we would write it as .667. Notice 
that we changed the digit in the third 
decimal place from a 6 to a 7. The 
rule for rounding off decimals in 
this way is that if the next number 
to the right is more than 5 we add 
1. If it is less than 5 we leave the 
decimal figure as it is. If the next 
digit to the right should happen to 
be a 5 then we add 1 if it will make 
the last number an even number. If 
the last digit is already an even num-
ber we do not add 1. For example, 

.0625 
16/1.0000 

96 
40 
32 
80 
80 

Fig. 23. Converting 1/16 to o decimal. 

to express the decimal .7635 to three 
decimal places, since the 3 is an odd 
number, adding 1 will make it an even 
number so we would round that off 
as .764. On the other hand, to ex-
press the decimal .8665 to three 
decimal places, since the third digit 
is a 6 which is already an even num-
ber, we simply drop the 5 and write 
the decimal as .866 

Another example of converting a 
fraction to a decimal is shown in 

1 
Fig. 23. Here we have converted --16 

to a decimal. Notice that in the first 
division when we try to divide 16 into 
10 it will not go so we place a 0 to 
the right of the decimal point. Then 
we try to divide 16 into 100 and it 
will go 6 times. 6 sixes are 96 which 
we subtract from 100 to give us a 4. 
Now we bring down another 0 and 16 
into 40 goes twice. 2 x 16 are 32 and 
subtracting we get 8. Bringing down 
another 0 we get 80, and 16 goes in-
to 80, 5 times. Thus the decimal 

equivalent of —1 is .0625. You will 
16 

run into this situation quite fre-
quently in converting small fractions 
to decimals, however, do not forget, 
if the denominator of the fraction will 
not go into 10, we must place a 0 to 
the right of the decimal point. If the 
denominator of the fraction is so 
large it will not go into 100 then you 
have to put two zeros to the right of 
the decimal point and try to divide 
it into a thousand etc. 
Now to get practice converting 

fractions to decimals, convert the 
following fractions to decimals. If 
a fraction does not convert evenly 
to a decimal, round your answer off 
correctly to four decimal places. 
You will find the answers in the back 
of the book so you can check your 
results. 
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SELF-TEST QUESTIONS (2) From 

5 
81. T-6-

7 
82. —8 

83. 1_ 
6 

5 
84' 7 

85. 1-3 
16 

ADDITION AND 

SUBTRACTION OF DECIMAL'S 

The operations of addition and 
subtraction of numbers involving 
decimals are precisely the same as 
those involving whole numbers. In 
setting up the problems,the decimal 
points must be all placed in a verti-
cal line and the decimal point in the 
sum or difference will be in that 
same line. Here are several ex-
amples: 

ADD 

From 
Subtract 

123.45 
23.41 

1745.00 
1.12 
03 

1893.01 

985.00 
27.43 

957.57 

For practice, try the following: 

(1) ADD 2543.67 
100.24 
78.29 
2.27 
.09 

768.08 
Subtract 129.29 

Answers: (1) 2724.56 (2) 638.79. 

MULTIPLYING DECIMALS 

Multiplication of decimal numbers 
is exactly the same as multiplica-
tion of whole numbers except that 
we need a rule for determining the 
position of the decimal point in the 
product. The rule is that we count 
the number of decimal places in 
each factor. Then, starting at the 
right of the product we count off the 
same number of decimal places to 
the left as the sum of the number of 
places in the two factors. For ex-
ample, in the multiplication 

232.7 x 4.89 

there is one decimal place in the 
nurnber232.7andtwodecimalplaces 
in the number 4.89 and therefore in 
our answer we will count off three 
decimal places to the left starting 
at the right of the product. The mul-
tiplication is shown in Fig. 24 and 
notice that we have a total of 3deci-
mal places in our answer. 

232.7 
4.89 

20943 
18616 
9308  

1137.903 

Fig. 24. There are three decimal places in 
the factors and therefore there must be three 

places in the product. 

We follow this rule for placing the 
decimal point at all times even if it 
means adding several zeros in our 
answer. For example, if we find the 
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product of 

.1273 x .0032 

we will get as our product 40736 as 
shown in Fig. 25. However, there are 
four decimal places in the number 
.1273 and four decimal places in the 
number .0032. Therefore, there must 
be eight decimal places in our an-
swer. Starting at the right of the 
product and counting to the left, we 
find that there are only five digits in 
our answer and therefore we must 
add three zeros to the left of the 4 
before placing the decimal point so 
that our answer becomes .00040736. 

.1273 4 decimal places 

.0032 4 decimal places  
2546 8 decimal places 
3819  
40736 5 digits 

.00040736 8 decimal places 

Fig. 25. We must add three zeros to get the 
required eight decimal places. 

DIVIDING DECIMALS 

It is no more difficult to divide 
numbers involving decimals than it 
is to divide whole numbers, if we re-
member a few simple facts. You will 
remember that a division problem is 
really a fraction. In other words, 

1000 
1000 ÷ 18 can be written as 

18 
You will also remember that in a 
fraction you can multiply the nu-
merator and the denominator by the 
same number without changing the 
value of the fraction. 

In division involving decimals, if 
the divisor has a decimal in it we 
get rid of the decimal by moving the 
decimal point to the right. If we 

move the decimal point one place 
to the right. This is the equivalent 
of multiplying the divisor by 10 so 
we must multiply the dividend by 10 
also. We do this by moving the deci-
mal point one place to the right also. 
For example, in the problem 42.97 ÷ 
4.8, we can get rid of the decimal in 
the divisor by moving it one place to 
the right and at the same time moving 

the decimal point in the dividend one 
place to the right so that our prob-
lem then becomes 429.7 ÷ 48. 
Sometimes in order to move the 

decimal point to the right in the 
dividend we have to add a 0.For ex-
ample, in the problem 634 ÷ 82.7, 
to get rid of the decimal point inthe 
divisor we move the decimal point 
one place to the right and the divisor 
becomes 827. We must move the 
decimal point one place to the right 
in the dividend also and to do this we 
add a 0 so that the dividend becomes 
6340. 
When performing a division in-

volving decimals we must keep track 
of the decimal point. This is done by 
placing the decimal point inthe quo-
tient immediately above the decimal 
point inthe dividend. For example, in 
the problem 207.09 ÷ 3.9, the first 
thing we do is move the decimal point 
one place to the right to get rid of the 
decimal in the divisor.Thenwe pro-
ceed with the divisor as follows: 

53.1 
39/2W 

195 
120 
117 

39 
39 

Notice that the decimal point in the 
quotient is placed immediately above 
the decimal point in the dividend and 
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the first two digits in the quotient 
were obtained before we used the 

decimal in the quotient. This means 
that the 5 and the 3 to the left of the 
decimal point and the 1 which was 
obtained using the .9 from the divi-

dend obtained from the right of the 
decimal point. 
Now to get practice adding, mul-

tiplying, dividing and subtracting 
with decimals do the following prob-
lems. Be sure that you do your arith-
metic carefully and watch the deci-
mal point to be sure you have it in 
the right place. Check your answers 

with the answers given in the back 
of the book. 

SELF-TEST QUESTIONS 

86. Add 1.34 
26.2 
8.41 

91.74 

87. Add 8.33 + 92.1 + 17.41 + 6.3 

88. Subtract 91.31 

-80.94 

89. Subtract 137.42 - 43.8 

90. 137.6 x 4.88 

91 .43 x .0061 
92. 108.33 - 2.3 
93. 45.227 - .049 

94. .01887 - .051 
95. .00173 x 21 

MULTIPLYING AND 

DIVIDING BY TEN 

One of the greatest advantages of 
the decimal system is that multipli-
cation or division by 10,100, or 1000, 
or any power of ten can be accom-

plished by simply moving the deci-
mal point as many places to the right 
(in multiplication) or left (in divi-

sion) as there are zeros in the par-
ticular power of ten. Thus, to mul-
tiply a number like 2.35 by 1000, all 
we have to do is move the decimal 
point three places to the right, filling 
in the vacant spaces with zeros to get 
2350. 

Similarly, to divide by any power 
of ten requires only that we move the 
point to the left. Thus, 3500 ÷ 1000 
= 3.5. 
You will remember that the basic 

electric units - ampere, volt, farad, 

cycle, henry, watt, etc. -- are some-
times too large for convenient 
handling in electronics. In other 
cases they are much too small. So 
a set of five prefixes for measure-
ment are used to remedy these situ-
ations. These are: 

M MEGA 
k KILO 
m MILLI 

MICRO 

p PICO 

Units 

1,000,000 
1000 
.001 

.000,001 
.000,000,000,001 

Pico =,_41 or micro-micro. 

These units help us by making it 
possible to express electrical terms 
in more convenient figures. For ex-

ample, a radio station in the stand-
ard broadcast band might operate on 
a frequency of 1,470,000 cycles. By 
moving the decimal point three 
places to the left, we can convert this 
frequency in cycles to a frequency in 
kilocycles. The frequency in kilo-
cycles would be 1,470 kilocycles. If 

we wanted to go a step further, we 
could move the decimal point six 
places to the left instead of 3 places 

and convert from cycles to mega-
cycles. In this case the frequency 
would be 1.470 megacycles. Since a 
kilocycle equals a thousand cycles 
and a megacycle equals a million 
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cycles it follows that a megacycle 
equals a thousand kilocycles. There-
fore, we can convert from kilocycles 
to megacycles by moving the decimal 
point three places to the left. The 
terms milli, micro and pico are used 
to express values smaller than one. 
Thus, to change a current of 1 amp 
to milliamps, we would move the 
decimal point three places to the 
right so that 1 amp =1000 milliamps. 
If we had a current .047 amperes, 
we would convert this to milli-
amperes by moving the decimal point 
three places to the right and the cur-
rent would then be 47 milliamperes. 
If the current was .000047 amperes, 
we could convert this to milliam-
peres again by moving the decimal 
point three places to the right and 
the current would be .047 milliam-
peres. If instead of converting to 
milliamperes we converted to 
micro-amperes, we would move the 
decimal point six places to the right, 
in which case the current would be 
47 micro-amperes. To convert from 
units such as farads to picofarads, 
we move the decimal point twelve 
places to the right. This term has 
recently come into use and previ-
ously was referred to as micro-
micro. You will probably see both 
terms used; you should remember 
that they mean the same thing. To 
summarize, to convert from a unit 
to a larger value we move the deci-
mal place to the left. To convert 
from units to kilo you move three 
places to the left and to convert from 
units to megaunits move it six places 
to the left. To convert from kilo units 
to mega units move it three places 
to the left. It follows that if you are 
given a value in megohms and you 
want to convert to ohms, you would 
move the decimal point six places to 
the right and if you were given the 

From To 

MEGA 3 places KILO 

KILO 3 places UNIT 

UNIT 3 places MILLI 

MILLI 3 places MICRO 

MICRO 3 places NANO 

NANO 3 places MICRO-MICRO 

MICRO 6 places MICRO-MICRO 

To   From 

PICO equals MICRO-MICRO 

Fig. 26. Electrical unit conversion table. 

value in kilohms and you wanted to 
convert to ohms, you would move the 
decimal point three places to the 
right. Thus, in a resistor that had a 
value of 4.7 megohms, to convert 
to ohms, you move the decimal 
point six places to the right and get 
4,700,000 ohms. If you had a resist-
ance of 4700 ohms and wanted to con-
vert this to ldlohms you would move 
the decimal point three places to the 
left and get 4.7K (kilohms). 
A chart which shows which way to 

move the decimal point and how far 
to move it to convert if from one unit 
to another is shown in Fig. 26. After 
you have used the chart a few times 
it will become second nature and you 
will find it comparatively easy to 
convert from one unit to another. 
Remember that when you move the 

decimal point and there are spaces 
not filled by numbers, they must be 
filled by zeros. Now to get practice 
converting from one unit to another 
do the following problems: 

a. 2.3 kilohms to ohms 
b. 437,000 ohms to kilohms 
c. .023 megohms to ohms 
d. 1.5 amperes to milliamperes 
e. 13,000 microamperes to amperes 
f. 3 kilovolts to microvolts 
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g. 1.28 megacycles to kilocycles 
h. 4,000 cycles to megacycles 
i. 1690 kilocycles to megacycles 
. 3000 microamperes to amperes 

Answers 

a. 2,300 ohms 
b. 437 kilohms 
c. 23,000 ohms 
d. 1500 ma 
e. .013 amperes 
f. 3,000,000,0004v 
g. 1280 kc 
h. .004 mc 
i. 1.69 mc 
j. .003 amps 

PERCENTAGE 

It is very expensive to make any 
electronic part to an exact value. 
Fortunately, considerable tolerance 
is permissible in most electronic 
circuits so that the components used 
in it do not have to be made to an 
exact value. Parts usually have a 
certain tolerance and this tolerance 
is expressed as a percentage of the 
rated or required value. 
Percentage is a fractional part 

expressed in hundredths. In other 
1 

words, 1% is — 2% i 2 s -j -and 10% 
100'  

10 
is " We normally use the symbol 

100 
% to stand for the word percent. Thus 
5 percent is written 5%. This means 
5 

100' 
If we say that a resistor has a tol-

erance of 10%, what we mean is that 
its actual measured resistance will 
be within 10% of the value it is sup-
posed to be. In other words, if a re-
sistor is supposed to be a 1,000 ohm 
resistor and it has a tolerance of 

10%, 10% of 1000 is 

10 
rou x 1000 = 100 ohms 

This means that the resistor is with-
in 100 ohms of 1000 ohms. The re-
sistor might have a value as low as 
900 ohms or as high as 1100 ohms. 
In other words, the resistance of the 
resistor will fall somewhere be-
tween 900 ohms and 1100 ohms - it 
is rare that the value would fall on 
the exact value of 1000 ohms. 
Most resistors used in communi-

cations and electronics equipment 
have tolerances of 5% or 10%. If you 
want to find an exact range of re-
sistance that a resistor might have, 
you find how much it might vary 
from its value by determining the 
percentage variation from its rated 
value. If the resistor is a 5% resis-
tor multiply the value of the resistor 
by 5 over 100 to get the amount it 
could vary from its rated value and 
if it is a 10% resistor, multiply the 
value by 10 over 100. For example, 
a 470 ohm 5% resistor may have a 

tolerance of —5 x 470 = 23.5 ohms. 
100 

This means its value will lie some-
where between 470 - 23.5 ohms and 
470 + 23.5 ohms. 
The same value resistor that has 

a 10% tolerance could vary by as 
much as 

10 
100 x 470 = 47 ohms 

Therefore, it might have a value any-
where between 470 - 47 and 470+47 
ohms. 

In accurate measuring equipment, 
resistors having a tolerance of 1% or 

—1 of 1 % are frequently encountered. 
2 
If you want to find how much a 1% re-
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sistor can vary from its rated value, 
you multiply 1 over 100 times the 
value of the resistor. If you want to 
find how much a one half percent 

resistor varies, then multiply-1 over 
2 

1 
100 times its rated value or 200 
times its rated value to find how 
much the one half percent resistor 
could vary. Then to get the limits of 
the resistor, you subtract the vari-
ation to find how low the resistance 
can actually be and then you add the 
variation to find out how high the 
resistance can actually be. 
Sometimes you know the value by 

which a part varies from its rated 
value and you want to find what per-
centage this is of the rated value. 
To find the percent that one number 
is to the second number, divide the 
first number by the second and mul-
tiply the quotient by 100. In other 
words, if you had a 600 ohm resis-
tor and found that it actually meas-
ured 650 ohms and you wanted to find 
what percentage the resistor was of 
its rated value you would subtract 
600 from 650. In other words, the 
resistor was 50 ohms over its rated 
value. To convert this to percentage 
you set the problem up as 

50  0 x 100 = 8.33% 
60 

Since percentage is a fraction of 
100 we can easily convert percentage 
to its decimal number. For example, 

40 
40% means 

100 
To divide 40 by 100 we move the 
decimal point two places to the left. 

40 
Thus 40% = = .40 

100 
12 

Similarly, 12% = = .12 100 

6 
= .06 6, = i° 100 

You will find it useful to be able 
to find the given percent of a num-
ber. For example, what number is 
40% of 350? To find this number we 
convert 40% to a decimal and then 
multiply 350 by the decimal. 

40 
40% of 350 = 350 x 

100 = 
350 x .40 = 140 

To get practice doing percent 
problems you should do the following 
ten problems. If you find that you are 
unable to do one particular type, be 
sure to refer to the model solution 
in the back of the book to see how the 
problem is worked and then go back 
and work the other problems of the 
same type. Percentage is useful not 
only in electronics, but in many other 
activities of every day life. 

SELF-TEST QUESTIONS 
96. What percent of 105 is 35? 
97. What percent of 40 is 8? 
98. What is 15% of 60? 
99. What is 36% of 4286? 

100. A 680 ohm resistance has a tol-
erance of 10%. What is the low-
est value the resistance may 
have and still be in tolerance? 

101. A 2200 ohm, 5% resistor meas-
ures 2300 ohms. Is this resist-
ance (a) above, (b) below, (c) 
within its rated tolerance? 

102. A 4.7K-ohm, 10% resistor 
measures 5200 ohms. Is this 
resistance (a) above, (b) below, 
(c) within its rated tolerance? 
1 

103. If —4 of the voltage applied to a 

circuit is dropped across a 
certain resistor, what percent-
age of the total voltage does 
this represent? 
1 

104. If —8 of the voltage applied to a 

circuit is dropped across a 
certain resistor, what percent-
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age of the total voltage does 
this represent? 

105. If the total voltage applied to a 

circuit is 200 volts and 75% of 
this voltage is dropped across 
one resistor, what is the volt-
age across the resistor? 

Solving Circuit Problems 
Now that we have reviewed the 

operations of basic arithmetic let us 
use these operations to solve some 
simple de circuit problems. This 
will help you in two ways. First, you 
will get a chance to review some of 
the facts you learned in this lesson 
and secondly, you will get a chance 
to practice applying your arithmetic 
to actual electronic circuits. This 
will help you to better understand 
how these circuits work. 

Earlier in this lesson you did a 
number of problems involving Ohm 's 
Law. We won 't do any more examples 
involving simple applications of 
Ohm's Law at this time. If you have 
forgotten the three forms of Ohm's 
Law, be sure to memorize them 
again. Remember the three forms 
are: 

I = E + R 
R = E + I 
E=IxR 

You can use Ohm's Law to solve 
many circuit problems. If you know 
the voltage and the resistance in the 
circuit, you can use the formula 
I = E + R to find the current. If you 
know the voltage and the current in 
a circuit, you can use the formula 
R = E + I to find the resistance and 
if you know the current and the re-
sistance in the circuit, you can use 
the formula E =I x R to find the volt-
age. Remember, if you know any two 

of the quantities - resistance, cur-
rent or voltage - you can use the ap-
propriate form of Ohm's Law to find 
the other quantity. 
Remember to give your answer in 

the proper units. If you are finding 
the voltage in the circuit, give your 
answer in volts; if you are finding 
the current in the circuit, give the 
answer in amps, and if you are find-
ing the resistance in the circuit, give 
the answer in ohms. Simply giving 
a numerical answer without the cor-
rect units after it is unsatisfactory. 
Remember also that to use Ohm's 

Law you must have the voltage in 
volts, the current in amps, and the 
resistance in ohms. If you are given 
the current in milliamperes, you 
must change it to amperes to use 
Ohm's Law. Similarly, if the volt-
age is given in millivolts or kilo-
volts, change it to volts and if the 
resistance is given in megohms or 
lcilohms, change it to ohms. 

In your regular lesson text you 
learned the power formulas that let 
you find the power consumed in 
watts. These formulas are: 

P=ExI 
I = P + E 
E = P + I 

Using these formulas, if you know 
any two of the quantities, power, 
voltage or current, you can find the 
other. 

For example, find the power in a 
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circuit if the voltage is 150 volts 
and the current is 3 amps. Using the 
formula P=E xI and substituting 
for E and I we get: 

P=Exl 
= 150 x 3 
= 450 watts 

If in another problem you are given 
that the power in a circuit is 660 
watts and the voltage is 110 volts, 
you can find the current in the cir-
cuit using the formula I = P ÷ E. 
For example: 

I = P ÷ E 
= 660 ÷ 110 = 6 amps 

If you are given that the power in 
the circuit is 800 watts and the cur-
rent is 2.5 amps, you can find the 
voltage using the formula E = P I 
You proceed as follows: 

E=P I 
= 800 ÷ 2.5 
= 320 volts 

There is another formula for 
power when we know the value of 
current and resistance, P = I2R. 12 
is equal to I x I. We would use this 
formula in examples where current 
and resistance are given and we want 
to find power. For example, if the 
current in the circuit is 3 amperes 
and the resistance in the circuit is 
15 ohms, we can find the power dis-
sipated in the circuit. 

P = I2R 
3 x 3 x 15 

= 135 watts 

We can also rearrange this for-
mula to get 12 = P R. or R = P 12 
These two forms are also useful in 
solving certain problems. For ex-
ample, if the power in a circuit is 
400 watts and the resistance in the 
circuit is 100 ohms, we can find the 

current flowing in the circuit using 
the formula: 

12 = P R 
= 400 ÷ 100 
= 4 

This gives us the value of I2 or I x I. 
To get the value of I we need a num-
ber that when multiplied by itself 
will give us four. Obviously the an-
swer is 2 and therefore the current 
is 2 amps. 2 is called the square 
root of 4. In a later lesson you will 
learn how to find the square root of 
a number, but for the present the 
only problems we will have you do 
involving square roots will be simple 
numbers which you will be able to 
recognize readily. For example, the 
square root of 4 is 2, the square 
root of 9 is 3, the square root of 16 
is 4, the square root of 25 is 5 etc. 

Another version of the power for-
mula that is useful is P = E2 R. 
We use this formula when we know 
the voltage and the resistance in the 
circuit. To find the power in the cir-
cuit, we divide the voltage squared, 
which is equal to E x E, by the re-
sistance and this will give us the 
power in watts. We can also re-
arrange this formula into the form 
E2 = P xRand R =E2 ± Pand use 
it to find the voltage in the first case 
when the power and resistance are 
known and the resistance in the sec-
ond case when the voltage and power 
are known. We will not give any ex-
amples in the use of these formulas 
because they are exactly the same 
as the other power formulas. 
You already learned how to find 

the resistance of resistors in series, 
but sometimes you have to find the 
value of resistors in parallel. The 
total resistance of two resistors in 
parallel can be found using the for-
mula: 
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R1 X R2  
R t. - R I + R 2 

We would use this formula to find 
the resistance of two resistors in 
parallel if we have been given the 
resistance of the individual resis-
tors. For example, if a 20 ohm re-
sistor and a 30 ohm resistor are 
connected in parallel, find the re-
sistance of the two resistors in 
parallel. Substituting these values 
in the formula: 

R1 X R2 

Rt = R1 + R2 

20 x 30  
- 20 + 30 

600 
- 50 

= 12 ohms 

Sometimes you will have a circuit 
where there are more than two re-
sistors connected in parallel. You 107. 
can use the same formula for find-
ing the resistance of the parallel 
combination by finding the resist-
ance in groups. For example, if 108. 
there are three resistors, find the 
resistance of two of the resistors 
in parallel while ignoring the third 
resistor. When you have found the 109. 
resistance of two of the resistors 
in parallel, treat this parallel resist-
ance as a single resistance and find 110. 
the resistance of it in parallel with 
the third resistor. If there should 
happen to be four resistors in paral-
lel, group them into two groups of 111. 
two each. Find the parallel resist-
ance of each group and then treat 
each group as a single resistor and 
then find the parallel resistance of 
the two groups of resistors. 

Now to get practice applying the 
power formulas, Ohm's Law and the 
various resistance formulas, do the 
following problems. You will find 
many of the problems are very simi-
lar to many of the problems you 
have worked in this lesson, but the 
time you will spend on these addi-
tional problems will be spent in a 
very worthwhile way. It will not only 
help you with the mathematics, but 
it will also help you remember the 
various formulas and how to use 
them - and give you a better under-
standing of electronics. Also, if you 
will work these problems, you should 
have no difficulty doing the lesson 
questions because they are very 
similar to the problems in this 
group. 

SELF-TEST QUESTIONS 

106. What is the total resistance of 
a circuit that has a 35-ohm re-
sistor in parallel with a 75-
ohm resistor? Round off your 
answer to the nearest ohm. 
If we have a voltage of 120 volts 
applied to a lamp with a resist-
ance of loon, how many watts 
of power will be consumed? 
In the circuit shown in Fig.27, 
the total resistance of the cir-
cuit is 335 ohms. What is the 
resistance of R2? 
If the current flowing through 
the circuit in Fig. 27 is 6 amps, 
what is the power in watts? 
What is the maximum rated 
current-carrying capacity of a 
500-ohm resistor marked: 500 
ohms, 2000 watts? 
If a vacuum tube that has a fila-
ment rating of .25 amps at 5 
volts is to be operated from a 
6-volt battery, what value of 
series-dropping resistor would 
we need? 
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150 n 

R3 

114. If 120 volts de is applied to a 
5on resistor connected in 
series with two resistors of 
5on in parallel with each other, 
how much current will flow in 
the circuit? 

115. What is the total resistance of 
the circuit shown in Fig. 28? 

116. A 4500 resistor has a rated 
tolerance of ± 10%. When we 
measure it with an ohmmeter, 
we find that it actually has a 
resistance of 410n. Is it within 
its tolerance? 

R1 30.n_ R3 25n 

R4 
15 n. 

Fig. 29. Circuit for problems 118 and 119. 

55 n 75 n 

R2 R3 

75n. 

Fig. 27. Circuit for problems 108 and 109. 

112. A tube with a filament resist-
ance of 5000 is designed to op-
erate when 200 milliamperes 
flow through the filament. 
What value of resistance must 
be connected in series with the 
filament to limit the current to 
this value if we operate it from 
110 volts dc? 

113. If resistors of 5, and 15 ohms 
are connected in parallel,what 
is the total resistance? 

75 n-
---/V\A---* 30 n_ 

R1 -'\AAr- R6 
4On. I8rL 

20 n 
R4 R5 

R7 

50 n 
 1A.A.  
R8 

15 n 35 n_ 

R 10 R 9 

Fig. 28. Circuit for problem 115. 
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117. Three resistors in series have 
voltage drops of 36 volts, 24 
volts, and 40 volts. What per-
centage of the total voltage is 
the 24-volt drop? 

118. In the circuit shown in Fig.29, 
450 watts of power are con-
sumed. What is the voltage drop 
across II I? 

119. How many amperes of current 
flow through R4 in the circuit 

described in Problem 118? 
120. A current of 400 milliamps 

flows through a resistance of 
2.2K. What is the voltage drop 
across the resistor? 

Now, as soon as you feel sure that 
you are ready, work out the answers 
to the ten questions at the end of the 

lesson and submit your answers for 
grading. 

Answers To Self-Test Questions 
The following solutions to the 

various problems are to be used 
after you have tried to work the 
problems out yourself. Don't look 
at the answer or the solution until 
you have made an attempt to do the 
problem yourself. However, if you 
do not get the same answer as we 
do, be sure to go through the solu-
tion very carefully to be sure that 
you find out where you made your 
mistake. If you work each problem 
and then check your answer with 
ours, and if you make any mistakes 
find out where the mistake is, you 
should have no difficulty doing the 
questions at the end of the lesson. 

1. The problem here is simply to 
find the resistance of a number of 
resistors in series. To do this you 
simply add the value of the individual 
resistors. Setting down the values as 
below we add and get 172 ohms. 

68 
31 
9 

17 
21 
7 

19 
172 

2. In this problem you know the 
total resistance in the circuit, and 
you know the resistance of four of 
the resistors. To find the resistance 
of the unknown resistor you add the 
resistance of the four known resis-
tors. We know that this value plus 
the resistance of the unknown resis-
tor must be equal to 81 ohms. There-
fore, to get the correct resistance of 
the unknown resistor you subtract 
the resistance of the four resistors 
in series from the 81 ohms. Putting 
down the values of the four known 
resistors to get their total resist-
ance we have: 

14 
8 

17 
23 
62 

Since the total resistance of the four 
known resistors is 62 ohms, we now 
subtract 62 from 81 and get 19 ohms; 
this is the value of the unknown re-
sistor, 

81 
-62 
19 
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3. This is simply a series circuit 
with five resistors connected in 
series. To find the total resistance 
we simply add the resistance of the 
resistors as shown below and get as 
our answer 511 ohms. 

127 
97 
9 

219 
59 

511 

4. The first step in solving this 
problem is to determine the resist-
ance of the four known resistors. 
To do this we put down the values 
and add as below: 

216 
318 
91 
56 

681 

Thus, the total resistance of the four 
known resistors is 681 ohms. Since 
the total resistance in the circuit is 
823 ohms, the value of the unknown 
resistor must be equal to 823 - 681. 
Thus,we set down the problem sub-
tracting as shown below and get as 
our answer 142 ohms. 

823 
-681 
142 

5. Here we have a simple appli-
cation of Ohm's Law. The unknown 
value is I so we want this on one 
side of the equation. The known val-
ues are E = 57 volts and R = 19 ohms, 
so we want these values on the other 
side of the equation. Thus we use 
the formula: 

I = E + R 
= 57 19 
= 3 amps 

6. To solve this problem we want 
to use Ohm's Law in the form E = IR. 
Here we have the unknown E on one 
side of the equals sign and the known 
values I = 3 amps and R = 21 ohms 
on the other side of the equals sign. 
Thus we have: 

E = IR 
3 x 2 1 

= 63 volts 

7. To do this simple Ohm's Law 
problem we use, I = E + R 
E = 84 volts and R =28 ohms so we 
have: 

I = E + R 
= 84 + 28 
= 3 amps 

8. In this problem the known val-
ues are E and I, E = 96 volts and 
I = 4 amps. We have to find R so we 
use the formula: 

R = E + I 
= 96 + 4 
= 24 ohms 

9. We are given that I = 5 amps 
and R = 17 ohms. To findthe voltage 
we use Ohm's Law in the form: 

E = IR 
= 5 x 17 
= 85 volts 

10. In a problem such as this, 
where we have the total voltage equal 
to 32 volts and the total current equal 
to 2 amps, we can find the total re-
sistance using the formula: 

R = E + I 
= 32 + 2 
= 16 ohms 

Since Ill = R2 and since the two 
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are in series, R1 + R2 = 16 ohms 
and each resistor must be equal to 
8 ohms. 

11. Using the rules of order, we go 
through the problem doing the multi-
plication and division first as we go 
from left to right. Thus we have: 

25 + 16 X 3 - 28 ÷ 7 = 
25 + 48 - 4 = 
69 

12. In this problem we have to do 
the operations inside the parenthe-
ses first and then we go from left to 
right doing the multiplications and 
divisions in the order in which they 
occur. Thus we have: 

5 x (11 - 8) + 3 x (7 - 5) ÷ 2 = 
5 x 3 + 3 x 2 4 2 = 31 i 1 8 + 54 + 9 
15 + 3 = 30 = ' 30 72 

18 

3 5 6 
16 -+- +- = 

7 7 7 

3 + 5 + 6 _ 
7 

14 
-¡-= 2 

22 6 8 19 . 

6 4 19 
i + 23 + 69 = 

18 + 12 + 19  _ 
69 

• 1 1 1 49 
• 9 + 3 + 12 69 

6 + 4 + 1 
12 

11 
12 

1 1 1 

1 2 3 
23.-+-+ -= 

5 9 Ti 

99 + 110 + 135  
495 

344 
495 

15 + 10 + 6 _ 1 3 1 
30 24.7+ = 

13. 4 + (5+2) X 20 - (10-6) (7-5) = 
4 + 7 x 20 - 4 - 2 = 
4 + 140 - 2 = 142 

14. In this problem you must per-
form the operation inside the paren-
theses first, and then we do the op-
peration inside the bracket. Then we 
go through the problem from left 
to right doing the multiplication and 
division in the order in which they 
occur and then finally go through the 
problem again from left to right 
doing the addition and subtraction. 

3 x 500 r 2 x (28 + 22)3 + 25 - 6 = 
3 x 500 ÷ r. 2 x 501 + 25 - 6 = 
3 x 500 ÷ 100 + 25 - 6 = 
15 + 25 - 6 = 34 

15. 95 ÷ (22 - 17) - 6 x2 - 3 + 8 = 
95 ÷ 5 - 6 X 2 - 3 + 8 -- 29 1 

19 - 12 - 3 + 8 = 12 

3 1 3 
8 2 4 

3 + 4 + 6 _ 
8 

13 = 5 
8 18 

3 1 1 - = 
4 16 8 

12 + 1 + 2  
16 

_ 15 
- 16 

71 
72 

7 9 2 
25. + = 

49 + 45 + 70  
175 

164 
175 

5 3 
26.- - -= 

7 7 

5 - 3 

2 

7 - 

1 1 3 2 1 
= 21 27.-3 = - .-- 

3 + 7 + 14  2 

14 + 6 + 9 4 - 3 
42 6 

42 6 
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7 3 
28. 7) 

7 - 6 _ 
10 

10 

8 2 
29 -- — 
' 9 5 

40 - 18 
45 

22 
45 

3 3 
30'4 ir= 

6 - 3 
8 

3 
-"T 

25 1 
31 —  • 27 - 3 

25 - 9 _ 
27 

16 
27 

3 1 1 _ 
32.7 -7 -

35 3 1 _ 
• 38 8 4 

35 - 12 - 9 
36 

14 7 
36 

1 
36. 1--+ 2 5- 

4  

5 + 4 
3 + 

20 

9 9 
3 +Wi' 3Fe 

1 1 1 
37' 2-  + 3-3 + ,6 

2  

1 1 1 
2 + 3 + 1 + 7 +7 +7 - 

1 2 2 
40. 8-9 - 3- - 2- - 

7 3 

2 
8 - 3 - 2 + 1 - T 2- - 

1 2 2 
9 7 3 

2 10 2 2 
+- - -  9 7 - 3 

70 - 18 - 42 
2 + 

63 

10 10 2 + T3- 267 

1 8 1 
41 -+ 
' 7 9 3 

9 + 56 - 21 
63 

44 
63 

3 + 2 + 1  
6 + 3 1 3 1 

6 42•T - 7+ r-
6 

6 +-6 = 6 + 1 = 7 27 - 4 + 6 - 18  
36 

7 33 - 22 11 
38. 4- - 3-1 = • 

8 4 36 36 

1 + 8 

7 1 

7 - 2 

5 5 1 +-8 , 1—  
8 

3 315 - 40 - 72 39. 5-8 - 2-- 
7 360 

203 
360 

4 3 3 _ 
5 - 25 - 50 

40 - 6 - 3  
50 

31 
50 

1 3 
5 - 2 + r- T,= 

3 + 
56 

7 - 24 

3 1 1 
43, 4— + 1-4 - 2-- 

8  7 

4 + 1 - z 
8 4 7 

21 + 14 - 8  3 + 
56 

27 ,27 
+ 56 - '56 

7 1 1 2 
44 - 3-7 - 1-6 + 8- • 8 1- 9 

7 1 1 2 
1 - 3 - 1 + 8 

63 - 24  
2 + 56 5 441 - 72 - 84 + 112  + 

504 

2 + 99 239 
56 56 

553 - 156 397 397 
5 + 5 + 5 5TC4 504 
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1 3 1 I 45. 6y- 47,+7- 1u-= 

1 + 36 

3 1 1 

12 - 27 + 4 - 12  _ 

16 - 39  1 + 36 _ 

52 - 39  
36 

1 1 
46 •3 -X- = 

4 

1 x 1 1 
3 x 4 12 

1 2 
47•7 - x-9 - 

1 x 2 2 
7 x 9 63 

48• 43 -x-3 = 8 

3 x 3 9 
4 x 8 32 

43• 87 -x 4 -= 
7 

13 
36 

x 4  4 1 
X 8 - 2 

5 26 
50.13 x 30 

I 2 

0 X e 2 _ 1 
x ly) 6 3 

3 7 2 
51.7 xTi x 

x x 2 2 1 
7 x8x3 8 4 

1 

3 16 19 
52.- x - x --= 8 19 21 

1 8 9 _ 63. T x T x 

1 1 
ixgx 01 
gxe x 23 -- 23 
1 1 

4 21 7 
7 28 9 

x, 
exalx.7  .1 
7x x ir 3 
1 Y 

1 

18 30 2 _ 
55.u-xi7x7_ 

, 
x x 2; - 

4, 1 

1 2 
9 56• 3 -+ -= 

10 33   1 -x -= 1- 
% 2 2 2 

57 2_ _3 = 2 _ x = _2_ 
• 7 7 7 3 3 

1 
3 9 

58.--+ 
4 16 

1 4, 

a --L 
4 0 - 3 =3 
1 3 

47 1 
59' - + - = 49 7 

47r x i = °7 
7 

19 41 
60 —x -= 

23 38 

_.1ï x 41 
23 -e 

2 

41 
46 

61. - + 1 1 
14 2 

2 34 x 2 _1_ , 
i x T 

1 2 3 _ 
• 9 3 7 

1 7 7 
T ^ I ^ 7-- 1-r 

4 3 
1- -= • 11 7 4 

1 7 

49 16 
33 - 133 

2 4 5 
64.-9 + 

5 8 

-2 xi x1-
9 4 0 9 

1 1 

13 2 4 
65. -+ -+ 

15 5 9 

66. 11x 21= 
4 2 

5 5 25 „I 
4 2 8 

1 
67. 2-3 x 4-7 = 

8  

19 - 29 551 „47 
= - 

8 7 - 56 56 

68. 4-3 4x -= 
7 9 

7 31 9 217 
- = 24 1- 9 9 

7 1 
69. 6-+ 2-= 

8 4 

55 9 -+ 
8 4 

55 

2 

55 1 
18 3 fi 
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I 

1 1 
70. 5— + 3— = 

8 7 

41 22 _ 
8 • 7 

41 7 287 111 
8 x 22 = 176 = 1 176 
2 1 

71. 8— ÷ 5— = 
9 6 

74 31 
T 

2 

74 0 148 
= 

—x — 
0 31 93 
3 

1 5 1 1 72. 8-9 x 3—+ 9-7 = 

73 16 64 
7 x 7 -, 

73 i 7 
T x f x ye = 

4 

511 = 2 151 
180 180 

2 2 3 
73. 6—÷ 2— x 4 —= 

3 9 4 

20 20 19 
+ 7 x ,,T .= 

7 6 1 
75. 1— ÷ 6— x 2 — = 

8 9 2 

15 8690  5 r = 

1 
I% 9 5 

xrer-x-= i-  

45 
64 

173- 
in 1 1 x 3 1 1 3 

55 
2 + T 5 10 + 10 ÷ 5 = 

1 
1 3 1 1 0 

151 + ;7e x7= 

1 3 1 1 
— 
2 20 10 6 

30 + 9 - 6 + 10 43 
60 - 60 

1 .1 5 1 8 : L= 
77' 78 T--x 9 3 

1 40 5 1 $ —x—x---x—x—= e 7 0 1 
1 3 

20 1 60 - 7 - 53 - 11 
— 

7 3 21 21 2 21 

/ 3 7 , 1 1 1 1 3 1 = 
x  0  x 19 57 = 141 2 TxT+7• 4 6 

2r0 4 = 4 4 

1 1 1 
74 3— ÷ 8-2 x 2-8 = 

4  

13 . 17 17 
4 • 2 x 8 = 

I I 
13 .1_ 13 
7 x x 7 16 = 

1 4 

2 

1 1 1 e 1 _ 
2 - 12 + 2' x 

I. 

6 - 1 + 8 - 2 _ 11 
12 12 
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.16666  79. 11  + 11 - x 3 - 2-3 - 3 x-9 - - 83 4 = ' 66//11.00000= .1667 4 8 8 4 1 3  

5 14 3 4 X 1 4 71 + -i x i-x )71 -I xF xi = 
2 

5 3 4 _ 
T - i= 

180 + 27 - 64 _ 143 
144 144 

go. 1 + 1\ 7 + 13 _ _81_) x 78 
(4 Tr 8 

(6 + 1)+ 7 (6 - 1) 8 x - 
8 8 8 9 

7 x 0 0 7-ixt. 

5 9 - 5 4 
1 - = . 

9 9 9 

81. .3125 
16/5.00 

48 
-2-15-

16 
40 
32 
80 
80 

82. .875 
8/0T1:O-
6 4 
60 
56 
40 
40 

6 
40 
36 
40 
36 
40 
36 
40 
36 
4 

84. .71428 = .7143 
7/5.0000 
49 
10 
7 
30 
28 
20 
14 
60 

85. .8125 
16/13.000 

12 8  
20 
16 
40 
32 
80 
80 

86. 1.34 
26.2 
8.41 

91.74 
127.69 

87. 8.33 
92.1 
17.41 
6.3  

124.14 

88. 91.31 
-80.94  
10.37 
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89. 137.42 
- 43.8 

93.62 

90. 137.6 1 decimal place 
4.88 2 decimal places 

110 08 3 decimal places 
1100 8 
5504 

671.488 3 decimal places 

91. .43 2 decimal places 
.0061 4 decimal places  

43 6 decimal places 
258 

.002623 6 decimal places 

92. 2.35.08.33 

1 
96. 22-x 100 = 33-F % 

20 
97. -ax )05 = 20% 

a 

3 
le 3 98. x ,64 = 9 

36 
99. -x 4286 = 1542.96 

100 

100. 10% of 680 = 

10 
-x 680 = 68 ohms 

47.1 100 
23/1083.3 

92 Lowest value = 680 - 68 =612 
163 ohms. 
161  

23 101. 5% of 2200 = 
23 

93. .049/7 

923 
49/-4. 7 

441 
112 
98 
147 
147 

94. .051/.01887 

.37 
517W3J7-7 

15 3  
3 57 
3 57 

95. .00173 5 decimal places 

21 0 decimal places  
173 5 decimal places 
346  

.03633 5 decimal places 

-5 x 2200 = 110 ohms. 
100 

2200 + 110 = 2310 ohms. 

.*. 2300 ohms is within its rated 
tolerance. 

102. 10% of 4.7 K = 

10 
x 4700 = 470 ohms 

100 

4700 + 470 = 5170 ohms. 

5200 is greater than 5170 

resistor is above its rated 
tolerance 

1 
103' -4--x 100 = 25% 
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1 104. 100 = 12.5% up or drop the extra voltage —8 x  
which is the difference between 
the battery voltage and the tube 

105. 75% of 200 volts = filament voltage in this case. 

6-5 = 1 volt. Therefore we 

75  200 = 150 volts have the circuit: x  
100 

106. 
R1 X R2 

lit - R1 R2 

35 x 75  
- 35 + 75 

2625  
- 110 

= 23.8 ohms 

= 24 ohms 

E=I VOLT 

I=.2 5AMPS. 

E=5 
VOLTS 

We have E across R = 1 volt, 
I = .25 amps 

E 107. P = E2 + R - 120 x 120  
•.• " 1 4 ohms 100 

12 x 120 12 x 12 
10 1 

144 
1 = 144 watts 

108. R1 + R2 = 75 + 150 = 225:1 
Ht = 335 
R2 = 335-225 = 110 a 

109. P = 12 x 

= 6 x 6 x 335 
= 12,060 watts 

110. P = 2000 watts H = 500 
12 = P - R 

112. The current through the tube 
filament = 200 milliamps 

• 
• • 

200 milliamps = .2 amps. 

resistance of filament = 500 ohms. 

voltage across filament 

E =IxR 
= .2 x 500 
= 100 volts 

:. series resistor must drop 110-
100 = 10 volts 

10 
2000 • • R = = 50 ohms. 

- 4 
500 

113. Rt - R1 X R2 
If I x I = 4, then I = 2 amps. R1 + R2 

111. In this problem you have 2 re- = 5 x 15  
sistors in series. One resistor 5 + 15 
is the tube filament which has 
a voltage drop of 5 volts across 

= —75 = 3.75 ohms 
it. The other resistor mustuse 20 
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114. The circuit we have in this 
problem is: 

R3= 
50A 

First we find the value of R2 and 
R3 in parallel: 

R 2 X R. 

50 x 50 2500 ,„ 
--- 1J 

50 + 50 100 

Re, + R10 = 35 + 15 = 50 

Now we can redraw the circuit 
and substitute for Ro3 and R, and 
for R, and R10 : 

55A 75 ,.û., 
75,A, 

R2 R3 
R R4 R5 R6 ,R 7 

4 011, 18A 12J1, 
50.1)1 

R8 
R8 , R10 

501 

Now we find R2 and R3 in 
.«. total series resistance is R1 series: 

in series with 25 ü 

50 + 25 = 750 

Now we know E = 120V and and R4, R5 and Re - R7 in 
R = 75 CI so we can find I: series: 

T E = — 
R 

120 
- 1.6 amps 

75 

115. At first glance, this problem 
might look difficult, but it is 
just a matter of solving it a 
step at a time. 

First we find the value of 
Re x R7 in parallel: 

Rt - R6 X R7 

Rg + R7 

30 x 20 600 
= - 120 

30 + 20 50 70A 

R2 + R3 = 55 + 75 = 130 r2 

40 + 18 + 12 = 70Q 

.Uso we find R8 in parallel with 

- R1o: 

50 x 50 2500  
Rt - 50 + 50 - 100 - 25 

Now we can redraw our circuit 
and substitute this value: 

754, 

130 

Next we find the value of Ro 
and R10 in series: 2 5.n., 
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Now we find the value of 1300 

in parallel with 700: 

40 X 40 1600  
- 200 

40 + 40 80 

130 x 70 9100 .. R1 + parallel combination = 
45.5Ç2 

Rt 130 + 70 200 - 30 + 20 = 500 

Now we have 75 + 45.5 + 25 = power = 450 watts 

145.5 

116. 10% of 4500 = 

10 
x 450 = 45 

100 

450-45 = 4050 is the lowest 
• • value in tolerance 

410e is in tolerance 

• 12 450 _ 9 
50 

I x I = 9 and I = 3 amps. 

Voltage drop across R1 

E=Ixii= 3 x30=90volts 

119. Total current = 3 amps. 
Part flows through 112 and part 
through R3 and R4. 

117. Total voltage --- 36 + 24 + 40 = 
100 volts. Since 112 = 400 and R 3 R 4 =on 

24 volts = —24 x 100 = 24(Z 
• 100 

118. The first step in solving this 
problem is to find the total R. 

R3 114 = 25 + 15 = 40.2 

• R3 -F 114 in parallel with 112 = ••• 

current flowing in each branch 
will be equal 

3 
• 1.1, =- = 1.5 amps 
• • 2 

120. I = 400 milliamps = .4 amps 
R = 2.2K = 2200 ohms. 

.0. E = I x = .4 x2200 880 volts. 
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Lesson Questions 
Be sure to number your Answer Sheet X105. 

Place your Student Number on every Answer Sheet. 

Most students want to know their grades as soon as possible, so they mail their answers 
immediately. Others, knowing they will finish the next lesson within a few days, send in 
two sets of answers at a time. Either practice is acceptable. However, don't hold your 
answers too long; you may lose them. Don't hold answers to more than two sets of 
lessons at any time, or you may run out of lessons before new ones can reach you. 

1. A supply voltage of 120 volts is applied to three resistors in series. One resistor has a 
drop of 55 volts, another a drop of 30 volts. What is the voltage drop across the third 
resistor? 

2. A 750-ohm resistor has a rated tolerance of -±5%. When it is measured with an 
accurate ohmmeter, we find that the meter reads 697 ohms. Is the resistor (a) above, 
(b) below, (c) within its rated tolerance? 

3. If 640 watts are consumed in a circuit with a total resistance of 160 ohms, how much 
current will flow in the circuit? 

4. A current of 200 milliamps flows through a resistance of 1.6K. What is the voltage 
drop across the resistor? 

5. Find the answer to the problem 5 + 60 X 3 + 4 — 6. 

6. If 1/16th of the voltage applied to a circuit is dropped across a certain resistor, 
exactly what percentage of the total voltage does this represent? 754, 

7. What is the total resistance of the circuit shown at the 
right? 

8. If 440 volts is applied to the circuit at the right, how 
much voltage will be dropped across the 35S2 resistor? 

55a 25a 

35 

25a 

9. If a vacuum tube filament has a resistance of 20 ohms, and is rated at 250 milliamps, 
how much voltage should we apply so that it will draw its rated current? 

10. The power consumed in a circuit is 160 watts. The voltage applied is 80 volts. What is 
the resistance of the circuit? 



LEARNING NEVER ENDS 

More and more it becomes evident that learning is 
a continuous process--that it is impossible to break 
the habit of studying without slipping backward. Look 
around you at all the marvelous developments of the 
last twenty years. You have the advantage of having 
"grown up" with them--yet there are probably many 
things you wish you knew more about. Then, consider 
what can happen in the years ahead if you do not keep 
abreast of the stream of new things that are bound to 
come: 

Your NRI Course is preparing you for the problems 
of today and tomorrow, but what about the day after 
tomorrow? In five or ten years, will you still be up-to-
date? Yes, if you plan your future. Resolve now--that 
you WILL keep up. You have the fundamentals; keep 
them fresh in your mind by constantly reviewing. Read 
and study technical literature and textbooks; join in 
discussion groups and listen to lectures; take advantage 
of every possible educational opportunity. Then, and 
only then, can you face the future unafraid, no matter 
what technical developments the future may hold. 
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1. Introduction   Pages 1 - 2 
A quick look at the basic operations you will study in this 
lesson as they apply to ac circuit problems. 

2. Square Roots   Pages 3 - 11 
Here you learn how to find simple square roots, imperfect 
squares, square roots of fractions and decimals, and to 
estimate square roots. 

3. Ratio and Proportion   Pages 12 - 20 
This section shows how to establish ratios and solve 
proportion problems. 

4. Positive and Negative Numbers   Pages 21 - 32 
You study addition, subtraction, multiplication, and division 
of signed numbers in this section. Exponents and roots are also 
explained. 

E 5. Vectors   Pages 33 - 53 
The term "vector" is defined. You learn how to solve 
problems vectorially by means of vector arithmetic. There is a 
section on vector calculations and a discussion of the 
Pythagorean Theorem for vector solutions. 

u 6. Circuit Calculations   Pages 54 - 59 
This important section contains hints and examples on how to 
solve problems. There are also some problems to give you 
practice. 

E 7. Answers to Self-Test Questions   Pages 60 - 67 

E 8. Answer Lesson Questions. 

E 9. Start Studying the Next Lesson. 
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AC CIRCUIT CALCULATIONS 

In your reference lesson on dc circuit 
calculations, you reviewed and studied 
many of the operations of basic arith-
metic. You learned how simple addition, 

subtraction, multiplication, and division 
can be used in your work with electronics 
and electronic circuits. In this reference 

lesson you will take another step in your 
study of electronics by learning how to 
apply these same fundamental operations 

when solving ac circuit problems. How-
ever, as you learned when you studied 
coils and capacitors, alternating current 
reacts much differently from direct cur-
rent in certain circuits. For this reason, 
you will have to expand your knowledge 
of basic mathematics in order to handle 
some of these conditions. 

One of the first things you learned in 
dealing with alternating current is that 

the reactance of coils and capacitors 
causes the voltage and current to be 
out-of-phase with each other, while any 

resistance tries to keep them in phase. 

Consequently, you cannot add or sub-
tract these ac circuit quantities without 
taking these phase differences into con-
sideration. Although this might have 
seemed pretty difficult at first, you 
quickly learned that it could be done 

quite easily by using vectors to represent 
the phase relationships as well as the 

values. Then, by adding and subtracting 
the vectors, you were able to account for 
both the phase and the size of the circuit 
quantities. 

While there is really no limit to the 
circuit solutions you can obtain by using 
simple vector measurement methods, 
they are very awkward and clumsy for 
the more complex circuits. For this 

reason, a number of simpler methods 
have been worked out to use in practical 
circuit solutions. Some of them involve 
square roots, others trigonometry, and 
one very common system uses a principle 
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known as the j-operator. Like many other 
new subjects or methods, you will have to 
learn a few basic rules in order to use 
them with confidence and accuracy. 

In addition to knowing how to do 
square roots, you should be very familiar 
with positive and negative numbers. In 
this lesson we will discuss finding the 
square roots of numbers, which is really a 
special type of division. You will also 
study positive and negative numbers, ra-

tio and proportion, and take a closer look 
at vectors. Remember, you are not going 

to try to learn all there is to know about 
these subjects. You are simply going to 
look at them from the standpoint of their 
practical application in electronics. 

Even though this is a reference lesson, 
it is still required for your course. Submit 
the answers to the questions at the back 

of the book just as you do for the 
technical lessons. 
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Square Roots 

In our discussion of coils and capaci-
tors we mentioned that if you knew how 
to do square roots, you could use a 
mathematical solution for finding the 
impedance in ac circuits. We even dis-
cussed the formula for this method, 
which is 

Z = IN/77—f x2 

where Z is the impedance, R is the 

resistance, and X is the total reactance. 
The reactance may, of course, be either 
the inductive reactance, XL, capacitive 
reactance, Xc, or a combination of both 
XL and Xc. 

This is a very handy formula for 
finding impedance and you will probably 
use it many times in your work with 
ac circuits. However, like many good 
methods of working problems, it is of no 
use unless you know how to do square 
roots. So let's take a look at this process, 
which is known as finding the square root 
of a number. Even if you have already 
studied square roots it will still be a good 
idea to read this section to refresh your 
memory. 

When you studied multiplication you 
learned that the product of a number 
multiplied by itself was called a "square." 
You also learned a special way of indi-
cating the process of finding a square by 
placing a small "2" above and to the right 
of the number. Thus, 6 X 6 can be 
indicated as 62, or 136 X 136 as 1362. 
Any other number times itself can be 
indicated the same way. 
Many times in your work with elec-

tronics you will have the "square" of a 
number and will want to know the 

number. There is a special process of 
division that can be used to find the 
"squared" number. Since the number 
that makes a square when it is multiplied 
by itself is sometimes called the "root" of 
a square, this special division process is 
called finding the "square root." 

Let's make sure you understand this. A 
number multiplied by itself, or 
"squared," makes a product called a 
"square." The number that is squared is 
called the "root" of the square. The 
special division to find the root of a 
square is called finding the "square root." 

SIMPLE SQUARE ROOTS 

Now that you have seen what we mean 

by square root, let's look at a typical 
example and learn how to solve it. Sup-
pose you are asked to find the square 

root of the number 576. What you want 
to know is: "What number multiplied by 
itself will give me a product of 576?" The 
main difference between this and any 
other division problem is that here you 
are given only the product to work with. 
Instead of being given a product and one 
number and being asked what number 
when multiplied by the given number will 
equal the product, you are simply given a 
product and are asked to find the one 
number that can be multiplied by itself to 
give this product. 

This process is not as difficult as it may 
sound. It is just a matter of learning a few 
rules and how to apply them. First, you 
must set up the number as you would any 
other division problem, as shown in Fig. 
1A. However, you will notice that there is 
one major difference besides the fact that 
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0 0 

Fig. I. Setting up a square root problem. 

there is no divisor. It's the symbol that 
looks like a lopsided letter V that is in 
front of the dividend (t). It replaces the 
straight vertical line in a standard division 
symbol and is called a "radical" sign. This 
radical sign is the symbol for finding the 
root of a number and is always used in a 
square root problem. 

In a square root, just as in any other 
division, you do not tackle the whole 
number at once. You split it up into 
smaller numbers and work with them a 
few at a time. However, in square roots 
you do it a little bit differently. You will 
notice that in Fig. 1B we have placed a 
comma between the 5 and the 7. This 
breaks our number up into two numbers, 
5 and 76. The method for breaking these 
numbers up in this way is quite simple. 
You merely start at the extreme right of 
the whole number and work toward the 
left, placing a comma after each group of 
two numbers. Thus, starting with the 6 
and working toward the left we have our 
first group, 76, and then the 5. Since the 
5 is the last number on the left in this 
particular problem, you have only two 
groups, one of which is a single number. 

Grouping the numbers in this way 

under the radical sign completes the 
setup. You are now ready to go to work. 
You will remember that in division you 
used a basic multiplication table con-
taining all the products for various combi-
nations of the numbers from 1 to 9. After 
you had a division problem set up, you 
tried various products to see which one 
would go into the dividend. In a square 

root, you do much the same thing except 
that you need to know the squares of the 
numbers from 1 to 9. Fig. 2 is a basic 
multiplication table showing all the 
squares of the numbers from 1 to 9 
marked with stars. This table and these 
squares are all you need to work any 
square root problem. 

Now, let's look at the problem again, 
as shown in Fig. 3A, where it is set up 
and ready to work on. Since we have 
broken the number up into two groups, 
and since the number 5 is alone in the 
first group, we consider the 5 first. We 
don't have a divisor to divide into the 5, 
so we must make one. We do this by 
determining the largest square that will go 
into 5. Looking at the table, we see that 2 
squared is equal to 4, which is smaller 
than 5, and 3 squared is equal to 9, which 
is larger than 5. Since the square of 3 is 
larger than 5, the square of 2 is the largest 
perfect square that will go into 5. 

Therefore, 4 becomes the first trial 
product and the 2, which is the square 
root of 4, is the first trial divisor. Now 

•1 2 3 4 5 6 7 8 9 

2 •4 6 8 10 12 14 16 18 

3 6 •9 12 15 18 21 24 27 

4 8 12 *16 20 24 28 32 36 

5 10 15 20 *25 30 35 40 45 

6 12 18 24 30 •36 42 48 54 

7 14 21 28 35 42 *49 56 63 

8 16 24 32 40 48 56 *64 72 

9 18 27 36 45 54 63 72 *81 

Fig. 2. The basic multiplication table showing 
squares of numbers from 1 to 9. 
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15,76 
-4 

I 76 

2  
15,76 
4 

I 2X2.4 

2 4X10. 

3 4X40.160 

4 5-2e49- --4ZU 

5 176 -40 . 

6 40+4.44 

Fig. 3. Steps for working out a square root 
problem. 

that we have found that 4 is the largest 
square that will go into 5, we place it 
under the 5 as shown in Fig. 3B. Then, 
we take the 2, which we squared to get 
the 4, and place it above the line over the 
5 to indicate that it is the first digit of the 
quotient. This is also shown in Fig. 3B. 
Next, we subtract the 4 from the 5 to get 
the first remainder, which is 1, as shown 
in Fig. 3C. By finding the largest square 
that will go into the first group in our 
dividend, we have obtained the first trial 
product, the first remainder, and the first 
digit in the quotient. 

This first step is the only time we have 
to use the square of a number when doing 
square roots. As you can see we never 
have more than two numbers in any 
group. The largest number we can possi-
bly have in the first group is 99, and 9 
squared, or 81, is the largest square that 
can go into 99 because 10 squared is 100. 
This is the reason why we never need 
more than the basic squares of the num-
bers from 1 to 9 in order to find the 
square root of any number. 
From now on the problem becomes 

more like regular division except for the 

way of obtaining the trial divisors and 
trial products. 

Looking at Fig. 3D, you see that the 
next step is to bring down the next group 
of numbers, which is 76. Notice that we 
bring down the whole group, not just the 
7. When we have placed the 76 beside the 
1 as shown, we have a trial dividend of 
176. Now we must learn the rule by 
which we establish the next trial divisor. 
To do this, we take the partial quotient 
of 2, double it, and then multiply the 
result by 10. 

