COMPUTA DX
Graphically display and predict 'grey line' HF openings on a BBC 'B' to get ahead with DX

A fresh look at the Yaesu FT401 with G3LLL

TESTING! TESTING! Novel test gear to build:
- dual beam capability from a single beam 'scope
- simple 'in-circuit' component tester

2m OMNI
Build our high gain omnidirectional antenna for 2m and save money!

Readers Offer!
Buy the amazing 'Computa DX' at a nice price...
Why own a 1st Class Radio with a 2nd Class Sound? May we suggest an answer?

Now for the first time, a new ingenious compact sound system allows you to hear weak signals like never before, sort out the rare ones and listen to quality like you have never heard from your receiver, handle talkie or scanner. Usually, accessory speakers are no more than 50 pence speakers in fifty pound boxes. Their efficiency, frequency response and distortion levels are minimal and since most of all of the new transceivers have less than one watt of audio, our ability to understand transceivers have less than one watt power up indication. All input/output connections to the amplifier is D.C. at 400 M.A. A red L.E.D. is mounted on the front panel for power requirements are 12-13.8 volts at 3.5” wriofer with a half pound magnet a 1.5” tweeter with a 12 DB per octave passive crossover network. The tweeter is crossed over at 1500 hz, right where the response of the human ear starts to fall off and the huge woofer fills out the mid-range and low frequency response. No single cheap speaker can begin to give you this type of response.

The second five watt amplifier can be used to drive a second speaker enclosure and will be used in a dual diversity system using the Heil parametric equalization system which will be introduced very soon.

When most receivers are running at a comfortable listening level, their little one half watt amplifiers are being pushed into extreme distortion levels. The extended response, the added efficiency and additional output power of the SS2 will lower your noise floor, reduce noise and allow you to copy signals that formerly were impossible to hear.

Mobile optional with the new Heil Sound System is unbelievable. The 5 watts of output and the tweeter system really adds to the articulation factor making signals so much easier to copy. The system makes Hand Held receivers come alive!

The SS-2 measures 3¾” x 5” x 3¾”. It weighs 2 lbs. and is housed in a high impact silver beige case. Power requirements are 12-13.8 volts D.C. at 400 M.A. A red L.E.D. is mounted on the front panel for power up indication. All input/output connections to the amplifier is made through a 5 pin DIN plug.

You can own this great new addition to your station for only £65.00 inclusive of VAT and carriage. We suggest that you hurry as there is probably someone calling you right now that your present speaker isn't truly reproducing. Discover the world of high quality audio today!

SS-2 Sound System £65.00

THE MICROPHONE HEIL HM-5

Radio amateurs have historically used microphones designed for something else: industrial paging, public address, tape recording, etc. "Matching" microphones for new equipment usually means it's the same colour as the radio! None of these microphones has the correct response we so desperately need for maximum speech articulation. The engineers at Heil, Ltd., went far beyond traditional mic design. They spent thousands of hours analyzing complex SSB voice patterns ... allowing them to determine precisely what was really necessary for your communications microphones. The results are enhanced intelligibility, maximum articulation and clean, natural audio for the signal that will always be "on top".

The HM-5 uses the famous Heil HC-3 "Key Element" mounted in a quality goose neck which is set into a steel die cast base - not plastic like most of the industrial paging mics. A large push-to-talk bar with locking switch allows for smooth P.T.T. operation. The cartridge is connected straight through, so that proper vox operation is possible without the necessity for any external switching.

The HM-5 is a stunning addition to any station and it will be the answer to getting those signals "on top". The HM-5 is the preferred microphone for many leading contest and DX stations.

Sensitivity: -70 DB
Response: 300 HZ – 4,000 HZ.
With a very defined rise at 2100 HZ.

The element works very well into a 500 ohm load, but it may need a matching transformer when using high impedance outputs.

Polar Pattern: Cardioid pattern forward.

HC-3 Key Element £19.95 inc VAT & P&P
HM-5 Microphone £54.95 inc VAT & P&P

Look! Beat the pile up with no hands and the HEIL BM10

A new and UNIQUE NO HANDS Headset/Boom Microphone weighing in at a super light 8oz. The Heil BM10 is a VERY SPECIAL unit designed to a specification from some of the WORLD'S LEADING contest and DX operators.

The microphone "element is the SPECTACULAR Heil HC4 with a specially TAILORED RESPONSE to help you push through the pile up. The headpieces are soft, comfortable and have a high "CLOSE OUT" of external noises. The whole unit is HIGHLY VERSATILE allowing removal or adjustment of the headpieces or microphone to suit the OPERATOR'S NEEDS yet it remains ROBUST enough to meet the RIGOROUS demands of PROLONGED use.

The Heil BM10 CAN DO MUCH FOR YOU, TRY IT, it remains ROBUST enough to meet the RIGOROUS demands of PROLONGED use.

PRICE HEIL BM10 £65:00 inc VAT & Carr.

*Adaptor required for Icom equipment

**Goods will be dispatched by return services Ltd., 194 Northolt Road, South Harrow, Middx.
HA2 0EN, ENGLAND. (Opp. South Harrow Underground Station) Tel: 01-422 9585. Telex: 24263
CONTENTS

VOLUME THREE NO.9 SEPTEMBER 1985

REGULAR COLUMNS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTERS</td>
<td>4</td>
</tr>
<tr>
<td>RADIO TODAY</td>
<td>8</td>
</tr>
<tr>
<td>RADIO TOMORROW</td>
<td>26</td>
</tr>
<tr>
<td>PRACTICALITIES</td>
<td>36</td>
</tr>
</tbody>
</table>

CONSTRUCTION

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIMATE - RFI SUPPRESSION</td>
<td>6</td>
</tr>
<tr>
<td>Mike Bedford, G4AEE, updates the ultimate CW keyer with a look at screening.</td>
<td></td>
</tr>
<tr>
<td>A HIGH GAIN 'OMNI' FOR 2m</td>
<td>16</td>
</tr>
<tr>
<td>Build this vertical antenna, designed by Jim Pestell, G3PBP, and save money.</td>
<td></td>
</tr>
<tr>
<td>BEAM SPLITTER FOR AN OSCILLOSCOPE</td>
<td>38</td>
</tr>
<tr>
<td>Give your 'scope dual beam capability with this 'add-on' by Ted Nield, GW3ARP.</td>
<td></td>
</tr>
<tr>
<td>A SIMPLE 'IN-CIRCUIT' COMPONENT TESTER</td>
<td>47</td>
</tr>
<tr>
<td>Fault find with this idea from Brian Kendal, G3GDU.</td>
<td></td>
</tr>
</tbody>
</table>

FEATURES

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A FRESH LOOK AT THE FT401</td>
<td>12</td>
</tr>
<tr>
<td>Harry Leeming, G3LLL, describes what to look for and how to service this classic rig.</td>
<td></td>
</tr>
<tr>
<td>OPINION - THE RSGB: AN OPEN SOCIETY?</td>
<td>22</td>
</tr>
<tr>
<td>Geoff Smith, G4AJJ, puts forward his views on our national society.</td>
<td></td>
</tr>
<tr>
<td>COMPUTA DX!</td>
<td>30</td>
</tr>
<tr>
<td>Predict 'Grey Line' HF openings as Dave Bobbett, G4IRQ, explains.</td>
<td></td>
</tr>
<tr>
<td>WHERE ON EARTH?</td>
<td>42</td>
</tr>
<tr>
<td>Martin Atherton, G3ZAY, tells of the more unusual islands on the DXCC list.</td>
<td></td>
</tr>
<tr>
<td>LOOKING AT THE BBC ‘OUTSIDE BROADCASTS’</td>
<td>49</td>
</tr>
<tr>
<td>Mick Rump, G8CYE, finds out what’s inside a TV OB unit.</td>
<td></td>
</tr>
</tbody>
</table>

REVIEWS

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMTOR WITH THE G3WHO CHIP</td>
<td>18</td>
</tr>
<tr>
<td>Ken Michaelson, G3RDG, reviews the G3LIV RTTY and AMTOR units and the G3WHO chip for the BBC 'B' computer.</td>
<td></td>
</tr>
</tbody>
</table>

ADVERTISEMENT INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDENDUM</td>
<td>24</td>
</tr>
<tr>
<td>Free Readers Ads</td>
<td>51</td>
</tr>
<tr>
<td>Emporium Guide</td>
<td>55</td>
</tr>
<tr>
<td>Classified</td>
<td>57</td>
</tr>
<tr>
<td>ADVERTISEMENT INDEX</td>
<td>56</td>
</tr>
</tbody>
</table>

Ham Radio Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Ltd. All rights, reserved by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Ltd. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variation affecting price or availability which may occur after the publication has closed for press.
The Truth Will Out...

Sir, After reading Mr R T Freeman's letter in your July issue, ('Telling the truth?') I feel the need to air a few points. Firstly, after having taken HRT since its first issue, I congratulate you on what is in my mind the best amateur radio publication on the market. It covers a wide range of topics and being an avid homebrewer, I enjoy the articles on constructing our own equipment, which is what ham radio is all about. Does Mr Freeman think that the constructional articles are to add and I quote - "another piece of useless kit" to our shacks? I certainly think with what he wrote, Mr Freeman wouldn't know one end of a soldering iron from the other!

If he had tried 'homebrew' he might have experienced the pleasure it brings many of the licensed amateurs on the air today, both A and B class. As for an article which is "'padded crap" I certainly feel that is all he is talking!

Regarding sticking to ham radio subjects, isn't this what Ham Radio Today has been offering since it hit the stands, a lightly balanced, good humoured approach to the subject - I think so.

Now to a different subject. I would like to know how many readers of this publication actually feel that Messrs WPO and JST are only using HRT to fill the contents of their own pockets? For many years the monthlies have striven to get projects on the scale of Micron and Omega running and failed dismally. Now finally this dynamic duo have come up with the answers and HRT have had the sense to publish them. Just look at the popularity of the DS880, 1000s of them sold and up on air and used regularly.

Simon Lewis, G4 PLM

...admittedly we do not all run 400W but, my friend, we are still getting results.

Please do not run down the home built kits until you have given one a good try out. The DS82 has given this operator lots of pleasure to build and operate. Indeed the amateur stations in Moscow, Sicily, and 14 other countries commented on its fine performance using 2W DS8 into a 20m sloping dipole at 20' above the ground during February. You really don't realise what you are missing. It does make a satisfying change from my 100W transceiver.

Also do not slag a magazine that is trying, and succeeding, to supply a service to learners as well as experienced operators like yourself. The answer is in your own hands. Do write us an interesting article and let us learn from your obvious world wide operating experiences.

Finally a wee, friendly tip from North of the Border reference 400W QRP, the secret old man is in two places; the operating technique and the aerial system - not in how much noise you make with your linear amplifier. To HRT, keep up the good work.

Ted, GM4LKJ

Sir, Re: G4SDJ's unconstructive letter (July 85 issue). Racism of any kind cannot be tolerated in any so called democratic society, and exposing its use even on CB radio must be of interest. Especially as many CB'rs move over into the ranks of the radio amateur and could bring that single-mindedness with them; I can find no fault in such a letter. As for the letter page containing only two letters, as expressed by RTG Freeman...if they are interesting, so be it.

The important part of the magazine is not the letter page surely! but more the contents: which I consider to be quite catholic in subject matter.

There is one part of his letter that I am in some agreement with, and that is his comments regarding the promotional aspect of the articles by G4JST and G3WPG. I say this because of price! If I can explain. I have been a constructor for many years, in my beginnings when I could not afford to buy a new product. I would always seek out a kit; kits in those days were very much cheaper than that of buying the finished product. Today it would seem, it would be cheaper buying the finished product as the price of the so called kit is so expensive.

It is all very well for G3WPG and company to use HRT as a means of advertising their wares; that is their privilege. But let us not forget the young people who are coming into amateur radio, many of whom are unemployed and do not have the resources to buy a 230 or what ever the case may be.

Buying a kit to build, as they should be encouraged to do as a means of learning, should be their best prospect. If the price is too high, then it is catch 221.

The Micron, dutifully featured in HRT, costs £241.00 as a kit! A youngster, if he has that amount of money to spend, can buy a hand-held near enough around the same price.

It is worth remembering that all readers of HR may not live in the prosperous south east.

J M Stevenson G8ZRY

Sir, With regard to the letter "Telling the truth" from R T G Freeman, G4SDG, well ... I believe a magazine that is small, dull and not all run 400W is not going to sell many. Considering Mr Freeman's comment that the marketing for the Micron is "another piece of useless kit" I do not all run 400W think it is not a magazine that is small, dull and not all run 400W and should be encouraged. At least if the price is too high, then it is catch 22.

I have built the Micron, albeit, with a layout and cabinet design of my own choosing, and whilst I have never had more pleasure out of the hobby of radio and resolving all the problems that are to be encountered when tackling a project of this size, I have not had the misfortune to encounter him on 80 metres or any other band for that matter.

W K Judge, G4 KEV

Well, Mr Freeman, you certainly stirred up a hornet's nest. Amateur radio is a broad church and HRT tries to reflect all the different 'faiths' in the spectrum of articles that we run.

With reference to G8ZRY's criticism, let me say the following. In order that a large number of people are able to build a kit, the kit supplier must be able to find reliable sources of components. With the contraction of the part of the industry supplying components to enthusiasts, due to computers taking newcomers away from electronics and radio, reliable supplies of components have become not only expensive to buy, but time consuming and difficult to find.

This is unfortunately reflected in the price of kits, something which is of great concern to Tony Bailey, From a

please mention HRT when replying to advertisements. 73 G4N XV
commercial point of view if he could make his kits cheaper. Tony is well aware he could sell more and get better returns... Regarding the lining of pockets, Tony still has his old KW2000 set and house in Hassocks, won't get rich on kits and certainly won't get rich on what we can afford to pay him. Now, why does he do it?... Finally, the simpler projects we do, many of which can be built from bits picked up at rallies and junk sales, are intended to help the less well off — see the 'High Gain 2m Omni' in this issue.

SAVE OUR SQUADRON

Sir, I am attached to my local Air Training Corps as a Civilian Instructor in Newark. A great deal of my time is spent looking after radio equipment or in training boys aged between 14-18 years old how to operate radio equipment. Your magazine is therefore one which is often read in our workshop.

I wonder if you could help us through your magazine. At present, training boys in sending and receiving morse and in radio procedures is not a problem. However, our Squadron funds, like most Youth Organisations, remain exceedingly difficult to obtain.

I have contacted the Radio Society of Great Britain's local clubs in Mansfield and Newark two months ago and although sounding very hopeful at first, they have been unable to help.

While any money remains a problem, we desperately need two HF transmitters capable of operating between 3.200MHz and 3.800MHz and further up the band from 5.200 to 7.500MHz. (The frequencies we use are spot frequencies and thus equipment either expensive or very difficult to obtain.

...If you have any equipment that may be of use to the Newark ATC, Mr Gellatly can be contacted on Mansfield 870558.

OFF FREQUENCY

Sir, In his 'Practicalities' (July issue) G3YWX resurrected an old chestnut I imagined to be long dead and buried. His valve oscillator (Fig. 3) produced the wrong frequency only because it is the wrong circuit.

All crystals have two closely-spaced but distinct resonances: the lowest of these is a series-resonance mode in which the crystal presents a low impedance; at the higher frequency the crystal exhibits parallel resonance and presents a high impedance.

The valve oscillator circuit given is in fact a crystal version of the Clapp (or Gouriet) oscillator, which uses a series-resonant tuned circuit between grid and cathode. The coupling capacitors between grid-cathode and cathode-ground are effectively in series with the crystal and tap the valve into the oscillatory circuit; thus their values should be as great as possible to prevent over-driving the crystal. Unless the crystal used by G3YWX was designed for series-mode operation it must produce a frequency lower than expected; if the coupling capacitors are too small in value the crystal will possibly behave erratically.

It is G3YWX's contention that the crystal in his transistor circuit (Fig. 4) is operating in series with the feedback path. Absolutely correct but, again, it must be a crystal designed for the desired frequency in the series mode.

To use a crystal in an overtone circuit in the parallel-resonance mode, the attached circuit is probably the most useful. Cathode, grid and screen are used as a TATG oscillator with the screen circuit tuned to the fundamental frequency of the crystal. The mode circuit is tuned to the desired harmonic; the oscillator is very effectively buffered against any load imposed on the output because of the frequency difference. The frequency can be adjusted slightly by the small trimmer connected across the crystal.

K H Green, G1 NAK

Please address correspondence to: Ham Radio Today,
1. Golden Square,
LONDON W1R 3AB
The Multimate Keyer
RFI Suppression

Preventing RF Interference

The prototype has been tested in the presence of medium RF fields and has shown no signs of suffering in any way from this. Since digital circuitry is prone to interference from RF however, it seemed worthwhile giving some hints if anyone was unfortunate enough to experience problems of this kind. Such problems could be due, perhaps, to the use of high power and/or a poor SWR generating a very high field strength in the proximity of the keyer. Generally, problems of this type will manifest themselves in the keyer working perfectly when not connected to a transmitter, but failing to work or 'crashing' as soon as it is used to key a rig.

A major contributor to RF tolerance is screening. The recommended case is of a sheet metal construction and therefore offers a reasonable degree of shielding. The substitution of a plastic case would clearly not provide this protection. The screening provided by the metal case is not perfect, however, due to the large cutout made for the keyboard. A possible solution to anyone experiencing problems would be to provide extra shielding for the processor board in the form of an additional earthed metal enclosure, making connections to this through feed-through capacitors. As this involves a reasonable amount of extra work, it should clearly be considered as a final resort.

Clearly it is not possible to provide any screening for the keyboard and, accordingly, the only solution if it is suspected that there are problems in this area is to increase the number of suppression capacitors across the power rails, perhaps also attaching a small capacitor from strobe to ground. It will almost certainly be found that the processor board has sufficient decoupling capacitors. The one other area to be aware of is that 'aerials', in the form of unscreened cable should be used for the leads to the squeeze key and transmitter and, if problems still persist, for some of the internal wiring.

Buy the amazing program in
COMPUTA DX!

Ham Radio Today, in conjunction with A & B Computing Magazine, are pleased to announce that the 'Global View' program, as featured in this month's 'Compta DX' article and originally described in A & B Computing June '85 issue, is available on both tape and disc. You also get a companion program, 'Down to Earth', as featured in July '85 issue of A & B Computing.

A cassette version costs £4 and the disc, in Acorn DFS single density format, 40 or 80 track as requested, a modest £6. All orders should be addressed to 'Global View Offer', A & B Computing Editorial, No.1 Golden Square, LONDON W1R 3AB. Orders will be fulfilled within 28 days of receipt. Cheques should be made payable to Argus Specialist Publications. Good DXing!

Read 'Compta DX'? Now buy the program described within — at a very special price!
IN NO W W
FRG 8800 £559
TRIO R600 £299
NRD 515 £965
TRIO R2000 £479
IC - R71E £699
POCOMOTOR AFR2000
RTTY ALL MODE DECODER
AFR8000 with built-in display now available. Write for details.
(Now with CW option) From £425
S AR MASTER KEYER
Stockists of DAIWA — MET ANTENNAS — MUTEK — WOOD & DOUGLAS — TASCO TELEREADERS —
MICROWAVE MODULES — ICs AMTOR — AEA PRODUCTS — DRAE
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063/371228
Telex: 337675 TELPES G
Instant finance available subject to status. Written details on request.

NEW PRODUCT NEWS
IF YOU'RE THINKING ABOUT C/W
YOU MUST READ THIS!

* Iambic Keyer
* Dash/Dot Memory
* Keying Speed 1 — 55 wpm
* Built In Side Tone Oscillator And Speaker
* Headphone Socket
* Variable Weight Control
* Side Tone Volume And Pitch Control
* Switchable Automatic/Semi Automatic Keying/Tone Control
* Operation From Internal Batteries Or 9 — 15v.
* External Supply
* Low Current Drain
* British Made
* Selectable Positives or Negative Keying

5 YEAR GUARANTEE
Only £49.95 + £3.00 P&P To Include External Power Leads And Plugs.

STAR MASTER KEYER

SEE REVIEW IN THIS ISSUE
The WINNER of our competition for an SMC Oscar 2 10m FM transceiver was Mr John Edward of Summerston, Glasgow whose choice was A, G, H, L, N, P.

Congratulations!

Sad Departure, But Happy Return

Steve Ireland, G3ZZD, has departed as editor of Ham Radio Today, and will be taking on a new role on a weekly newspaper. We wish him well in his new job. However, Julie hasn’t got rid of Steve completely, as he will continue to act as our Consultant Editor, so his knowledge and expertise will not be lost to us or to the hobby.

We hope you will give a warm welcome to the new editor — who is, in fact, the old editor — Dave Bradshaw, G1HRT. We also hope that you will continue to support the magazine as we continue our editorial policy of bringing you the best articles we can.

Anyone Wanting To Work 6m?

Geoffrey Pattie, Minister of State for Industry and Information Technology, made the following announcement in Parliament: “I am conscious that the interim Merriman Report recommended that the Radio Amateur Service should be given an allocation in the band and I am therefore proposing to fulfill that recommendation by allocating the band 50.0 to 50.5MHz to radio amateurs.”

Lowe Electronics have just announced the arrival of two new transceivers which cover this newly allocated band. The TR9300 covers the US radio amateur allocation of 50-54MHz and is in the same mould as the well known TR9000 and its 2m sister the TR9130. This 6m version gives 10 watts output on FM, both sidebands and CW, and about 3 watts on AM. The TR9300 incorporates two VFOs, six memory channels, a green LED frequency display and memory scan facility.

The TS670 is the new quad band transceiver which covers 6m as well as 10, 15 and 40m. It can also come with an optional receiver board that will enable general coverage of 500kHz to 30MHz. The TS670 gives 10 watts on SSB, CW and FM and 4W on AM and comes with two VFOs, 80 memory channels — each of which can hold operating mode, memory scan and keyboard frequency entry — and has an optional mounting bracket for mobile use.

The TS670 quad-band transceiver costs £751.57 inc VAT and the TR9300 will set you back £589.97 inc VAT. Contact Lowe Electronics on Chesterfield (0629) 2817 for further details.

STOP PRESS!

At the Ham Radio Convention in Friedrichshafen in Austria, an official of the West German Post Office said that agreement had been reached by 14 CEPT countries on a common licence.

Nigel Roberts, G4ULF, in Austria

So You Want to Study For The RAE?

Dacorum College, Marlowes, Hemel Hempstead are running an RAE course which starts on Wednesday 25th September between 6.30 and 9.00. Enrolment is on the 9th, and further details are obtainable from the college on (0442) 63771.