Following this rule, the partial quo-
tient is 2. If we double it, we get 4. 
Multiplying the 4 by 10 gives us 40. We 
use the 40 as the trial divisor. Now we 
ask ourselves: "How many times will 40 
go into 176?" We know that 4 times 40 is 
160 which will go into 176 easily. Since 5 
times 40 is 200, which is too large to go 
into 176, 4 is the number we want. 

However, we are still not quite finished 
with the trial divisor. Before we can use 
it, we have one more step to do. After we 
have determined that 4 is the largest 
number of times that 40 will go into 176, 
we must then add the 4 to 40 as shown in 
Step 6 of Fig. 3E. This gives us 44 which 
we use as the final trial divisor, as shown 
in Fig. 3F. 
Now, we must multiply 44 by 4 to see 

if it will still go into 176. As you can see, 
4 times 44 is exactly 176 and we will 
have no remainder when we subtract. 
Since the trial divisor did go into 176 
four times, the second number of the 
quotient is 4 and can be placed above the 
line over the second group of numbers. 
There is no remainder; therefore, the 
complete quotient is 24, which is the 
square root of 576. We can prove this by 
squaring 24, which will give the product 
of 576. 

Although the process of finding the 
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square root of a number is not difficult, it 
requires a firm knowledge of some im-
portant rules. For this reason we will 
work out another problem dealing with a 
larger square. Then you will have a good 
review of the process as well as some 
practical experience. Remember, no mat-
ter how large the number may be you 
proceed in the exact same way. 

Working Square Root Problems. Let's 
find the square root of 186,624. 

First, set up the problem under the 
radical sign. Next, separate the number 
into groups of two numbers, starting at 
the right and working toward the left, as 
shown in Fig. 4A. In this problem the 
radicand (the special name given to the 
dividend in a square root) is divided 
evenly into three groups of two numbers 
each. Since the first group is the number 

4 

V18,66,24 V18,66,24 
-16 

® 

2X4.8 

8X10 
80X3.240 

266-80. 
80+3.83 

43 X2.86 

86X10. 

860X2.1720 

1724+860 

860+2.862 

0 

3  
V18,66,24 
-16 

83{-2-6-6 
-249 
-7 

4 3 2  
V18,66,24 
-16 

83 T2-6-6 
-249 

1724'   

Fig. 4. Finding the square root of a six digit 
number. 

18, we will find the largest square that 
will go into 18. 

Looking at the multiplication table in 
Fig. 2 we see that the square of 4 is 16 
and that the square of 5 is 25. Twenty-
five is larger than 18, so 16 must be the 
largest square smaller than 18. Therefore, 
we place the 16 under the 18 in our 
radicand and subtract, as shown in Fig. 
4B. Since 4 is the number that we 
squared to obtain this trial product, it is 
the first trial divisor and we place it in the 
quotient over the number 8 in the first 
group. 

Next, subtract 16 from 18 to get a 
remainder of 2. Then bring down the 
next group of two numbers, 66, and place 
them beside the 2. This gives us a new 
number, 266, to use as the dividend for 
the next step, as shown in Fig. 4C. Now 
you must determine the second trial 
divisor. Remember, double the existing 
quotient (4) and then multiply by 10, 
giving us 80 as shown. Then see how 
many times 80 will go into 266. For this 
particular problem, 80 will go into 266 
three times. Therefore, we add 3 to 80, 
giving 83 as the second trial divisor. Now, 
multiply 83 by 3 to get the trial product 
of 249 which can be subtracted from 
266. This subtraction gives a remainder of 
17, which is shown in Fig. 4C. Since the 
trial divisor of 83 went into 266 three 
times, enter the 3 in the quotient above 
the line over the second group of num-
bers, 66. 

In this problem we still have another 
group of two numbers left in our radi-
cand, so we are not finished yet. There-
fore, we must bring the 24 down beside 
the 17 to get the dividend for the next 
step. As you can see in Fig. 4D, this gives 
1724 and you must find a trial divisor for 
it so that you can find the next number 
for the quotient. 
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Proceeding as before, you take the 
partial quotient, 43, double it to get 86, 
and then multiply the product by 10, 
giving you 860. You can see that 860 will 
go into 1724 only two times. Therefore, 
you add 2 to 860, making 862 the trial 
divisor. Now, multiplying 862 by 2 gives 
exactly 1724 and you can subtract with-
out having any remainder. Finally, you 
place the 2 in the quotient above the 24, 
giving you the complete square root of 
186,624, which is 432. You can check 
this, of course, by multiplying 432 by 
itself to see if the product is equal to the 
radicand you started with. 

Although the rules for doing square 
roots are a little different from those 
involved in other types of division, they 
are not any more difficult. Like anything 
else, it takes practice to become profi-
cient at finding square roots. Most of us 
don't get this practice after we leave 
school, so we are likely to forget how to 

do it. However, in electrical work, square 
roots can be quite important. Let's try 
another problem. 

In Fig. 5 we have set up the number 
7,306,209 to find its square root. Notice 
that the complete radicand contains seven 
numbers so it can't be divided evenly into 

groups of two. Since we always start at 
the right end of the radicand, we form 
the groups as shown In this way, a single 

22 = 4 

2X2 =4 X 10 =40 

40X 8=320 

40+8 =48X8=384 

40 +7 = 47X7 = 329 

54X 10 = 540 

540 X 10 =5400 

5400+ 3 =5403 X3=16209 

2 7 0 3  
V7,30,62,09 
-4 

17 F30 

54-03 1-762 09 
-1 6209 

Fig. 5. Another square root problem. 

number will be the first number to the 
right of the radical sign. 

Now, we examine the number in the 
first group to find the largest square that 
will go into it. In this problem, the first 
group is only one number, 7. The largest 
square that will go into it is 22, or 4. 
Thus, we place a 2 in the quotient or 
root, directly over the 7. Then we place 
the square of 2, which is 4, under the 7 
and subtract, giving a remainder of 3. 

Bring the next group, 30, down beside 

the 3. Double the root number, 2, making 
it 4 and multiply it by 10 for the next 
trial divisor. Now, we determine how 
many times 40 will go into 330. It looks 

as if 8 will work because 4 X 8 = 32. 
However, when we add 8 to 40 to get a 
trial divisor of 48, we find that 48 X 8 = 
384, which is larger than 330. Therefore, 
we will have to try the next smallest 
number which is 7. 

Notice that we don't multiply 48 X 7. 
We change the whole trial divisor of 48 to 
47 and then multiply 47 X 7 which is 
equal to 329. In a square root, we often 
have to reject trial divisors and use new 
ones that are smaller. Since 329 is smaller 
than 330, we place the 7 in the root and 
subtract 329 from 330. This gives a 

remainder of 1 and we bring down the 
next group, 62, from the radicand, giving 
us our new remainder, 162. 
We double the two numbers in the 

root, 27, to get a new trial divisor, which 
is 54 times 10 or 540. It is obvious at a 
glance that 540 will not go into 162. 
Therefore, we place a zero in the root 
above 62 and then bring down the next 
two numbers, which are 09. The re-
mainder now becomes 16209. 
We double the three numbers in the 

root, 270, to get the next trial divisor, 
which is 540 times 10 or 5400. This 
number (5400) looks as if it will go into 
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16209 about 3 times. So we add 3 to 
5400 to get 5403 and then multiply this 
number by 3 and get exactly 16209. 

Since we have no remainder, the problem 
is completed and we place the 3 in the 
quotient, or root, above the last group of 
numbers. Thus, we have found that the 
square root of 7,306,209 is 2703, which 
we can prove to be correct by squaring 
2703 to get the original radicand. 

IMPERFECT SQUARES 

So far all the answers have been the 
roots of perfect squares. Although this is 
convenient, it does not often happen in 
practice. There will usually be a re-
mainder, which must be accounted for by 
making the root end with a decimal 
number or a fraction. For example, sup-
pose the radicand for the last problem 
that you worked had been 7,306,976 
instead of 7,306,209. If this had been the 
case, the problem would have worked the 
same way until you had reached the last 

part of it, as shown in Fig. 6. 
As you can see, the trial product of 

5403 X 3 is equal to 16209, but because 
the original radicand was changed you 
have a remainder of 767 when you 
subtract. This is not large enough to 

2703X 2 .5406%10 .54060 

2 7 0 3 1 4  
‘,/ 7,30,6%76.00.00 

22 -4 

C12.1:: 11 4:7911 

54fl31 6976 
•_)_( I- -16209 
'1.24:11• 64961 1--- 700 

-54061 
5 49.g.1 , 

1— 540624  2."7(0 
-2162496 

I 0 1 404 

27031 X2.54062 X10.540620 

540624 X4. 2162496 

Fig. 6. An imperfect square root carried two 

places. 

increase the root by another whole num-
ber to make it 2704, but it does leave a 

fraction. If the need for accuracy is such 
that you want to carry the root of 2703 
into its fractional part, you would con-
tinue the problem as shown in Fig. 6. 
To do this, you place a decimal after 

the last number in the radicand and then 
add a group of two zeros for each decimal 
place you want in the root. Notice that 
there are two zeros added for each 
decimal place in a square root instead of 
only one zero, as there is in regular 
division. In this particular problem, we 
have carried the answer to two decimal 
places and have added four zeros as 

shown. 
After you have added the zeros in the 

radicand and the decimal point in both 
the radicand and in the root number, you 
continue in the same manner as before to 
find the new root numbers. Bring down 
the first group of two zeros beside the 
remainder of 767 to give 76700 for the 
next dividend. Then you double the 
existing root number, 2703, and multiply 
the product by 10 to get the trial divisor, 
54060. You can quickly see that this will 
go into 76700 only once, so you add the 

1 to it as shown. Then, since any number 
multiplied by 1 is that same number, you 
have 54061 for the trial product. Place 
the 1 in the root. 

Subtracting 54061, you get a re-
mainder of 22639. Bring down the next 
two zeros as shown. Now, double the 
quotient and multiply by 10, ignoring the 
decimal in the quotient. In other words, 
multiply 27031 by 2 to get 54062 and 
then multiply by 10, making it 540620. 

Continue as before to find the next root 
number, which is 4. As you can see, this 
gives a root of 2703.14 to two decimal 
places. Since we still have a remainder we 
do not have a perfect root. Except where 
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extreme accuracy is needed, two decimal 
places in the answer are enough. Of 
course, if you do want more accuracy, 
you would simply continue in the same 
way by adding two more zeros for each 
additional decimal place. 
You can check your answer in the 

usual way by squaring the root to see if 
you get your original radicand. In this 
problem, if you square 2703.14, you will 
get an answer of 7,306,965.8596. It is 
not exactly the same as the original 
radicand because we did not have a 
perfect square to start with. However, 
you can see that the root is close enough 
and is correct to two decimal places, 
which is all we are interested in. 

FRACTIONS AND DECIMALS 

Many times in electronics you will 
need to find the square root of a fraction 
or decimal. While the process for finding 
the roots of fractions or decimals is 
nearly the same as it is for whole num-
bers, there is one important thing to 
remember. The square root of a fraction 
or decimal will always be larger than its 
square. You will recall that the product 
of any two fractions or decimals is always 
smaller than either of the two numbers. 
Therefore, the square of any fraction or 
decimal must also be smaller than the 
numbers squared. 

Finding the square root of fractions is 
usually very easy, because most fractions 
have small numbers in both the numer-
ator and the denominator. Also, finding 
the square roots of small numbers does 
not involve much work. The first thing to 
do to find the square root of a fraction is 
to reduce the fraction as much as possi-
ble. Thus, if you wanted to find the root 
of 6/32, you would first reduce it to 
3/16, as shown in Fig. 7A. 

re71 
„32" 16 

I. 7 3 2 
® 

-1 
r2-0 0 

(if, 9 ' 
89 

44 3 F00 

(-IL 31 0 29) -1029 
34-62 i- 00 

-6924 t6.y24_, 

4. 

16 

0 THUS, 
3/16 = 

1.732 
4 

Fig. 7. Finding the square root of a fraction. 

Next, separate the numerator and the 
denominator and find the square root of 
each one separately, using the same 
method that you learned for whole num-
bers. Thus, you would find the square 
root of 3, which is 1.732 to three places, 
as shown in Fig. 7B. Then find the 
square root of 16, which is 4. Now use 
the root of 3 as the new numerator and 
the root of 16 as the new denominator. 
Thus, the square root of 3/16 is 1.732/4 
as shown in Fig. 7C. By using this simple 
method, you can find the square root of 
any fraction quickly and accurately. 

In finding the square root of a decimal, 
you proceed exactly the same as for a 
whole number except the grouping will 
be different when you set up the prob-
lem. You still separate the decimal num-
ber in groups of two numbers, but with a 
decimal you start at the decimal point 
and work to the right. You must always 
have an even number of digits to the right 
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V.96,12,35 ESTIMATING SQUARE ROOTS 

Fig. 8. Setting up a decimal for a square root. 

of the decimal place. That is, each group 
must have two digits. Thus, to set up the 
decimal .961 for finding its square root, 
you proceed as shown in Fig. 8A. 

After you have placed the number 
under the radical sign, start at the decimal 
point and count two numbers to the right 
and place a comma between the 6 and the 
1. Then add a zero after the 1, so that the 
second group has two digits. If the 
number were .961235, you would place 
commas after the 6 and after the 2, as 
shown in Fig. 8B. The fact that you work 
from the decimal point to the right in the 
grouping of the digits is the only differ-
ence in the method of finding the square 
root of a decimal from that of a whole 
number. In Fig. 9 we have worked out 
the square root of two decimals. You 
should not have any trouble in following 
these examples. 

.980 ANS.98 
V.96,I0,00 (APPROX) 
-81 

18810 
-I 5 04 

1960 

ANS.31 

Fig. 9. Finding decimal square roots. 

Now that you have seen how to work 
out the square roots of numbers in detail, 
let's see how we can apply this process in 
ac circuits. Suppose, for example, that we 
want to find the impedance of the circuit 
shown in Fig. 10. By using the formula 

Z=/R2 +x2 

and substituting for the values of R and 
X, we have: 

Z=/5O2 -1767 

as shown in Step 2 of Fig. 10. 

R=50 n I Z = IF12+X2 

2 =1502.602 

3. • M25043600 

78 
4 

49 
RB iF00 
" B. r , -I I 84  
1180 ; 6 „• 

Fig. 10. Using a square root to find impedance. 

In working square roots you must 
follow the rules of order just as in doing 
any other math. Therefore, the next thing 
you must do is to perform all the 
multiplication under the radical sign. This 
is shown in Step 3. Next add the two 
squares, which gives 6100. Now go ahead 
as shown in Step 4. This gives the circuit 
impedance of 78 ohms and automatically 
takes care of the phase relationships 
without having to work with vectors. 
Many times, instead of working out the 

square root of problems accurately, it will 
be much easier to estimate the answers. 
For example, take the number 6436. You 
can see that 80 X 80 is equal to 6400, 
which gives a remainder of 36. For most 
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purposes this would be close enough, so 
we would use 80 as the answer. 

Likewise, with a number such as 7548, 
you can see that it is more than 802 
(6400), but less than 902 (8100). There-
fore, it would be easy to guess that 842 
might be close, since 7500 is a little less 
than halfway between 6400 and 8100. If 
we square 84, we will find that it is equal 
to 7056, which is somewhat less than 
7548. 
When we are this far off in our 

estimate, the next number we would try 
would probably be 86 or 87. Let's square 
87 and see what we get. 

87 
87 

609 
696  
7569 

As you can see, this is very close. The 
difference between 7569 and 7548 is 
only 21, and unless you require extreme 
accuracy, you would use 87 as the 
square root of 7548. By estimating in this 
way, you can come very close to the 
square root of any number with a little 
practice. For large numbers it is generally 
much easier than working out the root in 
detail. Try the following problems and 
see if you can get the answers we have 
shown: 

Find the square root of 625. 

Solution: 

2 5 

s/6,25 

—4 

45 225 
—2 25  

Find the square root of 11025. 

Solution: 1 0 5 

N/1,10, 25 
- 1 205 1 10 25 
—  10 25 

What number when multiplied by itself 
gives 8,094,025? 

Solution: 2 8 4 5 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
(9) 
(10) 

N/ 8, 09, 40, 25 
—4 48 r„.---w —3 84  

564 1 25 40 
— 22 56  

5685 I 2 84 25 
I— 2 84 25 

SELF-TEST QUESTIONS 

What is the name given to the 
symbol which is used to indicate a 
square root (Nr—  )? 
What is the impedance of an ac 
circuit containing, in series, a resis-
tance of 15 ohms and a total reac-
tance of 20 ohms? 
Find the square root of 2 to three 
decimal places. 
Find the square root of 25/625. 
What number when multiplied by 
itself gives 12,321? 

Find Si 449.44. 
An inductor with an inductive reac-
tance of 30 ohms is connected in 
series with a 40 ohm resistor. What 
is the total impedance? 
Find Nrii9. 
Find Nr-0,0441. 
Find N/301. 
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Ratio and Proportion 

There are many times in electronics 
work when we want to compare quan-
tities. Sometimes we can simply say that 
something is either larger or smaller than 
something else, but usually this does not 
give us enough information. In elec-
tronics, as in any other scientific work, 
we need exact information as to sizes or 
quantities. For example, saying that one 
resistor is larger than another is not 
enough. We must know how much larger 
it is if we are going to use the resistors for 
anything practical. 

Although we can subtract one quantity 
from another to find out how much 
larger it is, there are many times when 
this type of specific information is not 
too useful. For example, suppose we 
want to compare the efficiencies of two 
electrical circuits. Let's say that one 
circuit has an input of 400 watts and an 
output of 300 watts, while the other has 
an input of 568 watts and an output of 
426 watts. If we subtract the input from 
the output in the first circuit, we find 
that it has a loss of 100 watts (400 watts 
— 300 watts). The second circuit, on the 
other hand, has a loss of 142 watts (568 
watts — 426 watts). 

By subtracting we find that the loss in 
the second circuit is 142 watts as com-
pared to a loss of only 100 watts in the 
first circuit. However, we still don't know 
which circuit is the more efficient. We 
know that 42 watts more power is con-
sumed in the second circuit, but since the 
input and output of this circuit are also 
larger, this does not tell us anything 
about its efficiency. 

However, there is a method by which 
we can quickly and accurately compare 

the losses in the two circuits and deter-
mine their relative efficiencies. This is 
actually a form of division and is known 
as establishing ratios. For example, if we 
divide the output of the first circuit by its 
input and reduce the resulting fraction, 
we have; 

300 3 

400 4 

This fractional value of 3/4 tells us that 
three-quarters of the input power appears 
as useful output. The remaining one-
quarter is the loss in the circuit. 

If we do the same thing to the second 
circuit, we have, 

426 3 
.--

568 4 

because 142 will go into the numerator 3 
times and into the denominator 4 times. 
Thus, the ratio of the output to the input 
of the second circuit is exactly the same 
as the ratio of the output to the input of 
the first circuit. Their ratios are both 3/4 
and, therefore, their efficiencies are 
the same. In other words, for every 4 
watts of input we will get 3 watts of 
output. 

By establishing ratios in this way, we 
can make many accurate comparisons 
between various quantities. In addition, 
through a process known as proportion, 
we can use an established ratio to com-
pute circuit values much more simply and 
quickly than we could in any other way. 
In this section of the lesson, you will 
learn the rules for establishing ratios and 
how to apply the ratios in circuit com-
putations. 
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ESTABLISHING RATIOS 

When two quantities are compared by 
division, we call the ratio of the two 
quantities the "quotient." Thus, when we 
divided 426 by 568 and then reduced the 
resultant fraction to its lowest possible 
form, we had the ratio of 3/4. We can 
write such a ratio as the fraction 3/4, or 
we can use two dots as a ratio sign and 
write it 3:4. In either case, we say that 
the ratio is "3 to 4." 

In establishing ratios for use in com-
paring quantities, we must always be sure 
to express the two quantities in the same 
units. For example, we can't compare 10 
volts with 10 millivolts. We must either 
change the 10 volts to 10,000 millivolts 
or change the 10 millivolts to .010 volts 
before we can establish a ratio between 
them. Also, the quantities themselves 
must be of the same kind. We can't, for 
example, compare a volt with an ampere, 
or an ohm with a watt. However, there 
are many times when we can compare 
seemingly unlike quantities by changing 
both of them to a third quantity. 

For example, suppose a motor's output 
is 5 horsepower and its input is 4 kilo-
watts. If we want to establish an output-
to-input efficiency ratio for this motor, 
we can do it quite simply by converting 
our values. One horsepower is equivalent 
to 746 electrical watts. To simplify our 
calculations we will use 750 watts as an 
approximation. Thus, we can convert 5 
horsepower to 5 X 750 or 3750 watts. We 
also know that 4 kilowatts is equal to 
4000 watts. So, by converting both the 
output and the input to a common unit 
such as watts, we are able to establish the 
following ratio: 

Given: Output = 5hp 
Input = 4kW 

Find: Efficiency 

Output 
Efficiency = 

Input 

5hp 5 X 750 

4kW 4 X 1000 

3750 15 
=—= 15:16 

4000 16 

Thus, the efficiency of the motor can 
be expressed as the ratio of 15 to 16. If 
we prefer, we can change the ratio to a 
percentage value by dividing as follows: 

.9375 or 93.75% 

16 F7D-000 
144 

60 
48 
120 
112 
80 
80 

In this way, we can express a ratio as a 
fraction, a decimal value, or a percentage. 

The rules for establishing ratios are 
quite simple. To find the ratio of two 
similar quantities: 

1. Convert the quantities to the same 
units of measurement. 

2. Form a fraction using one quantity 
as a numerator and the other quantity as 
a denominator. 

3. Reduce the fraction to its lowest 
possible form. 

4. If you wish, you can divide the 
denominator into the numerator to 
express the ratio as a decimal or as a 
percentage. 

PROPORTION 

Even though ratios are extremely use-
ful for comparing similar quantities, they 
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•45 V refer back to the efficiency problem in 
R1 •15A the two circuits you studied earlier in this 

lesson. You recall that in the first circuit 
we had an efficiency of 

E2. ? 

R2.60 n 

El RI 
— •— 
E2 R2 

45 15 2. — .— 
E2 60 

45 I 

E2 4 

4. 45 X 4v 180 

45 I 
5 — • — 

180 4 

1 I 
6 —"— • 4 4 

THUS e E2 MUST 
EQUAL 180 VOLTS 

Fig. 11. Using ratio and proportion to solve for 
circuit values. 

are probably even more useful as a 
computing tool. By setting certain ratios 
equal to each other in what is known as a 
proportion, we are able to make many 
shortcuts in circuit calculations. For 
example, suppose we had a circuit such as 
the one shown in Fig. 11 and wanted to 
know the voltage across R2. Ordinarily, 
in a series circuit such as this, we would 
first find the current through R1 by using 
the formula I = El ÷ R1. Then, since the 
current is the same in all parts of a series 
circuit, we would find E 2 by multiplying 
I by R2. However, by using ratio and 
proportion we can find either the voltage 
across R2 or the total voltage in one 
simple operation, without ever knowing 
the current at all. Thus, ratio and pro-
portion save time and work by elimi-
nating the step of finding the current. 

In order to use proportion, you have to 
remember one simple rule. That is, a 
proportion is a mathematical statement 
that two ratios are equal. For example, 

300 = 3 
— 

400 4 

Likewise, in the second circuit the effi-
ciency was 

426 3 
— = — 
568 4 

Thus, both of the ratios are equal and we 
can actually indicate this mathematically 

as 

300 426 

400 568 

because, when we reduce both fractions, 
we have 3/4 on both sides of the equal 
sign. Therefore, it is a proportion because 
it contains two equal ratios. 
Now, let's see how we can apply this 

type of thinking to the circuit in Fig. 11. 
First, let's establish a resistance ratio for 
the circuit. We do this by dividing R1 by 
R2 to get the ratio 15/60 or 1/4. Now, 
let's find the current in the circuit by 
dividing El by R1 and then find the 
voltage across E2 by using the method we 
are familiar with. If we do this, we find 
that: 

I = El ÷ R1 
= 45+15=3 amps 

Then, E2 = R2 X 
= 60 X 3 
= 180 volts 

If we form another ratio from the 
voltages across Ei and E2 , we will have 

14 



45/180 = 1/4. Notice that this voltage 
ratio is exactly the same as the resistance 
ratio and, therefore, the two ratios must 

be equal. Accordingly, we can establish a 
proportion with the two equal ratios by 
stating them mathematically as: 

R1 E, 
= 

R2 E2 

or 

15 45 

60 180 

or 

1 1 

4 4 

All three expressions are proportions and 
say exactly the same thing. 

Suppose we knew that the resistance 
and voltage ratios were equal to begin 
with. Actually, we can easily see that 
they would be, because the voltage drops 
around a circuit must distribute them-
selves in accordance with the size of the 
resistances. If we had realized this, we 
could have set up our proportion as 

shown in Fig. 11 to begin with, and 
substituted all our known values as 
follows: 

E, 
— = 
E2 R2 

Substituting, we have: 

45 15 
— = 
E2 60 

This, of course, gives us what we call an 
"equation" that has one unknown value. 
Now that we know that the two ratios 

are equal, we can find the value of E2 
quite simply. If we reduce the 15/60 to 
its lowest form of 1/4, we have 

45 1 

E2 — 4 

Since one side of our proportion will 
reduce to 1/4, the other side must also 
reduce to 1/4 so that the two sides can be 
equal. Thus, all we have to do is replace 
the denominator, E2, in our first ratio, 
with a number that is equal to 4 times 45. 
Since 4 X 45 = 180, E2 must be equal to 
180 because 45/180 is the only fraction 

with 45 as the numerator that will reduce 
to 1/4. We must be able to reduce both 
sides to 1/4 in order to have a proportion. 

Although this may seem a little com-
plex at first, let's consider the following 
conditions which should clear it up. If 3 
resistors cost 75 cents, we know that 6 
resistors must cost $1.50. At the given 
rate, the cost of the resistors must depend 
only on the number bought. The more 
resistors we buy, the larger the cost will 
be. The fewer we buy, the less the cost 

will be. When two quantities depend on 
each other in this way, they are said to be 
in proportion. 
We have already said that a proportion 

is a mathematical statement that says two 
ratios are equal. In this problem, the two 
quantities that make up the ratios are the 
number of resistors, N, and the cost, C. 
Since the cost depends on the number of 
resistors bought, we can write a pro-
portion. 

First Purchase 

N1 = 3 resistors 
C1 = $.75 

Second Purchase 

N2 = 6 resistors 
C2 = $1.50 
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N2 

The ratio of the number of resistors is: 

N1 3 1 
= 

6 2 

The ratio of the cost is: 

CI 75 1 

C2 150 2 

Since the two ratios are equal, the pro-
portion is written mathematically as: 

NI CI 

N2 C2 

or 

3 75 

6 150 

or 

2 2 

This is an example of a direct pro-
portion. When two quantities depend on 
each other so that one increases as the 
other increases, or one decreases as the 
other decreases, they are said to be 
directly proportional. This is what we 
mean when we say that the current 
through a fixed resistance is directly 
proportional to the voltage applied. As 
the voltage increases, the current in-

creases, etc. 
Notice that when we set up two equal 

ratios as a direct proportion, we must 
compare the two ratios in the same order. 
In other words, we used the quantities in 

the first situation, NI and C1, as numer-
ators, and the quantities in the second 
situation, N2 and C2, as denominators. 

Thus, they are in the same order because 
the second ratio, C1/C2, is patterned after 
the first, NI /N2. However, we could have 
written the proportion in the opposite 
form. For example, 

CI N1 

C2 N2 

or 

C2 N2 

. 

or 

N2 = C2 

NI CI 

As you can see, it is not important 

which ratio is written first or how it is 
written. However, in a direct proportion, 
the second ratio must always be written 
in the same order as the first. 

Thus, the rules for setting up a direct 
proportion for two variables that depend 
on each other are: 

1. Make a ratio of either one of the 
variables. 

2. Make a ratio of the other variable in 
the same order. 

3. Make the two ratios equal to each 

other. 

SOLVING PROPORTIONS 

In the first example of a proportion 
that we solved, we reduced the completed 

ratio to its smallest possible form. Then 
we found a number for the unknown in 
the incomplete ratio that would allow it 
to be reduced to the same form. While 
this is actually what we must do in order 
to find the solution for any proportion, 

16 



there is a shortcut which we can use that 
makes it much easier. This shortcut is 
called "cross-multiplication" and we will 
learn later how it can be used. It always 
works and we should learn how to use it. 

For example, suppose we have a length 
of cable that is 78 ft. long and another 
length of the same kind that is 4 ft. long. 
We want to know how much the longer 
piece of cable weighs, but because it is 
bulky and hard to handle it will be 
difficult to weigh it. In this case, we 
could weigh the smaller length of cable 
and then set up a proportion and find the 
weight of the longer piece. 

Let's say that the shorter piece weighs 
ten pounds. We would set up the pro-
portion as follows: 

LL WL 

Ls ws 

LL = length of longer cable 
Ls = length of shorter cable 
WL = weight of longer cable 
Ws = weight of shorter cable 

Now, by substituting values, 

LL WL 

Ls Ws 

78 WL 
= 

4 10 

we have: 

To apply our shortcut using cross-
multiplication, we multiply the numer-
ator of one fraction by the denominator 
of the other as follows: 

4 X WL = 78 X 10 
4WL = 780 

Now we have a familiar equation form to 
work with and we know that if 

4WL = 780, then 
WL = 780 ÷ 4= 195 

Therefore, the weight of the large, bulky 
piece of cable is 195 lbs. 

Another example of the same problem 
in a slightly different situation might be 
quite common in your work in elec-

tronics. Suppose the longer piece of cable 
were wound on a reel and you wanted to 
know how long it was without unwinding 
it. Since it was wound on a reel, it would 
be easy to handle and we could weigh it 
quite easily. Then, by weighing the 
shorter piece, and setting up the pro-
portion using the two weights and the 
length of the short piece, we could find 
the length of the long piece. Suppose the 
cable on the drum weighed 425 pounds, 
while the short piece was 4 ft. long and 
weighed ten pounds. First, we would have 
to subtract the weight of the reel itself, 
say 25 pounds, and then set up the 
proportion: 

LL WL 

Ls ws 

LL (425 — 25) 

4 10 

LL 400 
— = 
4 10 

By cross-multiplying, we have: 

10 X LL = 4 X 400 
10 LL = 1600 
LL = 1600 ÷ 10 
LL = 160 ft. 
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The steps for solving any direct pro-
portion are always the same. 

1. Set up the direct proportion: 

Xi Y1 
= 

X2 Y2 

2. Substitute numbers where possible: 

10 50 
--

100 X 

3. Cross-multiply: 

10X X= 50 X 100. 

4. Simplify: 10X = 5000. 

5. Solve for the unknown by dividing: 

X= 5000+10 

6. Answer: X= 500. 

Inverse Proportion. So far in our dis-
cussion of proportion, we have con-
sidered only what happens when two 
quantities vary directly. Many times two 
quantities depend on each other, but 
instead of varying directly they do just 
the opposite. When one increases, the 
other must decrease an appropriate 
amount. When this occurs, we say the 
two quantities vary indirectly or 
"inversely" and that they are inversely 
proportional. The current and resistance 
in an electrical circuit, with a fixed 
voltage, is a good example of an inverse 
proportion. As the resistance increases, 
the current decreases. 
We can set up inverse proportions 

mathematically just as we do direct pro-
portions except for one major difference. 
In an inverse proportion, we always set 

up the second ratio in the opposite or 
inverse order. For example, consider the 
parallel circuit shown in Fig. 12. 

In this circuit we are given the values 
of the two resistances and the current 
through one of them. We could find the 
current, 12, by finding the voltage across 

and since the voltage across R2 

would be the same we could find 12 by 
using this voltage. However, we can solve 
this problem in a much simpler manner. 
There is just one thing to remember. The 
current and the resistance vary inversely 
and, therefore, we must use an inverse 
proportion. To do this, we set up the first 
ratio. It doesn't make any difference 
which one we use first or how we set it 
up, as long as we set up the next one in 
the opposite manner. 

For example, in the circuit of Fig. 12, 
let's use the current ratio first as 11/12. 
Then, the resistance ratio in the reverse 
order R2/Ri, and then set them equal to 
each other as follows. 

5 12 =200 -150 
12 R1 

1 150 
2 

12 200 

6 12.133 AMPS 

3 150 X I2= 200 X1 

4 150 12.200 

Fig. 12. Using an inverse proportion to solve 

for current. 
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Ii R2 
... = 

12 R1 

Substituting, we get: 

1 = 150 
—  — 
12 200 

150 X 12 = 200 X 1 
150 12 = 200 

12 = 200 ÷ 150 
12 = ,1 .33 amps. 

As you can see, the solution is obtained 
in exactly the same manner as in a direct 
proportion. The only difference is that 
we reversed the order of the second ratio 
from that of the first when we set up the 
ratios. 
You will recall that when we first 

discussed establishing ratios we men-
tioned that a ratio could be written as 5:2 
as well as 5/2. We can also write pro-
portions in two ways, depending upon 
which way we indicate our ratios. For 
example, the proportion 

10 50 

20 100 

would be written as 10:20 :: 50:100, 
using the two dots as ratio signs and the 
four dots to indicate proportion. When a 
ratio is written in this way, there is no 
cross-multiplication indicated, as there is 
in the fractional form, and we use a 
different way of indicating the solution. 

In the form 10:20 :: 50:100, we give a 
name to both parts of the proportion. We 
call the two outside numbers, 10 and 
100, the "extremes" of the proportion. 
The two inside numbers, 20 and 50, are 
called the "means" of the proportion. 
Now, we say that the product of the 

means is equal to the product of the 
extremes. In other words, the product of 
the two outside numbers is equal to the 
product of the two inside numbers. As 
you can see, remembering this and using 
it with this form of the proportion gives 
us exactly the same thing as cross-
multiplying a proportion that is written 
in the fractional form. 

10 50 
— = — 
20 100 

20 X 50= 10 X 100 

or 

10:20:: 50:100 

20 X 50=10X 100 

Using ratios in proportion to solve for 
unknown quantities is one of the handiest 
tools in mathematics. It is not only easy 
to use and work with, but it is easy to 
remember the rules. No matter where you 
go or what you do, you can almost 
always find some use for ratio and pro-
portion in solving problems. You will be 
very pleased with the amount of work it 
can save you. 

SELF-TEST QUESTIONS 

(11) Explain the difference between a 
ratio and a proportion. 

(12) A 2-horsepower motor requires 1.75 
kilowatts of input power. What is 
the efficiency of the motor? 

(13) Find the ratio of 6V to 18V. 
(14) What is the ratio of 250 millivolts to 

1 volt? 
(15) Find the efficiency of a 3-

horsepower motor which requires 
2.5 kilowatts of input power. 
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(16) A is directly proportional to B. Ai 
= 15, A2 = 6, Bi = 90; find B2. 

(17) A is inversely proportional to B. A2 
= 4, B1 = 100, B2 = 150; find AI. 

(18) RI and R2 are connected in series 
across a battery. RI is a 1200-ohm 
resistor and drops 10 volts. R2 is a 

240-ohm resistor. What is the 
applied battery voltage? 

(19) R1 and R2 are connected in par-
allel. R1 is a 66-ohm resistor passing 
a current of 2 amps. R2 passes a 
current of 2.2 amps. What is the 
value of R2? 
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Positive and Negative 

Numbers 
Many of the calculations, graphs, and 

tables that are used to solve problems in 
both ac and dc circuits require an under-
standing of positive and negative num-
bers. These numbers are commonly called 
"signed" numbers and are used to indi-
cate opposite amounts. These opposite 
amounts might be some of the following: 
gain or loss in voltage, increase or 
decrease in volume, currents that flow in 

opposite directions, capacitive or induc-
tive reactance, etc. 

In our everyday lives we commonly 
indicate opposite quantities by various 
pairs of words, such as north and south, 
up and down, and gain or loss. In 
electronics, we use opposite quantities so 
often that it is much easier to indicate 
them by using plus (+) and minus (—) 
signs. For example, 5° above zero is 
written as +5°, and 5° below zero is 
written as —5°. A current in one direction 
would be +10 amps, but a current in the 
opposite direction would be —10 amps. 

Numbers preceded by a minus sign are 
called negative numbers. A positive num-
ber is indicated by a plus sign. However, 
many times a positive number will not 
have any sign at all. Thus, a number with 
no sign is always considered a positive 
number. A number is never considered to 
be negative unless it has a minus sign. 
Generally, increases and gains, and direc-
tions to the right and upward are con-
sidered to be positive (+). Losses and 
decreases, directions to the left and 
downward are considered negative (—). 

Since your work in electronics involves 
signed numbers so often, you must be 

very familiar with them. You will have to 
be able to add and subtract them from 
each other as well as be familiar with 
multiplying and dividing them. In this 
section of the lesson you will learn how 
to perform these basic operations with 

signed numbers. 

ADDING SIGNED NUMBERS 

Probably the best way to understand 
positive and negative numbers is to repre-
sent them on a graph as shown in Fig. 13. 

-10-9 -6-7-6-5-4 -3 -2 -I 0 +I +2 +3+4 +5+6+7+8+9+e 

Fig. 13. Graph showing arrangement of positive 
and negative numbers. 

As you can see, there is a reference point 
or zero mark at the center of the scale 
with the positive numbers extending to 

the right and the negative numbers to the 
left. A scale of numbers like this is very 
handy for showing both addition and 
subtraction of signed numbers. For exam-

ple, if we want to add +3 and +5, we start 
at zero and count three numbers to the 
right which will bring us to +3. Then, we 
start at +3 and count five more numbers 
to the right, which brings us to +8, as 
shown by the arrows in Fig. 14. 

144111111111f IfIlf III 
-10-9 -8 -7 -6 -5 -4 -3-2 -I 0 +I +2+3+4•540+7 48+9•10 

Fig. 14. Adding +3 and +5 graphically. 
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Thus, adding +3 and +5 gives us +8 
which is the same as the addition we 
studied in basic arithmetic. Likewise, 
suppose we want to add —4 and —3. We 
can also do this graphically as shown by 
the arrows in Fig. 15. Notice that we first 
count four units to the left of the zero 
because all negative numbers increase in 
size as we move toward the left. This 
brings us to —4. Then we start from —4 
and count three more units to the left 
which brings us to —7. Thus, the sum of 
—7 is obtained by adding —4 and —3. 

1141111111 1111 111441 
-10-9 -8 -7 -6 -5 -4 -3 -2 -I 0 +1 +2 +3+4 +5+6 .7.849410 

Fig. 15. Adding —4 and —3 graphically. 

This brings us to the first rule in 
dealing with signed numbers. When two 
or more numbers have the same sign (all 
positive or all negative), they are said to 
have "like signs." 

The first rule for addition of signed 
numbers is: To add two or more numbers 
with like signs, find the sum of the 
numbers as you would in ordinary arith-
metic and place the sign of the numbers 
added in front of this sum. Thus, the sum 
of —3, —5, and —7 would be —15; and 
the sum of +6, +8, +9, and +2 would be 
+25. 

However, we will also be dealing with 
both positive and negative numbers at the 
same time. For example, suppose we have 
to find the sum of +2 and —5. We know 
how to add two and five when both 
numbers have the same sign, but here 
each has a different sign. How will we 
handle it? 
To begin with, let's start with a graph 

as we did for numbers with like signs. 
First, we start at the zero reference point 

and count two units to the right which 
brings us to +2, as shown by the short 
arrow in Fig. 16. This takes care of the +2 

in our addition and now we can consider 
the —5. We know that in order to arrive 
at —5 we would normally start at zero 
and count five units to the left. However, 
we are at +2 and must start at +2 instead 
of zero when we begin to add our —5. 
Therefore, instead of starting at the zero 
reference and counting five units to the 
left, we start at +2 and count five units to 
the left, as shown by the long arrow in 
Fig. 16. 

This brings us to —3 on the graph. 
Accordingly, since we llave added two 
arrows, one which is +2 units long and 
the other —5 units long, and arrived at 
—3, it follows that the sum of +2 and —5 
must be —3. If we look at this addition of 
two numbers with "unlike" signs closely, 
we can see that we have actually found 
the difference between the two numbers 
(5 — 2 = 3) and then used the sign of the 
largest number (-5) in front of our 
answer (-3). 

.9  
1111111111 1111111111 

-e-9 -8-7 -S-5 -4 -3 -2 -1 0.1+2 +3+4+5+6 *7+8+9 ii0 

Fig. 16. Adding numbers with unlike signs 
graphically. 

The second rule for addition of signed 
numbers is: The sum of two signed 
numbers with unlike signs is equal to the 
difference between the two numbers, 
preceded by the sign of the largest num-
ber. Remember that although we find the 
difference of the two numbers, it is not 

subtraction. It is the addition of numbers 
with unlike signs. 

Here are a few examples of the addi-
tion of signed numbers following the two 
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rules which we have learned. Try them 
and see if you get the same answers that 
we do. 

— 7 —9 +10 —63 +1/2 
— 8 +7 — 6 +46 —1/4 
—15 —2 + 4 —17 +1/4 

—.25 + 5 +6 —20 
+.05 + 6 —5 +18 
—.20 +11 +I — 2 

SUBTRACTING SIGNED NUMBERS 

When you studied basic subtraction in 
earlier lessons, you asked, "What number 
must be added to a given number to give 
another given number?" In other words, 
in subtracting 5 from 9 you asked, "What 
number added to 5 will give 9?" The 
answer is 4, because 4 + 5 is equal to 9. In 
subtracting signed numbers you do exact-
ly the same, but you have to be very 
careful to watch the signs. 

For example, consider the problem of 
subtracting —4 from —9. In order to do 
this, we ask what number added to —4 
will give us —9. Of co.urse, there is only 
one number and that is —5, because —4 + 
(-5) is equal to —9. Therefore, —4 from 
—9 is equal to —5. 
We can also illustrate this graphically as 

shown in Fig. 17. First, we draw an arrow 
from the zero point to —9 as shown by 
the long arrow. Then, we draw an arrow 
from zero to —4 to represent the value 
(-4) that we are subtracting, as shown by 
the short arrow. Now, if we count the 
units between —4 and —9 as shown by 

(-9)-(-4)•(-51 
  •  

 1111111111 
-10-9-8 -7 -6 -5-4 -3 -2 -I 0+1 +2+3+4+546+7+049440 

Fig. 17. Subtracting signed numbers graphically. 

the dotted arrow, we can see that we have 
five units to the left which means that —5 
is our answer. 
Now that we know what happens when 

we subtract a positive number from a 
positive number, (+9) — (+5) = +4, and 
also what happens when a negative num-
ber is subtracted from a negative number, 
(-9) — (-4) = —5, let's consider the 
subtraction of numbers with unlike signs. 
Suppose that we want to subtract —3 
from +6. First, we ask ourselves, "What 
number added to —3 will give us +6?" If 
we look at this closely, we will see that 
+9 is the only number that can be added 
to —3 to give us +6 because, 

(+9) + (-3) = +6 

Therefore, (+6) — (-3) must be equal to 
+9. 

Fig. 18 shows this graphically. First, 
we draw an arrow from zero to +6 to 
represent +6. Then, we draw an arrow 
from zero to —3 to represent —3. Now, 
we start at the —3 and count towards the 
right to see how many units would have 
to be added to —3 to give us +6. If we 
count off these units, we will find that 
there are nine of them. Since we move 
from left to right, the 9 must be +9. 
Thus, we can prove that 

(+6) — (-3) = +9 

Suppose, however, that we have the 
same numbers with the signs reversed. 
What is (-6) — (+3) equal to? Once again, 

(+6)-(-31•(+9) 
I-.71 ---- ------ -----. 

4. 
lifill1111 IIIIIIIM 
-10 -9-0-7-6-5-4-3-2 -I 0 +I +2 +3+4 +5 +6 +7+8 +9 +10 

Fig. 18. Subtracting numbers with unlike signs. 
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we ask ourselves, "What number added to 
+3 will give —6? Of course +3 plus —9 is 
the only answer. Therefore, (-6) — (+3) 
must be equal to —9. Graphically, we can 
show this in Fig. 19. We draw an 
arrow from zero to —6. Then we draw an 
arrow from zero to +3. Now, we can see 
that —6 is nine units to the left of +3, as 
shown by the dotted arrow. Since we go 
to the left, this 9 must be —9. 

(-6)-(+3)•(-9) 
44 _ ________ _ 

IIIIIIIIII 111111IIII 
-10-9 -8 -7 -6 -5-4-3-2-4 0+1 +2 +3+4+5 +6 +7+8 +9 +10 

Fig. 19. Subtracting +3 from —6 graphically. 

Now look carefully at the examples 
that we have just discussed: 

+9 —9 +6 —6 

— (+5) — (-4) — (-3) — (+3) 
+4 —5 +9 —9 

Notice that they all have one thing in 
common. That is if we change the sign in 
the subtrahend (the number subtracted), 
and then add the two numbers, we will 
get the proper answer. For example, 
consider the problem of: 

—9 
— (-4) 

—5 

If we set this up and change the —4 to a 
+4 as 

—9 
+4 

and then add, we will get —5 for the 
answer. 

The rule for subtracting signed num-

bers is: To subtract signed numbers, 
change the sign of the number you wish 
to subtract (subtrahend) and then add the 
two numbers. This rule will work for 
subtracting any two signed numbers no 
matter how small or large they may be. 
We have given some examples for you to 
try. Notice that the numbers and their 
signs are enclosed in parentheses so they 
will not be confused with the subtraction 
(—) sign. 

I. (-25) — (-15) 
= (-25) + (+15)= —10 

2. (-18) — (+6) 
= (-18) + (-6) = —24 

3. (+29) — (+7) 
= (+29) + (-7) = +22 

( 2 I ) 16 —7) (+ I ( 16 )+ —I ) 

= — 16 i 

5. (+.36) — (—.05) 
= (+.36) + (+.05) = +.41 

MULTIPLYING SIGNED 
NUMBERS 

3 

16 

You learned that multiplication is the 
addition of a number to itself an indi-
cated number of times. Thus, 5 X 6 tells 
us to either add 6 to itself five times or to 
add 5 to itself six times. The multipli-
cation of positive and negative numbers is 
just the same, except that we must 
consider what to do about the signs. In 
order to do this, let's consider all the 
possible combinations of signs that we 
might have in multiplying two numbers. 

There are only four possible combi-
nations and they are as follows: 
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(1) (+2) X (+3) = ? 
(2) (-2) X (+3) = ? 
(3) (+2) X (-3) = ? 
(4) (-2) X (-3) = ? 

Now, you already know that the first 
situation is the same as saying that +2 is 
to be added three times, or: 

(+2) + (+2) + (+2) = +6 

Therefore, 

(+2) X (+3) = +6. 

In the same manner, the second situation 
simply states that —2 is to be added 
together three times, or: 

(-2) + (-2) + (-2) = —6 

Therefore, 

(-2) X (+3) = —6. 

From what we have seen so far, multi-
plying two positive numbers together 
gives us the product of the two numbers 
preceded by a plus sign. Also, in a similar 
manner, the product of a negative num-
ber multiplied by a positive number is 
the product of the two numbers preceded 
by a minus sign. Thus, we have taken care 
of the first two situations. 

The third situation says that we must 
add +2 to itself —3 times. If we stop to 
consider this for a minute, we can see 
that if we add a number to itself a minus 
number of times, it will be the same as 
subtracting the +2 from zero three sepa-
rate times. Therefore, (+2) X (-3) is the 
same as — (+2) — (+2) — (+2). If we 
change the signs and add as we do in any 
problem of subtracting signed numbers, 
we have: 

(-2) + (-2) + (-2) = —6. 

Thus, (+2) X (-3) must be equal to —6. 
This is the same answer we got for the 
second situation which was 

(-2) X (+3) = —6. 

This is right because you learned that 
the order in which the numbers are 
arranged does not make any difference in 
multiplication. Thus, we can now say that 
the product of any two numbers with 
unlike signs is always negative. 

Now, let's look at the fourth situation. 
Here we have (-2) X (-3), which is the 
same as saying —2 added to itself —3 
times. Once again, adding a number to 
itself a minus number of times must be 
the same as subtraction. Therefore, we 
can write it as 

— (-2) — (-2) — (-2) = ? 

However, once again we are subtracting 
signed numbers and we must change the 
signs and add. Consequently, we would 
rewrite the problem 

(+2) + (+2) + (+2) = ? 

which of course equals +6. From this, we 
can say that 

(-2) X (-3) = +6 

and, accordingly, the product of any two 
negative numbers is always positive. 

Reviewing all that we have just dis-
cussed, we find that there are two simple 
rules for the multiplication of two signed 
numbers: 

I. The product of any two numbers 
with like signs is always positive. 

2. Tbe product of any two numbers 
with unlike signs is always negative. 
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With these two rules you can handle 
the multiplication of any two signed 
numbers. 

Sometimes you may have more than 
two signed numbers to multiply together. 
In such a case, you simply take the 
numbers two at a time and then multiply 
the product by the next number. For 
example: 

(-2) X (+3) X (-4) = ? 

First take (-2) X (+3), which equals —6, 
then the product (-6) X (-4) = +24. 
Therefore, (-2) X (+3) X (-4) = +24. 

Another example is: 

(+2) X (-5) X (-7) X (+11) = ? 

First, (+2) X (-5) = (-10) 
Then, (-10) X (-7) X (+11) = ? 
Now, (-10) X (-7) = +70 
Then, (+70) X (+11) = +770 

DIVIDING SIGNED NUMBERS 

Because division is just the reverse of 
multiplication, you should not have any 
trouble learning to divide signed numbers. 
Remember, when you divide one number 
by another you ask, "What number, when 
multiplied by the divisor (the number 
you divide by), will equal the dividend?" 
In other words, if you wish to divide 30 
by 5 you say, "Since 5 X 6 is equal to 30, 
then 30+ 5 must equal 6." 

In dividing signed numbers you do the 
same thing, except that you must be 
careful to obtain the proper sign for the 
quotient. Once again, let's consider all the 
possible combinations of signs that we 
might have in dividing one number by 
another. There can be only four combi-
nations as follows: 

(1) (+30) ÷ (+6) = ? 
(2) (-30) ÷ (+6) = ? 
(3) (+30) ÷ (-6) = ? 
(4) (-30) ÷ (-6) = ? 

Because division is the opposite of 
multiplication, we must have the follow-
ing: 

(1) (+30) ÷ (+6) = +5 because (+5) X 
(+6) = +30 

(2) (-30) ÷ (+6) = —5 because (-5) X 
(+6) = —30 

(3) (+30) ÷ (-6) = —5 because (-5) X 
(-6) = +30 

(4) (-30) ÷ (-6) = +5 because (+5) X 

(-6) = —30 

Therefore, our two rules for division of 
signed numbers are as follows: 

I. If both numbers have like signs, the 
quotient is always positive. 

2. If the numbers bave unlike signs, 
the quotient is always negative. 

This is all you need to know in order to 
handle the division of any two signed 
numbers. 

EXPONENTS AND ROOTS 

Let's consider the effect of signs on 
numbers with exponents or roots. You 
have already learned that the square of a 
number is the product of a number that is 
multiplied by itself. You also learned that 
you can use a small number "2" written 
above and to the right of the number to 
indicate that it is to be squared. Thus, 
132 means 13 X 13, which is 169. We call 
the small "2" above the 13 an exponent. 
When we use 2 as an exponent to indicate 
the operation of squaring a number, we 
sometimes say that it means raising the 
number to its second power. 
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Just as we can raise a number to its 
second power by multiplying it by itself, 
we can also raise numbers to other 
powers. For example, 133 means that the 
number is to be raised to its third power, 
or 13 X 13 X 13, which equals 169 X 13 
or 2197. In this case, the exponent is a 3 
and indicates that the number must be 
raised to its third power. In the case of 
the third power of a number, we have a 
special name for the operation just as we 
do for the second power (square). For the 
third power, we call it "cubing" a num-
ber, or finding the cube of a number. 

Of course, we can raise a number to 
any power that we desire, simply by 
multiplying it by itself the proper number 
of times. In each case, the exponent 
indicates the power to which the number 
must be raised. Thus, 234 means 23 X 23 
X 23 X 23, and 176 means 17 X 17 X 17 
X 17 X 17 X 17. However, beyond the 
third power (cube) we have no special 
names because the operation is not com-
mon enough. We simply say the "fourth 
power of the number" or the "sixth 
power" or whatever power the exponent 
may indicate. 

If a number has a sign in front of it, we 
proceed just as we would in multiplying 
any series of signed numbers. For exam-
ple, (-3)2 would be 

(-3) X (-3) = +9 

and (-3)3 would be 

(-3) X (-3) X (-3) 
= (+9) X (-3) 
= —27 

Likewise, (-2)4 would be 

(-2) X (-2) X (-2) X (-2) 
= (+4) X (-2) X (-2) 
= (-8) X (-2) 
= +16 

It is interesting to notice that a negative 
number squared always gives a positive 
product, while a negative number cubed 
always gives a negative product. This is 
true because any two negative numbers 
multiplied always give a positive product 
and any three negative numbers multi-
plied always give a negative product. 
With a negative number, any even-
numbered exponent, such as 4, 8, 28, or 
32, always gives a positive product and 
any odd-numbered exponent gives a nega-
tive product. 

Just as every number can be raised to 
any power, every number has an infinite 
number of roots. You learned earlier in 
this lesson what is meant by the square 
root of a number and that this operation 
is indicated by the use of the radical sign 
N./— . Therefore, if 132 = 13 X 13 or 
169, then N/Tà-§-is equal to 13. You also 
learned that —132 = (-13) X (-13) 
which is also 169. Therefore, we have two 
possible square roots of 169, either +13 
or —13. In fact, any positive square has 
two possible square roots: a positive root 
or a negative root. If there is any question 
as to the sign of a square root, we write 
the root and use both signs. Thus, we 
would indicate the square root of 169 as 
-±13. We read this as "plus or minus 13." 
The symbol for a square root is the 

radical sign V— . The same basic sign is 
used to indicate the root of any number, 
except that we use an "index" number in 
the notch of the sign to indicate that 
particular root. Thus, fT means the 
cube root of 27. We find that it is 3, 
because 3 X 3 X 3 equals 27. Likewise, 
,/, means that we are to find the 
fourth root of 16 which is 2, because 2 X 
2 X 2 X 2 equals 16. Of course the square 
or second root of any number should be 
indicated with an index of 2 in the radical 
sign as VT.. However, in square roots it is 
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common practice not to write 2 as the 

index so we just use the radical sign by 
itself. Thus, a radical sign with no index 
always indicates a square or second root 
and any other desired root must be 
indicated by using the proper index. 

Just as the root of any positive square 
may be either positive or negative, the 

even-numbered roots of any number 
raised to a power may also be either 
positive or negative. In other words, 
may be either ± because either —24 or 
+24 is equal to +16. Cube roots, however, 
or any other odd-numbered roots will be 
positive or negative depending on the sign 
of the number. Thus, 27 must be +3 
because (+3) X (+3) X (+3) equals 27. 
Therefore, (-3) X (-3) X (-3) can never 
be equal to +27; it will always equal —27. 
So Z/1 27' —equals —3. The cube root of 
any negative number must be equal to a 
negative number. Other odd-numbered 
roots follow the same rule. For example, 
.Zialways equals +2 because; 

(-i-2) X (+2) X (+2) X (+2) X (+2) = +32 

while 

(-2) X (-2) X (-2) X (-2) X (-2) = —32 

You will notice that we have not 
mentioned how to find the square root of 
a negative number. This is because it is 
impossible. As far as we know, there is no 
number multiplied by itself which can 
give a negative square. A negative number 
squared is always positive, and a positive 
number squared is always positive. The 
product +2 X (-2) is not a square 
because, if you notice the signs, we are 
not multiplying the same number by 
itself. We will learn more about this later 
in the course. 

MULTIPLYING AND DIVIDING 
BY POWERS OF TEN 

One of the greatest advantages of the 
decimal system is that in multiplying or 

dividing by 10 we simply move the 
decimal point. For example, if we multi-
ply 237 by 10 the answer is 2370 because 
we move the imaginary decimal point, 
which is after the seven, one place to the 
right. To divide by 10, we move the 
decimal point one place to the left. Thus, 
237 ÷ 10 is 23.7; in other words 10 goes 
into 237 twenty-three and 7/10 times. 
You know that 2 X 2 is often written 

22. Also, 2 X 2 X 2 is written 23. 

Similarly 10 X 10 is written 102. Also, 10 
X 10X 10= 103,and 10X 10 X 10 X 10 
= 104 and so on. Thus, summarizing: 

10° = 1 
10' = 10 
102 = 10X 10=100 
103 = 10X 10X 10= 1000 
104 = 10X 10X 10X 10=10,000 
105 = 10 X 10 X 10 X 10 X 10 = 

100,000 
106 = 10 X 10 X 10 X 10 X 10 X 10= 

1,000,000 

Why 10° = 1 will be explained later in 
this section. 

To multiply 237 by 10 we move the 
decimal point one place to the right. To 
multiply by 100, or 102, we move the 
decimal point two places to the right. To 
multiply by 1000, or 103, we move the 
decimal point three places to the right, 
etc. 

To divide, we do the opposite. To 
divide by 100, or 102 we move the 

decimal point two places to the left, etc. 
Thus: 
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237 X 10 = 2370 
237 X 100 = 237 X 102 = 23700 
237 X 1000 = 237 X 103 = 237000 
237 10 = 23.7 
237 ÷ 100 = 237 + 102 = 2.37 
237 + 1000 = 237 -- 103 = .237 

Any number can be expressed in terms 
of a number between 1 and 10 times a 
power of 10. For example, 237 can be 
written as 2.37 X 10 X 10. Rather than 
write the number out this way we usually 
write it 2.37 X 102. Similarly, 7648 can 
be written 7.648 X 103. Also, you can 
write 93486 as 9.3486 X le. 
Now consider the problem of multi-

plying 237 X 393. We rewrite 237 as 2.37 
X 102, and 393 as 3.93 X 102. This 
breaks the problem down to: 

2.37 X 102 X 3.93 X 102 

which we can regroup as: 

2.37 X 3.93 X 102 X 102 

When two powers of 10 are multiplied 
together, you perform the multiplication 
simply by adding the exponents. In the 
expression le, the exponent is 2. In 103 
the exponent is 3. To multiply 102 X 
103, you simply add the exponents and 
the problem becomes: 

102 X 103 = 102 + 3 = 10 5 

To multiply 103 X 105 proceed the 
same way: 

iø 3 x l 05 = 103 + 5 = 108 

If this seems somewhat confusing to you, 
or if you doubt that 103 X le = 108, 
you can write out 103 as 10 X 10 X 10, 
and write out 108 as 10 X 10 X 10 X 10 

X 10, and then multiply them together, 
and you'll find that the answer is 108. 

Now to get the rest of our answer we 
have to determine the value of 102 X 
102. The term 102 is equal to 10 X 10, 
and therefore: 

102 x 102 = lox io x lox 10 

Since there are four tens, then 102 X 102 
= 104 and our complete answer is: 

9.31 X 104 

Another example is 767 X 839. Again, 
we write our factors in powers of 10, and 
so the problem becomes: 

7.67 X 8.39 X 102 X 102 

We know from our previous problem that 
102 X 102 is 104, so immediately it 
becomes: 

7.67 X 8.39 X 104 

Thus, our answer becomes: 

64.4 X 104 

We can leave the answer in this form, but 
the usual procedure is to write the answer 
in terms of a number between 1 and 10. 
We can do this by writing our answer as: 

6.44 X 10 1 X 104 

There is no point in leaving the answer 
like this, because it is more complex than 
it need be, so we simply multiply 10' X 
104 by adding the exponents to get: 

6.44 X 105 
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Multiplying Negative Numbers by Pow-
ers of Ten. When 347 is a positive number 
it can be written as: 

347 = 3.47 X 102 

But what about -347? How would 
you write it? You might think you would 
write it as -3.47 X -102. But if you go 
back to our rules of multiplication you'll 
see that -102 = -10 X -10 = 100. Thus, 
there's no point in writing the minus sign 
in front of the ten unless we write it as 
-(10)2. This means -(10 X 10) = -100. 
Is this what we want? Let's look and see: 

-3.47 X -100 = 347 

Obviously, we do not want to write 
our power of ten as -(10)2. However, 

-3.47 X 100 = -347 

so we can write -347 as -3.47 X 102. 
Similarly -47 is -4.7 X 10, and -5762 is 
-5.762 X 103. A negative number in 
powers of ten is written as a negative 
number between 1 and 10 times a power 
of ten. 

The problem 347 X -162 is written in 
powers of ten as: 

3.47 X 102 X (-1.62) X 102 

The problem -114 X -262 can be 
handled in the same way: 

-114 X -262 
= -1.14 X 102 X (-2.62)X 102 
= 2.99 X 104 

The 2.99 is positive, because a negative 
number times a negative number gives a 
positive product. 

Division by Powers of Ten. You might 
wonder how we handle decimal numbers 

using this system. The number .147 is 
equal to 1.47 ÷ 10. However, rather than 
leaving it in that form we write the 
number 1.47 X 10-1 . Notice the minus 
sign in front of the exponent 1. This 
indicates the number is divided by 10, or 
that the decimal point has been moved to 
the right one place. We write the number 
.0756 as 7.56 X 10-2. This indicates that 
7.56 is divided by 102 or 100. 

Consider the problem of multiplying 
.342 X .266. We rewrite the problem as: 

3.42 X 2.66 X 10- X 10 -1 

The product 3.42 X 2.66 is approximate-
ly 9.10. Now to handle 10-1 X 10- , we 
simply add the exponents, and get 10-2. 
Thus, our answer is 9.10 X 10-2. If we 
want to express the number as a decimal 
number we simply divide it by 100, and 
we do this by moving the decimal point 
two places to the left. Notice that the 
exponent tells you how many places to 
move the decimal point. Thus, 

9.10 X 10-2 = .0910 

Now consider the problem .0187 X 
-475. We can write these numbers as 
powers of ten as follows: 

1.87 X 10-2 X -4.75 X 102 

Notice in one case we have a negative 
exponent, in the other a negative number. 
There is no connection between the 
minus signs in front of the exponent and 
the number. They mean different things. 
The minus sign in front of the exponent 
means the number is divided by 102, but 
the entire number 1.87 X 10-2 is posi-
tive. The minus sign in front of 4.75 
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means the entire number, —4.75 X 102, is 
negative. Thus 1.87 X 10-2 X —4.75 X 
102 is handled as two separate problems. 

and 

1.87 X —4.75 = —8.88 

10-2 x 102 = 10° = 

Therefore, our answer is —8.88. 

You may wonder about 10° being 
equal to 1. You may think it should be 
zero. Let's see why it isn't. 
We said earlier that when a number is 

multiplied by ten with a negative expo-
nent, it indicates the number is to be 
divided by that power of ten. Therefore, 
10-2 X 102 could be written as 102/102, 
which equals 1. Also, 10-2 X 102 can be 
written as 10°, because to multiply by 
powers of ten we add the exponents, and 
adding a +2 and a —2 gives us zero. 
Therefore, 10° = I. In fact, in the same 
way you can prove that any number to 
the zero power is equal to 1. Thus, 2° = 
1, 3° = 1, 500° = 1, 5,000,000° = 1, and 
so on. 

For now, we have all we need to know 
about signed number and their exponents 
and roots. 

SELF-TEST QUESTIONS 

(20) What is the rule for the addition of 
numbers with like signs? 

(21) What is the rule for the addition of 
numbers with unlike signs? 

(22) What is the rule for subtracting 
signed numbers? 

(23) Add the following numbers: 

—72, +13, —12, +57, +17, —6. 

(24) Add the following: 

(a) —16 
— 7 

(b) +13 
— 4 

(c) —22 (d) —34 
+48 +12 

(25) Subtract the following: 

(a) —16 
— 7 

(b) +13 
— 4 

(c) —22 (d) —34 
+48 +12 

(26) State two rules which are used to 
determine the sign of the product 
when multiplying two signed num-
bers. 

(27) State two rules used for determining 
the sign of the quotient when 
dividing signed numbers. 

(28) Multiply: 

(a) —6 by —7 
(b) +9 by —2 
(c) —11 by +17 
(d) +12 by +3 

(29) Divide: 

(a) +60 by —15 
(b) —144 by —6 
(c) —153 by +51 
(d) +516 by +12 

(30) If —131 were raised to the sixth 
power, would the result be a posi-
tive or a negative number? 

(31) Add the following: 

(a) — 4 
—11 
+ 7 

(b) +17 
— 6 
+13 
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(c) — 5 
— 9 
—13 

(32) Subtract the following: 

(a) +81 
—57 

(c) —42 
+17 

(33) Multiply: 

(d) +21 
—41 
+20 

(b) —36 
—14 

(d) +19 
+31 

(a) (+6) X (-3) X (-7) = 
(b) (-4) X (+10) X (+3) = 
(c) (-1) X (+7) X (+4) X (+2) = 
(d) (-2) X (-3) X (-4) X (-5) = 

(34) Divide: 

(a) 
(b) 
(c) 
(d) 

—258 by —6 
+363 by —33 
—87 by +348 
+112 by —7 

(35) Find the following: 

(a) (-2)4 = 

(c) (-3)3 ' 

(36) Do the following 
multiplications: 

(a) 
(b) 
(c) 
(d) 

(e) 
(f) 
(g) 
(h) 

(i) 

3247 + 103 
7625 X 102 
23 + 104 
967 + 10,000 
23 X 100,000 
9327 + 104 
82 X 102 
.032 + 102 
.0756 X 103 

(37) Do the following 
powers of 10: 

875 + 326 
—526 + 234 
.671 + .0341 
—470 + 621 
.234 + 875 
1.46 + 26.2 
735 + .0234 
426 + 621 
36.2 + .0465 
9.21 + —11.3 

(b) (+2)4 = 
(d) (+3)3 = 

divisions and 

divisions using 

32 



Vectors 

You learned in your technical lessons 

that an ac voltage actually consists of a 
series of different instantaneous values of 
voltage and that these different voltages 
all occur at specified times in the ac 
cycle. You also learned that the current 
forced through a complete electrical cir-
cuit by an ac voltage was likewise made 
up of a series of instantaneous values of 
current that occurred at specified times in 
a cycle. However, one of the most impor-
tant factors that we must consider in 
dealing with ac circuits is that these peak 
ac voltages and peak ac currents do not 
necessarily occur at the same instant of 
time. 

In your study of coils you found that 
the current actually lags the voltage by 

90° in a purely inductive circuit. Con-
versely, you discovered that in a purely 
capacitive circuit the current leads the 
voltage by 90°. In fact, the only time that 
the instantaneous values of the current 
and voltage can be in phase with each 
other throughout the entire circuit is in a 
purely resistive circuit. Actually, most 
practical circuits contain some combi-
nation of resistance, inductance, and 
capacitance, and the phase relationship 
between the ac current and voltage is a 
result of the combined action of these 
effects. 

Because of this difference in phase 
between the voltage and current in ac 
circuits, we cannot use ordinary arith-
metic in our circuit calculations. In ordi-
nary arithmetic we have only simple 
numbers or "scalars", as they are some-
times called, which we can use. The 
numbers or scalars can only indicate the 
size or the magnitude of the voltage or 

current quantities. They cannot, in any 
way that we know of, indicate the time 
difference or phase angle which we must 
also consider. However, through the use 
of what we call "vectors" and vector 
arithmetic, we can indicate both the size 
of the quantities and the times at which 
they occur. Actually, the vectors used in 
ac circuit calculations are not vectors at 
all, but are phasors. However, they are 
similar to vectors and are usually called 
vectors, so we will use that name instead. 
By using these vectors, we are able to 
perform any ac circuit calculation quite 
simply and accurately. 

In this section of the lesson, you will 
learn about vectors and how they can be 
used in ac circuit calculations. You will 
apply many of the rules of ordinary 
arithmetic, square roots, signed numbers, 
and even some ratio and proportion in 
working with vectors. Vectors are ex-
tremely important in work with ac cir-
cuits, because without them any of the 
methods used for solving ac circuit calcu-
lations would be useless. They are all 
based on vector principles and you will 
discover later that many of the explana-
tions for circuit characteristics are easier 
to understand if you use vectors. 

DEFINITION OF A VECTOR 

A vector is a straight line having a 
definite length and direction. Fig. 20 
shows several different vectors, each with 
a certain length and direction. Although 
these vectors do not represent any par-

ticular values or functions, they are all 
true vectors and could be used for any 
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v\-\ 
Fig. 20. Vectors showing definite length and 

direction. 

number of purposes. Notice that each 
vector starts at a certain point and ends a 
certain distance away in a specific direc-
tion. The starting point of any vector is 
usually represented by a dot and is called 
the "tail" of the vector. The ending point 
of the vector is represented by an arrow-
head and is called the "head" of the 
vector. 

The distance between the head and tail 
of the vector is used to indicate or 
designate the magnitude of a quantity. 
The direction of the vector, from a 
common reference point or line, repre-
sents the second factor which we must 
consider. This second factor may be 
either "direction" or "time." For 
example, the vectors in Fig. 21 represent 
the flight of an airplane. They are drawn 
so that vector A represents a 125-mile 
flight to the south, while vector B repre-
sents a 150-mile flight to the east. The 
tail of vector A shows where the airplane 
started, and the head of vector B shows 
where the flight ended. The fact that the 

• 
• 
• 

A 

SCALE 

1/4"=25M1 

Fig. 21. Use of vectors to show results of 
motion. 

tail of vector B starts from the head of 
vector A, tells us that the airplane flew 
south first and then east. The arrow in 
the diagram shows us where north is and 
becomes the reference line from which 
the direction of the vectors may be 
determined. The notation "Scale: 1/4" = 
25 mi." tells how far the airplane traveled 
in each direction, because each quarter. 
inch of vector length is equal to 25 miles 
of travel. Thus, the vector diagram gives 
an accurate and descriptive picture of 
where the airplane went. As you can see, 
this is much more valuable than saying 
the airplane flew 275 miles. 

Another thing about this vector dia-
gram is that it can show how far the 
airplane actually went from the starting 
point. Notice in Fig. 21 that even though 
the airplane actually flew 275 miles, it 
did not end its flight 275 miles from the 
starting point. The head of vector B is not 
275 miles away from the tail of vector A. 
Since the diagram is drawn to scale, you 
can measure this distance with a ruler, as 
shown by the dotted line in Fig. 21. If 
you do this carefully, you will find that it 
is just under 2 inches from the tail of A 
to the head of B. Since each quarter-inch 
on the diagram equals 25 miles, you 
know that the airplane ended its flight 
less than 200 miles from the starting 
point even though it flew 275 miles to get 
there. 

Further, by comparing the direction of 
this dotted line with the reference arrow, 
you can determine the direction of the 
end of its flight from the starting point. If 
you do this, you can see that the flight 
ended approximately southeast of the 
starting point. Therefore, the vector dia-
gram gives a complete picture of the 
airplane's flight as well as giving its 
progress away from the starting point. 

Vectors in Electronics. In electronics 
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work, we do not use vectors very often to 
indicate motion. Instead, we use the 
direction of vectors to indicate the time 
of an occurrence. For example, suppose 
that we have a series circuit containing a 
coil and a resistor as shown in Fig. 22. 
The ammeter in the circuit shows that 
there is an ac current of 5 amps flowing 
through the circuit and we know that the 
current in a series circuit is the same 
through any part of the circuit. There-
fore, there is a current of 5 amps through 
the coil. 

AC SUPPLY 5 AMPS 

Fig. 22. AC circuit containing resistance and 
inductance. 

The voltmeter across the resistor indi-
cates 300 volts and the one across the coil 
indicates 400 volts. You know from your 

studies of ac circuits that these voltages 
across the coil and resistor do not occur 
at exactly the same instant of time. For 
example, if we were to draw a sine wave 
diagram of the ac current through the 
circuit, we might have a wave shape like 
the solid line in Fig. 23A. This sine wave 
rises from zero to a maximum of such a 
value that the effective value of the 
alternating current is 5 amperes. Using 
this ac sine wave as a reference point for 
time, and comparing the rise and fall of 
the voltage sine waves with it, we can 

o 
Fig. 23. Sine waves of voltage and current in a 

resistor (A), and a coil (B). 

actually see that the two voltages do not 
occur at the same instant. 
We know that in a purely resistive 

circuit the current and voltage actually 
rise and fall together. We say that they 
are in phase. Therefore, the voltage across 
the resistor, ER, must rise and fall so that 
it will be maximum when the current is 
maximum. Further, the maximum value 
of this ac voltage must be large enough so 
that its effective value will be 300 volts, 
as measured by the voltmeter. Accord-
ingly, if we were to draw a voltage sine 
wave for the voltage ER, using the cur-
rent sine wave as a time reference, we 
would have a wave shape like that shown 
by the dotted line in Fig. 23A. 
On the other hand, the current and the 

voltage do not rise and fall together as far 
as the coil is concerned. The coil current 
actually lags the coil voltage by 90°. 
Therefore, we would draw their respec-
tive sine waves 90° out-of-phase, as 
shown in Fig. 23B, where the solid line, I, 
represents the coil current and the dotted 
line, EL, represents the coil voltage. The 
current sine wave is the same sine wave 
that we used in Fig. 23A and occurs at 
exactly the same instant. The current is 
common throughout the circuit. The volt-
age wave, EL, has a maximum value 
necessary to produce the effective value 
of 400 volts, as indicated by the volt-
meter in Fig. 22. 
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Since the current sine waves in Figs. 
23A and 23B represent the same current 
at the same instant of time, we can 
combine the two drawings as shown in 
Fig. 24. Here the one current sine wave, 1, 
represents the common circuit current 
through both the coil and the resistor. 
The voltage wave, ER, represents the sine 
wave voltage that gives the effective value 
of 300 volts across the resistor. The 
voltage wave, EL, represents the sine 
wave that produces the effective value of 
400 volts across the coil. It is easy to see 
from this drawing that the two voltages 
do not rise and fall together. They are 
90° out-of-phase. 

Fig. 24. Sine waves showing ER lagging EL. 

Through the use of vectors, we are able 
to represent this difference in "time" 
between the two voltages and between 
the current and the coil voltage much 
more simply than by using sine waves. We 
do this by means of a rotating vector. As 
the vector rotates through 360°, the 
projection from the end of the vector 
traces out a sine curve. Looking at the 
current waveform in Fig. 23A, we see 
that the current is zero at the start of the 
cycle. This is represented by the vector 
shown in Fig. 25A. One-quarter of a cycle 
later, the current has reached its peak 
positive value. This is represented by 
rotating the vector 90° (one-quarter of a 
turn) to the position shown in Fig. 25B. 
At the end of another quarter-cycle, the 
current waveform will have gone through 

one-half of a cycle, and will be back to 
zero. This is represented by the vector 
shown in Fig. 25C. Here the vector has 
rotated through 180° (one-half turn). The 
vector in Fig. 25D represents the current 
waveform one quarter-cycle later when 
the current is at its peak negative value. 
The vector in Fig. 25E represents the 
current at the end of one complete cycle. 
Here the vector has rotated through 360° 
(one complete turn) and is back at the 
starting point. 

Notice that we rotated the vector in 

Fig. 25 in a counterclockwise direction. 
Be sure to remember the direction of 

rotation; you'll need to know this to 
understand the vector diagrams in the rest 
of this lesson and in later lessons. 
Now that you've seen how we use a 

rotating vector to show the current phase 
throughout a cycle, let's see how vectors 
can be used to show the phase relation-
ship between the voltage and current 
across the resistor in Fig. 22, throughout 
a cycle. 

....-...» 

® 
180° 
b(--\ 4  

o 
3600 

0 

270° 

 . 

Fig. 25. A rotating vector showing one complete 
ac cycle. 
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At the start of the cycle at 0°, ER and 
I are in phase. We show the phase 
relationship by drawing the two vectors, 
ER and I, as shown in Fig. 26A. Notice 
that the vectors are drawn superimposed 
on each other because at the start of the 
cycle both the voltage and current are 
zero. One quarter-cycle later, the voltage 
and current have reached their maximum 
position values. This is shown by the 
vectors in Fig. 26B. Again the vectors are 
superimposed because the voltage and 
current are in phase - - they are both at 
their maximum values at the same in-
stant, one quarter-cycle or 90° after they 
were both zero. In Fig. 26C we have 
shown the vectors at the end of one 
half-cycle, in Fig. 26D at the end of three 
quarter-cycles and in Fig. 26E at the end 
of a complete cycle. 

Now, let's see how vectors can be used 
to show the phase relation between the 

ER I 

180* 
• e 

ER 

360* E 

270° ÎER 

Fig. 26. Vector diagrams showing phase rela-

tionship between the voltage across arid the 
current through a resistor, throughout a com-

plete cycle. 

I 

EL 

CD ® 

EL 

Fig. 27. Vector diagrams showing phase rela-
tionship between the voltage across and the 
current through a coil, throughout a complete 

cycle. 

voltage across the coil and the current 
through it. Let's start with the current 
vector at zero representing the start of 
the current cycle, as shown in Fig. 27A. 
This vector is the same as the current 
vector in Fig. 25A. Now, to draw the 
vector representing the voltage across the 
coil we must consider the phase relation-

ship. You will remember that the voltage 
across a coil leads the current by 90°. 
This is shown in Fig. 23B. Thus, if the 
current vector is drawn at zero, we must 
advance the voltage vector 90° (rotate it 
counterclockwise) as shown in Fig. 27B. 
Thus, the vectors in Fig. 27B show the 
phase of the voltage and current at the 
start of the current cycle. 
One quarter-cycle later, both vectors 

will have rotated through 9e , as shown 
in Fig. 27C. At that point, the current is 
at its peak position value and the voltage 
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has dropped to zero, as shown in Fig. 23. 
The vector diagram indicates this con-
dition. A quarter-cycle later, when the 
current has gone through one half-cycle, 
the current will be zero again and the 
voltage will be at its peak negative value. 
This is shown in Fig. 23 and also in Fig. 
27D by means of vectors. Fig. 27E shows 
the phases one quarter-cycle later when 
the voltage is back to zero and the 
current is at its peak negative value. Fig. 
27F shows the voltage and current vec-
tors at the end of a complete cycle. 

Notice that throughout the illustra-
tions in both Figs. 26 and 27, the phase 
relations remain constant. Fig. 26 shows 
the resistor voltage and current in phase 
through the entire cycle. Fig. 27 shows 
the coil voltage leading the current by 
90° through the entire cycle. 

In Fig. 24 we have shown the current, 
coil voltage, and resistor voltage on the 
same diagram. It does not matter whether 
we start working with the current, coil 
voltage, or resistor voltage in constructing 
our diagram, as long as we show the 
correct phase relationship. However, in 
circuits of this type the usual practice is 
to start by drawing the current vector I, 
as shown in Fig. 28A. Let's draw the 
vector to represent zero current at the 
start of the current cycle. We can draw 
the current vector any convenient length 
because we are not going to use it for 
anything other than a reference vector. 

Now, let's draw a vector to represent 
the voltage across the resistor. In Fig. 22 
we see that the voltage is 300 volts. Let's 
draw the vector to scale so the length of 
the vector represents 300 volts. If we use 
a scale of 1/2" = 100 volts then the vector 
should be 1-1/2" long. Since the voltage 
across the resistor is in phase with the 
current, the voltage vector is drawn super-

imposed on the current vector, as shown 
in Fig. 28B. 
To draw the vector representing the 

coil voltage we first note, from Fig. 22, 
that the voltage is 400 volts. Therefore, 
using the scale of 1/2" = 100 volts, the 
vector should be 2" long. Since the coil 
voltage leads the current by 90°, we draw 
this vector as shown in Fig. 28C. Now we 
have a vector diagram showing the phase 
relationship between the current and the 
two voltages at the start of the current 
cycle. As a matter of fact, this diagram 
shows the phase difference between the 
coil voltage, the resistor voltage, and the 
current throughout the entire cycle 
because, as we saw from Figs. 26 and 27, 
these relationships did not change. The 
coil voltage always leads the resistor 
voltage and current by 90°. 
We can use the vector diagram of Fig. 

28C to determine the total voltage across 
the coil and the resistor. This is equal to 
the source voltage in Fig. 22. We do this 
by adding the vector representing the coil 
voltage to the vector representing the 
resistor voltage. Since we have drawn 
these vectors to scale, we should be able 
to scale the resulting vector to get the 
total voltage. 

There are two ways of making this 
addition. The first way is to place the coil 
voltage vector at the end of the resistor 
voltage vector, like we did in Fig. 21, to 
determine how far the plane traveled. 
This addition is shown in Fig. 28D. 
Notice the resultant vector, ET, which 
represents the total voltage that leads the 
current by a value somewhat less than 
90°. This is what we might expect. In a 
circuit with pure resistance, the voltage 
and current will be in phase — in other 
words the phase difference will be 0°. In 
a circuit with pure inductance, the volt-
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Fig. 28. Vector addition of resistor and coil voilages. 
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age leads the current by 90°. Thus, in a 
circuit with both resistance and induc-
tance, we would expect both to influence 
the phase relationship between the volt-
age and current so that the phase differ-
ence will be somewhere between 0° and 
90°. If you construct the diagram care-
fully and measure the angle between ET 
and I, you will find that it is about 53°. 
To determine the amplitude of ET, 

measure the length of the vector. You 
will find it is 2-1/2" long. Since the scale 
used in constructing the diagram is 1/2" = 
100 volts, the amplitude of ET must be 
500 volts. 
The other method of adding the two 

vectors is shown in Fig. 28E. Here a 
dotted line is drawn from the end of 
vector ER parallel to vector EL. A second 
dotted line is drawn from the end of 
vector EL parallel to ER. The point 
where the two dotted lines meet locates 
the end of vector ET. The angle between 
it and vector I will be the same when 
obtained by this method as it would be 
using the previously discussed method. 
To really see the advantage of the 

vector method of representing these volt-
ages, look at Fig. 29. Fig. 29A shows the 
sine waves of the two voltages and the 
current, and Fig. 29B shows how these 
sine waves can be added to get the total 
voltage. To do this, many instantaneous 

o 
Fig. 29. Adding sine waves to obtain voltage 

total, ET. 

values must be added to enable you to 
plot the curve of ET. This is tedious and, 
in addition, is not nearly as easy to 
evaluate as was Fig. 28D or Fig. 28E. 
You might wonder why we started our 

construction of Fig. 28 by putting I in 
the 0° position. We did this simply 
because it was convenient. We could 
actually put I in any position. As long as 
we keep the correct position between I, 
ER, and EL, the value of ET and the 
phase angle between it and I will be the 
same. 

VECTOR ARITHMETIC 

Now that we have seen what vectors 
are and how they can be used in elec-
tronics to represent size and phase or 
time for ac circuit calculations, let's learn 
more about handling them. Actually, the 
rules for working with vectors are quite 
simple and are similar to any arithmetic 
that involves signed numbers. The most 
important differences are learning to deal 
with the angles and establishing the quali-
fications for lead and lag. 
To begin with, we have seen that any 

vector diagram must have a reference line 
so that the directions of the individual 
vectors can be established in accordance 
with a common reference for comparison. 
The reference we used in the preceding 
example was the current. The best type 
of reference to use when learning about 
vectors is a scale similar to the .one we 
used when learning to deal with positive 
and negative numbers. In Fig. 30, we have 
drawn such a scale with a center reference 
point. All positive values extend to the 
right of the center and all negative values 
extend to the left. 
Now suppose that we have two quan-

tities representing the same direction or 
instant of time: one is +5 units long and 
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Fig. 30. Adding in-phase vectors. 

the other +3 units long. In order to add 
them vectorially, we simply lay them out 
along the reference line (to scale) in the 
same direction, with the tail of one 
starting at the head of the other, as 
shown in Fig. 30. Vector A starts at the 
reference point, 0, and continues for five 
units. Vector B starts at the head of 
vector A and continues along the refer-
ence for three units. To add the two 
vectors, we simply draw a new vector, C 
from the tail of A to the head of B. Since 
A and B both point in the same direction, 
this new vector lays along the same line as 
A and B and is +8 units long. Therefore, 
we have a rule which states: The sum of 
two vectors extending in the same direc-
tion is a new vector equal to the com-
bined length of the two vectors and 
pointing in tbe same direction. 

In Fig. 31, we have added two vectors 
[(-6) + (-3)] that point in the same 
direction, but both of them are negative 
so their direction is just opposite to those 
in Fig. 30. Therefore, their sum is a new 
vector that is —6 units long plus —3 units 
long which makes it —9 units long. Thus, 
as long as two or more vectors point in 
the same direction, regardless of what 
that direction is, their sum is a new 
vector, pointing in that direction, that is 
equal to the combined length of the 
individual vectors. 

Another problem in working with vec-

..-e„,..,„,,IIIII...,.. -10 -9 -13 7 6 5 4 3 -2 -I 0 41 +2+3+4+546+7+6+9 410 

Fig. 31. Adding in-phase vectors. 

tors is when they point in opposite 
directions. This will often come up when 
two voltages or other circuit quantities 
are exactly 180° out-of-phase. For 
example, suppose we have two opposing 
voltages working against each other in an 
ac circuit. One of these has a peak value 
of 90 volts and the other a peak of 40 
volts. The two are exactly out-of-phase at 
all times, so we can lay them out vectori-
ally, as shown in Fig. 32, by using a scale 
of 1 unit equals 10 volts. Notice that 
since the two are 180° out-of-phase, one 
vector points from the reference point 0, 
along the reference line in one direction, 
while the other starts at the reference 
point and extends in the opposite direc-
tion. 

41IIII 14 I II 
-10-9 -6-7-6-5-4 -3 -2 -1 

A 
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C (A)  
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Fig. 32. Adding vectors 180° out-of-phase. 

It does not make any difference which 
vector we use for which direction in this 
particular case. We know that each one 
changes sign during every cycle and we 
are just stopping the action at a particular 
time. No matter what we get for an 
answer, its sign will automatically change 
during the next alternation because we 
are working with ac. The thing that really 
does matter is that both vectors represent 
the same instant of time so that the 180° 
phase difference is represented by the 
vector directions. 

To add these two vectors we must do 
the same thing that we did in other vector 
additions. We place the tail of one vector 
against the head of the other, being 
careful not to change the direction or 
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length of the vector that we relocate. In 
this problem, we have drawn a dotted line 
from the head of the 90-volt vector B 
that is exactly the same length and points 

in the same direction as the 40-volt vector 
A. Notice that we have drawn the dotted 
line slightly above the reference line so 
that we can see it better. Now, we 
complete our addition by drawing a new 
vector, C, from the tail of the 90-volt 
vector. This new vector is 5 units, or 50 
volts long, and points in the direction of 
the longest vector. Thus, we can see that 
the vector sum of the two out-of-phase 
voltages is a new vector, extending from 
the tail of one vector to the head of the 
other, after they have been properly 
joined (head to tail) for addition. 

Representing Lead or Lag. As you can 
see, all the vector addition that we have 
considered so far follows the same basic 
pattern. We lay the vectors out to their 
proper scale length and orient them in 
their proper direction. Then, we lay them 
head to tail, being careful not to alter 
either their length or direction in the 
process, and draw a resultant vector, 
between the tail of the first vector and 
the head of the last, to represent their 
sum. The length of this resultant repre-
sents the magnitude of the vector sum, 
and its direction in relation to the refer-
ence line indicates the phase or time of 
the resultant quantity. 

All vector computations follow these 
same basic rules. However, the problems 
that we have considered so far have dealt 
with vectors that are exactly in phase or 
exactly 180° out-of-phase. As you know, 
mad)/ of our problems in electronics deal 
with reactance calculations where the 
phase shift will be only 90°. Also, this 
reactance phase shift may be either 90° 
leading, in the case of the capacitance, or 
it may be 90° lagging in problems dealing 

with inductance. Accordingly, we must 
now consider what to do about laying out 
and computing vectors that are affected 

by reactance. 
To do this let's go back to our basic 

idea of a phasor. A phasor is a rotating 
vector. We have shown that this vector 

rotates counterclockwise. Thus, if we 
start a vector at 0°, as in Fig. 33A, and 
rotate it 90° to represent one-quarter of a 
cycle, it will move to the position shown 

in Fig. 33B. The vector at B has passed 
through one-quarter of a cycle more than 
the one at A. Thus, vector B is leading 
vector A by 90°. The vector diagram in 
Fig. 33C shows how the voltage leads the 
current by 90° in a coil. 

In Fig. 34 we have shown an example 
of a lagging voltage. We started with our 
current vector at A and then drew a 
second vector 90° behind it at B. Vector 
B is following vector A by 90°. A 
complete vector diagram showing how 
the current leads the voltage in a capaci-
tor is shown in Fig. 34C. 
You might think that since the two 

Fig. 33. Vector diagrams showing 900 phase 
shift where the voltage leads the curreni 
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Fig. 34. Vector diagrams showing a 900 phase 

shift where the voltage lags the current. 

vectors are rotating counterclockwise, the 
voltage vector is leading the current by 
270°. Since the voltage is lagging one 

current cycle by 90°, it will indeed be 
leading the following current cycle by 

270°. However, it is the 90° phase differ-
ence we are interested in. 
Now it is fairly easy to see that, if we 

consider our discussions of vectors up to 
this point, we can call the right-hand end 
of the scale the "in-phase reference line." 
Likewise, the end of the horizontal line 
extending to the left of the center to-

wards 180° can be called the "180° 
out-of-phase reference line." If we do 
this, all vectors parallel to the horizontal 
reference and pointing to the right will be 
in-phase vectors, and those pointing to 
the left will be 180° out-of-phase. Thus, 
our horizontal line, divided in the center 
in this way, can represent a phase shift or 

time lag of 180°, depending on whether 
we point our vectors from the center to 
the right of 0° or from the center to the 
left of 180°. 

The vertical line represents a phase 
shift of 90°. Since our vector rotates 
counterclockwise, the vector representing 

• 

the voltage in Fig. 33C is leading the 
current vector by 90°. It's not always 
necessary or even advisable to place the 
current vector at 0°. However, regardless 
of how we start the diagram and what we 
place on the 0° axis, all voltages or 

current leading the reference value are 
shown rotated in a counterclockwise 
direction. Voltages or currents lagging the 
reference value are shown in a clockwise 
direction. Any voltage or current can be 
taken as our reference value, but in most 
series circuits it is easiest to use the 
current as a reference. 

Sometimes we may want to construct 
an impedance diagram of resistance, and 
inductive or capacitive reactance. You 
might wonder if one of these reactive 
elements should be drawn above or below 
the reference line. The rule is to draw 

inductive reactance above and capacitive 
reactance below. Inductive reactance is 
considered positive and capacitive re-

actance negative. You'll see later, when 
you study the j-operator, that this is 
necessary in order to get the currents to 
have the correct phase. Thus, if we 
consider our reference line extending 
from the center right towards 0°, as our 
current reference line in ac circuit prob-

lems, our inductive reactance (voltage 
leading current) values will go above the 
reference and our capacitive reactance 
(voltage lagging current) values will go 
below the reference. Another thing that 
will help you to remember this rule is to 
notice that vectors are always considered 
to rotate counterclockwise from zero. 

Also notice that the 90° head point 
from the center can also be considered to 
lag the 0° reference line by 270°. It 
doesn't make any particular difference 
which way you think of it. The important 
thing is to make sure that when you 
construct a scale like this and use the 
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current as the reference vector, you 
should remember: 

I. Right from center: in phase I, R, or 
ER. 

2. Left from center: 180° out-of-phase. 
3. Straight up from center: 90° lead, 

XL or EL. 
4. Straight down from center: 90° lag, 

Xc or Ec. 

VECTOR CALCULATIONS 

Now that we have discussed some of 
the basic rules and principles for laying 
out vectors and computing with them, we 
need to gain a little practice to become 
thoroughly familiar with this type of 
computation. We considered a problem 
dealing with a coil and a resistor a little 
earlier. Now, let's consider a circuit 
containing a resistor and capacitor in 
series like the one shown in Fig. 35A. In 
this circuit we are told the capacitor 
voltage and the resistor voltage and are 
asked to find the supply voltage, ET, and 
the phase angle, O. 

In order to do this, we first lay out the 
current vector as the reference vector 
because the current in the circuit, I, is the 
same in all parts of the circuit. Using the 
horizontal line extending to the right 
toward 0° to represent the current, as we 
have learned to do, completes our pre-
liminary setup for the problem, as shown 
in Fig. 35B. Notice that we do not have 
the value of this current. It is not needed 
to work the problem. We are only using I 
as a reference line from which to indicate 
our voltage-phase relationships. Its value 
is not important. Its position as the 
common reference is what concerns us 
here. 

Using the scale of 1/2" = 100V, we can 
lay out the voltage vector, ER, to scale 
along the reference line to show that the 

voltage across the resistor is in phase with 
the current through it. We call this 
voltage the in-phase component of the 
total voltage. The vector diagram of this 
stage is shown in Fig. 35C. Then we can 
lay out the voltage vector, Ec, to scale 
90° behind the reference current because 

1 will be leading it by 90°. The diagram at 
this point is shown in Fig. 35D. To add 
these two vectors, we can move one of 
them so that the two are head to tail, as 

shown by the dotted vector, Ec, in Fig. 
35E and then draw in ET, the total 
voltage. Notice that we are careful to 

construct the dotted vector, Ec, so that 
its length and direction are not changed. 
We can also get ET by drawing a line 
parallel to ER from the end of Ec, and a 
second line parallel to Ec from the end of 
ER. Where the two lines meet locates the 
end of ET, as shown in Fig. 35F. 

Now, we can draw the resultant vector, 
ET, that represents the vector sum of the 
two quantities. If we measure ET care-
fully and our other vectors are to scale, 
we will find that ET is 2-1/8" long. Since 
1/2" = 100V, 1" must equal 200 volts, 
and 2" must equal 400 volts. Now, since 
1/8" is equal to 1/4 of 1/2, 1/8" is equal 
to 25 volts. Accordingly, our ET vector, 
which is 2-1/8" long, must equal 400 + 25 
or 425 volts. 
We are also asked to find the phase 

angle, 0, for our supply voltage. We can 
do this by using a protractor which 
measures angles. We will find that the 
angle between ET and the reference 1 is 
45°. As a matter of fact, we can estimate 

that ET lies about halfway between Ec 
and I, which are 90° apart, so ET must be 
approximately 45° out-of-phase with the 
current. Thus, through the use of vectors, 
we have determined that ET is 425 volts 
and is 45° out-of-phase with the current. 
Since ET is below the reference I, the 

• 
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SCALE: 

ER . 300V 

ET ? 

= 300V 

ER 

ER 

Ec 

E ET 

ER 

EC 

Ec 

ER 
Io ent  

45 

ET 

Fig. 35. Vector addition of the voltage ER and Ec in the circuit at (A) shown in detail. 
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current must lead the voltage (or the 
voltage lags the current, whichever you 
prefer) by 45°. 

Before we leave this circuit, let's con-
sider one other thing. In converting our 
length of ET of 2-1/8" to 425 volts, we 
went through a series of steps. Ratio and 
proportion would have saved us a lot of 
time. For example, we could have set up 
two ratios as follows: 

1 » 

2 100V 

1 
" 2-8 

and 

Now our proportion: 

1 „ 
2 100V 

1 II 

2 8 
ET 

2 100V 

17» 
8 

ET 

Now cross-multiplying, we have: 

12X 100 =IX ET 
8 2 " 

1700 ET 
8 2 

and then: 

or 

8 X ET = 1700 X 2 
8ET = 3400 

3400 
ET = 8 = 425 volts 

This is just another example of a good use 
for ratio and proportion. 

Ep•1200V ELI . 900V 

AC SUPPLY ET • 

ELH 
Ec • 300V EL • 300V 

Fig. 36. Finding ET in a simple series ac circuit 

containing it, L, and C. 

In Fig. 36, we have shown a more 
difficult problem. Here we have a resistor, 
two coils, and a capacitor in series with 
each other. Let's see how we would 
handle the problem of finding the total 
voltage for this circuit vectorially. 

First, we lay out our vector reference 
scale and call the horizontal line, which is 
from center to 0°, the current reference. 
This is shown in Fig. 37. Then we can 
draw in the voltage vector ER superim-
posed on I to show the two in phase. 
Since ER is 1200 volts, we used a scale of 
1/4" = 100 volts, instead of 1/2" = 100 
volts as before, in order to keep the 
diagram a reasonable size in the book. If 
you try drawing this diagram you can use 
a scale of 1/2" = 100 volts if you wish. 
Then ER would be twice as long. Next, 
we draw vector EL I leading I by 90°. 
This vector represents 900 volts. Using 
the scale of 1/4" = 100 volts, we make it 
9 X 1/4 = 9/4 = 2-1/4 long. 

The next step is to add the vector E12 
to the diagram. Since this voltage also 
leads 1 by 90°, we draw EL2 starting at 
the head of EL, to add these two 
in-phase voltages. EL2 is made 3/4" long 
to represent 300 volts. 

The next vector we draw is Ec. Since 
this represents 300 volts we know it 
should be 3/4" long. Also, since it repre-
sents a voltage across a capacitor, we 
know it will lag I by 90°. The position of 
this vector is shown on the diagram. 
Notice that it is 180° out-of-phase with 
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EL2 = 300V 

A I Ec 

1-YELI= 900V 

SCALE' /4 =100V 

E R =1200V 

Ec = 300V 

F. 37. Vector solution of multiple reactance circuit. 

ELI and EL2. We now add this vector to 
the sum of ELI and EL2 following the 
same procedure as shown in Fig. 32. We 
move vector Ec to the head of EL2 as 
shown by the dotted line. Then the head 
of Ec represents the total reactive volt-
age. We have shown Ec dotted and 
slightly to one side of EL2 so you can see 
it; actually it should be superimposed on 

EL2 • 
To complete the vector diagram and 

get ET, we draw a line parallel to vector 
ER from the end of the vector repre-
senting the sum of ELI EL2 Ec. 
Then we draw a second line parallel to 
the ELI vector from the end of ER. The 
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point where these two lines intersect 
locates the end of ET. Now we can draw 
vector ET to represent the sum of our 
reactance and resistance vectors and care-
fully measure it. We find that it is exactly 
3-3/4" long. Now, by setting the ratios 
and proportion between our scale values 
and our measurements, we can convert 
our vector measurements to volts as 
follows: 

3 u ET 
3-
4 



3 
— " X ET = 3 " X 100 
4 4 

ET 15 
= — X 100 

4 4 

ET 1500 

4 4 

4ET = 4 X 1500 

ET = 1500 volts 

We can then determine the value of O by 
measuring it: O = 36-1/2°. 

So far, in working with vectors, we 
have considered only the addition of 
vectors to find a total. We can also break 
down a given resultant vector to find 
some of its components. In other words, 
if we have ET, we can find ER and the 
total circuit reactance voltage. This 
process is important when working with 

EL 

EC 

parallel ac circuits, so let's see how it is 
done. 

Suppose we are given a statement 
regarding the voltage of a circuit as 
follows: "The voltage applied to a series 
circuit is equal to 140 volts and it leads 
the current by a phase angle of 45°. What 
is the value of the resistance in the circuit 
if the current is 5 amperes?" Although 
this might seem difficult at first glance, it 
is really quite easy to solve. First, let's see 
what we know about the voltage. 
We can see that it leads the current (or 

that the current lags the voltage) and, 
therefore, the total reactance in the cir-
cuit must be inductive. We know the 
phase angle is 45° and that the voltage 
value is 140 volts. With this information 
we can lay out our standard reference 
diagram for vector solutions and con-
struct a vector that represents the total 
voltage applied. Using a scale of 1/4" = 20 
volts, our total voltage vector, ET, can be 
laid out to scale as shown in Fig. 38. We 

SCALES /4SI -20V 

= I /4 =100V 

F. 38. Breaking a vector down into two components. 
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have drawn this vector above the refer-
ence line I, at the phase angle of 45°, to 
show that it is inductive and leads the 
current. Now this vector, ET, is a re-
sultant vector and must be made up of at 
least two component vectors; one re-
sistive, and one reactive. Any vector that 
is not out-of-phase with the reference by 
some multiple of 90° can always be 
broken down into at least two com-
ponents that are at right angles to each 
other. Because of this rule, we can sepa-
rate the vector ET into two component 
vectors. 
Doing this, we find that in the circuit 

the reactive component, Ex, is equal to 
100 volts and the resistive component, 
ER, is also equal to 100 volts. Now that 
we have the resistive voltage drop of 100 
volts, it is easy to find the resistance. We 
know that it is a series circuit and, 
therefore, the current is common. 
Accordingly, 

ER 100 
R = — = — = 20 ohms 

5 

Thus, by breaking down the vector value 
of applied voltage into its two com-
ponents, we are able to determine quite a 
lot about the circuit. You will find that 

XL 

XCI =3°11 X Ls2C)ni 
R=5011 

= 2011 
Xc2= 4 0-n- Xc2= 4011-11 

XT (L;e2 

R=5011 R 
I i> 

XCI = — 
1.?" 

SCALE. I/4 310 -n- Xc 

Fig. 39. Solving for impedance with vectors. 
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this is a very valuable process in your 
electronics work. 
Up until now, we have been working 

primarily with the voltages in a circuit. 
We can use our vector diagrams and 
computation methods to find the im-
pedance of a circuit. For example, 
suppose we wanted to find the total 
impedance of the circuit shown in Fig. 
39A. We would simply lay out our vector 
diagram and add the component vectors 
just as we did when we were working 
with voltage, as shown in Fig. 39B. 
Notice that we use R as the reference line 

because it represents the in-phase com-
ponent of the impedance Z. You should 
have no trouble following the solution of 
this simple vectorial computation. 

PYTHAGOREAN THEOREM 
FOR VECTOR SOLUTIONS 

You will remember that earlier in this 
lesson and in your technical lessons, we 
mentioned that we could use formulas 
instead of vectors for ac circuit solutions. 
One of the most familiar is the formula 
for impedance which is, 

This formula is really just a mathematical 
solution of a vector diagram. By using it, 
we involve ourselves in the problem of 
finding a square root, but it is often much 
more desirable and usually more accurate 
than solving vectors by measurement. In 
measuring vectors for the solution of 
vector diagrams, we need to take care in 
laying out the diagrams, and measuring 
the angles and lengths of the vectors. 

In working with the formulas, we are 
given a method of solving for the lengths 
of the vectors, but not the anees. Since 

the formula allows us to use a mathe-
matical solution for the length of the 
vectors in vector diagrams, it eliminates 
the need for the accuracy of layout and 
measurement. Let's look at a typical 
vector diagram and see how it is possible 
to consider the formula Z = N/Ti.2 4---Tr( as 
the mathematical solution. 

In Fig. 40A, we have laid out the 
solution of a typical vector diagram for 
finding the impedance of an ac circuit. 
The vector representing R, the dotted 
vector representing XL, and the resultant 
vector Z, representing the impedance of 
the circuit, forms a three-sided, com-
pletely enclosed figure. Such a three-sided 

figure, as you probably know, is called a 
triangle. However, this is a special type of 
triangle, called a right triangle. Any tri-
angle that contains one angle that is equal 
to 90°, such as the angle between vectors 
XL and R, is a right triangle, no matter 
what the other two angles or the lengths 
of the sides may be. Any triangles in-
volved in vector solutions for ac circuits 
will also be right triangles, because two of 
the sides must be 90° displaced from each 
other. 

It is important that you realize this and 
understand it, since many of the laws for 
ac circuit solutions depend on this fact. 
In Fig. 40B, we have drawn the triangle 
of Fig. 40A, leaving out the arrowheads 
and values so that we can show you a 
very important fact about all right tri-
angles. First of all, notice that we have 
given names to the sides of our right 
triangle in Fig. 40B. The longest side, or 
the side opposite the right angle, is always 
called the hypotenuse. The other two 
sides are simply known as legs or sides. 
Many years ago, a mathematician 

named Pythagoras discovered a very 
interesting fact about right triangles. He 
discovered that if you squared each side 
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of the right triangle and filled in all the 
squares in between as we have shown, the 
sum of all the squares (created by 
squaring the two legs) is exactly equal to 
the number of squares created by 
squaring the hypotenuse. You can actu-
ally prove this to yourself by counting all 
the squares in the two legs. You will find 
that there are 64 squares in the bottom 
leg and 36 squares in the vertical leg. The 
sum of 64 and 36 is, of course, 100. Now, 
if you count all the squares made by 
squaring the hypotenuse, you will find 
that there are also exactly 100. Thus, we 
have the theorem which Pythagoras dis-
covered: 

The square of the hypotenuse of any 
right triangle is equal to the sum of the 
squares of the other two sides. 

If we apply this theorem to our vector 
diagram in Fig. 40A, we have: 

Z2 = R2 + (XL)2 

Then, by substituting our values, we 
have: 

Z2 = 402 + 302 

= 1600 + 900 = 2500 

Then, if Z2 = 2500, Z = N./UT) = 50. 
You will notice that this is the same 
answer we obtained by measurement. 
You will also notice that our statement 
Z2 = t(,-,2 + XL2 is the same as one of our 
formulas; Z = ‘,/ R2 + XL2. We usually 
use the general formula; 

Z = Ni R2 + [XL + (— )(c)] 2 

because we always find our total reactive 
component, X, before we find our 
squares. In this way, we can solve for any 

right angle vector diagram without using a 
measurement solution. 

SELF-TEST QUESTIONS 

(38) What is a vector? 
(39) Draw a simple vector diagram which 

shows the phase relationship be-
tween the voltage across and the 
current through a coil. 

(40) A coil and resistor are connected in 
series across an ac generator. The 
voltage drop across the coil is 10 
volts and the drop across the re-
sistor is 20 volts. Draw a vector 
diagram which shows the amplitude 
and phase relationship of the two 
voltages. 

(41) Find the total voltage from the 
generator using the vector diagram 
in Question 40. 

(42) Draw a vector diagram which shows 
the phase relationship between the 
voltage across and the current 
through a capacitor. 

(43) A coil, resistor, and capacitor are 
connected in series across an ac 
generator. The coil drops 12.5 volts, 
the resistor 15 volts, and the capaci-
tor 7.5 volts. Draw a vector diagram 
showing amplitude and phase re-
lationship of the 3 voltages. 
Find the total voltage supplied by 
the generator described in Question 
43. 

(45) State the Pythagorean Theorem. 

(46) What is a right triangle? 

(47) What quantity is represented by the 
hypotenuse of a right triangle which 
has one side representing resistance 
and the other side representing re-
actance? 

(44) 
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Circuit Calculations 

In this lesson and in your previous 
lessons you have learned many of the 
important facts concerning ac circuits. 
You have also studied some of the math-
ematical procedures that can be used in 
considering these facts in ac circuit calcu-
lations. Although you may feel that at 
the present time you have mastered all 
this information, it is quite possible that 
you will forget many of the details. One 
of the best ways to prevent forgetting this 
information and to insure that you really 
do understand it thoroughly is to get 
some practice using it. 

Therefore, at the end of this section we 
will present several typical circuit prob-
lems and ask you to solve them. Remem-
ber that many times it may be necessary 
to solve for intermediate values in order 
to obtain the necessary factors for use in 
finding the answers. If you have learned 
and understood the mathematics and 
electronics that you have studied so far, 
you should be able to obtain all the 
answers without too much difficulty. 

Most of the information in this lesson 
parallels the technical lessons from 6 
through 9. Therefore, the problems will 
deal mainly with the formulas and data 
covered in these same technical lessons. If 
you have any real difficulty with the 
solutions of these problems, it will be a 
good idea to review the appropriate sub-
jects in other lessons that you have had. 
Remember, only by working out the 
solutions of these problems will you be 
sure that you have thoroughly under-
stood the material presented. It is very 
important for you to do this before you 
continue with your remaining lessons. 
To help refresh your memory and 

prevent your having to look up too much 
information regarding these problems, we 
have listed some of the more important 
formulas that you have studied. If you 
find that you do not thoroughly re-
member and understand these useful and 
common formulas, it will be a good idea 
to review them before you start working 
the problems. 

Inductance of coils in series: 

LT = L1 + L2 ± 2M 

Inductance of coils in parallel: 

Li X L2 

L1 + L2 
LT 

Inductive reactance: 

XL = 2ir fL 

(f = Hertz, L = henrys) 

Q of a coil: 

XL 

Q = R 

Capacitance of capacitors in series: 

C1 X C2 

C = 

C1 + C2 

Capacitance of capacitors in parallel: 

C = C1 + C2 + C3 
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Capacitive reactance: 

1 
Xc = or 

2ir fC 

x, = 
159000 

fC 

where fis in Hertz and C is in mfd. 

Ohm's law for ac circuits: 

E=IXZ 

Impedance in ac circuits: 

Z=S/R2 737,2 

Total voltage in ac circuits: 

ET = EINF77- 1- Ex 2 

Resonant frequency: 

1 

2ir N/71:7<C 

or 

.159 

C 

Turns ratio of transformers: 

N1 = El 

N2 E2 

N1 = 12 

N2 11 

NI .\ Z1 

N2 Z2 

EXAMPLES 

Study the following examples care-
fully. They are purposely difficult to give 
you practice and show you how to get 
the correct answers in an orderly manner. 
Break down a problem into smaller parts 
and solve for each part step by step. You 
will note that it is necessary to find a 
quantity not asked for but required 
before you can get the final answer. 
Review of these examples, although quite 
advanced for you at this time, will give 
you the confidence to tackle the exercise 
at the end of this section. Do not be 
discouraged should you not get the right 
answer on the first try. 

Be sure you have all quantities in the 
correct units. If you are asked to find 
power in a circuit and are given the 
voltage in volts and the current in milli-
amps, you must convert the current to 
amperes by moving the decimal point 
three places to the left. When you need to 
find either inductive or capacitive re-
actance, be sure that you have frequency 
in Hertz and inductance in henrys or 
capacitance in farads. To convert micro-
henrys to henrys or microfarads to farads, 
move the decimal point six places to the 
left. 

Example 1: Find the current in a series 
circuit consisting of a 150-ohm resistor, a 
292 millihenry coil, and a 7 microfarad 
capacitor if the line voltage is 120 volts 
and the line frequency is 150 Hertz. 

Solution: To find the current in an ac 
circuit, you divide the voltage by the 
impedance of the circuit. This is Ohm's 
Law for ac circuits. 

E 
I =— 
Z 
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Ittb 

We know E, but do not know Z so we 
must find Z. 

z = R2 + [XL+ (—xc)] 2 

We know R, but we do not know Xc or 
XL so we must find these values. 

and 

XL = 2n fL 

Xc = 

1 

27r fC 

Thus, XL = 275.064 ohms, which we can 
round off to 275 ohms. 
Now let's find Xc using the formula 

1 
Xc 

2/r fC 

Again 2ir = 6.28, f = 150 Hertz and C -= 7 
microfarads. C must be in farads so we 
move the decimal six places to the left. 

Thus, 7 microfarads = .000007 farad. 

1 
Xc —  

6.28 X 150 X .000007 
Since we know f, L, and C we can find 
XL and Xc. Then we can get Z, and Z is 6.28 X 150 = 942 (we did this when we 
used to find I. Therefore, our first steps were finding XL). 
in the problem are to find XL and X. 
Let's do that now: 942 

.000007  

XL = 2/r fL .006594 

2.7r = 6.28, f = 150 Hertz and L = 292 
millihenrys. 
To use our formula, f must be in Hertz, 

which it is, and L must be in henrys. So 
we must convert 292 millihenrys to 
henrys by moving the decimal three 
places to the left. 

Thus, 292 millihenrys = .292 henrys. 
Now XL = 6.28 X 150 X .292. 

Now dividing .006594 n-
151.6 

6594 J 1000000. 
6594  
34060 
32970  
10900 
6594  
43060 

6.28 
1 50 Thus, Xc = 151.6 ohms, which we round 

314 00 off to 152 ohms. Now that we know R, 
628 XL, and Xc, we can get Z using 

942.00 
Z = R2 + [XL + (—Xc)1 2 

942 
.292 To add XL and Xc we must remember 

1884 they are opposite reactances. XL is posi-
8478 tive and Xc is negative. Thus, when we 
1884 add we have 275 + (-152) so, because of 

275.064 the negative number, we subtract 
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275 
—152 
123 

Therefore, X1 + Xc = 123 ohms. 

Now, squaring I 23 we get 

123 
123 
369 

246 
123  
15129 

And squaring R we get 

150 
150 

7500 
15  
22500 

Now, adding R2 + [X1 (— Xc)] 2 

22500 
15129 
37629 

To find Z we must take the square root 
of 37629. 

1 9 3. 9  
.\/ 3,76,29.00 
1 

29 r276 
261 

383 n-5-2. 
1149 

3869 ri8-07xT-
34821 

Thus, Z is 193.9 ohms, which we can 
round off to 194 ohms. 
Now, to find I we use 

E 

120 
1 — 

194 

.618 
194)120.0 

1164  
360 
194 
1660 
1552  
108 

The line current is .618 amps. Notice how 
we solved this problem. We worked back-
wards to find what we had to determine 
in order to get the required answer and 
then began by evaluating the terms 
needed to get the final solution. 

Example 2: Find the voltage across the 
inductance in a series circuit having an 
inductive reactance of 4 ohms, a capaci-
tive reactance of 12 ohms and a resistance 
of 6 ohms, if the voltage applied to the 
circuit is 50 volts at 60 Hertz. 

Solution: To find the voltage across 
the coil we need to know the current 
flowing in the circuit. Then we can use 
the formula 

EL = I X XL 

To get I, we need the impedance. Then 
we can use 

E 
1 =— 
Z 
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We start by getting Z. 

Z = R 2 + [XL + (—XC)] 2 

XL = 4 and Xc = —12 so we have 

+ (-12) 

— 8 

Thus, Z = ./-)-7(--78)2. 
Remember the (-8)2 is (-8) X (-8) 

and your rules for multiplying signed 
numbers tell you that (-8) X (-8) = 64 

Therefore, 

z = N/37---F 64 
= Nr(ii 
= 10 ohms 

Thus, I = 50/10 = 5 amps and the 
voltage across the coil is EL = I X XL = 5 
X 4 .= 20 volts. 
You might wonder about the 60 Hertz. 

We didn't use this, because we didn't have 
to. We had the reactance of the coil and 
capacitor so we could get the impedance 
directly. Often, in problems and in actual 
practice, you'll find you have more data 
than you need. You have to learn to take 
what information is needed and use it and 
ignore unneeded information. 

SELF-TEST QUESTIONS 

(48) If a 500-ft. roll of copper hookup 
wire has a resistance of 30 ohms, 
how much resistance will an 850-ft. 
roll of the same wire have? 

(49) What ac voltage will be needed to 
force a current of .02 amps through 
an 8K-ohm resistor? 

(50) What value of ac current will flow 
through a 10-henry coil with negli-
gible resistance if the voltage sup-
plied is 120-volt, 60 Hertz ac? 

(51) Find the current sent through a 

.03-henry choke coil by an ac volt-
age of 188.4 volts at 1 kHz. 

(52) In the circuit shown below, find the 
resistance of RI. 

RI ? 

El =20V 

R2 1800 .n. 

E2 360V 

(53) A 10 mfd capacitor draws 300 ma 
of current at a frequency of .4 kHz. 
What is the voltage drop across the 
capacitor? 

(54) What turns ratio should we have for 
a transformer that we wish to use to 
match a source impedance of 490 
ohms to a load of 10 ohms? 

(55) What is the total inductance of two 
coils connected in series if the 
inductance of one is .2 henrys and 
the other is .8 henrys and their 
mutual inductance is zero? 

(56) What is the impedance of a series ac 
circuit having an inductive reactance 
of 14 ohms, a resistance of 6 ohms, 
and a capacitive reactance of 6 
ohms? 

(57) What is the resonant frequency of a 
series circuit containing a 500 pico-

farad capacitor, a 150 rnicrohenry 
choke and a 10-ohm resistor? 

(58) What is the impedance of an ac 
circuit containing a 3-ohm resistor 
in series with an inductive reactance 
of 7 ohms? 

(59) If three capacitors of 1, 3, and 5 
microfarads are connected in paral-
lel, what will the total capacitance 
be? 

(60) If we assume that a coil has a 
negligible resistance and that 215 
ma of current is forced through it 
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by a supply voltage of 110 volts at 
25 Hertz what is the inductance of 
the coil? 

(61) If we supply 240 volts at 60 Hertz 
to a capacitor and obtain a current 
of 452 ma, what is the capacitance? 

(62) If a circuit containing a 175-ohm 
resistor is connected in series with a 
5-microfarad capacitor across a 
source of 150 volts at 120 Hertz, 
what current will flow in the 
circuit? 

(63) If a series circuit contains a ca-
pacitive reactance of 10 ohms, an 

inductive reactance of 25 ohms, and 
a resistance of 15 ohms, what will 
the phase angle be? 

(64) What is the capacitive reactance of a 
capacitor at a frequency of 1200 
kHz if its reactance is 300 ohms at 
680 kHz? 

(65) If a series circuit has a resistance of 
4 ohms, an inductive reactance of 4 
ohms, and a capacitive reactance of 
1 ohm, and it is supplied with an ac 
voltage of 50 volts, what will the 
voltage drop across the inductance 
be? 

58 



Answers to Self-Test 
Questions 

(1) The radical sign. 
(2) 25 ohms. 

Z = N/ R2 + X2 

= N/ (15)2 + (20)2 

= N/225 + 400 

= 

25 

-4 

45í -

-2 25 

Z = 25 ohms 

(3) Approximately 1.414. 

1. 4 1 4 

N/ 2.00,00,00 
-1 

24 1-1-0-0 
-96 

281 riTC -0 
81 

2824 1- ii7F0 
-1 12 96 

1 ./ 25 1 
(4) —\ — = — = — - 

5 625 25 Ner 5 

(5) 111. This is the same as saying, 
"What is the square root of 
12,321."? 

(6) 21.2. 