Princes Risborough Adult Education Centre in Merton Road, Princes Risborough are running an RAE course with tutors Stan, G4HQC, and Ron, G3NCL, starting on the 26th. They also intend running a Morse course. The fee will be approximately £22.

The Arnold and Carlton College of Further Education are running a series of RAE, electronics and Morse classes. There will be two
Poetry Corner

TIPTOE THROUGH THE ETHER

"Wouldn't it be fun to talk together?"
My husband said to me;
"All we need to communicate
Is some gear and the RAE."

Now I'm all for wedded togetherness
(I'm very fond of that),
And you don't get kids by transceiving
And it doesn't make you fat.

So RSGB we contacted
And we duly paid our sub,
And we got to know some members
Of our local radio club.

They said, "Sign up at the College
And buy yourselves The Book,"
"They said, "And we got to know some members
And it doesn't make you fat."

TIPTOE THROUGH THE ETHER

So from August through to May I toiled
Till the final testing came;
My pencil rattled in my hand,
I could scarcely write my name!

"Watts over amps is volts," (oh dear,
Is that what teacher said?)
"A long wire's only half a wave,"
"Two's colour code is red."

"Conventional current flows from plus,
If dummy load rings true,
Impedance matching's done the trick
And signal flows right through."

"You can't transmit aboard this bus!"
"Add 'W' in Wales!"
"Indelible entries in your log!"
"Unplug your set in gales!"

"A moving magnet in this coil
Induces in this field..."
"...That's my lot! My time is up!
My radio fate is sealed!

"Wasn't it hard?" "I'll never pass!"
"Could you do it?" "No, of course
This means another try at Christmas,
Before we start our morse!"

I wish we knew, (I really do!) So till August wish us well;
Then, if we tiptoe on the ether,
Please cheer and QSL.

Valerie Berry

Antennas for Satellite Reception

Thinking about receiving satellite signals? If you don't want to build your own antennas — as suggested by Arthur Gee, G3UK, in his satellite articles (June and July '85 HRT) — there are antennas capable of receiving satellite (both amateur and weather) signals. Halbar manufacture the I.T aerial, which comes in two versions: the I.T/u which is designed to receive left hand circular polarised signals from UOSAT, and the I.T/tn for right hand circular polarised signals from TIROS/NOAA weather satellite. The aerial comes with four reflector arms which are positioned under the driven elements and increase the upward directivity and, apparently, the gain.

The I.T antenna, supplied with mast clamp, costs £19.50 plus £2.50 p and p. When ordering your antenna, please state which version you require. Further details can be obtained (with an SAE please) to Halbar, Unit 1 Bury Walk, Bedford MK41 0DU or phone (0234) 44720.

short courses beginning 19th September and 6th February '86, and a long RAE course starting 18th between 6.30 and 9.00. Enrolment is at the college on 9, 10, and 11th Sept 2-8pm.

Hilderstone RS have organised an RAE course to start on 4 Oct at the Adult Education Centre, Hilderstone House, St Peters in Broadstairs. The tutor is Dr Ken Smith, G3IX, who aims to use demonstrations, theory and practical projects. Further details from the Hilderstone Centre or GOBEX on Ash 812 723.

Cheshunt DARc will be running an RAE course at the East Herts College, Turnford. Although the starting date is not fixed, it will probably be on Mondays between 7 and 9pm. Jim, G3OJL, is the man to contact on Ware 4316 or the college on Hoddesdon 466451 asking for Mr France or Mr Norman. Basingstoke ARC are assuming no prior knowledge for their RAE course due to start in September. Contact Dave Burleigh, G4WIZ, on Tadley 5195 for further details.

Derby College of Further Education is offering two courses for radio amateurs this year. In addition to the usual RAE based course which runs for 30 weeks (one session of 2 hours a week) they are also running an advanced radio amateurs course for the same time which will go beyond the exam and into technology, and much more. It will also include a large proportion of practical experience. Enrolment is on the 9 and 10th September. Further details from F Whitehead, G4MLL, at the college in Wilmorton, Derby DE2 8UG.

And finally for this month, North Trafford College in Southend (0702) 552911. Manchester are running RAE courses on Monday or Thursday evenings and Wednesday afternoons with Morse classes on Tuesday evenings and Wednesday mornings. Enrol on 9, 10, or 11th September. Mr Beaumont, G3NGD, is the lecturer again. The college can provide further information on 872 3731.

HRT will be pleased to accept details from colleges and adult education centres of RAE courses for publication in the next issue of the magazine.

Testing, Testing

Maplin Electronics have introduced a new range of test equipment designed to be cost effective, fast and accurate. There are at present 5 meters in the 'Precision Gold' range with prices from £6.95 to £42.50.

The cheapest is the pocket multimeter which is apparently a rugged, portable, easy to operate, general purpose meter. At £14.95 comes the M-102BZ which has 23 measuring ranges. Slightly more expensive at £19.95, the M-2020S can also check diodes and transistors and the latter's type and operational integrity. Finally, there are two 'professional' meters — the electronic M-5050 and the digital M-5010. Further details can be gleaned from Maplin on Southend (0702) 552911.

- Salisbury RES are holding a 2m contest on 18th August running from 0900 to 1500 GMT. Contestants must operate on frequencies below 144.285 using CW and SSB only and be below the maximum power limit of 250W ERP. The usual contest exchange of callsign, serial number and county is required and the scoring is 1 point per contact. 10 points each for a new county, new country and contacting G5FF/F. A specially endorsed Salisbury certificate will be awarded to the top 3 contestants.
Repeater News

GB3GN, the Grampian Repeater Group's VHF repeater at Durris, has been modified to reduce the length of 'overs' during the rush hour periods. Between 7.30 and 8.00am and 4.30 and 6pm, talk through has been limited to 90 seconds followed by 10s of beeps and closedown. However, at all other times, 5½ minutes of talk-through time is allowed before time-out is indicated. The delay from the drop of carrier to the invitation morse 'K' has been extended to permit greater ease of break-in for anyone wanting to join the net.

The Grampian Repeater Group have also received site clearance for the proposed North Grampian repeater, GB3NG. This repeater will probably have a lower power output as it is intended as a fill-in repeater between the existing GB3GN and GB3SS.

And in the South, the East London Repeater Group have been given site clearance for the relocation of GB3EL on channel R0 and are now waiting for the RMC's assessment. The Sussex Repeater Group have found a new site for GB3SR on channel R7 which they hope will give better coverage than the Datsun House site in Worthing. The new site will be on Truleigh Hill on the South Downs.

The current vogue for transceivers with voice synthesis capability is a mere sign of today's technology. A more useful device using voice synthesis has been recently introduced by British Telecom for helping speech impaired people to communicate. At the touch of a button, 'Claudivs Converse' (Claudivs stands for Calling Line Announcements Using Digitally Integrated Voice Synthesis) enables the user to select words and phrases which are transmitted by the equipment's built-in voice.

Round Britain in 52 ½ Hours

Five radio amateurs recently visited the most southerly, northerly, easterly and westerly parts of mainland Britain in the course of charity in one weekend; and they were transmitting all the way!

All five participants were members of Gooles Radio and Electronics Society, and the money raised — in excess of £750 by the time this is published — will go to two charities: the NSPCC, just celebrating its centenary year, and the 'Stop the Rot' appeal of Gooles Parish Church.

The main backers of the event were Renault UK, who lent the group a car for the trip, and didn't flinch at the thought of various rigs and antennas being installed. Additional support came from North Sea Ferries, Standard Telephones and Cables plc, the Croda Chemical Group and a local jeweller, Keith Anderson, who supplied prizes for a guess-the-mileage competition. Sadly, a complete lack of interest was shown by the amateur radio traders contacted by the Gooles RES.

It had been hoped that the special event callsign GB8RBT/M would be granted but the DTI wouldn't wear the use of a special event callsign for mobile operation. To quote: "... if we were to permit your society to use a special event callsign /M, the RSGB could expect to receive many more similar requests of varying significance, which they would have to consider equally." However, they did wish every success in its venture. In the end, the Gooles RES callsign, GBHSG, was used /M.

Departure Day

At 5.10pm BST on Friday 3rd May, four members of the team left Gooles Parish Church en route for Dunnet Head, the northernmost point. As luck would have it, their very first contact was Alan, G6GOI, a fellow Gooles Society member. Even though operations were limited to 2m, it was well before the Scottish border, that the first Scottish amateur — and the only contact on SSB — was made with Mike, GM6WXP.

By midnight, Inverness and 36 QSOs had been reached; by 0300 BST on the Saturday morning, Dunnet Head...
The Pocomtor AFR 8000 is output of your receiver. Only connection to the audio like AMTOR. However, unlike the AFR 2010, it de-

popular AFR 2000 and 2010. Like the AFR 2010, it de-

Francis Woolley, G3LWL has retired as secretary of the RAIBC after more than twenty years at the post. At a recent RAIBC picnic at Romsey, Francis was presented with a gift of luggage by vice-chairman Digs' Acheson. G3WIT.

Mrs Cathy Clark, G1GQJ, takes over as secretary and editor of the newsletter and husband Brian, G1ECE has become treasurer.

Ultimate Decoder?
The Pocomtor AFR 8000 is the follow on model from the popular AFR 2000 and 2010. Like the AFR 2010, it de-

codes CW and RTTY in Baudot, ASCII, ARQ, FEC and AMTOR. However, unlike its predecessors, it is a stand alone unit, requiring only connection to the audio output of your receiver. It displays the decoded text on two lines of LEDs which can each display 40 characters. The AFR 8000 can also be linked up to a printer to provide hard copy. The AFR 8000 costs £684.57 inc VAT and further details of it and the AFR2000 and 2010 can be obtained from Dewsbury Electronics, 176 Lower High Street, Stourbridge (phone Stourbridge 3900630).

Very Special Events...
On 3rd August GB2PYF will be operational from the Pen-
y-Fal Hospital site on HF and VHF Abergavenny and Neville Hall ARC are organising and will be manning the station throughout the day.

GB2TC will be on 3.5 and 144MHz on 17th and 18th.
The station is celebrating Henry Tudor's visit to the town, 500 years ago! A special QSL card will be sent to all contacts.

Several special event sta-
tions are planning to be on the air over the August Bank Holiday. These include: GB2TF which is marking the Towersey Village Festival be-

between 23rd and 26th. Operating from Towersey in Oxfordshire, they will be on HF and 2m and a QSL card will be available to contacts.

GB6SDX and GB6SDX will be operating from 24th for a week. The organisers, radio amateurs from City and

Brunel Universities, are intent-
ing working from two sites in square IO97 otherwise known as Peterhead in Scotland. They will be using SSB, ATV, RTTY and packet radio on VHF and UHF.

GB2BT will be on the air from Bassetlaw showground on Sunday 25th and Monday. The station is being organised and run by Workset ARS and further details will be available from the club.

Finally, Frensham Heights RC have informed us of an interesting incident that may lead to greater things. The club organised a special event station for 29th May to celebrate the 60th anniversary of Frensham Heights School and to raise money, by means of sponsor-

ship, for famine relief in Sudan.

Conditions were not very good and nearly all the contacts made were in Europe. But just as the operators were beginning to wind down, they heard English speaking STSALR calling them. STSALR was based in El Obeid, central Sudan and the operator turned out to be a field worker with one of the aid organisations. The operator, AI, agreed to send information about the group and their activities and they arranged further contacts. The club is clearly delighted with this direct contact with the area they were hoping to help and would like to hear from others who are or would like to be involved in an amateur radio famine relief project. Contact Dick Jones, G1JCD, at Frensham Heights School, Rowledge, Surrey GU10 4EA.

The IBA have announced a series of frequency changes for Independent Local Radio (ILR) stations. The stations affected include Invicta Sound which will have both its transmitters' frequencies moved. Saxon Radio, based in Bury St. Edmunds, will have its frequency changed only slightly. The frequencies of Essex Radio's transmitters will move up. Radio Mercury's Reigate transmitter will be moved slightly. The frequencies of Essex Radio's transmitters will be moved. Saxon Radio, based in

Independent Local Radio
The IBA aims with these moves to provide room for a

another aspect of these moves is the advent of community radio. Peter Marcham, reporting in the Radio Society of Harrow's QZZ newsletter (June/July '85), states that the two versions of community radio under consideration are 1) a station with "very local coverage for a specific geographical community providing programme material of a general local interest" and 2) stations that cover "a greater area and provide a service to ethnic minorities". Finally, Peter reports that the "Community Radio Licence will permit 10W maximum ERP in frequency range 105-107.9MHz".

The near future will, it appears, see some major changes in Band 2...
A Fresh Look

Back in the early seventies, three of the four most popular Japanese transceivers were made by Yaesu — the FT101, FT200 and FT401. In previous issues, Harry Leeming, G3LLL, has given servicing advice and modifications for the former two. This month, Harry looks at the FT401 and variants, including FTDX400, FTDX500 and FTDX560.

The PA Stage This uses a pair of rather ‘over run’ 6KD6 line output valves which are a common please mention HRT when replying to advertisements. 73 G4NXV SEPTEMBER 1985
source of trouble. 6KD6's do not usually die, they are murdered (I) by operator error or excessive time spent in the 'tuning up' process. I have seen many 6KD6 valves which have got so hot mainly due to the latter, that the glass has melted. The instructions in Yaesu's manual do not give a wide enough safety margin, and when selling the FT401's new, we provided the following notes which saved a lot of trouble and expense.

1. Do not connect the FT401 to the AC main supply or switch without ensuring that the controls are in the following positions: 'mode' set to LSB or USB and not CW tune or AM; 'VOX Gain' should be near minimum but not in MOX position; 'Mic Gain Carrier' should be set at minimum.

2. When tuning up, use in addition to the manual's pre-tuning and final tuning instructions, the following is helpful: use the PTT mic switch to enable tuning to be accomplished quickly — do not switch to transmit using the MOX switch. Keep the meter switch in the IC position and ensure that the meter reading never exceeds 0.2A when pre-tuning, as per the manual's instructions, or when adjusting the ATU for minimum SWR. When everything has been pre-tuned at low power and a low SWR has been achieved, complete the final tuning at full power in the shortest possible time, keeping the meter switch in the IC position. On no account must the IC reading exceed 0.5A for more than a 2 second burst followed by a 4 second rest.

Apart from PA valve faults caused by user error, these valves can be blown by a failure of the negative bias supply. It should read about -50 volts at the grid of the PA valves with no drive but in transmit mode; and around -90V when receiving. Check this before fitting replacement valves! The most likely cause of reduced or positive bias leakage in the coupling capacitor from the anode of the driver valve, which can be checked. When replacing the 6KD6 PA valves, try to get a pair of Japanese manufacture, or you may have neutralization problems.

Low output power coupled with excessive IC, and the inability to tune the plate and load controls is usually caused by a defective choke in the anode supply to the PA valves. Similar results occur, however, if there are shorted turns on the tank coil (such as a blob of solder!) or the output coupling capacitor from the anode of the PA goes open circuit. If very little current can be read in the IC position and the valves are ok, check the screen voltages — the 100 ohm parasitic stopper resistors often fuse under faulty conditions.

The Driver Stage. This uses a 6GK6 with a fixed neutralization capacitor of a few picofarads between its input and output. Most FT401's were issued and the driver stage neutralized for use with General Electric 6GK6. What ever valve was fitted by Yaesu originally it is essential that the same make is used if replacement becomes necessary, otherwise the driver stage neutralization will be incorrect. This results in the pre-selector peaking at different points on Tx and Rx, with either a tendency to low drive or even driver stage oscillation. If you cannot get the correct driver valve, remove C81 and fit a 10pF trimmer in its place. Adjust this until the driver grid circuit peaks at the same point on Tx and Rx along with stable operation of the stage.

Shortage Of Drive. As with the FT101 and FT200, an 'untraceable' cause of very little drive can be shorted turns on L6 in the driver stage neutralizing circuit. Replace with an 100-1000uH choke to check, then obtain and fit the correct item.

With a rig that is in good condition, you will find that there is excessive drive on 80 and 40 metres, but that this falls off, so that on the highest frequency bands there is only just about enough. As the set ages and drive falls, power falls off appreciably on 10 and 15 metres, long before the lower frequencies are affected. This effect can create some confusion because it is often due to a component which is common to all bands, but which is incapable of delivering the extra drive needed on 10 & 15 metres. Valves can only be properly tried by
burnt out mains transformers are power supply trouble occurs, and quite the 6 BA6 stabilises also the 'S'
the customary solution to this pro-
amp with a 6BA6W is please mention HRT when replying to advertisements. 73 G4NXV
fails, it is better to replace all eight replacements.
rectifier failure, and these can be
supplies, the most common fault is
normally unknown as long as the
meter zero setting.
乙烯. The 'ruggedised' version of
rent.
augmented caused by an AGC
Tx cut off bias to kill the receiver.
first mixer - a leak here causes the
receiver and poor transmit drive with
considerably - resulting in a 'deaf'
FT401's alignment can drift
without reference to them.
the notes below are not complete
us.
the notes below are not complete
without reference to them.

Alignment

Due to heat, age and nicotine, the FT401's alignment can drift considerably — resulting in a 'deaf'
receiver and poor transmit drive with little or no ALC action. Alignment details are given in the manual and
the notes below are not complete without reference to them.

Aerial RF and Driver Coils.

Aligning these is complicated by
the fact that the driver cores (the
ones nearest to the PA valves) have usually seized up solid. Do not force them, there is an easier way!
Set the rig to the centre of each band and tune in to a calibration point. Switch to Tx and tune up for
maximum power, reducing the drive to give about 0.1A IC. Trim RF core (if sealed with wax, warm
with a soldering iron — don't force it!) for maximum drive whilst trying the pre-selector slightly either side of
the peak. Adjust the combination of the pre-selector and RF core until maximum output power is at-
tained - backing off the drive control as necessary to avoid damaging the valves. Switch back to
receive and, without touching the pre-selector control, adjust the relevant aerial core (the one nearest
the front of the set) for maximum receive sensitivity. Following the above course of action should
result in perfect alignment without the danger of breaking an almost irreplaceable core.

The 5.5-6 MHz IF Band Pass Filter. After trying everything else, if your rig is still short of drive, the
fault is probably a drift in alignment of this band pass filter. Remove the sticky tape from the top of the
screening can and note three holes.

use a small screw driver with an insulated shaft (there is 150V on the
trimmers, so be careful!) and note that there are two trimmers in
shallow holes and one in a deep hole. Set the rig at 14.05MHz and
peak the pre-selector with the rig in the Tx mode, setting the carrier
to give an IC of about 0.1A. Adjust one of the trimmers in the
shallow holes for maximum IC backing off the carrier control if
necessary to keep the PA current below 0.15A. Next, tune up at
14.45 MHz and repeat the procedure with the trimmer in the
other shallow hole. Then, peak the trimmer in the deep hole with the
rig set at about 14.25 MHz.

Carefully repeat the above three actions a few times, until it is
possible to get a fairly even amount of
right across the band. If
you can only get adequate drive at one end of each band and
adjustments to the band pass filter will not improve things, check
the alignment of T207, which is the
VFO's band pass filter. Measure the
VFO's injection voltage on pin 1 of
V201 with a diode probe volt-
meter — it will vary as you tune
across the band with the drive set
at minimum. Peak the two cores in
T207 to give a good response over
the VFO's 500kHz tuning range.

Mic Gain. The FT401 does not
have a great deal of mic gain to
spare. With the correct microphone, the control is likely to
be well up on 80 and 40m and
almost flat out on 10 and 15m (ex-
cept that is for that breed of 'hams'
who instinctively shout as soon as
their eyes light on a microphone!).
Not having much gain to spare
means that it is essential to use the
correct microphone. This should be
a high output dynamic type with an
impedance of 50 kohm; a high out-
put crystal or ceramic microphone
will just about work, but a standard
low impedance microphone made
for a modern ham or CB rig will just
not do.

The New Bands and
160m

As all late FT401s use the
same crystal frequencies as the
FT101E, it should be possible to fit
three extra bands using the WWW,
Auxiliary 1 and Auxiliary 2 posi-
tions. 10-10.5MHz is already fitted for receive only on the WWV range and so the only extras needed are a driver coil, a few capacitors and a ‘tap’ on the PA coil. The writer has not tried this, however, so please do not ask for advice.

Some FT401s have been adapted to 160m as years ago, my company did market an FT401 160m kit. The parts are no longer available, but if you want to wind your own coils, I can photocopy the wiring diagram and instructions upon receipt of a stamped addressed envelope and 30p in stamps. I must, however, emphasise that we do not have any parts or coil winding details, so that these instructions are supplied on a strictly “sort it out for yourself” basis.

Spare Parts

Even Yaesu do not hold spare parts for ever, and some bits and pieces are difficult to get hold of. Substitution is the answer here and often parts from later rigs will do. TV line output stage disc ceramic capacitors work well in the PA stage, and most items are exchangeable, even if it means drilling a few holes — fortunately there is plenty of room. If you are really stuck and the official importers cannot help, it is worth writing direct to Yaesu in Japan and ordering direct. You will have to pay in Yen but your bank can arrange this at the usual handling charge!

A good FT401 is a super rig which will still hold its own against most other rigs. However, some are really past it, so do check carefully before parting with your money. Repairs are one thing but the new lamps for old department is now out of business.

CALL THE BEST...

CALL THE REST, then...

RECEIVERS: FACTORY FRESH STOCK JUST IN!

R-600

The R-600 is a high performance general coverage communications receiver covering 150 kHz for 30 MHz in 30 bands. Use of PLL synthesized circuitry provides highly accurate frequency control with maximum ease of operation. Use of the latest technology assures the ultimate in short wave listening enjoyment on all covered frequencies, whether using AM, SSB, or CW modes of operation. The compact size of the R-600 allows the user the maximum flexibility in placement of the radio, and the front mounted speaker permits the radio to be located between shelves without degration of audio quality.

R-1000

The R-1000 is a high class general coverage receiver covering 30 bands from 200 kHz - 30 MHz with a PLL synthesizer that incorporates a variety of KENWOOD's sophisticated electronic technology acquired over many years. Both a digital display readout (1 kHz step) and analog dial are provided for more convenient operation. The R-1000 also boasts a quartz digital clock with timer, three IF filters, RF ATT and TONE control, etc, to enhance receiving conditions for each mode. Due consideration has been given to innovative design and compactness, making the R-1000 indispensable for Amateur radio operators, professionals, BCL’s and SWL’s, etc.

R-2000

The R-2000 provides outstanding performance through use of microprocessor controlled operating functions, allowing maximum flexibility and ease of operation throughout its operating range. As an mode receiver, it covers 150 kHz — 30 MHz in 30 bands, on SSB, CW, AM and FM. Key features include digital VFO’s, ten memories that store frequency, band, and mode information, memory scan, programmable band scan, digital display with 24 hour dual clock, plus timer, and a host of other features to enhance the excitement of listening stations around the world.