" 1 1 1 

N/7,13-,-2T 
-1 

211 23 
-21 

2211- 27 
-2 21 

2 1. 2 

N/4,49.44 
-4 

41 r 49 
-41 

422 1-81-4 
-8 44 

(7) 50 ohms. 

Z = N/R2 + X2 

= N/ (40)2 + (30)2 

= N/1600 + 900 

5 0 
= 

-25 

Z = 50 ohms 

(8) 663. 6 6 3 

N/43,95,69 
-36 

126 1-7-9i 
-7 56 

1323 I 39 69 
-39 69 
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(9) .021. 6 

(10) 5.01. 

.021 

N/.00,04,41 
—00 

2 r 04 
—04 

41 
—41 

5. 0 1 

N/25.10,01 
—25 

1001 F171:,-(71 
—10 01 

7 

= .857 or 85.7% 

6V 1 
(13) — =—= 1:3 

18V 3 

250 mV 250 mV 1 
(14)  =  — — 1:4 

IV 1000 mV 4 

Output power 
(15) Efficiency —  

Input power 

3hp 

2.5kW 

(1 horsepower equals approximately 
750 watts.) 

(11) A ratio is a comparison of two 
numbers or similar quantities. For 
example, the efficiency of a motor 
is expressed as the ratio of output 
power to input power. A proportion 
is a comparison of two ratios. To be 

more precise, a proportion is a 
mathematical statement that two 
ratios are equal. 

Output power (16) A1 = B1 
(12) Efficiency =   A2 B2 

Input power 

2 horsepower 
1.75 kW 

(1 horsepower equals approximately 
750 watts.) 

2 X 750 

1.75 X 1000 

15 90 

6 B2 

3 X 750 

2.5 X 1000 

2250 

2500 

9 

10 

= .9 = 90% efficiency 

15132 = 540 
B2 = 36 

(17) AI = B2 

A2 81 

1500 
A1 150 

1750 4 — 100 
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t 

100A, = 600 
A1 = 6 

(18) The battery voltage is equal to the 
sum of the voltage drops across the 
two resistors. The voltage across R1 
is 10 volts. Therefore, we can find 
the voltage across R2 using direct 
proportion: 

El _ R1 

E2 — R2 

10 _ 1200 

E2 240 

1200E2 = 2400 

E2 = 2 volts 

The applied battery voltage is the 
sum of E2 + E1 or 2V + 10V = 12V. 

(19) Since current is inversely propor-
tional to resistance, our equation is: 

It R2 

12 R1 

2 — R2 _  
2.2 66 

2.2R2 = 132 

R2 = 60 ohms 

. (20) To add two or more numbers with 
like signs, find the sum of the 
numbers as you would in ordinary 
arithmetic and place the sign of the 
numbers added in front of this sum. 

(21) The sum of two signed numbers 
with unlike signs is equal to the 
difference between the two num-
bers, preceded by the sign of the 
larger number. 

(22) To subtract signed numbers change 
the sign of the subtrahend and then 
add the two numbers according to 
the rules for adding signed numbers. 

(23) —3 
(24) (a) —23 (b) +9 (c) +26 (d) 

—22 
(25) (a) —9 (b) +17 (c) —70 (d) 

—46 
(26) The product of two numbers with 

like signs is always positive. The 
product of two numbers with unlike 
signs is always negative. 

(27) If the numbers have like signs, the 
quotient is always positive. If the 
numbers have unlike signs, the quo-
tient is always negative. 

(28) (a) +42 (b) —18 (c) —187 (d) 
+36 

(29) (a) —4 (b) +24 (c) —3 (d) +43 
(30) A positive number. 
(31) (a) —8 (b) +24 (c) —27 (d) 0 
(32) (a) +138 (b) —22 (c) —59 (d) 

—12 
(33) (a) +126 (b) —120 (c) —56 

(d) +120 
(34) (a) +43 (b) —11 (c) —.25 (d) 

—16 
(35) (a) (-2)4 = (-2) X (-2) X (-2) X 

(-2) = +16 
(b) (+2)4 = (+2) X (+2) X (+2) X 
(+2) = +16 
(c) (-3)3 = (-3) X (-3) X (-3) = 
—27 
(d) (+3)3 = (+3) X (+3) X (+3) = 
+27 

(36) (a) 3.247 
(b) 762,500 
(c) .0023 
(d) .0967 
(e) 2,300,000 
(f) .9327 
(g) 8200 
(h) .00032 
(i) 75.6 
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(37) (a) 
(b) 
(c) 
(d) 
(e) 

(f) 

(g) 
(h) 
(i) 

2.68 
—2.25 
1.97 X 10 
—7.57 X 10-1 
2.67 X 10-4 
5.57 X 10-2 
3.14 X 104 
6.85 X 10-
7.78 X 102 
—8.15 X 10-

(38) A vector is a straight line of definite 
length and direction which shows 
the magnitude and direction or time 
of a quantity. 

(39) See Fig. 27B. 
(40) 

EL•10 V 

(41) Approximately 22.5 volts. 

rEL.I0V 

7' 

ER= 20V 

(42) See Fig. 34C. 
(43) 

EL.I 2.5V 

Ec• 7.5 V 

ER = I5V 

(44) Approximately 16 volts. 

EL-EC • 5V 

Er 7" 

ER 15V 

(45) The Pythagorean Theorem states 
that the square of the hypotenuse 
of any right triangle is equal to the 
sum of the squares of the other two 
sides. 

(46) Any triangle which contains one 
angle that is equal to 90°. 

(47) Impedance. 
(48) 51 ohms. 

LL = Length of long wire 
Ls = Length of short wire 
RL = Resistance of long wire 
Rs = Resistance of short wire. 

Now, since the resistance of a wire 
is directly proportional to its length, 
we can establish a proportion. 

LL _ RL 

Ls Rs 

17 
RL 

-50er 30 
10 

IORL = 510 
RL = 51 ohms 

(49) 160 volts. First convert 8K-ohms to 
ohms. 
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8K-ohms = 8000 ohms 

Then use Ohm's Law to find the 
voltage. 

E = IR 
E = .02 X 8000 
E = 160 volts 

. (50) .0318 amps. Use Ohms's Law for ac 
circuits. 

E 
I =7 

The only impedance in the circuit is 
the XL of the coil. Therefore, I = 
E/XL, so we must first find XL. 

XL = 27rfL 
f = 60 Hertz 
L = 10 henrys 
XL = 6.28 X 60 X 10 
XL = 3768 ohms 

Now, 
E 

I = 
XL 

120 

3768 

I = .0318 amps 

(51) 1 amp. 

XL = 2/rfL 
f = 1 kHz or 1000 Hertz 

L = .03 henry 
XL = 6.28 X 1000 X .03 
XL = 188.4 ohms 

E 

XL 

188.4 

188.4 

1 = I amp. 

(52) R1 = 100 ohms. 

R1 El 

R2 E2 

R1 

1800 .360-
18 

18R1= 1800 

= 100 ohms 

(53) 12 volts. First find Xc. 

.159 
Xc — 

fC 

f = .4 kHz or 400 Hertz 
C = 10 mfd or .00001 farad 

.159 
Xc — 

400(.00001) 

.159 
Xc — 

.004 

Xc = 39.75 ohms or approxi-
mately 40 ohms 

E = IXc 
I = 300 ma or .3 amps 
E = .3 X 40 
E = 12 volts 

(54) 7 to 1. 

N1  N2 .\/ZI 
Z2 
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N, 

N2 

N, 
7 

N2 

Therefore, the turns ratio is 7 to 1. 

(55) 1 henry. 

LT = LI + L2 ± 2M 

LT = 
LT = 1 henry 

(56) 10 ohms. 

z = N./ R2 + [XL + (— xc)1 2 

Z = N/62 + [14 + (-6)] 2 

Z = N.762 + 82 

Z = N/36 + 64 

Z = 

Z = l0ohms 

(57) Approximately 580 kHz. 

.159 

f = 

N/ Lc 

.159 

Ni 1.5 X 10-4 X 5X 10-10 

.159 

(58) 7.6 ohms. 

Z = N/R2 + XL2 

Z = \/ 32 72+ 

• = N/9+49 

• = N/ 58 

Z = 7.6 ohms 

(59) 9 microfarads. 

CT = + C2 + C3 
CT = 1+3+5 
CT = 9 mfd. 

(60) Approximately 3.3 henrys. First 
find the XL of the coil. 

E 110 
XL =—=—= 512 ohms 

1 .215 

Now, since XL = 2./rfL 
Then, 

L - XL 
2/rf 

512 

6.28(25) 

512 

157 

L = 3.3 henrys. 

N/7.5 X 10-14 (61) 5 microfarads. First find the Xc of 
the capacitor. 

.159 

2.74 X 10-7 

f = 5.8 X 105 

f = 580 kHz 

E 240 
Xc =—= — = 531 ohms 

1 .452 

.159 
And since Xc = 

fC 
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Then 

.159 
C = 

fXc 

.159 

60(531) 

.159 

31860 

C = .000005 = 5 mfd 

(62) .472 amps. 1= E/Z, so we must first 
find Z. But to find Z we must find 
Xc 

= N/R2 + Xc2 

.159 
Xe = 

Xc = 

fC 

.159 

120(.000005) 

.159 
Xc 

.0006 

Xc = 265n. Now find Z. 

Z = N/ R2 + Xc2 

Z = N/1752 + 2652 

(63) 45° inductive. 

XL .2511 

XL Xc.15n 

45 ° 
 1J R.1511 

(64) 170 ohms. There are two ways to 
work this problem. We will consider 
both ways. The easier method is to 
set up and solve a proportion. We 
know that Xc is inversely propor-
tional to frequency. Therefore, 

Xc f2 

Xc 2 fi 

Xc 680 
Z = N/30625 + 70225 

300 1200 

Z = N/IF]it 
1200 Xc = 204000 

Z = 318 ohms. Now find 1. 
204000 

E X' 1 — — 170 ohms. 
= — 1200 

The second method is to find the 150 
1 capacitance of Xc and frequency 

318 given. Then find Xc of that capaci-
tance at the new frequency. 

= .472 amps. That is, 
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.159  .159 Z = N/ R2 + [XL + (—Xc)1 2 
C = — 

fXc 680,000(300) 
Z = N/42 + [4 + (-1)] 2 

.159 _  

204,000,000 Z = N/1. 9 

C = 780 picofarads. Now find the Z = NTF« 
reactance of this capacitance at the 
new frequency. Z = 5 ohms. 

.159 
Xc =   

1,200,000(.000000000780) 

.159 
Xc — 

.000936 

Xc equals approximately 170 ohms. 
The answer does not work out 
exactly because we rounded off 27r 
and the value of C. By working both 
methods, it becomes obvious that 
the first method is not only easier, 
it is also more accurate. 

(65) 40 volts. First find the impedance 
of the circuit. 

Now, find the current in the circuit. 

E 
I 

I 
5 

1 = 10 amperes. 

Now, find the voltage across the coil 
(EL). 

- 
Z 

50 
. - 

EL = I (XL) 
EL = 10(4) 
EL = 40 volts. 
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Lesson Questions 
Be sure to number your Answer Sheet X109. 

Place your Student Number on every Answer Sheet. 

Most students want to know their grades as soon as possible, so they mail their 
set of answers immediately. Others, knowing they will finish the next lesson within 
a few days, send in two sets of answers at a time. Either practice is acceptable to 
us. However, don't hold your answers too long; you may lose them. Don't hold 
answers to send in more than two sets at a time or you may run out of lessons 
before new ones can reach you. 

1. Find the square root of: 
(a) 576 (b) 4489 (c)16384 

2. Find the square root of: 

(a) 41616 (b) 73652 (c) .0625 

3. Find the value of X in each of the following: 
(a) 4 : 5 :: X : 20 (b) 47 : 329 :: 7 : X 

4. Find the value of X in each of the following: 
62 3 X 1 

124 X (b) 72 12 

5. Solve the following: 
(a) (-47) X (51) 
(b) (-23) X (-17) 
(c) (37) X (-62) 
(d) (-11) X (-7) X (-6) 

6. Solve the following: 
(a) 72 (-8) 
(b) (-144) (-12) 

(c) (-64) (-7)  

(-8) 

(d) (-48) (-4)  
(12) 

7. Find the value of ET in the circuit at 
the right by means of a vector diagram. 
(Show your diagram.) 

(OVER) 

EL .40V 

ET 

ER•3°V 



EL*40V 

8. Find the value of ET in the circuit at 
the right by means of a vector diagram. 
(Show your work.) 

ET 

o  

Ee120V 

ER .GOV 

9. What is the total impedance of a circuit that has an inductive reactance of 124 

ohms in series with a 95 ohm resistance? 

10. Find the current in a series circuit made up of a coil with an inductance of 
325 millihenrys, a capacitor of 4 microfarads, and a resistor of 120 ohms if the 

source voltage is 120 volts at 100 Hertz. 

" 
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THE VALUE OF KNOWLEDGE 
Knowledge comes in mighty handy in the practical affairs of 

everyday life. For instance, it increases the value of your daily 
work and thereby increases your earning power. It brings you 
the respect of others. It enables you to understand the 
complex events of modern life, so you can get along better 
with other people. Thus, by bringing skill and power and 
understanding, knowledge gives you one essential requirement 

for true happiness. 
But what knowledge should you look for? The first choice 

naturally goes to knowledge in the field of your greatest 
interest — electronics. Become just a little better informed than 
those you will work with, and your success will be assured. 

It pays to know — but it pays even more to know how to 
use what you know. You must be able to make your 

knowledge of value to others, and to the rest of the world, in 
order to get cash for knowledge. 

The NR! Course gives you knowledge, and in addition 

shows you how to use what you learn. Master thoroughly each 
part of your course, and you'll soon be getting cash for your 

knowledge. 
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SIMPLE CIRCUIT ALGEBRA 

In many ways the study of tube and 
transistor circuits is just an extension of 
your study of ac and dc circuits. The 
tuning circuits, coupling circuits, filter 
circuits, and voltage dividers that are used 
with tubes and transistors are simply 
special designs of circuits that you are 
already familiar with to a certain extent. 
In these circuits, coils and capacitors and 
resistors of various values are assembled 
in different series and parallel combi-
nations to give special effects. Either ac, 
dc, or both may be applied to these 
circuits depending on their function and 
use. 

For the most part, the basic arithmetic 
and operations with signed numbers and 
vectors that you studied for use with ac 
and de circuit calculations can be applied 
in the calculations for tube and transistor 
circuits. However, as the equipment and 
circuits that you study become more 
involved, it will become increasingly diffi-
cult to keep up with their operation and 
maintenance if you rely only on the 

mathematical processes that you have 
already learned. You will need many new 
shortcuts and some new mathematical 
tools to keep your studies and work in 
electronics simple and straightforward. 

In your previous lessons, you saw how 
important vectors are in analyses and 
calculations dealing with ac circuits. As 
you continue with your studies, these 
simple vectors will become even more 
important. However, the simple measure-
ment solutions that you have been using 
to solve vector problems will become very 
awkward to use as the circuits become 
more complex. In addition to requiring 
careful construction and measurement, 
they require a lot of space and can 
become very involved, especially in par-
allel circuits. Although we can overcome 
these problems to some extent by using 
the Pythagorean Theorem, it also has its 
limits. 

However, there is a handy method for 
working with ac circuit vectors so they 
can be solved mathematically. It involves 
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using a special tool known as the "j" 
operator. This simple operator allows us 
to easily add, subtract, multiply, and 
divide vectors, regardless of their com-
plexity. No course in electronics can 
really be considered complete without at 
least a working knowledge of this method 
of determining the solutions to circuit 
problems. 

In order to use the j operator success-
fully, you should have at least a basic 
understanding of the essentials of another 
mathematical process known as algebra. 
As many of you already know, algebra is 
simply a form of mathematics that sim-
plifies complex operations in arithmetic 
by using letters. Through these letter 
solutions of practical problems, we are 
able to speed up and simplify operations 
that would take a long time and involve a 
lot of tedious work if we used numbers 
alone. Thus, time spent learning the fun-
damentals of algebra will be worthwhile. 

Therefore, in this lesson on circuit 
calculations, you will learn to use and 
apply the fundamentals of algebra and 
the j operator in electronic circuit calcu-
lations. If you have never studied these 
subjects, you may be a little uneasy about 
tackling them. However, you have already 
seen that math makes a lot more sense 
and becomes much easier when you have 
a practical use for it, such as your work in 
electronics. 

As you study this lesson, remember 
these subjects are like all the others. All 
you have to do is learn a few rules and get 
some practice using them. Once you have 
done this, you have accomplished your 
goal of learning new processes that will 
help make your work much easier and 
more efficient. If you have already 
studied these subjects, you will find that 
this lesson will give you a good review 
and some valuable pointers on circuit 
applications. 
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Basie Algebra 

Anyone who can add and subtract, 
multiply and divide, and perform the 
other operations of basic arithmetic 
should find algebra easy to understand. 
The only difference between algebra and 
arithmetic is that in algebra you work 
with letters as well as with numbers. 
Therefore, we can consider that algebra is 
simply arithmetic with letters. Conse-
quently, all we have to do is get used to 
applying the rules of arithmetic to combi-
nations of letters. 
You are probably wondering just how 

we can use letters to compute with, 
because letters have no indicated values 
such as numbers have. We merely select 
letters and let them represent the values 
that we wish to work with. For example, 
you are already accustomed to working 
with formulas such as Ohm's Law which 
states that E = I X R. Here we have 
simply used certain letters to indicate 
various quantities in our circuit and have 
used these letters in an equation that 
represents their relationship in an elec-
trical circuit. This is algebra. 

In ordinary arithmetic, the next step 
would be to substitute the actual number 
values in place of the letters and solve the 
problem. In algebra, we may also do this, 
but many times we will find that it is 
easier to work with the letters awhile 
before we substitute the numbers. In this 
section of the lesson, we will start at the 
very beginning and learn just what algebra 
is all about. 

THE LANGUAGE OF LETTERS 

In your earlier lessons you learned how 
to substitute numbers for letters in cer-

tain formulas. As you continue in your 
work in electronics, it will be handy to 
know more about the process of com-
puting with both numbers and letters. 
You are already familiar with this sort of 
reasoning: "If I have one resistor and you 
give me another resistor, I will have two 
resistors." Or, "If you give me four 
capacitors and then someone else gives 
me five more capacitors, I will have nine 
capacitors." This is simply addition as 
applied to physical things. 

Addition, as you know, can only be 
performed with like things. We can add 
resistors to resistors, or capacitors to 
capacitors, but we can never add a num-
ber of resistors to a number of capacitors 
and get a sensible answer. Thus, the result 
of any addition is the sum of the number 
of things added followed by their name. 
We know that it is possible to represent 
various quantities by letters. For exam-
ple, suppose that we receive three orders 
of parts as follows: 

(1) 5 choke coils, 7 resistors, 4 
capacitors. 

(2) 3 choke coils, 2 resistors, 3 
capacitors. 

(3) 7 choke coils, 4 resistors, 5 
capacitors. 
If we want to know the total number of 
parts received in these orders we can 
simply add the number of like parts in 
each order together to give us a total of 
15 choke coils, 13 resistors, and 12 
capacitors. 

However, in doing this we must be very 
careful to keep the numbers associated 
with the coils separated from the num-
bers associated with the resistors, and 
resistors separated from the capacitors, 
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etc. Otherwise, there is a possibility that 
we might get the numbers confused and 
start adding the coils to one of the other 
parts. To keep them separated, we can list 
them carefully in separate columns and 
write down the names of the parts as we 
just did. While this will work very well, 
you can easily see that it would require a 
lot of tedious writing if we needed to add 
a number of different things. 
A much simpler way would be to 

choose abbreviations for the parts. For 
example, we could decide to let the letter 
"e" stand for the coils, the letter "r" 
stand for the resistors, and then let 
another letter such as "a" stand for the 
capacitors to be sure that the coils and 
capacitors are kept separate, since they 
both begin with "c." Now our additions 
and notations would look something like 
this (where c = choke coils, r = resistors, a 
= capacitors): 

(1) Sc, 7r, 4a 

(2) 3c, 2r, 3a 

(3) 7c, 4r, 5a 

15c,13r,12a 

By doing this we could save ourselves a 
lot of work and still perform the addition 
in such a way that it would make sense 
and eliminate the chance of getting the 
different parts confused with each other. 

In this way, it is possible to represent 
any number of different things or quan-
tities with letters. Once we have chosen 
letters to indicate quantities, we can add 
or subtract them, or multiply and divide 
them by simply performing the oper-
ations with the letters instead of using the 
quantities themselves. 

For example, let's say that we choose 

the letter "a" to represent a quantity. 
This means that the letter "a" written by 
itself will always mean "I a," the term 
"2a" will mean "2 a's," "3a" will mean 
"3 a's," etc. Thus, a term such as "5a" 
means that the quantity represented by 
the letter "a" is to be multiplied by 5. 
When we get ready to substitute and 
actually find the value or the meaning of 
the term "5a," we will need to know 
what the letter "a" stands for. In the 
meantime, we can go along and work 
with the term itself without worrying 
about what it means. 

Another example of a term that we are 
likely to meet is one such as "6ab." This 
simply means that a quantity represented 
by "a" is to be multiplied by a quantity 
represented by "b." Then the product of 
quantity "a" times quantity "b" is to be 
multiplied by 6. Thus, 6ab means "6" 
times "a" times "b" or 6 X a X b. In 
working with algebra we usually do not 
use the symbol X as a "times" sign 
because it can be confused with the letter 
"x" which can be used to represent a 
quantity. Sometimes dots are used 
between letters to indicate multiplication, 
as "6 • a • b," but generally the letters 
are simply written close together without 
any sign between them. 

Before we go on to learn the rules of 
using letters, there are some special names 
given letter combinations that we should 
be familiar with. A letter by itself is 
called a "term." Thus "a" is a term, "b" 
is a term, "x" is a term, etc. The 
indicated product of a group of letters 
such as "6ab" is also called a term. In this 
term, the 6, the a, and the b, are all 
factors of the indicated product, just as 6 
and 8 are factors of 48. 
We may have "like" terms or "unlike" 

terms in algebra. For example, 6ab, 3ab, 
and 5ab are all like terms because their 
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letter factors are all the same. Terms such 
as 6xy, 10ax, 7ab, are unlike terms 
because their letter factors are not all the 
same. 

The number tells you how many times 
the letter term is to be multiplied. It is 
called the "numerical coefficient" of the 
term or, more simply, just the "co-
efficient." Thus, a term may be a single 
letter, or it may consist of an indicated 
product between two or more letters, or 
between one or more letters and a numer-
ical coefficient. Remember, a term may 
consist of one or more letters and num-
bers, but if more than one letter appears, 
it is a term only if multiplication is 
indicated. The expression, "a + b", is two 
separate terms because addition is indi-
cated between the two letters. Likewise, 
an expression such as 6ab — cd is also 
made up of two terms. 
An algebraic expression made up of 

one term such as "7xyz" is called a 
"monomial" term. An expression made 
up of two or more terms, such as 6ir + 
7abc, or 8yx + 7cd — ab is called a 
"polynomial." If a polynomial has only 
two terms, it is usually called a "bino-
mial" and one with three terms is often 
called a "trinomial." Thus, ab + ac is a 
binomial, and ab + ac + ad would be 
called a trinomial. We have no special 
names for polynomials that consist of 
more than three terms. For example, an 
expression such as xy + ab — ac — yb 
would simply be called a four-term poly-
nomial. 

Now, with the names given to these 
various expressions firmly in mind, let's 
see how to perform simple arithmetic 
with letters. 

Addition of Letters. The rules for 

performing arithmetic with letters are the 
same as those with numbers. We can add 
like terms to each other, but we cannot 

add unlike terms. The rules for working 
with signed numbers also apply to work-
ing with letters. Likewise, the rules of 
order for performing a series of oper-
ations apply to letter arithmetic, or 
algebra, just as they do to numbers. 
A term consisting. of a letter with a 

coefficient, such as 5a, means that "a" is 
to be taken five times, or a+a+a+a+a. A 
term such as 6a means a+a+a+a+a+a. 
Therefore, to add 5a and 6a together 
really means (a+a+a+a+a) + 
(a+a+a+a+a+a), or a total of 11 a's which 
we would write as 1 la. Accordingly, we 
can say that 5a + 6a = lia. We can 
perform the indicated addition because 
the letter factors are the same and we can 
add like things together. Notice that in 
adding these like terms, we simply added 
their numerical coefficients (6 and 5) and 
used this sum as the new coefficient for 
the common letter. Thus, the sum of like 
terms is the sum of the coefficients of the 
terms followed by the common letters. 
For example, 

6ab + 3ab = 9ab 

4abc + 3abc + 5abc = 12abc 

xy + 3xy + 8xy = 12xy 

When working with unlike terms, how-
ever, we can only indicate the addition to 
be performed. Thus, a + b can only be 
written as a + b. Likewise, 6a + 5b must 
remain as 6a + 5b as far as the addition is 
concerned. Thus, addition of unlike terms 
always results in a polynomial term. 
Consequently, when we have addition 
indicated in a problem such as 

6a+7b+9ab+4a+3b+b, 

we would proceed as follows. 
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First, we would arrange the terms so 
that all the like terms were grouped 
together. Thus, we would have 6a + 4a + 
7b + 3b + b + 9ab. Now, adding the like 
terms gives us 

and 

6a + 4a = 10a, 

7b+3b+b=11b. 

Since we now have 10a + 1lb + 9ab, 
which are all unlike terms and cannot be 
added any further, our answer to our 
problem of 

6a+ 7b+9ab+ 4a+ 3b+b 

is simply 

10a+ Ilb + 9ab. 

Thus, to add a group of terms in algebra 
arrange the like terms so that they are 
together, then add all the like terms by 
adding their coefficients and then use 
these sums in an indicated addition of the 
unlike terms. The process of rearranging 
and adding the like terms is often called 
"collecting" terms. 

In working with letters, we will often 
run into terms with negative signs just as 
in working with numbers. We handle 
these signed algebraic terms like signed 
numbers. For example, to add two terms 
with like signs, we add the coefficients 
and use the common sign in front of the 
sum. Thus, (-6ab) + (-4ab) would be 
equal to —10ab, just as +3ab plus +4ab 
would equal +7ab. 

If we have to add terms with unlike 
signs, we simply find the difference 
between the coefficients and use the sign 
of the largest coefficient. Thus, 

and 

+5c + (-3c) = +2c 

—7cd + 4cd = —3cd. 

In a more complicated problem that 
consists of like and unlike terms as well as 
like and unlike signs, we would simplify 
the problem by collecting all like terms 
with like signs and then perform the 
addition. Thus, for a problem such as 

4c + (-9d) + 6e + (-3e) + 12d + (-4x) + 
2c + (—c) + 3d + 4e + (-3c) + (-3d), 

we would first collect all bur like terms 
and like signs as follows: 

4c + 2c + (—c) + (-3c) 

+ 12d+ 3d + (-3d) + (-9d) 

+ 6e + 4e + (-3e) + (-4x). 

+ (-4x). 

Then, combine like terms: 

6c + (-4c) 

+ 15d + (-12d) 

+ 10e + (-3e) + (-4x). 

+ (-4x). 

Now, 
6c + (-4c) = 2c 

15d + (-12d) = 3d 

10e + (-3e) = 7e 

+ (-4x) = —4x 
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and our answer would be 

2c + 3d + 7e + (-4x) 

or simply 2c + 3d + 7e — 4x. 
We will also find terms like this to add: 

(6ab-7xy) + (5ab—xy) + (-3ab+4xy). 

Here we have to add three binomials but 
the terms in each binomial are alike, so 
we can add them quite easily like this: 

6ab — 7xy 
+ 5ab — xy 

—3ab + 4xy 
8ab — 4xy 

Or, collecting terms like this: 

6ab + 5ab + 4xy — 3ab — 7xy — xy 

then: 

1 lab + 4xy — 3ab — 8xy 

and: 

1 lab — 3ab + 4xy — 8xy = 8ab — 4xy. 

Now suppose we had a problem like 
this: 

(4x — 3y + 6c) + (-3x + 2y — 3d) 
+ (2x — 7c + 2d). 

Here we have three trinomials with terms 
that are not all alike. In a case like this we 
can set up our problem as follows: 

4x — 3y + 6c 
+ — 3x + 2y — 3d 

2x — 7c + 2d 
3x — y — c — d 

Since we cannot add unlike terms, this is 
as far as we can go with our answer. 
Notice that we could also have proceeded 
like this: 

(4x — 3y + 6c) + (— 3x + 2y — 3d) 
+ (2x — 7c + 2d) 

Collecting like terms and like signs: 

4x + 2x — 3x + 2y — 3y 
+ 6c — 7c + 2d — 3d 

Then: 

3x—y—c—d 

which is the same answer we got before. 
Now you should be able to add the 

following terms without any trouble: 

(1) 3x-2y+4z+2x+8y-2z 

+12x+y+z= 

(2) 5ab — 6xy — 3ab + 12xy + 3ax 

— 5xb + ab — 3xy — 2xb = 

(3) (12a + 6c — 3d) 

+ (— 20a + 8c — 5d) 

+ (10a — 2c + d)= 

Answers: 

(1) 17x+ 7y + 3z 

(2) 3ab + 3xy + 3ax — 7xb 

(3) 2a + 12c — 7d 

Subtraction of Letters. When you 
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learned to subtract signed numbers, you 
found by experimenting with numbers of 
various signs that a simple rule would 
apply to all subtraction with signed num-
bers. This rule stated that: To subtract 
signed numbers, change the sign of the 
number in the subtrahend (the number 
you are subtracting) and then proceed as 
in adding signed numbers. Following this 
rule, + 7 minus — 6 would be handled this 
way: 

+7 +7 

— (— 6) + 6 
+ 13 

Thus, + 7 — (-6) = 13. 
To prove this, add the subtrahend, — 6, 
and the answer, + 13, which gives — 6 + 
13 = + 7, which is the minuend. Likewise, 
—7— (— 6) = 

— 7 — 7 

— (— 6) + 6 
— 1 

The proof is that — 1 + (— 6) = — 7. 
Subtracting terms in algebra is just like 

subtracting signed numbers in arithmetic. 
Thus, if we want to subtract 6a from 8a 
we would have: + 8a minus + 6a, which is 
written (+ 8a) — (+ 6a). Now, changing 
both signs in front of 6a, we get 

Adding: 

(+ 8a) + (— 6a). 

+ 8a 
— 6a 

+ 2a 

To prove this, we add + 6a (the subtra-
hend) and + 2a which gives us the + 8a 
that we started with. As with addition in 
algebra, we can subtract only like terms. 
Thus, we can state a rule for subtraction 
in algebra which is: To subtract in alge-
bra, change the sign of the terms in the 
subtrahend and then add the coefficients 
of the like terms. 

This rule for subtraction in algebra 
holds true for either single terms or for 
polynomials. For example, to subtract 
(2a — 2b — 3c) from (3a — 4b + Sc) we 
would first change the sign of the subtra-
hend. 2a — 2b — 3c then becomes — 2a + 
2b + 3c. Now, we proceed to add: 

(3a — 4b + Sc) + (— 2a + 2b + 3c) 

collecting terms 

= 3a— 2a— 4b+2b+5c+3c 

= a — 2b + 8c. 

Or, we could set it up like this: 

3a — 4b + Sc 
+ — 2a + 2h + 3c 

a — 2b + 8c 

In either case, the difference is equal to 
a — 2b + 8c, which is the correct answer. 
To prove it, add the difference of a — 2b 
+ 8c to the subtrahend 2a — 2b — 3c 
which, by collecting terms, gives the sum: 

a + 2a — 2b — 2b + 8c — 3c 
= 3a — 4b + 5c 

Thus, the important thing to remember in 
subtracting letters is to change the sign of 
the subtrahend and then add. 
Now that we have seen how to add and 

subtract with letters, let's prove that what 
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LETTERS 

(50+3b)*( -2a -6b) 

•50-2(1•3b -61) 

• 3o -3b 

NUMBER SUBSTITUTES 

[5(115)+3(9* [-2(115)-6(95)] 

• (575.285). (-230-570) 

• 860-800 • 60 

Fig. 1. Substituting numbers in place of letters 

in addition. 

we are doing with the letters is correct by 
substituting numbers in place of the 
letters. Suppose that we want to add 5a + 
3b to — 2a — 6b. Collecting terms, this 
gives us: 

5a — 2a + 3b — 6b = 3a — 3b. 

Now, let's substitute some numbers in 

this same problem. For example, suppose 
that we have chosen the letter "a" to 
represent "115" and the letter "b" to 
represent "95." We would set up the 
problems side by side, one using the 
coefficients and letters, and the other 
using the number values as shown in Fig. 
1 

In this way, we find that the term 
answer is 3a — 3b, while the answer we 
got by substituting numbers is 60. There-
fore 3a — 3b must be equal to 60. To 

prove this substitute the letter values in 
our answer 3a — 3b. Doing this, we have: 

3a — 3b 

= 3(115) — 3(95) 

= 345 — 285 

= 60 

Thus, if we substitute the numbers in 
place of the letters in the beginning, we 
get an answer of 60. If we wish to work 
with the letters as long as we can, we get 
an answer 3a — 3b. However, we find that 
this is also equal to 60 when we substi-
tute at the end of the problem. Since we 
get an answer of 60 either way, our 
process of adding letters must be correct. 

Now, let's check a problem in subtrac-
tion the same way. Again, let a = 115 and 
b = 95. This time the problem is to 
subtract 3a — 2b from 5a — 7b as shown 
in Fig. 2. As you can see, the answer with 
the letters is 2a — 51) and the answer with 
the number substitutes is —245. Now let's 
substitute in our letter answer to see if we 
also get —245 for our final solution. 
Doing this, we have: 

LETTERS: 

FROM 5a — lb TAKE 3o —2b 

5a — 7b — (3a — 2b) 

CHANGING SIGNS: 

= 50 — 7b + (-3a +2b) 
= 5a — lb — 3a+ 2O 
50 —30 — 7b+2b 

= 2a — 5b 

NUMBER SUBSTITUTES: 

5(115)-7(95) TAKE 3(115)-2(95) 

5(115) —7(95) — [3(115) - 2(95)] 

= 575 — 665 + [-3(115)+ 2 (95)] 
-575-665 — 345+190 
mg 575 —345 — 665 +190 
= 230-475 = —245 

Fig. 2. Substituting numbers in place of letters in subtraction. 
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2a — 51) 

= 2(115) — 5(95) 

= 230 — 475 

= — 245 

Consequently, our method of handling 
subtraction with letters must also be 
correct, since in either case we get — 245 
for the final solution. 

Next, let's take a look at multiplying 
and dividing with letters. 

Multiplication of Letters. Multipli-
cation with letters such as 3 times "a" 
may be indicated simply as 3a, which 
means "a" taken three times, or a + a + a. 
Likewise, 2 X b is written 2b, which 
means "b" taken two times, or b + b. In 
multiplying two letters together such as 
"a" X "b" we write "ab", which means 
"a" taken "b" times, or "b" taken "a" 
times. For multiplication of two terms 
with coefficients, such as 3a times 2b, we 
actually perform the multiplication of the 
coefficients and then indicate the letter 
multiplication. We can do this because 3a 
X 2b really means 

3 XaX 2 Xb 

= 6 XaXb 

= 6 X ab 

= 6ab 

Following this method, 

3a X 4b X 2c 

would equal 

3X 4X 2 XaXbXc=24abc. 

Now suppose that we want to multiply 
two like terms such as 2a X 3a. This can 
be rewritten as 

or 

2X 3 XaXa 

6 XaXa= 6aa. 

However, in arithmetic when we wanted 
to multiply a number by itself such as 5 
X 5, we found that we would simply say, 
52. The small "2" indicated the 5 was to 
be raised to the second power (multiplied 
by itself) or squared, and we called the 
"2" an exponent. We can also use expo-
nents in algebra to indicate that a letter is 
to be multiplied by itself. Thus, 2a X 3a = 
6aa or 6a2. A multiplication such as a X a 
X a is aaa or a3 (read "a cubed"), and a X 
a X aX aX a is aaaaa or as (read "a to 
the fifth"). 

Using exponents in this way saves time. 
For example, 4a times 3ab becomes 4 X 3 
X aX aXb or 12a2b. Now, there is an 
interesting thing about exponents that we 
should know. When we write the letter 
"a" alone, we really mean "a" taken once 
or al. However, just as we never indicate 
a coefficient of one, we never indicate an 
exponent of one. We say that the one is 
understood. For right now though, let's 
use the exponent "1" for a moment in 
order to examine the exponents as we 
multiply. 
When we multiply a X a, we can say 

that we have al X al. We know that this 
is equal to aa or al al or a2. Now, notice 
that the exponent "2" in a2 is the sum of 
the exponents in the indicated multi-
plication. 

Likewise, 

1 1 - 1 +1 - a a — a — a2 
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aXaXa 

= a' X a' X al 

— _ +aii+i 

-- a3 

Thus, we have a rule for exponents in 
multiplication which states that: To find 
the product of two or more powers of the 
same base, add the exponents. According 
to this rule, a2 X a3 = a2+3 or a5. If we 
do it the long way, we find that a2 = a X 
a and 

a3 -- aX aX a. 

Therefore, (a X a) X (a X a X a) = a taken 
five times, which is: 

aXaXaXaXa=a5. 

Therefore, the rule for adding exponents 
must be correct. 

Accordingly, a multiplication such as 
5ab X 3a2b must equal: 

5X 3X all-2 X b1+1 

= 15 X a3 X b2 

= 15a3b2. 

Likewise, 

(3a2b3c4) X (25ab2c3) 

= 3 X 25 X a2+1 X b3+2 X C4+3 

= 75a3b5 cl 

Can you multiply 6a3 b4 by 5a2b3c? The 
answer is 30a5b7c. 

These few simple steps cover the pro-

cess of multiplying one single term 
(monomial) by another. However, in alge-
bra, we must not only consider multi-
plying one monomial by another mono-
mial, but we must also consider multi-
plying one polynomial by a monomial, 
and a polynomial by another polynomial. 
In considering the multiplication of a 
polynomial by a monomial, let's go back 
to our work with numbers for a moment. 

For example, consider a number prob-
lem such as: 7 X (3 + 2 + 5). We can write 
this down and solve it in a number of 
different ways. We can do the addition 
separately first, which gives us 7 X (3 + 2 
+ 5) = 7 X 10 = 70, or we can multiply 
each number by seven and then add. This 
would give: 

(7X 3)+(7 X 2)+(7 X 5)=21 +14+ 35 

which also equals 70. Since this is true 
with numbers, it must also be true with 
letters. 

Let's multiply the polynomial 

b + c + d 

by the monomial a. We would set it up 
like this: 

a X (b + c + d) 

= a(b + c + d) 

= ab + ac + ad 

Thus, we can say that the product of a 
monomial and a polynomial is the sum of 
the products of the monomial and each 
term of the polynomial. Accordingly, 

a(b — c + d — e) = ab — ac + ad — ae. 

Notice that, as with signed numbers, 
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multiplication of unlike signs in algebra 
always gives a negative product, while the 
product of two terms with like signs is 
always positive. Or, 

—b(a—c+d—e)=—ab+cb—db+eb. 

With this in mind, we are ready to do a 
multiplication problem such as 3a2b(2a + 
3b — 7c). This equals 

(3a2b X 2a) + (3a2b X 3b) 

+ [(3a2b) X (— 7c)] 

= 6a3b + 9a2b2 — 21a2bc 

Or, we can set up the problem a different 
way. Let's try it with this problem: 
412 ROM + 51 + 6R). Now, multiplying 
each term of the polynomial by the 
monomial gives us: 

412 R X 3IR = 1213 R2 

412 R X 51 = 2013 R 

412 R X 6R = 2412 R2 

The sum of the products is 1213 R2 + 
20I3R + 24!2 R2. 

Multiplying one polynomial by a 
binomial or by another polynomial is 
much the same. For example, multiplying 
the polynomial (a + b — c) by the 
binomial (a — b), we can think of (a — b) 
as being a single multiplier. Thus, multi-
plying (a — b) by each of the terms in the 
polynomial, we would have (a — b)a, then 
(a — b)b, and then (a — b)(— c). Putting 
them together, we have 

(a — b)a + (a — b)b + (a — bX— c). 

Now, the partial products would be: 

(a — b)a = a2 — ab 

(a — b)b = ab — b2 

(a — bX— c) = — ac + bc 

Then, adding these products gives us a2 — 
ab + ab — b2 — ac + bc. Collecting terms, 
we get a2 — b2 — ac + bc as the answer. 
Notice that the — ab and the + ab cancel 
each other out just as + 2 + (— 2) would 
do. 

In this way, we can say that the 
product of 

(a — bXa + b — c) = 2a _ 2 _ ac + bc. 

We can prove that the solution to this 
problem is correct by .substituting any 
numbers we want in place of the letters. 
For example, let's have a = 5, b = 3, and c 
= 2. If we do this and substitute these 
values for the letters we have: 

(a — bXa + b — c) = a2 — b2 — ac + bc. 

Then, 

(5 — 3) (5 + 3 — 2) = 
52 — 32 — (5 X 2) + (3 X 2) 

and 

2X 6=25 — 9— 10+6 

12=25 — 19+6=6+6= 12 

Since the problem works out so that 12 = 
12, our multiplication of the letters must 
be correct. 
We can also perform the multiplication 

by setting it down as in Fig. 3. 
As you can see, we simply multiply all 

the terms in the polynomial by each term 
of the binomial. We do this by multi-

12 



a + b -c 

X a - b 

MULTIPLYING BY a at +ab -cc 
MULTIPLYING BY -b -ab -bt+bc 

ANSWER -ac -bt+bc 

Fig. 3. Multiplying a polynomial by a binomial. 

plying a + b — c first by a, then by — b, 
and then adding the two partial products. 

There are three polynomial products 
that we will find quite often in our work 
with algebra. They are: 

(1) (a + bXa — b) = a2 — b2 

(2) (a + bXa + b) or (a + b)2 
= a2 + 2ab + b2 

(3) (a — bXa — b) or (a — b)2 

= a2 — 2ab + b2 

If we work each one of these out, we will 
find that the listed products are correct. 
Thus: 

(1) a + b 
a — b 

a2 + ab 
— ab — b2 

a2 — b2 

(2) a + b 
a +b 

a2 + ab 
+ ab + b2 

a2 + 2ab + b2 

(3) a — b 
a — b 

a2 — ab 
— ab + b2 

a2 — 2ab + b2 

Sometimes these products are stated in 
words and used as rules: 

1. The product of the sum of two terms 
(a + b) and the difference of the same 
two terms (a — b) is equal to the square 
of the first term minus the square of the 
second term (a2 — b2). 

This is a handy rule, because any time 
that we have to multiply the sum of two 
terms by the difference of the same two 

terms, we can just set down the answer 
without working it out. For example, 

(4abc + 6xyz) (4abc — 6xyz) 

must equal 

(4abc)2 — (6xyz)2. 

Likewise, 

(4a2 b3 cs + 7x2 yz3 ) (4a2 b3 cs — 7x2 yz3) 

must equal 

(4a2 b3 cS )2 _ (7 3(2 yz3 )2 . 

The second example stated in words is: 

2. The square of the sum of two terms (a 
+ b)2 is equal to the square of the first 
term plus the square of the second term 
plus twice the product of the terms (a2 + 
2ab + b2 ). 
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By using this rule, we automatically know 
that a binomial such as 

(5xy + 3ab)2 

is equal to 

(5xy)2 + 2(15xyab) + (3ab)2. 

The third example covers the square of 
the difference of two terms: 

3. The square of the difference of two 
terms (a — b)2 is equal to the square of 
the first term plus the square of the 
second term minus twice the product of 
the terms. 

Thus, 

(16cd — 5x2y)2 

is equal to 

(16cd)2 — 2(80cdx2 y) + (5x2 y)2. 

Since we often have to work with either 
the square of the sum or the square of the 
difference of two terms, we will use these 

rules quite a lot. 
Can you find the products for the 

following problems? 

(1) (2x — 3)(3x + 7) 

(2) (2x + 3)2 

(3) (5x2 — 4y2X5x2 + 4y2) 

(4) (6ab — c2)2 

Answers: 

(1) 6x2 + 5x — 21 

(2) 4x2 + 12x + 9 

(3) (5x2)2 — (4y2)2 or 25x4 — 16y4 

(4) (6ab)2 — 2(6abc2) + (c2 )2 or 

36a2b2 — 12abc2 + c4. 

Division with Letters. Division in alge-
bra is just the reverse of multiplication. In 
division, we are given a product and one 
of the factors of the product and are 
asked to find the other factor. Remem-
ber, there are special names for the 
quantities in a division problem. The 
dividend is the product that is to be 
divided. The divisor is the factor by 
which the dividend is to be divided. The 
quotient is the result of the division, or 
the factor which we are to find. Thus: 
dividend + divisor = quotient. 

Also, multiplication is the proof of a 
division problem. Thus, 24 + 6 = 4 
because 4 X 6 = 24; likewise, 

24 + 4 = 6 

because 4 X 6 = 24. Accordingly, we can 
say that ab + a = b because a X b = ab. 
The rules for the division of signed 
numbers also apply to the division of 
signed terms in algebra. Thus: 

+ 24+ + 6 = + 4 because 
+ 4 X (+ 6) = + 24 

— 24 + + 6 = — 4 because 
— 4 X (+ 6) = — 24 

+ 24 + — 6 = — 4 because 
— 4 X (— 6) = + 24 

— 24 + — 6 = + 4 because 
+ 4 X (— 6)=— 24 
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Accordingly, our rules for division of 
signed numbers and signed terms are: 

If the dividend and the divisor have 
like signs, the quotient is positive. 

If the dividend and the divisor have 
unlike signs, the quotient is negative. 

Thus: 

ab + b = a because a X b = ab 

—ab + b = —a because —a X b = —ab 

ab + —b = —a because —a X —b = ab 

—ab + —b = a because aX —b = —ab 

With this review and application of the 
general rules for division to letter prob-
lems, we are ready to look at the rules for 
handling exponents in division. You are 
already familiar with the fact that a4 
means 

aX aX aX a 

and a2 means a X a. With this in mind, 
let's divide a4 by a2 and see what we get 
for an answer. 

ax 3X aX a 
4 • 2 a a 

a X 

a X a 

1 

=aXa 

a2 

b6 
b6 + b4 

4X1P<It‘XI‘XbX b 

And: 

14 xexiix 
b X b 

= 1)2 
1 

C3 

C C 
3 • 2 — — 

-e  — --
C2 

X X c c 
 = — C. 

cl X e 1 

If you look at these examples closely, 
you will see that we could have obtained 
the same results by subtracting expo-
nents. 

a4 a2 = a4 — (+ 2 ) = a2 

b6 b4 = b6—(+4) = b2 

c3 + c2 = c3 (+2 = c 

Thus, just as we can multiply powers with 
the same base by adding exponents, we 
can divide two powers with the same base 
by subtracting exponents. Consequently, 

and 

a6 b3 + a5 b2 = ab 

3 2 • — 2 
X y xy—x y 

We can prove these answers by multi-
plying the quotients by the divisors to see 
if we get the original dividends. Doing 
this, we would have 

Likewise: ab X as b2 = 1) 1+2 = a6 b3 
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and 

(xYXx2y)= x1+2y1+1 = x3y2 

As we start working with division, we 
will find a few new situations regarding 
exponents. We know that any number 
divided by itself is equal to one. Thus, 

6 a 3 
— = 1, - = 1,—= 1 
6 a 3 

Now, if we follow our rules for dividing 
by subtracting exponents, we can see that 
if 

that 

a3 

a3 a3 = a3—(+3) = a° 

which must also equal one. Likewise, 

and 

a 
—= 1 
a 

a÷ •a -- _a (+ ) 

a6 

7= 1 

a6 • ÷ a 6 — - a6_ 6) 

= a° = 1 

Thus, we have a new situation brought on 
by division which gives us an exponent of 
zero, and any factor with a zero exponent 
must equal 1. Remember, a factor by 
itself, such as "x", is considered to have 

an exponent of one, or xl , and is equal to 
itself; but, a factor with an exponent of 
zero, such as h°, can only be equal to the 
number 1. 

If we look further into this problem of 
dividing by subtracting exponents, we 
will find that we can not only have 
positive exponents, such as 1, 2, 5, etc., 
and zero exponents, but we can also have 
negative exponents. This would occur if 
we had a division problem, such as a2 
. This would be written either as 

a2 3X a 

a5 a X aX aX aX a 

1 

aX aX a 

1 
= — 
a3 

or it could be written as 

a2 • ÷a 5 a 2—(+5) =a-3 =  

If our answer can be either 1/a3 or a- 3, 
then a- 3 must equal 1/a3. Thus, we can 
say that any factor with a negative 
exponent is equal to one divided by the 
factor with the exponent positive. 
Accordingly, x 5 = 1/x5 and c-3 = 1 /c3 
Once again, we can prove that the 

reasoning behind negative exponents is 
correct by multiplying. For example, x4 
÷ x7 = x4 (+7) = x-3 because x-3 X x 7 
= X-3+7 = X4 or (x4/x7) = (1/x3) 
because 
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The problems of division in algebra can 
be broken down into three general 
considerations the same as multiplication. 
First, we have the division of one mono-
mial by another. Second, we have the 
division of a polynomial by a monomial. 
Third, we have the division of a poly-
nomial by another polynomial. 

In our review of division in general and 
our studies of handling exponents in 
division, we have covered the problem of 
dividing one monomial by another mono-
mial. There is only one more thing that 
we must learn and that is what to do with 
the coefficients of terms. For example, 
suppose we want to divide — 12a3x4y by 
4a2x2y. We can set this up as 

— 12a3x4y, 

4a2 x2 y 

and then break it up into 

(-12) (a3 X4) (1 
- 

4 a2 x2 y 

We can see that this will reduce to: 

(— 3) (a) (x2)(1). 

Now, putting the quotients together we 
have — 3ax21 or just — 3ax2, since any 
quantity times one equals itself. 
By breaking up our division problems 

in this way and following the rules for 
division of signed numbers and expo-
nents, we can see how division is 

accomplished. As a general rule, we will 
not need to do this, because the division 
of most monomials by another monomial 
can be worked out mentally. For 
example, see if you can follow these 
monomial divisions: 

(1) 

(2) 

— 14a2b4c 2ab2 

—7ab2c3 c2 

4x3ys y3 

8xs y2 2x2 

28a2b4 c3  
(3) — —4a2 b 

— 7b3 c3 

(4) 
— 16e3 i2 r5 

- 4er2 
4e 2 i2 r3 

In order to divide a polynomial by a 
monomial, let's consider numbers for a 
moment. 16 + 2 = 8 because 2 X 8 = 16. 
Thus, if 3(a + 4) = 3a + 12, then (3a + 12) 
+ 3 must equal 

Similarly, if 

then 

3a+ 12 

3 
= a + 4. 

3x(2x + 3y) = 6x2 + 9xy, 

must equal 

6x2 + 9xy 

3x 

2x + 3y. 

Thus, we have a very simple rule for 
dividing a polynomial by a monomial. It 
is: Divide each term in the polynomial 
dividend by the divisor, and then collect 
the terms in the quotient with the proper 
signs. 

For example, 

8a2 b3 c — 12a3 b2 c2 + 4a2b2c 
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divided by 4a2b2c can be set up as 
follows: 

8a2 b3 c - 1 2a3 b2 c2 + 4a2 b2 c 

equals 

and 

and 

4a2 b2 c 

8a2 1)3 c 
 - 2b 
4a2 b2 c 

- 1 2a3 b2 c2 
4 a 2 b2 c 

- - 3ac 

4a2 b2 c  
- 1 

4a2 b2 c 

Now, collecting terms we have 

2b - 3ac + 1 

for our answer. 
Another example: 

_ 27x 3 y 2 z5 + 3x 4 y 2 z4 _ 9x4 y 3 z5 

divided by - 3)(3 y2 z4 is equal to: 

- 27x3 y2 zs 

and 

and 

- 9z 
- 3X3 y2 Z4 

3x4 y2 z4 
 = - x 
- 3x3 y2 z4 

- 9x4 y3 zs  
- 3xyz 

- 3x3 y2 z4 

-2(3X)=-6X SO, 

-2(3X-2)=-6X+4 

X (3X)=3X2 SO, 

X(3X-2)=3X2 -2X 

3X -2/3X 2-8X +4 

Fig. 4. Setting up a polynomial for division 
by another polynomial. 

Now, collecting our quotient terms, we 
have our answer: 9z - x + 3xyz. Any 
polynomial can be divided by any mono-
mial in this way. 

In order to divide one polynomial by 
another polynomial, we must arrange the 
terms in a certain order before we 
actually divide. To do this, we simply 
make sure that all the terms in the 
dividend are arranged in the same order as 
those of the divisor. In doing this, we 
always place the term with the largest 
exponent first. Thus, in the problem 3x2 
+ 4 - 8x divided by 3x - 2, the divisor is 
correctly arranged, but the dividend isn't. 
Therefore, we must arrange it properly 
before we can proceed. Properly 

X  

3X -2/ 3X2 -8X+ 4 

3X2 -2X  

-6X 

o 
X-2  

3X - il3X2 -6X +4 

3X2 -2X 

-6X+4 
-6X+4 

® 
Fig. 5. (A) First steps in polynomial division. 

(B) Next step in polynomial division. 
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arranged, it should be written 

3x2 — 8x + 4. 

Now that we have our terms arranged 
properly, we can set up our problem 
exactly as we did with long division of 
numbers shown in Fig. 4. Notice that we 
have the dividend set up under the 
division sign and the divisor at the left. 
Our process now is really just plain long 
division, as shown in Fig. 5A. 

First, we see how many times the first 
term of our divisor will go into the first 
term of our polynomial dividend. For 
example, 3x will go into 3x2 x times, 
because 3x times x is equal to 3x2. Thus, 
x becomes our first term in our quotient 
as shown. Now we multiply our entire 
divisor, 3x — 2, by x to give us our first 
trial product of 3x2 —2x. We place this 
trial product under the proper terms of 
the divident and subtract. 

Our remainder from this subtraction, 
plus the other term which we bring down 
from the dividend, can be considered to 
be a new dividend, as shown in Fig. 5B. 
Notice the sign of the first term. Signs are 
very important in algebra. Now, we see 
how many times the first term in our 
divisor will go into the first term in this 
new dividend. Since —2 times 3x equals 
—6x, we will try' the number 2 as the 
second term in our quotient. To do this, 

3X-2 
X-2  

3X2 — 2X 
— 6X +4 

3X 2 — 8 X + 4 

Fig. 6. Checking the answer in polynomial 
division. 

2X2+3X+ 14 

X-3/2X3 - 3X2 +5X-42 

2X3-6X2 

X(2X2)= 2X3 SO, 

2X2(X-3)=2X3-6X2 

X(3X)=3X2 SO, 

3X (X-3)= 3X2- 9X 

X(14) =14 X SO, 
I4(X- 3) =14X- 42 

+3X2+5X 
3X2 - 9 X  

+I4X- 42 
I4X- 42 

Fig. 7. Another problem in polynomial division. 

we place the —2 beside the x in our 
quotient, as shown, and then multiply 
our entire divisor by —2. As you can see, 
this gives us —6x + 4 as a trial product to 
subtract from the dividend. Since —6x + 
4 from —6x + 4 leaves no remainder, our 
division is complete. 

In this way, we find that 3x2 — 8x + 4 
divided by 3x — 2 is equal to x — 2. To 
check our answer, we simply multiply the 
divisor by the quotient to see if we can 
get our dividend, as shown in Fig. 6. 
Since our answer checks, our problem is 
correct. 
To make sure that we understand this, 

let's do another problem following the 
rules. Divide 

5x — 42 + 2x3 — 3x2 

by x — 3. Our first step is to rearrange the 
dividend in the proper order, which 
would give us 

2x3 — 3x2 + 5x — 42 

Now, we set up the problem for division, 
as shown in Fig. 7. Then, we see how 
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olcoti • 04 SO, 
04 ( 04-00 02)• 

04 -03b 0402 

b (a2) • o3b SO, 

ob(oe-ab+be) 

a2b - (he+ ob3 

Xe+5 

X2-2 b-e7 •-37—C2+4 

X4 - 2Xe 
Xe(X2)* X4 

X2(X2-2)•X4-2X2 

5 octi•se 
5 ((2-2) • 5X2-10 

ANS X2•5•(÷x2) 

+5X2+4 

5Xt-10  

+14 REMAINDER 

Fig. 8. Polynomial division with a remainder. 

many times x will go into 2x3. Since 2x2 
times x is equal to 2x3, we place 2x2 in 
our quotient and multiply the entire 
divisor by it. Since 2x2(x — 3) = 2x3 — 
6x2, we use this as our first trial product 
and subtract it from the proper terms in 
the dividend. 

Our remainder from this subtraction, 
plus the next term of our dividend, gives 
us a new dividend of 3x2 + 5x to work 
with. x will go into 3x2, 3x times, so 3x 
becomes our next quotient term. 

3x(x — 3) = 3x2 — 9x, 

DIVIDE 02 04 •04 .b4 BY ot - ab +be 

REARRANGED a4 • o2 be • b4 

NO a2b OR obs TERMS IN DIVIDEND SO ZEROS 
ARE PUT IN THEIR PLACE 

oe+ ab + be ANS 

ae-ab •b2 / 04 +0 • Otbt +o+b4 

04-o3b•a2b2 

o3b • o • o 

osb-a2lf•ob2 

a2b2-ob3 • 04 

0102-ab3 • 04 

b2 (a) oe b2 SO, 

be (o2- ab • be)• 

ot be- al's+ b4 

Fig. 9. A polynomial divided by a trinomial. 

which is the term we subtract from our 
new dividend. This makes our next 
dividend 14x — 42, as shown, and x — 3 
will go into it exactly 14 times. Thus, our 
answer is 2x2 + 3x + 14. We can check 
this in the usual way, by multiplying the 
quotient and the divisor. 
Some problems in division may not 

come out exactly even. It is possible to 
have a remainder in algebraic division, 
just as we do when working with num-
bers. An example of such a problem is 
shown in Fig. 8. Notice that we proceed 
to work it out just as we would any other 
problem until we get to a point where the 
first term of the divisor will not go into 
the dividend. When we come to this 
point, we simply stop and carry the 
remainder as a fraction in our answer, just 
as we do in ordinary arithmetic. 

In Fig. 9, we have worked a problem 

where the divisor is a trinomial. As you 
can see, this is really no different from 
the problems we have been working, 
where the divisor is a binomial. You 
shouldn't have any trouble following this 
example. 

SELF-TEST QUESTIONS 

1. What is a monomial? 
2. What is a polynomial? 
3. Define binomial and trinomial. 
4. What is an exponent? 
5. What is the numerical coefficient of 

the term 6a2 b3 c? 
6. Add the following binomials: 3a2b + 

2b; a2 b — b; and —2a2 b + 4b. 
7. Add the following: 

(a) 
8x2y + 9xy + 4y — 3 

— 3x2y + 2xy — 3y + 7 
2x2 y + xy + 2y — 2 

20 



(b) 2a4b2 - a2b 
- 2a4b2 - 3a2 b+ 3 
- 6a4b2 + 4a2 b- 5 

8. Add the following: 4a2 b2 - 2b; 
3ab2 + 2a; a2b2 - 3a2b + 3b + 3. 

9. Add the following: 

(a) 4ab + 2a 
- 2ab - 4a- 3 

ab - a 

(b) 3x2 y + 2xy - 2y 
5x2y + 3xy + 4y 

- 4x2 y - xy + y  

10. Add the following: ab2 + ab - 3a - 
b; a + b; 3ab2 - b; ab + 7a; ab + 3. 

11. Subtract 6a - 4b + 2c from lia + b 
- 2c. 

12. Subtract 6a2b + 3ab2 - b3 from a3 
- a2b + 4ab2. 

13. Subtract a+b+c+d from 3a - 4b 
+ c - 6d. 

14. Subtract 4a + 7b from 2a + 6b. 
15. Subtract 6a3 - a2b + ab2 - b3 from 

8a3 + 3a2 b - ab2 + b3. 
16. Multiply (a + 2b) times (a - b). 
17. Multiply (a2 + 2ab + b2) (a + b). 
18. Multiply (2a + 3b) times (2a - 3b). 
19. Multiply (a2 - 2ab + b2) by (a + b). 
20. Multiply (a - b) (a + 2b2). 
21. Divide (a3 - 3a2 b + 3ab2 - b3) by 

(a - b). 
22. Divide (64a4 - 81b6) by (8a2 + 9b3) 
23. Divide (as - 3a3 + a) (a). 
24. Divide (x3 + 2x2 + x) by (x2 + x). 
25. (a4 + 2a2b2 + b4) ÷ (a2 + b2). 
26. (6x3 + 12 - 7x - x2) + (2x + 3). 

27. Divide 26x2 + 15x3 + 10 - 39x by 
3x - 2. 

28. What is the sum of the following 
polynomials? 

(-9a3b + 6a2 b2 - 5ab3) + (14a3b + 
6a2b2 - 5ab3) + (a3b - 3a2b2 - 
ab3) 
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Equations 

You have now learned how to do 
arithmetic with letters. Since many of 
these fundamental operations of algebra 
were new to you, you had a lot to learn 
so we did not take the time to see how 
they could be put to practical use in your 
work in electronics. Now, however, we 
have covered most of the elementary 
processes in algebra and it is time to see 
how to put these new mathematical tools 
to work in the solution of circuit prob-
lems. This can be done through the use of 
equations. 
An equation is simply a mathematical 

statement that two quantities are equal to 
each other. The two equal quantities in 
an equation are called the "members" of 
the equation and they are always sep-
arated by an equal sign (=). Thus, the 
mathematical statements that 12 = 12, 6 
X 2 = 6 X 2, 6 X 2 = 12, or 6 X 2 = 3 X 4 
are all equations, because the quantities 
on each side of the equal sign are equal to 
each other. Sometimes, when we want to 
be specific, we call the quantities on the 
left of the equal sign the "left member" 

of the equation and the ones on the right, 
the "right member." 

Although you may already be some-
what familiar with equations and their 
use, it will be helpful to review some of 
the more common facts that you will use 
in working with them. Of course, the 
most important thing to remember is that 
an equation is always a statement of 
equality between the two members, and 
that in order to use it, we must never 
upset this equality or balance between 
the members. Thus, in an equation such 
as 24 = 24, if we make any changes in one 
member, we must be very careful not to 

upset the balance of the whole equation. 
For example, we can change 24 = 24 to 
24 X 1 = 24, 12 X 2 = 24, 6 X 4 = 24, 6 
X 4=12X 2,3X 2X4=6X 2X 2, 
etc., because our changes do not upset 
the equality of the two members. Like-
wise, an equation such as 4Ir + 4IR = 4Ir 
+ 4IR may be written in any of the 
following ways: 

4(Ir + IR) = 4Ir + 4IR 

4I(r + R) = 4Ir + 4IR 

4I(r + R) = 4(Ir + IR) 

because in any of these cases the equa-
tions remain balanced. 
We can also do other things to equa-

tions without disturbing their equality. 
For example, we can add or subtract a 
quantity from one member of an equa-
tion as long as we perform the same 
operation to the other member with the 
same quantity. Thus, if we have an 
equation such as x = x, we can add the 
same number to each side without de-
stroying the equation. For example, let's 
add 2 to each side of the equation x = x. 
This would give: 

x+ 2 =x+ 2 

We can see that this is still an equation, 
because if we let x = 4, and substitute for 
x, we have: 

4+2=4+2,or6=6, 

which is still an equation because both 
members are equal. Likewise, if x = x, we 
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can subtract a number from either side, 
as: 

x — 3 = x — 3 

and if x = 4, then x — 3 = x — 3 becomes 

4 — 3 = 4 — 3 or 1 = 1 

We can also multiply or divide both 
members by the same quantity. For 
example, if ab = ab and we multiply both 
members by 2, we have: 2ab = 2ab. Or, 
dividing by 2, we have (ab/2) = (ab/2). In 
either case, our equality can be proved by 
substitution. Thus if a = 3 and b = 4, 
substituting in the equation ab = ab, 3 X 
4 = 3 X 4 or 12 = 12. And, 2ab = 2ab, or 
2 X 3 X 4= 2X 3X 4,whichis24=24. 
Likewise, 

or 

or 

or 

ab ab 
—2- =1' 

3X 4 3X 4 

2 2 

12 12 

6 = 6. 

In all of these cases our equations remain 
balanced, because one member always 
equals the other. 

From this, we can make the general 
statement that we can do anything to one 
side of an equation as long as we do 
exactly the same thing to the other side. 
There is only one exception to this rule, 

and that is that we can never multiply or 
divide either member by zero. We will 
show you why we cannot divide by zero a 
little later after you have become familiar 
with working with equations. 

These rules for working with equations 
are very valuable in working with for-
mulas. Formulas are, of course, equa-
tions, but they are a special kind of 
equation. A formula is a rule or a law that 
is stated as an equation. Thus, both the 
equations ab = ab, and E=IX Rare 
equations, but only E=I X R is a 
formula, because there is a law that 
makes it a true equation. In other words, 
ab -= ab, or IX R=IX Rare equations 
because they meet the requirements of 
any equation automatically. Both mem-
bers are exactly the same, and therefore 
equal. However, the fact that E = 1 X R is 
an equation is not apparent, and it 
wouldn't be recognized as an equation 
unless we knew that it was a statement of 
Ohm's Law. Here, both members are 
equal only by definition. 

Since formulas are equations, we can 
use the rules for equations when working 
with formulas. Let's see how this can help 
us with a simple formula such as P = E X 
1. Suppose we want to use this formula to 
find the power in a circuit, but we don't 
know the voltage, E. Instead of knowing 
the values of E and I, we have the values 
of I and R. Since, according to Ohm's 
Law, E = I X R, we can substitute I X R 
in place of E in the power formula. Then, 
instead of P = E X I, we would have P = I 
X R X I, or P = I2R. By doing this, we 
have arranged our formula so that it 
contains the quantities that we know the 
values of, but we have not destroyed its 
equality. We have simply replaced one 
value, E, with an equal quantity, I X R. 

The rules for equations also help us to 
rearrange formulas so that they indicate 
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directly the quantities we want to find. 
For example, the formula 

Z = N/R2 + (Xc 

tells us how to find the impedance, Z, of 
a circuit. Suppose, however, we want to 
find Xc, but do not know the value of C 
or the frequency of the circuit. However, 
we have been given the impedance and 
can measure the resistance. In this case, 
we can apply the rules for working with 
equations to rearrange 

Z = N/R2 + (Xc)2 

so that it indicates Xc from Z and R. 
We do it like this: 

z \/R2 + 002 

Then, squaring both members, we have 

(Z)2 = (JR2 + (Xc)2 )2 

which equals 

Z X Z = N/R2 + (Xc)2 X N/R2 + (Xc)2 

or 

Z2 = R2 + (Xc 

Now, subtracting R2 from both mem-
bers, we have 

or 

z2 — R2 = R 2 — R 2 + (Xc 2) 

Z2 — R 2 = (Xd2 

This indicates the value of (Xc)2. But 
we want only Xc itself, so we take the 
square root of both members: 

or 

or 

N/z2 — R2 = NAXc )2 

N/z2 — R2 = Xc 

Xc = N/z2 — R2 

Now our one basic formula is rearranged 
to give us Xc directly when Z and R are 
known. 

Likewise, C may be found with the 
formula Xc = (1/2rrfC) by rearrangement 
as follows: 

If 

then 

or 

Then, 

or 

or 

1 

Xc =-21rfC, 

1 
Xc X C =—X C 

27rfC 

1 
Xc X C = 

27rf 

Xc XC+Xc = Xc —27rf+ 

Xc X C 1  

2eXc 

1 
C=  

21rfXc 

Many of our formulas themselves are 
the result of the use of algebra and the 
rules for equations. They are found or 
derived from the knowledge of other 
facts. 

For example, we often have the induc-

tance of a circuit in microhenrys and the 
capacity in rnicrofarads and want to find 
the resonant frequency of the circuit. We 
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can do this using the formula 

159 
f =  
\X—C 

where L is in microhenrys, C is in 
microfarads, and f is in kilohertz. This 
formula is developed through the knowl-
edge of other facts. For instance, at 
resonance we know that: 

also 

and 

XL = Xc 

XL = 27rfL 

1 
Xc =  

27rfC 

or f2 . 
42 LC 

1 

and taking the square root of both 

sides 

or 

oF-= 1 

42 LC 

1 

Nr4:- X Nr7 rr X VÉE 27re.,—C 

27r = 6.28 and dividing 1 by 6.28 gives 
.159 so we can rewrite the equation as 

.159  
f = 

NFIC 

In the formula XL = 27rfL, f is in Hertz 
and L is in henrys; and in Xe = (1 ÷ where f is in Hertz, L is in henrys and 
277fC), f is in Hertz and C is in farads. C is in farads. 

If we substitute L in microhenrys 
Since and C in microfarads in this equation, 

we must divide each value by 
XL = Xc, 1,000,000 to convert them to henrys 

and farads. Let's do this in the equa-

tion: We can substitute for XL and Xc and get 

1 
277fL = — 

277fC 

Now, multiplying both sides by 27rfC we 
get 

or 

27rfiC 
27rfL X 27rfC —   

27rfC 

47r2 f2 Lc = 1 

Now, dividing both sides by 47r2LC we 
get 

47r2 f2 LC 1 
 = 
4772 LC 47r2 LC 

f — 
.159 

\./ L c 
  X   
1,000,000 1,000,000 

which can be written 

.159 

which is 

N/1,000,0002 

.159 
f =  

1,000,000 

This is the same as 
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.159  IN/7,U  
f — : 

1 1,000,000 

SHORTCUTS FOR EQUATIONS 

Although we can work with any 
equations with the rules and infor-

Now recall that to divide one fraction mation that we have already studied, 
by another we invert the divisor and there are some shortcuts which will 
multiply. For example, let us work much faster and more 

efficiently. They are all derived from 
the basic rules, so we won't have to 
learn anything new. We will simply 
study the rules closely so we can see 

Similarly, what the end results of the operations 

are and learn to apply them directly. 
Moving a term from one member of 

an equation to the other member is an 
operation that is quite common and is 
called "transposing." The rule for trans-

.159 = N/FC .159 1,000,000 posing is: 
X 

1 1,000,000 1 

1 1 1 4 4 
— — = — 
3 4 3 1 3 

6 1 6 2 12 
÷ = X = 

14 2 14 1 14 

and 

Therefore, 

= 159,000 
f 

N/I-T 

A term may be transposed from one 
member of an equation to the other 
member by changing the sign of the 
term. 

where f is in Hertz, L is in micro- Thus, in an equation such as 
henrys and C is in microfarads. 
To convert Hertz to kilohertz we 

divide by 1000. Therefore, 

f = 159'000 : 1000 
N/TÉ 

159,000 1  
f — X 

NAT 1000 

159  
f = 

N/iTE 

z2 = R 2 + X 2 

we can transpose the X2 by simply 
changing the sign to give 

z2 _ x2 = R2 

or transpose the R2 to give 

z2 _ R2 = x2 

where f is in kilohertz, L in micro- or both, to get 
henrys, and C in microfarads. Thus, 
through algebraic manipulation of 
letters and using the rules for equa-
tions, we derive a simple, easy-to-
remember formula for finding the 
resonant frequency. 

z2 - R 2 - X 2 = 0 

Using an equation with numbers shows 
that doing this does not destroy the 
equality. For example: 
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If 

then 

or 

or 

4 + 2 = 6, 

4 = 6 — 2, 

2 = 6 — 4 

0 = 6 — 4 — 2. 
Likewise, if 

10 — 4 — 2 = 4, 
then 

or 

or 

10 — 4 = 4 + 2 

10 — 2 = 4 + 4 

10 = 4 + 2 + 4. 

The basic rule of equations that 
states that we can add or subtract the 
same quantity from both members of 
the equation allows us to transpose. 
For example, in the equation Z2 = R2 
+ X2, if we subtract X2 from both 
members, we have: 

z2 - x2 = R2 + x2 - x2 
Z2 - x2 = R2 

Or, in the equation 10 — 4 — 2 = 4, 
adding 4 to both members, we have 10 
— 4 — 2 + 4 = 4 + 4 which is equal 
to 10 — 2 = 4 + 4. Thus, transposing 

terms by changing the sign is simply a 
shortcut for adding or subtracting quan-
tities to both members. 

Using the same basic rule, we can 
also make the statement that: 

We can cancel out like terms from the 
members of an equation, if the same 
term appears in each member, and is 
preceded by the same sign. 

Thus, if we have an equation like x + 
y = z + y, we can cancel the y's out 

to give x = z. Or, an equation with 
numbers like 4 X 3 + 2 = 12 + 2 can 
be reduced to 4 X 3 = 12 by canceling 
the 2's. As you can see, all we are 
doing when we cancel is to subtract 
the same term from both members. 
Thus,x+y=z+ybecomesx+y— 
y=z+y—y or x = z. Likewise, 4 X 
3 + 2 = 12+2 becomes 4 X 3 + 2 — 
2 = 12 + 2 — 2 or simply 

4 X 3 = 12. 

Another common rule is one that 
involves the signs of the terms in the 
equations. Stated simply, it is: 

The signs of all the terms of an equa-
tion may be changed without changing 
the equality. 

Thus, an equation such as — x + y = 
— 4 + 3 may be rewritten as x — y = 
4 — 3. In doing this, we are simply 
multiplying both sides of the equation 
by the same number, —1. In our ex-
ample, 

or 

(— x + yX— 1) = (— 4 + 3X— 1) 

x — y = 4 — 3. 

When you studied ratio and pro-
portion, you learned to cross-multiply. 
Thus, (x/y) = (a/b) could be rewritten 
as xb = ya. Cross-multiplication is also 
made possible through the rules for 
working with equations. When we do 
this, we are really multiplying both 
members by one term and then multi-
plying both members again by another 
term. Thus, (x/y) = (a/b) becomes xb 
= ya, because: If (x/y) = (a/b), then 

27 



Or 

Again, 

x a 
b —  = — b 
y b 

xb 
— = a. 
y 

xb 
— Y = (a)Y 
Y 

and xb = ya. Thus, cross-multiplication 
is just a quick way of following the 
basic rules. 

Then, of course, we have the many 
operations with multiplication and divi-
sion which help us so much with re-
arranging our formulas. For example: 

E 
I = — because E=IX R 

R 

and 
E IX R E E 
= or = I or I =—. 

R R R R 

Likewise, 

and 

E 
R = — because E=IX R 

I 

E IR E 
— . ,- — . R. 
I I I 

With these rules and. shortcuts in mind, 
and our knowledge of basic algebra, 

we are ready to practice solving equations. 

SOLVING EQUATIONS 

The purpose of learning to work 
with letters and equations is to make it 
easier to solve the problems in working 
in electronics. While many of the prob-
lems will be straightforward and can be 

solved by applying basic formulas, 
others will require more thinking and 
reasoning before the answer is found. 
The use of algebra and a good working 
knowledge of equations will be very 
helpful in these more difficult solu-
tions. As you have seen, working with 
letters is not difficult and the rules for 
operating with equations are both 
simple and logical. However, to become 
really proficient with algebra and equa-
tions requires a lot of practice. 
One of the biggest difficulties in 

arriving at circuit solutions is not in 
solving the equations themselves, but in 
setting up the equations in the first 
place. This also takes a lot of practice. 
Although it is difficult, if not impos-
sible, to operate by a strict set of rules 
for solving problems, there are a few 
general procedures that are worth 
following. 

First, you should read the problem 
so carefully that you thoroughly under-
stand everything about it. Then, you 
should determine exactly what you 
want to know and represent it with a 

letter. If there are two or more un-
known quantities, you should represent 
them in terms of the first one. Next, 
you should try to apply the formulas 
that will allow you to find the un-

known quantity from the known facts. 
If this is not possible, you should try 
to set up letter equations that will 
allow you to state the problem in 
terms of the unknown quantity. 
Finally, you should solve the equations 

for the unknown value by substituting 
letter and number equivalents that are 

available. Remember, you will often 
save yourself a lot of time and effort 
by working with letters as long as 
possible before substituting numbers. 
Now let's solve some simple equa-
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tions, and later some problems, to see 
how we can apply these rules. In the 
problem 

3i + 14 + 2i = i + 26 

solve for i. The first thing to do is to 
get all like terms together. We can do 
this by transposing the "i" terms to 
one side and the numbers to the other 
side. Thus, 

first. This gives us: 

3y — 6 — lOy + 60 = 5 

Transposing: 

3y — 10y = 5 + 6 — 60 

Then: 

— 7y = — 49 

3i + 14 + 2i = i + 26 Changing signs: 

becomes 7y = 49 

3i + 2i — i = 26 — 14 Solving for y: 

Then, collecting terms, we have: 4i = 
12 and then dividing both members by 
4 to solve for i gives us 

4i 12 
— = — 
4 4 

or i = 3. 
We can always check this answer by 

substituting this value of i = 3 back 
into our original equation. Doing this: 

given 3i + 14 + 2i = i + 26 

then 3X 3+14+2X 3=3+26 

and 9 + 14 + 6 = 29 or 29 = 29 

Thus, our answer of i = 3 must be 
correct because our equation is bal-
anced if this value is used to check it. 

Solve for y in the equation: 

3(y — 2) — 10 (y — 6) = 5. 

Here, we follow the rules of order and get 
rid of the values within the parentheses 

7y _ 49 

7 — 7 

or 

y = 49 + 7 = 7 

Now let's try solving for E in the 
equation: 

19 — 5 E(4E + 1) = 40 — 10E(2E — 1) 

Removing parentheses: 

19 — 20E2 — 5E = 40 — 20E2 + 10E 

Transposing: 

— 5E — 10E = 40 — 19 

Then: 

— 15E = 21 

Solving for E: 

— 15E 21 21 
 — or E = ---1.4 
— 15 — 15 — 15 
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Notice the cancellation of equal terms in 
the second step. 

Earlier in our discussion of equations, 
we mentioned that we could never multi-
ply or divide an equation by zero. This is 

easy enough to remember, but it is not 
always so easy to realize that we are in 
danger of doing it. Now that you are 
more familiar with working with equa-
tions, let's examine this important rule 
more thoroughly by working the follow-
ing equation. First, let: 

Multiply by a: 

Subtract b2: 

Now, 

and 

a=b 

2 a — — ab 

a2 2 
D = ab — b2 

a2 — b2 = (a + bXa — b) 

ab — b2 = b(a — b) 

Therefore: 

(a + bXa — b) = b(a — b) 

Divide by (a — b): 

(a + b(a.--t) 

Then: 

a+b=b 

But, 

Therefore: 

Divide by b: 

and 

a=b 

2b = b 

2b b 
— = — 
b b 

2 = 1. 

Obviously, 2 cannot equal 1, and some-

where in our manipulation of the equa-
tion, we have made a mistake that has 
destroyed its equality. Although all of 
our steps seem justified, because we never 
did anything to one member that we 
didn't do to the other, we actually have 

divided by zero at one point. Can you 
find it? If a = b, then (a — b) must equal 
zero. Therefore, when we divided both 
sides of our equation by (a — b), we were 
dividing by zero, which we can never do. 

Setting up Equations. Now let's see 
what sort of reasoning we have to do to 
set up an equation for solving a simple 
problem. For example, consider the 
following problem: "What value of 

inductance will produce resonance at 50 
Hertz if it is placed in series with a 20 pf 
capacitor?" Looking at the problem care-
fully, we see that it deals with resonance 
and that a resonant frequency and a value 
of capacitance are given. We are asked for 
the inductance. Thus, we have: 

Given 

C = 20 pf f = 50 Hertz 

Find L 

Since our problem deals with resonance, 
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we naturally think of our formula for 
resonance: 

.159 
f =  

N/Er 

Comparing this with what is given and 
with what we want to find, we can see 
that we have the necessary information to 
use this formula and that L can be found 
with it, if it is rearranged. Accordingly, 
we would first rearrange our formula to 
indicate the value of L. 

Doing this: 

.159 or f2 .1592 
f =  = - 
\AZ LC 

then 

.1592 
Le — 

C 

.1592 
I,— 

e2C 

Now, we can substitute our values in the 
formula and solve for L. However, before 
we do this, we must check our units of 
measurement to see if the given values 
can be substituted directly. In this partic-
ular problem, we cannot substitute them 
directly because the formula f = 
(.159/07C) is in kilohertz when L is in 
microhenrys and C is in microfarads. 
Therefore, we must convert 50 Hertz to 
kilohertz by moving the decimal three 
places to the left. Thus, 

50 Hertz = .05 kHz 

Now, using the formula 

.1592 
L = f2 c 

25,281 

.05 X .05 X 20 

25,281  
_ 
.0025 X 20 

25,281 
—  

.05 

= 505,620 microhenrys 

= .51 henrys (approx.) 

While this is a simple problem, it does 
show the basic reasoning behind the 
handling of any problem. First, examine 
the problem. Find a formula, if possible. 
Arrange the formula to indicate the un-
known. Check for proper units of mea-
surement. Substitute and solve for the 
unknown. Now, let's try the procedure 
again on a more complex situation. 

In the circuit shown in Fig. 10, sup-
pose we are asked to find the resistance 
of R4 from the values given. First of all, 
examination of the problem shows that 
we are given all the resistances except R4 
and we are also given the supply voltage 
and the current. Listing these values, we 
have: 

Given: 
ET = 100V 

IT = .2A 

R1 = loon 

R2 = 200SZ 

R3 = 800S2 

Find: R4 
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If we had the total resistance of the 
circuit, we could set up an equation 
because we know the total resistance 
must be equal to R1 plus the resistance of 
the parallel branch made up of R3 in 
parallel with R2 and R4. The resistance 
of this branch can be expressed using the 
formula for parallel resistors and treating 
R2 and R4 in series like a single resis-
tance. The resistance of the parallel 
branch Rp is 

R = p 
- R3 + (R2 + R4) 

R3(R2 + R4) 

Thus, the total resistance of the circuit 
RT is 

RT = RI + 
R3(R2 + R4) 

R3 + R2 + R4 

Now in this equation we do not know 
the value of RT or R4. But we do know 
the total voltage ET and the total current 
IT so we can find RT. 

ET 
RT = 

Thus, it looks like we can use the 
equation expressing RT in terms of R1 
R2, R3, and R4 to solve for R4. Indeed 
we can do this, but look at the term for 
the resistance of the parallel branch. 
Notice we have R4 in both the top and 
bottom of this expression. We will have 
to do a great deal of manipulation before 
we can solve for R4. Before we start on 
this task, let's look at the circuit again to 
see if any easier solution is available. 

First, notice that the total current is .2 
amp. This means that the current through 
R1 is .2 amp so we can easily find the 
voltage drop across the resistor using: 

E =ITRI 

= .2 X 100 

= 20 volts 

If we have a source voltage of 100 volts 
and a voltage drop of 20 volts across RI, 
we must have 100 — 20 = 80 volts across 
the parallel branch. Now let's find the 
current through R3 which we can do 
using 

E 
I =— 
R 

80 
= — 
800 

= .1 amp 

If the total current is .2 amp and .1 amp 
flows through one branch of the parallel 
circuit, the current in the other branch 
must also be .1 amp. Therefore we have 
.1 amp flowing through R2 and R4. 
We know the voltage across R2 and R4 

in series is 80 volts. Let's find the voltage 
across R2 using: 

E = IR2 

= .1 X 200 

= 20 volts 

This means the voltage across R4 must be 
80 — 20 = 60 volts. Now we know the 
voltage across R4, 60 volts, and the 
current through it, .1 amp, so we can find 
RI using: 

R =—E 
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60 
= — 

.1 

= 600 ohms 

Thus we have solved the problem, using a 
series of simple steps and avoided some 
complicated work by taking a second 
look at the problem. 

In a similar fashion, we could solve for 
ET if we had the following values given 
for the circuit in Fig. 10 

Given: = 3son 

R2 = 3oon 

R3 = soon 

R4 = 600SZ 

Find ET if the voltage drop across R4 
is 60V. 

First, since you know the voltage 
across R4 and the resistance of R4, find 
the current through R4. Once you have 
this current you can find the voltage 
across R2 because the same current flows 
through R2 and R4. When you get the 
voltage across R2 you can find the 
current through R3 because the voltage 
across R3 will be equal to the voltage 
across R2 plus the voltage across R4. 

R2.200 A 

ET =100V 

11.8.2 A 

Re ? 

Fig. 10. Circuit used for solving for the resis-
tance of R4. 

Now you can determine the total 
current flow in the circuit and then find 
the voltage across RI. Once you have this 
voltage you should be able to find the 
total voltage. Work out this problem 
using the values given. The answer is 188 
volts. 

Thus, by applying the simplest formula 
or equation that we can, and working 
through the problem a step at a time, we 
can find the solutions to many different 
types of problems. As you can see, one of 
the greatest difficulties is in choosing a 
basic equation that can be made to use 
our known quantities. We want to be sure 
to choose the equation that will lead to 
the simplest solution. This takes sound 
reasoning and a lot of practice. Once you 
learn to do this, your knowledge of 
algebra and equations will let you solve 
the problems readily. You will get some 
more practice in this type of work as you 
study the "j" operator in the next sec-
tion. 

SELF-TEST QUESTIONS 

29. What is an equation? 
30. Which of the following can we not 

do to an equation? 
(a) Add the same number to each 
side. 
(b) Multiply each side by the same 
number. 
(c) Divide each side by 0. 
(d) Subtract the same number from 
each side. 
(e) Square each side. 

31. What must be done to a term before 
it can be transposed from one side of 
an equation to the other? 

32. What is a formula? 
33. Using the power formula P = 12 R, 

solve for R. 
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34. Using the formula P = 12 R, solve for 39. In this diagram, if the current 
I. through R2 is 2 amps, what is the 

35. Solve for L in the formula XL = value of ET? 
27rfL. 

36. Solve for f in the formula: 

1 

Xc = 2irfC 

15n. 

37. Solve for E using the power formula: 40. Find the source voltage in the circuit 
shown. 

E2 
P = — 

R R1.2oci 

38. Solve for Xc in the formula: 

Z =‘/R2 (Xc — XL)2 

ET. ? 

R3. 20n. 

R4= 5 n 

R4'5 VOLTS 
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The J Operator 

The "j" operator, or j multiplier as it is 
sometimes called, is simply a device that 
allows us to represent a vector mathe-
matically. Through the use of this j 
operator, we are able to simplify a great 
deal of work in ac circuits. Instead of 
having to lay out a vector accurately for 
each separate value of resistance or 
reactance, we can simply state them all 
mathematically and then compute their 
final value algebraically. This is a great 
advantage in dealing with the complex 
arrangements found in tube and transistor 
circuits as well as any other complex ac 
circuit. 

Being able to compute vectors math-
ematically means that we can multiply 
and divide vectors as easily as we can add 
or subtract them. This in itself is some-
thing that we have never been able to do 
before. In this section of the lesson, we 
will see exactly what we mean by the 
term "j" and how it can be used as an 
operator in ac circuits. We will learn how 
to do j arithmetic, and then we will apply 
these new principles to ac circuit calcu-
lations. 

NUMERICAL REPRESENTATION 
OF A VECTOR 

When you studied vectors you learned 
that they could be used in electronics to 
represent the time or phase as well as the 
magnitude of ac circuit quantities. In 
constructing vector diagrams, we used 
two scales at right angles to each other, 
like those shown in Fig. 11. Our reference 
vectors were laid out from the center of 
the scale to the right towards 0° and were 
used to represent zero time or in-phase 

components. Those that represented 
quantities that led the reference vector by 
90° were laid out vertically from the 
center towards 90°. Those that were 
exactly 180° out of phase were laid out 
on the horizontal scale, pointing from the 
center towards the left, or 180°. Those 
that represented quantities that lagged 
the reference vector by 90° were drawn 
down the vertical scale from the center 
towards 270°. 

Thus, any vector that was laid out so 
that it pointed towards 90° was con-
sidered to lead a vector at 0° and lag a 
vector at 180°. Similarly, a vector point-
ing down towards 270° was considered to 
lag a vector at 0° and lead a vector at 
180°. Because of this, we arrived at the 
statement that vectors could be rotated 
counterclockwise about a common point 
to indicate phase relationships or the time 
of an occurrence. 

In this way, vector A in Fig. 11 leads 
0° but lags 90°. In the same way, vector 
B leads 9e but lags 18e, vector C leads 
180° but lags 270°, and vector D leads 
270° and lags e. 

180°  

90° 

0/C 

A 

270° 

Fig. 11. Rotation of vectors. 

0° 

35 



1800 41 
J2A 

FORCE " J" 

A  
• 0° 

J34 
• 

270° 

Fig. 12. Using j to rotate a vector. 

In your study of algebra, you learned 
that you could represent any quantity or 

value by a letter. Therefore, let's consider 
that a force acts upon vectors to cause 
them to rotate in this way, and that this 
force can be represented by a letter value. 
Further, let's assume that the amount of 
this force necessary to rotate a vector 90° 
is represented by the letter j. 
Now, let's draw a vector, A, ten units 

in length, along the reference line from 
the center toward 0° as shown in Fig. 12. 
In this position the vector is in phase with 
the reference and occurs at time zero. If 
we now multiply the vector by j, which 
represents a rotating force of 90°, we 
must consider that the vector will rotate 
90° counterclockwise and point towards 
90° as shown by vector jA in Fig. 12. 
Thus, multiplying the base vector A by j 
has resulted in its being rotated through 
90° until it becomes the new vector jA. 

Likewise, if we multiply our new 
vector jA by j, it will rotate another 90° 
and become vector j•jA or j2A and will 
point toward 180° as shown. Multiplying 
by j again will make our vector rotate 
another 90° to become j.j2A or j3A 
pointing towards 270°. One more multi-
plication by j or j.j3A gives us j4A and 
brings the vector back to its starting 
point. 

When we studied signed numbers, we 
used a horizontal scale similar to the one 
we use in our reference diagram for 
vectors. We represented positive numbers 

as starting from the center at 0 and 
working toward the right, as shown in 

Fig. 13. Our negative numbers started at 
the center and progressed toward the left. 
In Fig. 13, we have shown the same basic 
vector reference diagram as we used in 
Fig. 11 and 12, but we have also included 
the positive and negative scales along the 
horizontal line as shown. 

Along our reference line, we have 
drawn vector A to represent an in-phase 
vector + 5 units long. If we multiply this 
vector A by j2, it will rotate 180° and 
point towards 180° as shown. Now, 
according to our scale of positive and 
negative numbers, this new vector j2A 
will equal —5. This is as it should be 
because anything 180° out of phase with 
+5 must be equal to —5 because it is 
exactly opposite. Just what is minus 5? 
One explanation is that minus five is plus 
five times minus one, because +5 X (-1) 
= —5. If this is the case, then j2 must be 
equal to —1, because j2 X (+5) = —5, just 
as —1 X (+5) = —5. 

+5X-1=-5 

J2A=J2X+5 

J25 = — 5 

Fig. 13. Diagram of j2 = —1. 
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Thus, any time that j2 is used to 
represent a force for rotating vectors, j2 
will always be equal to —1, and —1 is 
substituted immediately for j2. If j2 = 
—1, then j must be equal to •%,/. Thus, 
the value of j is often referred to as being 
imaginary because there is no number 
equal to \FT because 1 X 1 = 1 and —1 
X (-1) also = 1. There is no number you 
can multiply by itself to get —1! When-
ever a j2 term appears in a problem 
solution, we eliminate it by substituting 
—1, but where a j term appears we simply 
leave the j in the term because there is 
nothing we can substitute for it. Thus, in 
the term 6 + j8, the 6 is called the real or 
in-phase component and the j8, the 
imaginary or quadrature component. 

Now let's go a step further. If j2 = —1, 
then j•j2 or j3 must be equal to — 11 or 
— j. We have already represented vectors 
drawn down the vertical line toward 270° 
as being a reference vector times j3, so 
either j3 or —j times a vector must rotate 
it so that it points downward toward 
270°. If j1 = j2 or —1 and j12 or j3 = j• 
—1 or —j, then j4 representing a full 360° 
rotation of a vector is equal to j3 1, or 
j 2 1 .2 or —1 X (-1) = + 1. Once again this 
is as it should be, because any vector 
rotated completely around the diagram 
will be back where it started and repre-
sents a positive or in-phase value. 

Once we understand this use of the 
letter "j" as an operator for determining 
the final position of a vector, we can use 
it in our work in electronics. Any time 

that we have a quantity multiplied by j, 
we will immediately know that it is a 
vector quantity pointing toward 90°. 
Similarly, if we have a —j or j3 quantity, 
we will know that it represents a vector 
drawn down towards 270°. Any positive 
quantity without a j or one with a j4 
multiplier can be treated as an in-phase 

 >0° I 

Fig. 14. Diagram of Z = 6 + j8. 

component drawn towards 0°, and any 
minus quantity or one with a j2 multi-
plier will represent a vector drawn out of 
phase towards 180°. 

Thus, if we have a series circuit con-
sisting of a resistor and a coil, we can 
represent the impedance vector with a 
binomial term. For example, suppose the 
resistor has a resistance of 6s2 and the 

coil has an inductive reactance of 8S2. We 
can say that the impedance of the circuit 
is equal to on + j8n). As soon as we see 
the j in the impedance notation, we can 
visualize a vector diagram like the one 
shown in Fig. 14. Here the 62 has no 
multiplier so it is drawn along the ref-
erence line I and represents the in-phase 
component. The j in the +j8S2 tells us 

that this quantity is drawn upward at 
right angles to the in-phase component, as 
shown. 

Similarly, if we see a notation such as: 
E = (-100 — j60), we can visualize a 

T 
ev. 

Fig. 15. Diagram of E = (-100 — )60). 
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Fig. 16. Diagram of Z = 50 + j230. 

resultant voltage vector that has an ER of 
—100 volts for one component and an 
Exc of 60 volts as another component, as 

shown in Fig. IS. Another vector such as 

Z= 50 +j330 

would be immediately recognized, as 
shown in Fig. 16. In this way, we can 
represent any vector as a simple binomial 
term. All we have to do is remember the 
position values of our various j multi-
pliers. 

.1 ARITHMETIC 

Since we are able to represent any 
vector mathematically as a binomial term 
through the use of j as a multiplier, we 
can solve any vector problem through the 
use of algebra. For example, we learned 
that the sum of two binomials such as (5a 
+ 66) and (3a — 46) would be 

5a + 66 + 3a — 46 = 8a + 20. 

Likewise, the sum of a vector such as (10 
+j5) and another equal to 

(5 —j10) 

would be 

(10 +j5)+(5 —j10)= 10+5 +j5 —j10, 

or a new vector equal to 15 — j5. To 
prove that this mathematical solution is 
correct we can check it against a mea-
surement solution. 

First, let's draw our two vectors, (10 + 
j5) and (5 — j10) as shown in Fig. 17A. 
Now, there are two methods which we 
can use to add vectors. We can break 
them both down into their components 
and add the components as we learned to 
do in our lesson on vectors, and as shown 
in Fig. 17B. Or, we can add the two 
vectors head to tail on the same diagram 
by being careful to place them in their 
proper position regarding the reference 
line, and then draw a resultant vector, as 
shown in Fig. 17C. In either case, the 
components of the resultant vector are 
the same and equal 15 — j5, which is 
exactly what we got mathematically so 
our mathematical solution must be 
correct. 

To subtract one vector from another, 
we can also work mathematically with 
our binomial terms, or we can solve them 
with diagrams. For example, let's subtract 
vector B from vector A, as shown in Fig. 
18. As you can see from the diagram in 
Fig. 18A, vector A can be written as 8 + 

ADD VECTOR 10+ J5 TO VECTOR 5-J10 

J5 

o 
+5. +10  

-.110 

III  

o 

® 
Fig. 17. Adding vectors with diagrams to prove 

mathematical solution. 

38 



A-B. 

J10 -(J6) 

III 

J4 •8 

-(12) 

Fig. 18. Subtracting vectors with diagrams. 

j10 and vector B can be written as 12 + 
j6. There are also two ways that we can 
subtract vectors with a diagram. Let's 
examine them. 

First, there is the resolution method 
where we break each vector into its two 
components. Then we take the compo-
nents of the vector that we are sub-
tracting, reverse their directions and then 
add them head to tail, as we do in adding 
vectors. Notice how similar this is to the 
subtraction of signed numbers. We reverse 
the direction of the subtrahend (change 
the signs) and then proceed as in addi-
tion. 

We have done this in Fig. 18B where 
the j6 and +12 components of vector B 
have been reversed in direction and then 
added vectorially to the j10 and +8 
components of vector A. As you can see, 
this gives us a new vector with compo-
nents of —4 and j4, or simply —4 +j4. We 
can also subtract vectors by subtracting 
them directly, as shown in Fig. 18C. Here 
we simply reverse the direction of vector 
B and add it head to tail to vector A, 
being careful not to change its position in 
regard to the reference. Then, the result 
drawn from the tail of A to the head of B 

is equal to —4 + j4, as it was with the 
other method. 

Subtracting vectors mathematically is 
much simpler. We simply subtract the 
binomial notations of the vectors just as 

we would subtract any binomial terms. 
For example, vector B from vector A will 
equal: 

(8 +j10) — (12 +j6) 

-= 8 +j10 — 12 —j6 

=-4+j4 

which is the same as we got with our 
diagrams. This mathematical method of 
subtracting vectors is especially valuable 
in complex problems dealing with many 
vectors at many different angles. For 
example, consider the vectors A, B, C, 
and D in Fig. 19. Suppose we want to add 
vector A to vector B and then subtract 
vectors C and D from this sum. Math-
ematically this becomes: 

(15 +j3) + (6 — j9) — (-8 +j4) 
— (+ 9 — jl 2) 

=15 +j3 + 6 —j9 + 8 —j4 —9 +j12 

4•15+J3 
B. 6-J9 
C.-8+ J4 
13. 9- J12 

A•B-C-0•20+J2 

Fig. 19. Addition and subtraction of vectors 
by diagram. 
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=15+6+8 —9 +j3+j12—j9 —j4 

=29 —9 +j15 —j13 

= 20 + j2 

The diagram gives us the same thing, but 
what a lot of work and confusion it is! 

Multiplication and Division. In our 
work in electronics we may want to 
multiply or divide two or more vectors. 
The vectors may represent voltages, cur-
rents, or impedances of various values at 
different phase angles. The j operator will 
be very handy in this case because there is 
no purely graphical means of multiplying 
or dividing vectors with different phase 
angles. However, as we learned in algebra, 
it is quite simple to multiply or divide 
binomials. 

Since we studied the multiplication 
and division of binomials earlier in this 
lesson, we should not have any trouble 
with the mathematics. Our only job now 
is to make sure we understand how we 
represent our vector resultant. Suppose 
that we want to multiply vector A by 
vector B. As shown in Fig. 20A, vector A 
is equal to (2 + j3) and vector B is equal 
to (4 +j2). To multiply these two vectors 
we simply multiply the binomials which 
gives us: 

2+ j3 
X 4 + j2  

8+ j12 
+ j4+j26 

8 + j16+j26 

But, remember j2 is equal to — 1, so 8 + 
j16 +j26 becomes 

8+j16+6(-1) 

=8 +j16 — 6 

=+ 2 +j16. 

Thus, our resultant vector from this 
multiplication is equal to a vector of 2 + 
jI6, as shown in Fig. 20B. 

Notice that we have not only increased 
the length of the resultant vector by 
multiplying, but we have also increased 
the angle of this vector from the refer-
ence line. If we stop and think a moment, 
we will have to agree that this should 
happen because we are multiplying a 
rotating force by a rotating force when 
we multiply j by j. Further, remember 
that j alone is enough to rotate a vector 

°, while j2 rotates it 180° 90 . Looking at 
this, 

90° + 90° = 180° and j X j = 180° 

Thus, multiplying j by j is the same as 
adding the two 90° angles. Now, if you 
measure the angle that vector A makes 
with the reference line and add it to the 
angle that vector B makes with the 
reference line, the sum of these two 
angles will equal the angle of the resultant 
vector. 

In our problem: Since OA = 56° and 
(PB = 27°, then 

0A + 0B = 56° + 27° = 83°. 

If we measure the angle of the resultant 
vector AB, we will find that its angle is 
exactly 83°. In addition to this relation-
ship between the angles, there is a rela-
tionship between the lengths of vector A 
and vector B in the resultant vector AB. 
If we determine the length of vectors A 
and B through measurement or by using 
the Pythagorean theorem, we will find 
that A is equal to 3.61 and B is equal to 
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, n 
SCALE: 

0, A:56° 
•B'27° 

o 

Fig. 20. Multiplying vectors. 

4.47. Then if we multiply these actual 
lengths of A and B we find that A X B = 
3.61 X 4.47 = 16.13. Now, either through 
measurement or by using the Pythagorean 
theorem, we can also determine the 
length of our resultant vector AB. It is 
equal to: 

N/22 + 162 

-= N/4 + 256 

= 

= 16.13 

to two decimal places. Thus, our resultant 
in vector multiplication is a new vector 
that is equal to the product of the length 
of all the vectors multiplied and that 
forms an angle with the reference that is 
equal to the sum of the angles of all the 
vectors multiplied. If we stop and think a 
moment and have understood our pre-
vious operations with vectors, we will see 
that this is what should happen. 

SCALE: 1/4 11 =1 

AXB=2+JI6 
*due 0(A X B) 
OA= 56° 
013= 27° 
OAB =83° 

In the problem that we just discussed, 
both of the vectors that we multiplied 
were made up of positive values. Let's see 
what happens if we multiply a vector 
such as 12 + j9 by another vector equal to 
7 — j6. Multiplying our binomial, we 
have: 

(12 +j9) X (7 — j6) 

= 84 +j63 —j72 —j254 

= 84 — j9 — 54(— 1) 

=84+54 —j9 

= 138 — j9 

Here, as you can see, we had one vector 
to the right and above the reference, and 
another to the right and below the 
reference. The resultant is a vector that is 
to the right and below the reference. 
Now, suppose we wanted to multiply 

the following vectors together: 
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(8 + j16) X (5 +j2) X (2 +j3) 

This would give us: 

8 +j16 
5 + j2  
40 + j80 
+ j16+ j232  

40 + j96+ j232 

Then: 

40 +j96 + j232 
2+ j3  
80 +j192 +j264 
+ j120+j2288 +j396  

80 +j312 +j2352 +j396 

Then: 

80 + j312 + j2352 + j396 
= 80 +j312 + (352 X — 1) 

+ (96 X —j) 
=80 — 352 +j312 —j96 
= — 272 + j216 

Even though all our multipliers were to 
the right and above the line, our resultant 
is to the left and above. Notice that the j2 
term was resolved to its value of —1 and 
that the j3 term resolved to its equal 
value of —j. 

In order to divide vectors, we simply 
divide our binomial representations of the 
vectors involved. The easiest way to do 
this is to set up the division as a fraction 
and then clear the j term from the 
denominator. For example, if we wish to 
divide a vector such as 2 +j16 by a vector 
equal to 2 +j3, we would set our division 
up as a fraction: 

2 + j16 
2 +j3 

Then, if we multiply both the numerator 

and the denominator by 2 — j3, we will 
not change the value of our fraction, but 
we will get rid of the j term in our 
denominator. For example, we will have: 

(2 + j16) (2 — j3) 
(2 +j3) (2 —j3) 

4 +j26 — j248 
4 J29 

4 +j26+ 48 

4 + 9 

52 +j26 

13 

13 (4 +j2) 
= 13 

=4+j2 

Thus, 2 + j16 2 + j3 = 4 + j2. For proof 
of this, check Fig. 20 again. As you can 
see (4 + j2) X (2 + j3) are the vectors we 
previously used in this multiplication 
problem and our product was 2 + j16. 
Similarly: 

138 —j9 +12+j9 

138 — j9 

12 +j9 

(138 — j9) (12 —j9) 

(12 +j9) (12 — j9) 

1656 —j1350+j281 

144 — j281 

1656 — j1350 — 81 

144 + 81 

42 



1575 — j1350 

225 

= (7 — j6) 

To prove our answer we simply multiply 
our quotient (7 — j6) by our divisor (12 + 
j9) to get our dividend of 138 — j9. 
Notice that each time we clear our j term 
from the denominator by multiplying our 
numerator and denominator by the same 
number. This number is always a 
binomial that is exactly the same as the 
denominator except that the sign of the j 
term is reversed. Such a term is called a 
"conjugate" term. You'll notice that each 
time we get a j2 term or any even power 
of j, the j term disappears because j2 = 
—1. Remember, in algebra we pointed out 
that (a — b) (a + b) = a2 — b2. Thus, if we 
have (a — jb), we can multiply it by (a + 
jb) to get a2 — j2b2 and eliminate the j. 
Similarly, if we have a + jb, we can 
multiply it by a — jb to eliminate the j. 
Thus, we can say that we multiply both 
the numerator and the denominator by 
the conjugate of the denominator to clear 
the j term from the denominator. 
When we multiplied two vectors to-

gether, we discovered that the product 
was a new vector equal in length to the 
product of the vector values at an angle 
equal to the sum of the angles of the 
vectors multiplied. In dividing vectors, 
the opposite relationship exists. If we 
divide one vector by another and then lay 
out the dividend vector, the divisor vec-
tor, and the quotient vector in a diagram, 
we will find that: 

I. The quotient vector is equal in 
length to the quotient of the length of 
the dividend vector divided by the length 
of the divisor vector. 

2. The quotient vector will be at an 
angle to the reference line that is equal to 
the difference between the angles of the 
vectors divided. 

Thus, we have two ways that we can 
multiply or divide vectors. We can multi-
ply or divide the binomial representation 
of the vectors as we have learned to do in 
this section, or if we know the vector 
length we can use it. To multiply, we find 
the product of the lengths and the sum of 
the angles. To divide, we find the quo-
tient of the lengths and the difference of 
the angles. 
We mentioned earlier that there was no 

purely graphical way to multiply and 
divide vectors. While we can do some of 
the work graphically, we must always 
perform some mathematics on the side. 
Even then, the process of finding the 
product or quotient in this way is very 
tedious and involved. Since we already 
have two methods for finding the prod-
ucts or the quotients mathematically, and 
since either of these methods is much 
simpler and faster than the simplest 
graphical method, it will not be worth-
while for us to «tyly the graphical (plus 
some math) methods. 

In this section of the lesson, you have 
learned to perform arithmetic operations 
with vectors. You have learned how to 
add and subtract vectors, how to multiply 
and divide by vectors. You will perform 
all four operations in solving even fairly 
simple ac circuit problems. 

In the next section we will complete 
the study of the j operator and the 
binomial representation of vectors, by 
applying what you have learned to some 
circuit problems. To test your under-
standing of this chapter perform the 
indicated operations in the self-test ques-
tions which follow. 
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SELF-TEST QUESTIONS 

Make the following computations: 

41. (3 +j6) + (7 +j2) 
42. (7 +j2)+(9— j17) 
43. (9 — j4) + (-3 + j5) 
44. (8 + j3) — (4 + j7) 
45. (17 — j6) — (11 — j8) 
46. (3 + j7) + (8 — j13) + (7 +j8) 
47. (16 — j13) + (-11 +j4)+ (5 — j2) 
48. (23 + j14) — (17 +j26) + (1 —j3) 

49. (2 —j11)— (19 — j17) —(4+ j6) 
50. (-6 —j18) — (-12 —j14) — (-2 — 

j21) 
51. (7 +j6) (3 +j2) 
52. (11 + j2) (2 — j7) 
53. (-2 — j9) (-3 + j4) 
54. (8 — j7) (-3 + j5) 
55. (3 + j2) (4 + j6) (5 — j8) 
56. (30 + j30)÷ (4 + j2) 
57. (60 — j11)÷ (5 — j6) 
58. (69 + j17)÷ (4 — j3) 
59. (44 — j168) ÷ (7 — j9) 
60. 255 ÷ (6 + j7) 
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Using The J Operator 
In Circuit Operations 

The best way to make sure that you 
understand representing vectors with 
binomials by using the j operator is to 
work with them in circuit calculations. In 
this way, you will get some practice with 
j arithmetic as well as some more experi-
ence in solving circuit problems. We will 
start with some simple series ac circuits, 
and then examine some parallel and 
series-,parallel combinations. If, after we 
have done this, you feel that you still 
need more practice, try applying these 
methods to some of the ac circuits you 
have worked with in your other lessons. 

In analyzing and working the circuit 
problems in this section, we will use the 
mathematical solutions and the j oper-
ator. However, we will still use vector 
diagrams to help visualize the circuit 
quantities and their relationships. But, 
since we are not going to use the diagrams 
for our actual calculations, we will not 
need to draw them to scale. Thus, for 
every problem, we will have a simple 
diagram to use in our analysis and a 
mathematical solution for the diagram. 
This is by far the best way to work with 
any ac circuit problem. 

Series Circuits. In the circuits shown in 
Fig. 21 we are to find the current. Let's 
consider the circuit at A first. Since we 
have an inductance in the circuit along 
with a resistance, we know that the 
voltage will lead the current, or another 
way of saying the same thing is that the 
current will lag the voltage. Thus, since 
we are given the value E = 234V, and we 
draw it at e, as in Fig. 21C, then the 
current must lag it as shown. To position 

the current vector in this position, we 
must have a —j term in the current. 
Now let's look at the circuit in Fig. 

21B. Here we have a resistance and 
capacitance in series. We know the cur-
rent must lead the voltage so we must 
have a phase relationship like the one 
shown in Fig. 21D. This means we must 
have a +j term in the current. 

XL=9n 

E=234V R=6 rt 

f 
E=234V R=6 rt 

0 
  E - 234 V 

0 

Fig. 21. The vector diagrams at C and D show 
the phase relationships between the voltage and 
current in the circuits shown at A and B. 
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We know that capacitive reactance is 
the opposite of inductive reactance so 
one must have a +j sign and the other a —j 
sign. But which should be + and which 
should be —? The answer is we must use 
the signs that make the current come out 
with the correct sign. Let's see what this 
means. We know that in an ac circuit 

E 
i =i 

In the circuits in Fig. 21 the voltage is 
234 volts, the resistance 6 ohms, and the 
reactance 9 ohms. Thus, in one circuit Z 
= 6 + j9, and in the other circuit Z = 6 — 
j9. Now, let's solve the current in both 
circuits and then we can see whether a +j 
term represents inductive or capacitive 
reactance. 

E 
I =— 
Z 

234 
_ 

6 +j9 

234(6 — j9) 
.  
(6 + j9) (6 — j9) 

1404 —j2106 

36 —j281 

_ 1404 — j2106 

117 

= 12 —j18 

Now, since we already know that in the 
circuit with the inductive reactance we 
need a —j term in the current, this 
represents the current in Fig. 21A, and 6 
+ j9 must represent the impedance of the 
circuit in Fig. 21A. Therefore, it appears 

that inductive reactance should be repre-
sented by a +j term which means that 
capacitive reactance will be represented 
by a —j term. Now let's solve Fig. 21B, 
using 6 — j9 as the impedance, and see if 
we get a +j in the current term. 

E 
I = i 

234 

6 — j9 

_234 (6 + j9) 

(6 — j9) (6 + j9) 

1404 +j2106 

36 — j281 

1404 +j2106 
_   
117 

= 12 +j18 

Thus we have a +j term in the current. In 
fact, notice that the only difference in 
the two current values is in the sign of the 
j term which is what we might expect 
since the reactances are equal. 

Remember: Inductive reactance gets a 
+ sign and capacitive reactance a — sign. 
Now, let's do another example. 

In the circuit shown in Fig. 22A, we 
are asked to find the impedance. An 
examination of the circuit shows that it is 
a series circuit consisting of resistances, 
coils, and capacitors. Accordingly, we 
know that the impedance must be equal 
to the vector sum of the resistances and 
reactances. Therefore, in the diagram in 
Fig. 22B, we have made a simple sketch 
of the vector relationship of all the 
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XL1.30.n. R2.20 A Xci=15 n 
0—vvy—reerN—owN,--1  

E.120V 
Xc2=5.n. R4 .10n XL2•10.n. R3.5 n 

0 

XL2 

XL1 R1 +J20 

Xci 

XC2 
-J 

0 

srp 

+50 

Fig. 22. Series ac circuit and vector repre-
sentation. 

components. Since it is a series circuit 
and the current is common, we have used 
a reference line, I, as a base for the 
diagram. All the resistance vectors are 
indicated along this reference line to 
show the total effect of the "in phase" 
components. Voltages across the resis-
tances will all be in phase with I and 
hence fall along this reference vector. 
The voltage across any coil in the 

circuit will lead the current by 90° if we 
neglect its resistance, so XL vectors are 
drawn so that they lead the resistance 
vectors by 90°. This conforms with what 
we just discovered, that inductive reac-
tance terms are +j terms. The voltage 
across the capacitors, on the other hand, 
will lag the current, so the Xc vectors are 
drawn so that they lag the resistance 
vectors by 9e. Now, notice that the Xc 
vectors are —j vectors. The resistance 
vectors, of course, are in phase and are 
simply represented as the positive number 
terms. 
Now, from our knowledge of circuit 

laws, vectors, algebra, and the j operator, 
we can write the following equation for 
the circuit impedance: 

Z = + R2 + R3 + R4 + iXL 1 
iXL2 I — 1)(c2 and, 

Z=15 + 20 + 5 + 10 +j30 +j10 
—j15 —j5 

Z= 50+j40 —j20 = 50 +j20 

Thus, we can draw a resultant vector 
diagram as shown in Fig. 22C where Z = 
50 + j20. Since the j term in our resultant 

vector is only used to indicate the direc-
tion of the final reactive component, or 
the sign of the resultant phase angle, we 
can drop it while we compute the imped-
ance with our formula Z = N/R2 + X2. 
Thus, the impedance is: . 

z =N/502 + 202 

= N/2500 + 400 

= 

= 54S2 (approximately) 

Therefore, we can write the impedance of 
our circuit in two ways: As a vector, Z = 
50 + j20 or from the result of our 
computation as: Z = 54S2 (approx). 
To show that either of these answers is 

perfectly correct and acceptable, we can 
examine the circuit a little further. Sup-
pose that we are told that the current in 
the circuit is equal to 4 amps and asked 
to find the voltage. We know that E = IZ, 
so let's substitute both of our answers for 
Z in this formula and see what we get. 
First, if E = I X Z, then E = 4 X 54 
(approximately) or about 216 volts. 
Next, if = I X Z, then 

E = 4(50 + j20) = (200 + j80) volts. 

Now, since Er =.N/ER2 + Ex 2 and 200 = 
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ER and j80 = Ex, we have, by dropping 
the j, 

E r  = 2 0 0 2 + 802 

= N/40,000 + 6400 

= N/46,400 

= 216 volts (approx.) 

Although either the vector representation 
of the answer or the numerical repre-
sentation is correct and acceptable, the 
vector answer is often preferred as it 
indicates our phase angle and leading 
voltage. Thus, we would say that our 
impedance was (50 + j2O)n and our 
voltage was (200 + j80)V. 
Now, let's look at the circuit in Fig. 

23. Here we also have a simple series 
circuit, and are asked to find the imped-
ance. But, instead of being given all the 
resistances and the reactances, we are 
given an assortment of values. However, 

R.5°11 E.I50 V 

0 C•20 /An Ze 45V 

EXL 

EXCI 

EXC2, 

e e-1 
ER, ER2 

--  1 
RI R 

-JI22.5 

\+65 

Fig. 23. Series ac circuit with vector diagrams. 

we still know that Z is equal to the sum 
of the resistances and the reactances, and 
we can draw our vector diagram as shown 
in Fig. 23B. Also, Z will be equal to ET 
I and ET will be equal to the sum of the 
individual voltage vectors, as shown in 
Fig. 23C. Since we are given the total 
current, the frequency, some of the indi-
vidual resistances or reactances, some of 
the voltage drops, and a value of capaci-
tance, we can find the impedance of the 
circuit either way. The information given 
is adequate to give us anything we need 
to know. For example, using Z = R±jX, 
we have: Z = Ri-jX = RI + R2 + — 
jXc — pk2 and Z = 

ER2 EL (159000) 
R1 +7-1-j—I — jXci — j 

Therefore, 

159000) 
Z = 50 + 15 +j50 — j40 — j 

( 60 X 20 

and 

159000 1590 
 = = 132.5S2 
60 X 20 12 

and 

Z=65 +j50 —j40 —j132.5 = 65 —j122.5 

as shown in Fig. 23D. 
Using the other method, we would 

have: 

Z = ET ÷ I = (ER I +ER 2 1- jEX L 
— jExc jExc2)÷ I, 

then 

Z = + ER2 + Ex — jec 

— j(IXc2)i ÷ I 
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Now: 

.i(IXc2) = [jI(159000 + fC2)] 

= [jI(159000 + 1200)] 

= j(132.51) 

Thus, Z = 

IRI + ER2 ti(Ex — i(1)(c i) —j(132.51)  

Now, 

ER2 , i(EX L) 
Z=R1 

— Ok i) —j132.5 

45 j(150) 
= 50 + + — j40 — j132.5 

3 3 

= 50 + 15 + j50 — j172.5 

= 65 —j122.5 

which is the same answer we got the 
other way. By using the Pythagorean 
theorem, we can further find that: 

Z = N/652+122.52 

= N/4225+15006 

= N/MT1-. 

= 139S2 (approximately) 

Notice that we always drop the j when we 
use the Pythagorean theorem, because the 
j only indicates the position of the 
impedance vector and there is no way to 
indicate this in a monomial such as 139. 
However, we can use the sign of the j 
operator to indicate the direction by 
saying "139n capacitive." 