STATION ACCESSORIES. “MODULATE THE SHACK LIGHTS”!!

2Kw H.F. LINEAR AMPLIFIER, KENWOOD TL-922, £1100

AGENTS:-

NORTHERN IRELAND

Tom & Norma Greer, Drumbo, 023126 645

BUY THIS MONTH YAESU FT/FP/FC757 ONLY £1150!
High Gain 'Omni'
Antenna for 2m

The antenna consists of two \(\frac{5}{8} \) wave elements joined together by an eighth wave phasing section, as in a conventional collinear antenna. Performance is equal to that of a commercial 'Ringo Ranger' and the

Vertical 'omni' antennas giving a reasonable amount of gain can be expensive. Why not try this straightforward design giving 6dBi which can be built with a few hand tools? Design by Jim Pestell, G3BPB.

The antenna will give about 6dB gain over a \(\frac{1}{4} \) wave vertical antenna. It needs only a simple ground plane, consisting of four 19" rods, and makes a very superior radiator for vertical 145MHz FM working.

Construction

The general construction of the antenna is shown in Fig.1. The
first thing to do is to make up the coaxial matching section necessary at the base of the antenna, as shown in Fig.2. Strip off the insulation from a 1" length of U43 or U76 coaxial cable and prune to length as per Fig.2. At the end indicated in the drawing, solder the coax braid to the inner. Be careful not to keep your soldering iron too long on this joint as too much heat will tend to melt the coax inner.

Cover the matching section over its entire 10 \(\frac{3}{4} " \) length with a couple of layers of PVC tape.

Take the bottom element of \(\frac{3}{4} " \) aluminium tube, 55\(\frac{3}{4} " \) long and slide a plastic funnel, of the type obtainable at hardware stores for filling cans etc, over the bottom element and the matching section as in Fig.1. Once in position the funnel, which will act as a rain cover, is taped in position and weather proofed with two coats of clear varnish. Before fixing this, the bottom 1" of the element should be tightly fitted in a dome type conduit cover, once again, obtainable at a good hardware store.

The bottom element and conduit cover is then mounted in the centre of a 6" square of \(\frac{1}{2} " \) thick paxolin or perspex, which has been first drilled to take an SO239 socket. The position of the socket is not particularly critical, but this should be mounted just outside the radius of the conduit cover — see Fig.3. As the diameters of different makes of conduit cover will vary slightly, this distance is difficult to fix. The inner of the phasing stub should then be connected to the centre pin of the SO239 and the outer attached to the bottom element close to where this enters the conduit cover with a solder tag and a suitable nut and bolt.

The top element of 50\(\frac{3}{4} " \) can now be cut and joined to the bottom section by an old Band 1 TV Yagi, dipole or crossed dipole centre piece. There should be a \(\frac{3}{4} " \) spacing between the top and bottom element inside the TV antenna centre piece.
The next thing to be fitted to the antenna is the phasing stub. This can be fabricated out of 10, 12 or 14SWG varnished or enamelled wire, the heavier gauge the better. The phasing stub should be attached inside the TV centre piece, one side being attached to the top element of the antenna, the other to the bottom (the centre piece may need to be drilled to achieve this).

When all nuts, screws and bolts have been tightened, give them two coats of varnish. The antenna should now be fitted to the base mounting plate, a 6" square of at least 14SWG aluminium sheet, with a two inch border bent down at 90 degrees all around, so that we have a 6" square which fits neatly over the perspex base (see Fig.3). Prior to bending down the border, a 3" square hole must be cut in the centre of the aluminium square to clear the conduit dome cover. The four radials, consisting of four 19" lengths of ⅜" aluminium tube, are mounted in each corner of the baseplate diagonally, so that the antenna end of the radials extends to the inner boundary of the base plate (see Fig.4).

The outer of the SO239 socket mounted on the paxolin/perspex is now connected to the aluminium overlay/radials by means of a short length of 14SWG wire. A capacity matching section is now constructed from a piece of 14SWG aluminium, ½" wide and bent into an L shape (see Fig.5). This is bolted to the aluminium overlay so that the 3½" vertical part of the L is approx ¼" from the antenna.

The matching is achieved through varying the capacity between the ground plate and the radiator. This is practically done by varying the distance between the matching section and the antenna until the lowest SWR is achieved at 145.5MHz, with your 2m Tx supplying power via 75 ohm coax plugged into the SO239 with the appropriate plug. If varying the distance between the radiator and the matching section fails to achieve an SWR of at least the matching section, it should be shortened a few mm at a time until the desired effect is achieved. The matching procedure is best carried out with the antenna 7-10' off the ground.

Actual mounting of the antenna is left up to the requirements of the individual reader. In the author's case, two 5/16" holes were drilled in the aluminium overlay border and the antenna bolted to his mast.
Following on from my article in which I reviewed the new AMT-2 all mode Terminal Unit from ICS Electronics, here is a solution for those of you who do not have lots of the 'ready' to purchase such an item of equipment but have access to a BBC 'B' microcomputer.

Recently, we looked at the latest AMTOR unit from ICS. Now, Ken Michaelson, G3RDG, investigates a budget software based approach to the mode using a BBC 'B' computer. Read on...

Peter Harris, G3WHO, is the man who wrote that excellent RTTY program for the BBC 'B' which I discussed in a previous article in this magazine (HRT February 1984). He has now written a program for AMTOR (almost) 'stand alone'. This means that using the BBC 'B' and either the dedicated RTTY Terminal Unit interface for the BBC 'B' or the G3LIV Mk 2 or Mk 3 RTTY Terminal Units, we can receive or transmit AMTOR, either in the 'ARQ' or 'FEC' mode. There is also a 'Listen' facility. In addition, by loading in the G3WHO RTTY program, one also has the RTTY send/receive facility.

But I had better start at the beginning! Peter, G3WHO, and Johnny Melvin, G3LIV, (of the SSTV and RTTY interfaces for the BBC 'B'), have got together and Johnny has produced suitable units to suit Peter's new program and the BBC 'B'. The program, incidentally, is on EPROM and is plugged into the computer in a spare position. The result is a unit measuring 1¾" high x 3½" wide x 6" deep, called the 'Amtor Controller'. Unfortunately, the BBC 'B' internal clock is not accurate enough on its own for AMTOR. Experience has shown that software programs for other computers can run into problems with loss of phase during QSOs, which is very frustrating for both ends. So, in fact, the controller is essentially an accurate 1kHz timing reference, and interfaces with the Beeb via the User Port.

Also provided on board is a solid state PTT switch and PTT delay circuitry. This allows you to adjust the delay to suit your particular transceiver for DX/local working. The latest version of the EPROM includes a display of the actual delay time in milliseconds at the top right of the monitor screen, so that there should be no trouble to arrange for your unit to give the best possible results for local working and for DX. In addition, by pressing 'Control L', one can toggle (switch) between the existing short delay that has been set up, and the maximum of 50 milliseconds for local working.

The 'Amtor Controller' needs a Terminal Unit between it and the transceiver, and it is designed, primarily, to work with the G3LIV dedicated BBC 'B' Terminal Unit, although it can be used with his Mk2 and Mk3 PCBs.

The second unit supplied for review was in fact the G3LIV dedicated TU. This is the same physical size as the Amtor Controller and can sit either on top or below the Controller. A 20 way ribbon cable connects to the BBC 'B' User Port, using an IDC female connector, with the other end parallel looped to both the Amtor Controller and the dedicated RTTY interface via IDC female connectors.

The Amtor Controller has a 2.5mm socket at the back, for the PTT connection from the rig. The RTTY interface has a 3.5mm socket at the back to take the audio in from the receiver and the tones out to the microphone circuitry of the rig.

A potentiometer is located at the back right of the PCB for the adjustment of the level of the audio tones feeding the microphone input. The instructions, quite rightly, emphasise the need for care to be taken not to overload the PA stage.
of the transmitter/transceiver.

Operating The System

Since this is, primarily, a review of units to enable the keyboard enthusiast to operate using AMTOR with as reasonable an outlay of hard cash as possible, I will start with comments on the operation of the unit and the program. First of all, the program. I find it excellent, and as a confirmed AMTOR addict, could not fault it in any manner. The extra facilities offered in the program make it, in my view, superior to any of its competitors. It is very similar to the G3WHO RTTY program in that it runs on 80 columns. (For the benefit of those of you who are not familiar with 'Computerese', columns means number of characters per line, and it took me some time when I started, to understand this!!)

When the EPROM is plugged in and the computer switched on, the program is called by typing 'X AMTOR', whereupon you are asked to insert the time in hours and minutes. Having done that and pressed 'Return', the Menu appears. All this is in colour, if you are using a colour monitor of course, and looks very pleasing indeed. There are seven choices in the Menu as follows: 1. Mailbox, 2. Edit messages, which means that you are able to insert up to six 254 character messages which can be recalled at will by pressing Function keys 1 to 6), 3. Save messages, (to disc or tape), 4). Load messages, (previously written and saved), 5). Alter callsign, (the EPROM comes with your own callsign and Selcall in it), 6). Alter Selcall, (same remarks apply), 7). View text, (this will allow you to view all the text previously received and still in the buffer. You are able to save it, print it or clear the buffer).

The next thing is to get the display prepared for receiving/transmitting, and this is done by pressing 'Escape'. It is a split screen display, with the top half of the screen showing the received text and the lower half the text about to be transmitted. That is to say that you can type your text before actually transmitting it, in fact, even while you are copying the other station’s transmission! The very top line of the screen shows the status information, and this is displayed in a very fine clear manner. There are six pieces of information which are available. They are: the mode of reception/transmission (ARQ or FEC); the state of the unit, (Stand-by, Phase, Traffic, Idle, Error or RQ); Receive/Transmit /Listen, the word 'Printer', if the printer is switched on; (Shift/F6), the current time (input at the commencement of operating) and, on the latest EPROM, the delay in milliseconds on the PTT line, (mentioned previously).

The actual wording of the status line is not the same for both ARQ and FEC. In ARQ, the second column shows as above, but in FEC it will only show 'Idle', 'Traffic' or 'Error'. An interesting piece of information is shown in the second column when actually calling a specific Selcall, where the word 'Call' appears followed by the Selcall you are calling. Finally, to my mind the most useful display of the lot, and one which made the tuning in of stations so simple that the veriest newcomer could do it. This is achieved by a two dot display in the top righthand of the screen. It shows, in fact, that the program has locked with the other station, and although I have been operating AMTOR for perhaps three years now, I found it a very great aid. It is interesting to note that Peter Harris, G3WHO, modestly dismisses this excellent facility in one short sentence!

But to continue...When transmitting, all transmitted text, both in ARQ and FEC is 'echoed' back to the top screen when sent. In addition, all received and echoed text is put into memory for later QSO review, and, (a great help for log keeping), all transmissions initiated by you are time-stamped. Further, all the text in the QSO review buffer can be printed or saved to disc/tape as you wish. (See my remarks on the Menu above).

At the end of an AMTOR QSO by sending '*' the program closes the transmission and automatically sends your callsign in morse. A further interesting key is ';' which, when pressed, sends the current time.

So far I have not given any details about Option No.1 on the Menu. The Mailbox facility in this program is a simple one. The unit will respond to your Selcall when sent and take messages for you, either on the printer or in the buffer, (which can be saved to disc or tape). It will then sign off with the time. If you have answered 'Yes' to the CW ident prompt, then a CW ident will be sent, and the system will return to standby and reset ready for the next call. I should draw your attention at this point to the fact that doubts have been expressed as to the legality or otherwise of unattended AMTOR operation within the terms of the Amateur licence.

Final Thoughts

I shall not describe the actual methods of achieving ARQ and FEC contacts, because I have discussed this before, but suffice it to say that this program makes the whole thing simple and easy. In the latest version of the EPROM there is yet...
another operator’s aid. The keys 'Control + A' are disabled except when on Standby. This is because it is easy to press 'Control A' instead of 'A' by accident when typing, which causes the QSO to be lost. I know, I've done it a number of times!

Peter Harris's manual explains everything very clearly, and using the units I had a number of enjoyable contacts. As I mentioned above, the Amtor Controller, (which is the Clock/PTT interface), required an RTTY interface to act as a MODEM, and is then able to transmit and receive RTTY without any alterations to the units. Simply load the G3WHO RTTY program from either disc or tape, or for that matter call up the program from the available EPROM by typing ' * RTTY', and you are away in the RTTY mode!

As to which units are selected, if you already have the RTTY interface or the Mk2 or Mk3 board from G3 LIV, then, obviously, the 'Amtor Controller' is the only thing required apart from the EPROM. If you are starting from scratch, then

If you already own a G3LIV RTTY interface for the BBC 'B', you only need to purchase the 'AMTOR Controller' unit and the EPROM (see above). For those starting off, a combined unit is available (see picture on 1st page of article).

the complete AMTOR-RTTY interface is the thing.

Having used the equipment for some three weeks, more or less continuously, I have nothing but praise for them. The finish of the items and the ease of operation, due to Peter Harris's two programs, makes the units, in my view, the equipment for AMTOR and RTTY. Leaving aside the matter of price, this setup would still be my choice, but when one considers that it is also considerably cheaper than its rivals, there seems to be no argument.

Amtor Controller (board alone £28, boxed £43); EPROM (£27); RTTY computer interface (boxed £77) and G3LIV Amtor/RTTY interface (complete unit £112.50). The double ended cable supplied is an extra £10.

All these prices include VAT and postage. Thanks are due to Peter Harris, G3WHO, of 10 Appleby Close, Great Alne, Alcester, Warwickshire B49 6HJ for the loan of the EPROM and from whom this can be purchased, and to Johnny Melvin, G3LIV, of 2 Salters Court, Gosforth, Newcastle, Tyne and Wear for the loan of the three units.

If you already own a G3LIV RTTY interface for the BBC 'B', you only need to purchase the 'AMTOR Controller' unit and the EPROM (see above). For those starting off, a combined unit is available (see picture on 1st page of article).

the complete AMTOR-RTTY interface is the thing.

Having used the equipment for some three weeks, more or less continuously, I have nothing but praise for them. The finish of the items and the ease of operation, due to Peter Harris's two programs, makes the units, in my view, the equipment for AMTOR and RTTY. Leaving aside the matter of price, this setup would still be my choice, but when one considers that it is also considerably cheaper than its rivals, there seems to be no argument.

Amtor Controller (board alone £28, boxed £43); EPROM (£27); RTTY computer interface (boxed £77) and G3LIV Amtor/RTTY interface (complete unit £112.50). The double ended cable supplied is an extra £10.

All these prices include VAT and postage. Thanks are due to Peter Harris, G3WHO, of 10 Appleby Close, Great Alne, Alcester, Warwickshire B49 6HJ for the loan of the EPROM and from whom this can be purchased, and to Johnny Melvin, G3LIV, of 2 Salters Court, Gosforth, Newcastle, Tyne and Wear for the loan of the three units.

NEXT MONTH

HF ANTENNAS FOR THE SMALL QTH
G3ZPF worked 100 countries on all bands 80 - 10m
from a postage stamp of a garden...

REVIEWS GALORE!
Yaesu's FRG9600 VHF/UHF scanning receiver
PLUS
Timestep's weather satellite reception system.

PROJECTS
10W power amplifier for 70cm
AND
an effective ferrite loop antenna for 160 and 80m.

AND LOTS, LOTS MORE!
GENERAL

WELZ have just announced the introduction of their new range of meters. The range replaces their previous models, the main feature of the new range is the ability to measure PEP as well as average power. Now the SSB operator is no longer in the dark as regards his PEP output power. He can see at the flick of a switch his exact output power whether it be AM, FM, or SSB. All measurements are made in coax line to the antenna and both forward RF and reflected RF power can be measured as well as the more familiar VSWR measurements.

All meters have a selection of range so that even low power transceivers down to about 1 watt can be measured. The RF sensor is now removable and so the meter can be placed remote from the coax line. The 12 volts DC necessary to power the meter is also used to light up the meters and provide an LED function indicator.

SPECIFIC

<table>
<thead>
<tr>
<th>Model</th>
<th>Range (MHz)</th>
<th>PEP (Watts)</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP220</td>
<td>1.8-200</td>
<td>2/20/200</td>
<td>59.00</td>
</tr>
<tr>
<td>SP420</td>
<td>1.4-450</td>
<td>4/20/200</td>
<td>69.00</td>
</tr>
<tr>
<td>SP122</td>
<td>1.8-50</td>
<td>5/15/150</td>
<td>69.00</td>
</tr>
<tr>
<td>SP225</td>
<td>1.8-150</td>
<td>5/15/150</td>
<td>99.00</td>
</tr>
<tr>
<td>SP425</td>
<td>1.4-525</td>
<td>5/15/150</td>
<td>99.00</td>
</tr>
</tbody>
</table>

Main agents for all leading amateur equipment

TRIO
FDK
LECOMAR ELECTRONICS

DEALER ENQUIRIES INVITED

COMMUNICATION RECEIVER

uniden MODEL CR-2021
A compact communications receiver with full professional specifications and facilities.

- FULL FREQUENCY COVERAGE OF 150KHz to 29.999MHz and 78 to 108MHz.
- MAXIMUM SENSITIVITY ON AM/SSB/CW, also FM, with NARROW/WIDE FILTER.
- MEMORY FOR ANY 6 AM/SSB and 6 FM FREQUENCIES, plus AUTOMATIC SCANNING BETWEEN ANY TWO FREQUENCIES.
- KEYBOARD ENTRY OF FREQUENCY SHOWN ON LCD DISPLAY.
- EXTERNAL SOCKETS FOR AERIAL, EARTH, HEADPHONES and LOUDSPEAKER.
- OPERATION FROM INTERNAL BATTERIES, 12V DC, or 240V AC.
- ONLY £189.75 inc VAT and P&P.

Please allow 7-14 days for delivery

LECMA ELECTRONICS
113 High Street, Cowes, Isle of Wight
Tel: (0983) 293996

DEALER ENQUIRIES INVITED

BECOME A RADIO AMATEUR
Train now for the Radio Amateur Licence examination. No previous knowledge needed, only a few hours per week of home study for 3 to 6 months. Post coupon now for details or tel. 062 67 6114(24 hr service)

British National Radio & Electronics School
P.O. Box 7, Teignmouth, Devon, TQ14 8HS

FREE brochure without obligation from:

British National Radio & Electronics School
The following article was written by Geoff Smith, G4AJJ, who until recently was an Ordinary member of the RSGB Council. He resigned from that Council over fundamental disagreements on how the Society should be managed. In a letter from the Council accepting his resignation, these differences of principle and therefore policy were acknowledged, with a further acknowledgement of Mr Smith's sincerity with regard to the well being of Amateur Radio.

A member of RSGB since 1959, Geoffrey Smith was first licensed as G8ABL and has held several DX calls. He has been Secretary of the Bahrain and Hong Kong National Societies, built and installed IBP Beacon A9XC and the 2m repeater, VS6KP. Active on most bands, he is the GB2RS main newsreader for the Scarborough area.

Married with 2 young children, his XYL Anne is also licensed as G4LSS and is a member of the YLRL.

Some readers of Ham Radio Today will not be members of the RSGB, but most who are will know that the Society represents all UK radio amateurs. Equally, most RSGB members will have detected from reports in the Society's journal 'Radio Communication' that all is not well at "Potters Bar", but probably have no real idea as to what is going on behind the scenes. They will know that the task of managing the RSGB is vested in the elected Council of this 60 year old institution, but have little means of establishing whether that Council is fulfilling that responsibility efficiently or not.

RSGB membership has grown considerably over the years as has the hobby itself and until recently, the majority of licensed amateurs were members, if only to have access to the QSL Bureau and the receive their monthly copy of Radio Communication.

The RSGB does however undertake a multitude of other tasks, including close liaison with the licensing authority the DTI, by whom they are held in high esteem and over which they are therefore able to exert considerable influence.

Over the years, the RSGB has become one of the biggest publishers of books on Amateur Radio and this activity, although highly lucrative, requires to be run on commercial lines. Due to various factors, notably the rapid advances in technology, some of their books are somewhat out of date. The most popular RSGB publication is of course the "Callbook", the latest edition of which came out in April.

The growth of the publications side of RSGB highlights the fundamental change that has taken place within the Society itself — developing from a dedicated group of experimenters to a National Society with 10s of thousands of members. The Council tries to meet the varied demands of those members on the one hand, whilst now being required to run the Society as an efficient and profitable business on the other.

Personal Service?

Several obvious conflicts were bound to arise and did — the conflict between personal service to the members and the real cost of providing that service was one. The demands placed on the Membership Service Dept., pro-rata per member, increased dramatically over the last decade, reflecting the large number of newcomers to the hobby and, indeed, the falling average age of those new amateurs. This demand was met by computerisation of transactions handled by HQ and there are hundreds of enquiries each working day. The original computer has since been replaced for such tasks — the current 'box of tricks' is fairly advanced. Provided one doesn't mind receiving standard letters in reply to 'standard' enquiries, all is well but large computers have to be paid for.

Another conflict was between the workload at HQ and the facilities available (notably space). This was resolved by selling off the old HQ building in central London and moving to spacious premises at Potters Bar; although some of us
would have preferred a new premises in the Midlands, the move was a good one in terms of finances since a handsome profit was made.

In spite of the computers and the new premises, the conflict between workload and available staff effort/expertise was still present; finances have prevented this being solved by recruitment of additional staff and so the Society's Committee system was strengthened with Chairmen being appointed by, and reporting directly to, Council.

The Committee System

As with much of Society affairs committee members give their time freely, although they can claim travel & meal expenses; committee members are chosen by the Chairmen and not necessarily even have to be RSGB members. They are chosen for what they can offer to the committee; there is no requirement for each committee to have a member of Council as a member of it, although this is encouraged for obvious reasons. The 'senior' Committees such as Finance and Staff, Membership and Representation, Licensing and Advisory, are however dominated by Council Members. Whereas some committees have no Council members and some Council members do not serve on any committee, there are Council members who serve on as many as 8 committees.

From the foregoing, the reader might be forgiven for thinking all was pretty rosy, as a result of what amounts to considerable reorganisation of the RSGB in recent years, but this is in fact not the case. While all this was going on within RSGB, the world outside was changing fast! CB was legalised, PCs became common place in many homes, the RAE was rationalised and the ravages of unemployment took their toll. The repeater network, together with easy-to-use rigs for VHF and UHF, resulted in more UK amateurs talking to each other than ever before and activities such as the exchange of software (non-copyrighted versions of course!) become common place. They were talking to each other but unfortunately the RSGB wasn't doing much talking with them at all; RSGB was talking to the DTI, the IARU etc but not to the grass roots membership.

In an attempt to run the Society efficiently, a gap with the membership developed. The only flow of information was one way - via Radio Communication and to a lesser extent via GB2RS. Newsletters to affiliated clubs were out of date and in any event incomplete, in that whereas news items were (and are) reported, no indication of current 'thinking' or details of 'what was being looked at' were given. A veil of semi-secrecy prevails as regards 'in-house' events of Council and the Committees - this semi-secrecy remains as policy from the President down.

The RSGB's elected Regional Representatives together with Area Reps, had the impossible task of trying to bridge the gap, but sheer workload coupled with lack of detailed up-to-date information prevented miracles being performed.

The Results

Some of the more important problems which have occurred as a result of the foregoing are as follows:

1) A decline in RSGB membership in real terms - as a percentage of licensed amateurs it is currently just over 50% and if present trends continue unchecked will fall well below that psychologically important figure by the end of this decade.

2) RSGB has started to run up an annual deficit on current account, reflecting a slow down of growth in membership income. Panic measures have been recently instigated to counter this problem including the reduction of ORMs (Ordinary Regional Meetings) to only one a year but these measures are short term expedients which hedge the real issues.

3) There has been a general decline in operating standards on most bands - mainly due to inexperience; this could have been a trend the other way if tackled earlier by the RSGB.

4) RSGB Council has allowed itself to delegate much more of it's elected responsibilities either to HQ (via the General Manager) or to the various Committees than is desirable. From the point of view of HQ, this puts a considerable burden on the General Manager and his staff. From the point of view of committees, there have been several results; firstly the additional workload has meant many items take months before they are concluded and last minute panics often result in committees by-passing Council (to whom they would normally submit a recommendation) and taking action directly. Secondly, the whole process becomes further bogged down if more than one committee is involved, particularly if those committees cannot agree over an issue. A classic example of this is the issue of Novice licences where disagreements at all levels has resulted in recent proposals for an 'intermediate' licence which will be seen by many as an unfortunate and indeed unnecessary compromise.

5) Over recent years, successive Presidents & Councils of RSGB have become what can only be described as paranoic about confidentiality. Some items of RSGB affairs are indeed confidential in that they are commercially sensitive under the terms of the UK Company Law; staff salaries and details of publication costs and margins are clear examples. However, most items discussed at Council or Committee levels do not come in this category and should be available to the membership. Council dictates though that all is confidential and Council members are expected to abide by this dictate. To those on Council who believe in an 'Open' Society, who believe the membership should know what is going on and that they should be consulted, such secrecy is totally alien and unacceptable.

There are other problems arising from the aforesaid, but in the interest of brevity it is not necessary to delve further - the reader should by now have the gist of the basic problems at RSGB.

Heated Affairs

It is therefore not surprising that over the last year or so in particular, that Council Meetings have been heated affairs. They tend to be dominated by a well informed nucleus of long serving individuals, some of whom, as I have said, also serve on up to 8 committees! It does not follow necessarily that
quantity of involvement means quality of work.

Last year's AGM and associated EGM was also a heated affair; the chair refused to accept moves for a vote of no-confidence in Council on the grounds of tedious points of order. Prior to the AGM, many months before, attempts were made to ascertain how such motions should be included or could be included on the Agenda. No one ever found out! — draw your own conclusions from that as you will. At the AGM, though, the 'old guard' were clutching hundreds of hastily gathered proxy votes to ensure the outcome of those motions that were on the agenda.

Some Ideas

So where should we go from here? What is the best way forward? What form does RSGB have to look like in order to best be able to tackle the future? By now the reader will probably have some of his or her own ideas but the following are offered as food for thought:

1) Conduct an 'Open' Society and eliminate the autocracy by introducing a more up to date system of representation.
2) Ensure that Council does not delegate more of its elected responsibility than is prudent — for the average member, the best way to achieve this is via the ballot box at Council election time by choosing the members who will most likely be in sympathy with them.
3) All aspects of RSGB finances, both income and expenditure, should be reviewed with a view to more efficient management of resources.
4) The rule book is hopelessly out of date and is currently being revised. It is up to the membership to ensure that they are consulted over this very important aspect and to ensure that Council does not just pay lip service to such consultation.

At the end of the day, the future well being of amateur radio in this country is very much dependent on the well-being of the RSGB and the time has come for the membership to insist that RSGB operates as they wish it to — not necessarily as a minority think it ought to be.

Addendum

The T2 FD Resurrected
(p31 June '85)
The balun - designed by G6XN - suggested by John Heys should be made with a ferrite rod of diameter ⅜ - ½ inch. The wires should both be 10 inches long and must be either new or undamaged as cracks in the enamel may cause short circuits. The diagram Fig. 3 may appear misleading; the number of turns depends on the rod used and the spacing between the turns is not critical as long as the correct length of wires is used.

Receiving Weather Satellites
(p12 August '85)
Due to lack of space, we missed off the list of recently published articles which is reproduced below.

Weather pictures on the Beeb; Terry Weatherley; Radio and Electronics World, April '85
Receiving Weather Satellites on the BBC 'B'; Michael Furminger; Acorn User, August '84. Contains information on how to obtain software and complete instructions necessary to build hardware.
Why not join the ranks of satisfied customers building our Projects? All of our kits come with copious instructions, all components, pcb, wire, pots, etc and many are designed for beginners. Our products are used worldwide and can help YOU get on the air.

KITS are sent in 7-10 days but please allow up to 28 days for popular items. All prices include VAT and Post. OVERSEAS – Europe use UK prices and Rest of World UK + 5% for carriage, etc. CREDIT CARD orders can be left on our 24hr Answering Service.

Radio and RTTY Books

- **NEW GUIDE TO UTILITY STATIONS 1985**
 - Lists 14,746 SW frequencies, Aero, CW, Fixed Comms, etc, 4,130 RTTY stations, 3,194 Cautions plus much more. The most comprehensive frequency listing book available. £16.00 + £1.30 p&p.

- **NEW COMMUNICATIONS**
 - Not only lists frequencies used worldwide, but much background and information which opens up a new world to the SWL. £10.80 + 85p p&p.

- **NEW SW FACSIMILE FREQUENCY GUIDE**
 - A beginners guide on receiving FAX pictures. Covers equipment, methods, frequencies. Weather and satellite pictures, etc. £7.50 + £6.00 p&p.

- **NEW AIR AND METRO CODE MANUAL**
 - A very comprehensive book shows how to decode the World Meteorological and Aeronautical Transmissions.

- **Radio and RTTY Books**

- **NEW CRYSTAL SOCKETS**
 - See the full list of available crystal sockets.

- **COMMERCIAL CRYSTALS**
 - Crystal sockets available on fast delivery and at competitive prices. Please send for list stating interests.

- **6-200 kHz HC6/U 8 HC33/U 170 KHz-175 MHz HC1/U 8 HC25/U 2-175 MHz UNI-RESONANCE**

- **DISCOUNTS**
 - With application for 10+ units to same frequency or bulk purchases of mixed frequencies.

- **All products are used worldwide and can help YOU get on the air. KITS are sent in 7-10 days but please allow up to 28 days for popular items. All prices include VAT and Post. OVERSEAS – Europe use UK prices and Rest of World UK + 5% for carriage, etc. CREDIT CARD orders can be left on our 24hr Answering Service.**

RAINBOW COMMUNICATIONS

OPEN TILL 8PM MON - SAT

MAIL ORDER WELCOME

68 Goring Park Ave., Milcham, Surrey

SOUTH LONDON’S BUSIEST EMPORIUM

QUARTZ CRYSTALS

CRYSALS FOR 2 METRES

STOCK CRYSTALS

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>PRICE</th>
<th>FREQUENCY</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
</tbody>
</table>

TOC CRYSTALS

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>PRICE</th>
<th>FREQUENCY</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
</tbody>
</table>

CONVERTER CRYSTALS

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>PRICE</th>
<th>FREQUENCY</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
<tr>
<td>HC6/2</td>
<td>£12.15</td>
<td>6-200 kHz</td>
<td>£16.00 + £1.30 p&p.</td>
</tr>
</tbody>
</table>

FUNDAMENTALS

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>£2.20</td>
</tr>
<tr>
<td>5.00</td>
<td>£2.80</td>
</tr>
<tr>
<td>10.00</td>
<td>£3.50</td>
</tr>
<tr>
<td>20.00</td>
<td>£5.00</td>
</tr>
</tbody>
</table>

MADE TO ORDER CRYSTALS

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>£2.00</td>
</tr>
<tr>
<td>5th</td>
<td>£2.50</td>
</tr>
<tr>
<td>7th</td>
<td>£3.00</td>
</tr>
<tr>
<td>11th</td>
<td>£4.00</td>
</tr>
</tbody>
</table>

OVERSTONES

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>£2.20</td>
</tr>
<tr>
<td>5.00</td>
<td>£2.80</td>
</tr>
<tr>
<td>10.00</td>
<td>£3.50</td>
</tr>
<tr>
<td>20.00</td>
<td>£5.00</td>
</tr>
</tbody>
</table>

DELIVERY

<table>
<thead>
<tr>
<th>DATE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>£25.00</td>
</tr>
<tr>
<td>2nd</td>
<td>£25.50</td>
</tr>
<tr>
<td>3rd</td>
<td>£26.00</td>
</tr>
<tr>
<td>4th</td>
<td>£26.50</td>
</tr>
<tr>
<td>5th</td>
<td>£27.00</td>
</tr>
<tr>
<td>6th</td>
<td>£27.50</td>
</tr>
<tr>
<td>7th</td>
<td>£28.00</td>
</tr>
<tr>
<td>8th</td>
<td>£28.50</td>
</tr>
<tr>
<td>9th</td>
<td>£29.00</td>
</tr>
<tr>
<td>10th</td>
<td>£29.50</td>
</tr>
<tr>
<td>11th</td>
<td>£30.00</td>
</tr>
<tr>
<td>12th</td>
<td>£30.50</td>
</tr>
<tr>
<td>13th</td>
<td>£31.00</td>
</tr>
<tr>
<td>14th</td>
<td>£31.50</td>
</tr>
<tr>
<td>15th</td>
<td>£32.00</td>
</tr>
<tr>
<td>16th</td>
<td>£32.50</td>
</tr>
<tr>
<td>17th</td>
<td>£33.00</td>
</tr>
<tr>
<td>18th</td>
<td>£33.50</td>
</tr>
<tr>
<td>19th</td>
<td>£34.00</td>
</tr>
<tr>
<td>20th</td>
<td>£34.50</td>
</tr>
<tr>
<td>21st</td>
<td>£35.00</td>
</tr>
<tr>
<td>22nd</td>
<td>£35.50</td>
</tr>
<tr>
<td>23rd</td>
<td>£36.00</td>
</tr>
<tr>
<td>24th</td>
<td>£36.50</td>
</tr>
<tr>
<td>25th</td>
<td>£37.00</td>
</tr>
<tr>
<td>26th</td>
<td>£37.50</td>
</tr>
<tr>
<td>27th</td>
<td>£38.00</td>
</tr>
<tr>
<td>28th</td>
<td>£38.50</td>
</tr>
<tr>
<td>29th</td>
<td>£39.00</td>
</tr>
<tr>
<td>30th</td>
<td>£39.50</td>
</tr>
<tr>
<td>31st</td>
<td>£40.00</td>
</tr>
</tbody>
</table>
Your at-a-glance guide to what’s happening around the clubs, on the air and in general radio-wise.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Aug</td>
<td>GB2 PYF organised by Abergavenny and Nevill Hall ARC on HF and VHF from the Pen-y-Fal Hospital fete.</td>
</tr>
<tr>
<td>5 Aug</td>
<td>Horndean DARC: Salvage of the SS Great Britain part 2 by G4 BEQ. Basingstoke ARS: natter night.</td>
</tr>
</tbody>
</table>
21 Aug
Three Counties ARC: 2m DX by G3 VX M.
Wirral ARS: informal.
Denby Dale DARS: noggin n’ natter.
Brighton DARS: meeting.
Cheshunt DARC: 2m portable operation on Baas Hill Common.
Farahem DARC: portable operation.
Havering DARC: informal.
Worcester DARC: informal.
Telford DARS: ATV on the air.
Wirral DARC: D+ W at the Saughall Massie Hotel.

22 Aug
Greater Peterborough ARC: informal social.

23-26 Aug
GB2TVF (Towersey Village Festival) from Towersey in Oxfordshire on HF and 2m. QSL card available.

23 Aug
Bromsgrove DARC: construction meeting.
Malby ARS: Spitewinter.
Clifton ARS: meeting.
W Kent ARS: DF hunt.
Coventry ARS: night on the air.
Radio Society of Harrow: activity night.

24-31 Aug
GB8S DX and GB8SDX will be operational on 2m and 70cm from IO97 locator square, a DXpedition organised by City and Brunel Universities radio amateurs. Modes SSB, ATV, RTTY and packet radio will be used and QSL card available.

25 Aug
18th Preston Rally at Lancaster University, Talk in 2m. Entry fee 50p and doors open 11am.
BARTG rally, Sandown Park, Esher, Surrey.

25-26 Aug
Workop ARS operating GB2BTF at the Bassetlaw showground.

27 Aug
Chester DRS: pre SSB HF field day contest meeting.
E Lancashire ARC: informal.
Wolverhampton ARS: night on the air and discussion.
Bury RS: informal.

28 Aug
Exmouth ARC: meeting.
Denby Dale DARS: rally wind down meeting.
Cheshunt DARC: natter night.
Farahem DARC: portable operation.
Havering DARC: talk by GBX C.
Telford DARS: mini fox hunt and summer barbeque.
Wirral DARC: surplus equipment sale.

29 Aug
N Wakefield RC: monthly meeting.
Preston ARS: audio visual evening by G3UEC.

30 Aug
Clifton ARS: meeting.
Coventry ARS: visit.
Radio Society of Harrow: activity night.

2 Sept
Horndean ARS: junk sale.
Basingstoke ARC: Direction Finding by G6AGE.
Alyn and Deeside ARS: contest arrangements.
Worcester DARC: club publicity evening.
Todmorden DARS: talk by Harry Leeming, G3LLL.
Wolverhampton ARS: visit to Police Radio Control Centre at Bourneville.

3 Sept
E Lancashire ARC: surplus equipment sale.
Reading DARC: Packet Radio talk and demonstration by G6CAA.
Workop ARS: evening visit to Scunthorpe club.
Wolverhampton ARS: meeting.
Bury RS: informal.

4 Sept
Three Counties ARC: Computer Decoded Morse by G6VMA.
Wirral ARS: quiz.
Brighton DARS: meeting.

5 Sept
Cheshunt DARC: club project with G4ZC X.
Farahem DARC: natter night on the air.
Havering DARC: informal.
Telford DARS: rally group final meeting.
Wirral DARC: inter club quiz vs Wirral ARS.
N Wakefield RC: AGM.
Meirion ARS: video or film.
Abergavenny and Nevill Hall ARS: meets every Thursday at the Pen-y-Fal Hospital (above male ward 2).

6 Sept
W Kent ARS: open meeting.
Clifton ARS: club meeting.
Coventry ARS: night on the air/project launch.
Radio Society of Harrow: construction contest.

7-8 Sept
RSGB Trophy contest 144MHz.
Galashiels DARS: open day with trade stands, raffles and bring and buy. The venue is the Focus Centre, Livingston Place, Galashiels and doors open at 11am. Further details are available from GM3DAR.

9 Sept
Alyn and Deeside ARS: D+ W.

10 Sept
Chester DRS: Lowe Electronics display their latest!
Newbury DARS: junk sale.
Dartford Heath DFC: pre hunt meeting.
Wolverhampton ARS: club project discussion.
Bury RS: main meeting.

11 Sept
Exmouth ARC: meeting.
Cheshunt DARC: natter nite.
Farahem DARC: 70cm 1kW linear amplifier with G6XHR.
Havering DARC: DF hunt.
Telford DARS: natter nite.

12 Sept
N Wakefield RC: junk sale.
Preston ARS: Atomic Structure by G4DBU.

13 Sept
Bromsgrove DARC: surplus equipment sale.
Clifton ARS: club meeting.
Dunstable Downs RC: Airport ’85 — A Pilots View by G4ZJF.
Coventry ARS: III fated mini lectures?
Radio Society of Harrow: activity night on 10m.

15 Sept
Peterborough Mobile rally, Wirrina Sports Stadium, Bishops Road, Peterborough. 10.30-5.
Dartford Heath DFC: DF hunt.
Wolverhampton ARS: 144MHz DF hunt.

16 Sept
Alyn and Deeside ARS: Computers in Data Comms — A Professional View by Roy Honeyman.

17 Sept
Todmorden DARS: informal chat night.
Chester DRS: inter club quiz with Ellesmere Port ARS at Chester.
Midland ARS: open day with Elfordall Park.
Reading DARC: An exhibition of equipment and kits by Wood and Douglas.
Worksop ARS: Lightening Protection.
Bury RS: informal.

18 Sept
Three Counties ARC: S W France by G6SNS.
Wirral ARS: Smith Charts Simplified by G3EGX.
Brighton DARS: meeting.

SEPTEMBER 1985 Please mention HRT when replying to advertisements. 73 G4 IVX
Cheshunt DARC: video ‘Amateur Radio’s Newest Frontier’ plus an introduction to amateur radio for new members.

Farah DARC: 2m Rhombic Aerials by G6MVL.

Havering DARC: surplus equipment and junk sale.

Telford DARS: What We Did On Our Holidays G3UKV and Co. in GM land.

20 Sept

W Kent ARS: meeting.
Clifton ARS: club meeting.

Coventry ARS: night on the air.
Radio Society of Harrow: Community Radio.

21 Sept

The 2nd National Amateur Radio Car Boot sale at the Shuttleworth Collection, Old Warden Aerodrome, Biggleswade, Beds. Talk-in on GB4SC.

22 Sept

Harlow Mobile Rally at the Sportscentre, Harlow starting at 10.30. Ample parking, refreshments and licensed bar, plus book stall, bring and buy etc.

Talk-in on S22.

23 Sept

Alyn and Deeside ARS: D+W.

24 Sept

Chester DRS: meeting.
E Lancashire ARS: informal.

Wolverhampton ARS: night on the air.
Bury RS: informal.

25 Sept

Exmouth ARC: meeting.
Cheshunt DARC: natter nite.

Will club secretaries please note that the deadline for the November segment of Radio Tomorrow (covering radio activities from 1st October to 1st December) is 19th August.
THE
AMAZING MULTI-P6
MOBILE VHF-UHF
ANTENNA

Acclaimed for its high quality rugged engineering, 6 modes of operation, on or off the vehicle. (Free Space Design) British designed and made by A.R.M. Antennas.

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

584 HAGLEY ROAD WEST, OLDBURY, WARLEY
COMMUNICATIONS

AMAZING MULTI-P6

IA ANTENNA

Communications

AMAZING MULTI-P6

SCOOP PURCHASE

AMAZING MULTI-P6

REGENCY HAND-HELD

118-174MHz, 436-525MHz

15 FM/CW/SSB/AM
25 FM/CW
45 FM/CW

IF YOU REQUIRE A DRIVE LEVEL OTHER THAN 1-3 WATTS, PLEASE STATE AT TIME OF ORDERING. POST + PACKING + ORDER CODE.

Please order code.

Quality British construction.

Real value for money.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

584 HAGLEY ROAD WEST, OLDBURY, WARLEY
COMMUNICATIONS

AMAZING MULTI-P6

IA ANTENNA

Communications

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.

AMAZING MULTI-P6

Basic Package £34.50 + £2.50 p&p. Includes p&p.

A.R.M. Antennas.

British designed and made by Sunley Engineering.
Most of us have a general conception of the ionosphere as being a sort of 'mirror' which hovers conveniently above the earth in order to facilitate radio communication. But often once the trauma of the RAE has faded into the past, so the mechanisms of propagation fade, too. This is a great shame because not only can this knowledge be interesting in itself, but can also frequently give you that essential DX edge over the less knowledgable high-power merchants who inhabit the HF bands.

The secret of DX working is knowing when the desired countries are likely to come through and on what band. To do this, a solid grasp of the mechanics of propagation is essential. Dave Bobbett, G4IRQ, demystifies propagation and shows how to use a BBC or Electron computer to enhance your understanding of this and get the edge on DX.

I suspect that the two areas of amateur radio which most appear to take on an almost mystical quality are those of aerial design and propagation theory, so for the benefit of those who want to blow the cobwebs off their radio theory, and of course those who are new to the field I will briefly look at propagation fundamentals. It is important to get to grips with these basic principles as they underpin a rather novel aspect of propagation which can be of considerable practical use which we will be looking at later in this article and which a micro' computer can be used to predict.

The ionosphere can be seen as being rather like a section through an onion, consisting of a number of different layers of ionised gases which lie one above the other at various heights above the earth's surface. There are four layers which are specifically of interest to us, starting with the lowest which is the 'D' layer at a height of about 75 kms, the 'E' layer at 125 kms, the 'F1' layer at 175 kms and finally the 'F2' layer at 275 kms. Because these layers are made up of ionised gases they are not stationary, their exact heights vary somewhat and they appear and disappear, depending upon certain external factors.

All of these factors are dictated by the Sun and the position of the Earth relative to it. Even over the massive distance of 150 million kms which separate the two, the Sun generates such phenomenal quantities of emissions that the outermost regions of the earth's atmosphere are in a continual state of change. So as to give an idea of the truly enormous amount of energy involved, the estimated power output of the Sun is 3.7×10^{26} megawatts, which is 370 million, million, million, million watts! — now that's what I call QRO!

These emissions are not just in the form of visible light, but include ultraviolet and X-ray radiation too. In addition, there is the so-called 'solar wind' which consists of electrically charged sub-atomic particles, such as electrons and protons. Whereas the electromagnetic components derived from the Sun travel at the speed of light (yet even so take 8 minutes to get here), the solar wind is quite slow by comparison, travelling at a 'mere' 400 km/s (900,000 mph) by the time it reaches the outer limits of the Earth's ionosphere.

The final ingredient in the 'ionosphere soup' are the extreme temperatures involved which range from -75°C in the layers nearer the Earth's surface up to as much as $+1,325^\circ$C in the outer reaches (see Fig. 1). Given these rigorous conditions of temperature and radiation bombardment it is hardly surprising that the gas molecules in these regions become affected and form into clouds and layers of ionised gas. This takes place mainly as a consequence of the action of X-ray and ultraviolet radiation on individual gas molecules — with the slower moving charged particles of the solar wind acting in opposition to this ion-forming effect.