Parallel Circuits. In our earlier ac cir-
cuit calculations, we have worked almost 
exclusively with series circuits. Although 
parallel circuits and series-parallel circuits 
can be solved by using vector measure-
ment solutions alone, the vector diagrams 
generally become quite complex and 
difficult to work with. However, now 
that we have a method of solving ac 
circuits mathematically, we shall be able 
to handle these more complex circuits. 
The major difference in working with 

parallel circuits is in the choice of a 
reference. In your study of dc circuits, 
you learned that the current divides in 
the branches of a parallel circuit while the 
voltage across all the branches is com-
mon. This is just the opposite from a 
series circuit where the current is com-
mon and the voltage divides. The same is 
true for ac circuits, so the general rules 
for dc circuits will apply to ac circuit 
solutions. Therefore, in our work with ac 
parallel circuits, we will use the circuit 
voltage as a reference instead of the 
current as we did in most of the series 
circuits. This difference in the choice of 
the reference value is very important. 
Now, let's look at the simple parallel 

circuit in Fig. 24. Here, our circuit 
contains a coil in one leg and a resistor in 
the other leg. The voltage applied to the 
circuit is applied equally to each branch. 
However, the current as shown by an 
ammeter in each leg is different in each 
branch. The total current in the circuit is 
equal to the sum of the current in the 
branches. What is this total current? 

120 VAC 
L. 
4> R.40 
> 1 = 3 
1 

XL= 30 

1=4 

Fig. 24. Simple ac parallel circuit. 
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Since one branch has an inductive 
current and the other branch has a 
resistive current, we cannot add the two 
currents together numerically. We must 
add them together vectorially just as we 
would the voltages in a series circuit. If 
we draw a vector diagram for this addi-
tion, we have to use the voltage as our 
reference line since the voltage across 
each branch is the same. Thus, we would 
lay out our reference line and label it E as 
shown in Fig. 25A. Next, we want to 
represent our current vectors for each leg. 
First, we take a vector representing the 
current in the resistance branch and draw 
it along the reference line, E, and label it 
IR, as shown in Fig. 25B. We draw this 
vector along the reference to show that 
the current through the resistive branch is 
in phase with the common voltage. 

Next, we want to represent the current 
through our inductive branch as a vector. 
Now, we know that neglecting the resis-
tance of the coil, this current will lag the 
voltage by exactly 90°. Since our E 

o 

o 

1R 

-J 

 > E 

I> ›E 

e 
4) s ve 

< 

reference is along the horizontal and 
points to the right, we must draw this 
current vector downward, as shown in 

Fig. 25C, in order to show this lagging 
effect. Thus, our IL vector is a —j value. 
Therefore, our total current vector for 
the circuit would be indicated math-
ematically as 

IT = 1R — PL, 

as shown in Fig. 25C. 
Now, if we substitute the given values 

for the two currents shown in Fig. 24, 
our total current would equal: 

IT = 1R — ,i IL 

= 3 —j4 

dropping the j 

IT = Ni 7—̀42 

= N,F9-1--16 

1  1R 
IR: 3 e 

-J 

F. 25. Parallel circuit solution. 
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= N/2-5-

= 5 amps 

Our j operator was minus, so our total 
circuit current is 5 amps (lagging) as 
shown by the vector IT = 3 — j4 = 5, in 

Fig. 25D. 
If we want to find the impedance of 

this parallel circuit, we can proceed in 
two ways. The simplest way is to use the 

total current and the applied voltage in 
our formula E = IZ and therefore Z = 

(E/I) or, in our circuit, Z = (120/5) = 
242. If we were relying on only vector 
measurement solutions for parallel cir-
cuits, this would be the only way we 

could find the impedance. The reason for 
this is that the formula for resistances or 
impedances in parallel is 

Z1 X Z2 
ZT 

Z1 + Z2 

and we have no purely graphical way of 
multiplying or dividing the vectors. 

However, since we know how to use 
the j operator, we can multiply or divide 
these vectors mathematically. Therefore, 
we can use this formula to find the total 
impedance. In the circuit shown in Fig. 

24, we would have: 

KiXL)  
ZT = 

R+jXL 

40(j30) 

40 +j30 

j1200(40 —j30) 

(40 + j30)(40 — j30) 

j48000 — e 36000 
1600 — j2900 

j48000 + 36000 

1600 + 900 

j480 + 360 

25 

= 14.4 +j19.2 

and our impedance total written as a 
vector would be (14.4 + j19.2). Then, 
applying the Pythagorean theorem to this 
vector, we would find: 

Z = N/(14.4)2 + (19.2)2 

= N/207.36 + 368.64 

= eg= 24n 

This, of course, is the same answer that 
we got for the impedance by dividing the 

total voltage by the total current. 
While the impedance of any parallel 

circuit can be found using either method, 
you can see that it is much simpler and 
quicker to use the first method. The 
current can be found by addition of 
vectors and then a simple division allows 
us to find the impedance if we know the 
voltage. The other way requires both the 

multiplication and division of vectors 
which can become quite complex. In fact, 
in complex circuits, it becomes so in-
volved mathematically that it is almost 
never used. 

Because of this complexity, a method 
of finding impedance has been worked 
out that involves the addition of current 
vectors, even though the voltage is not 
known. For example, consider the circuit 
in Fig. 26. Here we have a resistor, a coil, 
and a capacitor in parallel. We are asked 

to find the impedance and we have the 
values of }Cc, XL, and R given. Since we 
have no values of either current or voltage 
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Xe2On X c4On 

Fig. 26. Parallel circuit with Xc, 11 1, and 
XL. Find Z. 

given, it would seem that we will be 
forced to use our impedance formulas. 

Suppose, however, that we assume a 
circuit voltage of 120 volts. If we do this, 
then we can find the current that would 
flow in each branch with this assumed 
voltage applied to the circuit. It would 
be: 

E 120 
lc =— = — = 6 amps 

Xc 20 

E 120 
= —= 4 amps, and 

R 30 

E 120 
IL =— = —= 3 amps. 

XL 40 

Now, we can add these currents using the 
j operator to find the total current that 
would flow for the value of assumed 
voltage we have chosen. 

Laying out a vector diagram for refer-
ence as shown in Fig. 27, we would use 
our common reference E as a base. Then 
our IL vector would be drawn down 
toward —j to indicate the current lag 
through the coil. The vector for Ic would 
be drawn up toward +j, indicating the 
leading current through the capacitor. 
Finally, the IR vector would be drawn 
along the reference to indicate the in 
phase current through the resistance. 
Now, our problem becomes math-

ematically: 

Then, 

Ilc — 

= 4 +j6 —j3 

=4 +j3 

IT = 42 + 32 

and IT = 5 amps leading (notice the sign 
of j) with an assumed voltage of 120 
volts. 
Now, applying our formula Z = (En), 

we have Z = (120/5) = 24S-2. Thus, an 
assumed voltage forces a total current 
through the circuit that gives us an 
impedance of 24n. The interesting thing 
is, that no matter what voltage we 
assume, the computed current will always 
be a value such that our impedance for 
this circuit will work out to 24S2. Thus, 
we can assume any voltage for a parallel 
circuit, compute the total current forced 

+J 

I c6 

Al IL =3 

bt • 
i1/4 =J3 

  E 

IT=4*J6 -J3 

IT =4 +J3 

IT ..54 

Fig. 27. Vector solution of I for circuit in 

Fig. 26. 
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z 30 Lz.I06 HENRY 

Cz22Iuf R2 z 5 
 W V—• 

ET z 650 VOLTS 
f .60Hz 

Fig. 28. Series-parallel ac circuit. 

through the circuit by this voltage, and 
then divide to find the impedance. Natu-
rally, in doing this, we always assume a 
value of voltage that will make our 
problem as simple as possible. Try 
assuming a couple of different voltages 
for the circuit in Fig. 26, and then 
compute the current and impedance. You 
will see that 24S2 is always your answer 
for this circuit. 

Series-Parallel Circuits. The next prob-
lem is to learn to combine our knowledge 
of series circuits with our knowledge of 
parallel circuits for series-parallel combi-
nations. Generally, we do this just as we 
would for dc circuits. We break our 
circuit down into simple circuits which 
we solve one at a time, and then combine 
our answers. For example, let's consider 
the circuit shown in Fig. 28. 

Here we have a coil in series with a 
resistor in one branch which is in parallel 
with another branch containing a resistor 
and a capacitor. We are given RI, R2, L 
and C, the total voltage, and the fre-
quency. We are asked to find the total 
current and the total impedance of the 
circuit. First solve each of the two 
branches separately, then combine them 
to find the total current, and then find 
the total impedance. 
The best way is to proceed as follows: 

Let's call the branch with the coil, branch 
A, and the one with the capacitor, branch 

B. Since we want the total current, we 
would want to find the current in each 
leg and then combine them. Starting with 
branch A, we must first find XL and then 
find IA as follows: 

IA = EA 4. ZA 
= EA (RI +P(L) 
= EA ÷ (RI + j27rfL) 
= 650 ÷ (30 +j6.28 X 60 X .106) 
= 650 ÷ (30 + j40) 

650 (30 — j40) 

(30 + j40) (30 — j40) 

19500 — j26000  

900 —j2 1600 

195 —j260  

9+16 

195 —j260 

25 

=7.8 —j10.4 

Now, notice that IA is the current 
through the series circuit of branch A, yet 
we have it broken up into a j binomial. 
This probably seems strange since you 
know that the current is common in a 
series circuit and the current through the 
coil is the same as the current through the 
resistance. Although it is true that we 
have only one current through the series 
branch, this current is made up of the 
combined effects of the resistor and the 
coil. Therefore, this current is a vector 
that can be considered to consist of two 
components just the same as any other 
vector. 

The vector diagrams in Fig. 29 may 
help you to understand this. In Fig. 29A 
we have shown the impedance vector 30 
+ j40 which we found in the first few 
steps of our equation. Since this is a series 
circuit, we have used the current as a 
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1XL 
-J 10.4 

-J 

IR=z8  
>EA 

IA LAGS EA 

tt( 

•v 

F. 29. Vector relationships for branch A. (Not to scale.) 

reference for this diagram. Now, if we 
were to represent the voltage for this 
series circuit vectorially, it would extend 
along the same line as the impedance 
vector, as shown. Thus, the vector dia-
gram in Fig. 29A shows the relationships 
of the impedance, the current, and the 
voltage. Notice that the current lags the 
voltage. 
Now, when we get ready to combine 

branch A and branch B, we will want to 
use the voltage as a reference because it is 
common to both branches. When we do 
this, we would have to show the current 
for branch A as a vector lagging the 
voltage, as shown in Fig. 29B. Thus, 
either Fig. 29A or 29B shows the proper 
relationship between the current and the 
voltage. In order to compute with this 
current vector using the j operator, we 
would want to break it up into its 
components. We can do this in the 
diagram, shown in Fig. 29B, because E is 
the reference. That is why we simply 
divided the voltage EA by the binomial of 
the impedance vector rather than solving 
for the monomial impedance. In this way, 
our current is already broken into its 
binomial term, ready for use in com-
bining with branch B as soon as we divide 
the voltage by the impedance. 
Now, we follow the same general pro-

cedure and solve for the current in branch 
B as follows: 

IB = EB ZB 

= EB ÷ (R2 — Pk) 

159100 ) 
= EB (R2 — 

fC 

159 000 ) 
=650+ (5 

60 X 221 

=650÷(5 —j12) 

650(5 +j12) 

(5 — j12) (5 +j12) 

Re5 

Xc-J12 

-J 

IXe 
IB LEADS EB J46.1 

(e,c1 

E B 

o 
Fig. 30. Vector relationships for branch B. 

(Not to scale.) 
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3250 +j7800 

25 — j2144 

3250 + j7800 

25 + 144 

3250 +j7800 
= 19.2 +j46.1 

169 

The vector diagrams for this are shown in 
Fig. 30 in the same manner as those in 
Fig. 29. Notice that in the diagram in Fig. 
29A, the inductive terms are positive or 
-1-j to show that the voltage leads the 
current reference. However, when we use 
the voltage as a reference, as in Fig. 29B, 
the current term must be negative, or —j, 
in order to show this same lag. Likewise, 
the sign changes in Fig. 30A and 30B 
show the same thing except that they are 
opposite because we are dealing with 
capacitance or leading current. 
Now that we have found the current in 

the two branches, we simply add them as 
shown by the vector diagram in Fig. 31 
and the following mathematical solution: 

= + 

= (7.8 — j10.4) + (19.2 +j46.1) 

= 7.8 + 19.2 +j46.1 — j10.4 

= 27 +j35.7 

. \/272 3572 

=N/729 + 1274.5 

= N/271:sifiU 

= 44.7 amps 

Now, the impedance is: 

-J 

  E 

Fig. 31. Vector addition of current in Figs. 
25 and 26 (not to scale). 

E 650 
Z = —= —= 14.5 ohms 

I 44.7 

In solving circuit problems such as this 
it is wise to set up a complete equation in 
the beginning. In this way you get 
straight to the heart of the problem and 
save yourself from doing a lot of work 
finding things that you do not need. As 
an example, we found only the binomial 
expressions for current and impedance in 
the circuit we just completed. We did not 
bother to find the numerical values of the 
quantities until the last moment. Also, we 
did not have to find the voltage drops 
across the individual components. The 
proper circuit equations will keep you 
from spending unnecessary time solving 
for quantities you do not need. Stated as 
a complete equation, this last circuit 
would have been: 

Given: ET = 650V 
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find IT ZT 
Then, 

and 

Therefore: 

But: 

But: 

Then 

Therefore: 

f = 60 Hertz 

R1 = 3on 

R2 = 5SZ 

L = .106h 

C = 221 btf 

ET 
ZT = 

IT = IA + 

ZT = ET (IA IB) 

IA =EA ÷ ZA 

IB =EB ZB 

EB =EA = ET 

IA =ET ÷ ZA 

IB =Er ÷ ZB 

ZT 
ET ET 

ZA ZA 

ET 

Now: ZA =R1 + iXL 
ZB =R2 — jXc 

ET 
ZT =   

ET ET  

R1 +jXL R2 - :1X 

And: jXL = j(2/rfL) 
jXc = j(159000 fC) 

Therefore: 

ZT = 
ET 

ET ET 

15900 
R1 + j2irfl-• R2 

fC 

This is the complete circuit equation and 
gives us ZT in terms of our known values. 
We can now solve for ZT and apply the 
Pythagorean theorem to get ZT as a 
monomial answer. Ohm's Law will then 
give us IT. 

In Fig. 32, we have a more complex 
series-parallel circuit. In this problem, the 
resistances and reactances are given; you 
are to find the total circuit impedance. 

Examination of the circuit will show 

that the total impedance "ZT" is equal to 
the vectorial sum of R1 XLI and Xcl in 
serios with the combined impedance of 
the three parallel branches. For con-

Ri=5.rt 

R4=25 n eL3=I7.5 

R3 =IBA XL2=40n 

=56 n 

XL .67s 
1--rern_ 

Xci•55 st 

R2•551.--"S"\17 —. Tdc217;:)n 

Therefore: Fie 32. Series-parallel circuit problem. 
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venience, we will refer to the combined impedance of the three parallel branches as 
We can now write the equation for the total circuit impedance: 

ZT -= (RI + P(1.1 HX-C1) 4. Zb 

We will first find the value of Zb. Later, we can find the total circuit impedance. 
Neither the source voltage Es nor the voltage drop across any part of the circuit is 

given. However, we can simplify the work by assuming that a voltage "Eb" exists across 
the three parallel branches and use this voltage as a reference. Now, we can write the 
equation: 

Eb 
Zb = — 

Ib 

where lb is the total current flowing in the three parallel branches. Regardless of the 
assumed voltage Eb, the impedance of the parallel branches will remain the same since the 
current is proportional to Eb divided by Zb. 

The current Ib is the vectorial sum of the currents flowing through the three individual 
parallel branches. We will use li to represent the current through R2 and Xc2 ,I2 for the 
current through R3, Xc3 and XL2, and 13 to represent the current through R4 and XL3. 
Then, we can write: 

lb = II + 12 + 13 

, 
a 

Substituting this in the equation for the impedance of the parallel branches gives us: 

Eb 
Zb = 

II + 12 + 13 

The current flowing through each of the parallel branches is equal to the assumed voltage 
divided by the impedance of the individual branches. The branch currents then are: 

Eb 
li =— 

Zi 

Eb Eb 

12 = ,,. 13 = -,-;— 
el 1,3 

We can now write the equation for the combined impedance of the parallel branches: 

Eb 
Zb = 

Z1 Z2 Z3 

Let us assume that Eb is equal to 100V (we can assume any value for Eb and still get the 
same final answer for Zb) and substitute 100 for Eb in the equation: 

100 
Zb =  

100 100 100 
  -I-   4.   

55 — j20 10 +j40 — j56 25 +j17.5 

57 



100 
Zb = (  

100 55+j20\ 100  10+j16 100  25 —j17.5\ 
 11 

55 —j20 • 55+j20/ + 1  10+j16/ 1" \25+j17.5 • 25 —j17.5) 

100 

100(55 + j20) 100(10 + j16) 100(25 — j17.5) 

3025 — j2400 + 100 — j2256 625 — j2306 

Now, since j2 = —1 

100 
Zb   

10((55 +j20) + 10((10 + j16) 100(25 —j17.5) 

3025 + 400 100 + 256 625 + 306 

100 
Zb 

5500 +j2000  1000+j1600 2500 —j1750 

3425 356 931 

Zb = 
(1.6 +j.58)+ (2.8 +j4.5) + (2.7 — j1.88) 

100 

100 
Zb = 

7.1 +j3.2 

100  7.1 —j3.2 
Zb = 

7.1 + j3.2 7.1 — j3.2 

710 —j320 
Zb = 

60.2 

Zb = 11.8 — j5.3S2 

Now solve for the total circuit impedance: 

ZT = (5 + j67 j55) + (11.8 — j5.3)n 

ZT = 16.8 + j6.712 

Then from the Pythagorean theorem, the total circuit impedance is equal to 18.1 ohms. 
In this lesson, we have studied two math subjects that will be especially important in 

your work in electronics — algebra and the j operator. With a knowledge of these two 
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subjects, you will be able to resolve complex ac circuit vectors mathematically. As you 
can see, this is a far more accurate and less tedious method than solving these problems 
by laying out and measuring vectors. However, we are still missing one very important 
factor of ac circuits. We are able to determine whether the current leads or lags the 
voltage, but we cannot tell what the actual phase angle is by mathematics alone. The only 
way we can determine the phase angle is to draw our final vector resultant to scale and 
then measure the angle of lead or lag with a protractor. In our next reference lesson on 
mathematics, we will learn how to compute the phase angle mathematically and then go 
on to consider power and resonance in ac circuits in more detail. 

SELF-TEST QUESTIONS 

61. One leg of a parallel circuit contains an impedance equal to (3 + j4), the other leg 
impedance equals (8 — j6). What is the total impedance of the circuit? 

62. If the impedance vector of a series circuit equals 40 — j30 and the applied voltage is 
100 volts, what is the current in amps? 

63. A series circuit consists of RI, R2, R3, C1, C2, L1 , and L2 connected in series. What 
is the impedance of the circuit if R1 = 12 ohms, R2 = 17 ohms, R3 = 11 ohms, Xc i 
= 75 ohms, Xc2 = 50 ohms, XLI = 40 ohms, and XL2 = 60 ohms? 

64. What is the total impedance of a series circuit that contains the following 
impedances: 1 + j6, 3 — j2, 4 — j7, 3 + j14, 7 — jl? 

65. In the circuit shown find the total current, the voltage across the coil, and the voltage 
across the capacitor. What is the name given to this type of circuit? 

Ro4n XL.10 A 

100V 

66. If an alternating voltage of 117 volts is connected across a parallel circuit made up of 
three legs, with a 3on resistance in one leg, an inductive reactance of 117n in one 
leg, and a capacitive reactance of 392 in one leg, what is the total current drawn 
from the source? 

67. A parallel circuit is made up of four branches, three of the four branches being pure 
resistances of 16, 16, and 8 ohms, respectively. The fourth branch has an inductive 
reactance of 642. What is the total impedance of the circuit? 

68. A series circuit consisting of a 12-ohm resistor, a 20-mfd capacitor and a .1 henry coil 
is connected across a 150-volt, 120-Hertz ac source. What is the current in the 
circuit? 

69. Find the current through the capacitor in the circuit shown. 

Xc=40n,f 

i r 
XL. 20 A 
Ixc 2 AMPS 

59 



70. What will the current be in the circuit shown when it is operated at its resonant 
frequency? 

R1.2 OHMS 

110 VOLTS 

71. Find the impedance of the circuit shown below. 
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Answers To Self-Test Questions 

6 

1. A monomial is a mathematical ex-
pression containing only one term. 

2. A polynomial is a mathematical ex-
pression containing two or more 
terms. 

3. A binomial contains two terms while 
a trinomial contains three terms. 

4. An exponent is a number which is 
normally placed to the right and 
above a term. It means the number 
of times the term is to be multiplied 
by itself. 

5. 6. 

6. 3a2b + 2b 
a2 b — b 

—2a2 b + 4b 

2a2 b + 513 

7. (a) 7x2 y + 12xy + 3y + 2 
(b) —6a4b2 — 2 

8. 4a2 b2 — 2b 
+ 3ab2 + 2a 

a2 b2 — 3a2 b + 3b + 3 

5a2b2 — 3a2 b + 3ab2 + 2a + b + 3 

9. (a) 3ab — 3a — 3 

(b) 4x2 y + 4xy + 3y 

10. ab2 + ab— 3a — b 
+ a + b 

3ab2 — b 
+ ab+ 7a 
+ ab + 3 

4ab2 + 3ab+ 5a — b + 3 

11. lla+ b— 2c 
— 6a + 4h— 2c 

5a + 5b— 4c 

12. a3 — a2b + 4ab2 
— 6a2 b — 3ab2 + b3 

a3 — 7a2 b + ab2 + b3 

13. 3a — 4b + c — 6d 
—a— b—c— d 

2a — 51) — 7d 

14. 2a+ 6b 
—4a— 7b 

—2a— b 

15. 8a3 + 3a2b — ab2 + b3 
—6a3 + a2b— ab2 + b3 

+2a3 + 4a2 b — 2ab2 + 2b3 

16. a + 2b 
a — b 

a2 + 2ab 
— ab — 2b2 

a2 + ab — 2b2 

17. a2 +2ab +b2 
a +b 

a3 + 2a2 b + ab2 
a2 b + 2ab2 +b3 

a3 + 3a2b + 3ab2 +13? 

18. (2a + 3h) (2a — 3b) = 4a2 — 9b2 

19. a2 —2ab +b2 
a +b 

a3 —2a2b + ab2 
a2b —2ab2 +b3  

a3 — a2 b — ab2 +b3 
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20. a — b 
a + 2b2 

a2 —ab 

25. a4 +2a2b2 +114 (a2 + b2) (a2 + b2) _ 
a2 +b2 a2+b2 

+ 2ab2 —2b3 = a2 + b2 

a2 —ab + 2ab2 —2b3 

21. a2 — 2ab + b2 

22. 

a — b /as — 3a2b + 3ab2 — b3 
a3 — a2b 

— 2a2 b + 3ab2 
— 2a2b + 2ab2 

or (a — b)2 

642 4 _ 81b6 

8a2 + 9b3 

ab2 — b3 
ab2 — b3 

(8a2 + 9b3) (8a2 — 9b3) 

26. 3x2 — 5x + 4 

2x + 3/ 6x3 — x2 — 7x + 12 
6x3 +9x2 

—10x2 — 7x 
—10x2— 15x 

+ 8x+ 12 
+ 8x+ 12 

27. 5x2 + 12x — 5 

3x — 2/ 15x3+ 26x2 — 39x + 10 
15x3— 10x2 

+ 36x2 — 39x 
+ 36x2 — 24x 

=  — 15x + 10 
8a2 + 9b2 

— 15x+ 10  

= 8a2 — 9b3 

23. as — 3a3 + a 

a 

a (a4 — 3a2 + 1) _ 

28. — 9a3b+ 6a2b2— 5abs 
+ 14a3b+ 6a2b2— 5abs 
+ as b— 3a2b2— ab3 

+ 6a3b+ 9a2b2-11ab3 

a 29. An equation is a mathematical state-
ment that two quantities are equal to 

= a4 _ 3a2 + 1 each other. 

30. (c) Division by 0 can not be done in 
24. xs + 2x2 + x mathematics. 

x2 4_ x 31. The sign of the term must be 
changed. 

x(x2 + 2x + 1) 32. A formula is a rule or law which is 
. stated as an equation. 

x(x + 1) 

_(x + 1) (x + 1) 

x + 1 

= x + 1 

33. P 

34. 

I = \ , /P —R 
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35. XL 
L = 

27rf 

36. 
f =  

27rOk 

37. E = 

38. Xc = XL + N/Z2 — R2 

Z2 = R2 + (Xc — XL)2 

(Xc — xL)2 = z2 — R2 

Xc — XL = N/Z2 — R2 

Xc = XL + N/Z2 — R2 

39. 105 volts. First solve for the voltage 
across R2. 

E = IR 

ER2 = 2 (15) 

ER2 = 30 volts. 

Since R3 is in parallel with R2 it 
must also drop 30 volts. Thus, we 
can find the current through R3: 

I = 1 amp. 

Now, the total current in the circuit 
is equal to the sum of the currents in 
the two parallel branches or 3 amps. 
This means that 3 amps of current is 

flowing through RI. Therefore, Ri 
drops (25 ohms X 3 amps) = 75 
volts. Thus, the total applied voltage 
is 75 volts plus 30 volts equals 105 
volts. 

40. 95 volts. First find the current 
E 5 

through R4. I = —= 1 amp. Then 
R 5 

find the voltage dropped by R3. E = 
IR = 1(20) = 20 volts. Thus, the 
voltage across R2 must be 5 volts + 
20 volts = 25 volts. Consequently, 
the current through R2 is: 1= E/R; I 
= 25/10 = 2.5 amps. This means that 
the total current through R1 is 1 
amp + 2.5 amps = 3.5 amps. Now, 
find the voltage dropped across RI: 
E = IR; E = 3.5(20); E = 70 volts. 
Thus ET = 70 volts + 25 volts = 95 
volts. 

41. 3 +j6 
7 +j2 

10 +j8 

42. 7 +j 2 
9 —j17 

16 —j15 

43. 9 — j4 
—3 +j5  

6 + j 1 

44. 8 +j3 
—4 — j7 

4 — j4 

45. 17 — j6 
—11 +j8 

6 +j2 
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46. 3+j 7 
8 —j13 
7+j 8 

18+j 2 

47. 16 —j13 
—11+j 4 
5—j 2 

10 —jll 

48. 23 +j14 
—17 —j26 

1—j 3 

7 —j15 

49. 2—pi 
—19 +j17 
— 4—j 6 

—21 

50. — 6 —j18 
+12 +j14 
+ 2+j21 

8 +j17 

51. 7+j 6 
3+j 2  

21 +j18 
+j14+j212 

21 +j32+j212 

=21 +j32 — 12=9+j32 

52. 11+j 2 
2—j 7 

22+j 4 
—j77—j214 

22 —j73 —j214 

= 22 —j73 + 14 = 36 —j73 

53. —2 —j9 
—3+j4 

+6 +j27 
—j 8 —j236  

+6+j19—j236 

=+6+j19+36=42+j19 

54. 8—j 7 
—3+j 5 

—24 +j21 
+j40—j235 

—24 +j61 —j235 

=-24+j61 + 35 = 11 +j61 

55. 3 +j2 
4+j6  

12 +j8 
+j18+j212 

12 +j26 +j212 

= 12 +j26 — 12 =j26 

Now multiply j26 times 5 —j8 

5 —j8 
j 26 

j130—j2208 

=j130+ 208 = 208 +j130 

56. 30+ j30 30 + j30 (4 —j2) 

4+j2 (4 + j2) (4 —j2) 

120 +j120 —j60 —j260 

16 —j24 

180 +j60 
  — 9 +j3 

20 
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57. 60 — jl 1 60 — jl 1(5 + j6) 61. (4 + j2) ohms. There are two ways to 

5 — j6 (5 — j6) (5 + j6) work this problem. One method is to 
substitute the given impedance values 

300 + j305 — j2 66 366 + j305 into the formula for two impedances 
Zi Z2  

25 — j236 61 in parallel, ZT = . Another 
Z1 + Z2 

= 6 + j5 method is to assume an applied 
voltage; solve for the current in each 
leg; solve for the total current; and 
finally solve for the total impedance. 

69 +j17 69 +j17 (4 +j3) 58.   Although the latter method sounds 
4 — j3 (4 — j3) (4 + j3) involved, it is usually the easier of 

the two. The solution using the 

276 + j275 + j251 second method is given below. An 
16 —j29 applied voltage of 100 volts is 

assumed. You could have assumed 

225 + j275 25(9 + j11) any other voltage and arrived at the 
same answer. 

25 25 

= 9 +jll 

44—j168 44 —j168 (7 +j9) 
59.   

7 — j9 (7 — i9) (7 + 

308 — j780 —j21512 

49 — j2 81 

1820 — j780 130 (14 — j6) 

E 
li =— 

Z 

— 100 = 100 (3 — j4)  

3 +j4 3 +j4 (3 — j4) 

100 (3 — j4) 100 (3 — j4) 

- 9 — j216 25 

130 130 = 12 — j16 

= 14 — j6 E 
12 =Z 

60. 255 = 255 (6 — j7)  

6 + j7 (6 + j7) (6 — j7) 100 100 (8 + j6) 
12 — 

8 — j6 - (8 — j6) (8 + j6) 
1530 — j1785 

36 + 49 100 (8 +j6) 100 (8 +j6) 

64 — j236 100 
1530 — j1785 85 (18 — j21) 

85 85 = 8 +j6 

= 18 — j21 Ur =11 4- 12 
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=(12 —j16)+(8+j6) 

= 20 —j10 

E 100  100 
Z = —  

IT 20 —j10 10(2 —j1) 

10 = 10(2 +j1) 

2 —jl (2 —j1)(2 +j1) 

10 (2 +j1) 
= 4 +j2 

5 

62. 2 amps. First convert the impedance 
from j operator form to ohms. 

Z = N/R2 + X2 

Z =‘,/402 + 302 

Z = N/1600 + 900 

Z = 50 ohms 

Now find the current. 

E 100 
I =—= —=2 amps 
Z 50 

63. (40 — j25) ohms. 

Z = RI + R2 + R3 PCC 1 

PCC2 +iXL1 + :1XL 2 

Z=12+17+11 —j75 —j50 
+ j40 + j60 

64. (18 +j10) ohms. 

ZT = Z1 + Z2 + Z3 + Z4 4" Z5 

ZT = (1 j6) + (3 — j2) + (4 — j7) 
+(3+j14)+(7 —j1) 

ZT = (18 +j10) 

65. IT = 25 amps. 

EXL = 250 volts. 

EXc = 250 volts. 

Series-resonant circuit. This is a series 
resonant circuit since Xc = XL. 
This means that the 10 ohms of 
capacitive reactance is exactly can-
celed by the 10 ohms of inductive 
reactance. Therefore, the only 
opposition to current flow is the 

E 100 
4-ohm resistor. Thus, IT = —= — = 

Z 4 
25 amps. And EXL = I(XL) = 25 X 
10 = 250 volts. Also, EXc = I(Xc) = 
25(10) = 250 volts. 

66. (3.9 + j2) amps or approximately 4.4 
amps. 

= + 

E 117 
IR =—- 3.9 amps 

R 30 

E 117 
Ic =— — — = 3 amps 

Xc 39 

E 117 
IL =— = 1 amp 

XL 117 

Z= 40 —j125 +j100 IT =3.9+j3 —jl 

Z = 40 — j25 IT = (3.9 + j2) amps 
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IT = N/(3.9)2 + (3 — 1)2 E 
I —  
R + jXL — .iXc 

IT = N/(3.9)2 + (2)2 
E  

I — 
IT = N/15.21 + 4 R+j 27rfL — j 1 

2/TfC 

IT = 19.21 E  
I — 

12 +j (6.28) (120) (.1) 
IT = 4.4 amps .159 

— .i   
67. 3.33 ohms. 120 (.000 02) 

150 

First assume an applied voltage. Any 
value will work but 48 volts is 
particularly convenient. 

= IR I 1R2 3 ilL 

IR = 48/16 = 3 amps 

'R2 = 48/16 = 3 amps 

'R3 = 48/8 = 6 amps 

IL = 48/6 = 8 amps 

IT = (12 —j8) 

E 
Z =— 

IT 

48 48 
Z =  

12 — j8 4 (3 — j2) 

12 (3 +j2) 

(3 — j2) (3 + j2) 

36 + J24 
  = 2.77 +j1.84 

13 

= N/(2.77)2 + (1.84)2 = 3.33 ohms 

68. (8 — j6) amps or 10 amps. 

E 
I =i 

I = 
12 + j75 — j66 

150 
I=  

12 +j9 

150 50 
I =  
3 (4 +j3) 4 +j3 

I =  
(4 + j3) (4 — j3) 

50 (4 — j3) 50 (4 — j3) 

16 — j29 = 25 

I = 8 —j6 

I = N/(8)2 — 06)2 

I = 10 amps 

69. 1 amp. 

Ec Ic =5;; Ec = ; EL = (XL); 
Xc 

Ec = 40 volts 

40 
Ic = —0 = 1 amp 

4 

70. 55 amps. 

At resonance XL = Xc and the two 
cancel each other. Thus, the only 
opposition to current flow is the 
2-ohm resistor. I = E/Z; I = 110/2; I 
= 55 amps. 
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71. 510 ohms. 

Z1 X Z2 

= z1 + z2 

Z1 = 0 — j100 

Z2 = 20 + j100 

ZT = 
100 + (20 + j100) 

—j100 (20 +j100) 

zis —j2000 — j210,000 

20 

10,000 — j2000 

20 

ZT = 500 — j100 

ZT = N/5002 + 1 002 

ZT = N/i15-,r-XX) 

ZT = 510SZ 

68 



Lesson Questions 

Be sure to number your Answer Sheet X202. 

Place your Student Number on every Answer Sheet. 

Most students want to know their grade as soon as possible, so they mail their set of 
answers immediately. Others, knowing they will finish the next lesson within a few days, 
send in two sets of answers at a time. Either practice is acceptable to us. However, don't 
hold your answers too long; you may lose them. Don't hold answers to send in more than 
two sets at a time or you may run out of lessons before new ones can reach you. 

1. Add the following: 
(1) (3a2 + 2b2 + 6c + 3d2 ) plus (2a2 — b2 + c2 — 4d2) 
(2) (ax3 + bx2 y + cxy2 + y3) plus 2ax3 + ax2 y + 6cxy2 — 4y3 . 

2. Perform the following subtractions: 
(1) From 6a — 3b + 2c + d take 2a — 4b — c + 3d 
(2) From 12ax2 — 6by2 — 4cz2 take 6ax2 + 2by2 — Scz2 

3. Multiply: 
(1) (a2 — b2 + 3c) times (a + b) (2) (3x2 + y) times (3x2 — y) 

4. Divide: 
(1) (4a2 — 8ab + 4b2) (2a-2b) 
(2) (18a5 + 33a4 b + 6a3 b2 — 11a2b3 + 20ab4 + 32b5) ÷ (3a + 4b) 

5. (1) Add (4 + j17) + (3 —j2) (2) Subtract (16 — j2) — (4 + j6) 

6. (1) Multiply (6 + j9) (7 + j3) (2) Divide (10 + j62) (8 + j2) 

7. If a resistance of 62 ohms is connected in series with a coil with a reactance of 42 
ohms and a capacitor with a reactance of 100 ohms, what is the impedance of the 
circuit expressed in j-operator form? 

8. Find the current in the series circuit 
shown at the right. Give your answer 
in j-operator form. 

9. Find the impedance of the circuit 
shown at the right. Give your answer 
in j-operator form. 

10. Find the source voltage in the circuit 
shown at the right if the voltage 
across R4 is 10 volts. 

25 n 

120V 
60H: 

I 15r 
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SUCCESS 

The word "SUCCESS" means different things to different people. 
But the definition of "Success" which appeals to me most is this one, 
written by Mrs. A. J. Stanley. 

"He has achieved success who has lived well, laughed often and loved 
much; who has gained the respect of intelligent men and the love of 
little children; who has filled his niche and accomplished his task; who 
has left the world better than he found it, whether by an improved 
poppy, a perfect poem, or a rescued soul; who has never lacked 
appreciation of earth's beauty or failed to express it; who has looked 
for the best in others and given the best he had; whose life was an 
inspiration; whose memory is a benediction." 

Those of us who can even come close to achieving success of this 

kind will truly be contented, happy men. 
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MATHEMATICS IN 
PRACTICAL ELECTRONICS 

This text begins with a summary of 
shortcuts, some of which you have been 
using in your earlier lessons. Related to 
this summary is a discussion of significant 
figures. You will learn when it does not 
pay to be too exact and yet have reliable 
practical results. 
You have learned many ways of 

dealing with the problems involved in 
making ac circuit computations. You 
know how to lay out the resultant vectors 
and measure the angles of lead or lag to 
determine their values. Although this is 
satisfactory for many problems and cir-
cuits, you will find it awkward when 
working with precision timing circuits, 
filter networks, and frequency control 
circuits that are so important in elec-
tronics work. 
Many of these difficulties can be over-

come by applying the principles of trig-
onometry to vector solutions. In this way 
we are able to account for the angles 
formed by vectors, as well as the length 
of the vectors, without having to rely on 
any construction or measurement. Al-
though you may never have used trig-
onometry, or "trig" as it is usually called, 
it is a very valuable mathematical tool. It 
is not difficult to learn or use; in fact, it is 

simpler than many of the processes you 
have already learned. 
By studying trigonometry, you will not 

only learn another method of computing 
with vectors, but you will also learn more 
about vector principles. You will see why 
a sine wave of alternating current is called 
a "sine wave" and learn why ac vectors 
are often called "phasors." In addition, 
you will learn to work with power in ac 
circuits and study some of the factors 
concerning the importance of "power 
factor." This knowledge of trigonometry 
will be of value to you throughout your 
career in electronics. For example, this 

knowledge of trigonometry is essential 
when working with computer equipment. 

In this lesson you will also learn how 
to construct and use different types of 
graphs that will enable you to present 
complex information clearly and pre-
cisely. The importance of graphs cannot 
be overemphasized, because the technical 
texts and references which you will con-
stantly need in your work use this form 
of presentation. In many ways, this is the 
most important lesson on mathematics 
since you will be using and reviewing all 
previous material and "polishing up" the 
rough edges. 
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Computing Shortcuts 

Many simple calculations in electronics 
can become quite tedious because of the 
size of the numbers involved. Take the 
case of finding the plate currentof a tube 
by measuring the voltage drop across the 
plate load resistor. Assuming there is a 
7.0-volt drop across a 22,000-ohm re-
sistor, what is the current? Ohm's Law 
tells us that we divide the voltage by the 
resistance to get the current. This is 
simple enough, but look at the arithmetic 
involved: 

.00031818 
22000)7.00000000 

6 6000 
40000 
22000 
180000 
176000  
40000 
22000 
1 80000 
1 76000 
4000 

There are five digits in the divisor, nine in 
the dividend, and eight in the quotient. 
No matter how many places there are in 
the quotient, there will still be a re-
mainder with either four or five digits in 
it. 

Practically speaking, a lot of needless 
work was done in performing this di-
vision. This operation could have been 
simpler. For one thing, the quotient was 
carried three decimal places too many. 
The second simplification is to get rid of 
those three zeros in the divisor. When 

these things are done, your division looks 
like this: 

.31 
22)7.00 

66 
40 
22 
18 

Admittedly, the quotients obtained by 
these two divisions have their decimal 
points in different places. However, the 
method that was used to get rid of the 
three zeros in the second divisor also 
shows us how to shift the decimal point 
in the second quotient. 
How to take the unnecessary work out 

of practical calculations will be the sub-
ject of this section of the lesson. There 
are two parts of this section: One is 
concerned with the number of digits that 
should be used in any arithmetic oper-
ation; the other is how to get rid of zeros 
whose only purpose is to locate the 
decimal point. 

The rules that you will learn in this 
section are not only labor-saving tricks, 
they greatly reduce the possibility of 
mistakes. Everyone makes mistakes in 
arithmetic. The more marks you have to 
make on a piece of paper, the more likely 
you are to make a mistake. By using no 
more figures than are absolutely nec-
essary, you can reduce the likelihood of 
an incorrect answer. 

EXPONENTIAL NUMBERS 

Many of the numbers used in science 
represent either very large or very small 
quantities. The field of electronics is no 

e 
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exception. In many cases, the majority of 
the digits in the numbers are zeros. These 
zeros serve only to locate the decimal 
point. They are necessary but very in-
convenient to work with. 

Mathematicians working in the differ-
ent fields of science have developed an-
other way of writing these numbers. The 
method is simply to express the number 
as the product of two factors. One factor, 
called the digit factor, contains the 
significant digits (this term is explained 
later in this section). The other factor, 
called the exponential factor, is a whole 
numbered power of 10 which properly 
locates the decimal point. This method of 
writing large and small numbers is some-
times called the scientific method of 
expressing numbers. 

As examples, let's use the resistance 
and current values in the sample division 
earlier in this section. The resistance was 
22,000 ohms. Using the two-factor 
method, this number is expressed as 2.2 
X le. The current is .000318. This is 
written using exponential numbers: 3.18 
X 10- 4. To show that these new figures 
are correct, we multiply them. 104 is 
10,000; multiply this by 2.2 and we get 
22,000. 10- 4 is .0001; multiply this by 
3.18 and we get .000318. 

Conversion from one system to the 
other is very simple and involves only 
determining the correct power of 10. One 
rule tells the whole story: The power of 
10 is given by the number of places the 
decimal point must be moved to obtain 
the digit factor. Moving the decimal point 
to the left gives a positive exponent; 
moving the decimal point to the right 
gives a negative exponent. For con-
venience, the digit factor is usually 
written with only one digit to the left of 
the decimal point. 

Here are some examples: Convert 

473,000 to exponential form. The deci-
mal point in the digit factor will come 
between the 4 and the 7; this is five 
places to the left, giving an exponent of 
+5. The digit factor is then 4.73 and the 
exponential factor is 105. The complete 
expression is 4.73 X 105. Convert 
6,720,000. The decimal point moves six 
places to the left, giving 6.72 X 106. 
Convert .000706. The decimal point 
moves to the right four places making the 
exponent —4. The complete expression is 
7.06 X 10-4. Convert .0000000123. The 
decimal point moves eight places to the 
right giving 1.23 X 10-5. 

Converting the number back is just as 
easy: Move the decimal point as many 
places as the power of 10 shown by the 
exponent. If the exponent is positive, 
move the decimal point to the right; if 
the exponent is negative, move the deci-
mal point to the left. After this con-
version, every place must be shown. If the 
decimal point is moved more places than 
are occupied by digits in the digit factor, 
fill in the blank places with zeros. 
To convert 3.14 X 10- 2 , we must 

move the decimal point to the left two 
places. There is only one place in the digit 
factor to the left of the decimal point so 
that we must add a zero to the left of the 
3. This results in .0314. To convert 3.14 
X 102, the decimal point must move two 
places to the right. This time there are 
digits in the digit factor for each place 
moved over and no zeros are added. 3.14 
X 102 is equal to 314. 

As simple as this system is for general 
use, it is even easier to make conversions 
in electronics. Many times it is not even 
necessary to count the number of decimal 
places. The method of giving the values of 
voltage and current, and of components 
has the digits all counted. You seldom see 
1,500,000 ohms written out in full; in-
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stead, it is written 1.5M or 1.5 meg. 
Either way it means 1.5 million. One 
million is equal to 106, so as soon as you 
see the expression megohm, you know 
that the exponential factor is 106. 

There are a number of other common 
methods of indicating size in the name of 
a unit. For instance, 1 kilohertz is 1000 
or 103 Hertz; 1K ohm means 1 kilohm or 
103 ohms. The prefix "kil" or "kilo" 
immediately tells you that the expo-
nential factor is 103. Similarly, 1 milli-
ampere is 1/1000 of an ampere; 1 milli-
henry is 1/1000 of a henry; 1 millivolt is 
1/1000 of a volt, etc. 1/1000 is 1/103 or 
10- 3. The prefix "milli" is just another 
way of writing 10- 3. In the same way, 
"micro" means 1/1,000,000 or 10- 6. 
"Micro-micro" means one millionth of a 
millionth or 10-12. Basic units such as 
volts, amperes, henrys, etc. have an ex-
ponential factor of 10° or 1. 

Multiplication and Division. Expo-
nential numbers are at their best for 
multiplication and division. It is in these 
operations that they save the most work. 
These operations are actually performed 
in two parts. The indicated operation is 
performed on the digit factors and then 
on the exponential factors. As an 
example, suppose a calculation called for 
multiplying .0022 X 670 X 3.14. Con-
verting and grouping digits gives (2.2 X 
6.70 X 3.14) X (10 -3 X 102 X 10°). 
First multiply the digit factors together 
and you get 46.2836. Next, multiply the 
exponential factors by adding the ex-
ponents algebraically; —3 + 2 + O = —1. 
Combining the two factors you get 
46.2836 X 10- . This can be simplified 
by moving the decimal point in the digit 
factor one place to the left giving 
4.62836 X 10' X 10- 1. Now the two 
exponents cancel, leaving 4.62836 as the 
final answer. 

Division is just as easy. For example, 
divide .0572 by .0026. Converting and 
grouping gives 

(5.72+ 2.6)X (10-2 ÷ 10-3) 
5.72 + 2.6 = 2.2 

The division of the exponential factor is 
performed by subtracting the exponent 
of the divisor (-3) from the exponent in 
the dividend (-2). 

—2 — (-3)= —2 + 3= 1 

The complete quotient of this division is 
2.2 X 10' or 22. The same basic pro-
cedures are followed for operations with 
combined multiplications and divisions. 
As an example, take 

(22,000 ÷ 80) X (.032 ÷ 308) X 7 

Fig. 1 shows how this is set up and 
solved. 
Power and Roots. Raising a number to 

a power is a special form of multiplica-
tion; taking a root is a special form of 
division. As in multiplication and di-
vision, we must perform the indicated 

22000 = 2 2 X 10 4 

80 reoxio' 

032 3 2 X 10-2 

308 = 308X 10 2 

7 = 7 X 10 ° 

( 2 2 

\ 8 0 
33 082 10 4 X 7) —r X 

10 

22 X 32 X 7 

80 X 308 

10 -2 
X 

10 
io°) 

x io-2 x  
lo' x 10 2 

49 28 10 2 
X = 2 X10-' 2 

24 64 10" 

Fig. 1. Solving combined multiplication-division 
problems using exponential numbers. 
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operation on the digit factor and treat the 
exponential factor separately. An expo-
nential number is raised to a power by 
multiplying the exponents. You can see 
that this will give the correct answer by 
considering the following: 

lox 1o= 102 
lox io x io = io3 

and therefore 

102 X 102 X 102 = (102)3 

But we know that 

102 X 102 X 102 = 102+2+2 = 106 

(102)3 = 10(2)(3) = 106 

Extracting the root is the reverse of 
raising to a power. A root of an expo-
nential number is taken by dividing the 
exponent by the digit indicating the root, 
2 for square root, 3 for cube root, etc. 

Suppose you want the square root of 
106. Dividing the exponent 6 by 2 gives 
103. We know that 103 X 103 = 106 
which shows that dividing the exponent 
by the root gives the correct result. 

We know from arithmetic that 6 + 2 is 
the same as 6 X V. Thus, N./TO-r imy be 
written as (106)1/2. Fractional exponents 
indicate that roots must be taken. When 
this method of indicating the roots is 
used, square root is handled as the 1/2 

, power, cube root as the 1/3 power, and 
so on. The square root of 106 could be 

• written as 106/ 2 . The square root of 103 
would be written as 103/2 . 

At the beginning of this section, you 
learned that the exponent of 10 in an 
exponential number must be a whole 

number. This can lead to a slight compli-
cation when taking roots. Consider taking 

the square of 8.1 X 103. We would write 
this as Ni 8.1 X 103/ 2 . But our exponen-
tial number system does not allow frac-
tional or decimal exponents. In order to 
extract the square root of 8.1 X 103, we 
must have an exponent divisible by 2. 
We get this by increasing or decreasing 
the exponent and moving the decimal 
point in the digit factor accordingly. 

8.1 X 103 
= 81 X 102 
= .81 X 104 

The square root of 81 X 102 is 9 X 10; 
the square root of.81 X 1 e is .9 X 102. 
Both of these roots convert to 90 in the 
decimal system. 8.1 X 103 converts to 
8100, the square root of which is 90 and 
you can see that we have obtained the 
correct result. To extract the cube root, 
the exponent of 10 must be divisible by 
3; the exponent for a fourth root must be 
divisible by 4, etc. 

Addition and Subtraction. There is 
nothing to be gained by converting deci-
mal numbers into exponential numbers 
for addition and subtraction. However, 
addition and subtraction may occur as 
part of a calculation when exponential 

numbers are used to simplify multiplica-
tion and division. When addition and 
subtraction are indicated, you must re-
member that you can only add and 
subtract exponential numbers having the 
same power of 10. The reason for this is 
simple. For example, 160 + 16 = 176. But 
we can write 160 as 1.6 X 102 and 16 as 
1.6 X 10. If we simply add 1.6 + 1.6, we 
get 3.2 which is not the correct answer 

for 160 + 16 regardless of whether we 
multiply it by 10 or 102. If we first 
change the numbers so that we have the 
same power of 10, then we will get the 
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correct answer. For example, 160 = 16.0 
X 10, and 16 = 1.6 X 10. Then, 

16X 10+ 1.6 X 10=17.6 X 10=176 

As you can see, the use of exponential 
numbers greatly simplifies multiplication 
and division when working with large 
numbers having many zeros adjacent to 
the decimal point and on either side of it. 
Still greater simplification can be ob-
tained when some of the digits in a 
number like 4.62836 can be dropped. 
This is possible when we are working with 
measured values. In most practical work, 
it is seldom necessary to use more than 
four digits in any factor. The rules for 

dropping digits from a number which has 
been obtained by a measurement are the 
next subject that we take up. 

SIGNIFICANT FIGURES 

When you took arithmetic in grade 
school, the teacher probably listed 
numbers like 67,530, 4156, 873, and told 
you to "round them off" to the nearest 
thousand or hundred or ten. You did this 

sort of thing for homework two or three 
nights and that was the end of it. The 
next and last time you did this was on a 
test. Well, that time wasn't wasted; 
studying significant figures is just learning 
when to round off and how much. 

The term "significant" is used here to 
mean: "having a meaning." In working 
with significant figures, you retain only 
those figures which have meaning and 
drop all others by "rounding off." The 
use of significant figures applies only to 
numbers which are connected in some 
way with measurements. 

The figures that you used when 
studying mathematics were considered 

exact. I was 1, and 2 was 2. Each digit 
meant exactly what is said; not almost or 
approximately, or a little more or less. 
This is not true of numbers that are 
obtained by measurement. There is 
always a certain amount of estimating or 
guesswork in taking any measurement. 
The first step in using significant figures is 
to properly record the results of the 
measurement. This means putting down 
meaningful figures in a manner that 
shows how exact the measurement is. 

I 21 3 4 
rtithitiltriiiiiirlir III Liii! 

Fig. 2. Scale for showing use of significant 

figures in recording a measurement. 

Fig. 2 shows a scale with two arrows at 
the bottom edge. The scale is used to 
show the position of pointers represented 
by the arrows. The scale is divided into 
four major units and each of these units is 
subdivided into ten parts. Suppose we 
want to read the position of arrow A. 
Arrow A lies between two and three units 
so the first figure is 2. Since the arrow is 
slightly past the third mark following the 
2, the second figure is .3. Two figures are 
all that can be read directly from the 
scale marks. We estimate the third digit 
by mentally dividing the space between 
the scale marks into ten parts. Then we 
must decide which of these ten parts the 
arrow is nearest. 3 is the third digit for 

arrow A. 
Perhaps you disagree with the reading 

of 2.33. Maybe you think the reading 
should be 2.32 or 2.34. Perhaps it should. 
The last digit is an estimate, not an exact 
figure. Because it is an estimate, different 
observers will record different values for 
this digit. However, if each observer reads 
the scale carefully, the readings should 
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span only three digits; in this case, .02, 
.03, and .04. This is what you are saying 
when you record any measurement. Only 
the right-hand digit is an estimate and the 
error in reading is not more than ±1 in 
the right-hand figure. 

Perhaps you think the arrow is exactly 
one-quarter of the way between 2.3 and 
2.4; in other words, the reading should be 
2.3 -4-. However, a mixed decimal and 
fraction is awkward to use. Since÷= .25, 
why not record the reading as 2.325? 
This, however, gives misleading informa-
tion. To anyone using this figure, it 
means that you could tell the difference 
between 2.324, 2.325, and 2.326. 
Obviously you cannot, so 2.325 should 
not be recorded. You could, however, 
record 2.3 4-. This indicates that you 
could tell the difference between 2.3, 
2.3 1, and 2.3 1. It also says that no 
attempt was made to read the scale any 
closer than one-quarter of the smallest 
division. But instead of using a mixed 
decimal and fraction, it is better to esti-
mate so that you will have only 3 digits. 
The arrow B appears to be exactly on 

the "3" line. If it is recorded as 3, it 
indicates only that the reading is nearer 
to 3 than to 2 or 4. If it is recorded as 
3.0, it means nearer to 3 than to 2.9 or 
3.1. The correct way to record this is as 
3.00. The two zeros to the right of the 
decimal point say that the scale can be 
read to 1/100 of a unit. 3.000 would be 
wrong because you cannot read the scale 
to thousandths. Even when a pointer falls 
directly on a scale mark, you cannot 
assume a more precise reading than at any 
other point on the scale. 

Each of the readings, 2.33 and 3.00, 
has three digits. Therefore, we say that 
they have three significant figures. If we 
had read the scale only to the nearest 
scale mark, the readings would have been 

2.3 and 3.0 with two significant figures 
each. 

Zeros in a decimal number may or may 
not be significant, depending on where 
they are in the number. The decimal 
number .00678 has only three significant 
figures. The two zeros between the deci-
mal point and the 6 are not considered 
significant. 

.0067800 has five significant figures. 
The two zeros between the decimal point 
and the 6 are not significant, but the two 
zeros following the 8 are. If these last two 
digits had not been significant, they 
should not have been written; since they 
were written, you must assume that the 
measurement could be made to five fig-
ures. 
Numbers like 22,000 create a problem. 

The "2's" are significant, but what about 
the zeros? As the number is written you 
cannot tell how many significant figures 
it has. Unless there is some note with the 
data, you must assume only two signifi-
cant figures. However, if this were written 
as an exponential number, there would be 
no uncertainty. 2.2 X 104 has two 
significant figures. 2.20 X 104 has three 
significant figures. This is another advan-
tage of exponential numbers; only signifi-
cant figures appear in the digit factor. 

Rules for Significant Figures. For con-
venience the rules for using significant 
figures will be listed by number. Then, 
examples of the application of the rules 
will be shown. In the examples, the rules 
that apply will be shown by number. 

1. Only one uncertain figure should be 
recorded in giving the numerical value of 
any measured quantity. The uncertainty 
of the last figure will be ±1 unless 
otherwise stated. 

2. When adding and subtracting with 
significant figures, keep only as many 
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decimals as are given in the number 
having the fewest decimals. 

3. When multiplying and dividing, re-
tain enough figures in each factor so that 
no factor has a „greater uncertainty than 
the factor with the least number of 
significant digits. 

4. When dropping nonsignificant digits 
by rounding off, increase the most right-
hand retained figure by 1, if the figure 
to its right is 5 or greater. 

5. Products and quotients should be 
rounded off so that the uncertainty is the 
same as that of the factor with the least 
number of significant figures. 

Now some examples: Add 14.16 + 
.0078 + 1.234. The least number of 
decimal places is 2, so the last two 
numbers must be rounded off to two 
decimal places (Rule 2). .0078 becomes 
.01, and 1.234 becomes 1.23 (Rule 4). 
The sum is 15.40 (not 15.4). Since there 
are two decimal places in the numbers 
added, there must be two decimal places 
in their sum. (Common sense.) 

Multiply 14.16 X .0078 X 1.234. The 
decimal number .0078 has the least num-
ber of significant figures (two), and an 
uncertainty of one part in 78. The other 
two factors must be rounded off. 14.16 
rounded off to three figures becomes 
14.2 (Rule 4) with an uncertainty of one 
part in 142. Rounded off to two figures it 
becomes 14 with an uncertainty of one 
part in 14. This uncertainty is much 
greater than one part in 78, so three 
significant figures must be used (Rule 3). 
1.234 rounds off to 1.23 with an un-
certainty of one part in 123. The product 
of 14.2 X .0078 is .11076; we round this 
off to .111 (Rule 5, Rule 4). .111 X 1.23 
= .13653 which when rounded off be-
comes .137 (Rule 5, Rule 4). 
What effect does this rounding off have 

on the accuracy of the calculation? None. 
If we had not rounded off any of the 
figures, the final product would have 
been .136292832. If we had not rounded 
off .11076, the final answer would have 
been .1362348. Both of these numbers 
round off to .136. Our answer was .137, 
just one unit greater. Since the last digit 
has an uncertainty of ±1, we can say the 
three answers were practically identical. 
By rounding off we have saved a lot of 
needless work without any loss of accu-
racy. 

Multiply 19.7 X 9.81. Both numbers 
have the same number of significant 
figures. However, the larger number can 
be rounded without loss of accuracy. 
19.7 has an uncertainty of one part in 
197 or about .5%. 9.81 has an un-
certainty of one part in 981 or about 
1/10%. Rounding off 9.81 gives 9.8 with 
an uncertainty of one part in 98 or about 
1%. This is much closer to the un-
certainty of 19.7. The product without 
rounding off is 193.257; if 9.81 is 
rounded off to 9.8, the product is 
193.06. Rounded to three figures, the 
answers are the same. It is apparent that 
Rule 4 can be modified at times to say 
that the percentage uncertainty of two 
factors should be nearly the same. It is 
hard to state this as a fixed rule and give 
exact values of how much the un-
certainties can differ, but it does show 
how the use of common sense fits in with 
significant figures. 

It is seldom necessary to use more than 
three significant figures in electronics. 
Except for precision parts, tolerances 
range from ±1% to ±20%; a good service 
meter has an accuracy of ±2% for voltage 
and current and ±5% for resistance. Keep 
the accuracy of your instruments and the 
tolerances of your parts in mind when 
performing calculations. Do not carry a 
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lot of meaningless digits. Three significant 
figures are accurate enough for all but the 
most exacting laboratory work. Two 
significant digits are enough when using 
±20% parts. 

SELF-TEST QUESTIONS 

1. Express the following in exponential 
form: 
(a) 1,100,000 
(b) 7200 
(c) 0.00015 
(d) 0.64 

2. Convert the following exponential 
numbers to standard form: 
(a) 326 X 10-12 
(b) 1.22 X 106 

(c) 7.7 X 10-4 
(d) 9 X 10° 

3. Perform the following division and 
give the answer to three significant 
figures. 

1 
6.28 X 1550 X 103 X 452 X 10-7 

4. Divide: 
.0058 X .000983 by .0000071 

5. Applying the rules for significant 
figures, add the following numbers: 

7.92 
3.0094 
6.101 
0.0076 
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Trigonometry 

Trigonometry is the study of the 

mathematical relationships that exist be-
tween the sides and angles of triangles. 
The word trigonometry itself is derived 
from two Greek words which mean the 
measurement of angles. The origin and 
earliest uses of trigonometry were for 
measuring distances and objects by using 

triangles. Today surveyors and construc-
tion engineers use trigonometry for this 
same purpose. However, the science of 
trigonometry has been developed to such 
a point that it is now commonly used for 
many other purposes. 