It is fortunate not only for radio purposes that this process takes place as these layers act as a kind of 'buffer' between the harsh environment of
outer space and the susceptible life forms on the planet's surface. For even with more than 200 miles of "insulation" between us and the outer edge of Earth's protective envelope, diseases such as skin cancer tend to be more prevalent when the Sun is passing through an especially active phase and as a consequence is radiating more strongly than is usual.

Pause For Reflection

We have seen the importance of the Sun's various emissions in creating ionised reflective layers in the ionosphere, but as yet we have not considered the significantly different ionospheric conditions which are found at various times. How is it that band conditions change from one time to another? To answer this I will consider the changes in three stages; firstly, short-term day/night differences; then medium-term seasonal factors; and, finally, longer-term solar activity fluctuations, that is to say what we term 'the Sunspot Cycle'.

I have so far outlined how the layers of ionised gases we term the ionosphere are created as a consequence of being exposed to the sun. The planet's surface is of course in daylight during this period, and, because the ionised layers are at a considerably greater height than the weather-creating layer, they are unaffected by cloud and other meteorological factors. When the planet turns on its axis so that the same area is in night, it is no longer exposed to the source of ionising radiation and so the layers start to become de-ionised.

The rate at which this occurs depends upon how dense the ionosphere is at a particular level; for example, the lowest (therefore densest) 'D' layer will de-ionise quickly because the ions are relatively densely packed. The chances of ions thus re-combining into uncharged molecules by collision with others are consequently much greater.

Further out into the ionosphere, where the ions are much more thinly spread, the process of re-combination is much slower — and in fact is so slow that the 'F1' and 'F2' layers never entirely disappear but instead merge into a single 'F' layer during darkness, which is located at an intermediate height between the normal daytime 'F' layers. When the planet rotates around into daylight again the process of ionisation begins once more and the 'F1' and 'F2' layers are re-formed.

Whilst the 'F1' and 'F2' layers react to the reducing level of ionising radiation by combining with each other, the 'D' layer cannot be sustained in the absence of sunlight. Once night falls, the 'D' layer's ions thus recombine rapidly with each other and the layer ceases to exist until the next phase of daylight returns. Users of the 1.8 and 3.5 MHz will be well aware of the way in which these bands start to 'open' after dark. This is due to the fact that the 'D' layer totally absorbs frequencies much below 5 MHz. Thus signals never reach the reflective 'F' layers during the day to allow long distance communication to take place.

Once the 'D' layer disintegrates in the absence of sunlight, these frequencies are allowed to pass through and greater distances may be covered — the same phenomenon explains why the range of medium wave broadcast transmissions is so much greater at night.

The Four Seasons

Propagation conditions change not only from day to night but also with the passing of the seasons. Whilst the Earth's orbit around the Sun is very slightly elliptical, the varying distance between the two is not (as some people think) the reason behind seasonal fluctuations. As we shall see, there is another explanation for this so for the purpose of this discussion we can safely consider the Earth's orbit to be circular. Fig. 3(a) shows what the situation would be if the axes of the Earth and the Sun were parallel to each other.

Here we can easily see that because the amount of energy falling on any given point during the daylight hours would always be the same, the varying climatic conditions which characterise the observed seasons simply would not exist. There must therefore be another explanation — in fact the Earth's axis is tilted obliquely by 23.5 degrees, resulting in what can be best described as an extremely slow 'wobble' as the planet orbits around the Sun. On the longest summer day in the Northern hemisphere (June 21st) the tilt is towards the Sun (Fig. 3b) and on the shortest day of winter (December 21st) it is tilted away (Fig. 3c). If you are living in the Southern hemisphere, the reverse is true — which explains not only why the seasons are reversed between the two hemispheres but also why Australians can have Christmas dinner on the beach when we are up to our armpits in snow!

In addition to the longer hours of sunlight in the summer (and shorter hours in the winter) the energy from the Sun strikes the planet's surface far less obliquely, thus the intensity of radiation falling per unit area in the summer is significantly greater than in the case in the winter. That which is true for the planet's surface is also true for the ionosphere. Hence, the tilt towards the Sun in the summer results in higher intensities of radiation impinging upon the ionosphere, which gives rise to increased levels of ionisation.
with the behaviour of the Sun itself. This body is staggeringly large, being 1.5 million km in diameter (compared with the Earth's 13,000 km diameter) and it may surprise you to learn that it actually rotates, just like any other celestial body, with an equatorial rotational period of about 27 days.

Solar Activity

Of the events which affect radio propagation, the solar flares and other similar sudden eruptions on the solar surface are the most problematic — it is impossible to predict their occurrence and the particle emissions derived from them can seriously impair radio communications by disrupting the ionospheric layers above the Earth.

SIIDs (Severe Ionospheric Disturbances) are one of the consequences of such activity and can result in an almost total loss of propagation lasting minutes or hours. The more gradual fluctuations in solar emissions can be predicted to a greater degree of accuracy however and because the rotational period of the Sun is 27 days, it is reasonable to assume that the Sun is living on an 11 year cycle from peak, down to sunspot minimum and back up to a peak again, with the radio propagation conditions changing accordingly. During the maximum activity periods, the changes in propagation are very similar to (but greater than) those experienced between winter and summer in that the Maximum Usable Frequency is typically much higher, and stays that way. As a consequence, 28MHz band is open all day, with 21 and 14MHz being usable all round the clock. On the other hand, LF bands on 1.8 and 3.5MHz suffer from the same problem of 'D' layer absorption as they do in summer months and the overall level of QRN is increased too.

The notion of an 11 year cycle in solar activity should not be taken as being an absolute truth however, as anomalous factors can create periods of intense activity during what should be a sunspot minimum period and vice versa. Indeed, some solar observers prefer to consider the cycle as having a duration of 22 years, as the magnetic polarity of the sun-spots in a given solar hemisphere alternate between being North-seeking at the first maximum and then South-seeking at the next maximum 11 years later. It is only in the subsequent maximum that North-seeking spots appear once again — hence the claim to a 22 year cycle. Either way it is much better to see the sunspot cycle as more of a general trend rather than a hard and fast prediction — for one thing you'll be less disappointed that way!

So far, we have looked at the three time-dependent processes which are incorporated into the equation which ultimately dictates the sort of propaga-
passes through areas of differing levels of ionisation and because the level of ionisation is at its greatest in the centre of an ionospheric layer, it is also here that the greatest ‘signal bending’ ability exists. Consequently in its path through the layer the radio signal will be refracted only slightly in the outer (weak) regions, with the amount of bending increasing progressively as the (strong) central zone is approached. Fig. 5 illustrates this process and shows how the impression of being a simple reflection is created, with the angle of incidence A still being the same as the angle of ‘reflection’ B.

Grey Line Propagation

We saw earlier that whilst working long distances on the higher HF bands, such as 14 MHz and above, during daylight was very much dependent upon the season and the current state of the solar cycle, the problem with DX working on the lower bands was that the lower the frequency one wanted to use, the greater the signal absorbing powers of the ‘D’ layer became.

There is a way around this problem to some extent and one particularly useful tool is the Global View program which was published in the June and July ’85 editions of ‘A & B Computing’. Written by JG van Dijk, the program is intended to run on either the BBC Micro or an Acorn Electron. In addition to being able to draw separate day and night views of Earth with the correct perspective (see photos) the program also provides a graphical map showing the areas of light and dark. If you take a look at one of these cylindrical projections, you will realise that it is not only a map of day and night but also of ‘D’ layer activity — the ‘D’ layer is only present during the day so the light areas are also ‘D’ layer areas, whereas the dark (night) regions are devoid of ‘D’ layer activity.

To briefly recap, what we need for LF DX work is for the ‘D’ layer to be absent at both the sending and receiving station’s locations and also at any points in between them where the signal strikes the Earth’s surface as part of a multiple hop sequence (see Fig. 6). In addition to this, a reflective and preferably high-altitude layer is required in order to provide the long-range hops which are needed to cover the distance.

A few very long hops are much preferable to many shorter ones, the losses incurred at each deflection are thus reduced and the probability of the signal encountering an area of poorly reflective ionosphere are also lessened, whilst the total distance travelled by the signal is shortened. The problem which we come up against at this point is that whilst the ‘D’ layer disappears at night, both the height and strength of the reflective layers also reduce and if the DX is located in a country which has been in darkness for many hours, the reflective layers will be both weaker and lower, thus reducing the chances of a contact.

However, dawn and dusk are rather special times in an ionospheric context and Fig. 7 shows the situation as dawn is just breaking over the station of a bleary eyd LF DX hound. Because the outer reaches of the ionosphere are at a considerably higher altitude than the planet’s surface, the sunlight reaches these areas first and as a consequence all the daytime layer formations start to take shape before the surface directly below is fully in daylight.

Similarly, because the night-time ‘F’ layer is at a considerably greater height than the ‘D’ layer it will re-form into the two distinct ‘F’ layers before the ‘D’ layer becomes fully established — the result is that for a few minutes...
around dawn there is a 'window' when ionospheric conditions are just as we want them. A similar situation occurs at dusk (see Fig. 8). Being at a lower altitude, the 'D' layer moves into darkness first and disappears before the higher 'F' layers pass out of sunlight and begin to change, hence there is a 'window' here too. This process goes on at any point on the 'terminator' (the dividing line between day and night) and offers the best chances of LF communication when both stations are located on this line. Looking again at the screen photos, the dividing line between light and dark can be visualised as being a narrow 'ribbon' of highly unusual ionospheric conditions which offer exceptionally good LF DX possibilities. Presumably the term Grey Line propagation, which is most often used to refer to this phenomenon, was derived from the intermediate nature of the light/dark conditions found there.

Using The Program

There would appear to be at least three different versions of the 'Global View' program, one which appeared in the June '85 edition of A & B Computing and two different versions which were supplied on tape or disk. There are some cosmetic differences between them but for practical purposes, they do exactly the same thing in terms of being able to produce maps of the lit and unlit areas of the Earth. To use the program it is simply RUN in the normal way and the information concerning the month, day, hour and minute is typed in when the computer requests it.

You will probably recall that mention was made earlier of the fact that the ratio of daylight to night hours varies over the year and how, at each of the spring and autumn equinox points (March 21st and September 23rd respectively), there are exactly 12
hours of light and 12 hours of darkness. We can see this graphically illustrated in the computer predictions for these two dates and at the same time appreciate why it is that only predominantly North South paths are available at these times as the shape of the terminator takes on a distinctly square-wave appearance.

At other times of the year, such as winter solstice on the 22nd of December and summer solstice on June 22nd, the distribution of light and dark takes on a very much more sinusoidal shape — making the possibility of Southern hemisphere contacts that much greater. The only notable difference between these two dates is that the Arctic regions are unlit in the winter and lit in the summer. Incidentally, if you look at the screen photo for dawn on December 22nd you can see why Grey Line predictions are so useful — it should be possible to have an LF DX contact with New Zealand at this time!

In between the major ‘signposts’ of solstice and equinox, the distribution of light on the earth’s surface follows a gradually shifting intermediate pattern as it changes from the sine shape of solstice through to the square wave of equinox. As a result it is possible to contact a variety of DX rarities over the year due to the multiplicity of different path shapes.

The simplest way of predicting what you will be likely to hear is to obtain your local sunrise and sunset times from a diary or similar source (bearing in mind that the program works in GMT!) and enter these figures into the computer. Once the Grey Line starts to get close to an area which you’re interested in, it can be worth spending a bit of time ‘doodling’ to see if you can get an exact crossing a few days hence — after that it’s simply a question of biding your time and hoping that next door’s coffee grinder won’t start up at the crucial moment!

Needless to say, other factors will affect the success or failure of LF Grey Line DX, short paths generally being more likely to succeed than long ones of course and this particular form of propagation ‘cheating’ is no less susceptible to ionospheric anomalies than any other. All the things which they tell you to do in the aerial handbooks should be followed if possible, with DX’y, low angle radiation aerials giving the greatest edge. If you don’t happen to be the proud owner of several thousand rolling acres, don’t despair as a certain amount of cunning can help out too.

Check to ensure that you are putting out as much signal as possible in the appropriate direction. It may be that the orientation of your aerial can be modified to help things along. If sought after countries are accessible over paths which do not cross densely populated areas, such as Europe or North America, then give these a try as the chances of being heard are considerably increased if you’re not having to struggle against several hundred other Grey Line fanatics.

Finally, double check sunrise/sunset times, Grey Line openings only last for a few minutes and there’s nothing more frustrating than getting on air only to be told that the DX has been and gone!

Hacking Global View

If your interests veer towards butchering programs, the original can be made more directly applicable to the radio field by deleting the sections responsible for the time consuming (but nevertheless very clever) projections of the globe and making screen size of the cylindrical map rather larger than in the original. A tremendous amount of work must have gone into calculating the DATA lines at the end of the program, which contain the co-ordinates used to draw in the various continent shapes, so this section of the program alone would be an invaluable foundation for anyone wishing to put together a slightly more radio-orientated version.

DATA FROM SPACE!

Don’t just play games on your computer — use REAL DATA from SPACE!

ASTRID

Automatic Satellite Telemetry Receiver & Information Decoder

ASTRID is a COMPLETE Satellite receiving and decoding package that allows data from UOSAT Satellites to be displayed on home computers via a serial interface. (ASCII format 1 start 7 data 1 even parity 2 stop bits). The system is fully tested and ready to operate and comprises: Receiver/Decoder/Power Supply Unit/Aerial/Feeder/Test Tape/Connecting Leads/Institution Manual.

ASTRID operates FULLY AUTOMATICALLY — using the remote control on your tape recorder — for those night time passes!

ASTRID is only available from the manufacturers. Please send cheque or postal order (or use your Barclaycard or Access number) for £144.00 + £5.00 carriage to MM Microwave Ltd., Thornton Road Industrial Estate, Pickering, N. Yorks. YO18 7JB. Tel: 0751 75455.
With all the new equipment being advertised in the magazines and also hearing what equipment is being used by other people on the air, one could be forgiven for thinking that a very large bank balance is essential to start up an amateur radio station. Indeed this is one way, and the commercial equipment available offers good value for money and high performance. There is still a great deal of enjoyment and economic saving to be gained from constructing some of your own equipment, especially if you are interested in QRP where the equipment is often reasonably simple. Also, kits are often available in conjunction with some of the constructional articles published in radio magazines.

Another cheap and satisfying solution worth bearing in mind is to update an old receiver or transceiver to suit the modern day requirements. Many of the older valve receivers often give a very good account of themselves and are available at prices which represent excellent value for money. Obviously, one has to make a careful choice of receiver and consider both the original specification and the overall condition. However, once bought, they are ideal for modifying, not only for the fact that one is more willing to dive into them with a soldering iron than, say, a new Trio or Yaesu, but being valve designs they have more space in them than their modern counterparts for adding extras such as an audio ‘notch’ filter or a VHF converter.

Valve Identification

Now that semiconductors have taken over from valves in virtually all applications, it is becoming increasingly difficult to obtain data on valves, in spite of the fact that they are still used in many older pieces of equipment. For example, I still use a valve transmitter and a valve receiver, both of which perform as well as many of the new designs around today, and although they do not have all the ‘frills’, do offer better value for money.

It is often very useful to have an idea of the function of a valve without having to search for data on it. It is usually possible to gain quite a lot of information about a valve from its type number, and there are two main systems of numbering which are used, giving a greater or lesser amount of data dependent upon the particular system.

The first system, which incidentally originated in the States, applies to valve numbers such as 6CH6, 12AT7 etc. In this case the first number refers to the heater voltage and the remaining letters and numbers to the type serial number. Thus 6CH6 has 6.3 volt heaters and a 12AT7 operates from a 12.6V heater supply. In fact in the case of the 12AT7 and several other valves (12AX7, 12AU7 etc) the heater is centre tapped, so that it can operate from either 6.3 or 12.6V by placing the two halves of the heater in parallel or series.

The second system, employed by European manufacturers, applies to valves like ECC83, EABC80 etc. Using this system, it is possible to tell what elements the valve actually contains. Referring to the table nearby, it can be seen that the first letter gives information about the heaters, then any further letters describe the various elements within the valve. The number then indicates the base type and particular valve type serial number. Taking as an example an ECC83, this has 6.3 volt heaters (E), it contains a double triode (CC), its base is B9A (B) and its type serial number is 3. Similarly a PL80 has 300mA heaters, contains an output pentode and has a B9A base. For further details, see Table 1.

These two systems cover the majority of valves in amateur service.

Table 1. European Valve Numbering System

<table>
<thead>
<tr>
<th>1st Letter</th>
<th>C</th>
<th>200mA heater</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4V heater</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.5 to 1.5V heater</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5.0V heater</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>2.0V heater</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>100mA heater</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsequent Letters</th>
<th>B</th>
<th>Double Diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Single Diode</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Triode</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Tetrode</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hexode or Heptode</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Output Pentode</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Thyratron</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Misc.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Half Wave Rectifier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>20 -- 29</th>
<th>B6G (Loctal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 -- 39</td>
<td>Octal</td>
</tr>
<tr>
<td></td>
<td>40 -- 49</td>
<td>B8A</td>
</tr>
<tr>
<td></td>
<td>50 -- 59</td>
<td>Misc.</td>
</tr>
<tr>
<td></td>
<td>60 -- 69</td>
<td>Subminiature</td>
</tr>
<tr>
<td></td>
<td>80 -- 89</td>
<td>B9A</td>
</tr>
<tr>
<td></td>
<td>90 -- 99</td>
<td>B7A</td>
</tr>
</tbody>
</table>

If the number is over 100 subtract from number to obtain base type.
Powering Semiconductor Circuitry from Valve ‘Heaters’

Unfortunately, one of the drawbacks of adding extra valve circuits to many of these older transmitters and receivers is that this inevitably requires a certain amount of metalwork. This is something which I have never been particularly fond of trying to avoid if at all possible. Accordingly, it is often more convenient to hybridise the equipment and use semiconductor circuits — which usually generate less metalwork! In addition to this, there are several other advantages; for example it is possible to build a more compact circuit and the available space can be utilised more neatly; also semiconductors are more easily available and it is often possible to construct a more sophisticated design than would be possible using valves.

If semiconductors are used, a separate voltage supply will be needed. This can often be derived from the heater supply to the valves, using the circuit shown in Fig. 1. Using this arrangement, an output of about 8V should be obtained. As one side of the heater supply is normally earthed, this forces the use of half wave rectification. This means that if any appreciable current is drawn, the ripple of the supply will rise. However, for applications when only a small amount of current is drawn, this is a very convenient way of producing a supply without the need for any extra transformers to be added.

Designing Attenuators

With the ever increasing crowding on the bands these days and the number of very strong signals that are around — forty metres for example still has a large number of broadcasting stations using it — there is often a requirement for some form of attenuator at the receiver front end to cut down overloading and the consequent cross modulations. There are also several other uses for a fixed and defined attenuator within the amateur station (see ‘The Case For...’ Units’ in Feb ’85 HRT — Ed).

The easiest way of making an attenuator is to place some form of potentiometric divider into the system and hope for the best. However, it is far better to take your time and fit an attenuator which is properly matched over a wide bandwidth. At this point, one may think back to physics lessons at school and try to remember Kirchoff’s Law — and then how to apply them!

![Fig.1 An easy power supply for add-on transistor circuits to valve receivers or transceivers.](image)

![Fig.2 Diagrams of T and Pi section attenuators.](image)

Fortunately, some time ago I came across a useful set of formulae which makes the matter of designing attenuators far simpler.

Basically there are two configurations for an attenuator: Pi section or T section, and each has its own set of formulae.

Taking the T section first:

\[
R_1 = R_0 (\frac{n-1}{n+1})
\]

\[
R_2 = R_0 (2n/2n^2 - 1)
\]

and for Pi section:

\[
R_3 = R_0 ((n^2 - 1)/2n)
\]

\[
R_4 = R_0 (n+1)/(n-1)
\]

In both cases \(n = \) voltage in/voltage out and \(R_0 = \) line impedance.

Using these formulae it becomes a very simple matter to decide upon the values for the attenuator. Normally these calculated values will obey Murphy’s Law and fall exactly between two preferred values of resistor (ie midway between, say, 39K and 47K). However if the nearest E24 (range) value is used in each case, a satisfactory result should be obtained.

From a practical point of view, if an attenuator is required to give over about 20dB loss then it is advisable to build this in two sections (ie 20dB attenuator = 2x10dB sections) screening one from the other if RF is involved so that stray pickup is avoided. Apart from avoiding stray coupling, some varieties of carbon type resistors become inductive at high operating frequencies and should not be used as this will alter the performance of the attenuator. For most HF applications, the metal oxide TR4 series of resistors should prove reasonably adequate.
One of the most essential pieces of test gear for any radio shack is an oscilloscope. The cheapest and most plentiful variant is the single beam oscilloscope, but occasionally two waveforms will be required to be displayed simultaneously. Monitor input and output of a variety of devices on a single beam 'scope with this design by Ted Nield, GW3ARP.

The unit described in this article will enable a single-beam oscilloscope to function as one with a dual-beam facility, whereby two separate waveforms may be displayed together.

Undoubtedly the most useful function arising from this is the ability to establish a time-relationship between two dissimilar but related waveforms, as for example, those existing at two points in a time-base or pulse generator circuit. The dual-beam facility is a valuable aid to the proper understanding of such devices as multivibrators - monostable, bistable or astable - showing what happens simultaneously at various points in the circuitry. Another and more pertinent use for the radio amateur is of the 'before and after' kind, when one examines the waveforms on either side of a 'reactive' element, such as a filter circuit. Phase shifts may be observed and measured with ease.

The Unit

A general view of the device is given in the photograph. It is self-contained with an internal PSU for mains operation. Each signal input feeds a separate amplifier, with its gain variable from unity to 100X (40dB). Care has been taken to ensure a flat and wide response which is level from a few cycles to over 1MHz. A useful gain is available up to 4MHz. The length of the level response is, of course, dependent upon the setting of the gain control.

The input will accept up to 4V RMS with an impedance loading of about 1Mohm. The output is of low impedance and may be fed directly into the attenuator of the oscilloscope. Included is a 'separation' control which varies the distance between the two traces and will make coincide, overlap or completely change places on the screen. Another control may be adjusted to eliminate the occasional 'stroboscope' effect inherent in the system, whilst a fifth control, when used with the 'Z-axis' input of the oscilloscope, enables the relative brightness of the two traces to be equalized.

If photography is to be used, this is a very useful feature, especially when a complicated trace and a simple one have to be photographed together, since normally this would result in the unequal exposure of the two traces. Finally, there is a sync. signal out-
put from each channel, which may be selected at will.