As an electronics technician your most 
important use for trigonometry will be in 
the solution of the triangles formed by 
vector diagrams to determine phase rela-
tionships. Before you can actually learn 
to use trigonometry in this way, you 
must first learn some of the basic funda-
mentals and principles of angles, triangles, 
and coordinate systems. 

ANGLES 

When two straight lines meet at a 
point, an angle is formed. Thus, when the 
two lines OX and OY meet at the point 0 
as shown in Fig. 3A, an angle is formed 
between the two lines. Similarly, the two 
lines OA and OB meeting at the point 0 
in Fig. 3B also form an angle. The point 

Fig. 3. Angles are formed when two straight 

lines meet. 

0, where the lines meet, is called the 
vertex of the angle, and the lines them-
selves are known as the sides of the angle. 

The angle in Fig. 3A is called "angle 
XOY" to show that it is the angle formed 
by lines OX and OY. Likewise, the angle 
in Fig. 3B is "angle A0B." 

L AOX or si A Lo 
0  X 

Z BOY or /B Lb 
OZ-b—  y 
A 

Z AOB or 
e o 

0 

Fig. 4. Naming angles. 

To save time and space, the symbol 
"L" is used in mathematics to represent 
the word "angle." Thus, the angles in Fig. 
4A could be designated as L AOX, L 
BOY, and L AOB. In working with a large 
number of angles, it is often awkward to 
describe angles in this way. Instead, we 
insert a letter or a number in the vertex 
of the angles, as shown in Fig. 4B and 
simply call them "L a", "L b", or "L I" 
as shown. Many times special designations 
are used to describe angles. For example, 
we often use the Greek letter theta, 0, in 
electronics to designate the phase angle. 
This would be written L 0, and if we are 
working with several different phase 
angles we would indicate them with 
appropriate subscripts such as L0 2, L 03, 
or perhaps LOa and L Ob 

The size or the magnitude of an angle 
is a measure of the space or distance 
between the sides and is determined by 
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the difference in direction of the sides. 
Notice that it is only the difference in 
direction of the two sides that determines 
the size of an angle. The lengths of the 
sides do not in any way affect the size of 
the angle itself. You can easily see that 
either shortening or lengthening the sides 
of the angles shown in the figures will not 
change the size of the angles. 

In working with the size or measure-
ment of angles, as in measuring anything 
else, some standard unit of measurement 
must be chosen. Although it is easy to see 
that an angle is either smaller or larger or 
nearly the same size as another angle, this 
is not enough definition for the precision 
required in mathematics or electronics. 
Although there are three generally ac-
cepted units of measurements for angles, 
we will be concerned with only two of 
them: the degree (°), and the radian. To 
understand these two units of measure-
ment, let's examine angles more closely, 
especially their relationship to circular 
measure. 
An angle should be thought of as being 

generated by a line that starts at a certain 
initial position and rotates about the 

TERMINAL 
SIDE 

V l‘  
o X Y Y 

Y 

(Dx 

X Y o 

Fig. 5. Generation of angles. 

vertex of the angle until it stops at its 
final position. This is shown in Fig. 5. 
Consider the two straight lines: the short, 
heavy line OX and the lighter, longer line 
OY. 

In Fig. 5A, line OX is drawn on top of 
line OY and no angle is formed. However, 
in Fig. 5B, an angle is formed because the 
line OX is rotated counterclockwise from 
its initial position on line OY. Thus, the 
various angles XOY in Figs. 5B, 5C, and 
5D are formed by the rotation of line OX 
from its initial position. The side of the 
angle that represents the original or initial 
position of the rotating side is known as 
the initial side. The final position of the 
rotating side determines the size of the 
angle and is known as the terminal side. 

If the terminal side of the angle is 
rotated one complete revolution before it 
is stopped, the two lines are back at their 
original position, as shown in Fig. 5E. 
Thus, an angle is said to be formed by a 
line rotating about a point from one 
position to another. The unit of measure 
called the degree is based upon this 
formation by rotation. By definition, 
there are 360° in one complete revolution 
or 1° equals 1/360 of a complete revolu-
tion. 
As we progress with our study of 

angles, triangles, and trigonometry, we 
will find that the degree is often a large 
unit of measurement. For this reason, the 
degree can be divided into smaller units 
called minutes, written ('), and the 
minute can be further divided into units 
called seconds written ("). There are 60 
minutes in one degree, and 60 seconds in 
each minute. Thus, the size of a certain 
angle might be written as 35° 46' 57u to 
tell us that the angle is 46 minutes and 57 
seconds more than 35/360 of a revolution 
of the terminal side. Although these 
minutes and seconds may seem to be 
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ridicuously small units, we will soon see 
that they can be very important. Remem-
ber, there are 360° in one revolution; 60 
minutes in each degree (360 X 60 or 
21,600 minutes in a revolution); and 60 
seconds in each minute (60 X 60 or 3600 
seconds in a degree and 60 X 60 X 360 or 
1,296,000 seconds in a revolution). 

In trigonometry, we often use the 
decimal system instead of minutes and 
seconds. For example, instead of saying 
that an angle is 36° 30', we can write it as 
36.5° because 30 is half of 6e and 1/2 
equals .5. When using decimals, however, 
we must remember that there are 60 parts 
to a degree. For example, 36.25° is 
36-1/4° which is 36 and 1/4 of 60, or 36° 
and 15'. Likewise, in converting 36° 12' 
to decimals, we have 36-12/60° = 36-1/5° 
= 36.2°. It is very easy to make errors in 
converting from decimals to minutes or 
seconds. 

Let's again use Fig. 5 to examine the 
other unit of angular measure: the radian. 
As the line OX rotates about the vertex 
to form the various angles, it must pass 
through every possible position from an 
angle of 0° (or no angle at all, as shown in 
Fig. 5A) to an angle of 360° (or one 
complete revolution, as shown in Fig. 
5E). If we assume that the line OX never 
changes in length as it is rotating through 
this one revolution and place a pencil at 
the point X, we would find that a 
complete circle is drawn, as shown in Fig. 
6. 

Thus, we can say that since there are 
360° in one revolution of side OX there 
are 360° in the circle. Also, since the 
length of OX has no bearing on the 
number of degrees in the revolution or in 
the size of the angles that could be 
formed by any one partial revolution, we 
can say that there are 360° in every 
circle, no matter how small or large it 

Fig. 6. Point X describes a complete circle 

in one complete revolution of terminal side OX. 

may be. Changing the length of OX 
would change the radius of the circle and 
its area, but not the number of degrees in 
it. 

If we were to mark off each degree on 
the circumference of the circle shown in 
Fig. 6, the degree marks would be very 
close together. In fact, they would be so 
close together that it might be difficult to 
show any space between them at all. In 
such a small circle, the difference 
between a degree or two would be insig-
nificant as far as the linear distance 
between the marks is concerned. 

However, suppose that we were con-
sidering a circle as large as the earth. At 
the equator, where it is about 25,000 
miles around the earth, there would be 
nearly 70 miles between the degree marks 
and each degree would be extremely 
important. In fact, even a difference of a 
minute (1/60°) would be nearly 1.2 
miles. Thus, a degree can be a very small 
unit or a very large unit, depending on 
where and how it is used. Consequently, 
the minute and second subdivisions can 
be quite important. 

Although we don't often stop to 
realize it, a straight line is really a 180° 
angle and is therefore the most common 
angle. We can show that there are 180° in 
any straight line by rotating the terminal 
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Fig. 7. Straight line is 1800 angk. 

side OA of any angle such as L AOB in 
Fig. 7 until the line AB is straight. When 
the line AB is a straight line, the L AOB 
equals one half a revolution of the 
rotating side, which is 180°. 

Even though the straight line is the 
most common angle, the right angle is the 
most important. We are already familiar 
with the fact that there are 90° in a right 
angle and that there is a system of angular 
measurement based on right angles. The 
Pythagorean relationships of angles in a 
triangle having a right angle make it easy 
to solve electronics problems using trig-
onometry. 
When two straight lines intersect each 

other so that four right angles are formed, 
the lines are said to be perpendicular to 
each other or mutually perpendicular. In 
Fig. 8, the two lines XiX and Y'Y are 
mutually perpendicular because angles 1, 
2, 3, and 4 are all equal to 90° and are 
right angles. This is, of course, the basis 
of our coordinate systems which are used 
in making graphs, surveying, navigating, 
etc. We will learn more about this a little 
later. 

Fig. 8. Right angles formed when two lines 
are mutually perpendicular. 

Any angle that is less than 90° is called 
an acute angle and any angle larger than 
90° is called an obtuse angle. Two acute 
angles whose sum is equal to a right angle 
or 90° are called complementary angles. 
Either one of such acute angles may be 
called the complement of the other. Two 
angles whose sum is two right angles 
(180° or a straight line) are called 
supplementary angles. 

Angles, of course, may be added, sub-
tracted, multiplied, or divided, using the 
rules of arithmetic or algebra. We even 
have positive and negative angles to con-
sider sometimes. A positive angle is gen-
erated when the terminal side is rotated 
counterclockwise to form the angle. If 
the angle is formed by the terminal side 
rotating clockwise it is called a negative 
angle. 

RADIANS 

The radian is a unit of measure that is 
based upon the length of an "arc" of a 
circle as compared with the radius of the 
circle. An "arc" is simply a part or 
section of the curved line that forms the 
circumference of a circle. An arc can be 
any length, but it must be a section of a 
true circle in order to be called an arc. 
Otherwise it would simply be called a 
curved line, or curve. An arc that is 
exactly equal in length to the radius of 
the circle of which the arc is a part is said 
to be a radian. A more formal way of 
saying it is that a radian is an angle that, 
when placed with its vertex at the center 
of a circle, intercepts an arc equal in 
length to the radius of the circle. Thus, if 
the L XOY in the circle shown in Fig. 9A 
is to be equal to one radian, the length of 
the arc XY measured along the circum-
ference of the circle must be equal to the 
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Fig. 9. Radian measure. 

radius of the circle or the sides OX or OY 
of the angle. 

If we lay out and mark off a circle 
using angles that are each equal to 1 
radian, as shown' in Fig. 9B, we will find 
that there are 6.28 radians in a circle. 
This must hold true for any circle regard-
less of its size since the length of arc 
intercepted by an angle of 1 radian must 
change directly as the radius of the circle 
changes. We are already familiar with the 
Greek letter ir which we use in working 
with the area of circles. We know that it 
is a constant equal to 3.14. Therefore, we 
usually say that there are 2rr radians in 
every circle since 6.28 ÷ 3.14 = 2. 
Many times you will want to change 

from radian measure to degrees, etc. 

TRIANGLE 

PYRAMID 

Therefore, you should know how many 
degrees there are in a radian and how to 
convert from one to the other. Since 
there are 360° in every circle and 2ir 
radians in every circle, 27r radians = 360°. 
From this: 

2n radians = 360° 
n radians = 180° 

1 radian = 180/7r 
= 57.32/57.3° 

or approximately 57.3°. Accordingly, to 
change radians to degrees we would 
multiply the number of radians indicated 
by 57.3. Since 57.3 or 180/n is the 
multiplier when changing radians to 
degrees we would multiply the number .of 
degrees by n/180 or .01745 in order to 
change them to radians. 
Now let's consider triangles. 

TRIANGLES 

A triangle is a three-sided, closed plane 
figure. It is probably quite obvious what 
we mean by a closed, three-sided figure. 
However, if you have not studied geom-
etry you may wonder what we mean by a 

SQUARE 

CUBE 

Fig. 10. (A) Plane figures. (B) Solid figures. 

CIRCLE 

SPHERE 
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"plane" figure. A plane figure is simply a 
figure that has height and width, but no 
depth. Thus, a triangle, a square, a circle, 
or any other figure that is drawn flat on a 
piece of paper is a plane figure. A 
pyramid, a cube, or a sphere are all what 
we call "solid" figures, whether they 
actually exist or whether they are drawn 
with their depth indicated. Thus, the 
figures in Fig. 10A are plane figures and 
those in Fig. 10B are solid figures. The 
study of trigonometry includes both 
plane and solid figures, but in your work 
you will only need to be familiar with 
trigonometry for plane figures unless you 
enter some very specialized field work. 

Fig. 11. A triangle has three angles and three 
sides. 

Since a triangle has three sides, it must 
also contain three angles, as shown in Fig. 
11. A triangle is named for reference 
purposes by naming the three vertexes of 
the three angles in order around the 
triangle. Thus, the triangle in Fig. 11 
would be called triangle ABC. It might 
also be called triangle CBA, triangle BCA, 
triangle CAB, triangle BAC, or triangle 
ACB, depending on which vertex we start 
with and in which direction we go 
around. The mathematical symbol for a 
triangle is "A." Thus, the triangle in Fig. 
11 could be written ,,ABC. 
The sum of the three angles in a 

triangle is always 180°. It can never be 
any more or any less no matter how large 
or small the triangle may be. This is very 
important in your work in trigonometry 

Fig. 12. A right triangle contains one right 
angle. 

since you can always find the value of the 
third angle of any triangle if you know 
the other two. 

If one of the angles of a triangle is a 
right angle, the triangle is called a right 
triangle. Accordingly, since a right tri-
angle always has one 90° angle, the other 
two angles must be acute angles whose 
sum is also 90°. This relationship allows 
us to find one acute angle of a right 
triangle if we know the other acute angle. 
A right triangle is shown in Fig. 12. The 
fact that it is a right triangle is shown by 
drawing a small square at the vertex. The 
side of a right triangle that is opposite the 
right angle has been given the special 
name bypotenuse. When a right triangle is 
in standard position as shown in Fig. 12, 
side a is called the altitude and side b the 
base. 
Two triangles are said to be similar 

when their corresponding angles are 
equal. In other words, similar triangles are 
triangles that are identical in shape, but 
not necessarily in size. Thus, although the 
corresponding angles of similar triangles 
are equal, the sides are not equal. How-
ever, there is a special relationship 
between the sides of similar triangles that 
forms the basis of trigonometry. 

The corresponding sides of similar tri-
angles are always proportional. 

For example, the triangle in Fig. 13A is 
similar to the triangle in Fig. 13B, 
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Fig. 13. Similar triangles have corresponding 
angles equal. 

because L 1 = L a, L 2 = L b, and L 3 = 
L c. If we establish a ratio between any 
two sides of one of the similar triangles, 
we will find that it is equal to the ratio 
established between the corresponding 
sides of the other similar triangle. Thus, 
the ratio of side AC to side CB of AABC 
is: 

AC 5" 
—= — 
CB 6" 

The ratio of the corresponding sides of 
AXYZ would be: 

XZ 10" 5" 
—  = — =— 
ZY 12" 6" 

Accordingly, we can establish a pro-
portion from the two ratios as: 

Also, 

and 

AC = XZ 
—   — 
CB ZY 

AB XY 9" 18" 
= —  since — = 

CB ZY 12" 

AC XZ 5" 10" 
—  = —  since— = — 
AB XY 9" 18" 

Remember that this proportionality 
between corresponding sides always exists 
when two or more triangles are similar. 

Since we know that there are 180° in 
all triangles, we can determine if triangles 
are similar by knowing only two of the 
angles. If two angles of one triangle equal 
two angles of another triangle, the third 
angle must also be equal to each other 
and the triangles will be similar. 

In the case of right triangles, the right 
angle of one is always equal to the right 
angle of another. Consequently, if one of 
the acute angles of one right triangle 
equals an acute angle of another right 
triangle, the two right triangles must be 
similar. 

Suppose we have two similar right 
triangles such as the ones shown in Fig. 
14. In these triangles, angle 1 and angle a 
are both equal to 3e. Any other right 
triangle that has one of its acute angles 
equal to 30° will be similar to these right 
triangles. If we examine the ratios of any 
two sides of these similar right triangles, 
we will discover a very important fact. 

The ratio of the side opposite the 30° 
angle to the hypotenuse of any right 
triangle containing a 30° angle is always 
equal to .5. For example, the ratio of the 
side opposite the 30° angle, BC, to the 

A 

L1.30° 

BC 5" 
AB r ITY 

La .30° 

YZ 10" 
XY 20" 

Fig. 14. Right triangles are similar if one 
acute angle equals the corresponding acute 

angle. 
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hypotenuse, AB, of AABC in Fig. 14 is 
equal to: 

BC 5" 
— = — 
AB 1 Ce 

Likewise, the same ratio exists for the 
corresponding sides of AXYZ because: 

YZ 10" 
.5 

XY 20" 

Since any other right triangle contain-
ing an acute angle of 30° must be similar 
to these, the ratio of the side opposite the 
30° angle to the hypotenuse must always 
be equal to .5 for any right triangle that 
contains a 30° angle. Mathematically, this 
can be written as: 

side opp 30° 
— .5 

hypotenuse 

By applying this equation, we can deter-
mine any one of the factors if one of the 
others is known. 

If we have a right triangle where one 
side equals 12.5 and the hypotenuse 
equals 25, we can tell that the angle 
opposite the 12.5 side must be equal to 
30° whether it is given to us or not. If 
one of the acute angles is 30°, the other 
must be 60° because 3e + 6e + 9e = 
180°. Or, if we know that the hypotenuse 
of a right triangle equals 50 and one of 
the angles equals 60°, we can find the 
value of one of the sides because: 

and 

180° — 90° — 60° = 30° 

side opp 30° 
  — .5 
hypotenuse 

and 

and 

side opp 30° 
  = .5 

50 

side opp 30° = 25 

Now, if we were to construct a right 
triangle containing a 29° angle and com-
pute the same ratio for it, we would find 
that it would equal .4848. Thus, any time 
a ratio of the side opposite the angle to 
the hypotenuse works out to .4848, we 
know that the angle would be 29° be-
cause the ratios of corresponding sides of 
similar triangles are always equal. By 
continuing in this way we could work out 
the ratios for all possible angles that can 
exist in a right triangle and use these 
ratios to compute other unknown facts 
about their triangles. 

This is trigonometry in its most basic 
form. Mathematicians have worked out 
ratios for all the angles it is possible to 
have in a right triangle and listed them in 
tables. These ratios are called the trig-
onometric functions of angles and can be 
used for computing unknown facts about 
similar right triangles. Since the functions 
are computed for all the angles that can 
exist, any right triangle you may work 
with will be similar to one for which the 
functions are listed. 

TRIGONOMETRIC FUNCTIONS 

We have seen that certain ratios can be 
established between two of the sides of a 
right triangle and that these same ratios 
will exist between the corresponding sides 
of any similar right triangle, no matter 
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how large or how small it may be. These 
ratios are called the trigonometric func-
tions of the angles to which they are 
related. If you examine any right triangle 
carefully, you will see that there are six 
of these ratios or "functions" that can be 
established for each of the acute angles of 
the triangle. These six functions have 
been given special names that you must 
learn and thoroughly understand in order 
to make any practical use of trig-
onometry. 

Let's look at the typical right triangle 
shown in Fig. 15 and consider the angle O 
at the lower left. Notice that the three 
sides of this right triangle have been given 
special names. 

ADJACENT SIDE (Ell 

OPPOSITE 
SIDE (e) 

Fig. 15. Right triangle showing names of sides 
with respect to LO. 

The side, BC, opposite the angle O is 
called the opposite side. The side, AC, of 
angle O is called the adjacent side. The 
side, AB, opposite the right angle is called 
the hypotenuse. The hypotenuse and the 
adjacent side form the angle O. Using 
these special names, the six separate 
ratios or functions that can be established 
for the acute angle O are: 

BC opposite side 
1. Or   is the function 
AB hypotenuse 
called the sine of the angle O. 

AC adjacent side 
2. —or  is the function 

AB hypotenuse 
called the cosine of the angle O. 

BC opposite side 
3. or  is the function 

AC adjacent side 

called the tangent of the angle O. 

AC adjacent side 
4. — or is the function 

BC opposite side 
called the cotangent of the angle O. 

AB hypotenuse 
5. Or   is the function 

AC adjacent side 

called the secant of the angle O. 

AB hypotenuse  
6. — or is the function 

BC opposite side 
called the cosecant of the angle O. 

The first three of these functions are 
the most commonly used in electronics. 
If you examine them carefully, you will 
see that the cotangent is simply the 
reciprocal of the tangent, the secant is the 
reciprocal of the cosine, and the cosecant 
is the reciprocal of the sine. Since all the 
sides of the triangle are taken into con-
sideration in the first three functions 
(sine, cosine, and tangent), the reciprocal 
relationships expressed by the cotangent, 
secant, and cosecant do not tell us any-
thing really new. They just express it in a 
different way to provide certain con-
veniences for persons who work exten-

sively with trigonometry. Since you will 
probably not be using trigonometry 
enough to make it worthwhile, you do 
not have to memorize the last three 
functions. However, it is important that 
the first three functions be memorized. 

These trigonometric functions are 
usually abbreviated as follows: 
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opp 
sin O =  

hyp 

adj 
cos O =— 

hyp 

opp 
tan O = 

adj 

hyp 
csc O = 

opp 

hyp 
sec O = 

adj 

adj 
cot 0= 

opp 

In addition to the angle O in the 
triangle shown in Fig. 15, we also have 
another acute angle. This isL A at the top 
of the triangle and it is the "comple-
ment" of the angle O because LO +LA 
must equal 90° in a right triangle. Angle 
A also has six separate ratios or functions 
which can be established between its 
sides. These six functions of angle A are 
stated just the same as those for LO. In 
other words: 

opp 
sin A = — 

hyp 

adj 
cos A = 

hyp 

opp 
tan A = — 

adj, etc. 

However, notice that the side opposite 
angle A is the side that was adjacent to 
angle O. Likewise, the side adjacent to 
angle A is the side that was opposite angle 
O. Thus, although the trigonometric func-
tions of sin, cos, tan, etc., are stated the 

same for either of the acute angles, the 
sides actually referred to in these func-
tions as "opposite" and "adjacent" are 
different. 

For this reason, even though we can 
simply say: 

sin = 
hyp 

adj 
cos —   

hyp 

opp 
tan = 

adj 

opp 

as a general statement of the trigono-
metric functions, we must express the 
specific angle as: 

or 

opp 
sin 0 = 

hyp 

adj 
cos A = — 

hyp 

in order for our expression to have any 
specific meaning for a particular triangle. 
In fact, as you can see from studying the 
sides and angles of Fig. 15 

opp BC 
sin O =—= — 

hyp AB 

but BC is adjacent to angle A, so 

BC adj 

AB hyp 

or the cosine of angle A. Thus, 

BC 
sin 0=—= cos A 

AB 

and sin O equals cos A. 
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The following relationships between 
the functions of one acute angle and its 
complement can be worked out by refer-
ring to Fig. IS. 

Angle 
(0) 

Sides 
Used 

Complement 
(A) 

opp BC adj 
sin() = . = —  = cos A 

hyp AB hyp 

adj AC opp 
cos° = . — = —  = sin A 

hyp AB hyp 

opp _ BC adj 
tan 0 = = = cot A 

adj — AC opp 

adj AC opp 
cot 0 = = —  = = tan A 

opp BC adj 

hyp _ AB hyp 
sec 0 = — —  — = csc A 

adj AC opp 

hyp AB hyp 
csc 0 = . = = sec A 

opp BC adj 

Tables of Functions. We mentioned 
earlier that mathematicians have worked 
out trigonometric functions or ratios of 
the sides of triangles for all possible 
angles and listed them in tables. They are 
called Tables of Functions. Some of them 
are very detailed, such as those used in 
navigation where the functions are listed 
in minutes and seconds for all the angles. 
This is necessary for this type of work 
because, as we have seen, even a few 
minutes can mean several miles when we 
are considering the whole earth. 

However, such detailed tables require a 
thick book which would not be practical 
for most of your work in electronics. 
Usually, accuracy to one degree, or pos-
sibly a few tenths of a degree, will be 
close enough. A typical Table of Func-

tions that is simple and efficient is shown 
in Fig. 16. This table lists the sine, 
tangent, cotangent and cosine for angles 
from 0° through 90° in a convenient 
form. 
The angles from 0° to 45° are listed in 

steps of 1° in the column marked "De-
grees" at the left of the table. In the next 
column, the sine of all the angles from 0° 
to 45° are listed, then the tangent, the 
cotangent, and the cosine of the angles in 
the indicated columns. You should be 
familiar enough with tables of this sort to 
find the indicated functions of the angles 
from 0° through 45° without any trou-
ble. For example, to find any of the 
functions for an angle, say 36°, we read 
down the degree column until we come 
to 36. Then, reading to the right, the sine 
of 36° is .5878, the tangent is .7265, the 
cotangent is 1.3764, and the cosine is 
.8090. 
We know that the sine of an angle is 

equal to the cosine of its complement. 
That is, in Fig. 15, the sine 0 equals: 

BC 
—= cos A 
AB 

Therefore, if the sine of 36° is equal to 
.5878, as shown in the table, this same 
value of .5878 must be equal to the 
cosine of 54° which is the complement of 
36° (36° + 54° = 90°). Likewise, the 
cosine of 36°, which according to the 
table is .8090, must be equal to the sine 
of 54°. Thus, if we know the functions of 
the angles from 0° to 45°, we automati-
cally know the functions of all the angles 
from 0° to 90° if we remember the 
relationships of the functions of comple-
mentary angles. 

Most tables are made so that they can 
be read up as well as down, like the one 
in Fig. 16. Notice that the functions are 

20 



Degrees Sine Tangent Cotangent III 

0 .0000 0000 1 0000 90 
1 .0175 0175 57.290 .9998 89 
2 .0349 .0349 28.636 .9994 88 
3 .0523 .0524 19.081 .9986 87 
4 .0698 .0699 14.301 .9976 86 
5 .0872 .0875 11.430 .9962 85 

6 .1045 1051 9.5144 .9945 84 
7 .1219 1228 8.1443 .9925 83 
A .1392 1405 7.1154 .9903 82 
' I .1564 1584 6.3138 .9877 81 
10 .1736 .1763 5.6713 .9848 80 
11 .1908 1944 5.1446 .9816 79 
12 .2079 .2126 4.7046 .9781 78 
13 .2250 .2309 4.3315 .9744 77 
14 .2419 .2493 4.0108 .9703 76 
15 .2588 .2679 3.7321 .9659 75 
16 .2756 .2867 3.4974 .9613 74 

17 .2924 .3057 3.2709 .9563 73 
18 .3090 .3249 3.0777 .9511 72 

19 .3256 .3443 2.9042 .9455 71 

20 .3420 .3640 2.7475 .9397 70 

21 .3584 .3839 2.6051 .9336 69 

22 3746 4040 2.4751 .9272 68 

23 .3907 .4245 2.3559 .9205 67 

24 .4067 .4452 2.2460 .9135 66 

25 .4226 .4663 2.1445 .9063 65 

26 .4384 .4877 2.0503 .8988 64 

27 .4540 .5095 1.9626 .8910 63 

28 .4695 .5317 1.8807 .8829 62 

29 .4848 .5543 1.8040 .8746 61 

30 .5000 .5774 1.7321 .8660 60 

31 .5150 .6009 1.6643 .8572 59 
32 .5299 .6249 1.6003 .8480 58 
33 .5446 .6494 1.5399 .8387 57 
34 .5592 .6745 1.4826 .8290 56 

35 .5736 .7002 1.4281 .8192 55 

36 .5878 .7265 1.3764 .8090 54 
37 .6018 .7536 1.3270 .7986 53 

38 .6157 .7831 1.2799 .7880 52 
39 .6293 .8098 1.2349 .7771 51 

40 .6428 .8391 1.1918 .7660 50 

41 .6561 .8693 1.1504 .7547 49 

42 .6691 .9004 1.1106 .7431 48 

43 .6820 .9325 1.0724 .7314 47 

44 .6947 .9657 1.0355 .7193 46 

45 .7071 1 0000 1.0000 7071 45 

Cosine Cotangent I , urgent ,„,,, Degrees 

Fig. 16. Table of functions. 
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listed again at the bottom of the table, 
but in the reverse order. In addition, at 
the extreme right we have another head-
ing marked "Degrees." This we read from 
the bottom, 45°, to the top, 90°, in 
conjunction with the function headings at 
the bottom. Thus, to find the cosine of 
63°, we read up the right-hand degree 
column to 63, then across to the extreme 
left to the column which is marked 
"cosine" at the bottom. This shows us 
that cosine 63° is .4540; cotangent 63° is 
.5095; tangent 63° is 1.9626; and sine 
63° is .8910. 

Thus, sine 63° is .8910 which is the 
cosine of its complement 27°. By study-
ing the table, you will notice some 
important relationships between the var-
ious functions. The sine of 0° is .0000, 
but the cosine is 1.0000, while the sine of 
90° is 1.0000 and the cosine is .0000. 
Thus, the sines of angles start from 0° 
and .0000 and work up to a maximum of 
1.0000 at 90°. The cosine works out 
exactly the opposite; it has a value of 1 at 
0° and decreases until it is .0000 at 90°. 
The value of the sine or the cosine of an 
angle can never be more than I. The 
tangent also starts at e and .0000, but 
the tangent functions have no upper 
limit. At 89° it is 57.290, but as you can 
see, it is increasing in value rapidly as it 
approaches this upper limit. From 89° it 
increases to some infinite (unmeasurable) 
value at 90°. 

Interpolation. Although accuracy to 
one degree is usually satisfactory, you 
may want to be accurate to a fraction of 
a degree. You can get this additional 
accuracy from the Table of Functions 
even though it shows only whole degree 
steps. We do this by a process known as 
interpolation. Suppose we want to find 
the sine of an angle of 36.5°. Since it is 
between 3e and 37°, we know that its 

sine must be more than the sine of 36° 
and less than the sine of 37°. Therefore, 
we look up the sine of both 36° and 37° 

and proceed as follows: 
First, we subtract to find the differ-

ence between the values of the sines of 
the two angles. Thus: 

sine 37° = .6018 
- sine 36° = .5878  

difference .0140 

The angle that we are trying to find the 
sine for is 36.5°, which is an increase of 
.5° over 3e. Therefore the sine of 36.5° 
must be the sine of 36° plus .5 of the 
difference between 36° and 37°. 

.5 X .0140 = .00700 

Then, .5878 (sine 36°) plus .007 equals 
.5948, which is the sine of 36.5°. 
To make sure that we understand this, 

let's try another example. What is the sine 
of 28° 15'? First, 

sine 29° = .4848 
- sine 28° = .4695  

difference .0153 

Now, 28° 15' is 15/60 or .25 more than 
sine 28°. Therefore: 

and 
.25 X .0153 = .003825 

.4695 + .003825 = .473325 

which is the sine of 28° 15'. To inter-
polate sine functions, find the difference 
between the functions of the next smaller 
and the next larger angle. Then, multiply 
this difference by the amount of increase 
and add the product to the function of 
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the smaller angle. The same procedure is 
used to interpolate tangent functions. 

Interpolation of cosine and cotangent 
functions starts the same: Find the differ-
ence between the next smaller and next 
larger functions and multiply this differ-
ence by the amount of increase. Now, 
since the values of cosine and cotangent 
become smaller as the angle becomes 
larger, you must subtract the product 
from the value of the function of the 
smaller angle. 
You have learned to find the value of a 

function of an angle by interpolation 
when it lies between two angles. A similar 
process is used to find an angle when the 
value of a function does not appear in the 
table. 

For example, suppose we want to find 
the angle 0 whose tangent is .5978. The 
Table of Functions does not show a 
tangent for .5978. But the tangent of 31° 
is .6009 and the tangent of 30° is .5774. 
Therefore, the angle 0 lies somewhere 
between 30° and 31° since its tangent lies 
between the tangents of 30° and 31°. 

First find the difference of the tangent 
values: 

tan 31° = .6009 
— tan 30° = .5774  

difference = .0235 

Therefore, an increase of 1° between 30° 
and 31° makes an increase of .0235 in 
tangent value. 

Next, subtract the tangent of the 
smaller angle (30°) from the tangent of 
angle O: 

tan 0 =.5978 
— tan 30° = .5774  

difference = .0204 

The tangent shows an increase of .0204 
from the tangent of 30°, therefore the 
angle which lies between 30° and 31° is 
determined by the fraction: 

.0204 

.0235 

or .868 when expressed as a decimal. The 
angle 0 whose tangent is .5978 must be 
30.868°. Working to the nearest one 
tenth of a degree will usually be accurate 
enough. Therefore angle O is equal to 
30.9°. 

Interpolation applies to all functions 
and all angles not shown in a table of 
functions. 

SELF-TEST QUESTIONS 

6. Define trigonometry. 
7. How many minutes are there in 13 

degrees? How many seconds? 
8. How many radians are there in 360°? 
9. What is the difference between an 

acute angle and an obtuse angle? 
10. One acute angle of a right triangle is 

3e, what is the other acute angle? 
11. List and define the six trigonometric 

functions. 
12. Using the table in Fig. 16, fmd the 

following: 

(a) sin 13° 
(b) cos 46° 
(c) tan 19° 
(d) sin 57° 

13. Find the following: 

(a) sin 3.2° 
(b) tan 51.6° 
(c) cos 19.5° 
(d) sin 16.8° 
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14. Find the angle: 15. Find the angle: 

(a) whose sin is .3584 
(b) whose tan is 1.9626 
(c) whose sin is .7771 
(d) whose cos is .5592 

(a) whose sin is .8141 
(b) whose tan is .6081 
(c) whose sin is .1581 
(d) whose cos is .6665 

Coordinate Systems 
We have become use to expressing a 

vector as a binominal term by using the j 
operator. Now that we have learned a 
little about trigonometry, we can also 
express a vector as a numerical value and 
an angle. For example, suppose we have 
the simple circuit shown in Fig. 17. The 
coil has an inductive reactance of 15 
ohms and is in series with a 15-ohm 
resistance. Neglecting the resistance of 
the coil itself, what is the impedance and 
the phase angle of the circuit? 
We already know two ways to solve 

such a problem. The first method is to 
construct a very accurate vector diagram 
using the resistive and reactive compo-
nents and then measure the resultant 
impedance vector and the phase angle. 
Although this can be done for simple 
circuits, the drawings can become 
complex and difficult to work with if the 
circuits are the least bit complicated. 
However, the greatest disadvantage in this 
method is that the accuracy depends on 

R•15 A 

FIND 9, Z, 

XL 15 

Fig. 17. Simple ac circuits. 

drawing neatly and precisely. Since most 
of us are not draftsmen or artists, it may 
be difficult to make a completely accu-
rate drawing to scale and this gives a large 
margin for error when using this method. 

The other method is to use the j 
operator and express the vector mathe-
matically using a binomial number. This 
eliminates the need for many of the 
accurate diagrams because we can work 
with vectors mathematically to combine 
them into a final binomial representation 
of the resultant. Then, by using the 
Pythagorean Theorem, we can find the 
numerical value of the binomial repre-
sentation which gives the length of the 
final vector. However, we still must con-
struct a diagram and actually measure the 
angle of lead or lag to find the phase 
angle. 

Using trigonometry to solve vector 
diagrams will eliminate the need for any 
construction or measurement in finding 
the phase angle as well as the impedance. 
It is also easier than finding the square 
roots of numbers as we do when using the 
Pythagorean Theorem. Now, let's use 
trigonometry to solve the circuit shown 
in Fig. 17. 

The best way to begin is to lay out a 
simple sketch of the vectors involved. 
Since we are not going to make any 
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FIND 0, Z 

2p_p x 15 TAN = —  = I 0000 
Adj R 15 

= 45° 

XL 
SIN 8 Opp —  = — 

HYP Z 

XL 15 
Z. 

SIN 45° 7071 
-21 2 

Fig. 18. Trigonometric solution to circuit in 
Fig. 17. 

measurements, this can be a rough dia-
gram as shown in Fig. 18. Here the 
resistance component becomes a vector 
that forms the base of a triangle. The 
reactance component becomes a vector 
that represents the altitude of a triangle. 
Since the phase angle between a pure 
resistance and a pure inductance is ex-
actly 90°, these two vectors form a 90° 
angle. Therefore, the resultant impedance 
vector which we draw from the tail of the 
resistance vector to the head of the 
reactance vector becomes the hypotenuse 
of a right triangle. We want to know the 
value of the length of this impedance 
vector and the size of the phase angle O 
that is formed by it. 

Looking at this triangle in terms of 
what we know about it as compared to 
what we want to know, we see that we 
know the value of the side opposite the 
angle O and the value of the side adjacent 
to the angle O. Now, we consider the 
trigonometric functions that we have just 
learned to see which one of them fits the 
unknown angle O in terms of the known 
values. If we go down the list of func-

tions, the first one we come to that uses 
the opposite and adjacent sides is the 
tangent. This states that 

tan O - oPP 
adj 

If we use this function as an equation, 
and substitute the known values, we 
have: 

opp XL 15 
tan O = —  = —  = — = 1.0000 

adj R 15 

This tells us that the tangent of the angle 
O is equal to 1.0000 when the opposite 
side and the adjacent side are both equal 
to 15. 
Now, we turn to the Table of Func-

tions in Fig. 16 and look down the 
column headed "Tangent" until we come 
to 1.0000. Then, looking to the left, we 
find that this number is the tangent of an 
angle of 45°. Thus, the phase angle O in 
our diagram must equal 45°, because our 
equation states that tan O = 1.0000 and 
our Table of Functions shows us that 
only 45° has a tangent equal to 1.0000. 
Now that we have found our phase 

angle, we will want to find the value of 
our impedance vector. We can do this 
quite easily now that we know the value 
of O because: 

oPP XL 
sin 0 = =— 

hyp Z 

Stated in terms of Z, this becomes: 

XL 15 
Z = —  = 

sin O sin 45° 

Then, from the Table of Functions, 

15 
sin 45° = .7071 and Z - —  

.7071 
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Performing the mathematics: 

Z= 15 ÷ .7071 = 21.2 

Thus, using two steps of simple algebra 
and arithmetic and the Table of Func-
tions, we can find both the phase angle 
(45°) and the impedance (21.2n) for the 
circuit shown in Fig. 17. By using the 
trigonometric functions of angles in this 
way, we can find the value of either of 
the acute angles of a right triangle if two 
of the sides are known, or the value of 
the two unknown sides if one of the sides 
and an acute angle are known. 

Thus, we can say that the impedance is 
21.2 /+45°12. As you recall from an 
earlier lesson, the impedance can also be 
expressed as a binomial: (15 + j15). 
That is, the impedance can be expressed 
as a number and an angle or as a 
binomial. Either expression gives us a 
number picture of the vector and allows 
us to construct an accurate diagram of 
both the resultant vector and its compo-
nents. They also allow us to compute 
with the vectors mathematically. 

These two methods of noting vectors 
mathematically are given special names. 
The first, using a binomial such as 15 + 
j15 ohms is termed a rectangular or 
Cartesian coordinate. The second, using a 
number and an angle such as 21.2 /+.45°  
ohms is called a polar coordinate. Notice 
that in the polar form we give the angle a 
positive value to show that we are mea-
suring it in a counterclockwise direction 
from the reference to vector Z. 
We give the angle a negative sign when 

measuring clockwise from the reference 
to the vector Z. The angle is usually given 
the same sign as the corresponding j term 
when we use rectangular coordinates. 
Thus vector Z = 20 + j20 ohms would be 
written in polar form as Z = 28.3 /+45° 
ohms. 

Both of these methods of describing a 
vector or locating a point are commonly 
used. Measurements and computations 
are made either way, depending on the 
information desired. Often, when me-
chanical or electronic computers are used, 
conversions from rectangular coordinates 
to polar coordinates and back again are 
made constantly, depending on the 
nature of the information supplied, the 
type of information needed, and the 
equipment in the computer. Although we 
have actually learned nearly everything 
about these two systems of describing a 
vector, our work in electronics is such 
that we have used them constantly with-
out knowing some of the basic concepts 
of these systems of coordinates. Now is a 
good time to catch up on some of these 
basic considerations. 

RECTANGULAR COORDINATES 

A coordinate system is simply a stan-
dard frame of reference for describing 
some particular value, condition, or place. 
Unless we have these standard references, 
even everyday occurrences would be diffi-
cult to explain or describe. For example, 
the common directions of north, south, 
east and west have no meaning unless we 
know what they are north, south, east or 
west from. Describing the voltage-current 
relationship of a circuit as 120 volts 
lagging a current of 1 ampere by 30° has 
no meaning unless we are familiar with a 
standard condition to compare it with. 
For this reason, standard reference frames 
have been established for universal use so 
that everyone will have the same means 
for describing a situation so that everyone 
else can understand it. 

Originally, the rectangular coordinate 
system was devised for giving directions 
in a standard manner. Since this system is 
so simple and so widely understood, it 
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Fig. 19. Coordinate reference frame. 

has been adopted for locating values and 
describing conditions throughout the 
fields of science and mathematics. 
To begin with, let's call a rectangular 

coordinate system a device for associating 
points with pairs of numbers. The stan-
dard reference for this system consists of 
two mutually perpendicular lines, as 
shown in Fig. 19. One line is always 
horizontal and is labeled X'X as shown. 
Therefore, the other line labeled Y'Y is 
always vertical as shown, and the lines 
intersect at the point O. We have used this 
device constantly in our work with 
vectors and it is nothing new except that 
we have never used these particular letters 
for the axes. 
Now the two lines are called the 

coordinate axes and are said to be made 
up of the X axis (line X'X) and the Y axis 
(line Y'Y). The point 0 is called the 
origin. We can lay off scales along these 

• axes to suit our particular purpose, but 
the scale from the origin, 0, to the right 
along the X axis is always positive, while 
the scale is always negative from the 
origin, 0, to the left along the X axis. 
Likewise, the scale from the origin, 0, up 
toward Y is always positive and the scale 
down from the origin, 0, to Y' is always 
negative. 

This reference frame consisting of the 

two coordinate axes serves as a means of 
locating any point in the plane of the 
axes by referring to two numbers. The 
two numbers completely express the po-
sition or distance of the point from the 
origin of the coordinate axes. For ex-
ample, consider the point P in Fig. 19. 
We can completely describe its position 

so that anyone familiar with this system 
can immediately locate it by saying it lies 
+5 from the X axis and +7 from the Y 
axis. The distance of the point from the 
Y axis, measured along the X axis is 
called the abscissa of the point. The 
distance of the point from the X axis 
measured by the scale op the Y axis is 
called the ordinate of the point. These 
two numbers, each with their proper 
algebraic sign, are called the coordinates 
of the point. In writing the coordinates of 
a point, the abscissa is written first and 
the ordinate second. Thus, we would 
write the coordinates of the point P in 
Fig. 19 as "the coordinates of P are (7, 

The coordinate axes divide the area 
into four sections or quadrants as they 
are called. These quadrants are numbered 
in Fig. 19 by the Roman numerals I, II, 
III, IV. Notice that a point must have two 
positive coordinates to lie in the first 
quadrant and two negative coordinates to 
lie in the third quadrant. A point in the 
second quadrant must have a negative 
abscissa and a positive ordinate, while a 
point in the fourth quadrant has a posi-
tive abscissa and a negative ordinate. 

This system of referring to a point by 
its coordinate is sometimes called the 
"Cartesian" coordinate system in honor 
of the French mathematician Descartes. 
It is also called the rectangular coordinate 
system because a rectangular figure is 
drawn when the points are completely 
located. 
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In electronics work, we use this stan-
dard coordinate reference frame con-
stantly, but we usually use some other 
method of labeling the coordinate axes. 
However, regardless of the symbols we 
may use, the quadrant designations 
always remain the same, the signs of the 
scales are always the same, and we always 
consider the positive section of the X axis 
as the starting point or reference line. 
When the frame is assigned a degree 
system of reference, 0° is always at X, 
90° at Y, 180° at X', and 270° at Y'. 
Although most of our work will lie in the 
first and fourth quadrants, which is all we 
need to represent vectors consisting of 
coordinates using positive resistance, +jX 
and —jX, we will have some occasion to 
get into the second and third quadrants 
when we consider polyphase systems and 
"negative" resistances later in the course. 

POLAR COORDINATES 

As we have seen in studying ac circuits 
and trigonometry, degrees can be used to 
designate the points in the standard co-
ordinate reference frame as shown in Fig. 
20. Thus, we can locate a point P 
accurately and clearly by saying it is 10 
units from the "0" of the graph and a line 
connecting the point "P" with "0" forms 
an angle of 45° with the positive X axis, 
as shown in Fig. 20. This would be 
written 10/+45° to show the length of a 
line from the origin, 0, to the point as 10 
units; and the displacement of the line 
from 0° (measured counterclockwise) as 
/+45°. Thus, saying point P is 10/+45°  
would describe the location of the point 
in terms of polar coordinates. We call this 
the polar coordinate system because of its 
use in reference to the poles of the earth 
for navigation and surveying. Remember, 
a negative sign is used for angles gen-

90° 80= 
70° 
/ 600 

/ 50° 90° 
40* 

9 30° •7 
7 

6 --20° 

-2 
-3 
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-5 
-6 

ItI -7 
-6 
-9 
-to 
270° 

POINT P=10 (+45° ( POLAR) 

POINT P +7, =7 (RECTANGULAR) 

Fig. 20. Reference frame for polar coordinates. 

erated or measured from 0° in a clock-
wise direction. 

CONVERTING POLAR AND 
RECTANGULAR COORDINATES 

Point P in Fig. 20 can be completely 
described or located by using either polar 
coordinates or rectangular coordinates. 
Therefore, we may want to convert polar 
coordinates to rectangular coordinates 
and vice versa. This can easily be done by 
using the fundamentals of trigonometry. 

For example, suppose we wish to refer 
to the point P in Fig. 21 in rectangular 

180°  

90° 

270° 

Fig. 21. Converting polar coordinates to rec-
tangular coordinates. 
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coordinates so that it can be combined From our table: 
with other points that are also expressed 
as rectangular coordinates. When point P Z = 20 (.5 + j.866) 
is expressed in polar form as an im-
pedance vector and a phase angle it is and: 
written as Z = 201+60°. To convert this 
impedance vector to its rectangular co- Z= 10+j17.32 
ordinates, we would express it as a 
resistance ± reactance. would express 
The resistance component is always the 

adjacent side of L 0 and the reactive Z = 20/+60° 
component is always the opposite side of 
L 0, representing the ±j term. Accord- in rectangular coordinates. 
ingly: For example, to convert the rectangu-

adj lar coordinates of an impedance, Z = 250 
cos O = — — j100 ohms to polar coordinates we 

hyp have in three steps: 
or 

adj = hyp X cos O 
Substituting: 

Likewise: 
R=Z cos 0 

opp 
sin O = — 

hyp 

opp 
tan O = — 

adj 

Substituting: 

—jX 
or tan 0 = 

opp = hyp X sin 0 
Substituting: 

X = Z sin 0 —100 
Then, since — 250 

Z=R±jX 
we can substitute: 

Z = Z cos 0 ± j(Z sin 0) 
or 

Z =Z (cos 0 ±j sin 0) 

By applying this equation, we can convert 
polar coordinates to rectangular co-
ordinates. 

In Fig. 21, we would have: 

Z = Z (cos O ± j sin 0) 

Substituting: 

Z = 20 (cos 60 + j sin 60) 

and from our tables: 

O = —21.8° 

(0 is negative because jX is negative.) 

Then: 

or: 

opp 
sin O =  

hyp 

opp 
hyp =   

sin 0 
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Substituting: 

-jX 100  
Z = 

sin e sin 21.8° 

100 
= — = 26912 
.3714 

Accordingly, in polar coordinates: 

Z = 269 -21.8%2 

Notice that once we found 0, and since 
all the necessary values are available, we 
could have used: 

instead of: 

adj 
cos O - 

hyp 

p op 
sin O = 

hyp 

However, our answer would still have 
worked out to the same value of 
269/-21.8°S.Z. 

MULTIPLICATION AND DIVISION 
USING POLAR COORDINATES 

You will recall from your study of 
operator j that complex quantitites can 
be multiplied and divided to form other 
complex quantities. For example, if both 
the current and impedance were known 
in an ac circuit, we can find the voltage 
by multiplying the current by the imped-
ance: 

E=IXZ 

To do this, we would use the following 

procedure (keeping in mind significant 
figures). Assume: 

I = 1.72 +j.38 amperes 
Z = 246 -j12 ohms 
E=IXZ 

(1.72 + j.38) 
X (24.6 - j 12)  

42.3 +j9.35 
-j20.6 + 4.56 

42.3 -j11.3 + 4.56 

= 46.9 - j11.3 

E = 46.9 - j11.3 volts 

We can perform the same calculations 
using the polar form for the current and 
impedance. To do this we first convert 
the current and impedance expressions to 
polar form: 

I = 1.72 + j.38 = 1.76/+12.5  
Z = 24.6 -j12 = 27.4/-26°  

The rules for multiplication in polar 
form are: 

1. Multiply the magnitudes. 
2. Add the angles. 

Using the figures for I and Z already 
determined, we obtain: 

E = 1.76 X 27.4/(+12.5) + (-26) 
E = 483/-13.5° 

To check our calculation, we can convert 
48.3/-13.5° to get rectangular form and 
we get E = 46.9 - j11.3 volts. 
We can also divide using the polar form 

for complex numbers. You will recall that 
to divide complex numbers in rectangular 
form we multiply numerator and denomi-
nator by the conjugate of the denomi-

4 
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nator to remove the j term from the 
denominator. This is a long and compli-
cated operation which can be simplified 
by using the polar form. The rules for 
division are: 

1. Divide the magnitude of the numera-
tor by the magnitude of the denomi-
nator. 

2. Subtract the angle of the denominator 
from the angle of the numerator. 

As an example, suppose we have E = 
123/20° and I = 1.4/-46°. To find the 
impedance we divide E by I: 

E 123/20°  
Z = ï = 1.4/-46  = 87.9/(20°) — (-46°)  

Z = 87.9/66° ohms 

As an exercise, convert E and I to 
rectangular form and perform the calcu-
lation using conjugates. Then see if your 
result is equal to 35.8 + j80.3 ohms. 

PHASORS AND SINE WAVES 

In the lessons on alternating currents, 
you learned that an alternating current is 
sinusoidal in nature. In other words, the 
various values of current and voltage 
generated by an alternating current 
source describe what is called a sine wave 
which repeats itself periodically. How-
ever, we have not yet discussed what a 
sine wave is nor why ac current values 
produce it. 

Additionally, in your first introduction 
to vectors, we mentioned that the vectors 
used in ac circuit calculations were not 
considered vectors by electronic engi-
neers. In a most accurate technical sense, 
they are pbasors. This is because vectors 
usually express force as magnitude and 

direction, while phasors represent sine 
wave values with respect to time or phase. 

Since many of you learned to work 
with vectors in high school or college 
physics, and since vectors and phasors are 
treated the same in circuit computations, 
we will continue to call them vectors. 

However, many modern engineering 
texts refer to electrical vectors as phasors 
and we should know why they are 
phasors. This is a good time to examine 
both the sine wave and electrical vectors 
in greater detail. 

Angles Greater Than 90°. In studying 
trigonometry, we have considered the 
functions of angles only up to 90°. We 
can, however, have angles of any magni-
tude, depending on where the terminal 
side of an angle stops and on how many 
complete revolutions it makes in gen-
erating the angles. In our study of sine 
waves, we will need to coniider the 
functions of all possible angles up to 
360°. 
To begin with, let's consider the sine of 

the acute angle O shown in Fig. 22A. 
Since LO is equal to 30°, the sine of O is 
equal to the ratio of the length of the 
opposite side over the hypotenuse which 
always works out to .5. 
Now let's consider the angle O shown 

in Fig. 22B. Angle O is equal to 150° 
which is larger than 90° and so cannot be 
one of the angles in a right triangle. We 
know that the trigonometric functions 
are based on the sides and angles of right 
triangles. Yet, L O = Ise is considered to 
have a sine function, even though it 
cannot be part of a right triangle. In fact, 
the sine of 150° is .5, just the same as the 
sine of 30°. 
To see how this is determined, we must 

consider what is known as the "associated 
acute angle" of the angle O. First of all, 
an angle is said to be in standard position 
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Fig. 22. Sines of angles greater than 900. 

when its initial side coincides with the 
positive side of the X axis of the standard 
coordinate reference frame, regardless of 
where its terminal side may be. Thus, the 
L O = Ise in Fig. 22B is in the standard 
position. Now, the associated acute angle 
of any angle O larger than 90° is the acute 
angle which the terminal side of the angle 
makes with the X axis when the angle 0 is 
in the standard position. Since L O (Fig. 
22B) is by definition in standard position, 
L A is its associated acute angle. L A is 
the supplement of L 0, and therefore L A 
= 180° — L 0(150°) or 30°. 

In Fig. 22C we have another angle 0 
which is equal to 210°. Its associated 
acute angle is L A because, by definition, 
the associated acute angle is the acute 
angle formed between the terminal side 
and the X axis. Since O equals 210°, and 
since the L OX is equal to 180°, the 

L A in Fig. 22C must be equal to 210° — 
180° or L A = 30° again. 

In Fig. 22D, we show still another 
angle O. This time LO = 330° and its 
associated acute angle, L A, must equal 
360° — 330° or 3e once again. 

Remember, the associated acute angle 
always lies between the terminal side of 
L O and the X axis as shown in Fig. 22. 
Notice that from this definition, LO in 
Fig. 22A is really its own associated acute 
angle. 

There is a trigonometric statement that 
says: 

The function of any angle greater than 
90° is equal to plus or minus the function 
of its associated acute angle. 

This simply means that a 150° angle has 
the same sine as its associated acute angle, 
which is L A. Since L A is 30°, the sine of 
the 150° angle is the same as the sine of 
the 30° angle. Likewise, the sine of 210° 
is equal to the sine of 30° except that it is 
negative, and the sine of 330° is also 
equal to the sine of 30° except that it is 
negative. 

To determine the sine of any angle 
greater than 90°, find the value of the 
function of its associated acute angle. 
Then affix a plus or minus sign, de-
pending on the quadrant in which the 
terminal side of the angle lies. 

As you have probably guessed, all the 
other functions can also exist for any 
angle greater than 9e. The rule for the 
sine function applies to the other func-
tions as well. 

In Fig. 23A, the cosine of LO = 252° is 
equal to minus the cosine of 72° or 
—.3090 because 72° is the associated 
acute angle of 252° and the terminal side 
lies in the third quadrant. Likewise, the 
tangent of L O = 305° is equal to minus 

ti 
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Fig. 23. All functions exist for all angles. 

A 252°-180°=72° 

COS 8: - COS 72°.- 3090 

L. A 360°- 305°.55° 

TAW:). -TAN 550-1 4281 

the tangent of 55° or —1.4281, as shown 
in Fig. 23B. 
Now let's consider the sign of the 

functions in the different quadrants. 

SIGNS OF FUNCTIONS 
IN QUADRANTS 

In the first quadrant, all six functions 
are positive. In the second quadrant, the 
sine and cosecant are positive, all other 
functions are negative. In the third quad-
rant the tangent and its reciprocal (the 
cotangent) are positive and the other 
functions are negative. In the fourth 
quadrant, the cosine and secant are posi-

Y 

X' 

Y' 

tive and the other four functions are 
negative. 
To see why the functions have these 

signs, look at Fig. 24. First consider that 
the X—X' axis and the Y—Y' axis divide 
the figure into four quadrants. A line 
drawn from the Y—Y' axis along or 
parallel to the X axis is considered posi-
tive if it is drawn to the right, and 
negative if it is drawn to the left. Simi-
larly, a line drawn from the X—X' axis 
along or parallel to the Y axis is positive 
if it is drawn upward and negative if it is 
drawn below the X—X' axis. 
Now look at angle O in Fig. 24A. Side a 

is positive because it is drawn above the 
X—X' axis, and side b is also positive 
because it is drawn to the right of the 
Y—Y' axis. The hypotenuse of the tri-
angle is always considered positive and 
therefore the functions are as follows: 

+a 
sin 0 =— 

+c 

+b 
cos O =  

+ 

+a 
tan O = — 

+b 

Y, 

Fig. 24. Determining the signs of the functions 
in the four quadrants. 
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+b 
cot 0 = — 

+a 

+c 
sec 0 =— 

+b 

+c 
csc 0 = 

+a 

In each case we have a plus term divided 
by another plus term, so the result in 
each case is positive. 
Now look at Fig. 24B and consider the 

second quadrant. Again we are interested 
in angle O. The functions are equal to the 

functions of the associated acute angle 
which we have labeled 4) (Greek capital 
letter Phi). The hypotenuse c is always 
positive. Side a which is parallel to the Y 
axis and drawn above the X—X' axis is 
positive. Side b which is parallel to the X 
axis is drawn to the left of the Y—Y' axis 
and is therefore negative. So now the 
functions are as follows: 

+a 
sin 0 = sin 4) = — 

+c 

—b 
cos 0 = —cos 4> = — 

+C 

+a 
tan 0 = —tan 4) = — 

—b 

—b 
cot 0 = —cot 4) = — 

+a 

sec 0 = —sec 4) = 
—b 

+c —a 
csc 0 = csc 4) —  sin 0 = —sin 4) = — 

+a +c 

+c 

From this you can see that the sin and csc 
will be positive because you have a plus 
term divided by another plus term and 
the other four functions will be negative 
because in each of these expressions there 
is one plus term and one negative term. 

Now look at 0 in the third quadrant 
shown in Fig. 24C. The hypotenuse c is 
positive, but now both a and b are 
negative. Therefore: 

—a 
sin 0 = —sin (I) = — 

+c 

—b 
COS 0 = —cos 10 = — 

+c 

—a 
tan 0 = tan 4) = — 

—b 

—b 
cot 0 = cot 4) = — 

—a 

+c 
sec 0 = —sec 4) = — 

—b 

+c 
csc 0 = —csc 4, = 

—a 

In the case of the tan and cot functions 
you have a minus term divided by a 

minus term which gives you a plus result 
so the tangent and cotangent are positive 
in the third quadrant and all other terms 
are negative. 

Now look at 0 in the fourth quadrant 
as shown in Fig. 24D. Again c is positive. 
Side b will also be positive, but side a is 
negative. Therefore: 
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+b 
cos 0 = cos cle — 

tan O = —tan 43 = 

+ c 

—a 

+b 

+b 
cot O = —cot (I) = — 

—a 

sec 0 = sec (1) — 
+ c 

+b 

+c 
csc O = —csc (13 = — 

—a 

Thus cos and sec are positive and the 
other four functions are negative in the 
fourth quadrant. 

The Sine Wave. Now that we can 
determine the sine of any angle up to 
360°, we are ready to continue with the 
definition of a sine curve. A sine curve is 
merely a graph of all the sines of all the 
angles up to 360° that repeats itself 
periodically. Since there are an infinite 
number of angles that can be formed 
between 0° and 360° (if all the possible 
stopping points of the terminal side are 
considered), there are also an infinite 
number of sine functions to plot a curve. 