Circuit Operation

Reference to the block diagram shows each input to the unit followed by a signal amplifier. These are identical, each consisting of two wide-band, high-performance CA3130E Bi-MOS operational amplifiers in cascade (IC1, IC2 and IC3, IC4) used in the non-inverting mode. Each has its maximum gain limited to 10X (20dB) in order to preserve a wide bandwidth: the pair giving a gain of 100X (40dB) at the input of the following stage — and N-channel FET (2N3819). This is coupled as a source-follower of unity gain, the only function of which is to enable a variable DC component to be introduced and thus vary the relative positions of the two scans using VR3, the separation control.

The following stage uses a BFY51 as a switching transistor (Q2, Q5) which shunts the signal to ground when its base is driven by the positive-going phase of the switching waveform, a square-wave generated by a CD4001 astable multivibrator (IC5).

The two channels, A and B, are switched alternately and their conducting phases pass on the signal to the input of the final BC107 emitter-follower output-stage (Q3). Diodes D1 and D2 isolate the signal from the switching stages when the latter are in a conducting state. Thus Q1, 2, 3 and 4, together with the diodes D1 and D2 act as a diplexer, similar to that in an FM decoder, sampling alternate left and right channels.

The output of Q3 therefore consists of a complex waveform made up of alternating samples of each input, plus two variable DC components which determine the relative trace-positions on the oscilloscope screen. The multivibrator frequency is made variable, and ranges from around 600Hz to 16kHz. This enables certain switching frequencies to be avoided should they happen to fall into harmonic relationship with the displayed signals, causing patterning.

SW1 selects sync from the appropriate channel, the oscilloscope sync-selector being set to ‘external’. Normally, it is immaterial whether sync is taken from channel A or B, except when traces of differing frequencies are displayed. The Z-axis input uses the full anti-phase output of the multivibrator (approx. 12V peak to peak) and VR5 applies this differentially to reduce brilliance on one or other trace.

The PSU delivers 15V stabilized at approximately 70mA, about 30mA of which is being supplied to the LED. At this loading, the ripple
content was measured at 1.7mV RMS. The diode D3 is included as a protective device for the logic chip IC5. Some oscilloscopes give a large negative voltage-surge at the Z-axis socket when switched on and the author lost several chips before the truth dawned on him!

Construction

The circuit is built on four sections of veroboard, the component layouts of which are shown. The power transformer is attached to the wooden base of the case, with its PCB fixed to it. The remaining three boards are fixed to the underside of the control panel which is removable for servicing, being connected by two pairs of flexible leads (one to the mains switch and the other pair to the PSU output).

The terminal points consist of ¾" lengths of 18 swg copper wire pushed through the holes of the stripboard and soldered. The control-panel layout may be seen from the photograph shown nearby. The second photograph shows the positioning of the circuit boards etc. A metal case is not required, the prototype being made of hardboard sprayed with grey cellulose primer from an aerosol and the lettering was done with 'Leeraset'.

A small screen of tinfoil may be seen behind the input A socket. This is soldered to the earth tags of the socket and shields against pickup of switching waveforms generated by the adjacent components on board A. Screened leads should be used for the signal inputs and output, and also for the sync. output leads.

The boards A and B are mounted on wooden blocks using the mounting holes shown. Board C may also be mounted in this way, though the prototype shows a dif-
fertent method. It was considered neater to fix the switches and sockets into position using 'Araldite', thereby avoiding unsightly screws. The overall dimensions of the unit are:
- length - 215mm
- depth - 120mm
- rear height - 120mm
- front height - 60mm
- panel - 208 x 128mm
The pot VR4 should be connected so that maximum frequency occurs in the anticlockwise position, as this gives a more linear control of frequency.

COMPONENTS LISTING

Resistors

- R1, 13, 17, 27, 31: 1M
- R2, 3, 10, 11, 15, 18, 19, 26, 37: 10k
- R4, 5, 16, 20, 21: 4k7
- R6, 8, 14, 22, 24, 28, 38: 1k
- R7, 23: 1k8
- R12: 2k2
- R29: 390R (0.5W)
- R30: 470R
- R32: 39K
- R33, 36: 12k
- R34, 35: 1k5

All resistors 0.33W carbon film unless otherwise stated. Note that there is no R9 or 25.

Potentiometer

- VR1, 2: 10k lin. dual gang
- VR3: 2k lin. dual gang
- VR4: 2M log.
- VR5: 10k lin.

Capacitors

- C1, 7: 100n 250V polyester
- C2, 8: 470u 16V electro. radial
- C3, 4, 9, 10: 47p ceramic
- C5, 11, 17: 100n 150V polyester
- C6, 12: 1n5 ceramic
- C13: 1n ceramic
- C14: 470p ceramic
- C15: 470u 25V electro. radial
- C16: 220u 25V electro. radial

Semiconductors

- IC1, 2, 3, 4: CA3130E
- IC5: CD4001
- Q1, 4: 2N3819
- Q2, 5, 6: BFY51
- Q3: BC107
- D1, 2: 1N4148
- D3: 1N4001
- ZD1: BZY86 400mW 12V
- ZD2: BZY86 400mW 15V
- BR1: W005 type

Miscellaneous

3 TV type coaxial mounting sockets; 2 Wander types sockets; SPDT switch, SPST switch; 5 knobs; 5-pin DIL sockets; 14-pin DIL holder; 1 rectangular 2.5 x 5mm and veroboard.
There are quite a number of places on the official DXCC countries' list which are so obscure that, outside of amateur radio, nobody has heard of them. Some are relics of the past which just refuse to die.

Some of the more obscure DXCC countries have strange and lurid histories. Martin Atherton, G3ZAY, made a DXpedition back in time...

The Order today is a worldwide Roman Catholic charity, devoted to hospital and other community work, with approximately 10,000 clergy and lay members. Its headquarters, located atop the Aventine hill in Rome at one corner of the Piazza dei Cavalieri di Malta, is now almost the only territory it possesses, but in earlier centuries things were very different.

The Order was founded in Jerusalem at the end of the 11th century as a hospital, initially for pilgrims to the Holy Land, but later catering for knights injured in the Crusades. It gradually grew both in numbers and in wealth and, though continuing its hospital work, slowly changed into a military body dedicated to fighting the advance of Islam. During the 14th and 15th centuries, the Order was based on Rhodes but was forced out by the Turks in 1523 after a long siege. It then retreated to Malta where it was to stay for 250 years until being evicted in 1798 by Napoleon.

The Maltese period was the Order's most prosperous time. The SMOM fleets controlled much of the Mediterranean, briefly acquired the town of Tripoli in North Africa and the Caribbean islands of St Croix, St Barthelemy and St Martin, and undertook the construction of many beautiful public buildings on Malta itself.

After Napoleon's defeat, Britain refused to return Malta to the Order and its territory has been restricted to a handful of buildings and embassies ever since.

The Sovereign Military Order of Malta (1 AO)

What is the connection between the Crusades and the DXCC countries' list? This question might floor most contestants in the BBC 'Brain of Britain' competition but would be an easy one for any active DX operator. The answer is the Sovereign Military Order of Malta, or SMOM for short, which is recognised as a sovereign power by 41 countries around the world, as a DXCC country by the American Radio Relay League and counts separately for most other awards and contests. Although virtually landless, the SMOM issues stamps and passports and accredits ambassadors. The Grand Master of SMOM ranks as a cardinal in the Catholic church.

Aventine hill in Rome at one corner of the Piazza dei Cavalieri di Malta, is now almost the only territory it possesses, but in earlier centuries things were very different.

The Order was founded in Jerusalem at the end of the 11th century as a hospital, initially for pilgrims to the Holy Land, but later catering for knights injured in the Crusades. It gradually grew both in numbers and in wealth and, though continuing its hospital work, slowly changed into a military body dedicated to fighting the advance of Islam. During the 14th and 15th centuries, the Order was based on Rhodes but was forced out by the Turks in 1523 after a long siege. It then retreated to Malta where it was to stay for 250 years until being evicted in 1798 by Napoleon.

The Maltese period was the Order's most prosperous time. The SMOM fleets controlled much of the Mediterranean, briefly acquired the town of Tripoli in North Africa and the Caribbean islands of St Croix, St Barthelemy and St Martin, and undertook the construction of many beautiful public buildings on Malta itself.

After Napoleon's defeat, Britain refused to return Malta to the Order and its territory has been restricted to a handful of buildings and embassies ever since.

SMOM and the DX Operator

The appearance of the Order on the DXCC list was due to the efforts of Rome DXer, IOMGM, Mario Gallavotti. Mario submitted detailed documentation to the ARRL in support of his contention that the SMOM was a bona-fide sovereign country which should be included on the DXCC list, even though its territory only amounted to a few square yards of suburban Rome. The ARRL was sceptical at first, but, after making investigations of its own, added the Order to the DXCC list in January '82, backdated to the first operation in December '80.

There are no amateurs in the small 'native' SMOM population living in the HQ building on the Aventine hill, so all the 1AOKM (KM = Knights of Malta) operations have been by visitors; mostly Italians from the Rome area. Weekends have been the usual time for the station to be put on the air, from a temporary shack in the ante-room of the administration wing, where the operators are surrounded by reminders of the once glorious past. Portraits of previous Grand Masters look down from the walls and beautifully detailed models of the sailing ships with which the Order once patrolled the Mediterranean stand around the

Turks in 1523 after a long siege. It then retreated to Malta where it was to stay for 250 years until being evicted in 1798 by Napoleon.

The Maltese period was the Order's most prosperous time. The SMOM fleets controlled much of the Mediterranean, briefly acquired the town of Tripoli in North Africa and the Caribbean islands of St Croix, St Barthelemy and St Martin, and undertook the construction of many beautiful public buildings on Malta itself.

After Napoleon's defeat, Britain refused to return Malta to the Order and its territory has been restricted to a handful of buildings and embassies ever since.

SMOM and the DX Operator

The appearance of the Order on the DXCC list was due to the efforts of Rome DXer, IOMGM, Mario Gallavotti. Mario submitted detailed documentation to the ARRL in support of his contention that the SMOM was a bona-fide sovereign country which should be included on the DXCC list, even though its territory only amounted to a few square yards of suburban Rome. The ARRL was sceptical at first, but, after making investigations of its own, added the Order to the DXCC list in January '82, backdated to the first operation in December '80.

There are no amateurs in the small 'native' SMOM population living in the HQ building on the Aventine hill, so all the 1AOKM (KM = Knights of Malta) operations have been by visitors; mostly Italians from the Rome area. Weekends have been the usual time for the station to be put on the air, from a temporary shack in the ante-room of the administration wing, where the operators are surrounded by reminders of the once glorious past. Portraits of previous Grand Masters look down from the walls and beautifully detailed models of the sailing ships with which the Order once patrolled the Mediterranean stand around the

Turks in 1523 after a long siege. It then retreated to Malta where it was to stay for 250 years until being evicted in 1798 by Napoleon.

The Maltese period was the Order's most prosperous time. The SMOM fleets controlled much of the Mediterranean, briefly acquired the town of Tripoli in North Africa and the Caribbean islands of St Croix, St Barthelemy and St Martin, and undertook the construction of many beautiful public buildings on Malta itself.

After Napoleon's defeat, Britain refused to return Malta to the Order and its territory has been restricted to a handful of buildings and embassies ever since.

SMOM and the DX Operator

The appearance of the Order on the DXCC list was due to the efforts of Rome DXer, IOMGM, Mario Gallavotti. Mario submitted detailed documentation to the ARRL in support of his contention that the SMOM was a bona-fide sovereign country which should be included on the DXCC list, even though its territory only amounted to a few square yards of suburban Rome. The ARRL was sceptical at first, but, after making investigations of its own, added the Order to the DXCC list in January '82, backdated to the first operation in December '80.

There are no amateurs in the small 'native' SMOM population living in the HQ building on the Aventine hill, so all the 1AOKM (KM = Knights of Malta) operations have been by visitors; mostly Italians from the Rome area. Weekends have been the usual time for the station to be put on the air, from a temporary shack in the ante-room of the administration wing, where the operators are surrounded by reminders of the once glorious past. Portraits of previous Grand Masters look down from the walls and beautifully detailed models of the sailing ships with which the Order once patrolled the Mediterranean stand around the
operating desk.

One of the Order's rules is that only those of noble birth can sit on its governing council and in consequence most of the HQ residents are Italian noblemen. Visiting DXpeditioners always take care to dress formally so as not to cause offence and usually wear grey suits - even when erecting antennas on the roof!

The Rome DXers have declared that they intend to keep 1A0KM high on the list of wanted countries and consequently are active from there no more than once or twice a year. This policy is probably a case of making a virtue out of a necessity, since although relationships with the authorities are good, there might be some ill feeling if visits were too frequent.

Mount Athos (SV/A)

If you hear a Greek station signing /A, don't assume he's working from his alternative premises. He's not. SV... /A calls (as well as SY prefixes) are used from the independent country of Mount Athos, which counts separately from Greece for DXCC and most other amateur radio awards and contests. There are some strange little places on the DXCC countries list and Mount Athos is without a doubt one of the strangest. An independent republic, under the protection of Greece, it consists of a single mountainous peninsula 30 miles long and 6 miles wide, jutting southwards into the Aegean. The highest point, Mount Athos itself, is some 6670 feet above sea level.

So far, so ordinary, but the quite extraordinary feature of this place are that all the 1000 or so inhabitants are men, and almost all are monks living in the 20 monasteries dotted around the coast. Women have been completely banned from the country for the last thousand years, and even female animals were prohibited until recently(!).

The first hermits settled on the mountain in 850 AD and by about the year 1400, 19 out of 20 monasteries had been established. The religious nature of the place gave rise to its Greek name Ayion Oros - Holy Mountain. For the last thousand years, the population has been sustained by a continual inflow of monks and money from the rest of Europe - principally from the Greek and Russian Orthodox Churches. The government consists of the 20 man Council of Abbots (one from each monastery) which meets three or four times a year in Karyes, the only village on the peninsula.

Male visitors are permitted to enter the country if they can obtain one of the 10 visas issued per day, but no-one can stay for more than 4 days without special permission. There are no roads across the border and visitors arrive by sea on the regular ferry from Ouranopolis. Free accommodation is available in the monasteries where guests are expected to join in the monastic life and attend church services - including the ones in the middle of the night. Woe betide anyone who arrives during Lent! The monks take it very seriously indeed and food is rarely on the menu!

According to "Holiday Which", intending British visitors should first obtain a letter of recommendation from the British Consul in Thessaloniki or Athens, which can then be exchanged for an entry visa at the Ministry of Northern Greece in Thessaloniki. 'Genuine' reasons for wanting to visit are required, plain tourism isn't good enough. As there are no licensed amateurs among the monks, all radio operations from the country have been visiting DXpeditioners who have to obtain not only a Greek licence, but also an operating permit from the Council of Abbots. The last operation acceptable to the ARRL was by W6LAS/SV/A in April 1983. DJ5CO/SV/A was active last year but could not produce the right paperwork and so his QSLs do not count for DXCC. The last major DXpedition was back in April 1980 so the place is long overdue for a proper airing.

The most recent information to come from the country is supplied by the well known DXer Eric Sjolund, SMOAGD, who visited the place in April 1984. Eric arrived just before Easter and, just in case he was lucky enough to find the Council of Abbots in session, carried his complete HF station (plus generator, since only one monastery has mains electricity) with him. In the event, there were only 4 Abbots in Karyes, not enough for a quorum, so he had to forget about operating and concentrate on sight-seeing. He and another SV DXer spent their 4 days hiking from monastery to monastery, talking to the monks about amateur radio. One Abbot invited them to come back to set up a station once they'd got permission from the Council, but Eric is still waiting for that to come through.

Finding a suitable operating spot on Mount Athos is extremely difficult because most of the monasteries are perched on precipitous mountainsides, completely blocking propagation for at least 180 degrees around the horizon. The mountaintops offer the best prospects but there are few roads, so all the gear would have to be transported by mule.
Mt Athos poses a challenge of a different sort to the well known husband and wife DXing team of Lloyd and Iris Colvin, W6KG and W6QL. They have stated that they intend to operate from every reasonably accessible DXCC country and have already ticked about half of the total off their list. Lloyd could make it to Mt Athos, but Iris...

STOP PRESS
We have just heard that the ruling Council of Abbots on Mount Athos have decided to ban all further amateur radio expeditions.

Clipperton Island (F00)

Out in the Pacific, some 700 miles west off Mexico lies lonely, uninhabited, Clipperton Island; a low lying ring of sand enclosing a stagnant salt water lagoon. Although it now belongs to France and is administered from Paris, it is named after an English pirate — John Clipperton — who used it as his base during the early years of the eighteenth century.

France formally annexed the island in 1855, but Mexico disputed the claim and was the first country to occupy the place. The dispute was eventually arbitrated in 1930 by King Victor Emmanuel of Italy who came down in favour of France.

The years 1914 to 1917 marked a particularly gruesome period of Clipperton's history, when it became a forgotten colony. At the end of 1913 about 100 people, Mexican soldiers, guano workers, women and children, were living on the island and receiving regular supplies from Mexico. When war broke out, a bureaucrat somewhere in the Mexican government forgot about the colony and no further supplies were sent. During the next three years, most of the people died from starvation or tropical diseases, several of the men were drowned trying to row out to a ship they saw (or thought they saw) in the distance, and after a horrific night of violence, in which the lighthouse keeper murdered the surviving men and was in turn murdered by one of the women, only three women and eight children were left alive. The very next day, a US naval vessel called at the island and picked up the survivors.

The period 1939-45 again saw it occupied, this time by Japanese agents monitoring radio and shipping traffic in the surrounding sea lanes.

Amateur radio activity has been very infrequent. 1978 saw a major Franco-American DXpedition which made some 30,000 QSOs, and, by the time this appears in print, the April '85 DXpedition sponsored by the Northern California DX Foundation should have been history. W9KNI's book, 'The Complete DXer' refers to yet another Clipperton DXpedition which reportedly ran into problems with a typhoon, had most of its equipment wrecked, and left the island after making only 50 QSOs (including one with W9KNI).

If you missed the expedition this April you'll probably have to wait quite a time to get a QSL from this island of ghosts.

Pitcairn Island (VR6)

Another island with a violent past is Pitcairn in the South Pacific. Although world famous for providing a hiding place for the ' Bounty' mutineers, its subsequent history is almost unknown.

Let's pick up the story in February 1808 when Mayhew Folger, an American sealing captain, put into Pitcairn for fresh water supplies. Expecting to find the place uninhabited, as it had been when discovered in 1767, he was surprised to see a canoe being launched through the surf towards him. He was even more surprised when the young brown skinned occupants clambered onto his deck, greeted him in English and said they were subjects of King George.

Folger asked them a few questions and soon established that they were the children of the Bounty mutineers who had disappeared back in 1789 after the, even then, famous mutiny. The lads took him ashore where he met the only surviving mutineer, John Adams, who had a dreadful tale to tell. It seemed that the mutineers and their Tahitian wives had not found happiness on Pitcairn. Endless drunken quarrels over land and women had resulted in the deaths of all the men except Adams, who emerged from the violence as a born again Christian, dedicated to bringing up the children in a civilised God-fearing community.

Ever since that first conversion, the Pitcairners have been a devoutly religious community and today firmly embrace the beliefs of the Seventh Day Adventist Church. Folger's report of the surviving mutineer eventually reached the British Admiralty, but the thirst for vengeance had weakened with the years and when a British ship eventually called at Pitcairn, Adams was left to live in peace on the island. Most of today's islanders are descended from the children he raised.

The history of Pitcairn in the nineteenth century is littered with colourful characters. One particularly worthy of note is Joshua Hill, a madman who arrived on the...
island in 1832. He set himself up as governor and claimed to be a personal friend of most of the Kings and Queens of Europe. He came unstuck in 1838, when a visiting Royal Navy ship turned out to be captained by an aristocrat who was supposed to be one of his greatest friends, but who, it soon transpired, had never heard of him. Rather bad luck really when you think about the chances of that happening!

The modern Pitcairn population numbers about 60, and there are at least two active amateurs on the island — Tom Christian, VR6TC (a native Pitcairner), and Kari Young, VR6KY (a Norwegian girl who fell in love with an islander while on shore leave from her job as radio operator on a merchant ship). Tom can be found around 14145 on most Sunday mornings (0730-0800z) working his friends in Europe.

The future for the Pitcairn islanders is bleak. The population is steadily declining as young people leave for the bright lights of New Zealand, and the number of passing ships is fewer every year. There are intervals of three or four months during which there is no way to get people or goods on or off the island. Once the population gets below the 50 level, the community will probably cease to be viable and the residents will have to emigrate on en masse to a new home. The DXing moral is to work this one while you can.

Abu Ali & Jabal al Tair

This DXCC 'country' in the Red Sea is almost impossible to find on any but the very best charts. It qualified for the list at a time when the rules were rather less strict than they are today. It consists of two small, rocky, islands about a hundred miles apart. Abu Ali is 300 feet high and Jabal al Tair 780 feet. Both have lighthouses on their summits. Although the islands are claimed by virtually all the surrounding countries, they are not administered at present by any of them. The lighthouses are run by an offshoot of the British Department of Trade and Industry (because a fairly old treaty on Red Sea navigation assigned this task to Britain) and are manned by staff recruited from the Middle East.

The first amateur radio operation was by ET3ZU/A in 1971, and the most recent was by Lloyd and Iris Colvin, W6KG and W6QL, operating as G5ACI/AA in 1982.

Suitland Island (KH7S)

You won't find this island in any atlas or even on the DXCC list. It doesn't even exist but there has been activity from it! A few years ago the editors of DX information sheets around the world received a package of material about an American Island in the Pacific, 600 miles north of Hawaii, which had just been decommissioned as a chemical weapons dump. Suitland Island, as it was called, had apparently been deleted from American maps for security reasons but was now to be declassified. To celebrate its reappearance there was to be a DXpedition signing KJ6DO/KH7S the following weekend, and, in view of its distance from Hawaii, there was a strong possibility that it would count as a new DXCC country. The package even included a detailed government map of the island.

Most of the American bulletins, in their haste for a 'scoop' printed the story straight away, but this author (then co-editor of RSGB's 'DX News Sheet') smelt a rat and headed for the chart room at Cambridge University's official library. Not even the most detailed maps they had showed any sort of island in the appropriate part of the Pacific, so a hoax was hesitantly suggested.

At the appointed hour, however, KJ6DO/KH7S duly appeared on the bands and soon developed an enormous pile-up. It began to look as though the doubters were wrong, until stations in California realised that they were having to beam north to work a station that should have been due west. KH7S was clearly somewhere along the north west coast of the USA and several thousand miles from where it was claiming to be. After several hours of mayhem, it went ORT and about a month later QSL cards with a skull and crossbones on the front began to appear through the bureaus. Why Suitland Island? Well Suitland in Maryland is the home of the US Navy's map-making dept.

The Washington authorities and the gullible DX editors were not amused.

Final Transmission

Hopefully the foregoing has shown that DXing can be a fascinating hobby, even if you are not bothered about collecting QSL cards or awards. The next time you work someone in what seems to you an unusual spot, ask about the local history and what it's like to live in the country. The amateur at the other end will probably be delighted to have the chance of a 'real' QSO and say something other than "'59 QRZ?".

A word of warning though. Don't try this with a DXpedition or someone who is clearly intent on DXpedition style operating. An operator who has spent upwards of £1000 to make QSOs from a rare spot will not want to give you a lecture about the place — or at least, not until he returns home.
The most effective route yet to your Class A amateur licence!

Professionally produced for HAM RADIO TODAY by Shirley Hesketh G4HES and Ron Ray G3NCL, this advanced interactive learning system makes use of the stereo cassette format to provide tuition to the 12wpm test standard.

With its carefully designed structure, we think that the HRT MORSE COURSE is more effective than either morse classes or electronic morse generators.

Based on TWO C-60 cassettes, it offers the controlled prompting so necessary for the initial stages of morse tuition, followed by carefully paced test material to bring the student up to speed. Full tuition notes are provided with the cassettes.

To receive your MORSE COURSE simply fill in the coupon below and return it to: 'HRT MORSE COURSE', Argus Press Software, No. 1 Golden Square, London W1R 3AB.

Please send me the 'HRT Morse Course' at £11.45 all inclusive of P & P and VAT.
I enclose cheque/PO for £...... (payable to APS Ltd) OR Debit my Access/Barclaycard (delete as necessary).

Please use BLOCK CAPITALS
Name (Mr/Mrs/Miss)...
Address...
Signature...
Postcode...
Date...

Please allow 21 days for delivery
Traditionally, fault finding on a de-energised printed circuit board has required the desoldering of all but one of the connections to the component you desire to test and then making one or more resistance measurements on the component. This process is not only time consuming, but also requires the application of a hot soldering iron to the board which can cause lifting of the PCB tracks and, perhaps, the destruction of heat sensitive components such as transistors or ICs, before, or even after, testing.

As the component packing density of modern equipment increases, so does the danger of inadvertent damage to adjacent components which fault finding in the above fashion. Furthermore, an ohmmeter cannot detect a short circuit inductor or an open circuit capacitor and some will generate sufficient voltage, even on their lowest range, to destroy some semiconductor junctions. This problem has troubled the author for a considerable period until quite recently, when, whilst clearing out a pile of old papers in the loft, he came across an old RCA Information letter dated some ten years ago. This described a simple yet versatile test device which, it was claimed, would meet this long felt need.

In the best traditions of amateur radio, the clearing of the loft was forgotten, the soldering iron was switched on and a ‘breadboard’ version of the tester constructed within a few minutes. This was connected to the shack oscilloscope and, by the end of an hour spent checking a number of old PCBs acquired from club junk sales, he was fully convinced that the tester was capable of the claimed performance.

The unit described is, when used in conjunction with any oscilloscope, capable of testing components for short or open circuit, checking the quality of semi-conductor junctions and, by utilising Lissajous and combination patterns (Lissajous patterns are those produced when two sinusoidal quantities are superimposed on each other at right angles – see Fig. 2) on the display, check reactive components which defy ohmometer analysis. The circuit is also useful for continuity checking and detecting high resistance soldered joints.

Construction

A glance at the circuit diagram in Fig. 1 reveals that the construction could not possibly be more simple and, since none of the components are critical, they may be replaced by whatever is immediately available. The main requirement is that approximately 1V should appear across the 100 ohm resistor, connected to earth or chassis, low voltage supply is available on the bench. As can be seen, the power requirement is minimal and if the smallest possible mains transformer is used, the unit should easily fit inside one of the readily available small diecast boxes. In such circumstances, an on/off switch and a fuse should be added to the mains input circuit. Alternatively, once that a breadboard prototype has proved the concept, the constructor may decide, as has the author, to incorporate the device within the oscilloscope.

Operation

With the tester connected to a suitable oscilloscope, short circuit the red and black test leads and with the time base switched off, adjust the vertical gain on the oscilloscope until the trace is

Fig. 1 Basic circuit diagram of the ‘in circuit’ tester. If built as a free standing unit, an on/off switch and a fuse would have to be added to the mains input circuit.
Fig. 2 The main oscilloscope display patterns:
(a) short circuit, (b) open circuit, (c) resistance, (d) inductance, (e) capacitance,
(f) and (g) step display from a semiconductor junction.

almost full screen height. Separate the leads, and adjust the horizontal
gain until the horizontal trace is
almost the full width of the screen.
The tester is now ready for opera-
tion.

Before using the tester in anger, it is good idea to practice on a few known working and faulty
components, singly and in com-
bination, until you are familiar with the oscilloscope indications in
Fig. 2. The instrument can clearly identify a number of different cir-
cuit elements and conditions in-
cluding: resistance, semiconductor
junctions and capacitive or in-
ductive reactance. Each of these pro-
duces its own distinctive pattern,
but a little experience is necessary when interpreting combinations of
these, such as may be found when
‘in circuit’ testing on a faulty PCB.

When testing transistors,
check from base to emitter and base to collector separately,
because a collector to emitter test,
being through two back-to-back PN
junctions, will not produce a
useable display. A single junction
will produce a distinctive 90 degree
step waveform, whilst a more ob-
tuse angle (greater than 90 degrees
but less than 180) indicates a DC
path across the junction. If the tran-
sistor is not connected into a cir-
cuit, this indicates a less than
perfect junction, but when
mounted on a circuit board (ie in
a circuit) this could be due to a resistor
connected in parallel with it in the
circuit, as shown in Fig. 3.

If one leg of the waveform
takes the form of a loop, this is due to
the presence of capacitive or in-
ductive elements in the circuit, see
Fig. 4. For example, if a diode and a
 capacitor in parallel are under test
as in Fig. 5, the oscilloscope will
display both a 90 degree step
waveform and a Lissajous loop, indi-
cating that no separate DC path
was present. If however, the circuit
under test was a transformer win-
ding in the base-emitter circuit of a
transistor, the display would show
a similar pattern but with a step
angle of more than 90 degrees,
thus indicating the presence of a
DC path in addition to the inductive
reactance and the junction step.

Two other useful checks can be
performed with this tester:
(1) When confronted with an un-
marked transistor, a common
enough occurrence in the average
shack, place the red test lead on
the base connection and the black
lead on the emitter or collector. A
step pattern opening downwards
will indicate that the device is PNP,
whilst a pattern opening upwards
indicates NPN. This method can
also be used to determine diode
polarity.

(2) An out-of-circuit potentiometer
may be checked for ‘noisy’ opera-
tion. Connect the test probes be-
 tween the potentiometer slider and
one end connection and rotate the
spindle through its range. A quiet
device will cause a diagonal line to
be displayed, the angle changing as
the position of the arm is varied.
Should any noise be present, this
will show as intermittent spurious
responses as — jaggedness — on
the display.

Safeguard Components

The design of the tester limits
the current applied to the device
under test to about 1 mA RMS. This
is perfectly safe for the majority of
semiconductors, however, this
could cause damage to some small
signal diodes or transistors. If such
devices are to be tested, they can
be simply safeguarded by placing
an additional 10k ohm resistor in
series with the red lead of the
tester.
Television OBs, as you can imagine, are a little more complex than radio. Whereas with radio it is only sound quality one is after, with TV it has to look good as well! Because of the complexity of TV, a vast amount of electronics is used, which is beyond people like me (I can understand how a microphone picks up a voice, is mixed and then transmitted, but the workings of a vision mixer... well need I say more). Bearing this point in mind, my findings in this article generally relate to communications and how the vehicle functions as a control unit.

In part two, Mick Rump, G8CYE, takes a look at television and the ‘Lime Grove Topical Production Unit’.

One day, whilst trudging through the bustling streets of Brighton, I happened to notice a large van in what I thought was the BBC grey livery parked outside Prince Regent’s Royal Pavilion (any visitor who has been to Brighton will recognise this as the Palace with the ‘onions’ on top). On pursuing my noseyness, I discovered the van was a unit called the ‘Lime Grove Topical Production Unit’ or TS1 to its friends. Unfortunately, my visit was too late to bear any fruit as the crew were heading for the gate back to Lime Grove, However, fate being what it is, TS1 made another visit to Brighton for the TUC Conference. Armed with pen and notebook and also finding two very helpful and cooperative engineers, I discovered the following.

TS1 is designed as a one-camera mobile vehicle and carries all the equipment required for a broadcast, unlike most other control units who need support vehicles to bring the equipment to the site. Its main role is used in and around London for fast news coverage, although running true to the BBC motto it was used as the TUC Conference for ‘Breakfast Time’ and ‘Newsnight’, for which special interviews were made in a rented room in the adjacent Metropole Hotel.

The camera is fed into TS1, produced, directed and then beamed out on SHF through two phased helix yagi’s at the top of the mast (the latter being affectionately known to the engineers as poles). There are five receiving aerials around London for the signal, which is passed along an SHF chain of repeaters, finally being fed into Television Centre.

The Mercedes van used is literally crammed with electronics. The main production area is situated between the cab and the rear axle, the rest of the vehicle being used for storage of equipment. This includes camera and audio cables, power cable, cameras, camera stands, a spare microwave dish along with short stands that can be used instead of the ‘poles’ and a great quantity of plugs, sockets, leads etc essential to any kind of broadcast.

The termination panel of the TS1, carrying power camera and audio inputs to the vehicle.

The ‘Topical Production Unit’ or TS1.

The production area consists of audio and vision mixers, with appropriate monitors. Also included are equipment racks, containing jack fields (networks of jack plugs and sockets for equipment connection purposes), line amplifiers, audio and video processing equipment, mains power circuit breakers (in case of overloads) and monitoring equipment.

Of special interest is the communications facilities carried on TS1 and they are somewhat comprehensive; no less than seven transceivers are used, working on different frequencies. These systems are as follows:

a) Low band VHF. This is used for outside broadcast communications. Let’s say for example we have a relay vehicle on a nearby hilltop, this link is used between the relay vehicle and the OB site. The aerial is a ½ wave mounted on the roof.

b) Low band VHF. As you can imagine, an awful lot of cables have to be laid for an OB and this work is carried out by ‘riggers’ who communicate between themselves or TS1 using hand held sets. These are stored in TS1, ready for use at any time. Again the vehicle aerial is a roof mounted ½ wave.

c) High band VHF. This is the main
d) High band VHF. Being essentially a news vehicle, fast communication with the newsroom or nearby engineering base is essential, so a conventional radio telephone is also fitted. By dialing any number on the telephone keypad, it is fed directly into the British Telecom network for direct phone contact. A half wave aerial completes the system.
e) High band VHF. This is the main news communication link in and around London, so all news vehicles can keep in contact. A ½ wave aerial roof mounted is again used.
f) UHF. This is used for contact to the camera man. The camera cable includes an intercom pair so the camera man can plug a pair of headphones into the camera; however, in some circumstances this may not be practical, so wireless communication is used. The camera man has only a receiver with an ear piece or headphones, the reason for this being quite logical. The production staff in the vehicles pass on a command to the camera operator, which they obey, and the staff can see the results on the camera monitor screen back in TS1, so he has no need to be able to talk back. The second reason and probably the most important, is that the physical position the camera operator is in is often very close to the microphones for the sound recording — if the operator did speak, it would come out on-air! The aerial used is a ½ wave, either mounted on the roof of the vehicle or on top of the sixty foot vehicle mast for better coverage.
g) SHF. All the pictures and sound that have been processed in TS1 have now to reach the main London studio. This is done via microwave link, the dish antenna which is usually located on the vehicle mast. This transmission, in the case of a broadcast from Brighton, of the five receiving (microwave link) aerials, as mentioned earlier.

As may be seen from this brief insight, TS1 is a very comprehensive outside broadcast vehicle. Other TV OB vehicles have broadly similar contents but are designed for specialist purposes. Finally, as the TS1, it must be the most valuable Mercedes lorry on the road, anywhere!

WIN AN ENTERPRISE 64 MICRO!

The Enterprise 64 is one of the very latest micros to appear on the home market. It combines many features not found together in one small package. For example; stereo sound, 256 colours, built in joystick, wordprocessor, 64k memory — expandable to 4000k!
The language is standard BASIC, as is the interfacing circuits to printers and even local area networking. We like the Enterprise so much that we are giving you the chance to win one FREE in our easy to enter competition in our next issue.

This together with; Audio Analyser, Syndrum, CPC RS232 Interface, plus features galore makes buying Digital & Micro Electronics your number one choice.

OUT NOW!
WANTED memory expansion and super expander cartridge for Commodore VIC20 computer. Also wanted microwave hardware for 10GHz, such as circulator, small dish and feed, wavemeter. WHY? Dave Price
G4BX Betchworth (Surrey)
2894 after 6pm.
WANTED Marconi Atlanta PSU or details of construction also manual. Frost, 36 York Gardens, Brantree, Essex CM7 6NF 0375 40137.
MICROWAVE MODULES
MTM432/28 transverter in good condition. Also Yaesu FT225RD memory unit. Graeme G6CSY Orpington (0689) 292300 evenings.
WANTED TRIO R-509D amateur radio receiver with instruction manual must be in good condition, no modifications please state price, please ring 051-931-1001 anytime.
OSCILLOSCOPE WANTED 20 MHz dual trace B operating manual. Phone 01-482 1635.
WANTED digital frequency meter 200 MHz or higher minimum 10Hz resolution preferably mains powered. Also cassette with SSTV signals off air. Write Daly, 2 Stoney Lane, Newbury, Berks. All letters answered.
TEN-TEC CORSAIR wanted.
Tel Tom, 0252 519834.
WANTED Yaesu YK-901 keyboard. Also Panasonic DR-49 digital coverage receiver. A Yaesu TD-148 desk mike. Phone Colchester 394336 Essex.
WANTED: looking for RE604 and RE614 tubes. Any quantity. Price offer to O4AAB Postbus 135 LIER 2500 BELGIUM.
SUPER SKYRIDER wiring diagram or any other information pertaining to the SX28 model required. Contact Mr Baird, 65 Waterpump Court, 7 Thorplands, Northampton 40137.
WANTED to replace stolen item RTTY Morse converter Codemaster or Tono 550. Phone 051 526 4832.
WANTED VLF receiver and pre-world war 2 radio handbooks. For sale Codar PR4D preselector £8. Morris, 35 Kingswood House, Farnham Road, Slough, Berks, SL2 1DA.
WANTED UFO DIGISCAN or similar. Must be cheap and working.
Phone 01-961-4659.
WANTED any info, circuit diagram, on a SB E54CB. Will pay any expenses. Tel Paul Young 01-961-4659.
WANTED Sinclair ZX81 computer condition not important, but must be working. Will pay upto £10. Potters Bar 42065 evenings.
FREE of charge selection of past magazines, mainly ‘Radio Communication’. Wanted miniature plug in Xtsls between 12.53 MHz and 12.68 MHz. Also 14.21 to 14.49 McCarthy, Ipswich 215047.
WANTED valves T160L-572B 12BY7A FT101ZD also any ATU. Tel Hounslow 01-560 26168.
GENERAL COVERAGE receiver urgently required, Yaesu FR range or Trio R1000. Carriage paid if too far to collect. D Howes, 149 Warren Wood Road, Rochester. 0634 404096.
WANTED two wide spaced variable capacitors 200 to 350 pF for ATU. J Van Walwyk, 11 Valette Court, 74 St James Lane, London N10 3AR.
WANTED any details for Hallicrafters SX 42 receiver photocopying and postage paid or manuals bought. Tony Dean, 3 St Johns Cottages, Charlton, Musgrove, Wrington, Somerset.
WANTED Yaesu FT1018 FT101E or similar model. Will pay up to £300, if in good condition. Tel Stroud 04536 2385 Glos. 6.30pm onwards, Tues/Fri.
HAVE VRL Comms Rx 0-30 SER 496. Need circuit info for Wayne Kerr component. Write William McCarthy, VE3 KHB RR6, Smiths Falls, Ontario K7 A 4 S7 Canada.
WANTED to borrow handbook for Wayne Kerr component bridge B521 for photocopying. All expenses paid plus useful present. Also wanted disc-seal triode TD30-10 (CV273) G3 AAG. Hants 0730 921433. “Upper Durdford”, Durdford Wood, Petersfield GU31 5AN. Help would be much appreciated.
WANTED Nato 2000 in good condition, Belcom 26.29 MHz FT707 in good condition, phone 0283 221870.
WANTED Pye PFI's Tx and Rx xtalled for RB14, SU20, RB10. Good price paid for sets in vgc. Tel Leigh 675445 OTHR or write to S Balion 18 Knowsley Street, Leigh, Lancs WN74ER.
WANTED PSU for radio No 19 mark III also aerial for same, tuner etc. Price and carriage to Owen Corrigan, 24 Sheares Park, Glashen Road, Cork, Eire. Thanks.
WANTED Yaesu YK901 keyboard. Yaesu YD-148 desk microphone. Phone Colchester 394336 Essex.
WANTED VC7B digital frequency display unit for Yaesu FT-7B. Tel 01 393 9115 evenings, 0926 4489 daytime. Ask for Pete Jenkins.
WANTED FM board for FT1012D, good condition, fair price paid. Jim, 23 Brookvale Grove, Olton, Solihull West Midlands. Phone 021 706 3570.
WANTED any information especially circuit diag for Hallicrafters S27 VHF Rx

please mention HRT when replying to advertisements. 73 G4NXV
WANTED 3 telephone. Apply D A Jenkins 2BHR, Meteorological Office, RAF Gibraltar, BFPO 52.

FRV7700 VHF converter for 2 metre and air band to fit FRG7700. Garry P Grigg (G1GPG) 061 428 6491 evenings.

WANTED copies of tests about ICR70. ICR71 AOR2001 FRG9600 FRG8800. Contact D. Kemp, 40 Rue Des Seringas, 50200 Coutances, France.

WANTED Codar AT5 Tx 2m rig, also wanted FD7K00EX or similar. G4R Mr Creasey, Rose Cottage, Six House Bank, West Pinchbeck, Spalding, Lincs PE11 3OG.

WANTED a 362A type signal meter for my Marconi Atalanta receiver. Any reasonable price considered and all letters answered. This unit might not be common so any details appreciated. Jonathan Baker, 67 East Street, Selsey, West Sussex PO20 0BT.

WANTED Vintage radio books, magazines “Wireless at Sea” Hancock 19235 “Admiralty Handbook of W/T” HM50 1938 or similar. Condition unimportant, Crabtree & Linton, 65A Lime Tree Road, Middlesborough, Cleveland 0642 828522.

WANTED power supply KW2000/B any condition if transformer only to give 800V 200V, 60W and 12V. Rogers G3AIU 0793 (Swindon) 814280.

EXCHANGE

EXCHANGE my Bronica ECTL camera 75mm lens 2X converter 50mm lens spare back Pentaprism filters piggy back flash £40.00 for best HF transceiver offered. Dolphin, 3 Buckmore Avenue, Petersfield, Hants GU32 3EF.

WANTED FRG7700 or Trio R600 or Trio R1000 or any good communication receiver in exchange for 64K Amstrad CPC464 colour computer & software & books only six months old. Write to Mr Hannah, Dunedin, The Green, Hatfield Peveral, Chelmsford, Essex CM7 2JQ.

HAM INTERNATIONAL Jumbo Mk2 base station 26.2 to 28.495. Speedy CTE, internation-l. amplifier maines good condition swap for FT101 HF FT200 HF. Please write to Tom RO Box 16, Liege, Belgium 4EH5-SR8.

EXCHANGE Pentax M.E. Super Plus 28mm 40-80mm 75-150mm lens also flash and autowinder. All in mint condition. For SX200 NAR2001 or similar Cash either way. Phone 0970 4271 after 6pm.

EXCHANGE Magenta open top sports car for VHF/UHF transceiver and ATU etc or other radio equipments suitable for 2m operations preferably dual band. Anderson 037 387 483 Faulkland (Somerset) evenings.

EXCHANGE Super 8 sound home movie projector, 8 printers, ex speakers, all in good condition. When new cost approx £700. For a good Trio or Yaesu home base transceiver must be working. Phone Norman, Leeds 530182.

EXCHANGE Super 8 sound home movie: projector, films, screen, ex speakers, all in good condition. When new cost approx £700. For a good Trio or Yaesu home base transceiver must be working. Phone Norman, Leeds 530182.

EXCHANGE Amstrad CPC464 colour computer. Colour monitor, assorted software. Four months old for ham international Jumbo 2 base station for conversion or 2m multimode. Contact Kenen Storey, 7 Dunlan Close, Tilehurst, Reading, Berks RG3 4YN.

TRANSMITTER type 9231 ex govt. 200-400 MHz good condition weight approx 200 lbs. Offers or exchange R115 or HF receiver or 70MHz plus 144MHz receiver. Tel 0380 830428 (Brattan, Wilts).

MMW 001 KBB RTTY xceiver offered in exchange for 70cm xceiver and ZM converter. H/B KX250 £40, faylon, G3WOC, Abersoch 2675.

EXCHANGE my Icom IC22 xtal for R0 to R22. For TR 2300 with case, NiCads and charger. Bob, Canvey Island, Essex, 0268 697906.

SWAP Acorn Electron (BBC Basic) cassette deck, software, books, mags, cash adjustment if needed, for 2m/70cm MF or SSB rig or sell £110.00. Write K. Argyre, 3 Gregory Close, Barlestone, Nuneaton, Warwick CV3 10EP.

All letters answered.

FOR SALE

REALISTIC DX300 digital readout communications receiver, 10kHz to 30MHz, vgc £120, ARAC102 receiver 10m and 2m AM-SSB, 12B 6V good working order, £45. Ken Greenough, 2 Bexley Close, Glossop, Derbyshire, SK13 9BG. Phone 0547 45315.

KW EZEE match ATU £35. Lr HF Omnimate match ATU all bands WARC £60. SEM Ltd Zetune Tuning Bridge £25. 1/8 wave G5RVE complete £7.50. Mains PSU 12V 5M regulated, metered £15. All brand new. Phone Basingstoke 465126.

VINTAGE HF ARAB terminal unit MPTU1 factory built, complete with leads and manual plus matching interface and RTTY program for 48K Spectrum with manual. Price £85. New. 6146 valves £85. A/B £7 each. Tel 021 373 8806.