Therefore, we simply choose angles in 
15° steps from 0° to 360° and plot their 
functions. We then round off the sine 
functions of these angles to two decimal 
places because this is as accurate as we 
can be if we are to keep the graph to a 
reasonable size. 
Now let's examine and list the sine 

functions of the angles, starting with L O 
= 0°. When O equals zero, there is no 
angle or opposite side, so when L O equals 
0°, the opposite side must also be zero. 
Therefore, since sin O equals the ratio of 
opp/hyp, and sin O equals the ratio of 
0/hyp, when LO equals 0°, sin O must 
also equal 0. Therefore, our list of func-
tions begins with: 

0 = 0°; sin 0 = 0 

We have seen that the ratio of opp/hyp 
is always equal to the sine of L 0 as listed 
in the tables, no matter what the relative 
lengths of the sides of the right triangle 
may be. Therefore, you can use the tables 
directly to make a list of the sine func-
tions of all the angles you wish to use. 
The next step is to lay out a graph as 

shown in Fig. 25. Here the base line is 
laid out on the X axis and is marked in 
° steps from 0° to 360° 15 . The numbers 

0 to 1.0 are laid out vertically in steps of 

Fig. 25. Graphical plot of the sines of angles in 15° steps from 0° to 360°. 
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.1 in the positive direction along the Y 
axis. The numbers from 0 to —1.0 are laid 
out in steps of —.1 in the negative 
direction along the Y axis. At each 15° 
step along the X axis, the appropriate 
value of the sine of the angle is indicated 
in terms of the numbers located on the Y 
axis. Thus, we have a graph of various 
values of the Y values of the sines of all 
the angles indicated along the X axis. This 
is generally called a graph of Y = sin X. 
When these points are joined with a 

smooth curve, a curve is formed which 
represents the sines of all the angles 
between e and 360°. This is called a sine 
curve or sine wave. We can consider the 
terminal side of angles generated to form 
a sine curve as a rotating vector, as shown 
in Fig. 26. This rotating vector generates 
the angles and consequently the functions 
of the angles indicated by the sine curve. 
If sine O equals 

opp 
hyp 

and hyp (rotating vector) equals 1 unit, 
then sin O equals 

opp 
1 = opp 

Thus, if this vector equals 1", 1', 1 volt, 
or any other value, the sine functions 
generated will be equal to the length of 
the perpendiculars, which will also equal 
the actual value of the sine functions as 
listed in the tables. 

Notice that as the vector starts from 
0°, the function is 0; as it passes through 
90° the maximum function is generated. 
At 180° the function is again 0; at 270° 
in the negative direction it is maximum; 
and at 360° it is back again to no 
function. Also notice that the value of 

12e1 

135° 

15e 

165 

X' lee 

195° 

21e 

225° 

Is° 

Ca 360° X 

345° 

330* 

315° 

240 300' 
2551' 270. 2856 

Y, 

Fig. 26. Diagram of rotating vector generating 
sine functions shown in the sine curve of 

Fig. 25. 

the function changes most rapidly when 
the vector is rotating through 0°, 180°, 
and 360°. This rotating vector can be 
compared to the rotation of the armature 
of a basic ac generator as shown in Fig. 
27. 
As the armature moves parallel to the 

lines of force as shown in Fig. 27A, no 
voltage will be generated. As it moves at 
right angles to the lines of force as in Fig. 
27B, the maximum number of lines of 
force will be cut and the maximum 
voltage will be generated. While it is 

Fig. 27. Generator armature can be compared 
to rotating vector in Fig. 26. 
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moving from its position shown in Fig. 
27A to that shown in Fig. 27B, the 

voltage generated will increase from zero 
to maximum in proportion to the sine of 
its instantaneous angular position. Thus, 
if we consider the maximum voltage as 10 
volts at 90° of rotation as shown in Fig. 
27B, and zero voltage as 0 volts at 0° of 
rotation as shown in Fig. 27A, the instan-
taneous value of voltage at a rotation of 
15° would be 2.7 volts. It would be 5 

volts at 3e, 7.1 volts at 45°, etc. If we 
were to measure all these instantaneous 
voltages at each 15° step of angular 
rotation of the basic armature in a stan-
dard magnetic field from 0° through 

360°, we would obtain a sine wave graph 
similar to the one in Fig. 25. This is why 
an ac voltage is said to vary sinusoidally, 
and is called a sine wave. 

If the armature continues to rotate 
again and again at the same speed, the 
sine wave voltage will repeat itself indef-
initely. We will get a complete 0° — 360° 
sine wave during each complete revolu-
tion or period, so the sine wave is a 
periodic repetition of the same functions. 

Phase Relationships. We have seen how 

90° 90° 

180° 

OAO° 
 .41> 
A 0° 180* 

e 

. 6313•90° 

2706 2706 

0° 

Fig. 28. Two generators represented by rota-
ting vectors. (A) shows instantaneous value of 
sin O to be zero. (B) shows instantaneous value 
of sin O to be maximum at the same instant. 

the voltage generated by the rotating 
armature describes a sine wave just as the 
sine functions of the rotating vector 
describe the sine curve of the angles it 
passes through. Now suppose we have 
two generators represented by rotating 
vectors, as shown in Fig. 28. They are 
exactly the same except that when one 
armature is passing through 90° the other 
is passing through 0°. The sine wave 
outputs of the two generators are super-

imposed on each other as shown by the 
solid and dotted sine waves in Fig. 29. 

SINE WAVE A • SINE WAVE B 

/ 
, .1-

0° '40: I 0° 270° 3%0° 
ss 

._.. .' / 
, 

Fig. 29. Sine waves generated by two identical 

phasors operating 9d apart. 

As you can see, these voltage sine 
waves are generated 90° out-of-phase 
with each other just as the vectors are 90° 
out-of-phase. Thus, the rotating vectors 
represent the relative phase of the two 
sine waves and are called phasors. By 
applying the principles of trigonometry 
to the angle generated by one of the 
phasors, we can determine the instan-
taneous value of voltage generated for 
any position of the phasor if we know its 
value at sin O =1. 

Thus, if at sin O =1, or 90°, the phasor 
produces a voltage of 120 volts, then at 
L O = 30, the instantaneous value of 
voltage generated will equal 

opp 
sin O =— 

hyp 

37 



And, hyp equals phasor length at sin O = 
1, therefore hyp equals 120. Then, 

opp 
sin 0 = 

120 

and O equals 30°, therefore 

sin 3e or .5 - °PP 
120 

and opp equals 120 X .5 = 60 volts of 
instantaneous voltage. In this way phasors 
can be used to represent the instan-
taneous values of all the sine wave volt-
ages occurring across circuit components 
at any instant. 

Phasors can be expressed in rectangular 
coordinates as well as polar coordinates 
All the principles of the parallelogram 
measurement method for solving vector 
diagrams can be applied to phasors. Sim-
ilarly, the j operator and trigonometry 
can be used in the solution of phasor 
problems. Consequently, we shall con-
tinue to call our phasors "vectors" in this 
course. Remember, however, that 
although a phasor can perhaps be con-
sidered a special type of vector as is done 
in most older texts, a vector cannot be 
considered a phasor. 

SELF-TEST QUESTIONS 

16. A 15-ohm resistor is connected in 
series with a 15-ohm capacitive 
reactance. What is the impedance of 
the circuit? Express your answer in 
both polar and binomial form. 

17. RI, R2 C1, C2 L1 and L2 are 
connected in series. R1 = 10 ohms, 

R2 = 30 ohms, Xci = 9 ohms, Xc2 = 
16 ohms, XLi = 20 ohms, XL2 = 35 
ohms. What is the impedance? Ex-
press your answer in both polar and 
binomial form. 

18. In the Cartesian coordinate system, 
(a) in which quadrants is X positive? 
(b) in which quadrants is Y positive? 
(c) in which quadrants are both X 

and Y negative? 
19. What is the value of 

(a) sin 150°? 
(b) cos 150°? 

20. What is the value of 
(a) tan l35°? 
(b) cot 225°? 

21. What is the value of 
(a) sin —60°? 
(b) cos —60":? 

22. Express the following polar coordi-
nates as rectangular coordinates. 
(a) 6/36°  

(b) 5/-50°  

23. Convert the following rectangular 
coordinates into polar coordinates. 
(a) (5, —11) 
(b) (-6, —7) 

24. Convert 11 + j15 ohms to polar 
form. 

25. Convert 7 — j4 ohms to polar form. 
26. Convert 9/-50°  ohms to j-operator 

form. 
27. Convert 12/32° ohms to j-operator 

form. 
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Trigonometry in AC Circuits 
In an earlier part of this lesson we saw 

how trigonometry is used in simple series 
circuit calculations. In this section we will 
apply what we have learned about vector 
diagrams, the j operator, algebra, and 
trigonometry to more complicated ac 
circuits. Before discussing series parallel 
circuits, let's take a look at a series circuit 
and get familiar with voltage compu-
tations. 

Resistance in Coils. Until now we have 
neglected the resistance that exists in the 
windings of coils in our ac circuit calcu-
lations. Although we can do this without 
being too far off, occasionally we will 
want to be more accurate. This does not 
present any particular problem where 
both the resistance and either the induc-
tance or inductive reactance of the coil 
are given. However, in many circuits, this 
information is not easy to obtain. 
Although, it is easy to measure the 
resistance of a coil with an ohmmeter, the 
inductance cannot be found as easily 
unless we have a special meter. 

However, through the use of trigo-
nometry and standard measuring instru-
ments, it is quite easy to determine the 
inductance of a coil and separate the 

.17V 

Fig. 30. Typical series circuit voltage mea-
surements. 

inductive reactance from the resistance. 
For example, consider the circuit shown 
in Fig. 30. Here we have a coil, a 
capacitor, and a resistor in series with 
each other. If we measure the voltage 
drops across each of these units as shown, 
and then compute the total voltage of the 
circuit, we will find that the total voltage 
computed does not agree with the total 
voltage indicated by the measurement. 
Let's see why this difficulty occurs and 
how to overcome it. 

Excl7V 

Exc•72V 

ER •92V ET•92 4117 - j72•92-155 

ODD 55 
TAN e• • Ad1 92 

e . 30 9* 

Op0 55 
SIN e • Ti-ip • TT 

-j55 

5978 • TAN 30 868" or 30 9* 

55  55 
ET SIN 30 9' . • 107 1 yours 

Fig. 31. Computation of total voltage without 

considering coil resistance. 

First, computing the total voltage, ET, 
without considering any possible resis-
tance that the coil might have, we get the 
results shown in Fig. 31. Drawing our 
rough vector diagram as shown, we have 
Ex L of 17V as the inductive vector 
component, Ex c of 72V as the capacitive 
vector component, and ER of 92V as the 
resistive vector component. Mathe-
matically, this gives us: 92 + j17 — j72, or 
92 — j55 as our final vector stated as a 
binomial. Thus, ET is the hypotenuse of a 
right triangle with a base of 92V and an 
altitude of 55V. Then, using trigo-
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nometry, we find that the phase angle O 
equals: 

opp 55 
tan 6 =— = —= .5978 

adj 92 

Therefore: 

O = angle whose tangent is .5978 

By using our Table of Functions and 
interpolating we find that the angle 0 
equals 30.9°. 
Now that we have the angle 6, we can 

find the value of ET through the func-
tion: 

opp opp 
sin O =— or hyp —  

hyp sin 0 

55 
or ET  — 

sin 30.9° 

Since our table lists the functions in 
one-degree steps we must interpolate to 
find the sine of 30.9°. Doing this, we 
find: 

sin 30.9° = .5135 

Substituting: 

55 
ET =  

sin 30.9° 

55  
= = 107.1 volts 
.5135 

Thus, by computing, we find that ET = 
107.1 volts, even though the measured 
value for ET in the circuit of Fig. 30 is 
120 volts. The reason for this difference 
is that the Q of the coil is low; therefore, 
the ratio of the resistance of its winding 
to its inductance is large. This means that 
the voltage Ex L, which we assumed to be 
purely inductive, does not lead the cur-

rent in the circuit by a full 90°. Conse-
quently, our Ex L of 17 volts is really 
voltage made up of ER L + jEx L and 
cannot be written +j17 and added di-
rectly to our —j72. It must be broken 
down into its two components, ER L + 
jEx L. Thus, the vector diagram of our 
circuit must be drawn as shown in Fig. 
32, and our voltage vector ET must be 
found from: 

and 

ET = ER + ET X L — 1Ex c 

ET = ER + (ER L + jEX L) — IExc 

= 92 + ER L +1Ex L — j72 

In order to work out a solution to this 
problem, we must know the values of 
both ER L and Ex L. Neither the value of 
the resistance of the coil nor the value of 
its inductance is given. However, the 
chances are that if we have a meter or 
meters capable of reading the voltages of 
the circuit and the current through the 
circuit, as shown in Fig. 30, we will also 

COIL RESISTANCE, RL.I2n BY MEASUREMENT 

CIRCUIT a COIL AMPS,IL. IA AS SHOWN IN FIG 30 

Fig. 32. Vector diagram of circuit in Fig. 30 

considering coil resistance. 
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have an ohmmeter. With the ohmmeter 
we can determine the resistance of the 
coil, and then by computing we can find 
ERL and Ex L. 

For example, suppose we measure the 
resistance of the coil and find it to be 12 
ohms. Our circuit ammeter shows us that 
the current through the circuit is 1 amp. 
Thus, 

ERL = IX RL 
= 1 X 12 
= 12 volts 

This gives us one of our components of 
Ex L, so our equation for ET becomes: 

ET = 92 + ERL lEx L — j72 

= 92 + 12 +jEx L —j72 

Now, all we have left to determine is the 
value of j Ex L 

This is where trigonometry really 
helps. We have the total coil voltage drop 
and have been able to compute the 
resistance component of this total drop. 
Therefore, we have the value of both the 
hypotenuse and the base of a right 
triangle as shown in Fig. 33A, and can 

-i60 

Ex 
,e L 

ERL =12 

104 

e, 
7-• 1160 

Fig. 33. Trigonometric solution of vector dia-
gram of Fig. 32. 

compute the value of jEx L. First we list 

our values as: 

Given: ET XL = 17V 

IL = lA 

RL = 12 ohms 

ERL = X RL 

= 1 X 12 

= 12V 

Find: Ex L 

Now, sketching the vector diagram 
with 17 as the hypotenuse and 12 as the 
base of a right triangle, as shown in Fig. 
33A, allows us to use our trigonometry. 
First we want to find the phase angle OL. 
To do this, we use the cosine function 
which is: 

adj ERL 12 
cos 0 = == —= .7057 

hyp El-xi, 17 

In checking our Table of Functions we 
find that there is no cosine given as 
exactly .7057. Although we could inter-
polate to find the exact value for 0, our 
cosine of .7057 is so close to .7071, 
which is the cosine of 45°, that we can 
use the approximate value of 45° as the 
angle 0L. 
Now that we know that 01, is equal to 

45°, we can proceed to find the value of 
jEx L (the opposite side) by using one of 
the other functions. For example, 

opp 
tan 0L = —  

adj 
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and: 

opp = adj X tan OL 

Substituting: 

jEx L = ER L X tan 45° 

jEx L = 12 X 1.0000 = 12 

Thus, jEx L, which is the reactive com-
ponent of the total coil voltage, is also 
equal to 12 volts. Notice that we could 
also have used the sine since 

and therefore 

or 

opp 
sin OL = 

hyp 

opp = sin OL X hyp 

jEx L = sin 45° X ET X L 

= .7071 X 17 = 12 (approx.) 

The function used is a matter of personal 
choice or convenience as long as the 
necessary values are known. 

Notice what we have done. We took a 
voltage drop across a coil and broke it up 
into its resistive and reactive components. 
We could not measure these components 
because they do not exist separately; they 
exist together as a total. The fact that this 
vector sum is not exactly in phase with 
the current tells us that it must have both 
of the components. In order to compute 
the circuit values accurately, we must 
have the values of the components, not 
their vector sum. Since the resistance of a 

coil, the current through the coil, and the 
total voltage across the coil are all easy to 
measure with instruments, we have used 
these values, together with trigonometry, 
to obtain the two components of total 
coil voltage. 

If we have the inductance or the 
inductive reactance of the coil, we can 
also use them to compute the value of the 
components. However, in practical cir-
cuits the value of the inductance or 
inductive reactance is often not known. 
Since these values can only be measured 
with instruments, which are usually not 
available in the average shop, we have 
shown you a method to use to solve the 
problem. 

Since we now have all the values 
required to find ET as shown in Fig. 32, 
we can continue with our computation as 
shown in Fig. 33B. We have already 
established the fact that: 

El' = ER + ET X L H EX c 

By substitution: 

ET = ER + (ER L + iEx 0 — jExc 

and: 

ET =92+ 12+j12 —j72 

Then: 

ET = 104 — j60 

and we can draw the vector diagram as 
shown in Fig. 33B and compute the value 
of ET and O by using trigonometry. First: 

tan 0 = °PP = 60 —=.5769 
adj 104 
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and of the three parallel branches, a, b, and c, 
which we can do as follows: 

O = 30° (approx.) 

Then: 

opp 
sin O = — 

hyp 

Za = R + jXL = 25 +j17.5 ohms 

tan Oa = oPP = XLa — 17.5 = .700 
adj Ra 25 

and Oa = 35° 

opp 60 
hyp = — = — = 120V Then: 

sin 0 .5 

This is the value of ET that we obtained 
by measurement in Fig. 30 and is there-

fore correct. 
We have used a very low Q coil to 

demonstrate the importance of con-
sidering the resistive component of volt-
age in a coil. 

12 
Q= 1—  = 1 

2 

Although such a low Q coil will not be 
found often in practical circuits, it is still 
important to know how to handle these 

effects when they do occur. You are 
probably wondering about the resistance 
of capacitors and if it too has to be 
considered. It does not. Although all 
capacitors do have some resistance, it is 

never large enough to be noticed in a 
practical capacitor. 

SERIES-PARALLEL CIRCUITS 

Now let's look at a more complicated 
circuit, such as the one shown in Fig. 34. 
This is a series-parallel circuit with the 
various values given. We are asked to find 
the total impedance ZT, the total current 

IT, and the final phase angle OT • 
First, we want to find the impedance 

or 

Thus: 

opp XLa 
sin = — = 

hy p Za 

XLa 17.5 
Z„ =   

sin Oa sin 35° 

17.5 
= 30.5 ohms 

.574 

Za = 30.5/35° ohms 

FIND ZT, IT, eT, 

17 5 n. 25n. 

40n 56n lOn 

55n. 20n 

E.110V AC 

67n. 5A 55n. 

Fig. 34. Series-parallel ac circuit. 
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Next: Then: 

Zb = R + jXL - jXc 

= 10 + j40 - j56 

= 10 - j16 or 

opp Xb 
tan Ob = 

adj Rb 

Then: 

or 

Thus: 

Next: 

opp Xc 
sin Oc = — = — 

hyp Zc 

Xc -20 
Zc = 

sin 0, sin -20 

-20 
— = 58.5 

-16 -.342 

10 

Ob = -58° 

Opp Xt, 
sin Oh = — = 

hyp Zh 

Xb -16 
Zb = — -  

sin Ob sin -58° 

-16 
= — - 18.9 
-.848 

Zb = 18.9/7 58° ohms 

Zc = R - jX, = 55 - j20 

°pp -20 
tan 0, = = —= -.364 

adj 55 

0, = -20° 

Thus: 

= 58.5/-20° ohms 

Now assume a voltage between d and e 
and find I for each branch as follows: 

Ede 100/0°  
1. = /35° = 3.28/-35° amps 
d Za 30.5 

Ede 100e = 5.3/58° amps 'b = 
Zb 18.9/-58  

Ede Wei' 
= =  = 58.5° 1.71/20° amps Z,  

Now convert branch currents la, lb, 
and I from polar to rectangular coordi-
nates for easy addition as follows: 

= la (cos Oa + j sin ea) 
= 3.28 (cos -35° + j sin - 35°) 
= 3.28 (.8192 -j.5736) 
= 2.69 - j1.88 amps 

Since -35° lies in the fourth quadrant, 
cos -35° is positive and sin -35° is 
negative. This explains why the resistive 

term is positive and the reactive term is 
negative.) 

44 



Ib = lb (COS Ob + j sin Ob) 
= 5.3 (cos 58° + j sin 58°) 
= 5.3 (.5299 + j.8480) 
= 2.81 +j4.5 amps 

Now, 

and: 

thus, 

Now 

= I (cos Oc + j sin Oc) 
= 1.71 (cos 20° + j sin 20°) 
= 1.71 (.9397 + j.3420) 
= 1.61 +j.585 amps 

= + + 

= 2.69 - j1.88 
lb = 2.81 + j4.5 
= 1.61 +j.585 

Id, = 7.11 + j3.205 

tan Ode = -0PP Idex 
adj = Icier 

3.2 
=- - .45 
7.11 

Ode = 24.2° 

And Id, in polar form: 

opp Ide Ide  
sin Od e =- = 

x or 'de - s Oe 
hYP Ide in de 

Then: 

Thus: 

i dex -  3.2  de  

sin Ode sin 24.2° 

3.2 
- - 7.8 
.4099 

And: 

Ede 100/0°_ 
Zde = - 

'de 7.8/24.2° 

= 12.8 /-24.2° ohms 

Converting Zde to rectangular coordi-
nates: 

Zde = Zde (COS Ode + j sin Ode) 
= 12.8 (cos - 24.2 + j sin - 24.2°) 
= 12.8 (.9121 - j.4099) 
= 11.7 -j5.25 ohms 

Now combining: 

ZT = Zde j67 - j55 + 5 
ZT = 11.7 + 5 - j5.25 + j67 - j55 
ZT = 16.7 + j6.75 ohms 

Then: 

opp 6.75 
tan OT = =- = .404 

adj 16.7 

OT = 22° 

Converting ZT to polar form: 

opp XT 
sin OT =-= 

hyp ZT 

or 

6.75 6.75 
ZT O = „ = = 18 

sin T sin 22- .3746 

XT 

ZT = 18/22°  ohms 

Then: 

ET 110/r 
= 
ZT 18/22  

Id, = 7.8/24.2° amps = 6.11/-22° amps 
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With this as a typical example of using 
trigonometry in ac circuits, try some of 
the problems you solved using the j-
operator and the Pythagorean Theorem in 
your previous lessons. 

Power in AC Circuits. Up until now we 
have not considered power in ac circuits 
because we have not had a simple method 
of finding it. In a purely resistive circuit, 
where the current and voltage are in 
phase, the power is equal to the voltage 
times the current as it is in a dc circuit. In 
a purely reactive circuit where there is no 
resistance whatsoever, power is alter-
nately stored up by the reactive elements 
and then returned to the line. Such a 
circuit can exist only in theory, of course, 
because practical circuits always have 
some resistance. However, oscillatory 
tank circuits, which you have studied, do 
come fairly close to being resistance-free 
and, consequently, small properly timed 
surges of current can keep them going 
indefinitely. 

Thus, we can say that the resistive 
elements of a circuit consume the only 
power expended. Let's see what this 
means in terms of the circuit we have just 
studied. If we construct the resultant 
vector diagram of the circuit from OT = 

ER • ET COS e 

P. EI COS 9 

Pa E I 

P F r COS 9 

Fig. 35. Vector representation of power factor. 

220, ZT = 181-2, we have a vector ZT = 
18/22° as shown in Fig. 35. The reactive 
component of this impedance is jXT as 
shown, and the resistive component is 
equal to RT as shown. The resistive 
component is equal to 16.7 ohms, while 
the reactive component is 6.75 ohms, as 
we discovered while solving for ZT. 
Now, if the resistive component is all 

that consumes power, the power must be 
equal to ER X I since only the resistive 
component of voltage forces current 
through the resistance to consume power. 
However, in the circuit we have just 
solved, we are not given the value of ER, 
nor did we find it in any of our compu-
tations. However, if we lay out a vector 
representing the conditions of our circuit, 
we have a vector of the total voltage ET 
of 110V leading the current vector, which 
we have taken as our reference vector, by 
22°. We can find ER now by using: 

and 

adj = ER 
COS 0 

hyp ET 

ER = ET cos 0 

Now, if P = ER X I equals the power 
expended and ER = ET cos 0, by sub-
stitution: 

or 

P = (ET cos 0)1 

P= EI cos 0 

Then, substituting values: 

P= 110 X 6.11 X cos 22° 
= 110 X 6.11 X .9272 
= 623 watts 
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This is the power actually consumed by 
the circuit. 
Now, in ac circuits we have another 

value of power which is called the appar-
ent power. This is simply the product of 
ET and IT without considering their 
relative instantaneous values at any par-
ticular moment. Thus, in the circuit we 
have just solved, the apparent power is 
simply 110 X 6.11 or 672.1W. The 
apparent power in a circuit is designated 
as Pa to separate it from the true power P 
which does take into consideration the 
relative instantaneous values of E and I 
through multiplication by cos O. 
Now, we have another situation in ac 

power that must be considered. This is 
the power factor PF which is the ratio of 
the true power P to the apparent power 
Pa. Mathematically, this is stated: 

P 
PF = — 

Pa 

then 

EI cos 0 
PF = — cos 0 

El 

and the power factor can be found from 
PF = cos O. In the circuit we have just 
computed, PF = .927 lagging because the 
current lags the voltage by 22°. Power 
factor is also expressed as a percentage, 
92.7%. 

There are other formulas for power 
factor in ac circuits, but these are the 
most common. Since the formula P = e R 
uses only resistance and current, it will 
also give us the true power. Here we are 
not multiplying the effective values of 
current by an effective value of voltage 
without considering their relative instan-
taneous values. We are simply squaring 
the effective value of current and multi-

plying it by the total resistive component 
of Z. Thus, P = I2R gives us: 6.11 2 X 
16.7 = 623 watts which is true power. 
We can also write another formula for 

power factor. If 

and 

and 

Then: 

But 

SO 

Therefore 

P 
PF = — 

Pa 

P = 12 R 

Pa ' El 

12 R IR 
PF = — =— 

EI E 

E = IZ 

IR R 
PF =— = — 

IZ Z 

R 
PF =— 

Z 

However, this is just another way of 
saying cos 0, because 

adj . R 
cos O = 

hyp Z 

It also should be noted that true power P 
equals PF X Pa because 

R 
PF =— or cos e 

Z 
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and 

Pa = El 

and our first formula for power was P = 
El cos O. Any of the relationships may be 
used, and if you remember that: 

and 

Pa = El 

P= El X PF 

PF = cos O 

you can use algebra and trigonometry to 
work out the other formulas. 

Although you will not become an 
expert in the science of trigonometry 
from what you have learned in this 
lesson, you have covered most of the 
basic fundamentals and their application 
in electronics. You will be able to handle 
nearly every problem when you under-
stand the elementary principles of trig-
onometry. Like any other math, trig 
requires a lot of practice to become 
familiar with it. You should practice 
solving the right triangles of circuits in 

other lessons to obtain this practice. 
Now answer the following Self-Test 

Questions which are an overall review of 
trigonometry. They will give you further 
practice in solving ac circuit problems. 

SELF-TEST QUESTIONS 

28. An angle is equal to 3 radians. What 
does it measure in degrees? 

29. How many degrees are there in 1.7 
radians? 

30. Convert 15.6° to radians. 

31. In the right triangle shown below 
side X is equal to 25 ohms and side R 
is equal to 76.0 ohms. What does side 
Z equal? 

32. In the triangle shown above, if side Z 
equals 45 and L O equals 45°, what 
does side X equal? 

33. What is the sine of 345°? 
34. In the triangle shown above, find 

L O if sin L A = .4415. 
35. If the voltage of an ac circuit is 

leading the current by 35.8°, what is 
the power factor of the circuit? 

36. If the total voltage applied to the 
circuit discussed in Question 35 is 
220 volts and the current through 
the circuit is 1.79 amps, what is the 
true power consumed by the circuit? 

37. When the impedance of a circuit is 
described as: Z = 5/36.9%2 in polar 
coordinates, how would you express 
it in rectangular coordinates? 

38. A choke coil draws 2 amps of current 
when it is connected across 110V dc. 
When connected to 110V, 60 cycles 
ac, the current drawn is .25 amp. 
What is the resistance and the 
inductive reactance of the coil? 

39. The following 60-Hertz impedances 
are connected in series: 
Z1 = 3 — j6S2 
Z2 = 10 +j19n 
Z3 = 2 —j72 
= 5 +j14S2 

What is the impedance of the circuit 
in polar coordinates? 

40. In the circuit described in Question 
39, what value of capacitance would 
we have to add to the circuit to make 
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the power factor 70.7% leading? 
41. A supply of 220 volts ac is applied to 

an impedance of Za = 55/4en in 
parallel with an impedance of Zb = 
71/-36°n. What is the power con-

sumed in Zb? 
42. In the circuit shown, what is the 

total impedance? 

1..1=120us 

Circuit for Question 42. 

R3.200n 

43. In the circuit shown below, find the 
total impedance of the circuit. 

44. Find the total current in the circuit 
shown below. 

45. Find the power dissipated in the 
circuit shown below. 

46. Find the power dissipated by R1 in 
the circuit shown below. 

.0047 MFD 

100V 
500kHz 

30.LLH 

L2 
C2 

5011 

Li 
201.1H 

.0022MFD 

Circuit for Questions 43, 44, 45, and 46. 
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Graphs 

A graph is a picture that shows the 
effect of changes in one variable on a 
second variable. Graphs are very common 
in electronics literature since they provide 
a simple means of describing circuit oper-
ations, illustrating equations and for-
mulas, showing relationships when no 
formulas exist, and displaying results of 
experiments. 

Graphs are not new to you; you 

studied them in grade school. They are 
commonly used in newspapers to show 
economic trends. Although the same 
things could be hown with columns of 
figures, the line on a graph puts the idea 
over much better. It is hard to visualize 
trends or patterns from a column of 
figures, but a line on a graph lays the 
pattern out in front of you in a way that 
is easy to grasp. 

USING GRAPHS 

The most common type of graph is 
drawn on paper ruled with uniformly 

spaced horizontal and vertical lines. This 
type of paper is known as rectilinear or 
cross section or just plain graph paper. 
Cross-sectional paper is available with 

many different line spacings, but 4,5,10, 
and 20 lines per inch are the most 
common. 

The data for plotting graphs may be 
obtained by measurements of both quan-
tities. Or the data may be obtained by 
repeated solutions of a formula. A graph 
with two plots obtained in the latter 
manner is shown in Fig. 36. This graph 
shows the voltage across a 75-ohm resis-
tor and the power dissipated in it for 
different values of current. 

Fig. 36 was plotted by assuming differ-
ent values for the current and calculating 
the corresponding voltage drops and 
power dissipations using the formulas 
shown. Since the calculated values of 
voltage and power depend on the 
assumed values of the current, voltage 
and power are called the dependent vari-
ables. The current could be given any 
desired value and changed at will, so 
current is called the independent variable. 

Following custom, the dependent variable 
is scaled along the vertical axis, and the 
independent variable is scaled along the 
horizontal axis. 

Several important things about graphs 
are illustrated here. Both scales are 
labeled to show the quantity they repre-
sent, and the units in which that quantity 

is measured. The values assigned to each 
division of the scales are marked along 
them. Note that the two scales are not 
equally divided; one division of the hori-
zontal scale is equal to .05 units and one 
division on the vertical scale equals 5 
units. Each plot is labeled with the 
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36 
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.05 • .3 .4 .6 tile .7 a le 

CURRENT IN AMPERES 

Fig. 36. Change in voltage across, and power 
in a 75-ohm resistor as current changes. 
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formula used to obtain the data. The 
formulas also serve as titles, telling what 
the graph shows. The value of the resis-
tance used in the calculation completes 
the labeling. All the information needed 
to use or identify this graph appears upon 
it. Nothing is left to memory or imagi-
nation. Without this information no 
graph is complete. 

Graphs like Fig. 36 are frequently 
made up to avoid repeated computations. 
For example, suppose you are checking 
the effect of changing tube voltages on 
the output of an amplifier. You are 
measuring the output with an ammeter in 
series with the 75-ohm load of the ampli-
fier. In order to avoid making a very large 
number of calculations of voltage and 
power, you have constructed this graph. 
Now you can obtain the voltage and 
power for each value of current without 
having to work out each solution with 

pencil and paper. 
The dashed lines on Fig. 36 show how 

the voltage and power for a current of .56 
ampere would be read from the graph. 
Starting at .56 (point A) on the hori-
zontal scale, trace upward to the inter-
section with the power curve (point B). 
Then trace over to the vertical scale and 
read 23 watts at point C. The .56 line 
intersects the voltage line at D. Tracing 
over to the vertical scale from D gives 42 
volts at point E. The same graph could be 
used to determine the current for a 
specific power. You would simply reverse 
the procedure and start at the required 
power on the vertical scale. Then trace 
over to the power curve and down to the 
horizontal scale to read current. 

It actually takes longer to tell how to 
read values from a graph than it takes to 
do it. The dashed lines which were drawn 
on Fig. 36 are not necessary in practice. 
They were used here only to demonstrate 

the procedure. With a little practice you 
will find that you can do the reading right 
at the curve without tracing to the scales. 
Try to determine the voltage drop and 
the power dissipation for the following 
currents: .72, .23, .07, and .48. What 
current is necessary for 60 watts, 36 
watts, 7 watts, and 53 watts? Remember 
when reading the scale of a graph that, 
since an estimate is involved, all the rules 
for significant figures apply. You can 
check your readings by using the formu-
las to calculate the values. 

Slope. One look at a graph can tell you 
a great deal about the way the dependent 
variable changes with changes in the 
independent variable. You have only to 
glance at Fig. 36 to know that voltage 
drop and power dissipation do not change 
in the same way with changes in current. 
The graph of voltage against current is a 
straight line. The increase in voltage for a 
given increase in current is the same at 
every point on the line. An increase of .1 
ampere always produces an increase of 
7.5 volts; an increase of .2 ampere always 
produces an increase of 15 volts. These 
relationships hold true no matter what 
value the current has at the start. 
A special name is given to the rate at 

which the dependent variable changes 
with changes in the independent variable. 
This rate of change is called the slope. 
The slope is determined by dividing the 
span of the dependent variable over a 
section of the line by the span of the 
independent variable over the same sec-
tion. Two examples of slope calculation 
are shown in Fig. 37. The two lines on 
this graph are plots of voltage against 
current for two different values of resis-
tance. The slope of the line, R = 75 ohms, 
was calculated for the section between 
point A (.53, 40) and point B (.80, 60). 
The span of current is equal to the scale 
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Fig. 37. Determining the slope of a line. 

reading of B — A. The value of B (.80) 
minus the value of A (.53) is equal to 
.27 ampere. On the vertical scale, the 
reading of B is 60. We subtract the 
reading of A on the vertical scale (40) 
from B (60) to obtain the voltage span, 
which is 20. Dividing the voltage span by 
the current span gives 20 ÷ .27 = 75. The 
slope of the R = 75 ohms line is 75. The 

slope of the R = 100 ohms line is 
calculated between point D (.30, 30) and 
point E (.50, 50). The slope is (50 — 30) 
÷ (.50 — .30) which works out to be 100. 
You have undoubtedly already noticed 

that in both the examples of slope calcu-
lation the slope was numerically equal to 
the value of the resistance used in the 
formula which was plotted. Whenever the 
dependent variable is equal to the inde-
pendent variable multiplied by a con-
stant, the slope will always be equal to 
the constant. It is also true that the graph 
of the relationship will always be a 
straight line on rectilinear graph paper. 
Because the graph is a straight line, the 
relationship is said to be linear and the 
formula which expresses the relationship 
is called a linear equation. 
The slope of a straight line is constant; 

that is, the slope is the same for all parts 

of the line. This is not true for all graphs. 
Unless the graph is a straight line on 
rectilinear paper, the slope will be differ-
ent at different parts of the curve. In 
other words, the value of the slope 
depends on the value of the independent 
variable. Because the slope is continually 
changing, we must use a slightly different 
method to determine it. Fig. 38 shows 
how the slope of a curved line on a graph 
is obtained. First, it is necessary to draw a 
line tangent to the curve at the point at 
which the value of the slope is desired. (A 
tangent line is a line which touches the 
curve at only one point.) Three such 
tangent lines are shown on the curve. One 
is tangent at the point (.20, 3.0), another 
at (.40, 12), and the third at (.80, 48). 
The slope of the tangent line is deter-
mined by the same way as the slope of a 
straight line graph. The slope of the curve 
at the point where the tangent line 
touches it is the same as the slope of the 
line. 

It is obvious that each of the three 
tangent lines has a different slope. It is 
also apparent that the slope is least when 
the current is least. As the current 
increases, the slope of the curve becomes 

greater. From a practical viewpoint this 
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30  

20  
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Fig. 38. Determining the slope of a nonlinear 

graph. 
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means that when the current is low, a 
small change in current results in only a 
small change in power, but when the 
current is large, a small change in current 
results in a large change in power. This 
type of curve will always result when the 
dependent variable is directly propor-
tional to the square of the independent 
variable. Because the graph of the for-
mula is not a straight line on rectilinear 
paper, the formula is said to be a non-
linear equation. 

100 

90 
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50 
o 

40 

30 

to 

lo 

0 5 10 20 30 40 50 80 70 80 90 100 

POWER — WATTS 

Fig. 39. Curve resulting when dependent var-

iable is proportional to square root of in-

dependent variable. 

Another common nonlinear curve 
results when the dependent variable is 
proportional to the square root of the 
independent variable. The curve of the 
formula E = \ffirZ for determining the 
voltage drop across a 75-ohm resistor for 
a given power dissipation is shown in Fig. 
39. This curve has a high initial slope 
which decreases as the value of the 
independent variable becomes larger. 
A third common nonlinear curve is 

shown in Fig. 40. This is the plot of 
current against resistance for a constant 
voltage drop. 

The tangent to the curve at one point 
is also drawn in. Two points, A (2, 30) 
and B (8, 8) are marked on the tangent 
line and are used to determine the slope. 
In determining the span of the dependent 
variable, the value of the dependent 
variable at the point nearer the Y-Y' axis 
is always subtracted from the value of the 
dependent variable at the farther point. 
Here we have 

—22 
(8 — 30) ÷ (8 — 2) = —= —3.66 

6 

This curve differs from the others you 
have studied in that it has a negative 
slope. The practical meaning of a negative 
slope is simply that the dependent vari-
able becomes smaller as the independent 
variable becomes larger. The slope of this 
curve is greatest for small values of the 
independent variable, and least for high 
values. This curve shape and negative 
slope are characteristic of the graph of 
any equation in which the dependent 
variable is inversely proportional to the 
independent variable. 

Each of the four types of formulas you 
are likely to use has its own characteristic 
graph curve. These curves show the way 
the dependent variable changes when the 
independent variable changes. The slope 
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Fig. 40. Curve of a reciprocal relationship. 
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Fig. 41. Four common equations and their 

curves. 

of the curves gives a numerical value to 
the rate of change. Fig. 41 summarizes 
the four types of equations and their 
curves. In the equations, X stands for the 

independent variable, Y for the depen-
dent variable, and M for the factor of 
proportionality. Remember the general 
characteristics of the curve of each equa-
tion; they are a big help in visualizing the 
relationship expressed in a formula. 

TYPES OF GRAPH PAPER 

Common rectilinear graph paper is best 
for showing the relationship between 
variables. However, it is not always the 
easiest type to use. An accurate graph of 
some formulas can be obtained only by 
plotting a large number of points. It is 
difficult to read values from a curve when 

the curve is nearly parallel to either the 
horizontal or vertical grid lines. The 
uncertainty of readings near the low end 

of either scale is much greater than the 
uncertainty near the high end. 
The plotting and reading of graphs can 

be made much easier by using graph 
paper which has special scales. There are 
many special types of graph paper for use 
in science, engineering and business. 
Three of these types are common in 
electronics. 

Logarithmic. Most of the disadvantages 
of rectilinear paper can be overcome by 
plotting the logarithms of the variables 
instead of the variables themselves. To 
avoid having to look up the logarithms of 
every number, a special type of graph 
paper is used. The scales on this paper are 
laid out so that the distance of each 
number from the lower left corner is 
proportional to the logarithm of the 
number. Fig. 42 shows rectilinear and 
logarithmic scales side by side for com-
parison. The numbers on the rectilinear 
scale are ten times the logarithm of the 
numbers opposite them on the log-
arithmic scale. Notice in particular that 
there is no "0" on the logarithmic scale. 

There is no logarithm for zero. 

LOGARITHMIC SCALE 

2 3 4 5 6 7 8 910 

o I 2 3 4 5 6 7 8 9 10 

RECTILINEAR SCALE 

Fig. 42. Comparison of linear and logarithmic 

scales. 

In order to extend the scale from 10 to 
100, it is necessary only to repeat the 1 
to 10 scale to the right of the 10. For 
numbers less than 1, it would be neces-
sary to add additional 1 to 10 scales to 
the left of 1. Each complete 1 to 10 scale 
along an axis is called a cycle. Log-
arithmic graph paper is described by the 

54 



V
O
L
T
S
 
O
R
 
W
A
T
T
S
 

CURRENT — AMPERES 

Fig. 43. Power against current and voltage 
against current plotted on logarithmic paper. 

number of cycles along the horizontal 
and vertical scales. The chart on which 
Fig. 43 is drawn is called a "1 X 2 cycle." 
One big advantage of logarithmic graph 

paper is that the uncertainty in reading 
numbers from the scale is the same at 
both ends of a cycle. The low end of the 
cycle can be read to three significant 
figures; the upper end of the cycle can be 
read to two significant figures. In both 
cases the uncertainty is about 1 part in 
100. This is very important when a graph 
is used as an aid to computation. 

Another advantage of logarithmic 
scales is shown in Fig. 43. The two lines 
on this graph are plots of the same 

relationships that gave one straight line 
and one curved line in Fig. 36. Both the 
voltage and the power plots are straight 
lines on this type of paper. In fact, all 
four of the typical equations in Fig. 41 
are straight lines when plotted on log-
arithmic paper. This greatly simplifies the 
work of plotting. No more than three 
points need be calculated. (Actually two 
points are enough; the third is just a 
check.) 

Although it is much easier to plot and 
read values from graphs on logarithmic 
paper, these plots have two big disad-
vantages. They do not show the exact 
manner in which changes in one variable 
affect the value of the other variable. 
Furthermore, you cannot determine the 
slope except in the case of the linear 
equation (y = mx). 
A second disadvantage is the fact that 

there is no zero on the scales. On the 1 X 
2 cycle paper used here, currents below .1 
ampere, voltage drops below 7.5 volts, 
and powers below 1 watt do not show. If 
these lines had been plotted on 2 X 3 
cycle paper, the lowest values would have 
been .01 ampere, .75 volt, and .1 watt. 
However, no matter how many cycles 
were used, zero would not appear. 

Semilogarithmic Paper. Another type 
of special graph paper has a logarithmic 
scale on one axis and a linear scale on the 
other. The logarithmic scale may have 
from 1 to 5 cycles; the linear scale may 
have any convenient number of lines. The 
most common are 10 or 20 lines to the 
inch. One use for this type of paper is to 
obtain a straight line plot of an equation 
in which one variable is proportional to 
the logarithm of the other. Another use is 
where a large range of numbers must be 
covered on one scale. A linear scale would 
not show details on the low end, whereas 
a logarithmic scale would open up the 
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Fig. 44. Plots of voltage against decibels: (A) rectilinear; (B) semilogarithmic. 

low end and make all parts equally 
readable. 
Two plots of a logarithmic relationship 

between variables are shown in Fig. 44. 
Fig. 44A shows the plot of voltage ratio 
against decibels on rectilinear paper. At 
least 20 points must be calculated and 
marked to get a smooth plot. Even then 
the graph is very difficult to read below 
15 on the voltage ratio scale. Fig. 44B 
shows the same relationship plotted on 
semilogarithmic paper. It can be drawn 
with only three calculations, and can be 
read with equal ease on all parts of the 
line. 

Polar Graphs. A third type of special 
graph paper is laid out in polar coordi-
nates. Points are located by means of 
radial lines marked in degrees and a series 
of circles with common centers which 
show the distance along the radials. This 
paper is used when you want to show the 
radiation patterns of antennas, loud-
speakers, light sources, and other forms 
of energy transmitters. A polar plot is 
used for this type of graph since it gives a 
pattern of direction in space that is 
immediately apparent. Fig. 45 is an 
example of a graph plotted on polar 
coordinate paper. The graph shows the 

radiation pattern of an ideal quarter-
wavelength antenna in free space. The 
distance of the points along the radials is 
proportional to the field strength in 
percent of the field strength in the 
direction of maximum radiation. 
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SELF-TEST QUESTIONS 

47. What is meant by the "slope" of a 
line? 

48. How can the slope of a curved line be 
determined? 

49. What is the difference between log-
arithmic graph paper and semilog-
aritlunic graph paper? 

50. What are some uses for polar graph 
paper in electronics? 

Answers to Self-Test Questions 
1. (a) 1.1 X 106 

(b) 7.2 X 103 
(c) 1.5 X 10-4 
(d) 6.4 X 10-1 

2. (a) .000 000 000 326 
(b) 1,220,000 
(c) .00077 
(d) 9 

3. 2.27 X 10-3 
4. 8.03 X 10-1 
5. 17.04 

7.92 
3.01 
6.10 
0.01  
17.04 

6. Trigonometry is the study of the 
mathematical relationships that exist 
between the sides and angles of 
triangles. 

7. 780 minutes; 46,800 seconds. 
8. 360° contains 6.28 or 2/r radians. 
9. An acute angle is any angle that is 

less than 90°. An obtuse angle is an 
angle which is larger than 90°. 

10. 58°. 
11. The sine 0 is the ratio of the side 

opposite the angle to the hypot-
enuse: 

opp 

hyp 

The cosine 0 is the ratio of the side 
adjacent to the angle to the hypot-
enuse: 

adj 
hyp 

The tangent O is the ratio of the 
opposide side to the adjacent side: 

opp 
adj 

The cotangent 0 is the ratio of the 
adjacent side to the opposite side: 

adj 
opp 

The secant O is the ratio of the 
hypotenuse to the adjacent side: 

hyp 
adj 

The cosecant O is the ratio of the 
hypotenuse to the opposite side: 

12. (a) .2250 
(b) .6947 
(c) .3443 
(d) .8387 

hyp 
opp 
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13. (a) .0558 
(b) 1.2619 
(c) .9426 
(d) .2890 

14. (a) 21° 
(b) 63° 
(c) 51 ° 
(d) 56° 

15. (a) 54.5° 
(b) 31.3° 
(c) 9.1° 
(d) 48.2° 

16. (15 — j15) ohms; 
21.2 /-45°  ohms 

17. (40 + j30) ohms; 
50 /36.9° ohms 

= + R2 + iXLI + iX1,2 

- P(C - iXC2 

Z =40+j55 —j25 

Z = 40 +j30 

tan =-º11-3 
adj R 

30 
tan O =—= .75 

40 

O = 36.9° 

sin O = (P1-3 
hyp 

opp 30 
hyp = = — = 50 ohms 

sin 0 .5904 

18. (a) X is positive in the first and 
fourth quadrants. These are the quad-
rants to the right of the X axis. 
(b) Y is positive in the first and 
second quadrants. These are the 
quadrants above the X axis. 

(c) X and Y are both negative in the 
third quadrant. This is the quadrant 
beneath the X axis and to the left of 
the Y axis. 

19. (a) The value of sin 150° is .5 

sin 150° = sin (180° — 150°) 
= sin 30° 
= .5 

(b) The value of cos 150° is —.866 

cos 150° = —cos (180° — 150°) 
= —cos 30° 
= —.866 

20. (a) The value of tan 135° is —1 

tan 135° = — tan (180° — 135°) 
= tan 45° 
= 

(b) The value of cot 225° is 1 

cot 225° = cot (225° — 180°) 
= cot 45° 
= 1 

The tangent is negative because it 
falls in the second quadrant, the 
cotangent is positive because it falls 
in the third quadrant. 

21. (a) The value of sin —60° is —.866 

sin —60° = —sin 60° 
sin 60° = .866 

Therefore 

sin —60° = —.866 

(b) The value of cos —60° is .5 

cos —60° = cos 60° 
cos 60° = .5 
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The cosine is positive in the fourth 
quadrant. 

22. (a) (4.85; 3.53) 

X= 6 cos 36° = 4.85 
Y = 6 sin 36° = 3.53 

(b) (3.21; -3.83) 

X = 5 cos - 50° = 3.21 
Y = 5 sin - 50° = -3.83 

23. (a) 12.1/-65.5° or 12.1 /294.5°  

-11  
tan O - 

5 

Therefore 

O = -65.5° 

11 
H = = 12.1 

sin 65.5° 

(b) 9.23 /229.4°  

-7 
tan 0 = - 

-6 

opp 
sin 0 = 

hyp 

hyp = 
sin 

opp 

+jX 
Z = 

sin 

15 
Z - 

.8059 

= 18.6 ohms 

25. 8.1 1-29.7°  ohms 

-.5714 
adj R 7 

tan O = 

O = -29.7° 

opp 
sin O - 

hyp 

opp 
hyp 

sin 

Therefore Z = 
sin O 

O = (49.4° + 180°) = 229.4° 

-jX 

4 
=  

7 .4954 
H - - 9.23 

sin 49.4° 
= 8.1 ohms 

24. 18.6 /+53.7  ohms 

opp +jX 15 
tan 0 = - = - = -= 1.3636 

adj R 11 

O = +53.7° 

26. (5.8 - j6.9) ohms 

Z = Z (cos O j sin 0) 
= 9 (cos 50° - j sin se) 
= 9(.6428 -j.7660) 
= 5.8 - j6.9 
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27. (10.2 + j6.4) ohms 

Z = Z (cos 0 ± j sin 0) 
= 12 (cos 32° + j sin 32°) 
= 12 (.8480 + j.5299) 
= 10.2 +j6.4 

28. 171.9° 
29. 97.4° 
30. .272 radians 
31. 80 ohms 

opp X 25 
tan 0 = =-- .3289 

adj R 76 

O = 18.2° 

33. -.2588 
34. 63.8° 
35. .811 or 81.1% 

PF = cos 0 
O = 35.8° 
PF = cos 35.8° 

= .8110 

36. 319 watts 

Pa = ET I = 393.8 watts 

PF =-
Pa 

opp 
sin 0 = - P = PF(Pa) 

hyp 

P = .811 (393.8) 

opp 
hyp =  P = 319 watts 

sin 0 

37. (4 + j3) ohms 
X 

Z =   
sin 0 

25 

sin 18.2° 

25 
= - - 80 ohms 
.3123 

32. 31.8 ohms 

opp X 
sin 0 = - =-

hyp Z 

X= sin OZ 

= sin 45°Z 

= .7071 (45) 

= 31.8 

Z = Z (cos 0 ± j sin 0) 
= 5(cos 36.9° + j sin 36.9°) 
= 5 (.7996 + j.6004) 
=4 +j3 

38. R = 55 ohms; XL = 437 ohms. First 
find the dc resistance of the coil: 

E 110 volts  
R - = - 55 ()funs 

I 2 amps 

This means that a 55-ohm resistor is 
in series with a perfect coil. We can 
find the impedance of the coil when 
connected to ac by: 

E 110 volts  
Z - - = 440 ohms 

I .25 amps 
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Now we know the impedance and 
the resistance in the circuit. This is 
equivalent to a right triangle in which 
the hypotenuse and the side adjacent 
to the angle 0 are knówn. Now find 
angle 0: 

adj R 55 
cos 0 =—=—== .1250 

hyp Z 440 

0 = 82.8° 

sin e = opp = XL 
hyp Z 

XL = sin 0 (Z) 

= sin 82.8° (440) 

= .9921 (440) 

= 437 ohms 

39. 28.2 /45° ohms 

ZT = Z1 + Z2 + Z3 + 4 

=3 —j6+ 10 +j19 + 2 
—j7+ 5 +j14 

= 20 — j13 +j33 

= 20+j20 

opp X 20 
tan 0 = — =— = —= 1 

adj R 20 

X 
Z = 

sin 0 

20 
Z = --28.2 

.7071 

40. 66.3 mfd 

PF = cos° 
.707 = cos 0 
0 = 45° 

And, since a leading power factor is 
required, the angle must be —45°. 
Therefore, at 60 Hertz the Xc of the 
capacitor must be large enough to 
cancel the 20-ohm XL and still have 
enough reactance left over to shift 
the current 45° ahead of the voltage. 
We have seen that a 45° shift occurs 
when R = X. Therefore, the Xc of 
the capacitor must be R + XL or 40 
ohms. Thus, ' 

.159 .159 .159 
C = —= — = — = .0000663 

fxc 60(40) 2400 

C = 66.3 mfd 

41. 553 watts. First find the current 
through Zh. 

E 220 
lb - e amps 

Zh 71/-36°  

Now find the apparent power of Zh: 

0 = 45° Pa = ET lb = 682 watts 

opp X 
sin e = — =— 

hyp Z 
Since P = Pa (PF) and PF = cos 0, 
then: 

61 



P = Pa(cos 0) 
P = 682(cos 36°) 
P = 682(.809) 
P = 553 watts 

42. 891/77.2° ohms. First find XL 

XC• 

and 

XL = 904 ohms 
Xc = 883 ohms 

Now find the overall impedance of 
the two parallel branches. To do this 
you must first find the impedance 
(ZRc ) of R2 and C in series. 

opp XC 883 
tan O = — =— =— = 3.5320 

adj R2 250 

O = -74.2° 

opp 
sin O = 

hyp 

opp 
hyp -  

sin 

Xc 883 
ZRC    = 920 

sin 74.2° .9618 

= 920 /-74.2°  

Next, assume a voltage across the 
two parallel branches to establish a 
current. 

'RC 

100 /0°  volts (assumed) 

920 /-74.2° ohms 

= .11 /74.2° amps 

, 100 volts 
1R3 = = .5 amp 

200 ohms 

Then convert the two currents to 
j-operator form so that they can be 
added. 

= IRC lRC(COS 0 +j sin 0) 
IR c = .11 (.2720 + j.9618) 
'RC = .03 +j.106 

And since the other branch contains 
only R3: 

1R3 = .50 + j0 

Now add the two currents to find the 
total current: 

= 'RC 1R3 
= (.03 + j.106) + (.50 +j0) 

IT = .53 +j.106 

Next convert IT to polar form: 

opp .106 
tan O = = = .2000 

adj .53 

O = 11.3° 

opp 
sin O = — 

hyp 

opp .106 
hyp = —---.55 

sin 0 .1929 

IT = .55/11.3° 

Thus the overall impedances of the 
parallel branches can now be found: 

E (assumed) 100/0° 
Z0 -  
" .55/11.3°  

Zp = 182/-11.3° ohms 
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Then convert Zp to j-operator form 
so that it can be added to the series 
impedance: 

Zp = Zp (cos 0 — j sin 0) 
Zp = 182 (.9805 —j.1929) 
Zp = 178 —j35 

Now add Zp to the series impedance 
of RI and Ll• 

ZT = 20 + j904 + 178 — j35 
Zî = 198 + j869 

Finally, convert to polar form: 

opp X 869 
tan O = — =— = —=4.3889 

adj R 198 

O = 77.2° 

opp 
sin — 

hyp 

opp 
hyp — 

sin O 

X 
Z —  

sin 77.2° 

869 

.9751 

= 891/77.2° 

43. 75/-48° ohms. First find the re-
actances of the capacitors and coils. 

Xc 1 = 67.7 ohms 

Xc 2 = 145 ohms 

XL, = 62.8 ohms 

XL2 = 94.2 ohms 

Z = 50 — j67.7 — j145 
+ j62.8 + j94.2 

Z = 50 — j55.7 ohms 

—55.7 
tan —  — 1.11 

50 

O = —48.0° 

X 
sin O =—z 

X 
Z 

sin 

—55.7 
Z —  

sin —48° 

Z — —55.7 — 75 ohms 
—.7431 

44. 1.33/48° amps 

E 

75/-48°  

I = 1.33/48° amps 

45. 89 watts. 

P = Pa (PF) 
Pa = ET I = 100 X 1.33 = 133 watts 
PF = cos 0 = cos 48° = .6691 
P= 133 (.6691) 
P = 89 watts 

46. 89 watts. RI is the only component 
which can dissipate power. There-
fore, it dissipates the entire 89 watts. 
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You can arrive at this conclusion 
by: 

P = 12 R = (1.33)2 (50) = 89 watts 

47. The slope of a line is the rate at 
which the dependent variable 
changes with changes in the inde-
pendent variable. 

48. The slope of a curved line can be 
determined by drawing a line tangent 
to the curve at the point of interest 

and calculating the slope of the 
tangent line. 

49. Both the horizontal and vertical 
scales are logarithmic on logarithmic 
graph paper. On the other hand, 
semilogarithmic paper has a log-
arithmic scale on one axis and a 
linear scale on the other. 

50. Polar graph paper is useful for plot-
ting the radiation patterns of 
antennas, loudspeakers, and light 
sources. 
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Lesson Questions 
Be sure to number your Answer Sheet X206. 

Place your Student Number on every Answer Sheet. 

Most students want to know their grades as soon as possible, so they mail their set of 
answers immediately. Others, knowing they will finish the next lesson within a few days, 
send in two sets of answers at a time. Either practice is acceptable to us. However, don't 
hold your answers too long; you may lose them. Don't hold answers to send in more than 
two sets at a time or you may run out of lessons before new ones can reach you. 

1. Give the sines of the following angles: 23°, —47.5°, 290°, 163°, 215°. 

2. Convert 12 +j1ø.8 to polar coordinates. 

3. Convert 30/-50.5° to rectangular coordinates. 

4. What are the power .factors of circuits having the following impedances: 67.1/68°; 
123/-84°; .015/72°; 1.49/60°; 15.1 —j7.7? 

5. What is the impedance in polar coordi-
nates at 60 Hertz of the circuit at the 
right? 

6. What is the current through the circuit 
at the right? Give your answer in polar 
form. 

7. What is the power dissipated in the 
circuit at the right? 

4.5A 

100V sA 12.3A 

1311 

12A/ _L 7341. 
120V• .1, 

8. Express as exponential numbers: 57 pf, 10 megohms, .16 microsecond, 26.7K ohms, 
4503 kHz. 

9. Solve the following problem and express your answer as an exponential number with 
the correct number of significant figures: 

.0073(14.689 — 3.2) x 117 X 9.64 

569 .00857 

10. Sketch graphs, as in Fig. 44, for capacitive reactance with capacity as the 
independent variable, and inductive reactance with inductance as the independent 

variable. Label the axes. 



CONFIDENCE 

Whatever project you undertake, confidence in yourself, 
and in your ability, will make the job easier. 

By confidence, I do not mean "cockiness," and I most 
certainly do not refer to fake confidence which is simply 
"bluffing." 

I'm speaking of the confidence which comes only from a 
thorough understanding of your work — and a genuine desire 
to do a good job. 

This kind of confidence is felt by the people with whom 
you associate. It causes them to have confidence in you — to 
rely upon your judgment — and to entrust important work to 
your care. 

Successful businesses — important jobs — are managed by 
men with confidence in their ability and desire to do a good 
job. 
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