REALISTIC PRO-30 portable mobile transceiver covers aircraft, ham, public services, etc 68MHz-174MHz and 380 MHz-512 MHz, memory backup, priority scan etc. Still under guarantee, boxed as new. Offers in region of £190. Phone Weybridge (0932) 40966.

S6YI legs and pictures now I have your attention, who wants a REALISTIC DX300 match ATU, rgo, ARAC 102 receiver in region of £35.00. Speedy CTE. Inter.

S6YI legs and pictures now I have your attention, who wants a REALISTIC DX300 match ATU, rgo, ARAC 102 receiver in region of £35.00. Speedy CTE. Inter.

All letters answered.

FOR SALE

TRIO TS780 dual band multimode base station, 2/3 digital, as new with SP70 mint, £750. Tempo 2 kilowatt 2002 144Mk lineur £750. Icom IC701 HF digital, 10W, transceiver with matching PSU, remote keyboard mike, boxes, etc. £495 or WHY? Phone 01-998 4936.

FOR SALE fifteen, three element beam antenna. Good condition £35.00. Tel G4OFR. Plymouth 88787.

FOR SALE my Icom IC22 colour computer for £480. Weltz AC38M ATU £55. Gould PSU 13.8V 3.5A Overvolt and current protection £15. 2 meter HBCV Radio Super 800 £75. Phone (0462) 35248. G4OXD.

FOR SALE Datong DT0 Morse tector for £35. Phone Keith Dartford (0322) 70073.

ICF-7600 Sony synthesized receiver, computerised sell £61.00. Telephone Don 632777 (Bridge of ALLAN). For ARB with extra frequency, as new, built in power reducer + power switch, plus power mike and many meters. All A1 + 200W, boots and flat beam with rotor £225.00. Will split. Ring Canvey Island 0268 684113.

HYGA IN TH6DDX six element HF beam complete with BN86 Balun £75. Ring Dursley 811454 after 6pm.

STRUMCHE Versatower 30 feet base mount type £325. TA32 JNR tribander £80. AR40 rotator £80, all good condition. £100. Buyer collects. G4KIZ QTH Tel 0472 823825.

steps, 29.3MHz to 29.7MHz, 5KWz boxed Creed 7TR punch £3. New cables £1. Loudspeaker £1. 6 -channel, condition Microphone, control box and QTHR Brighton 37992. Phone Stonehenge 0437 2015. Or swap for s/h solid from 0.15MHz FOR SALE realistic DX1 00 L Rx 635560. (07721 65181.

steps, 29.3MHz to 29.7MHz, 5KWz boxed Creed 7TR punch £3. New cables £1. Loudspeaker £1. 6 -channel, condition Microphone, control box and QTHR Brighton 37992. Phone Stonehenge 0437 2015. Or swap for s/h solid from 0.15MHz FOR SALE realistic DX1 00 L Rx 635560. (07721 65181.

WANTED 144MHz valve collects. £175 boxed. LAR VHF Omni - £240. Trio R1000 HF receiver with spare valves, PSY and 80-10 HF transceiver separate PSU £450. Manual. Seeking FOR SALE realistic DX100L Rx from 0.15MHz to 30MHz, 12V DC or 240V AC vgc £85 or swap for solid state RX. Phone Stonehenge 630652.

RTTY MM400 with keyboard and monitor £150. G4DOS QTHR Brighton 37992.

KW 202 receiver, excellent condition £120 ono. Microwave modules 2m converter £10. Ring Colne 866038.

ICOM IC-1050 10M FM pg, 29.3MHz to 29.7 MHz, 5Kwz steps, plus 25W PA plus mobile antenna plus slide mount £45. Tel 0783 815331 after 7pm.

SPECTRUM 48 K prof keyboard data recorder can solve complete issues of 'Input' £220 or swap FT290 or 2M multimode 0476 708877 even-ings.

FOR SALE Eurosonic GT858 FM 27MHz for sale, also Amstrad mobile antennae transceiver only six months old. In excel- lent condition so will sell for £20. Antennae £5. Contact between 6pm and 7pm. Phone (Plymouth) 54807 (Bernie). USA VW2X equipment. Bendix etc, cheap. EM radio amateur exam course old buy very good with morse records £25. Safety in the shack, Crabtree earth leakage breaker, unused £25. Old wireless words etc, cheap to clear Phone Neath (0639) 820356.

steps, 29.3MHz to 29.7MHz, 5KWz boxed Creed 7TR punch £3. New cables £1. Loudspeaker £1. 6 -channel, condition Microphone, control box and QTHR Brighton 37992. Phone Stonehenge 0437 2015. Or swap for s/h solid from 0.15MHz FOR SALE realistic DX1 00 L Rx 635560. (07721 65181.

WANTED 144MHz valve collects. £175 boxed. LAR VHF Omni - £240. Trio R1000 HF receiver with spare valves, PSY and 80-10 HF transceiver separate PSU £450. Manual. Seeking FOR SALE realistic DX100L Rx from 0.15MHz to 30MHz, 12V DC or 240V AC vgc £85 or swap for solid state RX. Phone Stonehenge 630652.

RTTY MM400 with keyboard and monitor £150. G4DOS QTHR Brighton 37992.

KW 202 receiver, excellent condition £120 ono. Microwave modules 2m converter £10. Ring Colne 866038.

ICOM IC-1050 10M FM pg, 29.3MHz to 29.7 MHz, 5Kwz steps, plus 25W PA plus mobile antenna plus slide mount £45. Tel 0783 815331 after 7pm.

SPECTRUM 48 K prof keyboard data recorder can solve complete issues of 'Input' £220 or swap FT290 or 2M multimode 0476 708877 even-nings.

FOR SALE Eurosonic GT858 FM 27MHz for sale, also Amstrad mobile antennae transceiver only six months old. In excel- lent condition so will sell for £20. Antennae £5. Contact between 6pm and 7pm. Phone (Plymouth) 54807 (Bernie). USA VW2X equipment. Bendix etc, cheap. EM radio amateur exam course old buy very good with morse records £25. Safety in the shack, Crabtree earth leakage breaker, unused £25. Old wireless words etc, cheap to clear Phone Neath (0639) 820356.
Free Readers' ADS!

Buy, sell or exchange your gear through our free service to readers

CONDITIONS

1. These advertisements are offered as a free service to readers who are not engaged in buying or selling the same equipment or services on a commercial basis. Readers who are should contact our advertising department who will be pleased to help.

2. Advertisements will be inserted as and when space becomes available.

3. The insertion of advertisements will be on a first-come, first-served basis, subject to condition (2). As a result, it will not be possible to guarantee the insertion of a particular advertisement into any particular issue of the magazine.

4. Readers should either write out their advertisement in BLOCK CAPITALS or type it, underlining any words that are to appear in bold.

5. The magazine cannot accept any responsibility for printers' errors in the advertisements; however, we will do our best to ensure that legibly written advertisements are reproduced correctly. In the event of a gross error, at the Editor's discretion, a corrected version of the advertisement will be printed (at the advertiser's request) at the earliest issue in which space is available.

6. The magazine or its publishers will not accept responsibility for the contents of the advertisements, and by acceptance of these conditions, the advertiser undertakes to indemnify the publisher against any legal action arising out of the contents of the advertisement.

7. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary.

8. Advertisements are accepted in good faith; however, the publisher cannot be held responsible for any untruths or misrepresentations in the advertisement, nor for the activities of advertisers or respondents.

9. Advertisers must fill in their names, addresses and (if available) telephone number in the space provided, and sign the form to indicate acceptance of these conditions (forms returned without a signature will not be used).

10. All that is to be reproduced in the advertisement should be entered into the space provided on the form printed in the magazine — note that a photocopy is not acceptable. All advertisements must give either a telephone number and/or address for respondents to contact, and this must be included in the wording of the advertisement.

11. Advertisements must be 40 words or less in length (telephone numbers normally count as two words, exchange or exchange code plus number).

Name ..
Address ..

ENTER YOUR ADVERTISEMENT HERE:

I accept the conditions above.

Signature ..

Send this form to: Free Readers Ads, Ham Radio Today, I Golden Square, London, W1R 3AB
W. MIDLANDS

HEWARD'S HOME STORES LTD. (Est. 1963)
822/4 Kingstoney Rd., Birmingham B44 9RT.
Tel. 021-354 2083
G4RJM with 38 years in The Radio Trade
Ham Equipment urgently wanted!
Open: Mon -Sat 12.8

CENTRE ELECTRONICS
354 Stokfield Road, Yardley, Birmingham B25 8JP
Specialist in the sale and service of Ex Government and Vantage Radio and Test Equipment.
(Many spares in stock).
Telephone enquiries to 0676 32560

WARD ELECTRONICS
DIAVA
LCOW PRODUCTS
HOKUSIIN
COMMODORE
COMPUTERS
RTTY EQUIPMENT
G3LV PCB'S FOR SSTV/WTTY
DRESSLER UK LTD
191 Frenode Rd, Leyton, E10
Open 9.30-3.30 Monday-Friday 10-5 Saturday
Authorised dealers for:
Dressler, Yaesu, Icom, Standard, Trio/Kenwood,
Datong, SCM, Microwave Modules, Tonna
Tel: 01-859 0940/089-1415 Telex: 6059609

LONDON

BONEX LTD
RF component specialists Toko coil & inductors "available at show"
102 Churchfield Road
London W3 6DH
Tel: 01-992 7748

NORFOLK

D.P. HOBBS (Norwich) Ltd
13 St. Benedicts Street, Norwich
Tel: 01 5788
Open Mon-Sat 9-5.30
Closed Thurs
Stockists of:
YAESU, FDK, ICOM, JAYBEAM & Electronic Component Specialists

SCOTLAND

GUILDFORD COMMUNICATIONS
34 Aldershot Rd., Guildford
Open Mon-Fri 8am-6.30pm
Sat 8am-5.30pm
Secondhand wanted

TRENDYNICS
129 Chillingham Rd, Newcastle-upon-Tyne
Tel: 091-270 1002
Open: Tues-Sat 10am-6pm

HAM RADIO TODAY SEPTEMBER 1985 Please mention HRT when replying to advertisements. G4NXV.
KENT

Thanet ELECTRONICS
95 Mortimer St, Herne Bay
Tel: (0227) 368464
Open Mon-Sat 9-5.30pm except Thursday 9-1pm

W. MIDLANDS

TAR AERIALS AND COMMUNICATIONS
Specialists in Aerial Components, Lashings & Masts
Dealers in Jaybeam, Icom, Yaesu and others. Visit the
THE COMMUNICATIONS CENTRE
KING WILLIAM STREET, AMBLECOTE
STOURBRIDGE, WEST MIDLANDS, DY4 4QY
TEL: 0384 390644

MIDDLESEX

AMCOMM
Authorized Icom dealer
OPEN 10am - 5.30pm TUES-SAT. CLOSED MONDAY
NORTHOLT RD, S. HARROW
MIDDLESEX
TEL: 01-422 0985

WARWICKSHIRE

"Amateur Electronics UK"
AJH ELECTRONICS (G8AQN)
TPW
41A Blackett Rd, Rugby CV23 7AJ

CHESHIRE

GLENBOND (VIDEOTEL) LTD
25, Stamford Street, Altrincham, Cheshire, WA14 1EX
Tel: 061-941 3057 Telex: 666387
Standard 2m and 70cm - Jaybeam - Ant Antennae
- Antiference - Weitz - Sinclair Computer Spares
- Revco
Colin G1 ZD Gavin G1 NZL
YOUR RADIO SOLD ON COMMISSION BASIS

DON'T LEAVE IT TO CHANCE!
— GIVE YOUR BUSINESS A BOOST
BY ADVERTISING IN HRT
PHONE 01-437 0699 FOR DETAILS

HAM RADIO TODAY — SEPTEMBER 1985
— ADVERTISERS INDEX —

Aerial Systems...............................5
Allweld Engineering.......................29
Amcomm Services..........................I.F.C.
Arrow Electronics..........................O.B.C.
BNR + ES.......................................21
CBT...57
Dewsbury Electronics......................7
Elliot Electronics............................21
G4TNY Electonics.........................21
G.M.T. Software.............................58
Interbooks.................................25
Lecmar Electronics........................21
Microwave Modules.......................I.B.C.
M. M. Microwave............................35
PNP Communications......................35
Quartslab Marketing......................57
Rainbow Communications................25
R. Withers Communications............29
Spectrum Communications..............29
Technical Software.......................29
Trutone Modules...........................57
Ward Electronics...........................17
Waters & Stanton Electronics.al.21
WD Software...............................57
Western Electronics......................15
WPO Communications....................25

Don't forget, when calling an advertiser, mention
Ham Radio Today — it helps them and us
73's Dave Gadsden, G4NXV, Advertisement Manager

Please mention HRT when replying to advertisements. G4NXV. HAM RADIO TODAY SEPTEMBER 1985
HAM RADIO TODAY SEPTEMBER 1985 Please mention HRT when replying to advertisements. G4NXV.

EQUIPMENT

USED AMATEUR EQUIPMENT?

I BUY, SELL & EXCHANGE!!

SELLING? I pay the BEST POSSIBLE PRICES for clean used equipment!!

BUYING? I have the BEST SELECTION of TOP QUALITY USED EQUIPMENT AVAILABLE!!

Whether buying or selling phone Dave, anytime, for a deal you've been looking for on HORNCHURCH (040 24) 57722 ANYTIME, or send SAE for latest list to:

G4TNY AMATEUR RADIO
132 Albany Road, Hornchurch, Essex R N 1 2 A Q.

BOOKS AND PUBLICATIONS

SERVICE MANUALS

Ham Concorde 2, Ham multimode 2, Ham Jumbo 2, Ham Viking, Ham Puma, Cobra 148 GTX, DX, PC 879 and PB010. Colt 1600 DX, Tristar 777, York 863, York 861. All above at £6.00 + £1.00 p&p each. Other, rigs and spare parts available. 10m conversion for PMCB rigs £30 + £1.50 p&p Details on request.

CBT
1 Prince of Wales Road, Swansea, (Tel: (0792) 483921.

HOLIDAYS

SELF-CATERING CHALETS. Explore by day, DX by night. My ariel, your rig £15-£120 per chalet per week. Green Goats, 'Chylean' Tintagel, Cornwall PL34 0HH, Tel: (0840 212262).

RTTY

RTTY - CW - AMTOR
Now on the Dragon Complete set of Programs & Hardware to convert your DRAGON 32/84 into a complete communications terminal. Morse transceive Program (Cassette) Interface (Module) £10.75 £7.50 RTTY Program (Cassette) Terminal unit of modules £39.00 AMTOR Program (Cassette) £39.00 Module £18.00 Programs also available in Cartridge. Hardware available in kit or fully boxed form. For full details send 2x 17p stamps to:- PNP Communications (HT) 62 Lawes Avenue, Newhaven East Sussex BN3 9SB Tel: (0273) 514465 Prices include postage but not VAT

BUSINESS OPPORTUNITIES

MULTIPLY your income/profits working for yourself with the breakthrough ENTREPRENEUR ASSOCIATION, part-time or full-time. Send SAE for valuable free details: Atlantic Press, Dept P6 (1), 9 Cork Street, Mayfair, London W1.

KITS

LEATHER BELTS

Personalised leather belts made to order

Cawston Leather Co. Tenterden, Sandwich, Kent

MISCELLANEOUS

PERSONALISED LEATHER BELTS HAND MADE

For Spectrum/QL/BBC:-

WD Morse Tutor (cassette £4, microdrive/£3.25 disc £6)

From absolute beginner to beyond IV and Amateur Radio receiving. Adjust plot. Set speed to your test level (4-18 spm). Learn from single characters, via groups with wide spaces to random sentences. Decrease spacing to normal. Write down what you hear, then CHECK on screen or printer (or speech for Spectrum speech card). Also own messages, random figures, values or mixed. Punctuation in own messages is possible. £20 or 80-track 5 1/2" disc for Spectrum. Price includes postage in Europe, £1 extra overseas.

WD Software, Hilltop, St Mary, Jersey. Tel: (0534) 81362

SERVICE MANUALS

SERVICE MANUALS, Amateur Radio Test, Audio, Television, Video etc. S.A.E. enquiries, Mauriton (HRT), 8 Cherrytree Road, Chinnor, Oxfordshire.
COMPONENTS

SERVICES

BATTERIES

VINTAGE REPAIRS/SERVICE

RESISTORS, CAPACITORS.
1,000 mixed carbon film ¼W, ¼W, ½W, 2%, 5%, 10% resistors £2.95 + 50p P&P. SAE for details to: D.J. Hooker, Romney Marsh, Electronics, Clark Road, Greatstone, New Romney, Kent TN28 8PB.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

BATTERIES. Rechargeable batteries. 12 volt. 2.6 Amp Hour £19.00. 6 Amp Hour £22.00 including VAT and postage. Other voltages and capacities available. Allen Electrical, Penybont, Waunfawr, Caernarfon, Gwynedd. Tel: (0286) 85) 549.

VINTAGE RADIOS repaired — restored — over 200 Radios Stocked! 1922-1960. RADIO VINTAGE, 250 Seabrook Rd., Seabrook, Hythe, Kent CT21 5RQ.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.

HEATHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel: 0894 73127.
Microwave Modules Ltd. is a full-time professional organisation, established over 16 years ago in 1969, and currently employs over 30 full-time, on-site staff based in our two modern, purpose-built factories. In addition, a similar number of 'Outworkers' are involved in assembly and mechanical operations.

OUR EXTENSIVE RANGE

Our product range now exceeds 50 individual items in total and is the widest range available from any one manufacturing company. Our technical resources have enabled us not only become the largest and most successful designer and manufacturer of RF Products, such as Linear Amplifiers and transmitters, but also designers and manufacturers of innovative microprocessor and digital products such as The Morsetalker, MMSI, and the RTTY to TV decoder, MM2001.

ALL BRITISH

Every product in our range is designed and manufactured in the UK by our own employees, and wherever possible British Components are utilised.

GUARANTEED

All Microwave Modules Products are Fully Guaranteed for 12 months. This includes all semi-conductors and PA Transistors. We have built our reputation around our customer service and back-up and it is second to none.

OUR RANGE OF LINEAR AMPLIFIERS

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>INPUT POWER</th>
<th>OUTPUT POWER</th>
<th>MODES OF OPERATION</th>
<th>GAIN</th>
<th>NF</th>
<th>POWER REQUIREMENTS</th>
<th>RF VOX</th>
<th>PRICE INC VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MML144/30-LS</td>
<td>1 or 3W</td>
<td>30W</td>
<td>SSB</td>
<td></td>
<td></td>
<td>13.5V @ 4A</td>
<td></td>
<td>£92.90 (p&p £3.50)</td>
</tr>
<tr>
<td>MML144/50-S</td>
<td>10W</td>
<td>50W</td>
<td>FM</td>
<td>2dB</td>
<td></td>
<td>12.8V @ 5A</td>
<td></td>
<td>£92.20 (p&p £3.50)</td>
</tr>
<tr>
<td>MML144/100-S</td>
<td>10W</td>
<td>100W</td>
<td>AM, CW</td>
<td>12dB</td>
<td>-1.5dB</td>
<td>13.5V @ 10A</td>
<td></td>
<td>£149.95 (p&p £4.00)</td>
</tr>
<tr>
<td>MML144/200-S</td>
<td>10W</td>
<td>200W</td>
<td></td>
<td></td>
<td></td>
<td>13.8V @ 20A</td>
<td></td>
<td>£249.00 (p&p £5.25)</td>
</tr>
</tbody>
</table>

CONNECTORS

144MHz Products — Our standard connector on these products is S0239. We use a high-quality PTFE socket of superior quality, but we are able to supply the choice of BNC or 'N' type at no extra charge. Please specify.

432 MHz Products — The MML 432/30-L's fitted with BNC connectors, 'N' type available, please specify. The MML432/50 and MML432/100 both have BNC input sockets and 'N' type output sockets. If this is not to your preference please specify when ordering.

DATA SHEETS

A full printed data sheet is available on each product, and is free on request.

CATALOGUE

A copy of our latest catalogue can be obtained free of charge on request.

AVAILABILITY

Our products are normally available from stock, either direct from ourselves or any of our 75 UK outlets.
INTEREST FREE FINANCE
Yes, you really can spread the cost of your new rig over 6, 9 or 12 months and ARROW pays the interest charges for you. Three schemes: 20% deposit, balance over 6 monthly payments. 10% deposit, balance over 9 monthly payments. 5% deposit, balance over 12 monthly payments. And remember, you pay no more than the normal RR price!!

Just call us and we will send agreement for your new gear same day!!!

One of the country's largest Yaesu stockists you can see all the new models at ARROW plus get the very best deals - take advantage of our Interest Free Credit or call us for a really keen price - Nobody does it better!!!

Daiwa produce a marvellous range of PSUs - see the variable volt P5300 or the Cross needle SWR bridges. New 2M RTU/SWR meter. And some of the best HF tuning units around. "Blancher" Paddles stocked and "Vibrolite", Hi-Mount see and try a key or paddle at the ARROW shops. BNOS make some of the finest British made PSUs we have seen and the Linears are superb with 5 year warranty.

A free entry is yours to the new ARROW computer based for Ham radio plus other swipes to use at the ARROW shops.

WELZ full range stocked

Our normal despatch is one or two days (as thousands of satisfied customers will tell you). Subject to manufacturers supplies being available. CARRIAGE FREE on all orders of £50 value and over (UK Mainland only)

All mail orders to ARROW ELECTRONICS LTD
5 The Street, Hatfield Peverel, Chelmsford, Essex

Scottish customers welcome at ARROW ELECTRONICS (SCOTLAND)
51 Hyndland Street, Partick, Glasgow. Tel: 041-339 6445 ask for Bill GMOARO.

Parking free outside the shop, which is near the Clyde Tunnel and Kelvin Museum. Open six days (closed Sunday) 9-5.30

Hatfield Peverel showrooms which are just off the A12 trunk road, are open 9-5pm Mon & Thursdays, Fri, Sat. Closed all day Thrusdays. Approach by road via M25 & A12. By rail to BR Hatfield Peverel (3 mins from shop). We will taxi you back to rail station with heavy equipment. Buses from Chelmsford and Colchester pass the door. Free parking in our own car park.

At ARROW ELECTRONICS (MIDLANDS) Tel: 0858 62627 you will find Alan G4TZY who will be pleased to assist you. Alan lives at 33 Fairway, Market Harborough, Leics, but please telephone first.

At ARROW ELECTRONICS (WALES) Tel: 0248 714657

John Lewis GW8UZL waits to talk to you in Welsh or English! John is an expert on Satellite work & knows all the wrinkles on FT726R etc.

N.B. The F.O.C. carriage offer does not apply when Express Delivery is requested.